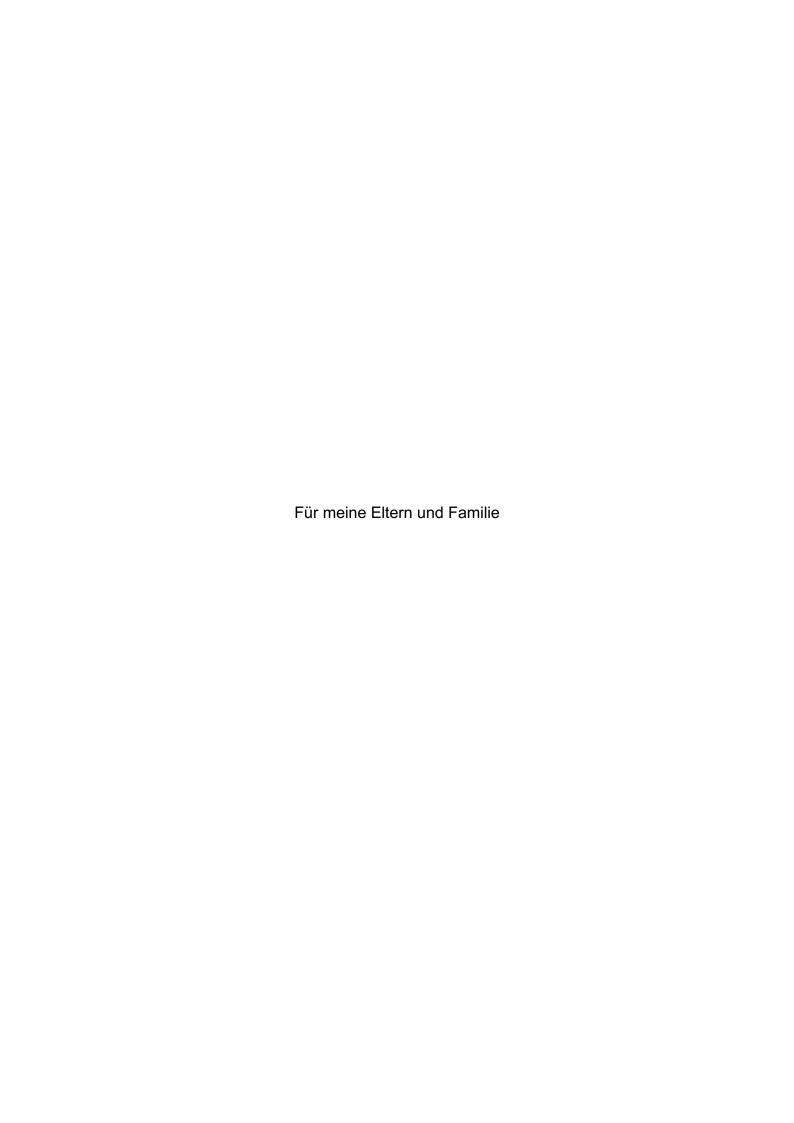
# Neuropilin 2 in Osteoblasten

## Dissertation

zur Erlangung des Doktorgrades (Dr. med.)

der Medizinischen Fakultät


der Rheinischen Friedrich-Wilhelms-Universität

Bonn

**Osamah Al-Adilee** 

aus Bagdad/Irak 2025

| Angefertigt mit der Genehmigung |                  |                                  |  |
|---------------------------------|------------------|----------------------------------|--|
| de                              | r Medizinischen  | Fakultät der Universität Bonn    |  |
|                                 |                  |                                  |  |
|                                 |                  |                                  |  |
|                                 |                  |                                  |  |
|                                 |                  |                                  |  |
|                                 |                  |                                  |  |
|                                 |                  |                                  |  |
| 1.                              | Gutachter:       | Prof. Dr. Michael Muders         |  |
| 2.                              | Gutachterin:     | Prof. Dr. Veronika Lukacs-Kornek |  |
|                                 |                  |                                  |  |
|                                 |                  |                                  |  |
|                                 |                  |                                  |  |
|                                 |                  |                                  |  |
|                                 |                  |                                  |  |
|                                 |                  |                                  |  |
| Та                              | g der Mündlichei | n Prüfung: 10.10.2025            |  |
|                                 |                  |                                  |  |
|                                 |                  |                                  |  |
|                                 |                  |                                  |  |
|                                 |                  |                                  |  |
| Aus dem Institut für Pathologie |                  |                                  |  |



# Inhaltsverzeichnis

|       | Abkürzungsverzeichnis                | 8  |
|-------|--------------------------------------|----|
| 1.    | Einleitung                           | 11 |
| 1.1   | Prostatakarzinom                     | 11 |
| 1.2   | Knochenhomöostase                    | 12 |
| 1.3   | Neuropilin                           | 14 |
| 1.3.1 | Struktur von Neuropilin              | 14 |
| 1.3.2 | Verteilung von Neuropilin in Geweben | 16 |
| 1.3.3 | Rolle von NRP2 in Tumoren            | 16 |
| 1.3.4 | NRP2 in Prostatakarzinomen           | 17 |
| 1.3.5 | NRP2 im Knochen                      | 18 |
| 1.4   | Zielsetzung der Arbeit               | 19 |
| 2.    | Material und Methoden                | 20 |
| 2.1   | Materialien                          | 20 |
| 2.1.1 | Zelllinien                           | 20 |
| 2.1.2 | Zellkulturmedien, Zusätze und Puffer | 21 |
| 2.1.3 | Chemikalien                          | 22 |
| 2.1.4 | Kits                                 | 24 |
| 2.1.5 | Zellkultur                           | 25 |
| 2.1.6 | Primer                               | 27 |
| 2.1.7 | Antikörper                           | 28 |
| 2.1.8 | Geräte                               | 29 |
| 2.1.9 | Software                             | 31 |
| 2.2   | Zellkultur von MC3T3-E1              | 31 |
| 2.3   | Differenzierung von MC3T3-E1-Zellen  | 31 |
| 2.4   | Viabilitätsassay                     | 32 |
| 2.5   | Zellverdopplungsassay                | 32 |
| 2.6   | Cas9-Überprüfung                     | 32 |
| 2.6.1 | DNA-Isolation                        | 33 |
| 2.6.2 | PCR (Cas9-PCR)                       | 33 |
| 2.6.3 | Agarosegel-Elektrophorese            | 34 |

| 2.7     | RIPA-Lyse                                                | 35 |
|---------|----------------------------------------------------------|----|
| 2.8     | BCA-Assay                                                | 35 |
| 2.9     | SDS-PAGE                                                 | 36 |
| 2.10    | Western Blot (Immunoblot)                                | 37 |
| 2.11    | RNA-Isolation                                            | 38 |
| 2.12    | cDNA-Synthese                                            | 39 |
| 2.13    | Quantitative Echtzeit-Polymerasekettenreaktion (qRT-PCR) | 39 |
| 2.14    | Alizarinrot-Färbung (ARS)                                | 41 |
| 2.15    | Extraktion mit Cetylpyridiumchlorid                      | 42 |
| 2.16    | Sequenzierung des Nrp2-Gens in Nrp2-KO (TOPO-Klonierung) | 42 |
| 2.17    | Alkalische Phosphatase-Aktivitätsassay                   | 43 |
| 2.18    | Zytokin-Array                                            | 43 |
| 2.19    | RNA-Sequenzierung                                        | 44 |
| 3.      | Ergebnisse                                               | 45 |
| 3.1     | Genotypisierung                                          | 45 |
| 3.2     | Cas9-Überprüfung                                         | 45 |
| 3.3     | Nrp2-Überprüfung                                         | 46 |
| 3.4     | Differenzierungsparameter                                | 47 |
| 3.4.1   | Viabilität und Proliferation                             | 47 |
| 3.4.2   | Mineralisierung                                          | 48 |
| 3.4.3   | Differenzierungsmarker                                   | 50 |
| 3.4.3.1 | Osteocalcin (Bglap)                                      | 51 |
| 3.4.3.2 | Kollagen-Typ 1α1 (Col1a1)                                | 52 |
| 3.4.3.3 | Osteoprotegerin (Opg)                                    | 53 |
| 3.4.3.4 | Runt-related transcription factor 2 (Runx2)              | 54 |
| 3.4.4   | Alkalische Phosphatase-Enzymaktivität                    | 55 |
| 3.5     | Zytokin-Array                                            | 56 |
| 3.6     | RNA-Sequenzierung                                        | 57 |
| 4.      | Diskussion                                               | 60 |
| 4.1     | Nrp2-Effekt auf die Viabilität und Proliferation         | 60 |
| 4.2     | Nrp2-Effekt auf die Differezierung                       | 61 |
|         |                                                          |    |

| 4.2.1      | Nrp2-Effekt auf die Mineralisierung        | 61 |
|------------|--------------------------------------------|----|
| 4.2.2      | Nrp2-Effekt auf die Differenzierungsmarker | 62 |
| 4.2.3      | Nrp2-Effekt auf die alkalische Phosphatase | 63 |
| 4.3        | Nrp2 und Sekretomanalyse                   | 63 |
| 4.4        | Nrp2 und RNA-Sequenzierungsanalyse         | 64 |
| 4.5        | Nrp2 als potenzieller Therapieansatz       | 65 |
| <b>5</b> . | Zusammenfassung                            | 67 |
| 6.         | Abbildungsverzeichnis                      | 68 |
| 7.         | Tabellenverzeichnis                        | 69 |
| 8.         | Literaturverzeichnis                       | 70 |
| 9.         | Erklärung zum Eigenanteil                  | 84 |
| 10.        | Veröffentlichungen                         | 85 |
| 11.        | Danksagung                                 | 86 |

## Abkürzungsverzeichnis

ALP Alkalische Phosphatase

ANOVA Analysis of variance

APS Ammoniumperoxodisulfat

ARS Alizarinrot-Färbung

AS Aminosäuren

BCA Bicinchoninsäure

BCIP/NBT 5-bromo-4-chloro-3-indolyl phosphate/nitroblue tetrazolium

Bglap Osteocalcin/bone y-carboxylglutamic acid-containing protein

BMP Bone morphogenetic protein

BMSC Bone marrow stromal cells

BSA Bovine serum albumin

CCI5 CC-Chemokin-Ligand-5

cDNA Komplementäre Desoxyribonukleinsäure

Col1a1 Kollagen-Typ 1α1

CPC Cetylpyridiumchlorid

CRISPR Clustered Regularly Interspaced Short Palindromic Repeats

DMSO Dimethylsulfoxid

DNA Desoxyribonukleinsäure

dNTPs Desoxynukleosidtriphosphate
DRU Digitale rektale Untersuchung
EDTA Ethylendiamintetraessigsäure

FBS Fetal Bovine Serum

FGF Fibroblasten-Wachstumsfaktor
HGF Hepatozyten-Wachstumsfaktor

Hprt Hypoxanthin-Phosphoribosyl-Transferase

HRP Meerrettichperoxidase (horseradish peroxidase)

IGF-1 Insulinartiger Wachstumsfaktor 1

Igfbp Insulin-like growth factor-binding protein

KD Knockdown

kDa Kilodalton KO Knockout

MDA PCa 2b Humane Prostatakrebszelllinie

MEM α Minimum Essential Medium

mRNA Messenger-RNA

mTORC Mechanistisches Zielmolekül von Rapamycin Komplex

MTS Mesitylensulfochlorid

NGS Next Generation Sequencing

NRP1 Neuropilin 1 (human)
NRP2 Neuropilin 2 (human)
Nrp2 Neuropilin 2 (murine)

OD Optische Dichte

Opg/Tnfrsf11b Osteoprotegerin/tumor necrosis factor receptor superfamily

11B

Opn/SPP1 Osteopontin

P/S Penicillin/ Streptomycin

PBS Phosphatgepufferte Salzlösung
PC-3 Humane Prostatakrebszelllinie

PCR Polymerase-Kettenreaktion (Polymerase Chain Reaction)

PDGF Thrombozyten-Wachstumsfaktor
Pedf Pigment epithelium-derived factor

PSA Prostataspezifisches Antigen

PVDF Polyvinylidenfluorid

qRT-PCR Quantitative Echtzeit-Polymerasekettenreaktion (Real Time

Quantative polymerase chain reaction)

RANKL Receptor Activator of NF-kB Ligand

RIPA Pierce Radioimmunoprecipitation Assay

RNA Ribonukleinsäure

RNA-Seq. RNA-Sequenzierungen

RUNX2 Runt-related transcription factor 2

S.O.C. Super optimal medium with catabolic repressor

SD Standardabweichung

SDS Natriumdodecylsulfat

SDS-PAGE Natriumdodecylsulfat-Polyacrylamid-Gelelektrophorese

siRNA Small interfering RNA
sNRP Lösliches Neuropilin
TAE Tris-Acetate-EDTA

TBS Trisgepufferte Kochsalzlösung

TBST Trisgepufferte Kochsalzlösung mit 0,05 % Tween-20

TEMED Tetramethylethylendiamin

TGF Transformierender Wachstumsfaktor
TOPO-Klonierung Topoisomerase-basiertes Klonierung
TRIS Tris(hydroxymethyl)aminomethan

VEGF Vaskuläre endotheliale Wachstumsfaktoren

WB Western Blot

Wisp1 WNT1-inducible-signaling pathway protein 1

WT Wildtyp

### 1. Einleitung

#### 1.1 Prostatakarzinom

Das Prostatakarzinom ist die zweithäufigste diagnostizierte Krebsart weltweit und die fünfthäufigste Krebstodesursache bei Männern (Sung et al., 2021). Die Hauptrisikofaktoren für die Entstehung des Prostatakarzinoms sind Alter, Lebensort und genetische Prädisposition (Böcker et al., 2012). Es ist meist im Frühstadium asymptomatisch und seine Entdeckung erfolgt mittels PSA-Wertmessung und digitaler rektaler Untersuchung (DRU) im Rahmen eines Früherkennungsscreenings (Candas et al., 2000; Harris und Lohr, 2002; Mistry und Cable, 2003). Das Prostatakarzinom ist ein maligner Tumor, der unter anderem Metastasen bildet. Tumorzellen wachsen invasiv in umliegende Gewebe und metastasieren zuerst in die organnahen Lymphknoten (Datta et al., 2010). Prostatakrebs-Fernmetastasen sind am häufigsten in Knochen, Leber und Lunge zu finden (Gandaglia et al., 2014; Hess et al., 2006; Long und Husband, 1999; Vinjamoori et al., 2012).

Die Therapie des Prostatakarzinoms besteht aus Bestrahlung und Operation. In manchen Fällen steht "Active Surveillance" zur Wahl, bei der die Patienten mit lokal begrenztem Tumor und niedrigem Risikoprofil (nach D'Amico) engmaschig überwacht werden. In Spätstadien des Prostatakarzinoms mit Fernmetastasierung kann "Watchful Waiting" als palliatives Konzept eingesetzt werden, bei dem aufgrund der tumorbedingten erniedrigten Lebenserwartung und aufgrund der unerwünschten Therapiefolgen die Behandlung vermieden wird (Bill-Axelson et al., 2008; Bill-Axelson et al., 2011; Hamdy et al., 2016; Klotz, 2005). Bei etwa 70 % der Patienten mit fortgeschrittenem Prostatakarzinom treten Knochenmetastasen auf. Knochenmetastasen sind mit einer schlechten Prognose verbunden. Die 1-Jahres-Überlebensrate liegt bei Patienten ohne Knochenmetasten bei 87 % und bei Patienten mit Knochenmetastasen bei 47 % (Halabi et al., 2016). Die 5-Jahres-Überlebensrate bei Männern mit Knochenmetastasen beträgt nur 3 %, während sie bei Patienten mit fortgeschrittener Metastasierung ohne Knochenmetastasen 56 % beträgt (Gandaglia et al., 2014; Lund et al., 2008; Nørgaard et al., 2010). Mehr als 10 % der Patienten mit Prostatakarzinom entwickeln innerhalb von 5 Jahren nach der Ersttherapie kastrationsresistente Tumoren. Mehr als 80 % dieser Patienten haben bei der Diagnose bereits Knochenmetastasen (Kirby et al., 2011). Außerdem leiden Patienten

mit Knochenmetastasen aufgrund des vermehrten Knochenwachstums unter starken Schmerzen, pathologischen Frakturen, Rückenmarks- und Nervenkompressionssyndromen und Hyperkalzämie (Croucher et al., 2016). Die Verdrängung von blutbildendem Gewebe im Knochenmark durch das Eindringen von metastasierendem Prostatakrebs führt zu Anämie und erhöht die Anfälligkeit für Infektionen.

Derzeit gibt es keine wirksame Behandlung für diese Patienten. Daher ist die Suche nach neuen molekularen Therapiezielen wichtig für die Entwicklung einer effektiven Therapie, was wiederum das Überleben der betroffenen Patienten verbessert. Knochenmetastasen des Prostatakarzinoms beeinflussen die Knochenzellen und verursachen überwiegend osteoblastische Läsionen, aber können auch als osteolytische oder gemischte Läsionen auftreten. Osteoblastische Läsionen bzw. Frakturen entstehen durch vermehrte Knochenbildung. Im Gegensatz dazu entstehen osteolytische Läsionen bzw. Frakturen durch vermehrten Knochenabbau. Die Läsionen sind durch ein Ungleichgewicht der gekennzeichnet. Knochenumbauprozesse Dies spricht dafür, dass die Knochenmetastasen die Knochenhomöostase dysregulieren (Logothetis und Lin, 2005; Macedo et al., 2017).

#### 1.2 Knochenhomöostase

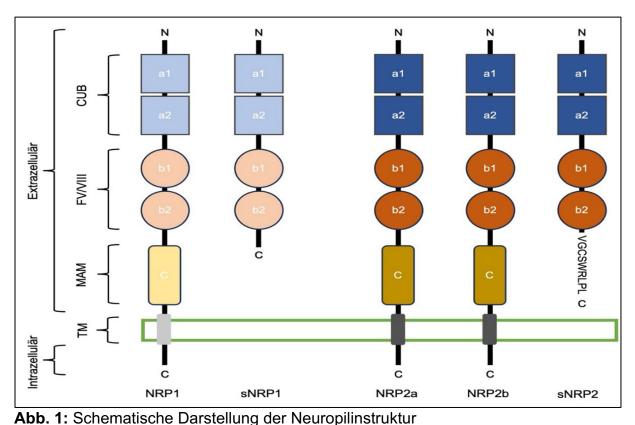
Die Knochenhomöostase ist sowohl für die Aufrechterhaltung der Knochenintegrität als auch für den Calciumhaushalt von Bedeutung. Sie wird durch den Knochenumbau aufrechterhalten, der durch die Interaktion von Osteoblasten und Osteoklasten ermöglicht wird. Die Osteoblasten produzieren die Knochenmatrix, die aus organischen und anorganischen Bestandteilen besteht, und sind für deren Erhalt erforderlich. Sie sezernieren Kollagen. Dieses Protein bildet das Grundgerüst des Knochens und verleiht ihm seine Flexibilität und Festigkeit. Außerdem sezernieren sie Proteoglykane, Osteocalcin, Osteopontin sowie weitere Proteine, die für die Bildung der Knochenmatrix wichtig sind. Ihre Membran enthält die alkalische Phosphatase, die bei der Mineralisierung der Knochenmatrix eine Rolle spielt. Außerdem sind Osteoblasten an der Stimulation der Osteoklasten über Zytokine beteiligt (Lüllmann-Rauch, 2012; Welsch et al., 2010).

Auf der anderen Seite bauen die Osteoklasten die Knochenmatrix ab. Dieser Prozess des Knochenabbaus ist essenziell für die Aufrechterhaltung des Knochengleichgewichts (Teitelbaum und Ross, 2003). Sie schaffen ein saures Milieu und können mithilfe von Säuren und Hydrolasen die Knochenmatrix resorbieren (Lüllmann-Rauch, 2012; Welsch et al., 2010).

In der Knochenhomöostase spielen verschiedene Faktoren eine Rolle, die die Funktion der Osteoblasten und Osteoklasten und deren Kommunikation untereinander modulieren. Auf der einen Seite können vaskuläre endotheliale Wachstumsfaktoren (Vascular endothelial growth factor, VEGF), Platelet-derived growth factor (PDGF), Insulin-like growth factor (IGF-1), Parathormon, Vitamin D<sub>3</sub> und andere Wachstumsfaktoren die Proliferation und/oder die Funktion der Osteoblasten beeinflussen. Auf der anderen Seite produzieren Osteoblasten Zytokine wie Receptor Activator of NF-κB Ligand (RANKL), der die Osteoklastogenese aktiviert. Allerdings produzieren Osteoblasten auch das Protein Osteoprotegerin (OPG), das die Osteoklastogenese hemmt, indem OPG an RANKL bindet (Boyle et al., 2003; Ferguson et al., 1998; Logothetis und Lin, 2005; Rucci und Teti, 2010; Udagawa et al., 2000; Welsch et al., 2010).

Studien haben gezeigt, dass Prostatakrebszellen mit Knochenzellen interagieren. Zum Beispiel wurde die Expression mehrerer BMPs in Knochenmetastasen Prostatakarzinomen festgestellt (Autzen et al., 1998; Harris et al., 1994). Diese BMPs führen zur Hochregulierung von RUNX2 und Osterix, zwei Transkriptionsfaktoren, die die Osteogenese steuern (Kim et al., 2003; Lee et al., 2000; Nakashima et al., 2002). TGF\u00b32 wird von der Prostatakrebszelllinie PC-3 produziert. Bei Prostatakrebspatienten mit Knochenmetastasen sind die TGFβ-Serumkonzentrationen höher bei Prostatakrebspatienten ohne Knochenmetastasen (Marquardt et al., 1987; Shariat et al., 2001). Die Co-Kultivierung der aus Knochen stammenden Prostatakrebszelllinie MDA PCa 2b mit Osteoblasten führt zur Expression von RUNX2 und Osteocalcin (Yang et al., 2001). All dies führt zu dem Schluss, dass Prostatakrebszellen die Knochenhomöostase beeinflussen, indem sie parakrine Faktoren sezernieren, die die Proliferation oder Differenzierung der Osteoblasten regulieren (Logothetis und Lin, 2005). Andererseits können Osteoblasten die Prostatakrebszellen beeinflussen. auch die Prostatakrebszellen zusammen mit Osteoblasten kultiviert werden, führt dies im Vergleich zu Krebszellen, die ohne Osteoblasten inkubiert werden, zu einer erhöhten Proliferation

der Prostatakrebszellen (Gleave et al., 1991; Yang et al., 2001). Aus diesen Ergebnissen und anderen Studien lässt sich schließen, dass Osteoblasten als Hauptregulatoren für das Fortschreiten von Prostatakrebs im Knochen agieren, da sie die Fähigkeit besitzen, die Proliferation und das Wachstum von Prostatakrebszellen zu beeinflussen.


