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Summary

This thesis has as overall aim the development of a comprehensive mathematical theory for the
radiative transfer equation. This is the kinetic equation describing the interaction of matter
with electromagnetic waves. In particular, this thesis collects several results about different
problems which study the behavior of the temperature distribution in a body where the heat
is transferred by radiation and sometimes also by conduction. This work is a cumulative thesis
which collects five articles produced by the author together with other collaborators and it is
structured as follows.

Chapter 1 gives a detailed introduction of the radiative transfer equation. In particular, in
the first part of this chapter the phenomenological derivation of this kinetic equation as well as
the radiative heat transfer model are presented. Moreover, important features of the radiative
transfer equation and the main mathematical strategies used in this thesis are introduced.
Furthermore, an exhaustive summary of the studied problems and of the obtained results
can be found here. Finally, the available mathematical literature concerning the problems
considered in this thesis is summarized at the end of Chapter 1.

Chapter 2 is a summary of the article “Compactness and existence theory for a general class
of stationary radiative transfer equations” [35], which can be found in Appendix A. It deals
with the existence theory of the stationary radiative transfer equation when the absorption
and the scattering coefficients depend non-trivially on the temperature. Furthermore, a new
compactness result for operators containing exponentials of integrals along straight lines is
developed.

In Chapter 3 the results of the article “Equilibrium and Non-Equilibrium diffusion ap-
proximation for the radiative transfer equation” [36], which can be found in Appendix B, are
summarized. In this article the diffusion approximation of the radiative transfer equation is
studied via matched asymptotic expansion. This problem arises when the mean free path of
the photon is very small compared to the characteristic size of the domain. In particular,
several reciprocal scalings between the absorption mean free path and the scattering mean
free path are considered. Moreover, the concepts of equilibrium and non-equilibrium diffu-
sion approximations are introduced and the condition of validity of these approximations are
derived.

Chapter 4 studies rigorously the diffusion approximation of the stationary radiative trans-
fer equation in the absence of scattering. This chapter summarizes the results of the published
article “On the diffusion approximation of the stationary radiative transfer equation with ab-
sorption and emission” [37], which can be read in Appendix C. Specifically, using mainly
maximum principle tools it is proved that, as the mean free path of the photons tends to zero,
the radiation intensity converges to the Planck distribution of the temperature, which solves
an elliptic Dirichlet problem.

In Chapter 5 a free boundary problem for the melting of ice is considered. Specifically,
the well-posedness theory of a one-dimensional two-phases Stefan problem is developed. This
problem models the phase transition between liquid and solid in the case in which the heat
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is transferred by conduction in both phases and also by radiation in the solid phase of the
material. This chapter is a summary of the article “Well-posedness for a two-phase Stefan
problem with radiation” [39], whose latest version is in Appendix D.

Chapter 6 continues the study of the free boundary problem introduced in Chapter 5 and
it summarizes the results achieved in the article “Traveling waves for a Stefan problem with
radiation”, which can be found in Appendix E. Specifically, the existence of traveling wave
solutions for this problem is obtained and the expected long-time asymptotic is derived.

Finally, Chapter 7 summarizes the main achievements obtained in this thesis and presents
various open problems which give a possible future research direction in the study of the
radiative transfer equation.

Appendices A to E include the articles upon which this thesis is based.
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Chapter 1

Introduction

The interaction of electromagnetic waves, i.e. radiation, with matter is a fascinating problem
which has been considered for long time both in mathematical and physical applications. It
is indeed a phenomenon with vital consequences for everyday life. It is thanks to the in-
teraction of sunlight with the atmosphere, for example, that the sky is blue and that the
terrestrial temperature allows life on the planet. Also plant photosynthesis is made possible
by the incoming radiation from the Sun. These are just few important examples of how elec-
tromagnetic radiation surrounds our world. Over the years many technological applications
based on the radiative theory have been developed. For instance the results on the study of
matter-photons interaction are used for the investigation of the ocean surfaces composition
through remote sensing applied to oceanography, for non-invasive imaging in biomedical tech-
niques, for the study of planets and galaxies in astrophysics, and for the correct design of steel
furnaces in industrial and engineering applications. Mathematically, the interaction of matter
with radiation can be described by a kinetic equation called radiative transfer equation.

This thesis studies several mathematical problems involving the radiative transfer equa-
tion and it provides solutions to those issues. In particular, in this work we present new
results concerning the well-posedness theory for the stationary radiative transfer equation, its
diffusion approximation, as well as a free boundary problem modeling the melting of ice in
a situation where heat is transported also by radiation. Before describing with more details
the problems under consideration, we give an introduction to the model, the derivation of the
radiative transfer equation and its physical justification.

1.1 The radiative transfer equation

The radiative transfer equation is the kinetic equation which describes the behavior of photons
interacting with matter. An extensive explanation of its derivation and of its form can be
found in Chapter 6 of [108], Chapter 3 of [114] and Chapter 2 of [152], upon which this section
is based. According to quantum mechanics, radiation is composed by photons. These have
energy hν, where ν > 0 is the frequency of the electromagnetic wave and h = 6.62607015 ×
10−34 J · s is the Planck constant. It is well-known that photons have a double nature. They
can behave as (electromagnetic) waves or as (massless) particles. In this work we will always
consider photons to be like particles. In particular, effects like diffraction and interference are
ignored. Despite being massless, photons moving with speed of light c = 2.997× 108 m · s−1

in direction n ∈ S2 have a momentum hν
c n. We will assume throughout this thesis that the

photons have constant speed c. From a kinetic point of view one can describe the radiation
by the distribution function f(ν, t, x, n) of photons with frequency ν > 0 at position x ∈ R3

traveling at time t > 0 in direction n ∈ S2. Since photons move with speed c and have

1
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energy hν, the spectral radiation intensity, also known as specific radiation intensity, i.e. the
radiative energy passing per unit of time through a unit surface perpendicular to the direction
of motion n of photons with frequency ν > 0, is given by

Iν(t, x, n) = hνcf(ν, t, x, n).

Hence, both f and Iν can be used in order to express the radiation field, which is determined
by the radiative energy transported by photons as a function of time, frequency, position
and direction. However, it is common in the mathematical literature to study the behavior
of radiation through its spectral radiation intensity Iν , which will be simply called radiation
intensity throughout this thesis.

When radiation passes through matter, it interacts with it and it changes. Using the
terminology of kinetic theory, photons colliding with matter can be lost due to their absorption
or scattering by atoms, molecules or electrons. On the the other hand, there can be a gain of
photons as a consequence of emission of radiation due to de-excitation of electrons as well as
of scattering. The radiative transfer equation takes hence the form of the following transport
equation

1

c
∂tIν(t, x, n) + n · ∇xIν(t, x, n) = (δIν)+ − (δIν)− , (1.1)

where (δIν)+ and (δIν)− are denoted as the gain and the loss terms, respectively. The struc-
ture of (1.1) is very common for kinetic equations. The gain term describes the increase of
radiative energy resulting by emission and scattering of photons, the loss term expresses its
reduction caused by absorption and scattering. As in [108,114,152] we assume that the atten-
uation of radiation is proportional to the radiation intensity with proportionality coefficient
κν . Thus, equation (1.1) can be written as

1

c
∂tIν(t, x, n) + n · ∇xIν(t, x, n) = βν − κνIν(t, x, n), (1.2)

where κν = κaν + κsν is the sum of the absorption and scattering coefficients and βν = eν + sν
is the total emission parameter. The so-called emission parameter eν describes the creation
of photons by de-excitation of electrons, while sν gives the amount of radiation of a given
frequency ν and direction n ∈ S2 gained through scattering. In the following section we will
give the physical justification for the form that the emission parameter takes as well as for
the absorption and scattering coefficients.

Under the assumption of local thermal equilibrium, i.e. assuming that on every point of the
material there is a well-defined temperature, or specifically, assuming that the fluid interacting
with radiation is described by the Boltzmann, Maxwell or Saha distribution (cf. [114]), the
radiative transfer equation takes the form

1

c
∂tIν(t, x, n) + n · ∇xIν(t, x, n) = αaν (Bν(T (t, x))− Iν(t, x, n))

+ αsν

(ˆ
S2
Kν(n, n

′)Iν(t, x, n′)dn′ − Iν(t, x, n)

)
. (1.3)

The function Bν(T ) = 2hν3

c2
1

e
hν
kT −1

is the Planck distribution which satisfies the well-known

Stefan-Boltzmann law ˆ ∞

0
Bν(z)dν = σz4 (1.4)

for σ =: 2π4k4

15h3c2
, cf. [133]. Equation (1.3) is the radiative transfer equation that we will consider

in this thesis.
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1.2 Derivation of the gain and loss terms

In this section we give the physical intuition behind the form of the gain and loss terms
appearing in (1.3). In particular, we are interested in the derivation of the emission term
αaνBν(T ) and of the scattering operator αsν

´
S2 Kν(n, n

′)Iν(t, x, n′)dn′. As we explained in the
Section 1.1, radiation interacts with matter by emission-absorption processes and scattering
processes. These two mechanisms have very different nature and they lead to distinct behav-
iors of the radiation-matter system. The following subsections contain the phenomenological
derivation of the radiative transfer equation which is achieved by explaining these processes
and they are based on Chapter 1 and 3 of [114], Section 6.3 of [108] and Chapter 2 of [152].

1.2.1 Emission and absorption

The emission-absorption process takes place whenever a photon is absorbed or emitted by
an electron changing its quantum state. When a photon interacts with matter, it can indeed
be absorbed by an electron, which is excited and passes to a higher energy level. Photons
are consequently emitted whenever an electron de-excites. There are three kinds of electronic
transitions that we have to take account of, which are known in the physical literature as
bound-bound, bound-free and free-free transitions.

The bound-bound transition takes place in atoms, molecules or ions when an electron
excites as a consequence of the absorption of a photon and jumps to a higher energy state.
In this case the emission is a consequence of the de-excitation of the electron to its original
energy state. The spectrum of transition energies for bound-bound transitions is discrete.

The bound-free transition arises when the energy of the photon absorbed by the electron
is much higher than its binding energy. This results in the liberation of the electron, which
corresponds to the well-known photoelectric effect (cf. [44]). In the bound-free transitions
photons are emitted when the free electrons are caught by positive ions and are consequently
bound to them. Unlike the case of bound-bound transitions, the spectrum of transition
energies for the bound-free transitions is continuous.

Finally, free-free transitions occur mostly in plasma, i.e. the state of matter composed
by ions and free electrons. In this case, when traveling near a positive ion, an electron can
decelerate emitting a photon and reducing its kinetic energy (the so-called Bremsstrahlung).
A free electron can also absorb radiation increasing its kinetic energy. Like in the case of
bound-free transitions, the spectrum of transition energy is continuous.

(a) (b) (c) (d)

Figure 1.1: Schematic illustrations of the electronic transitions: (a) bound-bound transition,
(b) bound-free transition, (c) Bremsstrahlung and (d) absorption in case of free-free transition.

The amount of absorbed radiation is proportional to the radiation intensity Iν . Therefore,
the loss term due to absorption takes the form

−κaνIν , (1.5)
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where κaν is the absorption coefficient.
The derivation of the emission term is more involved. First of all, the emission depends

on the amount of electrons in the excited state. More precisely, the emission parameter
is proportional to the number of such electrons. Moreover, the number of excited states
increases with the temperature, cf. Section 7.10 in [152]. Hence, the emission parameter
grows with the temperature. In order to derive carefully the emission parameter, besides the
spontaneous emission process we have to examine the stimulated emission, whose theory is
based on quantum field theory.

Specifically, the emission parameter eν has to take into account both the spontaneous and
the stimulated emissions. The spontaneous emission of radiation depends uniquely on the
physical and chemical properties of the irradiated material, such as its temperature and its
atomic composition. In particular it is independent of the radiation present in the system.

The presence of a stimulated emission is due to quantum statistics, which combined with
the well-known principle of detailed balance yields the exact form of the emission parameter.
According to the principle of detailed balance, which is satisfied by the radiation processes,
in a system at equilibrium each transition i → f from an initial state i to a final state
f is compensated by its inverse transition, cf. Chapter 1 in [114]. It turns out however
that the spontaneous emission is not strong enough to balance the absorption. The balance
has to be understood in terms of equality of reaction rates, i.e. [i → f ] = [f → i]. In
particular, the reaction rate [i → f ], which is proportional to the probability of transition
p(i → f) = p(f → i), depends strongly on the type of particles involved in the reaction.
Specifically, [i→ f ] is proportional to the number of particles undertaking the transition and
to the number of quantum states of the particles obtained after the reaction. However, when in
the final state of the reaction photons are produced, which are bosons following Bose-Einstein
statistics, the transition rate is proportional also to (1+N), where N is the number of bosons
present in the same quantum state of the considered gained photon. The quantum state of a
photon is characterized by its momentum p and its polarization. Since p = hν

c n, the number
of photons with a particular quantum state is

N =
c2

2hν3
Iν ,

where the factor 2 is a consequence of the two possible linearly independent polarization states
of a photon.

Thus, quantum statistic implies that the emission parameter is given by

eν = εν

(
1 +

c2

2hν3
Iν

)
, (1.6)

where εν is the spontaneous emission parameter, and εν
c2

2hν3
Iν is the induced (or stimulated)

emission term. The idea behind the stimulated emission is that the presence of radiation
favors the emission of photons in the same quantum state.

A consequence of the principle of detailed balance is that in thermodynamic equilibrium,
where Iν = Bν(T ), the emission eν and the absorption κaνIν need to be equal. Thus,

εν
κaν

=
Bν(T )

1 + c2

2hν3
Bν(T )

=
2hν3

c2
e−

hν
kT . (1.7)

This is also known as Kirchhoff’s Law, cf. [87]. In particular, in the case of local thermal
equilibrium, which is the only case considered in this thesis, a further application of detailed
balance shows that (1.7) holds also in this situation.
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Finally, the spontaneous emission parameter can be written as

εν = αaνBν(T ), (1.8)

where

αaν := κaν −
c2

2hν3
εν (1.9)

is the “phenomenological” absorption coefficient. The emission-absorption process is thus
described by the following gain and loss terms

eν − κaνIν = αaν (Bν(T )− Iν) .

We remark once more that we collected together the terms describing absorption and induced
emission since they are proportional to the radiation intensity. This is the reason why αaν is
known in the literature also as phenomenological or effective absorption coefficient. A possible
interpretation is to consider stimulated emission as negative absorption which attenuates the
actual absorption of radiation.

1.2.2 Scattering

We now derive the scattering term in (1.3). In this thesis we consider only the most elementary
model of scattering in which photons are scattered by particles at rest. We hence neglect any
recoil of particles as well as any Doppler shift of the photons after the scattering. This is
clearly the case when the velocity of the matter particles is much slower than the speed of
light. This scattering model describes in a satisfactory way Rayleigh and Thomson scattering
of radiation, in the cases in which Iν is a slow varying function with respect to ν, as well as
Rayleigh scattering for low enough temperatures, cf. [114]. Specifically, Rayleigh scattering
describes the scattering of a photon by an atom or a molecule, while Thomson scattering is
due to the collision of a photon with a free electron, cf. [108].

Under these assumptions the scattering process can be considered as the collision of a
photon with an atom, a molecule, an ion or an electron which results in a pure deflection
of the photon without changing its energy and hence its frequency ν > 0. A central feature
of the scattering process is that no change of energy of the photons is involved. We will see
in the next section that this fact has a very important consequence in the heat transfer by
radiation.

Figure 1.2: Schematic illustration of the scattering process.

Also for the scattering process we have to include both the spontaneous and the stimulated
scattering. Nevertheless, the resulting gain of photons by the induced scattering is counter-
balanced by the loss of radiation due to stimulated scattering, cf. Section 3.3.1 in [114]. This
can be explained as follows.

We define by Kν(n, n
′) the scattering kernel, i.e. the scattering rate of photons with

frequency ν and initial direction of motion n′ ∈ S2 and outgoing direction n ∈ S2. It is a
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non-negative symmetric function with total integral 1 with respect to the outgoing directions,

Kν(n, n
′) = Kν(n

′, n) ≥ 0 ∀ν > 0, n, n′ ∈ S2 and

ˆ
S2
Kν(n, n

′)dn = 1 ∀ν > 0, n′ ∈ S2.

(1.10)
Throughout this thesis we will assume the scattering kernel to be independent of the frequency.
Moreover, we study only the situation in which the irradiated medium is isotropic, i.e. there
is no preferred direction of scattering. Mathematically, we impose the scattering kernel to be
invariant under rotations

K(n, n′) = K(Rn,Rn′) ∀R ∈ SO(3), n, n′ ∈ S2. (1.11)

As it is shown later in Chapter 2 and in ([35], Appendix A), assumption (1.11) implies that
the scattering kernel is symmetric with

K(n, n′) = K(n′, n) ∀n, n′ ∈ S2

as required in (1.10), since we consider radiation-matter systems occupying a portion of R3.

Turning back to the derivation of the scattering term in (1.3), we observe that using
Bose-Einstein statistic the gain term due to scattering is

αsν

ˆ
S2
Kν(n, n

′)Iν(t, x, n′)dn′
(
1 +

c2

2hν3
Iν(t, x, n)

)
, (1.12)

where αsν depends on the density of scattering particles and on the total scattering cross-
section, but it is independent of the direction n ∈ S2.

Moreover, the loss term due to scattering is given by

αsνIν(t, x, n)

ˆ
S2
Kν(n

′, n)
(
1 +

c2

2hν3
Iν(t, x, n

′)
)
dn′

= αsνIν(t, x, n) + αsν
c2

2hν3
Iν(t, x, n)

ˆ
S2
Kν(n, n

′)Iν(t, x, n′)dn′. (1.13)

The formulations of the gain and loss terms (1.12) and (1.13) due to scattering are justified by
the use of quantum statistic. As explained in Section 1.2.1, the reaction rate of a transition of
photons is proportional to (1+N), where N = c2

2hν3
Iν(t, x, n) is the number of photons before

the reaction in the same quantum state of the considered final photon, i.e produced by the

transition. Therefore, in the gain scattering term (1.12) we multiplied by
(
1 + c2

2hν3
Iν(t, x, n)

)
,

where Iν(t, x, n) is the radiation intensity after the scattering. In the loss term (1.13) we

multiplied by
´
S2 Kν(n

′, n)
(
1 + c2

2hν3
Iν(t, x, n

′)
)
dn′, which represents the radiation intensity

produced by the scattering of photons moving in direction n ∈ S2. Hence, the scattering term
in (1.3) is given by the combination of (1.12) and (1.13) as

αsν

(ˆ
S2
Kν(n, n

′)Iν(t, x, n′)dn′ − Iν(t, x, n)

)
, (1.14)

Thus, in this model, induced scattering can be mathematically neglected. It is important
to notice that this is not the case in the emission-absorption process. This is due to Bose-
Einstein statistic. Indeed, in the absorption process no photons (and hence bosons) are
produced. Therefore, there is no stimulated absorption and the loss term due to absorption
is given by (1.5).
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We remark that the properties (1.10) are natural since K is the rate of scattering. In
particular, the probability of a photon moving in a given direction n′ ∈ S2 to be scattered
with any outgoing direction n ∈ S2 has to be 1. This implies in particular that the total
integral on the sphere of directions S2 of the scattering terms (1.14) is zero. Indeed, changing
the order of integration and using (1.10) we obtain easily that

αsν

ˆ
S2

(ˆ
S2
Kν(n, n

′)Iν(t, x, n′)dn′ − Iν(t, x, n)

)
dn

=αsν

(ˆ
S2
Iν(t, x, n

′)dn′ −
ˆ
S2
Iν(t, x, n)dn

)
= 0

(1.15)

Moreover, the assumption of a non-isotropic material would lead to a different radiative trans-
fer equation, where possibly also stimulated scattering appears. Indeed, if Kν(n, n

′) is not
symmetric, the combination of (1.12) and (1.13) does not have to imply (1.14) anymore.

As a matter of fact, scattering is mostly due to the interaction of photons with free
electrons, cf. Section 2.3 in [152]. Moreover, in many applications dealing with the interaction
of radiation with atmosphere under terrestrial conditions, the contribution of scattering is
negligible compared to the emission absorption processes and thus it can be considered αsν ≡ 0.
However, this is not the case in astrophysics, where scattering can become more important
than the emission and absorption processes. See [152] for more details.

This concludes the derivation of the radiative transfer equation as stated in (1.3). We
remark at this point that even if the derivation of (1.3) is purely phenomenological, it describes
in a precise way the interaction of matter with radiation. To the author’s knowledge there have
been some attempts in the derivation of the radiative transfer equation from the Maxwell’s
equation. While many of them remained on a formal level describing carefully only the
scattering processes, as for example [110], a rigorous result starting from the wave equation
satisfied by a body with very separated scatterers and for a radiation with wavelength much
shorter than the scatterers’ distances can be found in [10].

1.3 Radiative heat transfer

The problems analyzed in this thesis have as overall aim the description of the distribution of
the temperature in a body where the heat, and hence the energy, is transferred among others
by radiation. In this case the temperature of the underlying medium becomes a further
unknown of the problem and it evolves according to the laws of thermodynamics, since the
body is assumed to be in local thermodynamic equilibrium. Furthermore, we remark that all
the studied systems are closed thermodynamic systems, i.e. they exchange energy (through
radiation) but not matter with the surrounding, cf. [153]. In particular, according to the first
law of thermodynamics the change of internal energy is due to the heat production.

On the one hand, the variation of energy is linked to the change of temperature by

∂tE = Cv∂tT, (1.16)

where Cv =
δQ
δT is the volumetric heat capacity, also known as specific heat, which is defined as

the amount of energy per unit of time and of volume required in order to raise the temperature
by δT , cf. Chapter 1 in [108].

On the other hand, the total production energy rate due to radiation per unit of volume
is ˆ ∞

0

ˆ
S2
αaν (Iν(t, x, n)−Bν(T (t, x))) dn dν, (1.17)
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cf. Section 2.9 in [152]. Notice that the body increases its energy absorbing radiation while it
decreases its energy re-emitting photons. Moreover, we used also that during the process of
scattering no exchange of energy between photons and scatterers takes place. Thus, equations
(1.3), (1.15) and (1.17) yield that the production energy rate due to radiation can be written
as

ˆ ∞

0

ˆ
S2
αaν (Iν(t, x, n)−Bν(T (t, x))) dn dν

= −1

c

ˆ ∞

0

ˆ
S2
∂tIν(t, x, n)dn dν − div

ˆ ∞

0

ˆ
S2
n Iν(t, x, n)dn dν. (1.18)

Hence, the first law of thermodynamics implies that the temperature of a body where heat is
transferred only by radiation evolves according to the following energy balance equation

Cv∂tT (t, x) +
1

c

ˆ ∞

0

ˆ
S2
∂tIν(t, x, n)dn dν + div

ˆ ∞

0

ˆ
S2
n Iν(t, x, n)dn dν = 0, (1.19)

where the radiation intensity Iν solves the radiative transfer equation (1.3).
In most of the physical and engineering applications, the characteristic time needed by

photons for traveling a length of the same order of the radiation mean free path is much shorter
than the characteristic time necessary for temperature changes of order 1, cf. [108,152]. Thus,
very often the radiation intensity can be considered quasi-static and the radiative transfer
equation and the energy balance equation can be simplified to

n · ∇xIν(t, x, n) = αaν (Bν(T (t, x))− Iν(t, x, n))

+ αsν

(ˆ
S2
Kν(n, n

′)Iν(t, x, n′)dn′ − Iν(t, x, n)

)
, (1.20)

and

Cv∂tT (t, x) + div

ˆ ∞

0

ˆ
S2
n Iν(t, x, n)dn dν = 0. (1.21)

Notice that in this case the problem concerning the radiative heat transfer, i.e. the coupled
equations (1.20) and (1.21), is not stationary. The radiation intensity depends on time through
the temperature T , which evolves as time flows.

In some of the problems studied in this thesis we will consider the stationary problem of
radiative heat transfer, i.e. we will assume that the radiation intensity and the temperature are
time-independent. In this case the energy balance equation (1.19) reduces to the divergence-
free condition for the flux of radiative energy as

div

ˆ ∞

0

ˆ
S2
n Iν(x, n)dn dν = 0. (1.22)

In the thermodynamical context, this condition corresponds to the assumption of pointwise
radiative equilibrium, according to which at every point of the body the incoming and the
outgoing energy flux is balanced. See Section 6.4 in [108].

Very interesting problems arise from the study of the evolution of the temperature in
bodies where the heat is transferred by both conduction and radiation. The free boundary
problem examined in Chapter 5 (resp. Appendix D) and in Chapter 6 (resp. Appendix E)
is one of such examples. In this case, the total heat production rate takes into account both
processes and it is given by

K div(∇xT (t, x)) +

ˆ ∞

0

ˆ
S2
αaν (Iν(t, x, n)−Bν(T (t, x))) dn dν,
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where we used the well-known Fourier law describing heat conduction and we denoted by
denoting by K the volumetric conductivity of the material. Thus, under the quasi-static
reduction for the radiation intensity, the temperature of the body evolves according to

Cv∂tT (t, x)−K∆xT (x, t) + div

ˆ ∞

0

ˆ
S2
n Iν(t, x, n)dn dν = 0. (1.23)

Observe that the assumption of quasi-staticity of the radiation is a good approximation in
the case of conductive and radiative heat transfer, as we explained above.

At the beginning of this Section 1.3 we remarked that a body where the heat is transported
by radiation is an example of a so-called closed thermodynamical system, that is, a system
which exchanges energy but not matter with its external environment. At this point we specify
the mathematical assumptions on the body and its boundary conditions.

In the problems examined in chapters 2, 3 and 4 we consider an open bounded convex
domain Ω ⊂ R3 with sufficiently smooth boundary and strictly positive curvature.

In chapters 5 and 6 we study a free boundary problem for melting of ice. In that case
we assume that the heat is transported by radiation and by conduction in the solid phase of
the material which is the unbounded half-space Ωt = (s(t),∞)×R2. The moving interface is
parameterized by {s(t)}×R2 and it represents also the boundary of the domain Ωt. Moreover,
in the liquid part of the material R3 − Ω̄t the heat is transported by conduction only. For
more details on the free boundary problem we refer to Section 1.6.3.

In all the problems considered in this thesis, the boundary conditions imposed to the
radiation intensity are the so-called incoming boundary conditions. These constraints are
defined as follows

Iν(t, x, n) = gν(t, n) for x ∈ ∂Ω and n · nx < 0, (1.24)

where nx ∈ S2 is the outer normal at x ∈ ∂Ω. In all the problems analyzed in this work the
source of radiation is independent of x ∈ ∂Ω.

For the free boundary problem considered in chapters 5 and 6 the boundary conditions
for the radiation intensity reduce to

Iν(t, x, n) = gν(t, n) for x ∈ {s(t)} × R2 and e1 · nx > 0,

where e1 = (1, 0, 0).

1.4 The neutron transport equation

We now introduce some properties of the neutron transport equation, which in some cases has
some analogies with the radiative transfer equation. This is the kinetic equation describing
the interaction of neutron and matter which is usually composed by massive atoms. This
equation is largely used in engineering and physical applications concerning nuclear reactions
and the design of nuclear reactors. For an extensive derivation and explanation of the neutron
transport theory we refer to [33,88,118], upon which this brief introduction is based.

The two main processes through which neutrons interact with heavy atoms are scattering
and fission. Similarly as for the radiative transfer equation, scattering is described as the
elastic collisions of neutrons with much heavier particles at rest. On the other hand, fission is
a different mechanism than the one considered for the radiation. This nuclear reaction consists
in the scission of a nucleus into two or more nuclei. It can be spontaneous or stimulated. For
example, in a neutron-induced fission, as a result of the collision with a neutron, the massive
atom splits into atoms producing in addition free neutrons, cf. [151]. The kinetic equation



10 CHAPTER 1. INTRODUCTION

describing these processes is a transport equation for the neutron flux density and its velocity
formulation has the form

1

|v|∂tφ(x, t, v)− n · ∇xφ(x, t, v) = S(x, t, v)− Σt(x, v)φ(x, t, v)

+ Σs(x, v)

(ˆ
R3

K(x, v, v′)φ(x, t, v′)dv′
)
, (1.25)

where φ is the neutron flux density, i.e. the density of neutrons with velocity v ∈ R3 passing
through a unit surface at the point x ∈ R3 normal to the direction of motion n = v

|v| at time
t > 0. As for the scattering of photons, the scattering kernel satisfiesˆ

R3

K(x, v, v′)dv = 1 ∀x ∈ R3, v′ ∈ R3.

Moreover, Σs is the scattering coefficient and Σt is the collision coefficient which represents
the rate in which neutrons are lost because of collisions with nuclei resulting in either fission
or scattering. Finally, S(x, t, v) is the source term which describes for instance the production
of neutrons due to fission. Note that the gain term due to scattering in (1.25) is very similar
to the one of the radiative transfer equation (1.3).

A largely studied approximation, which simplifies the transport equation (1.25) and it is
used in technological applications, is the so-called one-speed approximation. This problem has
been also extensively considered in the mathematical literature (cf. for instance [19,147]). In
this model it is assumed that all neutrons travel with the same speed |v|. Thus, in the absence
of fission and of any other neutron sources, and assuming that the scattering coefficient does
not depend on the direction of motion of the neutrons, the one-speed approximation of the
neutron transport equation takes the form

1

|v|∂tφ(x, t, v)− n · ∇xφ(x, t, v) = Σs(x)

(ˆ
S2
K(x, n, n′)φ(x, t, n′)dn′ − φ(x, t, n)

)
, (1.26)

where now Σt = Σs since the only collision process occurring is the scattering. This equation
is reminiscent to the radiative transfer equation. First of all, in the absence of the emission-
absorption term, the one-speed neutron transport equation and the radiative transfer equation
are equivalent pointwise for every frequency ν > 0.

Furthermore, the stationary one-speed neutron transport equation is equivalent to the
stationary radiative transfer equation (1.20) coupled with the divergence-free condition of the
radiation flux (1.22) in some approximation regimes, like the so called Grey approximation,
i.e. assuming that the absorption and scattering coefficients are independent of the frequency.

Let indeed αaν = αa and αsν = αs be independent of ν > 0 satisfying αa(x)+αs(x) > 0 for
all x ∈ Ω ⊂ R3, and let (Iν , T ) solve equations (1.20) and (1.22). Defining the total radiation
intensity

u(x, n) =

ˆ ∞

0
Iν(x, n)dν

and integrating (1.20) with respect to ν, we obtain the following system{
n · ∇xu(x, n) = αa

(´∞
0 Bν(T (x))dν − u(x, n)

)
+ αs

(´
S2 K(n, n′)u(x, n′)dn′ − u(x, n)

)
,

div
´
S2 nu(x, n) dn = 0.

The isotropy of Bν(T ) and the properties of the scattering kernel imply as for (1.15)
ˆ ∞

0
Bν(T (x))dν =

 
S2
u(x, n).
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Finally, defining

α = αa + αs and K(x, n, n′) =
αa(x)

4πα(x)
+
αs(x)

α(x)
K(n, n′),

we conclude that the total radiation intensity u solves

n · ∇xu(x, n) = α(x)

(ˆ
S2
K(x, n, n′)u(x, n′) dn′ − u(x, n)

)
,

which has the form of a stationary one-speed neutron transport equation (1.26).
Since they are equivalent in some regimes, several of the results obtained for the one-speed

neutron transport equation apply also to the radiative transfer equation in the Grey approx-
imation. This is the case for the diffusion approximation of the one-speed neutron transport
equation in [19,76,146–149]. Nevertheless, it is important to notice that the radiative transfer
equation and the one-speed neutron transport equation are in general very different. There-
fore, the development of an independent mathematical theory for the transfer of radiation
itself would be relevant.

To start with, we observe that when the absorption or the scattering coefficient depends
explicitly on ν the one-speed neutron transfer and the radiative transfer equations are no
longer equivalent.

Since the neutron transport equation and the radiative transfer equation describe physical
phenomena that are fundamentally different, the problems involving these two equations are
also mathematically distinct. Consider for instance the problem of radiative heat transfer, the
main topic of this thesis. When emission-absorption processes take place, the temperature
of the system changes. Thus, the temperature is a further unknown of the radiative transfer
equation, which has to be coupled to the energy balance equation (1.19) in order to describe
the evolution of the temperature due to the interaction with radiation. On the contrary, the
neutron transport equation has as unique unknown the density flux of the neutrons. Therefore,
any study concerning the radiative transfer is inevitably different. Besides, even in the cases
where mathematically the one-speed neutron transport and the radiative transfer equation
are equivalent, the radiation problem can be studied with different approaches in which the
temperature and the coupling of the radiative transfer equation (1.1) with the energy balance
equation (1.19) play a fundamental role. In other words, these different perspectives make the
investigation’s methods for the radiative transfer equation richer. An example is the study of
the diffusion approximation as in Chapter 4.

1.5 Reduction to a non-local integral equation

Before introducing the main results of this thesis, we give an example of an approach for
the radiative transfer equation which cannot be used in the study of neutron transport. The
method that we are going to present is largely used in chapters 2, 4, 5 and 6 and it consists in
the reduction of the radiative heat transfer system to a non-local equation for the temperature.
We consider the problem given by the stationary radiative transfer equation (1.20) in the
absence of scattering coupled with the energy balance equation (1.21) or with the divergence-
free condition for the radiation flux (1.22). For simplicity we consider in this subsection the
fully stationary case, hence the system

n · ∇xIν(x, n) = αν (Bν(T (x))− Iν(x, n)) x ∈ Ω,

div
(´∞

0

´
S2 n Iν(x, n)dn dν

)
= 0 x ∈ Ω,

Iν(t, x, n) = gν(n) x ∈ ∂Ω n · nx < 0,

(1.27)
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where Ω ⊂ R3 is open, bounded and convex. It is important to observe that this problem
depends non-trivially on the frequency ν > 0. Indeed, even though the radiative transfer
equation can be solved knowing the temperature for any ν > 0, the divergence-free condition
for the radiation flux makes the dependence of the temperature, and consequently of the
radiation intensity, on the frequency more involved.

We show now that problem (1.27) can be reduced to a non-local integral equation for
a function which depends only on the temperature. The main idea is to solve the radiative
transfer equation by characteristics and in a second step to apply the divergence-free condition
to the characteristic formulation of the radiation intensity in order to obtain an equation for
T . To this end we define for any x ∈ Ω and n ∈ S2 the boundary point y(x, n) = x− s(x, n)n,
where s(x, n) = |x− y(x, n)| is the distance of x to the boundary moving in direction −n, i.e.
y(x, n) = {x− tn : t > 0} ∩ ∂Ω.

