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Summary

The main topics of this thesis are triangulated categories with t-structures and weight struc-
tures, Koszul duality, and certain generalizations of spherical objects known as P-objects. The
secondary topic are Weyl groupoids, which are a certain aspect of the structure theory of Lie
superalgebras.

Triangulated categories play an important role in representation theory and related areas of
mathematics. Interesting examples of triangulated categories with t-structures can be obtained
as derived categories of abelian categories such as certain representation categories of Lie algebras,
or module categories over finite-dimensional algebras. Further examples arise from complexes
of sheaves on stratified varieties. Weight structures, also known as co-t-structures, dualize the
notion of t-structures in a certain sense, and are inspired by the theory of weights from complex
geometry.

The thesis consists of four rather independent parts. In the first part we study the orthogo-
nality relation of weight structures and t-structures, and the closely related silting t-structures
in the sense of Psaroudakis–Vitória. We introduce derived projective covers and relate them to
the notion of enough derived projectives introduced by Genovese–Lowen–Van den Bergh. Our
main result uses derived projective covers to provide an if-and-only-if criterion for a t-structure
with finite-length heart to be a silting t-structure. We also provide equivalent axioms for the ST
pairs introduced by Adachi–Mizuno–Yang, and formulate the bijection between simple-minded
collections and silting collections due to Koenig–Yang in terms of derived projective covers.

In the second part we show that the non-positive respectively positive dg algebras obtained
from silting and simple-minded collections corresponding to orthogonal weight structures and t-
structures are dg Koszul dual to each other. This can be seen as a first step towards a tentative
Koszul duality of weight structures and t-structures.

In the third part we consider the constructible derived category Db
c (Pn) of complex projective

space, equipped with the middle-perverse t-structure. We show that the simple perverse sheaf
ICn is a Pn-object in the sense of Huybrechts–Thomas, and that its associated P-twist is the
inverse Serre functor of Db

c (Pn). Moreover, we classify the P-like objects in Perv(Pn). This part
is joint work with Alessio Cipriani.

In the fourth part we study Weyl groupoids of contragredient Lie superalgebras. Weyl grou-
poids are an analog of the Weyl group for Lie superalgebras, constructed to also take odd simple
roots into account. We provide a convenient graphical formulation of the definitions of Cartan
graphs and Weyl groupoids introduced by Heckenberger in the context of Nichols algebras, and
apply this to Lie superalgebras following Heckenberger–Yamane. We explicitly describe the Weyl
groupoids of sl(m|n), osp(2m + 1|2n) and osp(2m|2n) in terms of partitions. Furthermore, we
compare this notion of Weyl groupoid to other similar constructions, and in particular to the
root groupoid recently introduced by Gorelik–Hinich–Serganova. This part is joint work with
Jonas Nehme.
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Chapter 1

Introduction

This thesis consists of four parts, all of which are connected to triangulated categories with t-
structures, homological algebra, and braid group actions. In particular, we consider the following
four questions:

1) Silting t-structures are t-structures defined by a set of objects. Is there a characterization
of silting t-structures by homological properties?

2) The definition of weight structures appears dual to that of t-structures. Can this duality
be formalized, specifically via Koszul duality?

3) The constructible derived category of a partial flag variety is known to admit a Serre
functor. Is there a description of the Serre functor that is intrinsic to this category?

4) For a contragredient Lie superalgebra, the Weyl group is replaced by a Weyl groupoid. Is
there an explicit combinatorial description of the Weyl groupoids of some Lie superalgebras?

Since their introduction in [Ver96] and [Pup62], triangulated categories have become the natural
setup for homological algebra. There are many natural sources of triangulated categories. For
instance, given an abelian category A one can form its derived category D(A ), and given an
additive category A one can form its homotopy category K(A ). Conversely, given a triangulated
category T , one may want to recover an abelian or additive category embedded into T . This
requires additional structures on T , namely t-structures and weight structures.

The definition of t-structures introduced in [BBD82] models the truncation of complexes
in the derived category. For the weight structures introduced in [Bon10b; Pau08], there are
two different motivations: On the one hand, the definition of weight structures is obtained
algebraically from that of t-structures by “dualizing” some axioms, and this is why they are also
known as co-t-structures. This is the perspective primarily used in silting theory, for instance in
[Pau08; KY14; KN13], and also in this thesis. On the other hand, weight structures are heavily
inspired by geometry, and provide an axiomatic framework for Deligne’s theory of weights in the
abstract setup of triangulated categories. This is the motivation for the study and applications
of weight structures in geometry, for instance in [Bon10b; Bon10c; ES22].

Weight structures and t-structures on the same triangulated category are often closely related.
In particular, a silting collection P in the sense of [PV18] defines both a t-structure and a
weight structure, which are orthogonal to each other. The first goal of this thesis is to find a
characterization of such silting t-structures by homological properties.

Although the definitions of t-structures and weight structures appear dual, it is hard to for-
malize this tentative duality. We provide a first step towards such a formalization via Koszul
duality, which is an important standard tool in representation theory. The classical version of
Koszul duality from [BGS96; MOS09] provides an equivalence between the derived category of
a Koszul algebra A and that of its Koszul dual A! = Ext∗A(A0, A0), and there are also variants
of Koszul duality involving dg algebras [Pri70; Kel94], A∞-algebras [LH03], and (dg) coalgebras
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Chapter 1. Introduction

[Pri70; LH03; Pos11]. Many examples of Koszul duality occur naturally in representation the-
ory, and in particular in the representation theory of Lie algebras. For instance, symmetric and
exterior algebras are Koszul-dual to each other, and the algebras describing blocks of (parabolic)
category O are Koszul. For category O, Koszul duality can also be used to interpret the rela-
tions between many important functors: in particular, translation functors are Koszul-dual to
Zuckerman functors [RH04], and shuffling functors are Koszul-dual to Arkhipov twisting functors
[MOS09].

Shuffling functors have many applications. In particular, by [MS08], the shuffling functors can
be used to describe the Serre functor of the derived category of the principal block of parabolic
category O. These derived categories are equivalent to the constructible derived categories of
(partial) flag varieties G/P . Therefore, we want to describe the Serre functor of Db

c (G/P ) in
the language intrinsic to these categories. For G/P = P1, such a description is provided by
[Woo10] in terms of the spherical twists at spherical objects introduced in [ST01]. Extending
this description of the Serre functor of Db

c (P1) to the constructible derived categories of other
flag varieties requires a generalization of spherical twists. The appropriate generalization for Pn
are the P-twists introduced in [HT06], which use P-objects instead of spherical objects. Other
(partial) flag varieties will presumably require further generalizations of P-twists to “(partial)
flag variety twists”, but these are yet to be defined.

Spherical twists can be used to construct braid group actions on triangulated categories
[ST01], and hence they play an important role in both algebraic geometry and representation
theory. In algebraic geometry, spherical twists are a useful tool to describe stability manifolds and
automorphism groups of varieties, see for instance [Bri08; Bri09; IU05; BP14], and also [AL17,
§1] for an overview of applications and generalizations of spherical twists. In representation
theory, in certain special cases the shuffling functors on parabolic category O can be realized as
spherical twists [Len21]. Furthermore, spherical twists are related to tilting of t-structures, see
e.g. [Woo10; Tho18], and can also be used to obtain braid group actions from classical silting
collections [MY25]. The applications of P-twists in algebraic geometry are similar to those of
spherical twists [Huy06], and like spherical twists they moreover appear in symplectic geometry,
see for instance [MW19]. However, P-twists have not been considered in representation-theoretic
settings yet, and our results are a first step towards applications of P-twists in this area.

Braid groups are closely related to Weyl groups, whose associated combinatorics controls
the structure of semisimple Lie algebras. The analog of simple Lie algebras in the Z/2Z-graded
setting are the classical simple Lie superalgebras such as sl(m|n), osp(2m+1|2n) and osp(2m|2n).
However, in this setting the Weyl group is insufficient to describe their structure as it does not see
the odd simple roots. One proposed solution is to replace the Weyl group by a Weyl groupoid.
There are various different constructions of Weyl groupoids, in particular the Weyl groupoid
from [SV11] and the root groupoid introduced in [GHS24]. An at first glance different notion
of Weyl groupoids plays an important role in the theory of Nichols algebras [Hec06], and their
associated combinatorics has been considered in depth, see the survey [AA17]. Weyl groupoids
in this sense can also be used as an analog of the Weyl group in the context of Lie superalgebras
[HY08; HS20], and turn out be closely related to the root groupoid. Our goal is to explicitly
describe the Weyl groupoids of sl(m|n), osp(2m+ 1|2n) and osp(2m|2n).

In the following we give detailed separate overviews over the main results in the four parts
of this thesis.
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1.1. Characterization of silting t-structures via derived projectives

1.1 Characterization of silting t-structures via derived pro-
jectives

Silting theory studies the interaction of t-structures, weight structures, simple-minded collec-
tions, and silting collections. In particular, one considers t-structures that are obtained from
silting collections. Our goal is to find a characterization of these silting t-structures by homo-
logical properties.

By definition [BBD82], a t-structure t = (D t≤0,D t≥0) on a triangulated category D provides
a t-decomposition triangle t≤0X → X → t>0X → t≤0X[1] for any X ∈ D . Its heart ♥t =
D t≤0 ∩ D t≥0 is then an abelian category. The prototypical example is the standard t-structure
on the derived category D(A ) of an abelian category A , given by

D t≤0 = {X ∈ D(A ) | Hn(X) = 0 ∀n > 0}, D t≥0 = {X ∈ D(A ) | Hn(X) = 0 ∀n < 0}.

Its heart consists of all those cochain complexes whose cohomology is concentrated in degree 0,
and is thus equivalent to A . The t-decompositions are given by the “soft truncations” of cochain
complexes.

The definition of weight structures from [Bon10b; Pau08] is very similar to that of
t-structures: a weight structure on a triangulated category C is a pair of subcategories
w = (Cw≥0,Cw≤0), providing weight decomposition triangles w>0X → X → w≤0X → w>0X[1]
for any X ∈ C . Its coheart ♥w = Cw≥0 ∩ Cw≤0 is an additive category. The easiest example of
a weight structure is the standard weight structure on the homotopy category C = K(A ) of an
additive category A , given by

Cw≥0 = {X ∈ C | ∃Y ∼= X : Y n = 0 ∀n < 0}, Cw≤0 = {X ∈ C | ∃Y ∼= X : Y n = 0 ∀n > 0}.

By definition, its coheart consists of all those complexes isomorphic to complexes concentrated
in degree 0 (at least if A is idempotent-complete), and is thus equivalent to A . The weight
decompositions are given by the “brutal truncations” of cochain complexes.

The subtle difference between the definitions of weight structures and t-structures lies in the
order of the terms in the decomposition triangles, and how these interact with shifts. As a result,
t-decompositions are unique and functorial, but weight decompositions are unique if and only if♥
w = {0}. Moreover, the heart of a t-structure is an abelian category with short exact sequences

given by triangles, but this is not true for weight structures.
If t is a bounded t-structure (i.e. if ♥t generates D as a triangulated category) and ♥t is

finite-length, then t can be reconstructed from the set of simple objects in ♥t. These form a
simple-minded collection. Similarly, if w is a bounded weight structure and ♥w is Krull–Schmidt,
then w can be recovered from the indecomposable objects in ♥w, and these form a classical silting
collection. The axiomatic definitions of simple-minded collections and classical silting collections
are easily obtained from these characterizations.

Now let T be a triangulated category and C and D thick subcategories of T . A weight
structure w on C is orthogonal to a t-structure t on D if Cw>0 ⊥ D t≤0 and Cw<0 ⊥ D t≥0.
Moreover, such an orthogonality is w-t-strict if these relations define the weight structure and
the t-structure. For instance, if A is a finite-dimensional algebra, then the standard weight
structure on C = Kb(projfg-A) is w-t-strictly left orthogonal to the standard t-structure on
D = Db(modfd-A), with both viewed as subcategories of T = D−(modfd-A) = K−(projfg-A).

The pair of subcategories (Kb(projfg-A),Db(modfd-A)) of D−(modfd-A) = K−(projfg-A)
is the prototypical example of a WT pair, introduced in [AMY19] as ST pair. In general, a
WT pair in T is roughly speaking a pair of thick subcategories (C ,D) such that T admits a
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Chapter 1. Introduction

bounded above weight structure w and a bounded above t-structure t with Tw≤0 = T t≤0, such
that C and D are the thick subcategories generated by ♥w respectively ♥t. In particular, w and
t restrict to a bounded weight structure on C and a bounded t-structure on D , respectively. For
a WT pair (C ,D), the following result from [Fus24] shows that w-t-strict orthogonality provides
a bijection between weight structures on C and t-structures on D . This unifies and generalizes
earlier results for Dynkin quivers [KV88], finite-dimensional algebras [KY14], non-positive dg
algebras [BY14], and positive dg algebras [KN13].

Theorem (WT correspondence). Let (C ,D) be a WT pair in T . Then the following diagram
of bijections commutes:

bounded t-structures t on D
with finite-length heart

bounded weight structures w on C
with Krull–Schmidt coheart

simple-minded collections L
in D

classical silting collections P
in C

Cw≤0 = ⊥(Dt>0)
Cw≥0 = ⊥(Dt<0)

Dt≤0 = (Cw>0)⊥
Dt≥0 = (Cw<0)⊥

sim
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in
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t
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cl
os
ur
e
of
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si
ti
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eg
at
iv
e
sh
ift
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w
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eg
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e
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s

simple tops of H0
t (P)

w-t-strict orthogonality

For the standard example (Db(modfd-A),Kb(projfg-A)) in D−(modfd-A) = K−(projfg-A),
the bijections identify the standard t-structure on Db(modfd-A), the simple-minded collection
consisting of the simple A-modules, the standard weight structure on Kb(projfg-A), and the
classical silting collection consisting of the indecomposable projective A-modules.

The crucial step in the proof of the WT correspondence (see e.g. [KY14, §5.6], [Ric02, §5], or
[Fus24, §4] for the general case) is the construction of a classical silting collection P corresponding
to a given simple-minded collection L. This classical silting collection is characterized by the
existence of a bijection φ : P → L such that

HomT (P,L[m]) ∼=
{

EndT (L) if L = φ(P ), m = 0,
0 otherwise,

but this does not provide a good conceptual interpretation of the relation of P and L.
However, this characterization looks very similar to the relation of the indecomposable pro-

jective objects to the simple objects in an abelian category. Moreover, in the standard example
of the WT correspondence the simple-minded collection consists of the simple modules, while
the correspnding classical silting collection consists of the indecomposable projective modules.
This shows that classical silting collections should play the role of the set of indecomposable
projective objects in the triangulated setup, while simple-minded collections should be seen as
analogs of the set of simple objects.
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1.1. Characterization of silting t-structures via derived projectives

The formalization of this observation is the first main result of this thesis. For this, we use
derived projective objects, which are the analog of projective objects for triangulated categories
equipped with t-structures. By definition, an object P ∈ T is derived projective with respect
to t if P ∈ T t≤0 and P ⊥ T t<0. For instance, if A is a finite-dimensional algebra, then A is
derived projective in Db(modfd-A) with respect to the standard t-structure. More generally,
let (C ,D) be a WT pair and P a classical silting collection in C corresponding to a bounded
t-structure t on D . Then P does not necessarily lie in D , and thus does not consist of derived
projective in D . However, by [AMY19, Prop. 5.2] t extends to a t-structure tP = (P⊥>0 ,P⊥<0)
on T , and hence any P ∈ P is derived projective in T with respect to tP .

In analogy to the abelian setting, [GLVdB21] introduced the notion of enough derived projec-
tives. Therein, it is shown that a pretriangulated dg category A equipped with a non-degenerate
bounded above t-structure on H0(A ) with enough derived projectives can be recovered from the
dg category consisting of the derived projective objects in A . This yields a correspondence be-
tween left homotopically coherent dg categories and pretriangulated dg categories with enough
derived projectives [GLVdB21, Thm. 7.12]. These results are applied in [GLVdB22; GLSVdB24]
to develop a deformation theory for pretriangulated dg categories with t-structures. In [GRG23],
the dual notion of enough derived injective objects is moreover used to prove a derived version
of the Gabriel–Popescu theorem.

To complete the picture, we introduce derived projective covers as analogs of projective cov-
ers in the triangulated setting. The following general theorem then in particular implies that
the classical silting collection P corresponding to a simple-minded collection L under the WT
correspondence consists of the derived projective covers of L:

Theorem A (Characterization of silting t-structures, Theorem 2.3.16). Let t be a non-degenerate
t-structure with finite-length heart on a triangulated category D . Let L be a full set of isomor-
phism representatives of the simple objects in ♥t and P a full set of isomorphism representatives
of the indecomposable derived projectives. Then the following are equivalent:

I) t is a silting t-structure in the sense of [PV18], i.e. t = (P⊥>0 ,P⊥<0).
II) There is a bijection φ : P → L such that

HomD(P,L[m]) ∼=
{

EndD(L) if L = φ(P ) and m = 0,
0 otherwise

(1.1)

as EndD(L)-modules.
III) Every L ∈ L admits a derived projective cover (and P is the set of these derived projective

covers).
IV) D has enough derived projectives with respect to t.

Theorem A is closely related to [CSPP22, Thm. 2.4] and [Bon19, Thm. 5.3.1], which provide
a similar criterion for the existence of an adjacent weight structure for a given t-structure. As an
application, in Definition 2.4.1 and Proposition 2.4.3 we provide a definition of WT pairs that is
equivalent to that from [AMY19]. Compared to the original definition, our definition uses weight
structures instead of classical silting collections, and as a result it is more symmetric. This is also
the reason why we prefer the name WT pair over ST pair, to reflect the use of weight structures
(instead of classical silting collections) and t-structure in the definition.

A different question is whether the bijection between weight structures and t-structures pro-
vided by the WT correspondence is natural with respect to weight exact functors and t-exact
functors. Since this bijection is given byw-t-strict orthogonality, a straightforward generalization
of [Bon10b, Prop. 4.4.5] shows that the WT correspondence is natural in the following sense:

9
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Theorem B (Naturality of the WT correspondence, Corollary 2.5.2). Let (C ,D) be a WT pair
in T and (C ′,D ′) a WT pair in T ′. Let w, w′ be bounded weight structures on C respectively
C ′, and t, t′ the corresponding bounded t-structures on D respectively D ′ under the WT cor-
respondence. Suppose that F : C → C ′ is left pseudo-adjoint to G : D ′ → D in the sense that
HomT ′(F (−),−) ∼= HomT (−, G(−)).

Then F is weight exact with respect to w and w′ if and only if G is t-exact with respect to t
and t′.

1.2 Koszul duality of simple-minded and silting collections

A Koszul algebra is a positively graded k-algebra A such that the simple A-modules have linear
projective resolutions. Its Koszul dual A! = Ext∗A(A0, A0) is again a Koszul algebra, and we have
(A!)! ∼= A. Moreover, the Koszul duality theorem from [BGS96; MOS09] provides a triangulated
equivalence

RHomA(A0,−) : D↓(A) ∼= D↑(A!),

where D↓(A) ⊆ D(A) and D↑(A!) ⊆ D(A!) are the subcategories consisting of complexes of
graded modules that are bounded below and “linearly bounded above”, respectively bounded
above and “linearly bounded below”. In particular, this identifies the simple A-modules with the
indecomposable projective A!-modules.

By definition, simple-minded collections are analogs of the set of simple modules, and by
Theorem A silting collections can be seen as analogs of the set of indecomposable projective
modules. As these are precisely the classes of objects exchanged by the classical Koszul duality,
we want to relate simple-minded collections and silting collections by some kind of Koszul duality.

The required notion of Koszul duality is provided by the dg Koszul duality for augmented dg
categories introduced in [Kel94]. Augmented dg categories include in particular the non-positive
dg algebras and positive dg algebras, viewed as dg categories via a primitive orthogonal collection
of idempotents. The dg Koszul dual A!,dg of a non-positive (respectively positive) dg algebra
A is a positive (respectively non-positive) dg algebra by [BY14; KN13]. Under some finiteness
assumptions, the double dg Koszul dual of a non-positive or positive dg algebras is the original
dg algebra, and there are equivalences between certain subcategories of D(A) and D(A!,dg), see
[Kel94; Fus25].

The dg Koszul dual is related to the classical Koszul dual A! considered in [BGS96] as follows.
A Koszul algebra A can be viewed as a positive dg algebra with the same grading and trivial
differential. If A has finite global dimension, it follows by combining [Sch11, Thm. 39] and [KN13,
Lemma 5.2] that

Hn(A!,dg) ∼=
{
A! if n = 0,
0 otherwise.

To apply dg Koszul duality to silting collections and simple-minded collections, we first have to
obtain dg algebras from these. For this, we use a dg enhancement T̃ of the ambient triangulated
category T . For any object X ∈ T , the dg enhancement provides a dg algebra End

T̃
(X) such

that H∗(End
T̃

(X)) ∼= End∗T (X). If P is a silting collection and L a simple-minded collection,
then as an immediate consequence of the definitions the dg algebra End

T̃
(
⊕

P∈P P ) is non-
positive and the dg algebra End

T̃
(
⊕

L∈L L) is positive. By applying dg Koszul duality to such
dg algebras arising from classical silting collections and simple-minded collections related by the
orthogonality relation (1.1), we obtain:

10
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Theorem C (Koszul duality of simple-minded/silting, Theorem 3.4.2). Let T be a compactly
generated dg-enhanced triangulated category. Let P be a classical silting collection in the sub-
category of compact objects of T and L a simple-minded collection in a subcategory of T , and
suppose there is a bijection φ : P → L satisfying (1.1).

1) If EndT (
⊕

P∈P P ) is finite-dimensional, then the dg algebra End
T̃

(
⊕

L∈L L) is the dg
Koszul dual of End

T̃
(
⊕

P∈P P ).
2) If HomT (

⊕
P∈P P,

⊕
P∈P P [n]) is finite-dimensional for all n ∈ Z, then End

T̃
(
⊕

P∈P P )
is the dg Koszul dual of End

T̃
(
⊕

L∈L L).
This result provides a notion of Koszul duality between simple-minded and silting collections,

which can be seen as a first step towards understanding the tentative Koszul duality between
weight structures and t-structures. More precisely, we ask:
Questions. Does the Koszul duality of simple-minded and silting collections from Theorem C
extend to a Koszul duality theorem relating. . .

1) . . . hearts and cohearts of orthogonal t-structures and weight structures?
2) . . . orthogonal t-structures and weight structures?
3) . . . the machinery of t-structures and weight structures, such as t-decompositions respec-

tively weight decompositions, and the realization functor respectively strong weight com-
plex functor?

1.3 Serre functor and P-objects for perverse sheaves on Pn

The notion of Serre functor introduced in [BK90] generalizes Serre duality from algebraic geome-
try. Serre functors are an important tool in the theory triangulated categories, and in particular
they allow to construct left adjoints of functors that have a right adjoint, and vice versa. Besides
algebraic geometry, Serre functors also appear in algebra and representation theory: by [Hap88]
the derived Nakayama functor is a Serre functor of the bounded derived category of a finite-
dimensional algebra of finite global dimension. This general result abstractly provides Serre
functors for many interesting triangulated categories in representation theory, and in particular
for the constructible derived categories of partial flag varieties G/P which play a central role
in geometric representation theory. However, this does not provide a description of the Serre
functor in the language intrinsic to the constructible derived category.

A partial flag variety G/P comes with a natural stratification provided by the double cosets
for a Borel subgroup of G, and this stratification can be used to construct the perverse t-
structures on the constructible derived category Db

c (G/P ) [BBD82]. Of particular importance
is the middle-perverse t-structure, and its heart is the category Perv(G/P ) of middle-perverse
sheaves. By well-known results from [BB81; BK81; BGS96], there are equivalences of triangulated
respectively abelian categories given by the diagram

Db
c (G/P ) Db(Op

0(g)) Db(Ap(g)-modfd)

Perv(G/P ) Op
0(g) Ap(g)-modfd.

∼= ∼=

∼= ∼=

Here Ap(g) is a certain finite-dimensional algebra which in general cannot be described explicitly,
see [Str03] for some known cases and an overview of the difficulties. In particular these equiv-
alences identify the middle-perverse t-structure on Db

c (G/P ) with the standard t-structures on
Db(Op

0(g)) and Db(Ap(g)-modfd).

11
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Since Ap(g)-modfd is a highest weight category in the sense of [CPS88; BS24], it has finite
global dimension, and thus by [Hap88] the left derived Nakayama functor is a Serre functor
for Db(Ap(g)-modfd). From the above equivalences it follows that Db(Op

0(g)) and Db
c (G/P )

also admit Serre functors. For Db(Op
0(g)), the Serre functor can be explicitly described in Lie-

theoretic language as the shifted derived shuffling functor Sh2
w0

[−2`(wp
0)] by results from [MS08].

The main result of Chapter 4 provides a description of the Serre functor in the language in-
trinsic to the constructible derived category for the special case G = GLn+1(k) and the parabolic
subgroup P ⊆ G with block sizes (n, 1), i.e. for G/P = Pn. For this we use the P-twists at P-
objects introduced in [HT06]. These are autoequivalences that generalize the spherical twists at
spherical objects from [ST01], and are defined as follows.

A Pk-like object in a triangulated category D is an object E ∈ D which cohomologically
looks like a projective space, i.e. such that End∗D(E) ∼= k[t]/(tk+1) with deg(t) = 2. It is
a Pk-object if it is moreover 2k-Calabi–Yau, i.e. there is a natural isomorphism HomD(P,−) ∼=
HomD(−, P [2k])∨. Slightly more generally, there are also Pk[d]-objects [Kru18; HK19], for which
End∗D(P ) ∼= k[t]/(tk+1) with deg(t) = d. In particular d-spherical objects are the same as P1[d]-
objects, and exceptional objects are the same as P0-like objects.

The value of the P-twist PTE associated to a P-like object E at X ∈ D is then defined by
the double cone construction(

Hom∗D(E,X)⊗ E
)
[−2] Hom∗D(E,X)⊗ E cone(t∗ ⊗ id− id⊗t)

X

cone(ev) = PTE(X).

t∗⊗id− id⊗t

ev
∃ev

where the factorization ev : cone(t∗ ⊗ id− id⊗t)→ X exists since ev ◦(t∗ ⊗ id− id⊗t) = 0. The
precise definition of the P-twist PTE as a triangulated functor requires some care and involves a
dg enhancement of D . If E is a spherelike object, then the P-twist PTE is related to the spherical
twist STE defined in [ST01] by PTE = ST2

E .
In our setting Db

c (Pn), the total endomorphism ring of the simple perverse sheaf ICk =
incl∗ kPk [k] is the cohomology ring of Pk, and hence ICk is a Pk-like object almost by definition.
Among the simple perverse sheaves, ICn = kPn [n] is moreover Calabi–Yau, and thus a Pn-object.
Therefore the P-twist PTICn at ICn is an autoequivalence of Db

c (Pn), and this yields the desired
description of the Serre functor:

Theorem D (Serre functor via P-twists, Theorem 4.3.11). The P-twist PTICn is the inverse
Serre functor of Db

c (Pn).

Theorem D in particular recovers the result for P1 from [Woo10], where it is shown that ST2
IC1

is the inverse Serre functor of Db
c (P1).

It would be desirable to extend Theorem D to other partial flag varieties. However, in this
case the appropriate notion of twist functors is yet to be defined.

Questions. Let G be a reductive algebraic group and P ⊆ G a parabolic subgroup.

1) Is the simple perverse sheaf kG/P [dimG/P ] a “partial flag variety object” in Db
c (G/P )?

2) Can one define a “partial flag variety twist” at a partial flag variety object, such that the
partial flag variety twist at kG/P [dimG/P ] is the inverse Serre functor for Db

c (G/P )?

12
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Motivated by Theorem D, one may wonder whether there are further interesting P-objects
in Perv(Pn). However, it is easy to see that no indecomposable object except ICn and the
indecomposable projective-injectives can be Calabi–Yau, and hence any other indecomposable
object can at best be P-like. By using the description of Perv(Pn) in terms of finite-dimensional
algebras, the indecomposable objects can be listed explicitly: there are the indecomposable
projective-injective objects and certain string objects M±a,b for 0 ≤ b ≤ a ≤ n. The indecompos-
able projective-injective objects are 0-spherical (i.e. P1[0]-objects), and for the string objects we
obtain the following classification result:

Theorem E (P-like string objects, Theorem 4.4.17). Let 0 ≤ b ≤ a ≤ n.

1) If a− b is even, then the string objects M±a,b are P(a+b)/2-like.

2) If a− b is odd, then the string objects M±a,b are P(a−b−1)/2-like.

In other words, all indecomposable perverse sheaves on Pn are P-like. Theorem E also yields
a classification of the spherelike objects (i.e. P1-like objects) in Perv(Pn), and moreover recovers
the classification of the exceptional objects (i.e. P0-like objects) from [PW20].

1.4 The Weyl groupoids of sl(m|n) and osp(r|2n)
Weyl groups play a central role in the structure theory of complex semisimple Lie algebras. In
particular, it is well-known that the systems of simple roots of a complex simple Lie algebra
are conjugate under the Weyl group. Classical simple Lie superalgebras are natural analogs
of simple Lie algebras in the Z/2Z-graded setting, and like their ungraded counterparts they
have systems of simple roots corresponding to Borel subalgebras. However, in contrast to the
ungraded situation, not all systems of simple roots are conjugate under the action of the Weyl
group of the even part. One way to remedy this issue is to use Weyl groupoids instead.

We consider the notion of Weyl groupoids introduced in [Hec06] in the theory of Nichols
algebras. Our main goal is to explicitly describe the Weyl groupoids of the classical simple Lie
superalgebras sl(m|n), osp(2m+ 1|2n) and osp(2m|2n).

Weyl groupoids are constructed from (semi-)Cartan graphs, i.e. edge-colored graphs together
with an assignment of a generalized Cartan matrix called Serre matrix to each vertex [HY08;
HS20]. This combinatorial data can be used to classify Weyl groupoids and Nichols algebras
[AA17], similarly to how Dynkin diagrams are used to classify Weyl groups and Lie algebras.
The Weyl groupoid is obtained from a Cartan graph by purely combinatorial means: an edge
x

i←→ y gives rise to simple reflections (si)x : x → y and (si)y : y → x defined in terms of
the Serre matrices, and these simple reflections generate the Weyl groupoid. In the theory of
Nichols algebras, the edges correspond to reflections of Yetter–Drinfeld modules, and for Lie
superalgebras the edges correspond to reflections at simple roots.

Weyl groupoids share many properties of Weyl groups. In particular they are Coxeter grou-
poids, i.e. the simple reflections are subject (only) to the Coxeter relations (sisj)mij = id for
certain mij ∈ Z with mii = 2. Like Coxeter groups, Coxeter groupoids have an associated
root system with powerful combinatorics, and in particular there are positive and negative roots
which can be used to determine the length of a morphism. There are also analogs of the exchange
condition and Matsumoto’s theorem [HY08].

We define the Cartan graph and the Weyl groupoid of a contragredient Lie superalgebras as
follows:

13
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Definition F (Weyl groupoids of Lie superalgebras, Definition 5.2.10). The Cartan graph Gg of
a regular symmetrizable contragredient Lie superalgebra g has

• vertices: a labelling set X for the ordered root bases of g.
• edges according to the rules:

◦ for each odd isotropic root αxi in an ordered root basis Π(x) and Π(x′) obtained from
Π(x) by an odd reflection at αxi in the sense of [PS89], there is an edge x i←→ x′ of
color i.

◦ for each root αxi ∈ Π(x) that is not odd isotropic, there is an edge x i←→ x of color i.

• the Serre matrices A(x), which are the matrices defining the Serre relations among the
generators of g corresponding to the ordered root basis Π(x).

The Weyl groupoid Wg is the Weyl groupoid of Gg.

Cartan graphs and Weyl groupoids of finite-dimensional Lie superalgebras were first consid-
ered in [HY08], and the notion has been extended to contragredient Lie superalgebras in [HS20].
Our definition is equivalent to the construction in [HS20, §11.2], but uses a language that is more
convenient if one wants to understand the structure of a Lie superalgebra.

The following theorem justifies the terminology in Definition F.

Theorem G (Cartan Graph Theorem, Corollary 5.2.14). The graph Gg is a Cartan graph in
the sense of [HS20].

In the structure theory of Lie superalgebras, there are several other notions of “Weyl grou-
poid”. These are related to the Weyl groupoid Wg from Definition F as follows:

1) Wg is obtained from a component of the Weyl groupoid introduced in [Ser11] by forgetting
all morphisms corresponding to rescaling rows of the Cartan matrices B.

2) A connected component of the skeleton of the root groupoid introduced in [GHS24] is the
simply connected cover of Wg in the sense of [HS20, Def. 9.1.10 and 10.1.1].
Conversely, the subgroupoid W ′g of Wg generated by all isotropic reflections is isomorphic
to a connected component of the spine of the root groupoid.

3) There is no connection to the Weyl groupoid in the sense of [SV11].

The Weyl groupoids of the classical simple Lie superalgebras sl(m|n), osp(2m + 1|2n) and
osp(2m|2n) can be explicitly described as follows. For these Lie superalgebras, the systems
of simple roots have been classified in [Kac77] and can be written down explicitly in terms of
(m,n)-shuffles, i.e. permutations of {1, . . . ,m + n} that do not swap the relative order of the
elements in {1, . . . ,m} and {m + 1, . . . ,m + n}. These shuffles can moreover be identified with
partitions fitting into a rectangle of size m × n, which is more convenient if one wants to write
down the corresponding Borel subalgebras. In this graphical language, odd reflections corre-
spond to adding or removing boxes to (respectively from) partitions, and the edge coloring is
then determined by numbering the boxes of the partition as follows:

1
2
3

2
3
4

3
4
5

4
5
6
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We use the slightly unusual convention that the longest row of the partition is at the bottom,
which makes it easier to write down the corresponding Borel subalgebras. For instance, the
shaded boxes in the above picture are the partition (4, 2, 1). To this, the boxes numbered 2 and
4 can be added, and the boxes numbered 1, 3 and 6 can be removed.

The description of the ordered root bases and odd reflections in terms of partitions makes
it very easy to describe the Cartan graphs and Weyl groupoids of sl(m|n), osp(2m + 1|2n) and
osp(2m|2n), see Propositions 5.4.1, 5.4.2 and 5.4.4. In the following we describe the smallest
non-trivial examples, namely those determined by partitions fitting in a 1× 2-rectangle.

For sl(1|2), the underlying graph of the Cartan graph is

∅ 12 2 1

and the Serre matrix is A2 =
( 2 −1
−1 2

)
at every vertex. The Weyl groupoid is then generated by

the simple reflections (s1)x and (s2)x corresponding to the edges, where x is any partition fitting
in the 1×2-rectangle indicating the source of the reflection. For instance, the edge ∅ 1←→ gives
rise to (s1)∅ : ∅ → and (s1)� : → ∅. These are subject to the usual type A Coxeter relations,
i.e. s2

i = id and s1s2s1 = s2s1s2 for any composition that makes sense. The observations from
this small example generalize directly to sl(m|n).

For osp(3|4), the Cartan graph has the shape

∅ 1

2

3

2

3

3

1

and the Serre matrix is B3 =
( 2 −1 0
−1 2 −2
0 −1 2

)
at every vertex. It follows that the simple reflections

(si)x (for 1 ≤ i ≤ 3 and any partition x) are subject to the type B Coxeter relations s2
i = id,

s1s2s1 = s2s1s2, s1s3 = s3s1 and s2s3s2s3 = s3s2s3s2. As for sl(m|n), the observations from
this example generalize easily to osp(2m+ 1|2n).

For osp(2m|2n) the situation is more complicated. In this case, the Borel subalgebras are
labelled by partitions and an additional sign ε ∈ {+,−,±}. For instance, the Cartan graph of
osp(2|4) has the shape

(∅,+) ( ,+) ( ,±) ( ,−) (∅,−)1

2

3

2

3

3

1

1

2

3

2

From left to right, the Serre matrices are C3 =
( 2 −1 0
−1 2 −1
0 −2 2

)
, A3 =

( 2 −1 0
−1 2 −1
0 −1 2

)
, the matrix( 2 −1 −1

−1 2 −1
−1 −1 2

)
, A′3 =

( 2 0 −1
0 2 −1
−1 −1 2

)
and C ′3 =

( 2 0 −1
0 2 −2
−1 −1 2

)
. The simple reflections of the Weyl

groupoid are subject to the Coxeter relations (sisj)m
x
ij = idx, where mx

ij is determined from
the Serre matrix A(x) corresponding to the source x by the usual rules. In particular, in this
example the relations depend on the vertices. The general case osp(2m|2n) is similar to this,
but in addition to the Serre matrices of the above types there will also be Serre matrices of type
Dm+n appearing.
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1.5 Structure of the thesis
The thesis consists of four parts, corresponding to the four main questions. These can be read
mostly independently of each other, except that Chapter 3 relies on some definitions from Chap-
ter 2.

In Chapter 2 we consider the relation of weight structures and t-structures by orthogonality.
We recall the definitions and some important examples of weight structures, t-structures, simple-
minded collections and silting collections, as well as the definition of orthogonality and adjacency,
in Section 2.2. In Sections 2.3.1 and 2.3.2 we discuss derived projective objects and derived
projective covers in general, and in Section 2.3.3 we show how these notions are related to
silting t-structures. These results are applied to the WT correspondence in Section 2.4, and in
Section 2.5 we show that the WT correspondence is natural. This chapter is an expanded version
of §2, §3 and §5 of [Bon25].

The Koszul duality of simple-minded collections and silting collections is studied in Chapter 3.
The definition of dg Koszul duality and its relation to the classical Koszul duality can be found
in Section 3.3. In Section 3.4 we prove the Koszul duality theorem for simple-minded collections
and silting collections, and in Section 3.5 we provide three small examples of the Koszul duality.
The chapter is an expanded version of §4 of [Bon25].

In Chapter 4 we describe the Serre functor of the constructible derived category Db
c (Pn)

and classify the P-like objects in Perv(Pn). In Section 4.2 we provide the necessary technical
background about P-twists and the definition of Serre functors. We also recall the definition of
Db

c (Pn) and Perv(Pn) and describe the simple, standard and costandard objects in Perv(Pn),
and also the construction of the indecomposable projective and injective objects. We summarize
the relation to parabolic category O and the description in terms of finite-dimensional algebras
in Section 4.2.5. The description of the Serre functor is obtained in Section 4.3, and we compare
the different descriptions of the Serre functor in Section 4.3.6. In Section 4.4 we construct the
string objects, and compute the morphisms between them to show that they are P-like. This
chapter is joint work with Alessio Cipriani [BC25].

Chapter 5 is about Weyl groupoids of Lie superalgebras. Section 5.2 contains the definition of
Cartan graphs and Weyl groupoids, both in general and for contragredient Lie superalgebras. In
Section 5.2.5 we compare the various notions of Weyl groupoids. The Weyl groupoids of sl(m|n),
osp(2m + 1|2n) and osp(2m|2n) are described in Section 5.4. For this we recall the required
descriptions of the ordered root bases and Borel subalgebras in Section 5.3, and compute the
required Cartan data in Section 5.A. This chapter is joint work with Jonas Nehme [BN24].

[BC25] L. Bonfert and A. Cipriani. Serre functor and P-objects for perverse sheaves on
Pn. Preprint. 2025. arXiv:2506.06051v1 [math.RT].

[BN24] L. Bonfert and J. Nehme. “The Weyl groupoids of sl(m|n) and osp(r|2n)”. J.
Algebra 641 (2024).

