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Abstract

Autonomous robotic systems heavily rely on knowledge about their environment to
safely navigate, interact with, and perform search and rescue (SAR) and inspection
tasks in real-time. To better understand the robot’s surroundings, a flying robot
requires fast and robust perception, enabled by complementary sensors.

However, improper sensor calibration degrades the localization accuracy and re-
construction quality, which may lead to failure of the overall system. The common
photometric error assumes a constant brightness, which is regularly violated in the real
world and impairs the system’s robustness. To restore this photometric consistency,
we extract small oriented patches at tracked ORB features and jointly estimate the
photometric parameters on keyframes including the exposure change. Our approach
densely models the radial intensity fall-off due to vignetting and the camera response
function with thin plate splines (TPS) from sparse measurements. To further improve
runtime, we establish correspondences via direct gradient-based metrics and propose
a novel robust combination of gradient orientation and magnitude, applicable for
Visual-SLAM, disparity- and depth estimation.

Independent of ambient illumination, LiDARs provide accurate distance measure-
ments around the robot even in texture-less environments. Thus, our LiDAR-inertial
odometry MARS jointly aligns multi-resolution surfel maps with a Gaussian Mixture
Model (GMM) formulation using a continuous-time B-spline trajectory. We accelerate
covariance and GMM computation with Kronecker sums and products. An unscented
transform (UT) de-skews surfels at runtime, while a timewise splitting into intra-scan
segments facilitates motion compensation during spline optimization. Complemen-
tary soft constraints on relative poses from robot odometry and preintegrated IMU
pseudo-measurements further improve our system’s robustness and accuracy.

For high-level planning in dynamic environments, a signum occupancy function
improves the reactivity of our mapping by maintaining a short temporal occupancy
window in real-time. In addition, we enrich our dense map with color, thermal
signatures, and semantic information using the spline trajectory for accurate and
motion-compensated projection. Our semantic fusion further adapts a Bayesian
update in logarithmic form for greater numerical stability.

The methods presented throughout this thesis provide state-of-the-art results on
various datasets. As such, our created maps facilitate inspection and SAR while
improving decision-making for further downstream tasks. Moreover, our methods
are applicable for general dense 3D mapping and localization with, e.g., car-, robot-
mounted, or handheld sensor suites.



Zusammenfassung

Autonom-agierende robotische Systeme sind auf eine verlässliche Umgebungswahrneh-
mung angewiesen, um sicher zu navigieren, mit der Umgebung zu interagieren sowie
Such- und Rettungsmissionen (SAR) oder Inspektionsaufgaben durchzuführen. Für
Flugroboter hat eine schnelle und robuste Wahrnehmung, unterstützt durch Sensorik
mit komplementären Modalitäten, höchste Priorität. Allerdings beeinträchtigt eine
fehlerhafte Kalibrierung nicht nur die Genauigkeit der Lokalisierung und Kartierung,
sondern kann zum Ausfall des Systems führen.

In bildbasierten Systemen wird häufig eine konstante Helligkeit zwischen Bildkor-
respondenzen angenommen. Jedoch wird diese Annahme in der Realität oft verletzt
und reduziert somit die Robustheit der Verfahren. Um die photometrische Konsistenz
wiederherzustellen, extrahieren wir kleine orientierte Bildausschnitte an getrackten
ORB Merkmalen und schätzen die photometrischen Parameter gemeinsam inklusive
der Belichtungsänderung anhand von Keyframes. Unser Ansatz modelliert sowohl
Vignettierungsbedingten radialen Intensitätsabfall als auch die Kameraspezifische
Antwortfunktion (CRF) mit Hilfe von Thin Plate Splines (TPS) dicht auf Basis von
spärlichen Messungen. Zur weiteren Beschleunigung von visuellem SLAM, Disparitäts-
und Tiefenschätzung stellen wir die Korrespondenzen direkt mit einer neuen robusten
Metrik durch Kombination von Gradientenorientierung und -magnitude her.

Unabhängig von Lichtverhältnissen oder Textur misst ein LiDAR den Abstand
zu Objekten im Sichtfeld sehr genau, womit sich der Sensor gut zur Schätzung der
Eigenbewegung eignet. Unsere LiDAR-Inertial-Odometrie MARS registriert mehrere
Multiresolutions-Surfel-Karten durch direkte Optimierung einer zeitkontinuierlichen
Trajektorie anhand eines Gaußschen Mischmodells (GMM). Hierbei beschleunigen
Kronecker Summen und Produkte die GMM- und Kovarianzberechnungen. Eine
Unscented Transform (UT) entzerrt Surfel zur Laufzeit während eine temporale
Aufteilung in Intra-Scan Segmente die Bewegungskompensation als Teil der Spli-
neoptimierung umsetzt. Komplementäre Nebenbedingungen für relative Posen und
vorintegrierte IMU Pseudomessungen erhöhen die Robustheit und Genauigkeit.

Für die Planung in dynamischen Umgebungen verwenden wir für die Belegtheit
eine Signumfunktion, um ein kurzes zeitliches Belegtheitsfenster zu realisieren und so
die Reaktivität unserer Karte zu verbessern. Darüber hinaus integrieren wir Semantik,
Farb- und Thermalinformationen in unserer dichten 3D Karte unter Berücksichti-
gung der Kamerabewegung anhand der Splinetrajektorie. Für die semantische Fusion
adaptieren wir das Bayes’sche Update in logarithmischer Form zur Verbesserung der
numerischen Stabilität. Die Resultate der hier vorgestellten Methoden spiegeln den
aktuellen Stand der Kunst auf verschiedenen Datensätzen wider. Als solches, verein-
fachen die von unseren Verfahren erstellten Karten die Inspektion sowie Such- und
Rettungsmaßnahmen, während gleichzeitig die nachfolgende Entscheidungsfindung
verbessert wird. Dabei sind unsere Methoden nicht auf diese Einsatzfälle beschränkt,
sondern generell für die dichte 3D-Kartierung und Lokalisierung mit Fahrzeugen,
Robotern oder tragbaren Sensorsystemen einsetzbar.
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1
Introduction

Robots promise unique opportunities and novel applications in our everyday lives to
speed up routine tasks, reduce risks for human operators, or prevent endangering
people in the first place.

Over the last two decades, first responders (Ollero et al., 2006; Murphy et al.,
2021; Lattimer et al., 2023) and inspectors (Lottes et al., 2017; Jordan et al., 2018;
Rakha and Gorodetsky, 2018; Quenzel et al., 2019; Meribout et al., 2023) have been
quick to adopt multi-rotor drones with color and thermal cameras as an effective tool
for remote reconnaissance and surveying in unstructured real-world environments,
as shown in Fig. 1.1. As technology matures and availability increases, piloting
unmanned aerial vehicles (UAVs) became easily accessible without extensive training
and, thus, enables everyone to see the world from an entirely new perspective.

Nowadays, UAVs deliver crucial overviews or close-ups of difficult-to-reach or
hostile environments, e.g., after incidents or natural disasters (Alon et al., 2021; Ray
et al., 2022; Manzini et al., 2023; Surmann et al., 2024). Such imagery was previously
restricted to larger aircraft or completely impossible due to space and safety concerns.

However, in practice, current applications have various severe limitations. Drones
overly rely on global navigation satellite systems (GNSSs) and the availability of free
space all around them to ensure safe navigation. Preprogrammed flight paths need to
be collision-free and require GNSS.

As a consequence, manual operation via a live video stream with a limited field-of-
view (FoV) is the standard for UAV-based search and rescue (SAR) missions (Murphy
et al., 2021; Ray et al., 2022). For example, during SAR in an unstable or partially
collapsed building (Murphy et al., 2021), the operator should focus on their assigned
task, such as looking for injured inhabitants, finding entrance points, or identifying
possible hazards, and not on piloting the drone. Assistance functions like waypoint
navigation (Schleich, Beul, Quenzel, and Behnke, 2021) reduce the burden on the
operator in high-stress situations.

In the vicinity of structures, problems mutually intensify due to limited free space,
obstacles blocking the operator’s direct line of sight, an impaired wireless data
connection behind barriers (Patchou et al., 2022), and reduced GNSS precision and
availability (USSF 2022). At the same time, operators have to consider the UAV’s
surroundings and cope with accompanying risks. Since a single image provides only
little structural information, the situation becomes more challenging and exhausting
for the pilot. Under these circumstances, knowing the UAVs’ position and orientation
within a 3D model (Quenzel and Behnke, 2021) of the immediate environment
improves the situational awareness tremendously (Surmann et al., 2024). Modern
obstacle avoidance (Schleich and Behnke, 2022) subsequently reduces the risk of
losing the drone.

Processing of gathered UAV footage is a common practice for inspection
tasks (Rakha and Gorodetsky, 2018). However, it remains the exception in

1
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b)

d)

a)

c)

Figure 1.1: Applications: a) Industrial inspection inside a chimney. b) Targeted examination
and localization of facade fires. c) Screening for clusters of embers during wildfire
exercise. d) Exploration during a natural disaster without endangering first
responders.

SAR (Manzini et al., 2023). Aggravating the matter in both cases, data processing
only happens after landing and not at flight time. To harness the vast and previously
untapped potential for autonomous assistance functions and automatic scene
reconstruction of metric-scale multi-modal 3D maps in real-time, UAVs (Beul et al.,
2015; Burri et al., 2015) are equipped with additional compute capabilities and
multi-modal sensors (Beul et al., 2018; Schleich et al., 2021), as shown in Fig. 1.2.

In order to benefit from onboard processing, the deployed methods require being:
• fast, as we need the result at runtime with low latency,
• accurate, such that the map depicts the actual environment, and
• robust, to work in various environments.
Throughout this thesis, we present novel approaches for calibration, odometry, and

mapping that fulfill these requirements and are designed to work in close proximity
to structures in GNSS-denied environments. Furthermore, our solutions lay the
foundation for assistance functions such as obstacle avoidance, navigation, and
exploration that foster safe manual and enable autonomous drone operations (Quenzel
et al., 2019; Schleich et al., 2021).

The multi-modal 3D map contains the observed structures with spatial dimensions,
color (Rosu et al., 2019b), thermal signatures (Rosu et al., 2019a), and the semantics
to categorize objects and surfaces (Behley et al., 2019; Bultmann et al., 2023).
Additionally, it depicts the whereabouts of the UAV (Quenzel and Behnke, 2021) at
any point in time in relation to its vicinity. As a consequence, these maps assist in
making more informed decisions on downstream tasks.

Our methods are not limited to inspection and SAR with UAVs but are also
applicable for general dense 3D mapping and localization with, e.g., car-, robot-
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Thermal
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Figure 1.2: Enabled Autonomy: a) UAV with multi-modal sensors and onboard computing
capability. b) Autonomous flight in GNSS-denied indoor environment (from left to
right). c) Multi-robot cooperation with teleoperated ground vehicles. d) Automatic
scene reconstruction of a disaster site. e) Autonomous exploration for firefighters.

mounted (Kim et al., 2020; Wen et al., 2020), or handheld sensor suites (Zhang et al.,
2021) and do not require apriori knowledge about the environment.

1.1 Tasks and Key Contributions

In this thesis, we present novel approaches for robust perception to tackle the following
three tasks:

T1) on-the-fly photometric calibration using general environment geometry without
the need for specific calibration targets,

T2) real-time state estimation to enable higher levels of autonomy for aerial and
ground robots,

T3) dense 3D mapping with motion compensation to create accurate environment
maps enriched by sensors of different modalities.

The four key contributions to handle these tasks are:

1. dense correction factors from 2D thin plate splines (TPSs) (Ch. 3) for vignetting
calibration (addressing T1),

2. a novel gradient-based dissimilarity metric (Ch. 4) to robustify direct image
alignment (addressing T2),

3. a continuous-time LiDAR-inertial odometry (LIO) (Ch. 5) with joint registration
of multiple surfel maps (addressing T2, T3), and

4. a Bayesian fusion (Ch. 7) in logarithmic form for semantic mapping (addressing
T3).



4 Introduction

The first key contribution utilizes 2D TPSs to approximate dense pixelwise cor-
rection factors for vignetting estimation from sparsely distributed correspondences
without requiring multiple per-pixel measurements. Oriented patches around ORB
features (Rublee et al., 2011) are the basis for the joint photometric calibration
(Ch. 3) and for map point radiance estimation using just keyframes. A sixth-order
polynomial captures the general shape of the vignetting, whilst the TPS captures
local deformations. A 1D TPS with border conditions models the camera response
function (CRF) in combination with a Gamma curve. The radiance allows the es-
timation of the exposure ratio w.r.t. the tracked map for the current frame. Our
calibration handles natural scenes without uniform illumination or known calibration
targets and is even usable at runtime on a laptop central processing unit (CPU).

The second contribution addresses the problem of robustifying the direct alignment
of image pairs by replacing the photometric error with a new gradient-based dissimi-
larity metric (Ch. 4). Our approach combines a gradient orientation-based metric
with a magnitude-dependent scaling term, which is easy to integrate into existing
visual odometry (VO) systems and increases their robustness while running at the
frame rate of a typical camera. Our evaluation shows that our metric leads to more
robust and more accurate estimates of the scene depth in typical disparity tasks as
well as camera trajectories from direct image registration.

The third contribution concerns continuous-time LIO running in real-time onboard a
UAV. Our LiDAR-inertial odometry with MARS maps (LIO-MARS) jointly registers
multiple consecutive scans using a Gaussian mixture model (GMM) formulation by
directly optimizing the timewise non-uniformly spaced B-spline knots that represent
the trajectory. Prior to registration, embedding scans into multi-resolution surfel maps
with sparse permutohedral lattices (Adams et al., 2010) greatly reduces the number of
residuals during optimization. Adaptive selection of the appropriate surfel resolution
further improves efficiency (Ch. 5). Rephrasing the GMM and surfel covariances with
Kronecker sum and products improves parallelization (Ch. 6). A timewise splitting
into intra-scan segments facilitates motion compensation at optimization time, while
an unscented transform (UT) enables the de-skewing of individual surfels at runtime
without costly pointwise reintegration. The continuous-time trajectory further allows
us to leverage relative motion constraints to increase resilience, e.g., from robot
odometry or preintegrated IMU measurements (Ch. 6). Our LIO-MARS provides
reliable pose estimates with state-of-the-art accuracy on various datasets.

The fourth contribution adapts a Bayesian fusion (Ch. 7) for semantic mapping to
logarithmic form for higher precision and greater numerical stability. Furthermore, our
continuous-time trajectory allows seamless integration of multiple sensor modalities
with differing time offsets for more consistent poses, enabling dense mapping with
sparse volumes for real-time fusion.

We demonstrate the merits of our methods on real-world datasets and in real-robot
experiments. Our contributions w.r.t. the state of the art are presented and discussed
in detail in chapters 3 to 7.
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1.2 Publications

Parts of this thesis have been published in journals and peer-reviewed conference
proceedings. The publications are provided in chronological order:

J. Quenzel, J. Horn, S. Houben, and S. Behnke (2018). “Keyframe-based
Photometric Online Calibration and Color Correction.” In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
doi: 10.1109/IROS.2018.8593595

J. Quenzel, R. A. Rosu, T. Läbe, C. Stachniss, and S. Behnke (2020).
“Beyond Photometric Consistency: Gradient-based Dissimilarity for Im-
proving Visual Odometry and Stereo Matching.” In: Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA). doi:
10.1109/ICRA40945.2020.9197483

D. Schleich, M. Beul, J. Quenzel, and S. Behnke (2021). “Autonomous Flight in
Unknown GNSS-denied Environments for Disaster Examination.” In: Proceedings
of the International Conference on Unmanned Aircraft Systems (ICUAS). doi:
10.1109/ICUAS51884.2021.9476790

S. Bultmann*, J. Quenzel*, and S. Behnke (2021). “Real-Time Multi-Modal
Semantic Fusion on Unmanned Aerial Vehicles.” In: Proceedings of the European
Conference on Mobile Robots (ECMR). doi: 10.1109/ECMR50962.2021.9568812

J. Quenzel and S. Behnke (2021). “Real-time Multi-Adaptive-Resolution-Surfel
6D LiDAR Odometry using Continuous-time Trajectory Optimization.” In:
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Further contributed peer-reviewed papers are relevant to this thesis and cited as
external literature in chronological order:
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Computer Vision (ICCV). doi: 10.1109/ICCV.2019.00939

J. Quenzel, M. Nieuwenhuisen, D. Droeschel, M. Beul, S. Houben, and S.
Behnke (2019). “Autonomous MAV-based Indoor Chimney Inspection with
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R. A. Rosu, J. Quenzel, and S. Behnke (2019a). “Reconstruction of Textured
Meshes for Fire and Heat Source Detection.” In: Proceedings of the IEEE
International Symposium on Safety, Security and Rescue Robotics (SSRR). doi:
10.1109/SSRR.2019.8848943

R. A. Rosu, P. Schütt, J. Quenzel, and S. Behnke (2020). “LatticeNet: Fast Point
Cloud Segmentation Using Permutohedral Lattices.” In: Proceedings of Robotics:
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H. Surmann, K. Daun, M. Schnaubelt, O. von Stryk, M. Patchou, S. Böcker,
C. Wietfeld, J. Quenzel, D. Schleich, S. Behnke, R. Grafe, N. Heidemann,
D. Slomma, and I. Kruijff-Korbayova (2024). “Lessons from robot-assisted
disaster response deployments by the German Rescue Robotics Center task
force.” In: Journal of Field Robotics (JFR) 41.3. doi: 10.1002/rob.22275

J. Quenzel, L. T. Mallwitz, B. T. Arnold, and S. Behnke (2024). “LiDAR-Based
Registration Against Georeferenced Models for Globally Consistent Allocentric
Maps.” In: Proceedings of the IEEE International Symposium on Safety, Security
and Rescue Robotics (SSRR). doi: 10.1109/SSRR62954.2024.10770000

1.3 Thesis Outline

This thesis is structured as follows:
Chapter 2 provides the theoretical background on unconstrained optimization,

transformations, camera projection, image distortion, and typical error measures used
for evaluation and method comparison.

Chapter 3 details our real-time method for online photometric calibration of RGB
cameras using sparse image feature correspondences for dense vignetting correction
with TPS, CRF, and relative exposure estimation with application to color correction
to improve the accuracy of upstream tasks like structure-from-motion (SfM) and
dense multi-view stereo (MVS).

Chapter 4 introduces a robust gradient-based dissimilarity metric for direct pixelwise
matching required by depth estimation and direct image alignment without explicit
color correction.

Chapter 5 proposes a real-time LiDAR odometry by joint alignment of a sliding
scan window against local keyframes using multi-resolution surfel maps with a local
continuous-time B-spline trajectory.

Chapter 6 extends the approach of Ch. 5 with a non-uniform continuous-time
trajectory over the whole sequence and integrates inertial and complementary relative
motion estimates as well as surfel-based motion compensation.

Chapter 7 presents approaches for dense mapping of occupancy, color, thermal,
and semantic information.

Finally, Ch. 8 discusses the main findings, summarizes, and concludes this thesis.

https://doi.org/10.1002/rob.22275
https://doi.org/10.1109/SSRR62954.2024.10770000




2
Preliminaries

2.1 Notation

Throughout this work, we denote sets with capital calligraphic (A), matrices with
capital (A), and vectors with bold lowercase letters (a).

When referencing an entry within a vector, we use the subscript to denote its
position with zero-based indexing. Hence, the second entry in a column vector a is
a1. For 2D-matrices, we add both dimensions as subscripts. For example, A21 is the
entry in the third row and second column. Similarly, A2×3 denotes the left upper
2-by-3 block matrix.

With diag(a), we denote a diagonal matrix with the elements of the vector a along
its diagonal.

2.2 Unconstrained Optimization

Given a function f(x), one seeks to obtain an optimal solution through minimization:

x∗ = arg min
x∈RN

f(x). (2.1)

Evaluation of all parameter combinations in x is, in general, infeasible, especially for
continuous and multi-dimensional x ∈ RN .

Similarly, f(x) is often highly non-linear, such that a small change in x may change
the value of f tremendously. We generally describe a change in x by either an update
or a downdate with the ⊞ and ⊟-operator, respectively. For RN , these are simple
vector addition (+) and subtraction (−). As we will see later, these definitions differ
for transformations and manifolds (Ch. 6).

Furthermore, the optimal solution cannot be obtained analytically for most func-
tions f(x) . Nevertheless, a first-order Taylor series expansion g(x) of f(x) at an
initial estimate x0:

g1(x) = f(x0) + (x⊟x0)
⊺ ∇f(x0), (2.2)

allows approximating f(x) with a much simpler and easier-to-optimize function g1(x).
Locally — close to the linearization point x0 — the difference between g1 and f is
small. From g1(x) we calculate a descent direction d(xi) that, once applied to the
current estimate, yields an estimate xi+1 with a lower value:

xi+1 = xi ⊞ γidi(xi). (2.3)

Here, γi ∈ R>0 is the current step size, e.g., γ = 1, and has to be chosen such that
f(x) ≥ f(xi+1). For the gradient descent (GD) method, this descent direction is the
negative gradient ∇g1:

di(xi) = −∇g1(xi). (2.4)

9
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The GD method leads to a local optimum, which is not necessarily a unique or
global minimum. Furthermore, GD converges slowly and may zigzag towards the local
optima. The momentum method (Polyak, 1964) reduces zigzagging through a linear
combination of the last and the current gradient directions; in analogy to a heavy
ball rolling down a hill due to momentum, the gradient direction does not change
instantaneously. More advanced methods like Adam (Kingma and Ba, 2015) and
AdamW (Loshchilov and Hutter, 2019) are established to optimize neural network
weights.

A second-order Taylor series expansion further helps to develop methods with
faster convergence:

g2(x) = f(x0) + (x⊟x0)
⊺ ∇f(x0) +

1
2 (x⊟x0)

⊺ ∇2f(x0) (x⊟x0) . (2.5)

The quadratic function f(x):

f(x) =
1
2x

⊺Ax+ b⊺x+ c, (2.6)

is convex if A is symmetric positive semidefinite (s.p.d.) and its minimizer x∗ is
unique (Nocedal and Wright, 2006). Setting the gradient ∇f to zero gives rise to a
linear system of equations:

Ax = b, (2.7)

The solution of Eq. 2.7 is the minimizer x∗ of f(x). Equation 2.5 is evidently a
quadratic function f(r) with:

r = x−x0, (2.8)
A = ∇2f(x0), (2.9)
b = ∇f(x0)

⊺, (2.10)
c = f(x0). (2.11)

Hence, we obtain for an s.p.d. matrix A the minimizer of Eq. 2.5 via solving Eq. 2.7.
The solution is the descent direction of the Gauss-Newton (GN) method:

di(xi) = −
(
∇2g2(xi)

)−1
∇g2(xi)

⊺. (2.12)

When A is negative definite or f(x) < f(xi+1), a modification to the Hessian
Eq. 2.9 is helpful with the s.p.d. matrix D:

A = ∇2f(x0) + λD. (2.13)

Examples for D include the identity matrix I or a diagonal matrix scaled with the
maximal value of the Hessian’s diagonal:

D = max(diag(∇2f)) · I. (2.14)

λ allows seemlessly interpolating between GD (λ → ∞) and GN (λ → 0). The
adjustment of λ has the same effect as changing the step size γ (Transtrum and
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Sethna, 2012). This results in the descent direction for the Levenberg-Marquardt (LM)
method:

di (xi) = −
(
∇2g2 (xi) + λD

)−1
∇g2 (xi)

⊺ . (2.15)

In the following chapters, we routinely minimize the quadratic error of an error
function e(·) over N measurements:

x∗ = arg min
x

N∑
i

∥ei (x)∥2 . (2.16)

Wrapping the error in a robust cost function ρ (Barron, 2019), like the Huber
norm (Huber, 1964), further reduces the effect of outliers during optimization:

x∗ = arg min
x

N∑
i

ρ
(
∥ei (x)∥2

)
. (2.17)

We stack all errors ei (x) into the residual vector r, and the quadratic error and
its gradient become:

N∑
i

∥ei (x)∥2 = r⊺r, (2.18)

∇(r⊺r) = 2J⊺r, (2.19)

Jij =
∂ei(x)

∂xj
. (2.20)

It can be difficult or infeasible to compute the Hessian ∇2(r⊺r) explicitly due to
e.g., memory, runtime limitations or when the function itself is unknown. Thus, GN
uses the following symmetric approximation:

2J⊺J ≈ ∇2(r⊺r). (2.21)

This gives rise to the Normal equations:

J⊺J∆x = −J⊺r, (2.22)

and −∆x becomes the descent direction for GN. Here, solving Eq. 2.22 directly, e.g.,
via QR decomposition (Higham, 2002), is more numerically stable than the inversion
of J⊺J followed by multiplication with the right-hand side.

For LM, Eq. 2.22 becomes:

(J⊺J + λD)∆x = −J⊺r. (2.23)

For D, we use a diagonal matrix with the diagonal entries of J⊺J.
The choice of λ depends on the step quality β (Madsen et al., 2004) of the current

update ∆x:

fd = f(xi) − f (xi ⊞ ∆x) , (2.24)

ld =
1
2∆x⊺ (λ∆x− r) , (2.25)

β =
fd

ld
. (2.26)
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λ is initially set to 1 × 10−4 and kept between 1 × 10−16 and 1 × 1016.
We update λ according to Eq. 2.21 in Madsen et al. (2004). When β < 0, the

update increases the error. Hence, we increase λ:

λ = νλ with ν > 1, (2.27)
ν = 2ν, (2.28)

to take a shorter step and approach a gradient descent step. Otherwise, we reduce λ:

λ = λ max
(1

3, 1 − (2s − 1)3
)

, (2.29)

ν = 2, (2.30)

and accept the current update:

xi+1 = xi ⊞ ∆x. (2.31)

After each update, the non-linearity of e(xi) requires relinearization at xi before a
new update ∆x can be computed. We alternate between these two steps for a fixed
number of iterations or until one of the following convergence criteria is met:

|f(xi) − f(xi ⊞ ∆x)| < θe, (2.32)
|f(xi−1) − f(xi)| < θe, (2.33)

max(∆x) < θ∆x. (2.34)

The error threshold θe is set to 1 × 10−6, while the maximal coefficient of ∆x should
be above θ∆x = 1 × 10−8.

We often encounter situations where we want to incorporate uncertainty esti-
mates for individual terms. The quadratic cost function becomes a Mahalanobis
distance (Kim, 2000) with mean µ and covariance Σ:

f(x) = ∥x∥2
Σ = (x−µ)⊺ Σ-1 (x−µ) . (2.35)

Minimization of Eq. 2.35 is equivalent to solving the weighted least squares:

J⊺WJ∆x = −J⊺Wr, (2.36)

if W = Σ-1 exists. This becomes apparent after applying a Cholesky decomposition
to W :

W = LL⊺, (2.37)
J⊺ LL⊺︸︷︷︸

W

J∆x = −J⊺ LL⊺︸︷︷︸
W

r, (2.38)

(L⊺J)⊺︸ ︷︷ ︸
Jd

(L⊺J)︸ ︷︷ ︸
Jd

∆x = − (L⊺J)⊺︸ ︷︷ ︸
Jd

(L⊺r)︸ ︷︷ ︸
d

, (2.39)

which are the normal equations for:

f(x) =

∥∥∥∥∥∥∥
d︷ ︸︸ ︷

L⊺ (x−µ)︸ ︷︷ ︸
r

∥∥∥∥∥∥∥
2

= (x−µ)⊺ LL⊺︸︷︷︸
Σ-1

(x−µ). (2.40)
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2.3 Condition Number

In optimization, we are often confronted with a linear system of equations akin to
the normal equations (Eq. 2.22). If the system is sensitive to small perturbations in
the input data or due to numerical precision, the computed result may differ strongly
from the exact result. In that case, the system is ill-conditioned. To quantify this
sensitivity, the matrix condition number is defined in terms of the matrix norm ∥A∥
(Eq. 6.5 and 6.8 in Higham (2002)):

∥A∥ = max
∥x∥=1

∥Ax∥ , (2.41)

κ(A) = ∥A∥ ∥A-1∥ . (2.42)

For a square matrix1 A ∈ Rn×n, the Euclidean distance ℓ2 induces the spectral norm
∥A∥2 with spectral radius ρ(B) as the matrix norm ∥A∥:

∥A∥2 = ρ(A) with ρ(B) = |λmax(B)|. (2.43)

Thus, it follows from Eq. 2.42 and Eq. 2.43:

κ(A) =
|λmax(A)|
|λmin(A)|

. (2.44)

Ideally, the condition number κ(A) should equal or close to 1, and then we refer to
A as well-conditioned. For a s.p.d. matrix Σ, all Eigenvalues are positive, and the |·|
is unnecessary. In some instances, we want to compute the Eigenvalues or κ for the
sum of two s.p.d. matrices. For the simple case of Σ + αI, we directly use:

λ(Σ + αI) = λ(Σ) + α, (2.45)

κ(Σ + αI) =
λmax(Σ) + α

λmin(Σ) + α
. (2.46)

The first equality follows from the definition of Eigenvectors and Eigenvalues (Av =

λv, or equivalently (A − λI)v = 0):(
(Σ + αI) − λI

)
v = 0, (2.47)Σ −

(
λ − α

)
︸ ︷︷ ︸

λΣ

I

v = 0, (2.48)

λ = λΣ + α. (2.49)

Knutson and Tao (2001) provide a more general analysis on the Eigenvalues of the
sum of two Hermitian matrices.

1 Higham defines ∥A∥2 in a more general setting for a complex matrix A ∈ Cm×n and thus requires
∥A∥2 =

√
ρ(A∗A).
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2.4 Transformations

We define a 3D-point in reference frame F as pF = (x, y, z)⊺ ∈ R3.
In order to express the point in a different frame, we apply a rigid transform

TF2F1 ∈ SE (3), which maps the point pF1 from frame F1 into frame F2. Rigid
transformations (Blanco, 2010) form the Special Euclidean group SE(n):

SE (n) = {(R, t) : R ∈ SO (n) , t ∈ Rn} , (2.50)
SO (n) =

{
R ∈ Rn×n : R⊺R = I, det(R) = +1

}
. (2.51)

The rotation matrix R describes the orientation and vector t the translation. For
us, the relevant case is n = 3, which has 6 degrees of freedom (DoF), three each for
rotation and translation. Without loss of generality, we assume that the reference
frame has the identity orientation and its origin at zero. We identify TF2F1 with its
4 × 4 matrix operating on homogeneous coordinates, denoted by [·]:

[pF2 ] = TF2F1 [pF1 ], (2.52)

TF1F2 =

R t

0 1

 . (2.53)

This allows multiple transformations to be chained together via matrix multiplication:

TF1F3 = TF1F2TF2F3 . (2.54)

Equation 2.52 can be rewritten as:

pF2 = RF2F1pF1 + tF2F1 . (2.55)

During optimization, the non-linearity of rotations in SO(3) requires linearization.
This tangential space TR (SO (3)) for a rotation R ∈ SO (3) is its corresponding Lie
algebra so (3):

so (3) = {W = −W ⊺} , (2.56)
TR (SO (3)) = {RW : W ∈ so (3)} , (2.57)

where W is a skew-symmetric matrix ∈ R3×3. The conversion from group to algebra
and vice versa uses the logarithmic map at R and its inverse, the exponential map:

SO(3)
log
⇄
exp

so(3), (2.58)

logR : SO (3) ⇒ TR (SO (3)) , (2.59)
expR : TR (SO (3)) ⇒ SO (3) . (2.60)

The R subscript is generally omitted if R is the identity rotation.
Using the ∨-operator to extract the three unique entries from a skew-symmetric

matrix A ∈ R3×3 and its inverse, the ∧-operator ([·]×):

a = A∨ = [A21, A02, A10]
⊺ , (2.61)

A = a∧ = [a]× =


0 −a2 a1

a2 0 −a0

−a1 a0 0

 . (2.62)
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With the ∨- and ∧ operators, the direct mapping between manifold SO(3) and vector
space R3 and vice versa is given by Log(·) and its inverse Exp(·):

Log(R) = log (R)∨ = τ ∈ R3, (2.63)
Exp(τ ) = exp (τ∧) = R ∈ SO(3). (2.64)

For a rotation matrix R, the Log(·)- and Exp(·)-map are given by Solà et al. (2018):

θ = arccos
(1

2 (tr(R) − 1)
)

, (2.65)

ω = Log(R) =

[
θ

2 sin θ
(R − R⊺)

]∨
, (2.66)

R = Exp(ω) = I +
sin(∥ω∥)

∥ω∥ [ω]× +
1 − cos(∥ω∥)

∥ω∥2 [ω]2× . (2.67)

In general, our rotations are expressed by unit-quaternions (Blanco, 2010):

q = (qw, qx, qy, qz)
⊺ ∈ R4 s.t. ∥q∥ = 1. (2.68)

Shoemake (1985) provides the corresponding rotation matrix as:

R =


1 − 2q2

y − 2q2
z 2qxqy + 2qwqz 2qxqz − 2qwqy

2qxqy − 2qwqz 1 − 2q2
x − 2q2

z 2qyqz + 2qwqx

2qxqz + 2qwqy 2qyqz − 2qwqx 1 − 2q2
x − 2q2

y

 . (2.69)

App. 1.2 of Shoemake (1985) details the conversion from rotation matrix to quater-
nion. Compared to rotation matrices, quaternions require less parameters and fewer
computations for multiplication. To ensure that a quaternion is a valid rotation, only
normalization to unit length is necessary:

q =
1

∥q∥
q. (2.70)

In contrast, for a matrix A ∈ R3×3, this involves an orthonormalization with an
SVD (Higham, 1989):

A = UΣV , (2.71)

S =

diag([1, 1, −1]) if det(UV ) = −1,

I else,
(2.72)

R = USV . (2.73)

Furthermore, inverting a unit-quaternion rotation is a simple conjugation, which
negates the vector component qxyz. The Log(·)- and Exp(·)-maps for q are given by:

ω = Log(q) = 2 arccos (qw)

∥qxyz∥
qxyz, (2.74)

q = Exp(ω) =

(1, 0, 0, 0) if ω = 0,(
cos

(
∥ω∥

2

)
, sin(0.5∥ω∥)

∥ω∥ ω
)

else
. (2.75)
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Here, we omit the corresponding maps for SE(3). An alternative to SE(3) is to
separately linearize rotation and translation during optimization (Sommer et al., 2020).
Although this split representation (SO(3) × R3) does not optimize on the manifold
of SE(3) itself, it forms a composite manifold (Solà et al., 2018) and generates valid
SE(3) transformations. Multiple studies (Haarbach et al., 2018; Ovrén and Forssén,
2019; Sommer et al., 2020) found improved real-time performance with no significant
differences w.r.t. solution quality.

In odometry and simultaneous localization and mapping (SLAM), we regularly
need to estimate the transformation TF2F1 between two sets of points (PF1 , PF2) or
the projection into an image (Sec. 2.5). Hence, we linearize Eq. 2.52 w.r.t. the 6 DoF
transformation parameters ξ ∈ R6:

JT =
∂ (TF2F1pF1)

∂ξ
=
[
I, [−pF1 ]×

]
, (2.76)

where the first three entries of ξ correspond to the translation t and the last three to
the rotation R.

2.5 Pinhole Projection

Throughout this work, we assume a pinhole camera model to project 3D points from
the camera frame c to the image. Usenko et al. (2018) provide a more comprehensive
overview of different camera models. Here, the projection of a point p into a pinhole
camera c yields the image coordinates u = (ux, uy)⊺c in the image domain Ω ⊂ R2:

πc(pc) : pc ⇒ uc, (2.77)

π(p) =
K2×3 · p

pz
. (2.78)

K2×3 are the two upper rows of the pinhole camera matrix K:

K =


fx 0 cx

0 fy cy

0 0 1

 , (2.79)

where fx and fy denote the focal length along each image axis, while c = [cx, cy]⊺

defines the principal point. Equation 2.78 can be rewritten as:

u = π(p) =

fxpx

pz
+ cx

fypy

pz
+ cy

 =

fxux + cx

fyuy + cy

 , (2.80)

with normalized image coordinates u = [ux, uy]⊺ = [px/pz, py/pz ]⊺. When pz < 0,
the point p is behind the image plane. Hence, it is not visible in the image and should
be discarded.

The corresponding Jacobian Jπ is:

Jπ =

fx

pz
0 −fxpx

p2
z

0 fy

pz
−fypy

p2
z

 . (2.81)
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Figure 2.1: Camera distortion: straight edges in 3D appear as curved lines in the image. The
curvature typically increases with distance to the image center.

Instead of first transforming and then projecting, we can directly combine the
K-matrix with a rigid transform T = [R, t] ∈ SE(3) to obtain the projection matrix
P ∈ R3×4:

P = [KR|Kt] . (2.82)

We then need only one matrix-vector multiplication instead of two. More importantly,
this allows efficient computation of the projection for N points simultaneously via a
matrix-matrix product after concatenating the points in homogeneous coordinates
into a 4 × N matrix. Afterwards, a column-wise division by the last coordinate gives
the result for Eq. 2.78. Furthermore, the Jacobian for P directly follows from the
chain rule with Eq. 2.81 and Eq. 2.76.

2.6 Distortion

Real camera systems have imperfections and do not follow the standard pinhole
model (Furgale et al., 2013; Usenko et al., 2018), as visualized in Fig. 2.1. A com-
monly adopted solution is to model a radial and tangential distortion with low-order
polynomials assuming that the distortion center and the principal point coincide.

Using normalized image coordinates u, the pinhole projection with radial-tangential
distortion becomes:

ud = radtan (π (p)) , (2.83)

ud =

fx 0
0 fy

 (urad + utan) + c, (2.84)

urad =

ux
(
1 + k1r2 + k2r4)

uy
(
1 + k1r2 + k2r4)

 , (2.85)

utan =

2p1uxuy + p2
(
r2 + 2u2

x

)
p1
(
r2 + 2u2

y

)
+ 2p2uxuy

 , (2.86)

r = ∥u∥2 . (2.87)

The two parameters k1, k2 correspond to the radial while p1 and p2 model tangential
distortion due to e.g., non-parallel placement of lens and camera sensor.
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2.7 Error Measures

For N error terms stacked into a vector e ∈ RN , we define the root-mean-squared
(RMS) error (RMSE) and mean absolute error (MAE) as follows (Hodson, 2022):

RMSE (e) =

√
1
N
e⊺e =

√√√√ 1
N

N∑
i=0

e2
i , (2.88)

MAE (e) =
1
N

N∑
i=0

|ei|. (2.89)

To evaluate the accuracy of a trajectory T (τ ) ∈ SE(3) with τ ∈ R w.r.t. some
reference, the RMS absolute trajectory error (ATE) (Sturm et al., 2012; Zhang
and Scaramuzza, 2018), sometimes called absolute position error (APE) (Grupp,
2017), computes the Euclidean distances for all corresponding pairs (pref ,pτ )i of
reference and trajectory poses after alignment (Umeyama, 1991) with a transformation
X ∈ SE(3):

eATE,i = ∥X · pτ ,i − pref,i∥2 . (2.90)

We often rely on the RMS-ATE to evaluate the trajectory accuracy.



