
Dissertation
zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Agrar-, Ernährungs- und

Ingenieurwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

Institut für Geodäsie und Geoinformation

MapGeneralizationandSetVisualization
ThroughSpatialUnit Allocation

von

Peter Rottmann
aus

Bonn, Deutschland

Bonn 2025

Referent:
Prof. Dr. Jan-Henrik Haunert, University of Bonn, Germany

Korreferent:
Prof. Dr. Daniel Archambault, Newcastle University, United Kingdom

Tag der mündlichen Prüfung: 28. Oktober 2025

Angefertigt mit Genehmigung der Agrar-, Ernährungs- und Ingenieurwissen-
schaftlichen Fakultät der Universität Bonn.

Abstract

Data visualization is an important aspect of making complex data ac-
cessible to a wide audience. Capturing key information in visualized
data is critical for users to understand the data and make informed
decisions. On the one hand, the data may contain geospatial informa-

tion, which is often visualized using maps. When navigating maps that visualize
spatial data, changing the zoom level is a common strategy for controlling the
level of detail. Reducing the level of detail of a map is a key challenge in cartog-
raphy and can be addressed with map generalization. These changes in level of
detail while zooming should be monotonous. On the other hand, the visualiza-
tion of abstract data, such as set systems, is a well-established field of research
in information visualization. Set systems contain information about set elements
and their relationships, e.g. working groups and their research projects within a
faculty. Set visualization have proven to be a powerful tool for presenting large
amounts of data to a user in a compact way. Seeing the interactions between
sets in a visualization is easier to understand than reading a description of those
interactions. However, both types of data, geospatial and abstract, can become
overwhelming for the user if every detail is visualized.

In this thesis, we present optimization approaches for creating generalizations
for both geospatial data and set systems. In our algorithms, we adapt some
approaches from the research field of spatial unit allocation. When generalizing
geospatial data, we aggregate small polygons into larger areas, aiming for a set
of representative output polygons. We use our approach to compute a set of
solutions that contains an optimal solution for each value of the parameter which
controls the level of generalization. For set systems, we present the first approach
that is able to determine whether a given set system can be completely displayed
as an Euler diagram that satisfies certain wellformedness conditions. If a complete
visualization is not possible or required, we aim to create a visualization that
either shows as much information as possible or improves readability by losing
minimal information. Such a resulting set system can be visualized with our
novel visualization technique called MosaicSets. The novel technique builds on
an underlying grid and creates a mosaic-like visualization of the set system. We
optimize each set to form a compact region to improve the readability of the
diagram. For all our approaches, we provide theoretical analysis and evaluate the
performance of our algorithms on numerous real-world datasets.

iii

Kurzfassung

Datenvisualisierung ist ein wichtiger Aspekt, um komplexe Daten
einem breiten Publikum zugänglich zu machen. Dabei ist die Erfas-
sung von Schlüsselinformationen entscheidend, um die Daten zu ver-
stehen und fundierte Entscheidungen treffen zu können. Einerseits

können die Daten raumbezogene Informationen enthalten, die oft als Karten dar-
gestellt werden. Bei der Handhabung dieser Karten ist die Änderung der Zoom-
stufe eine gängige Vorgehensweise zur Steuerung des Detailgrads. Diese Ände-
rungen sollten monoton sein. Die Verringerung des Detaillierungsgrads ist eine
zentrale Herausforderung in der Kartografie und kann durch Generalisierung der
Karten gelöst werden. Andererseits ist die Visualisierung abstrakter Daten, wie
z.B. von Mengensystemen, ein etabliertes Forschungsgebiet in der Informationsvi-
sualisierung. Mengensysteme enthalten Informationen über Mengenelemente und
deren Beziehungen, z.B. Arbeitsgruppen und deren gemeinsame Forschungspro-
jekte. Die Visualisierung von Mengen hat sich als ein leistungsfähiges Werkzeug
herausgestellt, um dem Nutzer große Datenmengen in kompakter Form darzustel-
len. Visualisierte Beziehungen zwischen Mengen lassen sich leichter verstehen als
textuelle Beschreibungen. Allerdings vereint raumbezogene und abstrakte Daten,
dass es für den Nutzer überfordernd sein kann, wenn jedes Detail dargestellt wird.

In dieser Arbeit werden Optimierungsansätze für die Erstellung von Genera-
lisierungen für Geodaten und für Mengensysteme vorgestellt. In den Algorithmen
werden Ansätze aus dem Forschungsbereich der Zuweisung räumlicher Flächen-
einheiten adaptiert. Bei der Generalisierung von Geodaten werden kleine Polygo-
ne zu größeren Flächen zusammengefasst. Dieser Algorithmus wird verwendet,
um eine Lösungsmenge zu berechnen, welche eine optimale Lösung für jeden
Parameterwert, welcher den Grad der Generalisierung bestimmt, enthält. Für
Mengensysteme wird der erste Ansatz vorgestellt, welcher bestimmt, ob ein gege-
benes Mengensystem unter Berücksichtigung von Wohlgeformtheitsbedingungen
vollständig als Euler-Diagramm dargestellt werden kann. Wenn eine vollständi-
ge Darstellung nicht möglich oder erforderlich ist, ist es das Ziel, eine Darstel-
lung zu erzeugen, die entweder so viele Informationen wie möglich zeigt oder die
Lesbarkeit durch das Entfernen minimaler Informationen verbessert. Ein solches
Mengensystem kann mit der neuen eingeführten Visualisierungstechnik Mosaic-
Sets visualisiert werden. Diese baut auf einem zugrunde liegenden Raster auf und
erzeugt eine mosaikartige Visualisierung des Mengensystems. Jede Menge wird
so optimiert, dass sie eine kompakte Region bildet, um die Lesbarkeit des Dia-
gramms zu verbessern. Für alle gezeigten Ansätze werden theoretische Analysen
erstellt und die Leistung der Algorithmen anhand zahlreicher realer Datensätze
bewertet.

v

Acknowledgments
First and foremost, I would like to thank my supervisor Jan-Henrik Haunert for
his support and guidance during my research. I am grateful for the opportunity to
work on this exciting topic and for the valuable ideas, feedback and insights you
provided along the way. I would also like to thank for the possibilities to present
my work at various conferences and workshops, which helped me to improve my
research and connect with other researchers in the field. Attending conferences
in the USA and Denmark was a great experience.

Many thanks to all my co-authors for their collaboration and support on
various projects. Your experience in various fields of research has been invaluable
to me, and I have learned a lot from our discussions and collaborations. I want to
thank Peter Rodgers and Daniel Archambault for their support on Euler diagrams
and for providing source code of their previous work, which was a great help for
my research.

I would like to express my gratitude to the colleagues of the research group for
their support and encouragement. I am not only grateful for the scientific discus-
sions during meetings, but also for joint activities outside of work, which made
my time at the university even more enjoyable. Special thanks go to Annika and
Sven, who were not only great colleagues and collaborators, but also proofreaders
of my thesis. I would also like to thank Julius for our various on- and off-topic
discussions, for being a great office mate and having great whiteboard sessions.

Finally, I would like to express my gratitude to my wife, Franziska, and my
family for their unwavering support and encouragement. Their belief in me and
their understanding have been invaluable. I am grateful for their patience and
support, which have helped me to stay focused and motivated throughout this
journey.

vii

Contents

1 Introduction 1
1.1 Contributions . 5

2 State of the Art in Map Generalization and Set Visualization 9
2.1 Map Generalization . 9

2.1.1 Aggregation and Amalgamation 11
2.1.2 Continuous Generalization 13

2.2 Set Visualization . 14

3 Algorithmic Fundamentals 19
3.1 Graph Theory . 19

3.1.1 Graph Fundamentals . 19
3.1.2 Hypergraph Drawings and Planar Supports 24

3.2 Integer Linear Programming . 26
3.3 Spatial Unit Allocation . 28

3.3.1 Districting . 30
3.4 Graph Cuts . 31

4 Map Generalization Using Graph Cuts 35
4.1 Introduction . 36
4.2 Methodology . 38

4.2.1 Graph Cut . 39
4.2.2 Hierarchical Structure of Solutions for Multiple Parameter

Values . 41
4.3 Experiments . 45

4.3.1 Choosing the Parameter λ with the Help of Reference So-
lutions . 51

4.3.2 Edge-Aligned Polygons . 52
4.3.3 Comparison to α-shapes 54

4.4 Conclusion . 55

5 Grid-Based Euler Diagrams 57
5.1 Introduction . 58
5.2 Contextual Background . 60

5.2.1 Geographic Information Visualization Techniques 60
5.2.2 Maps as a Metaphor . 62

5.3 Towards a Formalization of MosaicSets 62
5.3.1 Design Decisions . 62

ix

CONTENTS

5.3.2 Formal Problem Definition 64
5.3.3 Computational Complexity 65

5.4 An Approach Based on Integer Linear Programming 66
5.4.1 A Basic Integer Linear Program 66
5.4.2 Compactness of Regions Representing Sets 68
5.4.3 Relaxing the Contiguity Requirement 70
5.4.4 An Integer Linear Program with Fewer Variables 71

5.5 Rendering . 71
5.6 Evaluation . 73

5.6.1 Expert Interviews . 73
5.6.2 Tasks for Set Visualizations 76
5.6.3 Experimental Setup . 76
5.6.4 Number of Overlay Sets 77
5.6.5 Running Time . 78
5.6.6 Assessing the Compactness 79

5.7 Conclusion . 79

6 Generating Euler Diagrams Through Combinatorial Optimiza-
tion 81
6.1 Introduction . 82
6.2 Preliminaries and Basic Problem 83
6.3 Workflow . 84
6.4 Methodology . 86

6.4.1 An Integer Linear Program 87
6.4.2 Heuristic Approach . 89

6.5 Experiments . 93
6.6 Conclusion . 98

7 Conclusion and Future Work 101
7.1 Summary of the Contributions . 101
7.2 Future Work . 102

Appendices 131

A Supplemental Mosaic Sets 131
A.1 Additional Figures . 131
A.2 Task Taxonomy . 132
A.3 Expert Interviews . 132

B Supplemental Euler Diagrams 149
B.1 Euler Diagram Simplification . 149
B.2 Parameter Influence . 149

x

Chapter 1

Introduction

Visualizing spatial as well as abstract information is important to en-
hance the human understanding of complex data. When it comes to
spatial data, maps are a common visualization technique. In some
cases, it may be sufficient to display all available data as a map. How-

ever, in many use cases, the complete data set is too detailed to create a map for
a user. Such use cases, where maps are too detailed, can be background maps for
car navigation systems, maps on mobile phones, or small-scale topographic maps.
As these examples illustrate, the level-of-detail of a map must be appropriate with
respect to the scale and application scenario of the map.

Map generalization is the process of deriving a less detailed map from a given
map. In cartography, a well-established approach to avoid cluttered maps is the
use of map generalization. It comprises multiple sub-tasks such as the selection,
simplification, aggregation, and displacement of objects (Hake et al., 2002). An
example of map generalization is given in Figure 1.1. In the displayed example,

Figure 1.1: An example of map generalization. The left image shows the original map with all
building footprints in gray and garden areas in green. The right image shows the generalized
map with settlement areas (gray), where garden areas are included in the settlement areas. The
black lines represent streets and are not part of the aggregation.

1

the building footprints of the given map are aggregated into settlement areas and
the resulting polygon is simplified. In this thesis, we address the task of detecting
polygon groups (i.e., spatial clusters of polygons) and aggregating each group
into a single polygon, which we simply refer to as aggregation of polygons. This
task is relevant, e.g., to derive settlement areas from mutually disjoint building
footprints. In this case, aggregation and simplification of polygons is performed.
However, it is possible to combine additional generalization operators to further
improve the quality of the map, e.g., to reduce clutter in small-scale maps by
selecting only large polygons for display on small-scale maps. Selecting the largest
polygons is equivalent to showing only the most important and largest cities on
a small-scale map.

While maps are created for geometric data, information visualization involves
the representation of abstract data. The goal of information visualization is to
create visual representations of complex data sets to help users to understand
the data. Such visualizations can be visualizations of hierarchies, such as orga-
nizational data, or set systems, such as Venn diagrams or flowcharts. We show
an example of a Venn diagram in Figure 1.2a. Similar to map generalization,
the goal of information visualization is to create a readable and understandable
representation of the data. If the data is too complex, users will have trouble
focusing on the important information, which will hinder their ability to make
effective use of the data. Hence, the user’s attention should be directed to the
most important information. Therefore, reducing the data to the most important
data points is critical before creating a visualization. In this thesis, we focus on
the visualization of set systems with abstract data. A set system is a collec-
tion of sets, where each set contains a subset of a set that contains all elements.
The elements can be any form of data, such as people or countries. The goal of
set visualization is to visualize the relationship between the elements in the set

AB

C

3

7
2

4
6

5
1

(a) Venn diagram

AB

C

7

3

2

1
4

6

5

(b) Euler diagram

A

B

C

7321 4 65

(c) matrix representation

Figure 1.2: Different visualization techniques for set systems. While Venn diagrams and Euler
diagrams are based on geometric shapes, matrix representations are based on a grid. Venn
Diagrams and matrix representations can contain empty regions, while Euler diagrams only
contain regions for sets that have elements.

2

CHAPTER 1. INTRODUCTION

system, e.g., to highlight the common interests of users in a social network or
to show trade agreements between countries. Set visualization is a challenging
task because the number of sets and elements can be very large. There are vari-
ous approaches and visualization techniques to tackle the given problem. While
some approaches based on matrix representations are able to create visualizations
of large datasets, planar drawings are often limited to a few sets. An example
of different visualization techniques applied to the same set system is shown in
Figure 1.2.

Venn and Euler diagrams are frequently used to visualize set systems in an
intuitive way. They represent each set as a region in the plane that is bounded
by a closed curve. An area in an Euler diagram that is occupied by one or
more regions indicates the existence of set elements that are contained in the
corresponding sets and in no other set. In contrast, if two sets have no elements
in common, the corresponding regions in the Euler diagram are disjoint. In the
context of Venn and Euler diagrams, the areas of the diagrams are also called
zones. Unlike Euler diagrams, Venn diagrams can contain zones which do not
contain any set elements, e.g. see purple area in Figure 1.2a. The displayed Venn
diagram consists of three sets, resulting in 7 zones, of which 4 are occupied by
set elements and 3 are empty. In contrast, the Euler diagram in Figure 1.2b
contains only zones that are occupied by set elements. Thus, Venn diagrams can
be used to highlight empty zones in set systems. This is either done explicitly
with a visual encoding of the empty zones, or implicitly by placing labels for all
elements in zones. However, because Venn diagrams contain every relationship
between the sets, they are typically limited to a maximum of four sets.

An exemplary Euler diagram is shown in Figures 1.2b and 1.3. The Euler
diagram visualizes treaties between European countries. Here, each outline rep-
resents a treaty and the countries contained by the outline are the countries that
are part of the corresponding treaty. For example, the country Belgium (BEL)
is part of all treaties except the treaty France Monaco (1963). In contrast, the
country Monaco (MCO) is only part of the treaty France Monaco (1963) and no
other.

ESP MCOFRA

DEU

ITA

LUX

BEL
NLD

Benelux Economic Union (1960)

France Monaco (1963)

EC Spain (1970)

EC (1958)

Figure 1.3: An Euler diagram visualizing treaties within Europe.

3

An advantage of Euler diagrams is, that they are intuitive to understand.
However, they can become cluttered even for medium-sized set systems. Another
problem is that for a given set system it is possible that no Euler diagram ex-
ists when the regions are required to be contiguous. In such a case, multiple
approaches exist in order to draw an Euler diagram. First, the set system can
be simplified. Simplification can be achieved by removing some set elements or
entire sets from the set system. Second, sets can be merged to produce a draw-
able Euler diagram. When merging sets, most similar sets can be merged into
a single set and therefore reduce the number of sets in the set system. Third,
individual sets can be split into multiple regions or a single, large diagram can
be divided into several smaller diagrams. These approaches are similar to map
generalization, where smaller details are removed and polygons are aggregated to
create a more readable map.

For a given set system there can be several topologically different drawable
Euler diagrams. Moreover, every topologically different Euler diagram can be
realized by an infinite number of layouts. However, the readability of the diagrams
can vary considerably. In general, the outline of a set in an Euler diagram can be
any shape, as long as it is free of self-intersections and contiguous. These shapes
can become very complex and difficult to understand if no shape constraint is
enforced. As a consequence, finding all elements of a particular set or finding
elements that have common sets can become a difficult task. Therefore, it is
beneficial to use simple shapes for drawing the sets in an Euler diagram to increase
the readability. An established strategy is to use convex shapes such as circles,
ellipses or rectangles for each set (Rodgers, 2014). However, these geometries are
relatively rigid and do not allow for much flexibility when computing such an
Euler diagram. As a result, fewer Euler diagrams can be drawn without violating
properties of Euler diagrams. We use techniques from map generalization to
simplify Euler diagrams with less strict shapes while maintaining the readability
of the diagram.

In this thesis, we address the problems of map generalization and set visu-
alization by transforming the problems into graph-theoretic problems. We show
that the proposed problems can be modeled using graphs and solved optimally
by selecting subgraphs that satisfy task-specific constraints. A subgraph is a
graph that contains a subset of the vertices and edges of the original graph. De-
spite the different applications and partially different constraints, we show that
the outlined challenges in map generalization and set visualization can be opti-
mally solved using similar techniques. For solving the graph-theoretic problem,
we have to tackle two main challenges. The first major challenge is transforming
the problem into a graph-theoretic problem. The vertices and edges as well as
their corresponding weights need to be defined based on the particular applica-

4

CHAPTER 1. INTRODUCTION

tion. The second main challenge is to define and solve an optimization model
subject to a certain objective function while incorporating different constraints
that the selected subgraph must satisfy. In our algorithms, we apply two differ-
ent types of constraints, among others: compactness and contiguity. We address
these challenges through the use of combinatorial optimization techniques and
optimization criteria from the field of spatial unit allocation. Spatial unit alloca-
tion is a well-known problem in the field of geographical information science and
spatial optimization. The task is to select a subset of given spatial units, such
as polygons. Typical applications of spatial unit allocation are the selection of
land parcels for land use planning, forest harvest scheduling, or nature reserve
allocation (McDill et al., 2002; Rahman and Szabó, 2021; Brunel et al., 2024).
Most commonly across different applications, the goal is to select a subset of a set
of spatial units that satisfy connectivity and/or contiguity constraints (Rahman
and Szabó, 2021). In the context of this thesis, spatial unit allocation refers to
the selection of a subgraph from a given graph such that the selected subgraph
represents a region in an output map or visualization. When visualizing set sys-
tems, no spatial units, such as polygons, are given, but we can still use similar
techniques to visualize the set systems. The vertices contained in the selected
subgraph are transformed into spatial areas for the visualization. More details
on the contributions of this thesis are given in the following section.

1.1 Contributions
The contributions of this thesis are multiple exact combinatorial optimization
algorithms for selecting subgraphs that satisfy task-depending constraints. We
formulate problems as a mathematical model and develop optimization algorithms
for three different applications: map generalization, set visualization, and set sys-
tem simplification. In the following, we give a brief overview of the contributions
for each individual application before summarizing the key contributions of this
thesis.

Our first contribution is in the field of map generalization, where we want to
retrieve small scale maps from detailed data. Here, our goal is to aggregate mul-
tiple building footprints into settlement areas in order to reduce the complexity
of a map for small-scale visualizations. Our algorithm leverages the concept of
triangulation to partition the area between buildings into a planar subdivision.
The resulting polygons, which are less detailed, are the union of a selection of
triangles from the triangulation. Using a trade-off between the total area and
perimeter of the selected polygons, our algorithm can compute an optimal subset
of polygons with polynomial time complexity by using graph cuts. Graph cuts
are well known in the field of computer vision for the task of image segmentation.

5

1.1. CONTRIBUTIONS

100m

(a) input polygons

100m

(b) aggregated polygons

Figure 1.4: Aggregation of the polygons of the buildings near the street “Nussallee” in Bonn.
The left image shows the input polygons, while the right image shows the aggregated polygons.
The polygons are merged into several larger polygons. In addition, complex polygons are
simplified, such as the polygons in the lower right and upper left.

The area-perimeter trade-off is balanced by a single parameter λ ∈ [0, 1], where
low λ-values lead to a small perimeter and high λ-values result in a small area
of the resulting solution. This area-perimeter trade-off enables us to compute
compact polygons as solutions. Hence, this single parameter controls the level of
detail. We show such a polygon aggregation using an area-perimeter trade-off in
Figure 1.4. In addition, we are able to report a linear-sized set of solutions that
contains an optimal solution for each weighting factor λ used by our optimization
function. We prove that the reported solution set has a hierarchical structure.
Furthermore, we present an approximation of the solution set to report only a
subset of solutions that differ by a certain threshold factor.

As a second contribution, we present a novel visualization technique for Euler
diagrams using prescribed grid maps as the underlying structure. In this ap-
proach, we map every set element of a set system to a vertex of a grid graph. A
requirement to our approach is that a subset of the set system forms a partition-
ing of the elements, which we use to form the basemap of the visualization. Cells
belonging to the same set of the basemap are filled with the same color. Each
remaining set of the set system which is not part of the basemap is drawn as
an outline of elements in the basemap with an individual color for each set. An
example of such a visualization is shown in Figure 1.5. In this example, we visu-
alize a set system of 3 sets with 6 set elements. Since the underlying grid graph
has 7 vertices, one grid cell remains empty. While our approach can generate a
visualization for any given grid, our focus is on regular grids based on squares
and hexagons. Similar to our approach, grid maps are a common visualization
technique for spatial data that generalizes given polygons as squares or hexagons.
However, our approach works on abstract data without any spatial context and
creates map-like visualizations. Our approach creates a single contiguous region

6

CHAPTER 1. INTRODUCTION

Figure 1.5: An example of a MosaicSets visualization. The set elements of the set system are
mapped onto the vertices of an underlying grid graph. The grid graph is shown in black and
is not displayed in the final visualization. The cells are colored according to disjoint sets which
form the basemap. Additional sets are superimposed on top by drawing outlines around the
set elements. Empty grid cells, e.g. bottom right cell, can be colored gray or discarded.

for each set which improves the readability. Additionally, we optimize every set to
be as compact as possible. Since the basemap of our approach is a planar graph,
the resulting visualizations of our algorithm are also planar. We first prove that
the problem at hand is NP-hard and present a novel integer linear programming
(ILP) formulation to solve the problem optimally. Additionally, we propose an
optional preprocessing step to improve the computation time by grouping similar
set elements during the optimization process.

In our third contribution, we present a novel approach for generating Euler
diagrams for arbitrary set systems if every set has to form a single, contiguous
region. To our knowledge, this is the first approach that can decide whether an
Euler diagram with contiguous regions for a given set system exists and, if so,
can generate the topological relations of the Euler diagram. Furthermore, our
approach is able to simplify the given set system if no Euler diagram exists in
order to create a drawable Euler diagram with minimal information loss. By
increasing the focus on an improved layout and discarding more information,
i.e. set elements and their relationships, we are able to further simplify the set
system. Discarding elements results in more visually appealing and simpler Euler
diagrams. Due to the close relationship between Euler diagrams and hypergraphs,
we show that solving the problem of finding an Euler diagram is equivalent to
finding a planar support of a hypergraph. Finding such a planar support is a
well-known problem in the literature and has been shown to be NP-hard. To the
best of our knowledge, there has been no proposal of an algorithm for an optimal
solution of finding a planar support of a hypergraph. In addition to finding a
planar support of a hypergraph, we incorporate additional constraints aimed to
improving the readability of the resulting Euler diagram. These constraints are
based on wellformedness criteria for Euler diagrams which have been shown to
be relevant for the understanding of Euler diagrams. We focus on the criteria
that were found to be most important in previous user studies. A resulting Euler
diagram based on our computed planar support is shown in Figure 1.3.

7

1.1. CONTRIBUTIONS

Key contributions.

• Novel combinatorial optimization algorithm based on graph cuts for aggre-
gating polygons with an area-perimeter trade-off.

• Proof of linear-size and hierarchical structure of the set of optimal poly-
gon aggregation solutions with respect to the weighting factor of our op-
timization function and an optional approximation procedure of the set of
solutions.

• Novel map-like visualization of Euler diagrams with contiguity constraints
using grid maps of arbitrary shape.

• First approach for determining the existence of an Euler diagram for a given
set system under the constraint of contiguity of each set, which is also the
first formulation for finding a planar support of a hypergraph.

• Simplification of set systems with minimal loss of information under mul-
tiple constraints while maintaining drawability as an Euler diagram.

Outline. The remainder of this thesis is structured as follows. In Chapter 2,
we provide an overview of related work in the fields of map generalization and
set visualization. In Chapter 3, we discuss the mathematical and algorithmic
background of our algorithms. In Chapter 4, we present our algorithm for aggre-
gating polygons with an area-perimeter trade-off. In Chapter 5, we introduce our
approach for visualizing set systems using prescribed grid maps. In Chapter 6,
we present our algorithms for computing Euler diagrams of set systems with an
optional simplification to improve readability. Finally, we conclude the thesis in
Chapter 7.

8

Chapter 2

State of the Art in Map General-
ization and Set Visualization

In this chapter, we will outline the current state of the art in the two main
topics of the thesis: map generalization and set visualization. Map gen-
eralization is a well-known problem in cartography, while set visualization
is a well-established field of research in information visualization. After

an introduction to map generalization, we will focus on different approaches to
map generalization. The main challenge in automatic map generalization is to
produce a map of reduced complexity while preserving the essential information.
In the field of set visualization, a similar challenge is to visualize given set-type
data in a comprehensible way without losing essential information. We give an
introduction to set visualization and discuss multiple approaches to this challenge.

2.1 Map Generalization
When creating maps, it is often necessary to simplify the representation of the
data. Displaying every detail of the data in small-scale maps would lead to
cluttered and unreadable maps. Map generalization is the process of simplifying
the representation of geographic data while preserving the essential information.
A map can be generalized by removing geographical objects, but also by grouping
several objects into a single one or by simplifying given shapes. Creating readable
maps is a complex task and requires the combination of different generalization
operators. McMaster and Shea (1992) identified two main types of generalization
operators: spatial and attributive. Spatial operators change the geometry of
the objects, e.g., by simplifying, smoothing, or aggregating them (Hake et al.,
2002). Attributive operators do not only take the geometry into account but also
the attributes of the objects, e.g., by grouping geometric objects based on their
features. In total, McMaster and Shea (1992) identified 12 different generalization

9

2.1. MAP GENERALIZATION

operators, which can be combined to create readable maps.
While operators like displacement or refinement can be applied to point, line,

and polygon objects, other operators are specific to one or two of these types. An
example for different operators for similar tasks is aggregation of points, merging
of lines and amalgamation of polygons. Each of these operators has its own
challenges and requires different approaches to solve them. When aggregating
points, the goal is to find a single polygon or multiple polygons enclosing the
input data. In contrast, merging lines is about combining multiple lines into a
single one, while amalgamation of polygons is about merging multiple polygons
into a single one. In this thesis, when we talk about polygon aggregation, we are
referring to the amalgamation of polygons. Applying simplification operators to
polygons was tackled in several works, e.g., Haunert and Wolff (2010b). For the
simplification of lines, Douglas and Peucker (1973) presented an algorithm, also
known as Douglas-Peucker algorithm, which is widely used in map generalization.
The algorithm begins with a line segment between two endpoints. If any point on
the line is more than a given threshold distance away from the line, the line splits
at that point, and the algorithm recursively applies to the two new line segments.
The result of the algorithm is a simplified line that is at most the given threshold
distance away from the original line. We show the impact of four generalization
operators in Table 2.1.

Displacement Simplification Aggregation Amalgamation

Original

Generalized

Table 2.1: A subset of generalization operators described by McMaster and Shea (1992). The
first row shows the original objects, the second row shows the generalized objects using the
corresponding operator in the header of the column.

When simplifying objects is not sufficient for a target map scale, it is often
necessary to select objects and increase their size in order to be visible in smaller
scale. In this process, additional space is needed in the surroundings of the
object. By displacing objects, the distance between them can be increased, which
increases the readability of the map. Combining several operators for increasing
the quality of maps is still an open challenge in cartography. Current work
by Rosenberger et al. (2025) combines selection and displacement operators to
improve the readability of maps.

10

CHAPTER 2. STATE OF THE ART IN MAP GENERALIZATION AND
SET VISUALIZATION

Automatically computing generalized maps remains a big challenge despite
decades of research. The challenge lies on the one hand in the complex interplay
between different processes of map generalization. A way to deal with this is
to use multiagent systems for the orchestration of multiple map generalization
operators (Galanda, 2003; Maudet et al., 2014). On the other hand, the chal-
lenge lies in the acquisition of cartographic knowledge in a form that can be used
by a computer. Machine learning approaches have been proposed to solve this
task, with a recent shift towards deep learning (Touya et al., 2019; Fu et al.,
2024). Classical machine learning approaches treat input data as images and
use convolutional neural networks (CNNs) to learn a generalized representation
(Feng et al., 2019; Courtial et al., 2023). In contrast, modern approaches use
graph convolutional networks (GCNs) (Kipf and Welling, 2017) applied to vector
data (Zhou et al., 2023b; Xiao et al., 2024b). In contrast to machine learning
approaches, our algorithms provide optimal solutions on vector data for our pro-
posed problems. Polygon aggregation is relevant when generalizing categorical
coverage maps (Haunert and Wolff, 2010a; Gedicke et al., 2021) or choropleth
maps (Oehrlein and Haunert, 2017), where the polygons form a mosaic. These
tasks are similar to districting tasks where the aim is to group small areal units to
form larger regions such as electoral districts or police districts (D’Amico et al.,
2002; Kim et al., 2016).

2.1.1 Aggregation and Amalgamation
In the following, we will discuss related work on the aggregation of points and
polygons, as we use similar techniques in this thesis. The similarity of the two
tasks is that both aim to find a single polygon or multiple polygons enclosing the
input data.

Aggregation of points. A naïve method for aggregating points is to compute
the convex hull of all input points. The convex hull is the smallest convex poly-
gon without holes that encloses all points. However, since this may enclose large
empty regions, generalizations of the convex hull such as α-shapes (Edelsbrunner
et al., 1983) have been developed. As an unwanted side effect, α-shapes tend to
introduce narrow bridges between two nearby point sets; see Figure 2.1. These

Figure 2.1: An α-shape that generates a narrow bridge between two point sets.

11

2.1. MAP GENERALIZATION

narrow bridges increase the complexity of the resulting polygon and can be prob-
lematic for the subsequent visualization. Such a bridge can consist of a single
edge, in which case it can be easily removed (Bonerath et al., 2019), but han-
dling bridges of multiple parallel edges is not straightforward. When the point
set is triangulated with a Delaunay triangulation it is possible to compute the
α-shape on the triangulation directly. This is done by selecting every triangle
whose circumcircle has a radius less or equal 1/α. Consequently, we can easily
compute the α-shapes for all values of α: simply add the triangles ordered by the
radius of the circumcircle to an initially empty set and report the solution after
each step. However, this approach has the same shortcomings as using α-shapes
on the point set directly, except single edges will not occur due to the triangle-
based selection process. Similar issues can arise with the concave hull introduced
by Moreira and Santos (2007), which is based on k-nearest neighbors clustering.
Duckham et al. (2008) defined the χ-hull (chi-hull) as a further generalization
of the convex hull. First, all points are triangulated using a Delaunay triangu-
lation. Then, all boundary edges that are longer than a threshold are removed.
This procedure always returns a single polygon without holes. This may include
large empty regions and does not separate groups of points from each other. To
address the latter issue, Duckham et al. (2008) suggest identifying clusters in a
pre-processing step. However, this does not prevent the method from covering
large empty regions within a cluster.

Amalgamation of polygons. With respect to the amalgamation of polygons,
Jones et al. (1995) proposed a method for merging polygons by selecting triangles
of a constrained Delaunay triangulation, which they call adopt merge amalgama-
tion. They do not specify the criteria for the selection of the triangles but gener-
ally recommend to use rules based on thresholds on the triangles’ edge lengths.
Using such rules, the adopt merge amalgamation operator has been implemented
and experimentally evaluated by Li and Ai (2010). They showed that the method
tends to generate narrow bridges that can consist of a single triangle touching an
input polygon with only one of the triangle’s vertices. The method of Li et al.
(2018) overcomes this deficit by selecting sequences of triangles instead of single
ones. However, the rules used to govern the selection are set up to merge polygons
with parallel boundaries separated by long and narrow corridors. With this the
method can be used to derive built-up areas from city blocks but not, e.g., set-
tlement areas from footprints of detached houses. Sayidov et al. (2022) compute
groups of polygons using a triangulation-based method and suggest computing
a representative polygon for each group in a separate processing step. To ac-
complish this step, automatic typification methods can be used (McMaster and
Shea, 1992; Anders and Sester, 2000; Burghardt and Cecconi, 2007). Similarly,

12

CHAPTER 2. STATE OF THE ART IN MAP GENERALIZATION AND
SET VISUALIZATION

Steiniger et al. (2006) suggest a method that first detects groups of islands and
then generates a representative polygon for each group. They define the groups
with a subgraph of a minimum spanning tree and generate for each group the
convex hull. Damen et al. (2008) present an approach for building generalization
based on morphological operators. They combine multiple closing and opening
operations to simplify but also aggregate the input polygons. To preserve the
original rectangular geometry typical of buildings, they use a Minkowski sum
of the input polygon and a square aligned with its boundary to implement the
closing operator.

2.1.2 Continuous Generalization
Maps in the digital age are not static but can be manipulated by users in real-
time to any desired map scale. As a result, multiple different levels of detail are
needed for the same map. To avoid disturbance of the user experience, the map
generalization should be a monotonic process, i.e., the map should continuously
generalize when zooming out. Providing methods for continuous generalization
is a challenging task. Such maps, which are consistent across multiple zoom lev-
els, are called pan-scalar maps (Roth et al., 2008). Previous work on pan-scalar
maps has focused, e.g., on computing active ranges for point features, where
the active range of a point feature determines at which scales it is displayed
(Schwartges et al., 2013). Similarly, by computing a sequence of edge removals,
a step-wise generalization of a road network can be achieved (Chimani et al.,
2014). Morphing techniques have been proposed to animate the transition be-
tween two representations of a line feature that differ with respect to the level
of detail (Van Kreveld, 2001; Nöllenburg et al., 2008; Forsch et al., 2024). An-
other approach integrates multiple line generalization operations into a complex
generalization with a matrix-based structure (Huang et al., 2017). For generat-
ing pan-scalar land cover maps, Peng et al. (2020) introduced an approach that
computes an optimal sequence of merges of adjacent regions. Similar maps can
be generated using a 3D data structure in which the zoom level is described by
the z-axis (Šuba et al., 2014; van Oosterom et al., 2014; Šuba, 2017). Such pan-
scalar maps can be useful for mobile and web applications with limited bandwidth
(Zhao et al., 2020). First, the smaller scales can be loaded, followed by the ones
with higher information density. With respect to the aggregation of individual
polygons, typification can group buildings to larger polygons (Sester and Bren-
ner, 2005). However, the resulting polygons are not completely consistent across
multiple zoom levels, as smaller polygons are replaced by larger ones, which can
lead to displacements. Closely related to our algorithm for map generalization
is the method of Peng and Touya (2017), which iteratively adds bridges between
buildings to grow settlement regions.

13

2.2. SET VISUALIZATION

2.2 Set Visualization
Set visualization is a well-established field of research that focuses on the visual-
ization of set systems. Set-typed data is a common data type in many domains,
including biology, social networks, and computer science. By visualizing set sys-
tems, we can gain insights into the relationships between different sets and their
elements. Since set systems have a high variability in their properties (e.g., num-
ber of set elements, number of relations), and the tasks a visualization has to
fulfill can vary widely, a large variety of set visualization techniques exists. The
survey by Alsallakh et al. (2016) introduced a classification of existing techniques.
Since Euler diagrams are most related to this thesis, we will discuss them in more
detail. However, we will also briefly mention other techniques that are relevant for
our work. We follow the classification of set visualization techniques by Alsallakh
et al. (2016).

Venn and Euler diagrams. Two standard techniques for set visualization,
which were already introduced in the 18th and 19th century, are Euler and Venn
diagrams (Euler, 1768; Venn, 1880). Even before the formal introduction of Venn
diagrams, similar diagrams were used in the 11th century (Edwards, 2006). Both,
Euler and Venn diagrams, represent each set by a closed curve and its enclosed
region. In Euler diagrams, every overlap of a set of regions represents a non-
empty intersection of the corresponding sets. In the context of Venn and Euler
diagrams, the individual areas of the diagrams are also called zones. Labels for
elements can be placed in the zones, however, this is not necessary to represent the
set relations. In contrast, Venn diagrams show an overlap area for every possible
combination of set intersections; here labels for elements are necessary to indicate
which set intersections are non-empty. Euler diagrams are an intuitive way to
display elements, sets, and set relations, but are mostly limited to a few sets due to
clutter and drawability issues (Alsallakh et al., 2016). Yang et al. (2024) presented
a tool that combines multiple set visualization techniques, including Euler and
Venn diagrams, to provide a comprehensive view of different set systems.

Much research on Euler diagrams has focused on the definition of wellformed-
ness conditions and how to ensure them. These conditions describe properties of
Euler diagrams that target an improved comprehension of the diagrams. Typical
wellformedness conditions include:

• No concurrency: no pair of curves run concurrently, violated in Fig-
ure 2.2a.

• Connected zones: each zone in the diagram is connected, violated in
Figure 2.2b.

• Transversality: intersecting curves always intersect transversally (that is

14

CHAPTER 2. STATE OF THE ART IN MAP GENERALIZATION AND
SET VISUALIZATION

A

C

B

(a) concurrency: A and B; A and C;
B and C

A

C

B

(b) disconnected zone: the intersec-
tion of A and B

A B

(c) nontransverse intersection: A
and B

A

B

(d) non-simple curve: B.

C BA

(e) triple point: A, B and C

B
C C

A

(f) duplicated curve label: C

Figure 2.2: Examples of wellformedness conditions following Rodgers et al. (2011).

they cross, rather than just ’touch’), violated in Figure 2.2c.
• Simplicity: all curves are simple curves. A curve is simple if it does not

cross itself, violated in Figure 2.2d.
• No triple points: there are no triple points of intersection among the

curves, violated in Figure 2.2e.
• Unique curve labels: no curve label is used more than once, violated in

Figure 2.2f.
For a more formal definition of wellformedness conditions, see Stapleton et al.

(2007). To verify the importance of each property, Rodgers et al. (2011) con-
ducted a user study measuring time and errors during the completion of given
tasks. Disconnected areas and concurrent curves caused significant errors and an
increase in completion time. Moreover, representing a set with more than a single
curve had a significantly adverse impact on task completion time.

Early approaches to Euler diagram embedding aimed to create wellformed
Euler diagrams with rather strict conditions. Flower and Howse (2002) defined
concrete Euler diagrams, which met all the wellformedness conditions above.
However, strictly requiring all conditions means many set systems cannot be
drawn.

Methods for generating Euler diagrams with relaxed wellformed conditions
have been developed by Rodgers et al. (2008) and Simonetto and Auber (2008).
However, these methods allow concurrency and duplicated curve labels. More-
over, they are heuristic and may introduce duplicated curve labels even when it
is unnecessary. Since some existing methods (e.g., Simonetto et al. (2009)) yield
Euler diagrams that can look distorted and stretched, EulerSmooth has been
developed to smooth the curves of an existing Euler diagram (Simonetto et al.,
2016). For achieving this goal, the algorithm applies a curve shortening flow ap-
proach. During this approach, the algorithm ensures that every set element stays

15

2.2. SET VISUALIZATION

within the correct area using a force-directed edge-aware algorithm, ImPrEd (Si-
monetto et al., 2011). SPEULER constructs Euler diagrams where set elements
are arranged using circular layouts (Kehlbeck et al., 2022). The resulting Euler
diagrams are wellformed, which is partly a result by allowing only neighboring
areas with no concurrency. RectEuler represents set-like data as Euler diagrams
using rectangles as enclosing curves (Paetzold et al., 2023). The resulting Euler
diagrams are wellformed. However, they split the diagram into multiple diagrams
if necessary. If the set system is not to be split, rectangular Euler diagrams can
fail to represent the set system without empty zones. The number of empty zones
can be reduced by ordering the sets (Priss and Dürrschnabel, 2024). However, the
authors note that even with an optimal ordering of sets, empty zones cannot be
avoided. Additionally, there exist approaches for drawing the set elements of set
systems as glyphs within the corresponding region of the Euler diagram (Brath,
2012).

Recently, Zhou et al. (2023a) presented a method for the simplification of
hypergraphs and used Euler-like diagrams to visualize the results, but the simpli-
fication method does not consider the wellformedness conditions. They achieve
the simplified result by merging vertices and edges of the hypergraph represen-
tation. Oliver et al. (2024) presented a method for hypergraph simplification
and visualization which, however, does not use Euler diagrams. Instead, the hy-
peredges are represented as polygons, whose vertices are set elements of the set
system. The authors first simplify the hypergraph in order to find layout for
a simplified hypergraph. Then, they expand the simplified hypergraph to the
original one which results in an improved layout of the original hypergraph.

Many Euler diagram techniques (Rodgers et al., 2008; Stapleton et al., 2011;
Micallef and Rodgers, 2014; Kehlbeck et al., 2022) focus on showing set relations
and hence do not display individual elements. There are also examples of Euler
diagram techniques that explicitly visualize also the elements as small glyphs or
by distributing the element names inside the corresponding regions (Simonetto
et al., 2009; Riche and Dwyer, 2010; Brath, 2012; Micallef et al., 2012).

Overlay techniques. Another type of set visualization techniques are overlays,
where the placement of the elements is given as input, e.g., from their spatial at-
tributes. Overlay techniques have a limited scalability with respect to the number
of elements and sets (Alsallakh et al., 2016). An example of an overlay technique
showing sets as regions is MapSets (Efrat et al., 2015), which partitions the under-
lying map into polygonal regions, so that each region contains only elements of one
set. A generalization of MapSets are ClusterSets (Geiger et al., 2021) that allow
a set to be depicted by more than one polygonal region. In Bubble Sets (Collins
et al., 2009) a smooth bubble-like region is computed for each set. The regions of

16

CHAPTER 2. STATE OF THE ART IN MAP GENERALIZATION AND
SET VISUALIZATION

different sets can overlap. Alternatively, overlay techniques can indicate sets by
linear spanning structures. One example is LineSets (Alper et al., 2011), which
computes Bézier curves passing through the elements of each set using a traveling
salesperson heuristic. A similar approach are Kelp diagrams (Dinkla et al., 2012)
that visualize a set with a spanning graph structure.

Matrix-based techniques. The advantage of matrix-based techniques is that
they are set visualizations that are clutter-free (Alsallakh et al., 2016). An ex-
ample is ConSet (Kim et al., 2007), where the sets and elements are associated
to the rows and columns of a matrix; matrix entries encode whether an element
is contained in a set or not. In UpSet (Lex et al., 2014), the matrix columns
represent the sets, and each row corresponds to a set intersection. The cells en-
code whether the corresponding set is part of the corresponding intersection. In
OnSet (Sadana et al., 2014), each cell of the matrix corresponds to an element.
The matrix is copied for each set such that only the cells of elements in the set
are colored. Frequency grids (Micallef et al., 2012) aim at communicating set
sizes. Each entry of the matrix corresponds to an element, but set systems are
usually small with few overlaps. Often the elements are placed set by set in hor-
izontal (Brown et al., 2011) or vertical order (Price et al., 2007). Also, a random
order (Brase, 2009) has been considered, where the contiguity of the sets has been
sacrificed. As far as we know, there exists no work on the optimization of the
elements’ placement for frequency grids.

