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Abstract

The plasticity and dynamics of biological neural networks enable remarkable computations despite 
physiological constraints. Here we study plasticity and dynamics that satisfy such constraints using 
analytically tractable linear rate networks and numerical simulations.

Biologically plausible models of reinforcement learning must be local and able to learn from sparse, 
delayed rewards. Weight (WP) and node perturbation (NP) achieve this by correlating fluctuations in 
synaptic strength or neuronal activity, respectively, with reward changes. Because the number of 
weights massively exceeds the number of neurons, NP was believed to be far superior to WP and more 
likely neurobiologically realized. We develop a clear, mathematically-grounded understanding of these 
versatile learning rules applied to linear rate networks learning a student-teacher task. Our analytical 
results show that WP can perform similarly to or even better than NP for many temporally extended 
and low-dimensional tasks, which we confirm in simulations of more complex networks and tasks. We 
further find qualitative differences in the weight and learning dynamics of WP and NP that might 
allow to distinguish them experimentally. The generated insights allow us to formulate modified 
learning rules that in certain situations combine the advantages of WP and NP. Together, our findings 
indicate WP as competitive or even preferable to NP for many relevant biological and machine 
learning tasks, suggesting it as a useful benchmark and plausible candidate for learning in the brain. 

Biologically plausible models of neural computation must reflect experimentally observed network 
characteristics. One such characteristic is that principal neurons in sensory cortices encode continuous 
variables with overlapping responses, featuring predominant excitation between neurons with strongly 
overlapping responses. The reasons underlying such connectivity are still unclear, and there are even 
known disadvantages to it. To address this knowledge gap, we develop a novel cooperative coding 
scheme that relies on like-to-like excitation to implement a desired response. Neurons cooperatively 
share their computations and access to feedforward input with similarly-tuned neurons that also need 
them. This allows to exchange many feedforward and less specific recurrent connections for few 
specific recurrent ones, thereby minimizing the total number of synapses. By comparing cooperatively 
coding and feedforward networks achieving the same network response, we find that synaptic savings 
come at the cost of increased network response times. This trade-off improves in magnitude and 
scaling when introducing delayed, balancing inhibition or spike frequency adaptation, or when 
encoding higher-dimensional stimuli. Our results suggest the number of synapses as an important 
constraint that can explain observed connectivity patterns in a novel cooperative coding scheme, 
possibly enabled by balancing inhibition. 
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CHAPTER 1

Introduction

The brain is the physical substrate that allows us humans and other animals to perceive the world, make
sense of it and act in it. How it does so is still a big mystery. There is however a consensus that neurons
and their interactions with each other are central to its computational capabilities [3, 4]. In this view,
neurons perform elementary computations by integrating input from other neurons and translating it into
output, which becomes the input to yet other neurons. By chaining these elementary computations and
through emergent network e"ects, the neural network can implement much more complex and powerful
computations than its constituents [5]. Network function is thereby largely determined by the pattern
and strengths of the synapses that connect neurons with each other, and plasticity in these is widely
considered as the main contributor to learning [6, 7].

The result of network-level computations involves the coordinated activity of many neurons, such
as for example motor neurons in the execution of movements. It can thereby be helpful to think of the
neurons as independent agents that work together towards a network-level goal that does not exist on
the neuron-level: In contrast to artificial neural networks, which are simulated on computers that have
unrestricted access to their full dynamic states, biological neurons can only access locally available
information. Each neuron has to use this limited, ‘private’ information to produce and adapt its output.
How does it contribute to the full network dynamics? And how can it change to improve the network?
This question is known as the credit assignment problem [8], which is complicated by the mentioned
locality constraint. Further constraints that shaped the evolution of biological neural networks include
the availability of space and energy [9–11].

This thesis examines how local, biologically plausible computations can jointly achieve global
objectives: On the level of plasticity, we study two stochastic reinforcement learning (RL) rules, Weight
perturbation (WP) [12, 13] and node perturbation (NP) [14, 15], that leverage synapse-local information
to maximize the reward obtained by the network (publication 1 [1], Chapter 3). The learning rules
correlate random fluctuations in synaptic weights or neuronal activity, respectively, – which are another
constraining and seemingly detrimental factor – with reward prediction errors to guide synaptic plasticity.
On the level of activity, we develop a novel cooperative coding scheme, in which neurons utilize
local recurrent connectivity as observed in cortex to dynamically generate a desired network response
(publication 2 [2], Chapter 4). The coding scheme thereby requires a minimal number of synapses,
suggesting that synapse number and limited space are important constraints shaping neural networks.
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Chapter 1 Introduction

Fluctuation-driven reinforcement learning In addition to activity-dependent plasticity, synapses
undergo apparently random, activity-independent plasticity that is similar in magnitude [16–19]. Long-
term synaptic changes can be consolidated or reverted at a later point in time [20–22]. This consolidation is
influenced by neuromodulators such as dopamine [22–24], which encodes reward- and general prediction
errors [25]. It can be accessible to all synapses in an area through di"usive volume transmission [26],
giving them access to a ‘global’ reward signal [27]. WP and NP are two basic RL rules that make
use of random fluctuations in neural networks, requiring only a global reward signal in addition to
principally locally-available information [28]. They work by correlating perturbations of the synaptic
strengths (weights) or summed synaptic inputs (nodes) with changes in the obtained reward, increasing
the probability to produce activity that lead to higher rewards [29] (App. C). Their updates thereby follow
noisy, unbiased estimates of the weight gradient [13, 14].

Because there are typically many more weights than nodes, the perturbation space that WP uses to
estimate the weight gradient is (for time-independent tasks) much larger than that of NP. NP therefore
has the reputation of being far superior to WP [14] and is more often considered as actually implemented
in the brain [28, 30, 31]. One example is birdsong learning, where the synapses from a conducting area
(HVC) that provides highly precise and sparse, clock-like inputs [32] to an output area (RA) receive
‘perturbing’ inputs from an experimenter area (LMAN) that might function as node perturbations [30,
33]. NP is also more often used as a benchmark [34–36].

The theoretical work that showed NP’s superiority studied linearly mapping random inputs to outputs
as given by a teacher network [14]. Solving this task requires matching every weight of the teacher
network, because each weight has a statistically independent e"ect on its output neuron. In contrast,
neurobiological tasks and neuronal activity are typically (relatively) low-dimensional [37–39], with
many weight configurations providing solutions. This suggests that WP can learn such tasks more easily,
as performance depends e"ectively on fewer (combinations of) weights. Also, tasks extend in time. This
increases the perturbation dimension of NP but not WP In order to be able to learn arbitrary output
sequences, NP has to perturb the output nodes independently at di"erent time points. In contrast, WP
can apply weight perturbations that are constant throughout a trial, capitalizing on the fact that neuronal
networks can generate neuronal dynamics with static weights.

Inspired by these observations, we study WP and NP in settings that feature temporally-extended
and correlated neuronal activity. Through analyzing them on analytically tractable tasks we generate a
mathematically grounded understanding of the dependence of their learning characteristics on di"erent
task parameters. Our findings of comparable or superior performance of WP, also for more complex
networks and tasks, suggest reconsidering WP as actually implemented in the brain, as well as using
it as a relevant benchmark for other biologically plausible RL rules. As WP and NP are massively
parallelizable and therefore potentially relevant for machine learning applications [40], our results might
motivate their use for long tasks where traditional gradient-computation is either too costly or di!cult
due to long time horizons. The developed insights and learning rule variants might enable further
improving them.

Cooperative coding of continuous variables Cortical principal neurons involved in the process-
ing of continuous sensory variables encode these with overlapping response profiles [41, 42]. Highly
similarly responding neurons are thereby more likely to excite each other [43–45], and do so more
strongly [44]. Also their functional connectivity is excitatory [46, 47]. The reason for such like-to-like
excitation is unclear: models optimized to encode variables with few spikes feature like-to-like inhibition
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Chapter 1 Introduction

instead [48, 49]. Further, recurrent excitation can amplify noise [50] and increase response times [51,
52].

This poses the question: What is the reason underlying the observed like-to-like excitation? Theoretical
neuroscience can provide possible explanations to such normative questions by showing that the observed
features emerge when optimizing models under some constraint or objective. Optimal usage of limited
space can for example predict the ratios of the volumes taken up by neuronal wiring to neuronal cell
bodies [53], of excitatory to inhibitory neurons [11], or the distribution of axon diameters [54].

In line with this tradition, we show that excitation between similarly-tuned neurons can be a sign of
an architecture that minimizes the number of required synapses. Concretely, we develop a cooperative
coding scheme in which neurons use these recurrent connections to dynamically generate the network
response (publication 2 [2], Chapter 4). The recurrent interactions thereby allow the cooperative sharing
of already performed computations with similarly-tuned neurons that also need them. They further
distribute access to feedforward input across the network. We show that this recurrent sharing allows to
save many synapses, particularly compared to a pure feedforward implementation. As recurrent neural
networks are formally equivalent to deep feedforward networks that are ‘unrolled in time’ [55], the
addition of recurrent connections allows further nonlinear computations in networks with nonlinear
neuronal activations. We do not consider this e"ect, but use linear rate neurons to show how di"erent
sets of inputs can generate a desired response. The computational benefits of recurrent connections are
then in addition to the synaptic savings, and might even lead to further savings [56].

The synaptic savings in our cooperatively coding networks come at the cost of slower response
formation. The network dynamics can be sped up when excitation is balanced by delayed inhibitory
currents. This allows an increase in excitation, which in the stationary state cancels with the additional
inhibition. During the response formation, however, excitation rises before the lagged inhibition, creating
a ‘window of opportunity’ during which strong, yet unbalanced excitation can quickly propagate activity
through the network. This ability of balanced networks to amplify their input without significant slowing
of their dynamics relies on an e"ect called balanced amplification [51]: a surplus of excitation strongly
and transiently drives both excitatory and inhibitory activity, which then decay quickly due to dominating
inhibition. Cortex operates in such a regime of strong recurrence, in which supercritical recurrent
excitation would, on its own, quickly cause ‘exploding activity‘, but is stabilized by inhibition [57–59].
This E/I balance can also explain spike train characteristics: in a dynamically maintained regime called the
balanced state excitation and inhibition largely cancel, and the remaining fluctuations cause asynchronous,
irregular neuronal firing [60–62]. Experiments find that excitation and inhibition are indeed correlated,
and that inhibition tracks excitation with a short delay [63–65] as utilized in our balanced cooperative
coding networks. Delayed, balancing inhibitory currents can also arise as spike-frequency adaptation
currents, a feature often observed in excitatory principal neurons [7, 66, 67].

Thesis structure Chapter 2 provides foundational information about the neurobiological and
methodological background relevant to the thesis. It covers biological neural networks (Sec. 2.1), coding
in recurrent networks (Sec. 2.2), neural networks as dynamical systems (Sec. 2.3), fluctuation-driven
reinforcement learning (Sec. 2.4) and some mathematical tools (Sec. 2.5). Chapter 3 contains a brief
summary of publication 1 [1], which is attached in App. A. Chapter 4 briefly summarizes publication
2 [2], which is attached in App. D. Both publications are discussed in Chapter 5. App. C contains an
additional analysis of the relationship between WP and the REINFORCE framework [29].
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CHAPTER 2

Foundations

2.1 Biological neural networks
This section gives a brief introduction to biological neural networks, emphasizing the aspects relevant to
this thesis.

2.1.1 The nervous system
The human nervous system consists of two parts: the central nervous system (CNS) and the peripheral
nervous system (PNS) [3, 68]. The CNS is encased in bone and consists of the brain and spinal cord [68].
All other parts of the nervous system make up the PNS. It connects the CNS with the body, via nerves
(axon bundles) that enter and leave the spinal cord. Additionally, there are the cranial nerves, innervating
mostly the head, of which some belong to the CNS and others to the PNS [68].

This work focuses on the brain, more specifically on the cerebral cortex. This layered structure at the
outside surface of the brain is especially large in humans and critical for higher cognitive functions [68].

The brain contains two main cell classes: neurons and glial cells [4]. In the human brain, it was
believed that around 75 to 80 % of cells are glial cells [3, 4], but improved counting methods estimate a
one-to-one ratio [69]. Neurons are the highly specialized, electrically excitable cells that enable neuronal
computation through their generation and propagation of electrical signals. Glial cells do not directly
take part in electrical signaling, but support neuronal functioning in various ways, such as nourishing
neurons, regulating extracellular concentrations of ions and neurotransmitters, or myelinating axons [3,
4].

2.1.2 Neurons
Neurons can process chemical and electrical signals and transmit information over long distances [6].
Their importance further derives from the fact that they are, as part of the nervous system, involved in
sensing and control muscles and glands [68]. They consist of a cell body, also called soma, tree-like
structures called dendrites, and an axon [4, 6]. The dendrites integrate and relay inputs to the soma,
which generates output in the form of short action potentials or spikes if its electric potential exceeds a
firing threshold. The action potentials then travel along the axon and are transmitted to other neurons via
connecting synapses.

4



Chapter 2 Foundations

Electrical properties A neuron processes electrical signals by manipulating its electrical potential
relative to the surrounding extracellular fluid, in response to chemical and other inputs [6]. This potential,
termed membrane potential, stems from the di"erent concentrations of various ions on the inside and
outside surface of its cell membrane. It is typically negative, meaning that there are excess negative
charges on the inside. As like charges repel, these gather on the inside surface of the membrane.
Electrostatic forces attract an equal amount of positive charges to the outside surface, establishing
electrical neutrality on a broader scale. The insulating cell membrane separates the charges and acts as a
capacitor. However, ions can traverse it through a range of ion channels, thereby increasing (depolarizing)
or further decreasing (hyperpolarizing) the membrane potential [6]. For each ion there is an equilibrium
potential at which the in- and outward currents due to electrostatic and di"usive forces cancel. Ionic
currents with equilibrium potentials above a neuron’s firing threshold, such as Na+ and Ca2+, increase
the likelihood of firing and are termed excitatory. Currents with subthreshold equilibrium potentials,
such as K+ and Cl– , hinder firing and are called inhibitory [6]. Ion channels are typically permeable to
multiple ion types. The sum of the ionic currents then switches sign at the so-called reversal potential,
which lies in between the involved equilibrium potentials.

The time-independent component of a neuron’s conductivities for di"erent ion types can be captured in
its leak conductivity and related resting potential. The resting potential is the potential that the membrane
potential relaxes back to in the absence of input, with a speed determined by the leak conductance [6].
Conductivities, however, vary with time, as channels can open or close depending on the membrane
potential, on the presence of neurotransmitters or on intracellular concentrations of specific ions or
messenger molecules [6]. This allows neurons to respond to input signals in a complex way, in particular
by translating synaptic events into electrical signals and by generating output spikes.

A spike, also called an action potential, is a short, stereotyped membrane potential deflection that lasts
about 1 ms [6]. It is triggered by the dynamics of voltage-gated Na+ and K+ channels and involves a fast
voltage increase of about 100 mV, followed by a re- and afterhyperpolarization. After a spike, there is a
short period of absolute refractoriness in which it is impossible to elicit another spike, followed by a
relative refractory period in which spiking is possible but hampered [6]. A spike is triggered at the axon
initial segment when the membrane potential of a neuron surpasses a critical threshold for spiking [4].
It then propagates along the axon, where it is actively reinforced [4]. Subthreshold fluctuations in the
membrane potential, on the other hand, are not reinforced but strongly attenuate along the axon [6].
This, together with the highly stereotyped form of the action potential, means that the only aspect of the
activity of a neuron that determines its axon-mediated influence on other neurons is its spike times.

Axon The axon is a long, cable-like process emerging from the soma that transmits action potentials
to other neurons. The spike propagation along the axon can be likened to a wildfire, using the same
dynamics of voltage-gated Na+ and K+ channels as spike generation. Similar to a fire front, propagating
spikes cannot reverse direction, as the Na+ channels behind them are still inactivated [6]. Axons have
typical lengths on the order of millimeters [3] to centimeters, much longer than the typical reach of
dendrites [6]. Axons connecting distant brain areas can be even longer.

Synapses A synapse is a connection between two neurons that allows the presynaptic neuron to
influence its postsynaptic partner. The e"ect depends on the type of synapse and on its strength. In
this way, the presence or absence of synapses, i.e., the connectivity, determines which neurons a neuron
can directly influence, and the heterogeneity of synaptic strengths allows it to a"ect its synaptic targets
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di"erentially. Synaptic connectivity and connection strengths thereby largely determine network function.
The plasticity of synaptic connectivity and synaptic strengths is widely recognized as the main contributor
to learning [6].

Synaptic transmission works as follows: The presynaptic (axonal) terminal contains neurotransmitters
packaged into vesicles [4]. A presynaptic spike arriving at the synapse prompts stochastic transmitters
release via the fusion of docked vesicles with the cell membrane. The released neurotransmitters di"use
across the synaptic cleft, which is the small space of extracellular medium that separates the two neurons
at the point of contact [4]. At the postsynaptic side, the neurotransmitters activate specialized receptors.
These in turn cause the opening of ion channels, which translates the chemical signal into a postsynaptic
potential (change) [4].

The postsynaptic potential can be either excitatory or inhibitory, with the postsynaptic receptor
determining the synaptic e"ect. Dale’s principle states that a neuron releases the same neurotransmitter
or mix of neurotransmitters at all terminal sites [68], which holds with some exceptions for the whole
brain [4]. Although any neurotransmitter can activate multiple receptor subtypes that have di"erent
postsynaptic e"ects [68], in practice most neurons can be classified as either excitatory or inhibitory [6].
The main excitatory neurotransmitter is glutamate [6, 68]. Prominent glutamate receptors are the
fast AMPA receptors and the slower NMDA receptors [68]. For the main inhibitory neurotransmitter,
𝐿-aminobutyric acid (GABA), there is also a receptor with a fast response (GABAA) and another with a
slow response (GABAB) [6].

While most synapses are chemical synapses, as described above, some are electrical [4]. Electrical
synapses directly connect the cytoplasm of the involved neurons, allowing a near instantaneous coupling
of membrane potentials and transmission of subthreshold fluctuations [4].

Dendrites Depending on neuron type, a neuron can have one or more dendrites. These become
thinner with distance from the soma, as the dendrite splits up into more and more branches. The branches
often have small protrusions, called dendritic spines, that support a synapse by housing neurotransmitter
receptors [70]. Their primary function is thought to be providing a microcompartment that segregates
postsynaptic chemical responses, which are important to guide synaptic plasticity [70]. While excitatory
synapses typically connect with dendritic spines, inhibitory synapses can target the dendrite directly, or
also the soma or axon [4].

Synaptic transmission creates a peak in the local ion concentrations and electric potential. The ions
follow the voltage gradient, thereby broadening the peak and decreasing the voltage gradient. The
result is a di"usion-like current that gets attenuated with distance so that synapses closer to the soma
have a stronger, more immediate and temporally defined e"ect [6]. However, there are compensatory
mechanisms that can ensure that distal synapses still contribute measurably to neuronal firing [4, 71].

Although dendrites can perform complex computations on their own [71], they are typically modeled
as linear integrators of their synaptic currents [6, 7]. This simplification captures the fact that dendrites
do integrate their inputs spatially and temporally.

2.1.3 Neuron types
Neurons organize hierarchically into a large number of classes, subclasses, and cell types with shared
morphological, electrophysiological, connectional and transcriptomic features. Two main classes are
glutamatergic excitatory and GABAergic inhibitory neurons [6, 72]. Excitatory and inhibitory neurons
appear in a ratio of approximately four to one [4, 11]. Although lower in numbers, there is a greater
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diversity in inhibitory neurons [72]. Neurons can also be divided into principal/projection neurons
and interneurons [4]. While interneurons only innervate neurons within their area, principal neurons
also project to other areas and thus represent the output of their regions [4]. In the cerebral cortex,
projection neurons are typically excitatory and interneurons typically inhibitory [4]. The major class
of neocortical projection neurons are pyramidal cells (PCs), named after the pyramidal shape of their
somata. Pyramidal cells and their dendritic di"erentiation are highly conserved across evolutionary
distant classes such as mammals, birds, reptiles and fish, speaking for their adaptive value [68]. Making
them even more interesting, they are found in evolutionary newer brain regions linked to higher cognitive
functions.

2.1.4 Networks of neurons
Neurons can be seen as the basic computational units of the brain. However, they do not work in
isolation but together in networks. As an example, the cortical column is often referred to as the smallest
functional unit of the cortex [68].

The brain segregates into many specialized areas with sometimes strongly di"ering architectures,
connectivity patterns and highly specialized neurons. The di"erent areas of the neocortex, however,
have a rather similar intra-areal structure but di"er by their inter-areal inputs and projections. Just as
neurons form local networks, these areas don’t work in isolation, but many areas coordinate to give
rise to a specific function, and one area often contributes to multiple functions [73]. Bottom-up input
from one area to another, hierarchically higher area is called feedforward input, while top-down input is
called feedback input; local input from within the same area is called recurrent input. There might not be
one unifying principle of brain functioning; rather, di"erent areas employ di"erent computational and
dynamical strategies. Similarly, known plasticity rules might apply to specific connection types in some
brain areas but not others. Finally, dynamics and plasticity depend on brain states and context. This
makes it important to refer to the specific area that a given model describes in a given context.

Despite the di"erences between brain areas, there are some general patterns. Somata and long-range
axons segregate into regions with a high density of cell bodies and mainly unmyelinated axons, called
gray matter, and regions containing nerve tracts of myelinated axons but few neurons, called white
matter [3].

The cerebral cortex is an especially interesting structure as the seat of uniquely human reasoning
and cognition [68]. It is common to all vertebrate animals and has conserved features that point to
its evolutionary value: a layered organization with at least one layer containing pyramidal cells with
characteristically di"erentiated dendrites [68]. It can be divided into sensory, motor and association
areas [68]. The primary visual cortex (V1) as an example of a sensory area receives visual information
from the retina via the thalamus [68]. In humans, association areas not directly related to sensory
processing or motor control make up a large part of the cortex [68].
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2.2 Neural coding
Neural coding addresses the question of how neuronal activity encodes information, and especially how
it relates to stimuli [6, 74]: what information about a stimulus is encoded in what features of the activity
of a neural network? When the network activity contains su!cient information, one can say that it
encodes the stimulus properties, and that these can in turn be decoded from it.

One distinguishes di"erent types of neural codes, depending on the presence of correlations between
spikes, between neurons and on temporal precision. Codes in which correlations between the timings of
multiple spikes of a neuron carry a significant amount of information — for example if information is
encoded in interspike intervals — are called correlation codes, whereas in an independent-spike code such
correlations are not informative [6]. On a population level, correlations between spike trains of di"erent
neurons may carry information, for example through synchronous firing [6]. Independent-neuron
codes discard this information and assume that the neurons respond statistically independently of
each other. Empirical data supports the independent-spike hypothesis and is often compatible with
independent-neuron codes [6]. This work assumes such independence, which allows describing neural
activity in terms of firing rates.

2.2.1 Firing rates
Because synaptic transmission is triggered by action potentials and these are highly stereotyped, neural
activity is well described by the spike trains of the neurons in a network [6]. Spike trains often exhibit
large trial-to-trial variability, i.e., they can look very di"erent in repeated trials with the same stimulus.
Trial-to-trial variability is uninformative of the stimulus and thus often considered as noise, although
it could also represent internal state or other, uncontrolled variables [74]. Together with the discrete
nature of spike trains, this makes them hard to interpret. One therefore often averages spike trains to
obtain continuous firing rates. Firing rates can be defined as averages over trials, neurons, or time. The
question is whether these firing rates are a good approximation of the underlying spike trains, in the
sense that they capture most of the information about the stimulus [6].

The coding perspective is primarily an outside view that connects stimulus and activity without asking
how the network can generate or use the activity. Sec. 2.3.1 introduces networks of rate neurons that
dynamically interact through their continuous firing rates.

2.2.2 Receptive fields
The receptive field (RF) of a neuron is the region in sensory space that it responds to [6, 7, 68].
Furthermore, RFs are patterned, describing the structure of sensory stimuli within the RF region that
drive a neuron [6, 7, 68]. As an example, many neurons in the primary visual cortex (V1) respond best to
oriented stimuli in a small region of visual space that have separated darker and brighter (ON- and OFF-)
subregions [68]. The responses of these simple cells can be described by a linear RF, which is the linear
filter that best explains how a neuron responds to sensory input [7, 75]: Inputs that are aligned with the
RF evoke strong responses, while misaligned or non-overlapping inputs evoke weak or no responses.
To predict the activity of a neuron, a sensory pattern is first projected onto its RF. The resulting value
is then nonlinearly transformed into an estimate of its firing rate, based on which spike times can be
randomly drawn [7]. Chapter 4 studies how recurrent neural networks may give rise to neurons with
linear RFs in an e!cient way.
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The relationship between sensory input and neuronal activity can be more complex than for simple
cells in V1. As an example, the responses of complex cells in V1 cannot be described by linear RFs; for
example, they can respond with equally high activity to a stimulus with inverted brightness [76]. In
general, the RFs of neurons further along the hierarchy of the visual system become more complex and
broader [68, 77–80].

Because stimuli can be complex, and because neuronal responses can depend on stimulus features that
are not linearly available, it is often useful to characterize stimuli in terms of a single or few relevant
stimulus attributes. The neuronal response to stimuli as a function of such attributes is called a tuning
curve [6]. For example, V1 neurons can have responses that are modulated by, or selective for, stimulus
orientation, direction of movement, color, or input from the left versus right eye [68]. For neurons whose
responses are well predicted by their RFs, the tuning curves follow from the RF. However, also neurons
for which this is not the case, like complex cells, can be described in terms of tuning curves [68].

2.2.3 Predictive coding
Chapter 4 studies a ‘cooperative coding’ scheme that minimizes the number of synapses and gives rise to
net excitation between similarly-tuned neurons. Like-to-like excitation is found in experiments [43–47,
81], but it is unclear why neural networks evolved that way. The role of this excitation is especially
unclear in light of another, ‘predictive’ coding scheme [48, 49, 82] in which like-to-like inhibition
naturally arises to decorrelate and coordinate neuronal spiking. The objective there is to e!ciently
encode continuous signals in a neuronal population, while minimizing the number of spikes or the
rate activity. Through their competitive inhibition, similarly-tuned neurons prevent redundant, surplus
spiking, thus minimizing fluctuations in the readout and increasing its precision. The described benefits
for like-to-like inhibition, together with the fact that excitation would have the opposite e"ect, add to the
challenge of understanding the role of the observed excitation.

The predictive coding scheme can be derived starting from a population of spiking neurons with
otherwise unspecified dynamics [48]. The dynamics become specified when the population is optimized
to approximate a linear dynamical system by a linear readout of the exponentially filtered spike trains
of the network. The target system of dynamical variables x is described by →x = Ax + c(𝑀), where A is
the state transition matrix and c(𝑀) external input. The estimate of the neuronal network, x̂, evolves as
→̂x = ↑𝑁𝐿 x̂ + 𝛚o(𝑀), with 𝑁𝐿 the inverse of the filtering time constant, 𝛚 the readout matrix, and o(𝑀) the
vector of spike trains. The readout 𝛚 is, unusually, not optimized but given. The estimate x̂ can also be
expressed x̂(𝑀) = 𝛚r(𝑀) in terms of firing rates r defined by →r = ↑𝑁𝐿r + o(𝑀). The spike times o(𝑀) of the
neurons are chosen such that they greedily minimize the instantaneous loss (here for simplicity without
regularizations that explicitly penalize neural activity)

𝑂 (𝑀) = ↓x(𝑀) ↑ x̂(𝑀)↓
2
2, (2.1)

meaning that any neuron spikes whenever the loss at that point in time is lower with a spike than without
a spike [48]. This inequality can be reformulated as neuron 𝑃 spiking whenever

𝑄𝑀 (𝑀) > 𝑅𝑀 , (2.2)

where 𝑄𝑀 and 𝑅𝑀 are interpreted as the neuron’s membrane potential and spiking threshold, respectively,

9



Chapter 2 Foundations

and turn out as [48]

𝑄𝑀 (𝑀) = 𝛚𝑁
·𝑀 (x(𝑀) ↑ x̂(𝑀)), 𝑅𝑀 =

!!𝛚·𝑀

!!2
2/2. (2.3)

The membrane potential of any neuron 𝑃 thus tracks the instantaneous prediction error x(𝑀) ↑ x̂(𝑀)

projected onto its readout weights 𝛚·𝑀 .
The spiking condition can be understood as follows [48]: A spike of neuron 𝑃 changes the prediction

error by ↑𝛚·𝑀. As soon as the prediction error in the direction of 𝛚·𝑀 (meaning a projection onto
𝛚·𝑀/

!!𝛚·𝑀

!!
2) is larger than

!!𝛚·𝑀

!!
2/2, a spike would lower it and the neuron should spike. The spiking

threshold is hence
!!𝛚·𝑀

!!2
2/2.

Because neurons spike whenever they can lower the prediction error, but there are no spikes that would
increase it, the code is very e!cient in terms of the number of spikes. It is also e!cient in terms of
network size 𝑆: The readout 𝛚, which determines the maximum prediction error, should scale with 1/𝑆
to maintain neuronal firing rates [48]. In contrast, for a rate coding network with Poissonian spiking, the
prediction error scales only with 1/

↔
𝑆 [48].

The dynamics of the membrane potential can be obtained by di"erentiating𝑄𝑀 (𝑀) and using →x = Ax+c(𝑀),
→̂x = ↑𝑁𝐿 x̂ + 𝛚o(𝑀), and x̂ = 𝛚r(𝑀), resulting in [48]

→𝑄𝑀 (𝑀) = 𝛚𝑁
·𝑀

(
Ax(𝑀) + c(𝑀) + 𝑁𝐿𝛚r(𝑀) ↑ 𝛚o(𝑀)

)
. (2.4)

To reexpress x in terms of the membrane potential, one assumes that 𝛚 has a left pseudoinverse
L = (𝛚𝛚𝑁

)
↑1𝛚. Multiplying Eq. (2.3) from the left with L yields x(𝑀) = LV(𝑀) + x̂(𝑀). Inserting this

into Eq. (2.4), neglecting terms that vanish in the limit of large networks and adding a generic leak term
↑𝑁𝑂V(𝑀) by hand, the membrane dynamics of the network are [48]

→V(𝑀) = ↑𝑁𝑂V(𝑀) +
1
𝑁𝐿

𝛆s
r(𝑀) ↑𝛆f

o(𝑀) + 𝛚𝑁
c(𝑀) (2.5)

with slow connections

𝛆s = 𝛚𝑁
(A + 𝑁𝐿I)𝛚 (2.6)

and fast connections

𝛆f = 𝛚𝑁𝛚. (2.7)

Together with the spiking mechanism, the derived neuronal dynamics are those of leaky integrate and
fire (LIF) neurons [7] with current-based interactions.

The network connectivity is comprised of slow rate interactions (↗ r) and fast spike interactions
(↗ o). Both are determined by the readout weights 𝛚, while the slow connectivity also depends on A.
Consequently, the slow connections determine the population dynamics mirroring the dynamical system
described by A. For slow or even integrator dynamics (A ↘ 0), the slow connectivity 𝛆s

𝑀 𝑃 ↘ 𝑁𝐿𝛚
𝑁
·𝑀𝛚· 𝑃

between two neurons is proportional to the scalar product of their readouts. The interaction is thus
excitatory for neurons that contribute similarly to the readout. In contrast, the fast connections ↑𝛆f

implement fast (near instantaneous) inhibition between similarly-tuned neurons, where the diagonal
elements can be interpreted as a spike reset [48].
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For a slow dynamical system, slow and fast interactions thus provide (tightly) balanced excitation and
inhibition [48]. However, if the task was just to quickly track an unpredictable input stimulus, and we
acknowledge that the readout can only do so with a time constant set by 𝑁𝐿 , this would correspond to
A = ↑𝑁𝐿I and therefore 𝛆s = 0. For tracking fast stimuli with minimal integration, network connectivity
is thus not balanced but characterized by strong like-to-like inhibition.

Whenever a neuron spikes, this increases the network output and thus decreases the prediction error
by 𝛚·𝑀 . As the neurons encode the prediction error in their membrane potential (Eq. (2.3)), this change
needs to be communicated to the other neurons. From Eq. (2.3), the change in 𝑄𝑀 upon a spike of neuron
𝑇 should be 𝛚𝑁

·𝑀 (↑𝛚· 𝑃) = ↑(𝛚𝑁𝛚)𝑀 𝑃 , explaining 𝛆f (Eq. (2.7)).
One implication of the need for instant broadcasting of prediction errors is that neuronal connectivity

must be very dense: any two neurons with non-orthogonal readout kernels share two fast connections.
This is in contrast to the sparse connectivity in the brain [6] and to the cooperative coding scheme
developed in Chapter 4.
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2.3 Neural networks as dynamical systems
Describing neural networks as dynamical systems makes them available to a lot of analysis tools. As these
tools do not readily apply to spiking neurons, it is useful to describe neuronal activity using continuous
firing rates. Such networks of rate units are reviewed in Sec. 2.3.1 and their linearized dynamics given in
Sec. 2.3.2. A measure for the e"ective dimensionality of neuronal activity, the participation ratio (PR),
is motivated in Sec. 2.3.3. Sec. 2.3.4 describes a relevant cortical dynamical regime, the balanced state,
which can lead to fast and linear population responses to external inputs. Balance between excitation and
inhibition also causes an e"ect called balanced amplification, reviewed in Sec. 2.3.5.

2.3.1 Rate networks
Neurons interact with each other via spike trains. For independent-spike and independent-neuron
codes one can define firing rates that capture most of the information contained in the spiking network
activity [6], c.f. Sec. 2.2.1. To define networks of rate neurons, one has to further assume that correlations
and precise spike patterns that are not captured in the firing rates have little impact on the rate dynamics [6].
In other words, firing rate descriptions have to be not only informative, but also su!cient to explain and
predict later rate dynamics.

One di!culty is that even for uncorrelated inputs, the spiking mechanism introduces correlations
between inputs and outputs, and between neurons that receive shared inputs [74]. This is particularly
the case in the fluctuation-driven regime, in which input fluctuations contribute strongly to the neurons
crossing their spiking thresholds. In this regime, neurons have irregular, Poisson-like spike trains, and
are especially sensitive to correlated input fluctuations [74]. In multilayer- or recurrent networks, this
can lead to correlated firing inconsistent with the assumptions of rate coding. The problem can be
alleviated by sparse connectivity, private noise, or cancellation of correlations as when inhibition tracks
excitation [74, 83].

It is however questionable whether there is an exact mapping between spiking and rate dynamics, in
the sense that evolving a spiking network and then transforming spike trains into firing rates yields the
same as first obtaining the initial firing rates and then evolving the corresponding rate network [74].
Still, a good correspondence is often possible. This is evidenced by rate models that describe and
predict experimental neuronal data [84], explain observed neuronal dynamics [85–87], behave like
corresponding spiking networks [88], or provide correspondences between rate units and neurons of
di"erent subtypes [89–91].

On an individual trial, the spike train of a neuron, even if convolved with a short temporal filter,
can often look very di"erent from a smooth, continuous rate, as for example defined by the neuron’s
trial-averaged firing rate. This is especially true at low firing rates and might make a rate description
seem unrealistic. However, a neuron typically receives thousands of inputs [68]. This means that,
compared to its output, its total synaptic input has much less trial-to-trial variability and can be better
described as a continuous quantity [6]. In networks with low-dimensional neuronal activity, both activity
and inputs can then be described as a linear combination of few latent ‘factors’, which represent the
network activity along directions in neuron space that capture most of the neuronal variability [88].
This allows to replace a large network of sparsely connected spiking neurons by a smaller network of
densely connected rate neurons [6]. Conceptually, a single model unit represents the average response of
multiple neurons with similar responses [88], although any neuron might contribute to multiple factors
and be represented by multiple rate units.
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Because there is no exact rate description of spiking networks [74], the dynamic equations governing
rate networks are to a certain degree ad hoc [7]. In this work, the state of the 𝑃th rate neuron is described
by a single continuous variable 𝑈𝑀 , which is a low-pass filtered version of the neuron’s total input,

𝑉 →𝑈𝑀 (𝑀) = ↑𝑈𝑀 (𝑀) +

∑
𝑃ω𝑀

𝑊𝑀 𝑃𝑋 𝑃 (𝑀) + 𝑌𝑀 (𝑀). (2.8)

Here 𝑉 is the filtering time constant, 𝑌𝑀 is the external input to neuron 𝑃 and
∑

𝑃ω𝑀𝑊𝑀 𝑃𝑋 𝑃 (𝑀) its recurrent
input from other neurons that fire with rates r, summed linearly. These rates do not stem from an
explicitly modelled spiking mechanism; instead a nonlinearity 𝑍 translates the ‘pre-activations’x into
continuous rates r,

𝑋𝑀 (𝑀) = 𝑍(𝑈𝑀 (𝑀)). (2.9)

The nonlinearity 𝑍(𝑌
𝑄
𝑀 ) describes the firing rate in response to stationary total input 𝑌𝑄𝑀 , which in that

case equals 𝑈𝑀. Eqs. (2.8,2.9) thus model the instantaneous firing rate of a neuron as its stationary
input-to-firing rate relation applied to a low-pass filtered version of its total input. The time constant of
the rate dynamics, 𝑉, is often chosen as the membrane time constant of the modelled spiking neurons [7],
but can in general be di"erent, and often much shorter [6].

The rate description is conceptually closest to a corresponding spiking neural network if rate units
model the mean firing rates of non-overlapping, homogeneous neuron populations. The weight matrix
W then combines both the connectivity and the typical synaptic strength between populations and the
nonlinearity can be inferred from the gain functions of single neurons [7]. The rate unit can also be
reinterpreted as a model for the trial-averaged firing rate of a single stochastically firing neuron, which in
a homogeneous population agrees with the population-average [7]. The correspondence between rate
units and specific spiking neurons becomes tangled when rate units reflect latent factors in the spiking
activity [88], meaning that each neuron can contribute to many factors simultaneously.

2.3.2 Linear dynamical systems
Chapters 3,4 mainly employ linear rate networks, which are more amenable to analytical exploration
and understanding. This simplification sacrifices some computational power of the neural networks,
as linear networks can only implement linear functions, emphasizing the importance of the neuronal
nonlinearity for computations. However, linear networks are more amenable to analytical exploration
and understanding, and still expressive enough for the phenomena studied in this thesis, as argued in the
Chapter 5.

For a linear network, 𝑍(x) is simply the identity function. The network dynamics, Eqs. (2.8,2.9), can
then be written as

𝑉 →x(𝑀) = Ax(𝑀) + I(𝑀), (2.10)

with A = ↑1 + W. Because x appears only linearly, the full solution of Eq. (2.10) is the sum of a
particular solution of Eq. (2.10) and a general solution of the homogeneous problem

𝑉 →x(𝑀) = Ax(𝑀), (2.11)
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with coe!cients fully determined by the initial conditions [92]. For a physical system with real
observables x such as a neural network, A and I are real, while the solutions x

(𝑅 ) and coe!cients 𝑎𝑅 can
generally be complex. However, from Eq. (2.10) it is evident that the solution for a given real initial state
x(𝑀0) will stay real.

Following from the superposition principle, any solution x of Eq. (2.11) can be written as a sum
of ‘basis functions’, and there are 𝑆 = dim x of them. This can be easily seen for the case where
𝑏 = 𝑐𝑑𝑐

↑1 has a diagonal representation 𝑑 in another basis, specified through the change-of-basis
matrix 𝑐. The eigenvalues of 𝑏 are then the diagonal entries ε𝑀 = 𝑑𝑀𝑀 of 𝑑. Expressing the dynamical
variables in the new basis, y = 𝑐

↑1
x, the system of linear di"erential equations decouples into 𝑆

one-dimensional di"erential equations,

𝑉 →y(𝑀) = 𝑐
↑1

A𝑐y(𝑀) = Ty(𝑀) ≃ 𝑉 →𝑒𝑀 (𝑀) = ε𝑀𝑒𝑀 (𝑀), (2.12)

which are solved by 𝑒𝑀 (𝑀) = 𝑒𝑀 (0) exp(ε𝑀𝑀/𝑉). For a real square matrix, the eigenvalues ε𝑀 = 𝑁𝑀 + i𝑓𝑀

are generally complex, with non-real eigenvalues appearing in complex conjugate pairs [93]. Negative
(positive) 𝑁𝑀 describe an exponential decay (growth) of network activity, while nonzero 𝑓𝑀 describe
oscillations.

It would require fine-tuning of the individual synaptic strengths or the entries of 𝑏, respectively, to
achieve a matrix with repeating eigenvalues. For example, in the large 𝑆 limit, the eigenvalues of a real
matrix with iid. entries with mean zero becomes uniformly distributed on the (scaled) complex unit
disk, with zero probability mass for equality of two eigenvalues [94, 95]. There is no reason to assume
such fine-tuning for biological neural networks. On the contrary, they are often modeled as random [60]
or containing a random component [88]. The assumption of a full set of distinct eigenvalues is thus
typically satisfied.

However, the set of corresponding eigenvectors is in general not orthogonal. In this case the change-of-
basis matrix U is non-unitary and A non-normal [93]. The implication is that Eq. (2.12) decouples then
only for neuronal activity along eigenvectors which form a non-orthogonal basis, but not if an orthogonal
basis is used. One e"ect from such connectivity is balanced amplification [51], discussed in Sec. 2.3.5.

The general solution to Eq. (2.10) involves a convolution of a matrix exponential of A and the
inhomogeneous external input I, in addition to the homogeneous solution [92],

x(𝑀) = eA
𝐿
𝑀 x(0) +

∫ 𝑆

0
d𝑔

1
𝑉

eA
𝐿↑𝑁
𝑀 𝑌 (𝑔). (2.13)

2.3.3 Dimensionality of neuronal activity
Neuronal activity (let’s think of trial-averaged rates) can be naturally expressed as a vector r(𝑀), with
each component representing the activity of one neuron. For a network of 𝑆 neurons, this activity vector
is thus 𝑆-dimensional. Across conditions and/or time the neural network assumes di"erent such activity
states. Together these form the set of actually visited states, which typically occupies a small subset
of the available, high-dimensional state space. This is compatible with the idea that neural activity
represents relatively lower-dimensional systems that underlie some constraints [38], or, respectively, that
the rates of di"erent neurons are not independent but correlated [39].1 The e"ectively low-dimensional

1 This statement seems to contradict the assumption of the balanced state that neuronal firing is uncorrelated. However, the
balanced state requires only that the ‘spike’ or ‘noise correlations’, i.e., the correlations of fast fluctuations around the more
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nature of the data lessens the curse of dimensionality [96] and is crucial for the performance of WP and
NP, analyzed in publication 1 [1], Chapter 3.

The covariances between the activities of di"erent neurons can be captured in their covariance matrix
𝑕𝑀 𝑃 = Cov[𝑋𝑀 , 𝑋 𝑃], which is positive-semidefinite. The spectral theorem states that 𝑕, as a real symmetric
matrix, has a diagonal representation in an orthonormal basis consisting of its eigenvectors [93]. Principal
component analysis (PCA) defines these eigenvectors as the principal components, with the corresponding
eigenvalues as principal values [97]. The principal values thereby equal the variance of the data projected
onto their associated principal components, so that a component with a large principal value captures a
lot of the data’s variance [97]. This motivates the use of PCA as a dimensionality-reduction technique:
by projecting the data onto the subspace spanned by the principal components with the largest principal
values, few components su!ce to explain a large part of the total variance [97].

Chapter 3 uses a measure for the e"ective dimensionality of neural activity called participation
ratio (PR) [38]. E"ective dimensionality is a descriptive measure of the full neural data that does not
distinguish between signal and noise, or important and unimportant signal dimensions [38]. This is in
contrast to measures of intrinsic dimensionality, which measure the number of latent variables needed to
describe the signal part of the data [38, 98]. As a linear measure, the PR can be higher than the intrinsic
dimension if the data lies on a nonlinear manifold that is embedded in a higher dimensional space. It can
in general also be lower, if the neural manifold is linear and the latent variables correlated [38].

The concept of PR builds on the spectral entropy of the data, which can be calculated from its
principal values [38]. The normalized eigenvalues 𝑖𝑀 = 𝑁𝑀/

∑
𝑃 𝑁 𝑃 of the covariance matrix measure

the relative contribution of each principal component to the total variance. As they sum to one, they
can be interpreted as (pseudo) probabilities. The PR is defined as the equivalent number of orthogonal
dimensions with equal variance that have the same quadratic spectral entropy (which is the Rényi entropy
of order 2) as the original data [38]:

↑ ln

(
𝑇∑
𝑀=1

𝑖
2
𝑀

)

︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸
original spectral entropy

= ↑ ln

(
PR

(
1

PR

)2
)

︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸
equivalent spectral entropy

, (2.14)

where 1/PR are the (normalized) principal values of the first PR principal components of the equivalent
system. The equation is solved by

PR =
1∑𝑇

𝑀=1 𝑖
2
𝑀

=

(∑𝑇
𝑃=1 𝑁𝑀

2

∑𝑇
𝑀=1 𝑁

2
𝑀

. (2.15)

The definition aligns with the intuition that for a high e"ective dimensionality the data variance should be
spread across many directions. For the case where the variance is equally distributed over 𝑆e! directions,
the PR equals 𝑆e! . In particular, PR = 1 if all neurons are perfectly correlated and PR = 𝑆 if they have
iid. activity, which is the largest possible value.

slowly varying firing rates, are small.
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2.3.4 Balanced state
Chapter 4 develops a cooperative coding scheme [2] that is analyzed for a linear rate network as described
in Secs. 2.3.1,2.3.2. The network dynamics turn out to be slow when only excitatory connections are
present. One result of publication 2 [2], Chapter 4, is that the dynamics can be greatly sped up when
relatively strong excitatory inputs are balanced by inhibition that briefly lags behind excitation. The
mechanism behind this speed-up is essentially balanced amplification [51], as briefly described in
Sec. 2.3.5. This subsection gives a brief introduction to the balanced state, which is a regime of network
dynamics that features the cancellation of the largest part of strong excitation and inhibition required for
the speed-up mechanism. Experimental evidence for lagged, balancing inhibition is reviewed in the
discussion of publication 2 [2], Chapter 4.

Depending on the brain region and activity state, neural networks can operate in di"erent dynamical
regimes. One such regime that is often observed in cortical areas is asynchronous, irregular firing [62].
Irregular firing pertains to a high variability of interspike intervals, as opposed to spikes that occur in a
more regular ‘rhythm’. Asynchronous firing means that the firing of di"erent neurons is not or only
weakly correlated. The balanced state [60, 61] o"ers an explanation and a mechanism for both features
of neural activity.

Consider a single neuron that receives Gaussian input with a certain mean and variance, approximating
the summed e"ect of many uncorrelated synaptic inputs. Depending on the mean and variance, spiking
will be mean- or fluctuation-driven. For super-threshold mean and small variance, the neuron approaches
its spiking threshold rather deterministically. Because the input noise is weak, the time from reset to
the next spike will vary only little so that the neuron spikes regularly. On the other hand, if the input
has sub- or peri-threshold mean but large variance, the neuron will (only) spike as a result of input
fluctuations. As these are random, also the spike times and their intervals are random so that the neuron
spikes irregularly [60, 83].

Consider now two irregularly spiking neurons in the fluctuation-driven regime. If their inputs are
correlated, then so will be their outputs [74]. This becomes evident for the extreme case where they
receive the same input. Asynchronous firing thus requires that neurons receive uncorrelated or only
weakly correlated input [74]. This is typically justified by high network sparsity, so that neurons have
little shared input [83].

How can a network achieve a state in which neuronal spiking is fluctuation-driven? For typical
parameters, this is not possible with excitation alone [99]. The reason is that, for many weak inputs, a
large variance implies that the mean is also large. This is not the case when inputs can also be inhibitory:
while each (uncorrelated) input increases the variance of the total input, it can lower its mean if it has
opposite sign. In the balanced state excitation and inhibition are correlated such that their sum is (much)
smaller than either of them [62]. The balance and correlation of excitation and inhibition has di"ering
strengths in di"erent variants of the balanced state.

A classic result [60] concerns balanced networks in which synaptic strengths scale as ⇐ 1/
↔
𝑗 with the

number of presynaptic inputs 𝑗 per neuron, such that only ⇐
↔
𝑗 excitatory synaptic inputs are required

to elicit a spike. Such balance is termed ‘tight balance’ in ref. [62], meaning that the net input is very
small compared to the individual excitatory and inhibitory currents, while it is termed ‘loose balance’
in refs. [49, 100], meaning that fast fluctuations of excitation and inhibition do not cancel on short
timescales. Consider two recurrently coupled homogeneous populations of excitatory and inhibitory
neurons with rates 𝑘𝑈 and 𝑘𝑉 , respectively, that receive external input 𝑘𝑊. For simplicity, assume that
the neuronal parameters, such as integration time constant 𝑉, as well as the numbers and strengths of
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incoming connections are the same for both populations. Consequently, they fire at the same average rate
𝑘 = 𝑘𝑈 = 𝑘𝑉 . Let the excitatory synaptic strengths be 𝑙𝑈𝑈 and 𝑙𝑉𝑈 , and inhibitory and external strengths
scaled versions of the excitatory weights, i.e., 𝑙𝑋𝑌 = 𝑍𝑌𝑙𝑋𝑈 for 𝑏 ⇒ 𝑚 , 𝑌 and 𝑛 ⇒ 𝑌, 𝑜 . Then, if there
are 𝐿 times as many inhibitory as excitatory inputs, the mean and variance of the total input that both
populations receive are [59, 60, 101]

𝑝 = 𝑉𝑙𝑗

(
𝑍𝑊𝑘𝑊 ↑ (𝐿𝑍𝑉 ↑ 1)𝑘

) !
↘ O(𝑞), (2.16)

𝑟
2 = 𝑉𝑙

2
𝑗

(
𝑍

2
𝑊𝑘𝑊 + (𝐿𝑍

2
𝑉 + 1)𝑘

 !
↘ O(𝑞

2
), (2.17)

where 𝑞 is the spiking threshold and 𝑙 and 𝑗 are the excitatory strength and indegree, respectively
(versus 𝑍𝑉𝑙 and 𝐿𝑗 for inhibitory inputs).

Importantly, Eqs. (2.16,2.17) describe a ‘loosely balanced’ state that assumes that individual inputs
are independent [49]. To achieve this, neurons are sparsely connected (𝑗 ⇑ 𝑆) to minimize shared
input. Independent input here implies that the fast fluctuations of the total excitation and inhibition a cell
receives are uncorrelated. However, the mean excitation and inhibition, which co-evolve on a slower
timescale, are correlated.

The network is inhibition-dominated, i.e., 𝐿𝑍𝑉 > 1, which prevents excitation from causing saturated
firing at high rates [101]. In the balanced state, both the mean and standard deviation are on the
order of the spiking threshold 𝑞: were it otherwise, neurons would be either completely silenced or
maximally driven [60]. This balance is achieved dynamically by the adjustment of the neurons’ firing
rates 𝑘, consistent with the negative feedback loop from dominating inhibition (the ↑(𝐿𝑍𝑉 ↑ 1)𝑘 term in
Eq. (2.16), with 𝑘 in turn increasing with 𝑝). Remarkably, this balance arises as a dynamic phenomenon
in a wide parameter range without the need for fine-tuning [60, 101].

Given that the mean input remains comparable to the firing threshold, and that synaptic interactions
are strong (large 𝑙𝑗), the external and recurrent inputs in Eq. (2.16) cancel in good approximation. This
reveals (by setting the RHS approximately to 𝑞) that the network response can be well approximated as a
(threshold-) linear function of the external input [59, 60],

𝑘 ↘


𝑍𝑊𝑘𝑊 ↑ 𝑘𝑆𝑍

𝐿𝑍𝑉 ↑ 1


+

, (2.18)

where 𝑘𝑆𝑍 ↘ 𝑞/𝑉𝑙𝑗 and [· · · ]+ denotes rectification. This linearity on the population level stands in
contrast to the highly nonlinear responses of single neurons [60] (see also ref. [102]).

The predictive coding scheme [48, 49] described in Sec. 2.2.3 assumes even stronger balance: synaptic
strengths are O(1) and do not decrease with indegree 𝑗. This ‘tight balance’ leads to correlated
fluctuations of excitation and inhibition, so that the E/I balance holds even on short time scales, with
inhibition briefly lagging behind excitation [49, 100]. Ref. [62] argues that cortex is instead in a
‘loosely balanced’ regime, which they define as one in which the net input is not much smaller than the
individual excitatory or inhibitory input. Such weaker balance might have the computational advantage
of generating nonlinear population responses [59].

.
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2.3.5 Balanced amplification
Neural networks can selectively amplify patterns of activity; for example, spontaneous activity in cat
V1, presumably the result of the amplification of specific patterns present in random input fluctuations,
is non-random but resembles stimulus-evoked activity [51, 103]. One possible mechanism is the
amplification through appropriate large feedforward weights. Another mechanism leverages recurrent
excitation to form a positive-feedback loop in which an activity pattern reinforces itself. The amplified
pattern corresponds to an eigenvector of the weight matrix with a positive eigenvalue, see Eq. (2.12),
which compensates for the intrinsic decay of network activity, Eq. (2.8). Such ‘Hebbian amplification’
thus slows the decay of activity in the pattern and thereby the network dynamics.

Balanced amplification, a concept introduced by Murphy and Miller [51], describes selective
amplification in a recurrent network without significant slowing of dynamics. The network thereby
implements in its recurrent weights an e"ective feedforward connectivity between activity modes.
Balanced amplification is present in any (su!ciently dense) recurrent network that satisfies Dale’s law
and becomes significant when strong excitation is stabilized by inhibition [51], as is often the case in
cortex [104, 105]. The cooperatively coding networks of publication 2 [2], from Chapter 4 are augmented
with delayed, balancing inhibition to implement balanced amplification to speed up their dynamics.

To understand balanced amplification, recall that the neural weight matrix typically has a diagonal
representation in some basis, only not in an orthogonal one (c.f. Sec. 2.3.1). Only normal matrices,
defined as those commuting with their conjugate transpose, 𝑏𝑏† = 𝑏

†
𝑏, have an orthogonal basis in

which they are diagonal [93]. It is easy to see that the weight matrix of a network of excitatory and
inhibitory neurons does not commute with its transpose,

(
(+) (↑)

(+) (↑)

)
︸⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌︸

W

(
(+) (+)

(↑) (↑)

)
︸⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌︸

W
𝑂

=
(
(+) (+)

(+) (+)

)
ω
(
(+) (↑)

(↑) (+)

)
=
(
(+) (+)

(↑) (↑)

)
︸⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌︸

W
𝑂

(
(+) (↑)

(+) (↑)

)
︸⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌︸

W

, (2.19)

where (±) stands for submatrices with non-negative/non-positive entries, respectively. Consequently,
weight matrices of networks that respect Dale’s law are non-normal.

It is instructive to study the case of two coupled populations of excitatory and inhibitory neurons
receiving the same input (like the example from [60] in Sec. 2.3.4) as given in [51], described by weights

W =
(
𝑠 ↑𝑡𝑠

𝑠 ↑𝑡𝑠

)
, (2.20)

with 𝑡 > 1 signifying inhibition dominance. The eigenvalues of W are ↑𝑠+ = ↑𝑠(𝑡 ↑ 1) and 0,
corresponding to the eigenvectors 1

↔
2

( 1
1
)

and 1
↔

1+𝑅

(
𝑅
1
)
. Clearly, these are non-orthogonal. Moreover,

for 𝑡 ⇓ 1+, their di"erence goes to zero as the second eigenvector aligns with the first. This implies
that even very weak activity along 1

↔
2

( 1
↑1

)
, which is perpendicular to the first eigenvector and almost

perpendicular to the second one, can only be expressed as the di"erence in the eigenmodes with very
large coe!cients. As the eigenmodes decay at di"erent rates, their activities no longer cancel along the
direction of the first eigenvector. Consequently, neural activity acquires a large component parallel to the
first eigenvector and perpendicular to the initial activity, a phenomenon known as transient amplification.

The above reasoning motivates the use of the orthonormal vectors r+ = 1
↔

2

( 1
1
)

and r↑ = 1
↔

2

( 1
↑1

)
as basis vectors, which [51] call the sum and di"erence mode. Note that only the sum mode r+ is an
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eigenvector. The change of basis reveals that the weight matrix

W̃ = OWO
𝑁 =

(
↑𝑠+ 𝑠𝑎𝑎

0 0

)
, O =

1
↔

2

(
1 1
1 ↑1

)
, (2.21)

assumes an upper-diagonal form [51]; in other words it has a hidden feedforward structure from the
di"erence mode to the sum mode with feedforward weight 𝑠𝑎𝑎 = 𝑠(1 + 𝑡). In more applied terms,
the sum mode corresponds to equal excitation and inhibition, which decays faster than in an uncoupled
network due to the net inhibition. The di"erence mode corresponds to a surplus of excitatory activity
not (yet) balanced by inhibition. It contributes (for strong balance, i.e., large 𝑠 and 𝑡: strongly) to both
excitation and inhibition, thus driving the sum mode. In summary, small di"erences in excitation and
inhibition are amplified and yield large increases in both excitation and inhibition [51].

This e"ect is not the result of the particular choice for the weight matrix in Eq. (2.20). Rather,
Schur’s lemma states that any (complex) square matrix has an orthonormal basis in which it assumes an
upper-diagonal form [93]. This so-called Schur basis can be found by first finding a basis in which W is
upper-triangular, and then orthonormalizing the basis vectors with the Gram-Schmidt procedure, which
does not change the upper-triangular form [93]. If the matrix is non-normal, then it cannot be unitarily
diagonalized and its upper-diagonal form contains at least one nonzero o"-diagonal, i.e., feedforward,
entry.

2.4 Fluctuation-driven reinforcement learning
2.4.1 Noise in neural systems
In the typical view of neuronal networks, synaptic connectivity is the main determinant of network
function [3, 4]. Accordingly, synaptic plasticity generally modifies network function and represents
learning. This learning depends on current and past experiences and, from the perspective of a synapse,
happens in the context of pre- and postsynaptic activity histories [19]. There are many suggested forms
of activity-dependent plasticity, which depends on these histories [7].

From a single synapse’s perspective, determining how to modify its strength to improve global network
function is a hard task. One part of the task is termed the credit assignment problem, i.e., determining
how strongly and in what way a synapse contributed to the network dynamics and influenced possible
rewards. In machine learning, one often solves this general problem in artificial neural networks through
backpropagation [106]. For biological networks, it is exacerbated by the fact that synapses have, in
contrast to algorithms that run on a computer, access only to locally available information. Even for
attempts to formulate biologically plausible versions of backpropagation [35], this local information
crucially involves pre- and postsynaptic activity histories. It is thus plausible and reasonable that synaptic
plasticity should depend on neuronal activity, and many experiments demonstrate such dependence [7,
68].