3
Photometric Online Calibration and Color
Correction

Parameter estimation of a camera’s vignetting function involves the acquisition of
several images in a given scene under very controlled lighting conditions. This is a
cumbersome and error-prone task where the result can only be visually confirmed.
Many computer vision algorithms assume photoconsistency, i.e., constant intensity
between scene points in different images, and tend to perform poorly if this assumption
is violated.

We present a real-time online vignetting and response calibration (Quenzel et al.,
2018) with additional exposure estimation for global-shutter color cameras. Our
method does not require uniformly illuminated surfaces, known texture, or specific
geometry. The only assumptions are that the camera is moving, the illumination is
static, and the reflections are Lambertian. Our method estimates the camera view
poses by sparse Visual-SLAM (VSLAM) and models the vignetting function by a
small number of thin plate spline (TPS) together with a sixth-order polynomial to
provide a dense estimation of attenuation from sparsely sampled scene points. A TPS
models the camera response function (CRF) jointly with a Gamma curve (Ng et al.,
2007). We evaluate our approach on synthetic datasets and in real-world scenarios
with reference data from a structure-from-motion (SfM) system. We show clear visual
improvement on textured meshes without the need for extensive meshing algorithms.
A few keyframes are enough to obtain a useful calibration, which makes an on-the-fly
deployment conceivable.

Vignetting (Goldman and Chen, 2005; Lauterbach et al., 2017), i.e., the difference
in intensity for equally bright scene points in different parts of the image, is an
undesirable property of most dioptric camera systems. The aperture, or seldome
another set of lenses, blocks a fraction of the incoming light passing through the
lens and causes a non-uniform exposure of the photoelectric chip, often increasing
in severity towards the outer rim. The effect differs substantially between different
lens systems or cameras and may—even if clearly present—be neglected for many
applications.

Modeling the relation (Goldman and Chen, 2005; Lauterbach et al., 2017) between
the radiance Lp of a scene point p ∈ R3 with the measured intensity Iu of the corre-
sponding image pixel u ∈ R2 requires the exposure time k, the position-dependent
vignetting V (u) and the CRF f(·):

Iu = f (k · V (u) · Lp) , (3.1)

with V : R2 7→ [0; 1]. The CRF f(·) maps between the amount of light reaching
the chip and its corresponding measurement. For simplicity, V (·) is often considered
radially symmetric around the optical center of the image. We do not restrict ourselves
to this assumption. In this work, our objective is to estimate all involved photometric
parameters.
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t+1

t+2
V(u)

crf(L)

Figure 3.1: Calibration principle: Triangulation of scene points (shown in red, blue and green)
minimizes the backprojection error over several frames. Due to vignetting V (u),
the measured intensity of the corresponding image points will vary depending
on the position u within the frame while the brightness of the entire image is
affected by different exposure times k and the camera response function f(L).
The observed attenuations give rise to a camera response and vignetting function.

To this end, we use a robust VSLAM procedure and examine the recorded intensity
of well-established map points. Stable triangulation requires the points to be recorded
from several camera positions with sufficient parallax. Thus, the corresponding image
points are spread over some portion of the camera frames. The intensity of a map
point in different regions of the image yields samples for the vignetting function V (·)
that is extrapolated with the help of a thin plate spline and a sixth-order polynomial.
This approach, illustrated in Fig. 3.1, allows us to obtain a reliable estimate of V (·)
quickly based on only a few map points. It does not rely on any known illumination
pattern or scene appearance and can be performed by recording natural, albeit
textured, environments with static illumination. We demonstrate our method on an
image sequence taken with a unmanned aerial vehicle (UAV) to reconstruct a chimney
wall structure as well as synthetic sequences with artificial photometric disturbances
and show that it significantly improves the results.
In summary, we thoroughly evaluate our photometric online calibration to support
our key claims, which are:

• First, combining Gamma curves with TPS improves CRF modeling quality.

• Second, TPS are well suited to capture local deformations within the vignetting
that are unhandled by sixth-order radial polynomials (RPs).

• Third, our system enables accurate joint optimization of radiance, vignetting,
and camera response in real-time.

Preface

This chapter is adapted from Quenzel et al. (2018), previously published by IEEE
and presented at the International Conference on Intelligent Robots and Systems
(IROS 2018).
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Statement of Personal Contribution

“The author of this thesis [Jan Quenzel] substantially contributed to all aspects
of the previous publication (Quenzel et al., 2018), including the conception,
literature survey, design, and implementation of the proposed methods, the
preparation of the used data and evaluation of the proposed approach, conducting
the experimental evaluation, the analysis and interpretation of the experimental
results, drafting the manuscript, as well as the revision and final approval of the
version to be published.“

3.1 Related Work

There are two main approaches for vignetting correction: Estimating the correction
from a single image or from a sequence of images at different view poses with
overlapping field-of-view (FoV). The first approach (Zheng et al., 2009; Lopez-Fuentes
et al., 2015) requires several necessary assumptions, e.g., uniformly illuminated
surfaces, to obtain a viable solution. As such, we prefer the latter approach since it is
more robust and enables us to obtain all photometric parameters. Historically, image
mosaicking and panoramic photography were some of the first applications. These
require stitching multiple images together so that no seam is visible when transitioning
between images. Simple vignetting functions, like a sixth-degree polynomial (Goldman
and Chen, 2005; Lauterbach et al., 2017), are quite effective in reducing attenuation
towards the image borders. In overlapping regions, blending (Zhu et al., 2018) helps
to minimize visible seams.

The same challenges occur in mesh texturing. Using graph cuts, Waechter et al.
(2014) select the best observing views per mesh face with minimal seams towards
neighboring faces. Afterwards, a color adjustment reduces color differences between
patches, first globally and later locally, via Poisson Editing to remove remaining
visible seams close to the seam itself. However, the reconstructed mesh itself may
slightly deviate from the SfM and multi-view stereo (MVS) reconstruction or RGB
and depth (RGB-D) point cloud. That is why Zhou and Koltun (2014) optimize the
camera poses w.r.t. the mesh such that vertices observed in multiple images exhibit
similar intensities. Augmenting the optimization with a non-rigidly deformable grid
per image allows us to deal with more complex distortions. Coloring mesh faces then
requires subsampling and combining observed colors via a weighted mean.

The photometric or brightness constancy assumption (Park et al., 2017) is central
to most direct visual odometry (VO) systems, e.g., semi-direct visual odometry
(SVO) (Forster et al., 2014) or direct sparse odometry (DSO) (Engel et al., 2018).
Since vignetting and auto-exposure violate the constancy assumption, incorporating
photometric calibration improves the accuracy of direct methods, as Zheng et al.
(2017) report. Complementary to DSO, Engel et al. (2016) created a monocular
camera benchmark, including the photometric calibration of an industry-grade camera.
The CRF was calibrated from 1000 images taken by a statically placed camera
while manually changing the exposure time in between. Afterwards, vignetting was
calculated from images captured while moving the camera along a bright-colored
wall with approximate Lambertian reflectance. An attached augmented reality (AR)
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marker allowed Engel et al. to estimate the camera pose w.r.t. the planar wall.
Given the camera pose, the wall is projected into the images to obtain corresponding
intensities at specific points on the wall. The authors then calibrate vignetting
and unknown irradiance in an alternating fashion using a maximum likelihood
estimator (MLE).

A similar approach by Alexandrov et al. (2016) uses a single white sheet of
uniformly illuminated paper as the calibration target for consumer RGB-D sensors.
After the CRF estimation (Debevec and Malik, 1997), the camera recorded the paper
with fixed exposure and disabled automatic white balance from different vantage
points. Then, a floodfill segmentation detects the paper directly without the need for
pose estimation or projection. After applying the inverse CRF, observed intensity
differences on the sheet should stem purely from vignetting under the assumption
of constant illumination throughout the sheet. Alexandrov et al. (2016) then obtain
dense vignetting correction factors that outperformed the sixth-order polynomial of
Goldman and Chen (2005).

During deployment, the conditions often differ from laboratory settings. Adjusting
focus or aperture requires tedious recalibration in the field where a sheet of paper
on a planar surface or a tagged wall may not be easily accessible. Online calibration
simplifies procedures under such circumstances. For this, Bergmann et al. (2018)
employ a Kanade–Lucas–Tomasi tracker (KLT) tracker to find corresponding patches
between consecutive images. The correspondences are the basis for optimizing a
photometric model as well as the patches’ radiance and relative exposure times. The
model combines the empirical model of response (EMoR) (Grossberg and Nayar,
2004) as its CRF and the sixth-order RP (Goldman and Chen, 2005) for vignetting.
The authors separate the parameter optimization into fast exposure, photometric
model, and radiance estimation. Exposure estimation uses a window of ten images
compensated for CRF and vignetting. The mean corrected intensity approximates
the initial radiance within the window. In parallel, a non-linear optimizer alternates
between updating the model and radiance estimates on a window of the last 200
images. The method showed a significant accuracy gain for DSO. However, the authors
rely on a completely independent keypoint and motion tracking that does not directly
benefit the subsequent VO except for modifying its input. On the other hand, our
approach optimizes all parameters jointly and integrates the photometric calibration
more straightforwardly and, in particular, avoids two redundant pose estimation and
point tracking procedures.

In this thesis, we model the basic shape of vignetting by a sixth-order RP together
with a smooth TPS to capture local deformations. The TPS allows for dense ap-
proximation from sparsely distributed correction factors derived from corresponding
oriented patches around Oriented FAST and Rotated BRIEF (ORB) features. We
complement the photometric model with a CRF consisting of a Gamma curve and
another TPS with border conditions. Keyframes enable joint optimization of all
photometric parameters at runtime while we estimate the current frame’s expo-
sure w.r.t. the tracked map directly on arrival. Our algorithm runs online in real-time
on a modern laptop central processing unit (CPU) and handles natural and partially
dynamic scenes without uniform illumination.
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After the original publication (Quenzel et al., 2018), (semi-direct) VO methods
increasingly incorporated photometric correction with precalibrated photometric
models. Liu et al. (2021) optimize ego-motion and exposure ratio in logarithmic form
while optimizing their photometric model in parallel for a fixed number of keyframes.
Similarly, Miao et al. (2022) combine the affine brightness model Engel et al. (2018)
used with normalized intensities after a logarithmic transform to reduce the difference
between bright and dark pixels of the same image. In HSO, Luo et al. (2022) mix two
vignetting functions for their correction and adaptively select the best KLT tracker
variant based on the image gradients. Miao and Yamaguchi (2021) estimate the
exposure ratio from pixel correspondences around matched ORB features with similar
radii within the image, where radial vignetting is equally strong. Lin and Zhang
(2024) integrate exposure estimation in an iterated error-state Kalman filter (IEKF)
for a combined LIO + VIO system and maintain the pointwise radiance within the
maps.

If a camera provides its actual exposure time, parameter estimation of CRF and
vignetting becomes easier (Haidar et al., 2024). Abboud et al. (2024) integrate such
an approach into a VSLAM pipeline.

Unlike previous approaches, Zhu et al. (2021) learn to adapt the image brightness
pixel-wise w.r.t. a reference image using a small CNN. However, the CNN does not
cope well with occlusion and strong viewpoint variations.

For thermal cameras, Das et al. (2021) investigate online photometric calibration,
addressing modality-specific challenges such as temporal drift. Importantly, their
correction simplifies odometry (Polizzi et al., 2022) since the standard KLT tracker
remains usable.

Another application for photometric models is automatic exposure control. As such,
Li et al. (2024) propose to learn exposure based on multi-scale image histograms,
whereas Gamache et al. (2024) compare different automatic exposure methods on
high dynamic range (HDR) images w.r.t. their influence on VO. Instead, Wang et al.
(2022) use precalibrated vignetting and CRF to develop explicit exposure control.

Reconstruction losses in methods like neural radiance field (NeRF) (Mildenhall
et al., 2021) or Gaussian splatting (GS) (Kerbl et al., 2023) try to replicate the
image color with little deviation. Martin-Brualla et al. (2021) acknowledge that this
is insufficient for large-scale datasets recorded with various cameras and variable
lighting. Hence, Martin-Brualla et al. (2021) include a low-dimensional appearance
embedding within their NeRF that explains image-dependent radiance. More recently,
VastGaussian (Lin et al., 2024a) models the appearance variation within an image
with a pixelwise multiplier map to prevent floaters in GS. This multiplier map stems
from a small per-scene optimized CNN applied to the subsampled image and their
pixelwise appearance embedding. Kerbl et al. (2024) instead counteract exposure
changes by optimizing a per-image affine transform to modify the color directly
. However, NeRF and GS usually require posed images, e.g., from a SfM system
like COLMAP (Schönberger and Frahm, 2016) or VGGSfM (Wang et al., 2024b).
To reduce the reliance on accurate poses, methods like BARF (Lin et al., 2021) or
L2G-NeRF (Chen et al., 2023b) treat the poses as initializations for coarse-to-fine or
local-to-global image registration within their respective reconstruction framework.
In contrast, “pose-free” approaches (Fan et al., 2024; Fu et al., 2024; Hong et al.,
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Figure 3.2: Method overview: Visual features are tracked from (Stereo-) RGB images in order
to estimate the camera pose w.r.t. the map points. Keyframes and triangulated
map points are computed by the local mapping and stored in the map. The
photometric calibration (orange dashed box) estimates the exposure time for each
frame given the current photometric model ψ (red box) and the tracked map. The
radiance estimate of the map is updated on keyframe creation. The photometric
model (CRF and vignetting), keyframe exposure times and mappoint radiance
are refined given all matched keyframe observations during global photometric
optimization. Sparsely, distributed features are used to estimate a pixelwise
vignetting correction based on a TPS that can be used to correct future images
and reconstruction results.

2025) use feed-forward image matching (Lindenberger et al., 2023; Leroy et al., 2024)
or depth estimation (Piccinelli et al., 2024) components to initialize scene geometry
and camera poses.

However, as long as correspondences between images are available, our photometric
correction remains a possible precursor or intermediate step in the full reconstruction
pipeline.

3.2 Our Method

We extend the method from Quenzel et al. (2017) that builds upon a keyframe-based
Graph-simultaneous localization and mapping (SLAM) system (Houben et al., 2016)
to obtain the color camera trajectory T and triangulate a sparse feature map M from
ORB features (Rublee et al., 2011). We prefer to use a calibrated and synchronized
stereo camera rig or an RGB-D camera in order to avoid monocular scale drift.
However, the proposed photometric method also applies to monocular cameras and
may be used in conjunction with (inverse-) depth estimates from a (semi-)dense
VSLAM system.

Our photometric calibration uses established feature-to-map-point correspondences
with additional samples extracted from patches around each feature on their respective
scale. As a result, we obtain sparsely distributed samples over the image domain Ω.
Hence, we model the vignetting function V (·) as a combination of an even sixth-order
polynomial and a smooth TPS, which allows us to estimate the dense attenuation
factors for each pixel and color channel. Another one-dimensional TPS with border
conditions represents the CRF f(·). Subsequently, we estimate the frame’s exposure
time k given the current local map Mℓ. As this requires a fast update to the radiance
Lp, we directly refine the radiance of updated map points in Mℓ after keyframe
creation, as shown in Fig. 3.2. In parallel, a global photometric optimization computes
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the photometric model ψ = {V (·), f(·)} and exposure times asynchronously on all
keyframes within the map M.

We will now describe in detail the VSLAM system (Houben et al., 2016; Quenzel
et al., 2017), how we establish photometric correspondences, and which correction
models use TPS.

In the following, we assume that we observe a static scene with Lambertian
reflectance such that the amount of reflected light is independent of the viewing angle.
The illumination within the scene should not change over time but may differ locally
in the observed scene; we do not assume a uniformly lit scene.

Since we can only obtain the attenuation correction factor for each pixel up to
scale, we assume the values to be within [0, 1]. We further assume similar attenuation
between neighboring pixels.

Furthermore, we assume a rough factory calibration for the intrinsic camera matrices
Kc (Eq. 2.79), lens distortion (Sec. 2.6), and the extrinsic transformation Tcicj between
the cameras ci, cj ∈ C.

3.2.1 Multi-Camera ORB-SLAM

The VSLAM system by Houben et al. (2016) adapts the original ORB-SLAM (Mur-
Artal et al., 2015), including tracking, local mapping, and loop closing, to operate on
images from multiple synchronized cameras C.

Tracking consists of parallel feature extraction for the current simultaneously
captured images and subsequent pose estimation, including feature matching w.r.t. the
world frame w, e.g., the initial color camera frame. Given the matched features F ,
each feature with pixel coordinate uc ∈ F provides a constraint in the form of a
projection residual euc between an observed map point pw of the local map Mℓ and
the camera pose Tcw using Eq. 2.78 with the robust Huber norm (Huber, 1964):

euc = ρ
(
∥uc − π (Tcwpw)∥2

)
. (3.2)

A rigid edge R connects the poses Tciw, Tcjw of cameras ci, cj ∈ C with their
extrinsic calibration Tcicj using the poses’ log-map (see Sec. 2.4):

Tcicj ≈ TciwT -1
cjw, (3.3)

dRij = Log
(
T -1

ciwTcicj Tcjw

)
, (3.4)

eRij = d⊺Rij
Σ-1dRij . (3.5)

Such edge enforces the relative pose to remain close to the initial calibration with
low uncertainty Σ. However, it is neither fixed nor shared between different images
to give the optimization some leeway and flexibility.

Given these residuals, a non-linear optimization scheme updates the current pose
estimate for all cameras:

arg min
{Tcw},c∈C

=

∑
c∈C

∑
uc∈F

euc (Tcw)

+

∑
ci∈C

∑
cj∈C\ci

eRij

(
Tciw, Tcjw

) . (3.6)

Afterwards, the local mapping decides which images become new keyframes, tri-
angulates new map points and triggers optimization of the map M. After each new
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keyframe, a local bundle adjustment (LBA) recomputes the poses for all keyframes
and the positions of all map points within the local map Mℓ. For more details, we
refer the reader to the corresponding publication (Houben et al., 2016).

After partial exploration of the scene and initial camera tracking, a global bundle
adjustment (GBA) refines the keyframe camera poses Tcw ∈ T and triangulated map
points pw ∈ M from undistorted feature observations. In a second optimization step,
we include the refinement of lens distortion and intrinsic parameters given the original
feature observations while fixing the extrinsic transformation between a stereo camera
pair or keeping the first two poses fixed. Thereby, we obtain a more accurate estimate
from a factory calibration, allowing us to establish further correspondences between
keyframes which have been previously discarded due to high reprojection errors.

3.2.2 Photometric Correspondences

For an adequate calibration, we require sufficient pairs of measured Iu and expected
intensity Ĩu, as visualized in Fig. 3.1. Accordingly, we make the following two
assumptions. First, all correspondences within an image have the same exposure ratio
k. Second, images of a single camera c ∈ C share the same CRF and vignetting V (·).

For our measurements, we follow the suggestion of Bergmann et al. (2018) to use a
patch centered at the feature location. The feature orientation allows us to extract
an unrotated 5 × 5 px patch directly at the matched keypoint scale. Alternatively,
projection enables the extraction for each map point pw ∈ M, e.g., for use with
(semi-)direct methods.

To obtain the corresponding expected intensities, each map point maintains a patch
of estimated radiance values L̃p. Its initial radiance stems from inverting Eq. 3.1
given the current photometric model ψ. Blank and saturated pixels are considered
invalid for both intensities, and the pair is subsequently discarded.

In general, this leads to acceptable numbers of constraints on the exposure ratio and
CRF. However, vignetting depends on the pixel position, and having multiple pairs for
a single pixel rarely happens, especially for sparsely distributed map points. Relying
on gathering a large number of pixel correspondences would further prevent our
method from running online. Hence, the TPS is a convenient method to interpolate
vignetting in between.

3.2.3 Attenuation Model

Following Eq. 3.1, knowing the exposure ratio k and CRF f(·) allows us to calculate
an attenuation factor su for the observed pixel in the current image:

su = L̃p/ (kf -1 (Iu)) . (3.7)

This simplifies with constant exposure and identity mapping (f(I) = I) to:

su = Ĩu/Iu ∝ V (u) . (3.8)

Intuitively, a factor greater than one means the pixel is brighter; smaller than one
means darker.
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We use a TPS to model local attenuation factors w.r.t. the normalized color image
coordinates from [0, 1]2 ∈ Ω. Due to the excellent fill-in property and the minimal
bending energy of these splines, this works even with scattered, sparsely distributed
data—in our case, the correction factors and corresponding image positions—while
giving smooth function approximations with a small number of coefficients.

We use N radial basis functions (RBFs) ϕ(r) placed at control points di ∈ Ω and
the polynomial q(u) with coefficients v ∈ R3:

ϕ (r) = r2 · ln (r) , (3.9)

q (u) = v⊺ ·

1
u

 , (3.10)

to define the following two-dimensional polyharmonic TPS with coefficients c ∈ RN :

h(u) = q (u) +
N∑

i=1
ci · ϕ (∥u− di∥) . (3.11)

Here, u is the data point—a pixel coordinate. The parameters c control the influence
of the RBF, while v aids the approximation as a polynomial. One advantage of the
TPS is the lack of parameters that have to be tuned since c,v are calculated from
the given image positions u and the desired function values, the correction factors su.
Furthermore, a TPS is far more flexible than a polynomial with the same number of
coefficients.

In the case of interpolation, one seeks to find the coefficients [c,v]⊺ s.t. the following
equations are satisfied:

si = h (ui) , 1 ≤ i ≤ M . (3.12)

Since the interpolation would require as many RBFs (N ) as there are data points
(M ), this cannot be used efficiently online. Instead, we approximate the underlying
function using a grid with a small fixed number of N = J × K control points:

arg min
c,v

M∑
i

∥h (ui) − si∥2 . (3.13)

On each control point di, one RBF is placed statically. We typically choose Qa, Qb ∈
{3, . . . , 7}, but other choices and different grids are possible as well. Adding the
following conditions:∑N

i
ci = 0,

∑N

i
ci · di,x = 0,

∑N

i
ci · di,y = 0, (3.14)

ensures the approximation of the polynomial q(·).
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To minimize the least-squares error function Eq. 3.13 such that Eq. 3.14 is satisfied,
we have to solve the augmented system of equations, stated in matrix form as:A X

D 0

c
v

 =

s
0

 , (3.15)

A =


ϕ (|u1 − d1|) . . . ϕ (|u1 − dN |)

... . . . ...
ϕ (|uM − d1|) . . . ϕ (|uM − dN |)

 , (3.16)

X =


1 u1
...

...
1 uM

 , D =

 1 . . . 1
d1 . . . dN

 . (3.17)

This over-determined system (M ≫ N) may be solved with the conjugate gradient
(CG) method. In contrast to a QR-decomposition, CG allows the use of an initial
solution, e.g., from a previous run, speeding up online computation. This simplifies
the usage of iterative reweighted least squares (IRLS) (Holland and Welsch, 1977)
for outlier rejection with sufficient data points.

Regarding the vignetting correction, we replace the polynomial in Eq. 3.11 with
the sixth-order even RP of Goldman and Chen (2005) placed at the center of the
unit square dm and normalization factor

√
2:

q (r) = 1 +
∑3

i=1
vi · r2i, (3.18)

h (u) = q
(√

2 ∥u− dm∥
)
+

N∑
i=1

ci · ϕ (∥u− di∥) . (3.19)

The polynomial q(·) matches the general form of the vignetting function, whilst the
RBFs cover higher-order and local deformations.

3.2.4 Camera Response Function

We employ a one-dimensional TPS with a linear function (Eq. 3.10) for the camera
response. Since the CRF f(·) needs to interpolate from zero to one, we add constraints
that enforce f(0) = 0 and f(1) = 1 and distribute the Q control points equidistantly
over the whole domain [0, 1]. This corresponds to a partial differential equation (PDE)
with Laplace Equation (∇2f = 0) and Dirichlet boundary conditions (Chen, 1992),
the solution of which is obtained by solving a linear system of equations.

A problem-specific function for q(·) increases the TPSs’ fitting accuracy further
compared to the polynomial (Eq. 3.10). Hence, we employ the nth-order generalized
gamma curve model (GGCM) by Ng et al. (2007):

pf (L) =
∑n

i=0
vi · Li, (3.20)

fGGCM (L) = Lpf (L), (3.21)

gGGCM (I) = I1/pf (I). (3.22)
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We propose two new CRF model functions based on the GGCM. Firstly, we use
the model fGGCM(·) and add several polyharmonic TPSs. We term this model
GGCM+TPS. Secondly, we use the GGCM model with a more variable TPS instead
of the polynomial in Eq. 3.20 and name this model GGCMTPS.

This results in the following functions:

fTPS (L) =
Q∑

i=1
ci · ϕ (|L − di|) , (3.23)

fGGCM+TPS (L) = fTPS (L) + Lpf (L), (3.24)

fGGCMTPS (L) = L(pf (L)+fTPS(L)). (3.25)

We do not choose the function gGGCM(·) due to the inversion of the polynomial.
The reader may note that gGGCM(·) is not the correct inverse of fGGCM(·), except for
a pure gamma curve (n = 0). Nevertheless, given an estimate of the polynomial, it is
easy to calculate a corresponding gGGCM(·). Once an updated CRF model is available,
we sample the CRF equidistantly and optimize for the parameters of the inverse
model f -1(·) using gGGCM(·). So far, we have not seen the necessity of explicitly
enforcing monotonicity, as the results were monotone with Q ∈ [5, 20] control points.
However, Utreras and Varas (1991) give an alternative method for monotone TPS.

3.2.5 Image Correction

Given the solution to Eq. 3.13, we obtain the fitted TPS by evaluating Eq. 3.19 for
each pixel. To remove the vignetting, the inverse CRF needs to be applied to the
pixel intensity, followed by multiplication with the inverse attenuation factor and
exposure time:

Ĩu = f -1 (Iu) / [V (u) · k] . (3.26)

Here, Ĩu denotes the corrected pixel intensity. For 8-bit images, a look-up-table (LUT)
for f -1 ∈ [0, 255] can be easily obtained due to the strict monotonicity of the CRF. The
inverse attenuation factors V (u)-1 require pixelwise evaluation of the TPS only once.
Since vignetting is only estimated up to scale, the division of pixelwise attenuation
factors by the maximal attenuation ensures the factor’s unit range.

3.2.6 Keyframe-based Photometric Calibration

Incremental refinement optimizes the photometric calibration from a number of
keyframes. Here, we update the entire parameter set in a way similar to Bergmann
et al. (2018). Given an initial guess for the radiance Lp, the vignetting V (u), the
exposure time k, and the CRF f(·), the global photometric optimization jointly
minimizes the difference between the measured image intensity Iu and the righthand
side of Eq. 3.1 all involved parameters:

arg min
ψ,k,Lp

N ,M ,O∑
i,j,o=1

ρ
(
∥wj [I (uj) − fψ (kiVψ (uj)Lpo)]∥

2
)

. (3.27)
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Figure 3.3: Results of the proposed CRF-models for varying polynomial degrees n = {0, 1, 5}.
Dashed curves show runtime according to right-hand axis label. Lower values are
better (↓).

Here, N denotes the number of keyframes, M is the number of observations, e.g.,
25 pixels per patch, and O is the number of map points. The robust Huber loss ρ

with α = 0.2/255 reduces the influence of outliers (Triggs et al., 2000). An additional
weighting term wj with η = 1:

wj =
η

η + ∥∇I (uj)∥2 (3.28)

downweighs high gradient pixels. Removal of blank (0) and saturated pixels (255)
prevents biasing the optimization towards the start and end of the value range where
pixel values don’t allow for fine gradation. The remaining pixel values are scaled to
the floating-point unit range for further processing.

Exposure time evaluation for individual frames requires the current radiance
estimate of the Õ tracked map points:

arg min
k

M ,Õ∑
j,o=1

ρh


∥∥∥∥∥∥wj

k · Lpo −
f -1
ψ

(
Iuj

)
Vψ (uj)

∥∥∥∥∥∥
2 . (3.29)

As global photometric optimization is infeasible under real-time constraints, we refine
the exposure time k of a keyframe and the radiance of all its tracked and newly created
map points Lp on their creation. The refinement (Eq. 3.27) runs asynchronously upon
keyframe creation once a certain number of keyframes exist.

In contrast to the depth calibration of Quenzel et al. (2017), we do not rescale
keyframes to remove vignetting within our SLAM system due to the properties of
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Figure 3.4: The RMS error (RMSE) and runtime results of the proposed CRF-models for
varying number of additional parameters. Lower values are better (↓).

features like ORB (Rublee et al., 2011). Such features are designed to be robust against
small brightness variations. Hence, we assume the influence for feature-based SLAM
to be small and do not perform the costly feature extraction a second time. However,
the recomputation of feature descriptors on corrected images is a viable solution.
For (semi-)direct methods, where the fundamental assumption is constant brightness
between corresponding pixels, vignetting removal improves the accuracy (Engel et al.,
2016), and rescaling is suggested.

3.3 Evaluation

First, we test our approach on the RGB-D sequences of the synthetic ICL-
NIUM (Handa et al., 2014) dataset with modified vignetting and sinusoidally varying
exposure times. Afterwards, our evaluation uses real-world sequences captured by a
stereo rig attached to a UAV. The rig consists of two synchronized FLIR Blackfly S
BFS-U3-51S5 color cameras with a resolution of 2448 × 2048 px and calibrated with
Kalibr (Furgale et al., 2013). During our experiments, we activated auto exposure
without gain and recorded the images at 22 Hz as well as the cameras’ exposure
times for ground-truth evaluation.

We compare our results on real-world sequences against the methods by Engel
et al. (2016), Alexandrov et al. (2016), and Bergmann et al. (2018). These sequences
were captured in a lab and a hallway with stonework. All algorithms were running
on an Intel Core i7-6700 HQ with 32 GB RAM with Ubuntu 16.04. Vignetting and
CRF calibration start after the tenth keyframe becomes available. The control points
are set on a 4 × 5 regular grid to incorporate the image’s aspect ratio.

3.3.1 Camera Response Function

The DoRF dataset (Grossberg and Nayar, 2004) provides 201 response curves of real
cameras. To evaluate our TPS-CRF, we perform a least squares fit for each camera
using the Ceres-Solver (Agarwal et al., 2022) and compute the RMSE for each CRF.
For selected configurations, we report the RMSE and the running time in Fig. 3.3 and
Fig. 3.4. We limit the number of tested TPS parameters to 20 and the polynomial
order to 15 and evaluate three different CRFs: TPS with polynomial q(·) as well as
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Figure 3.5: Cumulative histogram of the pairwise Manhattan distances between fused points
after dense reconstruction using COLMAP (Schönberger et al., 2016) on the
ICL-NUIM dataset. A higher curve is better.

with the GGCM (Eq. 3.21), denoted as TPS + GGCM, and a modified GGCM in
which a TPS replaces the polynomial, denoted as GGCMTPS. Prior to optimization,
the initialization sets all functions to interpolate between zero and one linearly.

We showed that all the presented models can successfully fit real-world camera
response functions—even though the total number of parameters increases with addi-
tional TPSs. Nevertheless, a trade-off exists between the number of TPS parameters
and the time required to fit a higher-order polynomial model. By adding a number of
TPS, we can lower the polynomial degree and obtain a better RMSE while using less
time to fit the model.

The combination of TPS + GGCM provides the best results, followed by
GGCMTPS, while the classical TPS performs worst and takes the longest to
optimize. We attribute the accuracy of TPS + GGCM compared to only GGCM to
the additional flexibility of the TPSs. The deficit of the original TPS stems from
the polynomial, which is not an appropriate model for Gamma-like curves. Still, it
reaches the same error as GGCM (n = 15) with 60 control points while taking three
times longer.

3.3.2 Vignetting Correction

We perform multiple experiments with different vignetting masks. The first vignetting
mask is the ideal case with a pure sixth-order RP (Eq. 3.18) originating from the
image’s center. The second vignetting mask has a randomly shifted origin while
the third mask contains slight deformations from locally consistent noise. Here, we
compare a pure polynomial against a TPS (Quenzel et al., 2019) and our combination
(Eq. 3.19).

We employ the MVS pipeline of COLMAP (Schönberger et al., 2016) to create a
dense reconstruction given previously selected keyframes. The reconstruction runs
separately on the original, the modified, and the corrected image sets. The modified
images exhibit alterations for vignetting and synthetic sinusoidal exposure changes
as described above. We applied our estimated correction on these images to obtain
the corrected set. Figure 3.5 visualizes the difference in mean Manhattan distance
between fused points of the reconstruction. A smaller distance is preferable since
correspondences in multiple images should be similar. The reconstruction from



3.3 Evaluation 33

Table 3.1: RMSE of vignetting, exposure and mean improvement of consistent feature matches
on Monte Carlo sampled synthetically deteriorated sequence of ICL-NUIM (Handa
et al., 2014) without loop closure. Second and best are highlighted.

Model RP TPS TPS + RP

Vignetting RMSE (↓) 0.0527 0.0473 0.0462

Exposure RMSE (↓) 0.0419 0.0347 0.0335

Improvement [%] (↑) 11.60 13.25 11.98

-0.1

0

0.1

0.1

0

-0.1
a) b) c)

Figure 3.6: Difference between original and corrected image for image 858 from ICL-NUIM
living room 2 (Handa et al., 2014). a) Vignetting is evident in the modified image.
b) Our correction successfully reduces vignetting, exposure change, and removes
the response function. c) The estimated exposure is too high using the method of
Bergmann et al. (2018).

corrected images follows the original graph closely for small differences (< 10),
whereas the modified sequence exhibits significant differences.

We further deteriorated the vignetting by moving its origin away from the image
center and added low spatial-frequency noise. We jointly optimized the vignetting
and the exposure time on the same keyframes and computed the RMSE. We repeated
this procedure one hundred times for the sixth-order RP (Eq. 3.18), the original
TPS (Eq. 3.11), and our radial TPS (Eq. 3.19). The results are shown in Tab. 3.1. As
expected, our radial TPS performs best, followed by the original TPS and the radial
polynomial. An improved vignetting estimate simultaneously reduces the difference
between estimated and correct exposure time. However, increasing the number of
TPSs reduces the RMSE at the expense of increased optimization and run time. After
optimization, we correct all keyframes and recompute feature descriptors and matches.
The ground-truth poses allow checking the matches’ consistency. Surprisingly, the
number of correct correspondences increases after our compensation by around 12 %,
improving the overall system accuracy. Most newly found correspondences were
previously slightly above the matching threshold due to the image deterioration.

3.3.3 Synthetic Datasets

A drawback of the previously mentioned TPS-CRF is its missing closed-form invert-
ibility. Hence, we choose to use the GGCMTPS as our CRF model for the integrated
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Table 3.2: RMSE of all optimized parameters on synthetically deteriorated sequence of ICL-
NUIM (Handa et al., 2014) w/o loop closure. Lower values are better (↓) with
second and best highlighted.

Model
CRF GGCMT P S Bergmann

et al.
Vignetting RP TPS TPS + RP

RMSE
Exposure 0.0749 0.0331 0.0292 0.1761

Vignetting 0.0559 0.0381 0.0367 0.1029

CRF 0.0309 0.0268 0.0210 0.1468

RMSE10 Exposure 0.0186 0.0127 0.0141 0.0567

tests on the synthetic and real-world datasets, which is also relatively fast to optimize.
The TPS uses five control points and a second-degree polynomial. We evaluate all
three vignetting models and use a grid size of 4 × 5 for the TPS. Table 3.2 reports
the corresponding RMSE for the exposure ratio, CRF, and vignetting. Additionally,
we compare the approach of Bergmann et al. (2018) with default parameters and
the number of active frames set to the sequence length. As evident in the visualiza-
tion of the difference between original and corrected estimates in Fig. 3.6 (right),
the result exhibits strong drift in the exposure estimate. Hence, we also report the
RMSE10 over a smaller window of ten frames. We attribute our improvement to
the joint optimization, in contrast to alternating between radiance and photometric
parameters.

3.3.4 Real-World Datasets

We followed the prescribed calibration procedures for the methods of Engel et al.
(2016) and Alexandrov et al. (2016). Figure 3.7 visualizes the corresponding inverse
CRF curves. During our tests, we found the white-paper method to be sensible to
lighting conditions, such as mixtures of artificial and natural light. The method by
Engel et al. may produce non-monotonic camera response functions.

Without knowledge about the absolute radiance, exposure time estimation is only
up to scale (Bergmann et al., 2018). Hence, we show the exposure ratio, e.g., relative
to the first image ki

k0
, in Fig. 3.8 for the first stereo camera on the lab sequence. We

align the estimates from our method (green dots) and the approach by Bergmann
et al. (2018) (red dots) with least-square fits considering the exponential ambiguity
for unknown CRF and a multiplicative factor for the exposure ratio as proposed by
Bergmann et al. The results are similar for the second camera but excluded here for
brevity.

The sample texture in Fig. 3.9 extracted from the wall sequence shows clear
visual improvements. The seams disappear, and the colors become more uniform and
consistent.
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Figure 3.8: Exposure ratios on the lab sequence for one camera. The estimated ratio of the
keyframes (dots) follows accurately the real exposure ratio of the camera. Shown
are the optimized keyframe estimates.
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a) b)

Figure 3.9: Reconstructed texture of a brick wall. The uncorrected approach exhibits bright-
ness differences. Our corrected approach shows substantial improvement.

3.4 Summary

In this chapter, we presented a fast and easy-to-use photometric calibration method
and verified our key claims. Our system enables accurate joint optimization of
radiance, vignetting, and camera response in real-time without the need for white or
evenly illuminated surfaces, calibration targets, or known scene geometry. For this,
we obtain oriented patches centered at the keypoint’s location from matched ORB
features. These sparsely distributed samples are sufficient to optimize all photometric
parameters on a set of keyframes. Our fast exposure estimation further computes
the exposure ratio for every other frame. We employ thin plate splines with a sixth-
order radial polynomial to approximate the attenuation factors w.r.t. the image
position and to obtain pixelwise vignetting correction factors. The TPS captures
local deformations within the vignetting that are unhandled by the sixth-order radial
polynomial. Similarly, we improve the CRF modeling quality of Gamma curve models
with a TPS as verified on the DoRF CRF dataset (Grossberg and Nayar, 2004).