### 1.3 Neuropilin

Neuropilin (NRP) ist ein 130–140 kDa Transmembranrezeptor, der eine Rolle in mehreren Signalsystemen spielt. Die NRP-Proteinfamilie besteht aus Neuropilin 1 und Neuropilin 2. Sowohl NRP1 als auch NRP2 haben verschiedene Isoformen, die durch alternatives Splicing entstehen. NRP-Proteine wirken hauptsächlich als Co-Rezeptoren, die Signale in Verbindung mit Zelloberflächenrezeptoren vermitteln (Guo und Vander Kooi, 2015). Neuropilin kann Mitglieder der VEGF-Familie, wie VEGF-C, sowie lösliche Klasse-3-Semaphorine binden. Neuropilin wurde erstmals für seine Rolle bei der Entwicklung des Nervensystems beschrieben. NRP-Proteine spielen eine Rolle bei vielen physiologischen und pathologischen Vorgängen. Beispielsweise bei der kardiovaskulären Entwicklung, der Axonführung, der Tumorentstehung, sowie bei Entzündungen und kardiovaskulären Erkrankungen (Bagri et al., 2009; Caunt et al., 2008; Matkar et al., 2018; Muders et al., 2009; Napolitano und Tamagnone, 2019). In dieser Arbeit wurde der Fokus auf NRP2 gelegt.

### 1.3.1 Struktur von Neuropilin

Ca. 44 % der Aminosäuresequenz der NRP-Proteine sind gleich (Rossignol et al., 2000), weshalb NRP1 und NRP2 eine ähnliche Struktur haben (Abb. 1). Die NRP1- und NRP2-Gene werden an zwei verschiedenen Loci auf den Chromosomen 10p12 bzw. 2q34 codiert. Beide Neuropiline bestehen aus einer kurzen intrazellulären C-terminalen Domäne, einer einzelnen Transmembranregion und einer extrazellulären N-terminalen Domäne. Das C-terminale Ende besitzt keine enzymatischen Domänen, die für die intrazelluläre Signalübertragung erforderlich wären, und ist daher auf liganden-spezifische korrespondierende Rezeptoren angewiesen, um die Signalaktivität zu vermitteln. Die extrazelluläre Region besteht aus fünf unterschiedlichen Domänen, die für die Ligandenbindung wichtig sind. Dies sind zwei CUB (Complement C1r/C1s, Uegf, Bmp1) Domänen (a1/a2), zwei Factor V/VIII homology (V/VIII) Domänen (b1/b2) und eine MAM

(Meprin/A5/mu) Domäne (Napolitano und Tamagnone, 2019; Neufeld und Kessler, 2017). Für beide NRPs gibt es eine Vielzahl von Splice-Varianten (Abb. 1). Das NRP1 hat nur zwei bekannte Splice-Varianten, nämlich NRP1 und die lösliche Isoform sNRP1. NRP2 tritt in verschiedenen Splice-Varianten auf, nämlich NRP2a, NRP2b sowie in einer löslichen Form, sNRP2. Die NRP-Isoformen variieren sowohl in ihrer Transmembrandomäne als auch in der Anzahl der Aminosäuren im zytosolischen Abschnitt. NRP2a besteht im zytosolischen Abschnitt aus 42 Aminosäuren und NRP2b besteht im zytosolischen Abschnitt aus 46 Aminosäuren. Das sNRP2 besitzt a1/a2- und b1/b2-Domänen. aber weder eine MAM-Domäne noch transmembrane zytoplasmatische Domänen. Das NRP2a zeigt eine Ähnlichkeit von 54 % zu NRP1 (Niland und Eble, 2019).



Die Struktur von Neuropilin besteht aus einem extrazellulären Teil und Intrazellulären Teil. NRP1, NRP2a und NRP2b bestehen in der extrazellulären Region aus zwei CUB Domänen (a1/a2), zwei Factor V/VIII Domänen (b1/b2) und eine MAM Domäne. sNRP1 und sNRP2 haben keine MAM-, transmembrane und zytoplasmatische Domänen. NRP2a und NRP2b unterscheiden sich nur in ihren carboxylterminalen Regionen. Außerdem besitzt sNRP2 neun zusätzliche Aminosäuren am C-Terminus. Eigene Darstellung

modifiziert nach Niland und Eble (2019).

### 1.3.2 Verteilung von Neuropilin in Geweben

NRP1 und NRP2 sind in zahlreichen Geweben vorhanden, jedoch variiert ihre Verteilung erheblich. Ursprünglich wurde NRP1 in Xenopus als Zelloberflächenantigen für spezifische Axon-Untergruppen identifiziert, wobei es eine Rolle bei neuronalen Interaktionen spielt. und NRP2 wurde durch Klonen auf Basis seiner Sequenzähnlichkeit isoliert. Sowohl NRP1 als auch NRP2 sind an der Axonführung während der Entwicklung des neuronalen Systems beteiligt (Chen et al., 1997; Giger et al., 2000; He und Tessier-Lavigne, 1997; Hirata et al., 1993; Kolodkin et al., 1997). NRP1 und NRP2 wurden unabhängig voneinander als Co-Rezeptoren für bestimmte VEGF-Isoformen identifiziert. NRP1 und NRP2 werden in vaskulären Endothelzellen exprimiert und sind wichtig für die Gefäßentwicklung (Favier et al., 2006; Kawasaki et al., 1999; Soker et al., 1998; Yuan et al., 2002). Zusätzlich konnte die Expression des NRP-Proteins in unterschiedlichen Geweben und Zellen nachgewiesen werden, darunter basophile Granulozyten, Keratinozyten, Melanozyten und Osteoblasten (Ara et al., 2005; de Paulis et al., 2006; Harper et al., 2001; Kim et al., 2005; Romeo et al., 2002). Im Gegensatz dazu wurde festgestellt, dass nur NRP2 auf dem Lymphendothel exprimiert wird (Karkkainen et al., 2001; Yuan et al., 2002). NRP2 wurde ebenfalls in den neuroendokrinen Zellen des menschlichen Verdauungstrakts und in den Inselzellen der Pankreas beschrieben (Bielenberg et al., 2006; Cohen et al., 2001, 2002). All dies deutet darauf hin, dass NRP1 und NRP2 in verschiedenen Geweben sowohl spezifische als auch sich überlappende Expressionsmuster aufweisen. Darüber hinaus zeigen die Nrp-Isoformen keine zwangsläufigen Überschneidungen der Expressionsmuster.

Aus der Arbeit von Rossignol et al. geht hervor, dass NRP2a in der Plazenta, der Leber, dem Dünndarm und der Lunge hoch exprimiert ist, während die NRP2b-Expression in diesen Geweben gering oder nicht nachweisbar ist. Im Gegensatz dazu war die NRP2b-Expression in der Skelettmuskulatur reichlich vorhanden, und beide Isoformen wurden im Herzen und Dünndarm nachgewiesen (Rossignol et al., 2000).

### 1.3.3 Rolle von NRP2 in Tumoren

Neuropilin spielt eine pathophysiologische Rolle bei der Tumorentwicklung und progression. Die Expression von NRP ist in mehreren Tumorarten vorhanden. Die Präsenz von NRP in Tumoren ist mit einer schlechter Prognose und/oder mit einer

Tumorprogression verbunden (Ellis, 2006). Das Wachstum von Tumoren und die Ausbreitung von Krebszellen werden sowohl direkt durch NRP auf den Tumorzellen selbst als auch durch NRP beeinflusst, die von den Zellen in der Umgebung des Tumorgewebes produziert werden. NRP1 spielt eine Rolle bei der Bildung von Blutgefäßen (Vaskularisierung) und der durch den Tumor vermittelten Angiogenese. Im Gegensatz dazu konzentriert sich NRP2 hauptsächlich auf die Bildung von Lymphgefäßen (Lymphangiogenese), was wiederum die Ausbreitung von Krebs (Metastasierung) beeinflusst (Bagri et al., 2009; Stacker et al., 2002). Die protumorigenen Funktionen von NRP1 und NRP2 werden vorwiegend durch Mitglieder der VEGF-Familie vermittelt. Die genetische Entfernung von NRP oder die Blockierung seiner Funktion durch Anti-NRP-Antikörper oder lösliche NRP-Ektodomänen führten in vitro zu einer Verringerung des Tumorzellwachstums und einer erhöhten Apoptose der Tumorzellen (Caunt et al., 2008). In Mausmodellen führt dies zu einem verminderten Tumorwachstum, geringeren Metastasen und einer verbesserten Überlebensrate (Klagsbrun et al., 2013). Darüber hinaus korreliert die Überexpression von NRP-Proteinen in Krebszellen mit deren stressinduziertem Überleben, Tumorprogression und einer schlechten Prognose (Dutta et al., 2016; Stanton et al., 2013; Yasuoka et al., 2009; Zhu et al., 2014).

Außerdem ist NRP2 in Prostata-, Pankreas-, Nieren- und Kolonkarzinomen sowie in weiteren Tumorarten exprimiert (Borkowetz et al., 2020; Pellet-Many et al., 2008).

Bei Blasenkarzinomen korreliert die NRP2-Expression mit dem Fortschritt des Tumorstadiums und -grads (Sanchez-Carbayo et al., 2003). Bei nicht-kleinzelligem Lungenkarzinom ist die Expression von NRP2 erhöht (Kawakami et al., 2002). Die Depletion von NRP2 führte dazu, dass die Entstehung von Tumormetastasen unterdrückt wurde (Gray et al., 2008). Die Signifikanz von NRP2 wurde ebenfalls in einer Studie mit Patienten, die an Osteosarkom erkrankt waren, betont, wobei die NRP2-Expression mit der Vaskularisierung und der Prognose in Verbindung stand (Handa et al., 2000).

### 1.3.4 NRP2 in Prostatakarzinomen

Neuropilin-2 (NRP2) wird in metastasierenden Prostatakrebszellen in hohem Maße exprimiert. In einer Studie an Gewebeproben von Patienten mit primärem Prostatakarzinom wurde festgestellt, dass 68 % dieser Patienten NRP2-positiv waren. Von den NRP2-positiven Patienten waren 33 % als Hochrisikopatienten eingestuft. Hohe

NRP2-Konzentrationen sind mit einem ungünstigen klinischen Verlauf bei Patienten mit Prostatakarzinom assoziiert. Daher kann NRP2 auch als prognostischer Biomarker für Prostatakarzinome verwendet werden (Borkowetz et al., 2020; Polavaram et al., 2021). In Gewebeproben von primärem Prostatakarzinom (PCa) wurde eine heterogene Expression von NRP2 beobachtet. Im Gegensatz dazu wiesen 85 % der Gewebeproben von Knochenmetastasen eine deutlich ausgeprägte, homogene NRP2-Expression auf (Halabi et al., 2016; Polavaram et al., 2021). Die Analyse der RNA-Sequenzierungsdaten der Stand-up-to-Cancer-Kohorte deutet ebenfalls auf eine signifikant höhere NRP2-Expression bei metastasiertem Prostatkrebs hin, insbesondere in Knochenmetastasen (Abida et al., 2019). Es wurde eine gesteigerte NRP2-Expression bei hochgradigem Prostatakrebs (Gleason-Grad 5) und Metastasen im Vergleich zu niedriggradigem Prostatakrebs (Gleason-Grad 3) festgestellt. Alle diese Studien legen nahe, dass NRP2 eine funktionale Rolle beim Fortschreiten des Prostatakrebses, insbesondere bei der Metastasenbildung, spielt (Goel et al., 2012).

NRP2 spielt eine Rolle bei der Therapieresistenz durch die Regulation des mTORC-Signalwegs (Muders et al., 2009). Es reguliert die Autophagie, was wiederum als Überlebensmechanismus des Prostatakrebs fungiert (Borkowetz et al., 2020). Außerdem ist es wichtig für das Fortschreiten des Prostatakarzinoms und dessen Therapieresistenz (Borkowetz et al., 2020; Islam et al., 2022; Muders et al., 2009). Darüber hinaus führte die Hemmung von NRP2 in vitro zu einer gesteigerten Wirksamkeit der etablierten Anti-Androgenrezeptor-Therapie bei kastrationsresistenten Prostatakrebszellen (Dutta et al., 2022).

### 1.3.5 NRP2 im Knochen

Transkripte von Nrp2 wurden in den Periost- und Trabekelknochen von embryonalen Gliedmaßenknospen von Mäusen nachgewiesen (Colnot et al., 2005; Hecht et al., 2007). In Embryonen, bei denen es an Runx2, einem Schlüsselakteur der Skelettentwicklung, mangelt, wurde eine etwa dreifache Reduktion der Nrp2-Transkripte beobachtet (Hecht et al., 2007). Nrp2 wurde in verschiedenen Phasen der Osteoblasten-Differenzierung nachgewiesen, sowohl in etablierten (Prä-)Osteoblasten-Zelllinien als auch in primären (differenzierenden) Osteoblasten (Ryynänen et al., 2017; Verlinden et al., 2013). Die Expression von Nrp2 wurde durch das Hormon 1,25-Dihydroxyvitamin D3 in Zelllinien von

Osteoblasten und in primären Osteoblasten zügig induziert (Verlinden et al., 2023). Die primäre Funktion von 1,25-Dihydroxyvitamin D3 besteht darin, die Calciumhomöostase zu gewährleisten. Dies geschieht durch die Anregung der intestinalen Aufnahme und renalen Rückresorption von Calcium sowie durch die Freisetzung von Calcium aus den Skelettspeichern in Zeiten negativer Calciumbilanz (Christakos, 2021; Pike et al., 2017). Zusätzlich beeinflusst 1,25-Dihydroxyvitamin D3 die Osteoblastendifferenzierung direkt (Nakamichi et al., 2017).

In Mäusen wird Nrp2 sowohl von Osteoblasten als auch von Osteoklasten exprimiert (Verlinden et al., 2013). Zudem wurde in der Arbeit von Verlinden et al. (2013) gezeigt, dass Nrp2-KO-Mäuse eine geringere Knochenmasse im Vergleich zu Nrp2-WT-Mäusen haben. Außerdem ist die Anzahl der Osteoklasten in Nrp2-KO-Mäusen erhöht, während die Anzahl der Osteoblasten im Gegensatz dazu verringert ist. In einem anderen Mausmodell führte Nrp2-KO in Osteoklasten zu vermehrter Differenzierung und Aktivierung von Osteoklasten. Dies legt nahe, dass Nrp2 eine negative Regulierung der Osteoklastendifferenzierung ausübt (Polavaram et al., 2021).

Diese Ergebnisse weisen darauf hin, dass Nrp2 eine Rolle in der Funktion von Osteoblasten und Osteoklasten spielt und dass Nrp2 an der Knochenhomöostase beteiligt ist. Die aktuelle Studienlage beantwortet dennoch nicht alle Fragen bezüglich der Funktion von Nrp2 in Osteoblasten. Daher liegt der Fokus dieser Arbeit auf der Funktion von Nrp2 in Osteoblasten.

### 1.4 Zielsetzung der Arbeit

Das übergeordnete Ziel dieser Forschungsarbeit besteht darin, die Rolle von Nrp2 in Osteoblasten eingehend zu untersuchen. Hierbei sollen Wildtyp-Zellen (MC3T3-E1; Präosteoblasten) im Verlauf ihrer Differenzierung mit Nrp2-KO-Zellen verglichen werden. Um mögliche Unterschiede zwischen den Nrp2-WT- und Nrp2-KO-Zellen zu entdecken und zu untersuchen, wurden verschiedene Parameter festgelegt. Dazu gehören Proliferation, Viabilität, Mineralisierung, die Expression osteoblastischer Differenzierungsmarker und die Aktivität des alkalischen Phosphatase-Enzyms. Zusätzlich sollen Sekretomanalysen und RNA-Sequenzierungen durchgeführt werden. Das Ziel ist es, ein umfassendes Verständnis für die Auswirkungen von Nrp2 auf verschiedene Aspekte der Osteoblastenbiologie zu gewinnen.

# 2. Material und Methoden

# 2.1 Materialien

## 2.1.1 Zelllinien

Tab. 1: Verwendete Zelllinien

| MC3T3-E1 Subclone 4 | (Nrp2-Wildtyp)  |                     | ATCC, USA            |
|---------------------|-----------------|---------------------|----------------------|
| MC3T3-E1 Subclone 4 | (Nrp2-Knockout) | Klon 70 (KO of Nrp2 | Erstellt und         |
|                     |                 | via CRISPR/Cas9)    | bereitgestellt durch |
| MC3T3-E1 Subclone 4 | (Nrp2-Knockout) | Klon 83 (KO of Nrp2 | Dr. Sarah Förster,   |
|                     | , ,             | via CRISPR/Cas9)    | AG Muders, Bonn      |

# 2.1.2 Zellkulturmedien, Zusätze und Puffer

Tab. 2: Verwendete Zellkulturmedien, Zusätze und Puffer

| Name                              | Firma,Ort                 | Katalognummer |
|-----------------------------------|---------------------------|---------------|
| Dimethyl sulfoxide (DMSO), cell   | ITW Reagents Division,    | A3672         |
| culture grade, AppliChem          | Chicago, USA              |               |
| Fetal Bovine Serum (FBS), Gibco   | Thermo Fisher Scientific, | 10270-106     |
|                                   | Waltham, USA              |               |
| L-Ascorbinsäure                   | Sigma-Aldrich/Merck,      | A92902        |
|                                   | Darmstadt, Deutschland    |               |
| MEM α GlutaMAX™, Supplement,      | Thermo Fisher Scientific, | 32561094      |
| no nucleosides medium (1x), Gibco | Waltham, USA              |               |
| MEM α, Nukleoside, ohne           | Thermo Fisher Scientific, | A1049001      |
| Ascorbinsäure medium (1x), Gibco  | Waltham, USA              |               |
| PBS (phosphate buffered saline),  | Thermo Fisher Scientific, | 10010056      |
| pH 7,4 (1x), (-CaCl2, -MgCl2)     | Waltham, USA              |               |
| Penicillin/Streptomycin (10000    | Thermo Fisher Scientific, | 15140122      |
| U/ml)                             | Waltham, USA              |               |
| Trypsin-EDTA, 10x                 | Thermo Fisher Scientific, | 15400054      |
|                                   | Waltham, USA              |               |
| β-Glycerin-phosphat Dinatriumsalz | Sigma-Aldrich/Merck       | G5422         |
| Hydrat                            | Darmstadt, Deutschland    |               |

# 2.1.3 Chemikalien

Tab. 3: Verwendete Chemikalien

| Name                                                                  | Firma,Ort                                               | Katalognummer        |
|-----------------------------------------------------------------------|---------------------------------------------------------|----------------------|
| 0,5 M Tris-HCl (pH 6,8)                                               | Bio-Rad Laboratories, Hercules, USA                     | 1610799              |
| 1,5 M Tris-HCI (pH 8,8)                                               | Bio-Rad Laboratories, Hercules, USA                     | 1610798              |
| 1 % ARS (Alizarin Red Stain)                                          | Sigma-Aldrich/Merck,<br>Darmstadt, Deutschland          | 2003999              |
| APS (Ammoniumpersulfat)                                               | Thermo Fisher Scientific,<br>Waltham, USA               | 201531000            |
| 10x TBS (Tris-buffered saline)                                        | Thermo Fisher Scientific,<br>Waltham, USA               | J60764               |
| 5x Reaction Buffer                                                    | Thermo Fisher Scientific,<br>Waltham, USA               | EP0451               |
| 70 % Ethanol                                                          | VWR International, Radnor, USA                          | 20821.296            |
| Agarose for Molecular Biology                                         | Sigma-Aldrich/Merck,<br>Darmstadt, Deutschland          | A9539-500G           |
| Aqua ad injectatbilia Mini Plasco                                     | B. Braun Melsungen,<br>Deutschland                      | 2351544              |
| BCIP/NBT (5-bromo-4-chloro-3-indolyl phosphate/nitroblue tetrazolium) | Thermo Fisher Scientific,<br>Waltham, USA               | 34042                |
| Bovine serum albumin Standard                                         | Thermo Fisher Scientific,<br>Waltham, USA               | 23210                |
| cOmplete Protease Inhibitor<br>Cocktail                               | Roche Diagnostics GmbH,<br>Mannheim, Deutschland        | 11697498001          |
| Crystal Violet Solution, 1 % aqueous solution                         | Sigma-Aldrich/Merck,<br>Darmstadt, Deutschland          | V5265-250ML          |
| dNTPs<br>(Desoxynukleosidtriphosphate)                                | Thermo Fisher Scientific,<br>Waltham, USA               | 18427013             |
| Ethanol absolut                                                       | VWR International, Radnor, USA                          | 20821.296            |
| Formaldehydlösung 37 %                                                | Sigma-Aldrich/Merck,<br>Darmstadt, Deutschland          | 1.04002.1000         |
| GeneRuler 100 bp                                                      | Thermo Fisher Scientific,<br>Waltham, USA               | SM0242               |
| Glycine                                                               | Carl Roth GmbH & Co. KG,<br>Karlsruhe, Deutschland      | 0079.3               |
| Halt Protease and Phosphatase Inhibitor                               | Thermo Fisher Scientific,<br>Waltham, USA               | 78440                |
| HDGREEN Plus                                                          | Intas Science Imaging Inst.,<br>Götttingen, Deutschland | ISII-HDGreen<br>Plus |
|                                                                       |                                                         |                      |

| Name                                                            | Firma,Ort                                          | Katalognummer |
|-----------------------------------------------------------------|----------------------------------------------------|---------------|
| Kapa2G Fast HS Genotyping Mix                                   | Sigma-Aldrich/Merck,<br>Darmstadt, Deutschland     | KK5621        |
| Laemmli SDS Sample Buffer, reducing (6x)                        | Thermo Fisher Scientific,<br>Waltham, USA          | J61337        |
| Maxima SYBR Green/ROX qPCR<br>Master Mix, 2x                    | Thermo Fisher Scientific,<br>Waltham, USA          | K0222         |
| Methanol                                                        | Thermo Fisher Scientific,<br>Waltham, USA          | 176840010     |
| Milk powder blotting grade                                      | Carl Roth GmbH & Co. KG,<br>Karlsruhe, Deutschland | T145.2        |
| PageRuler Plus Prestained Protein Ladder, 10 bis 250 kDa        | Thermo Fisher Scientific,<br>Waltham, USA          | 26620         |
| PBS (Phosphate buffered saline)                                 | Thermo Fisher Scientific,<br>Waltham, USA          | 10010-15      |
| Random Hexamer Primer (0,2 µg/µl)                               | Thermo Fisher Scientific,<br>Waltham, USA          | SO142         |
| RevertAid H Minus Reverse<br>Transcriptase (200 U/µI)           | Thermo Fisher Scientific,<br>Waltham, USA          | EP0451        |
| RiboLock RNase Inhibitor (40 U/μI)                              | Thermo Fisher Scientific,<br>Waltham, USA          | EO0381        |
| RIPA (Pierce<br>Radioimmunoprecipitation Assay)<br>lysis buffer | Thermo Fisher Scientific,<br>Waltham, USA          | 89901         |
| RNase-free water                                                | Qiagen GmbH, Hilden,<br>Deutschland                | 129112        |
| Rotiphorese Acrylamid/Bis 30 % (29:1)                           | Carl Roth GmbH & Co. KG,<br>Karlsruhe, Deutschland | A124.2        |
| SDS (Sodium (Natrium)-<br>dodecylsulfat)-Lösung, 20 %           | ITW Reagents Division,<br>Chicago, USA             | A3942,1000    |
| S.O.C. (Super optimal medium with catabolic repressor) Medium   | Thermo Fisher Scientific,<br>Waltham, USA          | 15544034      |
| TEMED (N,N,N',N'- Tetramethylethylendiamin)                     | VWR International, Radnor,USA                      | 443083G       |
| Tris Base Ultrapure                                             | Biomol GmbH, Hamburg,<br>Deutschland               | T8600.1       |
| UltraPure TAE (Tris-Acetate-EDTA) Buffer, 10x                   | Thermo Fisher Scientific,<br>Waltham, USA          | 15558042      |
| β-mercaptoethanol                                               | Carl Roth GmbH & Co. KG,<br>Karlsruhe, Deutschland | 4227.3        |