Ω

x

y(x, n) + tn

y(x, n)

Figure 1.3: Representation of the backwards characteristics.

Solving (1.20) by characteristic we obtain

Iν(x, n) = gν(n) exp

(ˆ
[x,y(x,n)]

αν(ξ)dξ

)

+

ˆ s(x,n)

0
αν(x− tn)Bν(T (x− tn)) exp

(
−
ˆ
[x,x−tn]

αν(ξ)dξ

)
dt, (1.28)

where we used the notation
´
[a,b] f(ξ)dξ =

´ |a−b|
0 f

(
a− t a−b|a−b|

)
dt. Equation (1.22) implies

now ˆ ∞

0

ˆ
S2
αν(x) (Bν(T (x))− Iν(x, n)) dn dν = 0

and thus

4π

ˆ ∞

0
αν(x)Bν(T (x)) dν −

ˆ ∞

0
αν(x)

ˆ
S2
gν(n) exp

(
−
ˆ
[x,y(x,n)]

αν(ξ)dξ

)
dn dν

−
ˆ ∞

0
αν(x)

ˆ
S2

ˆ s(x,n)

0
αν(x− tn)Bν(T (x− tn)) exp

(
−
ˆ
[x,x−tn]

αν(ξ)dξ

)
dt dn dν = 0.

(1.29)
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This non-local integral equation can be further simplified. In particular, in the Grey approx-
imation, i.e. assuming αν(x) = α(x), we obtain after a change of coordinates

T 4(x)−
ˆ
Ω

α(η) exp
(
−
´
[x,η] αν(ξ)dξ

)
4π|x− η|2 T 4(η)dη = G(x), (1.30)

where we used the Stefan-Boltzmann law for the Planck distribution (1.4) and we defined

G(x) =
1

σ

ˆ ∞

0

 
S2
gν(n) exp

(
−
ˆ
[x,y(x,n)]

αν(ξ)dξ

)
dn dν.

Observe that considering (1.30) is enough in order to study (1.27). This procedure is the key
strategy for several of the problems presented in this thesis, for instance for the results of
chapters 2, 4, 5 and 6. In (1.21) the system reduces to

Cv∂tT (x, t) + 4πσα(x)

T 4(x, t)−
ˆ
Ω

α(η) exp
(
−
´
[x,η] αν(ξ)dξ

)
4π|x− η|2 T 4(η, t)dη −G(x, t)

 = 0.

(1.31)
In a similar way, it is possible to obtain a non-local integral equation also if scattering is
present. We refer to Chapter 4 for more details.

Finally, we remark that the left hand side of (1.30) is a non-local integral operator acting
on T 4. As we will see, it behaves like a non-local elliptic operator and it has a (global)
maximum principle. The latter property is due to the following estimate

ˆ
Ω

α(η) exp
(´

[x,η] α(ξ)dξ
)

4π|x− η|2 dη =−
 
S2

ˆ s(x,n)

0
∂t exp

(
−
ˆ
[x,x−tn]

α(ξ)dξ

)
dt dn

=

 
S2

(
1− exp

(
−
ˆ
[x,y(x,n)]

α(ξ)dξ

))
dn

≤1− exp (−diam(Ω)∥α∥∞) < 1,

(1.32)

where we assumed Ω ⊂ R3 bounded and α ∈ L∞ (R3
)
.

It is not difficult to see that equation (1.32) implies the global maximum principle of the
non-local integral operator in (1.30). Let u ∈ C0(Ω̄) and U ⊂ Ω. Assume also that u ≤ 0 on
∂Ω ∪ U ⊂ Ω̄ and that

u(x)−
ˆ
Ω

α(η) exp
(
−
´
[x,η] αν(ξ)dξ

)
4π|x− η|2 u(η)dη ≤ 0 in Ω \ U.

It can be shown that u ≤ 0 in Ω. Indeed, let us assume that max
Ω̄

u > 0. We argue by

contradiction. Then, there exists x0 ∈ Ω \ U such that max
Ω̄

u = u(x0) > 0. Estimate (1.32)

implies the desired contradiction since

0 ≥ u(x0)−
ˆ
Ω

α(η) exp
(
−
´
[x0,η]

α(ξ)dξ
)

4π|x0 − η|2 u(η)dη

>

ˆ
Ω

α(η) exp
(
−
´
[x0,η]

α(ξ)dξ
)

4π|x0 − η|2 (u(x0)− u(η)) dη > 0.
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We remark that a maximum principle exists also in the half-space Ω = (0,∞)× R2.

The reduction of the radiative transfer equation coupled with the energy balance equation
to a non-local integral equation for the temperature and the subsequent use of the maximum
principle is a powerful tool and it is the main method used for the problems in chapters 2, 4,
5 and 6.

1.6 Description of the problems: main results of the thesis

In this section we give a description of the mathematical questions considered in this thesis,
the main results and the principal strategy for their proofs. The problems presented in this
work include the following. In Chapter 2 we summarize the article in Appendix A about the
existence theory and a compactness result for the stationary radiative heat transfer problem
(1.27) for a large class of absorption and scattering coefficients. Chapters 3 and 4 deal with
the diffusion approximation for the radiative transfer equation and present the articles in
Appendix B and Appendix C. The main results for a one-dimensional free boundary problem
for melting of ice, where in the solid the heat is transferred also by radiation, are summarized
in chapters 5 and 6. The original articles about this Stefan problem can be found in Appendix
D and Appendix E. Finally, Chapter 7 concludes this thesis illustrating the main problems
left open in the current work.

1.6.1 Existence theory for the stationary radiative transfer equation

In Chapter 2 and in the article [35], which can be found in Appendix A, we will study
the existence theory for the stationary radiative transfer equation when the absorption and
scattering coefficients depend on the temperature of the body. Specifically, we consider the
stationary problem given by equation (1.20), (1.22) and (1.24), which can be formulated as

n · ∇xIν(t, x, n) = αaν (Bν(T (t, x))− Iν(t, x, n))

+αsν
(´

S2 Kν(n, n
′)Iν(t, x, n′)dn′ − Iν(t, x, n)

)
x ∈ Ω,

div
´∞
0

´
S2 n Iν(x, n)dn dν = 0 x ∈ Ω,

Iν(x, n) = gν(n) x ∈ ∂Ω, n · nx < 0,

(1.33)
where the absorption and scattering coefficients have the form

αa,sν (T (x)) = Qa,s(ν)α
a,s(T (x)). (1.34)

Specifically, we consider two types of absorption coefficients and scattering coefficients: the
so-called Grey approximation where Qa,s(ν) = 1 is constant and the “pseudo Grey” approxi-
mation where Qa,s(ν) does not need to be constant, cf. [68]. Under the assumption of Ω ⊂ R3

being bounded, convex with C2-boundary and with strictly positive curvature, and under
suitable assumptions on the incoming profile gν and on the coefficients αa,sν , we prove the ex-
istence of a solution (T, Iν) ∈ L∞(Ω)×L∞ (Ω, L∞ (S2, L1(R+)

))
. In contrast with the case in

which αsν ≡ 0 and αaν ≡ α is constant, where the application of the Banach fixed-point theorem
implies the existence of a unique solution, when the coefficients depend on the temperature
the Banach fixed-point theorem can no longer be applied.

In the cases where αsν ≡ 0 our strategy is to reduce (1.33) to the fixed-point equation for
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the temperature obtained by means of a change of variables from (1.29)

ˆ ∞

0
Qa(ν)Bν(T (x))dν

=

ˆ ∞

0
(Qa(ν))2

ˆ
Ω

αa(T (η)) exp
(
−Qa(ν)

´
[x,η] α

a(T (ξ))dξ
)

4π|x− η|2 Bν(T (η))dη dν

+

ˆ ∞

0
Qa(ν)

ˆ
S2
gν(n) exp

(
−Qa(ν)

ˆ
[x,y(x,n)]

α(T (ξ))dξ

)
dn dν. (1.35)

In this case, the right hand side of (1.35) is a self-map mapping L∞(Ω) to L∞(Ω). However,
it is not compact, so that Schauder fixed-point theorem cannot be applied. This is due to the
properties of the non-local operators containing exponentials of integrals along lines appearing
in (1.35). Therefore, we will careful consider operators of the form

u 7→
ˆ
S2
exp

(
−
ˆ
[x,x−λn]

κ(u)(ξ)dξ

)
dn for λ > 0 and x ∈ Ω.

Hence, we will first obtain a sequence of regularized solutions whose existence is implied by
an application of Schauder fixed-point theorem to a regularized version of (1.35). Afterwards,
using a new L2-compactness result for operators involving integrals along lines, we will show
convergence to the solution of (1.35). This key result can be understood as some kind of
“averaging lemma” which is different from the ones already available and largely used in
kinetic theory, as for instance [40, 41, 70, 80, 144]. A compactness result for some similar
operators arising in the study of the Boltzmann equation has been developed in [7]. However,
the method used in this article cannot be used for our problem.

Finally, in the case of the full equation with both scattering and emission-absorption we
adapt the previous result as follows. We first find an equivalent formulation (1.33) as a fixed-
point equation for the temperature similar to (1.35) constructing suitable Green’s functions for
two different versions of the radiative transfer equation. Then, we use the recursive equations
satisfied by the Green’s functions in order to define a non-linear, non-local, integral equation
which contains two Duhamel series, whose terms include exponentials of integrals along lines
as in (1.35). We proceed then as we did in the absence of scattering as it is summarized in
Chapter 2.

1.6.2 Diffusion approximation

In Chapter 3 and in Chapter 4 we will study in detail the problem of the diffusion approx-
imation for the system obtained coupling (1.3) with the energy balance equation (1.19) on
a convex bounded domain Ω ⊂ R3, under the assumption that the mean free path of the
photons tends to zero. This is the so-called diffusion approximation regime. In materials
where the mean free path of the photons is very small compared to the characteristic length
of the domain, the radiation processes become almost local. Indeed, in this case photons can
move only very small distances, which by definition are of the order of the mean free path,
before being absorbed or scattered. See [152]. Moreover, also the radiation reaching a point
x ∈ Ω is emitted few mean free paths away. This yields that the radiation intensity can be
approximated by a density function solving a (local) diffusion problem.

In Chapter 3, which deals with the results of the article [36] in Appendix B, using matched
asymptotic expansions methods we derive several possible limit problems (depending on the
assumptions) for both the stationary and the time-dependent cases. In Chapter 4, based on
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the work [37] presented in Appendix C, we prove that in the stationary case without scattering,
the radiative energy density, which is proportional to T 4 (cf. Stefan-Boltzmann law), solves
in the limit, as the mean free path of the photons tends to zero, an elliptic equation where
the boundary value can be determined uniquely in terms of the outer source of radiation.

Specifically, we study the system given by (1.3), (1.19) and (1.24) in the framework of the
diffusion approximation assuming that the mean free path of the photons is very small. To
this end we define ℓA and ℓS to be the mean free paths of the emission-absorption process
and of the scattering process, respectively. We study the limit of the following problem



1
c∂tIν(t, x, n) + τhn · ∇xIν(t, x, n) =

αa
ν(x)τh
ℓA

(Bν(T (t, x))− Iν(t, x, n))

+ αs
ν(x)τh
ℓS

(´
S2 K(n, n′)Iν(t, x, n′) dn′ − Iν(t, x, n)

)
x ∈ Ω, t > 0,

∂tT + 1
c∂t
(´∞

0 dν
´
S2 dn Iν(t, n, x)

)
+ τh div

(´∞
0 dν

´
S2 dn nIν(t, n, x)

)
= 0 x ∈ Ω, t > 0,

Iν(0, x, n) = I0(x, n, ν) x ∈ Ω,

T (0, x) = T0(x) x ∈ Ω,

Iν(t, n, x) = gν(t, n) x ∈ ∂Ω, n · nx < 0, t > 0,

(1.36)
as the total mean free path of the photons goes to zero, i.e. ℓM = min{ℓA, ℓS} = ε→ 0. More-
over, τh is the heat parameter, which represents the order of magnitude of times in which the
change of the temperature takes place.

In Chapter 3 we examine both the time-dependent and the stationary version of (1.36). We
consider all different possible relative scalings between ℓA, ℓS and diam(Ω) ≈ 1 constructing
via matched asymptotic expansions the limit problems for the leading order of the radiation
intensity Iν . Furthermore, the equations describing different boundary layers that yield the
form of the solution in that regions are derived. Indeed, since the incoming radiation gν
is in general not isotropic, and thus also not equal to Bν(T ), two nested boundary layers
can appear. In these regions situated near the boundary the radiation intensity modifies its
behavior, becoming for example isotropic or even approaching the Planck distribution of the
temperature.

Although as ℓM = ε→ 0 the radiation intensity is isotropic at the leading order, it is not
always the Planck distribution. This is due to the fact that ℓM → 0 is caused by either ℓA → 0
or ℓS → 0. The different ratio between absorption and scattering mean free paths determines
wether Iν approaches the Planck distribution Bν(T ) or not. The case where the leading or-
der of Iν converges in the limit to the Planck equilibrium distribution of the temperature is
denoted in the literature as equilibrium diffusion approximation, while the case in which the
radiation intensity differs from the equilibrium distribution is called non-equilibrium diffusion
approximation (see [108,152]). In Chapter 3 and in ([36], Appendix B) we give a careful math-
ematical classification of these notions. In particular we derive the conditions under which the
equilibrium diffusion approximation holds and we find the regions which each one of these dif-
fusion approximations is valid in the time-dependent and stationary problems given by (1.36).

While the derivation of the limit problems in Chapter 3 is formal, in Chapter 4 and in
([37], Appendix C) we prove rigorously that in absence of scattering the radiation intensity
Iεν solving the stationary version of the problem (1.36) converges as ℓA = ℓM = ε → 0 to the
Planck distribution (i.e. Iεν → Bν(T )) of a suitable temperature T (x), solution of an elliptic
problem. Specifically, we consider ℓA = ε, αs = 0 as well as αaν(x) = α(x) independent of
the frequency, i.e. the Grey approximation. Under these assumptions the stationary problem
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(1.36) takes the form
n · ∇xIν(x, n) =

α(x)
ε (Bν(T (x))− Iν(x, n)) x ∈ Ω,

div
(´∞

0 dν
´
S2 dn nIν(n, x)

)
= 0 x ∈ Ω,

Iν(n, x) = gν(n) x ∈ ∂Ω, n · nx < 0.

(1.37)

We prove that under suitable hypotheses on Ω, on gν and on α(x), the solutions to (1.37)
satisfy

(Iεν , T
ε) → (Bν(T ), T ) as ε→ 0

uniformly in every compact set, where T solves the Dirichlet problem{
−div

(
4σT 3(x)
α(x) ∇T (x)

)
= 0 x ∈ Ω,

T (p) = TΩ[gν ](p) p ∈ ∂Ω,

for TΩ : L∞ (S2, L1 (R+)
)
→ C (∂Ω) a functional which maps gν to a continuous function

TΩ[gν ](p) on the boundary p ∈ ∂Ω.

As noticed in Section 1.4, the specific problem examined in Chapter 4 is equivalent to a
one-speed neutron transport equation. Therefore, the existing results about the diffusion ap-
proximation of the one-speed neutron transport equation apply also to the considered problem
(1.37). Nevertheless, in order to prove the (equilibrium) diffusion approximation of problem
(1.37) we use a different strategy than the ones that have been used for the neutron trans-
port equation. We refer for instance to the stochastic approach in [19] and to the functional
analytical techniques in [147]. Our method consists in the reduction of the problem (1.37) to
a non-local elliptic integral equation for T 4 similar to (1.30) and to the analysis of the new
equivalent problem via maximum principles tools. More precisely, our proof is based on ap-
plying the maximum principle to suitable supersolutions, which will be constructed adapting
particular solutions of the Laplace equation. With this method we proved the diffusion ap-
proximation of the problem (1.37) also for absorption coefficients which depend non-trivially
on the spatial coordinate. This is a new result which is not covered in [76,146–149].

1.6.3 Free boundary problem with radiation

In chapters 5 and 6 and in their associated articles [39, 134] in the appendices D and E we
consider a free boundary problem describing the melting of ice in a situation in which heat
is transferred by conduction in the whole liquid-solid system and additionally by radiation in
the solid. Specifically, we study the case in which R3 is filled by the liquid and solid phase of a
material. The temperature T at the contact surface between these two phases is the melting
temperature TM . This interface moves according to the specific phase change which is taking
place. The temperature of the liquid is larger than TM , while T < TM in the solid.

The assumption that radiative heat transfer occurs only in the solid can be interpreted
from a physical point of view assuming that the liquid is transparent, i.e. it does not interact
with radiation, while the solid is more opaque letting absorption and emission take place. In
this time-dependent model we consider at the initial time t = 0 the situation in which the
liquid fills R3

− :=
{
x ∈ R3 : x1 < 0

}
and the solid fills R3

+ :=
{
x ∈ R3 : x1 > 0

}
. Moreover,

the temperature is supposed to depend spatially only on the variable x1. To some extents this
means that T depends on the distance to the interface. We examine the two-phase Stefan-
like problem under the further assumption of constant Grey approximation in the absence of
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scattering. It reads

CL∂tT (t, x1) = KL∂
2
x1T (t, x1) x1 < s(t),

CS∂tT (t, x1) = KS∂
2
x1T (t, x1)− div

(´∞
0 dν

´
S2 dnnIν(t, x, n)

)
x1 > s(t),

n · ∇xIν(t, x, n) = α (Bν(T (t, x1))− Iν(t, x, n)) x1 > s(t),

Iν(t, x, n) = 0 x1 = s(t), n1 > 0,

T (t, s(t)) = TM x1 = s(t),

T (0, x) = T0(x) x1 ∈ R,
ṡ(t) = 1

L (KS∂x1T (t, s(t)
+)−KL∂x1T (t, s(t)

−)) t > 0,

(1.38)

where CL, CS are the volumetric heat capacities of the liquid and solid, respectively, KS ,KL

are the conduction coefficients, L is the latent heat and s(t) ∈ R is the interface. Notice that
we consider only the situation in which no extra source of radiation is present. We remark also
that the radiation Iν can be considered quasi-static since the characteristic time in which the
radiation intensity stabilizes is much shorter than the characteristic time needed for changes
of the temperature of order 1. This is due to the fact that photons travel at the speed of light.
It is important to observe in addition that the Stefan condition for the velocity of the moving
interface is the same as the one for the classical Stefan problem. This is due to fact that the
heat flux is given in both phases by

−Ki∂x1T (t, x1) +

ˆ ∞

0

ˆ
S2
Iν(t, x, n)n dn dν for i ∈ {L, S}.

We recall that we assume the liquid to be transparent. Hence, radiation is present also in the
liquid without interacting with it. This implies that the radiation intensity is constant in the
liquid yielding

div

(ˆ ∞

0
dν

ˆ
S2
dnnIν(t, x, n)

)
= 0 for x1 < s(t).

In particular, in the liquid Iν is the constant continuation of the radiation intensity at the
free boundary, i.e.

Iν(t, x, n) = Iν (t, (s(t), x2, x3) , n) for x1 < s(t).

Finally, the Stefan condition is due to the balance of the heat absorbed or released during
solidification or melting, respectively, and the jump of the heat flux at the interface. We refer
to Chapter 5 for more details about the Stefan condition.

We can reduce the equation describing the solid phase to a non-local integral equation for
the temperature in the same spirit as (1.31) in Section 1.5. This yields, together with some
rescaling, the following equivalent free boundary problem

C∂tT (t, x) = K∂2xT (t, x) x < s(t),

∂tT (t, x) = ∂2xT (t, x)− T 4(t, x) +
´∞
s(t)

αE1(α|x−η|)
2 T 4(t, η)dη x > s(t),

T (t, s(t)) = TM x = s(t),

T (0, x) = T0(x) x ∈ R,
ṡ(t) = 1

L (∂xT (t, s(t)
+)−K∂xT (t, s(t)

−)) t > 0,

(1.39)

where E1(x) :=
´∞
|x|

e−t

t dt is the normalized exponential integral.

Specifically, in Chapter 5 and in ([39], Appendix D) we will prove the local well-posedness
of (1.39) applying the Banach fixed-point theorem together with classical parabolic theory.
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Moreover, with the help of suitable subsolutions and supersolutions, an application of the
maximum principle will imply the global in time well-posedness for a large class of initial
temperatures. In particular, the solution is a classical solution of (1.39) and the temperature
satisfies T (t, x) ≥ TM for x < s(t) and 0 ≤ T (t, x) ≤ TM for x > s(t) as long as it exists.

In Chapter 6 and in ([38], Appendix 6) we continue the study of the free boundary problem
(1.39) considering the existence of traveling wave solutions and studying their properties.
Specifically, we will prove that such traveling waves exist only in the case ṡ(t) ≤ 0, i.e. when
the ice is expanding. Notice that this is in contrast with the classical Stefan problem, where
self-similar profiles exist but not traveling wave solutions. The existence of traveling waves
solving for s(t) = −ct and c > 0

c∂yT1(y) = κ∂2yT1(y) y < 0,

c∂yT2(y) = ∂2yT2(y)− T 4
2 (y) +

´∞
0 αE1(α(y−η))

2 T 4
2 (η)dη y > 0,

T2(0) = T1(0) = TM ,

c = 1
L (K∂yT1(0

−)− ∂yT2(0
+)) .

(1.40)

is based on a variational argument. We will also prove that the solutions to (1.40) satisfies

T1(y) > TM on R− and 0 < λ ≤ T2(y) < TM on R+

for some λ < 0, as well as that the limits

lim
y→−∞

T1(y) > TM and lim
y→∞

T2(y) > 0

exist. These properties will be proved using again maximum principle tools as well as argu-
ments involving blowup limits. Finally, we will also present the expected long-time asymp-
totics for (1.39).

1.7 Overview of the mathematical literature

The study of the interaction of radiation with matter has been considered in mathematics,
physics and engineering for a long time. Models of matter interacting with electromagnetic
waves have been deeply studied starting from the early works of Compton [31], which considers
the interaction of trapped resonance radiation and gas, and of Milne [109], which studies
a one-dimensional model for the behavior of a confined gas hit by radiation. Both these
early works model the interaction of radiation with a diffusion equation. Some years later
Kenty [85] and Holstein [78] studied the same problem. In particular, the first work took into
consideration also the change of frequency between absorption and emission of photons, while
in the latter article the radiation problem is studied for the first time through a non-local
equation. The radiative heat transfer was considered in those years by Spiegel [131], who
derived the evolution equation for the temperature (1.19).

A detailed derivation of the radiative transfer equation, a review of its properties and of its
physical and engineering applications as well as of the mathematical problems can be found
in [29, 108, 114, 125, 152]. Specifically, in [108, 152] the difference between equilibrium and
non-equilibrium diffusion approximation is explained. Moreover, in [114] a careful derivation
of the radiative transfer equation is performed starting from the principle of detailed balance,
and the entropy formula for radiation is presented.

The well-posedness problem for the radiative transfer equation (1.3) without scattering
term coupled with the energy balance equation (1.19) has been studied in the time-dependent
case in [13–15] under the assumption of non-increasing temperature-dependent absorption
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coefficient using the resulting m-accretiveness of the radiation operator as well as semigroup
theory. Likewise, article [107] deals with the well-posedness of the time-dependent radiative
transfer equation under accretiveness assumptions. In [16] the existence result for both the
time-dependent and stationary radiative transfer equation without scattering has been studied
for the Grey approximation in its equivalent formulation as a one-speed neutron transport
equation with constant scattering kernel, cf. (1.26). Specifically, the considered stationary
problem has the from

λu+ n · ∇xu = α (ū) (ū− u) , where ū =

 
S2
u dn.

For very general coefficients α and for λ > 0 the existence of a bounded solution is obtained
using Schauder fixed-point theorem, while for λ = 0 the existence is achieved by a limiting
argument, under the further assumption that ū 7→ α(ū) is non-increasing.

Recent developments on the well-posedness of the problem (1.33) have been achieved
in [83]. Specifically, existence and uniqueness of solutions to (1.33) in suitable Lp-spaces have
been proved using the following strategy.

• Combining integration along characteristics and Banach fixed-point theorem, when αaν ≡
0.

• Reducing (1.33) to an integral equation for T 4 (cf. (1.30)) and using Banach fixed-point
theorem, when αsν ≡ 0 and αaν(T ) ≡ α is constant.

• Applying Scahuder fixed-point theorem to the integral equation equivalent to (1.33) and
proving uniqueness in a second step, when αsν ≡ 0 and αaν(T ) = αaν is independent of T .

In the case, where both αaν and αsν are non-trivial and independent of the temperature, the
existence of a solution is shown applying Schauder fixed-point theorem to the integral equation
for the temperature, which is obtained defining suitable Green’s functions. This method is
similar to the one we use in Chapter 2 and ([35], Appendix A).

It is important to remark at this point that the existence theory presented in [83] and
consequently in this thesis in Chapter 2 does not assume any monotonicity constraints on
the absorption coefficient. In the stationary problem (1.33) there is no extra term λIν and
λT for λ > 0, which is crucial in the proof of the well-posedness for stationary problems
including these terms as it is the case in [13–16, 107]. This is used also in order to show
the existence of solutions to the time-dependent problem using semigroups. Nevertheless, as
pointed out in [35, 83], the existence theory for the the time-dependent problem does not
imply the existence of a stationary solution. Indeed, the problem (1.33) describes a closed but
not isolated system which, in other words, allows exchange of energy but not of mass. Thus,
there is no entropy dissipation, while the appearance of an entropy flux is possible. Moreover,
the temperature could grow in time. Finally, even if the time-dependent solution is globally
bounded, it could present an oscillatory behavior and hence it could not converge to a steady
state.

Since in many physical applications the mean free path of the photons is very small
and the radiative transfer equation has a strong non-local behavior, which makes its study
more complex, its diffusion approximation has been largely used in Physics. Using matched
asymptotic expansions it is indeed formally possible to show that when the mean free paths
of the photons tends to zero the leading order of the radiation intensity (and sometimes
of the temperature) solves an elliptic (or parabolic in the time-dependent case) equation,
whose properties, such as existence, regularity and asymptotic behavior, are well studied. In
the study of the diffusion approximation problem of the radiative transfer equation, as well
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as of other kinetic equations such as the neutron transport equation, also problems for the
boundary layers need to be considered. These are the regions close to the boundary where
the diffusion approximation fails. In the case of radiation the boundary layer is described by
a stationary radiative transfer equation, which depends only on the distance to the boundary
(i.e. it is one-dimensional) and on the properties of the original problem. In analogy to the
one-dimensional problem studied by Milne (see [109]), the class of boundary layer equations
are often referred to as Milne problems in the mathematical literature.

Many results available for the diffusion approximations are related to the study of the neu-
tron transport equation (1.25), in particular for the one-speed approximation. An extensive
overview of the neutron transport theory can be found in [33], where the equivalence between
the one-speed approximation and the radiative transfer equation in the Grey approximation
is analyzed. From the second half of the 70’s the diffusion approximation of the one-speed
neutron transport equation has been exhaustively studied (at least at a formal level) espe-
cially in the framework of the scattering eigenvalue problem. Indeed, the smallest size of
the system for which there is an eigenfunction with eigenvalue 1 is denoted in the physical
literature as critical size and it has an important application in the design of nuclear reactors.
See [33]. The neutron transport equation has been considered by Larsen and coauthors in nu-
merous works. Specifically, [99,100,103] deal with the diffusion approximation of the neutron
transport equation both in its general form (1.25) and in its steady one-speed approximation
(1.26). In all these works the presence of a source of neutron (e.g. due to a fission process) is
considered and the asymptotic behavior of the solutions for small mean free paths is studied.
In [66, 98, 101, 102, 104] Milne problems, i.e. one-dimensional versions of the steady neutron
transport equation, are examined under several assumptions. Furthermore, in [97] the dif-
fusion approximation for the radiative transfer equation is studied via matched asymptotic
expansions considering both emission-absorption and scattering processes and avoiding the
formation of boundary layers by setting Iν = Bν(T ) as initial and boundary condition.

As far as we know, [19] is the first mathematical work dealing rigorously with the diffusion
approximation for the neutron transport equation. Specifically, the one-speed approximation
(1.26) for a strict positive, bounded and rotationally symmetric scattering kernel is considered
under different boundary conditions, like for instance the incoming boundary condition similar
to (1.24) for the radiative transfer equation. This article uses stochastic methods in order to
study the boundary layers and to prove the convergence of the solutions to a diffusion equation
as the mean free path tends to zero.

In recent times the one-speed neutron transport equation for constant scattering kernel
and constant scattering coefficient has been considered for several domains in the framework
of the diffusion approximation by Guo and Wu in numerous works [76,146–149]. Via suitable
L2−Lp−L∞ estimates they proved rigorously, for both the stationary and the time-dependent
equations, the diffusion approximation obtaining a geometric correction for the boundary
layer. This method has been used also in kinetic theory for other equations, such as the
Boltzmann equation and the Landau equation (cf. [75, 86]).

Moving back to the diffusion approximation for the radiative transfer equation, this the-
ory has been studied in [13–15] for the time-dependent equation without scattering term
under some monotonicity assumptions for the absorption coefficient using the resulting m-
accretiveness of the operator. In [16] a similar result is shown for the radiative transfer
equation in the case in which it is equivalent to a one-speed neutron transport equation (1.26)
with constant scattering kernel. Another proof of the time-dependent diffusion approximation
in the absence of scattering can be found in [72], where a more general equation for the internal
energy is considered. In [73, 74] the authors study another class of diffusion approximations
for the radiative transfer equation in a one-dimensional setting and in R3 when the scattering
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length tends to zero and the emission-absorption process is bounded. We remark also that
in the study of the diffusion approximation the time-dependent and the stationary problem
have to be analyzed separately, since they are fundamentally different.

Regarding the Milne problems, which describe the boundary layers in the diffusion ap-
proximation, [68] shows the well-posedness for this problem in the absence of scattering (i.e.
αsν ≡ 0) and for a large class of αaν , namely for absorption coefficients which have the form
αν(T ) = Q(ν)α(T ). This proof relies on an iterative scheme combined with the accretiveness
of the radiative operator. Moreover, the asymptotic behavior as x → ∞ is considered and it
is proved that the solution converges exponentially to a constant. Besides the already men-
tioned articles about the neutron transport equation (cf. [19, 76, 146–149]), also [17] studies
the Milne problem for the one-speed approximation. The Milne problem for the radiative
transfer equation including both scattering and emission-absorption terms has been exam-
ined only by Sentis [127]. While the considered absorption coefficient depends on frequency
and temperature and it is not necessarily increasing with respect to the latter variable, the
scattering coefficient and the scattering kernel are constant. The well-posedness result and
the asymptotic behavior of the solution are treated in a similar way as in [68] using the ac-
cretiveness of the operators. Finally, the well-posedness theory for Milne problems arising
from various transport equations has been studied in [12], while in [30] the one-dimensional
problem for non-Grey radiative transfer is considered also numerically.

In chapters 5 and 6 we study a free boundary problem for the melting of ice assuming that
the heat is transferred also by radiation in the solid. This problem can be considered as a
modification of the well-known two-phase Stefan problem, which takes its name from J. Stefan,
the person who first formulated such melting problems (cf. [134–137]). In the following we
give a summary of the results available for the Stefan problem, focusing on the well-posedness
theory for the one-dimensional case, which is the same situation we consider in chapters 5
and 6.

One version of the two-phase one-dimensional classical Stefan problem on a slab can be
formulated as the following free boundary problem (cf. [123])

CL∂tT (t, x) = KL∂
2
xT (t, x1) t > 0, a < x < s(t),

CS∂tT (t, x) = KS∂
2
xT (t, x) t > 0, s(t) < x < b,

T (t, s(t)) = TM x = s(t),

T (0, x) = T0(x) x ∈ R,
T (t, a) = ga(t), T (t, b) = gb(t) t > 0,

ṡ(t) = 1
L (KS∂xT (t, s(t)

+)−KL∂xT (t, s(t)
−)) t > 0.

(1.41)

As we have introduced in Section 1.6.3, CL and CS are the volumetric heat capacities, KL

and KS are the conduction coefficients and L is the latent heat. The case in which the
temperature in one of the two-phases is kept constant to the melting temperature is denoted
in the mathematical literature as one-phase Stefan problem.

Since the early results of J. Stefan, this free boundary problem has been exhaustively
analyzed. First of all, different definitions of solutions has been introduced. Some of them are
the so-called classical solutions and the weak enthalpy solutions, which are defined below.

Classical solutions of the Stefan problem are strong solutions of (1.41), where no further
assumptions on the temperature of the liquid and of the solid are made. In other words, it is
assumed that the change of phase takes place in a specific surface (i.e. the interface) where
the heat is absorbed or released. This surface divides the domain in two regions, namely the
liquid and the solid. Specifically, even if at initial time the temperature T is assumed to be
T > TM in the liquid and T < TM in the solid, as time flows the temperature does not have
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to satisfy such inequalities in the liquid and in the solid regions. This allows the emergence
of supercooled regions in the liquid, where T ≤ TM , or of superheated regions in the solid,
where T ≥ TM . See [89,123,143] for further details.

Weak enthalpy solutions are defined as the weak solutions of the following equation (cf.
[57])

∂tH(t, x)− ∂2xβ(T (t, x)) = 0, (1.42)

where the enthalpy H and the function β are defined for the problem (1.41) by

H(t, x) =

{
CL(T − TM ) + L T > TM ,

CS(T − TM ) T < TM ,
and β(T ) =

{
KLT T > TM ,

KST T < TM ,

where L is the volumetric latent heat, cf. [141]. The temperature can be also written as the
inverted enthalpy by

T (t, x) =


H−L
CL

+ TM H > L,

TM 0 ≤ H ≤ L,
H
CS

+ TM H < 0.

(1.43)

In the weak formulation of the Stefan problem, the Stefan condition does not appear as
an extra condition for the interface, which at time t > 0 is determined by ∂{x ∈ (a, b) :
T (t, x) = TM}. It is not difficult to see that in the absence of superheated or supercooled
regions, the classical solutions are also weak enthalpy solutions. Indeed, the Stefan condition
at the interface is equivalent to the Rankine-Hugoniot condition for the weak formulation
of (1.42). On the other hand, the weak enthalpy solutions do not allow for superheated or
supercooled regions. The liquid and the solid regions are indeed defined by their temperature
being larger or smaller than TM , respectively. If one considers (1.43) it is easy to see that
the set {(t, x) ∈ (a, b) : T (t, x) = TM} could have positive measure. In that case the region
{(t, x) ∈ (a, b) : T (t, x) = TM} is called mushy region. See [89,117,143].

