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Summary

The main topics of this thesis are triangulated categories with t-structures and weight struc-
tures, Koszul duality, and certain generalizations of spherical objects known as P-objects. The
secondary topic are Weyl groupoids, which are a certain aspect of the structure theory of Lie
superalgebras.

Triangulated categories play an important role in representation theory and related areas of
mathematics. Interesting examples of triangulated categories with t-structures can be obtained
as derived categories of abelian categories such as certain representation categories of Lie algebras,
or module categories over finite-dimensional algebras. Further examples arise from complexes
of sheaves on stratified varieties. Weight structures, also known as co-t-structures, dualize the
notion of t-structures in a certain sense, and are inspired by the theory of weights from complex
geometry.

The thesis consists of four rather independent parts. In the first part we study the orthogo-
nality relation of weight structures and t-structures, and the closely related silting t-structures
in the sense of Psaroudakis—Vitéria. We introduce derived projective covers and relate them to
the notion of enough derived projectives introduced by Genovese-Lowen—Van den Bergh. Our
main result uses derived projective covers to provide an if-and-only-if criterion for a t-structure
with finite-length heart to be a silting t-structure. We also provide equivalent axioms for the ST
pairs introduced by Adachi-Mizuno—Yang, and formulate the bijection between simple-minded
collections and silting collections due to Koenig—Yang in terms of derived projective covers.

In the second part we show that the non-positive respectively positive dg algebras obtained
from silting and simple-minded collections corresponding to orthogonal weight structures and t-
structures are dg Koszul dual to each other. This can be seen as a first step towards a tentative
Koszul duality of weight structures and t-structures.

In the third part we consider the constructible derived category DP(P™) of complex projective
space, equipped with the middle-perverse t-structure. We show that the simple perverse sheaf
IC,, is a P"-object in the sense of Huybrechts—Thomas, and that its associated P-twist is the
inverse Serre functor of D?(P™). Moreover, we classify the P-like objects in Perv(P"). This part
is joint work with Alessio Cipriani.

In the fourth part we study Weyl groupoids of contragredient Lie superalgebras. Weyl grou-
poids are an analog of the Weyl group for Lie superalgebras, constructed to also take odd simple
roots into account. We provide a convenient graphical formulation of the definitions of Cartan
graphs and Weyl groupoids introduced by Heckenberger in the context of Nichols algebras, and
apply this to Lie superalgebras following Heckenberger—Yamane. We explicitly describe the Weyl
groupoids of sl(m|n), osp(2m + 1|2n) and osp(2m|2n) in terms of partitions. Furthermore, we
compare this notion of Weyl groupoid to other similar constructions, and in particular to the
root groupoid recently introduced by Gorelik-Hinich—Serganova. This part is joint work with
Jonas Nehme.
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Chapter 1

Introduction

This thesis consists of four parts, all of which are connected to triangulated categories with t-
structures, homological algebra, and braid group actions. In particular, we consider the following
four questions:

1) Silting t-structures are t-structures defined by a set of objects. Is there a characterization
of silting t-structures by homological properties?

2) The definition of weight structures appears dual to that of t-structures. Can this duality
be formalized, specifically via Koszul duality?

3) The constructible derived category of a partial flag variety is known to admit a Serre
functor. Is there a description of the Serre functor that is intrinsic to this category?

4) For a contragredient Lie superalgebra, the Weyl group is replaced by a Weyl groupoid. Is
there an explicit combinatorial description of the Weyl groupoids of some Lie superalgebras?

Since their introduction in [Ver96] and [Pup62], triangulated categories have become the natural
setup for homological algebra. There are many natural sources of triangulated categories. For
instance, given an abelian category &7 one can form its derived category D(«/), and given an
additive category &7 one can form its homotopy category K(«7). Conversely, given a triangulated
category 7, one may want to recover an abelian or additive category embedded into 7. This
requires additional structures on .7, namely t-structures and weight structures.

The definition of t-structures introduced in [BBD82] models the truncation of complexes
in the derived category. For the weight structures introduced in [BonlOb} [Pau08|, there are
two different motivations: On the one hand, the definition of weight structures is obtained
algebraically from that of t-structures by “dualizing” some axioms, and this is why they are also
known as co-t-structures. This is the perspective primarily used in silting theory, for instance in
[Pau08; [KY14} [KN13|, and also in this thesis. On the other hand, weight structures are heavily
inspired by geometry, and provide an axiomatic framework for Deligne’s theory of weights in the
abstract setup of triangulated categories. This is the motivation for the study and applications
of weight structures in geometry, for instance in [Bon10bt [Bon10c; [ES22|.

Weight structures and t-structures on the same triangulated category are often closely related.
In particular, a silting collection P in the sense of [PV18] defines both a t-structure and a
weight structure, which are orthogonal to each other. The first goal of this thesis is to find a
characterization of such silting t-structures by homological properties.

Although the definitions of t-structures and weight structures appear dual, it is hard to for-
malize this tentative duality. We provide a first step towards such a formalization via Koszul
duality, which is an important standard tool in representation theory. The classical version of
Koszul duality from [BGS96; MOS09] provides an equivalence between the derived category of
a Koszul algebra A and that of its Koszul dual A' = Ext%(Ag, Ag), and there are also variants
of Koszul duality involving dg algebras [Pri70; [Kel94], A-algebras [LHO3|, and (dg) coalgebras
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[Pri70; ILHO3; [Pos11]. Many examples of Koszul duality occur naturally in representation the-
ory, and in particular in the representation theory of Lie algebras. For instance, symmetric and
exterior algebras are Koszul-dual to each other, and the algebras describing blocks of (parabolic)
category O are Koszul. For category O, Koszul duality can also be used to interpret the rela-
tions between many important functors: in particular, translation functors are Koszul-dual to
Zuckerman functors [RHO04|, and shuffling functors are Koszul-dual to Arkhipov twisting functors
[MOS09].

Shuffling functors have many applications. In particular, by [MS08§|, the shuffling functors can
be used to describe the Serre functor of the derived category of the principal block of parabolic
category . These derived categories are equivalent to the constructible derived categories of
(partial) flag varieties G/P. Therefore, we want to describe the Serre functor of D2?(G/P) in
the language intrinsic to these categories. For G/P = P! such a description is provided by
[Wool0] in terms of the spherical twists at spherical objects introduced in [ST01]. Extending
this description of the Serre functor of DP(P!) to the constructible derived categories of other
flag varieties requires a generalization of spherical twists. The appropriate generalization for P
are the P-twists introduced in [HTO06], which use P-objects instead of spherical objects. Other
(partial) flag varieties will presumably require further generalizations of P-twists to “(partial)
flag variety twists”, but these are yet to be defined.

Spherical twists can be used to construct braid group actions on triangulated categories
[STO1], and hence they play an important role in both algebraic geometry and representation
theory. In algebraic geometry, spherical twists are a useful tool to describe stability manifolds and
automorphism groups of varieties, see for instance [Bri08; Bri09; TU05; BP14], and also |[AL17,
§1] for an overview of applications and generalizations of spherical twists. In representation
theory, in certain special cases the shuffling functors on parabolic category O can be realized as
spherical twists [Len21|. Furthermore, spherical twists are related to tilting of t-structures, see
e.g. [Wool0; [Thol8], and can also be used to obtain braid group actions from classical silting
collections [MY25]. The applications of P-twists in algebraic geometry are similar to those of
spherical twists [Huy06], and like spherical twists they moreover appear in symplectic geometry,
see for instance [MW19]. However, P-twists have not been considered in representation-theoretic
settings yet, and our results are a first step towards applications of P-twists in this area.

Braid groups are closely related to Weyl groups, whose associated combinatorics controls
the structure of semisimple Lie algebras. The analog of simple Lie algebras in the Z/2Z-graded
setting are the classical simple Lie superalgebras such as sl(m|n), osp(2m+1|2n) and osp(2m|2n).
However, in this setting the Weyl group is insufficient to describe their structure as it does not see
the odd simple roots. One proposed solution is to replace the Weyl group by a Weyl groupoid.
There are various different constructions of Weyl groupoids, in particular the Weyl groupoid
from [SV11] and the root groupoid introduced in [GHS24]. An at first glance different notion
of Weyl groupoids plays an important role in the theory of Nichols algebras [Hec06|, and their
associated combinatorics has been considered in depth, see the survey [AA17]. Weyl groupoids
in this sense can also be used as an analog of the Weyl group in the context of Lie superalgebras
[HY08; [HS20], and turn out be closely related to the root groupoid. Our goal is to explicitly
describe the Weyl groupoids of sl(m|n), osp(2m + 1|2n) and osp(2m|2n).

In the following we give detailed separate overviews over the main results in the four parts
of this thesis.



1.1. CHARACTERIZATION OF SILTING t-STRUCTURES VIA DERIVED PROJECTIVES

1.1 Characterization of silting t-structures via derived pro-
jectives

Silting theory studies the interaction of t-structures, weight structures, simple-minded collec-
tions, and silting collections. In particular, one considers t-structures that are obtained from
silting collections. Our goal is to find a characterization of these silting t-structures by homo-
logical properties.

By definition |[BBD82|, a t-structure t = (2¢<°, 2*20) on a triangulated category & provides
a t-decomposition triangle t<¢X — X — t50X — t<oX]1] for any X € 2. Its heart O, =
2'<9 1N 220 is then an abelian category. The prototypical example is the standard t-structure
on the derived category D(&7) of an abelian category &, given by

PV ={XeD() | H'(X)=0Vn>0}, 22°={XecD(«)|H"(X)=0VYn<D0}.

Its heart consists of all those cochain complexes whose cohomology is concentrated in degree 0,
and is thus equivalent to 7. The t-decompositions are given by the “soft truncations” of cochain
complexes.

The definition of weight structures from [BonlOb; [PauO§] is very similar to that of
t-structures: a weight structure on a triangulated category % is a pair of subcategories
w = (Gw>0, Gw<0), providing weight decomposition triangles wsoX — X — w<oX — wsoX[1]
for any X € €. Its coheart Oy = Gw>0 N Gw<o is an additive category. The easiest example of
a weight structure is the standard weight structure on the homotopy category € = K(&) of an
additive category <7, given by

%wzoz{X€%|3Y§X:Y”:0Vn<0}, %u,goz{X€%|EIY%X:Y”:OVn>O}.

By definition, its coheart consists of all those complexes isomorphic to complexes concentrated
in degree 0 (at least if &/ is idempotent-complete), and is thus equivalent to <. The weight
decompositions are given by the “brutal truncations” of cochain complexes.

The subtle difference between the definitions of weight structures and t-structures lies in the
order of the terms in the decomposition triangles, and how these interact with shifts. As a result,
t-decompositions are unique and functorial, but weight decompositions are unique if and only if
QO = {0}. Moreover, the heart of a t-structure is an abelian category with short exact sequences
given by triangles, but this is not true for weight structures.

If ¢ is a bounded t-structure (i.e. if Q; generates 2 as a triangulated category) and ©, is
finite-length, then ¢ can be reconstructed from the set of simple objects in ©;. These form a
simple-minded collection. Similarly, if w is a bounded weight structure and @, is Krull-Schmidt,
then w can be recovered from the indecomposable objects in Q,,, and these form a classical silting
collection. The axiomatic definitions of simple-minded collections and classical silting collections
are easily obtained from these characterizations.

Now let .7 be a triangulated category and € and 2 thick subcategories of 7. A weight
structure w on ¥ is orthogonal to a t-structure t on 2 if €,~o L 2'=° and €9 L 2t20.
Moreover, such an orthogonality is w-t-strict if these relations define the weight structure and
the t-structure. For instance, if A is a finite-dimensional algebra, then the standard weight
structure on ¢ = Kb(projfg—A) is w-t-strictly left orthogonal to the standard t-structure on
2 = DP(modyy-A), with both viewed as subcategories of .7 = D~ (mod¢-A) = K~ (projg,-A).

The pair of subcategories (KP(projg,-A4), D" (mod4-A)) of D™ (modsg-A) = K~ (projg,-A)
is the prototypical example of a WT pair, introduced in [AMY19] as ST pair. In general, a
WT pair in J is roughly speaking a pair of thick subcategories (%, %) such that & admits a
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bounded above weight structure w and a bounded above t-structure ¢t with Z,<o = 7=, such
that ¢ and Z are the thick subcategories generated by @, respectively ©;. In particular, w and
t restrict to a bounded weight structure on % and a bounded t-structure on 2, respectively. For
a WT pair (€, 2), the following result from [Fus24] shows that w-t-strict orthogonality provides
a bijection between weight structures on 4 and t-structures on 2. This unifies and generalizes
earlier results for Dynkin quivers [KV8§|, finite-dimensional algebras [KY14], non-positive dg
algebras [BY14], and positive dg algebras [KN13|.

Theorem (WT correspondence). Let (¢, 2) be a WT pair in . Then the following diagram
of bijections commutes:

Cuso="(7"°)
Guzo="(7'<)

bounded weight structures w on € [N o 0 orthogonality bounded t-structures t on
with Krull-Schmidt coheart with finite-length heart

PS0 = (%50)*
220 = ((gw<0)J'

Karoubi closure of
extension closure of
positive/negative shifts
Q) ur se[qesodurooopur
¢y ut sorduuts

extension closure of
positive/negative shifts

classical silting collections P simple-minded collections £
in % in 9

simple tops of H?(P)

For the standard example (DP(modq-A), Kb(projfg—A)) in D™ (modjy-A) = K~ (projg,-4),
the bijections identify the standard t-structure on DP(modgq4-A), the simple-minded collection
consisting of the simple A-modules, the standard weight structure on Kb(projfg—A)7 and the
classical silting collection consisting of the indecomposable projective A-modules.

The crucial step in the proof of the WT correspondence (see e.g. [KY14} §5.6], |[Ric02, §5], or
[Fus24, §4] for the general case) is the construction of a classical silting collection P corresponding
to a given simple-minded collection £. This classical silting collection is characterized by the
existence of a bijection ¢: P — L such that

Hom (P, Ljm]) {Endg(L) if L= o(P), m =0,
0 otherwise,

but this does not provide a good conceptual interpretation of the relation of P and L.

However, this characterization looks very similar to the relation of the indecomposable pro-
jective objects to the simple objects in an abelian category. Moreover, in the standard example
of the WT correspondence the simple-minded collection consists of the simple modules, while
the correspnding classical silting collection consists of the indecomposable projective modules.
This shows that classical silting collections should play the role of the set of indecomposable
projective objects in the triangulated setup, while simple-minded collections should be seen as
analogs of the set of simple objects.
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The formalization of this observation is the first main result of this thesis. For this, we use
derived projective objects, which are the analog of projective objects for triangulated categories
equipped with t-structures. By definition, an object P € 7 is derived projective with respect
totif P € 7'<0 and P 1L 7'<0. For instance, if A is a finite-dimensional algebra, then A is
derived projective in DP(mod-A) with respect to the standard t-structure. More generally,
let (¢,2) be a WT pair and P a classical silting collection in € corresponding to a bounded
t-structure t on 2. Then P does not necessarily lie in 2, and thus does not consist of derived
projective in 2. However, by [AMY19, Prop. 5.2] ¢ extends to a t-structure tp = (PL>0, PL<o)
on .7, and hence any P € P is derived projective in .7 with respect to tp.

In analogy to the abelian setting, [GLVdB21| introduced the notion of enough derived projec-
tives. Therein, it is shown that a pretriangulated dg category <7 equipped with a non-degenerate
bounded above t-structure on H°(.¢7) with enough derived projectives can be recovered from the
dg category consisting of the derived projective objects in /. This yields a correspondence be-
tween left homotopically coherent dg categories and pretriangulated dg categories with enough
derived projectives [GLVdB21, Thm. 7.12]. These results are applied in [GLVdB22; |(GLSVdB24]
to develop a deformation theory for pretriangulated dg categories with t-structures. In [GRG23],
the dual notion of enough derived injective objects is moreover used to prove a derived version
of the Gabriel-Popescu theorem.

To complete the picture, we introduce derived projective covers as analogs of projective cov-
ers in the triangulated setting. The following general theorem then in particular implies that
the classical silting collection P corresponding to a simple-minded collection £ under the WT
correspondence consists of the derived projective covers of L:

Theorem A (Characterization of silting t-structures, Theorem. Lett be a non-degenerate
t-structure with finite-length heart on a triangulated category 2. Let L be a full set of isomor-
phism representatives of the simple objects in Oy and P a full set of isomorphism representatives
of the indecomposable derived projectives. Then the following are equivalent:

I) t is a silting t-structure in the sense of [PV1§], i.e. t = (PL>0 PL<o).
II) There is a bijection ¢: P — L such that

Home (P, Liml) = {End@(L) if L =¢(P) andm =0, 4D

otherwise

as Endg(L)-modules.

III) Every L € L admits a derived projective cover (and P is the set of these derived projective
covers).

1V) 2 has enough derived projectives with respect to t.

Theorem [A]is closely related to [CSPP22, Thm. 2.4] and [Bon19, Thm. 5.3.1], which provide
a similar criterion for the existence of an adjacent weight structure for a given t-structure. As an
application, in Definition and Proposition we provide a definition of WT pairs that is
equivalent to that from [AMY19]. Compared to the original definition, our definition uses weight
structures instead of classical silting collections, and as a result it is more symmetric. This is also
the reason why we prefer the name WT pair over ST pair, to reflect the use of weight structures
(instead of classical silting collections) and t-structure in the definition.

A different question is whether the bijection between weight structures and t-structures pro-
vided by the WT correspondence is natural with respect to weight exact functors and t-exact
functors. Since this bijection is given by w-t-strict orthogonality, a straightforward generalization
of [BonlObl Prop. 4.4.5] shows that the WT correspondence is natural in the following sense:
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Theorem B (Naturality of the WT correspondence, Corollary . Let (€¢,2) be a WT pair
in 7 and (€¢',2') a WT pair in T'. Let w, w' be bounded weight structures on € respectively
%', and t, t' the corresponding bounded t-structures on 2 respectively 9’ under the WT cor-
respondence. Suppose that F: € — €' is left pseudo-adjoint to G: 9’ — 2 in the sense that
Homg/ (F(-),—) = Homz (-, G(-)).

Then F is weight exact with respect to w and w' if and only if G is t-exact with respect to t
and t'.

1.2 Koszul duality of simple-minded and silting collections

A Koszul algebra is a positively graded k-algebra A such that the simple A-modules have linear
projective resolutions. Its Koszul dual A' = Ext’ (Ao, Ap) is again a Koszul algebra, and we have
(AY' =2 A. Moreover, the Koszul duality theorem from [BGS96; [MOS09] provides a triangulated
equivalence

RHOHIA(A(), —)2 D'L(A) = DT(AI)’

where D¥(A4) C D(A) and DT(A') € D(A') are the subcategories consisting of complexes of
graded modules that are bounded below and “linearly bounded above”, respectively bounded
above and “linearly bounded below”. In particular, this identifies the simple A-modules with the
indecomposable projective A'-modules.

By definition, simple-minded collections are analogs of the set of simple modules, and by
Theorem [A] silting collections can be seen as analogs of the set of indecomposable projective
modules. As these are precisely the classes of objects exchanged by the classical Koszul duality,
we want to relate simple-minded collections and silting collections by some kind of Koszul duality.

The required notion of Koszul duality is provided by the dg Koszul duality for augmented dg
categories introduced in [Kel94]. Augmented dg categories include in particular the non-positive
dg algebras and positive dg algebras, viewed as dg categories via a primitive orthogonal collection
of idempotents. The dg Koszul dual A" of a non-positive (respectively positive) dg algebra
A is a positive (respectively non-positive) dg algebra by |[BY14; |[KN13|. Under some finiteness
assumptions, the double dg Koszul dual of a non-positive or positive dg algebras is the original
dg algebra, and there are equivalences between certain subcategories of D(A) and D(A"%8), see
|[Kel94} [Fus25).

The dg Koszul dual is related to the classical Koszul dual A' considered in [BGS96| as follows.
A Koszul algebra A can be viewed as a positive dg algebra with the same grading and trivial
differential. If A has finite global dimension, it follows by combining [Sch11, Thm. 39] and [KN13|
Lemma 5.2] that

H (4108) = {A! if n =0,
0  otherwise.

To apply dg Koszul duality to silting collections and simple-minded collections, we first have to
obtain dg algebras from these. For this, we use a dg enhancement 7 of the ambient triangulated
category 7. For any object X € .7, the dg enhancement provides a dg algebra End §(X ) such
that H*(End >(X)) = End5(X). If P is a silting collection and £ a simple-minded collection,
then as an immediate consequence of the definitions the dg algebra End (P pcp P) is non-
positive and the dg algebra End§(®L€L L) is positive. By applying dg Koszul duality to such
dg algebras arising from classical silting collections and simple-minded collections related by the
orthogonality relation , we obtain:

10
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Theorem C (Koszul duality of simple-minded/silting, Theorem . Let  be a compactly
generated dg-enhanced triangulated category. Let P be a classical silting collection in the sub-
category of compact objects of T and L a simple-minded collection in a subcategory of 7, and
suppose there is a bijection ¢: P — L satisfying .

1) If Endg (B pep P) is finite-dimensional, then the dg algebra End z(@ . L) is the dg
Koszul dual of End (@ pcp P)-

2) If Homg (D pep P, D pep Pln]) is finite-dimensional for all n € Z, then End (B pep P)
is the dg Koszul dual of End (@, L).

This result provides a notion of Koszul duality between simple-minded and silting collections,
which can be seen as a first step towards understanding the tentative Koszul duality between
weight structures and t-structures. More precisely, we ask:

Questions. Does the Koszul duality of simple-minded and silting collections from Theorem [C]
extend to a Koszul duality theorem relating. ..

1) ...hearts and cohearts of orthogonal t-structures and weight structures?
2) ...orthogonal t-structures and weight structures?
3) ...the machinery of t-structures and weight structures, such as t-decompositions respec-

tively weight decompositions, and the realization functor respectively strong weight com-
plex functor?

1.3 Serre functor and P-objects for perverse sheaves on P”

The notion of Serre functor introduced in [BK90| generalizes Serre duality from algebraic geome-
try. Serre functors are an important tool in the theory triangulated categories, and in particular
they allow to construct left adjoints of functors that have a right adjoint, and vice versa. Besides
algebraic geometry, Serre functors also appear in algebra and representation theory: by [Hap8§|
the derived Nakayama functor is a Serre functor of the bounded derived category of a finite-
dimensional algebra of finite global dimension. This general result abstractly provides Serre
functors for many interesting triangulated categories in representation theory, and in particular
for the constructible derived categories of partial flag varieties G/P which play a central role
in geometric representation theory. However, this does not provide a description of the Serre
functor in the language intrinsic to the constructible derived category.

A partial flag variety G/P comes with a natural stratification provided by the double cosets
for a Borel subgroup of G, and this stratification can be used to construct the perverse t-
structures on the constructible derived category DP(G/P) [BBDS82|. Of particular importance
is the middle-perverse t-structure, and its heart is the category Perv(G/P) of middle-perverse
sheaves. By well-known results from [BB81;|BK81; [BGS96], there are equivalences of triangulated
respectively abelian categories given by the diagram

DY(G/P) —— DP(Of(s)) —— DP(AP(g)-modsa)
Perv(G/P) ——— Of(g) ———— AP(g)-modgq.

Here AP(g) is a certain finite-dimensional algebra which in general cannot be described explicitly,
see |Str03| for some known cases and an overview of the difficulties. In particular these equiv-
alences identify the middle-perverse t-structure on D2(G/P) with the standard t-structures on
DP(0}(5)) and DP(AP(g)-modsq).

11
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Since AP(g)-modgy is a highest weight category in the sense of |[CPS88; [BS24], it has finite
global dimension, and thus by [Hap8§| the left derived Nakayama functor is a Serre functor
for DP(AP(g)-mod¢). From the above equivalences it follows that DP(O}(g)) and DY (G/P)
also admit Serre functors. For D”(Of(g)), the Serre functor can be explicitly described in Lie-
theoretic language as the shifted derived shuffling functor Sh?, [~2¢(w§)] by results from [MS08|.

The main result of Chapter [] provides a description of the Serre functor in the language in-
trinsic to the constructible derived category for the special case G = GL,,41(k) and the parabolic
subgroup P C G with block sizes (n,1), i.e. for G/P = P™. For this we use the P-twists at P-
objects introduced in [HT06]. These are autoequivalences that generalize the spherical twists at
spherical objects from [ST01], and are defined as follows.

A P*_like object in a triangulated category 2 is an object E € 2 which cohomologically
looks like a projective space, i.e. such that Endf,(E) = k[t]/(#*™!) with deg(t) = 2. It is
a PF-object if it is moreover 2k-Calabi-Yau, i.e. there is a natural isomorphism Homg (P, —) =
Homg (—, P[2k])V. Slightly more generally, there are also P¥[d]-objects [Krul8; HK19], for which
Endy,(P) = k[t]/(t**1) with deg(t) = d. In particular d-spherical objects are the same as P*[d]-
objects, and exceptional objects are the same as PY-like objects.

The value of the P-twist PT g associated to a P-like object E at X € Z is then defined by
the double cone construction

(Hom,(E, X) ® E)[—2] S24=19%

—

cone(ev) = PTg(X).

Hom,(E, X) ® E ————— cone(t* ® id —id ®t)

lev ’,,f”/’
--"7 Jev

x <

where the factorization ev: cone(t* ® id —id ®t) — X exists since evo(t* ® id —id ®¢) = 0. The
precise definition of the P-twist PT g as a triangulated functor requires some care and involves a
dg enhancement of 2. If F is a spherelike object, then the P-twist PT g is related to the spherical
twist ST defined in [STO1] by PTz = ST%,.

In our setting D2(P"), the total endomorphism ring of the simple perverse sheaf IC; =
incl, kpr [k] is the cohomology ring of P¥, and hence ICy, is a P*-like object almost by definition.
Among the simple perverse sheaves, IC,, = kgn [n] is moreover Calabi—Yau, and thus a P"-object.
Therefore the P-twist PT1c, at IC,, is an autoequivalence of D?(P"), and this yields the desired
description of the Serre functor:

Theorem D (Serre functor via P-twists, Theorem [4.3.11). The P-twist PTic,, is the inverse
Serre functor of D2 (P™).

Theorem|§| in particular recovers the result for P! from [Woo10|, where it is shown that STI2C1
is the inverse Serre functor of D (P!).

It would be desirable to extend Theorem [D] to other partial flag varieties. However, in this
case the appropriate notion of twist functors is yet to be defined.

Questions. Let G be a reductive algebraic group and P C G a parabolic subgroup.

1) Is the simple perverse sheaf k¢, p[dim G/P] a “partial flag variety object” in Db(G/P)?

2) Can one define a “partial flag variety twist” at a partial flag variety object, such that the
partial flag variety twist at k¢, p[dim G/P] is the inverse Serre functor for Db (G/P)?

12
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Motivated by Theorem one may wonder whether there are further interesting P-objects
in Perv(P™). However, it is easy to see that no indecomposable object except IC,, and the
indecomposable projective-injectives can be Calabi—Yau, and hence any other indecomposable
object can at best be P-like. By using the description of Perv(P") in terms of finite-dimensional
algebras, the indecomposable objects can be listed explicitly: there are the indecomposable
projective-injective objects and certain string objects Mib for 0 < b < a < n. The indecompos-
able projective-injective objects are 0-spherical (i.e. P*[0]-objects), and for the string objects we
obtain the following classification result:

Theorem E (P-like string objects, Theorem [4.4.17). Let 0 < b < a < n.
1) If a — b is even, then the string objects Mib are P(at0)/2_[ike.
2) If a — b is odd, then the string objects Mib are Pa=0=1)/2_[ike.

In other words, all indecomposable perverse sheaves on P™ are P-like. Theorem [E] also yields
a classification of the spherelike objects (i.e. P!-like objects) in Perv(P"), and moreover recovers
the classification of the exceptional objects (i.e. PY-like objects) from [PW20].

1.4 The Weyl groupoids of sl(m|n) and osp(r|2n)

Weyl groups play a central role in the structure theory of complex semisimple Lie algebras. In
particular, it is well-known that the systems of simple roots of a complex simple Lie algebra
are conjugate under the Weyl group. Classical simple Lie superalgebras are natural analogs
of simple Lie algebras in the Z/2Z-graded setting, and like their ungraded counterparts they
have systems of simple roots corresponding to Borel subalgebras. However, in contrast to the
ungraded situation, not all systems of simple roots are conjugate under the action of the Weyl
group of the even part. One way to remedy this issue is to use Weyl groupoids instead.

We consider the notion of Weyl groupoids introduced in [Hec06] in the theory of Nichols
algebras. Our main goal is to explicitly describe the Weyl groupoids of the classical simple Lie
superalgebras sl(m|n), osp(2m + 1|2n) and osp(2m|2n).

Weyl groupoids are constructed from (semi-)Cartan graphs, i.e. edge-colored graphs together
with an assignment of a generalized Cartan matrix called Serre matriz to each vertex [HY0S;
HS20]. This combinatorial data can be used to classify Weyl groupoids and Nichols algebras
|[AA17), similarly to how Dynkin diagrams are used to classify Weyl groups and Lie algebras.
The Weyl groupoid is obtained from a Cartan graph by purely combinatorial means: an edge

x < y gives rise to simple reflections (s;),: x — y and (si)y: y — « defined in terms of
the Serre matrices, and these simple reflections generate the Weyl groupoid. In the theory of
Nichols algebras, the edges correspond to reflections of Yetter—Drinfeld modules, and for Lie
superalgebras the edges correspond to reflections at simple roots.

Weyl groupoids share many properties of Weyl groups. In particular they are Coxeter grou-
poids, i.e. the simple reflections are subject (only) to the Coxeter relations (s;s;)™% = id for
certain m;; € Z with m;; = 2. Like Coxeter groups, Coxeter groupoids have an associated
root system with powerful combinatorics, and in particular there are positive and negative roots
which can be used to determine the length of a morphism. There are also analogs of the exchange
condition and Matsumoto’s theorem [HYO08].

We define the Cartan graph and the Weyl groupoid of a contragredient Lie superalgebras as
follows:

13
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Definition F (Weyl groupoids of Lie superalgebras, Definition [5.2.10). The Cartan graph Gg of
a regular symmetrizable contragredient Lie superalgebra g has

o vertices: a labelling set X for the ordered root bases of g.

o edges according to the rules:

o for each odd isotropic root af in an ordered root basis II(x) and II(z’) obtained from

II(x) by an odd reflection at af in the sense of [PS89], there is an edge = - ' of
color %.

o for each root af € II(z) that is not odd isotropic, there is an edge x % 2 of color i.

e the Serre matrices A(x), which are the matrices defining the Serre relations among the
generators of g corresponding to the ordered root basis II(x).

The Weyl groupoid Wy is the Weyl groupoid of Gg.

Cartan graphs and Weyl groupoids of finite-dimensional Lie superalgebras were first consid-
ered in [HY08], and the notion has been extended to contragredient Lie superalgebras in [HS20).
Our definition is equivalent to the construction in [HS20, §11.2], but uses a language that is more
convenient if one wants to understand the structure of a Lie superalgebra.

The following theorem justifies the terminology in Definition [F]

Theorem G (Cartan Graph Theorem, Corollary [5.2.14). The graph Gy is a Cartan graph in
the sense of [HS20)].

In the structure theory of Lie superalgebras, there are several other notions of “Weyl grou-
poid”. These are related to the Weyl groupoid W, from Definition |E as follows:

1) W; is obtained from a component of the Weyl groupoid introduced in [Serll] by forgetting
all morphisms corresponding to rescaling rows of the Cartan matrices B.

2) A connected component of the skeleton of the root groupoid introduced in [GHS24] is the
simply connected cover of Wy in the sense of [HS20, Def. 9.1.10 and 10.1.1].

Conversely, the subgroupoid Wg of Wy generated by all isotropic reflections is isomorphic
to a connected component of the spine of the root groupoid.

3) There is no connection to the Weyl groupoid in the sense of [SV11].

The Weyl groupoids of the classical simple Lie superalgebras sl(m|n), osp(2m + 1|2n) and
osp(2m|2n) can be explicitly described as follows. For these Lie superalgebras, the systems
of simple roots have been classified in [Kac77] and can be written down explicitly in terms of
(m,n)-shuffles, i.e. permutations of {1,...,m 4+ n} that do not swap the relative order of the
elements in {1,...,m} and {m+1,...,m + n}. These shuffles can moreover be identified with
partitions fitting into a rectangle of size m X n, which is more convenient if one wants to write
down the corresponding Borel subalgebras. In this graphical language, odd reflections corre-
spond to adding or removing boxes to (respectively from) partitions, and the edge coloring is
then determined by numbering the boxes of the partition as follows:

14
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We use the slightly unusual convention that the longest row of the partition is at the bottom,
which makes it easier to write down the corresponding Borel subalgebras. For instance, the
shaded boxes in the above picture are the partition (4,2,1). To this, the boxes numbered 2 and
4 can be added, and the boxes numbered 1, 3 and 6 can be removed.

The description of the ordered root bases and odd reflections in terms of partitions makes
it very easy to describe the Cartan graphs and Weyl groupoids of sl(m|n), osp(2m + 1|2n) and
0sp(2m|2n), see Propositions |5.4.1} [5.4.2) and [5.4.4] In the following we describe the smallest
non-trivial examples, namely those determined by partitions fitting in a 1 x 2-rectangle.

For s[(1|2), the underlying graph of the Cartan graph is

:CoioOetm )

and the Serre matrix is As = (31 _21) at every vertex. The Weyl groupoid is then generated by
the simple reflections (s1), and (s2), corresponding to the edges, where x is any partition fitting

in the 1 x 2-rectangle indicating the source of the reflection. For instance, the edge PRIN [Jgives
rise to (s1)p: 0 — [Jand (s1)g: []— 0. These are subject to the usual type A Coxeter relations,
i.e. sf = id and s18987 = $28189 for any composition that makes sense. The observations from
this small example generalize directly to sl(m/|n).

For osp(3|4), the Cartan graph has the shape

3

2 m 1
@@D@DQQ

= )

2 -1 0
and the Serre matrix is By = (—01 2 —22> at every vertex. It follows that the simple reflections

(8)z (for 1 < i < 3 and any partition x) are subject to the type B Coxeter relations s? = id,
518981 = S25182, S153 = S381 and S2835283 = S3825382. As for sl(m|n), the observations from
this example generalize easily to osp(2m + 1|2n).

For osp(2m|2n) the situation is more complicated. In this case, the Borel subalgebras are
labelled by partitions and an additional sign € € {+, —, £}. For instance, the Cartan graph of
0sp(2|4) has the shape

9 3 1 2

M ) M )
@4—) s [O4) <= [(T14) <2 (1 -) «—— (@,@
3 3

2 -1 0 2 -1 0
From left to right, the Serre matrices are C5 = (—01 22 —21), As = (—01 21 —21), the matrix

2 —1-1 2 0 -1 2 0 -1\
(—1 2 —1>, Al = ( 0 2 —1> and Cf = ( 0 2 —2). The simple reflections of the Weyl

—1-1 2 —1-1 2 1-1 2
groupoid are subject to the Coxeter relations (s;s;)™% = idg, where my; is determined from
the Serre matrix A(z) corresponding to the source x by the usual rules. In particular, in this
example the relations depend on the vertices. The general case osp(2m|2n) is similar to this,
but in addition to the Serre matrices of the above types there will also be Serre matrices of type
D4+ appearing.
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1.5 Structure of the thesis

The thesis consists of four parts, corresponding to the four main questions. These can be read
mostly independently of each other, except that Chapter [3] relies on some definitions from Chap-
ter 21

In Chapter [2] we consider the relation of weight structures and t-structures by orthogonality.
We recall the definitions and some important examples of weight structures, t-structures, simple-
minded collections and silting collections, as well as the definition of orthogonality and adjacency,
in Section 2:21 In Sections 2.3.1] and [2:3.2] we discuss derived projective objects and derived
projective covers in general, and in Section we show how these notions are related to
silting t-structures. These results are applied to the WT correspondence in Section [2.4] and in
Section 2.5 we show that the WT correspondence is natural. This chapter is an expanded version
of §2, §3 and §5 of [Bon25|.