# 2.1.4 Kits

Tab. 4: Verwendete Kits

| Firma,Ort                     | Katalognummer                                                                                                                                                                                                                                |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Promega Corporation, Madison, | G3581                                                                                                                                                                                                                                        |
| USA                           |                                                                                                                                                                                                                                              |
| Qiagen GmbH, Hilden,          | 69506                                                                                                                                                                                                                                        |
| Deutschland                   |                                                                                                                                                                                                                                              |
| Thermo Fisher Scientific,     | 23225                                                                                                                                                                                                                                        |
| Waltham, USA                  |                                                                                                                                                                                                                                              |
| Thermo Fisher Scientific,     | 32209                                                                                                                                                                                                                                        |
| Waltham, USA                  |                                                                                                                                                                                                                                              |
|                               |                                                                                                                                                                                                                                              |
| R&D Systems, Minneapolis,     | ARY028                                                                                                                                                                                                                                       |
| USA                           |                                                                                                                                                                                                                                              |
| Qiagen GmbH, Hilden,          | 74136                                                                                                                                                                                                                                        |
| Deutschland                   |                                                                                                                                                                                                                                              |
| Thermo Fisher Scientific,     | K4500-01                                                                                                                                                                                                                                     |
| Waltham, USA                  |                                                                                                                                                                                                                                              |
|                               | Promega Corporation, Madison, USA  Qiagen GmbH, Hilden, Deutschland Thermo Fisher Scientific, Waltham, USA Thermo Fisher Scientific, Waltham, USA  R&D Systems, Minneapolis, USA  Qiagen GmbH, Hilden, Deutschland Thermo Fisher Scientific, |

# 2.1.5 Zellkultur

Tab. 5: Verwendete Zellkulturmaterialien

| Name                                                              | Firma,Ort                                                     | Katalognummer                                              |
|-------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------|
| 100 mm cell culture plate, TC-                                    | VWR International,                                            | 734-2321                                                   |
| treated                                                           | Darmstadt, Deutschland                                        | 050000                                                     |
| 24-well cell culture plate, clear flat bottom, TC-treated, Falcon | Corning Incorporated, New York, USA                           | 353226                                                     |
| 35 mm cell culture plate, TC-treated                              | VWR International, Darmstadt, Deutschland                     | 734-2317                                                   |
| 3 MM Chromatography/Blotting                                      | Cytiva (GE Healthcare),                                       | 3030-917                                                   |
| Paper, Whatman (Filterpapier)                                     | Marlborough, USA                                              |                                                            |
| 6-well cell culture plate, TC-treated                             | VWR International, Radnor,<br>USA                             | 734-2323                                                   |
| 96-well culture microplate, clear flat bottom, TC-treated, Falcon | Corning Incorporated, New York, USA                           | 353072                                                     |
| 96-well plates for BCA analysis, unsterile, BRANDplates           | BRAND Scientific,<br>Wertheim, Deutschland                    | 781602                                                     |
| 96-well reaction plate, Fast Optical MicroAmp, Applied Biosystems | Thermo Fisher Scientific,<br>Waltham, USA                     | 4346906                                                    |
| Adhesive microplate sealing film,<br>Axygen Cycler Seal           | Corning Incorporated, New York, USA                           | PCR-TS                                                     |
| Cell culture flask, vented cap, 25 cm <sup>2</sup>                | Corning Incorporated, New York, USA                           | 430639                                                     |
| Cell culture flask, vented cap, 75 cm <sup>2</sup>                | Corning Incorporated, New York, USA                           | 430641U                                                    |
| Cell scraper, sterile                                             | Sarstedt AG & Co. KG,<br>Nümbrecht, Deutschland               | 83.3950                                                    |
| Centrifugation tubes (15 ml, 50 ml)                               | Greiner Bio-One,<br>Kremsmünster, Österreich                  | 188271, 227261                                             |
| Freezing tubes, 2 ml, CRYO.S                                      | Greiner Bio-One GmbH,<br>Kremsmünster, Österreich             | 122279                                                     |
| Pasteur pipettes, glass                                           | BRAND Scientific,<br>Wertheim, Deutschland                    | 747720                                                     |
| PCR reaction tubes (0,2 ml),<br>SingleCap 8er-SoftStrips          | Biozym Scientific GmbH,<br>Hessisch Oldendorf,<br>Deutschland | 710988                                                     |
| Pipette tips, filtered (various sizes)                            | nerbe plus GmbH & Co.<br>KG, Winsen/Luhe,<br>Deutschland      | 06-642-5300, 07-<br>695-8300, 07-642-<br>8300, 07-613-8300 |
| Pipette tips, unfiltered (various sizes)                          | Greiner Bio-One,<br>Kremsmünster, Österreich                  | 740290, 739290                                             |
| Pipette tips, unfiltered (various sizes)                          | Sarstedt AG & Co. KG,<br>Nümbrecht, Deutschland               | 70.1114                                                    |

| Name                                  | Firma,Ort                 | Katalognummer |
|---------------------------------------|---------------------------|---------------|
| Polyvinylidene fluoride (PVDF)        | Cytiva (GE Healthcare),   | 10600022      |
| blotting membrane, Amersham           | Marlborough, USA          |               |
| Reaction tubes (0,5 ml)               | BRAND Scientific,         | 780507        |
| •                                     | Wertheim, Deutschland     |               |
| Reaction tubes (1,5 ml)               | Eppendorf AG, Hamburg,    | 0030120086    |
| ,                                     | Deutschland               |               |
| Reaction tubes (2,0 ml)               | Eppendorf AG, Hamburg,    | 0030123.444   |
| ,                                     | Deutschland               |               |
| Serological pipettes (various sizes), | Corning Incorporated, New | 357551        |
| Falcon                                | York, USA                 |               |
| Via1-Cassette (cell sampling and      | ChemoMetec A/S, Allerod,  | 941-0012      |
| staining for automated cell counting) | Dänemark                  |               |

# 2.1.6 Primer

Tab. 6: Verwendete Primer

| Gene           | Primersequenz (5'-3')   | Firma,Ort              |
|----------------|-------------------------|------------------------|
| Hprt-Forward   | GGTTAAGCAGTACAGCCCCA    | Eurofins Genomics,     |
| ,              |                         | Ebersberg, Deutschland |
| Hprt-Reverse   | TCCAACACTTCGAGAGGTCC    | Eurofins Genomics,     |
|                |                         | Ebersberg, Deutschland |
| Col1a1-Forward | TCAGCTTTGTGGACCTCCG     | Eurofins Genomics,     |
|                |                         | Ebersberg, Deutschland |
| Col1a1-Reverse | GGACCCTTAGGCCATTGTGT    | Eurofins Genomics,     |
|                |                         | Ebersberg, Deutschland |
| Bglap-Forward  | GCAGACACCATGAGGACCATCTT | Eurofins Genomics,     |
|                |                         | Ebersberg, Deutschland |
| Bglap-Reverse  | GAAGGCTTTGTCAGAACTCAGGG | Eurofins Genomics,     |
|                |                         | Ebersberg, Deutschland |
| Opg-Forward    | GCCACGAAAAGTGTGGAAT     | Eurofins Genomics,     |
|                |                         | Ebersberg, Deutschland |
| Opg-Reverse    | TTTGGTCCCAGGCAAACTGT    | Eurofins Genomics,     |
|                |                         | Ebersberg, Deutschland |
| Runx2-Forward  | CAACTTCCTGTGCTCCGTGC    | Eurofins Genomics,     |
|                |                         | Ebersberg, Deutschland |
| Runx2-Reverse  | GACGGTAACCACAGTCCCATC   | Eurofins Genomics,     |
|                |                         | Ebersberg, Deutschland |

# 2.1.7 Antikörper

Tab. 7: Verwendete Antikörper

| Name                            | Firma,Ort                      | Katalognummer |
|---------------------------------|--------------------------------|---------------|
| anti-beta Actin antibody [AC15] | Abcam, Cambridge, UK           | ab6276        |
| (1:10000 in 5 %ige              |                                |               |
| Milchpulver/TBS)                |                                |               |
| anti-mouse IgG H&L (HRP)        | Abcam, Cambridge, UK           | ab6789        |
| (1:10000 in 5 %ige              |                                |               |
| Milchpulver/TBS)                |                                |               |
| Neuropilin-2 (D39A5) XP® Rabbit | Cell Signaling Technology,     | 3366          |
| mAb (1:1000 in eine 5 %ige      | Danvers, USA                   |               |
| BSA/TBS-T)                      |                                |               |
| Swine Anti-Rabbit               | Dako/Agilent, Santa Clara, USA | P039901-2     |
| Immunoglobulins/HRP (1:5000 in  | -                              |               |
| eine 5 %ige BSA/TBS-T)          |                                |               |

# 2.1.8 Geräte

Tab. 8: Verwendete Geräte

| Name                                           | Firma,Ort                                |
|------------------------------------------------|------------------------------------------|
| 7500 Fast Real-ime PCR System, Applied         | Thermo Fisher Scientific, Waltham, USA   |
| Biosystems (Real-time PCR instrument)          | ,                                        |
| Autoklav                                       | SHP Steriltechnik AG, Detzel Schloß,     |
|                                                | Deutschland                              |
| Biometra TRIO 48 (Thermocycler for cDNA        | Analytik Jena AG, Jena, Deutschland      |
| _synthesis)                                    |                                          |
| Biovac 106 mit 2 l Sekret-Glasbehälter         | Welch, Fürstenfeldbruck Deutschland      |
| Digitale Wipp- und 3D Schüttler                | Phoenix, Garbsen, Deutschland            |
| Digitaler Rollenmischer                        | Phoenix, Garbsen, Deutschland            |
| FastGene Mini Zentrifuge                       | Nippon Genetics, Düren, Deutschland      |
| Fusion Solo S (Chemiluminescence imaging       | Vilber Lourmat, Collégien, Frankreich    |
| _system)                                       |                                          |
| Gefrierschrank -20 °C                          | Liebherr, Bulle, Schweiz                 |
| Gefrierschrank -80 °C                          | Panasonic, Kadoma, Japan                 |
| Inkubator, Heraeus Oven                        | Thermo Fisher Scientific, Waltham, USA   |
| Kühlschrank                                    | Liebherr, Bulle, Schweiz                 |
| Magnetrührer                                   | Phoenix, Garbsen, Deutschland            |
| Mikroskop CKX41                                | Olympus, Tokio, Japan                    |
| Mini-PROTEAN Tetra Cell Casting Stand &        | Bio-Rad Laboratories, Hercules, USA      |
| Clamps (SDS gel casting)                       |                                          |
| Mini-PROTEAN Tetra Vertical                    | Laboratories, Hercules, USA              |
| Electrophoresis Cell + PowerPac Basic          |                                          |
| (SDS-PAGE chamber + power source) Bio-         |                                          |
| Rad                                            |                                          |
| Mini-Zentrifuge Fast Gene NG002R               | Nippon Genetics, Düren, Deutschland      |
| NanoPhotometer N60 Touch (Photometer for       | Implen GmbH, Munich, Deutschland         |
| RNA quantification)                            | 0 10 10 10 10 10 10 10 10 10 10 10 10 10 |
| NucleoCounter NC-200 (Automated cell           | ChemoMetec A/S, Allerod, Dänemark        |
| counter)                                       |                                          |
| Olympus CKX53 + Olympus U-HGLGPS               | Olympus Europa SE & Co. KG, Hamburg,     |
| (Fluorescence microscope + fluorescence        | Deutschland                              |
| light source)                                  | Libraria and Labrara atta Ebandadt       |
| Pipettierhilfe accu-jet                        | Hirschmann Laborgeräte, Eberstadt,       |
| Duit-iaia navya ana Fintsia                    | Deutschland                              |
| Präzisionswaage Entris                         | Sartorius, Göttingen, Deutschland        |
| SpectraMax iD3 (Multi-Mode microplate          | Molecular Devices, LLC., San Jose, USA   |
| reader) Trans-Blot SD Semi-Dry Transfer Cell + | Pio Pad Laboratorias Haraulas IICA       |
| PowerPac HC High-Current Power Supply          | Bio-Rad Laboratories, Hercules, USA      |
| (Immunoblot semi-dry transfer cell + power     |                                          |
| source)                                        |                                          |
| JOUI GO                                        |                                          |

| Name                                       | Firma,Ort                              |  |
|--------------------------------------------|----------------------------------------|--|
| Vakuumpumpe                                | Welch Vacuum, Fürstenfeldbruck,        |  |
|                                            | Deutschland                            |  |
| Vortexer                                   | Phoenix, Garbsen, Deutschland          |  |
| Wärmeschrank Heraeus series 6000           | Heraeus Instruments, Hanau,            |  |
|                                            | Deutschland                            |  |
| Wasserbad                                  | Memmert, Schwabach, Deutschland        |  |
| Zellinkubator                              | Panasonic, Kadoma, Japan               |  |
| Zellkulturbank Mars Safety Class 2 Scanlaf | Labogene, Lynge, DK                    |  |
| Zentrifuge Legend Micro 21R                | Thermo Fisher Scientific, Waltham, USA |  |
| Zentrifuge Sigma 1-14K                     | Sigma, Osterode am Harz, Deutschland   |  |
| Zentrifuge Sigma 1-16K                     | Sigma, Osterode am Harz, Deutschland   |  |
| Zentrifuge Sigma 2-16KL                    | Sigma, Osterode am Harz, Deutschland   |  |
| Zentrifuge Sigma 2-7                       | Sigma, Osterode am Harz, Deutschland   |  |

#### 2.1.9 Software

Tab. 9: Verwendete Software

| Name                                     | Firma,Ort                              |
|------------------------------------------|----------------------------------------|
| Evolution-Capt for Fusion Solo S         | Vilber Lourmat, Collégien, Frankreich  |
| Microsoft Excel, Version 2021            | Microsoft, Redmond, USA                |
| GraphPad Prism 8                         | GraphPad Software, San Diego, USA      |
| ImageJ 1.53c                             | National Institutes of Health, USA     |
| 7500 Software v2.0.6, Applied Biosystems | Thermo Fisher Scientific, Waltham, USA |
| SoftMax Pro 7.0.3                        | Molecular Devices, LLC., San Jose, USA |

### 2.2 Zellkultur von MC3T3-E1-Zellen

Die MC3T3-E1-Zellen (Nrp2-WT, Nrp2-KO-Klone 70 und 83) wurden bei 37 °C und 5 % CO₂ in Minimum Essential Medium α (MEM α) oder MEM α GlutaMAX™ mit 10 % FBS und 1 % Penicillin/Streptomycin (P/S) kultiviert (complete Medium).

Das Medium für die Zellen (MEM α, ascorbinsäurefrei) wurde alle 2-3 Tage (Montag, Mittwoch, Freitag) gewechselt. Die Zellen wurden bei ca. 70 % Konfluenz passagiert. Dazu wurden sie einmal mit PBS gewaschen und anschließend mit 2x Trypsin-EDTA inkubiert, um die adhärenten Zellen vom Boden der Zellkulturflasche zu lösen. Nach etwa 5 Minuten, sobald die Zellen abgelöst waren, wurde MEM α hinzugegeben, und die Suspension in Zentrifugationsröhrchen überführt. Nach vierminütigem Zentrifugieren bei 200 xg wurde der Überstand entfernt, und die Zellpellets in 10 ml complete MEM α resuspendiert. Teile der Zellsuspension wurden in die entsprechenden Kulturflaschen überführt oder in 6-, 24- bzw. 96-Wellplatten ausgesät. Zellkonzentration, Viabilität und durchschnittliche Zellgröße wurden mit dem NucleoCounter NC-200 unter Verwendung von Via1-Kassetten bestimmt.

### 2.3 Differenzierung von MC3T3-E1-Zellen

Die präosteoblastische Maus-Zelllinie MC3T3-E1 wird üblicherweise für die In-vitro-Osteoblastenforschung verwendet. Die osteoblastische Differenzierung kann durch Behandlung mit Ascorbinsäure und β-Glycerophosphat induziert werden (Hughes-Fulford und Li, 2011; Hwang und Horton, 2019). Nrp2-WT und Nrp2-KO MC3T3-E1-Zellen wurden in 6- bzw. 24-Wellplatten ausgesät. Nach Erreichen von 100 % Konfluenz wurden

die Zellen bis zu 21 Tage mit Osteogenese-Induktionsmedium behandelt, bestehend aus complete MEM α GlutaMAX<sup>™</sup> (mit Ascorbinsäure) ergänzt mit 50 μg/ml Ascorbinsäure und 10 mM β-Glycerophosphat.

### 2.4 Viabilitätsassay

Der CellTiter 96<sup>®</sup> AQueous One Solution Cell Proliferation Assay dient zur Bestimmung der Zellviabilität. 5x10<sup>3</sup> Zellen jeder Zelllinie bzw. Zellkondition wurden als Triplikate in 96-Wellplatte ausgesät und im Zellinkubator belassen. Nach 48 Stunden wurde 100 µl/Well des CellTiter 96<sup>®</sup> AQ<sub>ueous</sub> One Solution Reagents (enthält MTS) hinzugefügt und für 4 Stunden inkubiert. Anschließend wurde die Absorption kolorimetrisch bei 490 nm mit SpectraMax iD3 gemessen.

### 2.5 Zellverdopplungsassay

Das Ziel des Zellverdopplungsassays ist der Vergleich der Proliferationsfähigkeit von Nrp2-WT und Nrp2-KO MC3T3-E1-Zellen. 2x10<sup>4</sup> Zellen jedes Klons wurden in eine 24-Wellplatte ausgesät. Für die verschiedenen Zeitpunkte (0, 24, 48, 72 und 96 h) wurden separate Platten vorbereitet. Nach den jeweiligen Zeitpunkten wurden die Zellen fixiert, gefärbt und anschließend trocken gelagert. Zur Fixierung wurden die Zellen einmal mit PBS gespült und anschließend 15 Minuten mit 4 % Formaldehyd (500 µl/Well; 37 %ige Lösung in PBS verdünnt) inkubiert. Nach der Fixierung erfolgten zwei Waschschritte mit PBS. Die Zellen wurden anschließend mit 0,1 % Crystal Violet in 2 % Ethanol (250 µl/Well; lichtgeschützt) für 10 Minuten gefärbt. Danach wurden sie zweimal mit bidestilliertem Wasser gespült, getrocknet und lichtgeschützt gelagert.

Nach Abschluss aller Zeitpunkte wurden die Zellen 30 Minuten mit 1 % SDS (250 µl/Well; lichtgeschützt) lysiert. Die Absorption bei 550 nm wurde anschließend mit einem Plattenlesegerät bestimmt.

### 2.6 Cas9-Überprüfung

Die Ausschaltung des Nrp2-Gens erfolgte mittels CRISPR/Cas9-Knockout. Die KO-Zellen wurden in Anlehnung an Ran et al. (2013) und Schulz et al. (2020) in der Arbeitsgruppe von Muders hergestellt und zur Verfügung gestellt. Die Charakterisierung und Validierung der KO-Zellen erfolgte im Rahmen dieser Doktorarbeit. Im Rahmen der hier

durchgeführten CRISPR/Cas9-Knockout-Methode wurden die KO-Zellen bzw. KO-Klone auf das Vorhandensein des Cas9-Gens in der DNA untersucht, um eine mögliche Integration des Cas9-Gens auszuschließen.

### 2.6.1 DNA-Isolation

Die DNA-Isolierung erfolgte unter Verwendung der Reagenzien und Zentrifugationssäulen des DNeasy Blood & Tissue Kits, wobei die Reagenzien gemäß Herstellerprotokoll vorbereitet wurden. Die Isolation wurde bei Raumtemperatur durchgeführt. Für die jeweiligen Zeitpunkte wurden 1x10<sup>5</sup> Zellen jedes Klons bzw. jeder Zellkondition in 6-Well-Platten ausgesät. Nach entsprechender Behandlung oder Inkubation wurden die Zellen mit Trypsin-EDTA von der Platte gelöst und in Reaktionsgefäße (1,5 ml) übertragen. Anschließend erfolgte eine Zentrifugation bei 200 xg für 4 Minuten. Der Überstand wurde entfernt und die Zellpellets wurden in 200 µl PBS resuspendiert, gefolgt von Zugabe von 20 µl Proteinase K. Es wurden 200 µl Buffer AL hinzugefügt, die Proben durch Vortexen homogenisiert und 10 Minuten bei 56 °C inkubiert. Anschließend wurden 200 µl Ethanol (96-100 %) zugegeben und 15-30 Sekunden lang vortexiert. Die Mischung wurde in eine DNeasy Mini Spin Column pipettiert, die sich in einem 2 ml-Sammelröhrchen befand, und bei 6000 xg für 1 Minute zentrifugiert. Überstand und Sammelröhrchen wurden verworfen. Die Spin Column wurde in ein neues 2 ml-Sammelröhrchen gesetzt und 500 µl Buffer AW1 hinzugefügt, gefolgt von einer Zentrifugation bei 6000 xg für 1 Minute. Danach wurde die Spin Column erneut in ein neues Sammelröhrchen überführt, 500 µl Buffer AW2 hinzugefügt und bei 20000 xg für 3 Minuten zentrifugiert, um die Membran zu Spin Column wurde in ein sauberes 1,5 ml- oder trocknen. Mikrozentrifugenröhrchen gesetzt, und 50 µl Buffer AE direkt auf die Membran gegeben. Nach einer Inkubation von 1 Minute bei Raumtemperatur (bei geringer DNA-Menge: 5 Minuten) erfolgte eine Zentrifugation bei 6000 xg für 1 Minute zur Elution der DNA. Die DNA wurde bei -20 °C gelagert, und die Konzentration mittels NanoPhotometer N60 Touch bestimmt.

