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Abstract—Large Language Models (LLMs) have demonstrated
remarkable capabilities but their significant computational and
memory demands hinder widespread deployment, especially
on resource-constrained devices. Quantization, the process of
reducing the numerical precision of model parameters, has
emerged as a critical technique for compressing LLMs and
accelerating inference. This paper provides an overview of
LLM quantization, with a particular focus on the Post-Training
Quantization (PTQ) methods implemented within the popular
llama.cpp framework and its GGUF file format. We begin
by covering quantization fundamentals, including the distinction
between PTQ and Quantization-Aware Training (QAT). We then
describe the specific PTQ schemes employed by llama.cpp,
including legacy methods, advanced K-quants, and recent 1Q-
quants, along with their underlying mathematical principles. The
paper also discusses the impact of these techniques on model
fidelity, hardware requirements, inference speed, and traces the
adoption of GGUF as a de facto standard in the open-source
community. This work serves as a practical guide and compre-
hensive reference for researchers aiming to deploy LLMs on
resource-constrained hardware. By systematically documenting
and comparing the PTQ methods within 11ama . cpp, we provide
the necessary insights to navigate the trade-offs between model
fidelity, inference speed, and memory footprint. This enables
informed decision-making for real-world applications, from local
CPU-based inference to efficient edge deployment.

Index Terms—Large Language Models, LLM, Quantization,
Model Compression, Post-Training Quantization, 11ama. cpp,
GGUF, K-quants, Inference Efficiency.

I. INTRODUCTION

Large Language Models (LLMs) such as LLaMA, GPT-3,
and PaLM have revolutionized natural language processing,
exhibiting impressive performance across a diverse range of
tasks [1]-[3]. However, state-of-the-art LLMs often comprise
billions of parameters, typically stored in high-precision for-
mats like FP16 or FP32. This results in substantial memory
footprints and high computational costs, posing significant
challenges for deployment on consumer-grade hardware or
edge devices [4], [S]. This limitation is particularly acute
in domains handling sensitive information, where on-device
processing is crucial for ensuring patient privacy in healthcare
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[6]], maintaining confidentiality for financial data [7], [8], and
protecting privileged legal documents [9].

Model quantization addresses these challenges by converting
model weights to lower-precision numerical formats (e.g.,
INT8 or INT4), which reduces model size, memory bandwidth
requirements, and can significantly accelerate computations
[10]. The 11ama. cpp library [11]] plays a pivotal role in this
domain, providing highly optimized Post-Training Quantiza-
tion (PTQ) implementations that have democratized access to
powerful LLMs. Its associated GGUF file format has become
a de facto standard for distributing these quantized models, as
evidenced by its rapid and widespread adoption on platforms
like Hugging Face (Figure [I).
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Fig. 1. Number of weekly uploaded GGUF models on Hugging Face. Since
its introduction in August 2023, the GGUF format has been widely adopted
and is now a de facto standard for running quantized large language models.

Despite their widespread adoption, the specific PTQ tech-
niques within 11ama . cpp are primarily documented through
source code, pull requests, and community discussions rather
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than formal academic publications. This paper bridges that
critical gap by providing the first consolidated, citable
overview of these methods from legacy schemes to advanced
K-quants and emerging 1Q-quants. Our goal is to offer an
application-focused perspective, equipping practitioners with
the knowledge to navigate the trade-offs between model
fidelity, hardware efficiency, and inference speed, thereby
enabling informed decisions for real-world LLM deployment.
Scope and roadmap. We begin by recapping quantization
fundamentals (TI)) and describing the pivotal role of the GGUF
format (III). We then provide a detailed technical breakdown
of the core PTQ methods implemented within 11lama.cpp
(V). Subsequently, we analyze the performance implications
of these strategies, offering a practical guide to their trade-offs
(V). We conclude with a discussion of open challenges and
future research directions [VII).

II. QUANTIZATION BASICS

Quantization is the process of mapping continuous or high-
precision discrete values to a smaller set of discrete values,
typically represented with fewer bits. In the context of LLMs,
this primarily involves reducing the precision of model weights
and, occasionally, activations.

A. Uniform Linear Quantization

Uniform linear quantization is a common technique where the
input range of values is divided into a fixed number of equally
spaced segments. Each segment is then mapped to a unique
integer value. Let b be the bit-width for quantization (e.g., 2, 4,
8 bits), and consider a block of N weights {wy, ..., wx}. For
each real-valued weight w;, we seek an integer representation
q;- There are two main types:

a) Type-0 (Symmetric Quantization): This approach as-
sumes that the weights are symmetrically distributed around
Zero.

1) Find the maximum absolute value in the block:
Wabs_max — Max; |wz|

2) Calculate the scale factor (or step size) A:

Wabs_max
A= ErSu— (1)
This choice  approximates a mapping from
[—Wabs_maxs Wabs_max] to the signed integer range

[—2b—1 20=1 _ 1]; note the negative bound is slightly
extended when using —2°~! with denominator (2°~!—1),
a common implementation detail.

