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The evolution history of the early universe is closely tied with the evolution
history of its contents. Various studied cosmological histories include periods
where the energy content of the non–relativistic matter component is converted
to relativistic radiation via decay processes. The particles resulting from these
decays often have energies close to the mass of the decaying matter component
and significantly larger than the temperature of the radiation component. These
highly energetic particles will subsequently be replaced by a larger number of
particles with a distribution compatible with the thermal radiation component;
a process referred to as thermalization. During thermalization, the highly ener-
getic particles can interact with other particles in the universe to contribute to
observable phenomena, including e.g. production of non–thermal dark matter.
Studying these e↵ects requires an understanding of the thermalization process.

In this thesis, we study the thermalization process of highly energetic decay
products, focusing on the initial phase of kinetic equilibration, in which the
high energy of the initial decay products is distributed among newly generated
particles. We begin by briefly reviewing some of the tools used throughout this
thesis, including e↵ective kinetic theory.

We then move on to use these tools to study thermalization in a simpli-
fied setup, in which thermalization proceeds via interactions of a single species
of non–Abelian gauge bosons. We identify nearly collinear splitting processes
as the dominant contribution to the equilibration process and show that one
should include the Landau–Pomeranchuk–Migdal (LPM) e↵ect for a consistent
e↵ective kinetic theory treatment. We formulate and solve the Boltzmann equa-
tion governing the spectrum of out–of–equilibrium particles resulting from the
cascade of splittings in the thermalization process. After comparing our spec-
trum to previous approximate solutions from the literature, we present how this
could be used to calculate cosmological observables by studying the example of
non–thermal dark matter production.

We then expand our study of thermalization by including all non–scalar
species of the Standard Model in our cascade of nearly collinear splitting pro-
cesses. We use LPM suppression rates from the literature to write down the
Boltzmann equations governing the spectra of these species after a decay of a
matter component particle and solve these numerically. Finally, we analyze the
resulting spectra and discuss how these can be used for more precise calcula-
tions of cosmological observables by revisiting the example of non–thermal dark
matter production.
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CHAPTER 1

Introduction

"It was a still night, tinted with the promise of dawn. A crescent moon was just setting. Ankh-Morpork,
largest city in the lands around the Circle Sea, slept.

That statement is not really true.
On the one hand, those parts of the city which normally concerned themselves with, for example,

selling vegetables, shoeing horses, carving exquisite small jade ornaments, changing money and
making tables, on the whole, slept. Unless they had insomnia. Or had got up in the night, as it might
be, to go to the lavatory. On the other hand, many of the less law-abiding citizens were wide awake
and, for instance, climbing through windows that didn’t belong to them, slitting throats, mugging one
another, listening to loud music in smoky cellars and generally having a lot more fun. But most of
the animals were asleep, except for the rats. And the bats, too, of course. As far as the insects were
concerned...

The point is that descriptive writing is very rarely entirely accurate [...]"
Terry Pratchett, The Light Fantastic

The standard model (SM) of particle physics and the ω cold dark matter (ωCDM) model of
cosmology are two cornerstones of our modern understanding of the physics of the universe on
both the smallest and largest length scales. The SM contains the fundamental building blocks and
non–gravitational interactions of the “visible” universe, i.e. the part of the universe observed via its
interactions with the electromagnetic radiation. The ωCDM, on the other hand, incorporates Einstein’s
theory of general relativity together with the SM particles and interactions to describe the evolution of
the universe from an “early time” up to the “present”.

According to the SM, the fermionic quarks and leptons are organized in three generations with
identical coupling to the force carrier gauge bosons. The gauge bosons in turn correspond to the
gauge group 𝑀𝑁 (3)𝐿 × 𝑀𝑁 (2)𝑀 ×𝑁 (1)𝑁 ; the constituents are, respectively, the 𝑀𝑁 (3)𝐿 color gauge
group of the strong interactions, the left–chiral weak interactions, and the abelian 𝑁 (1)𝑁 hypercharge.
The latest element of the SM to be discovered, namely the scalar Higgs boson, is responsible for
breaking the symmetry group of the SM into 𝑀𝑁 (3)𝐿 ×𝑁 (1)EM at low scales; the Higgs boson is
further responsible for generating the elementary fermion masses, thereby differentiating the three
SM fermionic generations. All members of the SM are, directly or indirectly, observable via their
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Chapter 1 Introduction

interactions with the matter on earth and are therefore sometimes collectively referred to as “luminous”,
or as belonging to the “visible sector”.

Turning our attention to cosmological scales, the ωCDM assumes the universe to have been filled
with a cosmological fluid and in a state of thermal equilibrium with a temperature 𝑂 at early times.
The energy density contained in the perfect fluid dictates an expansion of the universe, resulting, in
turn, in a universal cooling of its content. The evolution of the universe can then be parameterized in
terms of an increasing time parameter 𝑃 or, equivalently, a decreasing temperature 𝑂 .

Both models have been strikingly successful in predicting and explaining a wide range of physical
observables [1]. In particular, the ωCDM framework successfully predicts the production and
ratios of light atomic nuclei in a process known as big–bang nucleosynthesis (BBN); this serves to
guarantee, amongst others, that at the time of nucleosynthesis, i.e. with the universe being ∼ 1 s old
or having a temperature of ∼ 3 MeV [2], the perfect fluid was dominated by relativistic radiation
with a composition very well predicted by the SM particle content and interactions. The subsequent
evolution of this radiation–dominated (RD) fluid leads to the “matter–radiation decoupling” and the
formation of the cosmic microwave background radiation (CMB); the latter serves as a treasure–trove
of information regarding the history and composition of the universe at early times [3]. The small
density fluctuations in the resulting largely homogenous universe are then enhanced in the process of
structure formation to shape the highly non–homogenous universe observed at late times. Finally,
the cosmological constant (ω) element of the ωCDM accounts for the observation of accelerated
expansion of the present universe.

Despite their unprecedented success, both the SM and the ωCDM need to be further modified to
accommodate observations [1]. The SM, for example, predicts all three neutrinos to be massless; a
prediction found to be incompatible with the observation of neutrino oscillations. Another example is
universe being flat, homogenous, and isotropic on large scales as deduced, e.g., from the observation of
the CMB. These observations cannot be easily explained by ωCDM + SM, giving rise to the so–called
“flatness” and “horizon” problems in cosmology. One, therefore, modifies the SM of particle physics
by the addition of new particles and interactions to allow for an explanation of these observations; in
the latter case, e.g., this is often accomplished by the introduction of additional fields and interactions
leading to a period of cosmological “inflation”.

The set of theories and models considered to address the shortcomings of the SM are collectively
referred to as physics beyond the standard model (BSM). The successful description of cosmology by
the concordance ωCDM model, therefore, suggests and relies on the existence of BSM physics; in
particular, the SM in its present form cannot accommodate the dominant matter component present in
the universe; the cold dark matter.

1.1 Dark matter and the composition of the universe

The existence of cold dark matter (DM), i.e., a massive, non-relativistic, and non–luminous (non–
baryonic) component in the energy content of the universe, has been well established by independent
cosmological observations of gravitational effects on different length–scales [1, 4, 5]. The independence
and variety of these scales and observations make it non–trivial for them to be explained economically
by modifications of the dynamics and laws of motion (see the review on dark matter in [1]); as such,
we will not be focusing on these scenarios.

Early hints for the existence of DM came from the observation of flat rotation curves of galaxies,
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1.1 Dark matter and the composition of the universe

where the radial variation of the tangential velocity of the occupied orbits flattens out as one moves
away from the central luminous regions of the galaxy, suggesting the existence of a gravitating
non–luminous component extending far outside the luminous matter distribution [6, 7]. It is, moreover,
worth noting that a class of old galaxies point to the presence of a sizable DM presence by their mere
existence; without a DM contribution, the density perturbations observed in the CMB would be too
small to account for the formation of galaxies at these early times [8].

The next length–scale to provide evidence for DM is that of clusters of galaxies, where several
independent observational measures for the mass distribution within the cluster point to the existence
and properties of a non–luminous matter component [9, 10]. The velocity dispersion of the galaxies
in the cluster, as well as the temperature of the cluster’s gas content observed via its X–ray signature,
are functions of the gravitational potential; a measurement of the velocity dispersion or the X–ray
spectrum, therefore, allows for probing the matter content of the lensing cluster. The gravitational
lensing effect further delivers an independent measurement of the total mass contained in the cluster.
Independent mass measurements of galaxy clusters yield a mass that is larger than that explained by
the baryonic matter content of the cluster.

On the scale of galaxy clusters, a somewhat special role is reserved for the “bullet cluster” system; a
high–velocity (hence the term “bullet”) encounter of two galaxy clusters. At impact, the luminous
baryonic gas content of the two clusters interact, pushing back and therefore heating up one another as
observed from their X-ray emission; gravitational lensing observations, however, reveal a dominant
contribution of non-luminous matter in each cluster undisturbed by the impact, resulting in the DM
distribution being displaced relative to the baryonic matter distribution. The latter observation has
been used to derive an upper bound on the strength of DM self–interactions parameterized as the
DM–DM interaction cross section of 𝑄DM – DM #O (1 b) 𝑅DM/1 GeV [11].

Finally, evidence for the existence of DM on cosmological scales is found in the CMB anisotropy
data [3]; as mentioned earlier, the CMB is predicted by the ωCDM to provide us with a snapshot of
the universe at a temperature 𝑂 ∼0.3 eV. The angular spectrum of these anisotropies provides us with
our most precise measurement of the abundance of DM in the universe. The result can be formulated
as the present–day fraction of DM (see e.g. the review on cosmological parameters in [1])

εDM𝑆
2 = 0.1198 ± 0.0012, (1.1)

where εx is defined as the ratio of the energy density of a component x and the critical energy density
𝑇C of a spatially flat universe. Together with luminous baryonic matter εB, relativistic photon radiation
εR, neutrinos ε𝐿 and the cosmological constant εω, they provide the critical density for a spatially
flat universe, formulated as ∑

x

εx𝑆
2 = 1. (1.2)

The dimensionless parameter 𝑆, defined as the Hubble expansion rate in units of 100 km/sMpc,
encodes the uncertainty in the expansion rate of the universe and applies universally to all contributing
components 𝐿; the current measurements are in tension but imply 𝑆 ∼0.7 [12]. As mentioned before,
the cold DM further allows for the growth of structures following from the anisotropies already present
at the CMB decoupling.
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Chapter 1 Introduction

1.2 Dark matter candidates, production, and detection

The established presence of a DM component in the universe provides an unequivocal signature
for BSM physics and model building. One, therefore, needs to extend the SM to provide one or
more massive species that are stable on cosmological time–scales and interact weakly with the SM
particles; criteria that depend on the nature and particle interactions of the DM species. A DM model
must additionally reproduce the precisely measured abundance (1.1) of cold relics, i.e., DM particles
that are nonrelativistic by the onset of the process of structure formation at a temperature 𝑂 ∼1 eV.
Satisfying the latter two criteria relies not only on the DM species and its interactions but also on the
evolution history of the universe and the DM production mechanism.

A plethora of BSM models and production mechanisms have been proposed to address the
shortcomings of the SM and the ωCDM. An indicator for the diversity of proposed DM models
is the wide available mass–range: as an example, fuzzy DM models, with bosonic dark matter
as light as 10−22 eV [13, 14], have been proposed to produce light relics via a misalignment
mechanism. On the other hand, primordial black hole (PBH) candidates as heavy as 1 × 103 M$,
with 1 M$ ≡ (1.9884 ± 0.0002) × 1030 kg [1] denoting a solar mass, are devised to form by the
gravitational collapse of overdense regions (density fluctuations) of the cosmic fluid [4, 5].

A subgroup of proposed BSM extensions have the advantage of simultaneously addressing or
explaining several observations, and are therefore sometimes considered to be better motivated. An
example of such models is the theory of supersymmetry (SUSY) (see e.g. the review section in [1]);
addressing, among other issues, the “hierarchy” problem of the SM, while at the same time providing
a viable DM candidate in the form of the lightest supersymmetric particle (LSP) whose stability is
guaranteed by symmetry. Typical supersymmetric DM models predict the LSP to have a mass in the
range 100 GeV – 10 TeV, and serve as a well–motivated realization of weakly interacting massive
particles (WIMPs): new particles with mass and interaction strengths of weak–scale physics.

WIMPs arise in many BSM scenarios and, under generic circumstances, reproduce a relic abundance
in the ballpark of the observed value (1.1), earning the title of the WIMP miracle. The corresponding
production mechanism, the thermal freeze out (FO) (see e.g. [15]), starts with the DM in thermal
equilibrium with the luminous component of the universe at temperatures larger than the WIMP mass.
As the universe cools down to a temperature below the mass, WIMP particles continue annihilating
into lighter particles from the visible sector; the annihilation reduces the number of WIMP particles
and, consequently, the rate of the annihilation process until the annihilation process is effectively
stopped by the ongoing cosmic expansion. A population of WIMPs thus freezes out to provide the
relic abundance (1.1). It is important to note that unlike the case of fuzzy DM or PBHs, the FO starts
with a thermal population of DM and is in this sense independent of initial conditions the universe
might have at earlier times.

The relatively sizeable interactions of the WIMP with the visible sector allow us to search for
them in terrestrial and astrophysical experiments (see e.g. [5]). Direct detection experiments look
for the signal resulting from the DM particles interacting with the detector to transfer a fraction of
its momentum to the detector material. Indirect detection experiments look for a signal in visible
particles resulting from the annihilation of DM particles. Finally, collider experiments aim to detect
signatures of DM particles being produced in the high–energy interactions of SM particles at particle
colliders. A collection of direct, indirect, and collider experiments have failed to detect (or managed
to exclude) a large fraction of well–motivated WIMPs [16]; while this tension does not mean that
WIMPs are ruled out, it does motivate modifying and going beyond the WIMP paradigm.
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1.3 Cosmological expansion history

One available avenue for modifying the thermal WIMP paradigm is to relax the criterion of the DM
starting out in thermal equilibrium with the visible sector. Assuming that the DM’s interactions with
the visible sector are too “feeble” for it to ever reach thermal equilibrium, one may gradually freeze in
(FI) a population of feebly interacting massive particle (FIMP) from the interaction of the SM particles
in the thermal bath [17]. The production continues until the cosmic expansion and cooling cut off the
production at a temperature slightly below the FIMP’s mass. Such a FI population of FIMPs could
once again be independent of initial conditions, and could arise generically in some BSM scenarios. A
key feature of FIMPs is that the feeble coupling required by the production mechanism will also make
an observable signal considerably weaker, allowing it to evade the constraints applying to the WIMP.

Another possible variation to the DM production we have not yet addressed arises from modification
to the cosmological expansion history [18]; note that cosmological expansion and the resulting cooling
play a key role in both FO and FI mechanisms as discussed. As an example, If one were to increase the
rate of expansion during the process of FO, the DM annihilations to the visible sector would become
less efficient, resulting in an enhancement of the produced population of DM from FO; If the enhanced
rate of expansion is to result from a nonrelativistic component, however, the produced number density
can get strongly diluted by the eventual decay of these particles, leading to a suppression of FO
relic density. With the DM content of the universe being fixed (1.1), the latter suppression can be
balanced out by a larger FO production i.e. a heavier WIMP with weaker couplings to the visible
sector. Such cosmological histories, therefore, open up new regions in the parameter space for the
scrutinized thermal WIMPs. Interestingly, an enhanced rate of expansion affects the thermal FI in the
opposite direction; an enhanced expansion rate during FI production results in a smaller accumulation
of FIMPs which is then further suppressed by entropy dilution after FI. The suppression can again be
compensated by larger FI production corresponding to larger interactions of the FIMP with the visible
sector. The modified expansion history, therefore, improves the detection perspectives for FI DM at
experiments [19].

We have so far remained agnostic to the mechanism responsible for changes to the expansion history
of the universe, while the different potential candidates, e.g., extra light degrees of freedom (DoF),
extra matter component, etc., affect the cosmic history differently. It is therefore helpful to study the
variety of possible expansion histories and how it can affect other cosmological processes, and in
particular, the production of DM.

1.3 Cosmological expansion history

We saw that extending the SM by extra stable particles allows for a solution to the DM problem and
allows the ωCDM to describe observations such as cosmological structure formation or features of the
CMB. Similarly, one may extend the standard model of cosmology by including new components and
phases, to address the observations that are not explained within the ωCDM.

The theory of cosmic inflation, i.e., an early period of accelerated expansion of the universe, is the
most prominent extension of the ωCDM. According to the theory of inflation, the universe underwent
a phase of accelerated superluminal expansion at very early times. The expansion stretches a small
patch of a pre-existing vacuum by more than 60 e–folds (see e.g. the review on inflation in [1]). In
this picture, the “causally independent” patches of the present universe have been in causal contact
before the end of inflation, a fact reflected in the high degree of isotropy in the CMB; this provides an
explanation for the horizon problem of the ωCDM. The flatness of the universe is similarly explained
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Chapter 1 Introduction

to result from the enormous stretching resulting from the exponential expansion. As mentioned earlier,
the inflationary paradigm further uses the quantum fluctuations of fields during the inflation to “seed”
the primordial density perturbations imprinted in the CMB and the cosmic structure data.

The inflationary paradigm allows for a large variety of models and constructions. In a typical
slow–roll realization of inflation, the exponential expansion results from the flat potential of a scalar
field, i.e. the inflaton, dominating the energy density of the universe; the result mimics a cosmological
constant and can further be written as a fluid with the equation of state

𝑈 ≡ 〈𝑉〉
〈𝑇〉 (1.3)

of 𝑈 ≈ −1, where 𝑉 denotes the pressure of a fluid with a corresponding energy density 𝑇, and 〈. . .〉
denotes spatial averaging1. Inflation ends when 𝑈 departs significantly from −1, corresponding to the
scalar field leaving the flat section of the potential to settle in the minimum of the potential function.
The subsequent evolution of the composition of the universe (1.2) as described by the ωCDM involves
the universe being dominated by radiation with 𝑈 = 1/3 at BBN, followed by the domination of dark
and luminous matter with 𝑈 = 0 before finally entering the present era of accelerated expansion with
𝑈 = −1.2 3

The inclusion of an inflationary era, therefore, calls for an eventual reheating (RH): the transfer
of energy from the inflaton field to mostly visible relativistic particles in order to repopulate the
universe with radiation with an equation of state 𝑈 = 1/3. The reheated universe will subsequently
expand subluminally to shape the present observable universe. A widely–studied realization of post–
inflationary dynamics involves the inflaton oscillating around the potential minimum with a dominant
quadratic mass term; the oscillating field mimics a matter component with𝑈 = 0 dominating the energy
density of the universe. The massive inflatons eventually decay perturbatively and predominantly
to “light” relativistic visible sector particles to reheat the universe. This basic scenario, therefore,
predicts a period of early matter–dominated era (EMD) after the end of inflation and prior to RD. In
the simplest case, the RD phase at the end of inflation persists through the BBN, in which case the
scenario is often referred to as a “standard cosmological history”.

The details of the inflationary model, and therefore the expansion history of the universe prior to
reheating, are strongly model–dependent. The form of the inflationary potential could, e.g., disallow a
quadratic form, and therefore, an effective inflaton mass. This could result in the inflaton condensate
mimicking a radiation component with 𝑈 = 1/3 leading to an RD state [23]. While such scenarios
still rely on a reheating phase to populate the SM radiation component of the universe, an inflationary
EMD phase could be absent. Another key aspect of inflationary models is the coupling of the inflaton
to other bosonic and fermionic fields (see e.g. section 2.1.2 in [20] and references therein). A coupling
to bosonic species can lead to efficient resonant particle production and the transfer of energy from
the inflaton to a radiation component via the non–linear preheating process. A sizable fraction of the
energy density of the inflaton field can be converted to radiation before the “parametric resonance”

1 For an overview of fragmentation phenomena potentially leading to large spatial inhomogeneities and the effect on the
equation of state parameter see e.g. [20]

2 As 𝑈 = −1 represents both the late accelerated expansion era dominated by the cosmological constant component, as well
as the inflationary period, similar constructions, known as quintessence [21] models, have been suggested to explain the
late–time accelerated expansion. For an overview of the topic, see e.g. the review on dark energy in [1].

3 For completeness, see also the recently emerging results from [22], reportedly pointing to dynamical dark energy.
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1.3 Cosmological expansion history

behavior is disrupted by backreaction and decoherence effects. The fraction of energy left behind in
the inflaton field will in the most general case again constitute a matter component with 𝑈 = 0. An
interesting expansion history results from a long–lived subdominant population of massive inflaton
particles surviving an efficient resonant production of radiation. The inflation, in such a scenario,
ends in an era of RD, while the subdominant matter contribution will get to dominate the universe at
later times due to its softer equation of state. As before, the matter component should decay prior
to the BBN to be consistent with observations. The result is an intermediate matter–dominated era
(IMD); a matter–domination (MD) era proceeded and followed by RD eras [24].

IMDs are further motivated by post–inflationary physics [25]. A large class of BSM physics models
predict new scalar fields (sometimes referred to as moduli irrespective of their physical origin) initially
displaced from their effective potential minima in an RD universe and at high temperatures. The
moduli approach their minima at late times, mimicking a matter equation of state, and therefore get
to dominate the energy density of the universe prior to their decay, should they live long enough.
Incidentally, moduli decays typically rely on gravitational interaction, so that “light” (as compared
to the scale of the high–energy BSM theory) moduli can be sufficiently long–lived; as a matter of
fact, the long lifetime and post BBN decay of the moduli is often regarded as a potential problem to
be addressed in BSM model–building [26]. Other realizations of an IMD rely on FO or FI of heavy
long–lived states from the thermal bath or from inflation decays. Even if initially subdominant, these
decoupled contributions once more grow merely due to the matter equation of state; moreover, the
decoupled sector can acquire [27] and develop 4 its own temperature, e.g. due to number changing
processes, affecting the onset of matter equation of state in the decoupled sector and therefore the
IMD.

A dominant matter component present prior to the BBN potentially affects the cosmological history
and observations in multiple ways [20]. As mentioned earlier, the change in the expansion rate of the
universe affects the efficiency of DM production from FO and FI. The different equation of state further
allows for the linear growth of density perturbations during the MD era; if these perturbations survive,
they may modify the matter power–spectrum at small scales or allow for more efficient formation
of PBHs from large overdense regions. Modifications of the cosmological expansion history further
affect the reentry time of density perturbation modes into the Hubble horizon; the latter results in
modifications in the CMB and serves to potentially constrain deviations from the standard cosmic
history.

In cosmological histories with an EMD phase, a special role is reserved for the eventual out of
equilibrium (OoE) decays of the matter component. In addition to the dilution of DM abundance
discussed above, the entropy dilution resulting from matter decays similarly affects the matter
asymmetry parameter and allows for models of large baryon and lepton asymmetry production prior to
matter decays [28]. In fact, the generation of matter asymmetry requires OoE processes as one of the
Sakharov conditions for the successful generation of matter asymmetry; CP–violating OoE decays of
the matter component are therefore often used as a key component of models of matter asymmetry
production.

In a majority of models with a MD era the matter component consists of “heavy” particles; i.e.
particles with a mass much larger than the temperature of the radiation component. Decays of the
matter component, therefore, result in non–thermal OoE visible sector particles with energies much
larger than their counterparts from the thermal radiation bath. In order not to interfere with the

4 See e.g. section 2.3.3 of [20] and the references therein.
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Chapter 1 Introduction

success of BBN, the standard cosmological history requires the radiation component to have a thermal
distribution prior to the BBN. The OoE decay products are, therefore, required to attain thermal
equilibrium in a process of thermalization to reach kinetic and chemical equilibrium with the thermal
bath.

1.4 Thermalization of matter decay products and dark matter production

In the previous section, we established the appearance of an EMD in generic cosmological histories,
without the need for parameter “fine–tuning”. At the end of the MD era, the matter component of mass
𝑊 is bound to decay to highly–energetic (HE) visible sector particles to reheat the SM radiation bath
of temperature 𝑂 . The scale 𝑊 is typically much larger than that of the SM particle masses so that
the initial decay products constitute an OoE radiation component with particle energies well above 𝑂 .
Moreover, the chemical composition of the initial decay products depends strongly on the coupling
between the matter component and the visible sector species and can, therefore, largely deviate from
that of the standard thermal bath of temperature 𝑂 .

As an example, let us assume that at the end of the EMD era, the matter particles of mass 𝑊 undergo
two–body decays into an electron–positron pair with energies 𝑊/2 * 𝑂 . The thermal radiation bath
at the time of the decay will consist of all visible sector particles 𝑋 with masses 𝑅𝑀 ! 𝑂 . In order
to reach thermal equilibrium, the electron–positron pair of energy 𝑊/2 need to be replaced with
O (𝑊/𝑂) SM particles, each with an energy of O (𝑂); moreover, the initial electron–positron pair
needs to be replaced by a collection SM particles.

The process of thermalization of HE decay products involves the production of many new particles,
and the redistribution of energy from the HE particles to the particles in the radiation thermal bath
(TB). The dynamics of the thermalization process, therefore, relies on the particle processes dominated
by the SM particles and interactions. On the other hand, apart from the effects of the decaying matter
component, the post–inflationary cosmological evolution of the TB is governed by the gravitational
expansion of the universe and, therefore, at a typically much smaller rate in comparison to the SM
particle processes.

The strong hierarchy between the SM thermalization particle rates and the rate of cosmic expansion
has motivated the treatment of instantaneous thermalization 5 . In this framework, so long as one
is interested in the evolution of the TB as a whole, one may assume the energetic decay products to
be instantaneously replaced by a thermal distribution of visible sector particles. The assumption of
instant thermalization has been widely used to study a variety of cosmological phenomena and in
particular in the study of DM production in an EMD era [29–31]. Within this assumption, the effect
of MD era is effectively reduced to modifications of the expansion rate; the reheating process and the
decay of the matter component are similarly reduced to a process of entropy injection or production of
secondary particles as direct decay products of the decaying matter component.

In reality, the process of thermalization will occur with a finite rate and, therefore, on a finite
thermalization time–scale given by the visible sector particle interactions. Consequently, the
instantaneous thermalization treatment is likely to break down once we are interested in the study of
processes occurring on time–scales comparable to that of thermalization. Before their thermalization
is complete, HE decay products form a population of OoE visible sector particles with energies larger

5 Not to be confused with instantaneous reheating, denoting a scenario where the energy contained in the inflaton/matter
component is instantanouesly converted, e.g. via decays, to a relativistic radiation component.
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1.4 Thermalization of matter decay products and dark matter production

Figure 1.1: Schematic of 2 → 3 “splitting” process for a high energy particle (left incoming) interacting with a
particle from the TB (red blob) to split into two outgoing particles (outgoing right), increasing the number of
particles by one. The thickness of the lines is meant to imply a larger incoming energy being distributed among
the two outgoing particles.

than that of the TB. Similar to SM particles within the TB, these visible sector particles can therefore
contribute to many cosmological processes of interest.

The thermalization process relies on the interactions of the HE decay products with other particles
in the environment to produce new particles and redistribute energy. As these particles belong to the
visible sector, they are able to partake in a large variety of elastic and inelastic interactions. A first step
towards studying the thermalization process would then be to find a small subset of particle processes
with the largest contribution. As the SM is a weakly coupled theory in the early universe, one may
systematically classify the many contributing processes by their order in the perturbation theory 6.

A natural starting point is the study of 2 → 2 processes as they are of the lowest order in the weak
couplings of the SM. Elastic and inelastic 2 → 2 processes allow the HE decay products to transfer
part of their energy to the soft particles from the TB; inelastic 2 → 2 processes additionally allow the
particle composition the OoE particles to change. Historically, 2 → 2 processes were considered to
be the primary means of thermalization [32, 33]; a closer look at the dynamics of 2 → 2 processes,
however, reveals them as an inefficient means of energy transfer between the HE particles and the TB.
The reason is that the large energy of the OoE particles suppresses the rate of the majority of 2 → 2
processes; an exception for this rate–suppression is provided by the forward limit of elastic scattering
processes mediated by massless gauge bosons. In the latter processes, the rate of the process becomes
independent of the energy of the OoE particles; the absence of rate suppression comes, however, at the
price of the negligibly small momentum transfer associated with a forward scattering process, so that
the contribution to the thermalization process is once again suppressed.

The next logical choice for energy transfer is the 2 → 3 process where the HE particle interacts
with the TB to emit a new particle. The most efficient 2 → 3 process of energy transfer between the
OoE particles and the TB turns out be a 2 → 3 “splitting” process shown schematically in Fig. 1.1 7.
The particularly efficient 2 → 3 splitting process is closely connected to the forward 2 → 2 scattering
process mediated by a gauge boson; the “parent” HE particle (incoming left) can be thought of as
undergoing forward elastic 2 → 2 scattering with TB particles (red blob) to split into two daughter
particles each carrying a fraction of the parent particle’s energy (outgoing right). Note also that, in
contrast to the 2 → 2 processes, a splitting process simultaneously increases the number of OoE
particles as expected from a successful process of thermalization.

The 2 → 3 splittings owe their unique role in thermalization to the fact that they can redistribute a
large fraction of the parent particle’s energy without relying on a large momentum transfer through the
intermediate gauge boson; the small momentum transfer puts the parent particle slightly off–shell,
allowing it to split into to highly collinear daughter particles. It is worth noting that the line of

6 This is of course only viable so long as we are interested in a study of perturbative phenomena; nonperturbative sphaleron
processes , e.g., would not be possible in a purely perturbative framework.

7 The spin nature of the particles in the schematic diagrams in the introduction are not discussed or displayed, so that the
solid lines do not correspond to fermionic species, but rather generically represent particles.
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Figure 1.2: Reproduced from [37]; an intuitive explanation of the physical origin of the LPM interference;
when two splittings of the incoming HE particle occur closely (i.e. within a formation time), the radiation fields
(green) from the two potential splitting events overlap and interfere.

reasoning used to motivate the study of 2 → 3 splitting processes for the process of thermalization
of HE decay products relies solely on particle physics aspects of the SM and quantum field theory
(QFT); as a result, the same physics of collinear splittings can be responsible for the process of energy
loss of HE particles in physical setups other than the early universe thermal plasma. Examples of
these are the process of energy loss for HE cosmic–ray particles in the atmosphere or the process of
thermalization for HE partons in heavy ion collision (HIC) experiments [34].

In all cases discussed above, the HE particles propagate through a medium of particles of lower
energy. Interactions of particles with a background medium are known to affect their dynamics and
interactions. One such effect is the appearance of an effective thermal mass for particles propagating
in a thermal plasma. Another important effect, particular to particle production in a medium, is
that the high degree of collinearity of the daughter particles in collinear splittings results in these
processes being prone to the Landau–Pomeranchuk–Migdal (LPM) effect [35, 36]: a parametric
suppression of the splitting rate as compared to that in vacuum. The LPM suppression results from a
destructive interference among multiple coherent splitting processes associated with scatterings of the
HE particles off different particles, i.e. scattering sites, from the medium. Fig. 1.2, reproduced from
[37], shows an intuitive schematic of the interference effect among two collinear splitting processes
for the case of a HE incoming (blue wave–packets) scattering off two medium particles (red blobs) to
emit two new particles (green wave–packets) via the splitting; in this schematic, the finite transverse
width of the wave–packets are represented by the blue and green blobs. For consecutive splittings
occurring within a specific time–window (the formation time), the collinear radiation fields overlap
and interfere, resulting in a suppression of the splitting rate.

The LPM effect was first formulated to describe the suppression of electromagnetic showering for
HE cosmic rays and was only later further studied in the context of the physics of the quark–gluon
plasma (QGP) and studies of HIC [38]. As highly collinear splittings also underlie the process of
energy loss of HE decay products in the early universe plasma, the inclusion of the LPM effect is
crucial for a correct treatment of the thermalization process. Studying the thermalization process of
HE decay products in the early universe is somewhat complicated by a number of factors. A first
observation is that at high temperatures of the early universe all the particles and interactions of
the unbroken SM contribute to the composition and interactions of the OoE sector and the TB; in
comparison, studies of thermalization in HIC experiments typically focus on photons, gluons, and
light quarks. Moreover, the mass, decay rate, and decay channels of the matter component are strongly
model–dependent; this results in a relatively large number of free parameters that need to be considered
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1.4 Thermalization of matter decay products and dark matter production

in studying the thermalization process of matter decay products in early universe cosmology. The
large number of parameters becomes particularly important as the study of thermalization results in
equations that need to be solved numerically.

Previous works in the field [39–42] have used simplifying assumptions to study the thermalization
process in order to find the properties of the OoE particles resulting from matter decays. One
simplification method is to restrict one’s attention to a single particle species instead of the full set of
the SM particles; gluons of the non–abelian 𝑀𝑁 (3)𝐿 are the natural choice for this single–species
treatment as they possess the largest self–couplings and gauge multiplicities in the SM. Furthermore,
one may choose to find approximate analytical solutions for the energy distribution of the single–species
population of OoE particles; this simplified analysis results in a spectrum of OoE particles of the form

d𝑌 (𝑉)
d𝑉

∝
(
𝑉

𝑊

)−3/2
, (1.4)

with 𝑌 (𝑉) the number density of OoE particles (gluons) of energy 𝑉 < 𝑊/28 ; as before, 𝑊 represents
the mass of the decaying matter component. The spectrum (1.4) shows a power–law increase in the
number of OoE particles as they lose energy in the thermalization process. As mentioned before, such
a spectrum can be used to study cosmological processes involving the OoE population of thermalizing
decay products. While an approximate single–species solution as in (1.4) can be used to estimate and
study the general behavior of cosmological processes, a precision treatment of these calls for more
realistic spectra of all SM particles. This can, e.g., be well understood in the example of non–thermal
DM production.

In one typical realization of the FI mechanism introduced in section 1.1, the gradual production
of DM proceeds via the 2 → 2 scatterings of particles from the TB. Production stops once the
temperature 𝑂 of the TB drops below the mass of the DM; at lower temperatures, the initial states
either lack the energy required for the production of DM or are suffer a strong Boltzmann suppression
of their number densities. In scenarios where FI occurs during MD, the subsequent entropy production
from matter decays dilutes the DM abundance as outlined in section 1.1. On the other hand, the OoE
population of visible sector particles resulting from matter decays have energies larger than 𝑂 prior to
their full thermalization; they can, therefore, contribute to DM production via the very same 2 → 2
process as before, long after the regular thermal FI is inactive. Moreover, as the latter production from
OoE particle proceeds at later times, the produced DM will experience a smaller entropy dilution.
The combined effect is then that OoE particles resulting from the thermalization of HE matter decay
products can play a significant role in providing the correct DM abundance; this in turn allows one to
study new regions of DM model parameter space and cosmological histories involving an MD period
[19].

As discussed in section 1.2, the coupling between the dark and visible sectors is strongly model–
dependent. As an example, “leptophilic” DM models assume that the dark sector primarily couples to
one or more generations of the SM leptons [43]. Another family of models use the “Higgs–portal”
[44] to couple the dark and visible sectors; the DM candidate couples directly to the Higgs, while
all SM particles with a coupling to the Higgs can contribute the production or annihilation of DM
particles. These two examples showcase how studying the non–thermal FI production of DM can
crucially rely on a knowledge of the OoE spectra of all SM particles.

8 The factor of two in the limit 𝑉 < 𝑊/2 stems from an assumption of two body decays of the matter component of mass
𝑊 at rest.
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In this thesis, we will work toward a description of the thermalization process involving the various
particles and interactions of the SM; as we will see, even though the number of possible interactions is
rather large, one can use kinematical arguments, the hierarchies of couplings, and the symmetries of
the SM to reduce the number of variables in the problem.

This thesis is structured as follows: in Chapter 2 we will introduce the basic theoretical tools
underlying and used throughout the thesis; these include the Friedmann–Lemaître–Robertson–Walker
(FLRW) universe, physics of the thermal radiation plasma at equilibrium, and effective kinetic theory
treatment of particle interactions in the presence of a thermal plasma. We will then turn to the problem
of thermalization of a single species of HE particles in Chapter 3, where we will find convenient
parameterization of the problem, as well as an exact numerical solution for the single–species spectrum
of OoE particles. We further present an example of how our results from this chapter could be used in
the study of non–thermal DM production. In Chapter 4, we find an economic path to including more
SM particles in the thermalization process; we then extend our single–species parameterization and
numerical solution to include these multiple species and discuss the effect of various cosmological
model parameters on the spectrum of OoE particles. Finally, we summarize and exemplify how our
extended results could be used in the calculation of cosmological observables, in histories involving
the thermalization of HE decay products. An overall summary of the thesis is given in Chapter 5.
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CHAPTER 2

Physics of the early universe plasma

Hot big bang cosmology describes a universe starting in a hot and dense state of relativistic particles;
the universe expands and cools down to eventually form the present–day observable universe. The
evolution of the universe can, therefore, be broadly thought of as resulting from the interplay of the
dynamics of space–time, i.e. the expansion history, and that of the particles and fields living in that
space–time. In this chapter, we will introduce the essential theoretical tools required to study the
evolution of the early universe plasma in an expanding universe.

We will follow a number of textbooks and lecture notes on different subjects. For the sake of brevity,
we merely cover the essential topics; the reader is advised to consult the references for in–depth
discussions. We follow [15, 47] through Sections 2.1 to 2.3; our discussions of thermal field theory
and coherent effects in Sections 2.4 and 2.5 closely follow [48] and [49].

Although part of the tools introduced in this chapter are also applicable to the later stages of the
expansion history, we will be mainly dealing with the physics of the “early universe”; a term we
often use, in this thesis, to refer to the universe prior to the onset of the electroweak spontaneous
symmetry breaking (SSB). We will therefore be dealing with the unbroken gauge group of the SM and
the massless spectrum of SM particles in vacuum. As another remark, note that the time–dependence
of parameters (scale factor, Hubble parameter, etc.) is often suppressed for brevity, and also that
throughout Chapter 2, we may use 𝑉 to refer to both pressure of a cosmic fluid and momentum of
particles; the relevant quantity will be explicitly mentioned and also clear from the context. Finally,
when we are comparing or combining parameters, keep in mind that we are using natural units so that
e.g. the momentum of a particle is directly comparable to its temperature.

2.1 The Friedmann–Lemaître–Robertson–Walker universe

Our modern understanding of the dynamics of spacetime is formulated by Einstein’s theory of general
relativity (GR). The object of interest in studying the evolution of space–time in cosmology is the
metric tensor; a study of the evolution of space-time is, therefore, equivalent to the study of the
evolution of the metric tensor. The study of the metric tensor in cosmology is greatly simplified by the
observation that the observable universe appears to possess a large degree of spatial homogeneity and
isotropy on finitely large length–scales. The high degree of symmetry restricts the allowed form to that
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of the Friedmann–Lemaître–Robertson–Walker (FLRW) metric

d𝑋2 = d𝑃2 − d𝑍2 = d𝑃2 − 𝑎
2 (𝑃) 𝑏𝑂 𝑃d𝐿

𝑂d𝐿 𝑃
. (2.1)

In eq. 2.1, 𝑃 denotes the time component, d𝑍2 is the spatial length element in the comoving frame
further written in terms of 𝑏𝑂 𝑃 , the corresponding metric for the maximally symmetric 3-space with
coordinates 𝐿𝑂. As conventional, we have used Latin indices to denote the three spatial coordinates
and reserved Greek letters for space–time indices. In (2.1) the comoving coordinates have been used
to write down the metric so that, if undisturbed, particles at rest in these coordinate system at one
instant will remain at rest during the subsequent expansion of the universe; the form of (2.1) further
implies that for stationary particles the coordinate time coincides with the proper time. Throughout
this thesis, we will consider the comoving frame as the rest–frame of the content of the universe.

The information about the geometry of the FLRW metric in (2.1) is contained in the spatial metric,
expressed in spherical coordinates (𝑐, 𝑑, 𝑒) as

d𝑍2 =
d𝑐2

1 − 𝑓𝑐
2
+ 𝑐

2
(
d𝑑2 + sin2

𝑑 d𝑒2
)
, (2.2)

where the curvature 𝑓 , normalised to be 𝑓 ∈ {+1, 0,−1}, parameterises a closed (spherical), flat
(planer), or open (hyperbolic) 3-space respectively. Cosmological observations are consistent with a
flat universe so that we will focus on a expanding flat universe for the remainder of this thesis [3, 15].

Finally, the time evolution of an FLRW universe is encoded in the scale factor parameter 𝑎 (𝑃) as
the only space-time dependent element of the metric. In this language, the dynamics of the expansion
of the universe corresponds to the dynamics of the scale factor 𝑎 (𝑃). In the case of the flat FLRW
universe, the numerical value of the scale factor is unphysical; instead, the Hubble parameter

𝑔 (𝑃) =
.𝑎 (𝑃)
𝑎 (𝑃) , (2.3)

carries a physical significance, namely that of the expansion rate of the universe; in eq. 2.3 we have
used the convention with a dot denoting a temporal derivative with respect to the coordinate 𝑃 of (2.1).
As we will see shortly in Section 2.2, the rate of expansion is governed by the contents of the universe;
as such, in this thesis we will often trade the scale factor for other parameters, e.g., the temperature of
the thermal plasma filling up the universe.

With the form of the FLRW metric at hand, one may proceed to study the kinematics of a particle
propagating in the FLRW universe; our main point of interest will be the effect of cosmological
expansion on the freely propagating particles in an FLRW universe. Let us showcase this by following
a massive particle of mass 𝑅, and four–velocity

𝑕
𝑄 =

d𝐿𝑄

d𝑋
. (2.4)

Such a particle will have a physical three momentum

𝑉
𝑂 = 𝑅 𝑎 (𝑃) 𝑕𝑂 . (2.5)

The geodesic equation, describing the free (fall) motion of a particle in a spacetime of a given metric
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reads
d𝑕𝑄

d𝑋
+ ϑ𝑄

𝑅𝑆 𝑕
𝑅
𝑕
𝑆 = 0, (2.6)

where one then needs to calculate the Christoffel symbols

ϑ𝑄
𝑅𝑆 =

1
2
𝑖
𝑄𝑇 (

𝑗𝑅𝑖𝑆𝑇 + 𝑗𝑆𝑖𝑅𝑇 − 𝑗𝑇𝑖𝑅𝑆

)
, (2.7)

corresponding to the metric 𝑖 of (2.1), to get the explicit form for the equation of motion

d𝑕𝑂

d𝑋
+ 2

.𝑎
𝑎

d𝑃
d𝑋

𝑕
𝑂 = 0. (2.8)

One may then use eq. 2.5 and eq. 2.3 to rewrite eq. 2.8 in the form

d𝑉𝑂

d𝑃
= −𝑔 (𝑃) 𝑉𝑂 −→ 𝑉

𝑂 =
constant

𝑎 (𝑃) . (2.9)

Equation 2.9 describes how the physical momenta of massive particles redshift due to the growth of
the scale factor 𝑎 (𝑃) and with a rate given by the Hubble expansion parameter. As the main focus of
this thesis will be following the time evolution of the momenta of various particles, the Hubble rate
will often appear as a point of reference. As a side note, it should be pointed out that the same result
holds for the momentum redshift of massless particles so that we will often treat the Hubble redshift
of all relativistic species on the same footing.