The Koszul duality of simple-minded collections and silting collections is studied in Chapter 3]
The definition of dg Koszul duality and its relation to the classical Koszul duality can be found
in Section In Section we prove the Koszul duality theorem for simple-minded collections
and silting collections, and in Section we provide three small examples of the Koszul duality.
The chapter is an expanded version of §4 of [Bon25).

In Chapter 4| we describe the Serre functor of the constructible derived category DP(P™)
and classify the P-like objects in Perv(P™). In Section we provide the necessary technical
background about P-twists and the definition of Serre functors. We also recall the definition of
DP(P") and Perv(P") and describe the simple, standard and costandard objects in Perv(P"),
and also the construction of the indecomposable projective and injective objects. We summarize
the relation to parabolic category O and the description in terms of finite-dimensional algebras
in Section [£.2.5] The description of the Serre functor is obtained in Section [£:3] and we compare
the different descriptions of the Serre functor in Section [4.3.6] In Section we construct the
string objects, and compute the morphisms between them to show that they are P-like. This
chapter is joint work with Alessio Cipriani [BC25].

Chapter [f]is about Weyl groupoids of Lie superalgebras. Section contains the definition of
Cartan graphs and Weyl groupoids, both in general and for contragredient Lie superalgebras. In
Section We compare the various notions of Weyl groupoids. The Weyl groupoids of sl(m|n),
0sp(2m + 1|2n) and osp(2m|2n) are described in Section For this we recall the required
descriptions of the ordered root bases and Borel subalgebras in Section and compute the
required Cartan data in Section This chapter is joint work with Jonas Nehme [BN24].

[BC25] L. Bonfert and A. Cipriani. Serre functor and P-objects for perverse sheaves on
P™. Preprint. 2025. arXiv:2506.06051v1 [math.RT]|

[BN24] L. Bonfert and J. Nehme. “The Weyl groupoids of sl(m|n) and osp(r|2n)”. J.
Algebra 641 (2024).

[Bon25] L. Bonfert. “Derived projective covers and Koszul duality of simple-minded and
silting collections”. To appear in Appl. Categ. Struct. (2025). arXiv:2309.00554v3
[math.RT].
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Chapter 2

Characterization of silting t-structures
via derived projectives

In this chapter we use derived projective objects to provide a characterization of silting t-
structures. We begin by recalling the notions of t-structures, weight structures, simple-minded
collections and silting collections, and how these are related to each other. In particular, we con-
sider variants of the adjacency and orthogonality of weight structures and t-structures introduced
in [Bonl0a].

To characterize silting t-structures, we study derived projective objects with respect to a
t-structure and the notion of enough derived projectives from [GLVdB21|. We show in Theo-
rem that this definition agrees with the notion of enough Ext-projectives from [CSPP22].
By |[CSPP22, Thm. 2.4] enough derived projectives provide a criterion for the existence of an ad-
jacent weight structure for a given t-structure, and we slightly refine this result in Corollary[2.3.9]

We then introduce derived projective covers and provide several equivalent definitions for
special cases of the definition, in analogy to the equivalent definitions of projective covers in
abelian categories. The main result of this chapter (Theorem characterizes silting t-
structures with finite-length heart as those non-degenerate t-structures with respect to which
the triangulated category has enough derived projectives. A further equivalent criterion is that
every simple object of the heart admits a derived projective cover.

In Section we apply Theorem to the WT correspondence from [KY14; Fus24]. We
provide an equivalent definition for WT pairs (introduced as ST pairs in [AMY19]), and show that
the bijection between weight structures and t-structures provided by the WT correspondence is
given by w-t-strict orthogonality. From this it follows that the silting collection corresponding
to a simple-minded collection under the W'T correspondence consists of its derived projective
covers. In Theorem [2.5.1] we show that orthogonality of weight structures and t-structures, and
in particular the WT correspondence, is natural with respect to weight exact functors and t-exact
functors.

The chapter is based on [Bon25|, §1-3 and §5].

[Bon25] L. Bonfert. “Derived projective covers and Koszul duality of simple-minded and
silting collections”. To appear in Appl. Categ. Struct. (2025). arXiv:2309.00554v3
[math.RT].

2.1 Motivation and overview of results

In any triangulated category % there is a bijection between simple-minded collections in % and
bounded t-structures with finite-length heart on %, sending a t-structure ¢ to the set of simple
objects in its heart O;. Similarly, there is a bijection between (classical) silting collections in
% and bounded weight structures (also known as co-t-structures) with Krull-Schmidt coheart,
sending a weight structure w to the set of indecomposable objects in its coheart (.
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CHAPTER 2. CHARACTERIZATION OF SILTING t-STRUCTURES VIA DERIVED PROJECTIVES

Weight structures and t-structures on (not necessarily the same) triangulated categories are
closely related by the notion of orthogonality introduced in [Bonl0a]. For instance, for a finite-
dimensional algebra A [KY14] establishes a bijection between bounded weight structures on
K" (projg,-A) and bounded t-structures on D"(mod¢4-A) with finite-length heart. This WT
correspondence can be formulated in terms of w-t-strict left orthogonality, where we say that
a weight structure w is w-t-strictly left orthogonal to a t-structure t if (€,<0)t = 2*>° and

J'(@DO) = %w<o, and similarly for €,>0 and 2'<Y. This is slightly stronger than the strict
orthogonality considered in [Bonl9|, and there are several other variants. However, in many
cases at least some of them coincide, see Section [2.2.5]

In terms of the corresponding silting collection P and simple-minded collection £, the bijection
from [KY14] is characterized by the existence of a bijection ¢: P — L such that

End(L) if L =¢(P), m=0,
0 otherwise.

Hom(P, L[m]) & { (2.1)

This bijection sends P € P to the simple top of t>0P € ;. Recently, [Fus24] proved such
bijections in the setup of WT pairs, which were introduced as ST pairs in [AMY19]. This
provides a common generalization of the results from [KY14] as well as the analogous results for
non-positive dg algebras with finite-dimensional total cohomology from [BY14] and homologically
smooth non-positive dg algebras from [KN11]. For positive dg algebras, the results in [KN13]
provide further examples of WT pairs. Here we call a dg algebra A (cohomologically) non-positive
if H"(A) = 0 for n > 0, and (cohomologically) positive if H"(A) = 0 for n < 0 and H°(A) is
semisimple.

The main result of this chapter relates silting collections to derived projective objects (also
known as Ext-projective objects) which are an analog of projective objects in the triangulated
setting. Analogously to the setting of abelian categories, |GLVdB21| introduced the term enough
derived projectives. In Theorem[2.3.7] we show that this definition agrees with the notion of enough
Ext-projectives from [CSPP22]. Enough derived projectives are used in [CSPP22, Thm. 2.4] to
provide a criterion for the existence of a left adjacent weight structure, see Corollary [2.3.9] for a
slightly refined version.

For a t-structure tp = (P+>0 PL<0) obtained from a silting collection P in the sense of
[PV18], an easy but important observation shows that P consist of derived projective objects
with respect to tp. As is evident from , the relation of silting collections to simple-minded
collections is somewhat similar to the relation of indecomposable projective objects to simple
objects in finite-length abelian categories. To formalize this, in Definition we introduce
derived projective covers, and we show the following result:

Theorem 2.1.1 (Theorem [2.3.16)). Let t be a non-degenerate t-structure on 9 with finite-length
heart. Let L be a full set of isomorphism representatives of the simple objects in Q; and P a full
set of isomorphism representatives of the indecomposable derived projectives. Then the following
are equivalent:

I) t is silting (and P is the silting collection).

II) There is a bijection ¢: P — L satisfying (2.1)).

III) Every L € L admits a derived projective cover (and P is the set of these derived projective
covers).

IV) 2 has enough derived projectives with respect to t.

This result is somewhat analogous to |[CSPP22, Thm. 2.4]. As an application, in Theo-
rem [2.3.18] we show that for a t-structure obtained from a simple-minded collection £ and a
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weight structure obtained from a silting collection P, the relations characterize orthogo-
nality, and moreover that these relations are equivalent to P consisting of the derived projective
covers of £. This is not very surprising, as it is similar to the results contained in [KY14].

Theorem also allows us to study the bijections between weight structures and
t-structures in more detail. For this, in Definition 2:4.1] we define WT pairs, and in Proposi-
tion 2.4.3| we show that this definition is equivalent to the axioms for the ST pairs from [AMY19).
Compared to the definition in [AMY19], our definition uses weight structures instead of silting
collections, which makes the definition more symmetric. In Theorem we show that at
the level of weight structures and t-structures the bijection from [Fus24] is given by w-t-strict
orthogonality. From this it follows by Theorem that the silting collection corresponding
to a simple-minded collection under the WT correspondence consists of its derived projective
covers.

A related question is whether w-t-strict orthogonality between weight structures and t-
structures is natural with respect to weight exact functors and t-exact functors that are (in
a certain sense) adjoint to each other. The setup of the main result Theorem m is somewhat
technical, although the proof is straightforward and essentially the same as [Bon19) Prop. 4.4.5].
In particular, it follows from this that the bijection between weight structures and t-structures
provided by the WT correspondence is natural:

Theorem 2.1.2 (Corollary 2.5.2)). Let (¢,2) be a WT pair in 7 and (¢"',2') a WT pair in
T'. Let w, w' be bounded weight structures on € resp. €', and t, t' the corresponding bounded
t-structures on 2 resp. 9’ under the WT correspondence. Suppose that F: € — €' is left
pseudo-adjoint to G: 9" — 2 in the sense that Hom o/ (F(—),—) 2 Hom g (—, G(—)).

Then F is weight exact with respect to w and w' if and only if G is t-exact with respect to t
and t'.

2.2 Definitions

We begin by recalling the definitions of t-structures, weight structures, simple-minded collections
and silting collections. For silting collections, we also compare two slightly different definitions.
Finally we recall the notion of orthogonality between weight structures and t-structures, and
compare the various strictness levels in special cases.

Unless explicitly mentioned, all categories will be linear over some (fixed) field k. (Dg)
modules over a (dg) algebra will be right modules, unless stated otherwise. For subcategories
o, B C E we write & 1 A if Homg(A,B) = 0 for all A € &/, B € $. Moreover we write
At ={C €€ | Homg(A,C) =0VA € &/} and “ = {C € € | Homg(C, A) = 0 VA € o}.
For a triangulated category 2 and X C 2, the full subcategory whose objects are the direct
summands of finite coproducts of objects in X is denoted by Kargy(X), and the closure of X
under extensions is denoted by extclosg (X).

2.2.1 t-structures

The notion of t-structures on triangulated categories was introduced in [BBD82].

Definition 2.2.1. A t-structure on a triangulated category 2 is a pair t = (2'<°, 9'20) of
strict full subcategories such that

e 2'SO[1] € Z'<0 and P120-1] C 920,
. P01 g0y,
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o for all X € Z there is a triangle (called t-decomposition of X)
t<oX = X — t50X — t<oX[1]
with t<oX € 2'=0 and t- X € 2'=°[-1].
The full subcategory ©; = 2!<0 N 2t20 is called the heart of t.

We also write >0 = 220[—1] and 2'<° = 2!<0[1], and also 2'Z" = 9'20[—n] for n € Z
(and analogously Zt<m).

A t-structure ¢ is called non-degenerate if (), o, 2'=" = {0} = N,cz 22" It is bounded
above if P =J,,cq 2'<", bounded below if 2 = ,,c,, 2'=", and bounded if 2 = triagp(Q;). Here
triag (V) denotes the triangulated subcategory of 2 generated by ©;. Note that ¢ is bounded if
and only if it is bounded above and bounded below.

Recall that t-decompositions are unique up to isomorphism, and furthermore t>q: 2 — 2'=°
and t<p: Z — =Y define functors that are left (resp. right) adjoint to the respective inclusions

[BBD82, Prop. 1.3.3]. Also recall that 2'<0 = l(@DO) and 220 = (<)L,
Example 2.2.2. The following are some examples of t-structures:

1) Let &7 be an abelian category. The standard t-structure on the derived category D(&) is
given by

2" ={X eD(#) | H'(X)=0Vn >0}, 2'"°°={XeD(«)|H"(X)=0Vn<O0}.

It restricts to a bounded (resp. bounded above, resp. bounded below) t-structure on DP(.e7)
(resp. D™ (&), resp. DV (&)). Its heart is equivalent to .

2) Let A be a non-positive dg algebra, i.e. a dg algebra such that H"(A) = 0 for n > 0. By
[HKMO02, Thm. 1.3], there is a standard t-structure on the derived category D(A) defined
by

2'=" = {X € D(A) | H"(X) =0Vn >0}, 2'2°={X € D(A) | H"(X) =0Vn <0},

and its heart is equivalent to Mod-H?(A). It restricts to a bounded t-structure on Dyq(A),
with heart equivalent to modgy-H°(A).

3) Let A be alocally finite-dimensional positive dg algebra, i.e. a dg algebra such that H™(A) =
0 for n < 0, H°(A) is a semisimple algebra, and each H"(A) is finite-dimensional. By
[KN13, Thm. 7.1] there is a t-structure on perf(A), which is defined by

2'<" = Karp ) extclosp(a){A[n] | n > 0}, 2'2° = Karp(a) extclosp(a){A[n] | n < 0}.

4) The Postnikov t-structure (also called standard t-structure) on the stable homotopy cate-
gory SH is given by

7' ={XeSH|m(X)=0Vi<0}, 2"2°={XecSH|nm(X)=0Vi>0}.
Its heart is equivalent to Mod-Z.

Further examples include the perverse t-structures from [BBD82] and the Koszul t-structure from
[BGS96; MOS09].
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2.2.2 Weight structures

Weight structures (also known as co-t-structures) were originally defined in [Bon10b| and [Pau0§].

Definition 2.2.3. A weight structure on a triangulated category € is a pair w = (w<0, Gw>0)
of Karoubi-closed full subcategories such that

o Guw<o[l] € Gu<o and Cu>0[—1] C Gu>o,

o Cw>ol—1] L Cuw<o,

o for all X € % there is a triangle (called weight decomposition of X)

w>0X - X = ’LUSUX — w>0X[1]
with ws0X € €p>0[—1] and w<o X € Cuw<o.
The full subcategory Qy = Gw<o N Gw>o is called the coheart of w.

As for t-structures we write G>0 = Gw>0[—1], Cw>n = Gw>0[—n], and so on.

A weight structure w is called non-degenerate if (), Cw<n = {0} = ez Cuwzn. It is
bounded above if € = |, c; Cw<n, bounded below if € = J, oy Cuw>n, and bounded if ¢ =
thicke (Qy). Here thicky (Q,) denotes the thick subcategory of € generated by O,,. Note that
w is bounded if and only if it is bounded above and bounded below.

Analogously to the situation for t-structures we have €y<o = (w>0)" and €0 = L(%HKO),

see [BonlOb, Prop. 1.3.3]. In contrast to t-decompositions, by [BonlOb, Rem. 1.2.2] weight
decompositions are usually not unique. In particular w<g and wx¢ do not define functors.

Example 2.2.4. The following are some examples of weight structures:

1) Let & be an additive category. The standard weight structure on the homotopy category
K (&) is given by
Cwso={X€eK(#)|ITY ZX:Y"=0Vn <0},
Guw<o={X eK(&)|ITY ZX:Y"=0Vn>0}.
Its coheart is Karg o) (), where </ is embedded into K(7) as the complexes concentrated

in degree 0. In particular, if .o/ is idempotent-complete, then Q,, consists of the complexes
concentrated in degree 0, and thus is equivalent to 7.

2) Let A be a non-positive dg algebra. By [BY14, Thm. A.1] (see also [Bonl0bj, Prop. 6.2.1]),
there is a standard weight structure on perf(A) is given by

Gw>0 = Karp(a) extclospay{A[n] | n <0}, Cuw<o = Karpa) extclospa{A[n] | n > 0}.

3) Let A be a positive dg algebra. By [KN13| Cor. 4.1] there is a weight structure on D(A)
defined by
Cw>0={X € D(&) | H'(X)=0VYn <0}, Cuw<o={X e D(&) | H*(X)=0Vn > 0}.
4) The spherical weight structure from [Bon10bl §4.6] on the subcategory SHg, C SH of finite
spectra is given by
Gw>0 = Kargg extclossg{S[n] | n <0}, Gw<o = Kargm extclossu{S[n] | n > 0},
where S denotes the sphere spectrum.

Further examples include the weight structures obtained from Koszul duality and Ringel duality,
see [ES22, §2.4-2.5], the weight structure on the derived category of mixed Hodge modules
from [BonlOc, Prop. 2.3.9], and the Chow weight structure on Voevodsky’s category of effective
geometric motives from [BonlObj §6-7].

23



CHAPTER 2. CHARACTERIZATION OF SILTING t-STRUCTURES VIA DERIVED PROJECTIVES

2.2.3 Simple-minded collections

The following definition is from [AN09] and [KY14], and the axioms already appeared in |[Ric02].

Definition 2.2.5. A simple-minded collection in a triangulated category & is a (not necessarily
finite) set £ of objects of & such that

e Homg(L,L'[m])=0forall L,L' € L, m <0,
e Homg(L,L')=0for L, L' € L, L # L,
o Endy(L) is a division algebra for all L € L,
o triag(L) = 2.
A simple-minded collection is finite if it consists of finitely many objects.

Remark 2.2.6. Note that in contrast to most of the existing literature we do not assume simple-
minded collections to be finite, see also [Sch20] where infinite simple-minded collections are also
studied. However, if a triangulated category 2 admits a finite simple-minded collection, then
automatically any simple-minded collection in & is finite, since it follows from Proposition [2.2.7]
that simple-minded collections form bases of the Grothendieck group of 2.

An abelian category is finite-length (or a length category) if all of its objects have finite length.
The definition of simple-minded collections is based on properties of the simple objects in the
heart of a bounded t-structure with finite-length heart, and in fact specifying a simple-minded
collection is equivalent to specifying such a t-structure. This is already mentioned in [BBD82,
Rem. 1.3.14], and explicitly spelled out in |[ANQ9].

Proposition 2.2.7.
1) Let L be a simple-minded collection in 9. Then t = (2*<°, 2'=29) with
2'=0 = extclosg{L[m] | L € L,m >0}, 2'2° = extclosg{L[m] | L € £L,m < 0},
is a bounded t-structure with finite-length heart, and L is a full set of isomorphism repre-

sentatives of the simple objects in Q.

2) Let t be a bounded t-structure on 9 such that Oy is finite-length, and let L be a full set
of isomorphism representatives of the simple objects in Q. Then L is a simple-minded
collection in 9.

Proof. See |[ANQ9| Prop. 2 and Prop. 4]. Although the propositions there are formulated only for
the bounded derived category of a self-injective algebra, the proofs work in a general triangulated
category without modifications. O

The following examples are standard examples of simple-minded collections.
Example 2.2.8.

1) Let & be a finite-length abelian category and £ a full set of isomorphism representatives
of the simple objects in /. Then L is a simple-minded collection in DP(.<7), corresponding
to the standard t-structure.

2) Let A be a non-positive dg algebra. A finite-dimensional simple H°(A)-module can be
viewed as a dg A-module via the quasi-isomorphism t<gA — A (where t<o denotes the t-
truncation with respect to the standard t-structure) and the quotient map t<gA — H°(A).
Then a full set £ of isomorphism representatives of the simple H°(A)-modules is a simple-
minded collection in Dgq(A).

3) Let A be a locally finite-dimensional positive dg algebra. Then the indecomposable sum-
mands of A form a simple-minded collection in perf(A).
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2.2.4 Silting collections

For a collection of objects X in a triangulated category 2 we write X+>° = {D € 2 |
Homg (X, D[m]) = 0Vm > 0, X € X}, and analogously define X+<0, X120 etc.

The following definition is based on [PV18, Def. 4.1]. There are other definitions of silting,
see [PV18] Ex. 4.2] for an overview and comparison of different definitions.

Definition 2.2.9. A silting collection in a triangulated category 2 is a (not necessarily finite)
set P of objects of Z such that

o Kargy(P) is Krull-Schmidt,
e objects in P are indecomposable and pairwise non-isomorphic,

o tp = (PL>0 PL<o)isa t-structure on 2, called the silting t-structure associated with P.

We say that P is finite if it consists of finitely many objects. A silting collection consisting of
compact objects (in a triangulated category with small coproducts) is called compact.

Remark 2.2.10. In [PV18, Def. 4.1] it is moreover required that Homg (P, P'[m]) = 0 for all
P,P'" € P and m > 0. However, as mentioned in [AHLSV22, Prop. 2.5], this assumption
is automatic: for P € P, take the t-decomposition t<gP — P — tsoP — t<oP[l]. Then
tsoP € PL507 SO tS()P[l] = P[l] @ tsoP and thus P = tS()P € pl>o,

In the literature usually silting objects (rather than silting collections) are used, see
e.g. [KY14; PV18]. However these provide exactly the same data, at least in the finite case:
given a silting object P, (isomorphism representatives of) its indecomposable summands
form a silting collection. Conversely, if P is a silting collection, then [[p.p P is a silting
object (assuming the coproduct exists). We prefer to use silting collections rather than silting
objects since we are mostly interested in the indecomposable summands, but will nevertheless
occasionally use the word silting object if it is more convenient.

Remark 2.2.11. Tt is important to specify the ambient triangulated category 2 for a silting
collection P. Note that if P is a silting collection in 2, then not necessarily 2 = thickg(P).
In particular, P is in general not a silting collection in thickg(P), since the associated silting
t-structure need not restrict to a t-structure on thickg(P).

Example 2.2.12. The following examples are standard examples of silting objects. In each
case, silting collections can be obtained by taking their indecomposable direct summands.

1) For an algebra A and X € D(Mod-A) we have H"(X) = Homp(moa-4)(4, X[n]), and
thus A is a silting object in D(Mod-A), defining the standard t-structure. If A is finite-
dimensional, it is also a silting object in DP(modgg-A) and D~ (modgqg-A).

2) A non-positive dg algebra A is a silting object in D(A) by [HKMO02, Thm. 1.3] (see also
[BY14, Thm. A.1]), and its associated silting t-structure is the standard t-structure. If
H*(A) is finite-dimensional, then A is also a silting object in Dgq(A).

3) The sphere spectrum S is a silting object in the stable homotopy category SH, since
7m;(X) = Homgg (S, X[—i]). Its associated silting t-structure is the Postnikov t-structure.

Using the terminology from [Stacks, Tag 09SJ], we say that a set of objects X weakly generates
2 it Homg(X,Y[n]) =0 for all n € Z and X € X implies Y = 0. The following result is also
stated in [PV18, Prop. 4.3], however we were unable to verify their proof.

Lemma 2.2.13. A silting collection P in 9 weakly generates 9. In particular, the associated
silting t-structure tp is non-degenerate.
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Proof. Let X € & such that Homg (P, X[n]) = 0 for all P € P and n € Z. Then in particular
X € Pt>o and X € Pt=o, and thus both X - X — 0 — X[]Jand 0 - X — X — 0 are
t-decompositions of X with respect to tp. But since t-decompositions are unique it follows that
X =0.

That tp is non-degenerate is equivalent to P weakly generating 2 since 2'»<" = PL>» for
all n € Z, and analogously for the positive part. O

For us the main class of examples will be silting collections according to the following “clas-
sical” definition going back to |[KV88| and [AI12] Def. 2.1].

Definition 2.2.14. A classical silting collection in a triangulated category % is a set P of
pairwise non-isomorphic objects of € such that

o Karg(P) is Krull-Schmidt,

e objects in P are indecomposable,

o Homg (P, P'[m]) =0 for all P,P' € P, m >0,
. € = thicke(P).

The difference to Definition [2:2.9]is that silting collections by definition provide t-structures,
while classical silting collections have to generate € as thick subcategory. By Remark a
silting collection P in Z is a classical silting collection in thickg(P). In particular, the examples
listed in Example 2:2.12) can also be seen as classical silting collections:

Example 2.2.15.

1) Let A be an algebra. Then a full set of isomorphism representatives of the indecomposable
projective A-modules form a classical silting object in Kb(projfg—A).

2) Let A be a non-positive dg algebra. The direct summands of A (up to isomorphism) as a
dg A-module form a classical silting object in perf(A).

3) The sphere spectrum S forms a classical silting collection in the triangulated category SHg,,
of finite spectra.

The following lemma describes the relation between silting collections and classical silting
collections in compactly generated triangulated categories. We write ¢ for the full subcategory
of compact objects of a triangulated category 2 with small coproducts.

Lemma 2.2.16. Let Z be a compactly generated triangulated category. Then a set of objects P
is a compact silting collection in 2 if and only if P is a classical silting collection in P°.

Proof. By [AIl2, Cor. 4.7] a classical silting collection P in 2° provides a t-structure tp =
(PL>0 PL<0) on 2 and hence is a silting collection in 2.

Conversely, if P is a compact silting collection in 2, then P weakly generates &
by Lemma and it follows from general facts (see e.g. |Kra2l, Prop. 3.4.15]) that
thicky (P) = 2°. Thus P is a classical silting collection in 2°. O

One often considers classical silting collections in Kb(projfg—A) for a finite-dimensional alge-
bra A. For instance [KY14] describes the relation of classical silting collections in K (proj,-A)
to t-structures on DP(modgy-A). We would like to rephrase these results using silting collec-
tions instead of classical silting collections. However, we can’t apply Lemma [2.2.16] directly, as
DP(modgy-A) is not compactly generated since it does not have small coproducts.
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Proposition 2.2.17. Let A be a finite-dimensional algebra and P be a set of objects of 9 =
D(Mod-A). Then the following are equivalent:

I) P is a classical silting collection in Kb(projfg-A).
II) P is a compact silting collection in D(Mod-A).
III) P is a silting collection in D (mod¢-A) and tp is a bounded t-structure on DP(modgq-A).

IV) P is a silting collection in DP(mod¢q-A) and thickg(P) = K" (projg,-A).

Proof. 1) < 1I): It is well-known that 2 = D(Mod-A) is compactly generated, and 2° =
K" (projg,-A). Thus by Lemma classical silting collections in K (projg,-A) are the same
as compact silting collections in D(Mod-A).

I) = III): It follows from (the proof of) [KY14] Lemma 5.3] that classical silting collections
P in Kb(projfg—A) are silting collections P in D”(mod;q-A), and that tp is bounded.

IIT) = IV): Let L be a simple A-module. If ¢p is bounded, then for P € P we have
Hompbs (modg,-4) (P L[m]) = 0 for m > 0 or m < 0, which implies P C Kb(projfg—A). It then
follows from the proof of [AMY19, Cor. 6.9] that thicks(P) = KP(projg,-A).

IV) = I): This is immediate from Remark O

Remark 2.2.18. Tt seems very likely that every silting t-structure on DP(modgy-A) is bounded,
or that (equivalently) every silting collection of D”(mod¢q4-A) lies in K (projg,-A). If this is
the case, then both IIT) and IV) in Proposition [2.2.17| reduce to P being a silting collection in
Db(modfd—A).

The definition of classical silting collections is reminiscent of the properties of indecomposable
objects in the coheart of a weight structure. Indeed, this is not a coincidence. Using silting
collections instead of classical silting collections, we obtain:

Proposition 2.2.19. Let € C Z be a thick subcategory of a triangulated category.
1) Let P be a silting collection in 2 such that thickgy(P) = €. Then w = (Cw<o, Cw>0) with

Cw<o = Karg extclosg{P[m] | P € P,m > 0},
Cw>0 = Karg extclosg{P[m] | P € P,m < 0}

is a bounded weight structure on €, and P is a full set of isomorphism representatives of
the indecomposable objects in Q.

2) Let w be a bounded weight structure on € such that (Qi”,ai“) is a t-structure on
2 and Oy is Krull-Schmidt. Then a full set P of isomorphism representatives of the
indecomposable objects in O, is a silting collection in 9.

Proof. The first part is [Bon10b, Thm. 4.3.2]. For the second part, note that since Q,, is Krull-

Schmidt, (PL>0, PL<o) = (C)iw, (,)j,fg) is a t-structure on 2, and the remaining axioms from
Definition 2:2.9] are clear. O

Remark 2.2.20. Under the bijection from Proposition finite silting collections correspond
to weight structures such that the coheart contains finitely many indecomposable objects (up to
isomorphism). Moreover, Proposition remains valid if one uses classical silting collections
instead of silting collections and leaves out the assumption that the coheart defines a t-structure.
This version is commonly used, for instance it occurs in [KY14].
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In the setup of Proposition [2:2.19 we would like to know when the coheart of a bounded
weight structure on a thick subcategory 4 C 2 weakly generates 2. The following criterion is
proved analogously to Lemma [2.2.13

Corollary 2.2.21. Let € C Z be a thick subcategory of a triangulated category and w be a

bounded weight structure on €. If (in,éiw) defines a t-structure on 2, then Q,, weakly
generates 9.

2.2.5 Adjacency and orthogonality

By definition, a silting collection P in a triangulated category & defines a t-structure ¢ =
(PL>0,PL+<0) on 2. On the other hand, by Proposition P also defines a weight structure
w on € = thicky(P). From the definition of ¢ it is clear that 2'<0 = (€,50)" and 220 =
((fw<0)l. If moreover € = 2, then even 2'<0 = Gw<o- These relations are described, and
generalized by, the notions of orthogonality and adjacency between weight structures and t-
structures.

Let ¥ and 2 be triangulated categories and &/ an abelian category. Following |[Bonl9,
Def. 5.2.1], by duality we mean a biadditive bifunctor ®: ¥ x ¥ — & which is contravariant
and cohomological in the first argument, covariant and homological in the second argument, and
comes with a natural isomorphism ®(—, —) = &(—[1], —[1]).

Most of the time both ¥ and 2 will be subcategories of a triangulated category 7 and
® = Homg(—,—): € X 2 — Mod-k. For sets of objects ¥ C € and Y C 2 we write X Lo YV
if (X,Y)=0forall X € X and Y € Y, and we define

Xtr ={Y c 2| ®(X,Y)=0VX € X}, Ly — (X e?|®(X,Y)=0VYY € V}.

The following definition is based on [Bonl9, Def. 5.2.1].
Definition 2.2.22. Let w be a weight structure on % and t a t-structure on Z.

o wis left orthogonal (with respect to ®) to t if €p>0 Lo 2'<° and €<o Lo 2'7°.

« The orthogonality is w-strict if €y>0 = ~*(2*<0) and Cp<o = Lo (gt>0),

o The orthogonality is t-strict if 2'<0 = (€\y>0)* and 20 = (€y<o)**.

e The orthogonality is w-t-strict if it is both w-strict and t-strict.

If both € and 2 are subcategories of a triangulated category .7, then any orthogonality will
be with respect to ® = Hom & (—, —) unless explicitly mentioned. If moreover ¢ = 2, then left
orthogonality is also called left adjacency.

In [Bonl9] only orthogonality and t-strict orthogonality are considered, and there t-strict
orthogonality is just called strict orthogonality.

Remark 2.2.23. Note that Proposition [2.2.19] establishes a bijection between silting collections
and bounded weight structures that are t-strictly left orthogonal to a t-structure.

If € C 2, then it is possible to characterize left orthogonality in terms of the negative and
positive part, and moreover orthogonality and w-strict orthogonality coincide. The non-obvious
implication I) = III) of the following statement is already shown in [Bonl9, Prop. 5.2.3].

Lemma 2.2.24. Let € C 2 be a thick subcategory, w a weight structure on € andt a t-structure
on 9. Then the following are equivalent:

I) w is left orthogonal to t.
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II) w is w-strictly left orthogonal to t.
III) Gyeo = 7'<°NE and Gz = (2'<0)NE.

Proof. = |I)|is trivial.
= [[I)} From %,<o L 270 it is clear that €,<o C L(_@DO) Ne = 2'=9N%. The
converse inclusion follows from €,,~0 L 2°=° and %,<o = (Gws0)*

For 6,,>0, we have by assumption %,,>0 C l(@KO) N, and from <o = P'<°NE we get
P NE CHPONE) = H(Guweo) = Cuso.
1) — m This is obvious from 2!<0 = L(@DO) and the assumptions. O

Corollary 2.2.25. Let P be a silting collection in 9, t its associated silting t-structure and w
the induced weight structure on thicky(P). Then w is w-t-strictly left orthogonal to t.

Proof. From the construction of ¢ it is clear that w is t-strictly left orthogonal to ¢, and the
orthogonality is w-strict by Lemma [2:2.24] O

The following lemma shows that in the case of adjacent weight structures and t-structures
we do not need to distinguish between the various levels of strictness of orthogonality at all. The
equivalence [I)| <= which recovers the original definition [Bon10b, Def. 4.4.1] of adjacency,
is also shown in [Bon19, Prop. 1.3.3].

Lemma 2.2.26. Let t be a t-structure and w a weight structure on €. Then the following are
equivalent:

I) ¢=s0 = waﬁo,
II) w is left orthogonal to t,
IIT) w is w-strictly left orthogonal to t,
1V) w is t-strictly left orthogonal to t,
V) w is w-t-strictly left orthogonal to t.

Proof. II)] = [) follows from Lemma [2.2.24] and the implications = [IV)| =
1) = and = are obvious from the definitions. For the remaining implication

=>|V)| observe that
Cuzo =" (Cuco) = (€"<0), Cuco = =0 =" (6"0),
=0 = Cw<o = ((gw>0)J_’ €70 = ((gt<0)1_ = ((gw<0)J'. O

We end this section by listing some standard examples of left orthogonal weight structures
and t-structures.

Example 2.2.27.

1) Let A be a finite-dimensional algebra. Then K~ (projg,-A4) = D~ (modgq4-A), and the stan-
dard weight structure is left adjacent to the standard t-structure. Moreover, the standard
weight structure on Kb(projfg—A) is w-t-strictly left orthogonal to the standard t-structure
on DP(modgy-A).

2) Let A be a non-positive dg algebra such that H™(A) is finite-dimensional for all n € Z.
The standard weight structure on perf(A) is w-t-strictly left orthogonal to the standard
t-structure on D¢y (A).
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3) Let A be a positive dg algebra such that Dg(A) = thickpa)(AY), where (—)¥ =
Homggnmoa-k(—, k) is the k-linear duality functor. Then [KN13| Cor. 4.1 and Thm. 7.1]
provide a weight structure on Dgg(A) and (via the equivalence provided by the Nakayama
functor) a t-structure on thickp(4)(AY). By taking K-injective resolutions, one sees that
these are left adjacent to each other.

4) By |Bonl0bl §4.6 and Thm. 4.3.2], the spherical weight structure on the category of finite
spectra SHy, extends to a weight structure on SH™ = {X € SH | 7,(X) = 0 Vn <« 0},
and this extension is left adjacent to the Postnikov t-structure.

2.3 Silting collections and derived projectives

It is well-known that silting collections behave very similar to projective objects. To make this
precise, in this section we introduce derived projective covers, and show that under some as-
sumptions the derived projective covers of simple objects of the heart are the same as a silting
collection. As an application, we use derived projective covers to formulate criteria for orthogo-
nality.

2.3.1 Derived projective objects

We begin by showing some basic facts about derived projective objects. Let 2 be a Krull-Schmidt
triangulated category and ¢ a t-structure on 2.

Definition 2.3.1. An object P € Z is derived projective (with respect to t) if P € #'<° and
Homg (P, X[1]) = 0 for all X € #'<°. We write DProj,(2) for the full subcategory of derived
projective objects with respect to t.

[GLVdB21], Def. 6.1] gives a different definition of derived projective objects, which is equiv-
alent to the above by [GRG23| Prop. 2.3.5]. Derived projective objects are also known as Ext-
projectives or just projectives, see for instance |[CSPP22|, [Lurl7), §7.2.2] and |[Lurl8bl §C.5.7].

The definition of derived projectives is motivated by the well-known fact that an object P
of an abelian category &/ is projective if and only if Exti{ (P,X) =0 for all X € &/. From this
point of view, the following lemma is an analog of the statement that Hom 4 (P, —) is right exact
if P € & is projective.

Lemma 2.3.2. Let P € DProj,(2) and X,Y € 9.