3) Quantize each weight w; to a b-bit signed integer g;:

¢; = clamp <round (wK) D 1) )

4) Dequantize the integer ¢; back to an approximate real
value w;:
w; = q; X A 3)

In 11ama. cpp, methods like 04_0 and Q8_0 are symmetric
quantization schemes where only a scale factor d (equivalent
to A) is stored per block.

b) Type-1 (Asymmetric Quantization): If the weight dis-
tribution is not centered around zero, asymmetric quantization
can be more effective. It uses both a scale factor and a zero-
point (or offset).

1) Determine the minimum wy,;, = min; w; and maximum
Wmax = Nax; w; values in the block.
2) Calculate the scale factor A:

Wax — Wi
A — max min 4
1 “)
This maps the range [Wmin, Wmax| to the unsigned integer
range [0,2° — 1].
3) Calculate the zero-point Z, which is an integer represent-
ing the real value 0.0:

Z = clamp (round (f wmin> ,0,20 — 1) )

A
4) Quantize each weight w; to a b-bit unsigned integer ¢;:

q; = clamp (round (%) + Z,0, 2t — 1) (6)

5) Dequantize the integer q; back to w;:

Example: Asymmetric Quantization

Given parameters for a block of weights:

« Bit-width for quantization: b = 4 bits

e Minimum weight in block: wy,;, = —0.5
e Maximum weight in block: wpyax = 0.5

o Exemplary weight to quantize: w = —0.45

1. Calculate Scale Factor A (using Eq. [):
A = Wmax — Wmin _ 0.5 — (_05)

b1 T =~ 0.06667
2. Calculate Zero-Point Z (using Eq. [5):
Wi —0.5
7 = round (—“2) — round ( - =
roun A roun < 0.06667 > 8

3. Quantize the Weight w (using Eq. [6):
The quantization range for g; is [0,2° — 1] = [0, 15].

q = clamp (round (%) + Z, 0, 15)

—0.45
clamp <roun (0.06667) + 8, 0, 5)

= clamp(1, 0, 15) =1

4. Reconstruct the Weight @ (using Eq. [7):
w=(qg—2Z)A
= (1 —8) x 0.06667
= —7 x 0.06667 ~ —0.46669

The original weight w = —0.45 is approximated as
w ~ —0.46669 after 4-bit asymmetric quantization.




TABLE I
PROMINENT ACADEMIC LLM QUANTIZATION METHODS

Method Bits Type Key Idea Ref.
LLM.int8() 8 PTQ Mixed-precision decomposition; handles outliers in activations [12]
SmoothQuant 8 (W8AS8) PTQ Migrates quantization difficulty from activations to weights via channel re-scaling [13]
GPTQ 34 PTQ Layer-wise Hessian-aware optimization for weight quantization [14]
AWQ 4 PTQ Activation-aware weight scaling to protect salient weights [15]
QLoRA 4 QAT (fine-tuning)  Quantizes a 4-bit base model (using ‘bitsandbytes‘) and fine-tunes Low-Rank Adapters [16]
ZeroQuant 3-8 PTQ/QAT Layer-wise knowledge distillation and group-wise quantization [17]

In 11ama. cpp, methods like Q4_1 and Q5_1 are asymmet-
ric, storing both a scale d and a minimum value m per block.
The dequantization w; = ¢; X d + m is a common variant,
where m effectively incorporates —Z x A and any initial
minimum offset from the original weight range. The exact
tie-handling for rounding depends on the function/backend
used during conversion and kernels. Clamping ensures g; stays
within the representable b-bit range.

B. Post-Training vs. Quantization-Aware Training

Quantization techniques are broadly categorized based on
when they are applied relative to the model training process:

o Post-Training Quantization (PTQ): PTQ methods
quantize an already trained full-precision model. This
is popular due to its simplicity as it avoids retraining
and typically only requires a small calibration dataset
to determine quantization parameters (like scales and
zero-points) [10]. The llama.cpp framework, being
primarily an inference engine, exclusively employs PTQ
techniques. The tools provided with 11ama . cpp convert
pre-trained models into quantized GGUF formats.

o Quantization-Aware Training (QAT): QAT simulates
quantization effects (e.g., by inserting “fake quantization”
nodes that mimic the precision loss) during the training
or fine-tuning process [18]. This allows the model to
adapt its weights to the quantization noise, often yielding
better accuracy, especially at very low bit-widths (e.g.,
4-bit or less) [19]. However, QAT is more complex and
computationally intensive than PTQ. Challenges include
the increased training time, the need to handle non-
differentiable quantization operations (often addressed us-
ing Straight-Through Estimators or STEs), and potential
training instability [20]. Frameworks like PyTorch (with
‘torch.ao.quantization® [19]) and TensorFlow (via its
Model Optimization Toolkit [21]]) provide QAT support.
Libraries like ‘bitsandbytes® [12] are crucial for QAT-
like approaches such as QLoRA [16], where a pre-trained
model is quantized (e.g., to 4-bit NF4) and then LoRA
adapters are trained on top, making the adapter training
“aware” of the quantized base model. Active research
continues to make QAT more efficient and effective for
LLMs [20], [22].