2.2 The Friedmann Equation

In the previous section, we introduced the kinematics of the FLRW universe, dictated by the large
degree of symmetry of the observable universe on large scales. The temporal evolution of spacetime
and kinematics of freely propagating particles was contained in the Hubble parameter or, equivalently,
in the scale factor 𝑎 (𝑃). We now turn to the dynamics of spacetime and what determines its expansion
rate. The starting point is the celebrated Einstein’s equation

𝑘𝑄𝑅 −
1
2
𝑖𝑄𝑅𝑘 = 8𝑙𝑚N𝑂𝑄𝑅 , (2.10)

where the Ricci tensor 𝑘𝑄𝑅 and scalar 𝑘 on the LHS are given by

𝑘𝑄𝑅 = 𝑗𝑆ϑ
𝑆
𝑄𝑅 − 𝑗𝑄ϑ

𝑆
𝑅𝑆 + ϑ𝑆

𝑄𝑅ϑ
𝑇
𝑆𝑇 − ϑ𝑆

𝑄𝑇ϑ
𝑇
𝑆𝑅 , 𝑘 = 𝑖

𝑄𝑅
𝑘𝑄𝑅 . (2.11)

The Christoffel symbols were introduced briefly in eq. 2.7 and Newton’s constant 𝑚N on the RHS of
eq. 2.10 is often traded for the reduced Planck mass defined as 𝑊Pl ≡ 1/

√
8𝑙𝑚N # 2.4 × 1018 GeV;

we will later use the relative large value of the Planck mass to argue for simplifying assumptions. The
energy–momentum tensor 𝑂𝑄𝑅 encodes the various components introduced in eq. 1.2; on cosmological
scales and for our assumed homogenous and isotropic universe, this content is described by a collection
of perfect fluids with energy density 𝑇 and pressures 𝑉 so that 𝑂00 = 𝑇 in (2.10) gives the total energy
density contained within the universe; the spatial components are 𝑂

𝑂 𝑃 = 1
𝑈2 𝑏

𝑂 𝑃
𝑉 with 𝑉 being the
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corresponding pressure of the cosmic fluid.
One may use eq. 2.11 to calculate the Ricci tensor and scalar corresponding to the metric (2.1) and

feed them into the Einstein equation (2.10). Assuming a flat universe (see eq. 2.2) and keeping in
mind that the scale factor parameter encodes the kinematics of spacetime, the evolution of the flat
FLRW universe is governed by the Friedmann equation

𝑔
2 =

(
.𝑎
𝑎

)2

=
𝑇

3𝑊2
Pl

. (2.12)

Given the energy content of the universe, the Friedmann equation allows for the determination of
the evolution of the scale factor 𝑎 (𝑃); the single missing piece for a solution of 𝑎 (𝑃) is then the
time-dependence of 𝑇 on the RHS of eq. 2.12. The latter follows from a covariant conservation law
for the energy–momentum tensor corresponding to each component of the universe

∇𝑄𝑂
𝑄0 ≡ 𝑗𝑄𝑂

𝑄0 + ϑ𝑄
𝑄𝑇𝑂

𝑇0 + ϑ0
𝑄𝑇𝑂

𝑄𝑇 = 0. (2.13)

With the temporal and spatial components of 𝑂 given in terms of 𝑇 and 𝑉, the conservation law (2.13)
reads

.𝑇 + 3
.𝑎
𝑎

(𝑇 + 𝑉) = 0; (2.14)

note that the 𝑇 and 𝑉 of a given component, i.e., matter, radiation, etc., are related through the equation
of state parameter 𝑈 introduced in Section 1.3 and are not independent. Combining equations 2.14
and 1.3 implies that a larger equation of state corresponds to a faster diminishing of the corresponding
energy density resulting from the cosmic expansion. An important example is given for the case of
radiation with 𝑈 = 1/3 resulting in 𝑇R ∝ 𝑎

−4; this can be nicely understood as resulting from the
number density of particles in a 3–dimensional space reducing like 𝑎

−3 along with the momentum
redshift 𝑎−1 behavior established in eq. 2.9. It is further worth mentioning that, for a universe
composed of multiple components (see eq. 1.2), the conservation relation (2.14) also holds for the
individual components separately, so long as these do not interact, e.g. through the decay of a matter
component into radiation.

The Friedmann equation 2.12, together with the conservation law eq. 2.14, are solved to find the
expansion history of the universe, encoded in 𝑎 (𝑃), and its effect on the various components residing
in this universe. The masses, momenta, and interactions of these contents on the other hand determine
the equation of state parameter appearing in eq. 2.14.

2.3 The Thermal Plasma

In the previous section, we introduced the dynamics of the expanding FLRW universe and the effect
of the expansion on the content of the universe. We saw that the governing equation 2.10 implies
an expansion rate potentially suppressed by the large Planck mass. We further established that the
expansion affects the momenta of propagating particles in the form of a redshift inversely proportionate
to the scale factor. We now turn our attention to a completely different class of processes affecting
the momenta and number densities of particles making up the cosmic fluids of matter and radiation,
namely particle interactions.

As mentioned in Chapter 1, particle interactions governed by QFT provide for very efficient
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2.3 The Thermal Plasma

interactions among particles as compared to the non-exponential gravitational expansion of the
universe after inflation. The result is that particle interactions get to bring the particles making up
the cosmic fluid into a state of thermal equilibrium potentially for a large part of the history of the
universe; the observation of the CMB, for example, provides concrete evidence for a thermal universe
at the time of last scattering. As we will shortly see, thermal equilibrium allows for a system to be fully
described by a few parameters so that many processes of interest in cosmology result from a departure
from thermal equilibrium. Nevertheless, studying the composition and properties of a thermal plasma
of particles is a key ingredient in particle cosmology, both in and out of equilibrium (OoE).

Let us consider a plasma of interacting particles of different species 𝑋, 𝑋′, · · · undergoing a set of
interactions of the form

𝑋1 + 𝑋2 + · · · + 𝑋𝑉 ↔ 𝑋
′
1 + 𝑋

′
2 + · · · + 𝑋

′
𝑉′, (2.15)

respecting the symmetries of the underlying particle theory; note that 𝑌 ϖ 𝑌
′ so that the form (2.15)

also includes number changing processes. The interactions (2.15) are local so that we may choose to
look at the composition of the plasma in the locally Lorentz frame. If the corresponding process rate
exceeds the expansion rate 𝑔, introduced in eq. 2.3, the species 𝑋, 𝑋

′ are said to be in equilibrium
with respect to the process (2.15). Such processes allow for an efficient exchange of momenta among
the 𝑋, 𝑋

′ particles, resulting in the establishment of kinetic equilibrium. In this case, the phase-space
occupancy 𝑛𝑊 (p), describing the 3–momentum distribution of particles of species 𝑋, is given by

𝑛𝑊 (p) =
1

(2𝑙)3

1

𝑜
(𝑋𝑀 (p)−𝑄𝑀)/𝑌 ∓ 1

, (2.16)

where 𝑂 is the temperature of the thermal plasma, and 𝑝𝑊 is the chemical potential associated with the
species 𝑋; the energy 𝑞 is related to the three momentum p via

𝑞𝑊 (p) =
√
𝑅

2
𝑊 + |p|2, (2.17)

with 𝑅𝑊 the mass of the certain species 𝑋. The choice of ± in eq. 2.16 depends on the nature of the
species 𝑋, with the + and − signs corresponding to fermions (with Fermi–Dirac statistics) and bosons
(with Bose–Einstein statistics) respectively.

In addition to kinetic equilibrium, the plasma is said to be in chemical equilibrium with respect to
the processes 2.15. This implies a balance of the chemical potentials corresponding to the species
𝑋, 𝑋

′ as
𝑝𝑊1

+ 𝑝𝑊2
+ · · · + 𝑝𝑊𝑁

= 𝑝𝑊′1
+ 𝑝𝑊′2

+ · · · + 𝑝𝑊′
𝑁′
. (2.18)

Given a distribution function 𝑛𝑊 (p) from (2.16), the number density 𝑌𝑊, energy density 𝑇𝑊, and
pressure 𝑉𝑊 corresponding to the species 𝑋 with 𝑖𝑊 degrees of freedom are given by

𝑌𝑊 = 𝑖𝑊

∫
𝑛𝑊 (p)d3

𝑉

𝑇𝑊 = 𝑖𝑊

∫
𝑞 (p) 𝑛𝑊 (p)d3

𝑉

𝑉𝑊 = 𝑖𝑊

∫ |p|2
3𝑞

𝑛𝑊 (p)d3
𝑉

. (2.19)
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Chapter 2 Physics of the early universe plasma

Chemical potentials are considered to be negligibly small in the thermal plasma of the early universe
due to the implications of a small Baryon asymmetry parameter; we consider 𝑝𝑊 = 0 for all species
from the thermal bath, leaving the mass 𝑅 and the temperature 𝑂 as the parameters of interest in the
phase space density (2.16); the thermodynamics quantities (2.19) can then be calculated in the two
limiting cases of relativistic radiation and the opposite case of non–relativistic matter. In this thesis,
we will almost exclusively deal with a thermal bath of radiation, with 𝑂 * 𝑅𝑊. For a relativistic
species 𝑋, this will result in

𝑌𝑊 =




(
𝑟 (3)/𝑙2

)
𝑖𝑊𝑂

3 (boson)

(3/4)
(
𝑟 (3)/𝑙2

)
𝑖𝑊𝑂

3 (fermion)

𝑇𝑊 =




(
𝑙

2/30
)
𝑖𝑊𝑂

4 (boson)

(7/8)
(
𝑙

2/30
)
𝑖𝑊𝑂

4 (fermion)

𝑉𝑊 = 𝑇𝑊/3

, (2.20)

We will often be interested in the properties of the collective set of relativistic particles in the thermal
radiation bath so that we describe a collection of species as

𝑇 = 𝑖∗
𝑙

2

30
𝑂

4
, (2.21)

where the effective number of degrees of freedom is defined as

𝑖∗ =
∑

𝑊∈bosons

𝑖𝑊 +
7
8

∑
𝑊∈fermions

𝑖𝑊, (2.22)

where the sum is to be understood as over relativistic species of temperature 𝑂 . More general
definitions of 𝑖∗, where species possess different temperatures 𝑂𝑊 also exist; we will, however, restrict
our attention to relativistic bosons and fermions of a common temperature 𝑂 , as appropriate for our
purposes in this thesis. Similarly, as we are focusing on the physics of the early universe with the
assumption of an unbroken SM gauge group, we will use the massless spectrum of the SM with chiral
fermions. Table 2.1 summarises the SM spectrum of particles, their physical number of degrees of
freedom 𝑖, and the corresponding contribution to the effective number of degrees of freedom 𝑖∗,
including the gauge and generation multiplicity factors.

As explained in Chapter 1, in addition to a thermal bath of temperature𝑂 described by the distribution
functions (2.16), we will also be focusing on a non–thermal distribution of particles with energies
𝑉 * 𝑂 . It is, therefore, often useful for our purposes to represent the particle species in the thermal
bath by a single energy scale. This can be achieved by exploiting the distribution functions 2.20 to
calculate the average particle energy

〈𝑉〉 𝑊 ≡
𝑇𝑊

𝑌𝑊
≈

{
2.7 × 𝑂 (boson)
3.15 × 𝑂 (fermion)

∼ 3 × 𝑂 , (2.23)

Equations 2.16 and 2.23 allow us to use the temperature 𝑂 to characterise particles from the thermal
bath. Notably, one may assume that typical interactions among particles from the thermal bath
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2.4 Thermal field theory and thermal mass

Particle Species 𝑋 Degrees of freedom 𝑖𝑊 Contribution to 𝑖∗

𝑠 2 2

𝑡 2 3 (isospin) × 2

𝑖 2 8 (color) × 2

𝑢𝑀 2 3 (generation) × 2 (isospin) × 2 × 7
8

𝑢𝑍 2 3 (generation) ×2 × 7
8

𝑣𝑀 2 3 (generation) × 2 (isospin) × 3 (color) × 2 × 7
8

𝑕𝑍 2 3 (generation) × 3 (color) × 2 × 7
8

𝑤𝑍 2 3 (generation) × 3 (color) × 2 × 7
8

𝑔 2 2 (isospin) × 2

Sum of DoF 106.75

Table 2.1: Particle content of the SM in the unbroken phase and the corresponding contribution to the effective
number of degrees of freedom eq. 2.22. The mid column contains the number of degrees of freedom for
an individual particle of species "s" in the corresponding Lorentz representation, excluding the gauge and
flavour/generation multiplicities, which are then included to get the combined effective contribution in the right
column.

occur at the energy scale 𝑝 ∼ O (𝑂); this scale is then used to study the particle physics aspects of
the particle plasma. In particular, the interaction strength 𝑥𝑎 , corresponding to a gauge group 𝑚,
of particles typically interacting in the thermal plasma must be calculated at this energy scale i.e.
𝑥𝑎 = 𝑥𝑎 (𝑂). This observation, along with the running of the SM coupling constants, partly justifies
a weak–coupling treatment of early universe plasmas (see Appendix A).

2.4 Thermal field theory and thermal mass

In the previous section, we looked at the thermodynamics of the thermal plasma of SM particles of
temperature 𝑂 . The next question one may ask is how the presence of this thermal bath of temperature
𝑂 affects the properties of particles and interactions. We have already alluded to one such thermal
effect, namely the restoration of the electroweak symmetry at high temperatures, in Chapter 1. Another
essential effect we will often be dealing with in this thesis is the thermal mass of particles in the
thermal bath. A systematic study of such phenomena is the subject of thermal field theory, a statistical
mechanics formulation of QFT degrees of freedom.

In this section, we aim to outline the principal ideas and results from thermal field theory essential
to this thesis. For the sake of simplicity, and following the wisdom of [48] on which this section is
largely based, we will often assume a simplified particle model of a scalar 𝑒4–theory with a single
mass parameter 𝑅 and a single quartic coupling 𝑦; we will however turn to the realistic case of SM
gauge interactions to draw conclusions and present key results in Section 2.5.

The central object of interest in the statistical physics of a system of temperature 𝑂 is the partition
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Chapter 2 Physics of the early universe plasma

function
𝑧 =

∑
states

𝑜
−𝑏𝑋 =

∑
states

〈𝑞 |𝑜−𝑏𝑐 |𝑞〉 = tr 𝑜−𝑏𝑐 , (2.24)

where 𝑞 represents energy, 𝑔 is the hamiltonian of the system of interest, responsible for the time
evolution of the system in QFT. The trace in eq. 2.24 runs over the corresponding Hilbert space, and
𝛥 ≡ 1

𝑌 encodes the temperature of the system in thermal equilibrium. It will be of great interest to be
able to use the developed tools and techniques of field theory for the particles making up the ensemble.
The fundamental connection to the path–integral formalism follows from the assignment 𝛥 → 𝛩 𝑃, so
that 𝑜−𝑂𝑐 𝑑 represents the time evolution of an imaginary–time system. Equivalently, the evolution
follows from the imaginary–time path integral

𝑧 =
∫

[D𝑒]𝑜−𝑒E
, (2.25)

with the Euclidean action 𝑀E resulting from the Wick rotation of 𝛬 = 𝛩 𝑃; in the example of a scalar 𝑒4

theory this reads

𝑀E ≡
∫ 𝑏

0
d𝛬LE

𝑓4theory
−−−−−−→

∫ 𝑏

0
d𝛬

∫
d3
𝐿

[
1
2
(𝑗𝑒)2 + 𝑅

2

2
𝑒

2 + 𝑦

4!
𝑒

4

]
. (2.26)

In eq. 2.26 the first equality is used to define LE, the Lagrangian of the Euclidean theory, resulting
from the Wick rotation of the physical Lagrangian 1. Important comments are in order regarding
the Euclidean action eq. 2.26. The euclidean time parameter is confined to the interval 𝛬 ∈ (0, 𝛥)
and therefore compact; periodic (anti–periodic) temporal boundary conditions are applied to bosonic
(fermionic) fields to implement the trace action of eq. 2.24. For the case of the bosonic scalar theory
in eq. 2.26 we therefore have

𝑒(0, 𝐿) = 𝑒(𝛥, 𝐿). (2.27)

Similar to the case of real–time zero–temperature QFT, the Lagrangian eq. 2.26 allows for a derivation
of a set of Feynman rules for the imaginary–time theory, subject to the boundary conditions of the
form (2.27). Carrying out the Fourier transformation to move to momentum–space Feynman rules,
the compactness of the virtual temporal direction results in the usual real–time energy (frequency)
continuous integration, corresponding to the temporal coordinate, to be replaced by a discrete sum

∫
d4
𝑉

(2𝑙)4
→ 𝑂

∑
𝑅𝑁

∫
d3
𝑉

(2𝑙)3
, 𝑌 ∈ Z (2.28)

over the Matsubara frequencies for integer 𝑌, i.e.

𝛯𝑉 = 2𝑙𝑌/𝛥 = 2𝑙𝑌𝑂 (bosons) (2.29)

𝛯𝑉 = 2𝑙(𝑌 + 1
2 )/𝛥 = 2𝑙(𝑌 + 1

2 )𝑂 (fermions).

Once more, the different form for the bosonic and fermionic Matsubara frequencies corresponds to
symmetric and antisymmetric boundary conditions in imaginary time, as mentioned following eq. 2.26.

1 Numerical factors in the Lagrangian (2.26) are not explicitly used in the schematic notation used in [48].
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2.4 Thermal field theory and thermal mass

Figure 2.1: The thermal one–loop contribution to the self–energy of the 𝑒
4 theory 2.26. The red color is chosen

to allude to the loop representing collective effects of the thermal background as introduced in eq. 2.26.

The new Feynman rules, in association with the momentum integration 2.29 can be used to calculate
processes of interest in thermal field theory; capturing the effect of the ensemble of particles in the
thermal bath.

An important role in this thesis is played by the effects of a thermal bath of temperature 𝑂 on a
particle propagating the thermal bath; let us therefore use the procedure described above, within the
simple toy 𝑒

4 model of eq. 2.26. Consider the propagation of a 𝑒 particle through a thermal plasma of
𝑒 particles with the distribution function 2.16, as motivated, with vanishing chemical potential. The
correspondence introduced in eq. 2.28 implies that insertions from (2.26) represent the interactions
with a thermal ensemble of 𝑒 particles of temperature 𝑂 . The self–energy diagram Fig. 2.1 results in a
modification of the two–point function and an effective mass for the 𝑒 particles of the form

ϱ𝑅2
eff =

𝑦

2
𝑂

∑
𝑅

∫
d3
𝑉

(2𝑙)3

1

𝛯
2 + 𝑉

2 + 𝑅
2
, (2.30)

where 𝑦 is the quartic coupling of the scalar field theory 2.26 of mass parameter 𝑅. The physical
significance of the Matsubara summation can be better seen by using the residue theorem to bring
2.30 into a form

ϱ𝑅2
eff =

𝑦

2

∫
𝐿

d𝑈
2𝑙𝛩

∫
d3
𝑉

𝑛B (𝑈)
𝑈

2
𝑔 − 𝑈

2
, (2.31)

where 𝑈
2
𝑔 ≡ 𝑉

2 + 𝑅
2, and the Bose distribution of eq. 2.16 for the scalar field 𝑒 is now written in

terms of the 𝛥 parameter as

𝑛B (𝑈) =
1

(2𝑙)3

1

𝑜
𝑏𝑕 − 1

. (2.32)

The replacement leading to (2.31) is achieved by noting that the kinetic function 2.32 has residues of
𝑂 at simple poles with 𝑈 = 𝛩2𝑙𝑌𝑂 = 𝛩𝛯𝑉 as given by eq. 2.29, and using an integration contour 𝛱 of
the form seen in Fig. 2.2 (a). Starting from eq. 2.31, one could however take an equivalent alternate
path, seen in Fig. 2.2 (b), to close integration contour 𝛱, leading to the poles along the imaginary
axis to drop out of the residue theorem calculation with a vanishing winding number; one would then
instead pick out residues of a size 𝑌B(𝑈𝑔)/2𝑈𝑔 for the poles along the real axis (blue). Equation 2.31
can, therefore, be rewritten in the intuitive form

= −
∫

d3
𝑉

(2𝑙)32𝑈𝑔

𝑛B(𝑈𝑔) .

(2.33)
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Chapter 2 Physics of the early universe plasma

Figure 2.2: (a) pole placement corresponding to the Matsubara poles of (2.32) on the imaginary axis. (b)
Alternate integration contour 𝛱 relating the residue integral of eq. 2.31 to residues of poles at ±𝑈𝑔 , appearing
in (2.33).

In eq. 2.33, the red loop represents a thermal loop, and red external states are to be understood as
particles from the thermal background plasma of temperature 𝑂 . The first term on the RHS of (2.33)
(black), contains the 𝛥–independent part of (2.31), and reproduces the vacuum modification to the
two–point function in 𝑂 = 0 QFT, in which we are not interested here. Additionally, note that in the
shorthand notation used in (2.33), the arrows on scalar lines represent the assignment of momenta k
and p to the involved particles.

The mass correction ϱ𝑅2
eff of eq. 2.31 can therefore be decomposed as a zero–temperature vacuum

contribution of the standard QFT and a contribution arising from forward scatterings of particles
from the thermal bath; the last term of eq. 2.33 represents a weighted phase space integrated forward–
scattering amplitude 𝑦 of particles of momentum 𝑉 from a thermal bath of temperature 𝑂 , with a
probability given by the kinetic function (2.16). Explicitly, this calculates to

ϱ𝑅2
eff (𝑂) =

𝑦

24
𝑂

2
. (2.34)

The form of effective thermal mass for the simple case of the pure scalar field theory (2.26) is
rather informative. One key observation is that in the relativistic regime i.e. 𝑂 * 𝑅, the dominant
contribution to the effective mass would be provided by the thermal mass. Also, note that the latter is
dominated by interactions with background particles of energies 𝑉 ∼ 𝑂 . Similarly, the coupling of the
theory appears through the amplitude of the thermal loop Fig. 2.1, so that in this case ϱ𝑅eff ∼ 𝑦𝑂

2.
The addition of further interaction and particles into our theory and the background plasma will,
therefore, similarly contribute to the effective thermal mass of the 𝑒 field.

In a similar manner, one may proceed to calculate the effective thermal mass of gauge bosons of a
gauge theory. As an example, the corresponding thermal loop diagrams contributing to the effective
thermal mass of the 𝑀𝑁 (3)𝐿 gluons of the SM are seen in figure Fig. 2.3. Within the SM, gluons
as well as left- and right-chiral quarks contribute to the generation of the gluon thermal mass; note
further that all contributions appear at the order of 𝑖2 in gauge coupling 𝑖 so that one has a thermal
mass for the gluon as

𝑅
2
th ≡ ϱ𝑅2

eff ∼ 𝑖
2
𝑂

2
, (2.35)
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2.5 Coherence effects and effective kinetic theory of gauge–interactions

Figure 2.3: Physical thermal one–loop contributions to the self–energy of the gluon within the SM. The thermal
loops is denoted as before in red, and as the only color–charged fermions in the SM, 𝑣𝑀 and 𝑣𝑍 run in the
fermion loop on the right.

where we are disregarding the O (1) group theoretic and multiplicity factors as we will often do in
this chapter, to focus on the parametric role of the temperature, the momenta, and the couplings in
the theory. It is reasonable to expect that the effective thermal masses of the other two gauge bosons
of the SM should follow the same pattern of temperature and coupling dependence as in eq. 2.35.
Throughout this thesis, we will use this approximate form for the thermal masses. More detailed
results for the effective thermal mass of the SM gauge bosons in a background plasma are presented in
Appendix B. For a more detailed view of the derivation of thermal masses in the SM, see [50, 51].

2.5 Coherence effects and effective kinetic theory of gauge–interactions

In the previous section, we briefly introduced the imaginary–time formulation of thermal field theory,
and used it to outline the physics dictating the appearance of an effective thermal mass (2.35). The
advantages of the imaginary–time formalism are best employed in the treatment of the so–called
“static phenomena” within the plasma; examples include the calculation of the thermal effective mass
or that of the equation of state.

The former approach however is not suited to the treatment of time–dependant phenomena, such
as those occurring during the relaxation of an OoE system; examples of the latter class include
viscous phenomena and dissipation 2. To study such phenomena, one is interested in starting from
the microscopic QFT interactions of particles, to describe the collective effect of a large number of
interactions in the thermal plasma. The resulting machinery, known as kinetic theory, picks the kinetic
function 𝑛 (x, p, 𝑃) introduced in (2.19) as its central object. The evolution of the kinetic function is
given by the Boltzmann equation

d 𝑛 (p)
d𝑃

=
𝑗 𝑛 (p)
𝑗𝑃

+ 𝑗x
𝑗𝑃

· 𝑗 𝑛 (p)
𝑗x = −(loss)p + (gain)p , (2.36)

where we have suppressed x and 𝑃 dependence of 𝑛 , and with gain and loss terms on the RHS
representing the growth and depletion of states of momentum p. Changes in the momentum of a
particle in the cosmic plasma can either result from the expansion of the universe (2.9) or from
particle interactions involving other plasma constituents. In the post–inflationary plasma, the latter
will provide a tremendously more efficient means of momentum transfer; in Chapter 3, we will show
in a specific example that the relatively short timescale of gauge–mediated particle processes allows us
to disregard the Hubble expansion and treat the background FLRW universe as quasi–static. Focusing

2 See, e.g., Section 4.1 “A failure of imaginary-time intuition” in [48].
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on particle interactions leading to changes in momenta, one may then schematically rewrite (2.36) as

d 𝑛 (p)
d𝑃

= −
∫

k,p′,k′

2222
2222
2

𝑛p 𝑛k(1± 𝑛p′) (1± 𝑛k′) +
∫

k,p′,k′

2222
2222
2

𝑛p′ 𝑛k′ (1± 𝑛p) (1± 𝑛k) + . . . .

(2.37)
In the schematic form of eq. 2.37, we have used the solid lines to represent generic particles, with
the arrow depicting the momentum assignment, and the blob representing an interaction. The first
and second terms on the RHS respectively represent the rate of removal and appearance of particles
of momentum p (blue) from interactions of other particles in the plasma (black). Note also that for
brevity, we have suppressed the integration measures in both terms on the RHS and mentioned these
collectively as the integration region. Finally, the dots represents all other processes, including higher
order scatterings, decays, etc. contributing to the production and removal of particles of momentum p.
The choice of sign in 1 ± 𝑛 terms in (2.37) depends on the bosonic/fermionic nature of the particles
carrying the assigned momenta; as seen before, these Bose enhancement or Pauli blocking factors
represent the spin statistics.

Boltzmann equations of the form (2.37) are widely used to calculate observables in cosmology, for
example to study the evolution of DM abundance. In this thesis, we will be focusing on the process
of energy loss of energetic particles, so that we will be interested in a Boltzmann equation (2.37)
governing the dynamics of the kinetic function 𝑛 for momenta 𝑉 = |p| * 𝑂 . Note that we may
utilise our arguments for the homogeneity and isotropy of the early–universe plasma in Section 2.1
to proceed to identify the kinetic function as 𝑛 (𝑉, 𝑃), with a proper phase space averaging of the
scattering processes in (2.37).

Before setting out to formulate and solve such Boltzmann equations, however, we must check the
assumptions underlying the validity of the kinetic theory treatment and eq. 2.37. Taking a closer look
at eq. 2.37, a first observation is that the Boltzmann formulation treats the particles classically with
independent position and momenta, undergoing momentum changing interactions governed by QFT.
This assumption can be justified so long as the de Broglie wavelength 𝑦dB of the particle of momentum
𝑉 is small with respect to the typical separation of consecutive interactions, i.e.

𝑦dB (𝑉) 4 mean free path of particles . (2.38)

A second implicit assumption in (2.37) is that the various scattering processes are independent, as
seen by the absence of interference terms; the latter requires the quantum–mechanical time–span of
the scattering processes in (2.37) to be short compared to the temporal separation of these events, i.e.

ϱ𝛬duration
scattering 4 mean free time of particles . (2.39)

Let us next examine the validity of the conditions (2.38) and (2.39) for a couple of processes we are
interested in in this thesis. Consider a massless gauge–charged particle of the unbroken SM with
momentum 𝑉, propagating within a plasma of temperature 𝑂 . This particle will have a de Broglie
wavelength of 𝑦dB = 1/𝑉, and undergoes elastic Coulomb scattering off the plasma particles of
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number density (2.20) with a cross section

𝑄Coulomb ∼
∫

𝑤 (𝑣2)
22222
𝑖

2

𝑣
2

22222
2

∼ 𝑖
4

𝑅
2
th

∼ 𝑖
2

𝑂
2
∼ 𝑄

soft
Coulomb, (2.40)

where 𝑖 is once more the corresponding gauge coupling and 𝑣 denotes the momentum exchange 3.
Notably, we have used the thermal mass (2.35) to cut off the infra-red (IR) divergence of the Coulomb
cross section; such soft scatterings with a momentum transfer 𝑣 ∼ 𝑅th dominate the cross section
as can be seen by the last assignment in eq. 2.40. These soft Coulomb scatterings off the thermal
background with a number density (2.20) will result in a mean free time of the order

ϱ𝛬mean free time
soft ∼

(
𝑖

2
𝑂

)−1
* 𝑦dB (𝑉) . (2.41)

For the early universe plasma with 𝑖 4 1, the requirement (2.38) is therefore satisfied for all OoE
particles with 𝑉 * 𝑂 .

Next, let us look at the second condition (2.39) for the validity of the Boltzmann equation (2.37).
Once again, let us start with case for 2 → 2 Coulomb process mediated by a SM gauge boson; as
seen in (2.40), the cross section is dominated by the region of soft momentum exchange at the IR
cutoff with momentum exchange 𝑣 ∼ 𝑅th. Focusing for the moment on the soft elastic scatterings, the
corresponding quantum mechanical duration for such processes is then

ϱ𝛬duration
soft ∼ 1/𝑅th ∼ 1/𝑖𝑂 4 ϱ𝛬mean free time

, (2.42)

where in the last step we have once more used the assumption of weakly coupled SM gauge theories in
the early universe. With both criteria (2.38) and (2.39) met, the kinetic theory is thus safely applicable
for the study of soft 2 → 2 processes on the RHS of eq. 2.37.

We shall go through the same checks we did above for soft 2 → 2 processes, also for any other
process we wish to study via the Boltzmann equation 2.37. As mentioned in Chapter 1, the process of
energy loss for hard 4 OoE particles with energy 𝑉 * 𝑂 happens to be one particular example where
the dominant contribution is provided by the higher order 2 → 3 processes. One should therefore
ascertain the applicability of the Boltzmann equation 2.37 for the corresponding 2 → 3 processes.

Let us, however, leave the topic of energy loss of highly energetic OoE particles to Chapters 3
and 4 and, following [48], focus instead on the closely related issue of viscosity, where one would be
interested in the modifications of the momentum vector p of particles with

𝑉 ∼ 𝑂 ,

3 Please note that we have chosen to denote the small–angle forward scattering processes as soft and the large–anlge
scattering processes as hard scattering processes, to stick to the familiar terminology from the literature. This might
however overburden our nomenclature of hard particles denoting energies of order 𝑉 * 𝑂 and soft particles denoting
particles of energy 𝑉 ∼ 𝑂 in the majority of this thesis. Please also see Footnote 4 in this regard.

4 Readers who might be interested on consulting the referenced literature (including e.g. [48]) are advised to note a
difference in nomenclature; the term “hard scale” in the QGP literature is often reserved for particles of energies 𝑉 ∼ 𝑂

, while particles with 𝑉 * 𝑂 are referred to as “primaries”. For reasons that will become clear in Chapter 3 and
conforming to the literature discussing non–thermal DM production (see e.g. [52]), we will instead use the term “hard
particles” for particles with 𝑉 * 𝑂 ; the term “primary” will also be used to refer to the first particles resulting from the
decays of an OoE heavy particle.
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Chapter 2 Physics of the early universe plasma

although we will keep the 𝑉 dependence of various quantities explicit, for arguments extending to
higher 𝑉 * 𝑂 energies to be used in the remainder of this thesis. The concepts introduced in the
study of viscosity will be later used in Chapters 3 and 4 to study the process of energy loss.

In the study of viscosity, we are interested in how the interactions of a particle of energy 𝑉 with the
particles from the background medium result in changes in the momentum vector p. Here, we would
like to particularly focus on processes that kick a particle with 𝑉 ∼ 𝑂 out of its flow path. Above, we
established that the kinetic theory treatment and the Boltzmann equation (2.37) are valid for studying
the effect of soft small-angle elastic 2 → 2 processes; the used arguments can be seen to extend to the
case of soft 𝑉 ∼ 𝑂 particles. It is to be expected, however, that hard large–angle 2 → 2 scattering
processes also contribute to changes in particle momenta and thus to viscosity; one must therefore
check if the latter processes could also be directly used in the corresponding Boltzmann equation 2.37.
Consider a particle of momentum p = 𝑉 𝑜𝑖 with 𝑉 " 𝑂 and let us ask for a ϱ𝑑 ∼ O (1) change
of its directions of motion, i.e., for it to develop a relative transverse momentum 𝑉⊥ ∼ O (𝑉). The
corresponding hard, large–angle, scattering cross section will parametrically be

𝑄
hard
Coulomb ∼ 𝑖

4

𝑉
2
⊥

∼ 𝑖
4

𝑉
2
, (2.43)

corresponding to these large angle processes occurring with a mean free time

ϱ𝛬mean free time
hard ∼ 𝑉

2

𝑖
4
𝑂

3

for 𝑔∼𝑌−−−−−−→∼ 1

𝑖
4
𝑂

, (2.44)

where in the last step, we have focused on the specific case of particles of energy 𝑉 ∼ 𝑂 in whose
viscous behaviour we are interested. Note that these hard 2 → 2 processes with a momentum transfer
𝑣 * 𝑅th occur on a shorter timescale as compared to (2.42) so that the condition (2.39) for the
validity of kinetic theory treatment is met for a weakly coupled gauge theory. We had previously
established that condition (2.38) is met; together, these imply that hard 2 → 2 processes can safely be
used on the RHS of our Boltzmann equation 2.37 for particles of energy 𝑉 " 𝑂 .

With both the hard and soft 2 → 2 processes eligible for being directly studied in the Boltzmann
equation, one might ask how the two compare in their contribution to modifying the momentum vector
p. We saw that the mean free time (2.44) for hard processes is larger than that of the soft processes
(2.41), so that a large number

𝛴soft ∼ 𝑉
2/𝑅2

th (2.45)

of soft processes occur for every single hard scattering. Although dominating the Coulomb cross
section 2.40, the soft processes typically result in small changes to the direction of motion of the
particle traversing the thermal medium. A single soft scattering off the thermal background particles
allows for a random change of p⊥ in the transverse XY plane; the typical size of these transverse “soft
kicks” are 𝛶𝑉⊥ ∼ 𝑣 ∼ 𝑅th, resulting in a deflection of the hard particle by an angle

𝛶𝑑 ∼ 𝑉⊥/𝑉 ∼ 𝑅th/𝑉 . (2.46)

With the fulfilment of condition (2.38), we could say these consecutive soft scatterings result in a
random walk of p⊥ in the transverse XY plane, with a gradual build–up of an effective deflection angle
𝑑. After 𝛴soft (2.45) such kicks occurring during a time ϱ𝛬hard

mean free time (2.44) the accumulated deflection
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2.5 Coherence effects and effective kinetic theory of gauge–interactions
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Figure 2.4: Reproduced from [48] with small changes: schematic of gauge mediated hard and soft Coulomb
scatterings off the background thermal bath (red) occurring during a timescale ϱ𝛬mean free time

hard ; the single hard
scattering (thick/large blob) and the 𝛴soft soft scatterings (thin/small blobs) contribute equally to modifications
of the momentum vector p developing a transverse momentum p⊥. Note that the actual random walk of p⊥
occurs in a 2D plane.

angle will be
ϱ𝑑 ∼

√
𝛴soft 𝛶𝑑 ∼ 1 . (2.47)

Equation 2.47 shows that so long as one is interested in large angle changes of the the momentum
vector p, soft and hard processes contribute on the same footing to the Boltzmann equation (2.37) 5 ,
although they do so in different number of steps; this is shown schematically in Fig. 2.4 where the
thick line representing a hard scattering process encompasses 𝛴soft soft kicks, depicted in thin lines,
with the two resulting in comparable deflections after a time ϱ𝛬mean free time

hard (2.44).

The above observation further prompts the question, what other process could competitively
contribute to modifications of the momentum p on the same timescale as (2.44). With the case of
𝑉 ∼ 𝑂 in mind, let us next look at the 2 → 3 splitting process depicted in Fig. 2.5, and consider
the special case where the initial particle of energy 𝑉 splits symmetrically into two near–collinear
relatively softer particles of energy ∼ 𝑉/2. The near–collinear splittings indirectly contribute to the
diffusion process as the resulting smaller momenta allow for more efficient diffusing as seen in (2.43)
and (2.46). The process of Fig. 2.5 can be thought of as a Bremsstrahlung associated with a forward
scattering of cross section (2.40), resulting in a cross section and rate of

𝑄split ∼ 𝑖
2 · 𝑄soft

Coulomb, ϑ−1
split ∼

1

𝑖
4
𝑂

. †

As seen in equations † and 2.44, for particles of energy 𝑉 ∼ 𝑂 , the O (1) softening of the hard
momenta via the splitting process would occur with the same rate as the collection of O (1) hard and
the combined effect of soft deflections depicted in Fig. 2.4. For a consistent picture of the momentum
diffusion, one therefore needs to consider the kinetic theory and Boltzmann equation of the schematic

5 The same argument applies in fact to processes contributing to any deflection with ϱ𝑑 > 𝛶𝑑; in Chapter 4 we will use
this argument to justify the presence of the “Coulomb logarithmic” enhancement. See also the footnote 6 on Page 40.
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form
d 𝑛 (p)

d𝑃
=

∫ 2222
2222
2

+
∫ 2222

2222
2

+ . . . , (2.48)

where similar to eq. 2.37, the blobs represent interactions, each contribution needs to be integrated
over the appropriate phase space and include the suppressed appropriate Bose enhancement and Pauli
blocking factors for the forward and backward processes, and account for the different possibilities for
the assignment of momentum 𝑉 to the particles involved in the interactions.

The next step would be to use the cross sections (†), (2.43) and (2.40) to formally write down the
Boltzmann equation (2.48) governing momentum diffusion; before that, however, one must check the
validity of the underlying kinetic treatment and the conditions (2.38) and (2.39) for the additionally
considered 2 → 3 collinear splittings.

The addition of the 2 → 3 term to the Boltzmann equation (2.48) affects neither the de Broglie
wavelength of the particle under study with 𝑉 " 𝑂 , nor its mean free path dictated by soft 2 → 2
processes; i.e. the condition (2.38) remains intact. It is therefore the assumption of quantum
decoherence among the various processes that needs to be explicitly checked.

With the intuitive image of soft 2 → 2 processes being a part of (†), it might be tempting to use
(2.42) to deduce that, similar to the case of small angle 2 → 2 scatterings, condition (2.39) is met for
the duration of 2 → 3 collinear splitting processes. This conclusion would however be incorrect. A
closer look at (†) reveals that the propagator connecting the two bits in (†), depicted in blue in the
exemplary process of Fig. 2.5 (b), is almost on–shell, calling for extra attention in the estimation of the
quantum mechanical duration of the process. The duration of the near–collinear process of Fig. 2.5 is
controlled by the small virtuality 𝛶𝑞 of the almost on–shell propagator as

ϱ𝛬duration
split ∼ 1/𝛶𝑞 ∼ 𝑉/𝑅2

th ∼ 𝑉/𝑖2
𝑂

2 ∼ 𝑉

𝑂

· ϱ𝛬mean free time " ϱ𝛬mean free time
, (2.49)

failing condition (2.39). Physically, the proximity of the intermediate state, depicted in blue in Fig. 2.5
(b), to the mass–shell allows it to live for a long time as an intermediate state; as the lifetime of
this state is larger than the mean free time in the plasma, the particle gets to interact repeatedly and
“coherently” with particles from the thermal medium before its demise. As a result, the soft processes
(2.40) and the near–collinear processes (†), whose importance to the momentum diffusion process
was established before, cannot be treated as independent in the Boltzmann equation (2.48).

Figure 2.5: (a) Schematic of collinear splitting process reducing the energy carried by a an energetic particle of
momentum 𝑉; the solid lines represent the flow of particles of a given momentum, and do not imply a spin.
(b) Typical gauge mediated 2 → 3 splitting via a bremsstrahlung process in the case of a color charged quark,
allowing for a redistribution of momentum p. For soft gauge mediated interactions of the incoming quark with
thermal bath particles (red), the mediator (blue) is slightly off–shell before splitting into two highly collinear
outgoing particles, resulting in a long formation time.
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2.6 Summary and recap

In order to be able to continue using the kinetic theory and the Boltzmann equation, we must
therefore coherently sum up all 2 → 3 splitting processes in association with different number of
soft Coulomb scatterings. Schematically, one therefore needs to replace the splitting contribution in
eq. 2.48 with the series

≡ + + + + + . . . , (2.50)

where we have used the red square to denote an effective splitting process, and where as in Fig. 2.4 red
blobs are used to denote soft 2 → 2 interactions with particles from the background thermal bath. The
rate of the “effective” splitting process, captures the effect of the interference among the individual
diagrams on the RHS where applicable. Calculating the resulting effective splitting rate is a subject we
will turn to in Chapters 3 and 4; as we will see, the interference will result in an effective suppression
of the splitting rate in an effect known as the Landau–Pomeranchuk–Migdal (LPM) effect.

Let us for the moment assume we have summed all the contributing diagrams on the RHS of (2.50)
to find the effective process on the RHS. We will then be able to use the effective LPM–suppressed
rate to treat the “effective kinetic theory” of the gauge theory, by writing down the Boltzmann equation
of the form

d 𝑛 (p)
d𝑃

=
∫ 2222

2222
2

+
∫ 2222

2222
2

+ . . . , (2.51)

Equation 2.51 is consistent with the criterion (2.39) up to the order of 2 → 3 processes; we may,
therefore, use the effective kinetic theory to study the evolution of the kinetic function 𝑛 .

Before closing this section, it is worth noting once again, that although we used the sample problem
of viscous behaviour of particles of energy 𝑉 ∼ 𝑂 to introduce an example of a failing kinetic treatment
and the need for a resummmed effective kinetic treatment with the inclusion of coherent effects, very
similar arguments will hold also for the case of interest in the remainder of this thesis; namely, for
the case of highly energetic OoE particles with 𝑉 * 𝑂 . This can be in fact seen by comparing the
timescales in equations 2.41 and 2.49 and and their dependence on the momentum scale 𝑉.

2.6 Summary and recap

Let us conclude this section by a brief summary; in Chapter 2, we started in Section 2.1 by presenting
the FLRW metric of the homogeneous and isotropic expanding universe, and moved to the dynamics
of the expansion governed by the Friedmann equation in Section 2.2. We then turned to the plasma
filling up the universe at early times, and studied the composition of a thermal plasma of particles
in Section 2.3. Next, we discussed how the presence of the thermal plasma affects the properties
and interactions of particles in the early universe. In particular, we introduced the basic ideas in
thermal field theory in Section 2.4 and discussed how these can be used to calculate modifications
to static quantities, where we focused on the generation of an effective thermal mass for particles
traversing a thermal background plasma. Going beyond static quantities, we looked at time–dependent
phenomena occurring in the presence of a thermal background plasma; we introduced the kinetic
theory description and how it can be used to study the temporal evolution of a kinetic function, and
saw that the kinetic theory prescription is potentially invalidated for the treatment of certain problems.
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Chapter 2 Physics of the early universe plasma

The problem arises when the quantum duration of the individual processes exceeds the mean
free time of the particle propagating through the background medium requiring the inclusion of
potential interference among multiple processes. As a more concrete example of this break–down
phenomenon we briefly looked at the process of momentum diffusion and the study of viscosity in the
thermal medium. In this particular example, near–collinear splittings of particles in the plasma play a
crucial role; the collinearity of the outgoing particles correspond to a “long–lived” almost–on–shell
intermediate propagator. The long life–time exceeds the mean free time, calling for a coherent
treatment of multiple scatterings of the OoE particle with the background plasma.

Finally, with coherent effects at the root of the breakdown of the kinetic treatment, we posited that
the validity of the kinetic theory could be restored by a proper resummation of coherently interfering
processes. In the presented example, the resummation leads to an effective LPM suppression in the
rate of the 2 → 3 splitting process. One may therefore use the LPM–suppressed rates to formulate an
effective kinetic theory for the OoE phenomena in the plasma. In the following chapters, we will use
the LPM–suppressed rate of near–collinear splittings to write down and solve the effective Boltzmann
equation governing the process of energy loss and thermalization of a highly energetic hard particle in
the early universe plasma.
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CHAPTER 3

Particle thermlization in the early universe: pure
gauge boson treatment

In Chapter 1, we introduced the generalities of a matter–domination (MD) era and how it could
affect the history of cosmological processes. In particular, we mentioned in Section 1.3 that many
inflationary and non–inflationary modifications [20, 25, 53] to the standard radiation–dominated (RD)
history of the universe involve a component with a matter equation of state (1.3) corresponding to
𝑈 = 0. Under generic circumstances and according to eq. 2.14, this long–lived matter component
dominates the energy density of the universe before decaying to reheat the radiation bath. A MD
phase at the end of inflation, or a late matter-dominated era due to some long-lived massive particle,
are viable [29, 54], well-motivated, and extensively studied realizations of such cosmological histories.
In the remainder of this thesis, we will often use this context to present our analysis and results. As
we will see in more detail, however, the core issues will not depend on the dominance of the matter
component.

A MD era, typically ends with the massive matter particles dumping their energy density into the
radiation bath via decays into lighter particles; the energy distribution and particle composition of the
decay products will depend on the mass and couplings of the decaying particle and be starkly different
from the equilibrium distributions of equations 2.16 and 2.19. Generically, the out of equilibrium
(OoE) matter components arising in BSM scenarios will be much heavier than the light visible sector
particles, so that their decay products will be highly relativistic at production. In particular, sticking
to our choice of the unbroken phase of the SM, discussed in Section 2.3, the visible sector particles
resulting from the decay of the matter component are massless up to the effective thermal mass (2.35)
introduced in Section 2.4. Subsequent to their production, these relativistic particles will therefore
need to attain kinetic and chemical equilibrium in the process of thermalization.