1) For f: X — Y with cone(f) € 2'<°, the map Homg (P, f): Homg (P, X) — Homg(P,Y)
18 surjective.

2) t>o and t<g induce isomorphisms
Homg (P, X) = Homgeso(t>o P, t>0X) = Home, (HY(P), HY(X)).
3) P is indecomposable if and only if HY(P) is.
Proof.

1) This is immediate from the long exact sequence obtained by applying Homg (P, —) to the
triangle X — Y — cone(f) — X[1].
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2) From the long exact sequence obtained by applying Homg (P, —) to the triangle t (X —
X — t>0X — t<0X|[1], and derived projectivity of P, we get

I‘IOI’H@(F)7 X) = I‘IOI’H@(F)7 tzoX) = Hom_@tzo (tZOP; tzoX).

This isomorphism is given by the functor t>g. The second isomorphism follows since t<g
is right adjoint to 2'<0 — 2, using that t>qP = H(P).

3) By 2) we have Endg(P) = Endo, (H?(P)). Since 2 is Krull-Schmidt, P is indecomposable
if and only if Endg(P) is local (and analogously for Hy(P)). O

An easy but important observation is that silting collections consist of derived projectives
with respect to their associated silting t-structures, see Lemma [2.3.15 below. With this in mind,
Lemma [2.3.2 as well as the following lemma is contained in [AHLSV22, Prop. 2.5]. Variants of
Lemma [2.3.3| have already appeared several times in the literature, see for instance |[AN(09| or
[PV18| Prop. 4.3].

Lemma 2.3.3. If P € DProj,(2), then t>oP = Hy(P) is projective in Q.

Proof. Since P € 2'=Y we obviously have t>oP € ©;. It is well.known (see e.g. |Ach21]
Prop. A.7.18]) that Exto, (t>0P, X) = Homg(t>oP, X[1]) for X € O, where Exte, is defined
via equivalence classes of short exact sequences (Yoneda ext). From the long exact sequence
obtained by applying Homg(—, X[1]) to the triangle t<oP — P — t>oP — t<oP[1] and derived
projectivity of P it follows that Homg(t>0P, X[1]) = 0, and hence t>oP is projective in Q. O

Corollary 2.3.4. For f: P — P’ with P, P’ € DProj,(2) the following are equivalent:
1) f is a split epimorphism.
II) cone(f) € 2'<°.

II) tsof = HY(f) is an epimorphism in Os.

IV) tsof = HP(f) is a split epimorphism in Q.

We will often need to assume that all projectives in O; are obtained as truncations of derived
projectives. More precisely, we use the following definition from |[GLVdB21} Def. 6.1 and Def. 6.6]

Definition 2.3.5. 7 has derived projectives (with respect to t) if for every projective P € O,
there is P € DProj,(2) with HP(P) = P. If moreover ©; has enough projectives, we say that
2 has enough derived projectives (with respect to t).

In Theorem we will show that if Oy is finite-length, then 2 has enough derived projec-
tives if and only if ¢ is silting. In general, & does not necessarily have enough derived projectives,
even if O; has enough projectives. For instance, this is the case for the standard t-structure on
D¢q(A) if A is a non-positive dg algebra such that H™(A) is finite-dimensional for all n € Z, but

H*(A) is not, see Example [2.3.17| below.

Corollary 2.3.6. If 2 has derived projectives with respect to t, then t>o = HY: DProj,(2) —
Proj(©,) is an equivalence of categories.

Proof. The functor is well-defined by Lemma and fully faithful by Lemma and that
2 has derived projectives ensures that it is dense. O

The following theorem shows that the definition of enough derived projectives given in
|[CSPP22, Def. 2.2] is equivalent to the one we use.
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Theorem 2.3.7. Z has enough derived projectives with respect to t if and only if DProj,(Z)
is contravariantly finite in 2'=° and DProj,(2)+ NV, = {0}.

Proof. “ = ": For X € 2'<0 we have H?(X) € ©;. Since 2 has enough derived projectives,
there is an epimorphism 7: P — H?(X) Wlth P projective in Oy, and moreover Pe DProj,(2)
with HY( A) = t>0P p. By Lemma, 2| there is a unique morphism #: P — X such that
H?(#) = 7. We claim that P is a right DPrOJt(.@) approximation. Indeed, for P’ € DProj,(2)
by Lemma [2:3.2) we get a commutative diagram

Homg (P!, P) — 2P0 Homy, (P!, X)

JHO Hflg

mo, (H2(P'),x
Home, (HO(P'), P} 2™y e, (HO(PY), HY(X)),

and the bottom map is surjective since m: H?(P) — H?(X) is an epimorphism and H?(P’) €
Proj(¥;) by Lemma [2.3.3

Since ©; has enough projectives, X € Q; is zero if and only if Homo, (P, X) = 0 for all
P € Proj(Vy). Since 2 has derived projectives, for every P € Proj(¥;) there is P € DProj,(2)
with H(P) = P. By Lemmait follows that X € O, is zero if and only if Homg (P, X) = 0
for all P € DProj,(2), as required.

“ &= ": We first show that ¢, has enough projectives. If X € O, then X € 2!<0. By
assumption, there is a right DProj,(2)-approximation 7: P — X. By Lemma HY(P) is
projective in Oy, and so it suffices to show that H?(7): HY(P) — HP(X) = X is an epimorphism.

For this, let P’ € DProj,(2) and apply Homg(P’, —) to the triangle P = X — cone(m) —
P[1]. This gives an exact sequence

Homg(P', P) — Homg(P', X) — Homg(P’, cone(r)) — Homg(P', P[1]).

The first map is surjective since 7: P — X is a right DProj,(2)-approximation, and the last
term vanishes as P’ is derived projective and P[1] € 2'<Y. Thus Homg(P’, cone(r)) = 0. As
t>o is left adjoint to 2129 < @ and t>oP' = HP(P'), we get

Homg (P', HY (cone(r))) = Home, (HY(P'), HY (cone(r))
=~ Homg (P, cone(m)) = 0,

where the last isomorphism is by Lemma Thus Hy(cone(r)) € DProj,(2)* NQ, = {0}.

To show that & has derived prOJectlves let P € Q?t be projective and let 7: P — P be
a right DProj,(2)-approximation. By the previous argument, we have cone(r) € 2<% and
thus we get an epimorphism HO(]S) — P in ©,. This splits since P is projective, and thus P
is a summand of H{(P). Since Hy: DProj,(2) — Proj(;) is fully faithful, there must be a
corresponding summand P of P with H?(P) = P. O

Remark 2.3.8. As is explained in |[CSPP22, Rem. 2.3], in Theorem the assumption that
DProj,(2) is contravariantly finite is unnecessary if DProj,(%) contains only finitely many
indecomposables.

By combining Theorem with |[CSPP22, Thm. 2.4] (see also [Bonl9, Thm. 5.3.1]) we
obtain the following criterion for the existence of a weight structure that is left adjacent to a
given t-structure.

Corollary 2.3.9. For a bounded above t-structure t on a Hom-finite Krull-Schmidt triangulated
category 2 the following are equivalent:
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I) DProj,(2) is contravariantly finite in 2*<° and DProj,(2)*+ NV, = {0}.
II) 9 has enough derived projectives with respect to t.
III) t admits a left adjacent weight structure.

Moreover, if these conditions hold, then Qy is covariantly finite in 2.

Proof. By Theorem [2.3.7] is equivalent to Moreoveris equivalent to [CSPP22, Thm. 2.4
(2)] by Corollary [2.3.6] and [I)] is [CSPP22, Thm. 2.4 (1)] without the assumption that O, is
covariantly finite in 2. Thus the remaining implications follow from |[CSPP22, Thm. 2.4 and
Rem. 2.5]. O

Example 2.3.10. In particular, Corollary shows that for a finite-dimensional algebra
A, the standard t-structure on DP(modg-A) (see |[BBD82, Ex. 1.3.2]) admits a left adjacent
weight structure. Indeed, in this case is obviously satisfied: the projective generator A of
Ot = modgq-A is derived projective since Homppb (med,y-4) (4, X[n]) = H"(X) for all n € Z (or, in
other words, since A is the silting object defining the standard t-structure). An alternative way to
obtain this weight structure on D?(modgq4-A) is via [AMY19, Lemma 4.10] and Propositionm
below.

The adjacent weight structure can also be described explicitly, as follows. Let
2 C D™ (modsy-A) be the full triangulated subcategory of complexes with finite-dimensional to-
tal cohomology, and ¢ C K~ (projg,-A) the full subcategory of complexes with finite-dimensional
total cohomology. The obvious inclusions

¢ —— 9 +— DP(modgy-A)

are equivalences since any Y € Z can be t-truncated to an isomorphic object that lies in
DP(modgg-A), and € precisely consists of the projective resolutions of objects in 2. Note that
(by construction) the equivalence DP(modsg-A) — % sends a complex to a projective resolution.

The standard weight structure on K~ (projg,-A) from [BonlOb, §1.1] restricts to a weight
structure w on %, and thus yields a weight structure on DP(mod-A). For this it suffices to
check that if X € %, then there is a weight decomposition ws¢X — X — w<oX — wsoX[1]
with w0 X, w<oX € €. But this is obvious since for the standard weight structure, w~oX and
w<opX are given by “brutal truncation” of X (note that X is, by definition, a complex of finitely
generated projectives).

The weight structure w is left adjacent to the standard t-structure on DP(modq4-A) since
Gw<o precisely consists of the projective resolutions of objects in DP(mod¢4-A)'<. Note that
w is always bounded above, but bounded below if and only if A has finite global dimension.

2.3.2 Derived projective covers

For an object X € 2 we would like to find a minimal derived projective object approximating
X. This is made precise by the following definition, which is dual to [Lurl8bl, Ex. C.5.7.9].

Definition 2.3.11. A derived projective cover of X € & is a morphism 7: P — X such that P
is derived projective and H(w): H{(P) — HY(X) is a projective cover of HY(X) in ©,.

Lemma 2.3.12. The derived projective cover of X € 2 is unique up to isomorphism (if it
exists).
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Proof. Let my: P — X and my: P — X be derived projective covers of X. Then
H?(my): HY(P)) — H?(X) and H(my): HY(P,) — HP(X) are projective covers of HY(X) in
Q¢. Since projective covers are unique up to isomorphism, there is an isomorphism g: P; — P,
with Hp(m)g = HY(m), and by Lemma there is an isomorphism §: P, — P, with
Tog = T1. O

Lemma 2.3.13. Let P be derived projective. Then w: P — X is a derived projective cover of
X if and only if t<om: P — t<oX is a derived projective cover of t<oX.

Proof. This is obvious since H_ ot<o = H}. O

Recall that in a Krull-Schmidt abelian category, a morphism 7: P — X is a projective cover
if and only if it satisfies one of the following equivalent conditions:

I) P is projective, w an epimorphism, and for any epimorphism 7’: P’ — X with P’ projective
there is g: P’ — P with mg = 7/, and any such ¢ is an epimorphism.
II) 7: P — X is a minimal right approximation of X by projectives.

If X is simple, then moreover 7: P — X is a projective cover if and only if it satisfies one of the
following equivalent conditions:

I) P is projective and 7 # 0, and for any non-zero n': P — X with P’ projective there is
g: P/ — P with mg = 7/, and any such g is the projection onto a direct summand.
II) P is projective, indecomposable, and 7 # 0.
The following lemma provides analogous characterizations of derived projective covers in more
specific situations. In general, a good strategy to pass from statements about projective objects
to statements about derived projective objects is to replace “f is an epimorphism” by “cone(f) €

2'<97 This can also be seen in Lemma above, which is also the main reason behind this
phenomenon.

Lemma 2.3.14. Assume that & has derived projectives with respect to t.
1) If X € P*<0, then for m: P — X the following are equivalent:
I) m: P — X is a derived projective cover of X.

II) m: P — X satisfies the following conditions:

o P is derived projective,
o cone(r) € 2'<°,
o forn': P' — X with P’ derived projective and cone(r’) € 2'<0 thereis g: P' — P
with mg = 7',
« and cone(g) € 2'<° for any such g.
III) m: P — X is a minimal right approzimation of X by derived projective objects.

2) If L € Oy is simple, then for m: P — L the following are equivalent:

I) m: P — L is a derived projective cover of L.
II) P is indecomposable and m # 0.
III) 7: P — L satisfies the following conditions:

o P is derived projective,
. T A0,
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e for any non-zero ' : P’ — L with P’ derived projective there is g: P’ — P such
that ' = g,
o and any such g is the projection onto a direct summand.

Proof.

1) = Let X € 2'<0 and 7: P — X be a derived projective cover. From the triangle

P — X — cone(r) — P[1] we get cone(r) € 2'<0 and as H? () is an epimorphism we have
HY(cone(m)) = 0, thus cone(r) € 2'<°. Now let n’': P’ — X with P’ derived projective
and cone(r’) € 2'<°. Applying Homg(P’, —) to the triangle P — X — cone(r) — P[1]
and using Homg (P’, cone(r)) = 0 (since cone(r) € 2'<Y and P’ is derived projective)
shows that 7’ factors through 7. So let g: P/ — P be any morphism with mg = 7’. Since
P, P' € 2'=<0 it is clear that cone(g) € 2'<°. Note that by Lemma[2.3.3 H) (') : H)(P') —
H?(X) is an epimorphism from a projective object in ©;. As HY(m)HY(g) = Hp(n') and
H?(m): HY(P) — H?(X) is a projective cover it follows that HY(g) must be an epimor-
phism. This means HY(cone(g)) = 0, and hence cone(g) € 2!<°.
:> Let 7': P’ — X be any morphism with P’ derived projective. The long exact
sequence obtained by applying Homg (P, —) to the triangle P = X — conew — P[l]
shows that Homg(P’,7): Homg(P',P) — Homg(P',X) is surjective, since cone(rn) €
2'<Y and P’ is derived projective. Thus 7: P — X is a right approximation.

For minimality, let g: P — P with mg = 7. Then by assumption cone(g) € 2'<°, so by
Corollary g is a split epimorphism. Since 2 is Krull-Schmidt, it follows that g is an
isomorphism.

E = l )} We show that HY(m): HY(P) — HO(X) is a minimal right approximation by
projectives. Let P’ € Oy be projective and 7’: P’ — X. By assumption there is a derived
projective P’ with H?(P') = P’ and we get an induced morphism #': P/ — t>0P =

HO(P') X with Hp(7') = 7’. Lemma[2.3.2]implies that H} induces a bijection between
morphisms §: P’ — P with #/ = 7§ and morphisms g: P’ = H(P') — H?(P) with
7/ = H?(m)g, and the claim follows from this.

2) <= If P is derived projective, then m: P — L is a derived projective cover of
L iff H)(w): H)(P) — L is a projective cover of L in O, iff H(7) # 0 and HY(P) is
indecomposable projective iff 7 # 0 and P is indecomposable (by Lemma [2.3.2)).
= Observe that for 7: P — L we have cone(r) € 2'<° and by Lemma and
simplicity of L we get 7 # 0 iff H(7) # 0 iff HY () is an epimorphism iff cone(r) € 2<Y.
Similarly g: P — P’ satisfies cone(g) € 2'<% and by Corollary g is the projection

onto a direct summand if and only if cone(g) € 2*<°. Therefore the claim follows from
1). O

2.3.3 Silting collections as derived projective covers

Silting collections provide an important source of derived projective objects.

Lemma 2.3.15. Let P be a silting collection in & and t its associated silting t-structure. Then
any P € P is derived projective with respect to t.

Proof. By definition we have #'<? = PL20_ and also P C P1>0 = 2!<0 by Remark [2.2.10
which precisely means that P consists of derived projective objects. O
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The following theorem shows that derived projective covers provide a convenient description
of the relation between a silting collection and the simple objects in the heart of the associated
silting t-structure. In particular, this observation can be used to formulate the bijections between
simple-minded collections and silting collections from [KY14], see Theorem below. This
result is very similar to [CSPP22, Thm. 2.4] and [Bon19, Thm. 5.3.1 IL.].

Theorem 2.3.16. Lett be a non-degenerate t-structure on 9 with finite-length heart. Let L be a
full set of isomorphism representatives of the simple objects in Oy and P a full set of isomorphism
representatives of the indecomposable derived projectives. Then the following are equivalent:

I) t is silting (and P is the silting collection).
II) There is a bijection ¢: P — L such that for P € P, L € L, m € Z we have

Endgy (L) if L= ¢(P), m=0,

. (2.2)
0 otherwise

Hom (P, L[m]) = {

as left Endg(L)-modules.

III) Every L € L admits a derived projective cover (and P is the set of these derived projective
covers).

IV) 2 has enough derived projectives with respect to t.

Proof. )| = Let P’ be a silting collection with ¢ = (P't<0, P'1t>0). By Lemma [2.2.13
P’ weakly generates 2, and thus for each L € L there is some P € P’ and m € 7Z with
Homg (P, L[m]) # 0. From L € Q; we get m = 0, so using P € 2'=0 we get

0 # Homg (P, L) = Homg:>o (t>0P, L) = Homo, (H{ (P), L).

Since L is simple in Oy it follows that there is an epimorphism H{(P) — L. As P is indecom-
posable, so is HY (P) by Lemma [2.3.2) and thus HY(P) is the projective cover of L in Q,. From
this it follows that H?(P), and (by Lemma again) also P, is unique up to isomorphism. So
we get a bijection ¢: P’ — L by defining ¢(P) = L, and moreover

Homg (P, L) = Homo, (HY(P), L) = Endo, (L)

as left Endo, (L)-module, as desired. Finally, since H?(P’) is a full set of indecomposable projec-
tives in ©; and P’ consists of derived projectives by Lemma[2.3.15} it follows from Corollary
that P’ = P is the set of indecomposable derived projectives.

:> Let L € L, P = ¢ (L), and m: P — L correspond to id;. Then 7 # 0, and
moreover HY(P) (and thus, by Lemma also P) must be indecomposable since otherwise it
would admit two simple quotients, which is impossible by . Thus 7: P — L is the derived
projective cover of L by Lemma

= Since every L € L has a derived projective cover, it by definition has a pro-
jective cover in O;. As Oy is finite-length, it follows that ©; has enough projectives. Moreover,
the projective covers of the simple objects are a full set of isomorphism representatives of the
indecomposable projectives in Q;. Thus the indecomposable projectives arise as t-truncations of
derived projectives, and therefore & has enough derived projectives.

- = I By Corollary -, HY(P) is the set of indecomposable projectives of Q. We
claim that 2'S0 = P10 and 220 = PL<° For X € 9, P € P and n € Z we get from
Lemma 2.3.2]

Homg (P, X [n]) = Homo, (H}(P), Hy (X[n])) = Homo, (H} (P), H{'(X)).
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Since {HP(P) | P € P} is a full set of indecomposable projectives in ©; and ©; is finite-length,
we have H{*(X) = 0 if and only if Homg (P, X[n]) = 0 for all P € P. The claim follows from this
since by non-degeneracy of ¢ we know that X € 2*<0 if and only if H*(X) = 0 for all n > 0,
and similarly for 2?29, O

Using Theorem [2.3.16 we can now show that not every triangulated category has derived
projectives with respect to every t-structure.

Example 2.3.17. Let A be a non-positive dg algebra such that H™(A) is finite-dimensional for
all n € Z but H*(A) is not finite-dimensional. Then A is a silting object in D(A) (see e.g. [BY 14,
Appendix A]), and the silting t-structure restricts to Dgg(A). These t-structures are the standard
t-structures on D(A) and Dgq(A). The heart of the standard t-structure on Dgg(A) is equivalent
to modg-H"(A) and thus has enough projectives. However, this t-structure is not silting, and
so by Theorem there is no derived projective that truncates to the projective generator of
®t-

To see that the standard t-structure is not silting, suppose for a contradiction that P € Dgg(A)
is a silting object defining the standard t-structure. Observe that thent>, P = t>,Aforalln <0,
since both these objects represent the functor H%(—): Dgg(A)*<0 N Dgq(A)2" — Q; (this uses
the equivalences modg-A4 = O, = modgy-Ende, (HY(P)), and Lemma . As P € Dg(A),
there is N < 0 with t>, P = P for all n < N, and thus we also have t>, A4 = t>, P = P for all
n < N. But this implies H"(A) = H"(P) =0 for n < N and thus A € D¢ (A), a contradiction.

As an application, we obtain the following criterion for left orthogonality between weight
structures defined from silting collections and t-structures defined from simple-minded collec-
tions.

Theorem 2.3.18. Let Z be a triangulated category, P a silting collection in 2 and L a simple-
minded collection in 9. Let w be the weight structure on € = thickg(P) defined by P and t the
t-structure on 9 defined by L. Then the following are equivalent:
I) w is left orthogonal to t.
II) w is w-t-strictly left orthogonal to t.
II) t = (P1>0 PL<o) is the silting t-structure associated with P.
IV) There is a bijection ¢: P — L such that P € P is the derived projective cover of ¢(P).

V) There is a bijection ¢: P — L such that for P € P, L € L and m € Z we have isomorphisms
of left Endg(L)-modules

Endy(L) if L= ¢(P), m =0,

HOHI@(P7 L[m]) = {0 otherwise

Proof. — w-strictness follows from Lemma [2.2.24] For t-strictness, note that by
h4

Lemma we have Gp<o = 210N € and Cyso = (2<°) N'%. Therefore
gtzo _ (9t<O)J_ g ((gw<0)J_-
and similarly 2<% C (%,,~0)*. But by assumption both ((€y>0)", (Gw<o)) = (P>0, PL<o)

and t = (2'=0, 2!29) are t-structures on 2, and therefore they must agree.
= [[II); This is clear from the construction of w from P in Proposition [2.2.19

11| — This is part of Theorem [2.3.16
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= As L € Oy and P is derived projective, we have Homg (P, Lm]) = 0 for m # 0.
For m = 0 we get from Lemma [2.3.2]

Homg (P, L) = Home, (H)(P), L) = {End”f (L) ifL=¢(P),
0 else,
since by definition H?(P) is the projective cover of ¢(P) in Q.
= [[); From the construction of w and ¢ it follows that left orthogonality is equivalent to
Homg (P[m], L[n]) =0 for all P € P, L € L, and either m <0 and n > 0, or m > 0 and n < 0.
This condition is obvious from the assumptions. O

2.4 The WT correspondence revisited

In many important examples, w-t-strict orthogonality yields a bijection between weight struc-
tures and t-structures. A unified setup for this is provided by the following definition.

Definition 2.4.1. Let .7 be an idempotent-complete triangulated category and ¢,2 C
thick subcategories. We call (¢,2) a WT pair in 7 if there is a weight structure w and a
non-degenerate t-structure ¢ on 7 such that

w is left adjacent to ¢,
w and t are bounded above,
¢ = thick 7 (Qy,) and 2 = tria g (Vy),

O 18 Krull-Schmidt with finitely many indecomposables, and ©; is Hom-finite finite-length
with finitely many simples.

In Proposition below we will show that WT pairs are the same as the ST pairs defined
in [AMY19, Def. 4.3]. In contrast to that definition, we do not use silting collections and instead
define WT pairs via weight structures and t-structures. The axioms for WT pairs are similar to
the conditions from |[AMY19, Prop. 4.17].

Example 2.4.2. We list some known examples of WT pairs.

1) Let A be a finite-dimensional algebra. Then (KP(projg,-A), D"(modq-A)) is a WT pair
in D™ (modg-A).

By using the weight structure on DP(mod¢-A) described in Example [2.3.10, one sees
that (KP(proj,-A), D"(modg-A)) is also a WT pair in D”(modg-A), cf. [AMY19,
Lemma 4.10].

2) Let A be a non-positive dg algebra such that H™(A) is finite-dimensional for all n € Z. Then
(perf(A), D (A)) is a WT pair in Dg;(4) = {X € D(4) | 3,~,, dim H*(X) < 0o Vn € Z}
by [Fus24, Ex. 3.4]. -

3) Let A be a non-positive dg algebra such that HY(A) is finite-dimensional and Dgq(A) C
perf(A). Then (perf(A4),Ds(A)) is a WT pair in perf(A) by [AMY19, Lemma 4.15].

4) Let A be a positive dg algebra such that Dg(A) = thickpa)(AY), where (—)¥ =
Homggnmoa-k(—, k) is the k-linear duality functor. Then [KN13| Cor. 4.1 and Thm. 7.1]
provide a weight structure on Dgg(A) and (via the equivalence provided by the Nakayama
functor) a t-structure on thickp(4)(AY). By taking K-injective resolutions, one sees that
these are left adjacent to each other, and it follows that (Dgq(A), thickp(a)(AY)) is a WT
pair in Dgg(A).
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Note that for 1)-3) it is very easy to check the axioms from [AMY19, Def. 4.3], but hard to give
explicit descriptions of the adjacent weight structure required for Definition [2.4.1]

The first example also shows that the ambient triangulated category .7 for a WT pair is in
general not unique. In fact, as observed in [AMY19) §6.1], if (¢, 2) is a WT pair in .7, then it
is also a WT pair in any thick subcategory .7/ C .7 containing both € and 2.

The following proposition shows that WT pairs are the same as the ST pairs defined in
|[AMY19, Def. 4.3].

Proposition 2.4.3. (¢,2) is a WT pair in 7 if and only if there is a finite silting collection
P in T such that

o Homgz (P, X) is finite-dimensional for all X €  and P € P,
o thicks(P) =9,
o« T =Unez 77" and 9 =, cp T'7=2".

Proof. * =" Let P be a set of isomorphism representatives of the indecomposable objects in

Q- By Lemma [2.2.24] w is w-t-strictly left orthogonal to t on 7. Thus
1
(

Qu = w>0 N ng() = 9t<0) N gtSO = DPrOjt(g)a

so P consists of the indecomposable derived projectives. Moreover, by [Bonl9, Thm. 5.3.1]
(cf. Corollary above) .7 has enough derived projectives with respect to t. It follows from
Theorem t P is a (by assumption finite) silting collection, and ¢ the associated silting
t-structure. For P € Pand X € .7, LemmaMgives Hom # (P, X) = Homo, (HY(P), H) (X)),
which is finite-dimensional by assumption.

Since ¢ is bounded above on 7, we have (by definition) .7 = {J,, o, Z*=". Finally, if X €
Tt2™ then X € 2™ N .F'<" for some n € Z as t is bounded above, so X € triaz(Q;) = 2.
The converse inclusion is obvious since J,,c; 7 t2n C 7 is a triangulated subcategory and
Ot € Upez Tz,

“ <= 7: Note that O, is Hom-finite finite-length with finitely many simples by [AMY19,
Prop. 4.6]. As tp is a silting t-structure on .7, it is non-degenerate. By Theorem T
has enough derived projectives with respect to tp and P is a full set of indecomposable derived
projectives in .7. Therefore by [CSPP22, Thm. 2.4] (see Corollary above) there is a weight
structure w on  that is left adjacent to tp. As tp is bounded above, so is w.

By Lemma w is w-t-strictly left orthogonal to tp. As above we get ©,, = DProj, (%),
and therefore ©,, = Karz(P) as P consists of the indecomposable derived projectives. In partic-
ular ©,, contains finitely many indecomposables up to isomorphism, and hence € = thick #(P) =
thick 7 (). Finally, we have triag(©y,) C triag (7720 C 2. Conversely, if X € Z then
X € Ftrzm ) FP<n for some m,n € Z (as tp is bounded above), so X € triag (04, ). O

In [Fus24] it is shown that for a WT pair (%, %) in an algebraic triangulated category 7
there are bijections between bounded weight structures on ¢ and bounded t-structures 2 with
finite-length heart. By the examples listed in Example this unifies several earlier results:
for the WT pair (KP(projg,-A), D"(mod-A)) in D" (mody4-A), where A is a finite-dimensional
algebra, the theorem is due to Koenig and Yang [KY14]. It seems the version for non-positive
dg algebras with finite-dimensional total cohomology stated in [BY14] was originally a folklore
result. Recently [SY19] and |Zha23] provided new proofs using Koszul duality for A..-algebras
and dg algebras, respectively. For homologically smooth non-positive dg algebras the theorem is
stated in [KN11].

The following theorem is a slight refinement of the results in [KY14, §5] and [Fus24, Thm. 4.8],
making the bijections explicit.
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Theorem 2.4.4 (WT correspondence). Let (¢,2) be a WT pair in an algebraic triangulated
category 7. Taking derived projective covers gives one of the eight bijections fitting in the
following commutative diagram from [KY14] and [Fus2J):

Cuco =~ (2770)
G0 =~ (27<0)

bounded weight structures w on ¢ bounded t-structures t on ¥
with Krull-Schmidt coheart with finite-length heart

gt<0 — (cgw>0)L
720 = ((gw<0)J_

¢y ur serduurs

Proposition 2.2.7]

Karoubi closure of
extension closure of
positive/negative shifts
Proposition [2.2.19
My ur sajqesoduroseput
extension closure of
positive/negative shifts

derived projective covers

silting collections P in .7 simple-minded collections £
[ with thick & (P) = % Theorem R.3.18 in 2

simple tops of HY(P)

The bijection at the top in particular says that the correspondence between weight structures and
t-structures is given by w-t-strict orthogonality.

Proof. In view of the proof of [Fus24, Thm. 4.8], we essentially only have to show that the
bijection between weight structures and t-structures is given by w-t-strict orthogonality. For
convenience of the reader, we first briefly describe the other bijections.

It is well-known (cf. Proposition [2.2.7 above) that simple-minded collections in 2 are in bi-
jection with bounded t-structures on & with finite-length heart. Similarly (cf. Proposition
and Remark above), classical silting collections in % are in bijection with bounded weight
structures on ¢ with Krull-Schmidt coheart. By [AMY19, Prop. 5.2], classical silting collections
in € are the same as silting collections P in .7 with thicks(P) = %. Thus the vertical maps
are bijections.

Let P be a silting collection in .7 with thick#(P) = ¥, and ¢t = tp the t-structure on 7
defined by P. By Theorem[2.3.16] P consists of the derived projective covers of the simple objects
in O, which form a simple-minded collection £ in Z by [AMY19, Prop. 5.2 and Prop. 4.6]. From
the definition of derived projective covers it is clear that £ consists of the simple tops of HY(P).
Sending P to L defines a bijection by [Fus24, Prop. 4.6].

It remains to show that the induced bijection between weight structures and t-structures is
given by w-t-strict orthogonality. Let w be a bounded weight structure on ¥. By the above,
w is a bounded weight structure obtained from a silting collection P, and the corresponding
t-structure on & is the restriction of the associated silting t-structure ¢ = ¢p on 7. Hence
t-strict left orthogonality is obvious.

For w-strictness, let X € €N L(9’”0) and let t<oX — X — t50X — t<oX][1] be the t-
decomposition of X with respect to the t-structure ¢t on 7. As t is bounded above on 7, we

40



2.5. NATURALITY OF ORTHOGONALITY

have t+0X € triaz (V) = Z, so t~0X € 2>% and thus Hom 7 (X,t-¢X) = 0 by assumption.
Hence the t-decomposition triangle splits and gives t<gX = ¢0X[—1] ® X, which implies X =
tS()X € 750N g = ngo Ne = %wg().

Let X € €N (2'<°). As w is bounded on €, there is n € Z with X € Gyon. Let Y € F<0
and consider the t-decomposition t<,Y — Y — ¢.,Y — t<,Y[1]. Since w is left adjacent to ¢
on w, we have t<,Y € J,<n, and since t is bounded above on .7, we have t-,Y € 2¥<0_ Since
X € Cpon and X € L(QKO)7 applying Hom & (X, —) to the t-decomposition of ¥ shows that
Hom#(X,Y) = 0. Hence from Lemma [2.2.26| we get X € J'(e?t<0) NG = Ty>0NE = Cw>o. U

2.5 Naturality of orthogonality

In this section we show that w-t-strict orthogonality is natural with respect to weight exact func-
tors and t-exact functors. This is a slight generalization of the results from [BonlOb, Prop. 4.4.5]
for adjacent t-structures. The main result in this section (Theorem is proved in essentially
the same way except for the more technical notation required to set up the statements, which
simplifies a lot in most interesting cases.

Theorem 2.5.1. Let €, €', 2, 9’ be triangulated categories, w, w' weight structures on € and
€', and t, t' t-structures on 9 and 9', respectively. Let ®: € X 2 — o and ®': €' x D' — o
be dualities and suppose that w (resp. w') is w-t-strictly left orthogonal to t (resp. t') with
respect to @ (resp. ®'). Let F: € — €' and G: 9" — 2 be “D-®'-adjoint” in the sense that
P'(F(X),Y)=Zo(X,G(Y)) naturally for X € € andY € &'. Then

1) F(€us0) C €y if and only if G(2''<0) C =0,
2) F(w<0) C €.,y if and only if G(2'"20) C 9'20.
In particular, F is weight exact if and only if G is t-exact.

Proof. We only show the first part as the argument for the second claim is entirely analogous.
Suppose F(€s0) C €'vp and let Y € 2'¥<0. By assumption we have 2'<0 = (%,,~0)*,
and thus
G(Y) S QtSO <~ %w>0 la G(Y) <~ F((gw>0) le Y.

But this condition is satisfied since by assumption F(%,~0) C %, and Y € 9''<0 =

w’ >0
((51:)’>0)J_4’I .
For the converse suppose G(@/ng) C 9'<0 and let X € %o By assumption we have
Lo ,
Cliso= " (2'"=0), and thus
F(X) € Clyny = F(X) Lo 2" = X L4 G(2"=).
But this is satisfied since by assumption G(@/t'SO) C 2'<0 and X € Gpop = l<]>(@tgo)' 0

Most notably it follows that the bijection between bounded t-structures with finite-length
heart and bounded weight structures provided by the WT correspondence (see Theorem m
above) is natural:

Corollary 2.5.2. Let (¢,2) be a WT pair in 7 and (¢',2') a WT pair in F'. Let w, w'
be bounded weight structures on € resp. €', and t, t' the corresponding bounded t-structures on
9 resp. 2" under the WT correspondence. Suppose that F: € — %' is left pseudo-adjoint to
G: 9" = 2 in the sense that Hom g/ (F(—),—) &£ Homg(—, G(-)).

Then F is weight exact with respect to w and w' if and only if G is t-exact with respect to t
and t'.
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Proof. By the WT correspondence, w and ¢ (respectively w’ and t’) are w-t-strictly left orthog-
onal to each other, and so the claim follows from Theorem 2.5.1] O

For the standard WT pair (KP(Proj(#)), D"(&)) in D~ (), where 7 is a Hom-finite finite-
length abelian categories with enough projectives and finitely many simples, the naturality of
the WT correspondence can also be formulated as follows. Following |[Che21] we write K® for the
strict 2-category whose objects are the Hom-finite finite-length abelian categories with enough
projectives and finitely many simples, with 1-morphisms given by the functors K (Proj(<)) —
K" (Proj(#)) and 2-morphisms the natural transformations between these. The 2-category D?
is defined similarly, using functors D”(&/) — DP(%) instead. Let (D°)°°°P denote the bidual
of DY, i.e. the 2-category obtained by reversing all 1-morphisms and 2-morphisms. By [Che21|
Thm. 3.2] there is an equivalence K® — (D?)°°P that is the identity on objects and sends
a l-morphism (i.e. a functor) F: KP(Proj(#)) — K"(Proj(«)) to its right pseudo-adjoint
FV: DP(e/) — DP(%), which is defined by natural isomorphisms

HOIIlDb(LQ{) (F(X),Y) = HOHIDb(gg) (X, F\/(Y)>
for X € K’(Proj(#)) and Y € D"(«&).

Corollary 2.5.3. Let o/, 2 be Hom-finite finite-length abelian categories with enough projectives
and finitely many simples. Let t, t' be bounded t-structures on DP(a7) and D"(B), respectively,
and w, w' the bounded weight structures on KP(Proj(«/)) and K" (Proj(#)) corresponding to t
and t' under the bijections from Theorem . Assume that under the equivalence from [Che21,
Thm. 8.2], G: DP(a/) — DP(%) corresponds to F: KP(Proj(#)) — K®(Proj(«)). Then G is
t-exact if and only if F is weight exact.