It is noteworthy that some popular techniques like QLoRA [[16]]
represent a hybrid approach. While the base model is quantized
using a PTQ-like method, the subsequent fine-tuning of LoRA

adapters is "aware’ of this quantization, allowing the model to
recover performance. This highlights how PTQ methods, such
as those in llama.cpp, can serve as a foundation for more
complex training schemes.

This survey focuses on the PTQ methods as implemented and
utilized within 11lama . cpp.

C. Prominent Academic LLM Quantization Methods

While 11lama.cpp has its unique set of PTQ schemes, it’s
useful to understand them in the context of broader academic
research. Table [l summarizes some influential methods from
the literature, covering both PTQ and QAT.

These academic methods provide a rich backdrop against
which the specific PTQ techniques developed and adopted
by the 1lama.cpp community can be understood and ap-
preciated. Many 11lama . cpp techniques, while practical and
effective, aim for simplicity, broad CPU/GPU compatibility,
and ease of use for inference.

III. amMa.cpp AND THE GGUF FILE FORMAT

llama.cpp is a C/C++ library for LLM inference, initially
created by Georgi Gerganov in 2023 to run Facebook’s
LLaMA model on commodity hardware [1f], [11]]. It has since
significantly expanded its capabilities and now supports a
wide array of model architectures beyond LLaMA, including
popular models such as Mistral [23]], Qwen [24], Gemma
[25]], Phi [26], and even non-Transformer architectures like
Mamba [27]. A core strength of 1lama.cpp lies in its
efficient implementation of various Post-Training Quantization
(PTQ) schemes. These schemes enable diverse models to
run on standard CPUs and various GPU backends (among
others: CUDA, HIP/ROCm, Metal, Vulkan, SYCL, MUSA) by
significantly reducing memory footprint and often accelerating
computation through optimized kernels that perform on-the-fly
dequantization of model weights during inference [11]], [28].
The GGUF (GGML Universal File) was introduced in August
2023 by the 11ama . cpp developers as a successor to the ear-
lier GGML format [29]]. GGUF is a binary format meticulously
designed to store LLMs, including their quantized weights
and all necessary metadata, in a single, portable file. Figure [2]
illustrates the general structure of a GGUF file.

Its key features, which directly support 1llama.cpp’s
efficient inference capabilities, include [11]:

« Unified Storage: Contains model metadata (architecture,
tokenizer information, special tokens, prompt templates),



4 bytes 4bytes 8bytes 8bytes
| | | |
I

[ —

,
.

_______ N

GGUF-version

Fommmmmmccmmmcmmmmm—em

.

= e o

G G u F
+ tensor_count = /I example metadat
+ number of tensors [
H ' general.architecture:
' UINT64 general.name:

general.file_type:
metadata_kv_count = number of
metadata key-value pairs

'<unk>", '<S>',

UINT64

“metadata with metadata_kv_count key-value pairs

llama.context_length:

tokenizer.ggml.model:
tokenizer.ggml.tokens:

'<0x03>', '<0x04>', '<0x05>', '<0x06>", '<0x07>', '<0x08>',

rest of the file
|

v

tensors info with tensor_count values
/I n-th tensor

name: GGUF string, // ex: blk.o.ffn_gate.weight
n-dimensions: UINT64[ ], /I ex: 2

type: UINT32, /I ex: [4096, 32000 ]

offset: UINT64 /Il ex: 43024384 «—— — 1+

/I (n+1)-th tensor

a

'llama’,
'LLaMA v2',
4096

10,
'lama’,

[

'</s>',  '<0x00>', '<0x01>', '<0x02>',

Fig. 2. Overall layout of a GGUF model file (version 3) adapted from Mishig Davaadorj [30]. From left to right the file contains: (a) a 24 byte fixed-size header
that stores the ASCII magic word “GGUF”, the format version, and the counts of tensors and metadata entries; (b) a variable-length block of hierarchical
metadata key—value pairs, which also defines the global byte-alignment value general.alignment; (¢) an array of tensor descriptors holding each tensor’s
name, rank, dimensions, data type, and the byte offset of its payload; and (d) the contiguous, alignment-padded tensor-data section containing the quantised
or floating-point weight matrices. All multi-byte fields are little-endian by default. Every region begins at an offset that is a multiple of the global alignment,

enabling zero-copy mmap loading.

tensor data (weights), and all quantization parameters
(e.g., scales, offsets, lookup tables for K-quants) in one
file. This self-contained nature simplifies distribution and
loading.