As outlined in Section 1.4, the presence of the matter component and its decay can affect cosmology
beyond modifications of the expansion rate. Entropy production, (meta–)stable particle production
from decays of the matter component, and changes in the composition of thermal bath particles
resulting from interactions with energetic decay products are examples of such effects (see [20] and
the references therein); another particularly important effect discussed in Section 1.4 is the production
of (meta–)stable particles from interactions of decay products. Studying the latter two classes of
phenomena via a Boltzmann equation (2.37) requires knowledge of the OoE distribution function 𝑛 of
decay products. To get a complete picture of how departures from a standard RD cosmological history
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Chapter 3 Particle thermlization in the early universe: pure gauge boson treatment

affect cosmological observable and processes, it is essential to study the evolution of matter decay
products in the process of thermalization.

In this section, we will use the notions introduced in Chapter 2 to study the process of thermalization
and the resulting distribution of OoE particles in a somewhat simplified setup. Our starting point will
be to study the particle processes playing the dominant role in the kinetic theory of Section 2.5. We
will argue that the dominant role in this process is reserved for the near–collinear splitting processes
of the form introduced in Fig. 2.5. In order to simplify the problem, we will limit our attention
to a setup with just one such allowed splitting process; within the SM, this choice corresponds to
studying a non–abelian gauge theory of “pure gauge bosons” (no fermions). We will see that the
resulting kinetic theory fails the decoherence condition (2.39), therefore calling for the inclusion
of coherence effects. We will introduce the physics of the Landau–Pomeranchuk–Migdal (LPM)
suppression effect, and further use this resummation scheme to write down a valid effective kinetic
theory of the form introduced in eq. 2.51. We will then bring the resulting Boltzmann equation
into a convenient dimensionless form and present its analytical and numerical solutions. Finally, we
will conclude this chapter with an example of how the resulting distribution of OoE particles affects
cosmological processes by studying the resulting non–thermal contributions to the DM abundance
in certain scenarios; in order to emphasize the importance of coherence effects and the precision of
numerical treatment, we will compare analytical and numerical results with those obtained without
taking the LPM into account. This chapter is largely based on [45].

3.1 Formulation of the problem

3.1.1 The Basic Setup

In order to discuss the kinetic theory of energy loss in the early universe plasma more specifically,
we will first present a typical setup of a non–standard cosmological history involving a decaying
matter component. We will focus on the decay of a heavy, relatively long-lived “progenitor” particle
with mass 𝑊 into two ultra-relativistic particles whose masses are significantly smaller than the
temperature of the thermal plasma; “long–lived” here means that the progenitors are not in thermal
equilibrium when they decay. For the assumed two–body decay, the injection spectrum is just a
delta–function at 𝑊/2. As we will see later in Section 3.2, the linearity of the problem allows us to
write the final spectrum of non–thermal particles for any more complicated decay, or indeed for any
other non-thermal injection spectrum, as a convolution of our result with the assumed initial spectrum.
Finally, as we briefly motivated in Section 2.5, gauge–mediated soft scattering processes serve a
special role in the physics of the particle plasma. We, therefore, assume that both the thermal bath and
the injected particles take part in gauge interactions; this is true in particular for all SM particles in the
unbroken phase.

Let us begin by presenting a general formulation of the relevant cosmological history. We introduce
a matter component of heavy particles of mass 𝑊 , and number density 𝑌M, decaying with a width ϑM

1

into ultra-relativistic particles of initial energy 𝑞i = 𝑊/2 and an equation of state of radiation. The
evolution equations (2.14) for the radiation and matter energy densities will now need to be modified

1 We are treating the width to be a free parameter in the model. Possible thermal effects on the decay of a scalar field have
been discussed in [55–58].
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to account for the conversion of matter into radiation via particle decays. The resulting equations read

d𝑇M

d𝑃
+ 3𝑔𝑇M = −ϑM 𝑇M ; (3.1a)

d𝑇R

d𝑃
+ 4𝑔𝑇R = +ϑM 𝑇M . (3.1b)

Here 𝑔 is the Hubble expansion rate (2.12) and 𝑃 denotes the cosmological time of FLRW cosmology.
𝑇M and 𝑇R denote the energy density of the unstable matter component and the radiation component
respectively. Previously, in Section 2.3, we stated that in the absence of chemical potentials the
composition of the thermal radiation component is fully fixed by the temperature parameter 𝑂 . In
the presence of a decaying matter component in (3.1), however, the radiation component 𝑇R is to
be understood as consisting of the thermal radiation bath 𝑇

th
R , given by eq. 2.21, and the (typically

sub-dominant) non-thermal radiation component resulting from the decays of progenitor particles
prior to thermalization. Note that both components are redshifted in the same manner so that equation
3.1b is unable to distinguish between the two. Note also that eq. 3.1b is strictly correct only if the
effective number of degrees of freedom (2.22) remains constant during the epoch of energy injection.
In some cases this approximation can lead to significant errors in the thermal production rate of relics
[59], it however suffices in this thesis, where we are mostly interested in the non–thermal radiation
component, and where we consider the visible sector to consist of the unbroken SM particle spectrum.

3.1.2 The Thermalization of Energetic Particles

The process of thermalization in a (quasi-)static background has been extensively studied in the
literature [39, 41, 42, 52, 60]. For a convenient formulation based on the parameters of the extended
cosmological history, we will mainly rely on the results from [41, 42] to describe the energy loss of
HE particles (with energy 𝑉 * 𝑂) through interactions with the much more abundant particles in the
thermal plasma. Throughout this thesis, we implicitly assume that such a radiation bath indeed exists.
The initial thermalization process in the absence of a preexisting thermal bath, such as that occurring
just after the end of inflation, has also been studied in the literature [39, 52]. The details of this initial
thermalization affect the maximum temperature of the universe and therefore the cosmological history,
but are not directly relevant for this thesis.

It has long been noted that in the presence of particles of energy 𝑉 * 𝑂 , a special role is reserved
for particle interactions mediated by a massless gauge boson in the t–channel [61] so we will continue
to focus on gauge mediated t–channel processes as in Section 2.52. A key feature of the process of
energy loss of energetic particles is that despite being the leading order process in coupling constants,
2 → 2 scattering processes do not play the dominant role; this is different from the case of momentum
diffusion used in Section 2.5 to introduce the effective kinetic theory approach, and where small and
large angle scatterings, as well as near–collinear splittings gave similar contributions to the diffusion
process. The reason is that the 2 → 2 processes either suffer from a suppressed rate or offer a small
momentum transfer between the high-energy states and the thermal bath. Let us look at this argument
in more detail while limiting our attention to a pure–gauge theory, defined above in the introduction
to Chapter 3. Consider a pure theory of non–abelian gauge bosons, e.g., the gluons of the quantum

2
𝑕−channel diagrams should be included in processes with identical particles in the initial state. See e.g. table 2 in [49] for
a list of contributing matrix elements, including numerical group factors, in a gauge-mediated 2 → 2 process.
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Chapter 3 Particle thermlization in the early universe: pure gauge boson treatment

Figure 3.1: (a) The 2 → 2 pure non–abelian gauge scattering with a t–channel gauge boson exchange. (b)
A 2 → 3 contribution; collinear splitting of the non–abelian gauge boson in association with a soft 2 → 2
scattering. The SM gluon has been used in both cases to exemplify the processes. The red crosses represent the
presence and interaction with a further gauge boson of energy 𝑉 ∼ 𝑂 from the background thermal bath of
temperature 𝑂 .

chromodynamics (QCD). Hard gauge bosons of energy 𝑉 * 𝑂 undergo various scattering processes
with particles from the thermal bath. The two most dominant scattering processes are shown in
Fig. 3.1, where crosses denote a coupling to a particle of energy 𝑉 ∼ 𝑂 from the thermal bath. The
2 → 2 processes will have a cross section in the range given by 𝑄

soft
Coulomb and 𝑄

hard
Coulomb, given in eq. 2.40

and eq. 2.43 respectively. The higher order nearly collinear 2 → 3 process would similarly have a cross
section 𝑄split given in eq. †, barring coherent effects. In the study of the energy loss process for hard
OoE particles, we are predominantly interested in the rate of energy loss resulting from scatterings of
hard particles on target particles from the thermal bath with a number density 𝑌target ∼ 𝑂

3 given by
(2.20). The rate of energy loss will parametrically be of the form

d𝑉/d𝑃 ∼ 𝑄 · 𝑌target · 𝛶𝑉, (3.2)

where 𝛶𝑉 denotes the amplitude of the momentum exchanged or rather redistributed in the process
corresponding to the cross section 𝑄. For the hard, soft, Coulomb scattering, and a symmetric splitting
process, such as that of Fig. 2.5, the energy loss rate (3.2) will be

(
d𝑉
d𝑃

)hard

∼ 𝑄
hard
Coulomb · 𝑌target · 𝑉 ∼ 𝑥

2
𝑂

3/𝑉 (3.3a)

(
d𝑉
d𝑃

) soft

∼ 𝑄
soft
Coulomb · 𝑌target · 𝑅th ∼ 𝑥

3/2
𝑂

2 (3.3b)

(
d𝑉
d𝑃

) split

†
∼ 𝑄split · 𝑌target · 𝑉 ∼ 𝑥

2
𝑉𝑂 . (3.3c)

where we have switched to using the “fine–structure” 𝑥 parameter to encode the coupling strength 𝑖 of
the gauge theory corresponding to the interactions in Fig. 3.1, to keep our notation close to the relevant
literature. Note also that the splitting rate in (3.3c) has been marked with † to imply the absence of
coherent effects, as in (†). Let us next look more closely at the hierarchy of energy loss rates in eq. 3.3.

The leading order processes, i.e., Coulomb 2 → 2 processes can reduce the energy of the incoming
particle significantly only if there is a large momentum exchange through the single propagator, which
implies that the exchanged particle is far off-shell, leading to a power-suppressed scattering amplitude
as seen in (3.3a). On the other hand, the infrared divergence corresponding to the forward scattering
limit of the hard OoE particles off the thermal bath provides a significantly larger interaction rate. The
cutoff is systematically provided by the screening effects and given by thermal field theory to be the

36



3.1 Formulation of the problem

thermal mass (2.35). As seen in eq. 3.3b the price to pay for this sizeable cross section is, however,
the small momentum transfer leading to a relatively small rate of energy loss.

A second observation in eq. 3.3 is that the contribution from soft Coulomb processes dominates
over the less frequent hard 2 → 2 scatterings. Note that this is not in contradiction with our previous
statement in Section 2.5 regarding the competitive contribution of the soft and hard processes in the
momentum diffusion process of Fig. 2.4. The diffusion process of Section 2.5 scales as the square root
of the number of scattering events (see Fig. 2.4), whereas in eq. 3.3 the energy loss rate scales linearly
with the number of scattering events. It is important to keep in mind that the soft 2 → 2 processes are
also responsible for setting the mean free time (2.41) of particles propagating the thermal plasma and
will therefore play a crucial role in the kinetic theory describing the process of energy loss. In the
study of the energy loss process, we, therefore, focus on soft Coulomb 2 → 2 processes 3 .

For future use, and to look at these processes in more detail, let us use a slightly modified notation
to write the rate of soft elastic processes as

ϑel ∼ 𝑖̃∗𝑥𝑂 , (3.4)

where the factor of 𝑖̃∗ is introduced to account for the number of degrees of freedom in the thermal
plasma that couple to the given interaction of strength 𝑥, as well as order one group factors and factors
of 𝑙 resulting from a detailed calculation (see e.g. Chapter 4 and footnote 2 on Page 35). Equivalently,
we could say soft 2 → 2 processes occur on intervals of 𝛶𝑃el = ϑ−1

el , while allowing for a momentum
transfer of the order of the effective thermal mass (2.35)

𝛶𝑉el ∼ 𝑅th, (3.5)

which we may now write as
𝑅th ∼ 𝑥

1/2
𝑂 . (3.6)

Going back to eq. 3.3, the large energy loss rate of collinear splitting processes in (3.3c) implies that the
higher order near–collinear splitting processes of the form in Fig. 2.5 provide a by–far more efficient
means of energy loss for hard OoE particles with 𝑉 * 𝑂 . The reason is that despite requiring an
additional vertex insertion, nearly collinear splitting processes can lead to a large energy loss of order
𝛶𝑉 ∼ 𝑉 without relying on large virtualities in any propagator. As first noted in [61], such splitting
processes therefore dominate the rate of energy loss [41, 52]. This energy loss will be significant
only if the daughter particle produced in the splitting has energies well above 𝑂 . It is important to
note that the splitting process also increases the number of non-thermal particles, which is crucial for
thermalization both with and without a preexisting thermal bath [52, 62].

As a last remark, we should point out that the included MD era and the decays of the matter
component respect the isotropy and homogeneity of the large scale universe introduced in Section 2.1.
The spatial distribution of the momenta of the decay products is statistically isotropic already at the
production stage; this means that thermalization can proceed through near-collinear splitting processes.
In this regard, the problem at hand is different from that of thermalization of final state products in an
ultra relativistic heavy ion collision, where initially a high degree of anisotropy could be present 4.

3 As we will see in Section 3.1.3, the transverse momentum diffusion does play a role in setting the energy loss process rate
by setting the LPM suppression rate; as such, hard 2 → 2 processes indirectly enter the leading energy loss rate, leading to
the so called Coulomb logarithm enhancement factors. See also the footnote on Page 29 and the discussion in Section 4.3.

4 For a discussion of the role of anisotropy see e.g. [34, 63].
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3.1.3 Coherent interference and LPM resummation

In Section 3.1.2 we established the hierarchy of contributions to the rate of energy loss for a hard OoE
particle, i.e., with 𝑉 * 𝑂 . Naively, our observations suggest that so long as we are interested in the
energy loss process, the dominant term in the corresponding Boltzmann equation (2.48) will be given
by 2 → 3 splitting processes. A cascade of such reactions will therefore eventually turn an initially
injected particle with energy 𝑉i ∼ 𝑊/2 into O

(
𝑉i/𝑂

)
particles, each with energy 𝑉 ∼ 𝑂 , which

eventually become part of the thermal background described by eq. 2.20. Although 2 → 3 splitting
processes can also occur in association with hard reactions, they do not require large momentum
exchange between the energetic particle and the thermal bath for a sizeable energy loss. The differential
cross section will then greatly prefer small momentum exchange, so that momentum redistribution
proceeds chiefly via the splitting of the energetic parent particle into the two nearly collinear daughter
particles with lower energies, denoted by 𝑤1 , 𝑤2:

𝑉i = 𝑉d1 + 𝑉d2 . (3.7)

In this chapter, where we are limiting our attention to a model of OoE particles consisting of merely a
single species of non–abelian gauge bosons, we use the term “daughter particle” of energy 𝑉d to refer
predominantly to the particle with the smaller energy:

𝑉d ≡ min(𝑉d1, 𝑉d2) = min(𝑉d1, 𝑉i − 𝑉d1) . (3.8)

Let us take a closer look at the rate of the 2 → 3 process. As mentioned in Section 3.1.2, the
zero-temperature cross section for the splitting reaction in vacuum suffers from infrared and collinear
divergences. As in the case of 2 → 2 processes, the thermal bath regularizes infrared divergences via
the thermal mass (3.6). The resulting near–collinear 2 → 3 splitting (3.7) can in principle proceed
for a range of daughter momenta (3.8) in the interval 0 < 𝑉d ≤ 𝑉i/2; we may however use physical
arguments to slightly modify the latter interval. Note that the daughter particles too will pick up an
effective mass due to the presence of the background plasma. Moreover, we are not interested in
the emission of daughter particles with energy 𝑉d ≤ 𝛷 𝑂 , where 𝛷 is a constant of O (1) introduced
to parameterize a hard IR cutoff 5 . The latter choice is motivated by the observation that energetic
particles traversing a thermal bath frequently emit and absorb such quanta; as we saw in Section 2.5, a
large number of soft 2 → 2 processes can occur on the timescale corresponding to a near–collinear
splitting.

Using the above arguments, we may limit our attention to splittings (3.7) with the daughter
momentum in the range 𝛷 𝑂 < 𝑉d ≤ 𝑉i/2. In line with (3.3c), the collinear emission of a gauge boson
results in a differential cross section of the form

dϑsplit

d ln 𝑉d

∼ 𝑥ϑel, (3.9)

suppressed by another factor of 𝑥 compared to the soft elastic processes (3.4). Before incorporating
the rate (3.9) to write down and solve the corresponding Boltzmann equation, however, it is imperative
to consider the question of validity of the kinetic theory approach.

5 The term hard here refers to the step–function form of the cut-off and is not to be conflated with the our terminology of
hard particles with 𝑉 * 𝑂 .
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In Section 2.5 we saw that the inclusion of near–collinear processes with a momentum transfer of
order 𝛶𝑉el through the intermediate propagators resulted in a violation of the decoherence condition
(2.39). Physically, this violation followed from near–collinear splittings occurring on timescales longer
than that between consecutive soft elastic scattering events; in the language of Chapter 3, a parent
particle will undergo many elastic scatterings (3.4) during its splitting process (3.9). We concluded
Section 2.5 by stating that one needs to coherently resum the effect of the many soft elastic processes
to get an effective rate for splitting processes in an effective kinetic theory.

For the study of energy loss via near–collinear splitting processes, the effective kinetic theory can be
written down by the inclusion of the Landau–Pomeranchuk–Migdal (LPM) effect [35, 36, 49, 64–66].
The LPM effect describes the suppression of collinear emissions of particles in the presence of a
background medium; the suppression is due to destructive interference between successive emissions
associated with scattering reactions on the background medium during the “long” formation time of
the emitted radiation.

As outlined in eq. 2.50, the effective theory is formally achieved by resumming a series of processes
in thermal field theory [49]. Equivalently, one may use more intuitive physics arguments to derive the
effective LPM–suppressed splitting rate. Following [39, 41], let us adopt the latter approach to study
the suppression by focusing on the propagation of a single ultra-relativistic OoE state in the thermal
medium. Without loss of generality, the unperturbed trajectory of this particle can be chosen to lie
along the 𝛹 axis and the time elapsed traversing the thermal bath in its rest frame as 𝛶𝑃, so that the
corresponding coordinates read

𝐿
𝑄 = (𝛶𝑃, 𝛶𝑃 𝑜𝑖) . (3.10)

We are interested in the emission of a daughter particle with momentum vector k corresponding to
an energy 𝑉d for the daughter particle. With the kinematics leading to eq. 3.9, this emission will be
highly collinear, with the dominant component 𝑓 ↦ # 𝑉d and a small transverse momentum 𝑓⊥, so that
the process is not suppressed by a large momentum exchange in the intermediate state propagator. The
emitted particle can then be assigned a four–momentum

𝑓
𝑄 = (𝑉d, 𝑓 𝑜𝑖 + 𝑑𝑓 𝑜⊥) . (3.11)

Here 𝑑 is the emission angle, such that 𝑑𝑓 = |𝑓⊥ |, and 𝑉d ≈ 𝑓 (1 + 𝑑
2/2). Note that whereas 𝑉d is

basically fixed by the original splitting process of interest, 𝑓⊥ and so 𝑑 vary while the daughter particle
traverses the thermal plasma, and should be considered to be time–dependent; as we will see shortly,
the evolution of 𝑑 is closely related to our analysis of momentum diffusion in Section 2.5 and eq. 2.47.

Any destructive interference resulting from the near-collinear propagation of the parent and daughter
particles in the thermal bath relies on the coherence of the parent–daughter system. Crudely, one may
say that the coherence, and so the interference, persists so long as the invariant propagation phase,
𝛶𝑒 = 𝑓 · 𝐿 ≈ 1/2 𝑉d 𝛶𝑃 𝑑

2 ! 1, i.e. for a time

𝛶𝑃coh # 1/(𝑉d 𝑑
2) = 𝑉d/𝑓

2
⊥ . (3.12)

Note that the coherence time (3.12) would coincide with the time–scale (2.49) of the splitting process,
if one were to consider only a single soft elastic scattering of the splitting OoE particle off the
background, with a non–dynamic 𝑓⊥ ∼ 𝑅th. As shown in eq. 2.49, however, the hierarchy of timescales
allows for a large number of elastic scatterings in the course of a single splitting processes, resulting in
a time–dependent 𝑓⊥. Therefore, the evolution of 𝑓⊥ sets the timescale 𝛶𝑃coh for the coherence of the
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Chapter 3 Particle thermlization in the early universe: pure gauge boson treatment

parent–daughter system and thus for the LPM suppression of the emission process.
The evolution of 𝑓⊥ in the thermal medium results from numerous individual elastic kicks by

thermal bath particles. Thermal kicks of typical size 𝛶𝑓el
6 given by eq. 3.5 will occur isotropically

with a rate ϑel, given by eq. 3.4, resulting in k⊥ performing a random walk in the 𝐿 − 𝛺 plane. The
random walk should be understood as resulting from the random nature of individual elastic scatterings
of the daughter particle off the background thermal bath particles. The expectation value for 𝑓⊥ will
then grow as the square root of the number 𝛴s of random walk steps. For an initially collinear daughter
particle one has

〈
𝑓⊥

〉
(𝛶𝑃) # 𝛴

1/2
s 𝛶𝑓⊥ # (𝛶𝑃/𝛶𝑃el)

1/2
𝛶𝑓el # 𝛶𝑃

1/2ϑ1/2
el 𝛶𝑓el #

(
𝑖̃∗𝛶𝑃

)1/2
𝑥𝑂

3/2
. (3.13)

Combining with eq. 3.12 yields

𝛶𝑃coh # 𝑖̃
−1/2
∗ 𝑥

−1
𝑂
−3/2

𝑉
1/2
d , (3.14)

as the key quantity controlling the LPM suppression; the collective effect of 𝛴s elastic scatterings
results in the daughter particle being kicked out of equilibrium after a time given by (3.14).

An OoE particle traversing the thermal background plasma repeatedly undergoes soft Coulomb
scatterings with thermal particles of number density 𝑌target (2.20) at times separated by a time ϑ−1

el . In
the absence of coherence effects, each such elastic scattering would result in a near–collinear splitting
with a probability 𝑥, resulting in a rate (3.9) for 2 → 3 splittings. Coherence effects, however, prohibit
such splittings for a time 𝛶𝑃coh, given by eq. 3.14. From the perspective of the hard OoE particle,
coherence effects result in a reduction of the number density 𝑌target of background particles by a factor

𝑘LPM(𝑉d) # 𝛶𝑃
−1
cohϑ

−1
el #

(
𝑂

𝑖̃∗𝑉d

)1/2
, (3.15)

suppressing collinear splittings rate (3.9) by a factor 𝑘LPM(𝑉d). The resulting LPM–suppressed splitting
rate is thus

dϑsplit
LPM

d𝑉d

# dϑsplit

d𝑉d

𝑘LPM(𝑉d) # 𝑥
2
(
𝑂

𝑉d

)3/2 √
𝑖̃∗ . (3.16)

The LPM–suppressed splitting rate (3.16) therefore resums the series of contributing diagrams to
yield the effective rate of splitting (2.50) and allows us to write down an effective kinetic theory for the
process of energy loss.

A critical question would then be whether a suppressed rate 2 → 3 splittings would affect the
hierarchy of rates in eq. 3.3; i.e. whether splitting processes continue to provide the dominant
contribution to the energy loss rate of an OoE hard particle. The total energy loss rate for a parent
particle with energy 𝑉p can be derived from eq. 3.16 as an integral over all possible splittings with
different daughter energies 𝑉d.

7

6 In Section 2.5 and Fig. 2.4, we discussed the comparable contribution of soft and hard elastic Coulomb processes to the
momentum diffusion of hard momenta. One may therefore ask if one should add up the effects of all elastic processes
in the evolution of 𝑓⊥; the answer is positive and as we will see in Chapter 4, allowing for the combined effect of
progressively harder elastic processes results in a logarithmic enhancement in the evolution rate for 𝑓⊥ and consequently
the LPM suppression effect.

7 Note that we are treating the coupling 𝑥 as a constant, independent of the energy of the daughter particles. This should be

40



3.1 Formulation of the problem

(
d𝑉p

d𝑃

) split

LPM

=
∫ 𝑔p/2

𝑌
𝑤𝑉d𝑉d

dϑsplit
LPM

d𝑉d

# 2𝑥2
𝑂

3/2
√
𝑉p𝑖̃∗ . (3.17)

This new LPM–suppressed rate replaces our previous naive estimate in (3.3c); comparing to the energy
loss rate provided by 2 → 2 processes in (3.3a) and (3.3b) clearly shows that near–collinear splitting
processes still have the upper hand, despite suppression due to coherence effects.

To conclude this section, and with the form of our key results at hand, we may go back to check the
validity of some of the assumptions we have so far made. First, with the form of the LPM–suppressed
splitting rate (3.16) at hand we may now motivate the choice of 𝑉d in eq. 3.8. In a splitting process, the
destructive interference ends once a daughter state picks up a sufficiently large transverse momentum
via interactions with the thermal bath. This is always first realized for the softer of the two daughter
states in eq. 3.7, whose energy 𝑉d thus determines the LPM suppression factor. Moreover, equation
3.12 shows that there is no LPM suppression of non-collinear splitting processes if the initial 𝑓⊥ is so
large that 𝛶𝑃coh < 𝛶𝑃el, i.e. for 𝑓2

⊥ > 𝑥𝑖̃∗𝑉d𝑂 . However, the rate for such processes is suppressed by a
factor 1/𝑉d. Since 𝑘LPM only scales like 1/√𝑉d, nearly collinear splitting reactions still dominate.

Next, we may circle back to validate our treatment of the temperature parameter 𝑂 as being constant
throughout the thermalization process; this assumption is for example central to our formulation of
the Boltzmann equation (2.51) in Section 2.5; note the LHS contains time–derivatives of the kinetic
function while we have parameterised the RHS in terms of a single time–independent temperature
parameter 𝑂 ; more explicitly, we disregarded the momentum redshift due to the expansion (2.9). This
should be a good approximation if thermalization occurs on a timescale much shorter than the Hubble
time, setting the rate of change of 𝑂 . The validity of this assumption depends on thermalization
processes occurring much faster than the Hubble time 𝑃H ≡ 𝑔

−1. With (3.17) as the dominant process,
a particle with initial energy 𝑉i * 𝑂 can be thought to thermalize in a time

𝑃therm #
√
𝑉i

2𝑥2
𝑂

3/2√
𝑖̃∗

= ϑtherm
LPM

−1 (
𝑉i

)
. (3.18)

To compare against the expansion rate, we write the total energy density 𝑇tot = 𝑇R + 𝑇M ≡ 𝑐 𝑇R. The
(time-dependent) quantity 𝑐 describes the contribution of the heavy decaying particles, so that for
a matter-dominated era we expect 𝑐 ≥ 2. Using eq. 3.18 with 𝑉i # 𝑊/2 (the mass of the decaying
particle), we have

𝑔𝑃therm #
𝑙

√
𝑊𝑂/20

6𝑥2
𝑊Pl

√
𝑐𝑖∗/𝑖̃∗ ∼ 5 · 10−8

√
𝑊𝑂

1010 GeV

(
0.1
𝑥

)2 √
𝑐 . (3.19)

Evidently, the thermalization time will be many orders of magnitude smaller than the Hubble time,
unless 𝑊 is close to the reduced Planck mass, 𝑊Pl = 2.4 · 1018 GeV, or 𝑇M exceeds 𝑇R by many orders
of magnitude. However, even if this is the case initially, 𝑔𝑃therm 4 1 will hold for the majority of
energy injection Hubble eras. As long as 𝑐 * 28, 𝑇R will only decrease like 𝑃−1, while 𝑇M decreases

reasonable since, as we saw above, a large energy loss in a splitting process is possible without any large momentum
transfer. The argument of the relevant beta functions should therefore be of order 𝑂 , and not 𝑉d; further considerations can
be taken into account if one includes subleading large angel scatterings (see footnote 6). We further ignore a logarithmic
enhancement, namely the remnant of the collinear enhancement of the splitting process in vacuum.

8 In this case, the decay products produced per Hubble time dominate over the properly redshifted thermal background
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like 𝑃
−2, so that

√
𝑂𝑐 ∝ 𝑃

−5/8. Note also that the density of relics produced in the early stage of the
epoch of energy injection gets diluted by entropy production if initially 𝑐 * 1; moreover, most of the
massive particles will decay near the end of that epoch (see Section 3.4). Therefore the non-thermal
production of relics, either directly from the decay of the massive particles or in the collisions of
their decay products prior to thermalization, dominantly occurs in the later stages of energy injection;
here eq. 3.19 clearly implies 𝑔𝑃therm 4 1 so that the formulation (2.51) of the Boltzmann equation is
permitted.

3.2 The thermalization cascade and the Boltzmann equation

In Section 3.1, we established the role of near–collinear splitting processes in the process of energy
loss of a single species of non–abelian gauge bosons and used physical arguments to calculate the
LPM–suppressed splitting rate required for the effective kinetic theory treatment. We now wish to
write down the corresponding Boltzmann equation governing the spectrum of the hard OoE particles.
Let us start by taking a closer look at the role of various splittings (3.7) in the process of energy loss.

The total energy loss rate in eq. 3.17 is dominated by contributions from near the upper limit
of integration corresponding to nearly symmetric splitting where 𝑉d ∼ 𝑉i/2; that is in fact why we
have used symmetric splittings to estimate the energy loss rate induced by near collinear splittings in
eq. 3.3c. On the other hand, it is clear from (3.16) that the process rate favors softer daughter particles,
so for every symmetric splitting in the thermal bath there will be numerous asymmetric splittings
producing one daughter particle with 𝑂 < 𝑉d 4 𝑉i, while the second daughter has energy near 𝑉i. It
is important to note that many of the daughter particles still have energy 𝑉d * 𝑂 , which means that
they undergo further splittings. An energetic particle thus triggers a cascade of splittings, generating a
non-thermal spectrum of daughter particles. Let us denote this spectrum by

𝑌̃(𝑉) ≡ d𝑌(𝑉)
d𝑉

such that
∫ 𝑗

𝑌
𝑌̃(𝑉)𝑤𝑉 = 𝑌, (3.20)

so that 𝑌 denotes the physical number density of all OoE particles in the plasma. The distinction
between the dominant energy loss process and the dominant rate process in the thermalization cascade
has, in some cases, been neglected in the literature; as a result, the spectrum of the high energetic
states has been assumed to result from the dominant symmetric splitting, yielding a spectrum of
𝑌 ∝ 𝑉

−1. Similarly, the presence of the natural cut–off at O (𝑂) for the cascade of splitting processes
has been in some cases ignored; this is partly due to the fact that even in the absence of an IR cutoff,
the rate of energy loss (3.17) will be finite. The same is however not true for the spectrum in (3.20).
Our objective is to find a more accurate estimate of the non-thermal spectrum 𝑌̃(𝑉) resulting from
LPM-suppressed gauge interactions of energetic particles injected into a thermal plasma, including
the thermal IR cutoff in the splitting process. In the following subsection, we will describe how to
tackle this problem.

The spectrum 𝑌̃ (𝑉) provides a convenient non–equilibrium parameterization of the kinetic function
𝑛 (𝑉) as seen , e.g., in eq. 2.19. The success of standard BBN suggests that the period of injection of
energetic decay products must have ended well before the onset of BBN [67], when the universe was

existing at the beginning of this Hubble time. The energy density of relativistic particles at any given time is nevertheless
dominated by the thermal contribution.
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still essentially isotropic. Moreover, we can safely assume that the energetic particles were injected
isotropically; if these energetic particles originated from the decay of very massive matter particles,
as in (3.1), this assumption can only be violated if these progenitors were polarized along the same
direction, which seems highly implausible. Further, we argued in Section 3.1.3, that the efficiency
of 2 → 3 process allows one to treat all splittings of the thermalization cascade as occurring within
one Hubble era, and therefore as corresponding to a certain temperature 𝑂 . The spectrum (3.20)
should, therefore, be implicitly understood and sufficiently describable as 𝑌̃ (𝑉,𝑂) depending on the
magnitude of the three momentum 𝑉 as well as the temperature 𝑂 .

3.2.1 The quasi–static Boltzmann equation

In Section 3.1, we introduced the expansion history of a universe involving a decaying matter
component (3.1). We further established the LPM–suppressed rate (3.16), required for the formulation
of the effective kinetic theory of the process of the energy loss. Finally, we introduced the phase space
density parameter 𝑌̃ (𝑉) (3.20) to describe the population of OoE particles as they are produced from
the decays of the matter component (3.1a) and evolve to form a thermal radiation bath with 𝑇R ∝ 𝑂

4

in (3.1b).
Let us start studying the evolution of the phase space distribution of OoE particles by looking at the

generic Boltzmann equation for a homogenous isotropic distribution:

𝑗

𝑗𝑃

𝑌̃(𝑉, 𝑃) − 3𝑔𝑉

𝑗

𝑗𝑉

𝑌̃(𝑉, 𝑃) = +Cinj(𝑉, 𝑃) − Cdep(𝑉, 𝑃). (3.21)

The LHS of eq. 3.21 contains the temporal variations of the phase space distribution function 𝑌̃, as
well as the Hubble friction term capturing the effect of expansion on momenta. The “collision terms”
on the RHS of this equation correspond to the loss and gain terms schematically introduced in (2.36)
and capture the particle interactions affecting the phase space distribution 𝑌̃. The first of these terms,
Cinj(𝑉, 𝑃), represents the injection processes adding particles of momentum 𝑉; in our case, this includes
the primary injection, which we assume to be due to the two-body decay of some massive particle
resulting in a 𝛶-function at 𝑉 = 𝑊/2, as well as “feed-down” from particles with momentum 𝑓 > 𝑉

through the thermalization splitting cascade. The second collision term, Cdep(𝑉, 𝑃), represents the
depletion processes removing particles of momentum 𝑉 when they themselves initiate an energy loss
cascade.

The generic form (3.21) can be further simplified using the arguments presented in Section 3.1.3 and
the discussion ensuing eq. 3.19. We saw that, for most epochs of energy injection, the decay products
thermalize on a timescale much less than a Hubble time. This leads to two further simplification of
our Boltzmann equation. First, as advertised in Section 2.5, we can safely neglect the second term
on the LHS of eq. 3.21, representing the Hubble expansion. Second, since the rate of change of the
temperature is given by the Hubble time, we can also neglect the change of the temperature of the
thermal bath over the time needed for any one cascade to develop and fade away. Of course, the
temperature will likely change over the entire epoch of energy injection. However, we can safely
assume that the phase space distribution of the non-thermal component is quasi-static, i.e. a time
dependence should only exist via the time temperature function 𝑂 (𝑃) as well as the time dependence
of the density of decaying particles 𝑌M(𝑃). The phase space density distribution function in eq. 3.21
can therefore be written as 𝑌̃ (𝑉,𝑂) and be thought of as representing the distribution of OoE particles
in a certain Hubble era.
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A quasi-static solution, i.e. steady state solution within each Hubble time, exists only if the injection
and depletion terms cancel in the Boltzmann equation 3.21, that is

Cinj(𝑉) = Cdep(𝑉) , (3.22)

which for the case of the splitting cascade of a single non–abelian gauge boson can be written as

2𝑌MϑM𝛶(𝑉 − 𝑊/2) +
∫ 𝑗/2

𝑔+𝑘𝑌
𝑌̃(𝑓) 𝑤ϑ

split
LPM(𝑓 → 𝑉)

𝑤𝑉

𝑤𝑓 =
∫ 𝑔/2

𝑘𝑌
𝑌̃(𝑉) 𝑤ϑ

split
LPM(𝑉 → 𝑓)

𝑤𝑓

𝑤𝑓 . (3.23)

Here ϑsplit
LPM(𝑉 → 𝑉

′) denotes the splitting rate (3.16) for a process where a parent particle of energy 𝑉

results in daughters with energy 𝑉
′ and 𝑉− 𝑉

′. In accordance with the discussion in Section 3.1.3, here
we only consider emission of daughter particles with energy above 𝛷𝑂 , where 𝛷 of O(1) parameterizes
our IR cutoff. The first term on the LHS is due to the direct injection of decay products from
decaying particles of mass 𝑊 and number density 𝑌M into the plasma; the factor of two is due to the
assumption that each parent 𝑊 decays to two daughter particles of momentum 𝑊/2.9 The remaining
terms describe the feed-down from particles with momentum 𝑓 > 𝑉 and the loss of particles with
momentum 𝑉 due to emission of a daughter with momentum 𝑓 , respectively. The latter term, appearing
on the RHS of eq. 3.23, is directly described by the differential splitting rate given in eq. 3.16. Note
that the upper integration limit is set to 𝑉/2; this is because the splitting rate is symmetric under the
exchange of 𝑓 and 𝑉 − 𝑓 . Another key point is that here the unknown function 𝑌̃(𝑉) can be pulled in
front of the integral, i.e. the loss term can be written as 𝑌̃(𝑉)ϑsplit

LPM(𝑉), with

ϑsplit
LPM(𝑉) = 2𝑥2√

𝑖̃∗𝑂

(
1
√
𝛷

−
√

2𝑂
𝑉

)
. (3.24)

Physically, this simply reflects the fact that the rate of depletion of particles of energy 𝑉 depends solely
on the number density of these same particles.

The first integral in eq. 3.23 sums over all possible splittings of a parent of momentum 𝑓 which
lead to one of the two daughters having a momentum 𝑉; the latter may be either the more or the less
energetic daughter particle. One may split the integral to more easily treat these two possibilities:

∫ 𝑗/2

𝑔+𝑘𝑌
𝑌̃(𝑓) 𝑤ϑ

split
LPM(𝑓 → 𝑉)

𝑤𝑉

𝑤𝑓 =
∫ 𝑗/2

2𝑔
𝑌̃(𝑓) 𝑤ϑ

split
LPM(𝑓)
𝑤𝑉

𝑤𝑓 +
∫ 2𝑔

𝑔+𝑘𝑌
𝑌̃(𝑓) 𝑤ϑ

split
LPM(𝑓 − 𝑉)

𝑤𝑉

𝑤𝑓 (3.25)

= 𝑥
2√

𝑖̃∗𝑂
3/2

(∫ 𝑗/2

2𝑔
𝑌̃(𝑓)𝑉−3/2

𝑤𝑓 +
∫ 2𝑔

𝑔+𝑘𝑌
𝑌̃(𝑓) (𝑓 − 𝑉)−3/2

𝑤𝑓

)
.

The first term on the RHS of (3.25) describes the case where the softer of the two daughters is of
momentum 𝑉, while the second term captures the other case, where the more energetic daughter
carries momentum 𝑉. In these integrals, the unknown function 𝑌̃(𝑓) can not be pulled out of the
integral. The steady-state condition (3.23) is thus an integral equation; no analytical solution is known
to us and we will, therefore, look for approximate and numerical solutions in the following sections.

9 For decays into 𝑌 > 2 daughter particles one would have to replace 2𝛶(𝑉 −𝑊/2) by the initial decay spectrum 1
ϑM

𝑙ϑM (𝑔)
𝑙𝑔 .

It is worth noting that such higher order decays may in fact contribute independently to the cosmological process of
interest, e.g. DM production [30, 68, 69].
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3.2 The thermalization cascade and the Boltzmann equation

Before setting ourselves to the task of solving the Boltzmann equation, let us comment on the
validity of the approximations used to derive the simple form in eq. 3.23. Compared to the form of the
generic Boltzmann equation introduced in Section 2.5, our treatment of the injection and depletion
terms in (3.23) disregards the Bose enhancement and Pauli Blocking factors. The validity of this
approximation is partly closely tied to the efficiency of splitting processes as compared to the Hubble
expansion discussed in eq. 3.19; in the language of eq. 2.36, the small kinetic functions of OoE
particles with 𝑉 * 𝑂 will allow one to approximate 1 ± 𝑛 ≈ 1.

As discussed in Section 3.1.3, we further limit our attention to emission of particles with 𝑉 > 𝛷𝑂 .
This determines the integration boundaries in eq. 3.23; we are using 𝛷𝑂 as an infrared cutoff. This is,
strictly speaking, an oversimplification. In particular, our approach will not work for 𝑉 # 𝑂 , or for
𝑊/2 − 𝑉 # 𝑂 ; for example, our loss term vanishes for 𝑉 < 2𝛷𝑂 , see also (3.24), and our Boltzmann
equation will not generate particles with momenta between 𝑊/2 − 𝛷𝑂 and 𝑊/2. Ideally, instead of
the hard cutoff, one would consider the full set of competing processes at the scale of the thermal
bath 𝑉d ∼ 𝑂 . However, the total density of particles with 𝑉 # 𝑂 will in any case be dominated
by the thermal bath, and it is difficult to envision a process where it matters whether an incident
particle has momentum 𝑊/2 * 𝑂 or momentum 𝑊/2 − 𝑂 . Furthermore, although our treatment in
(3.17) resummed soft 2 → 2 Coulomb processes, disregarding the full set of 2 → 2 processes is an
approximation we have taken up. Efficient soft 2 → 2 scatterings with a momentum exchange given
in (3.5) are further arguments for an O (𝑂) cutoff of soft daughter particles in 2 → 3 splittings. Our
default choice will be 𝛷 = 1; we will comment on the 𝛷 dependence of our numerical results later on
in Section 3.3.2. As we will see, the cutoff will allow for an exact solution of the resulting Boltzmann
equation 3.23.

3.2.2 Model parameters and the dimensionless Boltzmann equation

Before proceeding to solve the Boltzmann equation, it is useful to reduce the number of model
parameters affecting 𝑌̃; as we will see, this will not only allow us to use a single solution in many
cosmological scenarios but will also be rather helpful in gaining an intuition for the form of the
solution. Let us first focus on the parameters in the first term in eq. 3.23, i.e., the initial rate of OoE
particle injection. It is physically clear that the normalization of the spectrum of non-thermal particles
will be proportional to the product 𝑌MϑM: if the injection of energetic particles were to suddenly stop
either due to the absence of matter particles (𝑌M → 0) or due to the absence of decays (ϑM → 0), we
would be left with a thermal radiation bath in a time of the order of the thermalization time (3.18)
with 𝑉i → 𝑊/2. Moreover, at 𝑉 = 𝑊/2 the first integral in (3.23) vanishes so that our steady-state
condition can be solved directly:

𝑌̃(𝑊/2) = 2𝑌MϑM𝛶(𝑉 − 𝑊/2)
ϑsplit

LPM(𝑊/2)
≡ 𝛴M𝛶(𝑉 − 𝑊/2) , (3.26)

where ϑsplit
LPM(𝑊/2) is given by (3.24) with 𝑉 = 𝑊/2. Physically 𝑌̃(𝑊/2) should be understood as 𝑌̃(𝑉)

in the immediate neighborhood of 𝑊/2. Of course, for 𝑉 < 𝑊/2 the first term in eq. 3.23 does not
contribute. The dependence on 𝑌MϑM can now be absorbed by defining

𝑌̄(𝑉) ≡ 𝑌̃(𝑉)
𝛴M

. (3.27)
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Chapter 3 Particle thermlization in the early universe: pure gauge boson treatment

Note that the homogeneous part of eq. 3.23, which describes the spectrum for 𝑉 < 𝑊/2, is invariant
under arbitrary changes of the normalization of 𝑌̃. The solution for 𝑌̄(𝑉) can now only depend on 𝑊

and 𝑂 ; this will later allow us to more easily present our results in Section 3.3. In fact, we will later
see that solutions for 𝑌̄ essentially depend only on the ratio of these two quantities. This can be seen
by defining the dimensionless momentum (energy) variable

𝐿 ≡ 𝑉

𝑂

; (3.28)

with the maximal value

𝐿M ≡ 𝑊

2𝑂
. (3.29)

We also introduce the new number density distribution function

𝑌̃(𝐿) ≡ 𝑤𝑌(𝐿)
𝑤𝐿

= 𝑂𝑌̃(𝑉) =⇒ 𝑌̃(𝐿M) = 𝛴M𝛶(𝐿 − 𝐿M) . (3.30)

Recalling that 𝑌̃(𝑉) has units of squared energy, eq. 3.30 implies that 𝑌̃(𝐿) has units of [𝑞]3. We finally
arrive at a dimensionless function describing the spectrum of non-thermal particles by a normalization
analogous to eq. 3.27:

𝑌̄(𝐿) = 𝑌̃(𝐿)
𝛴M

=⇒ 𝑌̄(𝐿M) = 𝛶(𝐿 − 𝐿M) . (3.31)

In order to derive the final integral equation describing the steady state condition we divide eq. 3.23
by ϑsplit

LPM of eq. 3.24:

𝑌̃(𝑉) = 𝛴M𝛶

(
𝑉 − 𝑊

2

)
+
∫ 𝑗/2

𝑔+𝑘𝑌
𝑌̃(𝑓)

√
𝑂

2
(
1/
√
𝛷 −

√
2𝑂/𝑉

)min(𝑉, 𝑓 − 𝑉)−3/2
𝑤𝑓 , (3.32)

where we have used eq. 3.26. In terms of the dimensionless variable introduced in eq. 3.28 and the
normalized distribution introduced in eq. 3.31 this finally yields:

𝑌̄(𝐿) =
∫ 𝑚M

𝑚+𝑘
𝑌̄(𝐿 ′)min(𝐿, 𝐿 ′ − 𝐿)−3/2

2
(
1/
√
𝛷 −

√
2/𝐿

) 𝑤𝐿 ′ + 𝛶(𝐿 − 𝐿M) . (3.33)

We have therefore managed to reduce the number of free parameters in our treatment of the Boltzmann
equation to two; the ratio parameter 𝐿M of (3.29) describing the ratio of scales characterizing the
matter and component ratios, and the cutoff parameter 𝛷. In the next section, we will devote our
attention to solving the dimensionless Boltzmann equation (3.33).

