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1. Abstract 

Spinocerebellar ataxia type 3 (SCA3) is a progressive neurodegenerative disorder with 

multisystem involvement and no disease-modifying treatment to date. As targeted 

therapies move into clinical testing, the need for sensitive imaging biomarkers is critical. 

This thesis presents a multimodal framework for understanding the structural and 

microstructural progression of SCA3 and for developing magnetic resonance imaging 

(MRI) based biomarkers applicable across disease stages. Drawing on cross-sectional 

and longitudinal data from the European SCA3/Machado– Joseph Disease Initiative 

(ESMI), this work demonstrates that infratentorial white matter structures—particularly the 

pons, medulla oblongata, and cerebellar peduncles—showed early and consistent 

degeneration. Among these, pons volume showed early decline already in pre-

symptomatic mutation carriers and showed the highest sensitivity to change, emerging as 

a robust imaging biomarker across disease stages. Regional atrophy trajectories were 

modulated by disease severity and duration in distinct, structure-specific patterns. 

Diffusion tensor imaging showed cerebellar white matter degeneration in cross-sectional 

comparisons, but high intra-individual variability between visits limited its utility for 

detecting longitudinal change. Neurofilament light chain (NfL) levels were abnormal 

decades before clinical onset, but plateaued thereafter and showed limited 

responsiveness to progression. In contrast, mutant ataxin-3 (ATXN3) concentrations 

remained relatively constant across the disease course and did not show relevant 

dynamics. The Scale for the Assessment and Rating of Ataxia (SARA), while widely used 

clinically, showed lower sensitivity to early progression and exhibited delayed changes 

relative to imaging markers. To support future biomarker development, a novel method 

for myelin water estimation was incorporated. While not yet applied in SCA3, it holds great 

promise for detecting subtle myelin alterations, particularly given the early and 

pronounced white matter involvement and emerging evidence of oligodendrocyte 

dysfunction. Together, the findings of this thesis highlight the utility of multimodal imaging 

for refining disease staging, patient stratification, and identification of suitable imaging 

biomarkers for clinical trials.    
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2. Introduction and aims with references 
 

2.1 Spinocerebellar Ataxias 

Spinocerebellar ataxias (SCA) are a genetically diverse group of autosomal dominant 

neurodegenerative disorders, with over 40 subtypes currently identified and more 

emerging (Klockgether et al., 2019; Wilke et al., 2023). They present with a broad clinical 

spectrum, ranging from pure cerebellar ataxia to complex multisystem involvement 

(Klockgether et al., 2019). Ataxias are rare diseases with a global prevalence of 10 to 20 

per 100,000 individuals (Durr, 2010; Ruano et al., 2014). Gait disturbances are a common 

hallmark in all ataxia disorders typically worsen over the course of the disease, often 

leading to the use of walking aid and finally wheelchair. The most common group of SCAs 

are the so-called polyglutamine disorders, which include SCA1, SCA2, SCA3, SCA6, 

SCA7, SCA17 (Durr, 2010). In some variants, such as SCA6, the neuropathology is 

largely confined to the cerebellum. Others, including SCA1, SCA2, and SCA3, exhibit a 

larger involvement of central and peripheral nervous system structures, including the 

brainstem, spinal cord, basal ganglia, and peripheral nerves. Accordingly, the clinical 

phenotype does include other neurological signs and symptoms beyond ataxia, such as 

spasticity, sensory neuropathy, oculomotor abnormalities, or rigidity (Klockgether et al., 

2019; Paulson et al., 2017). 

2.1.1 Spinocerebellar Ataxia Type 3 

SCA3, also known as Machado–Joseph disease, is the most common form of dominantly 

inherited ataxia worldwide (Klockgether et al., 2019). In SCA3, the repeat expansion 

occurs in the ATXN3 gene (Kawaguchi et al., 1994), which encodes the deubiquitinating 

enzyme ataxin-3 (Klockgether et al., 2019), that disrupt cellular processes and lead to 

neuronal dysfunction and degeneration (Paulson et al., 2017). Clinically, SCA3 is 

characterized by progressive cerebellar ataxia, frequently accompanied by pyramidal and 

extrapyramidal signs, peripheral neuropathy, and oculomotor abnormalities (Paulson et 

al., 2017). Symptoms typically emerge in mid-adulthood, although anticipation can lead to 

earlier onset in successive generations, most commonly associated with longer CAG 

repeat lengths (Klockgether et al., 2019). Currently, there is no disease-modifying 
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treatment for SCA3. Gene-silencing strategies, particularly antisense oligonucleotides 

(ASOs), have demonstrated efficacy in preclinical models (McLoughlin et al., 2018). 

Although the first ASO trial in SCA3 was terminated early due to safety concerns, these 

approaches remain among the most promising candidates, particularly for pre-

symptomatic intervention. Early interventions require sensitive and reliable biomarkers 

capable of detecting neurodegenerative changes prior to the clinical onset and of tracking 

disease progression over time. Clinical assessments lack sensitivity in the pre-

symptomatic stage, highlighting the need for objective, quantitative measures to capture 

early pathological alterations (Faber et al., 2021).  

2.1.2 Clinical Assessment and Disease Staging 

The Scale for the Assessment and Rating of Ataxia (SARA) quantifies ataxia severity 

based on eight motor tasks, with scores ranging from 0 (no ataxia) to 40 (severe ataxia) 

(Schmitz-Hübsch et al., 2006). It is widely used to monitor progression and serves as an 

outcome measure in ataxia trials (Jacobi et al., 2015). Notably, its scores can vary 

considerably due to daily fluctuations, particularly in mildly affected individuals (Grobe-

Einsler et al., 2021). Longitudinal data suggest an average annual increase of 1-2 points 

(Jacobi et al., 2015). The threshold of < 3 is used to define clinical onset, with lower scores 

indicating the pre-ataxic stage (Maas et al., 2015; Schmitz-Hübsch et al., 2006). 

Disease duration is typically defined as the time since symptom onset, usually marked by 

the reported onset of gait disturbances (Klockgether et al., 1998). In pre-symptomatic 

mutation carriers, time to onset can be estimated using predictive models based on the 

individual’s current age and CAG repeat length (Tezenas du Montcel et al., 2014). Disease 

duration is calculated as difference between current age and (estimated) age of onset. As 

a result, values are negative in individuals, not yet experiencing gait disturbances, 

indicating years before the expected onset, and are positive in symptomatic individuals, 

reflecting (reported) years since onset. 

Staging is increasingly recognized as essential for stratifying participants in clinical trials, 

and optimizing the timing of therapeutic interventions. Traditionally, clinical staging relies 

on measures such as SARA. More recently, fluid biomarkers such as NfL and structural 

imaging markers have been explored to refine staging. In the context of SCA3, a three-
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stage model was previously described (Faber et al., 2024): a carrier stage, in which 

individuals carry the pathogenic mutation but show no clinical signs and normal NfL levels; 

a biomarker stage, defined by elevated NfL levels in otherwise asymptomatic carriers; and 

an ataxia stage, marked by the emergence of clinical symptoms of ataxia, typically defined 

by a SARA score of three or higher.  

 

2.2 Magnetic Resonance Imaging 

MRI is a powerful imaging technique that allows visualization of anatomical properties of 

biological tissues. It is a medical application of nuclear magnetic resonance, in which 

atomic nuclei with non-zero spin (such as hydrogen protons in water) are aligned in a 

strong static magnetic field and perturbed by a resonant radio frequency pulse (Martinez, 

2018). Magnetic field gradients are applied to spatially encode the location of nuclei during 

excitation. As the nuclei relax back to their original state, they emit radiofrequency signals, 

which are detected by receiver coils and used to reconstruct an image. Its non-invasive 

nature and sensitivity to both macro- and microstructural alterations make MRI a powerful 

tool for investigating progressive neurodegenerative disorders such as SCA3. 

2.2.1 Diffusion Imaging 

Diffusion weighed imaging (DWI) extends conventional structural MRI by sensitizing the 

signal to the random motion (diffusion) of water molecules. In biological tissue, this motion 

is hindered by structural barriers such as cell membranes and organelles. In white matter, 

where axons are bundled together into coherent fibre tracts, water diffusion is directionally 

constrained, occurring preferentially along the orientation of these axonal fibres, which 

leads to anisotropic diffusion (Beaulieu, 2002). This property allows DWI to probe the 

microstructural organization of brain tissue. The most established model for quantifying 

diffusion in vivo is diffusion tensor imaging (DTI), which describes diffusion in each voxel 

using a second-order tensor (Basser et al., 1994). From this model, several scalar metrics 

are derived that reflect different aspects of tissue microstructure. Fractional anisotropy 

(FA) quantifies the degree of directionality of diffusion and is commonly used to assess 

fibre coherence; lower FA values may indicate disrupted axonal organization or myelin 

loss. Mean diffusivity (MD) reflects the overall magnitude of diffusion within a voxel and 
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tends to increase in the presence of tissue degeneration or expanded extracellular space. 

Radial diffusivity (RD) quantifies diffusion perpendicular to the main axis and is often 

associated to changes in myelination, while axial diffusivity (AD) measures diffusion along 

the primary axis of the tensor and is considered sensitive to axonal integrity (Alexander et 

al., 2007). While DTI provides a simplified and widely used framework for modelling 

diffusion, it is inherently limited in regions with complex fibre architecture, such as 

crossing, kissing, or fanning fibres. More advanced models, such as constrained spherical 

deconvolution, allow for improved characterization of these configurations by resolving 

multiple fibre orientations within a voxel. 

2.2.2 Susceptibility Imaging 

Iron accumulation plays a role in many neurodegenerative disorders and is commonly 

investigated using susceptibility-based MRI techniques (Harada et al., 2022). T2*-weighted 

and susceptibility-weighted imaging (SWI) are widely used to detect abnormal magnetic 

susceptibility caused by paramagnetic substances such as iron or blood (Haacke et al., 

2004). However, both methods are qualitative, prone to blooming artifacts, and cannot 

reliably distinguish between paramagnetic and diamagnetic materials such as iron and 

calcium (Harada et al., 2022). Quantitative susceptibility mapping (QSM) was developed 

to overcome these limitations by enabling tissue-specific quantification of magnetic 

susceptibility. It reconstructs susceptibility values from phase images acquired in multi-

echo gradient-echo sequences and has been increasingly applied in conditions such as 

multiple sclerosis, Parkinson’s, Alzheimer's, Huntington’s and spinocerebellar ataxias 

(Ravanfar et al., 2021). However, QSM reconstruction requires careful processing steps, 

including phase unwrapping, background field removal, and dipole inversion, each of 

which introduces potential error sources. 

2.2.3 Myelin Imaging 

Myelin plays a critical role in the structural and functional integrity of white matter by 

facilitating saltatory conduction and thus enabling efficient signal transmission along 

axons (Laule et al., 2007). While DTI can detect microstructural alterations, its metrics are 

not specific to myelin. Changes in RD, particularly when interpreted alongside FA, seem 

to indicate primarily demyelination, but do not provide a direct or quantitative measure of 
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myelin content (Jelescu and Budde, 2017; Stikov et al., 2015). Myelin water imaging 

(MWI) allows to estimate the myelin water fraction (MWF), an indirect marker of myelin 

content, based on the short T2 or T2* relaxation times of water trapped between the layers 

of the myelin sheath (Alonso-Ortiz et al., 2015; MacKay et al., 2006). MWF is derived from 

multi-compartment modelling, which separates the MRI signal into components 

associated with different water environments, such as intra-/extra-axonal water and 

myelin-associated water.  

2.3 Aims 

This thesis aims to identify sensitive and clinically meaningful MRI biomarkers for SCA3. 

Specifically, it proposes to use macrostructural and microstructural MRI methods to 

investigate regional brain changes across stages of the disease — from pre-symptomatic 

mutation carriers to individuals with manifest ataxia — and to examine how these imaging 

markers relate to clinical measures such as disease severity and duration. To ensure 

standardized and reproducible analysis across multi-site data, the thesis further aims to 

develop an automated processing pipeline for structural, diffusion MRI and susceptibility 

data. This will enable multi-modal analysis and serve as a platform for systematic 

biomarker identification. Finally, this thesis aims to explore modelling techniques that may 

enhance the sensitivity of MRI to subtle white matter changes. Together, these aims 

support the development of imaging tools for early detection, patient stratification, 

monitoring of disease progression, and application in future clinical trials and therapeutic 

interventions. 
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Abstract
Cerebellar atrophy is the neuropathological hallmark ofmost ataxias. Hence, quantifying the volume of the cerebellar grey and
white matter is of great interest. In this study, we aim to identify volume differences in the cerebellum between spinocerebellar
ataxia type 1 (SCA1), SCA3 and SCA6 as well as multiple system atrophy of cerebellar type (MSA-C). Our cross-sectional
data set comprised mutation carriers of SCA1 (N=12), SCA3 (N=62), SCA6 (N=14), as well as MSA-C patients (N=16).
Cerebellar volumes were obtained from T1-weighted magnetic resonance images. To compare the different atrophy patterns,
we performed a z-transformation and plotted the intercept of each patient group’s model at the mean of 7 years of ataxia
duration as well as at the mean ataxia severity of 14 points in the SARA sum score. In addition, we plotted the extrapolation at
ataxia duration of 0 years as well as 0 points in the SARA sum score. Patients withMSA-C demonstrated the most pronounced
volume loss, particularly in the cerebellar white matter, at the late time intercept. Patients with SCA6 showed a pronounced
volume loss in cerebellar grey matter with increasing ataxia severity compared to all other patient groups. MSA-C, SCA1
and SCA3 showed a prominent atrophy of the cerebellar white matter. Our results (i) confirmed SCA6 being considered as a
pure cerebellar grey matter disease, (ii) emphasise the involvement of cerebellar white matter in the neuropathology of SCA1,
SCA3 and MSA-C, and (iii) reflect the rapid clinical progression in MSA-C.

Keywords Ataxia · Atrophy · Cerebellum · z-scores

Introduction

Among the adult-onset degenerative cerebellar ataxias, the
autosomal dominantly inherited polyglutamine spinocere-
bellar ataxias type 1 (SCA1), SCA3, and SCA6, and the
sporadicmultiple systematrophyof cerebellar type (MSA-C)
are most common [1]. SCA1, SCA3 and SCA6 are caused
by translated CAG repeat expansion mutations of variable
length in the respective genes. The mutations result in for-
mation of abnormal disease proteins containing elongated
polyglutamine stretches [1]. MSA-C is neuropathologically
defined by the presence of alpha-synuclein-positive inclu-
sions in oligodendroglia. The diagnosis of MSA-C relies on
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clinical features, particularly including severe autonomic
failure [2, 3]. SCA1, SCA3, and MSA-C are multisystemic
diseases that not only affect the cerebellum, but also involve
the spinal cord, brainstem, basal ganglia, and other regions
of the central nervous system. Ataxia is the primary clinical
feature, with additional other non-ataxia symptoms such as
spasticity, rigidity or ophthalmoparesis. In contrast, SCA6
is considered as an almost purely cerebellar disease charac-
terised by isolated cerebellar ataxia withoutmajor non-ataxia
signs [1, 4]. Previous neuropathological and MRI studies
examining the atrophy patterns of SCA1, SCA3, SCA6, and
MSA-C have, to date, predominantly used voxel-based mor-
phometry and emphasised the involvement of extracerebellar
structures [5–11]. While voxel-wise analysis can be useful
for detecting subtle or widespread changes in brain structure,
it is essential to focus on specific regions of the cerebellum
when studying cerebellar ataxias.Recent progress in theMRI
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morphometric analysis of the cerebellum allows detailed
quantitative assessment of the cerebellum at the lobular level
and precise delineation of cerebellar white matter [12].