### 2.6.2 PCR (Cas9-PCR)

Alle Materialien und die DNA-Proben wurden auf Eis aufgetaut. Für die Proben wurden 0,2 ml PCR-Tubes verwendet. Eine Positivkontrolle (Plasmide, die Cas9 enthalten;

bereitgestellt von Dr. Thomas Mayr, AG Muders) sowie eine Negativkontrolle (Wasser) wurden ebenfalls vorbereitet. Die PCR-Reaktionsmischung wurde gemäß Tabelle 10 angesetzt.

**Tab. 10:** PCR-Reaktionmischung

| Chemikalie                                              | Menge    |
|---------------------------------------------------------|----------|
| Forward primer (Cas9 forw1: 5'-CGACGACAGCCTGACCTTTA-3') | 0,125 µl |
| Kapa2G Fast HS Genotyping Mix                           | 12,5 µl  |
| Reverse primer (Cas9 rev1: 5'-TTGATGCCCTCTTCGATCCG-3')  | 0,125 µl |
| Wasser (Aqua ad iniectabilia Mini Plasco)               | 0,25 µl  |

Pro Tube wurden 13 µl der PCR-Reaktionsmischung verwendet. Anschließend wurden ca. 100 ng DNA pro Probe zugegeben (auf 12 µl mit Wasser aufgefüllt). Für die Negativbzw. Positivkontrolle wurden 12 µl Wasser bzw. ca. 100 ng Plasmid-DNA (auf 12 µl mit Wasser aufgefüllt) verwendet. Die Proben wurden kurz zentrifugiert und anschließend in den Thermocycler geladen. Für die DNA-Amplifikation wurde das in Tabelle 11 dargestellte Programm verwendet.

Tab. 11: PCR-Programm

| Schritt | Temperatur (°C) | Zeit   |     |
|---------|-----------------|--------|-----|
| 1       | 95              | 3 Min  |     |
| 2       | 95              | 15 Sek |     |
| 3       | 58              | 15 Sek | 40x |
| 4       | 72              | 60 Sek |     |
| 5       | 72              | 60 Sek |     |
| 6       | 10              | Halt   |     |

### 2.6.3 Agarosegel-Elektrophorese

Ein 2 %iges Agarosegel wurde hergestellt (2 g Agarose in 100 ml 1x TAE-Puffer, ergänzt mit 4 μl HDGreen Plus). In jede Gelkammer wurden 5 μl des 100 bp-GenRuler sowie 15 μl jeder Probe pipettiert. Die Elektrophorese erfolgte bei 70-100 V für 30-45 Minuten. Anschließend wurde das Gel mithilfe des Image-Dokumentationssystems Fusion Solo S visualisiert und dokumentiert.

### 2.7 RIPA-Lyse

Für die Proteinextraktion wurden 1,5x10<sup>5</sup> Zellen jedes Klons bzw. jeder Zellkondition in 6-Wellplatten für die verschiedenen Zeitpunkte ausgesät. Die Zelllysate wurden mit RIPA-Puffer, ergänzt mit cOmplete Protease Inhibitor Cocktail und HALT Protease Inhibitor, hergestellt. Nach Entfernung des Zellkulturmediums wurden die Zellen zweimal mit kaltem PBS gewaschen. PBS wurde vollständig entfernt, und 150 µl kalter RIPA-Puffer wurden auf die Zellen pipettiert. Die Zellen wurden anschließend mit Zellschabern von der Platte gelöst und in 1,5 ml Röhrchen auf Eis transferiert. Die Lysate wurden 30 Minuten auf Eis inkubiert und anschließend bei 20000 xg und 4 °C für 15 Minuten zentrifugiert. Der proteinhaltige Überstand wurde in neue Reaktionsgefäße überführt und bis zur weiteren Analyse bei -20 °C gelagert.

### 2.8 BCA-Assay

Die Proteinquantifizierung erfolgte mittels Bicinchoninsäure (BCA)-Assay unter Verwendung des Pierce BCA Protein Assay Kits, wobei das Herstellerprotokoll eingehalten wurde. Zur Erstellung einer Standardkurve wurde eine 1:2 Verdünnungsreihe von BSA-Proteinstandards in bidestilliertem Wasser vorbereitet. Die Verdünnungsreihe wurde wie in Tabelle 12 hergestellt.

**Tab. 12:** Verdünnungsreihe von BSA-Proteinstandards

| Α            | В     | С     | D     | E         | F       | G       |
|--------------|-------|-------|-------|-----------|---------|---------|
| 0 mg/ml      | 0,06  | 0,125 | 0,25  | 0,5 mg/ml | 1 mg/ml | 2 mg/ml |
| (nur Wasser) | mg/ml | mg/ml | mg/ml |           |         |         |

Die Proben wurden 1:10 in bidestilliertem Wasser verdünnt und anschließend in Triplikaten in einer 96-Well-Mikroplatte pipettiert. In jedes Well wurden 200 µl des Working Reagent (vorbereitet durch Mischen von 50 Teilen BCA-Reagenz A mit 1 Teil BCA-Reagenz B) gegeben und die Platte für 30 Sekunden auf einem Plattenschüttler gründlich gemischt. Danach erfolgte eine Inkubation der Platte für 30 Minuten bei 37 °C. Die Absorption wurde bei 562 nm gemessen, und die Proteinkonzentrationen jeder Probe wurden unter Verwendung der BSA-Standardkurve in Microsoft Excel berechnet.

### 2.9 SDS-PAGE

Zur Trennung der Proteine nach ihrem scheinbaren Molekulargewicht wurde eine SDS-PAGE unter Verwendung des Mini-PROTEAN Tetra Cell Systems durchgeführt. Hierfür wurden zunächst Trenn- und Sammelgellösungen für Polyacrylamid-Gele gemäß den Angaben in Tabelle 13 und 14 hergestellt und in eine Glaskassette gegossen. Unmittelbar vor dem Gießen des Trenngels wurde TEMED zugesetzt, da es die Polymerisation von Acrylamid katalysiert. Das 8 %ige Trenngel (Tab. 13) wurde gegossen, mit Isopropanol überschichtet und bei Raumtemperatur polymerisiert. Nach dem Entfernen des Isopropanols wurde das 6 %ige Sammelgel (Tab. 14) gegossen, der Kamm eingesetzt und das Gel bei Raumtemperatur polymerisieren gelassen.

Eine definierte Proteinmenge (10-50 μg) wurde aus den RIPA-Lysaten entnommen und mit bidestilliertem Wasser auf ein einheitliches Volumen eingestellt. Anschließend wurde Laemmli SDS Sample Buffer, ergänzt mit 10 % β-Mercaptoethanol, zugegeben. Zur vollständigen Denaturierung wurden die Proben 5 Minuten bei 95 °C erhitzt und anschließend kurz zentrifugiert. Die reduzierten Proteinproben wurden in die SDS-PAGE-Gele geladen, zusammen mit 5 μl PageRuler-Protein Ladder als molekularem Größenstandard. Die Gelkassette wurde in die Elektrophoresekammer eingesetzt und mit 1x Laufpuffer (Tab. 15) bis zum angegebenen Füllstand befüllt. Die Elektrophorese erfolgte zunächst 15 Minuten bei 100 V und anschließend 45-60 Minuten bei konstanter Spannung von 200 V. Im Anschluss erfolgte unmittelbar die Weiterverarbeitung der SDS-PAGE-Gele für den Western Blot.

Tab. 13: 8 %iges Trenngel

| Chemikalie                   | Menge  |
|------------------------------|--------|
| 1,5 M Tris-HCl (pH 8,8)      | 5,0 ml |
| Acrylamide/Bis (30 % Lösung) | 5,3 ml |
| APS (10 % Lösung)            | 200 μΙ |
| Bidestilliertes Wasser       | 9,3 ml |
| SDS (10 % Lösung)            | 200 μΙ |
| TEMED                        | 12 µl  |

Tab. 14: 6 %iges Sammelgel

| Chemikalie                   | Menge  |
|------------------------------|--------|
| 0,5 M Tris-HCl (pH 6,8)      | 750 µl |
| Acrylamide/Bis (30 % Lösung) | 1,0 ml |

| Chemikalie             | Menge  |
|------------------------|--------|
| APS (10 % Lösung)      | 60 µl  |
| Bidestilliertes Wasser | 4,1 ml |
| SDS (10 % Lösung)      | 60 µl  |
| TEMED                  | 6 µl   |

**Tab. 15:** Laufpuffer (10x)

| Chemikalie                 | Menge    |
|----------------------------|----------|
| 0,1 % SDS (20 % Lösung)    | 50 ml    |
| 0,25 M Tris Base Ultrapure | 30,3 g   |
| 1,92 M Glycine             | 144 g    |
| Bidestilliertes Wasser     | Ad 1,0 l |

#### 2.10 Western Blot (Immunoblot)

Beim Western Blot werden die in der SDS-PAGE getrennten Proteine aus dem Gel auf eine Membran übertragen und anschließend mithilfe spezifischer Antikörper nachgewiesen. Nach der Elektrophorese wurde das Gel von den Glasplatten gelöst und das Sammelgel entfernt. Anschließend wurde das Trenngel für etwa 10 Minuten in 1x Transferpuffer (Tab. 16) äquilibriert, um die Dissoziation der Proteine von SDS zu erleichtern. Parallel dazu wurden die PVDF-Membranen 5-10 Minuten in Methanol aktiviert. Für den Transfer wurde ein Blotstapel in folgender Reihenfolge zusammengesetzt: drei mit 1× Transferpuffer äquilibrierte Filterpapiere, PVDF-Membran, Gel sowie erneut drei angefeuchtete Filterpapiere. Die Proteine wurden anschließend über 90 Minuten bei einem konstanten Strom von 50 mA pro Membran (1 mA/cm²) auf die PVDF-Membran übertragen.

Nach dem Transfer wurden die Membranen entsprechend der Proteinbereiche in zwei Abschnitte getrennt (Nrp2 bei ca. 120-140 kDa und  $\beta$ -Actin bei ca. 42 kDa). Zur Minimierung unspezifischer Antikörperbindungen wurden die Membranen für 1 Stunde bei Raumtemperatur in der entsprechenden Blockierungslösung inkubiert (5 % BSA in TBS-T für Nrp2; 5 % Milchpulver in TBS für  $\beta$ -Actin).

Tab. 16: Transferpuffer

| Chemikalie                  | Menge    |
|-----------------------------|----------|
| Transferpuffer (10x):       |          |
| 0,375 % SDS (20 % solution) | 18,75 ml |
| 390 mM Glycine              | 29,3 g   |

| Chemikalie                 | Menge    |
|----------------------------|----------|
| 480 mM Tris base Ultrapure | 58,2 g   |
| Bidestilliertes Wasser     | Ad 1,0 I |
| Transferpuffer (1x):       |          |
| Bidestilliertes Wasser     | Ad 1,0 I |
| Methanol                   | 200 ml   |
| Transferpuffer (10x)       | 100 ml   |

Zum Nachweis von Nrp2 und β-Actin wurden primäre und sekundäre Antikörper eingesetzt (siehe Tab. 7), die jeweils in der entsprechenden Blockierungslösung verdünnt wurden. β-Actin diente dabei als Referenzprotein zur Normalisierung der Proteinexpression in allen Proben. Für die Detektion wurden HRP-konjugierte Sekundärantikörper verwendet, die die Chemilumineszenzreaktion katalysierten und so die Visualisierung der Zielproteine ermöglichten.

Die jeweiligen Membranteile wurden über Nacht bei 4 °C auf einem Rollenschüttler mit den Primärantikörpern inkubiert. Anschließend wurden die Membranen dreimal jeweils 10 Minuten mit TBS-T auf einem Plattformschüttler gewaschen. Danach wurden die Sekundärantikörper in 10 ml 5 % Milchpulver/TBS (für β-Actin) bzw. 10 ml 5 % BSA/TBS-T (für Nrp2) verdünnt und für 1 Stunde bei Raumtemperatur auf einem Rollenschüttler inkubiert. Anschließend wurden die Membranen erneut dreimal je 10 Minuten mit TBS-T und einmal 10 Minuten mit TBS gewaschen.

Zur Entwicklung der Chemilumineszenz wurden gleiche Volumina der Peroxidlösung (Detection Reagent 1) und der Luminolverstärkerlösung (Detection Reagent 2) gemischt und in einer Menge von 1 ml pro Membran aufgetragen. Die Signalaufnahme erfolgte mithilfe des Fusion Solo S Detektionssystems.

#### 2.11 RNA-Isolation

Für die RNA-Isolierung wurden 1x10<sup>5</sup> Zellen jedes Klons bzw. jeder Zellkondition in 6-Wellplatten für verschiedene Zeitpunkte ausgesät. Die Isolierung erfolgte unter Verwendung des RNeasy Plus Mini Kits gemäß Herstellerprotokoll. Nach Entfernung des Kulturmediums wurden die Zellen zweimal mit kaltem PBS gewaschen und anschließend durch Zugabe von 350 μl RLT-Puffer mit 1 % β-Mercaptoethanol pro Well lysiert. Die Lysate wurden mit sterilen Zellschabern von der Platte gelöst, in RNase-freie Sammelröhrchen überführt und durch einminütiges Vortexen homogenisiert.

Die Proben wurden auf gDNA-Eliminator-Spin-Säulen gegeben und bei 10000 xg zentrifugiert. Die RNA wurde anschließend in 30 µl RNase-freiem Wasser eluiert. Dieser Schritt wurde wiederholt, um die RNA-Ausbeute zu erhöhen. Die Konzentration der isolierten RNA wurde photometrisch bestimmt, und die Proben wurden bei -80 °C gelagert.

#### 2.12 cDNA-Synthese

Zur Vorbereitung der qRT-PCR-Analyse wurden 0,5-1 µg der isolierten RNA in komplementäre DNA (cDNA) transkribiert. Alle Reagenzien wurden dabei auf Eis gehalten. Für jede RNA-Probe wurden 9 µl cDNA-Mastermix (Tab. 18) hergestellt und mit 11 µl RNA (0,5-1 µg in RNase-freiem Wasser) in verschlossene 8-Well-PCR-Streifen pipettiert. Die Proben wurden kurz zentrifugiert, bevor die cDNA-Synthese in einem Biometra TRIO 48 Thermocycler gemäß dem in Tabelle 19 aufgeführten Protokoll durchgeführt wurde. Nach Abschluss des Programms wurde die cDNA entweder bei -20 °C gelagert oder unmittelbar für die qRT-PCR eingesetzt.

**Tab. 17:** cDNA-Synthese Mastermix

| Chemikalie                                           | Menge  |
|------------------------------------------------------|--------|
| 5x reaction buffer                                   | 4,0 µl |
| dNTP Mix (10 mM)                                     | 2,0 µl |
| Nuklease-freies Wasser (RNase-free water)            | 0,5 µl |
| Nuklease-freies Wasser (RNase-free water)            | 0,5 µl |
| Random Hexamer Primer (100 µM)                       | 1,0 µl |
| Reverse Transcriptase (200 U/µL, Revert Aid H Minus) | 1,0 µl |
| RNase Inhibitor (40 U/µL, RiboLock)                  | 0,5 µl |

Tab. 18: cDNA-Synthese PCR-Protokoll

| Schritt | Temperatur (°C) | Zeit   |
|---------|-----------------|--------|
| 1       | 25 °C           | 10 Min |
| 2       | 42 °C           | 60 Min |
| 3       | 70 °C           | 10 Min |

#### 2.13 Quantitative Echtzeit-Polymerasekettenreaktion (qRT-PCR)

Für die Durchführung der qRT-PCR wurde der Maxima SYBR Green/ROX qPCR Master Mix verwendet. SYBR Green I ist ein fluoreszierender interkalierender Farbstoff, der an doppelsträngige DNA bindet und dabei ein Fluoreszenzsignal emittiert, das proportional

zur DNA-Konzentration während der Amplifikation ansteigt. Der passive Referenzfarbstoff ROX dient als interne Referenz zur Normalisierung des SYBR-Green-I-Signals.

Alle Komponenten wurden auf Eis aufgetaut. Die cDNA wurde abhängig von der eingesetzten RNA-Menge verdünnt (1:10 bei Ausgangsmaterial von 1 µg RNA bzw. 1:5 bei 0,5 µg RNA). Für jedes Zielgen wurde anschließend in sterilen, nukleasefreien Röhrchen ein spezifischer Mastermix gemäß Tabelle 20 vorbereitet.

Tab. 19: qRT-PCR-Mastermix

| Chemikalie                                 | Menge   |
|--------------------------------------------|---------|
| Forward Primer                             | 0,25 µl |
| Maxima SYBR Green/ROX qPCR Master Mix (2x) | 5 µl    |
| Nuklease-freies Wasser (RNase-free water)  | 2,5 µl  |
| Reverse Primer                             | 0,25 µl |
| Summe                                      | 8 µl    |

Der Mastermix wurde durch Pipettieren homogenisiert und anschließend kurz zentrifugiert. Pro Well wurden in Triplikaten 8 μl Reaktionsmastermix und 2 μl cDNA (5 ng/μl) in eine 96-Wellplatte pipettiert. Für die Negativkontrolle wurde Nuklease-freies Wasser anstelle von cDNA eingesetzt. Die Platten wurden mit Klebefolie versiegelt und 2 Minuten bei 1600 xg zentrifugiert. Die cDNA-Amplifikation und Detektion erfolgten mit dem Applied Biosystems 7500 Fast Real-Time PCR System (Tab. 21).

Tab. 20: qRT-PCR-Protokoll

| Schritt | Temperatur(°C) | Zeit   | Zyklenzahl |
|---------|----------------|--------|------------|
| 1       | 50             | 2 Min  | 1x         |
| 2       | 95             | 10 Min | 1x         |
|         | 95             | 15 Sek |            |
| 3       | 63             | 2 Sek  | 40x        |
|         | 60             | 1 Min  |            |
|         | 95             | 15 Sek |            |
| 4       | 60             | 1 Min  | 1x         |
|         | 95             | 30 Sek |            |
| 5       | 60             | 15 Sek |            |

Alle Messungen wurden in technischen Triplikaten durchgeführt. Für jede Probe und jedes Zielgen wurden zudem drei unabhängige biologische Replikate (n=3) analysiert. Die

Expression von Hypoxanthin-Phosphoribosyltransferase 1 (Hprt1) diente als endogene Referenz zur Normalisierung der Genexpression. Zur Berücksichtigung interexperimenteller Varianz wurde die Hprt1-Expression in jeder qRT-PCR und für jede Probe separat bestimmt.

Auf Basis der arithmetischen Mittelwerte der  $C_T$ -Werte der technischen Triplikate wurden die relativen Expressionswerte ( $\Delta C_T$ ) berechnet (Gleichung 1). Die Genexpression der Zielgene wurde dadurch auf das Referenzgen Hprt1 normalisiert.

 $\Delta C_T(Ziel, Probe) = C_{T(Ziel, Probe)} - C_{T(hprt1, Probe)}$  (Gleichung 1)

Ratio  $\Delta C_T(Ziel, Probe) = 2^{-\Delta C}_{T(Ziel, Probe)}$  (Gleichung 2; Relative Expression)

Zur Darstellung der Genexpressionsdaten als Fold Change/Ratio  $(2^{-\Delta\Delta C}_T)$  wurden die Hprt1-normalisierten Expressionswerte  $(\Delta C_T)$  anhand der  $\Delta C_T$ -Werte von Nrp2-Wildtyp d0 als Referenz kalibriert. Für jede biologische Gruppe und jedes Zielgen wurden separate  $\Delta\Delta C_T$ -Werte berechnet.

 $\Delta\Delta C_T(Ziel, Probe) = \Delta C_{T(Ziel, Probe)} - \Delta C_{T(Ziel, WT d0)}$  (Gleichung 3)

Fold Change/Ratio= $2^{-\Delta\Delta C}_{T(Ziel, Probe)}$  (Gleichung 4)

Die Berechnungen wurden in Microsoft Excel durchgeführt. Die statistische Analyse und grafische Darstellung der Daten erfolgten mit GraphPad Prism 8.

Die Primerspezifität wurde durch Sequenzierung der in der qRT-PCR amplifizierten DNA-Fragmente überprüft. Die Sequenzierung erfolgte bei Eurofins Genomics und wurde von Dr. Thomas Mayr ausgewertet. Alle getesteten Primerpaare führten zu einer zielspezifischen Amplifikation.

#### 2.14 Alizarinrot-Färbung (ARS)

ARS wird häufig zur Detektion von Calciumablagerungen in Zellkulturen eingesetzt. Der Farbstoff bindet spezifisch an Calciumionen und ermöglicht so den Nachweis kristalliner Calciumablagerungen (Gregory et al., 2004).

2,5x10<sup>4</sup> Zellen pro Klon bzw. Zellkondition wurden in 24-Wellplatten für einen Endpunkt (Tag 21) ausgesät. Nach Erreichen des Zeitpunkts wurde das Medium entfernt und die Zellen einmal mit PBS gewaschen. Anschließend erfolgte eine 30-minütige Fixierung mit 500 μl 70 %igem Ethanol. Nach zweimaligem Waschen mit bidestilliertem Wasser wurden die Zellen 30 Minuten lang mit 500 μl 1 %iger ARS-Lösung gefärbt. Zur Dokumentation wurden anschließend mikroskopische Aufnahmen angefertigt.

#### 2.15 Extraktion mit Cetylpyridiumchlorid

Zur quantitativen Auswertung der Ergebnisse wurde der in den Zellen gebundene Farbstoff durch Extraktion mit Cetylpyridiniumchlorid (CPC) gelöst. Hierfür wurden pro Well 400 µl einer 10 %igen CPC-Lösung zugegeben und die Platten 90 Minuten auf einem Schüttler inkubiert. Anschließend wurde der Extrakt in Triplikaten (100 µl pro Well) in eine 96-Wellplatte überführt und die Absorption bei 540 nm mit einem SpectraMax iD3 kolorimetrisch gemessen.

#### 2.16 Sequenzierung des Nrp2-Gens in Nrp2-Knockout-Zellen (TOPO-Klonierung)

Das Nrp2-Knockout wurde mithilfe der CRISPR/Cas9-Methode generiert. Zur Bestätigung des Knockouts erfolgte eine Sequenzierung nach TOPO-Klonierung unter Verwendung des TOPO-TA-Cloning Kits, durchgeführt gemäß Herstellerprotokoll. Die isolierte DNA wurde zunächst mittels Nrp2-spezifischer PCR amplifiziert. Das PCR-Produkt wurde mit dem QIAprep Spin Miniprep Kit aufgereinigt.

Für die Ligation wurden 100 ng des gereinigten PCR-Produkts mit Wasser auf 4 µl aufgefüllt und mit 1 µl Salt Buffer sowie 1 µl TOPO-Vektor gemischt. Nach einer 5-minütigen Inkubation bei Raumtemperatur wurde ein 3 µl Ligationsansatz gemäß dem Herstellerprotokoll in E. coli-One-Shot-TOP10 überführt.