A consequence of the activity dependence of synaptic plasticity, and also of the view that plasticity
represents learning and coordinated changes of network function, is that synapses should remain stable
in the absence of activity [19]. This ability of synapses to retain their properties over behaviorally
relevant time scales is termed synaptic tenacity [19]. Conserving synaptic properties, however, poses
considerable challenges to the maintaining biological machinery: synaptic proteins exhibit significant
dynamics and life cycles with time scales of hours and less, orders of magnitude smaller than the lifetimes
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of most CNS synapses [17, 19, 107]. It is thus reasonable to expect that synaptic strengths will, with
time, unavoidably experience some random ‘drift’. Such learning-unrelated synaptic modifications are
part of so-called activity-independent plasticity, which subsumes plasticity that does not depend on
activity in an explicit way, and is presumably learning-unrelated. Publication 1 [1], Chapter 3, argues
that a part of activity-independent plasticity could actually represent learning, as well as exploratory
weight fluctuations that enable it.

There is ample evidence for activity-independent plasticity in the CNS that is comparable in magnitude
with activity-dependent plasticity [16–19]. Even in experiments that explicitly measure activity-
dependent plasticity under highly controlled conditions, deterministic e"ects are obscured by substantial
‘noise’ [108]. Size changes in pairs of synapses that share the same axon and dendrite only weakly
correlate, with only 40 % of remodeling attributed to activity-dependent plasticity [109]. Further,
synapses in the intact brain are not static, but experience continuous strength fluctuations [19]. Measuring
the volumes of dendritic spines, which are a proxy for synaptic strength [110], reveals not only size
fluctuations, but also structural plasticity: New spines appear as others disappear. Transient spines that
last at most a few days are thereby thin and small, and can make up about 20 to 60 % of spines [16, 111].
Persistent spines that last more than a week are relatively thick and likely to survive months and possibly
longer, although also ‘persistent’ spines can be lost [16, 111].

Experiments in cortical [107] and hippocampal [17] primary cultures show that silencing of network
activity decreases spine size fluctuations, consistent with the presence of activity-dependent plasticity.
However, synaptic drift and structural plasticity continue at a rate comparable with activity-dependent
plasticity [17, 107]. Similarly, inducing (re-)learning by trimming a subset of whiskers of behaving mice
increased spine turnover rates selectively in receptive principal cells in barrel cortex, but only by about
50 % [16]. Spontaneous fluctuations of synaptic strength occur also in inhibitory synapses, although
these appear to drift more slowly [18]. In contrast to excitatory synapses, suppression of network activity
did not decrease fluctuations of inhibitory synaptic sizes in that study [18].

How neural networks keep memories over months and years despite their synapses remodeling on
(possibly much) shorter time scales is still an active research question. One hypothesis is that while
synaptic configurations and the identities of receptive neurons drift slowly, connected areas adapt and
follow the changes, thus maintaining network function [112, 113]. Another argument is redundancy [19]:
there may be a large subset of synaptic configurations that implement equivalent network functionality.
Synaptic connectivity could then change in ‘irrelevant’ directions without a"ecting network function.
If the systematic synaptic changes concentrate on few ‘relevant directions’, whereas random synaptic
fluctuations spread also over many irrelevant ones, then the signal-to-noise ratio in relevant directions
may be much higher than measured in single synapses. This redundancy, related to the observation
of low-dimensional activity (see Sec. 2.3.3), is a main argument used in the analysis of WP and NP,
publication 1 [1], Chapter 3.

2.4.2 Reward-modulated plasticity
Long-term potentiation (LTP) or depression (LTD) describe lasting increases or decreases in synaptic
strength, respectively. LTP (and similarly LTD) consists of an early and a late phase. Early LTP describes
the initial, protein-independent strengthening of a synapse, which decays over a span of hours [21].
Late LTP describes the protein-dependent consolidation of the potentiation. The synaptic tagging and
capture hypothesis [20–22] states that this synaptic consolidation requires the simultaneous presence of
plasticity-related products/proteins (PRPs) and a synapse-specific ‘tagged’ state. Experience and the
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concomitant synapse-local activity histories can induce early LTP and, potentially independently of it, a
synaptic tag. This tag lasts for around 90 min, generating a time window for consolidation [21]. The
production of the PRPs necessary for late LTP, which happens mainly at the soma, can be triggered also
by plasticity events at other synapses and dendrites.

The creation of PRPs and hence the induction of LTP and LTD is influenced by the neuromodulator
dopamine [22–24]. Dopamine is in large part mediated through volume transmission, i.e., it non-
synaptically di"uses through the extracellular medium [26]. Because dopaminergic neurons also often
project broadly to many areas, their modulatory e"ects are rather global [27], although they can also
dynamically change in space and time [26]. As dopaminergic neurons encode reward- and general
prediction errors [25], dopamine signals seem ideally suited to align local synaptic plasticity with
network-level objectives. In three-factor learning rules, weight changes depend on a modulatory signal in
addition to the pre- and postsynaptic activity histories [114]. The relationship between neuromodulation
and plasticity (for example spike-timing-dependent plasticity (STDP)) can thereby be complex and di"er
between brain regions [114]. However, it is also often modeled as a multiplicative modulation [114,
115] by the reward 𝑢 measured w.r.t. some baseline 𝑢̄ [25],

ϑ𝑠𝑀 𝑃 = (𝑢 ↑ 𝑢̄) · 𝑣𝑀 𝑃 (pre, post), (2.22)

where 𝑣𝑀 𝑃 is an eligibility trace that temporally integrates contributions from pre- and postsynaptic
activity. This integration allows connecting millisecond-resolution co-firing events of the pre- and
postsynaptic neurons to reinforcing modulation delayed by seconds [116].

2.4.3 Weight (WP) and Node Perturbation (NP)
There are three learning paradigms: supervised learning, reinforcement learning (RL), and unsupervised
learning. Supervised learning settings provide explicit output targets and detailed, vector-valued error
feedback. Backpropagation [106] and biologically plausible variants [35] translate this feedback into
synaptic changes that quickly reduce output errors. Unsupervised learning, on the other hand, operates
without consideration of network output. Instead, the activity patterns in response to external input are
shaped to build potentially useful representations. In an RL setting, the network output is evaluated, but
the network does not have access to an output target. Instead, it receives only scalar reward/error feedback
about its performance. In particular, the feedback contains only information about how good the network
performs, but not about how it should change in order to improve. In addition, the feedback can often be
temporally sparse and delayed. Many real world tasks lack a clear target and can be formulated as RL
tasks.

Weight perturbation (WP) [12, 13] and node perturbation (NP) [14, 15] learning are two forms
of reinforcement learning. They estimate the weight gradient by correlating random perturbations,
of the weights or the summed weighted inputs of the nodes, with changes in task performance. If a
weight perturbation lowers the task error (or equivalently increases reward), the weights are changed in
the direction of the perturbation. If it increases the error, they change in the opposite direction. For
su!ciently small perturbations and updates, and a smooth error function, the error changes approximately
linearly with the weights so that an update lowers it in either case. NP applies random perturbations to
the total inputs of the neurons. For temporally extended tasks, these are time-dependent. For beneficial
perturbations, the weights are changed such that the neural dynamics change in the direction of the
perturbation, and oppositely for unfavorable perturbations. Although individual updates have a (large)
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random component, both learning rules yield an unbiased estimate for the true gradient [1, 13, 15].
The perturbed (pre-)activation 𝑤

pert
𝑀𝑆 of node 𝑃 at time 𝑀 in the presence of weight perturbations 𝑥WP

𝑀 𝑃 or
node perturbations 𝑥NP

𝑃𝑆 is (here and below in the notation of publication 1 [1], Chapter 3)

𝑤
pert
𝑀𝑆

WP=
𝑇∑
𝑃=1

(𝑠𝑀 𝑃 + 𝑥
WP
𝑀 𝑃 )𝑋 𝑃𝑆 , 𝑤

pert
𝑀𝑆

NP=
𝑇∑
𝑃=1

𝑠𝑀 𝑃𝑋 𝑃𝑆 + 𝑥
NP
𝑀𝑆 . (2.23)

Here 𝑋 𝑃𝑆 is the 𝑇 th input at time 𝑀, and the perturbations are iid. Gaussian-distributed with variance 𝑟
2
WP

or 𝑟2
NP, respectively. In the presence or absence of perturbations the network obtains as error feedback

the perturbed or unperturbed error, 𝑚pert or 𝑚 , respectively. The weight updates of WP and NP are [14]

ϑ𝑠WP
𝑀 𝑃 = ↑

𝑦

𝑟
2
WP

(𝑚
pert

↑ 𝑚)𝑥
WP
𝑀 𝑃 , ϑ𝑠NP

𝑀 𝑃 = ↑
𝑦

𝑟
2
NP

(𝑚
pert

↑ 𝑚)

𝑁∑
𝑆=1

𝑥
NP
𝑀𝑆 𝑋 𝑃𝑆 . (2.24)

Here 𝑦 is the learning rate, which is scaled by the variance 𝑟
2
WP |NP of the perturbations.

NP assumes that the total input 𝑤𝑀 =
∑

𝑃 𝑠𝑀 𝑃𝑋 𝑃 is a linear sum of inputs weighted by 𝑠𝑀 𝑃 . The first part
of the NP update, ↑ 𝑏

𝑐2
NP
(𝑚

pert
↑ 𝑚)𝑥

NP
𝑀𝑆 , is the stochastic estimate of the error gradient w.r.t. the total

input 𝑤𝑀𝑆 , i.e., d𝑚/d𝑤𝑀𝑆 . The factor 𝑋 𝑃𝑆 in the NP update then results from the application of the chain rule,
in other words a backpropagation step: d𝑚/d𝑠𝑀 𝑃 =

∑
𝑆 (d𝑚/d𝑤𝑀𝑆 ) (d𝑤𝑀𝑆/d𝑠𝑀 𝑃) =

∑
𝑆 (d𝑚/d𝑤𝑀𝑆 )𝑋 𝑃𝑆 . Thus,

while WP does not assume anything about how the weights (parameters) influence the performance of
the network, NP does utilize some knowledge about the network.

WP and NP are versatile biologically plausible plasticity rules, as they impose little requirements on
the implementing network. In particular, they require only a scalar reward (or error) signal that can be
sparse and delayed. Further, WP and variants of NP [28] depend only on quantities that are, in principle,
available at each synapse [28].

2.4.4 REINFORCE algorithms
The REINFORCE framework [29] (an acronym for ‘REward Increment = Nonnegative Factor ⇔ O"set
Reinforcement ⇔ Characteristic Eligibility’, see Eq. (2.25)) describes a class of RL algorithms that
learn input-output mappings in networks of stochastic units. They do so by correlating an ‘o"set
reinforcement’, i.e., a modulatory reward signal measured against some baseline, with a ‘characteristic
eligibility’ that depends on pre- and postsynaptic activities. In this way, they are similar to three factor
rules [114]. Critically, the activity of a node 𝑃, 𝑤pert

𝑀 , (this section uses the notation from publication
1 [1]) is a stochastic function of its input weights 𝑠𝑀 𝑃 and inputs 𝑋 𝑃 , with probability density function
𝑧 (𝑤

pert
𝑀 ; w, r). The REINFORCE update rule reads [29]

ϑ𝑠𝑀 𝑃 = ↑𝑦(𝑚
pert

↑ 𝑚) · 𝑣𝑀 𝑃 , 𝑣𝑀 𝑃 =
𝛥 ln

(
𝑧 (𝑤

pert
𝑀 ; w, r)

)
𝛥𝑠𝑀 𝑃

. (2.25)

It is presented here with optimal baseline 𝑚 and homogeneous learning rates 𝑦𝑀 𝑃 = 𝑦 > 0, while the
original formulation includes also algorithms with inhomogeneities in these parameters. Note that the
update depends on the concretely realized activations 𝑤pert

𝑀 of the stochastic units.
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For temporal tasks consisting of 𝑅 time steps with error feedback provided only at the end of a trial,
episodic REINFORCE update rules sum the contributions of Eq. (2.25) applied to each time step,

ϑ𝑠𝑀 𝑃 = ↑𝑦(𝑚
pert

↑ 𝑚) ·

𝑁∑
𝑆=1

𝑣
𝑆
𝑀 𝑃 , 𝑣

𝑆
𝑀 𝑃 =

𝛥 ln
(
𝑧 (𝑤

pert
𝑀𝑆 ; w, r𝑆 )

)
𝛥𝑠𝑀 𝑃

. (2.26)

Here 𝑣
𝑆
𝑀 𝑃 is the characteristic eligibility at time step 𝑀 and 𝑣𝑀 𝑃 the eligibility trace that integrates update

contributions over time.
How do REINFORCE algorithms work? Consider the non-episodic case 𝑀 = 1. The characteristic

eligibility 𝑣𝑀 𝑃 involves the derivative of (the logarithm of) the probability density 𝑧 (𝑤
pert
𝑀 ; w, r) w.r.t. the

weight 𝑠𝑀 𝑃 . A positive derivative means that increasing 𝑠𝑀 𝑃 increases the chance that, given the same
inputs 𝑋 𝑃 , node 𝑃 reproduces the activity 𝑤

pert
𝑀 that was associated with the error 𝑚pert. By multiplying

with ↑(𝑚
pert

↑ 𝑚), updates thus modify the distribution of node activities 𝑤pert
𝑀 such that values associated

with lower-than-expected error feedback become more probable, and vice-versa for higher errors.
Williams [29] proofs that, for homogeneous learning rates, the expected weight update ↖ϑw↙ is parallel

to the weight gradient of the expected error ↖𝑚pert
↙,

↖ϑw↙ = ↑𝑦∝𝑑 ↖𝑚
pert

↙ . (2.27)

Here the average is taken over the input distributions, the stochastic node activations (given weights and
inputs) and the reward feedback (given input and node activations).

For a simplified sketch of the proof [29], consider non-episodic REINFORCE with a single stochastic
node 𝑤

pert
𝑀 , 𝑃 = 1, repeated input r and a deterministic error function. The only stochasticity is thus in the

node activation 𝑤
pert
𝑀 . Then, by averaging over its realizations, we obtain

↖ϑ𝑠𝑀 𝑃↙ =
∫

d𝑤pert
𝑀


↑𝑦

(
𝑚

pert
(𝑤

pert
𝑀 ) ↑ 𝑚

)
·

1
𝑧 (𝑤

pert
𝑀 ; w, r)

𝛥 𝑧 (𝑤
pert
𝑀 ; w, r)

𝛥𝑠𝑀 𝑃



︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸
=ϑ𝑑𝑃 𝑄 given 𝑒pert

𝑃

· 𝑧 (𝑤
pert
𝑀 ; w, r)

= ↑𝑦

∫
d𝑤pert

𝑀

(
𝑚

pert
(𝑤

pert
𝑀 )︸⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌︸

indep. of 𝑑𝑃 𝑄

↑𝑚
)
·
𝛥 𝑧 (𝑤

pert
𝑀 ; w, r)

𝛥𝑠𝑀 𝑃

= ↑𝑦
𝛥

𝛥𝑠𝑀 𝑃

∫
d𝑤pert

𝑀 𝑚
pert

(𝑤
pert
𝑀 ) · 𝑧 (𝑤

pert
𝑀 ; w, r) + 𝑦𝑚

𝛥

𝛥𝑠𝑀 𝑃

∫
d𝑤pert

𝑀 𝑧 (𝑤
pert
𝑀 ; w, r)

︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸
=1

= ↑𝑦
𝛥 ↖𝑚

pert
↙

𝛥𝑠𝑀 𝑃
. (2.28)

Here the third equality uses that 𝑚pert, given 𝑤
pert
𝑀 , is independent of 𝑠𝑀 𝑃 , and that 𝑧 (𝑤pert

𝑀 ), as a probability
density function, is normalized to 1. In the first line, the probability density of 𝑤pert

𝑀 , 𝑧 (𝑤pert
𝑀 ), cancels

with the factor 1/ 𝑧 (𝑤pert
𝑀 ) from the definition of the characteristic eligibility, which motivates the use of

the natural logarithm in its definition 𝑣𝑀 𝑃 = 𝛥 ln( 𝑧 )/𝛥𝑠𝑀 𝑃 = (1/ 𝑧 ) · 𝛥 𝑧 /𝛥𝑠𝑀 𝑃 .
The episodic REINFORCE update rule, Eq. (2.26), looks reminiscent of the NP rule, Eq. (2.24).
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Indeed, it follows from applying the REINFORCE framework to node (pre-) activations that are perturbed
by iid. centered Gaussian white noise with variance 𝑟

2
NP [14] when these are the linear sums of the

inputs weighted by the respective weights: defining 𝑤𝑀𝑆 =
∑𝑇

𝑃=1 𝑠𝑀 𝑃𝑋 𝑃𝑆 as the unperturbed node activation,
and 𝑥

NP
𝑀𝑆 = 𝑤

pert
𝑀𝑆 ↑ 𝑤𝑀𝑆 as its perturbation, its probability density function 𝑧 (𝑤

pert
𝑀𝑆 ; w, r) = 𝑧gauss(𝑤

pert
𝑀𝑆 ; 𝑝 =

𝑤𝑀𝑆 ,𝑟
2 = 𝑟

2
NP) is a Gaussian function. The characteristic eligibilities are thus (omitting the dependencies

on w and r)

𝑣
𝑆
𝑀 𝑃 =

1
𝑧 (𝑤

pert
𝑀𝑆 )

𝛥 𝑧 (𝑤
pert
𝑀𝑆 )

𝛥𝑠𝑀 𝑃

𝛥 𝑧 (𝑤
pert
𝑀𝑆 )

𝛥𝑠𝑀 𝑃
=

𝛥 𝑧gauss(𝑤
pert
𝑀𝑆 )

𝛥𝑤
pert
𝑀𝑆

·
𝛥𝑤

pert
𝑀𝑆

𝛥𝑠𝑀 𝑃

=
𝑥

NP
𝑀𝑆

𝑟
2
NP

𝑋 𝑃𝑆 , =
𝑥

NP
𝑀𝑆

𝑟
2
NP

𝑧gauss(𝑤
pert
𝑀𝑆 ) · 𝑋 𝑃𝑆 . (2.29)

Inserting 𝑣
𝑆
𝑀 𝑃 into Eq. (2.26), we obtain the NP rule, Eq. (2.24).

Appendix C shows how the REINFORCE framework is for temporally-extended tasks not directly
applicable to WP, because it (implicitly) assumes that the (induced) perturbations of node activations
are statistically independent. Weight perturbations, however, induce correlated node perturbations. We
show that application of the REINFORCE framework to weight perturbations yields Hybrid Perturbation
(HP)[1], and that WP can be recovered if the resultant updates are decorrelated.

2.4.5 Learning dynamics of WP and NP
Werfel et al. [14] formulated the modern version of the NP rule that uses simultaneous perturbations of all
network nodes, using the REINFORCE framework [29]. Importantly, they advanced the understanding
of WP and NP by comparing their learning dynamics with each other and with gradient descent (GD).
They studied linear perceptrons that map 𝑆 inputs 𝑋 𝑃 to 𝛩 outputs 𝑤𝑀. The mapping 𝑤𝑀 =

∑𝑇
𝑃=1 𝑠𝑀 𝑃𝑋 𝑃

is described by the weights 𝑠𝑀 𝑃 . The perceptrons learn associations between random input patterns 𝑋 𝑃
and target outputs 𝑤′𝑀 =

∑𝑇
𝑃=1 𝑠

′

𝑀 𝑃𝑋 𝑃 defined through a teacher perceptron with teacher weights 𝑠′. On
each trial, a random input pattern is drawn from an isotropic multivariate Gaussian distribution. The
individual inputs 𝑋 𝑃 are iid. distributed with variance 𝛬

2
/𝑆; the total variance of the input pattern is 𝛬2.

In the perturbed trials, WP adds a perturbation 𝑥
WP
𝑀 𝑃 to the weights; NP perturbs the outputs by 𝑥

NP
𝑀 . The

objective is to minimize the squared error, which for the perturbed trials reads

𝑚
pert WP=

1
2

!!!(W + 𝑥
WP

)r

!!!2
, 𝑚

pert NP=
1
2

!!!Wr + 𝑥
NP
!!!2

, (2.30)

where W = w ↑ w
′ is the weight mismatch.

By averaging over perturbations and input patterns, ref. [14] calculate how the expected error evolves
with the number of updates. They find that the expected error exponentially approaches a final, residual
error 𝑚 𝑓 ,

↖𝑚↙ (𝛯) =
(
↖𝑚↙ (0) ↑ 𝑚 𝑓


𝑎
𝑔
+ 𝑚 𝑓 . (2.31)

In the absence of noise in the learning rule and for infinitesimal perturbations, GD, NP and WP lower
the expected error at the same rate, which is 𝑁𝑕 = ↑ ln(𝑎) ↘ 1 ↑ 𝑎 with 𝑎 = 1 ↑ 2𝑦 [14], where 𝑦 is the
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learning rate. It turns out, however, that in the studied setting GD can operate at a higher learning rate
than NP, which in turn allows a higher rate than WP. Thus, when compared at the learning rate 𝑦

′ that
leads to the fastest convergence of the expected error, GD learns faster than NP, which learns faster than
WP [14],

𝑎GD = 1 ↑
1

𝑆 + 2
, 𝑚

GD
𝑓 = 0, (2.32)

𝑎NP = 1 ↑
1

(𝛩 + 2) (𝑆 + 2)
, 𝑚

NP
𝑓 = 1

8𝑟
2
e!𝛩𝑆

𝛩 + 4
𝑆 + 2

↘
1
8𝑟

2
e!𝛩

2
, (2.33)

𝑎NP = 1 ↑
1

(𝛩𝑆 + 2) (𝑆 + 2)
, 𝑚

NP
𝑓 = 1

8𝑟
2
e!

(
𝛩

2
𝑆

𝛩 + 2
𝛩𝑆 + 2

+ 12
𝛩𝑆 + 2

𝑆

)
(2.34)

↘
1
8𝑟

2
e!𝛩

2
. (2.35)

Here the variance of an input component is, without loss of generality, set to 1, and 𝑟e! is the e"ective
variance of the activity perturbation that the weight or node perturbations cause. Concretely, 𝑟2

NP = 𝑟
2
e!

and 𝑟
2
WP = 𝑟

2
e!/𝑆 for a fair comparison. The convergence rates are thus 𝑁𝑕GD ↘ 1/𝑆 , 𝑁𝑕NP ↘ 1/𝛩𝑆 and

𝑁
𝑕
WP ↘ 1/𝛩𝑆

2. In the studied task, GD thus learns faster than NP by a factor of 𝛩 , which in turn learns
faster than WP by a factor 𝑆 [14].

If GD used the gradient averaged over the full input distribution, it could achieve zero error in a single
update. However, due to the randomly drawn input patterns that lie in an 𝑆-dimensional space, GD can,
in a single trial, only update the weights ‘from a single input direction’. This can be seen from Eq. (2.30),
where the error in a single trial only depends on the projection of the weight mismatch W on the current
input pattern r. Consequently, GD has to average over 𝑆 trials to obtain an estimate of the full gradient.
This lowers the optimal learning and convergence rate by the same factor 𝑆 , an e"ect that equally holds
for WP and NP. Phrased di"erently, the di"erence between the gradients on a single trial and over the
full input distribution represents ‘gradient noise’, which necessitates averaging over multiple trials [14].

WP and NP do not have access to the true gradient (of a single trial), but estimate it by applying random
perturbations to the 𝛩𝑆 weights or 𝛩 nodes, respectively. Because the perturbations are isotropic, only
a fraction 1/𝛩𝑆 or 1/𝛩 of their variance, respectively, is aligned with the true weight or node gradient.
However, also the part of a perturbation that is perpendicular to the gradient contributes to the updates.
As it is approximately

↔
𝛩𝑆 or

↔
𝛩 times larger than the gradient-parallel component, it requires 𝛩𝑆

or 𝛩 updates, respectively, to average it out. This explains why the convergence rates of NP and WP,
compared to GD, scale inversely with the dimension of the perturbations, which is smaller for NP [14].

In their abstract, ref. [14] acknowledge that ‘. . . these statements [the scaling of the convergence rates]
depend on the specifics of the learning problem, such as the input distribution and the target function,
and are not universally applicable’. Indeed, Chapter 3 and publication 1 [1] analyze WP and NP in a
setting where (throughout most of the article) the input is not random but the same in each trial and has
an additional temporal dimension. This, together with inputs that are e"ectively low-dimensional (cf.
Sec. 2.3.3), allows WP to perform similarly or better than NP, challenging the generality of the intuitions
from the previous paragraph.

2.4.6 Plausible node perturbation learning
For the update of the NP rule, a synapse from neuron 𝑇 to neuron 𝑃 has to calculate an eligibility trace
𝑣𝑀 𝑃 =

∑
𝑆 𝑥𝑀𝑆𝑋 𝑃𝑆 that involves the perturbation 𝑥𝑀𝑆 of the postsynaptic input [12, 13, 28]. The postsynaptic
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membrane potential or input current may be accessible to the synapse – but how can it distinguish
perturbatory from normal inputs? One way is to assume that perturbatory fluctuations have a faster
time course than the normal neuronal activity, so that the fluctuations of the postsynaptic total input 𝑈𝑀𝑆
can be approximated as 𝑥𝑀𝑆 ↘ 𝑈𝑀𝑆 ↑ 𝑈𝑀𝑆 , where 𝑈𝑀𝑆 is low-pass filtered [28, 117]. Each relatively sharp
perturbatory fluctuation then adds a short, larger-amplitude excursion to 𝑈𝑀𝑆 ↑ 𝑈𝑀𝑆 , the ‘perturbation part’,
with a trailing longer, lower-amplitude excursion of opposite sign, the ‘relaxation part’ [28]. These terms
cancel: for continuous inputs that assume a constant value as 𝑀 ⇓ ±∞, the temporal integral over 𝑈𝑀𝑆
equals that of 𝑈𝑀𝑆 , so that their di"erence has zero integral. If the presynaptic rate 𝑋 𝑃𝑆 changes only slowly
compared to the time constant of the low-pass filtering, then the contribution from the relaxation part
to the eligibility trace negates that from the perturbation part. The ‘relaxation contribution’ is further
undesirable as it matches perturbations with temporally unrelated (more distant and acausal) inputs in
the eligibility trace. NP based on this eligibility trace does hence not work with delayed reward [28].

Ref. [28] suggests that a supralinear transformation 𝑕(𝑈𝑀𝑆 ↑ 𝑈𝑀𝑆 ) of the recent total input change can
emphasize its larger perturbation part while de-emphasizing its smaller relaxation part. Correspondingly,
the modified NP rule of [28] reads

ϑ𝑠𝑀 𝑃 = ↑𝑦
(
𝑚 ↑ 𝑚̄

) 𝑁∑
𝑆=1

𝑕

(
(𝑈𝑀𝑆 ↑ 𝑈𝑀𝑆 )𝑋 𝑃𝑆


, (2.36)

with 𝑕(𝑈𝑀𝑆 ↑ 𝑈𝑀𝑆 ) replacing the actual perturbation 𝑥
NP
𝑀𝑆 as used in vanilla NP, and 𝑚 and 𝑚̄ being the

current error (or negative reward) and the expected error, respectively. The di"erence ↑(𝑚 ↑ 𝑚̄) is
thus a reward prediction error. In practice, ref. [28] uses a running exponential average of the error
to estimate the expected error 𝑚̄ . The nonlinearity 𝑕(𝑈) = 𝑈

3 is chosen as a cubic function, which is
shown to lead to warped but reasonable gradient estimates [28]. The used perturbations are given by iid.
random additions ϑ𝑈𝑀𝑆 to the pre-activations 𝑈𝑀𝑆 at sparse, discrete time points. The sparseness of the
perturbations together with their sharpness, as opposed to the otherwise smooth evolution of neuronal
activity, seems to be ideal to separate the perturbation part from the relaxation part in the learning rule.

Result section M of publication 1 [1] compares the NP variant of ref. [28] with vanilla WP and
NP, with the unperturbed reward replaced by a running average of recent rewards, for the delayed
non-match-to-sample task from the same article. This work was done by Christian Klos. It demonstrates
successful and comparable WP and NP learning of recurrent connectivity with the more realistic use of
a predicted instead of an unperturbed reward.

2.5 Further mathematical tools
2.5.1 Isserli’s theorem
Let X ⇐ N(𝑝,𝛝) be an 𝛯-dimensional random variable that follows a multivariate Gaussian distribution
with mean 𝑝 and nonsingular covariance matrix 𝛝. The probability density function 𝑧 (X = x) for
observing x is explicitly given by

𝑧 (X = x; 𝑝,𝛝) =
1

(2𝛱)𝑔 det𝛝
exp

(
↑(x ↑ 𝑝)

𝑁𝛝↑1
(x ↑ 𝑝)


. (2.37)
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For centered distributions, i.e., 𝑝 = 0, Isserli’s theorem [118] states that the moments of 𝑜 ,

↖𝑜𝑀1
𝑜𝑀2

· · · 𝑜𝑀𝑅
↙ =

∫
d𝑈𝑀1 · · ·

∫
d𝑈𝑀𝑅 (𝑈𝑀1

𝑈𝑀2
· · · 𝑈𝑀𝑅

) 𝑧 (X = x; 0,𝛝), (2.38)

are given by

↖𝑜𝑀1
𝑜𝑀2

· · · 𝑜𝑀𝑅
↙ =

∑
𝑖⇒𝑗2

𝑅


{𝑘,𝑕}⇒𝑖

↖𝑈𝑖𝑆
𝑈𝑖𝑇

↙ . (2.39)

Here 𝛴
2
𝑅 is the set of partitioning the indices 𝑃1, 𝑃2, · · · , 𝑃𝑅 into pairs, and the product is over all

pairs in a given partition. As an example, consider the 4th order moment ↖𝑜1𝑜2𝑜3𝑜4↙, for which
𝛴

2
4 =


{1, 2}, {3, 4}


,


{1, 3}, {2, 4}


,


{1, 4}, {2, 3}


. Consequently,

↖𝑜1𝑜2𝑜3𝑜4↙ = ↖𝑜1𝑜2↙ ↖𝑜3𝑜4↙ + ↖𝑜1𝑜3↙ ↖𝑜2𝑜4↙ + ↖𝑜1𝑜4↙ ↖𝑜2𝑜3↙ . (2.40)

Moments of odd number are zero, consistent with the inability to partition the indices into pairs.

2.5.2 Lambert W function and solutions
The Lambert W function is the multivalued inverse of the function 𝑠 ⇓ 𝑠e𝑑 [119],

𝑠 = 𝑊𝑅 (𝑤) ≃ 𝑠e𝑑 = 𝑤, (2.41)

where the index 𝑡 denotes its 𝑡th branch. 𝑊 is also called the ‘product logarithm’, highlighting its broad
similarity to the complex logarithm, which inverts the function 𝑠 ⇓ e𝑑 . Like the complex logarithm,
it has di"erent branches, as shown in Fig. 2.1a). The 0th and ↑1st branch are the only ones that map
(part of) the real axis in the z-plane to real values in the w-plane [119], Fig. 2.1a). The two solutions
coincide at the branch point 𝑤 = (↑1)e(↑1) where they yield 𝑊0 |↑1(↑e↑1

) = ↑1, which can be easily
checked to satisfy Eq. (2.41). For 𝑤 > 0 there is only one real solution (on the principal 𝑡 = 0 branch),
for ↑e↑1

∈ 𝑤 < 0 there are two, and for 𝑤 < ↑e↑1 there is no real solution [119]. In the analysis of
network dynamics in publication 2 [2] this will be connected to the emergence of oscillating solutions.

Comparing the solutions of the 0th and ↑1st branch with those of the other branches (for 𝑤 < 0, markers
in Fig. 2.1a)) shows that the other solutions have smaller real part and (in amplitude) markedly larger
imaginary parts. In the context of publication 2 [2], Chapter 4, where 𝑊𝑅 appears in the computation of
the complex frequency of an exponential decay, these large imaginary parts characterize solutions with
unrealistically large oscillation frequencies that decay quickly.
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Figure 2.1: Images {𝑠 = 𝑊𝑅 (𝑤) : 𝑤 ⇒ C} of the first branches 𝑡 = ↑2, · · · , 2 of the Lambert W function. a)

w-plane: Red lines show the images of the negative real line 𝑤 < 0, black lines the images of the positive real
line 𝑤 > 0. The values 𝑊𝑅 (𝑤) for 𝑤 = ↑1,↑e↑1

,↑0.1, 1 are marked in green, blue, orange and purple, respectively
(compare with b)). Even branches use thick lines, crosses as markers and have images highlighted by a gray
background. Odd branches use faint lines, pluses as markers and white backgrounds. Red lines mark the branch
cuts and belong to the respective lower branch. Note that 𝑠 ⇓ 𝑠e𝑑 maps all 𝑠 values marked in the same color
to the same 𝑤 values as shown in b). Note also that only the 0th and ↑1st branch contain (part of) the real axis
in their image. b) z-plane: The red and black line highlight the negative / positive real numbers, which are the
pre-images of the respective lines in a).
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CHAPTER 3

Analysis of weight and node perturbation

This chapter consists of the following publication (publication 1) and a summary thereof:

[1] P. Züge, C. Klos and R.-M. Memmesheimer
Weight versus Node Perturbation Learning in Temporally Extended Tasks:
Weight Perturbation Often Performs Similarly or Better
Physical Review X 13 (2023) 021006
©2023 American Physical Society

The article is attached in full in App. A. Its supplementary material (supplement 1 [120]), available from
the same DOI, is attached in full in App. B. In addition, App. C relates WP and hybrid perturbation
(HP), developed in publication 1, to the REINFORCE framework [29].

Contribution statement The article was conceptualized by all authors. The theoretical analysis was
performed by me. Further, I initiated the study of correlated inputs with low e"ective dimension and
discovered the interference of node perturbations with unrealizable target components. I performed the
numerical simulations that directly test the theoretical analysis, except for the simulated error dynamics
for learning multiple subtasks. The results of these simulations underlie Figs 1-7 of publication 1 [1] and
Figs S1-S4,S6-S9 of its supplement [120]. I wrote the majority of the results part, except the sections
about the DNMS and MNIST tasks. I further contributed strongly to the planning and revision of the
other parts of the article. I also wrote appendices A3 and A4, as well as the supplement [120].

29

https://doi.org/10.1103/PhysRevX.13.021006


Chapter 3 Analysis of weight and node perturbation

3.1 Summary
This chapter gives a brief summary of the results from publication 1 [1]. For the details, consult
publication 1 (App. A) or supplement 1 [120] (App. B) directly. Chapter 5 provides further discussion of
the results and places them into a wider scientific context.

Animals can learn to perform RL tasks in the presence of sparse, delayed rewards (see Sec. 2.4.2). The
underlying neural circuits thereby work in an inherently noisy fashion (Sec. 2.4.1). Two basic RL rules
that can exploit noise in neural computations are WP and NP (Sec. 2.4.3). NP was believed to be highly
superior to WP due to its massively smaller perturbation dimension [14] (Sec. 2.4.5): there are many
more weights than nodes, so that the projection of a random perturbation on the relevant gradient is
relatively smaller for WP. This intuition was substantiated by the theoretical analysis of linear networks
learning to map random inputs in a student-teacher task: NP can in that case learn faster than WP by a
factor of 𝑆 , which is the number of inputs to a neuron [14] (Sec. 2.4.5). It is therefore, in contrast to WP,
often considered as a benchmark [34–36] and as actually implemented in biological neural networks [28,
30, 31, 121].

The setting analyzed in ref. [14], which cemented NP’s reputation as the superior learning rule,
features unstructured inputs without temporal extent. Neuronal activity, however, is typically correlated
(depending on the timescale and averaging procedure, see Sec. 2.2.1), as characterized by a relatively
low e"ective dimension (Sec. 2.3.3). Also, tasks extend in time, and sparse, delayed rewards necessitate
relating them to prior network activity (Sec. 2.4.2).

For this reason, we analyze WP and NP for time-extended tasks with correlated inputs. Concretely, we
consider learning a single linear input-output mapping with e"ectively low-dimensional inputs. Later
we extend this to learning multiple input-output mappings. We calculate the evolution of the expected
error for a quadratic error function, which reveals the dependencies of the learning rules on di"erent task
properties. The convergence rate and asymptotic value of the expected error serve to compare the two
learning rules.

We find that

WP learns a single input-output mapping not slower but equally fast as NP. Further, WP
can reach a lower final error. We generalize these findings by demonstrating that WP
can perform similarly to or better than NP also for more complex machine learning and
behavioral tasks.

Through mathematical analysis, we develop a clear mechanistic understanding of the learning dynamics.
We define task-relevant and -irrelevant weights (more precisely: weight space directions), with irrelevant
weights mediating zero inputs. We find in particular that

The convergence speed of WP and NP is determined not by the number of weights or nodes,
respectively, but by the number of task-relevant weights.

For correlated inputs, this number is generally between the number of nodes and the number of weights,
making the task easier than expected for WP and harder for NP.

The asymptotically achievable error of NP is proportional to the temporal dimension 𝑅 ,
while that of WP is proportional to the e"ective input dimension 𝑆e! . As this is always
equal to or smaller than 𝑅 , WP can achieve a lower final error.
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We find di"erences in the weight and learning dynamics of WP and NP that might serve to distinguish
them in neurobiological experiments: First,

For WP but not NP, irrelevant weights perform a random walk.

We show that weight decay counteracts and stops this ‘weight di"usion’. In the presence of input noise,
irrelevant weights di"use also for NP. Their di"usion, which is still stronger for WP, then contributes
to the task error. It stops at a finite spread like in the case of weight decay, due to the error feedback.
Despite the increased number of weights a"ecting the task error, and despite the stronger di"usion of
irrelevant weights for WP, we find that

WP can outperform NP also in the presence of input noise. The dynamics and final spreads
of the irrelevant weights remain qualitatively di"erent between the learning rules, allowing
to distinguish them.

Second,

Learning multiple subtasks slows down WP but not NP (in the absence of input noise).

This is because WP’s random changes to weights that are irrelevant in one subtask can become relevant
in another, where they interfere with learning. On the flip side,

WP benefits from batch learning, while NP surprisingly does not.

In behavioral experiments, this would correspond to rewarding action sequences versus single actions.
We further consider target outputs that contain components not present in the inputs. As a third
distinguishing characteristic, we show how such

Unrealizable target components interfere with node but not weight perturbations.

This is because unrealizable perturbations parallel to these components influence the error to linear order,
contributing only reward noise.

Using the obtained insights,

We develop two new learning rules: Hybrid perturbation (HP) and WP0.

HP combines weight perturbations with NP updates (see also App. C), producing relevant and realizable
perturbations while using eligibility traces to solve part of the credit assignment problem. Like NP, HP
does not update irrelevant weights; however, it preferentially updates weight directions that mediate
strong input components, which introduces a bias. Accordingly, it works best when all latent inputs have
the same or similar strength, or if it is su!cient to learn the weights mediating strong inputs. WP0 is
a WP variant that does not update weights mediating zero inputs. It thus works best when the inputs
within a trial are sparse. For favorable task properties, HP and WP0 can learn also multiple subtasks as
fast as NP, while not su"ering from unrealizable target components and reaching a final error as low as
WP. As a new variant of NP, we also consider NP with temporally correlated perturbations and find that

Temporally correlated perturbations improve NP when the inputs are similarly correlated.

It behaves then similar to NP on a task with reduced temporal dimension and can achieve final errors
between those of WP and NP with uncorrelated perturbations.

For tasks with heterogeneous latent input strengths, we find that
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WP and NP learn weights connected to strong and weak inputs at di"erent speeds

and demonstrate this in a reservoir computing task.
Going beyond the assumptions made in the theoretical analysis, we apply WP and NP to more

complex tasks, concretely training an RNN on a delayed non-match-to-sample (DNMS) task using
more biologically plausible reward baselines and eligibility traces. Furthermore, we train multi-layered
networks of nonlinear neurons on an RL version of the MNIST (Modified National Institute of Standards
and Technology database) task. We find that

WP performs similarly to or better than NP also for more complex tasks and network
architectures.

To conclude, we have shown that the performance of WP and NP depends critically on the task setting:
For time-extended or batched tasks with correlated inputs where single trials capture most of the task’s
content, WP can perform better than NP. This suggests WP as a relevant benchmark and, together with
its even simpler biological implementation, as a plausible candidate for learning in the brain. The
di"erences in the weight and learning dynamics may allow to experimentally distinguish the learning
rules.
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Cooperative coding

This chapter consists of the following pre-publication (publication 2, version 2) and a summary thereof:

[2] P. Züge and R.-M. Memmesheimer
Cooperative Coding of Continuous Variables in Networks with Sparsity Constraint
bioRxiv (2024):2024.05.13.593810v2

The article is attached in full in App. D.

Contribution statement The article was conceptualized by both authors. The theoretical and
numerical analysis was jointly planned, and performed by me. I suggested studying also the encoding of
higher-dimensional stimuli and the dynamical speedup through delayed, balanced inhibition. I wrote
nearly all of the initial draft and the majority of the supporting information (S3-S7). Main text and
supporting information were revised by both authors.
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Chapter 4 Cooperative coding

4.1 Summary
This chapter gives a brief summary of the results from publication 2 [2]. For the details, consult
publication 2 (App. D) directly. Chapter 5 provides further discussion of the results and places them into
a wider scientific context.

Neurons in biological neural networks encode continuous sensory and intrinsic variables in their joint
activity [6]. Individual neurons thereby respond to a rather wide range of stimuli, and any su!ciently
strong stimulus activates many neurons. The neuronal response profiles are thereby similar, in the sense
that for any neuron there are typically many neurons with highly overlapping responses [41, 42]. In the
cortex, (excitatory) synaptic connections between such highly similarly-tuned principal neurons are more
likely and stronger [43–45]. Also their functional connectivity, which includes polysynaptic inhibitory
contributions, is excitatory [46, 47].

One way to progress our understanding of biological neural networks is to discover normative
explanations for experimental observations. The observed predominantly excitatory coupling between
similarly-tuned principle neurons is in contrast to normative theories that optimize coding with a limited
number of spikes and predict inhibitory like-to-like connectivity [48, 49, 82, 122] (Sec. 2.2.3). In
addition, recurrent excitation can amplify noise [50] and increase response times [51, 52] (Sec. 2.3.2),
which seems disadvantageous for fast stimulus processing. This poses the question:

Why do similarly-tuned principal neurons predominantly excite each other?

To answer this question, we develop a novel cooperative coding scheme, in which neurons utilize
recurrent connections to harness the computations already performed by similarly-tuned neurons. This
cooperative sharing of computations lessens the need for individual feedforward processing. Viewed
di"erently, neurons share their access to feedforward information specifically with other neurons that also
need it. The dynamic interplay of feedforward input and recurrent interactions then forms the network
response. As a result,

Cooperatively coding networks can replace many feedforward and less specific recurrent
connections by few specific recurrent ones, thereby reducing the number of required
synapses.

Crucially, the resulting connectivity between neurons with very similar receptive fields (RFs) is net
excitatory. Our results thus show that

The observed excitation between similarly-tuned neurons can be a sign of a cooperative
coding scheme that reduces the number of synapses.

This suggests the number of synapses and space constraints as an important factor in shaping biological
neuronal networks.

Concretely we analyze linear rate networks with responses characterized by their neuronal RFs. We
contrast our recurrent, cooperatively coding networks with purely feedforward networks that implement
the same response, defined as their steady states.

For the feedforward implementations, the number of required synapses per neuron increases
linearly with the RF size 𝛯RF. The cooperatively coding networks, in contrast, can in
principle implement RFs of any width with a fixed number of synapses,
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making 𝛯RF a measure for the number of saved synapses. They do so by recurrently propagating activity
to other neurons with progressively less overlapping RFs. This activity propagation causes an increase in
response time that scales with the RF size. We thus find that

Saving synapses comes at the cost of increased response times, with higher savings and
slower responses for wide RFs.

We calculate the scaling of this trade-o" analytically and find that a cooperatively coding network
with purely excitatory synapses is rather slow: when encoding a continuous, one-dimensional stimulus,
its response time scales quadratically with the RF size (and the number of saved synapses). However,

The network response time can be massively reduced by introducing balancing inhibition
that tracks excitation with a small delay [63, 64] (Sec. 2.3.4) and implements balanced
amplification [51] (Sec. 2.3.5).

The mechanism underlying the speedup is as follows: Balancing inhibition allows (much) larger excitatory
weights, as the steady-state inhibition cancels the additional excitation. During the response build-up,
however, the delayed inhibition does not yet fully cancel the additional excitation, allowing strong
interactions during this brief ‘window of opportunity’. In contrast to the net interactions between neurons,
this allows a propagation of activity changes through the network. For strong balance, this leads to
oscillations and can destabilize the network. At a critical balance, which is at the onset of oscillations,
network activity converges fastest to the steady state, and the scaling of the response time with RF size
improves from quadratic to linear. Furthermore,

Spike frequency adaptation (SFA), modeled as a low-pass filtered, inhibitory adaptation
current [123], equally improves the scaling of the response time with the RF size.

Neurons are often selective to multiple stimulus attributes [124]. We therefore study the encoding of a
two-dimensional stimulus with neurons with linear and nonlinear mixed selectivity [124] (in terms of
the stimulus attributes). For linear mixed selectivity, the scaling of the response time with RF size is
the same as for the one-dimensional stimulus, but improves by a constant factor. For nonlinear mixed
selectivity, we find that

When encoding a two- instead of one-dimensional stimulus, the scaling of the response time
with RF size improves from quadratic to linear for excitatory networks. For networks with
balancing inhibition or SFA it improves from linear to square-root-like.

Finally, we estimate the metabolic cost of synaptic transmission, measured by the L1-norm of
transmitted currents. We find that the excitatory cooperatively coding networks use as much energy as
the feedforward implementations. Adding balancing inhibition or SFA increases energy demand through
the cancelation of currents. Balancing inhibition further requires additional synapses and neurons. The
brain might thus invest some synapses, neurons, space, and energy in balancing inhibition to retain
a reasonable response speed. Inhibitory neurons may also be required anyway for di"erent reasons
(Chapter 5).

In conclusion, our results indicate that recurrent like-to-like excitation might implement a novel
cooperative coding scheme that minimizes the number of required synapses. This suggests the number
of synapses and limited space as a crucial constraining factor in shaping neural networks. Finally, we
show how balancing inhibition and a novel mechanism involving SFA can speed up neural computations.
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Discussion

This thesis studies biologically plausible neuronal plasticity and computation that are subject to
physiological constraints. The constraints include the locality of learning rules, observed random
fluctuations of network parameters and activity, as well as limited space and energy. Another constraint,
which holds for many tasks, is that the optimal network output is unknown, but has to be inferred from
sparse, delayed rewards. Making the learning still more di!cult, synapse-local learning implies that
individual synapses have to rely on their limited information to optimize network-level objectives.

We study the learning dynamics and their dependence on di"erent task parameters for two such local
RL rules, WP and NP. Their individual synaptic updates are highly stochastic and can even seem random,
yet jointly they improve the network’s ability to obtain reward. A similar theme of emergence is present
on the level of neuronal activity, where we interpret local recurrent excitation between similarly-tuned
cells, as observed in the cortex, as implementing a novel cooperative coding scheme. Cooperatively
coding neurons thereby share computations with similarly-tuned neurons that also need them to establish
a desired network response, thereby minimizing the number of required synapses. This allows us to
explain the observed connectivity as an optimal solution given a constraint on synapse number.

Both our studies transform the view of seemingly disadvantageous properties of biological neural
networks – spontaneous weight fluctuations or like-to-like excitation – and interpret them as parts of
mechanisms – WP or cooperative coding – that optimize global objectives: maximizing reward with
good performance or implementing a network response with few synapses.

Models and methodology We develop a mechanistic understanding, of the learning dynamics of
WP and NP and of the activity dynamics of cooperatively coding networks, by studying abstract models
that are as simple as possible while still capturing the relevant aspects under study. In particular, we
mainly study linear networks of rate neurons (Secs. 2.3.1,2.3.2), which are amenable to exact analytical
analysis. To understand them, we employ tools from linear algebra, statistics, and the theory of dynamical
systems. Furthermore, dimensionality arguments play an important role in both studies. We confirm
our results in numerical simulations, of linear and partially also of nonlinear rate networks with more
complex architectures. In the tradition of normative approaches [11, 48, 53, 54, 125], we show how our
models optimize an objective, i.e., the obtained reward or the number of synapses. The objective then
provides a possible explanation for experimental observations, i.e., activity-independent plasticity or
like-to-like excitation.
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Expressivity of the used models Our linear rate models su!ce to study the core problems
investigated in this thesis: To understand the learning dynamics of WP and NP, we need to know how they
solve the credit assignment problem, i.e., how they update each weight given the applied perturbations
and obtained reward. Adding a neuronal nonlinearity to our single-layer linear networks would thereby
not a"ect the critical linear input summation, but only e"ectively modify the dependence of the loss
function on the network output. The developed concepts of task-relevant and -irrelevant weights, as well
as of unrealizable target components, depend on the input structure and apply to such nonlinear networks
in the same way. Further insights that build on these concepts, like the di"erent dependencies of WP and
NP on the number of subtasks, carry over to nonlinear networks, as demonstrated on the MNIST task.

For the analysis of cooperative coding, we ask how a given response can be constructed using di"erent
sets of recurrent and feedforward connections, without interest in a particular network response per se.
The important aspect captured in our simple model is that a ‘large part’ of the input-output transformation
of a neuron is already present in the output of neurons with highly similar RFs [41, 42, 44]. Further, these
feature neurons have broad, strongly overlapping responses that provide indirect access to many input
neurons. In contrast, input neurons have delta-like activity in the input space. These points still hold for
cooperatively coding networks of nonlinear neurons, and presumably also for spiking neural networks
that are well described by rate networks. In either case, the core insight is that a desired response can be
constructed with fewer synapses from few relevant, recurrent inputs (and few feedforward inputs) than
from feedforward inputs alone.

Scientific context of publication 1 (WP and NP learning) Basic research aims to improve
scientific theories to better understand and predict natural phenomena. This thesis advances the
understanding of two basic RL rules, WP [12, 13] and NP [14, 15] (Sec. 2.4.3), which are known for
decades. Based on the intuitive argument that there are more weights than nodes to perturb and on
theoretical analysis [14], NP was widely believed to be far superior to WP. NP is therefore, and because
of its wide applicability as a black-box optimization algorithm, often used as a benchmark comparison
for other biologically plausible learning rules [34–36]. It is also more often than WP considered as
actually implemented in the brain [15, 28, 30, 31, 121]. Our findings o"er a more nuanced evaluation,
demonstrating that WP is actually preferred for many realistic conditions. It is especially competitive for
long but relatively low-dimensional tasks, and when single trials provide already a lot of information
about the full task or can be combined into batches. A concrete example is song learning in certain birds,
where a single, stereotyped input sequence with high temporal precision drives song production [32].

The REINFORCE framework [29] describes a family of perturbation-based RL rules that increase the
probability of reproducing stochastic activity that led to higher rewards. Applying this framework to
perturbations of the summed neuronal inputs yields NP [14]. The weight perturbations of WP induce
time-correlated node perturbations. The REINFORCE framework, however, assumes that (induced)
neuronal perturbations are statistically independent across time and neurons. For temporally-extended
tasks, it is thus not applicable to perturbations of the weights. Appendix C shows that disregarding this
violation of assumptions and applying it anyway results in hybrid perturbation (HP) updates, which we
introduce in publication 1 [1]. For specific task settings, HP combines the advantages of WP and NP, at
the cost of biased updates. Decorrelating the updates of HP results in WP updates [1].

In deep and recurrent neural networks, applied activity perturbations induce further activity perturba-
tions in other neurons. To account for the mismatch between applied and actual perturbations, ref. [126]
propose to use the actually induced perturbations in the update rule, which they term activity-based
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node perturbation (ANP). While ANP did not yield noticeable improvements over NP for the studied
deep neural networks, it can do so in recurrent neural networks with online reward feedback [127]. In
our single-layer networks, however, applied and actual node perturbations agree. Refs. [126, 127] also
decorrelated neuronal activity, either between layers or continuously using a decorrelation matrix that
co-evolved with training [128], which improved ANP. Interestingly, in ref. [127] WP and NP did not
profit from such decorrelation. We have speculated that HP should profit greatly from such decorrelation,
as it removes its bias. WP0 might benefit, too, if a partial decorrelation would project the weakest input
components to zero, allowing it to prevent many updates of irrelevant weights that can be disadvantageous
when learning multiple subtasks.

Our numerical experiments included training a layered network of nonlinear units on MNIST. By
comparing to ablated shallow and linear networks, we discovered that NP learning was, compared to WP
learning, more strongly impaired by nonlinear activation functions and the layered architecture. Since
then, ref. [129] have studied NP learning in linear feedforward networks with a hidden layer analytically.
Using a mean field approach, they found that NP learning can become unstable, triggered by di"usive
growth of the hidden layer weights. This happens in the presence of target noise, consistent with our
work.

Scientific context of publication 2 (cooperative coding) One goal of theoretical neuroscience
is to find normative explanations for experimentally observed properties of biological neural networks.
Such theories can for example predict the ratios of excitatory to inhibitory neurons [11], of the volumes
taken up by neuronal wiring to neuronal cell bodies [53] or the distribution of axon diameters [54] from
optimizing for limited space. Other experimental findings that optimize space usage include cortical
folding [10] which increases cortical surface area, and, to some extent [130, 131], the wiring-length-
minimizing arrangement of brain areas [132]. In the case of the observed functional and physical
excitation between highly similarly-tuned cortical neurons [43–47], such a normative reason is still to
be found. To the contrary, there are several theoretical arguments against such connectivity, favoring
like-to-like inhibition instead [48–52, 82, 122]. An exception is ref [50], which proposes that although
recurrent excitation and the concomitant neuronal correlations limit the capacity to encode information,
they increase ‘consistency’ across neurons and time, improving the ability of suboptimal readouts to
decode information. In this spirit, ref [133] had developed a simple readout from an intermediate layer
of recurrently-connected and correlated neurons to solve classification tasks. Their ‘recurrent readout’
thereby works with a small, finite number of synapses per neuron, but requires more neurons and total
synapses than a simple fully-connected readout.

Cooperative coding provides an objective that, when optimized, potentially explains the found recurrent
excitation: the number of synapses required to implement a desired response. Intuitively, if the same
e"ect can be obtained with fewer synapses, this could o"er benefits in terms of reduced demand for space
and energy. However, cooperative coding did not reduce metabolic costs, which we approximated by the
L1-norm of synaptic currents. It is possible that a more detailed metabolic model that takes into account
additional costs for synapses that are more distant from the soma [134], such as feedforward versus
recurrent synapses, could result in slight metabolic savings. We found that networks with EI-balance
or SFA had higher metabolic costs than a feedforward implementation, besides requiring additional
neurons. Inhibition might, however, be required for reasons unrelated to cooperative coding, such as
stabilizing activity [58, 59] and plasticity [100], causing asynchronous irregular spiking [83], expanding
neuronal dynamic ranges [135], and implementing active computations [100, 136, 137].
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Impact Our analysis of WP and NP reveals that WP performs for many relevant tasks much better
than expected, and often better than NP, correcting the prior evaluation of NP as strictly superior. This
suggests WP as a similarly relevant benchmark learning rule, and, in combination with its even simpler
implementation, as a plausible candidate for learning in the brain. WP’s demonstrated suitability for
biologically plausible RL transforms the interpretation of experimentally found activity-independent
plasticity (Sec. 2.4.1), suggesting that part of it may represent weight fluctuations that perform a useful
exploration of the parameter space, thereby enabling targeted plasticity. This targeted plasticity would be
another part of activity-independent plasticity, as WP updates depend only implicitly on activity through
the obtained rewards. Finally, the developed insights into WP and NP learning, alongside the potential
improvements they enable, including WP0 and HP, are relevant to model-free RL methods in the context of
machine learning. WP and NP can have advantages over RL schemes that rely on backpropagating errors
through time, as they mitigate the associated computational cost and stability/tuning issues [40]. This
advantage is increased by their ideal parallelizability, and holds especially for long time-horizons [40].

Our novel cooperative coding scheme provides a potential explanation for the predominant excitation
between highly similarly-tuned principal neurons observed in the cortex [43–47]: Its implementation
minimizes (in balanced networks: lowers) the number of required synapses. This suggests that the
number of synapses and thus space requirements are important constraints that shaped neural networks,
giving a normative reason for the otherwise seemingly suboptimal like-to-like excitation.

Outlook We have analyzed cooperative coding in linear rate networks, where we quantified the
trade-o" between saving synapses and fast response times. As argued above, we generally expect our
findings to extend to nonlinear and spiking neural networks. It will be important to study cooperative
coding in these networks, especially in terms of their dynamics and connectivity. This will also allow
to experimentally constrain neuronal and network parameters, gaining a more quantitative estimate of
response time and synapse numbers.

For our linear rate networks, interpolating between the connectivities of the cooperatively coding and
feedforward architectures yields hybrid models with the same stable steady state responses. In biological
and spiking neural networks, additional, weak feedforward connections could be highly sparse (e.g., 10 %
of the synapses of the feedforward network). Such sparse, ‘anchoring’ input would mean that recurrent
amplification saturates at a subcritical value (e.g., 10-fold), implying also a convergence of response
times for wide RFs. It would preserve the linear scaling of synaptic savings with RF size, and still agree
with findings that the majority of input, both in terms of magnitude [81] and synapse number [138–140],
is recurrent. Additionally, it would yield co-tuning of feedforward and recurrent inputs, as observed in
experiments [77, 81, 141, 142]. Future research could verify these expectations.

Our analysis of WP and NP generates novel insights on their di"erential weight and learning
dynamics, especially the accumulation of weight changes for synapses mediating weak input and
the di"erent dependence of convergence speed on batched trials. These may enable discovering and
distinguishing experimental signatures of WP and NP. Also, it would be interesting to see if superstitious
movements [143] can be interpreted and analyzed as ‘irrelevant output components’.

We have shown that WP can be derived by applying the REINFORCE framework and decorrelating
the resulting updates. This suggests the opportunity to modify the REINFORCE framework to yield
unbiased updates also for correlated perturbations, allowing the discovery of an even greater family of
learning rules.

Two attractive aspects of WP and NP are their biological plausibility and black-box character. It would
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be most interesting to find ways to improve them using mechanisms available to biological neurons,
thus trading the model-independence for better performance. For example, heterosynaptic plasticity
might justify formulating dendrite-local instead of synapse-local learning rules. The co-tuning of close
by synapses to large input components [144, 145] might be interpreted and used as a way to reduce
irrelevant weights.

The credit assignment problem that WP and NP have to solve is complicated by the fact that they
rely on a scalar reward signal, which provides very limited information. Promisingly, dopamine signals
actually encode higher-dimensional feedback [146] and can be dispensed with a dynamic spatio-temporal
profile [26, 147]. Delivering di"erential feedback to di"erent parts of modularized networks that
incorporate WP or NP may improve credit assignment if the feedback signals match the functionalities
of the modules. Further, even random high-dimensional feedback may cause the targeted subpopulations
to align with their rewarded function [148] in an e"ect similar to feedback alignment [34].

Finally, it would be important to study how WP and NP can interfere or synergize with activity-
dependent plasticity, how they relate to reward-modulated Hebbian learning [117], and how WP and NP
could be combined given that both neuronal activity and synaptic weights do fluctuate.