Proof. By Theorem the weight structure w (resp. w’) is w-t-strictly left orthogonal to the
t-structure ¢ (resp. ¢’). Thus the result follows from Theorem since the construction of G
as a right pseudo-adjoint to F' is precisely the required adjunction property. O

Remark 2.5.4. Using [Che2l, Prop. 3.4], we also obtain the following consequence of Corol-

lary 5.3

1) Suppose F: KP(Proj(#)) — K"(Proj(«/)) is weight exact and admits a right adjoint G.
Then G extends to G: DP(&/) — DP(%), and G is t-exact.

2) If G: DP(«/) — DP(%) is t-exact and restricts to G: KP(Proj(«)) — KP(Proj(%)),
then G admits a left adjoint F', which is weight exact.

In this setup, there is an alternative proof of 2): By Lemma [2.2.24| we have %,,<o = 2'<° N
K"(Proj(«)), and analogously for ¢ and w’. Now let X € %,5 and Y € Gpeo = 20N

K"(Proj(«)). Then
GY)=GQ(Y) € 2"<°NK"(Proj(2)) = €., _,

w

by t-exactness of G, and from the adjunction and €, L €, o we get
HOHle(ij(,Q{))(F(X)a Y)= Home(ij(gg))(Xv G(Y)) =0,

so F(X) € J_(%w<0) = CGuw>o0-
Similarly for X € €, ., = 2" <0 N KP(Proj(#)) and Y € 2'>° we have

Hompys (o) (F(X),Y) = Hompy(g) (X, G(Y)) = 0,
and thus F(X) € €p<o = 2'<° N K" (Proj(«)).

42



Chapter 3

Koszul duality of simple-minded and silt-
ing collections

In this chapter we prove a theorem about Koszul duality between simple-minded and silting
collections. We begin by recalling the classical Koszul duality from [BGS96; MOS09] and the
Koszul duality for dg categories and dg algebras from [Kel94]. This requires us to work in
dg-enhanced triangulated categories. As we want to apply this to silting collections and simple-
minded collections, we are particularly interested in the dg Koszul duals of non-positive and
positive dg algebras.

The Koszul duality of simple-minded and silting collections is established by the main result
of this chapter (Theorem . This is closely related to the construction of silting collections
corresponding to simple-minded collections in the proof of the WT correspondence, see |Zha23]
and also [Fus24]. We also provide three small examples of the Koszul duality from Theorem [3.4.2]
namely for simple-minded and silting collections in the derived category of the As-quiver.

The chapter is based on [Bon25| §1 and §4].

[Bon25] L. Bonfert. “Derived projective covers and Koszul duality of simple-minded and
silting collections”. To appear in Appl. Categ. Struct. (2025). arXiv:2309.00554v3
[math.RT].

3.1 DMotivation and overview of results

The classical Koszul duality from |[BGS96; MOS09] provides an equivalence of derived cate-
gories of graded modules that interchanges the simple and indecomposable projective objects.
By definition, simple-minded collections are an analog of the set of simple objects, and by The-
orem a silting collection in the sense of Definition can be seen as an analog of the
set of indecomposable projective objects. Therefore, we want to relate simple-minded collections
and silting collections via Koszul duality.

The required notion is the dg Koszul duality from [Kel94], which defines the dg Koszul dual
798 of an augmented dg category 7. This construction can in particular be applied to non-
positive and positive dg algebras. In our situation, such dg algebras arise as the endomorphism
algebras of silting collections respectively silting collections in a dg-enhanced triangulated cate-
gory. Following a suggestion by Bernhard Keller, we obtain:

Theorem 3.1.1 (Theorem . Let T = HO(% be a compactly generated dg-enhanced tri-
angulated category. For a compact silting collection P in 7 such that End 7 (D pcp P) is finite-
dimensional, let L be the set of simple objects in the heart of the silting t-structure associated
with P. Note that L is a simple-minded collection in 9 = triagz(L).

1) The dg algebra End (B, L) is the dg Koszul dual of End (D pep P)-
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2) If H"(End (@ pcp P)) is finite-dimensional for all n € Z, then End (B pep P) is the
dg Koszul dual of End (@, L)-

This result is a first step towards the tentative Koszul duality of weight structures and t-
structures, which is supposed to formalize the apparent duality of their definitions. The theorem
is inspired by [BY14], see also the revised version [BY23]. In the case of finite-dimensional
algebras or non-positive dg algebras with finite-dimensional total cohomology, the second part
of Theorem can also be shown by a construction from |Zha23], which was used there to
construct a silting collection corresponding to a simple-minded collection.

3.2 Classical Koszul duality

Before we come to dg Koszul duality we briefly recall the classical Koszul duality from [BGS96;
MOS09]. By definition, a Koszul algebra is a positively graded algebra A = @nzo A, such that

e A, =0 for n <0, and each graded piece A,, is a finitely generated A°-module,
o Ay is a semisimple algebra,

e Ag has a linear projective resolution, i.e. there is a projective resolution P — Ag of Ay as
graded A-module such that each P~ is generated in degree 1.

The Koszul dual of A is A' = Ext’ (A, Ao).
Example 3.2.1.

1) If k has characteristic 0, then k[z] with deg(z) = 1 and k[y]/(y?) with deg(y) = 1 are
Koszul algebras. Moreover, we have (k[z])' 2 k[y]/(y?) and (k[y]/(y?))' = k[z].

2) Assume that k is algebraically closed of characteristic 0 and let g be a finite-dimensional
semisimple Lie algebra over k. Then the finite-dimensional algebras describing the blocks
of O(g) are Koszul by [BGS96, Thm. 1.1.3].

The main result about Koszul algebras is the following Koszul duality theorem from [BGS96,
Thm. 2.10.2 and Thm. 2.12.1], see also [MOS09, Thm. 30].

Theorem 3.2.2 (Koszul duality). Let A be a Koszul algebra.

1) A'is a Koszul algebra.

2) (A" = A.

3) Let DY(A) € D(Mod”-A) be the full subcategory of bounded below cochain complezes X
such that XJZ: =0 fori+j>0, and DT(A") C D(ModZ—A!) the full subcategory of bounded
above cochain complexes X such that X; =0 for i+ j < 0. Then there is an equivalence
of triangulated categories RHom 4(Ag, —): D¥(A) = DT(A").

Note that by construction the Koszul duality functor RHom4(Ag, —) maps the simple A-
modules to the indecomposable projective A'-modules.

An equivalent formulation of Koszul duality is as follows. A Koszul algebra can be seen as
an augmented algebra over Ay via the quotient map A — Ay = A/(Aso), and every simple
Ap-module L lifts to an A-module L via this augmentation. It is easy to see that in fact every
graded simple A-module is of the form L for some simple Ag-module L.

With this point of view, the Koszul dual of A can also be defined as A' = D, Extjix(ﬁ7 i),
where the direct sum runs over all simple Ap-modules up to isomorphism. This is Morita-
equivalent to the definition A' = Ext* (A, Ag). Using this definition, the Koszul duality functor
is @, RHom (L, —): DY(A) — DT(A").
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3.3 dg Koszul duality

To be able to define the dg Koszul dual of dg algebras and dg categories we have to briefly
recall dg-enhanced triangulated categories. By definition, a dg enhancement (originally called
enhancement in [BK91]) of a triangulated category 7 is a pretriangulated dg category 7 in
the sense of |[BK91} §3, Def. 1] together with an equivalence .7 = HO(%. An object X €
yields a dg functor Hom (X, —): 7 — dgMod-End 5(X), which induces a triangulated functor
Hom (X, —): 7 — D(End #(X)).

Note that by [Kra07, §7.5] and the first part of the proof of [Kel94, Thm. 4.3], dg-enhanced

triangulated categories are precisely the stable categories of Frobenius categories considered in
[Kel94].

Example 3.3.1. A dg enhancement ]5(42%) of the derived category D(«7) of a dg category <&/
is given by the dg category of K-projective dg o7/-modules, see |[Kel94, §4.1] for details. Here
a dg «/-module P is K-projective if H°(Homgagmod-« (P, N)) = 0 for all acyclic dg «/-modules
N. A dg «/-module M can be viewed as an object of ]5(421/ ) by replacing it by a K-projective
resolution, i.e. a K-projective dg module pM that is quasi-isomorphic to M. Note that by [Kel94,
§3.1, p. 70] K-projectivity is equivalent to the property (P) considered in [Kel94], and in particular
K-projective resolutions are precisely the P-resolutions defined in [Kel94] §3.1].

We abbreviate Homy ( )(—, —) = RHom/(—, —), and by slight abuse of notation we also

write REnd (X) = RHom (X, X) for X € D(<). Dually one can also use K-injective resolu-
tions instead.

Recall that a non-positive dg algebra is a dg algebra A such that H"(A) = 0 for n > 0, and
a positive dg algebra is a dg algebra A such that H"(A) = 0 for n < 0 and H°(A) is semisimple.
In these cases, the dg Koszul dual is defined as follows, cf. [KN13| §1 and Not. 5.1], [Zha23], and
also |[Fus25, Def. 4.1]:

Definition 3.3.2. Let A be a non-positive or positive dg algebra such that HO(A) is finite-
dimensional. The dg Koszul dual of A is A% = REnd (L), where L is defined as follows:

1) If A is non-positive, let L be the direct sum of the simple H°(A)-modules, viewed as dg
A-modules concentrated in degree 0 via the quasi-isomorphism t<pA — A and the quotient
map t<oA —» HO(A).

2) If A is positive, let L be the unique dg module such that HO(L) is the direct sum of the
simple HY(A)-modules and H"(L) = 0 for n # 0 (this exists by [KN13, Cor. 4.7]).

If A is a non-positive dg algebra, then A"“98 is a positive dg algebra as a consequence of
[BY14, Thm. A.1]. Conversely, if A is a positive dg algebra then A" is non-positive by [KN13|
Lemma 5.2]. Note that the dg Koszul dual is well-defined only up to quasi-equivalence. For
explicit computations of dg Koszul duals see Section [3.5] below.

By [Fus25, Thm. 4.17] the double dg Koszul dual (A"48)"48 is quasi-isomorphic to A if A is
either locally finite-dimensional non-positive, or locally finite-dimensional pvd-finite positive in
the sense of [Fus25, Def. 3.23]. Furthermore, dg Koszul duality provides equivalences between
certain subcategories of D(A) and D(A"8), see [Fus25, Thm. 4.4].

The definition of the dg Koszul dual of a non-positive or positive dg algebra in Definition [3.3.2]
is based on the following general definition of Koszul duality for augmented dg categories from
[Kel94, §10.2].
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Definition 3.3.3.

1) An augmented dg category is a dg category &/ with ‘pairwise non-isomorphic objects such
that for every object A € & there is a dg &/-module A (called augmenting dg module) with

T\(B) = k ifk=0,A=8B,
0 otherwise.
2) The dg Koszul dual of an augmented dg category <7 is the dg category /"8 with objects
{A"| A € &/} and morphisms

M8(A' A") = RHom (4, A7) = Homggmoa. o (P4, pA7),
where pA and pA’ are K-projective resolutions of A and A’.
Remark 3.3.4.

1) @798 is well-defined only up to quasi-equivalence, cf. [Kel94, §10.2].

2) In [Kel94] the Koszul dual is defined more abstractly as a lift of the augmenting modules
{A | A € &/}. With the notation from Definition the dg category .@7>9¢ and the
o798 o7 -bimodule P 5y pB provide a lift, and hence the “abstract” definition agrees
with the “concrete” definition we use here.

3) By [Kel94, §10.2], 798 becomes an augmented dg category with augmenting dg modules
A" = RHom (@ gy pPB, Do/ (A, —)). Here D = Homggmoa-k(—, k) denotes the k-linear
duality functor.

4) If the augmenting dg modules A are compact and generate D(.<7) as triangulated subcat-
egory closed under arbitrary coproducts (or, equivalently, if thick{A | A € &/} = D¢(&)),
then by [Kel94, Lemma 10.5 “The finite case”] the «/"4¢-o/-dg bimodule € 5, pB pro-
vides an equivalence of categories D(27"98) — D(&), sending 7"8(—, A') to A for all
Acd.

Under mild assumptions, Definition [3.3.2] can be recovered from Definition [3.3.3] as follows.

Example 3.3.5. Let A be a dg algebra such that H°(A) is finite-dimensional and all simple
H°(A)-modules are 1-dimensional. Take a complete set of primitive orthogonal idempotents of
HO(A) and suppose they lift to idempotents {e; | i € I} in A with ), ., e; = 1. Consider
A =D, jc;eide; as a dg category with objects I and morphisms A(j, i) = e; Ae;.

1) If A is a non-positive dg algebra, we can consider the simple H°(A)-modules as dg A-
modules concentrated in degree 0 as in Definition [3.3.:2] These “simple dg A-modules”
make A an augmented dg category. It follows that the dg Koszul dual of A in the sense
of Definition m (viewed as a dg algebra by taking the direct sum over the finitely many
objects) is precisely the dg Koszul dual defined in Definition m

2) If A is a positive dg algebra, the unique dg A-modules L; corresponding to the simple
H°(A)-modules e;H°(A) constructed in [KN13, Cor. 4.7] make A an augmented dg cat-
egory. Again the dg Koszul dual of A in the sense of Definition [3.3.3] is precisely the dg
Koszul dual defined in Definition 3.3.2]

The easiest examples of positive dg algebras are Koszul algebras, viewed as positive dg alge-
bras with the same grading and trivial differential. In this case, the definition of the dg Koszul
dual recovers the classical Koszul dual by the following result, which is essentially contained in
[Sch1l, Thm. 39].
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Proposition 3.3.6. Let A be a Koszul algebra of finite global dimension and consider A as a
positive dg algebra with the same grading and trivial differential. Then

Hn(A!,dg) ~ {A| an = 97
0  otherwise.

Proof. Note that since A has trivial differential, the simple A-modules become dg A-modules
when equipped with the trivial differential, and thus these the augmenting dg A-modules con-
structed in [KN13|, Cor. 4.7] (cf. Definition above). Let L be the direct sum of the simple
A-modules and P a linear projective resolution of L. Consider the complex P of graded A-
modules as a dg A-module Tot(P), with Tot(P)" = @, ;_, P} and the differential consisting
of (=1)'d: Pj — P;H. Note that Tot(P) is K-projective since it can be obtained as an iterated
cone of the morphisms of dg A-modules (—1)id: P* — Pt (where P* and P**! are equipped
with the trivial differential). The quasi-isomorphism P — L provides a quasi-isomorphism of
dg A-modules Tot(P) — L, and so this is a K-projective resolution of L. Hence by definition
A48 = Homggmod.a (Tot(P), Tot(P)).

Since P is a linear projective resolution, each P? is generated in degree —i, and hence the
dg A-module Tot(P) is generated in degree 0, and moreover Tot(P)™ = 0 for n < 0. This
immediately implies that (A"98)" = 0 for n < 0. Moreover, by |[KN13, Lemma 5.2] A" is a
non-positive dg algebra, i.e. we have H"(A"4) = 0 for n > 0. Finally, by [Sch11, Thm. 39] we
get HO(AMg) = A', O

3.4 Koszul duality of simple-minded and silting collections

The following lemma provides a convenient description of certain subcategories of a compactly
generated dg-enhanced triangulated category with a compact silting collection. This is a slight
generalization of [KY18, Lemma 3.1], although its proof uses essentially the same arguments.

Lemma 3.4.1. Let 7 = H°(.7) be a compactly generated dg-enhanced triangulated category.
For a compact silting collection P in F such that End 7 (@ pcp P) is finite-dimensional, let t
be its associated silting t-structure and 9 C T be the triangulated subcategory generated by the
simple objects in Q. Let E = End (P pep P)-

1) There is an equivalence D(E) — 7 that takes the simple E-modules to the simple objects
in Qy. Moreover it identifies perf(E) with thick & (P), and D¢ (E) with 9.

2) If H*(E) is finite-dimensional, then thick#(P) = .7° C 9.
Proof.

1) As P weakly generates 7 by Lemma [2.2.13} Hom (@ pcp P, —): 7 — D(E) is an equiv-
alence by (the proof of) [Kel94, Thm. 4.3]. Its inverse takes E to Ppcp P, and hence
identifies ¢ = (P+>0,PL<0) with the standard t-structure on D(E), as this is the silting
t-structure associated with the silting object E in D(E). In particular it also identifies the
simple objects in the hearts. The rest is clear since (by definition) 2 is the triangulated
subcategory generated by the simple objects of Oy, while on the other side D¢q(F) is the
triangulated subcategory generated by the augmenting dg E-modules (note that these lie
in Dgg(E), since H(E) = End(@ pep P) is finite-dimensional).

2) The assumption that H*(E) is finite-dimensional ensures that perf(F) C Dg(FE), and
thus we get thick & (P) C 2 from 1). O
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The following result was suggested by Bernhard Keller. It establishes a Koszul duality be-
tween simple-minded collections and silting collections.

Theorem 3.4.2. Let 7 = HY(.7) be a compactly generated dg-enhanced triangulated category.
For a compact silting collection P in 7 such that End g (@ pep P) is finite-dimensional, let L
be the set of simple objects in the heart of the silting t-structure associated with P.

1) The dg algebra End (B, L) is the dg Koszul dual of End (D pep P)-

2) If H"(End z(@pep P)) is finite-dimensional for all n € Z, then End (B pep P) is the
dg Koszul dual of End (@, L)-

Proof. For brevity we write P =@ p cp P and L=, .. L.
1) By definition, the cohomology of F = End{;(P) is given by
H"(End 5(P)) = Hom g (P, P[n])

and therefore is concentrated in non-positive degrees. By Definition the Koszul dual
of the non-positive dg algebra F = End§(P) is given by

E"& = REndp(Lg),

where Lg is the sum of the simple H°(E)-modules viewed as dg E-modules concentrated
in degree 0. To compute this, we use the equivalence D(F) — .7 from Lemma which
takes Lp to L and therefore provides a quasi-isomorphism

End 5(P)"*¢ = E"'® = REndg(Lg) ~ End ~(L).
2) This follows from [Fus25, Thm. 4.17], since End§(L) is the dg Koszul dual of Endg~(P)
by 1). O

In the case of finite-dimensional algebras (and analogously for non-positive dg algebras with
finite-dimensional total cohomology) one can prove Theorem 2) more directly. The proof
is interesting since it uses an approach that was used in |[Zha23| to construct silting collections
corresponding to simple-minded collections in D¢4(A), where A is a non-positive dg algebra with
finite-dimensional total cohomology.

Theorem 3.4.3. Let A be a finite-dimensional algebra. Let L be a simple-minded collection in
D" (modgq-A) and P be the corresponding classical silting collection in K" (projg,-(A)) under the
bijection from Theorem|2.4.4, Then REnda(@ pcp P) is the dg Koszul dual of REnda(P ¢, L).

Proof. For brevity we write L = @, L'. The cohomology of E' = REndA (L) is given by
H™(E') = H"(REnd4(L)) = Hompp (modyy-a) (L, L[n])

and therefore is concentrated in non-negative degrees, and moreover

HO(E!) = Home(mOdfd—A) (Lﬂ L) = @ EndDb(mOdfd—A) (L/)
L'el

is semisimple. Hence by definition the Koszul dual of E' is

E = REndg (H°(E")).
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Let L° be the sum of the simple A-modules and A' = REnda(L°) the Koszul dual of A viewed
as a dg algebra concentrated in non-positive degrees. As is explained in [Zha23| we obtain a
commutative diagram

perf(E'") —— perf(A') —2— DP(modq-A)

1 I o1

Diu(E') —Y— Di(A) —2— KP(injy,-4) —— K"(projg,-A)

where v~ ! is the inverse Nakayama functor and the horizontal functors ¥ and ® are equivalences
defined by

d=-o% I U =—xLo (L)

Note that the definition of ¥ implicitly also uses the equivalence induced by the quasi-isomor-
phism E' = REnd 4 (®~!(L)) induced by ®, which we leave out for brevity.

Now observe that by construction of the diagram the equivalences in the bottom row
map H°(REnd4 (L)) = Endpb (modg,-4)(L) to P, and therefore we obtain a quasi-isomorphism

REnd4 (L)' = E = REnd4(P). O

Remark 3.4.4. Koszul duality of End (@ pep P) and End (@, L) does not imply that P
and L correspond to each other. For a (trivial) counterexample one can simply shift £ or P, and
for further non-trivial examples with the same dg algebras occuring see Examples and

3.5 Some small examples: the A; quiver

We illustrate Theorem by some examples over the algebra A = k(2 — 1). For a simple-
minded collection £ in DP(modg-A) and a silting collection P in K"(projg,-A), let E =
REnd4(@pcp P) and E' = REnda(@, ., L). To compute the dg Koszul duals of E and
E' we use the description of the dg Koszul dual from Definition m

Recall that for a dg algebra B and dg B-modules X and Y, the dg algebra REndg(X,Y)
can be computed by replacing both X and Y by K-projective resolutions, i.e. quasi-isomorphic
perfect dg modules. Replacing both is convenient to determine the composition of morphisms,
as otherwise one would have to use formal inverses to quasi-isomorphisms. The degree n part
of REndp(X,Y) consists of all B-linear morphisms X — Y[n] (not necessarily dg morphisms),
and the differential is defined by d(f) = df — (—1)/Ifd. Alternatively one can use K-injective
resolutions. If B has trivial differential, K-projective resolutions are just projective resolutions.

Example 3.5.1 (The standard example). Consider the standard simple-minded collection £ =
{1,2} consisting of the simple A-modules, and the corresponding standard silting collection
P = {1,2} consisting of the indecomposable projective A-modules.

1) We have E = REnd 4(A4) = A, viewed as a non-positive dg algebra concentrated in degree 0
with trivial differential.

2) To compute E' = REnd4(1 @ 2) we replace the non-projective simple by its projective

resolution: 1 = (2 — 1). From this it follows that E' is 7-dimensional, as it is the direct

sum of

RHom 4(2,2) = ke, RHoma(2,1) =kfo @ kf_1,
RHomy (1, 2) = kg, RHomy (1,1) = keyy @ kepo @ kh,
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with the degrees and the differentials of the basis elements given by

Hene lea| fo | f-i]g]|n
deg | 0 010111
d | h —h olol| f [o]o

The morphisms ej1, e13 and e; are orthogonal idempotents, and the algebra structure of
E' is given by the quiver with relations

€11 —> €12 fog=h
/ f-19=e11
\ % i
0 —

gf-1=e2

It follows that the cohomology H*(E') = Ext% (1 @ 2,1 @ 2) has a basis consisting of the
classes of e, = ej; + e12, ez and g, where g spans the 1-dimensional Ext!(1,2). It is
easy to see that the map H*(E') — E' defined by sending this basis of H*(E') to these
representatives is a quasi-isomorphism.

As F = A as dg algebras, there is nothing to do: the dg Koszul dual of F is literally
REnds(1®2) = E'.

To compute the dg Koszul dual of E' we use the quasi-isomorphism E' = H*(E') = k(e; EN
ez) with |g| = 1 and trivial differential. As the differential is trivial and E' is actually (not
just cohomologically) concentrated in positive degrees, the augmenting dg E'-modules are
just the simple modules over H°(E') = (E')? with trivial action of (E')>?. K-projective
resolutions of these are given by

0 k 0
e = ; ey = NI
k ]k—dﬂk

Here the top row indicates the vertex ey and the bottom row the vertex ey, and in both
cases the left-most non-zero term is in degree 0. From this it follows that the dg Koszul
dual is

By — X By F\G=H

REnd: (e1 @ es) = \\ / FoGEay

HFy=F,
GFo=FE;
with dg structure

By similar arguments as in 2), this dg algebra is quasi-isomorphic to its cohomology, which
is k(B2 <> Ey) = E with Ey = Eay + Eao.

Example 3.5.2 (Non-standard, faithful heart). Consider the simple-minded collection £ =
{1,2[1]} and the corresponding silting collection P = {},1}. This is obtained from the standard
example by left mutation at 2.
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4)

We have £ = REnda(3 1) & k(*% L %) 2 A, with |z| = 0 and trivial differential.
Explicitly, z is the morphism z: 3 — 1.

We have E' = REnd4 (3 ©2[1]) & k(o) = *%) with |y| = 1 and trivial differential, where
y: 201] - 3[1].

Note that E = A and therefore the dg Koszul dual of F is REnd4(1 @ 2) as described
in Example above. A quasi-isomorphism E' — REnd4(1 @ 2) is given by * ! — ea,
*9[1] — €11 + €12, ¥ > g, as mentioned in Example

We already computed the Koszul dual of E' in Example where we saw that it is
quasi-isomorphic to F.

Example 3.5.3 (Non-standard, non-faithful heart). Consider the simple-minded collection £ =

{1)2[_

1]} and the corresponding silting collection P = {},2[—1]}. This is obtained from the

standard example by right mutation at 2. The corresponding heart is semisimple.

1)

2)

We have E' = REnda(} @ 2[—1]) = k(#g(_1] — *1) with |z| = —1 and trivial differential.
Explicitly, z is the morphism 2[—1] — 1 [-1].
As L is obtained from the standard simple-minded collection by shifting one object, the

algebra structure of E' = REnd 4 (1 @ 2[—1]) is the same as in Example However the
degrees and differentials are now given by

[en |ew|ea| fo| foi]g]|h
deg | 0 0 —1] —2 [2]1
d |l —h 0l 0 |—flolo

To compute the dg Koszul dual of E, we need to take K-projective resolutions of the two
augmenting dg F-modules *3/_;) and *;. These are given by

10 0 0 k

*9[—1] ) k) =

k k —k 0

I
AN

with the right-most terms in degree 0. Here the top row represents the vertex %; and the
bottom row the vertex *;_y). It follows that

En —2 5 Ep FoG=H

REndg (*9(_1] @ *1) =k ’\\ / F_1G=EFE1;

HF_,=F,
GF_1=E,
with the degrees and differentials given by

| B | Bro | By | Fy | Foy |G H
deg|[ 0 | 0 |0 =1 =221
d | H|-H| 0|0 |-F|l0]|o0

It is obvious that REndg (1 © %) is (quasi-)isomorphic to E'.
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4) Similarly to the previous examples, it follows that E' is quasi-isomorphic to its cohomology,

which is H*(E') = k(e EN ez) where e; = €11 + €12 and |g| = 2. The dg Koszul dual of E'
is computed similarly to Example the K-projective resolutions of the augmenting dg
E'-modules are given by

and from this we get

H
G
REnd g =k
1

with dg structure

Similarly to the previous examples, REnd g (e; @ es) is quasi-isomorphic to its cohomology,
which is k(Ey > By) = E where Ey = Eay + Eao.



Chapter 4

Serre functor and P-objects for perverse
sheaves on P"

In this chapter we show that the P-twist at the IC sheaf IC,, = kpn [n] is the inverse Serre functor
of the constructible derived category D?(P"), and furthermore we classify the P(-like) objects in
Perv(P™).

We begin by recalling the required definitions. In particular, following [HT06; [HK19] we
define P(-like) objects and P-twists in the general setup of dg-enhanced triangulated categories,
and we recall the notion of Serre functors introduced in [BK90]. After explaining our setup,
i.e. the constructible derived category DY (P") and the (middle-)perverse t-structure, we explicitly
describe the simple, standard and projective objects in Perv(P™). We also summarize the well-
known equivalences between perverse sheaves, parabolic category O, and a description in terms
of finite-dimensional algebras.

To show that the P-twist at IC, is the inverse Serre functor of DP(P") we use a crite-
rion adapted from |[MSO08], see Lemma To apply this in the proof of the main result
Theorem we first compute the morphisms between the simple, standard, and projective
objects of Perv(P"). This also serves as preparation for the classification of P-like objects. We
also compare our description of the Serre functor to the descriptions in terms of category O and
finite-dimensional algebras, and also to the description of the Serre functor of D?(G/B) from
[BBMO4].

For the classification of the P-like objects in Perv(PP") we first recursively construct certain
string objects from the simple and standard objects. By the classification of indecomposable
objects obtained from the description of Perv(P") in terms of finite-dimensional algebras, these
are all the indecomposable objects that are not projective-injective. We compute the Hom spaces
between the string objects via their recursive definition, which also yields canonical morphisms
spanning these Hom spaces. We then show that all string objects are P-like by determining the
composition of these canonical morphisms up to non-zero scalars, see Theorem However,
none of the string objects are P-objects except for IC,,, since only IC,, and the indecomposable
projective-injective objects can be Calabi-Yau.

The chapter is joint work with Alessio Cipriani, and has appeared as the preprint [BC25]|.

[BC25] L. Bonfert and A. Cipriani. Serre functor and P-objects for perverse sheaves on
P™. Preprint. 2025. arXiv:2506.06051v1 [math.RT].

4.1 Motivation and overview of results
A Serre functor on a k-linear triangulated category is an autoequivalence S: 4 — & such

that for any pair of objects E,F € 2 there exists a functorial isomorphism Homg(E, F) =
Homg (F,S(E))Y. Serre functors generalize Serre duality from algebraic geometry, and are an

53


https://arxiv.org/abs/2506.06051v1

CHAPTER 4. SERRE FUNCTOR AND P-OBJECTS FOR PERVERSE SHEAVES ON P"

important tool in the theory of triangulated categories. For instance, they can be used to con-
struct left (resp. right) adjoints to functors having a right (resp. left) adjoint.

Another important class of automorphisms of triangulated categories in algebraic geometry
and representation theory are the spherical twists associated to spherical objects [STO01]. For
example, these can be used to construct braid group actions on triangulated categories, and
certain functors from representation theory such as shuffling functors can be realized as spherical
twists [Len21|. By definition, an object E' € Z is d-spherical if there is an isomorphism of graded
algebras Endy, (F) = k([t]/(t?) with deg(t) = d and E is d-Calabi-Yau. The value of the spherical
twist ST at X € 2 is then defined by the triangle

Hom%,(E, X)® E <% X — STg(X) — Hom},(E, X) ® E[1].

Consider the constructible derived category DP(P") of the complex projective space P"
with the usual Bruhat stratification, whose strata (the Bruhat cells) have complex dimension
0,1,...,n. By definition, D?(PP") consists of those complexes of sheaves of k-vector spaces on
P™ whose cohomology is locally constant on all strata of P*. By gluing the standard t-structures
on the constructible derived category of each stratum (shifted by the dimension of the stratum)
one obtains the (middle-)perverse t-structure on D2(PP?), and its heart is the category Perv(P")
of (middle-)perverse sheaves [BBD82|. This perverse t-structure plays an important role in rep-
resentation theory since there is an equivalence Perv(P") = O} (sl,+1(k)), where p C sl, 1 (k)
denotes the parabolic Lie subalgebra with block sizes (n,1). As this perverse t-structure has
faithful heart, this yields an equivalence DP(P") = DP(O} (sl,+1(k))) [BGS96].

The category of perverse sheaves on P" is moreover equivalent to the category of finite-
dimensional modules over an explicit finite-dimensional algebra A,, [KS02]. Since A,, has finite
global dimension, it follows from results of Happel [Hap88| and Bondal-Kapranov [BK90] that
DP"(modgy-A,,) admits a Serre functor, namely the left derived functor of the Nakayama functor
AY @4, —. However, these results do not provide a description of the Serre functor that is
intrinsic to the constructible derived category DP(P").

In the case of the complex projective line P! = ptUA! stratified by a point and its complement,
such an intrinsic description is provided in [Woo10]. In this example, the category Perv(P') has
two simple objects corresponding to the two strata. Explicitly, these are the skyscraper sheaf
ICy = incli ky, and the shifted constant sheaf IC; = kp. [1]. The simple perverse sheaf 1Cy
is a 2-spherical object in DP(PP!), and the inverse Serre functor for DP(PP") is then given by
S™! =STi,,.

The main result of this chapter is a generalization of this description of the Serre functor to
P™. In this case, the simple perverse sheaf IC,, = kp.[n] corresponding to the open stratum is
not a spherical object, but rather a P™-object in the sense of Huybrechts and Thomas [HT06]|.
Explicitly this means that there is an isomorphism of graded algebras Endp. (IC,,) = k[t]/(t" 1)
with deg(t) = 2, and that IC,, is 2n-Calabi—Yau. The corresponding generalization of spherical
twists is provided by the P-twists from [HTO06|, which are defined as certain “double cones”, see
Definition [£.2.3] below. In our situation, we obtain:

Theorem 4.1.1 (Theorem |4.3.11)). The inverse Serre functor S=! of DY(P™) is isomorphic to
the P-twist PTic,, .

This in particular recovers the result from [Wool0] for P!, since by definition a P!-object is
the same as a 2-spherical object, and for any P'-object E we have PT g = ST%.

The proof of Theorem relies on a characterization of the Serre functor adapted from
[MS08], see Lemma [4.3.10} The main idea is to compare the “candidate inverse Serre functor” to
the inverse Serre functor by studying its action on the injective and projective-injective objects.
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In [MS08] the dual version of this criterion was used to describe the Serre functor of D®(Og(g))
for any finite-dimensional complex semisimple Lie algebra g. By an entirely formal argument
this description also descends to Db(Og (g)) for any parabolic subalgebra p C g, and thus also
to DP(P"). In Section we summarize these results and their relation to the description of
the Serre functor in terms of finite-dimensional algebras, and also relate our description of the
Serre functor of DP(P") to the description of the Serre functor for the full flag variety obtained
in [BBMO4].

Motivated by Theorem one may ask whether there are further P-objects in Perv(P™).
However, it is easy to see that no indecomposable object except for IC, and the projective-
injectives can be Calabi-Yau, see Corollary [£.4.2] Hence any other indecomposable object E can
at best be P¥-like in the sense that Endp. (E) = k[t]/(t*+1).

To describe the indecomposable perverse sheaves, in Section [£.4.2) we inductively construct
certain string objects M;tb € Perv(P") for 0 < b < a < n, starting from the simple objects
and (co)standard objects. Alternative constructions of these objects can be found in [CL23],
where they are used to describe the wall-and-chamber structure of Perv(P"). Since Perv(P") =
A,-modgy for a special biserial algebra A,,, the classification of indecomposable modules over
special biserial algebras from [BR87; WWS&5| shows that the string objects together with the
indecomposable projective-injective objects are all the indecomposable perverse sheaves.

As the indecomposable projective-injective objects are O-spherical, the second result of this
chapter then shows that all indecomposable perverse sheaves are either P-like or 0-spherical:

Theorem 4.1.2 (Theorem 4.4.17). Let 0 < b <a < n.
1) If a — b is even, then the string objects Mib are P(aT0)/2_[ike.
2) If a — b is odd, then the string objects Mf’b are Pe=b=1/2_[jke.

As easy consequences of Theorem one also obtains a classification of the spherical,
spherelike and exceptional objects in Perv(PP"), see Corollary In particular, this recovers
the classification of the exceptional objects from [PW20].

The proof of Theorem [£.1.2] is rather technical and occupies most of Sections [£.3] and [£.4]
The first step is to compute Endpn (Mib) by chasing the long exact sequences obtained from
the inductive construction of the string objects, see Section As the base cases of this
construction are the simple objects and the (co)standard objects, this requires us to explicitly
fix morphisms between these objects and to determine their compositions, see Sections
to @ The computation of Hompn (Mib,Mib[Qi]) also yields canonical non-zero morphisms
@2, : M, — M ,[2i], and the final step is then to check that ®2/, &2 = &2/ up to a non-
zero scalar (Wheﬁever this is possible by degree reasons), see Section To quickly check
conjectures about Ext spaces we often used Haruhisa Enomoto’s FD Applet [Eno].

4.1.1 Notation

In this chapter k denotes an algebraically closed field of characteristic 0. The k-linear duality
functor is denoted by (=) = Homy(—, k).

For a k-linear triangulated category 2 and A, B € & we denote the total Hom space by
Homy, (A, B) = @, c;, Homg (A, Blr]), with the degree r part given by Homg (A, B[r]). We do
not write shifts of morphisms, i.e. we just write f: A[1] — B[1] for f: A — B.