Moving to the well-posedness theory for classical solutions to the free boundary problem
(1.41), this can be found for instance in [123]. There, the existence of local solutions to
the one and two-phase one-dimensional problem is proved via Picard approximations solving
a fixed-point equation with Volterra-type integral terms. An application of the maximum
principle implies the global in time well-posedness. A similar approach is used also in [55,56],
where the author solves the fixed-point integral equation using Banach fixed-point theorem.
Moreover, in [56] well-posedness is proved using also the so-called Baiocchi transform (cf. [8]).
A variational inequality is used in [59]. The same approach is considered for the one-phase
problem in [60]. In [56, 106] the authors study the asymptotic behavior of solutions to the
one-dimensional one-phase problem (and in [56] also to the two-phase one). It is proved that
the temperature approaches a self-similar profile as t→ ∞, which depends on the prescribed
behavior of the temperature at the fixed boundary and to the limits of the temperature as
|x| → ∞ in the two-phase problem for an unbounded domain. The well-posedness theory
for classical solutions of the two-phase one-dimensional Stefan problem was also considered
in [26,27]. While in the second work the authors impose a smallness assumption on the initial
data, in the first article well-posedness and regularity are proved combining the properties
of the Green’s function of the heat equation and Schauder fixed-point theorem. Concerning
the classical solutions to higher dimensional problems, in [106] the well-posedness theory is
proved. In addition to that, a notion of generalized solutions, the weak enthalpy solutions
of (1.7), is introduced and the formation of mushy regions is studied. The theory of weak
(enthalpy) solutions has been considered for the two-phase one-dimensional problem in [57],
and for the higher dimensional problem in [58].
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The problem of the formation of mushy regions, of superheated liquid or of supercooled
solid is also of high interest and it has been extensively studied assuming the presence of
volumetric heat sources. A precise characterization of classical and enthalpy solutions is
considered in [50,51]. In these articles the so-called classical enthalpy solutions are introduced.
These solutions are defined such that the temperature solves the heat equation with volumetric
source in the liquid (T > TM ) and in the solid (T < TM ), in the mushy regions the enthalpy
satisfies a time-dependent first order PDE and at the free boundaries the Stefan condition
holds strongly. Moreover, for these solutions mushy regions may appear. The emergence
of supercooled liquid or superheated solid for classical solutions to a one-dimensional two-
phases Stefan problem is shown in [89] assuming an external volumetric heat source. This
is an interesting result which indicates why we can expect superheated regions to appear, if
we consider a positive external source of radiation heating the solid in problem (1.39), i.e.
considering as boundary conditions

Iν (t, (s(t), x2, x3) , n) = gν(n) > 0 if n1 > 0.

A detailed review of strong and weak solutions as well as of models for supercooling, su-
perheating and mushy regions can be found in [143]. Mushy regions are also consider in
[20,90,117,141], while models for superheated and supercooled material are provided in [142].

Another problem concerning the Stefan problem, which has been extensively studied,
is the regularity of the free boundary. In this thesis we consider only a one-dimensional free
boundary problem, where the moving interface is a point. However, for the higher dimensional
Stefan problems, the regularity of the moving interface has been studied in terms of parabolic
obstacle problems for instance in [9, 24,25,43,53].

The study of melting processes finds a straight application for example in engineering.
Free boundary problems modeling the phase transition due to transport of heat by conduction
and radiation are studied numerically in particular in [28, 124, 129, 130, 140], where different
one-dimensional models describing one, two and three-phase free boundary problems are ex-
amined. The vaporization of dew can be also modeled as a free boundary problem, where
both conduction and radiation are considered. In recent years several numerical articles have
shown that in the phase transition of droplets the heat transfer by radiation plays a crucial
role, cf. [2, 84,92,93,126,128,145,150].

We conclude the summary of the available literature giving a rough overview about other
results concerning more involved interaction between radiation and matter. The interplay of
electromagnetic waves in a moving fluid has been considered for instance in [69, 71, 108, 152].
We refer to [34,81,112–114,122] for the study of the behavior of systems composed by photons
and a Boltzmann gas, whose colliding particles have two ore more energy levels and can
absorb or emit photons. The analysis of heat transport by conduction and radiation has been
considered also independently from the free boundary problems. Results in this direction can
be found in [32, 42, 62–65, 95, 96, 115, 116, 138, 139]. Furthermore, homogenization in porous
and perforated domains has been considered in the case where the heat is transported by
conduction, radiation and even by convection. See [3–5, 22, 121] for further details. Finally,
we refer to [110] for a formal derivation of a radiative transfer equation starting from the
Maxwell equations and to [10] for a rigorous derivation of the radiative transfer equation
involving only scattering processes obtained from Schrödinger’s wave equation in a body with
very separated scatterers.
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1.8 Articles details

This work is a cumulative thesis containing five articles written during my PhD studies. The
full papers can be found in the appendices in their most recent pre-print versions or in their
accepted version if published in a peer-reviewed journal. These are the following:

1. “Compactness and existence theory for a general class of stationary radiative
transfer equations”, joint work with J. W. Jang and J. J. L. Velázquez, submitted.
ArXiv version https://doi.org/10.48550/arXiv.2401.12828, Chapter 2 and Ap-
pendix A;

2. “Equilibrium and Non-Equilibrium diffusion approximation for the radiative
transfer equation”, joint work with J. J. L. Velázquez, submitted. ArXiv version
https://doi.org/10.48550/arXiv.2407.11797, Chapter 3 and Appendix B;

3. “On the Diffusion Approximation of the Stationary Radiative Transfer Equa-
tion with Absorption and Emission”, joint work with J. J. L. Velázquez. Published
in Annales Henri Poincaré and available in
https://doi.org/10.1007/s00023-025-01556-0, Chapter 4 and Appendix C;

4. “Well-posedness for a two-phase Stefan problem with radiation”, joint work
with J. J. L. Velázquez, submitted. ArXiv version
https://doi.org/10.48550/arXiv.2505.24602, Chapter 5 and Appendix D.

5. “Traveling waves for a two-phase Stefan problem with radiation”, joint work
with J. J. L. Velázquez, submitted. ArXiv version
https://doi.org/10.48550/arXiv.2506.01821, Chapter 6 and Appendix E.

For the sake of readability and consistency, Chapters 2-6 summarize the main results and
the proof’s techniques of these articles, which can be found all in the appendices, both the
accepted ones and the ones still in the review process.
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Chapter 2

Existence theory

This chapter is based on the article “Compactness and existence theory for a general class
of stationary radiative transfer equations” [35], which is joint work with J.W. Jang and J. J.
L. Velázquez and whose most recent version can be found in Appendix A. All the authors
contributed equally in this work.

As explained in the Introduction, in this chapter we develop an existence theory for the sta-
tionary system obtained by coupling the radiative transfer equation (1.20) with the divergence-
free condition for the radiation energy flux (1.22) and imposing incoming boundary condition
(1.24). The problem that we want to study is the following

n · ∇xIν(x, n) = αaν(T (x)) (Bν(T (x)− Iν(x, n))

+ αsν(T (x))
(´

S2 K(n, n′)Iν(x, n′) dn′ − Iν(x, n)
)
, x ∈ Ω, n ∈ S2,

∇x ·
´∞
0

´
S2 nIν(x, n) dn dν = 0, x ∈ Ω,

Iν(x, n) = gν(n) ≥ 0, x ∈ ∂Ω, n · nx < 0,

(2.1)
where Ω ⊂ R3 is an open convex bounded domain with C2-boundary. We assume also that ∂Ω
has strictly positive curvature and that K satisfies (1.10) and it is invariant under rotations,
i.e.

K(Rn,Rn′) = K(n, n′) for all n, n′ ∈ S2, R ∈ SO(3).

This last property of the scattering kernel implies also that K is symmetric, i.e.

K(n, n′) = K(n′, n) for all n, n′ ∈ S2,

as required in (1.10). See Lemma A.2 for the proof.
The novelty and at the same time the complexity of the problem (2.1) lies in the gen-

eral form of the considered absorption and scattering coefficients, which may depend on
the temperature and on the frequency. Specifically, we show the existence of a solution
(T, Iν) ∈ L∞(Ω)×L∞ (Ω, L∞ (S2, L1(R+)

))
in the pure emission-absorption case (i.e. αsν ≡ 0)

as well as in the presence of scattering (i.e. αsν ̸≡ 0). Moreover, this existence theory has been
developed for the Grey approximation (i.e. αa,sν (T ) = αa,s(T )) as well as for the “pseudo-
Grey” approximation (i.e. αa,sν (T ) = Qa,s(ν)α

a,s(T )). In all these situations the non-linear
case is considered, namely the case where the coefficients depend non-trivially on the temper-
ature.

We prove the following result, which summarizes the main theorems in ([35], Appendix
A).

Theorem 2.1 (cf. [35], Theorem A.3, Theorem A.1, Theorem A.4 and Theorem A.2). Let
Ω ⊂ R3 be bounded and open with C2-boundary and strictly positive curvature. Assume that
one of the following conditions holds:

27
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a) αsν ≡ 0 and αaν(T ) = αa(T ) bounded and strictly positive;

b) αsν ≡ 0 and αaν(T ) = Qa(ν)α
a(T ) bounded and strictly positive;

c) αsν(T ) = αs(T ) and αaν(T ) = αa(T ) bounded and strictly positive;

d) αsν(T ) = Qs(ν)α
s(T ) and αaν(T ) = αa(T ) bounded and strictly positive;

Assume also that Qℓ ∈ C1 (R+) and αℓ ∈ C1 (R+) for ℓ = a, s (if applicable). Assume K ∈
C1
(
S2 × S2

)
to be non-negative, rotationally symmetric, and independent of the frequency with

the property (1.10). Then there exists a solution (T, Iν) ∈ L∞(Ω)×L∞ (Ω, L∞ (S2, L1(R+)
))

to the problem (2.1), where the Iν solves the radiative transfer equation in (2.1) in the sense
of distribution.

Notice that, under the assumptions a), b), c) and d), Theorem 2.1 corresponds to Theorem
A.3, Theorem A.1, Theorem A.4 and Theorem A.2, respectively.

Before going into the details of the strategy of the proof, we study the easier case in which
αaν ≡ 0 and αaν ≡ α = const. This case is considered also in [83], where the existence of a unique
solution (T, Iν) ∈ L4(Ω)×L1(Ω×S2×R+) is shown. In the following we prove that there exists
a unique solution (T, Iν) ∈ L∞(Ω)× L∞ (Ω, L∞ (S2, L1(R+)

))
to (2.1) for the pure emission-

absorption case with constant absorption coefficient. To this end, we reformulate problem
(2.1) as a fixed-point integral equation for the temperature, following the approach described
in Section 1.5. Hence, solving the radiative transfer equation in (2.1) by characteristics, using
the divergence free-condition of the radiation energy flux and simplifying the resulting terms
by means of the Stefan-Boltzmann law (1.4), for this choice of coefficients we obtain

u(x) = B(u)(x) =
ˆ
Ω

αe−α|x−η|

4π|x− η|2u(η)dη +
ˆ
S2

ˆ ∞

0
gν(n)e

−αs(x,n) dν dn, (2.2)

where u = 4πσT 4. Moreover, s(x, n) is the distance of x ∈ Ω to the boundary ∂Ω along
direction −n ∈ S2, cf. Equation (1.30) and Figure 1.3. LetM ≥ 4π∥gν∥L∞(S2,L1(R+))e

αdiam(Ω).
We now claim that there exists a unique solution u to (2.2) in the complete metric space

A = {u ∈ L∞(Ω) : u ≥ 0 and ∥u∥L∞ ≤M} . (2.3)

This can be proved applying the Banach fixed-point theorem. To prove that B is a self-map
on A we first notice that both integral terms of B in (2.2) preserve the sign. Thus, if u ∈ A
then B(u) ≥ 0. For the boundedness of the norm we compute changing to polar coordinates

ˆ
Ω

αe−α|x−η|

4π|x− η|2 |u(η)| dη =

 
S2

ˆ s(x,n)

0
αe−αr|u(x− rn)|dr dn

≤∥u∥L∞

 
S2

ˆ s(x,n)

0
∂r
(
−e−αr

)
dr dn

=∥u∥L∞

 
S2

(
1− e−αs(x,n)

)
dn ≤ ∥u∥L∞

(
1− e−α diam(Ω)

)
,

(2.4)

where we used also sup
x,n∈Ω×S2

s(x, n) = diam(Ω). On the other hand, we estimate

ˆ
S2

ˆ ∞

0
gν(n)e

−αs(x,n) dν dn ≤ 4π sup
n∈S2

(ˆ ∞

0
gν(n)e

−αs(x,n) dν
)

= 4π∥gν∥L∞(S2,L1(R+)).
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Therefore, ∥B(u)∥L∞ ≤ M
(
1− e−αdiam(Ω)

)
+ 4π∥gν∥L∞(S2,L1(R+)) ≤ M for all u ∈ A, which

implies that B is a self-map in A. Finally, B is a contraction, since for u1, u2 ∈ A we estimate

∥B(u1)− B(u2)∥L∞ ≤∥u1 − u2∥L∞ sup
x∈Ω

(ˆ
Ω

αe−α|x−η|

4π|x− η|2dη
)

≤ ∥u1 − u2∥L∞
(
1− e−αdiam(Ω)

)
︸ ︷︷ ︸

<1

,

where we changed to polar coordinates similarly as we did in (2.4).
It is important to observe that the independence of the absorption coefficient α on the

temperature makes the integral operator B linear. This is crucial when proving contractivity.
We will see in the non-linear case that, if α depends on T , the resulting non-linear version
of B is still a self-map on A, but in general it is not a contraction anymore. Finally, notice
that the existence of a unique solution T ∈ L∞(Ω) implies the existence of a unique solution
(T, Iν) ∈ L∞(Ω)×L∞ (Ω, L∞ (S2, L1(R+)

))
, where u = 4πσT 4 solves (2.2) and the radiation

intensity is given by

Iν(x, n) = gν(n)e
−αs(x,n) +

ˆ s(x,n)

0
αe−αtBν(T (x− tn)) dt.

Remark. In the very same way we can show that there exists a unique solution (T, Iν) ∈
C0(Ω) × L∞ (Ω, L∞ (S2, L1(R+)

))
. Indeed, B is a contraction also in {u ∈ A : u ∈ C0(Ω)}.

Only the continuity of B(u) has to be proved. On the one hand, the regularity assumptions
on ∂Ω imply the continuity of x 7→ s(x, n), cf. equation (A.33). On the other hand, the

convolution of the integral function αe−α|z|
|z|2 with a bounded continuous function is a continuous

function. This result will be used again in Chapter 4.

We now move to the main results presented in ([35], Appendix A) and the strategy of
their proof. We start with the scattering-free case in Section 2.1 and we conclude with the
full equation including both emission-absorption and scattering processes in Section 2.2.

2.1 Pure emission-absorption case

Let αsν ≡ 0. As we have seen in Section 1.5, in this case the radiation intensity is given by

Iν(x, n) = gν(n) exp

(ˆ
[x,y(x,n)]

αaν(T (ξ))dξ

)

+

ˆ s(x,n)

0
αaν(x− tn)Bν(T (x− tn)) exp

(
−
ˆ
[x,x−tn]

αaν(T (ξ))dξ

)
dt, (2.5)

where T solves

4π

ˆ ∞

0
αaν(x)Bν(T (x)) dν =

ˆ ∞

0
αaν(x)

ˆ
Ω

αaν(η) exp
(
−
´
[x,η] α

a
ν(T (ξ))dξ

)
|x− η|2 Bν(T (η))dη dν

+

ˆ ∞

0
αν(x)

ˆ
S2
gν(n) exp

(
−
ˆ
[x,y(x,n)]

αaν(T (ξ))dξ

)
dn dν,

(2.6)

where
´
[z,w] f(ξ)dξ is the integral along the line segment with endpoints z ∈ Ω and w ∈ Ω. As

for the Grey approximation with constant absorption coefficient considered at the beginning
of this chapter, it is enough to show the existence of T solving (2.6), since equation (2.5)
gives us the radiation intensity. In the following the strategy of the proof of Theorem 2.1 is
presented first under the assumption a) and later under b).
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2.1.1 Grey approximation

Besides αsν ≡ 0, let us assume αaν(T ) = αa(T ) together with all the hypotheses of Theorem
2.1. We consider this case first because the computations are simpler, while the main strategy
and the main steps for the proof of Theorem 2.1 are (up to adaptations) the same as for all
other cases.

We aim to prove the existence of a fixed-point in L∞(Ω) to (2.6), which in this case reads

u(x) = B(u)(x) =
ˆ
Ω

γ(u(η)) exp
(
−
´
[x,η] γ(u(ξ))dξ

)
4π|x− η|2 u(η)dη

+

ˆ
S2

ˆ ∞

0
gν(n) exp

(
−
ˆ
[x,y(x,n)]

γ(u(ξ))dξ

)
dν dn, (2.7)

where u = 4πσT 4, y(x, n) = {x− tn : t > 0}∩ ∂Ω and γ(z) = α
(

4
√

z
4πσ

)
for z ≥ 0, cf. (A.23).

As for the case where αa ≡ α, the operator B is a self-map on the same complete closed
metric space A, cf. (2.3). Nevertheless, B does not need to be a contraction. Also, B does
not need to be compact in either L∞(Ω) nor C0(Ω). These observations are due to the non-

linear expressions exp
(
−
´
[x,η] γ(u(ξ))dξ

)
appearing in both integral terms of B, which have

the same regularity as u. Thus, neither Banach fixed-point theorem nor Schauder fixed-point
theorem can be directly used.

In order to overcome this problem we first regularize the operator B defining the following
new operator

Bε(u)(x) =:

ˆ
Ω
(γ(u) ∗ ϕε) (η)u(η)

exp
(
−
´
R3 γ(u (ξ))δ[x,η] ∗ ϕε(ξ)dξ

)
4π|x− η|2 dη

+

ˆ
S2
exp

(
−
ˆ
R3

γ(u(ξ))δ[x,y(x,n)] ∗ ϕε(ξ)dξ
) ˆ ∞

0
gν(n) dν dn (2.8)

as in equation (A.25), where ϕε ∈ C∞
c (R3) is a sequence of standard positive and radially

symmetric mollifier and where we defined δ[x,η] ∗ ϕ(ξ) =
´
[x,η] ϕ(ξ − z)dz so that

ˆ
R3

γ(u (ξ))δ[x,η] ∗ ϕε(ξ)dξ =
ˆ
[x,η]

(γ(u) ∗ ϕε) (z) dz.

In Section A.3.1 we prove that Bε is a compact continuous self-map on A, which implies,
applying Schauder fixed-point theorem, the existence of a fixed-point uε = Bε(uε) for all
ε > 0. This is due to the fact that γ(uε) ∗ ϕε has a higher regularity than uε. Moreover, the
smoothness of the domain and the assumption on the curvature imply the Hölder continuity
of Bε(uε) and thus the compactness of the operator Bε. The existence of a fixed-point to
the original equation (2.7) is given by the L2(Ω)-compactness of the sequence of regularized
solutions uε. This yields the existence of a subsequence uj converging to a function u both in
L2(Ω) and pointwise almost everywhere. By the boundedness of the sequence uε we obtain
u ∈ L∞(Ω) and using Lebesgue dominated convergence theorem we conclude Theorem 2.1.

The compactness of the sequence uε ∈ L2(Ω) is, besides the existence results, one of the
most important contributions in [35].
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2.1.2 Compactness result

Exponentials can be written as power series whose tails converge to zero. Moreover, uε satisfies
using polar coordinates

uε(x) =

 
S2
dn

ˆ s(x,n)

0
dt [(γ(uε) ∗ ϕε)uε] (x− tn) exp

(
−
ˆ
[x,x−tn]

γ(uε) ∗ ϕε(ξ)dξ
)

+

ˆ
S2
dn

(ˆ ∞

0
dν gν(n)

)
exp

(
−
ˆ
[x,y(x,n)]

γ(uε)) ∗ ϕε(ξ)dξ
)
.

Then, the L2-compactness of the sequence uε is implied by the L2-compactness of operators
of the form ˆ

S2
dn

(ˆ s

0
dτ f(x− τn)

)
.

The main result is stated in Proposition A.1, whose summarized version is the following.

Proposition 2.1 (cf. [35], summary of Proposition A.1). Let L > 0 and Π3 = [−L,L]3.
Consider a sequence of periodic functions (φj)j∈N ∈ L∞ (Π3

)
with ∥φj∥∞ ≤M . Let us define

for n ∈ S2 and m ∈ N the operators Ln and Tm by

Ln[φ](x) =:

ˆ L

−L
dλ φ(x− λn) and Tm[φ](x) =:

ˆ
S2
dn (Ln[φ](x))

m .

Then, the sequence (Tm[φj ])j is compact in L2
(
Π3
)
for every m ∈ N and it satisfies a suitable

equi-integrability condition.

This proposition will play an essential role in the proof of Theorem 2.1. Its proof is
based on elementary measure theory. It relies on the properties of the two auxiliary measures
µRj , ν

R
n,j ∈ M+(S2) associated to φj and to Ln[φj ], which are defined for R > 0 in the following

way

µRj (ω) =
∑

k∈ π
L
Z3

|k|>R

∣∣∣ajk∣∣∣2 δ k
|k|
(ω) and νRn,j(ω) =

∑
k∈ π

L
Z3

|k|>R

4
∣∣∣ajk∣∣∣2 ∣∣∣∣sin(L(k · n))k · n

∣∣∣∣2 δ k
|k|
(ω),

where we used the Fourier expansions

φj(x) =
∑

k∈ π
L
Z3

ajke
ik·x and Ln[φj ](x) =

∑
k∈ π

L
Z3

2ajk
sin(L(k · n))

k · n eik·x.

Thus, by definition νRn,j ≤ 4L2µRj for all n ∈ S2 and µRj (S2) ≤ 8L3M2. Moreover,

ˆ
S2
dn

ˆ
S2
dνRn,j(ω)1{|ω·n|≥κ} ≤

C(M,L)

R2κ2
−→
R→∞

0

as well as
ˆ
S2
dn

ˆ
S2
dνRn,j(ω)1{0≤|ω·n|<κ} ≤

ˆ
S2
dn

ˆ
S2
dµRj (ω)1{0≤|ω·n|<κ}

=

ˆ
S2
dµRj (ω)

ˆ
S2
dn1{0≤|ω·n|<κ} ≤ C(M,L)κ −→

κ→0
0

(2.9)
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Therefore, for any δ > 0, choosing R large enough and κ small enough, we conclude

∥Tm[φj ]− Tm[φj ](·+ h)∥L2(Π3) ≤ C(M,L,m)

 ∑
k∈ π

L
Z3

|k|≤R

|ajk|2|k|2|h|2 +
ˆ
S2
dn

ˆ
S2
dνRn,j(ω)

 < δ

for |h| small enough. An active role in the proof of Proposition 2.1 is played by the integral
of (Ln[φj ])

m on the sphere S2, specifically by the estimate (2.9). Indeed, while the term
(Ln[φj ])

m is not compact for every n ∈ S2, the integral
´
S2 (Ln[φj ])

m dn is compact in L2(Ω).
This is the reason why the compactness result of Proposition 2.1 can be considered as a new
averaging lemma. Moreover, Proposition 2.1 can be extended for operators of the form

Ln,t−s[f ](x) =
ˆ t

s
dλ f(x− λn)

for any 0 ≤ s < t ≤ L
2 , cf. Lemma A.1.

This result is used in order to prove the compactness of the sequence uε = Bε(uε)
in L2(Ω) in the following way. By the boundedness of the domain we can define Ω ⊂
[−2diam(Ω)− 2, 2diam(Ω) + 2]3 = Π3. We then extend in a suitable way both uε and γ(uε)
in Π3 and periodically in R3. We expand the exponentials of integrals along lines and we use
the generalized compactness result of Lemma A.1. Since the tails of the series converge, we
need to apply this result only finitely many times in order to conclude the L2-compactness of
the sequence uε.

2.1.3 Pseudo-Grey approximation

Let assume αsν ≡ 0, αaν(T ) = Qa(ν)α
a(T ) bounded and strictly positive, and all other hy-

potheses of Theorem 2.1. Using the monotonicity of 0 ≤ z 7→ Bν(z), we define the bounded
functions u and F by

u(x) = 4π

ˆ ∞

0
Qa(ν)Bν(T (x)) dν = F (T (x)), (2.10)

which can be related by T = F−1(u) since F is monotone and invertible. In order to simplify
the notation we denote also γ = αa◦F−1 and fν = Bν ◦F−1. Equation (2.6) can be re-written
to the following fixed-point equation

u(x) = B(u)(x) =
ˆ ∞

0
dν

ˆ
Ω
dη

Qa(ν)
2γ(u(η))fν(u(η))

|x− η|2 exp

(
−
ˆ
[x,η]

Qa(ν)γ(u(ξ))dξ

)

=

ˆ ∞

0
dν

ˆ
S2
dn Qa(ν)gν(n) exp

(
−
ˆ
[x,y(x,n)]

Qa(ν)γ(u(ξ))dξ

)
,

cf. (A.54). In order to show the existence of a fixed-point we proceed as we did in Subsection
2.1.1. We regularize the operator B replacing γ(u) by γ(u) ∗ ϕε, where ϕε is a sequence of
standard mollifiers. Using that Q is bounded and that

´∞
0 Q(ν)fν(u(η))dη ≤ ∥u∥∞, we con-

clude by applying finitely many times the compactness result of Lemma A.1 to the sequence of
regularized solutions uε, whose existence is guaranteed again by Schauder fixed-point theorem.
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2.2 Full equation

We consider now the case in which αaν(T ) and α
s
ν(T ) are both positive. The steps for the proof

of Theorem 2.1 under the assumptions c) and d) are the same as the ones considered in Section
2.1. We construct a fixed-point integral equation for the temperature and we regularize the
integral operators obtaining a sequence of regularized fixed-point solutions. Finally, applying
the compactness result in Proposition 2.1 we show the existence of a fixed-point of the original
equation, which determines the temperature and hence the radiation intensity solving (2.1).
The most significant difference with the proof of the pure emission-absorption case (where
αsν ≡ 0) is in the derivation of the fixed-point equation for the temperature. This is achieved
through the definition of suitable Green’s functions. We consider again first the case in which
the coefficients are independent of the frequency, i.e. the Grey approximation.

2.2.1 Grey approximation

Under the assumption c) of Theorem 2.1 we construct the Green’s functions Ĩ(x, n;x0) for
x, x0 ∈ Ω and n ∈ S2 and ψ(x, n;x0, n0) for x ∈ Ω, x0 ∈ ∂Ω and n, n0 ∈ S2. These solve

n · ∇xĨ(x, n;x0) =α
s(T (x))

ˆ
S2
,K(n, n′)Ĩ(x, n′;x0) dn′

− (αa (T (x)) + αs (T (x))) Ĩ(x, n;x0) + δ(x− x0), x, x0 ∈ Ω, n ∈ S2,
Ĩ(x, n;x0)χ{n·nx<0} =0, x ∈ ∂Ω, x0 ∈ Ω, n ∈ S2,

n · ∇xψ(x, n;x0, n0) = αs(T (x))

ˆ
S2
K(n, n′)ψ(x, n′;x0, n0) dn′

− (αa (T (x)) + αs (T (x)))ψ(x, n;x0, n0), x ∈ Ω, x0 ∈ ∂Ω, n, n0 ∈ S2,

ψ(x, n;x0, n0)χ{n·nx<0} = δ∂Ω(x− x0)
δ(2)(n, n0)

4π
, x ∈ Ω, x0 ∈ ∂Ω, n0 ·Nx0 < 0,

in the sense of distribution, cf. equations A.58 and (A.59). We refer to Sections A.4.1 and
A.4.2 for more details of the definition and construction of such Green’s functions. With the
help of these auxiliary functions, the radiation intensity solving (2.1) is given by

Iν(x, n) =

ˆ
Ω
dx0 α

a(T (x0))Bν(T (x0))Ĩ(x, n;x0) +

ˆ
S2
dn0

ˆ
∂Ω
dx0 gν(n0)ψ(x, n;x0, n0),

cf. (A.60). Using the divergence-free condition of the energy flux we obtain also in this case
a fixed-point equation for u = 4πσT 4 of the following form

u(x) = B(u)(x) + C(u)(x) =
∞∑
i=1

Vi(u)(x) +
∞∑
i=1

Ui(u)(x),

where B and C can be expanded in their Duhamel series similar to the ones in (A.86) and
(A.82), respectively. The interpretation of such series is the following. Each term Vi(u) of
B(u) (or Ui(u) of C(u)) describes the interaction of photons emitted at the point η ∈ Ω (or
x0 ∈ ∂Ω) scattered (i − 1)-times before being absorbed at the point x ∈ Ω. Therefore, each
term Vi(u) and Ui(u) contains i exponentials of integrals along lines and (i − 1) scattering
integrals. We refer to the equations (A.86) and (A.82) for the exact form of these integral
terms.
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η

x

(a) (b)
Ω

x0 x

Ω

Figure 2.1: Interpretation of the terms in the Duhamel series: (a) represents the terms of the
operator B, (b) illustrates the terms of the operator C.

We then proceed as follows. Replacing the non-linear coefficients α(T ) by their convolution
with the standard mollifiers ϕε, we obtain a sequence of regularized solution uε via Schauder
fixed-point theorem. While the compactness of the regularized operators are due to the
convolution with the mollifiers, the self-map property is a consequence of

|Bε(u)(x)| ≤ ∥u∥sup
ˆ
Ω
dx0

ˆ
S2
dn

αaε(u(x0))

4π
Iε(x, n;x0) ≤ θ∥u∥sup,

where Iε is the Green’s function for the regularized problem. In order to prove this inequality
we show that Hε(x, n) =

´
Ω dx0α

a
ε(u(x0))Iε(x, n;x0) solves a differential equation with a

maximum principle. See Section A.4.4 and Lemma A.3 for more details.
The L2-compactness of the sequence uε is implied by an extension of the Proposition 2.1

to functions φ ∈ C
(
S2, L∞(Π3)

)
that are uniformly continuous with respect to n ∈ S2 (see

Corollary A.2 for more details). This argument is used only a finite number of times since
the series expansions of B(u) and of C(u) are absolutely convergent.

2.2.2 Pseudo-Grey approximation

The structure of the proof of Theorem 2.1 under the most general assumption d) is similar as
the one in Section 2.2.1. We construct suitable Green’s functions similar to the one for the
Grey approximation, i.e. Qa,s(ν) ≡ 1. For u and F defined as in (2.10) we obtain a fixed-point
equation which is then regularized via the convolution with mollifiers. Finally, we apply the
appropriate version of the L2-compactness result in Proposition 2.1.



Chapter 3

Equilibrium and non-equilibrium
diffusion approximation

This chapter summarizes the results in the article “Equilibrium and Non-Equilibrium diffusion
approximation for the radiative transfer equation” [36], which is joint work with J. J. L.
Velázquez. In Appendix B the latest version of this paper can be found, to which both
authors contributed equally.

This article studies using matched asymptotic expansions the diffusion approximation of
the radiative heat transfer problem. Specifically, both the time-dependent and the stationary
problems are considered. The first one is obtained coupling the radiative transfer equation
(1.3) with the energy balance equation (1.19). The second one is constituted by the time-
independent equation (1.3) and the divergence-free condition for the radiation energy flux
(1.22). These problems are studied under the assumption that the total mean free paths of
the photons is very small compared to the characteristic size of the domain. Using matched
asymptotic expansions we formally derive, on the one hand, the limit problems that the radia-
tion intensity Iν and the temperature T should satisfy in the bulk. On the other hand, we also
obtain the boundary and initial layer equations describing the behavior of the radiation close
to the boundary and for small times. These are the regions where the diffusion approximation
fails.

The main aim of this work is to give an accurate mathematical description of the so-called
equilibrium and non-equilibrium diffusion approximation (cf. [108,152]).

In the following sections we define the exact form of the problem we are considering and we
introduce the concept of equilibrium and non-equilibrium diffusion diffusion approximation
(Section 3.1). We also illustrate the method of matched asymptotic expansions largely used in
the article [36] and we apply it to a particular example (Section 3.2). Finally, we summarize
and discuss the limit problems obtained in the article.

3.1 Main results

Before writing the precise formulation of the equations studied in ([36], Appendix B), we need
to define some particular length scales.

First of all, we consider a convex domain Ω ⊂ R3, whose size is comparable in all space
directions and such that diam(Ω) = sup

x,y∈Ω
|x− y| =: L is of order 1. We assume without loss

of generality L = 1.

The mean free path of the photons is defined as the characteristic length that the photons
can travel before being absorbed or scattered. The absorption mean free path (i.e. the mean

35



36 CHAPTER 3. EQUILIBRIUM AND NON-EQUILIBRIUM DIFFUSION

free path associated to the emission-absorption process), which will be denoted by ℓA, and
the scattering mean free path, denoted by ℓS , are mathematically defined by the order of
magnitude of the reciprocal of the absorption and of the scattering coefficient, respectively.

The mean free path of the photons is defined by the Milne length

ℓM = min{ℓA, ℓS},

which in the diffusion approximation regime is considered to be very small compared to L,
i.e. ℓM ≪ L = 1.

In order to fully describe the problem, another characteristic length is required, which is
the so-called thermalization length, and it is defined by

ℓT =
√
ℓAℓM ≳ ℓM .

Finally, it turns out that in the time-dependent case significant changes of the temperature
occur at times of the same order of magnitude as the heat parameter, which is defined as

τh =
ℓA

min{ℓ2T , 1}
≫ 1.

It is important to notice that ℓA, ℓS , ℓM , ℓT are all non-dimensional. This is due to the
choice of L = 1 and to the fact that all parameters are actually defined by ℓ

L . Therefore, also
τh is non-dimensional.

3.1.1 Formulation of the problem

We now replace in equations (1.3), (1.19), (1.21) and (1.22) the absorption and the scattering
coefficient by αa

ν
ℓA

and by αs
ν
ℓS
, respectively, and we rescale the time as t 7→ τht. We recall that

throughout this thesis the scattering kernel K is invariant under rotation and normalized.