These are all exciting future research directions, and we hope our work cleared the path for their
exploration.
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Publication 1: Weight versus Node
Perturbation Learning in Temporally Extended
Tasks: Weight Perturbation Often Performs
Similarly or Better

This appendix, ‘publication 1’, contains a full copy of the following article:

[1] P. Züge, C. Klos and R.-M. Memmesheimer
Weight versus Node Perturbation Learning in Temporally Extended Tasks:
Weight Perturbation Often Performs Similarly or Better
Physical Review X 13 (2023) 021006
©2023 American Physical Society

For the contribution statement, see Chapter 3.
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Biological constraints often impose restrictions on plasticity rules such as locality and reward-based
rather than supervised learning. Two learning rules that comply with these restrictions are weight (WP) and
node (NP) perturbation. NP is often used in learning studies, in particular, as a benchmark; it is considered
to be superior to WP and more likely neurobiologically realized, as the number of weights and, therefore,
their perturbation dimension typically massively exceed the number of nodes. Here, we show that this
conclusion no longer holds when we take two properties into account that are relevant for biological and
artificial neural network learning: First, tasks extend in time and/or are trained in batches. This increases the
perturbation dimension of NP but not WP. Second, tasks are (comparably) low dimensional, with many
weight configurations providing solutions. We analytically delineate regimes where these properties let WP
perform as well as or better than NP. Furthermore, we find that the changes in weight space directions that
are irrelevant for the task differ qualitatively between WP and NP and that only in WP gathering batches of
subtasks in a trial decreases the number of trials required. This may allow one to experimentally distinguish
which of the two rules underlies a learning process. Our insights suggest new learning rules which combine
for specific task types the advantages of WP and NP. If the inputs are similarly correlated, temporally
correlated perturbations improve NP. Using numerical simulations, we generalize the results to networks
with various architectures solving biologically relevant and standard network learning tasks. Our findings,
together with WP’s practicability, suggest WP as a useful benchmark and plausible model for learning in
the brain.

DOI: 10.1103/PhysRevX.13.021006 Subject Areas: Biological Physics,
Computational Physics,
Statistical Physics

I. INTRODUCTION

Different, usually combined, strategies underlie the
learning of tasks in humans and other animals [1,2].
Supervised learning allows large, rapid improvements. It
is based on observing in which way an action is erroneous
and on the ability of the nervous system to use this
information for the improvement of neuronal dynamics
in a directed manner. This may be implemented by trans-
lating an error vector into a vector of suitable synaptic
weight updates [3]. Fast learning could be achieved by
directly adapting the dynamics [4]. Reward-based learning
(reinforcement learning), in contrast, uses only a scalar
feedback signal. It is, thus, also applicable if errors are
known with little specificity, for example, because there is

sparse, delayed feedback about the cumulative effect of
actions, which might tell only whether an action is
erroneous but not how the generating neural activity can
be improved.
A variety of models for reward-based learning have been

developed in the context of theoretical neuroscience and
machine learning [5,6]. Two conceptually straightforward
implementations of such learning in neural networks
are weight perturbation (WP) [7,8] and node perturbation
(NP) [9,10]. Their underlying idea is to add perturbations to
the weights or to the summed weighted inputs and to
correlate them to the change of task performance. If the
reward increases due to an attempted perturbation, the
weights or the node dynamics are changed in its direction.
If the reward decreases, the changes are chosen oppositely.
NP andWP are used to model reward-based learning in bio-
logical neural networks, due to four properties [4,7,9–14]:
(i) They are (with minor modifications) biologically plau-
sible. (ii) They are applicable to a broad variety of networks
and tasks. (iii) They are accessible to analytical exploration.
(iv) They are optimal in the sense that the average of the
generated weight change taken over all noise realizations is
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along the reward gradient. The schemes’ names were
originally coined for approaches that directly estimate
the individual components of the gradient using single
perturbations to each weight or node [15].
WP explores with its random perturbations a space with

dimensionality equal to the number of weights. For trials
without temporal extent, NP needs only to explore a space
with dimensionality equal to the number of nodes. The
chain rule, amounting to a simple multiplication with the
unweighted input strength, then allows one to translate a
desirable change in the summed weighted inputs into a
change in a particular weight strength. NP, thus, uses
additional information on the structure of the network
(namely, the linearity of input summation) to reduce the
required exploration.
In linear approximation, the optimal direction of weight

changes aligns with the direction of the gradient of the
reward. WP and NP seemingly attempt to find this direction
by trying out random perturbations. Since the dimension of
the space of possible perturbation directions is large, the
probability of finding the gradient is small and a lot of
exploration is necessary. This impedes WP and NP. The
number of weights and, thus, the dimensionality of the
perturbation space searched by WP are much larger than
the number of nodes. NP is, thus, considered more suitable
for reward-based neural network learning [3,9,10,16] and
its implementation in biological neural networks [17]. This
is supported by quantitative analysis: Ref. [9] considers M
linear perceptrons with N random inputs, using a student-
teacher task. They find that for WP the optimal conver-
gence rate of the student to the teacher weight matrix is by a
factorNM worse than for exact gradient descent (GD). This
is consistent with the argument that WP needs to search the
NM-dimensional weight space to find the gradient, which
is directly computed by GD. Accordingly, NP is worse than
gradient descent by the dimensionality M of the node
perturbation space.
The prerequisites of the arguments sketched above, how-

ever, do not hold in many biological situations. First, tasks in
biology often extend in time and have a reward feedback that
is temporally distant from the action [1,5,10,14,18]. Second,
the effective dimension of neural trajectories and of learning
tasks is often comparably low [19–21]. Our article analyti-
cally and numerically explores the perturbation-based learn-
ing of tasks with these features.
The article is structured as follows. First, we introduce the

employed WP and NP learning models. We then derive
analytic expressions for the evolution of expected error
(negative reward) in linear networks solving temporally
extended, low-dimensional reward-based learning tasks.
This allows us to identify conditions for which WP outper-
formsNPaswell as the underlying reasons. Furthermore,we
delineate distinguishing qualitative characteristics of the
weight and error dynamics. Finally, we numerically show
that WP is comparably good or outperforms NP in different

biologically relevant and standard network learning
applications.

II. RESULTS

A. Learning models and task principles

Our study models the learning of tasks that are tempo-
rally extended. Time is split into discrete steps, indexed by
t ¼ 1;…; T, where T is the duration of a trial. During this
period, a neural network receives external input and
generates output. At the end of a trial, it receives a scalar
error feedback E about its performance [8,10,14,17,22]. To
quantitatively introduce the learning rules, we consider a
neuron i, which may be part of a larger network. It
generates in the tth time bin an output firing rate zit, in
response to the firing rates rjt of its N presynaptic neurons:

zit ¼ g
!XN

j¼1

wijrjt

"
: ð1Þ

Here, wij is the weight of the synapse (or the total weight of
the synapses) from neuron j to neuron i. The generally
nonlinear activation function g implements the relation
between the total input current and the output firing rate of
the neuron [5,23]. We note that the individual synaptic
input currents wijrjt in the model sum up linearly. This is a
standard assumption, and it is a requirement for the NP
scheme [9,10,15,24]. In the presence of nonlinear dendritic
compartments [25–27], each of these could be an inde-
pendently perturbed node.
We model WP learning by adding in the beginning

of a trial a temporally static weight change ξWP
ij to each

of the weights wij [8,22]. The output of the neuron then
reads

zpert;WP
it ¼ g

!XN

j¼1

ðwij þ ξWP
ij Þrpert;WP

jt

"
; ð2Þ

where rpert;WP
jt are the input rates, which may have a

perturbation due to upstream perturbed weights. ξWP
ij are

independent and identically distributed (iid) zero-mean
Gaussian white noise perturbations with standard deviation
σWP, hξWP

ij ξWP
kl i ¼ δikδjlσ2WP, where the angular brackets

denote the average over perturbation realizations and δ is
the Kronecker delta. The perturbations ξWP

ij change the
output, which, in turn, influences the reward received at the
end of the trial [Fig. 1(a), left-hand side]. We usually
assume that the difference in reward between the perturbed
and an unperturbed trial with ξWP

ij ¼ 0 for all i, j is used to
estimate the gradient: When the reward increases, for
small perturbations this means that the tried perturbation
has a positive component along the reward gradient.
Consequently, the update is chosen in the direction of that
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perturbation. When the reward decreases, the update is
chosen in the opposite direction. We use the update rule

ΔwWP
ij ¼ −

η
σ2WP

ðEpert − EÞξWP
ij ; ð3Þ

where η is the learning rate, Epert is the error of the
perturbed trial, and E is the error of the unperturbed trial.
For the delayed non-match-to-sample (DNMS) task, the
error of the unperturbed trial is replaced by an average over

the previous errors for biological plausibility. The propor-
tionality of update size and obtained reward implies that,
when averaging over the distribution of the perturbations,
the weight change

hΔwWP
ij i ≈ −η

∂E
∂wij

ð4Þ

is parallel to the reward gradient [Eq. (A2)]. Since
hξWP

ij i ¼ 0, this holds for any baseline in Eq. (3). The
employed choice of baseline E guarantees that for small
perturbations the weight change has a positive component
in the direction of the reward gradient and, thus, always
reduces the error for sufficiently small learning rate η [8]. In
fact, it minimizes the update noise, i.e., the fluctuations of
updates around the gradient [Eq. (A5)].
WP treats the system as a black box, mapping parameters

w onto a scalar error function E. In other words, it uses the
information that the weights are fixed parameters during a
trial but does not take advantage of specifics of the network
structure. This is in contrast to NP, which takes into account
some minimal structural knowledge, namely, the linear
summation of input currents, but not the constancy of the
weights.
Instead of perturbing the weights directly, NP adds noise

to the sum of the inputs:

zpert;NPit ¼ g
!XN

j¼1

wijr
pert;NP
jt þ ξNPit

"
ð5Þ

[9,10] [see Fig. 1(a), right-hand side]. ξNPit are iid zero-mean
Gaussian white noise perturbations with standard deviation
σNP, hξNPit ξNPmsi ¼ δimδtsσ2NP. We note that for temporally
extended tasks, in contrast to WP, the noise must be time
dependent to explore the space of time-dependent sums of
inputs [10]. For temporally constant noise, only the
temporal mean of the total input would be varied and,
thus, improved.
The NP update rule can be defined as

ΔwNP
ij ¼ −

η
σ2NP

ðEpert − EÞ
XT

t¼1

ξNPit rjt ð6Þ

[10], with the eligibility trace
PT

t¼1 ξ
NP
it rjt. As for WP, this

yields an average weight update parallel to the reward
gradient, which again holds for any baseline of the weight
update. The choice of baseline E again minimizes the
update noise [Eq. (A6)].
The NP update rule effectively incorporates an error

backpropagation step, which reduces to a simple mul-
tiplication with rjt due to the linearity of the spatial
synaptic input summation. This allows one to perturb only
summed inputs instead of individual weights and may be

(a)

(b) (c)

FIG. 1. Learning of temporally extended tasks in linear net-
works. (a) Schematic setup of WP and NP. The M outputs zi are
weighted sums of the N inputs rj. Left: WP perturbs the weights
at the beginning of a trial; the resulting perturbations of the
weighted sums of the inputs and, thus, the outputs reflect the
dimensionality and smoothness of the inputs (blue). Right: NP
perturbs the weighted sums of the inputs with dynamical noise
(orange). (b) WP (blue) works just as well as or better than NP
(orange) when learning a single temporally extended input-output
mapping. The error decay time decreases for WP and NP likewise
with decreasing effective input dimension Neff (light versus dark
curves). In contrast, the residual error decreases only for WP.
(c) Increased trial duration T does not change the progress of WP
learning (blue curves lie on top of each other). In contrast,
increasing T hinders NP learning by increasing the residual error
(compare the increasingly lighter orange curves for larger T). If T
decreases Neff (gray curves), convergence is faster and to a lower
residual error in both WP (because of the decrease in Neff ) and
NP (because of the decrease inNeff and T). (b) shows error curves
from simulations (ten runs, shaded) together with analytical
curves for the decay of the expected error (solid), for fixed
T; N ¼ 100, M ¼ 10, and Neff ∈ f100; 50g; σeff ¼ 0.04. Theo-
retical curves and simulations agree well. For WP and Neff ¼ 50,
the decay rate [− lnðaÞ] and the residual error (dashed line) are
highlighted. (c) shows error curves from simulations and theory
similar to (b) for fixed N ¼ 100 and T ∈ f200; 150; 100; 50g.
Neff is set to 100 but cannot be greater than T, such that T ¼ 50
forces Neff ¼ 50.
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expected to increase the performance of NP compared to
WP [3,10,14,17].

B. Theoretical analysis

We analytically compare WP and NP for temporally
extended tasks by training a set of M linear perceptrons
with N inputs. The task is to learn the mapping of a single
fixed input sequence of duration T to a target output
sequence in a reward-based manner. The task choice is
motivated first by biological motor tasks that require such a
mapping, like the learning of their single song in certain
songbirds (see Sec. III). Second, it yields novel insights, as
it is the opposite extreme case to having no time dimension
and different, random inputs in each trial; this case is
treated analytically by Ref. [9] (see the introduction). Third,
our findings yield an understanding of the learning per-
formance for more general temporally extended tasks and
networks studied later in this article. The analysis shows
how learning depends on task dimensions and the structure
of the input. Furthermore, it reveals specific disadvantages
of WP and NP. Importantly, our theoretical considerations
cover very general sequences. In particular, they hold for
sequences with and without correlations between sub-
sequent inputs. Furthermore, the sequences can be arbi-
trarily reordered, also differently in each trial. They may,
therefore, also be interpreted as sets or batches of inputs. In
Sec. II F, we consider temporally correlated sequences, for
which such an interpretation is not useful anymore. In
Secs. II G and II I, we relax the assumption of exactly
repeated input sets.
The perceptrons generate as outputs the product of their

M × N weight matrix w with the inputs

zit ¼
XN

j¼1

wijrjt; ð7Þ

where i ¼ 1;…;M [Eq. (1) and Fig. 1(a)]. For now, we
assume that the target output can be produced with target
weights w%, that is, z%it ¼

PN
j¼1 w

%
ijrjt. This condition is

alleviated in Sec. II E. The learning goal is to reduce the
quadratic deviation of each output from its target, which can
be expressed through theweight mismatchW ¼ w − w% and
the input correlation matrix Sjk ¼ ð1=TÞ

PT
t¼1 rjtrkt [5]:

E ¼ 1

2T

XM

i¼1

XT

t¼1

ðzit − z%itÞ2 ¼
1

2
tr½WSWT ': ð8Þ

We note that with this quadratic error function the average
weight update [cf. Eq. (4)] follows the gradient exactly, for
both WP and NP [Eqs. (A16) and (A17)].
We assume that the inputs are composed of Neff

orthogonal latent inputs; all other input components are
zero (this is relaxed in Sec. II I). Since there are at most T
linearly independent vectors of length T, the effective input

dimension Neff is bounded by Neff ≤ T. T > 1 thus renders
our learning problem nontrivial, by allowing for inputs that
are higher dimensional when considering the input-output
relation of a single sequence. In biological systems, inputs
are low dimensional; Neff is often of the order of 10
(Sec. III), in particular, Neff ≪ N. As long as inputs are
summed linearly, for clarity we then hypothetically “rotate”
the inputs such that only the first Neff inputs are nonzero
and equal to the latent ones [Fig. 2(a)]. This allows us to
speak about relevant and irrelevant inputs instead of
relevant (nonzero) and irrelevant (zero) input space direc-
tions. It does not affect the WP or NP learning process,
because all perturbations are isotropic and the error
function is rotationally invariant [Supplemental Material,
Eq. (S1) [28] ]. In other words, all results, in particular, the
dynamics of the error decay, hold identically for the
original networks with nonrotated inputs where all actual
inputs may be nonzero. For simplicity in our mathematical
analysis, we assume that all latent inputs have the same
strength α2, i.e., ð1=TÞ

PT
t¼1 r

2
it ¼ α2 for the nonzero inputs

i ¼ 1;…; Neff . A partial treatment of networks with inho-
mogeneous latent input strength is given in Supplemental
Material Sec. IV [28].

C. Error dynamics

To elucidate the learning process and its dependence on
the network and task parameters, we analytically derive the
evolution of the expected error. This requires the compu-
tation of the error signal Epert − E and weight update after a
given perturbation to determine the new error. Subsequent
averaging over all perturbations yields the expected error at
trial n, hEðnÞi, as a function of hEðn − 1Þi, specifically, a
linear recurrence relation

hEðnÞi ¼ ahEðn − 1Þiþ b ð9Þ

(see Appendix B for the detailed derivation). The speed of
learning is determined by the convergence factor a,
while the per-update error increase b limits the final
performance. Learning stops at a finite error when an
equilibrium between gradient-related improvement and
reward noise-induced deterioration is reached. The recur-
rence relation is solved by

hEðnÞi ¼ ½hEð0Þi − Ef'an þ Ef: ð10Þ

For a < 1, the average error hEðnÞi converges exponen-
tially at a rate − lnðaÞ toward a finite final (residual) error of
Ef ¼ b=ð1 − aÞ, as shown in Fig. 1(b). Usually, in our
settings a is sufficiently close to 1 to well approximate the
convergence rate by − lnðaÞ ≈ 1 − a.
To understand how learning depends on the task param-

eters, we first consider the speed of learning. The deter-
mining convergence factor
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a ¼ 1 − 2ηα2 þ η2α4ðMNeff þ 2Þ ð11Þ

[Eq. (B39)] is affected by two opposing effects: On
average, updates follow the gradient, thus reducing the
error. This is reflected by a reduction of a by
−2ηα2ðþη2α4Þ, responsible for convergence. However,
updates fluctuate, adding a diffusive part to the weight
evolution which slows convergence down. Although these
fluctuations, having zero mean, do not influence the
expected error to linear order, they do so quadratically.
Thus, their contribution to a, η2α4ðMNeff þ 1Þ, is quadratic
in the learning rate η. It is approximately proportional to
MNeff , the number of relevant weights that read out from
nonzero inputs: Fluctuations in each of these weights yield
the same contribution—the exception being the twice as
strong fluctuations along the single gradient-parallel direc-
tion, which together with the quadratic effect of the mean
update cause the þ2 in Eq. (11).
The fluctuations originate from a credit assignment

problem: Only the perturbation parallel to the error gradient
can be credited for causing the linear part of the error signal
Epert − E. WP has no way of directly solving the credit
assignment problem of identifying this direction. Thus, the
perturbations of all MN weights are equally amplified in
the constructions of their updates [Eq. (3)] such that all
weights fluctuate. This entails fluctuations in the MNeff
relevant weights, which influence output and error. NP can
at least partially solve the credit assignment problem by
using eligibility traces, which are zero for weights that read

out from zero inputs. By projecting each of its (M)
T-dimensional output perturbations onto the effectively
Neff -dimensional inputs, NP restricts its updates to the
MNeff -dimensional subspace of relevant weights. The
convergence speed, thus, becomes independent of T as
for WP. Interestingly, WP and NP therefore converge at the
same speed despite their different numbers of fluctuating
weights. The reason is that the fluctuations of the relevant
weights are the same for both algorithms.
The balance between the improvement resulting from

following the gradient (∼η) and the deterioration due
to the fluctuations of relevant weights (∼η2) in Eq. (11)
is controlled by the learning rate: Small learning rates
imply averaging out fluctuations over many updates and,
therefore, dominance of gradient following, leading to
convergence. For the remainder of the analysis of this
setting, both algorithms are compared at their optimal
learning rate η%, which is defined to yield fastest con-
vergence, in other words, to minimize a. This definition is
chosen because it is conceptually straightforward, and
Eq. (11) directly leads to the simple expressions

η% ¼ 1

ðMNeff þ 2Þα2
; a% ¼ 1 −

1

MNeff þ 2
: ð12Þ

Here, the factor 1=α2 in η% cancels the scaling of the
gradient with the input strength and equals the optimal
learning rate for GD [Eq. (B5)]. In order to allow
for averaging out the update fluctuations, WP and NP
learning additionally have to slow down by a factor of

(a) (b)(i)

(b)(ii)

(b)(iii)

FIG. 2. Hypothetical rotation of inputs and weight diffusion. (a) Because the inputs (left, black) are summed linearly, they can be
“rotated” so that for our tasks the first Neff inputs are nonzero and agree with the latent inputs (middle, black). The remaining inputs are
then zero (middle, red), and their weights are irrelevant for the output (right, red). (b)(i) In WP with finite perturbation size σWP, the
irrelevant weights diffuse without bounds (red), while the relevant weights converge and fluctuate (black) around the teacher weights.
Displayed are the mean (solid) and standard deviation (shaded area) of the weight ensembles. (b)(ii) Weight decay or (b)(iii) input noise
confines the diffusion. In (a), Neff ¼ 2, the latent inputs are a sine and a cosine. Parameters in (b)(i) and (b)(ii): M ¼ 10, N; T ¼ 100,
Neff ¼ 50, σeff ¼ 0.04, teacher weights wrel;i ¼ 0.1, and weight decay γWD ¼ 0.999; results are averaged over ten runs. (b)(iii) The same
parameters, except η ¼ 0.2η% and added iid white input noise with strength σ2noise ¼ 0.5 (SNR ¼ 2).

WEIGHT VERSUS NODE PERTURBATION LEARNING IN … PHYS. REV. X 13, 021006 (2023)

021006-5

46



approximatelyMNeff. Learning diverges for η → 2η% where
a → 1. Equation (12) shows that WP’s convergence rate is
worse than GD’s by a factor generally smaller than the
number of weights. Further, NP’s convergence rate is worse
by a factor generally larger than the number of nodes. Thus,
the number of weights or nodes is insufficient to predict the
performance of WP or NP, respectively.
The per-update error increase and the final error, b and

Ef, result from finite perturbation sizes. Finite perturbation
sizes lead, due to the curved, quadratic error function, to an
estimate that is at least slightly incompatible with the linear
approximation assumed by the update rules [cf. Eq. (4)].
This is particularly apparent when the output error and,
thus, the gradient are (practically) zero: Any finite weight
or node perturbation then leads to an increase of the error
and, thus, to an opposing weight update instead of no
weight modification. This prevents the weights from reach-
ing optimal values and results in a finite final error Ef. The
described difference between perturbation-based error esti-
mate and linear approximation is a form of “reward noise.”
It is nonzero only for finite perturbation size, as reflected by
the dependence of b and Ef on σ (which is quadratic due to
the quadratic error nonlinearity).
For a fair comparison of WP and NP, we choose σWP and

σNP such that they lead to the same effective perturbation
strength σ2eff , as measured by the total induced output
variance. This leads to σ2NP ¼ σ2eff and σ2WP ¼ 1=ðα2NeffÞ ·
σ2eff [Eq. (A22)]. Evaluated at the optimal learning rate η%,
the leading-order term of the final error is

EWP
f ¼ b%WPðη%Þ

1 − a%
≈
1

8
σ2eff ·M

2Neff ; ð13Þ

ENP
f ¼ b%NPðη%Þ

1 − a%
≈
1

8
σ2eff ·M

2T: ð14Þ

Importantly, the final error of WP is here generally smaller,
by a factor Neff=T ≤ 1. To understand this, we focus for
both WP and NP on the output perturbations that they
generate. By perturbing the weights, WP induces output
perturbations that are linear combinations of the inputs.
These are confined to the effectively MNeff -dimensional
subspace in which also the (realizable part of the) output
error gradient ðz − z%Þ=T lies. NP, on the other hand,
creates an entirely random MT-dimensional perturbation
vector [Fig. 1(a)]. Only the projection of this vector onto
the output gradient is useful for learning. This projection is
smaller for NP’s random vector, since the vector has
effectively a larger dimensionality than the output pertur-
bation vector of WP, at the same length. NP compensates
this deficit by amplifying the smaller gradient projection
more strongly. It, thus, achieves the same mean update and
convergence speed as WP. However, it also more strongly
amplifies the reward noise that comes with larger pertur-
bation sizes, which results in a larger final error. The scaling

of Ef with M2Neff or M2T reflects the effective output
perturbation dimensions, MNeff or MT of WP or NP, and
additionally the general scaling of errors with M [Eq. (8),
Supplemental Material Sec. I, and Eqs. (S55)–(S57) [28] ].
Taken together, we observe that here WP learning works

just as well as or better than NP. Both algorithms have the
same speed of convergence, but the final error Ef of WP is
smaller than or equal compared to NP. The rate of
convergence decreases with increasing M and Neff .
Longer trial durations T harm NP by linearly increasing
Ef. Larger effective input dimensionality Neff similarly
harms WP. This result differs from the observation in
Ref. [9] that WP converges much (N-times) slower than NP.
The reason is that our networks learn a single temporally
extended input-output relation, while those in Ref. [9] learn
the weights of a teacher network, by trials with random
input of duration T ¼ 1. We explore the relation between
the results in detail in Sec. II H.

D. Weight diffusion

When the input has less than maximal dimensionality,
Neff < N, only certain combinations of weights read out
nonzero components of the input. This becomes particu-
larly clear for the considered rotated inputs: If WP adds a
perturbation to a weight mediating zero input, to an
irrelevant weight, the output and the error remain
unchanged. This missing feedback leads to an unbounded
diffusionlike random walk of irrelevant weights. For
unrotated inputs, the weight strength diffuses in irrelevant
weight space directions. We see below (Sec. II G) that the
weight diffusion harms performance when learning multi-
ple input-output patterns.
We find that, for WP in the limit of infinitesimally small

perturbations σWP → 0, all weights initially change and then
converge (Supplemental Material, Fig. S1 [28]). This is
because the learning-induced drift of relevant and the
diffusion of irrelevant weights both stop when the error
converges to zero: The error E is quadratic, such that for
infinitesimally small perturbationsEpert ¼ E at itsminimum.
In contrast, for finite perturbations a residual error remains
and weights continue to change. In particular, irrelevant
weights continue to diffuse [Fig. 2(b)(i)]. The quantitative
details of the weight diffusion process can be analytically
understood [Supplemental Material Sec. II, Eqs. (S61) and
(S64) [28] ]. Standard mechanisms such as an exponential
weight decay [29,30] confine their growth. Simultaneously,
they bias the relevant weights toward zero and therewith
increase the residual error [Fig. 2(b)(ii)]. Also, input noise
confines the weight spread, by adding error feedback to
irrelevant weights. Simultaneously, the noise increases the
final task performance error and enforces a lower learning
rate; see Fig. 2(b)(iii), Sec. II I, and Figs. 5(a) and 5(b).
NP does not generate weight diffusion in noise-free

networks: The rotated inputs make it obvious that in NP the
eligibility trace [Eq. (6)] selects only the weights from
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relevant inputs to be updated, since for irrelevant inputs we
have rjt ¼ 0 for all t such that ΔwNP

ij ¼ 0. Input noise
renders irrelevant inputs and their weight updates nonzero,
such that irrelevant weights diffuse also for NP (Sec. II I).
Differences in weight spread and updates between WP

and NP suggest experimental measurements to distinguish
which one of them underlies learning of a certain task:
As long as the noise is weak compared to the signal such
that the task can be satisfied with high precision, the spread
of irrelevant weights is with NP much smaller than with
WP [Fig. 5(b)]. Furthermore, a large variance in the
weight updates that is independent of presynaptic activity
together with a resulting weight spread that is largest for
weight directions that read out weak latent inputs point
to WP [Fig. 5(b) and Supplemental Material Sec. IV,
Eq. (S126) [28] ]. Consistent with this, prominent random
walklike weight changes that are unrelated to neuronal
activity and task learning are common in biological
neural networks [31]. Weight updates whose variance
scales with input strength but whose final spread is
independent of it [Fig. 5(b) and Supplemental Material
Sec. IV, Eq. (S128) [28] ] point to NP.

E. Unrealizable targets

In the previous sections, we assume that the target
outputs z%it could be exactly realized by setting the percep-
tron weights w equal to some target weights w%, z%it ¼PN

j¼1 w
%
ijrjt. In general, however, the target outputs may

contain components d that cannot be generated by the
network, which is limited to producing linear combinations
of the inputs. Unrealizable components are orthogonal to
all inputs when interpreted as T-dimensional vectors,PT

t¼1 ditrjt ¼ 0 ∀ i; j. The target may be written as a
sum of realizable and orthogonal unrealizable parts,
z%it ¼

PN
j¼1 w

%
ijrjt þ dit. An illustration of such a target is

given in Fig. 3(a). In practice, unrealizable targets occur, for

example, in machine learning classification tasks, see
Sec. II N.
WP induces output perturbations δzit ¼

PN
j¼1 ξ

WP
ij rjt,

which are linear combinations of the inputs. The components
of zpert − z% that are orthogonal to all inputs, d, thus always
remain unchanged, irrespective of the current student
weights and applied perturbations. This leads to the same
constant additive contribution Eopt ¼ 1=ð2TÞtr½ddT ' to the
perturbed and unperturbed errors Epert and E [Eq. (8)]. It
cancels in the weight update rule [Eq. (3)] such that WP
learning is unchanged and Eq. (10) still holds when shifting
its final error toEWP

f;unr ¼ EWP
f þ Eopt [Eq. (S119) [28] ]. Eopt

marks the minimum error that necessarily remains even with
w ¼ w%, due to the unrealizable components.
In contrast, NP perturbs the outputs with white noise.

This noise generally has a nonzero component along d,
which affects Epert. Since such a component cannot be
realized through an update of the weights, the resulting
change of the error is noninstructive and represents reward
noise that adds noise to the updates. Consequently, while
the convergence factor a remains unchanged, the final error
of NP increases more strongly than for WP [Fig. 3(b)]. At
the optimal learning rate, the increase in final error
due to unrealizable target components is twice that of
WP: ENP

f;unr ≈ ENP
f þ 2Eopt [Supplemental Material Sec. I,

Eq. (S58) [28] ]. For Eopt > ENP
f , the coupling of node

perturbations to unrealizable target components becomes
NP’s main contribution to the part of the final error that
exceeds the unavoidable Eopt.

F. Input and perturbation correlations

Our results hold for very general sequences. In particular,
correlations in the input may be present or absent without
affecting learning. Furthermore, the T input-output rela-
tions can be temporally permuted. These invariances follow

(a) (b)

FIG. 3. Unrealizable target components harm NP learning. (a) General targets may contain a component that is perpendicular to any
input and, thus, unrealizable (red). (b) Final error after convergence as a function of the errorEopt that necessarily remains, since the target is
unrealizable. The final error ofWP (blue) is shifted only byEopt; that of NP (orange) increases twice as fast, by approximately 2Eopt. Data
points: mean and standard deviation (averaged over ten simulated runs) of the final error. Curves: theoretical predictions. Black: Eopt.
Insets: error dynamics for Eopt ¼ 0 (left) and Eopt ¼ 2 (right). Parameters: M ¼ 10, N; T ¼ 100, Neff ¼ 50, and σeff ¼ 0.04.
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straightforwardly from the weight update equations
(Supplemental Material Sec. V [28]). We note that
overly strong input correlations reduce the effective tem-
poral dimension of the input such that its effective
dimension cannot be kept up [cf. Fig. 1(c)], which affects
learning.
WP generates output perturbations that are automatically

adapted to the inputs (Sec. II E). To adapt NP to tasks with
temporal input correlations, we modify it to time-correlated
NP, NPc. We generate the correlated perturbations by
temporal low-pass filtering of white noise, with filtering
time constant τpertcorr. Other possibilities are to compose them
from low-frequency Fourier modes or to use perturbations
that are piecewise constant. As the correlation of the
perturbation decays during τpertcorr, for a reasonable repre-
sentation of the perturbation we need to specify it at Tpert

eff ¼
T=ðτpertcorr þ 1Þ time points with temporal distance τpertcorr þ 1.
For vanishingly short correlations, τpertcorr ¼ 0, Tpert

eff ¼ T and
NPc equals NP; a large filtering time constant generates
perturbations that vary slowly and have small effective
temporal dimension Tpert

eff .
If the inputs have similar temporal correlations, the

filtering of the perturbation concentrates its perturbative

power on the realizable output subspace, since this is
spanned by the inputs. This reduces the update noise due to
the quadratic reward noise from finite perturbation sizes
[cf. Eq. (S112) [28] ], because perturbations that are more
aligned with the output gradient require less amplification
to yield a sizable expected update along the weight
gradient. Furthermore, it reduces the linear reward noise
resulting from coupling to unrealizable target components
[cf. Eqs. (S108) and (S80) [28] ]. Both noise reductions
lower the final error. We find that NPc robustly improves
upon NP over a range of filtering time constants similar to
that of the inputs (Fig. 4). If the perturbations become too
smooth, however, they also lose power in the realizable
output subspace, which slows the learning of realizable
target components with higher frequencies down. This is
because the suppressed modes with their comparably small
amplitude contribute little to the projection of the pertur-
bations onto the T-dimensional output gradients (despite
being prominent in the latter), which results in a small
contribution to the error signal [Eq. (S3) [28] ]. This
contribution, in turn, determines the magnitude of the
mean weight update used to match an output mode to
the target. Consequently, the update part used to match the
high-frequency modes is small, and the matching takes a

(a) (b) (c)

FIG. 4. Temporally correlated perturbations improve NP if the input has similar correlations. (a) Final error of NPc versus the effective
time dimension Tpert

eff of its perturbations; smaller Tpert
eff means smoother perturbations. The inputs are constructed with T input

eff ¼ 20 (red
continuous line) or T input

eff ¼ 100 (uncorrelated, red dashed line). The final error of NPc decreases compared to that of NP (orange dot) for
Tpert
eff < T ¼ 100. For correlated inputs and Tpert

eff ≤ T input
eff ¼ 20, NPc’s final error reaches that of NP in a reduced task with T ¼ 20

(orange line; WP, blue line); for uncorrelated inputs and small Tpert
eff , it increases again. This increase is not caused by lack of

convergence. (b) Convergence time, measured as the number of trials until 95% of the final error correction is reached, versus Tpert
eff .

Learning gets considerably slower if the correlation times of the perturbation are longer than those of the input, i.e., Tpert
eff < T input

eff . The
same curve markings as in (a). (c) Simultaneous plot of error and convergence time of NPc [red line, data as in (a) and (b) for correlated
(solid line) or uncorrelated input (dashed line); thus, curves are obtained by varying Tpert

eff ; faint gray line, curves for uncorrelated input
with different learning rates η] and NP (orange, curves obtained by varying the learning rate η). For correlated inputs and similarly
correlated perturbations, NPc yields a true improvement over NP: It has simultaneously a smaller error and smaller convergence time.
For considerably longer correlation times, the final error saturates, but the convergence time increases (region with ndecaytrials > 1000). NP
with reduced learning rate η there yields a smaller final error at the same convergence time. For uncorrelated input, NPc does not yield a
true improvement. In particular, the smaller final error (a) can be achieved at smaller convergence times by NP with reduced η, even if
NPc is allowed to additionally adapt its learning rate (gray curves). Parameters: Neff ¼ M ¼ 10, N ¼ T ¼ 100, σeff ¼ 0.04, Eopt ¼ 2,
and 20000 trials. (a),(b) Mean and standard error of the mean (SEM, partly occluded). (c) Mean values and SEM of final error (red and
orange lines). In gray curves, η is modified relative to the red curve by a factor ranging from 0.5 (lowest curve) to 1.2 (highest curve) in
steps of 0.1.
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long time. With optimal perturbation correlation time
τpertcorr ≈ τinputcorr (Sec. IV), NPc approaches the performance
(as measured by final error and convergence speed) of NP
on a substitute task with T input

eff bins; see Figs. 4(a) and 4(b).
This indicates that our analytical considerations for NP
transfer to those of NPc with optimally correlated noise if
we take into account that the correlations effectively reduce
the trial duration to T input

eff . In particular, in Fig. 4, optimal
NPc performs worse than WP due to the low dimension-
ality and the remaining temporal extension of the task as
well as the unrealizable target components.

G. Multiple subtasks

In general learning tasks, inputs and targets may vary
from trial to trial. To obtain an intuition for how this
affects the speed of WP and NP learning, we here consider
a simplified case: The goal is to solve a task with an
overall effective input dimension of Ntask

eff . The task has the
same properties as the tasks before where each trial was
identical. In particular, it has Ntask

eff orthogonal latent inputs
of strength α2, and the inputs are rotated such that only the
first Ntask

eff inputs are nonzero. The task is, however, not
presented as a whole, but in pieces: In each trial, a random
subset of Ntrial

eff out of the first Ntask
eff inputs are active to

train the network. The error in an individual trial then
depends only on its MNtrial

eff trial-relevant weights, while
the performance on the full task depends on the MNtask

eff
task-relevant weights. The ratio Ntask

eff =N
trial
eff ¼ Pmarks the

number of trials needed to gather information on all task-
relevant weights.
NP updates only the weights relevant in a trial (Sec. II D).

Also, for tasks consisting of multiple subtasks, it can thus
operate at the learning rate that is optimal for a trial, η%NP ¼
1=½ðMNtrial

eff þ 2Þα2' [cf. Eq. (12)]. Because an update
improves only MNtrial

eff of the MNtask
eff task-relevant weights,

the convergence rate − ln a ≈ 1 − a of the expected error,
averaged over the input distribution, is smaller by a factor of
1=P than for a single input pattern [Supplemental Material
Sec. III, Eq. (S79) [28] ]:

a%NP ¼ 1 −
1

P
1

MNtrial
eff þ 2

: ð15Þ

WP, on the other hand, updates all weights such that the
weights that are irrelevant for the trial are changed randomly
(Sec. II D). This worsens the performance for the inputs of
other trials. Because there are now MNtask

eff task-relevant
weights whose fluctuations hinder learning, WP has an
optimal learning rate of only η%WP ¼ 1=½ðMNtask

eff þ 2Þα2'.
As for NP, each trial’s progress is only on 1=P of the task-
relevant weights, such that the optimal convergence factor
for WP on the full task is [Supplemental Material Sec. III,
Eq. (S78) [28] ]

a%WP ¼ 1 −
1

P
1

MNtask
eff þ 2

: ð16Þ

The convergence of WP is, thus, slower than that of NP by
roughly 1=P, the ratio of Ntask

eff and Ntrial
eff [Fig. 6(c)].

Our results have concrete implications for learning of
multiple actions such as sequences of movements [32].
They can be learned by splitting them into subsets, which
are called (mini)batches in machine learning. If we assume
for simplicity that individual data points are pairwise
orthogonal and have no time dimension, each batch
corresponds in our terminology to a subtask, the number
of batches to P, the dimensionality of the input data to
Ntask

eff , and the batch size Nbatch to Ntrial
eff . For MNtrial

eff ≫ 2,
Eqs. (15) and (16) thus imply that the convergence rate of
NP is independent of the batch size while that of WP is
proportional to the batch size and reaches NP’s conver-
gence rate for full batch learning (Supplemental Material,
Fig. S5 [28]). The same holds for the optimal learning rates
as α2 scales inversely with the batch size [Supplemental
Material Sec. III, Eqs. (S90), (S92), and (S93) [28] ].

H. Comparison with Ref. [9]

Reference [9] investigates how a student network learns
the responses of a teacher network to arbitrary input with
GD, NP, andWP, using patterns without temporal extent. In
contrast to our tasks with typically Neff < N or Ntask

eff < N,
successful learning in Ref. [9] requires one to match all
weights of the teacher network. In other words, the student
network is trained at its capacity limit, where (only) one
weight configuration fulfills the task. It learns from random
input patterns and the teacher’s responses to them. This is a
special case of the setup introduced in Sec. II G, where
(i) the task dimension equals the input dimension, Ntask

eff ¼
N (since the employed random input patterns lie in arbitrary
directions of input space), and (ii) there is no temporal
extent of the tasks, T ¼ 1. The latter implies that a single
input pattern has effective dimension Ntrial

eff ¼ 1: All N
inputs in a single pattern are linearly dependent, since they
are scalar, temporal vectors of length 1 (we could rotate the
input pattern such that it has only one nonzero entry).
A comparison of our results for the convergence speed

in the described special case with those of Ref. [9] reveals
that they agree approximately when straightforwardly
setting Ntrial

eff ¼ 1, Ntask
eff ¼ N, and P ¼ Ntask

eff =N
trial
eff ¼ N in

Eqs. (15) and (16):

Algorithm Our results Results from Ref. [9]

WP a%WP ¼ 1 − 1
N

1
MNþ2 a%WP ¼ 1 − 1

Nþ2
1

MNþ2

NP a%NP ¼ 1 − 1
N

1
M·1þ2 a%NP ¼ 1 − 1

Nþ2
1

Mþ2.

The reason for the remaining difference is that the individual
inputs in Ref. [9] are drawn from a Gaussian distribution,
without subsequent normalization to the same strength like
in our scheme. We obtain P → N þ 2 and, thus, perfect
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agreement if we adapt our setting such that the summed input
strength

PN
j¼1 α

2
j fluctuates as it does in Ref. [9].

I. Input noise

Inputs in biological neural networks are noisy. To
investigate the impact of input noise on WP and NP, we
add white noise to all input neurons. Noise in the relevant
inputs causes a finite error that remains even for optimal
weights. Moreover, the irrelevant weights are not com-
pletely irrelevant anymore: They mediate noise (instead of
zero) input, have an optimal value of zero, and lead to
significant output error if they become too large. Since the
input noise is different in the perturbed and unperturbed
trials, it becomes a source of additional reward noise. We,
thus, expect that larger input noise requires stronger weight
or node perturbations to ensure that the beneficial, error
gradient-related part of the reward signal is not dominated
by reward noise (cf. also Ref. [33]). Furthermore, an
increase in overall noise and additional weights that
become more and more important should require the
integration of more trials to extract gradient information.
We, therefore, expect a reduction of the optimal learning
rate with increasing input noise strength. Our numerical
simulations confirm these points; see Fig. 5(a) (increase in
task error and optimal error) and Supplemental Material
Fig. S6 [28] (estimation of optimal learning rates and
perturbation sizes).
We find that in the presence of input noise the irrelevant

weights diffuse in WP and NP [Figs. 2(b)(iii) and 5(b)].
They settle at a finite spread, which contributes to the error
[Fig. 5(c)]. The diffusion stops because WP and NP
update irrelevant weights on average toward zero, due
to their generation of errors. For WP, the final spread
increases with decreasing noise strength and reaches
infinity for zero noise. [Note that Fig. 5(b) does not show
the final, stationary spread.] For NP, the diffusion of
irrelevant weights is caused by their noise-induced
updates and is in contrast to the noise-free case. Their
final spread is independent of the noise strength and
discontinuously drops to zero at zero noise. To explain
this, we identify (weak) noise input with (weak) deter-
ministic input and apply our findings for noise-free
networks with inhomogeneous input strength distribution:
For WP, each weight contributes equally to the final error,
and the final spread scales like one over the square root of
the input strength [Supplemental Material Sec. IV,
Eq. (S126) [28] ]. For NP, weights related to small inputs
contribute only little to the error, and the final spread is
independent of input strength [Supplemental Material
Sec. IV, Eq. (S128) [28] ].
The simulations [Fig. 5(a)] and our analytical under-

standing also show that for finite learning time or when
introducing a weight-limiting mechanism there is no
discontinuity in the error when increasing the input noise

from zero to some finite value. The previous error analysis,
therefore, stays valid as the limit of weak input noise. For
WP, this is because limiting the learning time or the weights
limits the final spread of irrelevant weights. This happens in
such a way that sufficiently small noise has only a
negligible effect on the output (Supplemental Material
Sec. IV [28]). For NP and weak input noise, the final
spread of irrelevant weights is approximately equal to that
of the relevant weights and, thus, also limited.
Finally, we observe that WP learning proceeds for weak

input noise in four phases [Fig. 5(c)]. In the first phase, the
relevant weights are learned, such that the error decreases.
Since the noise is small, the error due to its presence in
relevant inputs is small. In the second phase, the error
remains approximately constant, at a low level. In the third
phase, the irrelevant weights, which have been diffusing
all the time, become so large that they amplify the input
noise sufficiently to influence the output despite the small
noise amplitude. The error therefore increases. In the
fourth and final phase, this error becomes so large that WP
counteracts the further diffusion of weights. The error

(a) (b)

(c)

FIG. 5. Influence of input noise on the task error and on the
spread of irrelevant weights. (a) Task error (fraction of the initial
error) of WP (blue) and NP (orange) at 10 000 trials (curves,
means; shading, standard deviations) as a function of inverse
signal-to-noise ratio (SNR−1). The noise in the relevant inputs
renders the optimal error (black) nonzero. The plot covers SNRs
ranging from infinity down to 1. (b) Spread (standard deviation)
of irrelevant weights (mean and standard deviation) at 10 000
trials. (c) Evolution of error (blue, mean and SEM) and spread of
irrelevant weights (red, mean and SEM) in WP proceeds for weak
input noise (SNR−1 ¼ 0.1) in four phases (solid curve, phases
indicated by numerals). Appropriate weight decay stops the
dynamics in phase II and induces long-term results as in the
noise-free case [dashed curve; cf. also Fig. 2(b)(ii)]. (a) and
(b) use the learning rates that minimize error after 10000 trials
[gray vertical line in (c)] for a given noise level (Supplemental
Material, Fig. S6 [28]). This implies that WP’s error in (a) is the
one in phase II. Parameters: M ¼ Neff ¼ 10, N ¼ T ¼ 100,
α2 ¼ N=Neff ¼ 10, σeff ¼ 0.04, Eopt ¼ 0, and γWD ¼ 0.999 98.
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therefore saturates, at a high level. The four phases can be
clearly temporally separated. [Note the logarithmic axis
scale chosen in Fig. 5(c).] We note that we observe
divergence of the error for sufficiently large irrelevant
weights if the learning rate is too large or the perturbations
are too weak (Supplemental Material, Fig. S6 [28]). If
learning stops in the second phase, the contributions from
irrelevant weights can be neglected. The same holds if a
limiting mechanism stops the diffusion of irrelevant
weights at the level that they reach in the second phase,
while only mildly affecting the relevant weights, because
they converge at a shorter timescale [Fig. 5(c), dashed
line: network with weight decay; cf. also Fig. 2(b)(ii)].
Interestingly, WP can then reach a lower (final) error than
NP and is less affected by input noise; cf. Fig. 5(a).

J. Conclusions from the theoretical analysis
and new learning rules

Our theoretical analysis reveals a simple reason for the
differences between WP and NP: WP produces better
perturbations, while NP better solves the credit assignment
problem. Output perturbations caused by WP lie, in
contrast to NP, always in the realizable output subspace
and do not interfere with unrealizable target components.
On the other hand, NP updates only (trial-)relevant weights,
whileWP updates all weights such that the (trial -)irrelevant
weights change randomly. Small input noise does not
change the overall picture. When single trials capture only
a small part of the full task, WP learning slows down.
Training in batches reduces the disadvantage.
Based on these insights, we introduce two novel

learning rules, WP0 and hybrid perturbation (HP)
[Figs. 6(a) and 6(b)]. WP0 adds a simple modification to
WP: not to update currently irrelevant weights, i.e., weights
whose inputs are zero (or close to it). This solves part of
WP’s credit assignment problem, as changing the weights

does not improve the output, and it avoids diffusion of
irrelevant weights. The improvement is especially large
when inputs are sparse such that many inputs are (close to)
zero [Figs. 6(a) and 6(c)], which might be frequently
the case in biological neural networks [34–36]. HP aims
to combine the advantages of WP and NP by generating
the output perturbations like WP, through perturbing
the weights, and generating updates like NP, using its
eligibility trace. The learning rule performs well when all
latent inputs have (approximately) the same strength α2

[Figs. 6(b) and 6(c)].
WP0 and HP perform for the tasks used in the theoretical

analysis section as well as WP and NP or better than both
[Fig. 6(c)]. WP0 is, however, benefited by the assumption
of rotated inputs (in contrast to WP and NP), as it renders
the input maximally sparse. Furthermore, the latent inputs
have equal strengths, benefiting HP. We observe only slight
improvements of WP0 over WP for the reservoir comput-
ing and MNIST (Modified National Institute of Standards
and Technology database) task, due to the lack of coding
sparseness in our networks. HP performs much worse than
WP and NP in the reservoir computing and similar to NP in
the MNIST task. We explain this by the relevance of weak
inputs [Supplemental Material Sec. VI, Eq. (S147) [28] ].
Adding appropriately equalizing preprocessing layers may
mitigate HP’s problems. Furthermore, weak inputs may be
irrelevant for biological learning. Since HP generates
perturbations of the same class as the inputs and suppresses
the learning of weights related to small inputs, we expect it
to also work well for correlated input (as in Fig. 4) and in
the presence of input noise.

K. Simulated learning experiments

In the following, we apply WP and NP to more
general networks and temporally extended tasks with non-
linearities. We cover reservoir computing for dynamical

(c)(a) (b)

FIG. 6. New learning rules and learning of tasks consisting of multiple subtasks. (a) WP0 does not update weights that mediate zero
input, avoiding their diffusion. (b) Hybrid perturbation (HP): NP scheme with output perturbations induced by WP. (c) WP converges
approximately P ¼ 5 (number of subtasks) times slower than NP, but in the presence of unrealizable target components [or for finite σeff
and Ntrial

eff < T; Supplemental Material Sec. III, Eqs. (S87)–(S89) [28] ] to a lower final error. For the used maximally sparse and equally
strong inputs, WP0 and HP combine the higher convergence rate of NP with the low final error of WP. Error curves (solid, theoretical
predictions; shaded, ten exemplary runs) are for M ¼ 10, N; T ¼ 100, Ntask

eff ¼ 50, Ntrial
eff ¼ 10, negligible σeff , and Eopt ¼ 2.
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pattern generation, learning of recurrent weights in a delayed
non-match-to-sample task, and a temporally extended,
reward-based learning version of MNIST. The results con-
firm and extend our findings for analytically tractable tasks:
They often show similar or superior performance of WP in
temporally extended tasks relevant for biology and machine
learning.

L. Reservoir computing-based drawing task

In reservoir computing schemes, an often low-
dimensional input is given to a recurrent nonlinear network.
The network effectively acts as a nonlinear filter bench: It
expands the input and its recent past by applying a set of
nonlinear functions to them. Each unit outputs one such
function, which depends on the interactions within the
recurrent network. Like a “computational reservoir,” the
network thereby provides in its current state the results of
manifold nonlinear computations on the current and past
inputs. A desired result can be extracted by training a simple,
often linear readout of the reservoir neurons’ activities.
Reservoir computing schemes are widely used as models
of neurobiological computations [37–41], since learning in
them is simpler and seems more easily achievable with
biological machinery than learning of full recurrent and
multilayer networks. Furthermore, the schemes explain the
presence of inhomogeneity and apparent randomness in
neuron properties and connectivity in biological neural
networks as helpful for enriching the computational reser-
voir. Here, we find that, when learning temporally extended
output patterns with a reservoir computing scheme, WP can
learn as well as or better than NP and NPc.
We consider a recurrently connected reservoir of

N ¼ 500 rate neurons driven by five external inputs of
length T ¼ 500. Inspired by the behaviorally relevant task
of reproducing a movement from memory—here, drawing
a figure—the task is to generate the x and y coordinates of a

butterfly trajectory [42,43] at theM ¼ 2 outputs by training
a linear readout [Fig. 7(a)]. The trajectory is nontrivial in
that it is not realizable from the external inputs. In fact, it
requires reading out from many reservoir modes [Fig. 7(b),
dashed gray line].
Formally, the task is similar to the setting discussed

above, with the difference that there is a wide distribution
of different, nonzero input strengths α2μ. The evolution of
expected error is then best described by splitting the error
E ¼

PN
μ¼1 E

μ into different error components, each of
which is associated with the weights that read out from
a latent input rμt [Supplemental Material Sec. IV,
Eq. (S103) [28] ]. In WP and NP, the evolution of the
error components follows a matrix exponential where
different components decay at different rates and interfere
with each other. Components that decay relatively quickly
may be the main source of improvements in the beginning
of training, whereas more slowly decaying components
dominate the error toward the end. This effect can be seen
in the approximately piecewise linear error decay in the
logarithmic plot in Fig. 7(c).
Figure 7(c) compares the performance of WP, NP, and

NPc in the drawing task. Perturbation size is finite,
σeff ¼ 5 × 10−3. WP converges faster initially, which
may be typical for tasks with distributed input strengths
[Supplemental Material Sec. IV, Eq. (S117) [28] ]. It also
achieves a lower final error. This is compatible with the
observation that the effective dimension of the reservoir
dynamics, as measured by the participation ratio (PR ≈ 5),
is much smaller than the temporal extent of the task: The
resulting smaller effective perturbation dimension of WP
(MPR versus MT for NP versus MTpert

eff for NPc) yields an
advantage for WP [Figs. 1(b) and 4(a)]. NPc reaches a
lower final error than NP. We optimize its Tpert

eff using a
parameter scan (Supplemental Material, Fig. S8 [28]).
From our simulations, we cannot completely exclude that

(a) (b) (c)

FIG. 7. WP outperforms NP on a reservoir computing-based drawing task. (a) Schematic of the recurrent, fixed reservoir receiving five
external inputs. Only readout weights are learned. (b) Target (black) and final outputs of WP (blue), NP (orange), and NPc (red). A least
squares fit (gray, dashed line) using only the first five principle components of the reservoir dynamics demonstrates that the task
critically depends on reading out further, weaker dynamical components. (c) Error curves on a logarithmic scale. WP reaches a lower
final error than NP and NPc, with NPc improving on NP; cf. also (b). Inset: early error evolution. There is a considerable improvement
already during the first 50 trials. The curves show median (solid) and interquartile range between first and third quartile (shaded) over
1000 runs of the same network with different noise configurations.
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the improvement is (in part) due to an effective decrease in
learning rate, resulting from a longer correlation time in the
perturbations than in some relevant inputs. For the bio-
logically less relevant case of infinitesimal perturbation
sizes, the performances of WP and NP are similar
(Supplemental Material, Fig. S7 [28]) (compatible with
Fig. 1 with b ¼ 0). Toward larger trial numbers, the
convergence of WP becomes slower: WP has difficulties
with adjusting weights mediating weak inputs, since the
impact of their perturbation on the error is small; the same
effect underlies the weight diffusion in Fig. 2. Simulations
indicate that the convergence is slower only by a constant
factor of the order of 1 and that the optimal learning
rate can be well estimated from the participation ratio
(Supplemental Material, Fig. S9 [28]).

M. Delayed non-match-to-sample task

To ensure analytical tractability and for simplicity, so
far we made a few biologically implausible assumptions.
Specifically, only connection weights to linear units were
trained, each trial consisted of a perturbed and an
unperturbed run, and mostly the exact same input was
used in each trial. In the following, we show that our
findings generalize to settings without these assumptions.
For this, we consider the learning of a DNMS task
(temporal XOR) by nonlinear recurrent networks.
DNMS tasks and closely related variants are widely used
in both experiment [44] and theory [14,45], where they
serve as simple working memory-reliant, not linearly
separable decision-making tasks. We use the same setting
as Ref. [14], which shows that a new variant of NP is able
to solve the DNMS task. In particular, the setting is not
adjusted to WP. The network consists of 200 nonlinear
rate neurons receiving input from two external units u1
and u2. One of the network neurons, whose rate we denote
with z, serves as its output [Fig. 8(a)]. In each trial, the
network receives two input pulses, where each pulse is a
200-ms-long period with either u1 or u2 set to 1, and
subsequently has to output 1 for 200 ms if different inputs
are presented and −1 if the same inputs are presented
[Fig. 8(b)]. There is a 200-ms-long delay period after each
input pulse.
We train all recurrent weights using the usual update

rules [Eqs. (3) and (6)] but replace the error of the
unperturbed trial by an exponential average of the errors
of the previous trials [12–14]. Hence, each trial now
consists only of a perturbed and not additionally an
unperturbed run. We first assume that the exact perturba-
tions ξ are accessible for the weight update, which seems
biologically plausible for WP (cf. Sec. III) but less so for
NP (cf. Sec. III and Ref. [14]). Therefore, we also compare
WP and NP to the biologically plausible version of NP
proposed by Ref. [14], which avoids this assumption: In the
weight update rule, it approximates the exact node pertur-
bations ξNP with a nonlinearly modulated difference

between the momentary input to a neuron and its short
term temporal average (see Sec. IV for more details).
Figure 8(c) shows the performance of the three update

rules in terms of their accuracy over the last 100 trials,
where a trial is considered successful if the mean absolute
difference between z and the target output is smaller than 1.
We find that all update rules learn the task comparably well
and reach perfect accuracy within at most 2000 trials when
considering the median of network instances. Thus, our
previous findings that WP can perform as well as or better
than NP in simplified settings extend to the considered
biologically plausible setup. That means WP can perform
well for nonlinear neuron models, recurrent connectivity,
and when the error of the unperturbed network is not
available. Furthermore, the results indicate that approxi-
mating the perturbation as in Ref. [14] only mildly impacts
the performance of NP for the considered task. Finally, we
apply NPc to the task, which does not yield an improve-
ment over NP (Supplemental Material, Fig. S12 [28]).
Together with the similar performance of WP and NP, this
indicates that the temporal dimension of the perturbation
has little effect on task performance, perhaps because the
period in which the target value needs to be assumed is
rather short and the output is otherwise unconstrained.

