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Fröhlich

• Gutachter: Univ.-Prof. Dr. rer. nat. Jan Hasenauer

Tag der Promotion: 06.10.2025
Erscheinungsjahr: 2025





Abstract

Neurodegenerative Disorders, including Alzheimer’s, Parkinson’s, and Hunt-
ington’s Disease, pose major challenges to modern medicine due to their
progressive nature and impact on patients and the healthcare system. These
disorders lead to declines in cognitive, motor, and functional capabilities due
to gradual neuron degeneration. Despite extensive research, effective disease-
modifying therapies remain elusive, hindered by the complexity of identifying
suitable therapeutic targets and the heterogeneity of each condition.

This thesis addresses critical challenges within the pharmaceutical value
chain using data-driven methodologies, including machine learning and arti-
ficial intelligence, to develop innovative strategies for personalized medical
treatments and improved disease management. A key challenge lies in identi-
fying appropriate target structures for active substances. A systems biology
approach leverages advanced data analytics for an in-depth analysis of complex
interactions within biological pathways, enhancing the understanding of dis-
ease mechanisms and guiding the search for effective treatments. Furthermore,
determining the appropriate timing and patient selection for treatment is
essential. The heterogeneity of symptom progression in Huntington’s Disease
is examined, identifying two distinct progression subtypes with significant
cognitive performance differences. These findings underscore the need for
personalized treatment strategies based on individual progression patterns
and the importance of recognizing symptom diversity that influences clinical
outcomes. Additionally, objective measurements are investigated by eval-
uating gait sensor data for monitoring symptoms and their progression in
Parkinson’s Disease. The feasibility of using sensor-based digital gait data as
endpoints in clinical trials is assessed by determining necessary sample sizes
and measurement effectiveness. This approach aims to establish a reliable
framework for integrating health technologies into clinical practice, enhancing
patient monitoring and outcomes.

In conclusion, the results of this thesis underscore the potential of data-
driven methods in developing disease-modifying treatments for neurodegen-
erative diseases. Insights gained contribute to understanding potential drug
targets, disease progression heterogeneity, and the utility of digital sensors
for monitoring, paving the way for more effective drug development and
personalized disease management.
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1 Introduction

1.1 Neurodegenerative Diseases

Neurodegenerative Diseases (NDDs) are characterized by the progressive loss
of neurons and subsequent brain deterioration [1]. Among the most prevalent
NDDs are Alzheimer’s disease (AD) and Parkinson’s disease (PD) [2, 3]. A
less common NDD is Huntington’s disease (HD), which is distinct from AD
and PD as it is a monogenic condition caused by a mutation in a single
gene [4]. All NDDs exhibit shared pathologies, including abnormal protein
conformations and aggregation, such as the amyloid plaques found in AD. In
each of these conditions, these protein abnormalities, along with neuronal
loss and brain atrophy, typically manifest prior to the appearance of clinical
symptoms [1].

1.1.1 Alzheimer’s Disease

AD is a neurodegenerative disorder characterized by cognitive and functional
decline, ultimately leading to death [2, 5]. It stands as the most common cause
of dementia, affecting over 55 million individuals worldwide, predominantly
those aged 65 and older [2]. The incidence of AD rises with age, impacting
one-third of people over 85 with women accounting for two-thirds of AD
diagnoses [6, 7]. In recent years, a significant proportion of new dementia
cases has emerged in low- and middle-income countries, where two-thirds of
all AD cases are concentrated [5, 6]. Predictions indicate that the number of
individuals living with AD may double by 2050 [5, 7]. Despite considerable
research efforts, AD remains one of the top ten leading causes of death in
the United States, with reported fatalities increasing by over 140% in the
past two decades [2]. Furthermore, the global economic burden of AD was
estimated at $1.3 trillion in 2019, imposing substantial strain on healthcare
systems and families alike [8].

AD is a multifactorial disease with its precise underlying causes remain
elusive [9]. Two important pathological alterations associated with AD in-
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clude the extracellular aggregation of amyloid-beta protein and the formation
of neurofibrillary tangles composed of misfolded tau protein [9, 10]. These
processes contribute to neurodegeneration by harming neurons, resulting in
diminished synaptic strength and synaptic loss [9–11]. Furthermore, vari-
ous factors, such as cardiovascular health [12], neuroinflammation [13], and
cholesterol metabolism [14], are under investigation for their potential roles
in shaping the disease phenotype.

AD is a progressive disorder that initially manifests as mild difficulties
in memory, language, and cognition, gradually evolving to encompass com-
munication challenges and behavioral changes. Ultimately, severe symptoms
emerge, rendering everyday tasks such as walking, speaking, and swallowing
increasingly impossible for patients [2, 5]. Clinically, AD is classified into
three stages: 1) pre-clinical AD, 2) mild cognitive impairment (MCI), and 3)
dementia due to AD [15–17]. During the pre-clinical phase, the aggregation
of amyloid-beta and the formation of neurofibrillary tangles occur, yet no
recognizable symptoms are present. This phase commence as much as 20
years or more before patients and their families notice the first signs of the
disease [15, 18]. Once symptoms manifest, patients transition into the MCI
stage, where mild issues, such as memory problems, become apparent but do
not significantly interfere with daily living. Individuals with MCI are at an
increased risk of progressing to dementia, the third phase, typically within
a few years. The duration of this phase varies considerably, influenced by
numerous factors, including age, genetics, and lifestyle [16, 18]. As symptoms
intensify, patients eventually advance to the dementia phase, which can be
further delineated into three stages: mild, moderate, and severe, based on the
extent of impairment in daily activities [17]. Historically, AD was diagnosed
solely on the basis of symptoms, focusing on stage of dementia and neurobe-
havioral signs sufficiently pronounced to affect daily functioning [19]. Today,
diagnosis integrates clinical assessment with biological markers, including the
detection of abnormal levels of amyloid beta and tau in the cerebrospinal
fluid (CSF) and blood [20–22]. Recently, criteria for diagnosing AD have
been established based exclusively on biological assessments [22].

In addition to age and family history, genetics play an important role in
the risk of developing AD [2, 5, 23]. Research has uncovered several genes
that influence the biological mechanisms associated with AD, encompassing
both risk factors and protective elements [23, 24]. Among these, the APOE
gene exerts the most profound effect on the likelihood of late-onset AD [2, 5].
The gene exists in three variants, with the e4 allele markedly elevating the
risk of developing AD compared to the e2 and e3 alleles. The risk is further
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amplified in individuals carrying two copies of the e4 allele [2, 23, 25, 26].
Other noteworthy genes that impact risk and protection include APP [27],
TREM2, [28–30] and CD33 [30–35].

Currently, there is no cure for AD [2, 5, 36]. Most available treatments
aim to alleviate symptoms rather than targeting the underlying biological
mechanisms, which means they do not slow or halt disease progression [2,
5]. Recently, the U.S. Food and Drug Administration (FDA) approved three
drugs: aducanumab, lecanemab, and donanemap, designed as amyloid beta-
targeting antibodies to eliminate amyloid-β plaques in the brain [37–40].
Aducanumab received conditional approval, pending further evidence of its
cognitive efficacy, while lecanamab and donanemap achieved full approval
after demonstrating effectiveness in improving cognitive function [39, 40].
However, the manufacturer of aducanumab has announced the discontinuation
of its development. While lecanemab has shown moderate success in slowing
cognitive and functional decline in individuals with MCI or mild AD, some
researchers remain skeptical about its clinical applicability [2, 41].

1.1.2 Parkinson’s Disease

In addition to AD, PD is the second most prevalent neurodegenerative
disorder, affecting over 6 million people as of 2016 [3]. It is the fastest-growing
neurodegenerative disease, with cases projected to continue rising [42]. The
total economic burden of PD in the US was estimated at $51.9 billion in
2017, a figure expected to exceed $79 billion by 2037 [43]. Both the incidence
and prevalence of PD increase with age: approximately 25% of patients
are diagnosed before the age of 65, and 5-10% receive a diagnosis before
the age of 50 [3]. The incidence is notably lower in women, who generally
experience a later onset of symptoms [3, 42]. PD is a progressive disease that
ultimately leads to death, however many individuals with PD can live for
extended periods with the condition, although their life expectancy is reduced
compared to that of healthy individuals [3].

PD is a motor syndrome linked to the deposition of alpha-synuclein depo-
sition in the substantia nigra [44]. Although the precise underlying causes
remain unclear, similar to AD, PD is characterized by the aggregation of
alpha-synuclein, which is associated with mitochondrial dysfunction, synaptic
transport issues, immune activation, and alterations in lysosomal and endoso-
mal function, alongside neuroinflammation [44]. This pathological process
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leads to the loss of dopaminergic neurons, resulting in decreased dopamine
release and slower movements, a condition known as bradykinesia [3]. Recent
research indicates that PD pathology may progress in distinct ways: in the
body-first type, it originated in the gut and peripheral nervous system before
advancing to the brain, while in the brain-first type, it begins in the brain
and subsequently spreads to the rest of the body [45].

PD is a progressive condition in which all symptoms initially manifest
subtly and worsen over time. The rate of progression and severity of symptoms
vary widely among individuals, complicating prognosis [44, 46]. PD is a
multifaceted disorder that encompasses both motor and non-motor symptoms
[3]. During the prodromal phase, which can last 20 years or more prior to
the onset of motor symptoms, typical signs include constipation, hyposmia,
depression, and REM sleep behavior disorder (RBD) [47]. Motor symptoms
include bradykinesia, muscle stiffness (rigidity), resting tremors, and gait
disturbances [48]. Impaired gait patterns are characterized by reduced step
length and speed, increased axial rigidity, and impaired rhythmicity [49].
Other prevalent non-motor symptoms include anxiety, cognitive decline, sleep
disorders, and pain [50]. The diagnosis of PD primarily relies on the clinical
presentation of motor symptoms, confirmed by the presence of bradykinesia
in conjunction with either resting tremor, rigidity, or both [51]. Caution is
warranted when these indicators are absent, as this may suggest alternative
diagnoses such as atypical Parkinsonian syndromes, which typically do not
respond to treatment - a key distinguishing factor from PD [51]. A biological
diagnostic method is currently under development and is expected to be based
on alpha-synuclein seed amplification from blood and CSF [52–54].

Approximately 3-5% of all PD cases are monogenic, meaning that the
disease symptoms can be attributed to a mutation in a single gene [3]. Such
mutations have been identified in SCNA, LRRK2, PRKN, and PINK1, with
PRKN and PINK1 mutations leading to early onset of the disease, while
SCNA and LRRK2 mutations are associated with a typical onset [55]. Addi-
tionally, mutations in the GBA gene are recognized as a common risk factor
for developing PD. In total, 90 different and independent risk variants have
been identified, accounting for 16-36% of the heritable risk of non-monogenic
PD [55]. Other risk factors include prior head injuries, exposure to environ-
mental toxins such as pesticides, and comorbidities like diabetes or RBD [56].
Patients with RBD are at the highest risk of developing a movement disorder
within the next decade [57]. Potential preventive factors include smoking,
coffee consumption, physical activity, and the use of anti-inflammatory drugs,
however it remains uncertain whether these associations are truly causal [56].
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Currently, there are no disease-modifying treatments available that can
slow down or stop the progression of PD. Treatment primarily focuses on
symptomatic relief, particularly alleviating motor symptoms. The main
component of this approach is dopamine replacement therapy, typically uti-
lizing Levodopa, which is favored for its relatively mild side effects at low
to moderate doses during initial treatment [58, 59]. However, prolonged use
of Levodopa at higher doses may result in dyskinesia [60]. As a result, it is
often combined with other dopaminergic medications in the later stages of
treatment to address response fluctuations and periods off-treatment [58]. To
further minimize off-treatment time, device-aided therapies such as pumps,
deep brain stimulation, or lesion surgery may be utilized [58]. Non-motor
symptoms are generally manged with standard therapies tailored to the spe-
cific symptoms [61]. While severak promising drug targets with potential
disease-modifying effects have been identified, ongoing studies are mostly in
early phases, and others have not met their defined endpoints [62–67].

1.1.3 Huntington’s Disease

HD is a less common, autosomal-dominantly inherited, neurodegenerative
disease caused by a mutation in the huntingtin gene (HTT) gene, specifically
a CAG repeat expansion [4, 68]. Its prevalence in the Western world is 4.88
per 100,000 individuals, with symptoms typically emerging between the ages
of 35 and 45 [69]. In rare cases, the disease can manifest in childhood. The
age of onset is inversely correlated with the number of CAG repeats in the
HTT gene [70]. Following clinical onset, individuals with HD can expect to
live an additional 15 to 20 years [71].

The mutated huntingtin protein induces neurodegeneration in the striatum,
specifically causing loss of GABAergic medium spiny neurons [4, 71]. This
neuronal loss is driven by the toxic gain-of-function associated with the
abnormal conformation of the HTT protein, leading to protein misfolding
and aggregation. These abnormalities disrupt cellular metabolic pathways,
including the deregulation of ubiquitin and mitochondrial functions, resulting
in the production of abnormal metabolites and oxidative stress [72, 73]. This
oxidative stress, in turns, triggers inflammation at all stages of the disease
[74].

HD clinically presents with a triad of symptoms: motor, cognitive, and
psychiatric [4]. The most characteristic clinical symptom is chorea, which
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consists of involuntary movements. Other motor symptoms include inco-
ordination, dystonia, bradykinesia, and rigidity. The onset of these motor
symptoms marks the manifestation phase of the disease, allowing for a defini-
tive clinical diagnosis [75]. Cognitive and psychiatric symptoms, such as
cognitive slowing, decreased attention and emotional recognition, depression,
irritability, and apathy, often precede the initial motor symptoms [71, 76]. As
the disease progresses, all symptoms worsen, leading to a decline in quality of
life and an increased need for assistance [76, 77]. The phase prior to motor
symptoms is known as the premanifest phase, which is further subdivided
into the presymptomatic phase, characterized by the absence of symptoms
and the prodromal phase, which features cognitive and psychiatric changes,
along with subtle motor changes that are not clearly attributable to HD [4].
The clinical diagnosis of HD primarily relies on the assesesment of symptoms,
taking into account family history and genetic testing for the CAG expansion.
Notably, neuronal loss can be detected early in the prodromal phase using
MRI [53]. To standardize diagnosis and staging in clincial research, a new
biological classification system called the HD Integrated Staging System (HD-
ISS) has been proposed [53]. The HD-ISS consists of four stages, beginning
with stage 0 for CAG expansion carriers. Progression to stage 1 occurs when
biomarker evidence of HD pathophysiology is measurable through changes in
putamen and/or caudate volume. Stage 2 is reached when cognitive and/or
motor symptoms define a clinical phenotype, while stage 3 is characterized
by additional functional changes. Other modern diagnostic and symptom
recognition approaches, such as CSF or blood biomarkers [78], and digital
technologies [79–81], are currently limited to clinical research or have not yet
been validated for diagnostic use.

Unlike AD and PD, which are not typically linked to a single gene, HD is
monogenic and associated with a mutation in the HTT gene on chromosome
4 [4, 69]. This mutation is characterized by an abnormally long CAG repeat.
A normal phenotype consists of 10 to 35 CAG repeats, whereas more than
35 CAG repeats result in an HD phenotype. Individuals with 27 to 35 CAG
repeats exhibit a normal phenotype, but these repeats can become unstable
during reproduction, leading to de novo cases of HD, which account for up to
7% of all cases [4, 69]. The length of the CAG repeat is inversely correlated
with the age of onset, meaning that a higher number of repeats is associated
with an earlier onset of HD. CAG repeat length explains 50-70% of the
variance in age of onset, while the remaining variation is influenced by other
modifying genes, such as GRIN2A, ADORA2A, or PPARGC1A, as well as
environmental factors [70]. Additionally, the number of CAG repeats is also
related to disease progression, with a greater number of repeats leading to
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faster progression [70].

The treatment of HD is purely symptomatic, as no disease-modifying
therapies are currently available [73]. In addition to medications for managing
symptoms such as chorea and depression, behavioral and social interventions,
including physiotherapy and speech therapy, have demonstrated benefits for
HD patients [71]. Ongoing research aims to develop treatments that reduce
the amount of pathogenic protein by either decreasing its production or
enhancing its clearance, thereby preventing HTT aggregation [73]. Although
no drug has yet proven effective in clinical trials, a phase III clinical trial
investigating the efficacy of pridopidine is currently underway (NCT04556656)
[82].

1.1.4 The challenges in diagnosis and treatment of

NDDs

In NDDs, the heterogeneity of these conditions and the absence of disease-
modifying treatments present significant challenges for current management.
These challenges are multifaceted, encompassing the heterogeneity in symp-
toms and disease progression in AD, PD, and HD, which often complicates
diagnosis and leads to delays [3, 71, 83]. Furthermore, the development of
disease-modifying treatments is hampered by the repeated failures of clinical
trials, resulting in a reliance on symptomatic treatments alone [63, 73, 83].

AD, PD, and HD, exhibit considerable heterogeneity in their symptomatic
manifestations and underlying mechanisms. While all patients share key
pathologies, such as amyloid aggregation in AD and alpha-synuclein aggrega-
tion in PD, the underlying biology is multifactorial. This complexity poses
significant obstacles to the development of disease-modifying drugs. Typically,
drugs are designed to target specific molecular aspects of a single mechanism
of action or biological pathway. However, the varying significance of these
mechanisms among individual patients can impair the efficacy of drugs target-
ing a specific pathway [20]. In addition to the challenges in developing new
treatment options, current symptomatic treatments for NDD are complicated
by the high variability in symptoms among patients. While individuals share
primary symptoms, such as tremors in PD and chorea in HD, the accompa-
nying symptoms can differ markedly from one person to another, both in
sequence and intensity [3, 84]. As a result, treatment must be tailored to
address the specific type and severity of accompanying symptoms, requiring
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clinicians to carefully evaluate potential side effects and drug interactions [58].
Ultimately, the primary goal is to enhance patients’ quality of life. In PD,
two distinct patterns of pathological progression throughout the body are
characterized by different accompanying symptoms and their intensities, as
elucidated by the brain-first versus body-first principle [45, 84]. These types
are defined by the initial site of pathology: either in the brain or in the gut
and peripheral nervous system. Research indicates that these types differ
in their symptomatic presentation. The body-first type is often associated
with RBD, constipation, and orthostatic hypotension, while the brain-first
type less frequently exhibits these symptoms at the onset of parkinsonism
but more commonly presents with a tremor-dominant phenotype and asym-
metric symptom appearance. This variability in symptom presentation based
on the starting point of pathology underscores the interaction between the
underlying disease mechanisms pathology and their symptomatic manifes-
tations. Neclating this distinction may lead to ineffective disease-modifying
treatments, as the two subtypes demonstrate significant differences in the
spread of alpha-synuclein in the brain.

The underlying pathology of the diseases begins years before the onset
of primary clinical symptoms, making early diagnosis essential for timely
intervention [3, 71, 83]. While some symptoms may manifest prior to the main
disease features, a definitive diagnosis is typically established only after these
primary symptoms appear, as current diagnostic procedures do not permit
diagnosis in their absence [53, 85]. This often results in delayed diagnosis,
particularly for patients who do not initially exhibit key disease symptoms.
This situation highlights the urgent need for biomarkers that enable early
disease diagnosis independent of clinical criteria. Such biomarkers must
demonstrate significant changes as soon as the underlying pathology begins.
Despite considerable research in this area over the past few years, reliable
biomarkers have only been established for AD, specifically the measurement
of amyloid-beta in CSF [20]. For PD, potential biomarkers are still under
investigation and have yet to be integrated into clinical diagnostic procedures
[85]. In the case of HD, such biomarkers are sill lacking [73]. Moreover, while
amyloid-beta levels in CSF are currently utilized for AD diagnosis, they are
not employed for preventive screening. Consequently, amyloid-beta levels
are not routinely assessed in healthy individuals during regular check-ups,
but only when there is a suspicion of AD. Additionally, the lumbar puncture
required for CSF collection is an invasive procedure that can be uncomfortable
for patients and is not typically performed by general practitioners. These
limitations could be addressed with more accessible biomarkers, such as
blood-based or digital biomarkers. Randomized clinical trials face significant
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challenges in selecting appropriate endpoints. Standardized clinical rating
scales, such as the Unified Parkinson’s Disease Rating Scale (UPDRS) for
PD [86] and the Unified Huntington’s Disease Rating Scale (UHDRS) for HD
[75], are commonly employed to assess the efficacy of new drugs. However,
this approach has drawn criticism from researchers and clinicians for several
reasons [3, 4, 71]:

1. Disease Stage: Patients with identical score on these rating scales may
be at different stages of the disease based on underlying pathology and
affected body structures, despite being classified at the same diagnostic
stage.

2. Symptom Bias: Clinical rating scales either focus on specific disease
symptoms or provide a broad overview that lacks the detail necessary
to define subgroups. For example, the UPDRS consists of four compo-
nents addressing non-motor features, daily living motor aspects, clinical
motor examinations, and complications. Relying on total or individual
components scores can lead to an overemphasis on motor symptoms, ne-
glecting accompanying non-motor symptoms. Additionally, non-motor
symptoms are typically rated via patient or caregiver self-reports, while
motor symptoms are assessed by clinicians, introducing potential biases.

3. Clinician Subjectivity The subjective nature of these ratings can
result in variability. Different clinicians may assess the same patient
differently, leading to inconsistencies across study sites and even within
the same patient over follow-up visits [3, 71]. Consequently, minor
score improvements within a common one-year study timeframe may
reflect either the drug’s efficacy or variability in ratings. Furthermore,
clinical scales may fail to capture subtle improvements or deteriorations
in slowly changing conditions, resulting in only minor score fluctuations.

Therefore, more objective symptom monitoring is essential for accurate
disease diagnosis, monitoring, and trial endpoints. Objective scales could
enhance the detection of early symptoms and accurately measure subtle
changes, thereby facilitating the development of new, potentially disease-
modifying treatments.

In conclusion, the treatment of NDDs presents a multifaceted challenge,
stemming from the complexity of disease mechanisms and the necessity for
precise, objective diagnosis and symptom monitoring. To address these chal-
lenges and enhance the potential for success in clinical trials, a systemic and
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comprehensive approach is required. This involves untangling the complex-
ity of disease mechanisms, developing targeted drug therapies, establishing
methods for objective disease monitoring, and identifying disease subtypes.
Such a holistic approach can be viewed as a value chain in biomedical re-
search, encompassing drug development, disease management, and precision
medicine.

1.2 The drug development process

Drug development is the inricate process of designing a new pharmaceutical
treatment, encompassing five main phases: pre-discovery, drug discovery, pre-
clinical research, clinical research, and subsequent stage of reviewing, approval,
and post-market monitoring [87, 88]. The primary objective of this process
is to ensure the safety and efficacy of the drug, thereby maximizing patient
benefit. Below is a brief overview of each stage of the drug development
process:

• Pre-Discovery Stage: During this phase, potential drug targets, such
as proteins or genes, are identified and validated [88–90]. This requires
a deep understanding of the underlying disease processes and disease-
causing mechanisms. By investigating dysfunctional signaling pathways
or molecular mechanisms associated with the disease, researchers can
pinpoint viable drug targets.

• Drug Discovery Stage: The goal of this stage is to identify molecules
or therapeutic strategies that alleviate disease symptoms, interfere with
disease progression, or potentially cure the condition.

• Pre-Clinical Development Stage: Once drug candidates are identi-
fied, their mechanism of action and potential toxicity must be thoroughly
investigated. This involves conducting numerous in vivo (e.g. animal
models) and in vitro experiments to demonstrate the safety of the
potential drug compounds.

• Clinical Stage: This phase aims to evaluate the drug candidates in
humans, establishing their safety and efficacy [91]. The clinical stage is
divided into three phases:
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– Phase I: A small group of healthy individuals or patients, typically
20-100 people, receives the drug to assess safety and tolerability,
with multiple doses tested to determine the most beneficial one
[87, 88].

– Phase II: The drug is tested in a larger group of 100-500 patients
to evaluate its therapeutic effect. During this phase, the optimal
dose is further refined, and safety studies continue.

– Phase III: The drug’s efficacy is assessed in an even larger pop-
ulation, usually comprising 300-3000 patients, depending on the
disease being investigated. This phase also tests the drug against
standard treatments and examines potential interactions with other
medications.

• Reviewing, Approval, and Post-Marketing Monitoring Stage:
After a successful Phase III study, all study data is submitted to
regulatory bodies for review and market approval. Depending on the
target market, submissions are made to regulatory agencies such as
the FDA in the United States, the European Medical Agency (EMA)
in the European Union, or local regulatory agencies in other regions.
Once approved, the drug becomes available on the market and can be
prescribed to patients. However, post-marketing surveillance studies,
also known as Phase IV studies or real-world evidence trials, continue
to monitor rare or long-term adverse effects in a larger population.

The drug development process is inherently lengthy, intricate, and costly,
with high attrition rates. Out of numerous compounds tested, only a selected
few progress to clinical trials, resulting in the approval of a single drug [88].
This entire process typically incurs costs of approximately $2.8 billion and
spans around 12 to 15 years [88, 90, 92]. The pre-discovery phase, lasting 5
to 6 years, and the clinical trial phase, taking 4 to 7 years, are the longest
stages. In contrast, pre-clinical stage requires 2 to 3 years, while regulatory
approval takes an additional 1 to 2 years [88].

In summary, the drug development process is vital for managing diseases.
Newly developed drugs and therapies enhance patient care and improve
the quality of life of many individuals. Thus, it is imperative to focus
on refining the drug development process. A robust pre-discovery phase,
which includes target identification and validation, is essential for successful
outcomes. Consequently, substantial efforts are dedicated to understanding
disease pathology and the complexities of underlying mechanisms. Modern
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technologies, such as data-driven methods and artificial intelligence (AI), hold
the potential to expedite this process and deepen our understanding.

1.2.1 Leveraging Data-Driven Approaches for Target

Identification

New drug targets can be identified through various methodologies, with
literature reviews and genomic studies being the most prevalent. These
approaches operate in the premise that inhibiting or activating a specific
protein, identified as a potential target, can modify the disease or significantly
influence its phenotype [89, 93]. Thus, it is essential not only to identify a
potential target but also to validate it to confirm its impact on the disease.