3.3 Solution of the Boltzmann equations

We are now ready to discuss solutions to the Boltzmann equation (3.23), or its normalized, dimension-
less version given in eq. 3.33. As already stated, we do not know of an exact analytical solution to this
equation; we can however use the forms (3.23) and (3.33) along with physical arguments to deduce
the features the solution is expected to exhibit. The latter can be in turn used to make attempts at an
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analytical approximate solution for the Boltzmann equation. This will be the focus of Section 3.3.1.
In the absence of an analytical solution, we will then proceed to treat the Boltzmann equation (3.33)

numerically in Section 3.3.2, where now we will have to restrict our attention to a limited number of
physics scenarios with fixed values for the parameters 𝐿M and 𝛷 as discussed in Section 3.2.2. Finally,
in Section 3.3.3, we will analytically parameterize our numerical solutions of Section 3.3.2 so that we
may generalize these to other cosmological scenarios with a different 𝐿M.

3.3.1 Generic features and approximate solutions

In Section 3.2.1 we saw that the quasi–static distribution of OoE particles is governed by a detailed
balance (3.22) of the number of hard particles entering and leaving a certain energy interval around 𝑉

with 𝑊/2 > 𝑉 > 𝑂 . Let us consider the chain of splittings available to the initial decay products of
energy 𝑉 = 𝑊/2, and the subsequent daughter particles.

As we saw in eq. 3.26, the Boltzmann equation can be used to find the normalization of the solution
at 𝑉 = 𝑊/2. We may now ask how the spectrum 𝑌̃ (𝑉) behaves in the vicinity of 𝑉 = 𝑊/2. A
naive expectation would be for the spectrum 𝑌̃ to rise towards smaller momenta as the thermalization
process is expected to increase the number of OoE particles via consecutive splittings. A closer look,
however, implies that one should instead expect a decay of the solution at high−𝑉 and in the vicinity of
𝑉 = 𝑊/2; one way to see that is to consider two neighboring momentum intervals 𝛻1 = [𝑉, 𝑉 − 𝛷𝑂]
and 𝛻2 = [𝑉 − 𝛷𝑂 , 𝑉 − 2𝛷𝑂], in the immediate neighborhood of 𝑉 ! 𝑊/2. Now any population of
particles in 𝛻2 will necessarily have to had originated in 𝛻1, whereas the states originating from 𝛻1 are
allowed to split into any state of momentum 𝑉

′
< 𝑉. That results in only a fraction of the states in 𝛻1

ending up in 𝛻2, and hence the quick decay of 𝑌̄ at high−𝑉. Note that while the differential rate of the
splitting process (3.16) favors splittings into softer -and therefore neighboring- daughter momenta, the
preference does not compensate the presence of numerous available splitting chains.

Evidently, the spectrum of OoE particles needs to rise towards the radiation temperature 𝑂 , to
provide the large number of particles required by the process of thermalization; this is achieved when
the decay behavior at high 𝑉 is balanced out by the presence of many 𝛻1-like intervals at 𝑉 > 𝛼 from
which a given 𝛻2 interval can be populated. One, therefore, expects a flattening behavior as we move
away from the high−𝑉 region towards lower momenta. The same cumulative effect can further be
expected to finally give rise to a monotonic rise of the spectrum 𝑌̃ (𝑉) at lower momenta.

In Section 3.3.2 we will use the behavior described above as a cross–check for the performance
of our numerical solution. Before we proceed to the numerical treatment of the problem, however,
we may also look for possible approximate analytical solutions to the Boltzmann equation (3.23).
Motivated by our discussion above, it is reasonable to expect that any such approximate solution
will be more accessible, away from the “boundaries” and in the intermediate regions of the solution
domain, i.e. with 𝑊 * 𝑉 * 𝑂 .

In what follows, we will follow and expand upon the discussion in [41] to obtain an analytic
approximate solution, with minimal changes to the therein used notation for consistency. 10 A key
starting observation is the analytical form of the Boltzmann equation is somewhat complicated by the
presence of the cutoff parameter 𝛷. Even though this cutoff is necessary for a numerical treatment free
of divergence, one may take the limit 𝛷 → 0 for an analytic treatment. 11 Let us follow this advice and

10 For the original notation, see equations 10 – 15 and Appendix A in [41].
11 The divergent contributions from 𝛷 → 0 can be expected to cancel out from the detailed balance, corresponding to
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Chapter 3 Particle thermlization in the early universe: pure gauge boson treatment

rewrite the Boltzmann equation 3.23 with a vanishing cutoff as

2𝑌MϑM 𝛶 (𝑉 − 𝑊/2) +
∫ 𝑗/2

2𝑔
d𝑓

dϑsplit
LPM

d𝑉
(𝑉)𝑌̃ (𝑓) +

∫ 𝑔

0
d𝑓

dϑsplit
LPM

d𝑓
(𝑓)𝑌̃ (𝑉 + 𝑓) . (3.34)

=
∫ 𝑔/2

0
d𝑓

dϑsplit
LPM

d𝑓
(𝑓)𝑌̃ (𝑉) (3.35)

with the LHS and RHS corresponding to the injection and depletion terms in (3.22) respectively. In
(3.34), the LPM–suppressed splitting rate is given by eq. 3.16 and the integration domains have once
more been chosen for convenient treatment of the daughter momentum. For brevity, the process rates
can be written as12

dϑsplit
LPM

d𝑓
(𝑓) = −1

2
𝛽𝑓

−3/2 → 𝛽 ≡ 𝑓
1/2ϑtherm

LPM (𝑓) = constant. (3.36)

with the thermalization rate (3.18).

We may further simplify the form of the Boltzmann equation if we were to confine our attention
to the intermediate region of momenta; in particular for the region of momenta with 𝑉 > 𝑊/4, any
emission of a particle of momentum 𝑉 will necessarily involve a second softer particle. Equation 3.34
therefore takes the form

2𝑌MϑM𝛶 (𝑉 − 𝑊/2) = 1
2
𝛽

[∫ 𝑔/2

0

d𝑓

𝑓
3/2 𝑌̃(𝑉) −

∫ 𝑔

0

d𝑓

𝑓
3/2 𝑌̃(𝑉 + 𝑓)

]
, for 𝑉 ≥ 𝑊/4, (3.37)

𝛽

[∫ 𝑔/2

0

d𝑓

𝑓
3/2 𝑌̃(𝑉) −

∫ 𝑗/2

2𝑔

d𝑓

𝑉
3/2 𝑌̃(𝑓) −

∫ 𝑔

0

d𝑓

𝑓
3/2 𝑌̃(𝑉 + 𝑓)

]
= 0, for 𝑉 < 𝑊/4. (3.38)

Note that the amplitude pre–factor 𝛽 of the process rates does not affect the form of the solution
in (3.38). The rate of the splitting processes, instead, sets the normalization of the spectrum via its
relative size compared to the initial injection rate in (3.37); it then follows that a solution of (3.38)
will, by itself, not suffice to fix the normalization of the spectrum 𝑌̃ (𝑉). Regardless, let us focus on
the momentum distribution for the intermediate region 𝑉 4 𝑊 and make an ansatz

𝑌̃(𝑉) ∝ 𝑉
−𝑉
, 𝑌 ∈ R+ (3.39)

divergences in the injection and depletion terms in eq. 3.23 (see [70]). Following [41], we will be disregarding the Bose
enhancement and Puli blocking factors, despite the vanishing cutoff parameter.

12 Please note that in the notation used in [41] (equation A5-A6) the quantity ϑsplit (𝑓) is not the total splitting rate (3.24)

resulting from the integration
∫

d𝑓
dϑsplit (𝑛)

d𝑛 ; note also that the total splitting rate (3.24) is not well–defined in the limit
𝛷 → 0. Instead, to the best of our understanding, the authors use the notation ϑsplit (𝑓) to denote the thermalization rate of

a parent particle of energy 𝑓 , given by ϑtherm = 𝑃
−1
therm given in eq. 3.18. Furthermore, in this sense, the parameter 𝑓 in

equations A5 and A6 of [41] corresponds to the two momenta of daughter (𝑉d) and parent (𝑉p) particles respectively.
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Equation eq. 3.38, therefore, reduces to

−
∫ 𝑔/2

0

d𝑓

𝑓
3/2 𝑉

−𝑉

︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸
(I)

+
∫ 𝑗/2

2𝑔

d𝑓

𝑉
3/2 𝑓

−𝑉

︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸
(II)

+
∫ 𝑔

0

d𝑓

𝑓
3/2 (𝑉 + 𝑓)−𝑉

︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸
(III)

= 0. (3.40)

Multiplying eq. 3.40 by 𝑉
𝑉+1/2 simplifies the 𝑉−dependence and allows for the equation to be written

as

− B1/2 (−1/2, 1)︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸
(I)

+ 1
𝑌 − 1

(
(2𝑉/𝑊)𝑉−1 − 21−𝑉

)
︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸

(II)

+ exp (𝛩 3𝑙/2) B−1 (−1/2, 1 − 𝑌)︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸
(III)

= 0. (3.41)

where B𝑈 (𝛾, 𝑤) are incomplete Beta functions (see Appendix C). Note that the terms (I) and (III) do
not depend on the momentum 𝑉, implying a solution of the form (3.39) can only exist in the region

𝑉 4 𝑊 , 𝑌 > 1 (3.42)

where the momentum dependence in (II) also vanishes; this is fine for a solution of (3.38). Finally, as
can be seen from equations 3.40 and 3.41, the expression (II), corresponds to splittings with a soft
daughter momentum 𝑉 and is therefore finite. (I) and (III), on the other hand, involve singularities at
integration boundaries. A cancellation of the divergent parts of (I) and (III) and subsequently the
finite contribution from (III), together with (3.42) puts the best solution at (see Appendix C)

𝑌 = 3/2 . (3.43)

The authors in [41] therefore write the approximate solution of eq. 3.38 in the region 𝑉 4 𝑊 as

𝑌̃(𝑉) # 𝑌MϑM

𝛽

𝑊𝑉
−3/2

. (3.44)

The coefficient 𝑌MϑM/𝛽 is included as it appears as the prefactor of the source term in eq. 3.37; the
factor of 𝑊 is chosen by dimensional analysis; as mentioned before, a solution to eq. 3.38 does not, in
itself, allow for a determination of the normalisation in (3.44).

The normalisation of the the approximate solution (3.44) can be either estimated by matching to
a solution of the spectrum in the 𝑉 > 𝑊/4 region and (3.37), or by extending the validity of (3.44)
to lower momentum regions and using energy conservation arguments [41]; the latter relies on the
expectation that independent of the combination of splittings (3.7) through which the thermalization
process proceeds, The energy 𝑊 should be deposited at lower energies 𝑉 4 𝑊 in the form of O (𝑊/𝑉)
particles. One should, however, keep in mind that solutions to (3.34) at 𝑉 ∼ 𝑂 are expected to differ
from the more physical solutions of (3.23).

In the next section, we will instead numerically solve the IR–regularised Boltzmann equation (3.23)
over the entire range of momenta 𝑉; the resulting solution will therefore be free of ambiguities; we
will check to see if the expected behaviour introduced in Section 3.3.1, and the approximate form of
(3.44) in the region 𝑊 * 𝑉 * 𝑂 will be observed in the numerical solution.
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3.3.2 Numerical solution

As discussed in Section 3.2.2, the normalized and dimensionless formulation of the integral equation
has two free model parameters, namely 𝐿M and the cutoff parameter 𝛷, and better allows for a numerical
treatment; we will be presenting results for a limited number of numerical values for these parameters.

Before going on to the numerical solution for each specific case, let us first address the presence
of the delta function, as this could be thought to be problematic in the numerical treatment. The
presence of the delta function in the physical description of the Boltzmann equation 3.33 is clearly
an approximation to a narrow distribution in energy. Since the decaying progenitor particles have a
finite lifetime, the uncertainty relation implies a width of the initial peak at 𝐿 = 𝐿M given by ϑM/𝑂 .
Much more importantly, as discussed at the end of Section 3.2.1, soft 2 → 2 interactions with the
thermal plasma will smear out the initial momentum, creating a width of the order of 𝛶𝑓el/𝑂 ∼ 𝑥

1/2,
at time scales considerably shorter than that of the splitting reactions described by our Boltzmann
equation 3.33. It would therefore not be amiss if we were to smoothen out the delta function to get a
numerically tractable injection term in the vicinity of 𝐿M.

Moreover, any contribution to the solution at low 𝐿 will depend on all higher values of 𝐿 via
integration, therefore picking out the coefficient of the source term delta function. At least for
𝐿M − 𝐿 * 𝛷 the precise shape of the source term at 𝐿M is immaterial; recall that our hard IR cutoff
implies that the shape of our solution for 𝐿M − 𝐿 ! 𝛷 will in any case not be reliable. As a result, for
the purpose of a numerical solution, we can simply set

𝑌̄(𝐿M) = 1/𝛷 , (3.45)

with the understanding that this represents a bin around 𝐿M of width 𝛷. We will adopt this shorthand
notation so that our solutions will always start at a finite O(1) value at 𝐿 = 𝐿M.

Interpreting 𝑌̄

(
𝐿M

)
to represent the range from 𝐿M − 𝛷 to 𝐿M also solves the problem that this range

can, strictly speaking, not be populated by our evolution equation, since we do not allow the emission
of daughter particles with momentum less than 𝛷𝑂 . As already noted, physically it should not matter
whether a non-thermal particle has energy 𝑊/2 * 𝑂 or 𝑊/2 − 𝛷𝑂 . Similarly, the interval [1, 1 + 𝛷]
will be populated from splittings at higher 𝐿, without a possibility to split further down to 𝐿 ≤ 1. This
should not reduce the usefulness of our solution either, since we expect our non-thermal contribution
to be well below the thermal one at least for 𝐿 ≤ 3 or so. Note that, as discussed in Section 2.3 and in
particular eq. 2.23, the expectation value of the energy of a relativistic thermal distribution is ∼ 3𝑂 for
both the bosonic and the fermionic degrees of freedom. Moreover, the total number density in the
thermal plasma is much higher than that of the non-thermal radiation component due to OoE particles.

With these points in mind, we can move on to the numerical solutions of eq. 3.33. Since 𝑌̄(𝐿) only
depends on 𝑌̄

(
𝐿
′ ≥ 𝐿 + 𝛷

)
the procedure is in principle straightforward: One starts with 𝑌̄

(
𝐿M

)
= 1/𝛷

and gradually works down to smaller values of 𝐿. In practice we divide the interval [1 + 𝛷, 𝐿M − 𝛷]
into equal steps; inside the integral we evaluate 𝑌̄(𝐿 ′) by linear interpolation. This simple algorithm
leads to numerically stable results as long as the step size d𝐿 ≤ 𝛷.13

Numerical solutions for the choice of 𝛷 = 1 and 𝐿M = 102
, 103 and 104 are presented in Fig. 3.2.

13 A cubic spline interpolation of solution points also allows for a slight improvement in convergence behavior for the
numerical integration. My simple use of log-spaced steps turned out to make the numerics less stable. The authors in [70]
subsequently use a coarse-grained discretisation grid for a solution of the integral Boltzmann equation by a refinement of
the derivative calculation (see in particular equation 4.4 and the ensuing discussion in [70]); this allows for a significantly
faster numerical solution.
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Figure 3.2: Numerical results for 𝑌̄(𝐿) vs the ratio 𝐿/𝐿M, computed from the Boltzmann equation (3.33) for three
cases 𝐿M = 102 (red, top), 103 (black, middle), and 104 (blue, bottom). The left frame uses a linear scale for the
𝐿-axis, whereas the right frame uses logarithmic scales on both axes. The IR regulator has been set to 𝛷 = 1.

Note that, for reasons we will turn to in Section 3.3.3, we will often present the solutions in plots
against 𝐿/𝐿M. As can be seen in these three cases in Fig. 3.2, the overall shape and features of the
curves appear to be independent of 𝐿M. Starting at 𝐿 = 𝐿M the solution at first drops quickly; this part
of the curves can better be seen in the left frame, which uses a linear scale for the 𝐿-axis. Initially this
decline simply reflects the (𝐿M − 𝐿)−3/2 dependence of the integration kernel applied to the 𝛶-function
at 𝐿 = 𝐿M. However, this contribution becomes sub-leading already at 𝐿 ≤ 𝐿M − 3, where iterated
emission processes become important, and lead to a flattening of the spectrum. This agrees well with
the expected behavior mentioned in Section 3.3.1.

Perhaps somewhat counter-intuitively, the
√

2/𝐿 term in the denominator of the Boltzmann eq. 3.33
is quite important even in the large−𝐿 region; without this term, the spectrum would reach a (much
lower) minimum at 𝐿 ! 𝐿M/2. Instead, via the cumulative effect of the small variation due to the
square root, the curves in Fig. 3.2 reach their minimum at 𝐿− # 0.78𝐿M; to a very good approximation,
the minimum of the spectra in the three cases is reached at a fixed ratio of 𝐿/𝐿M, showing a scaling
behavior we will turn to in Section 3.3.3.

Figure 3.2 further shows that the spectrum rises again towards smaller values of 𝐿, once again in
agreement with the expected behavior discussed in Section 3.3.1. This low–𝐿 part of the spectrum
is more readily studied using a logarithmic scale for the 𝐿-axis (right frame). We see that for
10 ≤ 𝐿 ≤ 𝐿−/2 the spectrum can be described by a falling power of 𝐿. The numerical value of this
power is close to −3/2. This reflects the 𝑉

−3/2
d dependence of the LPM splitting rate, see eq. 3.16,

and agrees with (3.44), and therefore among others with the results in [41, 63, 71]. Finally, for
𝐿 ≤ 10 the spectrum bends upwards, as the 𝐿 ′–independent denominator in eq. 3.33 develops a strong
𝐿–dependence.

These features of the spectrum mentioned so far are relatively independent of 𝐿M. However, the
absolute value of the spectrum at fixed 𝐿, or fixed ratio 𝐿/𝐿M, clearly does depend on 𝐿M. In fact, to a
good approximation, the solution 𝑌̄ at fixed 𝐿/𝐿M scales like 1/√𝐿M, unless 𝐿 ≤ 10 where the low−𝐿
rise described above becomes pronounced. This can be understood from the observation that the
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Chapter 3 Particle thermlization in the early universe: pure gauge boson treatment

thermalization time of eq. 3.18 scales like
√
𝑊 ∝ √

𝐿M: the total number of non-thermal particles
should be proportional to the thermalization time; since the spectrum is spread out over a wider energy
range when 𝑊 increases, the differential spectrum at fixed 𝐿/𝐿M should scale like 𝑃therm/𝑊 ∝ 1/√𝐿M. In
Section 3.3.3 we will use this observation to parameterize an approximate solution to the Boltzmann
equation.

The above observation, namely that the overall normalization of the spectrum scales as 1/√𝐿M,
further helps explain why the spectrum scales linearly in 𝐿M at fixed small 𝐿. The overall normalization
of the spectra at fixed 𝐿/𝐿M ∝ 1/√𝐿M is over-compensated by the (𝐿/𝐿M)

−3/2 behavior at fixed 𝐿 (well
below the location of the minimum) to give the linear behavior observed in the 𝐿 ∼ O (1) region in
Fig. 3.2.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/x
M

1

10

100

1000

10000

1e+05

In
te

g
ra

l 
o
v
e
r 

n_

x
M

 = 10
5

x
M

 = 10
4

x
M

 = 10
3

0.0001 0.001 0.01 0.1 1

x/x
M

1

10

100

1000

10000

1e+05

In
te

g
ra

l 
o
v
e
r 

n_

x
M

 = 10
5

x
M

 = 10
4

x
M

 = 10
3

Figure 3.3: Numerical results for
∫ 𝑚M

𝑚
𝑌̄(𝐿 ′) 𝑤𝐿 ′ vs. the ratio 𝐿/𝐿M, computed from the Boltzmann equation

(3.33) for three cases 𝐿M = 105 (black, top), 104 (red, middle), and 103 (blue, bottom). The left frame uses a
linear scale for the 𝐿-axis, whereas the right frame uses logarithmic scales on both axes. The IR regulator has
been set to 𝛷 = 1.

We may further understand the behavior of the solution in Fig. 3.2 by looking at the number density,
i.e. the integrated spectrum, of OoE particles. As mentioned in Section 1.4, OoE particles of energy
𝑉
′ " 𝑉 could for example contribute to production of particles of mass 𝑅 ∼ 𝑉. In Fig. 3.3 we,

therefore, show results for the integral
∫ 𝑚M

𝑚
𝑌̄(𝐿 ′) 𝑤𝐿 ′, again as function of the ratio 𝐿/𝐿M, for three

values of 𝐿M now extending to 𝐿M = 105. We see that the integral quickly increases when 𝐿 is reduced
from 𝐿M; this reflects the spike at large 𝐿 seen in Fig. 3.2. This is followed, in the vicinity of the broad
minimum of 𝑌̄, by a rather flat plateau where the integral increases relatively slowly (note, however,
the logarithmic scale of the 𝛺-axis). At smaller 𝐿 the integral increases ∝ (𝐿/𝐿M)

−1/2. This power-law
behavior, which is again better seen with a logarithmic 𝐿-axis (right frame), evidently reflects the
(𝐿/𝐿M)

−3/2 behavior of 𝑌̄ noted above. The upturn at 𝐿 ≤ 10 is again due to the 𝐿-dependence of the
factor in front of the integral in eq. 3.33.

The behavior of the number density in Fig. 3.3 is further closely related to energy conservation. As
expected from the above discussion of the thermalization time, the value of the integral at fixed 𝐿/𝐿M

increases ∝ √
𝐿M as long as 𝐿 " 10. Together with the 1/

√
𝐿 dependence of the integral at fixed 𝐿M this

implies that the total number of non-thermal particles, i.e., the integral starting at 𝐿 = 3 (or a similar
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3.3 Solution of the Boltzmann equations

fixed, low value), increases essentially linearly with 𝐿M. This is in line with our expectation of the
thermalization process turning a single progenitor matter particle of mass 𝑊 into O (𝑊/𝑂) = O

(
𝐿M

)
thermal particles.14
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Figure 3.4: Numerical results for
√
𝛷 · 𝑌̄(𝐿) vs the ratio 𝐿/𝐿M, computed from the Boltzmann equation (3.33),

with 𝐿M = 104 and three different values of the IR regulator 𝛷: 1 (black), 3/2 and 2/3 (blue). 𝑌̄ has been
multiplied with

√
𝛷 in order to remove the 𝛷-dependence of the normalization factor 𝛴M defined in eq. 3.26. The

three curves essentially lie on top of each other for 𝐿/𝐿M " 0.01, i.e. 𝐿 " 100.

As stated earlier, the dimensionless formulation of our Boltzmann equation 3.33 involves a physical
parameter 𝐿M, and a cutoff choice 𝛷. The results presented so far have focused on the role of 𝐿M and
have been obtained with our default choice for the IR regulator 𝛷 = 1. We may now address the effects
of the choice of 𝛷. It is reasonable to expect the physical solution to be fairly independent of the
specific choice of thermal cutoff. The physical (non–normalized) density of particles in the thermal
spectrum is proportional to 𝛴M · 𝑌̄ and so, using (3.26), proportional to 𝑌̄/ϑsplit

LPM. Furthermore, we
know from (3.24) that ϑsplit

LPM ∝ 1/
√
𝛷 for

√
𝐿M * 1. Hence we can expect the combination

√
𝛷𝑌̄ to be

𝛷-independent.
In Fig. 3.4 we present results for

√
𝛷 · 𝑌̄, with a fixed 𝐿M = 104 as an example, using three different

values of 𝛷. The agreement among different solutions implies that the physical density computed from
our formalism is indeed almost independent of 𝛷, except for the region 𝐿 ! 10 where an increase

14 In this respect the thermal bath behaves like the calorimeter of a particle physics experiment.
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of 𝛷 begins to significantly increase the time needed to complete the thermalization; recall that we
do not admit emission of daughter particles with energy below 𝛷𝑂 . We checked numerically that
the results indeed depend on 𝛷 significantly only for 𝐿 ! 10, independent of the value of 𝐿M. This is
also well expected, as it is an effect of the saturation exclusively due to the presence of the thermal
bath of temperature 𝑂 . As expected from our discussion in Section 3.3.2 and as can be directly seen
from eq. 3.7, there is a corresponding dependence on 𝛷 for the high−𝐿 region 𝐿M − 𝐿 ! 5, although
this effect will again be fairly unimportant and also difficult to spot in Fig. 3.4. We will therefore
continue to present and use results corresponding to 𝛷 = 1 in the remainder of Chapter 3, as well as
in Chapter 4 thereafter.

3.3.3 Analytical parameterization of the numerical solution

We saw in Section 3.3.2 and Fig. 3.2 that solutions to the Boltzmann equation 3.33 for different 𝐿M’s
enjoy common features; we further physically motivated the dependence of the relative overall scaling
of these solutions on 𝐿M. In this section, we wish to find an analytical approximation to the exact
numerical solution. A simple fitted function would obviously be much easier to compute; this can be
very advantageous in numerical applications, e.g., when many values of 𝐿M need to be investigated.
Note that 𝐿M = 𝑊/(2𝑂) in general changes during the epoch of energy injection, since 𝑂 decreases as
∝ 𝑃

−1/2 (𝑃−1/4) if 𝑇M 4 𝑇R (𝑇M * 𝑇R).
Let us first exploit our understanding of the properties of the solution to narrow down candidates

for the fitting function. Clearly, an approximation will be more accessible if it only depends on the
ratio 𝐿/𝐿M, rather than on 𝐿 and 𝐿M separately. In the previous subsection we saw that 𝑌̄ indeed has a
rather similar shape for different values of 𝐿M; we also saw that the value of 𝑌̄ at fixed 𝐿/𝐿M scales like
1/√𝐿M if 𝐿 * 1. This motivates us to “factor out” the explicit dependence on 𝐿M to get a function
with a scaling behavior, i.e., depending on the ratio 𝐿/𝐿M. As can be seen in Fig. 3.5, this is achieved
if the solution of the Boltzmann equation 3.33 (without the 𝛶-function at 𝐿 = 𝐿M, which is always
normalized to unity) is multiplied with the function

𝑛 (𝐿, 𝐿M) =
√
𝐿M

(
1 −

√
2/𝐿

)5/4

1 − 2/√𝐿M

. (3.46)

Let us look at the structure of the function (3.46) more closely. The factor of
√
𝐿M has already been

remarked upon; the denominator in (3.46) removes the 𝐿M dependence that results from ϑsplit
LPM. The

numerator further somewhat compensates the prefactor 1/(1 −
√

2/𝐿) of the integral in the Boltzmann
equation (3.33), where the power 5/4 has been adjusted to make the curves in Fig. 3.5 approximately
coincide.

As discussed in Section 3.3.2, the delta function at 𝐿 = 𝐿M, is already analytically available and can
be included in our analytical formulation of the numerical solution. Further, the inclusion of the delta
function will further imply that in the immediate neighborhood of 𝐿M one should have

𝑌̄(𝐿) |𝑚#𝑚M
# 1

2

∫ 𝑚M

𝑚+1
𝛶(𝐿 ′ − 𝐿M) (𝐿

′ − 𝐿)−3/2
𝑤𝐿

′ =
1
2
(𝐿M − 𝐿)−3/2

. (3.47)

However, (3.47) merely includes the contribution of a single splitting starting from 𝐿 = 𝐿M. The
numerical analysis shows that this becomes inadequate already at 𝐿M − 𝐿 # 3; recall that for 𝐿M − 𝐿 ! 3
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Figure 3.5: Numerical results for 𝑛 (𝐿) · [𝑌̄(𝐿) − 𝛶(𝐿 − 𝐿M)] vs the ratio 𝐿/𝐿M. 𝑌̄ has been computed from the
Boltzmann equation 3.33 for four values of 𝐿M, with IR regulator 𝛷 = 1. The function 𝑛 (𝐿) as defined in eq. 3.46
has been chosen such that the four curves almost fall on top of each other. The left (right) frame uses a linear
(logarithmic) scale for the 𝐿-axis.

our solution is in any case not reliable, due to the dependence on the hard IR cutoff 𝛷. Nevertheless,
the numerical results clearly show that the spectrum initially falls off with decreasing 𝐿, corresponding
to the expected “falling” behavior introduced in Section 3.3.1. The inclusion of further splittings
results in a departure from the (𝐿M − 𝐿)−3/2 behavior, but we can parameterize the falling behavior
through a negative power in (𝐿M − 𝐿)−𝑜 where 𝛿 is a positive constant.15 On the other, hand we found
in Section 3.3.1, that the spectrum basically scales as 𝐿−3/2 for 1 4 𝐿 4 𝐿M; Fig. 3.5 shows that after
multiplying 𝑌̄(𝐿) with the function 𝑛 (𝐿) this scaling holds for all 𝐿 4 𝐿M.

Together, the above considerations suggest the ansatz

𝑛 (𝐿, 𝐿M) ·
[
𝑌̄(𝐿, 𝐿M) − 𝛶(𝐿 − 𝐿M)

]
= 𝑎

(
𝐿

𝐿M

)−3/2 (
1 − 𝐿

𝐿 M

)−𝑜
+ 𝛾 , (3.48)

where the constant 𝛾 has been introduced in order to improve the description of the numerical result
near the minimum, and 𝑎 parameterizes the normalization of the universal function resulting in Fig. 3.5.
Our final fitting function for the spectrum of non-thermal particles is thus:

𝑌̄(𝐿, 𝐿M) = 𝛶(𝐿 − 𝐿M) +

[
𝑎

(
𝐿/𝐿M

)−3/2 (1 − 𝐿/𝐿M

)−𝑜 + 𝛾

] (
1 − 2/√𝐿M

)
√
𝐿M

(
1 −

√
2/𝐿

)5/4 . (3.49)

As an example, in the case of 𝐿M = 105, the following choice of parameters leads to an average

15 One could also start with an initial solution of the form (𝐿M − 𝐿)−3/2 and iteratively obtain higher–order analytical
approximations to the solution for 𝑌̄ (𝐿); the result from a couple of iterations could, however, not compete with the fit in
(3.49).
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deviation between the numerical result and the fit of about 2%:

𝑎 = 0.39, 𝛿 = 0.48, 𝛾 = 0.37 . (3.50)

In fact, for values of 0.35 ≤ 𝑎 , 𝛿 , 𝛾 ≤ 0.45 the numerical results can be reproduced by a solution of
the form (3.48) within 3% average error, across four orders of magnitude.
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Figure 3.6: Fit (solid, red) of the form (3.48) and (3.49) compared to the numerical result (dashed, black)
for the scaled spectrum 𝑛 (𝐿, 𝐿M)𝑌̄(𝐿, 𝐿M) (top left and top right) and non-scaled spectrum 𝑌̄(𝐿, 𝐿M) (bottom).
The numerical results are for IR regulator 𝛷 = 1 and 𝐿M = 105, however, the results shown in the top figures
practically only depend on the ratio 𝐿/𝐿M as long as 𝐿 ≥ 1.

In Fig. 3.6 we compare the fit function with the exact numerical result for the rescaled spectrum 𝑛 · 𝑌̄;
the latter has been computed for 𝐿M = 105, but we saw above that the rescaled spectrum practically
only depends on the ratio 𝐿/𝐿M as long as 𝐿 ≥ 1. Similarly, the bottom frame in Fig. 3.6 shows the
agreement between the numerical results and fits of form (3.49) to the numerical solution. We see that
the fit not only describes the overall behavior well (left frame) but also the spike at 𝐿 # 𝐿M as well as
the minimum at 𝐿 # 0.78𝐿M (right frame). Recall that these results hold for IR cutoff 𝛷 = 1, but we
saw at the end of Section 3.3.2 that taking a different O(1) value for 𝛷 only affects the solution at
𝐿 ! 10𝛷 and 𝐿M − 𝐿 ! 10𝛷.
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3.4 Applications of the spectrum of out–of–equilibrium particles: an example

As advertised earlier, an analytical expression of the form (3.49) allows for a much faster estimation
of the spectra of OoE particles resulting from the thermalization cascade. Note that for a given
Hubble era of temperature 𝑂 of cosmological history involving a MD era, the soltuion (3.49) can be
directly translated to a physical number density (3.20) by reintroducing the dimensionful parameters as
outlined in Section 3.2.2. The importance of this accessibility can be better understood in applications
in cosmology where the spectrum of OoE particles needs to be repeatedly calculated for multiple
cosmological eras of different temperature 𝑂 or correspondingly different 𝐿M; this will be the focus of
the next section.

3.4 Applications of the spectrum of out–of–equilibrium particles: an
example

In Chapter 3 we set out to find the spectrum of OoE particles resulting from the splitting cascade
of a single species of non–abelian gauge bosons. To conclude this chapter, we will briefly review
an example for the applications of a spectrum of type (3.49) in calculating quantities of interest in
cosmology. We will further quantitatively examine the importance of the inclusion of the LPM
effect, as introduced in Section 3.1.3, and the performance of the approximate analytic solution of
Section 3.3.1. To that end, we will adopt the notations and results from [52] along with results from
[41] for comparison. Note that in Section 3.4, and for the sake of clarity, we will refrain from including
the † symbol, as in (3.3c) for expressions in need of correction with coherent effects.

For an era where the decay products dominate the radiation bath (see (3.1)), authors in [52] use the
(bulk) number density of hard primary decay products (progenitors) of energy 𝑊/2, given by

𝑌h (𝑂) ∼ 𝑇R/𝑊 ∼ 0.3 𝑖∗𝑂
4/𝑊 , (3.51)

with 𝑖∗, given by (2.22), being the effective number of DoF. As discussed in Section 3.3.1, the authors
in [41] instead suggested an analytical solution of the form

𝑌̃An(𝑉) =
𝑌MϑM𝑊√
𝑖̃∗𝑥

2
𝑂

3/2 𝑉
−3/2

, (3.52)

for the spectrum of thermalizing decay products. In equation 3.44, the dependence on the effective
interacting degrees of freedom 𝑖̃∗ can be assumed to have been absorbed by a redefinition of 𝑥,
including other order one group factors. Here in (3.52) we have reintroduced these factors for a clearer
comparison of results. In this setup of decay–dominated radiation bath, one may further identify
ϑM · 𝑌M · 𝑊 · 𝑃H ≈ 𝑇R (𝑂) to fix 𝛴̃M in (3.27), and so the normalization of the solution 𝑌̃ (𝑉) in (3.32)
as well as (3.52) for a given cosmological temperature 𝑂 .

In order to outline the consequences of the presence and form of a spectrum of energetic particles
as in (3.49) and (3.52), we will revisit our discussion of Section 1.4, i.e., the production of heavy
(meta-)stable particles 𝜀 prior to reheating in a matter-dominated universe, and point out further
possible consequences for cosmology. We are once more studying a universe with a decaying matter
component, described by equation 3.1; without loss of generality, we may trade the decaying rate of
the matter component ϑM for the cosmological reheating temperature 𝑂RH, where the latter describes
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the temperature of the radiation bath (3.1b) at times 𝑃 ∼ ϑ−1
M , so that

𝑂RH #
(

90

8𝑙3
𝑖∗

)1/4 √
ϑM𝑊Pl ∼

√
ϑM𝑊Pl. (3.53)

Let us assume we are interested in the production of a heavy species 𝜀 with a mass 𝑅𝑝 * 𝑂RH. The
high mass of species 𝜀 implies that, in addition to processes among soft particles in the thermal bath,
𝜀 production via interactions of the hard OoE thermalizing decay products with the soft thermal
particles (hard–soft processes), or other OoE particles (hard–hard processes), can become important.
As discussed in Section 3.1.3, the efficiency of the thermalization process results in the OoE particles
possessing a number density much smaller than that of the thermal radiation bath at any given time. It
then follows that any physical process will be dominated by the contribution of initial states from the
thermal bath, so long as this is kinematically and chemically allowed. When this condition fails, one or
both initial states can be thought of as belonging to the hard OoE particles. Following the literature, we
will therefore classify the various possible heavy particle production processes as soft–soft, hard–soft,
and hard–hard according to the energy composition of the 2 → 𝑌 process. As mentioned above, we
are primarily interested in the production of heavy particles inaccessible to soft–soft production.

In one of the earlier studies of the process of thermalization of decay products in cosmology, the
authors in [52] have used 2 → 3 splitting processes with a massless gauge boson as the t-channel
propagator to calculate a slow-down (thermalization) rate of

ϑslow # 3𝑥3
𝑂

(
𝑖∗

200

)1/3
. (3.54)

To regulate the process rate (3.54), the IR cutoff has been chosen as 𝑌1/3
R (𝑂), with 𝑌R given by the

contributions in (2.20), corresponding to the average spacing of particles in the thermal bath; notably,
this choice of the IR cutoff points to disregarding phenomena occurring on length–scales longer than
the average particle spacing. As such, the hallmark energy-dependence of the LPM effect (3.18),
resulting from the coherent contribution of interactions with multiple scattering cites in the background
plasma, is absent from (3.54). Note also that despite the different choice of IR cutoff, the rate (3.54)
represents the very same physics resulting in the non–suppressed 2 → 3 energy loss rate in eq. 3.3c.

In [52], the primary decay products (3.51) are assumed to constitute the highly energetic OoE
particles contributing to 𝜀 production. In this simplified picture of thermalization, the OoE particles
consist solely of energy 𝑉 = 𝑊/2 which get replaced by thermal particles of energy 𝑉 ∼ 𝑂 after a
time ϑ−1

slow. The hard–soft production rate, resulting from the interactions of an OoE particle of energy
𝑊/2 with a thermal particle of energy 𝑂 , takes the form

ϑhs
𝑝 ∼ 0.2

(
𝑥

2
𝑝

𝑂𝑊

+
𝑥𝑥

2
𝑝

𝛥𝑅
2
𝑝

)
𝑂

3
. (3.55)

In equation 3.55, the coupling of 𝜀 to a single species of the thermal bath is parameterized via 𝑥𝑝; we
will continue using the same notation in the remainder of this thesis. The two terms in the parentheses
in eq. 3.55 correspond to a 2 → 2 and a 2 → 3 process respectively; note that the inclusion of the
2 → 3 production channel for 𝜀 represents processes where the 2 → 2 rate suppression due to the
high (O (𝑊/2)) energy of the OoE particles is circumvented by a collinear emission of 𝜀’s in a higher
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order process. Moreover, we have introduced the kinematic threshold parameter 𝛥 of O (1) to set the
kinematic production threshold16; this is merely to unsure that phase–space suppressions do not limit
the 𝜀 production process in a given model, in principle, the parameter 𝛥 could be absorbed into the
parameterisation of 𝑅𝑝.

As can be seen from the denominators of (3.55), the hard–soft cross section for the number density
(3.51) of primary decay particles of energy 𝑊/2 will either suffer from large Center of mass (CoM)
energy suppression, or will have to resort to radiating away the extra energy at the cost of an extra
power of 𝑥, resulting in a number density for 𝜀’s reading

𝑌
hs
𝑝 (𝑂) ∼ 𝑌h ·

ϑhs
𝑝

ϑslow

∼ 4
(
𝑖∗

200

)2/3 𝑥
2
𝑝

𝑥
2

(
𝑂

5

𝑥𝑊
2
+ 𝑂

6

𝑊𝛥𝑅
2
𝑝

)
. (3.56)

In line with (3.51), equation 3.56 should be understood as representing the number density of 𝜀’s
produced during a Hubble time 𝑃H with temperature 𝑂 ; as we will see shortly, the total abundance of 𝜀
produced in a cosmological history results from properly adding up the contribution from the relevant
Hubble eras.

Next, let us redo the same calculation of 𝑌hs
𝑝 (𝑂) using the spectra of OoE particles, as introduced

in Sections 3.3.1 and 3.3.3. The splitting cascade underlying the spectra (3.49) and (3.52) affects
the production rate in more than one way. As we saw in Section 3.1.3, the LPM suppression factor
(3.15) increases the number density of OoE particles parametrically. Moreover, the splitting cascade
provides particles with energies lower than 𝑊/2, so that the 𝜀−production rate will be suppressed
neither by a too–large CoM energy nor by extra factors of 𝑥. A particle of energy 𝑉 * 𝑂 from the
thermalization cascade may contribute to production of 𝜀’s in 2 → 2 processes with a rate

ϑhs
𝑝 (𝑉) ∼ 0.2

𝑥
2
𝑝

𝑉𝑂

𝑂
3H

(
𝑉𝑂 − 𝑉thr𝑂

)
. (3.57)

Here we have introduced the kinematic threshold parameter 𝑉thr = 𝛥𝑅
2
𝑝/𝑂 and the Heaviside step

function H to enforce a cutoff at the kinematic threshold of 𝛥𝑅2
𝑝; note that the momentum threshold

depends on the temperature of the radiation bath in a Hubble era of temperature 𝑂 . The rate (3.57)
results in a number density

𝑌
hs
𝑝 (𝑂) = 𝑃H

∫ 𝑗/2

𝑔thr

ϑhs
𝑝 (𝑉) 𝑤𝑌 (𝑉) = 𝑃H

∫ 𝑗/2

𝑔thr

ϑhs
𝑝 (𝑉) 𝑌̃ (𝑉) 𝑤𝑉. (3.58)

of 𝜀 particles produced via hard–soft processes. A comparison with (3.56) shows, that the yield in
(3.58) can be parametrically larger as advertised above eq. 3.57.

A finer comparison is between the hard–soft yield resulting from the two numeric (3.49) and

16 With the particle spectra having power-law forms, as in (3.59), production will be most active near the threshold, so
that the precise value of the cutoff can lead to an order of magnitude variation in the resulting abundance; we therefore
consistently use a threshold of 𝛥 = 8 to have results directly comparable to [52].
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analytic (3.52) solutions for a certain 𝐿M. To that end, let us first rewrite the two spectra as

𝑌̃Num(𝑉)
𝑌̃An(𝑉)

}
=
(
𝛴̃M

𝑂

)
×


𝑌̄Num (𝐿)

𝑌̄An (𝐿) =
2

√
𝐿M

(
𝐿/𝐿M

)−3/2 , (3.59)

where 𝑌̄Num (𝐿) is given in (3.49), and we have used (3.30) to relate 𝑌̃ (𝑉) and 𝑌̃ (𝐿). Motivated by
the form of (3.58) and the relative sensitivity to near–threshold energies 𝑉thr for a heavy 𝜀, we may
directly compare the two spectra using the integrated weighted spectrum

𝑌
hs
𝑝 (𝑂) ∝

𝑃H𝑌R𝑥
2
𝑝

𝑂

∫ 𝑗/2

𝑔thr

𝑌̃

(
𝑉
′)

𝑉
′ 𝑤𝑉

′ =

(
𝑃H𝑌R𝑥

2
𝑝 𝛴̃M

𝑂
2

) ∫ 𝑚M

𝑚thr

𝑌̄

(
𝐿
′)

𝐿
′ 𝑤𝐿

′
, (3.60)

appearing on the RHS. Fig. 3.7 (top-left) shows the integrated weighted spectra, as a function of 𝐿,
from the two forms in (3.59), and the corresponding relative error of an analytical approximation
compared to a full numerical solution for the two cases 𝐿M = 103 and 105. The figure on the right
further shows that an error of O(1) is expected by using the monotonic form of the particle spectrum
𝑌̃An. As explained in our discussion following eq. 3.44, one could, however, in principle modify the
numerical prefactors of the analytical solution for a better fit.

In scenarios where 𝑅𝑝 is large enough so that at the end of reheating 𝑉thr * 𝑊, the hard–soft
channel of production might be either kinematically forbidden, or highly suppressed due to subsequent
entropy production via the matter decay process. In such cases, interactions among the less abundant
HE particles contribute to the production of 𝜀’s. Once again we will begin by presenting the hard–hard
yield using the initial number density of particles of energy 𝑊/2 in the setup from [52].