(a) (b)

(c)

FIG. 8. WP performs as well as NP on a DNMS task.
(a) Schematic of the recurrent network with inputs u1 and u2
and output z. All network weights are learned; i.e., for WP, all
network weights (blue) are perturbed, and for NP, all network
nodes (orange) are perturbed. (b) Inputs and outputs during
example trials. Top row: inputs u1 (green) and u2 (purple) for the
four different trial types. Bottom row: outputs for WP (blue), NP
(orange), and the version of NP proposed by Ref. [14] (black) for
trials 1000–1003 for the inputs shown above. Gray bars show
target outputs. (c) Accuracy during training. WP (blue) performs
similarly well as NP (orange) and the version of NP used by
Ref. [14] (black). There is a noticeable transient slowdown at an
accuracy of 75%, which corresponds to the successful learning of
three out of the four different trial types. Solid lines show the
median, and shaded areas represent the interquartile range
between the first and third quartile using 100 network instances.
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N. MNIST

Finally, we apply WP and NP to MNIST classification.
We use batches of images to train the networks. Each time
step thereby corresponds to the presentation of one image,
and the networks receive error feedback only at the end of
a batch. This allows us to test how well WP and NP work
on a more complicated, temporally extended task and in
networks with a multilayer structure. In addition, it allows
us to study how our analytical results for the learning of
multiple input patterns (Sec. II G) extend to real-
world tasks.
We use a two-layer feed-forward network with ten

output neurons and 100 neurons in the hidden layer
[Fig. 9(a)]. It learns via the rules [Eqs. (3) and (6)],
where T equals the batch size Nbatch. Hence, the pertur-
bation is different for each image in the case of NP, while
it is the same for WP. We test WP and NP for batch sizes of
Nbatch ∈ f1; 10; 100; 1000g. For each batch size, we deter-
mine the best-performing learning rates η and perturbation
strengths σ2WP and σ2NP via grid searches. The perturbation
strength has, however, little impact on performance,
indicating that the final error is not restricted by reward
noise due to finite size perturbations [Eqs. (13) and (14)].
We find that for WP the performance improves dras-

tically with increasing batch size [Fig. 9(b)]. The final test
accuracy is only about 69% for a batch size of 1 but
reaches 92% for Nbatch ¼ 1000. Simultaneously, the opti-
mal learning rate increases strongly, by a factor of
approximately 50 [Supplemental Material, Fig. S10(c)
and Table S2 [28] ]. For comparison, the stochastic
gradient descent (SGD) rule, which implements super-
vised not reward-based learning, reaches accuracies of
95%–98% for the considered batch sizes. In contrast, the
learning curves of NP appear to be entirely independent of

the batch size [Fig. 9(b)]; the final test accuracy is always
about 86% and the optimal learning rate is constant as
well. We also apply NPc to the task. The inputs are
temporally uncorrelated, because the elements of the
batches are drawn randomly. Based on our previous
observations for uncorrelated input [Fig. 4(c)], we there-
fore expect that NPc performs similar to or worse than NP.
The numerical experiments confirm this: Performance
deteriorates with increasing perturbation correlation time;
the effect is more pronounced with larger batch size
(Supplemental Material Fig. S12 [28]). In conclusion,
larger batch sizes, as commonly used in machine learning,
favor WP, while smaller batch sizes favor NP (and NPc).
An improvement of WP with batch size and NP’s

independence of it are in agreement with our theoretical
analysis Sec. II G. However, from this analysis we also
expected that WP’s learning rate can reach at most that of
NP for large batch size. NP’s slower convergence suggests
that it is more susceptible to deviations of the network
architecture from linear, single-layer networks. Indeed,
when using single-layer networks, NP’s performance
improves, while the opposite holds for WP and SGD
(Supplemental Material Fig. S11 [28]). In a single-layer
linear network with realizable targets, NP performs better
than WP even for large batch sizes (Supplemental Material
Fig. S11 [28]), consistent with our analytical findings that
training with different subtasks (here, different batches)
harms WP (Sec. II G) while the absence of unrealizable
targets benefits NP (Sec. II E).
The results are particularly remarkable when naively

comparing the number of perturbed nodes and weights:
For the network considered here, there are only 110 output
and hidden nodes but 79 510 weights (including biases).
Nevertheless, WP can clearly outperform NP. Also, a

(a) (b)

Input

Hidden

Output 910

FIG. 9. WP can outperform NP on MNIST. (a) Schematic of the used fully connected, two-layer network. All network weights are
learned; i.e., for WP all network weights (blue) are perturbed, and for NP all network nodes (orange) are perturbed. (b) Test accuracy as a
function of the number of weight updates for WP (blue) and NP (orange) for different batch sizes. NP does not profit from increasing the
batch size and always reaches a final accuracy of approximately 86%. WP improves considerably with increasing batch sizes and
reaches a final accuracy of approximately 92% for Nbatch ¼ 1000. Solid lines show the mean, and shaded areas show the standard
deviation using five network instances.
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comparison of the actual perturbation dimensions cannot
explain the better performance of WP in, e.g., Fig. 9(b)
lower left (WP pert. dim., 79 510; NP pert. dim.,
110 × T ¼ 11 000).

III. DISCUSSION

Our results show that WP performs better than NP for
tasks where long trials capture most of the task’s content.
This might seem paradoxical, as NP incorporates more
structural knowledge on the network, namely, the linear
summation of inputs. However, WP accounts for the fact
that the weights in a neural network are (approximately)
static. Furthermore, by perturbing the weights, it implicitly
accounts for low input dimensionality and generates only
realizable output changes. Therefore, it generates better
tentative perturbations. This leads to less noise in the
reward signal and better performance (smaller final error
and sometimes faster convergence) in the tasks where WP
is superior to NP.
Our theoretical analysis shows that the lower noise in

WP first results from an effective perturbation dimension
that is lower than NP’s if the temporal extent of a task is
larger than its input dimensionality, T > Neff . Second,
factors such as the attempt of NP to realize unrealizable
targets contribute. Temporally extended tasks with dura-
tions on the order of seconds and low dimensionality occur
frequently in biology, for example, in motor learning and
working memory tasks. In line with perturbation-based
learning, biological movements are endowed with noise,
which helps their learning and refinement [46]. The
associated neuronal dynamics in the brain are confined
to a low-dimensional space, a property shared by many
types of biological and artificial neural network activity
[47–49]. The dynamics for simple movements as inves-
tigated in typical experiments are embedded in spaces of
dimension of the order of 10 [19]. This indicates low
effective input dimensionality Neff at the different process-
ing stages. The effective muscle activation dimensionality
is similarly low [20,50]. Neurons under in vivo conditions
can faithfully follow input fluctuations on a timescale of
10 ms [51], and significant changes in neuronal trajectories
happen on a timescale of 100 ms [19,21,52]. For the
learning of a movement of duration 1 s, this suggests an
effective temporal dimension of about 10–100 similar to the
expected input dimension. This implies that WP as well as
NP and NPc are promising candidates for the learning of
simple movements. Our results indicate that WP is superior
if the movements are longer lasting or lower dimensional.
We explicitly study the learning of movement generation

(drawing task) and of a working memory task (DNMS). The
numerical simulations show thatWP performs similarly well
or better compared toNP. In a task generally investigating the
learning of complicated nonlinear, temporally extended
input-output tasks (MNIST), WP outperforms NP as soon
as the tasks have sufficient temporal extent.

As another concrete application, consider the learning
of the single song in certain birds. A single, stereotypical
input sequence in a “conductor area” (HVC) may drive the
circuit [35,53]. The effective input dimension Neff is, thus,
at most as large as the temporal dimension T of the task.
Based on recent experiments, Ref. [53] proposes that the
output of the tutor and experimenter area (LMAN) is
modified by reinforcement learning via NP, such that it
guides the motor area (RA) to learn the right dynamics.
Our analytical results predict that WP is as well or better
suited to achieve this task, since Neff ≤ T. Earlier work
suggests that WP [22] or NP [17] may directly mediate the
learning of the connections from HVC to RA. Because of
HVC’s very sparse activity, WP0 is highly suitable for such
learning. Reward-based learning of mappings between
conductor sequences and downstream neural networks
may also be important for different kinds of precisely timed
motor activity [54,55] and for sequential memory [56,57].
Biological neural networks are inherently noisy. We

find that WP and NP induce two types of weight update
noise: credit assignment and reward noise. We understand
their impact analytically. Additional feedback or output
noise implies additional reward noise with like effects.
We, thus, additionally study only the impact of input noise
on the learning of linear networks. Our simulations show
that the convergence time and the final error increase with
the input noise strength. The increase is smaller in WP
than in NP. We further find that our results with zero noise
are recovered in the limit of small noise compared to the
strength of the relevant latent inputs, if the learning time is
finite. The same holds for WP also if the weights are
appropriately limited, for example, due to weight decay.
The fact that animals can learn to perform tasks with high
precision, i.e., with small final error, indicates that the case
of small noise may be the biologically relevant one. The
results of WP and NP learning with noisy inputs can be
understood analytically from our findings on inhomo-
geneous input distributions (Supplemental Material
Sec. IV [28]). Also, the considered DNMS and MNIST
tasks contain input noise: the DNMS task because of the
randomly chosen initial conditions and the MNIST task
because of the naturally noise-afflicted input images. We
conclude that the finding of similar or better performance of
WP compared to NP in temporally extended, low-dimen-
sional tasks may readily apply to biologically plausible,
noisy networks.
WP and NP have biologically plausible implementa-

tions. NP requires that the plastic synapses can keep track
of their input and the somatic perturbations (which may
arrive from a tutor or experimenter neuron). Biologically
plausible mechanisms for this have been proposed for tasks
with both immediate reward [12,13] and reward at a
temporally extended trial’s end [14]. Their underlying
idea is to assume that the perturbation fluctuates more
quickly than the other input. The present fluctuation can
then be approximately isolated by subtracting a short-term
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temporal average of the past overall input from the present
one [12,13]. This difference replaces the injected pertur-
bation in the eligibility trace. For tasks with late reward,
the eligibility trace needs to integrate a nonlinearly
modulated version of the described difference [14].
This prevents the cancellation of a perturbation’s effect
by the subsequent change in the average that it evokes,
because the peak in the original perturbation is sharper
and higher than the one in the average. We use this
learning model of Ref. [14] in Fig. 8. The biological
implementation of WP may be even simpler. A neural
network needs to generate labile random weight changes
and keep track of them. They should be approximately
constant during a task and enhanced, deleted, or reversed
by a subsequent reward signal. Experiments on timescales
from minutes to days find spontaneous changes in the
synaptic weights, which have similar strength as changes
due to activity-dependent plasticity [31]. Such changes
might generate the perturbations required for our WP
scheme. Previous work suggests also synaptic unreli-
ability to provide the perturbations for WP [58]. This
fits into our scheme of static weight perturbations if
neurons spike once during a trial or if they burst once
and the synaptic transmission is restricted to a single
time bin. Another source of the required randomness
may be fluctuations of activity-dependent plasticity,
while the deterministic baseline acts as a useful prior.
If the baseline is unrelated to the task, it is with high
probability orthogonal to task-relevant directions (due to
the high-dimensional weight space) and not harm
learning, similar to the weight diffusion in WP. In this
way, the fluctuations of activity-dependent plasticity,
rather than their deterministic part, may be the source of
learning.
Modulation of weight changes by reward is observed in

various experiments [59,60]. As an example, the poten-
tiation of synapses is enhanced or reversed depending on
the presence or absence of a temporally close dopamine
reward signal [61]. Also, other factors play a role;
potentiation can, for example, be reversed within a “grace
period” of tens of minutes by a change of environment
[62]. The consolidation and amplification of changes may
be dependent on plasticity-related proteins, which are
upregulated by reward and for which the synapses com-
pete (synaptic tagging hypothesis) [60,63]. A posteriori
modifications of tentative synaptic weight changes are
also assumed in the reinforcement learning scheme of
reward-modulated Hebbian plasticity [64,65], which is
closely related to WP.
WP applies a random perturbation vector to the

weights, measures the error change to obtain a rein-
forcement signal, and applies as weight update the
perturbation modulated by the reinforcement signal.
The improvement, therefore, follows on average the
weight gradient. A related approach is to randomly
perturb and accept the perturbation if it leads to a better

performance [22]. This simple instance of an evolutionary
strategy [66,67] is also applicable if there is no gradient.
Our results for WP suggest that this and related evolu-
tionary learning strategies might benefit from tasks that
are low dimensional, as reported previously [68], and not
be harmed by their temporal extension. The sketched
simple evolutionary learning may in the brain generate
structural improvements: Experiments show that synaptic
turnover occurs in the presence but also spontaneously in
the absence of neuronal activity [69–72]. This may reflect
the random elimination and creation of synapses and their
consolidation by activity-dependent plasticity [73–78].
The basis of consolidation is that mainly weak synapses
are removed such that strengthening through Hebbian
learning causes the long-term presence of a synapse.
Furthermore, Hebbian learning counteracts spontaneous
synaptic weight changes, which could otherwise weaken
useful synapses and ultimately lead to their removal.
Network models show that restructuring with subsequent
selective consolidation can recruit sparse available
connectivity for task learning, prevent catastrophic for-
getting, and may explain the benefits of dividing learning
into several temporally distinct phases [73,75,77].
Furthermore, it may explain the experimental observation
that there are commonly multiple synapses between
connected neurons [74,76,78]. The signal for the strength-
ening of a tentatively established synapse may be inter-
preted as a reinforcement signal for its presence. This
signal is generated if the pre- and postsynaptic neurons are
coactive, due to external stimulation, or recall mediated by
other, already strengthened synapses. In contrast to WP,
the reinforcement signal is, therefore, specific to a neuro-
nal connection (consisting of the possible multiple direct
synapses from a presynaptic to a postsynaptic neuron),
which simplifies learning. In particular, any useful new
synapse is consolidated (unless the coactivity of the pair
of connected neurons stops due to other changes). In
contrast, in WP, tentatively applied useful weight changes
can be easily reverted due to harmful ones in other parts
of the weight perturbation vector. In a related model,
Ref. [79], consolidatory strengthening is implemented
with NP instead of Hebbian learning. This allows one
to learn tasks based on a global reward signal. The
synaptic weight fluctuations in the model induce ran-
dom changes in task-irrelevant directions similar to the
weight diffusion that we observe in WP. Our results
suggest to directly exploit the synaptic weight fluctuations
for consolidatory synaptic strengthening by using WP
when learning low-dimensional and temporally extended
reward-based tasks.
WP is proposed in several variants. They differ in (i)

the task setup, for example, instantaneous [7,9] or tempo-
rally extended tasks [8,22,58], (ii) the implementing net-
work, for example, rate [22] or spike-based [58,80]
networks, (iii) the perturbation scheme, where all weights
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are simultaneously perturbed [7,8,58] or only one weight at
a time [15], (iv) the computation of the weight update, by
correlating reward and perturbation [7–9,11,58] or direct
estimation of the gradient components (for the single
weight perturbation scheme) [9,15], (v) the estimation of
the success of the perturbed network, which may involve a
comparison of the obtained reward to an unperturbed
baseline [8,9] or a running average [22,58] or it may
consider the reward only [7,58], and (vi) the weight update,
which may be proportional to the success of the network
[7–9,11,58] or independent of its size as long as there is an
improvement [22]. A similar diversity of NP variants exists
[9–14,16,17,24,79,81,82].
The tasks considered in our article are temporally

extended. The reward is provided at the end of the trial
but influenced by earlier output states. This is consistent
with many tasks in biology [1,5,14,22] and with the
learning schemes by Refs. [8,10,14,22]. We choose a
WP rule that is biologically plausible, as it involves
simultaneous perturbations to all weights and correlates
reward and weight change. The success measure compares
the obtained reward to the reward of an unperturbed
network in order to reduce the update noise [8,9]. In
particular, this avoids unfavorable perturbations being
associated with positive reward feedback. Finally, the
weight update is proportional to the measured success in
order to ensure that it occurs on average parallel to the
reward gradient. The choices are identical to those by
Refs. [8,9] for temporally not extended tasks. Specifically,
the results in Ref. [9] appear as a special case of our results
for multiple input patterns; if the task dimension is
maximal, single trials have no temporal extent, and the
inputs have fluctuating amplitude (see Sec. II H).
We choose the NP scheme such that it matches the WP

scheme. It is a discrete-time version of the NP scheme
proposed by Ref. [10] and an extension of the scheme by
Ref. [9] to temporally extended tasks. In biologically
plausible implementations of WP and NP, the reward
should be compared to an intrinsically generated predic-
tion, such as an average of previous rewards [12–14] or the
reward of another perturbed trial [82]. In the delayed non-
match-to-sample task, we thus replace our standard unper-
turbed baseline by such an average. This also allows a
direct comparison with the NP scheme by Ref. [14]. In
Sec. II I, the perturbed and unperturbed trials have different
input noise, such that E is no longer the exact unperturbed
counterpart of Epert.
To exploit correlations in the inputs with a node

perturbation learning rule, we introduce NPc, which is
identical to standard NP apart from using temporally
correlated, smoothed node perturbations. We find that
the temporal correlations are usually beneficial if also
the inputs are (similarly) correlated. This is in contrast
to Ref. [13], which observes a detrimental effect already
of short correlations for a node perturbation variant that

relies on high-frequency perturbations. Other previous
studies inject white noise perturbations only [10,12,16,17].
Our simulations with linear networks indicate that the
perturbation correlation time of NPc should optimally match
that of the inputs; NPc then performs similar to NP in a task
with reduced temporal extension.
NP is studied in various concrete neurobiological set-

tings. Previous work uses feedforward networks with NP to
model the learning of coordinate transforms in the visual
system [83], birdsong [17,53], and motor output [12,84].
Reference [13] shows that reservoir computers with NP
trained, fed back readouts can learn periodic inputs,
routing, and working memory tasks. Reference [14] uses
a fully plastic recurrent network for the learning of a
delayed non-match-to-sample, a selective integration, and a
motor control task. Finally, NP is often employed for
reference and comparison [85–91]. WP is considered less
in studies of neurobiological learning. It is implemented in
early feedforward network models of birdsong [92] and
binary output task learning [58,80]. Furthermore, it is
occasionally used for comparison [86,88]. Very recently,
Ref. [4] has shown that recurrent neural networks can be
pretrained with WP and the reservoir computing scheme to
thereafter learn with static weights to generate fixed point
activity.
The results of our present article using feedforward,

reservoir computing and fully plastic recurrent networks
suggest that for many tasks WP is at least as suitable as NP,
while the implementation may be even simpler. This indi-
cates thatWP is a useful benchmark and a similarly plausible
model for learning in the brain as NP. Experimentally
measurable features of the learning and weight dynamics
may allow one to distinguish the learning rules in biological
neural networks.

IV. MATERIALS AND METHODS

A. Analytical error dynamics

To analytically compute the dynamics of the expected
error, we consider an arbitrary perturbation ξ. This deter-
mines the error change Epert − E and the resulting weight
update Δw via Eqs. (3) and (6). Δw, in turn, determines the
new weights and via Eq. (8) the error Eðnþ 1Þ after the
update. Eðnþ 1Þ is, thus, a function of ξ, the weight
mismatch WðnÞ before the update, and the input correla-
tions S:

Eðnþ1Þ¼1

2
trf½WðnÞþΔwðξÞ'S½WðnÞþΔwðξÞ'Tg: ð17Þ

Averaging over perturbations and using Isserlis’ theorem
yields an equation for the expected error hEðnþ 1Þi. When
assuming that all latent inputs have the same strength,
hEðnþ 1Þi becomes a function of the error hEðnÞi before
the update and the system parameters, leading to Eq. (9).
The detailed derivation is given in Appendix B.
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B. Numerical simulations accompanying
the theoretical analysis

In the numerical experiments in Sec. II B, the Neff
nonzero inputs are orthonormal functions, superpositions
of sines, scaled by α2 ¼ N=Neff to keep the total input
strength α2Neff for different Neff constant. Targets zit are
obtained by linearly combining these functions using
teacher weights w%

ij ¼ 0.1 and adding as an unrealizable
component a further, appropriately scaled, orthonormal
function. Learning rates are η%.

C. Input and perturbation correlations

NPc is applicable to general network dynamics (cf. Fig. 7
and Figs. S7, S8, and S12 [28]). In Fig. 4, we apply it to
linear networks with correlated inputs that are constructed
similar to the perturbations, by low-pass filteringNeff white
noise traces (filtering time constant τinputcorr and effective
temporal dimension T input

eff ). Subsequently, we orthonorm-
alize them, which somewhat modifies the correlation
times. The realizable components of a target are linear
combinations of these correlated inputs weighted by
w%
ij ¼ 0.1. We assume that there is an additional unrealiz-

able component, which, for simplicity, contains all modes
orthogonal to the inputs with equal strength, such that
Eopt ¼ 2.
For Tpert

eff ≥ T input
eff , NPc operates at ηNPc ¼ η%NP, the

optimal learning rate for NP. For Tpert
eff < Neff, we use

the optimal learning rate of NP for a task with reduced
Neff ¼ Tpert

eff , i.e., ηNPc ≈ ðNeff=T
pert
eff Þ · η%NP. Our intuition is

that perturbations with temporal dimension Tpert
eff < Neff can

only improve an MTpert
eff -dimensional subspace of the

weights. For NPc, Tpert
eff < Neff therefore reduces the learn-

able number of weights from MNeff to effectively MTpert
eff

independent ones. This is like in Fig. 1(c), gray curves,
where T restricts Neff . As effectively fewer weights are
learned, a higher learning rate can be chosen. We perform
additional simulations with an unadjusted (smaller) learn-
ing rate that confirms our choice, as convergence otherwise
becomes much slower.
For a given Tpert

eff , simulations of 20 000 trials are repeated
1000 times (randomly generated inputs change between
runs but not within a run). The final error of a run is
computed by averaging over the last 500 trials (in which the
error is approximately constant; Supplemental Material
Fig. S4 [28]) to determine the mean over runs and its SEM.
To determine ndecaytrials , we use ten samples of 100 runs each.
For each sample, we compute the mean error over runs and
additionally smooth it with a centered temporal running
average of window size 20. ndecaytrials is then the trial for which
the described average drops for the first time below
Ef;unr þ 0.05 · ½Eð0Þ − Ef;unr'. Figure 4(b) reports the mean
and standard error of the mean of ndecaytrials over all samples.

Figure 4(c) repeats the same analysis for NP with η varied
from 0.05 · η%NP to η

%
NP. Gray curves in Fig. 4(c) (NPc with η

adjusted by a factor of 0.5; 0.6;…, 1.2) use 100 repetitions.

D. Input noise

We extend the basic theory task, in which a single
mapping from an effectively Neff -dimensional input signal
rjt onto target outputs z%it ¼

PN
j¼1 w

%
ijrjt is learned, by

adding independent white noise to each input at each time
step:

rnoisyjt ¼ rjt þ χjt; hχjtχksi ¼ σ2noiseδjkδts: ð18Þ

As the added white noise has a rotationally symmetric
distribution in the space of input neurons, we can still
without loss of generality rotate the input space such
that each of the first Neff input neurons carries a signal
component and additional noise, while the remaining
inputs are purely noisy. We note that, because the noise
in the task-relevant inputs is amplified by the weights, their
optimal values are closer to zero than those of the noise-
free task.
SNR is defined as the ratio of the total (summed) power

in the input signal to that in the noise. Averages are taken
over 100 repetitions [Figs. 5(a)–5(c)], the last 1000 of 100
000 trials [Figs. 5(a) and 5(b)], and over irrelevant weights
[Fig. 5(c)].

E. Reservoir computing task

The N ¼ 500 rate neurons of the fully connected
recurrent reservoir network evolve according to

xjt ¼ γxj;t−1þð1− γÞ
!XN

k¼1

wrec
jk rk;t−1þ

XNinputs

q¼1

win
jqr

in
qt

"
: ð19Þ

The rate of neuron k is rkt ¼ tanhðxktÞ. Their decay time
constant is τ ¼ 10 time steps, i.e., γ ¼ e−1=τ. Recurrent
weights wrec are drawn from a centered normal distribution;
the weight matrix is thereafter normalized to ensure that the
real part of its largest eigenvalue is grec ¼ 1. Input weights
win are drawn from win

jk ∼N ð0; 1=NinÞ. Creating various
instances of such random networks shows that performance
and participation ratio PR ¼ ð

PN
μ¼1 α

2
μÞ2=

PN
μ¼1 α

4
μ are

rather independent of the instance. The participation ratio
gives an estimate of the dimensionality of the reservoir
dynamics [19,93]. Generally, we observe PR ≈ 5; for
example, in the network in Fig. 7, PR ≈ 5.3. The Nin ¼ 5
inputs to the reservoir are orthogonal to each other, rin1t ¼ 1,
rin2t ¼

ffiffiffi
2

p
sinðωtÞ, rin3t ¼

ffiffiffi
2

p
cosðωtÞ, rin4t ¼

ffiffiffi
2

p
sinð2ωtÞ,

rin5t ¼
ffiffiffi
2

p
cosð2ωtÞ, ω ¼ 2π=T, and T ¼ 500 time steps.

The trained linear readout produces M ¼ 2 outputs
zit ¼

PN
j¼1 wijrjt. Their target z%t is, up to scaling, the same
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as in Ref. [42]: z%1t ¼ radiust cosðωtÞ, z%2t ¼ radiust sinðωtÞ,
with radiust ¼ 0.1 · ½9− sinðωtÞþ 2sinð3ωtÞþ 2sinð5ωtÞ−
sinð7ωtÞþ 3cosð2ωtÞ− 2cosð4ωtÞ'. Already 100 time
steps before the task starts, the reservoir is initialized and
given external input. By the time the task begins, network
activity is enslaved by the external input and settles down to
a periodic orbit. Technically, we record the reservoir activity
traces rjt once for the entire training of w, because they are
the same in each trial. The value of the participation ratio
motivates us to construct an optimal readout reading out the
largest five principal components via the least squares fit
wLS
ij ¼

PN
k¼1

PT
t¼1 z

%
itrktS

pinv
kj [Fig. 7(b), dashed gray line].

Here, Spinv is the pseudoinverse of the reduced correlation
matrix of the reservoir that is obtained by setting all
eigenvalues of S except the largest five to zero. Including
six principal components does not qualitatively change the
result.
From the theoretical analysis Eq. (12), we obtain an

estimate η% ¼ 1=½ðMPRþ 2Þα2' for the optimal learning
rate, by settingNeff → PR and α2 → α2 ¼ ð1=PRÞ

PN
μ¼1 α

2
μ.

α2 is the strengthof each latent inputwhenwe assume that the
total input strength is generated by PR equally strong ones.
We verify by a grid search that this estimated value yields for
both WP and NP close to optimal performance, as measured
by the error after 10 000 trials with infinitesimally small σ2eff ,
showing that it indeed maximizes convergence speed. We,
therefore, choose it as the learning rate for our task with
infinitesimal (Supplemental Material Fig. S7 [28]) and also
with finite perturbation size (Fig. 7), since the theoretical
analysis yields independence of η% from σ2eff [Eq. (12)]. For
NPc, we use the same learning rate as for NP and WP and
determine the optimal Tpert;opt

eff ¼ 18 by minimizing the error
after 30000 trials (Supplemental Material Fig. S8 [28]).
Simulations with finite perturbations use σeff ¼ 5 × 10−3. A
scan over σeff confirms that the final error depends quad-
ratically on it, as predicted by the theory.

F. Delayed non-match-to-sample task

The fully connected recurrent network has N ¼ 200 rate
neurons. The dynamics of neuron i, i ¼ 4;…; N, are
governed by

τ _xi ¼ −xiðtÞ þ
XN

j¼1

wrec
ij rjðtÞ þ

X2

q¼1

win
iquqðtÞ; ð20Þ

with time constant τ ¼ 30 ms. The constant activations
x1ðtÞ ¼ x2ðtÞ ¼ 1 and x3ðtÞ ¼ −1 provide biases [14].
The rate of each neuron i, i ¼ 1;…; N, is given by
riðtÞ ¼ tanh½xiðtÞ'. zðtÞ ¼ r4ðtÞ is the network output. We
use the forward Euler-method with step size dt ¼ 1 ms to
simulate the dynamics and draw the initial activations from a
uniform distribution, xið0Þ ∼ Uð−0.1; 0.1Þ for i ¼ 4;…; N.
Recurrent weights are drawn from a Gaussian distribution,

wrec
ij ∼N ð0; g2=NÞ, with g ¼ 1.5. Input weights are drawn

from a uniform distribution, win
iq ∼ Uð−1; 1Þ.

All recurrent weights wrec
ij are trained. The error function

of WP and NP is the mean squared difference between the
output z and the target within the last 200 ms of each trial.
For each of the different trial types k, k ¼ 1;…; 4, we use
an exponential average of the previous errors EpertðnkÞ for
this trial type (nk indexes the trials of type k) as the error
baseline:

EkðnkÞ ¼ Ekðnk − 1Þ þ 1

τE
½EpertðnkÞ − Ekðnk − 1Þ'; ð21Þ

where τE ¼ 4. To get the best-performing learning param-
eters, we perform a grid search, which yields ηWP ¼
1 × 10−5, σWP ¼ 4.64 × 10−3, ηNP ¼ 1 × 10−5, and σNP ¼
4.64 × 10−1.
For the details of the version of NP proposed by

Ref. [14], see this article. For the convenience of the
reader, here we briefly mention the main differences to the
vanilla NP version Eq. (6): For each network neuron,
a node perturbation is applied at a simulation time step
only with a probability of 0.3% and is drawn from a
uniform distribution, ξ ∼ Uð−16; 16Þ. The error is given
by the absolute difference between output and target.
Weight updates are computed via Δwrec

ij ðnkÞ¼−ηEkðnk−
1Þ½EpertðnkÞ−Ekðnk−1Þ'

PT
t¼1 ½ðxit−x̄itÞrj;t−1'3 and clipped

when they exceed (3 × 10−4 (cf. code accompanying
Ref. [14]). t indexes the simulation time step of each trial,
T is the total number of simulation time steps per trial,
and x̄it ¼ x̄i;t−1 þ ð1=τxÞðxit − x̄i;t−1Þ is an exponential
average of past activations. Parameter values are η ¼ 0.1
and τx ¼ 20

19.

G. MNIST classification task

The input layer of the fully connected feedforward network
consists of 784 units encoding the pixel values of the data. The
hidden layer consists of 100 neurons with tanh activation
function and biases. The output layer consists of ten neurons,
one for each single-digit number, with softmax activation
function and biases. We use the standard training and test
dataset but split the standard training data set into a training
dataset of 50000 images and a validation dataset of 10 000
images. No preprocessing is done on the data. We employ
vanillaWP Eq. (3), NP Eq. (6), or SGD to train all parameters
of the network. The error function is the cross-entropy loss
averaged over the batch of length Nbatch ¼ T. We also try to
combine the gradient estimates obtained from WP and NP
with Momentum, RMSProp, or Adam [29] but do not find an
improvement of performance compared to the vanilla versions
with carefully tuned parameters. The same holds for SGD.
Thismay be because of the rather simple network architecture.
To obtain the best-performing parameters (the learning

rate for all three algorithms and the standarddeviation forWP
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and NP), we perform a grid search for each of the considered
batch sizes: For each parameter set, we train the network for
50 000 trials (i.e., weight updates) on the training dataset.We
then select the best-performing parameter sets based on the
final accuracy on the validation dataset and apply them to the
test dataset. High final accuracy appears to concur with fast
convergence speed, such that a comparison to our analytical
results (where learning rate optimizes the convergence
speed) seems justified.

The supporting data for this article are openly available
from GitHub [94].
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APPENDIX A: LEARNING MODELS
AND TASK PRINCIPLES

1. Mean updates for small perturbations

To calculate the average update of WP, one uses the linear
order approximation valid for small perturbations [7,8]:

Epert − E ≈
XM

m¼1

XN

k¼1

∂E
∂wmk

ξWP
mk ; ðA1Þ

where the sum is over all weights in the network. With this
and hξWP

ij ξWP
mk i ¼ δimδjkσ2WP, where δ is the Kronecker delta,

the WP update rule [Eq. (3)] yields

hΔwWP
ij i≈−

η
σ2WP

XM

m¼1

XN

k¼1

∂E
∂wmk

hξWP
mk ξ

WP
ij i¼−η

∂E
∂wij

; ðA2Þ

i.e., the weight update is along the negative error gradient.
The result’s independence of σWP motivates the division by
σ2WP in Eq. (3).
NP perturbs for temporally extended tasks the total

inputs yit ¼
PN

k¼1 wikrkt of neurons i ¼ 1;…;M by the
node perturbation vectors ξNPit . Therefore, the change in the
scalar error is, to linear order, given by the projection of ξNPit
onto the error gradient ∂E=∂yit with respect to yit [10]:

Epert − E≈
XM

i¼1

XT

t¼1

∂E
∂yit

ξNPit : ðA3Þ

Since ∂yit=∂wij ¼ rjt, the gradients with respect to weights
and sums of inputs are related via the chain rule by
∂E=∂wij ¼

P
t ∂E=∂yitrjt. This reveals that the NP weight

update [Eq. (6)] is on average along the negative error
gradient:

hΔwNP
ij i ≈−

η
σ2NP

XM

m¼1

XT

s;t¼1

∂E
∂ymt

hξNPmt ξNPis irjs ¼ −η
XT

t¼1

∂E
∂yit

rjt

¼ −η
∂E
∂wij

: ðA4Þ

Equations (A2) and (A4) hold for any error function. For
corresponding more specific computations for the quadratic
error function [Eq. (8)], see Appendix A3.

2. Dependence of weight update noise on error baseline

To show that the choice of E as error baseline in Eq. (3)
minimizes the update noise for WP, we compute the
variance ⟪ΔwWP

ij ⟫ of the WP weight updates when adding
a possibly trial- and synapse-dependent baseline term Ẽij to
the update rule, ΔwWP

ij ¼ −ðη=σ2WPÞðEpert − Eþ ẼijÞξWP
ij .

The linear approximation for Epert yields

⟪ΔwWP
ij ⟫ ≈

η2

σ4WP

$%!XM

m¼1

XN

l¼1

∂E
∂wml

ξWP
ml þ Ẽij

"
ξWP
ij

&2'

− η2
!

∂E
∂wij

"
2

¼ η2
XM

m¼1

XN

l¼1

!
∂E
∂wml

"
2

þ η2
!

∂E
∂wij

"
2

þ η2

σ2WP
Ẽ2
ij: ðA5Þ

To show that the choice of E minimizes the update noise
for NP, we analogously compute the variance ⟪ΔwNP

ij ⟫ of
the NP weight updates [Eq. (6)] when adding a possibly
trial- and neuron-dependent baseline term Ẽi, ΔwNP

ij ¼
−ðη=σ2NPÞðEpert − Eþ ẼiÞ

PT
t¼1 ξ

NP
it rjt:

⟪ΔwNP
ij ⟫≈

η2

σ4NP

$%!XM

m¼1

XT

s¼1

∂E
∂yms

ξNPms þ Ẽi

"XT

t¼1

ξNPit rjt

&2'

− η2
!

∂E
∂wij

"
2

¼ η2
XM

m¼1

XT

s¼1

!
∂E
∂yms

"
2XT

t¼1

r2jt þ η2
!

∂E
∂wij

"
2

þ η2

σ2NP
Ẽ2
i

X

t

r2jt: ðA6Þ

For both algorithms, the variance is minimal if Ẽ ¼ 0, as
apparent from its quadratic occurrence with a positive
prefactor.

3. Task setting

We train a linear readout w ∈ RM×N that maps N input
traces r ∈ RN×T of time dimension T onto M output traces
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z ∈ RM×T of the same time dimension. If not stated
otherwise, input and target traces do not change between
trials. The readout weights wij are trained to minimize the
mean squared deviation E ¼ 1=ð2TÞ

PM
i¼1

PT
t¼1ðzit − z%itÞ2

of the output z from a target z%. The target reads, in general,
z%it ¼

PN
j¼1 w

%
ijrjt þ dit, where w%

ij are target weights—i.e.,
the output error is certainly minimal for wij ¼ w%

ij—and dit
is an output component that cannot be generated by
the network, since it is orthogonal to its inputs,PT

t¼1 ditrjt ¼ 0 ∀ i; j. It is useful to define the (symmetric,
positive semidefinite) input correlation matrix

Sij ¼
1

T

XT

t¼1

ritrjt: ðA7Þ

S can be diagonalized by a rotation O ∈ SOðNÞ into
D ¼ OTSO such that Dμν ¼ α2μδμν is the diagonal matrix
of eigenvalues α2μ ≥ 0 (where μ; ν ¼ 1;…; N). We refer to
the N-dimensional (spatial) eigenvectors of S as input
directions. Another useful characteristic is the autocorre-
lation of the inputs. We denote the autocorrelation summed
over all inputs and normalized by T by

Cts ¼
1

T

XN

j¼1

rjtrjs: ðA8Þ

We refer to the T-dimensional (temporal) eigenvectors of C
as input components. Reading out from an input direction
yields a temporal output vector parallel to the related input
component. S and C have the same nonzero eigenvalues α2μ.
(This follows, for example, from the more general fact that
the products AB and BA of an N × T matrix A and a T × N
matrix B have the same nonzero eigenvalues [95] by setting
Ait ¼ rit and Bti ¼ rit.) We call the α2μ input “strengths,”
since they equal the average strength of the μth latent input
per time step or, equivalently, the average strength of all
input activity read out from the μth input direction. The sum
of the eigenvalues, the trace

tr½S'≡ α2tot; ðA9Þ

equals the total average input strength per time step α2tot. We
call α2tot the total input strength for short.
Throughout Appendix B and Supplemental Material

Secs. I–VI [28], we mainly consider inputs with correlation
matrices S that have Neff eigenvalues equal to α2 and all
others zero (Table S1), although intermediate results can

also hold for inputs with general correlations S. The
correlation matrix then has the useful properties

S2 ¼ α2S; ðA10Þ

tr½S'≡ α2tot ¼ α2Neff : ðA11Þ

Varying the effective input dimensionality while keeping the
total input strengthα2tot constant thus implies that the strengths
of individual input components scale like α2 ∼ N−1

eff .
To measure the strength of the unrealizable target com-

ponent, we define a quantity α2d analogous to α
2. Since α2 ¼

ð1=NeffÞtr½S' ¼ 1=ðNeffTÞtr½rrT ' is, in particular, the aver-
age input strength per time and latent input, we set

α2d ≡
1

MT
tr½ddT '; ðA12Þ

α2d is the average strength of the unrealizable component of
the target per time and output.
Using the weight mismatch Wij ¼ wij − w%

ij and the
correlation matrix S, the error function can be written as

E ¼ 1

2T

XM

i¼1

XT

t¼1

ðzit − z%itÞ2 ðA13Þ

¼ 1

2T

XM

i¼1

XT

t¼1

!XN

j¼1

Wijrjt − dit

"
2

¼ 1

2
tr½WSWT ' þ Eopt: ðA14Þ

Here, Eopt is the lowest achievable error corresponding to
zero weight mismatch:

Eopt ≡ 1

2T
tr½ddT ' ¼ 1

2
Mα2d: ðA15Þ

We note that due to the division by T both the correlation
matrix and the error no longer scale with the task duration,
but the error does scale with the number M of outputs.
The choice of a quadratic error function allows one to

compute the evolution of the expected error analytically.
For the quadratic error function [Eqs. (8) and (A13)], the
average WP and NP weight updates [Eqs. (3) and (6)]
follow the gradient exactly; i.e., Eqs. (4), (A2), and (A4)
hold exactly for any perturbation size:

hΔwWP
ij i ¼ −

η
σ2WP

hðEpert − EÞξWP
ij i ¼ −

η
σ2WP

XM

m¼1

XN

k;l¼1

!
WmkSklhξWP

ml ξ
WP
ij iþ 1

2
SklhξWP

mk ξ
WP
ml ξ

WP
ij i

"

¼ −η
XN

k¼1

WikSkj ¼ −η
∂E
∂wij

; ðA16Þ
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hΔwNP
ij i ¼ −

η
σ2NP

XT

t¼1

hðEpert − EÞξNPit irjt

¼ −
η

σ2WPT

XM

m¼1

XT

s;t¼1

!XN

k¼1

WmkrkshξNPmsξNPit iþ
1

2
hðξNPmsÞ2ξNPit i − dmshξNPmsξNPit i

"
rjt

¼ −η
XN

k¼1

WikSkj þ
η
T

XT

t¼1

ditrjt ¼ −η
∂E
∂wij

: ðA17Þ

4. Effective perturbation strength

For a fair comparison of WP and NP, we consider the
output perturbations δz ¼ zpert − z that they generate. For
WP, Eqs. (2) and (7) imply

δzit ¼
XN

j¼1

ξWP
ij rjt; ðA18Þ

for NP, Eqs. (5) and (7) imply

δzit ¼ ξNPit : ðA19Þ

We choose σWP and σNP such that weight and node
perturbations lead to the same output perturbation strength
as measured by σ2eff ¼ 1=ðMTÞh

P
it ðδzitÞ2i, the total

induced output variance per time step and output neuron:

σ2eff;WP ¼
1

MT

XM

i¼1

XT

t¼1

$!XN

j¼1

ξWP
ij rjt

"2'

¼ σ2WP · α
2Neff ; ðA20Þ

σ2eff;NP ¼
1

MT

XM

i¼1

XT

t¼1

hðξNPit Þ2i ¼ σ2NP: ðA21Þ

Here, we use hξWP
ij ξWP

mk i ¼ σ2WPδimδjk and hξNPit ξNPmsi ¼
σ2NPδimδts. Requiring σ2eff;WP ¼

! σ2eff;NP ≡ σ2eff implies

σ2NP ¼ σ2eff ; σ2WP ¼
1

α2Neff
· σ2eff : ðA22Þ

We note that, although the induced output perturbations
have the same variance, they follow different distributions:

1

MT

X

it

ðδzitÞ2 ∼

8
<

:

σ2eff
MNeff

χ2k¼MNeff
for WP;

σ2eff
MT χ

2
k¼MT for NP;

ðA23Þ

where χ2k is the chi-square distribution for k degrees of
freedom.

APPENDIX B: DERIVATION
OF ERROR DYNAMICS

This part starts with a derivation of the error dynamics if
our tasks are learned with pure gradient descent (GD)
learning. These are comparably simple and a useful bench-
mark. The sections thereafter provide a full derivation of
the error dynamics of WP and NP learning [main text,
Eqs. (9)–(14)]. Their analysis and interpretation follow in
Supplemental Material Sec. I [28].

1. Error curves for gradient descent

In GD, the updates directly follow the gradient:

ΔwGD
ij ¼ −η

∂E
∂wij

¼ −η
XN

k¼1

WikSkj: ðB1Þ

The error after such a deterministic update (which equals
the expected error) is

EðnÞ ¼ 1

2
trf½Wðn− 1ÞþΔwGD'S̃½Wðn− 1ÞþΔwGD'Tg

þEopt

¼Eðn− 1Þþ tr½Wðn− 1ÞS̃ðΔwGDÞT '

þ 1

2
tr½ΔwGDS̃ðΔwGDÞT '

¼Eðn− 1Þ− ηtr½WS̃SWT ' þ 1

2
η2tr½WSS̃SWT '; ðB2Þ

where W stands for Wðn − 1Þ. To facilitate the tracing of
the different terms, we tag the correlation matrix that stems
from the cost evaluation at trial n by a tilde, which keeps it
distinguishable from those arising from the weight update
Eq. (B1); the entries S̃ij are identical to Sij. For a correlation
matrix S that has Neff eigenvalues equal to α2 and all others
zero (see Appendix A 3), we can use Eq. (A10) (and S̃≡ S)
together with 1

2 tr½WSWT ' ¼ Eðn − 1Þ − Eopt to obtain

EðnÞ¼Eðn−1Þ−ηα2tr½WSWT 'þ1

2
η2α4tr½WSWT '

¼ ð1−2ηα2þη2α4Þ · ½Eðn−1Þ−Eopt'þEopt: ðB3Þ

This leads to an exponential decay of the error to Eopt:
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EðnÞ ¼ ½Eð0Þ − Eopt'an þ Eopt; ðB4Þ

with

aGD ¼ 1 − 2ηα2 þ η2α4; ðB5Þ

which becomes zero for the optimal learning rate η% ¼ α−2

such that the task is solved in a single trial. As for WP and
NP [Eqs. (11) and (B39)], learning diverges once η > 2η%

where a > 1.

2. Error curves for weight perturbation

Since we consider only WP here, for clarity of notation
we omit the specifier “WP” in ξWP, ΔwWP, and σWP. The
error Epert as a function of the perturbations ξ applied to the
weights then reads

Epert ¼ 1

2
tr½ðW þ ξÞSðW þ ξÞT ' þ Eopt

¼ Eþ tr½WSξT ' þ 1

2
tr½ξSξT '; ðB6Þ

which yields a weight update [cf. Eq. (3)]

Δwij ¼ −
η
σ2

ðEpert − EÞξij

¼ −
η
σ2

!
tr½WSξT ' þ 1

2
tr½ξSξT '

"
ξij: ðB7Þ

Averaging over ξ gives the expected error hEðnÞi after the
nth update:

hEðnÞi¼1

2
htrf½Wðn−1ÞþΔw'S̃½Wðn−1ÞþΔw'TgiþEopt

¼ hEðn−1Þiþ htr½WS̃ΔwT 'i|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
≡ΔElin

update

þ1

2
htr½ΔwS̃ΔwT 'i

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
≡ΔEquad

update

; ðB8Þ

where W stands for Wðn − 1Þ. Here, we again tag the
correlation matrix with a tilde, since it stems from the cost
evaluation at trial n (cf. Appendix B 1). Using Eq. (B7) and
that odd moments of ξ vanish, the first highlighted term,
ΔElin

update, which is linear in the update, gives

ΔElin
update ¼ htr½WS̃ΔwT 'i

¼ −
η
σ2

$
tr
)
WS̃

!
tr½WSξT ' þ 1

2
tr½ξSξT '

"
ξT
*'

¼ −
η
σ2

htr½WS̃ξT 'tr½WSξT 'i

¼ −
η
σ2

XM

im¼1

XN

jklp¼1

WijS̃jkWmlSlp · hξikξmpi: ðB9Þ

Using again Eq. (B7) and that odd moments of ξ vanish, the
second highlighted term, ΔEquad

update, which is quadratic in the
updates, can be expanded as

ΔEquad
update¼

1

2
htr½ΔwS̃ΔwT 'i

¼ η2

2σ4

$!
tr½WSξT 'þ1

2
tr½ξSξT '

"
· tr½ξS̃ξT ' ·

!
tr½WSξT 'þ1

2
tr½ξSξT '

"'

¼ η2

2σ4
htr½ξS̃ξT 'tr½WSξT '2iþ η2

8σ4
htr½ξS̃ξT 'tr½ξSξT '2i

¼ η2

2σ4
XM

imn¼1

XN

jklpqr¼1

S̃jkWmlSlpWnqSqr · hξijξikξmpξnri

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡ΔEquad;a

update

þ η2

8σ4
XM

imn¼1

XN

jklpqr¼1

S̃jkSlpSqr · hξijξikξmlξmpξnqξnri

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡ΔEquad;b

update

: ðB10Þ

ΔEquad;a
update depends on the weight mismatch W and originates from the gradient related part of the error signal ΔEpert − E,

whereas ΔEquad;b
update originates from quadratic reward noise (Supplemental Material Sec. I [28]). The moments of

ξ can be computed using hξijξmki ¼ σ2δimδjk and Isserlis’ theorem:

hξikξmpi ¼ σ2δimδkp; ðB11Þ

hξijξikξmpξnri ¼ σ4ðδjkδmnδpr þ δimδjpδinδkr þ δinδjrδimδkpÞ; ðB12Þ
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hξijξikξmlξmpξnqξnri ¼ σ6½δjkðδlpδqr þ δmnδlqδpr þ δmnδlrδpqÞ ð¼hξijξikihξmlξmpξnqξnriÞ
þ δimδjlðδkpδqr þ δinδkqδpr þ δinδkrδpqÞ ð¼hξijξmlihξikξmpξnqξnriÞ
þ δimδjpðδklδqr þ δinδkqδlr þ δinδkrδlqÞ ð¼hξijξmpihξikξmlξnqξnriÞ
þ δinδjqðδimδklδpr þ δimδkpδlr þ δkrδlpÞ ð¼hξijξnqihξikξmlξmpξnriÞ
þ δinδjrðδimδklδpq þ δimδkpδlq þ δkqδlpÞ': ð¼hξijξnrihξikξmlξmpξnqiÞ ðB13Þ

Inserting this into Eqs. (B9) and (B10) and performing the summations is partially lengthy but straightforward. It results in

ΔElin
update ¼ −η

XM

i¼1

XN

jkl¼1

WijS̃jkSlkWil ¼ −ηtr½WS̃SWT '; ðB14Þ

ΔEquad;a
update ¼

η2

2

XM

imn¼1

XN

jklpqr

S̃jkWmlSlpWnqSqr · ðδjkδmnδpr þ δimδjpδinδkr þ δinδjrδimδkpÞ

¼ η2

2
Mtr½WS2WT 'tr½S̃' þ η2tr½WSS̃SWT '; ðB15Þ

ΔEquad;b
update ¼

η2σ2

8
ðM3tr½S̃'tr½S'2 þ 2M2tr½S̃'tr½S2' þ 4M2tr½S̃S'tr½S' þ 8Mtr½SS̃S'Þ: ðB16Þ

With this, Eq. (B8) for the evolution of expected error becomes

hEðnÞi¼WPhEðn − 1Þiþ ΔElin
update þ ΔEquad;a

update þ ΔEquad;b
update

¼ hEðn − 1Þi − ηtr½WS̃SWT ' þ η2

2
Mtr½WS2WT 'tr½S̃' þ η2tr½WSS̃SWT '

þ η2σ2

8
ðM3tr½S̃'tr½S'2 þ 2M2tr½S̃'tr½S2' þ 4M2tr½S̃S'tr½S' þ 8Mtr½SS̃S'Þ: ðB17Þ

The result holds for a general input correlation matrix S. In Appendix B 4, we assume same strength latent inputs (Table S1).
The resulting properties of S [Eqs. (A10) and (A11)] allow one to reexpress all right-hand-side terms of Eq. (B17) in terms
of Eðn − 1Þ instead ofW, yielding a scalar recurrence relation. We make the assumption of equally strong latent inputs also
in Secs. I–III in Supplemental Material [28] (Table S1). The convergence for general input is analyzed in Supplemental
Material Sec. IV [28].

3. Error curves for node perturbation

Similar to the previous section, we omit the specifier “NP” in ξNP, ΔwNP, and σNP in the following for notational clarity.
The error Epert then reads as a function of the NP ξ:

Epert ¼ 1

2T

XM

i¼1

XT

t¼1

!XN

j¼1

Wijrjt þ ξit − dit

"
2

¼ 1

2T

XM

i¼1

XT

t¼1

%!XN

j¼1

Wijrjt þ ξit

"
2

− 2
XN

j¼1

Wijrjtdit − 2ξitdit þ d2it

&

¼ Eþ 1

T
tr½WrξT ' þ 1

2T
tr½ξξT ' − 1

T
tr½dξT ': ðB18Þ

The term tr½dξT ' here reflects the interference of learning and unrealizable targets. The other term including d,
1=ð2TÞtr½ddT ' ¼ Eopt, is only an additive constant which also occurs in GD and WP and does not enter the update
equation. Equation (B18) yields a weight update [cf. Eq. (6)]:

Δwij ¼ −
η
σ2

ðEpert − EÞ
XT

t¼1

ξitrjt ¼ −
η

σ2T

!
tr½WrξT ' þ 1

2
tr½ξξT ' − tr½dξT '

"XT

t¼1

ξitrjt: ðB19Þ
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Averaging over ξ gives the expected error after the update:

hEðnÞi ¼ 1

2
htrf½Wðn − 1Þ þ Δw'S̃½Wðn − 1Þ þ Δw'Tgiþ Eopt

¼ hEðn − 1Þiþ htr½WS̃ΔwT 'i|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
≡ΔElin

update

þ 1

2
htr½ΔwS̃ΔwT 'i

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
≡ΔEquad

update

; ðB20Þ

where W stands for Wðn − 1Þ and the correlation matrix that stems from the error evaluation is tagged with a tilde. Using
Eq. (B19) and that odd moments of ξ vanish, ΔElin

update and ΔEquad
update are

ΔElin
update ¼ htr½WS̃ΔwT 'i

¼ −
η

σ2T

$
tr
)
WS̃

!
tr½WrξT ' þ 1

2
tr½ξξT ' − tr½dξT '

"
rξT

*'

¼ −
η

σ2T
htr½WS̃rξT 'tr½WrξT ' − tr½WS̃rξT 'tr½dξT 'i

¼ −
η

σ2T

XM

im¼1

XN

jkl¼1

XT

st¼1

WijS̃jkWmlrltrks · hξisξmtiþ
η

σ2T

XM

im¼1

XN

jk¼1

XT

st¼1

WijS̃jkrksdmt · hξisξmti; ðB21Þ

ΔEquad
update ¼

1

2
htr½ΔwS̃ΔwT 'i

¼ η2

2σ4T2

$
tr½ξrTS̃rξT '

!
tr½WrξT '2 þ 1

4
tr½ξξT '2 þ tr½dξT '2 − 2tr½WrξT 'tr½dξT '

"'

¼ η2

2σ4T2

XM

imn¼1

XN

jklp¼1

XT

stuv¼1

rjsS̃jkrktWmlrluWnprpv · hξisξitξmuξnvi ðΔEquad;a
updateÞ ðB22Þ

þ η2

8σ4T2

XM

imn¼1

XN

jk¼1

XT

stuv¼1

rjsS̃jkrkt · hξisξitξmuξmuξnvξnvi ðΔEquad;b
updateÞ ðB23Þ

þ η2

2σ4T2

XM

imn¼1

XN

jk¼1

XT

stuv¼1

rjsS̃jkrktdmudnv · hξisξitξmuξnvi ðΔEquad;c
updateÞ ðB24Þ

−
η2

σ4T2

XM

imn¼1

XN

jkl¼1

XT

stuv¼1

rjsS̃jkrktWmlrludnv · hξisξitξmuξnvi ðΔEquad;d
updateÞ: ðB25Þ

Like for WP, ΔEquad;a
update depends on the weight mismatch W and originates from the gradient-related part of the error signal

ΔEpert − E, whereas ΔEquad;b
update originates from quadratic reward noise (Supplemental Material Sec. I [28]). ΔEquad;c

update and

ΔEquad;d
update stem from the reward noise due to coupling to unrealizable target components. The moments of ξ can again be

computed from hξisξmti ¼ σ2δimδst and Isserlis’ theorem:

hξisξmti ¼ σ2δimδst; ðB26Þ

hξisξitξmuξnvi ¼ σ4ðδstδmnδuv þ δimδsuδinδtv þ δinδsvδimδtuÞ; ðB27Þ
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hξisξitξmuξmuξnvξnvi ¼ σ6½δstð1þ 2δmnδuvÞ ð¼hξisξitihξmuξmuξnvξnviÞ
þ 2δimδsuðδimδtu þ 2δinδtvδmnδuvÞ ð¼ 2hξisξmuihξitξmuξnvξnviÞ
þ 2δinδsvðδinδtv þ 2δimδtuδmnδuvÞ' ð¼ 2hξisξnvihξitξmuξmuξnviÞ

¼ σ6½δstð1þ 2δmnδuvÞ þ 8δimnδstuv þ 2δimδsuδtu þ 2δinδsvδtv': ðB28Þ

Inserting this into Eqs. (B21)–(B25) gives after a partially lengthy but straightforward computation

ΔElin
update ¼ −ηtr½WS̃SWT '; ðB29Þ

ΔEquad;a
update ¼

η2

2
Mtr½WSWT 'tr½S̃S' þ η2tr½WSS̃SWT '; ðB30Þ

ΔEquad;b
update ¼

η2σ2

8T
tr½S̃S' · ðM3T2 þ 6M2T þ 8MÞ; ðB31Þ

ΔEquad;c
update ¼

η2

2T
Mtr½S̃S'tr½ddT '; ðB32Þ

ΔEquad;d
update ¼ 0: ðB33Þ

With this, Eq. (B20) for the evolution of expected reward becomes

hEðnÞi¼NPhEðn − 1Þiþ ΔElin
update þ ΔEquad;a

update þ ΔEquad;b
update þ ΔEquad;c

update

¼ hEðn − 1Þi − ηtr½WS̃SWT ' þ η2

2
Mtr½WSWT 'tr½S̃S' þ η2tr½WSS̃SWT '

þ η2σ2NP
8T

tr½S̃S' · ðM3T2 þ 6M2T þ 8MÞ þ η2Mtr½S̃S' · 1

2T
tr½ddT ': ðB34Þ

As for WP, this result holds for any correlation matrix S.

4. Error curves for equally strong input components

In this section, we consider the case that there are Neff latent inputs of equal strength; see Appendix A 3. Using Eqs. (A10)
and (A11) and S̃ ¼ S, we first simplify the evolution equation ofWP’s expected error [Eq. (B17)]. By identifying occurrences
of 1

2 tr½WSWT ' and replacing them with hEðn − 1Þi − Eopt [Eq. (A14)], we obtain a linear recurrence relation:

hEðnÞi¼WPhEðn − 1Þi − ηtr½WS̃SWT ' þ η2

2
Mtr½WS2WT 'tr½S̃' þ η2tr½WSS̃SWT '

þ η2σ2WP

8
ðM3tr½S̃'tr½S'2 þ 2M2tr½S̃'tr½S2' þ 4M2tr½S̃S'tr½S' þ 8Mtr½SS̃S'Þ

¼ ½1 − 2ηα2 þ η2α4ðMNeff þ 2Þ' · ½hEðn − 1Þi − Eopt'

þ 1

8
η2σ2WPα

6 · ðM3N3
eff þ 6M2N2

eff þ 8MNeffÞ þ Eopt: ðB35Þ

The evolution equation of NP’s expected error [Eq. (B34)] similarly simplifies to a linear recurrence relation:

hEðnÞi¼NPhEðn − 1Þi − ηtr½WS̃SWT ' þ η2

2
Mtr½WSWT 'tr½S̃S' þ η2tr½WSS̃SWT '

þ η2σ2NP
8T

tr½S̃S' · ðM3T2 þ 6M2T þ 8MÞ þ η2Mtr½S̃S' · 1

2T
tr½ddT '

¼ ½1 − 2ηα2 þ η2α4ðMNeff þ 2Þ' · ½hEðn − 1Þi − Eopt'

þ 1

8
η2σ2NPα

4 ·
!
M3NeffT þ 6M2Neff þ 8M

Neff

T

"
þ η2α4MNeff · Eopt þ Eopt: ðB36Þ
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Both Eqs. (B35) and (B36) have the form

hEðnÞi ¼ ½hEðn − 1Þi − Eopt' · aþ bþ Eopt; ðB37Þ

with (different) constant parameters a and b. The conver-
gence factor a characterizes the convergence speed and b the
per-update increase in error. The recurrence relation can be
solved straightforwardly by iteration, by expanding b to
½b=ð1 − aÞ'ð1 − aÞ, shifting b=ð1 − aÞ þ Eopt to the equa-
tion’s left-hand side, and considering hEðnÞi − Eopt −
b=ð1 − aÞ as a recurrently specified variable:

hEðnÞi ¼
!
Eð0Þ − b

1 − a
− Eopt

"
· an þ b

1 − a

þ Eopt: ðB38Þ

Another possibility is to consider hEðnÞi − Eopt as a recur-
rently specified variable and to observe that the iteration

gives rise to a finite geometric series that yields
ð1 − anÞ=ð1 − aÞb. The values of the constants are

a ¼ 1 − 2ηα2 þ η2α4ðMNeff þ 2Þ; ðB39Þ

bWP¼
1

8
η2σ2WPα

6 · ðM3N3
eff þ6M2N2

eff þ8MNeffÞ; ðB40Þ

bNP ¼
1

8
η2σ2NPα

4 ·
!
M3NeffT þ 6M2Neff þ 8M

Neff

T

"

þ η2α4MNeff · Eopt: ðB41Þ

Finite b due to finite perturbation size σ2 causes a finite
residual error b=ð1 − aÞ in Eq. (B38) even if Eopt is zero. To
enable a fair comparison, σWP and σNP are chosen such that
they lead to output perturbations δz of the same strength; see
Appendix A4. Expressing σ2WP and σ

2
NP through the strength

σ2eff of the output perturbation that they generate [Eq. (A22)],
the constants b become

bWP ¼
1

8
η2σ2effα

4 · ðM3N2
eff þ 6M2Neff þ 8MÞ; ðB42Þ

bNP ¼
1

8
η2σ2effα

4 ·
!
M3NeffT þ 6M2Neff þ 8M

Neff

T

"

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
þ η2α4MNeff · Eopt|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

ðB43Þ

≡ bquadNP þ blinNP; ðB44Þ

where the splitting of bNP into b
quad
NP and blinNP is motivated in

the next part. a is independent of the perturbation size and
the same for WP and NP.