Our method outperformed competitors on publicly available synthetic and our real-
world sequences. Moreover, feature matching quality and image similarity improve
after compensation, reducing seams and borders between fused images and enabling
more accurate reconstruction in MVS applications. The experimental results further
substantiate that the calibration converges quickly and effectively corrects vignetting
and likewise estimates the camera response function, exposure times, and scene
radiance. The fitting approach works well with different models of varying complexity
and, thus, allows us to cover non-standard camera configurations as well. Due to its
straightforward implementation and fast convergence, our contribution can serve as
a general initialization stage for robot vision algorithms on mobile platforms, which
can then quickly adapt to the current camera setup.



4
Gradient-based Dissimilarity

Pose estimation and map building are key ingredients for autonomous mobile robots
or other intelligent vehicles and require the registration of sensor data, e.g., of camera
images or LiDAR point clouds. For sequential images, visual odometry (VO) refers
to the estimation of the camera’s trajectory with several approaches present in the
literature (Kerl et al., 2013b; Engel et al., 2014; Forster et al., 2014; Mur-Artal
and Tardós, 2017; Engel et al., 2018). The gold standard for computing the relative
orientation between two monocular images of a calibrated camera is Nister’s 5-point
algorithm (Nistér, 2004), which calculates the 5-DoF transformation from five feature
correspondences. In practice, it is preferable (Moulon et al., 2013, 2016) to use more
points and combine random sample consensus (RANSAC) with the 5-point algorithm
and a subsequent least-squares inlier refinement step. Although features are by design
resilient against changes in the intensity values of the images, for example, caused by
variations in illumination, their extraction can be a time-consuming operation while
images commonly contain only a sparsely distributed set of features.

Direct alignment is an alternative approach using comparisons of the pixel intensity
values within the image pair instead of explicit feature correspondences since the
intensity values of each pixel are directly accessible raw measurements. One often
distinguishes depending on the amount of compared pixels between semi-dense (Forster
et al., 2017; Park et al., 2017; Engel et al., 2018) and dense methods (Newcombe et al.,
2011b; Kerl et al., 2013a). Most direct methods consider the so-called photometric
consistency of the image as the objective function to optimize. Similarly, the direct
approach has applications in stereo matching or multi-view stereo (MVS) to estimate
the scene depth from pairs or multiple images. Achieving robustness is a key challenge
for direct approaches because slight variations in illumination, of the camera exposure,
due to vignetting, or motion blur directly affect the intensity measurements, as
visualized in Fig. 4.1. Reliable and accurate estimates of VO and depth estimation
are important for real-world applications especially in diverse environments.

In this chapter, we address the problem of robustifying the direct alignment of
image pairs through a new dissimilarity metric for registering images that builds
up on the idea of the photometric error and directly improves depth estimates and
alignment of image sequences. Our approach (Quenzel et al., 2020) combines a
gradient orientation-based metric proposed by Haber and Modersitzki (2006) with a
magnitude-dependent scaling term. We furthermore integrate our metric into four
different stereo estimation and VO systems [OpenCV, MeshStereo (Zhang et al.,
2015), DSO (Engel et al., 2018), and Basalt (Usenko et al., 2020)] to show that our
metric leads to improvements.

37
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Figure 4.1: Matching cost comparison on ICL-NUIM (Handa et al., 2014): Disparity estimation
against the same image with slight vignetting and different exposure time results
in large disparity errors (yellow) for most cost functions. The circle in ephoto
occurs where vignetting and exposure change cancel out.

In summary, we thoroughly evaluate our gradient-based dissimilarity to support our
key claims, which are:

• First, our proposed metric is better suited for stereo disparity estimation than
existing approaches.

• Second, it is also well-suited for direct image alignment.

• Third, our metric can be integrated into existing VO systems and increase their
robustness while running at the frame rate of a typical camera.

Thus, the metric improves camera pose estimation and, in turn, the mapping capabil-
ities of mobile robots. Our experimental evaluation indicates that our metric leads
to more robust and more accurate estimates of the scene depth in typical disparity
tasks as well as camera trajectories from direct image registration.

We believe that a series of existing VO and Visual-SLAM (VSLAM) systems can
benefit from our findings reported here.
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Preface

This chapter is adapted from Quenzel et al. (2020), previously published by IEEE
and presented at the International Conference on Robotics and Automation (ICRA
2020).

Statement of Personal Contribution

“The author of this thesis [Jan Quenzel] substantially contributed to all aspects
of the previous publication (Quenzel et al., 2020), including the conception,
literature survey, design, and implementation of the proposed methods, the
preparation and conduct of experiments and evaluation of the proposed approach,
conducting the experimental evaluation, the analysis and interpretation of the
experimental results, drafting the manuscript, as well as the revision and final
approval of the version to be published.“

4.1 Related Work

There has been extensive work to improve the robustness of VO and VSLAM methods
to ensure photometric consistency under changing illumination. Typically, feature-
based methods are more resilient towards such variations as descriptor designs aim
for discernability even under severe changes, across seasons, and for invariance
of camera type. SIFT (Lowe, 2004) is the method of choice for structure-from-
motion (SfM) (Schönberger and Frahm, 2016), but it often comes with a prohibitive
computational cost for real-time applications. Nevertheless, PTAM (Klein and Murray,
2007) using features from accelerated segment test (FAST) keypoints (Rosten and
Drummond, 2006) and ORB-SLAM (Mur-Artal et al., 2015; Mur-Artal and Tardós,
2017; Campos et al., 2021) exploit binary descriptors (Calonder et al., 2010; Rublee
et al., 2011) to perform feature-based VSLAM in real-time.

With a good initial guess, direct methods can obtain more accurate estimates of
the camera trajectory (Engel et al., 2018) than feature-based approaches, as they
exploit more intensity measurements of the images. Hence, BundleFusion (Dai et al.,
2017) initializes and constrains dense alignment using features. A popular approach,
e.g., used by Schneider et al. (2012), initially extracts GoodFeaturesToTrack (Shi
and Tomasi, 1994) based on the Shi-Tomasi-Score and continues alignment with
the optical flow Kanade–Lucas–Tomasi tracker (KLT) tracker (Tomasi and Kanade,
1992) which operates directly on the intensity values of extracted patches. Similarly,
Basalt (Usenko et al., 2020) estimates the optical flow for patches at FAST keypoints
by minimization of the locally scaled intensity differences.

A further popular method for motion estimation from camera images is
LSD-SLAM (Engel et al., 2014). For robustness, the authors use the Huber
norm (Huber, 1964) during motion estimation and map creation while minimizing
a variance-weighted photometric error. LSD-SLAM creates in parallel the map
for tracking by searching along the epipolar lines, minimizing the sum of squared
differences (SSD). For the stereo version, Engel et al. (2015) alternate between
estimating a global affine function to model changing brightness and optimizing the
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relative pose during alignment. As an alternative, Kerl et al. (2013b) propose to
weight the photometric residuals with a t-distribution that better matches the RGB
and depth (RGB-D) sensor characteristics. Engel et al. (2018) furthermore proposed
with direct sparse odometry (DSO) a sparse-direct approach that further incorporates
photometric calibration if available or estimates affine brightness changes. They
maintain an information filter to jointly estimate all involved variables.

Pascoe et al. (2017) proposed to use the normalized information distance (NID)
metric for direct monocular VSLAM. NID works well even for tracking across seasons
and under diverse illumination. However, the authors reportedly prefer the photo-
metric depth estimation for a stable initialization and only use NID after revisiting.
Furthermore, Park et al. (2017) presented an evaluation of different direct alignment
metrics for VSLAM. They favored the gradient magnitude due to its accuracy, robust-
ness, and speed, while the census transform provided more accurate results at a much
larger computational cost. Common in stereo matching are the absolute gradient
difference combined with the photometric error, e.g., in StereoPatchMatch (Bleyer
et al., 2011), and the census transform, e.g., in MeshStereo (Zhang et al., 2015).

In our work, we improve the gradient orientation-based metric of Haber and
Modersitzki (2006) by introducing a magnitude-dependent scaling term to match
gradient magnitude and orientation simultaneously. We apply this to solve direct
image alignment for VO as well as semi-dense disparity, and depth estimation. We
integrated our metric in two stereo-matching algorithms as well as two VO systems.
Hence, we evaluate and compare the metric against existing approaches on two stereo
estimation and VO datasets.

After the original publication (Quenzel et al., 2020), the introduction of vision
transformer (ViT) (Dosovitskiy et al., 2021) and large-scale datasets (Li and Snavely,
2018; Wang et al., 2019; Reizenstein et al., 2021; Arnold et al., 2022) led to more
accurate learned models for monocular as well as MVS depth estimation. In general,
MVS methods (Wang et al., 2024a) replaced classic dissimilarity metrics with learned
feature extraction like the feature pyramid network (FPN) (Lin et al., 2017) in
CasMVS (Gu et al., 2020), the pretrained DINOv2 (Oquab et al., 2024) in MVS-
Former++ (Cao et al., 2024) or the CroCo-v2 architecture (Weinzaepfel et al.,
2023) in DUST3R (Wang et al., 2024c). Newer methods like the Large Reconstruc-
tion Model (LRM) (Wei et al., 2024; Xie et al., 2024; Zhang et al., 2024a) and
DUST3R/MASt3R (Leroy et al., 2024; Wang et al., 2024c) remove the explicit cost
volume computation. In contrast, the training of recent monocular methods still uses
primarily supervised disparity (Ranftl et al., 2022) or log-depth (Bhat et al., 2023)
losses, e.g., with MAE/MAD after scale and shift alignment. However, additional
image gradient matching losses in MiDaS (Ranftl et al., 2022) lead to improved
depth prediction. The authors of DepthAnything v2 (Yang et al., 2024) and Depth
Pro (Bochkovskiy et al., 2025) further emphasize the importance of gradient matching
losses to learn fine-grained details from synthetic data.

In radiance field-based reconstruction, photometric rendering losses are the standard
in neural radiance field (NeRF) (Mildenhall et al., 2021) and Gaussian splatting
(GS) (Kerbl et al., 2023; Huang et al., 2024). NeRF methods usually employ random-
sampled rays as the high computational cost of the volumetric rendering is a limiting
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factor. The number of rays used per training iteration1 is, thus, small relative to the
total number of rays required for inference of a full image. As a result, patch-based
losses remain the exception (Xie et al., 2023) in NeRF methods, even though Wu
et al. (2025) recently demonstrated improved depth and view consistency.

In contrast, GS commonly includes the patch-based (D-)SSIM loss as the full image
rendering works at high frame rates, even on commodity graphic cards. However, the
structured similarity index measure (SSIM) tends to underestimate blur (Liu et al.,
2012; Xue et al., 2014), which leads to fainter edges in images. Here, image gradient
losses can potentially improve the quality of GS, similar to the aforementioned works
on monocular depth estimation.

As discussed in the previous Sec. 3.1, the photometric error remains important
in visual-inertial odometry (VIO) for KLT tracking (Geneva et al., 2020; Usenko
et al., 2020; Luo et al., 2022; Huai and Huang, 2024; Lin and Zhang, 2024) or direct
image alignment (Miao et al., 2022; Dexheimer and Davison, 2024), especially in
real-time scenarios and on constrained compute platforms. Moreover, the tracking
within modern RGB-D-simultaneous localization and mapping (SLAM) (Zhu et al.,
2022b; Liso et al., 2024; Yan et al., 2024) involves combinations of geometric and
photometric losses for rendered depth and intensity.

However, our image gradient losses remain applicable for the benefit of the respective
vision systems.

4.2 Our Method

Our approach provides a new metric for pixelwise matching and is easy to integrate
into existing visual state estimation systems. The metric measures the image gradient’s
orientation while also taking its magnitude into consideration. A pixel has image
coordinates u = (ux, uy)⊺ in the image domain Ω ⊂ R2. We aim to find for a pixel
ui in image i the corresponding pixel uj in image j that minimizes a dissimilarity
measurement e (ui,uj).

4.2.1 Photometric Dissimilarity Measures

At first, we detail common metrics (Park et al., 2017). In direct image alignment,
image i is the current frame and j a previous (key-) frame, while they correspond to
the left (i) and right image (j) in stereo matching.

The simple error function ephoto assumes photometric consistency of the image
intensity:

ephoto (ui,uj) = Ii (ui) − Ij (uj) . (4.1)

Instead, more robust versions rely on the intensity gradient ∇I:

egm (ui,uj) = ∥∇Ii (ui)∥ − ∥∇Ij (uj)∥ , (4.2)
egn (ui,uj) = ∇Ii (ui) − ∇Ij (uj) . (4.3)

1 Mildenhall et al. (2021) use only 4096 random sampled rays, whereas Instant-NGP (Müller et al.,
2022) processes up to 105 k.
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While egm prefers pixels with similar gradient magnitude GM, it disregards the gra-
dient direction. Instead, the gradient difference egn incorporates both magnitude and
orientation. In practice, many stereo algorithms like the popular PatchMatch (Bleyer
et al., 2011) combine the photometric error with the ℓ1-norm of the gradients differ-
ence:

epm(ui,uj) = (1 − α)|ephoto(ui,uj)| + α ∥egn(ui,uj)∥ℓ1
. (4.4)

Another common approach (Scharstein and Szeliski, 2002; Hirschmüller, 2011) is
cross-correlation over a fixed-size window W ∈ Ω centered at pixel u. A notable
example is normalized cross-correlation (NCC) (Schönberger et al., 2016; Park et al.,
2017):

encc(ui,uj) =

∑
a∈Wi,b∈Wj

(Ii(a) − IWi)(Ij(b) − IWj )√∑
a∈Wi

(Ii(a) − IWi)
√∑

b∈Wj
(Ij(b) − IWj )

, (4.5)

with IW being the mean intensity of window W .

4.2.2 Normalized Gradient-based Dissimilarity Measure

Aligning the gradient’s orientation is a complementary approach. A naïve method
may use the costly atan-operation to compute the orientation angle θ and simply
calculate differences. Instead, the dot product provides a more efficient solution due
to its relation to the cosine as a measure of orientation (Haber and Modersitzki,
2006; Taylor et al., 2015). The cosine of the angle cos θ between two unit vectors
a, b equals the dot product a · b, which is zero for perpendicular vectors, one for
the same and minus one for opposite orientation. Simple normalization using the
gradient’s magnitude adversely enhances noise in low-gradient regions such that the
noise predominates the orientation. Hence, Taylor et al. (2015) employ normalization
over a window W :

egom (ui,uj) = 1 −
∑

u∈W |∇Ii (ui) · ∇Ij (uj)|∑
u∈W ∥∇Ii (ui)∥ ∥∇Ij (uj)∥

. (4.6)

Instead, we regularize the magnitude by a parameter ε, as in Haber and Modersitzki
(2006):

ε =
1

|Ω|
∑
u∈Ω

∥∇I(u)∥2 , (4.7)

∇εI =
∇I√

∥∇I∥2 + ε
. (4.8)

Here, ε downweighs low gradient regions towards a magnitude close to zero. We
compute ε on a per-image basis and will use ε and ϑ to make the distinction between
different images (e.g., i, j) more visible. Haber and Modersitzki (2006) minimize the
per-pixel error engf ∈ [0, 2]:

engf (ui,uj) = 1 − [∇εIi(ui) · ∇ϑIj(uj)]
2 . (4.9)
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eugf esgf

a) b)

Figure 4.2: Association impact. a) engf and eugf tend to match patches with similar gradient
orientation but stronger magnitude. This can cause severe distortions in the
3D reconstruction. b) Associating patches with similar gradient orientation and
magnitude using esgf allows for correct triangulation.

The squared dot product, or even its absolute value, results in gradients that coincide
with the same as well as opposite orientation. This is a desirable property in multi-
modal image registration, e.g., to register MRT against CT data or vice versa when
image gradients have opposite directions.

However, the error engf promotes matching low-gradient pixels with higher ones
rather than similar gradients. During depth estimation, matching against the largest
magnitude edge skews the search region when successively reduced or directly produces
inconsistent depth estimates with high reprojection errors, as visualized in Fig. 4.2.

When we use images from the same sensor type, we omit the square which results
in the uni-modal residual eugf ∈ [0, 2]:

eugf(ui,uj) = 1 − ∇ϑIj (uj) · ∇εIi (ui) . (4.10)

To ensure the correct behavior for smaller gradients, as visualized in Fig. 4.3, we scale
the dot product by the maximum of both regularized gradients squared ℓ2-norm:

esgf(ui,uj) = 1 − ∇ϑIj (uj) · ∇εIi (ui)

max
(
∥∇εIi (ui)∥2 , ∥∇ϑIj (uj)∥2 , τ

) , (4.11)

with a small constant τ to prevent division by zero. For regularized gradients with
equal magnitude (∥∇εIi (ui)∥ = ∥∇ϑIj (uj)∥), this reduces to 1 − cos(θ) with unit
vectors. Otherwise, the dot product in the numerator will be smaller than the larger
squared magnitude in the denominator, even for codirectional gradients, which results
in a higher error esgf compared to matching with a similar magnitude. Hence, the
scaling term of SGF should increase the number of successfully estimated points in
semi-dense depth estimation.

We derive two additional combinations of magnitude and orientation with the
aim of simplifying the mathematical operations in the above equation and ideally
removing the division in Eq. 4.11:

sij(ui,uj) =
∥∇ϑIj (uj)∥
∥∇εIi (ui)∥

∥∇Ii (ui)∥2 , (4.12)

sji(ui,uj) =
∥∇εIi (ui)∥
∥∇ϑIj (uj)∥

∥∇Ij (uj)∥2 , (4.13)

esgf2(ui,uj) = max (sij (ui,uj) , sji (ui,uj)) − ∇Ij (uj) · ∇Ii (ui) , (4.14)
esgf3(ui,uj) = ∥∇Ii (ui)∥ ∥∇Ij (uj)∥ − ∇Ij (uj) · ∇Ii (ui) . (4.15)
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Figure 4.3: Error comparison for various metrics on a toy example. The lower boxes (3rd-6th
row) show the respective error between the green reference and a shifted window
along the red horizontal line. eugf prefers strong edges with same orientation,
while egm does not take the orientation into account and thus generates further
local minima. Our esgf provides the correct minima which are marked with a
green circle.
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4.2.3 Stereo Matching and Direct Image Alignment

Given our gradient-based dissimilarity functions, we will now formulate the stereo
matching and direct image alignment problems.

Stereo matching aims to find for each pixel ui in frame i the corresponding pixel uj

in frame j that minimizes a dissimilarity measurement e (ui,uj). Then, the disparity
d is the distance along the x-axis of a stereo-rectified left and right image pair (Il, Ir):

ur (ul, d) = ul − (d, 0)⊺ , (4.16)

d∗
u = arg min

d∈R

∑
ul∈W

e (ul,ur (ul, d)) . (4.17)

Instead of a single pixel, stereo matching uses a patch Wu centered around the pixel
u with window size w to improve robustness.

Direct image alignment seeks the transformation Tcr that registers the reference
with the current image optimally w.r.t. an error metric e between a reference pixel-
patch Npr around pr and its projection onto Ic:

Tcr = arg min
∑
pr∈M

∑
pk∈Npr

ρ
(
∥e (pi)∥2

)
. (4.18)

A robust cost function ρ, like the Huber norm (Huber, 1964), reduces the impact of
outliers on the solution. Standard Gauss-Newton (GN) (see Sec. 2.2) solves Eq. 4.18
iteratively and requires the Jacobians for e w.r.t. the projected pixel uc in the current
image Ic.

With the Hessian (∇2) Ii of the intensity at pixel ui, the Jacobians for esgf is:

s1 = ∇ϑIj (uj) · ∇εIi (ui)

−1, if ∥∇ϑIj∥2
>∥∇εIi∥2

1 − 2
∥∇εIi∥ , otherwise

(4.19)

∂esgf
∂ui

= − (∇ϑIj + s1∇εIi)
⊺

max (∥∇εIi∥ , ∥∇ϑIj∥)
(∇2) Ii

∥∇Ii∥ε

. (4.20)

For esgf2, esgf3, the Jacobians are:

s2 =


∥∇ϑIj∥
∥∇εIi∥

(
2 − ∥∇Ii∥2

∥∇Ii∥2+ε

)
, if sij>sji

∥∇εIi∥
∥∇ϑIj∥

∥∇Ij∥2

(∥∇Ii∥2+ε)
, otherwise

, (4.21)

∂esgf2
∂ui

= (s2∇Ii − ∇Ij) (∇2) Ii, (4.22)

∂esgf3
∂ui

=

(1
2

∥∇Ij∥
∥∇Ii∥

∇Ii − ∇Ij

)
(∇2) Ii. (4.23)

4.3 Evaluation

The design of our first experiment illustrates the influence of small image variations
on our robust metric in Fig. 4.1. We used images from sequence “lr kt2” of the ICL-
NUIM (Handa et al., 2014) dataset with adapted exposure time and added vignetting
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Table 4.1: Evaluation on Middlebury Stereo 2014 training set (Scharstein et al., 2014). Lower
values are better (↓) with second and best highlighted.

Orig. esad eagm epm esgf

St
er

eo
B

M

mean 7.20 5.80 6.31 4.56 3.29

bad 1 18.36 20.51 21.33 17.19 12.60

bad 2 16.41 17.01 17.79 14.25 10.36

bad 4 14.88 14.19 14.69 11.94 8.61

invalid 40.44 34.51 52.69 44.74 45.49

M
es

hS
te

re
o

mean 5.68 11.22 7.85 6.70 4.17

bad 1 16.87 46.55 33.45 28.51 20.61

bad 2 13.02 40.25 27.38 23.32 15.94

bad 4 10.71 33.18 22.02 18.78 12.53

invalid 0.01 1.01 0.09 0.08 0.04

to frames 120 and 808 to underline how minimal changes impact the dissimilarity
metrics even for the same image. We evaluate the different metrics between the
original and the modified image for disparities d ∈ [0, 20) with a window size of
3. The purple regions have minimal disparity error, with d = 0 being the correct
solution. As expected, the photometric error ephoto is largest (avg. 8.13 px / 7.76 px),
while gradient orientation alone (eugf) achieves on avg. 4.49 px / 4.78 px. Normalized
cross-correlation (encc) results in a disparity error of 3.04 px / 2.38 px. The magnitude
emag (2.11 px / 1.40 px) and GOM egom (2.02 px / 0.49 px) perform reasonably well.
The PatchMatch error epm (1.24 px / 0.18 px) obtains the second-best result after
our metric esgf (1.21 px / 0.18 px), which exhibits the smallest dissimilarity values.

4.3.1 Stereo Matching

The second experiment showcases our metric’s suitability for (semi-) dense depth
estimation, supporting the first claim. For this, we integrated a variety of metrics into
the cost volume calculation of OpenCV’s StereoBM2 as well as the more sophisticated
MeshStereo algorithm (Zhang et al., 2015). The original implementation of MeshStereo
computes the cost volume with the Census-Transform (Park et al., 2017), while
OpenCV uses the absolute difference (ℓ1-norm):

esad(ui,uj) = |ephoto(ui,uj)|. (4.24)

Additionally, we compare these baselines against the PatchMatch dissimilarity epm,
our metric esgf , and the absolute difference in gradient magnitude:

eagm(ui,uj) = |egm(ui,uj)|. (4.25)

2 https://docs.opencv.org/4.9.0/d9/dba/classcv_1_1StereoBM.html, based on Konolige (2010)

https://docs.opencv.org/4.9.0/d9/dba/classcv_1_1StereoBM.html


4.3 Evaluation 47

Table 4.2: Evaluation on KITTI Stereo 2015 training set (Menze et al., 2015). Lower values
are better (↓) with second and best highlighted.

Orig. esad eagm epm esgf

St
er

eo
B

M
mean 6.11 3.21 3.17 1.74 1.61

bad 1 19.80 19.79 22.13 15.93 13.99

bad 2 11.60 10.07 11.04 6.87 5.91

bad 4 9.03 6.34 6.73 3.94 3.41

invalid 46.74 29.57 53.02 39.33 45.17

M
es

hS
te

re
o

mean 2.03 2.94 2.92 2.07 2.02

bad 1 27.95 42.34 33.84 29.60 29.35

bad 2 12.00 25.45 17.32 13.67 13.48

bad 4 5.57 14.01 8.85 6.77 6.67

invalid 0.07 0.15 0.10 0.08 0.06

Our implementation uses central finite differences to obtain the image gradient ∇I

at pixel u:

∇I(u) =
1
2

I(ux + 1, uy) − I(ux − 1, uy)

I(ux, uy + 1) − I(ux, uy − 1)

 . (4.26)

All metrics in OpenCV are without prefiltering, except for esad where a different
prefilter provided better results. For comparison, we report the percentage of "bad"
pixels with disparity error larger than 1, 2, and 4 px as well as the mean disparity
error on the training sets of the Middlebury Stereo Benchmark (Scharstein et al.,
2014) (half-size) in Tab. 4.1 and the KITTI Stereo Benchmark (Menze et al., 2015)
in Tab. 4.2. Our metric provides in all cases the best mean disparity error, while the
results for egn are nearly indistinguishable from epm and thus omitted for brevity.

Figure 4.4 shows exemplary results for the original stereo methods in comparison
with the two best-performing dissimilarities, epm and esgf , on the Teddy sequence
of the Middlebury Stereo Benchmark. Although our metric’s disparity is a slightly
sparser, the disparity exhibits less incorrect matches in the background. Moreover,
the right side of the Teddy’s contour is more accurately reconstructed with the
modified MeshStereo, whereas the other metrics show incorrect infill. Figure 4.5
shows exemplary results for the original stereo methods in comparison with the two
best-performing dissimilarities, epm and esgf , on the KITTI Stereo Benchmark. Please
note for esgf , although MeshStereo does not recover the bicyclist well, it is clearly
visible with StereoBM. The original StereoBM exhibits many incorrect too-close (red)
pixels in more distant areas, while epm shows thicker outlines in both algorithms.
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Figure 4.4: Disparity comparison on “Teddy” of the Middlebury Stereo 2014 Bench-
mark (Scharstein et al., 2014) for the original OpenCV Stereo Block matching
(left) and MeshStereo (Zhang et al., 2015; right) and with the second best (epm)
and best metric (esgf).
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Figure 4.5: Disparity comparison on image pair 2 of the KITTI Stereo 2015 Benchmark (Menze
et al., 2015) for the original OpenCV stereo block matching (left) and Mesh-
Stereo (Zhang et al., 2015; right) and with the second best (epm) and best metric
(esgf).
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Table 4.3: RMS-ATE [m] on EuRoC dataset (Burri et al., 2016). Lower values are better (↓)
with second and best highlighted.

MH1 MH2 MH3 MH4 MH5 V11 V12 V13 V21 V22 Avg.

O
ri

gi
na

l

OKVIS 0.085 0.083 0.135 0.143 0.278 0.041 0.956 0.102 0.054 0.063 0.194

ORB-SLAM2 0.124 0.094 0.253 0.151 0.132 0.090 0.219 0.270 0.149 0.203 0.168

SVO2 0.093 0.111 0.355 2.444 0.456 0.074 0.174 0.270 0.109 0.158 0.424

DSO 0.051 0.045 0.165 0.164 0.460 0.194 0.151 1.075 0.080 0.098 0.227

Basalt 0.076 0.045 0.058 0.096 0.141 0.041 0.052 0.073 0.032 0.046 0.066

O
ur

s

DSO w/ esgf 0.071 0.050 0.264 0.235 0.237 0.142 0.178 0.933 0.072 0.086 0.206

Basalt w/ egm 0.090 0.044 0.084 0.091 0.135 0.049 0.099 0.161 0.030 0.079 0.086

Basalt w/ egn 0.076 0.055 0.057 0.112 0.115 0.039 0.042 0.093 0.037 0.048 0.067

Basalt w/ esgf 0.078 0.062 0.080 0.215 0.111 0.043 0.107 0.156 0.037 0.108 0.100

Basalt w/ esgf2 0.086 0.065 0.081 0.109 0.148 0.040 0.069 0.061 0.029 0.058 0.075

Basalt w/ esgf3 0.061 0.042 0.065 0.094 0.106 0.041 0.056 0.082 0.034 0.054 0.063

4.3.2 Direct Image Alignment

To support our second and third claim, we provide comparisons on the EuRoC
dataset (Burri et al., 2016) for a set of state-of-the-art VO and VIO approaches
including Basalt (Usenko et al., 2020), DSO (Engel et al., 2018), OKVIS (Leutenegger
et al., 2015), ORB-SLAM2 (Mur-Artal and Tardós, 2017) and SVO2 (Forster et al.,
2017).

For a fair comparison, the evaluation uses, if provided, the tailored parameters
for the EuRoC dataset. Similarly, Basalt runs purely in VIO mode and without
ORB-SLAM2 without global bundle adjustment.

We integrated the different metrics in the optical flow frontend of Basalt. We
carried out a two-fold cross-validation with hyperopt (Bergstra et al., 2013) to obtain
suitable parameters for each metric.

Instead of finite differences as before, we use the “3x3-int” Scharr-Operator (see
Tab. B.11 in Scharr (2004)) on the rotated patches for the intensity gradient:

sf = [1, 0, −1], (4.27)
sg = [47, 162, 47], (4.28)

∇Ix =
1

512s
⊺
g ∗ sf ∗ I, (4.29)

∇Iy =
1

512s
⊺
f ∗ sg ∗ I, (4.30)

for its improved rotation symmetry as we observed degraded precision using finite
differences. Additionally, we modified the depth estimation of DSO and replaced the
original patch similarity metric based on Brightness-Constancy-Assumption ephoto
with our esgf term.
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Orig. w/ esgf

Figure 4.6: Resulting map and trajectory (red line) of DSO (Engel et al., 2018) using photo-
metric consistency (left) and with esgf (right) for depth estimation on V1_01 of
the EuRoC dataset (Burri et al., 2016). The reduced drift is clearly visible in the
sharper edges and a reduction of double walls as highlighted in the cutout region
(orange).

For all methods, we report the average root-mean-squared (RMS) ATE (Eq. 2.90)
over all aligned trajectories (Zhang and Scaramuzza, 2018) in Fig. 4.3. The alignment
uses a rigid SE(3) transform for stereo systems and a similarity transform for DSO.
In order to account for randomness and runtime effects, we average the results per
sequence over multiple runs.

The comparison in Fig. 4.6 shows a sparser, more consistent map with reduced
drift and no double walls for our esgf on sequence V1_01 of the EuRoC dataset. This
is also evident in the ATE since our modified DSO achieves a lower average ATE
than the original DSO. Furthermore, we observed reduced variance in ATE and an
increase in successful tracking attempts by 10 % on V1_02 and V1_03, which exhibit
strong lighting changes.

Overall Basalt performs very well for all tested metrics. Presumably, due to the
more complex and more difficult to-optimize Jacobian, esgf performs worse than
our other derived metrics. Here, the simplifications of esgf2 and esgf3 payoff and esgf3
achieves the best result.
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4.4 Summary

In this chapter, we proposed a new gradient-based dissimilarity metric for direct
image alignment, called SGF, and verified our key claims.

Our measure introduces a scaling term that promotes matching of similar gradient
magnitude into the gradient orientation metric of Haber and Modersitzki (2006).
As a result, SGF improves the robustness of image alignment and is beneficial for
stereo matching and VO computation alike. Additionally, we propose some simplified
variations and provide the respective Jacobians required for optimization with our
new metrics.

We applied and evaluated our approach in a multitude of settings as our metric is
easy to integrate into existing visual systems. In disparity estimation, the proposed
approach outperforms the existing metrics integrated in OpenCV’s StereoBM and
MeshStereo on the Middlebury and KITTI Stereo benchmarks. Moreover, DSO
achieves a significant reduction in drift after integrating SGF into DSO’s depth
estimation. Even in image alignment, our approach performs well, as demonstrated
with Basalt on the EuRoC dataset. All the while, the modified methods maintain
their real-time performance running at typical camera frame rates and thus can
make a positive impact on various VO, SLAM, or similar state estimation approaches
running on systems with limited computational power.
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Light Detection and Ranging (LiDAR) plays a major role in environment perception
and mapping for unmanned aerial vehicles (UAVs) (Beul et al., 2018), unmanned
ground vehicles (UGVs) (Shan and Englot, 2018), and autonomous driving (Geiger
et al., 2012). Many autonomy or assistance functionalities rely on simultaneous
localization and mapping (SLAM) and odometry systems to operate out-of-sight in
global navigation satellite system (GNSS)-denied environments or to improve the
situational awareness while reducing cognitive strain on operators. Despite much
progress, robustness and reliability remain difficult in crowded, dynamic scenes and
close to structures. These factors become crucial when a risk-minimizing state, like
stopping, is difficult to maintain, e.g., for UAVs. Furthermore, new LiDAR sensors
immensely increased the density and amount of measurements within recent years,
posing new challenges for processing large point clouds in real-time.

Most odometry and SLAM systems do not fully exploit dependencies between
consecutive LiDAR scans when registering against a previous scan or local map but
merely initialize with prior motion estimates. This may result in unrealistic jumps
in the trajectory, while the actual sensor motion imposes a dependency between
consecutive scans. We address this limitation using a continuous-time Lie-Group
B-spline trajectory representation (Sommer et al., 2020). The main contribution
is our novel real-time LiDAR odometry (LO) (Quenzel and Behnke, 2021) which
directly optimizes the spline knots by jointly aligning multiple local multi-resolution
surfel maps using a Gaussian mixture model (GMM) formulation (Droeschel et al.,
2017), as visualized in Fig. 5.1. Sparse permutohedral lattices and voxel grids ensure
fast storage and access to map surfels while an adaptive selection scheme chooses
the most efficient surfel resolution to speed up registration. We improve numerical
stability by modifying the GMM formulation of Droeschel et al. (2017) and introduce
a normal-distance-based weighting.
In summary, our key claims for the proposed LO system, called MARS, are:

• First, MARS provides reliable pose estimates with state-of-the-art quality on a
variety of datasets.

• Second, our GMM is numerically more stable and more suitable for typical
LiDAR sensor geometry.

• Third, adaptive selection of the appropriate surfel resolution improves registra-
tion runtime without compromising accuracy.

• Fourth, our system runs in real-time onboard a UAV, enabling safe operation
in GNSS-denied environments.

The experimental evaluation highlights the performance of our approach on multiple
datasets and during real-robot experiments. MARS is open-source and available at:
https://github.com/AIS-Bonn/lidar_mars_registration.
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a) b)

c)

Figure 5.1: Multi-resolution surfel maps with adapted resolution represent the point clouds
[a)] during registration with a continuous-time trajectory B-spline. b) The surfel
color depends on their normal, while point color depends on height. c) The control
points (blue dots) interpolate the scan poses (green dots) and form the spline
(blue to yellow).

Preface

This chapter is adapted from Quenzel and Behnke (2021), previously published
by IEEE and presented at the International Conference on Intelligent Robots and
Systems (IROS 2021).

Statement of Personal Contribution

“The author of this thesis [Jan Quenzel] substantially contributed to all aspects of
the previous publication (Quenzel and Behnke, 2021), including the conception,
literature survey, design, and implementation of the proposed methods, the
preparation and conduct of experiments and evaluation of the proposed approach,
conducting the experimental evaluation, the analysis and interpretation of the
experimental results, drafting the manuscript, as well as the revision and final
approval of the version to be published.“

5.1 Related Work

Point cloud registration is a well-researched topic and has wide applicability (Holz
et al., 2015). A basic registration method (Besl and McKay, 1992) is the iterative
closest point (ICP) algorithm. ICP aligns scan and model point clouds in an iterative
two-step process. In the first step, the algorithm establishes correspondences between
the two point clouds. The second step calculates a transformation to reduce the
distance between all corresponding points and repeats both steps with the transformed
scan until ICP reaches some termination criteria. The original formulation assumes
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perfect correspondences, thus suffering in reality when the sampling locations differ
due to a moving sensor. Segal et al. (2009) rephrased ICP within a probabilistic
framework [generalized ICP (GICP)] that allows incorporating information from the
correspondence’s covariance. Hence, points on a planar surface will be pulled together
in normal direction but have more leeway along the surface.

Another popular scan registration approach is Normal distribution transform
(NDT) (Magnusson et al., 2007; Kung et al., 2021; Renaut et al., 2023). Here, normal
distributions within a regular grid represent the model point cloud. This reduces
memory consumption and computation time for nearest-neighbor searches. NDT
aims to maximize the likelihood of all scan points to observe the underlying surface
element (surfel) described by the normal distributions.

Once there is a method to register (feature-)points, continuously estimating the
sensor pose w.r.t. an updating local map becomes possible. The localization and
mapping (LOAM) paradigm by Zhang and Singh (2014) extracts feature points on
planar surfaces and edges from the current scan based on the local curvature. Matching
features against the previous scan allows estimation of the relative motion at scan
frequency. Previous pose estimates help to undistort a newly incoming scan. Every
n-th scan is then further processed in the mapping thread where it is aligned against
the map and integrated into it. LeGO-LOAM (Shan and Englot, 2018) adapted the
general approach for horizontally placed LiDARs on UGVs under the assumption of
always being able to measure the ground plane. Some filter-based approaches (Ye
et al., 2019; Qin et al., 2020) use the same feature extraction to fuse LiDAR with
IMU directly.

SuMa (Behley and Stachniss, 2018) performs a projection-based data association
to avoid the need for costly nearest-neighbor associations. For this, it projects the
current point cloud from spherical coordinates to an image and renders a model view
of the surfel map using OpenGL and the currently estimated pose. The projection
allows easy association between projected points and rendered surfels and enables
frame-to-model alignment via ICP with the point-to-plane metric. Afterwards, the
map integrates the new scan surfels with an exponentially moving average if they
are more accurate than the existing surfels. A binary Bayesian filter estimates the
stability and reliability per surfel such that only stable surfels are kept. A pose graph
reduces overall drift upon loop closures and directly deforms the surfel map via the
sensor poses.

Instead of a uniform resolution, MRSLaserMaps (Droeschel et al., 2017) represents
the environment close to the sensor with greater detail. The registration performs
expectation maximization (EM) of the joint log-likelihood that a scan surfel is an
observation of the GMM of the local map. Circular buffers over grid cells and the
fixed number of points stored within each cell enable map shifting to preserve the
map’s egocentric property. The shifted local map is added to a pose graph to reduce
drift over time using constraints between neighboring local maps. Droeschel and
Behnke (2018) extended the approach to a hierarchical pose graph where a refinement
step realigns scans within a previous local map. These scans were further undistorted
by a least-squares fit of a cubic Lie group B-spline to interpolate between scan poses.
In practice, this method provides offline-generated maps for robot localization (Beul
et al., 2018).
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Elastic LiDAR Fusion (Park et al., 2018) uses only a linear continuous-time
trajectory. Here, a single transformation linearly interpolates the trajectory within a
time segment under an inherent constant-velocity assumption. For the rotation, the
Log(·)-map (Sec. 2.4) of the Lie group SO(3) lifts the relative rotation between the
start and end pose to its vector-spaced Lie algebra so(3), where the interpolation
itself takes place. The Exp(·)-map maps back to the interpolated rotation. This
simple strategy is quite efficient and fast but is limited in practice by the constant-
velocity assumption. Their trajectory optimization facilitates geometric constraints
penalizing deviations along the normal direction between individual surfels at different
time steps within the same scan as well as towards the global map and inertial
constraints for rotational velocity and acceleration from inertial measurement unit
(IMU). Furthermore, the authors improve map consistency on loop closures through
a deformation graph.