We write RF: DV (&) — D' (%) for the right derived functor of a left exact functor F': &/ —
A of abelian categories. As usual, we will however suppress the notation for derived functors
for functors arising from geometry, such as the pushforward. The right derived functor in the
oo-categorical sense will be denoted by RF: DI («) — DT ().
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The following table is a list of notation for the morphisms in D2(P") between the simple
perverse sheaves ICy, standard objects Ay, (see Section [4.2.4)) and string objects M;Lb € Perv(P")
(see Section [4.4.2]) which will be used throughout the chapter.

Morphism ‘ Definition H Morphism ‘ Definition
€1t 1Ck = 1G[r] Section |4.3.1 || Ya—2p: M:—zb — AG[1] Section |4.4.2
pea: Ay = ICi[1 — k] | Lemma [£33] || mZ ,: MY, — ICy[r] Lemma [1.4.4]
Op 1t Ak — Ayfr] Lemma (4.3.6 || ng, - M;b — IC,[r] Remark [4.4.6|
G 1C — Aglr] Lemma [4.3.7 || ®%,: MZb — Mib[%] Remark [4.4.14
tap: Dg — M, Section 1.4.2] || &,,: MF_,,, — M7,[2i] | Remark |[4.4.14
Tab: M;b — MI_M Section [4.4.2 gi_%b: Ag_9; — M;b[Qi] Remark |4.4.14

4.2 Definitions and background

4.2.1 P-objects and P-twists

We begin by recalling the P-twists at P-objects from [HT06], using the nomenclature from [HK19).
Let Z be a k-linear triangulated category.

Definition 4.2.1. Let £ € 2 and k € Z with k > 0.
1) E is P*-like if there is an isomorphism of graded k-algebras End},(E) = k[t]/(t**1) with
deg(t) = 2.

2) E is a P*-object if it is P*-like, Hom},(E, X) is finite-dimensional for all X € 2, and E is
2k-Calabi-Yau.

3) A P-(like) object is a PF-(like) object for any k.
Recall that E' € 2 is d-Calabi—Yau if there is a natural isomorphism
Homg (E, —) = Homg(—, E[d])".

It is immediate from the definitions that if a P*-like object E is d-Calabi-Yau, then necessarily
d = 2k, cf. [HK25| Def. 2.1] and [HT06, Rem. 1.2].

Slightly more generally, [Krul8] and [HK19| also introduced P*[d]-(like) objects, for which 1)
is replaced by End,(E) = k[t]/(t*T1) with deg(t) = d. Thus P¥[2](-like) objects are the same as
P*(-like) objects. As well-known special cases, P![d]-objects and P*[d]-like objects are the same
as d-spherical objects and d-spherelike objects, respectively, and P°-like objects are the same as
exceptional objects.

The following lemma provides a useful criterion for when P*-like objects are P*-objects.

Lemma 4.2.2. Let E € 9 be a P*-like object.
1) E is 2k-Calabi-Yau if and only if the composition pairing
Homg(F, X) ® Homg (X, E[2k]) — Homg(E, E[2k]) 2k

is non-degenerate for all X € 9.

2) If 2 = DP() for an abelian category <7 of finite global dimension with enough projectives,
then E is 2k-Calabi-Yau if and only if the composition pairing is non-degenerate for all
X = P[r] with P € Proj(«/) and r € Z.
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Proof.

1) For spherelike objects, this is [ST01, Lemma 2.15]. The same argument works for P-like
objects, as it only requires Homg (E, E[2k]) 2 k

2) For spherelike objects, this is shown in [Len21, Lemma 3.3]. The same argument works for
P-like objects, as it only requires Homg (F, E[2k]) = k and the first part of the lemma. O

For the rest of this subsection we fix a dg enhancement of . By definition, a dg enhancement
consists of a k-linear pretriangulated dg category & and an equivalence of triangulated categories
HY(2) = 2. Note that if 2 is pretriangulated, then Fung, (2, 2) is again a pretriangulated dg
category by |[BK91, §3, Examples, 4.]. In particular the cone of a morphism of dg functors is
again a dg functor. N

If 2 has all coproducts, then for an object E € & there is the dg functor — ® E: dgVect, —
.@, which is defined as the right adjoint to Hom é(E7 -): (7 dgVect,. We denote the counit
of this adjunction by ev: Hom(E, —) ® E — id.

A generalization of spherical twists at spherical objects is provided by the P-twists at P-objects
from [HTO06, §2]. These are defined as follows:

Definition 4.2.3. Let E € & be a P-like object. Assume that the tensor product Homé(E, X)®
E € 9 exists for all X € 9.

1) Pick a closed morphism f € Hom(E, E[2]) of degree 0 representing an algebra generator

of EndZ,(E). Define the dg functor PTp = cone(av): 2 — Z by the following commutative
diagram in Fung,(Z, 2):

(Hom(E, -) ® E)[-2] 24—“¥Hom;(E, ~) ® E —— cone(i* @ id — id 1)

cone(ev)
(4.1)
Here &v: cone(t* ® id —id ®f) — id 5 s the canonical morphism of dg functors induced by
ev, which exists since evo(t* ® id —id ®f) = 0.

2) The P-twist at E is the induced triangulated functor PTg = HO(IS'T'E): 72— 9.

Remark 4.2.4.

1) A priori, the functor PTg: 2 — 2 depends on the choices made in the definition. How-
ever, as F is a P-like object, the generator t: E — E[2] of Endy,(E) is unique up to
non-zero scalar, and rescaling ¢ obviously results in naturally isomorphic triangles. Simi-
larly, choosing a different representative for ¢ results in quasi-isomorphic cones. By [AL22]
Thm. 3.2], the functor PTg: 2 — 2 is furthermore independent of the choice of cones and
factorization ev. Thus PTg: 2 — Z is well-defined up to natural isomorphism.

2) The assumption that Hom(E, X) ® E exists for all X € 2 is automatically satisfied if 2
has all coproducts, or if Hom §(E, X) is finite-dimensional.
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3) If 2 = DT (&) is the derived category of an abelian category with enough injectives,
a dg enhancement of Z is given by the pretriangulated dg category 9 = Cht (Inj(«))
together with the canonical equivalence Ho(é) = K" (Inj(«/)) — D" (&). Hence by
definition, to compute Hom_;)Z(E,X) for a P-like object £ € & and any X € .@, one
first has to replace E by a (fixed) injective resolution. However, the derived Hom functor
RHomy (E, —) = Homgp+ (o) (£, —): 9 — dgVect,, is quasi-isomorphic to Homz(E, —).
Thus, in this situation we can use RHomy (F, —) instead of Hom~(FE, —) to define the

2
P-twist PTg: 2 — 2. This is easier to compute in practice, since here FE does not need

to be replaced by an injective resolution.
Remark 4.2.5.

1) Spherical twists at spherical objects can be generalized to spherical twists at spherical
functors. Similarly, P-twists at P-objects can be generalized further to P-twists at (split)
P-functors, see [Add16; [Caull; |AL19]. However, we will not use these constructions.

2) By [Segl§|, any autoequivalence of a triangulated category can be realized as a spherical
twist at a spherical functor. For P-twists at P-objects this can be carried out explicitly, see
[Segl8, §4].

The following main properties of P-twists were proved in [HT06| using Fourier—Mukai trans-
forms. We briefly sketch how the required properties can be shown purely in terms of dg-enhanced
triangulated categories. That all statements carry over to the dg setup is presumably well-known
to experts, see for instance [HK19, Prop. 2.5].

Proposition 4.2.6 (Huybrechts-Thomas). Let E € & be a P*-object.
1) PTg: 9 — 2 is an equivalence.
2) PTr(FE) = E[-2k].
3) If E is spherical (i.e. if k =1), then PTg = ST%.

Proof.

1) A computation similar to the proof of [ST01, Lemma 2.8] shows that PTg has a left
adjoint PT’;, which is defined dually. Moreover, by a similar argument and the Calabi-
Yau property it follows that PT%; is also right adjoint to PTg. The claim then follows by
the arguments from [HT06, Prop. 2.6].

2) This is straightforward, see [HT06, Lemma 2.5] for details.

3) See [HT06, Prop. 2.9]. Alternatively, this can be seen by comparing the diagram defining
STZ to the octahedral axiom diagram for the factorization in the definition of the P-
twist. O

4.2.2 Serre functors

We recall the notion of Serre functor from [BK90).

Definition 4.2.7. A Serre functor for a k-linear triangulated category & is a functor S: ¥ — 2
such that there are natural isomorphisms

Homg(X,Y) = Homg(Y,S(X))".
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As an immediate consequence of the Yoneda lemma, there is at most one Serre functor for 2
up to natural isomorphism [BK90, Prop. 3.4].

For 2 = DP(A-mody) for a finite-dimensional algebra A, the Serre functor has the following
description:

Proposition 4.2.8 (Happel). Let A be a finite-dimensional algebra. Then DP(A-mod;q) has
a Serre functor if and only if gldim(A) < oco. In this case, the Serre functor is the left derived
functor of the Nakayama functor AV @4 —.

Proof. If gldim(A) < oo, then the left derived Nakayama functor is a Serre functor by [Hap88|
Prop. 1.4.10]. Conversely, it is clear that if S is a Serre functor, then

Ext’y (X, L) = Hompb (4-mody) (X, Lir]) = Home(A_modfd)(L, S(X)[-r])Y

for any X € A-modg and any simple A-module L, and the right-hand side vanishes for r
large enough such that S(X)[—r] € 279, where 2> denotes the positive part of the standard
t-structure. O

4.2.3 The constructible derived category DP(P")

We recall the constructible derived category of the complex projective space P = P¢, which will
be the focus of the rest of the chapter. The same construction and all of the tools work in much
greater generality, see [BBD82|, [HTTO8| or [Ach21].

Consider P™ with the usual stratification by Bruhat cells, i.e. by the subspaces

Sg={lro::@xp-1:1:0:---:0]} CP"

for 0 < k < n. We identify S = A* by projection to the first k coordinates. We denote the
strata inclusions by 7;: A¥ — P", and write 2;,: P¥ < P". By slight abuse of notation, we also
write 7, and 1 for the inclusions of A* and P*, respectively, into any P! with k <1 < n.

We denote by DP(Sh(P")) the bounded derived category of sheaves of finite-dimensional
k-vector spaces on P"”. The constructible derived category is the full triangulated subcategory
DP(P™) € DP(Sh(P™)) consisting of the complexes whose cohomologies are (locally) constant on
all strata. For brevity we write Hompn (—, —) = Hompp pn)(—, —). We emphasize that we always
consider the constructible derived category with respect to a fixed stratification, in constrast to
e.g. [Ach21].

The constructible derived category has a natural t-structure given by

2'<0 = (F e D?(X) | ;X € D2(S)=7* VS € S},
2'2% = {F e D?(X) | 4,X € D2(S)="* vS € S}.

This is obtained by iterated gluing of the shifted (by f% dim Sy, = —k) standard t-structures on
DP(S;) = DP(k-modsy) along the recollements provided by the strata inclusions, see (the proof
of) |[BBD&2, Prop. 2.1.3]. Its heart is the category of (middle-)perverse sheaves Perv(P").

The Verdier duality functor on DE(P") is D = RHomppypn)(—,wpn ), where wpn = apnkp;
(with apn : P — pt) is the dualizing sheaf. Since P™ is smooth, we in fact have wpr = kpn [2n].
Verdier duality restricts to a (contravariant) involution D: DY(P?) — DP(P"). Moreover, from
the definition of perverse sheaves it follows that D preserves Perv(P™).

By variants of Beilinson’s theorem (see [BGS96, Cor. 3.3.2] or |[BBMO04, Prop. 1.5]) the
perverse t-structure on DP(IP") has faithful heart. This means that there is a realization functor,
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i.e. a triangulated functor D (Perv(P")) — DY(P") such that the diagram

Perv(P")

[

DP(Perv(P")) —— DY (P")

commutes, and that the realization functor is an equivalence. In particular, the realization
functor provides isomorphisms Extpeyypny(X,Y) = Hompx (X, Y[r]) for all 7 > 0 (note that for
r < 1 this holds even if the t-structure does not have faithful heart). For » = 1 this allows

to interpret triangles Y Lz x o Y[1] with X,Y,Z € Perv(P") as short exact sequences
0-Y 5 2% X - 0in Perv(Ph).

4.2.4 Simple, standard and projective objects

We recall the explicit description of the simple perverse sheaves, and also the standard and
costandard objects. This also allows one to describe the indecomposable projective and injective
perverse sheaves, and derive some important properties of Perv(P"). While all of this is well-
known, see for instance |[Ach21; BBD&2; BGS96; (CW22; IMV87|, the explicit constructions in
this subsection are central to the arguments in Sections [4.3] and [£.4]

Simple objects

The simple perverse sheaves are the IC sheaves ICy, = g 1.kun[k] for 0 < k < n, where ji 14
denotes the intermediate extension functor. As all strata closures are smooth, the IC sheaves
are extensions by zero of shifted constant sheaves supported on the strata closures, i.e. we have
ICk = 1 +kpr [k]. Note that D(ICy) = ICy, and t—1 425 _;IC; = IC,_4[1] and zk,l’*zic_lICk o
ICk_1[-1].

Standard objects

For 0 < k < n, the standard objects A = j.1kax[k] are perverse sheaves. We have Ay = ICy,
and for k > 1 the recollements provide triangles

0
d)k—l k Mk, k

IC) 1 —=25% A ICs 225 10,1 [1], (4.2)

where e,lc),Pl: ICk — 1—1 42} IC, = IC,_1[1] is the adjunction unit and pg 5 Ag = J5,1751Cr —
ICj, the adjunction counit. Note that for the applications in Sections [.3] and [£.4] one has to be
careful with the choice of the (co)units, see Section for details. The notation here is more
complicated than necessary at this point, but chosen for consistency with Sections and
below where we will describe more general morphisms ¢y ;: IC; — Ayfr]and pg 2 Ap — IC[I—k].

Interpreted as short exact sequences in Perv(P"), the triangles are the composition
series of the standard objects.

Dually, the costandard objects Vi, = ji, «kur [k] = D(Ag) are also perverse sheaves. Explicitly,
their composition series are given by Vo = ICy and the recollement triangles

ICk — Vi — Ick,1 — ICk[l}

for k > 0.
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Projective objects

The category Perv(PP") has enough projectives. The explicit construction of the indecomposable
projective objects from the proof of [CW22, Thm. 4.6] shows that P, = A,,, while for k < n the
object Py arises from a triangle

Ok, kt1
Ak+1 — Py — Ak —+> Ak+1[1]. (43)

In particular the indecomposable projective objects have A-flags. The morphism 6y ;41 will be
described precisely after Lemma [1.3.6]

Dually, Perv(PP") also has enough injectives, and the indecomposable injective objects have
V-flags given by I,, = V,, and the triangles

Vi = Iy = Vig1 — Vk[l]

for k < n.

Highest weight structure

It follows that Perv(P™) is a highest weight category in the sense of |[CPS88| (see [BS24] for a
modern treatment) with respect to the order 0 < 1 < --- < n, since the (co)standard objects
as defined above are indeed the (co)standard objects in the sense of highest weight categories:
the triangles defining the indecomposable projective objects and the composition series of the
standard objects show that Aj is the maximal a quotient of P, such that all composition factors

except the top are IC; with [ < k.
By [Don98, Prop. A2.3] or [BS24, Rem. 3.28], the highest weight structure of Perv(P™)
gives a bound on the global dimension, namelim(Perv(]P’n)) < 2n. Since the perverse
3 ~

t-structure has faithful heart, from Lemma below we get Ext%ZrV(Pn)(ICmICn) =
Hompn (IC,,, IC, [2n]) = k, and thus gldim(Perv(P™)) = 2n.

4.2.5 Other descriptions of the category of perverse sheaves

There are two other well-known descriptions of the category Perv(P™), namely in terms of
finite-dimensional algebras and via Lie algebras. We will not use these descriptions throughout
the chapter, with the exception that the classification results in Corollaries [4.4.19| and [4.4.20)
rely on the classification of indecomposable perverse sheaves, which is obtained from the finite-
dimensional algebras description.

The Lie-theoretic description of the constructible derived category is given by the equivalence
D2(P™) = DP(Of(sl,11(k))) from [BGS96, Thm. 3.5.3], see also |Ach21, Rem. 7.3.10] for an
overview. Here p C sl,,11(k) is the maximal parabolic subalgebra with block sizes (n,1). This
equivalence identifies the standard t-structure on D (O} (sl,,1 1 (k))) with the perverse t-structure
on DY(P"), and thus yields Perv(P") = O} (s, (k)).

Furthermore, there is an equivalence Perv(P") & A,,-modgg, where

by bo brn_1 b, a;_1a;
An=k| 0O T 71 T 7 T 7Pa-1T Pon |, bt
— — — —_ a;b;—b;—1a;-1
ai az An—1 an bnan

[ad

The algebra A, is directly linked to the Lie-theoretic description by an equivalence O (sl,,+1)
Ap-modgy, see [KS02, Prop. 2.9] and [Str06, Ex. 1.1].
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From the finite-dimensional algebras description, it is very easy to check the properties men-
tioned in Section [£:2.4} for instance one can easily write down the indecomposable projective
objects and the standard objects to see that A,-mod;4 is highest weight. One can also explic-
itly determine projective and injective resolutions of the simple A,,-modules, which in particular
shows that gldim(A,) = 2n.

The algebra A, is special biserial, and thus [BR87, p. 161, Thm.] and [WW85| Prop. 2.3
provide a combinatorial description of the indecomposable A,,-modules. Explicitly, there are the
indecomposable projective-injective objects P; for 0 < ¢ < n — 1, and certain string modules
Mib with 0 < b < a < n, see [PW20, §2.4] or [CL23, §4] for an explicit list. It follows that A,
has n + (n+1) +2("F') = n + (n + 1)? isomorphism classes of indecomposable modules. In
Section below we provide a construction of the string modules in terms of perverse sheaves,
which can also be found in [CL23].

Note that it is a special property of P™ that the indecomposable perverse sheaves can be
classified. For more general (partial) flag varieties, the category of perverse sheaves is usually of
wild representation type.

4.3 Description of the Serre functor of D (P")

In this section we show that the IC sheaf IC,, corresponding to the open stratum is a P™-object in
DP(P"), and that the P-twist at IC,, is the inverse Serre functor of DP(P™). To do this, we first
need to understand morphisms between simple perverse sheaves, and morphisms from simple to
projective perverse sheaves. These technical results will also be used in Section

4.3.1 Morphisms between simples

Recall that for a variety X we have by definition Homx (ky,kx[r]) = H"(X), see e.g. [Ach21]
Rem. 1.2.5]. This allows to determine the morphisms between the shifted simple perverse sheaves
in terms of the stratification. We briefly recall this well-known fact, see for instance [KS02, p. 217,
after the Remark].

Lemma 4.3.1. For 0 < k,l <n andr >0, there is an isomorphism of vector spaces

Hompn (ICy, IC;[r]) = H™~F=U(P! 0 PF)
In particular, if k = 1 there is an isomorphism of graded algebras Ends.(ICy) = H*(PF) =
k[t]/(t*+1) with deg(t) = 2.

Proof. This is obvious from +/1C}, & kp: [k] for k > I, respectively 2} 1C; = kp [2k — ] for | > k,
and the definition of cohomology. O

We want to fix non-zero morphisms €j ;: IC; — IC[r] in a way that is compatible with
composition. This requires us to inductively fix the (co)units for the recollement adjunctions, as
follows.

Suppose we have already fixed the adjunction (co)units 7;: idpypr+1) = 4«2 and €;: u}*zi —
idpp (pi+1y for the recollements corresponding to the strata S with I +1 < k < n, such that
mer = e1—1m—1: 1C; — IC[2] and D(g;) x = (m)m(x) for X € DP(P'*1), and that the composition

IC, =ty ICk_1[1] SN IC[2] is non-zero.
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The inclusion of the (k + 1)-dimensional stratum Sj1 = A¥*1 provides the recollement

*

1y Jk+1,!

/\ /*\
D} (PF) — s D(PFH!) — L DP(akH)
\_/ \_/
1, Jht1,

As part of the recollement data, there are the adjunction unit 7 : idpper+1) — 04,425 and the
counit & : 1, .15, — idpp (pr+1). These can be chosen to be Verdier-dual to each other in the sense
that D((Zx)p(x)) = (k) x for X € DR(PFH1).

The proof of the following lemma is based on conversations with Jon Woolf.

Lemma 4.3.2. Let 0 <k <n-—1.
1) The composition IC, Sk, ICk+1[1] LN ICk[2] is non-zero for k > 0.
2) The composition ICj 41 LN ICk[1] SN ICk+1(2] s non-zero.
Proof. To see that the compositions are non-zero, we apply aps+1 , to them, where apr+1: P+l

pt. We have api+1 ,IC) = ED?:O kpi [—F + 2i] since

Hompy (k apk+17*ICk[T]) = Hompr+1 (Kprt1, 2k Kpr [k + 7))

N{]k if 0 <k+r <2kandk+r even,

pt>

0 else,

and analogously we get apr+1 ,ICp i1 = @kH kpt[—Fk — 1+ 27]. Similar computations show that
aprt1 Vi1 = Kpelk + 1] and apet1  App1 = kpi[—k — 1] (for the latter, use apri1 ., = apria ).
Hence applying apr+1 . to the triangles defining Vi41[1] and Ayy[2] yields triangles

k k+1
@k [fk+2i]m>@kpt [~k + 2i] = kp[k + 2] %@kpt —k+42i+1],
=0 1=0 1=0
k+1 apeir . () k k+1 .
P ke[ + 2i] —>@k —k +2i + 2] = kpy[1 — k] = @ kpe [k + 20+ 1].
=0 =0

Since Hompt (K¢, kpi [7]) = 0 for 7 # 0, the morphisms apri1 ,(€x) and apr+1 . (7)) must identify

all the summands occuring in both their source and target.

It follows that the composition aps+1 ,(ICk =5y ICk 1 [1] 5 1C,[2]) identifies all the sum-
mands occuring in both apr+1 ICy and aps+1 ,ICk[2], and such a common summand exists if and
only if k£ > 0.

For the other composition, one sees similarly that apr+1 ,(ICk41 RN ICL[1] =% ICk41[2])
identifies all the summands occuring in both apr+1 ,ICyy1 and apr+1  ICr11[2], and thus is non-
Zero. O

In particular, since Hompn (ICy,ICg[2]) is 1-dimensional by Lemma we have 7€ =
Aek_1Mk—1 for some scalar A # 0. Set n, = %ﬁk and e = %ék. These are again adjunction
(co)units for the recollement for gluing the (k + 1)-dimensional stratum, and rescaling both by
the same factor ensures that the new (co)units are still Verdier-dual to each other. Note that to
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ensure that the recollement triangles are isomorphic to those obtained from the original (co)units,
one also has to rescale the (co)units for the adjunctions between jj41,1, Jhp1 and Je41 x.
By construction, the square

ICk L ICk_1 [1]

5,{ JE,H (4.4)

ICh1[1] —2— 1Ck[2)

now commutes, as desired. Moreover, the composition ICj, =5 TCy1[1] 25 1C[2] is still non-
zero, which completes the induction.

From now on, we assume the (co)units 7, € of the recollement adjunctions are fixed for all
k, and make the square commute. With this data, we can now fix the desired morphisms
€11 1C, — IC[r] spanning Hompn (ICy, IC[r]) # 0 (with |k — 1] <r <[k — | + 2min(k,[) and
r — |k — | even), as follows.

Set e,lf,k_l =ng_1: IC; — ICk_1[1] and e,1€7k+1 = ¢ : ICy — ICk41[1]. Furthermore, for k > 0
let €f ) = €}_1 x€hx_1, Which is a generator of Endpn (ICy) by Lemmas and W The
proof of Lemma shows that Hompn (ICy, IC;[r]) is spanned by the composition

el el el (62 )(7-—k+1)/2
IC), =5 IC,_q[1] —2 .. 5 IC [k — ] —

for I < k, and by

()

ICl [r]

1
€k, k41

IC[r + b — 1] =545 10, [r + b — [+ 1] —222 S0 10y o]
for I > k. We write €} ;: ICy — IC[r] for these compositions. Note that D(e} ;) = €], since
D(€k k—1) = €h—1,-

As an immediate consequence of the relation (4.4), in fact any non-zero composition of the
morphisms €, ,; between ICy, and ICy[r] yields the same morphism. This shows that €}, €}, =
e’,;ts if Hompn (ICk, IC,,[r + s]) # 0.

The above construction also yields the following explicit description of the algebra
.., Homgp.. (ICy, IC;), as obtained in [KS02, Proof of Prop. 2.9].

ICk

Proposition 4.3.3. There is an isomorphism of graded algebras @, , Homp. (ICy,1C;)) = E,,,
where ’

€0,1 €1,2 €n—2,n—1 €n—1,n
— — — —3 €1.0€
En:k 0 1 nil n /(Ek kekkl’o_zl;l k€k,k )
— | S — +1,k€k,k+1 —1,k€k,k—1
€1,0 €21 €n—1,n—2 €n,n—1

with deg(ex xr1) = 1.

Proof. The isomorphism E, — @k,lHomfﬁm (ICk,IC;) is given by exp+1 — e,lv’kil, which is
well-defined since Hompn (ICo,1Cy[2]) = 0 and the square (4.4 commutes for all k. Surjectivity
follows from the proof of Lemma and Lemma One then easily checks that the graded
dimensions of both algebras agree. O

Remark 4.3.4. For 0 < k < m we moreover have ei’k = zic(ellﬂ+17k). Indeed, naturality of the
recollement triangles yields the commutative diagram

i
ICs[—1] =5 ICky 1 —— Vg1 —— ICy,

l!fc(fiu,k)l lezlc-u,k l l

IC,[1] —4 1Ck[1] 0 ICL[2].
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o 2 (2 . 2 _ 1 1 Ll —
From this it also follows that €} ; = 1. ({1 x11): We have € = €341 1€ 41 and 136, 54 ) = id,
as € ., is the counit for the adjunction between 1 , and o).

4.3.2 Morphisms between standards and simples

Morphisms from the standard objects to IC sheaves, and dually from IC sheaves to costandard
objects, are easily calculated by the recollement adjunctions:

Lemma 4.3.5. We have
k ifl>kandr=1-k,

Hompn(Ak, IC[ [’I‘]) = HOm[pm (ICl, Vk[’l“]) = {
0 else.
Proof. By Verdier duality it suffices to compute Hompn (A, IC;[r]). For I > k we have
Hompn (A, IC;[r]) = Hompr (g5 1k gk [K], kpr [2k + 7 — 1])
= HomAk (kAk,kAk [k' +r— l]),
and from this the claim follows. The case | < k is similar but easier, as 5 (IC;) = 0. O

By the proof of Lemma for | > k there is a canonical non-zero morphism gy ;: Ay —
IC;[l — k] corresponding to idgx under the adjunctions. In particular, for k& = [ these are the
(co)units from the recollement triangles defining Ax. Moreover, the proof also shows that
k1 is the unique morphisms making the diagram

Ay

<
l Sl Mkl
K,k ~
I—k >
€ A

IC, — IC[l — k]
comimute.

Lemma 4.3.6. For 0 < k,l <n we have

k ifl>kandre{l—k—1,10—Fk},
Hompn (Ag, Af[r]) = Hompn (V, Vi[r]) 2 <k ifl=k andr =0,

0 otherwise.

Proof. By Verdier duality it suffices to compute Hompn (Ag, A[r]). For this, the claim follows
from Lemma and the long exact sequence obtained by applying Hompr (Ag, —) to the
triangle (4.2)) defining A;. O

The proof of Lemma [£3.6] also yields the following descriptions of canonical morphisms
0% 10 A — Ay[r] spanning Hompn (Ag, Ar]):

e Forr=1—k, we define 6,15/“: Ay — Ayl — k] as the unique morphism making the diagram

comimute.
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e Forr=1—k—1, we define 52’_/“_1: A — Al — k — 1] as the composition

0
Ap PN IC -1 — B 5 Al -1 - K],
where ¢?_1,l: IC;_1 — A; is the morphism from the recollement triangle 1| defining A;.
In particular, the morphisms Oy g4+1: A — Agy1[1] can be used to define the indecomposable
projective objects via the triangles (4.3]).
4.3.3 Morphisms between simples and projectives

We start by computing the morphisms from simple perverse sheaves to standard objects.

Lemma 4.3.7. For 0 <k,l <n andr € Z we have

k ifr=k+I,
Hompn (IC;, Ag[r]) = Hompn (Vi, IC[r]) 2k ifr=k—1—1andl <k,
0 else.

Proof. By Verdier duality it suffices to compute Hompn (IC;, Ag[r]). Applying the functor
Hompn (IC;, —) to (4.2)) yields a long exact sequence

... — Hompn (IC[, Ick_l[TD — Hompn (IC[, Ak[’/’]) — Hompn (IC[, ICk[r]) — ...

in which the left and right-hand side can be computed by Lemma and these Hom spaces

are spanned by €/, , and €7, respectively. Since e”l = el €7, . the connecting morphisms
1k—1 1,k> 1,k—1 kk—1€1 k>

Hompn (IC;, ICk[r]) — Hompn (IC;, IC,_1[r + 1]) are isomorphisms unless r = [ + k, or | < k and
r=k—101-2. O

The proof of Lemma [4.3.7] shows that Hompn (IC;, Ag[k + []) is spanned by the unique mor-
phism qbfj;k: IC; — Ag[k + 1] making the diagram

(67}
dﬁﬁ«k///’ l .
k’// k.l
Aglk +1] - ICk[k +1].
commute.
For [ < k, the proof shows that Hompn (IC;, Ag[k — [ — 1]) is spanned by the composition
-1

eh-l-
1,k—1

0
P10 L 1 k- 1 1) D2 Ak — 1 - 1),

where ¢271,k: 1Cr_1 — Ay is the morphism from the recollement triangle 1| The non-zero
morphisms Vi — IC;[r] are defined by the dual diagrams.

From Lemma it also follows that all indecomposable projective perverse sheaves except
P, are projective-injective:

Proposition 4.3.8. For0 <k <n—1and 0 <[l <n we have

k ifl=Fkandr =0,

HOm[pm (ICZ, Pk [’I"D = {0 else

In particular, if k < n then Py is the injective hull of ICy in Perv(P").
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Proof. That Py is the injective hull of ICy in Perv(P") is immediate from the first part, using
EXt%)erv(IP’”)(_v _) = Hompn (_’ _[1])

To compute Hompn (IC;, Py[r]), we apply the functor Hompn (IC;, —) to (4.3) to get the long
exact sequence

. — Hompn (IC;, Agy1[r]) = Hompn (IC;, Pg[r]) — Hompx (IC;, Ag[r]) —
We claim that 0y ky1: Ag — Agy1[r] induces isomorphisms in all degrees.

Case 1: | > k. By Lemmal[4.3.7, Hompn (IC;, Agy1[r +1]) and Hompn (IC;, Ag[r]) are 1-dimensional
for r = [ + k, and vanish otherwise. By the construction of the morphisms spanning these
Hom spaces, we have to show that in the diagram

Ok k41
Aplk +1] R > Ak +141]
1
Ko ik ¢f:}jl A
M HEk41,k+1
k+l+1

ICk[k-‘rl ErE— ICk+1[k+l+ 1}

Ek k+1

the triangle consisting of dashed arrows commutes. By construction we have eﬁrﬁl =
ek,kﬂef):l, and the outer square commutes by the definition of the morphism 6 41: Ax —

Akt1[1]. An easy diagram chase then shows (bf‘,ﬁjl = 5k,k+1¢f}gl, as required.

Case 2: [ = k. From Lemma we know that Hompn (IC;, Ag[r]) is 1-dimensional for r €
{0,2k + 1} and Hompn (IC;, Agy1[r + 1]) is 1-dimensional for » = 2k, and they vanish
otherwise. By the same argument as in Case 1, dy 111 induces an isomorphism for r = 2k,
and it follows from the long exact sequence that Hompn (ICy, P;[r]) is 1-dimensional for
r = 0 and vanishes otherwise.

Case 3: | < k. From Lemma we know that Hompn (IC;, Ag[r]) is 1-dimensional for r €
{k—1—1,k+1} and Hompn (IC;, Agy1[r + 1]) is 1-dimensional for r € {k — 1,k + 1 + 1},
and they vanish otherwise. For r = k + [, that i x+1 induces an isomorphism follows by
the same argument as in Case 1.

For r = k—1—1, we need to show ¢;€;Jlrl = 5k,k+1¢f’;l_1, which amounts to checking that
the diagram

l
1C, [k —1— 1] —>10k[ [
k—1—1 k—l
\k,
4’271,1& - ¢(Ii,k+1
l,k // \\ @, k1
L/// \\A

Aplk—1—1] — 25 ATk — ]

: k=1 _ 1 E—1—1 :
commutes. By construction, we have ¢ ;" = k1, k€L k—1 and the claim follows by a

straightforward diagram chase provided the outer square commutes.

. 1 1 _ 1 1 oy .
To see this, observe that €1 K€k k-1 = Ehr1.kCk k1> the definition of 0y x41, and the axiom
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(TR3) give the commutative diagram

0
Pr1.k

1Ck_1 Ay ik 10, —*=1 11 [1]

1 1 1
lek—l,k l‘sk’,kﬂ lek,kﬂ lek—l,k
1
€kt1,k

IC,[1] — =5 A [1] —2E S 104 1] —— 5 10, [2),

in which the left square is the desired commutative square (up to shift). O

4.3.4 P-like simple perverse sheaves

By the explicit description of the simple perverse sheaves as constant sheaves on the stratum
closures, it is obvious that they are PF-like objects. However, only one of them is Calabi-Yau:

Proposition 4.3.9.

1) For 0 < k < n, the simple perverse sheaf ICy, is a P-like object in DY (P™).
2) The simple perverse sheaf 1C,, is a P™-object in D2 (P").
3) 1Cy is not Calabi-Yau in D2 (P") if k < n.

Proof.
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)
2)

Immediate by Lemma m

Since IC,, is P™-like by the first part and Homgp. (X,Y") is finite-dimensional for any X,Y €
DP(P"), we only need to check the Calabi-Yau property. As the perverse t-structure has
faithful heart, by Lemma it is enough to check that the composition pairing

Homp- (P, IC,[r]) ® Hompr (IC,,, P[2n — r]) — Hompn (IC,,,IC,,[2n]) =2 k

is non-degenerate for any r and any indecomposable projective object P € Perv(P").

For P = P, with k < n, we apply Hompn (—,1C,,) to (4.3). From Lemmas and
it follows that all connecting morphisms are isomorphisms, so Hompn (P, IC,,[r]) = 0 for all

r. We also have Hompn (IC,,, P[2n — r]) = 0 for all » by Proposition and thus the
only non-trivial case is P = P,,. Alternatively, for this one can also use that P, = I is
the projective cover and injective hull of ICy, and that the perverse t-structure has faithful
heart.

As P, = A,,, we know from Lemma that Hompn (P,,,1C,[r]) is one-dimensional if
r = 0, and vanishes otherwise. From Lemma we know that Hompn (IC,,, P,[2n — r])

is one-dimensional for r = 0 and vanishes otherwise. Moreover, by construction of ¢2", the
Srin nun . .

composition IC,, —5 A,,[2n] 22 1C,[2n] is precisely e, 1C, — IC,[2n], and thus the

composition pairing is non-degenerate.

For k < n, the composition pairing
Hompn (P, ICk[r]) ® Hompn (IC, P[2k — 7]) — Hompn (ICy, ICk[2k]) = k

cannot be non-degenerate since for P = P, = I} the tensor factors on the left-hand side
are non-zero only for r = 0 and r = 2k, respectively. O
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4.3.5 Characterization of the Serre functor

The following characterization of Serre functors is adapted from [MS08, Thm. 3.4]. The main
difference is that we would like to start with a triangulated functor which looks like a derived
functor, but is not a priori known to arise as a derived functor. Showing that such a functor is
indeed a derived functor is hard if one only uses triangulated categories, see e.g. [Ric16]. However,
this technical issue can be resolved by using co-enhancements.