Nach einer 15-minütigen Inkubation auf Eis wurde ein Hitzeschock für 30 Sekunden bei 42 °C durchgeführt, gefolgt von sofortiger Kühlung auf Eis.

Im Anschluss wurden 250 µl S.O.C.-Medium zugegeben, und die Bakteriensuspension bei 37 °C und 250 rpm für 1,5 Stunden inkubiert. Schließlich wurde die Kultur auf vorgewärmte LB-Kanamycin-Platten ausgestrichen und über Nacht bei 37 °C inkubiert.

Zur Analyse der Transformanten wurden pro Klon zwei bis sechs Kolonien (weiß/hellblau) in je 5 ml LB-Kanamycin (50 µg/ml) inokuliert und über Nacht bei 37 °C und 250 rpm in einem Schüttelinkubator kultiviert (insgesamt fünf Kulturen pro Klon). Die Plasmid-DNA wurde anschließend mithilfe des QIAprep Spin Miniprep Kits gemäß Herstellerprotokoll isoliert und aufgereinigt. Die DNA-Konzentration wurde photometrisch bestimmt.

Zur Überprüfung erfolgte ein Restriktionsverdau mit EcoRI (Ansatz: 1 µg Plasmid-DNA, 1 µl 10x Puffer, 0,2 µl EcoRI, ad 10 µl mit Wasser). Die Inkubation erfolgte 90 Minuten bei 37 °C in einem Thermocycler, gefolgt von einer Analyse mittels Agarosegelelektrophorese.

Für die Sequenzierung wurde ein Ansatz aus 1 μg Plasmid-DNA in 15 μl Wasser mit 2 μl M13-Primer (Endvolumen 17 μl) vorbereitet. Die Sequenzierung wurde von Eurofins Genomics durchgeführt und durch Dr. Thomas Mayr ausgewertet.

#### 2.17 Alkalische Phosphatase-Aktivitätsassay

Für die Färbung wurden 1x10<sup>5</sup> Zellen pro Klon bzw. Zellkondition in 35-mm-Wellplatten für verschiedene Zeitpunkte ausgesät. Nach Erreichen des jeweiligen Endzeitpunkts wurde das Medium entfernt und die Zellen zweimal mit PBS gewaschen. Anschließend erfolgte eine 10-minütige Fixierung mit 2 ml 4 %igem Formaldehyd pro Well. Nach erneutem zweimaligen Waschen mit PBS wurden die Zellen für 10 Minuten im Dunkeln mit 2 ml BCIP/NBT-Lösung pro Well gefärbt. Vor der Fotodokumentation erfolgte ein abschließender Waschschritt mit PBS.

#### 2.18 Zytokin-Array

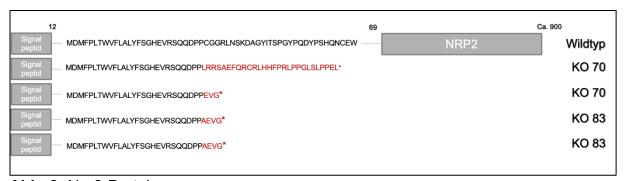
Für den Zytokin-Array wurden 6x10<sup>5</sup> Zellen pro Klon bzw. Zellkondition in 100-mm-Wellplatten bis Tag 21 kultiviert. Der Nachweis von Zytokinen erfolgte mit dem Mouse XL Cytokine Array Kit gemäß den Herstellerangaben. Hierfür wurden die Zellkulturüberstände gesammelt und 4 Minuten bei 200 xg zentrifugiert, um Zellreste zu entfernen. Von jeder Probe wurden 500 µl für den Array eingesetzt.

Die Membranen des Arrays wurden jeweils in ein Well einer 4-Well-Multischale überführt und 1 Stunde lang bei Raumtemperatur mit 2 ml Array-Puffer 6 (Blockierungspuffer) auf einer Schüttelplattform inkubiert. Parallel dazu wurden die Proben durch Zugabe von bis zu 1 ml Probenvolumen zu 0,5 ml Array-Puffer 4 aufbereitet und bei Bedarf mit Array-Puffer 6 auf ein Endvolumen von 1,5 ml ergänzt. Nach Entfernung des Blockierungspuffers wurden die vorbereiteten Proben zugegeben und die Arrays über Nacht bei 2-8 °C unter Schütteln inkubiert.

Am Folgetag wurden die Membranen dreimal jeweils 10 Minuten lang mit 20 ml 1x Waschpuffer auf einer Schüttelplattform gewaschen. Anschließend erfolgte die Inkubation mit den Detektionsantikörpern für 1 Stunde bei Raumtemperatur, gefolgt von einem weiteren Waschschritt. Danach wurden die Membranen 30 Minuten lang mit 2 ml 1x Streptavidin-HRP inkubiert. Nach erneutem Waschen wurde die Detektion durch Zugabe von 1 ml des Chemi-Reagent-Mix pro Membran durchgeführt. Die

Chemilumineszenzsignale wurden mit dem Fusion Solo S Detektionssystem aufgenommen und mittels ImageJ ausgewertet.

#### 2.19 RNA-Sequenzierung


3'-mRNA-Sequenzierung-Analysen können eingesetzt werden, um die Genexpression in Nrp2-WT und Nrp2-KO Osteoblasten zu vergleichen (Khayal et al., 2018). Die Analysen wurden mit Unterstützung der Next Generation Sequencing (NGS) und Bioinformatics Core Facilities des Universitätsklinikums Bonn durchgeführt. Für die Probenvorbereitung wurden 1,5x10<sup>4</sup> Zellen pro Klon bzw. Zellkondition in 6-Wellplatten für verschiedene Zeitpunkte ausgesät. Die RNA-Isolation erfolgte mit dem RNeasy Plus Mini Kit gemäß den Vorgaben der NGS Core Facility. Die Auswertung der 3'-mRNA-Sequenzierungsdaten wurde anschließend von der Bioinformatics Core Facility des Universitätsklinikums Bonn durchgeführt.

## 3. Ergebnisse

Die Ziele dieser Arbeit umfassen im weitesten Sinne die Untersuchung der Rolle von Nrp2 in Osteoblasten. Es sollten Nrp2-WT-Zellen (MC3T3-E1, Präosteoblasten) mit Nrp2-KO-Zellen im Verlauf der Differenzierung verglichen werden. Die Differenzierungsparameter dienen der Entdeckung der Unterschiede zwischen Nrp2-WT und Nrp2-KO. Die Parameter umfassen Proliferation und Viabilität, Mineralisierung, Expression von osteoblastischen Differenzierungsmarkern und alkalische Phosphatase-Enzymaktivität. Außerdem wurde ein Zytokin-Array und mRNA-Sequenzierung durchgeführt.

#### 3.1 Genotypisierung

Die Genotypisierung des Nrp2-Gens wurde mittels TOPO-Klonierung und anschließender Sequenzierung durchgeführt, um den Einfluss des Knockouts auf die Aminosäuresequenz des Nrp2-Proteins zu charakterisieren. Es wurden mehrere KO-Klone untersucht. Es hat sich herausgestellt, dass das Nrp2-Protein nur im KO-Klon 70 und 83 relativ am Anfang des Proteins durch ein Stopcodon endet und dadurch das Nrp2-Protein nicht funktionsfähig sein sollte (Abb. 2).



**Abb. 2:** Nrp2-Proteinsequenz

Der Sequenz des Nrp2-Proteins auf den beiden Allelen in Nrp2-Wildtyp-Zellen und Nrp2-Knockout-Zellen ist dargestellt. In rot markierte Aminosäuren sind unterschiedlich zu denen im Nrp2-Protein der Nrp2-Wildtyp-Zellen. \* bezeichnet ein Stopcodon.

#### 3.2 Cas9-Überprüfung

Verschiedene Nrp2-KO-Klone wurden durch die CRISPR/Cas9-Methode hergestellt. Um eine Cas9-Integration in die DNA der Nrp2-KO-Klone auszuschließen, wurden diese mittels Cas9-spezifischer PCR und anschließender Agarose-Gelelektrophorese

untersucht. Die Nrp2-KO-Klone 70 und 83 haben keine Cas9-Integration in der DNA und wurden deshalb für die folgenden Untersuchungen verwendet (Abb. 3).

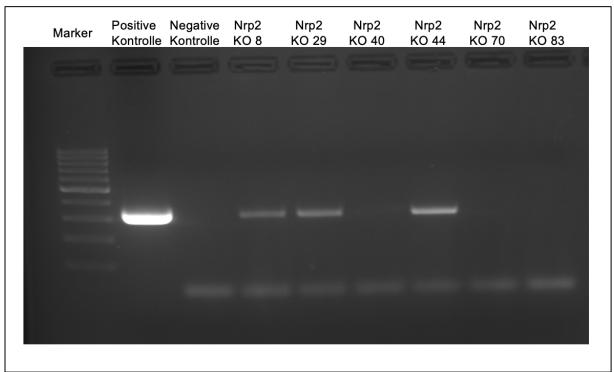
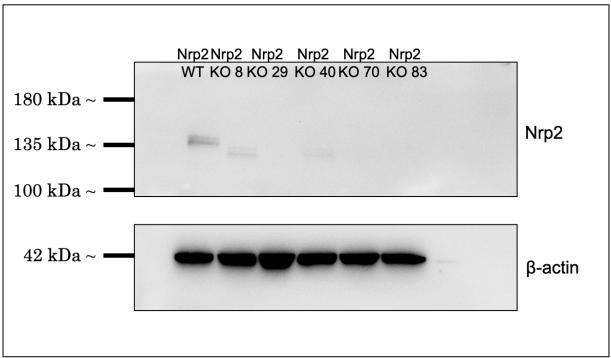


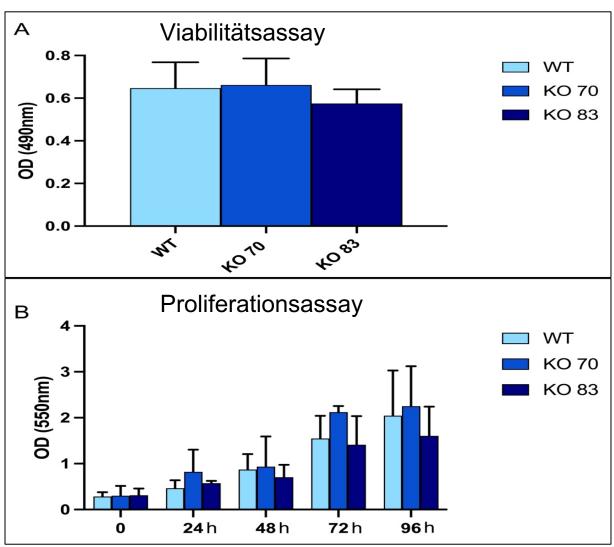

Abb. 3: Cas9-Überprüfung

Die Nrp2-KO-Klone wurden nach der Cas9-Integration in der DNA untersucht. Der Nachweis erfolgte mittels Agarose-Gel nach Cas9-DNA-Amplifikation. Die Bilder wurden mit einem Fusion Solo S Detektionssystem aufgenommen.

## 3.3 Nrp2-Überprüfung

Als Qualitätskontrolle wurde der Nachweis von Nrp2-Protein in den Zelltypen mittels Western Blot durchgeführt. Das Nrp2-Protein konnte in den KO-Klonen 29, 70 und 83 nicht nachgewiesen werden, während eine Nrp2-ähnliche Bande in den KO-Klonen 8 und 40 detektiert wurde (Abb. 4).



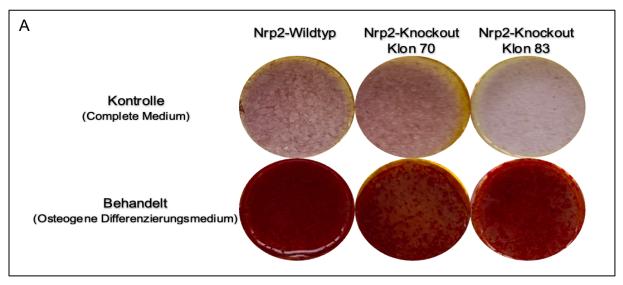


Abb. 4: Nrp2-Überprüfung

Das Vorhandensein des Nrp2-Proteins wurde in Nrp2-Wildtyp und Nrp2-Knockout-Klonen untersucht. Der Nachweis von Nrp2 wurde mittels Immunoblot durchgeführt.  $\beta$ -actin diente als Ladekontrolle.

#### 3.4 Differenzierungsparameter

#### 3.4.1 Viabilität und Proliferation

Um Nrp2-WT und die beiden Nrp2-KO-Klone zu charakterisieren und das Ausmaß der Wirkung des Nrp2-KO auf die MC3T3-E1-Zellen zu untersuchen, wurden Viabilitäts- und Proliferationsassays durchgeführt. Es wurden keine signifikanten Unterschiede in der Viabilität und Proliferation zwischen Nrp2-WT und den beiden Nrp2-KO-Klonen festgestellt (WT vs. KO70: p = 0.98; WT vs. KO83: p = 0.70; Abb. 5).




**Abb. 5:** Viabilitätsassay und Proliferationsassay (A) Die Viabilität der verschiedenen MC3T3-E1-Zelltypen (Nrp2-WT, Nrp2-KO-Klon 70 und 83) wurde mittels Viabilitätsassay photometrisch gemessen. (B) Die Proliferation der verschiedenen MC3T3-E1-Zellkonditionen wurde zu verschiedenen Zeitpunkten mittels eines Proliferationsassays photometrisch erfasst. Die Ergebnisse werden als Mittelwert (n=3) ± Standardabweichung dargestellt. OD=Optische Dichte.

#### 3.4.2 Mineralisierung

Nach erfolgreicher Behandlung bzw. nach Abschluss der osteogenen Differenzierung (Tag 21; Differenzierung mit Ascorbinsäure und ß-Glycerophosphat) wurde eine Färbung mit Alizarinrot durchgeführt. Die Alizarinrot-Färbung diente als Indikator für den Calciumgehalt und fungierte somit als Maß für die Differenzierung und die Bildung von Knochenmatrix. Die behandelten Nrp2-KO-Klone wiesen im Vergleich zu den behandelten Nrp2-WT-Zellen eine signifikant reduzierte Mineralisierung auf (WT vs. KO70: Mittelwertdifferenz (MD) = 1,36; 95%-Konfidenzintervall (CI): 0,34-2,37; p = 0,005;

WT vs. KO83: MD = 1,09; 95%-CI: 0,08-2,10; p = 0,03). Zwischen den beiden Nrp2-KO-Klonen zeigte sich hingegen kein signifikanter Unterschied (KO70 vs. KO83: MD = -0,26; 95%-CI: -1,29-0,74; p = 0,80; Abb. 6).



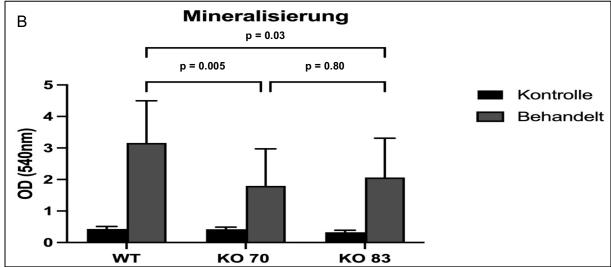
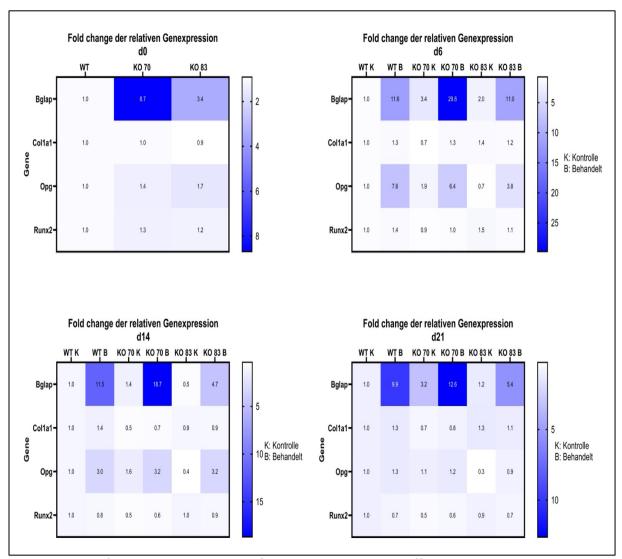



Abb. 6: Alizarinrot-Färbung (Mineralisierung)


- (A) Die präosteoblastischen Zellen der MC3T3-E1 wurden bis zu 21 Tagen mit 50  $\mu$ g/ml Ascorbinsäure und 10 mM  $\beta$ -Glycerophosphat behandelt. Alizarinrot-Färbung von unbehandelten Zelltypen (Kontrolle; oben) und behandelten Zellkonditionen (unten); Tag 21; n=3; repräsentative Bilder.
- (B) Die Quantifizierung der Mineralisierung wurde nach der Alizarinrot-Färbung mittels CPC durchgeführt. Die optische Dichte (OD) der verschiedenen Zelltypen (Nrp2-WT; Nrp2-KO-Klone 70 und 83) wurde photometrisch gemessen. Die Ergebnisse werden als Mittelwert (n=9) ± Standardabweichung dargestellt. Die p-Werte wurden mittels Two-Way-ANOVA mit anschließendem Tukey-Post-hoc-Test berechnet.

#### 3.4.3 Osteoblastische Differenzierungsmarker

Das Expressionsmuster von Nrp2-WT und Nrp2-KO-Klonen wurde mittels qRT-PCR analysiert, um zum einen die Differenzierung der behandelten Zellen zu Osteoblasten zu bestätigen und zum anderen Unterschiede zwischen Nrp2-WT und Nrp2-KO-Klonen zu identifizieren. Differenzierte Osteoblasten zeigten eine erhöhte Expression spezifischer Gene, die als Marker der osteoblastischen Differenzierung dienen. Das Expressionsmuster der Gene Bglap, Col1a1, Opg und Runx2 wurde in Nrp2-WT und Nrp2-KO-Klonen zu verschiedenen Zeitpunkten unter unbehandelten sowie behandelten Bedingungen untersucht.

Zur Verbesserung der Übersichtlichkeit wurden die Daten in zwei Formaten dargestellt. Zum einen als relative Expression (Gleichung 2; Abb. 8-11), um die einzelnen Differenzierungsmarker im Vergleich besser beurteilen zu können, und zum anderen als Foldchange (Gleichung 4; Abb. 7), um die Differenzierung der Zellen bzw. Klone besser einschätzen zu können.

51



**Abb. 7:** Fold Change der relativen Genexpression von Differenzierungsmarkern Die relative Genexpression wurde mittels qRT-PCR bestimmt. Die Zielgene (Bglap, Col1a1, Opg, Runx2) wurden auf die Expression des Referenzgens (Hprt1) normalisiert und als Fold Change/Ratio im Vergleich zur Nrp2-Wildtyp-Kontrolle ausgedrückt. Die Daten werden in Form einer Heatmap präsentiert, wobei die einzelnen Verhältnisse auf eine Dezimalstelle gerundet sind. Farbliche Abstufungen repräsentieren Fold-Reduktionen (weiß) und Fold-Induktionen (blau). Die Abstufungen sind asymmetrisch.

#### 3.4.3.1 Osteocalcin (Bglap)

Das Gen Bglap, welches für das Protein Osteocalcin kodiert, zeigte am Tag 0 in den Nrp2-KO-Klonen eine erhöhte Expression im Vergleich zu Nrp2-WT (WT vs. KO70: MD = -0,36; 95%-CI: -0,61 bis -0,11; p = 0,009). Der Unterschied zwischen Nrp2-WT und dem Nrp2-KO-Klon 83 war hingegen nicht signifikant (WT vs. KO83: MD = -0,11; 95%-CI: -0,36 bis 0,13; p = 0,39). Andererseits steigt die Expression in den behandelten Zelltypen im Vergleich zu den unbehandelten Zelltypen sowohl bei Nrp2-WT als auch bei Nrp2-KO-

Klonen. Zu den weiteren Zeitpunkten (Tag 6, 14, 21) konnten zwischen behandelten Nrp2-WT und Nrp2-KO-Zellen keine signifikanten Unterschiede festgestellt werden (Abb. 8).

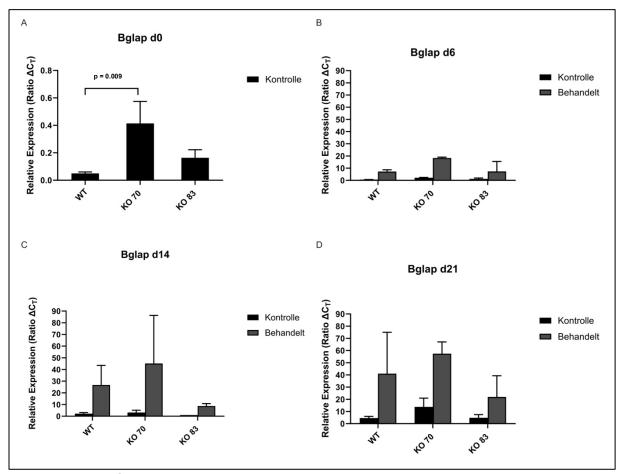



Abb. 8: Bglap-Genexpression

Die Expression des Bglap-Gens wurde zu verschiedenen Zeitpunkten (Tag 0, 6, 14, 21) mittels Real-Time-Quantitative PCR analysiert . Die Expression ( $\Delta C_T$ ) für das Bglap-Gen wurde auf die Expression des Referenzgens (Hprt1) normalisiert und als relative Expression (Ratio  $\Delta C_T$ ) dargestellt. Die Ergebnisse sind als Mittelwert (n=3)  $\pm$  Standardabweichung dargestellt.

#### 3.4.3.2 Kollagen-Typ 1α1 (Col1a1)

Für Col1a1, das für die Kollagen-Typ  $1\alpha1$ -Kette kodiert, zeigten sich zu keinem der untersuchten Zeitpunkte (Tag 0, 6, 14, 21) signifikante Unterschiede in der relativen Expression zwischen Nrp2-WT und Nrp2-KO-Klonen (alle p > 0,5; Abb. 9).

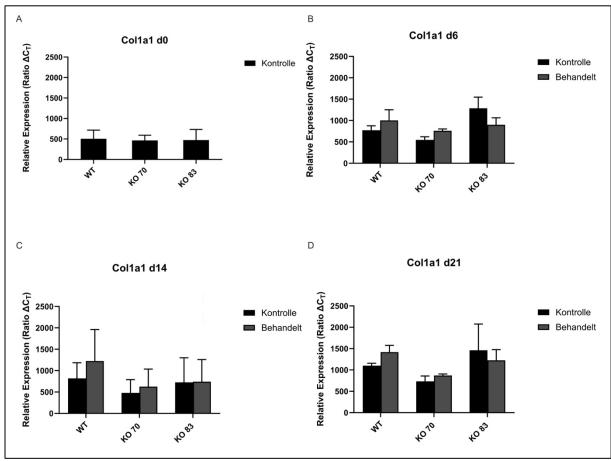



Abb. 9: Col1a1-Genexpression

Die Expression des Col1a1-Gens wurde zu verschiedenen Zeitpunkten (Tag 0, 6, 14, 21) mittels Real-Time-Quantitative PCR analysiert. Die Expression ( $\Delta C_T$ ) für Col1a1-Gen wurde auf die Expression des Referenzgens (Hprt1) normalisiert und als relative Expression (Ratio  $\Delta C_T$ ) dargestellt. Die Ergebnisse werden als Mittelwert (n=3)  $\pm$  Standardabweichung dargestellt.