[Bon25] L. Bonfert. “Derived projective covers and Koszul duality of simple-minded and
silting collections”. To appear in Appl. Categ. Struct. (2025). arXiv:2309.00554v3
[math.RT].
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Chapter 2

Characterization of silting t-structures
via derived projectives

In this chapter we use derived projective objects to provide a characterization of silting t-
structures. We begin by recalling the notions of t-structures, weight structures, simple-minded
collections and silting collections, and how these are related to each other. In particular, we con-
sider variants of the adjacency and orthogonality of weight structures and t-structures introduced
in [Bon10a].

To characterize silting t-structures, we study derived projective objects with respect to a
t-structure and the notion of enough derived projectives from [GLVdB21]. We show in Theo-
rem 2.3.7 that this definition agrees with the notion of enough Ext-projectives from [CSPP22].
By [CSPP22, Thm. 2.4] enough derived projectives provide a criterion for the existence of an ad-
jacent weight structure for a given t-structure, and we slightly refine this result in Corollary 2.3.9.

We then introduce derived projective covers and provide several equivalent definitions for
special cases of the definition, in analogy to the equivalent definitions of projective covers in
abelian categories. The main result of this chapter (Theorem 2.3.16) characterizes silting t-
structures with finite-length heart as those non-degenerate t-structures with respect to which
the triangulated category has enough derived projectives. A further equivalent criterion is that
every simple object of the heart admits a derived projective cover.

In Section 2.4 we apply Theorem 2.3.16 to the WT correspondence from [KY14; Fus24]. We
provide an equivalent definition for WT pairs (introduced as ST pairs in [AMY19]), and show that
the bijection between weight structures and t-structures provided by the WT correspondence is
given by w-t-strict orthogonality. From this it follows that the silting collection corresponding
to a simple-minded collection under the WT correspondence consists of its derived projective
covers. In Theorem 2.5.1 we show that orthogonality of weight structures and t-structures, and
in particular the WT correspondence, is natural with respect to weight exact functors and t-exact
functors.
The chapter is based on [Bon25, §1–3 and §5].

[Bon25] L. Bonfert. “Derived projective covers and Koszul duality of simple-minded and
silting collections”. To appear in Appl. Categ. Struct. (2025). arXiv:2309.00554v3
[math.RT].

2.1 Motivation and overview of results
In any triangulated category C there is a bijection between simple-minded collections in C and
bounded t-structures with finite-length heart on C , sending a t-structure t to the set of simple
objects in its heart ♥t. Similarly, there is a bijection between (classical) silting collections in
C and bounded weight structures (also known as co-t-structures) with Krull–Schmidt coheart,
sending a weight structure w to the set of indecomposable objects in its coheart ♥w.
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Chapter 2. Characterization of silting t-structures via derived projectives

Weight structures and t-structures on (not necessarily the same) triangulated categories are
closely related by the notion of orthogonality introduced in [Bon10a]. For instance, for a finite-
dimensional algebra A [KY14] establishes a bijection between bounded weight structures on
Kb(projfg-A) and bounded t-structures on Db(modfd-A) with finite-length heart. This WT
correspondence can be formulated in terms of w-t-strict left orthogonality, where we say that
a weight structure w is w-t-strictly left orthogonal to a t-structure t if (Cw≤0)⊥ = D t>0 and
⊥(D t>0) = Cw≤0, and similarly for Cw≥0 and D t<0. This is slightly stronger than the strict
orthogonality considered in [Bon19], and there are several other variants. However, in many
cases at least some of them coincide, see Section 2.2.5.

In terms of the corresponding silting collection P and simple-minded collection L, the bijection
from [KY14] is characterized by the existence of a bijection φ : P → L such that

Hom(P,L[m]) ∼=
{

End(L) if L = φ(P ), m = 0,
0 otherwise.

(2.1)

This bijection sends P ∈ P to the simple top of t≥0P ∈ ♥t. Recently, [Fus24] proved such
bijections in the setup of WT pairs, which were introduced as ST pairs in [AMY19]. This
provides a common generalization of the results from [KY14] as well as the analogous results for
non-positive dg algebras with finite-dimensional total cohomology from [BY14] and homologically
smooth non-positive dg algebras from [KN11]. For positive dg algebras, the results in [KN13]
provide further examples of WT pairs. Here we call a dg algebra A (cohomologically) non-positive
if Hn(A) = 0 for n > 0, and (cohomologically) positive if Hn(A) = 0 for n < 0 and H0(A) is
semisimple.

The main result of this chapter relates silting collections to derived projective objects (also
known as Ext-projective objects) which are an analog of projective objects in the triangulated
setting. Analogously to the setting of abelian categories, [GLVdB21] introduced the term enough
derived projectives. In Theorem 2.3.7 we show that this definition agrees with the notion of enough
Ext-projectives from [CSPP22]. Enough derived projectives are used in [CSPP22, Thm. 2.4] to
provide a criterion for the existence of a left adjacent weight structure, see Corollary 2.3.9 for a
slightly refined version.

For a t-structure tP = (P⊥>0 ,P⊥<0) obtained from a silting collection P in the sense of
[PV18], an easy but important observation shows that P consist of derived projective objects
with respect to tP . As is evident from (2.1), the relation of silting collections to simple-minded
collections is somewhat similar to the relation of indecomposable projective objects to simple
objects in finite-length abelian categories. To formalize this, in Definition 2.3.11 we introduce
derived projective covers, and we show the following result:

Theorem 2.1.1 (Theorem 2.3.16). Let t be a non-degenerate t-structure on D with finite-length
heart. Let L be a full set of isomorphism representatives of the simple objects in ♥t and P a full
set of isomorphism representatives of the indecomposable derived projectives. Then the following
are equivalent:

I) t is silting (and P is the silting collection).
II) There is a bijection φ : P → L satisfying (2.1).
III) Every L ∈ L admits a derived projective cover (and P is the set of these derived projective

covers).
IV) D has enough derived projectives with respect to t.

This result is somewhat analogous to [CSPP22, Thm. 2.4]. As an application, in Theo-
rem 2.3.18 we show that for a t-structure obtained from a simple-minded collection L and a
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weight structure obtained from a silting collection P, the relations (2.1) characterize orthogo-
nality, and moreover that these relations are equivalent to P consisting of the derived projective
covers of L. This is not very surprising, as it is similar to the results contained in [KY14].

Theorem 2.1.1 also allows us to study the bijections between weight structures and
t-structures in more detail. For this, in Definition 2.4.1 we define WT pairs, and in Proposi-
tion 2.4.3 we show that this definition is equivalent to the axioms for the ST pairs from [AMY19].
Compared to the definition in [AMY19], our definition uses weight structures instead of silting
collections, which makes the definition more symmetric. In Theorem 2.4.4 we show that at
the level of weight structures and t-structures the bijection from [Fus24] is given by w-t-strict
orthogonality. From this it follows by Theorem 2.1.1 that the silting collection corresponding
to a simple-minded collection under the WT correspondence consists of its derived projective
covers.

A related question is whether w-t-strict orthogonality between weight structures and t-
structures is natural with respect to weight exact functors and t-exact functors that are (in
a certain sense) adjoint to each other. The setup of the main result Theorem 2.5.1 is somewhat
technical, although the proof is straightforward and essentially the same as [Bon19, Prop. 4.4.5].
In particular, it follows from this that the bijection between weight structures and t-structures
provided by the WT correspondence is natural:

Theorem 2.1.2 (Corollary 2.5.2). Let (C ,D) be a WT pair in T and (C ′,D ′) a WT pair in
T ′. Let w, w′ be bounded weight structures on C resp. C ′, and t, t′ the corresponding bounded
t-structures on D resp. D ′ under the WT correspondence. Suppose that F : C → C ′ is left
pseudo-adjoint to G : D ′ → D in the sense that HomT ′(F (−),−) ∼= HomT (−, G(−)).

Then F is weight exact with respect to w and w′ if and only if G is t-exact with respect to t
and t′.

2.2 Definitions
We begin by recalling the definitions of t-structures, weight structures, simple-minded collections
and silting collections. For silting collections, we also compare two slightly different definitions.
Finally we recall the notion of orthogonality between weight structures and t-structures, and
compare the various strictness levels in special cases.

Unless explicitly mentioned, all categories will be linear over some (fixed) field k. (Dg)
modules over a (dg) algebra will be right modules, unless stated otherwise. For subcategories
A ,B ⊆ C we write A ⊥ B if HomC (A,B) = 0 for all A ∈ A , B ∈ B. Moreover we write
A ⊥ = {C ∈ C | HomC (A,C) = 0 ∀A ∈ A } and ⊥A = {C ∈ C | HomC (C,A) = 0 ∀A ∈ A }.
For a triangulated category D and X ⊆ D , the full subcategory whose objects are the direct
summands of finite coproducts of objects in X is denoted by KarD(X ), and the closure of X
under extensions is denoted by extclosD(X ).

2.2.1 t-structures
The notion of t-structures on triangulated categories was introduced in [BBD82].

Definition 2.2.1. A t-structure on a triangulated category D is a pair t = (D t≤0,D t≥0) of
strict full subcategories such that

• D t≤0[1] ⊆ D t≤0 and D t≥0[−1] ⊆ D t≥0,
• D t≤0 ⊥ D t≥0[−1],
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• for all X ∈ D there is a triangle (called t-decomposition of X)

t≤0X → X → t>0X → t≤0X[1]

with t≤0X ∈ D t≤0 and t>0X ∈ D t≥0[−1].

The full subcategory ♥t = D t≤0 ∩D t≥0 is called the heart of t.

We also write D t>0 = D t≥0[−1] and D t<0 = D t≤0[1], and also D t≥n = D t≥0[−n] for n ∈ Z
(and analogously D t≤n).

A t-structure t is called non-degenerate if
⋂
n∈Z D t≤n = {0} =

⋂
n∈Z D t≥n. It is bounded

above if D =
⋃
n∈Z D t≤n, bounded below if D =

⋃
n∈Z D t≥n, and bounded if D = triaD(♥t). Here

triaD(♥t) denotes the triangulated subcategory of D generated by ♥t. Note that t is bounded if
and only if it is bounded above and bounded below.

Recall that t-decompositions are unique up to isomorphism, and furthermore t≥0 : D → D t≥0

and t≤0 : D → D t≤0 define functors that are left (resp. right) adjoint to the respective inclusions
[BBD82, Prop. 1.3.3]. Also recall that D t≤0 = ⊥(D t>0) and D t≥0 = (D t<0)⊥.

Example 2.2.2. The following are some examples of t-structures:

1) Let A be an abelian category. The standard t-structure on the derived category D(A ) is
given by

D t≤0 = {X ∈ D(A ) | Hn(X) = 0 ∀n > 0}, D t≥0 = {X ∈ D(A ) | Hn(X) = 0 ∀n < 0}.

It restricts to a bounded (resp. bounded above, resp. bounded below) t-structure on Db(A )
(resp. D−(A ), resp. D+(A )). Its heart is equivalent to A .

2) Let A be a non-positive dg algebra, i.e. a dg algebra such that Hn(A) = 0 for n > 0. By
[HKM02, Thm. 1.3], there is a standard t-structure on the derived category D(A) defined
by

D t≤0 = {X ∈ D(A) | Hn(X) = 0 ∀n > 0}, D t≥0 = {X ∈ D(A) | Hn(X) = 0 ∀n < 0},

and its heart is equivalent to Mod-H0(A). It restricts to a bounded t-structure on Dfd(A),
with heart equivalent to modfd-H0(A).

3) LetA be a locally finite-dimensional positive dg algebra, i.e. a dg algebra such thatHn(A) =
0 for n < 0, H0(A) is a semisimple algebra, and each Hn(A) is finite-dimensional. By
[KN13, Thm. 7.1] there is a t-structure on perf(A), which is defined by

D t≤0 = KarD(A) extclosD(A){A[n] | n ≥ 0}, D t≥0 = KarD(A) extclosD(A){A[n] | n ≤ 0}.

4) The Postnikov t-structure (also called standard t-structure) on the stable homotopy cate-
gory SH is given by

D t≤0 = {X ∈ SH | πi(X) = 0 ∀i < 0}, D t≥0 = {X ∈ SH | πi(X) = 0 ∀i > 0}.

Its heart is equivalent to Mod-Z.

Further examples include the perverse t-structures from [BBD82] and the Koszul t-structure from
[BGS96; MOS09].
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2.2.2 Weight structures
Weight structures (also known as co-t-structures) were originally defined in [Bon10b] and [Pau08].
Definition 2.2.3. A weight structure on a triangulated category C is a pair w = (Cw≤0,Cw≥0)
of Karoubi-closed full subcategories such that

• Cw≤0[1] ⊆ Cw≤0 and Cw≥0[−1] ⊆ Cw≥0,
• Cw≥0[−1] ⊥ Cw≤0,
• for all X ∈ C there is a triangle (called weight decomposition of X)

w>0X → X → w≤0X → w>0X[1]
with w>0X ∈ Cw≥0[−1] and w≤0X ∈ Cw≤0.

The full subcategory ♥w = Cw≤0 ∩ Cw≥0 is called the coheart of w.
As for t-structures we write Cw>0 = Cw≥0[−1], Cw≥n = Cw≥0[−n], and so on.
A weight structure w is called non-degenerate if

⋂
n∈Z Cw≤n = {0} =

⋂
n∈Z Cw≥n. It is

bounded above if C =
⋃
n∈Z Cw≤n, bounded below if C =

⋃
n∈Z Cw≥n, and bounded if C =

thickC (♥w). Here thickC (♥w) denotes the thick subcategory of C generated by ♥w. Note that
w is bounded if and only if it is bounded above and bounded below.

Analogously to the situation for t-structures we have Cw≤0 = (Cw>0)⊥ and Cw≥0 = ⊥(Cw<0),
see [Bon10b, Prop. 1.3.3]. In contrast to t-decompositions, by [Bon10b, Rem. 1.2.2] weight
decompositions are usually not unique. In particular w≤0 and w>0 do not define functors.
Example 2.2.4. The following are some examples of weight structures:

1) Let A be an additive category. The standard weight structure on the homotopy category
K(A ) is given by

Cw≥0 = {X ∈ K(A ) | ∃Y ∼= X : Y n = 0 ∀n < 0},
Cw≤0 = {X ∈ K(A ) | ∃Y ∼= X : Y n = 0 ∀n > 0}.

Its coheart is KarK(A )(A ), where A is embedded into K(A ) as the complexes concentrated
in degree 0. In particular, if A is idempotent-complete, then ♥w consists of the complexes
concentrated in degree 0, and thus is equivalent to A .

2) Let A be a non-positive dg algebra. By [BY14, Thm. A.1] (see also [Bon10b, Prop. 6.2.1]),
there is a standard weight structure on perf(A) is given by
Cw≥0 = KarD(A) extclosD(A){A[n] | n ≤ 0}, Cw≤0 = KarD(A) extclosD(A){A[n] | n ≥ 0}.

3) Let A be a positive dg algebra. By [KN13, Cor. 4.1] there is a weight structure on D(A)
defined by
Cw≥0 = {X ∈ D(A ) | Hn(X) = 0 ∀n < 0}, Cw≤0 = {X ∈ D(A ) | Hn(X) = 0 ∀n > 0}.

4) The spherical weight structure from [Bon10b, §4.6] on the subcategory SHfin ⊆ SH of finite
spectra is given by

Cw≥0 = KarSH extclosSH{S[n] | n ≤ 0}, Cw≤0 = KarSH extclosSH{S[n] | n ≥ 0},
where S denotes the sphere spectrum.

Further examples include the weight structures obtained from Koszul duality and Ringel duality,
see [ES22, §2.4–2.5], the weight structure on the derived category of mixed Hodge modules
from [Bon10c, Prop. 2.3.9], and the Chow weight structure on Voevodsky’s category of effective
geometric motives from [Bon10b, §6–7].
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2.2.3 Simple-minded collections
The following definition is from [AN09] and [KY14], and the axioms already appeared in [Ric02].
Definition 2.2.5. A simple-minded collection in a triangulated category D is a (not necessarily
finite) set L of objects of D such that

• HomD(L,L′[m]) = 0 for all L,L′ ∈ L, m < 0,
• HomD(L,L′) = 0 for L,L′ ∈ L, L 6= L′,
• EndD(L) is a division algebra for all L ∈ L,
• triaD(L) = D .

A simple-minded collection is finite if it consists of finitely many objects.
Remark 2.2.6. Note that in contrast to most of the existing literature we do not assume simple-
minded collections to be finite, see also [Sch20] where infinite simple-minded collections are also
studied. However, if a triangulated category D admits a finite simple-minded collection, then
automatically any simple-minded collection in D is finite, since it follows from Proposition 2.2.7
that simple-minded collections form bases of the Grothendieck group of D .

An abelian category is finite-length (or a length category) if all of its objects have finite length.
The definition of simple-minded collections is based on properties of the simple objects in the
heart of a bounded t-structure with finite-length heart, and in fact specifying a simple-minded
collection is equivalent to specifying such a t-structure. This is already mentioned in [BBD82,
Rem. 1.3.14], and explicitly spelled out in [AN09].
Proposition 2.2.7.

1) Let L be a simple-minded collection in D . Then t = (D t≤0,D t≥0), with

D t≤0 = extclosD{L[m] | L ∈ L,m ≥ 0}, D t≥0 = extclosD{L[m] | L ∈ L,m ≤ 0},

is a bounded t-structure with finite-length heart, and L is a full set of isomorphism repre-
sentatives of the simple objects in ♥t.

2) Let t be a bounded t-structure on D such that ♥t is finite-length, and let L be a full set
of isomorphism representatives of the simple objects in ♥t. Then L is a simple-minded
collection in D .

Proof. See [AN09, Prop. 2 and Prop. 4]. Although the propositions there are formulated only for
the bounded derived category of a self-injective algebra, the proofs work in a general triangulated
category without modifications.

The following examples are standard examples of simple-minded collections.
Example 2.2.8.

1) Let A be a finite-length abelian category and L a full set of isomorphism representatives
of the simple objects in A . Then L is a simple-minded collection in Db(A ), corresponding
to the standard t-structure.

2) Let A be a non-positive dg algebra. A finite-dimensional simple H0(A)-module can be
viewed as a dg A-module via the quasi-isomorphism t≤0A→ A (where t≤0 denotes the t-
truncation with respect to the standard t-structure) and the quotient map t≤0A→→ H0(A).
Then a full set L of isomorphism representatives of the simple H0(A)-modules is a simple-
minded collection in Dfd(A).

3) Let A be a locally finite-dimensional positive dg algebra. Then the indecomposable sum-
mands of A form a simple-minded collection in perf(A).
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2.2.4 Silting collections
For a collection of objects X in a triangulated category D we write X⊥>0 = {D ∈ D |
HomD(X,D[m]) = 0 ∀m > 0, X ∈ X}, and analogously define X⊥<0 , X⊥≥0 , etc.

The following definition is based on [PV18, Def. 4.1]. There are other definitions of silting,
see [PV18, Ex. 4.2] for an overview and comparison of different definitions.

Definition 2.2.9. A silting collection in a triangulated category D is a (not necessarily finite)
set P of objects of D such that

• KarD(P) is Krull–Schmidt,
• objects in P are indecomposable and pairwise non-isomorphic,
• tP = (P⊥>0 ,P⊥<0) is a t-structure on D , called the silting t-structure associated with P.

We say that P is finite if it consists of finitely many objects. A silting collection consisting of
compact objects (in a triangulated category with small coproducts) is called compact.

Remark 2.2.10. In [PV18, Def. 4.1] it is moreover required that HomD(P, P ′[m]) = 0 for all
P, P ′ ∈ P and m > 0. However, as mentioned in [AHLSV22, Prop. 2.5], this assumption
is automatic: for P ∈ P, take the t-decomposition t≤0P → P → t>0P → t≤0P [1]. Then
t>0P ∈ P⊥≤0 , so t≤0P [1] ∼= P [1]⊕ t>0P and thus P ∼= t≤0P ∈ P⊥>0 .

In the literature usually silting objects (rather than silting collections) are used, see
e.g. [KY14; PV18]. However these provide exactly the same data, at least in the finite case:
given a silting object P , (isomorphism representatives of) its indecomposable summands
form a silting collection. Conversely, if P is a silting collection, then

∐
P∈P P is a silting

object (assuming the coproduct exists). We prefer to use silting collections rather than silting
objects since we are mostly interested in the indecomposable summands, but will nevertheless
occasionally use the word silting object if it is more convenient.
Remark 2.2.11. It is important to specify the ambient triangulated category D for a silting
collection P. Note that if P is a silting collection in D , then not necessarily D = thickD(P).
In particular, P is in general not a silting collection in thickD(P), since the associated silting
t-structure need not restrict to a t-structure on thickD(P).

Example 2.2.12. The following examples are standard examples of silting objects. In each
case, silting collections can be obtained by taking their indecomposable direct summands.

1) For an algebra A and X ∈ D(Mod-A) we have Hn(X) ∼= HomD(Mod-A)(A,X[n]), and
thus A is a silting object in D(Mod-A), defining the standard t-structure. If A is finite-
dimensional, it is also a silting object in Db(modfd-A) and D−(modfd-A).

2) A non-positive dg algebra A is a silting object in D(A) by [HKM02, Thm. 1.3] (see also
[BY14, Thm. A.1]), and its associated silting t-structure is the standard t-structure. If
H∗(A) is finite-dimensional, then A is also a silting object in Dfd(A).

3) The sphere spectrum S is a silting object in the stable homotopy category SH, since
πi(X) = HomSH(S, X[−i]). Its associated silting t-structure is the Postnikov t-structure.

Using the terminology from [Stacks, Tag 09SJ], we say that a set of objects X weakly generates
D if HomD(X,Y [n]) = 0 for all n ∈ Z and X ∈ X implies Y = 0. The following result is also
stated in [PV18, Prop. 4.3], however we were unable to verify their proof.

Lemma 2.2.13. A silting collection P in D weakly generates D . In particular, the associated
silting t-structure tP is non-degenerate.
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Proof. Let X ∈ D such that HomD(P,X[n]) = 0 for all P ∈ P and n ∈ Z. Then in particular
X ∈ P⊥>0 and X ∈ P⊥≤0 , and thus both X → X → 0 → X[1] and 0 → X → X → 0 are
t-decompositions of X with respect to tP . But since t-decompositions are unique it follows that
X = 0.

That tP is non-degenerate is equivalent to P weakly generating D since D tP≤n = P⊥>n for
all n ∈ Z, and analogously for the positive part.

For us the main class of examples will be silting collections according to the following “clas-
sical” definition going back to [KV88] and [AI12, Def. 2.1].

Definition 2.2.14. A classical silting collection in a triangulated category C is a set P of
pairwise non-isomorphic objects of C such that

• KarC (P) is Krull–Schmidt,
• objects in P are indecomposable,
• HomC (P, P ′[m]) = 0 for all P, P ′ ∈ P, m > 0,
• C = thickC (P).

The difference to Definition 2.2.9 is that silting collections by definition provide t-structures,
while classical silting collections have to generate C as thick subcategory. By Remark 2.2.10 a
silting collection P in D is a classical silting collection in thickD(P). In particular, the examples
listed in Example 2.2.12 can also be seen as classical silting collections:

Example 2.2.15.

1) Let A be an algebra. Then a full set of isomorphism representatives of the indecomposable
projective A-modules form a classical silting object in Kb(projfg-A).

2) Let A be a non-positive dg algebra. The direct summands of A (up to isomorphism) as a
dg A-module form a classical silting object in perf(A).

3) The sphere spectrum S forms a classical silting collection in the triangulated category SHfin
of finite spectra.

The following lemma describes the relation between silting collections and classical silting
collections in compactly generated triangulated categories. We write Dc for the full subcategory
of compact objects of a triangulated category D with small coproducts.

Lemma 2.2.16. Let D be a compactly generated triangulated category. Then a set of objects P
is a compact silting collection in D if and only if P is a classical silting collection in Dc.

Proof. By [AI12, Cor. 4.7] a classical silting collection P in Dc provides a t-structure tP =
(P⊥>0 ,P⊥<0) on D and hence is a silting collection in D .

Conversely, if P is a compact silting collection in D , then P weakly generates D
by Lemma 2.2.13, and it follows from general facts (see e.g. [Kra21, Prop. 3.4.15]) that
thickD(P) = Dc. Thus P is a classical silting collection in Dc.

One often considers classical silting collections in Kb(projfg-A) for a finite-dimensional alge-
bra A. For instance [KY14] describes the relation of classical silting collections in Kb(projfg-A)
to t-structures on Db(modfd-A). We would like to rephrase these results using silting collec-
tions instead of classical silting collections. However, we can’t apply Lemma 2.2.16 directly, as
Db(modfd-A) is not compactly generated since it does not have small coproducts.
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Proposition 2.2.17. Let A be a finite-dimensional algebra and P be a set of objects of D =
D(Mod-A). Then the following are equivalent:

I) P is a classical silting collection in Kb(projfg-A).
II) P is a compact silting collection in D(Mod-A).
III) P is a silting collection in Db(modfd-A) and tP is a bounded t-structure on Db(modfd-A).
IV) P is a silting collection in Db(modfd-A) and thickD(P) = Kb(projfg-A).

Proof. I) ⇐⇒ II): It is well-known that D = D(Mod-A) is compactly generated, and Dc =
Kb(projfg-A). Thus by Lemma 2.2.16 classical silting collections in Kb(projfg-A) are the same
as compact silting collections in D(Mod-A).

I) =⇒ III): It follows from (the proof of) [KY14, Lemma 5.3] that classical silting collections
P in Kb(projfg-A) are silting collections P in Db(modfd-A), and that tP is bounded.

III) =⇒ IV): Let L be a simple A-module. If tP is bounded, then for P ∈ P we have
HomDb(modfd-A)(P,L[m]) = 0 for m � 0 or m � 0, which implies P ⊆ Kb(projfg-A). It then
follows from the proof of [AMY19, Cor. 6.9] that thickD(P) = Kb(projfg-A).

IV) =⇒ I): This is immediate from Remark 2.2.10.

Remark 2.2.18. It seems very likely that every silting t-structure on Db(modfd-A) is bounded,
or that (equivalently) every silting collection of Db(modfd-A) lies in Kb(projfg-A). If this is
the case, then both III) and IV) in Proposition 2.2.17 reduce to P being a silting collection in
Db(modfd-A).

The definition of classical silting collections is reminiscent of the properties of indecomposable
objects in the coheart of a weight structure. Indeed, this is not a coincidence. Using silting
collections instead of classical silting collections, we obtain:

Proposition 2.2.19. Let C ⊆ D be a thick subcategory of a triangulated category.

1) Let P be a silting collection in D such that thickD(P) = C . Then w = (Cw≤0,Cw≥0) with

Cw≤0 = KarC extclosC {P [m] | P ∈ P,m ≥ 0},
Cw≥0 = KarC extclosC {P [m] | P ∈ P,m ≤ 0}

is a bounded weight structure on C , and P is a full set of isomorphism representatives of
the indecomposable objects in

♥
w.

2) Let w be a bounded weight structure on C such that (♥⊥>0
w ,

♥⊥<0
w ) is a t-structure on

D and
♥
w is Krull–Schmidt. Then a full set P of isomorphism representatives of the

indecomposable objects in
♥
w is a silting collection in D .

Proof. The first part is [Bon10b, Thm. 4.3.2]. For the second part, note that since ♥w is Krull–
Schmidt, (P⊥>0 ,P⊥<0) = (♥⊥>0

w ,
♥⊥>0
w ) is a t-structure on D , and the remaining axioms from

Definition 2.2.9 are clear.

Remark 2.2.20. Under the bijection from Proposition 2.2.19, finite silting collections correspond
to weight structures such that the coheart contains finitely many indecomposable objects (up to
isomorphism). Moreover, Proposition 2.2.19 remains valid if one uses classical silting collections
instead of silting collections and leaves out the assumption that the coheart defines a t-structure.
This version is commonly used, for instance it occurs in [KY14].
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In the setup of Proposition 2.2.19 we would like to know when the coheart of a bounded
weight structure on a thick subcategory C ⊆ D weakly generates D . The following criterion is
proved analogously to Lemma 2.2.13.

Corollary 2.2.21. Let C ⊆ D be a thick subcategory of a triangulated category and w be a
bounded weight structure on C . If (♥⊥>0

w ,
♥⊥<0
w ) defines a t-structure on D , then

♥
w weakly

generates D .

2.2.5 Adjacency and orthogonality
By definition, a silting collection P in a triangulated category D defines a t-structure t =
(P⊥>0 ,P⊥<0) on D . On the other hand, by Proposition 2.2.19 P also defines a weight structure
w on C = thickD(P). From the definition of t it is clear that D t≤0 = (Cw>0)⊥ and D t≥0 =
(Cw<0)⊥. If moreover C = D , then even D t≤0 = Cw≤0. These relations are described, and
generalized by, the notions of orthogonality and adjacency between weight structures and t-
structures.

Let C and D be triangulated categories and A an abelian category. Following [Bon19,
Def. 5.2.1], by duality we mean a biadditive bifunctor Φ: C × D → A which is contravariant
and cohomological in the first argument, covariant and homological in the second argument, and
comes with a natural isomorphism Φ(−,−) ∼= Φ(−[1],−[1]).

Most of the time both C and D will be subcategories of a triangulated category T and
Φ = HomT (−,−) : C ×D →Mod-k. For sets of objects X ⊆ C and Y ⊆ D we write X ⊥Φ Y
if Φ(X,Y ) = 0 for all X ∈ X and Y ∈ Y, and we define

X⊥Φ = {Y ∈ D | Φ(X,Y ) = 0 ∀X ∈ X}, ⊥ΦY = {X ∈ C | Φ(X,Y ) = 0 ∀Y ∈ Y}.

The following definition is based on [Bon19, Def. 5.2.1].

Definition 2.2.22. Let w be a weight structure on C and t a t-structure on D .

• w is left orthogonal (with respect to Φ) to t if Cw≥0 ⊥Φ D t<0 and Cw≤0 ⊥Φ D t>0.

• The orthogonality is w-strict if Cw≥0 = ⊥Φ(D t<0) and Cw≤0 = ⊥Φ(D t>0).
• The orthogonality is t-strict if D t<0 = (Cw≥0)⊥Φ and D t>0 = (Cw≤0)⊥Φ .
• The orthogonality is w-t-strict if it is both w-strict and t-strict.

If both C and D are subcategories of a triangulated category T , then any orthogonality will
be with respect to Φ = HomT (−,−) unless explicitly mentioned. If moreover C = D , then left
orthogonality is also called left adjacency.

In [Bon19] only orthogonality and t-strict orthogonality are considered, and there t-strict
orthogonality is just called strict orthogonality.
Remark 2.2.23. Note that Proposition 2.2.19 establishes a bijection between silting collections
and bounded weight structures that are t-strictly left orthogonal to a t-structure.

If C ⊆ D , then it is possible to characterize left orthogonality in terms of the negative and
positive part, and moreover orthogonality and w-strict orthogonality coincide. The non-obvious
implication I) =⇒ III) of the following statement is already shown in [Bon19, Prop. 5.2.3].

Lemma 2.2.24. Let C ⊆ D be a thick subcategory, w a weight structure on C and t a t-structure
on D . Then the following are equivalent:

I) w is left orthogonal to t.
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II) w is w-strictly left orthogonal to t.

III) Cw≤0 = D t≤0 ∩ C and Cw≥0 = ⊥(D t<0) ∩ C .

Proof. II) =⇒ I) is trivial.
I) =⇒ III): From Cw≤0 ⊥ D t>0 it is clear that Cw≤0 ⊆

⊥(D t>0) ∩ C = D t≤0 ∩ C . The
converse inclusion follows from Cw>0 ⊥ D t≤0 and Cw≤0 = (Cw>0)⊥.

For Cw≥0, we have by assumption Cw≥0 ⊆
⊥(D t<0) ∩ C , and from Cw≤0 = D t≤0 ∩ C we get

⊥(D t<0) ∩ C ⊆ ⊥(D t<0 ∩ C ) = ⊥(Cw<0) = Cw≥0.
III) =⇒ II): This is obvious from D t≤0 = ⊥(D t>0) and the assumptions.

Corollary 2.2.25. Let P be a silting collection in D , t its associated silting t-structure and w
the induced weight structure on thickD(P). Then w is w-t-strictly left orthogonal to t.

Proof. From the construction of t it is clear that w is t-strictly left orthogonal to t, and the
orthogonality is w-strict by Lemma 2.2.24.

The following lemma shows that in the case of adjacent weight structures and t-structures
we do not need to distinguish between the various levels of strictness of orthogonality at all. The
equivalence I) ⇐⇒ II), which recovers the original definition [Bon10b, Def. 4.4.1] of adjacency,
is also shown in [Bon19, Prop. 1.3.3].

Lemma 2.2.26. Let t be a t-structure and w a weight structure on C . Then the following are
equivalent:

I) C t≤0 = Cw≤0,
II) w is left orthogonal to t,
III) w is w-strictly left orthogonal to t,
IV) w is t-strictly left orthogonal to t,
V) w is w-t-strictly left orthogonal to t.

Proof. II) =⇒ I) follows from Lemma 2.2.24, and the implications V) =⇒ IV), V) =⇒ III),
III) =⇒ II) and IV) =⇒ II) are obvious from the definitions. For the remaining implication
I) =⇒ V) observe that

Cw≥0 = ⊥(Cw<0) = ⊥(C t<0), Cw≤0 = C t≤0 = ⊥(C t>0),
C t≤0 = Cw≤0 = (Cw>0)⊥, C t≥0 = (C t<0)⊥ = (Cw<0)⊥.

We end this section by listing some standard examples of left orthogonal weight structures
and t-structures.

Example 2.2.27.

1) Let A be a finite-dimensional algebra. Then K−(projfg-A) ∼= D−(modfd-A), and the stan-
dard weight structure is left adjacent to the standard t-structure. Moreover, the standard
weight structure on Kb(projfg-A) is w-t-strictly left orthogonal to the standard t-structure
on Db(modfd-A).

2) Let A be a non-positive dg algebra such that Hn(A) is finite-dimensional for all n ∈ Z.
The standard weight structure on perf(A) is w-t-strictly left orthogonal to the standard
t-structure on Dfd(A).
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3) Let A be a positive dg algebra such that Dfd(A) = thickD(A)(A∨), where (−)∨ =
HomdgMod-k(−, k) is the k-linear duality functor. Then [KN13, Cor. 4.1 and Thm. 7.1]
provide a weight structure on Dfd(A) and (via the equivalence provided by the Nakayama
functor) a t-structure on thickD(A)(A∨). By taking K-injective resolutions, one sees that
these are left adjacent to each other.

4) By [Bon10b, §4.6 and Thm. 4.3.2], the spherical weight structure on the category of finite
spectra SHfin extends to a weight structure on SH− = {X ∈ SH | πn(X) = 0 ∀n � 0},
and this extension is left adjacent to the Postnikov t-structure.

2.3 Silting collections and derived projectives

It is well-known that silting collections behave very similar to projective objects. To make this
precise, in this section we introduce derived projective covers, and show that under some as-
sumptions the derived projective covers of simple objects of the heart are the same as a silting
collection. As an application, we use derived projective covers to formulate criteria for orthogo-
nality.

2.3.1 Derived projective objects
We begin by showing some basic facts about derived projective objects. Let D be a Krull–Schmidt
triangulated category and t a t-structure on D .

Definition 2.3.1. An object P ∈ D is derived projective (with respect to t) if P ∈ D t≤0 and
HomD(P,X[1]) = 0 for all X ∈ D t≤0. We write DProjt(D) for the full subcategory of derived
projective objects with respect to t.

[GLVdB21, Def. 6.1] gives a different definition of derived projective objects, which is equiv-
alent to the above by [GRG23, Prop. 2.3.5]. Derived projective objects are also known as Ext-
projectives or just projectives, see for instance [CSPP22], [Lur17, §7.2.2] and [Lur18b, §C.5.7].

The definition of derived projectives is motivated by the well-known fact that an object P
of an abelian category A is projective if and only if Ext1

A (P,X) = 0 for all X ∈ A . From this
point of view, the following lemma is an analog of the statement that HomA (P,−) is right exact
if P ∈ A is projective.

Lemma 2.3.2. Let P ∈ DProjt(D) and X,Y ∈ D .

1) For f : X → Y with cone(f) ∈ D t<0, the map HomD(P, f) : HomD(P,X) → HomD(P, Y )
is surjective.

2) t≥0 and t≤0 induce isomorphisms

HomD(P,X) ∼= HomDt≥0(t≥0P, t≥0X) ∼= Hom♥t
(H0

t (P ), H0
t (X)).

3) P is indecomposable if and only if H0
t (P ) is.

Proof.

1) This is immediate from the long exact sequence obtained by applying HomD(P,−) to the
triangle X → Y → cone(f)→ X[1].
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2) From the long exact sequence obtained by applying HomD(P,−) to the triangle t<0X →
X → t≥0X → t<0X[1], and derived projectivity of P , we get

HomD(P,X) ∼= HomD(P, t≥0X) ∼= HomDt≥0(t≥0P, t≥0X).

This isomorphism is given by the functor t≥0. The second isomorphism follows since t≤0
is right adjoint to D t≤0 ↪→ D , using that t≥0P = H0

t (P ).
3) By 2) we have EndD(P ) ∼= End♥t(H0

t (P )). Since D is Krull–Schmidt, P is indecomposable
if and only if EndD(P ) is local (and analogously for H0

t (P )).

An easy but important observation is that silting collections consist of derived projectives
with respect to their associated silting t-structures, see Lemma 2.3.15 below. With this in mind,
Lemma 2.3.2 as well as the following lemma is contained in [AHLSV22, Prop. 2.5]. Variants of
Lemma 2.3.3 have already appeared several times in the literature, see for instance [AN09] or
[PV18, Prop. 4.3].

Lemma 2.3.3. If P ∈ DProjt(D), then t≥0P = H0
t (P ) is projective in ♥t.

Proof. Since P ∈ D t≤0 we obviously have t≥0P ∈ ♥t. It is well-known (see e.g. [Ach21,
Prop. A.7.18]) that Ext1

♥t
(t≥0P,X) ∼= HomD(t≥0P,X[1]) for X ∈ ♥t, where Ext1

♥t
is defined

via equivalence classes of short exact sequences (Yoneda ext). From the long exact sequence
obtained by applying HomD(−, X[1]) to the triangle t<0P → P → t≥0P → t<0P [1] and derived
projectivity of P it follows that HomD(t≥0P,X[1]) = 0, and hence t≥0P is projective in ♥t.

Corollary 2.3.4. For f : P → P ′ with P, P ′ ∈ DProjt(D) the following are equivalent:

I) f is a split epimorphism.
II) cone(f) ∈ D t<0.
III) t≥0f = H0

t (f) is an epimorphism in ♥t.
IV) t≥0f = H0

t (f) is a split epimorphism in ♥t.

We will often need to assume that all projectives in ♥t are obtained as truncations of derived
projectives. More precisely, we use the following definition from [GLVdB21, Def. 6.1 and Def. 6.6]

Definition 2.3.5. D has derived projectives (with respect to t) if for every projective P ∈ ♥t
there is P̂ ∈ DProjt(D) with H0

t (P̂ ) ∼= P . If moreover ♥t has enough projectives, we say that
D has enough derived projectives (with respect to t).

In Theorem 2.3.16 we will show that if ♥t is finite-length, then D has enough derived projec-
tives if and only if t is silting. In general, D does not necessarily have enough derived projectives,
even if ♥t has enough projectives. For instance, this is the case for the standard t-structure on
Dfd(A) if A is a non-positive dg algebra such that Hn(A) is finite-dimensional for all n ∈ Z, but
H∗(A) is not, see Example 2.3.17 below.

Corollary 2.3.6. If D has derived projectives with respect to t, then t≥0 = H0
t : DProjt(D)→

Proj(♥t) is an equivalence of categories.

Proof. The functor is well-defined by Lemma 2.3.3 and fully faithful by Lemma 2.3.2, and that
D has derived projectives ensures that it is dense.