Although we base our work upon MRSLaserMaps (Droeschel et al., 2017), our
real-time odometry system (Fig. 5.2) is a full redesign with robustness and efficiency
in mind to cope with the large number of scan points generated by modern LiDAR
sensors. While most odometry systems align each LiDAR scan individually against
the map, we jointly register multiple scans at once in a sliding window using the
continuous-time trajectory B-spline representation by Sommer et al. (2020). In
contrast to MRSLaserMaps, we do not use dense but sparse voxel grids or lattices for
each level within our multi-resolution surfel map. Additionally, we scale the surfels’
GMM weight to balance the influence of differently sampled areas due to sensor
geometry. We adaptively select the appropriate resolution for registration instead of
the finest available. Furthermore, we fuse and shift maps via their surfels instead of
pointwise and apply a keyframe-based sliding window for the local map such that we
integrate only scans with differing view poses.

After the original publication (Quenzel and Behnke, 2021), many other works (Tal-
bot et al., 2025) also adapted continuous-time trajectories. In CT-ICP, Dellenbach
et al. (2022) represent the continuous motion within a scan using a linear B-spline.
Despite this, the authors explicitly decouple the end and start pose of consecutive
scans to prevent over-smoothing of the trajectory. On the contrary, Traj-LO (Zheng
and Zhu, 2024b) adds smoothness constraints during sliding window optimization of
the linear B-spline trajectory.

When sudden rotational changes deform a scan, a linear B-spline may be too
inaccurate to represent the whole scan. Hence, the adaptive temporal subdivision
of Zhou et al. (2024) decreases the time interval between knots for higher angular
velocities or increases for underconstrained scan segments. Instead, Shen et al. (2025)
combine a Gaussian process (GP) as their continuous-time representation with a
Kalman filter (KF).

Further approaches explore uncertainty modeling, different map representations,
robustness, or multiple LiDARs. VoxelMap (Yuan et al., 2022) explicitly models the
(planar) surfel uncertainty w.r.t. a point’s range and angle. This comes at the cost of
storing all points to update the estimates within an IEKF (Xu et al., 2022). Instead,
DLO (Chen et al., 2022) stores keyframes and selects which ones to fuse into the
submap for GICP registration based on the convex hull over the keyframe positions.
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Figure 5.2: System overview: A continuous-time trajectory spline describes each scan’s pose
within the current sliding registration window. The registration aligns the scan
surfels with a local surfel map and updates the spline. Keyframes are added if
necessary to the sliding window of the local map and combined in the local surfel
map.

KISS-ICP (Vizzo et al., 2023) robustifies point-to-point ICP through a motion-
dependent adaptive distance threshold for correspondences and optimizes with the
outlier robust Geman-McClure kernel (Barron, 2019). Building upon this, GenZ-
ICP (Lee et al., 2025) adaptively balances the respective influence of point-to-point
constraints and additional point-to-plane factors to improve robustness. As an alterna-
tive, X-ICP (Tuna et al., 2024) inspects the contribution of individual point-to-plane
correspondences on the ICP’s Hessian to filter uninformative pairs. Constrained
optimization further restricts slippage due to insufficient information, e.g., in tunnels
or long corridors.

More recently, learning-based LO methods utilize learned descriptor matching (Ali
et al., 2023), neural implicit maps to refine keyframe-based maps (Isaacson et al., 2023)
or register scans using a predicted signed distance function (SDF) from point-based
neural maps (Pan et al., 2024).

5.2 Our Method

We take as input a scan Ps consisting of points pi ∈ R3, as well as angular velocity
ωm from an IMU or relative orientation estimates ∆R from robot odometry. In the
following, we assume the scan timestamp ts corresponds to the last acquired points
within the scan. Given a spatial subdivision of R3, e.g., due to voxelization, each
cell contains a surfel with mean µ and covariance Σ for the embedded points. We
apply a numerically stable one-pass scheme (Schubert and Gertz, 2018) for mean
and covariance estimation and store the number of points M , their sum ss, and their
sum of squared deviations Ss. The incremental update fuses a surfel (M , s, S)a with
another surfel (M , s, S)b or a point (1,pi, 0)b according to:

δs = saMb − Masb, (5.1)
sa+b = sa + sb, (5.2)

Sa+b = Sa + Sb +

(
δs

MaMb

)
·
(

δs

Ma + Mb

)⊺

. (5.3)
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Figure 5.3: A tetrahedral [a)] covers the projection of the canonical simplex V3 into 3D.
Coordinates of neighboring lattice vertices differ by ±[−1 . . . d . . . − 1] ∈ Zd+1

and their projected axes [b)] are not perpendicular in 3D.

Mean and covariance are directly obtained as:

µs =
1

Ms
ss, (5.4)

Σs =
1

Ms − 1Ss. (5.5)

We regard a surfel as valid if it represents at least 10 points and it is a disc or ellipsoid:

Ms ≥ 10, (5.6)
λ1 > 1 × 10−6, (5.7)

with normalized Eigenvalues λ0 ≤ λ1 ≤ λ2 ∈ R s.t.
∑

i λi = 1. The surfel normal n
corresponds to the Eigenvector of the smallest Eigenvalue λ0 of Σ. The registration
(Sec. 5.2.2) aligns the current sliding registration window against the local map fused
from multiple keyframes’ surfels, as shown in Fig. 5.2, optimizing a continuous-time
B-spline trajectory.

5.2.1 Multi-resolution Surfel Map

Our map covers a cubic volume with side length b, e.g., twice the sensor range, with its
origin in the center of the volume. We regularly subdivide the volume with fixed-size
distance between adjacent corners/vertices into cells with either a 3-dimensional
permutohedral lattice (Rosu et al., 2020) or a uniform 3D volume element (voxel)
grid.

The lattice stems from the projection of a regular grid (d + 1)Zd+1 along the
one vector 1 onto the hyperplane Hd : c · 1 = 0. Thus, the vertices c with integer
coordinates sum up to zero, and d coordinates define the last one implicitly. Although
vertices have fixed integer coordinates, scaling a point p prior to projection allows the
representation of arbitrary resolutions. Per vertex, there are 2(d+ 1) neighbors where
the difference between neighboring vertices is always of the form [−1 . . . d . . . − 1].
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Similarly, d+ 1 vertices span a simplex. For d = 3, the simplex V3 forms a tetrahedral,
as shown in Fig. 5.3, with the following vertices ci:

V3 = [c0, c1, c2, c3] =


0 1 2 −1
0 1 −2 −1
0 1 2 3
0 −3 −2 −1

 . (5.8)

A simple rounding algorithm (Adams et al., 2010) provides the enclosing simplex for
a point. Embedding points into this lattice is generally referred to as splatting. Rosu
et al. (2020) let all points contribute to all vertices of the enclosing simplex using
learned barycentric weights. Instead, we splat each embedded point only onto the
nearest vertex for runtime efficiency.

For higher dimensions, the lattice scales advantageously compared to the regular
voxel grid. More importantly for the efficiency of the GMM soft-assignments, a lattice
vertex has only 2 (d + 1) instead of 3d direct neighbor vertices, as shown in Fig. 5.3.
LiDAR data is sparse in 3D due to free space. Hence, we use a sparse lattice or a
(block-) sparse voxel grid based on small preallocated hash maps and do not allocate
the entire dense volume. The sparseness and sensor geometry also imply that a single
resolution of surfels may not represent the underlying scene well. Coarse surfels can
blur details, while fine surfels will ignore distant measurements due to the lack of
points per surfel. Hence, we introduce several map levels, e.g., 3, centered on the origin.
Starting with the coarsest map at level 0, each finer level has half the cell size of the
previous one to increase detail closer to the sensor. Our registration adaptively selects
or uses the finest available resolution (Sec. 5.2.3). Each cell stores a double-ended
queue (deque) with individual surfels from different scans and a combined surfel. In
comparison to MRSLaserMaps (Droeschel et al., 2017), the deque enables faster and
easier removal of old scans from the map. A new scan creates a surfel at the back of
the deque and fuses all points belonging to this cell in the new surfel. Prior to fusion,
subtraction of the cell center position improves numerical stability for distant points
in the covariance estimation. After processing all points, the changed cells update
their combined surfel since our registration requires only the combined surfels. We
apply Eq. 5.1 to Eq. 5.3 to fuse one surfel (M , s, S)a with another surfel (M , s, S)b.
Figure 5.4 shows an example of a single scan as well as the local map with either a
voxel grid or the lattice.

Each map stores its sensor origin o ∈ R3, since these may change during map
fusion. Additionally, the local map stores its position relative to the world frame
which allows to shift the map to maintain its egocentric property. We employ a sliding
registration window Wl in which each scan has its own surfel map S at the respective
sensor origin.

Adding a scan to the window Wl at an orientation other than identity, e.g., using
the current estimated orientation R, requires partitioning of the orientation R into an
offset Roff ̸= I and optimized rotation R⋆. While that is unproblematic for a single
pose or a fixed window, a changing offset within a sliding window with a continuous-
time trajectory behaves similar to a jump in the trajectory. It would require a more
complex or higher-order spline which takes longer to optimize. Without such an offset,
the grid discretization differs from the local map but greatly simplifies and speeds up
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Figure 5.4: Resulting surfel maps for a single scan [a)] and a local map [d)] with voxel grid
[b),e)] and permutohedral lattice [c),f)].

registration. As a grid realignment through reembedding is very costly, Stückler and
Behnke (2014) trilinearly interpolate local map surfels only for the best matching
model surfel in the voxel map. Interpolation on the lattice, called slicing (Adams
et al., 2010), uses the barycentric coordinates at the embedded position to weigh the
information stored at the simplex vertices. In our case, the soft-assignments between a
scene surfel and multiple map surfels already alleviate the differences in discretization
(Sec. 5.2.2). We found that slicing can improve the accuracy when using only a single
matching model surfel, but not with the soft-assignments where slicing incurs a too
high computational burden.

The required local map M consists of a fixed-size sliding keyframe window. Sur-
felwise fusion enables efficient addition and removal of individual keyframes to the
map. After reaching a predefined distance to the previous keyframe, the oldest scan
P within the sliding registration window becomes a new keyframe and pushes out
the oldest keyframe if necessary. Prior to integration, we transform P into the local
map frame to ensure alignment of all keyframe grids and check if the sensor posi-
tion is within the same voxel/simplex as the origin on the coarsest level. If these
voxels/simplices differ, shifting the whole local map maintains its egocentric property
during registration. Here, we use a whole-numbered multiple of the coarsest cell size
to enable efficient cell swapping instead of interpolation or cumbersome pointwise
recomputation. On finer levels, this will always be a multiple of the coarse size due
to our subdivision scheme, e.g., a coarse shift in the x-direction by one cell requires
a shift by two finer cells on the finer level. Recomputation of the combined surfels
takes place after keyframe integration.

5.2.2 Sliding Window Continuous-time Trajectory Registration

Our continuous-time trajectory with poses T (t) ∈ SE(3) at time step t uses the
uniform cumulative B-spline formulation of Sommer et al. (2020) on the composite
manifold SO(3) × R3. The manifold SO(3) × R3 (Solà et al., 2018) decouples trans-
lation (R3) and rotation (SO(3)) while the resulting transform remains in the Lie
group SE(3). N control points Xt ∈

(
SO(3) × R3)N , also called knots, define the
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uniform B-spline of order N at time t. Here, uniform refers to the timewise spacing
of subsequent knots with a fixed time increment ∆t and the splines’ first knot at the
start time t0. For a given time t, we obtain the index i of the first active control point
with non-zero weight:

i (t) = ⌊(t − t0)/∆t⌋, (5.9)

in the active time segment [ti, ti+1) and the normalized time u:

u (t) = ((t − t0) mod ∆t)/∆t, (5.10)

since the start of that segment. The normalized time u defines the cumulative knot
weights λ(u) together with the cumulative basis matrix M̃N (Qin, 1998) of the
Nth-order B-spline:

λ(u) = M̃N

[
u0, . . . , uN−1

]⊺
. (5.11)

With these weights, Sommer et al. define the cumulative B-spline in a Lie group
L with knots Xi ∈ L (Def. 5.1 in Sommer et al. (2020)) using the Lie Group’s
exponential (Exp(·)) and logarithmic (Log(·)) maps as:

X (i, u) = Xi ·
N−1∏
j=1

Exp
(
λj (u) · Log

(
X -1

i+jXi+j−1
))

. (5.12)

The Log(·)-map (Solà et al., 2018) transfers elements of a Lie Group L to its tangent
m-dimensional vector space l ⊂ Rm, called Lie algebra. Conversely, Exp(·) maps
elements of the Lie algebra back to the Lie Group. In comparison to SE(3), the
composite SO(3)× R3 decouples the rotation R ∈ SO(3) and translation p ∈ R3 such
that both maps for the translation trivially become the identity function (f(x) = x)
while the Log(·)- and Exp(·)-maps of SO(3) (see Sec. 2.4) apply to the rotational
part. This allows partitioning of Eq. 5.12 for L = SO(3) × R3 into:

p (i, u) = pi +
N−1∑
j=1

λj (u) · (pi+j − pi+j−1) , (5.13)

dij = Log
(
R-1

i+j−1Ri+j

)
∈ R3, (5.14)

R (i, u) = Ri ·
N−1∏
j=1

Exp (λj (u) · dij) . (5.15)

Although each control point Xi ∈ X is a tuple of (Ri,pi) ∈ SO(3) × R3 defined on
two separate splines, the result TX (t) is a rigid transform in SE(3):

TX (t) =

R (i (t) , u (t)) p (i (t) , u (t))

0 1

 . (5.16)

In practice, we set the order to N = 3 and optimize all N control points during
registration — independent of the number of scans L. The sliding registration window
adapts the start time t0 and time interval ∆t such that t0 = tl−n is the time of the
last shifted out scan and the newest scan l is within the current time interval [tl−n, tl].
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After shifting, we want the new spline to interpolate the previous estimates of the
unshifted spline. For the newest scan, we evaluate the translational and rotational
velocity and utilize the constant velocity assumption to initialize both rotation Rl

and position pl. If, instead, measurements from an IMU gyroscope are available, Rl

integrates the angular rate ω of measurements between both scans with the gyroscope
frequency fω:

Rl = Rl−1
∏

Exp
( 1

fω
ω

)
. (5.17)

Thus, we initialize the control points X by minimizing the following quadratic errors
using the Levenberg-Marquardt (LM) algorithm (Sec. 2.2):

j (i) = l − n + i, (5.18)

ep (i) = p
(
u
(
tj(i)

))
− pj(i)−1, (5.19)

eR (i) = Log
(
R-1

j(i)−1R
(
u
(
tj(i)

)))
, (5.20)

Xinit = arg min
X

n+1∑
i=1

ep (i)
⊺ ep (i) + eR (i)⊺ eR (i) . (5.21)

Given the initialized spline and surfel maps, we now detail our registration approach
that adapts the method of Droeschel et al. (2017) to a sliding registration window.
We model the likelihood of a scene surfel s observing a map surfel m as the following
normal distribution with scene pose T (t) defined by Eq. 5.16:

Σsm (T (t)) = Σm + R(t)ΣsR(t)⊺, (5.22)
dsm (T (t)) = T (t)µs −µm, (5.23)

esm (T (t)) ∼ N
(
dsm, Σsm + σ2

l I
)

, (5.24)

with a resolution-depending scaling term σ2
l . For better readability, we will drop the

time argument in the above equations whenever possible. Equation 5.24 is similar to
the GICP model (Segal et al., 2009) and requires a hard decision on whether surfel s

and surfel m correspond. Instead, a GMM allows a soft assignment by representing
the mixture of surfel s observing multiple associated map surfels As according to
Eq. 5.24 with a prior association likelihood p(asm), similarity p(δsm) and additional
uniform outlier component p(os) (Droeschel et al., 2017) with weight ζ0:

ps (T ) = p (os) +
∑

m∈As

p (asm) p (δsm) p (esm) , (5.25)

p (os) = p (o) p
(
N
(
0, R(t)ΣsR(t)⊺ + σ2I

))
, (5.26)

= ζ0 · Ms∑
s∈Sl

Ms

1√
(2π)3 det (R(t)ΣsR(t)⊺ + σ2

l I)
, (5.27)

p (asm) = (1 − ζ0)
Mm∑

m∈M Mm
. (5.28)
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Although Eq. 5.27 contains R(t), we precompute p(os) using det(R) = det(R⊺) = 1
and det(AB) = det(A) det(B) for symmetric positive semidefinite (s.p.d.) matrices:

σo = det
(
R(t)ΣsR(t)⊺ + σ2

l I
)
= det

(
Σs + σ2

l I
)

, (5.29)

p (os) =
Ms∑

s∈Sl
Ms

· ζ0√
(2π)3σo

. (5.30)

Measuring the similarity of associated surfels in normal n and viewing direction f
follows the simple normal distribution:

pv (v) ∼ N
(
arccos (v⊺mR(t)vs) , (π/8)2

)
. (5.31)

For more details on the GMM, we refer the reader to Droeschel et al. (2017). Addi-
tionally, we consider the distance in the normal direction:

dn ∼ N
(
n⊺

mΣ-1
smdsm, σ2

)
. (5.32)

Assuming independence, results in the following approximation for p(δsm):

p(δsm) = pv(n)pv(f )p(dn). (5.33)

Given our GMM formulation, we seek the spline control points X ⋆
l that maximize

the joint observation log-likelihood over the mixture for the current window Wl:

X ⋆
l = arg max

X

n∑
i=1

∑
s∈Si

log (ps (TX (tl−n+i))) . (5.34)

The two-step EM algorithm allows us to solve (5.34). In the E-Step, we establish
the associations As to the local map M for all surfels within a surfel map Si of the
sliding registration window Wl. For this, we transform the surfel mean µs given the
current pose Tc = TX (ti) from the sensor into the map frame and perform a lookup
for valid surfels in the 1-hop-neighborhood of the corresponding surfel in the local
map M. A 3D voxel has up to 27 scan-map associations. At the same time, there is
a maximum of 9 per lattice simplex. Given the current estimate Tc, we calculate the
conditional likelihood wsm for each association:

wsm (Tc) =
p (asm) p (δsm) p (esm)

ps(Tc)
. (5.35)

Fixing the associations and weights wsm during the M-Step allows us to optimize
the control points X with the LM algorithm (Sec. 2.2) that minimizes the Mahalanobis
distance rsm between associated surfels for the current window Wl at time tl:

rsm(Tc) = d⊺smΣ-1
smdsm, (5.36)

X ⋆
l = arg min

X

n∑
i=1

∑
s∈Si

∑
m∈As

wsmrsm(TX (tl−n+i)). (5.37)

We found empirically that the GMM assigns a higher weight wsm in the vicinity of
the 3D-LiDAR. This biases the estimate towards staying in place in situations with
motion close to the sensor or underconstrained translation, e.g., in open park areas
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with distant trees. Analysis of the surfel normals’ covariance Cn and its condition
number κ(Cn) (see Sec. 2.3):

Cn = w ·nsn
⊺
s , (5.38)

κ(Cn) = ∥Cn∥ ∥C -1
n∥ =

λmax(Cn)

λmin(Cn)
, (5.39)

showed that weighting with the conditional likelihood w = wsm increases the condition
number κ(Cn) — in some cases by a factor of up to 50 compared to w = 1. Such
an increase is remarkable since κ reflects the difficulty of accurately solving a linear
system of equations (Higham, 2002), like the normal equations in LM. The increase
relates to the higher measurement density in the LiDAR vicinity due to the sensor
geometry’s non-uniform sampling in 3D because the prior association likelihood
p(asm) and outlier component p(os) incorporate the number of measurements per
surfel. Thus, inverse weighting of p(os) (Eq. 5.27) and p(asm) (Eq. 5.28) in wsm with
the number of measurements Ms and Mm levels the influence between close and far
surfels. Moreover, the prior association likelihood p (asm) is now a constant factor
for the surfel s. We use the equality1:

a

b + a
=

1
b
a + 1

(5.40)

to rephrase Eq. 5.35 as:

wsm (Tc) =
p (δsm) p (esm)

p(os)
p(asm) +

∑
m∈As

p (δsm) p (esm)
, (5.41)

=
wsm

woa +
∑

m∈As
wsm

. (5.42)

Here, the prior term woa combines Eq. 5.28 and Eq. 5.30 to:

woa =
ζ0

1 − ζ0

∑
m∈M Mm∑

s∈Sl
Ms

1√
(2π)3 σo

. (5.43)

5.2.3 Adaptive Resolution Selection

Using the finest map resolution is computationally inefficient for planar surfaces
like roads, floors, walls, or ceilings. Instead, we adaptively select a more appropriate
resolution from finest to coarsest. We collect valid surfels starting on the finest map
scale. If the normalized Eigenvalues λ0 ≤ λ1 ≤ λ2 ∈ R s.t.

∑
i λi = 1 of the surfel

covariance matrix Σ satisfy one of the following conditions:

λ0 < α, (5.44)
λ0 < βλ1, (5.45)
λ1 < γ, (5.46)

1 The equality is the reciprocal of the equality:
(

b
a + 1

)
=
(

b+a
a

)
.



5.2 Our Method 65

Finest Fine

Coarser Adaptive

a) b)
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Figure 5.5: Adaptive resolution selection chooses coarser surfels in areas with planar surfels
of finer resolution. We retain finer [red in a)] and reject coarser ones [black in c)]
when approaching edges between surfaces to preserve details. Merging of multiple
degenerate surfels [blue in b)] allows to harness more distant measurements in
sparse areas.

the surfel s becomes a candidate for coarsening. The first two cases (Eq. 5.44 and
Eq. 5.45) directly relate to planar and elongated surfaces, while the last case often
occurs for degenerate surfels created from a single scan line. Figure 5.5 illustrates
these.

We check the candidate’s valid neighbors that fall within the same coarser surfel c

as well as the coarser surfel and compute the finer ones’ mean normal vector n̄. The
coarse surfel c replaces the finer ones if all finer surfels become candidates and the
coarse normal is similar to n̄:

|nc · n̄| > δn. (5.47)

Additionally, we reject a coarse surfel if the orientations of its coarse neighbors vary
too strongly (Eq. 5.47). This primarily occurs on the transition between multiple
surfaces where we retain the finer resolution for higher detail.

The process repeats on the next coarser level until it reaches the coarsest level.
Processing one coarser surfel instead of many smaller ones reduces the total number of
surfels and speeds up the registration. We found empirically the following thresholds
α = 0.01, β = 0.01, γ = 0.1, δn = 0.8.
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5.3 Evaluation

We evaluate our method, called MARS, on the Newer College (Ramezani et al.,
2020) dataset, the Urban Loco (Wen et al., 2020) dataset for autonomous driving,
and nine self-recorded UAV flights through the DRZ Living Lab (Kruijff-Korbayova
et al., 2021). Additionally, we show qualitative results from multiple UAV flights. All
experiments were conducted on a laptop with an Intel Core i7-6700HQ CPU with
32 GB of RAM and an NVIDIA GeForce GTX 960M GPU.

The two LOAM variants A-LOAM2 and F-LOAM3, as well as SuMa4, provide
the baseline for our method. We enforce real-time processing in A-LOAM5 and F-
LOAM6 using ROS message_filters7 with a limited queue size of 10 to prevent
the processing of too old information. Furthermore, we deactivated the loop-closing
of SuMa for fair comparison. We omitted MRSLaserMaps as it lost tracking on all
tested sequences.

Our method runs on the central processing unit (CPU) only and is implemented
in C++. The LM algorithm performs up to three iterations to optimize (5.37) in all
experiments. The default storage type is a sparse voxel grid unless otherwise noted.

For all methods, we compare the at-runtime estimated poses against the provided
ground-truth using the root-mean-squared (RMS) absolute trajectory error (ATE).
The best and second-best results will be in bold, respectively, underlined. For both
LOAM-derivatives, we use the more accurate optimized poses instead of the initial
odometry poses for ATE computation and ignore unoptimized scans.

5.3.1 Newer College Dataset

Ramezani et al. (2020) replicated the original trajectories from the New College
Dataset (Smith et al., 2009) with a handheld 64-beam Ouster OS-1 LiDAR running
at 10 Hz. The sequences “01_short” (NC01) and “02_long” (NC02) consist of multiple
loops between buildings and through a park for over 1530 s and 2656 s. The shorter
“05_quad” sequence (NC05) contains partially swinging and fast motion throughout
four loops in a quad. Ground-truth poses stem from registering the LiDAR scans
against a map obtained with a terrestrial laser scanner. Table 5.1 presents the resulting
ATE. A-LOAM and F-LOAM only managed to fully optimize every third scan in
real-time, although each scan was processed using its odometry.

SuMa lost track in the park area of the long sequence, whereas both LOAM variants
drifted significantly during orientation changes. A-LOAM benefits in sequence “NC05”
from the limited size of the quad since the local map optimization allows it to
effectively relocalize and keeps the ATE low. In contrast, our sliding keyframe window
accumulates drift over time. However, MARS maintains high accuracy such that
extracting loop-closure candidates based on some vicinity criterion is possible.

2 https://github.com/HKUST-Aerial-Robotics/A-LOAM
3 https://github.com/wh200720041/floam
4 https://github.com/jbehley/SuMa
5 https://github.com/JanQuenzel/A-LOAM
6 https://github.com/JanQuenzel/floam
7 http://wiki.ros.org/message_filters

https://github.com/HKUST-Aerial-Robotics/A-LOAM
https://github.com/wh200720041/floam
https://github.com/jbehley/SuMa
https://github.com/JanQuenzel/A-LOAM
https://github.com/JanQuenzel/floam
http://wiki.ros.org/message_filters
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Table 5.1: RMS-ATE [m] evaluation on scenes from the Newer College (NC, Ramezani et al.
(2020)) and Urban Loco (UL, Wen et al. (2020)) datasets. Lower values are better
(↓) with second and best highlighted.

Sequence Ours A-LOAM F-LOAM SuMa
Grid Lattice

NC01 2.1723 1.9784 3.3077 101.899 2.0481
NC02 4.9355 5.1124 62.6424 87.0877 X
NC05 0.4683 0.4151 0.1482 2.8184 1.8784

ULCT 4.9962 4.9661 10.3723 6.0562 7.7715
ULLS 7.8239 7.5732 8.4000 7.5602 10.6955
ULHH 2.3556 2.4079 2.4328 2.4242 2.3256
ULLL 2.7318 2.2330 2.0709 2.3138 8.4411
ULSL 3.1927 3.2661 3.1657 3.2705 2.8777
ULWH 2.9506 2.9943 2.4235 2.2592 3.5004
ULT2 2.5442 1.4411 17.3492 2.4282 2.2169
ULT3 1.5969 1.5553 9.6700 2.0297 2.9448
ULH5 1.5518 1.5052 17.3521 2.4282 2.2169

5.3.2 Urban Loco Dataset

Wen et al. (2020) equipped two cars with LiDAR and other sensors to capture highly
urbanized areas throughout Hong Kong and San Francisco. A navigation system
with IMU and RTK-GPS provides the reference poses for all sequences. A Velodyne
HDL-32E LiDAR provides scans throughout the seven Hong Kong sequences, whereas
the San Francisco datasets use an RS-LiDAR-32. The Hong Kong sequences are up
to 2 km long through dense urban environments with durations between 150 s and
365 s. The Coli Tower sequence (ULCT) is a 1.8 km drive uphill within a dynamic
environment that took 248 s. Similarly, the Lombard Street sequence (ULLS) is a
1 km drive over 253 s.

In comparison to the Newer College sequences, these sensor trajectories are smoother
while exhibiting stronger variation in height. The street is measured primarily under
steep angles and at greater distances whereas lateral obstacles, e.g., walls, are measured
more uniformly w.r.t. range and surface normal. This may explain why the methods
primarily deviate in their estimated height. These differences are clearly visible in
the “ULLS” sequence in Fig. 5.6. The car starts to drive up the hill (from left to
right) and makes a left turn at a junction halfway up (lower middle of the image).
After three blocks, the car turns right and drives back downhill to the junction.

SuMa and A-LOAM overestimate the steepness of the streets and strongly under-
estimate the height.
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Figure 5.6: Maps (left) computed by our MARS [a)], A-LOAM [b)], F-LOAM [c)] and SuMa
[d)] for the “Lombard Street” sequence (ULLS; Wen et al., 2020). Color encodes
height from low (blue) to high (yellow). The car visits the highlighted junction
[a-d), rectangle] twice. The close-ups in top-down (middle) and side view (right)
reveal aggregated drift between the maps from the first traversal (blue) to the
second traversal (yellow).

All methods estimate the sequence’s end to be close to the previously visited
junction with noticeable offsets for the position. Furthermore, A-LOAM and SuMa
show apparent deviations in roll and pitch, whereas F-LOAM deviates in yaw.

Our method, MARS, achieves consistent state-of-the-art results, as shown in
Tab. 5.1. MARS places first in three and second in another two out of nine sequences.
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Table 5.2: Statistics and RMS-ATE [m] evaluation for the DRZ Living Lab dataset. Lower
ATE values are better (↓) with second and best highlighted.

Seq. Scans med∥a∥ med∥ω∥ max∥ω∥ Ours A-LOAM F-LOAM SuMa

[m/s2] [rad/s] [rad/s] Grid Lattice

Fast 1479 1.1312 0.2288 1.8936 0.0949 0.0557 2.2646 2.1102 0.0637

Hall 2421 0.3989 0.0976 1.1468 0.2054 0.0921 0.0303 0.0385 0.0726

3P-S 1085 0.2744 0.0790 0.8619 0.0218 0.0147 0.0224 0.0167 0.0383

3P-M 650 0.5892 0.1135 1.0811 0.0287 0.0239 0.0252 0.0308 0.0403

3P-F 604 1.9902 0.5254 3.5473 0.0607 0.0500 0.7180 0.8317 0.0947

S1 826 0.4888 0.1044 1.5156 0.0440 0.0397 0.0456 0.0464 0.0420

M1 1458 0.9001 0.2192 1.9784 0.0822 0.0639 3.7353 3.6215 0.1757

F2 795 2.3075 0.4866 3.9811 0.1046 0.1002 2.6255 2.8037 0.0884

F3 957 1.0491 0.2494 1.6319 0.0852 0.0737 0.1441 2.4597 0.1799

5.3.3 DRZ Living Lab

We collected LiDAR scans onboard a DJI M210 v2 with a 128-beam Ouster OS-0
running at 10 Hz while flying through the DRZ Living Lab8. A Motion Capture
(MoCap) system in the lab’s starting area provides ground-truth poses for multiple
runs with up to 2.5 min of flight time. All sequences, except for the “Hall”, remain
within the MoCap volume with varying linear acceleration and angular velocity, as
shown in Tab. 5.2.

In the “Hall” sequence, the UAV traverses back and forth through the Living Lab.
Figure 5.7 shows the aggregated point cloud for this sequence using poses from our
MARS. The visible tube-like artifacts stem from people moving through the scene. At
the time of recording, the MoCap coverage was limited to the left half of the building.
Hence, the UAV started and landed within the confines of the MoCap volume.

We recorded multiple runs with a slow, medium, and fast flying UAV in a static
environment as well as with three people moving through the scene. For fair evalu-
ation, we compensate for scan distortion due to the rotation with the UAVs’ IMU
orientation and supply all methods with these compensated scans. Our MARS using
the permutohedral lattice outperforms the other approaches, as shown in Tab. 5.2.
The exception is the “Hall” sequence, which we attribute to the accumulated drift
from the sliding keyframe window similar to the results on “05_quad” the Newer
College Dataset. A-/F-LOAM struggle on the faster sequences even with undistorted
scans, while SuMa provides consistent results.

We evaluate multiple spline parameter sets on the challenging sequence “F2” to
analyze the parameter’s impact on accuracy and runtime during dynamic flight. The
storage type was set to a sparse voxel grid since the timing for sparse and block-sparse
grids were similar due to the low surfel count. Table 5.3 reports the resulting ATE
with the time spent during registration for a varying number of control points N

and the number of jointly optimized scans L. Optimizing more than three scans or

8 https://rettungsrobotik.de/living-lab/

https://rettungsrobotik.de/living-lab/
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a) b)

c)

a)

b)

Figure 5.7: Aggregated point cloud from a traverse through the DRZ Living Lab. The left
half contained the MoCap volume. The left and right arrows in c) show the view
directions of a) and b). Tube-like artifacts stem from people moving throughout
the lab during recording. The roof is partially removed for better visualization.

Table 5.3: Statistics for varying spline parameters using sparse voxel grids with adaptive
resolution selection on the “F2” sequence in the DRZ Living Lab. Entries with *
required five instead of three iterations. Second and best are highlighted.

Spline ATE Avg. Time

N L [m] (↓) [ms] (↓)

2
2 0.1063 41.28

3 0.1097* 65.45

4 0.2247* 71.03

3
3 0.1046 50.57

4 0.1076* 82.53

5 0.1123* 91.85

4
4 0.1113 117.03

5 0.1125 121.88

6 0.1233 121.88

increasing the spline order did not provide any benefit in terms of accuracy while
requiring more LM iterations and thus slows computation down.

For our standard parameters N = 3 and L = 3, we further analyze the influence of
the map representation and the selected resolution. Switching from a (block-)sparse
voxel grid to the permutohedral lattice reduces the average runtime from 50.57 ms
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a) b)

c) d)

Figure 5.8: Local surfel map [a), b)] and aggregated point cloud [c), d)] from an autonomous
flight into a garage at the LBH in Bonn, Germany. The green line in c) and d)
shows the flown trajectory.

down to 22.95 ms. Furthermore, Tab. 5.1 and Tab. 5.3 show that the lattice obtains
lower ATE on average.

Although disabling the adaptive resolution selection for the lattice reduces the ATE
on “F2” from 0.1002 m to 0.0949 m, the registration required 29.82 ms. In contrast,
we obtained more consistent and accurate results in open environments with enabled
adaptive resolution selection. Similarly, the voxel grid without adaptive selection
could not correctly estimate all rotations, resulting in a 90◦ drift during a high angular
velocity maneuver.

5.3.4 Qualitative UAV Experiment

An early development version of MARS provided the onboard LO for multiple
autonomous flights (Schleich et al., 2021) of the DRZ technology demonstrator D1 in
GNSS-denied areas. For this, MARS processed the OS-0 LiDAR scans in real-time
on the Intel Core i7-8559U CPU of an Intel NUC attached to the DJI M210v2 UAV.
During these flights, the state estimation fused our estimated LiDAR poses with the
aircraft’s IMU in an EKF. We refer the reader to Schleich et al. (2021) for more
details on the autonomous UAV flights. Figure 5.8 shows an example of the finest
resolution of the local surfel map and the corresponding aggregated point cloud
during an autonomous mission at the LBH in Bonn, Germany.

After publication, the open-sourced version of MARS continued to be a key com-
ponent of the D1 UAV with many more successful autonomous flights.
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5.4 Summary

In this chapter, we presented a novel continuous-time LiDAR odometry called MARS
and verified our key claims. MARS embeds individual LiDAR scans at multiple
resolutions into a sparse permutohedral lattice or voxel grid to store the individual
surfels. Our approach jointly aligns multiple surfel maps from the sliding registration
window with the local map using a GMM formulation. For this, we directly optimize
the control points of the continuous-time B-spline trajectory.

The local map maintains a sliding window over the last keyframes using an
efficient surfelwise fusion without costly pointwise reintegration. This fusion facilitates
spatial shifting of the map to ensure locality. Furthermore, we adaptively select the
appropriate surfel resolution, e.g., on planar surfaces, to improve the run-time. The
sparse permutohedral lattice further reduces the number of neighboring surfels to
consider during the GMM-based soft-assignment. Moreover, our adapted GMM
improved numerical stability, making it more suitable for typical LiDAR sensor
geometry.

We compared MARS against multiple state-of-the-art LO methods on a variety of
datasets, from automotive driving to handheld sensors. Additionally, we recorded mul-
tiple challenging sequences onboard a rapidly flying UAV with reference trajectories
from a MoCap system at the DRZ Living Lab. Overall, MARS shows state-of-the-art
performance on all evaluated datasets.

Our system runs in real-time onboard a UAV, enabling safe operation in GNSS-
denied environments. MARS was a core component, responsible for map creation and
state estimation, during numerous autonomous missions. The code of our method
is publicly available to foster future research in this direction and for the benefit
of the research community. Moreover, MARS laid the foundation for registering
multi-resolution surfel maps against georeferenced models (Quenzel et al., 2024).

In the following chapter (Ch. 6), we extend MARS to the more accurate and faster
LIO-MARS.
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Reliable real-time perception is essential for robotic autonomy. In particular, accurate
mapping and ego-motion estimation are key components for safe interaction in complex
and unstructured environments. Due to their precision and measurement density,
modern LiDARs are often used in these scenarios, e.g., in the DARPA Subterranean
Challenge (Khattak et al., 2020; Zhao et al., 2021; Reinke et al., 2022; Zhao et al.,
2024).

Sensor motion during scanning distorts the point cloud and degrades the quality of
the map. This intra-scan motion is either compensated by de-skewing prior to regis-
tration (Li et al., 2021; Quenzel and Behnke, 2021; Xu et al., 2022; Chen et al., 2023a;
Vizzo et al., 2023) or by modeling it with a continuous-time trajectory (Droeschel
and Behnke, 2018; Lv et al., 2021; Dellenbach et al., 2022). The former uses the
previous state estimate and, optionally, an inertial measurement unit (IMU) to predict
the motion and transform points to a common reference time. The latter approach
optimizes the trajectory directly at intermediate time steps. However, this comes
at the cost of reduced real-time capability and requires either costly reintegration
of surfels (Droeschel and Behnke, 2018) or a limited number of selected pointwise
features [e.g., CT-ICP (Dellenbach et al., 2022), CLINS (Lv et al., 2021)].

To overcome these limitations of continuous-time methods, our novel real-time
LiDAR-inertial odometry (LIO) jointly optimizes temporally partitioned scan seg-
ments (Fig. 6.1) by registering multi-resolution surfel maps (see Sec. 5.2.1) while
an unscented transform (UT) compensates the intra-surfel motion. Rephrasing the
computation of the Gaussian mixture model (GMM) and surfels using vectorized
Kronecker sums and products (Lancaster and Tismenetsky, 1985; Horn and Johnson,
1991) reduces redundancy and improves processing speed. We introduce relative
inertial and motion constraints from complementary modalities, such as IMU and
robot odometry, and derive their analytic Jacobians w.r.t. the spline knots to in-
crease robustness and accuracy. Furthermore, we use a non-uniform continuous-time
B-spline trajectory as an elegant solution to address variations in scan time without
increased delay [e.g., as in Coco-LIC (Lang et al., 2023)] at greater numerical stability
compared to its uniform counterpart.
In summary, we thoroughly evaluate the proposed LIO-MARS to support our key
claims, which are:

• First, the non-uniform spline has improved numerical stability in real robotics
applications.