17

Chapter 3

Algorithmic Fundamentals

As an algorithmic foundation of this thesis, we introduce the concept
of graphs in Section 3.1. Graphs are essential for transforming the
presented problems into graph theoretic representations. Since we
utilize integer linear programming (ILP) in our algorithms related to

set systems, we provide a brief introduction to integer linear programming in
Section 3.2 and present the use of ILP for solving combinatorial optimization
problems. Using graphs and ILP, we present spatial unit allocation and its typ-
ical use cases in Section 3.3. In Section 3.4, we conclude this chapter with an
introduction to graph cuts and their applications.

3.1 Graph Theory
In this thesis, we use graphs to model the presented algorithmic problems. Hence,
we provide a brief introduction to graph theory. We both discuss basics of graphs
as well their extension to hypergraphs.

3.1.1 Graph Fundamentals
Due to the broad range of graph theory, we only cover the topics that are relevant
for this thesis. We refer to further literature, e.g., Cormen et al. (2022) and Harary
(1969), for a more detailed introduction to graph theory.

Graphs. A graph G = (V,E) consists of a set of vertices V and a set of edges
E. Each vertex v ∈ V is a unique element of the graph. Each edge e ∈ E

connects two distinct vertices u, v ∈ V . Thus, each edge e can be represented
by a pair of vertices (u, v). If the graph is undirected, the order of the vertices
in the pair does not matter, i.e., we can note an edge as an unordered set of
vertices e = {u, v} = {v, u}. In contrast, in directed graphs, the order of the
vertices in the pair is important. Thus, the order of the vertices in the pair is

19

3.1. GRAPH THEORY

6
3

1
2

4

(a) weighted graph (b) directed graph (c) subgraph (d) induced subgraph

Figure 3.1: Examples of different graphs. Figure (a) shows a weighted graph, Figure (b) shows
a directed graph. In (c) and (d), the subgraph and the induced subgraph are shown in red.

noted as e = (u, v) ̸= (v, u). The degree of a vertex v is the number of edges
that are incident to v and is denoted by deg(v). In weighted graphs, each edge
has an associated weight defined by a weight function w : E → R. In unweighted
graphs, the weights of each edge is set to w(e) = 1. The weight can represent a
cost, distance, or any other value that is associated with the edge. Similar to the
vertices, the edges of a graph are unique. Between two vertices u and v there can
be at most one edge in an undirected graph and at most one edge in each direction
in a directed graph. If there are multiple edges between two vertices, the graph is
called a multigraph. An undirected, weighted graph is shown in Figure 3.1a and
a directed, unweighted graph in Figure 3.1b. Graphs, which are allowed to have
self-loops, are called pseudographs.

Subgraphs. A subgraph G′ = (V ′, E ′) of a graph G = (V,E) is a graph where
V ′ ⊆ V and E ′ ⊆ E. Thus, the subgraph G′ can only contain vertices and edges
that are part of the graph G. It is possible to select a subgraph that contains
all vertices of the original graph but only a subset of the edges. This includes
the case where the subgraph does not contain any edges at all. In contrast, an
induced subgraph G′ = (V ′, E ′) is a subgraph where V ′ ⊆ V and

E ′ = {{u, v} ∈ E | u, v ∈ V ′}. (3.1)

Thus, the induced subgraph contains all edges of the original graph G whose
endpoints are part of the vertex set V ′ of the induced subgraph. Examples of
a subgraph and an induced subgraph are shown in Figure 3.1c and Figure 3.1d,
respectively.

Paths and connectivity. In a graph, a path is defined as a sequence of k ver-
tices ⟨v1, . . . , vk⟩ such that each pair of consecutive vertices (vi, vi+1) is connected
by an edge. A graph is connected if there is a path between every pair of vertices.
If a graph is not connected, it consists of multiple connected components. Hence,
two vertices u and v are in the same connected component if there is a path
between them. The connected components of a graph can be computed using the
breadth-first search or depth-first search algorithm within O(|V | + |E|). If the

20

CHAPTER 3. ALGORITHMIC FUNDAMENTALS

graph is unweighted and consists of a single connected component, the breadth-
first search algorithm determines the shortest paths from the starting node to all
other nodes in the graph. However, if the graph is weighted with non-negative
edge weights, Dijkstra’s algorithm can be used to compute the shortest paths
from a starting node to all other nodes in the graph. In the context of cartog-
raphy and navigation, the edge weights can represent distances or travel times.
For more details see Cormen et al. (2022).

Complete graphs and subdivisions. A complete graph Kn is a graph with
n vertices where every pair of vertices is connected by an edge. Since the graph
does not contain self-loops, every vertex is connected to n − 1 other vertices.
Hence, a complete graph has n·(n−1)

2
edges. In the context of bipartite graphs,

which have to disjoint sets of vertices connected by edges, a complete bipartite
graph Km,n has m vertices in one set and n vertices in the other set. Every vertex
in the first set is connected to every vertex in the second set. Hence, a complete
bipartite graph has m · n edges. The complete graphs K5 and K3,3 are shown in
Figures 3.2a and b.

A subdivision of a graph G = (V,E) is a graph that can be obtained from G

by replacing edges with paths, i.e., introducing additional vertices of degree 2.
These paths in G can be arbitrarily long and introduce additional vertices and
edges into the graph. We show a subdivision of a K5 in Figure 3.2c.

Planar graphs. A planar graph is a graph that can be drawn in the plane
without edge crossings. The planarity of a graph can be determined by using
Kuratowski’s theorem. Kuratowski’s theorem states that a graph is planar if and
only if it neither contains a subdivision of a K5 nor that of a K3,3 (Kuratowski,
1930). These minimal, non-planar graphs are shown in Figure 3.2. Hence, a
graph is planar if no Kuratowski subdivision is present. The planarity testing by
Boyer and Myrvold (2004) solves the task of finding a Kuratowski subdivision in
a graph with linear time complexity (O(n)).

(a) K5 (b) K3,3 (c) a subdivision of K5

Figure 3.2: The non-planar graphs K5, K3,3 and a subdivision of a K5. Kuratowski stated that
a graph is planar if and only if it does not contain a subdivision of a K5 or a K3,3.

21

3.1. GRAPH THEORY

If a planar graph is drawn in the plane using random vertex positions, it is
possible for edges to cross. To avoid edge crossings, it is necessary to compute a
planar embedding of the graph in the plane. Chrobak and Payne (1995) presented
an algorithm that computes such a planar embedding with linear time complexity.
The resulting drawing is called a planar drawing and the graph with its vertex
positions is called a plane graph.

The faces of the plane graph are the areas bounded by the edges of the graph.
The set of faces F includes all inner faces and the outer, infinitely large face. As
an example, a graph consisting of a triangle, a K3, has three vertices and edges,
and two faces, the inner and the outer face. Euler’s formula states that for a
connected planar graph with |V | vertices, |E| edges, and |F | faces, the following
equation holds:

|V | − |E|+ |F | = 2. (3.2)

From the fact, that every face is bounded by at least three edges, i.e. a triangle,
and every edge is part of at most two faces, if follows that 3 · |F | ≤ 2 · |E|. Using
this inequality in Euler’s formula, we get

|E| ≤ 3 · |V | − 6 (3.3)

under the constraint |V | ≥ 3. This inequality states that a planar graph with |V |
vertices has at most 3 · |V |−6 edges. An advantage of this inequality is that non-
planar graphs can be detected without computing a planar embedding. However,
a graph can be non-planar even if this inequality holds, since this inequality only
defines an upper bound for which the graph is guaranteed to be non-planar.

Dual graphs. Given a plane graph G = (V,E), the representation of dual
graphs can be used to express which faces f ∈ F of the graph are adjacent to
each other. The dual graph G∗ = (V ∗, E∗) contains a vertex for every face f

of G, including a vertex representing the outer face of G. For every edge that
separates two faces in G, we add an edge to G∗ connecting the two vertices
representing the corresponding faces. We show an example of a plane graph and
its dual graph in Figure 3.3. If both sides of an edge belong to the same face, this
can be represented by a loop in the dual graph. As a result, exactly one vertex
of G is in every face of G∗ and vice versa. Additionally, G∗ is planar as well.
Hence, the number of faces of a plane graph is equal to the number of vertices
of its dual graph and vice versa (|V | = |F ∗|, |F | = |V ∗|), while the number
of edges of the plane graph is equal to the number of edges of the dual graph
(|E| = |E∗|). When interested in the topology of the faces of a plane graph,
the duplicate edges between two vertices of the dual graph and self-loops can
be omitted. When removing the vertex representing the outer face from G∗, the
resulting graph is called the adjacency graph of the plane graph.

22

CHAPTER 3. ALGORITHMIC FUNDAMENTALS

(a) plane graph (b) dual graph (c) adjacency graph

Figure 3.3: The plane graph in black and its dual graph and adjacency graph in red, respectively.
Figure (a) shows the plane graph, (b) the dual graph, and (c) the adjacency graph. The
adjacency graph corresponds to the dual graph after removing the vertex representing the
outer face, duplicate edges and self-loops.

Flow networks. A flow network is a directed graph G = (V,E) where each
edge (u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0 and a flow f(u, v) ≥ 0.
The flow network always contains a source vertex s and a sink vertex t. As an
analogy to the flow network, we can think of a pipe system where the edges are
pipes and the capacity is the amount of water that can be transported through
the pipes. The flow is the amount of water that is transported through the pipes.
Water is released at the source vertex and collected at the sink vertex. The goal
is to send as much flow as possible from the source to the sink. To compute the
flow of a network, we must ensure that the flow does not exceed the capacity of
the edges:

0 ≤ f(u, v) ≤ c(u, v). (3.4)

Additionally, flow conservation has to be ensured at each vertex v ∈ V \ {s, t}.
The incoming flow at a vertex must be equal to the outgoing flow:∑

u∈V

f(u, v) =
∑
u∈V

f(v, u). (3.5)

The total flow of the network is the net outflow at the source or the net inflow at
the sink, respectively:

|f | =
∑
v∈V

f(s, v) =
∑
v∈V

f(v, t). (3.6)

Finding the maximum flow value |f | of a flow network is a common problem in
graph theory and is called the maximum-flow problem. The Ford-Fulkerson algo-
rithm (Ford and Fulkerson, 1956) is an established method to solve the maximum-
flow problem. The Ford-Fulkerson algorithm iteratively finds augmenting paths
from the source to the sink and increases the flow along these paths. The flow is
increased by the minimum capacity of the edges in the augmenting path, which

23

3.1. GRAPH THEORY

results in a time complexity dependent on the maximum flow value. More pre-
cisely, the Ford-Fulkerson algorithm has a time complexity of O(|f | · |E|). Orlin
(2013) proposed an algorithm that is able to solve the maximum-flow problem in
O(nm). For planar graphs with n = |V | and m = |E| and O(m) = O(n), they
provide an algorithm that solves the maximum-flow problem in O(n2/ logn).

3.1.2 Hypergraph Drawings and Planar Supports

In the graph drawing community, a set system is usually viewed as a hypergraph,
and different types of hypergraph drawings are considered.

Hypergraph. On a formal level, a hypergraph H = (S,C) consists of a vertex
set S and a hyperedge set C. Each hyperedge c ∈ C is a subset of S. Hence, a
hyperedge can consist of an arbitrary number of vertices. In contrast to edges in
graphs, a hyperedge can consist of a single vertex or multiple vertices. Similar
to multigraphs, two vertices can be connected by multiple hyperedges. Vertices,
which are contained by the same set of hyperedges are called twins. Consequently,
a hypergraph can be used to model relationships between multiple elements. In
the hypergraph representation of a set system, every vertex in S corresponds to
a set element and every hyperedge in C to a set.

Support graph. A graph G = (V,E) is called a support graph (or simply
support) of H if V = S and each hyperedge c ∈ C induces a connected subgraph
in G, i.e., the subset of edges in E that connect pairs of vertices in c is connected
and spans all elements in c. Hence, the support of a hypergraph is not an induced
subgraph, but a subgraph of the hypergraph where all vertices of each respective
hyperedge must form a single connected component. Support graphs play an
important role for visualizing hypergraphs (or set systems) since in a drawing
of its support graph all hyperedges can be traced or highlighted as connected
shapes, similarly to the regions representing a set in common set visualization
approaches, e.g., Euler diagrams. Supports need to satisfy certain quality criteria
to be considered suitable for set visualization. Most prominently, a good support
graph should be planar so that the shapes created by tracing the corresponding
hyperedge subgraphs intersect only if their hyperedges share common vertices.

Supports have been primarily studied from a theoretical perspective, and
it is known that deciding whether a given hypergraph admits a planar sup-
port is NP-complete (Johnson and Pollak, 1987), even if the support must be
2-outerplanar (Buchin et al., 2011). In the context of Euler diagrams, it is neces-
sary to find a planar support of a given hypergraph H, i.e., a support of H that
can be drawn in the plane without edge crossings; see Figure 3.4. In essence, a

24

CHAPTER 3. ALGORITHMIC FUNDAMENTALS

planar support of a given hypergraph can serve as the dual graph of the Euler
diagram that is to be constructed; see Figures 3.5 and 3.6.

1 2

5

3

4

Figure 3.4: A planar support
of the hypergraph with ver-
tices 1, . . . , 5 and hyperedges
{1, 2, 3}, {1, 4, 5}, {2, 4}, each
inducing a connected sub-
graph.

Figure 3.5: An Euler dia-
gram whose dual graph is the
planar support in Figure 3.4.
The three regions correspond
to the three hyperedges of the
hypergraph.

1 2

5

3

4

Figure 3.6: The planar
support of the hypergraph
in Figure 3.4 superimposed
with an Euler diagram using
the planar support as its dual
graph.

Testing whether a hypergraph has a support that is a path, cycle, tree, or
cactus (Johnson and Pollak, 1987; Korach and Stern, 2003; Brandes et al., 2011;
Buchin et al., 2011) can all be done in polynomial time. Johnson and Pollak
(1987) presented an efficient algorithm that yields a tree support if it exists, i.e.,
a planar support that is a tree. Following up on this study, efficient algorithms
were developed that can deal with edge weights to express preferences for includ-
ing certain edges in a tree support (Korach and Stern, 2003; Klemz et al., 2014).
Another line of research has dealt with finding planar supports for hypergraphs
with special properties. Brandes et al. (2011) presented an efficient algorithm
for hypergraphs that are closed under intersections and differences, i.e., every
intersection and difference of two hyperedges is also a hyperedge. Moreover, a
hypergraph has a planar support if there is a non-empty intersection of all hyper-
edges (Chow and Ruskey, 2005), there are at most eight hyperedges (Verroust and
Viaud, 2004), or the hypergraph results from the intersection of two families of
regions that have a special property, called non-piercing (Raman and Ray, 2018).
None of the existing methods, however, can decide for an arbitrary hypergraph
whether it has a planar support.

Recently, van Bevern et al. (2024) studied the role of twins in computing
planar supports. They showed that when replacing a set of twins by a single
vertex, the hypergraph may cease to have a planar support. However, the proof
by Johnson and Pollak (1987) shows that even for hypergraphs without twins, it
is NP-hard to decide whether a planar support exists. Our method for computing
a planar support of an arbitrary set system can handle hypergraphs containing
twins, but we propose an optional preprocessing step to replace each set of twins
with a single vertex to ensure that it is represented as a single connected zone in
the output Euler diagram. In practice, this step can improve the running time of
our algorithm when there are many elements with the same set membership.

25

3.2. INTEGER LINEAR PROGRAMMING

Mäkinen (1990) introduced two types of drawings called edge standard and
subset standard. The latter type includes vertex-based Venn diagrams, which
were defined by Johnson and Pollak (1987) and which correspond to the type
of Euler diagrams that we address with our work, i.e., Euler diagrams that are
based on planar supports. Later, vertex-based Venn diagrams were generalized
into subdivision drawings (Kaufmann et al., 2009).

A practical approach based on computing hypergraph supports and rendering
the visualization in the style of a schematic metro map with sets as transit lines
is MetroSets (Jacobsen et al., 2021). While the above results concern supports of
abstract hypergraphs, the problem of computing supports has also been studied
for spatial hypergraphs, where the vertices have fixed positions in the plane and
the support graphs need to preserve these vertex positions (Castermans et al.,
2019). One related result deals with the question if a given hypergraph has a tree
support, where each vertex has a degree bound that must be respected by the
computed tree support. Buchin et al. (2011) proved that such a support can be
computed in polynomial time (if one exists).

3.2 Integer Linear Programming
Integer linear programming is a general method for solving combinatorial opti-
mization problems (Nemhauser and Wolsey, 1988). A problem is encoded in the
form of a set of variables, an objective function, and a set of constraints that have
the form of an integer linear program (ILP). Following the modelling of the prob-
lem, a solver is used to compute a variable assignment that is optimal under the
given constraints. The variable vector x of an ILP contains integer variables. The
objective function and the constraints of an ILP in canonical form are f(x) = cTx
and Ax ≤ b, x ≥ 0, respectively, where c, A, and b are given as constants. An
equality constraint can be encoded in this form using two inequality constraints,
and a binary variable can be expressed as an integer variable with upper bound 1.
Although solving an ILP requires exponential time in the worst case, there exist
ILP solvers that often perform well in practice. Especially for NP-hard problems,
such as finding planar embedding of hypergraphs, this approach is justifiable and
often successful.

Planarity of a graph. In the field of information visualization, two ILP-
based methods are most related to our set system simplification. Castermans
et al. (2019) considered the problem of finding a support of a hypergraph with
fixed vertex positions. The support is required to be a crossing-free straight-line
graph; hence, a stricter requirement than planarity is enforced. This can eas-
ily be achieved by forbidding the selection of crossing pairs of candidate edges.

26

CHAPTER 3. ALGORITHMIC FUNDAMENTALS

However, ensuring planarity of the support without knowing the positions of its
vertices is a much more involved task.

For enforcing planarity on graphs without geometry, Chimani et al. (2019)
developed an ILP for the maximum planar subgraph problem. The goal of the
maximum planar subgraph problem is to find a planar subgraph which has the
maximum number of edges across all possible subgraphs. In theory, it is possi-
ble to add an exponential number of constraints in order to avoid edge crossing.
However, adding an exponential number of constraints is not feasible in practice
and would always result in large running times. Instead, the authors use a formu-
lation that only adds constraints if a preliminary solution contains Kuratowski
subdivisions. In their work, they find all planar Kuratowski subdivision of their
preliminary solution and add a constraint that for each Kuratowski subdivision
at least one edge must be removed. By repeating the approach for every prelimi-
nary solution, they can ensure that the final solution is planar. We use a similar
approach in our ILP formulation for the generation of Euler diagrams. We first
compute a support and then check if it contains Kuratowski subdivisions. If
it does, we add constraints to remove at least one edge from each Kuratowski
subdivision. If it does not contain a Kuratowski subdivision, we found a planar
subdivision. These constraints ensure that the final solution is planar. In contrast
to the work of Chimani et al. (2019), we only add a single similar constraint at a
time when simplifying the set systems. In practice, this approach is efficient and
allows us to solve the problem in reasonable time.

Connectivity of a graph. When modeling the embedding of hypergraphs as
an ILP, the challenge lies in expressing constraints to ensure the connectivity
requirement for hyperedges and the planarity requirement. Luckily, there exist
constraint formulations for other graph-theoretic problems that we can adapt.

Shirabe (2005) developed a unit allocation approach that enforces the con-
nectivity of a region resulting from the allocation of a set of faces of a planar
subdivision. Although the approach is originally designed for districting prob-
lems, we can adapt it to be used for the connectivity of hyperedges in a planar
support. The idea behind the formulation to model a flow network using flow vari-
ables for every edge and constraints that ensure that the flow is passed through
the network towards the sink vertex. In contrast to flow networks, the network
does not have a single source vertex and the sink of the flow network is not fixed.
Instead, every vertex in the network, which that is not the sink vertex, is a source
vertex and contributes flow to the network. The sink vertex can only accept flow
and can be any of the selected vertices. In addition, a vertex is not allowed to
contribute flow, if it is not part of the flow network. The flow capacity of an
edge is limited by the maximum number of vertices which can be part of the flow

27

3.3. SPATIAL UNIT ALLOCATION

network. Since each vertex corresponding to an area to be part of the result-
ing districts adds flow to the network, which is forwarded through the network
to the sink vertex, the flow network is connected. We adapt this approach to
ensure the connectivity of hyperedges in our approaches. When dealing with hy-
pergraphs, we need to implement a separate flow formulation for each hyperedge.
Furthermore, the number of vertices that are part of the hyperedge is not fixed
when simplifying the set system. Further details are provided in Section 5.4.1
and Section 6.4.1.

3.3 Spatial Unit Allocation

In geographical information science and spatial optimization, the term spatial unit
allocation refers to a family of problems where a subset of a given set of minimal
mapping units is searched Shirabe (2005). The goal of spatial unit allocation is to
select a subset of minimal mapping units that form a result. The mapping units
are usually defined as a set of polygons, e.g., census tracts or land use polygons.
An example of such mapping units is shown in Figure 3.7a. The result can be
a single, contiguous region or multiple regions. In Figure 3.7b, three mapping
units are selected to form a single polygon as a result. Typically, the selection of
mapping units is based on an optimization minimizing or maximizing an objective
function. Depending on the application of the approach, the objective function
can be a single criterion or a combination of multiple criteria. In addition to
the objective function, it is possible to introduce additional constraints. These
constraints depend on the use case of the approach and the requirements for the
resulting geometry or additional attributes.

(a) minimal mapping units (b) spatial unit allocation (c) districting

Figure 3.7: Spatial unit allocation. Figure (a) shows a set of minimal mapping units, e.g.,
census tracts or land use polygons. In (b), three minimal mapping units are selected via spatial
unit allocation to form a result. Figure (c) shows the districting of mapping units into multiple
contiguous regions with similar area. Here, every mapping unit is assigned to exactly one region.

28

CHAPTER 3. ALGORITHMIC FUNDAMENTALS

Compactness. An important selection criterion in spatial unit allocation is the
computation of compact regions. Rahman and Szabó (2021) present a review of
several spatial unit allocation approaches and find that compactness is the most
commonly used criterion across applications. The compactness can be expressed
with various measures, many of which are based on the area A and the perimeter
P of a resulting region. For example, the Polsby-Popper score of a region (Polsby
and Popper, 1991) is defined as

PP = 4π
A

P 2
(3.7)

and the Schwartzberg score (Schwartzberg, 1965) as the square root of the Polsby-
Popper score. Note that both scores evaluate to one for disks and attain values
close to zero for highly non-compact shapes. Furthermore, if the area A is fixed,
maximizing a shape’s Polsby-Popper or Schwartzberg score reduces to minimiz-
ing its perimeter. Another general approach to measuring a region’s compactness
is based on eccentricities, i.e., distances between a center of a result and the ar-
eas assigned to it (Hess and Samuels, 1971). For results that consist of several
regions, the compactness can be expressed as the sum of the compactness of the
individual regions. Alternatively, we can achieve compact solutions by minimiz-
ing the number ob neighboring spatial units (Aerts and Heuvelink, 2002). This
approach is similar to minimizing the perimeter of a region in cases where all
borders of mapping units have the same length.

Spatial unit allocation approaches. For solving the optimization problem,
integer programming is an established technique. Aerts et al. (2003) present
an approach for multi-site land use allocation using integer linear programming.
They present constraints for contiguity and compactness of the results while
minimizing displacement on a regular grid. However, the contiguity constraints
require the use of such a regular grid and are not applicable to arbitrary ge-
ometry. Other approaches in the context of habitat allocation and biodiversity
conservation use quadratic integer programming in their objective function of
constraints to model the contiguity of the output regions (Nalle et al., 2003; Bil-
lionnet, 2013). This approach allows the authors to prioritize contiguity without
strictly enforcing it.

Unlike integer linear programming, where each variable can take only integer
values, mixed integer linear programming (MILP) allows for continuous variables.
McDill et al. (2002) present an approach to harvest scheduling using MILP. They
present two formulations for selecting adjacent land units whose total area does
not exceed a predefined threshold. To model the contiguity of regions, they use a
path algorithm that selects up to four management units. The selection is made
by selecting adjacent units until the total area exceeds the threshold, at which

29

3.3. SPATIAL UNIT ALLOCATION

point a constraint is added. Brunel et al. (2024) present an approach to allocate
contiguous reserves using MILP which are gap free, i.e. the resulting reserves do
not contain holes. Furthermore, they produce compact reserves by minimizing
the perimeter of the reserves. Producing compact regions is also a goal of our
approaches explained in Chapters 4 and 5. Brunel et al. (2024) state their method
is not applicable to large instances (> 500 units), while our approach to polygon
aggregation which is explained in Chapter 4 can be computed in subquadratic
time complexity and scales for larger instances (> 100, 000 units).

In contrast to using integer programming to solve the spatial unit allocation
optimization problem, it has been shown that the use of genetic algorithms can
be advantageous (Li and Parrott, 2016; Gao et al., 2021). Using genetic algo-
rithms, the authors can solve multi-objective optimization problems and find a
set of regions that are optimal with respect to multiple criteria. The strength of
genetic algorithms is their dramatically improved scalability compared to most
ILP-based methods. However, the use of genetic algorithms is not suitable if ev-
ery constraint has to be strictly modeled and must not be violated. Additionally,
genetic algorithms are not guaranteed to find the optimal solution. Xiao et al.
(2024a) propose a different approach by starting with multiple random initializa-
tions of the same allocation problem. By swapping regions within solutions and
combining results from different initializations, they claim to find near-optimal
solutions.

3.3.1 Districting

The delineation of districts is a common problem in geographical information
science and planning that is usually referred to as districting or zoning; for a
detailed discussion we refer to Ríos-Mercado (2020). Applications of districting
include but are not limited to the definition of electoral districts (Validi et al.,
2021; Zhang et al., 2024), school districts (Caro et al., 2004), and ticket zones
for public transportation systems (Tavares-Pereira et al., 2007). Typically, the
goal is to form districts automatically based on a given partition of the plane.
For example, census tracts are grouped to electoral districts. Therefore, it is a
subtask of spatial unit allocation, the goal of which is to select a minimal set of
mapping units to produce a result. In addition to the objective of spatial unit
allocation, e.g. producing compact solutions, the resulting districts are required
to be contiguous. For their typical application of partitioning population in dis-
tricts, e.g. creating electoral districts, they should satisfy a number of additional
constraints, such as population balance or the preservation of existing boundaries
(Tong and Murray, 2012).

30

CHAPTER 3. ALGORITHMIC FUNDAMENTALS

Contiguity. A district is contiguous if every two points in it are connected via
a curve that is entirely within that district. Thus, each district is a connected
component, and contiguity is a qualitative property of a district. In this context,
we want to highlight the difference between connectivity and contiguity that we
use in this thesis. We use contiguity to refer to the property of a region which
can be represented by a single polygon. When using connectivity, we refer to
the property of nodes in a graph which are connected by a path. In contrast to
contiguity, compactness is a quantitative property.

Districting in cartography. In the context of information visualization and
cartography, districting methods have been proposed for map generalization
tasks. Oehrlein and Haunert (2017) presented a method for grouping the areas
of a choropleth map to larger areas in order to obtain a less fine-grained choro-
pleth map. Similar approaches have been used for land-use and land-cover maps
(Haunert and Wolff, 2010a; Gedicke et al., 2021). Although the constraints and
objectives of districting depend on the concrete task at hand, some approaches
have turned out to be rather generally applicable. This holds for meta-heuristics
such as simulated annealing (Ricca and Simeone, 2008) or evolutionary algo-
rithms (Tavares-Pereira et al., 2007). These, however, usually require a feasible
start solution, which is not easy to obtain for Euler diagrams. Therefore, we
choose an approach based on integer linear programming over meta-heuristics,
which has the additional advantage that it guarantees optimal solutions.

Impact on this thesis. For drawing contiguous diagrams in our set visualiza-
tion problems, we adapt a model developed for districting by Shirabe (2005, 2009)
that is based on flow networks. Additionally, we transfer the idea of producing
compact districts to the research field of polygon aggregation and set visual-
ization. In contrast to spatial unit allocation problems in cartography, tasks in
information visualization do not provide any geometric objects which can be used
as minimal mapping objects. However, in our work, the vertices of our graph are
becoming the areas of the visualization. Thus, by selecting a subset of vertices,
we can also select a subset of areas. We provide formulations which can transfer
proven methods for ensuring contiguity of the individual sets to our problems.

3.4 Graph Cuts
The idea behind graph cuts is to partition a graph into two disjoint graphs by
removing a set of edges. If the graph is unweighted, the goal is to find a cut
that minimizes the number of edges between the two partitions. If the graph is
weighted, the goal is to find a cut that minimizes the sum of the weights of the

31

3.4. GRAPH CUTS

edges between the two partitions. First, we introduce the concept of graph cuts
and then discuss their application in image segmentation. Afterwards, we present
the use of graph cuts in additional fields of research, such as climate models or
3D point cloud reconstruction.

Graph cuts. Let G = (V,E) be an undirected, weighted graph with the vertex
set V = {v1, . . . , vn} and edge set E = {{vi, vj} | vi ∈ V, vj ∈ V } with an edge
weight w : E → R≥0. A graph cut removes a set of edges C ⊆ E such that the
graph is partitioned into two disjoint subgraphs G1 = (V1, E1) and G2 = (V2, E2)

with V1 ∪ V2 = V , V1 ∩ V2 = ∅ and E1 ∪E2 ∪C = E. The cut capacity is defined
as the sum of the weights of the edges in C.

w(C) =
∑
e∈C

w(e) (3.8)

When computing a minimum cut, we minimize the cut capacity (Peng et al.,
2013).

Image segmentation. Graph cuts are widely used for image segmentation
(Wu and Leahy, 1993; Shi and Malik, 2000), stereo matching (Bleyer and Gelautz,
2007; Barath and Matas, 2018) or medical image segmentation (Chen and Pan,
2018). A survey of Peng et al. (2013) provides an overview of graph-theoretic
approaches to image segmentation. The survey is not limited to binary segmen-
tation, but also covers multi-label segmentation and the use of other graph-based
methods such as tree-based methods. The authors showed that graph cuts are
well suited for this task and are able to solve the problem efficiently.

To apply graph cuts to images, we first define the vertices and edges of our
graph G. First, we introduce a vertex in the graph for every pixel in the image.
Additionally, we need to define which subgraph will represent the foreground and
the background after cutting the graph. To accomplish this, we add two artificial
vertices s and t, called the source and sink vertices, respectively.

V ′ = V ∪ {s, t} (3.9)

The basic set of edges connects every vertex of the graph representing a pixel
with the source and sink.

E ′ = {{s, v} | v ∈ V } ∪ {{v, t} | v ∈ V } (3.10)

Computing an s-t-cut, we separate the source vertex s from the sink vertex t. We
call the connected component of the graph containing the source vertex the source
component and the component containing the sink vertex the sink component.
The resulting subgraphs have at least one vertex, i.e. the source or sink, and can

32

CHAPTER 3. ALGORITHMIC FUNDAMENTALS

t

s

(a) graph G

t

source

sink

cut

s

(b) a cut on G

Figure 3.8: A graph cut based on the model by Greig et al. (1989). Edge weights are represented
by thickness. After cutting the graph, the source and sink components are separated.

have no edges. Due to the theorem of Ford and Fulkerson (1956), the minimum
cut problem is equivalent to the maximum-flow problem. In the maximum-flow
problem, the goal is to maximize the flow between two vertices in a graph. The
edges that restrict the flow are the same edges as in the minimum cut problem.
Orlin (2013) presented an algorithm that solves the maximum-flow problem in
O(nm) time, where n is the number of vertices and m is the number of edges.
For planar graphs, the property m = O(n) holds resulting in the time complexity
O(n2/ logn).

Since the presented basic formulation does not incorporate any information
of neighboring pixels, Boykov and Veksler (2006) introduced a method to incor-
porate information of adjacent pixels. The additional information is encoded in
edges between vertices representing adjacent pixels in the image; see Figure 3.8.
The weights of the edges depend on the similarity of the adjacent pixels and are
based on a maximum a posteriori approach, which was introduced by Greig et al.
(1989). The approach of Greig et al. (1989) was generalized to using energy min-
imization for adjacent pixels by Kolmogorov and Zabin (2004). They introduced
a novel term for the energy minimization utilizing triplets of pixels. With respect
to the automatic tuning of a parameter that balances two objectives, the work of
Peng and Veksler (2008) is most related to ours. While they focus on the develop-
ment of quality metrics for the evaluation of image segmentation solutions, they
simply use a constant step width to sample different values for the parameter of
a weighted-sum model.

Another field of research is the use of graph cuts for segmenting images un-
der the constraint of connected components. Vicente et al. (2008) proposed a
method that leverages Dijkstra’s shortest path algorithm to enforce connectivity
constraints. They require that every pair of pixels in the segmentation set has a
path in the graph that connects them. However, they prove that the problem is
NP-hard and propose a heuristic to solve the problem.

33

3.4. GRAPH CUTS

Other raster data. While image segmentation is the most common application
of graph cuts, other applications have been proposed for the use with raster data.
Clark et al. (2012) showed an approach based on graph cuts to merge two images
into one. They use an energy based cost function which takes into account the
color and gradients of the images. The authors show that the choice of the cost
function greatly influences the result. An energy minimization cost function was
also used by Thao et al. (2022) to combine two climate models using graph cuts.
They fit the models to a reference model for training and use a data term and a
smoothness term in the energy function.

Vector data and point clouds. In addition to their broad application to
raster data, graph cuts have been applied to vector data and point clouds in
the past. While images are clearly structured as a grid, vector data and point
clouds do not have a regular structure. Abrahamsen et al. (2020) used graph
cuts on vector data to separate sets of polygons into interior disjoint polygons.
They minimized the length of the separating boundary between the two sets of
polygons. Unlike the method we developed for bicriteria shapes, they did not
consider the area and the resulting compactness of the polygons. Sedlacek and
Zara (2009) applied graph cuts on 3D point clouds to reconstruct 3D models. In
contrast to energy models of image segmentation, they use a cost function based
on the Euclidean distance between points in the point cloud. Another approach
dealing with vector data is presented by Zebedin et al. (2008). Their goal is
to create a 3D model of a building from aerial laser scanning data. In a first
processing step, they extract the outline of the building and the roof structure.
In a second step, they fuse the boundary and roof information using graph cuts
with energy minimization. The authors show that the graph cut approach is able
to create a more accurate 3D model than other methods. Another segmentation
approach using graph cuts is presented by Nunes et al. (2022). They apply graph
cuts to features generated by a convolutional neural network to segment instances
in images. As a result, they do not need to provide labels to train the network.
The authors note that this is particularly useful for training scenarios where not
every instance class is correctly labeled in the neural network training data.

34

Chapter 4

Map Generalization Using Graph
Cuts

This chapter is based on the joint work with Anne Driemel, Herman
Haverkort, Heiko Röglin and Jan-Henrik Haunert (Rottmann et al.,
2025) which is an extended version of a previous work of the same
authors (Rottmann et al., 2021). The idea behind bicriteria shapes

was born in a discussion among all authors. While Herman Haverkort improved
the proofs in this chapter, I (Peter Rottmann) implemented the algorithm, con-
ducted the experiments, provided the figures and was supervised by Jan-Henrik
Haunert while writing.

An important task in pattern recognition and map generalization is to parti-
tion a set of disjoint polygons into groups and to aggregate the polygons within
each group into a representative output polygon. We introduce a new method
for this task, called bicriteria shapes: following a classical approach, we define
the output polygons by merging the input polygons with a set of triangles that
we select from a conforming Delaunay triangulation of the exterior of the input
polygons. The innovation is that we control the selection of triangles with a bi-
criteria optimization model that is efficiently solved via graph cuts; in particular,
we minimize a weighted sum that combines the total area of the output polygons
and their total perimeter. In a basic problem, we ask for a single solution that
is optimal for a given parameter value which controls the level of generalization.
In a second problem, we ask for a set containing an optimal solution for each
possible value of the parameter. We discuss how this set can be approximated
with few solutions and show that it is hierarchically nested. An evaluation with
building footprints as input and a comparison with α-shapes based on the same
underlying triangulation conclude the chapter. An advantage of bicriteria shapes
compared to α-shapes is that the sequence of solutions for decreasing values of
the parameter is monotone with respect to the total perimeter of the output
polygons, resulting in monotonically decreasing visual complexity.

35

4.1. INTRODUCTION

4.1 Introduction
Map generalization is the process of deriving a less detailed map from a given map.
It consists of several subtasks such as object selection, simplification, aggregation,
and displacement. In this chapter, we address the task of detecting polygon
groups (i.e., spatial clusters of polygons) and aggregating each group into a single
polygon, which we will simply refer to as polygon aggregation. This task is
relevant, for example, to derive settlement areas from mutually disjoint building
footprints.

A popular method for aggregating polygons is the adopt merge amalgamation
operator proposed by Jones et al. (1995), which is based on a conforming Delaunay
triangulation of the space not covered by the input polygons; see Figure 4.1. The
approach is to select a set T ′ ⊆ T from the set T of triangles of the triangulation
to glue groups of input polygons together. More precisely, the contiguous regions
in the union of the triangles in T ′ and the input polygons constitute the output
polygons. While Jones et al. (1995) left it largely open how the selection T ′ is
computed, we present a new method that computes T ′ by optimization.

Design decisions. Our work aims to overcome the problem raised by Li et al.
(2018), who mentioned that the triangulation-based aggregation of polygons has
often been discussed at a general conceptual level and that difficulties arise in
the detailed specification. We implement the general approach based on the two
overarching criteria of map generalization (Burghardt et al., 2007): While on the
one hand, map generalization aims to preserve the information given with the
input map, on the other hand, it aims to ensure the legibility of the output map.
In our method, the preservation of information is considered by minimizing the
total area of the output polygons, meaning that only little area should be added
to the input polygons when merging the selected triangles with them. Legibility is
considered by minimizing the total boundary length (or perimeter) of the output
polygons, which can be considered as an implementation of Tufte’s minimum-ink
principle (Tufte, 1992). A parameter λ, which we call balance factor, is used to
combine these objectives with a weighted sum. To formalize this, we refer to
A(S) as the area and P (S) as the perimeter of the union of all polygons in a set
S, where the union can be a polygon or a multipolygon. For a single polygon
p we simply use A(p) and P (p) to refer to its area and perimeter, respectively.
With this we state the first problem that we aim to solve as follows.

Problem 1. Given a set B of mutually disjoint simple polygons, a set S ⊇ B of
n simple polygons that constitute a planar subdivision, and a balance factor λ ∈
[0, 1], select a set S ′ with B ⊆ S ′ ⊆ S minimizing fλ(S

′) = λ·A(S ′)+(1−λ)·P (S ′).

36

CHAPTER 4. MAP GENERALIZATION USING GRAPH CUTS

Figure 4.1: Input polygons (filled gray) aggregated to larger ones (red lines).

In our application, B is the set of input polygons, e.g., building footprints or
islands. The set S contains all polygons of a planar partition, including the poly-
gons in B and the triangles of a triangulation partitioning the space not covered
by the input polygons. Note that the restriction to a triangulation is not neces-
sary, i.e., one may use any other partition of the plane instead. The requirement
B ⊆ S ′ ⊆ S means that the input polygons in B have to be in the selection S ′.
The balance factor λ combines the two objectives with a weighted sum, yielding
the overall objective function fλ. To state that a solution to Problem 1 is optimal
for a certain balance factor λ, we refer to it as a λ-optimal solution.

Any algorithm solving Problem 1 can be used to compute a clustering that is
optimal for a prescribed value of the parameter λ. Such an algorithm could be
used to derive a single output representation of the input data. However, setting
the free parameter of the model may be challenging. Moreover, a single clustering
does not provide representations for multiple scales. Therefore, we introduce a
second problem to obtain a parameter-free hierarchical clustering method.

Problem 2. Given a set B of mutually disjoint simple polygons and a set S ⊇ B

of n simple polygons that constitute a planar subdivision, find a set containing for
every λ ∈ [0, 1] an optimal solution to Problem 1.

Obviously, by not requiring a pre-set value for λ, our method becomes pa-
rameter free. However, it is not as obvious that the solutions in the result set
of Problem 2 constitute a hierarchical clustering. We refer to Section 4.2.2 for a
detailed proof of the hierarchically nested structure of the solutions.

The hierarchically nested structure of solutions will admit a gradual transfor-
mation of the data from fine to coarse or vice versa, which is a prerequisite for
zoomable maps (Sester et al., 1998). Very commonly, the hierarchy of different
aggregation levels is computed once and stored in a data structure, such that a
map at a user-queried scale can be retrieved at an interactive performance (Timpf
and Frank, 1995). Moreover, after computing a set of solutions containing an op-
timal solution for each value of the parameter λ, we can infer a suitable value
from a reference solution of a fixed scale: Simply find the λ-optimal solution that
is most similar to the reference solution (with respect to an appropriate similarity

37

4.2. METHODOLOGY

measure) and select the corresponding value for λ. The inferred parameter value
can then be used to solve also other problem instances. Instead of relying on a
reference solution, one could also employ a human expert (i.e., a cartographer) to
let him or her select the best solution in the result set. In this scenario, however,
it is crucial that the result set is not too large as the human expert can inspect
only a limited number of solutions. Therefore, we also address the problem of
approximating the result set of Problem 2 with few solutions.

Contributions and outline.

1. In Section 4.2, we present algorithms for solving the problems defined above
and discuss important structural properties of the output polygons, which
in the following we refer to as bicriteria shapes. In particular, we prove the
hierarchical structure of the solutions for different parameter values.

2. In Section 4.3, we show through a detailed experimental evaluation that our
method can delineate multiple settlements from each other by clustering a
given set of buildings into multiple groups. Moreover, we compare our
method with α-shapes (Edelsbrunner et al., 1983). Finally, we show how to
preserve the characteristic edge directions of the input polygons by using a
planar partition that is not a triangulation.

Note that with bicriteria shapes, we aim to introduce a method that can be ap-
plied to polygon data in general, regardless of the types of objects represented by
the input polygons. We use the grouping and aggregation of building footprints
as a case study but do not aim to model criteria that are relevant specifically
for buildings. Our method is thus comparable with other basic geometric al-
gorithms, such as α-shapes, which is a widely used approach for generalization.
However, there is no simple relationship between the complexity of α-shapes and
the parameter α. More precisely, when decreasing α, the input polygons are
hierarchically aggregated into larger polygons, but the total perimeter of the out-
put polygons does not decrease monotonically. Hence, in contrast to bicriteria
shapes, α-shapes do not solve the two problems that we defined. We show the
differences between α-shapes and bicriteria shapes in a comparative evaluation.
Finally, we conclude this chapter in Section 4.4 and give recommendations for
future research.