In addition to thorough literature reviews, a common partially data-
driven approach is the use of genome-wide association studies (GWAS).
GWAS leverage genomic data to explore the relationship between specific
genetic mutations and diseases [89, 93]. Various statistical methods are
employed to assess the associations between the identified variants and the
disease, including single marker tests, burden tests, variance-component tests,
and polygenic risk scores for multiple marker analyses [94]. Another data-
driven approach focuses on examining mRNA and protein expression levels
through transciptomic or proteomic analyses [89, 93]. In transcriptomics, the
emphasis is on identifying which potential targets are expressed in disease
states. A range of methods is utilized to analyze the resulting data, including
traditional techniques such as differential gene expression (DE) analysis and
co-expression network generation [95]. DE analysis aims to pinpoint genes
that exhibit differential expression between healthy individuals and those
with the disease, thereby shedding light on potential disease-causing genes.
Conversely, co-expression networks aim to identify interacting genes within
mechanisms or pathways pertinent to the disease process. These analyses
are often complemented by pathway or gene-set enrichment analysis (GSEA),
which provides functional annotation by assessing the enrichment of specific
pathways within a gene set [93]. In transcriptomics, GSEA aids in identifying
over- or underexpressed pathways that may be influenced by the disease, thus
highlighting these pathways or mechanisms as potential targets for new drug
development.

Once a potential target is identified, it is imperative to validate it to
ensure that it influences a relevant aspect of the disease biology, rather than
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extraneous factors. Traditional validation methods often involve transgenic
knock-out (KO) or knock-down (KD) animals, which lack the gene of interest,
allowing researchers to observe the resultant phenotypic changes [89, 93].
Similar gene expression perturbation experiments can be conducted using
human cell lines, however, these methods are typically time-consuming and
costly [89, 93]. Consequently, data-driven validation approaches can facilitate
more informed decisions at a reduced expense.

A critical step in drug target identification is understanding the mechanistic
relationship between the identified target and the disease. It is essential to
delineate the biological pathways and mechanisms that connect the potential
target to the disease. This mechanistic understanding is usually achieved
through systems biology or systems medicine approaches [96]. Such models
provide deeper insights into the molecular mechanisms underlying disease
phenotypes by identifying key components and predicting system behavior.
The complexity of biological systems is often represented through networks,
where biological entities such as genes or proteins act as nodes, and their
interactions are depicted as edges [96–98]. Examples of these networks
include protein-protein interaction (PPI) networks, drug-target interaction
networks, disease-gene association networks, and biological pathways. Current
knowledge regarding these interactions is stored in various databases, which
facilitate the application of this information in algorithms and models. Notable
databases include STRING [99], BioGrid [100], and IntAct [101] for PPIs;
OpenTargets [102] and the Therapeutic Targets Database [103] for drug-
target interactions; DisGeNET [104] for disease-gene associations; and KEGG
[105], Reactome [106], PathwayCommons [107] and WikiPathways [108] for
biological pathways. While these databases streamline the integration and
utilization of knowledge for various algorithms and models, they primarily
provide generic information lacking specific disease context, affected tissues,
or cell types. As a result, they may not fully capture the complexities of the
disease under investigation.

To derive quantitative insights and predictions from these models, ordinary
differential equations (ODEs) and partial differential equations (PDEs) are
frequently utilized in systems biology [109–111]. These mathematical and
computational frameworks accurately describe the interactions among bio-
logical components, enabling simulations of specific biological processes and
predictions regarding the effects of perturbations, such as drug treatments or
gene KDs [109, 111]. Quantitative models facilitate the prediction of overall
phenotypic effects and the assessment of how changes in one part of the
network may influence the entire system, including individual components.
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However, the formulation of ODEs and PDEs requires a thorough under-
standing of the underlying biochemical reactions, which is often available
only for specific processes, such as insulin signaling in type 2 diabetes [112]
or amyloid-beta aggregation in AD [113]. Additionally, fitting differential
equations typically necessitates time-resolved data and the ability to conduct
intervention experiments for validation. This poses challenges in NDDs, as
cell lines and mouse models often replicate only certain aspects of the human
disease. Such limitations hinder the reconstruction of complex disease mech-
anisms, especially in conditions where the underlying biology remains only
partially understood. Alternative methods for constructing systems biology
networks include probabilistic models, such as probabilistic Boolean networks
[114] and Bayesian networks (BNs) [115, 116]. These approaches can yield
valuable insights even in the absence of detailed biochemical knowledge or
time-resolved data.

Data-driven methods, including machine learning (ML) and AI, are crucial
for drug development. These methodologies can expedite the entire process,
reduce costs, and enhance the success rate of new drugs by facilitating
informed, data-driven decisions. They have proven to be powerful tools for
analyzing the rapidly growing volume of data and integrating heterogeneous
sources of information to gain a deeper understanding of the molecular
mechanisms underlying disease phenotypes.

1.2.2 Mechanistic modeling in NDDs

Current drug targets in NDDs primarily include amyloid beta, tau, APOE4
and inflammation-related proteins, such as TREM2, and CD38 in AD [117].
In PD, key targets include LRRK2, GBA, alpha-synuclein pathology, and
PINK1 [118]. However, many additional drug targets have been identified and
are currently under investigation. In HD, the main focus is on the huntingtin
gene, which is implicated in the disease’s pathology [73].

Developing disease-modifying treatments for NDDs requires a profound
understanding of the complex underlying mechanisms involved in disease
pathology. Numerous quantitative mechanistic models exist for AD [119–
125] and PD [126, 127]. For example, Proctor et al. developed a model for
the aggregation of amyloid-beta and tau protein, examining the interplay
between GSK3beta, p53, amyloid beta, and tau [113]. This model incorporates
components for each of these factors, with the underlying network derived
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from prior research and biological knowledge, while parameter estimates
are based on data from cellular systems. Another notable model in AD,
developed by Hao et al., simulates multiple cell types and their interactions
concerning amyloid beta aggregation and tau proteins through a PDE system
[120]. This model includes components such as amyloid beta, IL-10, and TNF-
alpha, and the numbers of living and dead neurons, with parameter values
sourced from previously published research. Van Maanen et al. formulated a
model that describes changes in the APP pathway, specifically modeling the
effects of BACE1 inhibition on APP metabolites like Abeta42 or Abeta10
in the CSF [121]. While, this model provides valuable insights into the
underlying mechanisms, it primarily focuses on the specific effects of a single
intervention and does not generalize to the system level. Most quantitative
models concentrate on specific aspects of AD, primarily targeting amyloid
beta pathology [120, 121, 123], tau pathology [119, 125], or a combination of
both [113, 124]. Few models establish a direct link to the disease phenotype
beyond protein aggregation. For instance, Geerts et al. calibrated their
model using ADAS-Cog score from clinical trials [123], while Mazer et al.
included the Clinical Dementia Rating – Sum of Boxes as a clinical outcome
[124]. Although the latter incorporated clinical data to estimate certain model
parameters, others were derived from cellular data or fixed values determined
by the authors. There is a pressing need for a systematic approach that
encompasses multiple pathways and mechanisms rather than isolating specific
disease aspects. This approach should leverage extensive clinical data, with
the network structure inferred directly from the data rather than being
manually defined through equations.

1.3 Disease management in NDDs

Disease management refers to a systematic and coordinated approach to
healthcare for patients affected with chronic diseases. Its primary goal is
to enhance health outcomes and improve patients’ quality of life, thereby
elevating overall healthcare standards. This approach encompasses patient
education regarding their conditions and self-care options, continuous monitor-
ing of health status, the implementation of personalized treatment plans, and
coordinated care among healthcare providers. All these elements emphasize
patient-centered disease management. While clinicians play a pivotal role
in this process, patients are also active participants in managing their own
health. Empowering patients through education programs and providing
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them with knowledge about their conditions and treatment options is es-
sential for improving adherence and positively influencing disease outcomes.
Furthermore, enhancing patients’ understanding fosters greater trust in the
healthcare system.

Personalized treatment plans, an essential aspect of disease management,
are tailored to each individual patient. Recognizing that symptoms can
vary widely among patients and may differ in severity, a diverse array of
medical treatments and non-medical interventions, such as physiotherapy,
psychotherapy, or speech therapy, are recommended [128, 129]. Clinicians
formulate these plans by assessing symptoms and comorbidities while integrat-
ing genetic, environmental, and lifestyle factors. For instance, patients with
PD have been shown to benefit from activating therapies like physiotherapy
and occupational therapy [128, 130]. Overall, physical activity is associated
with improved quality of life and better symptom management, while specific
therapies target particular symptoms. For example, physiotherapy, aquatic
exercise, and endurance training can enhance motor symptoms, whereas
resistance and treadmill training improve gait [130, 131]. In terms of medical
interventions, careful administration of Levodopa or other dopamine agonists
in younger patients is crucial, particularly concerning the risk of dyskinesia
associated with long-term Levodopa use [60, 128]. This approach aligns
with the principles of precision medicine, also known as personalized [132] or
stratified medicine [133], which focuses on delivering the right drug to the
right patient at the right time. Unlike traditional “one-size-fits-all” treatment
strategies that apply average effects to all patients with the same diagnosis,
personalized medicine tailors treatment based on individual characteristics
[134]. The underlying principle is that variability in human biology and
environmental exposures leads to different disease progressions and drug
responses among patients diagnosed with the same condition [135]. Precision
medicine emphasized stratifying patients into subgroups based on their indi-
vidual characteristics and matching them with the treatments or interventions
likely to yield the best outcomes [136]. Identifying these subtypes is thus a
fundamental task in precision medicine.

In addition to providing optimal treatment, effective disease monitoring
is a crucial aspect of disease management, allowing for timely responses to
changes and evaluations of treatment plans. Regular visits are essential, as
symptoms of NDDs are not static but evolve throughout the course of the
disease. Symptoms and their progression in NDDs are typically assessed using
clinical rating scales, such as the UPDRS for PD [86], or UHDRS for HD
[75]. Both scales evaluate various aspects of the diseases, including non-motor

16



and motor symptoms in PD through multiple subscales. The UPDRS ranges
from 0 to 260, with higher scores indicating greater disability. The UHDRS
also comprises multiple subscales focusing separately on motor and cognitive
assessment. While higher scores in the motor and behavioral sections indicate
greater impairment in HD, higher scores in cognitive and fuctional assessments
suggests better performance. However, these clinical outcome measures are
subjective and highly variable due to intra-rater and inter-rater differences
[3, 4, 72, 137]. Such variability can affect clinical trial results and influence
patient treatment evaluations. For example, if a patient begins treatment
with a UPDRS score of 124 and later receives a different rating from another
clinician, who assessed the patient more critically, resulting in a score of
136, it becomes unclear whether this change reflects disease progression or
merely variabiliy in scoring. Moreover, clinical scales may fail to capture
subtle improvements or declines, particularly when changes in the patient’s
condition occur gradually, leading to minor score fluctuations. Therefore,
there is a pressing need for more objective assessment of symptoms and
their progression. In summary, effective disease management relies on both
optimal treatment and thorough symptom monitoring, achieved through the
identification of progression subtypes and the implementation of objective
symptom monitoring.

1.3.1 Progression subtype identification

The experience of each patient with NDDs in uniquely individual, charac-
terized by significant variability in symptoms. The severity and progression
of these diseases can vary markedly among individuals, reflecting diverse
disease trajectories. Although all NDDs are progressive, leading to a gradual
decline in symptoms over time, some patients may face rapid deterioration,
while others may experience a more gradual decline. Identifying progres-
sion subtypes is essential for effective disease management, as it lays the
groundwork for determining optimal treatment strategies and addressing the
inherent heterogeneity of these conditions. NDDs manifest a broad spectrum
of symptoms and progression patterns, making it vital to comprehend this
heterogeneity for implementing precision medicine approaches in research,
patient counseling, and the development of successful disease-modifying ther-
apies. Recognizing distinct disease subtypes offers several advantages. First,
it enables predictions regarding disease progression, providing valuable prog-
nostic information for patient counseling. Second, it aids in anticipating
treatment responses. Lastly, delineating different subtypes can pave the way
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for new therapeutic targets, as responses to existing or novel treatments may
vary among subtypes. Clinical trials that evaluate the efficacy of new drugs
based on identified subtypes may reveal effectiveness in specific groups that
broader studies, those that do not account for subtype differences, might
overlook. Furthermore, understanding their specific disease subtype empowers
patients to manage their condition more effectively, allowing clinicians to
deliver more accurate prognoses and customize treatments accordingly.

Subtype identification can be approached through various methods, tai-
lored to the data modalities and techniques employed. A straightforward
classification method relies on individual clinical features, such as age of
onset, motor phenotype, or the onset of dementia [138]. For example, in HD,
patients are categorized by their age of onset: those with juvenile-onset HD
present symptoms before age 21, while adult-onset HD is diagnosed thereafter
[139]. Other subtypes may be identified using univariate modalities based on
the distribution of pathological markers, such as amyloid beta or tau [140,
141]. Additionally, while stratifications can go beyond clinical features to
encompass genetic [142] or imaging data [140], the predominant categorization
for subtyping in NDDs relies on clinical data that details patient symptoms
and clinical phenotypes [143–151]. This clinical data is often supplemented by
an additional modality [152, 153], making it the most widely used approach in
the field. Traditional clinical approaches often classify patients based on pre-
dominant motor symptoms. In PD, two main subtypes have been identified:
one characterized by postural instability and gait difficulties, and another
defined by tremor [154]. In HD choreatic and hypokinetic-rigid subtypes have
been recognized [155]. More recently, imaging studies in PD have revealed
the hypothesis of brain-first and body-first subtypes, which correspond to
different origins and routes of alpha-synuclein spread in the nervous system
[45, 156].

Similar to the various data modalities used for subtype identification,
a variety of methods exists for conducting this analysis. Typically, these
analyses involve addressing a clustering problem using techniques such as
k-means clustering [143, 145, 147–149], hierarchical clustering [152, 153] or
a combination of both [151]. These simpler methods are often enhanced by
more sophisticated approaches such as gaussian mixture models (GMMs)
[144].

The approaches previously mentioned often neglect the variations in disease
progression dynamics. Most methods identify subtypes based solely on a single
timepoint, while few studies comparing subtype characteristics at additional
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timepoints not utilized for clustering [141, 146]. Furthermore, very few studies
incorporate progression information directly into the clustering process [157–
159], despite the advantages that progression subtype identification could offer
in enabling effective early interventions for patients in the initial stages of the
disease. Predictive models can classify patients as fast or slow progressors
early in their disease trajectory. Disease progression clustering for subtype
identification can be accomplished using deep learning techniques, such as
Long Short-Term Memory (LSTM) networks [159] or the Variational Deep
Embedding with Recurrence (VaDER) method developed by our group, which
integrates recurrent variational autoencoders with GMM clustering in latent
space [160].

A notable challenge in subtype identification lies in the reproducibility of
findings. Although numerous studies have investigated subtypes in NDDs,
only a limited number validate or replicate their results using independent
datasets. However, a recent study from our group successfully identified
reproducible progression subtypes in PD across three datasets, which were
further correlated to the brain-first versus body-first principle [158].

In contrast, subtype identification in HD is relatively limited, with only
a few recognized subtypes, namely the clinical choreatic versus hypokinetic-
rigid subtypes and the distinction between juvenile and adult-onset forms. A
recent study employed principal component analysis and k-means clustering
to identify three distinct subtypes based on clinical features, marking the
first instance where non-motor symptoms, including cognitive and psychiatric
manifestations, were taken into account [143]. However, this clustering
was conducted at a single timepoint and did not consider the variability of
symptoms throughout the disease course. As a result, the identification of
progression subtypes remains an important area for further research in HD
science.

1.3.2 Objective symptom monitoring

As discussed in chapters 1.1.4 and 1.3, variability among raters in assessing
patients using clinical scores impacts symptom monitoring. This inherent
subjectivity must be minimized to enhance the success of clinical studies
and improve individual disease evaluations, ultimately leading to better
disease management for both patients and clinicians. Transforming this
subjectivity into objective assessments is essential. Digital technologies can
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play a pivotal role by quantitatively recording measures, thereby providing
digital biomarkers that facilitate disease monitoring, early diagnosis, and the
prediction of clinical outcomes [161].

The landscape of digital technologies for improved disease monitoring is
vast. This overview will focus on the most commonly utilized technologies,
including smartphone devices and applications, and wearable sensors. I will
subsequently discuss the specific features that can be extracted from these
technologies and their current applications in research and patient treatment.

Data collection using digital technologies can generally be classified into
passive or active methods. Active measurements involve administering ques-
tionnaires to patients via computer or smartphone applications. A notable
example is the Mobile Parkinson Disease Scores, which employs a ML model
to analyze features derived from smartphone activities [162]. In contrast,
passive measurement occurs without direct data collection; instead, patients
perform specific tasks recorded by devices such as sensors. The data from
these tasks is processed to extract digital biomarkers for further analysis.
Examples in the NDD area include voice recordings [163–167], videos of facial
movements [168–171], and wearable sensors [172–175]. In voice recordings,
researchers extract features such as phonation, prosody, and speech pauses for
analysis [161, 176]. Video recordings are similarly utilized to examine specific
facial action units [171]. However, the most prevalent technology is wearable
sensors, which detect gait disturbances in PD patients [172, 173, 177–181].
These sensors, often affixed to patient’s shoes, extract gait parameters such
as stride length and gait speed during defined walking tests, such as the
Timed Up and Go (TUG) test, where patients stand up, walk 3.5 meters,
turn around and return.

While digital gait features have been explored in numerous studies within
PD research, most investigations primarily focus on distinguishing PD pa-
tients from healthy controls [180, 182–187]. Although some studies classify
patients into various disease stages [188–191], few directly investigate the
relationship between PD progression and gait [175]. A wide array of devices
has been developed; however the reproducibility of findings from the same gait
device remains insufficient [137]. As a result, despite significant research on
digital technologies for objective symptom monitoring, further work is needed
to integrate these technologies into standard disease management and as
endpoints in clinical trials. Notable examples include the use of smartphone-
based digital biomarkers in a phase I clinical study of PD [192] and a phase
II study demonstrating the potential of sensor-based digital gait analysis
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to address limitations of traditional rating scales [193]. Before integrating
digital biomarkers into routine clinical assessments and trials, several essential
steps must be undertaken as outlined by the Movement Disorders Society and
others [137, 194, 195]. The primary requirement is to establish the validity
and clinical relevance of digital measurements, ensuring a quantitative rela-
tionship between these measures and traditional outcome metrics. This will
help mitigate skepticism among clinicians and patients regarding the use of
devices for disease diagnosis and monitoring. From a regulatory perspective,
it is crucial to analyze which disease-relevant concepts the device captures,
such as gait, and how these measures can be practically applied. Additionally,
devices like gait sensors must receive approval from regulatory agencies to
enhance trust and ensure adherence to standards. Finally, the advantages
of digital measurements compared to traditional outcomes for both patients
and clinicians need to evaluated before full integration into clinical practice.

In summary, digital technologies are invaluable for objective symptom
monitoring and will play an increasingly vital role in management of NDDs
and as endpoint in clinical trials. Clinical trials will benefit from the ease of
use of these technologies, even within patients’ home environments, potentially
reducing overall costs. Likewise, disease management will improve through
more rapid and objective measurements of symptoms and disease progression,
allowing clinicians to adjust treatment plans accordingly. However, to realize
these benefits, the validity and clinical relevance of these technologies for
disease monitoring must be robustly demonstrated.

1.4 Research contributions of this thesis

In this chapter, we will delineate the contributions of this thesis to drug
development and disease management, with a particular emphasis on NDDs
such as AD, PD, and HD. This work addresses three pivotal objectives
through data-driven methodologies aimed at deepening our understanding
and management of these conditions:

• Development of a comprehensive, multi-scale quantitative system medi-
cal model for AD, enabling the simulation of perturbation experiments
to prioritize drug targets informed by existing biological knowledge [196]
(Chapter 2).
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• First-time identification, clinical characterization, and predictive mod-
eling of HD progression subtypes, underscoring the essential role of
non-motor symptoms in personalized treatment while enhancing predic-
tive modeling to improve patient care and quality of life [197] (Chapter
3).

• Exploration of the potential of gait sensor measurements to monitor
PD symptoms and progression, establishing their validity and clinical
relevance, as well as their prospective use as surrogate endpoints in
clinical trials [198] (Chapter 4).

In Figure 1, we depict the objectives of this thesis within a value chain
focused on the development of personalized disease management and enhanced
disease management.

Figure 1: Value chain of drug development and personalized disease manage-

ment. Drug development includes target prioritization, a critical process where biological

modeling, as presented in Chapter 2, serves as a key strategy to investigate potential

targets and their effects. Upon identifying a target, it is essential to discover molecules

that can intervene in the disease process. While this step is crucial within the value chain,

this thesis does not address it. In the field of personalized disease management, progression

subtyping, including characterization of identified subtypes, and objective monitoring of

symptoms and progression are necessary steps to achieve a more effective personalized

treatment strategy. The research conducted in this thesis on these topics is presented in

Chapter 3 and Chapter 4.

The objectives of this thesis align with the value chain for developing
personalized medical treatments, beginning with the identification of potential
drug targets. In Chapter 2, we detail our efforts to discover and validate
biological factors critical to the AD process, with a particular focus on the
CD33 molecule. The multi-scale quantitative model we developed illustrates
the intricate interplay among relevant molecules and biological processes,
extending to the phenotype level by integrating patient-level clinical data
and existing biological knowledge. We utilized the established Variational
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Autoencoder Modular Bayesian Network (VAMBN) model, which employs
variational autoencoders to independently encode multiple data modalities,
subsequently generating a BN that connects these autoencoder modules
[199]. In our study, these modules represent gene components annotated with
mechanisms associated with AD. For the first time, we incorporated prior
knowledge in the form of a knowledge graph to enhance the generation of
the modular BN. Using this model, we predicted how alterations in one part
of the network could influence the entire system. Our CD33 knock-down
simulation revealed significant changes across multiple disease mechanisms
and phenotypic outcomes associated with AD, demonstrating the model’s
capacity to prioritize drug targets by predicting the effects of perturbations
throughout the network, extending beyond just CD33. We further validated
our simulations using data from a CD33 knock-out cell line. Overall, this
research underscores the potential of a multi-scale quantitative model that
integrates diverse data modalities, including gene expression (transcriptomics),
demographic information, brain pathophysiology and cognitive scores, all
informed by existing biological knowledge. Through these biological networks,
we can forecast the effects of perturbations on clinical scores and disease
phenotypes, therby enhancing the reliability of our predictions.

While a quantitative, mechanistic model of a disease provides valuable
insights, effective personalized disease management requires a thorough un-
derstanding of which patients are most likely to benefit from new treatments.
This necessitates a comprehensive understanding of disease progression, as
discussed in Chapter 1.3.1. In Chapter 3, we identify and characterize two
distinct progression subtypes of HD for the first time, thereby contributing
to the clinical characterization and predictive modeling of these subtypes.
To achieve this, we applied the previously developed VaDER model, which
integrates GMM with variational autoencoders and LSTM networks. This
innovative approach allows us to cluster relatively short time-series data, even
in the presence of missing values. Furthermore, we align patient trajectories
on a common disease timescale to mitigate confounding effects arising from
temporal associations with the study baseline. Our analysis of feature impor-
tance within the predictive model for these two subtypes revealed significant
differences in cognitive abilities, particularly highlighting a marked distinc-
tion in executive function between slow- and fast-progressing patients. This
underscores the critical role of non-motor symptoms in predicting disease
progression and tailoring personalized treatment. Objective assessments of
disease progression not only enhance patient’s quality of life but also enable
personalized counseling and treatment strategies. Targeted prevention of
cognitive decline is essential, and personalized medical services facilitate the
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implementation of appropriate therapies and ongoing adjustments to care.

Once patients start a new treatment, clinicians must carefully monitor
its effects and evaluate the overall disease status, including symptomatic
expression and disease progression. As discussed in Chapter 1.3.2, objective
monitoring of disease symptoms is preferred. In Chapter 4, we assess the
potential of digital gait sensor measurements collected from PD patients during
various gait tasks. We first explored the relationship between the collected
gait features and traditional clinical scores, such as UPDRS, to demonstrate
the efficacy of gait assessments in monitoring disease symptoms and their
progression. Our analysis indicates that digital features effectively track motor
symptoms and their longitudinal progression. Subsequently, we examined the
predictive value of these digital gait sensor measurements for assessing PD
symptoms at future visits. While we found a clear correlation between gait
features and clinical scores related to disease stage, the correlation with disease
progression was minimal, and the prognostic value was limited. However,
we observed a trend suggesting enhanced prognostic value and monitoring
of disease progression when analyzing features from tasks involving longer
walking distances. Importantly, our study underscores the potential of digital
gait assessments as surrogate endpoints in clinical trials. We found that a
digital UPDRS score derived from gait features could effectively serve this
purpose. Moreover, using such surrogate endpoints in clinical trials reduces
the required sample size, as gait assessments can be repeated at shorter
intervals, potentially even in an in-home setting. This underlines the great
potential of the gait device as an alternative and easy-to-assess endpoint
predictor in clinical trials for PD.

In Chapter 5, we summarize the key findings of this thesis, address their
limitations, and outline potential future directions for research in data-driven
drug discovery and disease management.
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2 Comprehensive Multi-Scale AD Model

for Knock-Down Simulations

In this section, we summarize our publication presented fully in Appendix
A.1).

Raschka, T., Sood, M., Schultz, B., Altay, A., Ebeling, C., Fröhlich,
H. (2023). AI reveals insights into link between CD33 and cognitive
impairment in Alzheimer’s Disease. PLOS Computational Biology, 19(2),
e1009894.

Summary

AD is characterized by a progressive decline in the ability to perform daily
activities, resulting from the death of brain cells and subsequent brain shrink-
age [200]. The field of AD research has faced persistent challenges failures in
developing effective medications, largely due to an insufficient understanding
of how specific molecules contribute to cognitive decline [200]. Consequently,
gaining deeper better mechanistic insights into the disease is essential for
creating new, urgently needed treatments that can modify its course. One
promising therapeutic target is CD33, a transmembrane receptor protein.
Genetic studies have linked CD33 to a reduced risk of AD, while experimen-
tal data indicate that its suppression enhances amyloid-β clearance in mice
and cell lines [31–35, 201]. Therefore, exploring the biological mechanisms
surrounding CD33, without delving into the complex biochemical details re-
quired by traditional modeling methods such as ordinary or partial differential
equations, could be pivotal for advancing our understanding of AD.