5. Optimal learning rate

The optimal learning rate and convergence factor are
obtained by minimizing the quadratic function a as a
function of η with respect to η:

η% ¼ argmin
η

aðηÞ ¼ 1

ðMNeff þ 2Þα2
; ðB45Þ

a% ¼ min
η

aðηÞ ¼ 1 −
1

MNeff þ 2
¼ aðη%Þ: ðB46Þ

Learning diverges for η → 2η% because then a → 1:

að2η%Þ ¼ 1 −
4

MNeff þ 2
þ 4

MNeff þ 2

ðMNeff þ 2Þ2
¼ 1: ðB47Þ
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APPENDIX B

Supplement 1: Weight versus Node
Perturbation Learning in Temporally Extended
Tasks: Weight Perturbation Often Performs
Similarly or Better
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Supplementary Material to
‘Weight vs. Node Perturbation Learning in
Temporally Extended Tasks: Weight Perturbation
often Performs Similarly or Better’
Paul Züge1, Christian Klos1, Raoul-Martin Memmesheimer1*

*For correspondence:
1Neural Network Dynamics and Computation, Institute of Genetics, University of Bonn;
*rm.memmesheimer@uni-bonn.de (corresponding author)

The supplement follows the structure of the main text; main results and equations referenced in the main text are highlighted
for clarity with a yellow background. The Supplementary Material (SM) has six parts, SM1-SM6, each with several sections. Further
there are twelve supplementary !gures, Figs. S1–S12 and two supplementary tables Tabs. 1,2. The !rst table, Tab. 1 below, gives
an overview of the assumptions used in the di"erent parts and sections of the supplement (and the appendix).

Part / Section Linear networks Repeated inputs Same strength inputs
Appendix A: “Learning models and task principles”

“Mean updates...”, “Dependence of...” ω

“Task setting”, “E"ective pert...” ω ω ω

Appendix B: “Derivation of error dynamics”
“Error curves for gradient descent” –
“...for node perturbation”

ω ω

“...for equally strong input components”,
“Optimal learning rate”

ω ω ω

Part 1: “Analysis of error dynamics” ω ω ω

Part 2: “Analysis of Weight Di"usion” ω ω ω

Part 3: “Multiple subtasks” ω ω

Part 4: “Arbitrary input strength distributions” ω ω

Part 5: “Input and perturbation correlations” ω ω (ω)
Part 6: “Improved learning rules”

“WP0: Assign zero credit to zero inputs”
“Hybrid perturbation (HP): Using WP...” ω ω (ω)

Table 1. Assumptions used in the di"erent parts of the appendix and supplement. Crosses, ω, mean that an assumption is used. If di"erent
sections of a part use di"erent assumptions, all sections are speci!ed. Parentheses mean that an assumption is used only in part of a section.
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SM 1

Analysis of error dynamics

In order to interpret and explain the main results of main text Sec. “Error dynamics”, it is helpful to make four distinctions: 1)
between task relevant and irrelevant weights, 2) between realizable and unrealizable outputs, 3) between informative linear, unin-
formative linear and uninformative quadratic contributions to the error signal, and 4) between update #uctuations due to a credit
assignment problem and those due to reward noise. In the following sections we will work these distinctions out, considering !rst
the error signal and then the thereby informed updates. Finally we use the concepts to explain the components and behavior of
the recurrence relation that describes the resulting error evolution. As before, we consider training linear readouts to reduce a
quadratic error. Inputs and targets exactly repeat each trial. We focus on networks where the !rst 𝜔

eff
eigenvalues of the input

correlation matrix 𝜀 are equal to 𝜗
2 and all others are zero (App. B, Sec. “Error curves for equally strong input components”, main

text Sec. “Theoretical analysis”).

Task relevant and irrelevant weights
For low-dimensional input, weight changes along many directions in synaptic weight space in#uence neither output nor error.
Here we de!ne relevant and irrelevant weight space directions and, after an input rotation that we show leaves WP and NP learning
invariant, relevant and irrelevant weights. Distinguishing task-relevant and -irrelevant weights will allow us to explain why irrelevant
weights di"use for WP but not NP, and why WP nevertheless attains the same convergence speed.

Because any 𝜀 =
1

𝜛
𝜚𝜚

𝜛 is symmetric, it can be diagonalized by a 𝜔 ω 𝜔 rotation matrix 𝜍, 𝜑 = 𝜍
𝜛
𝜀𝜍. We can therefore

de!ne a set of rotated inputs 𝛻𝜚 = 𝜍
𝜛
𝜚 (𝛻𝜚

𝜕ℵ
=

⌋𝜔

ℶ=1
(𝜍

𝜛
)
𝜕ℶ
𝜚
ℶℵ
) that are mutually uncorrelated as their correlation matrix is diagonal:

1

𝜛
𝛻𝜚𝛻𝜚

𝜛
=

1

𝜛
𝜍

𝜛
𝜚𝜚

𝜛
𝜍 = 𝜍

𝜛
𝜀𝜍 = 𝜑. The rotation does not a"ect the output of our networks if the reverse rotation is applied to the

readout weights 𝛻ℷ = ℷ𝜍,

ℸ
⊳ℵ
=

𝜔
⌈

⊲=1

ℷ
⊳⊲
𝜚
⊲ℵ
=

𝜔
⌈

⊲𝜕ℶ=1

ℷ
⊳⊲
𝜍

⊲𝜕
⋛ (𝜍𝜛

)
𝜕ℶ

01111211113

4⊲ℶ

𝜚
ℶℵ
=

𝜔
⌈

𝜕=1

𝛻ℷ
⊳𝜕
𝛻𝜚
𝜕ℵ
= 𝛻ℸ

⊳ℵ
. (S1)

The rotational invariance holds as long as inputs sum linearly, una"ected by the (possibly nonlinear) activation functions 5. WP
and NP work the same before and after the rotation of inputs because the noise is Gaussian iid and thus in particular isotropic.
This is also re#ected by the fact that all results only depend on the traces of powers of 𝜀, see Eqs. (B17, B34), which are invariant
to rotations. Up to #uctuations due to di"erent noise realizations, a WP or NP learning network thus behaves the same as its
counterpart with rotated inputs, if the initial weights of the latter are transformed with the inverse rotation.

In networks where the !rst 𝜔
eff

eigenvalues of the input correlation matrix 𝜀 are equal to 𝜗
2 and all others are zero, due to

the equivalence of the learning dynamics for rotated and unrotated inputs, we can assume without loss of generality that the !rst
𝜔

eff
inputs are orthogonal and have strength 𝜗

2, while the last 𝜔 ε 𝜔
eff

inputs are zero. Main text, Fig. 2a illustrates inputs with
the assumed correlation matrix before and after the rotation. Because the last𝜔 ε𝜔

eff
inputs are always zero, all the6(𝜔 ε𝜔

eff
)

weights that connect them to the outputs are irrelevant for the task. Conversely, the 6𝜔
eff

weights that originate from the !rst
𝜔

eff
inputs are task relevant; changes of these weights a"ect performance. More generally, irrelevant weights occur in a network

with rotated inputs whenever the obtained diagonal input correlation matrix 𝜑 contains zero diagonal entries. These weights
correspond to irrelevant weight directions in the network with unrotated inputs.

Considering relevant and irrelevant weights instead of weight space directions, which are linear combinations of individual
weights, will simplify our discussion. In all of the following we will therefore without loss of generality assume rotated inputs.

Realizable and unrealizable outputs
General targets and the output perturbations of NP can contain components that are not present in the inputs and thus not
realizable. Here we de!ne these components and describe their di"erent e"ects in WP and NP learning. This will be crucial to
understand one part of the di"erence between the !nal errors that WP and NP can obtain.

If there is a single linear readout, the inputs (i.e. the temporal input vectors) span the space of outputs (of temporal output
vectors) that can be realized by adjusting the weights. If the inputs are e"ectively𝜔

eff
-dimensional as above, that space is also𝜔

eff
-

dimensional. For6 outputs it is6𝜔
eff
-dimensional. The full output space can thus be split into an6𝜔

eff
-dimensional subspace

of realizable outputs, and an orthogonal6(𝜛 ε𝜔
eff
)-dimensional subspace of unrealizable outputs.
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Because WP perturbs the weights, the resulting perturbations of the outputs are always reproducible through a weight update.
NP, on the other hand, perturbs all 6𝜛 dimensions of the full output space equally, such that only a fraction of 𝜔

eff
ϑ𝜛 of its

perturbation’s variance falls into the realizable subspace. However, only the realizable components of an output perturbation can
be used to informweight updates. If, for example, an unrealizable component improves performance, there is no way to capitalize
on this by reproducing it through a weight update. As a consequence, the unrealizable output perturbation components of NP are
a source of reward noise, which partially obscures the informative error changes due to better or worse generation of the realizable
components. In particular, this lowers NP’s performance if the target has an unrealizable component.

The worse performance of NP can be understood in more detail as follows: In presence of unrealizable target components,
also the output error gradient will have a component in the unrealizable subspace. Unrealizable node perturbation components
can “couple” to this component, i.e. they can have a nonzero projection onto it, contributing to the error 7pert already in linear
order. To translate output perturbations into appropriate weight updates, the eligibility trace Eq. (6) projects them onto the inputs,
which deletes all unrealizable perturbation components. Their contribution to 7

pert
ε7, however, still enters the update. From the

perspective of the weight updates the unrealizable output perturbation components therefore just contribute noise of unknown
origin to the error change 7

pert
ε 7. This noise adds to the informative error change that results from realizable perturbations,

which are re#ected in the eligibility trace and translated into weight changes. These di"erent contributions of the perturbations
to the error signal and their e"ects on updates and error evolution will be quantitatively analyzed in the following sections.

Linear informative, linear uninformative and quadratic uninformative contributions to the error
signal
In this section we distinguish the di"erent contributions to the error signal and discuss their magnitude and scaling. This will allow
us to understand the origin of the di"erent contributions to the updates as well as their e"ects on the error evolution and to
compare their impact for WP and NP.

The error change ϖ7
pert

= 7
pert

ε 7 due to a perturbation can be split into a linear and a quadratic part,

ϖ7
pert

= ϖ7
lin

pert
+ ϖ7

quad

pert
. (S2)

Higher orders do not occur due to the use of a quadratic error function (Eq. (8)).
We !rst consider WP, where

ϖ7
WP

pert
=

∱ϖ7lin,WP

pert

81111119111111.

tr[,𝜀(<
WP

)
𝜛
] +

∱ϖ7quad,WP

pert

81111111119111111111.

1

2
tr[<

WP
𝜀(<

WP
)
𝜛
] (S3)

(Eq. (B6)). The linear part of an error change due to weight perturbations can generally also be written as

ϖ7
lin,WP

pert
=

⌈

ℏ>

⋆7

⋆ℷ
ℏ>

⋛ <WP

ℏ>
, (S4)

cf. Eq. (A1). This shows thatϖ7 lin,WP

pert
contains all the information about the error gradient employed in weight perturbation learning,

namely the size of the tried perturbation’s projection onto it: The update equations Eqs. (4,A2,A16) use that if we average all
normalized perturbation vectors weighted by their projections onto the gradient, the result is the gradient. ϖ7 lin

pert
provides the

employed projections. In contrast, the quadratic part ϖ7quad

pert
of ϖ7

pert
does not contain such information: ϖ7quad

pert
is uncorrelated

with the size of the projection of <WP onto the gradient, ⌉ϖ7 lin

pert
ϖ7

quad

pert
{ = 0. ϖ7quad

pert
therefore only adds reward noise to the learning

process. When averaging over perturbations, this does not bias the resulting update, because ϖ7
quad

pert
is also uncorrelated with <

WP,
⌉ϖ7

quad

pert
<
WP

{ = 0 (Eq. (A16)). The noise, however, entails that a larger number of perturbations needs to be tried to obtain a faithful
gradient estimate and thus a good weight update.

In NP, the error change is given by

ϖ7
NP

pert
=

ϖ7
lin,NP

pert

8111111111111191111111111111.

1

𝜛
tr[(, 𝜚 ε ≨)(<

NP
)
𝜛
] +

∱ϖ7quad,NP

pert

811111111911111111.

1

2𝜛
tr[<

NP
(<

NP
)
𝜛
] (S5)

(Eq. (B18)). The linear term is the projection of the node (i.e. output) perturbation onto the output gradient. As discussed in
Sec. “Realizable and unrealizable outputs”, this gradient is composed of two orthogonal parts, laying in the realizable and in the
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unrealizable subspace,
⋆7

⋆ℸ
=

1

𝜛
, 𝜚

023

ε
≨

𝜛
023

(S6)

=

}

⋆7

⋆ℸ

⦃real

+

}

⋆7

⋆ℸ

⦃unr

. (S7)

ϖ7
lin,NP

pert
thus consists of two components, resulting from the projection of <NP onto the gradient parts in the realizable and in the

unrealizable output subspace,

ϖ7
lin

pert
= ϖ7

lin,real

pert
+ ϖ7

lin,unr

pert
, (S8)

where

ϖ7
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(S9)

(S10)

ϖ7
lin,unr

pert
only generates reward noise, since it is uncorrelated with the projection of the noise onto the realizable part of the gradient

(which is used for learning), ⌉ϖ7 lin,real

pert
ϖ7

lin,unr

pert
{ = 0. ϖ7 lin,unr

pert
increases the number of perturbations that are necessary to obtain a

good weight update from averaging over them, but does not bias the resulting update (Eq. (A17)). Since ϖ7
lin,unr

pert
is linear in the

perturbations, its e"ect is independent of the perturbation size (due to our division by 𝐴
NP
in the NP update equation Eq. (6)). For

WP ϖ7
lin,unr

pert
is zero. The quadratic part of ϖ7NP

pert
does not contain information on the gradient either and is therefore only a source

of reward noise, like the quadratic part of the error change in WP.
Only a fraction of 𝜔

eff
ϑ𝜛 of NP’s node perturbation strength (as measured by the perturbation variance), lies in the subspace

of realizable outputs and can couple to the realizable part of the gradient. Thus for NP the variance of ϖ7 lin,real

pert
is smaller than for

WP by a factor of 𝜔
eff
ϑ𝜛 ,
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This leads to a smaller “signal-to-noise ratio” in NP, when measuring the projection of the perturbations onto the gradient using
ϖ7

lin,real

pert
. NP has to compensate this by amplifying the learning signal in ϖ7

lin,real

pert
more strongly by a factor of

⟫

𝜛 ϑ𝜔
eff

to achieve
the same mean update ⌉ℷ{ as WP (Eqs. (A2,A4)). Since the learning signal and the related weight update cannot be selectively
increased, the entire weight update is larger. This ampli!cation becomes apparent when comparing the size (as measured by the
standard deviation, since the mean is zero) of the di"erent factors that ϖ7

pert
is multiplied with in the update rules Eqs. (3,6),

<
WP

⊳⊲
ϑ𝐴

2

WP
ϱ 𝐴

ε1

eff

❲

𝜗2𝜔
eff
,

𝜛
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ϑ𝐴

2

eff
ϱ 𝐴

ε1

eff

⟫

𝜗2𝜛 (S12)

Here we used Eq. (A22) and assumed for NP that input ⊲ is a relevant input, which has strength 𝜗
2 (App. A, Sec. “Task setting”). For

an irrelevant input, 𝜚
⊲
ℵ = 0 and ϖ7

pert
is multiplied with zero. Sec. “Strength of weight update #uctuations due to reward noise”

explains how the larger weight update leads for NP to larger update #uctuations due to reward noise.
For both WP and NP, the quadratic contribution to the error change equals a normalized sum over the squared output pertur-

bations 4ℸ
⊳ℵ
,

ϖ7
quad

pert
=

1

2𝜛

6
⌈

⊳=1

𝜛
⌈

ℵ=1

4ℸ
2

⊳ℵ
, (S13)
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due to Eq. (S3), Eqs. (A7,A18) for WP and Eqs. (S5,A19) for NP. Since the output perturbations produced by WP and NP have the
same summed variance (Eqs. (A20-A22)), also the quadratic contributions to the error have to leading order the same size, which
is given by the non-vanishing mean ⌉ϖ7

quad

pert
{,

⌉ϖ7
quad

pert
{ =

1
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6
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, (S14)
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To leading order, the size of ϖ7quad

pert
scales with the perturbation strength 𝐴

2

eff
and with 6 because the 6𝜛 -dimensional output is

perturbed with a per-dimension variance of 𝐴2

eff
and the de!nition Eq. (8) of the error contains a factor of 1ϑ𝜛 that cancels the

𝜛 -dependence.

Contributions to theweight update: gradient following, credit assignment-related noise and reward
noise
The mean updates of WP and NP align with the gradient and are equal to those of GD (Eqs. (A16,A17, B1)). The updates of WP and
NP, however, #uctuate. This slows learning down and, if the perturbations < are !nite, also limits the !nal performance. In this
section we show that there are two sources of update #uctuations: a credit assignment problem and reward noise. Their impact
will be quanti!ed in the subsequent two sections. Thereafter we describe how they in#uence the di"erent aspects of the error
evolution.

Inserting the di"erent contributions to the error change, ϖ7 lin,real

pert
, ϖ7 lin,unr

pert
and ϖ7

quad

pert
, into the update equations Eqs. (3) and (6),

allows us to split the updates into di"erent components,
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), (S17)

ϖℷ
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IV
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, (S18)

which may be written as

ϖℷ
⊳⊲
= ⌉ϖℷ

⊳⊲
{ (I, from ϖ7

lin,real

pert
- mean update) (S19)

+ 4ℷ
cr.as

⊳⊲
(II, from ϖ7

lin,real

pert
- #uctuations due to credit assignment problem) (S20)

+ 4ℷ
rew.noise,lin

⊳⊲
(III, from ϖ7

lin,unr

pert
- #uctuations due to linear reward noise) (S21)

+ 4ℷ
rew.noise,quad

⊳⊲
(IV, from ϖ7

quad

pert
- #uctuations due to quadratic reward noise). (S22)

The mean update is proportional to the gradient (Eqs. (A16,A17)),

⌉ϖℷ
⊳⊲
{ = ε𝐸

⋆7

⋆ℷ
⊳⊲

. (S23)
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The !rst part of the #uctuations explicitly reads (using Eqs. (S17,S17,S4,S9,S23))
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, (S24)
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(S25)

It can be attributed to the credit assignment problem of !nding, out of the6𝜔 weights or6𝜛 outputs, the single gradient-parallel
component of the perturbation that was responsible for causing ϖ7

lin,real

pert
, i.e. the linear, instructive part of the error signal. More

speci!cally: Because from the scalar error signal alone it is impossible for WP to determine which of the6𝜔 sampled directions
was the one parallel to the gradient, WP has to amplify the perturbations <

WP

⊳⊲
of all weights equally during the constructions of

their updates (Eqs. (3,S24)). This implies that all weights #uctuate. The single backpropagation step of NP, re#ected in its use of
eligibility traces (Eqs. (6,S25)), allows it to solve the credit assignment problem at least partially. Therefore for NP only the 6𝜔

eff

relevant weights are updated. The convergence speed is, however, only limited by the update noise of relevant weights, which is
the same for NP and WP, see Eqs. (S32,S33) and compare the identical convergence factors of WP and NP, Eq. (B39).

The second kind of update #uctuations, 4ℷrew.noise,lin

⊳⊲
and 4ℷ

rew.noise,quad

⊳⊲
, read (Eqs. (S21,S10))
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and (Eqs. (S22,S18,S13))
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They are caused by reward noise (ϖ7 lin,unr

pert
and ϖ7

quad

pert
, respectively). Multiplying the reward noise in 7

pert
ε 7 with the applied per-

turbations or eligibility traces in the construction of updates, Eqs. (3,6), results in random update contributions that are unrelated
to the gradient (see Eqs. (S27,S28) in contrast to Eqs. (S24,S25))). Because the reward noise is independent of the weight mismatch,
the amplitudes of these #uctuations do not change over the course of training, which prevents learning with arbitrary precision.
In contrast, the informative ϖ7

lin,real

pert
diminishes with training.

Strength of credit assignment-relatedweight update !uctuations and the dimensionality argument
for our task
This section computes and compares the #uctuation strengths due to the credit-assignment problem in WP and NP learning.
Thereafter it quantitatively states a dimensionality argument, which adapts the one that is commonly used to compare WP, NP
and GD learning (main text, introduction) to our type of task.

The strength of the update noise due to the credit assignment problem, i.e. the variance of 4ℷcr.as

⊳⊲
, depends only on the contri-

bution ϖ7
lin,real

pert
of the error change (Line (S20)) and is thus independent of ≨ and 𝐴

eff
(Eqs. (S17,S18,S3,S9)). For WP it is
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. (S29)

These credit assignment-related random #uctuations in the update of ℷ
⊳⊲
thus grow quadratically with the overall length of the

error gradient and with the size of its component in ℷ
⊳⊲
-direction. The !rst dependency arises because any weight perturbation is

multiplied with the global error change, which is in linear order proportional to the gradient length. The second dependency arises
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because weight changes parallel to the gradient #uctuate twice as strongly as in perpendicular directions due to their correlation
with error changes.

For NP, the credit assignment-dependent weight update noise strength is
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The !rst term is proportional to the squared length of the realizable part of the output gradient and to the strength of the ⊲th
input. This is because in the weight update rule node perturbations are multiplied with the global error change (which is in turn
proportional to the output gradient length) and with the ⊲th input. The second term arises again because weight changes in the
direction of the gradient #uctuate twice as strongly due to their correlation with the error change. The !rst term is generally
di"erent from that of WP, which can cause di"erences in convergence speeds - compare SM4 and main text, Sec. “Reservoir
computing-based drawing task”. For the case of equally strong latent inputs, which we focus on in our analytical computations,
however, noise variances are equal for WP and NP: in the rotated space of input components 𝜚

𝜕ℵ
introduced in Sec. “Task relevant

and irrelevant weights”, the squared norm of the weight error gradient is
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Here we introduced the temporal unit vectors 𝐼𝜚
𝜕
=

1
⟫

𝜛𝜗

𝜚
𝜕
and used in (ς) that the 𝐼𝜚

𝜕
with 𝜕 = 1, ...,𝜔

eff
form a basis for the subspace

in which the realizable part of the node gradient lies. In the space of rotated inputs we thus have
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(S33)

Eq. (S32) reduces for an irrelevant input 𝜕 to ⌉⌉4ℷ
cr.as
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, i.e. forWP there are credit assignment-related update #uctuations
also in irrelevant weight space directions, in contrast to NP. Eqs. (S32,S33) imply that the average change of a single relevant weight
due to credit assignment noise,

❲

⌉⌉4ℷ
cr.as

⊳𝜕
{{, is at least as large as the size of the deterministic improvement of the entire weight

vector along the gradient, 𝐸 ]]
]

⋆7

⋆ℷ

]

]

]

= ⟦⌉ϖℷ{⟦. The average size of the entire weight vector change due to credit assignment noise can

be computed by summing over Eqs. (S32,S33): Using
⌋

⊳,𝜕
𝐸
2
❳

⋆7

⋆ℷ⊳𝜕

/2

= 𝐸
2 ]
]

]

⋆7

⋆ℷ

]

]

]

2

= ⟦⌉ϖℷ{⟦

2 yields

⌉⟦4ℷ
cr.as

⟦

2
{ =

⌋

⌈

⌉

⌈

{

(6𝜔 + 1) ⋛ ⟦⌉ϖℷ{⟦

2 for WP,

(6𝜔
eff

+ 1) ⋛ ⟦⌉ϖℷ{⟦

2 for NP.
(S34)

This means that the weight change due to credit assignment noise is much larger than that due to the deterministic update ⌉ϖℷ{.
The contributions of noise and deterministic gradient following simply add up to the total average square weight change,

⌉⟦ϖℷ⟦

2
{ = ⟦⌉ϖℷ{⟦

2
+ ⌉⟦4ℷ

cr.as
⟦

2
{, (S35)

in absence of reward noise. Since update noise will in#uence and often increase the error in a nonlinear way (Eq. (8)), it might seem
as if learning is impossible. However, for su$ciently small updates also with a nonlinear error function the deterministic update
parts add up, as they always point into approximately the same direction, while the #uctuations partly cancel each other. For
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in!nitesimally small update size, after 𝐹 updates, the mean weight change is 𝐹 ⋛ ⌉ϖℷ{, while the standard deviation of the summed
#uctuations of a single weight scales only as

⟫

𝐹 ⋛
⟫

⌉⟦4ℷcr.as
⟦

2
{. This way WP and NP can still learn by adopting a smaller learning

rate and averaging out #uctuations over more updates.
Eq. (S34) seems to furthermore imply that NP is much more e$cient in learning than WP, as its noise is much smaller. This

is the classical dimensionality argument cited in the Introduction section of the main text. However, for a single input-output
learning task noise-related changes of only the 6𝜔

eff
task relevant weights in#uence the error. Thus, the relevant amount of

credit assignment noise is actually the same for WP and NP, leading to the same maximal speed of convergence (Fig. 1).

Strength of weight update !uctuations due to reward noise
Here we give the scaling of reward noise-related update #uctuations and explain why these are larger for NP than for WP, which
will explain the larger !nal error of NP.

The scaling of 4ℷrew.noise,lin

⊳⊲
for NP follows from Eqs. (S21,S18,S10). Eq. (S10) yields ϖ7

lin,unr

pert

NP

ϱ 𝐴
eff
𝜗
≨

❲

6

𝜛
, since the “size” of the

sum of centered noise terms scales with the square root of the number of summands. We here consider as the size of 4ℷrew.noise,lin

⊳⊲

the standard deviation of the sum (Eq. (S18), term III), as its average vanishes. The formal reason that this common approach
works is that we compute the strengths (variances) of noise terms 4ℷrew.noise,lin

⊳⊲
from a product of two independent random variables

𝐽 = ϖ7
lin,unr

pert
and 𝐾 =

⌋𝜛

ℵ=1
<
NP

⊳ℵ
𝜚
⊲ℵ
, which both have zeromean. Thewell known general formula Var(𝐽𝐾 ) = E(𝐽)

2Var(𝐾 )+E(𝐾 )2Var(𝐽)+

Var(𝐽)Var(𝐾 ) for independent random variables 𝐽, 𝐾 , thus tells us that the leading order scaling in each random variable arises
from its squared average or from its variance, i.e. its squared standard deviation. For our computations we therefore consider
as characteristic size of a term its average or its standard deviation, depending on which has the leading order scaling, and use
its square to compute the !nal noise variance scaling. Thus the variance of 4ℷrew.noise,lin can be obtained by simply multiplying the
variances of ϖ7 lin,unr

pert
and

⌋𝜛

ℵ=1
<
NP

⊳ℵ
𝜚
⊲ℵ
,

⌉⌉4ℷ
rew.noise,lin

⊳⊲
{{

WP

= 0, (S36)

⌉⌉4ℷ
rew.noise,lin

⊳⊲
{{

NP

=
𝐸
2

𝐴
4

eff

⋛ ⌉⌉ϖ7 lin,unr

pert
{{ ⋛

⟧⟧

𝜛
⌈

ℵ=1

<
NP

⊳ℵ
𝜚
⊲ℵ

⌊⌊

= 𝐸
2
𝜗
2

≨
𝜗
2
6 = 2𝐸

2
𝜗
2
7

opt
for relevant weights only. (S37)

(We have thus obtained the size of the product from the product of sizes, as for deterministic quantities.) We conclude that the
size of 4ℷrew.noise,lin is 0 for WP and scales for NP as

4ℷ
rew.noise,lin

⊳⊲

NP

ϱ 𝐸𝜗
≨

⟫

𝜗26 for relevant weights only. (S38)

The scaling of 4ℷrew.noise,quad

⊳⊲
can be computed likewise: ϖ7quad

pert
is a sum of independent positive random variables (Eq. (S13)) such

that its size has a contribution from the summed means (Eq. (S14)), which scales with 6 , and a contribution from the summed
#uctuations (Eqs. (S15,S16)), which scales with

⟫

6 . As <WP

⊳⊲
and

⌋𝜛

ℵ=1
<
NP

⊳ℵ
𝜚
⊲ℵ
have zero mean, we obtain the full expressions

⌉⌉4ℷ
rew.noise,quad

⊳⊲
{{

WP

=
𝐸
2

𝐴
4

WP

⋛
\

⌉ϖ7
quad

pert
{

2
+ ⌉⌉ϖ7

quad

pert
{{

(

⋛ ⌉⌉<WP

⊳⊲
{{

=
𝐸
2

𝐴
2

WP

⋛
\

1

4
6

2
𝐴
4

eff
+

1

2
𝐴
4

eff

6

𝜔
eff

(

=
1

4
𝐸
2
𝐴
2

eff
𝜗
2
❳

6
2
𝜔

eff
+ 26

/

(S39)

⌉⌉4ℷ
rew.noise,quad

⊳⊲
{{

NP

=
𝐸
2

𝐴
4

eff

⋛
\

⌉ϖ7
quad

pert
{

2
+ ⌉⌉ϖ7

quad

pert
{{

(

⋛ ⌉⌉
𝜛
⌈

ℵ=1

<
NP

⊳ℵ
𝜚
⊲ℵ
{{

=
𝐸
2

𝐴
4

eff

⋛
\

1

4
6

2
𝐴
4

eff
+

1

2
𝐴
4

eff

6

𝜛

(

⋛ 𝐴2

eff

𝜛
⌈

ℵ=1

𝜚
2

⊲ℵ

=

⌋

⌈

⌉

⌈

{

1

4
𝐸
2
𝐴
2

eff
𝜗
2
❳

6
2
𝜛 + 26

/

for relevant weights

0 for irrelevant weights
(S40)
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for the noise variances. To leading order, the size of update #uctuations induced by quadratic reward noise is thus

4ℷ
rew.noise,quad

⊳⊲

WP

φ
1

2
𝐸𝐴

eff
𝜗6

⟫

𝜔
eff

for all weights,

4ℷ
rew.noise,quad

⊳⊲

NP

φ
1

2
𝐸𝐴

eff
𝜗6

⟫

𝜛 for relevant weights only.

(S41)

(S42)

The di"erent scaling ultimately results from the fact that the output variability of NP in the realizable output subspace is by a factor
of 𝜔

eff
ϑ𝜛 smaller than for WP (Eq. (S11)). NP has to compensate this by amplifying the learning signal in ϖ7

lin,real

pert
more strongly by

a factor of
⟫

𝜛 ϑ𝜔
eff
(Eq. (S12)) to achieve the same bene!cial mean update ⌉ϖℷ{. It is, however, unavoidable to apply the stronger

ampli!cation to the entire ϖ7
pert
. Because its part ϖ7quad

pert
is – in contrast to ϖ7

lin,real

pert
– to leading order the same for WP and NP

(Eq. (S14)), the stronger overall ampli!cation leads to larger #uctuations 4ℷrew.noise,quad

NP
φ

⟫

𝜛 ϑ𝜔
eff

⋛ 4ℷrew.noise,quad

WP
in NP.

Components of the recurrence relation
Here we leverage the concepts developed in the preceding sections to explain the origin and scaling of each component of the
recurrence relation. Togetherwith the next section, inwhich the recurrence relation is solved and the error dynamics characterized,
this provides a rigorous understanding of how di"erent task properties a"ect speci!c aspects of the error evolution.

Distinguishing the contributions ⌉ϖℷ
⊳⊲
{, 4ℷcr.as

⊳⊲
, 4ℷrew.noise,lin

⊳⊲
and 4ℷ

rew.noise,quad

⊳⊲
(Lines (S19-S22)) to the updatesϖℷ allows to examine

their di"erent e"ects on the evolution of the expected error. The #uctuations are independent of each other and have zero
expectation value. The expected error after an update has the following components:

⌉7(𝐹){ =
1

2
⌉tr[(, (𝐹 ε 1) + ϖℷ)𝜀(, (𝐹 ε 1) + ϖℷ)

𝜛
]{ + 7

opt
(S43)

= ⌉7(𝐹 ε 1){ (error before update) (S44)

+ tr[,𝜀 ⌉ϖℷ{

𝜛
] +

1

2
tr[⌉ϖℷ{𝜀 ⌉ϖℷ{

𝜛
] (mean updates follow gradient as for GD) (S45)

+
1

2
⌉tr[4ℷ

cr.as
𝜀(4ℷ

cr.as
)
𝜛
]{ (update noise from credit assignment) (S46)

+
1

2
⌉tr[4ℷ

rew.noise,lin
𝜀(4ℷ

rew.noise,lin
)
𝜛
]{ (update noise from linear reward noise) (S47)

+
1

2
⌉tr[4ℷ

rew.noise,quad
𝜀(4ℷ

rew.noise,quad
)
𝜛
]{ (update noise from quadratic reward noise). (S48)

Because the mean update is equal to that of GD, the !rst two contributions to ⌉7(𝐹){ would lead to

7(𝐹) = (1 ε 2𝐸𝜗
2
+ 𝐸

2
𝜗
4
) ⋛

❳

7(𝐹 ε 1) ε 7
opt

/

+ 7
opt

(for (S44) and (S45)), (S49)

cf. Eqs. (B2) to (B5). ε2𝐸𝜗2 results from the bene!cial term linear in ⌉ϖℷ{, while 𝐸
2
𝜗
4 results from the quadratic e"ect of an update

perfectly parallel to the gradient on the error.
The third contribution, (S46), occurs because WP and NP solve the credit assignment problem by random search. The resulting

update #uctuations 4ℷcr.as add a di"usive part to the evolution of relevant weights (or, for non-rotated input space: in the relevant
weight subspace), which on average leads to an increase in error. Fluctuations of irrelevant weights present in WP (Eq. (S32)) do
not contribute; this is re#ected by the multiplication of 4ℷcr.as with 𝜀. Eq. (S34) shows that (S46) yields a detrimental quadratic term
that is (6𝜔

eff
+ 1) larger than the detrimental quadratic term in (S45). We therefore have

7(𝐹) = (1 ε 2𝐸𝜗
2
+ 𝐸

2
𝜗
4
(6𝜔

eff
+ 2))

011111111111111111111121111111111111111111113

=𝐿

⋛
❳

7(𝐹 ε 1) ε 7
opt

/

+ 7
opt

(for (S44) to (S46)), (S50)

which implicates a (6𝜔
eff

+ 2) times smaller optimal learning rate than with GD (Eqs. (B45,B5)).
The increase in error resulting from the last two contributions, (S47) and (S48) stems from the update #uctuations 4ℷ

rew.noise

due to reward noise. Because these #uctuations are independent of gradient and weights (Eqs. (S39,S40)), the magnitude of their
additive contribution does not change over the course of training. The contribution therefore yields the per-update error increase
𝑀
WP⟦NP

of the recurrence relation (Eqs. (8,B37)). 𝑀 can be split into two parts 𝑀 = 𝑀
lin
+ 𝑀

quad (Eq. (B44)) according to the reward noise
source: 𝑀lin is only present for NP and arises from the linear reward noise due to unrealizable parts of the target (S47). 𝑀quad arises
from quadratic reward noise due to the quadratic nonlinearity of the error function (S48). Thus, including all !ve contributions
results in

7(𝐹) = (1 ε 2𝐸𝜗
2
+ 𝐸

2
𝜗
4
(6𝜔

eff
+ 2)) ⋛

❳

7(𝐹 ε 1) ε 7
opt

/

+ 𝑀
lin
+ 𝑀

quad
+ 7

opt
(for (S44) to (S48)). (S51)

𝑀
WP
, 𝑀lin

NP
and 𝑀

quad

NP
are given in Eqs. (B42–B44).
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Characteristics of the average error dynamics
With all components of the recurrence relation explained and quanti!ed, here we characterize the resulting dynamics of the
average error. In particular, we derive the scaling of the !nal error.

The recurrence relation Eqs. (B37,S51),
❳

⌉7(𝐹){ ε 7
opt

/

=
❳

⌉7(𝐹 ε 1){ ε 7
opt

/

⋛ 𝐿 + 𝑀, (S52)

leads, provided that 𝐿 < 1, to an exponential decay (cf. Eq. (B38))

⌉7(𝐹){ =
❳

7(0) ε 7
𝑁 ,unr

/

⋛ 𝐿𝐹 + 7
𝑁 ,unr

(S53)

to a !nal error

7
𝑁 ,unr

= 7
𝑁
+ 7

𝑁 ,≨
+ 7

opt
, 7

𝑁
=

𝑀
quad

1 ε 𝐿
, 7

𝑁 ,≨
=

𝑀
lin

1 ε 𝐿
. (S54)

7
𝑁 ,unr

is the total !nal error including contributions due to unrealizable target compoents. 7
𝑁
captures the !nal error for the case

of realizable targets. For NP unrealizable target components ≨ increase the !nal error by 7
𝑁 ,≨

(which is zero for WP). Further,
unrealizable target components increase the !nal error by 7

opt
, i.e. by the error that necessarily remains even for optimal weights

(Eq. (A15)), because the target is not realizable by the network. Since7
opt
is known beforehand and for any learning rule represents

an inevitable shift in error, it could be absorbed into a rede!ned 7. The !nal error is then still limited by the accumulation of error
due to reward noise, which leads to update noise entering the recurrence relation through 𝑀 (Eq. (S51) and lines (S47, S48)).

In the beginning of learning, when the weight mismatch is large, following the large gradient leads to fast improvements. As
the weights approach their target values, the gradient becomes smaller, but the error contributions that result from reward noise
stay constant. Gradient-related improvements and deterioration due to reward noise on average balance if the error 7 has the
size of the !nal error of the average error dynamics, 7 = 7

𝑁 ,unr
. Around this point learning yields hardly any or no improvement. If

7 happens to become smaller than 7
𝑁 ,unr

, learning even has a deteriorating e"ect on average, because of the reward noise.
The deteriorating e"ect of quadratic reward noise due to !nite perturbations is present in both WP and NP and una"ected by

unrealizable parts of targets. It may be best illustrated for the case where all relevant weights have already assumed their target
values: Then the weight error gradient is zero. Still, a !nite random perturbation of the weights or outputs leads with probability
one to an increase in error due to the quadratic error function. Therefore the update rules induce a !nite weight change in the
direction opposite to the perturbation. This prevents the weights from staying at or reaching optimal values and leads to a !nal
error larger than 7

opt
.

We note that the recurrence relation Eq. (B37) may also be understood as a leaky integration of 𝑀. For slow convergence, the
factor 1ε 𝐿 in the denominator (which arises from the discrete updating process) can be interpreted as the leak rate ε ln(𝐿) φ 1ε 𝐿

of a corresponding continuous exponential decay ϱ exp(ε ln(𝐿)ℵ) (Fig. 1) that equals the actual decay at the points where ℵ ∇ ℕ
0
.

In this picture, the contribution 𝑀ϑ(1 ε 𝐿) to the !nal error results from integrating the per-update error increase 𝑀 over 1ϑ(1 ε 𝐿)

updates. This determines the error once the contribution due to the initialization,
❳

7(0) ε 7
𝑁 ,unr

/

⋛ 𝐿𝐹, has faded away.
The leading order contributions in 6 , 𝜔

eff
and 𝜛 to 7

𝑁
as given in Eqs. (13),(14) can be computed using Eqs. (B42,B43,B39) or

line (S48) and Eqs. (S41,S42,B39) (note that 7
𝑁
=

𝑀
quad

1ε𝐿
does not incorporate 𝑀

lin and that line (S48) equals 𝑀quad),

7
WP

𝑁
=

𝑀
WP

(𝐸)

1 ε 𝐿(𝐸)
φ

𝐴
2

eff

8
⋛ 𝐸2𝜗4

6𝜔
eff

1 ε 𝐿(𝐸)
⋛62

𝜔
eff
,

7
NP

𝑁
=

𝑀
quad

NP
(𝐸)

1 ε 𝐿(𝐸)
φ

𝐴
2

eff

8
⋛ 𝐸2𝜗4

6𝜔
eff

1 ε 𝐿(𝐸)

0111112111113

∱𝑂(𝐸)

⋛62
𝜛 .

(S55)

(S56)

For our discussion, we have split the two results into three corresponding factors: (i) The !rst factor, 𝐴2

eff
ϑ8, re#ects that 7WP⟦NP

𝑁

will be of signi!cant size only when the noise strength 𝐴
2

eff
is su$ciently large. In this case the quadratic reward noise becomes

sizeable and corrupts learning. (ii) The second factor contains the dependence of the !nal error on the learning rate, via a factor
that we abbreviate by 𝑂(𝐸),

𝑂(𝐸) ∱ 𝐸
2
𝜗
4
6𝜔

eff

1 ε 𝐿(𝐸)
, 𝑂(𝐸

ς
) φ 1. (S57)
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Here it is most important that this factor is approximately 1 at the optimal learning rate 𝐸
ς (Eq. (12)), which we usually consider

throughout the paper. 𝑂(𝐸) goes to zero for small learning rates (Eq. (B39)) and diverges for 𝐸  2𝐸
ς, since then 𝐿  1 (Eq. (B47)). We

will furthermore see below that it describes the 𝐸-dependence of the ratio between di"usion of irrelevant and improvements of rel-
evant weights (Eq. (S64)), as well as the additional increase in !nal error of NP caused by unrealizable target components (Eq. (S58)).
(iii) The last factor originates from the scaling of the update #uctuations 4ℷrew.noise,quad, Eqs. (S41,S42), which enter quadratically. It
can be further refactored as6 times the e"ective perturbation dimension6𝜔

eff
or6𝜛 . The latter re#ects the fact that WP and

NP generate perturbations in spaces of dimensions6𝜔
eff
and6𝜛 , but only the projection onto the output gradient is useful for

learning. The other factor6 originates from the overall scaling of the error 7 with6 , as the error function Eq. (8) contains a sum
over6 outputs. In other words, if 7 was fully normalized, by 1ϑ(6𝜛 ), 7

𝑁
would scale with the e"ective perturbation dimension.

The additional contribution to the !nal error of NP due to the presence of unrealizable target components, 7NP

𝑁 ,≨
(Eq. (S54)), can

be obtained from Eqs. (B43,B39) or line (S47) and Eq. (B39),

7
WP

𝑁 ,≨
= 0, 7

NP

𝑁 ,≨
=

𝑀
lin

1 ε 𝐿
= 𝑂(𝐸) ⋛ 7

opt
, (S58)

with the factor 𝑂(𝐸) from Eq. (S57). Since 𝑂(𝐸
ς
) φ 1, learning at 𝐸ς means that unrealizable target components increase NP’s !nal

error by approximately 27
opt

instead of 7
opt

as for WP (Fig. 3). As 7
opt

is independent of 𝐴
eff
, 7NP

𝑁 ,≨
remains !nite even in the limit

of in!nitesimally small perturbations where 7
𝑁
vanishes. For small perturbations, 7NP

𝑁 ,≨
and the unavoidable 7

opt
can therefore

become the dominant contributions to the !nal error.
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SM 2

Analysis of Weight Di"usion

This part provides a quantitative mathematical analysis of the weight changes in irrelevant directions of the weight space.

Weight di"usion due to credit assignment- and reward noise-related update !uctuations
As described in SM1, Sec. “Task relevant and irrelevant weights”, we can assume without loss of generality that the !rst𝜔

eff
inputs

are orthogonal and of strength 𝜗
2, while the remaining𝜔 ε𝜔

eff
inputs are zero. The !rst𝜔

eff
synaptic weights are thus relevant in

the sense that their value in#uences the output while the remaining ones are irrelevant. How do irrelevant weights change during
the modeled learning? For NP the update ϖℷ

NP

⊳⊲
is proportional to the eligibility trace

⌋

ℵ
<
NP

⊳ℵ
𝜚
⊲ℵ
(Eq. (6)), which is zero when the ⊲th

input is zero, 𝜚
⊲ℵ
= 0, for all ℵ. Therefore NP does not update irrelevant weights. WP, on the other hand, perturbs and updates also

the irrelevant weights (Eq. (3)). In the following we therefore focus on WP.
The evolution of the relevant weights is independent of the evolution of the irrelevant weights. This is because only the relevant

weights in#uence the reward and they are perturbed independently of the irrelevant ones. The independence is echoed in the
fact that the learning characteristics of WP only depend on 𝜔

eff
but not on 𝜔 (Eqs. (B39,B42)). The perturbations of the irrelevant

weights are also independent of each other, such that it su$ces to consider the evolution of a single one. We call it ℷ
irrel

and its
perturbation <

WP

irrel
. The expectation value of its update ϖℷ

WP

irrel
is zero as <WP

irrel
does not in#uence the reward,

⌉ϖℷ
WP

irrel
{ = ε

𝐸

𝐴
2

WP

⌉

❳

7
pert

ε 7
/

01111211113

indep. of <WP

irrel

<
WP

irrel
{ = ε

𝐸

𝐴
2

WP

⌉7
pert

ε 7{ ⌉<
WP

irrel
{ = 0. (S59)

This implies that the expectation value of the irrelevant weight at step 𝐹 taken with respect to the noise applied at all times,
⌉ℷ

irrel
(𝐹){all, stays identical to the initial weight,

⌉ℷ
irrel

(𝐹){all = ℷ
irrel

(0). (S60)

As a consequence the empirical ensemble mean, obtained by averaging over the irrelevant weights at a step 𝐹 in simulations, does
not drift, cf. main text, Fig. 2, and Fig. S1. In contrast, the variance of the irrelevant weight, ⌉⌉ℷ

irrel
(𝐹){{all, increases from one update

to the next. This is because the variance of a weight update,

⌉⌉ϖℷ
irrel

{{ =
𝐸
2

𝐴
4

WP

⦆

❳

7
pert

ε 7
/2

⋛ (<WP

irrel
)
2

[

= 2𝐸
2
𝜗
2
(7 ε 7

opt
) +

1

4
𝐸
2
𝐴
2

eff
𝜗
2
❳

6
2
𝜔

eff
+ 26

/

, (S61)

(derived below, Eq. (S62)) is nonzero and this variance adds to the variance present before the update. Therefore the empirical
standard deviation of the sample of irrelevant weights increases with each learning step 𝐹, cf. Fig. 2.

We have seen in SM1, Sec. “Contributions to the weight update: gradient following, credit assignment-related noise and reward
noise” that the WP weight update can be split into three parts, originating from gradient following (Line (S19)), the speci!c way of
solving the credit assignment problem (Line (S20)) and reward noise (Line (S22)). Since the variance increase in the irrelevant
weight, Eq. (S61), stems from the weight update, we can attribute its di"erent terms to the di"erent weight update contributions.
For this we !rst note that the gradient following contribution line Eq. (S19) does not in#uence ϖℷ

irrel
, since it is parallel to the error

gradient (Eq. (S23)), which lies in the subspace of relevant weights. Since the variances due to independent noise sources add up,
the variance of an irrelevant weight’s update (Eq. (S61)) is the sum of the variances of credit assignment-related (Eq. (S32)) and
reward noise induced #uctuations (Eq. (S39))

⌉⌉ϖℷ
irrel

{{ = ⌉⌉4ℷ
cr.as

irrel
{{ + ⌉⌉4ℷ

rew.noise,quad

irrel
{{

= 𝐸
2
]

]

]

]

⋆7

⋆ℷ

]

]

]

]

2

+
1

4
𝐸
2
𝐴
2

eff
𝜗
2
❳

6
2
𝜔

eff
+ 26

/

. (S62)

Noticing that ]]
]

⋆7

⋆ℷ

]

]

]

2

= tr[,𝜀
2
,

𝜛
] = 2𝜗

2
(7 ε 7

opt
) yields Eq. (S61).

The derivation shows that the !rst term in Eq. (S61) originates from credit assignment noise while the second originates from
reward noise. Consequently, the !rst term decreases with the learning progress (as it depends on 7) and does not depend on the
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perturbation strength 𝐴
2

WP
. It dominates at the beginning of the training, when the error is large. The second term is, in contrast,

constant during learning and depends on the perturbation strength 𝐴
2

WP
. For !nite 𝐴

2

WP
it becomes in#uential at the end of training

when the error is small. The !rst term in Eq. (S61) converges for !nite 𝐴
2

WP
to a !nite value since the second term implies that the

task performance error 7 never converges to zero (Eq. (B35)). While the relevant weights then do not improve further and just
#uctuate around their optimal values, the irrelevant weights keep di"using (Fig. S1b, left hand side, and Sec. “Weight di"usion for
stationary error in presence of reward noise” below). For in!nitesimal perturbation strength, the second term in Eq. (S61) is zero
and the error 7 as well as the !rst term converge to zero. The relevant weights converge and the di"usion of irrelevant weights
is only transient (Fig. S1a, right hand side, and the next Sec. “Transient weight di"usion due to credit assignment-related update
#uctuations”).

Transient weight di"usion due to credit assignment-related update !uctuations
In the following we quantitatively analyze the transient growth of weights for in!nitesimal perturbation size 𝐴

2

WP
 0

+. This will
explain the asymptotic agreement of the standard deviation of the ensemble of irrelevant weights and the target weight size in
Fig. S1a, left hand side.

Summing the variances that arise at every step from Eq. (S61) yields after 𝐹 steps a total additional variance

⌉⌉ϖℷ
tot

irrel
(𝐹){{all = 2𝐸

2
𝜗
2 ⋛ (7(0) ε 7

opt
)

𝐹ε1
⌈

ℏ=0

𝐿
ℏ
=

2𝐸
2
𝜗
2

1 ε 𝐿
(7(0) ε 7

opt
) ⋛ (1 ε 𝐿

𝐹
). (S63)

Here ϖℷ
tot

irrel
(𝐹) denotes the total change in the irrelevant weight up to the 𝐹th step and we used that ⌉7(ℏ){all ε7

opt
= (7(0)ε7

opt
)𝐿

ℏ

for 𝐴2

WP
 0

+ (Eqs. (B38,B40)).
We can now compare the standard deviation of the irrelevant weights to the relevant weights’ drift towards their targets. For

this we !rst note that 7(0)(1 ε 𝐿
𝐹
) = 7(0) ε ⌉7(𝐹){all and that the error at a learning step (measured against 7

opt
) is proportional

to the 2-norm of the relevant weight mismatch, 7 ε 7
opt

=
1

2
𝜗
2
⌋6

⊳=1

⌋𝜔eff

⊲=1
,

2

rel,⊳⊲
, due to our assumption on the 𝜀-matrix (App. A,

Sec. “Task setting”). Introducing the average of squared mismatch of the relevant weights, , 2

rel
= (6𝜔

eff
)
ε1

⌋6

⊳=1

⌋𝜔eff

⊲=1
,

2

rel,⊳⊲
, we

have 7(0) ε ⌉7(𝐹){all =
1

2
𝜗
2
6𝜔

eff

❳

,
2

rel
(0) ε ⌉,

2

rel
(𝐹){all

/

and Eq. (S63) becomes

⌉⌉ϖℷ
tot

irrel
(𝐹){{all = 𝑂(𝐸) ⋛

❳

,
2

rel
(0) ε ⌉,

2

rel
(𝐹){all

/

. (S64)

The proportionality factor 𝑂(𝐸) is approximately 1 at the optimal learning rate (Eq. (S57)) such that reductions in the mean square
mismatch of the relevant weights co-occur with equally strong increases in the variance of each irrelevant weight; in particular the
standard deviation of an irrelevant weight converges to the initial root mean squared error of the weights,

❲

⌉⌉ϖℷ
tot

irrel
(𝐹){{all 

❳

,
2

rel
(0)

/1ϑ2 for 𝐹  ∂. (S65)

The same then holds for the empirical standard deviation of an ensemble of irrelevant weights in a simulation.
In Fig. S1a left hand side, the learning rate is optimal, 𝐸 = 𝐸

ς; further we have ℷ
rel,⊳⊲

(0) = 0, ℷ
irrel,⊳⊲

(0) = 0 and the teacher weight
strengths are all identical. Thus

❳

,
2

rel
(0)

/1ϑ2 equals the teacher weight strengths. Eq. (S65) then implies that the standard deviation
of the ensemble of irrelevant weights converges to the teacher weights, like the relevant weightsℷ

rel,⊳⊲
(𝐹) do. In Fig. S1a, right hand

side, the learning rate is decreased by a factor of 0.1, which slows the convergence of the relevant weights down. It also decreases
the proportionality factor 𝑂(𝐸) in Eq. (S64) (Eq. (S57)) and leads to a by a factor

⟫

𝑂(𝐸) < 1 smaller spread of irrelevant weights.

Weight di"usion for stationary error in presence of reward noise
In Fig. S1b we consider WP’s weight di"usion for !nite perturbation size when the !nal steady state error 7

𝑁 ,unr
= 7

𝑁
+ 7

opt

(Eqs. (S55,B38) has been reached. This minimizes the in#uence of the !rst term in Eq. (S61), since the error is minimal, and it ren-
ders the strength of the credit assignment-related update #uctuations approximately constant, since the error is approximately
constant. Because the reward noise-related update #uctuations are constant as well, we have a di"usion of irrelevant weights
with constant strength: The variance of the weight distribution increases in each trial by the constant speci!ed by Eq. (S61) with
7 ε 7

opt
= 7

𝑁
(Eq. (S55)),

⌉⌉ϖℷ
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eff
𝜗
2 ⋛62

𝜔
eff
. (S66)
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The (with respect to trial number and weight strength) homogeneous randomwalk or di"usion is re#ected in a square root growth
of the standard deviation of the sampled weight distribution in Fig. S1b, left hand side.

Networks with weight decay
In biological neural networks synaptic strengths do not diverge but stay !nite. As a proof of principle, we show that multiplicative
weight decay can achieve this: After each update all weights are scaled down by a factor 𝑃

wd
< 1,

ℷ
⊳⊲
(𝐹) = 𝑃

wd
⋛
❳

ℷ
⊳⊲
(𝐹 ε 1) + ϖℷ

⊳⊲
(𝐹 ε 1)

/

. (S67)

Fig. S1b, right hand side, illustrates weight evolution incorporating this weight decay, after the relevant weights have reached
their steady state distribution (now shifted towards smaller weights). The irrelevant weights still initially di"use; the multiplicative
weight decay, like a restoring force, counteracts and !nally balances the di"usion, which leads to a steady state. We note that
multiplicative weight decay is invariant with respect to rotations of the input space and thus compatible with our assumption that
only the !rst 𝐹

eff
inputs are nonzero (SM1, Sec. “Task relevant and irrelevant weights”). Additive weight decay, i.e. reducing (the

amplitude of) each weight by the same amount, would non-isotropically bias the weight evolution.
We further note that multiplicative weight decay is on average equivalent to L2 regularization. To implement such a regular-

ization, the error function may be modi!ed to 7  7 + 𝑄
1

2
tr[ℷℷ

𝜛
] with a parameter 𝑄 specifying the regularization strength. This

adds ε𝑄ℷ to the negative error gradient, which WP follows on average. Additive weight decay would on average be equivalent to
an L1 regularization.
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SM 3

Multiple subtasks

In this part we !rst describe the detailed setup of our tasks that are composed of multiple subtasks. Thereafter we derive the
convergence factors for the learning of multiple subtasks, which were introduced in the main text using intuitive arguments, and
the !nal error due to !nite perturbations and unrealizable target components. This allows us to explain why batch learning im-
proves the convergence speed of WP but not of NP learning. The subsequent section shows that batch learning also reduces the
contribution of unrealizable target components to the !nal error of WP but not NP. Further we !nd that splitting the task into
subtasks decreases the !nal error for learning with !nite size perturbations for both WP and NP learning, while batch learning
increases it.

Task setting and construction of subtasks
We adapt the framework of the analytically tractable tasks (main text, Sec. “Theoretical analysis”) to tasks that consist of several
subtasks. A task has input dimensionality𝜔 task

eff
, i.e. there are𝜔

task

eff
latent inputs. The latent inputs have the same strength. In each

trial a subtask of the task with dimensionality 𝜔 trial

ef f
is presented. The error is then computed according to Eq. (8) and the updates

according to Eq. (3) or Eq. (6).
Without loss of generality we assume rotated inputs. This allows to assign to each of the !rst 𝜔 task

eff
input neurons a di"erent

𝜛 -dimensional basis function 𝑅
⊲ℵ
; the𝜔ε𝜔

task

eff
remaining inputs are zero. Di"erent basis functions are orthogonal, 1

𝜛

⌋𝜛

ℵ=1
𝑅
⊲ℵ
𝑅
>ℵ
= 4

⊲>
.

In a given trial, 𝜔 trial

ef f
of the !rst 𝜔 task

eff
inputs are chosen randomly with equal probability to be active,

𝜚
⊲ℵ
=

⌋

⌈

⌉

⌈

{

𝜗 ⋛ 𝑅
⊲ℵ

if input ⊲ is active

0 if input ⊲ is inactive.
(S68)

Active inputs therefore have strength 𝜗
2. For simplicity we assume that the targets are fully realizable. The inputs that are active

in a subtask 𝐵 therefore determine the targets via target weights ℷς,

ℸ
𝐵,ς

⊳ℵ
=

⌈

⊲∇−𝐵

ℷ
ς

⊳⊲
𝜚
𝐵

⊲ℵ
, (S69)

where −
𝐵
is the set of inputs that are active during subtask 𝐵. We refer to the inputs 𝜚𝐵

⊲ℵ
of subtask 𝐵 as an “input pattern”.

We de!ne the error of the task as the average error over all subtasks, 7 task ∱ ⌉7{subtasks. Introducing the subtask-averaged
correlation matrix 𝜀

task ∱ ⌉𝜀{subtasks, 7 task can be expressed by

7
task

= ⌉7{subtasks = ⌉

1

2
tr
}

,𝜀,
𝜛
⦃

{subtasks =
1

2
tr
}

,𝜀
task

,
𝜛
⦃

. (S70)

An input ⊲ is in a given trial active with constant probability

𝜔
trial

ef f

𝜔
task

eff

∱ 1

𝑆
, (S71)

where 𝑆 can be interpreted as the e"ective number of subtasks or patterns in the task and as the number of trials needed to
gather information on all relevant weights. The !rst 𝜔 task

eff
diagonal elements of 𝜀 task , which are nonzero, are therefore given by

1

𝑆
𝜗
2, that is for each task-relevant input by the product of its strength with its probability of being active. This stays true if the

subtasks are not random but !xed such that their sets of active inputs are non-overlapping, i.e. such that each input ⊲ ∇ 1,… ,𝜔
task

eff

is nonzero in exactly one subtask. 𝑆 is then the number of these subtasks.
The typical timescale of learning, 1ϑ(1 ε 𝐿) (motivated after Eq. (S54)), is larger than 𝑆 by a factor of 6𝜔

task

eff
+ 2 for WP and

6𝜔
trial

ef f
+ 2 for NP, Eq. (15) and (16). Thus for typical task dimensions all inputs are often sampled before the error signi!cantly

changes. It is therefore not important whether random or !xed input patterns are presented and whether the presentation is
in a speci!c order. Further, similar to the case without subtasks, it is not necessary to assume a !xed set of basis functions 𝑅

⊲ℵ

for our results to hold: The error computation and the update rules Eqs. (8,B7,B19) imply that only the weight mismatch and the
correlation structure 𝜀(𝐹) of the inputs at a trial 𝐹matter for the error between student and teacher output as well as for the weight
updates. In the present part we could thus also construct each trial from completely di"erent basis functions 𝛻𝑅

⊲ℵ
(𝐹 + 1) ∲ 𝛻𝑅

⊲ℵ
(𝐹), as

long as their correlations remain unchanged, 1

𝜛

⌋𝜛

ℵ=1
𝛻𝑅
⊲ℵ
𝛻𝑅
>ℵ
= 4

⊲>
(and the targets are adapted according to Eq. (S69)).
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Derivation of the convergence factor
Here we derive the convergence factor of WP by considering its improvements on the current subtask and the simultaneous
deterioration on all other subtasks; a slightly altered derivation holds for NP. For simplicity and without loss of generality (see the
related argument at the end of the previous section) we assume that there are 𝑆 !xed subtasks that are orthogonal in the sense
that their sets of active inputs do not overlap. This implies that also their sets of trial-relevant weights do not overlap. As here we
derive only the convergence factor, we also assume in!nitesimally small perturbations and realizable targets.