Extensibility: Allows for the addition of new meta-
data fields and tensor types without breaking backward
compatibility. This is crucial for rapidly evolving model
architectures and the continuous development of novel
quantization methods within 11ama. cpp.
Quantization Support: Natively designed to store
the diverse range of PTQ methods developed within
llama.cpp, from legacy block-wise schemes to ad-
vanced K-quants and IQ-quants. The format directly
embeds the parameters required for on-the-fly dequan-
tization.

Efficiency: Optimized for fast loading through sequential
data layout and memory mapping (often via ‘mmap°).
The defined alignment (see Figure [2) facilitates direct
memory access to tensor data, allowing llama.cpp

to efficiently stream and process quantized weights with

minimal overhead, keeping the bulk of the model in its

compressed state in memory.
Supported by its robust design and tight integration with
llama.cpp’s optimized execution engine, GGUF has rapidly
become the dominant format for sharing and running quantized
LLMs, particularly on Hugging Face and other platforms.
This widespread adoption facilitates community efforts in
model distribution and enables local execution of increasingly
powerful LLMs on a broad spectrum of hardware.

IV. QUANTIZATION METHODS IN LLAMA .CPP

The quantization methods implemented in 1lama.cpp are
exclusively Post-Training Quantization (PTQ) techniques pri-
marily focused on weight-only quantization. These methods
operate by dividing the model’s weight tensors into smaller,
contiguous blocks of weights. Each block is then quantized
independently using its own set of quantization parameters,
such as a scale factor and an offset (or minimum value),



as detailed in Section This block-wise approach allows
the quantization to adapt to the local distribution of weights,
improving accuracy compared to per-tensor quantization.

A key aspect of llama.cpp’s efficiency with quantized
models lies in its inference execution strategy. Instead of
fully dequantizing entire weight tensors back to high precision
(e.g., FP32) before computation, 11ama . cpp employs highly
optimized compute kernels that perform dequantization on-the-
fly [[11]. During operations like matrix-vector multiplication,
these kernels read the compact, quantized weight blocks (e.g.,
Q4_K_M, 06_K) from memory. The necessary dequantiza-
tion calculations—reconstructing floating-point values from
the stored low-bit integers and their associated scales and
metadata—are executed for small segments of data, often just
in time for their use in the arithmetic units of the CPU or GPU
[28], [31]]. This approach significantly reduces memory band-
width requirements and allows the bulk of the model weights
to remain in their compressed form in memory, which is
crucial for achieving fast inference speeds and accommodating
large models on resource-constrained hardware. The specifics
of these on-the-fly dequantization steps are embedded within
the specialized routines for each quantization type within the
‘ggml* library underpinning 1lama . cpp.

A. Legacy Quantization Schemes

These earlier PTQ methods in 1lama.cpp generally use a
block size of N = 32 weights. The quantization parameters
(scale factor A and optional minimum value m) are stored in
FP16 format. They follow the principles of symmetric (Type-0)
or asymmetric (Type-1) quantization outlined previously, with
1llama.cpp often using a specific variant for the asymmetric
dequantization.
e Q4_0: This is a 4-bit symmetric PTQ method. For each
block of 32 weights, a single FP16 scale factor A (as in
Eq. [1) is stored. The weights w; are quantized to ¢; €
[—8, 7]. Dequantization is performed as w; = ¢; X A. The
effective bits per weight (bpw) is calculated as:
32 weights x 4 bits/weight + 16 bits
32 weights
e Q4_1: This 4-bit asymmetric PTQ method extends 04_0
by adding an FP16 minimum value m per block of 32
weights, along with the scale factor A. Quantized weights
q; are unsigned 4-bit integers [0, 15]. Dequantization
follows w; = ¢q; X A + m, where m is the stored
effective minimum of the dequantized range for the block.
This scheme generally offers better precision for weight
distributions not centered at zero. The effective bpw is
32 weights x 4 bits/weight + 2 x 16 bits
32 weights
e 08_0: An 8-bit symmetric PTQ method. Each block of
32 weights stores one FP16 scale factor A. Weights ¢; €
[—128,127]. Dequantization is w; = g; X A. The effective
bpw is
32 weights x 8 bits/weight + 16 bits
32 weights

= 4.5 bpw.

= 5.0 bpw.

= 8.5 bpw.

o Other legacy types like Q5_0 (5-bit, scale A only) and
Q5_1 (5-bit, scale A and minimum m) follow similar
PTQ principles. For 05_1, effective bpw is

32 weights x 5 bits/weight + 2 x 16 bits
32 weights

= 6.0 bpw.

B. K-Quants

Introduced in 11lama. cpp (see [32]), K-quants are advanced
PTQ methods that significantly improved the trade-off be-
tween model compression and performance degradation. A
key innovation of K-quants is the use of larger “’super-blocks”
(typically Nx = 256 weights, a constant defined in ‘ggml-
common.h‘) and the quantization of the parameters for smaller
sub-blocks within them. This hierarchical structure reduces
the overhead of storing quantization parameters compared to
storing FP16 parameters for many small blocks, leading to
lower effective bits per weight (bpw).