• Second, an unscented transform (UT) enables motion compensation for individ-
ual surfels.

• Third, a timewise separation into intra-scan segments facilitates motion com-
pensation at optimization time.

73
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Figure 6.1: Joint registration of LiDAR scans embedded in multi-resolution surfel maps (col-
ored by relative scan time) optimizes a non-uniform continuous-time B-spline
trajectory. An UT compensates motion within a surfel, while a temporal parti-
tioning into segments enables optimization of motion distortion between surfels
intrinsically. Inclusion of relative (∆R, ∆v, ∆p, ∆T ) and absolute (α0,α,ω) soft-
constraints further improves robustness in challenging situations.

• Fourth, leveraging relative inertial and motion constraints improves accuracy.

• Fifth, rephrasing the Gaussian mixture model (GMM) and surfel covariances
with Kronecker sum and products improves parallelization.

We will open-source LIO-MARS at: https://github.com/AIS-Bonn/lio_mars.

Preface

This chapter is an extension of Quenzel and Behnke (2021), previously published
by IEEE and presented at the International Conference on Intelligent Robots and
Systems (IROS 2021).

Statement of Personal Contribution

“The author of this thesis [Jan Quenzel] substantially contributed to all aspects of
the previous publication (Quenzel and Behnke, 2021), including the conception,
literature survey, design, and implementation of the proposed methods, the
preparation and conduct of experiments and evaluation of the proposed approach,
conducting the experimental evaluation, the analysis and interpretation of the
experimental results, drafting the manuscript, as well as the revision and final
approval of the version to be published.“

6.1 Related Work

In Ch. 5, we reviewed the state-of-the-art for LiDAR-only odometry. As a consequence,
we focus on LIO systems in this chapter.

The alignment of new scans commonly involves an iterative closest point (ICP)-
variant (Besl and McKay, 1992; Segal et al., 2009) with local convergence. As
such, it is crucial to obtain a good initialization, e.g., from preintegration of IMU

https://github.com/AIS-Bonn/lio_mars
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Figure 6.2: System overview: A non-uniform continuous-time spline trajectory defined by
knots X describes the sensor motion. A new raw scan Pl is preoriented with IMU
before lattice embedding into a multi-resolution surfel map Sl. Motion priors
(∆T , ∆pre) aid the spline initialization of the sliding registration window Wl. Sensor
motion within surfels is compensated prior to alignment against a keyframe-based
local surfel map M under motion constraints. After spline registration, a new
pointwise undistorted keyframe is added to the storage if necessary, or the local
map is updated with the closest keyframes.

measurements (Shan et al., 2020; Zhao et al., 2021; Xu et al., 2022) or wheel/robot
odometry (Reinke et al., 2022; Guadagnino et al., 2025). Despite the inclusion of
priors, the registration may slip or diverge (Zhang et al., 2016), e.g., in featureless
corridors (Nashed et al., 2021) or in open areas (Tuna et al., 2024, 2025).

Hence, LIO systems (Shan et al., 2020; Li et al., 2021; Xu and Zhang, 2021; He
et al., 2023; Jung et al., 2023; Chen et al., 2024b; Zhang et al., 2024b) optimize
Light Detection and Ranging (LiDAR) jointly with IMU at discrete timesteps (e.g.,
end of scan) which requires temporal interpolation. The widely adapted iterated
error-state Kalman filter (IEKF) of Fast-LIO (Xu and Zhang, 2021; Xu et al., 2022)
propagates the state forward with IMU measurements before back-propagating it to
the respective point times to undistort the scan. As an alternative to processing the
accumulated scan, Zhang et al. (2024b) adapt the sliding window length depending
on the spatial overlap between the map and the voxelized scan. Point-LIO (He et al.,
2023) only processes points with the same timestamp at once, whereas Liu et al.
(2024) employ Kalman smoothing over the last scan.

Complementary to previous approaches, RI-LIO (Zhang et al., 2023a) and COIN-
LIO (Pfreundschuh et al., 2024) exploit per-point reflectivity estimates from the
LiDAR.

A continuous-time trajectory representation facilitates the inclusion of multi-modal
data. Talbot et al. (2025) extensively review continuous-time state estimation, dividing
methods into three groups.

The first group applies linear interpolation (Lovegrove et al., 2013; Park et al.,
2018; Daun et al., 2021) between consecutive states. Per scan, the state typically
includes the position and orientation with optional velocity and IMU biases. The
offline simultaneous localization and mapping (SLAM) method SLICT (Nguyen et al.,
2023) uses this trajectory representation to align a scan window using the point-to-
plane error against a hierarchical surfel map. To prevent over-smoothing, Dellenbach
et al. (2022) assume continuity during each scan, with residuals influencing the scan’s
start and end pose, but decouple consecutive scans from one another. SE-LIO (Yuan
et al., 2025) weakens this assumption by enforcing similarity between the end and
subsequent start pose while restraining inter-scan motion via preintegrated IMU.
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The second group describes the continuous-time trajectory using splines with
temporal basis functions. Our LO MARS (Ch. 5) belongs to this group and uses a
flexible uniform Nth order B-spline (Sommer et al., 2020) for a sliding registration
window. The registration jointly optimizes multi-resolution surfel maps for multiple
scans without enforcing continuity outside the window.

In contrast, CLINS (Lv et al., 2021) targets offline SLAM and retains points on
planar surfaces and edges (Zhang and Singh, 2014). The full trajectory is represented
with the same uniform B-spline as MARS but minimizes errors on raw IMU measure-
ments and point-to-plane(-line) distance for undistorted planar (resp. edge) points
with automatic differentiation using Ceres Solver (Agarwal et al., 2022). The follow-up
work, CLIC (Lv et al., 2023), integrates analytical Jacobians and a camera-based
frontend. Concurrently, SLICT2 (Nguyen et al., 2024b) adopts the same trajectory as
SLICT and follows our iterated expectation maximization (EM)-strategy (Sec. 5.2.2)
of alternating between correspondence search and spline optimization without multi-
ple inner iterations. Coco-LIC (Lang et al., 2023) further introduces a non-uniform
cubic B-spline to adaptively select the number of knots per scan depending on the
measured angular velocity and linear acceleration.

The third group focuses on temporal Gaussian processes (GPs) where the process
model GP(µ(t), Σ(ti, ti−1)) describes the transition between temporally adjacent
states with prior mean µ(t) and prior covariance Σ(ti, ti−1) functions. Although GP-
based approaches may be seen as a weighted combination of infinite temporal basis
functions (Tong et al., 2013), evaluating the trajectory at time τ ∈ [ti−1, ti) involves
only the states at ti and ti−1 for priors based on linear, time-varying stochastic
differential equation (SDE) (Anderson et al., 2015). Common priors assume white
noise on acceleration (Talbot et al., 2025), velocity (Zheng and Zhu, 2024a), or
jerk (Nguyen et al., 2024a). In contrast to spline-based methods, the state space
typically contains the velocity in addition to the pose (Wu et al., 2023; Burnett et al.,
2024). Traj-LIO (Zheng and Zhu, 2024a) replaces the linear interpolation within
Traj-LO (Zheng and Zhu, 2024b) with GP interpolation using various GP motion
priors.

The aforementioned continuous-time methods expect regular scan input and de-
grade with missing or irregular intermediate scans. In these situations, a non-uniform
continuous-time B-spline adapts better while being equivalent to its uniform coun-
terpart for regular scan input. Hence, we perform real-time LIO with non-uniform
continuous-time B-splines with analytic Jacobians and motion compensation during
optimization. For this, we extend MARS (see Ch. 5) by introducing a non-uniform
B-spline and tightly coupling LiDAR with IMU. The analytical Jacobians for full
relative motion constraints applied to the spline are derived and included to improve
consistency and robustness while maintaining real-time processing.

6.2 Our Method

We take a raw LiDAR scan Pl in the sensor frame captured at time tl as input. Pl

consists of a set of measurements with range r ∈ R and direction −→v ∈ R3. This
yields a point p = r−→v at time t(p) ∈ (tl − ∆te, tl] with scan duration ∆te. During
one revolution, the LiDAR measures h ranges (e.g., 64 or 128) simultaneously under
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w varying directions (e.g., 1024) with small fixed directional offsets or. The scan
timestamp tl corresponds to the last acquired point(s) within the LiDAR’s revolution.
In the absence of a measured point time t(p), we estimate t(p) from the organized
image-like structure (h × w) using the column index up ∈ [0, w) of point p, which
directly relates to the time within a scan revolution as:

t(p) = tl − ∆te +
∆te

w
up. (6.1)

If the column index is unavailable, we compute up using the azimuthal angle in
spherical sensor coordinates with sensor offset os:

u(p, or) =
w

2π
arctan(py/px) + os + or. (6.2)

During a revolution, the sensor motion continuously influences the scan origin
and measurement direction. We obtain an initial estimate of the sensor’s change in
orientation ∆Rref from integration of raw IMU measurements of angular rate ωm at
tmj with the exp-map (Eq. 2.67):

∆Rj = ∆Rj−1 expR

(
ωmj

)
, with ∆R0 = I, (6.3)

∆RIMU =
{

∆Rj |∀j s.t. tmj ∈ (tl − ∆te, tl]
}

. (6.4)

The rotations ∆RIMU enable us to use spherical linear interpolation (slerp) (Shoemake,
1985) on ∆RIMU to pre-orient Pl to a common reference time tref :

∆Rref = slerp(∆RIMU, tref), (6.5)
p̃ = ∆R-1

ref slerp(∆RIMU, tp)p. (6.6)

Then, the oriented scan P̃l is embedded into a local multi-resolution sparse lattice Sl

with tetrahedral cells (Sec. 5.2.1) and adaptive side length. Each cell stores a surfel
s with mean µs and covariance Σs for the embedded points. The surfel normal ns

corresponds to the Eigenvector v0 of the smallest Eigenvalue λ0 of Σs.
We insert the surfels in Sl into the sliding registration window Wl, as shown in

Fig. 6.2. The window contains the last L scans (Sec. 6.2.2) with their trajectory
represented by a non-uniform continuous-time Lie-Group B-spline TX (t) (Sec. 6.2.1).
From Sl, the scan covariance Cl (Sec. 6.2.8) is computed to weight a motion prior ∆T

from poses of robot odometry Tm. Then, the prior ∆T and the preintegrated IMU
measurement ∆pre (Shan et al. (2020); Sec. 6.2.7), from angular rate ωm and linear
acceleration am, aid the initialization of spline knots X . The spline allows motion
compensation for surfels within the window Wl (Sec. 6.2.9).

The registration (see Sec. 6.2.3) aligns the compensated window W l with the local
surfel map M (see Sec. 5.2.1) by optimizing the knots X of the trajectory spline
TX (t). The local surfel map M contains surfels of selected spatially separated scans.
If necessary, the oldest raw scan Pl−L+1 is pointwise motion compensated towards
tl−L+1 and re-embedded before its surfels S l−L+1 are added as a keyframe to the
keyframe storage (see Sec. 6.2.10).
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Figure 6.3: Influence of knot placement for N = 3: a) Knots Xk influence the time (black/blue)
between tX0 and tX1 . MARS (Ch. 5) necessitates reinitialization of its knots at
every timestep since the uniform spline requires a constant ∆t (black) between
knots while the knot times tX move forward with variable ∆tl. b) Uniform knot
placement with fixed ∆t as in CLINS (Lv et al., 2021) may enforce continuity by
appending new and fixing previous knots. The difference between scan time tl and
furthest knot Xk+1 [red in b)] impairs constraints on Xl−1. c) Our non-uniform
window has minimal difference and thus constrains the furthest knot better.

6.2.1 Non-Uniform Continuous-time Trajectory

Sommer et al. (2020) define an Nth order continuous-time cumulative B-spline
trajectory TX (t) ∈ SE(3) with rotation R(t) ∈ SO(3), translation p(t) ∈ R3

and knots X . Each knot Xk ∈ X is a tuple (Rk,pk) of the composite manifold
SO(3) × R3 and temporally placed at time tk. Then, N temporally uniform-spaced
knots {Xk, Xk+1, ..., Xk+N−1} describe the trajectory interval [tk, tk+1) with duration
∆t > 0. In the non-uniform case, ∆tk = tk+1 − tk > 0 may vary, thus, leading
to interval-specific B-spline basis1 matrices (Qin, 1998) and requiring 2(N − 1)
timestamps:

{tk−N+2, . . . , tk, . . . tk+N−1} . (6.7)

Qin (1998) provides a recursive algorithm to compute non-uniform basis matrices for
order N and closed forms up to N = 4.

We use this non-uniform continuous-time trajectory TX (t) to represent the sensor
pose Tm,s relative to the local surfel map M. Hence, a point ps in the sensor frame
corresponds to the point pm = Tm,s · ps in the local map frame. Initially, we set
the world frame to coincide with the local map frame Tw,m = I. To maintain the
locality of the local map, shifting gradually changes Tw,m by an integer multiple of
the coarsest cell size while the orientation remains unchanged.

As is common in state estimation with inertial sensors (Qin et al., 2020; Sommer
et al., 2020; Xu et al., 2022), we select the IMU as the reference sensor and transform
scans prior to their lattice embedding into the reference frame with the IMU-LiDAR
extrinsic Ts,l. If no IMU is available, we set Ts,l = I.

6.2.2 Sliding Registration Window

Our previous approach MARS (Ch. 5) optimizes the trajectory Tw,l(t) of L scans
within the interval [tl−L, tl] and requires reinitialization as tk (see Fig. 6.4) and
∆t change (see Fig. 6.3). Instead, CLINS (Lv et al., 2021) and SLICT2 (Nguyen

1 Sommer et al. (2020) refer to basis matrices as blending matrices.
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Figure 6.4: Spline window: a) MARS (Ch. 5) only optimizes a Nth order spline for L scans
(e.g., N = L = 3) for a single interval ∆t from scan j − L until j allowing
discontinuity between j − L and j − L + 1 (left, red dashed). b) Our method
enforces continuity and keeps previous intervals fixed while optimizing one interval
per scan.
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Figure 6.5: Ill-conditioning of uniform B-spline w.r.t. the last constraint. The condition
number κl improves for tl approaching tk+1 [a)] since the weight λ [b)] increases
for the newest knot (k + 1).

et al., 2023) fixate older knots not contributing to the current scan resp. window,
and add new knots uniformly such that tl ∈ [tk, tk+1). Although Coco-LIC (Lang
et al., 2023) uses a non-uniform B-spline, the approach retains the notion of a fixed
time interval ∆t, e.g., 0.1 s, and subdivides each interval [tκ, tκ+1) into a variable
number of uniformly placed knots depending on IMU excitation. Below a certain
IMU threshold, the subdivision leads to a uniform B-spline, as with CLINS. Moreover,
their IMU-based selection strategy delays the optimization by up to (N − 1)∆t time
intervals, e.g., 0.2 s for low IMU excitation. This is a direct consequence of the basis
matrix computation2 since IMU measurements within [tκ+N−1, tκ+N ) influence the
knot times (Eq. 6.7) required for [tκ, tκ+1).

The normal equations easily become ill-conditioned if the current scan3 ends very
close to the previous knot (tl − tk ≪ tk+1 − tl). We show this in Fig. 6.5 by analysis

2 Although not explicitly stated in Lang et al. (2023), the basis matrix for [tκ, tκ+1) requires the knot
time tk+N−1 where tk+N−1 > tκ+1.

3 On the Newer College “Cloister” sequence (Zhang et al., 2021), around half of all scans have a ∆t

slightly larger than the expected ∆te = 0.1 s.
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of the condition number of the normal equations’ H = JWJ⊺ matrix. For a spline
with N = 3 and a window of L = 3 scans, we evaluate over 100 uniform time steps
in [tl−L, tl] under the assumption of uniform data constraints (e.g., W = I6). The
ill-conditioning becomes apparent by analysis of the condition number κl for tl relative
to the reference κr with tl ≈ tk+1. The reason behind this is the small B-spline knot
weight at the end (resp. beginning) of the knot’s local support. We found that the
optimization may approach local minima where the end knots are far away from
reasonable values.

Without further constraints, this ill-conditioning leads to unrealistic motion, e.g.,
with high acceleration. We investigate the relevance of this situation by computing
the difference between knot and scan time (tk+1 − tl) for CLINS4 on the Newer
College dataset (Zhang et al., 2021). Ideally, the difference is close to zero. Our test
showed that 11.4 % of those time differences are above 40 ms (or 80 % of ∆t) on the
“Quad-Hard” sequence. The average is around 10.8 ms or 21.7 % of ∆t. The situation
is worse for the “Cloister” sequence, where the average is around 21.6 ms or 43.18 %
of ∆t. Here, 42 % of all time differences are above 40 ms (or 80 % of ∆t). Accordingly,
it is a common occurence and not the exception.

We combine the approaches of MARS and CLINS more robustly. Our non-uniform
spline sets the knot time such that tk+1 = tl + ϵ with ϵ = 1 ns and thus κl ≊ κr

prevents the above ill-conditioning. Furthermore, we optimize the L knots influencing
the newest L intervals such that our window is Wl = {Sl−L+1, . . . Sl}. Each interval
spans the time between two consecutive scans. Knots Xk+2, . . . , Xk+N−2 are set with
the expected constant ∆te and are temporally corrected once a new scan arrives.
Hence, we do not introduce a delay as in Coco-LIC (Lang et al., 2023).

6.2.3 Registration

We use the registration of MARS (Ch. 5) including its adaptive surfel resolution
selection. A normal distribution esm ∼ N

(
dsm, Σsm + σ2

l I
)

models the observation
likelihood of scene surfel s ∈ Sl for map surfel m ∈ M with dsm:

dsm = T (t)µs −µm, (6.8)
Σsm = Σm + R(t)ΣsR(t)⊺. (6.9)

We use the covariance as is for non-planar surfels. For planar surfels, we scale the
covariance Σ during registration based on their Eigendecomposition:

Σ = V DV ⊺, (6.10)
V = [v0,v1,v2], (6.11)
D = diag ([λ0, λ1, λ2]

⊺) , (6.12)

with Eigenvalues λ0 ≤ λ1 ≤ λ2 ∈ R and corresponding Eigenvectors vi ∈ R3.

4 CLINS uses a ∆t = 50 ms for more dynamic datasets, such as hand-held ones, to create two knots
per scan.
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Replacing D with a scaled matrix D̃ based on the cell size cl on the surfels’ level:

λ̃ =

[
min(λ0, 0.001), cl

2 , cl

2

]⊺
, (6.13)

D̃ = diag
(
λ̃
)

, (6.14)

reinforces the constraint in the normal direction while giving more leeway in the
other directions.

In Ch. 5, MARS uses a GMM to represent a scene surfel s ∈ Sl observing multiple
map surfels As ∈ M with esm while taking their similarity into account with weight
wsm (Eq. 5.35) and jointly minimizes the data term LMARS for L scans:

LMARS(l) =
∑
s∈Sl

∑
m∈As

wsmd
⊺
smΣ-1

smdsm, (6.15)

with Levenberg-Marquardt (LM) to update the knots X .
We introduce another prior probability p(θ) into the GMM’s similarity p(δsm)

(Eq. 5.33) based on the dot product between surfel normal n and mean view direction
f from sensor origin o:

p(θ) ∼ N
(
arccos (n⊺f ) , (π/8)2

)
. (6.16)

This prior reduces the influence of surfaces measured under a steep angle whose
normals are less reliable, e.g., when measuring the floor or road far ahead.

To distribute constraints temporally more evenly and to follow the actual sensor
trajectory more closely, we linearly subdivide each scan into O time segments with
o ∈ [0, O − 1]:

tseg(o) = tl−1 +
o

O − 1 (tl − tl−1) ∈ (tl−1, tl]. (6.17)

It is a reasonable assumption for a spinning LiDAR that points fused within the same
surfel are also close in time. Hence, we group surfels to segments w.r.t. their mean
time. Then, we register each segment, evaluated at its respective time tseg(o), using
the data term LMARS. This acts as a segment-wise undistortion during optimization.

6.2.4 Optimization

Complementary to Eq. 6.15, we include constraints Lc and a marginalization prior
Lmarg in the optimization. The constraints Lc comprise weighted terms for IMU
LIMU (see Eq. 6.92), zero-acceleration Lz (see Eq. 6.94), and relative poses Ld∆T

(see
Eq. 6.97):

Lc = wIMULIMU + wzLz + wd∆TLd∆T
. (6.18)

We discuss these terms in greater detail further below in Sec. 6.2.7 and Sec. 6.2.8.
An IMU provides angular velocity ωm and linear acceleration am readings of

the gyroscope and accelerometer, respectively. Fortunately, the spline allows direct
evaluation of these quantities with N ≥ 2 for ω(t) and N ≥ 3 for a(t) with zero-mean
additive biases bgyr(t), bacc(t), and gravity gw:

ωm = ω(t) + bgyr(t), (6.19)
am = R(t)⊺ (a(t) + gw) + bacc(t). (6.20)
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We extend our state x with time-varying accelerometer and gyroscope biases
bacc(t), bgyr(t) ∈ R3. Hence, two non-uniform B-splines (as in Eq. 5.13) represent the
biases with a reduced order NB ∈ {1, 2} and bias knots Bk = (R3 × R3) ∈ B.

Accelerometer biases are quite small (< |0.1|m s−2) compared to the earth’s gravity
(≈ 9.81 m s−2). The earth’s gravity gw commonly dominates a(t) in Eq. 6.20 in our
robotic applications (≤ |2.5|m s−2 in Tab. 6.4). Yet, gravity gw acts in a specific
direction, which makes its compensation straightforward based on the orientation
R(t). Conversely, imperfect initialization of the orientation impairs the trajectory
and map accuracy. Thus, we model the gravity direction g on the unit 2-sphere
S2 =

{
x ∈ R3 : ∥x∥ = 1

}
(Xu et al., 2022). Then the gravity vector gw becomes:

gw = 9.81 · g with g ∈ S2. (6.21)

Initially, we set g = [0, 0, −1]⊺ and R(t) according to a 3-axis magnetometer. In the
absence of the magnetometer, acceleration measurements of a stationary sensor allow
the observation of roll and pitch of R(t) while the yaw remains unobservable (Geneva
et al., 2020) and can be chosen arbitrarily. In practice, averaging over a short period
in the beginning is sufficient (Chen et al., 2022; Xu et al., 2022; Chen et al., 2023a).

Overall, we optimize the following cost functions using LM (Sec. 2.2):

arg min
X ,B,gw

L−1∑
l=0

(
O−1∑
o=0

LMARS(lo)

)
+ Lc(l) + Lmarg. (6.22)

6.2.5 Marginalization

Following the standard procedure in LIO (Shan et al., 2020; Xu et al., 2022) and
visual-inertial odometry (VIO) (Engel et al., 2018; Geneva et al., 2020; Usenko et al.,
2020), we marginalize old state variables leaving the sliding optimization window.
These are the oldest knots for pose Xl−N and bias Bl−NB

within the window Wl.
Reordering the corresponding entries of the normal equations H, b for Eq. 6.22

into marginalizing xβ and kept xγ variables:HββHβγ

HγβHγγ

xβ

xγ

 =

bβ

bγ

 , (6.23)

allows the use of the Schur complement (Leutenegger et al., 2015). Thus, the new
marginalization prior (Usenko et al., 2020; Demmel et al., 2021) Hγ′γ′ , bγ′ becomes:

Hγ′γ′ = Hγγ − HγβH -1
ββHβγ , (6.24)

bγ′ = bγ − HγβH -1
ββbβ. (6.25)

Entries for new variables are initialized to zero in the next iteration.
For our initialization, we perform a separate marginalization of all bias knots B

and the gravity gw except for the remaining poses.

6.2.6 Initialization

In contrast to the previous Ch. 5, we use associated surfels directly for the older
scans. For a new scan, we incorporate its constraints Lc and none of its surfels. The
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linearization point is fixed for each knot—except for the new ones. Thus, we employ
First-Estimate Jacobians (Huang et al., 2008) and fix surfel associations beforehand.
When all previous knots fit well from earlier registrations, any modification likely
increases their respective errors. With all knots but one quasi-fixed, the spline
evaluations in Eq. 5.15 and Eq. 5.13 become linear interpolations for timestep t. As
a result, only the newest knot may change to minimize the constraints’ errors. In
some cases, we found oscillations occurring at twice the frequency of placed knots.
Hence, we increase the weight of the IMU term by a factor of 10 for the newest scan
to prevent early local minima and optimize:

X init = arg min
X

L−1∑
l=0

Lc(l) +
L−2∑
l=0

(
O−1∑
o=0

LMARS(lo)

)
+ Lmarg. (6.26)

For biases, new knots are set to the previous estimate.

6.2.7 Inertial Spline Constraints

Constraints on the angular velocity ω(t) and linear acceleration a(t) arise naturally
from the gyroscope (Eq. 6.19) and accelerometer measurements (Eq. 6.20):

dgyr = ω(t) − (ωm − bgyr(t)) , (6.27)
dacc = R(t)⊺ (a(t) + gw) − (am − bacc(t)) . (6.28)

However, IMUs’ high sampling frequencies lead to many additional terms in Eq. 6.22
which increase the computational load for optimization. Preintegration (Leutenegger
et al., 2015; Geneva et al., 2020; Shan et al., 2020; Usenko et al., 2020) is a convenient
method to combine multiple IMU measurements. Here, a single preintegrated pseudo-
measurement has mean ∆pre and covariance Σ∆pre . The integration starts at time
tmi with linearized biases bacc,i, bgyr,i. We use the subscript mj to emphasize the last
integrated measurement with time tmj :

∆pre =
(

∆pmj , ∆Rmj , ∆vmj

)
∈ R3 × SO(3) × R3, (6.29)

Σ∆pre ∈ R9×9. (6.30)

After bias correction of a new IMU measurement (ω,a)mj+1
at tmj+1 :

ωmj+1 = ωmj+1 − bgyr,i, (6.31)
amj+1 = amj+1 − bacc,i, (6.32)

the integration updates the mean ∆pre using:

∆tmj = (tmj+1 − tmj ), (6.33)

Rw = ∆Rmj · Exp
(∆tmj

2 ·ωmj+1

)
, (6.34)

as follows (Usenko et al., 2020):

∆pmj+1 = ∆pmj+1 + ∆tmj · ∆vmj +
∆t2

mj

2 · Rwamj+1 , (6.35)

∆vmj+1 = ∆vmj + ∆tmj · Rwamj+1 , (6.36)

∆Rmj+1 = ∆Rmj · Exp
(

∆tmj ·ωmj+1

)
. (6.37)
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The covariance Σ∆pre is propagated accordingly with fixed measurement noises
Σacc, Σgyr:

Σ∆prej+1 =

(
J

∆prej+1
∆prej

)
Σ∆prej

(
J

∆prej+1
∆prej

)⊺

+

(
J

∆prej+1
aj+1

)
Σacc

(
J

∆prej+1
aj+1

)⊺

+

(
J

∆prej+1
ωj+1

)
Σgyr

(
J

∆prej+1
ωj+1

)⊺

.

(6.38)

The Jacobians required for propagation are given in App. B.1.
For simplicity, we use the shorthand fi (resp. fj) for a B-spline function f(t)

evaluated at tmi (resp. tmj ) and drop the subscript for preintegrated variables from
tmi to tmj . For now, we ignore the biases and set ∆pre = ∆pre to define the errors for
∆pre =

(
∆p, ∆R, ∆v

)
:

∆tm = tmj − tmi , (6.39)

d∆p̃ = R⊺
i

∆p̃︷ ︸︸ ︷(
pj − pi − vi∆tm − gw

∆t2
m

2

)
−∆p, (6.40)

d∆R̃
= Log

(
∆RR⊺

j Ri

)
, (6.41)

d∆ṽ = R⊺
i (vj − vi − gw∆tm) − ∆v. (6.42)

While the Jacobians depending on a single time t are given5 by Sommer et al. (2020),
we need to derive the right Jacobians Jf (X)

X w.r.t. knots Xki
and Xkj

for the above
relative residuals d∆pre = [d⊺

∆p̃
,d⊺

∆R̃
,d⊺

∆ṽ
]⊺.

Sommer et al. (2020) defined the composite manifold6 for a spline knot X ∈
SO(3)× R3 with composition (◦), a left-increment update (⊕) and a right-decrement
downdate (⊖):

Exp(τ ) = exp (τ∧) = X ∈ SO(3) × R3, (6.43)
Log(X) = log (X)∨ = τ ∈ R6, (6.44)

Y = X ⊕ τ = Exp(τ ) ◦ X, with τ ∈ R6 (6.45)
τ = Y ⊖ X = Log(X -1 ◦ Y ), (6.46)

(6.47)

as well as a right Jacobian Jf (X)
X ∈ R6×6:

J
f (X)
X (τ ) = lim

τ→0

f(X ⊕ τ ) ⊖ f(X)

τ
, (6.48)

= lim
τ→0

Log(f(X)-1 ◦ f(X ⊕ τ ))
τ

, (6.49)

=
∂Log (f(X)-1 ◦ f(X ⊕ τ ))

∂τ

∣∣∣∣
τ=0

. (6.50)

5 Sommer et al. (2020) provide the right Jacobians for orientation R(t), angular rate ω(t) and angular
acceleration α(t), as well as position p(t), velocity v(t) and linear acceleration a(t).

6 The definition differs from Solà et al. (2018) who use right-⊕ and right-⊖, thus, leading to different
Jacobians derived for SE(3) and SO(3) × R3.
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The adjoint AdjX is a linear map defined as:

AdjX = (Xτ∧X -1)∨. (6.51)

The following identities7 are helpful for further derivations:

exp(Xτ∧X -1) = X exp(τ∧)X -1, (6.52)
exp(τ∧)-1 = exp(−τ∧) =

τ→0
I − τ∧. (6.53)

A relative B-spline function g = fX(ti, tj) depends on two timestamps ti, tj . Due
to the local support of a B-spline, a knot Xk has non-zero weight for none, one or
both timestamps. Hence, we denote the set of N knots with non-zero weight at time t

as X (t). Obviously, the Jacobian Jg
Xk

of g w.r.t. Xk is zero for Xk /∈ {X (ti) ∪ X (tj)}
since the weight of Xk is zero.

The decoupled logarithm LogD of SO(3) × R3 allows us to treat the Jacobians for
the knot’s rotation Rk and position pk independently: Jg

Xk
=
[
Jg
pk ,Jg

Rk

]
. Thus, we

begin with the derivation for the rotation:

∆R̃ = ∆RR⊺
j Ri, (6.54)

in Eq. 6.418. First, we assume no overlap between X (ti) and X (tj) and consider both
cases separately, starting with Rk ∈ SO(3) evaluated at ti:

J∆R̃
Rk,ti

= lim
τ→0

(
∆R̃(Xk ⊕ τ )

)
⊖
(

∆R̃(Xk)
)

τ
, (6.55)

= lim
τ→0

(
∆RR-1

j Ri(Xk ⊕ τ )
)

⊖
(

∆RR-1
j Ri(Xk)

)
τ

, (6.56)

= lim
τ→0

Log
((

∆RR-1
j Ri

)-1
∆RR-1

j Exp(τ )Ri

)
τ

, (6.57)

= lim
τ→0

Log
(
R⊺

i Rj∆R
⊺∆RR⊺

j Exp(τ )Ri

)
τ

, (6.58)

= lim
τ→0

Log (R⊺
i Exp(τ )Ri)

τ
= lim
τ→0

(R⊺
i τ

∧Ri)
∨

τ
, (6.59)

= AdjR⊺
i
JRi

Rk
= R⊺

i J
Ri
Rk

. (6.60)

Here, R-1 = R⊺ allows simplification in Eq. 6.58 and cancels out many terms. Equa-
tion 6.59 uses the identity in Eq. 6.52 and the definition of Log(X) in Eq. 6.44. The
equalities in Eq. 6.60 stem from the definition of the adjoint (Eq. 6.51) and AdjR = R

(see Eq. (139) in Solà et al. (2018)), whereas Sommer et al. (2020) provide JRi
Rk

.

7 Equation 6.52 is given as (20) in Solà et al. (2018).
8 The preintegration of Basalt uses a right-increment (Eq. 6.37) and thus Rj ≈ Ri∆R follows, which

leads to Eq. 6.41.
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The derivation follows similarly for tj :

J∆R̃
Rk,tj

= lim
τ→0

(
∆R̃(Xk ⊕ τ )

)
⊖
(

∆R̃(Xk)
)

τ
, (6.61)

= lim
τ→0

(
∆R (Rj(Xk ⊕ τ ))-1 Ri

)
⊖
(

∆R (Rj(Xk))
-1 Ri

)
τ

, (6.62)

= lim
τ→0

Log
(

∆R̃(Xk)
-1∆R (Exp(τ )Rj(Xk))

-1 Ri

)
τ

, (6.63)

= lim
τ→0

Log
((

∆RR⊺
j Ri

)-1
∆RR-1

j Exp(−τ )Ri

)
τ

, (6.64)

= lim
τ→0

Log
(
R⊺

i Rj∆R
⊺∆RR⊺

j Exp(−τ )Ri

)
τ

, (6.65)

= lim
τ→0

Log (R⊺
i Exp(−τ )Ri)

τ
= lim
τ→0

(R⊺
i (−τ∧)Ri)

∨

τ
, (6.66)

= −AdjR⊺
i
JRj

Rk
= −R⊺

i JRj

Rk
. (6.67)

Finally, we have for Xk ∈ {X (ti) ∩ X (tj)} with Eq. 6.60 and Eq. 6.67 according to
the product rule:

J∆R̃
Rk

= R⊺
i J

Ri
Rk

− R⊺
i J

Rj

Rk
. (6.68)

This is coincidently the general form for J∆R̃
Rk

whereas the special cases (Eq. 6.60 and
Eq. 6.67) arise if X (t) = ∅ and thus JR(t)

Rk
= 03×3.

Evidently, the Jacobian of ∆R̃ w.r.t. the knot’s position J∆R̃
pk

is zero and indepen-
dent of t, which leads with the inverse right Jacobian JLog(R)

R = J -1
r (Log(R)) for

SO(3) (Sommer et al., 2020) to:

J
d

∆R̃
Xk

=

[
03×3, J -1

r

(
d∆R̃

)
J∆R̃

Rk

]
. (6.69)

The errors for preintegrated position (Eq. 6.40) and velocity (Eq. 6.42) share a
common form ∆h with fpk

(t) depending on the knot position pk and some vector
e ∈ R3:

∆h = R⊺
i

d︷ ︸︸ ︷
(fpk

(tj) − fpk
(ti) + e) . (6.70)

For J∆h
Rk

, we use the following identities9:

[w]×v = −[v]×w, (6.71)
(Rw)∧R = Rw∧. (6.72)

9 Equation 6.72 for SO(3) is a direct result from Eq. 6.51 and Eq. 6.71.
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Since the target domain of ∆h is R3 the ⊖ becomes a subtraction:

J∆h
Rk,ti

= lim
τ→0

(∆h(Xk ⊕ τ )) ⊖ (∆h(Xk))

τ
, (6.73)

= lim
τ→0

(Exp(τ )Ri)
-1 (fpk

(tj) − fpk
(ti) + c) − ∆h

τ
, (6.74)

= lim
τ→0

R⊺
i (I − τ∧)d − ∆h

τ
= lim
τ→0

−R⊺
i τ

∧d
τ

, (6.75)

= lim
τ→0

−(R⊺
i τ )

∧R⊺
i d

τ
= lim
τ→0

−[R⊺
i τ ]×∆h
τ

, (6.76)

= lim
τ→0

[∆h]×R⊺
i τ

τ
= [∆h]×R⊺

i J
Ri
Rk

, (6.77)

J∆h
Rk,tj

= 03×3. (6.78)

Here, Eq. 6.75 uses the third equality of Eq. 6.53 while Equation 6.72 expands Eq. 6.76
to simplify it with Eq. 6.71 subsequently.

The derivation for ∆h w.r.t. fpk
(t) is straightforward due to fpk

(t) ∈ R3 and the
target domain R3 and thus omitted for brevity:

J∆h
fpk

= −R⊺
i J

fpk
(ti)

pk + R⊺
i J

fpk
(tj)

pk . (6.79)

The Jacobian of ∆h w.r.t. Xk is:

J∆h
Xk

=

[
R⊺

i

(
J

fpk
(tj)

pk − Jfpk
(ti)

pk

)
, [∆h]×R⊺

i J
Ri
Rk

]
. (6.80)

For d∆ṽ (Eq. 6.42), its Jacobian J
d

∆ṽ
Xk

directly follows from Eq. 6.80 with fpk
(t) = v(t).

Similarly, we obtain J
d

∆p̃

Xk
for Eq. 6.40:

J
d

∆p̃

Xk
=
[
R⊺

i

(
J
pj
pk − Jpi

pk − ∆tmJ
vi
pk

)
, [∆p̃]×R⊺

i J
Ri
Rk

]
. (6.81)

For gravity gw, the Jacobians are straightforward with Jgw
g due to g ∈ S2:

J
d∆pre
gw =

[(
−R⊺

i

∆t2
m

2

)⊺

, 03×3, (−R⊺
i ∆tm)

⊺

]⊺
Jgw
g . (6.82)

To update our biases, we must consider the linearization of bacc,i and bgyr,i. Hence,
this modifies ∆pre (Usenko et al., 2020):

dbacc = bacc(tmi) − bacc,i, (6.83)
dbgyr = bgyr(tmi) − bgyr,i, (6.84)

∆p = ∆p+ J∆p
bacc,i

dbacc + J
∆p
bgyr,i

dbgyr , (6.85)

∆v = ∆v + J∆v
bacc,idbacc + J

∆v
bgyr,idbgyr , (6.86)

∆R = Exp
(
J∆R
bgyr,idbgyr

)
∆R. (6.87)



88 LiDAR Inertial Odometry

Fortunately, this does not change the general form of the above Jacobians w.r.t. the
knot Xk. With these, we obtain the Jacobians w.r.t. bias knots bacc,k, bgyr,k:

J
d∆pre
bacc,k

= −J∆pre
bacc,i

J
bacc(tmi )
bacc,k

, (6.88)

J
d∆pre
bgyr,k

= −


I3×3 03×3 03×3

03×3 J -1
r (∆R̃)∆R̃⊺ 03×3

03×3 03×3 I3×3

J∆pre
bgyr,i

J
bgyr(tmi )
bgyr,k

. (6.89)

Empirically, we found that solely relying on preintegration may lead to slippage in
the estimation (esp. in rotation) due to the change from absolute IMU measurements
(am,ωm) to purely relative ones. In case of high rotational velocities, e.g., ≥ 120 ◦ s−1,
we switch to raw measurements. Otherwise, we fuse all IMU measurements between
two scans except for the last one, which allows us to define the IMU error LIMU:

Lraw = d⊺accΣ-1
accdacc + d

⊺
gyrΣ

-1
gyrdgyr, (6.90)

Lpre = d⊺∆pre

(
Σ∆pre

)-1
d∆pre , (6.91)

LIMU = wIMU
(
Lpre(tmi , . . . , tmj−1) + Lraw(tmj )

)
. (6.92)

In the absence of further sensor input, we regularize the spline for N ≥ 3 with
zero-acceleration soft-constraints on linear az(t) and angular acceleration αz(t) in
IMU frame with covariance Σz and weight wz:

dz(t) = [az(t)
⊺,αz(t)

⊺]⊺ , (6.93)

Lz(i) = wz

O−1∑
o=0

d⊺z (tseg(o))Σ-1
z dz(tseg(o)). (6.94)

This promotes uniform motion towards a constant velocity model without strictly
enforcing it.