The task error at trial 𝐹, Eq. (S70), is the average of the errors 7
𝐷
of the subtasks 𝐷,

7
task

=
1

𝑆

𝑆
⌈

𝐷=1

7
𝐷
(𝐹). (S72)

Let pattern 𝐵 be presented at trial 𝐹. Then the error signal 7pert

𝐵 (𝐹) ε 7
𝐵
(𝐹) and the update ϖℷ(𝐹) depend only on pattern 𝐵, while

the e"ect of the weight update on the task error depends on all subtasks 𝐷. After the update, the expected error for subtask 𝐵

decreases by the same factor as for the single pattern case,
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𝜗
4
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/

⋛ ⌉7
𝐵
(𝐹){ (S73)

(Eq. (B39)), while each weight that is irrelevant to the current subtask receives #uctuations with mean zero and variance

⌉⌉ϖℷ
tr.irrel.

(𝐹){{ = ⌉⌉4ℷ
cr.as
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2
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2 ⋛ 7

𝐵
(𝐹) (S74)

(Eq. (S61) in the small 𝐴2

NP
limit). Correspondingly, the expected error for subtasks 𝐷 ∲ 𝐵 increases as
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𝐵
(𝐹){. (S75)

Inserting Eqs. (S73,S75) into Eq. (S72) yields the evolution of the task error,
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= 7
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𝐵
(𝐹){. (S76)

Assuming that ⌉7
𝐵
(𝐹){ φ 7

task , i.e. that the error on all subtasks is su$ciently similar, and using 𝑆𝜔
trial

ef f
= 𝜔

task

eff
(Eq. (S71)) !nally

yields

⌉7
task

(𝐹 + 1){ =

\

1 ε
2𝐸𝜗

2

𝑆
+

𝐸
2
𝜗
4
(6𝜔
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eff
+ 2)

𝑆

(

011111111111111111111111121111111111111111111111113

=𝐿WP

⋛⌉7 task
(𝐹){. (S77)

The factor 1ϑ𝑆 arises because the changes to weights relevant in any subtask a"ect the error only in 1ϑ𝑆 of the trials. Apart from
that factor, the bene!cial part of the convergence factor due to gradient following, ε 1

𝑆
⋛2𝐸𝜗2, stays the same as for a single subtask.

The last part due to update #uctuations in all task-relevant weights, 1

𝑆
⋛ 𝐸2𝜗4

(6𝜔
task

eff
+ 2), however, increases approximately by a

factor of 𝑆 in relation to the bene!cial part, as the number of #uctuating weights relevant for the task is 𝑆 times larger than if only
subtask 𝐵 had to be learnt. These are the arguments given in the main text.

Minimizing 𝐿
WP

with respect to 𝐸 yields Eq. (16),

𝐸
ς

WP
=

1

(6𝜔
task

eff
+ 2)𝜗2

, 𝐿
ς

WP
= 1 ε

1

𝑆

1

6𝜔
task

eff
+ 2

. (S78)

For NP, the same derivation with ⌉7
𝐷
(𝐹 + 1){ = ⌉7

𝐷
(𝐹){ for 𝐷 ∲ 𝐵 instead of Eq. (S75) produces Eq. (15),

𝐸
ς

NP
=

1

(6𝜔
trial

ef f
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, 𝐿
ς

NP
= 1 ε
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1
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trial
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. (S79)

16 of 42

88



Derivation of the #nal error due to #nite perturbations
In this section we quantify the !nal error in a task with multiple subtasks that results from quadratic reward noise-induced update
#uctuations. The contribution of unrealizable target components will be investigated in the next section.

We consider the already described setting with a task that has e"ective input dimension𝜔
task

eff
and is split into 𝑆 non-overlapping

subtasks. These have e"ectively 𝜔
trial

ef f
-dimensional inputs and are presented in the di"erent learning trials. The !nal task error

due to !nite perturbation sizes may be de!ned as

7
task

𝑁
=

1

𝑆

𝑆
⌈

𝐷=1

7
𝑁 ,𝐷

, (S80)

where 7
𝑁 ,𝐷

are the !nal errors of the individual subtasks, which arise due to quadratic reward noise (Eq. (S54)). We investigate
how 7

task

𝑁
depends on the number 𝑆 of subtasks in which the task is split, where 𝑆 = 1 corresponds to the single-pattern case

Eqs. (S55,S56).
Combining Eqs. (S80,S54) and line (S48), the contribution of (quadratic) reward noise-induced update #uctuations to the !nal

error is
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]{ . (S81)

Because all subtasks have identical properties, we can consider the e"ect that an update following the presentation of an arbitrary
subtask 𝐵 has on the errors 7

𝐷
of all subtasks 𝐷.

For WP, all weights are updated and #uctuations of the weights relevant for any subtask 𝐷 (including 𝐷 = 𝐵) are equal in size and
statistics. Inserting the expressions for ⌉⌉4ℷrew.noise,quad

⊳⊲
{{, 𝐸ς and 𝐿

ς (Eqs. (S39,S78)) into Eq. (S81) yields
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. (S82)

The !nal error of WP thus becomes smaller if the task is split into more subtasks, even though that means that WP converges
more slowly (Eq. (S78)). The reason is that WP has to operate at a roughly 𝑆 times smaller learning rate, which means that update
#uctuations average out over more trials, ultimately lowering the !nal error.

For NP, only weights relevant for the current subtask are updated such that only the term with 𝐷 = 𝐵 in Eq. (S81) contributes.
Inserting the expressions for ⌉⌉4ℷrew.noise,quad

⊳⊲
{{, 𝐸ς and 𝐿

ς (Eqs. (S40,S79)) into Eq. (S81) yields
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, (S83)

where −
𝐵
is the set of inputs that are active during subtask 𝐵, 𝜛 is the subtask duration and 𝜛

task the duration of the full task
with all subtasks concatenated. We conclude that if subtasks are obtained by splitting an original, full task of duration 𝜛

task into
𝑆 subtasks such that 𝜛 = 𝜛

task
ϑ𝑆 , 7NP

𝑁
scales like 7

WP

𝑁
with 1ϑ𝑆 . This holds despite the fact that the optimal learning rate of NP

stays approximately constant when changing 𝑆 . Since for any type of split 𝜛 ∳ 𝜔
trial

ef f
, comparison of Eq. (S83) and Eq. (S82) yields

7
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∳ 7

WP

𝑁
.
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Derivation of the #nal error due to unrealizable target components
Here we obtain the !nal error 7

𝑁 ,≨
that results from the target components of a trial that are perpendicular to any of the inputs,

i.e. from the trial-unrealizable target components. This error only occurs for NP.
We assume that in each trial the trial-unrealizable components have the same strength, leading to an unavoidable limiting error

7
tr.unr.

opt
, which is the same for each subtask. Since the error de!nition Eq. (S80) is normalized by 𝑆 , 7 tr.unr.

opt
is independent of 𝑆 . For

NP but not WP, trial-unrealizable target components add reward noise ϖ7
lin,unr

pert
to the error signal (Eq. (S10)), which gets translated

into update #uctuations with ⌉⌉4ℷ
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(Eq. (S37)). These results are still valid for the case considered here, with
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trial-relevant weights of the current subtask 𝐵. The update #uctuations lead to an expected

increase in error (Eqs. (S47,S72)) of

𝑀
lin

NP
=

1

𝑆

𝑆
⌈

𝐷=1

1

2
⌉tr[

∲0 only for 𝐷=𝐵
81111119111111.

4ℷ
rew.noise,lin

𝜀
𝐷
(4ℷ

rew.noise,lin
)
𝜛
]{

=
𝜗
2

2𝑆

𝑆
⌈

𝐷=1

4
𝐷𝐵

6
⌈

⊳=1

𝜔
trial

ef f
⌈

⊲=1

⌉⌉4ℷ
rew.noise,lin

⊳⊲
{{

=
𝜗
2

2𝑆
6𝜔

trial

ef f
⋛ 2𝐸2𝜗2

7
tr.unr.

opt
=

1

𝑆
𝐸
2
𝜗
4
6𝜔

trial

ef f
⋛ 7 tr.unr.

opt
. (S84)

The result is very similar to 𝑀
lin

NP
in Eq. (B44) and reproduces it for 𝑆 = 1. When keeping 𝜔

task

eff
!xed and regarding 𝑆 as a free

parameter, both 𝐸 (relative to 𝐸
ς) and𝜔

trial

ef f
contain implicit dependencies on 𝑆 . The contribution of 𝑀lin

NP
to the !nal error (Eq. (S54)),

at the optimal learning rate (Eq. (S79)), is
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The !nal error contribution 7
𝑁 ,≨

due to trial-unrealizable target components is thus (approximately) independent of the number of
subtasks 𝑆 that the full task is split into. Also, at the optimal learning rate, the additional error contribution for NP learning again
equals the unavoidable limiting error 7 tr.unr.

opt
(cf. Eq. (S58)).

The results of this section only hold for trial-unrealizable target components. In Sec. “Batch learning improvesWP’s but not NP’s
performance for overlapping subtasks and unrealizable target components” we make the distinction between “trial-unrealizable”
and “task-unrealizable” components. There we show that trial-realizable but task-unrealizable components also harmWP learning,
but that combining trials into batches renders some task-unrealizable components also trial-unrealizable, reducing the e"ect.

Error curves when learning multiple subtasks
Combining Eqs. (S78,S79,S82,S83,S85,S54), the errors of WP and NP evolve as
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(S87)

(S88)

(S89)
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Batch learning improves WP’s but not NP’s performance
Why does batch learning improveWP’s but not NP’s performance? In the following we obtain intuitive explanations from observing
how concatenating trials into batches a"ects which weights are relevant and which target components are realizable in a trial.

Concatenating 𝑇 ⨋ 𝑆 subtasks with non-overlapping inputs into a single batch changes the subtask parameters as follows

𝜔
trial
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(S90)

(S91)

Here the change Eq. (S90) left re#ects that the input dimensionality of 𝑇 non-overlapping inputs with dimension 𝜔
trial

ef f
is 𝑇𝜔

trial

ef f
;

consequently, the number of trial-relevant weights becomes 𝑇6𝜔
trial

ef f
. The number of trials needed to gather information on all

task-relevant weights, 𝑆 , therefore decreases, by a factor of 𝑇 (Eq. (S90) middle). The temporal extent of the subtask increases by
a factor 𝑇 (Eq. (S91) middle). The individual input vectors keep their nonzero entries and are padded by zero entries from length
𝜛 to length 𝑇𝜛 . Because the entries of 𝜀 have as normalizing prefactor the new total trial duration 𝑇𝜛 instead of 𝜛 , the nonzero
entries read 𝜗

2
ϑ𝑇 (Eq. (S90) right). Since there are 𝑇 times more nonzero input vectors, the total input strength per time step, 𝜗2

tot

(Eq. (A11)), remains unchanged, as we expect it from a concatenation operation. The task dimensionality is una"ected by changes
of the subtasks (Eq. (S91) left).

Using these scalings and assuming 6𝜔
trial

ef f
𝑈 2 in Eqs. (S78,S79) shows that, approximately, the optimal learning rate and the

convergence rate (φ 1 ε 𝐿) of WP increase linearly with 𝑇 , while the performance of NP stays una"ected,
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(S92)

(S93)

The result can be understood as follows: In a batch of 𝑇 subtasks, the error feedback of a single trial contains information on
𝑇 times more weights. In WP this increases the number of weights that receive bene!cial updates (Eq. (S73)) and do not simply
#uctuate (Eq. (S75)), by a factor 𝑇 . Therefore learning is 𝑇 times faster. Since for NP trial-irrelevant weights do not #uctuate, it
does not matter whether the weight update information is presented in one subtask or distributed over di"erent ones. Therefore
NP learning does not bene!t from forming batches.

The scaling of the !nal error due to !nite perturbation sizes when learning at the optimal learning rate can be obtained using
Eqs. (S82,S83). If we concatenate 𝑇 non-overlapping subtasks of duration 𝜛 into batches, 𝜔 trial

ef f
 𝑇𝜔

trial

ef f
(Eq. (S90)) and 𝜛  𝑇𝜛

(Eq. (S91)) imply
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i.e. the !nal error increases proportional to the batch size. Fig. S5 shows WP and NP learning for di"erent batch sizes along with
predicted error curves from the results of this section. The independence of the !nal error in theMNIST task from the perturbation
strength (Fig. S10) and for NP from the batch size (Fig. 7) suggests that !nal performance is not limited by the reward noise caused
by !nite perturbations.

Batch learning improves WP’s but not NP’s performance for overlapping subtasks and unrealizable
targets
Are there speci!c e"ects of batch learning bene!ting WP and/or NP when the subtask input patterns are overlapping and the
targets contain unrealizable components? To address this questions we need to distinguish trial-unrealizable and task-unrealizable
target components. We will show that trial-realizable but task-unrealizable components are a source of gradient noise for WP and
NP, that larger batch sizes render some of these components trial-unrealizable, and that this reduces the gradient noise for WP
but not NP.

Let ℷς

⊳⊲
be an optimal weight matrix that minimizes the task error Eq. (S72), such that in a subtask 𝐵 and for task-unrealizable

targets ≨𝐵 the targets ℸ𝐵,ς
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Here ≨
𝐵,tr.unr. is the trial-unrealizable component that is orthogonal to all inputs of subtask 𝐵. ≨𝐵,tr.real. is the target component that

cannot be realized without simultaneously increasing the task error due to worse performance on other (overlapping) subtasks,
although it could be realized in trial 𝐵. We note that ≨𝐵,tr.real.

⊳ℵ
can only be nonzero if subtasks overlap. Expressing the desired output

of the subtask using this distinction,
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the error for subtask 𝐵 is
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Here the weight mismatch , = ℷ ε ℷ
ς is de!ned relative to the weights ℷ

ς that are optimal for the full task. Perturbations of
the weights can couple to ≨

𝐵,tr.real. but not ≨𝐵,tr.unr., while node perturbations project equally onto trial- and task-unrealizable target
components. ≨𝐵,tr.real.

⊳ℵ
endows the output- and weight error gradients with noise,
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The !rst terms are stochastic estimates of the gradient of the full task with all unrealizable target components removed. The
realizable part of the task is solved by the sameweight con!gurations as the full, unrealizable task, as the unrealizable components
by de!nition cannot be improved. Thus their contribution to the error is the same regardless of the weights, and following the
gradient of the realizable task already solves the task. The other terms in Eqs. (S98,S99) therefore cause noise. ≨

𝐵,tr.unr. causes
reward noise and harms only NP (Eq. (S85)). ≨𝐵,tr.real. adds gradient noise to the weight gradient: Even if WP and NP could average
over all possible perturbations and measure ⋆7

𝐵
ϑ⋆ℷ

⊳⊲
with arbitrarily high precision, the computed weight update would not be

linearly optimal. The gradient is wrong in the sense that for nonzero ≨
𝐵,tr.real.

⊳ℵ
the trial error gradient ⋆7

𝐵
ϑ⋆ℷ

⊳⊲
does not provide an

optimal approximation to the error gradient of the entire task. Because ≨
𝐵,tr.real. is realizable within the single trial, both WP and NP

try to reduce it. It therefore causes alike noise for both WP and NP.
As for taskswithout subtasks (cf. SM1, Sec. “Realizable and unrealizable outputs”), the trial-unrealizable part ≨𝐵,tr.unr. a"ects NP by

inducing reward noise. WP cannot induce output perturbation along this output component and is thus not a"ected. Since output
perturbations directly change 7

pert
ε 7 without distinguishing between realizable and unrealizable target components, 7

pert
ε 7 is

equally a"ected by ≨𝐵,tr.real. and ≨
𝐵,tr.unr.. Therefore basically their sum ≨

𝐵 matters for NP.
An increasing batch size renders some task-unrealizable but trial-realizable components also trial-unrealizable. This becomes

especially apparent for the casewhere thebatch contains all subtasks: Because there is only one (sub-)task or trial, task-unrealizable
components are also trial-unrealizable, ≨1,tr.unr.

= ≨
1 and ≨

1,tr.real.
= 0.

Due to the decrease of ≨ tr.real. for increasing batch size, the gradient noise a"ectingWP decreases, as it no longer induces output
perturbations along these components. In contrast, the strength 1

𝜛

⌋𝜛

ℵ=1

⌋6
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(≨

𝐵

⊳ℵ
)
2 of the sum ≨

𝐵,tr.real.
+≨
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= ≨

𝐵, which determines
NP’s gradient noise, is independent of the batch size. Therefore WP but not NP bene!ts from increasing the batch size.
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SM 4

Arbitrary input strength distributions

Error curves for input components with di"erent strength
In the main text, Sec. “Theoretical analysis” and in App. B, Sec. “Error curves for equally strong input components” (as well as in
the SM parts thereafter), we focused on the error dynamics in the special case where all latent inputs have the same strength. To
understand the error dynamics in the reservoir computing simulation experiment and for completeness, here we also give the
general solution for the error dynamics. We aim at expressions analogous to those of App. B, Sec. “Error curves for equally strong
input components”. To obtain them we split the error 7 into components 7

𝜕 and replace the convergence factor 𝐿 by a matrix
(𝑉 + 𝑊)

𝜕𝑋
and the per-update error increase 𝑀 by a vector 𝑀

𝜕
.

To de!ne the error components, we split the correlation matrix 𝜀 into a sum of matrices 𝜀𝜕 , where each matrix contains the
contribution of one eigenvalue to 𝜀,
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where 𝜍 diagonalizes 𝜀 and 𝜑
𝜕 is a matrix with only one nonzero element 𝜑𝜕
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The error 7 then reads
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Here we again use the tilde symbol to distinguish the correlation matrix that stems from the cost evaluation at trial 𝐹 from the
correlation matrix that determines the error change due to perturbations in trial 𝐹ε 1 (App. B). Because the trace is linear, we can
split the input strength-dependent part of the error into 𝜔 summands 7𝜕 as
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7
𝜕 only depends on the strength of the 𝜕th input component and the weight mismatch projected onto the corresponding input

direction (Eq. (S100)). In other words, for each input component 𝜕 we can de!ne related weights that read out from it, and a related
error component 7𝜕 that depends on the mismatch of these weights. We now obtain a recurrence equation that relates the 𝜔

error components ⌉7
𝜕
(𝐹){ at trial 𝐹 to those at trial 𝐹 ε 1. For this we !rst split ⌉7𝜕

(𝐹){ and ⌉7
𝜕
(𝐹 ε 1){ in Eqs. (B17, B34) up using

Eq. (S103). It then su$ces to also split 𝛻𝜀 up using Eq. (S100) and to explicitly evaluate the powers and traces of 𝜀 using Eq. (S101).
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For NP we obtain

⌉7
𝜕
(𝐹){
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𝜕
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2
tr[,𝜀𝜀

𝜕
𝜀,

𝜛
]

+

𝐸
2
𝐴
2

NP

8𝜛
tr[𝜀

𝜕
𝜀] ⋛

❳

6
3
𝜛

2
+ 66

2
𝜛 + 86

/

+ 𝐸
2
6 tr[𝜀

𝜕
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]
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Both relations can be written as

⌉7
𝜕
(𝐹){ =

𝜔
⌈

𝑋=1

(𝑉 + 𝑊)
𝜕𝑋

⋛ ⌉7𝑋
(𝐹 ε 1){ + 𝑀

𝜕
, (S106)

where 𝑉 is the same for WP and NP but 𝑊 and 𝑀 di"er,

𝑉
𝜕𝑋

= (1 ε 2𝐸𝜗
2

𝜕
+ 𝐸

2
𝜗
4

𝜕
)1

𝜕𝑋
, (S107)
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𝑀
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𝜕
=
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⋛
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. (S111)

The matrix 𝑉 is diagonal, but 𝑊 is not and mixes the di"erent error components. 𝑉 originates from the e"ect of the mean update
(cf. Eqs. (S19,S45)), and 𝑊 from that of credit-assignment-related update #uctuations (Eqs. (S20,S46)). 𝑊

𝜕𝑋
measures the increase

in error component 7𝜕 due to update #uctuations 4ℷ
cr.as caused by output perturbations parallel to the 𝑋th input component.

The diagonal entries 𝐸
2
𝜗
4

𝜕
4
𝜕𝑋
in Eqs. (S108,S109) arise due to correlations between the corresponding update and error signal

components. The di"erent form of 𝑊
𝜕𝑋
for WP and NP can be understood by considering three factors: First, in WP the strength

(variance) of the induced output perturbation along the 𝑋th input component is proportional to the strength 𝜗
2

𝑋
of the 𝑋th input

component, while for NP output perturbations have the same size along all directions. Second, in NP the update of the weights
that read out from the 𝜕th input component are constructed by projecting the output perturbations onto that input component
in the eligibility trace (Eq. (6)). The update of weights that read out from the 𝜕th input component thus scales with its strength 𝜗

2

𝜕
.

WP, on the other hand, constructs updates by multiplying weight perturbations with the same error signal for all weights. Third,
the e"ect of update noise on error component 7

𝜕
scales with the related input strength 𝜗

2

𝜕
for both WP and NP. Together, 𝑊

𝜕𝑋
thus

scales with 𝜗
2

𝜕
𝜗
2

𝑋
for WP and with 𝜗

4

𝜕
for NP.

Eq. (S106) is solved by

⌉7
𝜕
(𝐹){ =

𝜔
⌈

𝑋=1

❳

𝑉 + 𝑊
/𝐹

𝜕𝑋
⌉7

𝑋
(0){ +

𝜔
⌈

𝑋=1

𝐹ε1
⌈

𝐶=0

❳

𝑉 + 𝑊
/𝐶

𝜕𝑋
𝑀
𝑋

=

𝜔
⌈

𝑋=1

❳

𝑉 + 𝑊
/𝐹

𝜕𝑋
⌉7

𝑋
(0){ +

𝜔
⌈

𝑋=1

\\

1ε
❳

𝑉 + 𝑊
/

(ε1\

1ε
❳

𝑉 + 𝑊
/𝐹
((

𝜕𝑋

𝑀
𝑋
. (S112)

For WP, 𝑉 + 𝑊 is symmetric (Eq. (S108)). We can therefore diagonalize it and express the error evolution in terms of error modes
that decay independently of each other. This is not possible for NP where 𝑉 + 𝑊 is in general non-normal (Eq. (S109)). Therefore,
even for the considered convex error function, the error of NP can initially increase due to transient non-normal ampli!cation. The
di"erent properties of 𝑉+𝑊 suggest to perform a diagonalization of 𝑉+𝑊 for WP and a Schur decomposition for NP to analyze the
error evolution of speci!c networks. We will, however, continue to work in the space of error components and not error modes
(the eigen- or Schur vectors of 𝑉 + 𝑊) because of the simpler expressions and mechanistic interpretations.
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For a fair comparison we set 𝐴2

NP
= 𝐴

2

eff
and 𝐴

2

WP
= 𝐴

2

eff
ϑ
⌋𝜔

𝑋=1
𝜗
2

𝑋
(App. A, Sec. “E"ective perturbation strength”) and express the

recursion in terms of the e"ective perturbation strength. This a"ects only 𝑀,

𝑀
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𝜕
=

1

8
𝐸
2
𝐴
2

eff
⋛
❳

6
3
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𝜕

𝜔
⌈

𝑋=1

𝜗
2

𝑋
+ 26

2
𝜗
2

𝜕

⌋𝜔

𝑋=1
𝜗
4

𝑋

⌋𝜔

𝑋=1
𝜗2

𝑋

+ 46
2
𝜗
4

𝜕
+ 86

𝜗
6

𝜕

⌋𝜔

𝑋=1
𝜗2

𝑋

/

, (S113)

𝑀
NP

𝜕
=

1

8
𝐸
2
𝐴
2

eff
𝜗
4

𝜕
⋛
❳

6
3
𝜛 + 66

2
+ 8

6

𝜛

/

+ 𝐸
2
𝜗
4

𝜕
6 ⋛ 7

opt
. (S114)

Evolution of error components related to strong and weak inputs
For in!nitesimal perturbation strength and realizable targets, the amount of interference between error components determines
the di"erences in the convergence behavior of the learning rules (cf. the identical diagonal elements of 𝑉 + 𝑊 Eq. (S107-S109)).
Whether WP or NP generates more interference to an error component 7

𝜕
depends on the concrete distribution of error compo-

nents in the considered learning step. This distribution, in turn, depends on the initial conditions of the training.
In order to analyze the e"ect of interference on the convergence of error components related to strong and weak input

strengths, we consider a single update. We assume that 𝐴
eff

is negligible and that the target is realizable, ≨ = 0 and 7
opt

= 0.
This implies 𝑀 = 0 (Eqs. (S113,S114)) and the error decay is determined by 𝑉 + 𝑊 (Eq. (S106)). Inserting the expressions for 𝑊WP⟦NP,
Eqs. (S108,S109), into Eq. (S106) yields

⌉7
𝜕
(𝐹){

WP

= (𝑉
𝜕𝜕

+ 𝐸
2
𝜗
4

𝜕
) ⋛ ⌉7𝜕

(𝐹 ε 1){ + 𝐸
2
𝜗
2

𝜕
6 ⋛

𝜔
⌈

𝑋=1

𝜗
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𝑋
⌉7

𝑋
(𝐹 ε 1){ (S115)

⌉7
𝜕
(𝐹){
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= (𝑉
𝜕𝜕

+ 𝐸
2
𝜗
4

𝜕
) ⋛ ⌉7𝜕

(𝐹 ε 1){ + 𝐸
2
𝜗
2

𝜕
6 ⋛ 𝜗2

𝜕

𝜔
⌈

𝑋=1

⌉7
𝑋
(𝐹 ε 1){

011111111111111111121111111111111111113

∱ϖ7𝜕,interference

upd

. (S116)

The last terms describe the error increase of component 7𝜕 due to interference with all other components 7𝑋 . Here we compare
how the error components of WP and NP evolve after a single update when starting from the same distribution. Consider the ratio
of the above interference terms,

ϖ7
𝜕,interference

NP,upd

ϖ7
𝜕,interference

WP,upd

=

𝜗
2

𝜕

⌋𝜔

𝑋=1
⌉7

𝑋
(𝐹 ε 1){

⌋𝜔

𝑋=1
𝜗2

𝑋
⌉7𝑋(𝐹 ε 1){

=

𝜗
2

𝜕

𝜗2

𝑂

⌋

⌈

⌉

⌈

{

> 1 + 7
𝜕 receives less interference for WP,

< 1 + 7
𝜕 receives less interference for NP,

(S117)

where we de!ned the critical input strength

𝜗
2

𝑂
=

⌋𝜔

𝑋=1
𝜗
2

𝑋
⌉7

𝑋
(𝐹 ε 1){

⌋𝜔

𝑋=1
⌉7𝑋(𝐹 ε 1){

. (S118)

Eq. (S117) implies that components connected to strong inputs with 𝜗
2

𝜕
> 𝜗

2

𝑂
are learned faster for WP while components related to

weak inputs with 𝜗
2

𝜕
< 𝜗

2

𝑂
improve faster for NP. In particular, the largest input component always improves faster or equally fast

for WP compared to NP, while the reverse holds for the the smallest input component (in the absence of reward noise).
In networks that are highly noisy (like biological ones) the task output needs to be generated by su$ciently strong latent input

components. In other words, there needs to be an input representation that !ts the task and clearly exceeds the noise. For initially
homogeneously distributed weights this means that the weights related to the strongest input components typically produce the
largest errors. Their faster convergence for WP indicates that WPmay typically improve faster than NP, at least in the beginning of
learning. Towards the end of learning, for !ne-tuning, also modi!cations of weights reading fromweaker inputs may be important
such that NP becomes faster (Fig. S7).

Final weight spread
By projecting the weight matrix onto an input component 𝛻𝜚

𝜕ℵ
(SM1, Sec. “Task relevant and irrelevant weights”), we can de!ne

related weights ,
𝜕 that read out from it and whose mismatch determines the corresponding error component 7𝜕. Eq. (S103)

then becomes

7
𝜕
=

1

2
tr[, 𝛻𝜀

𝜕
,

𝜛
] =

1

2
tr[,

𝜕 𝛻𝜀
𝜕
(,

𝜕
)
𝜛
] =

1

2
𝜗
2

𝜕
⟦,

𝜕
⟦

2
. (S119)

23 of 42

95



The squared norm of the weight mismatch, ⟦, 𝜕
⟦

2, is thus proportional to the related error component (Eq. (S106)) divided by the
input strength 𝜗

2

𝜕
. If the expectation value ,

𝜕

⊳⊲
is zero, as in all experiments in main text, Sec. “Theoretical analysis”, except when

there is weight decay or input noise (which bias ℷ𝜕

⊳⊲
towards zero), then ⌉⟦,

𝜕
⟦

2
{ is the variance of the weights ℷ𝜕.

We now estimate from Eqs. (S106–S111) how the !nal squared weight mismatch depends on the related input strength. When
assuming large 6 and 𝜛 and neglecting the self-interaction terms in 𝑉 and 𝑊, we can approximate 𝑉, 𝑊 and 𝑀 by their leading
order terms

𝑉
𝜕𝑋
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𝜕
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With these approximations, the expected evolution of the error components (Eq. (S106)) shows a simple dependence on the input
strength 𝜗

2

𝜕
, as the dependence on 𝑋 factors out. For WP we !nd
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= 0 after convergence if 𝜗𝜕 ∲ 0

. (S125)

After convergence ⌉7
𝜕
(𝐹){ = ⌉7

𝜕
(𝐹 ε 1){ such that either 𝜗

𝜕
= 0 or the highlighted term inside the brackets must be zero. For

relevant weights we can thus equate the bracket to zero and solve for the !rst ⌉7𝜕
(𝐹 ε 1){ inside it. This reveals that ⌉7𝜕

(𝐹  ∂){

is independent of 𝜕 and together with Eq. (S119) the scaling of ⌉⟦, 𝜕
(𝐹  ∂)⟦

2
{ with 𝜗

𝜕
,

⌉7
𝜕
(𝐹  ∂){ is independent of 𝜗2

𝜕
, ⌉⟦,

𝜕
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2
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𝜕

. (WP) (S126)

We conclude that for WP, each error component 7𝜕 adds the same contribution to the !nal error, regardless of the strength
𝜗
2

𝜕
of its corresponding input component, unless it is exactly zero. Eq. (S126) further states that for nonzero input components

the squared norm ⌉⟦,
𝜕
⟦

2
{ after convergence, or the weights’ variance, scales inversely with the input strengths 𝜗

2

𝜕
. In particular,

weights associated with weak inputs will di"use strongly but settle with a large, !nite variance. Only input components that are
exactly zero contribute7𝜕

= 0 to the error. Their weights are completely irrelevant and di"use to an in!nitely broad distribution. In
themain text, Sec. “Input noise”, and in the next Sec. “Small input components” we argue that small but nonzero input components
can still be practically irrelevant if the length of the training and/or the weight strength are limited.

For NP, Eq. (S106) simpli!es to
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= 0 after convergence

(S127)

Again the highlighted terms cancel after convergence of the error and can for nonzero input strength 𝜗
2

𝜕
be solved for ⌉7𝜕

(𝐹  ∂).
This yields

⌉7
𝜕
(𝐹  ∂){ ± 𝜗
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𝜕
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𝜕
. (NP) (S128)
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We conclude that, in contrast to WP, error components related to weak input components contribute little to the !nal error, while
those related to strong input components contribute most. Eq. (S128) further shows that for NP the !nal variance of the weight
distribution is independent of 𝜗2

𝜕
; each weight is learned with the same precision.

Small input components
Strictly speaking, weights are completely irrelevant only if the inputs that they read out fromare exactly zero (assumingwithout loss
of generality rotated inputs). This is because changing the weights of any nonzero input has some e"ect on the output. Similarly,
target components are completely unrealizable only if they are not present at all in the input. This raises the question whether
our !ndings generalize to small but nonzero inputs.

To address it, we note that weights that read out from small inputs need to be large to have a sizeable e"ect on output and
error. Indeed, Eq. (S119) shows that the size of the weight mismatch necessary to cause an error contribution 7

𝜕 is inversely
proportional to the input strength, ⟦, 𝜕

⟦

2
ϱ 𝜗

ε2

𝜕
. For a given error tolerance, this means that the contribution from weights that

read out weak inputs can be neglected as long as these e!ectively irrelevant weights remain small enough.
One setting in which these weights remain small arises if the training duration is long enough for the relevant weights to

converge, but too short for the e"ectively irrelevant weights to noticeably contribute to the error. Fig. 6c shows such a scenario,
in which the weak inputs are given by white input noise.

Weight decay can also contain the growth of e"ectively irrelevant weights (Fig. 2bii,S1b, SM2, Sec. “Networks withweight decay”).
We expect this to work particularly well if there is a separation of timescales: if the convergence time of relevant weights is shorter
than the time after which the e"ectively irrelevant weights make a sizeable contribution to the error, then the weight decay can
operate on the longer timescale and onlyweakly a"ect the relevantweights (Fig. 6c). Introducing an upper bound for themagnitude
of individual weights can similarly limit the error contribution from e"ectively irrelevant weights. Depending on the task setting,
there may be a bound that is both large enough to not limit the relevant weights and small enough so that e"ectively irrelevant
weights can be neglected.
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SM 5

Input and perturbation correlations

Invariance of GD, WP and NP to temporal correlations and task reordering
The learning of GD, WP and NP is not a"ected by correlations in the inputs. More precisely: the probability distribution of learning
curves does not depend on the temporal correlations of the stochastic process that the input vectors and the additional, unreal-
izable target components are drawn from (Fig. S3), but only on its one-dimensional !nite-dimensional distributions. GD and WP’s
independence of temporal input and target correlations as well as of reordering or permuting the task originates from the fact
that they depend only on the current weight mismatch, , the matrix 𝜀 of instantaneous input correlations and (WP only) on the
applied noise <

WP (Eqs. (Eqs. (A14,B1,B6,B7))). , and <
WP do not depend on the input and 𝜀

⊲>
is not a"ected by relations between

𝜚
⊲ℵ
and 𝜚

>𝐶
with 𝐶 ∲ ℵ. NP additionally depends on the projections of <NP on the input 𝜚 and the unrealizable target component ≨

(Eqs. (A14,B18,B19)). The probability distributions of these projections are not a"ected by temporal correlations in 𝜚
⊲ℵ
and ≨

⊳ℵ
, be-

cause the iid entries of the ⊳th perturbation vector <NP
⊳ℵ

jointly have a 𝜛 -dimensional, rotationally symmetric Gaussian distribution.
Its projection on a constant vector is thus independent of the direction of the vector. In more detail:

• The error of GD, Eq. (8), depends on, and 𝜀. As as consequence, the GD weight update depends on, and 𝜀.
• The error of WP, Eq. (8), depends on, and 𝜀. The error of WP after the perturbation, Eq. (B6), depends on, , 𝜀 and <

WP. As a
consequence, the WP weight update, Eq. (B7) depends on, , 𝜀 and <

WP.
• The error of NP, Eq. (8), depends on, and 𝜀. The error of NP after the perturbation, Eq. (B18), depends onW and the projections
⌋

ℵ
𝜚
⊲ℵ
<
NP

⊲ℵ
and

⌋

ℵ
≨
⊲ℵ
<
NP

⊲ℵ
. The eligibility trace is

⌋

ℵ
𝜚
⊲ℵ
<
NP

⊲ℵ
. The NP weight update Eq. (B19) therefore depends on , , <NP and the

projections
⌋

ℵ
𝜚
⊲ℵ
<
NP

⊲ℵ
and

⌋

ℵ
≨
⊲ℵ
<
NP

⊲ℵ
.

Reordering and correlations within the input activity at di"erent times do not a"ect 𝜀 (and , and <
WP). Therefore they do not

a"ect the learning process of GD and WP. Further, reordering and correlations do not a"ect the probability distributions of the
projections of <NP on 𝜚 and ≨. The former holds because, the <

NP

⊳ℵ
are are at di"erent time points identically distributed. Temporal

correlations in 𝜚
⊲ℵ
and ≨

⊳ℵ
leave the distributions invariant, because the iid entries of the ⊳th perturbation vector <NP

⊳ℵ
jointly have a 𝜛 -

dimensional, rotationally symmetric Gaussian distribution. Its projection on a constant vector is thus independent of the direction
of the vector. Fig. S3 illustrates the invariance of the learning curves with respect to the introduction of input correlations by
numerical simulations.

NPc: Learning with temporally correlated node perturbations
This section introduces and discusses in more detail NPc, which learns time-correlated tasks with time-correlated node perturba-
tions. To obtain the correlated node perturbationswe draw the initial perturbation at ℵ = 0 and create later perturbations according
to

<
NPc

⊳0
= 𝐴

eff
⋛ 𝛻<

⊳0
, <

NPc

⊳ℵ+1
= 𝑃<

NPc

⊳ℵ
+

⟫

1 ε 𝑃2𝐴
eff

⋛ 𝛻<
⊳ℵ+1

. (S129)

Here 𝛻<
⊳ℵ
is Gaussian white noise,

𝛻<
⊳ℵ
ϱ ⨌ (0, 1), ⌉<

NPc

⊳ℵ
<
NPc

ℏℵ+𝐶
{ = 4

⊳ℏ
𝑃
⟦𝐶⟦
𝐴
2

eff
, (S130)

and the factor 𝑃 = exp(ε1ϑ𝑌
NPc

) determines the correlation time 𝑌
NPc

. This can be linked to an e"ective time dimension 𝜛
eff
,

𝜛
pert

ef f
=

𝜛

𝑌
NPc

+ 1
, 𝑃 = exp

⟨

ε

𝜛
pert

ef f

𝜛 ε 𝜛
pert

ef f

⟩

. (S131)

For 𝜛 pert

ef f
= 𝜛 , we de!ne 𝑃 = 𝑌

NPc
= 0; in this case NPc is exactly identical to NP. A low e"ective (temporal) perturbation dimension

𝜛
pert

ef f
means that the perturbations’ variance concentrates on only few components.
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SM 6

Improved learning rules

The new insights into the mechanisms of WP and NP gained through this work enable the construction of related, under certain
conditions more powerful learning rules. We note that also NPc (cf. main text, section “Input and perturbation correlations” and
SM5) may be considered as such an improved method. In the current part we describe in detail the modi!ed WP rule WP0 and
hybrid perturbation (HP). WP0 is useful if the input is sparse, HP is useful if the inputs have the same strength.

WP0: Assign zero credit to zero inputs
The WP scheme has no direct way of solving the credit assignment problem of !nding the weight perturbations that were respon-
sible for causing the error signal ϖ7 lin

pert
. Therefore it updates all weights, with the consequence that irrelevant weights di"use and

convergence slows down when multiple input patterns have to be learned.
There is a straightforward way to improve credit assignment for the case that some inputs are zero (or negligible), because then

the correspondingweights donot a"ect the output and error - they cannot be credited for any reward changes. This information, i.e.
the absence of presynaptic input, is locally available to synapses and its use means incorporation of model information, promising
to improve the learning rule.

Using these observations, the update equation of the improved learning rule WP0 reads

ϖℷ
WP0

⊳⊲
=

⌋

⌈

⌉

⌈

{

0 if 𝜚
⊲ℵ
= 0 ∓ℵ,

ε
𝐸

𝐴
2

WP

❳

7
pert

ε 7
/

<
WP

⊳⊲
else,

(S132)

where the weight perturbations of WP0 are drawn from the same distribution as the <
WP

⊳⊲
of WP. We note that output nonlinearities

with plateaus, i.e. 5((𝑍) = 0 for total weighted inputs 𝑍 in some range, allow to further improve WP0 in alike manner: the weight
ℷ

⊳⊲
should not be changed if 5((𝑍

⊳ℵ
)𝜚

⊲ℵ
= 0 ∓ℵ, since the tried small perturbation <

WP

⊳⊲
of ℷ

⊳⊲
cannot have in#uenced the output and

the error. Neurons with such nonlinearities are for example rate neurons with ReLU activation functions or spiking neurons with
a spike threshold.

In practice, inputs and 5
( may not be exactly zero. One can then introduce a threshold belowwhich the weights are not updated.

The largest improvements ofWP0 overWP are expected if coding is sparse (many inputs are zero) and only a subset of postsynaptic
neurons is non-saturated (has 5( ∲ 0).

Hybrid perturbation (HP): Using WP to produce output perturbations and NP to produce updates
WPandNPhave di"erent advantages: the output perturbations ofWP lie completely in the realizable subspace anddonot interfere
with unrealizable target components, while NP’s use of eligibility traces lets it solve part of the credit assignment problem such
that irrelevant weights do not di"use and NP converges faster than WP when multiple input patterns have to be learned. We here
aim to combine the advantageous features of both learning rules into one rule, HP.

To this end, output perturbations are induced by perturbing the weights like in WP,

ℸ
pert,HP

⊳ℵ
=

𝜔
⌈

⊲=1

(ℷ
⊳⊲
+ <

WP

⊳⊲
)𝜚

⊲ℵ
, (S133)

where 5(⋛) = Id(⋛) and we named the weight perturbations of HP <
WP

⊳⊲
, as they are drawn from the same distribution as for WP.

Thus they do not interfere with unrealizable target components, which only shift the !nal error of HP by 7
opt

as for WP (Eq. (S54)
and Fig. 4). They induce output perturbations of the form <

out

⊳ℵ
=

⌋𝜔

⊲=1
<
WP

⊳⊲
𝜚
⊲ℵ
, which are used to calculate NP-like updates by using

eligibility traces,

ϖℷ
HP

⊳⊲
= ε

𝐸

𝐴
2

WP
𝜛
(7

pert
ε 7)

𝜛
⌈

ℵ=1

<
out

⊳ℵ
𝜚
⊲ℵ

= ε
𝐸

𝐴
2

WP
𝜛
(7

pert
ε 7)

𝜛
⌈

ℵ=1

𝜔
⌈

>=1

<
WP

⊳>
𝜚
>ℵ
𝜚
⊲ℵ

= ε
𝐸

𝐴
2

WP

(7
pert

ε 7)

𝜔
⌈

>=1

<
WP

⊳>
𝜀
>⊲
. (S134)
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The normalization 1ϑ(𝐴
2

WP
𝜛 ) contains an additional factor 1ϑ𝜛 . The perturbed error is the same as for WP,

7
pert

=
1

2
tr[(, + <

WP
)𝜀(, + <

WP
)
𝜛
] + 7

opt
= 7 + tr[,𝜀<

WP𝜛

] +
1

2
tr[<

WP
𝜀<

WP𝜛

], (S135)

such that the update reads

ϖℷ
⊳⊲
= ε

𝐸

𝐴
2

WP

❳

tr[,𝜀<
WP𝜛

] +
1

2
tr[<

WP
𝜀<

WP𝜛

]
/

𝜔
⌈

>=1

<
WP

⊳>
𝜀
>⊲
. (S136)

For brevity, we now only consider the linear components of the error signal (i.e. tr[,𝜀<
WP𝜛

]) that determine the convergence
speed and behavior, neglecting the reward noise ϖ7

quad

pert
=

1

2
tr[<

WP
𝜀<

WP𝜛
]. (This is equivalent to learning in the small 𝐴

eff
limit;

realizability of targets does not a"ect HP anyways.) Then the 𝜕th component of the expected error after an update is

⌉7
𝜕
(𝐹 + 1){ = ⌉7

𝜕
(𝐹){ + ⌉tr[,𝜀

𝜕
ϖℷ

𝜛
]{ +

1

2
⌉tr[ϖℷ𝜀

𝜕
ϖℷ

𝜛
]{ (S137)

(Eq. (S103)), where the e"ect of the mean update is

⌉tr[,𝜀
𝜕
ϖℷ

𝜛
]{ = ε

𝐸

𝐴
2

WP

⌉tr[,𝜀
𝜕
𝜀<

WP𝜛

] tr[,𝜀<
WP𝜛

]{

= ε
𝐸

𝐴
2

WP

6
⌈

⊳ℏ=1

𝜔
⌈

⊲>ℶ𝐵𝐷=1

,
⊳⊲
𝜀

𝜕

⊲>
𝜀
>ℶ
,

ℏ𝐵
𝜀
𝐵𝐷
⌉<

WP

⊳ℶ
<
WP

ℏ𝐷
{

= ε𝐸 tr[,𝜀
𝜕
𝜀

2
,

𝜛
] = ε2𝐸𝜗

4

𝜕
⋛ ⌉7𝜕

(𝐹){. (S138)

The quadratic contributions, which describe update #uctuations due to the credit assignment problem and which are responsible
for slowing down the learning, are

1

2
⌉tr[ϖℷ𝜀

𝜕
ϖℷ

𝜛
]{ =

𝐸
2

𝐴
4

WP

1

2
⌉tr[,𝜀<

WP𝜛

] tr[<
WP

𝜀𝜀
𝜕
𝜀<

WP𝜛

] tr[,𝜀<
WP𝜛

]{

=
𝐸
2

2𝐴
4

WP

6
⌈

⊳ℏ𝐹=1

𝜔
⌈

⊲>𝐵𝐷𝜚𝐶ℵ𝐺=1

⌉,
⊳⊲
𝜀
⊲>
<
WP

⊳>
<
WP

ℏ𝐵
𝜀
𝐵𝐷
𝜀

𝜕

𝐷𝜚
𝜀
𝜚𝐶
<
WP

ℏ𝐶
,

𝐹ℵ
𝜀
ℵ𝐺
<
WP

𝐹𝐺
{

=
𝐸
2

2𝐴
4

WP

6
⌈

⊳ℏ𝐹=1

𝜔
⌈

⊲>𝐵𝐷𝜚𝐶ℵ𝐺=1

,
⊳⊲
𝜀
⊲>
𝜀
𝐵𝐷
𝜀

𝜕

𝐷𝜚
𝜀
𝜚𝐶
,

𝐹ℵ
𝜀
ℵ𝐺
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⊳>
<
WP

ℏ𝐵
<
WP

ℏ𝐶
<
WP

𝐹𝐺
{. (S139)

Using ⌉<
WP

⊳⊲
<
WP

ℏ>
{ = 𝐴

2

WP
4
⊳ℏ
4
⊲>
and Isserli’s theorem, the appearing moment of <WP evaluates to

⌉<
WP

⊳>
<
WP

ℏ𝐵
<
WP

ℏ𝐶
<
WP

𝐹𝐺
{ = 𝐴

4

WP

❳

4
⊳𝐹
4
>𝐺
4
𝐵𝐶
+ 4

⊳ℏ
4
ℏ𝐹
(4

>𝐵
4
𝐶𝐺
+ 4

>𝐶
4
𝐵𝐺

/

(S140)

such that

1

2
⌉tr[ϖℷ𝜀

𝜕
ϖℷ

𝜛
]{ =

1

2
𝐸
2
6 tr[,𝜀𝜀,

𝜛
] ⋛ tr[𝜀𝜀𝜕

𝜀] + 𝐸
2
tr[,𝜀𝜀𝜀

𝜕
𝜀𝜀,

𝜛
]

= 𝐸
2
6𝜗

6

𝜕
⋛

𝜔
⌈

𝑋=1

𝜗
2

𝑋
⌉7

𝑋
(𝐹){ + 2𝐸

2
𝜗
8

𝜕
⌉7

𝜕
(𝐹){. (S141)

With this, the evolution of the expected error is described by

⌉7
𝜕
(𝐹 + 1){ =

𝜔
⌈

𝑋=1

(𝑉 + 𝑊)
𝜕𝑋
⌉7

𝑋
(𝐹){, (S142)

where

𝑉
𝜕𝑋

= (1 ε 2𝐸𝜗
4

𝜕
+ 𝐸

2
𝜗
8

𝜕
)4

𝜕𝑋
, (S143)

𝑊
𝜕𝑋

= 𝐸
2
6𝜗

2

𝜕
𝜗
6

𝑋
+ 𝐸

2
𝜗
8

𝜕
4
𝜕𝑋
. (S144)

For the case of repeating inputs and where𝜔
eff
eigenvalues of 𝜀 are equal to 𝜗

2 and all others zero, the expected error evolves as

⌉7(𝐹 + 1){ =
❳

⌉7(𝐹){ ε 7
opt

/

⋛ 𝐿 + 7
opt
, 𝐿 = 1 ε 2𝐸𝜗

4
+ 𝐸

2
𝜗
8
(6𝜔

eff
+ 2). (S145)
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Minimizing 𝐿 leads to an optimal learning rate and convergence factor of

𝐸
ς
=

1

(6𝜔
eff

+ 2)𝜗4
, 𝐿

ς
= 1 ε

1

6𝜔
eff

+ 2
. (S146)

In this case, HP converges as fast as both WP and NP. In addition, irrelevant weights do not diverge, which bene!ts the learning of
multiple subtasks. Further we expect the !nal error to be lower than for NP because all output perturbations lie in the realizable
subspace, which is con!rmed by our numerical simulations, Fig. 4. Thus for latent inputs that have the same strength, HP combines
the advantages of bothWP and NP. Note that, as for WP and NP but in contrast to WP0, we can without loss of generality change to
a set of rotated inputs, because weight perturbations are isotropic such that the update equation Eq. (S134) is invariant under the
rotation. This is also re#ected by Eqs. (S142–S144): the equations show that the error evolution only depends on the eigenvalues
𝜗
2

𝜕
of 𝜀, which are invariant to input rotations.
We observed that application of HP to the reservoir computing task gave worse performance than application of WP and NP

(main text, Sec. “Conclusions from the theoretical analysis and new learning rules”). We explain this by the fact that HP generates
biased updates for latent inputs with di"erent strengths (a similar explanation may hold for the unsatisfactory performance on
MNIST): weights connected to stronger input components both have a larger impact on output perturbations, as for WP, and get
updated more strongly due to their eligibility traces being larger, as for NP (compare Eqs. (S108,S109)). The mean update is thus
biased,

⌉ϖℷ
HP

⊳⊲
{ = ε

𝐸

𝐴
2

WP

⦆

tr[,𝜀<
WP𝜛

]

𝜔
⌈

>=1

<
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⊳>
𝜀
>⊲

[

= ε
𝐸

𝐴
2
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6
⌈

⊳ℏ=1

𝜔
⌈

>ℶ𝐵=1

,
ℏℶ
𝜀
ℶ𝐵
𝜀
>⊲
⌉<
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ℏ𝐵
<
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⊳>
{

= ε𝐸

6
⌈

⊳=1

𝜔
⌈

⊲>=1

,
⊳ℶ
𝜀
ℶ>
𝜀
>⊲
= ε𝐸

𝜔
⌈

>=1

⋆7

⋆ℷ
⊳>

𝜀
>⊲
. (S147)

If inputs are rotated so that ℷ
⊳𝜕
reads out from the 𝜕th input component 𝜚

𝜕ℵ
of strength 𝜗

2

𝜕
, then the mean updates ⌉ϖℷ

HP

⊳𝜕
{ =

ε𝐸
⋆7

⋆ℷ⊳𝜕

⋛ 𝜗2

𝜕
are proportional to their weight error gradients multiplied by 𝜗

2

𝜕
. This means that weights related to weak inputs are

updated only little and will take a long time to converge. If such weak inputs are important to realize the target, HP will perform
worse than NP and WP. Adding a network layer that equalizes the non-zero (or non-negligible) input strengths in each subtask
might render HP bene!cial and applicable.

Recovering unbiased updates in presence of inhomogeneous input strengths by multiplying updates with the inverse correla-
tion matrix (which is a non-local operation), ϖℷHP  ϖℷ

HP
𝜀

ε1, simply reduces HP to WP,

ϖℷ
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= ϖℷ
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⊳⊲
, (S148)

as long as all input strengths are non-zero such that 𝜀ε1 is well-de!ned. Setting the eigenvalues of 𝜀ε1 related to zero inputs to
zero (a priori they are unde!ned) means that irrelevant weight combinations are not updated, which for rotated inputs reduces
the unbiased version of HP to WP0.
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Figures and Data

a) b)Infinitesimal Finite 

Figure S1. Further analysis of the weight di"usion in WP. a) Di"usion of irrelevant weights is transient for in!nitesimal perturbation size. Display
like main text, Fig. 2b, but for in!nitesimal 𝐴

WP
. The relevant weights converge to the relevant weights of the teacher network, ℷς

rel,⊳
= 0.1.

Learning with optimal rate (𝐸 = 𝐸
ς) leads to a !nal standard deviation of irrelevant weights of the same size as the mean relevant weights (left); a

smaller learning rate leads to less weight di"usion (right). SM2, Sec. “Transient weight di"usion due to credit assignment-related update
#uctuations” explains these observations. b) Weight di"usion for !nite perturbation size, after the output error has decayed to its stationary
residual value and the relevant weights #uctuate around their targets. The irrelevant weights, which are initially set to zero, di"use without
bounds (left). In particular, the standard deviation of the weight distribution grows like ϱ

⟫

𝐹 with the learning trial number 𝐹. A tendency of the
weights to decay con!nes this growth (right).
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Figure S2. Final error after convergence as a function of the limiting error 7
opt

like Fig. 3b, but for e"ective input dimensionality𝜔
eff

= 99 (instead
of 𝜔

eff
= 50). Since 𝜛 = 100 and 𝜔

eff
= 99 (𝜔

eff
must be smaller than 𝜛 to allow an unrealizable part), both algorithms perform basically the same

for 7
opt

= 0 (cf. also light curves in main text, Fig. 1b, left). For 7
opt

> 0 the !nal error of WP is shifted by 7
opt

while that of NP increases
approximately by 27

opt
.
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Figure S3. WP and NP are una"ected by input correlations. a) Final error of WP (blue) and NP (orange) in a task where the inputs are temporally
correlated, versus the e"ective temporal dimension 𝜛

input

ef f
of the inputs. For 𝜛 input

ef f
= 𝜛 = 100 we have uncorrelated input, for 𝜛 input

ef f
= 2 the input

traces vary very slowly. Inputs are generated by orthonormalizing exponentially !ltered white noise. Realizable target components are linear
combinations of the correlated inputs. We assume that there is an additional unrealizable target component, which, for simplicity, contains all
modes orthogonal to the inputs with equal strength. Our theoretical results (black dotted curves) predict that the !nal error is independent of
the correlation time for both WP and NP. This is con!rmed by the numerical simulations (colored curves, overlayed by the theoretical ones). b)
Number of trials to reach 95% of the !nal error reduction for WP (blue) and NP (orange) as a function of 𝜛 input

ef f
. Our theoretical results (black

dotted curves, overlapping) predict that the decay time of the expected error is independent of the correlation time and the same for both WP
and NP. This is con!rmed by the numerical simulations (mean: colored curves, partially underlaying the theoretical ones, shaded: standard error
of the mean). Since the learning curves of NP are more variable, its mean convergence time has a higher standard error. c) Mean error (solid) and
standard error of the mean error (shaded) as a function of trial number for di"erent input correlation times (e"ective temporal input dimensions:
𝜛
input

ef f
= 2, 10, 100). The curves agree within their errors and are not visually distinguishable. Parameters: 6 = 𝜔

eff
= 10, 𝜛 = 100, 𝐴

eff
= 0.04,

7
opt

= 2. 𝜛 input

ef f
is in (a,b) varied from 2 to 100 in steps of 2 between 2 and 20 and in steps of 5 between 25 and 100, with 1000 repetitions each. The

!nal error in (a) is measured after 2000 trials.
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Figure S4. Exemplary error decay curves of NPc (mean and SEM) for di"erent input and perturbation correlation times. a) For 𝜛 pert

ef f
= 2, that is for

larger perturbation than input correlation time, convergence slows down (note the changed x-axis scale compared to b,c). For correlated inputs
(solid) but not for uncorrelated inputs (dashed), NPc still achieves a low !nal error. b) For 𝜛 pert

ef f
= 20, the perturbations of NPc have the same

e"ective temporal dimension as the correlated inputs (solid curves). NPc simultaneously achieves a low !nal error and fast convergence. c) For
𝜛
pert

ef f
= 100 = 𝜛 , NPc reduces to NP and settles at the same high !nal error. As NP is insensitive to input correlations (Fig. S3), the curves of NPc for

correlated and uncorrelated inputs here agree. Parameters: 𝜔
eff

= 6 = 10, 𝜔 = 𝜛 = 100, 𝐴
eff

= 0.04, 7
opt

= 2. Latent inputs of equal strength are
constructed by orthonormalizing white noise (red dashed) or exponentially !ltered white noise (with time constant 𝑌 input

corr
= 4 and thus 𝜛 input

ef f
= 20,

red solid). Unrealizable target components are constructed from the last 𝜛 ε𝜔
eff

orthonormalized noise traces with equal strengths.
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WP
NP

P 8 2 1

Figure S5. Error dynamics scale di"erently for WP and NP when splitting the input into di"erent patterns for di"erent trials. The network is the
same as the one used in Fig. 1 (𝜔 = 100,6 = 10, 𝐴

eff
= 4 ω 10

ε2). The task is to reproduce the output of a teacher network in response to input
with a dimensionality of 𝜔 task

eff
= 80, which we split into 𝑆 non-overlapping input patterns each having dimensionality 𝜔 trial

ef f
= 𝜔

task

eff
ϑ𝑆 (hence

𝑆𝜔
trial

ef f
= 80). For simplicity, we use input patterns where at each timestep a di"erent input unit has the value

❲

𝜔ϑ𝜔
task

eff
, while all other input

units are zero. This implies 𝜛 = 𝜔
trial

ef f
. The !gure shows error curves for WP (blue) and NP (orange) from simulations (10 runs, shaded) together

with analytical curves for the decay of the expected error (solid), for di"erent values of 𝑆 (simulation results for NP with 𝑆 = 8 are mostly covered
by the analytical curve). Theoretical curves and simulations agree well. The convergence speed of WP decreases with increasing 𝑆 (Eqs. (S78,S92)).
The convergence speed of NP is almost una"ected by 𝑆 for NP (Eqs. (S79,S93)). The residual error is inversely proportional to 𝑆 for both WP and
NP (Eqs. (S82,S83)) and it is equal for WP and NP because 𝜛 = 𝜔

trial

ef f
.
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Figure S6. Optimal perturbation size and optimal learning rate for di"erent levels of input noise. a,b) Excess of the !nal error of WP (a) and NP (b)
beyond 7

opt
, for input noise with SNRε1 = 0.1 and di"erent perturbation strengths and learning rates. The white region corresponds to

parameters for which the algorithms did not converge. The red dots indicate the optimal parameter combinations. They have the same
𝐴
eff

= 0.06 for WP and NP. WP can a"ord a higher learning rate and reaches a lower minimal error. Further it converges on a larger parameter
region. c,d) Final error of WP (c) and NP (d) beyond 7

opt
, for 𝐴

eff
= 0.06 and di"erent input noise strengths and learning rates. The optimal

learning rates, which yield the lowest error, are highlighted (WP: blue connected points, NP: orange). e) Exemplary evolution (mean and SEM) of
the error beyond 7

opt
, for WP (blue) and NP (orange) and SNRε1 ∇ {0, 0.3, 1} (bottom to top curves). The learning rates are set to the optimal

values. f) Joint depiction of the optimal learning rates of WP and NP, from (c) and (d). These are also the learning rates used in main text, Fig. 6.
Parameters: 6 = 𝜔

eff
= 10, 𝜔 = 𝜛 = 100, 𝜗2 = 𝜔ϑ𝜔

eff
= 10, 𝐴

eff
= 0.04, ≨ = 0. The best achievable error 7

opt
is in presence of input noise nonzero

despite ≨ = 0, because the noise prevents an exact reproduction of the target. SNR is de!ned as the ratio of the total (summed) power in the
input signal to that in the noise. Averages are taken over the last 1000 of 10 000 trials and 100 repetitions. e) shows mean and SEM.