The stationary problem that we want to study is
n · ∇xIν(x, n) =

αa
ν(x)
ℓA

(Bν(T (x))− Iν(x, n))

+ αs
ν(x)
ℓS

(´
S2 K(n, n′)Iν(x, n′) dn′ − Iν(x, n)

)
x ∈ Ω, n ∈ S2,

div
(´∞

0 dν
´
S2 dn nIν(n, x)

)
= 0 x ∈ Ω, n ∈ S2,

Iν(n, x) = gν(n) x ∈ ∂Ω, n · nx < 0,

(3.1)

cf. (B.12). We also examine the time-dependent problem, which is given by

1
c∂tIν(t, x, n) + τhn · ∇xIν(t, x, n) =

αa
ν(x)τh
ℓA

(Bν(T (t, x))− Iν(t, x, n))

+ αs
ν(x)τh
ℓS

(´
S2 K(n, n′)Iν(t, x, n′) dn′ − Iν(t, x, n)

)
x ∈ Ω, n ∈ S2, t > 0,

∂tT + 1
c∂t
(´∞

0 dν
´
S2 dn Iν(t, n, x)

)
+ τh div

(´∞
0 dν

´
S2 dn nIν(t, n, x)

)
= 0 x ∈ Ω, n ∈ S2, t > 0,

Iν(0, x, n) = I0(x, n, ν) x ∈ Ω, n ∈ S2,
T (0, x) = T0(x) x ∈ Ω,

Iν(t, n, x) = gν(t, n) x ∈ ∂Ω, n · nx < 0, t > 0,

(3.2)
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where the speed of light c will be consider to be of different orders of magnitude, cf. (B.10).
In the case where we assume c→ ∞, (3.2) takes the following form

n · ∇xIν(t, x, n) =
αa
ν(x)
ℓA

(Bν(T (t, x))− Iν(t, x, n))

+ αs
ν(x)
ℓS

(´
S2 K(n, n′)Iν(t, x, n′) dn′ − Iν(t, x, n)

)
x ∈ Ω, n ∈ S2, t > 0,

∂tT + τh div
(´∞

0 dν
´
S2 dn nIν(t, n, x)

)
= 0 x ∈ Ω, n ∈ S2, t > 0,

T (0, x) = T0(x) x ∈ Ω,

Iν(t, n, x) = gν(t, n) x ∈ ∂Ω, n · nx < 0, t > 0,

(3.3)
cf. (B.11). Problems (3.1), (3.2) and (3.3) are studied considering all possible relative scalings
between ℓA, ℓS and L under the assumption ℓM → 0.

3.1.2 Equilibrium and non-equilibrium diffusion approximation

Via matched asymptotic expansions we show that, as ℓM → 0, the radiation intensity solves
a diffusion equation in the bulk. However, the exact form of this equation, and thus the
behavior of Iν , depends very much on the value of ℓA and ℓS . Indeed, ℓM → 0 either because
ℓA → 0 or because ℓS → 0. The distinct nature of the emission-absorption process and of the
scattering process is the reason of the different diffusion approximations that we obtain after
considering all possible relative scalings between the characteristic lengths. Indeed, while the
first process relates Iν to Bν(T ) driving the radiation intensity towards the Planck equilibrium
distribution, the latter one modifies Iν making it isotropic but does not affect T .

These different features of the radiative processes are reflected in the fact that, according
to the ratio between ℓA and ℓS , the radiation intensity approximates the Planck distribution
Bν(T ) or not. The first case is defined in the literature as equilibrium diffusion approximation,
and the second one as non-equilibrium diffusion approximation (cf. [108,152]).

Instead of considering the lengths ℓA, ℓS and L, it is more convenient to examine the
relative scalings between ℓM , ℓT and L. These lengths also describe the thickness of the two
nested boundary layers emerging since Iν does not need to be isotropic (nor Bν(T )) at the
boundary ∂Ω or at time t = 0. These are the regions where the diffusion approximation is not
satisfied and where Iν modifies its behavior turning into an isotropic function when moving
away form the boundary and in some cases even approaching Bν(T ).

The first boundary layer appearing is denoted as Milne layer and it is located in a region
of thickness ℓM near ∂Ω. In this layer Iν becomes isotropic.

In the case of the equilibrium diffusion approximation another boundary layer emerges.
This is the so-called thermalization layer of thickness ℓT . In this region the leading order of
Iν , which became isotropic in the Milne layer, changes until it approximates Bν(T ), where T
is a further unknown of the problem. If ℓM ≈ ℓT this boundary layer coincides with the Milne
layer.

ℓM = ℓT ≪ L ℓM ≪ ℓT ≪ L ℓM ≪ ℓT = L ℓM ≪ L≪ ℓT
Milne layer Milne = Yes Yes Yes

Thermalization
layer

Thermalization Yes ≈ Bulk No

Bulk
Equilibrium
diffusion
approximation

Equilibrium
diffusion
approximation

Transition from
equilibrium to
non-equilibrium
approximation

Non-
equilibrium
diffusion
approximation

Table 3.1: Main results of ([36], Appendix B) (cf. Table B.1).
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We presented Table B.1 of Appendix B (cf. also [36]), which summarizes the results obtained
for the different relative scaling between the characteristic lengths. This table shows in which
cases Iν approaches Bν(T ) and when it does not happen. Moreover, it summarizes which
boundary layer appears. Finally, we remark that in the time-dependent case two nested
initial layers may also emerge.

3.2 Matched asymptotic expansions

We study equations (3.1), (3.2) and (3.3) via matched asymptotic expansions replacing ℓM =

ε≪ 1, ℓA = ε−β and ℓS = ε−γ for min{γ, β} = −1. By definition we see that if ℓT = ε
1−β
2 ≲ 1

then the heat parameter satisfies τh = ε−1, otherwise τh = ℓA. In the following section we
explain how the method of matched asymptotic expansions has been used.

3.2.1 The description of the method of matched asymptotic expansions

The method of matched asymptotic expansions consists of the following steps. Using suit-
able asymptotic expansions and variables’ rescalings, several approximations to the original
problem are construted. The domain of validity of each of such approximate solutions is a
subdomain of the original domain. Together, these solutions yield a final approximation valid
in the original domain (cf. [94]). In this case, the subdomains that we shall consider are the
bulk of Ω, where dist(∂Ω, x) ≈ 1 and t ≈ 1, the boundary layers, where dist(∂Ω, x) ≪ 1 and
t ≈ 1, the initial layers, where dist(∂Ω, x) ≈ 1 and t ≪ 1 and the initial-boundary layers,
where dist(∂Ω, x) ≪ 1 and t≪ 1.

In order to derive the so-called outer problem, i.e. the approximate problem valid in the
bulk of the domain, we use an expansion series. In our specific problem the radiation intensity
is expanded as

Iν(t, x, n) = ϕ0(t, x, n, ν) +
∑
k≥0

εδ+1ψk+1(t, x, n, ν) +
∑
l>0

εlϕl(t, x, n, ν) (3.4)

where δ > is chosen in a suitable way according to the values of ℓA and ℓS . Specifically,
δ = 1+ γ > 0 if β = −1 and δ = β − ⌊β⌋ > 0 if γ = −1, cf. (B.20) and (B.21). We then plug
(3.4) into the considered (initial-)boundary value problem and we compare the terms that are
of the same order of magnitude. Finally, we derive a closed equation for the leading order of
the radiation intensity Iν and for the temperature T .

The boundary layer equations, i.e. the problems describing the boundary layers, are
obtained in a similar way also using an expansion series. In this case, we also need first to
rescale the spatial variable according to

y = −x− p

ℓ
· np,

where x ∈ Ω is in a neighborhood of p ∈ ∂Ω, np ∈ S2 is the outer normal at p and ℓ ∈ {ℓM , ℓT }.
Under the further assumption that in regions very close to the boundary Iν and T depend only
on the distance to the boundary, the resulting boundary layer equations are one-dimensional
stationary problems describing the behavior of Iν and T in a neighborhood of every point
p ∈ ∂Ω.

For every p ∈ ∂Ω, the asymptotic lim
y→∞

Iν gives the boundary condition that is valid for

the next nested subdomain. This is the so-called matching.
The initial layers appearing in the time-dependent problem (3.2) are obtained similarly

as we did for the boundary layers. In this case we rescale the time by t = ε
cτh

for the initial
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Milne layer, and by t =
ℓ2T
c τ for the initial thermalization layer if ℓM ≪ ℓT ≪ 1. First order

ODEs are obtained expanding Iν via asymptotic series. Once again, the limit lim
τ→∞

Iν gives

the initial condition for the outer problem (or for the initial thermalization layer).
The equations describing the approximate solutions in the initial-boundary layers are

obtained rescaling in a proper way both the space and the time variables and expanding the
radiation intensity via expansion series. For more details we refer to the Sections B.4, B.5
and B.6 in Appendix B.

3.2.2 An application’s example of matched asymptotic expansions

In this section we show an example of how the method of matched asymptotic expansions has
been used in ([36], Appendix B). Let us consider the stationary problem (3.1) with ℓM = ℓA = ε
and ℓS = 1. Then the system can be rewritten as

n · ∇xIν(x, n) =
αa
ν(x)
ε (Bν(T (x))− Iν(x, n))

+ αsν(x)
(´

S2 K(n, n′)Iν(x, n′) dn′ − Iν(x, n)
)

x ∈ Ω, n ∈ S2,
div
(´∞

0 dν
´
S2 dn nIν(n, x)

)
= 0 x ∈ Ω, n ∈ S2,

Iν(n, x) = gν(n) x ∈ ∂Ω, n · nx < 0.

(3.5)
First of all, we expand Iν as the following series

Iν(x, n) = ϕ0(x, n) + εϕ1(x, n) + ε2ϕ2(x, n) + ...

and we plug it into the radiative transfer equation in (3.5). The comparison of the terms of
order ε−1 gives

Bν(T (x)) = ϕ0(x, n).

Thus, Iν approaches the Planck distribution in the Bulk and it is also isotropic. Moreover,
the terms of order 1 imply, using that K is symmetric,

n · ∇xBν(T (x)) = −αaν(x)ϕ1(x, n)),

so that
Iν(x, n) = Bν(T (x))−

ε

αaν(x)
n · ∇xBν(T (x)) +O(ε2).

Plugging this expression into the divergence-free condition in (3.5), we conclude that in the
bulk Iν approximate Bν(T ), where T solves

div

(ˆ ∞

0

∇xBν(T (x))

αaν(x)
dν

)
= 0. (3.6)

Since ℓM = ℓT , there is only the Milne layer appearing. According to the rescaling y =
−x−p

ε ·np, we obtain, as ε→ 0, the following boundary layer equation for p ∈ ∂Ω (cf. (B.26))
−(n · np)∂yIν(y, n; p) = αaν(p)(Bν(T (y, p))− Iν(y, n; p)) y > 0 , n ∈ S2,
div
(´∞

0 dν
´
S2 dn (n · np)Iν(y, n; p)

)
= 0 y > 0, n ∈ S2,

Iν(0, n; p) = gν(n) n · np < 0.

(3.7)

3.3 Summary of the results

We conclude this chapter with a summary and a discussion of the results obtained in ([37],
Appendix B).
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3.3.1 Stationary problem

We start collecting the outer problems obtained in the bulk for the stationary diffusion ap-
proximation of the problem (3.1). We refer to Section B.3.

As we have seen, in the case ℓM = ℓT ≪ 1 and ℓA ≪ ℓS the radiation intensity is at the
leading order the Planck distribution Bν(T ) solving equation (3.6).

The outer problem for ℓM = ℓT = ℓA = ℓS ≪ 1 is a different one. In this case the equi-
librium diffusion approximation still holds, but T solves in the bulk

div

(ˆ ∞

0
dν

1

αaν(x) + αsν(x)

(ˆ
S2
dn n⊗ (Id−Aν,x)

−1 (n)

)
∇xBν(T (x))

)
= 0

for a suitable invertible operator (Id−Aν,x) related to the scattering operator, cf. (B.29).

The outer problem for ℓM ≪ ℓT ≪ 1 is very similar. It is given by

div

(ˆ ∞

0
dν

1

αsν(x)

(ˆ
S2
dn n⊗ (Id−H)−1 (n)

)
∇xBν(T (x))

)
= 0,

where H[φ] =
´
S2 K(·, n′)φ(n′)dn′.

The case ℓM ≪ ℓT ≈ 1 is the critical case in which the thermalization layer corresponds
to the bulk and we obtain a non-equilibrium diffusion approximation. In this case the outer
problem describes the isotropic leading order ϕ0 of Iν and the temperature T through the
following screening equation{
ϕ0(x, ν)− 1

4παa
ν(x)

div
(

1
αs
ν(x)

(´
S2 n⊗ (Id−H)−1 (n) dn

)
∇xϕ0(x, ν)

)
= Bν (T (x)) x ∈ Ω,´∞

0 dν αaν(x) (Bν(T (x))− ϕ0(x, ν)) = 0 x ∈ Ω.

(3.8)
The first equation is called screening equation because it describes the transition from the
equilibrium to the non-equilibrium approximation. Indeed, if αaν(x) was much larger than 1,
then ϕ0(x, ν) = Bν(T (x)) leading to the equilibrium diffusion approximation. On the other
hand, if αaν(x) ≈ 0, then the first equation of (3.8) reduces to the divergence term being equal
to zero and thus ϕ0 is independent of the temperature T .

Finally, when ℓM ≪ 1 ≪ ℓT we obtain a non-equilibrium diffusion approximation where
Iν → ϕ0. Moreover, the leading order becomes isotropic and solves

div

(
1

αsν(x)

(ˆ
S2
n⊗ (Id−H)−1 (n) dn

)
∇xϕ0(x, ν)

)
= 0,

while the temperature is recovered by the divergence-free condition as
ˆ ∞

0
dν αaν(x) (Bν(T (x))− ϕ0(x, ν)) = 0.

We remark that in all the cases where ℓM = ℓS the properties of the scattering operator have
been used, which are studied in Proposition B.1 and in Proposition B.2.

3.3.2 Time-dependent problem

In ([36], Appendix B) we consider three different time-dependent problems according to the
different relative values of the speed of light with respect to the characteristic quantities.

In Section (B.4) the limit problem are constructed for the time-dependent problem (3.3)
when c → ∞. It is interesting to notice that in this case no initial layer appears, while
initial-boundary layers emerge.
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In Section B.5 we consider the diffusion approximation for the problem (3.2) where c = 1.
We obtain a complete picture analyzing also the initial layers. As expected, in the case where
ℓM ≪ ℓT ≪ 1 also an initial thermalization layer of thickness ℓ2T appears in which Iν from
being isotropic becomes Bν(T ). Initial Milne layers with thickness ετ−1

h also emerge. Here Iν
becomes isotropic.

A similar result is obtained in Section B.6 for (3.2) and c = ε−κ and κ > 0. It is interesting
to notice that while in this case the outer problems correspond to the ones obtained in Section
B.4 for c = ∞, initial layers also appear.
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Chapter 4

Stationary diffusion approximation
for absorption-emission process

This chapter is based on the article “On the diffusion approximation of the stationary radia-
tive transfer equation with absorption and emission” [37], which is joint work with J. J. L.
Velázquez. In Appendix C can be found the peer reviewed and published paper, in which
both authors collaborated equally.

This work studies the diffusion approximation of the stationary radiative transfer equation
(1.20) coupled to the divergence-free condition of the radiation energy flux. In particular,
radiation takes place only through emission-absorption, i.e. in the absence of scattering
processes. Furthermore, the particular case of the Grey approximation is considered, in which
the absorption coefficient αν(x) = α(x) does not depend on the frequency ν > 0. Moreover,
the situations in which α(x) is independent of the temperature T and it is either constant or
it depends on the spatial coordinate are taken into account. Assuming that the mean free
path of the photons is much smaller than the characteristic size of the domain, we study the
problem as ε→ 0

n · ∇xIν (x, n) =
α(x)
ε (Bν (T (x))− Iν (x, n)) x ∈ Ω,

∇x · F(x) := divx
(´∞

0

´
S2 nIν(x, n) dn dν

)
= 0 x ∈ Ω,

Iν (x, n) = gν (n) x ∈ ∂Ω and n ·Nx < 0.

(4.1)

We remark that, as done in Chapter 3, we rescaled the original absorption coefficient so that
α ≈ 1 in (4.1). Unlike in the rest of the thesis, in order to be consistent with the notation
in [37], in this chapter we denote by Nx the outer normal on x ∈ ∂Ω, instead of nx.

Even though the scattering term is absent, i.e. αsν ≡ 0, (4.1) is reminiscent to the station-
ary problem considered formally in Chapter 3 where the absorption length ℓA = ℓM = ε≪ 1
represents also the total mean free path of the photons while the scattering length satisfies
ℓS ≫ ℓA. According to the theory in Chapter 3, problem (4.1) is an example of equilibrium
diffusion approximation. Indeed, the problem solved by (Iν , T ) as ℓA = ε→ 0 is the same as
the one derived in Section 3.2.2. In ([37], Appendix C) we prove rigorously the convergence
to the limit problem obtained by matched asymptotic expansions as explained in Chapter 3.
In particular the Milne problem (3.7) of the previous chapter is carefully studied.

As we observed in Section 1.4, the stationary radiative heat transfer in the Grey approxi-
mation, for instance problem (4.1), is equivalent to the one-speed neutron transport equation
(1.26), which in this specific case has constant scattering kernel K(n, n′) = 1

4π . The rigorous
study of the diffusion approximation for this form of neutron transport equation has been
considered by Bensoussan, Lions and Papanicolaou [19] with stochastic methods as well as by
Guo and Wu [148] for constant coefficients α ≡ 1 via L2 − Lp − L∞ estimates.

43
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The proof in ([37], Appendix C) is a new approach, which uses strongly the structure of
the radiative transfer equation, for instance the fact that in (4.1) there are two unknowns,
namely Iν and T . Following the method explained in Section 1.5 we study the equivalent
problem obtained reducing (4.1) to a non-local integral equation for the temperature using
maximum-principle methods as main tool.

The main result that we prove is Theorem C.1 and it can be summarized as follows.

Theorem 4.1 (cf. [37], Summary of Theorem C.1). Let α ∈ C3 (Ω) with 0 < c0 ≤ α ≤ c1,
gν ≥ 0 and gν ∈ L∞(S2, L1(R+)), Ω ⊂ R3 bounded convex with C3-boundary and strictly
positive curvature. Let (Iεν , Tε) be the solution to problem (4.1). Then there exists a functional
TΩ : L∞ (S2, L1 (R+)

)
→ C (∂Ω) which maps gν to a continuous function TΩ[gν ](p) on the

boundary p ∈ ∂Ω such that

(Iεν(x, n), Tε(x)) → (Bν (T (x)) , T (x))

uniformly in every compact subset of Ω as functions with values in L∞ (S2, L1(R+)
)
× R+,

where T is the solution to the Dirichlet problem{
−div

(
4πσ
α ∇T 4

)
= 0 x ∈ Ω,

T (p) = TΩ[gν ](p) p ∈ ∂Ω.

In the following sections we outline the steps that we performed in order to prove Theorem
4.1. First of all, in Section 4.1 we derive using matched asymptotic expansions the outer
problem and the boundary layer equation describing the approximate solution to (4.1). This
is actually very similar to what we explained in Section 3.2.2. We will then study the boundary
layer equation, also known as Milne problem, and we prove its well-posedness via the reduction
to a non-local equation for the temperature. We also study the asymptotic behavior of the
solutions to the Milne problem, cf. Section 4.2. Section 4.3 deals with the rigorous proof of
the convergence to the diffusion approximation problem in the case of constant absorption
coefficient. Finally, we summarize in Section 4.4 the main differences for the situation in
which α(x) depends on x ∈ Ω.

4.1 Derivation of the limit problem

Using matched asymptotic expansions as we did in Section 3.2.2, we observe that the leading
order Iεν solving (4.1) approaches the Planck distribution Bν(T ) of the temperature T , which
is a further unknown of the problem and it solves the outer problem

−div

(
1

α(x)
∇u
)

= 0, (4.2)

where u = 4πσT 4. In the case α ≡ 1 the problem reduces to the Poisson equation −∆u =
0. According to the definition given in Chapter 3, this is a case of equilibrium diffusion
approximation.

The boundary layer equation describing the Milne layer, in which the radiation intensity
becomes at the same time isotropic and equal to the Planck distribution Bν(T ), is described
by the following Milne problem obtained rescaling y = x−p

ε , for p ∈ ∂Ω and x ∈ Ω.
n · ∇yIν (y, n) = αν(p) (Bν (T (y))− Iν (y, n)) y ∈ Πp,

divy
(´∞

0

´
S2 nIν(y, n) dn dν

)
= 0 y ∈ Πp,

Iν (y, n) = gν (n) y ∈ ∂Πp and n ·Np < 0,

(4.3)
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where Πp = R−1
p

(
R+ × R2

)
and Rp = Rotp(· − p) is the rigid motion defined by Rotp(Np) =

−e1. Notice that after a suitable change of coordinates, (4.3) is equivalent to
n · ∇yIν (y, n) = αν(0) (Bν (T (y))− Iν (y, n)) y ∈ R+ × R2,

divy
(´∞

0

´
S2 nIν(y, n) dn dν

)
= 0 y ∈ R+ × R2,

Iν (y, n) = gν (n) := gν
(
Rot−1

p (n)
)

y ∈ {0} × R2, and n ·N < 0,

(4.4)

where N = −e1 and with some abuse of notation we denote Iν
(
R−1
p (y),Rot−1

p (n)
)
as Iν (y, n).

Moreover, we remark that, assuming that Iν and T depend only on the distance to the
boundary in direction Np, the boundary layer equation (4.3) reduces to the Milne problem
given in (3.7).

In the next section we will see that for the solution (Iν , T ) of (4.4) there exists a limit
lim
y→∞

T (y; p) = TΩ[g](p), where p ∈ ∂Ω. The matching with the outer problem implies that

TΩ[g](·) is the boundary value for the outer problem (4.2).

4.2 Boundary layer equation

Without loss of generality we can assume α(p) ≡ 1. This can be obtained by the rescaling
y = x−p

ε α(p). Moreover, solving by characteristics the first equation in (4.4), we get similarly
to (1.28)

Iν(y, n; p) = gν(n)e
s(y,n)1n·N<0 +

ˆ s(y,n)

0
e−tBν(T (y − tn; p)) dt,

where s(y, n) = |y − Y (y, n)| for Y (y, n) = {y − tn : t > 0} ∩ {0} × R2 if n · N < 0 and
s(y, n) = ∞ otherwise. We put the variable p in order to emphasize the dependence of the
boundary layer solutions to the point p ∈ ∂Ω. Notice that if n ·N < 0, then s(y, n) = y1

|n·N | .

Thus, using the divergence free condition of the radiation flux, defining ū(y, p) = 4πσT 4(y, p)
and assuming that (Iν , T ) depends only on y1, we obtain

ū(y1, p)−
ˆ
R+×R2

e−|y−η|

4π|y − η|2 ū(η1, p)dη =

ˆ ∞

0
dν

ˆ
n·N<0

dn gν(n)e
− y1

|n·N| ,

where we also changed from spherical to Cartesian coordinates according to

ˆ
S2
dn

ˆ s(x,n)

0
dtf(y − tn) =

ˆ
R+×R2

e−|y−η|

|y − η|2dy.

An application of Fubini theorem and another change of coordinates give for y ∈ R+

ū(y, p)−
ˆ ∞

0
K(y − η)ū(η, p)dη =

ˆ ∞

0
dν

ˆ
n·Np<0

dn gν(n)e
− y

|n·Np| =: Gp(y), (4.5)

where K(x) = 1
2

´∞
|x|

e−t

t dt is the normalized exponential integral, whose properties are col-
lected in Proposition C.1 and Proposition C.2. In Section C.3 we study the well-posedness of
(4.5) and the asymptotic behavior of the solution as y → ∞.

4.2.1 Well-posedness theory

First of all we notice that the operator

L[ū](y) := ū(y)−
ˆ ∞

0
K(y − η)ū(η) dη
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satisfies a maximum principle. This is shown in Lemma C.1 and it implies the non-negativity
and the uniqueness of the solution to (4.5), since any bounded solution to L[u] = 0 is trivial.
This is shown in Theorem C.2 using the supersolution (1 + x)1x>0. In Theorem C.3 the
following is shown.

Theorem 4.2 (cf. [37], summary of Theorem C.3). Let H ∈ C(R+) with 0 ≤ H(x) ≤
Ce−Axχ{x>0} for C,A > 0. Then there exists a unique bounded solution to{

u(x)−
´∞
0 dy K (x− y)u(y) = H(x) x > 0,

u(x) = 0 x < 0.
(4.6)

Moreover, u is continuous on (0,∞).

This theorem implies the well-posedness of (4.5), since 0 ≤ Gp(y) ≤ ∥g∥L∞(S2,L1(R+))e
−y.

The result of Theorem 4.2 is shown using Fourier methods obtaining two suitable functions
u = ũ+ v. Indeed, the Fourier transform of the kernel K is explicit

K̂(ξ) =
1√
2π

arctan(ξ)

ξ
.

This yields the construction of a function ũ, solution to

ũ(x)−K ∗ ũ(x) = H(x)1x>0 −H(−x)1x<0.

Finally, a function v solving

v(x)−K ∗ v(x) = 0 if x > 0 and v(x) = 0 if x < 0

is determined via a method of sub- and supersolutions reminiscent to the Perron method for
the Laplace equation.

4.2.2 Asymptotic behavior of the solution

Since the matching between the outer problem (4.2) and the boundary layer equation (4.5) is
given by lim

y→∞
ū(y, p), which is the boundary value for the limit problem, one needs to study

the asymptotic behavior of ū. In Section C.3.3 we prove the following proposition.

Proposition 4.1 (cf. [37], Summary of Proposition C.3). Let ū(y, p) be the unique non-
negative solution to (4.5). Then

(i) ū is bounded and it is uniformly continuous with respect to y ∈ R+ and Lipschitz con-
tinuous with respect to p ∈ ∂Ω;

(ii) The limit lim
y→∞

u(y, p) = u∞(p) exists, it is Lipschitz continuous and it is uniquely de-

termined by gν and u;

(iii) u∞(p) > 0 unless
∣∣{n ∈ S2 : n ·Np < 0 and

´∞
0 dνgν(n) ̸≡ 0

}∣∣ = 0;

(iv) There exists C > 0 such that sup
p∈∂Ω

|u(y, p)− u∞(p)| ≤ Ce−y/2.

The most involved step in (i) is the proof of the Lipschitz continuity of u(y, p) in the
second variable. The result is based on the estimate

|Gp(y)−Gq(y)| ≤ C(∂Ω, gν)|p− q| for p, q ∈ ∂Ω,

where the smoothness of ∂Ω and the property of the curvature, which is bounded from below,
has been used. The existence of a limit u∞ ≥ 0 (cf. (ii) and (iii)) can be proved via Fourier
methods in the space of distributions using the Riemann-Lebesgue theorem. Finally, also the
exponential decay, i.e. (iv), is obtained analyzing the behavior of the Fourier transform of u
computing suitable contour integrals.
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4.3 Diffusion approximation for α ≡ 1

In order to prove Theorem 4.1 we first assume α ≡ 1. Reformulating the problem (4.1) as
indicated in Section 1.5 as a non-local integral equation for the temperature, we see that the
solution (Iεν , Tε) solving (4.1) is the solution to the equivalent problem

Iεν(x, n) = gν(n)e
− s(x,n)

ε +
1

ε

ˆ s(x,n)

0
e−

t
εBν (T (x− tn)) dt, (4.7)

where uε = 4πσT 4
ε solves

uε(x)−
ˆ
Ω
Kε(y − η)uε(η) dη =

ˆ ∞

0
dν

ˆ
S2
dn gν(n)e

− s(x,n)
ε (4.8)

with Kε =
e−

|·|
ε

4πε|·|2 , cf. (C.60). As proved in Chapter 2, equation (4.8) has a unique bounded

non-negative solution uε ∈ C(Ω).
In order to prove Theorem 4.1 it is enough to show that uε → v uniformly in every compact

set, where v solves the limit problem{
−∆v = 0 in Ω,

v = u∞ on ∂Ω,
(4.9)

which is obtained by matching the outer problem with the boundary layer solution.
The proof of Theorem 4.1 requires many steps and it is based only on maximum principle

arguments. As shown in Section 1.5, the non-local operator LεΩ defined by the left-hand side
of (4.8) satisfies a (global) maximum principle in the following sense, cf. Theorem C.5.

Theorem 4.3 (cf. [37], summary of Theorem C.5). Let v ∈ C(Ω) and O ⊂ Ω open. If
LεΩ(v) ≥ 0 for all x ∈ Ω or if v ≥ 0 on Ω \O and LεΩ(v) ≥ 0 for all x ∈ O, then v ≥ 0.

4.3.1 Uniformly boundedness

Constructing a suitable uniformly bounded family of supersolutions Φε, we prove in Section
C.4.2 that ∥uε∥∞ ≤ C(g,Ω). As given in Theorem C.6, such supersolutions are for instance

Φε(x) = C3

(
C1 − |x|2

)
+ C2


1− γ

1 +
(
d(x)
ε

)2
 ∧

1− γ

1 +
(
µR
ε

)2

 , (4.10)

whereR is the minimal radius of curvature and d(x) = dist(x, ∂Ω). Moreover, C1, C2, C3, µ ∈
(0, 1), γ(µ) ∈ (0, 1/3) are suitable constants. Subdividing Ω and estimating carefully many
integral terms it turns out that

LεΩ(Φε)(x) ≥ ∥g∥L1(S2×R+)e
−d(x)/ε ≥

ˆ ∞

0
dν

ˆ
S2
dn gν(n)e

− s(x,n)
ε

for ε small enough. The idea behind the construction of Φε relies on the properties of LεΩ,
for instance the approximation of − ε2

3 ∆ by the operator LεΩ. Indeed, |x|2 and 1
1+|x|2 are

supersolutions for the Laplace operator (at least for small |x| > 0) with

−∆|x|2 = 6 ∀x ∈ R3 and −∆
1

1 + |x|2 ≥ C

(1 + |x|2)3 > Ce−|x| for |x| < 1

2
√
3
.

On the other hand, another useful property is that

LεΩ[1](x) =
ˆ
Ωc

Kε(x− η)dη =

ˆ −d(x)/ε

−∞
K(z)dz > 0.
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4.3.2 Estimates near the boundary

In order to prove that uε converges to the solution of the boundary value problem (4.9) we
need to show that uε − u is small in regions near the boundary ∂Ω. It is important to recall
that the Milne layer has a thickness ε. Therefore, we cannot expect to be able to approximate
uε by v in regions of distance of order ε to the boundary. In particular, we show that uε − u
is small in regions of size close to ε1/2 to the boundary. These regions are much greater than
the Milne layer.

In Lemma C.9 we first estimate for 0 < δ < 1
16

∣∣LεΩ (U ε(·, p)− uε
)
(x)
∣∣ ≤ Ce−

Ad(x)
ε

{
εδ if |x− p| < ε

1
2
+2δ,

1 if |x− p| ≥ ε
1
2
+2δ,

(4.11)

where U ε(·, p) = u
(
Rp(·)·e1

ε , p
)

and Rp is the rigid motion defined before equation 4.4, so

that Πp = R−1
p

(
R+ × R2

)
. This estimate has been achieved splitting the resulting integral

terms in several integrals over appropriate regions and making large use of the boundary’s
approximations by suitable paraboloids. Indeed, using that ū satisfies equation (4.5) we see
that we have to estimate

∣∣LεΩ (U ε(·, p)− uε
)
(x)
∣∣ ≤ˆ

Πp\Ω
dηKε(η − x)U ε(η, p)

+

ˆ ∞

0
dν

ˆ
S2
dn gν(n)

∣∣∣∣∣e− |x−xΠp
(x,n)|

ε − e−
|x−xΩ(x,n)|

ε

∣∣∣∣∣ ,
where xΠp(x, n) ∈ ∂Πp and x∂Ω(x, n) ∈ ∂Ω connect x in direction n. Moreover, |x −
xΠp(x, n)| = ∞ if x ·Np ≥ 0.

With the help of the key estimate (4.11), we apply the maximum principle in order to
show that |u− uε| is very small in regions adjacent to the boundary of thickness ε1/2+4δ.

To this end, we construct in Proposition C.5 the family of supersolutions defined in (C.115)
for |u−uε|. Once more, the functions in (C.115) are obtained considering suitable combination

of supersolutions for − ε2

3 ∆ on the half space R+ × R2. Indeed, in a small neighborhood of
p ∈ ∂Ω the boundary can be approximated by the plane orthogonal to Np at the point p.

Specifically, we consider the harmonic function arctan
(
xi
x1

)
and the superharmonic functions

−
(
x1
ρ2i

)2
and

(
x1
ρ2i

) 1
2
, where ρ2i = x+1 x

2
i for i = 2, 3. These functions are then combined in

a proper way together with the supersolution defined in (4.10) in order to construct a new

supersolution for (4.11), which is very small in a neighborhood of p ∈ ∂Ω of size ε
1
2
+4δ. We

refer to Corollary C.4.

4.3.3 Uniform convergence

We conclude the proof of Theorem 4.1 for α ≡ 1 showing via maximum principle that

|uε − v| → 0 as ε→ 0 in compact sets.

This result has been proved decomposing Ω in several subdomains, as the following Figure
4.1 shows.
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Ω̂ε

∂Ω

Ωσ

σ

Σε

Figure 4.1: Decomposition of Ω in subdomains for the last step of the proof of the convergence
of uε to v.

In the region Σε, i.e at distances to the boundary of order ε1/2+6δ < dist(x, ∂Ω) ≤ ε1/2+4δ

for 0 < δ < 1
16 , the difference |uε − u∞| is very small. Moreover, in the region Ω̂ε, i.e. for

distances to the boundary of greater order, the maximum principle is applied to the function
|vσ − uε|, where vσ solves the Poisson equation (4.9) on the bigger domain Ωσ = Ω ∪ {x ∈
Ωc : dist(x, ∂Ω) < σ} for σ ≪ 1 independent of ε.

Thus, letting first ε → 0 and then σ → 0 we conclude in Theorem C.7 the uniform
convergence of uε to the unique solution of (4.9) in compact sets.

