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Abstract

Extended and coordinated target tracking involves advanced techniques for monitoring
objects in dynamic environments, addressing challenges such as sensor resolution, the
point target assumption and target behaviour.

Sensor resolution is crucial, as higher resolution enables more precise detection and
tracking, particularly in complex scenarios where targets may be closely spaced or vary
in size and shape. The point target assumption, commonly used in traditional tracking,
simplifies targets as single points. However, in extended target tracking, targets are
modeled with more complex shapes or patterns, accounting for variations over time.

Extended Target Tracking (ETT) becomes particularly important in scenarios
where groups of targets move together, making it challenging to assign measurements
to individual targets due to sensor resolution limitations and measurement noise. Even
if the assignment problem is resolved, tracking each target individually within a group
can be resource-intensive and impractical. To address this, Extended Target Tracking
models the group as a single entity with shared kinematics, while simultaneously
estimating the extent and shape of the group. This approach not only reduces
computational demands but also enhances situational awareness. Examples of such
scenarios include tracking fleets of aircraft or boats, formations of objects, swarms of
drones, or groups of pedestrians.

Also, ETT plays a vital role in Advanced Driver-Assistance Systems (ADAS),
addressing challenges when a single object spans multiple sensor resolution cells.
These systems require precise information about the positions, sizes, and shapes
of surrounding objects to ensure accurate perception. ETT improves safety and
performance, enabling vehicles to avoid collisions, execute safe manoeuvrers, and
navigate complex environments, particularly when dealing with large or irregularly
shaped objects in their surroundings

Group targets, such as fleets of aircraft, boats, or swarms of drones, present unique
challenges when operating autonomously and in a coordinated manner. Advances
in distributed and multi-agent systems have enabled these entities to collaborate at
scales surpassing human coordination, achieving complex objectives. However, these
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innovations also complicate surveillance and defence efforts. Leveraging technologies like
AI, communication, and computation, such systems achieve seamless coordination in
dynamic environments, making them increasingly sophisticated and harder to counter.

Coordinated Target Tracking (CTT) addresses the limitations of traditional surveil-
lance systems by improving situational awareness, optimizing resource management,
and enhancing threat intelligence. CTT provides operators with accurate risk assess-
ments, enabling informed and effective decision-making. This approach is critical
in applications such as surveillance and defence, where identifying coordination and
evaluating threats are essential.

In this dissertation, we will explore various approaches for simultaneously tracking
both target shapes and kinematics by modeling target shapes as ellipses, particularly
for LiDAR sensor measurements, and deriving a Gaussian mixture-based likelihood
for improved accuracy. It introduces a novel Bayesian Gamma filter to estimate shape
parameters, solving issues with negative estimates caused by Gaussian distributions.
The approach extends to multivariate cases using the Wishart distribution, enabling
robust and accurate shape parameter estimation. Unlike traditional Random Matrix
(RM) methods, this work uses RM elements to represent shape extents, offering greater
flexibility in modeling irregular shapes. These contributions enhance target tracking
accuracy and reliability in dynamic environments.

Additionally, we will discuss methodologies to enhance tracking systems when
multiple agents or targets exhibit coordinated behaviour, distinguishing coordinated
targets from extended targets and examining multiple forms of coordination beyond
traditional group target scenarios. The use of accumulated state densities (ASDs) is
introduced to identify coordination over time, improving the separability and clustering
of group targets. A novel method leveraging velocity vector geometry infers the
degree of correlation, demonstrating that targets moving toward a common point
are statistically closer. This approach relaxes the typical assumption that targets
must be closely spaced, enhancing the detection of coordinated behaviours in dynamic
environments. These innovations significantly advance the understanding and tracking
of multi-agent systems.
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Chapter 1

Introduction

The world is changing rapidly—a statement that has held true throughout history. In
recent decades, however, the most significant changes have been driven by remarkable
advancements in processing power and computational technology. We now have more
computational capability than ever before, accelerating progress in various fields, from
smart home and wearable devices to space exploration. These developments are
transforming the way we live, work, and explore the universe.

Driven by our optimistic dreams and imagination, many of us believe that one day,
life will be like this: After waking up in your smart home, you step out and head to
your vehicle, powered by green energy. As you approach, you simply tell it to open the
door and start the engine. The vehicle recognises you instantly, thanks to advanced
voice and facial recognition systems. Once inside, you’ll notice there’s no driver’s seat
because the vehicle drives itself. You just tell it where to go. This vehicle might even
have a built-in coffee machine or a small robot that prepares your breakfast. Thanks
to the Internet of Things (IoT), it automatically orders more coffee beans and your
favourite breakfast items when they’re running low. It knows exactly what you like
because you’ll be surrounded by sensors connected to a system that knows you better
than you know yourself. If you happen to be living in Germany at that time, you’ll
probably be handed a nice, thick document about data protection ("Datenschutz") to
sign. And of course, you’ll eagerly sign it without a second thought because, after
all, you’ve likely been bombarded with ads promising something like: "We’ll create a
system that anticipates your needs, crafting a seamless and personalised experience
just for you." Who could resist that?

Well, you’ve arrived at your destination, and as your vehicle automatically begins
recharging its green energy source, you step out and look up. The sky is filled
with drones, each on its own mission. Thanks to advanced multi-agent systems and
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lightweight, high-resolution sensors, these drones can coordinate effortlessly. They
deliver your packages, clean the solar panels on your roof, and even help find your lost
dog after you took him for a walk in some artificial forest.

Indeed, every part of this story revolves around sensors. It’s hard to imagine life and
future without systems equipped with rapidly advancing sensors. This progress also
requires corresponding improvements in algorithms. We need algorithms that are not
only accurate and based on mathematical or explainable data-driven models but also
fast and precise, outperforming human performance. For example, sensors in vehicles
must perceive their surroundings, understand the objects around them, and predict
their movements. These sensors are expected to see further and better than humans.
Similarly, a comprehensive surveillance system is essential for our airspace, especially
given the new challenges posed by the increasing number of small autonomous flying
objects, such as drones. Drones might enter restricted areas, such as crowded spaces or
near airports, potentially conflicting with flight paths and posing a threat to public
safety. Additionally, drones can be used for illegal activities such as drug smuggling,
espionage, and weaponization. Therefore, we need systems capable of tracking drones,
detecting suspicious behaviours, and identifying the coordination among them.

Surveillance systems that track targets in dynamic environments are crucial across
various fields, including defence, surveillance, environmental monitoring, autonomous
systems and robotics. As these applications advance, the demands on tracking systems
increase, requiring them to handle increasingly complex scenarios. This dissertation
focuses on two key concepts in this area: extended target tracking and coordinated
target tracking. Extended target tracking deals with targets that occupy more than
a single point in space, necessitating models that account for their shape, size, and
dynamic behaviour. In contrast, coordinated target tracking involves monitoring
multiple targets that exhibit interrelated or synchronised behaviours. Both approaches
present significant challenges but are essential for enhancing situational awareness and
decision-making in complex environments.

1.1 Challenges

Traditional tracking systems often rely on the point target assumption, which simplifies
targets as single points. While this assumption works for small or distant targets, it
becomes inadequate when dealing with extended targets whose physical dimensions and
shapes must be considered. Additionally, many tracking systems are designed to track
individual targets in isolation, ignoring the complexities introduced by coordinated
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behaviour among multiple targets. These limitations can lead to inaccuracies, especially
in environments where targets may overlap, manoeuvre unpredictably, or exhibit
coordinated movement. There is a clear need for advanced tracking methodologies that
can accurately and reliably track both extended and coordinated targets in complex
scenarios. The main challenges in single extended target tracking can be summarise as
bellow:

• Sensor Resolution: High-resolution sensors are essential for capturing detailed
information about target shapes and behaviours. However, they also introduce
challenges related to data processing, management, and data association. This
challenge is typically addressed by clustering the reported measurements from
the sensors at each frame as a preprocessing step. Alternatively, the problem can
be tackled at the association stage of the tracking pipeline, where the typical
assumption that each target generates at most one detection is relaxed.

• Modeling Complexity: Extended target tracking requires accurate modeling
of the target’s extent (shape). These models can range in complexity from
simple geometric shapes, such as lines, circles, or ellipses, to more sophisticated
random, symmetric, and asymmetric forms. Depending on the target shape
model, it is necessary to derive a measurement model that maps the target
state—encompassing both kinematics and shape—to the measurement state
space. When the target state is augmented with shape parameters, these models
often become highly nonlinear, adding to the complexity of the tracking process.

Different challenges arise when multiple targets exhibit some form of coordination, and
these can be summarized as follows:

• Definition of Coordination: The term "coordinated targets" is somewhat ambigu-
ous. One might argue that closely spaced targets flying in a group represent a
form of coordination. However, members of a coordinated group can also spread
out to attack a target from different angles, ensuring they don’t overlap their
efforts, or they might separate widely to search a broader area. Additionally,
coordinated targets can have different topologies, such as having a group leader
or operating independently to achieve a common goal. There might be explicit
communication between the targets, or the coordination might be implicit, where
each target observes the actions of other members to form a strategy for the next
move. This challenge is typically addressed by first defining the specific form of
coordination that the surveillance system aims to detect.
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• Number of Possible Groups: In a surveillance system with multiple targets,
determining which targets are coordinating and identifying the most likely group
structure can be challenging. The space of possible group structures is vast
because the number of possible configurations corresponds to the number of ways
to partition a set of targets, which is given by the Bell number. This means
that as the number of targets increases, the number of potential groupings grows
exponentially, making the problem increasingly complex.

1.2 Main contributions

This dissertation contributes to the fields of Extended Target Tracking (ETT) and
Coordinated Target Tracking (CTT) by addressing several key challenges.

Contributions to the Field of Extended Target Tracking

One of the main challenges in ETT is the complexity of modeling target shapes
and their corresponding measurement likelihood functions. In this dissertation, we
demonstrate how a target’s shape can be modeled as an ellipse, using a measurement
likelihood model where the measurement density is concentrated around the contour
of the target shape, particularly for measurements obtained from Light Detection and
Ranging (LiDAR) sensors. Although elliptical shapes are commonly used in target
tracking literature, most elliptical models assume radar-type measurements, where
the measurement density is represented by a Gaussian distribution centred at the
middle of the target’s extent. Our contribution in this area is the derivation of an
explicit mathematical function for the measurement model, derived directly from the
standard geometrical function of the elliptical shape. The measurement likelihood
approximated in a form of a Gaussian mixture, is computed and incorporated into the
Extended Kalman Filter (EKF) framework. This approach provides a more accurate
representation of measurements for sensors like LiDAR, enhancing the effectiveness of
extended target tracking.

Another contribution of this dissertation in the same area is the development of
a robust novel approach for estimating shape parameters that does not rely on the
typical assumption of modeling these parameters as Gaussian random variables. The
motivation for this work was to address the issue of negative shape estimates, which
has been reported in the literature. The root of this problem lies in the fact that the
Gaussian distribution has negative support, meaning it can produce negative values.
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When the estimated parameter is relatively small compared to the variance, a significant
portion of the Gaussian density falls into the negative range.

To solve this issue, we propose using a distribution with positive support only—namely,
the Gamma distribution. We have developed a Bayesian Gamma filter to estimate
quantities that are known to take only positive values. We derive the exact update
formula for the Gamma distribution and demonstrate how the prediction step can
be performed using this approach. This method effectively eliminates the problem
of negative shape estimates, providing a more accurate and reliable estimation filter.
Moreover, we generalize this approach to the multivariate Gamma distribution, par-
ticularly to a special case known as the Wishart distribution. Similarly, we derive
a Bayesian Wishart filter, demonstrating the exact update equation and prediction
process. In this approach, the shape is represented by a Random Matrix (RM) with
dimensions that can be chosen based on the level of detail required for the shape.

When we mention that the shape is represented by an RM, those familiar with the
ETT literature might immediately think of the pioneering Random Matrix approach by
Koch [26]. However, our approach differs slightly. While Koch’s method estimates the
spread of measurements as an estimation of a covariance matrix of Normally distributed
measurements, in our approach, the elements of the RM represent random variables
that contain information about the shape’s extent in specific directions. This allows
for the estimation of random, irregular shapes with greater flexibility.

Contributions to the Field of Coordinated Targets Tracking

Coordinated targets represent a relatively unexplored area of research, with most
existing studies focusing primarily on one form of coordination, where coordinated
targets move in a group (group targets). This form of coordination is often treated as
an extended target tracking problem. In this dissertation, we distinguish between the
characteristics of extended and coordinated targets. While group targets are one form
of coordination, we explore other forms and define a common characteristic: members
of a coordinated group are assumed to converge toward a common point, relaxing the
assumption that targets are closely spaced, as is typical in traditional group target
scenarios.

Detecting coordinated behaviour or a multi-agent system is nearly impossible with
a single frame; multiple frames (past information) are required to identify coordination.
We show how accumulated state densities (ASDs) provide an elegant framework that
can be utilised to enhance the identification of different forms of coordination. For
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the group target form of coordination, we demonstrate how ASDs can improve the
separability of groups, leading to more accurate clustering of group targets.

Beyond group coordination, we proposed an approach that leverages the geometry
of targets’ velocity vectors to infer the degree of correlation over a chosen ASD sliding
time window. This method reveals that coordinated or correlated targets appear
statistically closer to one another, meaning that target pairs moving toward a common
point have a higher likelihood of belonging to the same group compared to other
targets. This approach opens new avenues for computing degree o f correlation based
on features of targets state vector and identifying coordinated behaviours in dynamic
environments.

1.3 Thesis Outline

This dissertation is divided into three main parts. The first part, covered in Chapters
2 and 3, provides essential background information. Chapter 2 discusses the various
types of sensors and targets, along with their key characteristics. Chapter 3 reviews
foundational concepts of the estimation problem, with a particular focus on Bayesian
estimation principles. These chapters lay the groundwork for the more advanced topics
explored in the subsequent sections of the dissertation.

The second part of this dissertation, covered in Chapter 4, discusses the problem
of extended target tracking and presents various approaches to address it. Section
4.2 primarily focuses on the Elliptical Model for Extended Target Tracking Using
Laser Measurements. In Section 4.3, an alternative approach is proposed, highlighting
the limitations of modeling target size as Gaussian distributions. Here, we introduce
the Gamma distribution as an alternative, which has positive support only. This
section also generalises the concept to a multivariate form, demonstrating how it can
be achieved using a special case of the multivariate Gamma distribution.

The third part of this dissertation is covered in Chapter 5. It begins with an
introduction to the problem of coordinated targets, followed by background on the
Accumulated State Densities concept, which forms the basis of the approaches intro-
duced in this chapter. In Section 5.4, target state separability is discussed, and an
improvement that enhances the clustering of group target types is introduced. Finally,
a more sophisticated approach aimed at determining the most likely group structure
that can be formed by a set of targets is proposed in Section 5.5.



Chapter 2

Sensors and Target Characteristics

For the successful design of a sensor data fusion system, it is essential to have reliable
and sufficient knowledge of sensor performance. This includes an understanding of the
sensor’s accuracy, precision, sensitivity, and resolution, as well as its limitations and
potential sources of error.

In addition to understanding individual sensor characteristics, it is important to
consider the characteristics of the target for which the system is designed to track,
as different applications require different types of sensor models and varying levels
of sensor performance. By carefully selecting and integrating the right sensors and
developing appropriate data fusion algorithms, it is possible to create a highly effective
sensor system that provides valuable insights and improves decision-making across a
wide range of fields.

2.1 Sensor Technology

Our environment is full of physical properties that change over time. Sensors are
instruments designed to measure and quantify various parameters in the environment
and convert them into readable outputs, such as electrical signals. They can mea-
sure different parameters—physical, chemical, or biological—based on their operating
principles. Progress in sensor technology has led to the development of numerous
novel applications, including wearable devices, smart cities, home automation, and
self-driving cars. Additionally, sensor technology plays a crucial role in defence applica-
tions by enabling situational awareness. For example, various types of sensors, such as
radar, sonar, infrared, LiDAR, and electro-optical sensors, are used to detect and track
targets and identify potential threats on land, at sea, or in the air.
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2.1.1 Range-Angle Sensors

Sensors that can measure both the range and angle to an object of interest are often
referred to as "range-angle sensors" and may also be called spatial sensors. Target
tracking is a very common application for range-angle sensors, and several technologies
fall under this category, including Radar (Radio Detection and Ranging), LiDAR
(Light Detection and Ranging), Sonar (Sound Navigation and Ranging), and Ultrasonic
sensors. Since the work presented in this dissertation pertains specifically to Radar
and LiDAR sensor types, our discussion will be restricted to these two types.

RADAR

The basic principle of radar operation is straightforward: transmitting pulses of
energy in the form of electromagnetic radiation, particularly radio waves at microwave
frequencies. In the presence of an object, these transmitted pulses are reflected back and
then picked up by receiving antennas. The received energy, reflected from the object,
is processed to determine the presence of the object and measure various kinematic
quantities. Since electromagnetic energy travels through air at a constant speed, the
radar system can determine the distance to the reflecting object by measuring the
time it takes for the transmitted pulses to travel. In addition to measuring object
range, modern radar systems are capable of measuring additional kinematic quantities,
such as object angle (azimuth and elevation) and range rate. Radar has numerous
applications in different fields, including aviation, defence, oceanography, geological
surveys, and automotive industries. Fig. 2.1 illustrates different types of radar systems
used for various applications.

LiDAR

As laser range technology continues to enable a broad range of applications, such as
localisation, target tracking, and 2D and 3D mapping, LiDAR sensors are becoming
increasingly important. In principle, the basic operation of LiDAR is similar to that of
radar, as both sensors emit energy towards an object and measure the time it takes for
the energy to bounce back to the sensor. However, LiDAR emits a laser beam instead
of radio waves.

While the principle may be similar, LiDAR generates a distinct type of data known
as Point Cloud, which is extremely dense, precise, and high-resolution data in both 2D
and 3D. This type of data has enabled the advancement for a wide range of applications,
including:
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(a) air surveillance radar (b) maritime radar

(c) airborne radar (d) weather radar

Fig. 2.1 Demonstrates how various applications require different types of radar systems.

• Autonomous vehicles utilise point cloud to quickly and accurately create a detailed
3D map of the environment, allowing the car to make informed decisions about
how to navigate around obstacles and other vehicles. An example of LiDAR data
is shown in Fig 2.2.

• Create detailed maps of archaeological sites or geological formations. By analysing
the point cloud data, researchers can gain insights into the history and composition
of these sites.

• Create detailed topographical maps of the environment, which can be used
for a variety of applications such as urban planning, civil engineering, and
environmental studies.

Various laser sensors are available that generate distinct kinds of data, but this
dissertation will focus only on a laser sensor known as Automotive LiDAR.

2.1.2 Local Polar to Local Cartesian Coordinates Conversion

Performing Euclidean mathematics and applying the laws of motion in Cartesian
coordinates is more convenient. However, since Range-Angle Sensors typically re-
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Fig. 2.2 An example of Point Cloud created by Ibeo (MicroVision) Lidar’s sensor.

port measurements in polar coordinates, it is frequently necessary to convert these
measurements into Cartesian coordinates.

2D Conversion

Given a range measurement 𝑟 and azimuth angle, or bearing 𝜙, the measurement vector
is given in polar coordinates as

z𝑝𝑜𝑙𝑎𝑟 = [𝑟, 𝜙]⊤. (2.1)

One can express the errors in range and bearing as a function of their respective values.
The covariance of the polar measurement vector quantifies the uncertainty of the polar
measurements and is commonly described by a diagonal matrix as:

C[𝑟, 𝜙] =
⎡⎣𝜎2

𝑟(𝑟, 𝜙) 0
0 𝜎2

𝜙(𝑟, 𝜙)

⎤⎦ . (2.2)

The transformation described below can be used to derive the Cartesian measure-
ment vector from the polar measurement vector

z𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 =
⎡⎣𝑥
𝑦

⎤⎦ = 𝑓(𝑟, 𝜙) =
⎡⎣𝑟 𝑐𝑜𝑠(𝜙)
𝑟 𝑠𝑖𝑛(𝜙)

⎤⎦ (2.3)
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The covariance C[𝑟, 𝜙] can also be converted into Cartesian coordinates using first
order approximation

C[𝑥, 𝑦] = 𝐽 C[𝑟, 𝜙] 𝐽⊤, (2.4)

where 𝐽 is the first-order partial derivatives of all vector-valued function element 2.3,
and is often called the Jacobian matrix

𝐽 = 𝜕𝑓(𝑟, 𝜙)
𝜕(𝑟, 𝜙) =

⎡⎣𝑐𝑜𝑠(𝜙) −𝑟 𝑠𝑖𝑛(𝜙)
𝑠𝑖𝑛(𝜙) 𝑟 𝑐𝑜𝑠(𝜙)

⎤⎦ . (2.5)

3D Conversion

The measurement of range-angle sensor in 3D is expressed using spherical coordinates
as

z = [𝑟, 𝜙, 𝜓]⊤. (2.6)

where 𝑟 is the range, 𝜙 is the azimuth (or bearing) and 𝜓 is the elevation. It should be
noted that for compatibility with the notation, the azimuth angle is measured starting
from the positive y-axis in clockwise direction and the elevation angle is measured from
the azimuthal plane (the plane containing the x and the y axes) rather than the z axis,
Fig 2.3.

One can express the errors in range, bearing and elevation as a function of their
respective values. The spherical measurement vector’s errors are commonly described
by a diagonal matrix as

C[𝑟, 𝜙, 𝜓] =

⎡⎢⎢⎣
𝜎2
𝑟(𝑟, 𝜙, 𝜓) 0 0

0 𝜎2
𝜙(𝑟, 𝜙, 𝜓) 0

0 0 𝜎2
𝜓(𝑟, 𝜙, 𝜓)

⎤⎥⎥⎦ . (2.7)

The transformation described below can be used to derive the Cartesian measure-
ment vector from the polar measurement vector

z =

⎡⎢⎢⎣
𝑥

𝑦

𝑧

⎤⎥⎥⎦ = 𝑓(𝑟, 𝜙, 𝜓) =

⎡⎢⎢⎣
𝑟 𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜓)
𝑟 𝑐𝑜𝑠(𝜙) 𝑐𝑜𝑠(𝜓)

𝑟 𝑠𝑖𝑛(𝜓)

⎤⎥⎥⎦ (2.8)
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Fig. 2.3 Spherical coordinate convention

The covariance C[𝑟, 𝜙, 𝜓] can also be converted into Cartesian coordinates using
first order approximation

C[𝑥, 𝑦, 𝑧] = 𝐽 C[𝑟, 𝜙, 𝜓] 𝐽⊤, (2.9)

where 𝐽 is the first-order partial derivatives of all vector-valued function element 2.8,
and is often called the Jacobian matrix

𝐽 = 𝜕𝑓(𝑟, 𝜙, 𝜓)
𝜕(𝑟, 𝜙, 𝜓) =

⎡⎢⎢⎣
𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜓) 𝑟 𝑐𝑜𝑠(𝜙) 𝑐𝑜𝑠(𝜓) −𝑟 𝑠𝑖𝑛(𝜙) 𝑠𝑖𝑛(𝜓)
𝑐𝑜𝑠(𝜙) 𝑐𝑜𝑠(𝜓) −𝑟 𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜓) −𝑟 𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝜓)

𝑠𝑖𝑛(𝜓) 0 𝑟 𝑐𝑜𝑠(𝜓)

⎤⎥⎥⎦ . (2.10)

2.2 Target Characteristics

In tracking problems, the physical, real-world objects of interest always have special
characteristics. These characteristics might be, size, shape, manoeuvring capability,
radar cross-section (RCS), infrared signature and other. To design a tracking system and
data fusion algorithm, it is essential to first define and understand the characteristics
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of the target of interest and the level of situational awareness required for certain
safety systems or defence applications. The sensor properties need to be also taken
into account, for example, the differences between extended target tracking and point
target tracking are primarily influenced by the sensor properties, especially the sensor
resolution, rather than object properties such as spatial extent. The relevant target
characteristics identified in this dissertation are

• Point target:
At most a single measurement could stem from each target per time step, i.e., a
single resolution cell is occupied by the target.