The aim of this study was the investigation of the pattern
of cerebellar grey and white matter atrophy in SCA1, SCA3,
SCA6 and MSA-C. We applied a z-transformation to correct
for age effects and used a linear model with read-outs at
defined timepoints of the disease course anddegrees of ataxia
severity, to allow the comparison of the amount and pattern of
cerebellar atrophy between SCA1, SCA3, SCA6 and MSA-C.

Methods

Participants

Cross-sectional data of SCA1 (N = 12), SCA3 (N = 62),
SCA6 (N = 14) and MSA-C (N = 16) were analysed. In
addition, healthy controls (HCs) (N = 292) were analysed
and used as a reference for the z-transformation. All subjects
participated in ongoing observational studies (ESMI, SCA
Registry, DANCER, DELCODE) at 8 European and 2 US
sites, and were enrolled between 2017 and 2022. All partic-
ipants gave their written informed consent according to the
declaration of Helsinki. SCA diagnosis was confirmed by
diagnostic genetic testing, MSA-C was diagnosed applying
the diagnostic criteria from 2008 [2]. The new diagnostic
criteria of Wenning et al. [3] could not be applied retro-
spectively. Ataxia severity was assessed using the Scale of
Assessment and Rating of Ataxia (SARA) [13]. We only
included ataxic patients with SARA sum scores higher than

or equal to the established cutoff value of 3 [13, 14]. Ataxia
onset was defined as the first occurrence of gait disturbances,
and the reported ataxia duration in years was calculated
accordingly.

Imaging Protocol

All participants were scanned on 3T SIEMENS scan-
ners, with a 32-channel head coil, using a standardised
T1-weighted magnetisation-prepared rapid gradient-echo
(MPRAGE) sequence. Sequence parameterswere as follows:
repetition time (TR) = 2500 ms, echo time (TE) = 4.37 ms,
inversion time (TI) = 1100 ms, flip angle = 7◦, field of view
256 x 256mm2 and 192 slices, voxel size = 1mm isotropic.

Image Analysis

We used CerebNet [12] for the automated sub-segmentation
of the cerebellum into the following volumes (for hemi-
spheric volumes, each volume corresponds to the combined
volumes of left and right hemisphere): anterior lobe (consist-
ing of the lobules I-V), superior posterior lobe (consisting of
the lobules VI-VII), inferior posterior lobe (consisting of the
lobulesVIII-IX) and theflocculonodular lobe (corresponding
to lobule X) and the midline vermis as well as the cerebellar
white matter (cWM). In addition we analysed the combined
volume of cerebellar grey matter (cGM) comprised of all
hemispheric volumes plus vermis. All scans were visually
inspected.

Exemplary cases of the automated cerebellar segmenta-
tions are shown in Fig. 1.

Fig. 1 Segmentation examples
of a fully automated cerebellar
segmentation in SCA1, SCA3,
SCA6 and MSA-C patients as
well as in a HC, projected onto a
coronal and sagittal slice
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To account for individual differences in head size, we
used estimated total intracranial volume (eTIV) calculated
with FreeSurfer (version 6.0.0) [15]. Normalised cerebel-
lar volumes were calculated by dividing the raw cerebellar
volumes by the individual’s eTIV. These values were har-
monised across sites using the ComBat method to adjust for
potential batch effects [16–18].

Statistical Analysis of Cerebellar Atrophy in Relation
to Ataxia Duration and Ataxia Severity

All statistical analyses were performed using R Software for
StatisticalComputing, version 4.2.3 [19]. In order to compare
volumes across the different diseases, we z-transformed each
normalised volume in relation to HCs to compensate for age-
related atrophy, as described previously [20]. Here, a z-score
of 0 corresponds to the respective, expected mean in HCs
of the same age. A z-score of ±1, ±2 etc. corresponds to
±1,±2 etc. standard deviations below or above the expected
mean in HCs of the same age [20]. The resulting z-scores
were used for all subsequent statistical analyses.

In order to compare the different ataxias at the same time
points of ataxia duration and degrees of ataxia severity the
following stepwise approach was performed for each con-
sidered cerebellar volume. First, we plotted the z-scores for
each cerebellar volume against the reported ataxia duration in
years as well as ataxia severity assessed with the SARA sum
score. Here, we applied a linear model for each disease and
calculated the coefficient of determination (R2) and p-value
for every correlation. Moreover, quadratic and cubic mod-
els were also established. Second, we defined the points for
comparison: (i) we calculated the overall mean ataxia dura-
tion and ataxia severity for all patient groups, which were 7
years of ataxia duration and a SARA sum score of 14, and (ii)
we used the extrapolation at 0 years of ataxia duration and the
absence of ataxia (SARA sum score of 0). Accordingly, the
intercept volume z-score of the linear interpolation line at 0
years and 7 years of ataxia duration, and at a SARAsum score
of 0 and 14, were extracted for each disease. Finally, radar
plots of these intercept z-scores for each considered volume
were used to visualise the degree and patterns of cerebellar

atrophy in SCA1, SCA3, SCA6 and MSA-C at 0 and 7 years
of disease duration as well as an ataxia severity of 0 and 14
points in the SARA sum score.

Results

Demographic and characterising data are summarised in
Table 1. SCA1 had the earliest age of onset, while SCA3
patients the longest reported ataxia duration, followed by
SCA6. Notably, MSA-C was associated with the highest
SARA sum scores among all studied ataxia groups.

Cerebellar Atrophy in Relation to Ataxia Duration
and Ataxia Severity

The linear model of volume z-scores and ataxia duration as
well as severity are given in Figs. 2 and 3. The coefficient
of determination (R2) as well as the p-value representing
evidence of a linear relationship are given in the superior
left corner of each subplot. Using quadratic and cubic mod-
els, neither the residual versus fitted values plots nor the
Q-Q plots showed substantial improvement in comparison
to the linear model. Thus, given the limited sample size we
based the further analyses on the linear model (Supplement
Figs. 4- 15).

The relation of cerebellar volumes and ataxia duration in
years is shown in Fig. 2. Overall, most volumes decreased
with increased ataxia duration. The steepest decline of all
cerebellar grey and white matter volumes was observed
in MSA-C, followed by SCA6 except for cerebellar white
matter. In SCA1, the anterior, superior posterior, and floccu-
lonodular lobe, and in SCA3 the anterior, superior posterior
and flocculonodular lobe as well as aggregated cGM, showed
a not significant slight volume increase with longer ataxia
duration.

With regard to ataxia severity, most volumes decreased
with increased ataxia severity. Overall, MSA-C and SCA6
showed the steepest decline in all grey matter volumes,
and MSA-C additionally in the white matter volume, with
exception for cWM in SCA6 that presented a slight volume

Table 1 Demographic and
cohort characteristics

Group Number Age at scan1 Ataxia duration SARA sum score CAG repeats2

entity (Female/ Male) mean (SD) mean (SD) mean (SD) mean (SD)

SCA1 12 (7/5) 45.1 (9.6) 3.9 (3.3) 12.1 (3.9) 48.3 (4.2)

SCA3 62 (25/37) 50.7 (10.6) 10.8 (6.5) 12.8 (6.2) 67.8 (8.0)

SCA6 14 (4/10) 64.2 (8.6) 7.8 (5.5) 13.3 (4.9) 21.8 (0.5)

MSA-C 16 (6/10) 64.5 (8.2) 4.4 (2.1) 17.2 (5.2) n.a.

HC 292 (160/132) 63.5 (12.6) n.a. n.a. n.a.

SD, standard deviation; SCA, spinocerebellar ataxia;MSA-C, multiple system atrophy of cerebellar type;HC,
healthy control; n.a., not applicable. 1 in years; 2 of the longer allele
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Fig. 2 Relation of cerebellar volumes and ataxia duration in years. The
z-scores of each cerebellar sub-segmented region are plotted against
the reported ataxia duration in years for SCA1 (in blue), SCA3 (in
red), SCA6 (in yellow) and MSA-C (in green). Linear interpolation

was applied with the 95% confidence intervals given as shaded grey
areas for linear regressions with significant correlations (p ≤ 0.05).
Values of the coefficient of determination (R2) as well as the p-value
are given for each disease, respectively

increase. In SCA1 the anterior and superior posterior lobe,
as well as cGM, and in SCA3 the flocculonodular lobe and
the vermis, as well as in SCA6 the cerebellar white mat-
ter showed a not significant slight volume increase with
increased ataxia severity. The relation between cerebellar
volumes and ataxia severity is shown in Fig. 3.

R2 values were overall relatively small, and ranged
between 0 and 0.54. Generally, the highest R2 was observed
in MSA-C followed by SCA6. In MSA-C R2 was empha-
sised in relation to ataxia duration with the maximum of R2

= 0.537 for cGM. In SCA6 R2 was emphasised in relation to
ataxia severity. SCA1 and SCA3 showed very small values
of R2, except for the relation of cWM and ataxia severity
in SCA3. In MSA-C the correlation with ataxia duration of
all cerebellar volumes reached statistical significance with p
≤ 0.05, except for the flocculonodular lobe. The correlation
with ataxia severity reached statistical significance in all vol-
umes, except the anterior lobe and vermis and MSA-C. In
the SCAs, only the correlation of cerebellar white matter and
ataxia severity in SCA3 reached statistical significance with
a p ≤ 0.05.

To visualise for each disease the pattern and extent of atro-
phy at certain time points of ataxia duration and degrees of
ataxia severity, we displayed the linear interpolated z-scores
for the volumes of the anterior, superior posterior and inferior

posterior andflocculonodular lobe andvermis aswell as cGM
and cWM in radar plots. Figure 4 shows radar plots of the
extrapolation at the time of ataxia onset (ataxia duration of
0 years) and at 7 years after ataxia onset, as well as for the
intercept at SARA sum scores of 0 and 14. Comparison of the
radar plots at ataxia onset and at 7 years after onset revealed
a strong atrophy increase in MSA-C, whereas the increase
was less pronounced in the SCAs. Comparison of the plots
at SARA sum score of 0 and of 14 revealed an emphasised
atrophy increase in SCA6 and MSA-C, whereas the increase
was only minor in SCA1 and SCA3. Moreover, in SCA1,
SCA3 and MSA-C cWM volume was consistently affected,
in contrast to SCA6, where the cWM was considerably less
affected than the grey matter structures.

Discussion

We used a z-transformation to study the degree and distribu-
tion of cerebellar atrophy inSCA1,SCA3,SCA6andMSA-C
at certain levels of ataxia duration and ataxia severity, while
accounting for the healthy aging effect. We could demon-
strate a strong coherence between ataxia severity and grey
matter atrophy in SCA6, underlining the consideration of
SCA6 as a pure cerebellar disease. In contrast, volume loss of
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Fig. 3 Relation of cerebellar volumes and ataxia severity. The z-scores
of each cerebellar sub-segmented region are plotted against ataxia sever-
ity measured with SARA sum score for SCA1 (in blue), SCA3 (in
red), SCA6 (in yellow) and MSA-C (in green). Linear interpolation

was applied with the 95% confidence intervals given as shaded grey
areas for linear regressions with significant correlations (p ≤ 0.05).
Values of the coefficient of determination (R2) as well as the p-value
are given for each disease, respectively

the cerebellar white matter was prominent in MSA-C, SCA1
and SCA3. Overall MSA-C showed the steepest decline of
all cerebellar white and grey matter volumes in particular in
relation to ataxia duration.

Since ataxias are rare diseases, patient populations are
often small and additionally, as in our sample, differ in
duration and severity of ataxia, making comparison between
entities difficult. We chose the applied approach to overcome
this limitation and used radar plots to visualise the differences
in atrophy patterns between diseases at certain levels of ataxia
duration and severity.

Our results are in line with previous studies mainly of
voxel-based-morphometry as well as volumetry in SCAs and
MSA-C [5, 6, 8, 21–23]. Notably, throughout the different
considered intersections of ataxia duration and ataxia sever-
ity, we confirmed earlier findings that, in contrast to other
SCA genotypes, atrophy in SCA6 was mainly restricted to
the cerebellar GM almost excluding the WM [24, 25]. While
cerebellar GM atrophy at the extrapolated point of 0 SARA
sum score has no clear discernible pattern across the diseases,
it becomes markedly emphasised in SCA6 with increasing
ataxia severity in comparison to SCA1, SCA3 and MSA-C.
Thus, in SCA6 cerebellar atrophy seems to account almost
solely for the clinically observed ataxia. In contrast, it is
known, that the neuropathology in the other, multisystemic

disorders SCA1, SCA3 andMSA-C also involves other parts
of the central nervous system, e.g. brainstem and basal gan-
glia [1, 20, 26]. Here, the resulting non-ataxia symptoms,
e.g. spasticity or rigidity, probably exacerbate motor and
coordination impairments. In other words, by concept, the
impairments measured by the SARA scale primarily capture
ataxia but may be aggravated by other non-ataxia symp-
toms. With regard to ataxia duration, MSA-C shows the
most pronounced cerebellar grey and white matter atrophy
with increasing ataxia duration. This observation reflects the
known rapid clinical progression in MSA-C [27]. For the
clinical diagnosis of MSA, qualitative imaging features have
recently been included as mandatory features [3], underlin-
ing their importance. In this analysis, due to the recruitment
period, only the former clinical criteria [2] found the basis
for the clinical diagnosis of probable MSA-C. We excluded
one patient who met these former clinical diagnostic crite-
ria but had an unexpectedly long disease duration of > 30
years. Future studies might be more specific with potentially
improved diagnostic accuracy due to the revised clinical cri-
teria. Cerebellar white matter atrophy was pronounced in
MSA-C, SCA1 and SCA3, with the steepest and significant
decline relative to ataxia severity in SCA3 and MSA-C. In
MSA-C, alpha-synuclein deposition in oligodendrocytes rep-
resents the central neuropathological changes. However, also
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Fig. 4 Radar plot of atrophy in SCA1, SCA3, SCA6 and MSA-C at
ataxia duration equal to 0 and 7 years and at ataxia severity of a SARA
sum score equal to 0 and 14. For each volume the intercept at an ataxia
duration of 0 years (A) as well as the mean ataxia duration of 7 years
(B) from the linear interpolation of volume z-scores against ataxia dura-
tion, Fig. 2, is given. Similarly, the intercept at SARA sum score of 0

(C) as well as the mean SARA sum score of 14 (D) from the linear
interpolation of volume z-scores against ataxia severity, Fig. 3, is given.
A z-score of 0 corresponds to the mean of healthy control distribution,
while z-scores of ±1, ±2 etc. correspond to values which are 1, 2 etc.
standard deviations (SD) of the distributions in HC above or below the
mean in HC, respectively

in SCA3 there is increasing evidence for a strong involvement
of oligodendrocytes in the disease-specific neuropathology
[28].