35 of 42

107



0 20 40 60 80 100

Trials (103)

10 5

10 4

10 3

10 2

10 1

Er
ro

r

NP
NPc
WP

0 100Trials

Er
ro

r

Figure S7. Error dynamics of the reservoir-based drawing task like Fig. 7c, with the same parameters but for in!nitesimally small perturbation
size 𝐴

eff
. WP and NP perform similarly, NP slightly better. NPc performs worse, indicating that the optimal learning rate needs to be adapted

when changing 𝜛
pert

ef f
, like in Fig. 4 (see main text “Materials and Methods”). The error curves of WP and NP di"er because their error components

interfere di"erently (SM4, Sec. “Evolution of error components related to strong and weak inputs”). Depending on the initial weight mismatch,
either WP or NP can show the faster initial improvements. NP converges faster towards the end of training. Simulations suggest that the
asymptotic ratio of the convergence rates of NP and WP is, however, only on the order of 1, Fig. S9. The curves show median (solid) and
interquartile range (shaded) computed over 100 repetitions.
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Figure S8. Final error and convergence time of NPc applied to the task in main text, “Reservoir computing-based drawing task”, for 𝐸
NPc

= 𝐸
ς

NP
and

di"erent correlation times of the perturbations. We note that in contrast to Fig. 4 the learning rate is not adapted when changing 𝜛
eff
, see main

text “Materials and Methods”. a) Final error of NPc (red) as a function of 𝜛 pert

ef f
. For 𝜛 pert

ef f
∳ 4 (see also inset), NPc achieves a !nal error equal to or

lower than NP (orange dashed), but not as low as WP (blue dashed). The e"ective temporal perturbation dimension 𝜛
pert,opt

eff
= 18, which

minimizes the !nal error, is marked by a vertical line. The error achieved by a least squares !t using only the largest 5 principle components of
the reservoir is shown for comparison (gray dashed). The NPc curve shows mean and SEM of the !nal error over 1000 repetitions and the last
1000 of 30 000 trials. b) The number of trials needed to achieve 99% of the !nal error reduction, 𝐹decay

trials
, stays largely constant for 𝜛

eff
> 200 (inset)

and increases slightly for 𝜛 pert,opt

eff
⨋ 𝜛

pert

ef f
< 200. Reducing 𝜛

pert

ef f
below 𝜛

pert,opt

eff
strongly increases 𝐹decay

trials
. Results for NP (orange dashed) and WP (blue

dashed) are shown for comparison. To determine 𝐹
decay

trials
we consider 10 samples of 100 runs each. For each sample, the mean error over runs is

computed and additionally smoothed with a centered temporal running average of window size 100. 𝐹decay
trials

is then the trial at which the described
average drops for the !rst time below 7𝑁 ,unr + 0.01 ⋛

❳

7(0) ε 7𝑁 ,unr

/

. b) reports the mean and SEM of 𝐹decay
trials

over samples.
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a) b) c)

Figure S9. Learning rates and convergence speed of WP and NP when learning a single input-output pairing, for input strength distributions of
di"erent widths. (a,b) An analytical estimate 𝐸

ς

theory
of the optimal learning rate based on the participation ratio PR (main text, “Materials and

Methods”) broadly agrees with semi-analytical results 𝐸ς
WP⟦NP

that maximize the convergence speed of the slowest decaying error mode
(Eqs. (S103,S112)). c) The convergence rates 𝑋slowest

WP
and 𝑋

slowest
NP

of the slowest decaying error component of WP and NP at optimal learning rates
𝐸
ς

WP⟦NP
stay comparable even when the input strengths di"er by orders of magnitude. For each combination of the hyperparameters 𝜔 and 𝜗

2

min
,

𝜔 orthogonal input components are constructed with exponentially decaying strengths 𝜗2
𝜕
= 𝜗

2

0
⋛ 𝑃𝜕 where 𝑃 ⨋ 1 is chosen such that 𝜗2

0
= 1 and

𝜗
2

𝜔
= 𝜗

2

min
. Here 𝜗

2

min
= 1 reproduces the theory case with 𝜗

2
= 1 and 𝜔

eff
= 𝜔 , whereas 𝜗

min
= 1 ω 10

ε5 corresponds to a broad input strength
distribution with PR ♭ 𝜔 . 𝜔 and 𝜗

2

min
are varied on a 50 ω 51 grid. In (a,b) we compute for each pair of hyperparameters the participation ratio PR

from the distribution of input strengths and employ it to predict the optimal learning rate 𝐸
ς

theory
= 1ϑ(6PR + 2)𝜗2. Here6 = 10 and

𝜗2 =
⌋𝜔

𝜕=1
𝜗
2

𝜕
ϑPR is the mean input strength per e"ective input dimension. For the comparison, we construct the matrices of error evolution

(𝑉 + 𝑊)
WP⟦NP

[𝐸] (Eqs. (S107–S109)) and compute the optimal learning rate for the slowest component, 𝐸ς
WP⟦NP

, by numerically minimizing the
largest eigenvalue of (𝑉 + 𝑊)

WP⟦NP
[𝐸]. (c) displays 𝑋

WP⟦NP
φ 1 ε 𝐿

WP⟦NP
, where 𝐿

WP⟦NP
is the largest eigenvalue of (𝑉 + 𝑊)

WP⟦NP
[𝐸

ς
].
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a)

b)

c) WP NP

Figure S10. Test loss, test accuracy and grid search results for the MNIST task. a) Test loss (cross entropy loss) for the best parameters found in
the grid search for WP (blue), NP (orange) and SGD (black). We note that the obtained optimal learning rate for SGD and 𝜔

batch
= 100 is

comparably large (Tab. 2); SGD therefore seems to over!t slightly. Lines show the mean and shaded areas show the standard deviation using 5
network instances. b) Same as a) but for the test classi!cation error (one minus test accuracy). The grid search yields for SGD and 𝜔

batch
∳ 100

similar !nal accuracies for very di"erent learning rates. Therefore the best learning rates, which maximize the !nal accuracies, and thus also the
learning curves shown here, can in this case be quite di"erent from each other. c) Grid search to estimate the optimal learning rates for WP and
NP with di"erent perturbation strengths and batch sizes. The !gure displays the mean classi!cation error after 50000 weight updates, for 5
instances, on a validation data set not used for training.
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a)

b)

Figure S11. Learning performance and grid search results for four variations of the MNIST task. Speci!cally, the panels show learning in a
two-layer network trained on MNIST using cross-entropy loss (2 layers, MNIST, CE loss; same as in Fig. 9b and Fig. S10), a single-layer network
trained the same way (1 layer, MNIST, CE loss), a single-layer network with the MNIST images as input but with target labels determined by the
maximal output of a teacher network that was trained on MNIST using SGD (1 layer, TN, CE loss) and a single-layer linear network with the MNIST
images as input using mean-squared error loss with targets given by the raw output of the same teacher network (1 layer, TN, MSE loss). For the
single-layer networks we simply remove the hidden layer from the two-layer network and in the last case (1 layer, TN, MSE loss) also remove the
softmax-nonlinearity from the output layer. This yields a single layer linear network with realizable targets. We only consider 𝜔

batch
= 1000 and

perform a grid search to !nd the best performing learning parameters.
a) Test accuracy (upper row) and loss (lower row) for WP (blue), NP (orange) and SGD (black) for the best performing learning parameters.
Removing the hidden layer worsens the performance of WP and SGD but improves it for NP (compare !rst to second column). Using a teacher
network to create the target labels does not change the relative performance of WP and NP, indicating that in this task unrealizable target labels,
e.g. due to bad handwriting, do not signi!cantly harm NP (compare third to second column). Note that this does not mean that the targets are
exactly realizable, because it is not possible for the network to reproduce the binary target output given by the one-hot encoded targets. Further
removing all nonlinearities from the networks and using mean-squared error loss leads to better performance of NP compared to WP (compare
fourth to third column). In the case of training using a teacher network, we determine the accuracy by using the index of the maximal output of
the teacher network as the target label. Solid lines show the mean and shaded areas the standard deviation using 5 network instances. b) Grid
search results for WP and NP as given by the mean classi!cation error for 5 instances on a validation data set not used for training. The error is
clipped at 0.3 for better visualization.
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a) b)

Figure S12. Time-correlated NP (NPc) does not improve task performance for the DNMS task and MNIST. a) Same as Fig. 8c but for NP
(𝑌
NPc

= 0ms) and NPc with di"erent !ltering time constants (𝑌
NPc

= 1ms, 10ms, 100ms and 1000ms). NPc does not improve task performance. b)
Same as Fig. 9b but for NP (𝑌

NPc
= 0) and NPc with di"erent !ltering time constants (𝑌

NPc
= 1, 10, 100 and 1000). For 𝜔

batch
= 1, NP and NPc are the

same learning rule because trials are not temporally extended, i.e. 𝜛 = 𝜔
batch

= 1. For larger values of 𝜔
batch

, NPc worsens with increasing !ltering
time constant. This is because the inputs in each trial are random sequences of images, whose pixel values are uncorrelated in time. Further, for
a given !ltering time constant 𝑌

NPc
> 0, NPc worsens with increasing batch size 𝜔

batch
. This may be because smaller batches are more likely to

contain similar images of only a few numbers, for which learning with near-constant node perturbations still works.
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Algorithm 𝜔
batch

𝐸 Test loss Test accuracy

WP 1 6.81 ω 10
ε5

1.160(55) 0.690(20)

10 2.15 ω 10
ε4

0.613(15) 0.839(9)

100 6.81 ω 10
ε4

0.390(8) 0.890(3)

1000 3.16 ω 10
ε3

0.270(7) 0.923(2)

NP 1 6.81 ω 10
ε4

0.515(26) 0.856(7)

10 4.64 ω 10
ε4

0.541(19) 0.860(11)

100 6.81 ω 10
ε4

0.510(36) 0.860(14)

1000 4.64 ω 10
ε4

0.545(25) 0.859(5)

SGD 1 0.010 0.165(7) 0.952(3)

10 0.056 0.083(6) 0.976(1)

100 0.562 0.098(7) 0.977(1)

1000 0.056 0.079(7) 0.977(2)

Table 2. Network performance for SGD, WP and NP on a held-out test set, after training, for the MNIST task. The third column shows the best
learning rate obtained from the grid search. Values in the last two columns are the mean loss and the accuracy after 50000 weight updates,
averaged over !ve instances (standard deviation in brackets).
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APPENDIX C

REINFORCE and weight perturbations

When node activations fluctuate randomly, the REINFORCE framework yields NP updates [14],
Eq. (2.29). Does the REINFORCE framework then yield WP updates for networks with randomly
fluctuating weights?

To test this, consider (naively, as explained below) applying the episodic REINFORCE update rule,
Eq. (2.26), to neurons that have stochastic outputs due to perturbations of their weights. Concretely, the
node activations are given by Eq. (2.23) (left), with iid. Gaussian-distributed weight perturbations 𝑥WP

𝑀 𝑃

with mean zero and variance 𝑟2
WP. Then the individual node activations 𝑤pert

𝑀𝑆 are also Gaussian-distributed,
with probability density

𝑧 (𝑤
pert
𝑀𝑆 ,w, r) = 𝑍

(
𝑤

pert
𝑀𝑆 , 𝑝 =

∑
𝑃

𝑠𝑀 𝑃𝑋 𝑃𝑆 , 𝑟
2 =

∑
𝑃

𝑋
2
𝑃𝑆𝑟

2
WP


. (C.1)

Consider the case where all node activations have the same variance
∑

𝑃 𝑋
2
𝑃𝑆𝑟

2
WP ∋ 𝑟

2
out and define

𝑥
out
𝑀𝑆 = 𝑤

pert
𝑀𝑆 ↑ 𝑤𝑀𝑆 . Then, by comparing 𝑥

out with 𝑥
NP, we see that the stochastic units (individually) behave

just like for NP, with 𝑟
2
out corresponding to 𝑟

2
NP. Consequently, the REINFORCE framework yields ‘NP

updates’ also for the case where the weights fluctuate.
In publication 1 [1], this learning rule is coined ‘Hybrid Perturbation’ (HP), because it combines

weight perturbations with NP updates:

𝑤
pert
𝑀𝑆

HP=
𝑇∑
𝑃=1

(𝑠𝑀 𝑃 + 𝑥
WP
𝑀 𝑃 )𝑋 𝑃𝑆 , ϑ𝑠HP

𝑀 𝑃 = ↑
𝑦

𝑟
2
𝑒

(𝑚
pert

↑ 𝑚)

𝑁∑
𝑆=1

𝑥
out
𝑀𝑆 𝑋 𝑃𝑆 . (C.2)

This is motivated by the observation that the node fluctuations caused by weight perturbations are,
through their input-dependence, more relevant. On the other hand, the single backpropagation step in the
NP rule, i.e., from the node gradient estimate to the weight gradient by the multiplication with 𝑋 𝑃𝑆 in the
eligibility trace, solves part of the credit assignment problem. A combination of the two mechanisms
thus seems promising.

However, publication 1 [1] shows that HP updates are not parallel to the weight gradient of the error,
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Appendix C REINFORCE and weight perturbations

but biased. Define the input correlation matrix by

𝑕𝑀 𝑃 ∋
1
𝑅

𝑁∑
𝑆=1

𝑋𝑀𝑆𝑋 𝑃𝑆 . (C.3)

Then the expected HP update is (see supplement 1 [120], eq. S147)

↖ϑ𝑠HP
𝑀 𝑃 ↙ = ↑𝑦

𝑇∑
𝑅=1

𝛥𝑚

𝛥𝑠𝑀𝑅
𝑕𝑅 𝑃 . (C.4)

Clearly, when 𝑕 is not a multiple of the identity matrix, the HP updates will be misaligned with the
weight gradient. Why is that? Consider the case where 𝑕 is diagonal, but with di"erent entries,
describing orthogonal inputs with di"erent strengths 𝛬2

𝑀 = (1/𝑅)
∑𝑁

𝑆=1 𝑋
2
𝑀𝑆 . Then the perturbations of

weights mediating strong inputs contribute strongly to the output fluctuations 𝑥out
𝑀𝑆 , while weights that

mediate weak inputs contribute only weakly. Consequently, the part of the error signal 𝑚pert
↑ 𝑚

that is related to the perturbation of a weight, and contributes systematically to its update, is larger
for strong-input-mediating weights. Up to this point, correlating the error signal with the weight
perturbations as in WP would lead to unbiased updates, because, after all, the weight gradient is also
larger for weights with strong inputs. HP, however, applies NP updates instead. In the computation of
the eligibility traces, the weight updates are then again scaled with the (square root of the) input strength,
through the multiplication with 𝑋 𝑃𝑆 in Eq. (2.24).

The update bias is surprising when considering that REINFORCE updates are proven to follow the
gradient on average [29], see Eq. (2.28), and HP can be derived from the REINFORCE framework, see
above. Is there a contradiction? The answer is that, for temporally extended tasks, weight perturbations
induce temporally-correlated node perturbations:

↖𝑥
out
𝑀𝑆 𝑥

out
𝑀𝑙 ↙ =

𝑇∑
𝑃𝑅=1

↖𝑥
WP
𝑀 𝑃 𝑥

WP
𝑀𝑅 ↙︸⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌︸

=𝑐2
WP 𝑚 𝑄𝑅

𝑋 𝑃𝑆𝑋𝑅𝑙 = 𝑟
2
WP ·

𝑇∑
𝑃=1

𝑋 𝑃𝑆𝑋 𝑃𝑙 . (C.5)

The REINFORCE framework [29], however, (implicitly) assumes that the stochastic activation 𝑤
pert
𝑀𝑆

of node 𝑃 depends only on the weights 𝑠𝑀 𝑃 presynaptic to it and its inputs 𝑋 𝑃𝑆 ; in particular, it does
not depend on the (perturbed) activations of other nodes or its own previous or later activation. The
REINFORCE framework is therefore not applicable to networks experiencing correlated fluctuations.

Interestingly, if HP updates are decorrelated by multiplication with the inverse input correlation matrix
𝑕
↑1, given its existence, the HP rule reduces to WP, see ref. [120] eq. S148.
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APPENDIX D

Publication 2: Cooperative coding of
continuous variables in networks with
sparsity constraint

This appendix, ‘publication 2’ [2], contains a full copy of the following article (version 2):

[2] P. Züge and R.-M. Memmesheimer
Cooperative Coding of Continuous Variables in Networks with Sparsity Constraint
bioRxiv (2024):2024.05.13.593810v2

For the contribution statement, see Chapter 4.
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Cooperative coding of continuous variables in networks with
sparsity constraint

Paul Züge•, Raoul-Martin Memmesheimer*

Institute for Genetics, University of Bonn, Germany

* rm.memmesheimer@uni-bonn.de, • pzuege@uni-bonn.de

Abstract

A hallmark of biological and artificial neural networks is that neurons tile the range
of continuous sensory inputs and intrinsic variables with overlapping responses. It is
characteristic for the underlying recurrent connectivity in the cortex that neurons with
similar tuning predominantly excite each other. The reason for such an architecture is
not clear. Using an analytically tractable model, we show that it can naturally arise from
a cooperative coding scheme. In this scheme neurons with similar responses specifically
support each other by sharing their computations to obtain the desired population code.
This sharing allows each neuron to effectively respond to a broad variety of inputs, while
only receiving few feedforward and recurrent connections. Few strong, specific recurrent
connections then replace many feedforward and less specific recurrent connections, such
that the resulting connectivity optimizes the number of required synapses. This suggests
that the number of required synapses may be a crucial constraining factor in biological
neural networks. Synaptic savings increase with the dimensionality of the encoded
variables. We find a trade-off between saving synapses and response speed. The response
speed improves by orders of magnitude when utilizing the window of opportunity between
excitatory and delayed inhibitory currents that arises if, as found in experiments, spike
frequency adaptation is present or strong recurrent excitation is balanced by strong,
shortly-lagged inhibition.

Author summary

Neurons represent continuous sensory or intrinsic variables in their joint activity, with
rather broad and overlapping individual response profiles. In particular there are often
many neurons with highly similar tuning. In the cortex, these neurons predominantly
excite each other. We provide a new explanation for this type of recurrent excitation,
showing that it can arise in a novel cooperative coding scheme that minimizes the
number of required synapses. This suggests the number of required synapses as a crucial
constraining factor in biological neural networks. In our cooperative coding scheme,
neurons use few strong and specific excitatory connections to share their computations
with those neurons that also need it. This way, neurons can generate a large part of
their response by leveraging inputs from neurons with similar responses. This allows
to replace many feedforward and less specific recurrent connections by few specific
recurrent connections. We find a trade-off between saving synapses and response speed.
Theoretical estimates and numerical simulations show that specific features of biological
single neurons and neural networks can drastically increase the response speed, improving
the trade-off.
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Introduction

The brain encodes continuous sensory or intrinsic variables in the coordinated activity
of populations of neurons. The tuning curves (response profiles) of individual neurons in
such populations are rather broad, leading to large overlaps between them [1,2]. Further,
there are often many neurons with highly similar tuning. Neuron populations with such
features include simple cells in the primary visual cortex (V1) [3, 4], head direction cells
in the anterior thalamic nucleus [5], tactile neurons in primary somatosensory cortex [6],
place cells in the hippocampus [7] and grid cells in the medial entorhinal cortex [8,9]. In
machine learning, convolutional networks have overlapping receptive fields (RFs) that
tile the input space [10]. RFs similar to those in visual cortex emerge by learning a
sparse code for natural images [11], and RFs similar to grid cells emerge through training
on navigation tasks [12, 13].

Neurobiological data show that neurons with strongly overlapping receptive fields
are predominantly excitatorily coupled: Synaptic connections between similarly-tuned
excitatory principal neurons are more likely [14], stronger and more often bidirectional
[15, 16]. In line with this, the strongest incoming synapses provide excitation that
matches a neuron’s RF [16,17]. Furthermore, highly similarly tuned principal neurons
have overall, i.e. including indirect, polysynaptic connections, a net excitatory effect on
each other [18,19]. In contrast, if the tuning is barely similar or dissimilar, the net effect
is inhibitory.

Such recurrent excitatory connectivity may seem unintuitive from a normative stand-
point, as it amplifies noise [20] and can increase response times [21,22]. Previous studies
suggested that it may support persistent activity and thus working memory [23, 24] and
that it may implement complicated priors [25].

Neural networks, however, evolved subject to physiological and physical constraints
[26–29], including metabolic cost and available space. Optimizing for specific features
can largely determine the neural network and lead to solutions that are in other aspects
sub-optimal. A prominent example for this is a recent version of the efficient coding
hypothesis [30–34]. It posits that neural networks greedily minimize the number of used
spikes or the rate activity, which contribute to metabolic cost. The network connectivity
obtained from the optimization is, however, very dense, which is not found in experiments.
Further, the coding scheme is “competitive”, in the sense that similarly tuned neurons
compete for the opportunity to generate spikes. In other words, such neurons take
away spikes and activity from each other. This predicts inhibitory couplings between
very similarly tuned neurons, contrary to the experimentally observed physiological and
effective excitatory interconnectivity between them.

Here, we explore the implications of “cooperative coding” in a neural network. In this
newly proposed scheme, neurons avoid replicating computations through feedforward
weights whose results are already accessible from the activity of other feature neurons.
Instead, each feature neuron performs only a non-redundant feedforward computation.
It then achieves the required response by additionally incorporating the results already
obtained by similarly tuned feature neurons through recurrent connections. In other
words, feature neurons do not independently replicate shared parts of the computations
through feedforward weights, but they transmit them through recurrent connections to
each other. The resulting connectivity is like-to-like, i.e. strong and effectively excitatory
between similarly tuned principle neurons, as observed in experiments. Interestingly the
scheme optimizes the number of synapses in a network, while maintaining the required
neural network dynamics. Such an optimization differs from the common focus on saving
spikes and may be imposed by space restrictions or cost of maintaining synapses [28, 35].
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Results

To demonstrate the concept of cooperative coding, we consider a layer of feature neurons
(output neurons), which receive feedforward input from an input layer as well as recurrent
input. The task of the feature neurons is to generate a weighted sum of the inputs
with weight strengths that decay exponentially with the distance of an input from the
preferred input. We assume that the functionally relevant network response, representing
the desired features (outputs), is the steady state activity. The desired outputs are
linear functions of the inputs. Neural responses can hence be characterized by linear
RFs and implemented by feedforward connectivity alone. Importantly, they can also be
implemented using mixtures of feedforward and recurrent input.

We will compare the different network implementations in terms of the space require-
ment, approximated by the number of required synapses, and in terms of the metabolic
cost to keep up the stationary state. Finally we will compare the response times and
demonstrate how they can be substantially decreased in networks with spike frequency
adaptation (SFA) or balancing inhibition.

Models

In the following, we analyze three concrete examples of cooperative coding: (i) encoding a
one-dimensional stimulus, (ii) simultaneously encoding two one-dimensional stimuli with
linear mixed selectivity (MS) and (iii) encoding a two-dimensional stimulus. For ease
of description, we focus on translationally invariant RFs. (Approximate) translational
invariance, meaning that offset RFs have similar shapes, is a common characteristic of
experimentally encountered RFs [2, 4, 5, 8, 9]. Further, it is a common characteristic of
RFs that emerge in machine learning [10,11]. Although the RFs that we consider do not
have the precise shape of measured RFs, for example those of simple cells in V1 [36],
they share the key properties of localized, overlapping and broadening RFs that tile
the represented space. Indeed, RFs of neurons in hierarchically higher layers are often
broader and constructed from those in lower layers [37, 38].

Encoding a 1D stimulus

As a concrete, analytically tractable model that illustrates how cooperative coding works
and can save synapses, we consider RFs that tile the one-dimensional parameter space
of a stimulus (see Fig. 1a)). An input neuron j, j = 1, ..., N signals the presence and
strength of a stimulus with a specific parameter j by nonzero activity rj > 0. The task
of the feature layer is to generate a response that is maximal at the preferred stimulus
parameter and then decays exponentially the more different the stimulus becomes from
the preferred one. This behavior is qualitatively similar to commonly observed tuning
curves such as orientation tuning curves or place fields. We further assume that if
multiple stimuli are present, the feature layer responses to their different parameters
superpose linearly.

As an example, the inputs may be interpreted as a simple model for the representation
of the orientation of a bar in the early visual system. rj > 0 then means that the orienta-
tion is within the jth bin of the total orientation range [0, 180→]. The transformation from
input to features in our model describes the combination of responses from hierarchically
lower visual areas to hierarchically higher ones [39]. As another example, the neurons
may model the activity of place cells on a periodic, closed track. The transformation
then models the transformation from input neurons with smaller place fields to neurons
with larger place fields. Such a transformation may take place from the hippocampal
dentate gyrus to the downstream area CA3 [40]. In our model, the input generates a
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simple encoding of the current location, where input neuron j is active if the animal is
in the jth location.

The desired stationary feature layer activity can be expressed as

xresp
i =

N∑

j=1

RFijrj , RFij = e↑
|i→j|

d = ω|i↑j|. (1)

Here rj is the activity of the jth input neuron, ω = exp(→1/d) and d defines the width
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Fig 1: Receptive field and response of 1D network. a) The RF of neuron i
is peaked at j = i and decays exponentially with |i → j|. The receptive field width
parameter is d = 2. b) Top: The network response to an isolated unit input, here
located at j0 = 2, has the same shape and amplitude as a neuron’s RF. It peaks at
i = j0. Bottom: Input and feature neurons are shown with color-coded activities rj and
xi, respectively. Increasingly dark red color represents higher activity; white squares
indicate inactive neurons.

of the RF. We use periodic boundary conditions. For computations with neuron indices,
this means that |i→ j| means minn↓{↑1,0,1} |i→ j + nN |. There are as many input as
feature neurons. We note that, because of the symmetry RFij = RFji, the vector RFk·,
describing the RF of feature neuron k, is the same as RF·k, the network response when
only input neuron k is active, compare Fig. 1a) and b). Summarized in a formula, we
have xresp

k |rj=ωjl
= RFkl = RFlk = xresp

l |rj=ωjk
, where k is fixed and l variable.

Feedforward implementation

To model the temporal dynamics of the neurons, we choose a standard simple linear rate
network model [41, 42]. The purely feedforward network that generates the response
eq. (1) as stationary state is then given by

ε ẋi(t) = →xi(t) +
N∑

j=1

W ff
ijrj(t), (2)

with W ff
ij = RFij and a time constant ε . In the stationary state, we have ẋi = 0 for all i

and thus

xi =
N∑

j=1

W ff
ijrj =

N∑

j=1

RFijrj = xresp
i . (3)

This state is asymptotically stable and globally attracting; the flow is a contraction to it.
These properties follow immediately from the fact that the system is linear and has a
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unique fixed point, which is asymptotically stable because all eigenvalues of the matrix
specifying the homogeneous differential equation are negative, equal to →1/ε [43, 44].
To approximate the network with a characteristic number of feedforward weights that is
smaller than N , we require synapses W ff

ij = ω|i↑j| only where |i→ j| ↑ d. This defines
the RF size nRF = 2d+ 1 as the number of feedforward synapses per neuron needed to
implement the RF within a distance d around its center.

Cooperative implementation

The same stationary neuronal responses can be obtained as the steady state of a recurrent
network that uses cooperative coding. It requires only three synapses per feature neuron,
two recurrent and one feedforward one. This network’s dynamics are given by

ε ẋi(t) = →xi(t) +
N∑

j=1

W rec
ij xj(t) +

N∑

j=1

W ff
ijrj(t) (4)

= →xi(t) + wrec(xi+1(t) + xi↑1(t)) + wffri(t), (5)

with weights wrec = 1
ε+ε→1 = ε

1+ε2 and wff = 1→ 2ωwrec = 1↑ε2

1+ε2 . If the receptive fields

are not narrow (d is not small against 1), the two recurrent connections are strong, in
the sense that wrec is not small against 1. Thus the network features strong like-to-like
excitation and is driven by feedforward input. One can straightforwardly verify that
xi = xresp

i is indeed a stationary state of the network, by inserting eq. (1) into eq. (5),
see appendix S1. The reason for this is ultimately that the desired response of a neuron i
can be largely generated by summing the responses of the two neurons i± 1 neighboring
i, see eq. (9) and Fig. 2b). This is achieved by the recurrent connections. The missing
part is contributed by the feedforward input. This state is asymptotically stable as all
real parts of the eigenvalues of the matrix defining the homogeneous system are negative,
see appendix S1. For broad receptive fields (where ω ↭ 1), the recurrent connections
are nearly as strong as possible: their sum 2wrec is close to 1, the value beyond which
the network becomes unstable. The stationary state is also the only stationary state.
Since the system is linear, the state is therefore a global attractor as for the feedforward
network [43,44]. Thus, for constant input the network forms this stable response pattern.

Cooperative coding

Cooperative coding can be understood as sharing of the information that an individual
neuron obtains from external input specifically with those neurons that also need it. This
allows to generate most of the neuronal responses from sparse recurrent connectivity.
Especially very similarly tuned neurons will project strongly excitatorily onto each other;
oppositely tuned neurons would inhibit each other.

As a concrete example, we introduced the networks eq. (5), where it suffices that each
neuron receives input from only one input and two feature neurons. Still, each neuron
effectively responds to O(d) input neurons. This is possible because the feature neurons
recurrently share their activity, and hence their access to feedforward input, with their
neighbors. These in turn share it with their neighbors, thus propagating it through
the network. The network response then forms dynamically through the interplay of
feedforward input and recurrent interactions.

The coding relies on the fact that despite very few feedforward and recurrent synapses,
poly-synaptic connectivity can still be far-reaching [45,46]: For further clarification of
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this point consider the approximate, discretized dynamics [47, 48]

xi((n+ 1)ε) ↓
N∑

j=1

W rec
ij xj(nε) +

N∑

j=1

W ff
ijrj (6)

that lead to the same steady state as the time-continuous dynamics eq. (4). The response
to a constant input r after n time constants is

x(nε) =
(

1 +W rec + · · ·+ (W rec)n↑1
)
W ffr. (7)

It is determined by W rec and its higher powers, which reflect the redistribution of
feedforward input via poly-synaptic recurrent pathways.

The coding scheme can also be understood as feedforward inputs providing a correction
to the response that is mainly constructed from the sparse recurrent input. To clarify this
we focus on elementary stationary responses, namely those that are driven by a single
unit input from neuron j; the input activity is rk = ϑkj . Responses to more complicated
input patterns are weighted linear sums of such elementary responses. Consider feature
neuron i and assume that all other neurons already respond correctly. The stationary
activity of neuron i in response to a single unit input from neuron j is then RFij , while
those of the other network neurons k is RFkj . Equation (4) with ẋi = 0 implies that RFij

is the sum of the RFs of its presynaptic feature neurons and its feedforward connectivity,

RFij =
∑

k

W rec
ik RFkj +W ff

ij . (8)

For the specific network eq. (5) we have

RFij = wrec(RFi↑1,j +RFi+1,j) + wffϑij , (9)

illustrated in Fig. 2c). In this network, the weighted and summed responses of neuron
i’s nearest neighbors are thus already very close to neuron i’s target response. This is
enabled by the specific exponential shape of the RFs. Only for the preferred input of a
feature neuron, the response is too low. The neuron corrects for this by recruiting the
missing input through a feedforward connection. Such an “explanatory gap” that is left
by the recurrent inputs and can be filled by external input is important for cooperative
coding, because the output must depend on external input.

Spatial demand and metabolic cost

To compare the efficiency of the introduced implementations, we focus on two cost
dimensions: the space needed to implement the network and the metabolic cost of
generating the stationary dynamics. As measure for the space needed for the network we
take the number of synaptic connections, or, in other words, the L0 norm of the synaptic
weight matrix. In the feedforward network eq. (2), it increases linearly with the width d
of the RF (if small responses can be neglected). In the recurrent network eq. (5) three
synapses per neuron suffice to generate the desired stationary response regardless of the
RF size. We show in appendix S1 that the recurrent network eq. (5) therefore minimizes
the L0 norm.

For the metabolic cost of generating the stationary dynamics, we can take a multiple
of the L1 norm of the synaptic currents (see Discussion). Since in both networks all
modeled synaptic currents are excitatory, the L1 norm of synaptic currents equals the total
synaptic current. In the stationary state this current is the same in both implementations,
because neurons have the same stationary activity; therefore also the cost is the same.
We conclude that the metabolic cost for maintaining the stationary network state is the
same in both the feedforward and the recurrent network implementation.
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Fig 2: Schematics of feedforward and cooperatively coding networks. a) Top:
In the feedforward network, the response xresp

i (gray solid curve) to an isolated input
is fully generated by the neurons’ feedforward inputs (blue lines and dots). For the
displayed RF width d = 2, five neurons receive feedforward input, so that the network
response (gray solid curve) represents ↓ 63% of the summed target response (gray dashed
curve). Bottom: Feature and input neuron activities as in Fig. 1. Outgoing feedforward
synapses from the active input neuron j = 2 and incoming feedforward synapses to
feature neuron i = 6 are shown in blue. b) Top: In the cooperatively coding network
model, the network response (gray solid curve) is the sum of feedforward input (blue
line and dot) and recurrent input (brown-purple dashed curve). For the displayed case
of an isolated input, only one neuron receives feedforward input, which induces a part of
the stationary response of the most active feature neuron. The rest of the response and
all other responses are induced by recurrent input from neighboring neurons. The total
recurrent input that each feature neuron receives is the sum of recurrent input from the
right (brown solid curve) and left neighbor (purple solid curve). Bottom: Each feature
neuron receives one feedforward synapse (blue lines) and two recurrent synapses (black
lines, all recurrent connections are bidirectional). c) The RF of feature neuron i (RFij

for varying j, gray solid curve) is the weighted sum (brown-purple dashed curve) of the
RFs of its left (RFi↑1 j , purple) and right neighbors (RFi+1 j , brown) plus a contribution
from feedforward input (W ff

ij , blue line and dot). All shown RFs have width d = 2.

Response speed

In the feedforward network, activity converges with the intrinsic time constant ε , which
we define as its response time. In the cooperatively coding network, the excitatory
recurrent connectivity increases the response time: Fig. 3 shows the dynamics of the
response formation. The L1-norm of the deviation of the response from the steady state,

L(t) = |x(t)→ xsteady
|1, (10)

which we use as a loss measure, decays exponentially with time constant

εresp ↔
ε

1→ wrec
sum

, (11)

(see Fig. 4), where wrec
sum =

∑
j W

rec
ij is the sum of recurrent weights arriving at (or,

equivalently, originating from) a neuron. We define εresp as the response time of the
networks. It scales inversely with the difference of the largest eigenvalue of the network,
which is equal to wrec

sum (cf. appendix S1), from 1. In particular, it depends only on the
summed recurrent weights. Equation (11) holds generally, for networks of the type eq. (4)
with purely excitatory circulant recurrent weight matrix and convergent dynamics.

July 12, 2024 7/44

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 12, 2024. ; https://doi.org/10.1101/2024.05.13.593810doi: bioRxiv preprint 

124

https://doi.org/10.1101/2024.05.13.593810
http://creativecommons.org/licenses/by/4.0/


60 80 100 120 140
Neuron index

0.0

0 .2

0 .4

0 .6

0 .8

1 .0

Re
sp

on
se

Target
t= 200
t= 50
t= 10
t= 1

0 50 100 150 200 250
Time ( )

60

80

100

120

140

N
eu

ro
n 

in
de

x

0

20

40

60

80

100

Re
sp

on
se

 (%
)

a) b)

Fig 3: Response formation and activity propagation. a) Network activity at
different times (shaded curves) after r100 has been set from 0 to 1. For long times,
network activity approaches the target response (black curve). b) Development of the
activity of neurons (y axis) with time (x axis), measured relative to their target activities.
The diagonal fronts of equal relative activities indicate propagation of activity with
constant propagation speed. The time points at which neurons reach 50% of their final
activity are connected by a red dashed line. Parameters: wrec = 0.5 · 1/(1→ 1/100), such
that εresp = 100ε (see eq. (11)), N = 200 neurons.

We now specialize the result to networks with nearest-neighbor coupling eq. (5) that
generate the RFs eq. (1). Inserting wrec = 1/(ω + ω↑1) and ω = exp(→1/d) relates the
response time to the RF width. By approximating exp(±1/d) ↓ 1± 1/d+ (1/2)d2 for
large d, we obtain wrec

↓ 1/(2 + 1/d2) and, inserting this into eq. (11),

εresp ↓
ε

1→ 2
2+ 1

d2

= (1 + 2d2) ε ↓ 2d2ε ↓
1

2
n2
RFε. (12)

In the last part of the equation we used that nRF = 1+2d ↓ 2d for large d. Equation (12)
shows that wide RFs require long equilibration time. This is because they need strong
recurrent weights with a largest eigenvalue close to 1. Further the equation reveals the
trade-off between response time and number of employed synapses: The feedforward
implementation eq. (2) needs nRF synapses and has a response time ε . The recurrent
implementation thus saves nRF → 3 ↓ nRF synapses per feature neuron. Equation (12)
shows that the response time increases quadratically in the number of saved synapses,
see also Fig. 4b).

The quadratic dependence of the response time on d reflects that, as the RF becomes
wider, not only does activity have to spread further, it also spreads more slowly: this
is consistent with the idea that the settling of a neuron depends (indirectly) more on
activity propagating back from more distant neurons that settle after it.

Faster response with spike frequency adaptation

For activity to rapidly spread through the network, neurons need to be able to cause
a large activity change in their neighbors within a short period of time. To achieve
this, they need strong recurrent weights. However, recurrent weights are restricted to
wrec

sum < 1 to not cause runaway activity. We now show how spike frequency adaptation
(SFA) can help ease this conflict and speed up network dynamics. SFA is typical for
excitatory principal neurons and induces a reduction of their response to constant inputs
in the long run [42,49,50].
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Fig 4: Loss evolution and response speed - synapse number trade-off. a)
Exemplary loss evolution for a network with wrec,net

sum = 0.5·(1→1/100) so that εresp = 100ε .
Experimentally, εresp is determined as the time (gray vertical line) at which the loss
drops to e↑1 (gray horizontal line, blue open circle). b) Response times εresp (circles:
simulation results; dotted line: analytical solution eq. (12)) for target RFs of different
widths nRF. Data was created by scanning nRF, setting wrec,net

sum to yield a RF of size
nRF and determining εresp from the loss dynamics.

We model SFA through a negative-feedback adaptation current u(t), which is triggered
by neuronal activity x(t) and characterized by its scale aSFA and time constant εSFA,

ε ẋi(t) = →xi(t) +
N∑

j=1

W rec
ij xj(t) +

N∑

j=1

W ff
ijrj(t)→ aSFAui(t), (13)

εSFAu̇i(t) = →ui(t) + xi(t). (14)

[51–53]. Setting ẋi(t) = 0 and u̇i(t) = 0 yields the steady state. We see immediately
that it implies ui = xi. Inserting this into eq. (13) shows that in the stationary state the
spike frequency adaptation results in a stronger leak current, →(1 + aSFA)xi. Dividing
by 1 + aSFA yields

0 = →xi +
N∑

j=1

W rec
ij

1 + aSFA
xj +

N∑

j=1

W ff
ij

1 + aSFA
rj . (15)

Consequently, in order to implement the same response as a network without SFA
(aSFA = 0, cf. eq. (4)), the recurrent and feedforward weights have to be scaled up by a
factor of 1 + aSFA. The additional excitatory synaptic input compensates in the steady
state the added inhibitory adaptation current.

To understand the network dynamics, it is instructive to consider the limit εSFA ↗ 0
where ui(t) ↗ xi(t) as in the steady state. Inserting this into eq. (13) and again dividing
by 1+aSFA yields an equation equivalent to eq. (4) with shortened neuronal time constant
and increased weights,

ε

1 + aSFA
ẋi(t)

ϑSFA↔0
= →xi(t) +

N∑

j=1

W rec
ij

1 + aSFA
xj(t) +

N∑

j=1

W ff
ij

1 + aSFA
rj(t). (16)

We see that a network with arbitrarily fast SFA and appropriately scaled weights has
the same dynamics as a network without SFA, but with its time constant reduced by
1 + aSFA. This factor only depends on aSFA and is independent of the RF width that
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the network implements. We might thus expect that introducing SFA with a given aSFA
and small εSFA causes a constant speedup, but still results in a quadratic dependence of
εSFAresp on nRF (see eq. (12)).

There is, however, an additional possibility: SFA might yield faster dynamics for finite,
nonzero εSFA. This is because then ui(t) lags behind xi(t), which creates a temporal
‘window of opportunity’. Within this window, the up-scaled weights can mediate strong
interactions that are not yet cancelled by the retarded adaptation currents of the receiving
neurons. In our networks, this leads to the following concept to exploit SFA: During the
initial response phase, strong weights should cause a fast response while SFA keeps the
steady state before and after an input change at the desired activity values as well as
dynamically stable. In particular, the modified recurrent synaptic weights may then be
(and to optimally exploit SFA: should be) so strong that without the SFA current the
network dynamics are unstable.

This second possibility applies to our networks: Measuring the response time as a
function of εSFA, we observe that it first decreases when increasing εSFA from zero and
reaches a minimum at a nonzero, optimal value of the SFA time scale (appendix S4).
Increasing εSFA further eventually causes diverging activity, because the retarded adap-
tation current u(t) becomes so slow that it never compensates the stronger input due to
the up-scaled weights. We note that also when keeping εSFA at a fixed value, there is an
optimal nonzero value of the inhibitory feedback strength aSFA. Importantly, we find
that introducing SFA with finite εSFA and optimal aSFA improves the scaling of εSFAresp

with nRF from quadratic as without or with arbitrarily fast SFA to linear.
To incorporate SFA in a cooperatively coding network, we modify the weights in

eq. (5) as described above and add the SFA current. For the neuron activities, this yields
the dynamical equation

ε ẋi(t) = →xi(t) + (1 + aSFA)w
rec(xi+1(t) + xi↑1(t))

+ (1 + aSFA)w
ffri(t)→ aSFAui(t); (17)

where the adaptation current obeys eq. (14).
Concerning the use of resources, SFA does not require additional synaptic connec-

tions, so the spatial demand of the cooperatively coding network is the same as in
the original model eq. (5). The increased weights, however, lead to stronger synaptic
currents. Together with the added adaptation currents, this increases the energetic cost
of maintaining the stationary state.

Balanced networks

The networks we studied so far had only excitatory synapses, while biological neural
networks also have recurrent inhibition, which balances the excitation [32,54]. These are
likely required for a range of reasons, such as ensuring network stability and maintaining
irregular spiking activity [55–59]. Given their existence, we here show how inhibition
can be used to speed up the network response, in an architecture that still relies on few
synapses.

The individual excitatory and inhibitory currents can be much larger than their
sum and precisely temporally balanced with a lag smaller than the neuronal time
constant [60, 61]. Further, many inhibitory neurons are rather sharply tuned [61–63],
sometimes similarly sharply as excitatory ones.

To incorporate inhibition consistent with these experimental findings, we add in-
hibitory interneurons to the existing network of excitatory feature neurons, which
represent principle neurons. The interneurons derive their tuning from the feature
neurons via specific recurrent inputs. For concreteness we assume that there are as many
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interneurons as feature neurons and that each interneuron follows the activity of one
feature neuron with a small delay, εlag. Equation (4) thus becomes

ε ẋi(t) = →xi(t) +
N∑

j=1

W rec,E
ij xj(t) +

N∑

j=1

W rec,I
ij xI

j(t) +
N∑

j=1

W ff
ijrj(t) (18)

= →xi(t) +
N∑

j=1

W rec,E
ij xj(t) +

N∑

j=1

W rec,I
ij xj(t→ εlag) +

N∑

j=1

W ff
ijrj(t), (19)

where xI
i(t) is the inhibitory activity, which equals the delayed excitatory feature neuron

activity xi(t → εlag). W rec,I
ij ↑ 0 is the coupling from inhibitory neuron j to feature

neuron i. We now introduce the state change of feature neuron i between t→ εlag and t,

!xi(t) = xi(t)→ xi(t→ εlag), (20)

as well as the the sum of recurrent excitation and inhibition

W rec,net
ij = W rec,E

ij +W rec,I
ij , (21)

which we call net weights. These definitions allow to rewrite eq. (19) as

ε ẋi(t) = →xi(t) +
N∑

j=1

W rec,net
ij xj(t)→

N∑

j=1

W rec,I
ij !xj(t) +

N∑

j=1

W ff
ijrj(t). (22)

We now insert the values of the cooperatively coding network eq. (5) into the equation
and further assume that the interneurons inhibit and balance the same sets of neurons
that their driving feature neurons excited, i.e. W rec,E

ij = wrec,E (ϑi+1,j + ϑi↑1,j) and

W rec,I
ij = wrec,I (ϑi+1,j + ϑi↑1,j) . Equation (19) then becomes

ε ẋi(t) = →xi(t) + wrec,E
(
xi+1(t) + xi↑1(t)

)

+ wrec,I
(
xi+1(t→ εlag) + xi↑1(t→ εlag)

)
+ wffri(t) (23)

and eq. (22)

ε ẋi(t) = →xi(t) + wrec,net
(
xi+1(t) + xi↑1(t)

)

→ wrec,I
(
!xi+1(t) +!xi↑1(t)

)
+ wffri(t). (24)

The residual inhibitory interaction, i.e. the inhibitory interaction that is not included in
wrec,net, depends on !xi±1(t) and therefore only acts when there are activity changes
during the preceding brief E-I lag. A total change ϑxj in the activity of neuron j

causes an integrated postsynaptic activity change in neuron i of → ϑlag
ϑ W rec,I

ij ϑxj (see
appendix S5).

To connect eq. (24) to our previous, unbalanced network eq. (5), we set

wrec,net = wrec. (25)

The dynamical equations then agree if wrec,I = 0 or !xi(t) = 0. The latter is satisfied
in the steady state. The steady state is thus independent of the amount of inhibition
(given that excitation covaries with inhibition such that wrec,E +wrec,I = wrec as implied
by eq. (25)) and it is the same as in eq. (5); its stability can, however, change. We
may thus think of wrec,net as defining the RF, and of wrec,I as affecting the dynamics.
During the build-up of the response strong excitation ramps up slightly before the
balancing inhibition. The analytical solution of eq. (24) and our stability analysis (see
next section and Fig. 9) show that throughout this window of opportunity excitation may
be up to approximately ε/εlag times larger than the net interaction without destabilizing
the network. This strong interaction allows a much quicker propagation of activity,
convergence to the steady state and decay of the loss function.
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Spatial demand and metabolic cost in the balanced network

Compared to the unbalanced network, the balanced network requires three additional
synapses per principle feature neuron, one E-to-I and two I-to-E synapses, i.e. a total of
six synapses. This is again independent of the RF width, such that for large RFs, the
balanced, cooperatively coding network still saves synapses compared to the feedforward
network. It requires additional space for the inhibitory neurons, which may, however, be
needed for other purposes anyways.

Also the metabolic maintenance cost increases, since there are more neurons. Further,
there is an increased metabolic cost to sustain the synaptic currents in the stationary
state: In this state, large parts of the excitatory and inhibitory currents cancel to give
rise to a net current that equals the one in the purely excitatory recurrent network, see
eq. (21) and eq. (25). In the L1 norm of the synaptic currents, the excitatory currents
and the absolute inhibitory currents, however, add up. The metabolic cost thus increases
by the amount of excitatory and inhibitory currents that cancel each other.

Response speed in the balanced network

Under some additional assumptions, the evolution of the L1-loss eq. (10) can be analyti-
cally approximated as the solution of a linear delay differential equation, see appendix S6
for details. The resulting dynamics are those of a damped oscillator, see Fig. 5a): For
weak inhibition, they are ‘overdamped’ in the sense that they are well described by the
sum of two exponentials with different decay rates. At a specific intermediate inhibitory
strength, the two decay rates agree and we have ‘critical damping’. For stronger inhibi-
tion the dynamics are ‘underdamped’ in the sense that the loss behaves as the absolute
value of an oscillation with exponentially decaying amplitude. Overly strong inhibition
causes divergence of the dynamics.

In the overdamped regime, the smaller decay rate is the relevant one, as it dominates
the speed of the decay for longer times. The larger decay rate rather describes how
quickly faster dynamics, that may be present due to the initial conditions, are suppressed
and the dynamics converge to the slower mode. The smaller decay rate increases when
the strength of inhibition approaches its critical value. The same holds for the single
decay rate in the oscillatory regime. At the critical inhibitory strength the overall decay
of the loss is thus fastest, see Fig. 5b). We find analytically that its decay time constant
is approximately proportional to the geometric mean of the response time in absence of
inhibition and the inhibitory delay,

εbal,cresp ↓

√
εrespεlag

2
, (26)

(cf. eq. (89) in appendix S6); the superscript “c” indicates that the result holds for
critical inhibitory strength.

Importantly, this implies that the scaling of the response time with the receptive field
width and size improves compared to the purely excitatory network. This is because
εbal,cresp ↘

≃
εresp. Inserting eq. (12) into eq. (26) for the 1D network, we obtain

εbal,cresp ↓

√
(1 + 2d2) εεlag

2
↓ d

≃
εεlag ↓

1

2
nRF

≃
εεlag, (27)

which is only linear in the RF width d and size nRF, instead of quadratic as in the case
of wrec,I

sum = 0, compare eq. (27) with eq. (12) and in Fig. 6a) the red and blue dotted
curves. As a consequence also the speedup gained through the inhibition, εresp/εbal,cresp ,
increases for wider RFs. We finally note that the interactions mediated by W rec,I can
also be thought of as implementing an excitatory transmission of activity changes: an
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Fig 5: Loss evolution for different inhibitory strengths. a) Loss evolution (dashed:
analytical approximation (cf. appendix S6, eqs. (65) and (75), partly occluded; solid:
network simulation) for inhibitory strengths that are slightly weaker (orange), equal
(blue) or slightly stronger (teal) than the critical strength, on a logarithmic scale. The
slope of the decay is given by ϖ (see b), explicitly highlighted for the overdamped
dynamics. The oscillation period of the underdamped dynamics is Tosci = 2ϱ/ς. In
case of oscillations, the analytic approximation briefly reaches zero loss once in a period
(sharp dips in dashed curve). In the network simulation there is also a pronounced
oscillation, but there always remains a finite error (solid, see appendix S6). b) Real part
(decay rate ϖ, black/gray) and imaginary part (oscillation frequency ς times ±1, red) of
the complex frequency of the exponential loss evolution, scaled by ε . For weak inhibition
there are two exponentially decaying modes (ϖ, black and gray curve). At the critical
inhibitory strength (blue dashed vertical line) there is only a single decay rate and no
oscillation. The decay rate (in the overdamped case: of the relevant slower-decaying
mode) is maximized. For stronger inhibition, network activity begins to oscillate (nonzero
ς, red), and diverges for ϑlag

ϑ wrec,I
sum < →1, where ϖ becomes negative. Dashed vertical lines

show the inhibitory strengths scaled by εlag/ε for the curves in a) ((εlag/ε)wrec,I
sum,c +0.02,

(εlag/ε)wrec,I
sum,c, (εlag/ε)w

rec,I
sum,c → 0.02). Parameters: wrec,net

sum = 0.99, ε = 1, εlag = 0.1,
and N = 200 for the network simulation.
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Fig 6: Response speed of networks with inhibition and linear MS. a) Response
times for the 1D network and for the 2D linear MS network. The quadratic scaling of εresp
with nRF for the excitatory networks (blue) can be improved to a linear dependence by
introducing balancing, delayed inhibition (red) or SFA (orange). Open (1D network) and
filled (MS network) circles display numerical results. Alike colored dotted (1D network) or
continuous (MS network) curves show theoretical estimates (eqs. (12), (27), (33) and (34))
or, for the SFA network, fit results (monomial fit: εSFAresp (nRF) = 0.66724(nRF)1.07063).
We use the slowest decaying eigenmode to theoretically estimate the response times (see
c). Since the balanced networks are not initialized in this eigenmode (in contrast to
the purely excitatory networks), the numerically measured response times (red markers)
lie above the theoretical values (red lines). b) Schematic of a 2D network with linear
MS. Feature neurons are arranged on a two-dimensional grid (labeled ‘Response x’).
Each receives feedforward input from two arrays of input neurons (labeled ‘Inputs
r(1|2)’) and four recurrent inputs. Feedforward and recurrent synapses are shown in blue
(exemplarily) and black, respectively. Input and feature neuron activities are color-coded.
The (linear) network response is the sum of the responses to input one and input two. c)
Exemplary loss evolution for a 1D network with lagged inhibition. Due to the temporally
constant initialization (xi(0) = 0, !xi(0) = 0), the network activity (solid red curve)
converges initially more slowly than the network’s slowest eigenmode (dotted red line).
The experimentally measured response time (continuous vertical gray line) is defined as
the time when the loss has decayed by 1/e (red open circle, horizontal gray line, see also
Fig. 4a). It is larger than that of the network’s eigenmode (dotted gray line), which we
use as analytical estimate of the response time. We created the data in a) by scanning
nRF, setting wrec,net

sum to yield a RF of size nRF, setting wrec,I
sum to 0 or its critical value, and

determining εresp or εbalresp from the loss dynamics. For the SFA network we set εSFA = ε ,
scanned aSFA and used the value that minimized the temporally integrated loss.
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activity change in neuron j adds an activity change with the same sign to neuron i,
because →W rec,I in eq. (22) is positive. Thus activity changes in different neurons in
the network amplify each other. In the limit of small εlag, the temporal derivative is
transmitted, see appendix S5.

Linear mixed selectivity

Neurons often respond selectively to more than one stimulus or input feature [64]. This
phenomenon is called mixed selectivity (MS). Here we consider linear MS [64,65], where
neuronal responses are linear functions of multiple stimuli. Concretely, neurons with
activities xij , i, j = 1, · · · , N are arranged on a two-dimensional grid and respond with

equal selectivity to two input features, represented by input neurons r(1)k and r(2)l with
k, l = 1, · · · , N ,

xresp
ij =

N∑

k=1

RF(1)
ijkr

(1)
k +

N∑

l=1

RF(2)
ijl r

(2)
l . (28)

Due to the linearity in the input representation and in the network, the total response is
the sum of the responses to the single input features. We take the grid axes to be aligned
with the stimulus dimensions, so that the first index in xij determines its response
to r(1) and the second that to r(2). We model this dependence as the same localized,
exponentially decaying shape as for the 1D network (cf. Fig. 6b)),

RF(1)
ijk = ω|i↑k| RF(2)

ijk = ω|j↑k|. (29)

The desired network response can be generated as the steady state of a recurrent network
that is equivalent to the 1D network eq. (5) in each dimension of the 2D grid (see next
section),

ε ẋij = →xij + wrec,MS(xi+1,j + xi↑1,j + xi,j+1 + xi,j↑1)

+ wff,MS(r(1)i + r(2)j ), (30)

with the modified constants wrec,MS = wrec

1+2wrec = ε
(1+ε)2 and wff,MS = wff

1+2wrec = 1↑ε2

1+ε2 .
Each neuron receives two external inputs and is connected to its nearest neighbors along
each stimulus axis. The network has thus only six synapses per neuron, regardless of the
RF width. Also a feedforward network where each dimension of the 2D grid is equal to
the 1D network eq. (2) generates the desired response. This implementation requires
nMS
RF = 2nRF = 2(2d+ 1) synapses per neuron, a number that increases linearly with the

RF width.

Mapping to a 1D system

In the following, we trace the network dynamics eq. (30) back to those of the 1D system
eq. (5). Due to the linearity of eq. (30), network responses again superpose. It thus
suffices to study the network in the case where only one input neuron is active: we choose

r(1)i , which specifies a property of the first stimulus, to be nonzero. Since the input is
independent of j, the dynamics eq. (30) are (for initial conditions homogeneous in j such
as xij(0) = 0) independent of j, xij(t) = xi(t). The recurrent inputs wrec,MS(xi,j+1(t) +
xi,j↑1(t)) = 2wrec,MSxi(t) then simply amount to a modification of the leak current to
→(1→ 2wrec,MS)xi,

ε ẋi = →(1→ 2wrec,MS)xi + wff,MSr(1)i + wrec,MS(xi+1 + xi↑1) (31)
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After dividing by (1→ 2wrec,MS), the differential equation for xi becomes

aε ẋi = →xi + awrec,MS(xi+1 + xi↑1) + awff,MSr(1)i , (32)

where we introduced a = (1→ 2wrec,MS)↑1 for brevity. With the values of the constants
wrec,MS and wff,MS highlighted after eq. (30) this is equivalent to the one-dimensional
network dynamics eq. (5) up to a different neuronal time constant aε instead of ε . (We
note that we obtained the modified constants such that this holds. For example, equating
the prefactors of the recurrent term in eq. (32) and eq. (5) gives wrec = awrec,MS =
(1→ 2wrec,MS)↑1wrec,MS, which then can be solved for wrec,MS.) As a direct consequence,
while the 1D network must have recurrent coupling strength of wrec < 0.5 for being
stable, the 2D MS network must have wrec,MS < 0.25. This is because in the MS network,
a neuron receives direct recurrent input from four nearest neighbors instead of two as in
the 1D case.

Equation (32) means that the RF of the MS network, along one axis, has the same
shape and width d as the equivalent one-dimensional network. In particular, d is
related to the recurrent weight strength awrec,MS via awrec,MS = wrec = ε

(1+ε)2 and

ω = exp(→1/d); the two RF components in eq. (29) are the same as the RFs in eq. (1),

for example RF(1)
ijk = RFik.

Response speed

From the mapping of the MS to the 1D system, eq. (32), we see that the MS dynamics
behaves in response to a single input like the 1D dynamics with the neuronal time
constant ε enlarged by a factor of a. The response time is thus given by eq. (12), but
with enlarged neuronal time constant, ε ↗ aε . For sufficiently large d, we have ω ↓ 1
(reflecting the spatially slow RF decay), wrec

↓ 1/2, wrec,MS
↓ 1/4 and thus a ↓ 2. The

scaling of the response time with the RF width d and size nMS
RF is thus again quadratic,

εMS
resp ↓ (1 + 2d2) 2ε ↓ 4d2ε ↓

1

4

(
nMS
RF

)2
ε. (33)

In the last equation we used nMS
RF = 2(2d+ 1) ↓ 4d. Compared to the 1D case (eq. (12)),

the response time as a function of d is therefore larger by a factor a ↓ 2. In contrast, it
is smaller by a factor 1/2 as a function of the RF size, compare eq. (33) with eq. (12)
and the blue continuous and dotted curves in Fig. 6a). In other words: the trade-off
between response time and number of needed synapses improves for sufficiently large
RFs by a constant factor of about 1/2 compared to the 1D network. This is because the
MS network effectively implements two 1D RFs (eq. (28)).