The following theorem shows that the definition of enough derived projectives given in
[CSPP22, Def. 2.2] is equivalent to the one we use.
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Theorem 2.3.7. D has enough derived projectives with respect to t if and only if DProjt(D)
is contravariantly finite in D t≤0 and DProjt(D)⊥ ∩ ♥t = {0}.

Proof. “ =⇒ ”: For X ∈ D t≤0 we have H0
t (X) ∈ ♥t. Since D has enough derived projectives,

there is an epimorphism π : P → H0
t (X) with P projective in ♥t, and moreover P̂ ∈ DProjt(D)

with H0
t (P̂ ) = t≥0P̂ ∼= P . By Lemma 2.3.2 there is a unique morphism π̂ : P̂ → X such that

H0
t (π̂) = π. We claim that P̂ is a right DProjt(D)-approximation. Indeed, for P ′ ∈ DProjt(D)

by Lemma 2.3.2 we get a commutative diagram

HomD(P ′, P̂ ) HomD(P ′, X)

Hom♥t(H0
t (P ′), P ) Hom♥t(H0

t (P ′), H0
t (X)),

HomD(P ′,π̂)

H0
t

∼= ∼=H0
t

Hom♥t (H0
t (P ′),π)

and the bottom map is surjective since π : H0
t (P̂ ) → H0

t (X) is an epimorphism and H0
t (P ′) ∈

Proj(♥t) by Lemma 2.3.3.
Since ♥t has enough projectives, X ∈ ♥t is zero if and only if Hom♥t(P,X) = 0 for all

P ∈ Proj(♥t). Since D has derived projectives, for every P ∈ Proj(♥t) there is P̂ ∈ DProjt(D)
with H0

t (P̂ ) ∼= P . By Lemma 2.3.2 it follows that X ∈ ♥t is zero if and only if HomD(P̂ ,X) = 0
for all P̂ ∈ DProjt(D), as required.

“ ⇐= ”: We first show that ♥t has enough projectives. If X ∈ ♥t, then X ∈ D t≤0. By
assumption, there is a right DProjt(D)-approximation π : P → X. By Lemma 2.3.3 H0

t (P ) is
projective in ♥t, and so it suffices to show that H0

t (π) : H0
t (P )→ H0

t (X) = X is an epimorphism.
For this, let P ′ ∈ DProjt(D) and apply HomD(P ′,−) to the triangle P π−→ X → cone(π)→

P [1]. This gives an exact sequence

HomD(P ′, P )→ HomD(P ′, X)→ HomD(P ′, cone(π))→ HomD(P ′, P [1]).

The first map is surjective since π : P → X is a right DProjt(D)-approximation, and the last
term vanishes as P ′ is derived projective and P [1] ∈ D t<0. Thus HomD(P ′, cone(π)) = 0. As
t≥0 is left adjoint to D t≥0 ↪→ D and t≥0P

′ = H0
t (P ′), we get

HomD(P ′, H0
t (cone(π))) ∼= Hom♥t

(H0
t (P ′), H0

t (cone(π))
∼= HomD(P ′, cone(π)) = 0,

where the last isomorphism is by Lemma 2.3.2. Thus H0
t (cone(π)) ∈ DProjt(D)⊥ ∩ ♥t = {0}.

To show that D has derived projectives, let P ∈ ♥t be projective and let π : P̃ → P be
a right DProjt(D)-approximation. By the previous argument, we have cone(π) ∈ D t<0, and
thus we get an epimorphism H0

t (P̃ ) → P in ♥t. This splits since P is projective, and thus P
is a summand of H0

t (P̃ ). Since H0
t : DProjt(D) → Proj(♥t) is fully faithful, there must be a

corresponding summand P̂ of P̃ with H0
t (P̂ ) ∼= P .

Remark 2.3.8. As is explained in [CSPP22, Rem. 2.3], in Theorem 2.3.7 the assumption that
DProjt(D) is contravariantly finite is unnecessary if DProjt(D) contains only finitely many
indecomposables.

By combining Theorem 2.3.7 with [CSPP22, Thm. 2.4] (see also [Bon19, Thm. 5.3.1]) we
obtain the following criterion for the existence of a weight structure that is left adjacent to a
given t-structure.

Corollary 2.3.9. For a bounded above t-structure t on a Hom-finite Krull–Schmidt triangulated
category D the following are equivalent:
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I) DProjt(D) is contravariantly finite in D t≤0 and DProjt(D)⊥ ∩ ♥t = {0}.
II) D has enough derived projectives with respect to t.

III) t admits a left adjacent weight structure.

Moreover, if these conditions hold, then ♥t is covariantly finite in D .

Proof. By Theorem 2.3.7, I) is equivalent to II). Moreover II) is equivalent to [CSPP22, Thm. 2.4
(2)] by Corollary 2.3.6, and I) is [CSPP22, Thm. 2.4 (1)] without the assumption that ♥t is
covariantly finite in D . Thus the remaining implications follow from [CSPP22, Thm. 2.4 and
Rem. 2.5].

Example 2.3.10. In particular, Corollary 2.3.9 shows that for a finite-dimensional algebra
A, the standard t-structure on Db(modfd-A) (see [BBD82, Ex. 1.3.2]) admits a left adjacent
weight structure. Indeed, in this case II) is obviously satisfied: the projective generator A of
♥t ∼= modfd-A is derived projective since HomDb(modfd-A)(A,X[n]) ∼= Hn(X) for all n ∈ Z (or, in
other words, since A is the silting object defining the standard t-structure). An alternative way to
obtain this weight structure on Db(modfd-A) is via [AMY19, Lemma 4.10] and Proposition 2.4.3
below.

The adjacent weight structure can also be described explicitly, as follows. Let
D ⊆ D−(modfd-A) be the full triangulated subcategory of complexes with finite-dimensional to-
tal cohomology, and C ⊆ K−(projfg-A) the full subcategory of complexes with finite-dimensional
total cohomology. The obvious inclusions

C D Db(modfd-A)

are equivalences since any Y ∈ D can be t-truncated to an isomorphic object that lies in
Db(modfd-A), and C precisely consists of the projective resolutions of objects in D . Note that
(by construction) the equivalence Db(modfd-A)→ C sends a complex to a projective resolution.

The standard weight structure on K−(projfg-A) from [Bon10b, §1.1] restricts to a weight
structure w on C , and thus yields a weight structure on Db(modfd-A). For this it suffices to
check that if X ∈ C , then there is a weight decomposition w>0X → X → w≤0X → w>0X[1]
with w>0X,w≤0X ∈ C . But this is obvious since for the standard weight structure, w>0X and
w≤0X are given by “brutal truncation” of X (note that X is, by definition, a complex of finitely
generated projectives).

The weight structure w is left adjacent to the standard t-structure on Db(modfd-A) since
Cw≤0 precisely consists of the projective resolutions of objects in Db(modfd-A)t≤0. Note that
w is always bounded above, but bounded below if and only if A has finite global dimension.

2.3.2 Derived projective covers
For an object X ∈ D we would like to find a minimal derived projective object approximating
X. This is made precise by the following definition, which is dual to [Lur18b, Ex. C.5.7.9].

Definition 2.3.11. A derived projective cover of X ∈ D is a morphism π : P → X such that P
is derived projective and H0

t (π) : H0
t (P )→ H0

t (X) is a projective cover of H0
t (X) in ♥t.

Lemma 2.3.12. The derived projective cover of X ∈ D is unique up to isomorphism (if it
exists).
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Proof. Let π1 : P1 → X and π2 : P2 → X be derived projective covers of X. Then
H0
t (π1) : H0

t (P1) → H0
t (X) and H0

t (π2) : H0
t (P2) → H0

t (X) are projective covers of H0
t (X) in

♥t. Since projective covers are unique up to isomorphism, there is an isomorphism g : P1 → P2
with H0

t (π2)g = H0
t (π1), and by Lemma 2.3.2 there is an isomorphism ĝ : P1 → P2 with

π2ĝ = π1.

Lemma 2.3.13. Let P be derived projective. Then π : P → X is a derived projective cover of
X if and only if t≤0π : P → t≤0X is a derived projective cover of t≤0X.

Proof. This is obvious since H0
t ◦ t≤0 = H0

t .

Recall that in a Krull–Schmidt abelian category, a morphism π : P → X is a projective cover
if and only if it satisfies one of the following equivalent conditions:

I) P is projective, π an epimorphism, and for any epimorphism π′ : P ′ → X with P ′ projective
there is g : P ′ → P with πg = π′, and any such g is an epimorphism.

II) π : P → X is a minimal right approximation of X by projectives.

If X is simple, then moreover π : P → X is a projective cover if and only if it satisfies one of the
following equivalent conditions:

I) P is projective and π 6= 0, and for any non-zero π′ : P ′ → X with P ′ projective there is
g : P ′ → P with πg = π′, and any such g is the projection onto a direct summand.

II) P is projective, indecomposable, and π 6= 0.

The following lemma provides analogous characterizations of derived projective covers in more
specific situations. In general, a good strategy to pass from statements about projective objects
to statements about derived projective objects is to replace “f is an epimorphism” by “cone(f) ∈
D t<0”. This can also be seen in Lemma 2.3.2 above, which is also the main reason behind this
phenomenon.

Lemma 2.3.14. Assume that D has derived projectives with respect to t.

1) If X ∈ D t≤0, then for π : P → X the following are equivalent:

I) π : P → X is a derived projective cover of X.
II) π : P → X satisfies the following conditions:

• P is derived projective,
• cone(π) ∈ D t<0,
• for π′ : P ′ → X with P ′ derived projective and cone(π′) ∈ D t<0 there is g : P ′ → P

with πg = π′,
• and cone(g) ∈ D t<0 for any such g.

III) π : P → X is a minimal right approximation of X by derived projective objects.

2) If L ∈ ♥t is simple, then for π : P → L the following are equivalent:

I) π : P → L is a derived projective cover of L.
II) P is indecomposable and π 6= 0.
III) π : P → L satisfies the following conditions:

• P is derived projective,
• π 6= 0,
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• for any non-zero π′ : P ′ → L with P ′ derived projective there is g : P ′ → P such
that π′ = πg,

• and any such g is the projection onto a direct summand.

Proof.

1) I) =⇒ II): Let X ∈ D t≤0 and π : P → X be a derived projective cover. From the triangle
P → X → cone(π)→ P [1] we get cone(π) ∈ D t≤0, and asH0

t (π) is an epimorphism we have
H0
t (cone(π)) = 0, thus cone(π) ∈ D t<0. Now let π′ : P ′ → X with P ′ derived projective

and cone(π′) ∈ D t<0. Applying HomD(P ′,−) to the triangle P → X → cone(π) → P [1]
and using HomD(P ′, cone(π)) = 0 (since cone(π) ∈ D t<0 and P ′ is derived projective)
shows that π′ factors through π. So let g : P ′ → P be any morphism with πg = π′. Since
P, P ′ ∈ D t≤0 it is clear that cone(g) ∈ D t≤0. Note that by Lemma 2.3.3 H0

t (π′) : H0
t (P ′)→

H0
t (X) is an epimorphism from a projective object in ♥t. As H0

t (π)H0
t (g) = H0

t (π′) and
H0
t (π) : H0

t (P ) → H0
t (X) is a projective cover it follows that H0

t (g) must be an epimor-
phism. This means H0

t (cone(g)) = 0, and hence cone(g) ∈ D t<0.
II) =⇒ III): Let π′ : P ′ → X be any morphism with P ′ derived projective. The long exact
sequence obtained by applying HomD(P ′,−) to the triangle P π−→ X → coneπ → P [1]
shows that HomD(P ′, π) : HomD(P ′, P ) → HomD(P ′, X) is surjective, since cone(π) ∈
D t<0 and P ′ is derived projective. Thus π : P → X is a right approximation.
For minimality, let g : P → P with πg = π. Then by assumption cone(g) ∈ D t<0, so by
Corollary 2.3.4 g is a split epimorphism. Since D is Krull–Schmidt, it follows that g is an
isomorphism.
III) =⇒ I): We show that H0

t (π) : H0
t (P ) → H0

t (X) is a minimal right approximation by
projectives. Let P ′ ∈ ♥t be projective and π′ : P ′ → X. By assumption there is a derived
projective P̂ ′ with H0

t (P̂ ′) ∼= P ′, and we get an induced morphism π̂′ : P̂ ′ → t≥0P̂
′ =

H0
t (P̂ ′) π′−→ X with H0

t (π̂′) = π′. Lemma 2.3.2 implies that H0
t induces a bijection between

morphisms ĝ : P̂ ′ → P with π̂′ = πĝ and morphisms g : P ′ = H0
t (P̂ ′) → H0

t (P ) with
π′ = H0

t (π)g, and the claim follows from this.
2) I) ⇐⇒ II): If P is derived projective, then π : P → L is a derived projective cover of

L iff H0
t (π) : H0

t (P ) → L is a projective cover of L in ♥t iff H0
t (π) 6= 0 and H0

t (P ) is
indecomposable projective iff π 6= 0 and P is indecomposable (by Lemma 2.3.2).
I)⇐⇒ III): Observe that for π : P → L we have cone(π) ∈ D t≤0, and by Lemma 2.3.2 and
simplicity of L we get π 6= 0 iff H0

t (π) 6= 0 iff H0
t (π) is an epimorphism iff cone(π) ∈ D t<0.

Similarly g : P → P ′ satisfies cone(g) ∈ D t≤0, and by Corollary 2.3.4 g is the projection
onto a direct summand if and only if cone(g) ∈ D t<0. Therefore the claim follows from
1).

2.3.3 Silting collections as derived projective covers
Silting collections provide an important source of derived projective objects.

Lemma 2.3.15. Let P be a silting collection in D and t its associated silting t-structure. Then
any P ∈ P is derived projective with respect to t.

Proof. By definition we have D t<0 = P⊥≥0 , and also P ⊆ P⊥>0 = D t≤0 by Remark 2.2.10,
which precisely means that P consists of derived projective objects.
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The following theorem shows that derived projective covers provide a convenient description
of the relation between a silting collection and the simple objects in the heart of the associated
silting t-structure. In particular, this observation can be used to formulate the bijections between
simple-minded collections and silting collections from [KY14], see Theorem 2.4.4 below. This
result is very similar to [CSPP22, Thm. 2.4] and [Bon19, Thm. 5.3.1 II.].

Theorem 2.3.16. Let t be a non-degenerate t-structure on D with finite-length heart. Let L be a
full set of isomorphism representatives of the simple objects in ♥t and P a full set of isomorphism
representatives of the indecomposable derived projectives. Then the following are equivalent:

I) t is silting (and P is the silting collection).
II) There is a bijection φ : P → L such that for P ∈ P, L ∈ L, m ∈ Z we have

HomD(P,L[m]) ∼=
{

EndD(L) if L = φ(P ), m = 0,
0 otherwise

(2.2)

as left EndD(L)-modules.
III) Every L ∈ L admits a derived projective cover (and P is the set of these derived projective

covers).
IV) D has enough derived projectives with respect to t.

Proof. I) =⇒ II): Let P ′ be a silting collection with t = (P ′⊥<0 ,P ′⊥>0). By Lemma 2.2.13
P ′ weakly generates D , and thus for each L ∈ L there is some P ∈ P ′ and m ∈ Z with
HomD(P,L[m]) 6= 0. From L ∈ ♥t we get m = 0, so using P ∈ D t≤0 we get

0 6= HomD(P,L) = HomDt≥0(t≥0P,L) = Hom♥t
(H0

t (P ), L).

Since L is simple in ♥t it follows that there is an epimorphism H0
t (P ) → L. As P is indecom-

posable, so is H0
t (P ) by Lemma 2.3.2, and thus H0

t (P ) is the projective cover of L in ♥t. From
this it follows that H0

t (P ), and (by Lemma 2.3.2 again) also P , is unique up to isomorphism. So
we get a bijection φ : P ′ → L by defining φ(P ) = L, and moreover

HomD(P,L) ∼= Hom♥t
(H0

t (P ), L) ∼= End♥t
(L)

as left End♥t
(L)-module, as desired. Finally, since H0

t (P ′) is a full set of indecomposable projec-
tives in ♥t and P ′ consists of derived projectives by Lemma 2.3.15, it follows from Corollary 2.3.6
that P ′ = P is the set of indecomposable derived projectives.

II) =⇒ III): Let L ∈ L, P = φ−1(L), and π : P → L correspond to idL. Then π 6= 0, and
moreover H0

t (P ) (and thus, by Lemma 2.3.2, also P ) must be indecomposable since otherwise it
would admit two simple quotients, which is impossible by (2.2). Thus π : P → L is the derived
projective cover of L by Lemma 2.3.14.

III) =⇒ IV): Since every L ∈ L has a derived projective cover, it by definition has a pro-
jective cover in ♥t. As ♥t is finite-length, it follows that ♥t has enough projectives. Moreover,
the projective covers of the simple objects are a full set of isomorphism representatives of the
indecomposable projectives in ♥t. Thus the indecomposable projectives arise as t-truncations of
derived projectives, and therefore D has enough derived projectives.

IV) =⇒ I): By Corollary 2.3.6, H0
t (P) is the set of indecomposable projectives of ♥t. We

claim that D t≤0 = P⊥>0 and D t≥0 = P⊥<0 . For X ∈ D , P ∈ P and n ∈ Z we get from
Lemma 2.3.2

HomD(P,X[n]) ∼= Hom♥t
(H0

t (P ), H0
t (X[n])) = Hom♥t

(H0
t (P ), Hn

t (X)).
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Since {H0
t (P ) | P ∈ P} is a full set of indecomposable projectives in ♥t and ♥t is finite-length,

we have Hn
t (X) = 0 if and only if HomD(P,X[n]) = 0 for all P ∈ P. The claim follows from this

since by non-degeneracy of t we know that X ∈ D t≤0 if and only if Hn
t (X) = 0 for all n > 0,

and similarly for D t≥0.

Using Theorem 2.3.16 we can now show that not every triangulated category has derived
projectives with respect to every t-structure.

Example 2.3.17. Let A be a non-positive dg algebra such that Hn(A) is finite-dimensional for
all n ∈ Z but H∗(A) is not finite-dimensional. Then A is a silting object in D(A) (see e.g. [BY14,
Appendix A]), and the silting t-structure restricts to Dfd(A). These t-structures are the standard
t-structures on D(A) and Dfd(A). The heart of the standard t-structure on Dfd(A) is equivalent
to modfd-H0(A) and thus has enough projectives. However, this t-structure is not silting, and
so by Theorem 2.3.16 there is no derived projective that truncates to the projective generator of
♥t.

To see that the standard t-structure is not silting, suppose for a contradiction that P ∈ Dfd(A)
is a silting object defining the standard t-structure. Observe that then t≥nP ∼= t≥nA for all n ≤ 0,
since both these objects represent the functor H0(−) : Dfd(A)t≤0 ∩Dfd(A)t≥n → ♥t (this uses
the equivalences modfd-A ∼= ♥t ∼= modfd-End♥t

(H0(P )), and Lemma 2.3.2). As P ∈ Dfd(A),
there is N ≤ 0 with t≥nP ∼= P for all n ≤ N , and thus we also have t≥nA ∼= t≥nP ∼= P for all
n ≤ N . But this implies Hn(A) ∼= Hn(P ) = 0 for n < N and thus A ∈ Dfd(A), a contradiction.

As an application, we obtain the following criterion for left orthogonality between weight
structures defined from silting collections and t-structures defined from simple-minded collec-
tions.

Theorem 2.3.18. Let D be a triangulated category, P a silting collection in D and L a simple-
minded collection in D . Let w be the weight structure on C = thickD(P) defined by P and t the
t-structure on D defined by L. Then the following are equivalent:

I) w is left orthogonal to t.
II) w is w-t-strictly left orthogonal to t.
III) t = (P⊥>0 ,P⊥<0) is the silting t-structure associated with P.
IV) There is a bijection φ : P → L such that P ∈ P is the derived projective cover of φ(P).
V) There is a bijection φ : P → L such that for P ∈ P, L ∈ L andm ∈ Z we have isomorphisms

of left EndD(L)-modules

HomD(P,L[m]) ∼=
{

EndD(L) if L = φ(P ), m = 0,
0 otherwise.

Proof. I) =⇒ II): w-strictness follows from Lemma 2.2.24. For t-strictness, note that by
Lemma 2.2.24 we have Cw≤0 = D t≤0 ∩ C and Cw≥0 = ⊥(D t<0) ∩ C . Therefore

D t≥0 = (D t<0)⊥ ⊆ (Cw<0)⊥.

and similarly D t≤0 ⊆ (Cw>0)⊥. But by assumption both ((Cw>0)⊥, (Cw<0)⊥) = (P⊥>0 ,P⊥<0)
and t = (D t≤0,D t≥0) are t-structures on D , and therefore they must agree.

II) =⇒ III): This is clear from the construction of w from P in Proposition 2.2.19.
III) =⇒ IV): This is part of Theorem 2.3.16.
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IV) =⇒ V): As L ∈ ♥t and P is derived projective, we have HomD(P,L[m]) = 0 for m 6= 0.
For m = 0 we get from Lemma 2.3.2

HomD(P,L) ∼= Hom♥t
(H0

t (P ), L) ∼=
{

End♥t
(L) if L = φ(P ),

0 else,

since by definition H0
t (P ) is the projective cover of φ(P ) in ♥t.

V) =⇒ I): From the construction of w and t it follows that left orthogonality is equivalent to
HomD(P [m], L[n]) = 0 for all P ∈ P, L ∈ L, and either m ≤ 0 and n > 0, or m ≥ 0 and n < 0.
This condition is obvious from the assumptions.

2.4 The WT correspondence revisited
In many important examples, w-t-strict orthogonality yields a bijection between weight struc-
tures and t-structures. A unified setup for this is provided by the following definition.

Definition 2.4.1. Let T be an idempotent-complete triangulated category and C ,D ⊆ T
thick subcategories. We call (C ,D) a WT pair in T if there is a weight structure w and a
non-degenerate t-structure t on T such that

1) w is left adjacent to t,
2) w and t are bounded above,
3) C = thickT (♥w) and D = triaT (♥t),
4) ♥w is Krull–Schmidt with finitely many indecomposables, and ♥t is Hom-finite finite-length

with finitely many simples.

In Proposition 2.4.3 below we will show that WT pairs are the same as the ST pairs defined
in [AMY19, Def. 4.3]. In contrast to that definition, we do not use silting collections and instead
define WT pairs via weight structures and t-structures. The axioms for WT pairs are similar to
the conditions from [AMY19, Prop. 4.17].

Example 2.4.2. We list some known examples of WT pairs.

1) Let A be a finite-dimensional algebra. Then (Kb(projfg-A),Db(modfd-A)) is a WT pair
in D−(modfd-A).
By using the weight structure on Db(modfd-A) described in Example 2.3.10, one sees
that (Kb(projfg-A),Db(modfd-A)) is also a WT pair in Db(modfd-A), cf. [AMY19,
Lemma 4.10].

2) Let A be a non-positive dg algebra such thatHn(A) is finite-dimensional for all n ∈ Z. Then
(perf(A),Dfd(A)) is a WT pair in D−fd(A) = {X ∈ D(A) |

∑
k≥n dimHk(X) <∞ ∀n ∈ Z}

by [Fus24, Ex. 3.4].
3) Let A be a non-positive dg algebra such that H0(A) is finite-dimensional and Dfd(A) ⊆

perf(A). Then (perf(A),Dfd(A)) is a WT pair in perf(A) by [AMY19, Lemma 4.15].
4) Let A be a positive dg algebra such that Dfd(A) = thickD(A)(A∨), where (−)∨ =

HomdgMod-k(−, k) is the k-linear duality functor. Then [KN13, Cor. 4.1 and Thm. 7.1]
provide a weight structure on Dfd(A) and (via the equivalence provided by the Nakayama
functor) a t-structure on thickD(A)(A∨). By taking K-injective resolutions, one sees that
these are left adjacent to each other, and it follows that (Dfd(A), thickD(A)(A∨)) is a WT
pair in Dfd(A).
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Note that for 1)–3) it is very easy to check the axioms from [AMY19, Def. 4.3], but hard to give
explicit descriptions of the adjacent weight structure required for Definition 2.4.1.

The first example also shows that the ambient triangulated category T for a WT pair is in
general not unique. In fact, as observed in [AMY19, §6.1], if (C ,D) is a WT pair in T , then it
is also a WT pair in any thick subcategory T ′ ⊆ T containing both C and D .

The following proposition shows that WT pairs are the same as the ST pairs defined in
[AMY19, Def. 4.3].

Proposition 2.4.3. (C ,D) is a WT pair in T if and only if there is a finite silting collection
P in T such that

• HomT (P,X) is finite-dimensional for all X ∈ T and P ∈ P,
• thickT (P) = C ,
• T =

⋃
n∈Z T tP≤n and D =

⋃
n∈Z T tP≥n.

Proof. “ =⇒ ”: Let P be a set of isomorphism representatives of the indecomposable objects in♥
w. By Lemma 2.2.24, w is w-t-strictly left orthogonal to t on T . Thus

♥
w = Tw≥0 ∩Tw≤0 = ⊥(T t<0) ∩T t≤0 = DProjt(T ),

so P consists of the indecomposable derived projectives. Moreover, by [Bon19, Thm. 5.3.1]
(cf. Corollary 2.3.9 above) T has enough derived projectives with respect to t. It follows from
Theorem 2.3.16 that P is a (by assumption finite) silting collection, and t the associated silting
t-structure. For P ∈ P and X ∈ T , Lemma 2.3.2 gives HomT (P,X) ∼= Hom♥t

(H0
t (P ), H0

t (X)),
which is finite-dimensional by assumption.

Since t is bounded above on T , we have (by definition) T =
⋃
n∈Z T t≤n. Finally, if X ∈

T t≥m then X ∈ T t≥m ∩ T t≤n for some n ∈ Z as t is bounded above, so X ∈ triaT (♥t) = D .
The converse inclusion is obvious since

⋃
n∈Z T t≥n ⊆ T is a triangulated subcategory and

♥t ⊆
⋃
n∈Z T t≥n.

“ ⇐= ”: Note that ♥tP is Hom-finite finite-length with finitely many simples by [AMY19,
Prop. 4.6]. As tP is a silting t-structure on T , it is non-degenerate. By Theorem 2.3.16 T
has enough derived projectives with respect to tP and P is a full set of indecomposable derived
projectives in T . Therefore by [CSPP22, Thm. 2.4] (see Corollary 2.3.9 above) there is a weight
structure w on T that is left adjacent to tP . As tP is bounded above, so is w.

By Lemma 2.2.24, w is w-t-strictly left orthogonal to tP . As above we get ♥w = DProjt(T ),
and therefore ♥w = KarT (P) as P consists of the indecomposable derived projectives. In partic-
ular ♥w contains finitely many indecomposables up to isomorphism, and hence C = thickT (P) =
thickT (♥w). Finally, we have triaT (♥tP ) ⊆ triaT (T tP≥0) ⊆ D . Conversely, if X ∈ D then
X ∈ T tP≥m ∩T tP≤n for some m,n ∈ Z (as tP is bounded above), so X ∈ triaT (♥tP ).

In [Fus24] it is shown that for a WT pair (C ,D) in an algebraic triangulated category T
there are bijections between bounded weight structures on C and bounded t-structures D with
finite-length heart. By the examples listed in Example 2.4.2, this unifies several earlier results:
for the WT pair (Kb(projfg-A),Db(modfd-A)) in Db(modfd-A), where A is a finite-dimensional
algebra, the theorem is due to Koenig and Yang [KY14]. It seems the version for non-positive
dg algebras with finite-dimensional total cohomology stated in [BY14] was originally a folklore
result. Recently [SY19] and [Zha23] provided new proofs using Koszul duality for A∞-algebras
and dg algebras, respectively. For homologically smooth non-positive dg algebras the theorem is
stated in [KN11].

The following theorem is a slight refinement of the results in [KY14, §5] and [Fus24, Thm. 4.8],
making the bijections explicit.
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Theorem 2.4.4 (WT correspondence). Let (C ,D) be a WT pair in an algebraic triangulated
category T . Taking derived projective covers gives one of the eight bijections fitting in the
following commutative diagram from [KY14] and [Fus24]:

bounded t-structures t on D
with finite-length heart

bounded weight structures w on C
with Krull–Schmidt coheart

simple-minded collections L
in D

silting collections P in T
with thickT (P) = C

Cw≤0 = ⊥(Dt>0)
Cw≥0 = ⊥(Dt<0)

Dt≤0 = (Cw>0)⊥
Dt≥0 = (Cw<0)⊥

sim
ples

in
♥

t

ex
te
ns
io
n
cl
os
ur
e
of

po
si
ti
ve
/n

eg
at
iv
e
sh
ift
sindecom

posables
in

♥

w

K
ar
ou

bi
cl
os
ur
e
of

ex
te
ns
io
n
cl
os
ur
e
of

po
si
ti
ve
/n

eg
at
iv
e
sh
ift
s

derived projective covers

simple tops of H0
t (P)

Theorem 2.3.16

P
ro
po

si
ti
on

2.
2.
19

P
ro
po

si
ti
on

2.
2.
7

The bijection at the top in particular says that the correspondence between weight structures and
t-structures is given by w-t-strict orthogonality.

Proof. In view of the proof of [Fus24, Thm. 4.8], we essentially only have to show that the
bijection between weight structures and t-structures is given by w-t-strict orthogonality. For
convenience of the reader, we first briefly describe the other bijections.

It is well-known (cf. Proposition 2.2.7 above) that simple-minded collections in D are in bi-
jection with bounded t-structures on D with finite-length heart. Similarly (cf. Proposition 2.2.19
and Remark 2.2.20 above), classical silting collections in C are in bijection with bounded weight
structures on C with Krull–Schmidt coheart. By [AMY19, Prop. 5.2], classical silting collections
in C are the same as silting collections P in T with thickT (P) = C . Thus the vertical maps
are bijections.

Let P be a silting collection in T with thickT (P) = C , and t = tP the t-structure on T
defined by P. By Theorem 2.3.16, P consists of the derived projective covers of the simple objects
in ♥t, which form a simple-minded collection L in D by [AMY19, Prop. 5.2 and Prop. 4.6]. From
the definition of derived projective covers it is clear that L consists of the simple tops of H0

t (P).
Sending P to L defines a bijection by [Fus24, Prop. 4.6].

It remains to show that the induced bijection between weight structures and t-structures is
given by w-t-strict orthogonality. Let w be a bounded weight structure on C . By the above,
w is a bounded weight structure obtained from a silting collection P, and the corresponding
t-structure on D is the restriction of the associated silting t-structure t = tP on T . Hence
t-strict left orthogonality is obvious.

For w-strictness, let X ∈ C ∩ ⊥(D t>0) and let t≤0X → X → t>0X → t≤0X[1] be the t-
decomposition of X with respect to the t-structure t on T . As t is bounded above on T , we
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have t>0X ∈ triaT (♥t) = D , so t>0X ∈ D t>0 and thus HomT (X, t>0X) = 0 by assumption.
Hence the t-decomposition triangle splits and gives t≤0X ∼= t>0X[−1]⊕X, which implies X ∼=
t≤0X ∈ T t≤0 ∩ C = Tw≤0 ∩ C = Cw≤0.

Let X ∈ C ∩⊥(D t<0). As w is bounded on C , there is n ∈ Z with X ∈ Cw>n. Let Y ∈ T t<0

and consider the t-decomposition t≤nY → Y → t>nY → t≤nY [1]. Since w is left adjacent to t
on w, we have t≤nY ∈ Tw≤n, and since t is bounded above on T , we have t>nY ∈ D t<0. Since
X ∈ Cw>n and X ∈ ⊥(D t<0), applying HomT (X,−) to the t-decomposition of Y shows that
HomT (X,Y ) = 0. Hence from Lemma 2.2.26 we get X ∈ ⊥(T t<0)∩C = Tw≥0∩C = Cw≥0.

2.5 Naturality of orthogonality
In this section we show that w-t-strict orthogonality is natural with respect to weight exact func-
tors and t-exact functors. This is a slight generalization of the results from [Bon10b, Prop. 4.4.5]
for adjacent t-structures. The main result in this section (Theorem 2.5.1) is proved in essentially
the same way except for the more technical notation required to set up the statements, which
simplifies a lot in most interesting cases.
Theorem 2.5.1. Let C , C ′, D , D ′ be triangulated categories, w, w′ weight structures on C and
C ′, and t, t′ t-structures on D and D ′, respectively. Let Φ: C ×D → A and Φ′ : C ′ ×D ′ → A
be dualities and suppose that w (resp. w′) is w-t-strictly left orthogonal to t (resp. t′) with
respect to Φ (resp. Φ′). Let F : C → C ′ and G : D ′ → D be “Φ-Φ′-adjoint” in the sense that
Φ′(F (X), Y ) ∼= Φ(X,G(Y )) naturally for X ∈ C and Y ∈ D ′. Then

1) F (Cw>0) ⊆ C ′w>0 if and only if G(D ′t′≤0) ⊆ D t≤0.
2) F (Cw<0) ⊆ C ′w<0 if and only if G(D ′t′≥0) ⊆ D t≥0.

In particular, F is weight exact if and only if G is t-exact.
Proof. We only show the first part as the argument for the second claim is entirely analogous.

Suppose F (Cw>0) ⊆ C ′w′>0 and let Y ∈ D ′t
′≤0. By assumption we have D t≤0 = (Cw>0)⊥Φ ,

and thus
G(Y ) ∈ D t≤0 ⇐⇒ Cw>0 ⊥Φ G(Y ) ⇐⇒ F (Cw>0) ⊥Φ′ Y.

But this condition is satisfied since by assumption F (Cw>0) ⊆ C ′w′>0, and Y ∈ D ′t
′≤0 =

(C ′w′>0)⊥Φ′ .
For the converse suppose G(D ′t′≤0) ⊆ D t≤0 and let X ∈ Cw>0. By assumption we have

C ′w′>0 = ⊥Φ′ (D ′t′≤0), and thus

F (X) ∈ C ′w′>0 ⇐⇒ F (X) ⊥Φ′ D ′t
′≤0 ⇐⇒ X ⊥Φ G(D ′t

′≤0).

But this is satisfied since by assumption G(D ′t′≤0) ⊆ D t≤0 and X ∈ Cw>0 = ⊥Φ(D t≤0).

Most notably it follows that the bijection between bounded t-structures with finite-length
heart and bounded weight structures provided by the WT correspondence (see Theorem 2.4.4
above) is natural:
Corollary 2.5.2. Let (C ,D) be a WT pair in T and (C ′,D ′) a WT pair in T ′. Let w, w′
be bounded weight structures on C resp. C ′, and t, t′ the corresponding bounded t-structures on
D resp. D ′ under the WT correspondence. Suppose that F : C → C ′ is left pseudo-adjoint to
G : D ′ → D in the sense that HomT ′(F (−),−) ∼= HomT (−, G(−)).

Then F is weight exact with respect to w and w′ if and only if G is t-exact with respect to t
and t′.
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Proof. By the WT correspondence, w and t (respectively w′ and t′) are w-t-strictly left orthog-
onal to each other, and so the claim follows from Theorem 2.5.1.

For the standard WT pair (Kb(Proj(A )),Db(A )) in D−(A ), where A is a Hom-finite finite-
length abelian categories with enough projectives and finitely many simples, the naturality of
the WT correspondence can also be formulated as follows. Following [Che21] we write Kb for the
strict 2-category whose objects are the Hom-finite finite-length abelian categories with enough
projectives and finitely many simples, with 1-morphisms given by the functors Kb(Proj(A ))→
Kb(Proj(B)) and 2-morphisms the natural transformations between these. The 2-category Db
is defined similarly, using functors Db(A ) → Db(B) instead. Let (Db)coop denote the bidual
of Db, i.e. the 2-category obtained by reversing all 1-morphisms and 2-morphisms. By [Che21,
Thm. 3.2] there is an equivalence Kb → (Db)coop that is the identity on objects and sends
a 1-morphism (i.e. a functor) F : Kb(Proj(B)) → Kb(Proj(A )) to its right pseudo-adjoint
F∨ : Db(A )→ Db(B), which is defined by natural isomorphisms

HomDb(A )(F (X), Y ) ∼= HomDb(B)(X,F∨(Y ))

for X ∈ Kb(Proj(B)) and Y ∈ Db(A ).

Corollary 2.5.3. Let A , B be Hom-finite finite-length abelian categories with enough projectives
and finitely many simples. Let t, t′ be bounded t-structures on Db(A ) and Db(B), respectively,
and w, w′ the bounded weight structures on Kb(Proj(A )) and Kb(Proj(B)) corresponding to t
and t′ under the bijections from Theorem 2.4.4. Assume that under the equivalence from [Che21,
Thm. 3.2], G : Db(A )→ Db(B) corresponds to F : Kb(Proj(B))→ Kb(Proj(A )). Then G is
t-exact if and only if F is weight exact.

Proof. By Theorem 2.4.4 the weight structure w (resp. w′) is w-t-strictly left orthogonal to the
t-structure t (resp. t′). Thus the result follows from Theorem 2.5.1, since the construction of G
as a right pseudo-adjoint to F is precisely the required adjunction property.

Remark 2.5.4. Using [Che21, Prop. 3.4], we also obtain the following consequence of Corol-
lary 2.5.3:

1) Suppose F : Kb(Proj(B))→ Kb(Proj(A )) is weight exact and admits a right adjoint G.
Then G extends to G̃ : Db(A )→ Db(B), and G̃ is t-exact.

2) If G̃ : Db(A ) → Db(B) is t-exact and restricts to G : Kb(Proj(A )) → Kb(Proj(B)),
then G admits a left adjoint F , which is weight exact.

In this setup, there is an alternative proof of 2): By Lemma 2.2.24 we have Cw<0 = D t<0 ∩
Kb(Proj(A )), and analogously for t′ and w′. Now let X ∈ C ′w′≥0 and Y ∈ Cw<0 = D t<0 ∩
Kb(Proj(A )). Then

G(Y ) = G̃(Y ) ∈ D ′t
′<0 ∩Kb(Proj(B)) = C ′w′<0

by t-exactness of G, and from the adjunction and C ′w′≥0 ⊥ C ′w′<0 we get

HomKb(Proj(A ))(F (X), Y ) = HomKb(Proj(B))(X,G(Y )) = 0,

so F (X) ∈ ⊥(Cw<0) = Cw≥0.
Similarly for X ∈ C ′w′≤0 = D ′t

′≤0 ∩Kb(Proj(B)) and Y ∈ D t>0 we have

HomDb(A )(F (X), Y ) = HomDb(B)(X, G̃(Y )) = 0,

and thus F (X) ∈ Cw≤0 = D t≤0 ∩Kb(Proj(A )).
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Chapter 3

Koszul duality of simple-minded and silt-
ing collections

In this chapter we prove a theorem about Koszul duality between simple-minded and silting
collections. We begin by recalling the classical Koszul duality from [BGS96; MOS09] and the
Koszul duality for dg categories and dg algebras from [Kel94]. This requires us to work in
dg-enhanced triangulated categories. As we want to apply this to silting collections and simple-
minded collections, we are particularly interested in the dg Koszul duals of non-positive and
positive dg algebras.

The Koszul duality of simple-minded and silting collections is established by the main result
of this chapter (Theorem 3.4.2). This is closely related to the construction of silting collections
corresponding to simple-minded collections in the proof of the WT correspondence, see [Zha23]
and also [Fus24]. We also provide three small examples of the Koszul duality from Theorem 3.4.2,
namely for simple-minded and silting collections in the derived category of the A2-quiver.
The chapter is based on [Bon25, §1 and §4].

[Bon25] L. Bonfert. “Derived projective covers and Koszul duality of simple-minded and
silting collections”. To appear in Appl. Categ. Struct. (2025). arXiv:2309.00554v3
[math.RT].