Finally, the convergence of Iεν → Bν(T ), where 4πσT 4 solves the limit problem (4.9), is
proved applying Lebesgue dominated convergence theorem to the equation (4.7). See Corol-
lary C.5.

4.4 Diffusion approximation for spatially dependent absorp-
tion coefficient

In the case in which the absorption coefficient α(x) depends on x ∈ Ω, we prove Theorem 4.1
under the assumption that it is bounded from above and from below, i.e. 0 < c0 ≤ α(x) ≤
∥α∥C3 = c1 <∞ for c0, c1 > 0.

While in this situation the outer problem in the bulk is given for u = 4πσT 4 by

−div

(
1

α(x)
∇xu

)
= 0

and Iεν → Bν(T ), the boundary layer equation is the same as the one obtained for constant
coefficients in (4.3). Thus, only the proof of the convergence has to be adjusted.

In Section C.5 we proceed refining the proof for constant coefficients for the case of spatially
dependent absorption coefficient. It turns out that the supersolutions and the estimates that
we obtained for α ≡ 1 can be easily adapted and used in this situation. The most important
change is in the definition of the supersolution for uε, i.e. Φε of Theorem C.8, which are given
by

Φε(x) = C3

(eλD + C1 − eλx1
)
+ C2


1− γ

1 +
(
c0d(x)
ε

)2
 ∧

1− γ

1 +
(
c0µR
ε

)2


 ,

where D = diam(Ω). Notice that we replace the term (1− |x|2) of the supersolution in (4.10)
by the term (1− e−λx1) for some λ > 0.
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Since the remaining steps are very similar to what we did for α ≡ 1 and only the estimates
used for the numerous applications of the maximum principle need to be determined also for
the spatially dependent coefficient, we refer to ([37], Appendix C) for the rest of the proof.



Chapter 5

Well-posedness theory for a Stefan
problem with radiation

This chapter is based on the article “Well-posedness for a two-phase Stefan problem with
radiation” [39], which is joint work with J. J. L. Velázquez. The most recent version of
this work can be found in Appendix D. The results in [39] have been obtained by an equal
collaboration between the two authors.

The paper [39] studies the well-posedness theory for a two-phase free boundary problem
modeling the melting of ice assuming that the heat is transferred by conduction in both phases
of the material and also by radiation in the solid phase. As we introduced in Section 1.6.3
it is assumed at initial time t = 0 that the liquid occupies R3

− := {x ∈ R3 : x1 < 0} with
a temperature T larger than the melting temperature TM and that the solid fills the region
R3
+ := {x ∈ R3 : x1 > 0} with T < TM . Initially the interface Γ(t), i.e. the surface separating

the two phases, is Γ(0) = {0} × R2 and its temperature satisfies T = TM .

The assumption of no radiative heat transfer in the liquid is equivalent to the assumption
that the liquid phase is completely transparent. Thus, the radiation escaping from the solid (or
going towards the solid if an external source of radiation is present) simply travels through the
liquid without interacting with it. Under these hypotheses, the evolution of the temperature
in the liquid is described by the heat equation

CL∂tT = KL∆T,

where CL is the volumetric heat capacity of the liquid and KL is the conductivity of the liquid.

On the other hand, according to the heat transfer theory presented in Section 1.3 the
temperature’s evolution of the solid is given by the following coupled equations

CS∂tT (t, x) = KS∆T (t, x)− div
(´∞

0 dν
´
S2 dn nIν(t, x, n)

)
,

n · ∇xIν(t, x, n) = α (Bν(T (t, x))− Iν(t, x, n)) ,

Iν(t, x, n)|x∈Γ(t) = gν(n) n · nx < 0,

where nx is the outer normal at x ∈ Γ(t), Cs and KS are the volumetric heat capacity and
the conductivity of the solid and the absorption coefficient α ≡ const > 0 is assumed to be
constant.

We remark that we are considering the quasi-static radiative transfer equation since the
characteristic time in which the temperature has significant changes is much shorter than the
characteristic time in which Iν stabilizes. This is due to the fact that the photons travel at
the speed of light. Moreover, in [39] and in the following article [38] we consider the situation

51
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in which scattering is negligible (αsν ≡ 0) and in which there is no external source of radiation.
We assume therefore from now on that

gν(n) ≡ 0.

The evolution of the interface Γ(t) is given by the so-called Stefan condition which we now
introduce according to [6, 106,123]. In general the Stefan condition can be written as

V · n =
1

L

[
FL|Γ(t) − FS |Γ(t)

]
· n, (5.1)

where FL is the energy flux inside the liquid and FS is the one inside the solid, V is the
velocity of the moving interface, L is the latent heat and n ∈ S2 is the unit normal, which
points from the liquid to the solid phase. The latent heat is defined as the amount of energy
absorbed by the solid per unit of volume in order to melt at constant melting temperature,
cf. [153]. During solidification, i.e. when the liquid becomes solid, the amount of energy
released per unit of volume of during the phase transition equals to L. We remark that in this
model any change of volume between the two phases during the phase transition is neglected.

Before giving the Stefan condition for the free boundary problem with radiation considered
in [39], let us briefly explain the physical intuition behind (5.1).

Let us assume without loss of generality that in a short time interval (t, t + δt) in a
neighborhood of a point x0 ∈ Γ(t) the solid melts. If this is the case the interface moves
towards the solid and thus V · n > 0. During the process of melting (or of solidification)
energy is absorbed (or released). The energy absorbed during the melting process equals the
latent heat of an infinitesimal volume around the segment x0 + (V · n)δtn, i.e.

L(V · n)dAδt,

where dA is the infinitesimal interface area perpendicular to n containing x0. On the other
hand, the absorbed energy is given by the difference between the energy flux entering in
direction n this infinitesimal volume and the energy flux going out from it in the same time
interval. This leads to the Stefan condition

L(V · n) =
[
FL|Γ(t) − FS |Γ(t)

]
· n.

Solid

Liquid

n

FS

FL

δt(V · n)
dA

Figure 5.1: Interpretation of the Stefan condition.

According to the Fourier law, the heat flux due to conduction is

Fconduction(t, x) = −K∇xT (t, x),
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where K is once more the conductivity of the material. On the other hand, the energy flux
due to radiation is

Fradiation(t, x) =

ˆ ∞

0
dν

ˆ
S2
dn nIν(t, x, n).

It is important to notice that under the assumptions that we have made so far, the radiation
energy flux is continuous at the interface. Indeed, even though the photons do not interact
with the liquid, the radiation intensity Iν is not zero in this phase. Precisely, it is given by the
radiation intensity of the photons escaping from the solid, since there is no external source of
radiation.

Therefore, the Stefan condition for the problem under consideration is the same as the
Stefan condition for the classical Stefan problem, namely

(V · n) = 1

L

(
KS ∇xT |Γ(t) −KL ∇xT |Γ(t)

)
· n.

Under the final assumption that the temperature depends only on x1, which can be interpreted
as the assumption that T depends only on the distance to the interface, the moving interface
is the plane Γ(t) = {s(t)} × R2. Hence, the Stefan condition can be rewritten for n = e1 as

ṡ(t) =
1

L

(
KS∂x1T (t, s(t)

+)−KL∂x1T (t, s(t)
−)
)
.

Finally, the problem that we will study is

CL∂tT (t, x1) = KL∂
2
x1T (t, x1) x1 < s(t),

CS∂tT (t, x1) = KS∂
2
x1T (t, x1)− div

(´∞
0 dν

´
S2 dnnIν(t, x, n)

)
x1 > s(t),

n · ∇xIν(t, x, n) = α (Bν(T (t, x1))− Iν(t, x, n)) x1 > s(t),

Iν(t, x, n) = 0 x1 = s(t), n1 > 0,

T (t, s(t)) = TM x1 = s(t),

T (0, x) = T0(x) x1 ∈ R,
ṡ(t) = 1

L (KS∂x1T (t, s(t)
+)−KL∂x1T (t, s(t)

−)) .

(5.2)

We study the well-posedness theory for (5.2) showing first the existence of a unique solution
for small times, cf. Theorem D.1. Moreover, for a large class of initial values, defined by an
upper bound on the temperature in the liquid, we prove also that there exists a unique global
in time solution, cf. Theorem D.2.

In the following we will summarize the main results and proof’s ideas developed in ([39],
Appendix D). First of all we will briefly derive an equivalent form for (5.2), which we will
study in the rest of this chapter, (cf. Section 5.1). In Section 5.2 we outline the main strategy
for the local well-posedness theory, which is obtained using fixed-point arguments and classical
parabolic theory. We conclude with Section 5.3 giving the key steps for the proof of the global
well-posedness result, which is due to an application of the maximum principle.

5.1 Reduction to an equivalent problem for the temperature

Similarly as we did in Section 1.5 we reduce problem (5.2) to a one-dimensional free-boundary
problem where the only unknowns are the temperature and the position of the interface
s(t). This can be done solving the stationary radiative transfer equation by characteristics.
To this end, for x1 > s(t) and n ∈ S2 with n1 > 0 we denote as usual by y(t, x, n) =
{s(t)} × R2 ∩ {x − τn : τ > 0} the point at the interface connecting x with the interface in
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direction −n. Then we define d(t, x, n) = |x−y(t, x, n)| = x1−s(t)
n1

if n1 > 0 and d(t, x, n) = ∞
if n1 ≤ 0. Solving the radiative transfer equation by characteristic we obtain for x1 > 0

Iν(t, x, n) =

ˆ d(t,x,n)

0
dτα exp (−ατ)Bν(T (t, x1 − τn1)).

Thus, using the Stefan-Boltzmann law (1.4) and changing from spherical to Cartesian coor-
dinates we have

div

(ˆ ∞

0
dν

ˆ
S2
dnnIν(t, x, n)

)
= α

[ˆ ∞

0
dν

ˆ
S2
dn (Bν(T (t, x1))− Iν(t, x, n))

]
=4πσα

[
T 4(t, x1)−

 
S2
dn

ˆ d(t,x,n)

0
dτα exp (−ατ)T 4(t, x1 − τn1)

]

=4πσα

[
T 4(t, x1)−

ˆ
(s(t),∞)×R2

dη
α exp (−α|x− η|)

4π|x− η|2 T 4(t, η1)

]

=4πσα

[
T 4(t, x1)−

ˆ ∞

s(t)
dη1

αE1(α(x1 − η1))

2
T 4(t, η1)

]
,

where E1(x) =
´∞
|x|

e−t

t is the exponential integral. Notice that this operator is similar to the
one obtained in Chapter 4.

After a suitable time and space rescaling and changing to the non-moving coordinate
system, the problem (5.2) is equivalent to

∂tT1(t, y)− ṡ(t)∂yT1(t, y) =
K
C ∂

2
yT1(t, y) y < 0,

∂tT2(t, y)− ṡ(t)∂yT2(t, y) = ∂2yT2(t, y)− T 4
2 (t, y) +

´∞
0 dξ αE1(α(y−ξ))

2 T 4
2 (t, ξ) y > 0,

T1(t, 0) = T2(t, 0) = TM y = 0,

T (0, y) = T0(y) y ∈ R,
ṡ(t) = 1

L (∂yT2(t, 0)−K∂yT1(t, 0)) ,

(5.3)
where K, C, α, L are new constants obtained from the original ones by the rescaling.

5.2 Local well-posedness theory

We outline here the local well-posedness result obtained in Theorem D.4 and in Proposition
D.3, which can be summarized as follows

Theorem 5.1 (Local well-posedness, cf. [39], Theorem D.4 and Proposition D.3). Let T0 ∈
C0,1(R) with T0(0) = TM , T0|R− > TM and 0 < T0|R+

< TM . Assume also T0|R± ∈ C2,δ(R±)
for some δ ∈ (0, 1/2). Then there exists t∗ > 0 such that there exists a unique solution
(T1, T2, s) to (5.3) with

(i) (T1, T2, ṡ) ∈ Cδ/2,1+δt,y ((0, t∗)× R−)× Cδ/2,1+δt,y ((0, t∗)× R+)× Cδ/2([0, t∗]);

(ii) (T1, T2, s) ∈ C1,2
t,y ((0, t∗)× R−)× C1,2

t,y ((0, t∗)× R+)× C1([0, t∗]);

(iii) as long as (T1, T2, s) exists, the temperature satisfies T1 ≥ TM and 0 ≤ T2 ≤ TM . In
addition, the strict inequalities hold in open subsets of R±.

The Hölder spaces Cδ/2,1+δt,y ((0, t)× U) are defined in Section D.1.4 and are those spaces
whose functions f are δ/2-Hölder in time with ∂yf δ-Hölder in space.

For the proof of the Theorem 5.1 we actually consider ui = Ti − TM solving (5.3) for
TM = 0 and u(0, y) = u0(y) = T0(y)− TM .
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5.2.1 Existence and uniqueness of solutions

In order to prove claims (i) and (ii) of Theorem 5.1 we first prove the existence of functions
(u1, u2, s) ∈ C0,1

t,y ((0, t∗)× R−)×C0,1
t,y ((0, t∗)× R+)×C1((0, t∗)) solving (5.3) in distributional

sense. Later we prove the higher regularity stated in Theorem 5.1.
We consider the first two equations in (5.3) as heat equations on the half-spaces with

external sources given by
F1(t, y) = ṡ(t)∂yu1(t, y) on R−

and

F2(t, y) = ṡ(t)∂yu2(t, y)− (u2(t, y) + TM )4 +

ˆ ∞

0
dξ

αE1(α(y − ξ))

2
(u2(t, ξ) + TM )4 on R+.

Using the Green’s function for the heat equation in the half space we obtain integral rep-
resentation formulas for u1, u2, ∂yu1, ∂yu2 and ṡ, which are implicit since they depend on

these functions. These equations define an operator on the space X = C0,1
t,y ((0, t∗)× R−) ×

C0,1
t,y ((0, t∗)× R+) × C0((0, t∗)), which for times t∗ > 0 small enough can be shown to be a

contractive self-map on A = {(u1, u2, ṡ) ∈ X : ∥u1∥0,1 ≤ C1, ∥u2∥0,1 ≤ C2, ∥ṡ∥C0 ≤ C3

}
,

where the constant C1, C2, C3 depend only on the norm of u0 and of its piecewise defined
derivative. For the exact definition of the norms considered for A we refer to the proof of
Theorem D.3.

Thus, there exists a unique solution solving (5.3) in distributional sense. The strategy
of using a fixed-point approach is similar to the idea used also by Rubenštĕın [123] and by
Friedman [55] for the classical Stefan problem.

We remark that s ∈ C1((0, t∗)) satisfies the Stefan condition for u1, u2 in the classical
sense. Hence, fixing s ∈ C1((0, t∗)) as the position of the interface obtained for the given
initial temperature u0, we study the regularity of the parabolic problems
∂tu1(t, y = K

C ∂
2
yu1(t, y) + F1(t, y) y < 0,

u1(t, 0) = 0,

u1(0, y) = u0(y) y < 0,

and


∂tu2(t, y) = ∂2yu2(t, y) + F2(t, y) y > 0,

u2(t, 0) = 0,

u2(0, y) = u0(y) y > 0.

(5.4)
Classical parabolic regularity (cf. [91]) implies that u1, u2 have a Hölder regularity of the

form ui ∈ Cα/2,1+βt,y for any α, β ∈ (0, 1). Thus, claim (i) of Theorem 5.1 is proved.

The properties of the Hölder space imply also that ṡ ∈ C
δ/2
t . Moreover, the convolution

of an Hölder function with the exponential integral is also Hölder continuous, so that we

conclude Fi ∈ Cδ/2,δt,y . A further application of classical parbolic regularity implies the desired
regularity in claim (ii) of Theorem 5.1. Thus, (u1, u2, s) is the unique classical solution to
(1.39). We refer to Theorem D.4 for more details.

5.2.2 Properties of the solutions

In order to prove the property (iii) of Theorem 5.1, we apply the maximum principle. Since
the parabolic equations satisfied by u1 and u2 are defined on an unbounded domain, we
need to consider a sequence of approximate solutions solving suitable parabolic equations on
bounded domains and converging to the solutions of the original problem (5.4). Applying
the maximum principle to these approximate solutions and using the convergence result we
conclude the proof of claim (iii) of Theorem 5.1. We refer also to Lemma D.4, which shows
that there are sequences uRn

i whose maximal interval of existence approximates the one of the



56 CHAPTER 5. STEFAN PROBLEM: WELL-POSEDNESS

solution to the Stefan problem (5.3), and to Proposition D.3, which is about the application
of the maximum principle.

5.3 Global well-posedness theory

In the classical Stefan problem, where there is no non-linear non-local integral operator as
source of the heat equation, the existence of a unique classical solution for arbitrary times can
be shown using the maximum principle. In this way, one obtains that the temperature and its
derivative are bounded uniformly in time by constants, which only depend on the initial data.
The method used by Rubenštĕın [123] for the two-phase one-dimensional Stefan problem on
a finite segment consists for instance in the application of the maximum principle to ∂yTi in
every interval of time (ti, ti+1) in which ṡ(t) has a constant sign.

However, when we consider problem (5.3) this approach does not apply anymore. Indeed,
even though the parabolic equation describing the temperature in the solid has a global
maximum principle, its sub- and supersolution do not allow time-independent bounds on
∂yT2. Therefore, we use another strategy which also makes use of the maximum principle.

We assume that the maximal interval of existence of the unique solution (T1, T2, s) is finite,
i.e. there exists t∗ < ∞ such that the solution cannot be extended for t > t∗. In Theorem
D.5 we prove that for a large class of initial data the norms of T1, T2, ∂yT1, ∂yT2 and ṡ are
bounded uniformly in [0, t∗]. Hence, according to Theorem 5.1, the solution can be extended
for times t > t∗, so that t∗ = ∞.

This can be done with the help of a time-independent function w, which is a supersolution
for y < 0 and a subsolution for y > 0 of the problem (5.3). Moreover, ∂yw(0

−) > − L
KC2

and ∂yw(0
+) > −LC1 for suitable constants C1, C2 > 0. Finally, the auxiliary function w is

constructed in a way, so that w(y) > T0(y) on R− and w(y) < T0(y) on R+.

T0(y)

0

K
C
w′′(y)− C1w′(y) = 0

w′′(y) + C2w′(y) ≥ (w(y))4

TM

TM + κL2

KTM

y

Figure 5.2: Representation of w.

Such a function w has been constructed in Lemma D.5 under the further assumption that
the initial temperature satisfies in addition to the condition of Theorem 5.1 also the property

sup
R−

T0 < TM +
κL2

KTM
and inf

R+

T0 > 0. (5.5)

Finally, in Theorem D.5 we prove with the help of the maximum principle that

∥Ti∥∞ ≤ max{∥w∥∞, TM},
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since T1(t, y) ≤ w(y) for all y < 0 and t ∈ [0, t∗] and w(y) ≤ T2(t, y) ≤ TM for all y > 0 and
t ∈ [0, t∗]. Since 0 ≥ ∂yTi(0

±) > w′(0±) a straight consequence is

∥ṡ∥∞ ≤ max{C1, C2}.

Finally, in order to prove that also the norms ∥∂yTi∥∞ are bounded we apply the maximum
principle to the parabolic equations satisfied by ∂yTi, which are obtained differentiating the
original equations in (5.3) for Ti. Constructing suitable new sub- and supersolutions it turns
out that

∥∂yT1∥∞ ≤ |w′(0−)|(1 + t∗) <∞ and ∥∂yT2∥∞ ≤ C
(
|w′(0+), TM , C1|

)
e4T

3
M t∗ <∞.

This concludes the proof of the global in time well-posedness of the Stefan problem (5.3) for
the class of regular initial data satisfying the assumptions of Theorem 5.1 and the condition
(5.5).



58 CHAPTER 5. STEFAN PROBLEM: WELL-POSEDNESS



Chapter 6

Theory of traveling waves for a
Stefan problem with radiation

This chapter summarizes the main results obtained in “Traveling waves for a Stefan problem
with radiation” [38], which is joint work with J. J. L. Velázquez and in which both authors
contributed equally. The most recent version of this article can be read in Appendix E.

In [38] the study of the one-dimensional two-phase free boundary problem introduced
in [39] is extended. This problem models the phase transition of a material composed by
a liquid and a solid phase at contact in the situation in which the heat is transported by
conduction in both phases and it is transferred also by radiation only in the solid part. As
we summarized in Chapter 5, in ([39], Appendix D) we developed a well-posedness theory for

∂tT1(t, x) = κ∂2xT1(t, x) x < s(t),

∂tT2(t, x) = ∂2xT2(t, x)− T 4
2 (t, x) +

´∞
s(t) dξ

αE1(α(x−ξ))
2 T 4

2 (t, ξ) y > 0,

T1(t, (s(t))) = T2(t, s(t)) = TM > 0 y = 0,

T (0, x) = T0(x) x ∈ R,
ṡ(t) = 1

L (∂xT2(t, s(t))−K∂xT1(t, s(t))) ,

(6.1)

where κ, K, L, α > 0 are given constants. For more details about the derivation of the model
we refer to Chapter 5. Notice that, by a change of coordinate y = x − s(t), (6.1) becomes
(5.3), which is equivalent under suitable rescaling to the free boundary problem introduced
in (1.38).

In ([38], Appendix E) the existence of traveling wave solutions to (6.1) is proved. This is a
novelty and a difference with the classical Stefan problem, where traveling waves do not exist
while self-similar solutions solving the free boundary problem can be constructed (cf. [56,106]).

Before giving more details about the results in ([38], Appendix E), let us consider the
classical Stefan problem in the whole space, cf. [123].

∂tT1(t, x) = a∂2xT1(t, x) x < s(t),

∂tT2(t, x) = ∂2xT2(t, x) x > s(t),

T1(s(t), t) = T2(s(t), t) = TM

ṡ(t) = 1
L (∂xT2(t, s(t))− b∂xT1(t, s(t))) .

First of all we notice that there cannot exist bounded traveling wave solutions for which the
interface moves linearly in time. Indeed, let c ∈ R, then defining ṡ(t) = −c and Ti(t, x) =

59
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fi(x+ ct) = fi(y) we see that we need to solve
f ′′1 (y)− c

af
′
1(y) = 0 y < 0,

f ′′2 (y)− cf ′2(y) = 0 y > 0,

f1(0) = f2(0) = TM

c = 1
L (bf ′1(0)− f ′2(0)) .

Thus, solving these simple ODEs we obtain

f1(y) = TM +
αa

c

(
1− e

c
a
y
)

for y < 0 and f2(y) = TM − β

c
(ecy − 1) for y > 0,

where α, β > 0 in order to avoid superheated or supercooled solutions. By construction we
observe that f2 is unbounded if c > 0 and f1 is unbounded if c < 0.

Nevertheless, self-similar solutions exist. Let indeed s(t) = 2A
√
t and let Ti(t, x) =

fi

(
x√
t

)
= fi(z). We look for solutions to

af ′′1 (z) +
z
2f

′
1(z) = 0 z < 2A,

f ′′2 (z) +
z
2f

′
1(z) = 0 z > 2A,

f1(2A) = f2(2A) = TM

A = 1
L (f ′2(2A)− f ′1(2A)) .

(6.2)

Such ODEs have an explicit solution given by f1(z) = TM + αErf
(
A√
a

)
− αErf

(
z

2
√
a

)
for

y < 2A and by f2(z) = TM + βErf (A)− βErf
(
z
2

)
for y > 2A, where Erf is the error function.

Moreover, α, β > 0 since the error function is odd and strictly increasing.
Thus, for any f−∞ > TM and 0 < f∞ < TM there exists a unique A such that the functions

fA1 , f
A
2 as given above solve (6.2) with lim

z→−∞
f1(z) = f−∞ and lim

z→∞
f2(z) = f∞. It has been

shown also rigorously that the long-time asymptotic of the classical Stefan problem is exactly
given by error functions (cf. [56, 106]).

Let us consider now the Stefan problem with radiation as given in (6.1). By the structure
of the equation we see that there are no self-similar profiles which can solve (6.1). However,
the radiation operator behaves well under translations. Thus, we consider the traveling waves
Ti(t, x) = Ti(x+ ct) = Ti(y) for s(t) = −ct and i ∈ {1, 2} which solve

c∂yT1(y) = κ∂2yT1(y) y < 0,

c∂yT2(y) = ∂2yT2(y)− T 4
2 (y) +

´∞
0 αE1(α(y−η))

2 T 4
2 (η)dη y > 0,

T2(0) = T1(0) = TM

c = 1
L (K∂yT1(0

−)− ∂yT2(0
+)) .

(6.3)

As we have seen in the case of the classical Stefan problem, if c < 0 there are no bounded
traveling waves, since the solution in the liquid becomes unbounded. This means that the
ice has to expand. Notice that this is coherent with the physical model. Since the liquid is
transparent and there is no incoming radiation into the solid, the escaping radiation helps the
ice to cool faster.

The existence of traveling wave solutions for the problem (6.1) solving (6.3) is shown in
([38], Appendix E). The result can be summarized as follows.

Theorem 6.1 (cf. [38], Theroem E.1, Theorem E.2, Theorem E.3, Theorem E.4 and Theorem
E.7). It holds:
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(i) If c < 0 problem (6.3) does not admit any bounded solution.

(ii) There exists cmax > 0 such that for any c ∈ (0, cmax] there exist T1 ∈ C2,1/2(R−) and
T2 ∈ C2,1/2(R+) solving (6.3).

(iii) The solutions satisfy T1(y) > TM on R−, 0 < λ ≤ T2(y) < TM on R+ for some λ > 0
and both limits lim

y→−∞
T1(y) > TM and lim

y→∞
T2(y) > 0 exist.

(iv) If TM = ε > 0 small enough, then the solution is unique.

Remark. f ∈ C2,1/2(U) for U ⊆ R has bounded norms max{∥f∥∞, ∥f ′∥∞, ∥f ′′∥∞} <∞.

Notice that claim (i) has been already justified. Therefore, we will explain the strategy
followed in ([38], Appendix E) in order to prove (ii)-(iv). First of all, we prove the existence
of the traveling wave solutions, which for y > 0 are monotone increasing with respect to
the melting temperature, cf. Section 6.1. In Section 6.2 we prove claim (iv), which is a
consequence of Banach fixed-point theorem. Moreover, we will see that for small melting
temperatures there exists a limit as y → ∞ and that the solution is strictly positive. This
last result is used in Section 6.3 in order to prove the first part of (iii). In order to prove the
existence of a limit as y → ∞ for arbitrary melting temperatures we use maximum principle
methods and blowup arguments. Finally, in Section 6.4 we summarize using formal arguments
the expected long-time asymptotic of (6.3) which combines the traveling wave solutions with
self-similar profiles.

6.1 Existence of the traveling waves

As we have seen for the classical Stefan problem, T1 = TM − ∂yT1(0−)κ
c

(
1− e

c
κ
y
)
on R− for

∂yT1(0
−) = Lc+∂yT2(0+)

K < 0. Therefore, it is enough to consider only the well-posedness of
∂2yf(y)− c∂yf(y)− f4(y) = −

´∞
0 E(y − η)f4(η)dη y > 0,

f(0) = TM ,

f ≥ 0,

(6.4)

where E(x) = E1(x)
2 . It is also enough to prove (ii)-(iv) in Theorem 6.1 only for (6.4). Equation

(6.4) is obtained rescaling T2 of (6.3) by T2(y) = α2/3f(αy) = α2/3f(ξ) and denoting with an
abuse of notation c

α by c and TMα
−2/3 by TM in (6.4).

We actually prove that for all c > 0 the problem (6.4) has a solution. The condition
c ∈ (0, cmax] in (ii) of Theorem 6.1 is due to the fact that if c > cmax then ∂yT2(0

+) > −Lc.
This implies ∂yT1(0

−) > 0 and thus the formation of supercooled liquid with T1(y) < TM .

In order to prove the existence of a solution to (6.4) we prove the existence of a sequence
fn ∈ C2,1/2(R+) defined by means of the recursive problem

∂2yfn+1(y)− c∂yfn+1(y)− f4n+1(y) = −
´∞
0 E(y − η)f4n(η)dη =: gn−1(y) y > 0, n ≥ 1,

f0 = 0 n = 0,

fn+1(0) = TM ,

fn+1 ≥ 0,

(6.5)
and with 0 ≤ f1 ≤ f2 ≤ ... ≤ fn ≤ fn+1 ≤ TM , cf. Theorem E.3.



62 CHAPTER 6. STEFAN PROBLEM: TRAVELING WAVES

The existence of a function f solving the first equation in (6.5) for any g ∈ C1/2(R+) with
g < 0 has been proved in Proposition E.1 with a variational argument since the Euler-Lagrange
equation of the functional

Ig[f ] =

ˆ
R+

e−cy
( |f ′(y|2)

2
+

(f(y))5

5
+ f(y)g(y)dy

)
is given by −∂y (e−cy∂yf(y)) + e−cy

(
f(y)4 + g(y)

)
= 0. Using the weak maximum principle

we show that the unique non-negative minimizer of Ig is actually positive for every y > 0 and
it solves the Euler-Lagrange equation.

Turning back to (6.5), elliptic regularity and basic integral estimates imply together with
another application of the maximum principle that

fn ∈ C2,1/2(R+) with ∥fn∥∞ ≤ TM , ∥f ′n∥∞ ≤ T 4
M

c
and ∥f ′′n∥∞ ≤ T 4

M .

A key step is that, if fn−1 ∈ C2,1/2(R+), then gn−1 ∈ C1/2(R+) as a consequence of the
convolution with the exponential integral.

Furthermore, a new application of the maximum principle shows 0 ≤ fn ≤ fn+1 ≤ TM .
Thus, a solution f to (6.4) exists. We refer to Proposition E.1 and to Theorem E.3 for more
details.

Finally, as shown in Lemma E.2, the maximum principle implies also that the functions
f solving (6.4) and constructed with the recursive scheme of (6.5) are monotone with respect
to the melting temperature, i.e. if f1(0) = θ1 < θ2 = f2(0) then f1 ≤ f2 on R+.

6.2 Traveling waves for small melting temperatures

In this section we summarize the strategy followed in order to show claim (iv) of Theorem
6.1. First of all, we use that if f solves (6.4) for TM = ε, then f̃ = f

ε solves
∂2y f̃(y)− c∂yf̃(y)− ε3f̃4(y) = −ε3

´∞
0 E(y − η)f̃4(η)dη y > 0,

f̃(0) = 1,

f̃ ≥ 0.

Moreover, notice that any solution f ∈ C2,1/2(R+) of (6.4) (or equivalently f̃), which has
by the definition of the Hölder space all derivatives bounded, is a solution of the following
fixed-point equation

f̃(y) = 1 + ε3
ˆ y

0
ecξ

ˆ ∞

ξ
e−cη

(ˆ ∞

0
E(η − z)f̃4(z)dz − f̃4(η)

)
dη dξ. (6.6)

Thus, it is enough to prove the uniqueness and the properties of f̃ solving (6.6).
First of all, Lemma E.3 shows that for ε > 0 small enough there exists a limit f̃∞ ∈ [0, ε]

and a constant A > 0 such that the solution f̃ to (6.4) for TM = ε has an exponential decay
as ∣∣∣f̃(y)− f̃∞

∣∣∣ ≤ Aε4e−y/2.

This can be shown studying the oscillations osc[R,R+1] f̃ for R > 0. Using the fixed-point
equation (6.6) and the properties of the exponential integral we prove by induction that for
ε > 0 small enough

λ(M) := sup
R≥M

osc
[R,R+1]

f̃ ≤ Bε3e−M/2,
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where B depends only on c. This implies both the existence of a limit and the exponential
decay.

Furthermore, a simple estimate shows in Lemma E.4 that for ε > 0 small enough, the
solution f to (6.4) for TM = ε satisfies f ≥ c0ε and f∞ ≥ c0ε, where c0 > 0.

Finally, an application of the Banach fixed-point theorem in the closed complete metric
space

XA,B =
{
f ∈ Cb(R+) : |f(y)| ≤ B, ∃f∞ s.t. |f(y)− f∞| ≤ Ae−y/2

}
equipped with the metric induced by the norm ∥f∥X = |f∞|+ sup

y∈R+

ey/2|f(y)−f∞| shows that

f̃ solving (6.6) is unique. Hence, claim (iv) of Theorem 6.1 is true. We refer to Theorem E.4
for more details.

6.3 Existence of a limit

The theory of traveling wave solutions for small melting temperatures TM = ε > 0 together
with the monotonicity result (cf. Lemma E.2) implies that the solutions f of (6.4) constructed
with the recursive method (6.5) in Theorem E.3 are larger than a positive constant λ(TM ) > 0
in R+. Moreover, f < TM in the interior of R+. This is due to a simple application of the
maximum principle, since f ≤ TM by construction, cf. Lemma E.1.

In order to prove the existence of a limit as y → ∞ of a solution to (6.4) we first prove
that for any increasing sequence {xn}n∈N ⊂ R+ with xn → ∞ as n → ∞ the sequence of
functions fn(y) := f(y + xn) converges to a constant as n → ∞ uniformly in every compact
set. This outcome together with a stability result implies that lim

y→∞
f(y) exists.

By the regularity of f ∈ C2,1/2(R+), every increasing sequence {xn}n∈N with xn → ∞ as
n→ ∞ has a subsequence such that

fnk
= f(·+ xnk

) → f̄ as k → ∞ uniformly in compact sets.

Moreover, f̄ ∈ C2,1/2(R) solves{
∂2y f̄(y)− c∂yf̄(y)− f̄4(y) = −

´∞
−∞E(y − η)f̄4(η)dη y ∈ R,

0 < λ ≤ f̄ ≤ TM ,
(6.7)

cf. (E.46). Notice that the equation (6.7) solved by f̄ is invariant under translations.

6.3.1 f̄ is constant

We aim to show that any f solving (6.7) satisfies sup
R
f = inf

R
f , which implies that f is

constant.

An application of the maximum principle shows that f does not attain is supremum and
infimum at the interior of R, unless f is constant, cf. Lemma (E.5).

Moreover, if f is not constant, the assumption that sup
R
f = lim sup

y→∞
f = A or that inf

R
f =

lim inf
y→∞

f = B leads to a contradiction due to another application of the maximum principle.

In particular, Lemma E.6 and Lemma E.7 show that f does not attain either supremum nor
infinimum at +∞, unless f is already constant.