4.2 Methodology
In this section, we present our approach using graph cuts. First, in Section 4.2.1,
we deal with Problem 1, which asks for a selection of polygons minimizing our

38

CHAPTER 4. MAP GENERALIZATION USING GRAPH CUTS

bicriteria cost function. Then, in Section 4.2.2, we address Problem 2, which asks
for a λ-optimal solution for every λ in [0, 1]. We show that a linear-size solution
set exists whose solutions form a hierarchical structure. Moreover, we state how
a suitable approximation of the solution set can be computed.

4.2.1 Graph Cut

For solving Problem 1 with graph cuts, we set up an undirected weighted graph
G = (V,E) modeling all feasible solutions as well as our minimization goal. This
approach is illustrated in Figure 4.2 and is described in detail in the following.

As starting point we use the adjacency graph G′ = (V ′, E ′) of the planar
subdivision given with the set S of polygons. Assuming that the polygons are
numbered in an arbitrary order as p1, . . . , pn, we refer to the corresponding nodes
in V ′ as v1, . . . , vn. The edge set E ′ contains an edge {vi, vj} for every two
polygons pi and pj whose boundaries share at least one line segment. We define
the node set of G as V = V ′∪{s, t}, where s is a node called source and t a node
called sink. The edge set E ofG contains all edges in E ′ as well as, for i = 1, . . . , n,
the two edges {s, vi} and {vi, t}; see Figures 4.2a and b. An s-t-cut in G is a

p1

p2

p3

p4

p5

p6

(a) an instance of Problem 1, where B = {p1, p6}

t

s

v1 v2
v3

v4 v5 v6

(b) graph G for the instance in (a)

p1

p2

p3

p4

p5

p6

(c) instance after min cut, where S′ = {p1, p3, p4, p6}

v1 v2
v3

v4 v5 v6

t

s

(d) graph G after cut for the instance in (c)

Figure 4.2: Algorithmic solution of Problem 1 via a graph cut.

39

4.2. METHODOLOGY

set of edges whose removal from G causes s and t to be in different connected
components. We solve Problem 1 by defining an edge weighting w : E → R≥0

and computing a minimum s-t-cut in G, i.e., an s-t-cut in G of minimum total
edge weight.

Formally, for any s-t-cut C ⊆ E, we define its weight as w(C) =
∑

e∈C w(e)

and the graph GC = (V,E \C). We call the connected component of GC contain-
ing s the source component and the connected component of GC containing t the
sink component of C. Moreover, we refer to the set of polygons represented by
nodes in the source component as the solution S ′ modeled by C; see Figures 4.2c
and d. It remains to ensure that any solution modeled by a minimum s-t-cut in
G is feasible and optimal with respect to Problem 1. For this we define the edge
weighting w as follows:

• For every edge e = {vi, vj}, we set w(e) = (1− λ) · ℓ(pi, pj), where ℓ(pi, pj)

is the length of the common boundary of polygons pi and pj.

• For every node vi with pi ∈ B, we set w({s, vi}) = ∞ and w({vi, t}) = 0.
This avoids that {s, vi} is selected for the cut and thus ensures that vi is in
the source component. (In practice, we use a floating-point number format
with a special value representing ∞.)

• For every node vi with pi ̸∈ B, we set w({s, vi}) = 0 and w({vi, t}) =

λ ·A(pi)+ (1− λ) · ℓ(pi), where ℓ(pi) is the length of the boundary between
pi and the outer face (0 if pi and the outer face are not adjacent).

For computing a minimum s-t-cut and the corresponding optimal solution to
Problem 1 we then use a standard graph cut algorithm. The corresponding
theorem states that the approach based on a graph cut indeed solves Problem 1:

Theorem 1. The solution modeled by any minimum s-t-cut in G is an optimal
solution to Problem 1. This allows Problem 1 to be solved in O(n2/ logn) time.

Proof. We prove that (i) each selection S ′ with B ⊆ S ′ ⊆ S is modeled by an
s-t-cut in G whose total weight is λ · A(S ′) + (1 − λ) · P (S ′) = fλ(S

′) and (ii)
each s-t-cut in G of total weight W ̸=∞ models a solution whose objective value
measured with fλ is at most W . This together implies that any solution modeled
by a minimum s-t-cut in G is an optimal solution to Problem 1.

To show (i), let S ′ be an arbitrary solution with B ⊆ S ′ ⊆ S and C the cut
defined as follows. For each pi ∈ S ′, we add edge {vi, t} to C, which amounts
to weight λ ·

∑
pi∈S′ A(pi) + (1 − λ) ·

∑
pi∈S′ ℓ(pi). Moreover, we add each edge

{vi, vj} ∈ E ′ with pi ∈ S ′ and pj ̸∈ S ′ to C, which amounts to weight (1 − λ) ·∑
{vi,vj}∈E′′ ℓ(pi, pj) where E ′′ = {{vi, vj} ∈ E ′ | pi ∈ S ′ ∧ pj ̸∈ S ′}. The set C

40

CHAPTER 4. MAP GENERALIZATION USING GRAPH CUTS

is an s-t-cut in G modeling S ′ because the nodes for polygons in S ′ plus node s

constitute the source component of C. The weight of C is

w(C) = λ ·
∑

pi∈S′ A(pi) + (1− λ) ·
∑

pi∈S′ ℓ(pi) + (1− λ) ·
∑

{vi,vj}∈E′′ ℓ(pi, pj)

= λ · A(S ′) + (1− λ) ·
(∑

pi∈S′ ℓ(pi) +
∑

{vi,vj}∈E′′ ℓ(pi, pj)
)

= λ · A(S ′) + (1− λ) · P (S ′) = fλ(S
′). (4.1)

To show (ii), we consider an arbitrary s-t-cut C ′ in G of total weight w(C ′) =

W ̸= ∞. Let S ′ be the solution modeled by C ′. Because of w(C ′) ̸= ∞, S ′

satisfies B ⊆ S ′ ⊆ S. Now, let C be the cut for S ′ as defined in the proof of (i).
As argued before, C models S ′ and its weight equals the objective value of S ′,
i.e., w(C) = λ · A(S ′) + (1 − λ) · P (S ′). Moreover, the weight of C is at most
the weight W of C ′, since every edge in C is included in C ′ as well, which can
be seen as follows. Assume that there exists an edge e = {u, v} with e ∈ C and
e ̸∈ C ′. Because of e ∈ C and the way we constructed C, one of the nodes u and
v lies in the source component of C and the other one in the sink component of
C. Because of e ̸∈ C ′, u and v lie in the same connected component of GC′ . This
contradicts the assumption that C and C ′ model the same solution. Therefore,
the assumption e ∈ C and e ̸∈ C ′ must have been false. This allows us to conclude
that w(C ′) ≥ w(C) = λ · A(S ′) + (1− λ) · P (S ′).

Currently, the fastest algorithm for computing a minimum s-t-cut in a graph
with O(n) edges runs in O(n2/ logn) time (Orlin, 2013). This result applies to
our case since G′ is planar (which implies that it has O(n) edges) and since G has
only two more edges for each node of G′. The running time for computing the cut
dominates the running times for computing G from the input and generating the
output selection from the cut (e.g., via a depth-first search in the graph without
the cut edges, starting from the source). Hence, the overall running time for
solving Problem 1 is O(n2/ logn).

4.2.2 Hierarchical Structure of Solutions for Multiple Pa-
rameter Values

Before going into the details of the computation, we recall that, by definition of
Problem 2, if for a fixed λ there are multiple optimal solutions, only one of them
has to be included in the result set. This corresponds to finding what is called
the set of all extreme nondominated points, which together with the nonextreme
nondominated points constitute the Pareto-frontier (Bökler and Mutzel, 2015);
see Figure 4.3. The focus on extreme nondominated points admits an efficient
computation via graph cuts and results in a hierarchically nested structure. This
result is summarized with the following theorem, which we first prove and then
discuss for a small example.

41

4.2. METHODOLOGY

extreme nondominated
nonextreme nondominated
dominated
Pareto-frontier
convex hull of Pareto-frontier

Perimeter

Area

Figure 4.3: Different types of solutions and Pareto-frontier of a bicriteria optimization problem.

Theorem 2. For an instance of Problem 1, let S1 be a λ1-optimal solution and
S2 be a λ2-optimal solution, where λ1 > λ2. Then S1 ⊆ S2.

Proof. We distinguish four classes of polygons: those that are neither in S1 nor
in S2; those that are only in S1; those that are only in S2; and those that are in
S1∩S2. We denote these classes by T0 = S \ (S1∪S2); T1 = S1 \S2; T2 = S2 \S1;
and T3 = S1∩S2. By Ai we denote the area of Ti, and by Lij we denote the total
length of the edges that are shared by Ti and Tj; see Figure 4.4. Let λ′

i be 1−λi.

L13

L23
L12

L03

L01

L02

A1

A2

A3

= S1

= S2

= S1 ∩ S2

= S2 \ S1

= S1 \ S2

A0

Figure 4.4: Schematic visualization of two λ-optimal solutions S1 and S2. The labels Ai refer
to the areas and the labels Lij refer to the line lengths used in the proof of Theorem 2.

The λ1-optimal solution S1 = T1 ∪ T3 is at least as good as S1 ∩ S2 = T3 for
λ = λ1:

λ1(A1 + A3) + λ′
1(L01 + L03 + L12 + L23)

≤ λ1A3 + λ′
1(L03 + L13 + L23)

⇔ λ1A1 + λ′
1L12 ≤ λ′

1(L13 − L01). (4.2)

The λ2-optimal solution S2 = T2 ∪T3 is not worse than S1 ∪S2 = T1 ∪T2 ∪T3 for
λ = λ2:

λ2(A2 + A3) + λ′
2(L02 + L03 + L12 + L13)

≤ λ2(A1 + A2 + A3) + λ′
2(L01 + L02 + L03)

⇔ λ′
2(L13 − L01) ≤ λ2A1 − λ′

2L12. (4.3)

42

CHAPTER 4. MAP GENERALIZATION USING GRAPH CUTS

Now suppose S1 ⊈ S2, that is, A1 > 0. With λ1 > λ2 ≥ 0, Equation Equa-
tion (4.2) then implies L13 − L01 > 0. Since λ2 < λ1, we also have λ′

1 < λ′
2.

Combining this with Equation (4.2) and Equation (4.3) gives:

λ1A1 ≤ λ1A1 + λ′
1L12 ≤ λ′

1(L13 − L01) < λ′
2(L13 − L01) ≤ λ2A1 − λ′

2L12 ≤ λ2A1.

Thus, λ1A1 < λ2A1. However, this contradicts the assumption λ2 < λ1. There-
fore, the assumption S1 ⊈ S2 must have been false, and we conclude S1 ⊆ S2.

S′
1

t1

t2

(a) no selection

S′
2

t1

t2

(b) t2 selected

S′
3

t1

t2

(c) t1 selected

S′
4

t1

t2

(d) t1 & t2 selected

Figure 4.5: Polygon with triangulation of the exterior space. Selecting none, one or all triangles
leads to all four possible solutions. The given polygon (set B, gray) must always be selected;
red (bold) edges delineate a solution S′.

Example for Theorem 2. We discuss the proven Theorem 2 for a polygon
with two triangular concavities, which is shown in Figure 4.5. The concavities
can be filled by adding two triangles t1 and t2, which leads to four different
solutions. All of them are Pareto optimal solutions and only one corresponds
to a nonextreme nondominated point (Figure 4.6). As a consequence, when
considering only λ-optimal solutions, the triangle t1 can only be selected if t2 is
selected as well.

We can conclude from the example and the theorem that our solution set has
a hierarchical structure. This follows directly from the fact that solutions with
small areas are contained in those with larger areas. As a result, there can be at
most as many solutions as there are polygons in S. Thus, the size of the solution
set is O(n), where n is the number of polygons in S.

Perimeter

Area

S′
4

S′
1

S′
2

S′
3 extreme nondominated

nonextreme nondominated
Pareto-frontier
convex hull of Pareto-frontier

Figure 4.6: Set of solutions for the instance in Figure 4.5 with respect to area and perimeter.

43

4.2. METHODOLOGY

Computing the solution set. According to the discussion so far, a set of linear
size exists that contains a λ-optimal solution for every λ ∈ [0, 1]. We now discuss
how to compute such a set efficiently. We do this with a classical method for
multi-objective optimization (Cohon, 1978), which in the literature is sometimes
referred to as dichotomic scheme (Przybylski et al., 2010) or chord algorithm
(Daskalakis et al., 2016). For a given instance S,B of Problem 2, a search window
[λL, λU], and a parameter ε ≥ 0, we aim to compute a set containing for every
λ ∈ [λL, λU] a solution that is at most factor (1 + ε) worse than a λ-optimal
solution. We set the search window to [0, 1] and ε = 0 in case we want to solve
Problem 2. By setting the search window to [0, 1] and choosing some ε > 0,
we can approximate the result set of Problem 2 with few solutions. This aim is
achieved with the recursive algorithm Approx that is presented in pseudocode in
Algorithm 1. In addition to S, B, λL, λU, and ε, it requires a λL-optimal solution
and a λU-optimal solution as input, which can be computed using the graph-
cut approach presented in Section 4.2.1. To discuss how the algorithm works,
we introduce a geometrical representation of the solutions, which is illustrated in
Figure 4.7. For every solution, we plot the objective value as a function of λ. This
results in multiple line segments. Our goal is to determine the lower envelope of
those line segments, which is highlighted in Figure 4.7a. Each line that is part of
the lower envelope is part of our solution set as it has the lowest objective value
for a specific λ. Initially, two solutions are known, which are optimal for λL and
λU. For the discussion we assume λL = 0 and λU = 1.

The algorithm, which we call Approx and provide in pseudocode in Algo-
rithm 1, works as follows.

1. Compute λ-optimal solutions SL for λL and SU for λU using the min-cut
algorithm.

2. Invoke Approx with λL and λU: Approx(S,B, λL, λU, SL, SU, ε)

0 0.25 0.75 1 λ

fS(λ)

0.5

(a) lower envelope (highlighted red)

fS(λ)

λC

S1

S0

P (S0)

P (S1)

A(S0)

A(S1)

0 0.25 0.75 1 λ

fS(λ)

S0.48

(b) first iteration of Approx

Figure 4.7: Geometrical representation of solutions. The objective value of each solution is
displayed as a function of λ.

44

CHAPTER 4. MAP GENERALIZATION USING GRAPH CUTS

The solutions SL and SU are passed over to the procedure only to allow it to
access their associated areas A(SL) and A(SU) as well as perimeters P (SL) and
P (SU). We show the geometric representation of the first iteration with the
search window of [0, 1] in Figure 4.7b. The solution SL = S0 refers to λL = 0.
The objective value of S0 at λ = 0 equals the perimeter of the solution while the
objective value at λ = 1 equals the area of the solution, respectively. The same
holds for solution S1. To keep the presentation compact, we refer to fS(0) = A(S)

for the area and fS(1) = P (S) for the perimeter of a solution S, respectively.
We outline the further steps of the algorithm in the following. If the solutions

SL and SU are equal, we stop the algorithm and report no additional solution. If
the solutions are different, as shown with S0 and S1 in Figure 4.7b, we determine
the intersection point with λ = λC of the two objective functions. If there is any
additional optimal solution, it has a lower objective value fS(λC) than fSL(λC) =

fSU(λC).
We compute the λ-value of the intersection as λC = (PU − PL)/(AL − AU +

PU − PL) for which fSL(λC) = fSU(λC) holds. We obtain the optimal solution
for the specific λC with our min-cut approach. This results in the solution SC.
If the objective value of our current solution fSL(λC) is more than (1 + ε) times
the objective value of the optimal solution fλC(λC), our approximation error is
exceeded. In our displayed example, the intersection point is at λC = 0.48,
hence, we obtain the solution S0.48. By recursively calling Approx with the
ranges [λ0, λ0.48] and [λ0.48, λ1], we can identify further solutions. This results in
the complete lower envelope of the solution set.

As a result, setting ε = 0 leads to the full lower envelope where each line
segment of the envelope is λ-optimal. These k line segments correspond to a set
of solutions S1, . . . , Sk. Choosing some ε > 0 leads to an approximated solution
set that contains for each λ ∈ [0, 1] a solution that is at most a factor (1 + ε)

worse than optimal. We stop the recursion early if the objective value fSL(λC)

of the current solution SL is less than (1 + ε)-times worse than fSC(λC). The
described process is outlined by Algorithm 1.

Regarding the running time, the number of line segments of the lower hull k
is bounded by O(n) due to the linear-size solution set. Since we make two calls of
Approx for each solution found, the min-cut algorithm is invoked at most O(n)

times. This is also applicable in case ε > 0 is used.

4.3 Experiments
To evaluate our algorithms, we implemented them in Java and conducted tests
with building footprints from OpenStreetMap contributors (2020). We trans-
formed the data to UTM coordinates to accurately calculate areas and perimeters

45

4.3. EXPERIMENTS

Algorithm 1 Approximation of set of extreme nondominated points
Input: Polygon sets S, B, lower λ (λL), upper λ (λU), λ-optimal solutions

SL, SU for λL, λU, maximal error ε
Output: Report λ-optimal solutions with λL < λ < λU

1: procedure Approx(S,B, λL, λU, SL, SU, ε)
2: if A(SL) = A(SU) and P (SL) = P (SU) then return
3: end if
4: λC ← crossing(SL, SU) ▷ Compute λC with fλC(SL) = fλC(SU)

5: SC ← mincut(S,B, λC) ▷ Solve Problem 1 via graph cut
6: if fλC(SL) > (1 + ε) · fλC(SC) then ▷ Maximal error exceeded
7: Approx(S,B, λL, λC, SL, SC, ε)

8: Report SC

9: Approx(S,B, λC, λU, SC, SU, ε)

10: end if
11: end procedure

of polygons with a metric unit of measurement. For visualizing the effect of the
parameter λ, we present figures where optimal solutions for different values of λ
are shown with different gray values together with the input polygons. The same
solutions are presented in an online supplement using a separate figure for each
value of λ.

Test instance. To provide an overview, we first discuss a test with a smaller
instance of 57 buildings; see Figure 4.8. The triangulation for this instance con-
tains 546 triangles. With this test we rather generally tried to get an idea of the
kind of polygon groups and aggregated polygons that our algorithms produce.
Using the recursive algorithm to compute a set of solutions which contains a λ-
optimal solution for every λ (i.e., ε = 0.0) we obtained 200 different solutions;
see Figure 4.8a. Some of these solutions differ by only single triangles and are
hardly distinguishable in the visualization. When using the algorithm to approx-
imate the result set with ε = 0.05, we obtained only 5 different solutions that
are substantially different from each other; see Figure 4.8b. One can clearly per-
ceive the hierarchical structure of the different solutions stated in Theorem 2.
Plotting the solutions by their associated perimeters and areas yields a diagram
with the extreme nondominated points; see Figure 4.8c. We observe that these
points occur at irregular distances, meaning that clusters but also larger gaps ex-
ist. Nevertheless, our approximation approach yields a small and representative
set of solutions. Due to this result, we decided to focus on approximated result
sets in the further experiments, which we present in the following.

46

CHAPTER 4. MAP GENERALIZATION USING GRAPH CUTS

100 m

(a) 200 solutions for
ε = 0.0

100 m

(b) 5 solutions for
ε = 0.05

2 4 6

Perimeter [km]

0.1

0.2

Area [km2]

Solutions, ε = 0.0

Solutions, ε = 0.05

(c) areas and perimeters for solutions

Figure 4.8: Solutions obtained with Algorithm 1 for the same instance without (a) and with
approximation (b) and their values for the two objectives (c). Darker polygons correspond to
solutions for higher λ values, which consist of multiple groups.

Evaluation data sets. We conducted further experiments with the aim to
aggregate building polygons to settlement areas as defined in the digital land-
scape model DLM250 of the German “Authoritative Topographic-Cartographic
Information System” (ATKIS, www.atkis.de). This corresponds to a map scale
1 : 250 000. We evaluate our approach on 99 instances of different sizes, each
corresponding to at least one settlement polygon in DLM250, but also including
buildings outside the settlement or even multiple settlement areas; see Figure 4.11.
The instance sizes vary from 202 to 16999 buildings. They correspond to several
German settlement areas as well as groups of settlement areas. These settlement
areas are selected from different regions and population densities to have variety
in our test cases. We first consider two cases in more detail, namely the settlement
areas of Euskirchen and Ahrem, which consist of 16999 and 859 input polygons,
respectively. Their corresponding bicriteria shapes are shown in Figures 4.9a and
4.9b.

Evaluation metrics. To evaluate our aggregation results, we compute a rather
accurate approximation for our test examples with ε = 10−6. By choosing this
small but non-zero error tolerance we were able, in particular, to avoid computing
a large set of rather uninteresting solutions in which only few small triangles are
added to the input polygons. For visualization purposes we stick to ε = 0.1. We
then compared every solution in the result set with the corresponding settlement
polygon in the DLM250. For comparing a solution S1 with the reference S2 we
used the following three different metrics:

• The Jaccard index, which is also known as Intersection over Union (IoU),
for polygons:

IoU =
A(S1 ∩ S2)

A(S1 ∪ S2)

47

4.3. EXPERIMENTS

400 m

(a) Euskirchen (16999 input polygons)

200 m

(b) Ahrem (859 input polygons)

Figure 4.9: Result set of two evaluation data sets with ε = 0.1. The green outline corresponds
to the ground-truth polygon. The red and blue outlines, which are mostly the same, represent
the best bicriteria shapes in terms of IoU and dH, respectively.

48

CHAPTER 4. MAP GENERALIZATION USING GRAPH CUTS

• The Area Similarity, as suggested by Podolskaya et al. (2007) for quality
assessment of polygon generalization:

VA = 1− |A(S1)− A(S2)|
max{A(S1), A(S2)}

• The discrete Hausdorff distance dH of the polygons’ boundaries, whose ver-
tex sets we denote as V (S1) and V (S2). It adds to the other three measures
that it indicates the maximum difference of the solutions with respect to
the Euclidean distance d.

dH = max
{

max
v1∈V (S1)

{
min

v2∈V (S2)
{d(v1, v2)}

}
, max
v2∈V (S2)

{
min

v1∈V (S1)
{d(v1, v2)}

}}

The similarity measures IoU and VA are in the range of [0, 1], where 0 represents
minimum similarity and 1 represents maximum similarity. For cases where one
polygon is contained in a second polygon, VA equals IoU .

An important selection criterion defined in the specifications of the DLM250 is
that all settlement areas must be larger than 40 hectares (Arbeitsgemeinschaft der
Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland (AdV),
2022). Therefore, we removed all polygons smaller than this threshold from a
solution before computing the three measures. The resulting measures for the
settlement area of Euskirchen are shown in Figure 4.10. For all λ > 0.105 the
solution contained no contiguous polygon reaching the 40 hectares threshold,
meaning that no similarity can be found. The diagram reveals a correlation of
IoU and Area Similarity VA; in fact they are equal for λ > 0.05.

For each metric we identified the value for λ that yields the solution of max-
imum similarity or minimum Hausdorff distance. For the cases where IoU , VA,
and Hausdorff distance have their respective best values, the other metrics are
similar to their best values. The solutions of minimum Hausdorff distance and
maximum IoU are also depicted in Figure 4.9 as blue and red lines, respectively.

0.00 0.02 0.04 0.06 0.08 0.10 0.12

λ

0.0

0.2

0.4

0.6

0.8

1.0

S
im

il
a
ri

ty Jaccard Similarity IoU

Area Similarity VA

Hausdorff distance dH

0

500

1000

1500

H
a
u

sd
o
rff

D
is

ta
n

ce
[m

]

Figure 4.10: Evaluation metrics for the settlement area of Euskirchen. For λ > 0.105 all
polygons of the result set are below the specified minimum area.

49

4.3. EXPERIMENTS

1 km

Figure 4.11: A large instance aggregated by our approach showing the separation capabilities
of our method. Our approach recognizes all settlement areas recorded in the ground truth data
as well as several smaller ones. The latter could be filtered out with a size threshold.

We observe that the shapes are indeed similar, but that the boundary of the refer-
ence solution contains more angles close to 90◦. Using a schematization algorithm
in a post-processing step might increase the similarity in this respect.

Detecting multiple settlement areas. The instances of Ahrem and Eu-
skirchen are limited to a single settlement area. Using our approach on a larger
instance, we demonstrate our ability to separate different settlement areas into
multiple regions. For this reason, we run our approach on the instance shown
in Figure 4.11. The detected groups are in line with the groups of the ground-
truth data. This shows that a single λ can determine multiple groups without
changing the parameter. We included 12 group instances in our evaluation in Fig-
ure 4.12, while the individual settlement areas of these groups are not evaluated
individually.

50

CHAPTER 4. MAP GENERALIZATION USING GRAPH CUTS

0.00 0.02 0.04 0.06 0.08 0.10

λ

0.0

0.2

0.4

0.6

0.8

1.0

S
im

il
a
ri

ty

Jaccard

Mean Jaccard

Mean Jaccard ± 1σ

Figure 4.12: IoU -scores of multiple instances in relation to our λ-value. Each blue line represents
an independent instance.

Implementation details. In our Java implementation, we used the conform-
ing Delaunay triangulation algorithm implemented in the library JTS Topology
Suite (JTS)1 This algorithm can be implemented to run in the worst case in
O(nm log(n2/m)) time on a graph with n nodes and m edges (Goldberg and Tar-
jan, 1988), but the JGraphT documentation reports a worst-case running time
of O(n3). This implies that our implementation of the algorithm for Problem 1
runs in O(n3) time, where n is the number of polygons in the set S. This is
substantially higher than the sub-quadratic running time that is achievable ac-
cording to Theorem 1, but sufficiently low to solve problem instances as the ones
we discussed above. Our implementation of the recursive algorithm for Problem 2
uses parallelization for the two recursive calls, which turned out to improve the
running time substantially. In particular, the running time improves from 42
seconds to 8 seconds for ε = 10−6 (448 solutions) on the instance of Ahrem by
using parallelization on an AMD Ryzen 7950X with 32 threads. Note that for the
application in interactive maps, the algorithm would need to be run only once to
set up a data structure storing the solutions (Timpf and Frank, 1995). This data
structure can be repeatedly queried to obtain representations at different scales.

4.3.1 Choosing the Parameter λ with the Help of Refer-
ence Solutions

After taking a closer look at our approach using two instances, we will explore the
generalization capabilities of the parameter λ on more datasets. Our goal is to
show that for a fixed map scale there exists a certain λ which provides reasonably
good results for a wide range of cases. For this evaluation, we focus on the IoU
score, as this has been proven to be meaningful in the evaluation so far. Using

1https://github.com/locationtech/jts/releases/tag/jts-1.15.1. For computing the graph
cuts, we used the Push Relabel algorithm implemented in the library JGraphT (Michail et al.,
2020).

51

4.3. EXPERIMENTS

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

λ

0

5

10

15

O
cc

u
re

n
ce

s
o
f

b
es

t
I
o
U

Skew Normal distribution

95% Confidence Interval

Number of Occurrences

Figure 4.13: Histogram of the λ values of the respective best solutions with respect to the IoU
value.

this metric, we now plot our 99 instances in a graph comparable to Figure 4.10.
In addition to the IoU scores, we also visualize the mean and the 1σ interval
in Figure 4.12 to estimate the variance. Analyzing all instances results in the
best mean IoU score of 0.7997 ± 0.0759 for a λ of 0.0028. In addition to the
general overview, we present the best IoU -score of each individual test case in a
histogram; see Figure 4.13. To smooth out discontinuities of the histogram, we
also fitted a skew-normal distribution to it, whose maximum is at λ = 0.0035 and
whose mean is λ = 0.0043. We can determine the 95%-interval [0.0009, 0.0095] by
using the standard deviation σ = 0.0022 and Fisher’s skew of 0.7495. The best
scores of Ahrem and Euskirchen with respect to the IoU -score are even included
by the 68%-interval [0.0022, 0.0066] with λ-values of λ = 0.0041 and λ = 0.0064,
respectively.

In the application, these findings can be used for restricting the search range
of λ. In our example, only the solutions for λ ∈ [0.0009, 0.0095] need to be
computed, as other values for λ do not correspond to the required aggregation
level. For the dataset of Ahrem, using this search range and ε = 0.01 produces
only three solutions, from which the best can subsequently be selected.

4.3.2 Edge-Aligned Polygons
While so far we used our method with a conforming Delaunay triangulation as
the underlying planar partition, other types of planar partitions can be used as
well. We can use this flexibility of our method to preserve the edge orientations
of the given polygons, which is desirable in the context of building generalization
(Haunert and Wolff, 2008). More precisely, we generate the planar partition by
linearly extending the edges of the input polygons.

Constructing the planar subdivision. In the first step of our approach, we
consider each individual polygon p ∈ B and process the outer and inner rings.

52

CHAPTER 4. MAP GENERALIZATION USING GRAPH CUTS

For every vertex v we check whether it forms a convex corner of the polygon by
inspecting the two adjacent vertices. If this condition holds true, the incident
edges are linearly extended at v until they hit an input polygon or the bounding
box of the whole set B of input polygons. For an efficient implementation we
store the polygons in a Sort-Tile-Recursive (STR) packed R-tree (Rigaux et al.,
2002). The linearly extended polygon edges yield a line arrangement, whose faces
constitute the set S of input polygons for our method. After the generation of
the planar partition we apply our algorithm in the same way as when using a
triangulation.

Running time. Note that when using this method the size of S is in O(m2),
where m is the total number of vertices of the polygons in B. Consequently,
the worst-case running time for solving Problem 1 is O(m4/ logm). Using the
graph-cut implementation of JGraphT this increases to O(m6). Nevertheless, the
time complexity O(n2/ logn) stated in Theorem 1 is still correct, since n refers
to the number of simple polygons that form the planar subdivision S.

To keep the running time in practice low, we terminate the extension of the
polygon edges when they hit another input polygon. With this, the number of
faces of the resulting line arrangement is still manageable. We show the planar
partition resulting from this procedure for five input polygons in Figure 4.14a.

(a) input polygons (gray) with extended edges (b) bicriteria shape for λ = 0.4

Figure 4.14: Extending the boundary edges for given polygons to create edge-aligned polygons.

Discussion. For λ = 0.4 we obtain a solution consisting of three aggregated
groups composed of one to two input polygons; see Figure 4.14b. With this the
edge orientations of the input polygons are preserved. Furthermore, we compute
the results of our approach using the edge-aligned polygons and show the results
for Ahrem in Figure 4.15. For this instance the solutions produced by selecting
the best IoU score and Hausdorff distance are the same. The running time to
retrieve the approximated solution set for Ahrem with ε = 10−6 increases from
8 seconds to 176 seconds when using the elongated edges instead of a conforming
Delaunay triangulation. This increased running time is a direct consequence of

53

4.3. EXPERIMENTS

200 m

Figure 4.15: Ahrem aggregated with polygons created by extruding polygon edges.

the increased number of polygons. While the conforming Delaunay triangulation
results in 5,280 triangles between the 859 input polygons in the case of Ahrem,
the elongated edges result in 76,063 polygons.

4.3.3 Comparison to α-shapes
For further comparisons, we compute bicriteria shapes as well as α-shapes based
on the same conforming Delaunay triangulation. The methods differ only in the
selection criteria for the triangles. First, we compute the optimal solution of
Ahrem using our approach. Then, we select the α-shape that is the best match
to our solution when considering the IoU -value. A comparison of both solutions
is visualized in Figure 4.16. For this comparison we do not limit the resulting
polygons to a given area threshold. This side-by-side view of the two different

(a) Ahrem aggregated with our approach (b) Ahrem aggregated with α-shapes

Figure 4.16: Ahrem generated with our proposed approach (left, λ = 0.0058) and with an
α-shape (right, α = 0.0017). The α-shape is selected to maximize the IoU -score with respect
to the solution of (a).

54

CHAPTER 4. MAP GENERALIZATION USING GRAPH CUTS

results shows the advantage of the bicriteria shape over the α-shape. The α-
shape leads to long narrow bridges, which can be observed in the lower right and
left corner of Figure 4.16b. The narrow but relatively long gaps are closed in
case of the α-shape. In contrast, they remain open with our approach, because
filling these gaps neither reduces the area nor the perimeter, which is shown in
Figure 4.16a.

This observation that α-shapes are not λ-optimal is also shown in Figure 4.17a
and Figure 4.17b. The set of points representing the α-shapes for all values of α
does not constitute a convex curve. This means that not all α-shapes correspond
to extreme nondominated points. Moreover, when continuously increasing α and
keeping track of the α-shape, one does not obtain a sequence of solutions with
monotonically decreasing perimeter. This is particularly evident in Figure 4.17b.
Hence, other than the parameter λ of our method, the parameter α of α-shapes
does not control the degree of simplification of the input data with respect to the
perimeter criterion.

10 20

Perimeter [km]

0.5

1.0

Area [km2]

Solutions

(a) Ahrem

100 200 300

Perimeter [km]

0

50

100

150

Area [km2]

Solutions

(b) large instance (Figure 4.11)

Figure 4.17: All α-shape solutions of instances shown in Figure 4.16 and Figure 4.11.

4.4 Conclusion
We have presented efficient algorithms for polygon aggregation optimizing a bal-
ance between a small total area and a short total perimeter of the output polygons.
We combined the two criteria in a weighted sum, which we parameterized with
a single parameter λ ∈ [0, 1]. The first problem we studied asked for a single
optimal solution for a fixed λ. It turned out that this problem can be solved by
computing a minimum cut in a graph. A second problem asked for an output set
containing an optimal solution for every possible value for λ. We showed that a
linear-size hierarchically nested set with the requested property can be efficiently
computed with a recursive algorithm that uses the graph-cut algorithm as a sub-
routine. Moreover, we showed how to approximate such a set using the same
recursive algorithm.

55

4.4. CONCLUSION

Our experiments showed that the computation of bicriteria shapes is fast
enough to process realistic problem instances, although we did not use the fastest
known (i.e., sub-quadratic) graph-cut algorithm in our implementation. We con-
sider it astonishing how few solutions were needed to approximate a set containing
an optimal solution for every λ: For our largest instance with 16999 building foot-
prints, a set of six solutions sufficed to include for every λ a solution that is at
most 10% worse than optimal. Since the number of graph cuts computed by the
recursive algorithm is in the order of the size of its output set, the approximation
for the above-mentioned instance was achieved relatively fast, in 13.9 seconds.
Our experiments support the claim that bicriteria shapes can aggregate building
footprints to polygons that are quite similar to settlement areas as given in an
official topographic database of scale 1 : 250 000. In addition, our experiments on
a larger dataset assist the finding that the parameter λ is within a narrow search
window when computing a solution close to the reference solution considering
a target map scale. We extend the experiments by replacing the triangulation
underlying our method with a planar partition that preserves the edge directions
of the given geometry. Finally, our approach exposes the benefit of more com-
pact regions in direct comparison to α-shapes. Moreover, bicriteria shapes show
a monotonically increasing perimeter and a monotonically decreasing area for in-
creasing values of the parameter λ, whereas for α-shapes the perimeter does not
behave monotonically.

As an idea for future research it would be interesting to consider relaxed or
more constrained versions of the aggregation problem. For example, one could
relax the requirement to include every input polygon in the output and/or intro-
duce a hard size constraint for the output polygons. Most importantly, however,
we see our work as a step towards multi-criteria optimization in cartography. As
next steps one could consider more than two criteria or look at Pareto-optimal
solutions rather than just at the extreme nondominated (i.e., λ-optimal) solu-
tions. In order to optimize the processing times, it would be beneficial to utilize
the nested structure of the solution. In this context, a subsequent evaluation of
the running times for different sizes of datasets would be interesting.

56

Chapter 5

Grid-Based Euler Diagrams

This chapter is based upon a joint publication with Markus Wallinger,
Annika Bonerath, Sven Gedicke, Martin Nöllenburg and Jan-Henrik
Haunert (Rottmann et al., 2023). The user study was developed,
conducted and written by Annika Bonerath and Sven Gedicke. The

development and write up of different rendering techniques was done by Markus
Wallinger and Martin Nöllenburg. With the supervision of Jan-Henrik Haunert,
I (Peter Rottmann) developed the integer linear programming model and wrote
the remaining parts of the publication, i.e., the introduction, the explanation of
the ILP, the quantitative evaluation and the conclusion.

Visualizing sets of elements and their relations is an important research area
in information visualization. In this chapter, we present MosaicSets: a novel
approach to create Euler-like diagrams from non-spatial set systems such that
each element occupies one cell of a regular hexagonal or square grid. The main
challenge is to find an assignment of the set elements to the grid cells such that
each set constitutes a contiguous region. As use case, we consider the research
groups of a university faculty as elements, and the departments and joint research
projects as sets. We aim at finding a suitable mapping between the research
groups and the grid cells such that the department structure forms a base map
layout. Our objectives are to optimize both the compactness of the entirety of all
cells and of each set by itself. We show that computing the mapping is NP-hard.
However, we can solve real-world instances optimally within a few seconds using
integer linear programming. Moreover, we propose a relaxation of the contiguity
requirement to visualize otherwise non-embeddable set systems. We present and
discuss different rendering styles for the set overlays. Our evaluation is based on
a case study with real-world data and comprises quantitative measures as well as
expert interviews.

57

5.1. INTRODUCTION

5.1 Introduction

Set visualization is an important branch of information visualization that gen-
erally deals with the visualization of set systems, i.e., the relationships between
multiple sets (e.g., set intersections, inclusions, exclusions) and of individual el-
ements with their set memberships. As a concrete use case and our running
example, we consider the scenario that the board of an institution (e.g., a univer-
sity faculty) aims to improve its strategic planning processes by supporting the
discussions at meetings with informative visualizations. In particular, the institu-
tion board wishes to visualize the institution’s partition into organizational units
(e.g., departments and research groups) as well as important intra-institutional
collaborations (e.g., larger research projects involving multiple research groups
of different departments). In this scenario, the research groups are the elements
of the set system and the departments as well as the intra-institutional collab-
orations are the sets. Particularly, each research group belongs to exactly one
department and possibly one or more intra-institutional collaborations. Conse-
quently, the departments form a disjoint set cover of all research groups. In
MosaicSets, we will exploit this property of having a partition of all elements into
a disjoint set cover, which is a property that many real-world set systems have.

For visualizing abstract set systems, Euler and Venn diagrams are commonly
used and several methods for computing them have been proposed. However, they
usually focus on the set relationships and, even in area-proportional diagrams,
either do not show individual elements at all or they do not play a primary role
in the diagrams. However, in our use case, elements such as the research groups
are of primary importance for the intended tasks, and therefore it is desirable
that each element is prominently represented with an area of the same size and
shape, ensuring an equitable visual representation of each research group. Since
the existing Euler-like methods do not satisfy this requirement, we present a
new approach that embeds a given set system into a prescribed grid, which for
example may consist of square-shaped or hexagonal tiles, such that each element
occupies exactly one grid tile (or grid cell). Our primary goal is to ensure that
for each of the given sets the corresponding grid cells constitute a contiguous
region as in an Euler diagram. Coloring the cells according to the partition into a
disjoint set cover, e.g., by organizational unit of the assigned element, we obtain a
visualization similar to a grid map (Eppstein et al., 2015) with uniform cells and
schematic region boundaries; see Figure 5.1. This serves as the base map of our set
system. Sets representing intra-institutional collaborations can then be visualized
as contiguous overlays on top of the base map, for example, using colored contours
or visual links as Kelp diagrams (Dinkla et al., 2012; Meulemans et al., 2013). If
the number of such collaborations is small, they all may be visualized at the same

58

CHAPTER 5. GRID-BASED EULER DIAGRAMS

Ernährungs-
epidemiologie

Tierernährung

Lebensmittel-
mikrobiologie-

und hygiene

Molekulare
Lebensmittel-
technologie

Nachwachsende
Rohstoffe

Theoretische
Geodäsie

Informations-
managementGeodäsie

Physiologie

Haushalts- und
Verfahrenstechnik

Prozess- und
Produkt-

management

Molekulare
Phytomedizin

Molekulare
Biologie der
Rhizosphäre

APMGGeoinformation

Haustiergenetik
Ökonomik

nachhaltiger
Landnutzung
Bioökonomie

Tierzucht

Photogrammetrie

Ernährungs-
physiologie

Agricultural
RoboticsFernerkundung

Technologie,
Innovations-
management,

Entrepreneurship

Präventives
Gesundheits-
management

Management
der digitalen

Circular
Economy

Pflanzen-
ernährung in

den Tropen und
Subtropen

Pflanzen-
pathologie

Pflanzen-
ernährung

Pflanzen-
züchtung

Humanernährung Lebensmittel-
chemie

Allgemeine
Bodenkunde

Ernährung und
Mikrobiota

Wirtschafts- und
Agrarpolitik

Marktforschung
der Agrar- und

Ernährungs-
wirtschaft

Crop Functional
Genomics

Agrarökologie
und

Organischer
Landbau

Erdsystem-
forschung

Städtebau und
Bodenordnung Nutztierhaltung

Pflanzenbau

Economic
Modeling of
Agricultural

Systems

Data Science in
Agricultural
Economics

Lebensmittel-
sicherheit

Gartenbau-
wissenschaft

Ressourcen- und
Umweltökonomik

Globaler Wandel
und Systemische

Risiken

Lebensmittel-
wissenschaften

Chemical
Signaling

Crop
Bioinformatics

Produktions-
ökonomik

Lebensmittel-
sicherheit

Wirtschafts- und
Agrarpolitik

Ernährungs-
epidemiologie

Economic
Modeling of
Agricultural

Systems

Crop
Bioinformatics

Ökonomik
nachhaltiger
Landnutzung
Bioökonomie

Crop Functional
Genomics

Globaler Wandel
und Systemische

Risiken

NutztierhaltungTheoretische
Geodäsie

Molekulare
Phytomedizin

Geodäsie

Ernährungs-
physiologie

Marktforschung
der Agrar- und

Ernährungs-
wirtschaft

Humanernährung

Präventives
Gesundheits-
management

Tierernährung

Management
der digitalen

Circular
Economy

Molekulare
Lebensmittel-
technologie

Haushalts- und
Verfahrenstechnik

Agricultural
Robotics

Geoinformation

Physiologie

Photogrammetrie

Erdsystem-
forschung

Pflanzenbau

Data Science in
Agricultural
Economics

Ressourcen- und
Umweltökonomik

FernerkundungPflanzen-
ernährung

Produktions-
ökonomik

Agrarökologie

Organischer
und

Landbau

Pflanzen-
züchtung

Allgemeine
Bodenkunde

Technologie,
Innovations-
management,

Entrepreneurship

Ernährung und
Mikrobiota

Lebensmittel-
chemie

Pflanzen-
pathologie

Pflanzen-
ernährung in

den Tropen und
Subtropen

Gartenbau-
wissenschaft

Molekulare
Biologie der
Rhizosphäre

Nachwachsende
Rohstoffe

Lebensmittel-
wissenschaften

HaustiergenetikAPMG

Lebensmittel-
mikrobiologie-

und hygiene

Chemical
Signaling

Informations-
management

Prozess- und
Produkt-

management
Tierzucht

Städtebau und
Bodenordnung

Figure 5.1: Visualizing the research groups of the Agricultural Faculty of the University of
Bonn with MosaicSets using the model variant MSE optimizing eccentricity-based compactness
of sets (see Section 5.6.3).

time. However, even if at any time only one or few selected collaborations are
shown, we consider it beneficial to compute a single base map embedding once
under consideration of all collaborations, which can then be shown on demand
in an interactive setting or using a small-multiples approach. That way the grid
map of organizational units provides a stable context for visualizations of different
collaborations.