In our publication titled AI reveals insight into link between CD33 and cog-
nitive impairment in Alzheimer’s Disease, we integrate prior knowledge about
disease mechanisms and their interactions in the form of a disease-focused
AD knowledge graph into the development of a quantitative system-level,
multi-scale model that connects molecular dynamics to phenotypic outcomes.
We utilized joint clinical and patient-level gene expression data from three
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independent studies (ROSMAP, Mayo, and cell-line experiments) to train
and validate a hybrid AI approach. This approach combines heterogeneous
incomplete variational autoencoders with modular Bayesian networks, in-
corporating a disease-focused knowledge graph. The previously developed
Variational Autoencoder Modular Bayesian Networks (VAMBN) algorithm,
was trained using patient-level data organized into modules, defined by either
clusters within the knowledge graph or by patients’ phenotypes, alongside
demographic and clinical variables. This model quantitatively captures the
relationships between nodes, generating a probabilistic graphical model that
illustrates the connections between modules and original features. It allows for
a per-patient score for each module, which can be decoded into feature-level
gene expression and phenotype data. Moreover, the model facilitates the
simulation of the down-regulation of various putative drug targets, including
CD33, to evaluate their potential impact on cognitive impairment and brain
pathophysiology. While CD33 is the primary focus of this work, the analysis
is not confined to this target, instead all genes incorporated within the model
can be examined.

Using ROSMAP data for training, the resulting BN revealed connections
between various biological mechanisms involved in AD. While age was the
only factor exerting direct influence on CD33, the receptor itself exhibited a
predominantly indirect predicted causal influence on every node except the
source nodes defined by years of education, age, and expression of the NAV3
gene. The shortest path between CD33 and the disease phenotype was identi-
fied through the prostaglandin pathway, with all connections within this path
being newly learned and not previously defined in the knowledge graph. Fur-
thermore, the model identified 130 new edges with high bootstrap confidence,
including six edges consistently discovered across iterations. These edges
illustrate robust pairwise connections, such as between NAV3 and MAVS, a
member of the TGF-beta subgraph. External validation of the model using
data from the Mayo study demonstrated the models’ superior ability to explain
normalized gene expression data from an independent study compared to a
randomly permuted network (p=0.035) despite clinical differences between
the study populations. The model also facilitates intervention experiments,
allowing for a simulation of CD33 down-expression to explore the potential
systemic consequences of a therapeutic intervention targeting CD33. This
simulation yielded significantly improvements in cognitive function and per-
turbations in several biological mechanisms. Noteworthy outcomes included
increased activation scores in the prostaglandin module, a significant rise in
mini mental state examination (MMSE) scores, and a significant decrease in
Braak stages. Additionally, significant effects were observed on 28 mechanisms
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and genes, including the calpastatin-calpain and amyloidogenic mechanisms.
Experimental validation using a knock-out THP-1 monocyte cell line revelaed
a high degree of overlap with the predicted molecular mechanisms, further
substantiating the model’s predictions.

Overall, this work has advanced the systemic and quantitative understand-
ing of AD. For the first time, we demonstrate the feasibility of integrating
gene expression and clinical data with knowledge of cause-and-effect relation-
ships into a quantitative systems medical model for AD. This was achieved
through the training and validating of an AI-based model, complemented by a
knowledge graph representation. The analysis revealed a connection between
CD33 and the phenotype, highlighting correlations with prostaglandins, which
previous research has linked to memory, learning, and neuroinflammation -
key elements of AD [202–204]. Additionally, newly identified relationships,
such as between NAV3 and MAVS, a member of the TGF-beta pathway, are
both associated with AD, but lacking a known direct correlation, suggesting
promising new avenues for research [205, 206]. Thus, the impact of this study
is two-fold. First, we introduced a novel multiscale, quantitative modeling
approach that is broadly applicable in systems medicine, particularly in con-
texts where only a partial mechanistic understanding of biological phenomena
exists. Second, the developed model offers a valuable resource for the AD
research community, facilitating a deeper understanding of the disease and
the identification of novel therapeutic opportunities.

Authors’ contributions

Tamara Raschka contributed significantly to the study methodology, and data
curation. She conducted the formal data analysis and interpretation, devel-
oped the majority of the necessary software, and created the visualizations.
Additionally, she was responsible for drafting the manuscript.
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3 Identification and Predictive Model-

ing of HD Progression Subtypes

In this section, we summarize the publication presented fully in Appendix
A.2).

Raschka, T.1, Li, Z.1, Gassner, H., Kohl, Z., Jukic, J., Marxreiter, F.2,
Fröhlich, H.2 (2024). Unraveling progression subtypes in people with
Huntington’s Disease. EPMA Journal , 15, 275-287.

Summary

HD is characterized by a diverse range of symptoms, including hyperkinetic
movement disorders, psychiatric manifestations, and cognitive deficits, all
of which significantly impact patients’ quality of life [68, 69, 76, 77, 207–
211]. While the genetic basis of HD is well-established [68, 212, 213], the
disease is progressive and multifactorial, marked by a lengthy pre-manifest
phase. This complexity results in highly variable and heterogeneous symptoms
among patients, complicating counseling efforts [208, 214, 215]. Currently, the
diagnosis of HD relies solely on the presence of motor signs, neglecting other
critical aspects of the disease, such as cognitive and psychiatric symptoms,
despite their significant influence on daily life [216–218]. By integrating both
motor and non-motor features of HD into the diagnostic process, we can
enhance accuracy and improve patient care [157, 215, 219–222].

In our publication titled Unraveling progression subtypes in people with
Huntington’s Disease, we identified, characterized, and validated two distinct
progression subtypes of HD. This analysis, conducted for the first time, utilized
longitudinal, multisymptom disease trajectories from patients enrolled in the
Enroll-HD study [223, 224], considering both motor and cognitive symptoms.
Recognizing that longitudinal trajectories often correlate temporally with

1Joint first authors.
2Joint last authors.
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the study baseline, we employed a non-linear mixed-effect model to mitigate
this confounding effect [225, 226]. This approach allowed us to adjust the
longitudinal trajectories of pre-manifest and manifest HD patients along
a common disease timescale before incorporating them into the clustering
performed by our previously developed VaDER algorithm [160]. Furthermore,
we trained and validated ML prediction models [227] to enable early prognosis
of the disease progression subtype using data solely from the first visit.

Modeling multiple clinical outcomes, including UHDRS Total Motor Score,
Symbol Digit Modality Test (SDMT), and MMSE, from 11093 manifest
and pre-manifest patients along a common, potentially unobserved (latent)
disease timescale resulted in aligned trajectories. Notably, the trajectories
of pre-manifest patients are predominantly shifted leftward on the time axis,
indicating an earlier stage of disease progression. This aligns with the natural
course of HD, where patients stay in a pre-manifest state prior to the manifest
stage. Analysis of the aligned trajectories of manifest patients revealed
two distinct subtypes: 1) a large cluster (n=7122) characterized by stable
disease progression and minimal impairment across all three outcome measures
throughout the common disease timescale, and 2) a smaller cluster (n=411)
exhibiting a markedly more progressive disease trajectory, with significant
declines in the SDMT and MMSE scores, accompanied by an increase in the
Total Motor Score. When training a prognostic model for HD subtypes using
data from patients’ initial visit, we achieved robust classification performance
(ROC-AUC: 95%). This performance improved further with the incorporation
of data from subsequent follow-up visits. Our model also outperformed ground-
truth models that predict disease progression based on CAG repeat length,
age, and sex. Feature importance analysis revealed that cognitive scores
are essential for predicting HD progression subtypes, altough motor scores,
CAG repeat length, and neurobehavioral scores also play significant roles.
Further clinical characterization of the subtypes indicated correlations with
CAG repeat length and neurobehavioral, psychiatric, and cognitive scores.
Notably, cognitive aspects ranked among the top five most influential features,
emphasizing that the second, smaller cluster exhibited a higher prevalence of
cognitive impairment. These findings were validated by applying both the
VaDER and the prognostic model to pre-manifest patients, where we observed
that the majority of patients were accurately grouped into the larger cluster,
demonstrating the generalization capability of our models. In conclusion, this
study elucidates the progression subtypes of HD and facilitates an objective
assessment of disease progression by incorporating non-motor symptoms,
which are vital for accurate disease prognosis.
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4 Gait Sensors for Objective Monitor-

ing PD Symptoms and Clinical Trial

Endpoints

This chapter is an adaptation of our work in “Objective monitoring of motor
symptoms and their progression in Parkinson’s Disease using a digital gait
device, Preprint Research Square, 2024, doi: 10.21203/rs.3.rs-4521747/v1”
[228]. All figures presented in this chapter were also used in the manuscript
currently under review at Scientific Reports.

4.1 Introduction

Typically, standardized clinical rating scales, such as the UPDRS for PD
[86], serve as endpoints in clinical trials to evaluate the efficacy of new
drugs. However, this methodology has faced criticism due to the subjective
nature of these scales, which can compromise symptom monitoring [3, 4,
71]. A detailed discussion of these challenges is presented in Chapter 1.1.4.
It is crucial to transform this subjectivity into objective assessments. In
this context, digital technologies can play a pivotal role in PD research by
quantitatively capturing data, thus providing digital biomarkers that enhance
disease monitoring, facilitate early diagnosis, and predict clinical outcomes
[161].

The landscape of digital technologies for disease monitoring is extensive,
offering numerous options such as smartphone applications and wearable
sensors. The latter are particularly beneficial for monitoring impaired gait
patterns in PD [172, 173, 177–181]. These sensors, often attached to patient’s
shoes, collect gait parameters such as stride length and gait speed during
walking tests. Gait abnormalities significantly impact patient mobility and
quality of life, thus, identifying signs of impaired gait patterns, such as
reduced gait speed, shorter step length, increased axial rigidity, and impaired
rhythmicity, is essential [46, 48, 49, 51]. Differences between PD stages are
also notable, beginning with slower speed and shorter steps in the early stage,
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progressing to worsened balance and postural control, increasing the risk of
falls [49]. Consequently, investigating patients’ gait impairments is critical
for evaluating disease progression.

Wearable sensors that offer objective monitoring can enhance clinical
studies and disease management by optimizing treatment schedules, adjusting
dosages, or transitioning between therapies. They are portable, lightweight,
cost-effective, and user-friendly for both patients and clinicians, allowing for
gait parameter measurements in outpatient settings [177].

Despite the clear advantages of digital gait parameters, there is an ongoing
need to rigorously assess their technical robustness and medical diagnostic
validity [161, 177, 182, 185, 187, 189]. Furthermore, regulatory agency
approval is required for their use in routine medical care. It is essential to
provide clear evidence that sensor measurements correlate significantly with
established clinical outcomes such as UPDRS. Unfortunately, most current
studies primarily focus on classifying disease stages or differentiating PD
from healthy individuals using data from digital gait devices, with limited
exploration of the direct associations between disease progression and gait [180,
182–191]. Additionally, there has been no investigation into the reproducibility
of findings across several PD cohorts [137]. Thus, the capacity of digital
gait sensors to reliably and objectively monitor motor symptoms and their
progression over time remains uncertain.

In this study, we evaluate the potential benefits of digitally assessed PD
symptoms compared to established clinical outcomes across two independent
longitudinal cohorts. We utilized the sensor-based digital gait device from
Portabiles HCT1, which is clipped to the patient’s shoe during standardized
walking tasks. Initially, PD progression was modeled using several estab-
lished outcome measures derived from the UPDRS, fitting a latent time joint
mixed-effect model (LTJMM) [229] to estimate each patient’s true rate of
progression and align disease trajectories on a common disease timescale,
thus adjusting for the disease stage at the study baseline. Subsequently,
we assessed the association between digital gait features and the estimated
progression rates and UPDRS-derived outcomes using linear models. Another
analysis investigated the potential of an ML model to forecast individual
disease progression rates based solely on digital gait features. Finally, we
examined the potential benefits of using digitally predicted UPDRS III scores
as a surrogate endpoint in clinical trials compared to the original UPDRS III.

1https://www.portabiles-hct.de/en/product/
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4.2 Methodology

4.2.1 Overview of datasets

In this research, we employed two longitudinal studies, each detailed in the
following sections.

LuxPARK The Luxembourg Parkinson Study (LuxPARK) (NCT05266872)
[230] is an ongoing observational study that periodically collects data from
PD patients at all stages on an annual basis. Data has been gathered for up
to four years, covering the period from 2015 to 2022. This study encompasses
various data types, including clinical, molecular, and device-based information,
with the goal of providing a comprehensive phenotyping of PD patients to
facilitate biomarker-driven stratification.

Erlangen Data from the University Medical Center Erlangen, Germany,
was collected from PD patients across all disease stages during multiple
clinical routine visits, which occurred irregularly between 2011 and 2022. The
frequency of follow-ups varies significantly among patients.

4.2.1.1 Clinical data

Outcome measures For both studies, we focused on several outcome
scores derived from the MDS-Unified Parkinson’s Disease Rating Scale [86].
This clinical rating scale comprises four components: 1) Non-motor features
of daily living, 2) Motor aspects of daily living, 3) Motor examination, and
4) Motor complications. Parts I, II, and IV consist of patient questionnaires,
while part 3 is evaluated by a trained clinician. In our study, we utilized
MDS-UPDRS Parts I, II, and III as outcomes. Additionally, we employed
the Tremor Dominance (TD) score [231], the Postural Instability and Gait
Difficulty (PIGD) score [231], and an axial score, all derived from specific
sub-items of the MDS-UPDRS. The TD score is calculated by averaging the
scores from 11 items: MDS-UPDRS II sub-item 10 (tremor), MDS-UPDRS III
sub-items 15a (postural tremor right upper extremity), 15b (postural tremor
left upper extremity), 16a (kinetic tremor right upper extremity), 16b (kinetic
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tremor left upper extremity), 17a (rest tremor right upper extremity), 17b
(rest tremor left upper extremity), 17c (rest tremor right lower extremity),
17d (rest tremor left lower extremity), 17e (rest tremor lip/jaw), and 18 (rest
constancy). The PIGD score is determined by averaging the MDS-UPDRS II
sub-items 12 (walking and balance) and 13 (freezing), alongside MDS-UPDRS
III sub-items 10 (gait), 11 (freezing of gait), and 12 (postural stability). The
axial scores are calculated by summing the MDS-UPDRS III sub-items 1
(speech), 2 (facial expression), 9 (arising from chair), 10 (gait), 11 (freezing of
gait), 12 (postural instability), and 13 (posture). This customized axial score
integrated facial changes and freezing of gait more comprehensively, building
on the framework described earlier [232]. While all six outcome scores were
available in the LuxPARK cohort, the Erlangen cohort included only UPDRS
III. Importantly, in Erlangen, UPDRS III was assessed using the original
UPDRS [233] rather than the MDS-UPDRS, with differences outlined in the
MDS-UPDRS revision [86]. For simplicity, we collectively refer to both the
MDS-UPDRS and original UPDRS as UPDRS. The axial score could also be
computed for the Erlangen cohort, with the caveat that sub-item 11 (freezing
of gait) was absent from the original UPDRS.

Patient selection In this study, we analyzed data from all patients who
had at least two visits for each of the outcomes of interest, resulting in a
final cohort of 612 patients from LuxPARK and 264 patients from Erlangen.
Table 1 presents the characteristics of these participants, including the number
of visits of each participant, disease duration, age, sex, clinical scores, and
Hoehn & Yahr (H&Y) stages.

4.2.1.2 Digital gait data

In addition to clinical data, digital gait data collected through wearable
sensors was available in both cohorts.

Device The digital gait device utilized in this study is a sensor-based
system from Portabiles HealthCare Technology GmbH. This certified class
I medical device bears a CE mark in Europe and is currently registered for
regulatory approval with the FDA. The device comprises multiple sensors,
including a gyroscope and an accelerometer. The specific sensors used vary
slightly between the studies. In LuxPARK, the Shimmer 3 sensors from
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LuxPARK Erlangen

Number of patients 612 264
Number of visits 4.46 ± 1.66 10 ± 8.52
Disease duration, years 4.44 ± 4.77 5.76 ± 4.93
Age, years 66.2 ± 10.47 62.85 ± 10.98
Sex
Male 413 (67%) 161 (61%)
Female 199 (33%) 103 (39%)

Axial score 6.45 ± 4.62 5.66 ± 4.42
PIGD 0.68 ± 0.71 N/A
TD 0.56 ± 0.45 N/A
UPDRS I 10.34 ± 6.74 N/A
UPDRS II 11.14 ± 7.92 N/A
UPDRS III 33.8 ± 15.45 20.66 ± 12.63
H&Y
0 2 1
1 63 36
1.5 45 20
2 322 52
2.5 83 25
3 58 47
4 25 25
5 13 3
N/A 1 55

Table 1: Patient characteristics from the LuxPARK and Erlangen cohorts.

This table presents the characteristics of patients from both cohorts. Mean values and

standard deviations are reported for all features, while absolute and relative values are

provided for sex and H&Y stages. Disease duration, age, clinical scores, and H&Y stages

are documented at baseline.
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Shimmer Sensing (Dublin, Ireland) were employed. Each unit features a
tri-axial accelerometer (range ± 8g) and a tri-axial gyroscope (range ± 1000
deg/sec), with a sampling rate of the device was 102.4 Hz. In the Erlangen
study, several sensors were utilized over time: the Shimmer 3 sensors, the
Shimmer 2R inertial sensor, and the NilsPod. The Shimmer 2R, also produced
by Shimmer Sensing, has a tri-axial accelerometer (range ± 6g) and a tri-
axial gyroscope (range ± 500 deg/sec), with a sampling rate of 102.4 Hz.
The NilsPod, manufactured by Portabiles HealthCare Technology GmbH
(Erlangen, Germany), consists of a tri-axial accelerometer (range ± 8g) and a
3-D gyroscope (range ± 2000 deg/sec), also with a sampling rate of 102.4 Hz.

Gait assessment tasks Digital gait data was collected from PD patients
with the device clipped to their shoes while performing various tasks. In
LuxPARK, patients completed four tasks:

• Timed Up and Go (TUG): The patient begins in a seated position
and, upon the clinician’s cue, stands up, walks 3.5 meters, turns around,
and walks back to sit down again. This TUG test is a standard as-
sessment in PD examinations for diagnosis, where the time taken to
complete the task provides the clinician with insights into the patient’s
progression.

• Turn: Similar to the TUG, but the patient performs a 360° turn at the
midpoint of each 3.5-meter segment in both directions.

• Manual TUG (Tray): While executing the turn task, the patient
balances a tray with a glass of water, engaging in a dual-task scenario
that tests two motor skills (turning and tray).

• Cognitive TUG (Count): The patient counts backward while per-
forming the Tray task, introducing a cognitive challenge (counting
backward) alongside the motor tasks.

In Erlangen, patients performed three tasks:

• TUG: Similar to LuxPARK, but with a 3-meter walking distance in
one direction.

• 4x10m Preferred Speed without Stop (4x10m): The patient
walks 10 meters at their preferred speed, turns around, walks back, and
repeats this sequence another time without pausing.
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• 2x10m Preferred Speed with Stop (2x10m): The patient walks
10 meters, pauses for 2-3 seconds before turning, and then walks back.

Raw signal processing The collected raw signals undergo processing to
derive specific gait analysis parameters. Different algorithms are employed
in each cohort. In LuxPARK, a proprietary algorithm from Portabiles HCT,
based on the work of Hannink [234], utilizes template matching and a feature
extraction module to identify gait-related events, such as heel strikes and
toe-offs. It isolates segments linked to each side and estimates stride-by-
stride biochemical parameters using a statistical model and a pre-trained
convolutional neural network. In Erlangen, dynamic time warping by Barth
[235] segments individual strides and detects gait events with the Rampp
method [236], with temporal and spatial parameters calculated for each stride,
implemented through the gaitmap package [237].

Derived digital gait features The derived features include stride time,
gait speed, stride length, and the turning angle. The comprehensive list of
these features, along with brief descriptions, is given here:

• Swing Time*: Duration from Toe Off (TO) until next Heel Strike (HS)
• Stance Time*: Duration from HS with the surface until TO
• Stride Time*: Duration of one stride, sum of swing and stance time
• Stride Length*: Distance between two consecutive HS, the length of
one stride

• Gait Velocity*: The average walking speed is calculated by dividing the
stride length by the stride time.

• Max. Lateral Excursion*: The maximum lateral deviation of the foot
in the swing phase, measured from an imaginary line between the foot’s
position at start and end of the swing phase.

• Max. Sensor Lift: The maximum elevation of the heel from the ground
during the swing phase.

• Max. Foot Clearance: The maximum elevation of the foot from the
ground during the swing phase.

• Max. Toe Clearance: The maximum elevation of the toe from the
ground during the swing phase.

• Turning Angle: The angle between the direction of the last swing phase
(imaginary line between foot position at the beginning and end of the
swing phase) and the orientation of the foot in the next stance phase.

• Toe Off Angle: The angle between the heel and the surface at the
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beginning of the swing phase.
• Heel Strike Angle: The angle between the toes and the surface when
the foot lands.

• Landing Impact: The maximum vertical acceleration during landing of
the foot.

All described features were extractable from the LuxPARK dataset, while
the Erlangen dataset contained only those marked with an asterisk. In
both studies, mean values for each parameter were calculated across the
aforementioned tasks.

Overview of available gait data for association testing In LuxPARK,
a single digital gait assessment was performed during one clinical visit for a
total of 343 patients. In the Erlangen cohort, gait assessments were conducted
multiple times across visits, yielding data for 802 patients. The measurements
were collected irregularly, with a median interval of 364 days between the
first and second visits (mean ± s.d.: 503.11 ± 488.98 days). For the analysis
of associations between digital gait assessments and clinical rating scales, we
matched clinical and digital gait data, ensuring that analyses were limited to
patients with both longitudinal clinical features and digital measurements.
This approach resulted in 161 patients from LuxPARK and 178 patients from
the Erlangen cohort being included in the analysis. The characteristics of
these patients are detailed in Table 2.

4.2.2 LTJMM model

The latent time joint mixed-effect model (LTJMM) aligns the trajectories
of patients along a common latent (i.e., unobserved) disease timescale, as
first developed by Li et al. [229]. This model integrates fixed and random
effects within a multivariate linear mixed-effects framework, capturing the
deviation of each patient from a “mean” reference trajectory over time relative
to actual outcomes. It presents a piecewise linear progression of multiple
clinical outcomes and estimates the extent to which each patient’s timescale
deviates from that of the reference. The model is defined as follows:

yijk = xiβk + γk(tijk + δi) + α0ik + α1iktijk + ϵijk
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LuxPARK Erlangen

Number of patients 161 178
Number of visits 5.32 ± 1.53 12.08 ± 9.12
Disease duration, years 4.92 ± 5.29 5.31 ± 4.57
Age, years 64.71 ± 10.08 62.39 ± 10.37
Sex
Male 117 (73%) 110 (62%)
Female 44 (27%) 68 (38%)

Axial score 5.71 ± 3.79 5.35 ± 3.93
PIGD 0.56 ± 0.58 N/A
TD 0.5 ± 0.41 N/A
UPDRS I 9.28 ± 5.68 N/A
UPDRS II 10.32 ± 6.8 N/A
UPDRS III 29.89 ± 14.2 20.2 ± 11.89
H&Y
0 1 1
1 19 25
1.5 11 14
2 93 35
2.5 20 18
3 12 35
4 4 11
5 1 2
N/A - 37

Table 2: Patient characteristics from the LuxPARK and Erlangen cohorts for

association testing. This table presents the characteristics of patients from both cohorts

utilized in the association testing between clinical outcomes and digital gait features. Mean

values and standard deviations are reported for all features, while absolute and relative

values are provided for sex and H&Y stages. Disease duration, age, clinical scores, and

H&Y stages are documented at baseline.
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where yijk is the outcome feature k observed at time point j for individual i.
The covariates xi have corresponding coefficients βk, representing the fixed
effects shared across all individuals. The parameter γk indicates the mean
slope for outcome feature k, establishing the mean trajectory from which
each patient’s deviation is assessed. The time variable tijk is adjusted by the
individual-specific time shift δi. Random effects are defined by α0ik and α1ik,
representing a random intercept and slope for each outcome and individual,
respectively, following a multivariate normal distribution with a mean of
zero. Finally, ϵijk denotes the measurement error, drawn from a normal
distribution with a mean of zero. The inferred patient-specific time shifts δi
provide estimates of how advanced a particular patient is in terms of symptom
severity compared to other patients in the same cohort. Additionally, the
model estimates patient-specific slopes of symptom progression, represented by
the random slope α1ik, where a higher value suggests a more rapid progression
of symptoms compared to peers. The LTJMM is implemented in the ltjmm
R package [238], which leveraged rstan [239] to apply Markov Chain Monte
Carlo (MCMC) algorithm for model parameter estimation.

4.2.2.1 Model definition

In this study, the time scale corresponds to the reported time since the patient’s
PD diagnosis. The multivariate outcomes include UPDRS I-III, TD, PIGD,
and axial scores for LuxPARK cohort, while the Erlangen cohort includes
UPDRS III and axial scores. Fixed effects are represented by covariates xi,
which account for age at diagnosis, sex, and medication status (ON/OFF)
to control for their influence. The model was estimated using all available
longitudinal clinical data, as described in section 4.2.1.1 and Table 1. The
MCMC algorithm was executed with 4 chains, 25000 iterations, and 12500
warm-up steps. For subsequent analysis, we utilized the latent time defined
as the sum of the original time point tijk and the estimated patient-specific
time shifts δi, along with the random slope α1ik.

4.2.2.2 Model validation

To validate the LTJMM, we assessed its accuracy by calculating the correlation
between real and predicted outcomes at the last observed visit. This involved
fitting the LTJMM to all outcomes while excluding the last measurements for
each patient, with the predicted value subsequently derived from the fitted

40



model. Additionally, we examined the latent time of each patient concerning
their H&Y stages. We hypothesized that the time shift of each individual’s
trajectory should align with their H&Y stages, whereby patients with lower
H&Y stages, indicating earlier disease progression, would be shifted further
left on the common disease time scale than those with higher H&Y stages,
reflecting more advanced disease. Therefore, we further validated the LTJMM
model by analyzing the distribution of latent time across H&Y stages.

4.2.3 Evaluating the relationship between digital gait

patterns and clinical outcomes

The relationship between the derived digital gait features and various outcomes
measured during the same visit was modeled using linear models. In Erlangen,
linear mixed-effects models were employed due to the longitudinal nature
of the digital gait data. We utilized the latent disease time and progression
rates (random slope) derived from the LTJMM model as model outcomes,
alongside the clinical outcome scores. Covariates included age at diagnosis
and sex for modeling latent disease time, while the latent disease time at the
time of clinical assessment was used otherwise. This approach accounted for
temporal variations in observed patient trajectories. In case of linear mixed-
effects models for the Erlangen cohort, a patient-specific random intercept
was incorporated. We evaluated multiple models with varying feature sets:

• all digital gait features (allGait) - Utilizes all available digital gait
features across all tasks.

• individual task features - Employs subsets of digital gait features derived
from each specific task.

• single digital gait features (singleGait) - Analyzes each digital gait
feature individually, incorporating one feature covariates.