Previously, we introduced the initial number of hard OoE particles resulting from decays of the
matter component during a Hubble time in eq. 3.51. In the case of hard–hard production, only a
small fraction of OoE particles will be available at any instant in time; one, therefore, cannot directly
use the initial number density of hard particles 𝑌h (𝑂), and the transient nature of out-of-equilibrium
states implies one should use the instantaneous number density. Specializing again to a case where 𝑊

decays dominate the thermal bath of a Hubble era of temperature 𝑂 , one can write

𝑌
inst
h (𝑂) ∼ 𝑔

ϑslow

𝑌h (𝑂) ∼ 𝑔𝑖∗𝑂
4/3ϑslow𝑊 , (3.61)

to represent the fraction of initial decay products present during a time ϑ−1
slow. Within a Hubble time of

temperature 𝑂 , the number density (3.61) leads to a 𝜀 number density [52]

𝑌
hh
𝑝 (𝑂) ∼ 𝑌

inst
h ϑhh

𝑝 𝑃H with, ϑhh
𝑝 = 𝑄

hh
𝑝 𝑌

inst
h =

(
𝑥

2
𝑝

𝑊
2
+
𝑥𝑥

2
𝑝

𝛥𝑅
2
𝑝

)
𝑌

inst
h . (3.62)

Note that the target density in (3.62) one again reflects the transient nature of the hard–hard process.
Furthermore, the second term in the cross section would radiatively return the CoM energy to the
production threshold of 𝜀 particles, similar to what we had in eq. 3.55.

Next, let us turn to the calculation of the hard–hard yield in the presence of a continuous spectrum
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of OoE particles as in (3.49) and (3.52); the resulting number density can be estimated as

𝑌
hh
𝑝 (𝑂) ∼

∫ 𝑗/2

𝑌

∫ 𝑗/2

𝑌
𝑌̃ (𝑉) 𝑌̃

(
𝑉
′)
𝑄

hh
𝑝

(
𝑉, 𝑉

′)
𝑤𝑉 𝑤𝑉

′
𝑃H, 𝑄

hh
𝑝

(
𝑉, 𝑉

′) = 𝑥
2
𝑝

𝑉𝑉
′ H

(
𝑉𝑉

′ − 𝛥𝑅
2
𝑝

)
.

(3.63)
Here, we have once more used the step function H and the kinematic cutoff parameter 𝛥 to shut down
𝜀 production at low CoM energy. The integral is in general calculated numerically for a spectrum as
in (3.49). In the case 𝑅𝑝 is sufficiently smaller than 𝑊 , however, the dominant contribution to 𝑌

hh
𝑝 (𝑂)

will originate from the region 𝑉 4 𝑊 and we may use the approximation 𝑌̃(𝑉 4 𝑊) ∝ 𝑉
−3/2 to put

the solution in the form of eq. 3.62, but where we are looking at an instantaneous population 𝑌
inst
h (𝑂)

of particles of energy
√
𝛥𝑅𝑝 with

𝑌
inst
h (𝑂) ∼ 𝑔

ϑtherm
LPM

(√
𝛥𝑅𝑝

) · 𝑇R√
𝛥𝑅𝑝

∼ 𝑔𝑖∗𝑂
4/ϑtherm

LPM

(√
𝛥𝑅𝑝

) √
𝛥𝑅𝑝, and 𝑄

hh
𝑝 =

𝑥
2
𝑝

𝛥𝑅
2
𝑝

, (3.64)

resulting in a sizeable enhancement as compared to (3.62) 17. The enhancement results from precisely
the same effects explained above eq. 3.56 for the case of hard–soft production; the replacement of
ϑslow of (3.54), with the LPM–suppressed thermalization rate of (3.18) leads to a relatively larger
population of OoE particles, while more HE particles with energies close to the production threshold
further boost the resulting 𝜀 yield with respect to (3.62).

One can also employ eq. 3.63 to find how large an effect differentiates the two spectra in (3.59) in
case of hard–hard production of 𝜀’s. This is shown in Fig. 3.7 (bottom), where we plot the resulting
number density for a range of 𝜀 masses between 𝑂RH · 102 and 𝑊/2, and have again factored out the
prefactors in (3.63) as

𝑌
hh
𝑝 (𝑂) ∼

(
𝑃H 𝑥

2
𝑝 𝛴̃

2
M /𝑂2

) ∬ 𝑚M

1

𝑌̄ (𝐿) 𝑌̄
(
𝐿
′)

𝐿 𝐿
′ H

(
𝐿𝐿

′ − 𝐿
2
thr

)
𝑤𝐿 𝑤𝐿

′
, (3.65)

to better capture the effect of the two spectra. Similar to what we did on the RHS of (3.60), in (3.65)
we have rewritten the kinematic cutoff as 𝐿2

thr = 𝛥𝐿
2
𝑝 = 𝛥𝑅

2
𝑝/𝑂

2. Figure 3.7 (bottom) shows that while
the combination of low- and high-𝐿 parts of the spectrum in (3.65) flattens the resulting spectrum
as compared to (3.49), an order of magnitude effect is observed, similar to the case of hard–soft
production.

Finally, we can use the ε− parameter to translate the number densities 𝑌hh
𝑝 and 𝑌

hs
𝑝 into energy density

fraction today
(
ε𝑆

2
)
𝑝
, to make easier contact with the observed quantities (1.1). The contribution of

𝑌𝑝 (𝑂) from an era of temperature 𝑂 to the omega parameter today can be written as

(
ε𝑆

2
)
𝑝
(𝑂) ∼

𝑌𝑝 (𝑂)
𝑋 (𝑂)

𝑂
5
RH

𝑂
5

𝑅𝑝

𝑂0

(
ε𝑆

2
)

R
, (3.66)

with 𝑂0 = 0.24 meV denoting the radiation temperature today, and
(
ε𝑆

2
)

R
= 4.3 · 10−5 [52] (see also

17 In bringing (3.63) into the form of (3.62), as we have done in (3.64), we are disregarding a logarithmic enhancement
factor stemming from various combinations of 𝑉𝑉′ = 𝛥𝑅

2
𝑝 . This does not however affect our main point.
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Figure 3.7: (Top-left) Scaled integrated weighted spectrum (3.60), resulting from the the two spectra from (3.59)
versus 𝐿/𝐿M for two cases with 𝐿M = 103(blue), and 105(red). (Top-right) The relative error in (3.60) stemming
from a monotonic spectrum. (Bottom) Scaled hard–hard yield from (3.65), resulting from the two spectra in
(3.59) and the case of 𝐿M = 105.

[1]). Equation 3.66 can be used to compare the contribution of different production channels, and
from Hubble eras of temperature 𝑂 , to the overall 𝜀 yield.

The resulting temperature dependence of the diluted hard–soft yield implies that the dominant
contribution results from the lowest temperature available for productions of 𝜀

𝑂thr = max(𝛥𝑅2
𝑝/𝑊 ,𝑂RH). (3.67)

Equation 3.67 simply expresses that hard–soft production stops either when the temperature of the
thermal bath is so low that the CoM energy falls short of the threshold, or when matter decays stop at
reheating. The opposite is true in the case of hard–hard production, where the diluted yield from a
Hubble era grows with the temperature 𝑂 ; the result will, therefore, be set by the maximum temperature
available to the thermal bath 𝑂max [52]. The temperature and composition of the universe at earliest
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times, corresponding to highest temperatures, is by nature somewhat model dependent. In addition
to the cosmological model at these early times, an estimation of 𝑂max and its consequences is closely
related to the thermalization mechanism underlying the reheating phase and the thermalization of the
decay products (see e.g. [39, 72]). As this is not the topic of our study, here we use the estimate from
[52], reading

𝑂max ∼ 𝑂RH

(
𝑥

3
(
𝑖∗
3

)1/3 𝑊Pl

𝑊
1/3

𝑂
2/3
RH

)3/8

, (3.68)

in order for the different estimations of (3.66) to be comparable in Fig. 3.8.
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Figure 3.8: Energy density fraction parameter
(
ε𝑆

2
)
𝑝

resulting from hard–soft (3.56, 3.58), hard–hard (3.62,

3.63), and thermal soft–soft (3.69) contributions with 𝑥𝑝 = 0.01, 𝑥 = 0.05, 𝑊 = 1013 GeV, and 𝑂RH = 108 GeV

(𝑂RH = 105 GeV) on the left (right). The dashed lines represent the resulting contribution from the primary
number density of decay products [52] (see Fig. a & b), while the solid lines correspond to production via the
spectrum (3.49). The resulting hard–soft yield agrees with results in [41] within the errors discussed in Fig. 3.7
after accounting for the choice of production threshold energy, and the number of target species in the thermal
bath. The knee-shaped effect at low 𝑅𝑝 region in the case of 𝑂RH = 105 GeV signifies of a change in 𝑂thr (3.67).

Fig. 3.8 shows examples of the various contributions to
(
ε𝑆

2
)
𝑝
, given by using a number density

of initial decay products as in [52] along those resulting from the corresponding processes using the
full spectrum (3.49) for 𝐿M = 105 (left) and 𝐿M = 108 (right). For completeness, the total abundance
includes the sub–leading soft–soft production given by [73]

(
ε𝑆

2
) ss

𝑝
∼
(
200
𝑖∗

)3/2
𝑥

2
𝑝

(
2000𝑂RH

𝑅𝑝

)7

. (3.69)

This contribution results from interactions of the particles from the thermal bath with the composition
(2.19); note that if the coupling 𝑥𝑝 in (3.69) is to be identified with those in the hard–soft and
hard–hard productions (3.56, 3.60, 3.62, 3.63), the form (3.69) implicitly assumes that 𝜀 couples
uniformly to all particles in thermal bath. For convenient comparison, we use the latter assumption
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along with the approximation that the entirety of the OoE spectrum consists of a single non–abelian
gauge boson species.

In Fig. 3.8 the hard–hard and hard–soft processes are shut down by an exponential suppression
above 𝑂max for simplicity 18. The dark coupling 𝑥𝑝 = 0.01 is chosen so as to reproduce the results in
[52] for comparison. Slight deviation from a power low behavior in the intermediate regions of 𝑅𝑝 for(
ε𝑆

2
)hh

𝑝
can be understood as resulting from contributions from a larger set of combinations of 𝑉 and

𝑉
′ in (3.63) (see also footnote 17); In the intermediate region 𝑂 4 𝑉 4 𝑊 with the approximate

form of the spectrum (3.52), one can express this enhancement as an O (1) logarithmic factor [42].
To summarise, a sizable gain in particle production is evident in Fig. 3.8 when considering the full

spectrum of the thermalization cascade (3.59). The given choice of 𝑥𝑝 is in fact seen to lead to an
overproduction of the species 𝜀; this could rather be understood as a suppression of the dark coupling
𝑥𝑝 required to reproduce a certain abundance for the species 𝜀. Note that in a general analysis, there
could be other contributions from direct branching of the scalar field decays [30, 68, 69]. If sizeable,
these channels will further increase the abundance or correspondingly lead to a further suppression of
the dark coupling 𝑥𝑝.

3.5 Summary

As introduced in Chapter 1, the high energetic decay products resulting from the decay of heavy
out-of-equilibrium states are used for a plethora of applications in cosmology, including entropy
production, the production of (meta-)stable relics (e.g. DM particles), baryogenesis, modifications
of the expansion history and structure formation. While some of these applications rely solely on
the presence of an extra contribution to the energy density content of the universe or the thermal
bath, others depend critically on the energy distribution of the decay products prior to their complete
thermalization.

In Chapter 3 we studied the energy spectrum of the chain of 2 → 3 near–collinear splitting
processes involved in the thermalization process. We have adopted the framework of thermalization
via LPM–suppressed 2 → 3 splittings of a single species of non–abelian gauge boson introduced
in [41], paying special attention to the natural cutoffs and regulations of splitting rate divergences
provided by the thermal plasma. These rely on the fact that particles exchange energies of order 𝑂 (𝑖𝑂)
with the thermal bath relatively efficiently, via both emission and absorption processes and elastic
scatterings. Therefore only the emission of particles with energy above 𝛷𝑂 needs to be included in the
hard kernel of integral equations governing the momentum dispersion, with 𝛷 acting as an IR cutoff
parameter of order unity. The inclusion of an IR cutoff allows us to derive an unambiguous numerical
solution for the spectrum of hard OoE particles involved in the thermalization cascade.

We showed in the discussion around eq. 3.19 that the thermalization time is typically much smaller
than a Hubble time so that the thermalization process can be treated as occurring at a fixed temperature
𝑂 . This leads to a quasi–steady state spectrum, described by the integral equation 3.23. Dividing out
normalization factors, and introducing the dimensionless momentum (or energy) variable 𝐿 = 𝑉/𝑂
(see eq. 3.28), we can instead deal with the equivalent dimensionless Boltzmann equation 3.33. The
latter can be solved numerically by straightforward integration. The numerical solution exhibits

18 Note that for 𝑊 * 𝑅𝑝 , hard–hard production can proceed prior to the formation of a thermal bath of temperature 𝑂max,
see e.g. the discussion in Section III B in [52].
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the features and approximate behaviour predicted by the analytical form of the Boltzmann equation
introduced in Section 3.3.1.

After further normalization (see eq. 3.46), the numerical solution is seen to depend, to excellent
approximation, only on the ratio 𝐿/𝐿M = 𝑉/(2𝑊), with 𝑊 denoting the mass of the decaying particle.
This allowed us to find a simple, yet very accurate analytical fit function, given in eq. 3.49 which
describes the numerical result to about 3% accuracy. This analytical approximation for the numerical
solution to 𝑌̄(𝐿) can easily be converted back to the original form using equations 3.27, 3.30 and 3.26.
In this manner, our analytical fit results in a solution for the intermediate region 𝑌̃ (𝑂 4 𝑉 4 𝑊) that
is to very good approximation given by

𝑌̃Num(𝑉 4 𝑊) = 𝛴M 𝑌̄(𝐿 4 𝐿M)
𝑂

= 0.4
𝑌MϑM√

𝑊𝑂ϑsplit
LPM(𝑊/2)

·
(
1 −

√
2𝑂/𝑉

)−5/4
(𝑉/𝑊)−3/2

. (3.70)

Similar to (3.52), the leading power–law dependence of this solution is consistent with (3.43).
However, our solution contains an additional 𝑉-dependent factor. Moreover, our complete solution
(3.49) contains another factor which generates a minimum at 𝑉 # 0.4𝑊, followed by a spike as
𝑉 → 𝑊/2 further consistent with our arguments in Section 3.3.1, that the spectrum of non–thermal
particles must be a rising function of 𝑉 near 𝑉 = 𝑊/2. Note that the analytical solution (3.52) based on
cancellation of divergences in 𝛷 → 0 suggested in [41] and further used in [42] shows a monotonous
behavior in the entirety of the solution domain 𝑊/2 ≤ 𝑉 ≤ 𝑂 . Moreover, the normalization of our
solution (3.70) differs from that of (3.52) by the factor 𝑎/

√
𝑖̃∗, which may be partly absorbed into the

coupling parameter 𝑥. Note that the dependence on 𝑖∗ appears via the normalization factors (3.26)
and is, therefore, absent in the normalized form of eq. 3.33. In Chapter 4, we will use this property to
simplify the form of our equations for a splitting cascade involving multiple particles.

Both solutions (3.52) and (3.49) lead to

∫ 𝑗/2

0
𝑌̃(𝑉)𝑉𝑤𝑉 ∝ 𝑇M · ϑM · 𝑃therm(𝑊/2) (3.71)

with 𝑃therm given by (3.18). This can be understood as the total energy of hard OoE particles contained
within the thermalization cascade at each instant being directly proportionate to the rate of energy
injection and inversely proportionate to the rate of thermalization; we would like to emphasize the
distinction of the latter to the splitting time given by the inverse of (3.24).

For 𝛿 = 0.5, close to the best-fit value of 0.48, and ignoring the 𝐿-dependence in the denominator
of eq. 3.49, the energy density integral of (3.71) can be computed analytically; the numerical value
of the proportionality coefficient on the RHS of (3.71) is then 𝑎𝑙 + 𝛾/2 # 1.4, which is of order 1
as expected. Note further that the contribution due to the 𝛶-function at 𝑉 = 𝑊/2 to the integral in
(3.71) is subdominant: this can be seen by noting that the latter contribution is set by the timescale
∝ 𝑃split = 1/ϑLPM

split = 𝑃therm

√
𝑂/𝑊 , leading to a suppression of contributions from the 𝐿 → 𝐿M region by a

relative factor of 1/𝐿M. Finally, eq. 3.70 shows that a solution of the form (3.49) does indeed approach
a growth ∝ 𝑊 of the number density 𝑤𝑌/𝑤 ln 𝑉 at fixed 𝑉, as required by energy conservation (see
also eq. 3.64).

With our numerical solution (3.49) established, we then moved on to present an example of how
this spectrum of hard OoE particles affects observables in cosmology. To that end, we looked at
the production of heavy DM from hard–hard and hard–soft scatterings. The inclusion of the LPM
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effect results in a parametrically larger DM abundance, while our numerical results unambiguously fix
the spectrum and the corresponding DM yield within an order of magnitude of previous analytical
estimations. A sizeable suppression of the dark coupling 𝑥𝑝 discussed in Section 3.4 allows for an
earlier kinetic decoupling of the species 𝜀 following production, as is the case for FIMP scenarios
[19].

We mentioned in Chapter 1 that one may discuss other potential consequences of considering
the full spectrum of thermalizing OoE particles. As discussed in the literature, non-relativistic and
kinetically decoupled DM perturbations grow linearly in the EMD or IMD era, potentially affecting the
matter spectrum of the late universe [74–76]. While difficult to preserve in scenarios where the bulk of
(relativistic) DM is generated thermally or directly via matter decays at the end of reheating era [74],
viable scenarios might be realized using non–thermal production, e.g. via near-threshold production of
DM from hard–hard scatterings. Note that after production at the threshold, the resulting abundance
could then be rendered non-relativistic as a result of the Hubble expansion. Finally, a population of
long–lived 𝜀’s and its subsequent decay, can contribute to realizing cosmological processes, e.g. via
formation of a later IMD eras and/or late entropy production, generation of the baryon asymmetry
(see e.g. [77] with superparticle decays), and dilution of preexisting abundances [15, 19, 78].

In all the cases mentioned above, detailed knowledge of the spectra of OoE particles is integral to
studying the corresponding processes. We may, therefore, ask if we may further improve our study
of the OoE thermalizing particles. Even though we believe our numerical result of Chapter 3 to be
more accurate and include more features than what was previously available in the literature, it clearly
has some limitations. The most obvious issue is the inclusion of a single species of particles in the
splitting cascade of thermalization. Note that in our treatment the Boltzmann equation (3.23), we have
so far defined a single function 𝑌̃ (𝑉) for the OoE spectrum of thermalizing particles. Similarly, we
have assumed the presence of a single coupling constant 𝑥 responsible for all processes involved in
the splitting cascade, as well as the soft interactions responsible for the generation of thermal masses
and the LPM suppression. Another closely related approximation we have used in Eq. (3.23) is the
use of a single splitting kernel [79], given by eq. 3.16. The leading 𝑞

−3/2
d dependence on the energy

𝑞d of the softer daughter particle results from a combination of the form of the vacuum rate for the
emission of a near–collinear gauge boson and the corresponding LPM factor introduced in eq. 3.15,
both of which depend on the nature of the parent and daughter particles.

Given the fact that the SM and a large number of BSM extensions include multiple coupled particles
with different gauge couplings, gauge group representations, multiplicities, and spins, we may expect
the relatively simple form of our current single–species analysis to be insufficient for describing the
physics of thermalization in the early universe. In particular, the form of energy dependence in the
splitting kernel will depend on the individual species; the emission of a gluon from a quark has a
somewhat different kernel than that from another gluon. In addition, different species and interactions
will in general, appear in the solution with different overall factors. The formalism developed here
could be understood to hold for a suitable average over particle species. Considering the inevitable
degeneracies in parameter combinations19 and the limited accuracy of a single–species analysis, our
results in Chapter 3 should suffice for constraining model parameters on a logarithmic scale. In a more
precise treatment, one has to differentiate between different species of particles in the cascade, i.e. our
single integral Boltzmann equation will have to be replaced by a set of coupled integral equations.

19 Note, , e.g., that an O (1) change of the splitting rate ϑsplit
LPM can be compensated by a change in the decay width ϑM of the

parent particle, without invalidating (3.70)
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This will be the subject of Chapter 4.
To conclude this chapter, let us briefly note that we believe the presence of the hard IR cutoff,

parameterized by the O(1) parameter 𝛷 not to be particularly problematic (see also the discussion of
IR cutoffs in [70]). We showed in Section 3.3.2 that the choice of 𝛷 only affects the spectrum of OoE
particles with momenta which are either not much larger than 𝑂 (where the non-thermal spectrum gets
swamped by the thermal contribution anyway), or where 𝑊/2 − 𝑉 is of order 𝑂 (where the difference
between 𝑉 and 𝑊/2 should be immaterial for all practical applications). More realistically, however,
one should recognize that at very low energies, there is an eventual smooth crossover into the regime
where elastic processes in the thermal bath become competitive as an energy transfer mechanism. As
we will later see in Chapter 4, 2 → 2 processes could further be crucial in establishing the chemical
equilibrium (see eq. 2.18). These processes, however, continue to be relatively unimportant so long as
we are interested in the spectrum of HE particles with 𝑉 * 𝑂 ; we will therefore continue to use the
same framework of a cascade of splitting processes with a hard IR cutoff in the next chapter.
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CHAPTER 4

The Standard Model of particle physics and
thermalization cascades in the early universe

4.1 A cascade of Standard Model particles

In Chapter 1, we motivated studying the dynamics leading to the equilibration of highly energetic
out of equilibrium (OoE) particles in the early universe plasma and how such a study could prove
crucial to our understanding of other cosmological observables [80–83], e.g. the abundance of DM
[18, 19, 28, 30, 41, 42, 52, 68, 73, 84–95]. The hard non–thermal particles can most generically
result from the decay of scalar fields abundant in top–down approaches to the history of the universe;
examples include theories of inflation or additional “moduli” fields. Such scalar fields are initially
displaced from their low energy minima around which they oscillate at later times; if the potential
around the minimum can be described by a quadratic function, the oscillating field corresponds to a
non–relativistic (matter) component [15, 20, 25, 53], resulting in a universe described by the energy
densities of eq. 3.1. Given enough time, a matter component will grow to dominate the energy density
of the universe prior to its decay, which is bound to occur before the onset of BBN at a temperature of
about 1 MeV [29, 54, 96].

The success of the BBN points [15] to the universe having been dominated by a bath of relativistic
radiation in thermal equilibrium. In Chapter 2, we discussed the composition and properties of this
thermal bath and its effect on gauge–interacting particles propagating through the thermal medium.
We saw that subsequent forward scattering interactions with particles from the thermal plasma can
be thought of as resulting in an effective thermal mass for the particle traversing the thermal bath.
We further saw that for certain processes involving interactions with particles from the background
plasma, individual interactions with medium particles cannot be treated as independent and one needs
to coherently add multiple contributions to the corresponding matrix element. This phenomenon was
then formulated in the form of an effective kinetic theory. In case of the kinetic theory of collinear
splittings of gauge–interacting particles, the effective theory is achieved by the inclusion of the LPM
resummation [35, 36] resulting in a parametric suppression of the collinear splitting rate.

In Chapter 3, we turned to the process of thermalization of gauge–interacting OoE hard particles.
Highly collinear gauge–mediated 2 → 3 splittings were identified as the leading contribution [39, 41,
42, 45, 52, 61], allowing for a growth of the number density of high energy particles and simultaneously
reducing the average energy of the out of equilibrium particles. We then used our knowledge from
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Chapter 2 to deduce that coherent multiple scatterings with the background plasma play a key role
in setting the rate of these splitting processes. We saw that the destructive interference between
coherent interactions of the parent and daughter particles with the background thermal plasma leads to
a parametrically suppressed splitting and therefore thermalization rate, increasing the number density
of hard OoE particles. To simplify the problem for a first step study, we limited our attention to the
thermalization of a mono–energetic injection of initial decay products consisting and proceeding
via interactions of a single species of non–abelian gauge bosons; in the symmetric phase of the SM,
these could be identified with either weak gauge bosons or gluons. We then used the corresponding
LPM–suppressed splitting rates to write down the Boltzmann equations for the effective kinetic theory
of thermalization. After reducing the number of model–dependent parameters via a convenient
dimensionless formulation of the Boltzmann equations, we proceeded to the numerical solution. We
could further use the latter to deduce a parametric fit function describing the properties of the solution
spectrum of OoE particles in the entirety of the solution domain. We concluded Chapter 3 by outlining
an example of the application of a spectrum of the form (3.49) in calculating cosmological observables
such as the DM abundance; we reaffirmed that the parametric LPM–suppression of the thermalization
rate, along with the gradual growth in the number density of OoE particles through particle creation,
allows for sizeable non–thermal production of heavy relics.

The “pure–gauge approximation” of Chapter 3 was partly motivated by the fact that, as we will see
in more detail in Chapter 4, gauge boson emissions in a plasma are typically favoured by a combination
of larger O (1) group factors, gauge boson emission enhancements, and in some cases statistical
enhancement and blocking factors [97]. This general picture, together with our results in Chapter 3,
already allow us to speculate about the composition of the OoE particles when we allow for the
presence of other SM species. The dominance of the 𝑀𝑁 (3)𝐿 interactions by gauge coupling strength
and the larger number of available gauge bosons, allows one to conjecture that irrespective of the initial
decay products, the energy density of the plasma of thermalising particles can be expected to flow
towards the colored sector and in particular to gluons. In this regard, thinking of our single–species
spectrum of OoE particles from Chapter 3 as a pure gluon plasma is a better approximation than that
of 𝑀𝑁 (2) gauge bosons.

It is, nonetheless, evident that the simplicity of a thermalization cascade consisting of a single
species of non–abelian gauge bosons severely restricts the precision and applicability of our results
from Chapter 3. In particular, even for an initial population of non–abelian gauge bosons resulting
from decays of the matter component, fermions are expected to appear in the thermalization cascade
via splittings of a gauge boson to a fermion pair. In the case of reheating after inflation, while gauge
bosons could be produced efficiently at early stages of reheating in some scenarios, the completion
of the energy transfer from the inflation field to the visible sector can typically involve decays to
fermions; the latter is also true for other scenarios of a matter component mentioned in Chapter 1 (see
e.g. Section 2.1 of [20]).

Our single–species spectrum from Chapter 3 is further insufficient when used to calculate cosmolo-
gical observables, such as DM abundance. Evidently, BSM scenarios can be sensitive to the presence
of particles other than gauge–bosons; in particular, we expect the DM to be a singlet under the SM
gauge group and not to directly coupled to the SM gauge bosons. The calculation in Chapter 3 does
not answer the question of how quickly the chemical composition1 of the plasma flows towards the

1 As motivated in Section 2.3, will always assume vanishing chemical potential in this work; by the chemical composition
we merely mean the relative abundance of various species. Consequently, we will not distinguish between particles and
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colored QCD gauge bosons, nor does it yield other subdominant contributions to the total OoE number
density. Our exemplary calculation in Section 3.4 should, therefore, be understood as merely allowing
for the production of DM from gauge bosons and via higher order processes, severely limiting the
precision and applicability of the spectrum (3.49).

In this chapter, we will seek to address the above shortcomings by expanding our analysis to include
other SM particles and interactions. This will require us to consider additional interactions, both
among the HE particles, as well as with the background thermal plasma. We need to use the correct
form for different vacuum splitting kernels, and include the variations in the LPM suppression factor
corresponding to the different Abelian and non–Abelian interactions of the charged particles involved
in the splitting process. Fortunately, this task is somewhat simplified by adopting the results developed
in the literature for the study of a quark–gluon plasma (QGP) for our purpose of studying the cosmic
plasma of massless SM particles.

The process of energy loss of energetic gauge interacting particles in the presence of a thermal
background has been extensively studied in the context of heavy ion collision (HIC) and the
thermalization of the resulting QGP [49, 63, 79, 98, 99]. Here, the thermalization procedure evolves
the initial non–thermal spectrum of energetic partons traveling mostly along the beam directions
towards a thermal distribution of quarks and gluons. As color exchange is the dominant interaction in
the QGP, studies in this area typically focus on colored matter and 𝑀𝑁 (3)𝐿 interactions. Additionally,
as the photon spectrum serves as a probe of the QGP, the emission of photons from the QGP and from
electromagnetic plasmas have also been studied using the same machinery [64–66]. We will use these
to extend the relevant process rates and LPM suppression factors to the case of chiral 𝑀𝑁 (2)𝑀 and
𝑁 (1)𝑁 interactions fit for our purpose of studying the process of thermalization in the unbroken phase
of the SM.

The analogy between cosmological thermalization and thermalization at colliders is not universal,
but rather well motivated. As mentioned in Chapter 1, both the maximum temperature of the cosmic
plasma and the mass scale of the decaying component in the early universe are largely model–dependant
and can be in a range of several orders of magnitude. Similarly, the reheating temperature can be as
low as a few MeV [96] or as high as 1015 GeV [3]. For a majority of possible cosmological histories
with a reheating temperature above that of the electroweak phase transition at 𝑂C = O (100 GeV), the
electroweak symmetry and therefore the entire standard model gauge group is intact. As a result, there
is an increased similarity to the case of thermalization in HIC where 𝑀𝑁 (3)𝐿 and 𝑁 (1)EM interactions
are considered and, although potentially on a very different energy scale, the physics of thermalization
following matter decay is expected to be realized via the very same mechanisms as in the case of quark
gluon plasma resulting from HIC experiments [100].

In this chapter, we will use this analogy to extend the analysis in Chapter 3 to include all non–scalar
species of the standard model in the thermalization cascade of energetic particles resulting from the
decay of a cosmological matter component. This chapter is organised as follows. In Section 4.2 we
review the framework of thermalization via gauge mediated collinear splitting processes including
the LPM effect, with a focus on allowing for the individual particles involved in the splitting process
possessing different gauge interactions with the background thermal medium following in Section 4.3.
Section 4.4 includes a formulation of the Boltzmann equations governing the number density of
the various species we include in our analysis. The resulting set of Boltzmann equations will be
numerically solved and their results presented and discussed in Section 4.5. In Section 4.6 we

antiparticles.
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exemplify the application of our results by sketching how to compute the production of massive
particles in annihilation reactions involving particles from the thermal bath and the HE thermalization
cascade. We then conclude in Section 4.7 with a summary and some final remarks.

4.2 Thermalization via a splitting cascade of multiple particles

In Section 3.1.2 we established the role of gauge mediated 2 → 3 splitting processes in the process
of thermalization of a gauge interacting HE particle. We limited our attention to interactions of a
single species of non–abelian gauge bosons, so that all particles in the splitting cascade will interact
similarly with particles from the background thermal plasma. These interactions were responsible for
kicking out of coherence the daughter particles in a splitting process via momentum transfers typically
of the order of the thermal mass of the non-abelian gauge boson. In this setup, we saw that the LPM
suppression factor was governed by the softer of the two daughter particles.

Our first task in this chapter will be to retrace our steps from Chapter 3 and account for the presence
of different SM particles and interactions. Assuming the existence of a thermal bath of temperature 𝑂 ,
we will be focusing on the thermalization of energetic particles of species 𝑋 and energy 𝑉 * 𝑂 , via
interactions with the bath. As outlined in Section 3.1.2, the large energy of OoE particles suppresses
the cross section for 2 → 2 interactions except for 𝑃− and 𝑕−channel forward scattering via exchange of
a massless gauge boson [61]. Notably, the arguments for the dominant rate of the these processes relies
on the Lorentz structure of the cross section and not the couplings; they therefore extend naturally to
the case with multiple particles and interactions. The vacuum cross section for the forward scattering
process involving the exchange of massless gauge bosons is IR–divergent and this divergence is
regulated by the thermal mass, which can be approximated by

𝑅
th
𝑎 (𝑂) ≈ 𝑖𝑎𝑂 . (4.1)

In this approximation, 𝑚 ∈
{
𝛱 = 𝑀𝑁 (3)𝐿 ,𝑡 = 𝑀𝑁 (2)𝑀 ,𝜁 = 𝑁 (1)𝑁

}
denotes the gauge group cor-

responding to the dominant interaction in the scattering process; despite slight differences in group
factors, this simple choice provides a very good approximation for our purpose here (see Appendix B).
Fig. 4.1 shows schematically such elastic processes, with time flowing from left to right and the cross
denoting a coupling to a particle in the thermal bath as introduced in Fig. 3.1. As outlined in Chapter 3,

Figure 4.1: Examples of scattering processes of energetic particles from the SM, on the thermal bath mediated
by a gauge boson; the former is denoted by the line on top while the latter is represented by the cross at the
bottom. The intermediate gauge boson should be considered as having acquired the thermal mass (4.1).

forward scattering is an inefficient means of energy loss for the HE parent particles. In the presence
of a thermal bath, typical elastic scattering reactions will have |𝑃 | ∼

(
𝑅

th
𝑎

)2, and hence a momentum
exchange

𝛶𝑓
el
𝑎 = 𝑅

th
𝑎 . (4.2)
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with a rate
ϑ𝑊

el ≈ 𝑖̃
𝑊
∗𝑥𝑎𝑂 ≡ 1/𝑃𝑊el , (4.3)

where, parallel to what we had in Eq. (3.4), the factor 𝑖̃𝑊∗ is introduced to include the order unity group
factors for the elastic scattering of species 𝑋. Similarly, 𝑃𝑊el denotes the timescale between successive
elastic scatterings of a particle of species 𝑋. By themselves, these soft elastic processes would need
O

(
𝑉/𝑅th

𝑎

)
scatterings, i.e. the thermalization time would scale as 1/𝑉. The same issue disfavours

hard elastic scattering reactions (3.3a), which can lead to much larger energy transfer in a single
scattering event, but whose rate is similarly suppressed by 1/𝑉.

yp

p (1� y)p

Figure 4.2: (Left) Schematic of splitting processes after scattering on the thermal bath mediated by a gauge
boson. Here the solid lines represent fermions or gauge bosons. The parent particle can lose a significant
fraction 𝛺 of its momentum 𝑉, see eq. 4.4. The small momentum transferred by the intermediate boson implies
that the connecting propagator – depicted in green – is close to the mass shell. (Right) Multiple couplings of the
particles involved in the splitting process to the thermal bath of temperature 𝑂 ; many soft processes are required
for the loss of collinearity and consequently coherence of the splitting process.

Despite their small momentum transfer, we saw in Chapter 3 that soft elastic processes play a key
role in the energy loss process of hard OoE particles, by kicking the scattering particle off the mass
shell so that the outgoing particle can then lose up to half its energy in a 1 → 2 (or 2 → 3 ) splitting
process. Fig. 4.2 (left) shows such a splitting reaction, and defines our convention for the momenta of
participating particles. In contrast to elastic processes, the maximal energy loss is not restricted by the
virtuality of either the exchanged gauge boson or of the scattered particle. The daughter particles can
carry away a large fraction

𝛺 ≡ 𝑓/𝑉 (4.4)

of the parent’s energy, while the virtuality of the intermediate gauge boson is still of the order of its
thermal mass given in Eq. (4.1).

With the introduction of multiple particle species, a first deviation from our analysis in Chapter 3
comes about by realising that the collinear splitting process giving rise to the daughter particles could
proceed via a different interaction, with a coupling 𝑥𝑎′ ≤ 𝑥𝑎 , than that of the dominant 𝑃−channel
gauge boson exchange. Consider as an example, the process of energy loss for a SM quark traversing
the thermal plasma. In this example, the dominant contribution to the quark thermal mass would
be due to interactions of the 𝑚 = 𝑀𝑁 (3)𝐿 group; splitting processes in this case could proceed via
the emission of 𝑀𝑁 (3)𝐿 , 𝑁 (1)𝑁 , or 𝑀𝑁 (2)𝑀 depending on the chirality state of the quark. The most
frequent splitting processes are those involving the largest coupling, favouring the emission of gluons
in this case.

The arguments we made in Section 3.1.1 regarding the hierarchy of timescales for the elastic and
splitting processes are nevertheless still valid in the presence of multiple gauge groups. In the absence
of coherent effects, the collinear splitting rates can be thought of to be suppressed by a factor 𝑥𝑎′

relative to the dominant elastic scattering. These higher order processes nevertheless dominate the
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energy loss since only O (log(𝑉/𝑂)) of these reactions are required for the thermalization of the parent
particle. Were we to ignore medium effects, we would get the so–called Bethe–Heitler differential rate
for these processes:

𝑤ϑBH
split

𝑤 log 𝑓

∼ 𝑥𝑎′ϑ𝑊
el ≤ 𝑥

2
𝑎𝑂 , (4.5)

corresponding to a time between subsequent splitting reactions 𝑃BH ≡ ϑBH
split

-1. The corresponding
formation time for the splitting process is, as before, connected to the virtuality of the intermediate
state. In the rest frame of the thermal medium this is of order 𝑉/(𝑅th

G)
2, which is much longer than the

time between successive soft elastic scatterings of eq. 4.3.

One should therefore coherently add up all possible contributions to a splitting process, schematically
depicted on the right in Fig. 4.2. A bit more caution is warranted in interpreting Fig. 4.2: in this
schematic representation, not only does the interaction responsible for the splitting process potentially
differ from that of gauge interactions with the plasma, but these interactions are also potentially
different for the parent and daughter particles involved in the scattering. In our previous example of a
HE quark losing energy via collinear emissions of gauge bosons, the emission of an abelian 𝑁 (1)𝑁
boson from the quark would imply the resulting abelian gauge boson not to have any gauge–mediated
interactions with the background plasma particles. Despite the extra complication introduced by the
presence of multiple species and interaction, the coherent effect of multiple interactions with the
background plasma leads, as discussed in Chapter 3, to a reduced splitting rate; this LPM suppression
effect is the topic of Section 4.3.

4.3 The LPM effect for multiple species and interactions

As we saw in Section 2.5, and more specifically in eq. 2.50, the formal inclusion of the LPM effect
requires coherently summing the many diagrams corresponding to thermal interaction insertions of
Fig. 4.2. The formal procedure may also be reformulated as a variational problem that is more readily
numerically tractable [64, 66]. Alternatively, one may use physical arguments like the ones we used in
Chapter 3 to deduce the generic form of the LPM suppression factors for splitting processes involving
different types of particles. We will therefore begin by retracing our steps from Section 3.1.3 while
keeping the species-dependence of the various rates and momentum transfers explicit.

Remember that the LPM suppression of collinear splittings results from the destructive interference
among multiple splitting matrix elements, or equivalently, from the fact that the HE particle is unable
to physically distinguish multiple scattering sites in the background medium so long as they lie within
the coherence region of one another for a specific splitting process. The key parameter setting the
magnitude of the rate suppression is therefore the coherence, which can be understood to last as long
as the phase factor accumulated in successive soft scattering reactions is small. Equivalently, the
suppression can be thought to last so long as the cumulative effect of multiple soft processes kick the
outgoing collinear particles out of coherence.

We will stick to our notation from Section 3.1.3 and work in the rest frame of the thermal bath,
which in our application corresponds to the cosmological rest frame. We use coordinates where the
parent particle propagates along the 𝛹 axis, and the splitting occurs at 𝐿𝑄split = 0. Denoting the time
elapsed traversing the thermal bath by 𝛶𝑃, the trajectory of the emitting particle and the 3−momentum
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of a daughter particle of energy 𝑓 * 𝑂 are then given by

;𝐿(𝛶𝑃) # 𝛶𝑑 (sin 𝑑 𝑜⊥ + cos 𝑑 𝑜𝑖) , ;
𝑓 # (𝑓 ↦ 𝑜𝑖 + 𝑓⊥𝑜

′
⊥) , (4.6)

where 𝑜⊥ and 𝑜
′
⊥ are (in general independent) unit vectors in the (𝐿, 𝛺) plane. Recall that we are

interested in collinear splitting. The transverse momentum 𝑓⊥ 4 𝑓 of the daughter particle, as well
as the deviation 𝑑 4 1 of the emitter from the initial 𝛹 direction therefore only result from the soft
interactions of the form shown in Fig. 4.1. We can therefore approximate sin 𝑑 # 𝑑, cos 𝑑 # 1 − 𝑑

2/2
and 𝑓 ↦ # 𝑓 − 𝑓

2
⊥/(2𝑓).

Crudely, one may say that the coherence, and hence the interference, persists as long as the
accumulated phase satisfies

𝛶𝑒 = 𝑓 · 𝐿 # 𝛶𝑃

(
−𝑓⊥𝑑 𝑜⊥ · 𝑜′⊥ + 𝑓

𝑑
2

2
+ 𝑓

2
⊥

2𝑓

)
≤ 1 . (4.7)

Note that, compared to our previous account in Section 3.1.3 (see discussion before eq. 3.12), eq. 4.7
now retains information about the individual momenta of the daughter particles in the form of
independent evolutions for the transverse momenta 𝑓⊥ and the deviation angle 𝑑. This is because we
are looking to allow for independent evolution of momenta of particles with different interactions with
the thermal background plasma.

So long as (4.7) is satisfied, further splittings are not possible due to the destructive interference
reducing the “effective” background plasma density as perceived by the HE particles undergoing
energy loss via collinear splittings. The angle 𝑑 (𝛶𝑃) similarly encodes the evolution of a transverse
momentum as

𝑑 (𝛶𝑃) # 𝑉⊥(𝛶𝑃)/𝑉 . (4.8)

The accumulated phase is therefore of order

𝛶𝑒 ∼ 𝛶𝑃

(
𝑓⊥𝑉⊥
𝑉

⊕ 𝑓 𝑉
2
⊥

2𝑉2
⊕ 𝑓

2
⊥

2𝑓

)
. (4.9)

The ⊕ symbol in eq. 4.9 should be understood as indicating that the comprising terms should be
added in quadrature, reflecting the statistical nature of the random walk of the transverse momentum
vectors in the transverse direction; this is also in line with the quadratic addition rule used for the
single random walk of 𝑓⊥ in Section 3.1.3. Here, however, both the emitter and emitted particles
undergo a random walk through multiple scatters on the thermal background. In this intuitive picture,
the evolution of the transverse momenta of the two outgoing collinear particles occurs via random soft
kicks from the thermal background.

During a time 𝛶𝑃, there will be 𝛶𝑃/𝛶𝑃el “steps”, with “step size” 𝛶𝑓el for each particle with its
respective interactions. The hierarchy of the different contributions in (4.9) will then depend on the
specifics of the splitting process, including the interactions and momenta.

Let us first look at the case where both emitted particles interact with particles from the background
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plasma with similar strength. In this case we will have for the transverse momenta

〈
𝑓⊥

〉
(𝛶𝑃) #

〈
𝑉⊥

〉
(𝛶𝑃) #

√
𝛶𝑃

𝛶𝑃el

𝛶𝑓el # 𝛶𝑃
1/2ϑ1/2

el 𝛶𝑓el . (4.10)

In this case, the accumulated transverse momenta are comparable for the two daughter particles;
therefore, for hard (symmetric) splittings, where 𝑓 ∼ 𝑉, all three terms in eq. 4.9 will be of the same
order. On the other hand, if one of the particles is much softer than the other, say 𝑓 4 𝑉, the third term
will dominate the evolution of the accumulated phase. As discussed in Chapter 3, such emissions of a
soft particle are more likely as the dominance of the third term of (4.9) reflects the fact that a softer
emitted particle will be kicked out of coherence more easily; furthermore, the soft emissions will be
further enhanced due to the soft emission enhancement we have disregarded in our calculations.

For the case where all particles that participate in the splitting have roughly equal coupling strength
to the thermal bath, we can thus approximate the phase 𝛶𝑒 ∼ 𝛶𝑃𝑓

2
⊥/𝑓 , with the understanding that 𝑓

denotes the momentum of the softer daughter particle. The coherence time, defined by 𝛶𝑒(𝑃 coh) = 1,
is given by

𝛶𝑃coh ∼
√

𝑓

ϑel𝛶𝑓
2
el

. (4.11)

Recall that the next splitting reaction can only happen at 𝑃 > 𝛶𝑃coh; this can be described by reducing
the plasma density and therefore the interaction rate by a factor

𝑘LPM(𝑓) # 𝛶𝑃
−1
coh𝛶𝑃el =

√
𝛶𝑓

2
el

𝑓ϑel

, (4.12)

in agreement with our discussion in Section 3.1.3, where both daughter particles were of the same
species and therefore had similar interactions with the background plasma.

Let us now turn to the case where the particles involved in the splitting process differ in their
interactions with the thermal plasma. To emphasise the effect of different interactions, let us next
look at the special case where the emitted particle basically does not couple to the thermal bath
via 𝑃− channel gauge–mediated processes, as in 𝑣 → 𝑏𝑣, where 𝑏 represents the SM photon 2. In
the particular case of an Abelian gauge boson, the absence of 𝑃−channel soft scattering processes
on the thermal bath implies that its momentum, originating from the splitting process itself, can be
considered a constant within our framework. We can then choose its direction, rather than that of the
parent particle, to define the 𝛹 axis, i.e. 𝑓⊥ = 0.