Our approach allowed the comparison of the different dis-
eases at specific levels of duration and severity of ataxia,
yet these results are based on indirect measurements and are
therefore subject to limitations that must be considered. The
number of available participants, along with their relatively
short spans of ataxia duration and severity levels, obviously
can impact the linear model. Cubic and quadratic models are
provided in the Supplementary Data. However, neither the
residual versus fitted values plots nor the Q-Q plots showed

substantial improvement compared to the linearmodel. Thus,
given the limited sample size and previous literature show-
ing linear relations between, e.g., ataxia severity and disease
duration [9, 29–31], we kept the linear assumption.

Within the SCAs, in particular SCA1 and SCA3, we
found in a minority of volumes a contra-intuitive increase
of volumes with increasing ataxia duration or severity. We
hypothesise that this is either due to noise or a selection
bias with a biased focus on the proportion of less affected
patients in advanced stages. Severely affected patients suffer
substantial restrictions in mobility and are often no longer
able to travel to study visits. Thus, the complete spectrum of
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advanced stage patients might not be represented, but rather,
theremay be a positive selection of thosewho are still reason-
ably mobile despite an advanced SARA score. Studies with
larger sample sizes and in addition ideally longitudinal data
are needed to study the differences between diseases more
reliably at comparable levels of ataxia severity and duration.
Despite the aforementioned limitations, our results are able
to illustrate main principles using comparative visualisations
of volumetric changes in cerebellar grey and white matter in
MSA-C, SCA1, SCA3 and SCA6 and thereby may inform
further studies on a broader data basis.

Conclusion

Application of z-transformation to correct for age effects and
the use of a linear model to read-out volumetric values at
distinct levels of disease duration and ataxia severity allowed
comparison of the extend and pattern of cerebellar atrophy
between SCA1, SCA3, SCA6 and MSA-C. In summary, our
results confirmed that SCA6 is primarily a pure cerebellar
disease withmarkedly emphasised cGM atrophy. In contrast,
a prominent involvement of cWMwas found in SCA1, SCA3
and MSA-C. The well-known rapid clinical progression in
MSA-C was also reflected in impressive volume loss later
in the disease course. Further studies in larger longitudinal
samples are needed to confirm our findings and put them on
a broader basis.
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Summary
Background Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominantly inherited adult-onset disease. We
aimed to describe longitudinal changes in clinical and biological findings and to identify predictors for clinical
progression.

Methods We used data from participants enrolled in the ESMI cohort collected between Nov 09, 2016 and July 18,
2023. The data freeze included data from 14 sites in five European countries and the United States. We assessed
ataxia with the Scale for the Assessment and Rating of Ataxia (SARA). We measured disease-specific mutant ataxin-3
protein (ATXN3) and neurofilament light chain (NfL) in plasma and performed MRIs. Data were analysed by
regression modelling on a timescale defined by onset. The onset of abnormality of a marker was defined as the
time at which its value, as determined by modelling, exceeded the mean ± 2 SD of healthy controls. To study
responsiveness of markers, we determined the sensitivity to change ratios (SCSs).

Findings Data from 291 SCA3 mutation carriers before and after clinical onset and 121 healthy controls were
included. NfL levels became abnormal in SCA3 mutation carriers more than 20 years (−21.5 years [95% CI n.d.–9.5])
before onset. The earliest MRI abnormality was volume loss of medulla oblongata (−4.7 years [95% CI n.d.–3.3]). The
responsiveness of markers depended on the disease stage. Across all stages, pons volume had the highest respon-
siveness with an SCS of 1.35 [95% CI 1.11–1.78] exceeding that of SARA (0.99 [95% CI 0.88–1.11]). In SCA3, lower
age (p = 0.0459 [95% CI of slope change −0.0018 to 0.0000]) and lower medulla oblongata volume (p < 0.0001 [95% CI
of slope change −0.0298 to −0.0115]) were predictors of SARA progression.

Interpretation Our study provides quantitative information on the progression of biological markers in SCA3
mutation carriers before and after onset of ataxia, and allowed the identification of predictors for clinical progression.
Our data could prove useful for the design of future clinical trials.
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Introduction
Spinocerebellar ataxia type 3 (SCA3) is the most com-
mon autosomal dominantly inherited adult-onset ataxia
disease worldwide. SCA3 takes a progressive course and
leads to increasing disability and premature death. It is
caused by unstable expansions of polyglutamine
encoding CAG repeats within the ATXN3 gene, result-
ing in the formation of abnormally elongated, misfolded
ataxin-3 protein (ATXN3).1

Targeted therapies for SCA3 are being developed,
and first safety trials of antisense oligonucleotides
(ASOs) have been initiated (https://clinicaltrials.gov,
NCT05160558, NCT05822908). In the future, preventive
intervention in mutation carriers before clinical onset
will be a realistic option.2 With the advent of disease-
modifying treatments for SCA3, there is the need to
identify biological markers that are sensitive to disease-
related change before and after clinical manifestation.
Mutant ATXN3 can be measured at low concentrations
in the CSF and plasma of mutation carriers, but is
absent in healthy controls.3,4 Blood neurofilament light
chain (NfL) is an easily accessible, non-specific marker
of neurodegeneration.5 In cross-sectional studies, NfL
was increased in patients and in mutation carriers
before onset.6–10 In a two-year follow-up study of 19
SCA3 patients, the increased NfL concentrations did not
change.9 In longitudinal MRI studies of SCA3 mutation
carriers, progressive atrophy of the cerebellum, pons,
mesencephalon, and cervical spinal cord was
observed.11–14 In addition, diffusion parameters of cer-
ebellar peduncles, superior longitudinal fasciculus,

corona radiata, and medial lemniscus showed increas-
ing abnormalities.13–15

The European Spinocerebellar ataxia type 3/
Machado-Joseph disease Initiative (ESMI) initiated a
longitudinal registry study of SCA3 mutation carriers
before and after clinical onset representing a wide
spectrum of disease severity. Analysis of cross-sectional
clinical, as well as fluid biomarker and MRI volumetric
data allowed to draft a data-driven model of disease
stages for SCA3.16 In the present study, we describe
longitudinal changes of mutant ATXN3, NfL and several
MRI measures that were abnormal in SCA3 mutation
carriers before onset. We focused the analysis on
determining stage-specific sensitivity of biological
markers and identifying predictors of clinical
progression.

Methods
Study design and participants
The study population of the ESMI registry study consists
of (1) SCA3 mutation carriers before and after onset, (2)
persons at risk to carry the SCA3 mutation (first degree
relatives of SCA3 patients) who have not been diag-
nostically tested, and who do not wish to be tested, and
(3) healthy controls (including spouses, unrelated per-
sons, and persons at risk who were negatively tested).
The genetic status of persons at risk (first degree rela-
tives of SCA3) was assessed within a central scientific
genetic testing. Results of these central scientific genetic
tests were used to assign persons at risk either to the

Research in context

Evidence before this study
We searched Medline and ISI Web of Science for reports
published before Nov 30, 2024, with the search terms
[“spinocerebellar ataxia type 3” AND “biomarker” OR
“ATXN3” OR “neurofilament light chain (NfL)” OR “MRI” AND
“prospective” OR “follow-up” OR “longitudinal“]. Only peer-
reviewed, English-language reports of human cohort studies
with at least 10 participants were considered. In a previous
analysis of 33 SCA3 mutation carriers from this cohort,
plasma concentrations of mutant ATXN3 remained stable
over one year. In a two-year follow-up study of 19 SCA3
patients, NfL concentration did not change. Six studies with
participant numbers ranging from 17 to 23 and follow-up
times from six months to five years found progressive
atrophy of a number of brain structures and cervical spinal
cord, as well as increasing abnormalities of diffusion
parameters of a number of brain fibre tracts.

Added value of this study
In this European, longitudinal registry study (ESMI), we
prospectively investigated a large cohort of SCA3 mutation

carriers before and after onset. We determined the sequence
and extent of plasma mutant ATXN3 and NfL, as well as MRI
measure changes along the disease course. This study is, to
the best of our knowledge, the first to comprehensively study
multimodal biological markers longitudinally over the entire
disease course of SCA3. Our data allowed to determine the
onset of abnormality of the studied biological markers, define
their stage-specific sensitivity to change, and identify
predictors for clinical progression.

Implications of all the available evidence
The available data provide quantitative information on the
progression of biological markers in SCA3 mutation carriers
before and after the onset of ataxia, and allow the
identification of predictors of clinical progression. Knowledge
of the progression of biological markers in these individuals
can help researchers to design trials of interventions aimed at
slowing clinical progression or delaying the onset of ataxia.
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SCA3 mutation carrier or healthy control group, but not
disclosed to the study participants.

The ESMI registry study is conducted at 14 sites in
five European countries and the United States. Partic-
ipants undergo annual standardized assessments
including clinical examination and biosample collection.
MRI is performed at 11 sites.

Procedures
We used the Scale for the Assessment and Rating of
Ataxia (SARA)17 to assess the presence and severity of
ataxia. Manifest ataxia was defined by a score of ≥ 3.17,18

Analysis of the CAG repeat length of the ATXN3
gene was performed at the Department of Medical
Genetics of the University of Tübingen (Tübingen,
Germany). Determinations were done for 243 mutation
carriers and 20 persons at risk who had not been diag-
nostically tested. For 42 SCA3 mutation carriers, from
whom no DNA was available, information about CAG
repeat lengths was taken from medical records; in eight
participants, no information on repeat length was
available.

Plasma concentrations of mutant ATXN3 were
measured using an ultrasensitive immunoassay based
on the SMC® technology.3 Plasma concentrations of
NfL were determined with the Neurology 4-Plex A assay
(N4PA) (Quanterix, Billerica, MA, United States) run on
the Simoa HD-X Analyzer™.7 Samples were analysed
using two different assay lots. For each sample, meas-
urements were performed in split duplicates, and the
average values were calculated.

T1-and diffusion weighted MRIs were acquired on
Siemens 3T scanners (Siemens Medical Systems,
Erlangen, Germany). As imaging biological markers, we
calculated 61 brain volumes including brainstem and
cerebellar sub-segments and the mean diffusion metrics
(fractional anisotropy (FA), medial diffusivity (MD),
axial (AD) and radial diffusivity (RD)) of 14 white matter
tracts. Details of the MR sequences and imaging anal-
ysis as well as a comprehensive list of all studied vol-
umes and white matter tracts are given in the Appendix
pp 4–5.

Definition of axes and disease stages
Age of onset was defined as the reported first occurrence
of gait disturbances.19 The onset of reported gait dis-
turbances is different from the time of conversion to
manifest ataxia, defined by a SARA cut-off of ≥3.The
time of onset defined as the time of the first occurrence
of gait abnormalities reported by a mutation carrier has
been used, because (i) it refers to a reference time point
that can be determined retrospectively, while the
observed conversion of SARA to values ≥3 is only
available in a minority of cases, (ii) it represents a core
symptom of ataxia which appears in all patients, and is a
milestone with relevance to the patient, (iii) mathemat-
ical models, related to the reported onset of gait

disturbances are available and allow to estimate the time
to onset in mutation carriers, not yet experiencing gait
disturbances (negative values).20 In contrast, SARA is an
examiner-based assessment of ataxia severity. As men-
tioned above, there are currently not enough data sets
available with observed changes from values < 3 to
values ≥ 3, that would allow to establish estimation
models. 36 SCA3 mutation carriers had not yet experi-
enced gait disturbances (right-censored individuals). In
nine SCA3 mutation carriers with gait disturbance,
information on the reported age of onset was missing
(left-censored individuals). In these 45 SCA3 mutation
carriers, the age of onset was estimated, as described
below.

For regression, NfL concentrations and MRI meas-
ures were z-transformed with respect to age and sex. Z-
scores of MRI volumes and FA values were inverted, so
that higher z-scores indicate increasing abnormality in
all measures. Since SARA scores and mutant ATXN3 in
healthy controls were close to 0, no z-transformation
was performed, and the raw values were used. A Box-
Cox transformation with parameter λ = 0.25 was
applied to the SARA score to approximate normality.
Following recently proposed definitions of SCA3 disease
stages,16 SCA3 mutation carriers were assigned to the
carrier stage (SARA <3 and NfL z-score <2), biomarker
stage (SARA <3 and NfL z-score ≥2), or ataxia stage
(SARA ≥3).

Statistical analysis
General statistical approach
Statistical analysis was carried out using R version 4.3.1
(R Core Team 2023: R: A Language and Environment
for Statistical Computing, R Foundation for Statistical
Computing, Vienna, Austria).

The selection of MRI parameters was based on the
group comparison between pre-ataxic SCA3 mutation
carriers with a SARA <3 and healthy controls using
linear regression models. Details on the statistical
methods and test results are given in the Appendix pp
6–7.

Five NfL values, one ATXN3 value, and one pons
volume value were excluded as outliers after visual
inspection of the data (Appendix p 2).

To relate fluid and MRI biomarker data to the time
from onset, we applied a conditional multiple imputa-
tion approach.16 First, censored values of age of onset
were imputed fitting a previously published parametric
survival model.20 For this, the last follow-up visit of each
participant was considered and the time from onset for
towards each visit date was then calculated respectively.
To account for censoring, age of onset was imputed with
the conditional expectation for right-censored individu-
als (accounting for actual age) and with the uncondi-
tional expectation for left-censored individuals. Second,
SARA score and biological markers were regressed on
the (imputed) time from onset using additive mixed
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regression models with participant-specific random
intercepts and a cubic P-spline with six B-spline basis
functions and a second-order difference penalty. This
two-step procedure was repeatedly applied to 1000
bootstrap samples from the original sample. Final esti-
mates of the spline coefficients and associated variance
estimates were then calculated by applying Rubin’s rule.

Onset of abnormality in fluid and MRI markers
A biological marker was considered abnormal, if its
value, as determined by modelling, exceeded the normal
range defined by mean ± 2 SD in healthy controls. Onset
of abnormality was defined as not determinable (n.d.) if
the intersection between the normal range and the fitted
spline function of the upper and lower limit of the 95%
CI, respectively, was not reached within the time inter-
val of observations (33 years before to 41 years after
onset).