Balanced network

We now incorporate the effect of inhibitory neurons into the MS network. As in the 1D
case, we assume that the generated inhibition precisely tracks excitation with a short
time delay. We thus add to each recurrent excitatory connection an inhibitory one that
is slightly delayed. This results in a delayed differential equation like eq. (24) for the
balanced MS network dynamics. The parameters are given by those of the 1D balanced
system up to a factor a = 1 + wrec,net

sum , like in eq. (32). Further, it is again sufficient to
study the response dynamics to a single input, which can be reduced to those of the 1D
balanced network eq. (24) with adapted parameters. As in the purely excitatory case,
for a fair comparison of response times, we consider MS and 1D networks with the same
neuronal time constant ε . The effective time constant of the MS dynamics are then aε .
Therefore the response time of the MS network are given by those of the 1D network
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eq. (27) with neuronal time constant ε replaced by aε ↓ 2ε ,

εbal,c,MS
resp ↓

√
(1 + 2d2) εεlag ↓

≃
2d

≃
εεlag ↓

1

2
≃
2
nMS
RF

≃
εεlag. (34)

At the critical inhibitory strength, the response time thus scales again with the square
root of the response time of the network without inhibition (eq. (26)). Therefore it
scales linearly with the receptive field width d and size nMS

RF . The response time is as
a function of the RF size by a factor of about 1/

≃
2 smaller than that in the 1D case,

eq. (27), see Fig. 6a), red continuous and dotted curves. In other words, the trade-off
between response time and number of required synapses improves by a factor of 1/

≃
2.

This is again because the MS network effectively implements two RFs in the MS case;
the RF size doubles for the same width compared to the 1D network.

As for the 1D stimulus, the balanced networks have twice as many neurons and
additional synapses: Each (excitatory) feature neuron drives one inhibitory neuron,
which mirrors its activity. This inhibitory neuron in turn forms inhibitory synapses
to the four nearest neighbors that its presynaptic feature neuron excites. In total, the
balanced, cooperatively coding network thus requires eleven synapses per feature neuron,
instead of six for the unbalanced network. This is independent of the RF width, such
that the balanced, cooperatively coding network save synapses for sufficiently wide RFs.

Higher-dimensional linear MS

We can straightforwardly extend the introduced scheme to networks that have MS
with P > 2 stimuli. Neurons are then arranged on a hyper-grid with one grid axis per
stimulus dimension, so that NP feature neurons respond to PN input neurons. In the
cooperatively coding network, each neuron receives P feedforward and 2P recurrent
inputs, requiring a total of 3P synapses per neuron. The feedforward network, in contrast,
needs for each stimulus dimension 2d + 1 synapses, in total P (2d + 1) synapses per
neuron. The number of saved synapses thus grows linearly with the number of encoded
stimulus dimensions and the receptive field width.

Encoding a 2D stimulus

We finally consider the encoding of a two-dimensional stimulus, with both input and
feature neurons arranged on a two-dimensional grid, see Fig. 7a). Two-dimensional input
appears for example in vision [36] or planar navigation tasks [66]. Each feature neuron
responds to inputs that are close to its preferred input in both stimulus dimensions. The
RFs of neighboring neurons thus overlap and neuronal responses tile the represented
stimulus space. A purely excitatory cooperative coding network generating such activity
as stationary state is given by

ε ẋij =→ xij + wrec,2D(xi+1,j + xi↑1,j + xi,j+1 + xi,j↑1) + wff,2Drij . (35)

It has the same recurrent connectivity as the network with linear MS eq. (30), but
the feedforward input is arranged on a grid. The activity of feature neuron ij in the
stationary state is

xsteady
ij =

N∑

kl=1

RFijklrkl. (36)

The neuron thus responds to a combination of two input features represented by input
neurons rij with i, j = 1, · · · , N . The RF is explicitly given by

RFijkl ↓ c ·K0(ω
2Dφijkl), (37)
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with c = 1
2ϖ

wff,2D

wrec,2D , ω2D =
√

1↑4wrec,2D

wrec,2D and φijkl =
√
|i→ k|2 + |j → l|2. K0 is the zeroth

modified Bessel function of the second kind, which decays with distance φ approximately
as K0(φ) ↓

ϖ
2 e

↑ϱ/
√
φ+ 1/8 [67]. The RF is thus approximately radially symmetric.

The RF size depends on wrec,2D and the response amplitude also on wff,2D. The network
requires 5 synapses per neuron.

We also constructed a balanced network by introducing for each excitatory recurrent
input a delayed inhibitory one, like in the balanced 1D and MS networks. A balanced
implementation with explicit inhibitory interneurons requires twice as many neurons and
synapses than the purely excitatory network: it requires additionally one interneuron
per principle neuron, one inhibitory synapse for each excitatory recurrent synapse and
one synapse from each principle neuron to its corresponding interneuron.

Response speed

To estimate the dependence of the response speed on the RF size, we first need to
appropriately adapt the definition of the RF size, which we introduced after eq. (3). For
the one-dimensional network, this definition can be reformulated as follows: we count
the number of synapses that are necessary to generate the largest (around the center)
RF responses such that these responses summed together amount to a fraction of about
1→ e↑1

↓ 63% of the summed non-truncated RF. Accordingly, for the 2D network at
hand we define the RF size as the number of feedforward synapses that are necessary
to implement the largest RF entries, such that together they account for a fraction of
approximately 63% of the summed nontruncated RF. We denote the so-defined receptive
field sizes by n̂RF.

As for the 1D and linear MS networks, the response time with or without lagged
inhibition depends only on the summed excitatory weights or on the summed net and
inhibitory weights. It is thus given by eq. (11) or by eq. (26) in terms of wrec

sum = 4wrec,2D

or in terms of the (alike obtained) wrec,net
sum and wrec,I

sum . Fig. 7b) shows that the scaling
of the response time with the RF size is linear for unbalanced and square-root-like
for balanced networks. We give a geometric argument for this general scaling in the
Discussion (subsection ‘Multi-dimensional stimuli’). The scaling is more economical than
for the 1D and 2D linear MS networks, cf. Fig. 6.

Discussion

In this work, we have studied networks that encode continuous variables with neurons
that have overlapping response properties. We developed a cooperative coding scheme
that enables them to share and distribute computations among similarly-tuned neurons,
crucially using (net) excitatory connections. For the simplest considered networks this
sharing minimizes the number of required synapses while the total amount of synaptic
current remains the same as in a purely feedforward implementation. For networks
of neurons that represent higher-dimensional stimuli, the number of saved synapses is
especially large. The saving of synapses comes at the cost of longer response times. We
find, however, that neurons with spike frequency adaptation and neurons in networks
in which excitation is largely balanced by delayed inhibition can use the window of
opportunity between the arrival of excitation and inhibition to significantly speed up
their convergence to the steady state response, decreasing response times by orders of
magnitude and improving their scaling with RF size.

RF shape and more complex networks The exponentially decaying RFs that we
consider act as tractable models for experimentally encountered localized, overlapping
and broadening RFs [2, 38,40]. They allow to elegantly illustrate how neurons can use
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Fig 7: 2D network schematic and response times versus RF size. a) Schematic
of a two-dimensional network responding to a two-dimensional stimulus. Feature neurons
(labeled ‘Response x’) and input neurons (labeled ‘Inputs r’) are arranged on two-
dimensional grids. In the cooperatively coding network each feature neuron receives one
feedforward and four recurrent inputs; activities and shown connections are color-coded
as in Fig. 2. b) Response times in the 2D network increase linearly (without inhibition,
blue. Monomial fit: ε2Dresp = 0.46115 (n̂RF)1.00085) or square-root-like (with inhibition,

red. Monomial fit: εbal,2Dresp = 0.31995 (n̂RF)0.50202) with the RF size n̂RF. Dotted lines
represent the monomial fits. Data was created by scanning wrec,net

sum , setting wrec,I
sum to 0 or

its critical value, and determining n̂RF and εresp or εbalresp, respectively, from the response
curves after network activity converged.

recurrent interactions to cooperatively share feedforward information and shape the
network response. However, experimentally measured RFs have different and often more
complex shapes [7–9, 36]. We are optimistic that these can still be approximated by
the steady state of a cooperatively coding recurrent network with sparse connectivity,
although more synapses will be required. Determining the necessary network parameters
might involve minimizing a loss with L0 regularization, which is challenging.

Related work Conceptually, our 1D model is a ring model. Models of this type have
been proposed to model orientation selectivity in the visual cortex [23,52] (see also [68]),
head direction cells [69] and spatial memory [70]. Similarly, our 2D and 2D mixed
selectivity models have a toroidal or, when removing the periodicity, a planar structure.
Such networks may be important for spatial navigation [66]. With appropriate coupling,
ring-like networks can have two different dynamical regimes [42]: (i) an input-driven
regime where there is a single, homogeneous ground state, which is assumed in absence of
input and (ii) a regime of bump attractors, where there is spatially localized, persistent
activity in absence of input. Our networks are linear, therefore without input there
cannot be multiple stationary activity patterns whose amplitudes are asymptotically
stable. This is because each multiple of a stationary solution is a solution as well. We
thus work in the input-driven regime, with a single stable zero ground state. Previous
models have broad coupling fields or ranges of coupling probabilities, equivalent to many
recurrent synaptic connections that extend over neurons with quite different preferred
stimuli [23, 42,52,66,69,70]. In contrast, in cooperative coding networks, we have very
sparse synaptic connections between neurons with highly similar tuning.

In this work we considered the encoding of continuous variables in a scheme that
minimizes the total number of required synapses. Relatedly, ref. [71] investigates the
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problem of classifying discrete patterns in large networks of neurons with limited and
fixed in-degrees. It solves the problem by introducing an intermediate layer consisting
of interconnected perceptrons, which each receive only part of the overall input. This
intermediate layer may be seen as analogous to our feature layer. In the mainly studied
binary classification task, the intermediate layer is equipped with excitatory connections.
The assumed connectivity is untuned except for being overcritically excitatory such
that it drives neurons into saturation. In the stationary response to a pattern then all
(more precisely: nearly all [72]) neurons in the network assume the same output, either
positive or negative one. This allows a readout neuron to perform binary classification
with sparse readout weights. A refined architecture combines several such intermediate
layers in parallel. This yields an intermediate layer with several subpopulations, which
code in binary manner, allowing for classification with a binary vector. Another way
highlighted to achieve this is by using as intermediate layer a Hopfield network with
recurrent connections that are randomly realized with fixed probability. Since the binary
coding network and the network with several subpopulations have specific like-to-like
connectivity to save feedforward connections, they realize cooperative coding in our
sense, in a binary manner. By choosing the recurrent coupling probability of the Hopfield
network intermediate layer such that stronger positive and negative weights (which
connect similarly and oppositely tuned neurons, respectively) are realized with larger
probability, one could implement cooperative coding in them as well. Ref. [73] find that
local recurrent connectivity in Hebbian assemblies of spiking neurons can reduce the
number of feedforward connections between assemblies required for memory replay. The
total number of synapses in their model is, however, minimized by a purely feedforward
architecture. They argue that one benefit of sparse feedforward connectivity, augmented
through local recurrence, might be enabling one-shot learning.

The signature of cooperative coding in the networks that we investigated and in more
general ones is that the network trades feedforward and less specific recurrent synapses for
recurrent synapses mediating on average net-excitatory recurrent interactions between
similarly tuned neurons (and net-inhibitory interactions between highly anti-tuned
neurons). Consistent with this, intermediate-depth ML networks featuring recurrent and
feedback connections can match the performance of much deeper feedforward networks
while requiring less units and parameters [74]. It would be interesting to investigate
whether the recurrent connectivity in such networks is also like-to-like. If yes, this would
indicate that cooperative coding naturally appears also in ML networks. It may be
helpful in particular in convolutional networks to save feedforward connections and rely
on very sparse recurrent connectivity instead.

Response speed in excitatory 1D networks In our most simple, purely excitatory
cooperatively coding networks the response is slowed down compared to that of single
neurons due to recurrent excitation, which implements a positive feedback loop. This
feedback loop increases the eigenvalues of the matrix governing the differential equation
of the dynamics and increases the duration of the response to single pulses. The
prolonged response to a single short pulse adds up for prolonged inputs and leads to their
amplification as well. This type of amplification has been termed “Hebbian amplification”
in [21].

Networks with SFA To speed up the response, we first introduced SFA, a typical
feature of excitatory principal neurons [42, 49, 50]. Our model is a slightly simplified
version of that in [51] and the same as in [52,53].

In the networks with SFA excitation still dominates, i.e. we have on the one hand
Hebbian amplification as well. On the other hand, we have “balanced amplification” [21]:
Each neuron is a 2-dimensional dynamical system, the network consists of N of them;
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they are excitatorily coupled. Without the inhibitory feedback from the adaptation the
dynamics of the purely excitatory neuron population would be unstable. When a short
input arrives to the neuron population, its activity therefore increases rapidly, using
the window of opportunity before the inhibitory feedback current becomes prominent.
Inhibition then takes over and largely terminates the excursion leading to a shorter
duration impulse response of the network. For prolonged input, these impulses basically
add up, which leads to the fast convergence to new stationary activity, amplifying the
input. The complex Schur decomposition of the matrix governing the network dynamics
reveals a strong feedforward coupling from an oscillatory difference to an oscillatory
sum mode. This is similar to the networks in [21], which, however, have mostly real,
non-positive eigenvalues and thus non-oscillatory modes without Hebbian amplification.

Balanced networks The balanced versions of our networks incorporate inhibition
that closely tracks excitation with a short delay, as observed in experiments [60, 75, 76].
For stationary dynamics, excitatory and inhibitory currents largely cancel, resulting in
a relatively weak net excitatory interaction between similarly-tuned neurons [18, 19].
However, excitation reacts slightly faster than inhibition to dynamic activity changes,
allowing strong interactions during the window of opportunity where the change in
excitation is not yet balanced by the delayed inhibition. This mechanism allows activity
changes to propagate quickly through the network, significantly decreasing its response
time.

The effective lag of inhibitory feedback originates in our SFA and in other balanced
amplification [21] networks from the fact that the inhibitory currents are evoked by a
low-pass filtered version of the excitatory activity. In contrast, in our balanced networks,
there is an explicit, fixed lag between excitatory and inhibitory activity. We thus have
an infinite dimensional dynamical system governed by a delay differential equation.
However, the basic mechanism of shortening the impulse response and speeding up
the reaction to inputs is the same: Excitation without feedback inhibition is unstable.
When an input arrives, inhibition is insufficient to balance it. The excitatory activity
therefore increases strongly during the temporal window of opportunity. Then inhibition
sets in, largely balances excitation and limits it to its stationary value. We note that
still excitation dominates our balanced networks. We have numerically and analytically
studied the resulting convergence to stationary activity. This revealed qualitatively
different types of dynamics, which are familiar from the harmonic oscillator, namely
overdamped, critical and underdamped dynamics. Their occurrence depends on the
strength of the inhibitory feedback and the size of the time lag between excitation and
inhibition.

The increased response speed comes at the cost of requiring additional synapses and
interneurons to implement the inhibition. In our model this roughly doubles the number
of required synapses compared to the unbalanced cooperatively coding networks. As the
number of needed synapses is still independent of the RF size, the balanced networks
still save synapses for larger RFs. Furthermore, inhibitory neurons may be required
anyways for purposes such as maintaining irregular spiking activity [55–58]. Alongside
the increased synaptic requirements, the cancellation of currents means an increased
metabolic cost.

We covered inhibition in a simplified, effective manner without explicitly incorporating
inhibitory neurons. As argued above, we are optimistic that our qualitative findings
will hold in more complex networks, for example if they are optimized for sparseness.
In particular we expect that such networks will still show characteristics of cooperative
coding and that inhibition will allow to reduce response times.

From our analysis, the brain might use cooperative coding to save synapses and
space compared to a purely feedforward or more wasteful recurrent implementation, but
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might invest some synapses, neurons, space and energy in balancing inhibition to retain
a reasonable response speed.

Mixed selectivity We also considered networks with two-dimensional mixed selectivity,
where neurons are not only selective to a single stimulus but to two stimuli. Since our
networks are linear, we consider linear mixed selectivity. This is a simplification compared
to the nonlinear mixed selectivity that is ubiquitous in the brain [64,65]. We observe
that the tradeoff between saved synapses and speed is for networks using linear mixed
selectivity improved by a constant factor compared to networks where each neuron codes
for a single stimulus.

Multi-dimensional stimuli We considered networks encoding one- and two-dimen-
sional stimuli. We found that the trade-off between saved synapses and increased
response time is much more favorable for neurons that encode 2D stimuli.

For P ⇐ 2-dimensional stimuli, the fact that activity simultaneously propagates along
all dimensions suggests that the scaling of the response time with d, the characteristic
RF width along one of the dimensions, does not change with the number of dimensions.
However, the RF size nRF, the number of synapses needed in a purely feedforward
implementation, can be assumed to scale as nRF ↘ (2d + 1)P , with a prefactor that
depends on geometry. This reasoning suggests that the response time of networks

encoding higher-dimensional stimuli scales like εresp ↘ n2/P
RF and εbalresp ↘ n1/P

RF , which
we verified for P = 1, 2. The number of synapses required in a cooperatively coding
network will also in higher dimensions be negligible compared to nRF. Therefore the
number of saved synapses in the cooperatively coding network is still approximately nRF.
For higher-dimensional stimuli, the trade-off between response time and saved synapses
would thus become highly beneficial: the response time εresp or εbalresp would grow only
slowly with the number of saved synapses nRF due to the strongly sublinear relationship
for larger P .

Properties of connectivity Our cooperative coding scheme relies on the presence of
few strong recurrent excitatory connections between similarly-tuned cells. Excitation
can be balanced by inhibition, while interactions between similarly-tuned cells remain
net excitatory. Indeed, in layer 2/3 of mouse visual cortex, pyramidal neurons with
the same orientation preference connect at higher rates and form more bidirectional
connections [15]. This pattern of increased connection probability between neurons with
highly similar tuning extends across layers and visual areas, including feedforward and
feedback connections [14]. Furthermore, synapses between neurons with similar spatial
RFs are markedly stronger such that neurons receive the majority of their local excitation
from few similarly-tuned cells [16]. This strong, sparse local excitation matches the RF
structure of the receiving neurons [16]. Recurrent connections are generally sparse in
the cortex [77–80].

Studies of recurrent functional connectivity found net excitation between (spatially
close) neurons with similar tuning [19] and most correlated responses [18], consistent with
our model. Ref. [19] showed specifically that when optogenetically stimulating spatially
compact ensembles of co-tuned neurons, similarly-tuned neurons were excited while
differently-tuned neurons were inhibited. In a 1D-model, ref. [18] had to incorporate
strong nearest-neighbor-like excitatory interactions to match the experimental data,
arguing that they stabilize network responses in the presence of input noise. Our
interpretation is that they not only stabilize, but actively form the RF. Refs. [18,19]
also show an inhibitory effect on largely differently tuned neurons. Ref. [18] found net
inhibition between rather similarly tuned neurons as well. This is assumed to implement
feature competition, which we did not include in our model.
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A particular benefit of our cooperative coding scheme is that it allows feedforward
connections to be sparse. This fits for example experimental observations in the primary
visual cortex, where the vast majority of inputs are local recurrent ones, while only a
few percent are feedforward inputs [81, 82]. Ref. [83] estimated based on experimental
studies [84] that a single hypercolumn in primate V1 receives only 10-30 feedforward
inputs from the magnocellular layer of dorsal LGN mediating retinal input, with single
cells in L4↼ receiving as little as 0 - 6 inputs. Also in the hippocampal region CA3, where
place fields are enlarged compared to the upstream dentate gyrus [40], the recurrent
connectivity is high [79,85].

Experiments that aim to disentangle feedforward from recurrent contributions to
orientation selectivity resulted in mixed findings. Ref. [86] showed that the input to
simple cells in L4 of cat primary visual cortex still exhibit tuned, modulated responses
to drifting gratings after cortical activity was suppressed by cooling. In line with this,
ref. [17] found that thalamic and cortical contributions to the first harmonic of the
response curve (F1) were co-tuned. However, the temporally averaged response (F0)
to drifting gratings was tuned only in cortical but not in thalamic inputs. A recent
study, ref. [87], suggests that total input current from L4 of mouse primary visual cortex
to L2/3 may lack orientation tuning and that orientation selectivity is determined by
recurrent inputs from within L2/3.

Optimality By distributing and reusing computations via excitatory connections,
cooperatively coding networks minimize or strongly reduce the number of synapses
required to generate their responses. This corresponds to minimizing or strongly reducing
the L0 norm of the weights (or synaptic currents).

In the following we compare the metabolic cost of the feedforward and the simplest,
purely excitatory cooperative coding networks in the stationary state. We consider the
three main contributions of the metabolic cost [26,28]: the cost of keeping up the resting
network, of generating the required activity and of the synaptic transmissions. Keeping
up the resting network (housekeeping and maintaining the resting potentials) requires
the same energy expenditure in both implementations, as the number of neurons is the
same. Also the energy required to generate the stationary output activity is the same,
as corresponding neurons generate the same activity in both implementations.

The cost of synaptic transmission is dominated by the metabolic cost caused by the
postsynaptic currents [28]. We assume that this cost is characterized by the sum of the
absolute current strengths at individual synapses, i.e. by the L1 norm of the synaptic
currents [88]. This is the same in both implementations. Finally, a small part of the
overall cost (less than 10% [28]) arises due to presynaptic calcium influx and usage of
neurotransmitter during synaptic transmission. A comparison of these contributions
between the network implementations is more difficult. The surface of the active zone [89]
increases linearly with the synaptic strength [90]. Assuming that the area where calcium
influx happens increases linearly with the active zone size, the amount of influx during
a single synaptic transmission depends linearly on the synaptic strength, consistent
with [91]. The same should then hold for the related cost. Concerning the amount
of neurotransmitter used, experiments observe that the number of directly releasable
vesicles is linearly related to the synaptic strength, while the impact of a single vesicle
and its release probability are independent of it [90, 92] (this may differ for different
connected neuron types [93]). The finding suggests a linear dependence between the
synaptic strength and the used neurotransmitter and thus the related cost at a single
transmission. The total cost due to presynaptic calcium influx and neurotransmitter
usage is therefore proportional to the absolute synaptic strength times the number of
transmissions (the presynaptic activity). This, in turn, is proportional to the absolute
value of the induced postsynaptic current, which is identical in both implementations.
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We conclude that the metabolic cost of generating the stationary state is the same in
the feedforward and the simplest, purely excitatory cooperative coding implementation.
Since the latter takes longer to reach the stationary state, however, it also requires
more current and energy before generating a useful result. Due to the cancellation of
excitatory and inhibitory currents, the networks with SFA and the balanced networks
also use more current and thus more energy in the stationary state.

Previous studies often minimized the number of spikes or, more generally, the neuronal
activity needed to represent encoded features. Refs. [30,32,34] follow this approach and
suggest that tight EI-balance may be a signature of a highly coordinated and competitive
code that, despite the irregular firing, is orders of magnitude more precise than a Poisson
rate code. This spike-code depends on an extremely structured, dense connectivity,
through which similarly-coding neurons quickly inhibit each other to prevent redundant
spiking. From this standpoint the findings of excitatory functional connectivity between
similarly-tuned neurons [15,16,18,19] seem counter-intuitive.

Although the energetic costs of spike generation and synaptic transmission very likely
play a role in shaping cortical networks, our work suggests that space constraints and
the number of required synapses may be another main factor.

Conclusion To conclude, net excitatory connectivity between similarly tuned neurons
is compatible with a cooperative coding scheme that generates network responses with a
minimal number of synapses. This suggests space constraints as an important factor in
shaping neural networks. The window of opportunity between excitation and balancing,
delayed adaptation or inhibition may be harnessed to rapidly propagate activity changes
through the network, speeding up equilibration times by orders of magnitude.

Methods

All simulations have periodic boundary conditions. Fixed network parameters are the
number of neurons N for 1D and N2 for 2D networks, the neuronal time-constant ε
and, in networks with inhibition, the EI-lag εlag. We set N = 200, ε = 1 and εlag = 0.1.
In the networks with SFA we use a fixed value of εSFA = ε = 1 and, for each RF size,
obtain the value of aSFA that minimizes the temporal mean of the normalized L1-loss,

(1/T )
∫ T
0 dt |x(t) → x↗(t)|1/|x↗

|1, through a linear grid search. Here T = 500ε is the
length of a trial as described in Fig. 8a) and x↗(t) the target corresponding to the present
input. Fig. 8e) and c) show the scans over aSFA and the individual loss curves for the
optimal aSFA values. In all networks with inhibition, we set wrec,I

sum to its critical value
given by eq. (77).

We simulate our networks with SFA using the Euler method and all other networks
using the midpoint method with stepsize dt = 0.01. To simulate the networks with
delayed inhibition, we also need midpoint values of the delayed activity. We obtain them
by copying the midpoint values of the non-delayed activity εlag (εlag/ dt simulation steps)
before.

For the data in Figs. 4 and 6, we obtain RFs with different sizes by setting wrec
sum

or wrec,net
sum to appropriate values. In the case of 1D networks with and without SFA

and in the case of 2D linear MS networks, we have analytical expressions for the RF
sizes as a function of wrec

sum or wrec,net
sum . We thus chose wrec

sum or wrec,net
sum such that the

RF sizes are sampled linearly from n1D
RF = 6 to n1D

RF = 50 in steps of two. For the 2D
network, we simulate networks with 20 different values of wrec

sum or wrec,net
sum and measure

the RF sizes that the networks generate after convergence. We obtain wrec
sum or wrec,net

sum

as wrec
sum(or w

rec,net
sum ) = 1→ ε/εresp by varying εresp from 10 to 1, 000 with equal spacing

on a logarithmic scale.
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To numerically determine a network’s response time, we first simulate the network
for a long time, clearly longer than the convergence time, and define the resulting state
as the final, target state x↗. The loss is the L1 norm of the difference between x↗ and
the current state. We then simulate the network for a second time. We obtain εresp or
εbalresp as the earliest time at which the loss drops and stays below e↑1 times the initial
loss.
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Supporting information

S1 Dynamics of excitatory networks

The dynamics of our networks without SFA and explicit inhibition read for constant
input ri(t) = ri

ε ẋi(t) = →xi(t) +
∑

j

W rec
ij xj(t) +

∑

j

W ff
ijrj , (38)

see eq. (4). In the following, we discuss stationary states and time-dependent behaviors
of these dynamics.

We first verify that the recurrent network eq. (5), where W rec
ij = (ϑi+1,j + ϑi↑1,j)/(ω+

ω↑1) and W ff
ij = ϑij

(
1→ 2ω/(ω + ω↑1)

)
, has the desired stationary state xresp

i =
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∑
j ω

|i↑j|rj . For this we insert eq. (1) into eq. (5),

ε ẋi = →

∑

j

ω|i↑j|rj +
1

ω + ω↑1




∑

j

ω|i+1↑j|rj +
∑

j

ω|i↑1↑j|rj





+

(
1→

2ω

ω + ω↑1


ri (39)

= →

∑

j

ω|i↑j|rj +
1

ω + ω↑1




∑

j<i+1

ωi+1↑jrj +
∑

j↘i+1

ωj↑i↑1rj

+
∑

j≃i↑1

ωi↑1↑jrj +
∑

j>i↑1

ωj↑i+1rj



+

(
1→

2ω

ω + ω↑1


ri (40)

= →

∑

j

ω|i↑j|rj +
1

ω + ω↑1



ω
∑

j≃i

ωi↑jrj + ω↑1
∑

j>i

ωj↑irj

+ ω↑1
∑

j<i

ωi↑jrj + ω
∑

j↘i

ωj↑irj



+

(
1→

2ω

ω + ω↑1


ri (41)

= →

∑

j

ω|i↑j|rj +
1

ω + ω↑1



ω
∑

j

ω|i↑j|rj + ωri

+ω↑1
∑

j

ω|i↑j|rj → ω↑1ri



+
ω + ω↑1

→ 2ω

ω + ω↑1
ri (42)

=
ω → ω↑1

ω + ω↑1
ri +

ω↑1
→ ω

ω + ω↑1
ri = 0 (43)

The computation shows that the recurrent input from neurons i+ 1 and i→ 1 add, in
the steady state, up to nearly generate the desired response of neuron i: the first and
third summand in the bracket in eq. (42) give the desired response. The input that is

missing, ε↑ε→1

ε+ε→1 ri < 0, is contributed by the feedforward input (last summand in each

line, which cancels the missing input in eq. (43)).
We now turn to non-stationary solutions. The recurrent weight matrices in our

recurrent networks eq. (5) are real symmetric matrices and therefore diagonalizable with
real eigenvalues and orthogonal eigenvectors. We denote by x̂µ, µ = 0, · · · , N → 1, the
µth normalized eigenvector of W rec with eigenvalue ↼µ, and by xµ(t) = x̂µTx(t) the
projection of the network activity on this eigenvector (a scalar). Any activity x(t) can be
expressed as a linear combination of the orthonormal eigenvectors x̂µ with coefficients
xµ(t). x̂µ is also an eigenvector of W rec

→1, with eigenvalue ↼µ
→ 1. Multiplying eq. (38)

with x̂µT from the left shows that the evolution of network activity can be separated
into the evolution of N individual components,

ε ẋµ(t) = →xµ(t) + ↼µxµ(t) +
∑

i,j

x̂µ
i W

ff
ijrj , (44)

ẋµ(t) = →ϖµxµ(t) +
1

ε

∑

i,j

x̂µ
i W

ff
ijrj , (45)

see, e.g., [41]. Here we defined

ϖµ =
1→ ↼µ

ε
(46)
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as the decay rate of network activity in the µth eigenmode. The response time of the
network equals 1/ϖµ, if it is initialized in the µth eigenmode. When initialized by x(0),
the state decays to a stationary value in the different components,

xµ(t) = e↑ςµtxµ(0) + (1→ e↑ςµt)x↗µ. (47)

Here xµ(0) = x̂µTx(0) are the initial and x↗µ = x̂µTx↗ = 1
ςµϑ

∑
i,j x̂

µ
i W

ff
ijrj the final

stationary values of the µth component in the eigenbasis. The vector of the stationary
dynamics x↗ has the entries x↗

i =
∑N

j=1 RFijrj , if the network generates the desired
stationary dynamics. In the absence of recurrent input we have W rec = 0 and thus
↼µ = 0, such that the activity decays at a rate of ϖ = 1/ε to its target. Positive
eigenvalues ↼µ > 0 mean a slower decay. At ↼µ = 1 there is no decay at all, and for
↼µ > 1 activity diverges. Stable activity thus requires the largest eigenvalue of the
recurrent weight matrix to be smaller than one, such that together with the individual
intrinsic decay of each neuron the dynamics are a contraction.

Because the system is linear, the different eigenmodes decay independently from
each other at different rates, following eq. (47). Thus with time the faster-decaying
modes connected to smaller eigenvalues become exponentially suppressed relative to the
dominant, slowest-decaying mode.

The recurrent weight matrices in our recurrent networks eq. (5) furthermore have
the property that they are circulant matrices, i.e. each row is equal to the row before
rotated one element to the right. The eigenvalues of such matrices are given by the
explicit formula [94]

↼µ =
N∑

j=1

W rec
1j · e

2ωI
N (j↑1)µ, (48)

where I is the imaginary unit. For purely excitatory networks, we have W rec
1j ⇐ 0, such

that ↼µ is maximal if µ = 0, as otherwise the real part of each addend in eq. (48) is
smaller or equal. The corresponding eigenvector of W rec is

x̂0 =
1

≃
N

(1, 1, 1, ..., 1)T . (49)

Therefore, we obtain the slowest convergence for

↼max = ↼0 = wrec
sum =

N∑

j=1

W rec
ij , (50)

where wrec
sum is the row sum of the recurrent coupling matrix, which is independent of i

as the matrix is circulant. The slowest exponential decay dominates the behavior for
longer times. Inserting ↼max into eq. (46) thus yields εresp, the generic time scale of
convergence of the network dynamics eq. (5) to the target state xi =

∑
j RFijrj ,

εresp =
ε

1→ ↼0
=

ε

1→ wrec
sum

. (51)

S2 Loss evolution of excitatory networks

In this section, we compute the time evolution of the network loss for our networks
without SFA and explicit inhibition. We assume that the networks receive constant
input and have initial state xi(0) = 0. All convergence time scales that are present in the
network (cf. eqs. (46) and (48)) could in principle contribute to this time evolution. We
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will however see, that the decay time of the loss is equal to that of the slowest-decaying
mode.

We define the loss as the 1-norm of the deviation of the network activity from the
target activity,

L(t) =
1

N

N∑

i=1

|xi(t)→ x↗
i |. (52)

Under the assumption that network activity does not ‘overshoot’, i.e. that it is always
lower than or equal to the target activity, xi(t) ↑ x↗

i ⇒t, we can replace the loss function
by a linear loss function

Llin(t) =
1

N

N∑

i=1

x↗
i → xi(t). (53)

We can express the linearized loss as the (scaled) projection of the deviation of the
activity from its target, x↗

→ x(t), onto the eigenvector x̂0 eq. (49),

Llin(t) =
1

≃
N

x̂0T (x↗
→ x(t)) =

1
≃
N

(
x↗0

→ x0(t)
)
. (54)

The linear loss thus has a single exponential decay. This is a consequence of the fact
that (1, 1, 1, ...1)T is an eigenvector of the dynamics, which, in turn, holds because the
row sum of a circulant matrix is the same for each row. The linear loss therefore decays
with the time constant εresp obtained in eq. (51) to its stationary value, 0.

S3 Cooperative coding minimizes the number of required synapses
in 1D excitatory networks

The cooperatively coding recurrent networks eq. (5) and, with SFA, eq. (17) generate
the required stationary dynamics eq. (1) with three synapses per neuron. Here we show
that this is the minimal number of synapses. Specifically, we show that it is impossible
to construct the RF of one neuron as the sum of only one or two other RFs and/or
feedforward inputs.

Any network of the form eq. (4) that correctly implements the desired target response
has RFs that satisfy eq. (8),

RFij = W ff
ij +

∑

k

W rec
ik RFkj , (55)

i.e. RFi· is a sum of localized peaks from feedforward inputs and extended two-sided
exponentials from recurrent inputs (see Fig. 2c) for an example). First, there needs to be
at least one (nonzero) feedforward synapse, as otherwise the network could not respond
to input neuron activity. Clearly two feedforward synapses cannot solve the problem for
RFs with nRF > 2. But the sum of a localized peak from a feedforward input and the
extended response from a recurrent input (with nonzero coefficients) cannot match the
target shape (because the difference between the target RF and another RF is either zero
or has extended support). Thus every neuron needs at least three synapses to implement
the target network response.

S4 Spike frequency adaptation

Here we study the dynamics of a 1D network with SFA, which are given by eq. (17).
Fig. 8a) shows the dynamic response of neuron j0, whose preferred input is presented
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as isolated unit input. The initial dynamics are faster than for a network without SFA.
This is because the adaptation current effectively reduces the membrane time constant
and because it does not yet fully compensate for the stronger recurrent and feedforward
weights, as it is slow (see eqs. (14) and (16)).

To quantify the change in response speed, we compute the integrated loss, as a
fast convergence implies that the integrated loss is small. We normalize the loss,
Loss(t) = |x(t)→ x↗

|1/|x↗
|1 to render it comparable for different RF widths. We define

the integrated loss as the temporal mean of the normalized loss. Fig. 8d) shows the
dependence of the integrated loss on the SFA time constant. The left-most data point at
εSFA = 0 corresponds to the zero-lag limit where ui(t) = xi(t), which effectively modifies
the leak current to →(1 + aSFA)xi(t) (eq. (16)), resulting in a reduced neuronal time
constant ε ↗ ε/(1 + aSFA). Consequently, in this limit and for aSFA = 1, the response
time of the SFA network is half as large as that of a network without SFA, which is
εresp = ε/(1→ wrec

sum) ↓ 201, eq. (11). Also the integrated loss is smaller; without SFA it
would be ↓ 0.413. The negative slope at εSFA = 0 and the clear minimum at εSFA ↓ 0.87
show that the network can increase its response speed beyond this effective reduction
of ε by utilizing the larger recurrent and feedforward weights, eq. (15), which are not
yet fully compensated during equilibration. For oscillating dynamics, εresp can jump
discontinuously. This happens if the time point at which all later losses are below e↑1

jumps from one oscillation peak to the next. Therefore we use the integrated loss here
as the minimization target.

Fig. 8f) shows the integrated loss as a function of aSFA and wrec,I
sum in networks that

combine SFA and balancing inhibition. The integrated loss is minimized in networks with
critical inhibitory strength and without SFA. Larger adaptation can partly compensate
weaker inhibition; the data suggest that the optimal values of the adaptation and
inhibition parameters satisfy the relation aSFAεSFA + wrec,I

sum /wrec,I
sum,c ↓ 1.

S5 Effective residual inhibitory interaction strength

The residual inhibitory interaction term in the dynamics eq. (22) reads

ε ẋi = . . .→
N∑

j=1

W rec,I
ij !xj(t) + . . . . (56)

In the following we compute the effective strength of the interaction mediated by this
term, which we define as the total, integrated contribution to the state change of feature
neuron i that it causes. For this we assume that the presynaptic activity xj of neuron
j changes only for a limited amount of time, i.e. its derivative has limited support.
Concretely we assume that ẋj(t) = 0 for |t| > T → εlag for some finite time T . The
component of the overall state change ϑxi = xi(T )→ xi(→T ) in neuron i between →T
and T that is caused by the residual inhibitory term due to changes in neuron j is then
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Fig 8: Network and loss dynamics in a 1D network with SFA. a) Dynamics of
activity (xj0(t), black), adaptation variable (uj0(t), green) and input (rj0(t), blue) for
the j0 = 100th neuron, which receives its preferred input as isolated unit input that is
switched on at t = 100ε and off at t = 300ε (rj(t) = ϑjj0 between these times). The
network implements an RF with d = 4.5 (nRF = 10) and has, for better illustration, a
rather slow εSFA = 10ε and slightly stronger-than-optimal aSFA = 0.09, resulting in a
visible lag between x(t) and u(t) and oscillatory dynamics. During the initial rising phase
(t ↫ 100ε), activity rises faster than for a network without SFA (gray line). b) Stationary
activity of SFA networks with different receptive field width. The networks receive
an isolated input (parameters are εSFA = ε and optimal aSFA = a↗SFA, see e)). The
stationary activity matches its target for different nRF (color-coded). To show this, target
(black dashed) and final activity (color-coded) of four networks with nRF ⇑ 6, 20, 34, 50
are highlighted. c) Evolution of the L1-loss of the deviation of network activity from its
target, normalized by the L1-norm of the target response for present input, under the
stimulus protocol as described in a) for the same networks as in b), with aSFA determined
as described in e). d) Integrated loss (black), determined as the temporal mean of the
normalized L1-loss shown in c), and response time (red), determined as the earliest time
after the onset of input for which the normalized L1-loss drops and stays below e↑1, for
a network with dRF = 10 (nRF = 21), aSFA = 1 and 101 values of εSFA scanned between
0 and 1. The integrated loss and response time of a network without SFA are shown
by colored dots. e) Integrated loss for different nRF (curves are color coded as in b))
as a function of aSFA (for εSFA = 1). The minima, determining a↗SFA used in b), c) and
Fig. 6a), are connected by a black curve, showing that the optimal adaptation strength
increases for larger RFs. We note that the data in a),d) and e) suggest that the optimal
adaptation parameters fulfill the relation aSFAεSFA ↭ 1. (Caption continued on next
page)
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Fig 8: (Continued) f) Grid scan of the integrated loss for aSFA linearly scanned between
0 and a↗SFA and wrec,I

sum linearly scanned between 0 and wrec,I
sum,c (101 values each, dRF = 10

(nRF = 21), εSFA = 1). The white region indicates parameters for which network
activity diverges, identified by an integrated loss larger than 1, cf. also e). Here the
loss was computed for the time window with present input only, more precisely for
t ⇑ [100ε → dt, 300ε ], different from a)-e). For all simulations, we created data by
simulating 1D networks with N = 200, ε = 1 using the Euler method with step size
dt = 0.01; nRF, εSFA, aSFA and wrec,I

sum varied as described above.

given by

 T

↑T
dt

→W rec,I
ij

ε
!xj(t) =

→W rec,I
ij

ε

 T

↑T
dt xj(t)→

 T

↑T
dt xj(t→ εlag)



=
→W rec,I

ij

ε

 T

↑T
dt xj(t)→

 T↑ϑlag

↑T↑ϑlag

dt̃ xj(t̃)



=
→W rec,I

ij

ε

 T

T↑ϑlag

dt xj(t)→

 ↑T

↑T↑ϑlag

dt xj(t)



=
→W rec,I

ij

ε

(
εlagxj(T )→ εlagxj(→T )

)

= →
εlag
ε

W rec,I
ij ϑxj . (57)

Here we substituted t̃ = t→ εlag in the second line; in the third line we used that large
parts of the two integrals cancel and in the fourth line that xj(t) is constant between
T → εlag and T as well as between →T → εlag and →T . ϑxj = xj(T ) → xj(→T ) is the
total change in presynaptic activity. The result states that a change ϑxj in presynaptic

activity causes a total postsynaptic state change of → ϑlag
ϑ W rec,I

ij ϑxj . This may also be
intuitively understood as follows: A step-like activity change in xj(t0) by ϑxj(t0) at time
t0 increases !xj(t) by ϑxj(t0) for all t with t0 ↑ t ↑ t0 + εlag. According to eq. (56) it

thus changes ẋi(t) by →1/εW rec,I
ij ϑxj(t0) for a duration of εlag. The integrated effect

is thus →εlag/εW
rec,I
ij ϑxj(t0). A continuous change of xj(t) may be seen as assembled

of many small step-like ones, which together sum to ϑxj and thus have the integrated
effect eq. (57).

In the limit of small εlag, the residual inhibitory interaction term transmits the
temporal derivative of the neuronal dynamics in excitatory manner, adding a contribution
with the same sign to the temporal derivative of the postsynaptic neuron. To see this,
we scale the inhibitory weights with εlag in such a way that the total, integrated effect
of the residual inhibition due to a presynaptic activity change at t is independent of
the lag between excitatory and inhibitory activity, εlag, i.e. we set W rec,I

ij = ϑ
ϑlag

cij with

constant cij , compare eq. (57). In the limit of short lag the delayed interaction term

then becomes limϑlag↔0 →W rec,I
ij !xj(t) = limϑlag↔0 →εcij!xj(t)/εlag = →εcij ẋj(t). The

prefactor →εcij > 0 is positive, which renders the coupling excitatory.

S6 Loss evolution of balanced networks

To analytically estimate the evolution of the loss in our networks with balancing, delayed
inhibition, we use again the linearized L1 loss eq. (53)), i.e. we assume again that the
activity is always lower than or equal to the target activity. In the purely excitatory
network, the linearized loss satisfied some simple dynamical equations, eq. (54) and
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eq. (45). We will see in the following that this also holds in our balanced networks. To
obtain the dynamical equation we compute the temporal derivative of the loss, using
the linear time evolution of the activityeqs. (22) and (24). We assume that the input is
constant, rj(t) = rj , and use the knowledge that for such input the dynamics converge
to a stationary target state x↗

i . This yields

ε L̇lin(t) =
ε

N

N∑

i=1

d

dt
(x↗

i → xi(t))

= →
1

N

N∑

i=1

(
→ xi(t) +

N∑

j=1

W rec,net
ij xj(t)

→

N∑

j=1

W rec,I
ij !xj(t) +

N∑

j=1

W ff
ijrj

)
. (58)

We now specialize the computation further by taking into account that in the cases of
interest for us, W rec, W rec,I and thus also W rec,net, as well as W ff are circulant matri-
ces. This implies that the column sums wrec,E

sum =
∑N

i=1 W
rec,E
ij , wrec,I

sum =
∑N

i=1 W
rec,I
ij ,

wrec,net
sum =

∑N
i=1 W

rec,net
ij and wff

sum =
∑N

i=1 W
ff
ij are independent of the column j. Equa-

tion (58) thus simplifies to

ε L̇lin(t) =
1

N

N∑

i=1

xi(t)→ wrec,net
sum

1

N

N∑

j=1

xj(t)

+ wrec,I
sum

1

N

N∑

j=1

!xj(t)→ wff
sum

1

N

N∑

j=1

rj . (59)

The networks that we want to track analytically start with xi(0) = 0, such that the

initial linear loss is Llin(0) =
∑N

i=1 x
↗
i → 0. To describe the network loss dynamics, we

can thus use

1

N

N∑

i=1

xi(t) =
1

N

N∑

i=1

x↗
i → 0→

(
x↗
i → xi(t)

)
= Llin(0)→ Llin(t). (60)

An alike equation holds for 1
N

∑N
i=1 xi(t→ εlag), such that

1

N

N∑

i=1

!xi(t) =
1

N

N∑

i=1

xi(t)→ xi(t→ εlag)

= Llin(0)→ Llin(t)→
(
Llin(0)→ Llin(t→ εlag)

)

= →
(
Llin(t)→ Llin(t→ εlag)

)
= →!Llin(t), (61)

where we introduced the abbreviation

!L(t) = Llin(t)→ Llin(t→ εlag) (62)

for the difference between the current and the delayed loss. Inserting eq. (60) and eq. (61)
into eq. (59) gives

ε L̇lin(t) =
(
1→ wrec,net

sum

)(
Llin(0)→ Llin(t)

)
→ wrec,I

sum!Llin(t)→ wff
sum

1

N

N∑

j=1

rj . (63)
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To eliminate the explicit occurrence of the inputs, we use that in the stationary state,
which is reached for t ↗ ⇓, we have Llin(⇓) = 0, L̇lin(⇓) = 0 and !Llin(⇓) = 0. For
t ↗ ⇓, eq. (63) thus shows that

0 = (1→ wrec,net
sum )Llin(0)→ wff

sum
1

N

N∑

j=1

rj . (64)

Employing this in eq. (63) gives our final dynamical equation for the linearized loss in
terms of the variable Llin only,

ε L̇lin(t) = →
(
1→ wrec,net

sum

)
Llin(t)→ wrec,I

sum!Llin(t). (65)

We solve this delay differential equation with the ansatz

Llin(t) = Llin(0) exp(→”t). (66)

We note that

” = ϖ+ iς (67)

is generally complex. The ansatz implies

L̇lin(t) = →”Llin(t),

!Llin(t) = Llin(t)→ Llin(t→ εlag) = (1→ exp(”εlag))L
lin(t)

= → (exp(”εlag)→ 1)Llin(t). (68)

Inserting eq. (68) into eq. (65) and dividing by →εLlin(t) yields

→ε”Llin(t) = →(1→ wrec,net
sum )Llin(t) + wrec,I

sum

(
exp(”εlag)→ 1

)
Llin(t),

” =
1→ wrec,net

sum

ε
→

wrec,I
sum

ε

(
exp(”εlag)→ 1

)
. (69)

We see immediately that in the absence of inhibition, wrec,I
sum = 0, we have ” = ϖ =

1↑wrec,net
sum
ϑ = 1

ϑresp
(cf. eq. (11)), such that the decay rate of the purely excitatory network

eq. (4) is recovered, as it has to be. To solve eq. (69) in presence of inhibition, we rewrite
it as

”εlag =
εlag
εresp

→
εlag
ε

wrec,I
sum

(
exp(”εlag)→ 1

)
, (70)

(
”εlag →

εlag
εresp

→
εlag
ε

wrec,I
sum


exp(→”εlag) = →

εlag
ε

wrec,I
sum . (71)

Substituting

”εlag →
εlag
εresp

→
εlag
ε

wrec,I
sum = →z, (72)

we obtain

z exp(z) =
εlag
ε

wrec,I
sum exp

(
εlag
εresp

+
εlag
ε

wrec,I
sum


. (73)

The branches of the Lambert W function solve z exp(z) = RHS for z. Applying them
to eq. (73) yields z = Wk(RHS), where Wk denotes the kth branch and RHS the right
hand side of eq. (73),

z = Wk

(
εlag
ε

wrec,I
sum exp

(
εlag
εresp

+
εlag
ε

wrec,I
sum


. (74)
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Resubstituting for z then gives the decay rate ϖ (cf. eq. (67)) and, if an oscillation is
present, the oscillation frequency ς of the linearized loss,

”εlag =
εlag
εresp

+
εlag
ε

wrec,I
sum →Wk

(
εlag
ε

wrec,I
sum exp

(
εlag
εresp

+
εlag
ε

wrec,I
sum


. (75)

Figs. 5 and 9 show the relevant solutions, obtained from the branches k = 0 and k = →1.
Similarly to the dynamics of a dampened harmonic oscillator, there is a transition from

an exponentially-decaying (‘overdamped’) regime with two decay rates to an oscillating
(‘underdamped’) regime with a single one. At the transition point we have critical
inhibitory strength (‘critical damping’). In the oscillatory regime it is the amplitude of
the oscillation that decays exponentially. Because the actual error is always smaller or
equal to the amplitude, having slightly larger than critical inhibition may be optimal, see
Fig. 5a). The solutions corresponding to branches other than k = 0,→1 have markedly
higher decay rates and are thus of little relevance. They also have high oscillation
frequencies with periods smaller than the lag.

We note that in the case of oscillations (ς ⇔= 0), the linearized loss eq. (66) periodically
reaches zero. This corresponds to xi(t) = x↗

i for all neurons, meaning that all neurons
simultaneously go from positive to negative deviations from their target activities, or
vice-versa. In the full network model, however, these transitions will occur at different
times, so that when one neuron matches its target activity there are others that don’t.
Therefore, the minima of the oscillation are not at zero but at a final error, see Fig. 5a).

We now determine the critical inhibitory strength and the critical decay rate. These
are determined by z = Wk(RHS) (eq. (74), with RHS the right hand side of eq. (73))
having only one real solution z. This happens at the branch point RHS = →e↑1 where
the 0th and →1st branch agree, z = W0(→e↑1) = W↑1(→e↑1) = →1 [95]. We first set
RHS = zez = →e↑1 to obtain wrec,I

sum,c,

εlag
ε

wrec,I
sum,c exp

(εlag
ε

wrec,I
sum,c

)
= → exp

(
→1→

εlag
εresp


, (76)

εlag
ε

wrec,I
sum,c = Wk

(
→ exp

(
→1→

εlag
εresp


, (77)

where we have again used a (yet unspecified) branch of the Lambert W function to solve
for wrec,I

sum,c. We know that the inhibitory strength must be real and negative; this can
only hold for k = 0 or k = →1. It might seem surprising that we obtain two solutions
here. The reason is that there are actually two critical points, seeFig. 9a): one with
a positive decay rate, and another with a negative decay rate, which thus describes
exponential growth. We are interested only in the converging dynamics and thus choose
k = 0.

Next we resubstitute ϖcεlag = ϑlag
ϑresp

+ ϑlag
ϑ wrec,I

sum,c → z (eq. (72) with ” replaced by

the critical, real decay rate ϖc), use z = →1 and insert the critical inhibitory strength
eq. (77) to obtain the critical decay rate,

ϖcεlag =
εlag
εresp

+
εlag
ε

wrec,I
sum,c + 1 (78)

= 1 +
εlag
εresp

+W0

(
→ exp

(
→1→

εlag
εresp


. (79)

The response time of the balanced network is the inverse of ϖc,

εbal,cresp =
1

1
ϑlag

+ 1
ϑresp

+ 1
ϑlag

W0

(
→ exp

(
→1→ ϑlag

ϑresp

)) . (80)
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Fig 9: Critical points and approximation of the analytical solution for εbal,cresp .
a) Real part (decay rate ϖ, black/gray) and imaginary part (oscillation frequency ς
times ±1, red) of the complex frequency of the exponential loss evolution, scaled by ε
(compare Fig. 5). The leftmost dashed gray vertical line marks the first critical inhibitory
strength at which there is only a single, positive decay rate. For (εlag/ε)wrec,I

sum = →1,
marked by the middle dashed gray vertical line, the decay rate is zero and transitions
from positive (decaying) to negative (exponentially growing). There is a second critical
inhibitory strength, marked by the rightmost dashed gray vertical line, at which there is
a single, negative decay rate. The critical point with the decaying dynamics corresponds
to the solution of eq. (77) with k = 0, the one with the exponentially growing dynamics
to that with k = →1. b) Exact (black dashed, cf. eq. (80)) and approximate (gray
dashed, cf. eq. (89)) values of the critical decay time of the balanced network, εbal,cresp , as
a function of that of the excitatory network. Approximation and exact solution agree
well. Their ratio (red) is close to one, and approaches one for εresp ↖ εlag. Parameters:
ε = 1, εlag = 0.1 and, in a), wrec,net

sum = 0.99.
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We now want to derive a more easily interpretable approximation for ϖc and εbal,cresp

for small εlag/εresp. To this end, we modify eq. (79) to

ϖcεlag → 1→
εlag
εresp

= W0

(
→ exp

(
→1→

εlag
εresp


(81)

↙

(
ϖcεlag → 1→

εlag
εresp


exp

(
ϖcεlag → 1→

εlag
εresp


= → exp

(
→1→

εlag
εresp


(82)

∝

(
ϖcεlag → 1→

εlag
εresp


exp (ϖcεlag) = →1. (83)

Here we have applied the inverse of W0, z ↗ zez, to both sides, and multiplied with
exp(→1→ εlag/εresp). Next we assume that ϖcεlag is small, meaning that the response
time is much larger than the E-I lag, expand the exponential up to the second power in
ϖc and εlag, and solve for ϖcεlag,

(
ϖcεlag → 1→

εlag
εresp

(
1 + ϖcεlag +

1

2
(ϖcεlag)

2 + . . .


= →1 (84)

ϖcεlag → 1→
εlag
εresp

+ (ϖcεlag)
2
→ ϖcεlag →

εlag
εresp

ϖcεlag →
1

2
(ϖcεlag)

2
↓ →1 (85)

1

2
(ϖcεlag)

2
→

εlag
εresp

(ϖcεlag)→
εlag
εresp

↓ 0 (86)

ϖc
±εlag ↓

εlag
εresp

±

(
εlag
εresp

2

+ 2
εlag
εresp

. (87)

Here only the positive solution makes sense. Since the delayed inhibition speeds up
responses, our assumption that ϖcεlag is small implies that also εlag/εresp with the
response time of the network without delayed inhibition is small. We can thus neglect in
the radicand of eq. (87)’s RHS the quadratic term compared to the linear one. Compared
to the resulting square root term we can neglect the first, linear RHS term, such that
we obtain

ϖcεlag ↓

√
2
εlag
εresp

. (88)

The response time of the balanced network follows as the inverse of ϖc,

εbal,cresp ↓

√
εrespεlag

2
. (89)

Fig. 9 shows that, despite the simple formula, the quality of the approximation is very
good.

S7 Initial response of balanced networks

In the following we explain that the discrepancy between the analytical and numerical
linearized loss evolution, which results in different response times (see Fig. 6a), c)),
stems from different initializations of neuronal activity. For this, we first note that an
exponential function eq. (66), Llin(t) = Llin(0) exp(→”t), with ” solving eq. (69) and
arbitrary amplitude Llin(0), is an eigenmode of the time evolution of the linearized loss
eq. (65), as the time evolution preserves its functional form. The results of the last
section describe the loss evolution if the system is in such an eigenmode. However,
in the main text simulations, networks are not initialized in an eigenmode: They are
initialized with zero activity and respond to a sudden jump in input. This corresponds
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to an initial state with x(t) = 0 for t ↑ 0; in particular !x(0) = 0. Therefore both the
initial and earlier losses equal the maximal loss, L(t) = L(→εlag) = |x↗

|1/N for t ↑ 0
and !L(0) = 0, see eqs. (61) and (62) and Fig. 10b). In contrast, for the eigenmodes we
have !Llin(t) = →(exp(”εlag)→ 1)Llin(t) for t ↑ 0 (from eqs. (62) and (66)); especially
!Llin(0) < 0. The loss is thus not initialized in an eigenmode; the decay rate of the loss
converges to that of the slowliest decaying eigenmode over time.

For the chosen initial conditions the loss decay speeds up during this process, see
Fig. 6c and Fig. 10a),b). This can be understood as follows: In our network simulations,
activity initially increases, such that !xi(t) is positive. The amplifying current term
→W rec,I!x(t) (→W rec,I

ij ⇐ 0) in eq. (58) is thus positive, which causes a dynamical
speed-up in the activity increase. Its sum is proportional to →!L(t), which is initially
zero. The term →wrec,I

sum !Llin(t) ↑ 0 introduces the dynamical speed up evoked by !xi(t)
into the equation of the loss dynamics, where it causes a faster decay of the loss. As both
!xi(t) and |!L(t)| increase, the terms that generate the speed up in the activity and in
the loss dynamics increase in absolute value. As a consequence, the activity increases
faster and the loss decays faster. The inset in Fig. 10b) shows that |!L| increases
(initially in absolute, later in relative terms) and approaches the same proportionality
to L as for the slowliest decaying eigenmode, which is non-oscillatory in the displayed
example. This means that the system settles in the eigenmode. The loss curves then
become parallel lines on the logarithmic axes (extrapolation of Fig. 10a)).

This different initialization and the resulting initially lower impact of lagged interac-
tions explain why the red data points in Fig. 6 show longer response times than expected
from the theory.
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Fig 10: Effects of initial conditions on loss evolution. a) Normalized loss evolution
obtained by solving eq. (65) (black curves) for critical inhibitory strength. The loss is
either initialized in the slowest eigenmode (solid, analytical solution eqs. (66) and (69)),
like in our analytical computations, or it is initialized as a constant function (dashed,
L(t) = L(0) for t ↑ 0, numerical solution), like in our network simulations. Vertical
lines indicate the time at which the error drops below e↑1, which experimentally defines
the response time. The theory with constant initialization describes the loss evolution
of a numerically simulated network (red dashed, N = 200) well. With time, the loss
decay rate approaches the same value, independent of initialization; the curves become
parallel. b) In the for the chosen parameters non-oscillatory slowliest decaying eigenmode,
!L(t) is always proportional to L(t) (solid horizontal line at the proportionality factor
1 → eς

cϑlag ↓ →0.046). With constant initialization (dashed curves), !L(t) is initially
zero, such that the impact of the interactions mediated by W rec,I (see eq. (24)) is initially
small. !L(t) then tends to the same proportionality to L(t) as for the eigenmode
initialization. Inset: loss evolution for long times. Parameters: wrec,net

sum = 0.99, ε = 1,
εlag = 0.1, wrec,I = 0.5wrec,I

sum,c; we thus have
ϑlag
ϑ wrec,I

sum ↓ →0.95594; the displayed slowliest
decaying eigenmode is non-oscillatory, cf. Fig. 9.
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2.1 Images {𝑠 = 𝑊𝑅 (𝑤) : 𝑤 ⇒ C} of the first branches 𝑡 = ↑2, · · · , 2 of the Lambert W
function. a) w-plane: Red lines show the images of the negative real line 𝑤 < 0, black lines
the images of the positive real line 𝑤 > 0. The values 𝑊𝑅 (𝑤) for 𝑤 = ↑1,↑e↑1

,↑0.1, 1
are marked in green, blue, orange and purple, respectively (compare with b)). Even
branches use thick lines, crosses as markers and have images highlighted by a gray
background. Odd branches use faint lines, pluses as markers and white backgrounds.
Red lines mark the branch cuts and belong to the respective lower branch. Note that
𝑠 ⇓ 𝑠e𝑑 maps all 𝑠 values marked in the same color to the same 𝑤 values as shown in
b). Note also that only the 0th and ↑1st branch contain (part of) the real axis in their
image. b) z-plane: The red and black line highlight the negative / positive real numbers,
which are the pre-images of the respective lines in a). . . . . . . . . . . . . . . . . . . 28
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