#### 3.4.3.3 Osteoprotegerin (Opg)

Das Gen Opg (auch Tnfrsf11b), das für Osteoprotegerin kodiert, zeigte zu keinem der untersuchten Zeitpunkte signifikante Unterschiede in der relativen Expression zwischen Nrp2-WT und Nrp2-Klonen (alle p > 0,5; Abb. 10).

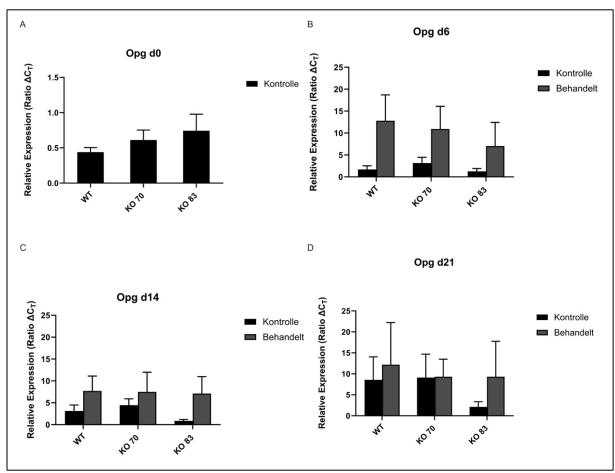



Abb. 10: Opg-Genexpression

Die Expression des Opg-Gens wurde zu verschiedenen Zeitpunkten (Tag 0, 6, 14, 21) mittels Real-Time-Quantitative PCR analysiert. Die Expression ( $\Delta C_T$ ) für das Opg-Gen wurde auf die Expression des Referenzgens (Hprt1) normalisiert und als relative Expression (Ratio  $\Delta C_T$ ) dargestellt. Die Ergebnisse werden als Mittelwert (n=3)  $\pm$  Standardabweichung dargestellt.

### 3.4.3.4 Runt-related transcription factor 2 (Runx2)

Das Gen Runx2 kodiert für den Transkriptionsfaktor Runt-related transcription factor 2. Es sind keine signifikanten Unterschiede zwischen den Zelltypen zum Zeitpunkt Tag 0 festzustellen. Ebenso zeigen sich keine signifikanten Unterschiede zwischen den behandelten Zelltypen in den darauf folgenden Zeitpunkten Tag 6, 14 und 21 (alle p > 0,5; Abb. 11).

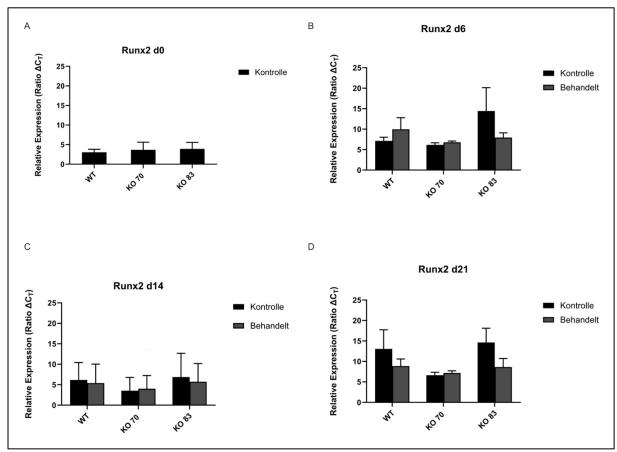
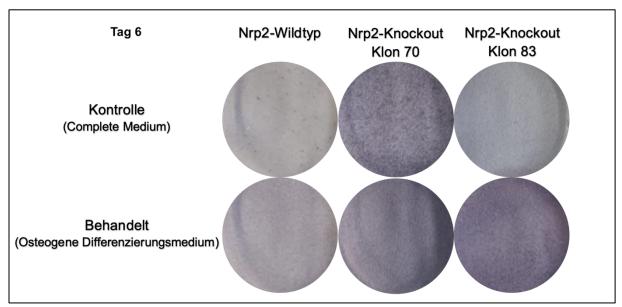




Abb. 11: Runx2-Genexpression

Die Expression des Runx2-Gens wurde zu verschiedenen Zeitpunkten (Tag 0, 6, 14, 21) mittels Real-Time-Quantitative PCR untersucht. Die Expression ( $\Delta C_T$ ) für Runx2-Gen wurde auf die Expression des Referenzgens (Hprt1) normalisiert und als relative Expression (Ratio  $\Delta C_T$ ) dargestellt. Die Ergebnisse werden als Mittelwert (A und B n=3; C und D n=2)  $\pm$  Standardabweichung dargestellt.

#### 3.4.4 Alkalische Phosphatase-Enzymaktivität

Die gesteigerte Enzymaktivität der alkalischen Phosphatase (ALP) stellt ein weiteres Maß für die Differenzierung von Osteoblasten dar. Die Enzymaktivität der alkalischen Phosphatase steigt in differenzierten MC3T3-E1-Zellen (Osteoblasten) an und spielt eine Rolle bei der Mineralisierung (Hwang und Horton, 2019; Sharma et al., 2014). Durch Färbung mit einem Substrat für die ALP wurde die Enzymaktivität zu verschiedenen Zeitpunkten erfasst. Insgesamt zeigt sich, dass die Enzymaktivität bzw. die Intensität der Färbung bei den behandelten, also differenzierten Zellen, höher ist als bei den unbehandelten Zellen. Bei den unbehandelten Zellen des Nrp2-KO-Klons 70 ist die Enzymaktivität höher als in allen anderen unbehandelten Zelltypen (Abb. 12).



**Abb. 12:** Alkalische Phosphatase Enzymaktivität (Tag 6) Die ALP-Enzymaktivität der MC3T3-E1-Zellen wurde zu verschiedenen Zeitpunkten während der osteoblastischen Differenzierung (Tag 6, 14, 21) mittels BCIP/NPT untersucht; (n=3); repräsentative Bilder vom Tag 6.

#### 3.5 Zytokin-Array

Für das Zytokin-Array wurde der Zellkulturüberstand von Nrp2-WT- und Nrp2-KO-Zellen analysiert. Es konnten Unterschiede zwischen den verschiedenen Zellkonditionen festgestellt werden. In der Darstellung sind ausschließlich die Ergebnisse der osteogen behandelten Nrp2-KO-Zellen im Vergleich zu den entsprechenden behandelten Nrp2-WT-Zellen gezeigt. Unter den 111 untersuchten murinen Zytokinen traten mehrere Faktoren hervor, die potenziell an der osteoblastischen Differenzierung im Kontext des Nrp2-KOs beteiligt sein könnten. So zeigten sich Osteoprotegerin (Opg) und Osteopontin (Opn) in beiden KO-Linien leicht erhöht, was auf eine mögliche Rolle dieser Faktoren in der osteogenen Antwort hinweist. Im Gegensatz dazu wiesen Periostin/OSF-2 und CCL5/RANTES eine tendenzielle Abnahme auf. Besonders stark reduziert waren Endostatin und Serpin F1/PEDF, zwei Faktoren mit bekannten Funktionen in Geweberegeneration und Angiogenese. Auch die IGFBPs, insbesondere IGFBP-5 und IGFBP-2, zeigten eine deutliche Verringerung der Sekretion, was ebenfalls eine Rolle bei der Differenzierung nahelegt (Abb. 13).

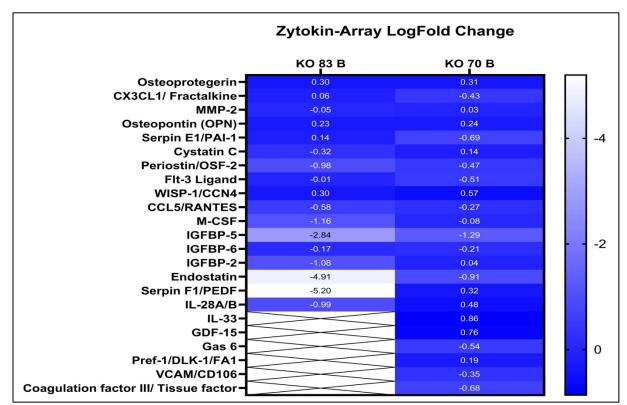



Abb. 13: Zytokin-Array

Das von den MC3T3-E1-Zelltypen (unbehandelte und behandelte Nrp2-WT, Nrp2-KO-Klone 70 und 83) sezernierte Medium wurde am Tag 21 mittels Mouse XL Cytokin-Array untersucht. Die Ergebnisse präsentieren lediglich die ausgewählten Zytokine und sind als Log Fold Change der osteogen behandelten Nrp2-KO-Klone im Vergleich zu ihren jeweiligen osteogen behandelten Nrp2-WT-Klonen dargestellt. Die Daten werden in Form einer Heatmap präsentiert. Farbliche Abstufungen repräsentieren Fold-Reduktionen (weiß) und Fold-Induktionen (blau). Die Abstufungen sind asymmetrisch.

#### 3.6 RNA-Sequenzierung

Die 3'-mRNA-Sequenzierung wurde von der NGS Core Facility des Universitätsklinikums Bonn durchgeführt und die Auswertung der Ergebnisse erfolgte durch die Bioinformatics Core Facility. Generell zeigten zahlreiche Gene Unterschiede zwischen den Klonen. Exemplarisch werden im Folgenden ausgewählte Gene näher betrachtet. Als interne Kontrolle wurde unter anderem die Expression von Nrp2 (Abb. 14) sowie die mittels qRT-PCR untersuchten Differenzierungsmarker (Abb. 15) detaillierter analysiert.

Die Expression von Nrp2 war in den Knockout-Zellen sowohl an Tag 0 als auch an Tag 6 im Vergleich zu den Wildtyp-Konditionen deutlich reduziert (korrigierter p-Wert < 0,01), jedoch weiterhin nachweisbar (Abb. 14).

Die Analyse der osteoblastischen Differenzierungsmarker zeigte klare Unterschiede zwischen behandelten und unbehandelten Konditionen. Insgesamt war bei nahezu allen untersuchten Markern in den behandelten Gruppen eine deutliche Hochregulation nachweisbar (Abb. 15 und 16). Auffällig war insbesondere die Expression des Bglap-Gens. Bereits am Tag 0 lag diese in den Nrp2-KO-Zellen höher als in den WT-Zellen (Abb. 15). Die statistische Analyse ergab hierbei einen signifikanten Unterschied zwischen KO-70 und WT (korrigierter p-Wert = 0,03), während der Unterschied zwischen KO-83 und WT nicht signifikant war (korrigierter p-Wert = 0,44).

Die Analyse weiterer osteoblastischer Differenzierungsmarker (Abb. 16) zeigte für Alpl eine Hochregulation von ca. 6,5-7,0 auf 9,0-9,5 Log2-counts nach osteogener Behandlung in allen Gruppen. Ein vergleichbares Muster ergab sich für Ibsp, dessen Expression von 4,8-5,0 auf 7,8-8,2 anstieg. Auch Sp7 zeigte eine Zunahme von etwa 5,5-6,0 auf 6,5-6,8, wenn auch weniger ausgeprägt als Alpl oder Ibsp. Für Spp1 hingegen blieb die Expression unverändert bei etwa 4,7-5,2.

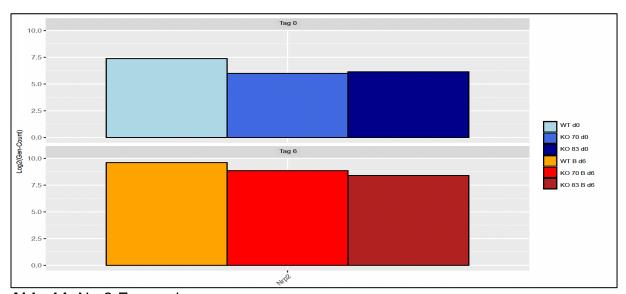



Abb. 14: Nrp2-Expression

Für die Zellkonditionen an den Zeitpunkten Tag 0 und Tag 6 wurde eine RNA-Sequenzierung durchgeführt. Hier ist der Gen-Count für die Nrp2 als Log<sub>2</sub>(count) dargestellt. Die Abbildung wurde von der Bioinformatics Core Facility des Universitätsklinikums Bonn hergestellt (Mittelwert, n=3).

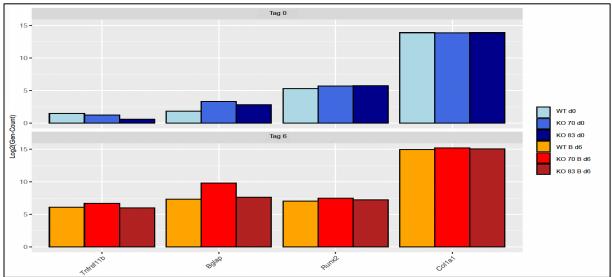
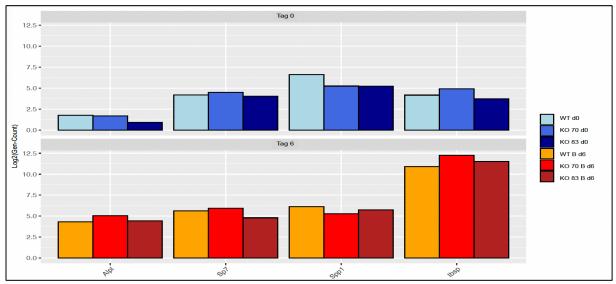




Abb. 15: Osteblastische Differenzierungsmarker Expression

Für die Zellkonditionen an den Zeitpunkten Tag 0 und Tag 6 wurde eine RNA-Sequenzierung durchgeführt. Hier ist der Gen-Count für für die osteoblastische Differenzierungsmarker (Tnfrsf11b = Opg, Bglap, Runx2, Col1a1) als Log<sub>2</sub>(count) dargestellt. Die Abbildung wurde von der Bioinformatics Core Facility des Universitätsklinikums Bonn hergestellt (Mittelwert, n=3).



**Abb. 16:** Expression weiterer osteoblastischer Differenzierungsmarker Für die Zellkonditionen an den Zeitpunkten Tag 0 und Tag 6 wurde eine RNA-Sequenzierung durchgeführt. Hier ist der Gen-Count für weitere Differenzierungsmarker als Log<sub>2</sub>(count) dargestellt. Die Abbildung wurde von der Bioinformatics Core Facility des Universitätsklinikums Bonn hergestellt (Mittelwert, n=3).

#### 4. Diskussion

In der vorliegenden Arbeit wurde der Einfluss von Nrp2 auf Osteoblasten untersucht. Hierfür wurden die osteoblastische Differenzierung, das Expressionsmuster sowie das Sekretom analysiert, um die Rolle von Nrp2 in diesen Zellen schrittweise zu charakterisieren. Zu diesem Zweck wurden Nrp2-Knockout-Zellen generiert und zunächst grundlegend charakterisiert, bevor weiterführende funktionelle Untersuchungen durchgeführt wurden. Im Folgenden werden die erzielten Ergebnisse diskutiert.

#### 4.1 Nrp2-Effekt auf die Viabilität und Proliferation

Die Experimente zeigten, dass der Nrp2-Knockout keinen Einfluss auf die Viabilität und Proliferation der MC3T3-E1-Zellen hatte. Vergleichbare Ergebnisse berichteten Vosbeck et al. (2024), die den Effekt von Nrp2 sowohl in vivo als auch in vitro untersuchten und hierfür eine alternative Methode zur Bestimmung der Proliferation verwendeten. Auch in dieser Studie zeigte der MC3T3-E1-Nrp2-Klon keine signifikante Einschränkung der Proliferation. Im Gegensatz dazu wurde in der Studie von Verlinden et al. (2013) festgestellt, dass Nrp2-KO-Mäuse eine verringerte Anzahl von Osteoblasten aufweisen, die die Trabekel des Knochens auskleiden. Dieser Effekt könnte, muss jedoch nicht zwingend, auf einer verminderten Proliferation beruhen. Andere Studien haben gezeigt, dass NRP2 in verschiedenen Karzinomen einen Effekt auf die Proliferation hat. Zum Beispiel hat Polavaram et al. (2021) gezeigt, dass die NRP2-Depletion in Prostatakarzinomzellen bei Knochenmetastasen die Proliferation beeinträchtigt. Außerdem wurde durch NRP2-KD in Adenokarzinomzellen des Pankreas sowie in Magen- und Kolorektalkarzinomen das Zellüberleben sowie das Tumorwachstum reduziert (Dallas et al., 2008; Gray et al., 2008). Wang et al. (2020) konnten zeigen, dass die Hemmung von Nrp2 durch MicroRNA-377-3p die Proliferation und Migration vaskulärer glatter Muskelzellen signifikant reduziert (Wang et al., 2020).

Aufgrund der widersprüchlichen Ergebnisse der Proliferations- und Viabilitätsexperimente im Vergleich zu den Literaturangaben ist es erforderlich, den Effekt von NRP2 auf verschiedene physiologische Zelltypen, insbesondere verschiedene Knochenzellen, auf Proliferation und Viabilität weiter zu untersuchen.

#### 4.2 Nrp2-Effekt auf die Differenzierung

#### 4.2.1 Nrp2-Effekt auf die Mineralisierung

Die Ergebnisse der Alizarinrot-Färbung zeigten, dass osteogen behandelte Nrp2-KO-Klone im Vergleich zu osteogen behandelten Nrp2-WT-Zellen eine geringere Mineralisierung aufwiesen. In der Studie von Vosbeck et al. (2024) wurden ähnliche Ergebnisse an einem anderen Nrp2-KO-Klon erhoben. Es wurde gezeigt, dass die Differenzierung (Alizarinrot-Quantifizierung) an Tag 21 bei osteogen differenzierten Nrp2-KO-Zellen und unbehandelten Nrp2-KO-Zellen keinen Unterschied aufwies, im Gegensatz zu den osteogen differenzierten WT-Zellen im Vergleich zu den unbehandelten WT-Zellen.

Verlinden et al. (2013) haben gezeigt, dass die Abwesenheit von Nrp2 die osteoblastische Differenzierung in vitro nicht verhinderte und dass die Mineralisierung durch Nrp2 nicht beeinflusst wurde. Dies könnte zum einen daran liegen, dass das Versuchsmodell unterschiedlich ist und dass die verwendeten Zelllinien für das Experiment auch unterschiedlich sind, nämlich Zellen, die aus dem Knochenmark von Nrp2-KO-Mäusen isoliert wurden (BMSC). Zum anderen könnte es daran liegen, dass die Zellzahl der Nrp2-KO-Zellen während der Differenzierung abnimmt, was zu einem geringeren Matrixaufbau und einer geringeren Mineralisierung führt. Diese Annahme wird auch durch die Ergebnisse von Verlinden et al. (2013) gestützt. Diese Ergebnisse basieren auf Messungen der Zellzahl von Osteoblasten nach Hämatoxylin-Eosin-Färbung auf der Knochenoberfläche mittels Knochenhistomorphometrie, was bedeutet, dass die Zellzahlbestimmung aus einem in vivo Experiment erfolgte. Allerdings berichten Verlinden et al. (2013), dass die osteogene Differenzierung der Nrp2-KO-BMSC in vitro durch Analysen der Mineralisierung, der ALP-Aktivität sowie der Anzahl und Größe der Kolonien normal war.

Die Ergebnisse der Arbeit von Vosbeck et al. (2024) zeigen in vivo eine veränderte Morphologie der Osteoblasten in Nrp2-KO-Mäusen. Es wurden histologische Knochenschnitte aus dem Femur erwachsener Nrp2-KO-Mäusen untersucht. Die Osteoblasten zeigten eine unreifere Morphologie und eine Verminderung der Mineralisierung. Dies könnte auch die in dieser Arbeit erhobenen Ergebnisse zur Mineralisierung erklären. Zukünftig sollen die in vivo Ergebnisse aus den Arbeiten von Verlinden et al. (2013), Verlinden et al. (2023) und Vosbeck et al. (2024) weiter untersucht

werden, und es soll eine Methode etabliert werden, die sowohl die Morphologie als auch die Zellzahl differenzierter Osteoblasten untersucht.

#### 4.2.2 Nrp2-Effekt auf die Differenzierungsmarker

Die Ergebnisse der qRT-PCR zeigten, dass die Nrp2-KO im Vergleich zu Nrp2-WT die Genexpression der Differenzierungsmarker nicht beeinflusst, mit Ausnahme der Bglap-Genexpression an Tag 0. Die relative Bglap-Genexpression war an Tag 0 bei Nrp2-KO höher als bei Nrp2-WT.

In der Literatur wurde gezeigt, dass bei MC3T3-E1-Subclone-4-Zellen nur bestimmte Differenzierungsmarker (u.a. Bglap) signifikant unter osteogener Behandlung hochreguliert wurden (Hwang und Horton, 2019; Wang et al., 1999).

Hwang und Horton (2019) haben beispielsweise gezeigt, dass bei MC3T3-E1-Subclone-4-Zellen die Gene Bglap, Spp1, Col2a1, Phex, Itga2, Igfr1, Sp7 und Tgfb1 signifikant unter osteogener Behandlung hochreguliert wurden. Die qRT-PCR-Ergebnisse untersuchten Differenzierungsmarker sind vergleichbar mit den Ergebnissen in der Literatur, und die Bglap-Genexpression ist im Laufe der Behandlung gestiegen. Die Opg (Tnfrsf11b)-Genexpression in den behandelten Zellen ist ebenfalls im Vergleich zu den unbehandelten Zellen gestiegen. Dies deutet darauf hin, dass die Zellen zu Osteoblasten differenziert wurden. Außerdem waren die behandelten Zellen im Vergleich zu den unbehandelten Zellen stärker mineralisiert. Dies ist ein weiterer Hinweis darauf, dass die Differenzierung erfolgreich war. Es konnten nur wenige neue Erkenntnisse über den Nrp2-Effekt auf die Differenzierungsmarker in Osteoblasten gewonnen werden, da die hier untersuchten Differenzierungsmarker teilweise nicht mit der verwendeten Zelllinie kompatibel sind. Alternativ wäre es möglich, andere Differenzierungsmarker auszuwählen, die Unterschiede im Verlauf der Behandlung mit der MC3T3-E1-Subclone-4 zeigen, wie zum Beispiel die oben beschriebenen Differenzierungsmarker aus der Literatur. Es wäre auch möglich, den Nrp2-Effekt auf Differenzierungsmarker in anderen Zelllinien zu untersuchen. Hierfür könnten eine der zahlreichen etablierten in vitro-Modelle von Osteoblasten geeignet sein. Beispielsweise nutzten Verlinden et al. (2013) Knochenmarkstromazellen (BMSC), während Hwang und Horton (2019) primäre Osteoblasten der Kalvaria (calvarial osteoblasts, COB) einsetzten.