Lemma 4.3.10. Let &/ be a finite-length abelian category with finitely many simples, enough
projectives and enough injectives. Assume that <7 is of finite global dimension, all the projective-
injective objects in </ have isomorphic top and socle, and that there is a projective generator P
of & admitting a presentation 0 — P — X1 — Xo with X1, X projective-injective. Let D;(ﬂ)
be the derived category of </ in the oo-categorical sense as defined in [Lurl?7, Variant 1.3.2.8],
and let F: DI (o) — DL (&) be a functor of co-categories.

If the triangulated functor hF: DT (&) — DT (&) satisfies the conditions

1) hF restricts to an equivalence hF: D*(«7) — D°(&),

2) hF(D*(/)2%) C D*(«)2°, where D* (/)20 denotes the non-negative part of the stan-
dard t-structure,

3) hF(Inj(/)) C Proj(),

4) H°ohF preserves the subcategory ProjInj(<7) of projective-injective objects, and restricted

to this category is isomorphic to the inverse Nakayama functor v=1,

then hF': DP(o/) — DP(&) is an inverse Serre functor for DP (7).

Proof. The argument essentially follows the proof of [MS08, Thm. 3.4]. We write
Ry~—!: DI (o) — DX (&) for the right derived functor of the inverse Nakayama functor
in the oo-categorical sense, see [Lurl7, Ex. 1.3.3.4] for the definition (actually we use the dual
version, obtained by DI (&) = D (&/°P)°P). Then hRv~! = Rv~1: DT (&) — DT (&) is the
usual right derived functor, and its restriction Rv~!': DP(&/) — DP(«/) is the inverse Serre
functor by Proposition We show that Ry~ = F, which then implies the claim.

Step 1: On the subcategory Proj(«/), we have H? o hF = v~ 1.

Proof: By assumption, the projective generator P of &/ admits a presentation 0 — P —
X, — X, with X, X, projective-injective. Since H? o hF and v~ ! are left exact, and
H% o hF = v~! on the subcategory ProjInj(</), it follows that HO(F(P)) = v~ 1(P). It
is easy to see that this isomorphism is functorial in P and compatible with taking direct
sums and summands, which proves the claim.

Step 2: hF: D"(&/) — DP(&/) commutes with the (inverse) Serre functor.

Proof: From the Yoneda lemma it follows that the Serre functor commutes with autoequiv-
alences.

Step 3: On the subcategory Inj(<7), we have HC o hF ov=! =2 v~1 o HY o hF.
Proof: By assumption we have hF = H? o hF on Inj(</). With this and Step 2 we get

StoHohF =S ' ohF 2hFoS ' 2 hFov '
Observe that H° o hF takes Inj(%/) to </, and therefore taking H® on both sides yields

v o H o hF 2 H oS ' o H o hF 2 HY o hF o v 1,
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Step 4: H o hF is fully faithful on the subcategory Proj(.<).

Proof: By assumption, HY o hF is isomorphic to »~! on the full subcategory ProjInj(</),
and v~!: ProjInj(«/) — ProjInj(</) is an autoequivalence. Let ¥ C & be the full
subcategory of objects M admitting a presentation 0 — M — X; — X, with X3, X5
projective-injective. Then H° o hF restricts/extends to HY o hF': € — ¢. Moreover,
(H°ohF)~! can be extended to (H o hF)~1: € — € by setting (H o hF) "t (ker(¢: X3 —
X5)) = ker((H® o hF)~(¢): (H o hF)"1(X1) — (H" o hF)"1(X3)). By assumption all
projective objects lie in ¢, and thus H® o hF is fully faithful on Proj(«).

Step 5: We have H% o hF =2 v~ ! as functors &/ — 7.
Proof: On Inj(</) we get

(HohF)? = v toH o hF = H o hF ov™!,

where we apply Step 1 using that H? o hF takes Inj(</) to Proj(</), and Step 3. As
both v~ ! and H® o hF take Inj(«/) to Proj(«/), and H® o hF is fully faithful on Proj(<)
(and thus an equivalence to its image) by Step 4, it follows that H? o hF =2 v~! on Inj(</).
Moreover, both functors are left exact, so the claim follows from this by replacing any object
by an injective resolution and applying an argument similar to the proof of Step 1.

Step 6: We have hFF = Ryv~! as functors D¥ (&) — D* ().

Proof: Note that D} (&) with the standard t-structure satisfies the assumptions of [Lurl7,
Thm. 1.3.3.2] (in particular, it is right complete by [Lurl7, Prop. 1.3.3.16]). Therefore
F: DI (o) — DI () is up to isomorphism the only functor of co-categories restricting to
t<o 0 hF'|y € N(Funie (o, o)), where N(Funie (27, o/)) denotes the nerve (see |[Lurl8a,
Tag 002M]) of the category of left exact functors & — /. On the other hand, by the
above we know HY o hF|, =2 v = t<po hRv~1|, as ordinary functors & — <7, and thus
they are also isomorphic in N(Funje(#/,7)). By |[Lurl7, Thm. 1.3.3.2] it follows that
F =~ Ry~! as functors of co-categories, and therefore hF' =2 hRy~! = Rv~! as triangulated
functors DV (&) — DT ().

Step 7: As ./ has finite global dimension, Rv~1: DP(«7) — DP (/) is the inverse Serre functor
by Proposition and by Step 6 we have hF = Ry~1. O

Since IC,, is a P"-object in DY(P") by Proposition [4.3.9] we can consider the P-twist
PTic, : D2(P?) — DY(P") as in Definition 4.2.3L By applying Lemma 4.3.10[ to PTic,, we
obtain:

Theorem 4.3.11. The P-twist PTic, : D2(P?) — DP(P") is the inverse Serre functor.

Proof. In order to apply Lemma we first have to check the technical assumptions.

Recall from Sections and that D2(P") = D®(Perv(P")), and that the category
Perv(P™) has finite global dimension, and enough projectives and enough injectives. By Propo-
sition [4.3.8 all indecomposable projective objects except the projective cover P, of IC,, are
injective, and moreover there is an exact sequence 0 — P, — P,_; — P,_5 in Perv(P") (this
can be seen from the A-flags).

Since IC,, is a P"-object in DP(Perv(P")) = DP(P"), it is also P"-like in DT (Perv(P")).
We want to consider the P-twist PTic, : Dt (Perv(P")) — DT (Perv(P")). To define this, we
use the usual dg enhancement 9 = Ch™ (Inj(Perv(P"))) of D*(Perv(P")). By Remark
we can use RHompery(pn)(ICy, —) instead of Homé(ICm—) to define the P-twist. Observe

that RHompepy(pr)(IC,,Y) is degreewise finite-dimensional for all Y € Ch™ (Inj(Perv(P"))),
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and thus the tensor product RHomg (IC,,Y) ® IC,, exists in DT (Perv(P")) for all Y € 2, as
required. Hence PTic, : Dt (Perv(P")) — DT (Perv(P")) is well-defined.

By construction, we have PTic, = HO(PTic,): D¥(Perv(P")) — D*(Perv(P)),
where I;ﬁ'lcnz 9 —  is a dg functor. By definition (see [Lurl7, Variant 1.3.2.8]) we have
D% (Perv(P")) = Ngg(Ch™(Inj(Perv(P")))). Here Ng, denotes the dg nerve from [Lurl7,
Constr. 1.3.1.6], see also |Lurl8a, |Tag 00PK]. By |[Lurl7, Prop. 1.3.1.20], ng(ﬁlcn) is a functor
of co-categories DI (Perv(P")) — DX (Perv(P")), and by passing to homotopy categories,
by [Lurl7, Rem. 1.3.1.11] we recover hng(ﬁ'Icn) = HO(F/’\'T'ICTL) = PTyg, : D*(Perv(P")) —
D*(Perv(P")).

It remains to check the conditions from Lemma [4.3.10k

1) As DT (Perv(P"))=% is the extension closure of D¥(Perv(P"))>° and the IC
sheaves, it suffices to show PTic, (DT (Perv(P"))>%) C D*(Perv(P"))2° and
PTic, (ICk) € DF(Perv(P"))20 for all 0 < k < n.

For this we use the triangles defining the P-twist. First, observe that PTi¢, (IC,,) =
IC,[-2n] € DT (Perv(P"))2%. Furthermore, for an object X € D (Perv(P"))>° or
X = IC, with k£ < n, RHompepy(pn)(IC,, X) is cohomologically concentrated in posi-
tive degrees. Thus RHompepy(pr)(IC,,, X) ®IC,,[—2] has cohomologies in degrees > 2, and
RHompepy(pn) (IC,, X) ® IC,, has cohomologies in degrees > 0, so cone(t* ®id —id ®t)(X)
has cohomologies in degrees > 0. As X € DT (Perv(P"))2° it follows that PTyc, (X) €
Dt (Perv(P"))2°.

2) Let I € Perv(P") be indecomposable injective. If I = I for k < n, then
RHomPerv(P")(ICna Ik) = 0 and therefore PTic,, (Ik) = [ = P

For I = I, = V,, we have RHompe,v(pr)(ICyy, I5,) = k (concentrated in degree 0), and so
by evaluating (4.1) at I,, we obtain the diagram

1C,[-2] —=— IC, cone(ez )
D(un,nﬂ
L
PTic, (In)

where €7 ,: IC,,[-2] — IC,, is the generator of Endg. (IC,).

From the long exact sequence obtained by applying Hompr (—, I,;) to the horizontal tri-
angle and Lemma [4.3.5] it follows that Hompn (cone(eZ , ), I,) is l-dimensional, i.e. the
induced morphism cone(efw) — I, is unique up to scalar. Therefore it suffices to find

a non-split triangle of the form cone(e2,) — I, — P, — cone(e2 )[1]. We know

n,n n,n

that Hompn (I, P,) = Hompn(V,,A,) is 1-dimensional, spanned by the composition
D($p_1,n —1.n

I, g 1C,,_1 #n1, P,. From the octahedral axiom (using the triangle 1)
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defining P,, = A,, as well as its dual) we obtain the diagram

D(¢° el
I, 21 "_1’"')ICn,1 SN IC,[1] —— 1L[1]

:J gasz,_l,n | -

cone(f) —— I,[1]

I,
D<¢2_1,n>l l: l i
0 (1

IC, 1 — P, IC, —"% IC,1[1]

2 1
J/en,n J/Enfl,n

1C,[2] —=— I1C,[2).

f

Thus cone(f)[—1] = cone(e}, ,: IC,[—2] — IC,,), and hence the second row is the desired
triangle (up to rotation).

3) From the above it also follows that PTyc, is the identity functor on the full subcategory
ProjInj(Perv(P")). Since the endomorphism algebra of the direct sum of the projective-
—1 ~

injective objects is symmetric, we also have »~! = id on ProjInj(Perv(P")) by [MS08,
Prop. 3.5]. O

Remark 4.3.12. In particular, Theorem [£.3.11] recovers the description of the Serre functor of
DP(P') from [Wool0, §3.1, p. 680], since PTic, = STi,

4.3.6 Other descriptions of the Serre functor

Recall the equivalences DP(P") = DP(O}(sl,.1(k))) = DP(A,-mods) mentioned in
Section The Serre functor of D?(P") also has explicit descriptions in terms of finite-
dimensional algebras and in terms of Lie algebras, and furthermore there is a description of the
Serre functor for the constructible category of the full flag variety. We summarize these results
and explain how they are related to Theorem [1.3.11]

In terms of finite-dimensional algebras, the Serre functor is given by the derived functor of
the Nakayama functor by results of Happel |[Hap88, Prop. 4.10]. This actually underlies our
argument, as the proof of the criterion Lemma[4.3.10] (which we adapted from [MSO08, Thm. 3.4])
compares the candidate Serre functor with the derived functor of the Nakayama functor.

In [MSO§] Mazorchuk and Stroppel provide a description of the Serre functor of
D" (O} (sl,11(k))) in Lie-theoretic language. For this, the criterion [MS08, Thm. 3.4] is
first used to show that the Serre functor of DP(Og(sl,11(k))) is given by the (derived) shuffling
functor Shfuo, where Shy,, = Shg, ...Shy, for a reduced expression s;, ...s; of the longest
element wy of the Weyl group. Alternatively, the Serre functor of DP(Og(sl,.1(k))) is also
isomorphic to the (derived) Arkhipov twisting functor Tw?, o> Where Twy,, = Twy, ... Tw,, .

By [MS08, Prop. 4.4], the Serre functor of DP(Of (sl,,11(k))) is then Sh} [—2¢(w})], where
wh € W, = 51 x S, is the longest element of the parabolic Weyl group. Rather than applying
the criterion Lemma the proof uses the inclusion DP (O} (sl,,+1(k))) < DP(Op(sl,11(k)))
and its left and right adjoints (i.e. the (derived) Zuckerman functors) to “push down” the de-
scription of the Serre functor from DP(Og(sl,+1(k))). In particular, note that since the inclusion
D" (O} (sl,,11(k))) = DP(Op(sl,41(k))) is not full, the Serre functor of DP(OFf (sl,,11(k))) is not
the restriction of that of DP(Og(sl,,+1(k)))-

In the language of perverse sheaves, in [BBMO04] Beilinson, Bezrukavnikov and Mirkovié
provide a description of the Serre functor for the full flag variety G/B, where (for us) G =

Siq *
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GL,,+1(k) and B C G is the usual Borel subgroup of upper triangular matrices. By [BBMO04,
Prop. 2.5], the Serre functor of DP(G/B) is given by the Radon transform (R}, )?, where R}, =
R: ...R: .
Siq Sip

Under the equivalences Og(sl,+1(k)) = Perv(G/B) and Of(sl,11(k)) = Perv(G/P) =
Perv(P"), the inclusion functor corresponds to 7' [—d] = 7*[d] and the (dual) Zuckerman functors
are m[d] and m.[—d], see e.g. [BGSI6, p. 504, Rem. (2)]. Here P C G is the parabolic subgroup
with block sizes (n,1), m: G/B — G/P is the canonical map, and d = dimG/B — dim G/P =
¢(wf). Using this, one can apply the purely formal argument from [MS08, Prop. 4.4] to obtain a
description of the Serre functor of D?(P") from the description of the Serre functor of D(G/B).

Combining Theorem [.3.11] with the above observations yields the following relation between
PTic, and the Radon transform Rim, and also a decomposition of PTyc, into a sequence of
spherical twists:

Corollary 4.3.13.
1) The square

. (RL,)%[2d)
DY(G/B) —*—5 DX(G/B)
7" [d] Ty [—d]

T
DY (P") — % Db(P")

commutes up to natural isomorphism.

2) For any reduced expression wg = S;, ... S;, there is a natural isomorphism

PTIC" [26(1(}0) - 2€(’U}8)] = (STpn7i1 e STpn7i7l)2.

Proof.

1) By [MS08, Prop. 4.1 and Prop. 4.4], the inverse Serre functor of DP(Of(sl,.1(k))) is
7Sy ! incl[2d], where incl: DP(O} (sl,,41(k))) < DP(Og(sl,11(k))), Sy * is the inverse Serre
functor of DP(Og(sl,41(k))), and Z the dual Zuckerman functor. In geometric language,
incl is 7*[d] and Z is m.[—d], and (R.,,)? is the inverse Serre functor of D(G/B) by
[BBMO04, Prop. 2.5 and Fact 2.2]. The claim then follows from Theorem and unique-
ness of the Serre functor.

2) By Theorem [4.3.11] and |[MS08, Prop. 4.4] the inverse Serre functor of D!(P") =
D" (0f (5111 (k))) is

PTic, =57 2 Shy, 2[20(wp)] = (Shy,! ... Sh 1 )?[26(wf)].

By [Len21, Thm. 4.14] there is a natural isomorphism Sh ' 2 STp, ,[~1], which proves
the claim. 0

For n = 1, we in particular get STIQC1 = PTic, = ST?;O[fQ], and in fact we even have
STic, = STp,[—1] by [Len2l, Thm. 3.6 and Thm. 3.10].

4.4 Classification of P-objects in Perv(P")

In this section we classify the P-objects and P-like objects in Perv(P") C DY(P"). For this we
first determine the indecomposable Calabi—Yau objects. After that, we introduce certain string
objects, and show that all of them are P-like.
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4.4.1 Calabi—Yau objects

The following easy lemma provides obstructions for Calabi—Yau objects in the presence of
projective-injective objects.

Lemma 4.4.1. Let of be a finite-length Hom-finite Krull-Schmidt abelian category with enough
projectives and finite global dimension, and let P € & be an indecomposable projective-injective
object.

1) If P has isomorphic top and socle, then P is 0-Calabi-Yau in D (/).

2) If X € o involves a composition factor top(P) or soc(P), then X cannot be d-Calabi-Yau
ford > 0.

Proof.

1) This is clear since the Serre functor, which is the Nakayama functor, fixes such projective-
injective objects.

2) Let P € o be projective-injective and assume that X € &/ is d-Calabi-Yau with d > 0.
By definition, this means that the composition pairing

Hompp () (P, X[r]) @ Hompp () (X, P[d — 7]) — Hompps ) (X, X[d])

is non-degenerate for all € Z. If X involves a simple subquotient top(P), then for r = 0
the first tensor factor is non-zero while the second one is not. If X involves a simple
subquotient soc(P), then for » = d the second tensor factor is non-zero while the first is
not. Thus in these cases the pairing cannot be non-degenerate, a contradiction. O

As an application, we recover the classification of the indecomposable Calabi—Yau objects in
Perv(P™), which was obtained algebraically in [Maz25| §7.4].

Corollary 4.4.2. An indecomposable object E € Perv(P") is Calabi-Yau if and only if E €
{IC,}U{P;|0<i<n-—1}.
Proof. The simple object IC,, is 2n-Calabi-Yau by Proposition [£:3.9] while the projective-
injective objects P; € Perv(P") for 0 <1i <n — 1 are 0-Calabi-Yau by Lemma

It is obvious that objects in the heart of a t-structure cannot be d-Calabi—Yau for d < 0, and
that only projective objects in the heart can be 0-Calabi-Yau: if E € Perv(P") is 0-Calabi-
Yau, then Hompn(E, X[1]) & Hompn(X([1], E)Y = 0 for all X € Perv(P"), so E has to be
projective. Moreover, by Lemma no object in Perv(P") involving simple subquotients
ICy for 0 < k < n can be d-Calabi-Yau with d > 0. As Homp~(IC,,,IC,[1]) = 0, the only
indecomposable object such that all of its simple subquotients are IC,, is IC,, itself. O

Alternatively, in the proof of Corollary [£.4.2] one can also use the classification of indecompos-
able perverse sheaves (using the language of finite-dimensional algebras), and [PW20, Prop. 2] or
Proposition below, to show that there are no 0-Calabi—Yau objects besides the projective-
injective objects.

4.4.2 String objects

For 0 < b < a < n we recursively define the string objects Mj’b as follows. Set Mz"a = I1C, and
M(J{,a—1 = A,, and for a > b+ 2 define Mib = cone(9q—2.)[—1], where 1,_24: M:ﬂ,b — Ag[1]
is a non-zero morphism that will be fixed recursively. Hence M;b fits into a triangle

Ya—2b
2,

Ag =5 M, =5 M, Ag[1]. (4.5)
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We also define M;b = ]D)(Mib); alternatively these can be obtained inductively by the dual

construction. Note that the string objects M, lie in Perv(P™).
+

a?

To properly define 142, so that M, is well-defined, we need:

Lemma 4.4.3. Let a > b+ 2 and assume by induction that M&tz,b is already defined. Then
Hompn (M:&,b’ A, [1]) is 1-dimensional.

Proof. For a = b+2 and a = b+ 3, the claim follows from Lemma [4.3.7]respectively Lemma [4.3.6
For a > b+ 3 we apply Hompn (—, A,4[1]) to the triangle , which by induction is unique
up to rescaling of the morphisms. From the construction of M, , and Lemmas and E

it follows that Hompn (MI—4,bv A,[r]) =0 for r < 2, and thus

Hompx (Ma*ﬂ’b, Ag[1]) = Hompn (Ag—2, Ag[1]).
By Lemma [£.3.6] this is 1-dimensional, as claimed. O

From the proof we obtain the following explicit definition of a canonical non-zero morphism
Ya—2,p" Mz—zb — AL[1]:

o For a=0b+2, we take ),_24_2 = ¢} :1C,—o0 = AL[1].

a—2,a "
o For a = b+ 3, we define the morphism t,_3,—3 as the composition A,_o Ho2ad
P10

IC,_1[1] =% AL[1].
o Fora > b+3, the morphism ¢, p: M;lz,b — A,[1] is uniquely defined by the commutative

diagram

wa—
M}y, -2 Al

where tq_2 is fixed by the choice of the triangle 1} defining Mi‘_2 be

This completes the construction of the string objects M;tb.
In terms of finite-dimensional algebras, the string objects as defined above are precisely the
string modules mentioned in Section [1.2.5]

4.4.3 String objects are P-like

We show that all the string objects MajE , are P*-like, where k depends on a and b by an explicit
formula. Note that with the exception of M¥ = IC,, the string objects cannot be PF-objects,

since Corollary obstructs them from having the Calabi-Yau property.
Morphisms between string objects and IC sheaves

We want to understand the total endomorphism spaces Endp. (Maib). Due to the inductive

definition of the string objects, we first need to compute morphisms between be and some IC
sheaves.

Lemma 4.4.4. Let 0<b<a<n andr € Z.
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1) If a — b is even, then

1

k if0<r<2band
HOm]pn (M;M ICb[T’]) = HOHl]pn (ch, M;b[’r}) { Zf Srs ana T even,

0 otherwise.

2) If a — b is odd, then
Hompn (M;b, ICy[r]) = Hompn (ICy, M [r]) £ 0.
Proof. In both cases the first isomorphism is given by Verdier duality, so it suffices to compute
Hompn (M7}, ICy[r]).

We prove both statements by induction on a — b. As the argument for the inductive step is
the same in both cases, we only give details for the first statement.

1) For the base case a = b, we have M;b = IC; and the claim is immediate by Lemma

For the inductive step, we apply the functor Hompn (—,ICy) to (4.5) to get the long exact
sequence

... — Hompn (M;lz,b’ ICy[r]) — Hompn (M:’b, ICp[r]) — Hompn (Ag, IC[r]) — ...
As a > b, we have Hompn (A,,ICy[r]) = 0 for all r by Lemma [4.3.5] Hence
Hompn (M;b7 ICy[r]) = Hompn (M:_va, ICy[r]),

and so the statement follows from the inductive hypothesis.
2) For the base case a = b+ 1, we have MIb = A, and Hompn (A, ICy[r]) = 0 for any r by
Lemma, The claim follows from this by the same arguments as in the first part. [

The proof for a — b even also yields a canonical non-zero morphism my, ,: M:b — ICy[r],
which is defined as the composition

+  Tab + Ta—2,b To+2,b b0
My, — M ,, . IC, — ICy[r].

Since eZ'ZtQ = €2 ,€b,, we also obtain the commutative diagram

. e (4.6)

ICy[r] —25 1C[r + 2].

Lemma 4.4.5. Let0<b<a<nandr €Z.

1) If a — b is even, then

12

Hompx (M;b, IC,[r]) = Hompn (ICq, M, ,[r])

k if0<r<a+bandr even,
0 otherwise.

2) If a — b is odd, then

1%

Hom]pn (M+

a,b’

IC,[r]) = Hompn (ICq, M, ,[r])

k if0<r<a—-0b—1 andr even,
0 otherwise.
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3) For 0 <i<n—a we have

Hompn (M7, 1C,14[r]) = Homgpn (M, ICa[r — 4]).

Proof. For 1) and 2), by Verdier duality it suffices to compute Hompn (M, F,IC,[r]). We prove

the claim by induction on a — b. The base cases are a = b for a — b even, respectlvely a=b+1

for @ — b odd, and for these the claim holds by Lemma and Lemma respectively.
For the inductive step, we apply Homp- (—,IC,) to ) to get the long exact sequence

a_2.5>1Ca[r]) — Hompn (Mib,IC [ 1) = Hompn (A4, IC,[r]) —
By Lemma [£.3.7] Hompn(A,,IC,[r]) is 1-dimensional for 7 = 0 and vanishes otherwise. By
restriction to P~2, we have Hompn (M;ﬂz’b, IC,[r]) = Hompn (M 952 1Ca—2[r—2]). In particular,

this is concentrated in degrees > 2, and hence the claim follows.
The last claim is immediate from 2,1C,y; & 1C,[—i]. O

c— HOl’Ilpn (M

Remark 4.4.6. From the proof of Lemma [£.4.5] we obtain the following explicit description of
a morphism ny, , spanning Hompn (M +, IC4[r]). For r = 0, we define n27b: M;b — IC, as the
unique morphism making the diagram

commute. For 0 <7 < a—b, we define ny, ,: M;b — IC,[r] as the composition

O T
Ta,b 4 Ta—2,b Ta—r+2,b + Na—rb €a—r,a
My, == M/ ,, . M IC,—r IC,[r].

a—r,b

For 7 > a — b (this can only happen if a — b is even), we define n], , as the composition

Ta,b Ta—2,b Th+2,b Ez,a
My, == M/ ,, . ICy IC,[r].

Moreover, for 0 < ¢ < n — a, a canonical morphism Mi » — ICaq4[r] is given by the composition

M, " e, [ — 4] S 10 ).

Remark 4.4.7. The proof of Lemma and the octahedral axiom for the composition ng)bLa,b =
a,q also yields triangles

’I’LO
M,y , = MS, =5 1C, — M, ,[1]. (4.7)
By Verdier duality one also obtains triangles IC, — M, , — Ma—l,b — IC,[1].

Lemma 4.4.8. Let 0 < b < a <nand 0 < r < a+b—2if a— Db is even, respectively
0<r<a-b-—3ifa—">is odd. Then the diagram

M, TG,

\l

o + 2]

commutes up to a non-zero scalar.
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Proof. We prove the claim by induction on @ — b. In the base cases Endg.(IC,) respectively
Hompn (Ag,IC,) (depending on the parity of a — b) there is nothing to show.
For the inductive step, for » > 0 Lemma and its proof yields the commutative diagram

Hompn (M, IC,[r]) —— Hompn (M;_, . 1Cq[r]) —— Hompn (M, ,,IC,_o[r — 2])

l l l

Homgn (M, IC,[r +2]) = Homen (M, ,,IC,[r +2]) — Hompa (M, ,,1Cq_s[r]).

Here the vertical morphisms are given by postcomposition with €2 , and 251_2(637(1), respectively.
By Remark we have 23172(627(1) = €2y, o, and therefore by induction it only remains to
show the claim for r = 0.

For r = 0, the square
T,

+ avb; +
Ma,b Ma—2 b

)

0 2
”a,bJ( J/nu.flb
2

IC, —2 1C,[2]

commutes up to a possibly zero scalar, as cone(m, ) = Ag[1] and Hompn (A,,IC,[r]) = 0 for
r > 0. By Remark the composition n?, = nj_, ,map is non-zero, and thus we have to
show that it factors through €2 ,: IC, — ICq4[2].

For this we apply Hompn (—,1C,) to the triangle to get the long exact sequence

-+ = Hompn (IC,,, 1C,[2]) — Hompn (M} ,,1C,[2]) — Homgn (M, ,,IC[2]) = ...

By Lemmas and we know that Hompn (IC,,IC,[2]) is spanned by the generator €2 ,
of Endj. (IC,) and Hompn (M ,,1C,[2]) is spanned by the composition ng_z)bwaﬁb, so it suffices

a,b?
to show Hompn (M, ;,1C,[2]) = 0.
By restriction to P!, we have Homgn (M, _, ,1C,4[2]) = Hompn (M,_, ;, 1C,—1[1]), and that
this vanishes can be seen by applying Hompn (—,IC,_1) to the Verdier-dual version of the triangle
1' defining M, O

Lemma 4.4.9. Let0<b<a<nandr € Z.
1) If a — b is even, then
Hompn (ICy, M;b[r]) = Hompn (M, 4, IGy[r])

~ k ifa—b<r<a+bandr even,
0 otherwise.

2) If a — b is odd, then
Hompn (ICy, Mzb [r]) = Hompn (M, ICs[r])

k i 0<r<min(2b,a —b) and r even,
k if max(2b,a —b) <r <a+b andr odd,

0 otherwise.

Il

Proof. By Verdier duality it suffices to compute Hompn (IC;, M;‘b[r])
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1) Applying the functor Hompn (ICy, —) to the triangle (4.7) yields the long exact sequence
... — Hompn (ICy, M(;me) — Hompn (ICy, M:’b[r]) — Hompn (IC, IC,[r]) — ...

As a — b is even, we have Hompn (ICy, M, ,[r]) = 0 by Lemma M ). Therefore
Hompn (ICy, M;‘b[r]) = Hompr (IC, IC,4[r]) and the claim follows by Lemma m

2) We distinguish two cases to avoid having to determine connecting morphisms (note that
a = 3b is impossible since a — b is odd).

If a > 3b, we apply the functor Hompn (IC;, —) to the triangle (4.7) to get the long exact
sequence

.. = Hompn (ICy, M, 4[r]) — Hompn (ICy, M;b[r]) — Hompn (ICy, IC,[r]) — ...,
and the claim follows by using Lemma 1) for the left-hand side and Lemma for
the right-hand side.

If a < 3b, we do induction on a — b. The base case a = b+ 1 is given by Lemma [£.3.7]
For the inductive step, applying the functor Homp» (IC,, —) to (4.5) yields the long exact
sequence

... = Homgn (ICy, Ay[r]) — Homgpn (ICy, M, [r]) — Homgn (ICy, M7 _, ,[r]) — ...

The claim follows by using Lemma [£:3.7] for the left-hand side and the inductive hypothesis
for the right-hand side. O

Remark 4.4.10. For a — b odd, the case distinction in the proof of Lemma avoids analysis
of the connecting morphisms. Note that to compute Hompn (ICy, Mj’b) (i.e. the case r = 0) one
can always use the argument for a < 3b to obtain

HOm[Pm (ICb, M;:b) = Hom]pn (:[Cb7 MI—Q,b) = ... = HOmPn (ICb, AbJrl)‘

Hence a canonical non-zero morphism I1C, — Mib is defined by the commutative diagram

ICy

0
! Ppbr1

+ 7Tb+2,b---7ra,b
M, T A

Ta

By induction on a — b, the octahedral axiom for the composition IC, — Mj‘b SN M:_Q p yields
triangles
IC, — M7, = M7, ., = IC[1]. (4.8)

Dually, there are also triangles M, , — M_, — IC, — M_, ., [1]. These triangles and the ones
from Remark are used in |CL23| to inductively construct the string objects, starting from
ME, =1C,.

Morphisms between standard objects and string objects

Lemma 4.4.11. For0<i < %ﬁb we have

_ k ifr=2i,
Hompn (Aafgi, M:{,b[ﬂ) = Hom[pm (Ma,lﬁ Va72i [T’]) & {O é];se

79



CHAPTER 4. SERRE FUNCTOR AND P-OBJECTS FOR PERVERSE SHEAVES ON P"

Proof. By Verdier duality it suffices to compute Hompn (A,_2;, M: bl7])-

If a — b is odd, we apply Hompn (A,_9;, —) to the triangle and the first triangle in
defining M;bH. Since a — 2i > b, we have Hompn(A,_2;,ICy[r]) = 0 for all r by
Lemma M Moreover, since the V-flag of M;—l,b 41 does not involve V,_o; it follows that
Hompn (Ay—2i, M;—1,b+1[TD = 0 for all . Together these observations imply

HOHlﬂ:m (Aa72ia M:’b[r]) = HOm]pm (Aa72i7 M;bJrl [r]) = HOm]pn (Aafgi, ICa[r]),

which has the claimed form by Lemma [£.3.5]
The argument for a — b even is similar, using the first triangle in (4.7) and the fact that
M;_l’b has a V-flag not involving V,_o;. O

The following lemma determines the morphisms from string modules to some standard mod-
ules.

Lemma 4.4.12. Let0<b<a<nandr € Z.
1) If a — b is even, then

Homp~ (M, A,[r]) = Hompn (V4, M =
mpn ( a,b [r]) - ( w[r]) 0 otherwise.

{lk ifr=a-+0,

2) If a — b is odd, then

k ifr=a—b—1
Hompn (M, A, [r]) = Hompn (V, M, [1]) & ifr=a :
’ ’ 0 otherwise.

Proof. By Verdier duality it suffices to compute Homp= (M;b, Agfr]). Fora=band a =b+1,
the claim follows from Lemma [£:3.7] and Lemma [£.3.6] respectively.
For a > b+1, by applying the functor Hompn (—, A,) to the triangle A, — M:b — M;‘_Q b~

A,[1] we get the long exact sequence

... — Hompn (Mjfzbv A,[r]) — Hompn (MF, A [r]) — Hompn (Ag, Agfr]) — ...

a,b’

By Lemma the right-hand side is one-dimensional and concentrated in degree 0,
and hence Hompn (M;b,Aa[r]) ~ Hompn (MZZM,AQ[T]) for r > 2. For r < 1 we get
Hompn(M;b,Aa[r]) = 0: as a consequence of Lemma the connecting morphism
Hompn (Ay, Ay) — Hompn (M:ﬁz’b,Aa[l]) is an isomorphism, and Hompn (MZZM,A@) = 0 by
the inductive construction of Ma+72,b and Lemma (and Lemma if a — b is even).

To compute Hompn (Mj_m7 A,[r]) for » > 2, we analyze the long exact sequence obtained
by applying Homp» (M:—Zb’ —) to the triangle definying A,. By restriction to P2 and
naturality of the adjunction, we have a commutative square

Hompx (M:ﬁz}b,ICa[T]) —— Hompn (M;‘be,ICG_l[r +1])

~| E

Homgpn (M}_, ,, ICq o[r — 2]) ——— Hompn (M/_, ,,1C,2[r])

where the bottom morphism is given by postcomposition with 25172(6(1“171)7 which by Re-
mark is 63_2@_2: IC,—2[—2] — IC,_2. By Lemmas and this is an isomorphism
unless r = a + b if a — b is even, respectively unless r = a — b — 1 if @ — b is odd, and the claim

follows from this. O
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Morphisms between string objects

Now we can determine the morphisms between string objects. Although the proof is mostly the
same, we need to distinguish two cases depending on the parity of a — b.

Proposition 4.4.13. Let0<b<a<n,0<i< %’b and r € 7.

1) If a — b is even, then

Hompn (M M+ p[r]) = Hompn (M, M5, [1])

a—2i,b’

o |k if2i<r<a+bandr even,
0 otherwise.

2) If a —b is odd, then

Hompn (Matzi,b’M:,b[r]) = Hompn (M, M~ 2i, b))

a,b’
~ )k if2i<r<a—b—1 andr even,
|0 otherwise.

Proof.

1)

By Verdier duality it suffices to compute Hompn (M 2i b Mib[ ]). We do this by downward
induction on ¢. For the base case i = %b we have Maizu7 = ICy, so the claim follows from
Lemma [4.4.9
For the inductive step, we apply Hompn (— Mjb) to the triangle (4.5) defining M172i7b7
and Hompr (A,_2;, —) to the triangle . ) to obtain the diagram

Hompn (Aq—2i, Mgy [1])

!

[r]) — HOIl’lwm(Aa_zi,1\’13:’)[7‘]) — ... (49)

!

Hompn (Ag—2,1C,[r])

!

By the inductive hypothesis Hompn (M_,, _, ,, M7, [r]) = k for r € {2i42,2i+4,..., a+b},
and it vanishes otherwise. Since M, , , has a V-flag not involving V,_s; by the dual
version of ., the first term in the column of (4.9) vanishes (this follows either by
direct calculation, or from e.g. [BS24, Thm. 3.11]). Moreover, since by Lemma the
last term in the column of is one dimensional and concentrated in degree 2i, so is
Hompn (Ay—2;, M;b[r]), from which the claim follows.