Contribution and outline. Grid maps have been introduced primarily for the
purpose of associating disjoint geographic regions (e.g., administrative regions)
with cells or tiles of a regular grid. In contrast, we here use the map as a metaphor
to visualize non-geographical data, namely an abstract set system, in an intuitive
way. While methods for the computation of map-like visualizations of graphs
(Gansner et al., 2009a) and set systems (Efrat et al., 2015) have been presented
before, using grid maps for set visualization is new. Consequently, with this
chapter we introduce MosaicSets as a new set visualization technique. We aim
to demonstrate the potential of MosaicSets for the described use case but also to
open up a new topic of research for the network and set visualization community.
As concrete contributions, we present

• our design decisions and a corresponding formal mathematical model for op-
timizing the MosaicSets visualization as a constrained hypergraph embed-
ding problem, alongside with a proof of its NP-completeness (Section 5.3),

• an exact method for solving the hypergraph embedding problem using in-
teger linear programming including variations to optimize compactness or
relax contiguity requirements if needed (Section 5.4),

• an implementation providing a choice of square or hexagonal grids for the
base map and two overlay rendering styles for highlighting the additional
sets (Section 5.5), and

59

5.2. CONTEXTUAL BACKGROUND

• a qualitative evaluation based on an expert interview for the real use case,
which has inspired this work: the strategy development of the Agricultural
Faculty of the University of Bonn; this is complemented by quantitative
computational experiments, which explore the performance and resulting
quality of MosaicSets (Section 5.6).

We invite the reader to explore our two interactive visualizations under https:
//www.geoinfo.uni-bonn.de/mosaicsets and our code at https://gitlab.
igg.uni-bonn.de/geoinfo/mosaicsets.

5.2 Contextual Background
The use of grid maps for visualizing geographic information is a well-established
technique in cartography and geographic information visualization. Before intro-
ducing MosaicSets, which creates a map-like visualization of non-spatial data, we
will discuss related work on grid maps and other visualization techniques that
are visually similar to MosaicSets.

5.2.1 Geographic Information Visualization Techniques
Although in our problem setting of set visualization the data have no spatial
component, several geovisualization techniques are visually and computationally
similar.

Tree maps. An approach that is visually similar to MosaicMaps are spatial
treemaps, which partition a set of geometric elements according to a hierarchical
tree structure. Generally this does not lead to regular grid representations. An ex-
ample for such spatial treemaps is an approach by Jern et al. (2009) that combines
treemaps and choropleth maps. Efforts have been undertaken to tweak treemaps
to produce regular grid visualizations, e.g., spatially ordered treemaps (Wood and
Dykes, 2008), OD-maps (Wood et al., 2010), and spatial matrices (Wood et al.,
2011). Our approach differs in two aspects: (i) our elements do not need to be
mapped according to a spatial location, (ii) our problem comprises contiguity
requirements for the sets.

Visually similar to MosaicSets are also mosaic cartograms (Cano et al., 2015).
Here, we are given a political map with an integer weight per region. The aim
is to map each region to a set of grid cells in a square or hexagonal grid whose
number is proportional to that region’s weight. In contrast to MosaicSets, mo-
saic cartograms shall represent the spatial input in terms of adjacencies, shapes
and relative positions well, and they only show a partition of the grid, but no
overlapping sets.

60

https://www.geoinfo.uni-bonn.de/mosaicsets
https://www.geoinfo.uni-bonn.de/mosaicsets
https://gitlab.igg.uni-bonn.de/geoinfo/mosaicsets
https://gitlab.igg.uni-bonn.de/geoinfo/mosaicsets

CHAPTER 5. GRID-BASED EULER DIAGRAMS

Grid maps. Grid maps are an approach that is similar to MosaicSets both
visually and in the problem setting. A grid map (also known as tile map (Mc-
Neill and Hale, 2017) or equal area unit map (Schiewe, 2021)) associates each
area of a geographic subdivision of the plane, e.g., an administrative region,
with a cell of a regular grid. Applications of grid maps are, e.g., in news and
media (Berkowitz and Gamio, 2015; Radburn, 2016) or in the visualization of
research results (Slingsby and van Loon, 2017; Kelly et al., 2013; Wood et al.,
2011). From a practical point of view the topic is addressed with a wide range of
blog-posts, reports, and web-tools (Shaw, 2016; Wongsuphasawat, 2016; Zachary,
2015). From a computational point of view a main challenge in computing a grid
map is to find a suitable mapping between the geographic regions and the grid
cells (Schiewe, 2021). Eppstein et al. (2015) presented an approach that tackles
this task considering three criteria: preserving (i) location, (ii) adjacencies, and
(iii) relative orientation. Due to computational efficiency only criteria (i) and
(iii) are considered for the optimization while all three criteria are then used as
a metrics for rating the generated grid maps. Meulemans et al. (2016) presented
an approach for generating grid maps for small multiples with a special focus
on white space handling. McNeill and Hale (2017) published an approach where
multiple grid maps are generated, and the user can choose the most suitable
one. Later a more complex problem setting was introduced where the geographic
regions are partitioned into sets (Meulemans et al., 2021). Now the matching be-
tween the geographic regions and cells has to satisfy that the union of cells of one
set shall represent the corresponding geographic region well. Especially the latter
version, where the subdivisions’ elements are partitioned into sets, is similar to
our problem setting. Nevertheless, our problem is different, since we can handle
set systems with arbitrary set relations, and we do not aim at providing a good
geographic representation.

Another related technique was recently presented by Bekos et al. (2022). They
discuss the embedding of spatial hypergraphs, where each vertex has a spatial
location and each hyperedge can join any number of vertices. They produce an
embedding such that each vertex lies on a rectangular or concentric grid. As
optimization criteria the vertex displacement should be small, and the embed-
ded edges should be visually clear. Their approach differs in several ways from
MosaicSets: (i) their visualization leads to a sparse placement of vertices in a
grid, while we aim at a compact representation using cells and (ii) they consider
spatial closeness with respect to the given positions in their objective.

We want to emphasize that the challenges in geovisualization differ since the
positions of the elements in the visualization should at least coarsely reflect their
geographical locations. Hence, applying the presented techniques to our problem
setting for non-spatial set systems would not lead to a satisfying solution.

61

5.3. TOWARDS A FORMALIZATION OF MOSAICSETS

5.2.2 Maps as a Metaphor
As cartographic maps are well known, some visualization methods, including
the previously discussed MapSets (Efrat et al., 2015) and also MosaicSets, use
this intuitive presentation of information to visualize non-spatial data; see the
survey by Hogräfer et al. (2020). GMap (Gansner et al., 2009a,b) is an example
using such a map metaphor that is in some sense similar to MosaicSets. Both
approaches show non-spatial data. In GMap, the input is a general graph, and
we are looking for a set of touching polygons that represent clusters in the data,
which can be singletons or sets of closely connected vertices. Thereby the data and
their underlying structure shall be represented in a comprehensible and visually
appealing way. Other than our approach, GMap does not aim at a regular grid
representation and their input is a graph and not a set system.

5.3 Towards a Formalization of MosaicSets
Let us recap the main principle of MosaicSets based on the example in Figure 5.2.
The input is a set system, where each set is a department or a project and each
element is a research group (or a key value representing it). The output is a
map-like visualization where each element occupies a cell of a grid and each set
is a contiguous region. In this section, we first discuss the ideas that led to
this principle as well as the design goals that we follow when generating the
visualization (Section 5.3.1) and then present a formal definition of the problem
(Section 5.3.2) as well as a short proof of its NP-completeness (Section 5.3.3).

Input: Output:departments.txt

projects.txt

1, 3, 5
2, 4, 6
7, 8

2, 3, 4, 6
2, 8

1

2

3 4

5 6

7 8

Figure 5.2: Required input files and a solution using a basic rendering style. Additionally, our
method requires several parameter values as input.

5.3.1 Design Decisions
The original intention behind MosaicSets is to visualize the structure of an in-
stitution (e.g., faculty) broken down into smaller units (e.g., departments and,
as atomic elements, research groups) as well as intra-institutional collaborations.
The visualization should support the discussions at meetings of the institution’s
board and its commissions. In many situations, questions of strategic importance

62

CHAPTER 5. GRID-BASED EULER DIAGRAMS

need to be discussed: What are the strengths and weaknesses of the faculty? How
large are the different departments, in terms of both absolute and relative sizes?
Between which parts of the faculty are the links well established and where are
they underdeveloped? For instance, a frequent situation is that the chair of a
recruitment commission presents the concept of a new professorship at a fac-
ulty board meeting. Then, a visualization should enable the commission chair
to explain how the new position will be embedded within the faculty’s organi-
zational structure and research networks. Another application that we target is
the communication of the faculty’s structure to the outside world; e.g., the vi-
sualization may be published on the faculty’s website or used in meetings with
representatives from higher decision levels or funding agencies. The applications
of MosaicSets are certainly not limited to academia, since, e.g., companies and
non-profit organizations may be faced with similar strategic questions. Generally
speaking, the above scenarios suggest creating a clean and intuitive visualization,
which can easily be understood by the various stakeholders who are interested
and/or already knowledgeable in the data, without a need for extensive training
on how to read and use it. We aim for a visually attractive design that invites
potential users to engage themselves with the visualization. The visualization
should enable the users both to get a quick overview of the data, but also to
explore the relationships and patterns between and within the different entities
of the depicted organization. Based on this target use case, we emphasize that
we do not see MosaicSets as an exploratory or analytical tool for big data, which
would require additional efforts for data simplification and aggregation.

Map-like visualization. The targeted scenarios require a visualization pro-
viding a strategic overview, while also being intuitive and engaging. For this
reason, MosaicSets has been designed as a map-like visualization: Just like the
countries in a political map, each department occupies a dedicated territory. A
further essential design decision is to choose an equitable representation of each
research group: All research groups should be represented with an area of the
same size. Requiring a map-like visualization and an equitable representation
naturally leads to the use of a regular tessellation, which directly entails the ad-
vantages of a schematic map: low clutter and clear representation of topological
relationships. Among the three existing types of regular tessellations, we favor
hexagonal or square tessellations since their tiles are translated copies of each
other, which does not hold for triangular tessellations as the third type. More-
over, in a triangular tessellation every tile has only three neighbors, which is a
severe limitation when it comes to the embedding of set systems. In square and
hexagonal tessellations, on the other hand, there are four respectively six neigh-
bors per tile. These tessellations are commonly used for maps in strategic board

63

5.3. TOWARDS A FORMALIZATION OF MOSAICSETS

and computer games, which probably helps to understand the visualization as a
metaphorical map.

Layout criteria. Next, we discuss the criteria that we use when assigning the
elements of the sets to grid tiles. Achieving that the sets are represented as con-
tiguous regions is our main goal, since research on human perceptual organization
provides evidence that “a connected region of uniform visual properties—such as
luminance or lightness, color, texture, motion, and possibly other properties as
well—strongly tends to be organized as a single perceptual unit” (Palmer and
Rock, 1994). (Note that the term “principle of contiguity” in psychology refers
to a different concept, i.e., a close temporal relationship between stimuli and
responses that leads to their association (Lachnit, 2006).) Since the contiguity
requirement can render the problem infeasible, we will consider problem variants
with relaxed versions of it. However, we will not relax the contiguity require-
ment for the sets corresponding to the organizational units that partition the
institution of interest: For example, we strictly enforce that every department of
a faculty is represented as a contiguous region, but we tolerate non-contiguous
regions for projects in some problem variants. This is because especially the de-
partments should be displayed as territories to give the visualization the look of
a political map and because the contiguity requirement can always be satisfied
when embedding a partition (if a sufficiently large grid is used). This “political
map” can then be used as the base map for visualizing the projects. If the number
of projects is small, one may be able to visualize them all at the same time, e.g.,
by displaying the boundaries of different projects with different colors. However,
as this may quickly lead to visual clutter, we also consider displaying the base
map with only one project at once. For example, one can use small multiples
with different versions of the map showing different projects or interactive maps
allowing the user to select a single project or a few projects for display on top
of the base map. Subject to the contiguity requirement, we aim in particular
at maximizing the compactness both of the visualization as a whole and of the
region for each individual set, since according to Gestalt theory humans tend to
notice compact forms (Ehrenzweig, 1953) and since maximizing the compactness
results in low visual clutter.

5.3.2 Formal Problem Definition
As input, we require a collection C = {S1, . . . , Sk} of sets and an empty grid map
in the form of the adjacency graph G = (V,E) of its cells. We call G the host
graph and observe that it is planar. Let S =

∪k
i=1 Si. We require |V | ≥ |S|, i.e.,

the host graph must be large enough to accommodate all elements in S. With
S and C, we obtain a hypergraph H = (S,C), where S is the vertex set and

64

CHAPTER 5. GRID-BASED EULER DIAGRAMS

C is the set of hyperedges. Now, our basic task is as follows: Find an injection
f : S → V such that for i = 1, . . . , k the subgraph of G induced by {f(s) | s ∈ Si}
is connected. Note that f being an injection implies that it maps each element in
S to exactly one vertex of G and at most one element to each vertex; hence every
element is assigned to one grid cell without any double occupancy. Moreover,
the subgraph of G induced by some V ′ ⊆ V is G′ = G[V ′] = (V ′, E ′) with
E ′ = {{u, v} ∈ E | u, v ∈ V ′}; hence requiring that {f(s) | s ∈ Si} induces a
connected subgraph for each Si ∈ C is equivalent to the support graph property
and hence implies that G[V ′] for V ′ = {f(s) | s ∈ S} is a planar support graph
of H. Furthermore, it ensures that the region for each set Si is contiguous.

In order to tackle the basic task, we introduce a directed bipartite graph
B = (S ∪ V, F) with F = {(s, v) | s ∈ S ∧ v ∈ V } that models all possible
assignments between elements and grid vertices as directed edges. Selecting an
assignment (s, v) ∈ F thus means setting f(s) = v. Finally, to differentiate
between different feasible solutions, we introduce a generic cost w(s, v) ≥ 0 for
every possible assignment (s, v) ∈ F . To express the compactness of the whole
visualization as a basic optimization objective, we use

w(s, v) = ∥v.p− µ∥2 , (5.1)

where v.p ∈ R2 is the position vector of the center of gravity of the cell represented
by v and µ ∈ R2 the position vector of the center of gravity of the set of all cells.

By minimizing the total cost with this setting, allocations of cells close to the
center of the visualization are favored, yielding a compact visualization. We will
later refine this problem definition to also express that each individual set should
be represented with a compact region and to express the compactness of a region
based on its perimeter.

5.3.3 Computational Complexity
We can prove that the problem of computing a support of an arbitrary hypergraph
that is a subgraph of a planar host graph is NP-complete.

Theorem 3. For a given planar graph G = (V,E) and a hypergraph H = (S,C)

with |S| ≥ |V | it is NP-complete to decide if there is a subgraph of G that is a
support graph of H.

Proof. We reduce from the NP-complete Planar Hamiltonian Circuit prob-
lem (Garey et al., 1976), which is defined as follows. Given a planar, cubic, 3-
connected graph G = (V,E) determine if G has a Hamiltonian circuit, i.e., a
closed path that visits each vertex of V exactly once and returns to its starting
point.

65

5.4. AN APPROACH BASED ON INTEGER LINEAR PROGRAMMING

It is easy to see that our decision problem belongs to the class NP as verifying
whether a given subgraph of G is actually a support of H can be done in polyno-
mial time. For the hardness reduction, let G = (V,E) be the graph for which we
want to find a Hamiltonian circuit and define it as the planar host graph for our
hypergraph support problem. Further, we define the hypergraph H = (S,C) with
S = {1, 2, . . . , |V |} and C = {{1, 2}, {2, 3}, . . . , {|V | − 1, |V |}, {|V |, 1}}. Now if
we can find a support of H in G, this support maps each element in S to a unique
vertex in V and each hyperedge in C to a unique edge in E; this support is thus
necessarily a Hamiltonian circuit and thus exists if and only if G is a Yes-instance
of Planar Hamiltonian Circuit.

5.4 An Approach Based on Integer Linear Pro-
gramming

In this section we present our approach using Integer Linear Programming, which
is a general method for solving problems of combinatorial optimization. We
explained the concept of Integer Linear Programming in Section 3.2 Here, we
focus on presenting the Integer Linear Program (ILP) for our problem. First,
in Section 5.4.1, we describe a basic ILP for finding a hypergraph support of
the given set system within the given host graph. We then present extensions
to express the preference for compact regions (Section 5.4.2), a relaxed version
of the contiguity requirement (Section 5.4.3), and a technique for reducing the
number of variables of the ILP (Section 5.4.4).

5.4.1 A Basic Integer Linear Program
We first present the variables, the objective function, and the constraints of an
ILP for embedding a set system (i.e., a hypergraph H = (S,C)) into a planar
host graph G = (V,E) while ensuring the connectivity of the sets. More precisely,
solving the ILP yields a hypergraph support of H in G if it exists.

Variables. We introduce one binary variable xs,v ∈ {0, 1} for each potential
assignment of an element s ∈ S to a grid vertex v ∈ V indicating whether it is
selected (xs,v = 1) or not (xs,v = 0).

xs,v ∈ {0, 1} ∀(s, v) ∈ F (5.2)

To ensure the contiguity of the sets, we adapt an approach by Shirabe (2009) for
contiguity-constrained districting tasks. For this we introduce a directed version
G̃ = (V, Ẽ) of the undirected grid graph G = (V,E), by defining two opposite
directed edges for each edge of G, i.e., Ẽ = {(u, v), (v, u) | {u, v} ∈ E}. We use

66

CHAPTER 5. GRID-BASED EULER DIAGRAMS

integer variables yiu,v to model a multicommodity flow in G̃. Index i refers to a
set Si and (u, v) to one directed edge of G̃.

yiu,v ∈ {0, 1, . . . , |Si| − 1} ∀i ∈ {1, . . . , k}, ∀(u, v) ∈ Ẽ (5.3)

For each set Si there is one commodity. We arbitrarily select one element of set
Si as the set’s center, which we denote as ci. We will introduce constraints to
ensure that the cell to which ci is assigned serves as the sink of the flow of the
commodity for Si. All other cells to which elements of Si are assigned serve as
sources of that flow. An example is shown in Figure 5.3.

1
2
1

1
2

1

1

S3c3S1 c1 S2c2

Figure 5.3: An instance and a solution of the basic ILP. Flows of different commodities are
displayed with arcs of different colors; they correspond to different sets. The arc labels show
amounts of flow. The vertices to which a center (i.e., c1, c2, or c3) is assigned serve as sinks.

Objective. The overall objective is to minimize the sum of costs for selected
assignments using the generic cost function w : S × V → R+

0 .

Minimize
∑
s∈S

∑
v∈V

w(s, v) · xs,v (5.4)

Constraints. We first introduce two constraints to ensure that the selected
assignments satisfy the definition of an injection.∑

v∈V

xs,v = 1 ∀s ∈ S (5.5)

∑
s∈S

xs,v ≤ 1 ∀v ∈ V (5.6)

With the following two constraints we ensure the connectivity of each set based
on the multicommodity flow model.∑

(v,w)∈Ẽ

yiv,w −
∑

(u,v)∈Ẽ

yiu,v =
∑
s∈Si

xs,v − |Si| · xci,v ∀Si ∈ C, ∀v ∈ V (5.7)

∑
(u,v)∈Ẽ

yiu,v ≤ (|Si| − 1) ·
∑
s∈Si

xs,v ∀Si ∈ C, ∀v ∈ V (5.8)

To demonstrate how the constraints for set Si control the flow of the corresponding
commodity, we discuss three different cases:

67

5.4. AN APPROACH BASED ON INTEGER LINEAR PROGRAMMING

(1) If an element of Si other than the center ci is assigned to vertex v, the
net-outflow from vertex v (left-hand side of Constraint (5.7)) is forced to 1
(right-hand side of Constraint (5.7)). Moreover, the total inflow to vertex v

(left-hand side of Constraint (5.8)) is bounded from above by |Si| − 1 (right-
hand side of Constraint (5.8)), which is sufficiently large allowing v to receive
one unit from every other member of Si.

(2) If the center ci is assigned to v, the net-outflow from vertex v is 1 − |Si|
according to Constraint (5.7), which means that v receives exactly one unit
of flow for every other member of Si.

(3) If no element of Si is assigned to v, Constraint (5.8) ensures that v receives
no incoming flow. This and Constraint (5.7) together imply that there is no
outgoing flow from v.

To summarize, the flow for Si can only enter or leave vertices to which elements of
Si are assigned. Since every such vertex (except the vertex to which ci is assigned)
injects one unit of flow, the connectivity requirement is satisfied. We note that
Constraints (5.7) and (5.8) have been adapted in the following manner from
Shirabe’s flow model for districting tasks: The sum

∑
s∈Si

xs,v on the right-hand
sides of the constraints replaces a single variable in Shirabe’s model representing
whether an area is selected for a certain district.

5.4.2 Compactness of Regions Representing Sets

Setting the cost function w in Objective (5.4) as defined in Equation (5.1), the
basic ILP produces a visualization that is compact as a whole. However, this
approach does not produce a visualization in which each individual set is rep-
resented as a geometrically compact region. To achieve this, we propose two
approaches: Measuring compactness based on the regions’ perimeters and based
on eccentricities.

Compactness based on perimeters. As we discussed in Section 3.3.1, the
perimeter of a region is an appropriate measure of its compactness if the region’s
area is fixed. This holds in our situation since the number of cells for each region is
prescribed with the size of the corresponding set and since all cells have the same
size. To aggregate the compactness over all regions we simply minimize the sum
of their perimeters. We do this by giving a constant bonus for every set Si and
every edge {u, v} of G that is within the region for Si. Maximizing the total bonus
indeed corresponds to minimizing the sum of perimeters. This is because every
edge of G corresponds to a boundary of constant length between two adjacent
cells. Including an edge in a region thus reduces the sum of perimeters by a
constant amount.

68

CHAPTER 5. GRID-BASED EULER DIAGRAMS

We use additional binary variables to express the objective:

ziu,v ∈ {0, 1} ∀Si ∈ C, ∀{u, v} ∈ E (5.9)

We force ziu,v to zero if {u, v} is not within Si, i.e., if to u or to v (or to both) no
element of Si is assigned:

ziu,v ≤
∑
s∈Si

xs,u , ziu,v ≤
∑
s∈Si

xs,v ∀Si ∈ C, ∀{u, v} ∈ E (5.10)

If both u and v are contained in the region for Si, variable ziu,v is free to receive
value zero or one. Hence, if we include it with a positive coefficient in a maxi-
mization objective, it will receive value one whenever possible. Accordingly, with
the following objective, we minimize the total length of the boundaries of the
regions representing sets:

Maximize
∑
Si∈C

∑
{u,v}∈E

ziu,v (5.11)

In the experiments in which we optimized Objective (5.11) we did not consider
any other optimization objective, i.e., we replaced Objective (5.4) with Objec-
tive (5.11). However, a combination of the two objectives would be possible by
minimizing Objective (5.4) minus Objective (5.11), scaled by some constant factor
expressing its importance.

Compactness based on eccentricities. Eccentricity-based compactness met-
rics usually charge costs proportional to distances or squared distances between
a center of a district and centers of the mapping units contained in it. Of-
ten, finding appropriate district centers is considered as an integral part of the
districting problem at hand (Shirabe, 2009). However, to speed up the compu-
tation, it is also common to prescribe the district centers, optimize the assign-
ments of mapping units to the centers, and iterate with a new set of centers
computed for the districts (Hess et al., 1965). To implement this approach, we
introduce µ1, . . . , µk ∈ R2 as the desired geometrical centers of the regions for
sets S1, . . . , Sk. We then apply the basic ILP as presented in Section 5.4.1, but
instead of the assignment costs defined in Equation (5.1) we use the following
setting:

w(s, v) =
∑

Si∈C : s∈Si

∥v.p− µi∥2 (5.12)

This means that for every assignment (s, v) we consider the sets containing s. For
every such set Si we charge a cost proportional to the squared distance between
the center of the allocated grid cell v.p and the desired geometrical center µi of the
region representing Si. Hence, it is favored to assign elements of Si to cells close

69

5.4. AN APPROACH BASED ON INTEGER LINEAR PROGRAMMING

to µi. Initially, we set µ1 = . . . = µk = µ, meaning that the center µ of the entire
grid is the desired geometrical center for every region. We then compute a solution
to the ILP with the assignment costs defined in Equation (5.12). Afterwards, we
compute the centers of gravity of the obtained regions and use these as µ1, . . . , µk

in a second run of the optimization algorithm. This process is repeated multiple
times until the centers µ1, . . . , µk converge. In our examples, the changes of the
center of each region become small after the third iteration, and fully converge
after five iterations.

When experimenting with the method we made an interesting observation: It
took much longer to compute the first solution (with the same center for every
region) than the subsequent solutions (with different centers), even if in all iter-
ations we performed a cold start of the solver. A possible reason for this is that
with the setting used in the first iteration there are many solutions of exactly the
same quality. The solution in Figure 5.2, for example, can be rotated or mir-
rored without changing the distances between the region centers and the center
of the grid. This is not the case, however, with the setting used in the subsequent
iterations, where the points µ1, . . . , µk differ from each other. This observation
led us to the following approach: In the first iteration, instead of using µ as the
center for every region, we draw a very small regular k′-gon centered at µ with
k′ referring to the number of base map sets. Each of the k′-gon’s corners is set
as the center of one region of the base map. The center of the overlay sets re-
mains µ. With this approach, the time needed for the first iteration decreased
substantially.

5.4.3 Relaxing the Contiguity Requirement
It is easy to imagine set systems that cannot be embedded into a hexagonal
or square grid. Think, for example, of seven sets, each of which contains two
elements: one element that is shared by all sets and one element that occurs in
no other set. Moreover, even if an embedding exists, enforcing contiguity for too
many sets can substantially decrease the quality of the solution with respect to
the compactness objective.

Therefore, if the task is to visualize many sets as overlays on top of the
same base map, we suggest enforcing contiguity only for the regions of the base
map. However, the compactness should be optimized for all sets (with respect
to any choice of our compactness measures). This approach is always feasible if
a sufficiently large grid is used, since the sets of the base map constitute a parti-
tion. Our current implementation renders any non-contiguous region as multiple
regions, using the same color for their boundaries. For an example, see a visual-
ization of the Austrian parliament in the supplemental material. As a topic for
future research, we also consider computing connected visual representations for

70

CHAPTER 5. GRID-BASED EULER DIAGRAMS

non-contiguous regions, e.g., by overlaying linear connections between different
parts of a region on top of the boundaries of the base map.

5.4.4 An Integer Linear Program with Fewer Variables
We greatly reduce the number of variables of our ILP by exploiting that, often,
two distinct elements s, t ∈ S occur in exactly the same sets. More formally, we
say that s, t ∈ S are indistinguishable if

s ∈ Si ⇔ t ∈ Si ∀Si ∈ C . (5.13)

Note that when defining the assignment costs according to Equation (5.1) or
Equation (5.12), it holds for every two indistinguishable set elements s,t and
every cell v that w(s, v) = w(t, v). Hence, given any solution, we can swap the
cells of s and t and obtain a solution of the same quality. This means that
we can think of s and t as a single element that needs to be assigned to two
grid cells. We note that carelessly removing such indistinguishable elements may
change the existence of planar support graphs (van Bevern et al., 2016). Hence,
we implement this idea by contracting (but not removing) indistinguishable set
elements in such a way that we obtain a smaller set system in which each element
s represents a number α(s) of original set elements. This smaller set system has
the same set relationships as the original one. To assign s to α(s) many cells, we
replace the right-hand side of Constraint (5.5) with α(s).

When contracting elements, we need to take care that there remains at least
one original element in each set that we can select as the set’s center. However, it
is not too difficult to contract as many vertices as possible under this requirement.

5.5 Rendering
Our implementation of MosaicSets provides different rendering styles for the base
map and set overlays as seen in Figure 5.4. Firstly, we render the base map as
a tessellation of either hexagonal or square grid cells. In addition, we add a
distance between adjacent cells to better distinguish between the inside and the
outside of the overlay regions. As computing the embedding requires a-priori
information about the connectivity of the grid graph, the style of the base map
must be declared in advance.

Boundary style. Secondly, we provide two different styles to render a set’s
region as an overlay on the base map. The first style renders the boundary of the
region of the union of cells for each set. The boundary itself is drawn on the inner
side of the boundary of the occupied cells. Potentially, boundaries of two or more

71

5.5. RENDERING

label 1

label 2

very long
label

label 3

label 3

very long
labellabel 2

label 1

Figure 5.4: Different combinations of proposed rendering styles. The left visualization shows a
hexagonal tessellation with boundary style, the right visualization a tessellation with squares
and Kelp style.

sets in the same cell could overlap; we define an arbitrary order over all sets, draw
the boundaries of sets according to the order but draw the boundary either next
to an existing boundary or a cell’s boundary. The thickness of the boundary can
be specified in advance. To better distinguish different overlay regions, we use
a gradient coloring so that the brightness of a region’s boundary decreases from
the outside to the inside. We refer to this style as boundary style.

Kelp style. The second overlay style uses a similar style as seen in Kelp dia-
grams (Dinkla et al., 2012). As we compute a flow in Section 5.4 we can extract
the subgraph of the flow network and use it to draw a Kelp-like overlay. Here, we
represent the vertices of the subgraph as filled circles and use thick straight-line
segments to represent the edges. Again, we have to define an arbitrary order
over the sets first and process sets by said order as otherwise the drawn vertices
and edges would overlap if two sets use either the same vertex or edge in the
grid graph. By counting the number of sets already using certain edges and ver-
tices in the grid graph, we can scale the diameter of circles and the thickness of
straight-line segments such that all sets are visible. We refer to this as Kelp style.

Labels. Labels are either placed in the center of a cell or below the center if
the Kelp style is used. The label size itself is scaled to fit the label in a cell of
the base map. We set a maximum font size and check if all labels fit in their
cell. If this is not the case we reduce the font size until either all labels fit or
a minimum font size is reached. We automatically apply line breaks for white
space and pre-defined delimiter characters, but only render a line break if it is
necessary to fit the label in the cell.

Colors. Lastly, the color assignment of the sets is handled by using two palettes
of different colors. This decision was guided by the idea that using different colors
in each palette allows for a better differentiation between base map and overlays.
For the base map we assign colors from a palette of light colors while for the
overlays we use bright colors.

72

CHAPTER 5. GRID-BASED EULER DIAGRAMS

5.6 Evaluation
In the following, we assess the quality of MosaicSets by discussing the opinions
of experts and evaluating quantitative experiments.

5.6.1 Expert Interviews
To evaluate MosaicSets, we conducted three separate interviews with two do-
main experts, who are administrative members of the Agricultural Faculty of
the University of Bonn, and one designer who works for a design agency in the
public transit sector. Prior to the interviews, the two administrative members
collaborated to manually create a visualization of the research groups in the Agri-
cultural Faculty of the University of Bonn, which actually inspired the idea of
MosaicSets. We note that all visualizations showed in the interviews represent
this running example. Combining expertise in the application domain and in
graphic design, we consider the three interviewees suitable experts to evaluate
our visualizations. The questionnaires with all illustrations and questions can be
found in the supplemental material.

Comparison with manually generated visualization. First, we asked the
experts to compare the manually generated visualization (see Figure 5.5) with a
visualization generated with MosaicSets. Both visualizations show and optimize
only the base map. All experts emphasized as the primary difference the inten-
tionally left blank cell in the middle of the manually generated representation
where all departments are attached. They explained that the empty cell helps
create a common focus and emphasizes the unity of the faculty. However, one
expert emphasized that the visualization generated with MosaicSets has less a
hierarchical structure with respect to the departments’ visualization and seems
more flexible in terms of adding new data.

Grid styles. Next, we asked them to comment on one MosaicSets visualization
with hexagonal and one with square tiles. They both represented the same sets
consisting of six departments and two projects. Although the experts perceived
the square tiles as equally clear or slightly clearer than the hexagonal tiles, they
emphasized that they generally found the hexagonal style more appealing. They
argued that the hexagonal tiles have more linking possibilities, which emphasizes
the interrelationship of the departments more strongly. The entirety of the de-
partments appeared as a unit in the hexagonal visualization. As an advantage of
the visualization using square tiles, they mentioned the easier countability and
identification of individual elements. The arrangement of the elements can easily
be translated into rows and columns. Further, the experts pointed out that the

73

5.6. EVALUATION

Figure 5.5: Manually generated visualization showing the research groups of the Agricultural
Faculty of the University of Bonn. Image credit to Dr. Susanne Plattes and Dipl.-Ing. Michael
Kneuper. Figure 5.1 illustrates MosaicSets of the same data set.

visualizations differed with respect to the perceived hierarchy structure. While
a hierarchy from the inside to the outside is perceived when hexagonal tiles are
used, a hierarchy from the top to the bottom is implied when using square tiles.
Overall, the experts saw advantages in both variants. For the running example,
the hexagonal grid is more suitable since it better represents the union of the de-
partments. In the remaining part of the interviews we also focused on hexagonal
visualizations.

Compactness measures. We asked the experts to compare two versions of
MosaicSets generated with different compactness measures. The first version is
computed with compactness based on eccentricity. The second is a variant of
compactness based on eccentricity that restricts the available grid cells to those
used in the first iteration and therefore fixes the overall shape of the grid. In
particular, in the first version the focus is on the compactness of each set and in
the second version the overall map is more compact. The experts did not show a
clear preference. While it is easier to differentiate the individual sets in the first
version, the overall appearance is more homogeneous in the second version. The
experts agreed that which version to choose depends on the application scenario.

74

CHAPTER 5. GRID-BASED EULER DIAGRAMS

Number of overlays. Comparing MosaicSets with two, three and four over-
laying projects, the experts pointed out a problem with visual clutter and sepa-
rability when there are more than three superimposed projects. Especially, the
distinction between inner and outer segments becomes more difficult. Hence,
the experts suggested the use of small multiples showing the same base map but
different projects.

Interactivity. We also provided the experts with an interactive map allowing
the display of only a single project or a chosen selection of projects (see the web
page referenced at the end of Section 5.1). When the representation of many
projects is important, the experts saw great merits in the interactive map. The
experts suggested adding further interactions as highlighting of only the tiles
belonging to the selected projects. Further, they proposed adding alternative
data representations, for example tables stating cardinality, next to our visual-
izations. We think these suggestions are well suited to be incorporated into our
visualization.

Additional feedback. We also asked the experts for general feedback, and
they indicated that the proximity of research groups with joint interests or publi-
cations could be another criterion worth considering. Further, they would like to
see a consistency criterion that maintains the basic arrangement of the depart-
ments’ regions when additional institutes, projects, or working groups are added
or removed.

Rendering styles. In preliminary interviews we asked two of the experts on
their opinion with respect to the rendering. Regarding the overlay style, the
experts agreed that boundary style is more suitable than Kelp style. Using Kelp
style clarity is lost as the selection of tiles connected with segments is not intuitive.
When using boundary style, the experts emphasized that choosing a high-contrast
color scheme is important to ensure quick perception of the projects.

Conclusion. Overall, the experts considered MosaicSets to be a valuable ap-
proach for visualizing set systems. In particular, the interactive visualization
meets the experts’ qualitative requirements. They pointed out that there is a
high demand for such visualizations in a wide range of application areas, e.g.,
for internal sessions and meetings as well as for external exposure (e.g., via the
faculty website). Due to the highly dynamic structure of the faculty (e.g., re-
search projects starting or expiring) updated visualizations have to be generated
frequently. The discussion with the experts revealed that the manual generation
of a visualization is highly time-consuming. To create the visualization shown in

75

5.6. EVALUATION

Figure 5.5, the corresponding two experts invested several working hours, a large
part of which was needed to arrange the tiles. Hence, using MosaicSets can save
a substantial amount of valuable working time.

5.6.2 Tasks for Set Visualizations
In the following, we aim to assess MosaicSets with respect to the task taxon-
omy defined by Alsallakh et al. (2016). The tasks are summarized into three
groups: (A) tasks related to elements; (B) tasks related to sets and set relations;
and (C) tasks related to element attributes. For some of these tasks we can
directly state that MosaicSets is not able to solve them. We cannot solve the
tasks of type (C) since we do not consider any element attributes in MosaicSets.
Further, tasks A5–A7, B13 and B14 require an interaction technique that Mo-
saicSets does not provide and task B11 asks for set similarity measures that are
not defined in our problem setting. To assess which of the remaining 15 tasks
can be solved with MosaicSets, we asked the experts from our interviews (see
Section 5.6.1) to solve one example for each task and to rate whether a task
is ’fully’, ’partially’, or ’not’ supported (see the supplemental material for the
full task list and the experts’ ratings). We note that the experts’ assessment
was based on a static visualization with six departments and two projects. All
tasks were answered correctly by all experts. The tasks A1, A3, B1–B10, B12
are considered fully supported, and the experts were able to solve them within a
few seconds. For tasks A2 and A4 the experts gave different answers; each twice
’fully supported’ and once ’partially supported’. The expert who rated the tasks
as ’partially supported’ took much longer to complete them (> 30 s).

In summary, we claim that almost all element- and set-based tasks except
A5-A7, B11, B13, and B14 are supported by MosaicSets. Compared to other
methods from the literature, MosaicSets performs like a combination of Euler-
diagrams and frequency grids. In detail, for (A)-tasks MosaicSets performs better
than Euler-diagrams, which do not support two (A)-tasks, and it performs nearly
as good as frequency grids that support all (A)-tasks. For (B)-tasks MosaicSets
performs better than frequency grids but not as good as Euler diagrams. Euler
diagrams support all except B13, while frequency grids on the other hand support
all (B)-tasks except B3, B4, B11, and B14.

5.6.3 Experimental Setup
We quantitatively compare different versions of MosaicSets: MSP with com-
pactness based on perimeters, MSE with compactness based on eccentricities
optimized in multiple iterations, and MSEA, which is a variant of MSE that
restricts the used grid cells to the assigned grid cells of the first iteration and

76

CHAPTER 5. GRID-BASED EULER DIAGRAMS

therefore fixes the assigned area. With all three versions we enforce all sets to
form contiguous regions. For all versions we used the elimination of variables pre-
sented in Section 5.4.4, as it reduces the running time by an order of magnitude.

We used three data sets: Bonn consists of 51 unique elements and 9 sets,
with 6 sets used as base map; Vienna consists of 7 sets with 71 unique elements
and 4 sets used as base map; and Parliament consists of 8 sets with 178 unique
elements, where 5 sets are used as base map. Bonn refers to the Agricultural
Faculty of the University of Bonn and Vienna to the Faculty of Informatics of
TU Vienna. Parliament refers to the Austrian parliament with parties as sets
of the base map and interest groups as overlays. The host graph has as many
rows as columns and is adapted to the number of unique set elements. We add
one additional row and column to the minimum required number.

We performed the experiments on an AMD Ryzen 7 PRO 4750U with 16GB
of memory, implemented in Java and used the ILP solver of Gurobi 9.5.1. For
all solutions we used a maximum optimality gap in Gurobi of 0.5%. Additional
visualizations are provided in the supplemental material.

5.6.4 Number of Overlay Sets
From the expert interviews (Section 5.6.1), we learned that overlaying more than
three sets (e.g., research projects) severely limits visual clarity. In principle,
this problem can be counteracted by using small multiples or interactive maps.
For both strategies it is necessary to first generate a visualization containing
all sets of interest. Figure 5.6 shows Bonn optimized once with two and once
with five overlay sets but both times only two projects are visualized. For an
interactive version of Figure 5.6b that allows to display all five overlays see link

(a) two projects (b) five projects

Figure 5.6: MosaicSets computed with eccentricity-based compactness (MSE) for Bonn with
different numbers of projects. We highlight the same two projects (red and blue) and indicate
the others in gray.

77

5.6. EVALUATION

(a) perimeter-based compactness
(MSP)

(b) eccentricity-based compactness
(MSE)

(c) as (b) but area fixed after first
iteration (MSEA)

Figure 5.7: Comparison of the different compactness approaches for Vienna using three overlay
sets

.

in Section 5.1. When applying MSE, the number of overlay sets strongly affects
the running time, e.g., from 0.8 s to 40.8 s in Figure 5.6. Computing a solution
with four overlay sets took 2.8 s. Moreover, we observe that as the number of
considered overlay sets in MSE increases, the compactness of the sets decreases.
While the base map in Figure 5.6 is comparably compact in both visualizations,
the overlay sets are less compact with five overlays in Figure 5.6b. For the two
highlighted projects, the Polsby-Popper score decreases from 0.486 to 0.234 and
from 0.500 to 0.236, respectively.

We recommend using small multiples or interactive maps for numerous overlay
sets. Otherwise, in case of static maps, using numerous overlay sets results in
overloaded and cluttered maps. For the further experiments we focus on static
maps and hence limit to three overlay sets which complies with the experts’
recommendation.

5.6.5 Running Time
To investigate the influence of the two different compactness formulations (see
Section 5.4.2) on the running time, we compare the running times of the variants
MSE, MSP and MSEA. We evaluate them for Vienna with three projects and
a hexagonal grid. While both MSE and MSEA were solved in less than one
second, we stopped the computation of MSP after one hour with an optimality
gap of 15.69%. Thus, we argue that in terms of a reasonable running time,
compactness based on eccentricities is a better choice. Nevertheless, we suppose
that MSP is well suited to assess the compactness of MSE and MSEA.

Next we focus in more detail on the running times of both versions imple-
menting compactness based on eccentricities: MSE and MSEA. Across all three
data sets, the first iteration of MSE needed a maximum of 0.7 s. We observe
that the running time of all subsequent iterations is substantially faster. Termi-

78

CHAPTER 5. GRID-BASED EULER DIAGRAMS

nating after a total of five iterations, the combined computation time of the four
subsequent iterations is of the same order of magnitude as for the first iteration.
Overall, the computation time for a hexagonal grid is 0.7 – 1.6 s and for a square
grid 0.6 – 1.6 s. Considering MSEA, we do not observe a substantial difference
in the running time compared to MSE for Bonn and Vienna. However, solving
the largest of our data sets, i.e., Parliament, it is about 10% slower. This holds
for both the hexagonal and square grid.

5.6.6 Assessing the Compactness

When assessing the compactness of our visualizations, we deem three objectives
to be desirable: (C1) the overall base map is compact, (C2) each individual set
is compact, and (C3) only base map sets (e.g., departments) are compact. To
quantify the compactness, we use the Polsby-Popper score which we denote by
PPC1 for (C1). For (C2) and (C3) we compute the mean Polsby-Popper score
over the considered sets which we denote by PPC2 and PPC3, respectively.