3.1 Motivation and overview of results
The classical Koszul duality from [BGS96; MOS09] provides an equivalence of derived cate-
gories of graded modules that interchanges the simple and indecomposable projective objects.
By definition, simple-minded collections are an analog of the set of simple objects, and by The-
orem 2.3.16 a silting collection in the sense of Definition 2.2.9 can be seen as an analog of the
set of indecomposable projective objects. Therefore, we want to relate simple-minded collections
and silting collections via Koszul duality.

The required notion is the dg Koszul duality from [Kel94], which defines the dg Koszul dual
A !,dg of an augmented dg category A . This construction can in particular be applied to non-
positive and positive dg algebras. In our situation, such dg algebras arise as the endomorphism
algebras of silting collections respectively silting collections in a dg-enhanced triangulated cate-
gory. Following a suggestion by Bernhard Keller, we obtain:

Theorem 3.1.1 (Theorem 3.4.2). Let T = H0(T̃ ) be a compactly generated dg-enhanced tri-
angulated category. For a compact silting collection P in T such that EndT (

⊕
P∈P P ) is finite-

dimensional, let L be the set of simple objects in the heart of the silting t-structure associated
with P. Note that L is a simple-minded collection in D = triaT (L).

1) The dg algebra End
T̃

(
⊕

L∈L L) is the dg Koszul dual of End
T̃

(
⊕

P∈P P ).
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2) If Hn(End
T̃

(
⊕

P∈P P )) is finite-dimensional for all n ∈ Z, then End
T̃

(
⊕

P∈P P ) is the
dg Koszul dual of End

T̃
(
⊕

L∈L L).
This result is a first step towards the tentative Koszul duality of weight structures and t-

structures, which is supposed to formalize the apparent duality of their definitions. The theorem
is inspired by [BY14], see also the revised version [BY23]. In the case of finite-dimensional
algebras or non-positive dg algebras with finite-dimensional total cohomology, the second part
of Theorem 3.1.1 can also be shown by a construction from [Zha23], which was used there to
construct a silting collection corresponding to a simple-minded collection.

3.2 Classical Koszul duality
Before we come to dg Koszul duality we briefly recall the classical Koszul duality from [BGS96;
MOS09]. By definition, a Koszul algebra is a positively graded algebra A =

⊕
n≥0An such that

• An = 0 for n < 0, and each graded piece An is a finitely generated A0-module,
• A0 is a semisimple algebra,
• A0 has a linear projective resolution, i.e. there is a projective resolution P → A0 of A0 as

graded A-module such that each P−i is generated in degree i.
The Koszul dual of A is A! = Ext∗A(A0, A0).
Example 3.2.1.

1) If k has characteristic 0, then k[x] with deg(x) = 1 and k[y]/(y2) with deg(y) = 1 are
Koszul algebras. Moreover, we have (k[x])! ∼= k[y]/(y2) and (k[y]/(y2))! ∼= k[x].

2) Assume that k is algebraically closed of characteristic 0 and let g be a finite-dimensional
semisimple Lie algebra over k. Then the finite-dimensional algebras describing the blocks
of O(g) are Koszul by [BGS96, Thm. 1.1.3].

The main result about Koszul algebras is the following Koszul duality theorem from [BGS96,
Thm. 2.10.2 and Thm. 2.12.1], see also [MOS09, Thm. 30].
Theorem 3.2.2 (Koszul duality). Let A be a Koszul algebra.

1) A! is a Koszul algebra.
2) (A!)! ∼= A.
3) Let D↓(A) ⊆ D(ModZ-A) be the full subcategory of bounded below cochain complexes X

such that Xi
j = 0 for i+j � 0, and D↑(A!) ⊆ D(ModZ-A!) the full subcategory of bounded

above cochain complexes X such that Xi
j = 0 for i + j � 0. Then there is an equivalence

of triangulated categories RHomA(A0,−) : D↓(A) ∼= D↑(A!).
Note that by construction the Koszul duality functor RHomA(A0,−) maps the simple A-

modules to the indecomposable projective A!-modules.
An equivalent formulation of Koszul duality is as follows. A Koszul algebra can be seen as

an augmented algebra over A0 via the quotient map A →→ A0 = A/(A>0), and every simple
A0-module L lifts to an A-module L̂ via this augmentation. It is easy to see that in fact every
graded simple A-module is of the form L̂ for some simple A0-module L.

With this point of view, the Koszul dual of A can also be defined as A! =
⊕

L Ext∗A(L̂, L̂),
where the direct sum runs over all simple A0-modules up to isomorphism. This is Morita-
equivalent to the definition A! = Ext∗A(A0, A0). Using this definition, the Koszul duality functor
is
⊕

L RHomA(L̂,−) : D↓(A)→ D↑(A!).
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3.3 dg Koszul duality
To be able to define the dg Koszul dual of dg algebras and dg categories we have to briefly
recall dg-enhanced triangulated categories. By definition, a dg enhancement (originally called
enhancement in [BK91]) of a triangulated category T is a pretriangulated dg category T̃ in
the sense of [BK91, §3, Def. 1] together with an equivalence T ∼= H0(T̃ ). An object X ∈ T

yields a dg functor Hom
T̃

(X,−) : T̃ → dgMod-End
T̃

(X), which induces a triangulated functor
Hom

T̃
(X,−) : T → D(End

T̃
(X)).

Note that by [Kra07, §7.5] and the first part of the proof of [Kel94, Thm. 4.3], dg-enhanced
triangulated categories are precisely the stable categories of Frobenius categories considered in
[Kel94].

Example 3.3.1. A dg enhancement D̃(A ) of the derived category D(A ) of a dg category A
is given by the dg category of K-projective dg A -modules, see [Kel94, §4.1] for details. Here
a dg A -module P is K-projective if H0(HomdgMod-A (P,N)) = 0 for all acyclic dg A -modules
N . A dg A -module M can be viewed as an object of D̃(A ) by replacing it by a K-projective
resolution, i.e. a K-projective dg module pM that is quasi-isomorphic toM . Note that by [Kel94,
§3.1, p. 70] K-projectivity is equivalent to the property (P) considered in [Kel94], and in particular
K-projective resolutions are precisely the P-resolutions defined in [Kel94, §3.1].

We abbreviate HomD̃(A )(−,−) = RHomA (−,−), and by slight abuse of notation we also
write REndA (X) = RHomA (X,X) for X ∈ D(A ). Dually one can also use K-injective resolu-
tions instead.

Recall that a non-positive dg algebra is a dg algebra A such that Hn(A) = 0 for n > 0, and
a positive dg algebra is a dg algebra A such that Hn(A) = 0 for n < 0 and H0(A) is semisimple.
In these cases, the dg Koszul dual is defined as follows, cf. [KN13, §1 and Not. 5.1], [Zha23], and
also [Fus25, Def. 4.1]:

Definition 3.3.2. Let A be a non-positive or positive dg algebra such that H0(A) is finite-
dimensional. The dg Koszul dual of A is A!,dg = REndA(L̂), where L̂ is defined as follows:

1) If A is non-positive, let L̂ be the direct sum of the simple H0(A)-modules, viewed as dg
A-modules concentrated in degree 0 via the quasi-isomorphism t≤0A→ A and the quotient
map t≤0A→→ H0(A).

2) If A is positive, let L̂ be the unique dg module such that H0(L̂) is the direct sum of the
simple H0(A)-modules and Hn(L̂) = 0 for n 6= 0 (this exists by [KN13, Cor. 4.7]).

If A is a non-positive dg algebra, then A!,dg is a positive dg algebra as a consequence of
[BY14, Thm. A.1]. Conversely, if A is a positive dg algebra then A!,dg is non-positive by [KN13,
Lemma 5.2]. Note that the dg Koszul dual is well-defined only up to quasi-equivalence. For
explicit computations of dg Koszul duals see Section 3.5 below.

By [Fus25, Thm. 4.17] the double dg Koszul dual (A!,dg)!,dg is quasi-isomorphic to A if A is
either locally finite-dimensional non-positive, or locally finite-dimensional pvd-finite positive in
the sense of [Fus25, Def. 3.23]. Furthermore, dg Koszul duality provides equivalences between
certain subcategories of D(A) and D(A!,dg), see [Fus25, Thm. 4.4].

The definition of the dg Koszul dual of a non-positive or positive dg algebra in Definition 3.3.2
is based on the following general definition of Koszul duality for augmented dg categories from
[Kel94, §10.2].
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Definition 3.3.3.

1) An augmented dg category is a dg category A with pairwise non-isomorphic objects such
that for every object A ∈ A there is a dg A -module A (called augmenting dg module) with

Hk(A)(B) ∼=
{
k if k = 0, A = B,

0 otherwise.

2) The dg Koszul dual of an augmented dg category A is the dg category A !,dg with objects
{A! | A ∈ A } and morphisms

A !,dg(A!, A′!) = RHomA (A,A′) = HomdgMod-A (pA, pA′),

where pA and pA′ are K-projective resolutions of A and A′.

Remark 3.3.4.

1) A !,dg is well-defined only up to quasi-equivalence, cf. [Kel94, §10.2].
2) In [Kel94] the Koszul dual is defined more abstractly as a lift of the augmenting modules
{A | A ∈ A }. With the notation from Definition 3.3.3 the dg category A !,dg and the
A !,dg-A -bimodule

⊕
B∈A pB provide a lift, and hence the “abstract” definition agrees

with the “concrete” definition we use here.
3) By [Kel94, §10.2], A !,dg becomes an augmented dg category with augmenting dg modules

A! = RHomA (
⊕

B∈A pB,DA (A,−)). Here D = HomdgMod-k(−, k) denotes the k-linear
duality functor.

4) If the augmenting dg modules A are compact and generate D(A ) as triangulated subcat-
egory closed under arbitrary coproducts (or, equivalently, if thick{A | A ∈ A } = Dc(A )),
then by [Kel94, Lemma 10.5 “The finite case”] the A !,dg-A -dg bimodule

⊕
B∈A pB pro-

vides an equivalence of categories D(A !,dg) → D(A ), sending A !,dg(−, A!) to A for all
A ∈ A .

Under mild assumptions, Definition 3.3.2 can be recovered from Definition 3.3.3 as follows.

Example 3.3.5. Let A be a dg algebra such that H0(A) is finite-dimensional and all simple
H0(A)-modules are 1-dimensional. Take a complete set of primitive orthogonal idempotents of
H0(A) and suppose they lift to idempotents {ei | i ∈ I} in A with

∑
i∈I ei = 1. Consider

A =
⊕

i,j∈I eiAej as a dg category with objects I and morphisms A(j, i) = eiAej .

1) If A is a non-positive dg algebra, we can consider the simple H0(A)-modules as dg A-
modules concentrated in degree 0 as in Definition 3.3.2. These “simple dg A-modules”
make A an augmented dg category. It follows that the dg Koszul dual of A in the sense
of Definition 3.3.3 (viewed as a dg algebra by taking the direct sum over the finitely many
objects) is precisely the dg Koszul dual defined in Definition 3.3.2.

2) If A is a positive dg algebra, the unique dg A-modules Li corresponding to the simple
H0(A)-modules eiH0(A) constructed in [KN13, Cor. 4.7] make A an augmented dg cat-
egory. Again the dg Koszul dual of A in the sense of Definition 3.3.3 is precisely the dg
Koszul dual defined in Definition 3.3.2.

The easiest examples of positive dg algebras are Koszul algebras, viewed as positive dg alge-
bras with the same grading and trivial differential. In this case, the definition of the dg Koszul
dual recovers the classical Koszul dual by the following result, which is essentially contained in
[Sch11, Thm. 39].
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Proposition 3.3.6. Let A be a Koszul algebra of finite global dimension and consider A as a
positive dg algebra with the same grading and trivial differential. Then

Hn(A!,dg) ∼=
{
A! if n = 0,
0 otherwise.

Proof. Note that since A has trivial differential, the simple A-modules become dg A-modules
when equipped with the trivial differential, and thus these the augmenting dg A-modules con-
structed in [KN13, Cor. 4.7] (cf. Definition 3.3.2 above). Let L be the direct sum of the simple
A-modules and P a linear projective resolution of L. Consider the complex P of graded A-
modules as a dg A-module Tot(P ), with Tot(P )n =

⊕
i+j=n P

i
j and the differential consisting

of (−1)id : P ij → P i+1
j . Note that Tot(P ) is K-projective since it can be obtained as an iterated

cone of the morphisms of dg A-modules (−1)id : P i → P i+1 (where P i and P i+1 are equipped
with the trivial differential). The quasi-isomorphism P → L provides a quasi-isomorphism of
dg A-modules Tot(P ) → L, and so this is a K-projective resolution of L. Hence by definition
A!,dg = HomdgMod-A(Tot(P ),Tot(P )).

Since P is a linear projective resolution, each P i is generated in degree −i, and hence the
dg A-module Tot(P ) is generated in degree 0, and moreover Tot(P )n = 0 for n < 0. This
immediately implies that (A!,dg)n = 0 for n < 0. Moreover, by [KN13, Lemma 5.2] A!,dg is a
non-positive dg algebra, i.e. we have Hn(A!,dg) = 0 for n > 0. Finally, by [Sch11, Thm. 39] we
get H0(A!,dg) ∼= A!.

3.4 Koszul duality of simple-minded and silting collections
The following lemma provides a convenient description of certain subcategories of a compactly
generated dg-enhanced triangulated category with a compact silting collection. This is a slight
generalization of [KY18, Lemma 3.1], although its proof uses essentially the same arguments.

Lemma 3.4.1. Let T = H0(T̃ ) be a compactly generated dg-enhanced triangulated category.
For a compact silting collection P in T such that EndT (

⊕
P∈P P ) is finite-dimensional, let t

be its associated silting t-structure and D ⊆ T be the triangulated subcategory generated by the
simple objects in ♥t. Let E = End

T̃
(
⊕

P∈P P ).

1) There is an equivalence D(E)→ T that takes the simple E-modules to the simple objects
in ♥t. Moreover it identifies perf(E) with thickT (P), and Dfd(E) with D .

2) If H∗(E) is finite-dimensional, then thickT (P) = T c ⊆ D .

Proof.

1) As P weakly generates T by Lemma 2.2.13, Hom
T̃

(
⊕

P∈P P,−) : T → D(E) is an equiv-
alence by (the proof of) [Kel94, Thm. 4.3]. Its inverse takes E to

⊕
P∈P P , and hence

identifies t = (P⊥>0 ,P⊥<0) with the standard t-structure on D(E), as this is the silting
t-structure associated with the silting object E in D(E). In particular it also identifies the
simple objects in the hearts. The rest is clear since (by definition) D is the triangulated
subcategory generated by the simple objects of ♥t, while on the other side Dfd(E) is the
triangulated subcategory generated by the augmenting dg E-modules (note that these lie
in Dfd(E), since H0(E) = End(

⊕
P∈P P ) is finite-dimensional).

2) The assumption that H∗(E) is finite-dimensional ensures that perf(E) ⊆ Dfd(E), and
thus we get thickT (P) ⊆ D from 1).
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The following result was suggested by Bernhard Keller. It establishes a Koszul duality be-
tween simple-minded collections and silting collections.

Theorem 3.4.2. Let T = H0(T̃ ) be a compactly generated dg-enhanced triangulated category.
For a compact silting collection P in T such that EndT (

⊕
P∈P P ) is finite-dimensional, let L

be the set of simple objects in the heart of the silting t-structure associated with P.

1) The dg algebra End
T̃

(
⊕

L∈L L) is the dg Koszul dual of End
T̃

(
⊕

P∈P P ).
2) If Hn(End

T̃
(
⊕

P∈P P )) is finite-dimensional for all n ∈ Z, then End
T̃

(
⊕

P∈P P ) is the
dg Koszul dual of End

T̃
(
⊕

L∈L L).

Proof. For brevity we write P =
⊕

P ′∈P P
′ and L =

⊕
L′∈L L

′.

1) By definition, the cohomology of E = End
T̃

(P ) is given by

Hn(End
T̃

(P )) = HomT (P, P [n])

and therefore is concentrated in non-positive degrees. By Definition 3.3.2 the Koszul dual
of the non-positive dg algebra E = End

T̃
(P ) is given by

E!,dg = REndE(LE),

where LE is the sum of the simple H0(E)-modules viewed as dg E-modules concentrated
in degree 0. To compute this, we use the equivalence D(E)→ T from Lemma 3.4.1, which
takes LE to L and therefore provides a quasi-isomorphism

End
T̃

(P )!,dg = E!,dg = REndE(LE) ' End
T̃

(L).

2) This follows from [Fus25, Thm. 4.17], since End
T̃

(L) is the dg Koszul dual of End
T̃

(P )
by 1).

In the case of finite-dimensional algebras (and analogously for non-positive dg algebras with
finite-dimensional total cohomology) one can prove Theorem 3.4.2.2) more directly. The proof
is interesting since it uses an approach that was used in [Zha23] to construct silting collections
corresponding to simple-minded collections in Dfd(A), where A is a non-positive dg algebra with
finite-dimensional total cohomology.

Theorem 3.4.3. Let A be a finite-dimensional algebra. Let L be a simple-minded collection in
Db(modfd-A) and P be the corresponding classical silting collection in Kb(projfg-(A)) under the
bijection from Theorem 2.4.4. Then REndA(

⊕
P∈P P ) is the dg Koszul dual of REndA(

⊕
L∈L L).

Proof. For brevity we write L =
⊕

L′∈L L
′. The cohomology of E! = REndA(L) is given by

Hn(E!) = Hn(REndA(L)) = HomDb(modfd-A)(L,L[n])

and therefore is concentrated in non-negative degrees, and moreover

H0(E!) = HomDb(modfd-A)(L,L) =
⊕
L′∈L

EndDb(modfd-A)(L′)

is semisimple. Hence by definition the Koszul dual of E! is

E = REndE!(H0(E!)).
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Let L0 be the sum of the simple A-modules and A! = REndA(L0) the Koszul dual of A viewed
as a dg algebra concentrated in non-positive degrees. As is explained in [Zha23] we obtain a
commutative diagram

perf(E!) perf(A!) Db(modfd-A)

Dfd(E!) Dfd(A!) Kb(injfg-A) Kb(projfg-A)

Ψ Φ

Ψ Φ ν−1

(3.1)

where ν−1 is the inverse Nakayama functor and the horizontal functors Ψ and Φ are equivalences
defined by

Φ = −⊗L
A! L

0, Ψ = −⊗L
E Φ−1(L).

Note that the definition of Ψ implicitly also uses the equivalence induced by the quasi-isomor-
phism E! ∼= REndA!(Φ−1(L)) induced by Φ, which we leave out for brevity.

Now observe that by construction of the diagram (3.1) the equivalences in the bottom row
map H0(REndA(L)) = EndDb(modfd-A)(L) to P , and therefore we obtain a quasi-isomorphism

REndA(L)! = E ∼= REndA(P ).

Remark 3.4.4. Koszul duality of End
T̃

(
⊕

P∈P P ) and End
T̃

(
⊕

L∈L L) does not imply that P
and L correspond to each other. For a (trivial) counterexample one can simply shift L or P, and
for further non-trivial examples with the same dg algebras occuring see Examples 3.5.1 and 3.5.2.

3.5 Some small examples: the A2 quiver
We illustrate Theorem 3.4.2 by some examples over the algebra A = k(2 → 1). For a simple-
minded collection L in Db(modfd-A) and a silting collection P in Kb(projfg-A), let E =
REndA(

⊕
P∈P P ) and E! = REndA(

⊕
L∈L L). To compute the dg Koszul duals of E and

E! we use the description of the dg Koszul dual from Definition 3.3.2.
Recall that for a dg algebra B and dg B-modules X and Y , the dg algebra REndB(X,Y )

can be computed by replacing both X and Y by K-projective resolutions, i.e. quasi-isomorphic
perfect dg modules. Replacing both is convenient to determine the composition of morphisms,
as otherwise one would have to use formal inverses to quasi-isomorphisms. The degree n part
of REndB(X,Y ) consists of all B-linear morphisms X → Y [n] (not necessarily dg morphisms),
and the differential is defined by d(f) = df − (−1)|f |fd. Alternatively one can use K-injective
resolutions. If B has trivial differential, K-projective resolutions are just projective resolutions.
Example 3.5.1 (The standard example). Consider the standard simple-minded collection L =
{1, 2} consisting of the simple A-modules, and the corresponding standard silting collection
P = { 1

2 , 2} consisting of the indecomposable projective A-modules.
1) We have E = REndA(A) ∼= A, viewed as a non-positive dg algebra concentrated in degree 0

with trivial differential.
2) To compute E! = REndA(1 ⊕ 2) we replace the non-projective simple by its projective

resolution: 1 ∼= (2 → 1
2 ). From this it follows that E! is 7-dimensional, as it is the direct

sum of

RHomA(2, 2) = ke2, RHomA(2, 1) = kf0 ⊕ kf−1,

RHomA(1, 2) = kg, RHomA(1, 1) = ke11 ⊕ ke12 ⊕ kh,
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with the degrees and the differentials of the basis elements given by

e11 e12 e2 f0 f−1 g h
deg 0 0 0 0 −1 1 1
d h −h 0 0 f0 0 0

The morphisms e11, e12 and e2 are orthogonal idempotents, and the algebra structure of
E! is given by the quiver with relations

E! = k

 e11 e12

e2

h

g

f0
f−1

 /

(
f0g=h

f−1g=e11
hf−1=f0
gf−1=e2

)
.

It follows that the cohomology H∗(E!) = Ext∗A(1 ⊕ 2, 1 ⊕ 2) has a basis consisting of the
classes of e1 = e11 + e12, e2 and g, where g spans the 1-dimensional Ext1

A(1, 2). It is
easy to see that the map H∗(E!) → E! defined by sending this basis of H∗(E!) to these
representatives is a quasi-isomorphism.

3) As E ∼= A as dg algebras, there is nothing to do: the dg Koszul dual of E is literally
REndA(1⊕ 2) = E!.

4) To compute the dg Koszul dual of E! we use the quasi-isomorphism E! ∼= H∗(E!) = k(e1
g−→

e2) with |g| = 1 and trivial differential. As the differential is trivial and E! is actually (not
just cohomologically) concentrated in positive degrees, the augmenting dg E!-modules are
just the simple modules over H0(E!) = (E!)0 with trivial action of (E!)>0. K-projective
resolutions of these are given by

e1 ∼=

 0

k

 , e2 ∼=

 k 0

k k

g

d


Here the top row indicates the vertex e2 and the bottom row the vertex e1, and in both
cases the left-most non-zero term is in degree 0. From this it follows that the dg Koszul
dual is

REndE!(e1 ⊕ e2) = k


E21 E22

E1

H

G

F1
F0

 /

(
F1G=H
F0G=E21
HF0=F1
GF0=E1

)

with dg structure
E21 E22 E1 F0 F1 G H

deg 0 0 0 0 1 0 1
d −H H 0 F1 0 0 0

By similar arguments as in 2), this dg algebra is quasi-isomorphic to its cohomology, which
is k(E2

G−→ E1) ∼= E with E2 = E21 + E22.

Example 3.5.2 (Non-standard, faithful heart). Consider the simple-minded collection L =
{ 1

2 , 2[1]} and the corresponding silting collection P = { 1
2 , 1}. This is obtained from the standard

example by left mutation at 2.
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1) We have E = REndA( 1
2 ⊕ 1) ∼= k(∗ 1

2

x−→ ∗1) ∼= A, with |x| = 0 and trivial differential.
Explicitly, x is the morphism x : 1

2 → 1.

2) We have E! = REndA( 1
2 ⊕2[1]) ∼= k(∗2[1]

y−→ ∗ 1
2

) with |y| = 1 and trivial differential, where
y : 2[1]→ 1

2 [1].
3) Note that E ∼= A and therefore the dg Koszul dual of E is REndA(1 ⊕ 2) as described

in Example 3.5.1 above. A quasi-isomorphism E! → REndA(1 ⊕ 2) is given by ∗ 1
2
7→ e2,

∗2[1] 7→ e11 + e12, y 7→ g, as mentioned in Example 3.5.1.

4) We already computed the Koszul dual of E! in Example 3.5.1, where we saw that it is
quasi-isomorphic to E.

Example 3.5.3 (Non-standard, non-faithful heart). Consider the simple-minded collection L =
{1, 2[−1]} and the corresponding silting collection P = { 1

2 , 2[−1]}. This is obtained from the
standard example by right mutation at 2. The corresponding heart is semisimple.

1) We have E = REndA( 1
2 ⊕ 2[−1]) ∼= k(∗2[−1]

x−→ ∗1) with |x| = −1 and trivial differential.
Explicitly, x is the morphism 2[−1]→ 1

2 [−1].
2) As L is obtained from the standard simple-minded collection by shifting one object, the

algebra structure of E! = REndA(1⊕ 2[−1]) is the same as in Example 3.5.1. However the
degrees and differentials are now given by

e11 e12 e2 f0 f−1 g h
deg 0 0 0 −1 −2 2 1
d h −h 0 0 −f0 0 0

3) To compute the dg Koszul dual of E, we need to take K-projective resolutions of the two
augmenting dg E-modules ∗2[−1] and ∗1. These are given by

∗2[−1] ∼=

 0

k

 , ∗1 ∼=

 0 0 k

k k 0
x

d


with the right-most terms in degree 0. Here the top row represents the vertex ∗1 and the
bottom row the vertex ∗2[−1]. It follows that

REndE(∗2[−1] ⊕ ∗1) ∼= k


E11 E12

E2

H

G

F0
F−1

 /

(
F0G=H

F−1G=E11
HF−1=F0
GF−1=E2

)
.

with the degrees and differentials given by

E11 E12 E2 F0 F−1 G H
deg 0 0 0 −1 −2 2 1
d H −H 0 0 −F0 0 0

It is obvious that REndE(∗1 ⊕ ∗2) is (quasi-)isomorphic to E!.

51



Chapter 3. Koszul duality of simple-minded and silting collections

4) Similarly to the previous examples, it follows that E! is quasi-isomorphic to its cohomology,
which is H∗(E!) = k(e1

g−→ e2) where e1 = e11 + e12 and |g| = 2. The dg Koszul dual of E!

is computed similarly to Example 3.5.1: the K-projective resolutions of the augmenting dg
E!-modules are given by

e1 ∼=

 0

k

 , e2 ∼=

 k 0 0

0 k k

y

d

 ,

and from this we get

REndE!(e1 ⊕ e2) = k


E21 E22

E1

H

G

F2
F1

 /

(
F2G=H
F1G=E21
HF1=F2
GF1=E1

)

with dg structure
E21 E22 E1 F1 F2 G H

deg 0 0 0 1 2 −1 1
d −H H 0 F2 0 0 0

Similarly to the previous examples, REndE!(e1⊕e2) is quasi-isomorphic to its cohomology,
which is k(E2

G−→ E1) = E where E2 = E21 + E22.
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Chapter 4

Serre functor and P-objects for perverse
sheaves on Pn

In this chapter we show that the P-twist at the IC sheaf ICn = kPn [n] is the inverse Serre functor
of the constructible derived category Db

c (Pn), and furthermore we classify the P(-like) objects in
Perv(Pn).

We begin by recalling the required definitions. In particular, following [HT06; HK19] we
define P(-like) objects and P-twists in the general setup of dg-enhanced triangulated categories,
and we recall the notion of Serre functors introduced in [BK90]. After explaining our setup,
i.e. the constructible derived category Db

c (Pn) and the (middle-)perverse t-structure, we explicitly
describe the simple, standard and projective objects in Perv(Pn). We also summarize the well-
known equivalences between perverse sheaves, parabolic category O, and a description in terms
of finite-dimensional algebras.

To show that the P-twist at ICn is the inverse Serre functor of Db
c (Pn) we use a crite-

rion adapted from [MS08], see Lemma 4.3.10. To apply this in the proof of the main result
Theorem 4.3.11, we first compute the morphisms between the simple, standard, and projective
objects of Perv(Pn). This also serves as preparation for the classification of P-like objects. We
also compare our description of the Serre functor to the descriptions in terms of category O and
finite-dimensional algebras, and also to the description of the Serre functor of Db

c (G/B) from
[BBM04].

For the classification of the P-like objects in Perv(Pn) we first recursively construct certain
string objects from the simple and standard objects. By the classification of indecomposable
objects obtained from the description of Perv(Pn) in terms of finite-dimensional algebras, these
are all the indecomposable objects that are not projective-injective. We compute the Hom spaces
between the string objects via their recursive definition, which also yields canonical morphisms
spanning these Hom spaces. We then show that all string objects are P-like by determining the
composition of these canonical morphisms up to non-zero scalars, see Theorem 4.4.17. However,
none of the string objects are P-objects except for ICn, since only ICn and the indecomposable
projective-injective objects can be Calabi–Yau.
The chapter is joint work with Alessio Cipriani, and has appeared as the preprint [BC25].

[BC25] L. Bonfert and A. Cipriani. Serre functor and P-objects for perverse sheaves on
Pn. Preprint. 2025. arXiv:2506.06051v1 [math.RT].

4.1 Motivation and overview of results

A Serre functor on a k-linear triangulated category is an autoequivalence S : D → D such
that for any pair of objects E,F ∈ D there exists a functorial isomorphism HomD(E,F ) ∼=
HomD(F,S(E))∨. Serre functors generalize Serre duality from algebraic geometry, and are an
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important tool in the theory of triangulated categories. For instance, they can be used to con-
struct left (resp. right) adjoints to functors having a right (resp. left) adjoint.

Another important class of automorphisms of triangulated categories in algebraic geometry
and representation theory are the spherical twists associated to spherical objects [ST01]. For
example, these can be used to construct braid group actions on triangulated categories, and
certain functors from representation theory such as shuffling functors can be realized as spherical
twists [Len21]. By definition, an object E ∈ D is d-spherical if there is an isomorphism of graded
algebras End∗D(E) ∼= k[t]/(t2) with deg(t) = d and E is d-Calabi–Yau. The value of the spherical
twist STE at X ∈ D is then defined by the triangle

Hom∗D(E,X)⊗ E ev−→ X → STE(X)→ Hom∗D(E,X)⊗ E[1].

Consider the constructible derived category Db
c (Pn) of the complex projective space Pn

with the usual Bruhat stratification, whose strata (the Bruhat cells) have complex dimension
0, 1, . . . , n. By definition, Db

c (Pn) consists of those complexes of sheaves of k-vector spaces on
Pn whose cohomology is locally constant on all strata of Pn. By gluing the standard t-structures
on the constructible derived category of each stratum (shifted by the dimension of the stratum)
one obtains the (middle-)perverse t-structure on Db

c (Pn), and its heart is the category Perv(Pn)
of (middle-)perverse sheaves [BBD82]. This perverse t-structure plays an important role in rep-
resentation theory since there is an equivalence Perv(Pn) ∼= Op

0(sln+1(k)), where p ⊆ sln+1(k)
denotes the parabolic Lie subalgebra with block sizes (n, 1). As this perverse t-structure has
faithful heart, this yields an equivalence Db

c (Pn) ∼= Db
c (Op

0(sln+1(k))) [BGS96].
The category of perverse sheaves on Pn is moreover equivalent to the category of finite-

dimensional modules over an explicit finite-dimensional algebra An [KS02]. Since An has finite
global dimension, it follows from results of Happel [Hap88] and Bondal–Kapranov [BK90] that
Db(modfd-An) admits a Serre functor, namely the left derived functor of the Nakayama functor
A∨n ⊗An

−. However, these results do not provide a description of the Serre functor that is
intrinsic to the constructible derived category Db

c (Pn).
In the case of the complex projective line P1 = pt∪̇A1 stratified by a point and its complement,

such an intrinsic description is provided in [Woo10]. In this example, the category Perv(P1) has
two simple objects corresponding to the two strata. Explicitly, these are the skyscraper sheaf
IC0 = incl∗ kpt and the shifted constant sheaf IC1 = kP1 [1]. The simple perverse sheaf IC1
is a 2-spherical object in Db

c (P1), and the inverse Serre functor for Db
c (Pn) is then given by

S−1 = ST2
IC1

.
The main result of this chapter is a generalization of this description of the Serre functor to

Pn. In this case, the simple perverse sheaf ICn = kPn [n] corresponding to the open stratum is
not a spherical object, but rather a Pn-object in the sense of Huybrechts and Thomas [HT06].
Explicitly this means that there is an isomorphism of graded algebras EndPn(ICn) ∼= k[t]/(tn+1)
with deg(t) = 2, and that ICn is 2n-Calabi–Yau. The corresponding generalization of spherical
twists is provided by the P-twists from [HT06], which are defined as certain “double cones”, see
Definition 4.2.3 below. In our situation, we obtain:

Theorem 4.1.1 (Theorem 4.3.11). The inverse Serre functor S−1 of Db
c (Pn) is isomorphic to

the P-twist PTICn
.

This in particular recovers the result from [Woo10] for P1, since by definition a P1-object is
the same as a 2-spherical object, and for any P1-object E we have PTE ∼= ST2

E .
The proof of Theorem 4.1.1 relies on a characterization of the Serre functor adapted from

[MS08], see Lemma 4.3.10. The main idea is to compare the “candidate inverse Serre functor” to
the inverse Serre functor by studying its action on the injective and projective-injective objects.
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In [MS08] the dual version of this criterion was used to describe the Serre functor of Db(O0(g))
for any finite-dimensional complex semisimple Lie algebra g. By an entirely formal argument
this description also descends to Db(Op

0(g)) for any parabolic subalgebra p ⊆ g, and thus also
to Db

c (Pn). In Section 4.3.6, we summarize these results and their relation to the description of
the Serre functor in terms of finite-dimensional algebras, and also relate our description of the
Serre functor of Db

c (Pn) to the description of the Serre functor for the full flag variety obtained
in [BBM04].

Motivated by Theorem 4.1.1, one may ask whether there are further P-objects in Perv(Pn).
However, it is easy to see that no indecomposable object except for ICn and the projective-
injectives can be Calabi–Yau, see Corollary 4.4.2. Hence any other indecomposable object E can
at best be Pk-like in the sense that End∗Pn(E) ∼= k[t]/(tk+1).

To describe the indecomposable perverse sheaves, in Section 4.4.2 we inductively construct
certain string objects M±a,b ∈ Perv(Pn) for 0 ≤ b ≤ a ≤ n, starting from the simple objects
and (co)standard objects. Alternative constructions of these objects can be found in [CL23],
where they are used to describe the wall-and-chamber structure of Perv(Pn). Since Perv(Pn) ∼=
An-modfd for a special biserial algebra An, the classification of indecomposable modules over
special biserial algebras from [BR87; WW85] shows that the string objects together with the
indecomposable projective-injective objects are all the indecomposable perverse sheaves.

As the indecomposable projective-injective objects are 0-spherical, the second result of this
chapter then shows that all indecomposable perverse sheaves are either P-like or 0-spherical:

Theorem 4.1.2 (Theorem 4.4.17). Let 0 ≤ b ≤ a ≤ n.

1) If a− b is even, then the string objects M±a,b are P(a+b)/2-like.

2) If a− b is odd, then the string objects M±a,b are P(a−b−1)/2-like.

As easy consequences of Theorem 4.1.2, one also obtains a classification of the spherical,
spherelike and exceptional objects in Perv(Pn), see Corollary 4.4.19. In particular, this recovers
the classification of the exceptional objects from [PW20].

The proof of Theorem 4.1.2 is rather technical and occupies most of Sections 4.3 and 4.4.
The first step is to compute End∗Pn(M±a,b) by chasing the long exact sequences obtained from
the inductive construction of the string objects, see Section 4.4.3. As the base cases of this
construction are the simple objects and the (co)standard objects, this requires us to explicitly
fix morphisms between these objects and to determine their compositions, see Sections 4.3.1
to 4.3.3. The computation of HomPn(M±a,b,M

±
a,b[2i]) also yields canonical non-zero morphisms

Φ2i
a,b : M±a,b → M±a,b[2i], and the final step is then to check that Φ2i

a,bΦ2
a,b = Φ2i+2

a,b up to a non-
zero scalar (whenever this is possible by degree reasons), see Section 4.4.3. To quickly check
conjectures about Ext spaces we often used Haruhisa Enomoto’s FD Applet [Eno].

4.1.1 Notation
In this chapter k denotes an algebraically closed field of characteristic 0. The k-linear duality
functor is denoted by (−)∨ = Homk(−, k).

For a k-linear triangulated category D and A,B ∈ D we denote the total Hom space by
Hom∗D(A,B) =

⊕
r∈Z HomD(A,B[r]), with the degree r part given by HomD(A,B[r]). We do

not write shifts of morphisms, i.e. we just write f : A[1]→ B[1] for f : A→ B.
We write RF : D+(A )→ D+(B) for the right derived functor of a left exact functor F : A →

B of abelian categories. As usual, we will however suppress the notation for derived functors
for functors arising from geometry, such as the pushforward. The right derived functor in the
∞-categorical sense will be denoted by RF : D+

∞(A )→ D+
∞(B).
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The following table is a list of notation for the morphisms in Db
c (Pn) between the simple

perverse sheaves ICk, standard objects ∆k (see Section 4.2.4) and string objects M+
a,b ∈ Perv(Pn)

(see Section 4.4.2) which will be used throughout the chapter.

Morphism Definition Morphism Definition
εrk,l : ICk → ICl[r] Section 4.3.1 ψa−2,b : M+

a−2,b → ∆a[1] Section 4.4.2
µk,l : ∆k → ICl[l − k] Lemma 4.3.5 mr

a,b : M+
a,b → ICb[r] Lemma 4.4.4

δrk,l : ∆k → ∆l[r] Lemma 4.3.6 nra,b : M+
a,b → ICa[r] Remark 4.4.6

φrk,l : ICl → ∆k[r] Lemma 4.3.7 Φ2i
a,b : M+

a,b → M+
a,b[2i] Remark 4.4.14

ιa,b : ∆a → M+
a,b Section 4.4.2 Φ2i

a,b : M+
a−2i,b → M+

a,b[2i] Remark 4.4.14
πa,b : M+

a,b → M+
a−2,b Section 4.4.2 ζ2i

a−2i,b : ∆a−2i → M+
a,b[2i] Remark 4.4.14

4.2 Definitions and background

4.2.1 P-objects and P-twists
We begin by recalling the P-twists at P-objects from [HT06], using the nomenclature from [HK19].
Let D be a k-linear triangulated category.

Definition 4.2.1. Let E ∈ D and k ∈ Z with k ≥ 0.

1) E is Pk-like if there is an isomorphism of graded k-algebras End∗D(E) ∼= k[t]/(tk+1) with
deg(t) = 2.

2) E is a Pk-object if it is Pk-like, Hom∗D(E,X) is finite-dimensional for all X ∈ D , and E is
2k-Calabi–Yau.

3) A P-(like) object is a Pk-(like) object for any k.

Recall that E ∈ D is d-Calabi–Yau if there is a natural isomorphism

HomD(E,−) ∼= HomD(−, E[d])∨.

It is immediate from the definitions that if a Pk-like object E is d-Calabi–Yau, then necessarily
d = 2k, cf. [HK25, Def. 2.1] and [HT06, Rem. 1.2].

Slightly more generally, [Kru18] and [HK19] also introduced Pk[d]-(like) objects, for which 1)
is replaced by End∗D(E) ∼= k[t]/(tk+1) with deg(t) = d. Thus Pk[2](-like) objects are the same as
Pk(-like) objects. As well-known special cases, P1[d]-objects and P1[d]-like objects are the same
as d-spherical objects and d-spherelike objects, respectively, and P0-like objects are the same as
exceptional objects.

The following lemma provides a useful criterion for when Pk-like objects are Pk-objects.

Lemma 4.2.2. Let E ∈ D be a Pk-like object.