A K-quant super-block contains Nx = 256 weights, which
are divided into N,,; smaller sub-blocks. For example, the
Q4_K_M (a Q4_K variant, often "medium”) and Q5_K_M
types divide the 256 weights into Ng,;, = 8 sub-blocks of
32 weights each, while 06_K uses N,,;, = 16 sub-blocks of
16 weights. Each super-block stores the following:

o An FP16 super-block scale factor, Ag,.

o For asymmetric K-quant types like Q4_K M and
Q5_K_M, an FP16 super-block minimum/offset, mgp.
Symmetric types like Q6_K omit mg, and only use Ag,
for dequantizing sub-block parameters.

« For each sub-block j € [1, Ngy3):

— A k;-bit quantized parameter, ga ;, used to derive
the sub-block’s own scale factor. For Q4_K M and
Q5_K_M, ks = 6; for Q6_XK, ks = 8 (these are packed
differently across the K-quant types).

- A ky,-bit quantized parameter, g, j, used to derive
the sub-block’s own minimum/offset. For Q4 _K_M and
Q5_K M, k,, = 6; for Q6_K, k,, = 0 (as it is
symmetric at the sub-block level). These ks and k,,
bit values for the Ng,;, sub-blocks are packed together
(e.g., into 12 bytes for Q4_K_M types).

o The Nx weights themselves, with each weight w; quan-
tized to b,, bits, denoted ¢, ; (e.g., b, = 4 for Q4_K
types, b, = 5 for Q5_K types, b,, = 6 for 06_K).

The dequantization of a b,,-bit weight g, ; (located in sub-
block j) is a two-stage process [28]. First, the effective
floating-point quantization parameters for sub-block j, i.e. its
scale factor S; and minimum/offset M;, are reconstructed.
These are derived from the stored quantized sub-block pa-
rameters (ga ; and g, ;) using the super-block’s parameters
(Ag and, if present, mgp). The specific functions, S; =
fs(an,j, Asp,msy) and My = far(gm,j, Asp, mgp), vary per
K-quant type and involve bitwise operations and scaling, often
utilizing lookup mechanisms. Second, once S; (the effective
scale for sub-block j) and M; (the effective minimum/offset
for sub-block j) are obtained, the weight g, ; is dequantized:

W; = qu,i X Sj + Mj ®



Here, M ]’ is the final effective offset applied to the weights in
sub-block j. For asymmetric types like Q4_K_Mand Q5_K_M,
M ]’ is typically the reconstructed sub-block minimum A/; (and
Guw,i 1s treated as unsigned). For symmetric K-quant types like
Q06_K, M 7’ is zero, and ¢, is treated as a signed integer
offset from zero. This hierarchical approach yields a compact
representation, as illustrated by the examples below.

Example: K-Quant Super-block Memory
Footprint and BPW Calculations

For a K-quant super-block of Nx = 256 weights:

1. Q4_K M (4-bit weights, asymmetric):

e Ny, = 8 sub-blocks. Weights: b,, = 4 bits.

o Sub-block metadata: k; = 6 bits for ga ;, kp, = 6
bits for g, ; per sub-block.

o Super-block parameters: Ay, (FP16), mg, (FP16).

Bits = (256 x 4) + (8 x (6 +6))+ (2 x 16)
—— N——— N—_——

weights sub-block meta super-block params
=1024 + 96 + 32
= 1152 bits
1152 bit
bpw el 4.50

~ 256 weights

2. Q6_K (6-bit weights, symmetric):

o Ngy, = 16 sub-blocks. Weights: b,, = 6 bits.

o Sub-block metadata: k, = 8 bits for ga ; per sub-
block (total 128 bits for all sub-block scales, packed
efficiently). k,,, = 0.

o Super-block parameters: Ay, (FP16 only). mg, is

omitted.
Bits = (256 x 6) + (16 x8) + (1 x 16)
———
weights sub-block scales  super-block scale
=1536 + 128 + 16
= 1680 bits
1680 bit:
bpw ™ 6.5625

~ 256 weights

This demonstrates how the overhead of quantization
parameters is amortized over the 256 weights in the
super-block. The specific packing of sub-block meta-
data varies between K-quant types.

Table [II] lists some common K-quant configurations. ”Sub-
BIk” indicates the number of sub-blocks and weights per sub-
block. b, is bits for weights g, ; and kg, k,, are bits for
parameters ga j, qm,;-

a) Rationale for K-Quants.: Usually, high-magnitude
weights are often sparse. Thus, giving each smaller region
(sub-block) its own refined quantization parameter helps retain
local shape information effectively. Quantizing the metadata
itself keeps the overall bit-per-weight overhead low, especially
compared to storing FP16 scales/mins for many small blocks.