6.2.8 Relative Motion Constraints

In some situations, a robot supplies further motion estimates, e.g., from the wheel or
joint encoders or visual odometry (VO). Hence, we promote similarity between robot
odometry poses ∆Tm = T -1

mj
Tmi and the spline ∆T = T -1

j Ti using a relative pose error
d∆T with weight matrix Wd∆T

:

∆p = R⊺
i (pj − pi) , (6.95)

d∆T =

∆R⊺
m (∆p− ∆pm)

Log
(

∆R⊺
mR⊺

j Ri

) , (6.96)

Ld∆T
= w∆Td

⊺
∆T Wd∆T

d∆T . (6.97)

From Eq. 6.80, we get J∆p
Xk

and obtain Jd∆T
Xk

using Eq. 6.69 with ∆R = ∆R⊺
m:

Jd∆T
Xk

=

∆R⊺
mJ

∆p
Xk

J
d

∆R̃
Xk

 . (6.98)
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Figure 6.6: Surface element (surfel) motion compensation via unscented transform (UT):
sensor motion ∆Treg from t0 to t1, e.g., towards a wall, distorts and skews scans
and surfels. Sigma points YΣ of the surfel covariance Σs are projected into the
LiDAR to obtain the sigma points’ time ty. Spline evaluation allows motion
correction towards a segments’ reference time tseg (red) before surfels are re-fused.

Without a covariance estimate for ∆T , Wd∆T
provides an opportunity to improve

the method’s resilience. The limited field-of-view (FoV), range of LiDARs, and the
environment’s geometry can lead to an uneven constraint distribution for all degrees
of freedom (DoFs). An example are tunnel-like structures when there are mostly
measurements of the walls, floor and ceiling. Here, constraints for the translational
DoF along the tunnel are likely underrepresented or dominated by noise (Zhang et al.,
2016; Tuna et al., 2024).

Nashed et al. (2021) selectively constrain translation along the Eigenvectors vi of
the normals’ covariance Cn if the condition number κi = λmax/λi (Sec. 2.3) is above
τκ = 10. We empirically found an adaptive scaling w.r.t. the data term LMARS and
the inclusion of the orientation direction to be worthwhile:

Cl =
1

|Sl|
∑
s∈Sl

h⊺
shs with hs = [ns,µs ×ns]

⊺ . (6.99)

Hence, we scale the Eigenvectors vi of Cl with κi and use the weight matrix10:

Wl =
∑

i

viκiv
⊺
i , (6.100)

for the relative pose error Ld∆T
within (tl−L, tl]. A similar Wl is obtained for a

position-only prior L∆p (resp. orientation-only L∆R) from the 3 × 3 top-left (resp.
bottom-right) block matrix of Cl.

10 Since Cl is real and symmetric positive semidefinite (s.p.d.), inverting its Eigenvalues λi leads to the
inverse C-1

l = V Λ-1V ⊺. Thus, the scaling directly provides the information matrix W .
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6.2.9 Unscented Transform for Motion Compensation

The spline allows us to compensate ego-motion towards a reference time tref , given
the points’ capture time t(p):

p̄ = TX (tref)
-1 TX (t(p))p. (6.101)

Full compensation for all points with Eq. 6.101 is computationally prohibitively
expensive during registration in real-time applications with modern LiDARs11. In
our case, this also requires re-embedding of the point cloud.

Instead, we adapt the unscented transform (UT) (Julier and Uhlmann, 1997; Wan
and Van Der Merwe, 2000) for an efficient surfelwise undistortion, as shown in Fig. 6.6.
The UT generates from mean µ and covariance Σ a set of sigma points YΣ before
applying a function ȳ = f(y),y ∈ YΣ to these points. Finally, the UT recombines
the transformed points to obtain the transformed mean µ̄ and covariance Σ̄. Here,
we use the symmetric set of sigma points YΣ with the Cholesky decomposition LL⊺

of the scaled covariance:

LL⊺ = d · Σs, (6.102)
YΣ = [µs +L0, . . . ,µs −Ld−1], (6.103)

with d = 3 and Li referring to the ith column of L. The surfel mean µs is deliberately
excluded from YΣ to prevent previously occurring numerical round-off errors (see Eq.
(30) in Wu et al. (2006)).

Thus far, we lack the sigma points’ time ty. Hence, we transform each sigma point
y ∈ YΣ into the LiDAR frame and project using Eq. 6.1 and Eq. 6.2 with mean
directional offset oc from the surfel points:

ty = t(T -1
s,ly, oc). (6.104)

Then, Eq. 6.101 and Eq. 6.6 provide the compensated sigma point ȳi with the surfels’
segment time tseg:

∆Ry,seg = slerp(∆RIMU, ty)
-1slerp(∆RIMU, tseg), (6.105)

ȳi = TX (tseg)
-1 TX (ty) [∆Ry,segyi] . (6.106)

Here, ∆Ry,seg counteracts the previous pre-orientation of P̃l in Eq. 6.6. Afterwards,
transformed sigma points ȲΣ are re-fused as in Wan and Van Der Merwe (2000) to
obtain compensated mean µ̄ and covariance Σ̄:

µ̄ =
∑
ȳ∈ȲΣ

1
2d
ȳ, (6.107)

Σ̄ =
∑
ȳ∈ȲΣ

1
2d

(ȳ− µ̄) (ȳ− µ̄)⊺ . (6.108)

Although applicable during registration, e.g., after each LM-iteration, we found
updating the sliding registration window Wl prior to registration to be sufficient.

11 CT-ICP (Dellenbach et al., 2022) reports an average computation time of 430 ms on Oxford Newer
College (Ramezani et al., 2020) to simultaneously optimize two poses for one grid sampled and
linearly interpolated scan.
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6.2.10 Keyframe Generation and Reuse

We combine the sliding keyframe window of MARS (Ch. 5) with the keyframe storage
of DLO (Chen et al., 2022) and take advantage of the regular structure of the lattice.
All keyframes share an aligned common lattice with keyframe-specific shifts νk ∈ Zd+1

to facilitate surfelwise fusion (Sec. 5.2.1) and ensure runtime efficiency without costly
reintegration. Moreover, shifts allow us to maintain the local property of our map M
and keyframes. For unseen areas, the storage approach is equivalent to the sliding
keyframe window of MARS, while the traversal of known regions allows the reuse of
previous keyframes.

direct LiDAR odometrys (DLOs)’ adaptive distance threshold may be consistently
too large in situations with obstructions, like pillars, while the LiDAR measures
different surfaces with little overlap before reaching the threshold. For this reason,
MAD-ICP (Ferrari et al., 2024) selects a recent scan to update its map if the
percentage of successfully registered points drops below a certain threshold. Similarly,
the SOD metric of AS-LIO (Zhang et al., 2024b) computes the overlap between the
voxelized scan and map to adapt the length of the sliding window before merging the
window into the map. Instead, we create a keyframe from the oldest scan within the
registration window if less than 80 % of surfels in S are associated.

As the measured ranges and thus necessary map sizes vary with the surrounding
environment, we adapt the map size by changing the coarse cell size c0. While c0 = 4 m
is sufficient for open surroundings, half the size (2 m) is more than enough for close
quarters. This coincides by design with the coarse c1 due to:

cl = c0 · 2−l with l ∈ [0, . . . , 3]. (6.109)

With four levels, the finest outdoor cell size c3 is 0.5 m compared to 0.25 m indoors.
Furthermore, both coarse cell sizes have three map resolutions in common. Thus, we
seamlessly transition between narrow and wide areas by fusing map levels with the
same cell size. The current coarse cell size c0 depends on the mean surfel distance dm

filtered with an exponentially weighted moving average (EWMA):

dm =
1

|Sl|
∑
s∈Sl

∥µs∥ , (6.110)

dm = α · dm + (1 − α) · dm, (6.111)

c0 =

4 m, if dm ≥ 3 m,
2 m, else,

(6.112)

similar to DLO’s adaptive distance threshold.
After a positive keyframe decision, we correct the ego-motion for the keyframe

scan pointwise with Eq. 6.101 using tsj as the reference time. In contrast to scans in
Wl, we embed each keyframe locally at the closest vertex after rotating the points
into the common map frame. As a result, we set the keyframe-specific shift νk to the
closest vertex co ∈ Zd+1. Using the coarsest level has the advantage that a shift on
any finer resolution is a whole-numbered multiple of the coarse shift.

Our local map selection initially adds a third of the map window from the closest
keyframes, sorted by ascending distance. For the remaining keyframes in range, we
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compute the intersection over union (IoU) between a keyframe and current scan using
the coarsest common map level. Embedding the current scan’s coarse surfel mean µs

into each keyframe would be computationally involved. Instead, we embed them once
into the common map lattice. Afterwards, we only require the cell shift between a
keyframe’s origin and the scan’s origin. Adding this cell shift to the embedded indices
provides the corresponding indices within the keyframe as if we embedded the coarse
surfels directly. We fill the map M with up to F keyframes from all overlapping ones
while preferring older keyframes to reduce drift over time.

6.2.11 Implementation

Instead of the full 3 × 3 covariance, we use the symmetry of the covariance matrix
Σs = Σ⊺

s for vectorization. This allows us to store the lower triangular matrix of Σs

using the following vecL (·) ∈ R8 and recover it with the inverse symL (a)-operation:

vecL (A) = [A00, A11, A22, 0, A10, A20, A21, 0]⊺, (6.113)

symL (a) =


a0, a4, a5,
a4, a1, a6,
a5, a6, a2

 . (6.114)

It is easy to verify the following identities for A = A⊺:

symL (vecL (A)) = A, (6.115)
vecL (symL (a)) = a. (6.116)

The vectorization simplifies memory alignment and use of single instruction, multiple
data (SIMD) instruction sets, e.g., advanced vector extensions (AVX), with the vector
class library (Fog, 2022). Addition and computation of the outer product in Eq. 5.3
become a single Fused Multiply-Add (FMA) operation per point pi.

For an efficient recomputation of Σ using D̃ and Eq. 6.10, we make use of the
Kronecker product ⊗ and its relation to the vec-function that stacks the columns of
a matrix (Lancaster and Tismenetsky, 1985):

vec(A · B · C) = (C⊺ ⊗ A) · vec(B). (6.117)

Combining Eq. 6.10 and Eq. 6.14 with Eq. 6.117 gives:

vec(V · D̃ · V ⊺) = (V ⊗ V ) · vec(D̃). (6.118)

The diagonal matrix D̃ has just three non-zero entries (λ̃). Hence, not the full V ⊗ V

is required:

(V ⊗ V ) · vec(D̃) =


V ·

(
λ̃⊺ ⊙ [v00, v01, v02]

)⊺
V ·

(
λ̃⊺ ⊙ [v10, v11, v12]

)⊺
V ·

(
λ̃⊺ ⊙ [v20, v21, v22]

)⊺
 , (6.119)
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where the Hadamard product ⊙ (Horn and Johnson, 1991) performs element-wise
multiplication. Since V · D̃ · V ⊺ is symmetric, we rephrase Eq. 6.119 with Eq. 6.113:

EV = [(v0: ⊙ v1:)
⊺ , (v0: ⊙ v2:)

⊺ , (v1: ⊙ v2:)
⊺] , (6.120)

vecL(V · D̃ · V ⊺) = [(V ⊙ V )⊺ ,0, E⊺
V ,0]⊺ · λ̃, (6.121)

where vi: is the ith row vector of V . This allows an efficient SIMD implementation
using two FMA and three multiply instructions. See App. B.2 for a verification script
using the MATLAB symbolic toolbox.

Similar optimizations with Eq. 6.117 are applicable for Eq. 6.9 to rephrase
R(t)ΣsR(t)⊺ into a single matrix-vector-product. We introduce H1 to map sym-
metric matrices from vecL(·) ∈ R8 to vec(·) ∈ R9 and H2 for mapping vec(·) ∈ R9

to vecL(·) ∈ R8 using the basis vectors ei with the Kronecker delta δij :

ei = [0, . . . , δii, . . . , 0]⊺ , (6.122)

H1 =
[
e0 e4 e5 e4 e1 e6 e5 e6 e2

]⊺
, (6.123)

H2 =
[
e0 e4 e5 0 e1 e6 0 0 e2

]
. (6.124)

Thus, simplifying the use of the Kronecker product with vecL(·) such that:

Z = H2 (R(t) ⊗ R(t))H1, (6.125)
sym ((R(t) ⊗ R(t)) vec (Σs)) = symL (Z · vecL(Σs)) . (6.126)

The matrix Z is constant for all surfels (≳ 100) at time t, allowing the precomputation
of Z and frequent reuse for Eq. 6.9:

vecL(Σm + R(t)ΣsR(t)⊺) = Z · vecL(Σs) + vecL(Σm). (6.127)

An efficient implementation needs just 6 FMA instructions since vecL(·) has 2 zero-
entries.

Mahalanobis Distance

Each registration iteration computes more than 10 000 Mahalanobis distances in
Eq. 6.15. Every distance requires the inversion of a symmetric 3 × 3 matrix. In
general, explicit matrix inversion is discouraged (Higham, 2002), e.g., when solving
linear systems as the obtained solutions are less accurate for ill-conditioned matrices.
However, a surfel integrates only local information due to the subdivision by the
lattice and the fusion of a small number of spatially distributed scans. Furthermore,
the GMM includes a resolution-depending scaling term σ2

l I that reduces the condition
number (see Eq. 2.46). Hence, some very fast analytical solutions exist for small
square matrices due to the Cayley-Hamilton theorem (Visser et al., 2006) and the
Leverrier-Faddeev method (Hou, 1998). As a result, the inverse of a 3 × 3 matrix
A (Gantmakher, 1960) is:

A-1 =
1

det(A)


a11a22 − a12a21 a12a20 − a10a22 a10a21 − a11a20

a02a21 − a01a22 a00a22 − a02a20 a01a20 − a00a21

a01a12 − a02a11 a02a10 − a00a12 a00a11 − a01a10

 . (6.128)
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Using the symmetry of A allows some further simplification with a01 = a10, a02 = a20
and a12 = a21:

A-1 =
1

det(A)


a11a22 − a2

21 a20a21 − a10a22 a10a21 − a11a20

a20a21 − a10a22 a00a22 − a2
20 a10a20 − a00a21

a10a21 − a11a20 a10a20 − a00a21 a00a11 − a2
10

 . (6.129)

We rephrase Eq. 6.129 with vecL(·) as:

m = vecL(A), (6.130)
a0 = [m1, m0, m0, 0, m5, m4, m5, 0]⊺, (6.131)
b0 = [m2, m2, m1, 0, m6, m6, m4, 0]⊺, (6.132)
a1 = [m6, m5, m4, 0, m4, m5, m6, 0]⊺, (6.133)
b1 = [m6, m5, m4, 0, m2, m1, m0, 0]⊺, (6.134)
c = a0 ⊙ b0 − a1 ⊙ b1, (6.135)

det(A) = m0c0 + m4c4 + m5c5, (6.136)

A-1 = symL

( 1
det(A)

c

)
. (6.137)

An efficient implementation needs one multiply and one FMA operation for Eq. 6.135
in addition to the dot product for det(A) and one division.

Embedding into the Permutohedral Lattice

The embedding of every point p into the permutohedral lattice (Sec. 5.2.1) is the
most costly process during map creation. After lifting p and scaling with σ-1

l , we
compute the closest remainder-0 point y ∈ Hd of the simplex (see Lemma 2.9 and Fig.
3 in Adams et al. (2010)). For this, we first unroll the rank computation into d + 1
parallel rounds. The rank rH = PH · [0, . . . , d]⊺ represents an unsorted permutation
of (0, . . . , d) with permutation matrix PH .

The next step sets the distances d to the permuted position (PHb := d) to obtain
the barycentric coordinates. This typical “scatter”-operation (b[ind[i]] := d[i]) has
only been recently added for memory access within AVX512 (Intel Corporation,
2023a), but remains unavailable for registers.

Instead, permuting the distances inversly12 (b := P ⊺
Hd) allows to use efficient

gather-operations (b[i] := d[idx[i]]), e.g., shuffle of SSE3 (Intel Corporation, 2023b)
and AVX permute (Intel Corporation, 2021) instructions. We verified by enumeration
for d = 3 (see App. B.3) that sorting the rank rH and setting idx[i] = ind(sorted[i])

indeed computes the correct index. Hence, we encode the original index (0, . . . , d)
in the lower log2(d + 1) = 2 bits after shifting the rank by the same number of
bits. Then, we sort blocks of d + 1 = 4 integers in parallel using three min and max
operations.

After extracting the original index offset and adding the block offset, we shuffle
according to the new index idx[i]. The barycentric coordinates become readily
available as the difference between neighboring entries (see Proposition 4.2 in Adams
et al. (2010)). We retain y as the one with the highest barycentric weight.

12 The inverse of a permutation matrix is its transpose (Pissanetzky, 1984).
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Table 6.1: RMS-ATE [m] evaluation on the Newer College (Ramezani et al., 2020) dataset.
Algorithms are grouped by LO/LIO and ordered according to publication date.
An “X” marks divergence. Lower values are better (↓) with

::::
third, second and best

highlighted.
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2
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Online ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LIO ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CT∗ ✓ ✓ ✓ ✓ ✓ ✓

01_Short 1.110 0.359 0.630 X 0.535
::::
0.340 0.376 0.363 0.355 0.291 0.282 0.601

02_Long 3.198 0.489 X X 0.399 0.329 X 0.399 0.384 0.301
::::
0.338 0.396

05_Quad 0.292 0.124 0.134 0.201 0.105 0.111 0.171 0.109 0.120 0.113 0.109 0.132

06_Spin† 0.105 X X 0.096 0.094 0.091 X 0.093 0.134 0.087 0.093 0.095

07_Park 2.278 0.213 X 42.321 0.202 0.125
::::
0.138 0.139 0.139 0.140 0.129 0.169

Fail [%] 0 25.00 35.00 50.00 0 0 30.00 0 0 0 0 0

Avg.
Rank 10.50 7.25 10.75 11.50 5.75 2.50 8.00 4.50 4.50

:::
3.50 2.00 7.25

Overall 10. 7. 11. 12. 6. 2. 9. 4. 4.
:
3. 1. 7.

∗ Continuous-time trajectory
† Inconsistent ground-truth, excluded from ranking. Failures manually inspected and verified.
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Table 6.2: RMS-ATE [m] evaluation on the Newer College extension (Zhang et al., 2021).
Algorithms are grouped by LO/LIO and ordered according to publication date.
An “X” marks divergence. Lower values are better (↓) with

::::
third, second and best

highlighted.

M
A

R
S

D
LO

K
IS

S-
IC

P

Tr
aj

-L
O

C
LI

N
S

Fa
st

-L
IO

2

P
oi

nt
-L

IO

SL
IC

T
2

D
LI

O

SE
-L

IO

iG
-L

IO

LI
O

-M
A

R
S

Online ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LIO ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CT∗ ✓ ✓ ✓ ✓ ✓ ✓

Math-E 0.151 0.174 0.123 0.109
::::
0.096 0.080 0.153 0.145 0.131 0.138 0.062 0.157

Math-M 0.187 2.492 3.865 0.150
::::
0.124 0.106 0.181 0.126 0.145 0.206 0.101 0.141

Math-H 0.135 X X 0.087 0.059
::::
0.066 0.138 0.132 0.070 0.110 0.062 0.112

Mine-E 0.087 0.084 0.085 0.045 0.039 0.049 0.045 0.054 0.036 0.089 0.052
::::
0.041

Mine-M 0.094 0.761 0.165 0.050 0.071 0.046 0.046 0.051 0.047 0.312 0.055 0.044

Mine-H 0.114 5.245 X 0.067 X 0.053 0.052 0.068 0.071 0.120
::::
0.056

::::
0.056

Quad-E 0.152 0.079 0.084 0.076 0.067 0.070 0.074 0.071
::::
0.069 0.082 0.070 0.067

Stairs X
::::
0.135 X X X X 0.222 X 0.117 X 0.333 0.103

Quad-M 0.117 0.122 15.166 0.068 0.058 0.060 0.066 0.064 0.062 X 0.062
::::
0.061

Quad-H 0.306 4.094 X 0.072 0.047 0.056 0.066 0.103 0.069 X
::::
0.062 0.063

Park 2.931 0.902 29.325 X 4.043 0.326 1.376 0.331 0.308
::::
0.298 0.263 0.288

Cloister 0.303 0.204 X
::::
0.085 0.115 0.073 0.103 0.116 0.095 0.108 X 0.069

Fail [%] 8.33 8.33 35.00 16.67 16.67 5.00 0 1.67 0 25.00 3.33 0

Avg.
Rank 9.67 9.50 10.83 6.67 5.08 3.67 5.92 7.17 4.25 9.17

:::
4.17 3.50

Overall 11. 10. 12. 7. 5. 2. 6. 8. 4. 9.
::
3. 1.

∗ Continuous-time trajectory

6.3 Evaluation

All experiments were conducted on a laptop with an AMD Ryzen 7 5800H and 48 GB
of random access memory (RAM). We use the Oxford Newer College (Extension)
dataset (Ramezani et al., 2020; Zhang et al., 2021), and our DRZ Living Lab
dataset (Sec. 5.3.3) for evaluation. The selected datasets pose unique challenges due
to their different characteristics. The handheld sensor motion of Newer College is,
in general, slower yet more abrupt and fits through narrower passages like corridors.
In contrast, unmanned aerial vehicle (UAV) flights achieve higher accelerations and
rotational speeds while exhibiting more continuous movement.

We compare our system, called LIO-MARS, to in total 11 other methods, which
can be divided into LiDAR odometrys (LOs) and LIOs. The real-time LO baselines
are MARS (Ch. 5), DLO (Chen et al., 2022), and KISS-ICP (Vizzo et al., 2023). The
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online LIO systems include Fast-LIO2 (Xu et al., 2022), DLIO (Chen et al., 2023a),
SE-LIO (Yuan et al., 2025), SLICT2 (Nguyen et al., 2024b), Point-LIO (He et al.,
2023) and iG-LIO (Chen et al., 2024b).

We further tested Traj-LO (Zheng and Zhu, 2024b), CLINS (Lv et al., 2021) and
Coco-LIC (Lang et al., 2023). These systems only provided interfaces for offline
processing of ROS bags13. However, in its LIO mode, Coco-LIC routinely diverged
on all datasets. For better comparability, we disabled the loop-closing of SLICT2
and CLINS, as none of the other methods have explicit loop-closing. Additionally,
we enabled the real-time flag for SLICT2 to maintain its real-time performance
and prevent accumulation of unprocessed scans. If available, the algorithms use per
dataset the recommended parameters by the respective authors. In their absence,
we adapt the parameters from a similar dataset and set the intrinsics for IMU and
LiDAR as well as extrinsics according to the dataset’s calibration. Each algorithm
uses a single parameter set per dataset without per-sequence adaptation.

Our evaluation uses Evo (Grupp, 2017) to compute the root-mean-squared (RMS)-
absolute trajectory error (ATE) (see Sec. 2.7) w.r.t. the dataset’s reference poses after
SE(3)-alignment. Per dataset, each sequence runs in real-time with a single algorithm
under evaluation. After processing the scan, we store the current pose. We repeat
the evaluation 5 times for each method to report the average RMS-ATE. If, during
a single run, the length of the estimated trajectory differs from the ground-truth
length by more than 25 % or the mean error is above 50 m, we mark the algorithm as
diverged for the sequence. Hence, we report the percentage of failed runs per dataset.

Given the large number of methods under evaluation, a clear overall winner may
not be apparent. A single run with a higher error or divergence can impact the result
too negatively when comparing the mean RMS-ATE over all sequences. Discarding
the diverged runs would bias the comparison towards successful runs without penalty
for failure. Per sequence, we thus rank the n algorithms based on their RMS-ATE
from first to nth place and compute the average rank over all sequences. All diverged
methods receive the nth place for the corresponding sequence.

6.3.1 Newer College Dataset

This dataset (Ramezani et al., 2020) contains five sequences14 captured with a hand-
held Ouster OS1-64 LiDAR with integrated IMU. Zhang et al. (2021) prepared a
multi-camera-inertial-LiDAR extension with an Ouster OS0-128 for another 12 se-
quences, partially recreating the original dataset. During the evaluation, all algorithms
receive the OS1-64 scans and its IMU for the five Newer College sequences and the
OS0-128 scans with an external Alphasense IMU for the extension. The reference
poses stem from ICP registration15 against TLS point clouds. Table 6.1 presents the
results for the five original sequences, whereas Tab. 6.2 shows the 12 newer sequences.
The values for MARS differ w.r.t. Ch. 5 due to several bug fixes after its original
publication.

13 http://wiki.ros.org/rosbag
14 The sequences are not consecutively numbered: 01, 02, 05, 06, 07.
15 Ramezani et al. (2020) do not report motion compensation.

http://wiki.ros.org/rosbag
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a) TLS b) Fast-LIO2

c) DLIO d) Ours

Figure 6.7: Comparison after compensation on “06_Spin” of Newer College (Ramezani et al.,
2020): height-colored ground-truth point cloud from terrestrial LiDAR scanner
(TLS) BLK360 [a)], aggregation of every 25th scan compensated by Fast-LIO2 [b)],
DLIO [c)] and our LIO-MARS [d)]. Color in [b)-d)] encodes point-to-plane error
w.r.t. ground-truth TLS map from low (blue) to high (red, ≥ 0.25 m). Ellipses
highlight areas with noticable differences between methods.

As expected, the LIO systems outperform their LO counterparts since the IMU
provides valuable complementary information to LiDAR. Furthermore, methods with
keyframe reuse or map reuse have an inherent advantage on the longer sequences (01,
02, and 07). The keyframe re-creation for previously visited areas in MARS (Ch. 5)
leads to drift over time.

KISS-ICP instead struggles with the unsteadier characteristics of handheld sensors,
which is quite different from its typical automotive driving scenario. Frequent obstruc-
tion of a small scan portion behind the sensor constitutes an additional challenge
for Point-LIO and the continuous-time methods. Interestingly, the continuous-time
methods perform slightly worse than the conventional methods on the first two
sequences, with the only exception being SE-LIO. In these sequences, our method
accumulates some drift in the parkland section leading back to the parkland mount.

The sequence “06_Spin” poses a particular challenge, as reflected by the high
number of diverged solutions. The sequence contains varying high rotational velocities
of up to 3.5 rad s−1 where motion compensation is essential. Figure 6.7 shows the
aggregation of every 25th scan after compensation by Fast-LIO2, DLIO, and our
approach. Each point cloud contains around 2 800 000 points. We subsample the
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Table 6.3: RMS point-to-plane distance [cm] for every 25th scan for “06_Spin” (Ramezani
et al., 2020) w.r.t. TLS map. Lower values are better (↓) with second and best
highlighted.

dmax [cm] Fast-LIO2 DLIO LIO-MARS LIO-MARS†

100 7.85 7.65 7.59 7.63

50 6.50 6.41 6.31 6.35

25 5.93 5.82 5.73 5.78
†Motion compensation on adaptive selected surfels between first and second registration iteration.

clouds to 5 cm resolution using CloudCompare for better alignment with the TLS
map. After manual initialization, CloudCompare’s ICP fine registration aligns the
subsampled clouds against the TLS map with 50 000 random sampled points. We
set the “final overlap” to 90 % and enabled “farthest point removal”. Afterwards, we
apply the estimated pose to the original cloud and compute point-to-plane errors
w.r.t. the TLS map to assess the compensation and registration quality.

Since no scan is visibly missaligned, we threshold the point-to-plane errors to 0.25 m
(resp. 0.5 m and 1 m) to reduce the influence of non-represented parts within the
quad. Table 6.3 shows that our map consistently has the lowest RMS error (RMSE)
before DLIO and Fast-LIO2 without any distinct red areas except for the growing
tree and bushes. Even if we compensate during registration in between the first and
second iteration instead of prior to registration, we obtain a better result than the
competing methods. Fast-LIO2 exhibits some spurious measurements and incorrectly
compensated scans.

The sequences of the extension (Zhang et al., 2021) showcase more variability
w.r.t. the results in Tab. 6.2. Figure 6.8 shows our reconstruction using every 25th
scan of the challenging “Stairs”. Here, the operator moved the handheld sensor setup
from a hallway through a door into a narrow staircase and multiple flights of stairs
upwards before heading back down again. The close quarters make this sequence
challenging as the ceiling or floor are temporarily not measured during turning. This
frequently leads to underconstrained directions in the optimization. Furthermore, the
LiDAR measures the stairs from above and below. This can erroneously pull both
surfaces together if the map resolution is too coarse or incorrect correspondences are
not rejected.

As part of their strategy to cope with the high amount of measurements per scan,
most approaches use a single resolution per voxel, e.g., in conjunction with a voxel
filter and random or naïve downsampling. As a result, Fast-LIO2 performs well in
most cases but diverges on the “Stairs” sequence. A fine resolution (0.25 m) likely
helps DLO and DLIO in this scenario, whereas a 0.4 m to 0.5 m resolution is more
common. Traj-LO and KISS-ICP follow the approach of CT-ICP to store at most a
fixed number of points per voxel, which effectively allows the map to represent finer
details too. In contrast, SLICT2 and our method adjust data-dependently the size of
a map cell dynamically.



100 LiDAR Inertial Odometry

a) Front c) Side

Figure 6.8: Aggregated Pointcloud for “Stairs” of Newer College (Zhang et al., 2021).

For our map (Sec. 6.2.10), adapting the coarse cell size c0 in combination with
the resolution selection (Sec. 5.2.3) facilitates the handling of different environments.
Our system starts outside with its standard coarse 4 m cell size such that the finest
resolution c3 has 0.5 m cells. After walking through the door into the staircase,
LIO-MARS sets c0 to 2 m (resp. c3 = 0.25 m) as the mean surfel distance reduces.
The process reverses in the end after walking out into the broader hallway. Similarly,
such adaptation happens when entering and leaving the narrow passage of the
“Cloister” sequence.

Only three methods, DLIO, Point-LIO, and LIO-MARS, worked successfully on all
sequences. At the same time, our LIO-MARS is the best performing continuous-time
method and ranks best over all sequences of the extension.

6.3.2 DRZ Living Lab

This dataset (Sec. 5.3.3) was recorded onboard a flying DJI M210 v2 with an Ouster
OS0-128 LiDAR. The DRZ Living Lab is located in a large industrial hall and
accommodates facilities to test robots in difficult terrain or rescue scenarios. A
Motion Capture (MoCap) system measures the UAV pose over time and provides the
reference trajectories for evaluation. This packed indoor environment leads to a high
number of valid measurements compared to flights in outdoor environments with
open skies. Per scan, the “F2” sequence averages 92 745 valid points, which equals to
70.7 % of possible measurements.

In comparison to the previous chapter, we replace “Fast” and “Hall” with the new
and more challenging sequences “H1” to “H3”. Figure 6.9 shows the reconstruction of
“H3” using LIO-MARS. Here, the UAV starts in the MoCap volume and flies through
the hall and out the rear gate. It then flies in the alleyway between the buildings
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a)

c)

b)
Front

Top

Inside

Figure 6.9: Aggregated Pointcloud for “H3” from the DRZ Living Lab dataset with overlayed
trajectory (green line), colored by height from low (blue) to high (yellow). An UAV
with a LiDAR started in front of the building [a)] and flew through the building
[b)]. It traversed back through the alleyway and into the building a second time
to land in the back. The OS-0 LiDAR provides dense 3D measurements within
the hall. Roof partially removed in b) for better visualization of the interior.
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Table 6.4: RMS-ATE [m] evaluation for the DRZ Living Lab dataset. Algorithms are grouped
by LO/LIO and ordered according to publication date. An “X” marks divergence.
Lower values are better (↓) with

::::
third, second and best highlighted.
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Online ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LIO ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CT∗ ✓ ✓ ✓ ✓ ✓ ✓

H1 0.047 0.060 0.065 0.055 0.025 0.019 0.018 0.022 0.054 0.020 0.019 0.020

H2 0.048 0.060 0.059 0.060 0.028 0.016
::::
0.018 0.025 0.052 0.022 0.019 0.017

H3 3.760 1.115 0.180 0.056 0.030 0.031 0.023 0.389 0.056 X
::::
0.025 0.022

3P-S 0.018 0.020 0.027 0.020
::::
0.011 0.012 0.008

::::
0.011 0.014 0.012

::::
0.011 0.010

3P-M 0.037 0.042 0.050 0.042 0.019
::::
0.013 0.010 0.016 0.036

::::
0.013 0.016 0.010

3P-F 0.056 X X 0.087 0.039 0.039 0.016
::::
0.020 0.061 0.022 0.019 0.021

S1 0.051 0.059 0.062 0.052 0.034 0.039 0.025 0.029 0.048
::::
0.028 0.029 0.026

M1 0.079 0.104 X 0.084 0.052 0.044 0.034
::::
0.036 0.075 0.040

::::
0.036 0.032

F2 0.103 0.164 X 0.118 0.072 0.060 0.054
::::
0.057 0.110 0.058 0.058 0.056

F3 0.068 0.093 0.098 0.081 0.055 0.041 0.027
::::
0.030 0.068

::::
0.030

::::
0.030 0.025

Fail [%] 0 8.00 24.00 0 0 0 0 0 0 10.00 0 0

Avg.
Rank 8.70 10.80 11.40 9.70 6.10 4.80 1.50 4.50 8.20 5.00

:::
3.30 2.00

Overall 9. 11. 12. 10. 7. 5. 1. 4. 8. 6.
::
3. 2.

∗ Continuous-time trajectory

towards the front entrance and back into the MoCap volume. The forward direction
along the alleyway is only partially constrained due to the LiDAR’s limited range
and the scene’s geometry.

Table 6.4 shows the results for all considered methods (see Sec. 6.3). All algorithms
perform reasonably well, even on the faster sequences with high rotational and linear
velocities. However, LIO-MARS and Point-LIO outperform the other LOs and LIOs
algorithms.

Over all three datasets, only DLIO and LIO-MARS did not fail on any sequence
as shown in Tab. 6.5 and Fig. 6.10. In contrast, iG-LIO failed twice in the “Cloister”.
SLICT2 and Fast-LIO2 failed once, resp. thrice, in the more challenging “Stairs” se-
quence. Although Point-LIO performed well on the DRZ and Newer College extension
sequences, it diverged multiple times on the original sequences. In total, LIO-MARS
ranked best, achieving state-of-the-art performance on these UAV and hand-held
sequences.
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Figure 6.10: Average Ranks per algorithm for the tested datasets with failure rate. Lower
values (↓) are better.

Table 6.5: Ranking over all tested datasets. Algorithms are grouped by LO/LIO and ordered
according to publication date. Lower values are better (↓) with

::::
third, second and

best highlighted.
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Online ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LIO ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CT∗ ✓ ✓ ✓ ✓ ✓ ✓

Ranks 245 251 287 223 145
::
102 118 149 151 174 91 91

Failed† 5 14 40 20 10 3 6 1 0 20 2 0

Fail [%] 3.85 10.77 30.77 15.39 7.69 2.31 4.62
:::
0.77 0 15.39 1.54 0

Overall 10. 11. 12. 9. 5.
::
3. 4. 6. 7. 8. 2. 1.

∗ Continuous-time trajectory
† Total number of failed runs over 24 sequences with 5 runs each.
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Table 6.6: Statistics for varying spline parameters on the “F2” sequence in the DRZ Living
Lab. Lower values are better (↓) with

::::
third, second and best highlighted.

Spline RMS-
ATE

Map
Emb. Comp. Spline

Init. Reg. Avg.
Time

N |W| |X | O [m] (↓) [ms] (↓) [ms] (↓) [ms] (↓) [ms] (↓) [ms] (↓)

2 3 3 8 0.0945 10.9 15.9 9.2 17.0 59.2

2 4 4 8 0.0689 11.0 17.9 12.9 21.9 68.9

2 5 5 8 0.0701
:::
10.8 30.7 17.2 27.5 92.4

2 6 6 8 0.0713 10.9 31.5 21.1 32.9 102.8

3 2 2 2 0.0659 17.8 15.3 7.6
:::
13.1 59.7

3 2 2 4 0.0567 12.2
:::
16.4 6.5 11.0 51.6

3 2 2 8 0.0567
:::
10.8 18.0 6.3 11.0 51.5

3 3 3 2 0.0562 17.9 16.6 10.0 18.0 68.6

3 3 3 4 0.0560 12.4 17.7 8.8 16.9 61.4

3 3 3 8 0.0562
:::
10.8 19.1 9.4 17.1 62.4

3 3 6 2 0.0572 17.8 16.5 12.5 18.7 71.8

3 3 6 4
:::::
0.0561 10.2 18.5

:::
7.3 17.4 60.0

3 3 6 8
:::::
0.0561 9.1 17.3 10.3 15.8 58.5

3 4 4 8 0.0562
:::
10.8 20.1 13.7 22.0 72.6

3 5 5 8 0.0559
:::
10.8 36.6 17.1 28.3 99.1

3 6 6 8 0.0562 10.9 37.8 21.1 33.3 109.5

4 3 6 4 0.1216 12.8 20.3 13.8 20.4 78.2

4 3 6 8 0.1026 11.1 21.9 15.3 20.3 78.6

6.3.3 Ablation

In the previous evaluations, LIO-MARS uses a third-order spline (N = 3), three scans
in the current scan window W, and six optimizable knots. Our surfel compensation
applies only to the new scan whereas the two previous scans in the current window
are already compensated.

To better understand the effect of our design decisions, we evaluate different spline
parameters on the “F2” sequence captured within the MoCap of the DRZ Living Lab.
Table 6.6 reports the results including the resp. timing for individual components.