1) E is 2k-Calabi–Yau if and only if the composition pairing

HomD(E,X)⊗HomD(X,E[2k])→ HomD(E,E[2k]) ∼= k

is non-degenerate for all X ∈ D .
2) If D = Db(A ) for an abelian category A of finite global dimension with enough projectives,

then E is 2k-Calabi–Yau if and only if the composition pairing is non-degenerate for all
X = P [r] with P ∈ Proj(A ) and r ∈ Z.
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Proof.

1) For spherelike objects, this is [ST01, Lemma 2.15]. The same argument works for P-like
objects, as it only requires HomD(E,E[2k]) ∼= k

2) For spherelike objects, this is shown in [Len21, Lemma 3.3]. The same argument works for
P-like objects, as it only requires HomD(E,E[2k]) ∼= k and the first part of the lemma.

For the rest of this subsection we fix a dg enhancement of D . By definition, a dg enhancement
consists of a k-linear pretriangulated dg category D̃ and an equivalence of triangulated categories
H0(D̃) ∼= D . Note that if D̃ is pretriangulated, then Fundg(D̃ , D̃) is again a pretriangulated dg
category by [BK91, §3, Examples, 4.]. In particular the cone of a morphism of dg functors is
again a dg functor.

If D̃ has all coproducts, then for an object E ∈ D̃ there is the dg functor −⊗E : dgVectk →
D̃ , which is defined as the right adjoint to Hom

D̃
(E,−) : D̃ → dgVectk. We denote the counit

of this adjunction by ev : Hom
D̃

(E,−)⊗ E → id
D̃
.

A generalization of spherical twists at spherical objects is provided by the P-twists at P-objects
from [HT06, §2]. These are defined as follows:

Definition 4.2.3. Let E ∈ D be a P-like object. Assume that the tensor product Hom
D̃

(E,X)⊗
E ∈ D̃ exists for all X ∈ D̃ .

1) Pick a closed morphism t̃ ∈ Hom
D̃

(E,E[2]) of degree 0 representing an algebra generator
of End∗D(E). Define the dg functor P̃TE = cone(ev) : D̃ → D̃ by the following commutative
diagram in Fundg(D̃ , D̃):

(
Hom

D̃
(E,−)⊗ E

)
[−2] Hom

D̃
(E,−)⊗ E cone(t̃∗ ⊗ id− id⊗t̃)

id
D̃

cone(ev)

t̃∗⊗id− id⊗t̃

ev
∃ev

(4.1)
Here ev : cone(t̃∗ ⊗ id− id⊗t̃)→ id

D̃
is the canonical morphism of dg functors induced by

ev, which exists since ev ◦(t̃∗ ⊗ id− id⊗t̃) = 0.

2) The P-twist at E is the induced triangulated functor PTE = H0(P̃TE) : D → D .

Remark 4.2.4.

1) A priori, the functor PTE : D → D depends on the choices made in the definition. How-
ever, as E is a P-like object, the generator t : E → E[2] of End∗D(E) is unique up to
non-zero scalar, and rescaling t obviously results in naturally isomorphic triangles. Simi-
larly, choosing a different representative for t results in quasi-isomorphic cones. By [AL22,
Thm. 3.2], the functor PTE : D → D is furthermore independent of the choice of cones and
factorization ev. Thus PTE : D → D is well-defined up to natural isomorphism.

2) The assumption that Hom
D̃

(E,X)⊗E exists for all X ∈ D̃ is automatically satisfied if D̃
has all coproducts, or if Hom

D̃
(E,X) is finite-dimensional.
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3) If D = D+(A ) is the derived category of an abelian category with enough injectives,
a dg enhancement of D is given by the pretriangulated dg category D̃ = Ch+(Inj(A ))
together with the canonical equivalence H0(D̃) = K+(Inj(A )) → D+(A ). Hence by
definition, to compute Hom

D̃
(E,X) for a P-like object E ∈ A and any X ∈ D̃ , one

first has to replace E by a (fixed) injective resolution. However, the derived Hom functor
RHomA (E,−) = HomCh+(A )(E,−) : D̃ → dgVectk is quasi-isomorphic to Hom

D̃
(E,−).

Thus, in this situation we can use RHomA (E,−) instead of Hom
D̃

(E,−) to define the
P-twist PTE : D → D . This is easier to compute in practice, since here E does not need
to be replaced by an injective resolution.

Remark 4.2.5.

1) Spherical twists at spherical objects can be generalized to spherical twists at spherical
functors. Similarly, P-twists at P-objects can be generalized further to P-twists at (split)
P-functors, see [Add16; Cau11; AL19]. However, we will not use these constructions.

2) By [Seg18], any autoequivalence of a triangulated category can be realized as a spherical
twist at a spherical functor. For P-twists at P-objects this can be carried out explicitly, see
[Seg18, §4].

The following main properties of P-twists were proved in [HT06] using Fourier–Mukai trans-
forms. We briefly sketch how the required properties can be shown purely in terms of dg-enhanced
triangulated categories. That all statements carry over to the dg setup is presumably well-known
to experts, see for instance [HK19, Prop. 2.5].

Proposition 4.2.6 (Huybrechts–Thomas). Let E ∈ D be a Pk-object.

1) PTE : D → D is an equivalence.
2) PTE(E) ∼= E[−2k].
3) If E is spherical (i.e. if k = 1), then PTE ∼= ST2

E.

Proof.

1) A computation similar to the proof of [ST01, Lemma 2.8] shows that PTE has a left
adjoint PT′E , which is defined dually. Moreover, by a similar argument and the Calabi–
Yau property it follows that PT′E is also right adjoint to PTE . The claim then follows by
the arguments from [HT06, Prop. 2.6].

2) This is straightforward, see [HT06, Lemma 2.5] for details.
3) See [HT06, Prop. 2.9]. Alternatively, this can be seen by comparing the diagram defining

ST2
E to the octahedral axiom diagram for the factorization in the definition of the P-

twist.

4.2.2 Serre functors
We recall the notion of Serre functor from [BK90].

Definition 4.2.7. A Serre functor for a k-linear triangulated category D is a functor S : D → D
such that there are natural isomorphisms

HomD(X,Y ) ∼= HomD(Y,S(X))∨.
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4.2. Definitions and background

As an immediate consequence of the Yoneda lemma, there is at most one Serre functor for D
up to natural isomorphism [BK90, Prop. 3.4].

For D = Db(A-modfd) for a finite-dimensional algebra A, the Serre functor has the following
description:

Proposition 4.2.8 (Happel). Let A be a finite-dimensional algebra. Then Db(A-modfd) has
a Serre functor if and only if gldim(A) < ∞. In this case, the Serre functor is the left derived
functor of the Nakayama functor A∨ ⊗A −.

Proof. If gldim(A) < ∞, then the left derived Nakayama functor is a Serre functor by [Hap88,
Prop. I.4.10]. Conversely, it is clear that if S is a Serre functor, then

ExtrA(X,L) ∼= HomDb(A-modfd)(X,L[r]) ∼= HomDb(A-modfd)(L, S(X)[−r])∨

for any X ∈ A-modfd and any simple A-module L, and the right-hand side vanishes for r
large enough such that S(X)[−r] ∈ D>0, where D>0 denotes the positive part of the standard
t-structure.

4.2.3 The constructible derived category Db
c (Pn)

We recall the constructible derived category of the complex projective space Pn = PnC, which will
be the focus of the rest of the chapter. The same construction and all of the tools work in much
greater generality, see [BBD82], [HTT08] or [Ach21].

Consider Pn with the usual stratification by Bruhat cells, i.e. by the subspaces

Sk = {[x0 : · · · : xk−1 : 1 : 0 : · · · : 0]} ⊆ Pn

for 0 ≤ k ≤ n. We identify Sk ∼= Ak by projection to the first k coordinates. We denote the
strata inclusions by k : Ak → Pn, and write ık : Pk ↪→ Pn. By slight abuse of notation, we also
write k and ık for the inclusions of Ak and Pk, respectively, into any Pl with k ≤ l ≤ n.

We denote by Db(Sh(Pn)) the bounded derived category of sheaves of finite-dimensional
k-vector spaces on Pn. The constructible derived category is the full triangulated subcategory
Db

c (Pn) ⊂ Db(Sh(Pn)) consisting of the complexes whose cohomologies are (locally) constant on
all strata. For brevity we write HomPn(−,−) = HomDb

c (Pn)(−,−). We emphasize that we always
consider the constructible derived category with respect to a fixed stratification, in constrast to
e.g. [Ach21].

The constructible derived category has a natural t-structure given by

D t≤0 = {F ∈ Db
c (X) | ı∗kX ∈ Db

c (S)≤−k ∀S ∈ S},
D t≥0 = {F ∈ Db

c (X) | ı!kX ∈ Db
c (S)≥−k ∀S ∈ S}.

This is obtained by iterated gluing of the shifted (by − 1
2 dimSk = −k) standard t-structures on

Db
c (Sk) ∼= Db(k-modfd) along the recollements provided by the strata inclusions, see (the proof

of) [BBD82, Prop. 2.1.3]. Its heart is the category of (middle-)perverse sheaves Perv(Pn).
The Verdier duality functor on Db

c (Pn) is D = RHomDb(Pn)(−, ωPn), where ωPn = a!
Pnkpt

(with aPn : Pn → pt) is the dualizing sheaf. Since Pn is smooth, we in fact have ωPn ∼= kPn [2n].
Verdier duality restricts to a (contravariant) involution D : Db

c (Pn) → Db
c (Pn). Moreover, from

the definition of perverse sheaves it follows that D preserves Perv(Pn).
By variants of Beilinson’s theorem (see [BGS96, Cor. 3.3.2] or [BBM04, Prop. 1.5]) the

perverse t-structure on Db
c (Pn) has faithful heart. This means that there is a realization functor,
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Chapter 4. Serre functor and P-objects for perverse sheaves on Pn

i.e. a triangulated functor Db(Perv(Pn))→ Db
c (Pn) such that the diagram

Perv(Pn)

Db(Perv(Pn)) Db
c (Pn)

commutes, and that the realization functor is an equivalence. In particular, the realization
functor provides isomorphisms ExtrPerv(Pn)(X,Y ) ∼= HomPn(X,Y [r]) for all r ≥ 0 (note that for
r ≤ 1 this holds even if the t-structure does not have faithful heart). For r = 1 this allows
to interpret triangles Y f→ Z

g→ X → Y [1] with X,Y, Z ∈ Perv(Pn) as short exact sequences
0→ Y

f→ Z
g→ X → 0 in Perv(Pn).

4.2.4 Simple, standard and projective objects
We recall the explicit description of the simple perverse sheaves, and also the standard and
costandard objects. This also allows one to describe the indecomposable projective and injective
perverse sheaves, and derive some important properties of Perv(Pn). While all of this is well-
known, see for instance [Ach21; BBD82; BGS96; CW22; MV87], the explicit constructions in
this subsection are central to the arguments in Sections 4.3 and 4.4.

Simple objects

The simple perverse sheaves are the IC sheaves ICk = k,!∗kAk [k] for 0 ≤ k ≤ n, where k,!∗
denotes the intermediate extension functor. As all strata closures are smooth, the IC sheaves
are extensions by zero of shifted constant sheaves supported on the strata closures, i.e. we have
ICk ∼= ık,∗kPk [k]. Note that D(ICk) ∼= ICk, and ık−1,∗ı

∗
k−1ICk ∼= ICk−1[1] and ık−1,∗ı

!
k−1ICk ∼=

ICk−1[−1].

Standard objects

For 0 ≤ k ≤ n, the standard objects ∆k = k,!kAk [k] are perverse sheaves. We have ∆0 ∼= IC0,
and for k ≥ 1 the recollements provide triangles

ICk−1
φ0

k−1,k−−−−→ ∆k
µk,k−−−→ ICk

ε1k,k−1−−−−→ ICk−1[1], (4.2)

where ε1k,k−1 : ICk → ık−1,∗ı
∗
k−1ICk ∼= ICk−1[1] is the adjunction unit and µk,k : ∆k

∼= k,!
∗
kICk →

ICk the adjunction counit. Note that for the applications in Sections 4.3 and 4.4 one has to be
careful with the choice of the (co)units, see Section 4.3.1 for details. The notation here is more
complicated than necessary at this point, but chosen for consistency with Sections 4.3.2 and 4.3.3
below where we will describe more general morphisms φrk,l : ICk → ∆l[r] and µk,l : ∆k → ICl[l−k].

Interpreted as short exact sequences in Perv(Pn), the triangles (4.2) are the composition
series of the standard objects.

Dually, the costandard objects ∇k = k,∗kAk [k] ∼= D(∆k) are also perverse sheaves. Explicitly,
their composition series are given by ∇0 ∼= IC0 and the recollement triangles

ICk → ∇k → ICk−1 → ICk[1]

for k > 0.
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Projective objects

The category Perv(Pn) has enough projectives. The explicit construction of the indecomposable
projective objects from the proof of [CW22, Thm. 4.6] shows that Pn ∼= ∆n, while for k < n the
object Pk arises from a triangle

∆k+1 → Pk → ∆k
δk,k+1−−−−→ ∆k+1[1]. (4.3)

In particular the indecomposable projective objects have ∆-flags. The morphism δk,k+1 will be
described precisely after Lemma 4.3.6.

Dually, Perv(Pn) also has enough injectives, and the indecomposable injective objects have
∇-flags given by In = ∇n and the triangles

∇k → Ik → ∇k+1 → ∇k[1]

for k < n.

Highest weight structure

It follows that Perv(Pn) is a highest weight category in the sense of [CPS88] (see [BS24] for a
modern treatment) with respect to the order 0 < 1 < · · · < n, since the (co)standard objects
as defined above are indeed the (co)standard objects in the sense of highest weight categories:
the triangles defining the indecomposable projective objects and the composition series of the
standard objects show that ∆k is the maximal a quotient of Pk such that all composition factors
except the top are ICl with l < k.

By [Don98, Prop. A2.3] or [BS24, Rem. 3.28], the highest weight structure of Perv(Pn)
gives a bound on the global dimension, namely gldim(Perv(Pn)) ≤ 2n. Since the perverse
t-structure has faithful heart, from Lemma 4.3.1 below we get Ext2n

Perv(Pn)(ICn, ICn) ∼=
HomPn(ICn, ICn[2n]) ∼= k, and thus gldim(Perv(Pn)) = 2n.

4.2.5 Other descriptions of the category of perverse sheaves
There are two other well-known descriptions of the category Perv(Pn), namely in terms of
finite-dimensional algebras and via Lie algebras. We will not use these descriptions throughout
the chapter, with the exception that the classification results in Corollaries 4.4.19 and 4.4.20
rely on the classification of indecomposable perverse sheaves, which is obtained from the finite-
dimensional algebras description.

The Lie-theoretic description of the constructible derived category is given by the equivalence
Db

c (Pn) ∼= Db(Op
0(sln+1(k))) from [BGS96, Thm. 3.5.3], see also [Ach21, Rem. 7.3.10] for an

overview. Here p ⊆ sln+1(k) is the maximal parabolic subalgebra with block sizes (n, 1). This
equivalence identifies the standard t-structure on Db(Op

0(sln+1(k))) with the perverse t-structure
on Db

c (Pn), and thus yields Perv(Pn) ∼= Op
0(sln+1(k)).

Furthermore, there is an equivalence Perv(Pn) ∼= An-modfd, where

An = k

 0 1 . . . n− 1 n
b1

a1

b2

a2

bn−1

an−1

bn

an

 /

( ai−1ai

bi+1bi

aibi−bi−1ai−1
bnan

)
.

The algebra An is directly linked to the Lie-theoretic description by an equivalence Op
0(sln+1) ∼=

An-modfd, see [KS02, Prop. 2.9] and [Str06, Ex. 1.1].
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Chapter 4. Serre functor and P-objects for perverse sheaves on Pn

From the finite-dimensional algebras description, it is very easy to check the properties men-
tioned in Section 4.2.4: for instance one can easily write down the indecomposable projective
objects and the standard objects to see that An-modfd is highest weight. One can also explic-
itly determine projective and injective resolutions of the simple An-modules, which in particular
shows that gldim(An) = 2n.

The algebra An is special biserial, and thus [BR87, p. 161, Thm.] and [WW85, Prop. 2.3]
provide a combinatorial description of the indecomposable An-modules. Explicitly, there are the
indecomposable projective-injective objects Pi for 0 ≤ i ≤ n − 1, and certain string modules
M±a,b with 0 ≤ b ≤ a ≤ n, see [PW20, §2.4] or [CL23, §4] for an explicit list. It follows that An
has n + (n + 1) + 2

(
n+1

2
)

= n + (n + 1)2 isomorphism classes of indecomposable modules. In
Section 4.4.2 below we provide a construction of the string modules in terms of perverse sheaves,
which can also be found in [CL23].

Note that it is a special property of Pn that the indecomposable perverse sheaves can be
classified. For more general (partial) flag varieties, the category of perverse sheaves is usually of
wild representation type.

4.3 Description of the Serre functor of Db
c(Pn)

In this section we show that the IC sheaf ICn corresponding to the open stratum is a Pn-object in
Db

c (Pn), and that the P-twist at ICn is the inverse Serre functor of Db
c (Pn). To do this, we first

need to understand morphisms between simple perverse sheaves, and morphisms from simple to
projective perverse sheaves. These technical results will also be used in Section 4.4.

4.3.1 Morphisms between simples
Recall that for a variety X we have by definition HomX(kX , kX [r]) = Hr(X), see e.g. [Ach21,
Rem. 1.2.5]. This allows to determine the morphisms between the shifted simple perverse sheaves
in terms of the stratification. We briefly recall this well-known fact, see for instance [KS02, p. 217,
after the Remark].

Lemma 4.3.1. For 0 ≤ k, l ≤ n and r ≥ 0, there is an isomorphism of vector spaces

HomPn(ICk, ICl[r]) ∼= Hr−|k−l|(Pl ∩ Pk)

In particular, if k = l there is an isomorphism of graded algebras End∗Pn(ICk) = H∗(Pk) ∼=
k[t]/(tk+1) with deg(t) = 2.

Proof. This is obvious from ı∗l ICk ∼= kPl [k] for k ≥ l, respectively ı!kICl ∼= kPk [2k − l] for l ≥ k,
and the definition of cohomology.

We want to fix non-zero morphisms εrk,l : ICk → ICl[r] in a way that is compatible with
composition. This requires us to inductively fix the (co)units for the recollement adjunctions, as
follows.

Suppose we have already fixed the adjunction (co)units ηl : idDb
c (Pl+1) → ıl,∗ı

∗
l and εl : ıl,∗ı!l →

idDb
c (Pl+1) for the recollements corresponding to the strata Sl+1 with l + 1 ≤ k < n, such that

ηlεl = εl−1ηl−1 : ICl → ICl[2] and D(εl)X = (ηl)D(X) forX ∈ Db
c (Pl+1), and that the composition

ICk
ηk−1−−−→ ICk−1[1] εk−1−−−→ ICk[2] is non-zero.
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The inclusion of the (k + 1)-dimensional stratum Sk+1 ∼= Ak+1 provides the recollement

Db
c (Pk) Db

c (Pk+1) Db
c (Ak+1)ık,∗ ∗k+1

ı∗k

ı!k

k+1,!

k+1,∗

As part of the recollement data, there are the adjunction unit η̃k : idDb
c (Pk+1) → ık,∗ı

∗
k and the

counit ε̃k : ık,∗ı!k → idDb
c (Pk+1). These can be chosen to be Verdier-dual to each other in the sense

that D((ε̃k)D(X)) = (η̃k)X for X ∈ Db
c (Pk+1).

The proof of the following lemma is based on conversations with Jon Woolf.

Lemma 4.3.2. Let 0 ≤ k ≤ n− 1.

1) The composition ICk
ε̃k−→ ICk+1[1] η̃k−→ ICk[2] is non-zero for k > 0.

2) The composition ICk+1
η̃k−→ ICk[1] ε̃k−→ ICk+1[2] is non-zero.

Proof. To see that the compositions are non-zero, we apply aPk+1,∗ to them, where aPk+1 : Pk+1 →
pt. We have aPk+1,∗ICk ∼=

⊕k
i=0 kpt[−k + 2i] since

Hompt(kpt, aPk+1,∗ICk[r]) ∼= HomPk+1(kPk+1 , ık,∗kPk [k + r])

∼=
{
k if 0 ≤ k + r ≤ 2k and k + r even,
0 else,

and analogously we get aPk+1,∗ICk+1 ∼=
⊕k+1

i=0 kpt[−k− 1 + 2i]. Similar computations show that
aPk+1,∗∇k+1 ∼= kpt[k + 1] and aPk+1,∗∆k+1 ∼= kpt[−k − 1] (for the latter, use aPk+1,∗ = aPk+1,!).

Hence applying aPk+1,∗ to the triangles defining ∇k+1[1] and ∆k+1[2] yields triangles

k⊕
i=0

kpt[−k + 2i]
aPk+1,∗(ε̃k)
−−−−−−−→

k+1⊕
i=0

kpt[−k + 2i]→ kpt[k + 2]→
k⊕
i=0

kpt[−k + 2i+ 1],

k+1⊕
i=0

kpt[−k + 2i]
aPk+1,∗(η̃k)
−−−−−−−→

k⊕
i=0

kpt[−k + 2i+ 2]→ kpt[1− k]→
k+1⊕
i=0

kpt[−k + 2i+ 1].

Since Hompt(kpt, kpt[r]) = 0 for r 6= 0, the morphisms aPk+1,∗(ε̃k) and aPk+1,∗(η̃k) must identify
all the summands occuring in both their source and target.

It follows that the composition aPk+1,∗(ICk
ε̃k−→ ICk+1[1] η̃k−→ ICk[2]) identifies all the sum-

mands occuring in both aPk+1,∗ICk and aPk+1,∗ICk[2], and such a common summand exists if and
only if k > 0.

For the other composition, one sees similarly that aPk+1,∗(ICk+1
η̃k−→ ICk[1] ε̃k−→ ICk+1[2])

identifies all the summands occuring in both aPk+1,∗ICk+1 and aPk+1,∗ICk+1[2], and thus is non-
zero.

In particular, since HomPn(ICk, ICk[2]) is 1-dimensional by Lemma 4.3.1, we have η̃kε̃k =
λεk−1ηk−1 for some scalar λ 6= 0. Set ηk = 1√

λ
η̃k and εk = 1√

λ
ε̃k. These are again adjunction

(co)units for the recollement for gluing the (k + 1)-dimensional stratum, and rescaling both by
the same factor ensures that the new (co)units are still Verdier-dual to each other. Note that to
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ensure that the recollement triangles are isomorphic to those obtained from the original (co)units,
one also has to rescale the (co)units for the adjunctions between k+1,!, ∗k+1 and k+1,∗.

By construction, the square

ICk ICk−1[1]

ICk+1[1] ICk[2]

ηk−1

εk εk−1

ηk

(4.4)

now commutes, as desired. Moreover, the composition ICk
εk−→ ICk+1[1] ηk−→ ICk[2] is still non-

zero, which completes the induction.
From now on, we assume the (co)units ηk, εk of the recollement adjunctions are fixed for all

k, and make the square (4.4) commute. With this data, we can now fix the desired morphisms
εrk,l : ICk → ICl[r] spanning HomPn(ICk, ICl[r]) 6= 0 (with |k − l| ≤ r ≤ |k − l| + 2 min(k, l) and
r − |k − l| even), as follows.

Set ε1k,k−1 = ηk−1 : ICk → ICk−1[1] and ε1k,k+1 = εk : ICk → ICk+1[1]. Furthermore, for k > 0
let ε2k,k = ε1k−1,kε

1
k,k−1, which is a generator of EndPn(ICk) by Lemmas 4.3.1 and 4.3.2. The

proof of Lemma 4.3.1 shows that HomPn(ICk, ICl[r]) is spanned by the composition

ICk
ε1k,k−1−−−−→ ICk−1[1]

ε1k−1,k−2−−−−−−→ . . .
ε1l+1,l−−−→ ICl[k − l]

(ε2l,l)
(r−k+l)/2

−−−−−−−−−→ ICl[r]
for l ≤ k, and by

ICk
(ε2k,k)(r+k−l)/2

−−−−−−−−−→ ICk[r + k − l]
ε1k,k+1−−−−→ ICk+1[r + k − l + 1]

ε1k+1,k+2−−−−−→ . . .
ε1l−1,l−−−→ ICl[r]

for l ≥ k. We write εrk,l : ICk → ICl[r] for these compositions. Note that D(εrk,l) = εrl,k since
D(ε1k,k−1) = ε1k−1,k.

As an immediate consequence of the relation (4.4), in fact any non-zero composition of the
morphisms ε1i,i±1 between ICk and ICl[r] yields the same morphism. This shows that εsl,mεrk,l =
εr+sk,m if HomPn(ICk, ICm[r + s]) 6= 0.

The above construction also yields the following explicit description of the algebra⊕
k,l Hom∗Pn(ICk, ICl), as obtained in [KS02, Proof of Prop. 2.9].

Proposition 4.3.3. There is an isomorphism of graded algebras
⊕

k,l Hom∗Pn(ICk, ICl) ∼= En,
where

En = k

(
0 1 . . . n− 1 n

ε0,1 ε1,2

ε1,0

εn−2,n−1

ε2,1

εn−1,n

εn−1,n−2 εn,n−1

)
/
( ε1,0ε0,1
εk+1,kεk,k+1−εk−1,kεk,k−1

)
with deg(εk,k±1) = 1.
Proof. The isomorphism En →

⊕
k,l Hom∗Pn(ICk, ICl) is given by εk,k±1 7→ ε1k,k±1, which is

well-defined since HomPn(IC0, IC0[2]) = 0 and the square (4.4) commutes for all k. Surjectivity
follows from the proof of Lemma 4.3.1 and Lemma 4.3.2. One then easily checks that the graded
dimensions of both algebras agree.

Remark 4.3.4. For 0 < k < n we moreover have ε2k,k = ı!k(ε1k+1,k). Indeed, naturality of the
recollement triangles yields the commutative diagram

ICk[−1] ICk+1 ∇k+1 ICk

ICk[1] ICk[1] 0 ICk[2].

ε1k,k+1

ı!k(ε1k+1,k) ε1k+1,k

id
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From this it also follows that ε2k,k = ı!k(ε2k+1,k+1): we have ε2k,k = ε1k+1,kε
1
k,k+1 and ı!k(ε1k,k+1) = id,

as ε1k,k+1 is the counit for the adjunction between ık,∗ and ı!k.

4.3.2 Morphisms between standards and simples
Morphisms from the standard objects to IC sheaves, and dually from IC sheaves to costandard
objects, are easily calculated by the recollement adjunctions:

Lemma 4.3.5. We have

HomPn(∆k, ICl[r]) ∼= HomPn(ICl,∇k[r]) ∼=
{
k if l ≥ k and r = l − k,
0 else.

Proof. By Verdier duality it suffices to compute HomPn(∆k, ICl[r]). For l ≥ k we have

HomPn(∆k, ICl[r]) ∼= HomPk (k,!kAk [k], kPk [2k + r − l])
∼= HomAk (kAk , kAk [k + r − l]),

and from this the claim follows. The case l < k is similar but easier, as ∗k(ICl) = 0.

By the proof of Lemma 4.3.5, for l ≥ k there is a canonical non-zero morphism µk,l : ∆k →
ICl[l − k] corresponding to idAk under the adjunctions. In particular, for k = l these are the
(co)units from the recollement triangles (4.2) defining ∆k. Moreover, the proof also shows that
µk,l is the unique morphisms making the diagram

∆k

ICk ICl[l − k]

µk,k

µk,l

εl−k
k,l

commute.

Lemma 4.3.6. For 0 ≤ k, l ≤ n we have

HomPn(∆k,∆l[r]) ∼= HomPn(∇l,∇k[r]) ∼=


k if l > k and r ∈ {l − k − 1, l − k},
k if l = k and r = 0,
0 otherwise.

Proof. By Verdier duality it suffices to compute HomPn(∆k,∆l[r]). For this, the claim follows
from Lemma 4.3.5 and the long exact sequence obtained by applying HomPn(∆k,−) to the
triangle (4.2) defining ∆l.

The proof of Lemma 4.3.6 also yields the following descriptions of canonical morphisms
δrk,l : ∆k → ∆l[r] spanning HomPn(∆k,∆l[r]):

• For r = l− k, we define δl−kk,l : ∆k → ∆l[l− k] as the unique morphism making the diagram

∆k ∆l[l − k]

ICl[l − k]

δl−k
k,l

µk,l
µl,l

commute.
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• For r = l − k − 1, we define δl−k−1
k,l : ∆k → ∆l[l − k − 1] as the composition

∆k
µk,l−1−−−−→ ICl−1[l − 1− k]

φ0
l−1,l−−−−→ ∆l[l − 1− k],

where φ0
l−1,l : ICl−1 → ∆l is the morphism from the recollement triangle (4.2) defining ∆l.

In particular, the morphisms δk,k+1 : ∆k → ∆k+1[1] can be used to define the indecomposable
projective objects via the triangles (4.3).

4.3.3 Morphisms between simples and projectives
We start by computing the morphisms from simple perverse sheaves to standard objects.

Lemma 4.3.7. For 0 ≤ k, l ≤ n and r ∈ Z we have

HomPn(ICl,∆k[r]) ∼= HomPn(∇k, ICl[r]) ∼=


k if r = k + l,

k if r = k − l − 1 and l < k,

0 else.

Proof. By Verdier duality it suffices to compute HomPn(ICl,∆k[r]). Applying the functor
HomPn(ICl,−) to (4.2) yields a long exact sequence

. . .→ HomPn(ICl, ICk−1[r])→ HomPn(ICl,∆k[r])→ HomPn(ICl, ICk[r])→ . . .

in which the left and right-hand side can be computed by Lemma 4.3.1, and these Hom spaces
are spanned by εrl,k−1 and εrl,k, respectively. Since ε

r+1
l,k−1 = ε1k,k−1ε

r
l,k, the connecting morphisms

HomPn(ICl, ICk[r])→ HomPn(ICl, ICk−1[r+ 1]) are isomorphisms unless r = l+ k, or l < k and
r = k − l − 2.

The proof of Lemma 4.3.7 shows that HomPn(ICl,∆k[k + l]) is spanned by the unique mor-
phism φl+kl,k : ICl → ∆k[k + l] making the diagram

ICl

∆k[k + l] ICk[k + l].

εk+l
k,l

φl+k
l,k

µk,k

commute.
For l < k, the proof shows that HomPn(ICl,∆k[k − l − 1]) is spanned by the composition

φk−l−1
l,k : ICl

εk−l−1
l,k−1−−−−→ ICk−1[k − l − 1]

φ0
k−1,k−−−−→ ∆k[k − l − 1],

where φ0
k−1,k : ICk−1 → ∆k is the morphism from the recollement triangle (4.2). The non-zero

morphisms ∇k → ICl[r] are defined by the dual diagrams.
From Lemma 4.3.7 it also follows that all indecomposable projective perverse sheaves except

Pn are projective-injective:

Proposition 4.3.8. For 0 ≤ k ≤ n− 1 and 0 ≤ l ≤ n we have

HomPn(ICl, Pk[r]) ∼=
{
k if l = k and r = 0,
0 else.

In particular, if k < n then Pk is the injective hull of ICk in Perv(Pn).
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Proof. That Pk is the injective hull of ICk in Perv(Pn) is immediate from the first part, using
Ext1

Perv(Pn)(−,−) ∼= HomPn(−,−[1]).
To compute HomPn(ICl, Pk[r]), we apply the functor HomPn(ICl,−) to (4.3) to get the long

exact sequence

. . .→ HomPn(ICl,∆k+1[r])→ HomPn(ICl, Pk[r])→ HomPn(ICl,∆k[r])→ . . .

We claim that δk,k+1 : ∆k → ∆k+1[r] induces isomorphisms in all degrees.

Case 1: l > k. By Lemma 4.3.7, HomPn(ICl,∆k+1[r+1]) and HomPn(ICl,∆k[r]) are 1-dimensional
for r = l + k, and vanish otherwise. By the construction of the morphisms spanning these
Hom spaces, we have to show that in the diagram

∆k[k + l] ∆k+1[k + l + 1]

ICl

ICk[k + l] ICk+1[k + l + 1].

δk,k+1

µk,k µk+1,k+1

εk+l
l,k

εk+l+1
l,k+1

φk+l
l,k φk+1+l

l,k+1

ε1k,k+1

the triangle consisting of dashed arrows commutes. By construction we have εk+l+1
l,k+1 =

ε1k,k+1ε
k+l
l,k , and the outer square commutes by the definition of the morphism δk,k+1 : ∆k →

∆k+1[1]. An easy diagram chase then shows φk+1+l
l,k+1 = δk,k+1φ

k+l
l,k , as required.

Case 2: l = k. From Lemma 4.3.7 we know that HomPn(ICl,∆k[r]) is 1-dimensional for r ∈
{0, 2k + 1} and HomPn(ICl,∆k+1[r + 1]) is 1-dimensional for r = 2k, and they vanish
otherwise. By the same argument as in Case 1, δk,k+1 induces an isomorphism for r = 2k,
and it follows from the long exact sequence that HomPn(ICk, Pk[r]) is 1-dimensional for
r = 0 and vanishes otherwise.

Case 3: l < k. From Lemma 4.3.7 we know that HomPn(ICl,∆k[r]) is 1-dimensional for r ∈
{k − l − 1, k + l} and HomPn(ICl,∆k+1[r + 1]) is 1-dimensional for r ∈ {k − l, k + l + 1},
and they vanish otherwise. For r = k + l, that δk,k+1 induces an isomorphism follows by
the same argument as in Case 1.
For r = k− l− 1, we need to show φk−ll,k+1 = δk,k+1φ

k−l−1
l,k , which amounts to checking that

the diagram

ICk−1[k − l − 1] ICk[k − l]

ICl

∆k[k − l − 1] ∆k+1[k − l]

ε1k−1,k

φ0
k−1,k φ0

k,k+1

εk−l−1
l,k−1 εk−l

l,k

φk−l−1
l,k φk−l

l,k+1

δk,k+1

commutes. By construction, we have εk−ll,k = ε1k−1,kε
k−l−1
l,k−1 , and the claim follows by a

straightforward diagram chase provided the outer square commutes.
To see this, observe that ε1k−1,kε

1
k,k−1 = ε1k+1,kε

1
k,k+1, the definition of δk,k+1, and the axiom
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(TR3) give the commutative diagram

ICk−1 ∆k ICk ICk−1[1]

ICk[1] ∆k+1[1] ICk+1[1] ICk[2],

φ0
k−1,k

ε1k−1,k

µk,k

δk,k+1

ε1k,k−1

ε1k,k+1 ε1k−1,k

φ0
k,k+1 µk+1,k+1 ε1k+1,k

in which the left square is the desired commutative square (up to shift).

4.3.4 P-like simple perverse sheaves
By the explicit description of the simple perverse sheaves as constant sheaves on the stratum
closures, it is obvious that they are Pk-like objects. However, only one of them is Calabi–Yau:

Proposition 4.3.9.

1) For 0 ≤ k ≤ n, the simple perverse sheaf ICk is a Pk-like object in Db
c (Pn).

2) The simple perverse sheaf ICn is a Pn-object in Db
c (Pn).

3) ICk is not Calabi–Yau in Db
c (Pn) if k < n.

Proof.

1) Immediate by Lemma 4.3.1.
2) Since ICn is Pn-like by the first part and Hom∗Pn(X,Y ) is finite-dimensional for any X,Y ∈

Db
c (Pn), we only need to check the Calabi–Yau property. As the perverse t-structure has

faithful heart, by Lemma 4.2.2 it is enough to check that the composition pairing

HomPn(P, ICn[r])⊗HomPn(ICn, P [2n− r])→ HomPn(ICn, ICn[2n]) ∼= k

is non-degenerate for any r and any indecomposable projective object P ∈ Perv(Pn).
For P = Pk with k < n, we apply HomPn(−, ICn) to (4.3). From Lemmas 4.3.5 and 4.3.6
it follows that all connecting morphisms are isomorphisms, so HomPn(P, ICn[r]) = 0 for all
r. We also have HomPn(ICn, P [2n − r]) = 0 for all r by Proposition 4.3.8, and thus the
only non-trivial case is P = Pn. Alternatively, for this one can also use that Pk = Ik is
the projective cover and injective hull of ICk, and that the perverse t-structure has faithful
heart.
As Pn = ∆n, we know from Lemma 4.3.5 that HomPn(Pn, ICn[r]) is one-dimensional if
r = 0, and vanishes otherwise. From Lemma 4.3.7 we know that HomPn(ICn, Pn[2n − r])
is one-dimensional for r = 0 and vanishes otherwise. Moreover, by construction of φ2n

n,n the

composition ICn
φ2n

n,n−−−→ ∆n[2n] µn,n−−−→ ICn[2n] is precisely ε2nn,n : ICn → ICn[2n], and thus the
composition pairing is non-degenerate.

3) For k < n, the composition pairing

HomPn(P, ICk[r])⊗HomPn(ICk, P [2k − r])→ HomPn(ICk, ICk[2k]) ∼= k

cannot be non-degenerate since for P = Pk = Ik the tensor factors on the left-hand side
are non-zero only for r = 0 and r = 2k, respectively.
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4.3.5 Characterization of the Serre functor
The following characterization of Serre functors is adapted from [MS08, Thm. 3.4]. The main
difference is that we would like to start with a triangulated functor which looks like a derived
functor, but is not a priori known to arise as a derived functor. Showing that such a functor is
indeed a derived functor is hard if one only uses triangulated categories, see e.g. [Ric16]. However,
this technical issue can be resolved by using ∞-enhancements.

Lemma 4.3.10. Let A be a finite-length abelian category with finitely many simples, enough
projectives and enough injectives. Assume that A is of finite global dimension, all the projective-
injective objects in A have isomorphic top and socle, and that there is a projective generator P
of A admitting a presentation 0→ P → X1 → X2 with X1, X2 projective-injective. Let D+

∞(A )
be the derived category of A in the ∞-categorical sense as defined in [Lur17, Variant 1.3.2.8],
and let F : D+

∞(A )→ D+
∞(A ) be a functor of ∞-categories.

If the triangulated functor hF : D+(A )→ D+(A ) satisfies the conditions

1) hF restricts to an equivalence hF : Db(A )→ Db(A ),
2) hF (D+(A )≥0) ⊆ D+(A )≥0, where D+(A )≥0 denotes the non-negative part of the stan-

dard t-structure,
3) hF (Inj(A )) ⊆ Proj(A ),
4) H0◦hF preserves the subcategory ProjInj(A ) of projective-injective objects, and restricted

to this category is isomorphic to the inverse Nakayama functor ν−1,

then hF : Db(A )→ Db(A ) is an inverse Serre functor for Db(A ).

Proof. The argument essentially follows the proof of [MS08, Thm. 3.4]. We write
Rν−1 : D+

∞(A ) → D+
∞(A ) for the right derived functor of the inverse Nakayama functor

in the ∞-categorical sense, see [Lur17, Ex. 1.3.3.4] for the definition (actually we use the dual
version, obtained by D+

∞(A ) = D−∞(A op)op). Then hRν−1 = Rν−1 : D+(A ) → D+(A ) is the
usual right derived functor, and its restriction Rν−1 : Db(A ) → Db(A ) is the inverse Serre
functor by Proposition 4.2.8. We show that Rν−1 ∼= F , which then implies the claim.

Step 1: On the subcategory Proj(A ), we have H0 ◦ hF ∼= ν−1.
Proof: By assumption, the projective generator P of A admits a presentation 0 → P →
X1 → X2 with X1, X2 projective-injective. Since H0 ◦ hF and ν−1 are left exact, and
H0 ◦ hF ∼= ν−1 on the subcategory ProjInj(A ), it follows that H0(F (P )) ∼= ν−1(P ). It
is easy to see that this isomorphism is functorial in P and compatible with taking direct
sums and summands, which proves the claim.