All models were compared against a null model containing only adjustment
variables (age and sex or latent disease time) using a likelihood ratio test.
The resulting p-values were adjusted for multiple testing using the Benjamini
& Yekultieli method [240].
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4.2.4 ML models for forecasting disease progression

To predict the random slope from digital gait features, various ML models
were employed, including Random Forest [241], XGBoost [227], and Lasso
regression [242]. Due to the availability of only one digital gait assessment
for LuxPARK, a single prediction was made. Conversely, both the first and
first plus second digital gait visits were utilized in Erlangen. The feature sets
tested included a null model (using only sex and age as predictors), all digital
gait features (allGait), and task-specific subsets. The implementation involved
the scikit-learn [243] and xgboost [227] Python packages. Hyperparameter
optimization was performed through randomized search within a 5-fold inner
cross-validation (CV) framework, as detailed in Table 3. Performance metrics
were evaluated using a 5-fold outer CV setting, and R2 values of the models
were compared against the null model using the Wilcoxon signed-rank sum
test.

Algorithm Parameter Grid values

Random Max. tree depth [10, 15, 20, 25, 30, 35, 40, 45, 50]

Forest Min. samples per split [0.05, 0.1, 0.15, 0.2, 0.25]

Min. samples leaf node [1, 2, 4, 8, 10, 16, 20]

Cost-complexity pruning [0.001, 0.01, 0.1]

XGBoost Max. tree depth [3, 4, 5]

Min. child weight [1, 5, 10]

Gamma [0.5, 1, 1.5, 2.5]

Subsample [0.6, 0.7, 0.8, 0.9, 1]

Colsample by tree [0.6, 0.7, 0.8, 0.9, 1]

Lasso Alpha [0.0001, 0.0001, 0.001, 0.01. 0.1, 0, 1, 10, 100]

Table 3: Hyperparameter space used for ML models.
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4.2.5 Sample size calculation for digital gait as a surro-

gate endpoint in clinical trials

A simulated randomized controlled trial was conducted over a one-year ob-
servation period, with assumed visits scheduled every 60 (bi-monthly), 30
(monthly), or 7 (weekly) days. The sample size required to assess a 30%
efficacy at 80% power and a significance level of 0.01 for a potentially disease-
modifying drug was calculated. The primary study endpoints included the
original UPDRS III and a gait-predicted UPDRS III, the latter estimated
using digital gait features from the 4x10m test in Erlangen through a linear
mixed-effects model. The presumed treatment effect was inspired by an
ongoing trial [244]. Treatment and control groups were equal in size, with
no variations in treatment dosage. Power and sample sizes were calculated
using linear mixed-effects models based on a method from Edland [245],
implemented in the longpower R package [246].

4.3 Results

4.3.1 LTJMM model

The original longitudinal trajectories were aligned on a common disease time
scale utilizing the LTJMM model, as previously described. The results of
this alignment for LuxPARK and Erlangen are illustrated in Figures 2 and 3,
separately for each of the modeled outcomes.

4.3.1.1 Model validation

To validate the findings from the LTJMM models, we plotted the distribution
of the latent (shifted) time for each H&Y stage. The LTJMM model is
expected to accurately order the patient trajectories along these stages, with
patients in more advanced disease stages (higher H&Y stages) anticipated to
shift further to the right, indicating later positioning in the common disease
timeline. As shown in Figure 4 and Table 4, the model successfully orders
the patient trajectories following the H&Y stages.
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Figure 2: Longitudinal trajectories in LuxPARK after LTJMM alignment. The

figure displays the original (left) and shifted (right) trajectories for six outcomes: Axial

score, PIGD, TD, UPDRS I, UPDRS II, and UPDRS III. The time dimension is represented

in years using individual timescales for the original trajectories and a common disease

timescale for the shifted trajectories.
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Figure 3: Longitudinal trajectories in Erlangen after LTJMM alignment. The

figure displays the original (left) and shifted (right) trajectories for two outcomes: Axial

score and UPDRS III. The time dimension is represented in years using individual timescales

for the original trajectories and a common disease timescale for the shifted trajectories.

Figure 4: Distribution of latent time across H&Y stages. This figure illustrates

the distribution across multiple H&Y stages for the a) Erlangen cohort and b) LuxPARK

cohort, demonstrating that the models effectively order patient trajectories according to

disease stages. The correlation between latent time and H&Y stages is presented using

Kendall’s tau and corresponding p-values.
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H&Y Erlangen LuxPARK

stage Mean Variance Mean Variance

1 -6.64 55.43 1.03 17.30

1.5 2.86 66.10 0.64 6.90

2 2.09 109.59 3.38 28.95

2.5 8.96 48.20 7.03 43.65

3 9.25 47.14 8.30 28.32

4 17.25 48.80 13.34 94.52

5 29.74 17.67 10.13 49.52

Table 4: Mean and variance of latent time across multiple H&Y stages. This

table presents the mean and variance of latent time for each H&Y stage in both the

Erlangen and LuxPARK cohorts.

Furthermore, we calculated the Pearson correlations between actual clinical
outcomes and those predicted by the LTJMM, yielding values of ρ = 0.73 for
Erlangen and ρ = 0.42 for LuxPARK. These results indicate a satisfactory fit
of the LTJMM models.

4.3.2 Evaluating the relationship between digital gait

patterns and clinical outcomes

Statistical associations between clinical outcomes and features derived from
the Portabiles digital gait device were analyzed using linear models, following
the alignment of observed clinical outcome trajectories on a common disease
timescale. Models were fitted for multiple outcomes with varying feature
sets. We examined the relationship between digital gait data and symptom
severity, indicated by clinical scores, progression, reflected by the random
slope of the LTJMM model, and disease stage, defined by latent time. Both
task-specific models (Count, Tray, TUG, Turn) and a comprehensive model
incorporating all available digital gait features were compared against a null
model that included only the integrated covariates. The adjusted p-values
from the likelihood ratio tests are presented in Tables 5 and 6 for LuxPARK
and Erlangen.
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Outcome All Gait Count Tray TUG Turn

Clinical score (symptom severity)

Axial score 0.0055 0.0006 0.0006 0.0001 0.0175

PIGD 0.2152 0.0068 0.0068 <0.0001 0.0629

TD 0.0178 0.4882 0.4882 1 1

UPDRS I 0.2717 0.0783 0.2384 0.2504 0.0783

UPDRS II 0.4154 0.1427 0.1427 0.1427 0.3601

UPDRS III 0.0337 0.2149 0.0538 0.0476 0.1058

Slope (progression)

Axial score 0.2765 0.5264 0.0534 0.0990 0.4970

PIGD 0.6788 1 1 1 1

TD 0.4895 1 0.1709 0.1709 0.6128

UPDRS I 0.3035 0.8514 0.0621 0.0621 0.5288

UPDRS II 0.3864 0.9143 0.1260 0.0686 0.4988

UPDRS III 0.6779 1 1 1 1

Latent time (disease stage)

Latent time 0.0001 0.0288 0.0726 0.0005 0.0023

Table 5: Associations of digital gait features with symptom severity, symptom

progression, and disease stage in the LuxPARK study. This table presents adjusted

p-values from the likelihood ratio test, assessing the relationship between various digital gait

feature sets (including all measured digital gait features (All Gait) and task-specific subsets

(Count, Tray, TUG, Turn)) and clinical outcomes. Significant results (adjusted p¡0.05) are

highlighted in bold, while weakly significant results (adjusted p¡0.1) are italicized. The

measured outcomes include clinical scores (top), their progression (middle), and disease

stage (bottom).

The main results are detailed in the following paragraphs, organized by
outcome: symptom severity (clinical scores), disease progression (slope), and
disease stage (latent time).
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Outcome All Gait TUG 2x10m 4x10m

Clinical score (symptom severity)

UPDRS III 0.1574 0.0361 0.0203 0.0110

Axial score 0.0010 0.0068 0.0068 0.0068

Slope (progression)

UPDRS III 1 1 1 1

Axial score 1 1 1 <0.0001

Latent time (disease stage)

Latent time 0.0047 <0.0001 0.0001 <0.0001

Table 6: Associations of digital gait features with symptom severity, symptom

progression, and disease stage in the Erlangen study. This table presents adjusted

p-values from the likelihood ratio test, assessing the relationship between various digital gait

feature sets (including all measured digital gait features (allGait) and task-specific subsets

(TUG, 2x10m, 4x10m)) and clinical outcomes. Significant results (adjusted p < 0.05) are

highlighted in bold, while weakly significant results (adjusted p < 0.1) are italicized. The

measured outcomes include clinical scores (top), their progression (middle), and disease

stage (bottom).

4.3.2.1 Monitor motor symptom severity

Our investigation into the relationship between digital gait features and
motor symptom severity yielded significant findings, particularly regarding
the axial score in both datasets (cf. Tables 5 and 6). In the LuxPARK dataset,
significant correlations were also observed for UPDRS III, PIGD, and TD
scores. Task-specific analyses indicated distinct task specificity within the
LuxPARK cohort, with TUG test emerging as the most informative. The axial
score exhibited the strongest correlation with digital gait features, revealing
significant effect sizes in the models for stance time (p=0.04, Count), swing
time (p=0.009, Tray), gait speed (p=0.029, Tray), stride length (p=0.015,
Tray), and landing impact (p=0.0.47, TUG). Notably, the landing impact
from the TUG test also demonstrated a significant effect size when assessing
the PIGD score (p=0.048). For this score, gait speed (p=0.014, Count)
and stride length (p=0.010, Count) also exhibited significant effect sizes. In
the Erlangen cohort, all three tasks (2x10m, 4x10m, and TUG) revealed
significant associations between digital gait features and disease severity,
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however, swing time in the 4x10m task for axial score was the only measure
to show a significant effect size (p=0.045) within the model.

4.3.2.2 Monitor symptom progression

Subsequently, we explored the correlation between digital gait features and
disease progression, represented by the random slopes of the LTJMM. Overall,
significant associations between digital gait features and the progression of
the axial score were identified solely in the Erlangen cohort for the 4x10m
test. Additionally, weak significance was observed in the LuxPARK cohort for
the axial score in both the Tray and TUG tests. Moreover, weak significance
was noted for UPDRS I in the Tray and TUG tests, and UPDRS II in the
TUG test.

4.3.2.3 Monitor disease stage

Lastly, we investigated the association between the disease stage (represented
through the latent time from LTJMM) and the digital gait features. We could
observe a significant association both in LuxPARK and Erlangen in general
and task-specific associations for Count test in LuxPARK and all tasks in
Erlangen. Significant effect sizes could be observed for maximal sensor lift in
LuxPARK for TUG (p=0.031) and Turn (p=0.048) test, as well as, for stride
time in Erlangen and the 2x10m (p=0.001) and TUG (p=0.045) test.

Altogether, significant associations of digital gait features were thus iden-
tifiable with traditional clinical motor scores, their slopes, and disease stage.

4.3.3 Forecasting disease progression with ML models

We developed various ML models to predict the patient-specific slopes, which
represent disease progression in motor symptom-related clinical outcomes.
The most compelling results were achieved using a 10-fold CV setup with the
Random Forest algorithm. Figure 5 displays these results from the Erlangen
cohort, where predictions were made using both the first gait assessment alone
(left) and the combined data from the first and second assessments (right).
In the first scenario, a significant enhancement in prediction performance
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was observed when utilizing data from the 4x10m test, compared to a model
that relied solely on age and sex as predictors. Predictions were further
refined with the inclusion of additional data from the second gait assessment,
particularly when all gait tasks were considered. Notably, the prediction
of UPDRS III scores demonstrated a substantial improvement when digital
gait features were incorporated, rather than depending solely on age and sex.
In contrast, due to the availability of only a single gait assessment in the
LuxPARK cohort, we were unable to achieve comparable improvements in
prediction.

Figure 5: Prediction of patient-specific slopes for traditional clinical outcomes

based on digital gait features. Boxplots display the squared coefficient of determination

(R2) from multiple CV repeats of a Random Forest machine learning model. The model

predicts the (random) slopes of the axial and UPDRS III scores for each patient, trained

on data from either the first gait assessment only (left) or both the first and second gait

assessments (right). Different colors represent the feature sets utilized: all digital gait

features plus age and sex (blue), TUG task plus age and sex (orange), 2x10m task plus age

and sex (green), 4x10m task plus age and sex (red), and only age and sex (purple).

4.3.4 Sample size calculation for digital gait as surro-

gate endpoint in clinical trials

A longitudinal clinical trial with varying visit frequencies was simulated to
assess the potential advantages of digital gait features compared to traditional
clinical outcome scores. It is important to note that digital gait features can be
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collected more easily and at lower cost with higher frequencies than traditional
clinical scores. Furthermore, data collection could potentially take place in
a patient’s home environment. For the trial simulation, UPDRS III scores
were predicted from gait data, utilizing digital gait features obtained from
the 4x10m test via a linear mixed-effects model. The estimates demonstrated
a strong correlation (ρ = 0.77) with the original data (see Figure 6).

Figure 6: Scatterplot of original versus gait-predicted UPDRS III scores. This

scatterplot illustrates the relationship between the original UPDRS III scores and those

predicted by gait features, yielding a Pearson correlation of 0.77.

Our statistical sample size calculation, which assumed a treatment effect
of 30%, aimed for a statistical power of 80% at a significance level of 1%.
Simulating bi-monthly assessments of UPDRS III indicated a required sample
size of 690 patients for both the original and gait-predicted UPDRS III (see
Figure 7). A monthly assessment could reduce the required sample size to 550
patients using the gait-predicted UPDRS III, while weekly assessments could
further decrease this number to 380 patients, representing a potential reduction
of 44%. It is crucial to emphasize that conducting traditional UPDRS III at
such frequent intervals in a clinical setting would be exceedingly challenging.

51



Figure 7: Simulation of a randomized clinical trial with varying visit frequencies.

The curves illustrate the statistical power achievable in a clinical study with a specific

sample size, anticipating a treatment effect of 30% over a one-year observation period and

a significance level of α = 0.01. The dashed line represents 80% power. Simulations were

conducted for randomized clinical trials using either original or gait-predicted UPDRS III

as outcomes, with weekly (blue), monthly (orange), and bi-monthly (green) visit frequencies

for gait-predicted UPDRS III, while only bi-monthly visits were simulated for original

UPDRS III (red).

4.4 Discussion and Conclusion

4.4.1 Digital Gait Evaluations for monitoring symp-

toms and progression

Digital gait features from the Portabiles digital gait device have demon-
strated a significant correlation with disease stage, severity as assessed by
UPDRS-derived scores, and disease progression. Notably, the axial score
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exhibits considerable potential for monitoring disease severity and progression.
Previous studies have established associations between axial abnormalities
and patient gait, however, a quantitative analysis linking these symptoms
to gait characteristics was previously lacking. Most studies analyzing digital
gait data tend to focus on micro-analysis, examining single digital features
in isolation rather than conducting a comprehensive analysis of multiple
digital gait features across various tasks and studies. Additionally, many
studies utilize only one or no standardized tasks. This work provides a clear
advantage by performing a thorough analysis of both individual and combined
features across multiple levels and standardized tasks. The examination of
task-specificity offers a systematic overview of the most effective tasks for
digital gait analysis. Significant task-specific differences were observed, for
instance, the traditional TUG test consistently proved effective for monitoring
motor symptom severity across both studies, being the only task to correlate
with UPDRS III in the LuxPARK cohort. Furthermore, digital gait features
derived from the Tray and Count tasks were linked to the PIGD score, sug-
gesting that dual tasks, which combine multiple motor and cognitive exercises,
are effective in monitoring disease severity related to postural instability.
Together with previous observations that dual tasks can trigger freezing of
gait, this indicates the need for further research into the capacity to monitor
cognitive impairment in PD patients. Moreover, a strong association between
digital gait features and the progression of UPDRS-derived motor symptoms
was established in the Erlangen cohort, where gait measurements were col-
lected over multiple visits and an extended period. However, this association
was only observed for the 4x10m task, which involved longer-distance gait
measurements compared to other tasks. This underscores the importance of
longer-distance walks in identifying changes in motor symptoms over time in
individual patients.

4.4.2 Disease progression forecasting with ML methods

A subsequent investigation explored the feasibility of predicting UPDRS III
scores from digital gait features. The results indicated a strong correlation
with the original data (ρ=0.88). This is noteworthy since the prediction task
did not incorporate other symptomatic information evaluated in UPDRS III,
such as hypomimia, dysarthria, or tremor. This may suggest a potential
correlation between the severity of these additional symptoms and digital
gait data, or indicate their relatively stable levels that do not influence
disease progression as measured by UPDRS III. Further research is needed
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to elucidate the relationship between digital gait and other PD symptoms.
While previous studies have shown a correlation between digital gait features
and various disease stages, they often did not quantify disease progression,
typically classifying patients into disease stages or distinguishing PD patients
from healthy controls. In contrast, this analysis focused on the quantitative
association of digitally assessed gait features with motor symptom progression.
However, we observed limited accuracy in the ML-based prediction. Despite
analyzing two subsequent clinical visits, the cross-validated R2 values for
predicting axial score progression was only 0.45, and even lower for UPDRS
III progression (R2 = 0.35), indicating limited prognostic value for the digital
data while affirming its utility in objectively monitoring motor symptom and
their progression.

4.4.3 Potential Value of digital gait as a surrogate end-

point in clinical trials

Finally, the potential of digital gait features for clinical trials was evaluated
through the simulation of a randomized control trial. The findings revealed
that predicting UPDRS III using digital gait data requires a similar number
of patients as the standard UPDRS III, when provided data is collected at
the same frequency. A weekly frequency of data collection resulted in a sub-
stantial reduction in the required sample size. This highlights the significant
potential of digital gait sensors in clinical studies, as measurements can be
taken remotely and more frequently than traditional in-hospital assessments.
This approach may enhance patient quality of life by allowing clinical eval-
uations to occur at home, potentially increasing willingness to participate
in clinical studies by reducing the necessity for clinical visits. Furthermore,
data collection via tasks like the 4x10m test is notably quicker and easier
than conducting a full UPDRS examination. Despite this, few studies have
explored the benefits of utilizing digital gait data, with most citing subjective
potential endpoints without validating these hypotheses. Only one study has
demonstrated the potential of sensor-based digital gait analysis to address the
limitations of UPDRS-based gait assessments in a phase II trial [193]. This
work provides an objective comparison of original and gait-predicted UPDRS
III outcomes for the first time, quantifying the potential of sensor-based
digital gait data as an endpoint in clinical trials concerning the required
sample size.
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4.4.4 Summary

In summary, this work illustrates the capability of the Portabiles HCT digital
gait device to objectively monitor the severity and progression of motor
symptoms. It highlights the potential advantages of employing digital gait
metrics as outcome measures in clinical trial contexts, thereby contributing to
the growing body of literature that underscores the benefits of digital solutions
in the field of PD. A distinguishing feature of this study is its comprehensive
quantitative analysis of disease symptoms and stages, in addition to an analysis
of symptom progression using a digital gait device and the exploration of
its quantifiable benefits for clinical studies. However, it is essential to note
that the use of any medical device outside pure research settings in routine
medical care requires regulatory agency approval.
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5 Conclusion

Despite extensive research aimed at identifying disease-modifying treatments
for neurodegenerative diseases such as AD, PD, and HD, only a limited
number of effective disease-modifying therapies have been discovered thus far
[2–4]. The heterogeneity of these diseases and the challenge of identifying
suitable therapeutic targets pose significant obstacles. This thesis contributes
to the development of personalized medical treatments and enhances disease
management through data-driven approaches designed to address these chal-
lenges. Firstly, we developed a patient data-driven multi-scale quantitative
model of AD, enabling us to simulate knock-down experiments (Chapter 2).
This model facilitated the investigation of the phenotypic effects of targeting
CD33, which we validated using cell line data. While CD33 was the primary
focus, the model also predicts perturbation effects of other genes and mecha-
nisms, allowing for the prioritization of drug targets based on their potential
impact on disease phenotype. Next, we explored the heterogeneity in HD
symptom progression by identifying, characterizing, and creating predictive
models for two distinct progression subtypes, revealing significant differences
in cognitive performance (Chapter 3). This work underscores the importance
of non-motor symptoms in predicting disease progression and personalizing
treatment. Objective assessments of disease progression enhance patients’
quality of life, while our predictive approach enables tailored counseling and
treatment. Targeted prevention of cognitive decline is crucial, and personal-
ized medical services facilitate appropriate therapies and ongoing adjustments
to care. Finally, we evaluated the potential of gait sensor measurements for
monitoring PD symptoms and their progression (Chapter 4). We also assessed
the feasibility of using sensor-based digital gait data as an endpoint in clinical
trials by analyzing the required sample sizes. This work highlights the effec-
tiveness of digital gait data for enhanced objective monitoring of PD, enabling
more personalized treatment adjustments through continuous assessment.
Additionally, home-based evaluations improve patient convenience, ultimately
enhancing quality of life. Moreover, objective monitoring empowers clinicians
to make data-driven decisions regarding treatment efficacy and adjustments,
facilitating informed decision-making. Utilizing surrogate endpoints derived
from digital gait data presents a viable option that reduces sample sizes
and lowers clinical trial costs while increasing efficiency by expediting trial
processes.
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The publication presented in Chapter 2 primarily focuses on target identi-
fication for drug development. We developed a comprehensive, data-driven
multi-scale quantitative model of AD, integrating gene expression, clinical
data, and qualitative knowledge of cause-and-effect relationships into a quan-
titative system medical model of AD. This innovative approach enhances our
understanding of intervention effects within a multi-scale biological framework
of AD. By simulating the downregulation of the CD33 gene, we predicted a sig-
nificant impact on cognition and brain pathophysiology via the prostaglandin
pathway, with results closely aligning with experimental gene expression
knockout data. While CD33 serves as a specific example, our methodology
is applicable to other potential drug targets, providing a robust computa-
tional framework for predicting the downstream effects of interventions on
AD biology across multiple scales: gene expression, disease pathology, and
phenotype. Moreover, this patient-driven quantitative modeling approach is
broadly applicable in systems medicine, particularly in contexts where the
mechanistic understanding of the underlying biology is incomplete. While a
quantitative, mechanistic model of a disease offers valuable insights, effective
personalized disease management requires an understanding which patients
will benefit most from new treatments.

In Chapter 3, we explored the heterogeneity in HD disease progression,
identifying two distinct subtypes: a larger group with relatively stable dis-
ease trajectories and a smaller cluster exhibiting more progressive patterns.
Characterization of these subtypes revealed significant differences in cognitive
impairments across multiple cognitive scales, particularly in frontal-executive
tests that effectively distinguish the two groups. Our findings underscore the
critical role of cognition in HD. Although cognitive deficits are commonly
observed in HD patients and their correlation with disease progression has
been previously established [247], cognitive assessments have not historically
influenced the diagnosis, prevention, or prediction of HD symptoms and
progression. Our work highlights the necessity of incorporating cognitive test
results into patient counseling and treatment strategies as these are often more
indicative of disease progression than motor tests. This research is the first
to investigate HD progression from this perspective. Additionally, we utilized
both motor and non-motor symptoms, including behavioral or psychological
factors, for classification purposes. With the developed model, each patient
can be individually assessed based on their unique profile, allowing for a clear
and objectively measured prognosis. This personalized projection of symp-
tom development through an AI model provides clinicians with insights to
optimize counseling and treatment, guiding interventions toward personalized
therapies. Furthermore, this empowers patients to organize and plan their
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lives according to their prognosis, ultimately enhancing their quality of life
and improving overall disease management.

Finally, in Chapter 4, we explored the use of digital gait assessment for
monitoring symptoms and progression in PD. This approach facilitates objec-
tive tracking of disease status and progression, enabling clinicians to evaluate
the effects of new treatments. Our comprehensive analysis of individual
and combined features derived from digital gait sensors revealed significant
associations with disease stage and severity. Notably, the correlation between
digital gait features and PD symptoms was systematically examined across
multiple standardized tasks and two independent cohorts for the first time.
We identified notable task-specific differences; for instance, the traditional
TUG test consistently proved effective for monitoring motor symptom severity
in both studies. Additionally, dual tasks that combined motor and cognitive
exercises, such as the Tray and Count task, effectively assessed disease sever-
ity related to postural instability. However, significant associations between
digital gait features and symptom progression were observed only in Erlangen,
where gait assessments were conducted over an extended period and repeated
in subsequent visits. This underscores the importance of longer-distance walks
in detecting changes in patient’s motor symptoms. While digital gait features
demonstrate potential for objectively monitoring motor symptoms and their
progression, their prognostic value in ML-based predictions of clinical score
progression remains limited. Nonetheless, in another experiment evaluating
the utility of digital gait assessment for clinical trials, we found that estimates
of the UPDRS III correlated well with the original data when predicted from
gait assessments conducted during the same visit. This indicates that such
predictions are feasible, even though gait data alone does not capture other
symptoms. It remains unclear whether this is due to correlations between
other symptoms and digital gait or if those symptoms remain stable in terms
of UPDRS III progression. Through sample size estimations for randomized
clinical trials (RCTs), we demonstrated that the number of participants
required could be significantly reduced by digitally assessing the UPDRS III
through weekly gait assessments. The potential advantages of using digital
gait sensors for clinical trial evaluation are threefold:

1. Data collection for a single gait task is simpler than conducting a
complete UPDRS III assessment.

2. Measurements with digital devices can potentially be taken remotely
in patients’ homes, increasing the frequency of assessments without
necessitating clinical visits.

3. Utilizing digital gait sensors may alleviate the burden on patients partic-
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ipating in RCTs, as they can complete tests at home, thereby enhancing
their quality of life and increasing their willingness to participate in
studies.

5.1 Perspective future work

Despite our efforts across the various projects outlined in this dissertation,
several aspects remain to be improved and explored more thoroughly in the
future. As discussed, understanding the heterogeneity of neurodegenerative
diseases, particularly regarding symptoms and progression throughout the dis-
ease management pipeline, is crucial for developing effective disease-modifying
treatments. However, given the significant background of heterogeneity and
the limitations of our current studies, numerous follow-up steps can be pur-
sued.

One initial step to consider within the systemic approach presented in
Chapter 2 is the integration of additional data modalities into the model’s
graph structure. Incorporating known side effects of approved drugs, imaging
data, or proteomic data can provide valuable insights into potential outcomes.
Specifically, by including side effects, we can not only predict possible phe-
notypic impacts on clinical scales and cognition but also estimate expected
adverse effects. This enhancement contributes to a more comprehensive risk-
to-benefit analysis for new drugs in development. Another promising area
for future research involves employing more advanced graph ML algorithms,
such as Graph Neural Networks [248], which have shown success in predicting
adverse drug events and drug-protein interactions in prior studies [249, 250].