Allocating all resources can become dangerous on a robotic system as multiple
processes will interfere with each other. Hence, we limit the number of threads to
four which is sufficient to process each map level in parallel. This leaves enough
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Figure 6.11: Ablation on registration offset: Success rate w.r.t. pose offset with full orientation
[a)] and only yaw [b)]. The darker blue shade is better (↑).

computational resources for mapping, navigation, and robot control. However, we
expect a further runtime reduction when all threads can be used.

Increasing the number of segments O reduces the time required to embed a point
cloud into the map. When more segments subdivide a scan, the number of surfels
per segment decreases. This, in turn, leads to faster access to individual cells since
we store each segment in a separate small hash map. Evidently, this time remains
constant independent of the number of scans (|W|) within the sliding window W, as
shifting the window removes the oldest scan and adds a new scan.

Overall, our system performs best w.r.t. RMS-ATE with a spline of order N = 3 and
an equal number of scans or more in the sliding window |W| ≥ N . Optimizing fewer
than N knots can lead to oscillations and reduce accuracy. Our current implementation
limits the number of optimizable knots to 6, which sets the maximum scan window
size to 6. Alternatively, three scans with two knots per scan allow more flexible
trajectories, e.g., as used by SLICT2. This reduces the temporal knot distance from
≈ 100 ms to 50 ms. However, our results show not much of an additional benefit
w.r.t. accuracy for a reduced temporal knot distance.

As expected, a larger sliding window increases the overall computation time for
the compensation, initialization, and registration. Moreover, it extends the time until
a previously unseen area becomes part of the map, which can degrade performance
in larger or obstructed environments.

In comparison with MARS (Ch. 5), LIO-MARS can optimize more iterations, 5
instead of 3, in less time. Moreover, our system increases the map’s resolution while
reducing its computational cost.

6.3.3.1 Relative Motion Constraints

So far, our experiments only use the mixture of preintegrated and raw IMU measure-
ments from Sec. 6.2.8. Here, we leverage the “F2” sequence from the DRZ dataset.
With the standard configuration, LIO-MARS achieves an RMS-ATE of 0.056 m. Using
only raw IMU without preintegration results in an RMSE of 0.057 m.
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Replacing the IMU measurements with a single relative pose measurement ∆T

during optimization increases the RMS-ATE to 0.093 m in our experiment. We
attribute this increase to inaccuracies and sudden jumps in the height estimate
when flying above the NIST crates or their side walls. The DJI M210v2 provides a
magnetometer-based orientation, a horizontal position from VIO and an ultrasonic
height measurement above ground. Together, the UAV’s odometry has an RMS-ATE
of 0.56 m including clear deviations in horizontal directions.

We already filter out spikes with high vertical velocities that are inconsistent with
the motion direction. Moreover, our system only includes relative motion and no
absolute position. However, smaller steps from objects on the ground still impact the
result. Comparing the measured height with the local map height can potentially
reduce the discrepancy, but remains out of the scope of this work.

If we instead supply only a single relative orientation measurement ∆R per scan,
we achieve an RMS-ATE of 0.066 m. According to Tab. 6.4, this variant would place
seventh, directly behind Fast-LIO2. Hence, we can still obtain resonable results in
the absence of an IMU or improve resilience in underconstrained environments.

6.3.3.2 Convergence Basin

Additionally, we explore the convergence basin of our registration in Fig. 6.11 for
future optimization of loop-closure candidates. Naturally, the basin depends on the
environment represented by the maps under registration. Self-repetitive environments
exhibit more local minima, whereas close quarters shrink the basin w.r.t. translation.

Instead of comparing close scans, we evaluate the distributed keyframes with an
overlap of at most 80%. For this, we register the 26 motion-compensated keyframes
against their respective local map at keyframe creation time on the “Quad-M” sequence
of the Newer College extension (Zhang et al., 2021). The LiDAR predominantly
measures the ground and the four vertical surfaces of the quad.

This relative registration solely relies on LiDAR to optimize a single relative pose
without a continuous-time trajectory or IMU information. We create a regular grid
with a 1 m stepsize to offset the initial position in x- and y-direction by ±3 m and
vary roll, pitch, and yaw by up to ±40◦ with a 10◦ stepsize. In a second experiment,
we include the height offset (±1 m) and increase the x-y-offset to ±4 m, while only
the yaw varies by up to ±45◦ in 5 degree increments. The 45◦ yaw limit is in place
due to the right-angled repetitive walls of the quad.

For easier visualization, we combine the offsets for the positions using the distance
∥∆p∥ and similarly for the angles ∥Log (∆R)∥. The registration is successful if the
final pose is within 10 cm and 5◦ of the original pose. As expected from a local
optimization, the success rate decreases with increasing distance and angular offset,
whereby the orientation is more impactful than the distance. Optimizing first on
a coarse level and subsequently introducing finer levels can potentially enlarge the
convergence basin. Moreover, the basin is sufficient to register scans with varying
offsets, e.g., after unrotating the ground plane (Gupta et al., 2025), and select the most
probable result, for example, based on ray-tracing (Quenzel et al., 2024). However,
this is unnecessary during regular operation, as the IMU and prior scan motion
restrict the rotation offset well.
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Table 6.7: Statistics for varying motion compensation on the “F2” sequence in the DRZ
Living Lab. Lower values are better (↓) with

::::
third, second and best highlighted.

Comp.
De-Skew Full RMS-

ATE Comp. Reg. Avg.
Time

Pre. Sel. Cov. [m] (↓) [ms] (↓) [ms] (↓) [ms] (↓)

✓ 0.0577 0.0 18.4 48.5

0.0565 0.0 16.1 42.0

✓ ✓ 0.0572
::::
<0.1

::::
18.2

::::
48.0

✓ 0.0567
::::
<0.1 15.6 37.8

✓ ✓ 0.0570 16.5 19.0 65.9

✓ ✓ 0.0570 4.4 19.0 53.3

✓ 0.0562 16.4 18.5 64.7

✓ 0.0562 4.4 19.0 52.9

✓ ✓ ✓ 0.0569 18.2 18.7 67.1

✓ ✓ ✓ 0.0569 4.9 18.9 53.6

✓ ✓ 0.0561 18.5 17.4 60.0

✓∗ ✓ 0.0560 10.5 16.2 49.2

✓ ✓ 0.0561 4.2 16.6 43.4
∗ Compensate only the new scan.

6.3.4 Motion Compensation

Compensating all surfels within the sliding window prior to registration is a time-
costly process. Hence, we compare against compensating only the adaptively selected
surfels. Additionally, we test the effect of the de-skewing and using the full covariance
versus the adaptation for planar surfels (Eq. 6.14). Table 6.7 highlights the benefit
of adapting the covariances of planar surfels. Furthermore, compensating selected
surfels is much faster without losing accuracy.

To show the effect of our proposed UT for motion compensation, we use the
Kullback-Leibler divergence (KLD) (Hershey and Olsen, 2007):

DKL (Nq∥Nr) =
1
2

[
ln |Σr|

|Σq|
+ Tr (Σ-1

r Σq) − d + (µq −µr)
⊺ Σ-1

r (µq −µr)

]
. (6.138)

The reference distributions Nr stem from surfel mean µs and covariance Σ̄s of
compensated points using Eq. 6.101 after registration. Per surfel s ∈ Sl, we compute
the KLD for the raw points (Nq0), with IMU pre-orientation (Nq1 = (µs, Σs)) and
after surfelwise compensation (Nq2 = (µ̄s, Σ̄s)). Again, we evaluate on the rotation-
heavy sequence “06_spin” of the Newer College dataset (Ramezani et al., 2020).
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Table 6.8: Avg. Timing [ms] for GMM computation per scan for 5 iterations on seq. “F2”.
Lower values are better (↓) with second and best highlighted.

Method \Step Assoc. Eval. Grad.

orig. 3.0975 4.6433 3.4701

w/ sym. 3.0462 2.7356 2.6307

w/ vecL 1.8741 2.1111 1.9326

Compared to the surfels from raw points (Nq0), our compensation reduces the KLD
w.r.t. Nr for 76.0 % of the surfels. On average, the median KLD improves per scan
in 94.6 % of the cases, with a mean reduction to 21.4 %.

The benefit is less pronounced against the pre-oriented points. After our compen-
sation, 53.4 % of the surfels have a lower KLD w.r.t. Nr. On average, the median
KLD improves per scan in 74.5 % of the cases with a mean reduction to 91.9 %.
Interestingly, the covariances Σ̄s are more similar in 65.4 % of the cases versus 57.1 %
for the mean.

6.3.5 Influence of Symmetry

We compare the timing for the previous GMM (Sec. 5.2.2) against a variant exploit-
ing symmetry, e.g., in inverse computation (Eq. 6.129), and finally, our vectorized
version (Sec. 6.2.11). All versions run on sequence “F2” with up to four threads and
five iterations during registration. In Tab. 6.8 we report the timing for the association,
gradient computation, and evaluation separately, as the GMM computation is split
between them. As expected, exploiting the symmetry accelerates evaluation and
gradient computation. Our vecL version outperforms both other variants and reduces
the time spent on association.

We further evaluate the timing for our optimized splatting operation from Sec. 6.2.11
on 14.195 × 106 points distributed over an area of 200 m2. Each point is splatted onto
all four levels of our surfel map (Sec. 5.2.1) with only a single thread or up to four
threads in parallel. We also check whether to iterate first over all points and the level
second (P→L) or vice versa. Table 6.9 shows that our optimized implementation
with a single thread provides a similar speedup to using four threads for regular
splatting. Moreover, our solution still profits from the higher thread count and from
first processing all levels per point (L→P).

6.3.6 Further Qualitative Examples

To further showcase the accuracy of registered and motion-compensated point clouds,
we aggregate every 25th point cloud and colorize them by height as previously done
for Fig. 6.6. Recently, we deployed our UAV during a forest fire training exercise by
the fire brigade of the district Viersen at the abandoned Javelin Barracks in Elmpt,
Germany. Figure 6.12 shows the height-colored point clouds from multiple flights at
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Table 6.9: Timing [ms] for splatting of 14.195 × 106 points (P) on 4 levels (L). Lower values
are better (↓) with second and best highlighted.

single (Sec. 5.2.1) parallel (Sec. 6.2.11)

Threads \Order L→ P P→ L L→ P P→ L

1 3475 3488 1053 1092

4 1034 1124 322 479

separate locations. Each ≈ 30 m wide row house consists of 5 attached units in a state
of disrepair with many windows and doors missing. During the exercise, the trainers
set the bushes in front of the left houses in Fig. 6.12 a) and close to the tree in b)
on fire. After the brush fire was extinguished, our D1-UAV inspected the scene and
directly provided an overview for the firefighters to assess the extent of the burned
vegetation. Figure 6.12 b) shows the reconstructed LiDAR map.

Quenzel et al. (2024) further processed the sequence to align the global navigation
satellite system (GNSS) poses with the georeferenced environment models. In the
following Ch. 7, we additionally combine these points with thermal and color images.

6.4 Summary

In this chapter, we presented a novel continuous-time LiDAR-inertial odometry called
LIO-MARS and verified our key claims. Our system extends MARS (Ch. 5) by
introducing a non-uniform B-spline, active motion compensation, and tight coupling
of LiDAR and IMU.

The non-uniform continuous-time B-spline adapts better to variations in scan
timing without introducing additional delays. For this, we propose a novel strategy
for the temporal knot placement to better represent the sliding window used for state
estimation at runtime. As a consequence, we achieve better numerical stability during
optimization compared to its uniform counterpart.

A timewise separation into intra-scan segments facilitates motion compensation
at optimization time. Meanwhile, an unscented transform compensates individual
surfels, which leads to more concise covariances for measured surfaces.

Leveraging complementary motion estimates further improves consistency and
robustness. For this, we derived the analytic Jacobians for relative motion constraints,
like preintegrated IMU measurements or relative poses.

Our system generates data-dependent new keyframes from the motion-compensated
scans and selects a subset of keyframes for local map generation based on a surfel-
dependent overlap. Moreover, the local map scale adapts to the measured distances
in the sensor’s vicinity to better represent open or narrow environments.

We modified the embedding of points into the permutohedral lattice using an inverse
permutation and parallel min-max-sorting coupled with efficient SIMD instructions. In
this way, our improved embedding achieves a ≈ 3.3-fold increase in throughput without
changing the thread count. Furthermore, we exploit the inherent symmetry within
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a)

b)

Figure 6.12: Aggregated pointclouds from separate locations recorded during a fire fighting
exercise with the fire brigade of the district Viersen at the abandoned Javelin
Barracks in Elmpt, Germany. The visible row houses consist of 5 attached units
with a combined width of ≈ 30 m. Maps are colored by height from low (blue)
to high (yellow).

surfel covariances and the Gaussian mixture model computation and rephrase both
using Kronecker sums and products for more efficient calculation. As a consequence,
the real-time performance per iteration improves on average by a factor of 2.

In total, we tested 11 other current LO and LIO algorithms on multiple LiDAR
datasets in UAV and handheld sensor scenarios. Overall, our system is the best-
performing continuous-time method delivering state-of-the-art performance in real-
time.



7
Dense Multi-Modal Mapping

Autonomous robotic systems heavily depend on knowledge about their environment
to safely navigate, interact and perform inspection and search and rescue (SAR) tasks
in real-time. For this, state estimation and mapping capabilities are key building
blocks. Ideally, such a map contains the observed structures with their dimensions,
color, thermal signatures (Rosu et al., 2019a), and the semantics to know what
is visible (Behley et al., 2019; Rosu et al., 2019b; Bultmann et al., 2023). At the
same time, an operator supervising the unmanned aerial vehicle (UAV) profits from
improved situational awareness as the map depicts the whereabouts of the UAV
and what is in the drone’s vicinity, thus giving a better sense of the surrounding
environment.

In this chapter, we will focus on the fusion of preprocessed multi-modal data for
fine-grained dense mapping, as visualized in Fig. 7.1. Since LiDARs provide accurate
distance measurements around the robot even in texture-less or dark environments
independent of ambient illumination, we rely on LiDAR scans to generate the rep-
resented 3D structure. For this, the continuous-time trajectory of Ch. 6 enables
accurate dense reconstructions to be enriched with color, thermal, and semantic
information from multiple complementary modalities, such as LiDAR, RGB-D, and
thermal cameras. Multi-rate systems benefit from such a late fusion approach, in-
creasing adaptability to changing sensor configurations and enabling pipelining for
efficient hardware usage.

In previous chapters, mapping is a means to improve the calibration and estimated
state. As such, only a selected subset of the available information was used with
a varying degree of density, from sparse triangulated features (see Ch. 3) to dense
keyframes with coarse surfels (see Ch. 5). Consequently, the fine-grained dense map
creation needs to be fast to provide valuable real-time feedback. Depending on the
platform, we do not have the resources to run the fusion on the GPU, as the GPU
already computes the semantics and object detection (Bultmann* et al., 2021, 2023).
Other processes with real-time constraints also run onboard the UAV. Hence, we
aimed for an efficient single/multi-core CPU implementation with sparse volumes.
Instead of the lattice from Ch. 6, we adapt the sparse voxel grid from Ch. 5. The
main reason is the faster index computation. Furthermore, we only require access to
some neighboring voxels to map the occupancy.

111
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a) b)

c) d)

Figure 7.1: Colored and thermal maps acquired from two test runs of a collapsed building
scenario at the DRZ Living Lab.

In summary, our key claims for our mapping approach are:

• First, the continuous-time trajectory allows us to integrate multi-modal infor-
mation temporally correct over multiple views into a common map.

• Second, rephrasing the probabilistic semantic fusion in its log form improves
numerical stability.

• Third, the proposed integrated system proved useful in a number of applications
with real-world UAV experiments.

Preface

This chapter is partially adapted from Bultmann* et al. (2021), previously published
by IEEE and presented at the European Conference on Mobile Robots (ECMR 2021),
and its extension (Bultmann et al., 2023), previously published by Elsevier in the
Robotics and Autonomous Systems journal.

Parts of this chapter are adapted from Schleich et al. (2021), previously published by
IEEE and presented at the International Conference on Unmanned Aircraft Systems
(ICUAS 2021).
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Statement of Personal Contribution

“The author of this thesis [Jan Quenzel] substantially contributed to the fol-
lowing aspects of the previous publication (Schleich et al., 2021), including the
conception, design, and implementation of the proposed methods for LiDAR
odometry and occupancy environment mapping, the preparation and conduct
of experiments for the outdoor datasets, drafting the manuscript, and helped
with the manuscript revision. He further contributed to the literature survey,
evaluation of the proposed approach and the analysis and interpretation of the
experimental results.“

“The author of this thesis [Jan Quenzel] substantially contributed to the fol-
lowing aspects of the previous publication (Bultmann* et al., 2021), including
the conception, literature survey, design, and implementation of the proposed
methods for point cloud fusion and semantic mapping, the preparation and
conduct of experiments for the outdoor datasets, drafting the manuscript, and
helped with the manuscript revision. He further contributed to the evaluation of
the proposed approach and the analysis and interpretation of the experimental
results.“

“The author of this thesis [Jan Quenzel] substantially contributed to the fol-
lowing aspects of the previous publication (Bultmann et al., 2023), including
the conception, literature survey, design, and implementation of the proposed
methods for point cloud fusion and semantic mapping, the preparation and
conduct of experiments for the outdoor datasets, and helped with drafting the
manuscript and manuscript revision. He further contributed to the evaluation of
the proposed approach and the analysis and interpretation of the experimental
results.“

The content presented in this chapter, unless otherwise stated, is the contribution
of the author of this thesis.

The proposed method for occupancy mapping was developed by the author of this
thesis and integrated into the high-level planning by the co-author Daniel Schleich.
Hence, Sec. 7.2.1 was adapted to match the thesis author’s contributions, and a
reference to the original publication (Schleich et al., 2021) is given for a detailed
description of the implementation.

The methods for semantic segmentation and label propagation were provided by the
co-author Simon Bultmann. Hence, Sec. 7.2.4 was significantly adapted to match the
thesis author’s contributions, and a reference to the original publications (Bultmann*
et al., 2021, 2023) is given for a detailed description of the implementation.

7.1 Related Work

3D reconstruction has been extensively studied over the last two decades (Kostavelis
and Gasteratos, 2015; Zollhöfer et al., 2018; Chen and Wang, 2024; Dalal et al., 2024).

Most approaches can be grouped based on their map representation and spatial
subdivision into point-, voxel-, surfel-, mesh-based, and (neural-)implicit methods.
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Point-based methods maintain a sparse set of individual surface measurements.
Volume element (voxel)-based approaches subdivide the scene into volumetric ele-
ments, e.g., using regular grids (Oleynikova et al., 2017), a permutohedral lattice (see
Sec. 5.2.1) or an octree (Hornung et al., 2013). Surface element (surfel)-based systems
use either discs (Whelan et al., 2015; Behley and Stachniss, 2018; Park et al., 2018)
or Gaussians (see Sec. 5.2; Kerbl et al. (2023)) to include measurement uncertainty
in a probabilistic fashion. In contrast, mesh-based methods (Rosu et al., 2019b; Vizzo
et al., 2021) represent surfaces as a set of polygons with texture applied to the polygon
faces. Implicit models estimate a function whose zero-level set coincides with the
surface, e.g., using signed distance functions (SDFs) (Oleynikova et al., 2017), Hermite
radial basis functions (RBFs) (Liu et al., 2016) or learned features (Mildenhall et al.,
2021; Zhong et al., 2023).

Each representation comes with its own advantages and drawbacks. Point clouds
are easy to handle and can naturally express structures with differing levels of detail.
Nevertheless, holes remain in between points while the amount of points quickly
becomes difficult to process. Additionally, finding correspondences requires elaborate
nearest neighbor (NN) searches, such as using a k-d tree (Blanco and Rai, 2014; Xu
and Zhang, 2021). voxels directly reduce the total number of elements since a voxel
represents all points within its volume. This reduction is generally fast and simplifies
the scene at the cost of discretization errors. However, neighborhood searches are
faster. Surfels follow the surface more closely with less discretization error while
initially requiring more computation than voxels. Meshing (Kazhdan and Hoppe, 2013;
Vizzo et al., 2021) is time-consuming and resource-intensive while naturally hole-filling.
Fine structures require an increased number of polygon vertices. At the same time,
the overlaying texture allows the decoupling of geometry and visual appearance (Rosu
et al., 2019b), while modern graphics hardware enables fast rendering.

In practice, hybrid volumetric representations are very common, with map storage
being (block-)sparse (Hornung et al., 2013; Oleynikova et al., 2017; Xu and Zhang,
2021; Yuan et al., 2022; Sec. 5.2.1) instead of dense. CT-ICP (Dellenbach et al., 2022)
maintains a small number of actual points per voxel in a sparse voxel grid, which was
subsequently adopted by KISS-ICP (Vizzo et al., 2023) and SE-LIO (Yuan et al., 2025).
Droeschel and Behnke (2016) use dense voxel grids on multiple resolutions where a
surfel represents the points per voxel. Similarly, we combine permutohedral lattices
with surfels in Sec. 5.2.1. SHINE-mapping (Zhong et al., 2023) stores incrementally
learned features in an octree and uses a shared multi-layer perceptron (MLP) to
decode the SDF. Similarly, PIN-SLAM (Pan et al., 2024) uses point-wise latent
features to represent the underlying geometry and predicts the SDF from multiple
nearby voxel hashed points.

Occupancy Mapping

In order for robots to safely navigate within the environment, it is of utmost impor-
tance to differentiate between free space and occupied areas. Probabilistic model-
ing (Thrun et al., 2005) prevailed here as sensor measurements and pose estimates
are inherently noisy. In 3D, octrees (Hornung et al., 2013; Vespa et al., 2018; Duberg
and Jensfelt, 2020; Funk et al., 2021) commonly store the log-odds representation for
a voxel’s occupancy probability. Log-odds only require a summation instead of the
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multiplication for the Bayes update. OctoMap (Hornung et al., 2013) has been widely
adapted for robotic applications (Lluvia et al., 2021). Instead, OFusion (Vespa et al.,
2018) proposes a more compact storage and efficient tree traversal using a Morton
code. Additionally, a quadratic B-spline is used to model the range noise for RGB and
depth (RGB-D) sensors. UFOMap (Duberg and Jensfelt, 2020) also employs a Morton
code for traversal while focusing more on faster integration. Funk et al. (2021) build
upon OFusion and introduce a more sensor-specific volume allocation. In contrast,
Voxblox (Oleynikova et al., 2017) focuses on an efficient merging strategy and the
creation of an Euclidean SDF (ESDF) from the underlying truncated SDF (TSDF)
for planning. Recently, nvblox (Millane et al., 2024) adapts the approach for GPU,
whereas Dynablox (Schmid et al., 2023) aims to detect moving objects within the
TSDF map.

Reactivity is important in changing environments, especially in the presence of
people or moving objects, and with planning for autonomous robots in mind. Sun et al.
(2018) extend OctoMap with a long short-term memory (LSTM) per cell to account
for long-term changes like parking cars. Reacting to short-term events requires some
time to transition from occupied to free space. Moreover, adjusting the sensor model
parameters towards a desired reaction time might not be straightforward. For this,
OFusion (Vespa et al., 2018) introduced a time-based moving average to enable
forgetting. Instead, we introduce a signum occupancy function, which allows us to
maintain small time windows and fast computation.

Peopleremover (Schauer and Nüchter, 2018) generates a voxel grid from registered
panoramic terrestrial LiDAR scanner (TLS) clouds. It then marks “see-through”
voxels by ray-tracing the TLS points, starting with points closest to the sensor
and omitting shadowed points. Points belonging to the marked voxels are identified
as dynamic. In contrast, Removert (Kim and Kim, 2020) detects dynamic points
based on discrepancies between range images of projected sub-maps with an iterative
refinement over multiple resolutions. Erasor (Lim et al., 2021) restricts itself to an
automotive scenario by assuming points above the ground plane are dynamic. After
binning based on horizontal range and angle, it detects dynamic candidate bins by
thresholding the height difference between the map and the query scan. For these
candidates, Erasor computes the local ground plane and marks points above as
moving. This poses a problem in indoor scenarios, with foliage or underpasses, as
removing these points from the map may harm the localization quality.

While 3D semantic occupancy prediction (Zhang et al., 2023b; Wang et al., 2025)
is related to semantic and occupancy mapping, the prediction and completion are
outside the scope of this thesis.

Color Mapping

Individual map elements typically store additional information like color (Oleynikova
et al., 2017), thermal (Rosu et al., 2019a), occupancy (Hornung et al., 2013), the
signed distance (SDF) to the closest surface (Daun et al., 2021; Splietker and Behnke,
2023), semantic (McCormac et al., 2017), a density (Kerbl et al., 2023), latent (Yuan
and Nüchter, 2024) or learned features (Zhong et al., 2023; Pan et al., 2024).

The TSDF remained popular (Zollhöfer et al., 2018) for 3D reconstruction with
RGB-D or colorized point clouds. Minimizing the signed distance is convenient for
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registration, while the marching cubes algorithm (Lorensen and Cline, 1987) directly
extracts a mesh for visualization. TSDF methods (Dai et al., 2017) are predominantly
GPU-based to achieve real-time performance. The limited GPU memory restricted
the scene size (Newcombe et al., 2011a) or required shifting (Whelan et al., 2013)
of the dense volume. Nießner et al. (2013) tackled this with sparse voxel hashing to
maintain voxels only around measured points.

However, Steinbrücker et al. (2014) instead proposed an efficient CPU-based TSDF
update using SIMD instructions within an octree structure. Voxblox (Oleynikova
et al., 2017) incrementally constructs the Euclidean SDF on the CPU to establish
synergies between mapping and planning. Recently, nvblox (Millane et al., 2024)
adapts Voxblox to NVIDIA GPUs for faster computation due to higher parallelization
while also providing an occupancy integrator.

Over the last four years, neural field approaches (Xia and Xue, 2023; Dalal et al.,
2024; Irshad et al., 2024) have received much attention motivated by the image-
based task of novel view synthesis. Neural radiance field (NeRF) (Mildenhall et
al., 2021) established radiance field methods as the state-of-the-art for high-fidelity
reconstructions. It trains a shallow MLP to predict the color and density for a given
3D point and viewing direction. NeRF renders a novel view by sampling points
along each pixel’s ray direction and alpha-blending the predicted colors using the
density. Although querying the MLP is fast, NeRF requires very long training times
ranging typically from a couple of hours up to multiple days. Plenoxels (Fridovich-
Keil et al., 2022) and DVGO (Sun et al., 2022) showed voxel-based radiance fields
without NNs that provide similar quality within minutes. Instant-NGP (Müller et
al., 2022) dramatically reduced NeRF’s training time using a multi-resolution hash
encoding on the order of minutes rather than hours. For this, Instant-NGP maintains
a multiscale occupancy grid derived from the NeRF density estimate to focus on
sampling close to the surface during training. SiLVR (Tao et al., 2024) conditions an
Instant-NGP NeRF (Müller et al., 2022) on depth from LiDAR to obtain sub-maps.
Neuralangelo (Li et al., 2023) adapts the multi-resolution hash encoding to estimate
a neural SDF in a coarse-to-fine manner.

As an alternative to MLP’s, Gaussian splatting (GS) (Kerbl et al., 2023) combines
unordered 3D Gaussians with radiance fields where individual Gaussians are alpha-
blended. Follow-up works proposed using 2D surfels (Huang et al., 2024), Gaussian
opacity fields (Yu et al., 2024) or smooth convex shapes (Held et al., 2025). However,
these methods require potent compute capabilities.

Thermal Mapping

Incorporating other modalities like thermal or multi-spectral cameras enables a broad
range of inspection and mapping applications, e.g., from solar panels (Meribout
et al., 2023) and building inspection (Kim et al., 2023; Parracho et al., 2023), to
landslide (Sun et al., 2024) or volcanic mapping (Irmisch et al., 2021) and archeological
surveying of heritage sides (Sutherland et al., 2023).

A typical workflow for UAV-based thermography (Parracho et al., 2023), building
information model (BIM) generation, or building inspection involves pre-planning
a GNSS-based flight path, automatic image capturing during the flight and post-
processing of color and thermal images after landing with structure-from-motion (SfM)
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and multi-view stereo (MVS) or orthophoto generation (OpenDroneMap Authors,
2020; Kim et al., 2023). Such an SfM-based workflow generally processes color imagery
first before integrating thermal images since the reconstruction accuracy benefits
from the higher resolution of color cameras.

Archeological surveys (Sutherland et al., 2023) mainly rely on TLSs to generate
dense 3D point clouds or meshes with thermal images applied as texture. Similarly,
Rosu et al. (2019a) reconstruct a mesh (Kazhdan and Hoppe, 2013) from registered
LiDAR scans acquired by a UAV. Afterwards, projecting mesh faces into the thermal
images allows the merging of different viewpoints in a high-resolution thermal texture
on coarse geometry. The textured mesh further enables the detection and localization
of heat sources.

Irmisch et al. (2021) combine a thermal camera with an inertial measurement
unit (IMU), a GPS, and stereo color cameras for volcanic mapping and BIM genera-
tion (Schischmanow et al., 2022). Here, a voxel grid merges the 3D point clouds from
dense stereo matching of the color cameras with projected thermal information. The
system triggers the reconstruction in regular time intervals or based on the distance
traveled according to visual-inertial odometry (VIO) or SfM. Semantic object masks
help to remove moving objects during offline processing.

Recent works (Hassan et al., 2025; Lu et al., 2025) transfer radiance field approaches
like NeRF and GS to thermal data. Ye et al. (2024) adapt Nerfacto (Tancik et al.,
2023) for thermal-only NeRF with normalized intensities and structural thermal
constraints. In contrast, Hassan et al. (2025) predict the temperature directly from
features of the density MLP shared across modalities. Lin et al. (2024b) use a separate
thermal density and mutually regularize the respective densities across channels. Like
these NeRF-based approaches, Lu et al. (2025) evaluate multiple strategies supervised
with an additional smoothness term for GS. This includes fine-tuning of thermal
Gaussians after initialization from color, separate Gaussians per modality and adding
separate spherical harmonics on a single Gaussian. Instead, Chen et al. (2024a)
present a physically motivated adaptation for GS. An MLP modifies the spherical
harmonics to model atmospheric attenuation during transmission. A learned module
based on the 2D-Laplacian directly addresses blurring due to thermal conduction. As
before, these methods are unsuitable for reconstruction in real-time.

Semantic Mapping

Environment knowledge helps in diverse tasks through a more complete scene under-
standing. Nguyen et al. (2019) perform semantic segmentation onboard a UAV to
inspect penstocks. Bartolomei et al. (2020) classify an occupancy map and sparse
VIO landmarks as (un-/)informative to steer path planning towards well-textured
directions. Furthermore, semantic predictions improve registration (Bao and Savarese,
2011; Zaganidis et al., 2018) or allow to exclude dynamic objects for robustness (Chen
et al., 2019). Long-term semantic correspondences (Lianos et al., 2018) help to reduce
drift as the semantic notion of an object, e.g., a car, remains consistent over a wide
variety of conditions where visual features become too dissimilar. A semantic map
further enables domain adaptation from one modality to another, e.g., from RGB
camera to LiDAR (Rosu et al., 2019b), between sensors of the same modality with
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differing properties or transfer knowledge between different datasets (Bultmann et al.,
2023).

Identifying instances of items (Civera et al., 2011; McCormac et al., 2018; Grinvald et
al., 2019) allows one to find points of interest and reconstruct individual objects (Kong
et al., 2023; Wen et al., 2023; Liao et al., 2024). This makes parts of the map
reusable, as different instances of the same object can share and complete a single
representation (Salas-Moreno et al., 2013). While object-level mapping and shape
completion are beneficial in many robotic applications, these topics remain outside
the scope of this thesis.

Semantic segmentation of point clouds has advanced tremendously in recent years
since the introduction of benchmark datasets like SemanticKITTI (Behley et al.,
2019), nuScenes (Caesar et al., 2020) or Paris-CARLA-3D (Deschaud et al., 2021).
However, labels may change depending on the view angle for partially observed
structures or due to increasing sparsity at higher ranges (Zhu et al., 2022a). Hence,
they require recomputation as soon as more data is available.

In practice, we measure the environment continuously and have to enforce temporal
consistency. Hermans et al. (2014) use a conditional random field (CRF) for spatial
regularization to smooth semantic labels throughout an aggregated point cloud.
Kundu et al. (2014) jointly infer occupancy and semantic category from sparse
Visual-SLAM (VSLAM) points using a CRF for a dense voxel map.

Instead, Stückler et al. (2014) aggregate frame-wise semantics of RGB-D images
towards keyframes in an octree on the CPU. A Bayesian update fuses voxel-wise class
predictions using the depth from the RGB-D sensor, which results in higher accuracy
for the back-projected labels compared to instantaneous segmentation. Yang et al.
(2017) improve consistency after incremental Bayes update using a hierarchical CRF
model on the 3D voxel grid.

Valentin et al. (2013) extract a mesh from a TSDF of aggregated depth images.
Their classifier then infers the semantics per mesh face, which directly ties the
semantic and geometric resolution together. A CRF regularizes neighboring faces
without considering the per-class likelihood or newer information.

Alternatively, Kimera-Semantic (Rosinol et al., 2020) approximates the log-class
probabilities to Voxblox (Oleynikova et al., 2017) by fusing the frequency of the class
labels for points falling into the same voxel. Instead, SemanticFusion (McCormac
et al., 2017) maintains the full class probabilities for each surfel on the GPU, and
the Bayesian update fuses semantics into visible surfels. It tends to replicate surfaces
on multiple scales when measured from different ranges, thus wasting limited GPU
memory and prohibiting large-scale reconstruction.

Rosu et al. (2019b) decouple geometry and semantics with a textured mesh. The
texture stores the class probabilities only for the most likely classes, with further
weights taking the sensor distance and viewing angle into account. In this way, a
geometrically simple wall can have a higher-resolution semantic texture to distinguish
between the wall and an attached poster, or the opposite case where a facade with
intricate geometry has a simple semantic texture. Moreover, adding additional texture
channels, e.g., for thermal mapping (Rosu et al., 2019a), is straightforward once the
mesh exists.
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Our CPU-based real-time mapping combines multiple modalities in a common
surfel map by adding modality-specific channels per surfel. The continuous-time
trajectory (see Ch. 6) enables the augmentation of point clouds with temporally close
color and thermal information (see Sec. 7.2.3). We reuse the surfel map with sparse
voxel grids (see Ch. 5) with our efficient surfel aggregation (see Ch. 6). For semantics,
we rephrase the Bayesian update of SemanticFusion (McCormac et al., 2017) in its
log form for improved numerical stability. A signum occupancy function allows the
integration of an efficient occupancy estimation with a fixed horizon for adjustable
reactivity and allows for simple integer arithmetic.

7.2 Our Method

Our mapping builds upon the previously presented map representations in Ch. 5.
We maintain a sparse voxel map M with a single resolution and small cell size
for a higher level of detail. Again, each voxel stores a surfel to fuse points in its
vicinity. The surfel is beneficial for occupancy mapping in Sec. 7.2.1 and easy to
visualize using splatting (Pfister et al., 2000; Botsch et al., 2005; Kerbl et al., 2023).
Furthermore, each voxel fuses additional application-specific information such as color
(see Sec. 7.2.2), thermal (see Sec. 7.2.3), and semantics (see Sec. 7.2.4).

In the previous chapters, the keyframe creation naturally restricted the number
of scans in the map. In contrast, we densely aggregate as many scans as possible
here, even though the occupancy mapping may discard intermediate scans to satisfy
real-time constraints. The newest scan keeps the map up-to-date, which is important
for obstacle avoidance and planning (Schleich et al., 2021).

7.2.1 Occupancy Mapping

We define the occupancy of a voxel as either occupied (wocc), free (wfree), or unknown
(wunk). In Schleich et al. (2021), we simplify the textbook case (Thrun et al., 2005)
for efficiency reasons to the thresholded values as a signum occupancy function:

wocc = +1, (7.1)
wunk = 0, (7.2)
wfree = −1. (7.3)

We maintain per voxel a ring buffer W of the last nW = 16 occupancy measurements
(wocc, wunk, wfree), initialized as unknown. Such a small fixed-size ring buffer reduces
the time needed to measure an old obstacle location as free. Hence, the sum over W
gives the occupancy focc as:

sw =
∑

w∈W
w, (7.4)

focc(W) =


wocc , if sw ≥ θocc

wfree , if sw ≤ θfree

wunk , else.

(7.5)
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We first transform the point cloud P with the sensor pose into the map frame.
Then, binning retains the set of indices Iocc ⊂ N3 for all occupied voxels with a
predefined side length. We maintain per voxel a surfel (see Ch. 5) for the binned
points. Using the index i ∈ N3 has the advantage of requiring only integer arithmetic.
Additionally, we create sets of indices for free Ifree and unknown voxels Iunk. Then,
we ray-trace with a 3D version of the Bresenham line search (Amanatides and Woo,
1987). The traversal starts at the index corresponding to the sensor position ow and
ends nunk voxels behind the binned index. We add indices between the sensor and
binned voxel to the free set Ifree and those behind to the unknown set Iunk. Due to
the binning, some new voxels of Iocc may end up being traversed as either free or
unknown. In that case, we remove i ∈ Iocc from Ifree and Iunk. Similarly, removing
Ifree from Iunk ensures precedence of free space over unknown.

Measurements under a grazing angle often traverse many voxels and incorrectly
classify them as free. Hence, we ignore free space elements of Ifree if the dot product
between surfel normal and view direction is below a threshold θα = 0.3. For all
indices, new occupancy measurements are added to the corresponding voxel’s ring
buffer W according to the relevant set (Iocc, Ifree, or Iunk). We recompute focc and
check if the updated voxel transitions its occupancy state to clear transitioned surfels
of previously occupied and newly free/unknown voxels. Then, the map M merges
the current scan’s surfels corresponding to the occupied voxels of Iocc with their
previously mapped counterpart.

We use this approach as the basis for high-level obstacle avoidance and trajectory
planning (Schleich et al., 2021), with a voxel size of 25 cm. Similarly, Bultmann and
Behnke (2022) adapt it to update dynamic objects within a semantic map fused from
distributed smart edge sensors.

The following section details how additional color information enriches our dense
map.

7.2.2 Color Mapping

Our continuous-time trajectory TX (t) (see Sec. 6.2.1) readily provides the sensor
poses at a points’ capture time tp and at the camera time tcam. There, both poses
are w.r.t. the common map frame w. Additionally, we address the time offset ∆tcam
between the camera sensors and the LiDAR. This directly improves the quality of
the fused colors and semantics as these heavily depend on the accuracy of sensor
poses for projection (see Sec. 7.4 in Rosu et al. (2019b)).