Step 2: hF : Db(A )→ Db(A ) commutes with the (inverse) Serre functor.
Proof: From the Yoneda lemma it follows that the Serre functor commutes with autoequiv-
alences.

Step 3: On the subcategory Inj(A ), we have H0 ◦ hF ◦ ν−1 ∼= ν−1 ◦H0 ◦ hF .
Proof: By assumption we have hF ∼= H0 ◦ hF on Inj(A ). With this and Step 2 we get

S−1 ◦H0 ◦ hF ∼= S−1 ◦ hF ∼= hF ◦ S−1 ∼= hF ◦ ν−1.

Observe that H0 ◦ hF takes Inj(A ) to A , and therefore taking H0 on both sides yields

ν−1 ◦H0 ◦ hF ∼= H0 ◦ S−1 ◦H0 ◦ hF ∼= H0 ◦ hF ◦ ν−1.
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Step 4: H0 ◦ hF is fully faithful on the subcategory Proj(A ).
Proof: By assumption, H0 ◦ hF is isomorphic to ν−1 on the full subcategory ProjInj(A ),
and ν−1 : ProjInj(A ) → ProjInj(A ) is an autoequivalence. Let C ⊆ A be the full
subcategory of objects M admitting a presentation 0 → M → X1 → X2 with X1, X2
projective-injective. Then H0 ◦ hF restricts/extends to H0 ◦ hF : C → C . Moreover,
(H0 ◦hF )−1 can be extended to (H0 ◦hF )−1 : C → C by setting (H0 ◦hF )−1(ker(φ : X1 →
X2)) = ker((H0 ◦ hF )−1(φ) : (H0 ◦ hF )−1(X1) → (H0 ◦ hF )−1(X2)). By assumption all
projective objects lie in C , and thus H0 ◦ hF is fully faithful on Proj(A ).

Step 5: We have H0 ◦ hF ∼= ν−1 as functors A → A .
Proof: On Inj(A ) we get

(H0 ◦ hF )2 ∼= ν−1 ◦H0 ◦ hF ∼= H0 ◦ hF ◦ ν−1,

where we apply Step 1 using that H0 ◦ hF takes Inj(A ) to Proj(A ), and Step 3. As
both ν−1 and H0 ◦ hF take Inj(A ) to Proj(A ), and H0 ◦ hF is fully faithful on Proj(A )
(and thus an equivalence to its image) by Step 4, it follows that H0 ◦hF ∼= ν−1 on Inj(A ).
Moreover, both functors are left exact, so the claim follows from this by replacing any object
by an injective resolution and applying an argument similar to the proof of Step 1.

Step 6: We have hF ∼= Rν−1 as functors D+(A )→ D+(A ).
Proof: Note that D+

∞(A ) with the standard t-structure satisfies the assumptions of [Lur17,
Thm. 1.3.3.2] (in particular, it is right complete by [Lur17, Prop. 1.3.3.16]). Therefore
F : D+

∞(A )→ D+
∞(A ) is up to isomorphism the only functor of∞-categories restricting to

t≤0 ◦ hF |A ∈ N(Funlex(A ,A )), where N(Funlex(A ,A )) denotes the nerve (see [Lur18a,
Tag 002M]) of the category of left exact functors A → A . On the other hand, by the
above we know H0 ◦ hF |A ∼= ν−1 = t≤0 ◦ hRν−1|A as ordinary functors A → A , and thus
they are also isomorphic in N(Funlex(A ,A )). By [Lur17, Thm. 1.3.3.2] it follows that
F ∼= Rν−1 as functors of ∞-categories, and therefore hF ∼= hRν−1 = Rν−1 as triangulated
functors D+(A )→ D+(A ).

Step 7: As A has finite global dimension, Rν−1 : Db(A )→ Db(A ) is the inverse Serre functor
by Proposition 4.2.8, and by Step 6 we have hF ∼= Rν−1.

Since ICn is a Pn-object in Db
c (Pn) by Proposition 4.3.9, we can consider the P-twist

PTICn
: Db

c (Pn) → Db
c (Pn) as in Definition 4.2.3. By applying Lemma 4.3.10 to PTICn

, we
obtain:

Theorem 4.3.11. The P-twist PTICn
: Db

c (Pn)→ Db
c (Pn) is the inverse Serre functor.

Proof. In order to apply Lemma 4.3.10 we first have to check the technical assumptions.
Recall from Sections 4.2.3 and 4.2.4 that Db

c (Pn) ∼= Db(Perv(Pn)), and that the category
Perv(Pn) has finite global dimension, and enough projectives and enough injectives. By Propo-
sition 4.3.8, all indecomposable projective objects except the projective cover Pn of ICn are
injective, and moreover there is an exact sequence 0 → Pn → Pn−1 → Pn−2 in Perv(Pn) (this
can be seen from the ∆-flags).

Since ICn is a Pn-object in Db(Perv(Pn)) ∼= Db
c (Pn), it is also Pn-like in D+(Perv(Pn)).

We want to consider the P-twist PTICn
: D+(Perv(Pn)) → D+(Perv(Pn)). To define this, we

use the usual dg enhancement D̃ = Ch+(Inj(Perv(Pn))) of D+(Perv(Pn)). By Remark 4.2.4,
we can use RHomPerv(Pn)(ICn,−) instead of Hom

D̃
(ICn,−) to define the P-twist. Observe

that RHomPerv(Pn)(ICn, Y ) is degreewise finite-dimensional for all Y ∈ Ch+(Inj(Perv(Pn))),
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and thus the tensor product RHomD(ICn, Y ) ⊗ ICn exists in D+(Perv(Pn)) for all Y ∈ D̃ , as
required. Hence PTICn

: D+(Perv(Pn))→ D+(Perv(Pn)) is well-defined.

By construction, we have PTICn
= H0(P̃TICn

) : D+(Perv(Pn)) → D+(Perv(Pn)),
where P̃TICn

: D̃ → D̃ is a dg functor. By definition (see [Lur17, Variant 1.3.2.8]) we have
D+
∞(Perv(Pn)) = Ndg(Ch+(Inj(Perv(Pn)))). Here Ndg denotes the dg nerve from [Lur17,

Constr. 1.3.1.6], see also [Lur18a, Tag 00PK]. By [Lur17, Prop. 1.3.1.20], Ndg(P̃TICn
) is a functor

of ∞-categories D+
∞(Perv(Pn)) → D+

∞(Perv(Pn)), and by passing to homotopy categories,
by [Lur17, Rem. 1.3.1.11] we recover hNdg(P̃TICn

) = H0(P̃TICn
) = PTICn

: D+(Perv(Pn)) →
D+(Perv(Pn)).

It remains to check the conditions from Lemma 4.3.10:

1) As D+(Perv(Pn))≥0 is the extension closure of D+(Perv(Pn))>0 and the IC
sheaves, it suffices to show PTICn(D+(Perv(Pn))>0) ⊆ D+(Perv(Pn))≥0 and
PTICn

(ICk) ∈ D+(Perv(Pn))≥0 for all 0 ≤ k ≤ n.

For this we use the triangles (4.1) defining the P-twist. First, observe that PTICn(ICn) ∼=
ICn[−2n] ∈ D+(Perv(Pn))≥0. Furthermore, for an object X ∈ D+(Perv(Pn))>0 or
X = ICk with k < n, RHomPerv(Pn)(ICn, X) is cohomologically concentrated in posi-
tive degrees. Thus RHomPerv(Pn)(ICn, X)⊗ ICn[−2] has cohomologies in degrees > 2, and
RHomPerv(Pn)(ICn, X)⊗ ICn has cohomologies in degrees > 0, so cone(t∗⊗ id− id⊗t)(X)
has cohomologies in degrees > 0. As X ∈ D+(Perv(Pn))≥0, it follows that PTICn

(X) ∈
D+(Perv(Pn))≥0.

2) Let I ∈ Perv(Pn) be indecomposable injective. If I = Ik for k < n, then
RHomPerv(Pn)(ICn, Ik) = 0 and therefore PTICn

(Ik) ∼= Ik = Pk.

For I = In = ∇n we have RHomPerv(Pn)(ICn, In) ∼= k (concentrated in degree 0), and so
by evaluating (4.1) at In we obtain the diagram

ICn[−2] ICn cone(ε2n,n)

In

PTICn(In)

ε2n,n

D(µn,n)

where ε2n,n : ICn[−2]→ ICn is the generator of End∗Pn(ICn).

From the long exact sequence obtained by applying HomPn(−, In) to the horizontal tri-
angle and Lemma 4.3.5 it follows that HomPn(cone(ε2n,n), In) is 1-dimensional, i.e. the
induced morphism cone(ε2n,n) → In is unique up to scalar. Therefore it suffices to find
a non-split triangle of the form cone(ε2n,n) → In → Pn → cone(ε2n,n)[1]. We know
that HomPn(In, Pn) = HomPn(∇n,∆n) is 1-dimensional, spanned by the composition

f : In
D(φ0

n−1,n)
−−−−−−→ ICn−1

φ0
n−1,n−−−−→ Pn. From the octahedral axiom (using the triangle (4.2)
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defining Pn = ∆n as well as its dual) we obtain the diagram

In ICn−1 ICn[1] In[1]

In Pn cone(f) In[1]

ICn−1 Pn ICn ICn−1[1]

ICn[2] ICn[2].

D(φ0
n−1,n)

=

ε1n−1,n

φ0
n−1,n =

f

D(φ0
n−1,n) =

φ0
n−1,n ε1n,n−1

ε2n,n ε1n−1,n

=

Thus cone(f)[−1] ∼= cone(ε2n,n : ICn[−2] → ICn), and hence the second row is the desired
triangle (up to rotation).

3) From the above it also follows that PTICn is the identity functor on the full subcategory
ProjInj(Perv(Pn)). Since the endomorphism algebra of the direct sum of the projective-
injective objects is symmetric, we also have ν−1 ∼= id on ProjInj(Perv(Pn)) by [MS08,
Prop. 3.5].

Remark 4.3.12. In particular, Theorem 4.3.11 recovers the description of the Serre functor of
Db

c (P1) from [Woo10, §3.1, p. 680], since PTIC1
∼= ST2

IC1
.

4.3.6 Other descriptions of the Serre functor
Recall the equivalences Db

c (Pn) ∼= Db
c (Op

0(sln+1(k))) ∼= Db(An-modfd) mentioned in
Section 4.2.5. The Serre functor of Db

c (Pn) also has explicit descriptions in terms of finite-
dimensional algebras and in terms of Lie algebras, and furthermore there is a description of the
Serre functor for the constructible category of the full flag variety. We summarize these results
and explain how they are related to Theorem 4.3.11.

In terms of finite-dimensional algebras, the Serre functor is given by the derived functor of
the Nakayama functor by results of Happel [Hap88, Prop. 4.10]. This actually underlies our
argument, as the proof of the criterion Lemma 4.3.10 (which we adapted from [MS08, Thm. 3.4])
compares the candidate Serre functor with the derived functor of the Nakayama functor.

In [MS08] Mazorchuk and Stroppel provide a description of the Serre functor of
Db(Op

0(sln+1(k))) in Lie-theoretic language. For this, the criterion [MS08, Thm. 3.4] is
first used to show that the Serre functor of Db(O0(sln+1(k))) is given by the (derived) shuffling
functor Sh2

w0
, where Shw0 = Shsi1

. . . Shsir
for a reduced expression si1 . . . sir of the longest

element w0 of the Weyl group. Alternatively, the Serre functor of Db(O0(sln+1(k))) is also
isomorphic to the (derived) Arkhipov twisting functor Tw2

w0
, where Tww0 = Twsi1

. . .Twsir
.

By [MS08, Prop. 4.4], the Serre functor of Db(Op
0(sln+1(k))) is then Sh2

w0
[−2`(wp

0)], where
wp

0 ∈ Wp
∼= S1 × Sn is the longest element of the parabolic Weyl group. Rather than applying

the criterion Lemma 4.3.10, the proof uses the inclusion Db(Op
0(sln+1(k))) ↪→ Db(O0(sln+1(k)))

and its left and right adjoints (i.e. the (derived) Zuckerman functors) to “push down” the de-
scription of the Serre functor from Db(O0(sln+1(k))). In particular, note that since the inclusion
Db(Op

0(sln+1(k))) ↪→ Db(O0(sln+1(k))) is not full, the Serre functor of Db(Op
0(sln+1(k))) is not

the restriction of that of Db(O0(sln+1(k))).
In the language of perverse sheaves, in [BBM04] Beilinson, Bezrukavnikov and Mirković

provide a description of the Serre functor for the full flag variety G/B, where (for us) G =
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GLn+1(k) and B ⊆ G is the usual Borel subgroup of upper triangular matrices. By [BBM04,
Prop. 2.5], the Serre functor of Db

c (G/B) is given by the Radon transform (R∗w0
)2, where R∗w0

=
R∗si1

. . . R∗sir
.

Under the equivalences O0(sln+1(k)) ∼= Perv(G/B) and Op
0(sln+1(k)) ∼= Perv(G/P ) =

Perv(Pn), the inclusion functor corresponds to π![−d] ∼= π∗[d] and the (dual) Zuckerman functors
are π![d] and π∗[−d], see e.g. [BGS96, p. 504, Rem. (2)]. Here P ⊆ G is the parabolic subgroup
with block sizes (n, 1), π : G/B → G/P is the canonical map, and d = dimG/B − dimG/P =
`(wp

0). Using this, one can apply the purely formal argument from [MS08, Prop. 4.4] to obtain a
description of the Serre functor of Db

c (Pn) from the description of the Serre functor of Db
c (G/B).

Combining Theorem 4.3.11 with the above observations yields the following relation between
PTICn

and the Radon transform R!
w0

, and also a decomposition of PTICn
into a sequence of

spherical twists:

Corollary 4.3.13.

1) The square

Db
c (G/B) Db

c (G/B)

Db
c (Pn) Db

c (Pn)

(R!
w0 )2[2d]

π∗[−d]π∗[d]

PTICn

commutes up to natural isomorphism.
2) For any reduced expression w0 = si1 . . . sir there is a natural isomorphism

PTICn
[2`(w0)− 2`(wp

0)] ∼= (STPn−i1
. . . STPn−ir

)2.

Proof.

1) By [MS08, Prop. 4.1 and Prop. 4.4], the inverse Serre functor of Db(Op
0(sln+1(k))) is

ẐS−1
b incl[2d], where incl : Db(Op

0(sln+1(k))) ↪→ Db(O0(sln+1(k))), S−1
b is the inverse Serre

functor of Db(O0(sln+1(k))), and Ẑ the dual Zuckerman functor. In geometric language,
incl is π∗[d] and Ẑ is π∗[−d], and (R!

w0
)2 is the inverse Serre functor of Db

c (G/B) by
[BBM04, Prop. 2.5 and Fact 2.2]. The claim then follows from Theorem 4.3.11 and unique-
ness of the Serre functor.

2) By Theorem 4.3.11 and [MS08, Prop. 4.4] the inverse Serre functor of Db
c (Pn) ∼=

Db(Op
0(sln+1(k))) is

PTICn
∼= S−1 ∼= Sh−2

w0
[2`(wp

0)] = (Sh−1
sir

. . . Sh−1
si1

)2[2`(wp
0)].

By [Len21, Thm. 4.14] there is a natural isomorphism Sh−1
si

∼= STPn−i [−1], which proves
the claim.

For n = 1, we in particular get ST2
IC1
∼= PTIC1

∼= ST2
P0

[−2], and in fact we even have
STIC1

∼= STP0 [−1] by [Len21, Thm. 3.6 and Thm. 3.10].

4.4 Classification of P-objects in Perv(Pn)
In this section we classify the P-objects and P-like objects in Perv(Pn) ⊂ Db

c (Pn). For this we
first determine the indecomposable Calabi–Yau objects. After that, we introduce certain string
objects, and show that all of them are P-like.
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4.4.1 Calabi–Yau objects
The following easy lemma provides obstructions for Calabi–Yau objects in the presence of
projective-injective objects.
Lemma 4.4.1. Let A be a finite-length Hom-finite Krull–Schmidt abelian category with enough
projectives and finite global dimension, and let P ∈ A be an indecomposable projective-injective
object.

1) If P has isomorphic top and socle, then P is 0-Calabi–Yau in Db(A ).
2) If X ∈ A involves a composition factor top(P ) or soc(P ), then X cannot be d-Calabi–Yau

for d > 0.
Proof.

1) This is clear since the Serre functor, which is the Nakayama functor, fixes such projective-
injective objects.

2) Let P ∈ A be projective-injective and assume that X ∈ A is d-Calabi–Yau with d > 0.
By definition, this means that the composition pairing

HomDb(A )(P,X[r])⊗HomDb(A )(X,P [d− r])→ HomDb(A )(X,X[d])

is non-degenerate for all r ∈ Z. If X involves a simple subquotient top(P ), then for r = 0
the first tensor factor is non-zero while the second one is not. If X involves a simple
subquotient soc(P ), then for r = d the second tensor factor is non-zero while the first is
not. Thus in these cases the pairing cannot be non-degenerate, a contradiction.

As an application, we recover the classification of the indecomposable Calabi–Yau objects in
Perv(Pn), which was obtained algebraically in [Maz25, §7.4].
Corollary 4.4.2. An indecomposable object E ∈ Perv(Pn) is Calabi–Yau if and only if E ∈
{ICn} ∪ {Pi | 0 ≤ i ≤ n− 1}.
Proof. The simple object ICn is 2n-Calabi–Yau by Proposition 4.3.9, while the projective-
injective objects Pi ∈ Perv(Pn) for 0 ≤ i ≤ n− 1 are 0-Calabi–Yau by Lemma 4.4.1.

It is obvious that objects in the heart of a t-structure cannot be d-Calabi–Yau for d < 0, and
that only projective objects in the heart can be 0-Calabi–Yau: if E ∈ Perv(Pn) is 0-Calabi–
Yau, then HomPn(E,X[1]) ∼= HomPn(X[1], E)∨ = 0 for all X ∈ Perv(Pn), so E has to be
projective. Moreover, by Lemma 4.4.1 no object in Perv(Pn) involving simple subquotients
ICk for 0 ≤ k < n can be d-Calabi–Yau with d > 0. As HomPn(ICn, ICn[1]) = 0, the only
indecomposable object such that all of its simple subquotients are ICn is ICn itself.

Alternatively, in the proof of Corollary 4.4.2 one can also use the classification of indecompos-
able perverse sheaves (using the language of finite-dimensional algebras), and [PW20, Prop. 2] or
Proposition 4.4.13 below, to show that there are no 0-Calabi–Yau objects besides the projective-
injective objects.

4.4.2 String objects

For 0 ≤ b ≤ a ≤ n we recursively define the string objects M+
a,b as follows. Set M+

a,a = ICa and
M+
a,a−1 = ∆a, and for a ≥ b+ 2 define M+

a,b = cone(ψa−2,b)[−1], where ψa−2,b : M+
a−2,b → ∆a[1]

is a non-zero morphism that will be fixed recursively. Hence M+
a,b fits into a triangle

∆a
ιa,b−−→ M+

a,b

πa,b−−→ M+
a−2,b

ψa−2,b−−−−→ ∆a[1]. (4.5)
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We also define M−a,b = D(M+
a,b); alternatively these can be obtained inductively by the dual

construction. Note that the string objects M±a,b lie in Perv(Pn).
To properly define ψa−2,b, so that M+

a,b is well-defined, we need:

Lemma 4.4.3. Let a ≥ b + 2 and assume by induction that M+
a−2,b is already defined. Then

HomPn(M+
a−2,b,∆a[1]) is 1-dimensional.

Proof. For a = b+2 and a = b+3, the claim follows from Lemma 4.3.7 respectively Lemma 4.3.6.
For a > b + 3 we apply HomPn(−,∆a[1]) to the triangle (4.5), which by induction is unique

up to rescaling of the morphisms. From the construction of M+
a−4,b and Lemmas 4.3.6 and 4.3.7

it follows that HomPn(M+
a−4,b,∆a[r]) = 0 for r ≤ 2, and thus

HomPn(M+
a−2,b,∆a[1]) ∼= HomPn(∆a−2,∆a[1]).

By Lemma 4.3.6, this is 1-dimensional, as claimed.

From the proof we obtain the following explicit definition of a canonical non-zero morphism
ψa−2,b : M+

a−2,b → ∆a[1]:

• For a = b+ 2, we take ψa−2,a−2 = φ1
a−2,a : ICa−2 → ∆a[1].

• For a = b + 3, we define the morphism ψa−2,a−3 as the composition ∆a−2
µa−2,a−1−−−−−−→

ICa−1[1]
φ0

a−1,a−−−−→ ∆a[1].
• For a > b+3, the morphism ψa−2,b : M+

a−2,b → ∆a[1] is uniquely defined by the commutative
diagram

M+
a−2,b ∆a[1]

∆a−2,

ψa−2,b

ιa−2,b
δ1

a−2,a

where ιa−2,b is fixed by the choice of the triangle (4.5) defining M+
a−2,b.

This completes the construction of the string objects M±a,b.
In terms of finite-dimensional algebras, the string objects as defined above are precisely the

string modules mentioned in Section 4.2.5.

4.4.3 String objects are P-like

We show that all the string objects M±a,b are Pk-like, where k depends on a and b by an explicit
formula. Note that with the exception of M±n,n = ICn, the string objects cannot be Pk-objects,
since Corollary 4.4.2 obstructs them from having the Calabi–Yau property.

Morphisms between string objects and IC sheaves

We want to understand the total endomorphism spaces End∗Pn(M±a,b). Due to the inductive
definition of the string objects, we first need to compute morphisms between M±a,b and some IC
sheaves.

Lemma 4.4.4. Let 0 ≤ b ≤ a ≤ n and r ∈ Z.
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1) If a− b is even, then

HomPn(M+
a,b, ICb[r]) ∼= HomPn(ICb,M−a,b[r]) ∼=

{
k if 0 ≤ r ≤ 2b and r even,
0 otherwise.

2) If a− b is odd, then

HomPn(M+
a,b, ICb[r]) ∼= HomPn(ICb,M−a,b[r]) ∼= 0.

Proof. In both cases the first isomorphism is given by Verdier duality, so it suffices to compute
HomPn(M+

a,b, ICb[r]).
We prove both statements by induction on a − b. As the argument for the inductive step is

the same in both cases, we only give details for the first statement.

1) For the base case a = b, we have M+
a,b = ICb and the claim is immediate by Lemma 4.3.1.

For the inductive step, we apply the functor HomPn(−, ICb) to (4.5) to get the long exact
sequence

. . .→ HomPn(M+
a−2,b, ICb[r])→ HomPn(M+

a,b, ICb[r])→ HomPn(∆a, ICb[r])→ . . .

As a > b, we have HomPn(∆a, ICb[r]) = 0 for all r by Lemma 4.3.5. Hence

HomPn(M+
a,b, ICb[r]) ∼= HomPn(M+

a−2,b, ICb[r]),

and so the statement follows from the inductive hypothesis.
2) For the base case a = b + 1, we have M+

a,b = ∆a and HomPn(∆a, ICb[r]) = 0 for any r by
Lemma 4.3.5. The claim follows from this by the same arguments as in the first part.

The proof for a − b even also yields a canonical non-zero morphism mr
a,b : M+

a,b → ICb[r],
which is defined as the composition

M+
a,b

πa,b−−→ M+
a−2,b

πa−2,b−−−−→ . . .
πb+2,b−−−−→ ICb

εr
b,b−−→ ICb[r].

Since εr+2
b,b = ε2b,bε

r
b,b, we also obtain the commutative diagram

M+
a,b

ICb[r] ICb[r + 2].

mr
a,b

mr+2
a,b

ε2b,b

(4.6)

Lemma 4.4.5. Let 0 ≤ b ≤ a ≤ n and r ∈ Z.

1) If a− b is even, then

HomPn(M+
a,b, ICa[r]) ∼= HomPn(ICa,M−a,b[r]) ∼=

{
k if 0 ≤ r ≤ a+ b and r even,
0 otherwise.

2) If a− b is odd, then

HomPn(M+
a,b, ICa[r]) ∼= HomPn(ICa,M−a,b[r]) ∼=

{
k if 0 ≤ r ≤ a− b− 1 and r even,
0 otherwise.
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3) For 0 ≤ i ≤ n− a we have

HomPn(M+
a,b, ICa+i[r]) ∼= HomPn(M+

a,b, ICa[r − i]).

Proof. For 1) and 2), by Verdier duality it suffices to compute HomPn(M+
a,b, ICa[r]). We prove

the claim by induction on a− b. The base cases are a = b for a− b even, respectively a = b+ 1
for a− b odd, and for these the claim holds by Lemma 4.3.1 and Lemma 4.3.7, respectively.

For the inductive step, we apply HomPn(−, ICa) to (4.5) to get the long exact sequence

· · · → HomPn(M+
a−2,b, ICa[r])→ HomPn(M+

a,b, ICa[r])→ HomPn(∆a, ICa[r])→ . . . .

By Lemma 4.3.7, HomPn(∆a, ICa[r]) is 1-dimensional for r = 0 and vanishes otherwise. By
restriction to Pa−2, we have HomPn(M+

a−2,b, ICa[r]) ∼= HomPn(M+
a−2,b, ICa−2[r−2]). In particular,

this is concentrated in degrees ≥ 2, and hence the claim follows.
The last claim is immediate from ı!aICa+i ∼= ICa[−i].

Remark 4.4.6. From the proof of Lemma 4.4.5 we obtain the following explicit description of
a morphism nra,b spanning HomPn(M+

a,b, ICa[r]). For r = 0, we define n0
a,b : M+

a,b → ICa as the
unique morphism making the diagram

M+
a−r,b ICa−r

∆a−r

n0
a−r,b

ιa−r,b µa−r,a−r

commute. For 0 < r ≤ a− b, we define nra,b : M+
a,b → ICa[r] as the composition

M+
a,b

πa,b−−→ M+
a−2,b

πa−2,b−−−−→ . . .
πa−r+2,b−−−−−−→ M+

a−r,b
n0

a−r,b−−−−→ ICa−r
εr

a−r,a−−−−→ ICa[r].

For r > a− b (this can only happen if a− b is even), we define nra,b as the composition

M+
a,b

πa,b−−→ M+
a−2,b

πa−2,b−−−−→ . . .
πb+2,b−−−−→ ICb

εr
b,a−−→ ICa[r].

Moreover, for 0 ≤ i ≤ n− a, a canonical morphism M+
a,b → ICa+i[r] is given by the composition

M+
a,b

nr−i
a,b−−−→ ICa[r − i]

εi
a,a+i−−−−→ ICa+i[r].

Remark 4.4.7. The proof of Lemma 4.4.5 and the octahedral axiom for the composition n0
a,bιa,b =

µa,a also yields triangles

M−a−1,b → M+
a,b

n0
a,b−−−→ ICa → M−a−1,b[1]. (4.7)

By Verdier duality one also obtains triangles ICa → M−a,b → M+
a−1,b → ICa[1].

Lemma 4.4.8. Let 0 ≤ b ≤ a ≤ n and 0 ≤ r ≤ a + b − 2 if a − b is even, respectively
0 ≤ r ≤ a− b− 3 if a− b is odd. Then the diagram

M+
a,b ICa[r]

ICa[r + 2]

nr
a,b

nr+2
a,b

ε2a,a

commutes up to a non-zero scalar.
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Proof. We prove the claim by induction on a − b. In the base cases End∗Pn(ICa) respectively
Hom∗Pn(∆a, ICa) (depending on the parity of a− b) there is nothing to show.

For the inductive step, for r > 0 Lemma 4.4.5 and its proof yields the commutative diagram

HomPn(M+
a,b, ICa[r]) HomPn(M+

a−2,b, ICa[r]) HomPn(M+
a−2,b, ICa−2[r − 2])

HomPn(M+
a,b, ICa[r + 2]) HomPn(M+

a−2,b, ICa[r + 2]) HomPn(M+
a−2,b, ICa−2[r]).

∼= ∼=

∼= ∼=

Here the vertical morphisms are given by postcomposition with ε2a,a and ı!a−2(ε2a,a), respectively.
By Remark 4.3.4 we have ı!a−2(ε2a,a) = ε2a−2,a−2, and therefore by induction it only remains to
show the claim for r = 0.

For r = 0, the square
M+
a,b M+

a−2,b

ICa ICa[2]

πa,b

n0
a,b n2

a−2,b

ε2a,a

commutes up to a possibly zero scalar, as cone(πa,b) = ∆a[1] and HomPn(∆a, ICa[r]) = 0 for
r > 0. By Remark 4.4.6, the composition n2

a,b = n2
a−2,bπa,b is non-zero, and thus we have to

show that it factors through ε2a,a : ICa → ICa[2].
For this we apply HomPn(−, ICa) to the triangle (4.7) to get the long exact sequence

· · · → HomPn(ICa, ICa[2])→ HomPn(M+
a,b, ICa[2])→ HomPn(M−a−1,b, ICa[2])→ . . . .

By Lemmas 4.3.1 and 4.4.5 we know that HomPn(ICa, ICa[2]) is spanned by the generator ε2a,a
of End∗Pn(ICa) and HomPn(M+

a,b, ICa[2]) is spanned by the composition n2
a−2,bπa,b, so it suffices

to show HomPn(M−a−1,b, ICa[2]) = 0.
By restriction to Pa−1, we have HomPn(M−a−1,b, ICa[2]) ∼= HomPn(M−a−1,b, ICa−1[1]), and that

this vanishes can be seen by applying HomPn(−, ICa−1) to the Verdier-dual version of the triangle
(4.7) defining M−a−1,b.

Lemma 4.4.9. Let 0 ≤ b ≤ a ≤ n and r ∈ Z.

1) If a− b is even, then

HomPn(ICb,M+
a,b[r]) ∼= HomPn(M−a,b, ICb[r])

∼=
{
k if a− b ≤ r ≤ a+ b and r even,
0 otherwise.

2) If a− b is odd, then

HomPn(ICb,M+
a,b[r]) ∼= HomPn(M−a,b, ICb[r])

∼=


k if 0 ≤ r ≤ min(2b, a− b) and r even,
k if max(2b, a− b) ≤ r ≤ a+ b and r odd,
0 otherwise.

Proof. By Verdier duality it suffices to compute HomPn(ICb,M+
a,b[r]).
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1) Applying the functor HomPn(ICb,−) to the triangle (4.7) yields the long exact sequence

. . .→ HomPn(ICb,M−a−1,b[r])→ HomPn(ICb,M+
a,b[r])→ HomPn(ICb, ICa[r])→ . . . .

As a − b is even, we have HomPn(ICb,M−a−1,b[r]) ∼= 0 by Lemma 4.4.4.2). Therefore
HomPn(ICb,M+

a,b[r]) ∼= HomPn(ICb, ICa[r]) and the claim follows by Lemma 4.3.1.
2) We distinguish two cases to avoid having to determine connecting morphisms (note that

a = 3b is impossible since a− b is odd).
If a > 3b, we apply the functor HomPn(ICb,−) to the triangle (4.7) to get the long exact
sequence

. . .→ HomPn(ICb,M−a−1,b[r])→ HomPn(ICb,M+
a,b[r])→ HomPn(ICb, ICa[r])→ . . . ,

and the claim follows by using Lemma 4.4.4.1) for the left-hand side and Lemma 4.3.1 for
the right-hand side.
If a < 3b, we do induction on a − b. The base case a = b + 1 is given by Lemma 4.3.7.
For the inductive step, applying the functor HomPn(ICb,−) to (4.5) yields the long exact
sequence

. . .→ HomPn(ICb,∆a[r])→ HomPn(ICb,M+
a,b[r])→ HomPn(ICb,M+

a−2,b[r])→ . . . .

The claim follows by using Lemma 4.3.7 for the left-hand side and the inductive hypothesis
for the right-hand side.

Remark 4.4.10. For a − b odd, the case distinction in the proof of Lemma 4.4.9 avoids analysis
of the connecting morphisms. Note that to compute HomPn(ICb,M+

a,b) (i.e. the case r = 0) one
can always use the argument for a < 3b to obtain

HomPn(ICb,M+
a,b) ∼= HomPn(ICb,M+

a−2,b) ∼= . . . ∼= HomPn(ICb,∆b+1).

Hence a canonical non-zero morphism ICb → M+
a,b is defined by the commutative diagram

ICb

M+
a,b ∆b+1

∃!
φ0

b,b+1

πb+2,b...πa,b

By induction on a− b, the octahedral axiom for the composition ICb → M+
a,b

πa,b−−→ M+
a−2,b yields

triangles
ICb → M+

a,b → M+
a,b+1 → ICb[1]. (4.8)

Dually, there are also triangles M−a,b+1 → M−a,b → ICb → M−a,b+1[1]. These triangles and the ones
from Remark 4.4.7 are used in [CL23] to inductively construct the string objects, starting from
M±a,a = ICa.

Morphisms between standard objects and string objects

Lemma 4.4.11. For 0 ≤ i < a−b
2 we have

HomPn(∆a−2i,M+
a,b[r]) ∼= HomPn(M−a,b,∇a−2i[r]) ∼=

{
k if r = 2i,
0 else.
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Proof. By Verdier duality it suffices to compute HomPn(∆a−2i,M+
a,b[r]).

If a − b is odd, we apply HomPn(∆a−2i,−) to the triangle (4.8) and the first triangle in
(4.7) defining M+

a,b+1. Since a − 2i > b, we have HomPn(∆a−2i, ICb[r]) = 0 for all r by
Lemma 4.3.5. Moreover, since the ∇-flag of M−a−1,b+1 does not involve ∇a−2i it follows that
HomPn(∆a−2i,M−a−1,b+1[r]) = 0 for all r. Together these observations imply

HomPn(∆a−2i,M+
a,b[r]) ∼= HomPn(∆a−2i,M+

a,b+1[r]) ∼= HomPn(∆a−2i, ICa[r]),

which has the claimed form by Lemma 4.3.5.
The argument for a − b even is similar, using the first triangle in (4.7) and the fact that

M−a−1,b has a ∇-flag not involving ∇a−2i.

The following lemma determines the morphisms from string modules to some standard mod-
ules.
Lemma 4.4.12. Let 0 ≤ b ≤ a ≤ n and r ∈ Z.

1) If a− b is even, then

HomPn(M+
a,b,∆a[r]) ∼= HomPn(∇a,M−a,b[r]) ∼=

{
k if r = a+ b,

0 otherwise.

2) If a− b is odd, then

HomPn(M+
a,b,∆a[r]) ∼= HomPn(∇a,M−a,b[r]) ∼=

{
k if r = a− b− 1,
0 otherwise.

Proof. By Verdier duality it suffices to compute HomPn(M+
a,b,∆a[r]). For a = b and a = b + 1,

the claim follows from Lemma 4.3.7 and Lemma 4.3.6, respectively.
For a > b+1, by applying the functor HomPn(−,∆a) to the triangle ∆a → M+

a,b → M+
a−2,b →

∆a[1] we get the long exact sequence

. . .→ HomPn(M+
a−2,b,∆a[r])→ HomPn(M+

a,b,∆a[r])→ HomPn(∆a,∆a[r])→ . . . .

By Lemma 4.3.6 the right-hand side is one-dimensional and concentrated in degree 0,
and hence HomPn(M+

a,b,∆a[r]) ∼= HomPn(M+
a−2,b,∆a[r]) for r ≥ 2. For r ≤ 1 we get

HomPn(M+
a,b,∆a[r]) = 0: as a consequence of Lemma 4.4.3, the connecting morphism

HomPn(∆a,∆a) → HomPn(M+
a−2,b,∆a[1]) is an isomorphism, and HomPn(M+

a−2,b,∆a) = 0 by
the inductive construction of M+

a−2,b and Lemma 4.3.6 (and Lemma 4.3.7 if a− b is even).
To compute HomPn(M+

a−2,b,∆a[r]) for r ≥ 2, we analyze the long exact sequence obtained
by applying HomPn(M+

a−2,b,−) to the triangle (4.2) definying ∆a. By restriction to Pa−2 and
naturality of the adjunction, we have a commutative square

HomPn(M+
a−2,b, ICa[r]) HomPn(M+

a−2,b, ICa−1[r + 1])

HomPn(M+
a−2,b, ICa−2[r − 2]) HomPn(M+

a−2,b, ICa−2[r])

∼= ∼=

where the bottom morphism is given by postcomposition with ı!a−2(ε1a,a−1), which by Re-
mark 4.3.4 is ε2a−2,a−2 : ICa−2[−2]→ ICa−2. By Lemmas 4.4.5 and 4.4.8, this is an isomorphism
unless r = a+ b if a− b is even, respectively unless r = a− b− 1 if a− b is odd, and the claim
follows from this.

80



4.4. Classification of P-objects in Perv(Pn)

Morphisms between string objects

Now we can determine the morphisms between string objects. Although the proof is mostly the
same, we need to distinguish two cases depending on the parity of a− b.

Proposition 4.4.13. Let 0 ≤ b ≤ a ≤ n, 0 ≤ i ≤ a−b
2 and r ∈ Z.

1) If a− b is even, then

HomPn(M+
a−2i,b,M

+
a,b[r]) ∼= HomPn(M−a,b,M

−
a−2i,b[r])

∼=
{
k if 2i ≤ r ≤ a+ b and r even,
0 otherwise.

2) If a− b is odd, then

HomPn(M+
a−2i,b,M

+
a,b[r]) ∼= HomPn(M−a,b,M

−
a−2i,b[r])

∼=
{
k if 2i ≤ r ≤ a− b− 1 and r even,
0 otherwise.

Proof.

1) By Verdier duality it suffices to compute HomPn(M+
a−2i,b,M

+
a,b[r]). We do this by downward

induction on i. For the base case i = a−b
2 we have M+

a−2i,b = ICb, so the claim follows from
Lemma 4.4.9.
For the inductive step, we apply HomPn(−,M+

a,b) to the triangle (4.5) defining M+
a−2i,b,

and HomPn(∆a−2i,−) to the triangle (4.7) to obtain the diagram

. . .

HomPn(∆a−2i,M−a−1,b[r])

. . . HomPn(M+
a−2i−2,b,M

+
a,b[r]) HomPn(M+

a−2i,b,M
+
a,b[r]) HomPn(∆a−2i,M+

a,b[r]) . . .

HomPn(∆a−2i, ICa[r])

. . .

(4.9)

By the inductive hypothesis HomPn(M+
a−2i−2,b,M

+
a,b[r]) = k for r ∈ {2i+2, 2i+4, . . . , a+b},

and it vanishes otherwise. Since M−a−1,b has a ∇-flag not involving ∇a−2i by the dual
version of (4.5), the first term in the column of (4.9) vanishes (this follows either by
direct calculation, or from e.g. [BS24, Thm. 3.11]). Moreover, since by Lemma 4.3.5 the
last term in the column of (4.9) is one dimensional and concentrated in degree 2i, so is
HomPn(∆a−2i,M+

a,b[r]), from which the claim follows.
2) By Verdier duality it suffices to compute HomPn(M+

a−2i,b,M
+
a,b[r]). We do this by downward

induction on i. In the base case i = a−b−1
2 we have M+

a−2i,b = ∆b+1, so this follows from
Lemma 4.4.11.
For the inductive step, we apply the functor HomPn(−,M+

a,b) to the triangle (4.5). By
induction, HomPn(M+

a−2i−2,b,M
+
a,b[r]) ∼= k for 2i + 2 ≤ r ≤ a − b − 1 and r even. By
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Lemma 4.4.11 we know that HomPn(∆a−2i,M+
a,b[r]) ∼= k for r = 2i, and that it vanishes

otherwise, which implies the claim.