Indeed, we can construct suitable subsolutions for wS = A− f ≥ 0 and wI = f − B ≥ 0,
for which by definition lim inf

y→∞
WI = 0 and lim inf

y→∞
WS = 0. For the right choice of β(c) > 0,
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θ > 0, ε(β, θ) > 0, R(ε, β, θ) > 0 and of δ0(ε, θ, β) > 0 we can prove that

ψδ(y) =


0 y < −R,
ε− δeβy y ∈ [−R, 0),
εθ − δeβy y ∈ [0, Rδ],

0 y > Rδ,

is a subsolution on [0, Rδ], it satisfies wS,I ≥ ψδ on R \ (0, Rδ) for all δ < δ0 and wS,I > ψδ0
for all y ∈ R. The first property can be seen analyzing the linearized operators solved by wS
and wI . In the case of wS we see that

−w′′
S + cw′

S − (A− wS)
4 +

ˆ
R
E(· − η)(A− wS(η))

4dη = 0.

Thus, we consider the linearized operator L(ψ) = −ψ′′+ cψ′+4A3ψ− 4A3
´
RE(·− η)ψ(η)dη.

A similar operator has to be studied in the case of wI . Using that for a < 1 the exponential
integral satisfies

´
RE(η − y)eaηdη = eay artanh(a)a , one can prove for ψ(y) = eβy that

−e−βyL(ψ)(y) = β2 − cβ + 4A3

(
artanhβ

β
− 1

)
≤ 0

is a convex function with two zeros, one for β = 0 and one for β = β0(c, A) > 0. Thus, for
β ∈ (0, β0) the function ψ = −eβy is a subsolution to the linearized operator with L(ψ) < 0.

−R Rδ0 y

εθ − δ
ε− δ

ε

Figure 6.1: Sketch of the subsolution ψδ.

Finally, an application of the maximum principle implies that WS,I ≥ ψδ for all δ < δ0.
Therefore, since Rδ → ∞ as δ → 0 we conclude that wS,I ≥ εθ > 0 for all y > 0. This is a
contradiction to the assumption of A = lim sup

y→∞
f(y) or B = lim inf

y→∞
f(y).

A direct consequence of Lemma E.6 and of Lemma E.7 is that

sup
R
f = lim sup

y→−∞
f and inf

R
f = lim inf

y→−∞
f.

We need now to show that lim sup
y→−∞

f = lim inf
y→−∞

f . This has been done developing a key stability

result for the solution to (6.7), which can be understood as a Harnack-type inequality as
follows.

Theorem 6.2 (cf. [38], summary of Theorem E.5). If f is a solution to (6.7) and it satisfies
osc[−L,L] f < ε for ε < ε0 small enough and L > L0(ε) large enough, then osc[L,∞] f < 3ε.
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This key result has been proved applying once more the maximum principle to a suitable
family of subsolutions ψLδ and to a suitable family of supersolutions ψLγ , which have been
constructed in a similar way as the one considered above.

−L L

Rγ

yRδ

2TM

TM

f

max
[−L,L]

f

min
[−L,L]

f
3ε

ψL
γ

ψL
δ

Figure 6.2: Sketch of the subsolutions ψLδ and of the supersolutions ψLγ . See (E.75) and (E.97).

For ε > 0 small enough and L > 0 large enough, these functions satisfy that ψLδ < f < ψLγ
for y < L and y > Rδ (respectively y > Rγ). Moreover, ψLδ is a subsolution on [L,Rδ] and ψ

L
γ

is a supersolution on [L,Rγ ]. Since for some δ0, γ0 > 0 also ψLδ0 < f < ψLγ0 in R, the maximum

principle yields ψLδ < f < ψLγ for all y ∈ R. Thus, as δ, γ → 0 and Rδ, Rγ → ∞ we conclude
min
[−L,L]

f − ε < f < max
[−L,L]

f + ε for all y > 0 so that osc
[L,∞]

f < 3ε.

Finally, as we prove in Lemma E.8, the monotone sequences xn → −∞ and ξn → −∞
converging to lim sup

y→−∞
f and to lim inf

y→−∞
f , respectively, have the property that, up to subse-

quences, f(xnk
+ ·) → ḡ = sup

R
f and f(ξnk

+ ·) → g = inf
R
f as n→ ∞ uniformly in compact

sets.
This is a consequence of the regularity of f , of the translation invariance of (6.7) and of

Lemma E.5, since in y = 0 the function ḡ takes its supremum and g its infimum.
The stability result of Theorem 6.2 and the uniform convergence in compact sets, imply

together sup
R
f = inf

R
f . Thus, any solution f̄ to (6.7) is constant.

6.3.2 T2 has a limit as y → ∞
In Section 6.3.1 we summarized the strategy that we have used in order to prove that for
any monotone sequence xn → ∞ as n → ∞ the function f solving (6.4) satisfies, up to
subsequences,

f(xnk
+ ·) → constant as n→ ∞ uniformly in compact sets.

This holds especially for the sequences {xn}, {ξn} ⊂ R+ with lim
n→∞

f(xn) = lim sup
y→∞

f and

lim
n→∞

f(ξn) = lim inf
y→∞

f . Since the Harnack-type inequality of Theorem 6.2 holds also for the

function f̃ = f(a+ ·) solution to the equation

−f̃ ′′ + cf̃ ′ + f̃4 −
ˆ ∞

a
E(· − η)f̃4(η)dη = 0,
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where a > L0(ε) large enough (cf. Corollary E.3), one can prove that lim sup
y→∞

f = lim inf
y→∞

f .

Hence, claim (iii) of Theorem 6.1 holds. See Theorem E.7 for more details.

6.4 Expected long time asymptotic

We finish this summary of ([38], Appendix E) giving the expected behavior of the solution of
the Stefan problem with radiation (6.1). As we have pointed out in Section E.4, the possible
longtime asymptotic is given by the traveling wave constructed in Theorem 6.1 and by a self-
similar solution describing the temperature of the solid in an additional layer far away form
the interface. This is due to the fact that it is not possible to connect arbitrary values of the
temperature as x→ ∞ and x→ −∞ by means of solely traveling wave solutions. Indeed, we
have proved in Theorem 6.1 that any traveling wave solution converges to a strictly positive
temperature as y → ∞. Moreover, the traveling wave T1 defined for y < 0 is uniquely
determined by T2.

To be more precise, we expect that for any T−∞ ∈ [TM ,∞] and T∞ ∈ [0, TM ] there exists
c ∈ [0, cmax] such that as t→ ∞ the solution (T1, T2, s) of (6.1) is given by

(a) s(t) = −ct, hence ice is expanding;

(b) for y < 0 the solution satisfies T1(t, x) = T c1 (x + ct), which solves the traveling wave
equation (6.3) with lim

y→−∞
T c1 (y) = T−∞;

(c) for y > 0 the function T2(t, x) is given by T c2 (x+ct) solving (6.3) with lim
y→∞

T c2 (y) = T cint > 0

and for large distances the interface by the self-similar profile F
(
x√
t

)
= F (z) solving{

− z
2F

′(z)− F ′′(z)− 1
α2

(
F 4(z)

)′′
= 0

F (−∞) = T cint and F (∞) = T∞.

The fact that in the self-similar equation the integral operator describing the radiation
simplifies into a porous-medium equation as t→ ∞, i.e.

−F 4

(
x√
t

)
+

ˆ ∞

(s(t))

αE1(α(x− η))

2
F 4

(
η√
t

)
dη ∼ − 1

α2
∂2z (F (z))

4 for t→ ∞ and z =
x√
t
,

is due to the diffusion approximation of the radiative transfer equation in regions very far
from the interface.

Figure E.2, which is reported here, illustrates the expected form of the solution describing the
asymptotic behavior for long times

TM

T−∞

T c
int

T∞

−c

√
t

s(t) x

T

Figure 6.3: Illustration of the expected profile as t→ ∞. See Figure E.2.



Chapter 7

Concluding remarks and open
problems

In this chapter we conclude summarizing the results obtained in this thesis and giving an
outlook to open problems arising from the work that has been presented.

7.1 Well-posedness theory for the stationary radiative transfer
equation

In Chapter 2 we presented the existence theory obtained in [35] for a large class of absorp-
tion and scattering coefficients. As we summarized in Theorem 2.1 we proved the existence
of solutions to the stationary radiative transfer equation (1.20) coupled to divergence-free
condition for the radiative energy (1.22) and satisfying the incoming boundary condition
(1.24) in the cases in which the absorption and the scattering coefficients have the form
αa,sν (T ) = Qa,s(ν)α

a,s(T ). A key step in the proof of the existence theory was the develop-
ment of a new compactness result for operators including exponential terms of integrals along
straight lines (cf. Proposition A.1).

7.1.1 Uniqueness of solutions

The way in which the existence of solutions to the problem (2.1) was proven in ([35], Appendix
A) does not imply the uniqueness of solutions, since it is based on a convergence result for
a compact sequence of regularized solutions. Therefore, uniqueness is still an open problem.
Another difficulty for the proof of the uniqueness of solutions is given by the non-linearity
of the coefficients with respect to the temperature, due to which contractive estimates are
difficult and perhaps even not possible to obtain.

Let us for example consider the pure emission-absorption case (i.e. αsν ≡ 0) with αaν(T ) =
α(T ). Then, the fixed-point equation defining the temperature is given by

u(x) =

ˆ
Ω

γ(u(η)) exp
(
−
´
[x,η] γ(u(ξ))dξ

)
4π|x− η|2 u(η)dη

+

ˆ
S2

ˆ ∞

0
gν(n) exp

(
−
ˆ
[x,y(x,n)]

γ(u(ξ))dξ

)
dν dn,

where u = 4πσT 4(x) and γ(z) = α
(

4
√

z
4πσ

)
. Let us consider u1, u2 ∈ L∞(Ω) two different

solutions to the fixed-point equation for the same source of radiation gν . Only for particular

67
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choices of γ (and hence α) and of gν we can prove that

∥u1 − u2∥∞ ≤ θ∥u1 − u2∥∞ for θ < 1.

This would imply the uniqueness of solutions.

For example, if γ is differentiable with ∥γ′∥∞ ≤ e−2D∥γ∥∞
3D(1+∥γ∥∞D)∥gν∥L1(S2×R+)

, then one can

prove that

∥u1 − u2∥∞ ≤
(
1− 1

3
e−D∥γ∥∞

)
∥u1 − u2∥∞,

where D = diam(Ω). This estimate is similar to the one we obtained in (2.4). Indeed, on the
one hand we have∣∣∣∣ˆ

Ω

γ(u1(η)) exp
(
−
´
[x,η] γ(u1(ξ))dξ

)
4π|x− η|2 u1(η)−

γ(u1(η)) exp
(
−
´
[x,η] γ(u1(ξ))dξ

)
4π|x− η|2 u1(η)dη

∣∣∣∣∣∣
≤
 
S2
dn

ˆ s(x,n)

0
drγ(u1(x− rn)) exp

(
−
ˆ r

0
γ(u1(ξ))dξ

)
|u1 − u2|(x− rn)

+

 
S2
dn

ˆ s(x,n)

0
dr|u2(x− rn)| exp

(
−
ˆ r

0
γ(u1(ξ))dξ

)
|γ(u1)− γ(u2)|(x− rn)

+

 
S2
dn

ˆ s(x,n)

0
dr|u2(x− rn)|γ(u2)(x− rn)

∣∣∣∣ˆ r

0
γ(u1(ξ))− γ(u1(ξ))dξ

∣∣∣∣
≤(1− e−D∥γ∥∞)∥u1 − u2∥∞ + eD∥γ∥∞∥gν∥L1(S2×R+)D(1 +D∥γ∥∞)∥γ′∥∞∥u1 − u2∥∞,

where we used also ∥u2∥∞ ≤ eD∥γ∥∞∥gν∥L1(S2×R+) as it is proved in (2.4). On the other hand,
we can estimate∣∣∣∣ˆ

S2

ˆ ∞

0
gν(n) exp

(
−
ˆ
[x,y(x,n)]

γ(u1(ξ))dξ

)
− exp

(
−
ˆ
[x,y(x,n)]

γ(u2(ξ))dξ

)
dν dn

∣∣∣∣∣
≤∥gν∥L1(S2×R+)D∥γ′∥∞∥u1 − u2∥∞.

However, for general coefficients uniqueness remains an open problem.
In [83] the entropy dissipation formula has been used in order to prove uniqueness of the

solutions in the pure emission-absorption case when αaν is independent of the temperature and
the incoming radiation is at equilibrium with

gν(n) = Bν(T0)

for T0 = constant. This result could be adapted also in the case in which αaν(T ) depends on
T . The arguments in [83] seem indeed to work also in this situation. However, for general
boundary conditions and in the presence of scattering, to prove uniqueness is more involved.

Since the maximum principle is a useful tool when the coefficients are independent of the
temperature, one could also try, under suitable additional assumptions on the coefficients, to
prove uniqueness of solutions via maximum principle.

7.1.2 Fully non-Grey coefficients

Another problem which is not covered in the results obtained in [35] is the existence of solutions
in the more general case of fully non-Grey coefficients, i.e. when αa,sν (T ) depends arbitrarily
on ν and T .
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In order to see where the arguments used in ([35], Appendix A) break down, we consider
once again the case in which αsν ≡ 0. As we have seen in (2.10), defining

u(x) = 4π

ˆ ∞

0
αaν(T (x))Bν(T (x)) dν = F (T (x))

and assuming that F is invertible, which is the case for instance if z 7→ αaν(z)Bν(z) is strictly
monotone, we obtain that u satisfies the following fixed-point equation

u(x) =

ˆ ∞

0
γν(u(x))dν

ˆ
Ω
dη

γν(u(η))fν(un(η))

|x− η|2 exp

(
−
ˆ
[x,η]

γν(u(ξ))dξ

)

+

ˆ ∞

0
dν

ˆ
S2
dn dν γν(u(x))gν(n) exp

(
−
ˆ
[x,y(x,n)]

γν(u(ξ))dξ

)
,

(7.1)

where γν(z) = αaν(F
−1(z)) and fν(z) = Bν(F

−1(z)).

Hence, even if we could modify the L2-compactness result for integrals along lines as given
in Proposition A.1 for functions depending on the frequency, the term αaν(u(x)) cannot be
written as an integral along some straight line. Therefore, the compactness result obtained in
([35], Appendix A) cannot be used. We emphasize that the compactness has been shown for
operators of the form ˆ

S2
dn

(ˆ s

0
dτ f(x− τn)

)
,

for which the integral over all directions is a key feature. Without this kind of averaging the
sequence

´∞
0 γν(uε) ∗ ϕε(x) dν is in general not equi-integrable in L2(Ω) unless the sequence

uε is already equicontinuous. We recall that ϕε is a sequence of standard non-negative radially
symmetric mollifiers.

A possible approach in order to prove the existence of some kind of generalized solutions
for general coefficients αa,sν (T ) is to consider Young measure solutions. This would have the
advantage that the compactness condition required in order to converge to such solutions
is much weaker. Indeed, for any bounded sequence {fk}k∈N ∈ L∞(U,Rm) there exist a
subsequence {fkj}j and a Young measure {νx}x∈U on Rm such that for all F ∈ C∞(Rm)

F (fkj )⇀
∗ F̄ in L∞(U),

where F̄ (x) :=
´
Rm F (y)dνx(y) for almost every x ∈ U , cf. [48].

One possible strategy is to divide Ω ⊂ ⋃
0≤l≤L(k)Q

k
l (xl) in dyadic cubes of the form

Qkl (xl) =
[
0, 2−k

]3
+ xl and to define

uk(x) =
∑

0≤l≤L(k)
1Qk

l (xl)
(x)uk(xl).

Then, uk(xl) solves for any xl ∈ Ω

uk(xl) =

ˆ ∞

0
γν(uk(xl))dν

ˆ
Ω
dη

γν(uk(η))fν(uk(η))

|x− η|2 exp

(
−
ˆ
[xl,η]

γν(uk(ξ))dξ

)

+

ˆ ∞

0
dν

ˆ
S2
dn γν(uk(xl))gν(n) exp

(
−
ˆ
[xl,y(xl,n)]

γν(uk(ξ))dξ

)
.
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If xl /∈ Ω we set uk(xl) = 0. One can prove that the L∞-estimate obtained for the coeffcient
αaν = Qa(ν)α

a(T ) holds also in this case. Indeed, we can estimate

|uk(xl)| ≤
(
1− e−diam(Ω)∥γ∥∞

)ˆ ∞

0
dν

ˆ
S2
dn γν(uk(xl))Bν(F

−1(∥uk∥∞))

+ ∥γν∥∞∥g∥L1(S2×R+)

,

which implies taking the maximum over all {xl}l≤L(k)

∥uk∥∞ = ∥{uk(xl)}l∥∞ ≤ ∥γν∥∞∥g∥L1(S2×R+)e
diam(Ω)∥γ∥∞ for all k ∈ N.

Therefore, Brouwer fixed-point theorem (cf. [49]) implies the existence of {uk(xl)}l and thus
of the function uk(x) which solves

uk(x) =
∑

0≤l≤L(k)

1Qk
l (xl)

(x)

ˆ ∞

0

γν(uk(x))dν

ˆ
Ω

dη
γν(uk(η))fν(uk(η))

|x− η|2 exp

(
−
ˆ
[xl,η]

γν(uk(ξ))dξ

)

+
∑

0≤l≤L(k)

1Qk
l (xl)

(x)

ˆ ∞

0

dν

ˆ
S2
dn dν γν(uk(x))gν(n) exp

(
−
ˆ
[xl,y(xl,n)]

γν(uk(ξ))dξ

)
.

(7.2)

By the uniform boundedness of {uk}k ∈ L∞(Ω) we obtain easily that up to subsequences uk
converges in the sense of Young measures to {νx}x∈Ω. However, this is not enough in order
to conclude the existence of a Young measure solution to (7.1) and a careful analysis of the
convergence and of the properties of the Young measure {νx}x∈Ω has to be considered.

For instance, the line integrals appearing in (7.2) depends on xl and not on x. Therefore,
even if it would be possible to show

exp

(
−
ˆ
[x,η]

γν(uk(ξ))dξ

)
→ exp

(
−
ˆ
[x,η]

ˆ
R
γν(y)dνξ(y)dξ

)
,

we would need some uniform estimate for the integral terms

ˆ ∞

0
dν

ˆ
Ω
dη ...

∣∣∣∣∣exp
(
−
ˆ
[xl,η]

γν(uk(ξ))dξ

)
− exp

(
−
ˆ
[x,η]

γν(uk(ξ))dξ

)∣∣∣∣∣ .
A possibility could be to adapt the compactness result of Proposition A.1 to this situation.

7.2 Diffusion approximation

In chapter 3 we summarized the results obtained in [36], where using matched asymptotic
expansions we studied the diffusion approximation of the radiative transfer equation. In
particular, we derive formally the approximate problems in the case in which the mean free
path of the photons tends to zero. Also the different boundary and initial layer equations have
been derived for all possible relative scalings between absorption length, scattering length and
the characteristic size of the domain. Furthermore, a clear mathematical characterization of
the equilibrium and non-equilibrium diffusion approximation has been presented. Many of
the problems obtained formally in [36] were not considered before and they may therefore
rigorously studied in the future.

In chapter 4 we considered the rigorous proof of the diffusion approximation for the sta-
tionary radiative transfer equation in the case where only emission-absorption processes take
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place. This theory has been developed in [37]. In particular, the absorption coefficient is inde-
pendent of the frequency. The method presented in this article, which is based mainly in the
application of the maximum principle, is different from the techniques used so far. Moreover,
it represents an important step towards the proof of the stationary diffusion approximation
for more general absorption coefficients.

7.2.1 Boundary and initial layer equations

The boundary layer equations describing the Milne and the thermalization layer as well as
the initial layers and the initial-boundary layers derived in ([36], Appendix B) have been only
partially studied so far.

While the Milne problem for the emission-absorption case (B.26) and the Milne problem for
the scattering case (B.43) have been both extensively studied, for instance in [17,19,68,76,127],
there are boundary layer equations that have not been considered. The Milne problem (B.34),
which contains both emission-absorption and scattering terms, has been studied only for
constant scattering coefficient and constant scattering kernel in [127]. Therefore, it would
be interesting to consider more general scattering terms. Moreover, the thermalization layer
equation (B.48) is a new problem developed in ([36], Appendix B), which has not been studied
so far.

Also the well-posedness and the asymptotic behavior of the solutions of the initial layer
equations given in Section B.5 are open problems. When the emission-absorption term occurs,
a possible strategy could be to reduce the problems to an integro-differential equation for the
temperature. For example, problem (B.72) is equivalent to the study of

∂τT (τ, x) +

ˆ ∞

0
dν

ˆ
S2
dn αaν(x)Bν(T (τ, x))

−
ˆ ∞

0
dν

ˆ
S2
dn

ˆ τ

0
ds (αaν(x))

2e−α
a
ν(x)(τ−s)Bν(T (s, x))

=

ˆ ∞

0
dν

ˆ
S2
dn αaν(x)I0(x, n, ν)e

−αa
ν(x)τ ,

(7.3)

where we used

φ0(τ, x, n, ν) = I0e
−αa

ν(x)τ +

ˆ τ

0
αaν(x)e

−αa
ν(x)(τ−s)Bν(T (s, x)) ds.

In the simpler case where αaν ≡ α ≡ constant, equation (7.3) takes the form

∂τT (τ, x) + 4πσα

(
T 4(τ, x)−

ˆ τ

0
αe−α(τ−s)T 4(s, x)

)
=αe−ατ

ˆ ∞

0
dν

ˆ
S2
dn I0(x, n, ν).

For (B.74) a similar equation to (7.3) can be obtained, which contains series of the form

∂τT (τ, x) +

ˆ ∞

0
dν

ˆ
S2
dn αaν(x)Bν(T (τ, x))

−
ˆ ∞

0
dν

ˆ
S2
dn

ˆ τ

0
ds (αaν(x))

2e−α
a
ν(x)(τ−s)Bν(T (s, x))

=

ˆ ∞

0
dν

ˆ
S2
dn αaν(x)e

−(αa
ν(x)+α

a
ν(x))τ

∞∑
k=0

(αsν(x)τ)
k

k!
Hk[I0](x, n, ν).
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Also the initial thermalization layer equation (B.77) reduces to

φ0(τ, x, n, ν) = φ(x, ν)e−α
a
ν(x)τ +

ˆ τ

0
αaν(x)e

−αa
ν(x)(τ−s)Bν(T (s, x)) ds

and using the isotropy of Bν(T ) and of φ to

∂τT (τ, x) + 4π

ˆ ∞

0
dν αaν(x)Bν(T (τ, x))

− 4π

ˆ ∞

0
dν

ˆ τ

0
ds (αaν(x))

2e−α
a
ν(x)(τ−s)Bν(T (s, x))

=4π

ˆ ∞

0
αaν(x)φ(x, ν)e

−αa
ν(x)τ .

Notice that all these equations are non-Markovian problems analogous to the one-dimensional
problems describing the boundary layers. For this reason and since these equations are nec-
essary in order to study some of the time-dependent diffusion approximations, it would be
interesting to examine them.

It should be also possible to study problem (B.75) using standard spectral theory for the
compact self-adjoint operator H[φ](n) =

´
S2 K(n, n′)φ(n′) dn′.

The initial layer equation obtained in Section B.6.2 seems easier to study since the tem-
perature is a constant and only the radiation intensity is an unknown.

Finally, also the initial-boundary layer equations of Section B.4, Section B.5 and Section
B.6 need a careful study.

7.2.2 Rigorous proof of the diffusion approximation

The results obtained in [36] for the diffusion approximation of the radiative transfer equation
are only formal. While the diffusion approximation has been rigorously studied in the pure
emission-absorption case (cf. [13, 16,37]) and in the pure stationary case in the framework of
the one-speed neutron transport equation (cf. [19,76,146–148]), the problems containing both
scattering and emission-absorption terms have not been rigorously studied so far.

Therefore, it would be interesting to prove rigorously the diffusion approximation results
obtained in [36]. The various available results for the cases in which only emission-absorption
or only scattering take place represent a promising starting point in order to tackle these new
problems.

Particularly interesting is the non-equilibrium diffusion approximation, which is a novelty
obtained in [36]. For example, the stationary screening equation (3.8) is a fascinating problem
whose well-posedness should be studied.

7.2.3 Diffusion approximation for emission-absorption only

A problem which is not considered in [37] and which is currently still open is the rigorous
proof of the diffusion approximation when scattering processes are neglected (i.e. αsν ≡ 0) and
the absorption coefficient depends on the frequency. Since the existence of a unique solution
of the stationary radiative transfer equation coupled with the divergence-free condition of the
radiative energy is proved only for coefficients independent on the temperature (cf. [83]), this
is the first case that we should consider in order to extend the theory developed in [37] to the
non-Grey case in which the absorption coefficient is αaν(x).

Since the maximum principle holds also in this case, the attempt to adapt the proof’s ideas
and the methods used in ([37], Appendix C) is worth it. Let us consider for instance the case
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in which αaν(x) = αν is independent of x ∈ Ω. As we have pointed out in both articles [36,37],
the diffusion approximation of the problem

n · ∇xIν(x, n) =
αν
ε (Bν(T (x))− Iν(x, n)) x ∈ Ω,

div
(´∞

0 dν
´
S2 dn nIν(n, x)

)
= 0 x ∈ Ω,

Iν(n, x) = gν(n) x ∈ ∂Ω, n · nx < 0,

is equivalent to the study of the convergence of the temperature Tε → T , where Tε solves the
integral equation

Lε(Tε)(x) :=4π

ˆ ∞

0
dναν Bν(Tε(x))−

ˆ ∞

0
dν αν

ˆ
Ω
dη

αν
ε

e−
αν |x−η|

ε

|x− η|2 Bν(Tε(η))

=

ˆ ∞

0
dν

ˆ
S2
dn gν(n)ανe

−ανs(x,n)
ε

(7.4)

and T solves ∆
(´∞

0
Bν(T (x))

αν
dν
)
= 0 for the boundary conditions obtained from the corre-

sponding Milne problem as the one in (B.26). We remark that the equation (7.4) has been
derived solving the radiative transfer equation by characteristics in the same way as we did
in Section 1.5 in order to obtain (1.29).

The non-local integral operator Lε satisfies a maximum principle. Indeed, changing to
spherical coordinates we compute

4π

ˆ ∞

0
dν ανBν(T (x)) =

ˆ ∞

0
dν ανBν(T (x))

ˆ
R3

dη
αν
ε

e−
αν |x−η|

ε

|x− η|2 .

Thus, the monotonicity of the Planck distribution implies the following maximum principle
for Lε:

If Lε(v) ≥ 0 and v
∣∣
∂Ω

≥ 0, then v ≥ 0 in Ω for any v ∈ C(Ω) .

This can be proved by contradiction assuming that there exists some x0 ∈ Ω, which is by
assumption open, such that min

Ω̄
v = v(x0) < 0, then by the monotonicity of Bν(·) also

Bν(v(x)) ≥ Bν(v(x0)) for all x ∈ Ω and for all ν > 0 and Bν(v(x0)) < 0. Thus, we obtain the
following contradiction

0 ≤ Lε(v)(x0) =
ˆ ∞

0
dν ανBν(v(x0))

ˆ
Ωc

dη
αν
ε

e−
αν |x−η|

ε

|x− η|2

+

ˆ ∞

0
dν αν

ˆ
Ω
dη

αν
ε

e−
αν |x−η|

ε

|x− η|2 (Bν(v(x0))−Bν(v(η))) < 0.

We finally remark that it seems to be possible to show under suitable condition on Ω that the
L∞-solution to (7.4) obtained in [83] is a continuous function.

7.2.4 More general domains

In [37] we considered the diffusion approximation for a convex domain. A natural question
that arises concerns what would happen for a non-convex domain, where for instance cavities
occur. This can be modeled assuming that the absorption coefficient is equal to 0 outside of
the domain, i.e. also in the cavities.
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Let us consider for example Ω ⊂ R3 convex and let us define Ω∗ = Ω\Br(x0) for Br(x0) ⊂
Ω. We can study the diffusion approximation of the problem

n · ∇xIν(x, n) =
α
ε (Bν(T (x))− Iν(x, n)) x ∈ Ω∗,

div
(´∞

0 dν
´
S2 dn nIν(n, x)

)
= 0 x ∈ Ω∗,

Iν(n, x) = gν(n) x ∈ ∂Ω, n · nx < 0.

(7.5)

As it is remrked in [83], we expect that in this case interesting non-local interactions take
place, which also determine the boundary condition at the boundary of the cavity ∂Br(x0).
Indeed, as we have proved in [37] the boundary condition for the diffusion problem at the
interior of the domain Ω is determined by the incoming boundary profile gν(n) satisfied by
Iν at the “external” boundary ∂Ω. In (7.5) there is no extra assumption on the boundary
value of the radiation intensity at ∂Br(x0), since Iν is determined by the radiation crossing
the cavity.

Ω∗
gν

α > 0

α = 0

Figure 7.1: Representation of the interaction of radiation in a non-convex domain with a
cavity.

7.3 Stefan problem with radiation

In Chapter 5 and in Chapter 6 we presented the results obtained for a one-dimensional two-
phase Stefan problem modeling the phase transition in a body where the heat is transported
by conduction in both phases of the material and also by radiation only in the solid phase,
cf. equations (1.38) and (1.39).

In [39] we have developed a well-posedness theory for classical solutions in the case in which
there is no external source of radiation. In [38] we have proved the existence of traveling wave
solutions to the problem (1.39), for which the interface has to move towards the liquid yielding
the expansion of ice.

The free boundary problem studied in the articles [38,39] is a new problem which has not
been considered before. The results that we have obtained are the first of many more that
should be established in order to have a complete mathematical theory for this problem.

7.3.1 General global well-posedness result

In ([39], Appendix D) a global well-posedness result has been proved for a large class of
initial temperatures satisfying precise bounds in the liquid phase, cf. (5.5). One problem
that could be considered is the extension of the global well-posedness theory to all bounded
initial temperatures, or the construction of a counterexample, i.e. of an initial temperature
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for which there is no bounded solution to (1.39) for all times t > 0 or for which the speed of
the free boundary ṡ(t) blows up in finite time.

As we have shown in the remark at the end of Section D.3, the class of initial temperatures
constructed in Theorem D.5 applying the maximum principle to sub- and supersolutions is
optimal for the equations satisfied by those auxiliary functions (cf. Figure 5.2). Thus, in
order to obtain a more general global well-posedness theory we should argue differently than
as is has been done in ([39], Appendix D).

7.3.2 Non-trivial external source of radiation

In ([39], Appendix D) and in ([38], Appendix E) the well-posedness theory and the traveling
wave solutions have been studied only for the case in which there is no radiation entering the
solid phase from the liquid one, i.e.

Iν(t, x, n) = gν(n) = 0 for x1 = s(t), n1 > 0.

Hence, a natural question arises concerning the case in which gν(n) is not trivial for n1 > 0.
In this situation the Stefan problem is described by

CL∂tT (t, x1) = KL∂
2
x1T (t, x1) x1 < s(t),

CS∂tT (t, x1) = KS∂
2
x1T (t, x1)− div

(´∞
0 dν

´
S2 dnnIν(t, x, n)

)
x1 > s(t),

n · ∇xIν(t, x, n) = α (Bν(T (t, x1))− Iν(t, x, n)) x1 > s(t),

Iν(t, x, n) = gν(n) x1 = s(t), n1 > 0,

T (t, s(t)) = TM x1 = s(t),

T (0, x) = T0(x) x1 ∈ R,
ṡ(t) = 1

L (KS∂x1T (t, s(t)
+)−KL∂x1T (t, s(t)

−)) .

which reduces, similarly as we did for gν = 0 in (5.3) and in (6.1), to the following equation

C∂tT1(t, x) = K∂2xT1(t, x) x < s(t),

∂tT2(t, x) = ∂2xT2(t, x)− T 4
2 (t, x) +

´∞
s(t) dξ

αE1(α(x−ξ))
2 T 4

2 (t, ξ) +Gα(t, x) y > 0,

T1(t, (s(t))) = T2(t, s(t)) = TM > 0 y = 0,

T (0, x) = T0(x) x ∈ R,
ṡ(t) = 1

L (∂xT2(t, s(t))−K∂xT1(t, s(t))) ,

(7.6)

where E1(x) =
´∞
|x|

e−t

t and where

Gα(t, x) =
1

4πσ

ˆ ∞

0
dν

ˆ
n1>0

dn gν(n)e
−αx−s(t)

n1

is obtained solving the radiative transfer equation by characteristics.

Using the same strategy as in Section D.2, namely combining Banach fixed-point theorem
for suitable integral equations obtained using the Green’s functions for the half-plane for the
Laplacian and classical parabolic regularity, it should be possible to show well-posedness for
(7.6) for small times under suitable assumptions on the source gν .

The addition of a positive source in the evolution equation for the temperature in the solid
makes the problem extremely intriguing. For instance, we expect the formation of superheated
regions in the interior of the solid phase. Indeed, according to the result in [89], if positive
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volumetric heat sources are present, superheated regions appear. In order to prove a similar
result for the problem (7.6), one could start considering a simpler source function of the form

H(t, x) = Ae−B|x−s(t)|.

In a similar way one could proceed in order to obtain (if possible) a global well-posedness
result for this equation.

We remark that for an external source of radiation which satisfies

0 <

ˆ ∞

0
dν

ˆ
n1>0

dn gν(n)e
−αx−s(t)

n1 ≤ ∥gν∥L1(S2×R+)e
−α|x−s(t)|,

different sub- and supersolutions have to be considered in order to show via maximum principle
the bounds satisfied by the temperature, the formation of superheated regions, as well as a
(possible) global well-posedness result.

If we obtain a global well-posedness result for solutions which may have superheated
regions, we can proceed studying the long-time asymptotic of those functions. For instance,
also in this case one could try to construct traveling wave solutions. Notice that the form of
the source indicates that traveling waves are possible solutions. Indeed, G(t, x) ≈ Ae−B|x−s(t)|,
which for s(t) = −ct and x+ ct = y > 0 reduces to G(y) ≈ Ae−By.

7.3.3 Long-time behavior

Turning back to the situation in which there is no external source of radiation, i.e. gν(n) = 0
in (7.6), the long-time behavior of the solutions remains an open problem. In ([38], Appendix
E) we proved the existence of traveling wave solutions and we presented the expected behavior
of the solutions to the considered Stefan problem as t → ∞. However, the rigorous proof of
the long-time asymptotics has still to be developed. Regarding this issue, there are many
problems that have to be considered.