• Extended target:
Each target generates several measurements per time step. The target’s measure-
ment sources are spatially distributed across its rigid body, occupying multiple
resolution cells. To address this, the various measurement sources are regarded
as a single entity with common kinematics. To adequately construct the mea-
surement model, it is necessary to estimate of the target’s kinematics, as well as
target’s extent (its shape and size). An example of extended target are tracking
ships or truck.

• Group target:
A group target consists of two or more closely spaced sub-targets that share a
common kinematics. Thus, the group target occupies several resolution cells;
each sub-targets may occupy either one or several resolution cells. Further, the
targets are not tracked individually but are instead treated as a single entity.
Similar to extended target tracking, estimation of the target’s kinematics, as well
as target’s extent is required for group target tracking.

• Coordinated target:
The common assumption made in the both extended and group-target tracking
problem is that the measurement sources are closely spaced and have common
kinematics. However, this assumption doesn’t hold for coordinated targets. A
coordinated targets such as swam requires a set of rules which each member
of the group follows to accomplish a shared goal. Members of the coordinated
group can spread out and can be widely separated over the field of view. This
characteristic is not directly related to the target physical characteristics neither
to the sensor properties, but it is related to the targets’ behaviour. Detecting
coordinated targets is becoming increasingly important in achieving advanced
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situational awareness and threat intelligence. Knowledge about group behaviour
can significantly assist in target tracking; for example, if the group consistently
moves in a certain direction or pattern, this data can be leveraged to predict the
next location of the targets. Additionally, recognising collective behaviours can
significantly enhance the prioritisation of effectors in defence systems.



Chapter 3

Background on Bayesian
Estimation

3.1 Overview of the Estimation Problem

This chapter reviews the theory and fundamentals of Bayesian estimation techniques,
which provide the foundation for the various approaches discussed in this dissertation.
Before diving into Bayesian estimation, we will briefly discuss the estimation problem
from a non-Bayesian perspective.

3.1.1 Key Components and Modelling Approaches

In general, the estimation problem can be summarised as the challenge of determining
unknown quantities of interest based on a set of observed data. The goal is to make
inferences or predictions about these unknowns using the available observations.

The observations can be either direct measurements of the unknown quantities or
indirect ones. The essential elements of the estimation problem consist of three main
components:

• Unknowns: the quantities or the variables we want to estimate. These quan-
tities are usually a state x = [𝑥1, 𝑥2, ..., 𝑥𝑛𝑥 ]⊤ ∈ R𝑛𝑥 , or a parameters 𝜃 =
[𝜃1, 𝜃2, ..., 𝜃𝑛𝜃 ]⊤ ∈ R𝑛𝜃 of the system1.

• Measurement: refers to the information we can observe about the unknowns.
It is described by the measurement vector z = [𝑧1, 𝑧2, ..., 𝑧𝑛𝑧 ]⊤ ∈ R𝑛𝑧

1In some literature, parameter estimation is considered a static estimation problem, while
state estimation is regarded as a dynamic estimation problem. In this work, we use the term
"state estimation," which does not necessarily imply that the state is dynamic.
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• Measurement model: a function which describes the relation between the
measurement and the unknowns.

Deterministic model

The measurement model is a mathematical representation that describes the relationship
between the physical world and the corresponding measurements. One common way
to formulate the measurement equation is by assuming that the measurement vector is
deterministic:

z = Hx, (3.1)

where H is the design matrix that maps the state vector x to the measurement vector
z. In the case of a non-linear relationship, the equation can be expressed as:

z = 𝑓(x), (3.2)

Here, 𝑓(.) is a non-linear function that maps the state vector x to the measurement
vector z.

Under the assumption that both the state vector and the measurement vector are
deterministic, the unknown variables can be obtained by solving the linear system of
equations. In the non-linear case, finding the inverse function 𝑓−1(z) may provide a
solution if it exists. However, in real-world scenarios, measurements are often corrupted
by noise, making it impossible to solve the linear system directly. To obtain an estimate
in such cases, a common approach is to incorporate the measurement noise into the
model by adding an error term, u, to the measurement equation:

z = Hx + u. (3.3)

After incorporating the measurement noise into the model by adding an error term
u to the measurement equation, one can employ an optimisation algorithm to find a
solution for the system of equations by minimising a cost function. This optimisation
process yields an estimator, which is a mathematical function of the measurement
vector, and produces an estimate x̂ of the unknown variables x,

x̂ = 𝑓(z) (3.4)

A common algorithm that provides an estimate under the "minimum distance" cost
function is the Least Squares Estimator (LSE). The objective of the LSE method is to
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determine the parameter values x that minimise the sum of the squared differences
between the observed data and the model’s predicted values, as represented by the
error term u in the equation (3.3).

x𝐿𝑆𝐸 = arg min
x

(u⊤u) (3.5)

= arg min
x

(z − Hx)⊤(z − Hx). (3.6)

Finding a solution for this minimization problem involves taking the first derivative of
the function and solving for the value(s) at which the derivative equals zero,

∇x(z − Hx)⊤(z − Hx) = 0 (3.7)
−2H⊤z + 2H⊤Hx = 0 (3.8)

H⊤Hx = H⊤z (3.9)
x𝐿𝑆𝐸 = (H⊤H)−1H⊤z (3.10)

In many real-world scenarios, not all measurements are of the same quality. To
account for these differences, one can assign higher weights to reliable measurements
and lower weights to poorer ones. This can be achieved by incorporating a weight
matrix W into equation 3.10, resulting in a type of estimator called the Weighted Lease
Squares Estimator (WLS),

x𝑊𝐿𝑆 = (H⊤WH)−1H⊤Wz (3.11)

Stochastic model

The LSE and WLS estimators do not account for the stochastic properties of the
measurements. However, when dealing with a stochastic1 model, it becomes necessary
to derive an estimator that can provide optimal estimates, both in terms of precision
and unbiasedness. To achieve this, it is essential to have knowledge of the statistical
expectation and dispersion of the measurement vector, denoted as E[z] and C[z]
respectively.

1Stochastic models are often referred to as random models; thus, the terms "stochastic" and
"random" are used interchangeably in this work.
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Considering that, the measurement model Hx is the first moment of the measure-
ment z, and Qu is the second central moment of z.

E[z] = Hx

C[z] = C[u] = Qu,

Similar to the LSE, one can derive an estimator for the unknown random variable x
that minimises a cost function. However, since the model is stochastic, it is necessary
to adjust for both the varying variance of the errors across different values of the
random variable and any correlated errors. This can be accomplished by weighting the
measurements by the inverse of their corresponding covariance, C[z]. This method is
known as the Best Linear Unbiased Estimator (BLUE), which has the same form as
the Weighted Least Squares (WLS) estimator 3.11, except that the BLUE weights are
based on the inverse of the estimated covariance. BLUE provides both unbiased and
efficient estimates of the parameters, meaning that the estimates have the smallest
variance among all unbiased estimators. The BLUE solution is given by:

x𝐵𝐿𝑈𝐸 = (H⊤Qu
−1H)−1H⊤Qu

−1z

C[x]𝐵𝐿𝑈𝐸 = (H⊤Qu
−1H)−1

(3.12)

In case the probability distribution of the measurement is known, an estimator can be
obtained by maximising the likelihood function of the measurement 𝑙(z|x):

x𝑀𝐿 = arg max
x

𝑙(z|x), (3.13)

Such an estimator is called the Maximum Likelihood Estimator (MLE). Note that
if the measurement noise is Gaussian white noise, the BLUE and MLE solutions are
equivalent. Similarly, the LSE is equivalent to BLUE when the measurements have
similar variances. In fact, we can say that both LSE and BLUE are special cases of
WLS: LSE is equivalent to WLS with unit weights, while BLUE is equivalent to WLS
when the weight matrix is the inverse of the measurement covariance. It is important to
note that, in a stochastic model, the error term u is a random variable; therefore, the
resulting estimator is also a random variable when given a random input z. However,
the estimate itself is modeled as a constant deterministic variable.
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3.2 Bayesian Estimation

In the non-Bayesian approach, the state variable x is modeled as a deterministic
(fixed) value, while the measurement variable z is treated as a random variable. It
is assumed that the observation we have is a realisation of the measurement density.
This realisation is used to estimate the unknown state variable x and its covariance
C[x]. This type of parameter estimation technique is also known as regression. The
key distinction in the Bayesian approach is that the state variable x is modeled as a
random variable with a prior density function 𝑝(x).

Before delving into the mechanics of Bayesian estimation, it is important to grasp
the role of the unknown state x (the parameters of interest) which changes from being
a deterministic quantity to a random quantity which has a probability distribution.
In non-Bayesian case, the likelihood in 3.13, the state x unknown but deterministic,
and 𝑙(z|x)1 is PDF of the measurement z which is parameterised by the state x and the
goal is to find the state x which maximise the measurement likelihood 𝑙(z|x). On the
other hand, the likelihood function2 𝑝(z|x) in the Bayesian approach is a conditional
PDF of the measurement given a realisation of random variable x (the state). However,
both expressions ultimately provide the same value.

The first step in obtaining a Bayesian estimator is to calculate the posterior density3

of the state x, given the measurement z. The posterior is obtained by means of Bayes’
theorem:

𝑝(x|z) = 𝑝(z|x) 𝑝(x)∫︀
dx 𝑝(z|x) 𝑝(x) , (3.14)

In practice, the full posterior distribution itself may not carry much significance; it
can be more useful to provide a single estimate of the state of interest, known as a
point estimates. One could simply choose the most likely state as a point estimate,
i.e., the state which maximises the posterior; the obtained point estimator, in this
case, is referred to as maximum a posteriori estimator (MAP). Another common
choice to obtain a point estimate is to report the mean of the posterior, namely, the
conditional expectation of x given z.

x̂ = E[x|z] ≜
∫︁ ∞

−∞
x 𝑝(x|z) dx. (3.15)

1Alternative notation is used to emphasise that this is not a conditional probability but rather a
function of the state: 𝑓z(z; x).

2It is also referred to as evidence.
3It is often difficult to obtain an exact solution to the posterior, however, in most of the cases it is

sufficient to calculate the expected value and the variance of the posterior density.
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3.2.1 Minimum Mean Square Error Estimator

In a similar vein to the LSE estimator (3.5), an objective function or criterion can be
chosen to derive an estimator for a random variable. To find a point estimate from
a given density 𝑝(x), a reasonable criterion could be expected value of the squared
estimation error, or in other words, the Mean Squared Error (MSE): E[(x− x̂)(x−
x̂)⊤]. This leads us to a formulation whereby, we will try to find an estimate x̂ which
minimises the MSE overall possible estimate

x̂ = arg min
x̂

E[(x − x̂)(x − x̂)⊤]. (3.16)

This estimate can be calculated by setting the gradient (or derivative in the scalar
case) of the MSE with respect to x̂ to zero

∇x̂E[(x − x̂)(x − x̂)⊤] = ∇x̂E[x⊤x − 2x⊤x̂ + x̂⊤x̂]
= ∇x̂E[x⊤x] − 2E[x⊤]x̂ + x̂⊤x̂

= 2E[x⊤] + 2x̂⊤ = 0
(3.17)

Therefore, the point estimates x̂ of the density 𝑝(x) which minimises the MSE, is given
by

x̂ = E[x]. (3.18)

Although the true state x remains unknown, we have knowledge of its statistics.
Therefore, the solution will depend on the statistics of the unknown state x rather
than the unknown true parameter x.

Similarly, a point estimate from the conditional density 𝑝(x|z) can be derived. For a
choice of the MSE as a cost function, one can show that the conditional expectation
E[x|z] in (3.15) is the optimal solution/estimator which minimises the MSE criteria.
An estimator derived under this criteria is the so-called Minimum Mean Square
Error Estimator (MMSE) 1

x̂𝑀𝑀𝑆𝐸 = arg min
x̂

E[(x − x̂)(x − x̂)⊤|z]. (3.19)

1In other branches of science, MMSE is also referred to as Least Mean Squares Estimator
(LMSE)
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By setting the gradient of (3.19) to zero with respect to x̂

∇x̂E[(x − x̂)(x − x̂)⊤|z] = ∇x̂E[x⊤x − 2x⊤x̂ + x̂⊤x̂|z]
= ∇x̂E[x⊤x|z] − 2E[x⊤|z]x̂ + x̂⊤x̂

= −2E[x⊤|z] + 2x̂⊤ = 0
(3.20)

therefore, the solution to (3.19) is the conditional mean of x

x̂𝑀𝑀𝑆𝐸 = E[x|z] =
∫︁

x 𝑝(x|z) dx (3.21)

We want to emphasise that MMSE is a Bayesian approach that calculates the mean
of the posterior distribution 𝑝(x|z), which is calculated by utilising both the prior
probability 𝑝(x) and the likelihood 𝑝(z|x).

Even though the conditional mean E[x|z] is optimal for MSE criteria, it is often
difficult to compute the conditional expectation E[x|z], which requires a full knowledge
about the density 𝑝(x|z). To simplify the problem, a linear assumption can be made on
the function the estimator can take, then derive an estimator under MSE criteria. This
estimator is called Linear Minimum Mean Square Error Estimator (LMMSE)
and is discussed in the following subsection.

3.2.2 Linear Minimum Mean Square Error Estimator

Suppose we want to estimate the state x, given a realisation z of the measurement,
using the MMSE method. The estimate obtained by MMSE is x̂ = 𝑓(z) = E[x|z].
However, calculating E[x|z] can be challenging in practical scenarios as it requires
computing the full posterior 𝑝(x|z) beforehand. Additionally, the function 𝑓(z) may
have a complex form. To address these issues, we can employ a simplified form of 𝑓(z).
Specifically, we can constrain 𝑓(z) to a linear form, expressed as: 𝑓(z) = 𝛽0 +∑︀𝑛

𝑖=1 𝛽𝑖 z𝑖.

Definition 3.2.1 : The LMMSE1 estimator of a random variable x is a function of
the form

x̂ = 𝛽0 +
𝑛∑︁
𝑖=1

𝛽𝑖z𝑖 (3.22)

= 𝛽0 + B⊤Z, (3.23)
1This estimator is also known as the best linear unbiased estimator and as the linear least

mean squares estimator.
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which minimises the squared error E[(x − x̂)(x − x̂)⊤].

With this definition, calculating the optimal estimator became a problem of finding
the linear coefficients 𝛽0, 𝛽1, ..., 𝛽𝑛 that minimises E[(x − x̂)(x − x̂)⊤]. In order to find
the value of the coefficient which minimises the square error, one can derive the MSE
E[(x − x̂)(x − x̂)⊤] with respect to each coefficient and set it to zero

∇𝛽𝑖
E[(x − x̂)(x − x̂)⊤] = 0. (3.24)

This yields the expression of the LMMSE for the multidimensional case as:

x̂ = E[x] + PxzP−1
zz (z − E[z]), (3.25)

where Pzz = E[(z − ẑ)(z − ẑ)⊤] is the covariance of the measurements, while Pxz =
E[(x − x̂)(z − ẑ)⊤] is the cross-covariance between the state and the measurements.

The covariance of the estimator in equation (3.25) can be computed using the
definition of covariance:

E[(x − x̂)(x − x̂)⊤] = E[(x −E[x] + PxzP−1
zz (z −E[z]))(x −E[x] + PxzP−1

zz (z −E[z]))⊤]
(3.26)

after manipulating this equation, this term can be expressed as:

E[(x − x̂)(x − x̂)⊤] = Pxx − PxzP−1
zz Pzx (3.27)

The equations in (3.25) and (3.27) are the fundamental equations of linear esti-
mation.

3.2.3 MMSE Estimator for Multivariate Gaussian

The multivariate Gaussian distribution plays an important role in sensor data fusion
and state estimation. We will show the result of calculating the conditional mean of
multivariate Gaussian variables, which is the MMSE estimator of multivariate Gaussian
variables.

Theorem 2.2.3-1: Assume two random vector x and z are jointly Gaussian, that
is,

𝑝(x, z) = 𝒩 (y, ȳ,P) (3.28)
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with

y =
⎡⎣x

z

⎤⎦ and P =
⎡⎣Pxx Pxz

Pzx Pzz

⎤⎦ (3.29)

Then, the conditional distribution of x given z is also Gaussian with mean

E[x|z] = E[x] + PxzP−1
zz (z − E[z]) (3.30)

and covariance matrix

E[(x − E[x])(x − E[x])⊤|z] = Pxx − PxzP−1
zz Pzx (3.31)

and the marginal distributions of x and z are also Gaussian with mean vector E[x] and
E[z] covariance matrix Pxx and Pzz, respectively. The proof, which directly follows
from the matrix inversion lemma, is straightforward but lengthy. For interested readers,
the proof can be found in A.5 [28] or in [6].

3.2.4 Unbiased Estimators

We can define an estimator in any way we like; however, it is necessary to have a metric
to quantify the quality of the estimator we choose.

Definition 3.2.2 An estimator x̂ is said to be unbiased if the estimation error

x̃ ≜ x − x̂ (3.32)

is a zero mean, that is,

E[x − x̂] = 0. (3.33)

Example Consider a set of measurements Z = {z1, . . . , z𝑛} of the random variable
x, where each measurement z𝑖 ∈ Z is corrupted by white Gaussian noise u𝑖, such that
z𝑖 = x + u𝑖. Let an estimator of the state x be

x̂ = 1
𝑁

𝑁∑︁
𝑖=1

z𝑖, (3.34)

the goal is to determine whether the estimator x̂ is unbiased.
Solution: The above unbiasedness requirement for the point estimate in (3.34) is
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satisfied if:

E[x − x̂] = 0. (3.35)

By substituting 3.34 in 3.35 we obtain

E[x − x̂] = E
[︂
x − 1

𝑁

𝑁∑︁
𝑖=1

z𝑖
]︂

(3.36)

= E
[︂
x − 1

𝑁

𝑁∑︁
𝑖=1

(x + ui)
]︂

(3.37)

= E
[︂
x − 1

𝑁

𝑁∑︁
𝑖=1

x − 1
𝑁

𝑁∑︁
𝑖=1

ui
]︂

(3.38)

= E
[︂
x − x

𝑁

𝑁
− 1
𝑁

𝑁∑︁
𝑖=1

ui
]︂

(3.39)

= E
[︂

− 1
𝑁

𝑁∑︁
𝑖=1

ui
]︂

(3.40)

= − 1
𝑁

𝑁∑︁
𝑖=1

E[ui] (3.41)

= 0 (3.42)

Thus, x̂ = 1
𝑁

𝑁∑︀
𝑖=1

z𝑖 is unbiased estimator of x.

3.3 Dynamic Estimation for Target Tracking

In target tracking applications, the state of interest is dynamic and evolves over time.
In this case, to solve the estimation problem, it is necessary to evolution model how
the state x evolves over time. Just as we add a stochastic component to account for
measurement noise in 3.3, a stochastic component is also incorporated into the model
to account for the uncertainty associated with process noise. Typically, the evolution
model done using linear equation with additive white Gaussian noise:

x𝑘 = F𝑘|𝑘−1x𝑘−1 + v𝑘 (3.43)

where F𝑘|𝑘−1 is the state transition model also called evolution matrix; v𝑘 is zero-mean
white Gaussian process noise, with covariance, E[v𝑘v⊤

𝑘 ] = D𝑘|𝑘−1 : v𝑘 ∼ 𝒩
(︁
v𝑘; 0,D𝑘|𝑘−1

)︁
.
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Utilizing the underlying Markov assumption, we often represent the knowledge
of the state with a Gaussian probability distribution of the target state at time 𝑡𝑘,
conditioned on the previous state x𝑘−1. This conditional distribution is referred to
as the transition density, denoted as 𝑝(x𝑘|x𝑘−1) = 𝒩 (x𝑘; F𝑘|𝑘−1x𝑘−1,D𝑘|𝑘−1). This
representation allows us to predict future object states by combining the evolution
model with the prior knowledge about the state by applying the Chapman-Kolmogorov
equation:

𝑝(x𝑘) =
∫︁
𝑑x𝑘−1 𝑝(x𝑘|x𝑘−1) 𝑝(x𝑘−1|z𝑘−1), (3.44)

where 𝑝(x𝑘−1|z𝑘−1) = 𝒩 (x𝑘−1; x𝑘−1|𝑘−1,P𝑘−1|𝑘−1) is the Gaussian prior density about
the state. As direct result of the product formula for Gaussian A.5[28], the prediction
density is also provided by a Gaussian:

𝑝(x𝑘|z𝑘−1) =
∫︁
𝑑x𝑘−1 𝑝(x𝑘|x𝑘−1) 𝑝(x𝑘−1|z𝑘−1) (3.45)

=
∫︁
𝑑x𝑘−1 𝒩 (x𝑘; F𝑘|𝑘−1x𝑘−1,D𝑘|𝑘−1) 𝒩 (x𝑘−1; x𝑘−1|𝑘−1,P𝑘−1|𝑘−1) (3.46)

= 𝒩 (x𝑘; F𝑘|𝑘−1x𝑘−1, F𝑘|𝑘−1P𝑘−1|𝑘−1F⊤
𝑘|𝑘−1 + D𝑘|𝑘−1) (3.47)

= 𝒩 (x𝑘; x𝑘|𝑘−1, P𝑘|𝑘−1). (3.48)

The filtering density 𝑝(x𝑘|z𝑘) is obtained by combining the sensor model 𝑝(z𝑘|x𝑘)
with the prediction density 𝑝(x𝑘|𝒵𝑘−1):

𝑝(x𝑘|z𝑘) = 𝑝(z𝑘|x𝑘) 𝑝(x𝑘|𝒵𝑘−1)∫︀
dx 𝑝(z𝑘|x𝑘) 𝑝(x𝑘|𝒵𝑘−1) , (3.49)

For the case where the sensor model is linear and Gaussian 𝑝(z𝑘|x𝑘) = 𝒩 (z𝑘; Hx𝑘,R𝑘),
the Bayesian approach to solving this type of estimation problem can be obtained
in closed form using the well-known Kalman filter update equations. Consequently,
Kalman filtering can be regarded as straight-forward and direct implementation of
the broader Bayesian filtering framework. As direct result of the product formula for
Gaussian A.5[28], Equation (3.49) can be solved as:
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𝑝(x𝑘|z𝑘) = 𝑝(z𝑘|x𝑘) 𝑝(x𝑘|𝒵𝑘−1)∫︀
dx 𝑝(z𝑘|x𝑘) 𝑝(x𝑘|𝒵𝑘−1) (3.50)

= 𝒩 (z𝑘; Hx𝑘,R𝑘) 𝒩 (x𝑘; x𝑘|𝑘−1, P𝑘|𝑘−1)∫︀
dx 𝒩 (z𝑘; Hx𝑘,R𝑘) 𝒩 (x𝑘; x𝑘|𝑘−1, P𝑘|𝑘−1)

(3.51)

= 𝒩 (x𝑘; x𝑘|𝑘, P𝑘|𝑘), (3.52)

the first moment x𝑘|𝑘 and the second central moment P𝑘|𝑘 of the state x𝑘 are given by:

x𝑘|𝑘 = x𝑘|𝑘−1 + W𝑘|𝑘−1(z𝑘 − Hx𝑘|𝑘−1) (3.53)

P𝑘|𝑘 = P𝑘|𝑘−1 − W𝑘|𝑘−1S𝑘|𝑘−1W⊤
𝑘|𝑘−1 (3.54)

where the Kalman Gain matrix is given by:

W𝑘|𝑘−1 = P𝑘|𝑘−1H⊤
𝑘 S−1

𝑘|𝑘−1 (3.55)

and the matrix S𝑘|𝑘−1 results from the predicted covariance matrix and the sensor
model:

S𝑘|𝑘−1 = H𝑘P𝑘|𝑘−1H⊤
𝑘 + R𝑘 (3.56)

Note that there are equivalent formulation of the Kalman filtering equations according
to various version of the product formula A.5 [28].