Going back to eq. 4.9, an absence of soft transverse kicks to the photon implies that only the second
term survives. Defining once gain the coherence time via 𝛶𝑒(𝛶𝑃 coh) = 1 and using eq. 4.10 for the
evolution of 𝑉⊥, we have

𝛶𝑃coh ∼

√√
𝑉

2

𝑓ϑel(𝛶𝑓el)
2
, 𝑘LPM(𝑓) ∼

√
𝑓𝛶(𝑓el)

2

𝑉
2ϑel

. (4.13)

2 We will be facing the𝑁 (1)𝑁 gauge boson 𝑠 in our setup of thermalization in the unbroken phase of the SM; the arguments,
however, remain the same and here we use the photon merely for convenience.
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Let us take a moment to compare (4.13) to the LPM suppression in the symmetric case (4.12). A first,
rather obvious lesson we learn from the comparison is the confirmation that the form of the LPM
suppression depends on the interactions of individual particles involved in a splitting process with the
background particles in the thermal plasma. In fact, the suppression in (4.13) favors the emission of
harder photons, in apparent contrast to what we had in (4.12) for gluon emission. Both cases, however,
can be seen to stem from the same underlying physics. Additionally, the emission of a harder Abelian
photon in (4.13) implies a softer second daughter particle, whose existing soft elastic scatterings with
the plasma can therefore result in a faster growth of 𝑑 and hence earlier loss of coherence.

Before we move on to presenting explicit expressions for LPM–corrected rates calculated in the
literature for the many available processes of the standard model fermions and gauge bosons, we may
summarize the results of our physical arguments for the LPM suppressed splitting rate as follows. The
rate for a process can be decomposed as the result of the splitting rate in vacuum, using the thermal
gauge boson mass (4.1) as infrared regulator, and the corresponding suppression factor:

𝑤ϑsplit
LPM

(
𝑋(𝑉) → 𝑋

′(𝑓) + 𝑋
′′(𝑉 − 𝑓)

)
𝑤𝑓

=
𝑤ϑ split

vac

(
𝑋(𝑉) → 𝑋

′(𝑓) + 𝑋
′′(𝑉 − 𝑓)

)
𝑤𝑓

× 𝑘LPM

(
𝑓 , 𝑋

′)
, (4.14)

where

𝑘LPM (𝑓) ∝




√
𝑓𝑂

𝑉
2

𝑋
′ = Abelian GB

√
𝑂

min (𝑓 , 𝑉 − 𝑓) others

. (4.15)

Here 𝑋 is the parent particle and 𝑋
′
, 𝑋

′′ are the two daughter particles.
Even though it helps establish the physical significance, the heuristic derivation given here does

not allow to derive exact numerical factors for the LPM–suppressed rates. In particular, we have
assumed that the transverse momenta evolve exclusively by the cumulative effect of “soft” kicks of 𝛶𝑓el.
Although the latter assumption is based on soft kicks occurring most often, we saw in Section 2.5 that
the less frequent harder elastic processes also contribute to the random walk evolution of the transverse
momenta. The inclusion of processes with momentum transfer 𝑣 > 𝛶𝑓 el enhances the final splitting
rate by a so–called Coulomb logarithm of order ln(𝑉/𝑂) (see Fig. 2.4). Similarly, in the general case,
the magnitude of the various contributions to decoherence via (4.9) could be comparable, so that the
suppression factor will have a more complicated form. This, we will turn to in Section 4.3.1; as we
will see, the results of careful calculations indeed reproduce the behavior given by eq. 4.14 and 4.15 in
the corresponding regimes.

4.3.1 LPM suppressed splitting rates in leading logarithmic approximation

As mentioned earlier, the study of relativistic heavy ion collisions requires knowledge of various
elastic 2 → 2 scattering as well as splitting processes, where the inclusion of coherence effects is
crucial. Additionally, the relative accessibility of the QCD plasma in an experimental setup allows for
precision observations, and has therefore called for detailed calculation of process rates [65, 100].
The process of energy loss of highly energetic OoE colored plasmas has therefore been studied in the
literature using thermal field theoretical methods briefly introduced in Section 2.3, and to different
levels of precision for QCD [101]. However, as the processes of interest are gauge interactions, process
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rates can be expressed in terms of the couplings and group–theoretical factors; this in turn allows for
straight–forward generalization of these formal results to other gauge groups and gauge interactions of
the SM.

This is the path we will follow here. We limit our attention to the gauge interactions of the SM
and mostly rely on the results obtained in [79], whose notation we also largely adopt; we, however,
use physical arguments similar to what was presented in Section 4.3 to generalise the results to allow
for two separate gauge groups being responsible for the splitting process and the gauge-mediated
scattering of the three particles involved in a splitting off the thermal bath. We will discuss the proper
choice of parameters corresponding to each of these two gauge groups shortly.3

Generically, the LPM corrected rate for the various splitting reactions can be written as

𝑤ϑsplit
LPM

(
𝑋(𝑉) → 𝑋

′(𝑓) + 𝑋
′′(𝑉 − 𝑓)

)
𝑤𝛺

=
(2𝑙)3

𝑉𝛯
𝑎′

𝑊

𝑏𝑊→𝑊′𝑊′′ (𝑉, 𝛺𝑉, (1 − 𝛺)𝑉) . (4.16)

Here 𝛺 is the momentum fraction carried by the species 𝑋′ as previously used in (4.4), and the averaging
factor 𝛯𝑎

′

𝑊 is the number of spin degrees of freedom for the species 𝑋 times 𝑤𝑎
′

𝑊 , the dimension of its
gauge representation under the gauge group 𝑚

′. For example, a gluon has 𝛯𝑒𝑞 (3)
𝑟 = 2 × 8 = 16 and for

a quark 𝛯
𝑒𝑞 (3)
𝑠 = 6; note also that the assignment of 𝛯𝑎

′

𝑊 also depends on the gauge group 𝑚
′ so that

an 𝑀𝑁 (2)𝑀 –charged quark also has 𝛯𝑒𝑞 (2)
𝑠 = 4.4

The bulk of information about the splitting process is encoded the in the LPM–corrected splitting
functions 𝑏𝑊→𝑊′𝑊′′ (𝑉; 𝛺𝑉, (1 − 𝛺)𝑉). Here 𝑋, 𝑋′ and 𝑋

′′ stand for either a fermion 𝜂 or a gauge boson 𝛽.
Therefore, equations 4.17a, 4.17b and 4.17c respectively describe pure gauge splittings like 𝑖 → 𝑖𝑖

or 𝑡 → 𝑡𝑡 , gauge boson emission from a fermion like 𝑣 → 𝑖𝑣 or 𝑍 → 𝑡𝑍, and splitting of a
gauge boson to a fermion antifermion pair like 𝑖 → 𝑣𝑣 or 𝑡 → 𝑍𝑍. Note that 𝑏𝑡→𝑡𝑡 = 0 for 𝑁 (1)
interactions.

3 Note that we are interested in the splitting rate per parent particle, while in the literature the total emission rate of daughter
particles is often reported per unit time and volume of a thermal plasma [64–66]; care must be taken when adopting
results from the literature for comparison in these cases. Moreover, as motivated in Chapter 3 (see discussion following
(3.25)) we neglect all Bose enhancement and Fermi blocking factors; this is justified since we are only interested in
particles with energy much above 𝑂 , which have very low occupation numbers.

4 Once electroweak interactions are included one has to distinguish between fermions of different chirality, since in the
SM only left–handed fermions and right–handed antifermions have 𝑀𝑁 (2) interactions. We will comment in the next
subsection on the required changes to our expressions.
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To leading logarithmic approximation, the corrected splitting functions are given by [79]5:

𝑏𝑡→𝑡𝑡(𝑉; 𝛺𝑉, (1 − 𝛺)𝑉) =
𝑤
𝑎′

𝑡 𝛱
𝑎′

𝑡 𝑥𝑎′

(2𝑙)4√2

1 + 𝛺
4 + (1 − 𝛺)4

𝛺
2(1 − 𝛺)2

·
[
𝑅

2
th 𝑝̂

2
⊥(1, 𝛺, 1−𝛺; 𝛽, 𝛽, 𝛽)

]
𝑎

;

(4.17a)

𝑏𝑢→𝑡𝑢 (𝑉; 𝛺𝑉, (1 − 𝛺)𝑉) =
𝑤
𝑎′

𝑢 𝛱
𝑎′

𝑢 𝑥𝑎′

(2𝑙)4√2

1 + (1 − 𝛺)2

𝛺
2(1 − 𝛺)

·
[
𝑅

2
th 𝑝̂

2
⊥(1, 𝛺, 1−𝛺; 𝜂, 𝛽, 𝜂)

]
𝑎

;

(4.17b)

𝑏𝑡→𝑢𝑢 (𝑉; 𝛺𝑉, (1 − 𝛺)𝑉) =
𝑤
𝑎′

𝑢 𝛱
𝑎′

𝑢 𝑥𝑎′

(2𝑙)4√2

𝛺
2 + (1 − 𝛺)2

𝛺(1 − 𝛺) × 𝛴fl ·
[
𝑅

2
th 𝑝̂

2
⊥(1, 𝛺, 1−𝛺; 𝛽, 𝜂, 𝜂)

]
𝑎

.

(4.17c)

Let us take a moment to elaborate on the structure and notation of (4.17). Firstly we have again labeled
with 𝑚 the gauge group responsible for the (dominant) scattering processes on the thermal background,
while gauge group 𝑚

′ is responsible for the splitting process 𝑋 → 𝑋
′
𝑋
′′. Note that assigning a single

gauge group 𝑚 to the soft elastic interactions implies we neglect subdominant contributions to the soft
scattering; e.g. we will assume the evolution of the transverse momenta of HE quarks results from
gluon–mediated soft elastic scatterings , i.e., soft processes mediated by an 𝑀𝑁 (2)𝑀 gauge boson are
ignored in this approximation. The gauge group 𝑚

′ on the other hand, is uniquely determined by the
identity of the involved gauge boson(s) in the splitting process 𝑋 → 𝑋

′
𝑋
′′.

The first term in each splitting function captures the physics of the splitting process without the
plasma effects, and thus loosely corresponds to ϑvac in (4.14). The representation dimension 𝑤

𝑎′

𝑊 was
introduced below (4.16), and the remaining parameter 𝛱𝑎′

𝑊 is the quadratic Casimir corresponding to
the gauge group 𝑚

′; these group and O (1) factors correspond to what we subsumed into the constant√
𝑖∗ in Chapter 3 (see e.g. eq. 3.16).
Within the SM, with the fermions and bosons in fundamental and adjoint representations respectively,

we have for the group 𝑀𝑁 (𝛴):

𝛱𝑢 =
(
𝛴

2 − 1
)
/2𝛴 , 𝛱𝑡 = 𝛴 , 𝑤𝑢 = 𝛴 , 𝑤𝑡 = 𝛴

2 − 1, (4.18)

while for a 𝑁 (1), we have

𝛱
𝑊
𝑢 = 𝜁

2
𝑊 , 𝛱𝑡 = 0 , 𝑤𝑢 = 1, 𝑤𝑡 = 1 , (4.19)

with 𝜁𝑊 denoting the 𝑁 (1)𝑁 charge of the corresponding fermion.
The second term in the set of equations 4.17 are the fragmentation functions, encoding the preference

of the splitting reaction in redistributing the momentum of the parent particle into the two daughter
particles. The 𝛺–dependence of the different fragmentation functions is determined by the structure of
the relevant three–point vertex; up to a factor 1/[𝛺(1− 𝛺)] it is the same as that of the splitting functions
appearing in the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) equations [102–104]. The
parameter 𝛴fl in eq. 4.17c quantifies the number of indistinguishable Dirac fermions that the gauge
boson 𝛽 can split into. For the 𝑀𝑁 (2) and 𝑁 (1)𝑁 gauge bosons splitting into 𝑣𝑣 pairs this will always

5 As mentioned before, results from the literature and in particular [79] deal with the case 𝑚 = 𝑚
′ = 𝑀𝑁 (3)𝐿 .
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include a color factor of 3; 𝛴fl may be considered to be larger if several quarks (of different generations,
say) are considered indistinguishable, as we will do shortly.

q

�

q

Figure 4.3: Photon bremsstrahlung (blue, 𝑚 ′ = 𝑁 (1)EM) from a quark interacting strongly with colored plasma
particles (red, 𝑚 = 𝑀𝑁 (3)𝐿 ). The resulting rate is of order 𝑥𝑎𝑥𝑎′ .

The third set of terms in eq. 4.17, denoted by the brackets and the subscript [. . .]𝑎 , can be
thought of as representing the background plasma of temperature 𝑂 , describing the scattering target
density, the momentum transfer for the 2 → 3 scattering process, as well as the LPM suppression
effects. As mentioned earlier, although SM matter fields can be charged under several gauge groups,
one simplifying assumption is to consider only the dominant interaction of each species with the
background plasma and for the assignment of 𝑚.

Consider once more, in the broken phase of the SM, the process of emission of a photon from a
QGP via the splitting process 𝑣 → 𝑏𝑣 depicted in Fig. 4.3. In the first term of eq. 4.17, we assigned
𝑚

′ = 𝑁 (1)EM as the gauge group responsible for the emission of the photon, corresponding to the blue
sections of Fig. 4.3. This splitting process however relies on interactions with the hot plasma and the
same interactions also provide the coherent suppression effect, shown in red in Fig. 4.3. As can be
seen, the latter class of processes will be dominated by the strong interactions of the colored quarks,
so that 𝑚 = 𝑀𝑁 (3)𝐿 . In this formulation, the non–colored photon comes with a corresponding group
factor of 𝛱𝑣 = 0. Our approximate treatment therefore implies that we will neglect the electroweak
interactions of the quarks with the background plasma; similarly, we ignore hypercharge interactions
of 𝑀𝑁 (2) doublet leptons with the background particles.

In the formulation of [79] the effect of the number density of the thermal background plasma
particles and momentum exchange amplitude via soft elastic processes is expressed via the thermal
mass 𝑅th

𝑎 . In these terms, the function 𝑝̂
2
⊥ on the RHS of eq. 4.17 can, in leading log approximation,

be universally written as

𝑝̂
2
⊥(𝛺1, 𝛺2, 𝛺3; 𝑋1, 𝑋2, 𝑋3) #

𝑖𝑎𝑂

𝑅
th
𝑎

[
2
𝑙

𝛺1𝛺2𝛺3
𝑉

𝑂

]1/2 {[
1
2 (𝛱𝑊2

+ 𝛱𝑊3
− 𝛱𝑊1

)𝛺2
1 + 1

2 (𝛱𝑊3
+ 𝛱𝑊1

− 𝛱𝑊2
)𝛺2

2

+ 1
2 (𝛱𝑊1

+ 𝛱𝑊2
− 𝛱𝑊3

)𝛺2
3

]
ln(

√
𝑉/𝑂)

}1/2

. (4.20)

Equation (4.20) encodes the LPM effect for a splitting process 𝑋1 → 𝑋2𝑋3; the various Casimir factors
originate from the coupling of the three particles involved in the thermal plasma to the thermal bath.
The coupling constant 𝑖𝑎 cancels in eq. 4.20 due to 𝑅

th
𝑎 appearing in the denominator.

We are now in a position to see how the explicit form of eq. 4.20 reproduces our physically motivated
results in equations 4.12 and 4.13 as advertised. Consider, first, the photon emission process discussed
in section 4.3. As emphasized above, the photon has 𝛱𝑊2 = 𝛱𝑡 = 0, while 𝛱𝑊1 = 𝛱𝑢 = 𝛱𝑊3 = 4/3 for

80



4.3 The LPM effect for multiple species and interactions

the colored quarks, so that

𝑝̂
2
⊥(1, 𝛺, 1 − 𝛺; 𝑣, 𝑏, 𝑣) ∝

[
2
𝑙

𝛺(1 − 𝛺) 𝑉
𝑂

]1/2 {4
3
𝛺

2 ln(
√
𝑉/𝑂)

}1/2

. (4.21)

On the other hand, for gluon emission from a quark, 𝑣 → 𝑖𝑣, we have 𝛱𝑊2 = 𝛱𝑡 = 3, and
𝛱𝑊1 = 𝛱𝑢 = 𝛱𝑊3 = 4/3, so that

𝑝̂
2
⊥(1, 𝛺, 1 − 𝛺; 𝑣, 𝑖, 𝑣) ∝

[
2
𝑙

𝛺(1 − 𝛺) 𝑉
𝑂

]1/2 {[4
3
𝛺

2 + 3
(
1 + (1 − 𝛺)2

)]
ln(

√
𝑉/𝑂)

}1/2

. (4.22)

For small 𝛺, where the term in the second square parentheses in eq. 4.22 approaches a constant,
equations 4.21 and 4.22 differ by factor 𝛺 = 𝑓/𝑉, reproducing the relation between equations 4.12
and 4.13. Finally, the appearance of the Coulomb logarithm is, as mentioned before, the result of
including all processes with a momentum transfer larger than 𝑅th, which occur at a rate smaller than
that of eq. 4.3 (see Fig. 2.4 and footnote 5 on Page 29).

So far, we have refrained from including simultaneous contributions of multiple interactions to
the LPM suppression rate; e.g. in the case of a gluon splitting to a colored quark pair, that would
mean we neglected the contribution of weak and/or hypercharge interactions to the growth of the
transverse momenta of the quarks; we deemed this approximation acceptable as all particles involved
in the splitting process were colored and therefore comparably coupled to the thermal background
plasma with 𝑀𝑁 (3)𝐿 interactions as the dominant interaction. Before concluding this subsection, we
comment on processes where this approximation is not as well justified. Recalling that we assign
𝛱𝑡 = 0 when treating the emission of a 𝑁 (1)𝑁 gauge boson, which cannot scatter on the background
by 𝑃−channel exchange of a gauge boson, the only6 such processes within the SM involve two 𝑀𝑁 (2)𝑀
doublet quarks and an 𝑀𝑁 (2)𝑀 gauge boson; here, two participants carry color but the third one only
undergoes weaker non–Abelian interactions so that the involved particles couple to the background
plasma with different strengths.

The 𝑣 → 𝑡𝑣 splitting is described by eq. 4.17b with 𝑚
′ = 𝑀𝑁 (2)𝑀 , 𝑚 = 𝑀𝑁 (3)𝐿 . In this example,

assigning a 𝛱𝑡 = 0 will be disregarding the non–Abelian 𝑡 interactions contributing to the loss
of coherence, although the relevant 𝑀𝑁 (2)𝑀 coupling strength is smaller than that of 𝑀𝑁 (3). The
discussion at the end of Section 4.3 showed that the scattering of the 𝑡 might terminate coherence
if it has much less energy than the parent quark. We treat this by assigning 𝛱𝑡 = (𝑥𝑤 /𝑥𝑒)

2
𝛱
𝑤
𝑡 to

the 𝑡 boson in the splitting process; the rationale for this assignment could be best understood from
eq. 4.17 where the relative strength of the thermal kicks from a gauge group is represented by the
corresponding thermal mass 𝑅

th
𝑎 . This may be a crude approximation, but is well justified for an

exploratory work, so long as we are looking to assign a single interaction to the loss of coherence.7

6 You may have noticed that the scalar part of the SM has so far not been mentioned in the discussion of the splitting
functions. This is a simplifying choice we have made in our studies, as will be explained in Section 4.3.2. As such, we are
also disregarding other splittings such as 𝑣 → 𝑔𝑣 that would also involve particles with different interactions with the
background plasma.

7 We do not know of a study focusing on the calculation of explicit LPM suppression factors involving multiple non–Abelian
gauge groups; although, one can rely on the same physical arguments we used in Section 4.3 to deduce a summation rule
for multiple contributions to coherence loss.
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4.3.2 Particle content and the treatment of chirality

Equations (4.17) and (4.20) provide the rate of all splitting processes involving SM fermions and
gauge bosons within the approximations discussed in Section 4.3.1. As mentioned before, the form
in (4.17) is developed and used mainly within the study of QGP and the vector–like QCD. Before
we move on to composing the system of Boltzmann equations, therefore, we should address some
technicalities regarding the applicability of the splitting rates to various processes that stem from the
presence of chirality and the multitude of SM particles while we keep track of the chiralities of the
fermions in the splitting cascade.

Since we always sum or average over the spins of the participating gauge bosons, we do not need to
change the 𝛺 dependence of any splitting function. Moreover, the 1/2 factors in the normalization of 𝛯
in eq. 4.16 and of 𝑤𝑢 in eq. 4.17b cancel out so that no change is required for the case of gauge boson
emission off a chiral fermion. However, since 𝛴fl in eq. 4.17c counts the number of indistinguishable
Dirac fermions, it should include a factor of 1/2 when considering splittings to species of chiral (or
Weyl) fermions. Note that this does not change the total splitting rate of the corresponding gauge
boson for 𝑀𝑁 (3)𝐿 and 𝑁 (1)𝑁 .

Next, let us turn our attention to the population of (anti-)particles of a certain chirality. Note that
gauge boson vertices are chirality conserving; the relaxation of any preexisting net 8chiral charge via
2 → 2 or 1 → 2 processes will therefore either rely on bare fermion mass insertions [105–107], which
are absent in the unbroken 𝑀𝑁 (2)𝑀-phase, or involve emission or exchange of a scalar Higgs boson; the
latter processes are highly suppressed compared to gauge processes, by the small Yukawa couplings
of most SM fermions, as well as by a factor of 𝛺2/2 in the splitting function relative to that for the
emission of a gauge boson [108, 109]. In what follows, we will therefore neglect such processes and
treat the chiralities of fermions as conserved quantities, keeping track of evolution of their populations
separately; i.e. we will present separate spectra for left– and right–chiral fermions 𝑛𝑀/𝑍. A further
advantage of this approximation is that eq. 4.17 economically contains all splitting functions required
for the study of our thermalization cascade; if we wanted to include the Higgs doublet 𝑒 among
the parent or daughter particles, we would need to include several additional9 splitting functions
for processes involving spin−0 bosons [108, 109]. Since 𝑒 does not have strong interactions, and
describes a rather small number of degrees of freedom within the SM, we ignore these processes in
our treatment. This should be a good approximation, unless Higgs bosons feature prominently among
the original parent particles.

With chirality under control, let us next turn our attention to gauge multiplicities of particles in the
thermal cascade. Somewhat trivially, one does not need to distinguish between the members of a given
representation of the gauge group. As an example, in the phase of unbroken 𝑀𝑁 (2)𝑀 we would not,
and in fact cannot, distinguish between an up–type and a down–type left–chiral fermion. Even if we fix
the gauge (so that “up–type” is well defined), 2 → 2 scattering processes on the thermal background
induce changes between these states at the high rate ϑel, , i.e., these states are not well–defined over
the duration of a splitting process which we saw contains many spans of 𝑃el (4.3). The same is also
true for the color of a quark, so that the quark undergoing a splitting process in Fig. 4.2 cannot be
considered to have a well–defined color even in a fixed gauge.

8 As we will see in Section 4.5, the relative chiral asymmetry is strongly diluted by the fact that the thermalization cascades
increases, manifold, the number of fermion pairs, a majority of which will be the result of chiral symmetric 𝑀𝑁 (3)𝐿 and
𝑁 (1) gauge boson splittings.

9 This is subsequently done explicitly in [70]; see in particular the set of splitting functions in Section 2.4 of [70].
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The same is, however, not true for right–chiral particles and different right–chiral fermions 𝑛𝑍

are, at least in principle, physically distinct particles. For example, 𝑕𝑍 and 𝑤𝑍 have different 𝑁 (1)𝑁
charges. Different 𝑁 (1)𝑁 charges mean, via eq. 4.17, differing thermalization times and splitting rates
for the emission of further 𝑁 (1)𝑁 gauge bosons; one would therefore in principle need to track the
populations of the 𝑛𝑍 separately. However, as it is difficult to imagine physical scenarios where we
would need to distinguish between the up and down type 𝑛𝑍, and to further reduce the number of
species tracked in our thermalization cascade, we will simply treat both these species as possessing an
average squared charge in (4.19), using

𝜁
2
𝑠𝑂

=
1
2

(
𝜁

2
𝑥𝑂

+ 𝜁2
𝑙𝑂

)
. (4.23)

Our choice for the approximation to leave out the Higgs boson out of our cascade of SM particles
allows for a further simplifying step. With the presence of only gauge interactions in (4.17), we will
not need to distinguish between fermions of different generations; this allows us to further limit the
number of species whose evolution we need to track in the thermalization cascade.

All the above simplifications still leave us with seven distinct particle species:

𝑋 ∈
{
𝑣𝑀 , 𝑣𝑍, 𝑢𝑀 , 𝑢𝑍, 𝑖, 𝑡 , 𝑠

}
≡ S, (4.24)

whose number densities we will track via Boltzmann equations, as we did in Chapter 3 for a single
species.

Finally, note that we assume equal production of particles and antiparticles, grouping them together
in (4.24). This is true if the original 𝑊 particles always decay into 𝑋𝑋 pairs, which we assume to be
the case as a matter of convenience. Treating more fermion species as distinguishable is in principle
straightforward. However, this would increase the number of coupled Boltzmann equations that need
to be solved, and also the number of terms in some of these equations. The choice (4.24) should be
sufficient to illustrate the main effect of the appearance of particles with very different interaction
strengths in this first, exploratory analysis.

4.4 System of Boltzmann equations

We established that 2 → 3 processes play a significant role in the redistribution of energy, and in
the growth of number density, towards a thermal distribution. These processes can be understood as
quasi–elastic scattering processes that leave the energy 𝑉 of the parent particle almost unchanged,
followed by 1 → 2 splittings which distribute the energy of the parent among two daughter particles
of energy 𝑓 and 𝑉 − 𝑓 , respectively. Focusing on gauge interactions of the SM, the differential rate of
the relevant 2 → 3 processes for a representative set of species S (4.24) introduced in Section 4.3.2,
was given in eq. 4.16.

Our final goal is to find the number densities of all OoE particles in S, developing throughout
the thermalization process. These densities are governed by a set of Boltzmann equations; similar
to what we had in Chapter 3. Let us therefore recap our treatment of Chapter 3 while emphasising
on the choice of a single species 𝑋 and a single splitting process 𝑋 → 𝑋𝑋, now to be extended to
include the species and interactions in (4.3.2) and eq. 4.17. Recall that in Chapter 3 we invoked the
well–motivated assumptions of homogeneity and isotropy to conclude that the phase space or number
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density depends solely on the magnitude 𝑉 of the 3−momentum and on the cosmological time 𝑃.
Splittings of the species 𝑋 to other particles of the same species 𝑋, generated a non–thermal spectrum
of non-abelian gauge bosons 𝑋, which we denoted by

𝑌̃𝑊 (𝑉) ≡
𝑤𝑌𝑊 (𝑉)
𝑤𝑉

such that

∫ 𝑔max

𝑌
𝑌̃𝑊 (𝑉)𝑤𝑉 = 𝑌𝑊 . (4.25)

We established in Section 3.1.3 (see eq. 3.19) that, in almost all scenarios of interest, the initial
particles thermalize within a period much shorter than a Hubble time, so that the temperature of the
thermal bath can be considered as constant within the thermalization time; despite differences in the
form of the splitting function and, therefore, the parametric form of thermalization time via different
splitting processes, the same conclusion naturally extends to the individual processes in eq. 4.17 so
that the appearance of the background temperature 𝑂 in the various elements is well defined. Recall
that the efficiency of the splitting processes moreover meant that one could look for a quasi–static
solution to the Boltzmann equation 3.22.

The exchange symmetry of the two daughter states for the case of 𝛽 → 𝛽𝛽 splittings (see eq. 4.17a)
allowed us to write eq. 3.22 as 10

2𝑌 MϑM𝛶(𝑉 − 𝑊/2) +
∫ 𝑗/2

𝑔+𝑘𝑌
𝑌̃𝑊 (𝑓)

𝑤ϑ split
LPM(𝑋(𝑓) → 𝑋(𝑉)𝑋(𝑓 − 𝑉))

𝑤𝑉

𝑤𝑓

=
∫ 𝑔/2

𝑘𝑌
𝑌̃𝑊 (𝑉)

𝑤ϑ split
LPM(𝑋(𝑉) → 𝑋(𝑓)𝑋(𝑉 − 𝑓))

𝑤𝑓

𝑤𝑓 . (4.26)

Here, as before, 𝑌M and ϑM denote the number density and decay rate of the long–lived matter particle,
and the splitting rates on both LHS and RHS are given by eqs.(4.16) and (4.17a). Moreover, as
discussed in Section 3.3.2, the cutoff scale 𝛷𝑂 , with 𝛷 of order unity11 , effectively deals with the IR
divergence from soft emissions in the rate (4.17a) and subsequently in the Boltzmann equation (4.26).
The choice of such an IR cutoff is reasonable since the much faster 2 → 2 scattering reactions allow
momentum exchange of order 𝑂 ; moreover, the total spectrum of particles with energy ≤ 3𝑂 is in any
case dominated by the thermal contribution. Finally, we saw that the precise choice of 𝛷 does not
affect the physical result, so that we may choose 𝛷 = 1 for convenience.

With a numerical solution directly accessible after the introduction of the cutoff, we facilitated our
treatment of the Boltzmann equation (4.26) by grouping and renaming the involved quantities to get
the normalized number density parameter

𝛴M =
2𝑌MϑM

ϑ split
LPM(𝑊/2)

, 𝑌̄𝑊 (𝑉) =
𝑌̃𝑊 (𝑉)
𝛴̃M

, (4.27)

in eq. (3.26 and 3.27), and further by using introducing the dimensionless parameters

𝐿 =
𝑉

𝑂

=⇒ 𝑌̄𝑊 (𝐿) = 𝑂𝑌̄𝑊 (𝑉) , (4.28)

10 In Chapter 3 an approximation of eq. 4.17a was used, where the 𝛺−dependence was approximated as 1/𝛺3/2 for 𝛺 ≤ 1/2,
and the region 𝛺 > 1/2 was treated via the 𝛺 ↔ 1− 𝛺 exchange symmetry. Since this approximates the full result to better
than 10% for 𝛺 < 0.4 (and hence for 𝛺 > 0.6 as well), this did not change the solution qualitatively.

11 See also footnote 13 on Page 50.
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in eq. (3.28 – 3.31). Treating the gauge couplings as constants, the spectrum 𝑌̄(𝐿) could then only
depend on the single parameter 𝐿M defined in eq. 3.29 as

𝐿M =
𝑊

2𝑂
.

The Boltzmann equation (4.26) could, as such, be written as

𝑌̄𝑊 (𝐿; 𝐿M) =
∫ 𝑚M

𝑚+𝑘

𝑌̄𝑊 (𝐿
′)

ϑsplit
LPM (𝑋(𝐿) → 𝑋𝑋)

𝑤ϑsplit
LPM

(
𝑋(𝐿 ′) → 𝑋(𝐿)𝑋(𝐿 ′ − 𝐿)

)
𝑤𝐿

𝑤𝐿
′ + 𝛶(𝐿 − 𝐿M) , (4.29)

where ϑsplit
LPM (𝑋(𝐿) → 𝑋𝑋) is the total (integrated) rate for a particle of dimensionless momentum 𝐿 to

undergo a splitting process. As discussed in Chapter 3, the advantage gained by switching to 𝑌̄ could
be understood as follows: the splitting rate appears in both the numerator and denominator of eq. 4.29,
so that numerical factors like

√
𝑖∗

𝑊 of eq. 3.16, or equivalently the numerical factors of eq. 4.17a, as
well as the coupling strength 𝑥𝑎 do not affect 𝑌̄𝑊 (𝐿); they appear in the final, physical spectrum only
via the normalization factor 𝛴̃M.

The numerical solution to the relatively compact form of eq. 4.29 could, as we saw in Section 3.3.3,
be well approximated by an analytical expression (3.49):

𝑌̄𝑊 (𝐿; 𝐿 M) = 𝛶(𝐿 − 𝐿M) +

[
𝑎

(
𝐿/𝐿 M

)−3/2 (1 − 𝐿/𝐿 M

)−𝑜 + 𝛾

] (
1 − 2/√𝐿 M

)
√
𝐿 M

(
1 −

√
2/𝐿

)5/4 ,

with 𝑎, 𝛿, 𝛾 ≈ 1/2. The form of the single species solution (3.49) further showed that for 𝐿M > 𝐿 * 1,
the solution is proportional to the function

𝑛

(
𝐿/𝐿M

)
≡

[
𝑎

(
𝐿/𝐿 M

)−3/2 (1 − 𝐿/𝐿 M

)−𝑜 + 𝛾

]
, (4.30)

which exhibits a scaling behavior in 𝐿, i.e. depends only on the ratio 𝐿/𝐿M. In Section 4.5 we will use
this latter feature, and the pure–gauge solution (3.49) to present the results of the splitting cascade
involving all species 𝑋 ∈ S.

So far we have assumed that the parent particle of species 𝑋 can only split into two daughter particles
of the same species, as is the case for a pure Yang–Mills gauge theory. The splitting of a gluon into
two gluons is indeed the fastest splitting reaction in the SM, and is expected to dominate the evolution
of the system produced in heavy ion collisions, at least at central rapidities [97]. However, as discussed
in Section 4.1, one expects other particles to develop within the cascade of thermalizing OoE particles.
The multiplicity of accessible fermion flavors appearing in (4.17c) suggests that a sizable population
of fermionic daughters may develop in the splitting cascade. Since SM quarks are charged under
several gauge groups, eventually electroweak gauge bosons, and hence leptons, will become part of
the cascade even when starting from a parent gluon.

The need for a more inclusive treatment of the thermalization cascade of OoE particles becomes
even more pronounced when the matter particles, whose decays feed the cascade, primarily decay to
colorless species; our expectation of the flow of the OoE plasma towards coloured particles calls for
the inclusion of other SM species. A third line of reasoning in favor of including other SM species in
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the thermalization cascade follows from the applications of the spectrum of HE particles. Recall, that
our purpose in computing the spectrum of particles in the cascade triggered by the primary decay is to
compute rates for processes that leave observable relics, e.g. dark matter particles. These reactions
may involve preferentially, or even only, colorless particles in the initial state so that the population of
a specific species directly affects the observables, as outlined in Section 3.4.

We will therefore extend our previous analysis in Chapter 3 by formulating and solving the coupled
system of Boltzmann equations governing the energy spectrum of all particles listed in eq. 4.24 during
a LPM–suppressed thermalization cascade. As in the case of pure–gauge treatment in Chapter 3, we
will be interested in the quasi steady–state solution so that the starting point will once again be the
steady–state balancing equation 3.22, equating gain and loss terms for particles to and from a specific
energy.

A multi species analysis therefore means that we should consider various decay and splitting process
involving particles S (4.24) contributing to the balancing in (3.22). Expanding (4.26), the spectrum of
particles of a species 𝑋 ∈ S is then determined by the integral equation

2𝑌 MϑM𝑠𝑐𝑊 · 𝛶(𝑉 − 𝑊/2) +
∑
𝑊′,𝑊′′

∫ 𝑗/2

𝑔+𝑘𝑌
𝑌̃𝑊′ (𝑓).

𝑤ϑ split
LPM(𝑋′(𝑓) → 𝑋(𝑉)𝑋′′(𝑓 − 𝑉))

𝑤𝑉

𝑤𝑓

=
∑
𝑊′,𝑊′′

∫ 𝑔−𝑘𝑌

𝑘𝑌
𝑌̃𝑊 (𝑉)

𝑤ϑ split
LPM(𝑋(𝑉) → 𝑋

′(𝑓)𝑋′′(𝑉 − 𝑓))
𝑤𝑓

𝑤𝑓 . (4.31)

Here 2𝑠𝑐𝑊 is the average number of 𝑋 particles produced in a given two–body decay of an 𝑊 particle
with branching ratio 𝑠𝑐𝑊, and it is implied that 𝑋′, 𝑋′′ ∈ S. As noted earlier, we assume equal
production of fermions and antifermions, and the density 𝑌𝑊 should be thought to include both 𝑋 and 𝑋

particles in case these are distinct 12. In the rate ϑsplit
LPM

(
𝑋(𝑉) → 𝑋

′(𝑓)𝑋′′(𝑉 − 𝑓)
)
, within the SM, the

particle type of 𝑋′′ is often fixed once 𝑋 and 𝑋
′ have been specified; this is true in particular if 𝑋 and/or

𝑋
′ denote a gauge boson. However, if 𝑋 and 𝑋

′ are both fermions (which implies 𝑋 = 𝑋
′), several types

of gauge boson might be possible for 𝑋′′. In the example of 𝑣𝑀 → 𝑣𝑀 splitting, the
∑

𝑊′′ in (4.31) will
run over all three species of gauge bosons of the SM in S.

Similar to the narrative we followed at the beginning of Section 4.4, we may now move on to
simplifying the set of Boltzmann equation. In eq. 4.31 most dependence on high–scale physics has
been factored into the first term. As noted in Chapter 3, any effects from interactions of the decaying
particles and their decay products is encoded in ϑM and the branching ratios 𝑠𝑐𝑊 (see also footnote 1
on Page 34); in particular, the product 𝑌 MϑM only affects the overall normalization of all spectra. In
contrast, the splitting rates can be computed within a theory, here identified with the unbroken SM,
that is valid at energy scales well below 𝑊 . The second and third terms in eq. 4.31, which determine
the shapes of the various spectra and also affect their relative normalization, therefore, depend on
high–scale physics only through the upper limit of integration of the first integral.

As in the case of the single particle pure gauge cascade, it is useful to make these dependencies

12 If only decays of the type 𝑊 → 𝑋𝑋 are allowed, 𝑠𝑐𝑊 is the branching ratio for one such mode. However, if 𝑊 → 𝑋𝑋
′ with

𝑋 ϖ 𝑋
′ decays are possible, the corresponding branching ratio would appear as 𝑠𝑐𝑊 in the equation for 𝑌̃𝑊 , and as 𝑠𝑐𝑊′ in

the equation for 𝑋′.
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explicit by using (4.28) to rewrite (4.31) in the dimensionless form

𝑌̄𝑊 (𝐿) =
ϑ split

LPM

(
𝑋
∗
, 𝐿M

)
ϑ split

LPM

(
𝑋, 𝐿M

) 𝑠𝑐𝑊 · 𝛶 (𝐿 − 𝐿M

)

+
∑
𝑊′,𝑊′′

∫ 𝑚M

𝑚+𝑘

𝑌̄𝑊′
(
𝐿
′)

ϑ split
LPM (𝑋, 𝐿)

𝑤ϑ split
LPM

(
𝑋
′(𝐿 ′) → 𝑋(𝐿)𝑋′′(𝐿 ′ − 𝐿)

)
𝑤𝐿

𝑤𝐿
′
. (4.32)

Here we have generalized the procedure of eq. 4.27 for single species, by normalizing the spectra of
all species in (4.31) using the total rate of 2 → 3 reactions of some single specific reference species
𝑋
∗ ∈ S:

𝛴
∗
M =

2𝑌MϑM

ϑ split
LPM(𝑋∗,𝑊/2)

, 𝑌̄𝑊 (𝐿) = 𝑂𝑌̄𝑊 (𝑉) = 𝑂

𝑌̃𝑊 (𝑉)
𝛴̃

∗
M

, (4.33)

with

ϑ split
LPM(𝑋, 𝐿) =

∑
𝑊′,𝑊′′

∫ 𝑚−𝑘

𝑘

𝑤ϑ split
LPM

(
𝑋(𝐿) → 𝑋

′(𝐿 ′)𝑋′′(𝐿 − 𝐿
′)
)

𝑤𝐿
′ 𝑤𝐿

′
. (4.34)

We use the particle with the largest total rate, i.e. the gluon 𝑋
∗ = 𝑖, for the normalization; although a

matter of taste, this particular choice is somewhat better motivated as we expect the composition of
the OoE cascade to move towards a QGP plasma, as discussed in Section 4.1. Note that even for gluon
species 𝑋 = 𝑖, this implies a normalization slightly different from that of a pure–gluon cascade as we
would have in Section 3.2.2 by identifying the gauge boson species as the gluon, as the normalization
in (3.2.2) would not include the contribution from splittings to fermion pairs present in eq. 4.34.

Equation 4.32 implies an evolution similar to the case in eq. 4.29, but with new features resulting
from the couplings among the different species. In a single particle cascade, e.g., increasing the
coupling strength increases the total rate for 2 → 3 reactions which reduces the overall normalization
of the spectrum. The reason is that a larger rate of splitting reactions decreases the thermalization time,
i.e. the particle spends less time in the cascade. In the case at hand, this is true only if all couplings
are increased by the same factor. In contrast, increasing some coupling relative to that of the reference
particle (i.e. relative to the strong coupling, for our choice 𝑋

∗ = 𝑖) still reduces the normalization
of the first term in eq. 4.32, but it also increases the probability that 𝑋 will be produced later in the
cascade, as seen by the appearance of the splitting rate in the numerator in (4.32).

4.5 Numerical calculation of the spectra

The numerical solution of eq. 4.32 proceeds essentially in the same way as in the case of a single
particle cascade, outlined in Section 3.3.2. One starts at 𝐿 = 𝐿M, regularizing the 𝛶 function, and
successively works down to lower 𝐿. Of course, now we actually need to solve seven such equations,
for the species S in (4.24).

The integrand in eq. 4.32 is computed from equations (4.16) and (4.17), using (4.18) and (4.19)
for the coupling parameters; we use three generations of massless leptons and quarks, and include
extra factors of 1/2 for splitting of gauge bosons to chiral fermion pairs in (4.17) as discussed in
Section 4.3.2. Note that we use the parameter 𝐿 of eq. 4.28 in the Boltzmann equations, while the
fragmentation functions are written in terms of the momentum fraction 𝛺 of eq. 4.4; the two are related
by 𝛺 = 𝑓daughter/𝑉parent = 𝐿daughter/𝐿parent. The use of the exact (leading order) splitting functions (4.17)
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implies that the total rates ϑ split
LPM(𝑋, 𝐿) in eq. 4.34 also have to be computed numerically, whereas the

approximation we used in Section 3.2.1 allowed the integral in eq. 3.24 to be calculated analytically.
The contributing splitting reactions, corresponding to species 𝑋 ∈ S are depicted in Fig. 4.4.

WW/B

g W/B g

qL/R !L/R

qL/R

qL/R qL/R g g

!L/R W/B W/B W

qL/R

!L/R

qL/R g

WqL/R !L/R

qL/R

Figure 4.4: Splitting processes for the species in S that can proceed via soft interactions with the thermal
background. The red crosses again denote couplings to particles in the thermal bath via many soft exchanges. We
only include the 𝑃−channel gauge boson which has the largest possible coupling, as discussed in Section 4.3.1;
e.g. the process 𝑠 → 𝑢𝑀𝑢𝑀 is mediated by an 𝑀𝑁 (2) gauge boson 𝑡 . Note also that 𝑡 bosons only couple to
left–handed fermions 𝑣𝑀 , 𝑢𝑀 .

To deal with the presence of several species and the branching ratios 𝑠𝑐𝑊 in our numerical treatment
of eq. 4.32, we will assume that only one of the seven species 𝛻 ∈ S is produced in primary 𝑊 decays,
i.e. 𝑠𝑐𝑦 = 1, in which case the first term in eq. 4.32 is absent for the other species, 𝑠𝑐𝑊 = 0 ∀𝑋 ϖ 𝛻; we
denote the scaled number densities developing in such a scenario as 𝑌̄𝑦𝑊 (𝐿). Scenarios where more
than one 𝑠𝑐𝑊 is nonzero can be treated by weighted sums of our results with the branching ratios
serving as weights. If only primary decays of the kind 𝑊 → 𝑋𝑋 are allowed13, this sum reads:

𝑌̄𝑊

(
𝐿, 𝐿M

)
=
∑
𝑦 ∈S

𝑠𝑐I 𝑌̄
I
𝑊

(
𝐿, 𝐿M

)
. (4.35)

Note also that the total rates ϑ split
LPM(𝑋, 𝐿M) in eq. 4.32 are independent of the cosmological parameters,

so they need to be calculated only once for every species 𝑋 and given value of 𝐿M.