In Figure 5.7 we show the results for MSP, MSE, and MSEA for Vienna
and a hexagonal grid. We observe that for MSP the overall base map (C1) is less
compact compared to the ones achieved by MSE and MSEA which is reflected
in PPC1 = 0.381, PPC1 = 0.532 and PPC1 = 0.603, respectively. This can also be
observed when considering Figure 5.7, where MSEA results in the most compact
overall base map. Considering criterion (C2), we achieve a better result for MSP
(PPC2 = 0.618) compared to MSE (PPC2 = 0.574) and MSEA (PPC2 = 0.576).
For criterion (C3), we achieve the best result for MSP (PPC3 = 0.640). With
MSE (PPC3 = 0.586) we achieve a slightly lower value regarding (C3). However,
fixing the area of the base map after the first iteration with MSEA, we obtain the
lowest compactness of these sets (PPC3 = 0.569). This reduced compactness was
also observed by the experts when they looked at the corresponding visualizations.
Overall, we argue that MSE provides a compromise between all criteria while
still being applicable in practice considering the running time. With respect
to the experts’ opinions (see Section 5.6.1), we suggest MSE, since both the
compactness of the entire base map (C1) and of the sets building the base map
(C3) were considered particularly important.

5.7 Conclusion
We have presented an approach for the visualization of set systems on a regular
grid. We require that all sets form contiguous regions and look at two differ-
ent models for the compactness. In particular, we have a measure based on the
perimeter of the region and one based on eccentricities. As the underlying prob-

79

5.7. CONCLUSION

lem is shown to be NP-hard, we presented ILP formulations of the two variants
of the problem.

To evaluate MosaicSets, we interviewed experts about visual criteria and ap-
plicability in a real-world scenario. The experts pointed out that MosaicSets is
visually as good as a manually generated illustration, while saving several days of
labor. Further, we performed experiments with three real-world data sets. In the
experiments, we compared the perimeter and eccentricities variants with respect
to the compactness; it shows that both have their strengths and weaknesses, but
none outplays the other. On the other hand, when comparing the running times
it shows that MosaicSets with perimeter compactness runs in more than an hour
while MosaicSets with eccentricities compactness can be computed within a few
seconds. Hence, we recommend using eccentricities compactness and consider
this variant to be applicable in practice.

Still, we see a large potential for future research on MosaicSets. For example,
the experts pointed out that combining MosaicSets with other information vi-
sualization techniques (e.g., tables) and interaction techniques (e.g., highlighting
of cells) can provide a more refined and powerful visualization system. Con-
sidering the rendering, we could include the optimization of colors (similar as
in GMap (Gansner et al., 2009a,b)) and optimize routing of region boundaries.
Further, a comprehensive comparison and support of different rendering styles
such as KelpFusion (Meulemans et al., 2013) could give users more flexibility
for different use cases. It would be beneficial to develop a user interface for
the generation of MosaicSets that includes interactive model manipulation. For
example, the user should be able to introduce use-case-specific constraints such
as the constraint asking to place each of six departments adjacent to a central
empty hexagonal grid cell or specify other global or local shape constraints. Also,
dynamically evolving and temporal set systems lead to open research questions,
e.g., when considering consistency criteria. Finally, our work brings up interest-
ing new questions for the algorithms community: In which cases (i.e., for which
classes of hypergraphs and graphs) can we compute a hypergraph support in a
given host graph in polynomial time? Are there efficient approximation algo-
rithms for practically relevant versions? It would be interesting to compare such
algorithms with our ILP-based approach.

80

Chapter 6

Generating Euler Diagrams
Through Combinatorial
Optimization

The following chapter is based upon a joint publication with Peter
Rodgers, Xinyuan Yan, Daniel Archambault, Bei Wang, and Jan-
Henrik Haunert (Rottmann et al., 2024). Xinyuan Yan assisted in
generating the Euler diagrams using Peter Rodger’s visualization ap-

proach (Rodgers et al., 2008). The algorithms and experiments were designed
and written by myself (Peter Rottmann) and Jan-Henrik Haunert. Peter Rodgers
provided comparison data of an existing approach and improved the writing of
the comparison. Daniel Archambault provided the source code and assistance
in smoothing the Euler diagrams using ImPrEd (Simonetto et al., 2011). All
authors discussed the design goals and evaluation of the algorithms. Addition-
ally, all authors provided feedback on the final version of the paper. The authors
published another collaborative work on the topic of Euler diagram simplification
(Yan et al., 2024) with the focus on set merging.

Can a given set system be drawn as an Euler diagram? Existing methods for
deciding this question work only for set systems with special properties. They
either split sets into two or more regions, or work on very restricted types of
Euler diagrams. We present the first method that correctly decides this question
for arbitrary set systems, if the Euler diagram is required to represent each set
with a single contiguous region. If the answer is yes, our method constructs an
Euler diagram. If the answer is no, our method provides an Euler diagram for a
simplified version of the set system where a minimum number of set elements have
been removed. Furthermore, we integrate known wellformedness criteria for Euler
diagrams as additional optimization objectives into our method. Our focus lies
on the computation of a planar graph embedded in the plane to serve as the dual

81

6.1. INTRODUCTION

graph of the Euler diagram. Since even a basic version of this problem is known
to be NP-hard, we choose an approach based on Integer Linear Programming
(ILP), which allows us to compute optimal solutions with existing mathematical
solvers. To this end, we build on previous research on computing planar supports
of hypergraphs and adapt existing ILP building blocks for contiguity-constrained
spatial unit allocation and the maximum planar subgraph problem. With our
exact, ILP-based method we were able to compute optimal solutions for real-world
set systems of moderate size, which are typically visualized with Euler diagrams.
In addition, we present an efficient heuristic for the generation of Euler diagrams
for large set systems, for which the proposed simplification by element removal is
indispensable. We report on experiments with data from MovieDB and Twitter.
Over all examples, including 850 non-trivial instances, our exact optimization
method failed to find a solution for only one set system without removing any
set element. However, by removing only a few set elements, the Euler diagrams
can be significantly improved with respect to our well-formedness criteria.

6.1 Introduction
Euler diagrams are frequently used to visualize set systems. They represent each
set as a region in the plane that is bounded by a closed curve. An area in an Euler
diagram that is occupied by one or multiple regions indicates the existence of set
elements that are contained in the corresponding sets and in no other set. An
advantage of Euler diagrams is that they are intuitive to understand. However,
they can become cluttered even for medium-sized set systems. For a given set
system, it is possible that no Euler diagram exists when requiring the regions to
be contiguous. Previous approaches (Rodgers et al., 2008; Simonetto and Auber,
2008) split sets into two or more separate regions. However, splitting makes it
harder to identify regions belonging to the same set, and increases the overall
number of regions in the visualization.

Our work addresses two research problems. First, none of the existing meth-
ods can decide for a given set system whether an Euler diagram with a single
contiguous region for each set exists, let alone generate an Euler diagram in
every case where it is possible. Second, Euler diagrams have typically been con-
sidered as a tool to visualize set systems without loss of information. We think
Euler diagrams can be used as a tool to visually summarize large set systems,
but for this summary, the generation of Euler diagrams has to be combined with
a simplification of the given data.

Contribution. Our contribution is a new combinatorial optimization approach.
Given a set system as input, our goal is to compute a simplified but still similar

82

CHAPTER 6. GENERATING EULER DIAGRAMS THROUGH
COMBINATORIAL OPTIMIZATION

version of the set system that can be drawn nicely as an Euler diagram. The
simplification is achieved by removing some set elements from the set system. To
quantify the loss of information caused by the removal of elements, we assume
that every element has a weight expressing the cost of its removal. For example,
the weight of each element may be one, or it can be equal to the number of sets
containing the element. More generally, any measure expressing the importance
of the element can be applied.

Our most important contribution is an exact optimization method that min-
imizes the total weight of the removed set elements while ensuring that the re-
sulting simplified set system can be embedded in the plane as an Euler diagram
with a single contiguous region for each set. Moreover, we contribute multi-
ple extensions of our method to integrate additional optimization criteria that
improve the resulting Euler diagram with respect to known wellformedness con-
ditions (Rodgers et al., 2011). For large set systems, we introduce an efficient
heuristic method. We conduct experiments with both the exact method and the
heuristic on realistic set systems and assess the quality of their solutions as well
as their efficiency.

Outline. In the following, we first define a basic version of the problem; see
Section 6.2. Then, in Section 6.3, we give an overview of the complete workflow
from a set system to an Euler diagram. In Section 6.4, we present our exact and
heuristic optimization methods. We evaluate both approaches in Section 6.5 and
conclude this Chapter in Section 6.6.

6.2 Preliminaries and Basic Problem
In order to construct an Euler diagram for a given set system, it is sufficient
to find the dual graph of the Euler diagram which should be a planar graph in
order to produce wellformed Euler diagrams; see Section 2.2. The dual graph
corresponds to a planar support of the hypergraph H = (V,E) representing
the set system, where V is the set of set elements and E is the set of sets;
see Section 3.1.2. Removing set elements from a set system to simplify the set
system is equivalent to removing a vertex from the hypergraph. When we remove
twins in the hypergraph, multiple set elements are represented by a single vertex
of the hypergraph. As a consequence, the vertex is removed only if all elements
corresponding to that vertex are also removed.

When we say that we remove an element v from a hypergraph H = (V,E),
we imply that v is removed from the vertex set V of H as well as from every
hyperedge X ∈ E in which v occurs. We introduce for every vertex v ∈ V a
weight w(v) ∈ R>0 measuring the cost of its removal. If the aim is to minimize

83

6.3. WORKFLOW

the number of element removals, we set w(v) = 1 for each set element. Else, if the
aim is to minimize the loss of set memberships, we set w(v) = |ℓ(v)|, where ℓ(v) is
the set of hyperedges containing v, i.e., ℓ(v) = {X ∈ E | v ∈ X}. With H−S, we
refer to the hypergraph resulting from a hypergraph H = (V,E) after removing
a set S ⊆ V from it. With this, we are ready to state a basic problem that asks
for an optimal simplification of a set system to generate an Euler diagram.

Problem 3 (SetSystemSimplification). Given a hypergraph H = (V,E) and a
weighting w : V → R>0, find a minimum-weight set S ⊆ V such that H − S has
a planar support and return such a planar support as output.

We would like to point out that SetSystemSimplification has a solution with
S = ∅ if and only if the given hypergraph H has a planar support. Therefore,
any exact optimization algorithm for SetSystemSimplification can be used as a tool
to decide whether a hypergraph has a planar support. Since deciding whether
a hypergraph has a planar support is NP-hard (Johnson and Pollak, 1987), we
conclude that SetSystemSimplification is NP-hard, too.

As our problem is NP-hard, there is no reasonable hope for an efficient exact
algorithm. Therefore, we focus on an approach based on integer linear program-
ming, which is a general method for solving combinatorial optimization problems
and has the advantage that we can employ existing mathematical solvers. With
this, we can solve both the new problem SetSystemSimplification and the known
problem of finding a planar support for a given hypergraph.

Solving SetSystemSimplification is insufficient since it neglects important cri-
teria. Therefore, we will extend it to a multi-criterial problem, MCSetSystemSim-
plification, which is based on the wellformedness conditions for Euler diagrams
presented in Section 2.2. Both our exact method and our heuristic can deal with
this extended problem.

6.3 Workflow
While we consider the exact optimization method and the heuristic for MCSetSys-
temSimplification as our main contribution, we also provide a complete workflow
that yields an Euler diagram visualizing a simplified version of a given hyper-
graph. This workflow is illustrated in Figure 6.1 for an artificial example and
outlined below.

Step 1: Condensed hypergraph. In Step 1 of our workflow, we replace every
set of vertices that are contained in exactly the same hyperedges with a single
vertex, yielding the condensed hypergraph. The motivation for this step is that
vertices contained in exactly the same hyperedges should not be separated in the

84

CHAPTER 6. GENERATING EULER DIAGRAMS THROUGH
COMBINATORIAL OPTIMIZATION

0

abc

adg

beh

cfi

def
ghi

(a) superdual graph

0

abc

adg

beh

cfi

def
ghi

(b) dual graph

0 abc

adg

beh

cfi

def

(c) planar embedding

beh

cfi

def

adg

abc

(d) Euler diagram

abc
adg

beh

cfidef

(e) resulting diagram

Figure 6.1: Results after different steps of our hypergraph visualization workflow. The input
to the shown example is a set system consisting of nine sets, i.e., hyperedges: a : {1, 4, 7},
b : {1, 5, 7}, c : {1, 6, 7}, d : {2, 4}, e : {2, 5}, f : {2, 6}, g : {3, 4}, h : {3, 5}, i : {3, 6}. The set
elements 1 and 7 are replaced by a single set element in the first step because both are contained
by the same hyperedges. The label of each vertex refers to the sets containing it. The additional
vertex labeled 0 represents the outer face. The results of Steps 2–6 are visualized by Figs. (a)–
(e). For each set, there exists one edge in the superdual graph that has to be selected to ensure
the set’s connectivity if all set elements are selected. Since these edges constitute the non-planar
graph K3,3, a vertex of the superdual graph has to be removed to generate a planar dual graph.

final visualization. Moreover, working with the condensed graph greatly reduces
the running time of our methods. However, this step may affect the existence of
a planar support (van Bevern et al., 2024). Therefore, we may optionally skip
this step, for example, if the aim is to compute a planar support of the original
hypergraph.

Step 2: Superdual graph. In Step 2 of the workflow, the condensed hyper-
graph is used to compute the superdual graph, whose vertex set contains every
vertex of the condensed hypergraph as well as a special vertex v0 representing
the outer face, and whose edge set contains every edge that may be useful for the
dual graph of the Euler diagram. Every edge which shares a label between two
vertices in the condensed hypergraph can potentially connect two vertices within
the same set.

Step 3: Dual graph. Next, in Step 3, a solution to MCSetSystemSimplification
is computed in the form of a selection of vertices and edges of the superdual graph,
which determines both the simplified hypergraph and the dual graph of the Euler
diagram. This is achieved either with our exact optimization approach via integer
linear programming or our heuristic method. This step of the processing pipeline
is our main focus of the work and is discussed in detail.

Step 4-6: Euler diagram generation. We use existing methods for the last
three steps of our workflow. First, in Step 4, we compute a planar embedding of
the dual graph generated in Step 3 (Chrobak and Payne, 1995). In Step 5, the
planar embedding is used to construct an initial Euler diagram (Rodgers et al.,

85

6.4. METHODOLOGY

2008) that is guaranteed to contain only simple curves. Finally, in Step 6, the
curves of the initial Euler diagram are smoothed (Simonetto et al., 2016).

The properties of the resulting Euler diagram are as follows:
• Each set forms a single, contiguous region
• Maximized set memberships
• Minimal concurrency

6.4 Methodology
In this section, we present our exact method and our heuristic for MCSetSys-
temSimplification; see Section 6.4.1 and Section 6.4.2, respectively. Recall that
both methods take the superdual graph G = (Z, F) as input and return a planar
subgraph G′ = (Z ′, F ′) of it, which will serve as the Euler diagram’s dual graph.

The prerequisite for our algorithm is the creation of the superdual graph
G = (Z, F) with zones as vertices and undirected edges F of the given set system.
These edges indicate shared labels between the incident zones. Hence, an edge is
added between pairs of zones which share at least one label; see Figure 6.2a.

A

AB
AD

AC

ACD

a, b

c

d

e

f

(a) superdual graph

AD

ACD

A

AB

AC

a, b

c

d

e

f

(b) dual graph

a
b

c

d

(c) Euler diagram

Figure 6.2: From left to right: (a) the superdual graph G for S, (b) the subgraph G′ of G that
has been computed to form the dual graph of the Euler diagram, (c) the Euler diagram.

For the case of Euler diagrams, an edge in the dual graph of the Euler dia-
gram indicates that those zones will share a border in the drawn diagram; see
Figures 6.2b and 6.2c. The number of label differences indicates the number of
contour lines which will be crossed at the shared border. Every additional con-
tour line is resulting in an increased concurrency. We count the label differences
and set them as edge weights. Hence, the weight of an edge w(u, v) is defined by
the symmetric difference ∆ of labels of the adjacent zones u and v minus one.

w(u, v) = |ℓ(u)|∆|ℓ(v)| − 1 (6.1)

Our goal is to retrieve a planar subgraph G′ ⊆ G which is the dual graph of
the Euler diagram. This graph should maximize the drawn zones and minimize
the overall concurrency of the drawing. In doing so, each induced subgraph of a

86

CHAPTER 6. GENERATING EULER DIAGRAMS THROUGH
COMBINATORIAL OPTIMIZATION

single label needs to form a connected component. Zones, which introduce non-
planarity to the subgraph while enforcing the contiguity of sets, are not part of
the planar subgraph.

6.4.1 An Integer Linear Program
Variables encoding the selected subgraph. For each vertex u ∈ Z of the
superdual graph G = (Z, F), we define a binary variable xu indicating whether
the vertex is part of the selected subgraph G′ (xu = 1).

xu ∈ {0, 1} ∀u ∈ Z (6.2)

Moreover, we introduce one binary variable zu,v for each edge e = {u, v} ∈ F .
This variable indicates whether e is selected for G′.

zu,v ∈ {0, 1} ∀{u, v} ∈ F (6.3)

These z-variables are coupled with the x-variables to ensure that an edge can be
selected only if its two incident vertices are selected.

zu,v ≤ xu and zu,v ≤ xv ∀{u, v} ∈ F (6.4)

Objective. The x- and z-variables introduced in the previous paragraph are
sufficient to express all three objectives of MCSetSystemSimplification.

Maximize
∑
p∈Z

w(p) · xp − α
∑

{u,v}∈F1

ω(u, v) · zu,v + β
∑

{v0,v}∈F2

zv0,v (6.5)

Enforcing connectivity of hyperedges. To ensure the connectivity of hyper-
edges in the selected subgraph G′ of G, we adapt a flow model by Shirabe (2005)
for spatial unit allocation tasks occurring in spatial planning. In our application,
we apply the model separately to each hyperedge X ∈ E. For this, we introduce
a directed graph G̃X = (ZX , AX); see Figure 6.3. The vertex set of G̃X contains
every vertex of G that is labeled with X, i.e.,

ZX = {u ∈ Z | X ∈ ℓ(u)} . (6.6)

The edge set of G̃X contains two opposite, directed edges for each edge of G that
connects two vertices labeled with X, i.e.,

AX = {(u, v), (v, u) | {u, v} ∈ F,X ∈ ℓ(u), X ∈ ℓ(v)} . (6.7)

Due to the definition of G, G̃X is a complete, directed graph. Additionally, the
vertices of G̃X share at least one label.

87

6.4. METHODOLOGY

Figure 6.4 illustrates the flow model that ensures the connectivity of the subset
{u ∈ X | xu = 1} selected from X. Each vertex of G̃X except the sink vertex can
be the source of flow. Hence, the maximum flow that can be transferred across
an edge (u, v) is limited to the number of vertices in X minus one, i.e., |X| − 1.
We represent the flow in G̃X with the following variables:

yXu,v ∈ {0, . . . , |X| − 1} ∀X ∈ E, ∀(u, v) ∈ AX . (6.8)

These variables are constrained such that only directed edges corresponding to
edges of G that are selected for G′ can carry flow.

yXu,v ≤ (|X| − 1) · zu,v ∀(u, v) ∈ AX , ∀X ∈ E (6.9)

Another set of variables models which vertex acts as a sink of the flow network
for X.

cXu ∈ {0, 1} ∀X ∈ E, ∀u ∈ ZX (6.10)
These variables are constrained such that the network for X can contain at most
one sink (vertex e in Figure 6.4, with cXe = 1).∑

u∈ZX

cXu ≤ 1 ∀X ∈ E (6.11)

Finally, the next two constraints ensure that
• every selected vertex except the sink contributes at least one unit of flow

to the network (i.e., vertices b, c, d in Figure 6.4),
• the sink (i.e., vertex e in Figure 6.4) is allowed to receive as much flow as

there are vertices in the network, and
• every non-selected vertex receives no flow (i.e., vertex a in Figure 6.4).∑

(v,w)∈AX

yXv,w −
∑

(u,v)∈AX

yXu,v ≥ xv − |X| · cXv ∀X ∈ E, ∀v ∈ ZX (6.12)

∑
(u,v)∈AX

yXu,v ≤ (|X| − 1) · xv ∀X ∈ E, ∀v ∈ ZX (6.13)

To summarize, every flow that a vertex contributes to the network for a hyperedge
X has to reach the sink and can pass only through vertices selected for X. The
presented model up to now is sufficient to ensure that the vertices selected for a
hyperedge X induce a connected subgraph in the selected subgraph G′ of G.

a

b

c

d

e

Figure 6.3: The directed graph G̃X

for a hyperedge X.

1

1
3

a

b

c

d

e

xa = 0

cXa = 0

xb = 1

cXb = 0

xc = 1

cXc = 0

xd = 1

cXd = 0

xe = 1

cXe = 1

Figure 6.4: A feasible assignment of the variables model-
ing the connectivity of the selected subgraph for X.

88

CHAPTER 6. GENERATING EULER DIAGRAMS THROUGH
COMBINATORIAL OPTIMIZATION

Enforcing planarity. A graph is planar if and only if it does not contain a
Kuratowski subdivision as a subgraph (i.e., a subdivision of K3,3 or K5) (Kura-
towski, 1930). Hence, we can ensure the planarity of the output graph G′ by
requiring that, for each Kuratowski subdivision K contained in G, at least one
edge is unselected. For this, we add the constraint∑

{u,v}∈F (K)

zu,v ≤ |F (K)| − 1 ∀K ∈ K(G) , (6.14)

where K(G) is the set of all Kuratowski subdivisions contained in G, and F (K)

is the set of edges of a graph K.
A challenge with this formulation is that there can be exponentially many

Kuratowski subdivisions in G. Therefore, setting up the ILP with all |K(G)|
instances of Constraint (6.14) is prohibitive in practice. To tackle this challenge,
we initially set up the ILP without Constraint (6.14), but we make sure that
the solver detects relevant instances of Constraint (6.14) during the optimization
process and adds them to the model. We implement this idea with a callback,
which is a customized method that the solver automatically invokes at certain
states of the optimization process. The callback that we introduce is invoked
whenever the solver finds a new incumbent solution, i.e., a solution that satisfies
all constraints of the current model and that is better than any solution found
before. For the incumbent solution that led to the invocation of the callback,
let G′ be the subgraph of G as determined with the z-variables. We apply the
Boyer-Myrvold’s planarity testing algorithm (Boyer and Myrvold, 2004) to G′,
which either reports that G′ is planar or returns a Kuratowski subdivision K

of G′, thus proving that G′ is non-planar. If G′ is planar, we simply resume
solving the current model, since there may be better solutions than G′ that the
solver has not found yet. Else, we instantiate Constraint (6.14) with the found
Kuratowski subdivision K and add this instance of the constraint to the model,
before resuming the solution procedure. This strategy is supported by state-of-
the-art ILP solvers in a way that guarantees an optimal solution as output.

To strengthen our initial model without Constraint (6.14), we add the follow-
ing constraint if G has at least 3 vertices.∑

{u,v}∈F

zu,v ≤ 3 ·
∑
p∈Z

xp − 6 (6.15)

This inequality does not ensure planarity but, due to Euler’s formula, is valid for
all solutions satisfying the planarity requirement.

6.4.2 Heuristic Approach
We now present our heuristic for selecting a planar subgraph G′ = (Z ′, F ′) of the
superdual graph G = (Z, F). The heuristic uses the same superdual graph as the

89

6.4. METHODOLOGY

exact, ILP-based method. However, the heuristic does not need to create directed
subgraphs G̃X for each individual hyperedge X. The heuristic initializes G′ with
the vertex representing the outer face as the only vertex, i.e., Z ′ = {v0} and
F ′ = ∅. Adding v0 to G′ ensures that the outer face is always part of the solution
which is necessary to produce a valid dual graph. Then, it lets G′ grow in an
iterative and greedy manner, ensuring that after every iteration the connectivity
requirement for hyperedges and the planarity requirement are satisfied. Thus,
the heuristic guarantees a feasible solution to MCSetSystemSimplification, but not
an optimal solution.

Algorithm 2 describes the heuristic in more detail. The iterative growth is im-
plemented with a while loop, where in each iteration the method addNextVer-
tex is called. The method returns true or false, depending on whether it suc-
ceeded to grow G′. If the method was unsuccessful, there is no vertex v ∈ Z \Z ′

that can be added to G′ without violating any constraint. Thus, the algorithm
terminates and returns G′.

Algorithm 2 Heuristic set system simplification
Input: Undirected superdual graph G = (Z, F) with vertex weights w and edge

weights ω
1: procedure Simplify(G)
2: Z ′ ← {v0}, F ′ ← ∅, G′ ← (Z ′, F ′)

3: s← True

4: while s do
5: s← addNextVertex(G′, G)
6: end while
7: return G′ = (Z ′, F ′)

8: end procedure

The method addNextVertex is presented in Algorithm 3. It first com-
putes a list C of candidates, where a candidate c is an extension of G′ by one
vertex c.v ∈ Z \ Z ′ and a set of edges c.edges between c.v and vertices of G′.
The candidate list C is obtained as the union of multiple lists, each of which is
computed based on one edge {p, v} ∈ F with p ∈ Z ′ and v ∈ Z \ Z ′, using a
method createEdgeCandidates. This method returns only candidates whose
selection satisfies the connectivity requirement (as we will later explain). After
C has been set up, we compute for each candidate c ∈ C the increase in the
objective value that its selection would cause and store it as c.w. Finally, we go
through the candidates in decreasing order of c.w and choose the first candidate
that does not violate the planarity requirement. For planarity testing, we use
the Boyer-Myrvold algorithm (Boyer and Myrvold, 2004), as in our ILP-based
method.

90

CHAPTER 6. GENERATING EULER DIAGRAMS THROUGH
COMBINATORIAL OPTIMIZATION

The method createEdgeCandidates yields for a given edge e = {p, v} a
set of candidates; see Algorithm 4. For every candidate c in this set, c.v = v and
c.edges contains e. However, the algorithm returns multiple candidates, which
differ with respect to the edges in c.edges in addition to e. To compute this
set, let X1, . . . , XK be the hyperedges that contain v and whose connectivity
would not be achieved when selecting v with edge e = {p, v} alone. For example,
in Figure 6.5, this holds for the hyperedge a. For each such hyperedge, the
connectivity can be repaired with a single edge among the edges incident to v

other than e, whose number is deg(v)− 1, where deg(v) is the degree of v in G′.
The addition of a single hyperedge can also repair the connectivity of multiple
hyperedges. Using such edges reduces the number of edges of a candidate but

Algorithm 3 Greedy addition of the next vertex together with edges connecting
it to the current graph
Input: Current selected dual graph G′ = (Z ′, F ′), superdual graph G = (Z, F)

1: procedure addNextVertex(G′, G)
2: ▷ Collect candidates:
3: C ← empty list of candidates
4: for (p, v) ∈ F such that p ∈ Z ′ and v ̸∈ Z ′ do
5: Cpv ← createEdgeCandidates(G′, G, p, v)
6: C ← C ∪ Cpv

7: end for
8: ▷ Rate candidates:
9: for c ∈ C do

10: c.w ← w(c.v)− α ·
∑

e∈c.edges∩F1

ω(e) + β · |c.edges ∩ F2|

11: end for
12: ▷ Choose the best candidate:
13: Sort C descending by weight w
14: while C.size > 0 do
15: c← C.pollFirst()
16: Add vertex c.v to Z ′ and edges c.edges to F ′

17: if isPlanar(G′) then
18: return True
19: else
20: Remove c.v from Z ′ and c.edges from F ′

21: end if
22: end while
23: return False
24: end procedure

91

6.4. METHODOLOGY

Algorithm 4 Create candidates for a single edge {p, v}
1: procedure createEdgeCandidates(G′, G, p, v)
2: C ← empty list of candidates
3: Let {X1, . . . , XK} be the set of hyperedges in ℓ(v) whose connectivity

would be violated if selecting only v and {p, v}.
4: For i = 1, . . . , K let F ′

i be the set of edges connecting v with a selected
vertex of hyperedge Xi, i.e., a vertex in Xi and G′.

5: for ϵ ∈ F ′
1 × F ′

2 × . . .× F ′
K do

6: Let c be a new candidate
7: c.v = v

8: c.edges = set containing edge {p, v} and all edges in ϵ

9: C.add(c)
10: end for
11: return C

12: end procedure

increases the number of candidates due to additional combinations. However,
we must consider both options: adding multiple edges is more likely to produce
non-planar solutions; adding a single edge that repairs multiple hyperedges can
lead to higher concurrency.

Hence, we generate O((deg(v) − 1)K) candidates, where K < |ℓ(v)|. In Fig-
ure 6.5, this yields two candidates, visualized with different colors. Explicitly
enumerating the candidates can be done reasonably fast, assuming that the num-
ber |ℓ(v)| of hyperedges containing vertex v is a small constant, which we did
in all our experiments with the heuristic. For set systems where |ℓ(v)| can be
large, one may use our heuristic with a user-set upper limit on the size of c.edges.
However, restricting the candidate space by removing all candidates with a high
edge count can degrade the quality of the solution.

a

ac

ab
b

0

a

ac

ab
b

0

Figure 6.5: Graph G′ (black) after adding three vertices and three edges with our heuristic.
Vertex ab has not been added yet (left). Calling createEdgeCandidates for edge {a, ab}
yields two candidates: The red candidate with edges {a, ab},{b, ab} and the blue candidate
{ac, ab},{b, ab} (right).

92

CHAPTER 6. GENERATING EULER DIAGRAMS THROUGH
COMBINATORIAL OPTIMIZATION

6.5 Experiments
Datasets. We evaluate our methods with two datasets.

• MovieDB from the 2007 InfoVis contest (Kosara et al., 2007): Each set
system is based on a single director. The sets are the movies of the director.
The set elements are actors of the corresponding movie.

• TwitterCircles (Leskovec and Krevl, 2014): The dataset consists of users
and their interest groups. Each set system is based on a user’s ego network.
Each set is based on the user’s interest circles while the set elements are
followed users belonging to at least one interest circle.

In total, there are 930 set systems in TwitterCircles and 16884 in MovieDB.
However, we omit all set systems that have less than five vertices in addition to
v0 in the superdual graph since those always have a planar embedding, simply
because they cannot have a K5 or a K3,3 as a minor. Including a lot of triv-
ial instances in the experiments would decrease the differences between our two
approaches. Thus, we select 281 and 569 set systems, respectively. Table 6.1
provides further details. For all experiments, we defined the weight of an element
as the number of sets containing it, and we applied the optional Step 1, i.e.,
the condensation of the hypergraph. All experiments were executed on an AMD
Ryzen 9 7950X with 64GB of RAM using Java 11 and Gurobi 9.5.1 for solving
the ILPs.

The code and datasets are available under a GPL open source license from
https://gitlab.igg.uni-bonn.de/geoinfo/generating-euler-diagrams.

Before analyzing the results, we show the full workflow on the set system
for the director Keith Hooker from MovieDB in Figure 6.6. The set system
consists of 5 sets with 19 set elements. Our ILP approach produces an Euler
diagram where each single-labeled face is adjacent to the outer face. Additionally,
the minimization of the number of concurrencies results in a nested structure.
Vertices with only a few labels are placed near the outer face. In contrast, regions
with a higher label count are moved toward the center of the Euler diagram.

dataset #set systems #sets #elements

MovieDB 569 Avg 4.39 44.30
Max 15 288

TwitterCircles 281 Avg 6.19 73.83
Max 14 197

Table 6.1: Statistics of MovieDB and TwitterCircles.

93

https://gitlab.igg.uni-bonn.de/geoinfo/generating-euler-diagrams

6.5. EXPERIMENTS

0
a

b

c

d

eab

ad

be bde

abde bcde

abcde

(a) superdual graph

0
a

b

c

d

eab

ad

be bde

abde bcde

abcde

(b) planar support

0

a

b

c

d

e

ab

ad

be

bde

abdebcde

abcde

(c) planar embedding

abde

c

bc
de

bde

be

e
b

ab
a

ad

d

abcde

(d) Euler diagram

ab
cde

bde

bc
de

abde

c

bee

b
ab

a

ad

d

(e) resulting diagram

Figure 6.6: Euler diagram workflow of the set system corresponding to the director Keith
Hooker from MovieDB. The set system consists of 5 sets with 19 set elements. Condensing the
hypergraph in Step 1 yields 12 unique set elements. The results of Steps 2–6 are visualized by
Figs (a)–(e). When visualizing this set system with α = 0.01 and β = 0.1, no set element is
removed from the set system.

ab
cfgb

bg

g

fg f

ef

af

c cdf

d

dg
def

g

ab
df

ab
cd

efg

aefg

a
ab
cfg

g

fgf

ef

af

d

dg

defg
abdf

aefg

a

a
b
cd

efg

g

fg

f

ef

af

d

dg

a

c

b

bg

0 10

fconcur

50

60

70

f w
e
ig

h
t

α = 0.01

α = 1.75

α = 2.0

Figure 6.7: Simplifying the set system of director Joel Schoenbach from left to right. The left
figure is computed using α = 0.01 with fweight = 75 and fconcur = 16. The middle figure yields
fweight = 68 and fconcur = 10 for α = 1.75. The lowest concurrency fweight = 48 and fconcur = 0

is a result of α ≥ 2.0. β = 0.1 is fixed for all results. The diagram on the right shows the
relation between fweight and fconcur for the shown example when changing α. The red data
points correspond to the visualized Euler diagrams.

Parameter influence. To study the influence of the parameters α and β, we
computed multiple solutions for all set systems from MovieDB using our ILP
approach. For β = 0.1 and α = 0.01 the average number of concurrencies was
1.43 and all set elements were selected. Keeping β fixed and increasing α to
1.25 reduces the average number of concurrencies per Euler diagram by 54.98%,
whereas the weight of the selected set elements decreases by 0.42%.

Our goal is to demonstrate the complexity of the datasets and the advan-
tages of our simplification through a single example. Therefore, the director Joel
Schoenbach is shown in Figure 6.7. This example shows that our approach can
simplify the set system to reduce concurrency. However, this comes at the cost
of the removal of elements. We show additional examples of the influence of α
and β in the supplementary material.

Similarly, we investigate the influence of the parameter β. We compute two
solutions for the same set system; see Figure 6.8. Both solutions were obtained
with α = 0.01. On the left, we set β = 0.1. On the right, we set β = 0, which
results in only a single vertex being adjacent to the outer face. The latter leads to

94

CHAPTER 6. GENERATING EULER DIAGRAMS THROUGH
COMBINATORIAL OPTIMIZATION

b

bd

d

cde

bc
c

cf

f
fg

g

ag

a

e

ade

ce
ac

g

c

ag

f
fg

cf

a

ac

ade

cde

bc
ce

bde

b

d

Figure 6.8: Comparison of results for director Art Camacho for β = 0.1 (left) and β = 0 (right);
α = 0.01 for both. For β = 0, only one vertex of the dual graph, i.e. labelled c, is adjacent to
the outer face.

a hardly readable visualization. The sets are nested and form holes within the set
that is connected to the outer face. Comparing both Euler diagrams, it is harder
to follow individual set outlines for β = 0. As a result, it would be difficult to
determine labels within the interior of the diagram when only a single label for
each curve is given.

Comparison of solutions of exact method and heuristic. We now com-
pare the results of the ILP and of the heuristic for the 850 set systems given with
the two datasets. For this purpose, we evaluate the value of the overall objective
function f and the functions fweigth, fconcur, fouter expressing the three criteria of
MCSetSystemSimplification. Based on our experiences with the different parame-
ter settings discussed in the previous section, we fixed α = 0.01 and β = 0.1 for
all the experiments that we report here.

We use a time limit of one hour for the ILP solver and report the best solution.
For all 850 set systems, the solver found a solution within the time limit, but in
four examples from TwitterCircles the solver was not able to prove the optimality
of the solution. In three cases, the solution contained 100% of the total weight
of the set system. In one example (id = 779715), a solution with 50.82% of the
total weight was returned and a gap of 96.64% was reported, meaning that there
might be a solution whose objective value is roughly twice as high as that of the
found solution.

The goal of the first experiment is to compare the quality of our heuristic
and our ILP. For doing this, we solve all instances of the two datasets with
both approaches. Recall that we aim at high values for f , fweight and fouter

but low values for fconcur. Across all instances, we observe that the heuristic
performs worse than the ILP, in the sense that it achieves a lower value for the
objective function f (see the column f in Table 6.2 for MovieDB and Table 6.3

95

6.5. EXPERIMENTS

Method f fweight fconcur fouter Time [s]

ILP Avg 50.68 50.26 1.43 4.08 0.221
Max 294.66 294 55 14 99.3485

Heuristic Avg 50.68 50.26 2.78 4.07 0.0003
Max 294.66 294 90 14 0.018

Table 6.2: Results of the ILP and the heuristic on MovieDB. Avg and Max are the average and
maximum over all instances.

for TwitterCircles). This is mainly due to two factors: the heuristic includes
less vertex weight in the dual graph (column fweight) and selects edges with more
concurrency (column fconcur).

For all instances in MovieDB, our ILP approach found a planar support with
all set elements. Hence, the metric fweight is the same for the input data and
the results. In contrast, the heuristic did not include all set elements in every
solution. The average value of fweight is 0.05% less with the heuristic than with
the ILP. For the instances in TwitterCircles, the ILP in a single case yielded a
solution without all set elements, and the average value of fweight is 0.16% less
with the heuristic than with the ILP.

To evaluate the results with respect to concurrent curves, we compare the
average values of fconcur of our approaches. For TwitterCircles, fconcur increased
from 2.02 to 4.12. For MovieDB, fconcur increased from 1.43 to 2.78. The increased
number of concurrencies is also reflected by the maximum values of fconcur, which
increased from 89 to 111 and from 55 to 90, respectively.

We investigate the distribution of the increased number of concurrencies by
the factor of two in Figure 6.9. None of the instances drastically exceeds this
factor. The additional concurrencies are well distributed across all instances
in MovieDB. As an example, the results of both approaches for the director
Brett Ryan Bonowicz are shown in Figure 6.10. In that case, the additional
concurrency is well distributed across the visualization, and the maximum number

Method f fweight fconcur fouter Time [s]

ILP Avg 128.73 128.20 2.02 5.06 54.05
Max 1069.16 1069 89 13 3,602.53

Heuristic Avg 128.50 127.99 4.12 5.00 0.003
Max 1069.08 1069 111 13 0.267

Table 6.3: Results of the ILP and the heuristic on TwitterCircles. Avg and Max are the average
and maximum over all instances.

96

CHAPTER 6. GENERATING EULER DIAGRAMS THROUGH
COMBINATORIAL OPTIMIZATION

0 20 40 60 80

ILP concurrency

0

20

40

60

80

H
eu

ri
st

ic
co

n
cu

rr
en

cy

Same fconcur

Figure 6.9: Comparison of concurrency of our heuristic and ILP approach. Each point represents
a set system in MovieDB.

of concurrencies occurring between two adjacent zones is the same for the ILP as
for the heuristic.

Comparison of running times. Wemeasured the running times of the heuris-
tic and the ILP (see the last columns in Tables 6.2 and 6.3). Each running time
includes the time for Steps 1–3. It excludes the running time for Steps 4–6, as
these steps are not our contribution. The maximum running time of TwitterCir-
cles of roughly one hour is due to the time limit we set for the ILP solver.

We observe a large difference between the ILP and the heuristic for both the
average and maximum values. On the other hand, we can compute an optimal
dual graph of Euler diagrams for the movie dataset within the time limit using our
ILP. However, the heuristic is 138 times faster than the ILP on average. Setting
a time limit of 10s for the ILP solver results in the same order of speedup for

d

e

ab

b

a
af

f

afg

fgg

abde

abg
bfg

cg

c

c

cg

g

a

d

e

b

abg

abde

af

afg

fg

bfg

f

ab

Figure 6.10: Resulting Euler diagrams for director Brett Ryan Bonowicz using the ILP (left)
and the heuristic (right).

97

6.6. CONCLUSION

TwitterCircles. However, such a constrained time limit for the ILP solver leads
to worse results than the heuristic.

Comparison with an existing method. Finally, we compared our exact
method with the method by Rodgers et al. (2008), which allows sets to be split
into multiple regions, breaking the duplicate curve label wellformedness condition
as well as drawing layouts with concurrency, see Section 2.2. It is the closest
state-of-the-art to our method. First, using our exact method, we identified all
set systems in MovieDB that do not admit an Euler diagram with contiguous
regions and without concurrency, yielding 187 set systems. For each of them,
we used the method of Rodgers et al. (2008) to generate an Euler diagram. In
18.2% of the cases, the resulting Euler diagram splits at least one set into two or
more regions. In contrast, in every case, our exact method with α = 0.01 and
β = 0.1 yielded an Euler diagram with a single contiguous region for each set and
without losing a set element. Moreover, on average over all 187 set systems, our
ILP reduced the concurrency by 35.35%.

6.6 Conclusion
We have proposed a novel ILP approach for finding a planar support of a given
hypergraph that represents a set system. We have integrated this approach into
a complete workflow for generating Euler diagrams that represent each set as
a single contiguous region. The ILP maximizes the preserved number of set
elements or set memberships. Additionally, it minimizes the total number of
concurrent curves and places a maximum number of faces contained in only few
curves adjacent to the outer face. Moreover, we have developed a heuristic that
tries to optimize the same objective by greedily adding vertices to an empty graph.
Our experiments show that our ILP can be used to produce optimal general
Euler diagrams that comply with our wellformedness criteria. Moreover, our
approach can simplify a set system in order to reduce concurrency. Comparisons
of the heuristic with the ILP show that the heuristic produces results with similar
objective values while increasing the concurrency by a factor of two. A benefit of
the heuristic is that it needs only a fraction of the processing time.

For future work, producing Euler diagrams without concurrency by either
limiting the edges within the superdual graph or merging sets might be possible.
When concurrency cannot be avoided, equally distributing concurrency across
edges instead of accumulating the total concurrency in a single edge is favorable.
To improve readability, we could consider additional wellformedness conditions,
such as the avoidance of triple points. Regarding the heuristic, the computation
of candidates can be improved to avoid the brute force approach. As new ver-

98

CHAPTER 6. GENERATING EULER DIAGRAMS THROUGH
COMBINATORIAL OPTIMIZATION

tices are added to the dual graph, the algorithm must update existing candidates.
Additionally, excluding certain edges from candidate creation might be beneficial
(Wageningen et al., 2023). Our ILP could be accelerated, e.g., by generating mul-
tiple Kuratowski subdivisions at once (Chimani et al., 2019), instead of one by
one. It may also be possible to explore ways of displaying removed set elements
and indicating the lost information using visual mechanisms, such as texture,
shading or icons. Furthermore, we would like to encode the degree of simplifica-
tion and completeness of the Euler diagram using visualizations for quantitative
information, such as area proportional layouts (Stapleton et al., 2011) or applying
a color scale (Schloss et al., 2018).

99

Chapter 7

Conclusion and Future Work

In this thesis, we addressed problems in the field of map generalization, set
system visualization, and set system simplification with combinatorial ap-
proaches influenced by spatial unit allocation. A key aspect of spatial unit
allocation is the generation of compact results. We integrated the compact-

ness requirement into the aggregation of polygons for map generalization and the
grid-based drawing of Euler-like diagrams. To find a set of solutions that contains
an optimal aggregation for each parameter value, we presented an approach that
produces hierarchically nested results. We used another key aspect of spatial unit
allocation, connectivity, to develop a novel approach for deciding whether a set
system can be drawn as an Euler diagram while forming connected regions. In
the same approach, we introduced a simplification technique that removes the
least important set elements to reduce the complexity of the visualization. In
the following, we will summarize the contributions for each research field of this
thesis and discuss future work.