3.3.1 Kalman Filter vs the Fundamental Equations of Linear
Estimation

Within the context of the Kalman filter, the focus is on estimating the state at time 𝑡𝑘,
denoted as x𝑘. The prior estimate of this state, stemming from the prediction step,
can be described as:

E[x𝑘|𝒵𝑘−1] = x𝑘|𝑘−1 (3.57)
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The state x𝑘 is updated based on the measurement z𝑘, with prior mean — the
predicted measurement:

E[z𝑘|𝒵𝑘−1] = Hx𝑘|𝑘−1. (3.58)

Also, it is required to estimate the predicted state covariance P𝑘|𝑘−1

E[(x𝑘 − E[x𝑘])(x𝑘 − E[x𝑘])⊤|𝒵𝑘−1] = Pxx = P𝑘|𝑘−1 (3.59)

The predicted measurement covariance is

E[z𝑘|𝒵𝑘−1] = Pzz = S𝑘|𝑘−1 (3.60)

Now the cross covariance between the state x𝑘 and the measurement z𝑘 is computes as:

E[(x𝑘 − E[x𝑘])(z𝑘 − E[z𝑘])⊤|Z𝑘] = Pxz (3.61)

The weighing matrix of the fundamental equation of linear estimation (static estimation)
PxzP−1

zz becomes the Kalman gain W𝑘|𝑘−1 from the update equation (3.53):

E[(x𝑘 − E[x𝑘])(z𝑘 − E[z𝑘])⊤|Z𝑘] E[z𝑘|𝒵𝑘−1]−1 = PxzP−1
zz = W𝑘|𝑘−1 (3.62)

with this we can substitute (3.62) into the Kalman filter equations (3.53) and (3.54)

x𝑘|𝑘 = x𝑘|𝑘−1 +

W𝑘|𝑘−1⏞  ⏟  
PxzP−1

zz (z𝑘 − E[z𝑘]) (3.63)

P𝑘|𝑘 = Pxx −

W𝑘|𝑘−1⏞  ⏟  
PxzP−1

zz

S𝑘|𝑘−1⏞ ⏟ 
Pzz

W⊤
𝑘|𝑘−1⏞  ⏟  

P−1⊤
zz Pzx (3.64)

P𝑘|𝑘 = Pxx − PxzP−1
zz Pzx, (3.65)

The Kalman filter update equation shares similarities with static estimation, while the
dynamic aspect of the system is effectively addressed by the Kalman filter prediction
step.





Chapter 4

Extended Target Tracking Bayesian
Framework

In this chapter, we explore the Bayesian framework for tracking a single extended
target using a sequence of noisy measurements. We begin with an overview of the
extended target tracking problem, followed by a detailed Bayesian formulation that
includes modeling the state of the extended target, prediction, filtering, and designing
the measurement likelihood associated with the target.

4.1 Overview of extended target tracking

Conventional target tracking typically assumes that received measurements are in-
dependent, with each target generating only a single measurement point per scan,
effectively treating the target as a single point. The common challenges in point target
tracking include missed detections, clutter, varying numbers of targets, sensor noise,
and other uncertainties. However, due to advances in sensor technologies and increasing
resolution, it has become essential for tracking systems with high-resolution sensors
to account for the spatial extent of the target. These systems must also recognise
extended targets as distinct entities, initiate extended target tracks, and effectively
maintain these tracks over time.

Applications that benefit from this approach include object tracking using cameras,
vehicle tracking for driving assistance, and maritime tracking of boats and ships (see
Fig. 4.1). The spatial extent of a target should be considered an additional degree of
freedom that characterises an extended target and must be estimated simultaneously
with its kinematic properties. Therefore, the target extension becomes a part of the
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Sea
Track

Measurement

Extended Object

Fig. 4.1 Depicts a marine scenario featuring simulated radar detections from a marine
surveillance radar. It also shows an extended target track with a shape moulded as an
ellipse.

object’s state. Given this, we can define the extended target tracking problem as
follows:

Definition 4.1.1 An extended target is a target whose rigid body1 spans multiple
resolution cells of a sensor, potentially generating multiple measurements in each
sensor scan.

Definition 4.1.2 Extended target tracking (ETT) aims to address the challenge of
simultaneously estimating both the kinematics and the extent/shape2 of a target based
on a sequence of noisy measurements.

Over the past decade, this challenge has captured the attention of researchers, resulting
in several proposed solutions aimed at overcoming it. Additionally, multiple extended
target tracking (METT) poses challenges in data association, as many association
events must be considered. The METT problem is beyond the scope of this work, as
our focus is on estimating both the kinematic parameters and the shape of objects.
For further details on ETT and METT please see [19, 18].

1We add the term "rigid body" here to distinguish it from group targets, as some literature treats
groups and extended targets as the same.

2In the work, the terms "target shape" and "target extent" are used interchangeably.
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It’s important to note here that a related problem arises when tracking a group of
closely-spaced objects. Due to the resolution capabilities of the sensor and the sensor-
to-target geometry, two or more targets within the group can be indistinguishable.
In such cases, it’s crucial to treat the group as a single entity and estimate both its
shape and kinematics. However, the main difference between extended target tracking
and group target tracking is that the shape of the group is not rigid. Additionally,
the group can form and dissolve, requiring additional considerations to address these
points. Examples of group target tracks include aircraft formations, ground-moving
convoys, and drone swarms.

4.1.1 Bayesian formalism

The philosophy of the Bayesian framework is to compute the probability of a random
variable of interest based on prior knowledge and measurable evidence. With this, we
can formulate a general Bayesian tracking algorithm for extended targets by computing
the conditional probability 𝑝(x𝑘|𝒵𝑘) at each time 𝑡𝑘 given sensor data 𝒵𝑘. The extended
target state vector x𝑘 should include both kinematic and shape variables. The state
typically includes the following:

• Kinematic state: The kinematic parameters of the targets such as position,
velocity, acceleration, heading, and turn-rate.

• Extent state: The parameters determining the shape and orientation of the
object.

An example of a 2D extended target state is:

x𝑘 = [𝑥𝑘, 𝑦𝑘, 𝑥′
𝑘, 𝑦

′
𝑘, 𝑙𝑘, 𝑤𝑘, 𝜃𝑘]⊤ (4.1)

where 𝑥𝑘, 𝑦𝑘 represent the 2D Cartesian position, 𝑥′
𝑘, 𝑦

′
𝑘 are the Cartesian velocity

components and 𝑙𝑘, 𝑤𝑘, 𝜃𝑘 denote the length, width, and orientation of the target,
respectively. Extended target tracking involves iteratively calculating the conditional
density 𝑝(x𝑘|𝒵𝑘), which comprises two primary steps: prediction and filtering.

Prediction

In view of the discussion in Sect. 3.3, the target evolution model describes how the
target state evolves over time. For a point target, the evolution model usually involves
modelling the evolution of the position and other kinematic parameters. However, in
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ETT, the model should also involve the evolution of the extent over time. Similar to
conventional point target tracking, prediction is achieved by combining the evolution
model 𝑝(x𝑘|x𝑘−1) with the prior state density 𝑝(x𝑘−1) using Chapman-Komogorove
equation (3.44). The evolution model for the kinematic state employs standard point
target tracking dynamic models, such as constant velocity (CV), constant acceleration
(CA), and constant turn-rate (CT); for a comprehensive overview, refer to [37].

The extended target, as defined in Definition 4.1.1, maintains a rigid body, meaning
its size and shape remain constant over time. However, the sensor may not perceive
the full shape due to self-occlusion, leading to variations of the shape appearance
depending on sensor-to-target geometry and target orientation. Depending on the
chosen extent model, a suitable transition density must be designed, although this can
introduce significant complexity. In many applications like tracking cars bicycles or
ships, a simple symmetric geometric shape such as an ellipse or rectangle is sufficient.
Also, it is typical to assume that the orientation of the target is aligned with the
heading therefore, the orientation doesn’t need to be explicitly added as a new degree
of freedom to the model. With such an assumption the prediction of the transition
model of the shape can be as simple as an identity model with suitable process noise.
For more than one spatial model refer to [19].

Filtering

After the prediction, there is a filtering stage where the set of the reflected measurement
from the target 𝒵𝑘 = {z𝑖}𝑛𝑧

𝑖=0 at time 𝑡𝑘 needs to be processed. Specifically, within this
filtering step, a sensor-specific and extended target state-specific likelihood function
𝑝(𝒵𝑘|x𝑘) is defined and combined with the predicted density 𝑝(x𝑘|𝒵𝑘−1) by utilizing
Bayes’ formula (3.50).

Measurement model
To compute the likelihood of a measurement 𝑝(𝒵𝑘|x𝑘), we must establish a model that
specifies the location of the measurement source on the target surface. This model
is contingent upon factors such as the target state vector, the sensor type, and the
shape used to represent the extent. The selection of the shape model needs to be made
carefully to match the required level of shape detail in a given application. Estimating
and tracking complex shapes adds a lot of complexity to the tracking algorithm, which
can be avoided in many applications where basic geometric shapes such as an ellipse, a
line, or a rectangle are sufficient to describe the object. However, in other applications
where making assumptions about the shape is difficult, computationally complex algo-
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rithms with a general model might be needed to track and describe random shapes.
Fig. 4.2 provides an example illustrating the differences between LiDAR and radar
reflection points in an elliptical model of the shape. Moreover, sensor noise influences

Fig. 4.2 Illustrate possible measurement sources of an elliptical model for the shape of
a LiDAR sensor located on the left side of the object in the left figure, and a radar
located on the left side of the object in the right figure.

the detections, necessitating the incorporation of these properties into the measurement
modeling process. Typically, sensor noise is addressed by modeling uncertainties using
probabilistic tools. The model should contain both the number of detections and
their spatial distribution on the target extent. The most common ways to model ET
measurement likelihood are:

• Spatial model: In this framework, measurements are assumed to be distributed
across the rigid body of the target according to a probability distribution. An
earlier and commonly used method, known as the Random Matrix approach
[25, 14], models the extent of the target using an inverse Wishart density, resulting
in the representation of the target shape as an ellipse. Alternatively, another
approach treats each detection z as a noisy measurement of a source y positioned
somewhere on the target [7]. In [21], the authors proposed a model for tracking
cars using LiDAR sensors, where the source density 𝑝(y|x) is assumed to be
uniform along the sides that are visible to the sensor. A Gaussian density was
used for the noise 𝑝(z|y), thus, the measurement likelihood is the marginalisation
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of the reflection point y of the object:

𝑝(𝒵𝑘|x) =
∏︁

z∈𝒵𝑘

∫︁
𝑝(z|y)𝑝(y|x)𝑑y (4.2)

• Set of measurement sources: This model assumes that there are 𝑑 independent
measurement sources (reflection points) located on the target body [22, 23]. This
approach necessitates solving the data association problem for each measurement
source with the received measurements before conducting the update.

4.2 Extended Target Tracking: Spatial Elliptical
Model for Laser Measurements

In this chapter, we introduce a method outlined in our publication [4] for tracking
extended targets using LiDAR measurements. Here, the sources of the measurements
are distributed along the contour of the target’s extent. We employ an Extended Kalman
Filter (EKF) to estimate both the target’s kinematics and shape simultaneously. The
target’s shape is represented by an ellipse, and the measurement sources are uniformly
distributed along the ellipse’s contour. To approximate the measurement likelihood,
we utilise a Gaussian mixture. The EKF update incorporates a moment-matching
technique to approximate the mixture density. We evaluate the performance of the
proposed approach using data from a LiDAR simulator to track a target with a
rectangular shape.

4.2.1 Introduction

With high-resolution sensors like LiDAR, overlooking the spatial extent of the target
is an oversimplification of the issue. According to Definition 4.1.2, the challenge
of extended target tracking lies in the complexity of simultaneously estimating the
kinematics and shape of both targets based on multiple scans. In each scan, the
target produces a set of measurements reflected from spatially distributed measurement
sources on the target surface, as illustrated in Fig. 4.3.

Sophisticated shape models in extended target tracking can accommodate targets
with unknown or arbitrary shapes, where there is no explicit model of the target’s
geometrical shape. One pioneering approach in this context is the Random Hypersurface
Model (RHM) [8, 13, 9]. RHM represents the shape with a radius function that maps an
angle and a shape parameter vector defined by a Fourier series to a radius, representing



4.2 Extended Target Tracking: Spatial Elliptical Model for Laser Measurements 35

Measurement source

Measurement

Fig. 4.3 Illustrates a set of noisy measurements resulting from measurement sources
lying on the contour of an elliptical target.

the contour point at a given angle. This simplifies the problem to curve fitting. In
[47], a novel approach utilising a radius function has been developed in the form of a
Gaussian processes model instead of Fourier coefficients. Another common approach
in the literature uses a B-spline to represent the shape [51, 24]. However, for tracking
vehicle applications, a less sophisticated shape model that assumes a basic geometrical
shape of the target extent, such as an ellipse or a rectangle, is sufficient. The most
common approach in this context is the Random Matrix approach [25, 14], which
assumes an elliptical shape of the target, where the prior of the target extent is modeled
as an Inverse Wishart distribution. In [20], rectangular and elliptical shapes are used to
model the target extent, where the measurement source is spatially distributed around
a predicted part of the target shape. The kinematics and shape update was performed
using an extended Kalman filter together with Gaussian mixture probability hypothesis
density (GM-PHD). However, there was no explicit mathematical function for the
measurement model. Thus, the authors computed the Jacobian for the measurement
model numerically instead of deriving it analytically.

In this approach, the target shape is assumed to be an ellipse with measurement
sources uniformly distributed around the contour of the ellipse. Therefore, it is
customised for use with a LiDAR sensor. The measurement model is derived from
the standard parametric function of the ellipse, enabling the computation of predicted
measurements and their corresponding innovation covariances within the extended
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Kalman filter framework. The extended target measurement likelihood is represented
by a Gaussian mixture density. Consequently, standard nonlinear estimation methods
such as EKF could be utilised to estimate the extended target state vector.

4.2.2 Target Extent Model

This section illustrates the single extended target state vector and the measurement
model used in this work.

Extended Target State Vector

At time 𝑡𝑘, the state vector of the extended target x𝑘 ∈ R6 holds both kinematic and
shape variables

x𝑘 = [𝑥𝑘, 𝑦𝑘, 𝑥′
𝑘, 𝑦

′
𝑘, 𝑙1,𝑘, 𝑙2,𝑘]⊤ (4.3)

where

• 𝑥, 𝑦, 𝑥′, 𝑦′ are the kinematic variables that represent the position and the velocity
of the target (and potentially additional variables),

• 𝑙1,𝑘 ∈ R and 𝑙2,𝑘 ∈ R represent the ellipse semi-axis, thus their absolute value
represents the target semi-length and width.

Measurement Model

At discrete instants of time 𝑡𝑘, the extended target reflects 𝑛𝑧 noisy measurements
𝒵𝑘 = {z𝑖}𝑛𝑧

𝑖=0, originating from a set of measurement sources 𝒴 = {y𝑗}𝑚𝑗=1 spatially
distributed on the target surface. Considering a LiDAR sensor type, 𝒴 is assumed to
be uniformly distributed on the contour of the extended target. Each measurement z𝑖𝑘
stems from one of the 𝑚 sources along the contour and is corrupted by white Gaussian
noise u𝑖𝑘 characterised by a measurement error covariance matrix R𝑖

𝑘 as shown in Fig.
4.4.

Therefore, a measurement z𝑖𝑘 resulting from a measurement source y𝑖𝑘 can be
obtained by following the measurement equation:

z𝑖𝑘 = y𝑖𝑘 + u𝑖𝑘 (4.4)

To calculate the measurement model 𝑝(𝒵𝑘|x𝑘), we first need to find a model that
describes the locations of measurement sources on the target surface, depending on
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Fig. 4.4 Illustrates an elliptical target rotated by an angle 𝛼 and a noisy measurement z
originating from a particular measurement source y lying on the contour of the ellipse
at an angle 𝜃.

the target state and shape variables. In this work, the target shape is assumed to be
an ellipse, which allows us to derive an explicit measurement equation.

Following the standard ellipse equation in a Cartesian coordinate system, any point
p ∈ R2 which lies on the line of an axis-aligned ellipse can be obtained by

p = [𝑙1 𝑐𝑜𝑠(𝜃), 𝑙2 𝑠𝑖𝑛(𝜃)]⊤, (4.5)

where 𝑙1 is the ellipse semi-major axis, 𝑙2 is the ellipse semi-minor axis and 𝜃 is the
angle of the point p with respect to the ellipse major axis Fig. 4.4. Writing (4.5) in
matrix formulation gives us ⎡⎣𝑝𝑥

𝑝𝑦

⎤⎦ =
⎡⎣𝑙1 0

0 𝑙2

⎤⎦⎡⎣𝑐𝑜𝑠(𝜃)
𝑠𝑖𝑛(𝜃)

⎤⎦ (4.6)

The rotation and the translation of the extended target need to be incorporated in
the measurement equation as well as estimated. The target translation c ∈ R2 from
the coordinate origin coincides with the estimated target position variables of the state
vector

c =
[︁
I2 04

]︁
x𝑘 (4.7)
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Also, it is natural to assume that the orientation of the target is aligned with the
direction of its velocity vector which can be realised directly from the kinematic variables
in the state vector which relate to the velocity. By incorporating the translation and
rotation, one can rewrite equation (4.6) as:

y = c +𝑅𝑜𝑡(𝛼)
⎡⎣𝑙1 0

0 𝑙2

⎤⎦⎡⎣𝑐𝑜𝑠(𝜃)
𝑠𝑖𝑛(𝜃)

⎤⎦
= 𝑔(x, 𝜃),

(4.8)

where 𝑅𝑜𝑡(𝛼) is the rotation matrix corresponding to the angle 𝛼 of the velocity vector.
Then, the measurement equation can be obtained by incorporating the measurement
noise:

z = c +𝑅𝑜𝑡(𝛼)
⎡⎣𝑙1 0

0 𝑙2

⎤⎦ ⎡⎣𝑐𝑜𝑠(𝜃)
𝑠𝑖𝑛(𝜃)

⎤⎦+ u (4.9)

Therefore, the measurement likelihood becomes:

𝑝(z|x, 𝜃) = 𝒩 (z; 𝑔(x, 𝜃),R) (4.10)

The angle 𝜃 in (4.8) is an input in a bounded interval 𝜃 ∈ [0, 2𝜋], although its exact
value is unknown for a particular measurement source y. However, as the value of 𝜃 is
bounded, the measurement likelihood 𝑝(z|x) can be modeled as a uniform distribution
along the ellipse line. Thus, 𝑝(z|x) is obtained by marginalising the possible values of
the angle 𝜃 within the interval, that is:

𝑝(z|x) =
∫︁ 2𝜋

0
𝑑𝜃 𝑝(z|x, 𝜃) 𝑝(𝜃|x) (4.11)

We may approximate the integral in (4.11) by a Riemann sum, which results in 𝑚

components Gaussian mixture with equal weights 𝑤𝑗 = 1
𝑚

𝑝(z|x) ≈
𝑚∑︁
𝑗=1

𝑤𝑗 𝒩 (z; 𝑔(x, 𝜃𝑗),R) (4.12)

The number of Gaussian mixture components 𝑚 reflects the number of measurement
sources and is a parameter choice that corresponds to the number of sample points
placed within the interval [0, 2𝜋]. Fig. 4.5 shows a heat map of the measurement
likelihood function resulting from the Gaussian mixture approximation.
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Fig. 4.5 This figure shows a heat map representing the probability density of the
Gaussian mixture with the number of components corresponding to the measurement
sources shown by the black points

4.2.3 Measurement Update

The update equation for the state conditioned on the measurement 𝒵𝑘 up to the
current time stamp 𝑡𝑘 is represented by the density function 𝑝(x𝑘|𝒵𝑘). According to
Bayes’ rule:

𝑝(x𝑘|𝒵𝑘) = 𝑝(x𝑘|𝒵𝑘,𝒵𝑘−1), (4.13)

= 𝑝(𝒵𝑘|x𝑘) 𝑝(x𝑘|𝒵𝑘−1)∫︀
𝑑x𝑘 𝑝(𝒵𝑘|x𝑘) 𝑝(x𝑘|𝒵𝑘−1) (4.14)

iid=
∏︀𝑛𝑧
𝑖=1 𝑝(z𝑖𝑘|x𝑘) 𝑝(x𝑘|𝒵𝑘−1)∫︀
𝑑x𝑘 𝑝(𝒵𝑘|x𝑘) 𝑝(x𝑘|𝒵𝑘−1) (4.15)

(4.16)

Under the assumption that the measurement likelihood is a Gaussian, the Bayesian
formulation leads us directly to the Kalman filter formulation

𝑝(x𝑘|𝒵𝑘) = 𝒩 (x𝑘; x𝑘|𝑘,P𝑘|𝑘) (4.17)

=
∏︀𝑛𝑧
𝑖=1

∑︀𝑚
𝑗=1 𝑤

𝑗 𝒩 (z𝑖𝑘; 𝑔(x𝑘, 𝜃𝑗), 𝑅) 𝒩 (x𝑘; x𝑘|𝑘−1,P𝑘|𝑘−1)∫︀
𝑑x𝑘

∏︀𝑛𝑧
𝑖=1 𝒩 (z𝑖𝑘; 𝑔(x𝑘, 𝜃𝑗),R) 𝒩 (x𝑘; x𝑘|𝑘−1,P𝑘|𝑘−1)

(4.18)

However, as it can be seen in (4.9) the measurement equation is nonlinear, therefore
it is required to linearise the measurement equation so that the Kalman filter assumption
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can hold. A Taylor expansion up to the second order provides a linear approximation
of the measurement equation concerning x𝑘 at a given point x𝑘|𝑘−1 as follows:

𝑔(x𝑘|𝑘, 𝜃) = 𝑔(x𝑘|𝑘−1, 𝜃) + ∇x 𝑔(x𝑘|𝑘−1, 𝜃)(x𝑘|𝑘 − x𝑘|𝑘−1) (4.19)

where ∇x 𝑔(x𝑘|𝑘−1, 𝜃) is the Jacobian matrix containing the partial derivatives of
∇x 𝑔(x𝑘|𝑘−1, 𝜃) which will be denoted in the rest of the section as J and it is formulated
as:

J = 𝜕𝑔(x𝑘|𝑘−1, 𝜃)
𝜕x

(4.20)

=
⎡⎣1 0 0 0 cos𝛼 cos 𝜃 − sin𝛼 sin 𝜃
0 1 0 0 sin𝛼 cos 𝜃 cos𝛼 sin 𝜃

⎤⎦ (4.21)

Note that the partial derivatives in respect to the velocity components 𝑥′ and 𝑦′ depend
on the estimated dimensions, velocity and angle 𝜃. Although the partial derivatives in
respect to 𝑥′ and 𝑦′ are reduced to zero to avoid double counting of information and
calculate a Jacobian independent of the estimated dimensions.
One of the advantages of approximating the measurement likelihood by a Gaussian
mixture lies in the fact that the Kalman filter update can easily be generalised to
incorporate the Gaussian mixture. Incorporating the Gaussian mixture in (4.18) and
writing the update equation only up to its proportional term, yields the following
expression:

𝑝(x𝑘|z𝑘) ∝ 𝒩 (x𝑘; x𝑘|𝑘−1,P𝑘|𝑘−1)
𝑚∑︁
𝑗=1

𝑤𝑗 𝒩 (z𝑘; 𝑔(x𝑘, 𝜃𝑗),R) (4.22)

Therefore, the updated density 𝑝(x𝑘|z𝑘) can be expressed as a sum of weighted
Gaussians

𝑝(x𝑘|z𝑘) =
𝑚∑︁
𝑗=1

𝑤𝑗 𝒩 (x𝑘; x𝑗𝑘|𝑘,P
𝑗
𝑘|𝑘) (4.23)

for a Gaussian mixture of this form, moment matching can be applied directly to
approximate the probability density 𝑝(x𝑘|z𝑘)

𝑝(x𝑘|z𝑘) ≈ 𝒩 (x𝑘; x𝑘|𝑘,P𝑘|𝑘) (4.24)
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where x𝑘|𝑘 and P𝑘|𝑘 are given by:

x𝑘|𝑘 =
𝑚∑︁
𝑗=1

𝑤𝑗x𝑗𝑘|𝑘 (4.25)

P𝑘|𝑘 =
𝑚∑︁
𝑗=1

𝑤𝑗(P𝑗
𝑘|𝑘 + (x𝑗𝑘|𝑘 − x𝑘|𝑘)(x𝑗𝑘|𝑘 − x𝑘|𝑘)⊤) (4.26)

From the EKF formulation, the quantities x𝑗𝑘|𝑘 and P𝑗
𝑘|𝑘 are to be calculated as

follows:

x𝑗𝑘|𝑘 = x𝑘|𝑘−1 + W𝑗
𝑘 v𝑗𝑘 (4.27)

P𝑗
𝑘|𝑘 = P𝑘|𝑘−1 − W𝑗

𝑘 S𝑗𝑘 W𝑗
𝑘

⊤ (4.28)

with:

v𝑗𝑘 = z𝑘 − 𝑔(x𝑘|𝑘−1, 𝜃
𝑗) (4.29)

W𝑗
𝑘 = P𝑘|𝑘−1J𝑗𝑘

⊤S𝑗
−1

𝑘|𝑘−1 (4.30)

S𝑗𝑘|𝑘−1 = J𝑗𝑘 P𝑘|𝑘−1 J𝑗𝑘
⊤ + R (4.31)

and the weight is calculated as:

𝑤𝑗 =
𝒩 (z; 𝑔(x, 𝜃𝑗),S𝑗𝑘|𝑘−1)∑︀𝑚
𝑗=1 𝒩 (z; 𝑔(x, 𝜃𝑗),S𝑗𝑘|𝑘−1)

(4.32)

4.2.4 Prediction

In this work a linear motion model is used, so standard Kalman filter equations are
used to calculate the predicted state x𝑘|𝑘−1 and covariance P𝑘|𝑘−1 as

x𝑘|𝑘−1 = F x𝑘−1|𝑘−1 (4.33)
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P𝑘|𝑘−1 = F P𝑘−1|𝑘−1 F⊤ + D (4.34)

where F is the matrix that defines the deterministic motion model, which is given by:

F =

⎡⎢⎢⎣
1 0 Δ𝑡 0 0 0
0 1 0 Δ𝑡 0 0

04×2 I4×4

⎤⎥⎥⎦ (4.35)

and D matrix characterises the motion covariance.