4.5.1 Solutions for 𝜴M = 104

In the previous sections, we formulated the Boltzmann equations for the evolution of the OoE particles
in the thermalization cascade, and brought these into a form better numerically tractable. We are now
ready to present some numerical results. As noted, we will assume 𝑠𝑐𝑦 = 1, but we will show results
for all seven possible choices of 𝛻 so that spectra for more general primary decays can be computed
using the weighted sum in eq. 4.35. In this subsection we choose 𝐿M = 104; the dependence on 𝐿M

will be discussed in Section 4.5.2. Throughout our numerical treatment, we assume a temperature of
𝑂 = 100 TeV, where the 𝑀𝑁 (2)𝑀 ×𝑁 (1)𝑁 symmetry is still unbroken so that the (bare) masses of all
particles in the cascade vanish. 14

13 Recall that 𝑋 describes antiparticles as well.
14 As explained above, the efficiency of the thermalization process allows for a well–defined temperature for all splitting

processes occurring on a HE particle’s path in the thermalization cascade. With a fixed temperature, we can further
choose the appropriate gauge coupling; since all relevant vertices involve at least one particle with virtuality of order

88



4.5 Numerical calculation of the spectra

The results of the numerical solutions to (4.32) are spectra of number densities for the species
𝑋 ∈ S (4.24). In the following figures, spectra of particles charged under 𝑀𝑁 (3)𝐿 (𝑖, 𝑣𝑀 , 𝑣𝑍) are
shown in green; spectra of colorless particles that are charged under 𝑀𝑁 (2)𝑀 (𝑡 , 𝑢𝑀) are shown in
red; and spectra of particles that have only 𝑁 (1)𝑁 interactions (𝑠, 𝑢𝑍) are shown in blue. We use solid
lines for gauge bosons, while left– and right–chiral fermions are represented by dashed and dotted
lines respectively. One may be interested in the evolution of the total number of HE particles in the
thermalization cascade. The black lines in the upcoming figures, therefore, additionally show the total
spectrum of thermalizing OoE particles, 𝑌̄tot (𝐿) =

∑
𝑊 𝑌̄𝑊 (𝐿); note that in eq. 4.33 𝑌̄𝑊 are related to the

physical spectra 𝑌̃𝑊 by a factor common among the different species. Finally, we show for comparison
the pure gluonic (single species) solution of eq. 4.29 in dark green. As we expect and will see, this
pure gluon solution serves as an attractor for the gluon number density, irrespective of the matter
decay branching ratios 𝑠𝑐𝑦 .

Following our discussion in Section 3.3.2, it is reasonable to terminate the solution curves at 𝐿 = 3
i.e. 𝑉 = 3𝑂 , which approximates the average energy of particles in the thermal bath; this will be
reflected in the following figures containing the spectra of OoE particles. Recall that due to the
relative efficiency of the thermalization process for gauge interacting particles and the assumed long
lifetime of the decaying matter particles, the number density, and so the total flux of particles, can be
expected to be dominated by thermal particles, out to energies considerably larger than the temperature
𝑂 ; for practical applications, therefore, the region close to this cutoff is likely not of interest. Note
further that the computed OoE spectra become independent of the choice of the IR cut–off 𝛷, only for
𝐿 ≥ 10 ↔ 𝐿M − 𝐿 ≥ 10, roughly coincident with the scale at which the elastic 2 → 2 processes get to
compete with the inelastic processes, further restricting the precision of results for 𝐿 ≤ 10.

• 𝜶 ∈ {𝜷, 𝜸𝜴}:
As mentioned in Section 4.1, we expect our pure gauge treatment in Chapter 3 to better
approximate a pure gluon plasma. To best showcase the interplay among different particles
species and the evolution of the composition of OoE particles in the thermalization cascade,
let us therefore begin with a plasma with stark differences to the case of pure gluons; i.e. we
begin with the case of an initial injection of particles that have only 𝑁 (1)𝑁 interactions, 𝑠 and
𝑢𝑍. The resulting spectra are shown in Fig. 4.5 and, as expected, can be readily seen to contain
more dynamics with rising and falling populations of different particles.

A first observation in both cases depicted in Fig. 4.5 is that for large 𝐿 the spectra of 𝑠 and 𝑢𝑍 lie
well above the single species pure gluon spectrum. This can be easily understood as resulting
from the less efficient splittings of 𝑠 and 𝑢𝑍 as compared to gluons, and is reflected in (4.32)
in the form of the coefficient in front of the 𝛶 function being considerably larger than unity.
Physically, this translates to OoE particles lingering longer than they used to in the case of HE
gluons, resulting in a denser plasma of OoE particles at the highest energies 𝑉 ∼ 𝑊/2.

Apart from the enhancement with respect to the pure gluon spectrum, the relative size of
the 𝑠 and 𝑢𝑍 can be similarly understood from eq. 4.32. Note that 𝑠 can split into quarks
with a rate of order 𝑥𝑒𝑥𝑁 in couplings, corresponding to the vacuum and LPM contributions

𝑖𝑂 , we use running couplings taken at that scale. We saw in examples in Section 3.4 that in applications in cosmology,
one could be dealing with multiple Hubble eras with the temperature being orders of magnitudes apart. Variations in
temperature, however, affect the couplings only logarithmically. In the particular example of DM production we reviewed
in Section 3.4, it is therefore reasonable to expect that the correct choice of temperature will not be critical for finding the
Hubble era with the dominant contribution to the DM abundance.
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discussed in Section 4.3, with 𝑥𝑒 and 𝑥𝑁 being the fine structure constants for 𝑀𝑁 (3)𝐿 and
𝑁 (1)𝑁 , respectively. On the other hand, the only splitting reaction for 𝑢𝑍 is the emission of a
𝑠 boson with a rate of order 𝑥2

𝑁 in couplings. The difference in process rates contributing to
the thermalization of 𝑠 and 𝑢𝑍 is further enhanced by the large color, generation and flavor
final–state multiplicity factors (see eq. 4.17c) in the case of 𝑠 splittings to quarks. Moreover, due
to the LPM suppression factor of the Abelian 𝑠 in eq. 4.21, the differential rate for 𝑢𝑍 → 𝑠𝑢𝑍

splittings only scales like 1/√𝛺 at small 𝛺, just like the LPM suppressed differential rate for
𝑠 → 𝑛 𝑛 splittings does. As a result, the total splitting rate is considerably higher for 𝑠 than for
𝑢𝑍. The combination of these effects explains why, at large 𝐿, the spectra for 𝛻 = 𝑠 (left frame)
lie well below those for 𝛻 = 𝑢𝑍 (right frame).

In addition to differences in interaction rates and LPM suppression factors among species, a
further peculiarity of the case of 𝛻 = 𝑠 is that the first splitting of the original 𝑠 completely
depletes its spectrum, trading it for a weighted sum of fermion spectra to which the 𝑠 splits.
Although the splitting processes are statistical in nature, leading to a left–over population of red–
shifted 𝑠 bosons, the relative efficiency of splitting processes with respect to the gravitational
expansion (see Section 3.1.3) allows us to safely ignore this statistical process and speak of a
depletion of 𝑠 into fermionic species; i.e. in all relevant situations we have 𝑔 4 ϑsplit, in which
case the density of these redshifted particles is exponentially small. As such, the evolution
of the spectra for the case of 𝛻 = 𝑠, 𝑢𝑍 is directly proportionate to the relative hierarchy of
splittings of 𝑠 in their first splittings; these production processes are, as before, weighted out
against the thermalization rates to give the spectra of the individual fermionic species resulting
from 𝑠, 𝑢𝑍 splittings.

Let us first discuss the couplings involved in these splittings. The relative rates of fermionic
splittings of the 𝑠 are proportional to the sum of squared hypercharges of the resulting fermion
species 𝑋; including color factors, these are 5 for 𝑣𝑍, 3 for 𝑢𝑍, 3/2 for 𝑢𝑀 and 1/2 for 𝑣𝑀 . Of
course, the effect of couplings also comes in via the thermal mass parameter, and the factor
𝑅

2
th in eq. 4.17c is larger for quarks compared to that of the leptons by 𝑥S/𝑥W (𝑥S/𝑥Y) for

the left (right) chirality, reflecting the observation that the quarks scatter more readily off the
thermal background. The larger production rate is, however, overcompensated by the larger
total splitting rate of quarks, which appears in the denominator in eq. 4.32. The net effect is ,
e.g., that the quark spectra in the left frame of Fig. 4.5 are suppressed by a factor of order 𝑥Y/𝑥S

compared to that of 𝑢𝑍.

Similar arguments can be used to analyse the relative spectra of different chiralities of a given
dirac fermion. In the case of colored quarks, there is a relative factor of 10 larger hypercharge-
squared for right–chiral quarks appearing in the production reaction; on the other hand, the left–
and right–chiral quarks have almost identical splitting rates appearing in the denominator of
eq. 4.32 due to the dominant contribution of 𝑀𝑁 (3)𝐿-mediated splittings in both cases. The
combined effect is a larger 𝑣𝑍 spectrum compared to that of 𝑣𝑀 seen in Fig. 4.5. With arguments
following that for the quarks, the 𝑢𝑀 spectrum is suppressed by 𝑥𝑁 /𝑥𝑤 , compared to that of
𝑢𝑍; the subdominant spectrum for 𝑢𝑀 is once again the result of an overcompensation of the
relatively larger LPM–suppressed production rate by the 𝑀𝑁 (2)𝑀 driven thermalization of the
left–chiral leptons.

In addition to the couplings and multiplicities, the momentum–dependence of the splitting rates
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from (4.17) and (4.20) also play a role in setting the rates and the corresponding populations.
In particular, the differential rate for 𝜂 → 𝛽𝜂 splittings scales like 1/𝛺3/2 if 𝛽 is a non–Abelian
gauge boson, and like 1/√𝛺 for an Abelian 𝛽. The total splitting rates for quarks and 𝑢𝑀 leptons,
at a momentum scale 𝐿, are therefore enhanced by a factor

√
𝐿 relative to that of 𝑢𝑍. This

difference in the functional form explains why the flux of 𝑢𝑍 is by far the dominant one at large
𝐿.

Figure 4.5: Scaled number density functions 𝑌̄𝑦𝑊 (𝐿) of eq. 4.35, for the various particles 𝑋 ∈ S, with 𝛻 = 𝑠 (left)
and 𝛻 = 𝑢𝑍 (right); we use 𝐿M = 104 for both cases.

The right frame in Fig. 4.5 shows the spectra of species resulting from an initial 𝑢𝑍 injection.
As already noted, the single splitting channel for the 𝑀𝑁 (2)𝑀 singlet leptons is the emission
of a 𝑠 boson, where the LPM effect partially counteracts the vacuum preference for a soft 𝑠,
due to its lack of gauge–mediated interactions with the thermal bath particles. Other species of
fermions are in turn produced later in the cascade, via splittings of the 𝑠, hence their relative
ordering can be understood as in the case of initial 𝑠 injection. The other gauge bosons can,
at the earliest, be produced in tertiary splitting reactions, e.g., 𝑢𝑍 → 𝑠 → 𝑣𝑀 → 𝑖 /𝑡 , hence
their spectra fall off fastest as 𝐿 → 𝐿M.

A look at the low–𝐿 tail of the spectra in Fig. 4.5 shows that, despite the discussed relatively
later production in the splitting cascade, strongly interacting particles eventually dominate the
non–thermal cascade of OoE particles. For an initial injection of 𝑠 bosons, where quarks and
gluons are already among the products of primary and secondary splitting reactions, this occurs
for 𝐿/𝐿M < 10−2, while for the case of 𝛻 = 𝑢𝑍 right–chiral leptons dominates the total flux down
to 𝐿/𝐿M > 10−3. Nevertheless, at 𝐿 4 𝐿M the gluon number density approaches that of the pure
gluon solution as advertised and argued for before.

While the eventual dominance of particles with the strongest interactions in the cascade seems
intuitively reasonable, within our formalism the realization of this dominance is actually rather
subtle, relying on the interplay of various charge assignments, couplings, and group factors. Let
us compare, as an example of this interplay, the spectrum of gluons to that of 𝑡 bosons. In
Fig. 4.5 these two spectra are very similar as 𝐿 → 𝐿M; let us further focus on the case of initial 𝑠
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injection; the case of initial 𝑢𝑍 injection is similar, except that one more cascade step is required
to produce 𝑡 or 𝑖, as noted above. Starting from an initial population of 𝑠 bosons, we saw
above that the quark spectra at large 𝐿 are suppressed relative to the 𝑢𝑀 spectrum by a factor
𝑥𝑤 /𝑥𝑒 , reflecting the larger total splitting rate for 𝑣 compared to that of the 𝑢𝑀 . As we are
interested in the population of the 𝑀𝑁 (2)𝑀 gauge boson, we should also note that the population
of 𝑣𝑀 resulting from 𝑠 splittings is an order of magnitude smaller than that of 𝑣𝑍 due to the
hypercharge assignment. Nevertheless, the LPM suppression factor induced order 𝑥S/𝑥W larger
splitting rate of 𝑣𝑀 → 𝑡 compared to 𝑢𝑀 → 𝑡 splittings results in both processes contributing
to𝑡 production parametrically at the same order in couplings in the RHS of eq. 4.32. The gluon
spectrum on the other hand, receives contributions from the quark spectra, suppressed relative to
𝑢𝑀 by a factor of 𝑥W/𝑥S; given that both the production (off quark splittings) and thermalization
of gluons are of order 𝑥2

S in couplings, the 𝑥–suppressed population of quarks would result in
a subdominant gluon spectrum at high 𝐿, if not for the relatively large 𝑣𝑍 population. These
arguments show how the coincidence of the gluon and 𝑡 spectra at high 𝐿 in the case of initial
𝑠 injection relies on the interplay of various charge assignments, group factors, and couplings.

In the above argument leading to the comparison of the spectra for 𝑖 and𝑡 in initial 𝑠 injections,
we have implicitly assumed that the total splitting rate of non–Abelian gauge bosons is dominated
by 𝛽 → 𝛽𝛽 splittings, disregarding the contribution from splittings to fermions. This is in
fact correct for 𝐿 * 1, since this rate scales like 1/𝛺3/2 for 𝛺 4 1 while the rate for 𝛽 → 𝜂𝜂

only scales like 1/√𝛺 (see the dependence on momentum fractions 𝛺 in equations 4.17 and
4.20), hence this contribution to the total splitting rate is suppressed by a factor 1/

√
𝐿 relative to

that from 𝛽 → 𝛽𝛽 splitting. Another detail worth taking note of in neglecting the 𝛽 → 𝑛 𝑛

splittings in our argument above, is that in case of the 𝑡 , the soft gauge boson enhancement of
𝑡 → 𝑡𝑡 is only partly compensated by the relative enhancement factor 𝑥𝑒/𝑥𝑤 reflecting
the larger scattering rate of quarks on the thermal background for the 𝑡 → 𝑣𝑀𝑣𝑀 process. In
contrast, both the weaker coupling in the splitting matrix element and the somewhat stronger
LPM suppression disfavor 𝑣𝑀 → 𝑣𝑀𝑡 relative to 𝑣 → 𝑣𝑖 splittings. The combined effect is,
therefore, a net flow from exclusively weakly interacting to strongly interacting particles.

• 𝜶 ∈ {𝜸𝜶, 𝜹}:
Next, we turn to the injection of color singlet particles with 𝑀𝑁 (2)𝑀 interactions, where
the stronger 𝑀𝑁 (2)𝑀 interactions then dominate their scattering off the thermal background
compared to potential 𝑁 (1)𝑁 mediated scatterings. The resulting particle spectra are seen in
Fig. 4.6. Some general observations can be made on a first look. One could see that the overall
normalization at large 𝐿 in Fig. 4.6 lies in between that of the pure gluon case and the case
where the injected particles have only 𝑁 (1)𝑁 interactions, as we saw in Fig. 4.5. Moreover,
we once again see that, at sufficiently small 𝐿, colored particles begin to dominate the number
density of OoE particles in the thermalization cascade.

In detail, let us first consider the case of 𝑡 injection (top frames). With a look at Fig. 4.5 for
comparison, one observes that the flow towards the dominance of colored states is considerably
slower than for the injection of 𝑠 bosons. This is partly because 𝑀𝑁 (2)𝑀 interactions in the
SM are stronger than 𝑁 (1)𝑁 interactions and thus closer to the strong 𝑀𝑁 (3)𝐿 processes, but
mostly because 𝑀𝑁 (2)𝑀 is a non–Abelian group, allowing 𝛽 → 𝛽𝛽 splittings; eq. 4.17 shows
that the splitting rate to vector bosons is larger by a factor 1/[𝛺(1 − 𝛺)] relative to that of
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Figure 4.6: Scaled number density functions 𝑌̄𝑦𝑊 (𝐿) of eq. 4.35 for the various particles 𝑋 ∈ S, with 𝛻 = 𝑡 (top)
and 𝛻 = 𝑢𝑀 (bottom); we use 𝐿M = 105 in the top–right frame in order to show that an extra decade in 𝐿 allows
the composition of thermalizing particles to approach domination by colored particles, in particular gluons.
The top–left and bottom frames are for 𝐿M = 104.

𝛽 → 𝜂𝜂 splittings. The initial and subsequent 𝑡 bosons, therefore, strongly prefer to emit
additional 𝑡 bosons, rather than splitting into quark–antiquark pairs necessary for a transition
to colored particles. The same physical argument also explains why the flux of non–Abelian
gauge bosons eventually overtakes that of 𝑀𝑁 (2)𝑀−charged fermions in the case of fermion
injection in the lower frames of Fig. 4.6: the only splitting process contributing to the growth of
𝑢𝑀 are 𝛽 → 𝜂𝜂 splittings with no soft gauge boson emission enhancement. Both 𝛽 → 𝛽𝛽 and
𝜂 → 𝛽𝜂 splittings on the other hand increase the number of gauge bosons; note that the rate
for the latter process is still enhanced by a factor 1/𝛺 relative to that for 𝛽 → 𝜂𝜂.
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Due to the high efficiency of 𝑡 → 𝑡𝑡 splitting and the relatively slower flow of the OoE
spectra towards colored particles, the gluon flux can be seen to eventually catch up with, but not
overtake, the 𝑡 flux in the case of 𝐿M = 104 in the top left frame of Fig. 4.6. We’ve therefore
made the exercise of extending the thermalization cascade development by another decade;
setting 𝐿M = 105, it can be seen in the top frame of Fig. 4.6 that gluons do indeed begin to
dominate at the smallest values of 𝐿15. Note once again that particle changing 2 → 2 processes,
occurring at competitive rates at low-𝐿 have been neglected in the current analysis.

The small rate of 𝛽 → 𝜂𝜂 splittings relative to non–Abelian 𝛽 → 𝛽𝛽 also explains why the
spectrum of 𝑀𝑁 (2) doublet fermions, which can in principle be produced in the first splitting of
the original 𝑡 bosons, does not spike as 𝐿 → 𝐿M, in contrast to what we observed earlier in
the case of 𝑁 (1)𝑁 gauge boson injection in Fig. 4.5. The spectra of the fermions follow once
more from a balancing of production and thermalization processes. Production of colored 𝑣𝑀

in 𝑡-splittings is enhanced by the color factor and a LPM induced relative factor of 𝑥s/𝑥W

compared to the rate of splittings to 𝑢𝑀 . This enhancement, however, is balanced out by the
more efficient thermalization of quarks relative to 𝑢𝑀 , leading to very similar amplitudes of
these two spectra at large 𝐿. At much smaller 𝐿, the flux of 𝑣𝑀 (and, for 𝐿M * 104 eventually
𝑣𝑍) overtakes that of 𝑢𝑀 , due to quark production in (tertiary) gluon splitting. A last observation
in the top frames in Fig. 4.6 is that the population of all 𝑀𝑁 (2)𝑀 singlet fermions fall off rapidly
as 𝐿 → 𝐿M, corresponding to early splittings in the thermalization cascade; this is to be expected
as the appearance of the 𝑀𝑁 (2)𝑀 singlet fermion from the initial 𝑡 particles requires at least
three splittings, e.g. 𝑡 → 𝑢𝑀 → 𝑠 → 𝑢𝑍.

The bottom frame of Fig. 4.6 shows the spectra of OoE particles resulting from the injection of
𝑀𝑁 (2)𝑀 doublet leptons 𝑢𝑀 . Here, the two possible primary splittings are the emission of a 𝑡 or
𝑠 boson. Since the corresponding differential rates scale like 1/[𝛺3/2√1 − 𝛺] and 1/

√
𝛺(1 − 𝛺)

respectively (see equations 4.21 and 4.22), the emitted gauge bosons are predominantly soft,
while a larger fraction of the momentum is carried off by the remaining fermion; this is why the
gauge boson spectra do not spike as 𝐿 → 𝐿M. Following our discussion of the LPM effect on the
emission of abelian and non-abelian gauge bosons in equations 4.21 and 4.22, the soft gauge
bosons are even more strongly favored in case of 𝑡 emission, which explains the difference
between the behaviors of the 𝑡 and 𝑠 spectra as 𝐿 → 𝐿M. In comparison to what we had in the
case of initial 𝑡 injection, the 𝑀𝑁 (2)𝑀 singlet fermions can, in the case of initial 𝑢𝑀 injection,
be already produced in the second step of their cascade, so their spectra at large 𝐿 lie well
above those shown in the top frames in Fig. 4.6. Gluons, on the other hand, require at least
three splitting reactions to be produced; combined with their very short thermalization time,
this explains why gluons have by far the smallest spectrum as 𝐿 → 𝐿M. The gluon flux in the
thermalization cascade remains below the flux of 𝑡 bosons even for the smallest 𝐿 shown in the
bottom frame of Fig. 4.6; however, the arguments made earlier for the case of 𝑡 injection imply
that also in the case of 𝑢𝑀 injections gluons will eventually dominate the cascade if 𝐿M * 104

(see footnote 15).

Finally, it is worth noting that although the dominant contribution to initial stages of the
thermalization cascade for both 𝑡 and 𝑢𝑀 is the emission of 𝑡s, the resulting 𝑡 spectrum in the

15 The results for higher 𝐿M = 1012 from [70], obtained via a more efficient discritization method (see footnote 13 on

Page 50) similarly result in a gluon crossover at 𝐿/𝐿M ∼ O
(
10−5

)
.
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𝑡 injection scenario (top frames of Fig. 4.6) differs slightly from that of the 𝑢𝑀 spectrum in the
bottom frame. This is due to the fact that the rate for 𝛽 → 𝛽𝛽 splittings is enhanced by a factor
1/(1− 𝛺) relative to that for 𝜂 → 𝛽𝜂 splittings (see eq. 4.17). This relative enhancement factor
allows for more emissions of relatively harder 𝑡 bosons from an initial 𝑡 , speeding up the loss
of very energetic 𝑡s in the cascade. The latter is further enhanced by 𝛽 → 𝜂𝜂 splittings which,
while comparatively rare, further reduce the number of gauge bosons in the cascade. In contrast,
emission off fermions favors very soft gauge bosons, leading to smaller energy loss; note also
that no splitting process can reduce the number of fermions in the cascade. These two effects
combine to produce a pronounced minimum in the 𝑡 spectrum for the case of 𝑡 injection, at
𝐿 ∼ 𝐿M/2, whereas the 𝑢𝑀 spectrum for the case of 𝑢𝑀 injection reaches its minimum closer to
𝐿M, and rises more slowly for smaller 𝐿. The 𝐿 dependence of the denominator in eq. 4.32 also
plays a role in determining the shape of the spectra near their minima.

• 𝜶 ∈ {𝝐, 𝜻𝜶, 𝜻𝜴}
We saw above that starting from an initial population of HE color–singlet particles, the
thermalization cascade develops toward an OoE plasma dominated by the colored quarks and
gluons. Let us therefore finally focus on the case where the injected particles are themselves
charged under 𝑀𝑁 (3)𝐿 . The resulting spectra are shown in Fig. 4.7 for injected gluons (top
left), 𝑀𝑁 (2)𝑀 doublet quarks (top right), and 𝑀𝑁 (2)𝑀 singlet quarks (bottom).

A first observation here could be, as already discussed in the context of Fig. 4.5 and Fig. 4.6,
that the shape of the spectrum of the injected particle at large 𝐿 depends partly on whether the
species is a fermion or gauge boson. A second expectable observation in Fig. 4.7 is that, in all
three initial injection cases, colored particles remain the dominant species in the spectrum, with
the gluons eventually ending up on top. If gluons are the injected particles, their spectrum (light
green) is quite close to that of a pure gluon cascade (dark green) for all 𝐿; the reason for that
echoes closely our explanation for the persistence of the 𝑡 spectra in the case of 𝑡 injection in
Fig. 4.6, namely, the relative efficiency of the 𝛽 → 𝛽𝛽 splittings. Compared to the allowed
splittings of the 𝑡 , this efficiency is even more pronounced in the case of 𝑖 → 𝑖𝑖 as both the
𝛽 → 𝛽𝛽 and the 𝛽 → 𝜂𝜂 splittings are comprised of 𝑀𝑁 (3)𝐿–charged particles, whereas the
𝑡 → 𝑣𝑀𝑣𝑀 splitting enjoyed relatively larger color and smaller LPM suppression factors.

A closer look at the gluon and pure gluon spectra in the top frame of Fig. 4.7 also shows a
slight reduction of the actual gluon normalization, relative to the pure gluon spectrum. This is
to be expected due to the loss of a fraction of gluons from splitting into quarks at every step
of the splitting cascade, further reflected in the larger total splitting rate in eq. 4.34 compared
to the pure gluon case in eq. 4.29. The consecutive fractional loss of gluons to quarks in the
thermalization cascade is then of course balanced out by the predominant emission of gluons
from the resulting quarks, resulting in a gluon spectrum closely following that of the pure gluon
analysis.

The 𝑖 → 𝑣𝑣 splittings do not distinguish between left– and right–chiral quarks, whose spectra
are therefore very similar in the top left frame of Fig. 4.7. The latter two almost identical
spectra of 𝑣𝑀 and 𝑣𝑍 will further source electroweak gauge bosons and leptons, appearing first
in the second and third step of the cascade, respectively. Radiations of 𝑠 from the quarks will
favor harder 𝑠s as discussed above, resulting in a sharper rise of the 𝑠 spectrum at 𝐿 → 𝐿M as
compared to that of 𝑡s. The 𝑡 spectrum overtakes that of the 𝑠 at lower 𝐿 despite a larger
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Figure 4.7: The scaled number density functions 𝑌̄𝑦𝑊 (𝐿) of eq. 4.35 for the various particles 𝑋 ∈ S, with 𝛻 = 𝑖

(top Left), 𝛻 = 𝑣𝑀 (top right) and 𝛻 = 𝑣𝑍 (bottom); we use 𝐿M = 104 for all three cases.

thermalization rate (mainly due to 𝑡 → 𝑡𝑡 splittings), and despite being sourced by 𝑣𝑀s
only. This should again not come as a surprise, as the 𝑠s disappear after each splitting, while
the splittings of 𝑡s predominantly lead to extra 𝑡 bosons. Let us next turn to the tertiary
fermions; as before, the 𝑢𝑍 population is exclusively sourced by, and therefore tracks, that of the
𝑠, with the former winning gradually over the sourcing population of 𝑠s as a result of 𝑢𝑍s being
conserved in their thermalization cascade splittings. Compared to the 𝑢𝑍, the 𝑢𝑀 population
receives an additional contribution from the splittings of the 𝑡 . These 𝑡s however, will be
predominantly sourcing the 𝑡 and 𝑣𝑀 spectra; only a small fraction of all 𝑡 bosons splits into
𝑢𝑀 pairs. Together with having a larger thermalization rate compared to that of 𝑢𝑍, this makes
the 𝑢𝑀 spectrum subdominant in the top frame of Fig. 4.7.
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Next, let us take a closer look at the case of quark–injection, with the results shown in the top
right and bottom frames of Fig. 4.7. For an initial injection of both 𝑣𝑀 and 𝑣𝑍, gluons dominate
the cascade only for 𝐿 < 𝐿M/10, but then the gluon spectrum again quickly approaches that
of a pure gluon cascade. Sizeable differences are seen in the relative ordering of the spectra
of the two quark chiralities at large 𝐿. If 𝑣𝑀 are injected, 𝑣𝑍 production requires at least two
splitting reactions, and vice versa; as a result, the 𝑣𝑀 and 𝑣𝑍 spectra are seen to converge only
for 𝐿 ≤ 10−2

𝐿M. The chirality of the initially injected quarks is further reflected in the large
gap between the 𝑡 and 𝑠 populations. For an initial injection of 𝑣𝑀 , all electroweak gauge
bosons can be produced in the first step of the cascade, albeit with significantly smaller rates
than gluons. On the other hand, for initial 𝑣𝑍 injection, 𝑡 bosons can only be produced in
the third step,e.g. 𝑣𝑍 → 𝑖 → 𝑣𝑀 → 𝑡 . As a result, in the bottom frame, 𝑡 bosons have the
smallest flux at large 𝐿.

Through the difference in population of 𝑀𝑁 (2)𝑀 and 𝑁 (1)𝑁 gauge bosons discussed above, the
chirality of the initially injected quarks also leaves an imprint on the spectra of the leptons. Due
to their smaller hypercharge, 𝑢𝑀 pairs are less often produced in the splittings of 𝑠; additionally,
the 𝑢𝑀 spectrum is further affected by a larger thermalization rate due to eventual emissions of the
non–Abelian𝑡 bosons. On the other hand, relatively more efficient𝑡 → 𝑣𝑀𝑣𝑀 splittings could
contribute to the 𝑣𝑀 spectrum to tip the balance. With the population of the 𝑡 subdominant to
𝑠 in the case of initial 𝑣𝑍 injection, however, the 𝑢𝑀 population remains below that of 𝑀𝑁 (2)𝑀
singlet leptons over the entire range of 𝐿 shown in the bottom frame of Fig. 4.7.

Figures 4.5, 4.6 and 4.7 show that for 𝐿 not much below 𝐿M both the shape and the normalization of
the spectra quite strongly depend on the identity of the injected particle, i.e. on the branching ratios of
the long–lived matter particles. However, these differences diminish as 𝐿 becomes smaller; hence with
increasing 𝐿M a larger and larger part of the spectrum will be largely independent of the high–scale 𝑠𝑐I

parameters; the role of 𝐿M is what we turn to next.

4.5.2 The role of 𝜴M and scaling behavior

In Section 4.5.1 we presented solutions to the set of Boltzmann equations (4.32), assuming a decay of
the matter component resulting in an initial population of a single species 𝛻. Here we focused on setups
with cosmological eras of temperatures 𝑂 , and energy injection via two–body mono–energetic decays
of a non–relativistic particle of mass 𝑊 giving rise to an initial population of HE particles of energy
𝑊/2, such that the dimensionless parameter 𝐿M, defined in eq. 3.29 has a fixed value of 𝐿M = 104. We
saw that the spectra of SM particles develop via a cascade of splittings towards lower energies with
𝐿 4 𝐿M. We further observed that the relative amplitudes of the spectra develop towards an attractor
solution, where the colored particles are the dominant species in the OoE plasma. A larger span of
𝐿M means therefore a larger number of splitting processes occurring throughout the thermalization
cascade; we observed that in certain cases (see Fig. 4.6), a larger 𝐿M allows the thermalization cascade
to develop further towards a dominant population of 𝑀𝑁 (3)𝐿 charged particles.

In previous chapters in Section 3.4, we presented examples of how a spectrum of OoE particles could
be used to study its potential effects cosmological observables. We saw that even for a given mass 𝑊
of the particle feeding the radiation bath with monochromatic two–body decays, the consideration of
different cosmological eras i.e. Hubble eras with different temperatures 𝑂 , gave rise to a need for an
understanding of the spectrum of OoE particles corresponding to different 𝐿M values. Additionally, as
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discussed in our introduction in Chapter 1, the mass, branching ratios, and the energy spectrum of the
initial decay products resulting from e.g. the decays of a matter component depend on the high–scale
model and are, therefore, often treated as unknown parameters when calculating observables [69]. As
we discussed earlier in the context of eq. 4.35, the introduction of branching ratios does not complicate
the OoE spectra beyond the need for a linear combination of a set of pure initial state injection solutions
𝑌̄
𝑦
𝑊 (𝐿). The remainder of the unknown factors, however, imply a need for the availability of the OoE

spectra of different species for different values of the parameter 𝐿M.

Figure 4.8: Ratios 𝑐
𝑦
𝑊

(
𝐿, 𝐿M

)
of eq. 4.36, for initial populations: 𝛻 = 𝑠 (left), 𝑢𝑍 (right). Results for

𝐿M = 102
, 103

, 104 are overlaid. The dark green horizontal dashed line marks 𝑐 = 1. The two purple dashed
lines represent the typical normalization of a would–be pure gauge boson ratio curve with coefficients from
𝑡 → 𝑡𝑡 and 𝑠 → 𝑢𝑍𝑢𝑍 splittings.

In this subsection we, therefore, quantitatively analyze the role of 𝐿M in the normalization and shape
of the OoE spectra resulting from the Boltzmann equations 4.32, and of the set of species S introduced
in eq. 4.24. For a pure gauge boson cascade in Chapter 3, we saw in eq. 3.49 that the normalized
spectrum is essentially given by 1/√𝐿M times the function (4.30) (see also equations 3.50 and 3.48)
which only depends on the ratio 𝐿/𝐿M, with minor corrections. If this behavior also holds for the
entirety of the solution domain 16 for the multi–species cascade we are analyzing here, the ratios

𝑐
I
𝑊

(
𝐿, 𝐿M

)
=

𝑌̄
𝑦
𝑊

(
𝐿, 𝐿M

)
𝑌̄
𝑟
𝑟𝑟

(
𝐿, 𝐿M

) (4.36)

should to good approximation only depend on the ratio 𝐿/𝐿M; here 𝑌̄𝑟𝑟𝑟 denotes to the dark green curve
in the figures in Section 4.5.1, and denotes the pure gluon solution of (4.29), using the full splitting
rate of eq. 4.17a. The results are shown in Figs. 4.8 to 4.10 for the different initial injection of species

16 Scaling behavior in the low–𝐿 power–law tail of the particle spectra has previously been observed both in approximate
analytical solutions of our pure gluon Boltzmann equations [41], in a somewhat different context in kinetic theory studies
of QGP (see e.g. [110] and references therein). Subsequently, this scaling behaviour is also observed in the multi–species
coupled set of Boltzmann equations 4.32 in [70]; in line to what we see in Figs. 4.6 and 4.9, the scaling solution is harder
to attain for the case of an initial injection of 𝑡 and 𝑢𝑀 (see particularly section 4.2, and the “scaling regime” solution
therein).
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Figure 4.9: Ratios 𝑐
𝑦
𝑊

(
𝐿, 𝐿M

)
of eq. 4.36, for initial populations: 𝛻 = 𝑡 (left), 𝑢𝑀 (right). Results for

𝐿M = 102
, 103

, 104 are overlaid. The dark green horizontal dashed line marks 𝑐 = 1. The two purple dashed
lines represent the typical normalization of a would–be pure gauge boson ratio curve with coefficients from
𝑡 → 𝑡𝑡 and 𝑠 → 𝑢𝑍𝑢𝑍 splittings.

𝛻 ∈ S, grouped based on the strongest available interaction as we did in Section 4.5.1. Each figure
contains the overlaid 𝑐

I
𝑊

(
𝐿, 𝐿M

)
curves for three values of 𝐿M = 102

, 103
, and 104. As guides for the

eyes, the dark green horizontal dashed line marks 𝑐 = 1, corresponding to a population 𝑌̄
𝑦
𝑊

(
𝐿, 𝐿M

)
coinciding with that of the pure gluon cascade; additionally, the two purple dashed lines show the
ratios of the prefactors (see the y-independent terms in eq. 4.17a and 4.17c) for the 𝑡 → 𝑡𝑡 , and
𝑠 → 𝑢𝑍𝑢𝑍

17 , relative to that of the 𝑖 → 𝑖𝑖 splitting. Recall that, as seen in eq. 4.32 the normalization
of the spectra at 𝐿 → 𝐿M is inversely proportionate to the splitting rate.

Looking at the resulting overlaid curves in Figs. 4.8 to 4.10, a first observation is that, within
an order of magnitude, a scaling behavior is indeed observed for all species and all cases of initial
injection. We further see that the rescaled spectra of gauge bosons typically show a higher degree of
this scaling behavior, i.e. are well approximated by a function of 𝐿/𝐿M, as compared to the fermionic
particles. Note that, the observation of the scaling behavior in the gluon spectra in Figs. 4.8 to 4.10,
does not trivially follow from the same observation in the pure gluon treatment in Chapter 3, as the
governing Boltzmann equations 4.32 are coupled. Looking at the curves for 𝑐𝑟 for example, it is worth
emphasising that the scaling behavior is seen even in the case of 𝑢𝑍 injection in Fig. 4.8 where gluons
are generated in tertiary splittings via e.g. 𝑢𝑍 → 𝑠 → 𝑣𝑀 → 𝑖.

In the case of the 𝑡 boson, we saw in the discussion of Fig. 4.5 that, apart from the relative ratios
of the 𝛽 → 𝛽𝛽, 𝛽 → 𝜂𝜂 and 𝜂 → 𝛽𝜂 processes, the evolution equations are quite similar to those
of the 𝑖. It might, therefore, not be surprising that the rescaled 𝑡 spectra 𝑐𝑤 in Figs. 4.8 to 4.10 do
not show a strong dependence on 𝐿M, and become relatively flat at 𝐿 4 𝐿M in Figs. 4.8 and 4.10. The
evolution equation for Abelian 𝑠 bosons is, however, quite different due to the absence of 𝑠 → 𝑠𝑠

splitting and the strong LPM suppression of 𝜂 → 𝑠𝜂 splitting. It is therefore also not surprising that

17 As an Abelian gauge boson the 𝑠 does not, of course, posses a 𝑠 → 𝑠𝑠 splitting. As such, the prefactor for the 𝑠 → 𝑢𝑍𝑢𝑍
process is used to represent the typical strength of B splittings in comparison to the prefactors of 𝑖 → 𝑖𝑖 and 𝑡 → 𝑡𝑡 ,
merely as a reading aid.

99



Chapter 4 The Standard Model of particle physics and thermalization cascades in the early universe

𝑐𝑧 can have quite a different shape than 𝑐𝑤 , e.g. in the case of 𝑣𝑍 injection. Correspondingly, it seems
even less trivial to justify the observation that 𝑐𝑧, to very good approximation, depends on 𝐿M only via
the ratio 𝐿/𝐿M, based on the scaling behavior of the pure gluons observed in Chapter 3. It is worth
mentioning that the spectra of the various gauge bosons are coupled through the fermions, and in our
results in Figs. 4.8 to 4.10, the rescaled fermion spectra do in fact show some residual dependence on
𝐿M.

Figure 4.10: Ratios 𝑐 𝑦𝑊
(
𝐿, 𝐿M

)
of eq. 4.36, for three initial populations: 𝛻 = 𝑖 (top left), 𝑣𝑀 (top right), and 𝑣𝑍

(bottom). Results for 𝐿M = 102
, 103

, 104 are overlaid. The dark green horizontal dashed line marks 𝑐 = 1. The
two purple dashed lines represent the typical normalization of a would–be pure gauge boson ratio curve with
coefficients from 𝑡 → 𝑡𝑡 and 𝑠 → 𝑢𝑍𝑢𝑍 splittings.

The departure from the scaling behavior in case of fermions is, as seen in Figs. 4.9 and 4.10, most
pronounced for 𝑐𝛥𝑂 , whose sole means of energy loss in the set of processes we are considering is
via the emission of 𝑠 bosons. Recall that, as we saw in Section 4.5.1 and specifically in Fig. 4.5, a
population of 𝑠 bosons, primarily sources a spectrum of 𝑢𝑍 fermions; note also that the 𝑠 boson ratio
curve for an initial 𝑡 injection in (4.9) does primarily depend on 𝐿/𝐿M. On the other hand, however,
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the differential splitting rate for the 𝑠 emission off the 𝑢𝑍’s only scales like 1/√𝛺 for small 𝛺, while all
rates for emitting a non–Abelian gauge boson scale like 1/𝛺3/2 in that limit. 𝑢𝑍 therefore typically
emits more energetic gauge bosons, leading to a significantly shorter cascade18 and hence a stronger
dependence on the boundary conditions; that could explain the departure from the scaling behavior and
the apparent dependence on 𝐿M. Moving on to the other fermions in S, the rescaled spectra explicitly
depend on 𝐿M mostly at relatively small 𝐿. This may reflect the effect of 𝛽 → 𝜂𝜂 splitting on the total
splitting rate of 𝛽 which, as we saw above, becomes more competitive at smaller 𝐿.

Similar to what was discussed in Section 4.5.1, Figs. 4.8 to 4.10 also illustrate the flow towards an
OoE plasma dominated by gluons and quarks, irrespective of the initial injection. In particular, in
the case of gluon injection, the ratio functions settle quickly into their asymptotic values, so that the
particle ratios depend only weakly on 𝐿 for 𝐿 ≤ 0.1𝐿M. At least for this scenario, and for the given
values of the gauge couplings, one should therefore be able to predict the various ratio functions for
𝐿M > 104 quite accurately by extrapolating the numerical results of the bottom frame of Fig. 4.10,
without the need for new numerical solutions of eq. 4.32; recall that the gauge couplings depend on
the temperature only logarithmically.

Figure 4.11: Ratios 𝑐𝑊
(
𝐿, 𝐿M

)
for a scenario where several species are injected, with branching ratios 𝑠𝑐𝑟 =

0.1, 𝑠𝑐𝛥𝑃 = 𝑠𝑐𝛥𝑂
= 0.45, with 𝐿M = 104. The dark green horizontal dashed line marks 𝑐 = 1. The two purple

dashed lines represent the typical normalization of a would–be pure gauge boson ratio curve with coefficients
from 𝑡 → 𝑡𝑡 and 𝑠 → 𝑢𝑍𝑢𝑍 splittings.

Finally, let us take a moment to explicitly check if our numerical solutions indeed exhibit the earlier
advertised linearity in the initial decay branching ratios in eq. 4.32. As depicted in eq. 4.35, once
computed, the set of solutions 𝑌̄

𝑦
𝑊 (𝐿) could be used to deduce the spectrum of OoE particles for

any given set of branching ratios 𝑠𝑐𝑦 . One such example is shown in Fig. 4.11, where we assumed
𝑠𝑐𝑟 = 0.1, 𝑠𝑐𝛥𝑃 = 𝑠𝑐𝛥𝑂

= 0.45 with 𝐿M = 104; we checked explicitly that a direct numerical solution
of (4.32) gives the same result within numerical accuracy. The OoE spectra remain dominated by 𝑢𝑍

18 More exactly, a cascade containing fewer splittings, which nevertheless takes more time, due to the small total splitting
rate of 𝑍𝑍 .
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for most of the range of 𝐿, reflecting the slower thermalization of the HE 𝑢𝑍 population, as discussed
previously for Fig. 4.5.

4.6 Example of applications: Revisiting non–thermal production of
heavy dark matter

In Chapter 3, we introduced the machinery allowing us to numerically study the chain of the most
efficient splitting processes responsible for the kinetic equilibration of a single species of highly–
energetic (HE) non–Abelian gauge bosons, initially appearing as decay products of a matter component
comprised of “particles” of mass 𝑊 and decay width ϑM. After obtaining a numerical solution and a
corresponding analytical approximation in Section 3.3.2, we proceeded to present an example of how
such a spectrum of HE particles could be used to calculate further quantities of interest in a given
cosmological history. We had briefly introduced the topic of non–thermal (NT) DM production in
Chapter 1; in Section 3.4 we revisited the question of the NT production of “heavy” DM particles (𝜀)
resulting from the interactions of OoE particles in the thermalization cascade amongst themselves, as
well as with the background thermal plasma of SM particles.

Now that we have worked our way to a multi–species description of the thermalization process,
allowing for both the injection and the development of a set of particles (4.24) in the splitting cascade,
let us conclude this chapter by repeating the exercise we did in Section 3.4. We would in this
case like to know how the more detailed picture of the composition of the OoE plasma of particles
in the thermalization cascade can be incorporated into calculating a non–thermal (hard–hard) and
semi–thermal (hard–soft) contribution to the population of a heavy species 𝜀, which could potentially
be a stable DM candidate.

Let us, therefore, first consider the hard–soft production of heavy particles 𝜀 via two–body
annihilation reactions involving one OoE particle and one particle from the thermal bath. To present
an example, let us once again simplify the model–dependence of the matter decay process and the
cosmological history to assume that the long–lived particles, with mass 𝑊 and decay width ϑM, whose
decays are ultimately responsible for the spectra of OoE particles, dominate the energy density of the
universe prior to its decay.