Sensitivity to change of clinical, fluid and MRI measures
Responsiveness of SARA and biological markers was
assessed by calculating sensitivity to change ratios
(SCSs).21 To this end, linear mixed regression models
with the (imputed) time from onset as the time variable
and participant-specific random intercepts were fitted
for the entire disease course and each stage (carrier,
biomarker, ataxia), respectively. SCSs were then calcu-
lated by dividing the estimated slopes of progression by
the estimated standard deviation of the slopes. 95% CIs
of the SCSs were determined by non-parametric boot-
strap based on 1000 samples. Higher SCS values indi-
cate greater sensitivity to change of the respective
measure.

Predictors of clinical progression
For prediction of SARA increase, we applied univariable
and multivariable mixed regression models with the
Box-Cox transformed SARA as outcome and age, sex,
CAG repeat length of the expanded allele and the
baseline values of the biological markers as covariates.
We tested the effect of these factors on SARA pro-
gression by interactions with the time variable (time
from onset). The multivariable model was selected by
stepwise selection with the Bayesian information crite-
rion including all covariates with p < 0.05 in univariable
models (or p < 0.15, see Appendix p 11). We conducted
the univariable analysis for the entire disease course and
each stage (carrier, biomarker, ataxia), respectively,
while we restricted the multivariable model to the entire
disease course to ensure a sufficiently large sample size.

Ethic approval
The study was approved by the ethics committees of all
contributing centres. Approval numbers and dates for
the leading national site: London, UK: Research Ethics
Committee (REC) name: London–Chelsea Research
Ethics Committee; REC Reference number: 17/LO/

0381; Approval date: 28/04/2017; Bonn, Germany: Eth-
ics committee, Medical Faculty, University of Bonn,
176/16; date of approval: 11th Oct 2016, Amendment1
17th Sep 2020, Amendment2: 27th Aug 2024; Nijme-
gen, The Netherlands: CMO (Regio Arnhem-Nijmegen);
European Spinocerebellar Ataxia Type 3/Machado-
Joseph Disease (ESMI); 2016–2554 (local),
NL25267.091.16 (national); Approval date: April 3rd,
2017; Santander, Spain: COMITÉ DE ÉTICA DE LA
INVESTIGACIÓN CON MEDICAMENTOS DE CAN-
TABRIA; 2018.282, Date of approval: 01/02/2019 and
26/04/2021 (Amendment 1); Coimbra, Portugal: Ethics
committee of the Faculty of Medicine of the University
of Coimbra. Date of approval: CE-085/2017 (date
25.09.2017), amendment CE-121/2020 (date
20.01.2020); Minnesota, USA: Ethics committee Univ.
of Minnesota, IRB study number 0502M67488, date of
approval: June 9, 2017). At enrolment, informed and
written consent following the Declaration of Helsinki
was obtained from all study participants. The study
protocol is available online (https://ataxia-esmi.eu/
study-protocols).

Role of the funding source
The study funders had no role in study design, data
collection, data analysis, data interpretation, or writing
of the report. The corresponding authors had full access
to all the data in the study and had final responsibility
for the decision to submit for publication.

Results
Enrolment and cohort characteristics
Between Nov 09, 2016, and Jul 18, 2023, we enrolled 419
participants with at least one available biological marker.
Seven participants and biomarker data from 39 visits
were excluded. A flow chart detailing the reasons is
given in the Appendix p 2. Eventually, 291 SCA3
mutation carriers and 121 healthy controls were inclu-
ded in the analysis. Among the SCA3 mutation carriers,
55 had no ataxia (SARA <3), and 236 had ataxia (SARA
≥3) at baseline. At baseline, mutant ATXN3 concen-
trations were available in 97, NfL concentrations in 303,
and MRI results in 171 participants. Baseline charac-
teristics of the study participants and the
subgroups with available biological markers are given in
Table 1.

Data from 856 visits were analysed. Participants had
a median number of 2 (IQR 1–3) visits and a median
observation time of 1.02 years (0.00–2.03). Hundred-
and-two SCA3 mutation carriers and 33 healthy con-
trols completed one follow-up visit, 64 mutation carriers
and 14 healthy controls two follow-up visits, and 31
mutation carriers and 13 healthy controls three to five
follow-up visits. The Appendix details the availability of
ATXN3, NfL and MRI data at the follow-up visits
(Appendix p 3).
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Baseline results of ATXN3 concentrations, NfL con-
centrations, and MRI measures are given in Appendix p
8. Mutation carriers without ataxia had higher ATXN3
and NfL concentrations, lower medulla oblongata, pons,
midbrain, cerebellar white matter (CWM), and superior
cerebellar peduncle (SCP) volumes, reduced FA inferior
cerebellar peduncle (ICP) and FA SCP, and increased
RD ICP values than healthy controls. Because our focus
was on early disease stages, we took into account only
those MRI measures, which were altered in mutation
carriers without ataxia in comparison to healthy controls
(Appendix p 7). In addition, we included cerebellar grey
matter (CGM) volume, to be consistent with the pre-
viously published cross-sectional analysis of this
cohort.16

At baseline, nine of the SCA3 mutation carriers were
in the carrier stage, 23 in the biomarker stage, and 236
in the ataxia stage. Twenty-three mutation carriers
without ataxia could not be assigned to a disease stage,
because NfL concentrations were not available. Within
the observation period, two mutation carriers converted
from the carrier to the biomarker stage, and seven from
the biomarker to the ataxia stage. On the other hand,

one mutation carrier assigned to the biomarker stage at
baseline was assigned to the carrier stage at the final
visit. Further, three mutation carriers, which were
scored as ataxic at baseline, were assigned to earlier
stages at the final visit: two to the biomarker and one to
the carrier stage.

Onset of abnormality of fluid and MRI markers
Progression of SARA scores, mutant ATXN3, NfL con-
centrations, and MRI measures of SCA3 mutation car-
riers in relation to the time from onset are shown as
modelled curves in Fig. 1. The original data displayed as
spaghetti plots are given in the Appendix p 9.

SARA progression had a sigmoidal shape (Fig. 1A).
Scores crossed the cut-off of 3, which defines the onset
of the ataxia stage, 4.2 years [95% CI n.d.–0.9] before the
reported or estimated onset of gait disturbances
(Table 2). At the time of onset of gait disturbances, the
SARA score was 4.7 [2.5–7.9]. Mutant ATXN3 concen-
trations were constant throughout the entire disease
course without major changes over time so that the
onset of abnormality could not be determined (Fig. 1B).
NfL concentrations increased throughout the disease
course, but the increase slowed down after onset
(Fig. 1C). NfL values became abnormal more than 20
years (−21.5 years [n.d. to −9.5]) before onset (Table 2).
All analysed MRI volumes and diffusion measures
worsened over time, albeit at different rates and with
different slopes (Fig. 1D–F). Medulla oblongata volume
(−4.7 years [n.d. to +3.7]), FA ICP (−2.1 years [−10.3 to
2.7]), and pons volume (−0.6 years [−6.4 to 3.8]) became
abnormal before onset. The remaining MRI measures
became abnormal 0.3–14.4 years after onset in the fol-
lowing temporal order: RD ICP, CWM volume, mid-
brain volume, SCP volume, and FA SCP. CGM value
did not decrease more than 2 SD below the mean of
healthy controls throughout the entire disease course
(Table 2). Compared to our previous cross-sectional
analysis, in which we determined the upper 95% CI
limits of NfL, pons volume, and CWM volume, the
onset of abnormality of these measures was 3.8–6.5
years later. To clarify the reason for this difference, we
calculated the upper 95% CI limits of NfL, pons volume,
and CWM volume based alone on the baseline values of
the present dataset. These values differed only by
1.1–3.2 years from the previously determined values
(Appendix p 12).

Sensitivity to change of clinical, fluid and MRI
measures
To determine the responsiveness of the studied meas-
ures, we calculated the SCSs. For the entire disease, all
measures except ATXN3 had SCSs larger than 0. The
most sensitive measure was pons volume with an SCS
of 1.35 [95% CI 1.11–1.78]. Further stage-specific anal-
yses showed that the SCSs of the various outcome
measures depended on the disease stage. In the carrier

Healthy
controls

SCA3 mutation
carriers with SARA < 3

SCA3 mutation
carriers with
SARA ≥ 3

Total group (n = 412)

Number of participants 121 (29%) 55 (13%) 236 (57%)

Women 71 (59%) 30 (55%) 113 (48%)

Age, years 44.6 (34.3–56.3) 34.6 (29.1–39.9) 52.2 (45.2–60.3)

SARA score 0.0 (0.0–0.5) 1.0 (0.5–2.0) 12.0 (8.5–19.0)

Length of expanded CAG allele n.a. 68 (65–71) 69 (66–71)

Time from onset, years n.a. −12.5 (−16.8 to −0.0) 10.1 (5.6–14.9)

ATXN3 subgroup (n = 97)

Number of participants 10 (10%) 14 (14%) 73 (76%)

Women 6 (60%) 8 (57%) 29 (40%)

Age, years 49.1 (31.8–57.5) 34.2 (29.4–37.6) 51.6 (44.9–60.2)

SARA score 0.0 (0.0–0.0) 1.0 (0.3–1.5) 10.5 (7.5–16.5)

Length of expanded CAG allele n.a. 69 (65–71) 69 (64–71)

Time from onset, years n.a. −14.6 (−18.1 to −10.7) 8.3 (4.9–13.2)

NfL subgroup (n = 303)

Number of participants 92 (30%) 32 (10%) 179 (59%)

Women 55 (60%) 18 (56%) 90 (50%)

Age, years 44.8 (35.7–56.6) 34.2 (26.2–39.7) 51.9 (45.3–59.7)

SARA score 0.0 (0.0–0.7) 1.0 (0.5–1.6) 13.0 (8.5–20.6)

Length of expanded CAG allele n.a. 69 (66–71) 69 (66–72)

Time from onset, years n.a. −12.6 (−16.7 to −2.7) 10.9 (6.4–15.9)

MRI subgroup (n = 171)

Number of participants 45 (26%) 32 (19%) 94 (55%)

Women 25 (56%) 21 (66%) 38 (40%)

Age, years 45.8 (32.7–56.3) 34.2 (29.5–40.8) 51.8 (45.3–58.2)

SARA score 0.0 (0.0–0.5) 1.0 (0.4–2.0) 10.0 (8.0–14.5)

Length of expanded CAG allele n.a. 68. (65–71) 69 (67–71)

Time from onset, years n.a. −12.3 (−17.6 to 2.0) 8.7 (4.6–12.6)

Data are n, n (%), or median (IQR). NfL = neurofilament light chain. SARA = Scale for the Assessment and Rating
of Ataxia.

Table 1: Baseline characteristics of study participants.

Articles

6 www.thelancet.com Vol 55 August, 2025



31 
 

 

stage, the SCSs of SCP volume (0.62 [0.04–1.05]) and FA
SCP (0.45 [0.17–0.92]) were larger than 0, whereas the
SCSs of SARA and all other analysed biological markers
did not differ from 0. In the biomarker stage, SCSs of
SARA, NfL, all MRI volumes except midbrain, and RD
ICP were larger than 0. In this stage, pons volume had
the highest SCS of all outcome measures (1.41
[0.64–3.29]), followed by SCP (0.81 [0.34–1.64]) and
CWM volume (0.78 [0.11–1.73]). Pons volume also had
the highest SCS in the ataxia stage (1.71 [1.32–2.45]). It
markedly exceeded the SCS of SARA (0.69 [0.60–0.80]).
In the ataxia stage, the SCSs of NfL and FA SCP did not
differ from 0, whereas all other biological markers had
SCSs larger than 0 (Table 3).

Predictors of clinical progression
To identify factors that predicted SARA progression we
applied univariable and multivariable modelling. In the
univariable analysis of the entire disease, lower age,
larger CAG repeat length, and lower volumes of medulla
oblongata, midbrain, CGM, and SCP were associated
with faster SARA progression. In the carrier stage, lower
age, female sex, higher ATXN3 levels, larger CAG repeat
length, and lower medulla oblongata and CWM volumes
were predictors, in the ataxia stage, lower age, larger
CAG repeat length, and lower medulla oblongata, mid-
brain and CGM volumes. In the biomarker stage, we did
not find significant predictors (Appendix pp 10–11). The

Fig. 1: Progression of (a) SARA, (b) ATXN3, (c) NfL, (d) MRI brainstem volumes, (e) MRI cerebellar volumes, and (f) MRI diffusion measures in
SCA3. Data were analysed by additive mixed regression models with participant-specific random intercepts on a timescale defined by onset of
gait disturbances (vertical dashed line in red) using a cubic P-spline with six B-spline basis functions. The estimated 95% CIs are shown by the
shaded areas around the curves. NfL and MRI data were z-transformed in relation to healthy controls. Z-scores of MRI volumes and FA values
were inverted for a better visualisation. The horizontal ribbon shaded in grey indicates the normal range (±2) of the z-transformed measures
(NfL, MRI measures) of healthy controls. For SARA the applied cut-off of 3 is indicated by a dotted horizontal line. CGM = cerebellar grey matter.
CWM = cerebellar white matter. FA ICP = fractional anisotropy of the inferior cerebellar peduncle. FA SCP = fractional anisotropy of the superior
cerebellar peduncle. NfL = neurofilament light chain. RD ICP = radial diffusivity of the inferior cerebellar peduncle. SCP = superior cerebellar
peduncle.

Outcome Onset of abnormality
in years

95% CI

Clinical

SARA −4.2 n.d.–0.9

Fluid

Mutant ATXN3 n.d. n.d.–n.d.

NfL −21.5 n.d. to −9.5

MRI volume

Medulla oblongata −4.7 −n.d. to 3.7

Pons −0.6 −6.4 to 3.8

Midbrain 4.1 n.d.–11.4

CWM 2.0 −3.0 to 5.9

CGM n.d. 9.4–n.d.

SCP 4.6 0.1–10.8

MRI diffusion measures

FA ICP −2.1 −10.3 to 2.7

RD ICP 0.3 −6.4 to 5.0

FA SCP 14.4 7.7–n.d.

The onset of abnormality of a marker was defined as the time at which its
value, as determined by modelling, exceeded the mean ± 2 SD of healthy
controls. All outcomes except SARA and ATXN3 were z-transformed. Z-scores
of MRI volumes and FA values were inverted. For SARA, the time point, at
which the score crossed the cut-off of 3 are shown. CGM = cerebellar grey
matter. CWM = cerebellar white matter. FA ICP = fractional anisotropy of
inferior cerebellar peduncle. FA SCP = fractional anisotropy of superior cerebellar
peduncle. n.d. = not determinable. NfL = neurofilament light chain. RD
ICP = radial diffusivity inferior cerebellar peduncle. SARA = Scale for the
Assessment and Rating of Ataxia. SCP = superior cerebellar peduncle.