4.2.5 Results

In this section, the proposed approach is tested and evaluated using a simulation
framework which is designed to model Ibeo LiDAR characteristics; such as, the number
of reflected measurements, measurement noise, and other characteristics. At each
simulation frame, a stationary LiDAR mounted at position (0, 0) produces a number of
measurements reflected from the contour of the target. The ground truth shape of the
simulated extended target used in this work is a vehicle with length = 5.6𝑚 and width
= 1.9𝑚, thus the shape resembles a rectangle with rounded corners. Fig. 4.7 illustrates
the result of the discussed approach in a simulation scenario which combines linear
and curved trajectories covered by the sensor surveillance area. Also, in this section
the proposed approach which we will be referred to as EKF approach is compared to
the Random Matrix-Feldmann approach [14]. Both the Random Matrix approach and
the proposed approach assume an elliptic shape for the target. Except that, in the
Random Matrix approach the measurements are assumed to be normally distributed
on the target surface rather than the target boundary as in the proposed approach.

The evaluation of the shape and the kinematic estimation is carried out indepen-
dently. An Intersection over Union (IoU) metric which measures the accuracy of an
estimated rectangle is utilised in this work to evaluate the shapes. In order to apply
an IoU metric, the area of the target ground truth bounding box 𝐴 and the estimated
area of the track bounding box 𝐴 has to be calculated. IoU is calculated as follows:

IoU = 𝐴 ∩ 𝐴

𝐴 ∪ 𝐴
∈ [0, 1] (4.36)

Thus, IoU computes the ratio of the intersection over the union of the two bounding
boxes. The ratio will be close to 1 in case the areas 𝐴 and 𝐴 are heavily overlapping,
or close to 0 otherwise. In this work, the shape is estimated as an ellipse, however,
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extracting a bounding box out of the ellipse is straightforward where the length and
the width of the bounding box are set to the same value of the estimated ellipse major
and minor axes respectively.

The target starts and continues in a linear motion for the first quarter of the frames
during this period the IoU ratio illustrated in Fig. 4.6(a), shows that EKF approach
has a steep increase in the accuracy of the estimated shape. After reaching more than
95% accuracy, the IoU ratio starts to drop constantly for almost two thirds of the
frames. That is due to the fact that the number of the received measurement points
from the target decreases as the target distancing from the sensors. Another reason
for the drop of the curve results from the target nonlinear motion where it is clearly
seen a significant drop in IoU ratio at the frames where the target had change in its
orientation. In the remaining frames, and as the target starts approaching the sensor
in a linear motion, the accuracy of the estimated shape starts to recover. The graphs
in Fig. 4.6(b) and (c) show about a 0.5𝑚 estimation error in average of the 𝑥 and
𝑦 positions. It is believed that it is due to the fact that the estimator fits an ellipse
only to the two parts which were seen by the sensor that caused the estimator to be
biased to the seen part of the target. This estimation error is calculated by taking the
difference between the centres of the estimated target and the target ground truth. The
estimation error of the orientation illustrated in Fig. 4.6(d) represents the difference
between the ground truth orientation of the target and direction of the velocity vector
which, in our work, represents the estimated orientation of the target. As the velocity is
not directly correlated with the shape, a very small estimation error of the orientation
is presented.

As expected the EKF approach shows better results overall in comparison to the
Random Matrix in the different tests Fig. 4.6. That can be explained by the Random
Matrix assuming that the measurements are generated from the centre of the target
rather than its contour. Thus the target centre is estimated with a high bias toward
the centre of the received measurements. Also, the Random Matrix approach appears
to suffer largely from the change of orientation, which is a result of the Random Matrix
not estimating the orientation explicitly. In other words, the Random Matrix does not
distinguish between a change in orientation and a change in size.

To better illustrate the result of the proposed approach, Fig. 4.7 shows the EKF
estimated track by the red ellipse compared to the Random Matrix estimate represented
by the blue ellipse and to the ground truth shown by the black rectangle. As it can
be seen the overall performance is good and the behaviour of the ellipse fitting of the
measurement points correctly reflects the proposed measurement model in (4.9).
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(a) IoU ratio

(b) 𝑥 position error

(c) 𝑦 position error

(d) Orientation error

Fig. 4.6 The figure illustrates the evaluation results of the proposed approach as shown
by the blue curve compared to the Random Matrix approach shown by the green curve.
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Fig. 4.7 In this simulation result, the single extended target ground truth is represented
by the black rectangle and the dark blue points show the measurements reflected
from the target to a LiDAR sensor located at coordinate (0, 0). The estimated target
shape by proposed approach is represented by the red ellipse, while the Random
Matrix-Feldmann approach is represented by the blue ellipse.

4.2.6 Conclusion

This section presented an approach which is capable of estimating both kinematic and
shape variables of an extended target simultaneously. The proposed approach presented
an explicit mathematical function of the measurement model derived directly from the
standard geometrical function of the assumed shape. The predicted measurement in
the form of a Gaussian mixture was computed and incorporated in EKF framework.
The presented results show that the approach can be applied to track target with
rectangular shape with good accuracy. Even though the assumption of elliptical extents
of the target seems restrictive to track an object with elliptical or rectangular extents,
it is still a very good fit for certain tracking application, such as tracking cars, boats,
etc. One of the limitations of this approach, when only one side of the target is seen
up to the current time stamp, the estimated ellipse will have almost zero value for one
of its axes as the ellipse will try to fit a measurements distribution which resembles a
line. The future plan is to investigate a solution for this limitation.
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4.3 Extended Target Tracking: With Positive Sup-
port Density Filtering

In many data fusion and state estimation applications, the parameter of interest
inherently assumes positive values, such as in distance estimation or counting instances
of certain items. In such cases, optimal data fusion requires modeling the system
state as a positive random variable, with its probability density function confined
to the positive real axis. Conventionally, in stochastic estimation problems, where
we seek to estimate an unknown state based on measurements from noisy sensory
devices like radar or LiDAR. A common assumption is that the random error in the
measurements follows a white Gaussian noise model. Consequently, the unknown
state is often described as a random variable with a Gaussian density. However, in
certain scenarios, such as when the unknown state is known to be strictly positive (e.g.,
estimating size or dimension), classical approaches based on Gaussian densities may
fail, potentially yielding negative values.

This chapter discusses modeling quantities that are constrained to positive values
with a distribution that has positive support. The uni-variate Gamma distribution has
positive support and represents the maximum entropy distribution for such variables. To
facilitate Bayesian recursion with Gamma density, an approximate moment-matching
approach is proposed. Additionally, we explore a special case of the multivariate
Gamma distribution, namely the Wishart distribution. We demonstrate how it can be
used in a recursive Bayesian framework to estimate a multivariate random variable,
thereby modeling the unknown state as a Wishart-distributed random matrix. This
modeling choice ensures that the probability densities of the random variables remain
restricted to positive real values. Then the feasibility of the proposed Bayesian filters
are demonstrated within the framework of Extended Target Tracking.

4.3.1 Introduction

In many data fusion and estimation applications, the state of interest only takes positive
values. For example, it might be the goal to estimate a distance or size. In such a case
the classical approaches based on Gaussian densities might produce erroneous results,
in particular whenever the variance of the likelihood is rather large compared to the
mean. Optimal data fusion then should model the system state as a positive random
variable, which has a probability density function whose support is restricted to the
positive real axis, that is,

∫︀∞
0 𝑝(𝑥) 𝑑𝑥 = 1. The vast majority of model-based methods
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Fig. 4.8 Exemplary distributions of a parameter 𝑑 = 2.1 with a standard deviation
𝜎 = 4. The Gaussian density (black) has a significant part of its probability mass
within the negative real axis whereas the Gamma distribution is limited to the positive
real axis.

rely on the Bayes formula, as it provides the means to integrate information of a data
time series from multiple potentially heterogeneous and spatially distributed sensors
and also from contextual background knowledge [28]. The Kalman filter has become
the ‘working horse’ of Bayesian tracking and state estimation over the years for various
reasons:

• Its Gaussian assumption is suitable for many applications.

• It’s computationally fast and easy to implement.

• Its limitations often can be overcome by various extensions.

However, the assumption of a Gaussian distributed state can yield an insufficient
representation of the actual knowledge of a state of interest if the latter is known to be
positive, that is, its distribution is limited to the positive real axis. A demonstrative
example is given in Fig. 4.8,

where a parameter 𝑙 is given with its true value 2.1. Assume we have given an
unbiased estimate with a standard deviation 𝜎 = 4. From the figure, it becomes
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obvious that the normal distribution 𝒩 (𝑙;𝜇 = 2.1, 𝜎 = 4) has a significant part of its
probability mass on the negative real axis which contradicts our knowledge that 𝑑 can
only take positive numbers.

There is a wide range of applications, which put up the challenge of positive
parameter estimation:

• Counting: Applications with counting instances include crowd estimation, epi-
demiological models, or industrial quantity or volume computation.

• Distances: Measuring distances is a ubiquitous sensor application based on radar,
LiDAR, ultra sound, or stereoscopic imagery.

• Intensities: Intensity estimation appears for instance in signal processing using
acoustic or electromagnetic signals.

• Errors: To estimate the absolute error, standard deviation, or the variance,
positive densities are required.

This behaviour is not limited only to the theoretical sphere, but it also appears
clearly when applied. A direct application of positive parameter estimation appears
in ETT problems [19], which require estimating both the target’s kinematics state
and shape parameters. The vast majority of ETT models in the literature assume
a Gaussian distribution of the target’s extent state which is known to be positive.
These models suffer from the drawback of the Gaussian assumption illustrated in
the example mentioned earlier – where the target extent is occasionally estimated as
negative. One of the pioneer approaches in this context is the Random Hypersurface
Model (RHM)[8, 13, 9]. RHM represents the shape by a radius function that maps
an angle and a shape parameter vector (defined by a Fourier series) to a radius which
represents the contour point at a given angle. A negative estimate of the radius length
has been observed and reported in [44], where the authors suggested a solution by
imposing inequality constraints on the parameters that are known to be positive.

Another common model [47], which also used a radius function, has been developed
in the form of Gaussian Processes (GP) instead. The authors of the GP model reported
that the simulation results indicate that the GP model is more robust and the issue of
negative extent estimation occurs considerably less frequently than in RHM. The same
drawback also exists in [4], where a measurement model under an elliptical shape for a
LiDAR sensor assumption was suggested. This model assumes a Gaussian distribution
of the ellipse axes. However, when a negative estimate of the axis occurs, the filter
estimates the opposite angle’s sign of the corresponding axis, thereby eliminating
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its effect. Another common approach in literature uses a B-spline under Gaussian
assumption to track a star-convex shape presented in [51, 24]. However, the Gaussian
assumption compromises the robustness of this approach and others mentioned before.

A probability density with positive support has been used in the context of Radar
to track the target extent. The most common approach in this sphere is the random
matrix approach [25, 14], where the prior of the target extent is modeled as an Inverse
Wishart distribution. In the following years, a few authors suggested some adaptation
to this approach to track the target’s extent using LiDAR measurements [41, 38]. This
model describes the target extent in terms of a symmetric, positive definite (SPD)
matrix, thus, the dimension can take only positive values. However, the target extent
representation is restricted to an elliptical shape.

It’s worth noting that the Poisson density function is widely used for positive
random variables. For example, the Probability Density Hypothesis (PHD) Filter [32]
or the Intensity Filter [43] for multi-target tracking relies on the Poisson distribution
per position in the state space. However, it’s evident that solely propagating and
computing the first moment is often insufficient for accurately representing knowledge,
especially when the parameter is small but its variance is large, or vice versa. The
cardinalized extension, known as the CPHD filter [31], computes the joint density
of the set event of spatially distributed instants and their cardinality. A balance
between the simplicity of the PHD and the versatility of the CPHD filter is achieved
through a formulation of the distribution of Panjer classes [12, 39]. It’s also possible
to impose constraints on a Bayes filter [50] and on Gaussians [42] to restrict the prior
density function to the positive real axis. However, this comes at the expense of higher
computational costs.

Based on our publications [16, 1, 3], this chapter presents an approximate solution,
based on moment matching, for the prediction-update recursion of a Gamma random
variable, referred to as the "Gamma filter". Additionally, we demonstrate that the exact
formula is biased and derive an unbiased version, which is then applied in a simulative
example. Furthermore, we introduce an extension of the Gamma filter, utilising a
special case of the multivariate Gamma distribution known as the Wishart distribution
[5]. We derive a Bayes update rule for the Wishart density and employ it to track the
shape of an extended target in a closed-form solution. In this work, the target extent
model assumes an unknown or arbitrary shape and is tailored for use with a LiDAR
sensor by assuming the measurement sources to be uniformly distributed around the
contour of the shape.
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4.3.2 Uni-variate Gamma

Problem Formulation

The Gamma distribution of a positive random variable 𝑥 is defined as the density
function for parameters k1 and 𝜃 with:

𝒢(𝑥; k, 𝜃) = 𝑥k−1𝑒− 𝑥
𝜃

𝜃kΓ(k) (4.37)

where 𝜆 is the Gamma function, k is the ‘shape’ and 𝜃 is the ‘scale’ parameter. Its
mean and variance, respectively, are given by

E[𝑥] = k 𝜃 (4.38)
C[𝑥] = k 𝜃2 (4.39)

Some examples (for k = 1, k = 2, and k = 4) for a fixed scale 𝜃 = 1 are shown in Fig.
4.9, where one can see that the shape depends on the ratio of its parameters. The
Gamma distribution can be matched for a random variable 𝑥 with a given expectation
and variance

E[𝑥] = 𝜇 (4.40)
C[𝑥] = 𝜎2 (4.41)

by solving for k and 𝜃. One directly obtains

k = 𝜇2

𝜎2 (4.42)

𝜃 = 𝜎2

𝜇
(4.43)

In this work, it is assumed that the sensor model for an observation 𝑧𝑘 at time
instant 𝑡𝑘 of a positive parameter 𝑥𝑘 is given in terms of a Gamma distribution:

ℓ(𝑧𝑘;𝑥𝑘) = 𝒢(𝑥𝑘; k𝑧, 𝜃𝑧) (4.44)
1Readers need to pay attention to the different fonts used for 𝑘 and k, as they refer to different

values - the former representing the time step and the latter denoting the shape parameter of the
Gamma distribution.
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Fig. 4.9 Example plots of the Gamma distributions for different parameters, where
𝜃 = 1 is fixed.

The conjugate prior for the Gamma distribution is a Gamma distribution again,
therefore, the Bayesian recursion is initialised with a Gamma distribution with initial
parameters k0 and 𝜃0:

𝑝(𝑥0) = 𝒢(𝑥0; k0, 𝜃0) (4.45)

It is assumed that the time evolution can be described in terms of a stochastic process
such that it can be integrated for the prediction step, in which the prior for time step
k is computed:

𝑝(𝑥𝑘−1|𝒵𝑘−1) evolution model−−−−−−−−−→ 𝑝(𝑥𝑘|𝒵𝑘−1), (4.46)

Then, in the filtering step, the computation of the posterior is applied by means of
the Bayes theorem, in which the current sensor observation 𝑧𝑡 and its sensor model is
incorporated:

𝑝(𝑥𝑘|𝒵𝑘−1) current sensor data−−−−−−−−−−−→
sensor model

𝑝(𝑥𝑘|𝒵𝑘). (4.47)
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Prediction – Filtering Recursion for the Gamma Filter

For a closed Prediction–Filtering recursion, these two steps have to be solved such that
the resulting density function stays within the family of Gamma distributions.

Prediction During the time evolution from time 𝑘 − 1 to time 𝑘 the parameter may
undergo some deterministic changes, given by the function 𝑓(𝑥) and some additive
white noise 𝑢𝑡 with variance 𝜎2

𝑢 with

𝑥𝑡 = 𝑓(𝑥𝑘−1) + 𝑢𝑘. (4.48)

Since the Gamma distribution is uniquely defined by its first and second moment,
moment matching may be applied to obtain the density function with the desired
properties. By using (4.40) and (4.41), the previous posterior parameters 𝑥𝑘−1|𝑘−1 :=
E[𝑥𝑙−1|𝒵𝑘−1] and 𝜎2

𝑘−1|𝑘−1 := C[𝑥𝑘−1|𝒵𝑘−1] are obtained directly. Analogously to the
Kalman filter, the first and second moment of the predicted variable is given by

𝑥𝑡|𝑡−1 = 𝑓(𝑥𝑡−1|𝑡−1), (4.49)
𝜎2
𝑡|𝑡−1 = 𝑓(𝑥𝑡−1|𝑡−1)2 𝜎2

𝑘−1|𝑘−1 + 𝜎2
𝑢. (4.50)

A back transformation to a Gamma distribution yields the desired parameters for
the prior distribution:

𝑝(𝑥𝑘|𝒵𝑘−1) = 𝒢(𝑥𝑘; k𝑘|𝑘−1, 𝜃𝑘|𝑘−1), (4.51)

k𝑘|𝑘−1 =
𝑥2
𝑘|𝑘−1

𝜎2
𝑘|𝑘−1

(4.52)

𝜃𝑘|𝑘−1 =
𝜎2
𝑘|𝑘−1

𝑥𝑘|𝑘−1
. (4.53)

Filtering In the filtering step, the prior is combined with the likelihood for the
current observation 𝑧𝑡 by means of the Bayes theorem. It is assumed that the likelihood
is given in terms of a Gamma distribution with parameters k𝑧 and 𝜃𝑧:

ℓ(𝑧𝑘; 𝑥𝑘) = 𝒢(𝑥𝑘; k𝑧, 𝜃𝑧). (4.54)
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Applying Bayes theorem yields

𝑝(𝑥𝑘|𝒵𝑘) = 𝑝(𝑥𝑘|𝒵𝑘−1) · ℓ(𝑧𝑘; 𝑥𝑘)∫︀
d𝑥𝑘 𝑝(𝑥𝑘|𝒵𝑘−1) · ℓ(𝑧𝑘; 𝑥𝑘)

. (4.55)

By multiplying the prior and likelihood, one obtains

𝑝(𝑥𝑡|𝒵𝑘) ∝ 𝑥
k𝑘|𝑘−1−k𝑧−2
𝑘 𝑒

− 𝑥𝑘
𝜃𝑘|𝑘−1

− 𝑥𝑘
𝜃𝑧 (4.56)

Therefore, it follows that the posterior is a Gamma density function again with
parameters k𝑘|𝑘 and 𝜃𝑘|𝑘, where

k𝑘|𝑘 = k𝑘|𝑘−1 + k𝑧 − 1 (4.57)

𝜃𝑘|𝑘 = 𝜃𝑘|𝑘−1 𝜃𝑧
𝜃𝑘|𝑘−1 + 𝜃𝑧

. (4.58)

Since the Gamma distribution is normalised, it is not required to solve the integral in
the denominator in (4.55).

Unbiased Gamma Update

Despite the fact that the update derivation in (4.57) and (4.58) are exact, it should
be noted that application of the Bayes rule to Gamma distributions is not unbiased.
This can be seen by the following example. Consider a density 𝑝(𝑥) = 𝒢(𝑥; 𝑘, 𝜃) with
E[𝑥] = 𝑘 𝜃. Then the 𝑛-time fusion of 𝑝 is given by

𝑝(𝑥|𝑛) := 𝑝(𝑥)𝑛∫︀
𝑑𝑥 𝑝(𝑥)𝑛 . (4.59)

According to the update equations, 𝑝(𝑥|𝑛) is a Gamma distribution with parameters

k𝑛 = 𝑛k − 𝑛 (4.60)
𝜃𝑛 = 𝜃/𝑛. (4.61)

As a consequence, one obtains E[𝑥|𝑛] = k 𝜃 − 𝜃 < k 𝜃. Therefore, this effect can be
undesirable in particular, if the likelihood is obtained via moment matching in (4.42)
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and (4.43). However, an unbiased update rule can easily be found with

k⋆𝑘|𝑘 = k𝑘|𝑘−1 + k𝑧 (4.62)

𝜃⋆𝑘|𝑘 = 𝜃𝑘|𝑘−1 · 𝜃𝑧
𝜃𝑘|𝑘−1 + 𝜃𝑧

. (4.63)

The effect of this rule shall be illustrated by the following example. Let the parameters
of the prior and the likelihood be given by their mean and standard deviation 𝜎 as
summarised in Table 4.1. From the results in the last two lines, one can see that
the mean of the exact update is smaller than the corresponding parameters of the
prior and likelihood. This is different when using the unbiased rule from above. The
corresponding densities are presented in Figure 4.10, where one can see the point-wise
multiplication with normalisation for the exact rule, while the mass is shifted towards
the likelihood in the unbiased case.

Mean 𝜎 k 𝜃
=====
Prior 1.5 2.0 1.13 1.33

Likelihood 2.5 2.0 1.56 1.6

Posterior 1.22 0.94 1.69 0.73

Posterior unbiased⋆ 1.95 1.19 2.69 0.73
Table 4.1 Example for the Bayes update for a given prior and likelihood using the
exact and the unbiased rules.