.. — Hompn (M}

a—2i—

2.5 My b[r] — Hompn (M:— 2i,b> M}

a,b

By Verdier duality it suffices to compute Hompn (Ma 2 b M;‘b[ ). We do this by downward
induction on ¢. In the base case i = “_12’_1
Lemma [£4.17]

For the inductive step, we apply the functor Hom]pn(—,l\/[;'b) to the triangle 1} By

induction, Homp» (Mg—%—zb’M;b[r]) Zkfor2i+2<r<a—>b—1andr even. By

we have Ma_%b = Aps1, so this follows from
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Lemma [4.4.11| we know that Hompn (A,_2;, MT,[r]) = k for r = 2i, and that it vanishes
otherwise, which implies the claim. O

Remark 4.4.14. From the proof of Proposition [£.4.13] we obtain the following descriptions
of canonical non-zero morphisms @2’ M:{)b — M;b[2i], <I>al_2i7b: ML, — Mzb[%] and

a—2i,

gizi,b: ANg_oi — Mib[Zi]: for 0 <i < “7_1’, they arise from the diagram

+ o Teb + -
Ma,b ) : Ma,b[2z]
5”62121' b =TT A
7ra—2i+2,b--~7ra,bj/ ISt J lngh
Prad ’ N
-7 7
M, 7 1C,[24]
—2 b ; a
s N oy S
//
la—2i,b S Ha—2i,a
Aa—Qi

Note that this diagram does not depend on whether a — b is even or odd, though in the proof of
Proposition [£.4.13] one has to distinguish this since the induction results in different base cases.

Moreover, by Remark Hompx (M:ﬁQiyb,ICa[Zi]) is spanned by the composition

0 24

M;rf%b Daz2in, 1IC,_9; faz2ia, IC,[2i]. Since we have ng_%bba,gi,b = Wa—2i,a—2i Dy con-
struction, it follows that €2* o; ;70 _o; yta—2ib = Ha—2ia- An easy diagram chase (using that
Homgpn (M _,; ,,1C,[2i]) = k) then shows that €2’ o; ;10 5, ;- M;L%’b — IC,[2i] makes the
entire diagram above commute, and therefore the morphism @3sz M;ﬁb — Mzb[Zi] can also be
defined by the diagram

7Ta72i+2,b---7ra,bl J/ng b
24 0

n €a—2i,aMa—2ib .
Y R e

For i > C‘T_b (this can only happen if a — b is even), the morphism @Zfb arises from the diagram

M, ------20e- > M, [24]
o
7Tb+2,b~~-7"a,bl /31/’/ ln‘;b
TR
10, —%—— 1C,[2i].

The morphisms M, — M;b[%] are described by the dual diagrams.

Determining the composition

To show that the string objects are P-like, we are left to determine the composition of morphisms
in Endpn (Mf »)- This requires the following two technical lemmas, which show that the mor-
phisms from Remark are compatible with the quotient maps between the string objects
and the morphisms betwen IC sheaves.
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Lemma 4.4.15. For0<b<a<nandl <i< “_TH if a—b is even, respectively 1 < i < “‘Tb_?’
if a — b is odd, the square

éa— b
M:{—Q,b — MIb[Q]

7Ta72'i,b---7ra72.bj/ J{Tra721'+2,b---77a,b
=2

D .
+ a—2i—2,b -+
Ma72i72,b Ma72i,b[2]

commutes up to a non-zero scalar.

Proof. We prove the claim by induction on 4. For ¢ = 1, the composition @3—2,17 = 52_47b7ra_2,b
spans Hompn (MZZM7 Ma+72,b[2]) by Remark [4.4.14] and Proposition [4.4.13
We want to show that this morphism factors through M;b[2]. Completing the right column

. a, a, 11}0/7 3
of the square to the triangle A,[2] Loby M;b[Q] oty MZZM[Q] o

Hompn (Ma*%’b7 —) yields the exact sequence

A,[3] and applying

Hompn (M, ;,, M7, [2]) = Hompn (M_5 5, My ,[2]) — Hompr (M_5 5, Aq[3]).

By Proposition the first two terms are 1-dimensional, and by the same argument as in the

proof of Lemma4.4.12{ we get Hompn (Mjfz,b’ A,4[3]) = 0, which yields the required factorization.
For the inductive step, we use the diagram

+ Ta—2i,b-Ta—2,b + Ta—2i—2,b +
. - - = s .
Ma72,b Ma72172,b Ma72174,b
—2 —2 —2
®a72,bl P22 P _2ican
+ Ta—2i4+2,b---Ta,b + Ta—2i,b +
Ma,b[2] Ma727,,b [2] a—2i—2,b [2}

By the base case, the right square commutes, and by induction the left square commutes (in
both cases up to a non-zero scalar). Thus the outer rectangle commutes up to a non-zero scalar
by an easy diagram chase. O

Lemma 4.4.16. For 0 <b < a and a — b even, the square

q>2
M, BN M [2]

7Tb+2,b~~-7"u,,bJ/ J/’Tb+2‘b-~~77a,b
2

ICb L ICb[2]

commutes up to a non-zero scalar.

Proof. The bottom left path is non-zero by , and hence we have to show that it factors
through the vertical morphism on the right. By the triangle Mj,b—s-l — MIb — ICy, — MIbH 1],
it suffices to show Hom(MIb7 MIbH[B]) = 0. We prove this by induction on a — b. In the base
case a = b+ 2 we have MIbH = A,, and thus the claim follows from Lemma

For the inductive step, assume that a > b+ 2. We apply the functor Hom(Mmb, —) to the

triangle A, — M:}H_l — M:{_Q pr1 — Aall] defining M:{_,H_l to get the long exact sequence

S Hom(MIb, A,[r]) — Hom(M ' M;b+1[r]) — Hom(MIb,M;‘_Q,bH[r]) — .

a,b?
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By Lemma [4.4.12) we have Hom(M;b,Aa[r]) = 0 unless r = a + b, and therefore we have

Hom(M;b,Ma,bHB]) = Hom(MIb,MI_ZbH[BD (note that @ > b+ 2 and a — b even implies

a+b>4).
To compute Hom(M: by M:_Q p»1113]), we use the long exact sequence obtained by applying
Hom(—, M , 1) to the triangle A, — M, — M ,, — Ay[l]. By Lemma and the

inductive construction of M;L_Q,b 41, we have Hom(A,, M:_QJ) 41[7]) = 0 for all r, and therefore
in particular

Hom(MIb, Ma+72,b+1[3]) = Hom(M;lQ’b, M:72,b+1[3])

which vanishes by induction on a — b. O

Theorem 4.4.17. Let 0 <b<a < n.
1) If a — b is even, then Mib is Pat0)/2 [ike,
2) If a — b is odd, then Mai’b is Ple=b=1/2_ljke.
Proof. By Verdier duality it suffices to show that M;b is P-like. By Proposition |4.4.13| we

have isomorphisms of graded k-vector spaces Endp. (M) = K[t]/ (t(a+b)/2H1) §f g — b is even
(respectively Endp. (M:’b) >~ k[t]/(t(e=b=1/2+1) if ¢ — b is odd) with deg(t) = 2. Therefore we

o] o
only have to show that the composition of the canonical morphisms MT, —=% M*,[2] —%
Maib[% + 2] is non-zero for 0 < i < %2 if a — b is even (respectively 0 < i < 2=2=L if a — b is

odd). We show that up to a non-zero scalar this composition agrees with the canonical morphism
U2 ML, — My, (20 + 2],

First assume that i < %b. By Remark the composition (I)gqu)ib and the morphism
@if;”Q (which is not drawn) are defined by the non-dashed arrows in the diagram

2 2
q)a.b q)a,b

M7, M, (2] M, [2i + 2]
\‘ / WZJ...WM,
o, no
F2 P 71,” P 621 P 71,” P
a2t Tay Mi,, G, [2) M0 e T B 0, 20 + 2] nl,
a—2i-2,b /»,_/—/"’”/“_»0 =
%p--m.fzb T \
T 2i42 0
M iy = IC,[2i +2]

We moreover have the canonical morphism 52721-7271): M:{—zi—zb — MI_2ib[2] from Re-
mark [4.4.14] (the dashed arrow in the diagram).

Step 1: The square
M, [2]

7"a—2i,b~-~77a,bl J/Tra—2i+2,b-~-77a,b
—2

commutes up to a non-zero scalar.
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Proof: From the construction of Qz,b in Remark |4.4.14 we obtain the diagram

Ta—2i,b---

where the triangle at the top commutes by definition of @i,b and the triangle at the left
commutes obviously. By Lemma [£.4.T5] the inner square commutes up to a non-zero scalar,
and the claim then follows by an easy diagram chase.

Step 2: The diagram

a—2i—2,b -+
Ma 2i—2,b T Ma 27,,b[2}
24 0

(2i+2 \ J{eal—%ﬂ,anafTL,b
a 24— 2a. a—2i—2,b

Col2i + 2]

commutes.
2142 21

Proof: Since €,"5; 5, = €2 i a€a_9i_2.q_2 it suffices to show that the diagram

0 0
na—Z’i—2,bJ/ J/na—%,b
2

Ica_2i_2 a—2i—2,a—21i ICa_Qi[Q]

commutes. For this, the construction of the morphism <I)a 2i—2p" Ma 2i—2p Ma 2, »12]
from Remark [4.4.14] gives the diagram

Aa72i72 Cgizi,b
m
—2
oo )
—+ a—2i—2,b +
. - - =
Ma—21—2,b Ma 21, b[ ]

g —2i—2,a—2i—2 0 0
Ha—2i-2,a-2 na—2i—2,bJ{ J/nafml,b
2

ICq—2i—2 fospinec IC,—2:[2]

where the outer square and the triangle at the top and the left commute by construction.
By Remark we know that Hom(M} ,. , >1Ca—2:[2]) = k is spanned by the compo-
SItion €2 o; 9 4 010 _gi_ 9yt Mi_5i o, — ICa,Ql[ ]. Moreover, this morphism is uniquely
characterized by its precomposition with t4_2i—2p: Ag_2i—2 < Ma+—2i—2 p» which by the
proof of Lemma gives fig—2i—2,4—2i: Dg—2i—2 — IC,_2;[2]. From the diagram it fol-
lows that
0 52 2
Ng—2ibPa—2i—2pla—2i-2,b = €5_9i_2 a—2iHa—2i—2,0—2i-2 = [a—2i—2,a—2i>

=2
0 2 0 :
and therefore ng,_o; ;@0 2p = €,_9;_2 q—2iT_2;_2p as required.
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Step 3: The claim then follows from Steps 1 and 2 by a straightforward diagram chase, using
the definition of @Zl;rz from Remark |4.4.14

2
so there is nothing to show. For a > b, the “big diagram” is almost the same, except that

For i > 9% the proof is very similar. First, if a = b, then M:b = IC, and (I)I%,b = Gg,b’

M;l%b and M;72i72’b[2] have to be replaced by IC;, and 1C;[2], respectively, and one has tp use
eib: IC, — ICy[2] as the “dashed morphism”. This satisfies (by construction) ;' = egfaeib.

By Lemma the square

@2y
Mgy —= My[2]

7Tb+2,b~--7Ta,bJ/ J/ﬂb+2,b~-7ra,b

ICb L ch[2]

commutes up to a non-zero scalar (note that if “T_b <i< ‘ITH’, then b > 0), and the claim follows
from this by an easy diagram chase. U

Remark 4.4.18. It would be desirable to show that the squares in Lemmas [4.4.15| and [4.4.16)
commute (not only up to non-zero scalar). This cannot be obtained from our argument, which
in both cases uses that morphisms to some cone must vanish to get a factorization. If these
squares actually commute, then the proof of Theorem shows that the canonical morphisms
P21 M, — M/, [24] form a multiplicative basis of Endg. (M ,).

Recall that P'-objects and P!-like objects are also known as spherical and spherelike objects,
and that P%-like objects are also known as exceptional objects. From Theorem and Corol-
lary [£-4.2] one can easily read off the spherelike, spherical and exceptional string objects. Note
that by Proposition spherelike string objects in Perv(P™) are necessarily 2-spherelike.

Corollary 4.4.19. For the string objects in Perv(P™) we have:
1) Maib is 2-spherelike if and only ifa—b=3, ora=2 andb=0, ora=5b=1.
2) The only 2-spherical string object is Mljf1 =1Cy forn=1.
3) The only string objects that are exceptional are the standard objects and the costandard

objects.

Combining this with the classification of indecomposable perverse sheaves mentioned in Sec-
tion (which is obtained from the description in terms of finite-dimensional algebras), this
in particular recovers the classification of exceptional objects from [PW20, Prop. 3]. Moreover,
we also obtain:

Corollary 4.4.20. All indecomposable objects in Perv(P™) are either P-like or 0-spherical.

Proof. By the classification of indecomposable objects over a special biserial algebra from [BR87,
p. 161, Thm.] and [WW85, Prop. 2.3], the indecomposable objects in Perv(P") are the string
objects Mib for 0 < a < b < n and the indecomposable projective-injective objects P, = Iy, for
0 < k < n. The string objects are P-like by Theorem [4.4.17} and that P, is O-spherical is obvious
from the description in Section and Lemma O
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Chapter 5

The Weyl groupoids of sl(m|n) and osp(r|2n)

In this chapter we provide an explicit description of the Weyl groupoids of the Lie superalgebras
sl(m|n), osp(2m + 1|2n) and osp(2m|2n).

For this we first recall the combinatorial definitions of Cartan graphs and Weyl groupoids
from [HS20], and we apply these definitions to construct Weyl groupoids of contragredient Lie
superalgebras. We also compare the automorphism group of an object of the Weyl groupoid of
a contragredient Lie superalgebra to its Weyl group.

The Weyl groupoids of sl(m|n), osp(2m + 1|2n) and osp(2m|2n) are described in Section
For this we first recall the classification of their Borel subalgebras from [Kac77]. To obtain
a convenient graphical description of the Weyl groupoids, we reformulate this classification in
terms of partitions, and we explicitly compute the corresponding Cartan data. This makes it
very easy to explicitly write down the Weyl groupoids in practice.

The chapter is joint work with Jonas Nehme and has been published as [BN24].

[BN24] L. Bonfert and J. Nehme. “The Weyl groupoids of sl(m|n) and osp(r|2n)”. J.
Algebra 641 (2024).

5.1 Motivation and overview of results

Let g be a basic classical simple Lie superalgebra and let h C g be a Cartan subalgebra. It is well-
known that, in contrast to the situation for semisimple Lie algebras, not all Borel subalgebras of
g containing h are conjugate to each other. As a consequence there are several systems of simple
roots that are not conjugate under the action of the Weyl group. The number of conjugacy
classes is however finite (see e.g. [Musl2, Thm. 3.1.2]), which is equivalent to saying that there
are only finitely many Borel subalgebras with fixed even part bg.

In [PS89] Penkov and Serganova introduced odd reflections to pass between Borel subalgebras
with the same even part. Explicitly, they can be described as follows (see e.g. [CW12| §1.4] or
[Mus12, §3.5]). Let {aq,...,a,} be the simple roots corresponding to some Borel subalgebra b
and suppose the simple root «; is odd isotropic. Then the simple roots a;- = r;(a;) for the Borel
subalgebra b’ obtained from b by odd reflection at «; are

— Q5 lfj - 7:7
Oé;- = ri(aj) =1 lf] ;ﬁ ’L',Ozj‘(hl') =0 (51)
aj +a; if j # i a(hi) #0,

where h; € b is the coroot corresponding to «;. More generally, these definitions also work for
contragredient Lie superalgebras. In [Ser1l|] the odd reflections (and certain other maps) are
used to construct a Weyl groupoid that acts transitively on the set of Borel subalgebras.

On the other hand, a (seemingly unrelated at first glance) notion of Weyl groupoid was also
introduced by Heckenberger and Yamane [HY08] as an analogue of Weyl groups in the theory of
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Nichols algebras. Weyl groupoids in this context are constructed from (semi-)Cartan graphs, see
[HS20, §9]. A (semi-)Cartan graph is an undirected graph G with edges labelled by {1,...,n}
and a generalized Cartan matrix A(z) (called the Serre matrix) for every vertex x, subject
to certain conditions. In [HYO08, Ex. 3] examples of Cartan graphs are obtained from finite-
dimensional contragredient Lie superalgebras. Furthermore, [HS20, §11] provides a different
combinatorial construction of Cartan graphs for regular contragredient Lie superalgebras, using
only the Cartan data. Roughly speaking, the vertices of the Cartan graph are the ordered bases
of the roots of g, the edges correspond to odd reflections, and the Serre matrices define the Serre
relations in g. By results of [HY08] the Weyl groupoid of a Cartan graph is a Coxeter groupoid,
i.e. it is generated by simple reflections (s;).: © — r;(z) subject only to Coxeter-type relations
id,(s;s;)™@)i id, = id, (for any possible composition).

The first result of this chapter is a formulation of the general construction of Cartan graphs
and Weyl groupoids from [HS20| in more convenient graphical language, see Section More-
over, in Section we generalize the construction of Cartan graphs for finite-dimensional
contragredient Lie superalgebras from [HYO0S8] to regular symmetrizable contragredient Lie su-
peralgebras, and show that this is equivalent to the combinatorial definition from [HS20]. In
particular, this implies that we actually obtained a Cartan graph. In comparison to [HS20] we
put the focus on the Borel subalgebras instead of the Cartan data, which is advantageous from the
perspective of Lie theory. This point of view allows us to compare this notion of Weyl groupoid
to other constructions in the theory of Lie superalgebras, see Section[5.2.5] In Proposition [5.2.15
we show that the automorphism group of an object of the Weyl groupoid W of a contragredient
Lie superalgebra coincides with its Weyl group.

The second result of this chapter is an explicit description of the Cartan graphs and Weyl
groupoids for the Lie superalgebras sl(m|n), osp(2m + 1|2n) and osp(2m|2n). These Weyl grou-
poids were previously considered in [AA17]. We provide a detailed, different description in terms
of partitions. For this we first recall some standard results about the realizations of sl(m|n),
osp(2m + 1]2n) and osp(2m|2n) as contragredient Lie superalgebras, which amounts to clas-
sifying all Borel subalgebras up to conjugation. Based on [Musl2, §3] we describe the Borel
subalgebras (up to conjugation) in terms of partitions A fitting in an m X n-rectangle. Given
such a partition (and an additional sign e € {+,—} in the case of 0sp(2m|2n)) one can easily
construct a Borel subalgebra b(\) (resp. b(),€)), see Sections to for details. To deter-
mine the Cartan graphs we also need an explicit description of the the Cartan data for all Borel
subalgebras, which we compute in Section [5.A]

An observation crucial to determining the Cartan graphs of the Lie superalgebras sl(m|n),
0sp(2m + 1|2n) and osp(2m|2n) is that the combinatorial description of Borel subalgebras in
terms of partitions allows for a convenient description of the odd reflections: an odd reflection
corresponds to adding or removing a certain box to (resp. from) A, see Section for details.
This makes it very easy to describe the shape of the Cartan graph in concrete examples, see
Proposition [5.4.1] In Proposition [5.4.2) we compute the Serre matrices, which are obtained from
the Cartan data computed in Section [5.3] Finally we determine the Coxeter relations in their
Weyl groupoids. Somewhat surprisingly, these are as one would expect from the Serre matrices,

see Proposition
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5.2 Cartan graphs and Weyl groupoids

5.2.1 Definition and generalities

We begin by reformulating the definitions of Cartan graphs and Weyl groupoids from [HS20, §9].
The notion of Weyl groupoids was first axiomatically introduced in [HYO08].

Let I and J be sets with |I| < co. By an (I, J)-labelled graph we mean an (undirected) graph
G with vertices X and edges F together with maps of sets A: X — J and c: E — I. For an edge

e we call c¢(e) € I its color. We draw the i-colored edges of an (I, J)-labelled graph as x .
The set I will usually be left implicit.

For a finite set I let GCM[(Z) be the set of generalized Cartan matrices with entries indexed
by I.

Definition 5.2.1. A semi-Cartan graph is an (I, GCM[(Z))-labelled graph such that

(CG1) for every vertex z € X and every ¢ € I there is a unique edge e incident to z with c(e) =1,
(CG2) and A(x);; = A(y)s; for every edge x “yandalljel

The matrices A(z) are called Serre matrices.

We call the matrices A(z) Serre matrices since in special cases they describe Serre relations,
see Remark 5.2.91
Note that loops in semi-Cartan graphs are explicitly allowed, and in fact occur very often.

Remark 5.2.2. By we obtain involutions 7;: X — X, sending a vertex x to its neighbor
along the unique i-colored edge at . This recovers the axioms in [HS20, Def. 9.1.1].

Let G be a semi-Cartan graph. To each vertex x € X we associate a Z-lattice ZL with basis
{a% | i € T}, and for i € I we define Z-linear maps s; = (s;),: ZL — Zi(w) by (si)z(af) =

aj ™ — Aw) ] .

Definition 5.2.3. The Weyl groupoid W of G is the groupoid with set of objects X and the
morphisms generated by the (s;),: x — r;(x) for i € I, x € X. The composition of morphisms
is given by the usual composition of Z-linear maps, and two morphisms  — y are equal if and
only if they agree as Z-linear maps Z% — Zé.

Observe that from we get (i), (z)(8i)e = idy for all i € [ and € X, and thus W is
indeed a groupoid.

Remark 5.2.4. Usually one thinks of the lattices Z. as lying inside a fixed ambient C-vector
space of dimension |I|. Obviously the lattices Z. are isomorphic as abstract lattices, but they
are usually rather different (and in particular depend on the vertex x) as sublattices of the
ambient vector space. To emphasize this we will always keep track of the vertex x for the lattice
Z! and its basis vectors af.

Definition 5.2.5. Let G be a semi-Cartan graph and W its Weyl groupoid, and define the
following sets of roots at vertex = € X:

e The real roots are

A = {w(ad) |y € X,w € W(y,),i € I} C ZL,

o the positive (resp. negative) real roots are Aol = Arealq 45~ Noa?.

i€l
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Definition 5.2.6. A semi-Cartan graph G is a Cartan graph if

(CG3) Areal = Atreal y A—real for al] 7 € X,
(CG4) and for all x € X and 4,5 € I we have

(riry)™ @i (z) = =,

where m(z);; = |A* N (Npad + Noaf)|.

5.2.2 Cartan graphs for contragredient Lie superalgebras

Now we construct a generalized Cartan graph from a contragredient Lie superalgebra. We begin
by recalling the construction of contragredient Lie superalgebras from [Musl2, §5]. A Cartan
datum is a pair (B, 7) consisting of a matrix B € C"*™ and a parity vector T € (Z/2Z)™ for some
n € N. We further fix a minimal realization of B, i.e. we choose a vector space b of dimension
2n — rk(B) with linearly independent roots «; € h* and coroots h; € b for 1 <4 < n such that
a(h;) = a;;. This data can be used to construct a Lie superalgebra §(B,7) with Chevalley
generators e; and f; (of parity 7;) subject to the following relations which are analogous to the
defining relations of Kac-Moody Lie algebras:

[h,h'] =0 forall h,h' € b,
[h,e;] = a;(h)e; forall h €h,
[h, fi] = —ai(h)fi for all h € b,
lei, fi] = 6ijhi-

As usual, we call § the Cartan subalgebra. Note that h is concentrated in even degree, and is
abelian. Let g(B,7) = (B, 7)/t, where t is the maximal ideal of § intersecting b trivially. From
the construction of g(B,7) it is clear that rescaling the rows of B by non-zero scalars results in
isomorphic Lie superalgebras.

In the following we will restrict ourselves to regular symmetrizable Cartan data in the sense
of [HS07, Def. 4.8] (up to rescaling of rows). A Cartan datum (B, 7) (with the same notation as
in Section is called symmetrizable if the matrix B is symmetrizable. We call (B, 1) regular
if

¢ B has no zero rows and is indecomposable (i.e. does not split into blocks B = (%1 JgQ )),

e b;; =0 if and only if bj; =0,

o if 7; = 0 then b;; # 0 and 2;17 € Z< for all j, and

o if 7, =1 and b;; # 0, then Qbiij € 27« for all j.

Regularity of (B, 1) implies that ad,,: g(B, ) — g(B, 1) is locally nilpotent for all i, see [Serll]
§2].

We call the Lie superalgebra g(B,7) regular if any Cartan datum (B’,7’) with g(B’,7/) =
g(B,7) is regular. In particular sl(m|n), osp(2m + 1|2n) and osp(2m|2n) are regular, which
follows from the computation of all possible Cartan data (up to rescaling of rows) in Section

The following definition is [HS20, Def. 11.2.4]. It simplifies slightly since we have restricted
ourselves to regular Cartan data.
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Definition 5.2.7. For a regular Cartan datum (B, 7), the Serre matriz AP'7 is the n x n-matrix
with entries

2 ifi=j
aB,T_ 0 lfz#z%bljzoa
Y =1 ife#j,bij #0,b; =0,

Tk i # by # 0,bi #0.

Observe that due to regularity of (B, 7) the Serre matrix A7 is a generalized Cartan matrix.
Also note that in particular AP7 is invariant under multiplication of rows of B by non-zero
scalars.

Remark 5.2.8. The definition of A®>™ can be seen as a normalization of B, bringing it as close as
possible to the form of a generalized Cartan matrix. The rows with non-zero diagonal entries are
rescaled so that the diagonal entries become 2, while for odd isotropic roots (those with b;; = 0)
we replace all non-zero off-diagonal entries by —1. In particular if B is a generalized Cartan
matrix, then A%7™ = B,

Remark 5.2.9. We call the matrix AP a Serre matrix since it is used to formulate Serre relations
for the contragredient Lie superalgebra g(B, 7). Explicitly we have

(ade;)t % (e;) =0,

see for instance [Musl2), Lem. 5.2.13].

For the rest of the section fix a regular symmetrizable contragredient Lie superalgebra g =
g(B,7) with B € C"*™ and let I ={1,...,n}.

As a direct consequence of the construction, g admits a root space decomposition g = b &
@D.cp- 9a- An ordered root basis of g (simply called base in [Serll §3]) is a sequence II' =
(B1,...,Bn) of linearly independent roots such that there are e; € gg,, f/ € g_p, that together
with b generate g and satisfy [e], f;] = 0 for i # j. The ; are called simple roots, and every
root can be written as a Z-linear combination of the simple roots such that all the coefficients
are either non-negative or non-positive.

A choice of Chevalley generators e}, f! for an ordered root basis determines a Cartan datum
(B',7') by 7 = |ej| and b}; = B;(h;) with b} = [e}, f;] € h. Observe that the rank of B and B’
coincide and thus this gives rise to an isomorphism g = g(B’,7’). Note that the e, and f/ are
unique up to scalar, so the Cartan datum (B’,7’) is unique up to rescaling of the rows of B’.

Let X be a labelling set for the ordered root bases of g. For each x € X fix Chevalley
generators corresponding to the simple roots in II(x) and let (B(z),7(z)) be the Cartan datum
obtained from these.

Definition 5.2.10. The Cartan graph G4 of g is the (I, GCM;[(Z))-labelled graph consisting of

e the set of vertices X,

e edges according to the rules:

o For each odd isotropic root af € II(x) and II(z') obtained from II(z) by an odd
reflection at af (as defined in ), there is an edge z < 2’ of color i € I.

o For each root of € II(z) that is not odd isotropic there is an edge = 5 2 of color
1el.

« the Serre matrices A(zx) = AB@) (@),

The Weyl groupoid of g is the Weyl groupoid of Gg.
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Remark 5.2.11. A priori the Cartan graph depends on the choice of Chevalley generators. How-
ever, as mentioned above, these are unique up to scalar. Rescaling the Chevalley generators
corresponds to rescaling the rows of B(z), and this does not affect the Serre matrix AZ®):7(@),
Thus G is well-defined.

It is not obvious that G, is indeed a Cartan graph (or even a semi-Cartan graph) as the name
suggests, this will be checked in Corollary below. For this we first have to show that the
above definition of G is equivalent to the construction from [HS20, Def. 11.2.6]. The idea to
associate a Weyl groupoid to a contragredient Lie superalgebra in this way goes back to [HY08,
Ex. 3].

Remark 5.2.12. For the Cartan graph Gy the basis vectors af from Definition can be
identified with the simple roots in the ordered root basis II(xz) C b*, and in general many of
these coincide when viewed as elements of h*. However, the simple roots in different ordered
root bases should always be distinguished. In terms of the Cartan graph, this corresponds to
distinguishing the simple roots at different vertices as explained in Remark [5.2.4]

To see that Gg is indeed the same object as the one constructed in [HS20| we need to deter-
mine the effect of odd reflections on a symmetric Cartan datum. Similar formulas (without the
symmetry assumption) can also be found in [GHS24] §2.2.4] and [HS07, §4] (for further context
see also [AA17]).

Proposition 5.2.13. Let II be an ordered root basis of g and o; € II odd isotropic. Let I
be obtained from II by odd reflection at oy;. Suppose there are Chevalley generators for II such
that in the resulting Cartan datum (B, T) the matriz B is symmetric. Then there is a choice of
Cheuvalley generators for I such that corresponding Cartan datum (B',7') is given by

Tj Zfb” = 0,

[ b if 1.k blbz :0, I = =
ik j if 3, 7, byibix T\ ifby £o.

bjr + bix +bji  if .k # i,bjibi # 0,

In particular any Cartan datum obtained from a symmetrizable Cartan datum under odd reflec-
tions is symmetrizable.

Proof. Recall from (j5.1)) that the simple roots in II" are
{—ai} U{a; [ j #4,bi; =0} U{oy + i [ j # 4, bi; # 0}

One possible choice for the corresponding Chevalley generators is

—bjk ifj=1o0rk=r1, {

£ =i, —ei if j =1,
69: €j 1f]7éz,b”:0, f;: fj lf]#l,b”:(),
[ei 5] if j # i, bij # 0, 5 (Z1)TLfi, 3] i 5 # 4, by #0.

Observe that this choice of root vectors is unique up to scalar since the root spaces for simple
roots and sums of two simple roots are 1-dimensional, and therefore any other choice of root
vectors results in a rescaling of the matrix B’. Our choice of scaling ensures that B’ will be
symmetric.

From the root vectors we compute (using in particular that e; and f; are odd, and that B is
symmetric)

—hi if j =4,
hi+h; if j#14,b;; #0,
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and this implies

—bjk ifj=1dor k=1,
ik =9 bik if 4,k #14,b5b; = 0,
bjk + bi +bji  if J, k # 4, bjibix # 0
as claimed. Finally, 7} = |e}| = |e;| = 7; unless b;; # 0, in which case 7] = |e}| = |e;| + |e;] =
‘€j|+i=Tj+I. O

Corollary 5.2.14. Let (B,7) be a regular symmetrizable Cartan datum, g = g(B,7), and
B a symmetrization of B. Then Gy is precisely the object constructed from (B,t) in [HS20,
Def. 11.2.6]. In particular Gy is a Cartan graph.

Proof. In [HS20|, the Weyl groupoid is defined using the Lie superalgebra g¢'(B,7) C g(B,T)
generated by the e; and f;. The only difference is that the Cartan subalgebra of g’(B, 1) is just
spanned by the h;, and therefore this does not affect the construction of the Weyl groupoid.
The definitions then agree by the observation that the Serre matrix is invariant under rescaling
of rows of the matrix B, and that the effect of odd reflections on a symmetric Cartan datum
determined in Proposition agrees with the formulas from [HS20, Lem. 11.2.7]. That G is
a Cartan graph is then [HS20, Thm. 11.2.10]. O

5.2.3 Automorphisms

We would like to compare the automorphism group of an object of the Weyl groupoid W of a
contragredient Lie superalgebra g with its Weyl group.

In |[GHS24] the Weyl group of a connected component of W is introduced. It follows from
the observations in Section that the roots in a connected component of the Cartan graph
Gy coincide with the real roots in a connected component of the spine of the root groupoid,
as defined in |[GHS24, Def. 4.1.2]. By [GHS24, Prop. 4.3.12] the Weyl group of a connected
component of W is generated by the reflections at non-isotropic roots that appear as simple
roots in some ordered root basis in this connected component.

In [Serll, §4] the Weyl group of g is defined as the subgroup of GL(h*) generated by all
reflections at all principal even roots of g, where an even root « is principal if either « or %a
appears as a simple root for g in some ordered root basis. Note that this definition does not
depend on the connected component of Gg.

Proposition 5.2.15. Let g be a contragredient Lie superalgebra and W its Weyl groupoid. For
any object x € W the group Autyy(x) is isomorphic to the Weyl group W, of the connected
component containing x.

In particular if for every even root « either « or %04 appears in an ordered root basis in this
connected component, then Autyy (b) is isomorphic to the Weyl group of g.

Proof. By definition the Weyl group W, is a subgroup of GL(h*). On the other hand, by
identifying the Z-lattices in the definition of W with the Z-lattice in h* spanned by the roots as
in Remark [5.2.12) we can also see Autyy (z) as a subgroup of GL(h*). We claim that the respective
generators of these groups act by the same reflections on h*.

For ' € W and an odd isotropic simple root o € II(z) let r;(II(z')) the ordered root
basis obtained from II(z’) by odd reflection at af,. By construction the corresponding generator
(si)zr of W only does an explicit base change between the bases of h* given by the simple roots
II(z') and r;(II(z’)), and hence acts as the identity map on h*. But this means that Autyy(x)
is generated by the reflections at all non-isotropic roots that appear as a simple root in some
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ordered root basis. As the formulas defining the reflections are the same in both cases (see
Definition and [Serll| §4], [GHS24] Eq. (7)]) we see that Autyy(z) C W,.
The converse inclusion is clear by definition of W,. O

Remark 5.2.16. From Proposition [5.2.15| it follows that the real roots of W in the sense of
Definition [5.2.5] are the same as the real roots of g.

5.2.4 Components of the Cartan graph

In general, the Cartan graph of a contragredient Lie superalgebra will have many connected
components, see Remark [5.2.17 below. However in some cases it is enough to consider only one
of these.

Remark 5.2.17. An ordered root basis IT" of g determines a decomposition g = n'~ @ hdn'T into
a positive and negative part with respect to its simple roots. By slight abuse of language we call
b = b @ n't a Borel subalgebra of g.

Since odd reflections do not change the even part of a Borel subalgebra, the Cartan graph of
a contragredient Lie superalgebra splits into several components without edges between them.
If the Borel subalgebras with the same even part represent all conjugacy classes of Borel subal-
gebras, then these components all look the same and we restrict our attention to one of these
components. This is for instance the case for sl(m|n), osp(2m + 1|2n) and osp(2m|2n), see
e.g. [Musl2, §3.1].
Remark 5.2.18. From [HS20, Thm. 9.3.5] it follows that it is possible to order the simple roots
consistently under odd reflections in the sense that for an ordered root basis I = (s, . . ., @, ) and
a non-trivial reordering II" of II it is impossible to obtain IT" from IT by odd reflections. Therefore
the Cartan graph Gy decomposes into n! identical (up to renumbering of edges) components
without edges between them. However, this uses that Gy is a Cartan graph, and therefore
we cannot choose a consistent ordering of the simple roots a priori. As far as we know, a
consistent ordering of the simple roots cannot be found purely in terms of root combinatorics of
Lie superalgebras, although its existence is a purely Lie-theoretical question.

5.2.5 Relation to other notions of Weyl groupoids

There are several constructions called Weyl groupoid in the literature. Our definition of the Weyl
groupoid W generalizes the construction from [HY0§|. The relation to the other notions is as
follows.

In [Ser11] Serganova introduced another notion of Weyl groupoid C whose objects are Cartan
data (B, 7) and whose morphisms are isomorphisms g(B,7) — g(B’,7’) of the associated contra-
gredient Lie superalgebras that preserve the Cartan subalgebra. In virtue of [Serll, Thm. 4.14]
this compares to W as follows.

Comparison 5.2.19. The Weyl groupoid W is the subgroupoid of the component of C containing
g(B, 7), obtained by forgetting all morphisms corresponding to rescaling rows of the matrices B.

One could say that this is a restriction to the essentially important information as rescaling
rows only amounts to different choices of Chevalley generators.

In a recent paper |[GHS24], Gorelik, Hinich and Serganova constructed a different version
of a Weyl groupoid called root groupoid. For a fixed finite set X, their objects are quadruples
(h,a,b,p) where b denotes a Cartan subalgebra, a: X — § a map with image a set of linearly
independent coroots, b: X — h* a map with image a set of linearly independent roots and
p the corresponding parities. The root groupoid is generated by the following three types of
morphisms:
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« (h.a,b,p) = (.0 0,0~ ob,p) for any isomorphism b = I,
 (h,a,b,p) = (h,a’,b,p), where a’(x) = A(z)a(z) for some A: X — C*,

e even and odd reflections.