For wide field-of-view (FoV) cameras, we employ the double sphere camera model
(DS) (Usenko et al., 2018) with parameters [fx, fy, cx, cy, ξ, α]⊺:

d1 =
√

p2
x + p2

y + p2
z, (7.6)

d2 =
√

p2
x + p2

y + (ξd1 + pz)
2, (7.7)

πDS(p) = π




px

py

α · d2 + (1 − α) · (ξd1 + pz)


 . (7.8)
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a)

b) c) d)

t0 t1 t1 + ∆tcam

Figure 7.2: Projecting LiDAR points into the camera [a)] allows us to colorize the point cloud.
For improper synchronized sensors, ego-motion leads to inconsistent projections
[b),c)]. Ellipses highlight the discrepancies in the close ups. The correspondences
remain consistent after compensation [d)] with the correct timing offset ∆tcam.

Fortunately, the pinhole camera model (see Sec. 2.5) is a special case of the DS model
with ξ = 0 and α = 0.

Together with both sensor poses, this allows us to define the following projection
for the cameras in a unified manner:

pw = TX (tp) · p, (7.9)
pc = Tc,iTX (tp + ∆tcam)-1 · pw, (7.10)
up = πDS (pc) . (7.11)

In contrast to Rosu et al. (2019b), we only project the current point cloud into
timewise close color or thermal images, as shown in Fig. 7.2 and Fig. 7.3. In this
way, the viewpoints of the camera and LiDAR are similar, which reduces occlusions.
Hence, the shadow mapping-based visibility check becomes unnecessary.

Depending on the target application, we require a colored map, e.g., for visual
inspection. After projection (see Eq. 7.11), we bilinearly interpolate at the projected
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a) b) c)

t0 t1 t1 + ∆tcam

Figure 7.3: Motion leads to incorrect projections from a previous frame at t0 [a)] to the next
at t1 [b)] without timing offset compensation. Measurements on the foreground,
e.g., the container, project to the background, e.g., into the sky as highlighted by
ellipses in the closeup. With offset ∆tcam [c)], the projection remains consistent.

pixel. As common knowledge, directly mixing RGB colors leads to suboptimal re-
sults (Kahu et al., 2019). Hence, we convert the color c into HSV color space using
OpenCV1. We reuse the incremental update from Ch. 5 with Eq. 5.2 and Eq. 5.4 to
fuse the weighted mean color with weight wc in hue, saturation, value (HSV) color
space:

ws = ws + wc, (7.12)
s = sc + wc · cHSV, (7.13)

cHSV =
1

ws
sc. (7.14)

The weight wc (Rosu et al., 2019b) takes the distance and the viewing angle into
account:

wc = wdist · wview, (7.15)

wdist = 1 − ∥pc∥2
rmax

, (7.16)

wview = |(ow − pw) ·n|. (7.17)

Here, wdist reduces linearly with increasing distance to the camera. This favors
spatially closer frames and improves the details of the fused colors. The term wview

prefers frontal perspectives over oblique viewing directions.
For visualization, we convert the mean HSV color back to red, green, blue (RGB).

7.2.3 Thermal Mapping

Finding heat sources is a recurring task in SAR, as well as inspection. For this, thermal
imagers are the tool of choice. However, the measurement accuracy strongly depends
on the incidence angle on a surveyed surface. Under an oblique angle, a surface may

1 https://docs.opencv.org/4.9.0/de/d25/imgproc_color_conversions.html

https://docs.opencv.org/4.9.0/de/d25/imgproc_color_conversions.html
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reflect the heat signature from the environment. Nonetheless, measuring perpendicular
to the surface can lead to reflections of the camera system or the person holding
the camera. Low emissivity and high reflectivity of a surface intensify this problem.
Hence, inspectors should survey under a small incidence angle, non-perpendicular to
the surface (FLIR Systems Inc., 2016).

Following Rosu et al. (2019a), we model this behavior as:

wthermal = wview ·
(

1 − exp
(

− 1
2σ2 arccos (wview)

2
))

, (7.18)

with σ = 0.05. Here, the dot product in wview naturally decreases towards oblique
angles, whereas the Gaussian downweighs nearly perpendicular observations. Apart
from that, we reuse the projection (see Eq. 2.78, see Fig. 7.3) and weighted sum (see
Eq. 7.14) to compute the mean thermal intensity.

As shown in Fig. 7.1, we apply a color map such as Turbo2 to the mean thermal
intensity for visualization purposes.

7.2.4 Semantic Mapping

Many tasks require knowledge about the semantic meaning of objects or surfaces
in the environment. The robot should recognize the obstacles’ whereabouts in the
scene and understand whether those obstacles are cars, pedestrians, walls, or other
objects. The semantic knowledge may stem from a projection of the point cloud into
pixelwise segmented RGB images, from object detections (Bultmann* et al., 2021),
directly from LiDAR segmentation (Cortinhal et al., 2020; Rosu et al., 2020), or a
combination thereof (Bultmann et al., 2023).

Our input is a semantically segmented point cloud Yk with per class probability
p (li|Yk) and semantic class label li. Each voxel fuses the semantics of all points in
its vicinity probabilistically. Our probabilistic fusion scheme follows the reasoning of
SemanticFusion (McCormac et al., 2017). Assuming independence between semantic
segmentations p (li|Yk), we use Bayes’ Rule:

p(li|Y1:k) =
p (li|Y1:k−1) p (li|Yk)∑
i p (li|Y1:k−1) p (li|Yk)

. (7.19)

A naive implementation, as in SemanticFusion, suffers from numerical instability
due to the finite precision of the multiplication result. In practice, this leads to all
class probabilities being close to zero, e.g., when class probabilities strongly vary:

p (li|Yk) ≈ 1 and p (li|Yk+1) ≈ 0, (7.20)
p (lj |Yk) ≈ 0 and p (lj |Yk+1) ≈ 1, (7.21)

such that both class-wise products will be almost zero. This results in a loss of
information, which the normalization term can not recover. Thus, SemanticFusion
required continuous reinitialization of the mapped probabilities p(li|Y1:k).

2 https://blog.research.google/2019/08/turbo-improved-rainbow-colormap-for.html

https://blog.research.google/2019/08/turbo-improved-rainbow-colormap-for.html
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Hence, we switch to log probabilities:

Li,1:k = log (p (li|Y1:k)) , (7.22)
Li,1:k−1 = log (p (li|Y1:k−1)) , (7.23)

Li,k = log (p (li|Yk)) , (7.24)

S1:k = log
(∑

i

p (li|Y1:k−1) p (li|Yk)

)
. (7.25)

Each voxel now stores Li,1:k instead of p (li|Y1:k). Equation 7.19 simplifies in log form
to:

Si,1:k = Li,1:k−1 + Li,k, (7.26)
Li,1:k = Si,1:k − S1:k. (7.27)

We further improve numerical stability with the following logarithm identity for
log (

∑
i xi) by factorizing the largest summand (xm) out:

m = arg max
i

(xi), (7.28)

log
(∑

i

xi

)
= log (xm) + log

1 +
∑
i̸=m

xi

xm

 . (7.29)

Many programming languages3 provide for log(1 + a) with a ⪆ 0 more accurate
implementations via log1p(a) without explicitly applying the logarithm to the sum
(1 + a).

Replacing the division in Eq. 7.29 with its log form results in:

log
(∑

i

xi

)
= log (xm) + log

1 +
∑
i̸=m

explog(xi)−log(xm)

 . (7.30)

Hence, we compute S1:k as follows:

S1:k = Sm,1:k + log

1 +
∑
i̸=m

expSi,1:k−Sm,1:k

 . (7.31)

As common in segmentation, the last network layer uses a softmax activation
function to normalize the predicted distribution. Ideally, we would skip the last
layer and directly fuse unnormalized network outputs to save additional exp and
log computations. However, this step is necessary since the individual outputs may
be arbitrarily scaled. As an additional precaution, our co-author Simon Bultmann
introduced a temperature parameter (LeCun et al., 2006) in the softmax computa-
tion for the journal version (Bultmann et al., 2023). The temperature adjusts the
sharpness of the networks’ output distribution, either shifting towards a single peak
in (p(li|Yk) ≈ 1) or increasing uniformity. While we observed the described numerical

3 https://numpy.org/doc/stable/reference/generated/numpy.log1p.html,
https://en.cppreference.com/w/cpp/numeric/math/log1p,
https://de.mathworks.com/help/matlab/ref/log1p.html

https://numpy.org/doc/stable/reference/generated/numpy.log1p.html
https://en.cppreference.com/w/cpp/numeric/math/log1p
https://de.mathworks.com/help/matlab/ref/log1p.html
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instability (see Eq. 7.21) in Bultmann* et al. (2021) and with SemanticFusion in Rosu
et al. (2019b), we did not encounter the instability with the temperature softmax.

An infinite time horizon of the semantic map, fusing all scans, may not be necessary
or wanted—depending on the use case, e.g., for global vs. local planning. Hence, we
store the log probabilities per scan in a fixed-size double-ended queue (deque) per
voxel, as described in Ch. 5. Fusing these per-scan log probabilities yields the voxels’
class probabilities for the shorter time horizon with at most N scans. Older scans are
either fused into the infinite time horizon estimate or removed entirely.

Most points have a high likelihood for a limited number of classes. Hence, it is
unnecessary to store all class probabilities. For memory constraint systems, it is
beneficial to retain the most likely class and probability maxi p(li|Yk) per point. As
a result, only a sparse subset requires storage. For more details on that approach, we
refer the reader to Rosu et al. (2019b).

7.3 Evaluation

We evaluate the mapping components on data captured during multiple flights
with modified DJI M210v2 UAVs. The UAV is equipped with an Intel NUC for
onboard processing and data storage. An Ouster OS0-128 LiDAR provides distance
measurements for assistance functions, mapping, and higher-level autonomy. A FLIR
Boson thermal camera takes long-wave infrared images in front of the drone for
thermal mapping and person detection. Additionally, a 360◦ FoV Insta360 Air camera
allows us to colorize all LiDAR points.

For the first sequence, multiple pedestrians walk around the Campus Poppelsdorf
of the University of Bonn. At the same time, the operator manually steers the
UAV from in between three buildings to an open field. Two more sequences were
captured during autonomous exploration tests at the DRZ Living Lab in Dortmund.
The scenario recreated a collapsed building with debris and rubble. During these
exercises, MARS (see Sec. 5) localized the UAV and provided poses for the online
occupancy mapping. The resulting occupancy was the basis for the planning pipeline
to realize the autonomous flights. Schleich et al. (2021) describe the UAV setup and
its capabilities in more detail.

For the following evaluation, we reprocess each sequence with LIO-MARS (see
Ch. 6) and pass the motion-compensated point cloud to the mapping component. At
first, we examine the occupancy mapping (see Sec. 7.3.1). Then, we jointly evaluate
the color and thermal mapping (see Sec. 7.3.2) before continuing with the semantic
mapping (see Sec. 7.3.3).

All experiments were conducted on a laptop with an AMD Ryzen 7 5800H and
48 GB of random access memory (RAM). The mapping components are restricted to
use at most four threads to reduce interference at runtime with other components
like our LiDAR-inertial odometry (LIO) or when deployed on a robot with planning
and obstacle avoidance.
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a) b)

Figure 7.4: Colored map [a)] overlayed in [b)] with freed voxels (green) during a test run
in a collapsed building scenario at the DRZ Living Lab. Freed voxels mostly
correspond to trees (blue), the swinging container doors (violet) and the safety-
operator (orange) along his path.

7.3.1 Occupancy Mapping

We evaluate our occupancy on the first sequence captured at the Campus Poppelsdorf
of the University of Bonn. For this, we compare the occupancy against manually
annotated semantic ground-truth classes from the aggregated and voxelized point
cloud (25 cm) after registration with MARS. Here, the occupancy cell size is set to
25 cm to match the coarse semantic resolution and the cell size of the high-level
planning (Schleich et al., 2021). Since the “person” class is the only moving class,
we check for each “person” voxel if it was marked as occupied and freed later on.
Using the intersection over union (IoU) would be inaccurate, as the “person” class
represents only a small subset of all free voxels. After processing the whole dataset, the
occupancy mapping marked 7822 out of 7840 “person”-voxels (99.77 %) as free again.
The remaining 18 voxels mostly correspond to current measurements of people. The
exception is one pedestrian moving in the opposite direction of the UAV and leaving
the sensor range. These remain occupied since we only ray-trace valid measurements
for runtime efficiency.

In Schleich et al. (2021), we use the occupancy mapping for high-level planning
during numerous test flights at the DRZ Living Lab and on the Campus Poppelsdorf.
Since the occupancy maps were not recorded during these exercises, we rerun the
occupancy mapping using the motion-compensated points and poses from LIO-MARS
for two autonomous test runs at the DRZ Living Lab. Here, our occupancy computa-
tion switches to a cell size of 20 cm for easier subdivision, which equals 4 times the
color map’s resolution (5 cm). For better visibility, we overlay previously occupied
and subsequently freed voxels (green) on the colored map from Sec. 7.3.2.

The safety pilot’s path stands out in Fig. 7.4 as multiple elongated green segments
around the scenario site. The path appears non-continuous due to the limited sensor
range. Additionally, due to windy conditions, many freed voxels group around the
free-swinging container doors and the tree branches in the back.
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a) b)

Figure 7.5: Colored map [a)] overlayed in [b)] with freed voxels (green) during a joint exercise
with fire fighters (red) in a collapsed building scenario at the DRZ Living Lab.
Freed voxels stem from multiple fire fighters including a fire truck and the safety
pilot (orange). A group of observers (white) moved from the container to the left
during the exercise.

For this sequence, adding newly measured occupancy voxels took 2.41 ms whereas
ray tracing took, on average, 9.22 ms. Inserting free measurements took another
3.53 ms. Afterwards, merging new voxels into the map took 4.55 ms, including the
normal computation. In total, a scan took, on average, around 19.93 ms using up to
four threads, resp. 24.80 ms with a single thread. Without grazing angle rejection
and normal computation, the time further reduces to 13.29 ms for four threads or
20.00 ms with a single thread.

For timing comparison, we supply the same point clouds to the popular
voxblox (Oleynikova et al., 2017). Its successor, nvblox (Millane et al., 2024), requires
a GPU and is thus omitted since the GPU might not be available or is preoccupied
with object detection or semantic computation. Furthermore, OctoMap is excluded
since its reportedly4 slower than voxblox by a factor of 2.

Voxblox’s integration method is set to “fast” with their iterative closest point (ICP)
being deactivated for fairness. We exclude mesh updating and publishing from the
analysis. Voxblox (Oleynikova et al., 2017) takes at a resolution of 20 cm with carving
enabled around 21.26 ms compared to our 19.93 ms resp. 13.29 ms.

The second run exhibits much more movement, as shown in Fig. 7.5. Multiple
firefighters participated in the exercise while a group of observer was present at the
red container. The firefighter truck started on the right and turned left to the center.
As before, the safety pilot followed the UAV around the compound. During the second
half, the observer group moved to the left side behind fluttering barrier tape.

7.3.2 Color and Thermal Mapping

In order to demonstrate the color improvement due to correct time projection, we
compute per surfel the fused colors’ mean µc and covariance Σc.

4 https://voxblox.readthedocs.io/en/latest/pages/Performance.html

https://voxblox.readthedocs.io/en/latest/pages/Performance.html
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Figure 7.6: Incorrect projection time offset (∆t0) increases the mean differential entropy µh

for the color covariance of mapped surfels. The correct offset ∆test provides lower
entropy over non-overlapping 10 s windows w10 (left) and over the whole sequence
(right).

We evaluate the differential entropy h(N ) as in Cover and Thomas (2005) (Eq.
8.43) for the fused color Gaussian Nc(µc, Σc) and the mean value µh over all surfels
C:

h(Nc(µc, Σc)) =
1
2 ln(2πe)3 det Σc, (7.32)

µh =
∑
c∈C

h(Nc). (7.33)

A lower differential entropy corresponds to less uncertainty and less variation in
the fused colors. To get an estimate over all surfels, we compute the mean value µh

over h(Nc) for the uncorrected ∆t = 0 and the corrected ∆test for non-overlapping
10 s windows and a complete flight at the DRZ Living Lab. The resulting mean
differential entropy µh, as shown in Fig. 7.6, underlines that compensating for time
offsets reduces variations in fused colors. Furthermore, this emphasizes the benefit of
our continuous-time trajectory for multi-rate systems with differing acquisition times.
This helps to obtain higher-quality reconstructions. Figure 7.1 shows the resulting
color and thermal maps with closeups of the scenario structure in Fig. 7.7.

Adding color and thermal measurements to the point cloud takes around 1.28 ms.
At a resolution of 5 cm, surfeling and weighting the augmented cloud takes another
3.51 ms for up to four threads, resp. 9.32 ms for a single thread. Merging the cloud’s
surfels with the map and updating the changed map takes another 12.13 ms, resp.
10.85 ms. In total, the fusion procedure for the augmented point cloud takes around
15.63 ms using up to 4 threads or 20.17 ms for a single thread.

In comparison, Voxblox still takes 25.78 ms on the same 5 cm resolution with
disabled carving and using a restricted number of 4 threads. Again, this excludes
updating and publishing of the mesh.

Additionally, we deployed our UAV during a forest fire training exercise by the
fire brigade of the district Viersen. During the exercise, the fire brigade extinguished
multiple controlled vegetation fires at the abandoned Javelin Barracks in Elmpt,
Germany. Figure 7.8 shows one such fire’s color and thermal map, which we recorded
directly after the flames went out.
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a) b)

c) d)

Figure 7.7: Closeups of colored and thermal maps of second sequence at the DRZ Living
Lab. Shadowed and brightly lid areas (rectangles) in the color map are clearly
discernable in thermal maps.

a) b)

c) d)

Figure 7.8: Colored and thermal maps of forest fire training exercise by the fire brigade of
the district Viersen at the abandoned Javelin Barracks in Elmpt, Germany.
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Table 7.1: Comparison of the IoU [%] for semantic labels of single LiDAR scans and our fused
map for different variants of a retrained SalsaNext (Cortinhal et al., 2020). Higher
values are better (↑) with second and best highlighted.

Method

bu
ild
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ad
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rs

on

ve
ge

ta
tio

n

bi
cy

cl
e

ve
hi

cl
e

ob
je

ct Mean IoU

Single 32.39 72.99 2.67 2.17 3.93 0.60 3.40 16.88

Map 23.58 66.94 0.25 0.45 0.00 1.40 3.65 13.75

Single w/ z, I 83.15 75.55 16.90 2.12 7.47 2.87 5.51 27.65

Map w/ z, I 86.66 65.08 27.28 4.62 0.21 5.84 10.05 28.53

Single w/ LP, I 95.82 88.71 49.45 77.58 14.40 56.19 22.77 57.85

Map w/ LP, I 96.14 89.05 53.25 80.39 20.92 81.31 44.23 66.47

Single w/ LP 95.80 88.26 62.54 74.54 14.57 60.70 26.47 60.41

Map w/ LP 96.35 88.51 73.49 78.85 22.85 82.51 43.96 69.50

7.3.3 Semantic Mapping

We evaluate our semantic fusion against the manually annotated ground-truth classes
on the first sequence captured at the Campus Poppelsdorf of the University of
Bonn. Here, SalsaNext (Cortinhal et al., 2020) provides the semantic annotations for
the LiDAR scans and runs in real-time onboard the UAV. Cortinhal et al. trained
SalsaNext on SemanticKITTI (Behley et al., 2019) with differing LiDAR, FoV, and
sensor geometry. Hence, the network required adaptation to our setup as described
in Bultmann et al. (2023) by rescaling the height (w/ z), inclusion of the intensity
channel (w/ I), or retraining with label propagation (w/ LP). For more details, we
refer the reader to the corresponding publication.

Table 7.1 shows the resulting IoU for single scans and the fused maps with the
proposed scheme (see Sec. 7.2.4). All numbers have been recalculated after several
bug fixes and may deviate slightly from the initially reported results in Bultmann*
et al. (2021) and Bultmann et al. (2023). We keep the coarse and fine voxel sizes
(25 cm, resp. 6.25 cm) consistent with the initial results for better comparison, even
if these sizes differ from the previous sections. Originally, the size was chosen for
efficiency reasons to coincide with the occupancy resolution used by the high-level
planning.

Our fusion promotes consistency between scans, which ideally improves the mean
IoU. However, this also reinforces incorrect decisions as seen for the original unadapted
SalsaNext. After adaptation, all maps exhibit higher mean IoU than single scan
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Table 7.2: Ablation on Mean IoU for SalsaNext. Second and best values are highlighted.

SalsaNext Resolution Mean IoU Avg. Time

[cm] [%] (↑) [ms] (↓)

orig. 25 12.07 43.7

orig. 6.25 13.75 60.8

w/ z, I 25 23.36 32.7

w/ z, I 6.25 28.53 54.6

w/ LP, I 25 69.46 33.4

w/ LP, I 6.25 66.47 55.2

w/ LP 25 69.81 47.7

w/ LP 6.25 69.50 55.4

evaluation. Here, the smaller classes, such as “person” or “bicycle”, benefit more than
“building” or “road”.

Table 7.2 shows the mean IoU and average computation time for coarse and fine
voxel resolutions (25 cm, resp. 6.25 cm) with our logarithmic fusion formulation (see
Eq. 7.27). The mean IoU between different fusion schemes (see Eq. 7.19 and Eq. 7.27)
was insignificant for the retrained networks due to the temperature adjustment within
the softmax activation function. As expected, the fusion takes longer for the finer
resolution as more voxels are in the sparse volume. Nevertheless, all variants run
in real time using a single thread with insignificant differences after LP retraining
w.r.t. the resolution.

The consistent estimate of the scene semantics enables us to enforce temporal and
spatial consistency between individual class predictions (Rosu et al., 2019b; Bultmann
et al., 2023). The fused label is useful for fine-tuning (Rosu et al., 2019b) for novel
viewpoints or the domain adaptation between different sensors and modalities (Bult-
mann et al., 2023). Although designed for use with LiDAR, our formulation is general
enough for use with depth from RGB-D cameras. As such, Bultmann and Behnke
(2022) adapt our semantic map to a distributed smart edge sensor network.
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7.4 Summary

In this chapter, we presented a multi-modal fusion for CPU-based dense environment
mapping in real-time and verified our key claims.

Our sparse voxel map stores per voxel a surfel, the voxel’s occupancy, its color, the
thermal signature, and the voxel’s semantics. We reuse the vectorized representation
and computation from Sec. 6.2.11 for the surfel. A ternary signum occupancy function
allows fast reactive occupancy estimation per voxel using efficient summation over a
small fixed-size ring buffer.

The continuous-time trajectory, estimated by LIO-MARS (see Ch. 6), enables us
to aggregate multi-modal sensor data temporally correct in a common map even
within a multi-rate system. Using a motion-compensated image projection, we enrich
point clouds with additional channels from temporally close multi-modal images.
Our fusion further integrates the respective thermal and color channels into the map
under consideration of the view dependency of the respective sensors. As a result, our
fast CPU-based multi-view aggregation provides more consistent maps at runtime
while keeping the GPU free for other purposes like semantic segmentation and object
detection. To merge semantic estimates, we reformulate the probabilistic fusion using
Bayes’ rule in its logarithmic form for improved numerical stability. As a result, fused
semantic labels enforce temporal and spatial consistency between individual class
predictions. In addition, these consistent labels enable fine-tuning on novel viewpoints
and domain adaptation between different sensors and modalities (Bultmann et al.,
2023).

During real-world experiments, our color and thermal maps provided direct feedback
for the UAV operator during teleoperation and allowed monitoring of autonomous mis-
sions. Moreover, the mapped occupancy enabled high-level planning and autonomous
exploration in dynamic environments (Schleich et al., 2021), as validated in numerous
autonomous flights.
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Conclusion

8.1 Summary

In this thesis, we presented novel real-time approaches for calibration, odometry, and
mapping using multi-modal sensor setups onboard various UAVs. Our solutions laid
the foundation for autonomous assistance functions, including obstacle avoidance,
navigation, and exploration, that fostered safer manual and repeatedly enabled
autonomous drone operations (Schleich et al., 2021). All methods work in close
proximity to structures and are independent of external positioning like global
navigation satellite system (GNSS) or preexisting and possibly outdated maps. As
such, our created maps facilitate inspection (Quenzel et al., 2019) and SAR while
improving decision-making for further downstream tasks. Moreover, the presented
methods are applicable for general dense 3D mapping and localization with, e.g., car-,
robot-mounted (Ch. 5), or handheld sensor suites (Ch. 6).

Our joint photometric calibration (Ch. 3) successfully estimates the camera’s
vignetting, response function CRF and exposure ratio together with the map point
radiance. It handles natural scenes without uniform illumination or known calibration
targets while running in real-time on a laptop CPU. Small oriented patches around the
sparsely distributed ORB features form the basis for the keyframe-based optimization
without requiring multiple per-pixel measurements. For vignetting, a 2D thin plate
spline (TPS) captures local deformations, whilst a sixth-order polynomial represents
the general shape. Similarly, we model the camera response function (CRF) using a
combination of a 1D TPS with border conditions and a Gamma curve. Furthermore,
the mapped radiance enables estimation of the current exposure ratio w.r.t. the
tracked map at the sensor’s frame rate.

Inspired by the necessity for constant brightness in computer vision, our novel
dissimilarity metric (Ch. 4) replaces the standard photometric error in direct image
alignment. Already slight variations in lighting drastically degrade the performance
of the photometric error. In contrast, using our measure leads to more accurate and
robust depth in stereo disparity tasks as well as improved camera trajectories. Our
metric combines a gradient-based orientation measure with a magnitude-dependent
scaling term, which is easy to integrate into various existing visual odometry (VO)
systems while retaining real-time performance at typical camera frame rates.

To localize the UAV in flight, a novel LiDAR odometry, called MARS (Ch. 5),
jointly registers multiple scans along a continuous-time B-spline trajectory in real-
time without requiring prior maps. Moreover, our MARS delivered reliable UAV
poses during numerous autonomous test flights with state-of-the-art accuracy on
various datasets, including handheld and automotive setups. We accelerate the GMM-
based registration by embedding scans in multi-resolution surfel maps with sparse
permutohedral lattices and adaptively selecting the appropriate surfel resolution.
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For high-fidelity reconstructions, our extension LIO-MARS (Ch. 6) directly op-
timizes intra-scan motion during registration without costly pointwise surfel rein-
tegration due to UT-based de-skewing. Resilience increases further by leveraging
timewise non-uniformly spaced B-spline knots and relative motion constraints on
the continuous-time trajectory, e.g., from robot odometry or preintegrated IMU
measurements. Real-time performance improves by rephrasing the Gaussian mixture
model (GMM) and covariances with Kronecker sum and products.

Despite the multi-modal sensors’ differing acquisition times, we enrich LiDAR point
clouds pointwise with color and thermal signatures from time-compensated projective
correspondences (Ch. 7) while considering their reliability w.r.t. scene geometry. Our
real-time mapping combines the annotated scans, including semantic categories, into
dense 3D maps using sparse volumes. The semantic fusion ensures greater numerical
stability by rephrasing the Bayesian fusion in its logarithmic form.

For high-level planning in dynamic environments, we improve reactivity with a
signum occupancy function to maintain a small temporal occupancy window in
real-time. Moreover, occupancy computation becomes more efficient due to simple
integer summation. The window length balances reactivity to changes detected by
ray-tracing and retaining previous knowledge of the environment.

Keeping a situational overview updated during a crisis is a major challenge for
first responders. A task that is nowadays unimaginable without UAVs. With the
contributions presented throughout this thesis, UAV operation becomes easier than
ever while delivering broad overviews together with closeup inspection for difficult-to-
reach and GNSS-denied environments in real-time.

8.2 Outlook and Future Work

The proposed works naturally present numerous possible future research directions.
Minimizing our dissimilarity metric, e.g., between the image and the LiDAR’s

intensity or reflectivity channel or reprojection residuals for image lines and 3D edges,
could enable joint calibration of extrinsic parameters and time-offsets for color and
thermal cameras. These additional parameters may also be directly introduced into
the LIO optimization. Compensating rolling shutter effects in real-time is another
possibility.

Combining camera and LiDAR for localization (Zheng et al., 2022) balances
and complements the individual sensors’ strengths and weaknesses. On an open
field, the LiDAR may only measure the ground, whereas the camera retains visible
landmarks (Shan et al., 2021) beyond the LiDAR’s range. Dark environments let
color cameras struggle, while thermal and LiDAR work well. For overlapping FoV,
LiDAR points may initialize image features with reliable depth or guide temporal
MVS to even denser maps with increased fidelity in the reconstruction.

Scene motion violates the static world assumption inherent in most odometry
systems. Explicitly incorporating the relative motion of tracked objects (Judd et al.,
2018) may improve resilience and allow for more accurate localization in otherwise
underconstrained situations.

Although the scanning pattern of some LiDARs, like the Livox Horizon, is non-
repetitive, some surfaces are sampled more than once during the scanning time.
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This would lead to additional intra-segment constraints per scan. However, the
time estimation for sigma points in the proposed unscented transform (UT) does
not support these patterns. Further LiDAR-only constraints arise from intensity
and reflectivity channels (Zhang et al., 2023a; Pfreundschuh et al., 2024), where
different surfaces and materials appear discernable. However, both channels require
compensation (Höfle and Pfeifer, 2007) for scene geometry and vignetting similar to
cameras.

LiDARs directly provide distance measurements over a broad range with low
relative error. Diffusion models presented first promising results for denoising (Chang
et al., 2023; Nakashima and Kurazume, 2024) yet remain too time-consuming and
costly for real-time application in actual SAR scenarios.

Furthermore, the noise becomes more pronounced when dealing with shorter
measurements. Conversely, range noise dominates the surfel covariance when the
surfel size is too small, or points sample a surface in an unfavorable pattern, e.g., a
straight line. In both cases, the estimated normal direction is perpendicular to the
actual surface normal. This affects registration as well as mapping. Extending our
surfel-based registration with range-image (Di Giammarino et al., 2022; Qu et al.,
2022) or mean-based point registration (Xu et al., 2022; Vizzo et al., 2023) provides
a suitable fallback strategy for these adverse surfels or for very high ranges with too
sparse measurements.

Supplementing our surfel maps with other environment features may help to model
the underlying geometry more accurately. Spheroids or cylinders fit better to partially
observed round objects like lamp posts (Dong et al., 2023) or tree trunks (Proudman
et al., 2022). Edges directly constrain two directions, but curvature-based detection
on raw point clouds is unreliable (Xu et al., 2022). Normal-based detection between
neighboring surfels is a promising alternative. Similarly, knowing where a wall ends or
a window begins helps in otherwise unrestricted scenarios, e.g., free-standing buildings
measured from only one side.

In multi-story buildings and staircases, LiDARs commonly measure corresponding
floors and ceilings or walls from both sides. Improper handling tends to contract both
mapped surfaces into one (Chung and Kim, 2024). Under the reasonable assumption of
uniform thickness for individual walls, e.g., due to building codes and materials (DIN
4109-2:2018-01), knowledge of one side allows us to assume the opposite orientation
and possibly estimate the wall thickness as well.

An iterated error-state Kalman filter (IEKF) is a popular tool (Geneva et al., 2020;
Qin et al., 2020; Xu and Zhang, 2021; He et al., 2023) in modern state estimation
due to its accuracy and the maintained uncertainty estimate. However, the IEKF
requires specialized derivation for spline-based trajectory estimation. The uncertainty
may increase resilience when dealing with unrestricted or uninformative directions
during optimization or resolve such later on.

Further extensions for LiDAR-inertial odometry with MARS maps (LIO-MARS)
include loop-closing and pose graph optimization (PGO) to improve consistency and
reduce accumulated errors. PGO could directly optimize the whole spline trajec-
tory (Quenzel et al., 2024) and align the per-scan estimated gravity globally.

Recent advances promise vast potential in learned implicit map representa-
tions (Hong et al., 2024; Pan et al., 2024; Tao et al., 2024). These could tackle
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some of the shortcomings of point-, surfel- or TSDF-based maps and enable joint
optimization of map and trajectory. Currently, learned methods (Mildenhall et al.,
2021; Kerbl et al., 2023) are too computationally involved or time-consuming which
is disadvantageous for robotic systems with limited resources.

However, a straightforward extension of our mapping (Ch. 7) is the subsequent use
of Gaussian splatting (GS) (Kerbl et al., 2023; Jiang et al., 2025) on an operator’s
station for more visually pleasing maps. We already have accurate and meaningful 3D
Gaussians with channel-wise information, e.g., color, which is an ideal initialization
for GS and should allow much faster convergence. Furthermore, the operator may
directly inspect the map while incremental optimization on some selected keyframes
continues in parallel.
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Additional Derivations

b.1 Preintegration

The Jacobians for Eq. 6.38 are as follows:
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b.2 Vectorization

We used the Symbolic Math toolbox1 in Matlab R2021b for verification of Eq. 6.121:

%% veri f icat ion script for vectorization using symbolic toolbox
% We sk ip the f i l l e r '0 ' e n t r i e s in vecL and 0−rows in H2 .
% => 6 in s t ead o f 8 va lue s / rows
%
% l i n e a r index ing from 3x3 matrix :
% ! ! ! matlab s t a r t s index ing with 1 ! ! !
sym_ind_L = [ 1 , 5 , 9 , 2 , 3 , 6 ] ' ;
vec = @(x ) x ( : ) ; % R^9
vecL = @(x ) x (sym_ind_L) ; % R^6

% diagona l matrix D in R^3x3 , 3 non−zero e n t r i e s a long d iagona l
D00 = sym( 'D00 ' ) ; D11 = sym( 'D11 ' ) ; D22 = sym( 'D22 ' ) ;
D = [ D00 , 0 , 0 ; 0 , D11 , 0 ; 0 , 0 , D22 ] ;
assume (D, ' r e a l ' ) ;
% Eigenvector s V are orthogona l but not n e c e s s a r i l y symmetric !
v00 = sym( ' v00 ' ) ; v10 = sym( ' v10 ' ) ; v20 = sym( ' v20 ' ) ;
v01 = sym( ' v01 ' ) ; v11 = sym( ' v11 ' ) ; v21 = sym( ' v21 ' ) ;
v02 = sym( ' v02 ' ) ; v12 = sym( ' v12 ' ) ; v22 = sym( ' v22 ' ) ;
V = [ v00 , v01 , v02 ; v10 , v11 , v12 ; v20 , v21 , v22 ] ; % R^3x3
assume (V, ' r e a l ' ) ;

% 00 ,10 ,20 ,01 ,11 ,21 ,20 ,21 ,22
H2 = [ 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;

0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 ;
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ;
0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ;
0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 ] ; % R^6x9

% v e r i f y H2 :
s i m p l i f y ( (H2 ∗ vec (V) ) == vecL (V) ) % equal
% v e r i f y kron prod :
s i m p l i f y ( vecL (V∗D∗V' ) == vecL ( kron (V,V) ∗ vec (D) ) ) % equal

% compute opt imized form :
% ! ! ! no zero f i l l e r rows added ! ! !
Ev = [V( 1 , : ) . ∗V( 2 , : ) ;V( 1 , : ) . ∗V( 3 , : ) ; V( 2 , : ) . ∗V( 3 , : ) ] ;
vdvt = [ (V. ∗V) ; Ev ] ∗ diag (D) ;
% compare aga in s t o r i g i n a l VDV' :
s i m p l i f y ( vecL (V∗D∗V' ) == vdvt ) % equal
% compare aga in s t kron prod ve r s i on :
s i m p l i f y ( vecL ( kron (V,V) ∗ vec (D) ) == vdvt ) % equal

1 https://www.mathworks.com/products/symbolic.html

https://www.mathworks.com/products/symbolic.html
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b.3 Permutation

We use the following Matlab script for verification in Sec. 6.2.11 and verified in
Matlab R2021b that this works up to d = 9. The number of permutations becomes
the limiting factor with increasing dimension d.

%% veri f icat ion script for sorting latt ice ranks
% ! ! ! matlab s t a r t s index ing with 1 ! ! !
c l e a r a l l ; c l c ;
d = 3 ; % dimension
n = d+1; % l i f t e d dimension
i_to_d = 0 : d ; % sor t ed p o s i t i o n s
ranks = f l i p u d ( perms ( i_to_d ) ) ; % a l l permutat ions o f ranks
d i s t = rand (n , 1 ) ; % some rand va l s to check e q u a l i t y
N = 2^nextpow2 (n) ; % next h igher mu l t ip l e o f 2 , used f o r s h i f t i n g
lowBitVal = N−1; % a l l lower b i t s set , used to ex t r a c t idx back
v1 = ze ro s ( s i z e ( ranks , 1 ) , 1 ) ; v2 = v1 ; % s t o r e c o r r e c t n e s s
% check every permutation :
f o r num = 1 : s i z e ( ranks , 1 )

b = ranks (num , : ) ; % cur rent rank permutation
ind = b + 1 ; % +1 f o r matlab index ing
% i n i t v a r i a b l e s :
P = ze ro s (n , n) ; sb = ze ro s ( s i z e ( d i s t ) ) ; gb = sb ;
% compute permutation matrix
f o r i = 1 : (d+1) % s h i f t e d by 1 f o r matlab index ing

P( i_to_d ( i ) +1, ind ( i ) ) = 1 ;
end
% compute w/ permutation matrix f o r v e r i f i c a t i o n
% ! Mat−Mul i s not e f f i c i e n t f o r t h i s problem !
cb = P' ∗ d i s t ;
% compute idx with s o r t i n g
% 1 . s h i f t rank l e f t , add p o s i t i o n in l o w e r b i t s
i r = uint16 (b) ∗ uint16 (N) + uint16 ( i_to_d ) ;

% 2 . s o r t and ex t r a c t l o w e r b i t s −> idx
% r e a l impl should use p a r a l l e l s o r t ing , w/ min , max
idx = bitand ( u int16 ( s o r t ( i r ( : ) ) ' ) , u int16 ( lowBitVal ) ) +1;
% compute s c a t t e r i n g / gather ing :
f o r i = 1 : (d+1) % s h i f t e d by 1 f o r matlab index ing

% b [ ind [ i ] ] : = d [ i ]
sb ( ind ( i ) ) = d i s t ( i ) ;
% b [ i ] := d [ idx [ i ] ]
gb ( i ) = d i s t ( idx ( i ) ) ;

end
% v e r i f y by check ing d i s t a n c e s :
v1 (num) = 1e−6 > norm( sb ( : ) − gb ( : ) ) ;
v2 (num) = 1e−6 > norm( sb ( : ) − cb ( : ) ) ;

end
% check a l l are c o r r e c t :
(sum( v1 ) == length ( v1 ) ) && (sum( v2 ) == length ( v2 ) )
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