#### 4.2.3 Nrp2-Effekt auf die alkalische Phosphatase

Die Experimente zur ALP-Enzymaktivität zeigten, dass die behandelten Zellen eine erhöhte Aktivität aufwiesen. Allerdings lassen die vorliegenden Daten keine belastbare Aussage über einen möglichen Einfluss von Nrp2 auf die ALP-Aktivität zu. Zum einen konnten wir die Färbungsintensität nicht quantifizieren. Zum anderen zeigte die unbehandelte Nrp2-KO-70-Zellen eine stärkere Färbungsintensität im Vergleich zu den anderen unbehandelten Zellen. Hwang und Horton (2019) haben gezeigt, dass die unbehandelten MC3T3-E1-Subclone-4-Zellen einen hohen Basalwert der ALP-Enzymaktivität aufweisen und dass die ALP-Enzymaktivität in den behandelten Zellen nicht signifikant ansteigt. Klonale Effekte könnten der Grund dafür sein, dass Nrp2-KO-70 einen hohen Basalwert der ALP-Enzymaktivität aufweist. Generell könnte eine andere Methode, bei der die Färbungsintensität bzw. die Enzymaktivität gemessen werden kann, aussagekräftiger sein, da dadurch die Aktivität des ALP-Enzyms objektiviert und besser verglichen werden kann. Zum Beispiel wäre die beschriebene Methode aus der Arbeit von Hwang und Horton (2019) geeignet. Außerdem werden in den Arbeiten von Olmsted-Davis et al. (2003), Zunich et al. (2012) und Baschant et al. (2016) weitere Methoden beschrieben.

#### 4.3 Nrp2 und Sekretomanalyse

Die Daten des Zytokin-Arrays zeigten ein unterschiedliches Zytokin-Muster zwischen den Nrp2-WT-Zellen und den Nrp2-KO-Zellen. Einige interessante Zytokine könnten den Effekt von Nrp2-KO möglicherweise erklären. Zum Beispiel wurde in verschiedenen Publikationen beschrieben, dass Igfbp 5 die osteoblastische Differenzierung und Proliferation stimuliert (Bautista et al., 1991; Richman et al., 1999; Salih et al., 2005; Mukherjee und Rotwein, 2007). Die Nrp2-KO-Zellen sezernieren weniger Igfbp5 im Vergleich zu den Nrp2-WT-Zellen. Ein weiteres interessantes Zytokin ist Opg (Tnfrsf11b), das die Osteoklastogenese hemmt. Unsere Ergebnisse zeigen eine vermehrte Sekretion von Opg (Tnfrsf11b) in den Nrp2-KO-Zellen. Diese Ergebnisse stehen im Widerspruch zu den Ergebnissen von Verlinden et al. (2013), die eine vermehrte Anzahl von Osteoklasten in den Nrp2-KO-Mäusen zeigen. Diese Beobachtung wirft die Frage auf, wie die in vitro Ergebnisse mit den in vivo Ergebnissen verglichen werden können und inwieweit der

Nrp2-KO-Effekt in den Osteoblasten durch die Kokultivierung mit Osteoklasten beeinflusst wird.

Serpin F1/Pedf ist in einer der Nrp2-KO-70-Zellen niedriger, aber in den Nrp2-KO-83-Zellen im Vergleich zu Nrp2-WT höher vorhanden. Dieses gegensätzliche Ergebnis wird durch den klonalen Effekt verursacht, der in unseren Experimenten bei vielen Versuchen deutlich erkennbar ist. Serpin F1/Pedf stimuliert die osteoblastische Differenzierung (He et al., 2015; Li et al., 2013; Li et al., 2015). Dies könnte eine Erklärung für die Ergebnisse des Nrp2-KO sein. Es wäre interessant zu untersuchen, ob der Effekt von Nrp2 durch Serpin F1/Pedf vermittelt wird.

#### 4.4 Nrp2 und RNA-Sequenzierungsanalyse

In der RNA-Sequenzierungsanalyse wurden Markergene auf einer anderen Ebene betrachtet. Die Expressionsmuster der in der RNA-Sequenzierung untersuchten Differenzierungsmarkergene stimmen mit den qRT-PCR-Ergebnissen überein.

Unerwarteterweise wurde jedoch zu einem späteren Zeitpunkt in der RNA-Sequenzierung das Vorhandensein von Nrp2 detektiert. Die relevanten Ergebnisse der Experimente lassen sich trotzdem auf die reduzierte Nrp2-Expression zurückführen, die durch CRISPR/Cas9-vermittelten Nrp2-Ablation innerhalb des Nrp2-Genlokus auf genomischer Ebene entstanden. Die Nrp2-Ablation könnte auf nur einem Allel passiert sein oder andere Ursachen haben.

Einige Überlegungen könnten angestellt werden, um die widersprüchlichen Ergebnisse zwischen der RNA-Seq., dem Western Blot und der Genotypisierung zu erklären. Die RNA-Seq. wurde zu einem späteren Zeitpunkt durchgeführt als der Western Blot und die Genotypisierung, was auf mögliche Kontamination hinweisen könnte. Eine weitere Überlegung wäre, dass der Antikörper für Nrp2, der im Western Blot verwendet wurde, möglicherweise nur einen bestimmten Teil des Nrp2-Proteins erkennt. Die Firma, die den Antikörper bereitstellte, konnte uns leider nicht genau das Epitop des Antikörpers mitteilen. Da im Western Blot Nrp2-ähnliche Banden in manchen Klonen detektiert wurden, wurde eine Genotypisierung (TOPO-Klonierung) durchgeführt, um zu verstehen, was auf der DNA-Ebene mit dem Nrp2-Gen geschieht.

Die Ergebnisse zeigten, dass in einigen Nrp2-Klonen nur eine Teil-Deletion an einem Allel auftritt, während auf dem anderen Allel ein Stopcodon vorliegt. Im Gegensatz dazu liegt

in den für diese Arbeit ausgewählten Nrp2-Klonen ein Stopcodon in beiden Allelen vor. Warum dies trotz der etablierten CRISPR/Cas9-Knockout-Methode auftritt, ist leider eine offene Frage, die im Rahmen dieser Arbeit nicht beantwortet werden konnte. Interessanterweise zeigten MC3T3-E1-Zellen in vergleichbaren Knockout-Experimenten ein ähnliches Verhalten, da einige CRISPR/Cas9-generierte KO-Klone weiterhin Nrp2-Protein exprimierten. Nach Ausschluss einer Kontamination wurde daraus geschlossen, dass die CRISPR/Cas9-vermittelte Nrp2-Ablation in diesen Fällen nicht vollständig in beiden Nrp2-Allelen erfolgt war. Dies konnte in unserer Arbeit nicht angenommen werden, da zu Beginn das Nrp2-Protein in den ausgewählten Klonen nicht nachweisbar war.

#### 4.5 Nrp2 als potenzieller Therapieansatz

Zusammenfassend lässt sich schlussfolgern, dass Nrp2 in Osteoblasten einen erkennbaren Einfluss hat. Die Beobachtungen legen nahe, dass Nrp2 keinen Einfluss auf die Proliferation, Viabilität und die untersuchten Differenzierungsmarker hat. Allerdings zeigten unsere Ergebnisse eine reduzierte Mineralisierung in den Nrp2-depletierten Zellen, was mit den in vivo-Daten von Verlinden et al. (2013) übereinstimmt. Sie erklären die verringerte Anzahl von Osteoblasten und die erhöhte Anzahl von Osteoklasten als möglichen Grund. Die von Vosbeck et al. (2024) in vivo beschriebene veränderte Morphologie interpretieren wir als einen möglichen Mechanismus, der zur verminderten Mineralisierungsfähigkeit in Nrp2-depletierten Zellen beiträgt. Allerdings ist an dieser Stelle anzumerken, dass die Morphologie in unserer in vitro Arbeit nicht explizit untersucht wurde. Insgesamt ist die Rolle von Nrp2 im Knochen bzw. in Osteoblasten noch nicht vollständig verstanden und erfordert weitere Forschung in diesem Bereich.

Prostatakrebsknochenmetastasen gehen häufig mit osteoblastischen Veränderungen einher, die durch eine pathologische Zunahme der Knochenneubildung gekennzeichnet sind und das Risiko für Frakturen erhöhen. Unsere Ergebnisse legen nahe, dass eine Blockierung von Nrp2 die Mineralisierung reduziert. Daraus ergibt sich die Hypothese, dass eine gezielte Nrp2-Inhibition nicht nur einen therapeutischen Vorteil bei der Behandlung von Knochenmetastasen bieten könnte, sondern auch die überschießende Knochenbildung Metastasenarealen hemmen und damit zur an Prävention osteoblastischer Frakturen beitragen würde. Es wäre interessant, die Rolle von Nrp2 während Kokultivierung von Prostatakrebszellen und Osteoblasten zu untersuchen. Zum

einen ließe sich die Wirkung von Nrp2-depletiertem konditioniertem Prostatakrebsmedium auf die Osteoblastendifferenzierung untersuchen. Spekulativ könnte dies auch zu einer Hemmung der Mineralisierung führen. Zum anderen wäre es interessant zu sehen, wie die Prostatakrebszellen auf die Nrp2-depletierten Osteoblasten mit ihrem veränderten Zytokin- bzw. Sekretionsmuster reagieren. Solche Untersuchungen könnten wertvolle Erkenntnisse darüber liefern, wie Nrp2 die Interaktion zwischen Tumorzellen und dem Knochenmikroenvironment beeinflusst und somit neue Ansätze für die therapeutische Behandlung von Knochenmetastasen bei Prostatakrebs eröffnen.

## 5. Zusammenfassung

Diese Dissertation untersucht die Rolle von Neuropilin-2 in der Osteogenese muriner Präosteoblasten. Ausgangspunkt war die Frage, ob eine Blockierung von Nrp2 in Knochenmetastasen des kastrationsresistenten Prostatakarzinoms einen potenziellen therapeutischen Nutzen haben könnte. Um diese Perspektive bewerten zu können, war es zunächst erforderlich, die Funktion von Nrp2 in Osteoblasten grundlegend zu charakterisieren. Zur Beantwortung dieser Fragestellung wurden verschiedene experimentelle Ansätze angewandt, darunter Analysen zur Proliferation, Viabilität, Mineralisierung, Expression osteoblastischer Differenzierungsmarker sowie zur Aktivität der alkalischen Phosphatase. Ergänzend wurden Sekretomanalysen und RNA-Sequenzierungen durchgeführt.

Die Ergebnisse zeigen, dass Nrp2 die osteoblastische Differenzierung beeinflusst, insbesondere durch eine reduzierte Mineralisierungskapazität. Während Genexpression der meisten Differenzierungsmarker durch die Nrp2-Depletion nicht signifikant verändert wurde, wies Bglap bereits basal eine erhöhte Expression auf. Auch in der Sekretomanalyse zeigten sich Unterschiede: So waren beispielsweise Osteoprotegerin (Opg) und Osteopontin (Opn) in den Knockout-Klonen leicht erhöht. Zusammenfassend deuten die Ergebnisse darauf hin, dass Nrp2 eine funktionelle Rolle in der Osteoblastendifferenzierung einnimmt, vor allem durch die Regulation der Mineralisierung. Diese Erkenntnisse könnten die Grundlage für neue therapeutische Ansätze zur Behandlung von Knochenmetastasen des kastrationsresistenten Prostatakarzinoms bilden, insbesondere durch eine gezielte Blockierung von Nrp2. Zukünftige Studien sollten die Rolle von Nrp2 in Kokulturen von Prostatakrebszellen und Osteoblasten untersuchen, um die wechselseitigen Interaktionen und die Auswirkungen einer Nrp2-Depletion auf beide Zelltypen besser zu verstehen.

# 6. Abbildungsverzeichnis

| Abbildung 1: Schematische Darstellung der Neuropilinstruktur                     | 15 |
|----------------------------------------------------------------------------------|----|
| Abbildung 2: Nrp2-Proteinsequenz                                                 | 45 |
| Abbildung 3: Cas9-Überprüfung                                                    | 46 |
| Abbildung 4: Nrp2- Überprüfung                                                   | 47 |
| Abbildung 5: Viabilitätsassay und Proliferationsassay                            | 48 |
| Abbildung 6: Alizarinrot-Färbung (Mineralisierung)                               | 49 |
| Abbildung 7: Fold Change der relativen Genexpression von Differenzierungsmarkern | 51 |
| Abbildung 8: Bglap-Genexpression                                                 | 52 |
| Abbildung 9: Col1a1-Genexpression                                                | 53 |
| Abbildung 10: Opg-Genexpression                                                  | 54 |
| Abbildung 11: Runx2-Genexpression                                                | 55 |
| Abbildung 12: Alkalische Phosphatase Enzymaktivität (Tag 6)                      | 56 |
| Abbildung 13: Zytokin-Array                                                      | 57 |
| Abbildung 14: Nrp2-Expression                                                    | 58 |
| Abbildung 15: Osteblastische Differenzierungsmarker Expression                   | 59 |
| Abbildung 16: Expression weiterer osteoblastischer Differenzierungsmarker        | 59 |

## 7. Tabellenverzeichnis

| Tabelle 1: Verwendete ∠elllinien                           | 20 |
|------------------------------------------------------------|----|
| Tabelle 2: Verwendete Zellkulturmedien, Zusätze und Puffer | 21 |
| Tabelle 3: Verwendete Chemikalien                          | 22 |
| Tabelle 4: Verwendete Kits                                 | 24 |
| Tabelle 5: Verwendete Zellkulturmaterialien                | 25 |
| Tabelle 6: Verwendete Primer                               | 27 |
| Tabelle 7: Verwendete Antikörper                           | 28 |
| Tabelle 8: Verwendete Geräte                               | 29 |
| Tabelle 9: Verwendete Software                             | 31 |
| Tabelle 10: PCR-Reaktionmischung                           | 34 |
| Tabelle 11: PCR-Programm                                   | 34 |
| Tabelle 12: Verdünnungsreihe von BSA-Proteinstandards      | 35 |
| Tabelle 13: 8 %iges Trenngel                               | 36 |
| Tabelle 14: 6 %iges Sammelgel                              | 36 |
| Tabelle 15: Laufpuffer (10x)                               | 37 |
| Tabelle 16: Transferpuffer                                 | 37 |
| Tabelle 17: cDNA-Synthese Mastermix                        | 39 |
| Tabelle 18: cDNA-Synthese PCR-Protokoll                    | 39 |
| Tabelle 19: qRT-PCR-Mastermix                              | 40 |
| Tabelle 20: qRT-PCR-Protokoll                              | 40 |

#### 8. Literaturverzeichnis

Abida W, Cyrta J, Heller G, Prandi D, Armenia J, Coleman I, Cieslik M, Benelli M, Robinson D, Van Allen EM, Sboner A, Fedrizzi T, Mosquera JM, Robinson BD, De Sarkar N, Kunju LP, Tomlins S, Wu YM, Nava Rodrigues D, Loda M, Gopalan A, Reuter VE, Pritchard CC, Mateo J, Bianchini D, Miranda S, Carreira S, Rescigno P, Filipenko J, Vinson J, Montgomery RB, Beltran H, Heath EI, Scher HI, Kantoff PW, Taplin ME, Schultz N, deBono JS, Demichelis F, Nelson PS, Rubin MA, Chinnaiyan AM, Sawyers CL. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci USA 2019; 116: 11428–11436

Ara J, Bannerman P, Shaheen F, Pleasure DE. Schwann cell-autonomous role of neuropilin-2. J Neurosci Res 2005; 79: 468–475

Autzen P, Robson CN, Bjartell A, Malcolm AJ, Johnson MI, Neal DE, Hamdy FC. Bone morphogenetic protein 6 in skeletal metastases from prostate cancer and other common human malignancies. Br J Cancer 1998; 78: 1219–1223

Bagri A, Tessier-Lavigne M, Watts RJ. Neuropilins in tumor biology. Clin Cancer Res 2009; 15:1860–1864

Baschant U, Rauner M, Balaian E, Weidner H, Roetto A, Platzbecker U, Hofbauer LC. Wnt5a is a key target for the pro-osteogenic effects of iron chelation on osteoblast progenitors. Haematologica 2016; 101: 1499–1507

Bautista CM, Baylink DJ, Mohan S. Isolation of a novel insulin-like growth factor (IGF) binding protein from human bone: a potential candidate for fixing IGF-II in human bone. Biochem Biophys Res Commun 1991; 176: 756–763

Bielenberg DR, Pettaway CA, Takashima S, Klagsbrun M. Neuropilins in neoplasms: Expression, regulation, and function. Exp Cell Res 2006; 312: 584–593

Bill-Axelson A, Holmberg L, Filén F, Ruutu M, Garmo H, Busch C, Nordling S, Häggman M, Andersson SO, Bratell S, Spångberg A, Palmgren J, Adami HO, Johansson JE, Scandinavian Prostate Cancer Group Study Number 4. Radical prostatectomy versus watchful waiting in localized prostate cancer: the Scandinavian prostate cancer group-4 randomized trial. J Natl Cancer Inst 2008; 100: 1144–1154

Bill-Axelson A, Holmberg L, Ruutu M, Garmo H, Stark JR, Busch C, Nordling S, Häggman M, Andersson SO, Bratell S, Spångberg A, Palmgren J, Steineck G, Adami HO, Johansson JE, SPCG-4 Investigators. Radical prostatectomy versus watchful waiting in early prostate cancer. N Engl J Med 2011; 364: 1708–1717

Böcker W, Denk H, Heitz PU, Moch H, Hölfer G, Kreipe H (Hrsg.). Pathologie. München: Elsevier Urban und Fischer, 2012

Borkowetz A, Froehner M, Rauner M, Conrad S, Erdmann K, Mayr T, Datta K, Hofbauer LC, Baretton GB, Wirth M, Fuessel S, Toma M, Muders MH. Neuropilin-2 is an independent prognostic factor for shorter cancer-specific survival in patients with acinar adenocarcinoma of the prostate. Int J Cancer 2020; 146: 2619–2627

Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003; 423: 337–342

Candas B, Cusan L, Gomez JL, Diamond P, Suburu RE, Lévesque J, Brousseau G, Bélanger A, Labrie F. Evaluation of prostatic specific antigen and digital rectal examination as screening tests for prostate cancer. Prostate 2000; 45: 19–35

Caunt M, Mak J, Liang WC, Stawicki S, Pan Q, Tong RK, Kowalski J, Ho C, Reslan HB, Ross J, Berry L, Kasman I, Zlot C, Cheng Z, Le Couter J, Filvaroff EH, Plowman G, Peale F, French D, Carano R, Koch AW, Wu Y, Watts RJ, Tessier-Lavigne M, Bagri A. Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell 2008; 13: 331–342

Chen H, Chédotal A, He Z, Goodman CS, Tessier-Lavigne M. Neuropilin-2, a Novel Member of the Neuropilin Family, Is a High Affinity Receptor for the Semaphorins Sema E and Sema IV but Not Sema III. Neuron 1997; 19: 547–559

Christakos S. Vitamin D: A Critical Regulator of Intestinal Physiology. JBMR Plus 5 2021; 5: e10554

Cohen T, Gluzman-Poltorak Z, Brodzky A, Meytal V, Sabo E, Misselevich I, Hassoun M, Boss JH, Resnick M, Shneyvas D, Eldar S, Neufeld G. Neuroendocrine Cells along the Digestive Tract Express Neuropilin-2. Biochem Biophys Res Commun 2001; 284: 395–403

Cohen T, Herzog Y, Brodzky A, Greenson JK, Eldar S, Gluzman-Poltorak Z, Neufeld G, Resnick MB. Neuropilin-2 is a novel marker expressed in pancreatic islet cells and endocrine pancreatic tumours. J Pathol 2002; 198: 77–82

Colnot C, De La Fuente L, Huang S, Hu D, Lu C, St-Jacques B, Helms JA. Indian hedgehog synchronizes skeletal angiogenesis and perichondrial maturation with cartilage development. Development 2005; 132: 1057–1067

Croucher PI, McDonald MM, Martin TJ. Bone metastasis: the importance of the neighbourhood. Nat Rev Cancer 2016; 16: 373–386

Dallas NA, Gray MJ, Xia L, Fan F, van Buren G, Gaur P, Samuel S, Lim SJ, Arumugam T, Ramachandran V, Wang H, Ellis LM. Neuropilin-2-mediated tumor growth and angiogenesis in pancreatic adenocarcinoma. Clin Cancer Res 2008; 14: 8052–8060

Datta K, Muders M, Zhang H, Tindall DJ. Mechanism of lymph node metastasis in prostate cancer. Future Oncol 2010; 6: 823–836

de Paulis A, Prevete N, Fiorentino I, Rossi FW, Staibano S, Montuori N, Ragno P, Longobardi A, Liccardo B, Genovese A, Ribatti D, Walls AF, Marone G. Expression and

functions of the vascular endothelial growth factors and their receptors in human basophils. J Immunol 2006; 177: 7322–7331

Dutta S, Roy S, Polavaram NS, Stanton MJ, Zhang H, Bhola T, Hönscheid P, Donohue TM Jr, Band H, Batra SK, Muders MH, Datta K. Neuropilin-2 Regulates Endosome Maturation and EGFR Trafficking to Support Cancer Cell Pathobiology. Cancer Research 2016; 76: 418–428

Dutta S, Polavaram NS, Islam R, Bhattacharya S, Bodas S, Mayr T, Roy S, Albala SAY, Toma MI, Darehshouri A, Borkowetz A, Conrad S, Fuessel S, Wirth M, Baretton GB, Hofbauer LC, Ghosh P, Pienta KJ, Klinkebiel DL, Batra SK, Muders MH, Datta K. Neuropilin-2 regulates androgen-receptor transcriptional activity in advanced prostate cancer. Oncogene 2022; 41: 3747–3760

Ellis LM. The role of neuropilins in cancer. Mol Cancer Ther 2006; 5: 1099–1107

Favier B, Alam A, Barron P, Bonnin J, Laboudie P, Fons P, Mandron M, Herault JP, Neufeld G, Savi P, Herbert JM, Bono F. Neuropilin-2 interacts with VEGFR-2 and VEGFR-3 and promotes human endothelial cell survival and migration. Blood 2006; 108: 1243–1250

Ferguson CM, Miclau T, Hu D, Alpern E, Helms JA. Common Molecular Pathways in Skeletal Morphogenesis and Repair. Ann N Y Acad Sci 1998; 857: 33–42

Gandaglia G, Abdollah F, Schiffmann J, Trudeau V, Shariat SF, Kim SP, Perrotte P, Montorsi F, Briganti A, Trinh QD, Karakiewicz PI, Sun M. Distribution of metastatic sites in patients with prostate cancer: A population-based analysis. Prostate 2014; 74: 210–216