Simulation

In this section, we illustrate the results obtained from testing the proposed approach
on automotive applications, namely extended target tracking. The extended target
tracking problem can be summarised as the problem of tracking the targets’ kinematics
and extent simultaneously based on multiple scans. In this test, it is assumed that the
targets’ kinematics and the target’s extent are independent. Also the target shape
is assumed to be a rectangle, logically, the dimensions of the rectangle are positive
quantities. Thus, the elements of the extent state vector are modeled as Gamma
distributed random variables. Following this model, the target extent is tracked using
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Fig. 4.10 Plots of the Gamma distributions for the exact and unbiased update rules
with the parameters from Table 4.1

the proposed Gamma filter approach, while a Kalman filter with a non linear evolution
model is utilised to estimate the target kinematic vector.

We used for this test a simulation framework designed to model the physical char-
acteristics of Ibeo automotive LiDAR; such as, the number of reflected measurements,
measurement noise, field of view, and other characteristics. The LiDAR sensors are
mounted on a moving vehicle (ego vehicle). At each frame a point cloud reflected from
measurement sources in the surrounding environment is received by the sensors. Then
the point cloud is clustered to separate the measurements which belong the target to
be updated.

The simulation used resembles an urban scenario, which combines the linear and
curved trajectories of the targets as well as the ego vehicle. The tracking results of
the linear and curved trajectories are shown by Figure. 4.11 (a)(b) and Figure. 4.11
(c)(d), respectively.

An Intersection over Union (IoU) metric which measures the accuracy of an
estimated rectangle is utilised in this work to evaluate the shapes. In order to apply
an IoU metric, the area of the target ground truth bounding box 𝐴 and the estimated
area of the track bounding box 𝐴 has to be calculated. IoU is calculated as follows:

IoU = 𝐴 ∩ 𝐴

𝐴 ∪ 𝐴
∈ [0, 1] (4.64)
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(a) (b)

(c) (d)

Fig. 4.11 Different snapshots are taken from a simulation of Ibeo automotive LiDAR in
an urban scenario: The white frame box represents the extent of the obtained tracks
using the proposed Gamma filter approach. The orange points show the LiDAR point
cloud relative to the red vehicle (the ego vehicle).

Thus, IoU computes the ratio of the intersection over the union of the two bounding
boxes. The ratio will be close to 1 in case the areas 𝐴 and 𝐴 are heavily overlapping,
or close to 0 otherwise. The other metric used is the Root Mean Square Error (RMSE),
which calculates the square root of the average squared error of 𝑁 run as:

RMSE =

⎯⎸⎸⎷ 1
𝑁

𝑁∑︁
𝑖=0

(𝑙 − 𝑙̂)2 (4.65)

where 𝑙 and 𝑙̂ are the true and the estimated dimension, respectively.
In figure 4.18 it is shown that the IoU ratio of the target with a straight trajectory

(track id zero) has a better performance compared to the target with a curved trajectory
(track id one). Also, the RMSE metric shows that the width has a much smaller
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Fig. 4.12 The Intersection over Union results of the shape tracking using the proposed
Gamma filter as shown by the blue curve which corresponds to track with id zero in
figure 4.11 (a) and (b). Also by the red curve which corresponds to track id one in
figure 4.11 (c) and (d).

Fig. 4.13 This figure illustrates the Root Mean Square Error results of the estimated
target’s length and width. Where the track’s number in the figure’s legend corresponds
to the track’s id in figure 4.11.

error compared to the length of the target. These errors are quite explainable as at
the beginning both targets are far from the sensor, and due to the sensor-to-target
geometry, the length of the target is partially visible to the sensor. However, as the
target starts approaching the sensor the target’s length becomes more visible to the
sensor, consequently, the length estimate error drops sharply. For the same reason, the
IoU ratio improves. The slight drop in the performance in both metrics in the last few
frames is due to the fact that the targets became outside the field of view.
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4.3.3 Multivariate Gamma and Wishart Distribution

We discussed the uni-variate Gamma Bayesian filter in the previous section. In this
section, we will discuss generalising the Gamma Bayesian filter to a multivariate
distribution. There are different extensions of multivariate gamma distributions; not
all are defined by density functions[33, 5]. However, according to [46], the generalised
multivariate gamma distribution density function can be defined as:

MG(X;𝛼, 𝛽,C) = |X|𝛼− 𝑑+1
2

𝛽𝑑𝛼 Γ𝑝(𝛼) C𝛼 𝑒
− 1

𝛽
𝑡𝑟(C−1X) (4.66)

Where X is a positive-definite 𝑑 × 𝑑 matrix, 𝛼 > 𝑑−1
2 shape parameter, 𝛽 > 0 scale

parameter, and Γ𝑝 is the multivariate gamma function. With the specific choices of
𝛼 = 𝑛

2 and 𝛽 = 2, the resulting PDF is known as the Wishart density. Therefore, the
Wishart distribution is a special case of the multivariate Gamma distribution.

Definition 4.3.1 Suppose z is a 𝑑×𝑛 matrix, each 𝑗𝑡ℎ column z𝑗 = [𝑧1,𝑗, 𝑧2,𝑗, . . . , 𝑧𝑑,𝑗 ]⊤

is an independent realisation from a Multivariate Gaussian distribution with zero mean
and dimensions 𝑑: z ∼ 𝒩 (z; 0; C). The matrix z is thus written as:

z =

⎡⎢⎢⎢⎣
𝑧1,1 · · · 𝑧1,𝑛

... . . . ...
𝑧𝑑,1 · · · 𝑧𝑑,𝑛

⎤⎥⎥⎥⎦ . (4.67)

The joint distribution of the elements of the matrix

X = zz⊤ =
𝑛∑︁
𝑗=1

z𝑗z𝑗⊤ (4.68)

is Wishart distributed with expected value E[X] = 𝑛C, and is denoted by 𝒲(X;𝑛,C).
The probability density function of X is given by:

𝒲(X, 𝑛,C) = |X|𝑛−𝑑−1
2

2𝑛𝑑
2 Γ𝑑(𝑛2 )|C|𝑛

2
𝑒− 1

2 𝑡𝑟(C
−1X) (4.69)

The density 𝒲 exists in case 𝑛 ≥ 𝑑. Where 𝑛 is a positive integer representing the
degrees of freedom or the sample size, C is a scale matrix that represents the covariance
of the measurement vector z and Γ𝑑(·) is the multivariate gamma function [35].

Also, the Wishart distribution is often considered a multivariate generalisation of
the chi-squared distribution (a special case of the gamma distribution).
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Problem Formulation

We consider the problem of estimating a state x = [𝑥1, 𝑥2, ..., 𝑥𝑑]⊤ based on a time
series of noisy measurements 𝒵𝑘, where the state x is known to take only positive
value x ∈ R𝑑

≥0. The measurement 𝑧𝑖 ∈ R1 of an element 𝑥𝑖 of the state x results from
the following measurement equation

𝑧𝑖𝑘 = 𝑓(𝑥𝑖) + 𝑢𝑖𝑘. (4.70)

which maps 𝑥𝑖 and an additive noise term 𝑢𝑖𝑘 to the measurement 𝑧𝑖𝑘. By stacking the
measurements in a vector z𝑘 ∈ R𝑑, that is, z𝑘 = [𝑧1

𝑘, 𝑧
2
𝑘, ..., 𝑧

𝑑
𝑘]⊤, the joint distribution

of z𝑘 is assumed to be Gaussian with zero mean (in reference to a given centre) and
covariance matrix C, that is, z𝑘 ∼ 𝒩 (z; 0,C). Let’s consider at each time instant 𝑡𝑘
a number 𝑛𝑧 ≥ 𝑑 of an independent realisations drawn from the d-variate Gaussian
𝒩 (z; 0,C) are received and form the measurement matrix 𝒵𝑘 ∈ 𝒵𝑑×𝑛𝑧 , such as:

𝒵𝑘 =
[︁
z1
𝑘, · · · , z𝑛𝑧

𝑘

]︁

=

⎡⎢⎢⎢⎣
𝑧1,1
𝑘 · · · 𝑧1,𝑛𝑧

𝑘
... . . . ...
𝑧𝑑,1𝑘 · · · 𝑧𝑑,𝑛𝑧

𝑘

⎤⎥⎥⎥⎦ .

Thus, 𝑧𝑖,𝑗𝑘 , 𝑖 = 1, . . . , 𝑑, 𝑗 = 1, . . . , 𝑛𝑧 represents the 𝑗𝑡ℎ measurement of the 𝑖𝑡ℎ state
variable at time 𝑘. To illustrate this in an example, let’s consider a state x = [𝑥1, 𝑥2]⊤

where it’s elements represent the dimensions 𝑟1 and 𝑟2 of a box centred at the origin
(0, 0), Fig. 4.14. A photogrammetric technique is utilised to measure the position of the
edges’ points/pixels with respect to the centre of the box. In this example, the quantities
𝑟1 and 𝑟2 which we wish to estimate, are strictly positive, while the measurements
could possibly take positive or negative values, based on which side the detected edge
lies. By taking the square of the measurement matrix X = zz⊤ = ∑︀𝑛𝑧

𝑗=1 z𝑗z𝑗⊤, it is
guaranteed that the estimate is strictly positive. In fact, according to definition 4.3.1,
the matrix X = zz⊤ is Wishart distributed. In view of this, the goal is to recursively
estimate a symmetric positive definite matrix X, which follows a Wishart distribution
and contains the information about the target extent given all measurements up to
time 𝑘. Moreover, the Wishart distribution is a special case of the multivariate Gamma
distribution and it is worth mentioning that its inverse form is widely used to track
targets’ extent and estimate a spread matrix [10, 14, 45].
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Fig. 4.14 Photogrammetric technique is used to take a spatial measurement from
photographs to measure the pixels’ positions related to the selected features, in this
case, the edges of the object.

Wishart Distribution and Bayesian Tracking

Bayesian framework provides an iterative updating scheme to estimate stochastic
variable X by calculating conditional probability density functions 𝑝(X𝑘|𝒵𝑘) that
represent all available knowledge on X up to time 𝑘. The related density iteration
process is referred to as prediction and filtering. It is assumed that the time evolution
can be described in terms of a stochastic process such that it can be integrated for the
prediction step, in which the prior for time step 𝑘 is computed:

𝑝(X𝑘−1|𝒵𝑘−1) evolution model−−−−−−−−−→ 𝑝(X𝑘|𝒵𝑘−1), (4.71)

Then, in the filtering step, the computation of the posterior is applied by means of
the Bayes theorem, in which the current sensor observation 𝒵𝑘 and its sensor model is
incorporated:

𝑝(X𝑘−1|𝒵𝑘−1) current sensor data−−−−−−−−−−−→
sensor model

𝑝(X𝑘|𝒵𝑘). (4.72)
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Recursive Wishart Filter

In the filtering step, the likelihood of the current observation 𝑝(𝒵𝑘|X𝑘) is combined
with the prior density by means of the Bayes theorem:

𝑝(X𝑘|𝒵𝑘) = 𝑝(X𝑘|𝒵𝑘−1) · 𝑝(𝒵𝑘|X𝑘)∫︀
dX𝑘 𝑝(X𝑘|𝒵𝑘−1) · 𝑝(𝒵𝑘|X𝑘)

. (4.73)

To determine the posterior’s density 𝑝(X𝑘|𝒵𝑘), the densities of the measurement
likelihood 𝑝(𝒵𝑘|X𝑘) and the prior 𝑝(X𝑘|𝒵𝑘−1) need to be known. In our case, the
sensor model exists, observations are made and 𝒵𝑘 is fixed. Thus the distribution
𝑝(𝒵𝑘|X𝑘) is now considered as a likelihood function of X𝑘: ℓ(X𝑘|𝒵𝑘) and is given in
terms of a Wishart distribution characterized by the parameters 𝑛𝑧 and C𝑧

1:

𝑝(𝒵𝑘|X𝑘) = ℓ(X𝑘|𝒵𝑘)
= 𝒲(X𝑘;𝑛𝑧,C𝑧),

(4.74)

where 𝑛𝑧 is the number of measurements, and C𝑧 is calculated as:

C𝑧 = 1
𝑛𝑧

𝑛𝑧∑︁
𝑗=1

z𝑗𝑘z
𝑗
𝑘

⊤
. (4.75)

The prior density is assumed to have the same family of distribution as the mea-
surement likelihood, that is, the prior is Wishart distributed with parameters 𝑛𝑘|𝑘−1

and C𝑘|𝑘−1. Thus, the Bayesian recursion is initialized with a Wishart distributed prior
with initial parameters C0 and 𝑛0 :

𝑝(X0) = 𝒲(X0;𝑛0|0,C0|0). (4.76)

To calculate the Bayesian posterior density, first the numerator in (4.73) is solved
by multiplying the prior and the likelihood densities, that yields:

𝑝(X𝑘|𝒵𝑘) ∝ 𝑝(X𝑘|𝒵𝑘−1) · ℓ(X𝑘|𝒵𝑘)
∝ 𝒲(X𝑘;𝑛𝑘|𝑘−1,C𝑘|𝑘−1) · 𝒲(X𝑘;𝑛𝑧,C𝑧)

∝ |X|
𝑛𝑧+𝑛𝑘−1−𝑑−1−𝑑−1

2 · 𝑒− 1
2 𝑡𝑟((C𝑘|𝑘−1(C𝑧+C𝑘|𝑘−1)−1C𝑧)−1X).

(4.77)

1The parameters of the measurement likelihood 𝑛𝑧 and C𝑧, always refer to the current measurement
at time 𝑘.
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From the multiplication result, it can be seen that the resulting posterior density is a
Wishart density with parameters 𝑛𝑘|𝑘 and C𝑘|𝑘, given by:

𝑛𝑘|𝑘 = 𝑛𝑧 + 𝑛𝑘−1 − 𝑑− 1 (4.78)

C𝑘|𝑘 = C𝑘|𝑘−1(C𝑧 + C𝑘|𝑘−1)−1C𝑧. (4.79)

Since the Wishart distribution is normalized, solving the integral in the denominator in
(4.73) is not required. Thus, It is sufficient to write the Wishart distributed posterior
as:

𝑝(X𝑘|𝒵𝑘) = 𝒲(X𝑘;𝑛𝑘|𝑘,C𝑘|𝑘)

= |X|
𝑛𝑘|𝑘−𝑑−1

2

2
𝑛𝑘|𝑘𝑑

2 Γ𝑑(
𝑛𝑘|𝑘

2 )|C𝑘|𝑘|
𝑛𝑘|𝑘

2

𝑒
− 1

2 𝑡𝑟(C
−1
𝑘|𝑘X) (4.80)

The multiplication steps are shown in greater detail in Appendix B.1.

Prediction

In the prediction step, the parameters 𝑛𝑘|𝑘−1 and C𝑘|𝑘−1 which define the predicted
density

𝑝(X𝑘|𝒵𝑘−1) = 𝒲(X𝑘;𝑛𝑘|𝑘−1,C𝑘|𝑘−1) (4.81)

have to be calculated from 𝑛𝑘−1|𝑘−1,C𝑘−1|𝑘−1 available after the previous filtering step.
Following the same heuristic approach to predict the random matrix in [25], that is, the
expectation of the predicted density shall be equal to the expectation of the previous
filtering step—i.e., the target shape is unchanging over time, one can write:

E[X𝑘|𝒵𝑘−1] = E[X𝑘−1|𝒵𝑘−1]
𝑛𝑘|𝑘−1C𝑘|𝑘−1 = 𝑛𝑘−1|𝑘−1C𝑘−1|𝑘−1

C𝑘|𝑘−1 = 𝑛𝑘−1|𝑘−1C𝑘−1|𝑘−1

𝑛𝑘|𝑘−1
.

(4.82)

Here the parameter 𝑛 represents the degree of freedom or the sample size. Thus, it
is directly related to the uncertainty of the corresponding expectation. Further, the
uncertainty of the expectation shall be increasing at the prediction step in proportion
to the update interval Δ𝑡 = 𝑡𝑘 − 𝑡𝑘−1. Another factor that needs to be considered,
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is that the parameter 𝑛 must satisfy 𝑛 ≥ 𝑑. After taking into account these factors
and incorporating temporal decay constant 𝜏 as an additional modeling parameter.
A plausible model to predict the parameter 𝑛, which incorporates a temporal decay
constant 𝜏 as an additional modeling parameter could be:

𝑛𝑘|𝑘−1 = 𝑑+ 𝑒
−Δ𝑡

𝜏 (𝑛𝑘−1|𝑘−1 − 𝑑) (4.83)

The choice of the constant 𝜏 determines how agile the shape can be. In other words,
decreasing 𝜏 increases the agility of the extent. An analogous model was introduced in
[14] to predict the degree of freedom of the inverse Wishart density, and the models
will be identical in case 𝑑 = 2.

Unbiased Wishart Update

To check if our estimator is unbiased, we will verify if it meets the criteria in the
definition of an unbiased estimator mentioned in [6].

Definition 4.3.2 : An estimator X̂ is said to be unbiased if the expected value of the
estimation error X̃ ≜ X − X̂ is a zero mean, that is,

E[X − X̂] = 0. (4.84)

Considering a point estimate X̂ = 𝑛C, the above unbiasedness requirement is
satisfied if:

E[X − 𝑛C] = 0. (4.85)

By examining the requirement for unbiasedness in the derived posterior Wishart density
parameters, one can demonstrate that the unbiased estimator of the Wishart density
is given by:

X̂ = 𝑛C − 𝑛𝑧R𝑑 (4.86)

where R𝑑 is a 𝑑× 𝑑 measurements error covariance matrix, the parameters 𝑛 and C
are calculated as:

𝑛 = 𝑛𝑧 + 𝑛0 (4.87)
C = C0(C𝑧 + C0)−1C𝑧 (4.88)



64 Extended Target Tracking Bayesian Framework

The full proof is provided in Appendix B.2.

Random Shape Contour Model

In this section, a model for a random shape contour applicable for LiDAR measurement
is proposed. The contours of the shape are described by a set ℛ = {𝑟𝑖}𝑑𝑖=1, for all 𝑑
equidistantly discretisation in the interval [0, 𝜋], which is convenient for representing
abstract shapes. The goal is to estimate the length of each 𝑖 radial segment 𝑟𝑖 by the
mean of the proposed Wishart filter. The key assumptions made in this model are the
following:

• Assumption.1. The target extent is described by a symmetric star convex
shape.

• Assumption.2. The kinematics’s state and extent are decoupled, i.e., the
target’s centre and extent are tracked independently.

• Assumption.3. At each update frame, 𝑛𝑧 measurements are associated with
each radial segment.

In the Euclidean space, a set 𝒮 ⊆ R𝑛 is called a star-convex set if the line segment
which connects the centre c𝑘 to any point y𝑖 at the surface is fully contained in the
set 𝒮. Also, a shape is called symmetric if the two segments on the opposite side of
c𝑘 have equal length. In a Cartesian coordinate system, any point y𝑖 ∈ R2 lies on the
contour of a star convex body corresponding to an angle 𝜃𝑖 can be obtained by

y𝑖 = c𝑘 + H𝑖𝑟𝑖

= c𝑘 +
⎡⎣𝑐𝑜𝑠(𝜃𝑖)
𝑠𝑖𝑛(𝜃𝑖)

⎤⎦ 𝑟𝑖 (4.89)

where c𝑘 is the target’s centre and 𝑟𝑖 is the radius’ length which corresponds to the
angle 𝜃𝑖, Fig. 4.15.

Each measurement z𝑖 stemming from one of the measurement sources along the
contour is corrupted by a white Gaussian noise u𝑖𝑘, characterized by a measurement
error covariance matrix R. Thus, the measurement equation can be can be written as

z𝑖𝑘 = y𝑖𝑘 + u𝑖𝑘
= c𝑘 + H𝑖𝑟𝑖 + u𝑖𝑘

(4.90)
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Fig. 4.15 Two measurement sources H𝑖𝑟𝑖 and −H𝑖𝑟𝑖 correspond to a single segment at
angle 𝜃𝑖 of a symmetric star-convex shape. Measurements stemming from any of the
two sources are associated with the segment in red.

and described by the Gaussian density

z𝑖𝑘 ∼ 𝒩 (c𝑘 + H𝑖𝑟𝑖,R) (4.91)

The unknown state 𝑥𝑖 which we aim to estimate is the segment’s radius 𝑟𝑖. The value
of 𝑟𝑖 is not directly related to the measurement z𝑖, but it has a specific trigonometric
functional relation to the measurement at the corresponding angle (4.89). Because
the trigonometric function has a constant value for each angle 𝜃𝑖, the value of 𝑟𝑖 can
be obtained from either one of the measurement components 𝑧𝑖𝑥 or 𝑧𝑖𝑦. Therefore, a
sufficient measurement equation where the state 𝑟𝑖 is completely observable could be:

𝑧𝑖𝑥 = 𝑐𝑥 + 𝑟𝑖𝑐𝑜𝑠(𝜃𝑖) + 𝑢𝑖𝑥 (4.92)

or equivalently:

𝑧𝑖𝑦 = 𝑐𝑦 + 𝑟𝑖𝑠𝑖𝑛(𝜃𝑖) + 𝑢𝑖𝑦 (4.93)

For brevity, The sub-index ”𝑥”, ”𝑦” and the shift c are dropped in the rest of this
section, and we will write the measurement equation of a measurement’s source 𝑖 as:

𝑧𝑖 = ℎ𝑖𝑟𝑖 + 𝑢𝑖 (4.94)
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Measurement Likelihood

As a result of symmetry (Assumption.1), a measurement 𝑧𝑖 stemmed from any of
the two ends of segment 𝑖 corresponding to an angle 𝜃𝑖, may be used to estimate
the unknown 𝑟𝑖. Therefore, the measurement’s distribution consists of two Gaussian
densities, each of which corresponds to a different endpoint of segment 𝑖, and can be
expressed by a Gaussian mixture of this form:

𝑝(𝑧𝑖|𝜃𝑖) = 1
2𝑝(𝑧

𝑖|ℎ𝑖𝑟𝑖) + 1
2𝑝(𝑧

𝑖| − ℎ𝑖𝑟𝑖)

= 1
2𝒩 (𝑧𝑖;ℎ𝑖𝑟𝑖, 𝜎2) + 1

2𝒩 (𝑧𝑖; −ℎ𝑖𝑟𝑖, 𝜎2)
(4.95)

According to Assumption.2 the target centre is known, thus by shifting the measure-
ments according to the tracked centre the measurements 𝑧𝑖 will be centred around the
coordinate’s centre (0, 0). Accordingly we can establish that the probability density of
the measurement is zero-mean. Based on the moments matching principle, the first
moment of the mixture in (4.95) could be matched to a d-variate Gaussian distribution
with unknown covariance matrix C, that is,

z =

⎡⎢⎢⎢⎣
𝑧1

...
𝑧𝑑

⎤⎥⎥⎥⎦ ∼ 𝒩 (z; 0,C) (4.96)

where each entry represents a single association to each radial segment 𝑟𝑖 ∈ ℛ.
Considering 𝑛𝑧 realisations stemmed from the measurement’s sources of each radial
segment (Assumption.3), a similar data matrix to (4.67) can be constructed: z =
[z1, ..., z𝑛𝑧 ]. According to definition (1), the distribution of 𝑑 × 𝑑 random matrix
X = zz⊤ = ∑︀𝑛𝑧

𝑗=1 z𝑗z𝑗⊤ is a Wishart distribution. Consequently, the measurement
likelihood of the random matrix X𝑘 at time 𝑡𝑘 given 𝑛𝑧 association to each radial
segment has a Wishart distribution:

ℓ(X𝑘|z𝑘) = 𝒲(X𝑘;𝑛𝑧,C𝑧). (4.97)

The measurement likelihood parameters are obtained as shown previously in (4.74).
Considering a LiDAR type of sensor, only one side of the segments is observable in
a single scan. This measurement characteristic compromises the correctness of the
measurement likelihood in (4.95), which leads to undesirable results. In Appendix (B.3)
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this behavior is discussed in more detail, also, it is shown that this effect is eliminated
by assuming in-dependency between the segments.