Identifying and characterizing progression subtypes of HD is a crucial step
toward developing personalized treatment strategies. Further characterization
of the two identified subtypes from Chapter 3 using additional data modalities
can enhance this initiative. Exploring correlations between these subtypes
and biological data such as magnetic resonance imaging, CSF biomarkers,
or genetic information, could yield relevant clinical insights and identify
potential targets for new treatments. Additionally, the clustering approach
itself could be refined by incorporating neurobehavioral or psychiatric scores,
which are currently underrepresented. However, expanding the clinical scores
used in the initial clustering necessitates the development of more stable and
easily estimable non-linear mixed models capable of aligning multivariate
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trajectories. The current method is time-consuming and relies on manual
adjustments to estimate the final model parameters. One viable option, is the
latent-time joint mixed model, previously utilized in Chapter 4 for aligning
PD trajectories and in prior work [158] before the progression subgroup
clustering. Another alternative is the use of a generalized neural network
mixed model, employing the output of a feed-forward neural network instead
of the conventional fixed effects [251]. Another area for future work involves
the handling of irregular time series. Currently, VaDER can only cluster
regular time series, meaning that is is limited to structured clinical study data
with defined clinical visits. To extend this approach to irregular time series
typically seen in outpatient care, VaDER must be adapted to accommodate
such variations. Finally, since subtype identification is the first step in
determining optimal treatments, these subtypes could be integrated into
clinical studies. Enriching trial populations with individuals exhibiting rapid
progression may expedite the demonstration of disease-modifying effects of
novel compounds, as this group is more likely to show decline within the
typical trial periods of 1 to 2 years. Simulations of this strategy with PD
progression subtypes indicated a faster identification of significant outcome
changes with fewer participants [158].

As discussed in Chapter 4, features derived from digital gait sensors
in PD patients are generally effective for monitoring symptoms and their
progression. Notably, these features also predict the UPDRS III during
the same visit, despite focusing solely on gait. The underlying reasons for
this correlation remain unclear, warranting further investigation into the
relationship between digital gait features and non-gait symptoms, particularly
cognitive impairments of PD patients. Our findings additionally indicate that
longer and repeated gait assessments yield higher correlations with motor
symptoms and are the only measurements that can partially predict patient
progression. Collecting more data through additional repetitions and longer
distances may enhance the prognostic value and provide clearer insights. One
shortcoming of our current approach is the reliance on summary statistics
from gait features averaged across all steps in a single exercise. Exploring
step-wise data could be beneficial, as it may capture information lost when
averaging features over all steps performed within one task. We could utilize
step-wise gait features, such as gait speed and step length, or even raw sensor
data from gyroscopes and accelerometers. Methodologically, convolutional
neural networks [252], long short-term memory networks [253], or time-series
transformers [254] could be employed, as these methods have already shown
success in gait recognition [255–261] and patient classification based on gait
[262–265]. However, the use of any medical device outside of pure research
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settings in routine clinical care requires regulatory approval and thorough
preparation. Moreover, it will be essential to observe the implementation
of the new European AI Act and its impact on the ongoing development of
algorithms in digital applications for neurodegenerative diseases [266].
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Acronyms

2x10m 2x10m Preferred Speed with Stop. 37
4x10m 4x10m Preferred Speed without Stop. 36

AD Alzheimer’s disease. 1
AI artificial intelligence. 12
allGait all digital gait features. 41

BNs Bayesian networks. 14

Count Cognitive TUG. 36
CSF cerebrospinal fluid. 2
CV cross-validation. 42

DE differential gene expression. 12

EMA European Medical Agency. 11

FDA U.S. Food and Drug Administration. 3

GMMs gaussian mixture models. 18
GSEA gene-set enrichment analysis. 12
GWAS genome-wide association studies. 12

H&Y Hoehn & Yahr. 34
HD Huntington’s disease. 1
HD-ISS HD Integrated Staging System. 6
HS Heel Strike. 37
HTT huntingtin gene. 5

KD knock-down. 13
KO knock-out. 13

LSTM Long Short-Term Memory. 19
LTJMM latent time joint mixed-effect model. 32, 38
LuxPARK Luxembourg Parkinson Study. 33

MCI mild cognitive impairment. 2
ML machine learning. 14
MMSE mini mental state examination. 26
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NDDs Neurodegenerative Diseases. 1

ODEs ordinary differential equations. 13

PD Parkinson’s disease. 1
PDEs partial differential equations. 13
PIGD Postural Instability and Gait Difficulty. 33
PPI protein-protein interaction. 13

RBD REM sleep behavior disorder. 4
RCTs randomized clinical trials. 58

SDMT Symbol Digit Modality Test. 29
singleGait single digital gait features. 41

TD Tremor Dominance. 33
TO Toe Off. 37
Tray Manual TUG. 36
TUG Timed Up and Go. 20, 36

UHDRS Unified Huntington’s Disease Rating Scale. 9
UPDRS Unified Parkinson’s Disease Rating Scale. 9

VaDER Variational Deep Embedding with Recurrence. 19
VAMBN Variational Autoencoder Modular Bayesian Networks. 26
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237. Küderle, A. et al. Gaitmap - An Open Ecosystem for IMU-based Human

Gait Analysis and Algorithm Benchmarking Preprint (Sept. 2023).

238. Donohue, M. Mdonohue / Ltjmm — Bitbucket 2017.

239. Carpenter, B. et al. Stan : A Probabilistic Programming Language. Journal

of Statistical Software 76. issn: 1548-7660 (2017).

240. Benjamini, Y. & Yekutieli, D. The Control of the False Discovery Rate in

Multiple Testing under Dependency. The Annals of Statistics 29. issn:

0090-5364 (Aug. 2001).

241. Breiman, L. Random Forests. Machine Learning 45, 5–32. issn: 08856125

(2001).

242. Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. Journal of

the Royal Statistical Society: Series B (Methodological) 58, 267–288. issn:

0035-9246, 2517-6161 (Jan. 1996).

243. Pedregosa, F. et al. Scikit-Learn: Machine Learning in Python. the Journal

of machine Learning research 12, 2825–2830 (2011).

244. SRL., U. B. A Double-Blind, Placebo-Controlled, Randomized, 18-Month

Phase 2a Study to Evaluate the Efficacy, Safety, Tolerability, and Pharma-

cokinetics of Oral UCB0599 in Study Participants With Early Parkinson’s

Disease (2023).

245. Ard, M. C. & Edland, S. D. Power Calculations for Clinical Trials in

Alzheimer’s Disease. Journal of Alzheimer’s Disease 26 (eds Ashford, J. W.

et al.) 369–377. issn: 18758908, 13872877 (Oct. 2011).

86



246. Iddi, S. & C Donohue, M. Power and Sample Size for Longitudinal Models

in R – The Longpower Package and Shiny App. The R Journal 14, 264–282.

issn: 2073-4859 (July 2022).

247. Tabrizi, S. J. et al. Predictors of Phenotypic Progression and Disease Onset

in Premanifest and Early-Stage Huntington’s Disease in the TRACK-HD

Study: Analysis of 36-Month Observational Data. The Lancet Neurology 12,

637–649. issn: 14744422 (July 2013).

248. Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M. & Monfardini, G. The

Graph Neural Network Model. IEEE transactions on neural networks 20,

61–80. issn: 1941-0093 (Jan. 2009).

249. Krix, S. et al. MultiGML: Multimodal Graph Machine Learning for Predic-

tion of Adverse Drug Events. Heliyon 9. issn: 2405-8440 (Sept. 2023).

250. Wu, Y., Gao, M., Zeng, M., Zhang, J. & Li, M. BridgeDPI: A Novel Graph

Neural Network for Predicting Drug–Protein Interactions. Bioinformatics

38, 2571–2578. issn: 1367-4803 (Apr. 2022).

251. Mandel, F., Ghosh, R. P. & Barnett, I. Neural Networks for Clustered and

Longitudinal Data Using Mixed Effects Models. Biometrics 79, 711–721.

issn: 1541-0420 (2023).

252. Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-Based Learning

Applied to Document Recognition. Proceedings of the IEEE 86, 2278–2324.

issn: 1558-2256 (Nov. 1998).

253. Hochreiter, S. & Schmidhuber, J. Long Short-Term Memory. Neural Com-

putation 9, 1735–1780. issn: 0899-7667 (Nov. 1997).

254. Wu, N., Green, B., Ben, X. & O’Banion, S. Deep Transformer Models for

Time Series Forecasting: The Influenza Prevalence Case Jan. 2020. arXiv:

2001.08317 [cs, stat].

255. Bari, A. S. M. H. & Gavrilova, M. L. KinectGaitNet: Kinect-Based Gait

Recognition Using Deep Convolutional Neural Network. Sensors (Basel,

Switzerland) 22, 2631. issn: 1424-8220 (Mar. 2022).

256. Cheriet, M., Dentamaro, V., Hamdan, M., Impedovo, D. & Pirlo, G. Multi-

Speed Transformer Network for Neurodegenerative Disease Assessment and

Activity Recognition. Computer Methods and Programs in Biomedicine 230,

107344. issn: 1872-7565 (Mar. 2023).

87

https://arxiv.org/abs/2001.08317


257. Dehzangi, O., Taherisadr, M. & ChangalVala, R. IMU-Based Gait Recogni-

tion Using Convolutional Neural Networks and Multi-Sensor Fusion. Sensors

(Basel, Switzerland) 17, 2735. issn: 1424-8220 (Nov. 2017).

258. Kim, J., Seo, H., Naseem, M. T. & Lee, C.-S. Pathological-Gait Recognition

Using Spatiotemporal Graph Convolutional Networks and Attention Model.

Sensors (Basel, Switzerland) 22, 4863. issn: 1424-8220 (June 2022).

259. Li, J., Liang, W., Yin, X., Li, J. & Guan, W. Multimodal Gait Abnormality

Recognition Using a Convolutional Neural Network-Bidirectional Long Short-

Term Memory (CNN-BiLSTM) Network Based on Multi-Sensor Data Fusion.

Sensors (Basel, Switzerland) 23, 9101. issn: 1424-8220 (Nov. 2023).

260. Mogan, J. N., Lee, C. P., Lim, K. M. & Muthu, K. S. Gait-ViT: Gait

Recognition with Vision Transformer. Sensors (Basel, Switzerland) 22, 7362.

issn: 1424-8220 (Sept. 2022).

261. Mogan, J. N., Lee, C. P., Lim, K. M., Ali, M. & Alqahtani, A. Gait-CNN-ViT:

Multi-Model Gait Recognition with Convolutional Neural Networks and

Vision Transformer. Sensors (Basel, Switzerland) 23, 3809. issn: 1424-8220

(Apr. 2023).

262. Naimi, S., Bouachir, W. & Bilodeau, G.-A. HCT: Hybrid Convnet-Transformer

for Parkinson’s Disease Detection and Severity Prediction from Gait Oct.

2023. arXiv: 2310.17078 [cs].

263. Hayashi, S., Saho, K., Shioiri, K., Fujimoto, M. & Masugi, M. Utilization

of Micro-Doppler Radar to Classify Gait Patterns of Young and Elderly

Adults: An Approach Using a Long Short-Term Memory Network. Sensors

(Basel, Switzerland) 21, 3643. issn: 1424-8220 (May 2021).

264. Jung, D., Nguyen, M. D., Park, M., Kim, J. & Mun, K.-R. Multiple Classifica-

tion of Gait Using Time-Frequency Representations and Deep Convolutional

Neural Networks. IEEE transactions on neural systems and rehabilitation

engineering: a publication of the IEEE Engineering in Medicine and Biology

Society 28, 997–1005. issn: 1558-0210 (Apr. 2020).

265. Turner, A. & Hayes, S. The Classification of Minor Gait Alterations Using

Wearable Sensors and Deep Learning. IEEE transactions on bio-medical

engineering 66, 3136–3145. issn: 1558-2531 (Nov. 2019).

88

https://arxiv.org/abs/2310.17078


266. Aboy, M., Minssen, T. & Vayena, E. Navigating the EU AI Act: Implications

for Regulated Digital Medical Products. npj Digital Medicine 7, 1–6. issn:

2398-6352 (Sept. 2024).

89
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A.1 AI reveals insights into link between CD33

and cognitive impairment in Alzheimer’s

Disease

Reprinted with permission from “Raschka, T., Sood, M., Schultz, B., Altay,
A., Ebeling, C., Fröhlich, H. (2023). AI reveals insights into link between
CD33 and cognitive impairment in Alzheimer’s Disease. PLOS Computational
Biology, 19(2), e1009894. doi:10.1371/journal.pcbi.1009894”.
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Abstract

Modeling biological mechanisms is a key for disease understanding and drug-target identifi-

cation. However, formulating quantitative models in the field of Alzheimer’s Disease is chal-

lenged by a lack of detailed knowledge of relevant biochemical processes. Additionally,

fitting differential equation systems usually requires time resolved data and the possibility to

perform intervention experiments, which is difficult in neurological disorders. This work

addresses these challenges by employing the recently published Variational Autoencoder

Modular Bayesian Networks (VAMBN) method, which we here trained on combined clinical

and patient level gene expression data while incorporating a disease focused knowledge

graph. Our approach, called iVAMBN, resulted in a quantitative model that allowed us to

simulate a down-expression of the putative drug target CD33, including potential impact on

cognitive impairment and brain pathophysiology. Experimental validation demonstrated a

high overlap of molecular mechanism predicted to be altered by CD33 perturbation with cell

line data. Altogether, our modeling approach may help to select promising drug targets.

Author summary

For the last 20 years, the field of Alzheimer’s Disease (AD) is marked by a series of contin-

uous failures to deliver demonstrably effective medications to patients. One of the reasons

for the continuous failure of trials in AD is the lack of understanding of how targeting a

certain molecule would affect cognitive impairment in humans. One way to address this

issue is the development of quantitative system level models connecting the molecular

level with the phenotype. In this paper we propose a novel hybrid Artificial Intelligence

(AI) approach, named Integrative Variational Autoencoder Modular Bayesian Networks

(iVAMBN), combining clinical and patient level gene expression data while incorporating

a disease focused knowledge graph. The model showed connections between various bio-

logical mechanisms playing a role in AD and allowed us to simulate a down-expression of

the putative drug target CD33. Results showed a significantly increased cognition and pre-

dicted perturbation of several biological mechanisms. We experimentally validated these
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predictions using gene expression data from a knock-out THP-1 monocyte cell line,

which confirmed our model predictions up to a very high extent. To our knowledge, we

thus developed the first experimentally validated, quantitative, multi-scale model connect-

ing molecular mechanisms with clinical outcomes in the AD field.

Introduction

Alzheimer’s Disease (AD) is a neurodegenerative disorder affecting about 50 million people

worldwide, resulting in the inability to perform necessary, daily activities before leading to an

often early death [1]. Despite decades of research and more than 2000 clinical studies listed on

ClinicalTrials.gov, to date there is no cure, and all existing treatments are purely symptomatic

[1]. New disease modifying treatments are urgently needed, but require a better mechanistic

understanding of the disease.

A common starting point in this context is to map out the existing knowledge landscape

about the disease. In the past few decades, a large number of databases have been developed in

the bioinformatics community, such as databases for biological pathways (like KEGG [2],

PathwayCommons [3], WikiPathways [4], Reactome [5]), drug-target interactions (like Open-

Targets [6], Therapeutic Targets Database [7]), disease-gene associations (like DisGeNET [8])

or protein-protein interactions (like STRING [9], IntAct [10]). All these databases simplify the

usage of the respective knowledge for algorithms and models, especially in the field of drug tar-

get identification. Moreover, none of these databases have been compiled in a disease focused

manner. The Biological Expression Language (BEL) provides this opportunity and can be used

to represent literature-derived, disease focused knowledge in the form of attributed graphs in a

precise manner. For AD a knowledge graph has been published in [11] and represents the

manually curated, disease focused mechanistic interplay between genetic variants, proteins,

biological processes and pathways described in the literature, enabling the user to computa-

tionally query and integrate knowledge graphs into drug target identification algorithms.

One of the interesting molecules in the AD field is CD33, a transmembrane receptor pro-

tein expressed primarily in myeloid lineage cells. It has been associated with decreased risk of

AD in GWAS studies [12–18] and discussed as a potential therapeutic target, for example via

immunotherapy [14]. In an AD mouse model, a knockout of CD33 mitigated amyloid-β clear-

ance and improved cognition [13, 17, 18]. Similarly, a positive effect on amyloid-β phagocyto-

sis could be observed in CD33 knock-out THP-1 macrophages [16]. In humans a correlation

between CD33, cognition and amyloid clearance is known, however, the concrete underlying

mechanisms are still not well understood. There is an ongoing clinical trial that is testing the

effects of a CD33 inhibitor in patients with mild to moderate AD (NCT03822208). Along

those lines, the EU-wide PHAGO project (https://www.phago.eu) funded via the Innovative

Medicines Initiatives aimed to develop tools and methods to study the functioning of CD33

and related pathways in AD in order to facilitate decisions about potential drug development

programs.

While graphs are useful for describing the disease focused knowledge landscape about AD,

the principal incompleteness of disease focused biological knowledge may result in disagree-

ments to observed data. Moreover, graphs do not allow to produce quantitative insights and

predictions. For this purpose ordinary (ODEs) and partial differential equations (PDEs) are

frequently used in systems biology and systems medicine, as they are able to describe biological

mechanisms in a quantitative way. However, their formulation requires a detailed understand-

ing of biochemical reactions, which in the AD field is only available for specific processes, like
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for example amyloid-β aggregation [19, 20]. Moreover, fitting differential equations usually

requires time resolved data and the possibility to perform intervention experiments (as knock-

downs or stimulation), which is challenged by the fact that cell lines and mouse models in the

AD field can most likely only mimic specific aspects of the human disease [21–23].

A principle alternative to differential equation systems are probabilistic graphical models

and in particular Bayesian Networks (BNs), which are quantitative as well. However, standard

BN implementations require normally or multinomially distributed data, which is not the case

in many applications. Furthermore, structure learning of BNs is an NP hard problem, where

the number of possible network structures grows super-exponentially with the number of

nodes in the network [24]. Hence, modeling higher dimensional data with a BN raises severe

concerns regarding structure identifiability.

Altogether, these challenges lead to the fact that the AD field lacks a comprehensive quanti-

tative model of the interplay between relevant molecules and biological processes, including

the role of CD33, up to the phenotype level.

In this work, we developed a—to our knowledge—first quantitative, multi-scale model

focused on the multitude of mechanisms governing the CD33 molecule. Our model spans a

variety of modalities, including gene expression, brain pathophysiology, demographic infor-

mation and cognition scores. To address the challenges mentioned before, we started with a

disease focused knowledge graph reconstruction, which we clustered into modules to signifi-

cantly reduce dimensionality. In the following we use the term “module” to denote a set of

objects grouped together. Subsequently, we relied on our recently published Variational Auto-

encoder Modular Bayesian Network (VAMBN) algorithm [25], which is a hybrid Artificial

Intelligence (AI) approach combining variational autoencoders [26] with modular Bayesian

Networks [27], which is able to model arbitrary statistical distributions. We trained VAMBN

on joint clinical and patient level gene expression data while employing a clustered knowledge

graph reflecting incomplete prior knowledge about disease mechanisms and their interplay. A

simulated knock-down of CD33 and predicted downstream effects could be experimentally

validated with gene expression data from a cell line. Overall, we believe that our work helps to

move closer towards a systemic and quantitative understanding of the disease, which is the

prerequisite for finding urgently needed novel therapeutic options.

Results

In this work, we relied on AD patient data from the Religious Orders Study and Memory and

Aging Project (ROSMAP) [28–30] for model training and specificity analysis and the Mayo

RNAseq Study (Mayo) [31] for external validation and specificity analysis. The data was

retrieved from the RNASeq Harmonization study through the AMP-AD Knowledge Portal.

Table 1 shows an overview about the clinical characteristics of the AD patients, which were

used for model training and external validation. These patient samples were selected, because

for all of them gene expression data from post mortem cerebral cortex tissues was available.

We would like to mention at this point that gene regulation and thus gene expression is tissue

specific [32]. Available data of other brain regions, also of healthy controls were thus kept sepa-

rate for specificity analysis. A more detailed description of the used samples in each step of the

analysis can be found in S3 Note.

Overview about modeling strategy

Fig 1 shows an overview about our modeling strategy, which we call integrative VAMBN

(iVAMBN), combining clinical and patient-level gene expression data with disease focused

knowledge graphs. The first step of our workflow compiles an AD focused knowledge graph

PLOS COMPUTATIONAL BIOLOGY AI reveals insights into link between CD33 and cognitive impairment in Alzheimer’s Disease
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describing cause and effect relationships between biological processes, genes and pathologies.

The generated graph consisted of 383 nodes and 607 edges. The graph was subsequently clus-

tered into modules with the help of the Markov Clustering algorithm [33] to significantly

reduce the number of variables for subsequent modeling steps. Markov Clustering was chosen

Table 1. Patient statistics. Shown are the number of patients, their age in years (with mean and standard deviation),

sex, APOE genotype (binary encoding for at least one present E4 allele), MMSE score (with mean and sd) and Braak

stage.

ROSMAP Mayo

no. patients 221 82

age 87.95 ± 3.38 82.66 ± 7.61

sex

male 68 33

female 153 49

APOE

0 138 39

1 83 43

MMSE 13.16 ± 8.38 -

Braak

1 7 -

2 6 -

3 42 -

4 71 6

5 88 35

6 7 41

https://doi.org/10.1371/journal.pcbi.1009894.t001

Fig 1. The Integrative VAMBN (iVAMBN) approach. The iVAMBN approach integrates gene expression data, clinical and patho-physiological

(phenotype) measures (bottom left) into a joint quantitative, probabilistic graphical model. The method initially uses a knowledge graph (top left) for

defining modules and for informing about potential connections between them. In a second step, a representation of each module using a

Heterogeneous Incomplete Variational Autoencoder (HI-VAE) is learned. In a third step a modular Bayesian Network between autoencoded modules

is learned while taking into account the information derived from the knowledge graph. Finally, the iVAMBN model is used to simulate gene

perturbation (top right).

https://doi.org/10.1371/journal.pcbi.1009894.g001
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above other methods, as an evaluation of different graph clustering algorithms showed best

metrics for this approach (see Methods). Genes within modules were annotated with AD dis-

ease mechanisms coming from the NeuroMMSig gene set collection [34].

Using patient-level clinical and gene expression data from post-mortem cerebral cortex tis-

sues, in a second step the VAMBN algorithm was employed to quantitatively model relation-

ships between gene modules as well as phenotype related scores (Mini-Mental State

Examination (MMSE), Braak staging) and demographic features based on ROSMAP data.

ROSMAP was chosen for training of the algorithm, because of the comparably large number

of patients (more than 200) and available MMSE plus Braak scores. VAMBN takes as input

patient-level data hierarchically organized into pre-defined modules (here: either gene mod-

ules or a phenotype related module including i.e. MMSE plus Braak stages), original features

(here: demographic and clinical variables like age, sex, APOE genotype, and brain region) and

prior knowledge regarding their possible connections. The output is a probabilistic graphical

model describing connections between modules and original features. There is a per-patient

score for each module, and each of these scores can be further decoded into feature-level gene

expression and phenotype data, respectively.

In the third step of our strategy we evaluated, whether our iVAMBN model could also

explain gene expression data from the Mayo study. Notably, at this step we only considered

the Braak stage in the phenotype module, because the Mayo study does not report MMSE

scores. For that purpose we first re-trained our iVAMBN model on ROSMAP while leaving

out MMSE scores and then assessed the marginal log-likelihood of the modified model on the

Mayo dataset. We then tested the marginal log-likelihood of the true model against randomly

permuted versions of the learned probabilistic graph. This allowed us to assess, in how far the

model learned on ROSMAP could explain Mayo data better than expected by pure chance.

For the last step, we used our iVAMBN model trained on ROSMAP to simulate several

therapeutic interventions, including a CD33 inhibition. Based on available data, we were able

to experimentally validate the predicted effects of a CD33 inhibition using CD33 knockout

gene expression data from a THP-1 monocyte cell line. More details about the entire iVAMBN

approach can be found in the Methods section of this paper.

In the following we elaborate on the results obtained in each of these different steps, while

technical details are provided in the Methods part of this article.

Knowledge graph compilation

As outlined in the previous section, our modeling approach started with the compilation and

Markov clustering of a knowledge graph. The Markov clustering resulted in 32 modules,

including 4 single gene modules, namely CD33, HSPB2, HSPB3, and MIR101–1. Most of the

non-single gene modules comprised only two genes, while others had multiple combinations,

like the GABA subgraph module with 289 genes. The exact number of genes clustered together

as well as the result of a statistical over-representation analysis (hypergeometric test) using the

AD focused gene set collection NeuroMMSig [34] can be found in S1 Table. A complete list of

molecules within each module can be found in S2 Table. The modules were considered as

nodes of a graph between them, where an edge was set between modulesM1,M2, if in the orig-

inal knowledge graph there was at least one gene inM1 and one inM2 that was connected via a

directed path. The resulting (acyclic) module graph is shown in S1 Fig.

Integrative variational autoencoder modular bayesian network model

Integrative VAMBN combines the advantages of Bayesian Networks with the capabilities of var-

iational autoencoders, more specifically Heterogeneous Incomplete Variational Autoencoders

PLOS COMPUTATIONAL BIOLOGY AI reveals insights into link between CD33 and cognitive impairment in Alzheimer’s Disease
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(HI-VAEs) [35]. Briefly, the idea is to initially learn a low dimensional Gaussian representation

of features mapping to each of the defined modules. HI-VAEs differ from classical variational

autoencoders in the sense that they can be applied to heterogeneous input data of different

numerical scales, potentially containing missing values. In a second step a Bayesian Network

structure is then learned over the low dimensional representations of modules, resulting in a

modular Bayesian Network. More details are presented in the Methods part of this paper and in

[25].

We here trained an iVAMBN model using the identified modules (i.e. feature groups in

the original data) as—potentially multivariate—nodes of a probabilistic graphical model.

Noteworthy exceptions are described in detail in S1 Note. In cases where multiple features

map to one and the same module (i.e. the corresponding node / random variable in the

probabilistic graphical model is multivariate), our method initially learns a low dimensional

representation using a HI-VAE. Second, we learned the Bayesian Network structure con-

necting these modules. At this stage it is possible to provide information about possible

connections between modules given in the knowledge derived module graph (S1 Fig). We

tested three different strategies to incorporate the information provided in the module

graph:

• completely data driven: the entire Bayesian Network was only learned from data,

• knowledge informed: the module graph was either used to only initialize Bayesian Network

structure learning, to enforce / white list the existence of specific edges, or used for a combi-

nation of both, and

• completely knowledge driven: strictly constrain edges between modules to those provided via

the module graph, and additionally learned ones are only allowed to connect cognition

scores, patho-physiological stages, and demographic features. All other possible edges are

black listed, i.e. not allowed.