Giger RJ, Cloutier JF, Sahay A, Prinjha RK, Levengood DV, Moore SE, Pickering S, Simmons D, Rastan S, Walsh FS, Kolodkin AL, Ginty DD, Geppert M. Neuropilin-2 Is Required In Vivo for Selective Axon Guidance Responses to Secreted Semaphorins. Neuron 2000; 25: 29–41

Gleave M, Hsieh JT, Gao CA, von Eschenbach AC, Chung LW. Acceleration of human prostate cancer growth in vivo by factors produced by prostate and bone fibroblasts. Cancer Res 1991; 51: 3753–3761

Goel HL, Chang C, Pursell B, Leav I, Lyle S, Xi HS, Hsieh CC, Adisetiyo H, Roy-Burman P, Coleman IM, Nelson PS, Vessella RL, Davis RJ, Plymate SR, Mercurio AM. VEGF/Neuropilin-2 Regulation of Bmi-1 and Consequent Repression of IGF-IR Define a Novel Mechanism of Aggressive Prostate Cancer. Cancer Discovery 2012; 2: 906–921

Gray MJ, Van Buren G, Dallas NA, Xia L, Wang X, Yang AD, Somcio RJ, Lin YG, Lim S, Fan F, Mangala LS, Arumugam T, Logsdon CD, Lopez-Berestein G, Sood AK, Ellis LM. Therapeutic targeting of neuropilin-2 on colorectal carcinoma cells implanted in the murine liver. J Natl Cancer Inst 2008; 100: 109–120

Gregory CA, Gunn WG, Peister A, Prockop DJ. An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem 2004; 329: 77–84

Guo HF, Vander Kooi CW. Neuropilin Functions as an Essential Cell Surface Receptor. J Biol Chem 2015; 290: 29120–29126

Halabi S, Kelly WK, Ma H, Zhou H, Solomon NC, Fizazi K, Tangen CM, Rosenthal M, Petrylak DP, Hussain M, Vogelzang NJ, Thompson IM, Chi KN, de Bono J, Armstrong AJ, Eisenberger MA, Fandi A, Li S, Araujo JC, Logothetis CJ, Quinn DI, Morris MJ, Higano CS, Tannock IF, Small EJ. Meta-Analysis Evaluating the Impact of Site of Metastasis on Overall Survival in Men With Castration-Resistant Prostate Cancer. J Clin Oncol 2016; 34: 1652–1659

Hamdy FC, Donovan JL, Lane JA, Mason M, Metcalfe C, Holding P, Davis M, Peters TJ, Turner EL, Martin RM, Oxley J, Robinson M, Staffurth J, Walsh E, Bollina P, Catto J, Doble A, Doherty A, Gillatt D, Kockelbergh R, Kynaston H, Paul A, Powell P, Prescott S, Rosario

DJ, Rowe E, Neal DE, Protect Study Group. 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer. N Engl J Med 2016; 375: 1415–1424

Handa A, Tokunaga T, Tsuchida T, Lee YH, Kijima H, Yamazaki H, Ueyama Y, Fukuda H, Nakamura M. Neuropilin-2 expression affects the increased vascularization and is a prognostic factor in osteosarcoma. Int J Oncol 2000; 17: 291–296

Harper J, Gerstenfeld LC, Klagsbrun M. Neuropilin-1 expression in osteogenic cells: Down-regulation during differentiation of osteoblasts into osteocytes. J Cell Biochem 2001; 81: 82–92

Harris R, Lohr KN. Screening for prostate cancer: an update of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med 2002; 137: 917–929

Harris SE, Harris MA, Mahy P, Feng JQ, Mundy GR, Wozney J. Expression of bone morphogenetic protein messenger RNAs by normal rat and human prostate and prostate cancer cells. Prostate 1994; 24: 204–211

He X, Cheng R, Benyajati S, Ma J. PEDF and its roles in physiological and pathological conditions: implication in diabetic and hypoxia-induced angiogenic diseases. Clin Sci (Lond) 2015; 128: 805–823

He Z, Tessier-Lavigne M. Neuropilin Is a Receptor for the Axonal Chemorepellent Semaphorin III. Cell 1997; 90: 739–751

Hecht J, Seitz V, Urban M, Wagner F, Robinson PN, Stiege A, Dieterich C, Kornak U, Wilkening U, Brieske N, Zwingman C, Kidess A, Stricker S, Mundlos S. Detection of novel skeletogenesis target genes by comprehensive analysis of a Runx2-/- mouse model. Gene Expr Patterns 2007; 7: 102–112

Hess KR, Varadhachary GR, Taylor SH, Wei W, Raber MN, Lenzi R, Abbruzzese JL. Metastatic patterns in adenocarcinoma. Cancer 2006; 106: 1624–1633

Hirata T, Takagi S, Fujisawa H. The membrane protein A5, a putative neuronal recognition molecule, promotes neurite outgrowth. Neurosci Res 1993; 17: 159–169

Hughes-Fulford M, Li CF. The role of FGF-2 and BMP-2 in regulation of gene induction, cell proliferation and mineralization. J Orthop Surg Res 2011; 6: 8

Hwang PW, Horton JA. Variable osteogenic performance of MC3T3-E1 subclones impacts their utility as models of osteoblast biology. Sci Rep 2019; 9: 8299

Islam R, Mishra J, Bodas S, Bhattacharya S, Batra SK, Dutta S, Datta K. Role of Neuropilin-2-mediated signaling axis in cancer progression and therapy resistance. Cancer Metastasis Rev 2022; 41: 771–787

Karkkainen MJ, Saaristo A, Jussila L, Karila KA, Lawrence EC, Pajusola K, Bueler H, Eichmann A, Kauppinen R, Kettunen, MI, Ylä-Herttuala S, Finegold DN, Ferrell RE, Alitalo K. A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci USA 2001; 98: 12677–12682

Kawasaki T, Kitsukawa T, Bekku Y, Matsuda Y, Sanbo M, Yagi T, Fujisawa H. A requirement for neuropilin-1 in embryonic vessel formation. Development 1999; 126: 4895–4902

Kawakami T, Tokunaga T, Hatanaka H, Kijima H, Yamazaki H, Abe Y, Osamura Y, Inoue H, Ueyama Y, Nakamura M. Neuropilin 1 and neuropilin 2 co-expression is significantly correlated with increased vascularity and poor prognosis in nonsmall cell lung carcinoma. Cancer 2002; 95: 2196–2201

Khayal LA, Grünhagen J, Provazník I, Mundlos S, Kornak U, Robinson PN, Ott CE. Transcriptional profiling of murine osteoblast differentiation based on RNA-seq expression analyses. Bone 2018; 113: 29–40

Kim EJ, Park HY, Yaar M, Gilchrest BA. Modulation of vascular endothelial growth factor receptors in melanocytes. Exp Dermatol 2005; 14: 625–633

Kim HJ, Kim JH, Bae SC, Choi JY, Kim HJ, Ryoo HM. The Protein Kinase C Pathway Plays a Central Role in the Fibroblast Growth Factor-stimulated Expression and Transactivation Activity of Runx2. J Biol Chem 2003; 278: 319–326

Kirby M, Hirst C, Crawford ED. Characterising the castration-resistant prostate cancer population: a systematic review. Int J Clin Pract 2011; 65: 1180–1192

Klagsbrun M, Takashima S, Mamluk R. The Role of Neuropilin in Vascular and Tumor Biology. Adv Exp Med Biol 2013; 515: 33-48

Klotz L. Active surveillance for prostate cancer: for whom? J Clin Oncol 2005; 23: 8165–8169

Kolodkin AL, Levengood DV, Rowe EG, Tai YT, Giger RJ, Ginty DD. Neuropilin Is a Semaphorin III Receptor. Cell 1997; 90: 753–762

Lee KS, Kim HJ, Li QL, Chi XZ, Ueta C, Komori T, Wozney JM, Kim EG, Choi JY, Ryoo HM, Bae SC. Runx2 Is a Common Target of Transforming Growth Factor β1 and Bone Morphogenetic Protein 2, and Cooperation between Runx2 and Smad5 Induces Osteoblast-Specific Gene Expression in the Pluripotent Mesenchymal Precursor Cell Line C2C12. Mol Cell Biol 2000; 20: 8783–8792

Li F, Song N, Tombran-Tink J, Niyibizi C. Pigment epithelium-derived factor enhances differentiation and mineral deposition of human mesenchymal stem cells. Stem Cells 2013; 31: 2714–2723

Li F, Song N, Tombran-Tink J, Niyibizi C. Pigment epithelium derived factor suppresses expression of Sost/Sclerostin by osteocytes: implication for its role in bone matrix mineralization. J Cell Physiol 2015; 230: 1243–1249

Logothetis CJ, Lin SH. Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer 2005; 5: 21–28

Long MA, Husband JE. Features of unusual metastases from prostate cancer. Br J Radiol 1999; 72: 933–941

Lüllmann-Rauch R (Hrsg.). Taschenlehrbuch Histologie. Stuttgart: Thieme, 2012

Lund L, Borre M, Jacobsen J, Sørensen HT, Nørgaard M. Impact of comorbidity on survival of Danish prostate cancer patients, 1995-2006: a population-based cohort study. Urology 2008; 72: 1258–1262

Macedo F, Ladeira K, Pinho F, Saraiva N, Bonito N, Pinto L, Goncalves F. Bone Metastases: An Overview. Oncol Rev 2017; 11: 321

Marquardt H, Lioubin MN, Ikeda T. Complete amino acid sequence of human transforming growth factor type beta 2. J Biol Chem 1987; 262: 12127–12131.

Matkar PN, Jong ED, Ariyagunarajah R, Prud'homme GJ, Singh KK, Leong-Poi H. Jack of many trades: Multifaceted role of neuropilins in pancreatic cancer. Cancer Med 2018; 7: 5036–5046

Mistry K, Cable G. Meta-analysis of prostate-specific antigen and digital rectal examination as screening tests for prostate carcinoma. J Am Board Fam Pract 2003; 16: 95–101

Muders MH, Zhang H, Wang E, Tindall DJ, Datta K. Vascular endothelial growth factor-C protects prostate cancer cells from oxidative stress by the activation of mammalian target of rapamycin complex-2 and AKT-1. Cancer Res 2009; 69: 6042–6048

Mukherjee A, Rotwein P. Insulin-like growth factor binding protein-5 in osteogenesis: Facilitator or Inhibitor? Growth Horm IGF Res 2007; 17: 179–185

Nakamichi Y, Udagawa N, Horibe K, Mizoguchi T, Yamamoto Y, Nakamura T, Hosoya A, Kato S, Suda T, Takahashi N. VDR in Osteoblast-Lineage Cells Primarily Mediates Vitamin D Treatment-Induced Increase in Bone Mass by Suppressing Bone Resorption. J Bone Miner Res 2017; 32: 1297–1308

Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, Crombrugghe B de. The Novel Zinc Finger-Containing Transcription Factor Osterix Is Required for Osteoblast Differentiation and Bone Formation. Cell 2002; 108: 17–29

Napolitano V, Tamagnone L. Neuropilins Controlling Cancer Therapy Responsiveness. Int J Mol Sci 2019; 20: E2049

Neufeld G, Kessler O (Hrsg.). The Neuropilins: Role and Function in Health and Disease. Cham: Springer, 2017

Niland S, Eble JA. Neuropilins in the Context of Tumor Vasculature. Int J Mol Sci 2019; 20: 639

Nørgaard M, Jensen AØ, Jacobsen JB, Cetin K, Fryzek JP, Sørensen HT. Skeletal related events, bone metastasis and survival of prostate cancer: a population based cohort study in Denmark (1999 to 2007). J Urol 2010; 184: 162–167.

Olmsted-Davis EA, Gugala Z, Camargo F, Gannon FH, Jackson K, Kienstra KA, Shine HD, Lindsey RW, Hirschi KK, Goodell MA, Brenner MK, Davis AR. Primitive adult hematopoietic stem cells can function as osteoblast precursors. Proc Natl Acad Sci USA 2003; 100: 15877–15882

Pellet-Many C, Frankel P, Jia H, Zachary I. Neuropilins: structure, function and role in disease. Biochem J 2008; 411: 211–226

Pike JW, Meyer MB, Lee SM, Onal M, Benkusky NA. The vitamin D receptor: contemporary genomic approaches reveal new basic and translational insights. J Clin Invest 2017; 127: 1146–1154

Polavaram NS, Dutta S, Islam R, Bag A.K, Roy S, Poitz D, Karnes J, Hofbauer LC, Kohli M, Costello BA, Jimenez R, Batra SK, Teply BA, Muders MH, Datta K. Tumor- and osteoclast-derived NRP2 in prostate cancer bone metastases. Bone Res 2021; 9: 24

Richman C, Baylink DJ, Lang K, Dony C, Mohan S. Recombinant Human Insulin-Like Growth Factor-Binding Protein-5 Stimulates Bone Formation Parameters in Vitro and in Vivo1. Endocrinology 1999; 140: 4699–4705

Romeo PH, Lemarchandel V, Tordjman R. Neuropilin-1 in the Immune System, in: Bagnard, D. (Ed.), Neuropilin: From Nervous System to Vascular and Tumor Biology, Advances in Experimental Medicine and Biology. Adv Exp Med Biol 2002; 515: 49–54

Rossignol M, Gagnon ML, Klagsbrun M. Genomic organization of human neuropilin-1 and neuropilin-2 genes: identification and distribution of splice variants and soluble isoforms. Genomics 2000; 70: 211–222

Rucci N, Teti A. Osteomimicry: how tumor cells try to deceive the bone. Front Biosci (Schol Ed) 2010; 2: 907–915

Ryynänen J, Kriebitzsch C, Meyer MB, Janssens I, Pike JW, Verlinden L, Verstuyf A. Class 3 semaphorins are transcriptionally regulated by 1,25(OH)2D3 in osteoblasts. J Steroid Biochem Mol Biol 2017; 173: 185–193

Salih DAM, Mohan S, Kasukawa Y, Tripathi G, Lovett FA, Anderson NF, Carter EJ, Wergedal JE, Baylink DJ, Pell JM. Insulin-Like Growth Factor-Binding Protein-5 Induces a Gender-Related Decrease in Bone Mineral Density in Transgenic Mice. Endocrinology 2005; 146: 931–940

Sanchez-Carbayo M, Socci ND, Lozano JJ, Li W, Charytonowicz E, Belbin TJ, Prystowsky MB, Ortiz AR, Childs G, Cordon-Cardo C. Gene discovery in bladder cancer progression using cDNA microarrays. Am J Pathol 2003; 163: 505–516

Shariat SF, Shalev M, Menesses-Diaz A, Kim IY, Kattan MW, Wheeler TM, Slawin KM. Preoperative Plasma Levels of Transforming Growth Factor Beta1 (TGF-β1) Strongly Predict Progression in Patients Undergoing Radical Prostatectomy. J Clin Oncol 2001; 19: 2856–2864

Sharma U, Pal D, Prasad R. Alkaline phosphatase: an overview. Indian J Clin Biochem 2014; 29: 269–278

Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. Neuropilin-1 Is Expressed by Endothelial and Tumor Cells as an Isoform-Specific Receptor for Vascular Endothelial Growth Factor. Cell 1998; 92: 735–745

Stacker SA, Achen MG, Jussila L, Baldwin ME, Alitalo K. Lymphangiogenesis and cancer metastasis. Nat Rev Cancer 2002; 2: 573–583

Stanton MJ, Dutta S, Zhang H, Polavaram NS, Leontovich AA, Hönscheid P, Sinicrope FA, Tindall DJ, Muders MH, Datta K. Autophagy Control by the VEGF-C/NRP-2 Axis in Cancer and Its Implication for Treatment Resistance. Cancer Res 2013; 73: 160–171

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021; 71: 209–249

Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet 2003; 4: 638–649

Udagawa N, Takahashi N, Yasuda H, Mizuno A, Itoh K, Ueno Y, Shinki T, Gillespie MT, Martin TJ, Higashio K, Suda T. Osteoprotegerin Produced by Osteoblasts Is an Important

Regulator in Osteoclast Development and Function\*. Endocrinology 2000; 141: 3478–3484

Verlinden L, Kriebitzsch C, Beullens I, Tan BK, Carmeliet G, Verstuyf A. Nrp2 deficiency leads to trabecular bone loss and is accompanied by enhanced osteoclast and reduced osteoblast numbers. Bone 2013; 55: 465–475

Verlinden L, Doms S, Janssens I, Meyer MB, Pike JW, Carmeliet G, Verstuyf A. Neuropilin 2 in osteoblasts regulates trabecular bone mass in male mice. Front Endocrinol (Lausanne) 2023; 14: 122302

Vinjamoori AH, Jagannathan JP, Shinagare AB, Taplin ME, Oh WK, Van den Abbeele AD, Ramaiya NH. Atypical metastases from prostate cancer: 10-year experience at a single institution. AJR Am J Roentgenol 2012; 199: 367–372

Vosbeck K, Förster S, Mayr T, Sahu A, Haddouti EM, Al-Adilee O, Körber RM, Bisht S, Muders MH, Nesic S, Buness A, Kristiansen G, Schildberg FA, Gütgemann I. Neuropilin2 in Mesenchymal Stromal Cells as a Potential Novel Therapeutic Target in Myelofibrosis. Cancers 2024; 16: 1924

Wang D, Christensen K, Chawla K, Xiao G, Krebsbach PH, Franceschi RT. Isolation and Characterization of MC3T3-E1 Preosteoblast Subclones with Distinct In Vitro and In Vivo Differentiation/Mineralization Potential. J Bone Miner Res 1999; 14: 893–903

Wang H, Wei Z, Li H, Guan Y, Han Z, Wang H, Liu B. MiR-377-3p inhibits atherosclerosis-associated vascular smooth muscle cell proliferation and migration via targeting neuropilin2. Biosci Rep 2020; 40: BSR20193425

Welsch U, Deller T (Hrsg.). Lehrbuch Histologie. München: Elsevier Urban und Fischer ,2010

Yang J, Fizazi K, Peleg S, Sikes CR, Raymond AK, Jamal N, Hu M, Olive M, Martinez LA, Wood CG, Logothetis CJ, Karsenty G, Navone NM. Prostate cancer cells induce osteoblast differentiation through a Cbfa1-dependent pathway. Cancer Res 2001; 61: 5652–5659

Yasuoka H, Kodama R, Tsujimoto M, Yoshidome K, Akamatsu H, Nakahara M, Inagaki M, Sanke T, Nakamura Y. Neuropilin-2 expression in breast cancer: correlation with lymph node metastasis, poor prognosis, and regulation of CXCR4 expression. BMC Cancer 2009; 9: 220

Yuan L, Moyon D, Pardanaud L, Bréant C, Karkkainen MJ, Alitalo K, Eichmann A. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 2002; 129: 4797–4806

Zhu H, Cai H, Tang M, Tang J. Neuropilin-1 is overexpressed in osteosarcoma and contributes to tumor progression and poor prognosis. Clin Transl Oncol 2014; 16: 732–738

Zunich SM, Valdovinos M, Douglas T, Walterhouse D, Iannaccone P, Lamm ML. Osteoblast-secreted collagen upregulates paracrine Sonic hedgehog signaling by prostate cancer cells and enhances osteoblast differentiation. Mol Cancer 2012; 11: 30

## 9. Erklärung zum Eigenanteil

Die Arbeit wurde am Institut für Pathologie unter der Betreuung von PD Dr. med. Michael Muders durchgeführt.

Die Konzeption der Arbeit erfolgte in Zusammenarbeit mit PD Dr. med. Michael Muders (Doktorvater) und Dr. Sarah Förster (Betreuerin).

Sämtliche Versuche wurden nach Einarbeitung durch Dr. Sarah Förster von mir eigenständig durchgeführt. Die Knockout-Klone wurden von Dr. Sarah Förster bereitgestellt. Die Auswertung der DNA-Sequenzierungsdaten erfolgte durch Dr. Thomas Mayr.

Die 3'-mRNA-Sequenzierung wurde durch die Next Generation Sequencing (NGS) Core Facility des Universitätsklinikums Bonn durchgeführt, die Auswertung der entsprechenden Daten durch die Bioinformatics Core Facility des Universitätsklinikums Bonn.

Das zur Auswertung verwendete Datenmaterial wurde eigenständig von mir generiert. Die statistische Auswertung erfolgte ebenfalls eigenständig durch mich.

Bei der Erstellung dieser Arbeit habe ich ChatGPT verwendet, um die Lesbarkeit und Sprache des Manuskripts zu verbessern. Nach der Verwendung dieses Tools habe ich die entsprechenden Passagen überprüft und bearbeitet und übernehme die volle Verantwortung für den Inhalt der veröffentlichten Dissertationsschrift.

Ich versichere, die Dissertationsschrift selbständig verfasst zu haben und keine anderen als die von mir angegebenen Quellen und Hilfsmittel verwendet zu haben.

85

## 10. Veröffentlichungen

Teile der Inhalte der vorliegenden Dissertationsschrift wurden bereits in der folgenden Publikation veröffentlicht:

Vosbeck K, Förster S, Mayr T, Sahu A, Haddouti EM, Al-Adilee O, Körber RM, Bisht S, Muders MH, Nesic S, Buness A, Kristiansen G, Schildberg FA, Gütgemann I. Neuropilin2 in Mesenchymal Stromal Cells as a Potential Novel Therapeutic Target in Myelofibrosis. Cancers 2024; 16: 1924

https://doi.org/10.3390/cancers16101924

## 11. Danksagung

An dieser Stelle möchte ich die Gelegenheit nutzen, all jenen zu danken, die mich auf meinem Weg zur Fertigstellung dieser Dissertation unterstützt und begleitet haben.

Mein besonderer Dank gilt meinem Doktorvater, Herrn PD Dr. Michael Muders, für seine Unterstützung und seine wertvollen Ratschläge. Seine Expertise und wissenschaftliche Leitung haben maßgeblich dazu beigetragen, dass diese Arbeit in dieser Form entstehen konnte.

Ein ebenso großer Dank gebührt meiner Betreuerin, Frau Dr. rer. nat. Sarah Förster, für ihre kontinuierliche Unterstützung, ihre Geduld und hervorragende Betreuung. Außerdem möchte ich Dr. rer. nat. Thomas Mayr für seine wissenschaftliche Unterstützung, seine Hilfsbereitschaft und sein wertvolles Feedback danken.

Ich möchte dem Scimed-Promotionskolleg herzlich für die finanzielle und wissenschaftliche Unterstützung im Rahmen des Scimed-Promotionsstipendiums danken.

Schließlich möchte ich von ganzem Herzen auch meinen Eltern und meiner Familie für ihre bedingungslose Unterstützung und ihren unermüdlichen Einsatz danken.

Vielen Dank an alle, die in irgendeiner Weise zu dieser Arbeit beigetragen haben. Ohne euch wäre dieser Erfolg nicht möglich gewesen.