First of all, we should study the well-posedness of the self-similar equation (cf. equation
(E.111))

−z
2
F ′(z)− F ′′(z)− 1

α2

(
F 4(z)

)′′
= 0 (7.7)

for any F (±∞) ∈ [0, TM ].
Also the Problems E.4.1, E.4.2 and E.4.3 in Section E.4 should be considered. Indeed,

they imply for any T−∞ ≥ TM and T∞ ∈ [0, TM ] the existence of a unique c ≥ 0, T c1 , T
c
2 and

F such that

c∂yT
c
1 (y) =

K
C ∂

2
yT

c
1 (y) y < 0,

c∂yT
c
2 (y) = ∂2yT

c
2 (y)− (T c2 (y))

4 +
´∞
0 αE1(α(y−η))

2 (T c2 (η))
c dη y > 0,

T c2 (0) = T c1 (0) = TM

c = 1
L (K∂yT

c
1 (0

−)− ∂yT
c
2 (0

+)) ,

T c1 ≥ TM , 0 ≤ T c2 ≤ TM ,

T c1 (y) −→
y→−∞

T−∞,

and F satisfies (7.7) for F (−∞) = lim
y→∞

T c2 (y) as well as F (∞) = T∞.

Finally, we should prove rigorously that as t → ∞ the solution (T1, T2, s) of the problem
(1.39) behaves as follows. The moving interface s(t) becomes −ct and the temperature in
the liquid T1 approaches T c1 . Finally, the temperature in the solid T2 is close to T c2 near the
interface and to the self-similar solution F far away from the free boundary.
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Furthermore, also the global and local stability of the traveling waves should be studied.
We could first try to use maximum principle methods in order to study the long-time behavior
of the solutions. This is also the strategy used for the classical one-dimensional one-phase
Stefan problem, cf. [106].

7.3.4 More general assumptions

We remark that there are plenty of more open problems concerning this type of Stefan problem.
First of all, we could consider the case in which the heat is transferred by radiation and
conduction in both phases of the material. Another possibility is to consider the case in
which radiation interacts only with the liquid and not with the solid part of the body.

Under the assumptions that at time t = 0 the material fills the whole space R3, where
the liquid region is R3

− and the solid one is R3
+, and that the temperature depends only on

the variable x1, the free boundary problem under consideration reduces to a one-dimensional
problem. We could also consider a more general case, where T depends on all variables and
where the interface is not a plane. This would open to new problems regarding also the
regularity of the free boundary as well as the stability of the planar interface.



78 CHAPTER 7. OPEN PROBLEMS



Appendices

79





Appendix A

Compactness result and existence
theory for a general class of
stationary radiative transfer
equations

Abstract: In this paper, we study the steady-states of a large class of stationary radiative
transfer equations in a C2 convex bounded domain. Namely, we consider the case in which
both absorption-emission and scattering coefficients depend on the local temperature T and
the radiation frequency ν. The radiative transfer equation determines the temperature of the
material at each point. The main difficulty in proving existence of solutions is to obtain
compactness of the sequence of integrals along lines that appear in several exponential terms.
We prove a new compactness result suitable to deal with such a non-local operator containing
integrals on a line segment. On the other hand, to obtain the existence theory of the full
equation with both absorption and scattering terms we combine the compactness result with
the construction of suitable Green functions for a class of non-local equations.

A.1 Introduction

In this paper, we study the stationary radiative transfer equation for a radiation intensity
function Iν : Ω× R3 → [0,∞) on a C2 convex and bounded domain Ω ⊂ R3, which takes the
form

n · ∇xIν = αaν(T )(Bν(T )− Iν) + αsν(T )

[ˆ
S2
K(n′, n)Iν(x, n′)dn′ − Iν

]
, (A.1)

where it factors in both the excitation and de-excitation processes of gas molecules alongside
photon scattering. This formulation is underpinned by the presumption of local thermody-
namic equilibrium (LTE) of gas molecules. Specifically, the components αaνIν , α

s
νIν , α

a
νBν ,

αsν
´
S2 K(n′, n)Iν(x, n′)dn′ represent absorption, scattering loss, emission from gas deexcita-

tion, and scattering gain, respectively. Herein,

Bν = Bν(T ) =:
2hν3

c2
1

e
hν
kT − 1

(A.2)

symbolizes the Planck emission from a black body, while Iν = Iν(x, n) signifies the radiation
intensity at frequency ν, located at position x ∈ Ω ⊂ R3 and oriented in direction n ∈ S2.

81
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Note that Bν(T ) is monotonically increasing in T for each ν and Bν(T ) = 0 is equivalent
to T = 0. By making a change of variables ν 7→ ζ =: hνkT , we obtain that

ˆ ∞

0
Bν(T )dν =

ˆ ∞

0

2hν3

c2
1

e
hν
kT − 1

dν =

ˆ ∞

0

2hk3T 3

h3c2
ζ3

eζ − 1

kT

h
dζ

=
π4

15

2hk3T 3

h3c2
kT

h
= σT 4, (A.3)

where we define σ =: 2π4k4

15h3c2
.

The radiation energy flux at frequency ν can be articulated as:

Fν = Fν(x) =
ˆ
S2
nIν(x, n)dn ∈ R3.

The scattering kernel of the “non-local” gain term of scattering has the property

ˆ
S2
K(n′, n)dn = 1. (A.4)

If the scattering is isotropic then it becomes simply αsν(T )Iν in (A.1). The class of models is
for the LTE situation. The temperature T is well-defined at each point, and each coefficient
αν = αν(T ) depends on the frequency of radiation ν and the local temperature T . The
coefficient αν can be considered as the spectral lines for each ν or, more generally, the averages
of these processes.

Throughout the paper, we will study the existence theory of the general model (A.1) with
(A.4). The assumption (A.4) implies that the scattering does not modify the frequency. We
will consider the general case where the absorption-emission and the scattering coefficients
can depend not just on the radiation frequency ν > 0 but also on the local temperature T (x).
Another main assumption in this model above is that the non-elastic mechanisms yielding
LTE in the gas molecules’ distributions are extremely fast, and therefore the scattering cannot
modify much the Boltzmann ratio between the different energy levels at each point. For more
details, see [34,81]. We write the total flux of radiation energy with frequency ν at x as

F = F(x) =:

ˆ ∞

0
dν

ˆ
S2
nIν(x, n)dn.

At the Planck equilibrium, we have

Iν(x, n) = Bν(T ) =
2hν3

c2
1

e
hν
kT − 1

. (A.5)

Then, the stationarity of the temperature at each point requires that the divergence of the
total flux of radiation energy vanishes (cf. [108,114]); i.e.,

∇x · F(x) = 0, at any x ∈ Ω. (A.6)

Hence, we will examine throughout this paper whether the temperature T at each point can
be determined uniquely by (A.1) and a suitable boundary condition for the radiation at ∂Ω,
if we impose the divergence-free total-flux condition (A.6); see also [81] for the conservation
law. The simplest boundary condition that one can impose is

Iν(x, n) = gν(n) ≥ 0 for x ∈ ∂Ω and n · nx < 0, (A.7)
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where nx is the outward normal vector at the boundary point x ∈ ∂Ω and Ω is with smooth
boundary ∂Ω.

Throughout the paper, we assume Ω to be a convex domain with C2-boundary and strictly
positive curvature.

The problem (A.1), (A.6), and (A.7) is considered in [83] in the case where αaν and αsν
are independent of the temperature. The main novelty of this paper is that we were able to
extend the proof of the existence of solutions to (A.1), (A.6), and (A.7) for a general class of
coefficients αaν and αsν which also depend on the temperature T . To obtain this result we will
derive a compactness result for a large class of non-local operators including terms with the
form

T (·) 7→ exp

(
−
ˆ
[x,η]

β(T (ξ))ds(ξ)

)
, x, η ∈ Ω, (A.8)

where the integral is along the segment connecting x to η. The compactness result that we
obtain in this paper to prove the existence has some analogies with the classical averaging
lemmas that have been extensively used in kinetic theory [40,41,70,80,144]. Nevertheless, the
currently available averaging lemmas including the treatment of line integrals in [7] do not
seem to provide the compactness that we require. For this reason, we prove a new compactness
result more suitable to deal with the non-local operator on a line segment with the form (A.8).

We now introduce some related works in the literature.

A.1.1 Summary of literature

The study of the distribution of the temperature within a body where the transfer of heat by
means of radiation plays an important role has been extensively studied. Seminal works by
Compton and Milne [31, 109] laid the foundation for understanding the interaction between
radiation and gases. Subsequent papers by Holstein and Kenty provided further insights
[78,85]. Specifically, Holstein highlighted the necessity to approach heat transfer by radiation
as a non-local issue. The study of the evolution of temperature over time in a bar where the
heat transfer is strictly due to radiation was considered by Spiegel [131]. Detailed reviews
on the physics of radiative transfer can be found in works by Mihalas, Oxenius and Rutten
[108,114,125].

In recent times the mathematical properties of the radiative transfer equation have been
examined in [12–14,16,107]. In several of these papers the authors studied the well-posedness
of the time-dependent problem, usually using semi-group theory or the theory of m-accretive
operators.

Another question that has been considered by several authors is the so-called Milne prob-
lem (cf. [30,68,127]). The Milne problem consists of describing the distribution of temperature
in half space, a question which is motivated by the study of the distribution of the temper-
ature near the boundary in the diffusion approximation limit. In this setting, the equation
reduces to a one-dimensional problem.

Problems related to the diffusion approximation and to homogenization have been exten-
sively studied as well as equations describing the distribution of temperature for bodies where
the heat is transmitted by means of radiation and conduction have been considered by numer-
ous authors with different boundary conditions, see for instance [22,32,42,62–65,72,95,96,116,
139]. We refer to [83] for more details. Moreover, other papers such as [34, 81, 112, 113, 122]
consider the radiative transfer equation coupled to the Boltzmann equation.

Equations similar to (A.1) with the absorption-emission coefficient αaν = 0, focusing solely
on scattering, are widely examined in mathematical studies, especially about neutron diffusion
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as seen in references [19,76,148]. Similar equations appear also in the theory of Lorentz gases,
cf. [18, 21,61,105,111,132].

A recent paper by Arkeryd and Nouri [7] that considers the existence of mild solutions
to normal discrete velocity Boltzmann equations with given incoming boundary values also
requires a compactness theorem for line integrals having some analogies with the one derived
in this paper.

We want to emphasize that although the time-dependent problem has been considered in
various papers, the existence of a time-dependent solution, even a globally bounded one, does
not imply the existence of a solution of the stationary problem.

A.1.2 Main theorems

In this paper, we consider the boundary value problem given by the system of equations
(A.1), (A.6) and (A.7). We will consider two types of absorption coefficients and scattering
coefficients. In the first case, the coefficients satisfy the so-called Grey approximation where
αaν(T ) = αa(T ) and αsν(T ) = αs(T ) are independent of the frequency ν. We will also consider
a particular choice of α’s in the non-Grey case, namely where αaν and αsν can be written as
the product of functions in ν and T , separately. We denote this case from now on as “pseudo
Grey”. A similar choice can be found in [68]. First, we study the case of pure emission and
absorption where αsν = 0 and we will show the existence of a solution to this problem as stated
in the following theorem. In the following theorem and throughout the rest of the paper, we
denote Iν ∈ L∞(Ω, L∞(S2, L1(R+))) when

sup
x∈Ω

sup
n∈S2

ˆ ∞

0
Iν(x, n)dν <∞.

Theorem A.1. Let Ω ⊂ R3 be bounded and open with C2-boundary and strictly positive
curvature. Suppose that the incoming boundary profile gν satisfies the bound

sup
n∈S2

ˆ ∞

0
dν gν(n) <∞,

and that αaν(T (x)) = Q(ν)α(T (x)) is bounded, strictly positive and C1 in T , where Q : R+ →
R+ and α : R+ → R+.
Then there exists a solution (T, Iν) ∈ L∞(Ω) × L∞ (Ω, L∞ (S2, L1(R+)

))
, which solves the

boundary value problem given by (A.1), (A.6) and (A.7) for αsν = 0, namely
n · ∇xIν(x, n) = Q(ν)α(T (x)) (Bν(T (x)− Iν(x, n)) , for x ∈ Ω, n ∈ S2,
∇x · F(x) = 0, at any x ∈ Ω,

Iν(x, n) = gν(n) ≥ 0, for x ∈ ∂Ω and n · nx < 0.

(A.9)

Here, Iν is a solution to (A.1) in the sense of distribution.

We will prove Theorem A.1 using a fixed-point argument. As we will see, the main difficulty
that arises in our proof is to show the compactness of the terms involving the exponential
function of a line integral. As first step we will regularize the line integral in order to obtain
a problem where it is possible to prove existence using the Schauder fixed-point theorem. We
will then show the compactness of the solutions of such regularized problems uniformly in the
regularizing parameter. To this end, we provide the following type of general L2 compactness
result for sequences of non-linear operators of line integrals based on the study of auxiliary
measures on S2.
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Proposition A.1 (Compactness result for line integrals). Let Π3 = [−L,L]3 and (φj)j∈N ∈
L∞ (Π3

)
be a sequence of periodic functions with ∥φj∥∞ ≤ M . For n ∈ S2 and m ∈ N we

define the operators Ln and Tm by

Ln[φ](x) =:

ˆ L

−L
dλ φ(x− λn) and Tm[φ](x) =:

ˆ
S2
dn (Ln[φ](x))

m .

Then for every m ∈ N the sequence (Tm[φj ])j is compact in L2
(
Π3
)
. More precisely, the

sequence Tm[φj ] satisfies the following equi-integrability condition: For any ε > 0 there exists
some h0 > 0 such that

ˆ
Π3

dx |Tm[φj ](x)− Tm[φj ](x+ h)|2

≤ Cm

ˆ
Π3

dx

ˆ
S2
dn |Ln[φj ](x)− Ln[φj ](x+ h)|2 < ε (A.10)

for all j ∈ N and all |h| < h0. The constant Cm > 0 depends only on m ∈ N, M and L.

The proposition above will provide the compactness theory required to conclude the proof
of the existence of solutions to the original problem (A.9). Finally, we study the existence
of solutions for the full equation with both scattering and absorption-emission. In this case,
we obtain the following existence theorem via the construction of suitable Green functions
associated with the system.

Theorem A.2 (Full equations in the pseudo Grey case). Let Ω ⊂ R3 be bounded and
open with C2-boundary and strictly positive curvature. Let αaν(T (x)) = Qa(ν)α

a(T (x)) and
αsν(T (x)) = Qs(ν)α

s(T (x)) be bounded and strictly positive. Assume that Qℓ ∈ C1 (R+) and
αℓ ∈ C1 (R+) for ℓ = a, s. Assume K ∈ C1

(
S2 × S2

)
be non-negative, rotationally symmet-

ric, and independent of the frequency with the property (A.4). Then there exists a solution
(T, Iν) ∈ L∞(Ω)×L∞ (Ω, L∞ (S2, L1(R+)

))
to the equation (A.1) coupled with (A.6) satisfying

the boundary condition (A.7), where the Iν is a solution to (A.1) in the sense of distribution.

A.1.3 Strategy of the proof and main estimates

In the case of pure absorption and emission, our main strategy for the proof of the exis-
tence to the boundary-value problem is to reduce the stationary radiation equation and the
“divergence-free-radiation-flow” equation to a non-local non-linear elliptic equation for an ex-
plicit function u of the temperature in the presence of an external source. This will allow to
reformulate the problem (A.1) (with αs = 0), (A.6) and (A.7) as

u(x)−
ˆ ∞

0

ˆ
Ω

F (ν, u(η))

|x− η|2 exp

(
−
ˆ
[x,η]

αaν(T (ξ))ds(ξ)

)
dη dν = S(x), (A.11)

where [x, η] indicates the segment from x ∈ Ω to η ∈ Ω and the exact form of u, F and
S are given in Section A.2.1. To prove the existence of a solution to the system given by
equations (A.1), (A.6) and (A.7) is equivalent to showing the existence of a solution to the
non-local integral equation (A.11). When the emission-absorption coefficient αaν depends on
the local temperature and has the form αν(x) = Q(ν)α(T (x)), where Q(ν) is a function of the
frequency which can be also constant, the strategy we use to prove the existence of a solution
is the following. We consider first a regularized version of (A.11), for which the existence of
a solution is guaranteed by the Schauder fixed-point theorem. With the compactness result
of Proposition A.1, which is based on the study of some auxiliary measures defined on the
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sphere S2, it turns out that the sequence of regularized solutions is compact in L2 and hence
a subsequence converges pointwise almost everywhere to the solution of the original problem.
We remark that obtaining L∞-estimates for the function u solving (A.11) (or a regularized
version of it) is not difficult using the structure of the integral operator. However, the main
difficulty remains getting compactness. In the case of the problem including the scattering
term, we use a similar strategy that however becomes more involved. To find a reformulation
of (A.1), (A.6) and (A.7) analogous to (A.11) we construct suitable fundamental solutions
for a problem that includes absorption and scattering. These fundamental solutions satisfy
recursive equations that allow us to obtain information about their properties using Duhamel
series which contain terms involving exponentials of some integrals along straight lines as in
(A.11). Due to this we will regularize again the problem for which then solutions exist applying
the Schauder fixed-point theorem. With the previous compactness result in Proposition A.1
applied to finitely many terms of the Duhamel expansion we will obtain the compactness
of the sequence of regularized solution in L2(Ω) and thus the convergence pointwise almost
everywhere to the solution of the full problem.

A.1.4 Outline of the paper

The rest of the paper is organized as follows. In Section A.2, we provide the derivation of the
non-local integral equation and the regularization of the equation which will be crucially used
in the proof of the existence of solutions (Theorem A.1). Section A.3 is devoted to the study
of the existence of a solution to (A.1) in the absence of scattering. In Subsection A.3.1 we
prove the existence of solutions to the regularized problem. In Subsection A.3.2, we provide
a L2 compactness theory of non-linear operators of line integrals based on the study of some
auxiliary measures defined on the sphere S2. This compactness theory will be used to obtain
the compactness of the solution sequences of the regularized problem and this allows us to
show the existence of the original problem stated in Theorem A.1 in Subsection A.3.3. In
Section A.4 we show the existence of solutions to the full equation (A.1) taking into account
also the scattering term, in particular we will prove Theorem A.2. This will be made in
several steps starting from the study of the Grey case deriving a non-local equation for the
temperature (Subsection A.4.1) and constructing suitable Green functions which encode the
effect of the scattering (Subsection A.4.2). Subsections A.4.3 to A.4.6 are devoted to the proof
of existence of solutions to the equation (A.1) in the Grey case. There, a regularized problem
is solved by means of Schauder’s fixed-point theorem and a weak maximum principle, while
the compactness result of Subsection A.3.2 is used to conclude the existence of a solution for
the Grey approximation. Finally, in Subsection A.4.7 we provide the proof of Theorem A.2.

A.2 Derivation of a non-local integral equation for the tem-
perature and the regularization of the equation

A.2.1 Derivation of a non-local integral equation

In this section, we will first derive a non-local integral equation that is satisfied by the tem-
perature. This equation is associated to the stationary equation

n · ∇xIν = αaν(T )(Bν(T )− Iν). (A.12)

Without loss of generality, we can assume σ = 1 by rescaling variables. We define for every
(x, n) ∈ Ω× S2 a new coordinate system with variables (y, s) = (y(x, n), s(x, n)) ∈ ∂Ω×R≥0.
These variables are defined in the following way. We consider for every x ∈ Ω and n ∈ S2
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the backward trajectory starting from x in direction −n. Then y(x, n) ∈ ∂Ω is the boundary
point that intersects with this straight line and s(x, n) is its length, i.e. s(x, n) = |x− y(x, n)|
and x = y + sn. Therefore, using this notation, solving by characteristics Iν and integrating
(A.12), we obtain that the flow F =

´∞
0

´
S2 nIν(x, n)dndν satisfies

F =

ˆ ∞

0
dν

ˆ
S2
dn ngν(n) exp

(
−
ˆ s(x,n)

0
αν(T (y(x, n) + ζn))dζ

)

+

[ˆ ∞

0
dν

ˆ
S2
dn

ˆ s(x,n)

0
dξ exp

(
−
ˆ s(x,n)

ξ
αν(T (y(x, n) + ζn))dζ)

)
n

× αν (T (y(x, n) + ξn))Bν (T (y(x, n) + ξn))

]
=: F1 + F2. (A.13)

Now we recall the conservation of energy (A.6) that yields ∇x · F = 0. In order to use this
condition, we take the divergence of (A.13).

We first compute ∇x · F2. We define new variables ξ̂ =: s− ξ and ζ̂ =: s− ζ and make a
change of variables ξ 7→ ξ̂in the integral, then

F2 =

ˆ ∞

0
dν

ˆ
S2
dn

ˆ s(x,n)

0
dξ exp

(
−
ˆ s(x,n)

ξ
αν(T (y(x, n) + ζn))dζ)

)
nαν(T )Bν(T )

=

ˆ ∞

0
dν

ˆ
S2
dn

ˆ s(x,n)

0
dξ̂ exp

(
−
ˆ ξ̂

0
αν(T (x− ζ̂n))dζ̂

)
nαν(T (x− ξ̂n))Bν

(
T (x− ξ̂n)

)
=

ˆ
Ω
dη

ˆ ∞

0
dν exp

(
−
ˆ |x−η|

0
αν

(
T

(
x− ζ̂

x− η

|x− η|

))
dζ̂

)
x− η

|x− η|αν(T (η))
Bν(T (η))

|x− η|2 ,

since the Jacobian gives ∂(ξ̂,n)
∂η = 1

|x−η|2 where η =: x− ξ̂n and ξ̂ = (x− η) · n = |x− η|. Also

note that n = x−η
|x−η| . Therefore, we have

∇x · F2 =

ˆ ∞

0
dν

ˆ
Ω
dη αν(T (η))Bν(T (η))∇x · (φv), (A.14)

where we define

φ(x, η) =: exp

(
−
ˆ |x−η|

0
αν

(
T

(
x− ζ̂

x− η

|x− η|

))
dζ̂

)
and v =:

x− η

|x− η|3 .

We now use that
∇x · (φv) = ∇φ · v + φ∇ · v,

where div(v) = 4πδ(x− η), and

∇φ = −φαν(T (η))
x− η

|x− η|

− φ

ˆ |x−η|

0

dαν
dT

(
T

(
x− ζ̂

x− η

|x− η|

))(
∇T

(
x− ζ̂

x− η

|x− η|

))
·Dx

(
x− ζ̂

x− η

|x− η|

)
dζ̂.

Note that(
x− η

|x− η| ·Dx

(
x− η

|x− η|

))
l

=
3∑
j=1

(x− η)j
|x− η|

(
δjl

|x− η| −
(xl − ηl)

|x− η|3 (xj − ηj)

)
=

(x− η)l
|x− η|

1

|x− η| −
|x− η|(xl − ηl)

|x− η|3 = 0. (A.15)
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Using φ(η, η) = 1, we have

∇x · (φv) = 4πδ(x− η)− φαν(T (η))
1

|x− η|2

− φ

|x− η|2
ˆ |x−η|

0

dαν
dT

(T

(
x− ζ̂

x− η

|x− η|

)
)
x− η

|x− η| · ∇T
(
x− ζ̂

x− η

|x− η|

)
dζ̂

= 4πδ(x− η)− φαν(T (η))
1

|x− η|2

+
φ

|x− η|2
ˆ |x−η|

0

dα

dT
(T

(
x− ζ̂

x− η

|x− η|

)
)
d

dζ̂
(T

(
x− ζ̂

x− η

|x− η|

)
)dζ̂

= 4πδ(x− η)− φαν(T (η))
1

|x− η|2 +
φ

|x− η|2 (αν(T (η)− αν(T (x)))

= 4πδ(x− η)− φ

|x− η|2αν(T (x)).

Therefore, by (A.14) we have

∇x · F2 = 4π

ˆ ∞

0
αν(T (x))Bν(T (x))dν

−
ˆ ∞

0
dναν(T (x))

ˆ
Ω
dη αν(T (η))Bν(T (η))

exp
(
−
´ |x−η|
0 αν(T

(
x− ζ̂ x−η

|x−η|

)
)dζ̂
)

|x− η|2 . (A.16)

We will see that the integral operator in (A.16) is a contractive operator.

Now we compute ∇x · F1. Using (A.13), we have

∇x · F1 =

ˆ ∞

0

ˆ
S2
dn exp

(
−
ˆ s(x,n)

0
αν(T (y(x, n) + ζn))dζ

)

× n ·
[
− gν(n)∇xsαν(T (x))− gν(n)

ˆ s(x,n)

0
∇x((αν ◦ T )(y(x, n) + ζn))dζ

]
.

Here we observe that

n · ∇x((αν ◦ T )(y(x, n) + ζn)) =
d

dt
((αν ◦ T )(y(x+ tn, n) + ζn))|t=0

=
d

dt
((αν ◦ T )(y(x, n) + ζn))|t=0 = 0,

since y(x + tn, n) = y(x, n). Also note that that n · ∇xs = 1. This holds by the following
observation. For any x0 ∈ Ω, we have

y(x0 + ζn, n) + s(x0 + ζn, n)n = x0 + ζn,

and hence

y(x0, n) + s(x0 + ζn, n)n = x0 + ζn.

We can differentiate it with respect to ζ and we obtain

d

dζ
(s(x0 + ζn, n)n) = (∇xs(x0 + ζn, n) · n)n = n.
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Thus we have

∇x · F1 = −
ˆ ∞

0
dν

ˆ
S2
dn exp

(
−
ˆ s(x,n)

0
αν(T (y(x, n) + ζn))dζ

)
αν(T (x))gν(n), (A.17)

and note that ∇x · F1 ≤ 0 and |∇x · F1| is bounded from above in L∞, since αν(·) is bounded
and G =

´∞
0 dν gν(n) ∈ L∞(S2).

Combining (A.16) and (A.17) we finally obtain

∇x · F = 4π

ˆ ∞

0
αν(T (x))Bν(T (x))dν

−
ˆ ∞

0
dναν(T (x))

ˆ
Ω
dη αν(T (η))Bν(T (η))

exp
(
−
´ |x−η|
0 αν(T

(
x− ζ̂ x−η

|x−η|

)
)dζ̂
)

|x− η|2

−
ˆ ∞

0
dν

ˆ
S2
dn exp

(
−
ˆ s(x,n)

0
αν(T (y(x, n) + ζn))dζ

)
αν(T (x))gν(n) = 0. (A.18)

In the pseudo Grey case as in Theorem A.1 the absorption coefficient has the form αν(T (x)) =
Q(ν)α(T (x)) and it is strictly positive and bounded. Hence dividing by α(T (x)) equation
(A.18) reads

4π

ˆ ∞

0
Q(ν)Bν(T (x))dν

=

ˆ ∞

0
dν Q2(ν)

ˆ
Ω
dη α(T (η))Bν(T (η))

exp
(
−Q(ν)

´ |x−η|
0 α(T

(
x− ζ̂ x−η

|x−η|

)
)dζ̂
)

|x− η|2

+

ˆ ∞

0
dν

ˆ
S2
dn exp

(
−Q(ν)

ˆ s(x,n)

0
α(T (y(x, n) + ζn))dζ

)
Q(ν)gν(n). (A.19)

Assuming now the Grey approximation, i.e. assuming that the absorption coefficient is strictly
positive and independent of ν (i.e. αν(T (x)) = α(T (x))), and using the Stefan Law (A.3) we
obtain dividing (A.18) by α(T (x)) and defining G(n) =

´∞
0 gν(n)dν,

4π(T (x))4 =

ˆ
Ω
dη α(T (η))(T (η))4

exp
(
−
´ |x−η|
0 α(T

(
x− ζ̂ x−η

|x−η|

)
)dζ̂
)

|x− η|2

+

ˆ
S2
dn exp

(
−
ˆ s(x,n)

0
α(T (y(x, n) + ζn))dζ

)
G(n) ≥ 0. (A.20)

A.2.2 Non-local integral equation in the Grey case

We will focus next on the Grey approximation and we will prove the following theorem.

Theorem A.3. Let Ω ⊂ R3 be bounded and open with C2-boundary and strictly positive
curvature. Suppose that the incoming boundary profile satisfies ∥G∥L∞(S2) < ∞, where
G(n) =

´∞
0 gν(n)dν. In addition, suppose that the absorption coefficient α(·) is bounded

and strictly positive and assume αs = 0. Then there exists a solution (T, Iν) ∈ L∞(Ω) ×
L∞ (Ω, L∞ (S2, L1 (R+)

))
which solves the boundary-value problem (A.1)-(A.7) coupled with

the conservation of energy (A.6). Iν is a solution to (A.1) in the sense of distribution.
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In order to prove Theorem A.3 we aim to use a fixed-point argument. To this end we first
see that u satisfies an L∞-estimate. Indeed, observe that Ω is bounded in R3 and

ˆ
Ω
dη α(T (η))(T (η))4

exp
(
−
´ |x−η|
0 α(T

(
x− ζ̂ x−η

|x−η|

)
)dζ̂
)

|x− η|2

=

ˆ
S2
dn

ˆ s(x,n)

0
r2dr α(T (η))(T (η))4

exp
(
−
´ r
0 α(T (x− ζ̂n))dζ̂

)
r2

=

ˆ
S2
dn

ˆ s(x,n)

0
dr (T (η))4

(
− d

dr
exp

(
−
ˆ r

0
α(T (x− ζ̂n))dζ̂

))
≤ ∥T∥4L∞(Ω)

ˆ
S2
dn

(
1− exp

(
−
ˆ s(x,n)

0
α(T (x− ζ̂n))dζ̂

))
≤ 4π(1− δ)∥T∥4L∞(Ω), (A.21)

where

δ = exp

(
−∥α∥L∞ max

x∈Ω, n∈S2
s(x, n)

)
> 0.

In addition, we observe∣∣∣∣∣
ˆ
S2
dn exp

(
−
ˆ s(x,n)

0
α(T (y(x, n) + ζn))dζ

)
G(n)

∣∣∣∣∣
≤
ˆ
S2
G(n)dn = ∥G∥L1(S2) ≤ 4π∥G∥L∞(S2) <∞. (A.22)

Let us now define u(x) = 4πσT 4(x). Hence, we write γ(u(x)) = α

(
4

√
u(x)
4πσ

)
. In order to

simplify the notation we also denote by

ˆ
[x,η]

f(ξ)dξ =

ˆ |x−η|

0
f

(
x+ t

η − x

|η − x|

)
dt.

Then we obtain

u(x) =

ˆ
Ω
dη γ(u(η))u(η)

exp
(
−
´
[x,η] γ(u (ζ))dζ

)
4π|x− η|2

+

ˆ
S2
dn exp

(
−
ˆ
[x,y(x,n)]

γ(u(ζ))dζ

)
G(n). (A.23)

This completes the derivation of the non-local integral equation. In the next Subsection, we
consider the regularization of the line integral in the non-local equation.

A.2.3 Regularization of the non-local equation

In order to prove the existence of a function u solving the non-local equation (A.23), we will
consider a regularization of the line integral. For the the regularized problem we will apply
Schauder’s fixed-point theorem and show the existence of a solution. We obtain in this way
a sequence of solutions to the regularized problem. We will hence show that the sequence
of integral operators acting on that regularized solutions is compact in L2. This implies the
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existence of a subsequence convergent pointwise almost everywhere to a function u. After an
application of the dominated convergence theorem we will show that this limit function is a
solution to the original problem (A.23).

Let ϕε ∈ C∞
c (R3) be a standard positive and radially symmetric mollifier. Given a segment

Γ we define
´
R3 δΓ(y)φ(y)dy =

´
Γ φ(ξ)dξ. Hence, for x, η ∈ Ω

ˆ
R3

F (ξ)δ[x,η] ∗ ϕε(ξ)dξ =
ˆ
R3

F (ξ)

ˆ |η−x|

0
ϕε

(
ξ − x− λ

η − x

|η − x|

)
dλdξ

=

ˆ
R3

ˆ |η−x|

0
F

(
ξ + x+ λ

η − x

|η − x|

)
ϕε(ξ)dλdξ

ε→0−→
ˆ |η−x|

0
F

(
x+ λ

η − x

|η − x|

)
dλ. (A.24)

In order to have also the same type of L∞ estimate we consider

u(x) = Bε(u)(x) =:

ˆ
Ω
dη (γ(u) ∗ ϕε) (η)u(η)

exp
(
−
´
R3 γ(u (ξ))δ[x,η] ∗ ϕε(ξ)dξ

)
4π|x− η|2

+

ˆ
S2
dn exp

(
−
ˆ
R3

γ(u(ξ))δ[x,y(x,n)] ∗ ϕε(ξ)dξ
)
G(n). (A.25)

We remark that by the smoothness of γ and the continuity of the exponential function the
integral operator Bε is continuous. The interesting part of this regularization is that we can
get the same type of L∞-estimate as for the original problem. Indeed, using the symmetry of
ϕε and again the change of variables η = x− rn we see that

d

dr
exp

(
−
ˆ
R3

γ(u(ξ))

ˆ r

0
ϕε(ξ − x+ λn)dλdξ

)
= − exp

(
−
ˆ
R3

γ(u(ξ))

ˆ r

0
ϕε(ξ − x+ λn)dλdξ

) ˆ
R3

ϕε(x− rn− ξ)γ(u(ξ))dξ

= − exp

(
−
ˆ
R3

γ(u(ξ))

ˆ r

0
ϕε(ξ − x+ λn)dλdξ

)
(γ(u) ∗ ϕε) (x− rn). (A.26)

We can then argue as in (A.21) and (A.22) that ∥Bε(u)∥∞ ≤ (1− δ)∥u∥∞ + ∥G∥L1 . We have
hence obtained a suitable regularization of equation (A.23). In the next Subsection, we will
prove the existence of a solution to the regularized problem.

A.3 Existence theory for the pure emission-absorption case

A.3.1 Existence of solutions to the regularized problem in the Grey case

We are now ready to prove the existence of a solution to the regularized problem (A.25) for
the Grey approximation. We start with the L∞-estimate and we proceed exactly as before.
Hence, for D = diam (Ω), passing to spherical coordinates and using (A.26) we obtain

∥Bε(u)∥∞ ≤ ∥u∥∞
(
1− e−D∥γ∥∞

)
+ ∥G∥L1 .