7.1 Summary of the Contributions
Map generalization. We presented an efficient approach for aggregating a set
of polygons into larger groups of polygons. We aggregated polygons optimizing
a trade-off between the total area and the perimeter of the solutions resulting in
compact polygon groups. The area-perimeter trade-off is controlled by a single
parameter λ. By transforming the problem into a graph representation and solv-
ing it with graph cuts, we are able to solve the aggregation within subquadratic
time complexity. Furthermore, we showed that we can compute a linear-sized
solution set that contains an optimal solution for every λ in the defined range
of values. The resulting solution set is hierarchically structured, which allows
for continuous aggregation while zooming on a map. Due to the large number of
solutions with many small deviations from each other, we proposed an approxima-

101

7.2. FUTURE WORK

tion algorithm for the solution set. In our experiments, we show that computing
solutions with a narrow range of λ values is sufficient to produce results for a
given map scale.

Set system visualization. We proposed a novel visualization approach called
MosaicSets. The approach visualizes set systems as Euler-like diagrams in a
grid-based layout. The only requirement for the set system is that each set ele-
ment occurs exactly once in a set of the base map of the diagram. An important
property of the resulting diagram is the contiguity of each set. Our conducted
expert interviews indicated a need for such visualizations which are created au-
tomatically as creating a single visualization manually can take many hours. We
proved that the problem of assigning the set elements to grid cells is NP-hard and
therefore proposed an ILP approach solving the visualization task. Due to the
complexity of the problem, we proposed an iterative approach that maximizes the
compactness of each set in each iteration. In the experiments, our proposed itera-
tive strategy performed significantly faster in practice without sacrificing quality
of the results.

Set system simplification. We presented an exact algorithm to determine
if a given set system can be drawn as an Euler diagram, in which every set
has to form a single, connected region. Due to the interchangeability of set
systems and hypergraphs, our algorithm is also able to determine whether a given
hypergraph has a planar support. To the best of our knowledge, we proposed the
first algorithm that can solve this problem optimally. Due to the NP-hardness
of the problem, we proposed an ILP approach for computing exact solutions.
We have formulated three objectives that determine the resulting dual graph
of the Euler diagram. We applied our algorithm to numerous set systems and
showed that it outperforms previous methods in terms of concurrency. When a
set system cannot be drawn as an Euler diagram, we proposed a simplification
technique that removes the least important set elements. The simplification is
based on a weighted sum of objectives and produces results of maximum weight.
This leads to the removal of the least important set elements and reduces the
complexity of the visualization.

7.2 Future Work

In the following, we will discuss the future work and possible extensions of our
approaches. Furthermore, we want to mention research which builds on our work
and can be used to improve the results of our approaches.

102

CHAPTER 7. CONCLUSION AND FUTURE WORK

Map generalization. Aggregating large sets of polygons into multiple groups
of polygons remains a challenging task using our approach. We used the hi-
erarchical property of the solution set to compute the linear-sized solution set.
Further research can exploit the fact that each polygon group does not interact
with other groups for larger λ values. Thus, the problem can be decomposed into
smaller subproblems. Following up on our work, Beines et al. (2025) introduced
a new minimum-cut approach to such problems that takes the hierarchical struc-
ture into account. Although they did not improve the theoretical computational
complexity, they showed that their approach can compute all solutions within a
reasonable time for large data sets. However, their approach loses the ability to
approximate the solution set.

Another area of research is the efficient computation of bicriteria shapes for
subdivisions which are based on elongated polygon edges. In our work, we showed
that the complexity with respect to the number of input polygons is O(n6). For
the case of building footprints, many narrow polygons with small sizes are con-
structed when using the extended edges. Further research is needed to reduce
the number of polygons to a meaningful core set which aligns with the original
building footprints.

A limitation of our work is that we only select the predefined polygons con-
sisting of straight lines for the aggregation. Theoretically, the objective value
of a solution with a fixed λ can be improved by allowing curved line segments.
Such line segments depend on the parameter λ and need to be computed for each
solution at the time of solving the solution. Although it is possible to improve
the objective value, the use of curved line segments is currently not an established
approach in cartography for map generalization (Wu and Wang, 2021).

As a future work, the bicriteria shapes can be extended to allow removal of
polygons contained in the input polygons to be excluded from the output. Cur-
rently, every polygon contained in the input set is also contained in the output
set. Removal of remaining small polygons from the output set is done in post-
processing. Discarding portions of buildings is a common approach when sim-
plifying building footprints (Haunert and Wolff, 2010b). It can be investigated
whether bicriteria shapes are able to produce a similar simplification when using
extended polygon boundaries. Thus, the bicriteria shapes could be extended from
a generalization operator for aggregating polygons to an operator for selecting,
simplifying and aggregating polygons.

Set system visualization. Although MosaicSets can produce visualizations of
large set systems, a current limitation is that we cannot compute a visualization
for every large set system. Also, we cannot determine in advance whether it
is possible to compute it within a reasonable running time. Additionally, the

103

7.2. FUTURE WORK

feasibility of the solution is dependent on the underlying grid graph. When
using a grid graph with more adjacent cells, i.e. hexagonal over rectangular grid,
the number of possible solutions increases. In the context, additional research
on the choice of the grid graph is needed. An option is to use a grid graph
which combine faces with more than six edges with faces which have less than
six edges. We show three possible grid graphs in Figure 7.1. When using grid
graphs combining different types of faces, a user study could determine whether
the resulting diagrams lead to a higher cognitive load for the user.

(a) Pythagorean tiling (b) octagonal tiling (c) dodecagon-based tiling

Figure 7.1: Different types of tilings that can be used for the grid graph of MosaicSets. Each of
the tilings is periodic, which allows a regular grid graph. Using faces with more than six edges
increases the number of possible neighbors and helps to solve larger set systems.

Set system simplification. The generation of optimal Euler diagrams for
arbitrary set systems opens up several possibilities for future work. One possible
research direction is the use of our diagram construction in an interactive setup.
Such an application can allow the user to select certain faces of the Euler diagram
and expand them to show the details of the set elements. Currently, only the face
without additional elements is displayed. However, adding additional elements
to the face is part of the layout process and can be added when constructing the
diagram.

Interactive Euler diagrams can be used to visualize the results of a literature
search based on keywords. Current literature search tools build a knowledge
graph of papers that cite or are cited by a query paper (Ammar et al., 2018;
Weishuhn, 2025). In future research, we can use Euler diagrams to improve the
visualization by using the keywords of a paper as sets. By using Euler diagrams to
visualize the relationships between papers based on keywords, users can quickly
grasp the similarity of papers and their relationships.

Another area of research is the use of our approach for constrained layouts of
Euler diagrams, e.g. drawing sets as rectangles or circles. In current approaches,
the layout of such Euler diagrams is done heuristically and often contains empty

104

CHAPTER 7. CONCLUSION AND FUTURE WORK

faces. Until now, it is not known whether an Euler diagram with such a restricted
layout exists and how to compute it (Priss and Dürrschnabel, 2024). Furthermore,
we can investigate whether the approach can be extended to avoid or minimize
triple points in the resulting Euler diagram. On the one hand, triple points can
be reduced by using a layout generation algorithm that minimizes the number of
triple points. However, some generated layouts will produce more triple points
than others. Therefore, an additional objective function in the ILP can be used
to minimize the number of triple points.

Adding additional constraints to the ILP regarding the planarity of the result-
ing dual graph can be used to reduce the number of callbacks in the ILP and po-
tentially decrease the running time of the ILP-solver. A well-established property
in cartography is that polygons in a map can be colored using four colors (Appel
and Haken, 1989). In our case, the faces of the Euler diagram are analogous to
the regions of a map. Therefore, the vertices of the dual graph can be colored
with four colors. Although computing a 4-coloring of a graph is NP-complete
(Dailey, 1980), it can be investigated whether the running time of the ILP can be
improved by incorporating a 4-coloring formulation into the ILP. However, the
4-coloring of a graph is not a sufficient condition for planarity. Thus, a 4-coloring
formulation cannot completely replace our introduced planarity constraint.

On the algorithm engineering side, the heuristic approach can be improved
to be able to compute even larger set systems. Currently, the heuristic struggles
to produce results for set systems consisting of more than 500 sets. On the one
hand, the heuristic can be improved by updating existing candidates instead of
generating all candidates in every iteration. This change can drastically reduce
the time complexity of the heuristic.

105

Bibliography

Mikkel Abrahamsen, Panos Giannopoulos, Maarten Löffler, and Günter Rote.
Geometric multicut: Shortest fences for separating groups of objects in the
plane. Discrete & Computational Geometry, 64(3):575–607, October 2020.
doi:10.1007/s00454-020-00232-w.

Jeroen C. J. H. Aerts and Gerard B. M. Heuvelink. Using simulated annealing for
resource allocation. International Journal of Geographical Information Science,
16(6):571–587, 2002. doi:10.1080/13658810210138751.

Jeroen C. J. H. Aerts, Erwin Eisinger, Gerard B. M. Heuvelink, and Theodor J.
Stewart. Using linear integer programming for multi-site land-use allo-
cation. Geographical Analysis, 35(2):148–169, 2003. doi:10.1111/j.1538-
4632.2003.tb01106.x.

Basak Alper, Nathalie Riche, Gonzalo Ramos, and Mary Czerwinski. De-
sign study of linesets, a novel set visualization technique. IEEE Trans-
actions on Visualization and Computer Graphics, 17(12):2259–2267, 2011.
doi:10.1109/TVCG.2011.186.

Bilal Alsallakh, Luana Micallef, Wolfgang Aigner, Helwig Hauser, Silvia Miksch,
and Peter J. Rodgers. The state-of-the-art of set visualization. Computer
Graphics Forum, 35(1):234–260, 2016. doi:10.1111/cgf.12722.

Waleed Ammar, Dirk Groeneveld, Chandra Bhagavatula, Iz Beltagy, Miles Craw-
ford, Doug Downey, Jason Dunkelberger, Ahmed Elgohary, Sergey Feldman,
Vu Ha, Rodney Kinney, Sebastian Kohlmeier, Kyle Lo, Tyler Murray, Hsu-
Han Ooi, Matthew Peters, Joanna Power, Sam Skjonsberg, Lucy Lu Wang,
Chris Wilhelm, Zheng Yuan, Madeleine van Zuylen, and Oren Etzioni. Con-
struction of the literature graph in semantic scholar. In Proc. 2018 Conference
of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, volume 3, pages 84–91. Association for
Computational Linguistics, June 2018. doi:10.18653/v1/N18-3011.

Karl-Heinrich Anders and Monika Sester. Parameter-free cluster detection in
spatial databases and its application to typification. In Proc. 19th ISPRS

107

https://doi.org/10.1007/s00454-020-00232-w
https://doi.org/10.1080/13658810210138751
https://doi.org/10.1111/j.1538-4632.2003.tb01106.x
https://doi.org/10.1111/j.1538-4632.2003.tb01106.x
https://doi.org/10.1109/TVCG.2011.186
https://doi.org/10.1111/cgf.12722
https://doi.org/10.18653/v1/N18-3011

BIBLIOGRAPHY

Congress, volume 33 of International Archives of Photogrammetry and Remote
Sensing, pages 75–83, 2000.

Kenneth I Appel and Wolfgang Haken. Every planar map is four colorable,
volume 98 of Contemporary Mathematics. American Mathematical Society,
1989. doi:10.1090/conm/098.

Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der Bundesre-
publik Deutschland (AdV). Ausleitung des ATKIS-Objektartenkataloges
DLM250, 2022. URL https://www.adv-online.de/icc/extdeu/nav/35b/
binarywriterservlet?imgUid=a8130147-1420-4e71-0832-12914a39df1f&
uBasVariant=11111111-1111-1111-1111-111111111111. Accessed May
2025.

Daniel Barath and Jiří Matas. Graph-cut ransac. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition, June 2018.
doi:10.1109/CVPR.2018.00704.

Arne Beines, Michael Kaibel, Philip Mayer, Petra Mutzel, and Jonas Sauer. A
simpler approach for monotone parametric minimum cut: Finding the break-
points in order. In Proc. Symposium on Algorithm Engineering and Experi-
ments, pages 29–41, 2025. doi:10.1137/1.9781611978339.3.

Michael A. Bekos, D.J.C. Dekker, F. Frank, Wouter Meulemans, Peter Rodgers,
André Schulz, and S. Wessel. Computing schematic layouts for spatial hy-
pergraphs on concentric circles and grids. Computer Graphics Forum, 2022.
doi:10.1111/cgf.14497.

Bonnie Berkowitz and Lazaro Gamio. What you need to know about the
measles outbreak. https://www.washingtonpost.com/graphics/health/
how-fast-does-measles-spread/, 02 2015. Accessed May 2025.

Alain Billionnet. Mathematical optimization ideas for biodiversity conser-
vation. European Journal of Operational Research, 231(3):514–534, 2013.
doi:10.1016/j.ejor.2013.03.025.

Michael Bleyer and Margrit Gelautz. Graph-cut-based stereo matching using im-
age segmentation with symmetrical treatment of occlusions. Signal Processing:
Image Communication, 22(2):127–143, 2007. doi:10.1016/j.image.2006.11.012.

Fritz Bökler and Petra Mutzel. Output-sensitive algorithms for enumerating
the extreme nondominated points of multiobjective combinatorial optimization
problems. In Proc. 23rd Annual European Symposium on Algorithms, pages
288–299. Springer, 2015. doi:10.1007/978-3-662-48350-3_25.

108

https://doi.org/10.1090/conm/098
https://www.adv-online.de/icc/extdeu/nav/35b/binarywriterservlet?imgUid=a8130147-1420-4e71-0832-12914a39df1f&uBasVariant=11111111-1111-1111-1111-111111111111
https://www.adv-online.de/icc/extdeu/nav/35b/binarywriterservlet?imgUid=a8130147-1420-4e71-0832-12914a39df1f&uBasVariant=11111111-1111-1111-1111-111111111111
https://www.adv-online.de/icc/extdeu/nav/35b/binarywriterservlet?imgUid=a8130147-1420-4e71-0832-12914a39df1f&uBasVariant=11111111-1111-1111-1111-111111111111
https://doi.org/10.1109/CVPR.2018.00704
https://doi.org/10.1137/1.9781611978339.3
https://doi.org/10.1111/cgf.14497
https://www.washingtonpost.com/graphics/health/how-fast-does-measles-spread/
https://www.washingtonpost.com/graphics/health/how-fast-does-measles-spread/
https://doi.org/10.1016/j.ejor.2013.03.025
https://doi.org/10.1016/j.image.2006.11.012
https://doi.org/10.1007/978-3-662-48350-3_25

BIBLIOGRAPHY

Annika Bonerath, Benjamin Niedermann, and Jan-Henrik Haunert. Retriev-
ing α-shapes and schematic polygonal approximations for sets of points within
queried temporal ranges. In Proc. 27th ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems, pages 249–258, 2019.
doi:10.1145/3347146.3359087.

John M. Boyer and Wendy J. Myrvold. On the cutting edge: Simplified O(n)
planarity by edge addition. Journal of Graph Algorithms and Applications, 8
(3):241–273, 2004. doi:10.7155/jgaa.00091.

Yuri Boykov and Olga Veksler. Graph cuts in vision and graphics: Theories
and applications. In Handbook of Mathematical Models in Computer Vision,
chapter 5, pages 79–96. Springer, 2006. doi:10.1007/0-387-28831-7_5.

Ulrik Brandes, Sabine Cornelsen, Barbara Pampel, and Arnaud Sallaberry.
Blocks of hypergraphs applied to hypergraphs and outerplanarity. In Proc.
Combinatorial Algorithms, volume 6460 of LNCS, pages 201–211. Springer,
2011. doi:10.1007/978-3-642-19222-7_21.

Gary L Brase. Pictorial representations in statistical reasoning. Applied Cognitive
Psychology, 23(3):369–381, 2009. doi:10.1002/acp.1460.

Richard Brath. Multi-attribute glyphs on Venn and Euler diagrams to represent
data and aid visual decoding. In Proc. 3rd International Workshop on Euler
Diagrams, volume 854 of CEUR, pages 122–129, 2012.

Sandra M. Brown, Julie O. Culver, Kathryn E. Osann, Deborah J. MacDon-
ald, Sharon Sand, Andrea A. Thornton, Marcia Grant, Deborah J. Bowen,
Kelly A. Metcalfe, Harry B. Burke, Mark E. Robson, Susan Friedman, and
Jeffrey N. Weitzel. Health literacy, numeracy, and interpretation of graphical
breast cancer risk estimates. Patient Education and Counseling, 83(1):92–98,
2011. doi:10.1016/j.pec.2010.04.027.

Adrien Brunel, Jérémy Omer, Antoine Gicquel, and Sophie Lanco. De-
signing compact, connected and gap-free reserves with systematic reserve
site selection models. Applied Mathematical Modelling, 134:307–323, 2024.
doi:10.1016/j.apm.2024.06.001.

Kevin Buchin, Marc J. Kreveld, van, Henk Meijer, Bettina Speckmann, and
Kevin A.B. Verbeek. On planar supports for hypergraphs. Journal of Graph
Algorithms and Applications, 15(4):533–549, 2011. doi:10.7155/jgaa.00237.

Dirk Burghardt and Alessandro Cecconi. Mesh simplification for building typ-
ification. International Journal of Geographical Information Science, 21(3):
283–298, 2007. doi:10.1080/13658810600912323.

109

https://doi.org/10.1145/3347146.3359087
https://doi.org/10.7155/jgaa.00091
https://doi.org/10.1007/0-387-28831-7_5
https://doi.org/10.1007/978-3-642-19222-7_21
https://doi.org/10.1002/acp.1460
https://doi.org/10.1016/j.pec.2010.04.027
https://doi.org/10.1016/j.apm.2024.06.001
https://doi.org/10.7155/jgaa.00237
https://doi.org/10.1080/13658810600912323

BIBLIOGRAPHY

Dirk Burghardt, Stefan Schmid, and Jantien Stoter. Investigations on carto-
graphic constraint formalisation. In Proc. 11th ICA Workshop on Generalisa-
tion and Multiple Representation, 2007.

Rafael G. Cano, Kevin Buchin, Thom Castermans, Astrid Pieterse, Willem Sonke,
and Bettina Speckmann. Mosaic drawings and cartograms. Computer Graphics
Forum, 34(3):361–370, 2015. doi:10.1111/cgf.12648.

Felipe Caro, Takeshi Shirabe, Monique Guignard, and Andrés Wein-
traub. School redistricting: embedding GIS tools with integer program-
ming. Journal of Operational Research Society, 55(8):836–849, 2004.
doi:10.1057/palgrave.jors.2601729.

Thom Castermans, Mereke van Garderen, Wouter Meulemans, Martin Nöl-
lenburg, and Xiaoru Yuan. Short plane supports for spatial hyper-
graphs. Journal of Graph Algorithms and Applications, 23(3):463–498, 2019.
doi:10.7155/jgaa.00499.

Xinjian Chen and Lingjiao Pan. A survey of graph cuts/graph search based
medical image segmentation. IEEE Reviews in Biomedical Engineering, 11:
112–124, 2018. doi:10.1109/RBME.2018.2798701.

Markus Chimani, Thomas C. van Dijk, and Jan-Henrik Haunert. How to eat
a graph: Computing selection sequences for the continuous generalization of
road networks. In Proc. 22nd ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, pages 243–252. Association for
Computing Machinery, 2014. doi:10.1145/2666310.2666414.

Markus Chimani, Ivo Hedtke, and Tilo Wiedera. Exact algorithms for the maxi-
mum planar subgraph problem: New models and experiments. ACM Journal
of Experimental Algorithmics, 24, April 2019. doi:10.1145/3320344.

Stirling Chow and Frank Ruskey. Towards a general solution to drawing area-
proportional Euler diagrams. Electronic Notes in Theoretical Computer Sci-
ence, 134:3–18, 2005. doi:10.1016/j.entcs.2005.02.017.

Marek Chrobak and Thomas H. Payne. A linear-time algorithm for drawing a
planar graph on a grid. Information Processing Letters, 54(4):241–246, 1995.
doi:10.1016/0020-0190(95)00020-D.

Xiao Bao Clark, Jackson G. Finlay, Andrew J. Wilson, Keith L. J. Mil-
burn, Minh Hoang Nguyen, Christof Lutteroth, and Burkhard C. Wün-
sche. An investigation into graph cut parameter optimisation for image-
fusion applications. In Proc. 27th Conference on Image and Vision Comput-

110

https://doi.org/10.1111/cgf.12648
https://doi.org/10.1057/palgrave.jors.2601729
https://doi.org/10.7155/jgaa.00499
https://doi.org/10.1109/RBME.2018.2798701
https://doi.org/10.1145/2666310.2666414
https://doi.org/10.1145/3320344
https://doi.org/10.1016/j.entcs.2005.02.017
https://doi.org/10.1016/0020-0190(95)00020-D

BIBLIOGRAPHY

ing New Zealand, pages 480–485. Association for Computing Machinery, 2012.
doi:10.1145/2425836.2425927.

Jared L. Cohon. Multiobjective Programming and Planning. Academic Press,
1978. ISBN 9780080956497.

Christopher Collins, Gerald Penn, and Sheelagh Carpendale. Bubble sets:
Revealing set relations with isocontours over existing visualizations. IEEE
Transactions on Visualization and Computer Graphics, 15(6):1009–1016, 2009.
doi:10.1109/TVCG.2009.122.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to algorithms. MIT press, 2022. ISBN 9780262046305.

Azelle Courtial, Guillaume Touya, and Xiang Zhang and. Deriving map images
of generalised mountain roads with generative adversarial networks. Inter-
national Journal of Geographical Information Science, 37(3):499–528, 2023.
doi:10.1080/13658816.2022.2123488.

David P. Dailey. Uniqueness of colorability and colorability of planar 4-
regular graphs are NP-complete. Discrete Mathematics, 30(3):289–293, 1980.
doi:10.1016/0012-365X(80)90236-8.

Jonathan Damen, Marc van Kreveld, and Bert Spaan. High quality building
generalization by extending the morphological operators. In Proc. 11th ICA
Workshop on Generalisation and Multiple Representation, pages 1–12, 2008.

Steven J. D’Amico, Shoou-Jiun Wang, Rajan Batta, and Christopher M. Rump.
A simulated annealing approach to police district design. Computers & Oper-
ations Research, 29(6):667–684, 2002. doi:10.1016/S0305-0548(01)00056-9.

Constantinos Daskalakis, Ilias Diakonikolas, and Mihalis Yannakakis. How good
is the chord algorithm? SIAM Journal on Computing, 45(3):811–858, 2016.
doi:10.1137/13093875X.

Kasper Dinkla, Marc van Kreveld, Bettina Speckmann, and Michel A. Westen-
berg. Kelp diagrams: Point set membership visualization. Computer Graphics
Forum, 31(3):875–884, 2012. doi:10.1111/j.1467-8659.2012.03080.x.

David H. Douglas and Thomas K. Peucker. Algorithms for the reduction of
the number of points required to represent a digitized line or its caricature.
Cartographica, 10(2):112–122, 1973. doi:10.3138/FM57-6770-U75U-7727.

Matt Duckham, Lars Kulik, Mike Worboys, and Antony Galton. Effi-
cient generation of simple polygons for characterizing the shape of a set

111

https://doi.org/10.1145/2425836.2425927
https://doi.org/10.1109/TVCG.2009.122
https://doi.org/10.1080/13658816.2022.2123488
https://doi.org/10.1016/0012-365X(80)90236-8
https://doi.org/10.1016/S0305-0548(01)00056-9
https://doi.org/10.1137/13093875X
https://doi.org/10.1111/j.1467-8659.2012.03080.x
https://doi.org/10.3138/FM57-6770-U75U-7727

BIBLIOGRAPHY

of points in the plane. Pattern Recognition, 41(10):3224–3236, 2008.
doi:10.1016/j.patcog.2008.03.023.

Herbert Edelsbrunner, David Kirkpatrick, and Raimund Seidel. On the shape of
a set of points in the plane. IEEE Transactions on Information Theory, 29(4):
551–559, 1983. doi:10.1109/TIT.1983.1056714.

Anthony William Fairbank Edwards. An eleventh-century venn diagram. BSHM
Bulletin: Journal of the British Society for the History of Mathematics, 21(2):
119–121, 2006. doi:10.1080/17498430600804407.

Alon Efrat, Yifan Hu, Stephen G. Kobourov, and Sergey Pupyrev. MapSets:
Visualizing embedded and clustered graphs. Journal of Graph Algorithms and
Applications, 19(2):571–593, 2015. doi:10.7155/jgaa.00364.

Anton Ehrenzweig. The Psycho-Analysis Of Artistic Vision And Hearing –
An Introduction to a Theory of Unconscious Perception. Routledge, 1953.
doi:10.4324/9781315009230.

David Eppstein, Marc J. van Kreveld, Bettina Speckmann, and Frank
Staals. Improved grid map layout by point set matching. International
Journal Computational Geometry and Applications, 25(2):101–122, 2015.
doi:10.1142/S0218195915500077.

Leonhard Euler. Lettres à une princesse d’Allemagne: sur divers sujets de
physique & de philosophie. EPFL Press, 1768.

Yu Feng, Frank Thiemann, and Monika Sester. Learning cartographic building
generalization with deep convolutional neural networks. ISPRS International
Journal of Geo-Information, 8(6), 2019. doi:10.3390/ijgi8060258.

Jean Flower and John Howse. Generating Euler diagrams. In Diagrammatic
Representation and Inference, pages 61–75. Springer Berlin Heidelberg, 2002.
doi:10.1007/3-540-46037-3_6.

Lester Randolph Ford and Delbert R. Fulkerson. Maximal flow through a network.
Canadian Journal of Mathematics, 8:399–404, 1956. doi:10.4153/CJM-1956-
045-5.

Axel Forsch, Ruben Kemna, Elmar Langetepe, and Jan-Henrik Haunert. Poly-
line morphing for animated schematic maps. Journal of Geovisualization and
Spatial Analysis, 8, 2024. doi:10.1007/s41651-024-00198-w.

112

https://doi.org/10.1016/j.patcog.2008.03.023
https://doi.org/10.1109/TIT.1983.1056714
https://doi.org/10.1080/17498430600804407
https://doi.org/10.7155/jgaa.00364
https://doi.org/10.4324/9781315009230
https://doi.org/10.1142/S0218195915500077
https://doi.org/10.3390/ijgi8060258
https://doi.org/10.1007/3-540-46037-3_6
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.1007/s41651-024-00198-w

BIBLIOGRAPHY

Cheng Fu, Zhiyong Zhou, Yanan Xin, and Robert Weibel. Reasoning cartographic
knowledge in deep learning-based map generalization with explainable AI. In-
ternational Journal of Geographical Information Science, 38(10):2061–2082,
2024. doi:10.1080/13658816.2024.2369535.

Martin Galanda. Automated polygon generalization in a multi agent system. PhD
thesis, University of Zurich, 2003.

Emden R. Gansner, Yifan Hu, and Stephen G. Kobourov. GMap: Drawing
graphs as maps. In Proc. Graph Drawing, volume 5849 of LNCS, pages 405–
407. Springer, 2009a. doi:10.1007/978-3-642-11805-0_38.

Emden R. Gansner, Yifan Hu, Stephen G. Kobourov, and Chris Volin-
sky. Putting recommendations on the map: visualizing clusters and re-
lations. In Proc. Recommender Systems, pages 345–348. ACM, 2009b.
doi:10.1145/1639714.1639784.

Peichao Gao, Haoyu Wang, Samuel A Cushman, Changxiu Cheng, Changqing
Song, and Sijing Ye. Sustainable land-use optimization using NSGA-II: Theo-
retical and experimental comparisons of improved algorithms. Landscape Ecol-
ogy, 36:1877–1892, 2021. doi:10.1007/s10980-020-01051-3.

Michael R. Garey, David S. Johnson, and Robert Endre Tarjan. The planar
Hamiltonian circuit problem is NP-complete. SIAM Journal on Computing, 5
(4):704–714, 1976. doi:10.1137/0205049.

Sven Gedicke, Johannes Oehrlein, and Jan-Henrik Haunert. Aggregating
land-use polygons considering line features as separating map elements.
Cartography and Geographic Information Science, 48(2):124–139, 2021.
doi:10.1080/15230406.2020.1851613.

Jakob Geiger, Sabine Cornelsen, Jan-Henrik Haunert, Philipp Kindermann,
Tamara Mchedlidze, Martin Nöllenburg, Yoshio Okamoto, and Alexander
Wolff. ClusterSets: Optimizing planar clusters in categorical point data. Com-
puter Graphics Forum, 40(3):471–481, 2021. doi:10.1111/cgf.14322.

Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum-flow
problem. Journal of the ACM, 35(4):921–940, 1988. doi:10.1145/48014.61051.

Dorothy M. Greig, Bruce T. Porteous, and Allan H. Seheult. Exact maximum
a posteriori estimation for binary images. Journal of the Royal Statistical
Society: Series B (Methodological), 51(2):271–279, 12 1989. doi:10.1111/j.2517-
6161.1989.tb01764.x.

113

https://doi.org/10.1080/13658816.2024.2369535
https://doi.org/10.1007/978-3-642-11805-0_38
https://doi.org/10.1145/1639714.1639784
https://doi.org/10.1007/s10980-020-01051-3
https://doi.org/10.1137/0205049
https://doi.org/10.1080/15230406.2020.1851613
https://doi.org/10.1111/cgf.14322
https://doi.org/10.1145/48014.61051
https://doi.org/10.1111/j.2517-6161.1989.tb01764.x
https://doi.org/10.1111/j.2517-6161.1989.tb01764.x

BIBLIOGRAPHY

Günter Hake, Dietmar Grünreich, and Liqiu Meng. Kartographie: Visualisierung
raum-zeitlicher Informationen. Walter de Gruyter, 2002. ISBN 978-3-11-
016404-6.

Frank Harary. Graph theory. CRC Press, 1969. doi:10.1201/9780429493768.

Jan-Haunert Haunert and Alexander Wolff. Area aggregation in map generalisa-
tion by mixed-integer programming. International Journal of Geographical In-
formation Science, 24(12):1871–1897, 2010a. doi:10.1080/13658810903401008.

Jan-Henrik Haunert and Alexander Wolff. Optimal simplification of building
ground plans. In Proc. 21st Congress of the International Society for Pho-
togrammetry and Remote Sensing, pages 373–378. International Society of Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, 2008.

Jan-Henrik Haunert and Alexander Wolff. Optimal and topologically safe simpli-
fication of building footprints. In Proc. 18th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pages 192–201.
Association for Computing Machinery, 2010b. doi:10.1145/1869790.1869819.

Sidney W. Hess and Stuart A. Samuels. Experiences with a sales districting
model: Criteria and implementation. Management Science, 18(4-part-ii):41–
54, 1971. doi:10.1287/mnsc.18.4.P41.

Sidney W. Hess, James B. Weaver, H. J. Siegfeldt, Jillian N. Whelan, and Paul A.
Zitlau. Nonpartisan political redistricting by computer. Operations Research,
13(6):998–1006, 1965. doi:10.1287/opre.13.6.998.

Marius Hogräfer, Magnus Heitzler, and Hans-Jörg Schulz. The state of the art
in map-like visualization. Computer Graphics Forum, 39(3):647–674, 2020.
doi:10.1111/cgf.14031.

Lina Huang, Tinghua Ai, Peter V. Oosterom, Xiongfeng Yan, and Min Yang. A
matrix-based structure for vario-scale vector representation over a wide range
of map scales: The case of river network data. ISPRS International Journal of
Geo-Information, 6(7), 2017. doi:10.3390/ijgi6070218.

Ben Jacobsen, Markus Wallinger, Stephen G. Kobourov, and Martin Nöl-
lenburg. MetroSets: Visualizing sets as metro maps. IEEE Trans-
actions on Visualization and Computer Graphics, 27(2):1257–1267, 2021.
doi:10.1109/TVCG.2020.3030475.

Mikael Jern, Jakib Rogstadius, and Tobias Åström. Treemaps and choro-
pleth maps applied to regional hierarchical statistical data. In Proc. 13th

114

https://doi.org/10.1201/9780429493768
https://doi.org/10.1080/13658810903401008
https://doi.org/10.1145/1869790.1869819
https://doi.org/10.1287/mnsc.18.4.P41
https://doi.org/10.1287/opre.13.6.998
https://doi.org/10.1111/cgf.14031
https://doi.org/10.3390/ijgi6070218
https://doi.org/10.1109/TVCG.2020.3030475

BIBLIOGRAPHY

International Conference Information Visualisation, pages 403–410, 2009.
doi:10.1109/IV.2009.97.

David S. Johnson and Henry O. Pollak. Hypergraph planarity and the complexity
of drawing Venn diagrams. Journal of Graph Theory, 11(3):309–325, 1987.
doi:10.1002/jgt.3190110306.

Christopher B. Jones, Geraint Ll. Bundy, and Mark J. Ware. Map generalization
with a triangulated data structure. Cartography and Geographic Information
Systems, 22(4):317–331, 1995. doi:10.1559/152304095782540221.

Michael Kaufmann, Marc van Kreveld, and Bettina Speckmann. Subdivision
drawings of hypergraphs. In Proc. Graph Drawing, volume 5417 of LNCS, pages
396–407. Springer Berlin Heidelberg, 2009. doi:10.1007/978-3-642-00219-9_39.

Rebecca Kehlbeck, Jochen Görtler, Yunhai Wang, and Oliver Deussen.
SPEULER: semantics-preserving Euler diagrams. IEEE Transac-
tions on Visualization and Computer Graphics, 28(1):433–442, 2022.
doi:10.1109/TVCG.2021.3114834.

Mary Kelly, Aidan Slingsby, Jason Dykes, and Jo Wood. Historical inter-
nal migration in Ireland. In Proc. GIS Research UK, 2013. URL https:
//openaccess.city.ac.uk/id/eprint/2052/.

Bohyoung Kim, Bongshin Lee, and Jinwook Seo. Visualizing set concordance
with permutation matrices and fan diagrams. Interacting with Computers, 19
(5-6):630–643, 2007. doi:10.1016/j.intcom.2007.05.004.

Kamyoung Kim, Denis J. Dean, Hyun Kim, and Yongwan Chun. Spatial op-
timization for regionalization problems with spatial interaction: a heuristic
approach. International Journal of Geographical Information Science, 30(3):
451–473, 2016. doi:10.1080/13658816.2015.1031671.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. In International Conference on Learning Rep-
resentations, volume 4, pages 2713–2726, 2017. ISBN 9781713872719.
doi:10.48550/arXiv.1609.02907.

Boris Klemz, Tamara Mchedlidze, and Martin Nöllenburg. Minimum tree sup-
ports for hypergraphs and low-concurrency Euler diagrams. In Algorithm The-
ory, volume 8503 of LNCS, pages 253–264. Springer, 2014. doi:10.1007/978-3-
319-08404-6_23.

115

https://doi.org/10.1109/IV.2009.97
https://doi.org/10.1002/jgt.3190110306
https://doi.org/10.1559/152304095782540221
https://doi.org/10.1007/978-3-642-00219-9_39
https://doi.org/10.1109/TVCG.2021.3114834
https://openaccess.city.ac.uk/id/eprint/2052/
https://openaccess.city.ac.uk/id/eprint/2052/
https://doi.org/10.1016/j.intcom.2007.05.004
https://doi.org/10.1080/13658816.2015.1031671
https://doi.org/10.48550/arXiv.1609.02907
https://doi.org/10.1007/978-3-319-08404-6_23
https://doi.org/10.1007/978-3-319-08404-6_23

BIBLIOGRAPHY

V. Kolmogorov and R. Zabin. What energy functions can be minimized via graph
cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, 26
(2):147–159, 2004. doi:10.1109/TPAMI.2004.1262177.

Ephraim Korach and Michal Stern. The clustering matroid and the op-
timal clustering tree. Mathematical Programming, 98(1-3):385–414, 2003.
doi:10.1007/S10107-003-0410-X.

Robert Kosara, TJ Jankun-Kelly, and Eleanor Chlan. IEEE InfoVis 2007
contest: InfoVis goes to the movies. https://eagereyes.org/blog/2007/
infovis-contest-2007-data, 2007.

Casimir Kuratowski. Sur le probleme des courbes gauches en topologie. Funda-
menta mathematicae, 15(1):271–283, 1930.

Harald Lachnit. The principle of contiguity. In Principles of Learning and Mem-
ory. Birkhäuser, 2006. doi:10.1007/978-3-0348-8030-5_1.

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

Alexander Lex, Nils Gehlenborg, Hendrik Strobelt, Romain Vuillemot, and
Hanspeter Pfister. Upset: visualization of intersecting sets. IEEE Trans-
actions on Visualization and Computer Graphics, 20(12):1983–1992, 2014.
doi:10.1109/TVCG.2014.2346248.

Chengming Li, Yong Yin, Xiaoli Liu, and Pengda Wu. An automated process-
ing method for agglomeration areas. ISPRS International Journal of Geo-
Information, 7(6):204, 2018. doi:10.3390/ijgi7060204.

Jingzhong Li and Tinghua Ai. A triangulated spatial model for detection of
spatial characteristics of GIS data. In Proc. IEEE International Conference
on Progress in Informatics and Computing, volume 1, pages 155–159, 2010.
doi:10.1109/PIC.2010.5687417.

Xin Li and Lael Parrott. An improved genetic algorithm for spa-
tial optimization of multi-objective and multi-site land use alloca-
tion. Computers, Environment and Urban Systems, 59:184–194, 2016.
doi:10.1016/j.compenvurbsys.2016.07.002.

Erkki Mäkinen. How to draw a hypergraph. International Journal of Computer
Mathematics, 34(3-4):177–185, 1990. doi:10.1080/00207169008803875.

116

https://doi.org/10.1109/TPAMI.2004.1262177
https://doi.org/10.1007/S10107-003-0410-X
https://eagereyes.org/blog/2007/infovis-contest-2007-data
https://eagereyes.org/blog/2007/infovis-contest-2007-data
https://doi.org/10.1007/978-3-0348-8030-5_1
http://snap.stanford.edu/data
https://doi.org/10.1109/TVCG.2014.2346248
https://doi.org/10.3390/ijgi7060204
https://doi.org/10.1109/PIC.2010.5687417
https://doi.org/10.1016/j.compenvurbsys.2016.07.002
https://doi.org/10.1080/00207169008803875

BIBLIOGRAPHY

Adrien Maudet, Guillaume Touya, Cécile Duchêne, and Sébastien Picault. Multi-
agent multi-level cartographic generalisation in CartAGen. In Proc. 12th In-
ternational Conference on Advances in Practical Applications of Heterogeneous
Multi-Agent Systems, pages 355–358, 2014. doi:10.1007/978-3-319-07551-8_37.

Marc E. McDill, Stephanie A. Rebain, and Janis Braze. Harvest scheduling with
area-based adjacency constraints. Forest Science, 48(4):631–642, November
2002. doi:10.1093/forestscience/48.4.631.

Robert B. McMaster and K. Stuart Shea. Generalization in digital cartography.
Association of American Geographers, 1992. ISBN 9780892912094.

Graham McNeill and Scott A Hale. Generating tile maps. Computer Graphics
Forum, 36:435–445, 2017. doi:10.1111/cgf.13200.

Wouter Meulemans, Nathalie Henry Riche, Bettina Speckmann, Basak Alper, and
Tim Dwyer. KelpFusion: A hybrid set visualization technique. IEEE Trans-
actions on Visualization and Computer Graphics, 19(11):1846–1858, 2013.
doi:10.1109/TVCG.2013.76.

Wouter Meulemans, Jason Dykes, Aidan Slingsby, Cagatay Turkay, and Jo Wood.
Small multiples with gaps. IEEE Transactions on Visualization and Computer
Graphics, 23(1):381–390, 2016. doi:10.1109/TVCG.2016.2598542.

Wouter Meulemans, Max Sondag, and Bettina Speckmann. A simple pipeline
for coherent grid maps. IEEE Transactions on Visualization and Computer
Graphics, 27(2):1236–1246, 2021. doi:10.1109/TVCG.2020.3028953.

Luana Micallef and Peter Rodgers. eulerForce: Force-directed layout for Euler
diagrams. Journal of Visual Languages and Computing, 25(6):924–934, 2014.
doi:10.1016/j.jvlc.2014.09.002.

Luana Micallef, Pierre Dragicevic, and Jean-Daniel Fekete. Assessing the effect
of visualizations on Bayesian reasoning through crowdsourcing. IEEE Trans-
actions on Visualization and Computer Graphics, 18(12):2536–2545, 2012.
doi:10.1109/TVCG.2012.199.

Dimitrios Michail, Joris Kinable, Barak Naveh, and John V. Sichi. JGraphT—A
Java library for graph data structures and algorithms. ACM Transactions on
Mathematical Software, 46(2), 2020. doi:10.1145/3381449.

Adriano Moreira and Maribel Y. Santos. Concave hull: A k-nearest neighbours
approach for the computation of the region occupied by a set of points. In Proc.
2nd International Conference on Computer Graphics Theory and Applications,
pages 61–68, 2007. doi:10.5220/0002080800610068.

117

https://doi.org/10.1007/978-3-319-07551-8_37
https://doi.org/10.1093/forestscience/48.4.631
https://doi.org/10.1111/cgf.13200
https://doi.org/10.1109/TVCG.2013.76
https://doi.org/10.1109/TVCG.2016.2598542
https://doi.org/10.1109/TVCG.2020.3028953
https://doi.org/10.1016/j.jvlc.2014.09.002
https://doi.org/10.1109/TVCG.2012.199
https://doi.org/10.1145/3381449
https://doi.org/10.5220/0002080800610068

BIBLIOGRAPHY

Darek J. Nalle, Jeffrey L. Arthur, and John Sessions. Designing Compact
and Contiguous Reserve Networks under a Budget Constraint, volume 7 of
Managing Forest Ecosystems, pages 243–247. Springer Netherlands, 2003.
doi:10.1007/978-94-017-0307-9_23.

George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Opti-
mization. Wiley interscience series in discrete mathematics and optimization.
Wiley, 1988. doi:10.1002/9781118627372.

Lucas Nunes, Xieyuanli Chen, Rodrigo Marcuzzi, Aljosa Osep, Laura Leal-Taixé,
Cyrill Stachniss, and Jens Behley. Unsupervised class-agnostic instance seg-
mentation of 3D lidar data for autonomous vehicles. IEEE Robotics and Au-
tomation Letters, 7(4):8713–8720, 2022. doi:10.1109/LRA.2022.3187872.

Martin Nöllenburg, Damian Merrick, Alexander Wolff, and Marc
Benkert. Morphing polylines: A step towards continuous generaliza-
tion. Computers, Environment and Urban Systems, 32(4):248–260, 2008.
doi:10.1016/j.compenvurbsys.2008.06.004.

Johannes Oehrlein and Jan-Henrik Haunert. A cutting-plane method for
contiguity-constrained spatial aggregation. Journal of Spatial Information Sci-
ence, 15(1):89–120, 2017. doi:10.5311/JOSIS.2017.15.379.

Peter Oliver, Eugene Zhang, and Yue Zhang. Scalable hypergraph visualization.
IEEE Transactions on Visualization and Computer Graphics, 30(1):595–605,
2024. doi:10.1109/TVCG.2023.3326599.

OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org
. https://www.openstreetmap.org, 2020.

James B. Orlin. Max flows in O(nm) time, or better. In Proc. 45th Annual
ACM Symposium on Theory of Computing, pages 765–774. Association for
Computing Machinery, 2013. doi:10.1145/2488608.2488705.

Patrick Paetzold, Rebecca Kehlbeck, Hendrik Strobelt, Yumeng Xue, Sabine
Storandt, and Oliver Deussen. RectEuler: Visualizing intersecting
sets using rectangles. Computer Graphics Forum, 42(3):87–98, 2023.
doi:10.1111/cgf.14814.

Stephen Palmer and Irvin Rock. Rethinking perceptual organization: The role
of uniform connectedness. Psychonomic Bulletin & Review, 1:29–55, 1994.
doi:10.3758/BF03200760.

118

https://doi.org/10.1007/978-94-017-0307-9_23
https://doi.org/10.1002/9781118627372
https://doi.org/10.1109/LRA.2022.3187872
https://doi.org/10.1016/j.compenvurbsys.2008.06.004
https://doi.org/10.5311/JOSIS.2017.15.379
https://doi.org/10.1109/TVCG.2023.3326599
 https://www.openstreetmap.org
https://doi.org/10.1145/2488608.2488705
https://doi.org/10.1111/cgf.14814
https://doi.org/10.3758/BF03200760

BIBLIOGRAPHY

Bo Peng and Olga Veksler. Parameter selection for graph cut based image seg-
mentation. In Proc. British Machine Vision Conference, pages 16.1–16.10,
2008. doi:10.5244/C.22.16.

Bo Peng, Lei Zhang, and David Zhang. A survey of graph theoretical ap-
proaches to image segmentation. Pattern Recognition, 46(3):1020–1038, 2013.
doi:10.1016/j.patcog.2012.09.015.

Dongliang Peng and Guillaume Touya. Continuously generalizing buildings to
built-up areas by aggregating and growing. In Proc. 3rd ACM SIGSPATIAL
Workshop on Smart Cities and Urban Analytics, UrbanGIS’17. Association for
Computing Machinery, 2017. doi:10.1145/3152178.3152188.

Dongliang Peng, Alexander Wolff, and Jan-Henrik Haunert. Finding op-
timal sequences for area aggregation—A* vs. integer linear programming.
ACM Transactions on Spatial Algorithms and Systems, 7(1), October 2020.
doi:10.1145/3409290.

Ekaterina S. Podolskaya, Karl-Heinrich Anders, Jan-Henrik Haunert, and Monika
Sester. Quality assessment for polygon generalization. International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
XXXVI-2/C43, 2007.

Daniel D. Polsby and Robert D. Popper. The third criterion: Compactness as
a procedural safeguard against partisan gerrymandering. Yale Law & Policy
Review, 9:301–353, 1991.

Melanie Price, Rachel Cameron, and Phyllis Butow. Communicating risk infor-
mation: the influence of graphical display format on quantitative information
perception—accuracy, comprehension and preferences. Patient education and
counseling, 69(1-3):121–128, 2007. doi:10.1016/j.pec.2007.08.006.

Uta Priss and Dominik Dürrschnabel. Rectangular Euler diagrams and order
theory. In Diagrammatic Representation and Inference, volume 14981, pages
165–181. Springer, 2024. doi:10.1007/978-3-031-71291-3_14.

Anthony Przybylski, Xavier Gandibleux, and Matthias Ehrgott. A recursive
algorithm for finding all nondominated extreme points in the outcome set of
a multiobjective integer programme. Journal on Computing, 22(3):371–386,
2010. doi:10.1287/ijoc.1090.0342.

Rob Radburn. Go with the flow: Commuting & migration flows within
London. https://public.tableau.com/app/profile/robradburn/viz/
ODMpasLondonAftertheFlood/GowiththeFlow, March 2016. Accessed August
2024.

119

https://doi.org/10.5244/C.22.16
https://doi.org/10.1016/j.patcog.2012.09.015
https://doi.org/10.1145/3152178.3152188
https://doi.org/10.1145/3409290
https://doi.org/10.1016/j.pec.2007.08.006
https://doi.org/10.1007/978-3-031-71291-3_14
https://doi.org/10.1287/ijoc.1090.0342
https://public.tableau.com/app/profile/robradburn/viz/ODMpasLondonAftertheFlood/GowiththeFlow
https://public.tableau.com/app/profile/robradburn/viz/ODMpasLondonAftertheFlood/GowiththeFlow

BIBLIOGRAPHY

Md. Mostafizur Rahman and György Szabó. Multi-objective urban land use
optimization using spatial data: A systematic review. Sustainable Cities and
Society, 74:103214, 2021. doi:10.1016/j.scs.2021.103214.

Rajiv Raman and Saurabh Ray. Planar Support for Non-piercing Regions and
Applications. In Proc. 26th Annual European Symposium on Algorithms, vol-
ume 112 of LIPIcs, pages 69:1–69:14. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2018. doi:10.4230/LIPIcs.ESA.2018.69.

Federica Ricca and Bruno Simeone. Local search algorithms for political dis-
tricting. European Journal of Operational Research, 189(3):1409–1426, 2008.
doi:10.1016/j.ejor.2006.08.065.

Nathalie Henry Riche and Tim Dwyer. Untangling Euler diagrams. IEEE
Transactions on Visualization and Computer Graphics, 16(6):1090–1099, 2010.
doi:10.1109/TVCG.2010.210.

Phillipe Rigaux, Michel Scholl, and Agnés Voisard. Spatial databases: with ap-
plication to GIS. Morgan Kaufmann, 2002. doi:10.1016/B978-1-55860-588-
6.X5000-3.

Roger Z. Ríos-Mercado, editor. Optimal Districting and Territory Design.
Springer, 2020. doi:10.1007/978-3-030-34312-5.

Peter Rodgers. A survey of Euler diagrams. Journal of Visual Languages &
Computing, 25(3):134–155, 2014. doi:10.1016/j.jvlc.2013.08.006.

Peter Rodgers, Leishi Zhang, and Andrew Fish. General Euler diagram genera-
tion. In Diagrammatic Representation and Inference, volume 5223 of LNCS,
pages 13–27. Springer, 2008. doi:10.1007/978-3-540-87730-1_6.

Peter Rodgers, Leishi Zhang, and Helen Purchase. Wellformedness properties in
Euler diagrams: Which should be used? IEEE Transactions on Visualization
and Computer Graphics, 18(7):1089–1100, 2011. doi:10.1109/TVCG.2011.143.

Leon Rosenberger, Yilang Shen, and Jan-Henrik Haunert. Simultaneous selec-
tion and displacement of buildings and roads for map generalization via mixed-
integer quadratic programming. International Journal of Geographical Infor-
mation Science, pages 1–30, 2025. doi:10.1080/13658816.2025.2461602.

Robert E. Roth, Michael Stryker, and Cynthia A. Brewer. A typology of multi-
scale mapping operators. In Proc. 5th International Conference on Geographic
Information Science, number 1996 in Leibniz International Proceedings in In-
formatics (LIPIcs), 2008.

120

https://doi.org/10.1016/j.scs.2021.103214
https://doi.org/10.4230/LIPIcs.ESA.2018.69
https://doi.org/10.1016/j.ejor.2006.08.065
https://doi.org/10.1109/TVCG.2010.210
https://doi.org/10.1016/B978-1-55860-588-6.X5000-3
https://doi.org/10.1016/B978-1-55860-588-6.X5000-3
https://doi.org/10.1007/978-3-030-34312-5
https://doi.org/10.1016/j.jvlc.2013.08.006
https://doi.org/10.1007/978-3-540-87730-1_6
https://doi.org/10.1109/TVCG.2011.143
https://doi.org/10.1080/13658816.2025.2461602

BIBLIOGRAPHY

Peter Rottmann, Anne Driemel, Herman Haverkort, Heiko Röglin, and Jan-
Henrik Haunert. Bicriteria Aggregation of Polygons via Graph Cuts. In Proc.
11th International Conference on Geographic Information Science - Part II,
volume 208 of Leibniz International Proceedings in Informatics (LIPIcs), pages
6:1–6:16, 2021. doi:10.4230/LIPIcs.GIScience.2021.II.6.

Peter Rottmann, Markus Wallinger, Annika Bonerath, Sven Gedicke, Martin
Nöllenburg, and Jan-Henrik Haunert. MosaicSets: Embedding set systems
into grid graphs. IEEE Transactions on Visualization and Computer Graphics,
29(1):875–885, 2023. doi:10.1109/TVCG.2022.3209485.

Peter Rottmann, Peter Rodgers, Xinyuan Yan, Daniel Archambault, Bei Wang,
and Jan-Henrik Haunert. Generating Euler diagrams through combinatorial
optimization. Computer Graphics Forum, 43(3), 2024. doi:10.1111/cgf.15089.

Peter Rottmann, Anne Driemel, Herman Haverkort, Heiko Röglin, and Jan-
Henrik Haunert. Bicriteria Shapes: Hierarchical grouping and aggregation of
polygons with an efficient graph-cut approach. ACM Transactions on Spatial
Algorithms and Systems, 11(1):1–23, February 2025. doi:10.1145/3705001.

Ramik Sadana, Timothy Major, Alistair Dove, and John Stasko. Onset:
A visualization technique for large-scale binary set data. IEEE Trans-
actions on Visualization and Computer Graphics, 20(12):1993–2002, 2014.
doi:10.1109/TVCG.2014.2346249.

Azimjon Sayidov, Robert Weibel, and Stefan Leyk. Recognition of group patterns
in geological maps by building similarity networks. Geocarto International, 37
(2):607–626, 2022. doi:10.1080/10106049.2020.1730449.

Jochen Schiewe. Distortion effects in equal area unit maps. KN – Journal of Car-
tography and Geographic Information, 71(2):71–82, 2021. doi:10.1007/s42489-
021-00072-5.

Karen B. Schloss, Connor C. Gramazio, Allison T. Silverman, Madeline L. Parker,
and Audrey S. Wang. Mapping color to meaning in colormap data visualiza-
tions. IEEE Transactions on Visualization and Computer Graphics, 25(1):
810–819, 2018. doi:10.1109/TVCG.2018.2865147.

Nadine Schwartges, Dennis Allerkamp, Jan-Henrik Haunert, and Alexander
Wolff. Optimizing active ranges for point selection in dynamic maps. In Proc.
the 16th ICA Generalisation Workshop, 2013.

Joseph E. Schwartzberg. Reapportionment, gerrymanders, and the notion of
compactness. Minnesota Law Review, 50:443–452, 1965.

121

https://doi.org/10.4230/LIPIcs.GIScience.2021.II.6
https://doi.org/10.1109/TVCG.2022.3209485
https://doi.org/10.1111/cgf.15089
https://doi.org/10.1145/3705001
https://doi.org/10.1109/TVCG.2014.2346249
https://doi.org/10.1080/10106049.2020.1730449
https://doi.org/10.1007/s42489-021-00072-5
https://doi.org/10.1007/s42489-021-00072-5
https://doi.org/10.1109/TVCG.2018.2865147

BIBLIOGRAPHY

David Sedlacek and Jiri Zara. Graph cut based point-cloud segmentation for
polygonal reconstruction. In Proc. 5th International Symposium on Advances
in Visual Computing, volume 5876 of LNCS, pages 218–227. Springer Berlin
Heidelberg, 2009. doi:10.1007/978-3-642-10520-3_20.

Monika Sester and Claus Brenner. Continuous generalization for visualization
on small mobile devices. In Developments in Spatial Data Handling, pages
355–368. Springer Berlin Heidelberg, 2005. doi:10.1007/3-540-26772-7_27.

Monika Sester, Karl-Heinrich Anders, and Volker Walter. Linking objects of
different spatial data sets by integration and aggregation. GeoInformatica, 2
(4):335–358, 1998. doi:10.1023/A:1009705404707.

Tim Shaw. Good data visualization practice:
Tile grid maps. https://forumone.com/ideas/
good-data-visualization-practice-tile-grid-maps-0, April 2016.
Accessed March 2022.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–905,
August 2000. doi:10.1109/34.868688.

Takeshi Shirabe. A model of contiguity for spatial unit allocation. Geographical
Analysis, 37(1):2–16, 2005. doi:10.1111/j.1538-4632.2005.00605.x.

Takeshi Shirabe. Districting modeling with exact contiguity constraints. En-
vironment and Planning B: Planning and Design, 36(6):1053–1066, 2009.
doi:10.1068/b34104.

Paolo Simonetto and David Auber. Visualise undrawable Euler diagrams. In
Proc. 12th International Conference Information Visualisation, pages 594–599,
2008. doi:10.1109/IV.2008.78.

Paolo Simonetto, David Auber, and Daniel Archambault. Fully automatic visu-
alisation of overlapping sets. Computer Graphics Forum, 28(3):967–974, 2009.
doi:10.1111/j.1467-8659.2009.01452.x.

Paolo Simonetto, Daniel Archambault, David Auber, and Romain Bourqui. Im-
PrEd: An improved force-directed algorithm that prevents nodes from crossing
edges. Computer Graphics Forum, 30(3):1071–1080, 2011. doi:10.1111/j.1467-
8659.2011.01956.x.

Paolo Simonetto, Daniel Archambault, and Carlos Scheidegger. A simple
approach for boundary improvement of Euler diagrams. IEEE Trans-

122

https://doi.org/10.1007/978-3-642-10520-3_20
https://doi.org/10.1007/3-540-26772-7_27
https://doi.org/10.1023/A:1009705404707
https://forumone.com/ideas/good-data-visualization-practice-tile-grid-maps-0
https://forumone.com/ideas/good-data-visualization-practice-tile-grid-maps-0
https://doi.org/10.1109/34.868688
https://doi.org/10.1111/j.1538-4632.2005.00605.x
https://doi.org/10.1068/b34104
https://doi.org/10.1109/IV.2008.78
https://doi.org/10.1111/j.1467-8659.2009.01452.x
https://doi.org/10.1111/j.1467-8659.2011.01956.x
https://doi.org/10.1111/j.1467-8659.2011.01956.x

BIBLIOGRAPHY

actions on Visualization and Computer Graphics, 22(1):678–687, 2016.
doi:10.1109/TVCG.2015.2467992.

Aidan Slingsby and Emiel van Loon. Temporal tile-maps for characterising the
temporal occupancy of places: A seabird case study. In Proc. GIS Research
UK, 2017. URL https://openaccess.city.ac.uk/id/eprint/17398/1/.

Gem Stapleton, Peter Rodgers, John Howse, and John Taylor. Properties of
Euler diagrams. Electronic Communications of the EASST, 7, September 2007.
doi:10.14279/tuj.eceasst.7.92.

Gem Stapleton, Peter Rodgers, and John Howse. A general method for drawing
area-proportional Euler diagrams. Journal of Visual Languages & Computing,
22(6):426–442, 2011. doi:10.1016/j.jvlc.2011.07.001.

Stefan Steiniger, Dirk Burghardt, and Robert Weibel. Recognition of island struc-
tures for map generalization. In Proc. 14th Annual ACM International Sym-
posium on Advances in Geographic Information Systems, pages 67–74, 2006.
doi:10.1145/1183471.1183484.

Radan Šuba. Design and development of a system for vario-scale maps. Architec-
ture and the Built Environment, 7(18):1–162, 2017. doi:10.7480/abe.2017.18.

Radan Šuba, Martijn Meijers, Lina Huang, and Peter van Oosterom. An Area
Merge Operation for Smooth Zooming, pages 275–293. LNCS. Springer, 2014.
doi:10.1007/978-3-319-03611-3_16.

Fernando Tavares-Pereira, José Rui Figueira, Vincent Mousseau, and Bernard
Roy. Multiple criteria districting problems. Annals of Operations Research,
154(1):69–92, 2007. doi:10.1007/s10479-007-0181-5.

Soulivanh Thao, Mats Garvik, Gregoire Mariethoz, and Mathieu Vrac. Combining
global climate models using graph cuts. Climate Dynamics, 59(7):2345–2361,
2022. doi:10.1007/s00382-022-06213-4.

Sabine Timpf and Andrew U. Frank. A multi-scale data structure for cartographic
objects. In Proc. 17th International Cartographic Conference, pages 1389 –
1396, 1995.

Daoqin Tong and Alan T. Murray. Spatial optimization in geography. An-
nals of the Association of American Geographers, 102(6):1290–1309, 2012.
doi:10.1080/00045608.2012.685044.

Guillaume Touya, Xiang Zhang, and Imran Lokhat. Is deep learning the new
agent for map generalization? International Journal of Cartography, 5(2–3):
142–157, 2019. doi:10.1080/23729333.2019.1613071.

123

https://doi.org/10.1109/TVCG.2015.2467992
https://openaccess.city.ac.uk/id/eprint/17398/1/
https://doi.org/10.14279/tuj.eceasst.7.92
https://doi.org/10.1016/j.jvlc.2011.07.001
https://doi.org/10.1145/1183471.1183484
https://doi.org/10.7480/abe.2017.18
https://doi.org/10.1007/978-3-319-03611-3_16
https://doi.org/10.1007/s10479-007-0181-5
https://doi.org/10.1007/s00382-022-06213-4
https://doi.org/10.1080/00045608.2012.685044
https://doi.org/10.1080/23729333.2019.1613071

BIBLIOGRAPHY

Edward R. Tufte. The visual display of quantitative information. Graphics Press,
1992. doi:10.1119/1.14057.

Hamidreza Validi, Austin Buchanan, and Eugene Lykhovyd. Imposing contiguity
constraints in political districting models. Operations Research, 70(2):867–892,
2021. doi:10.1287/opre.2021.2141.

René van Bevern, Iyad A. Kanj, Christian Komusiewicz, Rolf Niedermeier, and
Manuel Sorge. Twins in subdivision drawings of hypergraphs. In Proc. 24th
International Symposium Graph Drawing and Network Visualization, volume
9801 of LNCS, pages 67–80. Springer, 2016. doi:10.1007/978-3-319-50106-2_6.

René van Bevern, Iyad Kanj, Christian Komusiewicz, Rolf Niedermeier, and
Manuel Sorge. The role of twins in computing planar supports of hyper-
graphs. Journal of Graph Algorithms and Applications, 28(1):51–79, May 2024.
doi:10.7155/jgaa.v28i1.2927.

Marc Van Kreveld. Smooth generalization for continuous zooming. In Proc. 20th
International Geographic Conference, pages 2180–2185, 2001.

Peter van Oosterom, Martijn Meijers, Jantien Stoter, and Radan Šuba. Data
Structures for Continuous Generalisation: tGAP and SSC, pages 83–117.
LNCS. Springer, 2014. doi:10.1007/978-3-319-00203-3_4.

John Venn. I. On the diagrammatic and mechanical representation of propositions
and reasonings. The London, Edinburgh, and Dublin philosophical magazine
and journal of science, 10(59):1–18, 1880. doi:10.1080/14786448008626877.

Anne Verroust and Marie-Luce Viaud. Ensuring the drawability of extended
Euler diagrams for up to 8 sets. In Diagrammatic Representation and Inference,
volume 2980 of LNCS, pages 128–141. Springer, 2004. doi:10.1007/978-3-540-
25931-2_13.

Sara Vicente, Vladimir Kolmogorov, and Carsten Rother. Graph cut based
image segmentation with connectivity priors. In Proc. IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 1–8, 2008.
doi:10.1109/CVPR.2008.4587440.

Simon van Wageningen, Tamara Mchedlidze, and Alexandru Telea. Identifying
Cluttering Edges in Near-Planar Graphs. In EuroVis 2023 - Short Papers. The
Eurographics Association, 2023. doi:10.2312/evs.20231048.

Michael Weishuhn. Inciteful: Citation network exploration. https://inciteful.xyz,
2025. Accessed April 2025.

124

https://doi.org/10.1119/1.14057
https://doi.org/10.1287/opre.2021.2141
https://doi.org/10.1007/978-3-319-50106-2_6
https://doi.org/10.7155/jgaa.v28i1.2927
https://doi.org/10.1007/978-3-319-00203-3_4
https://doi.org/10.1080/14786448008626877
https://doi.org/10.1007/978-3-540-25931-2_13
https://doi.org/10.1007/978-3-540-25931-2_13
https://doi.org/10.1109/CVPR.2008.4587440
https://doi.org/10.2312/evs.20231048

BIBLIOGRAPHY

Krist Wongsuphasawat. A semi-automatic way to create
your own grid map. https://medium.com/free-code-camp/
creating-grid-map-for-thailand-397b53a4ecf, 2016. Accessed March
2022.

Jo Wood and Jason Dykes. Spatially ordered treemaps. IEEE Trans-
actions on Visualization and Computer Graphics, 14(6):1348–1355, 2008.
doi:10.1109/TVCG.2008.165.

Jo Wood, Jason Dykes, and Aidan Slingsby. Visualisation of origins, destinations
and flows with OD maps. The Cartographic Journal, 47(2):117–129, 2010.
doi:10.1179/000870410X12658023467367.

Jo Wood, Aidan Slingsby, and Jason Dykes. Visualizing the dynam-
ics of London’s bicycle-hire scheme. Cartographica, 46(4):239–251, 2011.
doi:10.3138/carto.46.4.239.

Fang Wu and Jiayao Wang. Cartographic Generalization, pages 151–211. Springer
Singapore, 2021. doi:10.1007/978-981-16-0614-4_5.

Zhenyu Wu and Richard Leahy. An optimal graph theoretic approach to data
clustering: theory and its application to image segmentation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 15(11):1101–1113, 1993.
doi:10.1109/34.244673.

Ningchuan Xiao, Myung Jin Kim, and Yue Lin. A multistart and recombination
algorithm for finding many unique solutions to spatial aggregation problems.
GeoInformatica, 29:1–39, 2024a. doi:10.1007/s10707-024-00520-0.

Tianyuan Xiao, Tinghua Ai, Huafei Yu, Min Yang, and Pengcheng Liu and. A
point selection method in map generalization using graph convolutional net-
work model. Cartography and Geographic Information Science, 51(1):20–40,
2024b. doi:10.1080/15230406.2023.2187886.

Xinyuan Yan, Peter Rodgers, Peter Rottmann, Daniel Archambault, Jan-Henrik
Haunert, and Bei Wang. EulerMerge: Simplifying Euler diagrams through
set merges. In Diagrammatic Representation and Inference, volume 14981 of
LNCS, pages 190–206. Springer, 2024. doi:10.1007/978-3-031-71291-3_16.

Mei Yang, Tong Chen, Yong-Xin Liu, and Luqi Huang. Visualizing set relation-
ships: Evenn’s comprehensive approach to venn diagrams. iMeta, 3(3):e184,
2024. doi:https://doi.org/10.1002/imt2.184.

Romano Zachary. Data visualization strategies us-
ing tile grid maps. https://www.gislounge.com/

125

https://medium.com/free-code-camp/creating-grid-map-for-thailand-397b53a4ecf
https://medium.com/free-code-camp/creating-grid-map-for-thailand-397b53a4ecf
https://doi.org/10.1109/TVCG.2008.165
https://doi.org/10.1179/000870410X12658023467367
https://doi.org/10.3138/carto.46.4.239
https://doi.org/10.1007/978-981-16-0614-4_5
https://doi.org/10.1109/34.244673
https://doi.org/10.1007/s10707-024-00520-0
https://doi.org/10.1080/15230406.2023.2187886
https://doi.org/10.1007/978-3-031-71291-3_16
https://doi.org/https://doi.org/10.1002/imt2.184
https://www.gislounge.com/data-visualization-strategies-using-tile-grid-maps/
https://www.gislounge.com/data-visualization-strategies-using-tile-grid-maps/

BIBLIOGRAPHY

data-visualization-strategies-using-tile-grid-maps/, November
2015. Accessed March 2022.

Lukas Zebedin, Joachim Bauer, Konrad Karner, and Horst Bischof. Fusion of
feature- and area-based information for urban buildings modeling from aerial
imagery. In Computer Vision – ECCV 2008, volume 5305 of LNCS, pages
873–886. Springer Berlin Heidelberg, 2008. doi:10.1007/978-3-540-88693-8_64.

Jack Zhang, Hamidreza Validi, Austin Buchanan, and Illya V Hicks. Linear-size
formulations for connected planar graph partitioning and political districting.
Optimization Letters, 18(1):19–31, 2024. doi:10.1007/s11590-023-02070-0.

Rong Zhao, Tinghua Ai, and Chen Wen. A method for generating variable-scale
maps for small displays. ISPRS International Journal of Geo-Information, 9
(4), 2020. doi:10.3390/ijgi9040250.

Youjia Zhou, Archit Rathore, Emilie Purvine, and Bei Wang. Topological simpli-
fications of hypergraphs. IEEE Transactions on Visualization and Computer
Graphics, 29(7):3209–3225, 2023a. doi:10.1109/TVCG.2022.3153895.

Zhiyong Zhou, Cheng Fu, and Robert Weibel. Move and remove: Multi-task
learning for building simplification in vector maps with a graph convolutional
neural network. ISPRS Journal of Photogrammetry and Remote Sensing, 202:
205–218, 2023b. doi:10.1016/j.isprsjprs.2023.06.004.

126

https://www.gislounge.com/data-visualization-strategies-using-tile-grid-maps/
https://www.gislounge.com/data-visualization-strategies-using-tile-grid-maps/
https://doi.org/10.1007/978-3-540-88693-8_64
https://doi.org/10.1007/s11590-023-02070-0
https://doi.org/10.3390/ijgi9040250
https://doi.org/10.1109/TVCG.2022.3153895
https://doi.org/10.1016/j.isprsjprs.2023.06.004

List of Figures

1.1 An example of map generalization. 1
1.2 Different visualization techniques for set systems. 2
1.3 An Euler diagram visualizing treaties within Europe. 3
1.4 Aggregation of the polygons of the buildings near the Nussallee in

Bonn. 6
1.5 An example of a MosaicSets visualization. 7

2.1 An α-shape that generates a narrow bridge between two point sets. 11
2.2 Examples of wellformedness conditions following Rodgers et al.

(2011). 15

3.1 Examples of different graphs. 20
3.2 The non-planar, complete graphs K5 and K3,3. 21
3.3 The plane graph with its dual and adjacency graph. 23
3.4 A planar support of the hypergraph. 25
3.5 An Euler diagram whose dual graph is the planar support in Fig-

ure 3.4. 25
3.6 The planar support of the hypergraph in Figure 3.4 superimposed

with an Euler diagram using the planar support as its dual graph. 25
3.7 Spatial unit allocation. 28
3.8 Graph cut model. 33

4.1 Input polygons aggregated to larger ones. 37
4.2 Algorithmic solution of Problem 1 via a graph cut. 39
4.3 Different types of solutions and Pareto-frontier of a bicriteria op-

timization problem. 42
4.4 Schematic visualization of two λ-optimal solutions. 42
4.5 Polygon with triangulation of the exterior space. 43
4.6 Set of solutions for the instance in Figure 4.5. 43
4.7 Geometrical representation of solutions. 44
4.8 Solutions obtained with Algorithm 1 for the same instance without

(a) and with approximation (b). 47

127

LIST OF FIGURES

4.9 Result set of two evaluation data sets with ε = 0.1. 48
4.10 Evaluation metrics for the settlement area of Euskirchen. 49
4.11 A large instance aggregated by our approach. 50
4.12 IoU -scores of multiple instances in relation to our λ-value. 51
4.13 Histogram of the λ values of the respective best solutions with

respect to the IoU value. 52
4.14 Extending the boundary edges for given polygons to create edge-

aligned polygons. 53
4.15 Ahrem aggregated with polygons created by extruding polygon

edges. 54
4.16 Ahrem generated with our proposed approach and with an α-shape. 54
4.17 All α-shape solutions of instances shown in Figure 4.16 and Fig-

ure 4.11. 55

5.1 Visualizing the research groups of the Agricultural Faculty of the
University of Bonn with MosaicSets. 59

5.2 Required input files and a solution using a basic rendering style. . 62
5.3 An instance and a solution of the basic ILP. 67
5.4 Different combinations of proposed rendering styles. 72
5.5 Manually generated visualization showing the research groups of

the Agricultural Faculty of the University of Bonn. 74
5.6 MosaicSets computed with eccentricity-based compactness (MSE)

for Bonn with different numbers of projects. 77
5.7 Comparison of the different compactness approaches for Vienna

using three overlay sets . 78

6.1 Results after different steps of our hypergraph visualization workflow. 85
6.2 Construction of the superdual graph. 86
6.3 The directed graph G̃X for a hyperedge X. 88
6.4 A feasible assignment of the variables modeling the connectivity

of the selected subgraph for X. 88
6.5 Graph G′ after adding three vertices and three edges with our

heuristic. 92
6.6 Euler diagram workflow of set system corresponding to director

Keith Hooker. 94
6.7 Simplifying the set system of director Joel Schoenbach from left

to right. 94
6.8 Comparison of results for director Art Camacho for β = 0.1 and

β = 0. 95
6.9 Comparison of concurrency of our heuristic and ILP approach. . . 97

128

LIST OF FIGURES

6.10 Resulting Euler diagrams for director Brett Ryan Bonowicz using
the ILP (left) and the heuristic (right). 97

7.1 Different types of tilings that can be used for the grid graph of
MosaicSets. 104

A.1 Parliament with eight overlay sets visualized using MSE and
relaxing the contiguity constraint as described in Section 4.3. . . . 134

A.2 Vienna (a) and Parliament (b) with three overlay sets visual-
ized with the Kelp style. 134

A.3 MosaicSets visualization for Bonn with three overlay sets and a
hexagonal grid. 135

A.4 MosaicSets visualization for Bonn with three overlay sets and a
square grid. 135

A.5 MosaicSets visualization for Vienna with three overlay sets and
a square grid. 136

A.6 Vienna with three overlay sets and square grid visualized with
MosaicSets. 136

A.7 Parliament with three overlay sets and hexagonal grid visualized
with MosaicSets. 137

A.8 Parliament with three overlay sets and square grid visualized
with MosaicSets. 137

B.1 Euler diagram of the set system corresponding to the director Art
Camacho from MovieDB. 149

B.2 Influence of parameter α on the set system corresponding to the
director Leigh Slawner from MovieDB. 152

B.3 Influence of parameter α on the set system corresponding to the
director Joel Schoenbach from MovieDB. 152

B.4 Influence of parameter α on the set system corresponding to the
director Jim Wynorski from MovieDB. 153

B.5 Influence of parameter α on the set system corresponding to the
director Art Camacho from MovieDB. 153

B.6 Influence of parameter β on the set system corresponding to the
director Leigh Slawner from MovieDB. 153

129

List of Tables

2.1 A subset of generalization operators described by McMaster and
Shea (1992). 10

6.1 Statistics of MovieDB and TwitterCircles. 93
6.2 Results of the ILP and the heuristic on MovieDB. 96
6.3 Results of the ILP and the heuristic on TwitterCircles. 96

A.1 Task taxonomy by Alsallakh et al. (2016) and assessment of Mo-
saicSets, Euler diagrams and frequency grids (Micallef et al., 2012). 138

130

Appendix A

Supplemental Mosaic Sets

In this section, we provide supplemental material that is not included in the main
manuscript due to the readability of the document. We show all visualizations of
set systems for which our metrics are evaluated in the thesis.

A.1 Additional Figures
Figures for Section 5.4.3. Figure A.1 shows the proposed relaxation of the
contiguity constraint which is explained in Section 5.4.3. In detail, we do not
enforce the contiguity of the overlay sets anymore. We use Parliament for the
comparison where we include eight overlay sets. When trying to solve this with
the eccentricity-based approach MSE, we terminated the experiment after ten
minutes. Until then MSE did not find a valid solution. Relaxing the contiguity
constraint led to a solution within few seconds. The caption gives detailed running
times.

Figures for Section 5.5. In Figure A.2, we illustrate examples for MosaicSets
using the Kelp rendering style. We computed MosaicSets with MSE. The corre-
sponding boundary style visualizations are given in this document in Figure A.5a
and Figure A.8a, respectively.

Figures for Section 5.6.5 and Section 5.6.6. In Figure A.3 to Figure A.8,
we compare visualizations of MosaicSets computed with MSE and MSEA. We
recall that MSE uses an eccentricity-based compactness measure in all iterations.
MSEA is a variant of MSE that restricts the available grid cells to those used in
the first iteration and therefore confines the available grid area. In the captions
of the figures, we also provide measures on compactness (mean Polsby-Popper
score) and the running times. We show such a comparison for each data set with
a hexagonal grid and afterwards with a square grid.

131

A.2. TASK TAXONOMY

Bonn is shown in Figure A.3 and Figure A.4. The data set consists of 51
research groups, six departments and three research projects. We use the depart-
ments as sets of the base map and visualize the research projects as overlays.

Vienna is shown in Figure A.5 and Figure A.6. The data set consists of 71
research groups belonging to four different institutes and three research projects.
Again the institutes are used as sets for the base map and the research projects
are visualized as overlays.

Parliament is shown in Figures A.7 and A.8. The base map represents all
178 members of the Austrian parliament colored by their affiliation to one of the
five political parties. The coloring of the base map uses lighter shades of the
different parties’ official colors. The overlay shows interest groups. Such a map
could aid in transparency by understanding if a vote was cast to serve the interest
of groups, networks, or individuals.

A.2 Task Taxonomy
Alsallakh et al. (2016) introduced a taxonomy of tasks commonly associated with
set visualization techniques. Tasks are classified into three broad categories:

1. Tasks in Group A are element-based tasks that are concerned with elements
and their respective relationship to the sets. For example: In which research
projects is the research group ’Data Science in Agricultural Economics’
involved in?

2. Tasks in Group B are related to sets and the relationship between different
sets without taking individual elements into account. For example: Which
research projects do overlap with project “PhenoRob”?

3. Tasks in Group C are related to element attributes and consider attributes
of set elements and their relationship of distribution with regard to set
membership. For example: Do research groups in the “PhenoRob” project
publish more papers than research groups in the “DETECT” project?

MosaicSets only supports tasks in Groups A and B as we do not represent
element attributes. Table A.1 shows all tasks of the two categories A and B. We
list the assessment from our experts whether MosaicSets supports a task fully,
partially or not at all. In order to compare MosaicSets to similar set visualization
techniques, we also include Euler diagrams and frequency grids in Table A.1.

A.3 Expert Interviews
We also append the manuscript used for the expert interviews. We performed
one preliminary interview in March 2022 with two experts. We only consider
their opinions on the rendering style from this interview. Later, in June 2022,

132

APPENDIX A. SUPPLEMENTAL MOSAIC SETS

we repeated an updated version of the interview with the two experts from the
preliminary interview and an additional expert. The provided manuscript is the
one we used for the second interview phase, but for completeness we also added
the questions on the rendering from the first phase.

133

A.3. EXPERT INTERVIEWS

HammerErnst-Dziedzic

Fürst

Obernosterer

Singer

Werner

Loacker Weidinger

Schwarz(ÖVP)

Shetty

Holzner

Hammer(ÖVP)

Hanger

Litschauer

Drobits

Hafenecker

Smodics-
Neumann

BrandstätterScherak

Brückl

Schroll

Pöttinger

Brandstötter

RiboSchallmeiner

Muchitsch

Blimlinger

Leichtfried Stöger

Kassegger

Saxinger

Egger

Kühberger

Schwarzenberger

Engelbert

Scheucher-
Pichler

Keck

Prammer

Großbauer

Baumgartner

Jachs

Gahr Diesner-Wais

Kainz Eßl

Rössler

ZopfWöginger

Fuchs

Seemayer

Hofinger

Wimmer(1)

NissLindinger Taschner

VorderwinklerLindner

Neumann-
Hartberger

Silvan Reiter

Zarits

Nussbaum Brandweiner

Totter

Kucharowits

Hauser

Köllner

Laimer

Bures

Becher

Deimek

Greiner

HolzleitnerSchatz Einwaller

Yilmaz

Grebien

Ries

Mühlberghuber

Pfurtscheller Stark

Bürstmayr

Rauch

Reifenberger

Ecker(SPÖ)Kuntzl

Amesbauer

Voglauer

Schrangl

Schwarz(GRÜNE)

Ragger

Bösch

Sieber

Stögmüller

OttenschlagerWeber

Hechenberger

Neßler

KaufmannBerlakovich Sobotka

DeckenbacherSalzmann

Doppelbauer

Matznetter

Meinl-Reisinger

Hofer

Kirchbaumer

KrainerKucher

Künsberg-Sarre

StammlerKaniak

Seidl

Smolle GrünbergKugler

Haubner

Heinisch-HosekBayr

MarchettiHöfinger

Wimmer(2)

Graf(ÖVP)

Steinacker

WeratschnigGötze Jeitler-CincelliHimmelbauerHörl PrinzOfenauerHintner Stocker

Troch

Rendi-Wagner

Gerstl

Kollross Lercher

Oberrauner

Steger

Ecker(FPÖ)

Belakowitsch

Köchl

FiedlerMargreiter Bernhard

Erasim

Yildrim

Krisper

Zanger

Hoyos-
Trauttmansdorff

Schmiedlechner

Stefan

Maurer Tomaselli

Angerer

Graf(FPÖ)

El-Nagashi

Zorba

Wurm

Herr

Koza

Feichtinger

Kickl

LopatkaKopf Strasser

Hamann

Disoski

Minnich FürlingerSchmucken-
schlager

Schnedlitz

Melchior

Fischer

Rausch

Reimon

(a) Parliament with hexagonal grid

Keck

Litschauer

Kassegger

Deckenbacher Wöginger

Hammer

Stefan

Nussbaum

Hamann

Muchitsch

Schrangl

Schnedlitz

Jachs Großbauer Schwarz(ÖVP)

Fuchs

Holzner Hanger

Rössler

Loacker

Belakowitsch

Brandstätter

Stögmüller

Ottenschlager

Obernosterer

Rausch

StarkPfurtscheller

Prammer

Ragger

Steinacker HintnerGerstl

Wimmer(1)

Ernst-Dziedzic

Kickl

Stöger

Schmucken-
schlager

Reimon

Hechenberger Gahr

Angerer

Oberrauner

TotterLindner

Strasser

Scherak

Krainer

Vorderwinkler

Werner

Weratschnig

Rendi-Wagner

Schroll

Brandstötter

Bürstmayr

Engelbert

Blimlinger

HofingerNissTaschner

Grebien

Deimek

KirchbaumerHimmelbauerHörlPöttingerBrandweinerWurm

Hofer

Greiner Yilmaz Kucharowits

Kuntzl

Lercher

Bösch

Köllner

Troch

Reifenberger

Bures

Voglauer Schwarz(GRÜNE)

Brückl

Neßler

Melchior Kugler

Künsberg-SarreMeinl-Reisinger

Fürst

Marchetti Sobotka

Doppelbauer

Stocker

Heinisch-HosekWimmer(2)

Berlakovich

Kollross

Kucher

Seidl

Kopf Lopatka

Krisper

Herr

Zarits

Ecker(SPÖ)

Koza

Leichtfried

Bayr

KainzGraf(FPÖ)

Minnich Weidinger Prinz Weber

Zanger

SieberHöfinger Eßl Neumann-
HartbergerGötze

Ries

Stammler

Hafenecker

Holzleitner

Seemayer

Schatz

Fischer

Shetty

Feichtinger

Einwaller

El-Nagashi

Silvan

Bernhard

Köchl

Matznetter

Disoski

Amesbauer

Laimer

Salzmann

Rauch

Yildrim

Graf(ÖVP)

Becher

Saxinger Kühberger Scheucher-
Pichler

Tomaselli

Schwarzenberger Egger

Maurer Fiedler

Mühlberghuber

Steger

MargreiterHoyos-
Trauttmansdorff

OfenauerSinger Hammer(ÖVP)Baumgartner

GrünbergSmolleKaufmann Fürlinger

Schmiedlechner

Haubner

Hauser

Jeitler-Cincelli

Schallmeiner

Smodics-
Neumann

Drobits

Zopf

Zorba Diesner-Wais

Ecker(FPÖ)

Reiter

LindingerRibo

Erasim

Kaniak

(b) Parliament with square grid

Figure A.1: Parliament with eight overlay sets visualized using MSE and relaxing the con-
tiguity constraint as described in Section 5.4.3. The solution shown in (a) has a PPC2

= 0.477

and a computing time of 2.8 s. Three of the eight overlay sets are not contiguous (dark green,
purple and blue). The solution shown in (b) has a PPC2

= 0.471 and a computing time of
2.2 s. Five of the eight overlay sets are not contiguous (dark green, blue, red, orange and gray).
Parliament uses a color scheme that is a lighter variant of the typical political party colors
used in Austria.

Sablatnig

Egly

Kaufmann

Gelautz

Fitzpatrick

Pichler

Kühn

WeissenbacherZuleger

Pohl

Bartocci

Nöllenburg

Cerny

Salzer

Merkl

Woltran

Neidhardt

Eiter

SallingerLindorfer

Raidl

Fuchsbauer Andreeva

Musliu

Ortiz

Schmid

Maffei

Purgathofer

Blieberger

Kovacs FermüllerBlum

Raidou

Ganian

Krall

KastnerSteininger

Biffl

Kappel

Grechenig

Hunold

Bork

Brandic

Puschner

Futschek

Wimmer Steinhardt

Hanbury

Träff

Miksch

Eidenberger

Cito

Dorn

Knoop

Szeider Gottlob TompitsCiabattoni Chen

Gärtner

Ertl

Gröller

Waldner

Rauber

Grosu

Puntigam

Knees

Tellioglu

Dustdar

Huemer

Michahelles

(a) Vienna

Kollross

Hamann

Jachs

Schrangl

Großbauer

Litschauer

Leichtfried

Bösch

Zorba

Matznetter

Brückl

Angerer

Koza

Schwarz(ÖVP) Wöginger Holzner

Ries

Hanger Totter

Rössler

Brandstötter

Steger

Stögmüller

Melchior

Obernosterer

Pöttinger

Graf(ÖVP)Diesner-Wais

Prammer

Pfurtscheller

Fürst

Gerstl RauschOttenschlager

Hammer

Kainz

Kucharowits Nussbaum

HaubnerMarchetti

Ernst-Dziedzic

Lopatka

Lindinger

Schmiedlechner

Schroll

Greiner

Stammler

Werner

Schatz

Götze

Bernhard

Yilmaz

Seemayer

Stöger

Shetty

Blimlinger

Kühberger

Belakowitsch

BrandweinerSaxingerHimmelbauerEngelbert

Ribo

Ragger

HofingerGahrZaritsEßl

Hauser

Erasim

Hafenecker

Heinisch-Hosek Vorderwinkler Keck

Wimmer(1)

Bayr

Amesbauer

Kucher

Wimmer(2)

Rauch

Krainer

Voglauer Schwarz(GRÜNE)

Fuchs

Baumgartner Stark

Neßler

Smolle Hörl

Künsberg-Sarre

Köllner

Sobotka

Meinl-Reisinger

Schnedlitz

Reiter

Doppelbauer

Kugler

BecherLaimer

Stocker

Ecker(SPÖ)

Seidl

Berlakovich HintnerHöfinger

Bures

Rendi-Wagner

Reifenberger

Kuntzl

Oberrauner

Graf(FPÖ)

Steinacker

Zanger

Prinz Weber Sieber

Kickl

Smodics-
NeumannWeidinger Jeitler-Cincelli MinnichGrebien

Wurm

Bürstmayr

Hofer

Köchl

MuchitschDrobits

Disoski

Lindner

Fischer

Silvan

Fiedler

Neumann-
Hartberger

Lercher

Reimon

Kassegger

Hechenberger

Holzleitner

Deimek

Scheucher-
Pichler

Troch

Einwaller

Kirchbaumer

El-Nagashi

Salzmann Schwarzenberger

Tomaselli

Egger Deckenbacher

Maurer Margreiter

Kaniak

Hoyos-
TrauttmansdorffKrisper

Hammer(ÖVP) OfenauerSinger

NissKopfGrünberg Taschner

Ecker(FPÖ)

Fürlinger

Mühlberghuber

Kaufmann

Schallmeiner

Schmucken-
schlager

Herr

Zopf

Weratschnig Loacker

Yildrim

Strasser

BrandstätterScherak

Feichtinger

Stefan

(b) Parliament

Figure A.2: Vienna (a) and Parliament (b) with three overlay sets visualized with the Kelp
style. The corresponding visualizations with boundary style are given in Figure A.6a and
Figure A.8a, respectively. See also Figure A.6a and Figure A.8a for compactness scores and
running time. Parliament uses a color scheme that is a lighter variant of the typical political
party colors used in Austria.