Table 2: Onset of abnormality of SARA, ATXN3, NfL, and MRI
measures in SCA3.

Articles

www.thelancet.com Vol 55 August, 2025 7



32 
 

 

multivariable analysis of the entire disease course
selected lower age (p = 0.0459, slope change −0.0009
[95% CI of slope change −0.0018 to 0.0000]) and lower
medulla oblongata volume (p < 0.0001, slope
change −0.0208 [95% CI of slope change −0.0298
to −0.0115]) as predictors of SARA progression (Fig. 2,
Appendix p 11).

Discussion
This longitudinal study determined the sequence and
extent of plasma mutant ATXN3, plasma NfL and MRI
outcome measure changes along the SCA3 disease
course in participants of the ESMI cohort. We analysed
the data in the framework of the recently proposed
SCA3 staging model that distinguishes an

asymptomatic carrier stage, a biomarker stage and the
final ataxia stage.16

The present analysis showed that pre-ataxic SCA3
mutation carriers on average entered the biomarker
stage 21.5 years before clinical onset with an upper
margin of the 95% CI of 9.5 years before onset. The
moderate difference to the previously reported time of
13.3 years is most likely due to the fact that we now
analysed longitudinal data, while the previous analysis
was based on cross-sectional data.16 The ataxia stage
started 4.2 years before the onset, defined by the esti-
mated or reported onset of gait abnormalities. In the
RISCA study, the observed conversion of SCA mutation
carriers to ataxia also occurred before the estimated
onset.22 These data provide convergent evidence that the
clinically determined ataxia onset precedes the self-

Outcome measure Entire disease Carrier stage Biomarker stage Ataxia stage

Clinical

SARA 0.99 (0.88–1.11) 0.07 (−0.25 to 0.52) 0.37 (0.19–0.59) 0.69 (0.60–0.80)

Fluid

Mutant ATXN3 0.04 (−0.11 to 0.20) 0.09 (−0.78 to 7.61) −0.11 (−1.55 to 0.72) 0.10 (−0.01 to 0.21)

NfL 0.21 (0.14–0.30) 0.51 (−0.11 to 1.28) 0.63 (0.37–0.99) 0.08 (−0.03 to 0.19)

MRI volume

Medulla oblongata 0.48 (0.33–0.73) 0.20 (−0.56 to 0.60) 0.52 (0.04–1.20) 0.30 (0.13–0.75)

Pons 1.35 (1.11–1.78) 0.19 (−0.11 to 0.50) 1.41 (0.64–3.29) 1.71 (1.32–2.45)

Midbrain 0.49 (0.34–0.80) −0.18 (−0.59 to 0.12) 0.31 (−0.17 to 0.89) 0.40 (0.16–1.00)

CWM 1.01 (0.85–1.23) −0.03 (−0.54 to 0.22) 0.78 (0.11–1.73) 1.10 (0.84–1.48)

CGM 0.64 (0.50–0.80) 0.00 (−0.25 to 0.49) 0.48 (0.19–0.79) 0.72 (0.54–0.93)

SCP 0.69 (0.52–0.94) 0.62 (0.04–1.05) 0.81 (0.34–1.64) 0.30 (0.14–0.53)

MRI diffusion measures

FA ICP 0.56 (0.44–0.67) 0.11 (−0.22 to 0.40) 0.24 (−0.03 to 0.58) 0.17 (0.03–0.32)

RD ICP 0.56 (0.44–0.71) 0.17 (−0.08 to 0.70) 0.51 (0.17–1.02) 0.24 (0.09–0.40)

FA SCP 0.38 (0.22–0.58) 0.45 (0.17–0.92) 0.26 (−0.06 to 0.54) 0.04 (−0.11 to 0.23)

Data are the estimated slope of progression (95% CI). CWM = cerebellar white matter. FA ICP = fractional anisotropy of inferior cerebellar peduncle. FA SCP = fractional
anisotropy of superior cerebellar peduncle NfL = neurofilament light chain. RD ICP = radial diffusivity inferior cerebellar peduncle. SARA = Scale for the Assessment and
Rating of Ataxia. SCP = superior cerebellar peduncle.

Table 3: Stage-specific sensitivity to change (SCS) of SARA, ATXN3, NfL, and MRI measures in SCA3.

Fig. 2: Partial dependence plots of the multivariable model for SARA progression, including variables with p < 0.05 in univariable models.
Predicted values of SARA as a function of the time from onset and age (a) and the time from onset and medulla oblongata volume given as z-
score (b). In both panels, the value of the other predictor was set to the observed mean (medulla oblongata volume: −2.6; age: 46.4 years),
respectively. The closer the white lines, which represent identical SARA values, are together, the faster is the predicted progression.
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perceived onset, which is generally equated with the
clinical onset. The number of observed transitions
between stages was low. This reflects the relatively slow
progression of SCA3. In a minority of cases, we observed
counter-intuitive improvements over time which are
most likely due to individual fluctuations of outcome
measures. Indeed, video-based home recordings of SARA
revealed short-term fluctuations of several score points.23

Mutant ATXN3 concentrations were almost constant
across the entire disease course and did not show rele-
vant dynamics. Correspondingly, ATXN3 provides no
information about the progression of SCA3. This is in
line with previous studies, where ATXN3 did not show a
correlation with disease onset or severity.4 However,
ATXN3 has potential as a target engagement marker in
gene silencing trials.3,4 NfL levels became abnormal
earlier than any of the analysed MRI measures. NfL
slowly increased and stayed at elevated levels throughout
the disease course. Like in previous studies,9 it did not
show a sensitivity to change in the ataxia stage. As NfL
reflects the rate of neurodegeneration rather than dis-
ease severity, constantly increased NfL levels indicate
ongoing disease progression. NfL might therefore be
studied as a treatment response marker for SCA3.5,8

The earliest MRI abnormalities were volume loss of
the medulla oblongata and reduced FA ICP, followed by
volume loss of the pons and increased RD ICP, while
cerebellar measures became abnormal only in the later
course. The ICP contains the dorsal spinocerebellar tract
and fibre tracts connecting the medulla oblongata with
the cerebellum. Together with previous reports of
impaired microstructural integrity of the ICP in pre-
ataxic SCA3 mutation carriers,15,24 these findings sug-
gest a pathological process that originates in the spinal
cord and lower brainstem and further ascends to the
cerebellum. They further indicate early white matter
pathology in SCA3. This is in line with the observation
of impaired oligodendrocyte maturation in two animal
models of SCA3.25,26

To assess the responsiveness of SARA and the ana-
lysed biological markers, we determined the SCSs for
each of them. This analysis revealed stage-dependence
of SCSs. In both, biomarker and ataxia stage as well as
across the entire disease course, pons volume had the
highest SCS of all analysed measures. The superior
responsiveness of the MRI volume measures compared
to SARA is in line with previous studies in small cohorts
of ataxic SCA3 individuals.11,12 Our results agree with
those of a prospective MRI study of 24 SCA3 mutation
carriers over 6 months in that MRI measures were more
sensitive to change than SARA and that pons volume
had the highest responsiveness of the studied MRI
measures.14 The responsiveness of NfL was low across
the entire disease course. This is in agreement with a
previous longitudinal study in 19 SCA3 patients that did
not find a NfL increase over two years.9

This study not only investigated the influence of
biological factors, such as age, sex, and CAG repeat
length, on disease progression in SCA3, but also that of
fluid and MRI markers. Some, but not all previous
studies in SCA3 reported an association between the
length of the expanded CAG repeat and faster pro-
gression of ataxia severity.27–30 In addition, greater CAG
repeat length was reported to be a risk factor for the
conversion of pre-ataxic SCA3 individuals to manifest
ataxia.22 In the univariable analysis of the present data,
greater CAG repeat length and lower age were asso-
ciated with faster SARA progression. In the multi-
variable analysis, lower age was one of two selected
factors. As CAG repeat length and age of onset are
inversely correlated in SCA3,1 the opposing effects of
CAG repeat length and age suggest a biological effect of
the expansion size on the dynamics of disease pro-
gression. Of all biological markers investigated, only
MRI volume measures were identified as predictors of
progression. Among them, lower medulla oblongata
volume had the most consistent effect.

A main limitation of this study is the small number
of observed stage transitions. We were therefore not in
the position to identify predictors of progression, as
indicated by transition to more advanced disease stages.
Another limitation is that the study was conducted
mainly with European participants. It is thus unclear,
whether the results can be generalised to SCA3 muta-
tion carriers from other world regions.

In conclusion, our study provides quantitative
information on the progression of biological markers
in SCA3 mutation carriers before and after onset of
ataxia, and allowed the identification of predictors for
clinical progression. Our data are useful for the design
of future clinical trials. Of particular importance is the
finding that pons volume was more sensitive to change
than any other outcome. This characterises pons vol-
ume as a useful marker to monitor progression in
clinical trials.
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Abstract
Objective Accurate estimation of brain myelin-water content from multi-echo data is challenging due to the inherent ill-
posedness of the inversion problem. In this study, we propose a novel method for myelin-water imaging that jointly utilizes 
gradient-echo and spin-echo imaging data to enhance the accuracy of myelin-water estimation.
Material and methods Multi-echo gradient-echo and spin-echo data were simulated and acquired in vivo. The simulations 
are based on a parameterized myelin and free water signal model, which is also used for the inversion by means of nonlinear 
local-search optimization. Single inversions of the individual datasets as well as joint inversion of the combined datasets 
were performed on simulated and real data. While single inversions estimate either the T2 or T 

2
 relaxation spectrum, the joint 

inversion estimates both spectra simultaneously.
Results Simulation results show that the accuracy of myelin-water imaging improves when jointly inverting gradient-echo 
and spin-echo synthetic data. In vivo experiments show that the joint inversion of both datasets leads to sharper and more 
distinct myelin-water images as compared to the individual inversions.
Discussion Our method addresses the ill-posed nature of the myelin-water inversion problem by leveraging complementary 
information from multi-echo gradient-echo and multi-echo spin-echo imaging sequences, thus improving the reliability of 
myelin-water quantification.

Keywords Myelin water imaging · Myelin water fraction · T2 and T 

2
 relaxation spectra · Joint inversion

Introduction

Myelin, a lipid-rich substance surrounding neuronal axons, 
plays a critical role in facilitating rapid signal transmission in 
the central nervous system. Alterations in myelin content are 
implicated in various neurologic disorders, making accurate 
myelin measurements essential for both research and clinical 
applications. MRI can indirectly assess myelin content by esti-
mating the amount of myelin water (MW), i.e., the amount of 

water trapped in the myelin sheath [1]. Myelin water has an 
influence on multiple MRI contrasts, and meanwhile several 
myelin-water imaging (MWI) methods exist which are either 
based on T1 , T2 , T 

2
 , or MT (magnetization transfer) contrast 

[2, 3]. For instance, MW has shorter transverse relaxation 
times than the surrounding axonal and extra-cellular water 
(AEW). Originally, T2 and T 

2
 contrasts were used to estimate 

the myelin-water fraction ( MWF = amount of MW divided by 
the total amount of water) from the peak areas of transverse 
relaxation spectra [4, 5]. Here, either multi-echo spin-echo 
(ME-SE) or multi-echo gradient-echo (ME-GE) experiments 
can be employed to measure the multi-exponential T2 or T 

2
 

decay signals, respectively. Afterward the relaxation spectra 
are obtained from data fitting with a suitable signal model. 
However, this process often suffers from limited accuracy and 
precision, primarily due to the ill-posed nature of the inversion 
problem. The MR signal from a single imaging voxel is the 
superposition of many decay signals with different relaxation 
times (MW and AEW). In case of a simple multi-exponential 
decay signal model, estimating those components from their 
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sum is mathematically equivalent to the inverse Laplace trans-
form [2]. Since exponential functions are mathematically not 
orthogonal, this is a highly ill-posed inversion problem and 
the fitting is very sensitive to noise [3]. In order to get stable 
fit results regularization is typically required. Adding a regu-
larization term to the objective function improves the condi-
tioning of the minimization problem, thus enabling a direct 
numerical solution. Commonly Tikhonov regularization is 
employed, which typically results in smooth relaxation spec-
tra with minimum energy ( L2-norm). Regularization enforces 
a numerical stable solution, however, it also biases the MWF 
estimates [3]. In addition to the ill-posed nature of the inver-
sion problem, MWF estimation is often further confounded 
by an underdetermined system of equations: multi-echo signal 
data are acquired at N different echo times ( TE ) from which a 
relaxation spectrum with M > N support points shall be esti-
mated [2]. From the infinite number of possible solutions, the 
inversion chooses the one which minimizes the objective func-
tion (including regularization for stabilization). Commonly, 
this minimization problem is solved with the nonnegative least 
squares (NNLS) approach, where no assumption is made on 
the shape of the relaxation spectrum. The approach is fast, easy 
to apply and has the additional advantage that the result does 
not depend on a starting model (in contrast to parameterized 
local-search optimization), which may explain its popularity 
in MW imaging. However, it has the disadvantage that a large 
number of unknowns—the entire relaxation distribution has 
to be fitted, hence resulting in the above-mentioned under-
determination. Alternatively, it has been shown that fitting a 
parameterized relaxation spectrum vastly reduces the number 
of unknowns and improves fitting stability in case of low SNR 
ME-SE data. Raj et al. modeled the T2 relaxation distribution 
as a sum of Gaussian functions representing the different com-
partments [6]. Then, the inversion problem was solved with an 
iterative nonlinear least-squares optimization approach. The 
approach was also applied to ME-GE data with Dirac func-
tion (“Delta-peaks”) [7], where additionally the complex signal 
was utilized. The ME-GE signal depends on susceptibility-
induced frequency shifts due to white matter fiber orientation 
[8]. Therefore, using additional phase information improves 
MWF estimates based on ME-GE data [3].

Nevertheless, in all these cases, the ill-posed nature of the 
inversion problem and the concomitant fitting instabilities 
remain, typically requiring strong regularization. However, 
ME-GE and ME-SE provide MWF estimates via partially 
independent tissue properties: while the ME-SE signal solely 
depends on proton density, T1 and T2 , the ME-GE signal in 
addition depends on T  

2
=

(
1∕T∗

2
− 1∕T2

)
−1 and the above-

mentioned frequency shifts. Similar situations are often met 
in geophysics, where (partially) independent measures pro-
vide estimates of physical parameters, each resulting from a 
highly ill-posed inversion problem. In order to improve the 

accuracy and precision of the parameter estimates, joint inver-
sion is a geophysical approach on simultaneously inverting 
multiple data sets influenced by common subsurface physi-
cal parameters [9–11]. In this study, we propose such a joint 
inversion approach to MWI that capitalizes on the comple-
mentary information provided by ME-GE and ME-SE imag-
ing sequences. By jointly inverting data from both sequences 
using parameterized T2 and T 

2
 relaxation spectra, our method 

aims to mitigate the ill-posedness of the individual inversion 
problems and enhance the reliability of MW estimation. We 
hypothesize that the combination of ME-GE and ME-SE data 
can provide complementary information sensitive to related 
but different tissue properties ( T2 and T 

2
 ), thus improving the 

robustness and accuracy of MW quantification. Potentially, 
this can be used to relax regularization. Through simulations 
and in vivo experiments we demonstrate the e#cacy of the 
proposed method in improving MWI.