Remark 4.4.14. From the proof of Proposition 4.4.13 we obtain the following descriptions
of canonical non-zero morphisms Φ2i

a,b : M+
a,b → M+

a,b[2i], Φ2i
a−2i,b : M+

a−2i,b → M+
a,b[2i] and

ζ2i
a−2i,b : ∆a−2i → M+

a,b[2i]: for 0 ≤ i ≤ a−b
2 , they arise from the diagram

M+
a,b M+

a,b[2i]

M+
a−2i,b ICa[2i]

∆a−2i

∃!Φ2i
a,b

πa−2i+2,b...πa,b n0
a,b

∃!Φ2i

a−2i,b

ιa−2i,b µa−2i,a

∃!ζ2i
a−2i,b

Note that this diagram does not depend on whether a− b is even or odd, though in the proof of
Proposition 4.4.13 one has to distinguish this since the induction results in different base cases.

Moreover, by Remark 4.4.6 HomPn(M+
a−2i,b, ICa[2i]) is spanned by the composition

M+
a−2i,b

n0
a−2i,b−−−−−→ ICa−2i

ε2i
a−2i,a−−−−→ ICa[2i]. Since we have n0

a−2i,bιa−2i,b = µa−2i,a−2i by con-
struction, it follows that ε2ia−2i,an

0
a−2i,bιa−2i,b = µa−2i,a. An easy diagram chase (using that

HomPn(M+
a−2i,b, ICa[2i]) ∼= k) then shows that ε2ia−2i,an

0
a−2i,b : M+

a−2i,b → ICa[2i] makes the
entire diagram above commute, and therefore the morphism Φ2i

a,b : M+
a,b → M+

a,b[2i] can also be
defined by the diagram

M+
a,b M+

a,b[2i]

M+
a−2i,b ICa[2i].

∃!Φ2i
a,b

πa−2i+2,b...πa,b n0
a,b

ε2i
a−2i,an

0
a−2i,b

For i > a−b
2 (this can only happen if a− b is even), the morphism Φ2i

a,b arises from the diagram

M+
a,b M+

a,b[2i]

ICb ICa[2i].

∃!Φ2i
a,b

πb+2,b...πa,b n0
a,b

ε2i
b,a

∃!

The morphisms M−a,b → M−a,b[2i] are described by the dual diagrams.

Determining the composition

To show that the string objects are P-like, we are left to determine the composition of morphisms
in End∗Pn(M±a,b). This requires the following two technical lemmas, which show that the mor-
phisms from Remark 4.4.14 are compatible with the quotient maps between the string objects
and the morphisms betwen IC sheaves.
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Lemma 4.4.15. For 0 ≤ b ≤ a ≤ n and 1 ≤ i ≤ a−b−2
2 if a−b is even, respectively 1 ≤ i ≤ a−b−3

2
if a− b is odd, the square

M+
a−2,b M+

a,b[2]

M+
a−2i−2,b M+

a−2i,b[2]

Φ2
a−2,b

πa−2i,b...πa−2,b πa−2i+2,b...πa,b

Φ2
a−2i−2,b

commutes up to a non-zero scalar.

Proof. We prove the claim by induction on i. For i = 1, the composition Φ2
a−2,b = Φ2

a−4,bπa−2,b

spans HomPn(M+
a−2,b,M

+
a−2,b[2]) by Remark 4.4.14 and Proposition 4.4.13.

We want to show that this morphism factors through M+
a,b[2]. Completing the right column

of the square to the triangle ∆a[2] ιa,b−−→ M+
a,b[2] πa,b−−→ M+

a−2,b[2] ψa−2,b−−−−→ ∆a[3] and applying
HomPn(M+

a−2,b,−) yields the exact sequence

HomPn(M+
a−2,b,M

+
a,b[2])→ HomPn(M+

a−2,b,M
+
a−2,b[2])→ HomPn(M+

a−2,b,∆a[3]).

By Proposition 4.4.13 the first two terms are 1-dimensional, and by the same argument as in the
proof of Lemma 4.4.12 we get HomPn(M+

a−2,b,∆a[3]) = 0, which yields the required factorization.
For the inductive step, we use the diagram

M+
a−2,b M+

a−2i−2,b M+
a−2i−4,b

M+
a,b[2] M+

a−2i,b[2] M+
a−2i−2,b[2].

πa−2i,b...πa−2,b

Φ2
a−2,b

πa−2i−2,b

Φ2
a−2i−2,b Φ2

a−2i−4,b

πa−2i+2,b...πa,b πa−2i,b

By the base case, the right square commutes, and by induction the left square commutes (in
both cases up to a non-zero scalar). Thus the outer rectangle commutes up to a non-zero scalar
by an easy diagram chase.

Lemma 4.4.16. For 0 < b < a and a− b even, the square

M+
a,b M+

a,b[2]

ICb ICb[2]

πb+2,b...πa,b

Φ2
a,b

πb+2,b...πa,b

ε2b,b

commutes up to a non-zero scalar.

Proof. The bottom left path is non-zero by (4.6), and hence we have to show that it factors
through the vertical morphism on the right. By the triangle M+

a,b+1 → M+
a,b → ICb → M+

a,b+1[1],
it suffices to show Hom(M+

a,b,M
+
a,b+1[3]) = 0. We prove this by induction on a − b. In the base

case a = b+ 2 we have M+
a,b+1 = ∆a, and thus the claim follows from Lemma 4.4.12.

For the inductive step, assume that a > b + 2. We apply the functor Hom(M+
a,b,−) to the

triangle ∆a → M+
a,b+1 → M+

a−2,b+1 → ∆a[1] defining M+
a,b+1 to get the long exact sequence

. . .→ Hom(M+
a,b,∆a[r])→ Hom(M+

a,b,M
+
a,b+1[r])→ Hom(M+

a,b,M
+
a−2,b+1[r])→ . . . .
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By Lemma 4.4.12 we have Hom(M+
a,b,∆a[r]) = 0 unless r = a + b, and therefore we have

Hom(M+
a,b,M

+
a,b+1[3]) ∼= Hom(M+

a,b,M
+
a−2,b+1[3]) (note that a > b + 2 and a − b even implies

a+ b > 4).
To compute Hom(M+

a,b,M
+
a−2,b+1[3]), we use the long exact sequence obtained by applying

Hom(−,M+
a−2,b+1) to the triangle ∆a → M+

a,b → M+
a−2,b → ∆a[1]. By Lemma 4.3.6 and the

inductive construction of M+
a−2,b+1, we have Hom(∆a,M+

a−2,b+1[r]) = 0 for all r, and therefore
in particular

Hom(M+
a,b,M

+
a−2,b+1[3]) ∼= Hom(M+

a−2,b,M
+
a−2,b+1[3])

which vanishes by induction on a− b.

Theorem 4.4.17. Let 0 ≤ b ≤ a ≤ n.

1) If a− b is even, then M±a,b is P(a+b)/2-like.

2) If a− b is odd, then M±a,b is P(a−b−1)/2-like.

Proof. By Verdier duality it suffices to show that M+
a,b is P-like. By Proposition 4.4.13 we

have isomorphisms of graded k-vector spaces End∗Pn(M+
a,b) ∼= k[t]/(t(a+b)/2+1) if a − b is even

(respectively End∗Pn(M+
a,b) ∼= k[t]/(t(a−b−1)/2+1) if a − b is odd) with deg(t) = 2. Therefore we

only have to show that the composition of the canonical morphisms M+
a,b

Φ2
a,b−−−→ M+

a,b[2]
Φ2i

a,b−−−→
M±a,b[2i + 2] is non-zero for 0 < i < a+b

2 if a − b is even (respectively 0 < i < a−b−1
2 if a − b is

odd). We show that up to a non-zero scalar this composition agrees with the canonical morphism
Φ2i+2
a,b : M±a,b → M±a,b[2i+ 2].
First assume that i < a−b

2 . By Remark 4.4.14, the composition Φ2i
a,bΦ2

a,b and the morphism
Φ2i+2
a,b (which is not drawn) are defined by the non-dashed arrows in the diagram

M+
a,b M+

a,b[2] M+
a,b[2i+ 2]

M+
a−2,b ICa[2] M+

a−2i,b[2] ICa[2i+ 2]

M+
a−2i−2,b ICa[2i+ 2]

Φ2
a,b

πa,b

πa−2i,b...πa,b

Φ2i
a,b

πa−2i+2,b...πa,b

n0
a,b

n0
a,b

n0
a,b

ε2a−2,an
0
a−2,b

πa−2i,b...πa−2,b

ε2i
a−2i,an

0
a−2i,b

=

ε2i+2
a−2i−2,a

n0
a−2i−2,b

Φ2
a−2i−2,b

We moreover have the canonical morphism Φ2
a−2i−2,b : M+

a−2i−2,b → M+
a−2i,b[2] from Re-

mark 4.4.14 (the dashed arrow in the diagram).

Step 1: The square

M+
a,b M+

a,b[2]

M+
a−2i−2,b M+

a−2i,b[2]

Φ2
a,b

πa−2i,b...πa,b πa−2i+2,b...πa,b

Φ2
a−2i−2,b

commutes up to a non-zero scalar.
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Proof: From the construction of Φ2
a,b in Remark 4.4.14 we obtain the diagram

M+
a,b

M+
a−2,b M+

a,b[2]

M+
a−2i−2,b M+

a−2i,b[2],

Φ2
a,b

πa−2i,b...πa,b

πa,b

πa−2i,b...πa−2,b

Φ2
a−2,b

πa−2i+2,b...πa,b

Φ2
a−2i−2,b

where the triangle at the top commutes by definition of Φ2
a,b and the triangle at the left

commutes obviously. By Lemma 4.4.15 the inner square commutes up to a non-zero scalar,
and the claim then follows by an easy diagram chase.

Step 2: The diagram

M+
a−2i−2,b M+

a−2i,b[2]

ICa[2i+ 2]

Φ2
a−2i−2,b

ε2i+2
a−2i−2,a

n0
a−2i−2,b

ε2i
a−2i,an

0
a−2i,b

commutes.
Proof: Since ε2i+2

a−2i−2,a = ε2ia−2i,aε
2
a−2i−2,a−2i, it suffices to show that the diagram

M+
a−2i−2,b M+

a−2i,b[2]

ICa−2i−2 ICa−2i[2]

Φ2
a−2i−2,b

n0
a−2i−2,b n0

a−2i,b

ε2a−2i−2,a−2i

commutes. For this, the construction of the morphism Φ2
a−2i−2,b : M+

a−2i−2,b → M+
a−2i,b[2]

from Remark 4.4.14 gives the diagram

∆a−2i−2

M+
a−2i−2,b M+

a−2i,b[2]

ICa−2i−2 ICa−2i[2]

ιa−2i−2,b

ζ2i
a−2i,b

µa−2i−2,a−2i−2

Φ2
a−2i−2,b

n0
a−2i−2,b n0

a−2i,b

ε2a−2i−2,a−2i

where the outer square and the triangle at the top and the left commute by construction.
By Remark 4.4.6, we know that Hom(M+

a−2i−2,b, ICa−2i[2]) ∼= k is spanned by the compo-
sition ε2a−2i−2,a−2in

0
a−2i−2,b : M+

a−2i−2,b → ICa−2i[2]. Moreover, this morphism is uniquely
characterized by its precomposition with ιa−2i−2,b : ∆a−2i−2 ↪→ M+

a−2i−2,b, which by the
proof of Lemma 4.4.5 gives µa−2i−2,a−2i : ∆a−2i−2 → ICa−2i[2]. From the diagram it fol-
lows that

n0
a−2i,bΦ

2
a−2i−2,bιa−2i−2,b = ε2a−2i−2,a−2iµa−2i−2,a−2i−2 = µa−2i−2,a−2i,

and therefore n0
a−2i,bΦ

2
a−2i−2,b = ε2a−2i−2,a−2in

0
a−2i−2,b, as required.
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Step 3: The claim then follows from Steps 1 and 2 by a straightforward diagram chase, using
the definition of Φ2i+2

a,b from Remark 4.4.14.

For i ≥ a−b
2 the proof is very similar. First, if a = b, then M+

a,b = ICb and Φ2
b,b = ε2b,b,

so there is nothing to show. For a > b, the “big diagram” is almost the same, except that
M+
a−2i,b and M+

a−2i−2,b[2] have to be replaced by ICb and ICb[2], respectively, and one has to use
ε2b,b : ICb → ICb[2] as the “dashed morphism”. This satisfies (by construction) ε2i+2

b,a = ε2ib,aε
2
b,b.

By Lemma 4.4.16 the square

M+
a,b M+

a,b[2]

ICb ICb[2]

πb+2,b...πa,b

Φ2i
a,b

πb+2,b...πa,b

ε2b,b

commutes up to a non-zero scalar (note that if a−b2 ≤ i <
a+b

2 , then b > 0), and the claim follows
from this by an easy diagram chase.

Remark 4.4.18. It would be desirable to show that the squares in Lemmas 4.4.15 and 4.4.16
commute (not only up to non-zero scalar). This cannot be obtained from our argument, which
in both cases uses that morphisms to some cone must vanish to get a factorization. If these
squares actually commute, then the proof of Theorem 4.4.17 shows that the canonical morphisms
Φ2i
a,b : M+

a,b → M+
a,b[2i] form a multiplicative basis of End∗Pn(M+

a,b).
Recall that P1-objects and P1-like objects are also known as spherical and spherelike objects,

and that P0-like objects are also known as exceptional objects. From Theorem 4.4.17 and Corol-
lary 4.4.2 one can easily read off the spherelike, spherical and exceptional string objects. Note
that by Proposition 4.4.13 spherelike string objects in Perv(Pn) are necessarily 2-spherelike.

Corollary 4.4.19. For the string objects in Perv(Pn) we have:

1) M±a,b is 2-spherelike if and only if a− b = 3, or a = 2 and b = 0, or a = b = 1.

2) The only 2-spherical string object is M±1,1 = IC1 for n = 1.
3) The only string objects that are exceptional are the standard objects and the costandard

objects.

Combining this with the classification of indecomposable perverse sheaves mentioned in Sec-
tion 4.2.5 (which is obtained from the description in terms of finite-dimensional algebras), this
in particular recovers the classification of exceptional objects from [PW20, Prop. 3]. Moreover,
we also obtain:

Corollary 4.4.20. All indecomposable objects in Perv(Pn) are either P-like or 0-spherical.

Proof. By the classification of indecomposable objects over a special biserial algebra from [BR87,
p. 161, Thm.] and [WW85, Prop. 2.3], the indecomposable objects in Perv(Pn) are the string
objects M±a,b for 0 ≤ a ≤ b ≤ n and the indecomposable projective-injective objects Pk = Ik for
0 ≤ k < n. The string objects are P-like by Theorem 4.4.17, and that Pk is 0-spherical is obvious
from the description in Section 4.2.4 and Lemma 4.4.1.
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Chapter 5

TheWeyl groupoids of sl(m|n) and osp(r|2n)

In this chapter we provide an explicit description of the Weyl groupoids of the Lie superalgebras
sl(m|n), osp(2m+ 1|2n) and osp(2m|2n).

For this we first recall the combinatorial definitions of Cartan graphs and Weyl groupoids
from [HS20], and we apply these definitions to construct Weyl groupoids of contragredient Lie
superalgebras. We also compare the automorphism group of an object of the Weyl groupoid of
a contragredient Lie superalgebra to its Weyl group.

The Weyl groupoids of sl(m|n), osp(2m+ 1|2n) and osp(2m|2n) are described in Section 5.4.
For this we first recall the classification of their Borel subalgebras from [Kac77]. To obtain
a convenient graphical description of the Weyl groupoids, we reformulate this classification in
terms of partitions, and we explicitly compute the corresponding Cartan data. This makes it
very easy to explicitly write down the Weyl groupoids in practice.
The chapter is joint work with Jonas Nehme and has been published as [BN24].

[BN24] L. Bonfert and J. Nehme. “The Weyl groupoids of sl(m|n) and osp(r|2n)”. J.
Algebra 641 (2024).

5.1 Motivation and overview of results
Let g be a basic classical simple Lie superalgebra and let h ⊆ g be a Cartan subalgebra. It is well-
known that, in contrast to the situation for semisimple Lie algebras, not all Borel subalgebras of
g containing h are conjugate to each other. As a consequence there are several systems of simple
roots that are not conjugate under the action of the Weyl group. The number of conjugacy
classes is however finite (see e.g. [Mus12, Thm. 3.1.2]), which is equivalent to saying that there
are only finitely many Borel subalgebras with fixed even part b0̄.

In [PS89] Penkov and Serganova introduced odd reflections to pass between Borel subalgebras
with the same even part. Explicitly, they can be described as follows (see e.g. [CW12, §1.4] or
[Mus12, §3.5]). Let {α1, . . . , αn} be the simple roots corresponding to some Borel subalgebra b
and suppose the simple root αi is odd isotropic. Then the simple roots α′j = ri(αj) for the Borel
subalgebra b′ obtained from b by odd reflection at αi are

α′j = ri(αj) =


−αi if j = i,

αj if j 6= i, αj(hi) = 0
αj + αi if j 6= i, αj(hi) 6= 0,

(5.1)

where hi ∈ h is the coroot corresponding to αi. More generally, these definitions also work for
contragredient Lie superalgebras. In [Ser11] the odd reflections (and certain other maps) are
used to construct a Weyl groupoid that acts transitively on the set of Borel subalgebras.

On the other hand, a (seemingly unrelated at first glance) notion of Weyl groupoid was also
introduced by Heckenberger and Yamane [HY08] as an analogue of Weyl groups in the theory of
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Nichols algebras. Weyl groupoids in this context are constructed from (semi-)Cartan graphs, see
[HS20, §9]. A (semi-)Cartan graph is an undirected graph G with edges labelled by {1, . . . , n}
and a generalized Cartan matrix A(x) (called the Serre matrix) for every vertex x, subject
to certain conditions. In [HY08, Ex. 3] examples of Cartan graphs are obtained from finite-
dimensional contragredient Lie superalgebras. Furthermore, [HS20, §11] provides a different
combinatorial construction of Cartan graphs for regular contragredient Lie superalgebras, using
only the Cartan data. Roughly speaking, the vertices of the Cartan graph are the ordered bases
of the roots of g, the edges correspond to odd reflections, and the Serre matrices define the Serre
relations in g. By results of [HY08] the Weyl groupoid of a Cartan graph is a Coxeter groupoid,
i.e. it is generated by simple reflections (si)x : x → ri(x) subject only to Coxeter-type relations
idx(sisj)m(x)ij idx = idx (for any possible composition).

The first result of this chapter is a formulation of the general construction of Cartan graphs
and Weyl groupoids from [HS20] in more convenient graphical language, see Section 5.2.1. More-
over, in Section 5.2.2 we generalize the construction of Cartan graphs for finite-dimensional
contragredient Lie superalgebras from [HY08] to regular symmetrizable contragredient Lie su-
peralgebras, and show that this is equivalent to the combinatorial definition from [HS20]. In
particular, this implies that we actually obtained a Cartan graph. In comparison to [HS20] we
put the focus on the Borel subalgebras instead of the Cartan data, which is advantageous from the
perspective of Lie theory. This point of view allows us to compare this notion of Weyl groupoid
to other constructions in the theory of Lie superalgebras, see Section 5.2.5. In Proposition 5.2.15
we show that the automorphism group of an object of the Weyl groupoid W of a contragredient
Lie superalgebra coincides with its Weyl group.

The second result of this chapter is an explicit description of the Cartan graphs and Weyl
groupoids for the Lie superalgebras sl(m|n), osp(2m+ 1|2n) and osp(2m|2n). These Weyl grou-
poids were previously considered in [AA17]. We provide a detailed, different description in terms
of partitions. For this we first recall some standard results about the realizations of sl(m|n),
osp(2m + 1|2n) and osp(2m|2n) as contragredient Lie superalgebras, which amounts to clas-
sifying all Borel subalgebras up to conjugation. Based on [Mus12, §3] we describe the Borel
subalgebras (up to conjugation) in terms of partitions λ fitting in an m × n-rectangle. Given
such a partition (and an additional sign ε ∈ {+,−} in the case of osp(2m|2n)) one can easily
construct a Borel subalgebra b(λ) (resp. b(λ, ε)), see Sections 5.3.1 to 5.3.3 for details. To deter-
mine the Cartan graphs we also need an explicit description of the the Cartan data for all Borel
subalgebras, which we compute in Section 5.A.

An observation crucial to determining the Cartan graphs of the Lie superalgebras sl(m|n),
osp(2m + 1|2n) and osp(2m|2n) is that the combinatorial description of Borel subalgebras in
terms of partitions allows for a convenient description of the odd reflections: an odd reflection
corresponds to adding or removing a certain box to (resp. from) λ, see Section 5.3.4 for details.
This makes it very easy to describe the shape of the Cartan graph in concrete examples, see
Proposition 5.4.1. In Proposition 5.4.2 we compute the Serre matrices, which are obtained from
the Cartan data computed in Section 5.3. Finally we determine the Coxeter relations in their
Weyl groupoids. Somewhat surprisingly, these are as one would expect from the Serre matrices,
see Proposition 5.4.4.
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5.2 Cartan graphs and Weyl groupoids

5.2.1 Definition and generalities
We begin by reformulating the definitions of Cartan graphs and Weyl groupoids from [HS20, §9].
The notion of Weyl groupoids was first axiomatically introduced in [HY08].

Let I and J be sets with |I| <∞. By an (I, J)-labelled graph we mean an (undirected) graph
G with vertices X and edges E together with maps of sets A : X → J and c : E → I. For an edge
e we call c(e) ∈ I its color. We draw the i-colored edges of an (I, J)-labelled graph as x i←→ x′.
The set I will usually be left implicit.

For a finite set I let GCMI(Z) be the set of generalized Cartan matrices with entries indexed
by I.

Definition 5.2.1. A semi-Cartan graph is an (I,GCMI(Z))-labelled graph such that

(CG1) for every vertex x ∈ X and every i ∈ I there is a unique edge e incident to x with c(e) = i,

(CG2) and A(x)ij = A(y)ij for every edge x i←→ y and all j ∈ I.

The matrices A(x) are called Serre matrices.

We call the matrices A(x) Serre matrices since in special cases they describe Serre relations,
see Remark 5.2.9.

Note that loops in semi-Cartan graphs are explicitly allowed, and in fact occur very often.
Remark 5.2.2. By (CG1) we obtain involutions ri : X → X, sending a vertex x to its neighbor
along the unique i-colored edge at x. This recovers the axioms in [HS20, Def. 9.1.1].

Let G be a semi-Cartan graph. To each vertex x ∈ X we associate a Z-lattice ZIx with basis
{αxi | i ∈ I}, and for i ∈ I we define Z-linear maps si = (si)x : ZIx → ZIri(x) by (si)x(αxj ) =
α
ri(x)
j −A(x)ijαri(x)

i .

Definition 5.2.3. The Weyl groupoid W of G is the groupoid with set of objects X and the
morphisms generated by the (si)x : x → ri(x) for i ∈ I, x ∈ X. The composition of morphisms
is given by the usual composition of Z-linear maps, and two morphisms x → y are equal if and
only if they agree as Z-linear maps ZIx → ZIy.

Observe that from (CG2) we get (si)ri(x)(si)x = idx for all i ∈ I and x ∈ X, and thus W is
indeed a groupoid.
Remark 5.2.4. Usually one thinks of the lattices ZIx as lying inside a fixed ambient C-vector
space of dimension |I|. Obviously the lattices ZIx are isomorphic as abstract lattices, but they
are usually rather different (and in particular depend on the vertex x) as sublattices of the
ambient vector space. To emphasize this we will always keep track of the vertex x for the lattice
ZIx and its basis vectors αxi .

Definition 5.2.5. Let G be a semi-Cartan graph and W its Weyl groupoid, and define the
following sets of roots at vertex x ∈ X:

• The real roots are

∆real
x = {w(αyi ) | y ∈ X,w ∈ W(y, x), i ∈ I} ⊆ ZIx,

• the positive (resp. negative) real roots are ∆±,real
x = ∆real

x ∩ ±
∑
i∈I N0α

x
i .
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Definition 5.2.6. A semi-Cartan graph G is a Cartan graph if

(CG3) ∆real
x = ∆+,real

x ∪∆−,real
x for all x ∈ X,

(CG4) and for all x ∈ X and i, j ∈ I we have

(rirj)m(x)ij (x) = x,

where m(x)ij = |∆real
x ∩ (N0α

x
i + N0α

x
j )|.

5.2.2 Cartan graphs for contragredient Lie superalgebras
Now we construct a generalized Cartan graph from a contragredient Lie superalgebra. We begin
by recalling the construction of contragredient Lie superalgebras from [Mus12, §5]. A Cartan
datum is a pair (B, τ) consisting of a matrix B ∈ Cn×n and a parity vector τ ∈ (Z/2Z)n for some
n ∈ N. We further fix a minimal realization of B, i.e. we choose a vector space h of dimension
2n − rk(B) with linearly independent roots αi ∈ h∗ and coroots hi ∈ h for 1 ≤ i ≤ n such that
αj(hi) = aij . This data can be used to construct a Lie superalgebra g̃(B, τ) with Chevalley
generators ei and fi (of parity τi) subject to the following relations which are analogous to the
defining relations of Kac–Moody Lie algebras:

[h, h′] = 0 for all h, h′ ∈ h,

[h, ei] = αi(h)ei for all h ∈ h,

[h, fi] = −αi(h)fi for all h ∈ h,

[ei, fj ] = δi,jhi.

As usual, we call h the Cartan subalgebra. Note that h is concentrated in even degree, and is
abelian. Let g(B, τ) = g̃(B, τ)/r, where r is the maximal ideal of g̃ intersecting h trivially. From
the construction of g(B, τ) it is clear that rescaling the rows of B by non-zero scalars results in
isomorphic Lie superalgebras.

In the following we will restrict ourselves to regular symmetrizable Cartan data in the sense
of [HS07, Def. 4.8] (up to rescaling of rows). A Cartan datum (B, τ) (with the same notation as
in Section 5.3) is called symmetrizable if the matrix B is symmetrizable. We call (B, τ) regular
if

• B has no zero rows and is indecomposable (i.e. does not split into blocks B =
(
B1 0
0 B2

)
),

• bij = 0 if and only if bji = 0,

• if τi = 0̄ then bii 6= 0 and 2bij

bii
∈ Z≤0 for all j, and

• if τi = 1̄ and bii 6= 0, then 2bij

bii
∈ 2Z≤0 for all j.

Regularity of (B, τ) implies that adei
: g(B, τ)→ g(B, τ) is locally nilpotent for all i, see [Ser11,

§2].
We call the Lie superalgebra g(B, τ) regular if any Cartan datum (B′, τ ′) with g(B′, τ ′) ∼=

g(B, τ) is regular. In particular sl(m|n), osp(2m + 1|2n) and osp(2m|2n) are regular, which
follows from the computation of all possible Cartan data (up to rescaling of rows) in Section 5.A.

The following definition is [HS20, Def. 11.2.4]. It simplifies slightly since we have restricted
ourselves to regular Cartan data.
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Definition 5.2.7. For a regular Cartan datum (B, τ), the Serre matrix AB,τ is the n×n-matrix
with entries

aB,τij =


2 if i = j,

0 if i 6= j, bij = 0,
−1 if i 6= j, bij 6= 0, bii = 0,
2bij

bii
if i 6= j, bij 6= 0, bii 6= 0.

Observe that due to regularity of (B, τ) the Serre matrix AB,τ is a generalized Cartan matrix.
Also note that in particular AB,τ is invariant under multiplication of rows of B by non-zero
scalars.
Remark 5.2.8. The definition of AB,τ can be seen as a normalization of B, bringing it as close as
possible to the form of a generalized Cartan matrix. The rows with non-zero diagonal entries are
rescaled so that the diagonal entries become 2, while for odd isotropic roots (those with bii = 0)
we replace all non-zero off-diagonal entries by −1. In particular if B is a generalized Cartan
matrix, then AB,τ = B.
Remark 5.2.9. We call the matrix AB,τ a Serre matrix since it is used to formulate Serre relations
for the contragredient Lie superalgebra g(B, τ). Explicitly we have

(ad ei)1−aij (ej) = 0,

see for instance [Mus12, Lem. 5.2.13].
For the rest of the section fix a regular symmetrizable contragredient Lie superalgebra g =

g(B, τ) with B ∈ Cn×n and let I = {1, . . . , n}.
As a direct consequence of the construction, g admits a root space decomposition g = h ⊕⊕
α∈h∗ gα. An ordered root basis of g (simply called base in [Ser11, §3]) is a sequence Π′ =

(β1, . . . , βn) of linearly independent roots such that there are e′i ∈ gβi
, f ′i ∈ g−βi

that together
with h generate g and satisfy [e′i, f ′j ] = 0 for i 6= j. The βi are called simple roots, and every
root can be written as a Z-linear combination of the simple roots such that all the coefficients
are either non-negative or non-positive.

A choice of Chevalley generators e′i, f ′i for an ordered root basis determines a Cartan datum
(B′, τ ′) by τ ′i = |e′i| and b′ij = βj(h′i) with h′i = [e′i, f ′i ] ∈ h. Observe that the rank of B and B′
coincide and thus this gives rise to an isomorphism g ∼= g(B′, τ ′). Note that the e′i and f ′i are
unique up to scalar, so the Cartan datum (B′, τ ′) is unique up to rescaling of the rows of B′.

Let X be a labelling set for the ordered root bases of g. For each x ∈ X fix Chevalley
generators corresponding to the simple roots in Π(x) and let (B(x), τ(x)) be the Cartan datum
obtained from these.

Definition 5.2.10. The Cartan graph Gg of g is the (I,GCMI(Z))-labelled graph consisting of

• the set of vertices X,
• edges according to the rules:

◦ For each odd isotropic root αxi ∈ Π(x) and Π(x′) obtained from Π(x) by an odd
reflection at αxi (as defined in (5.1)), there is an edge x i←→ x′ of color i ∈ I.
◦ For each root αxi ∈ Π(x) that is not odd isotropic there is an edge x i←→ x of color
i ∈ I.

• the Serre matrices A(x) = AB(x),τ(x).

The Weyl groupoid of g is the Weyl groupoid of Gg.
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Remark 5.2.11. A priori the Cartan graph depends on the choice of Chevalley generators. How-
ever, as mentioned above, these are unique up to scalar. Rescaling the Chevalley generators
corresponds to rescaling the rows of B(x), and this does not affect the Serre matrix AB(x),τ(x).
Thus Gg is well-defined.

It is not obvious that Gg is indeed a Cartan graph (or even a semi-Cartan graph) as the name
suggests, this will be checked in Corollary 5.2.14 below. For this we first have to show that the
above definition of G is equivalent to the construction from [HS20, Def. 11.2.6]. The idea to
associate a Weyl groupoid to a contragredient Lie superalgebra in this way goes back to [HY08,
Ex. 3].
Remark 5.2.12. For the Cartan graph Gg the basis vectors αxi from Definition 5.2.3 can be
identified with the simple roots in the ordered root basis Π(x) ⊆ h∗, and in general many of
these coincide when viewed as elements of h∗. However, the simple roots in different ordered
root bases should always be distinguished. In terms of the Cartan graph, this corresponds to
distinguishing the simple roots at different vertices as explained in Remark 5.2.4.

To see that Gg is indeed the same object as the one constructed in [HS20] we need to deter-
mine the effect of odd reflections on a symmetric Cartan datum. Similar formulas (without the
symmetry assumption) can also be found in [GHS24, §2.2.4] and [HS07, §4] (for further context
see also [AA17]).

Proposition 5.2.13. Let Π be an ordered root basis of g and αi ∈ Π odd isotropic. Let Π′
be obtained from Π by odd reflection at αi. Suppose there are Chevalley generators for Π such
that in the resulting Cartan datum (B, τ) the matrix B is symmetric. Then there is a choice of
Chevalley generators for Π′ such that corresponding Cartan datum (B′, τ ′) is given by

b′jk =


−bjk if j = i or k = i,

bjk if j, k 6= i, bjibik = 0,
bjk + bik + bji if j, k 6= i, bjibik 6= 0,

τ ′j =
{
τj if bij = 0,
τj + 1̄ if bij 6= 0.

In particular any Cartan datum obtained from a symmetrizable Cartan datum under odd reflec-
tions is symmetrizable.

Proof. Recall from (5.1) that the simple roots in Π′ are

{−αi} ∪ {αj | j 6= i, bij = 0} ∪ {αj + αi | j 6= i, bij 6= 0}.

One possible choice for the corresponding Chevalley generators is

e′j =


fi if j = i,

ej if j 6= i, bij = 0,
[ei, ej ] if j 6= i, bij 6= 0,

f ′j =


−ei if j = i,

fj if j 6= i, bij = 0,
1
bij

(−1)τj [fi, fj ] if j 6= i, bij 6= 0.

Observe that this choice of root vectors is unique up to scalar since the root spaces for simple
roots and sums of two simple roots are 1-dimensional, and therefore any other choice of root
vectors results in a rescaling of the matrix B′. Our choice of scaling ensures that B′ will be
symmetric.

From the root vectors we compute (using in particular that ei and fi are odd, and that B is
symmetric)

h′j = [e′j , f ′j ] =


−hi if j = i,

hj if j 6= i, bij = 0,
hi + hj if j 6= i, bij 6= 0,
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and this implies

b′jk =


−bjk if j = i or k = i,

bjk if j, k 6= i, bjibik = 0,
bjk + bik + bji if j, k 6= i, bjibik 6= 0

as claimed. Finally, τ ′j = |e′j | = |ej | = τj unless bij 6= 0, in which case τ ′j = |e′j | = |ej | + |ei| =
|ej |+ 1̄ = τj + 1̄.

Corollary 5.2.14. Let (B, τ) be a regular symmetrizable Cartan datum, g = g(B, τ), and
B̃ a symmetrization of B. Then Gg is precisely the object constructed from (B̃, τ) in [HS20,
Def. 11.2.6]. In particular Gg is a Cartan graph.

Proof. In [HS20], the Weyl groupoid is defined using the Lie superalgebra g′(B, τ) ⊆ g(B, τ)
generated by the ei and fi. The only difference is that the Cartan subalgebra of g′(B, τ) is just
spanned by the hi, and therefore this does not affect the construction of the Weyl groupoid.

The definitions then agree by the observation that the Serre matrix is invariant under rescaling
of rows of the matrix B, and that the effect of odd reflections on a symmetric Cartan datum
determined in Proposition 5.2.13 agrees with the formulas from [HS20, Lem. 11.2.7]. That Gg is
a Cartan graph is then [HS20, Thm. 11.2.10].

5.2.3 Automorphisms
We would like to compare the automorphism group of an object of the Weyl groupoid W of a
contragredient Lie superalgebra g with its Weyl group.

In [GHS24] the Weyl group of a connected component of W is introduced. It follows from
the observations in Section 5.2.5 that the roots in a connected component of the Cartan graph
Gg coincide with the real roots in a connected component of the spine of the root groupoid,
as defined in [GHS24, Def. 4.1.2]. By [GHS24, Prop. 4.3.12] the Weyl group of a connected
component of W is generated by the reflections at non-isotropic roots that appear as simple
roots in some ordered root basis in this connected component.

In [Ser11, §4] the Weyl group of g is defined as the subgroup of GL(h∗) generated by all
reflections at all principal even roots of g, where an even root α is principal if either α or 1

2α
appears as a simple root for g in some ordered root basis. Note that this definition does not
depend on the connected component of Gg.

Proposition 5.2.15. Let g be a contragredient Lie superalgebra and W its Weyl groupoid. For
any object x ∈ W the group AutW(x) is isomorphic to the Weyl group Wx of the connected
component containing x.

In particular if for every even root α either α or 1
2α appears in an ordered root basis in this

connected component, then AutW(b) is isomorphic to the Weyl group of g.

Proof. By definition the Weyl group Wx is a subgroup of GL(h∗). On the other hand, by
identifying the Z-lattices in the definition of W with the Z-lattice in h∗ spanned by the roots as
in Remark 5.2.12 we can also see AutW(x) as a subgroup of GL(h∗). We claim that the respective
generators of these groups act by the same reflections on h∗.

For x′ ∈ W and an odd isotropic simple root αx′i ∈ Π(x′) let ri(Π(x′)) the ordered root
basis obtained from Π(x′) by odd reflection at αx′i . By construction the corresponding generator
(si)x′ of W only does an explicit base change between the bases of h∗ given by the simple roots
Π(x′) and ri(Π(x′)), and hence acts as the identity map on h∗. But this means that AutW(x)
is generated by the reflections at all non-isotropic roots that appear as a simple root in some
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ordered root basis. As the formulas defining the reflections are the same in both cases (see
Definition 5.2.3 and [Ser11, §4], [GHS24, Eq. (7)]) we see that AutW(x) ⊆Wx.

The converse inclusion is clear by definition of Wx.

Remark 5.2.16. From Proposition 5.2.15 it follows that the real roots of W in the sense of
Definition 5.2.5 are the same as the real roots of g.

5.2.4 Components of the Cartan graph
In general, the Cartan graph of a contragredient Lie superalgebra will have many connected
components, see Remark 5.2.17 below. However in some cases it is enough to consider only one
of these.
Remark 5.2.17. An ordered root basis Π′ of g determines a decomposition g = n′−⊕ h⊕n′+ into
a positive and negative part with respect to its simple roots. By slight abuse of language we call
b′ = h⊕ n′+ a Borel subalgebra of g.

Since odd reflections do not change the even part of a Borel subalgebra, the Cartan graph of
a contragredient Lie superalgebra splits into several components without edges between them.
If the Borel subalgebras with the same even part represent all conjugacy classes of Borel subal-
gebras, then these components all look the same and we restrict our attention to one of these
components. This is for instance the case for sl(m|n), osp(2m + 1|2n) and osp(2m|2n), see
e.g. [Mus12, §3.1].
Remark 5.2.18. From [HS20, Thm. 9.3.5] it follows that it is possible to order the simple roots
consistently under odd reflections in the sense that for an ordered root basis Π = (α1, . . . , αn) and
a non-trivial reordering Π′ of Π it is impossible to obtain Π′ from Π by odd reflections. Therefore
the Cartan graph Gg decomposes into n! identical (up to renumbering of edges) components
without edges between them. However, this uses that Gg is a Cartan graph, and therefore
we cannot choose a consistent ordering of the simple roots a priori. As far as we know, a
consistent ordering of the simple roots cannot be found purely in terms of root combinatorics of
Lie superalgebras, although its existence is a purely Lie-theoretical question.

5.2.5 Relation to other notions of Weyl groupoids
There are several constructions called Weyl groupoid in the literature. Our definition of the Weyl
groupoid W generalizes the construction from [HY08]. The relation to the other notions is as
follows.

In [Ser11] Serganova introduced another notion of Weyl groupoid C whose objects are Cartan
data (B, τ) and whose morphisms are isomorphisms g(B, τ)→ g(B′, τ ′) of the associated contra-
gredient Lie superalgebras that preserve the Cartan subalgebra. In virtue of [Ser11, Thm. 4.14]
this compares to W as follows.
Comparison 5.2.19. TheWeyl groupoidW is the subgroupoid of the component of C containing
g(B, τ), obtained by forgetting all morphisms corresponding to rescaling rows of the matrices B.

One could say that this is a restriction to the essentially important information as rescaling
rows only amounts to different choices of Chevalley generators.

In a recent paper [GHS24], Gorelik, Hinich and Serganova constructed a different version
of a Weyl groupoid called root groupoid. For a fixed finite set X, their objects are quadruples
(h, a, b, p) where h denotes a Cartan subalgebra, a : X → h a map with image a set of linearly
independent coroots, b : X → h∗ a map with image a set of linearly independent roots and
p the corresponding parities. The root groupoid is generated by the following three types of
morphisms:
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• (h, a, b, p)→ (h′, θ ◦ a, θ−1 ◦ b, p) for any isomorphism h
∼=→ h′,

• (h, a, b, p)→ (h, a′, b, p), where a′(x) = λ(x)a(x) for some λ : X → C∗,
• even and odd reflections.