134

APPENDIX A. SUPPLEMENTAL MOSAIC SETS

Ernährungs-
epidemiologie

Tierernährung

Lebensmittel-
mikrobiologie-

und hygiene

Molekulare
Lebensmittel-
technologie

Nachwachsende
Rohstoffe

Theoretische
Geodäsie

Informations-
managementGeodäsie

Physiologie

Haushalts- und
Verfahrenstechnik

Prozess- und
Produkt-

management

Molekulare
Phytomedizin

Molekulare
Biologie der
Rhizosphäre

APMGGeoinformation

Haustiergenetik

Ökonomik
nachhaltiger
Landnutzung

und
Bioökonomie

Tierzucht

Photogrammetrie

Ernährungs-
physiologie

Agricultural
RoboticsFernerkundung

Technologie,
Innovations-
management,

Entrepreneurship

Präventives
Gesundheits-
management

Management
der digitalen

Circular
Economy

Pflanzen-
ernährung in

den Tropen und
Subtropen

Pflanzen-
pathologie

Pflanzen-
ernährung

Pflanzen-
züchtung

Humanernährung Lebensmittel-
chemie

Allgemeine
Bodenkunde

Ernährung und
Mikrobiota

Wirtschafts- und
Agrarpolitik

Marktforschung
der Agrar- und

Ernährungs-
wirtschaft

Crop Functional
Genomics

Agrarökologie
und Organischer

Landbau

Erdsystem-
forschung

Städtebau und
Bodenordnung Nutztierhaltung

Pflanzenbau

Economic
Modeling of
Agricultural

Systems

Data Science in
Agricultural
Economics

Lebensmittel-
sicherheit

Gartenbau-
wissenschaft

Ressourcen- und
Umweltökonomik

Globaler Wandel
und Systemische

Risiken

Lebensmittel-
wissenschaften

Chemical
Signaling

Crop
Bioinformatics

Produktions-
ökonomik

(a) eccentricity-based compactness (MSE)

Physiologie

Ernährungs-
epidemiologie

Molekulare
Lebensmittel-
technologie

Nachwachsende
Rohstoffe

Städtebau und
BodenordnungGeodäsie

Haustiergenetik

Haushalts- und
Verfahrenstechnik

Prozess- und
Produkt-

management

Molekulare
Phytomedizin

Pflanzen-
züchtung

APMGGeoinformation

Tierernährung

Ökonomik
nachhaltiger
Landnutzung

und
Bioökonomie

Tierzucht

Molekulare
Biologie der
Rhizosphäre

Ernährungs-
physiologie

Agricultural
Robotics

Theoretische
Geodäsie

Fernerkundung

Lebensmittel-
sicherheit

Präventives
Gesundheits-
management

Technologie,
Innovations-
management,

Entrepreneurship

Pflanzen-
ernährung in

den Tropen und
Subtropen

Ressourcen- und
Umweltökonomik

Pflanzen-
ernährung

Pflanzen-
pathologie

Humanernährung Lebensmittel-
chemie

Informations-
management

Allgemeine
Bodenkunde

Ernährung und
Mikrobiota

Wirtschafts- und
Agrarpolitik

Management
der digitalen

Circular
Economy

Crop Functional
Genomics

Agrarökologie
und Organischer

Landbau

Photogrammetrie Erdsystem-
forschung Nutztierhaltung

Pflanzenbau

Economic
Modeling of
Agricultural

Systems

Data Science in
Agricultural
Economics

Lebensmittel-
wissenschaften

Gartenbau-
wissenschaft

Marktforschung
der Agrar- und

Ernährungs-
wirtschaft

Globaler Wandel
und Systemische

Risiken

Lebensmittel-
mikrobiologie-

und hygiene

Chemical
Signaling

Crop
Bioinformatics

Produktions-
ökonomik

(b) as (a) but area fixed after first iteration (MSEA)

Figure A.3: MosaicSets visualization for Bonn with three overlay sets and a hexagonal grid.
(a) MSE with PPC2 = 0.521 and running time of 0.7 s. (b) MSEA with PPC2 = 0.491 and
running time 0.7 s.

Lebensmittel-
sicherheit

Wirtschafts- und
Agrarpolitik

Ernährungs-
epidemiologie

Economic
Modeling of
Agricultural

Systems

Crop
Bioinformatics

Ökonomik
nachhaltiger
Landnutzung

und
Bioökonomie

Crop Functional
Genomics

Globaler Wandel
und Systemische

Risiken

NutztierhaltungTheoretische
Geodäsie

Molekulare
Phytomedizin

Geodäsie

Ernährungs-
physiologie

Marktforschung
der Agrar- und

Ernährungs-
wirtschaft

Humanernährung

Präventives
Gesundheits-
management

Tierernährung

Management
der digitalen

Circular
Economy

Molekulare
Lebensmittel-
technologie

Haushalts- und
Verfahrenstechnik

Agricultural
Robotics

Geoinformation

Physiologie

Photogrammetrie

Erdsystem-
forschung

Pflanzenbau

Data Science in
Agricultural
Economics

Ressourcen- und
Umweltökonomik

FernerkundungPflanzen-
ernährung

Produktions-
ökonomik

Agrarökologie
und Organischer

Landbau

Pflanzen-
züchtung

Allgemeine
Bodenkunde

Technologie,
Innovations-
management,

Entrepreneurship

Ernährung und
Mikrobiota

Lebensmittel-
chemie

Pflanzen-
pathologie

Pflanzen-
ernährung in

den Tropen und
Subtropen

Gartenbau-
wissenschaft

Molekulare
Biologie der
Rhizosphäre

Nachwachsende
Rohstoffe

Lebensmittel-
wissenschaften

HaustiergenetikAPMG

Lebensmittel-
mikrobiologie-

und hygiene

Chemical
Signaling

Informations-
management

Prozess- und
Produkt-

management
Tierzucht

Städtebau und
Bodenordnung

(a) eccentricity-based compactness (MSE)

Wirtschafts- und
Agrarpolitik

Städtebau und
Bodenordnung

Ernährungs-
epidemiologie

Produktions-
ökonomik

Crop
Bioinformatics

Ökonomik
nachhaltiger
Landnutzung

und
Bioökonomie

Crop Functional
Genomics

Globaler Wandel
und Systemische

Risiken

NutztierhaltungAgricultural
RoboticsGeodäsie

Ernährungs-
physiologie

Technologie,
Innovations-
management,

Entrepreneurship

Management
der digitalen

Circular
Economy

Humanernährung

Präventives
Gesundheits-
management

Physiologie
Molekulare

Lebensmittel-
technologie

Haushalts- und
Verfahrenstechnik

Erdsystem-
forschung

Fernerkundung

Haustiergenetik

Geoinformation

APMG

Pflanzenbau

Data Science in
Agricultural
Economics

Ressourcen- und
Umweltökonomik

Allgemeine
Bodenkunde

Ernährung und
Mikrobiota

Pflanzen-
züchtung

Agrarökologie
und Organischer

Landbau

Molekulare
Biologie der
Rhizosphäre

Pflanzen-
ernährung

Marktforschung
der Agrar- und

Ernährungs-
wirtschaft

Lebensmittel-
sicherheit

Lebensmittel-
chemie

Chemical
Signaling

Pflanzen-
ernährung in

den Tropen und
Subtropen

PhotogrammetrieGartenbau-
wissenschaft

Molekulare
Phytomedizin

Pflanzen-
pathologie

Lebensmittel-
wissenschaften

Tierzucht

Economic
Modeling of
Agricultural

Systems

Lebensmittel-
mikrobiologie-

und hygiene

Nachwachsende
Rohstoffe

Theoretische
Geodäsie

Tierernährung
Prozess- und

Produkt-
management

Informations-
management

(b) as (a) but area fixed after first iteration (MSEA)

Figure A.4: MosaicSets visualization for Bonn with three overlay sets and a square grid. (a)
MSE with PPC2 = 0.522 and running time of 0.6 s. (b) MSEA with PPC2 = 0.509 and running
time of 0.8 s.

135

A.3. EXPERT INTERVIEWS

Sablatnig

Egly

Kaufmann

Gelautz

Fitzpatrick

Pichler

Kühn

WeissenbacherZuleger

Pohl

Bartocci

Nöllenburg

Cerny

Salzer

Merkl

Woltran

Neidhardt

Eiter

SallingerLindorfer

Raidl

Fuchsbauer Andreeva

Musliu

Ortiz

Schmid

Maffei

Purgathofer

Blieberger

Kovacs FermüllerBlum

Raidou

Ganian

Krall

KastnerSteininger

Biffl

Kappel

Grechenig

Hunold

Bork

Brandic

Puschner

Futschek

Wimmer Steinhardt

Hanbury

Träff

Miksch

Eidenberger

Cito

Dorn

Knoop

Szeider Gottlob TompitsCiabattoni Chen

Gärtner

Ertl

Gröller

Waldner

Rauber

Grosu

Puntigam

Knees

Tellioglu

Dustdar

Huemer

Michahelles

(a) eccentricity-based compactness (MSE)

Raidou

Pichler

Fitzpatrick

Gelautz

Michahelles

Kühn

WeissenbacherZuleger

Sallinger

BartocciGrosu

Salzer

Ganian

Merkl

Andreeva

Woltran

Gärtner

Eiter

BlumFuchsbauer

Tompits

Kaufmann Lindorfer

Neidhardt

Cerny

Schmid

Kovacs

Pohl

Musliu

Blieberger

RaidlFermüller

Sablatnig

Egly

Maffei

KastnerSteininger

Rauber

Kappel

Grechenig

Hunold

Nöllenburg

Futschek

PuschnerCito

Biffl

Purgathofer Wimmer

Brandic

Träff

Steinhardt

Eidenberger

Dorn

Krall

Bork

Szeider Gottlob CiabattoniOrtiz Chen

Hanbury

Ertl

Miksch

Waldner

Huemer

Puntigam

Knees

Tellioglu

Dustdar

Knoop

Gröller

(b) as (a) but area fixed after first iteration (MSEA)

Figure A.5: MosaicSets visualization for Vienna with three overlay sets and a square grid.
(a) MSE with PPC2

= 0.574 and running time of 0.7 s. (b) MSEA with PPC2
= 0.576 and

running time of 0.7 s
.

Sablatnig

Eidenberger

Grosu

Gelautz

Ertl

Huemer

Raidou

Knoop

Chen

Knees

Zuleger TompitsCiabattoni

Bork

Gottlob

Pohl

Träff

Kappel

Puschner

Purgathofer

Merkl

Ganian

Kaufmann

Sallinger

RaidlOrtiz

Fitzpatrick

Blum

FermüllerCerny

Kovacs

Woltran

Nöllenburg

Hunold

Maffei

Eiter

Steininger

Gröller

Musliu

Puntigam

Kastner

Futschek

Michahelles

GärtnerHanbury

Dustdar

Brandic

Dorn

SteinhardtWimmer

Cito

Schmid

Biffl

Blieberger

Miksch

Szeider

Rauber

NeidhardtKühn

Grechenig

Waldner

Lindorfer

EglyPichler

Fuchsbauer

Krall

Tellioglu

Weissenbacher

SalzerAndreeva

Bartocci

(a) eccentricity-based compactness (MSE)

Gelautz

Eidenberger

Grosu

Tellioglu

Ertl

Cito

Kaufmann

Knoop

Knees

Zuleger ChenCiabattoni

Bork

Gottlob

Pohl

Träff

Kappel

Sablatnig

Puschner

Raidou

Huemer

Ganian

Fitzpatrick

Blum

TompitsOrtiz

Michahelles

Fermüller

RaidlCerny

Maffei

Woltran

Nöllenburg

Steininger

Kovacs

Salzer

Eiter

Kastner

Miksch

Musliu

Puntigam

Futschek

Gröller

GärtnerHanbury

Krall

Brandic

Dorn

Wimmer

Hunold

Purgathofer

Dustdar

Schmid

Biffl

Blieberger

Steinhardt

Szeider

Rauber

NeidhardtMerkl

Grechenig

Lindorfer

EglyPichler

Fuchsbauer

Kühn

Waldner

Weissenbacher

SallingerAndreeva

Bartocci

(b) as (a) but area fixed after first iteration (MSEA)

Figure A.6: Vienna with three overlay sets and square grid visualized with MosaicSets. (a)
is MSE with PPC2

= 0.584 and running time of 0.9 s. (b) MSEA with PPC2
= 0.532 and a

running time of 0.8 s.

136

APPENDIX A. SUPPLEMENTAL MOSAIC SETS

HammerErnst-Dziedzic

Fuchs

Obernosterer

Hammer(ÖVP)

Werner

Weidinger

Diesner-Wais

Singer Prinz

Hanger

Shetty

Totter

Ofenauer

Lindinger

Koza

Köllner

Brandstätter

Fürst

Scherak

Nussbaum

Amesbauer

Loacker

Brandstötter

WeratschnigZorba

Kucharowits

Schallmeiner

Greiner Yilmaz

Hafenecker

Schwarzenberger

Schwarz(ÖVP)

Egger

Großbauer

Salzmann

Jachs

Prammer

Seemayer

Holzner

KirchbaumerKühberger

Wöginger

Scheucher-
Pichler

Erasim Zarits

Rössler

EßlZopf

Ragger

Yildrim

Brandweiner

Leichtfried

SaxingerEngelbert Himmelbauer

Silvan

Hofinger

Köchl

Matznetter Lercher

Hechenberger

Kollross Deckenbacher

Gahr

Heinisch-Hosek

Hauser

Vorderwinkler

Schroll

Kucher

Holzleitner

Kaniak

Bayr

DrobitsEinwaller Muchitsch

Wimmer(2)

Ribo

Ries

Mühlberghuber

Graf(ÖVP) Pfurtscheller Baumgartner

Blimlinger

Stark

Schnedlitz

Kassegger

Wimmer(1)Krainer

Hofer

Voglauer

Schrangl

Schwarz(GRÜNE)

Deimek

Bösch

Pöttinger

Stögmüller

KuglerMelchior

Schmucken-
schlager

Neßler

RauschHaubner Gerstl

StrasserHöfinger

Künsberg-Sarre

Brückl

Meinl-Reisinger Doppelbauer

Stefan

Stammler

BecherLaimer

Götze

Seidl

Rauch

Krisper

Kopf Niss

Lopatka

Taschner

Oberrauner

Grünberg

Rendi-Wagner

Kaufmann

Keck

Marchetti

Fürlinger

BürstmayrGrebien MinnichJeitler-Cincelli OttenschlagerSmodics-
NeumannWeber Sieber

Ecker(SPÖ)

Schatz

Steinacker

Bures Kuntzl

Stöger

Belakowitsch

Schmiedlechner

Kickl

Feichtinger

BernhardFiedler

Ecker(FPÖ)

Herr

Hoyos-
Trauttmansdorff

Zanger

Margreiter

Angerer

Maurer Tomaselli

Kainz

Graf(FPÖ)

El-Nagashi

Hamann

Reifenberger

LindnerTroch

Steger

BerlakovichNeumann-
Hartberger Hintner

Litschauer

Sobotka

Disoski

ReiterStocker

Wurm

Hörl

Fischer

Smolle

Reimon

(a) eccentricity-based compactness (MSE)

ReimonDisoski

Deimek

Totter

Ofenauer

Werner

Weidinger

Lindinger

Hammer(ÖVP)

Wöginger

Shetty

Holzner

Prinz

Hanger

Ernst-Dziedzic

Yilmaz

Brandstätter

Ragger

SingerScherak

Greiner

Rauch

Loacker

Brandstötter

ZorbaHamann

Lindner

Weratschnig

Lercher Troch

Amesbauer

Kirchbaumer

Jachs

Salzmann

Deckenbacher

Scheucher-
Pichler

Egger

Stögmüller

Erasim

Schwarz(ÖVP)

KühbergerSaxinger

Großbauer

Brandweiner

Graf(FPÖ) Neumann-
HartbergerZaritsEßl

Silvan

Himmelbauer

Feichtinger

EngelbertNiss Hofinger

Köchl

Kopf

Seemayer

Herr Keck

Hechenberger

Leichtfried Schwarzenberger

Gahr

Ecker(SPÖ) Bayr

Schatz

Wimmer(2)

Stöger

Bures

HolzleitnerSchroll Einwaller

Kuntzl

Muchitsch

Schallmeiner

Fürst

Drobits

Hauser

Obernosterer Diesner-Wais Graf(ÖVP)

Ribo

Pfurtscheller

Kaniak

Ries

VorderwinklerHeinisch-Hosek

Kassegger

Reifenberger

Voglauer

Brückl

Mühlberghuber Melchior

Neßler

Rausch

Schmucken-
schlager

Schwarz(GRÜNE)

OttenschlagerHaubner Gerstl

ZopfStrasser

Künsberg-Sarre

Baumgartner

Meinl-Reisinger

Laimer

Schrangl

Stark

Doppelbauer

Bösch

Stammler

OberraunerRendi-Wagner

Götze

Seidl

Hofer

Grünberg Taschner

Lopatka

Hörl

Wimmer(1)

Smolle

Kucher

Kaufmann

Krainer

Marchetti

Fürlinger

GrebienBlimlinger MinnichJeitler-CincelliBürstmayr Smodics-
NeumannWeber Sieber

Köllner

Steinacker

Kucharowits Nussbaum

Becher

Angerer

Schmiedlechner

Schnedlitz

Ecker(FPÖ)

FiedlerMargreiter Bernhard

Steger

Yildrim

Krisper

Stefan

Hoyos-
Trauttmansdorff

Kainz

Wurm

Rössler Prammer

Kickl

Zanger

Maurer

Litschauer

Hafenecker

Kollross

Fuchs

Matznetter

BerlakovichHöfinger Hintner

Koza

Sobotka

Belakowitsch

El-Nagashi

PöttingerStocker Reiter

Tomaselli

Hammer

Kugler

Fischer

(b) as (a) but area fixed after first iteration (MSEA)

Figure A.7: Parliament with three overlay sets and hexagonal grid visualized with MosaicSets.
(a) is MSE with PPC2

= 0.563 and running time of 1.6 s. (b) MSEA with PPC2
= 0.543 and

a running time of 1.8 s. Parliament uses a color scheme that is a lighter variant of the typical
political party colors used in Austria.

Kollross

Hamann

Jachs

Schrangl

Großbauer

Litschauer

Leichtfried

Bösch

Zorba

Matznetter

Brückl

Angerer

Koza

Schwarz(ÖVP) Wöginger Holzner

Ries

Hanger Totter

Rössler

Brandstötter

Steger

Stögmüller

Melchior

Obernosterer

Pöttinger

Graf(ÖVP)Diesner-Wais

Prammer

Pfurtscheller

Fürst

Gerstl RauschOttenschlager

Hammer

Kainz

Kucharowits Nussbaum

HaubnerMarchetti

Ernst-Dziedzic

Lopatka

Lindinger

Schmiedlechner

Schroll

Greiner

Stammler

Werner

Schatz

Götze

Bernhard

Yilmaz

Seemayer

Stöger

Shetty

Blimlinger

Kühberger

Belakowitsch

BrandweinerSaxingerHimmelbauerEngelbert

Ribo

Ragger

HofingerGahrZaritsEßl

Hauser

Erasim

Hafenecker

Heinisch-Hosek Vorderwinkler Keck

Wimmer(1)

Bayr

Amesbauer

Kucher

Wimmer(2)

Rauch

Krainer

Voglauer Schwarz(GRÜNE)

Fuchs

Baumgartner Stark

Neßler

Smolle Hörl

Künsberg-Sarre

Köllner

Sobotka

Meinl-Reisinger

Schnedlitz

Reiter

Doppelbauer

Kugler

BecherLaimer

Stocker

Ecker(SPÖ)

Seidl

Berlakovich HintnerHöfinger

Bures

Rendi-Wagner

Reifenberger

Kuntzl

Oberrauner

Graf(FPÖ)

Steinacker

Zanger

Prinz Weber Sieber

Kickl

Smodics-
NeumannWeidinger Jeitler-Cincelli MinnichGrebien

Wurm

Bürstmayr

Hofer

Köchl

MuchitschDrobits

Disoski

Lindner

Fischer

Silvan

Fiedler

Neumann-
Hartberger

Lercher

Reimon

Kassegger

Hechenberger

Holzleitner

Deimek

Scheucher-
Pichler

Troch

Einwaller

Kirchbaumer

El-Nagashi

Salzmann Schwarzenberger

Tomaselli

Egger Deckenbacher

Maurer Margreiter

Kaniak

Hoyos-
TrauttmansdorffKrisper

Hammer(ÖVP) OfenauerSinger

NissKopfGrünberg Taschner

Ecker(FPÖ)

Fürlinger

Mühlberghuber

Kaufmann

Schallmeiner

Schmucken-
schlager

Herr

Zopf

Weratschnig Loacker

Yildrim

Strasser

BrandstätterScherak

Feichtinger

Stefan

(a) eccentricity-based compactness (MSE)

Herr

Ernst-Dziedzic

Leichtfried

Reifenberger

Deckenbacher

Reimon

Yildrim

Hafenecker

Hammer

Feichtinger

Amesbauer

Kickl

Disoski

Jachs Großbauer Schwarz(ÖVP)

Ries

Wöginger Holzner

Schwarz(GRÜNE)

Werner

Angerer

Brandstötter Scherak

Rausch

Hanger

Melchior

LindingerTotter

Neßler

Obernosterer

Fürst

Haubner OttenschlagerGerstl

Fischer

Steger

Greiner Yilmaz

LopatkaSteinacker

El-Nagashi

Marchetti

Kucharowits

Schatz

Graf(FPÖ)

Troch

Stammler

Shetty

Götze

Fiedler

Lindner

Erasim

Bernhard

Schallmeiner

Saxinger

Zorba

HimmelbauerEngelbertHofingerNiss

Weratschnig

Deimek

KopfGahrZaritsEßl

Belakowitsch

Zanger

Hofer

Bayr Wimmer(2) Heinisch-Hosek

Kucher

Kuntzl

KasseggerFuchs

Ecker(SPÖ)

Vorderwinkler

Ragger

Diesner-Wais PfurtschellerGraf(ÖVP) Baumgartner

Voglauer

Kugler

Stark

Reiter

Becher

Stocker

Meinl-Reisinger

Schnedlitz

Pöttinger

Doppelbauer

Sobotka

OberraunerRendi-Wagner

Hintner

Bures

Laimer

Höfinger BerlakovichNeumann-
Hartberger

Nussbaum

Krainer

Rauch

Köllner

Wimmer(1)

Brückl

Minnich

Stefan

Weber Sieber Smodics-
Neumann

Schrangl

Grebien Weidinger Jeitler-CincelliRibo

Wurm

Blimlinger

Bürstmayr

Keck

EinwallerHolzleitner

Maurer

Margreiter

Lercher

Drobits

Prammer

Seemayer

Hoyos-
Trauttmansdorff

Hechenberger

Matznetter

Tomaselli

Kaniak

Brandweiner

Stöger

Mühlberghuber

Kühberger

Kollross

Schroll

Scheucher-
Pichler Kirchbaumer Salzmann

Rössler

Schwarzenberger Egger

Stögmüller Krisper

Hauser

Muchitsch

Ecker(FPÖ)

SeidlKünsberg-Sarre

PrinzHammer(ÖVP) OfenauerSinger

TaschnerGrünbergSmolle Hörl

Kainz

FürlingerKaufmann

Litschauer

Schmucken-
schlager

Silvan

Zopf

Koza Loacker

Schmiedlechner

Strasser

BrandstätterHamann

Köchl

Bösch

(b) as (a) but area fixed after first iteration (MSEA)

Figure A.8: Parliament with three overlay sets and square grid visualized with MosaicSets.
(a) is MSE with PPC2

= 0.579 and running time of 1.6 s. (b) MSEA with PPC2
= 0.512 and

a running time of 1.8 s. Parliament uses a color scheme that is a lighter variant of the typical
political party colors used in Austria.

137

A
.3.

EX
PERT

IN
T
ERV

IEW
S

Task MosaicSets
Expert 1

MosaicSets
Expert 2

MosaicSets
Expert 3

Euler
Diagrams

Frequency
Grids

A1 Find/Select elements that belong to a specific set • • • • •
A2 Find sets containing a specific element. • • ◦ • •
A3 Find/Select elements based on their set memberships • • • • ◦
A4 Find/Select elements in a set with a specific set member-ship degree ◦ • • - ◦
A5 Filter out elements based on their set memberships. - - - - ◦
A6 Filter out elements based on their set membership degrees - - - - ◦
A7 Create a new set that contains certain elements. - - - ◦ ◦

B1 Find out the number of sets in the set family. • • • ◦ ◦
B2 Analyze inclusion relations. • • • • •
B3 Analyze inclusion hierarchies • • • • -
B4 Analyze exclusion relation • • • • -
B5 Analyze intersection relation • • • • •
B6 Identify intersections between k sets • • • ◦ •
B7 Identify the sets involved in a certain intersection • • • • •
B8 Identify set intersections belonging to a specific set • • • • •
B9 Identify the set with the largest / smallest number of pair-wise set intersections • • • ◦ ◦
B10 Analyze and compare set- and intersection cardinalities • • • • •
B11 Analyze and compare set similarities - - - ◦ -
B12 Analyze and compare set exclusiveness • • • ◦ •
B13 Highlight specific sets, subsets, or set relations - - - n/a •
B14 Create a new set using set-theoretic operation - - - ◦ -

C1 Find out the attribute values of a certain element - - - ◦ 

C2 Find out the distribution of an attribute in a certain set or subset - - - ◦ -
C3 Compare the attribute values between two sets or subsets - - - ◦ -
C4 Analyze the set memberships for elements having certain attribute values - - - - -
C5 Create a new set out of elements that have certain attribute values - - - - -

Table A.1: Task taxonomy by Alsallakh et al. (2016) and assessment of MosaicSets, Euler diagrams and frequency grids (Micallef et al., 2012). Tasks can
be classified as: (•) supported; (◦) partially supported; (-) unsupported; or () requires interactivity. For MosaicSets the classification is based on the
opinion of the expert interviews. For Euler diagrams and frequency grids the classification is according to Alsallakh et al. (2016).

138

 Expert Study MosaicSets 2022
 Pages [1-2,4-10] from expert study performed in June 2022
 Page [3] from expert study performed in March 2022

 1

Expert Study
Scenario
The board of an institution (e.g., a university faculty) would like to improve its strategic planning
processes by supporting discussions in meetings with informative visualizations. In particular, the board
would like to visualize the division of its research groups into organizational units (e.g. departments) as
well as important intra-institutional collaborations (e.g., major research projects involving several
research groups from different departments). It is important that each research group is represented
equally. Interactive components can also be used to represent the organizational structures on a web
presentation to the public.

Introduction to our Visualization
In our approach, each research group is represented as a cell on a hexagonal or rectilinear grid. We
enforce that all cells of the same department or of a project form a contiguous region. We illustrate the
departments by coloring all cells corresponding to one department with the same color. Furthermore,
each project is visualized by its region’s boundary. We assign a distinct color to each project.

For the web presentation each legend entry is enriched such that a user can select and highlight each
department individually. The projects are not displayed by default, but can be added to the visualization
manually.

 Show SVG.

APPENDIX A. SUPPLEMENTAL MOSAIC SETS

139

 Expert Study MosaicSets 2022
 Pages [1-2,4-10] from expert study performed in June 2022
 Page [3] from expert study performed in March 2022

 2

Rechtwinkliges vs. sechseckiges Raster

Figure: Hexagonal and Rectilinear Grid

 Which one is visually more appealing?
 Which one is more clear?
 What advantages and disadvantages do you see?

A.3. EXPERT INTERVIEWS

140

 Expert Study MosaicSets 2022
 Pages [1-2,4-10] from expert study performed in June 2022
 Page [3] from expert study performed in March 2022

 3

Comparison of different rendering styles for the projects

Figure 1: Kelp-Style

 Which one is visually more appealing?
 Which one is more clear?
 What advantages and disadvantages do you see?

APPENDIX A. SUPPLEMENTAL MOSAIC SETS

141

 Expert Study MosaicSets 2022
 Pages [1-2,4-10] from expert study performed in June 2022
 Page [3] from expert study performed in March 2022

 4

Compactness (MSE vs. MSEA)

Figure 2: Left: MSE, Right: MSEA

 Welche Darstellung ist visuell ansprechender?
 Welche Darstellung ist übersichtlicher?
 Welche Vor- und Nachteile besitzen die Varianten?

A.3. EXPERT INTERVIEWS

142

 Expert Study MosaicSets 2022
 Pages [1-2,4-10] from expert study performed in June 2022
 Page [3] from expert study performed in March 2022

 5

Number of projects for static use-case.

Figure 3: Visualization with 2, 3 and 4 research projects.

 The three figures differ in terms of the number of research projects represented. In your opinion, at
what number of projects is the limit of what can be clearly presented with our approach?

APPENDIX A. SUPPLEMENTAL MOSAIC SETS

143

 Expert Study MosaicSets 2022
 Pages [1-2,4-10] from expert study performed in June 2022
 Page [3] from expert study performed in March 2022

 6

Static vs. Interactive.

Figure 4: Static Visualization

 Can the interactive application improve clarity?
 Do you see any other advantages or disadvantages with the interactive version?

A.3. EXPERT INTERVIEWS

144

 Expert Study MosaicSets 2022
 Pages [1-2,4-10] from expert study performed in June 2022
 Page [3] from expert study performed in March 2022

 7

Comparison to a manually generated visualization by an expert.
In the following, we compare a visualization created manually by an expert against a visualization
generated by our approach. Please consider only the layout when answering the following questions and
do not refer to design elements such as font type and size or color choice.

Figure 5: Manually Generated

Figure 6: Our Solution

 Which layout is visually more appealing?
 Which one is more clear?
 What advantages and disadvantages do you see?

Only to the expert that designed the visualization manually:

 What criteria did you use to create the visualization?
 Are these criteria also sufficiently considered in our visualization?

APPENDIX A. SUPPLEMENTAL MOSAIC SETS

145

 Expert Study MosaicSets 2022
 Pages [1-2,4-10] from expert study performed in June 2022
 Page [3] from expert study performed in March 2022

 8

Tasks from State-Of-The-Art Paper
When designing a set visualization, it is important to determine which tasks should be supported. To this
end, Alsallakh et al. gives a list of general tasks that are supported by existing visualization techniques. In
the following, we ask you to classify our visualization with respect to these tasks. For each task you can
choose between 'fully supported', 'partially supported' and 'not supported'.

 Task Correct
answer?

Task supported?
Yes Part. o

A1 Find all research groups that belong to PhenoRob.
A2 Find the department and projects in which the research

group ‘Photogrammetrie’ is contained.

A3 Find all research groups that are part of the IGG but not of
PhenoRob.

A4 Find all research groups that are part of one department
and two projects.

A5 Find all research groups that are not part of both IGG and
PhenoRob.

 x

A6 Find all research groups that are not part of two projects. x
A7 Create a new set that contains certain elements. x
B1 How many departments and projects exist?
B2 Is PhenoRob included in IGG?
B3 Is PhenoRob included in DETECT, and DETECT in turn is

included in IGG?

B4 Do PhenoRob and IEL NOT have a joint research group?
B5 Is there a joint research group of PhenoRob and IGG?
B6 Find the intersection of PhenoRob and IGG.

A.3. EXPERT INTERVIEWS

146

 Expert Study MosaicSets 2022
 Pages [1-2,4-10] from expert study performed in June 2022
 Page [3] from expert study performed in March 2022

 9

B7 Given the following:

Find the department and projects involved in the
intersection (orange).

B8 Find all projects in which the IGG is involved.
B9 Which department participates in the least/ most projects?
B10  Estimate the number of research groups that are part in

PhenoRob and IGG.
 Compare the number of research groups of ILR and IEL.

B11 Analyze and compare set similarities. x
B12 Compare the number of IGG research groups not involved in

any project to the number of IEL research groups not
involved in any project.

B13 Highlight sets, subsets or set relations. x
B14 Create a new set using set-theoretic operations. x

APPENDIX A. SUPPLEMENTAL MOSAIC SETS

147

 Expert Study MosaicSets 2022
 Pages [1-2,4-10] from expert study performed in June 2022
 Page [3] from expert study performed in March 2022

 10

General Questions

(1) Can you imagine using our visualization for future representations? If this is not the case, what
would be necessary?

(2) Where might such visualizations be used within the faculty?
(3) On which occasions (new appointments, new research projects, etc.) would you recreate a

visualization? How often do these cases usually occur?
(4) How long may the generation of such a visualization take? For example, is a time of less than one

minute sufficient?

Only to the expert that designed the visualization manually:

(1) Approximately how long did it take you to create the visualization?

(2) What limitations do you see?
a. What additions would you like to see in the visualization?
b. Regarding the dynamic visualization, what additional interaction options would you like

to see?
(3) Is there any further feedback you want to give?

A.3. EXPERT INTERVIEWS

148

Appendix B

Supplemental Euler Diagrams

B.1 Euler Diagram Simplification
In this section, we provide supplemental material that is not included in the
main manuscript due to the readability of the document. First, we provide an
additional visualization of the workflow. Afterwards, we show the influence of
several parameter settings on the resulting Euler diagrams.

Figure B.1 show the complete workflow for creating a smoothed Euler diagram
from a superdual graph. In this example, the set system of the director Art
Camacho from MovieDB is displayed.

0

a

b

c

d

ef

g

ab

ad

ae

ag bc

df

ef

acg

ceg

(a) superdual graph

0

a

b

c

d

ef

g

ab

ad

ae

ag bc

df

ef

acg

ceg

(b) planar support

0

a

b

c

d

e

f

g

ab

ad

ae
ag

bc

df

ef

acg

ceg

(c) planar embedding

g

c

ae

acg

e

f
df

ceg

ef

d

ag

a

b

ab

bc

ad

(d) Euler diagram

b

bd

d

cde

bc
c

cf

f
fg

g

ag

a

e

ade

ce
ac

(e) resulting diagram

Figure B.1: Euler diagram of the set system corresponding to the director Art Camacho from
MovieDB.

B.2 Parameter Influence
The problem definition MCSetSystemSimplification contains an objective
function with a weighted sum of three individual objective functions. We show a
single example of the simplification capabilities of our method in Figure 6.5. In
this document, we show additional examples using different parameter values in
this supplemental material.

Figure B.2 shows eight simplification steps of the set system of Leigh Slawner.

149

B.2. PARAMETER INFLUENCE

The total number of concurrencies of the Euler diagram with α = 0.01 (Fig-
ure B.2a) is 23, which decreases to 2 for α = 3.75 (Figure B.2h).

Figure B.3 shows four simplification steps of the set system of Joel Schoen-
bach. The total number of concurrencies of the Euler diagram with α = 0.01

(Figure B.3a) is 16, which decreases to 0 for α = 2.0 (Figure B.3d).
Figure B.4 shows three simplification steps of the set system of Jim Wynorski.

The total number of concurrencies of the Euler diagram with α = 0.01 (Fig-
ure B.4a) is 7, which decreases to 0 for α = 1.0 (Figure B.4c).

Figure B.5 shows three simplification steps of the set system of Art Cama-
cho. The total number of concurrencies of the Euler diagram with α = 0.01

(Figure B.5a) is 4, which decreases to 0 for α = 1.5 (Figure B.5c).
Figure B.6 shows three solutions of the set system of Leigh Slawner using

different values for β. The parameter α is set to 2.25 for all three examples. In
the left Euler diagram with β = 0.1, the number of faces adjacent to the outer
face is 5, which is increased to 8 faces for β = 1.0. The Euler diagram shown in
Figure B.6a evaluates to fweight = 92, fconcur = 7 and fouter = 5. The diagram
shown in Figure B.6c evaluated to fweight = 90, fconcur = 7 and fouter = 8.

150

APPENDIX B. SUPPLEMENTAL EULER DIAGRAMS

f

g

h

e
d

a

c

ae
acg

abef
bcefg

bcef
ab
ce
h

cdef

afh
cg

cgh

b
cfg

cfh

cf

ce

ef
fh

fghfg

abcdefgh

b

(a) α = 0.01

f

g
h

e

d

a

c

ae

acg

abef

bcefg

bcef

abceh

cdef

afh

cg cgh

bcfg
cfh

cf

ce
ef

fhfgh

fg

abcdefgh

b

(b) α = 0.1

f

g

h
e

d

a

c

ae

acg

abef

bcefg

bcef

abceh

cdef

afh

cg

cgh

bcfg

cfh

cf

ce

ef

fh

fgh

fg

abcdefgh

b

(c) α = 0.25

f

g

h

e

d

a

c

ae

acg

abef

bcefg

bcef

afh

cg

cgh

cfh

cf

ce
ef

fh

fgh

fg

b

(d) α = 1.5

f

g

h

e

d

a

c

ae

acg

bcefg

bcef
afh

cg

cgh

cfh

cf

ce

ef

fh fgh

fg

b

bcfg

(e) α = 2.25

f

g

h

e

d

a

c

ae

acg

bcefg
bcef

afh

cg
cgh

cfh

cf

ce

ef

fh

fgh

fg

bcfg

(f) α = 2.75

151

B.2. PARAMETER INFLUENCE

f
g

h

e d

a

c

ae

bcefg

bcef

cg
cgh

cfh cf

ce

ef

fh

fgh

fg

bcfg

(g) α = 3.0

f

g

h

e

d

a

c

ae

bcefg

bcef

cg

cfhcf

ce

ef

fhfgh

fg

bcfg

(h) α = 3.25

Figure B.2: Influence of parameter α on the set system corresponding to the director Leigh
Slawner from MovieDB. Parameter β is fixed to 0.1 for all results.

ab
cfgb

bg

g

fg f

ef

af

c cdf

d

dg
def

g

ab
df

ab
cd
efg

aefg

a

(a) α = 0.01

ab
cf
g

b bg

g

fg

f

ef
af

d

dg

defg

ab
df

aefg

a

ab
cd
ef
g

(b) α = 1.25

ab
cfg

g

fgf

ef

af

d

dg

defg
abdf

aefg

a

a
b
cd

efg

(c) α = 1.75

g

fg

f

ef

af

d

dg

a

c

b

bg

(d) α = 2.0

Figure B.3: Influence of parameter α on the set system corresponding to the director Joel
Schoenbach from MovieDB. Parameter β is fixed to 0.1 for all results.

152

APPENDIX B. SUPPLEMENTAL EULER DIAGRAMS

f

g

hi
e

d

b

fh

dfhi

bd ij

dj

fj

j

a
af

fg

cf

c

cg

(a) α = 0.01

f

g

h

i

e

d

b

fh

dfhi
bd

ij

dj

fj
j

a

af

fg
cf

c

cg

(b) α = 0.2

f

g

h

i
e

d

b

fh

bd

ij

dj

fj j
a

af

fg

cfc

cg

(c) α = 1.0

Figure B.4: Influence of parameter α on the set system corresponding to the director Jim
Wynorski from MovieDB. Parameter β is fixed to 0.1 for all results.

b

bd

d

cde

bc
c

cf

f
fg

g

ag

a

e

ade

ce
ac

(a) α = 0.01

b

bd

d

cde

bc

c

cf

f

fg

g
ag

a

e

ade

ce

ac

(b) α = 0.15

b

bdd
bc

c

cff

fg
g

ag

a

e

ce

ac

(c) α = 1.5

Figure B.5: Influence of parameter α on the set system corresponding to the director Art
Camacho from MovieDB. Parameter β is fixed to 0.1 for all results.

b

a ae

acg
cg

g

fg

fghfh

h

c ce
e ef

f

d

afh

cg
h

cfh
bcfg

cf

bcefg

bcef

(a) β = 0.1

b

a

ae

ac
gcg

g

fg fgh

fh

h

c

ce
e

ef
f

d

afh

cg
h

cfh

bcfg

cf

bcefg
bcef

ab
ef

(b) β = 0.75

b

a ae

cg

g
fg

fgh

fh

h

c

ce

e

ef

f

d

cgh
cfh

bcfg

cf

b
cefg

bcef

ab
ef

(c) β = 1.0

Figure B.6: Influence of parameter β on the set system corresponding to the director Leigh
Slawner from MovieDB. Parameter α is fixed to 2.25 for all results.

153

	Introduction
	Contributions

	State of the Art in Map Generalization and Set Visualization
	Map Generalization
	Aggregation and Amalgamation
	Continuous Generalization

	Set Visualization

	Algorithmic Fundamentals
	Graph Theory
	Graph Fundamentals
	Hypergraph Drawings and Planar Supports

	Integer Linear Programming
	Spatial Unit Allocation
	Districting

	Graph Cuts

	Map Generalization Using Graph Cuts
	Introduction
	Methodology
	Graph Cut
	Hierarchical Structure of Solutions for Multiple Parameter Values

	Experiments
	Choosing the Parameter λ with the Help of Reference Solutions
	Edge-Aligned Polygons
	Comparison to α-shapes

	Conclusion

	Grid-Based Euler Diagrams
	Introduction
	Contextual Background
	Geographic Information Visualization Techniques
	Maps as a Metaphor

	Towards a Formalization of MosaicSets
	Design Decisions
	Formal Problem Definition
	Computational Complexity

	An Approach Based on Integer Linear Programming
	A Basic Integer Linear Program
	Compactness of Regions Representing Sets
	Relaxing the Contiguity Requirement
	An Integer Linear Program with Fewer Variables

	Rendering
	Evaluation
	Expert Interviews
	Tasks for Set Visualizations
	Experimental Setup
	Number of Overlay Sets
	Running Time
	Assessing the Compactness

	Conclusion

	Generating Euler Diagrams Through Combinatorial Optimization
	Introduction
	Preliminaries and Basic Problem
	Workflow
	Methodology
	An Integer Linear Program
	Heuristic Approach

	Experiments
	Conclusion

	Conclusion and Future Work
	Summary of the Contributions
	Future Work

	Appendices
	Supplemental Mosaic Sets
	Additional Figures
	Task Taxonomy
	Expert Interviews

	Supplemental Euler Diagrams
	Euler Diagram Simplification
	Parameter Influence