Theory

ME-GE and ME-SE signal decay models

Under the assumption that T2 and T 

2
 are constant within the 

acquisition time window (e.g., not influenced by exchange 
processes), the MR signals of ME-GE and ME-SE sequences 
can be expressed as integrals [3]

where  SE and  GE denote the T2 and T 

2
 relaxation spectra 

(or distributions) of an imaging voxel. The first equation 
assumes that the effective transverse relaxation is governed 
by a simple multi-exponential decay. Thus, the composite 
ME-GE signal is the forward Laplace transform of the T 

2
 

distribution. In case of perfect 180° refocusing, the ME-SE 
signal would follow the same signal model with T2 instead 
of T 

2
 . However, it is typically not possible to obtain perfect 

refocusing pulses in real experiments due to subject-induced 
transmit field inhomogeneities. Therefore, it is necessary 
to account for signal deviations originating from stimu-
lated echoes generated in the CPMG echo train [12]. These 
signal components can be conveniently modeled with the 
extended phase graph (EPG) algorithm [13, 14]. Accord-
ingly, SEPG

(
t;𝛼r, T1, T2

)
 in Eq. (2) denotes the ME-SE signal 

at the echo time t  computed with the EPG formalism. It 
depends on the refocusing flip angle, 𝛼r , and the relaxation 

(1)SGE(t) =

 

∫
0

ΩGE

(
T
∗

2

)
exp

[
−t∕T

∗

2

]
dT
∗

2

(2)SSE(t) =

 

∫
0

ΩSE

(
T2

)
SEPG

(
t;𝛼r, T1, T2

)
dT2
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times T1 and T2 . However, the T1 dependence is weak in case 
of brain tissue with T1  T2 , and it is sufficient to approxi-
mate T1  1 s with minimal effect on the signal amplitude 
(and, therefore, subsequent MWF estimation) [15].

Discretization of the integrals in Eqs. (1) and (2) for a 
finite number of echo times and a grid of relaxation times, 
T2 and T 

2
 , leads to linear equations

where AGE and ASE are operator matrices solving the respec-
tive forward problems, SGE and SSE are signal vectors at 
respective echo times tGE and tSE , and  GE and  SE are the 
relaxation spectra vectors on a suitable grid of relaxation 
times, T2 and T 

2
 , respectively. The forward operators, AGE 

and ASE , can be precomputed for efficiently solving the non-
linear inverse problem.

Myelin-induced frequency shift: extension 
to a complex ME-GE signal model

The ME-GE exponential signal model of Eq.#(1) does not 
account for compartmental frequency shifts within the 
imaging voxel. It was previously shown that susceptibility-
induced frequency shifts give rise to a non-exponential 
ME-GE signal [16], resulting in biased MWF estimates from 
ME-GE magnitude data. Therefore, we extend the ME-GE 
signal model to account for frequency shifts,  𝜔 , in the MW 
and AEW compartments. Following the approach from Nam 
et#al. [7], we extend Eq.#(3) to a complex signal model by 
introducing a complex forward operator

where  Φ0 is a spatially dependent constant phase offset. 
In the following parameterized forward model, we assume 
constant frequency shifts,  𝜔1 and  𝜔2 , for the MW and 
AEW compartments, respectively [7, 16].

Inversion of bi-Gaussian parametric models

We first present the method for the single inversion, 
i.e.,#the method to recover the MWF from T2 (respectively 
T 

2
 ) data only, before describing the joint inversion. To 

model the T2 (respectively T 

2
 ) distribution, we resort to 

a parametric model, assuming the presence of two com-
partments with different T2 values, one for the MW pool 
(fast compartment) and one for axonal/extra-cellular water 
pool (slow compartment). Similar to [6], we propose a 

(3)SGE
(
tGE

)
= AGE

(
tGE, T

 

2

)
 ΩGE

(
T 

2

)

(4)SSE
(
tSE

)
= ASE

(
tSE, T2

)
  SE

(
T2
)

(5)
AGE

(
t, T 

2
,Δ𝜔,ΔΦ0

)
= exp

[
−t∕T 

2

]
exp

[
−i
(
Δ𝜔t + ΔΦ0

)]

bi-Gaussian parametric model, which strongly improves 
the optimization stability compared to a bi-impulse (delta 
function) model.

Within this assumption, the T2 distribution is modeled 
by six parameters: the T2 means ( 𝜇1 , 𝜇2 ) and standard 
deviations ( 𝜎1 , 𝜎2 ) of both compartments, the integral of 
the axonal/extra-cellular compartment ( I2 ), and finally the 
MWF , which is the ratio of the integral of the myelin com-
partment over the sum of the two compartment integrals, 
I1 

(
I1 + I2

)
 . Most references in the literature, using either 

T2 or T 

2
 parametric models, first invert for all compartment 

integrals (or amplitudes if delta functions are used instead 
of Gaussian functions) and based on that compute MWF 
[2, 7, 17]. Instead, we used the MWF directly as one of 
the model parameters for the inversion. We found that this 
parametrization leads to a slightly better resolution and 
spatial continuity on the final 2D MWF map than inverting 
for both compartment integrals separately.

Let G(𝜏|𝜇, 𝜎, I) be a Gaussian function over the variable 
𝜏 , defined by its mean value 𝜇 , standard deviation 𝜎 and 
integral value I . Denoting x =

(
𝜇1, 𝜎1,MWF,𝜇2, 𝜎2, I2

)
 as 

the model vector i.e.,#the six parameters describing the two 
Gaussian functions, the T2 distribution is given by

where I1 and I2 are the integrals of the MW pool and the 
axonal/extra-cellular water pool (AEW), respectively. I1 is 
not treated as a model parameter, but expressed according to 
the MWF definition as I1 = I2MWF (1 −MWF) . Let SSE(t) 
be the observed ME-SE signal with t being the echo times 
vector. For a single inversion, the unregularized minimiza-
tion problem is then given by

where ̂SSE(t|x) = ASE

(
t, T2

)
  SE

(
T2|x

)
 is the parameterized 

forward model from the T2 relaxometry distribution to the 
data space (ME-SE decay curve).

Since the problem is highly ill-posed, regularization has 
to be added to stabilize the inversion. However, classical Tik-
honov regularization aims to minimize the model parameters 
and, therefore, results in low and unrealistic values for the 
myelin and axonal/extra-cellular T2 values ( 𝜇1 and 𝜇2 ). To 
overcome this problem, we added a constraint on the model to 
stay as close as possible to the initial model, but weighting this 
constraint mainly on the mean of the parameters. The regular-
ized minimization problem is given by

where xin is the initial model vector (cf.#Table#1) and 𝜆 a model-
sized regularization vector. We resort to this regularization for 

(6) SE

(
T2|x

)
= G

(
T2|𝜇1, 𝜎1, I1

)
+ G

(
T2|𝜇2, 𝜎2, I2

)

min
x

‖‖‖SSE(t)  
 SSE(t|x)

2‖‖‖

(7)min
x

‖‖‖ SSE(t) −
 SSE(t|x)

‖‖‖
2

+
‖‖‖"  

(
x − xin

)‖‖‖
2
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the fast and slow compartments mean values ( 𝜇1,𝜇2 ) since we 
do have prior information on these parameters from the litera-
ture, and want to use this knowledge as initial values to better 
constraint the inversion. Regarding the standard deviations, 
which are initialized with small values (see Tab. 1), this regu-
larization helps to maintain the values as small as possible, 
since we would expect delta functions in an ideal noise-free 
world. Finally, since we do not have knowledge on the MWF 
and slow compartment integral ( MWF and I2 ), we set the cor-
responding elements of 𝜆 for these two parameters to negligi-
bly small, non-zero values (see Tab. 1).

Accordingly, the above equations also apply for the inver-
sion of magnitude ME-GE data, where the model vector x 
contains the respective six parameters of the T 

2
 distribu-

tion. Incorporating the complex signal model from Eq. (5), 
the previous equation naturally extend for the inversion of 
complex ME-GE data:

with the parameterized complex signal forward model

(8)min
x

‖‖‖SGE(t) −
 SGE(t|x)

‖‖‖
2

+
‖‖‖"  

(
x − xin

)‖‖‖
2

(9)
ŜGE(t|x) =

[
G

(
T 

2
|𝜇1, 𝜎1,

I2 MWF

1 −MWF

)
e−t∕T

 

2
+iΔ𝜔1t + G

(
T 

2
|𝜇2, 𝜎2, I2

)
e−t∕T

 

2
+iΔ𝜔2t

]
eiΦ0

w h e r e  t h e  m o d e l  v e c t o r 
x =

(
𝜇1, 𝜎1, 𝜔1,MWF,𝜇2, 𝜎2, I2, 𝜔2, Φ0

)
 now contains 

nine values for the parameterization, including the MW and 
AEW frequency shifts,  𝜔1 and  𝜔2 , and the constant phase 
term  Φ0.

In contrast to the single inversions, the joint inversion 
aims to find simultaneously distributions for both T2 and 
T 

2
 which fit the respective decay curves, with the same 

MWF value in both distributions. The model vector x has 
now 14 parameters since it represents two signals, the SE 
signal modeled by six parameters and the GE signal mod-
eled by nine parameters, but the MWF parameter is the 
same in both. Then, the minimization problem of the joint 
inversion can be stated as the sum of both residuals with a 
regularization term (analog to the single inversions) using 
14 parameters:

Table 1  Summary of the model parameters with their initial values (i.v.) and upper and lower bound, respectively

The rows 1–6 (until MWF ) denote parameters for single ME-SE inversion, and the rows 7–14 for single ME-GE inversion, while joint inversion 
uses all parameters. The last column provides the   regularization vectors used in the simulations. The superscripts  S ,  G , and  J denote vectors 
for single ME-SE inversion, single ME-GE inversion, and joint inversion, respectively. The subscripts give the number of the element in the cor-
responding regularization vector, and the values correspond the regularization used for the in vivo data, while the simulations used  = 0.01 for 
all parameters

# Parameter Description Unit i.v Bounds Regularization

1 𝜇1,T2
T2 mean of the MW distribution [ms] 18 [5, 35] 𝜆

S J

1 1
=0.02

2 𝜎1,T2 T2 standard deviation of the MW distribution [ms] 0.1 [0.1, 5] 𝜆
S J

2 2
=0.01

3 𝜇2,T2
T2 mean of the AEW distribution [ms] 80 [45, 180] 𝜆

S J

3 3
=0.02

4 𝜎2,T2 T2 standard deviation of the AEW distribution [ms] 0.1 [0.1, 5] 𝜆
S J

4 4
=0.01

5 I2,T2
Integral of the T2 AEW distribution –(normalized) 2 [0.1, 5] 𝜆

S J

5 5
=0.01

6 MWF Myelin-water fraction –(normalized) 0.1 [0, 0.85] 𝜆
S G J

6 6 6
=0.01

7 𝜇1,T 

2

T
 

2
 mean of the MW distribution [ms] 10 [5, 25] 𝜆

G J

1 7
=0.02

8 𝜎1,T 

2

T
 

2
 standard deviation of the MW distribution [ms] 0.1 [0.1, 5] 𝜆

G J

2 8
=0.01

9  𝜔1 Frequency shift of the MW component [Hz] −5 [−75, 75] 𝜆
G J

3 9
=0.02

10 𝜇2,T 

2

T
 

2
 mean of the AEW distribution [ms] 60 [55, 180] 𝜆

G J

4 10
=0.02

11 𝜎2,T 

2

T
 

2
 standard deviation of the AEW distribution [ms] 0.1 [0.1, 5] 𝜆

G J

5 11
=0.01

12 I2,T 

2

Integral of the T 

2
 AEW distribution – (normalized) 1 [0.1, 5] 𝜆

G J

7 12
=0.01

13  𝜔2 Frequency shift of the AEW component [Hz] 0 [−75, 75] 𝜆
G J

8 13
=0.01

14  0 Constant phase o#set [rad] 0 [0, 2 𝜋] 𝜆
G J

9 14
=0.01
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where tGE denote the echo times of the ME-SE and ME-GE 
acquisitions, respectively, and 𝛼 is a scalar weighting factor 
to adjust the influence of the first term, the ME-SE data con-
sistency. Since ME-GE acquisition has the double amount 
of data (magnitude and phase) than the ME-SE acquisitions 
(magnitude only), 𝛼 = 2 was chosen for equal weighting of 
both terms for all simulations and in vivo experiments.

Methods

Single and joint inversion implementation

We iteratively solve the nonlinear inversion problems from 
Eqs. (7–10) for single and joint inversion with a local-search 
optimization method, the Levenberg–Marquardt algorithm 
[18]. At each iteration, we compute the Fréchet deriva-
tives by finite difference. We solve the linearized problem 
as a classical linear least-squares problem with bounds on 
the variables, using the lsq_linear method from the Scipy 
Python library. We added a damping term (value 0.01) to 
the minimization for more stability. Table 1 summarizes the 
parameters to be inverted (cf. model vector x of Eq. (10)), 
their initial values, and the upper and lower bounds during 
minimization. Note that the joint inversion does not explic-
itly enforce T 

2
 T2 during the optimization but implicitly 

via the forward models in combination with realistic data. 
With the inversion parameters in Table 1, such a physically 
impossible solution was never observed for all simulated 
and in vivo data.

Simulations

Synthetic ME-GE and ME-SE data were generated to test 
the inversion approaches in simulations with known ground 
truth. We used a published MW fraction atlas [19] to com-
pute voxel-wise two-pool Gaussian relaxation spectra. The 
Gaussian integrals were modified to match the respective 
MWF value per voxel. The simulations were repeated six 
times with different parameters for the Gaussian distribu-
tions, which were randomly drawn within certain ranges: 
𝜇1,T2

 [16, 22] ms, 𝜇2,T2
 [65, 80] ms, 𝜇2,T 

2
∈ [10, 15] ms, 

𝜇2,T 

2
∈ [48, 62] ms,  and 𝜎1 2,T2 𝜎1 2,T2 ∈ [0.2, 1] ms 

(cf.  Table  1). The compartmental frequency shifts for 
ME-GE signal simulations were modeled accordingly with 
 𝜔1 ∈ [−2,−10] Hz,  𝜔2 ∈ [−3, 3] Hz, and  Φ0 ∈ [0,𝜋] . 
We chose these ranges according to the literature and to 

(10)min
x

 
‖‖‖SSE

(
tSE

)
− ŜSE(t|x)

‖‖‖
2

+
‖‖‖SGE

(
tGE

)
− ŜGE(t|x)

‖‖‖
2

+
‖‖‖#  

(
x − xin

)‖‖‖
2

ensure T 

2
 T2 . All other distribution parameters were cho-

sen constant but not too close to the initial model.
From the spectra we computed the ME-GE and ME-SE 

signals with the respective forward models. The sequence 
parameters are given in Fig. 1 C: first echo time ( TE1 ), 
increment (  TE ), echo train length (ETL), and ME-SE flip 
angles ( 𝛼e and 𝛼r ). After adding Gaussian noise to the real 
and imaginary part of all signals (SNR = 150 for the first TE ) 
to the signals, individual inversions and joint inversion based 
on the Levenberg–Marquardt algorithm were compared. For 
the simulation the same regularization term (0.01) was used 
for all 𝜆-parameters (cf. Table 1). The workflow for the simu-
lation process is schematically depicted in Fig. 1.