In [GHS24, §4.2.5] the skeleton of the root groupoid is defined as the subgroupoid generated
by the even and odd reflections. Furthermore, the spine of the root groupoid is defined as the
subgroupoid generated by odd reflections only, see [GHS24, §4.2.8].

Given a regular symmetrizable Cartan datum (B, τ) of rank n, we can choose a minimal
realization of h, i.e. a vector space h together with linearly independent coroots a1, . . . an and
linearly independent roots b1, . . . , bn such that the natural pairing satisfies 〈ai, bj〉 = Bij . Thus
we obtain a quadruple v = (h, a, b, τ). The connected component of this quadruple in the root
groupoid is an admissible, fully reflectable component in the sense of [GHS24, Def. 3.2.3, §3.4.1].

Comparison 5.2.20. The connected component of v in the skeleton of the root groupoid is the
simply connected cover of W in the sense of [HS20, Def. 9.1.10 and 10.1.1].

Comparison 5.2.21. The subgroupoidW ′ ofW generated by all isotropic reflections is isomor-
phic to the connected component of v in the spine of the root groupoid.

Yet another notion of Weyl groupoids was suggested by Sergeev and Veselov in [SV11]. How-
ever as they remark this construction is completely unrelated to the notion of Weyl groupoid we
work with.

5.3 Borel subalgebras of sl(m|n), osp(2m + 1|2n) and
osp(2m|2n)

To give a detailed description of the Weyl groupoids of sl(m|n), osp(2m+ 1|2n) and osp(2m|2n)
we first need some preparation. Recall that the Lie superalgebra sl(m|n) is given in matrices by(

A B
C D

)
such that tr(A)−tr(D) = 0 together with the usual supercommutator [x, y] = x◦y−(−1)|x||y|y◦x.

The orthosymplectic Lie superalgebra osp(2m + 1|2n) is explicitly given by all matrices of
the form 

0 −ut −vt x x1
v a b y y1
u c −at z z1
−xt1 −zt1 −yt1 d e
xt zt yt f −dt

 (5.2)

where a is any (m×m)-matrix; b and c are skew-symmetric (m×m)-matrices; d is any (n× n)-
matrix; e and f are symmetric (n × n)-matrices; u and v are (m × 1)-matrices; y, y1, z and z1
are (m×n)-matrices; and x as well as x1 are (1×n)-matrices. The Lie superalgebra osp(2m|2n)
is given by the same matrices, except that we have to delete the first row and column. We label
the rows and columns by 0, 1, . . . ,m,−1, . . . ,−m, (m+ 1), . . . , (m+ n),−(m+ 1), . . . ,−(m+ n)
in this order (leaving out 0 for osp(2m|2n)).

To determine the Weyl groupoids of sl(m|n), osp(2m+ 1|2n) and osp(2m|2n) we require an
explicit description of all the possible realizations as contragredient Lie superalgebras. Hence we
need to determine all their ordered root bases, which mostly amounts to determining their Borel
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subalgebras, and the corresponding Cartan data. These results are standard and are essentially
already contained in [Kac77, §2.5.5], though the formulation there is less convenient and not
explicit enough for our purposes.

For sl(n|n) there is a minor extra difficulty as the simple roots are not linearly independent,
and the construction of the contragredient Lie superalgebra from the Cartan data computed from
sl(n|n) yields gl(n|n) rather than sl(n|n). Nevertheless we will use sl(n|n) in all computations
below, as all statements about Borel subalgebras and simple roots carry over to gl(n|n).

Let g be either sl(m|n), osp(2m+1|2n) or osp(2m|2n). Recall (see e.g. [Mus12, §3.1]) that for
a fixed Borel subalgebra b0̄ ⊆ g0̄ there are only finitely many Borel subalgebras b ⊆ g with even
part b0̄. Moreover these Borel subalgebras can be relatively easily described in terms of partitions
fitting in an m×n-rectangle, see e.g. [Mus12, Proposition 3.3.8]: For sl(m|n) and osp(2m+1|2n)
the Borel subalgebras with fixed even part are in bijection with the set of partitions λ fitting in
an m × n-rectangle. For osp(2m|2n) each partition λ fitting in an m × n-rectangle determines
two Borel subalgebras b(λ,+) and b(λ,−), which coincide if and only if λ1 = n.

In Sections 5.3.1 to 5.3.3 below we provide a detailed description of the Borel subalgebras
of sl(m|n), osp(2m + 1|2n) and osp(2m|2n), based on the description in [Mus12, §3.3–3.4]. We
compute the corresponding Cartan data in Section 5.A. For this it is more convenient to work
with permutations instead of partitions, and therefore we will frequently use Lemma 5.A.1 to
pass between these.

5.3.1 Borel subalgebras for sl(m|n)
For the Lie superalgebra sl(m|n) we fix the m + n − 1-dimensional Cartan subalgebra h given
by all the diagonal matrices, and we are interested in Borel subalgebras with even part b0̄ given
by the standard even Borel subalgebra of upper triangular matrices. As usual, we let εi ∈ h∗

(1 ≤ i ≤ m+ n) denote the projection to the i-th diagonal entry.
Given a partition λ ∈ Pm×n we can construct the odd part of a Borel subalgebra b(λ) with

even part b0̄ as follows: Draw λ in an m × n-rectangle as in (5.4), which we identify with the
top right m × n-block. The entries corresponding to the boxes of λ are required to be 0, while
the other entries in the top right block can be arbitrary. Similarly drawing the transpose of the
complement of λ (taken in the m × n-rectangle) into the lower right n × m-block determines
the zeros and arbitrary entries there. For instance the “standard” Borel subalgebra of upper
triangular matrices corresponds to λ = ∅, and for another concrete example see Example 5.3.1
below. By [Mus12, Prop. 3.3.8] the b(λ)’s are all the Borel subalgebras of sl(m|n) with even part
b0̄.

Example 5.3.1. Let m = 3, n = 4 and λ = (4, 2, 1). Then the corresponding Borel subalgebra
of sl(3|4) is given by

b(λ) =



∗ ∗ ∗ 0 ∗ ∗ ∗
0 ∗ ∗ 0 0 ∗ ∗
0 0 ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ 0 ∗ ∗ ∗
0 0 ∗ 0 0 ∗ ∗
0 0 ∗ 0 0 0 ∗


(5.3)

Using Lemma 5.A.1 to pass between shuffles and partitions, we can explicitly describe the
ordered root bases and Cartan data for the Borel subalgebras of sl(m|n), see Proposition 5.A.3
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5.3.2 Borel subalgebras for osp(2m + 1|2n)
To describe all Borel subalgebras of osp(2m + 1|2n) we fix the Cartan subalgebra h consisting
of the diagonal matrices and let εi ∈ h∗ (i ∈ {±1, . . . ,±(m+ n)}) denote the projections to the
diagonal entries. We also fix the standard Borel subalgebra b0̄ of the even part, which is defined
by the simple roots εi−εi+1 for 1 ≤ i ≤ m−1 as well as εm and εm+j−εm+j+1 for 1 ≤ j ≤ n−1
together with 2εm+n.

For a partition λ ∈ Pm×n we can construct the odd part of a Borel subalgebra b(λ) with even
part b0̄ as follows: In the notation from (5.2) we demand that z = 0 and x = 0, while x1 and y1
can be chosen arbitrarily. Note that y and z1 are m×n-matrices, and we identify these with the
m× n-rectangle from Lemma 5.A.1. For y, the entries in the boxes corresponding to λ must be
zero while the other entries are arbitrary, and for z1 the rule is exactly the opposite. Again by
[Mus12, Prop. 3.3.8] the b(λ)’s are all the Borel subalgebras of osp(2m + 1|2n) with even part
b0̄.

Example 5.3.2. Let m = 1, n = 2 and consider the partition λ = (1). The corresponding Borel
subalgebra of osp(3|4) is given by

b(λ) =



0 0 ∗ 0 0 ∗ ∗
∗ ∗ 0 0 ∗ ∗ ∗
0 0 ∗ 0 0 ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ 0 ∗ 0 ∗ ∗ ∗
0 0 0 0 0 ∗ 0
0 0 ∗ 0 0 ∗ ∗


The corresponding ordered root bases and Cartan data are described in terms of shuffles in

Proposition 5.A.4.

5.3.3 Borel subalgebras for osp(2m|2n)
The case of osp(2m|2n) is slightly more involved. Again we fix the Cartan subalgebra h consisting
of diagonal matrices and let εi ∈ h∗ denote the projection to the i-th diagonal entry (with the
same ordered basis and index conventions as for osp(2m + 1|2n)). Furthermore, we fix the
standard Borel b0̄ of the even part, which is given by the simple roots εi− εi+1 for 1 ≤ i ≤ m−1
as well as εm−1 + εm and εm+j − εm+j+1 for 1 ≤ j ≤ n− 1 together with 2εm+n.

Suppose we are given a partition λ ∈ Pm×n and ε ∈ {+,−}. From this we construct the
odd part of a Borel subalgebra b(λ, ε) with even part b0̄ as follows. If ε = +, the entries are
determined by λ by the same rules as in Section 5.3.2. If ε = −, we do the same construction
as for + but afterwards we swap the m-th and the (−m)-th row of the top right block. The
b(λ, ε)’s are all the Borel subalgebras of osp(2m|2n) with even part b0̄ by [Mus12, Prop. 3.3.8].

Observe that b(λ,+) = b(λ,−) if and only if λ1 = n, since we need the m-th row of y to
be zero and the m-th row of z1 to be arbitrary. In this case we also denote the resulting Borel
subalgebra by b(λ,±).

Example 5.3.3. Let m = n = 2. From the partitions λ = (1, 1) and µ = (2, 1) we obtain the
following Borel subalgebras b(λ,+), b(λ,−) and b(µ,±) of osp(4|4). Here b(λ,−) is obtained
from b(λ,+) by swapping the rows and columns as indicated.
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

∗ ∗ 0 ∗ 0 ∗ ∗ ∗
0 ∗ ∗ 0 0 ∗ ∗ ∗
0 0 ∗ 0 0 0 ∗ 0
0 0 ∗ ∗ 0 0 ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ 0 ∗ ∗ ∗
0 0 0 0 0 0 ∗ 0
0 0 ∗ ∗ 0 0 ∗ ∗


b(λ,+)



∗ ∗ 0 ∗ 0 ∗ ∗ ∗
0 ∗ ∗ 0 0 0 ∗ 0
0 0 ∗ 0 0 0 ∗ 0
0 0 ∗ ∗ 0 ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ 0 0 ∗ ∗ ∗
0 0 0 0 0 0 ∗ 0
0 ∗ ∗ 0 0 0 ∗ ∗


b(λ,−)



∗ ∗ 0 ∗ 0 ∗ ∗ ∗
0 ∗ ∗ 0 0 0 ∗ ∗
0 0 ∗ 0 0 0 ∗ 0
0 0 ∗ ∗ 0 0 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ 0 ∗ ∗ ∗
0 0 0 0 0 0 ∗ 0
0 0 ∗ 0 0 0 ∗ ∗


b(µ,±)

We describe the corresponding ordered root bases and Cartan data in Proposition 5.A.5,
again in terms of shuffles rather than partitions. To connect this to the above description of the
Borel subalgebras, observe that if a shuffle σ corresponds to a partition λ under the bijection
from Lemma 5.A.1, then σ(m+ n) = m if and only if λ1 = n.
Remark 5.3.4. As explained in [Mus12, §3.3] the extra difficulties for osp(2m|2n) are due to
the existence of an outer automorphism of o(2m) that on h∗ swaps εm and ε−m = −εm. This
corresponds precisely to the swapping of rows in the construction of the Borel subalgebra b(λ,−)
from b(λ,+).

5.3.4 Odd reflections in terms of partitions
For sl(m|n), osp(2m+1|2n) and osp(2m|2n) we can describe odd reflections in terms of partitions
as follows. Consider the m × n-rectangle and number the boxes ascendingly in each row and
column, starting from a 1 in the top left as in the following example.

1
2
3

2
3
4

3
4
5

4
5
6

Let λ ∈ Pm×n and let b(λ) be the Borel subalgebra of sl(m|n) or osp(2m + 1|2n) constructed
from λ. Observe that the numbers in the boxes that can be removed from or added to λ so that
the result is still a partition λ′ ∈ Pm×n are precisely the indices of the odd isotropic simple roots
for b(λ). In particular such a box (if it exists) is unique. The Borel subalgebra obtained from
b(λ) by an odd reflection at the simple root αi is b(λ′), with λ′ ∈ Pm×n obtained from λ by
adding or removing a box numbered with i.

Unsurprisingly the description of odd reflections for osp(2m|2m) is slightly more complicated
due to the different series of Borels. In this case the odd reflection at αi takes b(λ, ε) to b(λ′, ε′)
according to the following rules (using the implicit convention ε′ = ± if λ′1 = n):

• If λ1 < n and ε = +, then ε′ = + and λ′ is obtained from λ by adding or removing a box
numbered i (note that in this case αm+n = 2εm+n is even).

• If λ1 < n and ε = −, then ε′ = − and λ′ is obtained from λ by adding or removing a box
numbered i for i < m+ n− 1, and by adding the box numbered m+ n− 1 for i = m+ n
(note that αm+n−1 = 2εm+n is even).

• If λ1 = n, then ε = ±.

◦ If i < m+ n− 1, then ε′ = ± and λ′ is obtained from λ by adding or removing a box
numbered i.

98



5.4. The Weyl groupoids of sl(m|n), osp(2m+ 1|2n) and osp(2m|2n)

◦ If i = m+n−1, then ε′ = + and λ′ is obtained from λ by removing the box numbered
m+ n− 1.
◦ If i = m + n, then ε′ = − and λ′ is obtained from λ by removing the box numbered
m+ n− 1.

5.4 The Weyl groupoids of sl(m|n), osp(2m + 1|2n) and
osp(2m|2n)

In this section we give a detailed description of the Cartan graphs and the Weyl groupoids of
sl(m|n), osp(2m + 1|2n) and osp(2m|2n). We begin by describing the underlying graph of the
Cartan graph and then list the Serre matrices. Finally we determine the Coxeter-type relations
among the generators of the Weyl groupoids.

These Weyl groupoids also appear in [AA17], where they are studied from the perspective
of Nichols algebras. However, our combinatorics is based on the the graphical description of
Borel subalgebras in terms of partitions. This directly reflects the structural theory of the
Lie superalgebra, and therefore makes it very easy to pass between Weyl groupoids and Lie
superalgebras. A further advantage of our description is that it is very easy to write down the
Weyl groupoids in concrete examples.

5.4.1 Shape of the Cartan graph
In Sections 5.3.1 to 5.3.3 we gave a detailed description of the (finitely many) Borel subalgebras
of sl(m|n), osp(2m + 1|2n) and osp(2m|2n) with fixed even part. As mentioned above, these
represent all conjugacy classes of Borel subalgebras. Therefore by Remark 5.2.17 their Cartan
graphs split into several identical subgraphs without edges between each other. Hence we only
need to consider one of these subgraphs, namely the one corresponding to the Borel subalgebras
described above. The number of these subgraphs is the order of the Weyl group, i.e. m!n! for
sl(m|n), 2m+nm!n! for osp(2m+ 1|2n) and 2m+n−1m!n! for osp(2m|2n).

Moreover, by Remark 5.2.18 each of the above subgraphs again splits into several identi-
cal (up to a permutation of the edge colors) components without edges between them, cor-
responding to the possible reorderings of the simple roots. Observe that the ordering of the
simple roots from Propositions 5.A.3 to 5.A.5 is consistent under odd reflections. Therefore
we only describe the component corresponding to this ordering, and for convenience also call
it the Cartan graph. Since the number of simple roots is m + n − 1 for sl(m|n) and m + n
for osp(2m + 1|2n) and osp(2m|2n) it follows that altogether their Cartan graphs consist of
(m+ n− 1)!m!n! (resp. 2m+nm!n!(m+ n)!, 2m+n−1n!m!(m+ n)!) copies of this component. By
[Mus12, Thm. 3.1.3] any two Borel subalgebras with the same even part are connected by a
sequence of odd reflections, and therefore these components are moreover connected.

In Sections 5.3.1 to 5.3.3 we used partitions to describe the Borel subalgebras, and the cor-
responding shuffles to describe the simple roots. Also recall from Section 5.3.4 that in this
description odd reflections correspond to adding or removing single boxes. From these observa-
tions we obtain:

Proposition 5.4.1. The Cartan graphs of sl(m|n) (resp. gl(n|n)), osp(2m + 1|2n) and
osp(2m|2n) have the following underlying graphs:

1) For sl(m|n) (resp. gl(n|n)) the set of vertices is the set Pm×n of partitions fitting in an
m× n-rectangle. The edges are colored by {1, . . . ,m+ n− 1}. There are edges λ i←→ λ′ if
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λ′ is obtained from λ by adding a box numbered i (using the numbering from Section 5.3.4),
and loops λ i←→ λ if no box numbered i can be added to λ.

2) For osp(2m + 1|2n) the set of vertices is Pm×n. The edges are colored by {1, . . . ,m + n}.
There are edges λ i←→ λ′ if λ′ is obtained from λ by adding a box numbered i, and loops
λ

i←→ λ if no box numbered i can be added to λ. In particular there are loops of color
m+ n at every vertex.

3) For osp(2m|2n) the set of vertices is

{(λ, ε) | λ ∈ Pm×n, λ1 < n, ε ∈ {+,−}} ∪ {(λ,±) | λ ∈ Pm×n, λ1 = n}.

The edges are colored by {1, . . . ,m+ n}, and the non-loop edges are as follows:

• (λ, ε) i←→ (λ′, ε) for λ1 < n and λ′ obtained from λ by adding a box numbered i, with
1 ≤ i ≤ m+ n− 2.

• (λ,+) m+n−1←→ (λ′,±) for λ1 = n−1 and λ′ obtained from λ by adding the box numbered
m+ n− 1.

• (λ,−) m+n←→ (λ′,±) for λ1 = n− 1 and λ′ obtained from λ by adding the box numbered
m+ n− 1.

• (λ,±) i←→ (λ′,±) for λ1 = n and λ′ obtained from λ by adding a box numbered i,
with 1 ≤ i ≤ m+ n− 2.

Hence the connected components of the Cartan graph of osp(2m+ 1|2n) are almost the same
as those of sl(m|n), with the only difference being the additional loops of color m + n at every
vertex for osp(2m+ 1|2n). For some concrete small examples see Section 5.4.5

5.4.2 The Serre matrices
Proposition 5.4.2. The Serre matrices for sl(m|n) (resp. gl(n|n)), osp(2m + 1|2n) and
osp(2m|2n) have the following form:

1) For sl(m|n) (resp. gl(n|n)) the Serre matrix is Am+n−1 everywhere.
2) For osp(2m+ 1|2n) the Serre matrix is Bm+n everywhere.
3) Let λ ∈ Pm×n and ε ∈ {+,−}. Then the Serre matrix at the vertex (λ, ε) of the Cartan

graph of osp(2m|2n) is:

• Cm+n if λ1 < n− 1 and ε = +,
• C ′m+n (obtained by swapping the last two rows and columns of Cm+n) if λ1 < n − 1

and ε = −,
• Am+n if λ1 = n− 1 and ε = +,
• A′m+n (obtained by swapping the last two rows and columns of Am+n) if λ1 = n − 1

and ε = −,
• Dm+n if λ2 = n and ε = ±,
• the generalized Cartan matrix 

2 −1 0 ··· 0 0
−1 2 ...

...
...

...

0 ...
... −1 0 0

...
... −1 2 −1 −1

0 ··· 0 −1 2 −1
0 ··· 0 −1 −1 2


if λ2 < λ1 = n and ε = ±.
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Proof. In all cases the Serre matrix is obtained from the Cartan data determined in Proposi-
tions 5.A.3 to 5.A.5 according to the rules from Definition 5.2.7.

Remark 5.4.3. Let g be sl(m|n) (resp. gl(n|n)), osp(2m+ 1|2n) or osp(2m|2n) and let b ⊆ g be
the Borel subalgebra corresponding to a vertex x of the Cartan graph Gg. Observe that the Serre
matrix at x is the generalized Cartan matrix corresponding to the Dynkin–Kac diagram for b
considered as a Dynkin diagram, see [Mus12, §3.4.3] for a list.

5.4.3 The Coxeter relations
By [HS20, Thm. 9.4.8] the Weyl groupoid of a Cartan graph G = (I,X, r, A) is a Coxeter
groupoid, i.e. the generators si are only subject to relations of the form idx(sisj)m(x)ij idx = idx
for some symmetric matrices (m(x)ij) with m(x)ii = 1 (with i, j ∈ I and x ∈ X, and the implicit
assumption that (rirj)m(x)ij (x) = x unless m(x)ij = ∞). In fact m(x)ij = |∆real

x ∩ (N0α
x
i +

N0α
x
j )|. Therefore to obtain a presentation in terms of generators and relations we only have to

determine the orders of sisj , starting from all vertices of the Cartan graph.
Proposition 5.4.4. For sl(m|n) (resp. gl(n|n)), osp(2m+1|2n) and osp(2m|2n), the m(x)ij are
determined from the Serre matrices by the same rules as for semisimple Lie algebras. Explicitly,

A(x)ijA(x)ji = 0 =⇒ m(x)ij = 2,
A(x)ijA(x)ji = 1 =⇒ m(x)ij = 3,
A(x)ijA(x)ji = 2 =⇒ m(x)ij = 4.

Proof. By Proposition 5.4.2 we know for sl(m|n) (resp. gl(n|n)) and osp(2m + 1|2n) that we
have the same Serre matrices at every vertex in our Cartan graph. As the Serre matrices are the
same at all vertices, the linear maps si : h∗ → h∗ corresponding to the generators of the Weyl
groupoid are independent of the vertex. From this it follows that (sisj)m(x)ij = idh∗ , and that
m(x)ij is the lowest number fulfilling this. Thus we only need to check that the induced path
in the Cartan graph ends at the same vertex that we started. But this follows easily from the
explicit description in terms of partitions.

For osp(2m|2n) the situation is a bit more tedious. We need to compute the intersection of
the linear span of two simple roots with the roots of osp(2m|2n). Using the explicit description
of the simple roots in Proposition 5.A.5 this is rather straightforward. We will only do this for
the interesting cases, i.e. when i, j ∈ {n+m− 2, n+m− 1, n+m}, as the remaining cases are
similar (and easier).

• For x = (λ,+) with λ1 ≤ m−2, the last three simple roots are εi−εm+n−1, εm+n−1−εm+n,
2εm+n, where i is either m or m+ n− 2. Therefore we get the claimed m(x)ij .

• For x = (λ,+) with λ1 = m− 1, the last three simple roots are εi− εm, εm− εm+n, 2εm+n
where i is either m − 1 or m + n − 1. As 2εm is not a root of osp(2m|2n) we get type A
relations.

• For x = (λ,−) we can apply the same argument as above since in this case only the last
two simple roots are swapped.

• For x = (λ,±) with λ1 = m > λ2, the corresponding last three simple roots are given by
εi− εm+n, εm+n− εm, εm+n + εm where i is either m− 1 or m+n− 1. As 2εm+n is a root
we directly see that m(x)ij = 3.

• Lastly suppose that x = (λ,±) with λ1 = λ2 = m. The simple roots are then given by
εi−εm−1, εm−1−εm, εm−1+εm where i is eitherm+n orm−2. Now 2εm−1 is not a root of
osp(2m|2n), therefore the linear span of εm−1− εm and εm−1 + εm consists only of 2 roots.
Additionally εi ± εm are indeed roots, so we see the claimed type D phenomenon.
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5.4.4 Automorphisms
For sl(m|n) (resp. gl(n|n)), osp(2m+1|2n) and osp(2m|2n) Proposition 5.2.15 yields the following
explicit description of the automorphism group of an object of the Weyl groupoid.
Corollary 5.4.5. If g is sl(m|n)(resp. gl(n|n)), osp(2m+1|2n) or osp(2m|2n) and x any vertex
of the Cartan graph of g, then AutW(x) is isomorphic to the Weyl group of g0̄.
Proof. We only have to show that any even root is principal, which follows easily from the explicit
description in Propositions 5.A.3 to 5.A.5.

5.4.5 Some small examples
We explicitly describe the Weyl groupoids of sl(m|n), osp(2m + 1|2n) and osp(2m|2n) in a few
examples.
Example 5.4.6. The contragredient Lie superalgebra gl(2|2) has three pairs of Chevalley gener-
ators, so the associated Weyl groupoid has three generators s1, s2 and s3. By Section 5.3.1 we can
index the Borel subalgebras (with a fixed even part) by partitions fitting into an 2× 2-rectangle,
and by Proposition 5.4.2 the Serre matrix is

( 2 −1 0
−1 2 −1
0 −1 2

)
everywhere. From the description of

odd reflections in Section 5.3.4 it follows that the generators of W can be drawn in a diagram

∅

1

2

2

1

3

3

1

2

3

1

3

2

By Proposition 5.4.4 the only relations are the familiar braid relations s1s2s1 = s2s1s2, s2s3s2 =
s3s2s3 and s1s3 = s3s1 (for all vertices of the Cartan graph).
Example 5.4.7. For the Lie superalgebra osp(5|4), the underlying graph looks as in Exam-
ple 5.4.6 but its Cartan subalgebra is 4-dimensional instead of 3-dimensional. So every vertex
gets an additional loop with index 4.

∅

1

2 4

2

1

3

4

4 3

1

4

2

1

3

4

3

24
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In this case the Serre matrix is B4 =
( 2 −1 0 0
−1 2 −1 0
0 −1 2 −2
0 0 −1 2

)
everywhere. The generators are subject

to the usual “type B braid relations”, which are the relations from Example 5.4.6 as well as
s3s4s3s4 = s4s3s4s3 and sis4 = s4si for i ∈ {1, 2}.

Example 5.4.6 and Example 5.4.7 had in common that the Serre matrices were all the same
at every vertex. This is however not true for osp(2m|2n):
Example 5.4.8. The Cartan graph of osp(4|4) is

(∅,+) ( ,+)
(

,+
)

(
,±
) (

,±
) (

,±,
)

(∅,−) ( ,−)
(

,−
)

2

4

3

1

4

1

3

4

3

2

2 1 2

4

3

1

2

4

3

1

3

1

4

3

4

2

The Serre matrix in the top left corner is of type C4 =
( 2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −2 2

)
. The other two Serre

matrices in the first row are of type A4 =
( 2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

)
. The bottom row has the same Serre

matrices as the first row except we swap the third and fourth row and column, i.e. we have( 2 −1 0 0
−1 2 0 −1
0 0 2 −2
0 −1 −1 2

)
in the bottom left corner and

( 2 −1 0 0
−1 2 0 −1
0 0 2 −1
0 −1 −1 2

)
for the other two. At

(
,±
)

we have D4 =
( 2 −1 0 0
−1 2 −1 −1
0 −1 2 0
0 −1 0 2

)
. The remaining two Serre matrices are given by

( 2 −1 0 0
−1 2 −1 −1
0 −1 2 −1
0 −1 −1 2

)
,

in particular these are not of Dynkin type.
The generators of W are subject to the braid relations (including relations of type C = B)

specified by the Serre matrices.

5.A Computation of Cartan data
In this appendix we explicitly describe the simple roots and Cartan data for the Borel subalge-
bras of sl(m|n), osp(2m + 1|2n) and osp(2m|2n). For this it is more convenient to work with
permutations instead of partitions, so we first need to set up a bit of combinatorics to pass
between the two notions.

5.A.1 Combinatorics: Shuffles and partitions
Let Pm×n be the set of partitions whose Young diagram fits into an m×n-rectangle. We use the
slightly unusual convention that the longest row is at the bottom, so for instance the diagram
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represents the partition λ = (4, 2, 1).

Recall that a permutation σ ∈ Sm+n is an (m,n)-shuffle if σ−1(i) < σ−1(j) for all pairs
i < j with either i, j ≤ m or i, j > m. We write Shff(m,n) for the set of (m,n)-shuffles.
Equivalently, Shff(m,n) can be defined as a set of shortest coset representatives for the parabolic
quotient (Sm × Sn)\Sm+n. Note that if σ is an (m,n)-shuffle, then either σ(m + n) = m or
σ(m+ n) = m+ n.

We will identify shuffles with partitions as follows:
Lemma 5.A.1. There is a bijection between Shff(m,n) and the set of Young diagrams (parti-
tions) fitting into an m× n-rectangle, as follows: for an (m,n)-shuffle σ we draw a path in the
m× n-rectangle, where in the i-th step we go down if σ(i) ≤ m and right if σ(i) > m. Then the
partition λ consists of the boxes below the path.

This bijection is best explained in an example.
Example 5.A.2. Let m = 3, n = 4 and σ = ( 1 2 3 4 5 6 7

4 1 5 2 6 7 3 ) ∈ Shff(3, 4). According to
Lemma 5.A.1 σ encodes the boundary path rdrdrrd (where r means “right” and d “down”):

(5.4)

The permutation corresponding to σ is λ = (4, 2, 1).

5.A.2 Cartan data for sl(m|n)
Proposition 5.A.3. Let σ ∈ Shff(m,n). The simple roots corresponding to the Borel subalgebra
b(σ) of sl(m|n) are

Π(σ) = {αi = εσ(i) − εσ(i+1) | 1 ≤ i ≤ m+ n− 1}.

For the corresponding Cartan datum (B, τ) we have τi = 0̄ if either σ(i), σ(i + 1) ≤ m or
σ(i), σ(i+ 1) > m, and τi = 1̄ otherwise. The i-th row of the matrix B is given by

(bi,1, . . . , bi,m+n−1) =
{

(0, . . . , 0,−1, 2,−1, 0, . . . , 0) if |ei| = 0̄,
(0, . . . , 0,−1, 0, 1, 0, . . . , 0) if |ei| = 1̄,

where the entry 2 (resp. the “middle” 0) is in the i-th spot.
Proof. The simple roots are listed in [Mus12, Lem. 3.4.3]. Since the elementary matrix Ers is of
weight εr − εs we can take

ei = Eσ(i),σ(i+1), fi = Eσ(i+1),σ(i)

as Chevalley generators. Clearly ei (and fi) is even if and only if σ(i) and σ(i + 1) are either
both ≤ m or both ≥ m+ 1. Therefore hi = [ei, fi] = Eσ(i),σ(i) − (−1)|ei|Eσ(i+1),σ(i+1), and thus

αj(hi) =



0 if j 6= i, i± 1,
2 if j = i, |ei| = 0̄,
0 if j = i, |ei| = 1̄,
−1 if j = i− 1,
−(−1)τi if j = i+ 1.

This shows that the matrix B has the claimed form.
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5.A.3 Cartan data for osp(2m + 1|2n)
Proposition 5.A.4. Let σ ∈ Shff(m,n). The simple roots for the Borel subalgebra b(σ) of
osp(2m+ 1|2n) are

Π(σ) = {αi = εσ(i) − εσ(i+1) | 1 ≤ i ≤ m+ n− 1} ∪ {αm+n = εσ(m+n)}.

The corresponding Cartan datum (B, τ) can be described as follows. For 1 ≤ i ≤ m + n − 1 we
have τi = 0̄ if either σ(i), σ(i + 1) ≤ m or σ(i), σ(i + 1) > m, and τm+n = 0̄ if σ(m + n) ≤ m
and τm+n = 1̄ if σ(m+ n) > m. The i-th row of the matrix B is given by

(bi,1, . . . , bi,m+n−1) =


(0, . . . , 0,−1, 2,−1, 0, . . . , 0) if i < m+ n, |ei| = 0̄,
(0, . . . , 0,−1, 0, 1, 0, . . . , 0) if i < m+ n, |ei| = 1̄,
(0, . . . , 0,−1, 1) if i = m+ n,

where the entry 2 (resp. the “middle” 0) is in the i-th spot.

Proof. The simple roots are listed in [Mus12, Lem. 3.4.3]. From the explicit description of the
root spaces (see e.g. [Mus12, Exercise 2.7.4]) it follows that one possible choice for the Chevalley
generators (for 1 ≤ i ≤ m+ n− 1) is

ei =
{
Eσ(i),σ(i+1) + E−σ(i+1),−σ(i) if σ(i) ≤ m,σ(i+ 1) > m,

Eσ(i),σ(i+1) − E−σ(i+1),−σ(i) otherwise,
em+n = Eσ(m+n),0 − E0,−σ(m+n)

fi =
{
Eσ(i+1),σ(i) + E−σ(i),−σ(i+1) if σ(i) > m,σ(i+ 1) ≤ m,
Eσ(i+1),σ(i) − E−σ(i),−σ(i+1) otherwise,

fm+n =
{
E0,m − E−m,0 if σ(m+ n) = m,

E0,m+n + E−(m+n),0 if σ(m+ n) = m+ n.

Hence ei (and thus fi) is even if and only if σ(i) and σ(i + 1) are either both ≤ m or both
≥ m+ 1. From this it follows that

hi = [ei, fi] = Eσ(i),σ(i) − E−σ(i),−σ(i) − (−1)|ei|(Eσ(i+1),σ(i+1) − E−σ(i+1),−σ(i+1))

for 1 ≤ i ≤ m+ n− 1, and (independent of the value of σ(m+ n))

hm+n = Eσ(m+n),σ(m+n) − E−σ(m+n),−σ(m+n).

Therefore the entries of the matrix B are

bij = αj(hi) =



0 if j 6= i, i± 1,
2 if j = i < m+ n, τi = 0̄,
0 if j = i < m+ n, τi = 1̄,
1 if j = i = m+ n,

−1 if j = i− 1,
−(−1)τi if j = i+ 1,

and thus B has the claimed form.
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5.A.4 Cartan data for osp(2m|2n)
Proposition 5.A.5. Let σ ∈ Shff(m,n) and ε ∈ {+,−}. The simple roots and the Cartan data
(B, τ) for the Borel subalgebras b(σ, ε) of osp(2m|2n) can be described as follows:

1) For σ(m+ n) = m+ n and b(σ,+) the simple roots are

Π(σ,+) = {αi = εσ(i)−σ(i+1) | 1 ≤ i ≤ m+ n− 1} ∪ {αm+n = 2εm+n}.

The Chevalley generators ei and fi for 1 ≤ i ≤ m + n − 1 are even if and only if either
σ(i), σ(i + 1) ≤ m or σ(i), σ(i + 1) > m, while em+n and fm+n are even. The i-th row of
B is

(bi,1, . . . , bi,m+n) =


(0, . . . , 0,−1, 2,−1, 0, . . . , 0) if i 6= m+ n− 1, |ei| = 0̄,
(0, . . . , 0,−1, 0, 1, 0, . . . , 0) if i 6= m+ n− 1, |ei| = 1̄,
(0, . . . , 0,−1, 2,−2) if i = m+ n− 1, |ei| = 0̄,
(0, . . . , 0,−1, 0, 2) if i = m+ n− 1, |ei| = 1̄.

again with the entry 2 (resp. the “middle” 0) in the i-th spot.
2) For σ(m + n) = m + n and b(σ,−) the simple roots Π(σ,−) are obtained from Π(σ,+)

by replacing every εm by ε−m = −εm, and swapping the m + n − 1-th and the m + n-th
simple root. The Cartan datum is as above except that the last two rows and columns of
the matrix B are swapped.

3) For σ(m+ n) = m and b(σ,±) the simple roots are

Π(σ,±) = {αi = εσ(i)−σ(i+1) | 1 ≤ i ≤ m+ n− 1} ∪ {αm+n = εσ(m+n−1) + εσ(m+n)}.

The Chevalley generators ei and fi for 1 ≤ i ≤ m + n − 1 are even if and only if either
σ(i), σ(i + 1) ≤ m or σ(i), σ(i + 1) > m, while em+n and fm+n have the same parity as
em+n−1. The i-th row (bi,1, . . . , bi,m+n) of the matrix B is given by the following table:

τi = 0̄ τi = 1̄
i < m+ n− 2 (0, . . . , 0,−1, 2,−1, 0, . . . , 0) (0, . . . , 0,−1, 0, 1, 0, . . . , 0)
i = m+ n− 2 (0, . . . , 0,−1, 2,−1,−1) (0, . . . , 0,−1, 0, 1, 1)
i = m+ n− 1 (0, . . . , 0,−1, 2, 0) (0, . . . , 0,−1, 0, 2)
i = m+ n (0, . . . , 0,−1, 0, 2) (0, . . . , 0,−1, 2, 0)

Proof. The simple roots are listed in [Mus12, Lem. 3.4.3]. A choice for the Chevalley generators
ei, fi and hi = [ei, fi] associated with the simple roots is:

• for αi = εσ(i) − εσ(i+1),

ei =
{
Eσ(i),σ(i+1) + E−σ(i+1),−σ(i) if σ(i) ≤ m,σ(i+ 1) > m,

Eσ(i),σ(i+1) − E−σ(i+1),−σ(i) otherwise,

fi =
{
Eσ(i+1),σ(i) + E−σ(i),−σ(i+1) if σ(i) > m,σ(i+ 1) ≤ m,
Eσ(i+1),σ(i) − E−σ(i),−σ(i+1) otherwise,

hi = Eσ(i),σ(i) − E−σ(i),−σ(i) − (−1)|ei|(Eσ(i+1),σ(i+1) − E−σ(i+1),−σ(i+1)).
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• for αi = εσ(i) + εm,

ei = Eσ(i),−m − Em,−σ(i),

fi =
{
E−m,σ(i) − E−σ(i),m if σ(i) ≤ m,
E−m,σ(i) + E−σ(i),m if σ(i) > m,

hi = Eσ(i),σ(i) − E−σ(i),−σ(i) + (−1)|ei|(Em,m − E−m,−m).

• for αi = −εm − εσ(i+1),

ei =
{
E−m,σ(i+1) − E−σ(i+1),m if σ(i+ 1) ≤ m,
E−m,σ(i+1) + E−σ(i+1),m if σ(i+ 1) > m,

fi = Eσ(i+1),−m − Em,−σ(i+1),

hi = E−m,−m − Em,m − (−1)|ei|(Eσ(i+1),σ(i+1) − E−σ(i+1),−σ(i+1)).

• for αi = 2εm+n,

ei = Em+n,−(m+n), fi = E−(m+n),m+n,

hi = [ei, fi] = Em+n,m+n − E−(m+n),−(m+n).

Now we plug the hi into the αj . For this we have to consider each of the three classes of Borel
subalgebras separately.

Case I: σ(m+ n) = m+ n, +. Then

αj(hi) =



0 if j 6= i, i± 1,
2 if j = i, τi = 0̄,
0 if j = i, τi = 1̄,
−1 if j = i− 1,
−(−1)τi if j = i+ 1 < m+ n,

−2(−1)τi if j = i+ 1 = m+ n,

and it follows that the matrix B has the claimed form.

Case II: σ(m + n) = m + n, −. In this case let i0 = σ−1(m). The simple roots are as in the
previous case except that εσ(i0−1)− εm and εm− εσ(i0+1) are replaced by εσ(i0−1) + εm and
−εm − εσ(i0+1), respectively, and the numbering is changed. The values αj(hi) are as in
the previous case except we have to check the cases involving i0 separately. Nevertheless
it follows that the matrix B is as in Case I except we have to swap the last two rows and
columns to account for the renumbering of the simple roots.
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Case III: σ(m+ n) = m. Similarly to the previous cases we obtain

αj(hi) =



0 if j 6= i, i± 1, i± 2,
2 if j = i, τi = 0̄,
0 if j = i, τi = 1̄,
−1 if j = i− 1, i < m+ n,

1− (−1)τi if j = i− 1, i = m+ n,

0 if j = i− 2, i < m+ n,

−1 if j = i− 2, i = m+ n,

−(−1)τi if j = i+ 1 < m+ n,

1 + (−1)τi if j = i+ 1 = m+ n,

0 if j = i+ 2 < m+ n,

−(−1)τi if j = i+ 2 = m+ n,

as claimed.
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