A systematic comparison of these strategies via a cross-validation yielded a better perfor-

mance of the second strategy (knowledge informed), in which we used the module graph to

white list edges and to initialize a greedy hill climbing based structure learning, see details in

Methods Section and S2 Note. That means, iVAMBN was allowed to add additional edges, if

the data provided according evidence.

We repeated the knowledge informed modular Bayesian Network learning 1000 times on

random bootstrap sub-samples of the data drawn with replacement, hence allowing to quantify

the statistical confidence of each inferred edge. The results of this analysis can be found in S3

Table.

In the following we only focus on the 130 edges that were found in at least 40% of the 1000

modular Bayesian Network reconstructions (Fig 2). Notably, this threshold was only chosen

for better visualization purposes and to limit the subsequent discussion. Edges with lower

bootstrap probability might also exist in reality despite lower statistical confidence. Nodes cor-

responding to sex, APOE status, and brain region were not connected to any other nodes with

sufficient statistical confidence, meaning that these features might have no impact on the rest

of the network. Nodes with only outgoing edges in the network (i.e. source nodes) were: the

years of education, the age, and the single gene NAV3. The GABA subgraph (containing more

than 280 genes) and the phenotype module were leaf nodes, meaning they had no outgoing

edges. Only patient age had a direct influence on CD33. CD33 had eight directly influenced

molecular mechanisms: the GABA subgraph, the Amyloidogenic subgraph (containing genes

SRC and APBA2), the Acetylcholine signaling subgraph (containing genes ACHE and PRNP),

the Prostaglandin subgraph, and the Chaperone subgraph (containing genes HSPB6, CXCL8,
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and CCR2). Also, the single gene module, TRAF1, was a child of CD33. Altogether, CD33 had

a predicted causal influence on every node, except for the source nodes.

Model reveals path between CD33 and disease phenotype. As shown in Fig 2 the short-

est path between CD33 and the disease phenotype was observed through the Prostaglandin

subgraph. All the edges from this connection were newly learned from data, meaning that they

had not previously been identified in the knowledge graph. Nevertheless, these correlations

have been previously reported in the literature: Prostaglandines are eicosanoides, which were

found to play a role in memory learning and neuroinflammation [36, 37]. A major producer is

activated microglia, which itself is activated through amyloid-β and produces inflammatory

cytokines [38]. Currently, microglia and their effects on AD is a major focus of research [39,

40]. Also, PGD2, a prostaglandin mainly synthesized in neurons, was previously found to be

upregulated in AD patients [41]. Pairwise correlation plots between the genes of the prosta-

glandin pathway and CD33 or phenotype can be found in S2 Fig.

In total, 130 of the 162 edges of the bootstrapped iVAMBN model were newly learned from

the data and had not been previously identified within the literature derived knowledge graph.

Out of these 130 edges, six edges had a bootstrap confidence of 100%, meaning that they were

learned consistently from 1000 random sub-samples of the data. A list of these edges can be

found in Table 2.

Fig 2. Network representation of iVAMBN model for ROSMAP data. Shown are the learned (grey) and knowledge-derived (green) edges between gene

modules (purple nodes), single gene modules (green) and CD33 and phenotype module (red). All these edges appeared with bootstrap frequency> 0.4. The

newly inferred shortest path between CD33 and phenotype is displayed in orange. Other edges with bootstrap frequency> 0.4 have been removed for

visualization purposes, except for those six edges which were trained with a bootstrap confidence of 1.

https://doi.org/10.1371/journal.pcbi.1009894.g002
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These high confidence edges demonstrated strong pairwise correlations between connected

modules. NAV3, for example, had a strong negative correlation with MAVS, a member of

the TGF-Beta subgraph module (Fig 3 left). In contrast to that SRSF10 and CREB1, members

of the Low density lipoprotein subgraph and Calpastatin-calpain subgraph modules, were

strongly positive correlated (Fig 3 right).

Although no direct correlation between NAV3 and MAVS is known, their effects are both

linked to AD. NAV3, which is predominantly expressed in the nervous system, is increased in

AD patients [42], while MAVS encodes a gene that is needed for the expression of beta inter-

feron and thus contributes to antiviral innate immunity and may protect the cells from apo-

ptosis [43]. Together with the strong negative correlation seen in the data, one can hypothesize

that the increased level of NAV3 in AD leads to a decreased level of MAVS, which elevates apo-

ptosis of the cells.

The strong positive correlation between SRSF10 and CREB1 linked the Low density lipo-

protein (LDL) and Calpastatin-calpain subgraphs. LDL is a major APOE receptor, which is the

strongest genetic factor for AD, where different alleles are either risk or protective alleles [44].

APOE is also linked to amyloid-β, whose production is increased with elevated activity of cal-

pain due to the decreased levels of calpastatin. Calpastatin is also linked to synaptic dysfunc-

tion and to the tau pathology of AD [45, 46]. Tau is another protein that accumulates in the

brains of AD patients. The exact underlying mechanisms here are still unknown, but regula-

tory mechanisms of calpain are highly influenced by Calcium (Ca2+) influx and increased

Table 2. Consistently newly learned edges in iVAMBN model. All edges were found in each of 1000 network recon-

structions from randomly subsampled data.

from to

DLG4 GRIN1

Tumor necrosis factor subgraph TRAF1

Toll like receptor subgraph REL

Low density lipoprotein subgraph Calpastatin-calpain subgraph

Prostaglandin subgraph CASP7

NAV3 TGF-Beta subgraph

https://doi.org/10.1371/journal.pcbi.1009894.t002

Fig 3. Quantitative relationships learned by iVAMBN. Each correlation (R) is shown along with its confidence interval (CI) and multiple testing adjusted

p-value. Left: Correlation of NAV3 with TGF-Beta subgraph module member MAVS. Right: Correlation of Low density lipoprotein subgraph module

member SRSF10 with CREB1, a member of the Calpastatin-calpain subgraph module. Further plots can be found in S2 and S3 Figs.

https://doi.org/10.1371/journal.pcbi.1009894.g003
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intracellular calcium levels are a main reason for the loss of neuronal function in AD [45–47].

Changes in the Calpastatin-calpain mechanism may therefore also lead to reduced amyloid-β
deposition.

External validation of iVAMBN model

We assessed the ability of the model to explain normalized gene expression data from an inde-

pendent study, Mayo. Notably, all gene expression data used in this analysis was mapable to

the same brain region, namely the cerebral cortex, via the Uber-anatomy ontology (UBERON)

[48]. However, Mayo does not contain MMSE scores. Therefore, we first trained a modified

version of our iVAMBN model on ROSMAP, which only contained the Braak score in the

phenotype module, but otherwise had the edges shown in Fig 2. The full list of edges of this

model together with their corresponding bootstrap confidences can be found in S3 Table. We

then explored the marginal log-likelihood log p(data j graph) of the model on the Mayo dataset

and subtracted the marginal log-likelihood obtained by 1000 random permutations of the net-

work (Fig 4), resulting in an empirical p-value. This showed that our model could explain

Mayo gene expression data significantly better than randomly permuted networks (p = 0.035)

despite the clinical differences between patients in both studies shown in Table 1.

Moreover, we evaluated the ability of our iVAMBN to predict the activity score of the pros-

taglandin module in the Mayo study. The prostaglandin module was chosen, because prosta-

glandins play a role in neuroinflammation, which is a hallmark of the disease phenotype.

Moreover, the prostaglandin module was directly connected to the clinical/pathological phe-

notype module, in which Braak stages, however, significantly differed between Mayo and

Fig 4. External model validation. Statistical significance −log10(p) value of the marginal log-likelihood of the model when evaluated

on the training data (ROSMAP) and external validation data (Mayo).

https://doi.org/10.1371/journal.pcbi.1009894.g004
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ROSMAP studies. We thus regarded the activity score of the prostaglandin module as a rele-

vant and sufficiently comparable surrogate endpoint between Mayo and ROSMAP studies.

We used our iVAMBN model trained on ROSMAP to predict the activity score of prostaglan-

din module activity in Mayo by feeding data from genes outside the prostaglandin module to

the model expression. We observed a highly significant Pearson correlation between true and

predicted values in the external validation dataset (r = 0.69, 95% CI: [0.56;0.79]). Hence, we

concluded that our iVAMBN model was predictive for the chosen endpoint.

Finally, we trained a separate iVAMBN model on Mayo data and explored the overlap with

the ROSMAP model at different thresholds of the bootstrap confidence (S4 Fig). At the previ-

ously chosen 40% threshold the overlap of the newly learned edges contained in the iVAMBN

models trained on ROSMAP and Mayo was statistically significant, even if edge directions

were considered (hypergeometric test, p< 1e − 38).

Specificity and sensitivity of iVAMBN model

Specificity to brain region. We tested the ability of the model to explain normalized gene

expression data from other brain regions. Therefore, we trained multiple additional iVAMBN

models on patient samples belonging to the posterior cingulate cortex, the dorsolateral pre-

frontal cortex, and the head of caudate nucleus from the ROSMAP study, as well as on samples

from the temporal cortex and the cerebellum from the Mayo study. We then investigated the

overlap of each of these additional iVAMBN models with our primary one akin to the external

validation described in the previous Section. Among non-cortical brain regions, the largest

and statistically significant overlap on graph level was found with an iVAMBN model trained

with samples from the head of caudate nucleus (*36% considering edge directions). The low-

est (still statistically significant) overlap was found with the cerebellum (*31% considering

edge directions). The primary iVAMBN model for all datasets was able to predict the activity

score of the prostaglandin module, but the prediction performance was clearly lower in non-

cortical brain regions (see results in Table B in S3 Note). Altogether our results thus suggest

that our primary iVAMBN model is focused on cortical brain regions.

Disease specificity. Similar analyses were done for iVAMBN models trained on available

healthy control samples from the posterior cingulate cortex, the dorsolateral prefrontal cortex,

and the head of caudate nucleus from the ROSMAP study. The graph structures still demon-

strated a significant overlap with our primary iVAMBN model but were considerably lower,

see Table C in S3 Note. This suggests that our primary iVAMBN model is AD focused.

Sensitivity to knowledge graph. Finally, we explored, how sensitive our primary

iVAMBN model was to the knowledge graph. For that purpose, we randomly shuffled all

edges of the original knowledge graph, re-clustered this permuted graph, and re-trained a

complete iVAMBN model. The iVAMBN model trained on the permuted graph demonstrated

a significantly lower marginal log-likelihood p(data jmodel) compared to the primary

iVAMBN model (p = 4.14E − 24), see details in Supplements (Fig B in S3 Note). Hence, we

concluded that our primary iVAMBN model was sensitive to the knowledge graph structure.

CD33 down-expression simulation

To understand the potential systemic consequences of a therapeutic intervention into CD33

we used our primary iVAMBM model to simulate a down-regulation. This was achieved by a

counterfactual down-expression (here: 9-fold) of CD33 in every patient (Fig 5 (top left)). Due

to the fact that iVAMBN is a quantitative model, associated downstream consequences on bio-

logical mechanisms and phenotype could be predicted in every patient (see examples in Fig 5).
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CD33 down-expression simulation (left) results in higher activity scores of the prostaglandin

pathway module (right).

In addition, iVAMBN predicted a significant increase of MMSE scores (p< 0.001, Fig 6

(left)), and also a significant decrease of Braak stages (p< 0.001, Fig 6 (right)). That means

patients are not only predicted to improve the specific cognitive abilities tested by MMSE, but

are also predicted to improve brain pathophysiology.

CD33 down-expression reveals significant changes in many mechanisms. Our

iVAMBN model predicted significant effects on gene expression of 28 mechanisms and indi-

vidual genes, respectively (Table 3). Significant changes were, for example, predicted for the

genes CASP7 and TRAF7, and the prostaglandin and calpastatin-calpain mechanisms. But

also the amyloidogenic mechanism is significantly differential expressed in a CD33 knock-

down scenario.

Decreased expression of the amyloidogenic mechanism will thus result in patients with

less amyloid-β deposition. While this connection of the amyloidogenic mechanism and AD is

clear, others need to be further explored.

Fig 5. Module distributions in original and simulated CD33 down-expression. The blue curve describes the original distribution, while the red one

describes the CD33 down-expression scenario. CD33 down-expression simulation (left) results in lower scores of the prostaglandin pathway module

(right).

https://doi.org/10.1371/journal.pcbi.1009894.g005

Fig 6. Predicted changes on phenotype (MMSE and Braak stages) as a consequence of CD33 down-expression. Distribution of MMSE and Braak stages

in CD33 original (blue) and down-expressed (red) patients shows a significant improvement of scores and thus cognition as well as brain pathophysiology.

https://doi.org/10.1371/journal.pcbi.1009894.g006
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The link between Calpastatin-calpain mechanism and AD was already described earlier.

The key aspect is its negative influence on amyloid-β deposition. PGD2, a prostaglandin

mainly synthesized in neurons, was previously found to be upregulated in AD patients [41].

Prostaglandines are eicosanoide, which were found to play a role in memory learning and neu-

roinflammation [36, 37]. A major producer is activated microglia, which itself is activated

through amyloid-β and produces inflammatory cytokines [38]. Currently, microglia and their

effects on AD is a major focus in the field of research [39, 40]. Again, down-expression of the

prostaglandin may result in reduced amyloid-β deposition. Altogether, the vast majority of

significantly differential expressed gene sets was highly linked to AD through the amyloid-β
cascade.

Experimental validation with cell line data. We checked whether our iVAMBN based

predictions experimentally agreed with cell line gene expression data, specifically reflecting

wild type (WT) and CD33 knock-out (KO). Our analysis (see details in Methods part) revealed

significant changes of 23 AD associated mechanisms and genes in KO versus WT. Interest-

ingly, 19 out of these 23 mechanisms overlapped with those predicted by iVAMBN (Table 3).

Table 3. Statistical significance of gene modules. The table shows results of a global test [49], assessing the differential gene set expression of each gene module between

WT and down-expression/KO of CD33. P-values of the test within simulated scenario, as well as, p-values from cell line KO are reported and corrected for multiple testing

using the Benjamini-Hochberg method. The agreement of both tests is described in the last column, meaning if both tests are either significant or non-significant (+) or if

they don’t show same direction of significance (-). For GRIN1 no p-value could be computed, as that gene is not present in the cell line data.

Gene module p-value simulated KD p-value cell line KO agreement significance

GABA subgraph 2.75e-04 3.60e-15 +

Toll like receptor subgraph 1.05e-26 1.05e-13 +

Prostaglandin subgraph 6.99e-109 1.02e-09 +

TGF-Beta subgraph 0.592 8.79e-11 -

Calpastatin-calpain subgraph 3.14e-91 5.41e-09 +

JAK-STAT signaling subgraph 0.454 2.91e-11 -

AGER / NFATC1 / CSF2 5.78e-41 0.0129 +

Chaperone subgraph 2.84e-75 2.02e-09 +

REL 4.45e-18 9.96e-11 +

Ubiquitin degradation subgraph 5.15e-20 1.06e-06 +

GRIN1 1.92e-132 NA

PPARG 2.20e-04 1.78e-03 +

GDNF / CASP3 1.06e-17 2.98e-11 +

Gamma secretase subgraph 4.36e-10 1.93e-03 +

Epigenetic modification subgraph 6.90e-58 7.64e-03 +

TICAM1 / RALBP1 1.46e-16 0.0561 -

Amyloidogenic subgraph 4.54e-69 9.11e-10 +

Tumor necrosis factor subgraph 0.0997 0.769 +

Acetylcholine signaling subgraph 6.74e-04 0.337 -

Matrix metalloproteinase subgraph 0.0708 2.74e-10 -

NAV3 0.176 3.81e-07 -

TRAF1 1.66e-95 2.26e-08 +

CASP7 1.75e-138 0.151 -

GPR3 / ARRB2 4.87e-04 8.02e-04 +

Endoplasmic reticulum-Golgi protein export 5.19e-29 1.78e-11 +

Low density lipoprotein subgraph 0.891 8.11e-06 -

DLG4 5.85e-93 3.44e-07 +

CD33 3.33e-307 8.06e-08 +

https://doi.org/10.1371/journal.pcbi.1009894.t003
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Likewise, iVAMBN predicted significant changes of 22 genes and gene sets, respectively, out of

which only 3 were false positives at a false discovery rate threshold of 5%. Notably one of the

false positive predictions (TICAM1 / RALBP1) had an adjusted p-value of 5.6% in the experi-

mental data.

Overall, we thus observed a high degree of overlap between the dysregulated mechanisms

and those predicted by the iVAMBN model, indicating that our model aligns well with the cell

line data.

Simulation of the perturbation of other candidate targets. For comparison reasons, we

further simulated the effect on the phenotype of a 9-fold up- or down-regulation of all other

genes in our model, which showed a directed path to the phenotype module. Genes belonging

to modules which were not an ancestor of the phenotype module were excluded, because they

could not have any effect on the phenotype according to our model. We simulated for each

candidate target an up- as well as a down-regulation.

The simulated dys-regulations showed that none of the candidate targets had a predicted

effect on the phenotype stronger than CD33 (S5 Fig). Only TRAF6 and TGFB3 down-regula-

tion as well as up-regulation of APBA2, TRAF5 and SALL1 were predicted to increase the

mean MMSE score by more than two points, compared to a predicted increase by almost five

points via CD33 perturbation.

APBA2 is known to interact with APP and therefore plays a role in the amyloidogenic path-

way [50, 51]. TRAF6 was identified in multiple experiments as target of miR-146a which is a

key regulator of innate immunity that is up regulated in AD pathology affected brain regions

and might also has an effect on amyloid-β metabolism [52]. It was found that treatment with a

miR-146a agomir inhibits TRAF6 expression and reduced the cognitive impairment in AD

mice [53].

Discussion

The here presented work is the first to demonstrate, to our knowledge, that one can integrate

gene expression and clinical data together with qualitative knowledge about cause-and-effect

relationships into a quantitative, system medical model of AD. This was achieved via an AI

based method, which we combined with a knowledge graph representation of AD. We could

show that a simulated CD33 down-expression agrees well with experimental gene expression

KO data from a THP-1 cell line. Overall, our model could thus help to understand and quan-

tify intervention effects on a multi-scale biological system level and thus aid the identification

of novel therapeutic targets, which are urgently needed in the AD field.

Our model predicted that CD33 down-regulation would yield a significant effect on cogni-

tion (MMSE) and brain pathophysiology (Braak scores) through the prostaglandin pathway.

Although the role of prostaglandins is known to play a role in memory, learning and neuroin-

flammation [36, 37], the exact mechanism by which cognition is affected remains unknown,

but seems to be coupled to amyloid-β deposition through microglia. In AD mice, a knockout

of CD33 mitigated amyloid-β clearance and improved cognition [17, 18]. A positive effect on

amyloid-β phagocytosis could also be observed in CD33 KO THP-1 macrophages [16].

Despite the evidence for a positive effect on cognition, we should mention that CD33 as a

possible drug target has possible caveats that have been discussed in the literature [14]: i) It is

not clear whether the genetic association of CD33 to AD is causal or just due to linkage dis-

equilibrium with the true causal variant. ii) It is so far not entirely clear, how to therapeutically

manipulate the expression level of CD33 in an optimal manner. iii) There might be safety

issues due to the fact that CD33 is important for inhibiting immune responses and mediating

self-tolerance. Systemic CD33 inhibition could potentially induce inflammatory autoimmune
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diseases. We therefore see the investigation of CD33 conducted in this paper more as a show-

case for our iVAMBN approach rather than making any specific recommendation regarding

the therapeutic value of CD33. Integrating known side effects of approved drugs targeting spe-

cific proteins in our model’s graph structure could provide hints on possible side effects and is

an interesting point for further research.

Altogether we see the impact of our work two-fold: first, we have introduced a novel multi-

scale, quantitative modeling approach (iVAMBN), which is widely applicable in systems medi-

cine, specifically in situations, where only a partial mechanistic understanding of biological

phenomena is given. Secondly, our developed model can be further explored by the AD field

and could aid a better understanding of the disease as well as identification of novel therapeu-

tic options.

Methods

AD knowledge graph

A major part of this study is a BEL (https://bel.bio) encoded, knowledge graph, which was ini-

tially compiled via text mining and later on manually curated via literature. In general, the

BEL language helps to build a computer-process-able cause-and-effect relationship model.

Each BEL statement consists of a subject and an object, connected through a relation. Subjects

and objects could be many different entities, like genes, proteins or RNA, but also biological

processes, pathologies or even chemicals. Therefore, the relations have many different facets,

as well. These could be relations like increases, decreases or association, describing the interac-

tion between subject and object. But there are also relationships describing something like a

membership of subject and object, for example hasComponent and isA. The BEL model used

here, is an enriched version of the AD cause-and-effect relationship model published in [11]

and can be found in the github repository. The enrichment was done around the two genes

CD33 and TREM2, such that detailed knowledge about these two genes was gathered in the

context of AD.

A filtering step was necessary, in order to get only entities measured in the gene expression

data. In this case only gene and protein entities from the knowledge graph can be used. Addi-

tionally, the knowledge graph was filtered for only causal interactions, such as increases,
decreases, or regulates, resulting in a network with 431 nodes and 673 edges. From that we only

took the largest connected component to reduce the dimensionality. Hence, the used graph

during our study consisted of 383 nodes and 607 edges, in which any two nodes were con-

nected through some path.

Clustering of filtered knowledge graph. One of the key aspects of iVAMBN is grouping

of input features (genes, pathophysiological and clinical features) into modules in order to

allow for a statistically stable identification of a Bayesian Network structure in a subsequent

step. For identifying modules of genes we clustered the knowledge graph with the help of dif-

ferent graph clustering algorithms:

• the Markov Cluster algorithm [33, 54] implemented in theMCL package in R [55].

• edge betweenness [56] community detection implemented in the R package igraph [57]

• infomap [58] community finding method implemented in the R package igraph [57]

After clustering, genes being part of a single cluster were assigned to a corresponding mod-

ule. Genes being not clustered but only connected to one cluster, were merged into that cluster.

Genes being connected to multiple clusters were kept as single gene modules (modules consist-

ing of a single feature) for further analysis. We selected the best clustering algorithm according
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to multiple metrics described in [59] including internal density, number of edges inside clus-

ters, average degree, expansion, cut ratio, conductance, and norm cut. Based on these metrics

the average ranking of each graph clustering algorithm was computed with the rational in

mind, that each cluster should have a high internal density and sparse connections across clus-

ters. This resulted in choosing the markov clustering algorithm for further analyses. The met-

rics for each clustering algorithm can be found in S4 Table.

Annotation of modules with AD disease mechanisms. For each module, an over-repre-

sentation analysis for AD associated disease mechanisms was conducted. AD associated mech-

anisms were retrieved from the NeuroMMSig database [34]. For that purpose, the enricher
function from the clusterProfiler package in R was used, which allows to use user-defined gene

set annotations for a hypergeometric test [60]. We annotated each module with the most sig-

nificant NeuroMMSig gene set after multiple testing correction via control of false discovery

rate (Benjamini-Hochberg method).

Gene expression data analysis

RNAseq data from several observational clinical studies, as well as RNAseq data from a cell

line knockout experiment, were used in this work. The patient data were from i) the Religious

Orders Study and Memory and Aging Project (ROSMAP) [28–30], and ii) the Mayo RNAseq

Study (Mayo) [31]. The last one contains two separate datasets referring to separate brain

regions, namely cerebellum and temporal cortex, while ROSMAP contains samples from the

dorsolateral prefrontal cortex, head of caudate nucleus, and posterior cingulate cortex. Both

studies were accessed through the AMP-AD Knowledge Portal at Synapse using the data

deposited in the RNAseq Harmonization Study.

Patient samples were selected based on different criteria regarding the task they were used

for:

1. For training of the primary iVAMBN model only AD samples from the first ROSMAP

batch were used, resulting in 221 samples from dorsolateral prefrontal cortex during the

training phase.

2. For external validation we used samples of the temporal cortex of AD patients in Mayo.

3. For specificity and sensitivity analysis, samples from other batches of the ROSMAP data

were used, as well as the Mayo cohort. In this step, the samples were first separated by their

diagnosis, AD or healthy control, and additionally separated by their brain region, resulting

in three AD and three healthy control subject subsets for ROSMAP (dorsolateral prefrontal

cortex, head of caudate nucleus, and posterior cingulate cortex) and two AD subsets for

Mayo (cerebellum and temporal cortex).

The Mayo study does not report Braak scores for healthy control subjects, which made us

discard them from the specificity analysis, as there is no phenotype information available for

them. More information about the number of samples, per brain region and study, used in

each analysis step can be found in Table A in S3 Note.

The used data are gene counts provided as gene count matrices that had been generated

using STAR [61]. Gene counts were normalized to log counts per Million (logCPMs) and

counts from AD patients were scaled against the healthy control data within each study. That

means for each AD sample and gene the corresponding mean expression value of the same

gene in cognitively normal subjects was subtracted. Subsequently we divided the values by the

standard deviation of the gene in healthy controls. That means raw expression values were

converted into abnormality scores. For making the expression data across studies comparable,
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a batch correction with ComBat [62] was applied to the scaled AD data. This normalized,

scaled, and batch corrected data was then used for further analysis steps.

The cell line RNAseq data used during this study is from a THP-1 monocyte cell line with

two different genetic backgrounds and two treatments. It can be found under GEO accession

GSE155567. A sample could have either wild-type CD33 or a knocked out CD33 gene, plus

either a control vector or a SHP-1 knock-down vector, resulting in four different conditions: i)

wild-type with control, ii) wild-type with SHP-1 knock-down vector, iii) CD33 knockout with
control vector, and iv) CD33 knockout with SHP-1 knock-down vector. There were 6 biological

replicates per condition. Within the here presented study, only samples containing the control

vector were used, resulting in twelve used samples. Therefore samples from condition 1 were

called as wild-type (WT) samples and samples from condition 3 as knockout (KO) samples.

Reads were aligned with STAR and gene counts were generated via the featureCounts function

of the Rsubread package [63]. More details about the data can be found in [16] and under

GEO accession GSE155567.