Data acquisition

Measurements were conducted at a 3T MAGNETOM 
Skyra scanner (Siemens Healthineers) using custom slab 
selective 3D sequences with 2-mm isotropic resolution to 
ensure su#ciently high SNR and short echo times. Both 
sequences, ME-GE and ME-SE, encode the identical FOV 
of 220 × 220x48  mm3. While the in-plane axial FOV covers 
complete transverse slices, the FOV in head-feet direction 
(48mm) was chosen to cover several important WM struc-
tures for region of interest (ROI) analysis (cf. Result sec-
tion). Furthermore, the repetition times of the ME-GE and 
ME-SE sequences were matched to TR=900 ms. This is an 
essential requirement for the analysis, which does not take 
T1 relaxation into account.

For time-e#cient ME-GE acquisition, we used a custom 
multi-echo 3D-EPI sequence [20] as a monopolar ME-GE 
sequence with ramp sampling by setting the EPI factor to 
1 and disabling phase correction and echo time shifting. 
We allowed the sequence to acquire non-equidistant echo 
times. In order to best capture the MW signal component 
at short echo times and at the same time minimize the gra-
dient duty cycle, 32 echoes with exponentially increasing 
spacing were acquired: TEn =  TE0e

nr  TE0 , n = 1, ..., 31 . 
Consequently, echo times increased according to 
TEn = TE0 +  TE0

(
enr  TE0 − 1

)
∕

(
er  TE0 − 1

)
 . Using TE0

=2 ms,  TE0=1.5 ms and increase rate r=0.02, the resulting 
echo times were: TEGE=[2, 3.5,…, 73.89,77.58] ms. Further 
sequence parameters were: TR=900 ms, 60° nominal flip 
angle, 1516 Hz/pixel readout bandwidth, CAIPIRINHA 
2  2z1 parallel imaging, TA=9:08 min (total acquisition 
time).

The total acquisition time of a purely phase-encoded 3D 
ME-SE sequence would be too long for in vivo applications 
[21]. Therefore, we implemented a ME-SE sequence with a 
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segmented spiral-in/out readout using the Pulseq [22] frame-
work. The sequence diagram is depicted in Fig. 2: after fat 
suppression and slab selective excitation, a CPMG echo train 
is applied with nonselective refocusing pulses in order to 
avoid slice profile effects (which would confound the EPG-
based MWF analysis). The spiral readout of the CPMG 
echo train is strongly segmented to ensure short echo times. 
Image reconstruction was performed with the BART tool-
box [23] using an established open‐source MR imaging and 
reconstruction workflow [24], including correction of spiral 
trajectory imperfections by means of the GIRF approach 
[25]. For the in vivo acquisitions the following sequence 
parameters were chosen, TESE=6.6 ms (CPMG echo spac-
ing), ETL=24, TR=900 ms (repetition time), 50° nominal 
excitation flip angle, TA=7:48 min (total acquisition time). 
These parameters could be achieved utilizing Ns=21 spiral 

interleaves and Nz=24 phase encoding steps along the slab 
dimension.

The slightly lower flip angle of ME-SE (50°) compared 
to ME-GE (60°) ensures the same T1-saturation for TR
=900 ms, assuming T1   900 ms for the AEW compo-
nent. It is di#cult to measure T1 of MW, but it is assumed 
to be much shorter than the T1 of the AEW component [3, 
26]. For instance, T1 = 118 ms was reported for MW at 
3T [27]. Thus, we assume full recovery of the MW com-
ponent during TR=900 ms for both sequences. In total, 
this ensures equal (apparent) MWF in ME-GE and ME-SE 
acquisitions, which is a central requirement for the joint 
inversion approach.

Both sequences were acquired twice in order to use 
two-fold averaged data for the single T2 and T 

2
 inversions, 

whereas the joint inversion is based on single ME-GE and 

Fig. 1  Workflow of the simulation process. For each voxel from one 
slice of the MWF atlas (A) synthetic relaxation spectra are generated 
(B) with realistic values for the respective Gaussians. Next, ME-GE 
and ME-SE signals are simulated by applying forward models and 

adding noise (C). Finally, the parametric fitting of the individual 
inversions provides the estimated spectra and resulting MWF esti-
mates (D)
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ME-SE acquisitions. This way approximately the same 
amount of data and scan time enters all three inversion 
approaches.

As a first scan in the experiment, a flip angle (B1) 
map is acquired with the 3DREAM sequence [28] as 
required for the EPG signal modeling. The 3DREAM 
acquisition parameters were: FOV = 220 × 220x160  mm3, 
isotropic resolution of 5 mm, TA = 1:41 min. Finally, a 
custom MP-RAGE sequence [29] with 2D acceleration 
capabilities [30] was acquired for image registration 
and segmentation, enabling ROI analysis of the MWF 
estimates. The MP-RAGE acquisition parameters were: 
FOV = 256 × 256x172  mm3, isotropic resolution of 1 mm, 
TA = 3:12 min. The total acquisition time of the entire 
in vivo protocol was approximately 40 min. Three healthy 
subjects (age range 34 ± 11 years) were scanned after pro-
viding informed consent in accordance with local institu-
tional review board regulations.

Data analysis

A custom data analysis pipeline was implemented in Python. 
First, the B1 map was registered to the ME-GE/ME-SE 

images with the AntsPy library. Voxel-wise single and joint 
inversions were performed as described above. For the single 
inversions, the average of the two respective ME-GE and 
ME-SE acquisitions was used, whereas the joint inversion 
was applied to single acquisitions (the first one for both, 
ME-GE and ME-SE). The subjects were highly compliant 
and we did not observe any misalignment between the data-
sets. Therefore, in order to avoid re-slicing errors, image 
registration was neither performed between ME-GE and 
ME-SE data (for joint inversion) nor between repeated scans 
(for single inversions). However, averaging of the complex 
ME-GE data required phase-matching between the two scans 
to account for local frequency and phase drifts, e.g., due to 
gradient heating. To this end, a voxel-wise linear fit of the 
TE-dependent phase change between repeated ME-GE scans 
was performed and then subtracted from the phase of the 
repeated scan before complex-valued averaging.

Single and joint inversions were performed voxel-by-
voxel as described above. The inversion of ME-GE data and 
the joint inversion were run twice, once with the suggested 
complex signal model (including compartmental frequency 
shifts), and once with the simplified mono-exponential decay 
model. Here, the ME-GE inversion problem is similar to 

Fig. 2  Diagram of the Pulseq 
implementation for the ME-SE 
3D imaging sequence with in-
plane segmented spiral-in/out 
readout (Gx,Gy) and through-
plane phase encoding (Gz). The 
plot depicts the fat suppression, 
slab selective excitation, and the 
first two echoes of the CPMG 
train with nonselective refocus-
ing pulses. After 24 echoes a 
fill-time is appended to result in 
TR=900 ms. This sequence is 
repeated in a double loop struc-
ture acquiring all spiral inter-
leaves (inner loop) and phase 
encoding steps (outer loop)
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Eq. (7) for ME-SE data, i.e., only the six parameters of the 
T 

2
 are estimated. (Likewise, the joint inversion reduces to 

9 parameters instead of 14, cf. Table 1.) To ensure equal 
weighting for the joint inversion, ME-GE and ME-SE data 
were normalized prior to the analysis, SGE SE

(
TEmin

)  1 . 
A slightly higher regularization for the parameters of the 
MW component was chosen in comparison to the simula-
tion (cf. Table 1). However, again the same regularization 
parameters were applied in single and joint inversions. This 
slight increase in regularization showed more homogeneous 
MWF results for all three inversion methods (comparison 
not shown), potentially counteracting a model-induced bias 
for real data.

Probability GM and WM maps were generated from the 
MP-RAGE with SPM12 (MATLAB vR2022a) [31]. Only 
voxels with a probability higher than 95% were included 
to create the respective masks. Registration from the MP-
RAGE to the ME-SE and ME-GE spaces were performed 
with ANTs [32] using a rigid transformation, which was 
then applied to the GM and WM masks. To obtain WM 
tract ROIs, we used the JHU ICBM-DTI-81 WM atlas 
[33]. The MNI 152 T1 template was registered to the 
ME-GE and ME-SE spaces with ANTs using a symmet-
ric normalization (SyN), which was then applied to the 
atlas. Ten regions were included in the analysis: total WM, 
ALR (anterior limb of the internal capsule—right), ALL 
(anterior limb of the internal capsule—left), PLR (poste-
rior limb of the internal capsule—right), PLL (posterior 
limb of the internal capsule—left), GCC (genu of the cor-
pus callosum), BCC (body of the corpus callosum), SCC 
(splenium of the corpus callosum), AF (anterior forcepts) 
and PF (posterior forcepts). Parameter estimation was per-
formed in the native space. Finally group statistics across 
all ROI voxels and subjects were computed to obtain mean 
and standard deviation of the estimated model parameters.

Results

Simulation results

The top row in Fig. 3 depicts MWF maps resulting from 
from one simulation run of the single inversions ( T2 and 

T 

2
 ) and the joint inversion. To emphasize the compari-

son with the MWF atlas (ground truth), the second row 
shows the difference maps, where the sign indicates if the 
MWF was over- or underestimated. It can be seen that 
the joint inversion MWF estimate is closer to the ground 
truth than the single inversions. The last two rows of Fig. 3 
depict cross-plots for all six simulation runs, displaying 
the voxel-wise estimated MWF values against the ground 
truth. The closer the points to the identity ( x = y ), the 
more accurate the inversion. For example, in Run 5 the 
T 

2
 inversion overestimates the MWF and the T2 inversion 

underestimates the MWF , while the joint inversion lies in 
between. In Run 3 all inversions overestimate the MWF , 
but the joint inversion is closest to the ground truth. When 
a single inversion provides a good estimate, then the joint 
inversion is close to these values (Runs 2 and 4). In gen-
eral, the plots show that the joint inversion is closer to the 
ground truth than the single inversions for almost all data 
points. In most cases, the observed error of the MWF esti-
mates resulted from deviations in the estimated integrals 
( I1, I2 ), while the estimates of Gaussian mean and standard 
deviation was always very close to the ground truth.

In-vivo results

The in vivo results shown in this section depict a single 
representative slice for each of the three subjects. Fly-
through movies showing the quantitative maps for all 
slices (and subjects) are provided as Supporting Informa-
tion Videos S1-2. Figure 4 shows the acquired ME-GE 
and ME-SE imaging data for all subjects and a subset of 
all echo times (see figure legend). The images are free of 
obvious artifacts and generally good image quality was 
observed in all cases. The image SNR of the first echo was 
in the range of 200 for both sequences and all subjects. 
The MWF results of the single inversions ( T2 and T 

2
 ) and 

the joint inversion are shown in Fig. 5 for all subjects. All 
inversion methods show increased MWF values in WM 
compared to GM, as expected. The most obvious differ-
ences between single and joint inversion results are the 
reduced blurring and overall more distinct contours in the 
joint inversion MWF maps, which results in sharper depic-
tion of WM structures. This effect becomes even more evi-
dent when only the ME-GE magnitude data is used for the 
inversion, as shown in Fig. 6. Here, the MWF-map from 
the single T 

2
 inversion is more blurred as compared to cor-

responding map in Fig. 5. Again, the joint inversion pro-
duces the most detailed MWF map. However, large MWF 
values potentially arising from frequency-shift induced 
signal changes in WM are present in both maps. Finally, 
the effect of regularization is shown in Fig. 7. Here, the 
results were obtained with low regularization for all model 
parameters ( 𝜆=0.005), leading to very low-quality MWF 

Fig. 3  Depiction of the simulation results. The top row of images 
shows the estimated MWF maps from one simulation run of the sin-
gle ( T2 and T 

2
 ) inversions and the joint inversion. The second row of 

images show the respective deviations to the ground truth. The last 
two rows show scatter plot for all simulation runs displaying the 
deviation between the estimated MWF and the true MWF. The data 
points show the MWF values in the individual voxels for the repeated 
simulation runs and within the (discontinuous) range of MWF values 
present in the depicted slice of the atlas
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maps for the single T 

2
 inversion. This underlines the need 

for regularization, also in the case of joint inversion.  
A quantitative evaluation of all estimated parameters is 

presented in Table 2, showing group averaged fit results 
in several WM ROIs, which are present in the acquired 

3D slab. Interestingly, the joint inversion method often 
produces MWF mean values that are higher than those 
observed from inverting the ME-SE and ME-GE datasets 
separately. The group standard deviations, given in brack-
ets in Table 2, indicate that there are only small differences 

Fig. 4  Single slice imaging data from all three subjects. The first 
three rows show ME-SE images and the last three rows show ME-GE 
images. The columns show the signal decay at eight echo times 

(TEs) over the entire range of the echo train. The TEs of ME-SE and 
ME-GE are given in the labels at the top and at the bottom, respec-
tively. Note that TEmax

GE
 TEmax

SE
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between subjects for all estimated parameters, especially 
for the MWF . This quantitative observation, which holds 
for single and joint inversions, may not be visually sup-
ported when inspecting Fig. 5. Here, the colorbar scal-
ing was chosen to enhance regional differences in MWF , 
which also visually enhances variation between subjects. 
Finally, the correlations between the estimated parameters 
are provided as supporting information S3 for single and 
joint inversions, showing that parameter estimates are 
mostly independent of each other (Fig. 7). 