In |[GHS24, §4.2.5] the skeleton of the root groupoid is defined as the subgroupoid generated
by the even and odd reflections. Furthermore, the spine of the root groupoid is defined as the
subgroupoid generated by odd reflections only, see |[GHS24] §4.2.8].

Given a regular symmetrizable Cartan datum (B, 7) of rank n, we can choose a minimal
realization of b, i.e. a vector space h together with linearly independent coroots a,...a, and
linearly independent roots b1, ..., b, such that the natural pairing satisfies (a;,b;) = B;;. Thus
we obtain a quadruple v = (h,a,b, 7). The connected component of this quadruple in the root
groupoid is an admissible, fully reflectable component in the sense of [GHS24, Def. 3.2.3, §3.4.1].

Comparison 5.2.20. The connected component of v in the skeleton of the root groupoid is the
simply connected cover of W in the sense of [HS20, Def. 9.1.10 and 10.1.1].

Comparison 5.2.21. The subgroupoid W’ of W generated by all isotropic reflections is isomor-
phic to the connected component of v in the spine of the root groupoid.

Yet another notion of Weyl groupoids was suggested by Sergeev and Veselov in [SV11]. How-
ever as they remark this construction is completely unrelated to the notion of Weyl groupoid we
work with.

5.3 Borel subalgebras of sl(m|n), osp(2m + 1|2n) and
0sp(2m|2n)

To give a detailed description of the Weyl groupoids of sl(m|n), osp(2m + 1|2n) and osp(2m|2n)
we first need some preparation. Recall that the Lie superalgebra sl(m|n) is given in matrices by

A| B
C|D
such that tr(A)—tr(D) = 0 together with the usual supercommutator [z, y] = zoy—(—1)1=l1¥yoz.

The orthosymplectic Lie superalgebra osp(2m + 1]2n) is explicitly given by all matrices of
the form

0 B T L I T

v a b ly wn

u c =d'|z =z (5.2)
—xf =2t —yt|d e

(ﬂt Zt yt f 7dt

where a is any (m x m)-matrix; b and ¢ are skew-symmetric (m x m)-matrices; d is any (n x n)-
matrix; e and f are symmetric (n x n)-matrices; v and v are (m X 1)-matrices; y, y1, z and z;
are (m x n)-matrices; and x as well as z1 are (1 x n)-matrices. The Lie superalgebra osp(2m|2n)
is given by the same matrices, except that we have to delete the first row and column. We label
the rows and columns by 0,1,...,m,—1,...,—m,(m+1),...,(m+n),—(m+1),...,—(m+n)
in this order (leaving out 0 for asp(2m/|2n)).

To determine the Weyl groupoids of sl(m|n), osp(2m + 1|2n) and osp(2m|2n) we require an
explicit description of all the possible realizations as contragredient Lie superalgebras. Hence we
need to determine all their ordered root bases, which mostly amounts to determining their Borel
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subalgebras, and the corresponding Cartan data. These results are standard and are essentially
already contained in [Kac77, §2.5.5], though the formulation there is less convenient and not
explicit enough for our purposes.

For sl(n|n) there is a minor extra difficulty as the simple roots are not linearly independent,
and the construction of the contragredient Lie superalgebra from the Cartan data computed from
sl(n|n) yields gl(n|n) rather than sl(n|n). Nevertheless we will use sl(n|n) in all computations
below, as all statements about Borel subalgebras and simple roots carry over to gl(n|n).

Let g be either sl(m|n), osp(2m+1|2n) or osp(2m|2n). Recall (see e.g. [Mus12} §3.1]) that for
a fixed Borel subalgebra by C g5 there are only finitely many Borel subalgebras b C g with even
part by. Moreover these Borel subalgebras can be relatively easily described in terms of partitions
fitting in an m X n-rectangle, see e.g. [Mus12, Proposition 3.3.8]: For sl(m|n) and osp(2m+1|2n)
the Borel subalgebras with fixed even part are in bijection with the set of partitions A fitting in
an m x n-rectangle. For osp(2m|2n) each partition A fitting in an m x n-rectangle determines
two Borel subalgebras b(\, +) and b(X, —), which coincide if and only if A\; = n.

In Sections to below we provide a detailed description of the Borel subalgebras
of sl(mn), osp(2m + 1|2n) and osp(2m|2n), based on the description in [Musl2) §3.3-3.4]. We
compute the corresponding Cartan data in Section [5.A] For this it is more convenient to work
with permutations instead of partitions, and therefore we will frequently use Lemma to
pass between these.

5.3.1 Borel subalgebras for sl(m|n)

For the Lie superalgebra sl(m|n) we fix the m + n — 1-dimensional Cartan subalgebra b given
by all the diagonal matrices, and we are interested in Borel subalgebras with even part bg given
by the standard even Borel subalgebra of upper triangular matrices. As usual, we let ¢; € h*
(1 <i < m+n) denote the projection to the i-th diagonal entry.

Given a partition A € Py, x, we can construct the odd part of a Borel subalgebra b(\) with
even part by as follows: Draw A in an m X n-rectangle as in , which we identify with the
top right m x n-block. The entries corresponding to the boxes of A\ are required to be 0, while
the other entries in the top right block can be arbitrary. Similarly drawing the transpose of the
complement of A (taken in the m x n-rectangle) into the lower right n x m-block determines
the zeros and arbitrary entries there. For instance the “standard” Borel subalgebra of upper
triangular matrices corresponds to A = (), and for another concrete example see Example [5.3.1
below. By [Musl12, Prop. 3.3.8] the b(\)’s are all the Borel subalgebras of sl(m|n) with even part
bg.

Example 5.3.1. Let m =3, n =4 and A = (4,2,1). Then the corresponding Borel subalgebra
of s[(3|4) is given by

* % x| 0% x %
0 = x|0 O0]=x*x x
0 0 x{0 0 0O
b()\) = k ok k| ok ok ok sk (5-3)
O]* *[0 *x *x =
0 0|0 0 % =
0 O|x|0 O 0 =«

Using Lemma [5.A 1] to pass between shuffles and partitions, we can explicitly describe the
ordered root bases and Cartan data for the Borel subalgebras of sl(m|n), see Proposition m
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5.3.2 Borel subalgebras for osp(2m + 1|2n)

To describe all Borel subalgebras of osp(2m + 1]2n) we fix the Cartan subalgebra § consisting
of the diagonal matrices and let ¢; € h* (i € {£1,...,+(m + n)}) denote the projections to the
diagonal entries. We also fix the standard Borel subalgebra bg of the even part, which is defined
by the simple roots €; —g;41 for 1 <i <m—1aswell as e,, and ey j —Emqjp1 for 1 <j<n—1
together with 2e,,4x.

For a partition A € Py, ., we can construct the odd part of a Borel subalgebra b(A) with even
part bg as follows: In the notation from we demand that z = 0 and x = 0, while x; and y;
can be chosen arbitrarily. Note that y and z; are m x n-matrices, and we identify these with the
m x n-rectangle from Lemma [5.A-1] For y, the entries in the boxes corresponding to A must be
zero while the other entries are arbitrary, and for z; the rule is exactly the opposite. Again by
[Mus12, Prop. 3.3.8] the b(\)’s are all the Borel subalgebras of osp(2m + 1|2n) with even part
bg-

Example 5.3.2. Let m = 1, n = 2 and consider the partition A = (1). The corresponding Borel
subalgebra of osp(3|4) is given by

0 0 x|0 0 * =
**Om**
OO*OOM
b(/\): w [%0 %[ % % * %
*%}*O***
0 0[0]0 0 = O
0 0% 0 0 * =

The corresponding ordered root bases and Cartan data are described in terms of shuffles in

Proposition

5.3.3 Borel subalgebras for osp(2m|2n)

The case of 0sp(2m|2n) is slightly more involved. Again we fix the Cartan subalgebra h) consisting
of diagonal matrices and let €; € h* denote the projection to the i-th diagonal entry (with the
same ordered basis and index conventions as for osp(2m + 1|2n)). Furthermore, we fix the
standard Borel bg of the even part, which is given by the simple roots €; —¢;41 for 1 <i <m—1
as well as €,,—1 + € and €y — Emyjy1 for 1 < j <n — 1 together with 2e,, .

Suppose we are given a partition A € Pp,x, and € € {4+, —}. From this we construct the
odd part of a Borel subalgebra b(\,¢) with even part b; as follows. If ¢ = 4, the entries are
determined by A by the same rules as in Section If e = —, we do the same construction
as for + but afterwards we swap the m-th and the (—m)-th row of the top right block. The
b(A, e)’s are all the Borel subalgebras of osp(2m|2n) with even part b by [Musl2, Prop. 3.3.8].

Observe that b(\,+) = b(\, —) if and only if A\; = n, since we need the m-th row of y to
be zero and the m-th row of z; to be arbitrary. In this case we also denote the resulting Borel
subalgebra by b(\, +).

Example 5.3.3. Let m = n = 2. From the partitions A = (1,1) and p = (2,1) we obtain the

2,1
following Borel subalgebras b(\, +), b(A, —) and b(u, £) of osp(4]|4). Here b(\, —) is obtained
from b(\, +) by swapping the rows and columns as indicated.
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_ ¥ X _
**O*‘FO*L*:** * ik 0 il 0 % ok % **O*T(TEJ\**
0 x x 00| *1* * (041 %1040 0 % 0 0 % = 0]0 0f x =
00*0005?@ oo*ooo*o> oo*oooﬁr@}
00 x %|0 0!x| O R N 00 = |0 0'!'x =
¥kl o% k| % % % % ** * Pkl ok %k * okl o% k| % ok % %
“LO—OJ**O*** 0ixi %1080 % x = “Fﬁ:**O***
0 0[0 00 0 x O 0:0:0:04§0 0 = O 0 0[0°0l0 0 % 0
0 0% %0 0 % * 0ixi%i040 0 % 0 0 %]0]0 0 « «

b()‘v +) b()‘v _) b(:u" i)

We describe the corresponding ordered root bases and Cartan data in Proposition [5.A.5
again in terms of shuffles rather than partitions. To connect this to the above description of the
Borel subalgebras, observe that if a shuffle o corresponds to a partition A under the bijection
from Lemma then o(m + n) = m if and only if \; = n.

Remark 5.3.4. As explained in [Musl2, §3.3] the extra difficulties for osp(2m|2n) are due to
the existence of an outer automorphism of 0(2m) that on h* swaps ¢, and e_,, = —&,,. This
corresponds precisely to the swapping of rows in the construction of the Borel subalgebra b(\, —)
from b(A, +).

5.3.4 0Odd reflections in terms of partitions

For sl(m|n), osp(2m+1|2n) and osp(2m|2n) we can describe odd reflections in terms of partitions
as follows. Consider the m x n-rectangle and number the boxes ascendingly in each row and
column, starting from a 1 in the top left as in the following example.

Let A € Ppxn and let b(A) be the Borel subalgebra of sl(m|n) or osp(2m + 1|2n) constructed
from A. Observe that the numbers in the boxes that can be removed from or added to A so that
the result is still a partition X' € P,,«, are precisely the indices of the odd isotropic simple roots
for b(A). In particular such a box (if it exists) is unique. The Borel subalgebra obtained from
b(A\) by an odd reflection at the simple root «; is b()\), with X' € P, «, obtained from A by
adding or removing a box numbered with 1.

Unsurprisingly the description of odd reflections for osp(2m|2m) is slightly more complicated
due to the different series of Borels. In this case the odd reflection at «; takes b(\, ) to b(N,e’)
according to the following rules (using the implicit convention &’ = + if \] = n):

e If \{ <n and e = +, then & = + and ) is obtained from A by adding or removing a box
numbered ¢ (note that in this case ain = 2,4, is even).

o If \y <nand e = —, then ¢ = — and ) is obtained from A by adding or removing a box
numbered i for ¢ < m +n — 1, and by adding the box numbered m +n — 1 fori =m +n
(note that apyn—1 = 2m4n is even).

o If \y =n, then ¢ = +.

o Ifi<m+n—1, then & =+ and )\ is obtained from A by adding or removing a box
numbered 1.
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o Ifi =m+n—1, then ¢/ = + and X is obtained from A by removing the box numbered

m+n—1.
o If i = m+n, then & = — and )\ is obtained from A by removing the box numbered
m4+n—1.

5.4 The Weyl groupoids of sl(m|n), osp(2m + 1|2n) and
0sp(2m|2n)

In this section we give a detailed description of the Cartan graphs and the Weyl groupoids of
sl(m|n), osp(2m + 1|2n) and osp(2m|2n). We begin by describing the underlying graph of the
Cartan graph and then list the Serre matrices. Finally we determine the Coxeter-type relations
among the generators of the Weyl groupoids.

These Weyl groupoids also appear in |[AA17], where they are studied from the perspective
of Nichols algebras. However, our combinatorics is based on the the graphical description of
Borel subalgebras in terms of partitions. This directly reflects the structural theory of the
Lie superalgebra, and therefore makes it very easy to pass between Weyl groupoids and Lie
superalgebras. A further advantage of our description is that it is very easy to write down the
Weyl groupoids in concrete examples.

5.4.1 Shape of the Cartan graph

In Sections to we gave a detailed description of the (finitely many) Borel subalgebras
of sl(m|n), osp(2m + 1|2n) and osp(2m|2n) with fixed even part. As mentioned above, these
represent all conjugacy classes of Borel subalgebras. Therefore by Remark [5.2.17] their Cartan
graphs split into several identical subgraphs without edges between each other. Hence we only
need to consider one of these subgraphs, namely the one corresponding to the Borel subalgebras
described above. The number of these subgraphs is the order of the Weyl group, i.e. m!In! for
sl(m|n), 2™ m!n! for osp(2m + 1|2n) and 2™ ~tmln! for osp(2m|2n).

Moreover, by Remark each of the above subgraphs again splits into several identi-
cal (up to a permutation of the edge colors) components without edges between them, cor-
responding to the possible reorderings of the simple roots. Observe that the ordering of the
simple roots from Propositions [5.A23] to [5.A5] is consistent under odd reflections. Therefore
we only describe the component corresponding to this ordering, and for convenience also call
it the Cartan graph. Since the number of simple roots is m + n — 1 for sl(m|n) and m + n
for osp(2m + 1|2n) and osp(2m|2n) it follows that altogether their Cartan graphs consist of
(m+n—Dlm!n! (resp. 27 mn!(m +n)!, 2T~ Inlm!(m + n)!) copies of this component. By
[Mus12, Thm. 3.1.3] any two Borel subalgebras with the same even part are connected by a
sequence of odd reflections, and therefore these components are moreover connected.

In Sections [5.3.1] to [5.3:3] we used partitions to describe the Borel subalgebras, and the cor-
responding shuffles to describe the simple roots. Also recall from Section [5.3.4] that in this
description odd reflections correspond to adding or removing single boxes. From these observa-
tions we obtain:

Proposition 5.4.1. The Cartan graphs of sl(m|n) (resp. gl(n|n)), osp(2m + 1|2n) and
osp(2m|2n) have the following underlying graphs:

1) For sl(m|n) (resp. gl(n|n)) the set of vertices is the set Puxn of partitions fitting in an
m x n-rectangle. The edges are colored by {1,...,m+n —1}. There are edges \ <— X if
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X' is obtained from X\ by adding a box numbered i (using the numbering from Section ,
and loops A A if no box numbered i can be added to \.

2) For osp(2m + 1|2n) the set of vertices is Pmxn. The edges are colored by {1,...,m + n}.
There are edges A N if X is obtained from X\ by adding a box numbered i, and loops

pPEAGY if no box numbered i can be added to A. In particular there are loops of color
m +n at every vertex.

3) For osp(2m/|2n) the set of vertices is

The

{Ne) | A€ Pmxny M1 <nje € {+,—}}U{(\,£) | A € Prxn, A1 =n}.

edges are colored by {1,...,m+ n}, and the non-loop edges are as follows:

(A e) AN (N, ¢e) for A1 < n and X obtained from X by adding a box numbered i, with
1<i<m+n—2.

(A, +) mn (N, x£) for Ay =n—1 and X obtained from A by adding the box numbered
m+n—1.

(A, =) &5 (N, £) for Ay =n—1 and N obtained from A by adding the box numbered
m+n—1.

(A, £) <= (N, %) for \y = n and N obtained from X\ by adding a box numbered i,
withl <i<m-+n-—2.

Hence the connected components of the Cartan graph of osp(2m + 1|2n) are almost the same
as those of sl(m|n), with the only difference being the additional loops of color m + n at every
vertex for osp(2m + 1|2n). For some concrete small examples see Section

5.4.2 The Serre matrices

Proposition 5.4.2. The Serre matrices for sl(m|n) (resp. gl(n|n)), osp(2m + 1|2n) and
osp(2m|2n) have the following form:

1) For sl(m|n) (resp. gl(n|n)) the Serre matriz is Apmin—1 everywhere.

2) For osp(2m + 1|2n) the Serre matriz is By, everywhere.

3) Let A\ € Prysn and € € {+,—}. Then the Serre matriz at the vertex (A, €) of the Cartan
graph of osp(2m|2n) is:
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Cogn if M1 <n—1and e =+,

Cy i (obtained by swapping the last two rows and columns of Cryyp) if A1 <n —1
and e = —,

Apan if M1 =n—1and e =+,

Aj 1, (obtained by swapping the last two rows and columns of Apin) if A1 =n —1
and e = —,

Dyin if Ao =n and € = £,

the generalized Cartan matriz

2 -10 - 0 O
-1 2 H
0 . . —-10 0
P -1 2 -1 -1
0 - 0 -1 2 -1
o - 0 —-1-1 2

ifdg <Ay =nande=+.
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Proof. In all cases the Serre matrix is obtained from the Cartan data determined in Proposi-
tions [5.A3] to [5.A5 according to the rules from Definition [5.2.7] O

Remark 5.4.3. Let g be sl(m|n) (resp. gl(n|n)), osp(2m + 1|2n) or osp(2m|2n) and let b C g be
the Borel subalgebra corresponding to a vertex x of the Cartan graph Gy. Observe that the Serre
matrix at x is the generalized Cartan matrix corresponding to the Dynkin—Kac diagram for b
considered as a Dynkin diagram, see [Mus12} §3.4.3] for a list.

5.4.3 The Coxeter relations

By [HS20, Thm. 9.4.8] the Weyl groupoid of a Cartan graph G = (I, X,r, A) is a Cozeter
groupoid, i.e. the generators s; are only subject to relations of the form id, (sisj)m(””)” id, = id,
for some symmetric matrices (m(x);;) with m(x);; = 1 (with 4, j € I and z € X, and the implicit
assumption that (r;r;)™®ii(z) = 2 unless m(z);; = oo). In fact m(z);; = |A N (Noa? +
Noaf )|. Therefore to obtain a presentation in terms of generators and relations we only have to
determine the orders of s;s;, starting from all vertices of the Cartan graph.

Proposition 5.4.4. Forsl(m|n) (resp. gl(n|n)), osp(2m+1|2n) and osp(2m|2n), the m(x);; are
determined from the Serre matrices by the same rules as for semisimple Lie algebras. Explicitly,

A(JZ)ZJA(I’)W =0 = m(:z:)w = 2,
A(x),»jA(aU)ji =1 = m(x)” =3,
A(QT)ZJA@?)N =2 = m(,’E)U =4.

Proof. By Proposition we know for sl(m|n) (resp. gl(n|n)) and osp(2m + 1|2n) that we
have the same Serre matrices at every vertex in our Cartan graph. As the Serre matrices are the
same at all vertices, the linear maps s;: h* — h* corresponding to the generators of the Weyl
groupoid are independent of the vertex. From this it follows that (s;s;)™®)# = idy-, and that
m(z);; is the lowest number fulfilling this. Thus we only need to check that the induced path
in the Cartan graph ends at the same vertex that we started. But this follows easily from the
explicit description in terms of partitions.

For o0sp(2m/|2n) the situation is a bit more tedious. We need to compute the intersection of
the linear span of two simple roots with the roots of osp(2m|2n). Using the explicit description
of the simple roots in Proposition this is rather straightforward. We will only do this for
the interesting cases, i.e. when i,j € {n+m — 2,n 4+ m — 1,n + m}, as the remaining cases are
similar (and easier).

o Forxz = (A, +) with A\; < m—2, the last three simple roots are €; —€m4+n—1, Emtn-1—Em+n,
2€m4n, Where i is either m or m + n — 2. Therefore we get the claimed m(x);;.

e For x = (\,+) with Ay = m — 1, the last three simple roots are &; — €., €m — Eman, 2€m+n
where i is either m — 1 or m +n — 1. As 2g,, is not a root of osp(2m|2n) we get type A
relations.

e For z = (\,—) we can apply the same argument as above since in this case only the last
two simple roots are swapped.

o For z = (\,£) with A\; = m > Ay, the corresponding last three simple roots are given by
€i — Emtns Em+n — Emy Em+n + Em Where ¢ is either m —1 or m+n —1. As 2e,,4,, is a root
we directly see that m(z);; = 3.

o Lastly suppose that x = (A, 4) with Ay = A2 = m. The simple roots are then given by
€i—E€m—1, Em—1—Em, Em—1-+Em Where 7 is either m+n or m—2. Now 2¢,,_1 is not a root of
osp(2m|2n), therefore the linear span of €,,,_1 — &, and €,,—1 + €, consists only of 2 roots.
Additionally ¢; + €, are indeed roots, so we see the claimed type D phenomenon. O
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5.4.4 Automorphisms

For sl(m|n) (resp. gl(n|n)), osp(2m+1|2n) and osp(2m|2n) Proposition [5.2.15|yields the following
explicit description of the automorphism group of an object of the Weyl groupoid.

Corollary 5.4.5. If g is sl(m|n) (resp. gl(n|n)), osp(2m+1|2n) or osp(2m|2n) and x any vertex
of the Cartan graph of g, then Autyy(z) is isomorphic to the Weyl group of gg.

Proof. We only have to show that any even root is principal, which follows easily from the explicit

description in Propositions [5.A23] to [5.A5] O

5.4.5 Some small examples
We explicitly describe the Weyl groupoids of sl(m|n), osp(2m + 1|2n) and osp(2m|2n) in a few
examples.

Example 5.4.6. The contragredient Lie superalgebra gl(2|2) has three pairs of Chevalley gener-
ators, so the associated Weyl groupoid has three generators sy, s2 and s3. By Section[5.3.1]we can

index the Borel subalgebras (with a fixed even part) by partitions fitting into an 2 x 2-rectangle,
2 170

—01 2 —21) everywhere. From the description of
odd reflections in Section it follows that the generators of W can be drawn in a diagram

2

2
1 N 1
B el

e 3

J

2

and by Proposition [5.4.2 the Serre matrix is

2

By Proposition @ the only relations are the familiar braid relations s15981 = 25182, S28382 =
838283 and s183 = s3s1 (for all vertices of the Cartan graph).

Example 5.4.7. For the Lie superalgebra osp(5|4), the underlying graph looks as in Exam-
ple but its Cartan subalgebra is 4-dimensional instead of 3-dimensional. So every vertex

gets an additional loop with index 4.

am C
N A N O
C&%(Dd e )
TNy
GO,
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In this case the Serre matrix is By = | 5 5 5 92 everywhere. The generators are subject

to the usual “type B braid relations”, which are the relations from Example as well as
83548354 = S4835483 and $;84 = S48; for ¢ € {1, 2}.

Example [5.4.6] and Example [5.4.7 had in common that the Serre matrices were all the same
at every vertex. This is however not true for osp(2m/|2n):

Example 5.4.8. The Cartan graph of osp(4/4) is

N N ()
1C((Z),+) —2 5 O4) —— ( ,+) 2
Léj 3 3 :
()
2 ([j:]’i) —1 (H:],i) —2 (EB,i,) 1
LT Y

1

=»
.
o
|

5 )
YooY

3
2 -1.0 0

The Serre matrix in the top left corner is of type Cy = <01 250 ) The other two Serre

0 0 —2 2
2 -1 0 0

matrices in the first row are of type Ay = (‘01 31 _21 91 ) The bottom row has the same Serre
0 0 —1 2

matrices as the first row except we swap the third and fourth row and column, i.e. we have
2 -1 0 0

2 10 0
(01 3 9 _%) in the bottom left corner and (01 (2) 9 _%) for the other two. At (Hﬂ7 :I:)
0 -1 -1 2 0 —-1-12

2 -10 0
we have Dy = <_01 2 ) The remaining two Serre matrices are given by (_01 25T ),
. . 0 -10 2 . 0 —1-1 2
in particular these are not of Dynkin type.

The generators of W are subject to the braid relations (including relations of type C' = B)
specified by the Serre matrices.

5.A Computation of Cartan data

In this appendix we explicitly describe the simple roots and Cartan data for the Borel subalge-
bras of sl(m|n), osp(2m + 1|2n) and osp(2m|2n). For this it is more convenient to work with
permutations instead of partitions, so we first need to set up a bit of combinatorics to pass
between the two notions.

5.A.1 Combinatorics: Shuffles and partitions

Let P, xn be the set of partitions whose Young diagram fits into an m X n-rectangle. We use the
slightly unusual convention that the longest row is at the bottom, so for instance the diagram
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[represents the partition A = (4,2, 1).

Recall that a permutation o € Sy,4, is an (m,n)-shuffle if o71(i) < o~1(j) for all pairs
i < j with either 4,7 < m or i,j5 > m. We write Shff(m,n) for the set of (m,n)-shuffles.
Equivalently, Shff(m,n) can be defined as a set of shortest coset representatives for the parabolic
quotient (Sp, X Sp)\Sm+in. Note that if o is an (m,n)-shuffle, then either o(m + n) = m or
o(m+mn)=m+n.

We will identify shuffles with partitions as follows:

Lemma 5.A.1. There is a bijection between Shif(m,n) and the set of Young diagrams (parti-
tions) fitting into an m x n-rectangle, as follows: for an (m,n)-shuffle o we draw a path in the
m x n-rectangle, where in the i-th step we go down if o(i) < m and right if o(i) > m. Then the
partition A consists of the boxes below the path.

This bijection is best explained in an example.

Example 5.A.2. Let m = 3, n = 4 and 0 = (}33352%7) € Shff(3,4). According to
Lemma o encodes the boundary path rdrdrrd (where r means “right” and d “down”):

| (5.4)

I

I

I I
The permutation corresponding to o is A = (4,2, 1).

5.A.2 Cartan data for sl(m|n)

Proposition 5.A.3. Let o € Shif(m,n). The simple roots corresponding to the Borel subalgebra
b(o) of sl(m|n) are

(o) = {ai =€) ~ €0ty | L S i <m+n— 1},
For the corresponding Cartan datum (B,T) we have 7, = 0 if either o(i),o(i + 1) < m or

o(i),o(i +1) > m, and 7; = 1 otherwise. The i-th row of the matriz B is given by

(b’l b n 71): {(Oa"'aoa_1727_1707"'70) if|ei|:97

(0,...,0,—1,0,1,0,...,0)  if |es| = 1,
where the entry 2 (resp. the “middle” 0) is in the i-th spot.
Proof. The simple roots are listed in [Mus12, Lem. 3.4.3]. Since the elementary matrix FE,.; is of
weight €, — ¢, we can take
€i = Eo(i),0(i+1); Ji = Eg(it1),00)

as Chevalley generators. Clearly e; (and f;) is even if and only if o(i) and o(i + 1) are either
both <'m or both > m + 1. Therefore h; = [e;, fi] = Ey(i),00) — (71)|ei|E0(i+1)7U(i+1), and thus

0 if j #£4,1+1,
2 if j =1,le;| =0,
a;(h) = {0 i 5 =i, es] = 1,
-1 ifj=14i—1,
—(=D7 ifj=di+1.
This shows that the matrix B has the claimed form. O
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5.A.3 Cartan data for osp(2m + 1|2n)

Proposition 5.A.4. Let o € Shff(m,n). The simple roots for the Borel subalgebra b(c) of
osp(2m + 1)2n) are

(o) ={ai = eo(i) = €o(irny | L L i <m+n — 1} U{min = Eo(man) }-

The corresponding Cartan datum (B,T) can be described as follows. For 1 <i <m+mn —1 we
have T; = 0 if either o(i),0(i +1) < m or o(i),o(i +1) > m, and Tpin =0 if o(m +n) < m
and Tpmin = 1 if o(m +mn) > m. The i-th row of the matriz B is given by

0,...,0,—1,2,—1,0,...,0) ifi <m+mn,le;] =0,

(bits -3 biman—1) = (0,...,0,-1,0,1,0,...,0)  ifi <m+mn,|e| =1,
(0,...,0,—1,1) ifi=m+n,

where the entry 2 (resp. the “middle” 0) is in the i-th spot.

Proof. The simple roots are listed in [Mus12, Lem. 3.4.3]. From the explicit description of the
root spaces (see e.g. [Musl2, Exercise 2.7.4]) it follows that one possible choice for the Chevalley
generators (for 1 <i<m+mn—1)is

o Egi),o(i+1) + B—o(it1),—o@) if o(i) <m,o(i+1) >m,
Esi),o(i+1) — E—o(i+1),—0(i) Otherwise,
Em+n = Eo(m+n),0 - EO,—U(m-{-n)

) Eo(is1),0) T E—o(i)—o(it1) ifo(i) >m,o(i+1) <m,
fi= .
Es(it1),06) = E—o(i),—o(i+1) otherwise,

s ) Eom —E_mp if o(m+mn)=m,
mn Eomin + E_(min),0 if o(m+n)=m+n.

Hence e; (and thus f;) is even if and only if o(i) and o(i + 1) are either both < m or both
> m 4+ 1. From this it follows that
hi = [ei, fil = Eo(i),0(i) — B-oi)—o(i) — (DI (Eogis1).06+1) — B—o(it1),—o(i+1))
for 1 <i<m+mn—1, and (independent of the value of o(m + n))
hm+n = Lo(m+n),oc(m+n) — E—a(m+n),—a(m+n)'

Therefore the entries of the matrix B are

0 if j£d,i+1,

2 ifj=i<m+n,m =0,
0 ifj=i<m+n,7=1,

bij = a;(hi) = 1 oo
ifj=i=m+n,
~1 ifj=i—1,
—(=D7 itj=di+1,
and thus B has the claimed form. O

105



CHAPTER 5. THE WEYL GROUPOIDS OF sl(m|n) AND osp(r|2n)

5.A.4 Cartan data for osp(2m|2n)

Proposition 5.A.5. Let o € Shff(m,n) and e € {4+, —}. The simple roots and the Cartan data
(B, T) for the Borel subalgebras b(o, ) of osp(2m|2n) can be described as follows:

1) For o(m+mn) =m+n and b(o,+) the simple roots are
(o, +) = {ai = eo(i)—o(ir1) | 1 i <m4n— 1} U{min = 26min}-

The Chevalley generators e; and f; for 1 <i < m+n —1 are even if and only if either
0(i),c(i+1) <m oro(i),o(i+ 1) > m, while epyn and fomin are even. The i-th row of

B is
0,...,0,—1,2,-1,0,...,0) ifi#m+n—1,|e; =0,
(b: bimin) = (0,...,0,-1,0,1,0,...,0)  ifi#Em+n—1,le| =1,
0,15+ Vim+4n) = (0,...,0,—1,2,-2) ifi=m+n_1,|ei|:67
0,...,0,—1,0,2) ffi=m+n—1le|=1

again with the entry 2 (resp. the “middle” 0) in the i-th spot.

2) For o(m +n) = m + n and b(o,—) the simple roots Il(o,—) are obtained from II(o,+)
by replacing every e, by e_,, = —&m, and swapping the m + n — 1-th and the m + n-th
simple root. The Cartan datum is as above except that the last two rows and columns of
the matriz B are swapped.

3) For a(m+n) =m and b(o,+£) the simple roots are
H(Uy j:) = {ai = Eo(i)—o(i+1) | 1<i<m+n-— 1} U {am-‘rn = E5(m+n—1) + €J(m+n)}~
The Chevalley generators e; and f; for 1 < i < m+n —1 are even if and only if either

o(i),c(i+1) <m oro(i),o(i+1) > m, while €nin and fmin have the same parity as
eman—1- The i-th row (b;1,...,b;m+n) of the matriz B is given by the following table:

‘ Ti:() ‘ 7'1':1
i<m+n-21(0,...,0,-1,2,-1,0,...,0) | (0,...,0,-1,0,1,0,...,0)
t=m+n—2 0,...,0,-1,2,-1,-1) (0,...,0,—1,0,1,1)
t=m+n-—1 (0,...,0,—1,2,0) (0,...,0,-1,0,2)

t=m-+n (0,...,0,—1,0,2) (0,...,0,—1,2,0)

Proof. The simple roots are listed in [Mus12, Lem. 3.4.3]. A choice for the Chevalley generators
ei, fi and h; = [e;, fi] associated with the simple roots is:

o for a; = e,(:) — €o(it1),
o = Es(iyo(it1) + B o(it1),—o@) if o(i) <m,o(i+1) >m,
Es(i),o(i+1) = E—o(i+1),—0(:) Otherwise,

 Esir1)06) T E—o(i)—o@ivr) ifo(i) >m,o(i+1) <m,
fi= _
Es(iv1),0() — F-o(i),—o(i+1) otherwise,

hi = Eoi) o(i) — B—oi) o) = (=D (Eo(it1) 0(41) = B=o(it1)—o(i+1))-
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o for a; = ¢gy(i) + Em,

€ = Eo’(i),—m - Em,—a(i)a

f' _ E_m,a(i) — E—o’(i)7m if O'(Z) S m,
i E_ o)t E_o)m if (i) > m,

hi = Ea’(i),a(i) - E—a‘(i),—a(i) + (_1)|ei‘(Em,m - Efm,fm)~

o for Ay = —Epmp — Ea(i-‘rl)a

0 — Efm,a(iJrl) - E*(r(i+1),m if U(Z + 1) < m,
’ Efm,a(iJrl) + E*U(i+1),m if U(Z + 1) >m,

f’i = Ea(i+1)7—m - Em7—a(i+1)a
hi = Efm,fm - Em,m - (_1)|6”(Ea'(i+l),a'(i+l) - E—U(i+l),—d(i+l))‘

o for a; = 2¢, 44,

€; = Em-i—n,—(m-‘rn)’ fi= E—(m+")am+"’

h; = [€i7 fl] = Em+n,m+n - E*(m+n),7(m+n)~

Now we plug the h; into the a;. For this we have to consider each of the three classes of Borel
subalgebras separately.

Case I: o(m +n) =m+n, +. Then

0 if j#4,4+1,

2 if j=4,7, =0,
aj(hi) = 0 lfj :Z:’Ti =L

-1 ifj=di-1,

—(-D)7  ifj=i+1l<m+n,

—2(-1)" ifj=i+1l=m+n,

and it follows that the matrix B has the claimed form.

Case II: o(m +n) =m+n, —. In this case let ig = c~1(m). The simple roots are as in the
previous case except that €5(;,—1) — €m and &, — €5(;o41) are replaced by €,(;,—1) + &m and
—Em — Eq(ig+1)> Tespectively, and the numbering is changed. The values «; (h;) are as in
the previous case except we have to check the cases involving iy separately. Nevertheless
it follows that the matrix B is as in Case I except we have to swap the last two rows and
columns to account for the renumbering of the simple roots.
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Case IIT: o(m + n) = m. Similarly to the previous cases we obtain

0 if j#Ad,i+1,i+2,

2 if j =i,7;, =0,

0 ifj=i,m=1,

-1 ifj=i—1l,i<m+n,

1— (=) ifj=i—1,i=m+n,
aj(h;)) =40 ifj=i—2,i<m+n,

-1 ifj=i—2,i=m+n,

(=17 ifj=i+1<m+n,

1+(-1)" ifj=i+1l=m+n,

0 ifj=i+2<m+n,

(=7 ifj=i+2=m+n,

as claimed.
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