TABLE II
REPRESENTATIVE K-QUANT CONFIGURATIONS (SUPER-BLOCK OF 256

WEIGHTS)

Format bw  ks/kn,  SubBlk bpw

Q2_K 2 4/4 16x16 2.5625

Q3_K 3 6/— 16x16  3.4375

Q4_K_M 4 6/6 8x32 4.50

Q5_K_M 5 6/6 8x32 5.50

Q6_K 6 8/— 16x16  6.5625

For the full list of tensor encoding schemes and
bpw, see the 11ama.cpp wiki [33]

b) Limitations.: The super-block size (e.g., 256) is a
trade-off: too small and metadata overhead increases; too large
and the quantization parameters may not adapt well to local
weight distributions. The integer metadata for sub-blocks must
be unpacked to derive actual scales/mins during inference,
which can introduce a slight runtime overhead compared with
legacy formats.

C. IQ-Quants (Importance Quantization)

Introduced in early 2024, 1Q-Quants are a family of post-
training quantization (PTQ) methods in 11ama . cpp designed
for very low bit-rates (roughly 1.5-3.5bpw). The initial re-
leases included 2-bit variants (IQ2_XXS at 2.0625bpw and
I02_XS at 2.31bpw), followed by IQ1_S (1.5bpw) and
I03_5 (3.4375bpw). Compared to K-Quants, IQ-Quants use
a data-driven importance signal during conversion to allocate
precision where it matters most, together with compact code-
books for magnitude/sign encoding [34]-[37].

a) The Importance Matrix: 1Q uses an importance ma-
trix (“iMatrix”) computed once on a small calibration set.
For each layer, imatrix stores per-input-channel second-
moment statistics (e.g., (a?)) used to weight quantization
error over tokens, yielding a vector of length equal to the
input/hidden dimension. This diagonal approximates second-
order curvature of a per-row quantization objective and serves
as weights during quantization. [38] This is conceptually
similar to GPTQ, which uses (aa ") (including off-diagonals).
(14]

b) Quantization and Dequantization Mechanism: During
quantization, the importance vector weights the error metric
and informs sign-parity choices and E8-lattice codebook selec-
tion within each block. The resulting GGUF stores the chosen
codebook indices and per-block scales; the iMatrix itself is not
embedded in the model. At inference, dequantization performs
codebook lookups plus per-block scaling. The performance
is backend-dependent (e.g., IQ3_S matches Q3_K on CUD-
A/AVX2 but is slower on ARM NEON due to lookups). [34],
1371, (38]

c) 1Q-Quant Types and Characteristics: Representative
IQ types and their bits per weights (bpw):

1Q1_S: Effective bpw = 1.5. The most aggressive
widely used IQ type.

IQ2_XXS: Effective bpw = 2.0625. A true 2-bit vari-
ant with strong compression.



IQ2_XS: Effective bpw = 2.31. Higher quality than
I0Q2_XXS with modest size increase.

Effective bpw = 3.4375. Significantly out-
performs Q3_K; approaches Q4_K on some

models.

1Q3_S:

Conversion is slower and needs a small calibration dataset to
compute the iMatrix, but quality-per-bit is excellent, especially
below 4 bpw. [34], [37], [38]

V. PERFORMANCE IMPLICATIONS OF LLAMA .CPP
QUANTIZATION

The PTQ methods in 11lama.cpp primarily aim to improve
model efficiency, which involves trade-offs with model fidelity.
Table [ITI] shows exemplary data for LLaMA-2 models.

A. Model Fidelity

Quantization inevitably introduces information loss, which
can manifest as degraded performance on evaluation bench-
marks. A common intrinsic metric for this is perplexity,
which measures a model’s uncertainty in predicting the next
token. However, while perplexity is a useful indicator of raw
language modeling capability, its correlation with performance
on downstream tasks is often weak, particularly for complex
reasoning or instruction-following scenarios [41], [42]]. The
perplexity values in Table therefore, should be interpreted
as a measure of linguistic information loss rather than a
definitive predictor of final application performance.

A more robust evaluation involves measuring performance on
a suite of downstream benchmarks. The community around
1llama.cpp heavily relies on standardized academic bench-
marks such as MMLU for general knowledge [43], HellaSwag
for commonsense reasoning [44], and Truthful QA for fac-
tuality [45], often run using standardized frameworks like
the EleutherAl Language Model Evaluation Harness [42].
The consensus from extensive community testing, as well
as academic studies on 4-bit quantization like QLoRA [16]],
confirms several key trends:

TABLE III
EXEMPLARY LLAMA-2 QUANTIZATIONS IN LLAMA . CPP

Model Quant BPW  Size (GB) APPL Ref.
LLaMA-2 7B FP16 16.0 13.0 0.000 1391
08_0 8.50 6.70 +0.0004 [40]
Q6_K 6.56 5.15 +0.0044 131]
Q5_K_M 5.50 4.45 +0.0142 [31]
Q4_K_M 4.50 3.80 +0.0535 [131]
LLaMA-2 13B  FP16 16.0 25.0 0.000 139]
08_0 8.50 13.0 +0.0005 [40]
05_1 6.00 9.1 +0.0163 [40]
Q5_0 5.50 8.3 +0.0313 [40]
04_1 5.00 7.6 +0.1065 [40]
Q4_0 4.50 6.8 +0.1317 [40]