On the grounds of this, adaptation to the measurement likelihood of the random
matrix is required to ensure unbiasedness and to accommodate the structure of the
shape in sufficient generality. To illustrate this effect, three models are tested and
compared:

• General model:
The measurement of the random matrix is taken without any adaptation, thus
the model assumes that the random matrix is calculated as:

X = zz⊤ (4.98)

• Independent model:
In this model the radial segments are assumed to be independent, thus, the
off-diagonal elements are set to zero:

X = diag[zz⊤] (4.99)

• Squared exponential:
The model encodes the assumption that two measurements of radial segments 𝑟
and 𝑟′ have higher correlation if their corresponding angles 𝜃 and 𝜃′ are closer
to each other than segments far apart. Therefore, it is desirable to decrease the
correlation (exponentially) across the angular distance. A common choice to
represent this model is the squared exponential (SE) covariance function1.

𝑓(𝜃, 𝜃′) = 𝑒− |𝜃−𝜃′|2

2𝛼2 (4.100)

where 𝛼 is a constant determining the length of the covariance function. This
can be incorporated into the measurement likelihood as:

X = zz⊤ ∘ 𝑓(𝜃, 𝜃′) (4.101)

where ∘ denotes the Hadamard product.
1The squared exponential function is widely used in machine learning applications [48]. It was

also used to model an analogous assumption in ETT contexts [47]
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Evaluation Results

In this section, a numerical example is used to compare the performance of the biased
with the unbiased estimators. Also, the proposed approach is tested and evaluated
using simulations data, resembling the characteristics of a LiDAR sensor. Then the
results are evaluated and compared with an alternative approach in the literature using
the suggested metric.

Numerical Example

The effect of the unbiased estimator shall be illustrated by the following numerical
example. Let a box object be centred at the origin (0, 0) with dimensions 4 × 6. To
estimate the dimensions of the box, a photogrammetric technique is utilised to mea-
sure the position of the edges’ points/pixels in respect to the centre of the box, Fig.4.14.

Measurement likelihood At each frame 𝑘, the camera reports a number of noisy
measurements 𝑛𝑧 = 10 about the position of the edges’ points/pixels. As a result of the
symmetry, the reported measurement which stems from the boundary of the symmetric
object is used to estimate the object radial segments 𝑟1 and radius 𝑟2. Accordingly the
measurement likelihood is expressed by the mixture density:

𝑝(z|r) ∼ 1
2𝒩 (z; r,R) + 1

2𝒩 (z; −r,R), (4.102)

where r = [𝑟1 = 2, 𝑟2 = 3]⊤ and R = 0.25I2×2.
Consider the following measurement matrix at frame 𝑘 = 1

z1 =

⎡⎢⎢⎣
𝑧1,1
𝑘=1 · · · 𝑧1,10

𝑘=1

𝑧2,1
𝑘=1 · · · 𝑧2,10

𝑘=1

⎤⎥⎥⎦
=
⎡⎣−1.4 −1.9 −1.8 1.9 1.6
−2.4 3.1 −3.1 −2.8 2.9

−2.4 −2.1 2.9 −1.8 −2.6
−3.6 −3.6 −3.6 2.9 2.9

⎤⎦ .

(4.103)
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From definition (1), the parameters of the measurement likelihood

ℓ(X1|z1) ∼ 𝒲(X1;𝑛𝑧,C𝑧), (4.104)

are calculated as:

𝑛𝑧 = 10.
C𝑧 = z1z⊤

1 /𝑛𝑧

=
⎡⎣ 4.3 −0.5
−0.5 9.9

⎤⎦ ,
(4.105)

the calculation of the likelihood follows the general model (4.98). In case of the
independent model (4.99), the off-diagonal elements in z1z⊤

1 must be set to zero.

Prior The initial guess of the Wishart prior’s parameters are set as

𝑝(X0) = 𝒲(X0;𝑛0,C0) (4.106)

where C0 = 15.I2×2 and 𝑛0 = 3. Note that, for two dimensions the prior 𝑛0 = 2 implies
maximum uncertainty.

Posterior By the mean of the Wishart filter update shown in (B.6) and (B.7), the
prior 𝑝(X0) and the measurement likelihood ℓ(X1|𝒵1) are fused to obtain the posterior
density at time 𝑘 = 1

𝑝(X1|𝒵1) = 𝒲(X1;𝑛1,C1) (4.107)

where

𝑛1 = 13.

C1 =
⎡⎣ 3.4 −0.2
−0.2 5.9

⎤⎦
By recursively update the posterior with new measurements z𝑘, the obtained

parameters of the posterior density after 6 update iterations are

𝑝(X6|𝒵6) = 𝒲(X1;𝑛6,C6) (4.108)
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where

𝑛6 = 63.

C6 =
⎡⎣ 0.6 −0.06
−0.06 1.2

⎤⎦
To get a meaningful value of the Wishart density, the expected random matrix at

frame 𝑘 = 6 is calculated as:
E[X] = 𝑛6C6, (4.109)

this matrix represent the expected value of the 𝑛𝑧 sum of r squared, thus our estimate
of the r is obtained as:

E[r] = diag
[︃(︃

E[X]
𝑛𝑧

)︃− 1
2
]︃

= [2.0, 2.8]⊤
(4.110)

where the term ()− 1
2 is calculated using Cholesky decomposition. It can be seen in

the results above (4.110), the estimates of 𝑟1 and 𝑟2 after only 6 iteration and under
high noise scenario are very close to the really value.

Table 4.2 Root-mean-square error of different point estimators are listed in the table.
The numbers are averaged over 1000 MC runs. The parameters 𝑛 and C are calculated
as in (B.6) and (B.7).

E[𝑟] 𝑅𝑀𝑆𝐸(𝑟1 − 𝑟1) 𝑅𝑀𝑆𝐸(𝑟2 − 𝑟2)
𝑛C 0.311 0.437

𝑛C − 𝑛𝑧R𝑑 0.247 0.364

The selection of high noise measurement in this examples is made to allows a better
demonstration of the biasedness. The performance of the unbiased point estimator is
compared to the biased version in Table 4.2. The comparison metric used is the Root
Mean Square Error (RMSE), which calculates the square root of the average squared
error of 𝑁 run as:

𝑅𝑀𝑆𝐸(𝑥̄,E[𝑥]) =
√︃

1
𝑁

(𝑥̄− E[𝑥])2. (4.111)

The number of Monte Carlo (MC) runs used in this simulation is 𝑁 = 1000 MC. One
can see that, the point estimator which subtracts the term 𝑛𝑧R𝑑 has smaller RMSE
comparing to the other.
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Alternative approach

The proposed approach is compared with Gaussian Processes (GP) model for extended
target tracking [47]. Similar to the proposed approach in this work, GP describes the
target extent by a set of radial functions/segments represented by the vector x;

xf = [f1, f2, ..., f𝑑]⊤. (4.112)

Where xf is modeled as a GP, completely defined by a mean function 𝜇(𝑢) and a kernel
function 𝑘(𝜃, 𝜃′):

𝑓(𝜃) ∼ 𝒢𝒫(𝜇(𝑢), 𝑘(𝜃, 𝜃′)) (4.113)

The authors explicitly define the recursions as a state space model that enabled the
use of a Kalman filter to update the posterior density of 𝑓(𝜃) using a time series of
measurements. This results in the following recursion

𝑝(f|𝑧1 : 𝑁) ∝ 𝑝(𝑧𝑁 |f, 𝑧1:𝑁−1)𝑝(f|𝑧1:𝑁−1) (4.114)

The underline measurement equation used in GP describes noisy measurements
originating from the target contours of a star-convex shape. In order to model
the periodicity in 𝑓(𝜃), a periodic kernel function 𝑘(𝜃, 𝜃′) is used. This allows the
incorporation of the symmetry assumption easily in the model by modifying the period
of the kernel function to have a period of 𝜋 rather than 2𝜋. Against this background,
using the GP approach as a benchmark is a suitable choice providing an objective
comparison to our proposed approach.

Simulation

Different tests are performed to evaluate the proposed approach. The generated
measurement points used in the tests simulate LiDAR sensor measurements originating
from a measurement’s sources along the boundary of an extended target. The first
test aims to demonstrate the affect of the correlation in the Wishart measurement
likelihood, which is discussed earlier in section 4.3.3. The target shape of choice in this
test is a simple diamond shape. To capture the details for a shape of this type, it is
sufficient to use only two radial segments. Thus the random matrix is represented by;
X2×2. With this choice of the target’s shape and random matrix size, it becomes easier
to demonstrate the effects of correlation, as only two radial segments are used. In
Fig. 4.16, the results of the general and independent measurement models (4.98) and
(4.99), respectively, are shown by the green and red shapes. The results demonstrate
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(a) 𝑘 = 2

(b) 𝑘 = 10

Fig. 4.16 Illustration of the estimated shapes by Wishart filter, using general and
independent measurement models.

that the general measurement model underestimates the actual extent of the target.
This undesirable result is directly related to the joint distribution of the measurement
likelihood in the general model, which fails to capture the true distribution of the
measurements when only one side of the segment is observable. Alternative models
are suggested earlier to eliminate this effect, namely, the SE model in (4.101) and the
independent model in (4.99). For this specific setup where only two far apart segments
are used, the independent model and SE model are equivalent. For this reason, the SE
model is discarded in this test, and only the independent model is compared to the
general model. As expected, the independence assumption in the model yields better
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(a) 𝑘 = 3 (b) 𝑘 = 100 (b) 𝑘 = 200 (c) 𝑘 = 300

(d) 𝑘 = 3 (e) 𝑘 = 100 (e) 𝑘 = 200 (f) 𝑘 = 300

Fig. 4.17 In this simulation result, the extended target ground truth extent is represented
by the black dashed shape and the dark blue point measurements resemble the LiDAR
sensor reflection of one side of the target contours. The red and the yellow solid curves
represent the estimated target extent by the proposed approach, corresponding to the
independent and SE models. The GP approach estimated extent is represented by the
blue solid curve.

results, where a very accurate estimation of the extent is obtained after few updates.
This is shown by the red shape in Fig. 4.16.

The second test aims to compare the proposed Wishart filter with the chosen
alternative approach (GP). In total, 400 frames of simulated measurement points are
used in this test. At each frame, a random number of measurements are generated from
a Poisson distribution, with an expected rate of occurrences 𝜆 = 100 and time interval
between each scan as Δ𝑡 = 1𝑚𝑠. In order to effectively evaluate the robustness of the
proposed approach, a stationary target with a dynamic shape is used in the simulation.
For the first half of the simulation frames, the algorithms are tested on a cross-section
shape with smooth edges. In the second half of the frames, the target dynamically
changes its shape to a less complex one. This allows us to test the robustness of the
algorithm in handling new information regarding the target shape. This is encountered
in real applications, due to a changes in sensor-to-target geometry and previously
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occluded target. The accuracy of the algorithm is tested in two different noise scenarios,
a low noise scenario and a high noise scenario, corresponding to measurement error
covariance R = 0.09I2×2 and R = 0.01I2×2 respectively.

The results1 of Wishart filter compared to the GP approach are illustrated in Fig.
4.17. In order to show the evolution of the estimated shapes, four snapshots are taken
from different frames. The results in Fig. 4.17 demonstrate that the Wishart and
GP models produce very accurate estimates of the shape in both low and high noise
scenarios. However, when the target extent became dynamic (around frame 𝑘 = 200),
the Wishart filter appears to be more robust and capable of adapting to new shapes,
while the GP model requires a relatively larger number of frames to adapt to the new
shape. Furthermore, the agility of the estimated Wishart filter’s shape directly related
to the constant parameter 𝜏 of the Wishart prediction step, where the value of 𝜏 in
(4.83) is chosen empirically and is set to 𝜏 = 0.01 for both squared exponential and
independent measurement models. This value is found to be a good trade-off between
stability and agility of the estimated shape. On the other hand, the shape agility
in the GP model is related to the process and the measurement noise parameters.
Similarly, the values of these parameters are tuned empirically. Therefore and for the
fidelity of the comparison, the parameters of both Wishart and GP models are chosen
to be the best trade-off between accuracy and agility. The discretization level of the
angle interval is a parameter choice representing the level of detail the estimated shape
required to capture. In this test, the Wishart filter uses 15 radial segment to describe
the shape, thus, the size of the random matrix X15×15 with initial value X0 = 15I15×15.
To achieve the same level of details in the GP model, and despite of the symmetric
assumption, the number of the radial segments must be double the number needed
in the Wishart model. Thus the shape is represented by a state vector xf

30×1 and a

covariance matrix P30×30 and initialized as xf
0 = 0.9I30×1 and P0 = 0.1𝑒

−𝑠𝑖𝑛2(|𝜃−𝜃′|)
2( 𝜋

15 )2 .

Evaluation metric

The performance of the proposed approach is evaluated based on an Intersection over
Union (IoU) metric. Which measures the accuracy of the estimated target’s extent. In
order to apply the IoU metric, the areas covered by the target ground truth extent 𝐴
and the estimated target’s extent 𝐴 has to be calculated. Then the IoU is calculated
as follows:

IoU = 𝐴 ∩ 𝐴

𝐴 ∪ 𝐴
∈ [0, 1] (4.115)

1Video with estimated shapes.

https://youtu.be/ulw7Rw-_36U
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Thus, IoU computes the ratio of the intersection over the union of the ground truth
and the estimated extents. The ratio will be close to 1 in case the areas 𝐴 and 𝐴 are
heavily overlapping, or close to 0 otherwise.

For the first half of the simulation the target maintains a cross-section shape. During
this period, the IoU results illustrated in Fig. 4.18, show that the accuracy of the
estimated shapes are almost similar. A slightly better performance is demonstrated by
the GP model in the low noise scenario. The opposite is true for the high noise scenario,
where the Wishart independent model is performs slightly better than the other models.
The robustness of the Wishart filter was clearly demonstrated in the second half of
the simulation. In this, the target changed it’s shape to less a sophisticated shape and
maintained this shape for the rest of the simulation. At the beginning of this period, the
accuracy of the estimated shape dropped sharply for all the models. The Wishart filter
models however, were able to adopt to the new shape, therefore, their corresponding
IoU scores quickly recovered. Whereas, the GP model appears to requires much longer
time to capture the new shape. The behaviour of the GP model can be explained due
to the convergence/shrinking of the state covariance over time. This behaviour doesn’t
present itself in the beginning because the initial covariance is relatively larger.

4.3.4 Conclusion

This section presented a state estimation problem where the state is known to take
only positive real values. The application of choice to demonstrate this problem was
the extent estimation problem in ETT, where the kinematics’s state and the extent
parameters are decoupled, i.e., treated independently. In this context, the section
discussed the drawbacks of modeling the distribution of unknown quantities, i.e., the
target extent, as Gaussian distributed random variables. Additionally, an alternative
probability density limited to the positive real axis is suggested to model the target’s
extent, namely, a Wishart distribution.

A symmetric star-convex shape model is used to describe the target extent. Even
though the symmetric assumption might sound restrictive, it is very well suited for
many applications where the target to be tracked is symmetric, e.g., vehicle, motorcycle,
aircraft, boat,...etc. Under the symmetric assumption in the shape, the possibility of
modeling the measurements likelihood as a zero-mean Gaussian is discussed. This
allows us to model the measurement likelihood as a Wishart density.

Considering a Wishart prior, we found that the Bayesian posterior density is also
a Wishart distributed. Thus, the Wishart distribution is a conjugate prior to itself.
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(a). Low noise scenario

(b). High noise scenario

Fig. 4.18 The figure illustrates the IoU results of the proposed Wishart filter for both
independent and SE models shown in the red and yellow curves respectively. It is also
compared to the GP approach shown by blue curve.
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Consequently, an exact recursive Bayesian update formula for the Wishart distribution
is obtained.

Although the target extent is assumed to be static, the prediction step plays an
important role in the correctness of the uncertainty, also giving the shape the agility
to adapt to new information. The simulation results show a better capability in the
proposed approach to incorporate a new information compared to the chosen benchmark
algorithm. In view of this, we may say that the proposed approach is more robust to
difficult tracking scenarios where unseen parts of the target extent in previous sensor
scans become visible due to factors such as occlusion and change in target-to-sensor
geometry.

The general model incapacity to capture the joint distribution between the radial
segments observed from only one side is discussed. Alternatively, it is proposed to
incorporate our knowledge about the correlation in the measurement random matrix
through the widely used squared exponential function. This model provides a convenient
way to configure how strong the correlation between the segments is as a function
of the distance. However, in practice the roughness of the target shape is unknown,
which makes selecting a good value for the parameter 𝛼 in the SE model a matter of
guesswork. For instance, when the target to be tracked has a rough shape where the
length of nearby segments is inconstant, the independent measurement model would
be a better choice. Therefore, it can be said that the independent model provides more
generality. The other design parameter which needs to be chosen is the number of
segments 𝑑 to describe the shape. To select the right level of details through setting
up the value of 𝑑, one needs to consider the expected number of measurement points
to be associated with each segment. That is because the Wishart distribution exists in
case 𝑛 ≥ 𝑑. To state this differently, the fewer the measurement points reflected from
the target, the less segments to describe the shape can be used.

4.3.5 Summary

The work presented in this dissertation primarily focused on extended and coordinated
target tracking. Since group target tracking problems can fall under both extended
and coordinated target tracking, and given that the work related to coordinated target
tracking only considered the aspect of identifying coordination, group target tracking
was addressed in the latter context. One can utilise approaches for the simultaneous
estimation of shape and kinematics (extended target) and combine them with automatic
detection methods for group targets. In this work, we assumed that the shape of
the group is independent; however, it is worth investigating in the future whether it
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is possible to infer more information about group behaviour based on the estimated
shape.

At the time the author is writing this summery at the end of his PhD work, the
author can argu that the avalible solutions presented in the avalaible solution in the
litrature concering extended target tracking problem has reach a very good stage, many
rubost, fast and accuraty algorithms can be deployed for prodcution however, there
is still work to do. In the other hand the coordinated target problem is relatively
unexplored area and the development of smart mulit-agent system will push the need
for a system which can detect coordination and colleactive behivore 1

The the presented work in this dissertation foucsed manly on extended and co-
ordinated target. As group targets problem can fall within the both extended and
coordinate target tracking and as the work related to coordinated target track is
only considere the aspect of identifiying coordination the group target tracking was
addressed in the latter. On can utalize the approachs for simultiinous estimation of
shape and kinematics (extended target) and combine it with automatic detection of
group target approach sections collectively, our work assumed that the shape of the
group is indpendent however, it is worth reseraching in the future, if it is possible to
infare more information of the group behivor based on the estamted shape.

present a series of methods for improving target tracking by estimating both
kinematic and shape variables simultaneously. The proposed approaches employ
mathematical models and alternative probability distributions, such as Gaussian
mixtures in the Extended Kalman Filter (EKF) and Wishart distributions for extent
estimation, which are particularly suited for tracking symmetric objects like vehicles,
boats, and aircraft. Despite certain limitations, such as difficulty in accurately modeling
targets when only one side is visible, these methods show robust performance, especially
in scenarios where parts of the target’s extent become visible due to occlusions or
changes in target-to-sensor geometry.

Furthermore, the research addresses challenges in modeling target shapes, suggest-
ing methods to handle correlations between measurements and uncertainties using
functions like the squared exponential. While these models provide flexibility, selecting
appropriate parameters remains a challenge due to unknown target characteristics.
The work also examines the problem of coordinated target tracking, enhancing the
separation of closely spaced targets and identifying collaborative behaviors among
multiple units using a Bayesian framework.

1If the computer scientes solve this proablem, the beiologist will be thanksfull. In fact as result of
publishing a our paper on coordinated target detection []
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The findings demonstrate that by using adaptive state dynamics (ASDs) and
applying scoring functions for group detection, the proposed methods offer improved
accuracy and resilience compared to traditional tracking algorithms. However, practical
considerations, such as balancing computational cost and performance, are critical,
particularly in optimizing the tracking window size and refining models to handle
diverse scenarios. Overall, these approaches offer significant advancements in tracking
accuracy and robustness in complex environments.





Chapter 5

Coordinated Targets

In this chapter, we will discuss the additional target characteristics addressed in
this dissertation, specifically group and coordinated targets. We draw a distinction
between group target and coordinated target in section 2.2. Group target are a well-
studied area in tracking literature [19, 34, 30], but one could argue that closely spaced
targets in a group also exhibit a type of coordination. Therefore, we will discuss both
characteristics in this chapter. Additionally, we will present our methods to enhance
situational awareness in surveillance systems when dealing with group and coordinated
targets.

5.1 Introduction

Advances in automation and artificial intelligence have enabled the creation of large
distributed, interconnected, and cooperative agents, in particular, systems with groups
of Unmanned Air Systems (UAS) or Unmanned Surface Vessels (USV) which can be
created based on low-cost commercial off-the-shelf hardware and open-source software.
Since navigation in the air or on the water is almost trivial, the barrier to employ such
a collaborative attack is quite low, which yields a new threat in asynchronous warfare
for instance. By means of more sophisticated algorithms for navigation in GPS-free
environments [40], light-weight protection measures such as GPS jamming may also
be circumvented by a potential attacker. This has led to disruptive challenges for
defence and security applications such as Anti-Access/Aerial Denial (A2/AD) since
such systems are traditionally focused on protecting against singular targets. As a
consequence, potential effectors are easily saturated by a sufficiently large amount of
group members. This saturation opens up a security hole as members of the group
may enter the area while the effectors are busy with other incoming. Members of
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(a) Closely spaced group. (b) Line shape group. (c) Star shape group.

Fig. 5.1 Illustration of different coordination structures.

a coordinated group could also be used as decoys to distract the system from the
actual targets and create confusion. Moreover, each member could be equipped with
environmental sensors and artificial intelligent algorithms capable of identifying targets
and defence systems, the information observed by a single member is shared with
the rest of the group, which gives the group/swarm an advantage to coordinate more
efficiently to avoid defences and accomplish their shared objective. Current surveillance
systems suffer from scalability problems and do not appear sufficient, a U.S. Army
study [49] showed that swarming reduces the effectiveness of current defence systems
to at least 50%.

In this work three types of coordinated groups are distinguished:

• Closely spaced: the members of the group share common kinematics and
members are closely spaced, where each member has at least one neighbour
located within a certain radius.

• Line shape: the group members form a line shape, where members reach their
target consecutively from the same angle at different times.

• Star shape: the group members reach their target from different angles and
could arrive at the same or at different time.

The closely spaced target type can be handled similarly to the methods used in
group-target tracking problems. A common approach is to detect groups using spatial
clustering algorithms. In this chapter, we propose an improvement based on utilising
accumulated state densities (ASDs) within the density-based spatial clustering of
applications with noise (DBSCAN) algorithm. Additionally, we will address other types
of coordinated targets, specifically line shape and star shape, where the assumptions
that group members are closely spaced and share common kinematics are not required.
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5.2 Background on Accumulated State Densities

In most tracking algorithms, the characteristics of conditional probability densities
𝑝(x𝑙|𝒵𝑘) of (joint) object states x𝑙 are calculated, which describe the available knowledge
of the object properties at a certain instant of time 𝑡𝑝, given a time series 𝒵𝑘 of imperfect
sensor data accumulated up to time 𝑡𝑘. In certain applications, however, the kinematic
object states x𝑘, · · · ,x𝑛, 𝑛 ≤ 𝑘, accumulated over a certain time window from a past
instant of time 𝑡𝑛 up to the present time 𝑡𝑘 is of interest. The statistical properties
of the accumulated state vectors are completely described by the joint probability
density function (pdf) of them, 𝑝(x𝑘, · · · ,x𝑛|𝒵𝑘) which is conditioned by the time
series 𝒵𝑘. These densities may be called accumulated state densities (ASDS) [27]. By
marginalising them, the standard filtering and retrodiction densities directly result; in
other words, ASDs provide a unified description of filtering and retrodiction as shown
schematically in Figure 1. In addition, ASDs fully describe the correlations between
the state estimates at different instants of time [17].