Let us quickly recap our results from Section 3.4. The long–lived very massive 𝑊 particles
dominated the energy density as long as the temperature is above the reheating temperature (3.53),
approximated by

𝑂RH ∼
√
ϑM𝑊Pl , (4.37)

where 𝑊Pl is the reduced Planck mass (see eq. 3.1 and 2.10). We further saw in Fig. 3.8, that the
thermal (“soft–soft”) contribution to 𝜀 production became competitive as 𝑅𝑝 → 𝑂RH. If 𝑅𝑝 ! 𝑂RH,
total 𝜀 pair production through renormalizable interactions will be dominated by reactions only
involving thermalized particles, so the resulting 𝜀 density will be insensitive to the details of the
spectra of nonthermal particles. On the other hand, if 𝑅𝑝 * 𝑂RH (e.g. 𝑅𝑝 > 20𝑂RH in the case
of WIMPs), thermal production of 𝜀 particles will effectively cease at temperature 𝑂TP * 𝑂RH (

𝑂TP ∼ O
(
0.05𝑅𝑝

)
> 𝑂RH for the famous WIMPs in an RD universe). Any thermal contribution to the

𝜀 density will then be diluted by the entropy production between 𝑂TP and 𝑂RH. In this case the final 𝜀
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density may be dominated by the semi–thermal processes of the kind

𝑋 𝑋
′ −→ 𝜀 𝜀 , (4.38)

where 𝑋
′ ∈ SM denotes a “soft” particle from the thermal bath, but the “hard” 𝑋 ∈ S is taken from the

spectra (4.31) of OoE particles, with momentum 𝑉𝑊 * 𝑂 . Denoting the corresponding production
cross section by 𝑄

hs
𝑝 and incorporating the ratio function (4.36), we can rewrite eq. 3.58 for the 𝜀

number density 𝑌𝑝 anew to get

𝑤𝑌
hs
𝑝 (𝑂)
𝑤𝑃

+ 3𝑔𝑌
hs
𝑝 =

∑
𝑊, 𝑊′

∫
𝑌𝑊′ (𝑂) 〈𝑄

hs
𝑝 𝜃〉𝑊, 𝑊′ (𝑉,𝑂) 𝑌̃𝑊 (𝑉,𝑂) 𝑤𝑉

=
∑
𝑊, 𝑊′

∫
𝑌𝑊′ (𝑂) 〈𝑄

hs
𝑝 𝜃〉𝑊, 𝑊′ (𝑉,𝑂) 𝑐𝑊 (𝑉,𝑂) 𝑌̃

𝑟
𝑟𝑟 (𝑉,𝑂) 𝑤𝑉 . (4.39)

Here, 𝑌𝑊′ (𝑂) = 𝛾𝑊′𝑟 (3)𝑖𝑊′𝑂
3/𝑙2 with 𝛾𝑊′ = 1 (3/4) for bosonic (fermionic) 𝑋′ is the thermal number

density (2.20) of the species 𝑋′ with 𝑖𝑊′ degrees of freedom, 〈𝑄hs
𝑝 𝜃〉𝑊, 𝑊′ denotes the appropriate “thermal

average” of the production cross section for the process 4.38, including the correct averaging over the
gauge and spin degrees of freedom. The ratio functions 𝑐𝑊 are used to write 𝑌̃𝑊 (𝑉,𝑂) in terms of the
pure gluon solution of eq. 4.29.

Similar to what we had in Section 3.4, the form of the Boltzmann equation 4.39 implies a number
of assumptions. We are focusing on a case where the lifetime of the produced 𝜀’s is much larger
than 1/ϑM, so that we can treat them as stable; this is certainly true if we are interested in 𝜀 directly
as a DM candidate. We have further assumed that 𝑌𝑝 remains small enough so that 𝜀 annihilation
processes are negligible. Despite these approximations, the incorporation of the ratios 𝑐𝑊 in eq. 4.39
now allows for a much more precise calculation for the production rate of the process (4.38) compared
to what was previously possible in Section 3.4.

Recall further that for a complete picture we need to consider the Boltzmann equation 4.39, as
an approximation to the population of 𝜀 particles produced during a given Hubble era, for various
eras of different temperatures 𝑂 . We saw in Section 3.4 that depending on the ratios of masses and
the temperature 𝑂 of the thermal bath, the dominant contribution to the final 𝜀 abundance could be
provided by different cosmological eras; the additional involvement of the ratio functions 4.36 in
eq. 4.39 introduces further dependence on the initial branchings of the decaying 𝑊 particles, as well
as new forms of momentum dependence for the production rate. Pair production of 𝜀 (4.38) is only
possible if the CoM energy exceeds 2𝑅𝑝 (see footnote 16 on Page 59). Since the average energy of a
particle in the thermal bath is around 3𝑂 and the spectrum of OoE particles quickly increases with
decreasing momentum (see Figs. 4.5 to 4.7), the dominant contribution to the integral in eq. 4.39
typically comes from a threshold 𝑉 ∼ 𝑅

2
𝑝/𝑂 for an era of temperature 𝑂 . Looking at Figs. 4.8 to 4.10,

the variation of the ratio functions 4.36 are seen to be slower than 1/𝐿 for 𝐿 ≤ 0.1𝐿M, so that in the
absence of numerical calculations, dominant production at 𝑉 ∼ 𝑅

2
𝑝/𝑂 could be assumed to hold for a

typical production (4.38).
Together with the fact that 𝑌𝑊′ ∝ 𝑂

3 in eq. 4.39, the above production at threshold implies that the
𝜀 production rate quickly increases with increasing 𝑂 . However, the entropy dilution of (𝑂RH/𝑂)

5,
occurring due to further decays between this higher temperature 𝑂 and the end of reheating at 𝑂RH,
implies that the biggest contribution to the final 𝜀 density often comes from temperature 𝑂 # 𝑂RH,
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unless 𝑅2
𝑝 > 𝑂RH𝑊

19. If 𝑅2
𝑝 4 𝑂RH𝑊 the, hard–soft production rate will be dominated by particles

with energy 𝑉 4 𝑊, whose spectrum is less dependent on the decay branching ratios of our heavy
matter particles. In contrast, for 𝑅2

𝑝 " 𝑂RH𝑊 , very energetic particles with 𝑉 ∼ 𝑊/2, corresponding to
the region 𝐿 ≥ 0.1𝐿M will make sizable or even dominant contributions to the hard–soft production of
𝜀’s. As we saw in Figs. 4.5 to 4.7 the spectra of the OoE initial states in this case do strongly depend
on the initial branching ratios; Figs. 4.8 to 4.10 further imply the strong momentum dependence of the
ratio functions should also be taken into account in eq. 4.39.

In Section 3.4, we further introduced 𝑂max (3.68), the maximal temperature the thermal plasma in
the EMD. We saw that so long as 𝑅2

𝑝 < 𝑂max𝑊, 𝜀 particles will be produced down to a threshold
temperature 𝑂Thr (3.67) via the hard–soft process. For sufficiently heavy 𝜀’s, however, we will have
𝑂Thr * 𝑂RH, so that the subsequent entropy production due to 𝑊 decays between 𝑂Thr and 𝑂RH dilutes the
produced 𝜀 population, leading e.g. to a suppressed hard–soft DM yield. Moreover, for even heavier
𝜀 particles with 𝑅

2
𝑝 " 𝑂max𝑊 , hard–soft processes fail the kinematic threshold, so that 𝜀 production

will be available solely through the hard–hard processes, where both initial particles in the reaction
(4.38) belong to the OoE spectra (4.32). In such scenarios, 𝜀 production from HE particles from the
thermalization cascade accumulate for Hubble eras with 𝑂RH ≤ 𝑂 . The corresponding evolution of
number density of 𝜀’s during a Hubble era of temperature 𝑂 is then given by

𝑤𝑌
hh
𝑝 (𝑂)
𝑤𝑃

+ 3𝑔𝑌
hh
𝑝 =

∑
𝑊

∫
𝑤𝑌𝑊 (𝑉,𝑂) ϑ

hh
𝑊→𝑝 (𝑉,𝑂) (4.40)

=
∑
𝑊, 𝑊′

∬
𝑐𝑊 (𝑉,𝑂) 𝑐𝑊′

(
𝑉
′
,𝑂

)
𝑌̃
𝑟
𝑟𝑟 (𝑉,𝑂) 𝑌̃

𝑟
𝑟𝑟

(
𝑉
′
,𝑂

)
𝑄

hh

𝑊 𝑊′→𝑝𝑝

(
𝑉, 𝑉

′)
𝑤𝑉 𝑤𝑉

′
.

(4.41)

Similar to what we had in (4.39), in eq. 4.40, the cross section 𝑄
hh

𝑊 𝑊′→𝑝𝑝, can once again be assumed
to include the appropriate normalization factors for combinations of 𝑋 and 𝑋

′ species allowed by the
process (4.38). If we were, for example, to rely on a flavor diagonal gauge-neutral 𝑣𝑍 + 𝑣𝑍 → 𝜀 + 𝜀

production, one should include a factor 1/(2 × 3 × 6) in association with using 𝑐𝑠𝑂
as each element of

the population 𝑋 need to pick up the right color, and flavor out of the 𝑋
′ spectrum; the remaining factor

of 1/2 accounts for the thermalization cascade including equal parts in particles and antiparticles as
discussed in Section 4.3.2. For apparent reasons, and as reflected in the double presence of the ratio
function (4.36), the hard–hard production of heavy species 𝜀 is more sensitive to the details of the
OoE spectra resulting from the thermalization cascade. Our results in Section 4.5 will therefore play
an even more important role in the case of hard–hard production for calculations such as those done in
Section 3.4 or [41, 42, 52].

4.7 Summary and discussion

Cosmological histories including an EMD or IMD epoch, where the energy density of the universe is
dominated by a long–lived matter component of mass 𝑊 and decay width ϑM, are well motivated and
widely studied. The inclusion of such a period has been shown to potentially affect various aspects

19 As discussed in Section 4.5.2, the ratio functions are, to a good approximation, a function of 𝐿/𝐿M and therefore
independent of the temperature 𝑂 and will not directly affect our argumentation here.
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of cosmology, including the production of DM or the baryon asymmetry. Since we know that the
universe was dominated by the SM radiation bath at the latest at the onset of BBN, any sizeable matter
component should decay and eventually (predominantly) thermalize into the thermal bath.

The thermalization procedure entails the splitting of initial decay products of energy 𝑉𝑂 * 𝑂

into O
(
𝑉𝑂/𝑂

)
particles of energy O (𝑂), and has been studied in the literature both in cosmological

contexts and in the context of HIC. So long as the OoE particles are gauge charged, the dominant
process of thermalization is known to be the 1 → 2 near collinear splittings of the energetic particles
made possible via soft 𝑃−channel interactions with the thermal bath, mediated by gauge bosons with
thermal mass O (𝑖𝑂), 𝑖 being the relevant gauge coupling. The collinearity of the splitting then calls
for a careful inclusion of the LPM effect resulting from consecutive interactions of the particles with
the plasma during the formation time of the splitting process. The LPM suppressed rate of pure–gauge
splittings 𝑖 → 𝑖𝑖 had already been studied analytically and numerically in the literature, and was the
subject of Chapter 3 in this thesis; these studies are motivated by the fact that the QCD sector, and
in particular gluons, can be expected to dominate the spectrum of nonthermal particles, at least for
momenta 𝑉 4 𝑉𝑂; this expectation is in fact verified by our current analysis in Chapter 4, in a majority
of cases.

In Chapter 4, we extend the previous works, and our analysis of Chapter 3, by including the full set
of chiral SM fermions and gauge bosons in the splitting cascade of an initial population of energetic
particles of energy 𝑉𝑂 = 𝑊/2; 𝑊 here denotes the mass of a heavy decaying matter component. Our
choice of particles to study, allows us to limit our attention to three classes of splitting events: pure
gauge boson splittings, gauge boson radiation off fermions, and finally fermion pair productions in
gauge boson splittings. The functions describing the emission of a gauge boson in vacuum have similar
functional forms, but the process rates can have different coupling strengths, flavor multiplicity factors,
and numerical LPM suppression factors; evidently these processes increase the number of gauge
bosons. In contrast, the splitting of a gauge boson into an 𝑛 𝑛 pair is suppressed by a factor 𝑉𝑙/𝑉𝑔,
where 𝑉𝑙 and 𝑉𝑔 denote the momentum of the softer daughter and parent particle, respectively; it
increases the number of fermions, but reduces the number of gauge bosons. Note also that this is the
only splitting process available to Abelian gauge bosons.

We use the explicitly calculated results for LPM suppressed splitting rates corresponding to an
𝑀𝑁 (𝛴) gauge group from the literature, and use physical arguments to deduce the rate for processes
involving species charged under different gauge groups, see equations 4.16 to 4.19. The resulting
Boltzmann equations can be written in terms of the dimensionless ratio 𝐿 = 𝑉/𝑂 , see eq. 4.32; in this
form the equations depend only on 𝐿M = 𝑊/2𝑂 rather than on 𝑊 and 𝑂 separately. Of course, the
decay branching ratios of the matter particles into the various SM species are also important, but due
to the linearity of the problem, we only need to consider the limiting cases where decay into a single
species dominates. The corresponding numerical results are shown in Figs. 4.5 to 4.7.

We find that spectra of individual species can have order of magnitude deviations from that
of the pure–gluon solution, derived in Chapter 3, over several decades of momentum, i.e. for
1 ! 𝐿/𝐿M ! 104. We treat the fermion chiralities separately, since only left–chiral fermions (and
right–chiral antifermions) have 𝑀𝑁 (2)𝑀 interaction. In scenarios with an initial chiral asymmetry in
the matter decay products, the latter persists for several decades in 𝐿 (see e.g. Fig. 4.7). On the other
hand, an approximate scale invariant behavior is observed for the ratios of the various species (4.36),
which for 𝐿 4 𝐿M asymptotically approach unique solutions independent of the branching ratios.

Our treatment in Chapter 4 concludes the arc introduced in Chapter 1 and should suffice for many
practical purposes, greatly improving the precision of the calculation of cosmological processes
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involving OoE particles. The validity of the results is, however, limited by the approximations we
made; let us review these briefly. In writing the Boltzmann equations (4.32), we disregard the role of
hard 2 → 2 processes, similar to what we did in our simpler analysis of Chapter 3. This should be a
good approximation so long as 𝐿 * 120, but the low−𝐿 tail of our result could be affected. On the
other hand, these results for the ratios of spectra, together with the pure gluon solution, should serve
as a good approximation for 𝐿 * 1 regions even for cases with 𝐿M * 104, as we argued in section 4.5.
Recall also that the total flux of particles with momentum 𝑉 ! 10𝑂 will in any case be dominated by
the thermal component.

Another reasonable approximation we have incorporated in our analysis is that of a quasi–static
Boltzmann equation (4.31). As motivated in eq. 3.19 and Chapter 3, the gravitational Hubble expansion
can be neglected in comparison to the much faster gauge–mediated particle processes, unless one is
interested in cosmological eras with a very large temperature with a very large matter to radiation
ratio 𝑇M/𝑇R * 1, corresponding, e.g., to very early stages of reheating; it should also be noted that at
these very early stages of reheating, a thermal background radiation bath of temperature 𝑂 could be
absent. The relevant timescale for the initial formation of a thermal radiation bath has been previously
studied in the literature, is however not the subject of this work 21; this timescale affects the maximum
temperature attained in the universe (3.68), which we used to identify a cosmological history in
Section 3.4 and Section 4.6.

Finally, a notable simplifying assumption we used to limit the number of coupled integral equations
to be solved, was to limit our attention to a subset S (4.24) of the SM particle content, excluding the
scalar Higgs and its interactions with the species in S. In Section 4.3.2 we argued that we may safely
leave out the SM Higgs doublet in our analysis, but this may be different in models with extended
Higgs sectors (with more degrees of freedom, and often also enhanced couplings to some fermions).
Scalars, and Majorana gauginos, will certainly be important if one wishes to analyze a supersymmetric
cascade. Results for medium induced scalar–scalar–gauge boson splittings have been published in
the literature [66]; these would need to be augmented with splitting functions involving Yukawa
interactions; this is subsequently included in the analysis in [70], where the third generation quarks
are treated separately to account for large Yukawa interactions. It is worth mentioning that the same
machinery introduced and used here in Chapter 4, could in principle be used to study models with
extended particle content; e.g. extension of the SM involving SUSY. Such scenarios will admit a
larger number of splitting processes, compared to Fig. 4.4, and would require us to keep track of a
larger set of particles (4.24).

20 Another implicit approximation is the use of a single form of the LPM suppression factor over several orders of magnitudes
in 𝐿; interpolation schemes have been suggested [111] to smoothly cross over to the unsuppressed Bethe–Heitler regime
of eq. 4.5.

21 In scenarios where there is no preexisting thermal radiation bath, e.g. at the onset of reheating after inflation, the energetic
decay products can only interact with each other. The critical process will then be the formation of a seed of soft particles,
on which later energetic decay products can scatter [52, 61]. This is somewhat similar to the initial stages of HIC [62, 63].
The details of this process, and in particular the critical timescale of seed formation, set the maximal temperature of
the radiation bath [39, 52]. We will not be dealing with these very early stages of thermalization. Note that in possible
post–inflationary epochs, where energetic particles are injected, the existence of a thermal bath is guaranteed.
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Summary

Theories of GR and QFT are used to formulate models for the observable universe and its content.
The ωCDM and the SM, are two such models, that can be broadly said to capture our understanding of
the evolution (expansion) history of the universe, and the interactions of its contents [1]. The so called
“standard” cosmological histories of the universe typically involve an initial inflationary expansion era,
followed by a reheating phase through which the universe is filled up with relativistic radiation which
subsequently cools down via the expansion of the universe. Observations corresponding to the BBN
imply that the universe has indeed been RD at temperatures ∼ 3 MeV [2]. The subsequent expansion
of the universe then leads to a MD era and finally, to the present day state of accelerated expansion.

The standard history can, however, be modified to include, e.g. , additional EMD or IMD periods; in
fact, such MD eras often arise naturally in models and cosmological histories studied in the literature
[20]. Irrespective of their origin, observational constraints require such MD eras to end, and for the
energy contained in the matter component to be converted to thermal radiation. Particles comprising
the matter component can have masses that are larger than the temperature of the TB at the time
of their decay by many orders of magnitude. The particles resulting from the decay of the matter
component, therefore, have a non–thermal distribution of energy, with energies much larger than the
temperature of the thermal radiation bath; moreover, while the composition of elementary particles
resulting directly from the decay of the matter component particles is controlled by its mass and
couplings to lighter particles, the composition of the TB is solely controlled by the temperature.

A process of thermalization is therefore required to convert the initial OoE distribution of HE
particles, to a population of particles belonging to the TB. Assuming the decaying matter particle to
have a mass 𝑊 much larger than the temperature 𝑂 of the TB, the thermalization process is responsible
for generating O (𝑊/𝑂) new particles and redistributing the energy of the initial HE particles among
these to ensure a thermal distribution of energy, as well as the thermal particle composition. Changes
in the particle composition, generation of new particles, and the redistribution of energy all rely on
particle interactions that could potentially occur among the HE particles from the OoE decay products,
and particles from the TB. In this thesis, we study the process of thermalization of HE particles, in a
background of particles from a thermal radiation bath.

We start in Chapter 2 by introducing the thermal radiation bath and its composition; focusing on a
TB of unbroken SM particles, we review the particle composition of a radiation bath of temperature
𝑂 . We then move on in Section 2.4 to introduce some concepts in thermal field theory, in particular
the “thermal mass” capturing the effect of forward scatterings of a particle traversing the TB off the

107



Chapter 5 Summary

particles it contains. This is followed by a brief introduction to kinetic theory in Section 2.5, a tool
to study the evolution of the composition of an ensemble of particles; we introduce the Boltzmann
equation, governing the evolution of phase–space distribution functions due to the expansion of the
universe and particle interactions. We then point out that the validity of the kinetic theory treatment
hinges on a number of criteria, which could be violated for specific processes of interest, calling for
the formulation of an “effective kinetic theory” capturing the effects which would otherwise render the
kinetic theory invalid [49]. We provide an example of a case, where the quantum mechanical duration
of a process exceeds the mean–free time of the particle under study in the thermal plasma, therefore
failing one of the validity conditions for the kinetic theory treatment [48]. We further allude to how
this particular failure could be remedied by a reformulation in terms of an effective kinetic theory
treatment.

In Chapter 3, we start applying the lessons from Chapter 2 to the problem of thermalization of HE
particles of energy of O (𝑊), resulting from decays of particles of mass 𝑊 , in a thermal background
plasma of temperature 𝑂 4 𝑊. We realise that the large energy of the decay products typically
suppresses the rate of interactions for the OoE particles, so that we may focus on the process of energy
loss (kinetic equilibration), as the initial stage to be accomplished before chemical equilibrium can
be reached [52]. Taking up the simplifying assumption that we are dealing with a single species of
non–Abelian gauge bosons 𝛽, only capable of generating new particles from its own species, we study
the particle interactions that could contribute to the process of energy loss of 𝛽 particles propagating in
the TB. While this is a simplifying assumption, within the SM, the 𝑀𝑁 (3)𝐿 or 𝑀𝑁 (2)𝑀 gauge bosons
could be thought to take up the role of 𝛽.

In Section 3.1.2 we find that nearly–collinear splittings of the form 𝛽 → 𝛽𝛽, in association with a
forward scattering of the 𝛽 particles off the particles in the TB, provide the most efficient means of
energy loss for the HE 𝛽 particles [61]. A closer look at this process, however, shows that directly
incorporating it into the Boltzmann equation would lead to a violation of the validity of kinetic theory
treatment. The root cause of the issue can be traced back to the long “formation time” associated with
the near–collinear splitting process 𝛽 → 𝛽𝛽; quantum mechanical contributions from splitting process
associated with scatterings off multiple scatterers in the TB interfere as a result of the “long” formation
time, and can therefore not be treated as independent contributions in the Boltzmann equation. The
effective kinetic theory treatment required to deal with this issue is achieved in Section 3.1.3 by
including the LPM suppression factor associated with the 𝛽 → 𝛽𝛽 splitting process [39]. Physically,
the LPM suppression factor encodes the fraction of splitting processes that are not suppressed by
quantum interference.

Knowing the form of the effective kinetic theory of nearly–collinear splittings for a non–Abelian
gauge boson in a thermal background, we proceed in Section 3.2 to study the process of energy loss of
HE 𝛽 particles resulting from two–body decays of a decaying matter component, with particles of
mass 𝑊. Using the dimensionless parameter 𝐿 ≡ 𝑉/𝑂 , with 𝑉 denoting the momentum (energy) of
the relativistic particles, and defining away the dependence of the equation on the number density
and decay rate of the matter component, we bring the Boltzmann equation into a form better suited
for analytical and numerical treatment. The resulting Boltzmann equation 3.33, can be thought of as
yielding the number density distribution 𝑌̄ (𝐿) (3.31) of OoE 𝛽 particles resulting from the cascade
of splittings of a single 𝛽 particle injected into the TB at dimensionless energy 𝐿M ≡ 𝑊/2𝑂 directly
via two–body 𝑊 decays. We present an approximate analytical solution (3.44) introduced in the
literature [41] in Section 3.3.1, and further proceed to numerically solve the Boltzmann equation
in Section 3.3.2. To do so, we motivate and introduce an IR–cutoff (see eq. 3.45), representing the
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minimum energy a “daughter” particle can carry away in a splitting process.
Solving (3.33) for different values of 𝐿M and choices of the cutoff parameter, we first observe that

the physical energy distribution of OoE particles is independent of the choice of the cutoff parameter,
which can therefore be set to 𝑉 = 𝑂 → 𝐿 = 1 without loss of generality. We further observe
that the resulting energy spectrum of HE 𝛽 particles exhibits the behavior we expect; assuming a
monochromatic injection of initial decay products at dimensionless energy 𝐿M, the spectrum quickly
diminishes in the immediate vicinity of 𝐿M, before flattening out at 𝐿− ∼ 0.8 𝐿M; this falling behavior
reflects the fact that there are “few” particles splitting in the upstream (i.e. 𝐿 > 𝐿−) energy interval,
and on the other hand a “large” number of splitting combinations available to the upstream particles.
The combined effects of further splitting subsequently leads to a growth of the spectrum towards
lower 𝐿 so that for a large intermediate region, 1 4 𝐿 4 𝐿M, the dimensionless spectrum will have a
form ∝ 𝐿

−3/2, consistent with the analytical approximation in the same 𝐿 region. The growth of 𝑌̄ (𝐿)
towards lower 𝐿 results in the normalised OoE spectrum approaching a value 𝑌̄ (𝐿) ∼ 𝐿M, as would be
expected from energy conservation.

After obtaining numerical solutions of 𝑌̄ (𝐿) for several values of 𝐿M, we proceed in Section 3.3.3 to
find a new analytical approximate solution (3.49), describing the numerical solution in the entire 𝐿

region. In Section 3.4 examples are presented of how the spectrum of HE particles can be used to
calculate contributions to the production of 𝜀 particles, too heavy (𝑅𝑝 * 𝑂) to be produced efficiently
via interactions among particles from the TB, via interactions of the OoE particles among themselves
and with the TB particles. Results from the numerically calculated spectrum of OoE 𝛽 gauge bosons
show an O (1) improvement relative to the previous analytical estimations; this improvement is further
reflected, in this example, in the resulting yield of heavy 𝜀 particles (see Fig. 3.7).

Having established a framework to formulate and solve the Boltzmann equation for the effective
kinetic theory of energy loss of a single species of non–Abelian gauge bosons, we move in Chapter 4 to
lift the simplifying assumption that the energy loss cascade consists exclusively of particles of species
𝛽. In Section 4.3 we revisit the formulation of an effective kinetic theory of nearly collinear splitting
processes. We motivate the form of LPM suppression factors corresponding to nearly–collinear
splittings of the type 𝑋 → 𝑋

′
𝑋
′′, where 𝑋, 𝑋

′
, and 𝑋

′′ ∈ S (see eq. 4.24) represent potentially different
species from the SM [79]; this is necessary because the differences in interaction rate from particle
species 𝑋, 𝑋′, and 𝑋

′′ with the background thermal plasma result in differences in contribution to the
momentum diffusion behavior setting the formation time. We pay particular attention to the distinction
between the momentum diffusion process for HE Abelian and non–Abelian gauge bosons.

Leaving out the only scalar species in the SM, i.e. 𝑔 ς S, we use the set of LPM–suppressed
rates (4.16, 4.17) for nearly–collinear splittings 𝛽 → 𝛽𝛽, 𝛽 → 𝜂𝜂, and 𝜂 → 𝛽𝜂, with 𝛽, 𝜂 ∈ S
representing the gauge bosons, and fermions of the SM respectively. In Section 4.4 we use these
rates to write down a set of coupled Boltzmann equations governing the OoE spectra of particles
developing via cascades of 𝑋 → 𝑋

′
𝑋
′′ splittings subsequent to initial decays of the matter complement

of mass 𝑊. We once again use the 𝐿 parameter, along with a an appropriate form of normalization
(4.33), to bring the Boltzmann equations to a form (4.32) suitable for numerical treatment. Using the
numerical method developed in Chapter 3, we can solve for the normalised spectra 𝑌̄𝑊 (𝐿) for 𝑋 ∈ S;
similar to what we had before, 𝑌̄𝑊 (𝐿) is proportional to the number of particles of species 𝑋 resulting
from the initial decay of a single 𝑊 particle to particles from S and of dimensionless energy 𝐿M/2.

With the introduction of multiple species 𝛻 ∈ S, the branching ratios 𝑠𝑐I of the matter component 𝑊
into the different initial decay products also enter the calculation of the spectra 𝑌̄𝑊 (𝐿). Motivated by
the linearity of the Boltzmann equation 4.32 in 𝑠𝑐I, we therefore solve for the spectra 𝑌̄I

𝑊 (𝐿), each time
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assuming 𝑠𝑐I = 1, for a single species 𝛻. The results, presented in Section 4.5, and particularly as seen
in Figs. 4.5 to 4.7, show that the spectra of different species 𝑋 can be orders of magnitude apart, both
at high and low–𝐿 regions. We further see that the inclusion of several species 𝑋, and the appearance
and disappearance of species in 𝑋 → 𝑋

′
𝑋
′′ processes, as well as the dependence on the initial decay

products 𝛻, lead to stark differences in the 𝐿–dependence of the spectra 𝑌̄
I
𝑊 (𝐿); the observations here

are notably different from the behavior seen in the high–𝐿 region of the single–species spectrum
obtained in Section 3.3, reflected e.g. in eq. 3.49. This departure is consistent with the spectra 𝑌̄

I
𝑊 (𝐿)

in Figs. 4.5 to 4.7 flowing towards a universal hierarchy of the spectra 𝑌̄𝑊 (𝐿) at low–𝐿 regions, with
the QCD plasma dominating the OoE plasma [60]; in other words, depending on the composition of
initial decay products 𝑠𝑐I, the spectra 𝑌̄𝑊 (𝑋) must flow differently towards a common QCD–dominated
plasma. Comparisons of the spectra 𝑌̄𝑊 (𝐿) for different values of 𝐿M in Section 4.5.2, and particularly
Figs. 4.6 and 4.8 to 4.10, show that larger 𝐿M values allow for a longer flow towards the QCD plasma;
this is further seen in the results in following studies [70].

We analyse the hierarchy of the spectra in Figs. 4.5 to 4.7, based on the couplings, multiplicities
and symmetries of the SM, and find that these agree with our understanding and expectations. As in
the case of a single species spectrum discussed in Chapter 3, the kinetic equilibration process based
on 𝑋 → 𝑋

′
𝑋
′′ splittings converts the energy 𝑊 in a single matter decay event to O (𝑊/𝑂) particles of

energy ∼ 𝑂 . We further use the linearity of the Boltzmann equation 4.32 in 𝑠𝑐I to cross check the
validity of our numerical solution. Calculating the resulting spectra 𝑌̄𝑊 (𝐿), once directly, and once
using a linear combination of 𝑌̄I

𝑊 (𝐿), the comparison can be seen in Fig. 4.11.
Similar to what we had in Chapter 3, we conclude our multi–species study of the OoE thermalization

spectra 𝑌̄
I
𝑊 (𝐿), by exemplifying how these could be used for relevant calculations in cosmology. In

Section 4.6 we revisit the problem of the production of heavy (𝑅𝑝 * 𝑂) particles, via interactions of
the HE particles from the thermalization cascade with those of the TB, and among themselves. As seen
in equations 4.39 and 4.40, a more precise knowledge of the OoE spectra directly translates to a better
control over the resulting yield of 𝜀 particles. We conclude this thesis by a summary of our findings in
Section 4.7, where we also comment on potential next steps in the study of the thermalization process
after the injection of HE gauge–interacting particles into a background thermal plasma.
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APPENDIX A

Running of the coupling constants, and the
treatment of couplings for the SM

Throughout Chapters 2 to 4, we have assumed the existence of an unambiguous coupling constant, or
equivalently 𝑥𝑎 corresponding to the gauge group 𝑚. From QFT, however, we know the coupling
constants of the SM to be scale dependant, with the evolution given by the beta functions (see e.g.
[112]). At energy scale 𝑝, the renormalization group equations imply

𝑥
−1
𝑎 (𝑝) − 𝑥

−1
𝑎

(
𝑝0
)
= −

𝛿𝑎

4𝑙
ln

𝑝
2

𝑝
2
0

, (A.1)

with 𝑝0 denoting a reference scale, and 𝑥𝑎

(
𝑝0
)

the corresponding fine structure constant. The
coefficient 𝛿𝑎 , representing the contributing loop diagrams, can be written as

𝛿𝑎 =




41/6 𝑚 = 𝑁 (1)𝑁
− 19/6 𝑚 = 𝑀𝑁 (2)𝑀
− 7 𝑚 = 𝑀𝑁 (3)𝐿

. (A.2)

Equation A.2 involves the contribution of the full SM particles to the running of the couplings which,
as explained in Chapter 2, is relevant for our purpose of studying the unbroken “massless” SM.

Equation A.1 therefore allows relating the couplings 𝑖𝑎 , at a given scale 𝑝, to those of a reference
scale 𝑝0. For the latter, we may use the values from [1], noting that the values for 𝑥𝑞 (1)𝑄 and 𝑥𝑒𝑞 (2)𝑃
may be obtained from that of the 𝑥𝑞 (1)EM

via the Weinberg angle 𝑑𝑤 .

sin2 (
𝑑𝑤

)
! 0.231, 𝑅𝛩 = 91.2 GeV, 𝑥𝑞 (1)EM

(
𝑅𝛩

)
! 1/128, (A.3)

as

𝑥𝑒𝑞 (3)𝑅 (𝑅𝛩 ) ! 0.118, 𝑥𝑒𝑞 (2)𝑃 (𝑅𝛩 ) = sin−2
𝑑𝑤 𝑥𝑞 (1)EM

(𝑅𝛩 ) ! 0.0338, (A.4)

𝑥𝑞 (1)𝑄 (𝑅𝛩 ) = (1 − sin2
𝑑𝑤 )−1

𝑥𝑞 (1)EM
(𝑅𝛩 ) ! 0.0102. (A.5)

The question that remains to be addressed will then be that of the scale 𝑝 appropriate for our purpose
of studying the soft, hard, and splitting processes in the thermalization cascade. We saw in Chapter 2
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Appendix A Running of the coupling constants, and the treatment of couplings for the SM

(see Fig. 2.4) and Chapter 4, that 2 → 2 processes with different magnitude of momentum exchange
contribute constructively to the momentum diffusion, or the growth of the transverse momenta 𝑓⊥ of
the collinearly emitted particles. The logarithmic form of eq. A.1, however, implies that although
we formally need to treat the gauge coupling as depending on the momentum exchange scale, this
dependence can be disregarded for a simplified treatment, leading to a Coulomb logarithmic description
of the combined effect of soft to hard 2 → 2 processes (see footnote 6 on page Page 40). A more
detailed view, allowing for a scale–dependent treatment of couplings leading to equations 4.20, can be
found in Section VI of [79].

As discussed in Chapters 2 to 4, we use the thermal mass scale 𝑖𝑂 , with 𝑖 denoting the coupling
constant of the dominant gauge group 𝑚 ∈ 𝑀𝑁 (3)𝐿 × 𝑀𝑁 (2)𝑀 ×𝑁 (1)𝑁 for a particle 𝑋 ∈SM, to cutoff
the IR divergencies of the forward 2 → 2 scattering process. The latter we further use to deduce the
coherence time for the LPM suppression effect. As such, we find 𝑖𝑂 to be a reasonable choice of scale
for representing the various processes central to the study of thermalization of HE particles in the
presence of a background plasma.

As the coupling constant 𝑖 appears in the choice of the scale 𝑝 = 𝑖𝑂 , at which we wish to estimate
𝑖, I decided to use a recursive approach to the calculation of 𝑖 (𝑝 = 𝑖𝑂). Since we take the coupling
strength 𝑖 to also represent processes at energies 𝑉 * 𝑖𝑂 , I have used the temperature 𝑂 to directly
calculate a first set of couplings 𝑖𝑎 (𝑂), which are then further used for an estimation of the couplings
as

𝑥𝑎

(
𝑝 = 𝑖𝑎 · 𝑂

)
≈ 𝑥𝑎 (𝑝 = 𝑖𝑎 (𝑂) · 𝑂). (A.6)

Note that the amplitude for 𝑥𝑎 , only affects the overall scaling for the spectrum of a single species of
OoE particles, as discussed in Chapter 3; in the case of multiple species in Chapter 4, however, ratios
of different coupling strengths potentially affect the shape and development of the spectra.

I have therefore used the approximation (A.6), together with Eqs. (A.1) to (A.3) to estimate

𝑥𝑒𝑞 (3)𝑅

(
𝑖𝑒𝑞 (3)𝑅𝑂

)
≈ 0.063, 𝑥𝑒𝑞 (2)𝑃

(
𝑖𝑒𝑞 (2)𝑃𝑂

)
≈ 0.027, 𝑥𝑞 (1)𝑄

(
𝑖𝑞 (1)𝑄𝑂

)
≈ 0.001,

(A.7)
in the numerical treatment of the coupled Boltzmann equations (4.31) in Chapter 4.
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APPENDIX B

Standard Model gauge boson thermal masses

In Chapter 2 we reviewed the physics of thermal field theory, giving rise to an effective “thermal
mass” for particles traversing a thermal background plasma of temperature 𝑂 (see Section 2.4). We
established that the gauge bosons, corresponding to the gauge group 𝑚 ∈SM pick up a thermal mass
of the order of 𝑖𝑂 , where 𝑖 is the coupling strength corresponding to the gauge group 𝑚.

We further see, in Chapter 3, that a different value for the coupling constant and/or the thermal
mass, would change the overall scaling of the spectrum of OoE particles; this is however no longer the
case, once we switch to the multi–species thermalization cascade in Chapter 4. Similar to the role of
the ratios of the coupling constants alluded to in Appendix A, the ratios of the thermal masses of the
various gauge bosons could affect the hierarchy of the spectra in the case of a cascade involving several
species from the SM. Let us therefore take a closer look these ratios to evaluate the approximation
made in Chapter 4 and (4.1).

𝑅
th
𝑎 (𝑂) ≈ 𝑖𝑎𝑂 . (B.1)

As mentioned in Chapter 2, the full form of the thermal mass calculation would involve all
contributions, similar to what we had in Fig. 2.3, with particles from the thermal bath (red) running
in the thermal loop. The couplings of the gauge boson to these bosonic and fermionic particles will
therefore come with different multiplicities and group–theoretic factors. The details of the calculation
of SM gauge boson thermal masses can be found in the literature (see e.g. [50, 51]); for our purposes,
however, it will suffice to look at the form and amplitude of the thermal mass expressions. For the
unbroken phase of the SM, we will have two thermal masses corresponding to the 𝑀𝑁 (𝛴) gauge group,
with the thermal mass given by

𝑅
th
𝑎 (𝑂) = 𝑖

2
𝑂

2

3
KL
M
𝛱

𝑎
𝑡 +

∑
𝛬 ∈ Dirac fermions

𝑃
𝑎
𝛬 +

∑
𝑊∈ scalars

𝑃
𝑎
𝑊
NO
P
. (B.2)

In equation B.2, 𝛱𝑡 is the quadratic Casimir corresponding to the non–Abelian gauge boson 𝛽

of the gauge group 𝑚, introduced in (4.18); additionally, we have used 𝑃
𝑎
𝛬 /𝑊 to represent the trace

normalization coefficient for the representation 𝑘
𝑎
𝛬 /𝑊 in which the fermions and scalars transform

under the action of the gauge group 𝑚; for the fundamental representation of the 𝑀𝑁 (𝛴), the latter
reads 1/2. Finally, note that the form in (B.2) assumes a Dirac fermion, calling for the insertion of a
factor 1/2 in case chiral fermions are instead used.
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Appendix B Standard Model gauge boson thermal masses

For the case of the gluon thermal mass with 𝑚 = 𝑀𝑁 (3)𝐿 , we will have three generations of up
and down type Dirac fermions contributing to the thermal mass. For the case of the 𝑡 boson, with
𝑚 = 𝑀𝑁 (2)𝑀 , this is slightly more complicated, with 3 generations of left–chiral leptons, 3 × 3 = 9
colored chiral quarks of three generations, and a single scalar Higgs doublet. We thus have a thermal
mass of

𝑅
th
𝑟 (𝑂) = 2𝑖2

𝑂
2 (B.3)

𝑅
th
𝑤 (𝑂) =

11
6
𝑖

2
𝑂

2
, (B.4)

for the weak and strong gauge bosons traversing a thermal bath of temperature 𝑂 .
In the case of an Abelian (𝑁 (1)EM or 𝑁 (1)𝑁 ) gauge group, the thermal mass picked up by the gauge

boson can be expressed as

𝑅
th
𝑞 (1) (𝑂) =

𝑖
2
𝑂

2

3
KL
M

∑
𝛬 ∈ Dirac fermions

𝑣
2
𝛬 +

∑
𝑊∈ scalars

𝑣
2
𝑊
NO
P
, (B.5)

with 𝑣 representing the 𝑁 (1) charge. The charge assignment for the 𝑁 (1)𝑁 in the case of SM reads

𝑢𝑍 𝑢𝑀 𝑕𝑍 𝑤𝑍 𝑣𝑀 𝑒

𝑣𝑞 (1)𝑄 −1 −1/2 2/3 −1/3 1/6 1/2

This allows for a calculation of the thermal mass for the 𝑁 (1)𝑁 gauge boson as

𝑅
th
𝑧 (𝑂) = 11

6
𝑖

2
𝑂

2
. (B.6)

A comparison of equations B.3 and B.6, clearly shows that a simplifying approximation (B.1) does
not adversely affect the ratios of spectra of the species (4.24) calculated in Chapter 4; the single
overall normalization of the spectra could be affected via the difference in prefactors in Appendix B
and Eq. (B.6) of O (1), in line with other approximations we have made throughout this thesis.
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APPENDIX C

Analytic approximate solution the single–species
splitting driven spectrum

In Chapter 3, we derive the Boltzmann equation (3.23) governing the evolution of the spectrum of a
single species of non–Abelian gauge boson thermalizing via near–collinear splittings to further gauge
bosons. In an effort to come with an approximate analytical solution, and following [41], we start by
disregarding the presence of an IR cutoff in the presence of thermal bath in Section 3.3.1, focusing on
an in intermediate region of momenta 𝑊 * 𝑉 * 𝑂 . The resulting equation 3.38, then reads

∫ 𝑔/2

0

d𝑓

𝑓
3/2 𝑌̃(𝑉) −

∫ 𝑗/2

2𝑔

d𝑓

𝑉
3/2 𝑌̃(𝑓) −

∫ 𝑔

0

d𝑓

𝑓
3/2 𝑌̃(𝑉 + 𝑓) = 0. (C.1)

In eq. C.1 𝑌̃ (𝑉) defined in (3.20) represents the spectrum of OoE non–Abelian gauge bosons, and
𝑊 represents the mass of the decaying particle, and therefore defines the energy scale at which new
particles are injected into the thermalization cascade. An ansatz

𝑌̃(𝑉) ∝ 𝑉
−𝑉
, 𝑌 ∈ R+ (C.2)

was proposed to solve eq. C.1, where the exponent 𝑌 is to be determined. Plugging the ansatz (C.2) in
(C.1), and multiplying with powers of 𝑉, we get

− B1/2 (−1/2, 1)︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸
(I)

+ 1
𝑌 − 1

(
(2𝑉/𝑊)𝑉−1 − 21−𝑉

)
︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸

(II)

+ exp (𝛩 3𝑙/2) B−1 (−1/2, 1 − 𝑌)︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸
(III)

= 0, (C.3)

where 𝑠𝑈 (𝛾, 𝑤) is an (analytically continued) incomplete Beta function defined as

𝑠𝑈 (𝛾, 𝑤) =
∫ 𝑈

0
𝑃
𝛯−1(1 − 𝑃)𝑙−1

𝑤𝑃. (C.4)

115



Appendix C Analytic approximate solution the single–species splitting driven spectrum

M=1E3, ϵ=1E-3
M=1E4, ϵ=1E-4
M=1E5, ϵ=1E-5

Figure C.1: Residue of an approximate Boltzmann equation (C.5) for the single–species thermalization cascade
for choices of ansatz (C.2), using a numerical cutoff 𝜄 to manifest the cancellation of divergencies.

Figure C.2: Residue of a reformulated approximate Boltzmann equation (C.6) for the single–species thermaliza-
tion cascade for choices of ansatz (C.2), using an analytical regulation and cancellation of the divergencies.

The form in (C.1) and (C.3), imply a cancellation of the divergencies resulting from the lower bound
of the integration interval. Let us therefore, digress to replace these in (C.1) with an 𝜄 4 1

∫ 𝑔/2

𝛱

d𝑓

𝑓
3/2 𝑌̃(𝑉) −

∫ 𝑗/2

2𝑔

d𝑓

𝑉
3/2 𝑌̃(𝑓) −

∫ 𝑔

𝛱

d𝑓

𝑓
3/2 𝑌̃(𝑉 + 𝑓) = 0, (C.5)

and ask for a choice of momentum 𝑉 ≡ 10−3
𝑊 and 𝜄 = 1/𝑊 The resulting expression can then be

calculated e.g. using Mathematica. The LHS in (C.5) can then be calculated for a set of choices 𝑌 in
eq. C.2. Fig. C.1 shows depicts that for set of choices 𝑌 ∈ {1/2 . . . 9/2}. The residue can be seen to
approach a smallest value for 𝑌 → 3/2, compatible with the conclusion in [41].

Having observed Fig. C.1, cancellation of the divergencies in Eq. (C.3), can be treated more directly
by reordering and grouping and restricting our attention to the region 𝑌 > 1. Multiplying by powers
of 𝑉 as done in Section 3.3.1, and defining 𝑕 = 𝑓/𝑉, we can group terms I and III in the region
𝑓 ∈ [0, 𝑉/2] ≡ 𝑕 ∈ [0, 1/2] to rewrite (C.3) as

∫ 1
2

0

(
𝑕
−3/2(𝑕 + 1)−𝑉 − 𝑕

−3/2
)
𝑤𝑕 +

∫ 1

1
2

𝑕
−3/2(𝑕 + 1)−𝑉 𝑤𝑕 + 2(1−𝑉)

𝑌 − 1
= 0. (C.6)

In eq. C.6, the second and third terms are finite contributions so long as 𝑌 > 1. The integrals can be
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further computed, e.g. using Mathematica, to yield a compact form

− 2 2𝜂1

(
−1

2
, 𝑌;

1
2

;−1
)
+ 21−𝑉

𝑌 − 1
+ 2

√
2 = 0 (C.7)

In eq. C.7, 2𝜂1 (𝑎, 𝛿; 𝛾; 𝛹) is the hypergeometric function [113]. Fig. C.2 once again depicts the residue
of eq. C.7, and points to the ansatz (C.2) with 𝑌 = 3/2 as the best solution.
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