Overview of PTQ methods based on LLaMA-2 models. The deltas are
computed against the full-precision FP16 perplexity on WikiText-2 with a 512-
token context window. BPW: effective bits per weight, including scale/min
overhead. Size: checkpoint size on disk after quantization (GGUF). A PPL:
increase over FP16 perplexity (lower is better).

o 8-bit PTQ (e.g., 08_0) results in minimal degrada-
tion and is often considered near-lossless, retaining over
99.5% of the FP16 model’s score on benchmarks like
MMLU.

« High-quality 4-bit and 5-bit K-quants (e.g., Q4_K_M,
Q5_K_M) represent a “sweet spot,” frequently retaining
over 98% of the FP16 model’s capability on these bench-
marks while offering substantial resource savings [16].
This has made them a de facto standard for practical,
high-performance deployment.

« Extreme low-bit quantizations (2-bit and 3-bit K-quants
and IQ-quants) show more pronounced degradation but
have become viable for scenarios where memory is
the primary constraint. Newer methods like IQ-quants
are specifically designed to outperform older methods
at the same low bit rate, as discussed in their initial
implementation proposals [34].

« Stronger degradation in small models, whereas larger
models (e.g., 13B parameters and above) have proven to
be more robust to aggressive quantization, a phenomenon
also observed in academic works like ZeroQuant [[17]].

B. Hardware Efficiency and Inference Speed

The primary motivations for PTQ in 11ama . cpp are reduced
resource usage and faster inference.
« Model Size and Memory: This is the most direct benefit.
A 16 bpw FP16 model is roughly halved in size by 8-
bit quantization (e.g., Q8_0 at 8.5 bpw) and quartered
by 4-bit quantization (e.g., Q4_K_M at 4.5 bpw). This
reduction is crucial for fitting large models into consumer-
grade VRAM (e.g., 8GB to 24GB) or running them on
CPUs with sufficient system RAM.
« Inference Speed: Speedups arise from several interre-
lated factors:

— Alleviating the Memory Bandwidth Bottleneck:
LLM inference, particularly for large batch sizes
or long sequences, is often bound by memory
bandwidth—the speed at which model weights can be
moved from VRAM or system RAM to the processor’s
on-chip compute units [41]], [46]. By significantly
reducing the size of the weights, quantization allows
for more data to be transferred in the same amount of
time, directly increasing the rate of token generation.

— Optimized Compute Kernels: The speed improve-
ments are not merely from data transfer. 11ama . cpp
employs highly-optimized compute kernels where the
dequantization from a low-bit integer to a floating-point
value occurs on-the-fly, just-in-time for the matrix mul-
tiplication operation. This “dequantize-and-compute
fusion” is implemented in the core ‘ggml‘ library and
ensures that only a small block of weights needs to be
in a high-precision format in the processor’s registers
at any given moment [l11]. The specific routines for
each quantization type, which fuse these steps, can be
found in the project’s source code, for example in the
implementation of the K-quants [31].



TABLE IV
PRACTICAL GUIDE TO LLAMA .CcPP QUANTIZATION METHODS

Quant Type Typical BPW  Relative Quality Inference Speed Primary Use Case

FP16 / BF16 16.0 Baseline 1.0x (Baseline) Research, fine-tuning, or when VRAM is not a constraint. Performance is
often limited by memory bandwidth on consumer hardware.

08_0 8.50 Close to FP16 1.0x — 1.5x Best for high-quality results where VRAM allows. Often indistinguishable
from FP16 in practice and serves as a robust, high-fidelity baseline.

Q5_K_M/Q6_K 5.50 - 6.56 Very High 1.4x — 2.4x The ”go-to” choice for balancing high quality and excellent performance.
Q6_K offers top-tier fidelity, while Q5_K_M is a good all-rounder.

Q4_K M 4.50 High 2.0x — 3.5x The most popular choice for general use on consumer GPUs. Offers an
optimal blend of speed, reduced memory usage, and high quality, making
large models accessible.

Q3_K/Q2_K 2.56 — 3.44 Moderate 2.5x — 4.0x Use when memory is extremely constrained (e.g., running larger models
on CPUs or low-VRAM GPUs). Expect noticeable quality degradation.

1Q-Quants 2.06 — 3.63 Moderate 2.5x — 4.0x Pushing the limits of compression for the most resource-scarce environ-

(IQ3_S/IQ2_XS) ments. Best for scenarios where model size is the absolute priority; can
outperform K-quants at the same low bit rate.