Variational Autoencoders (VAE)

Variational autoencoders [26] are one of the most frequently used type of unsupervised neural

network techniques. They can be interpreted as a special type of probabilistic graphical model,

which has the form Z! X, where Z is a latent, usually multivariate standard Gaussian, and X a

multivariate random variable describing the input data. Moreover, for any sample (x, z), we

have p(x j z) = N(μ(z), σ(z)). One of the key ideas behind VAEs is to variationally approximate

log qðzjxÞ ¼ logNðz j mðxÞ; sðxÞÞ ð1Þ

This means that μ(x) and σ(x) are the multivariate mean and standard deviation of the approx-

imate posterior q(z j x) and are outputs of a multi-layer perceptron neural network (the

encoder) that is trained to minimize for each data point x the criterion

logðxÞ �
1

2

XD

j¼1

1þ log sjðxÞ
2
� mjðxÞ

2
� sjðxÞ

2
� �

þ
1

L

X

l

log pðxjzðlÞÞ ð2Þ

Here the index j runs over the D dimensions of the input x, and z = μ(x) + σ(x)� �(l) with �(l)

* N(0, I) being the lth random sample drawn from a standard multivariate Gaussian, and�

denotes an element-wise multiplication. Notably, the right summand corresponds to the

reconstruction error of data point x by the model, whereas the first term imposes a regulariza-

tion. We refer to [26] for more details.

Heterogeneous Incomplete Variational Autoencoders (HI-VAE)

Variational autoencoders were originally developed for homogeneous, continuous data. How-

ever, in our case variables grouped into the phenotype module do not fulfill this assumption,

because Braak stages and MMSE scores are discrete ordinal. In agreement to our earlier work

[25] we thus employed the HI-VAE [35], which is an extension of variational autoencoders

and allows for various heterogeneous data types, even within the same module. More specifi-

cally, the authors suggest to parameterize the decoder distribution as

pðxj j zÞ ¼ pðxjjgj ¼ hjðzÞÞ ð3Þ

where hj(�) is a function learned by the neural network, and γj accordingly models data modal-

ity specific parameters. For example, for real-valued data we have γj = (μ(z), σj(z)2)), while for

ordinal discrete data we use a thermometer encoding, where the probability of each ordinal
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category can be computed as

pðxj ¼ r j gjÞ ¼ pðxj � r j gjÞ � pðxj � r � 1 j gjÞ ð4Þ

with

pðxj � r j zÞ ¼
1

1þ expð� ðyjðzÞ � hjðzÞÞÞ
ð5Þ

The thresholds θj(z) divide the real line into R regions, and hj(z) indicates, in which region z
falls. The data modality specific parameters are thus γj = {hj(z), θ1(z), . . ., θR−1(z)} and are mod-

eled as output of a feed forward neural network.

According to [35] we use batch normalization to account for differences in numerical

ranges between different data modalities.

For multi-modal data and in particular discrete data a single Gaussian distribution may not

be a sufficiently rich representation in latent space. Hence, the authors propose to replace the

standard Gaussian prior distribution imposed for z in VAEs by a Gaussian mixture prior with

K components:

s � CategoricalðpÞ ð6Þ

z j s � NðmðsÞ; IKÞ ð7Þ

where pk ¼
1

K for k = 1, 2, . . ., K and s is a one-hot vector encoding of the mixture component.

We evaluated different choices of K using a 3-fold cross-validation, while employing the recon-

struction error 1

L

P
l log pðxjz

ðlÞÞ as an objective. In conclusion it turned out that K = 1 compo-

nent was an optimal choice for all modules in our iVAMBN model.

Modular bayesian networks

Let X = (Xv)v2V be a set of random variables indexed by nodes V in a directed acyclic graph

(DAG) G = (V, E). In our case each of these nodes corresponds either to lower dimensional

embedding of a group of variables (i.e. module) in the original data, or to an original features

(e.g. biological sex) in the dataset. According to the definition of a Bayesian Network (BN), the

joint distribution p(X1, X2, . . ., Xn) factorizes according to

pðX1;X2; . . . ;XnÞ ¼
Y

v2V

pðXv j XpaðvÞÞ ð8Þ

where pa(v) denotes the parent set of node v [27]. In our case random variables follow either a

Gaussian or a multinomial distribution, i.e. the BN is hybrid. Notably, no discrete random var-

iable was allowed to be a child of a Gaussian one.

Since the BN in our case is defined over low dimensional representations of groups of vari-

ables, we call the structure Modular Bayesian Network (MBN). Notably, a MBN is a special

instance of a hierarchical BN over a structured input domain [64–67].

A typical assumption in (M)BNs is that the set of parameters (θv)v2V associated to nodes

V are statistically independent. For a Gaussian node v parameters can thus be estimated by

fitting a linear regression function with parents of v being predictor variables [27]. Simi-

larly, for a discrete node ~v having only discrete parents, parameters can be estimated by

counting relative frequencies of variable configurations, resulting into a conditional proba-

bility table.
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Quantitative modeling across biological scales via iVAMBN

Model training. The here presented Integrative Variational Autoencoder Modular Bayes-
ian Network (iVAMBN) approach (Fig 1), integrates different biological scales together with a

knowledge graph into the previously published Variational Autoencoder Modular Bayesian

Network (VAMBN) approach [25]. More precisely, there are four steps to build an iVAMBN

model: i) Definition of modules of variables, ii) Training of a HI-VAE for each module, iii)

Definition of logical constraints for possible edges in the MBN, and iv) Structure and parame-

ter learning of the MBN using encoded values for each module. These four steps result from

the fact that HI-VAEs (as well as any other variants of variational autoencoders) themselves

can be interpreted as specific types of BNs and thus the overall log-likelihood of an iVAMBN

model can be decomposed accordingly. That means the overall iVAMBN model can be inter-

preted as a special type of Bayesian Network, see [25] for details.

The four model building steps were followed in the application of the iVAMBN approach

in this work as well. The modules of variables were mainly defined through the previously

explained Markov clustering of the knowledge graph, plus an additional module summarizing

MMSE (Mini–Mental State Examination) and Braak stages into one phenotypemodule.

MMSE measures cognitive impairment by testing the orientation in time and space, recall, lan-

guage, and attention, while Braak stages refer to the degree of biological brain pathology [68].

Some non-assigned genes, were directly treated as nodes in the MBN construction and thus

also called gene modules. The same was done for demographic features, like sex, age, years of

education and the APOE genotype.

For training the HI-VAEs for each module a hyperparameter optimization (grid search)

was implemented over learning rate (learning rate 2 {0.001, 0.01}) and minibatch size (mini-

batch size 2 {16, 32}) as in [25]. Each parameter combination was evaluated with the recon-

struction loss as objective function in a 3-fold cross-validation scenario.

In general the number of possible MBN DAG structures for n nodes grows super-exponen-

tially with n [24], making identification of the true graph structure highly challenging. There-

fore, our aim was to restrict the set of possible DAGs a priori as much as possible via knowledge

based logical constraints. More specifically we imposed the following causal restrictions:

• Nodes defined by demographic or clinical features (like age, gender, APOE genotype, and

brain region) can only have outgoing edges.

• The phenotype module (= clinical outcome measures) can only have incoming edges.

• Genes and gene modules can not influence demographic or clinical features, except the age.

To additionally integrate prior knowledge defined through the knowledge graph, we tested

three different strategies while building a MBN:

1. Completely data driven: The knowledge graph is completely ignored for structure learning.

2. Knowledge informed: The knowledge graph is used in the greedy hill climbing algorithm

for structure learning i) as starting point, ii) as white list (intending that those edges were

defined as pre-existing), or iii) as both.

3. Completely knowledge driven: The knowledge graph provides the structure of the MBN

and additional connections are only allowed for demographics or the phenotype module.

Structure learning of the MBN was always performed via a greedy hill climber using the

Bayesian Information Criterion for model selection. We employed the implementation pro-

vided in R-package bnlearn [69].
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Evaluating the model fit. To evaluate the fit of the overall iVAMBN model we

employed the generative nature of our model: Following a topological sorting of the nodes

of the DAG of the MBN we first sampled from the distribution of each node conditional

on its parent. Notably, for MBN nodes representing modules this amounted to sample

from the posterior of the according HI-VAE, which in practice can be realized via injection

of normally distributed noise, see Section Variational Autoencoders, Eq (2). Subsequently,

the random sample was then decoded via the HI-VAE. Altogether we thus generated as

many synthetic subjects as real ones. We then compared the marginal distribution of

each variable based on the synthetic and the real data. Results, including summary statis-

tics and Kullback-Leibler divergences are shown in the supplementary material (Fig A and

B in S4 Note). Furthermore, we compared the correlation matrices of synthetic and real

data.

CD33 down-expression simulation and analysis

To be able to simulate a down-expression of CD33, we first shifted the distribution of CD33

such that it reflects a 9-fold down-expression of CD33. In agreement to the theory of Bayesian

Networks this operation made CD33 conditionally independent of its parents in the MBN,

which amounts to deleting any of its incoming edges and resulted into a mutilated MBN.

Afterwards we exploited the fact that iVAMBN is a generative model. That means we first

drew samples from the conditional densities of the mutilated MBN. Practically this amounted

to first topologically sort the nodes in the MBN, hence exploiting the fact that the underlying

graph structure cannot have cycles. Subsequently, samples were drawn from the statistical dis-

tribution of each node while conditioning on the value of its parents. The result was a per-sam-

ple module activity score, which we then decoded through our HI-VAE models into single

gene scores.

Differences between the wild-type and simulated down-expression samples were investi-

gated afterwards via multiple statistical hypothesis tests: First, a linear regression was used to

model the down-expression effect on gene expression and on the different phenotype scores.

Second, the globaltest package in R was used to test the differential expression of specific gene

sets between the wild-type and simulated down-expression group [49]. Those tested gene sets

were here defined through the modules’ genes used in the MBN, meaning that we tested for

differential expression of MBN’s gene modules. P-values were adjusted for multiple test sce-

nario with the help of the subsets option of globaltest and via calculating the false discovery

rate. The globaltest for gene sets, as well as the fold change analysis, was also applied to the cell

line WT and KO data to be able to validate the results.

Effects of the perturbation of other candidate targets were simulated similarly as the CD33

knock-down. Again, the distribution of the respective target was shifted such that it reflected a

9-fold down- or up-regulation. The module was identified to which the candidate target had

been assigned, and all variables (including the perturbed target) mapping to that module were

encoded via the previously trained HI-VAE for the module. Subsequently, the effects on the

phenotype could be predicted in the same way as described for CD33.

Supporting information

S1 Table. Module enrichment analysis. If the genes in a module do not enrich NeuroMMSig

terms significantly (adjusted p< 0.05), individual genes are reported. If significant enriched

terms could be found, all significant pathways are reported.

(XLSX)
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S2 Table. Module assignment. For every gene the corresponding module number from the

Markov clustering is given. Module 0 refers to all standalone genes.

(XLSX)

S3 Table. Bootstrap confidence results. This is the full list of the bootstrap confidence of each

possible edge in the Bayesian Network. For every edge the corresponding start and end note,

as well as, the bootstrap strength and the direction is given.

(XLSX)

S4 Table. Graph Clustering Metrics. The three clustering algorithms: 1) markov clustering,

2) edge betweenness, and 3) infomap were applied on the knowledge graph. For every cluster

algorithm the corresponding metrics are given, as well as, the average rank. Printed in bold is

the best algorithm according to the respective metric. The algorithms were ranked per metric

and the average rank per algorithm was calculated.

(XLSX)

S1 Note. iVAMBNs Module Definition.

(PDF)

S2 Note. iVAMBNs Knowledge Integration.

(PDF)

S3 Note. Specificity and sensitivity analysis.

(PDF)

S4 Note. Evaluating the model fit.

(PDF)

S1 Fig. Clustered knowledge graph. Knowledge graph modules (clusters) are annotated with

significantly enriched (adjusted p< 0.05) NeuroMMSig mechanisms. If the genes in a module

do not enrich NeuroMMSig terms significantly, symbols of contained genes are reported. If

multiple significant enriched terms could be found, the most significant pathway was used for

naming the corresponding node. In case that a module contains a single gene, the gene symbol

is reported. CD33 is marked in red, while other single genes are displayed in green, and non-

single gene modules in purple.

(PNG)

S2 Fig. Quantitative effect between modules of shortest path. Each correlation (R) is shown

along with its confidence interval (CI) and multiple testing adjusted p-value. Left: Correlation

of CD33 with prostaglandin pathway module. Right: Correlation of prostaglandin pathway

module with the phenotype module.

(PNG)

S3 Fig. Quantitative effect between modules of newly trained edges with confidence 1. Each

correlation (R) is shown along with its confidence interval (CI) and multiple testing adjusted p-

value. The frommodule is always shown on x-axis while the tomodule is shown on y-axis.

(PNG)

S4 Fig. Overlap of ROSMAP and Mayo network structures. The overlap of the independent

bootstrap structure learning for ROSMAP data and Mayo data is shown for different threshold

values. The black line represents the overlap when considering the direction of the edge, the

dashed line the overlap of the network skeletons.

(PNG)
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S5 Fig. Effects on phenotype scores of up- and down-regulation simulations. The bar plots

show the difference between the mean score in the original data and the mean score in the sim-

ulated data for each target and each phenotype score, namely MMSE (upper two rows) and

Braak score (bottom two rows). First and third row shows the results of under-expression,

while second and forth rows shows the results of over-expression.

(PNG)
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Software: Tamara Raschka, Meemansa Sood, Bruce Schultz, Christian Ebeling.

Supervision: Holger Fröhlich.

Visualization: Tamara Raschka.

Writing – original draft: Tamara Raschka, Holger Fröhlich.
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55. Jäger ML. MCL: Markov Cluster Algorithm.; 2015.

56. Newman MEJ, Girvan M. Finding and evaluating community structure in networks. Physical Review E.

2004; 69:026113. PMID: 14995526

57. Csardi G, Nepusz T, et al. The igraph software package for complex network research. InterJournal,

complex systems. 2006; 1695(5):1–9.

58. Rosvall M, Bergstrom CT. Maps of random walks on complex networks reveal community structure.

Proceedings of the National Academy of Sciences. 2008; 105:1118–1123. https://doi.org/10.1073/

pnas.0706851105 PMID: 18216267

59. Arratia A, Mirambell MR. Clustering assessment in weighted networks. PeerJ Computer Science. 2021;

7:1–27. https://doi.org/10.7717/peerj-cs.600 PMID: 34239979

60. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R Package for Comparing Biological Themes

Among Gene Clusters. OMICS: A Journal of Integrative Biology. 2012; 16. https://doi.org/10.1089/omi.

2011.0118

61. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Ultrafast universal RNA-seq

aligner. Bioinformatics. 2013; 29:15–21. https://doi.org/10.1093/bioinformatics/bts635 PMID: 23104886

62. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical

Bayes methods. Biostatistics. 2007; 8. https://doi.org/10.1093/biostatistics/kxj037 PMID: 16632515

63. Liao Y, Smyth GK, Shi W. The R package Rsubread is easier, faster, cheaper and better for alignment

and quantification of RNA sequencing reads. Nucleic Acids Research. 2019; 47. https://doi.org/10.

1093/nar/gkz114

64. Parviainen P, Kaski S. Bayesian Networks for Variable Groups; 2016.

65. Parviainen P, Kaski S. Learning structures of Bayesian networks for variable groups. International Jour-

nal of Approximate Reasoning. 2017; 88:110–127. https://doi.org/10.1016/j.ijar.2017.05.006
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Abstract
Background  Huntington’s disease (HD) is a progressive neurodegenerative disease caused by a CAG trinucleotide expan-
sion in the huntingtin gene. The length of the CAG repeat is inversely correlated with disease onset. HD is characterized by 
hyperkinetic movement disorder, psychiatric symptoms, and cognitive deficits, which greatly impact patient’s quality of life. 
Despite this clear genetic course, high variability of HD patients’ symptoms can be observed. Current clinical diagnosis of 
HD solely relies on the presence of motor signs, disregarding the other important aspects of the disease. By incorporating 
a broader approach that encompasses motor as well as non-motor aspects of HD, predictive, preventive, and personalized 
(3P) medicine can enhance diagnostic accuracy and improve patient care.
Methods  Multisymptom disease trajectories of HD patients collected from the Enroll-HD study were first aligned on a 
common disease timescale to account for heterogeneity in disease symptom onset and diagnosis. Following this, the aligned 
disease trajectories were clustered using the previously published Variational Deep Embedding with Recurrence (VaDER) 
algorithm and resulting progression subtypes were clinically characterized. Lastly, an AI/ML model was learned to predict 
the progression subtype from only first visit data or with data from additional follow-up visits.
Results  Results demonstrate two distinct subtypes, one large cluster (n = 7122) showing a relative stable disease progression 
and a second, smaller cluster (n = 411) showing a dramatically more progressive disease trajectory. Clinical characterization 
of the two subtypes correlates with CAG repeat length, as well as several neurobehavioral, psychiatric, and cognitive scores. 
In fact, cognitive impairment was found to be the major difference between the two subtypes. Additionally, a prognostic 
model shows the ability to predict HD subtypes from patients’ first visit only.
Conclusion  In summary, this study aims towards the paradigm shift from reactive to preventive and personalized medicine 
by showing that non-motor symptoms are of vital importance for predicting and categorizing each patients’ disease progres-
sion pattern, as cognitive decline is oftentimes more reflective of HD progression than its motor aspects. Considering these 
aspects while counseling and therapy definition will personalize each individuals’ treatment. The ability to provide patients 
with an objective assessment of their disease progression and thus a perspective for their life with HD is the key to improving 
their quality of life. By conducting additional analysis on biological data from both subtypes, it is possible to gain a deeper 
understanding of these subtypes and uncover the underlying biological factors of the disease. This greatly aligns with the 
goal of shifting towards 3P medicine.

Keywords  Huntington’s disease · Progression · Artificial intelligence · Cognition · Non-motor symptoms · Predictive 
preventive personalized medicine · Patient stratification · Precision medicine

Introduction

The role of CAG repeat length in predicting disease 
onset

Huntington’s disease (HD) is a progressive, autosomal-
dominantly inherited neurodegenerative disease, caused by 
a CAG trinucleotide expansion in the huntingtin gene [1]. 
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CAG repeat lengths > 39 show full penetrance, and length of 
the CAG repeat is inversely correlated with disease onset [2, 
3]. Core feature of HD is a hyperkinetic movement disorder, 
called chorea. In addition, psychiatric symptoms and cogni-
tive deficits are an essential part [4–6], predominantly influ-
encing patient’s quality of life [7–10], and are often early 
signs of HD [4, 11]. This gives great potential for predictive, 
preventive, and personalized medicine (3PM) to improve 
diagnostic and treatment of patients.

The “CAG age product” (CAP) that is, as the name 
intends, based on age and CAG repeat length can predict the 
age of onset of the disease [12, 13]. The CAP is commonly 
collected and used in clinical studies to determine the pre-
manifest status of the patients or to assess the disease stage 
in terms of being close to or far away from predicted onset 
at study entry [12, 14–16]. Nevertheless, although CAG 
repeat length is often measured in a predictive manner in 
HD patient’s relatives, no preventive actions are taken, as 
no preventive treatment is available.

Taking into account the genetic component and the clear 
psychiatric symptoms and cognitive deficits in HD patients, 
there is great potential for the aspects of 3P medicine, as the 
clinical diagnosis of manifest HD is only based on the pres-
ence of unequivocal motor signs in CAG repeat expansion 
carriers and ignores the other aspects [17–19].

The need for a 3PM approach

Although there is such a clear genetic background in HD, 
the multifactorial and progressive nature of HD, in com-
bination with a long pre-manifest phase again strength-
ens the need for 3PM concepts in HD, as there is a high 
variability of symptoms in HD patients that challenges 
counseling [6, 20, 21].

Commonly, clinical diagnostic criteria feature a pre-
manifest phase (prior to motor diagnosis), followed by the 
motor-manifest period, divided into five stages [17]. More 
recently, a biological classification system has been estab-
lished to characterize individuals for research purposes [22] 
and longitudinal data-driven machine-learning algorithms 
identified even nine distinct disease stages [23].

These results have tremendously helped to better 
understand the natural course of HD on a population level 
and paves the way for significantly earlier and correct 
diagnosis, enabling the paradigm shift from delayed inter-
vention towards predictive and personalized medicine. 
Earlier diagnosis in the end helps to identify and apply 
effective early interventions for HD patients in early dis-
ease stages [19, 24, 25].

Therefore, the urgent need for personalized medicine has 
to be addressed. Here, identifying patient subtypes with a 
similar disease trajectory could help to untangle disease-
modifying factors and define patient stratification [21, 24, 

26–29]. Such an approach aims, on the one hand, to iden-
tify the best treatment strategy for each individual disease 
subtype, but, on the other hand, also helps to understand the 
disease characteristics itself, which in the end will contribute 
to a better prediction of disease progression, as well [24, 29].

State of the art in subtype identification 
in neurodegenerative diseases

Several models have been developed that cluster and predict 
patient subtypes based on their longitudinal trajectories, but 
most of them do not account for variations in the dynamics 
of the disease progression or identified markers discrimi-
nating pre-defined progression groups [21, 23]. In fact, a 
fully multivariate data-driven approach to unravel potential 
underlying disease progression groups, that otherwise can 
be overseen, is still missing. In this regard, methods from the 
field of data science and artificial intelligence (AI) pose a 
great opportunity to come closer to the vision of a predictive, 
personalized, and preventive medicine (3PM).

In the past, data-driven clustering of multisymptom dis-
ease trajectories has shown promising results in other neuro-
degenerative disorders, such as Alzheimer’s or Parkinson’s 
[28, 30, 31]. The rate of progression is typically variable 
across the disease trajectory in HD, with the steepest decline 
in function being seen in early to mid-disease stages [32]. 
Also, patients may be initially diagnosed at different stages 
of their disease. Thus, there is a need for alignment of tra-
jectories observed for an individual patient along a popula-
tion average disease trajectory [33, 34]. This can be done 
by modeling a continuous common disease timescale, e.g., 
with the help of non-linear mixed effect models. These mod-
els enable a removal of the effect of the actual time point 
of symptom onset on the overall trajectories by assessing 
a latent time estimate and adjust all patients’ trajectories 
across a common disease timescale [33, 35, 36].

Novelty beyond the state of the art

After diagnosis, accurate and early prognosis of the progres-
sion of the disease is of core relevance for those living with 
HD. For a patient, it is important to know her prospective 
symptom development in order to adapt life accordingly. In 
addition, a concrete prognosis could help doctors to better 
organize and manage therapies. This is where our work con-
tributes to. For the first time, to our knowledge, HD subtypes 
based on multisymptom disease trajectories were identified 
and validated. Here, not only motor symptoms were evalu-
ated but also cognitive symptoms are taken into account for 
subtype identification, as psychiatric symptoms and cogni-
tive deficit are an essential part of the disease and also early 
signs of HD that are ignored in the diagnosis of manifest HD 
[4–6, 11, 17–19].
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With the help of an AI/ML model that allows for pre-
dicting the disease progression subtypes based on only the 
first visit or by including additional follow-up visits, we 
addressed important 3PM aspects, because such a model 
could support a better individualized disease management 
via optimized counseling as well as support patient in their 
own life decisions.

Working hypothesis

In the current study, we hypothesize that manifest HD 
patients define heterogeneous progression subtypes that can 
be identified by advanced AI methods. Subtype identifica-
tion will allow the classification of patients into one of the 
multisymptom trajectory clusters based on their first visit 
data only or by including additional follow-up visits. This 
will in the end result into a better personalized and preven-
tive treatment for HD patients as patient counseling can be 
optimized. Additionally, patients can be provided with a bet-
ter indication of their prognosis.

Therefore, we clustered HD patients on the basis of their 
longitudinal trajectories using our previously introduced 
Variational Deep Embedding with Recurrence (VaDER) 
neural network algorithm [30]. As such trajectories are often 
temporally related to the study baseline, this study aims to 
adjust for this confounding effect using a non-linear mixed 
effect model, originally introduced by Raket [36], which 
assumes that the longitudinal trajectories of pre-manifest 
and manifest HD patients are adjustable along a common 
disease timescale. An early prognosis of disease progression 
for each patient, reflecting the predictive and personalized 
aspect of 3PM, will be achieved by developing, evaluating, 
and validating a machine learning-based prediction model.

Methods

Dataset and patient selection criteria

Data used in this work were generously provided by the 
participants in the Enroll-HD study [37] (ClinicalTrials.
gov Identifier: NCT01574053) and made available by 
CHDI Foundation, Inc. Enroll-HD is a global clinical 
research platform designed to facilitate clinical research in 
Huntington’s disease. Core datasets are collected annually 
from all research participants as part of this multicenter 
longitudinal observational study. Data are monitored 
for quality and accuracy using a risk-based monitoring 
approach. All sites are required to obtain and maintain 
local ethical approval. Overall, up to now, over 20,000 
patients from 21 countries at 159 sites were recruited 
[38]. Enroll-HD provides data from HD patients, includ-
ing manifest and pre-manifest patients. The study has 

collected clinical score data and demographics during 
annual visits. During these visits, patients undergo a core 
battery of test, including demographics, medical history, 
and clinical assessments of the four HD domains: motor, 
cognitive, behavioral, and functional. A CAG genotyp-
ing was done for each participant to get their CAG repeat 
length.

During this study, we used the fifth release of the 
Enroll-HD data from October 2020 that was released in 
December 2020. Within this release, we selected the infor-
mation from scheduled visits of manifest and pre-manifest 
patients that had at least one follow-up visit after the base-
line screening. Control participants were excluded for the 
purpose of this study. Participant category was assessed 
at each visit by the study examiner. Details about the defi-
nition of pre-manifest and manifest patient group can be 
found in the Supplementary Material.

Used features during modeling and clustering of trajec-
tories are the Unified Huntington’s Disease Rating Scale 
(UHDRS) [39] and the mini-mental state examination 
(MMSE). The UHDRS consists of four different domains: 
motor, cognitive, behavioral, and functional, where each 
of the domains relates to different fields of possible symp-
toms. Additionally, the MMSE was used as a cognitive 
test. In total, we used three different features, coming from 
two different assessments, namely, UHDRS total motor 
score (TMS), UHDRS symbol digit modality test (SDMT), 
and the total MMSE score (MMSE). Furthermore, age and 
sex were used as covariates. Characteristics of all used 
patients can be found in Table 1.

Shown are statistics of patients used for the subtype 
analysis as training (manifest) and validation (pre-mani-
fest) set. Statistics are shown at patients’ baseline visit for 
manifest and first manifest visit for pre-manifest patients 
after conversion. The age, CAG repeat length, and clinical 
scores are described by their mean and standard deviation.