Discussion

MWI is a practical approach for indirect in vivo quantita-
tive mapping of brain myelin content, an important marker 
for understanding brain development, aging, plasticity, and 
degeneration. However, due to technical limitations MWI 
may report biased values of the true myelin concentration. 
In order to improve the accuracy of MWF estimates, we 
acquired and jointly analyzed ME-GE and ME-SE imaging 
data. MWI requires the estimation of the respective relaxa-
tion spectra, which is a highly ill-posed inverse problem. 
Strong regularization is typically required to enforce a stable 

Fig. 5  MWF results for all subjects for single inversions (first and 
second column) and for the joint inversion (third column). The last 
column shows the respective slice of the T1-weighted scan for ana-
tomical reference. For all three inversion methods the estimated 

MWF values are consistently higher in WM than in GM and CSF and 
lie in the expected range known from the literature. The joint inver-
sion maps appear less blurred and show less variation within in WM 
as compared to the maps from the single inversions
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solution, which usually results in biased MWF estimates. We 
hypothesized that jointly inverting both datasets reduces the 
ill-posedness of the inverse problem, potentially relaxing 
the need for strong regularization. For this, it was implic-
itly assumed that ME-GE and ME-SE provide independent 
measures of MWF . Under this assumption, we formulated an 
objective function with data consistency terms for ME-GE 
and ME-SE data. The forward operators to compute the 
respective signals were constructed through parameterized 
two-pool Gaussian spectra describing the MW and AEW 
components. For ME-GE and ME-SE signals, they are 
given by the T 

2
 and the T2 voxel-distribution, respectively. 

Under the stated assumption, both distributions share the 
same MWF which therefore can be jointly inverted from 
both datasets.

Our results suggest that the joint inversion approach miti-
gates the ill-posed nature of the inversion problem inherent 
in MWI. The underdetermined inverse problem can lead 
to ambiguity and instability in the reconstruction process 
when relying on a single dataset. By combining informa-
tion from both sequences, our method introduces additional 
constraints that inherently help to regularize the inversion 
process, thereby improving the stability and accuracy of the 
estimated MWF.

Fig. 6  Same display of MWF results as in Fig.  5 but without tak-
ing compartmental frequency shifts into account for the MWFT 

2
 and 

the MWFjoint fit. (The MWFT2
 fit is exactly the same as in Fig. 5 and 

again displayed for comparison.) Regionally high MWF values can 

be observed in the MWFT 

2
-map, which also transfers to the MWFjoint 

map. This is especially pronounced for subjects 1 and 2 and might be 
attributed to frequency shifts in white matter fiber bundles
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The simulation results presented in this study dem-
onstrate the superiority of the proposed joint inversion 
approach over conventional methods that rely on a single 
dataset for MWI. The main advantage of the simulation 
is the knowledge of the ground truth (completely defined 
by the known T2 and T 

2
 model), which enables to deter-

mine and compare the accuracy of the different inversion 
methods. For the single T2 and T 

2
 inversions, we observed 

under- and overestimation for a wide range of the true 
MWF values. Instead, the MWF joint inversion estimates 
were closer to the ground truth in almost all cases. These 
results were obtained for SNR = 150 of the respective first 
echo of the synthetic data. In simulations with much lower 
SNR, all three estimates, also the join inversion, signifi-
cantly deviate from the true MWF values. If the SNR is 
increased beyond 150, the advantage of the joint inver-
sion remains but gets smaller, since also the bias of the 
individual inversions decreases. Thus, the improvement in 
accuracy seems to be particularly noteworthy when con-
sidering the challenges posed by realistic SNR.

The superiority of the joint inversion approach is further 
corroborated by the results obtained from in vivo data. Here, 
the ground truth is not known and biases due to incorrect 
model assumptions may enter as well (cf. subsection Limita-
tions below). In contrast, the joint inversion produces 
sharper MW fraction maps which highlight its ability to pro-
vide enhanced spatial resolution and tissue contrast com-
pared to the conventional approaches. The improved level of 
detail is a result of leveraging additional information from a 
second dataset during the joint inversion process. The two 
datasets have different sensitivities and resolution character-
istics. This complementary information reduces the influ-
ence of regularization although the same regularization 
method and strength were applied to single and joint inver-
sions. The joint inversion problem is less ill-posed and less 
impacted by regularization, which lead to more detailed 
images. The improved results of the joint inversion are not 
related to enhanced SNR from the bigger dataset, as it was 
compared to the single inversions of two repeated scans, 
which resulted in approximately the same amount of data 
and scan time. Indeed, the results from single inversions on 

Table 2  Group statistics of the quantitative fit results (rows) for sev-
eral ROIs (columns): WM (white matter), ALR (anterior limb of the 
internal capsule—right), ALL (anterior limb of the internal capsule—
feft), PLR (posterior limb of the internal capsule—right), PLL (pos-

terior limb of the internal capsule—left), GCC  (genu of the corpus 
callosum), BCC (body of the corpus callosum), SCC (splenium of the 
corpus callosum), AF (anterior forcepts), PF (posterior forcepts)

Each row shows the group mean value in the ROI and below the standard deviation in brackets. The first three rows compare the MWF esti-
mates for single and joint inversions. The next eight rows show T2 and T 

2
 estimates of the MW and the AEW component for the respective 

inversion approaches
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single datasets (not shown), are very similar to those from 
the averaged scans. This might be attributed to the high SNR 
already present in the single acquisitions. The joint inversion 
is better constrained since it inverts simultaneously multiple 
types of data, which help to reduce the solution space in 
comparison with the single inversions. The joint inversion 
can also average out the noise from the single datasets, lead-
ing to more reliable results. Moreover, T2 and T 

2
 inversions 

seem to solve the minimization problems differently: the 
MWFT2

 maps are less noisy while the MWFT 

2
 maps are less 

blurred (in case of a complex signal model, cf. Figure 5). 
Joint inversion leverages the strengths of both data types, 
leading to higher resolution models. Noteworthy, the group 

statistics in WM ROIs (cf. Table 2) show that the joint inver-
sion MWF is mostly larger than the estimates of the single 
inversions. However, due to the lack of a ground-truth, it 
remains to be shown if the in vivo MWF estimates are more 
accurate than those obtained from the single inversions. 
Although this observation is supported by the simulation 
results, it cannot be generalized to the case of in vivo data 
(cf. limitations below). Nevertheless, the main advantage of 
the joint inversion approach is the obvious improvement in 
resolution as compared to the results based on a single data-
set. Table 2 also shows that the different fits of the MW and 
AEW relaxation times are in good agreement in most ROIs. 
This indicates that the joint inversion consistently found the 

Fig. 7  Same display of MWF results as in Fig. 5 but using low regularization in the inversion ( 𝜆 = 0.005 for all model parameters). While T2 
inversion is less affected, the T 

2
 result is dominated by noise, which also takes over to the joint inversion results
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same local optima for the respective distributions ( T2 and T 

2
 ) 

as the single inversions. Noteworthy are also the small group 
standard deviations of all estimates and ROIs, indicating that 
all inversion approaches provide stable cross-subject results 
in healthy volunteers. However, this observation needs to be 
confirmed using a larger sample, as only three subjects were 
included in this proof-of-concept study.

Several limitations warrant consideration. First, the simu-
lation results have to be interpreted with care since the data 
are modeled with the same algorithm as used for inversion. 
This scenario is called inverse crime in geophysics: during 
the iterative fitting process, the data consistency terms will 
produce perfect gradient estimation and therefore facilitating 
convergence during the inversion. In real data, the residuals 
in addition contain deficiencies in the modeling algorithm 
that leads to gradient errors too. Thus, for instance, it would 
be not useful to compare the performance of conventional 
NNLS inversion with parameterized inversion while using 
the same parametric model for generating synthetic data. 
In that case the data would perfectly fit to one approach 
but not to the other, and the results would be misleading. 
Therefore, NNLS was not considered in the simulations. 
For the in vivo data we also performed conventional NNLS 
inversion individually on ME-GE and ME-SE data. The 
results (not shown) were similar but slightly worse as com-
pared to the parameterized single inversions, as expected 
[6]. Another limitation of the current approach is that B0 
field inhomogeneities were not taken into account. Due to 
the high readout bandwidth of the ME-GE sequence image 
distortions are minimal, yet the multi-exponential T 

2
 decay 

model might be invalid in regions with large  B0 [34]. Fur-
thermore, phase images contain multiple phase wraps in 
these regions, which results in unstable MWF fits for both, 
single inversion ME-GE and joint inversion (cf. MWF maps 
in the supplementary material). Improved phase preprocess-
ing may help to overcome these problems. However, since 
we mainly focused on MWF estimates in WM, we assume 
that susceptibility-induced field inhomogeneities have minor 
influence on the presented results. The proposed inversion 
method, especially the proposed initial model and regulari-
zation parameters, may be sensitive to variations in acquisi-
tion parameters and pathology-dependent tissue properties, 
necessitating further validation across different imaging 
protocols and patient populations. Finally, the results were 
obtained on high SNR data resulting from rather lengthy 
acquisitions (20 min), as good data quality was seen as a 
requirement for this proof-of-concept study. The impact of 
reduced SNR in accelerated acquisitions needs to be investi-
gated in future, aiming at faster protocols suitable for patient 
studies.

In conclusion, this study demonstrates the effectiveness of 
a novel joint inversion approach for MWI, which integrates 
information from multi-echo spin-echo and gradient-echo 

imaging sequences to improve the accuracy and reliability of 
MW quantification. The observed improvements in accuracy 
and spatial resolution, coupled with the potential clinical 
implications, underscore the significance of our proposed 
method in advancing neuroimaging research and clinical 
practice. Future work will focus on further refining the pro-
posed approach and validating its utility in clinical studies, 
e.g., multiple sclerosis (MS) patients.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10334- 025- 01235-5.
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4. Discussion with references  
 
This thesis provides a comprehensive, cross-sectional and longitudinal assessment of 

neurodegeneration in the rare movement disorder spinocerebellar ataxia type 3 (SCA3). 

Across two disease-focused studies, structural and microstructural MRI markers were 

evaluated in more than 150 mutation carriers. These data with a clinical focus are 

complemented by a third study, which presents methodological improvements in myelin 

water estimation, offering a foundation for future development of sensitive imaging 

biomarkers in SCA3. 

4.1 Regional and Temporal Characteristics of Volume Atrophy in SCA3 

Volumetric analyses showed early and consistent involvement of infratentorial brain 

structures. Particularly, the conducted cross-sectional studies revealed a prominent loss 

of cerebellar white matter in SCA3. Longitudinally, volume loss was first detectable in the 

medulla oblongata, followed by the pons. Among all regions assessed, pons volume 

emerged as the most responsive marker across disease stages, including the pre-

symptomatic phase before clinical onset of symptoms. Trajectory modelling revealed that 

regional decline follows distinct temporal patterns, with the pons and cerebellar white 

matter showing the steepest volume loss over time. 

4.2 Diffusion and Myelin Imaging 

Diffusion MRI identified cross-sectional abnormalities in the cerebellar peduncles in pre-

symptomatic individuals, especially reduced fractional anisotropy (FA) in the inferior and 

superior peduncles. However, these metrics showed poor longitudinal sensitivity and high 

intra-subject variability. These findings likely reflect both the limitations of tensor-derived 

metrics in regions of complex fibre architecture (Jeurissen et al., 2014)  and the technical 

constraints of the acquisition protocol.  

While not yet applied to the SCA3 cohort, the myelin water imaging method developed 

within this thesis addresses key limitations of conventional T2-based approaches. By 

jointly inverting multi-echo spin-echo and gradient-echo data, the method improves 

anatomical fidelity and estimation stability, particularly in regions affected by partial 
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volume effects and B1 inhomogeneity. These improvements are relevant for future studies 

in SCA3, as the findings of this thesis provide evidence for early myelin alterations.  

4.3 Implications for the Imaging of SCA3 Pathophysiology 

The predominance of white matter degeneration in infratentorial structures suggests that 

SCA3 pathophysiology involves mechanisms beyond neuronal loss alone. Early and 

progressive atrophy of cerebellar white matter, as seen in both cross-sectional and 

longitudinal analyses, raises the possibility of glial dysfunction contributing to the 

development of the disease. This interpretation is consistent with preclinical findings 

showing impaired oligodendrocyte maturation and early myelin disruption in SCA3 models 

(Haas et al., 2022; Schuster et al., 2022). While direct imaging of myelin was not possible, 

the anatomical pattern and timing of volume loss alongside diffusion alterations are 

compatible with an early vulnerability of white matter tracts, particularly those in 

brainstem–cerebellar circuits. 

4.4 Multimodal Comparison of Imaging, Clinical, and Fluid Markers 

The comparative analysis of imaging, fluid, and clinical measures underscored the 

limitations of currently used markers. The Scale for the Assessment and Rating of Ataxia, 

while established as a clinical endpoint, showed delayed and less pronounced change 

relative to volumetric imaging markers. Moreover, mutant ataxin-3 protein concentrations 

remained stable across disease stages and were not associated with progression. 

Neurofilament light chain levels deviated from normative ranges decades before symptom 

onset, but plateaued thereafter and did not show sensitivity to intra-individual change. 

Across the full disease course, volumetric MRI—particularly pons volume—demonstrated 

the highest sensitivity to change, supporting the utility of infratentorial volumetric 

measures as progression as well as stratification biomarkers, particularly for early-phase 

trials. 

 

4.5 Pipeline Development 

A key contribution of this work is the development of an automated multimodal imaging 

pipeline designed for longitudinal and multisite applications. This included 
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subsegmentation of infratentorial and spinal structures (De Leener et al., 2017; Faber et 

al., n.d.; Henschel et al., 2020; Iglesias et al., 2015), harmonization of diffusion metrics 

across scanners using ComBat (Fortin et al., 2017), and integration of tractography using 

multi-shell multi-tissue spherical deconvolution (Jeurissen et al., 2014). For quantitative 

susceptibility mapping (QSM), a two-pass reconstruction approach, as proposed in 

QSMxT (Stewart et al., 2021), was implemented to enhance anatomical specificity and 

mitigate artefacts. Additionally, to enable large-scale analysis of subcortical nuclei, a deep 

learning model was trained on manually segmented data which will be used for future 

studies with higher cohort sizes. 

4.6 Limitations and Future Directions 

Despite the use of advanced tractography methods, diffusion quantification relied on 

tensor-based scalar metrics, which remain limited in regions with crossing or bending 

fibres. The low sensitivity of FA and radial diffusivity to longitudinal change in the 

cerebellar peduncles and brainstem was consistent across studies and reinforces the 

need for alternative models such as neurite orientation dispersion and density imaging or 

diffusion kurtosis imaging (Jensen et al., 2005; Zhang et al., 2012). While pons volume 

showed strong performance, it is unlikely that a single measure will capture the full 

spectrum of disease progression. Integration of structural, microstructural, and 

biochemical markers into composite indices may improve staging and stratification. Most 

data in this thesis were derived from European participants. Broader inclusion of diverse 

populations will be necessary to ensure generalizability. As antisense oligonucleotide 

therapies move toward clinical application, identifying sensitive and reliable imaging 

biomarkers becomes increasingly urgent.  

The findings presented here suggest that volumetric imaging of the pons and upper spinal 

cord may serve as useful candidates for monitoring early neurodegenerative change. 
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