Fig. 5.2 Schematic comparison of ASD and Kalman filter fusion. Image courtesy of
Govaers and Koch [17]

Originally, the Accumulated State Density (ASD) had been proposed to provide
an exact solution to the out-of-sequence measurement problem, i.e. when the sensor
data does not arrive in the temporal order in which they have been produced [27].
Another application of ASDs was demonstrated in [29] where it was shown that an
exact solution for track-to-track fusion can also be achieved as a convex combination
of local ASDs generated at each node in a distributed sensor system. The ASDs play
a crucial role in the sets of trajectories (PHD for ASDs), where the authors in [15]
presented an online estimator of a set of trajectories/tracks in a random finite set
framework, that provides a minimal representation of the multiple target tracking
system at all time steps.
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5.2.1 Notion of ASD

All information on the object states accumulated over a time window 𝑡𝑘, 𝑡𝑘−1, ..., 𝑡𝑛 of
length 𝑘 − 𝑛+ 1,

x𝑘:𝑛 = (x𝑘, ...,x𝑛). (5.1)

that can be extracted from the time series of accumulated sensor data 𝒵𝑘 up to and
including time 𝑡𝑘 is contained in a joint density function 𝑝(x𝑘:𝑛|𝒵𝑘), which may be called
Accumulated State Density (ASD). Via marginalising over x𝑘, ...,x𝑙+1,x𝑙−1, ...,x𝑛,

𝑝(x𝑙|𝒵𝑘) =
∫︁
𝑑x𝑘, ..., 𝑑x𝑙+1, 𝑑x𝑙−1, ..., 𝑑x𝑛 𝑝(x𝑘, ...,x𝑛|𝒵𝑘), (5.2)

the filtering density 𝑝(x𝑘|𝒵𝑘) for 𝑙 = 𝑘 and the retrodiction densities 𝑝(x𝑙|𝒵𝑘) for 𝑙 < 𝑘

result from the ASD. ASDs thus in a way unify the notions of filtering and retrodiction.
In addition, ASDs also contain all mutual correlations between the individual object
states at different instants of time. Bayes’ Theorem provides a recursion formula for
updating accumulated state densities:

𝑝(x𝑘:𝑛|𝒵𝑘) = 𝑝(Z𝑘|x𝑘) 𝑝(x𝑘|x𝑘−1) 𝑝(x𝑘−1:𝑛|Z𝑘−1)∫︀
𝑑x𝑘 𝑝(Z𝑘|x𝑘) 𝑝(x𝑘|x𝑘−1) 𝑝(x𝑘−1:𝑛|𝒵𝑘−1)

(5.3)

The sensor data Z𝑘 explicitly appear in this representation. A little formalistically
speaking, ‘sensor data processing’ means nothing else than to achieve by certain
reformulations that the sensor data are no longer be explicitly present.

5.2.2 ASDs Closed-form Representation

Under conditions, where Kalman filtering is applicable (perfect data sensor-data-
to-track association, linear Gaussian sensor and evolution models), a closed-form
representation of 𝑝(x𝑘:𝑛|𝒵𝑘) can be derived. In this case, let the likelihood function be
given by:

𝑝(Z𝑘|x𝑘) = 𝒩 (z𝑘; H𝑘x𝑘,R𝑘), (5.4)

where Z𝑘 = z𝑘 denotes the vector of sensor measurements at time 𝑡𝑘,x𝑘 = x𝑘 the
kinematic state vector of the object, H𝑘 the measurement matrix, and R𝑘 the mea-
surement error covariance matrix, while the Markovian evolution model of the target
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is represented by:

𝑝(x𝑘|x𝑘−1) = 𝒩 (x𝑘; F𝑘|𝑘−1x𝑘−1,D𝑘|𝑘−1), (5.5)

with an evolution matrix F𝑘|𝑘−1 and a corresponding evolution covariance matrix
D𝑘|𝑘−1. A repeated use of a well-known product formula for Gaussians [28] directly
yields a product representation of the augmented state density:

𝑝(x𝑘:𝑛|𝒵𝑘) = 𝒩 (x𝑘; x𝑘|𝑘,P𝑘|𝑘) ×
𝑘−1∏︁
𝑙=𝑛

𝒩 (x𝑙; h𝑙|𝑙+1(x𝑙+1),R𝑙|𝑙+1), (5.6)

where the auxiliary quantities h𝑙|𝑙+1,R𝑙|𝑙+1, 𝑙 ≤ 𝑘, are defined by:

h𝑙|𝑙+1(x𝑙+1) = x𝑙|𝑙 + W𝑙|𝑙+1(x𝑙+1 − x𝑙+1|𝑙) (5.7)

R𝑙|𝑙+1 = P𝑙|𝑙 − W𝑙|𝑙+1P𝑙|𝑙+1W⊤
𝑙|𝑙+1 (5.8)

and a “retrodiction gain” matrix

W𝑙|𝑙+1 = P𝑙|𝑙F⊤
𝑙+1|𝑙P−1

𝑙+1|𝑙. (5.9)

Note that 𝒩 (x𝑙; h𝑙|𝑙+1(x𝑙+1),R𝑙|𝑙+1) can be interpreted in analogy to a Gaussian likeli-
hood function with a linear measurement function h𝑙|𝑙+1(x𝑙+1). h𝑙|𝑙+1,R𝑙|𝑙+1 are defined
by the parameters of 𝑝(x𝑙|𝒵 𝑙) = 𝒩 (x𝑙; x𝑙|𝑙,P𝑙|𝑙),

x𝑙|𝑙 =
⎧⎨⎩x𝑙|𝑙−1 + W𝑙|𝑙−1(z𝑙 − H𝑙x𝑙|𝑙−1)

P𝑙|𝑙(P−1
𝑙|𝑙−1x𝑙|𝑙−1 + H⊤

𝑙 R−1
𝑙 z𝑙)

(5.10)

P𝑙|𝑙 =
⎧⎨⎩P𝑙|𝑙−1 − W𝑙|𝑙−1S𝑙|𝑙−1W⊤

𝑙|𝑙−1

(P−1
𝑙|𝑙−1 + H⊤

𝑙 R−1
𝑙 H𝑙)−1 (5.11)

Note that there exist two equivalent formulations of the Kalman update formulae
according to the two versions of the product formula [28]. The innovation covariance
matrix S𝑙|𝑙−1 and the Kalman Gain matrix are give by:
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S𝑙|𝑙−1 = H𝑙P𝑙|𝑙−1H⊤
𝑙 + R𝑙. (5.12)

W𝑙|𝑙−1 = P𝑙|𝑙−1H⊤
𝑙|𝑙−1S−1

𝑙|𝑙−1. (5.13)

Also the parameters of the prediction density 𝑝(x𝑙+1|𝒵 𝑙) = 𝒩 (x𝑙+1; x𝑙+1|𝑙,P𝑙+1|𝑙),

x𝑙|𝑙−1 = F𝑙|𝑙−1x𝑙−1|𝑙−1 (5.14)
P𝑙|𝑙−1 = F𝑙|𝑙−1P𝑙−1|𝑙−1F⊤

𝑙|𝑙−1 + D𝑙|𝑙−1, (5.15)

enter into the product representation in (5.6). With x𝑙|𝑘, P𝑙|𝑘, W𝑙|𝑙+1 known from the
Rauch-Tung-Striebel recursion [36],

x𝑙|𝑘 = x𝑙|𝑙 + W𝑙|𝑙+1(x𝑙+1|𝑘 − x𝑙+1|𝑙) (5.16)
P𝑙|𝑘 = P𝑙|𝑙 + W𝑙|𝑙+1(P𝑙+1|𝑘 − P𝑙+1|𝑙)W⊤

𝑙|𝑙+1, (5.17)

we can rewrite 𝑝(x𝑘:𝑛|𝒵𝑘) by the following product:

𝑝(x𝑘:𝑛|𝒵𝑘) = 𝒩 (x𝑘; x𝑘|𝑘,P𝑘|𝑘)
𝑘−1∏︁
𝑙=𝑛

𝒩 (𝑥𝑙 − W𝑙|𝑙+1𝑥𝑙+1; x𝑙|𝑘 − W𝑙|𝑙+1x𝑙+1|𝑘,Q𝑙|𝑘)
(5.18)

where we used the abbreviation:

Q𝑙|𝑘 = P𝑙|𝑘 − W𝑙|𝑙+1P𝑙+1|𝑘W⊤
𝑙|𝑙+1. (5.19)

Due to elementary matrix algebra manipulations it can be shown that this product
can be represented by a single Gaussian,

𝑝(x𝑘:𝑛|𝒵𝑘) = 𝒩 (x𝑘:𝑛; x𝑘𝑘:𝑛,P𝑘
𝑘:𝑛) (5.20)

with a joint expectation vector 𝑥𝑘𝑘:𝑛 defined by:

x𝑘𝑘:𝑛 = (x⊤
𝑘|𝑘,x⊤

𝑘−1|𝑘, ...,x⊤
𝑛|𝑘)⊤, (5.21)
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while the corresponding joint covariance matrix P𝑘
𝑘:𝑛 can be written as an inverse of a

tridiagonal block matrix (see 5.26 on the subsequent page).

This can be seen by considering projectors ∏︀𝑙 defined by:

∏︀
𝑙x𝑘:𝑛 =

⎧⎨⎩ (1,0, ...,0)x𝑘:𝑛, 𝑙 = 𝑘

(0, ...,−W𝑙|𝑙+1, 1, ...,0)x𝑘:𝑛, 𝑛 ≤ 𝑙 ≤ 𝑘.

=
⎧⎨⎩ x𝑘, 𝑙 = 𝑘

x𝑙 − W𝑙|𝑙+1x𝑙+1, 𝑛 ≤ 𝑙 ≤ 𝑘.

(5.22)

Using ∏︀𝑙 and Q𝑙|𝑘, 𝑙 = 1, ..., 𝑘, the ASD can be rewritten:

𝑝(x𝑘𝑘:𝑛|𝒵𝑘) =
𝑘∏︁
𝑙=𝑛

𝒩 (∏︀𝑙 x𝑘:𝑛;∏︀𝑙 x𝑘𝑘:𝑛,Q𝑙|𝑘)

=
𝑘∏︁
𝑙=𝑛

𝒩 (x𝑘:𝑛; x𝑘𝑘:𝑛, (
∏︀⊤
𝑙 Q−1

𝑙|𝑘
∏︀
𝑙)

−1)

= 𝒩 (x𝑘:𝑛; x𝑘𝑘:𝑛,P𝑘
𝑘:𝑛)

(5.23)

with a covariance matrix P𝑘
𝑘:𝑛, which is given by an harmonic mean according to the

product formula for Gaussians:

P𝑘:𝑛 = (
𝑘∑︁
𝑙=𝑛

∏︀⊤
𝑙 Q−1

𝑙|𝑘
∏︀
𝑙)−1. (5.24)

The summation of the matrices ∏︀⊤
𝑙 Q−1

𝑙|𝑘
∏︀
𝑙 directly yields the inverse ASD covariance

matrix as a tridiagonal block matrix displayed on the top of page 4. Here, the auxiliary
quantities T𝑙|𝑘, 𝑛 ≤ 𝑙 ≤ 𝑘 are defined by:

T𝑙|𝑘 =

⎧⎪⎪⎨⎪⎪⎩
Q−1
𝑛|𝑘 for 𝑙 = 𝑛

P−1
𝑘|𝑘 + W⊤

𝑙−1|𝑙Q−1
𝑙−1|𝑘W𝑙−1|𝑙 for 𝑙 = 𝑘

Q−1
𝑙|𝑘 + W⊤

𝑙−1|𝑙Q−1
𝑙−1|𝑘W𝑙−1|𝑙 else

(5.25)

The tridiagonal structure is a consequence of the Markov property of the underlying
evolution model. This representation of the inverse of P𝑘

𝑘:𝑛 is useful in calculations. By
a repeated use of the matrix inversion lemma and an induction argument, the inverse
of this tridiagonal block matrix can be calculated. The resulting block matrix is
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P𝑘
𝑘:𝑛 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T𝑘|𝑘 −W⊤
𝑘−1|𝑘Q−1

𝑘−1|𝑘 0 · · · 0

−Q−1
𝑘−1|𝑘W𝑘−1|𝑘 T𝑘−1|𝑘 −W⊤

𝑘−2|𝑘Q−1
𝑘−2|𝑘

. . . ...
0 −Q−1

𝑘−2|𝑘W𝑘−2|𝑘
. . . . . . 0

... . . . . . . T𝑛+1|𝑘 −W⊤
𝑛|𝑘Q𝑛|𝑘

0 · · · 0 −Q𝑛|𝑘W𝑛|𝑘 T𝑛|𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

(5.26)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P𝑘|𝑘 P𝑘|𝑘W⊤
𝑘−1|𝑘 P𝑘|𝑘W⊤

𝑘−2|𝑘 · · · P𝑘|𝑘W⊤
𝑛|𝑘

W𝑘−1|𝑘P𝑘|𝑘 P𝑘−1|𝑘 P𝑘−1|𝑘W⊤
𝑘−2|𝑘−1

. . . P𝑘−1|𝑘W⊤
𝑛|𝑘−1

W𝑘−2|𝑘P𝑘|𝑘 W𝑘−2|𝑘−1P𝑘−1|𝑘 P𝑘−2|𝑘 * ...
... * * * P𝑛+1|𝑘W⊤

𝑛|𝑛+1

W𝑛|𝑘P𝑘|𝑘 W𝑛|𝑘−1P𝑘−1|𝑘 · · · W𝑛|𝑛+1P𝑛+1|𝑘 P𝑛|𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.27)

displayed in (5.27), where the following abbreviations were used:

W𝑙|𝑘 =
𝑘−1∏︁
𝜆=𝑙

W𝜆|𝜆+1 =
𝑘−1∏︁
𝜆=𝑙

P𝜆|𝜆F⊤
𝜆+1|𝜆P−1

𝜆+1|𝜆 (5.28)

The densities {𝒩 (x𝑙; x𝑙|𝑘,P𝑙|𝑘)}𝑘𝑙=𝑛 are directly obtained via marginalising, since the
covariance matrices P𝑙|𝑘, 𝑛 ≤ 𝑙 ≤ 𝑘, appear on the diagonal of this block matrix.
Note that the ASD is completely defined by the results of prediction, filtering, and
retrodiction obtained for the time window 𝑡𝑘, ..., 𝑡𝑛, i.e. it is a by-product for Kalman
filtering and Rauch-Tung-Striebel smoothing.

5.3 Accumulated State Densities Filter for Better
Separability of Group-Targets

In some defence applications, it is required to identify targets separated by a certain
distance as group-targets. This allows the system to use a suitable tracking and
mitigation strategy for a group different from what is used for a point-target. A
natural choice to identify a group of this type is the DBSCAN algorithm. The
DBSCAN algorithm uses the available track information to identify the groups/clusters.
Information on these tracks are, in the vast majority of tracking systems, based on the
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Kalman filter estimate. In this work, we present a scenario where an out-group target is
indistinguishable from a group target when using a Kalman filter. We then demonstrate
that the separability can be significantly enhanced using ASDs, which are estimates of
the joint probability density of the kinematic target states accumulated over a certain
time window up to the present time, based on the time series of all sensor data. In
this approach, ASDs improve target separability by utilising the Mahalanobis distance
between the available tracks in situations where the tracks generated by Kalman filters
are inseparable. Using track information offers certain advantages over relying solely
on measurement data. Furthermore, in some applications, such as distributed sensor
networks, we are often limited to using track information since the measurements are
not transmitted across the network.

5.3.1 Spatial Clustering Method

To identify a group-target with an arbitrary shape separated by a bounded distance,
DBSCAN [11] is a natural choice, as one of its two parameters 𝜖 allows to specify the
required distance bound between two points (or targets in our case) to be considered
neighbours. While the other parameter 𝑀𝑖𝑛𝑃𝑡𝑠 specifies the minimum number of
neighbour-points required to consider the point as dense and therefore identify a
cluster. Moreover, the DBSCAN algorithm doesn’t require to specify the number of
clusters as an input parameter, instead, DBSCAN can discover any number of clusters.
Additionally, the algorithm can identify clusters of varying size and shape and also it’s
not required that every point is assigned to a cluster but instead considers the far sparse
points as outliers (or a point-targets in our case). The DBSCAN starts by transforming
the space according to the density of the points, while points are separated as dense
points and sparse points. Then, a linkage clustering is done based on the parameters 𝜖
and 𝑀𝑖𝑛𝑃𝑡𝑠 results in a dendrogram, then any singleton is considered to be noise.

5.4 Target State Separability

The quality of the DBSCAN depends on the distance metric used in the algorithm. In
target tracking applications where the covariance information of the estimated target’s
state is available, the most common distance metric used is the Mahalanobis distance,
as it provides an elegant mean to incorporate the confidence about the target state
estimate. Based on the Mahalanobis distance, the distance metric between track x𝑎
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(a) Kalman Filter

(b) ASDF𝑛=10

(c) ASDF𝑛=20

Fig. 5.3 This figure shows the Mahalanobis distance obtained by 1000 Monte Carlo
run of targets tracked using different state density sizes, where the total number of
tracking frames is 200. The blue colour corresponds to targets separated by 50𝑚, while
the orange colour corresponds to targets separated by 65𝑚. The error bar correspond
to one standard deviation of the Mahalanobis distance.

and track x𝑏 is provided by:

𝑑(x𝑎𝑘,x𝑏𝑘) = (x𝑎𝑘 − x𝑏𝑘)⊤(P𝑎
𝑘 + P𝑏

𝑘)−1(x𝑎𝑘 − x𝑏𝑘), (5.29)
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based on this distance metric, the parameter 𝜖 must be tuned to meet the requirements
of a particular application, such that 𝑑(x𝑎𝑘,x𝑏𝑘) ≤ 𝜖 . However, finding an appropriate
value for 𝜖 is quite difficult. In fact, due to the stochastic nature of the estimates, the
tracks can become easily inseparable when they get close to each other (relative to the
value of 𝜖). To illustrate this, let’s consider three targets moving in linear trajectory,
the distance between the members of the group is 50𝑚, while the distance between
other non-member targets to the nearest group member is 65𝑚. The targets’ Cartesian
positions are measured using a noisy sensor — each measurement stemming from
one of the targets is corrupted by white Gaussian noise characterised by a covariance
matrix R = 𝑑𝑖𝑎𝑔[122, 122]. Under perfect data sensor-data-to-track association, the
measurements are feed to a Kalman filter with constant velocity evolution model to
track the target position. Fig. 5.3 a, shows the squared Mahalanobis distance of
1000 Monte Carlo run of the complete course of the simulation scenario, between two
members group-target and between out-group point-target to the nearest member of
the group-target in blue and orange color, respectively. One can easily see that, the
group-target members are inseparable from the other out-group point-target in this
scenario. However, the separability clearly improves by using ASDs in proportion to
the chosen time window size, Fig 5.3 b and c.

5.4.1 Simulation and Results

Considering a defence system able to mitigate group-target within a bounded distance 𝑑
between each member in the group and it’s nearest neighbour. The goal is to identify a
group-targets under distance bound constraints. Therefore, a scenario simulating such
a constraint is implemented to evaluate the effectiveness of the ASDF on the targets’
separability. The simulation scenario contains two group-targets and three independent
point-targets. The first group contains five targets and the second group contains three
targets, each group-target having an arbitrarily dynamic shape. The distance between
the members of the group-target vary along the simulation frames, where the maximum
distance between a member of the group-target and its nearest neighbour in the same
group is 𝑑 = 60𝑚 , while the closest an out-group target gets to another target is
67𝑚. Looking at this from different perspectives, we can say; to correctly identify the
group-targets in this scenario, it is required to separate targets 7𝑚 apart from each
other. In the simulation, the target Cartesian position is assumed to by measured
by a noisy sensor with a white Gaussian noise characterised by a covariance matrix
R = 𝑑𝑖𝑎𝑔[122, 122] and scan rate 400. × 10−3 sec. Using the reported measurements
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(a) 𝑘 = 150 (b) 𝑘 = 200 (c) 𝑘 = 400

Fig. 5.4 In this simulation scenario, two group-targets and three point-targets are used.
The blue dashed line shows the retrodicted states of the targets correspond to time
frame 𝑘 − 1.

and under a perfect association assumption, each target is tracked independently. Fig.
5.4 shows the simulation scenario at three different frames.

(a) 𝑘 = 150 (b) 𝑘 = 200 (c) 𝑘 = 400

Fig. 5.5 The figure illustrates the identified group-targets and point-targets by DBSCAN
using 𝐴𝑆𝐷𝐹𝑛=20, which are coded by color at a different simulation frames.

Following that, the DBSCAN algorithm is used to identify the group-targets/clusters.
The value of the DBSCAN parameter 𝜖 is chosen by performing a similar test shown
in Fig. 5.3 but with modified distances to fit the desired constraint. Accordingly, the
value of 𝜖 is set to the threshold which produces the best separability for the Kalman
filter, 𝐴𝑆𝐷𝐹𝑛=5, 𝐴𝑆𝐷𝐹𝑛=10 and 𝐴𝑆𝐷𝐹𝑛=20 as 12.5 ,40 ,74 ,143, respectively. The
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other parameter 𝑀𝑖𝑛𝑃𝑡𝑠 value is set to two, therefore, a group must be identified
if two targets are travelling with a relative distance smaller than set constraint 𝑑.
Then, the distance metric (5.29) is computed between each track to form a symmetric
distance matrix, which, in turn, is used by the DBSCAN algorithm function. Fig. 5.10
illustrates the resulting colour-coded group by the DBSCAN algorithm based on ASDs
with a window size 𝑛 = 20.

The metric of choice to compare the performance of the DBSCAN using Kalman
filter and ASDs is number of the wrong clusters. A wrong cluster is counted in the
following cases;

• If in-group member is labelled as a single target.

• If in-group member is labelled as a member of different group-target.

• If a point-target is labelled as a member of a group-target.

A 1000 Monte Carlo run of the simulation is used to count the number of wrong clusters
produced by the DBSCAN based on different targets The advantage of using ASDs
of a single state (Kalman filter) to improve the separability of the target’s state thus,
identification of the of group-target is clearly demonstrated In Fig. 5.6, the number of
the wrong clusters of a 1000 Monte Carlo run of the simulation framework based on
different state densities are illustrated.

Fig. 5.6 The figure shows the average number of wrong clusters of DBSCAN with
Kalman filter comparing to DBSCAN with ASDF using different time window sizes.
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5.5 Automatic Identification of Coordinated Tar-
gets

The advancements in Unmanned Systems are transforming the threats that traditional
defence systems are designed to tackle. One significant development is the enhancement
of artificial intelligence capabilities, which enables groups of agents to perform complex
collective behaviours. Consequently, equipping defence systems with threat intelligence
capabilities has become essential, as identifying collective behaviours and coordinated
targets can significantly enhance the system’s effectiveness. In group-target tracking,
the primary method to detect group targets relies on the targets being closely spaced.
Therefore, spatial clustering or analysing the kinematic similarity of the targets is
sufficient for detection. However, this assumption does not hold for coordinated targets.
Swarming is a long-standing military tactic where multiple units converge to attack
a target from single or multiple axes in a deliberately structured and coordinated
manner. Such coordinated targets follow a set of rules that each group member adheres
to in order to achieve a shared goal. Members of a coordinated group can spread
out to attack a target from different angles or be widely separated to search a large
area. Thus, the methods used for detecting group targets cannot be directly applied to
coordinated targets.

In this work, members of a coordinated group are assumed to move toward a common
point (converge). An approach to detect coordinated targets of this type is proposed.
The proposed approach utilised the geometry of targets’ velocity vectors to infer the
degree of correlation over a sliding time window. Based on that, coordinated/correlated
targets appear statistically closer, therefore, target pairs which move toward a common
point have a higher likelihood of belonging to the same group compared to other targets.
The obtained likelihood serves the role of an observation model which is used in a
Bayesian framework to calculate the most likely group structure formed by the targets.
Each target is assumed a point-target, in other words, at most one measurement could
stem from the target. The target’s kinematic state vector is accumulated over a time
window and an Accumulated State Density filter (ASDF) is used to estimate the
accumulated state which fully describes the correlation between the state estimates
at different time instants. It has been shown that the use of an Accumulated State
Densities (ASDs) improves the separability between the group’s members thus the
clustering[2]. In this section, we discuss a probabilistic approach to identify coordinated
targets of certain types. A scoring function that utilises ASDs over a sliding time
window is proposed to compute the likelihood of a pair of targets being coordinated.
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A simulation scenario including different types of coordination is used to test the
performance of this proposed method.