Table 1   Characteristics of manifest and pre-manifest patients

Manifest Pre-manifest

Number of patients 7533 372

Age 52.9 ± 12.53 47.01 ± 12.06

Sex
  Male 3659 170

  Female 3874 202

CAG length 43.96 ± 3.86 43.3 ± 3.32

UHDRS
  Total motor score 36.92 ± 21.07 14.19 ± 8.44

  Symbol digit modality test 23.39 ± 13.06 38.95 ± 12.76

MMSE 25.00 ± 4.39 28.01 ± 2.12
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Model building methods

In the following analysis, both manifest and pre-manifest 
patients were used for modeling common disease time tra-
jectories with a non-linear mixed effect (NLME) model. 
VaDER clustering and prediction models were then trained 
on manifest patients only, while validating these models 
afterwards on pre-manifest patients. Common disease time-
scale trajectories of pre-manifest patients were therefore 
shortened to their manifestation phase, meaning that the first 
visit when manifesting the disease was considered the start 
of their used trajectory.

Non‑linear mixed effect model

The here-used model follows the rational described earlier 
[33, 36]. Shortly, it is a non-linear mixed effect model with 
a mean curve defined by the fixed effects and random effects 
describing the deviation of each patient from that mean 
curve. During the here-described analysis, the mean curve 
is formulated as a generalized logistic function:

where A is the left and K the right asymptotic value which 
reflects the minimal and maximal possible value of a specific 
clinical measure. Parameters B and v define the curvature of 
the function, with B as time scaling parameter and v as an 
asymmetry parameter. A shift in time is modelled by s as 
horizontal shift and a vertical shift can be modelled by c.

During the modeling, the values of A and K are fixed 
according to the actual modelled clinical score. Fixed effects 
can be modelled for specific covariates, e.g., the manifesta-
tion status of the patients at baseline, such that the parameter 
estimate of s describes the mean difference in time between 
the pre-manifest and manifest patient groups over the contin-
uous common disease timescale. This difference is modelled 
relative to the pre-manifest patient group, meaning that t = 0 
on the common disease timescale corresponds to the average 
status of the pre-manifest patients at the time of conversion 
into manifest disease status.

The model was built with the help of the progmod 
R-package [40] which is based on the nlme package [41]. 
More details on the model formulation can be found in the 
Supplements.

Multivariate clustering of clinical trajectories

The previously published Variational Deep Embedding with 
Recurrence (VaDER) [30] was used to cluster the shifted 
time series that are the output of the nlme model. Based 
on a variational deep embedding framework for learning 

�(t) = A +
K − A(

1 + e(−B(t+s))
v
) + c

low-dimensional representation of data points, two long 
short-term memory networks that model the multivariate 
time series, and an implicit imputation layer, the VaDER 
method allows to model and cluster short time series with 
large amount of missingness. More details can be found in 
the original publication [30] and in the Supplements. Train-
ing of the VaDER was based on manifest patients only, but 
pre-manifest patients were used as validation cohort in the 
later phase of the study.

Machine learning classifiers

Random Forest [42] and XGBoost [43] classifiers were 
trained on baseline data only (BL), as well as baseline and 
follow-up data (BLtoFU1 and BLtoFU2) from manifest 
patients. We here used the labels of the VaDER approach, 
the cluster assignment, as the classes that need to be pre-
dicted. As predictors, multiple cognitive, motor, functional, 
and neurobehavioral scores were used. Those can be found 
in Supplementary Table 3. A hyperparameter optimization 
with randomized search with 100 parameter settings pre-
ceded a tenfold nested cross-validation implemented with 
scikit-learn [44] and XGBoost [43] packages. Hyperparam-
eter spaces and optimal hyperparameters, found based on 
the best AU-ROC, can be found in the Supplementary Mate-
rial. Cross-validation results of both Random Forest and 
XGBoost are shown in the Supplementary Material, along 
with the decision to choose XGBoost for final modeling due 
to higher prediction performance. These trained XGBoost 
models were then applied on the pre-manifest patients as a 
validation set in the later phase of the study.

Feature importance analysis

For feature importance analysis, SHAP values [45] for each 
feature in the model were calculated with the implementa-
tion of the python package shap. For interpretation, the natu-
ral additive behavior of SHAP values was used to calculate 
aggregated SHAP values for specific domains of clinical 
tests, such as functional, cognitive, or neurobehavioral tests. 
This was done by summarizing SHAP values from clinical 
tests belonging to each of the domains. The scores belonging 
to each of the domains are listed in Supplementary Table S3.

Statistical testing

Statistical testing was following the SHAP analysis for 
all single features underlying the top aggregated features. 
Depending on the type of variable, either Kruskal–Wallis 
(numerical), Fisher’s exact (bi-categorical), or chi-square 
independence test (multicategorical) was used to test the 
distribution of the respective features within the found sub-
types. Age and sex were included as possible confounders 
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in all tests and p-values were corrected for multiple testing 
using the Benjamini–Hochberg procedure.

The analysis of medications for specific indications across 
progression subtypes was performed using Fisher’s exact 
test, and p-values were corrected for multiple testing using 
Benjamini–Hochberg procedure.

Results

Data

Data used in this study comes from the Enroll-HD study 
(ClinicalTrials.gov Identifier: NCT01574053) [37] (Data Cut 
10/2020). In total, 11,093 patients (7548 manifest and 3545 
pre-manifest) were used in this work for the longitudinal mod-
eling over a common disease timescale, of which 7905 patients 
(7533 manifest and 372 pre-manifest) were eligible for the 
later analysis regarding the subtypes. For pre-manifest patients, 
only their manifest phase was used in the later analysis as inde-
pendent validation set, explaining the large drop in the number 
of patients. An overview of the characteristics of patients used 
for the subtype analysis at their first included visit is presented 
in Table 1.

Enroll-HD is a longitudinal study, collecting data from 
patients at multiple annually scheduled follow-up visits. The 
number of available patients per follow-up visit is shown in 
Table 2.

Shown is the number of manifest and pre-manifest patients 
used in the subtype analysis having the respective visits avail-
able; e.g., 7066 manifest patients had a first follow-up visit, 
while 4817 manifest patients also had a second follow-up visit. 
For manifest patients, available visits over 6 years were sum-
marized for visual reasons. The maximum number of visits a 
manifest patient had was 14. Baseline visit for pre-manifest 
patients relates to their first manifest visit, after conversion 
from pre-manifest status.

Non‑linear mixed effect model

A non-linear mixed effect (NLME) model was fitted to 
longitudinal data of 11,093 manifest and pre-manifest 
patients in a multivariate manner, modeling the Unified 
Huntington’s Disease Rating Scale (UHDRS) total motor 
score (TMS), UHDRS symbol digit modality test (SDMT), 
and mini-mental state examination (MMSE). These 
scores represent current gold standard scores addressing 
motor and cognitive aspects of the disease [46, 47]. The 

NLME model gives the opportunity to align trajectories 
on a common, potentially unobserved (i.e. latent), disease 
timescale. Figure 1a–c shows the aligned trajectories of 
pre-manifest and manifest patients of the three modeled 
clinical scores along the common disease timescale. As 
expected, the original trajectories of pre-manifest patients 
are mostly shifted towards the left (back in time). Vice 
versa, manifest patients’ trajectories are mostly shifted to 
the right, as patients naturally are in pre-manifest state 
before their disease manifests. Resulting latent time esti-
mates, indicating the difference between the actual time 
axis and the common disease timescale, are validated by 
correlating the predicted age at time 0 (i.e. manifesta-
tion time) for each individual against the observed age at 
first diagnosis and first motor symptoms. Hereby, a linear 
regression with a slope of 1 would indicate that observed 
diagnosis and predicted symptom onset are consistent and 
therefore, trajectories would be perfectly aligned. Results 
(Fig. 1d, e) in this study show slopes of 0.999 (diagnosis) 
and 1.002 (first motor symptoms), demonstrating a good fit 
of the NLME model to the observed data. Hence, estimates 
of latent time seem reliable.

VaDER clustering results in two subtypes

Aligned trajectories of 7533 manifest HD patients were 
used to train a VaDER model for clustering patients into 
subtypes [30]. This resulted in two clusters, of which one 
cluster was a large one with 7122 patients included, while 
the second cluster only contained 411 patients (Fig. 2). 
While the second cluster shows a steep decline of SDMT 
and MMSE and rise of TMS starting from around day 200 
on the common disease timescale, the first cluster dem-
onstrates almost no impairment of patients over all three 
outcome scores and the whole common disease timescale, 
meaning that the large cluster and thus most HD patients 
show a stable pattern in the clinical scores after a minimal 
worsening in the beginning of their disease. However, a 
smaller subset of particularly vulnerable patients repre-
sents faster disease progression than most HD patients. 
Additionally, SDMT progression patterns of the two clus-
ters are strictly distinguished of each other. Here, the base-
line levels are already different, whereas both clusters are 
not separable in the beginning when looking at the MMSE 
or TMS.

Table 2   Number of baseline 
and follow-up visits

BL FU1 FU2 FU3 FU4 FU5 FU6  > 6FUs

Manifest 7533 7066 4817 3256 1922 774 211 62

Pre-manifest 372 372 213 94 34 9 - -
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Fig. 1   Multivariate NLME modeling. a–c Disease trajectories of pre-
manifest (red) and manifest (blue) patients aligned along a common 
disease timescale based on the estimated random effects representing 
the latent time. Three different outcomes are shown: Unified Hunting-
ton’s Disease Rating Scale (UHDRS) total motor score (TMS), sym-
bol digit modality test (SDMT), and mini-mental state examination 
(MMSE). For visualization reasons, 1000 trajectories were randomly 

selected for plotting. The black curve shows the underlying mean 
curve estimated by the NLME model. The grey dashed line marks 
time equals 0 on the common disease timescale. d, e Validation plots 
of time alignment, where age at diagnosis (d) and first motor symp-
tom (e) are plotted against the age at predicted disease time 0 fitted 
with linear models resulting from the NLME approach

Fig. 2   Mean progression cluster trajectories of manifest HD patients. 
Two clusters are found as the result of training VaDER on the aligned 
multisymptom (TMS, SDMT, MMSE) trajectories of manifest HD 
patients. Cluster 1 is shown in black and contains 7122 patients, 

whereas Cluster 2 (red) only contains 411 patients. Dashed lines indi-
cate the 95% confidence interval of the mean trajectories. Overall, 
the first cluster shows more stable patterns over time compared to the 
second cluster
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Predicting the HD progression subtype from clinical 
data

We trained an XGBoost classifier to predict the progres-
sion subtype of a patient only using baseline data (BL), or 
additional data from the next (BLtoFU1) or next two visits 
(BLtoFU2). We used multiple cognitive, motor, functional, 
and neurobehavioral scores, as well as demographic and 
medical history features, as predictors. Those can be found 
in Supplementary Table S3. All classifiers were trained in a 
tenfold cross-validation scheme. That means we systemati-
cally and sequentially held 10% of the patients out for test-
ing our classifier, while the training was performed on the 
rest of the data. Resulting receiver operator characteristic 
(ROC) curves are shown in Fig. 3 and indicate a high area 
under ROC curve (AUC) of 95% (BL), 99% (BLtoFU1), and 
99% (BLtoFU2), respectively. This shows that classifica-
tion performance grows with including additional follow-
up visits, although the accuracy based on only the baseline 
visit is already high. Hence, first visit data alone already 
contains sufficient signal to make an accurate prognosis 
regarding subsequent progression pattern of the disease. 
A comparison to ground-truth models, containing either 
only CAG repeat, age plus sex, or all three confounders 
together, shows that the models using additional clinical 
data are significantly better (CAG 63%; age and sex 64%; 
age, sex, and CAG 71%).

Feature importance analysis

We conducted an analysis using Shapley Additive Explana-
tions (SHAP) to better understand the contribution of indi-
vidual features in the machine learning classifiers. Here, 
multiple motor, cognitive, functional, and neurobehavioral 
scores were aggregated within their domains. A complete 
list of which scores were included in each domain can be 
found in Supplementary Table  S3. The SHAP analysis 
demonstrated that cognitive scores were very important for 
predicting the correct HD progression subtype in all clas-
sifiers, most influencing in the BL classifier (Fig. 4). How-
ever, also motor scores played a relevant role, specifically in 
the BLtoFU2 classifier, which employs information of the 
second follow-up visit. Additionally, the number of CAG 
repeats was among the most influential features for the BL 
and BLtoFU1 classifiers. Moreover, neurobehavioral scores 
had a strong impact on all models. The amount of cogni-
tive impairment, observable apathy, and a history of perse-
verative obsessive behaviors were among the top important 
features in the BL classifier, but were becoming less influ-
encing when including more follow-up visits. Interestingly, 
functional scores became more important for the subtype 
prediction when including more follow-up visits.

Clinical characterization of progression subtypes

In addition to the SHAP analysis, statistical tests regard-
ing the differences in the features, aggregated in the top 10 
most important features for the prediction of progression 
subtypes, were conducted (see details in the “Methods” sec-
tion). All tests were adjusted for age and sex as possible 
confounders and corrected for multiple testing. For the BL 
classifier, among the five most significantly different single 
features were the cognitive impairment ( p < 3.3e−13) and 
multiple cognitive assessments, like categorical verbal flu-
ency ( p < 3.3e−14), letter verbal fluency ( p < 3.3e −14), and 
Trail Making Test Part A ( p < 3.4e−9) and B ( p < 4.5e−16). 
The amount of patients with cognitive impairment is higher 
in the second, smaller cluster, which is in concordance with 
the result, that the time needed for completion of Trail Mak-
ing Test Part A and B is higher, and the number of correct 
answers in the categorical and letter verbal fluency tests is 
lower in this cluster than in the first, large cluster. Visuali-
zation of the distribution of these features can be found in 
the Supplementary Material. In the case of BLtoFU1 and 
BLtoFU2 classifiers, cognitive assessments were among the 
top significantly different features as well. Here, the SDMT 
(BLtoFU1: p < 1.4e−32; BLtoFU2: p < 2.1e−35 (FU2)) and 
Stroop tests (color naming: p < 1.6e−23 (BLtoFU1), p < 
4.4e−31 (BLtoFU2); inference: p < 5.7e−23 (BLtoFU1)) 
are present. The number of correct answers in the Stroop 
and SDMT is lower in the second cluster, as well. Also, 

Fig. 3   XGBoost classifier ROC curves. Mean ROC curves from 
tenfold cross-validation setting, are shown for multiple cases of pre-
diction from clinical data, based on baseline visit only (BL, blue), 
baseline plus first follow-up visit (BLtoFU1, orange), or baseline 
plus first and second follow-up visit (BLtoFU2, green). The training 
performance of the three classifiers is summarized via the area under 
the ROC curve (AUC) of the mean ROC curve and is 95%, 99%, and 
99%, respectively. Additionally, ROC curves from ground-truth clas-
sifiers based on only age, sex, and CAG repeat (red); age and sex 
(purple); or only CAG repeat (brown) are shown. Here, AUCs are 
71%, 64%, and 63%)
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the MMSE scores are significantly (BLtoFU1: p < 3.0e−30; 
BLtoFU2: p < 1.2e−30) lower in the second cluster. There-
fore, subtypes were mostly distinguished by the amount of 
cognitive impairment of patients at baseline. Additionally, 
the TMS is significantly higher (BLtoFU1: p < 3.8e−26, 
BLtoFU2: p < 1.1e−48) in the second cluster. Furthermore, 
CAG repeat length, which is known to be a highly predic-
tive feature of HD onset [3, 48], was also a predictive fea-
ture for subtype assignment and thus for HD progression. 
A complete list of the statistical test results can be found in 
Supplementary Table S7.

With respect to medication, intake of medication for 
five different indications, particularly relevant to HD, was 
compared between subtypes: chorea, depression, anxiety, 
irritability, and cognitive decline. Here, significant differ-
ences could be observed across the progression subtypes for 
chorea ( p = 0.0002), irritability ( p = 0.0037), and anxiety 
( p = 0.0079) and while no significant difference between the 
progression groups were found for depression ( p = 0.0892) 
or cognitive disorder ( p = 0.0981) medication. Distributions 
of each medication in each subtype can be found in Sup-
plementary Fig. S3.

Application of model on pre‑manifest patients 
for validation

To further validate the generalization ability of the classi-
fication models, 372 pre-manifest at baseline patients were 
used as a further validation set. First, their conversion point 
from pre-manifest to manifest status was identified, as the 
visit at which the diagnostic confidence level altered from 
“motor abnormalities are likely signs of HD” to “motor 
abnormalities are unequivocal signs of HD”. Then, com-
mon disease time trajectories beyond this conversion time 
were clustered into two subtypes by applying the previously 

trained VaDER model. By only using the manifest part of 
the disease trajectory of an originally pre-manifest patient, 
we ensure the applicability of the model on this independ-
ent validation set, as it had been trained on manifest patients 
only. As can be seen in Fig. 5, Cluster 1 (black) contains, 
similar to the training set, the majority of patients, 341 in 
total, compared to only 31 patients in Cluster 2. Addition-
ally, the trajectories of first cluster show more stable pat-
terns over time in contrast to the second cluster. The larger 
confidence band of the second cluster in comparison to the 
training result, is due to the small number of patients within 
this group.

The assigned subtype of each patient was then used 
to validate the previously trained prediction models, BL, 
BLtoFU1, and BLtoFU2. ROC curves for the three differ-
ent classifiers are shown in Fig. 6. The performance of the 
three different classifiers, BL only, BLtoFU1, and BLtoFU2, 
showed AUCs of 75%, 79%, and 88%. This demonstrated 
the generalization ability of the classification models and 
also strengthened the fact that classification performance 
increased with inclusion of additional follow-up visits, as 
expected.

Analysis of medication for five different indications 
showed no significance between the two subtypes (chorea: 
0.1725, depression: p = 0.8520, anxiety: p = 0.1725, irri-
tability: p = 0.1987, cognitive decline: p = 0.3048). Distri-
butions of each medication in each subtype can be found in 
Supplementary Fig. S4.

Discussion

The vision of a predictive, personalized, and preventive 
medicine demands to better tailor disease management 
and treatment to the needs of an individual patient by 

Fig. 4   SHAP values of TOP10 aggregated features. The impact of the 
features based on aggregated SHAP values is shown here for BL (a), 
BLtoFU1 (b), and BLtoFU2 (c) XGBoost classifier. Multiple features 
were aggregated for the SHAP analysis based on the same domain of 
clinical tests, namely, cognitive, motor, functional, and neurobehav-

ioral tests. A higher positive SHAP value indicates a higher influence 
of a feature to predict a patient as fast progressing. A more negative 
value indicates a higher tendency towards predicting the patient as 
slow progressing. The actual value of the feature is shown in a color 
code. The darker the red color, the higher the feature value
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considering a large set of patient specific characteristics. 
Specifically, in the context of HD, there is an urgent need 
for a better personalized projection of symptom develop-
ment to optimize counseling and planning of a patient’s 
future. In this regard, our work first identified two distinct 
HD subtypes within the Enroll-HD dataset, based on an 
AI-based clustering of patients’ disease trajectories that 
were aligned on a common disease timescale. From the 
two identified subtypes, surprisingly, one subtype relates 
to a large cluster showing a relatively stable disease pro-
gression, and the second, albeit smaller cluster, shows a 

dramatically more progressive disease trajectory. While 
this clustering was based on the UHDRS total motor score 
(TMS), UHDRS symbol digit modality test (SDMT), and 
the MMSE, the derived progressive subtype correlated 
with the CAG repeat length [49], underlining the robust-
ness and validity of our clustering approach. In addition, 
the found subtypes could be replicated on an independent 
set of pre-manifest patients from the same cohort, further 
substantiating the validity of our approach.

Our approach is advantageous over other methods used and 
able to capture the heterogeneity in the disease course of HD, 
because integration of covariates into the modeling of each 
outcome allows to model effects of these covariates not only 
on disease stages but also on progression rate. Thus, we are 
able to adjust for potential covariate effects, such as age and 
gender on motor and cognitive symptoms. This approach also 
prevents bias in the data caused by disease diagnosis time, 
which is automatically considered when shifting patients to 
an earlier disease time on the common disease timescale, and 
thus, this strategy accounts for heterogeneity and uncertainty 
in the data. The subsequent use of VaDER for clustering the 
aligned disease trajectories allows then for simultaneous mul-
tivariate clustering rather than univariate clustering [30]. Fur-
thermore, it allows for non-linear interactions across multiple 
scales for identification of the subtypes and not only captures 
a snapshot at a very specific time point in a patients’ medical 
history, but integrates the whole available disease course of 
each patient for specific clinical variables that are suggested 
for measuring the disease severity [30].

In addition to the above-mentioned differences in sub-
types, further neurobehavioral, psychiatric, and cognitive 
scores were correlated with the found subtypes. In par-
ticular, the amount of cognitive impairment was the major 
difference between groups. Cognitive decline is correlated 

Fig. 5   Mean progression cluster trajectories of pre-manifest patients. 
Applying the previously trained VaDER model on the multisymptom 
(TMS, SDMT, MMSE) trajectories of pre-manifest patients as a vali-
dation set results in two main trajectory clusters. Similar to the train-
ing scenario, Cluster 1 (black) contains the majority of patients (341), 

while Cluster 2 (red) only contains 31 patients. Again, the trajectories 
of first cluster show more stable patterns over time compared to the 
second cluster. Confidence intervals, especially for the second cluster, 
are larger than in the training case because of the significantly smaller 
number of patients

Fig. 6   ROC for XGBoost classifiers applied on pre-manifest patients. 
The performance of the three RF classifiers BL only (blue), BLtoFU1 
(orange), and BLtoFU2 (green) including different numbers of fol-
low-up visits additional to the BL visit is presented. The area under 
the ROC curve (AUC) of the classifiers is 75%, 79%, and 88%, vali-
dating that classification performance increases with including addi-
tional visits
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with the age at onset in HD patients [49]. Here, not only the 
scores used for clustering itself, namely, the MMSE and the 
SDMT, two already established scores reflecting morbidity 
and reduction in quality of life in HD, but also other cogni-
tive scales, especially frontal-executive tests, as the letter 
verbal fluency, and Trail Making A and B, are distinguishing 
the subtypes. Thus, deficits in the overall cognitive perfor-
mance, particularly the executive function, are associated 
with a drastically more progressive disease course, underlin-
ing previous data [50].

One potential confounder in our analysis may be the dif-
ferent intake of antichoreatic medication between groups. As 
our clustering is based on the TMS among others, intake of 
antichoreatic medication, leading to a lower TMS, may bias 
towards the slow progression group. However, a significantly 
higher amount within the fast progression cluster received 
antichoreatic medication. Thus, antichoreatic medication 
intake, likely reducing TMS motor scores, does not appear 
to influence clustering. Moreover, intake of antidepressive 
and anxiolytic medication was significantly more frequent 
in the fast-progressing group. These data suggest that the 
higher intake reflects the need to treat more advanced symp-
toms and does not cause a treatment bias in our clustering 
approach. In addition, the above-mentioned fact that cogni-
tive scores are not used for clustering and CAG repeat length 
are among the strongest separating factors suggests a minor 
role of medication intake associated biases.

Conclusion and expert recommendation 
in the framework of 3PM

The study identified two distinct HD progression subtypes, 
one relating to a larger cluster showing relatively stable dis-
ease progression and the second, smaller cluster, showing a 
more progressive disease trajectory. Characterization of the 
two subtypes showed a major difference in the amount of 
cognitive impairment between the groups. Multiple cogni-
tive scales, especially frontal-executive tests, are distinguish-
ing the subtypes. Thus, deficits in the overall cognitive per-
formance are associated with a drastically more progressive 
disease course. Therefore, cognitive tests need to be taken 
into account, as they are more reflective of the disease pro-
gression than motor tests in many cases.

In relation to 3PM in HD, we see the contributions of our 
work as follows:

	 (i)	 Predictive approach: The subtype classification AI 
model can categorize HD patients based on their 
motor, as well as non-motor symptoms. Each indi-
vidual patient can be assessed based on their personal 
profile and a clear and objectively measured disease 

progression is predicted. This offers HD patients a 
better perspective on their disease progression and 
allows them to organize their lives accordingly, 
which is the key to improving patient’s quality of life. 
In addition, a concrete prognosis could help doctors 
to optimize counseling and treatment of symptoms.

	 (ii)	 Targeted prevention: Cognitive deficits commonly 
appear in HD patients and a clear correlation with 
the disease progression is also known, but until now, 
they have been ignored in diagnosis, prevention, and 
prediction. This study clearly shows that non-motor 
symptoms, especially cognitive decline, are of major 
importance and need to be addressed in an optimized 
patient counseling and treatment (e.g., via cognitive 
training) by taking the results of cognitive test into 
account. But further work is needed for concrete 
advancements towards targeted prevention based on 
the two HD progression subtypes.

	 (iii)	 Personalization of medical services: A personalized 
projection of symptom development via the here-
developed AI model helps to optimize counseling 
and thus the planning of each individual patient’s 
future. The individual prediction enables doctors to 
initiate the appropriate personalized therapies. With 
a reassessment at the next clinic visit and the result-
ing possible adjustment or refinement and concre-
tization of the prognosis, the treatment and therapy 
can be adapted. Such refinements could improve the 
quality of patient’s life.

Conclusion

In summary, we show that non-motor symptoms are of major 
importance for predicting and categorizing each patients’ 
disease progression pattern, even though they alone are not 
diagnostic. Our results substantiate a clinically well-known 
aspect of HD: the fact that cognitive decline is oftentimes 
more reflective of the progression of the disease than motor 
aspects. As a consequence, our analysis suggests that patient 
counseling should take into account results of the cognitive 
test found to be relevant in this study.

Limitations and outlook

To further explore on our results, future work should focus on 
the correlation of our clustering with biological data such as 
MRI volumetry [51] or CSF biomarkers like neurofilament 
light protein [52]. This would help to delineate how far our 
clustering approach reflects underlying biological aspects of 
the disease and addresses the multimodal diagnostic concept 
to provide the maximum of clinically relevant information. In 
addition, neurobehavioral or psychiatric scores are currently 
underrepresented in our clustering approach, as well as in other 
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studies [11, 46]. Yet, to include these scores in future work, 
we need more stable and easier to estimate non-linear mixed 
models allowing for the alignment of multivariate trajecto-
ries. Although, there is a multivariate version of the NLME 
available [33], estimating parameters of such a model is time-
consuming and needs many manual steps, e.g., for finding or 
even tuning the start parameters for the estimation, which is 
inappropriate when integrating even more desired outcomes.

A further prospect regarding 3PM is to find the optimal 
treatment for each subtype. With the basis of our identified 
subtypes, clinical trial populations could now be adopted 
towards this vision. Enrichment of a clinical trial population 
with the rapid progressive subtype may help to show disease-
modifying aspects of novel compounds, as this group is more 
likely to decline within typical trial periods of 1–2 years.
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