— KV  Cache Quantization: Beyond weights, VI. DISCUSSION AND FUTURE DIRECTIONS

llama.cpp supports quantizing the KV cache,
which stores the key/value attention states for
previously generated tokens. As context length
grows, this cache can consume gigabytes of memory,
becoming a secondary memory bandwidth bottleneck.
Quantizing the KV cache to formats like INT8 not
only reduces its memory footprint, allowing for much
longer contexts on the same hardware, but can also
improve generation speed by reducing the I/O pressure
during auto-regressive decoding, supported in mainline
llama.cpp (since PR #7412), with maintainer tests
showing negligible perplexity change at 8-bit cache
[47].
Overall, the combination of smaller weight files, reduced
memory bandwidth pressure, and optimized on-the-fly de-
quantization kernels allows quantized models in 11ama.cpp
to achieve significant inference speedups over their FP16
counterparts.

C. Practical implications

To translate these performance characteristics into action-
able guidance, Table provides a practical decision-making
framework. This table offers a synthesized view of the trade-
offs between model size, fidelity, and inference speed for the
primary quantization families in 11lama . cpp.

The Relative Speed column reports the estimated speedup vs.
an FP16 baseline on the same hardware. Unless noted other-
wise, these figures primarily reflect the decode phase (token-
by-token generation) in memory-bandwidth-bound scenarios
common on consumer GPUs and large-model CPU runs.
During the prefill phase (prompt ingestion with large matrix
multiplies), workloads are more compute-bound and quantized
backends incur dequantization overhead; as a result, speedups
are typically smaller and can even reverse (FP16/BF16 match-
ing or outperforming some quantizations at medium-large
batch sizes). Generally, real-world performance varies with
hardware (CPU vs. GPU, VRAM/RAM bandwidth), backend,
model architecture, batch size, and context length.

The Post-Training Quantization (PTQ) methods in
llama.cpp have made significant strides in making
LLMs accessible. However, several challenges and promising
research avenues remain to push the boundaries of efficient
LLM deployment:

o Pushing Compression Limits in PTQ: While 2-bit
and 3-bit methods show promise, maintaining fidelity at
these extreme levels remains a key challenge for pure
PTQ. Future work could involve quantizing activations in
addition to weights, a difficult but potentially rewarding
task. Integrating academic approaches like SmoothQuant
[13]] or developing practical 1-bit PTQ schemes [48| are
important research directions.

« Rigor in Evaluation and Method Design: Progress in
quantization requires moving beyond perplexity, which
often fails to capture degradation on downstream tasks
[49]. The development of comprehensive, standardized
benchmarks is crucial. Similarly, a deeper theoretical
understanding of why empirically-driven methods like K-
quants or IQ-quants succeed would enable the design of
more robust and predictable schemes.

« Hardware Co-Design and Kernel Optimization: Fur-
ther performance gains can be unlocked by minimizing
the runtime overhead of complex PTQ schemes through
better kernel fusion. Tighter co-design with hardware,
such as fully exploiting specialized instructions for low-
bit arithmetic, remains a key avenue for improving infer-
ence speed.

o Hybrid PTQ-QAT Approaches: Combining the sim-
plicity of PTQ with the power of Quantization-Aware
Training (QAT) is a highly promising direction. For
instance, using an aggressively quantized GGUF model
as a base for a brief period of lightweight fine-tuning
(e.g., with LoRA) could recover significant performance
with minimal training cost, representing a “best-of-both-
worlds” approach for practitioners.

Addressing these challenges will be key to enabling even more
powerful models to run on increasingly resource-constrained



devices, whether through advanced PTQ or more accessible
hybrid techniques.

VII. CONCLUSION

Quantization is an indispensable technology for making Large
Language Models practical and accessible for a wide range
of data science and Al applications. The 11ama . cpp frame-
work, along with its GGUF file format, has been instrumental
in this endeavor by providing a suite of effective Post-Training
Quantization (PTQ) methods for a growing number of model
architectures. This paper has offered a structured overview of
these techniques, starting from fundamental quantization prin-
ciples (differentiating PTQ and QAT) and prominent academic
approaches, then delving into the specifics of 11lama.cpp’s
legacy PTQ schemes, the advanced K-quants, and the emerg-
ing 1Q-quants. We have detailed their underlying concepts,
mathematical basis where available, how 1lama.cpp exe-
cutes computations with them, and their impact on model size,
inference speed, and fidelity.

The rapid evolution and widespread adoption of GGUF and
its associated PTQ types underscore the open-source commu-
nity’s drive for efficient LLM deployment. By significantly
reducing model size and accelerating inference primarily
through post-training approaches, these methods empower
users to run powerful LLMs on consumer-grade hardware,
fostering innovation and broader access. While, as discussed,
challenges remain in areas like extreme low-bit PTQ, activa-
tion quantization within PTQ frameworks, and standardized
evaluation, the ongoing work within the 11ama . cpp project
and the wider research community continues to push the
boundaries of what is achievable. This survey aims to serve as
a citable academic reference to acknowledge these impactful,
community-driven advancements in LLM quantization.
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