5.5.1 Problem Statement

Let 𝒳𝑡 = {x1
𝑘:𝑛,x2

𝑘:𝑛, ...,x𝑚𝑘:𝑛} be a set of accumulated states related to 𝑚 resolved
targets. The vector x𝑖𝑘:𝑛 = [x𝑖𝑘

⊤
, ...,x𝑖𝑛

⊤]
⊤

contains all information on the 𝑖𝑡ℎ target
accumulated states over a time window of 𝑡𝑘, 𝑡𝑘 − 1, ..., 𝑡𝑛 of length 𝑘 − 𝑛 + 1. The
goal of this work is to detect coordinated targets and assign a unique label to the
set of targets with a common objective. In other words, calculating at each time
instant 𝑡 the most likely group structure 𝐺𝑡 formed by the 𝑚 targets. An example
originally presented in [34] of a one possible group structure formed by 5 target is
𝐺𝑡 = [1, 1, 2, 2, 3]𝑇 , which means that targets 1 and 2 are in group 1, targets 3 and 4
are in group 2, and target 5 is in group 3 Fig.5.7. The first target is always labelled

Group 1

Group 2

  Group 3

 1
 2

3

4

 5

Fig. 5.7 Illustration of the group structure 𝐺𝑡 = [1, 1, 2, 2, 3]𝑇 formed by 5 targets.

as group 1. A single target is also considered a group. Hence, the maximum number
of possible groups denoted by 𝑟 is also 5. In this way, the number of possible group
structures for 5 targets is given by the 5𝑡ℎ Bell number 𝐵5 = 52. This can also be
viewed as the number of distinct possible partitions which can be formed by a set of 𝑚
targets. This is equivalent to the number of various possible group structures.

In the previous section, we discussed an approach that demonstrates how the
separability between group members can be improved, thereby enhancing clustering
by utilising ASDs. The focus of this section is to detect coordinated groups of the
types line shape and star shape, where the assumptions that group members are closely
spaced and share common kinematics are not required.
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5.5.2 Probability of a group structure

Consider the set of 𝑚 targets’ accumulated state 𝒳𝑡 = {x1
𝑘:𝑛,x2

𝑘:𝑛, ...,x𝑚𝑘:𝑛} and their
corresponding covariance P𝑡 = {P1

𝑘:𝑛,P2
𝑘:𝑛, ...,P𝑚

𝑘:𝑛}, it is desired to calculate the
probability 𝑝(𝐺𝑡|𝒳𝑡) describing the relative likelihood of a group structure 𝐺𝑡 given
the information contained in the set 𝒳𝑡. This quantity can be computed by applying
Bayes theorem,

𝑝(𝐺𝑡|𝒳𝑡) = 𝑐 𝑝(𝐺𝑡) 𝑝(𝒳𝑡|𝐺𝑡)
= 𝑐 𝑝(𝐺𝑡) 𝑝(x1

𝑘:𝑛,x2
𝑘:𝑛, ...,x𝑚𝑘:𝑛|𝐺𝑡),

(5.30)

by dropping the normalisation constant 𝑐, the posterior can be described up to propor-
tionality, that is,

𝑝(𝐺𝑡|𝒳𝑡) ∝ 𝑝(𝐺𝑡) 𝑝(x1
𝑘:𝑛,x2

𝑘:𝑛, ...,x𝑚𝑘:𝑛|𝐺𝑡). (5.31)

To compute the posterior, it is required to have knowledge about the joint probability
𝑃 (x1

𝑘:𝑛,x2
𝑘:𝑛, ...,x𝑚𝑘:𝑛|𝐺𝑡), this probability describes how likely the current targets’ ac-

cumulated states given a group structure 𝐺𝑡 = ℎ. Thus, 𝑃 (x1
𝑘:𝑛,x2

𝑘:𝑛, ...,x𝑚𝑘:𝑛|𝐺𝑡 = ℎ)
serves the role of an observation model. This joint probability can be factorised using
the chain rule for probability as

𝑝(x1
𝑘:𝑛,x2

𝑘:𝑛, ...,x𝑚𝑘:𝑛|𝐺𝑡 = ℎ) =𝑝(x1
𝑘:𝑛|ℎ) 𝑝(x2

𝑘:𝑛|x1
𝑘:𝑛, ℎ)

. . . 𝑝(x𝑚𝑘:𝑛|x1
𝑘:𝑛, . . . ,x𝑚−1

𝑘:𝑛 , ℎ)
(5.32)

In order to compute a numerical quantity for the probability above, we need to define
a general expression for the conditional probability 𝑝(x𝑖𝑘:𝑛|x1

𝑘:𝑛, . . . ,x
𝑗
𝑘:𝑛, . . . ,x

𝑞
𝑘:𝑛, ℎ) :

𝑞 ≤ 𝑚− 1, 𝑖 ̸= 𝑗.
Suppose we have a scoring function 𝑓(x𝑖𝑘:𝑛,x

𝑗
𝑘:𝑛) ∈ [0, 1] that measures the likelihood

for a pair of targets 𝑖 and 𝑗 to be in the same group. With this, we define the conditional
probability

𝑝(x𝑖𝑘:𝑛|x1
𝑘:𝑛, . . . ,x

𝑗
𝑘:𝑛, . . . ,x

𝑞
𝑘:𝑛, ℎ) =

𝑞∏︁
𝑗∈𝑔

𝑓(x𝑖𝑘:𝑛,x
𝑗
𝑘:𝑛)

𝑞∏︁
𝑗 /∈𝑔

[1 − 𝑓(x𝑖𝑘:𝑛,x
𝑗
𝑘:𝑛)]

(5.33)

where 𝑔 denotes the group label of target x𝑖𝑘:𝑛. By substituting the definition (5.33) in
(5.32), one can show that the resulting factorisation will include all possible combinations
of pairs in the set 𝒳𝑡. It should be mentioned that in case we have a single variable as
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in the term 𝑝(x𝑖|ℎ), it is not possible to infer the probability of the group structure, for
this reason, the term can be dropped in (5.32), or set to equal 0.5, which represents a
complete ignorance.

Measure of Coordination

We wish to define a scoring function 𝑓(x𝑖𝑘:𝑛,x
𝑗
𝑘:𝑛) ∈ [0, 1] that measures the degree

of similarity/coordination between a pair of targets 𝑖 and 𝑗. A feasible definition of
𝑓(x𝑖𝑘:𝑛,x

𝑗
𝑘:𝑛) that serves this purpose is:

𝑓(x𝑖𝑘:𝑛,x
𝑗
𝑘:𝑛) = 𝑒−𝛼(x𝑖

𝑘:𝑛−x𝑗
𝑘:𝑛)⊤PΔ

𝑘:𝑛
−1(x𝑖

𝑘:𝑛−x𝑗
𝑘:𝑛) (5.34)

where 𝛼 is a constant related to the desired distance in which pairs are allowed to be
in the same group. The proposed statistical score is based on the normalised difference
between the two estimates

Δ𝑖,𝑗
𝑘:𝑛 = x𝑖𝑘:𝑛 − x𝑗𝑘:𝑛 (5.35)

by the covariance PΔ
𝑘:𝑛, which is written after dropping the time index for brevity as:

PΔ
𝑘:𝑛 = 𝑐𝑜𝑣(x𝑖 − x𝑗)

=
[︁(︁

(x𝑖 − x𝑗) − [x𝑖 − x𝑗]
)︁(︁

(x𝑖 − x𝑗) − [x𝑖 − x𝑗]
)︁⊤]︁

= P𝑖 + P𝑗 − 2P𝑖𝑗

(5.36)

where

P𝑖𝑗 =
[︁
(x𝑖 − [x𝑖])(x𝑗 − [x𝑗])⊤

]︁
(5.37)

is the cross-covariance matrix which reflects the correlation between the two targets’
estimates. Usually, it is hard to compute the cross-covariance term P𝑖𝑗. However, the
cross-covariance is related to the degree of coordination, in other words, the correlation.
The relation between the cross-covariance and the correlation is described in the
definition of the correlation coefficient 𝜌𝑖,𝑗 between two random variables x𝑖 and x𝑗 as
follows:

𝜌𝑖,𝑗 = P𝑖𝑗(P𝑖P𝑗)− 1
2 , (5.38)
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where the term (*)− 1
2 is computed using Cholesky decomposition. By rearranging

(5.38), the cross-covariance can be computed as:

P𝑖𝑗 = 𝜌𝑖,𝑗(P𝑖P𝑗) 1
2 . (5.39)

All information on the target states accumulated over the selected time window
is contained in the ASD. If one analyses the ASD from the perspective of time series,
one can utilise the available knowledge about the targets’ accumulated states in the
selected time window to compute correlation coefficient 𝜌𝑖,𝑗 . We define coordination as
when several targets converge to attack a certain point from single or multiple axes.
This implies that coordinated targets must be heading toward a common point in
the coordinate system. Thus, targets that move toward a common point over time
would have a higher correlation, in other words, are judged more likely to form a group.
This definition can be understood as the geometry between velocity vectors related
to the pair of targets, as illustrated in Fig.5.8. Therefore, to distinguish between
converging and diverging pair, the "radial velocity" or "line-of-sight velocity" can be
used. The "radial velocity" is equivalent to the vector projection of the target’s relative
velocity onto the relative direction connecting the two targets. The velocity component
resulting from projecting target 𝑖 velocity vector v𝑖 onto the vector r̄ connecting target
𝑖 and 𝑗, can be computes as:

vr∠𝑖 = v𝑖 · r̄
‖r̄‖ (5.40)

where the operator · denotes a dot product, and ‖. . .‖ is the vector norm. Similarly,
we compute the component related to target 𝑗,

vr∠𝑗 = v𝑗 · r̄
‖r̄‖ (5.41)

As the radial velocity is relative, it remains to subtract the components resulting from
the projection

v𝑖,𝑗𝑟𝑎𝑑 = vr∠𝑖 − vr∠𝑗

= (v𝑖 − v𝑗) · r̄
‖r̄‖

= ‖v𝑖 − v𝑗‖ ‖r̄‖ 𝑐𝑜𝑠(𝜃)
‖r̄‖

= ‖v𝑖 − v𝑗‖ 𝑐𝑜𝑠(𝜃)

(5.42)
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Target i Target j

Fig. 5.8 The heading of targets i and j shows that both targets are moving toward a
common point. The radial velocity components resulting from projecting the velocity
vector on the vector connecting i and j are shown in blue.

The computed radial velocity v𝑖,𝑗𝑟𝑎𝑑 tells us whether the targets are converging or
not, however, we are interested in the degree of correlation. The degree of correlation
can be directly obtained from 𝑐𝑜𝑠(𝜃), which represents the angle between the relative
velocity vector and the vector ‖v𝑖 − v𝑗‖ vector on the line-of-sight between the pair of
targets r̄. For example, if the relative velocity and line-of-sight are orthogonal (𝜃 = 𝜋

2 ),
then 𝑐𝑜𝑠(𝜃) = 0, i.e, the pair are not correlated which corresponds to a pair moving
parallel to each other at a similar speed. To further convince the reader that 𝑐𝑜𝑠(𝜃) can
be interpreted as a correlation coefficient,is that, both 𝜌𝑖𝑗 and 𝑐𝑜𝑠(𝜃) have numerical
value in the range ∈ [−1, 1]. With that we can compute correlation coefficient 𝜌𝑖𝑗 as:

𝜌𝑖𝑗 = 𝑐𝑜𝑠(𝜃)

= (v𝑖 − v𝑗) · r̄
‖v𝑖 − v𝑗‖ ‖r̄‖

(5.43)

By substituting the result above in (5.39), the term of the cross-covariance become:

P𝑖𝑗 = (v𝑖 − v𝑗) · r̄
‖v𝑖 − v𝑗‖ ‖r̄‖(P𝑖P𝑗) 1

2 . (5.44)

the effects of the cross-covariance calculated via (5.44) on the pair’s likelihood (5.34),
is illustrated in Fig.5.9.
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Target i Target j

Fig. 5.9 Target 𝑖 and 𝑗 are spread by a fixed distance. The heading of target 𝑖 is also
fixed to about 45 degrees, while target 𝑗’s heading rotates along the circle, Also, target
𝑖’s velocity is greater than target 𝑗’s velocity. The orange curve shows the different
log-likelihood of targets 𝑖 and 𝑗 to belong to the same group for each different heading
of 𝑗. The log-likelihood is obtained by taking the log of 𝑓(x𝑖𝑘:𝑛,x

𝑗
𝑘:𝑛) defined in (5.34).

5.5.3 Simulation and Results

The simulated scenario designed to test the proposed approach includes eight targets.
The targets’ dynamics are constructed to form three groups of the distinguished
coordination types, as follows: three targets form a closely spaced group, three targets
form a star shape, and the last 2 targets form a line shape. Targets’ positions are
measured with additive Gaussian zero mean noise, where the covariance for all instants
of time is given by R = 𝑑𝑖𝑎𝑔[122, 122]. The targets are simulated to move according
to the constant turn rate model with various velocities depending on the group, the
maximum absolute velocity used is 27𝑚/𝑠. In the absence of clutter measurements
and under the perfect sensor-data-to-track association, accumulated targets’ states
over a time window of length 6 are estimated using ASD filter. The parameter of
the scoring function (5.34) is targets pair’s ASDs, where the kinematic state vector
of a single instance of time x𝑡 = [𝑥, 𝑦, 𝑣, 𝑣′]⊤, this kinematic state is a reduced state
derived from the kinematic state estimated via the ASD filter. Selected snapshots
of the simulation at different frames are shown in Fig. 5.10. The snapshots show
colour-coded targets’ positions at different instances of the simulation, the colour code
represents the different groups of the most likely group structure computed by the
proposed approach. It can be seen that targets that appear to move toward a common
point are clustered as a coordinated group. Targets that are relatively closely spaced
(from Euclidean distance perspective) from a group are labelled as independent once
they start to steer away from the rest of the group, Fig. 5.10 (b).
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(a) (b)

(c)

(e)

(d)

(f)

Fig. 5.10 Illustrates the most likely group structure at different frames which are
represented by colour-coded groups and independent targets.
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5.6 Conclusion

In this chapter, we discussed the problem of coordinated target tracking in two sections.
The first section focused on closely spaced group targets, while the second section
relaxed the closely spaced assumption. We demonstrated in the first section that
the separability of tracks could be significantly enhanced by using ASDs instead of a
single state, as is typically done with a Kalman filter. This is especially important in
applications where high accuracy in the distance between tracks is required. It is worth
noting that the level of achievable separability is significantly influenced by factors such
as sensor measurement noise, process noise, and the types of manoeuvres performed by
the targets.

In the second section, we addressed the problem of detecting collaborative behaviour,
specifically the convergence of multiple units to achieve a common objective. We
formulated this problem using a Bayesian approach to identify the most likely group
structure. The observation model in the Bayesian formula was obtained by factorising
the joint probability density of the targets, given the group structure. To compute a
numerical value for this factorisation, we proposed a scoring function that measures the
likelihood of a pair of targets belonging to the same collaborative group. Additionally,
we introduced a measure of the correlation coefficient between pairs of accumulated
states over a time window, demonstrating that pairs moving toward a common point
become statistically closer than pairs steering away from each other.

One challenge is that the number of possible group structures corresponds to the
number of ways to partition a set of 𝑚 targets, which is a Bell number. This number
can be significantly reduced by introducing a gating mechanism that allows unlikely
groupings to be ignored. We observed that increasing the sliding window of the ASDs
improved the performance of this approach. However, it is crucial to find the optimal
trade-off between computational cost and performance when selecting the ASDs’ sliding
window.



Chapter 6

Dissertation Conclusion

The work presented in this dissertation primarily focused on extended and coordinated
target tracking. Since group target tracking problems can fall under both categories,
and given that the work related to coordinated target tracking only considered the
aspect of identifying coordination, group target tracking was addressed in the latter
context. One can utilise approaches for the simultaneous estimation of shape and
kinematics (extended target) and combine them with automatic detection methods for
group targets. In this work, we assumed that the shape of the group is independent;
however, it is worth investigating in the future whether it is possible to infer more
information about group behaviour based on the estimated shape.

As the author writes the final chapter of his PhD work, he can argue that research
in ETT has reached a very advanced stage. Fast, robust, and accurate algorithms
are now available for deployment in real-time products; however, there is still work to
be done in this area. On the other hand, the field of coordinated target tracking is
relatively unexplored. Given the significant interest and advancements in multi-agent
systems, the author anticipates an increasing need for systems capable of identifying
collective and collaborative behaviour 1. Upon identifying coordinated behaviour, we
need a system to be able to take appropriate actions, manage sensors and effectors,
refine the situation, and gather threat intelligence to minimise the impact of potential
threats through multi-coordinated responses. This is the final concept the author
aimed to highlight, and with this, we can conclude our discussion and the author’s
PhD work.

1If computer scientists are able to provide effective solutions in this area, biologists would be
particularly grateful. In fact, following the publication of a paper on automatic identification of
coordinated targets, the author was approached by biologists seeking assistance in developing methods
to identify specific behaviours in wild animals (As a computer scientist, your life can be both fun and
exciting, which may be different from what many women might assume.)
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The conclusions regarding the methods and approaches proposed in the dissertation
are not discussed here but are instead presented at the end of each chapter or section
to avoid repetition of the same information.
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Appendix B

B.1 Multiplication of Wishart density functions

Giving two Wishart distributed densities of the same dimensions 𝑑; 𝒲(X;𝑛𝑧,C𝑧) and
𝒲(X;𝑛0,C0), which describe the measurement likelihood and the prior, respectively.
The product of the two densities is calculated as follows:

𝒲(X;𝑛,C) ∝ 𝒲(X;𝑛𝑧,C𝑧)𝒲(X;𝑛0,C0)

∝ |X|
𝑛𝑧−𝑑−1

2 𝑒− 1
2 𝑡𝑟(C

−1
𝑧 X) |X|

𝑛0−𝑑−1
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2 𝑡𝑟(C
−1
0 X)
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2 𝑡𝑟((C𝑧

−1+C0
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∝ |X|
𝑛𝑧+𝑛0−𝑑−1−𝑑−1

2 𝑒− 1
2 𝑡𝑟((C0
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(B.1)

B.2 Unbiased Wishart filter

We can begin the unbiasedness test by substituting the values of the Wishart posterior
parameters (4.78) and (4.79). For brevity, the sub-index ”𝑘−1” is dropped in the rest
of this section. Instead, we write ”0” to refer to the prior parameters.

E[X − 𝑛C] = 0
= E

[︁
X − (𝑛𝑧 + 𝑛0 − 𝑑− 1)C0(C𝑧 + C0)−1C𝑧

]︁
= E
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]︃
(B.2)
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As can be seen in (B.2), the inverse is hard to calculate. To simplify the problem, the
unbiasedness check can be completed by fusing the same measurement two times. In
other words, the prior will be the same as the measurement likelihood. Therefore we
can continue (B.2) as:

= E
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(B.3)

Obviously, the terms −𝑑− 1 caused the estimator to be biased. However, it’s effect
decreases with the increase in number of the fused measurements. Nevertheless, this
effect can be eliminated by dropping −𝑑− 1 from the expectation, and by doing so,
(B.3) becomes:
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𝑗=1

𝑓(x𝑗)𝑓(x𝑗)⊤

− 2
𝑛𝑧∑︁
𝑗=1

𝑓(x𝑗)u𝑗𝑘 −
𝑛𝑧∑︁
𝑗=1

u𝑗𝑘u
𝑗
𝑘

⊤]︁

= 2
𝑛𝑧∑︁
𝑗=1

E[𝑓(x𝑗)]E[u𝑗𝑘] −
𝑛𝑧∑︁
𝑗=1

E
[︁
u𝑗𝑘u

𝑗
𝑘

⊤]︁

= −
𝑛𝑧∑︁
𝑗=1

E
[︁
u𝑗𝑘u

𝑗
𝑘

⊤]︁
= −𝑛𝑧R𝑑

(B.4)

Thus, the unbiased estimator of the Wishart density can be obtained as:

X̂ = 𝑛C − 𝑛𝑧R𝑑 (B.5)
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where R𝑑 is a 𝑑× 𝑑 measurements error covariance matrix, the parameters 𝑛 and C
are calculated as:

𝑛 = 𝑛𝑧 + 𝑛0 (B.6)
C = C0(C𝑧 + C0)−1C𝑧 (B.7)

B.3 On Self-Occlusion & Measurement Likelihood
of Symmetric Shape

Let a symmetric segment with a radial length 𝑟 = 1 𝑚 be parallel to the x-axis and
centred at the origin (0,0). A measurement 𝑧 stemming from one of the measurement
sources is corrupted by a white Gaussian noise with variance 𝜎2

𝑟 . Thus, the measurement
likelihood can be described by a mixture of two Gaussian components of this form:

𝑝(𝑧|𝜃𝑖) = 1
2𝒩 (𝑧; 𝑟, 𝜎2

𝑟) + 1
2𝒩 (𝑧; −𝑟, 𝜎2

𝑟). (B.8)

As this mixture has a zero-mean, a fair approximation could be achieved by matching
its first moment to a single Gaussian density with an appropriate variance; 𝒩 (𝑧; 0, 𝜎2

𝑐 ).
Based on definition 4.3.1, the variance of the latter density is the same as the scalar
matrix C of a uni-variate Wishart distribution. Thus, it could be estimated by the
mean of the proposed Wishart filter. The resulting approximation of the mixture is
shown by the red solid curve in Fig. B.1 a. In a realistic scenario, only one side of
the segment is observable by a single LiDAR scan. Nevertheless, in Fig. B.1 one can
see that in the uni-variate case the estimated variance appears to be similar for both
scenarios. With that, we carry the assumption in our model that the measurement is
distributed according to a zero-mean Gaussian, that is,

𝑧 ∼ 𝒩 (𝑧; 0, 𝜎2
𝑐 ).

In a d-variate case, the zero-mean Gaussian assumption of the measurement likeli-
hood needs to be handled carefully. That is because, when only one measurement source
of each segment is observable, the joint distribution of the measurement likelihood
z = [𝑧1, ..., 𝑧𝑑]⊤ not only differ from the distribution when two measurement sources are
observable but also, fail to capture the true distribution. To illustrate this behaviour,
Fig.B.2 compares the Wishart measurement likelihoods (4.98) and (4.99), obtained
in two scenarios; with two measurement sources are observable and a single source
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(a). Two sources are observable.

(b). A single source is observable.

Fig. B.1 This figure compares the approximation of the measurement likelihood by a
uni-variate Gaussian with zero-mean in two scenarios. Scenario (a), represents the case
where two ends of the segments are observable, while (b) represents the case when
only one end is observable. The measurement likelihood is shown by the blue solid
curve. While the red solid curve represents the approximation of the blue curves by a
zero-mean Gaussian.

observable. One can see that by introducing an independence assumption between the
segments, the resulted distribution resembles the distribution in the case of two source
observations, illustrated by the red dashed ellipses in Fig.B.2 b, Fig.B.2 a, respectively.
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(a). Two sources are observable.

(b). A single source is observable.

Fig. B.2 In this figure the measurements samples of two segments with radius 𝑙 = 1
are illustrated by the blue points in two scenarios: (a) both ends of the segments
are observable and (b) a single end is observable. Also, the figure compares the
measurement likelihood obtained by the general model (4.98) and the independent
model (4.99) illustrated by the black and red dashed ellipses respectively.
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