Thus, for K > ∥G∥L1eD∥γ∥∞ we see that the operator Bε maps continuously the set

{u ∈ L∞(Ω) : u ≥ 0, ∥u∥∞ ≤ K}



92 APPENDIX A. EXISTENCE AND COMPACTNESS THEORY

to itself. Actually, it is a compact operator mapping the non-negative continuous functions
bounded by K to the Hölder continuous functions. This is relevant because it allows us to
apply the Schauder fixed-point theorem (cf. [49]).

To this end we assume now u ∈ C(Ω) and u ≥ 0. By definition, we can extend it
continuously up to the boundary ∂Ω. Moreover, we extend by zero both functions u and γ(u)
outside Ω̄ such that the convolution γ(u) ∗ ϕε is smooth and well-defined. Let x ∈ Ω and
h ∈ R3 with x+ h ∈ Ω. We estimate

|Bε(u)(x)− Bε(u)(x+ h)|

≤
∣∣∣∣∣
ˆ
Ω
dη (γ(u) ∗ ϕε) (η)u(η)

exp
(
−
´
R3 γ(u (ξ))δ[x,η] ∗ ϕε(ξ)dξ

)
4π|x− η|2

−
ˆ
Ω
dη (γ(u) ∗ ϕε) (η)u(η)

exp
(
−
´
R3 γ(u (ξ))δ[x+h,η] ∗ ϕε(ξ)dξ

)
4π|x+ h− η|2

∣∣∣∣∣
+

∣∣∣∣ˆ
S2
dn exp

(
−
ˆ
R3

γ(u(ξ))δ[x,y(x,n)] ∗ ϕε(ξ)dξ
)
G(n)

−
ˆ
S2
dn exp

(
−
ˆ
R3

γ(u(ξ))δ[x+h,y(x+h,n)] ∗ ϕε(ξ)dξ
)
G(n)

∣∣∣∣
≤ 1

4π

ˆ
Ω
dη (γ(u) ∗ ϕε) (η)u(η) exp

(
−
ˆ
R3

γ(u (ξ))δ[x,η] ∗ ϕε(ξ)dξ
)

×
∣∣∣∣ 1

|x− η|2 − 1

|x+ h− η|2
∣∣∣∣

+

ˆ
Ω
dη

(γ(u) ∗ ϕε) (η)u(η)
4π|x+ h− η|2

∣∣∣∣exp(−ˆ
R3

γ(u (ξ))δ[x,η] ∗ ϕε(ξ)dξ
)

− exp

(
−
ˆ
R3

γ(u (ξ))δ[x+h,η] ∗ ϕε(ξ)dξ
)∣∣∣∣

+

ˆ
S2
dn G(n)

∣∣∣∣exp(−ˆ
R3

γ(u(ξ))δ[x,y(x,n)] ∗ ϕε(ξ)dξ
)

− exp

(
−
ˆ
R3

γ(u(ξ))δ[x+h,y(x+h,n)] ∗ ϕε(ξ)dξ
)∣∣∣∣

=: I + II + III. (A.27)

In order to estimate the integral term I, we proceed splitting it in two integrals

I ≤ C(∥γ∥∞,K)

ˆ
Ω
dη

∣∣∣∣ 1

|x− η|2 − 1

|x+ h− η|2
∣∣∣∣

≤ C

ˆ
Ω∩{|x−η|≤2|h|}

dη

∣∣∣∣ 1

|x− η|2 − 1

|x+ h− η|2
∣∣∣∣

+ C

ˆ
Ω∩{|x−η|>2|h|}

dη

∣∣∣∣ 1

|x− η|2 − 1

|x+ h− η|2
∣∣∣∣ .

If |x− η| ≤ 2|h| then also |x+ h− η| ≤ 3|h| and henceˆ
Ω∩{|x−η|≤2|h|}

dη

∣∣∣∣ 1

|x− η|2 − 1

|x+ h− η|2
∣∣∣∣ ≤ 2

ˆ
B3|h|(0)

dy
1

|y|2 = 24π|h|.

On the other hand, if |x− η| > 2|h|, then for 0 < s < 1,∣∣∣∣ 1

|x− η|2 − 1

|x+ h− η|2
∣∣∣∣ ≤ |h|2 + 2|h||x− η|

|x− η|2|x+ h− η|2 ≤ 2s−2|h|s 1

|x− η|s|x+ h− η|2 .
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Choosing now s = 1
2 we see that 1

|x−·|s ∈ L4(Ω) and 1
|x+h−·|2 ∈ L

4
3 (Ω). Hence

ˆ
Ω∩{|x−η|>2|h|}

dη

∣∣∣∣ 1

|x− η|2 − 1

|x+ h− η|2
∣∣∣∣ ≤ C(Ω)|h| 12 .

Summarizing we get for a sufficiently small |h| < 1,

I ≤ C(Ω, ∥γ∥∞,K)|h| 12 . (A.28)

For the second term II we use the following three estimates which are the consequence of
the smoothness of ϕεˆ |η−x|

0
dλ

∣∣∣∣ϕε(z − x− λ
η − x

|η − x|

)
− ϕε

(
z − x− h− λ

η − x

|η − x|

)∣∣∣∣ ≤ C(ϕε)|h||η − x|; (A.29)

ˆ |η−x|

0
dλ

∣∣∣∣ϕε(z − x− h− λ
η − x

|η − x|

)
− ϕε

(
z − x− h− λ

η − x− h

|η − x− h|

)∣∣∣∣
≤ C(ϕε)

|x− η|
2

∣∣(η − x± h)|η − x− h| − (η − x− h)|η − x|
∣∣

|η − x− h|

≤ C(ϕε)
|x− η|

2

(∣∣|η − x− h| − |x− h|
∣∣+ |h|

)
≤ C(ϕε)|h||η − x|; (A.30)

and ∣∣∣∣∣
ˆ |η−x−h|

|η−x|
dλ ϕε

(
z − x− h− λ

η − x− h

|η − x− h|

)∣∣∣∣∣ ≤ C(ϕε)|h|. (A.31)

Now, using the well-known inequality |e−a − e−b| ≤ |a − b| for a, b ≥ 0 and the definition of
the line integrals as in (A.24) we see

II ≤ C(∥γ∥∞, ϕε,K)

ˆ
Ω
dη

1

|η − x− h|2
ˆ
R3

dz γ(u)(z)

×
∣∣∣∣∣
ˆ |η−x|

0
dλ ϕε

(
z − x− λ

η − x

|η − x|

)
− ϕε

(
z − x− h− λ

η − x− h

|η − x− h|

)∣∣∣∣∣
≤ C(∥γ∥∞, ϕε,K,Ω)∥γ∥∞|h|, (A.32)

where in the last step we used all three estimates (A.29), (A.30) and (A.31).
The last integral term III is estimated in a similar way as we did for II. Since we

assumed that ∂Ω is C2 and has positive curvature, we notice that there exists a constant
C(Ω) depending on the curvature of the domain, such that if |h| < 1 is sufficiently small then

|s(x, n)− s(x+ h, n)| ≤ C(Ω)|h| 12 , (A.33)

for all n ∈ S2. Estimate (A.33) is the result of a geometrical argument considering the
worst case scenario when n is close to tangent to the boundary at the point x − s(x, n)n or
x+ h− s(x+ h, n)n taking into account that the curvature of ∂Ω is strictly positive. Hence,∣∣∣∣∣

ˆ s(x,n)

0
dλ ϕε(z − x+ λn)−

ˆ s(x+h,n)

0
dλ ϕε(z − x− h+ λn)

∣∣∣∣∣
≤
ˆ min(s(x,n),s(x+h,n))

0
dλ |ϕε(z − x+ λn)− ϕε(z − x− h+ λn)|

+

ˆ max(s(x,n),s(x+h,n))

min(s(x,n),s(x+h,n))
dλ |ϕε| ≤ C(ϕε,Ω)|h|

1
2 .
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Hence, we conclude

III ≤ C(∥G∥∞,Ω, ϕε)∥γ∥∞|h| 12 . (A.34)

Estimates (A.28), (A.32) and (A.34) together imply the estimate

|Bε(u)(x)− Bε(u)(x+ h)| ≤ C (G, γ,K, ϕε,Ω) |h|
1
2 ,

for all x ∈ Ω and |h| < 1 sufficiently small. We have just proved then that Bε maps continuous
functions to Hölder continuous functions. It is therefore a compact operator. As we have
already noticed it is also a continuous operator. Then Schauder’s fixed-point theorem implies
the existence of a fixed-point uε ∈ C (Ω) with 0 ≤ uε ≤ K such that uε = Bε(uε). This
concludes the proof of the existence of a solution uε for the regularized problem (A.25). In
the next section, we will provide a general L2 compactness theory based on some auxiliary
meausres defined on S2 to prove the existence of the original problem.

A.3.2 Compactness theory for operators defined by means of some line
integrals

We prove now Proposition A.1.

Proof of Proposition A.1. Without loss of generality we can assume L = 1 and M = 1. We
start writing φj in its Fourier series form as

φj =
∑
k∈πZ3

ajke
ik·x.

We denote by µj the measure associated to φj and defined by

µj =
∑
k∈πZ3

∣∣∣ajk∣∣∣2 δ k
|k|

∈ M+

(
S2
)
.

We will work with the auxiliary measures defined on S2 given for R > 0 by

µRj =
∑
k∈πZ3

|k|>R

∣∣∣ajk∣∣∣2 δ k
|k|

∈ M+

(
S2
)
.

Moreover we see that

µRj (S2) ≤ µj(S2) = ∥φj∥L2 ≤ 8,

where we used that
∣∣Π3
∣∣ = 8.

We can now rewrite using the absolute convergence of the series and computing the inte-
grals

Ln[φj ](x) =

ˆ 1

−1
dλ

∑
k∈πZ3

ajke
ik·(x−λn)

=
∑
k∈πZ3

ajke
ik·x

ˆ 1

−1
dλe−ik·λn =

∑
k∈πZ3

2ajk
sin(k · n)
k · n eik·x

=
∑
k∈πZ3

|k|≤R

2ajk
sin(k · n)
k · n eik·x +

∑
k∈πZ3

|k|>R

2ajk
sin(k · n)
k · n eik·x.
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Since the first sum is finite, the first term on the right hand side is compact for every fixed
R > 0. We now consider the contribution due to the second term. We define the auxiliary
measure associated to Ln[φj ] that will be denoted by νRn,j . More precisely we define it by
means of

νRn,j(ω) =:
∑
k∈πZ3

|k|>R

4
∣∣∣ajk∣∣∣2 ∣∣∣∣sin(k · n)k · n

∣∣∣∣2 δ k
|k|
(ω). (A.35)

Again we see νRn,j ∈ M+

(
S2
)
with νRn,j

(
S2
)
≤ 32. Notice that νRn,j ≤ 4µRj for all n ∈ S2 as a

measure.

We notice also that by definition νRn,j |{ω·n=0} = 4µRj |{ω·n=0} since lim
x→0

sin(x)
x = 1. More-

over, we can write

νRn,j = νRn,j |{0≤|ω·n|<κ} +
∑
k∈πZ3

|k|>R

4
∣∣∣ajk∣∣∣2 ∣∣∣∣sin(k · n)k · n

∣∣∣∣2 δ k
|k|
(ω) |{|ω·n|≥κ} . (A.36)

On one hand we have

νRn,j |{0≤|ω·n|<κ} ≤ 4µRj |{0<|ω·n|<κ}

and also defining fκ(ω, n) = χ{ω:0≤|ω·n|<κ}(ω) we have

fκ(ω, n) = χ{(ω,n):0≤|ω·n|<κ}(ω, n) = χ{n:0≤|ω·n|<κ}(n)

hence we compute

ˆ
S2
dn

ˆ
S2
dνRn,j(ω) |{0<|ω·n|<κ} ≤ 4

ˆ
S2
dn

ˆ
S2
dµRj (ω)χ{(ω,n):0<|ω·n|<κ}(ω, n)

= 4

ˆ
S2
dµRj (ω)

ˆ
S2
dnχ{n:0≤|ω·n|<κ}(n) ≤ 128πκ→ 0 (A.37)

uniformly in j ∈ N and R ∈ πN. For the first inequality we used that νRn,j ≤ 4µRj , after that
we changed the order of integration using the boundedness of the measures and we concluded
using µRj

(
S2
)
≤ 8 as well as

ˆ
S2
dnχ{0<|ω·n|<κ}(n) < 4πκ.

On the other hand we have for fixed κ > 0

ˆ
S2
dn

ˆ
S2

∑
k∈πZ3

|k|>R

4
∣∣∣ajk∣∣∣2 ∣∣∣∣sin(k · n)k · n

∣∣∣∣2 δ k
|k|
(ω) |{|ω·n|≥κ}

≤
ˆ
S2
dn

ˆ
S2

4

R2κ2

∑
k∈πZ3

|k|>R

∣∣∣ajlk ∣∣∣2 δ k
|k|
(ω) |{|ω·n|≥κ}

≤
ˆ
S2
dn

ˆ
S2

4

R2κ2
dµj(ω) |{|ω·n|≥κ} ≤

128π

R2κ2
−→
R→∞

0. (A.38)

uniformly in j ∈ N. We used indeed that if |k|ω = k, |k| > R and |ω ·n| > κ, then |k ·n| > Rκ.
Moreover, we can always bound the measure µRj ≤ µj and µj(S2) ≤ 8.
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Hence, we conclude
´
S2 dn

´
S2 dν

R
n,jl

(ω) → 0 as R → 0. Indeed, let ε > 0. We chose

0 < κ0 <
1

256πε . Then testing according to (A.38) we define R0(ε) >
16

√
π

κ0
√
ε
such that for all

R ≥ R0 we have ˆ
S2
dn

ˆ
S2
dνRn,j |{|ω·n|≥κ0} (ω) <

ε

2
. (A.39)

Combining (A.37) for κ0 and (A.39) we obtain

0 ≤
ˆ
S2
dn

ˆ
S2
dνRn,j(ω) < ε (A.40)

for all R ≥ R0 and most importantly for all j ∈ N.
We are now ready to show the compactness of the sequence Tm[φj ] in L2

(
Π3
)
. Since

Tm is a bounded operator, Π3 is a compact subset of R3, we only have to show the equi-
integrability condition (cf. [23]). We recall that ∥Ln[φ]∥∞ ≤ 2. Hence, let x, h ∈ Π3 using
Jensen’s inequality we compute

|Tm[φj ](x)− Tm[φj ](x+ h)|2 =
∣∣∣∣ˆ

S2
dn [(Ln[φj ](x))

m − (Ln[φj ](x+ h))m]

∣∣∣∣2
≤
(
m2m−1

)2(ˆ
S2
dn |Ln[φj ](x)− Ln[φj ](x+ h)|

)2

≤
(
4πm2m−1

)2 ˆ
S2
dn

∣∣∣∣∣∣
∑
k∈πZ3

2ajk
sin(k · n)
k · n eik·x

(
1− eik·h

)∣∣∣∣∣∣
2

. (A.41)

Since
{
1
8e
ik·x}

k∈πZ3 is an orthonormal basis of Π3 we obtain denoting by Cm = 824πm2m−1,

ˆ
Π3

dx |Tm[φj ](x)− Tm[φj ](x+ h)|2

≤ C2
m

64

ˆ
Π3

dx

ˆ
S2
dn |Ln[φj ](x)− Ln[φj ](x+ h)|2

= C2
m

ˆ
S2
dn

∑
k∈πZ3

4
∣∣∣ajk∣∣∣2 ∣∣∣∣sin(k · n)k · n

∣∣∣∣2 ∣∣∣(1− eik·h
)∣∣∣2

≤ 32πC2
m

∑
k∈πZ3

|k|≤R

4
∣∣∣ajk∣∣∣2 |k|2|h|2 + 32C2

m

ˆ
S2
dn

ˆ
S2
dνRn,j(ω). (A.42)

Let ε > 0. We have shown that there exists R0 > 0 such that
ˆ
S2
dn

ˆ
S2
dνRn,j(ω) <

ε

64C2
m

,

for all R ≥ R0 and for all j ∈ N. Taking in (A.42) R = R0 and h0 =
√
ε

Cm32
√
2R0

we obtain the

desired equi-integrability condition

ˆ
Π3

dx |Tm[φj ](x)− Tm[φj ](x+ h)|2

≤ Cm

ˆ
Π3

dx

ˆ
S2
dn |Ln[φj ](x)− Ln[φj ](x+ h)|2 < ε

for all |h| < h0. This concludes the proof of Proposition A.1.
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We can get a stronger result for the compactness of line integrals of functions depending
also on the direction n ∈ S2. We will use it in the proof of existence of solution to the equation
containing also the scattering term.

Corollary A.1. Let Π3 = [−L,L]3 and (φ(x, n)j)j∈N ∈ C
(
S2, L2

(
Π3
)
∩ L∞ (Π3

))
be a

sequence of periodic functions with sup
n∈S2

∥φj(·, n)∥L∞(Π3) ≤ M . Assume also ∥φj(·, n1) −
φj(·, n2)∥L∞(Π3) ≤ σ(d(n1, n2)) → 0 uniformly in j ∈ N if d(n1, n2) → 0, where d is the
metric on the sphere and σ ∈ C (R+,R+) with σ(0) = 0 is a uniform modulus of continuity.
For n ∈ S2 and m ∈ N we define the operators Ln and Tm by

Ln[φ](x, ω) =:

ˆ 1

−1
dλ φ(x− λn, ω) and Tm[φ](x) =:

ˆ
S2
dn (Ln[φ](x, n))

m

Then for every m ∈ N the sequence (Tm[φj ])j is compact in L2
(
Π3
)
.

Proof. Without loss of generality we can assume again L = 1 and M = 1. This statement is a
corollary to Proposition A.1 and the Besicovitch covering Lemma. Since S2 with the geodesic
metric is a Riemannian Manifold of class greater than 2, it is also a directionally (1,C)-limited
metric space for a fixed constant C > 0. See [52] for further reference. This implies that
the Federer-Besicovitch covering Lemma (a generalization of the well-known Lemma in Rn)
applies. Hence, for any family Fδ = {Bδ(n)}n∈S2 of balls with radius δ < 1 there exists
subfamilies Gk ⊂ Fδ for 1 ≤ k ≤ 2C + 1 consisting of disjoint balls such that

S2 ⊂
2C+1⋃
k=1

⊔
B∈Gk

B,

where
⊔

denotes the disjoint union. Since S2 is compact there exists also a finite cover, i.e.,
the subfamilies Gk are finite. Hence,

S2 ⊂
2C+1⋃
k=1

⊔
1≤i≤N(k,δ)

Bδ(nk,i).

Let now ε > 0 and h ∈ R3. Similarly as in equation (A.41) we estimate using first Jensen’s
inequality

ˆ
Π3

dx |Tm[φj ](x)− Tm[φj ](x+ h)|2

=

ˆ
Π3

dx

∣∣∣∣ˆ
S2
dn

[(ˆ 1

−1
dλ φj(x− λn, n)

)m
−
(ˆ 1

−1
dλ φj(x+ h− λn, n)

)m]∣∣∣∣2
≤ Cm

4π

ˆ
Π3

dx

[ˆ
S2
dn

∣∣∣∣ˆ 1

−1
dλ [φj(x− λn, n)− φj(x+ h− λn, n)]

∣∣∣∣]2
≤ Cm

ˆ
Π3

dx

ˆ
S2
dn

∣∣∣∣ˆ 1

−1
dλ [φj(x− λn, n)− φj(x+ h− λn, n)]

∣∣∣∣2
= Cm

ˆ
Π3

dx

ˆ
⋃2C+1

k=1

⊔N(k,δ)
i=1 Bδ(nk,i)

dn

∣∣∣∣ˆ 1

−1
dλ [φj(x− λn, n)− φj(x+ h− λn, n)]

∣∣∣∣2
(A.43)
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≤ Cm

2C+1∑
k=1

ˆ
Π3

dx

ˆ
⊔N(k,δ)

i=1 Bδ(nk,i)
dn

∣∣∣∣ˆ 1

−1
dλ [φj(x− λn, n)− φj(x+ h− λn, n)]

∣∣∣∣2

≤ Cm

2C+1∑
k=1

ˆ
Π3

dx

N(k,δ)∑
i=1

ˆ
Bδ(nk,i)

dn

∣∣∣∣ˆ 1

−1
dλ [φj(x− λn, nk,i)− φj(x+ h− λn, nk,i)]

∣∣∣∣2

+ Cm

2C+1∑
k=1

ˆ
Π3

dx

N(k,δ)∑
i=1

ˆ
Bδ(nk,i)

dn4σ(δ)2

≤ CmN(k, δ)
2C+1∑
k=1

N(k,δ)∑
i=1

ˆ
Π3

dx

ˆ
S2
dn

∣∣∣∣ˆ 1

−1
dλ [φj(x− λn, nk,i)− φj(x+ h− λn, nk,i)]

∣∣∣∣2
+ 4Cm(2C + 1)

ˆ
Π3

dx

ˆ
S2
dnσ(δ)2,

where in the last inequality we used that the balls {Bδ(nk,i)}1≤i≤N(k,δ) are disjoint. We choose

thus δ0 > 0 such that 4Cm(2C + 1)σ(δ0) <
ε
64 . Lemma A.41 with equation (A.10) implies for

any (k, i) with 1 ≤ k ≤ 2C + 1 and 1 ≤ i ≤ N(k, δ0) the existence of some h0(k, i) such that

ˆ
Π3

dx

ˆ
S2
dn

∣∣∣∣ˆ 1

−1
dλ [φj(x− λn, nk,i)− φj(x+ h− λn, nk,i)]

∣∣∣∣2 < ε

2Cm(2C + 1)

1

N(k, δ0)2

for all |h| < h0(i, k) and for all j ∈ N. Hence, choosing h0 = min
1≤k≤2C+1
1≤i≤N(k,δ0)

{h0(k, i)} we conclude

ˆ
Π3

dx |Tm[φj ](x)− Tm[φj ](x+ h)|2 < ε

for all |h| < h0 and all j ∈ N. Hence, the sequence (Tm[φj ])j is compact in L2
(
Π3
)
.

We extend now Proposition A.1 to other more general type of operators involving line
integrals. To this end we define for φ ∈ L∞(Π3) and 0 ≤ s < t ≤ L

2 , x ∈ Π3 and n ∈ S2 the
line integral

Ln,t−s[φ](x) =
ˆ t

s
dλφ(x− λn). (A.44)

Then the following lemma holds.

Lemma A.1. Under the notation above let (φj)j∈N ∈ L∞ (Π3
)
be a sequence of periodic

functions with ∥φj∥∞ ≤M . Let ε > 0, then there exists h0 > 0 such that

ˆ
Π3

dx

∣∣∣∣ 
S2
dn (Ln,t−s[φj ](x)− Ln,t−s[φj ](x+ h))

∣∣∣∣2
≤
ˆ
Π3

dx

 
S2
dn |Ln,t−s[φj ](x)− Ln,t−s[φj ](x+ h)|2 < ε (A.45)

for all |h| < h0 and j ∈ N and uniformly in t, s. This equi-integrability condition implies as
in Proposition A.1 the compactness of any sequence

ffl
S2 dn (Ln,t−s[φj ](x))

m in L2(Π3) for any
fixed m ∈ N.

Proof. We expand the functions φj in their respectively Fourier series as

φj(x) =
∑

k∈ π
L
Z3

ajke
ik·x,
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hence their associated auxiliary measures µRj are given for R ∈ π
LZ by

µRj =
∑

k∈ π
L
Z3

|k|>R

|ajk|2δ k
|k|

∈ M+

(
S2
)
. (A.46)

For any s, t ∈
[
0, L2

]
with s < t we compute for k ∈ π

LZ
3 and n ∈ S2

ˆ t

s
dλe−ik·λn =

e−it(k·n) − e−is(k·n)

−ik · n = 2e−i(t+s)
(k·n)

2

sin
(
(t− s) (k·n)2

)
k · n .

Therefore, the auxiliary measures associated to the operators Ln,t−s acting respectively on φj
are given by

νt−s,Rn,j (ω) =
∑

k∈ π
2D+2

Z3

|k|>R

|ajk|24

∣∣∣∣∣∣
sin
(
(t− s) (k·n)2

)
k · n

∣∣∣∣∣∣
2

δ k
|k|

∈ M+

(
S2
)
. (A.47)

Since
∣∣∣ sin(ax)x

∣∣∣ ≤ a we notice that the auxiliary measures are uniformly bounded and satisfy

νt−s,Rn,j ≤ (t− s)2µRj ≤ L2

4
µRj ≤ L2

4
µj .

Hence, exactly as we have argued in Proposition A.1 we see also in this case that for any
0 < κ < 1 ˆ

S2
dn

ˆ
S2
dνt−s,Rn,j (ω)χ{0≤|ω·n|<κ} ≤

L2

4
C(L,M)κ→ 0,

as κ→ 0 uniformly in j ∈ N and t, s ∈
[
0, L2

]
. Moreover, estimating the sine function by 1 we

also have for fixed κ > 0

ˆ
S2
dn

ˆ
S2
dνt−s,Rn,j (ω)χ{|ω·n|≥κ} ≤

C(L,M)

R2κ2
→ 0,

s R → ∞ uniformly in j ∈ N and t, s ∈
[
0, L2

]
. Thus, we conclude once again that for any

ε > 0 there exists some R0(ε) > 0 (independent of j ∈ N and t, s ∈
[
0, L2

]
) such that

ˆ
S2
dn

ˆ
S2
dνt−s,Rn,j (ω) < ε,

for all R ≥ R0, for all j ∈ N and for all t, s ∈
[
0, L2

]
.

Let us define CL =
∣∣Π3
∣∣ = (2L)3. We can write for any t, s ∈

[
0, L2

]
with s < t using first
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Jensen’s inequality and secondly that
{

1
CL
eik·x

}
k∈ π

L
Z3

form an orthonormal basis of Π3

ˆ
Π3

D

∣∣∣∣ 
S2
dn Ln,t−s[φj ](x)− Ln,t−s[φj ](x+ h)

∣∣∣∣2
≤
ˆ
Π3

D

 
S2
dn |Ln,t−s[φj ](x)− Ln,t−s[φj ](x+ h)|2

≤ C2
L

∑
k∈ π

L
Z3

|k|≤R

 
S2
dn
∣∣∣ajk∣∣∣2 4

∣∣∣∣∣∣
sin
(
(t− s) (k·n)2

)
k · n

∣∣∣∣∣∣
2 ∣∣∣1− eik·h

∣∣∣2 + 4C2
L

 
S2
dn

ˆ
S2
dν

(t−s),R
n,j (ω)

≤ C3
LM

2(t− s)2R2|h|2 + 4C2
L

 
S2
dn

ˆ
S2
dν

(t−s),R
n,j (ω)

≤ C3
LM

2L
2

4
R2|h|2 + 4C2

L

 
S2
dn

ˆ
S2
dν

(t−s),R
n,j (ω).

Hence, taking R = R0

(
ε

8C2
L

)
and h0 =

2
√
ε

MCLR0L
√
CL

we conclude the desired equi-integrability

result

ˆ
Π3

D

∣∣∣∣ 
S2
dn Ln,t−s[φj ](x)− Ln,t−s[φj ](x+ h)

∣∣∣∣2
≤
ˆ
Π3

D

 
S2
dn |Ln,t−s[φj ](x)− Ln,t−s[φj ](x+ h)|2 < ε

for all |h| < h0 uniformly inj ∈ N and t, s ∈
[
0, L2

]
.

A.3.3 Proof of Theorems A.1 and A.3

We can now prove Theorems A.3 and A.1. A crucial step will be to adapt Proposition A.1
in order to show the compactness of the operators Bε instead of the operator defined only by
one line integral.

Proof of Theorem A.3. We first extend by 0 the function uε and γ(uε). Assuming without
loss of generality that 0 ∈ Ω, since ϕε has compact support in Bε(0) ⊂ B1(0) for all ε < 1
we see that γ(uε) ∗ ϕε and uε have both support contained in [−D − 1, D + 1]3, where we
denote by D = diam(Ω). Let us extend periodically in R3 both functions uε and γ(uε) ∗ϕε in
Π3
D =: [−2D − 2, 2D + 2]3. Then we see that

ˆ
Ω
dx

ˆ
S2
dn

ˆ s(x,n)

0
uε(x− rn)dr =

ˆ
Ω
dx

ˆ
S2
dn

ˆ D

0
uε(x− rn)dr.

With the same notation of Lemma A.1 we consider the operators Ln,r−s[φ](x) acting on
φ ∈ L∞(Π3

D), n ∈ S2 and x ∈ Π3
D given by (A.44). In the case s = 0 we simplify the notation

by Ln,r−0[φ](x) = Ln,r[φ](x). Using (A.24) and the radial symmetry of ϕε we see

ˆ
R3

dξγ(uε)(ξ)δ[x,x−rn] ∗ ϕε(ξ) =
ˆ r

0
dλ (γ(uε) ∗ ϕε) (x− λn) = Ln,r [γ(uε) ∗ ϕε] (x).
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Thus, we can write the operator Bε(uε) in the following way changing the variables according
to η = x− rn

Bε(uε)(x) =
ˆ D

0
dr

 
S2
dn [(γ(uε) ∗ ϕε)uε] (x− rn) exp (−Ln,r (γ(uε) ∗ ϕε) (x))

+

ˆ
S2
dn G(n) exp

(
−Ln,s(x,n) (γ(uε) ∗ ϕε) (x)

)
=

ˆ D

0
dr

 
S2
dn [(γ(uε) ∗ ϕε)uε] (x− rn)

∞∑
m=0

(−1)m

m!
(Ln,r (γ(uε) ∗ ϕε) (x))m

+

ˆ
S2
dn G(n)

∞∑
m=0

(−1)m

m!

(
Ln,s(x,n) (γ(uε) ∗ ϕε) (x)

)m
. (A.48)

Since the sequence Bε(uε) is uniformly bounded by K in L∞(Ω), and thus by |Ω| 12K in L2(Ω),
for the compactness we need again to show only the equi-integrability. Let now h ∈ R3 with
|h| < 1

2 and ε < 1
2 . Since we extended by 0 the function uε = Bε(uε) outside Ω it is true that

Bε(uε)(x+h) = Bε(uε)(x+h)χ{x+h∈Ω}(x). Hence, we multiply by this characteristic function
also the integral definition of the operator as in (A.48), this guarantees the well-definiteness
of the function at x+ h ̸∈ Ω. We thus compute using Jensen’s inequality

ˆ
Ω
dx |Bε(uε)(x)− Bε(uε)(x+ h)|2

≤ C

ˆ
Ω
dx

 
S2
dn

∣∣∣∣∣
ˆ D

0
dr [(γ(uε) ∗ ϕε)uε] (x− rn)

∞∑
m=0

(−1)m

m!
(Ln,r (γ(uε) ∗ ϕε) (x))m

−
ˆ D

0
drχ{x+h∈Ω} [(γ(uε) ∗ ϕε)uε] (x+ h− rn)

∞∑
m=0

(−1)m

m!
(Ln,r (γ(uε) ∗ ϕε) (x+ h))m

∣∣∣∣∣
2

+ C(G)

ˆ
Ω
dx

ˆ
S2
dn G(n)

∣∣∣∣∣
∞∑
m=0

(−1)m

m!

(
Ln,s(x,n) (γ(uε) ∗ ϕε) (x)

)m
−

∞∑
m=0

(−1)m

m!
χ{x+h∈Ω}

(
Ln,s(x+h,n) (γ(uε) ∗ ϕε) (x+ h)

)m∣∣∣∣∣
2

.

Applying now the triangle inequality we can further estimate

ˆ
Ω
dx |Bε(uε)(x)− Bε(uε)(x+ h)|2

≤ C∥γ∥2∞K2

ˆ
Ω
dxχ{x+h∈Ω}

ˆ D

0
dr

 
S2
dn

∣∣∣∣∣
∞∑
m=0

(−1)m

m!
(Ln,r (γ(uε) ∗ ϕε) (x))m

−
∞∑
m=0

(−1)m

m!
(Ln,r (γ(uε) ∗ ϕε) (x+ h))m

∣∣∣∣∣
2

+ C

ˆ
Ω
dxχ{x+h∈Ω}

 
S2
dn

∣∣∣∣∣
ˆ D

0
dr

∞∑
m=0

(−1)m

m!
(Ln, r (γ(uε) ∗ ϕε) (x))m

× [((γ(uε) ∗ ϕε)uε) (x− rn)− ((γ(uε) ∗ ϕε)uε) (x+ h− rn)]

∣∣∣∣2
(A.49)
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+ C(G)

ˆ
Ω
dxχ{x+h∈Ω}

 
S2
dn

∣∣∣∣∣
∞∑
m=0

(−1)m

m!
(Ln,D (γ(uε) ∗ ϕε) (x))m

−
∞∑
m=0

(−1)m

m!
(Ln,D (γ(uε) ∗ ϕε) (x+ h))m

∣∣∣∣∣
2

+ C(G)

ˆ
Ω
dxχ{x+h∈Ω}

 
S2
dn

{[
e(−Ln,s(x,n)(γ(uε)∗ϕε)(x)) − e(−Ln,D(γ(uε)∗ϕε)(x))

]2
+
[
e(−Ln,s(x+h,n)(γ(uε)∗ϕε)(x+h)) − e(−Ln,D(γ(uε)∗ϕε)(x+h))

]2}
+
(
C(G) +K2

)
|{x ∈ Ω : x+ h ̸∈ Ω}| ,

where the term in the second line is obtained applying Jensen’s inequality again and in the
last term we estimate the exponential by 1. We notice that

∥Ln,r[γ(uε) ∗ ϕε]∥∞ ≤ D∥γ∥∞,

for any 0 ≤ r ≤ D and any n ∈ S2. Hence, for any δ > 0 there exists some M > 0 such thatwwwww
∞∑

m>M

(−1)m

m!
|Ln,r (γ(uε) ∗ ϕε) (·)|m

wwwww
2

∞
<
δ

2
,

for all r ∈ [0, D] and n ∈ S2. Moreover, the smoothness of ∂Ω implies that there exists a
constant C(Ω) > 0 such that

|{x ∈ Ω : x+ h ̸∈ Ω}| ≤ C(Ω)|h|.

In addition to that the convexity of the domain Ω and a geometric argument implies that,
since γ(uε) ∗ ϕε is supported in Ω +Bε(0), there exists a constant C(Ω) > 0 which depends
on the curvature of Ω such that

sup
x∈Ω
n∈S2

ˆ D

s(x,n)
γ(uε) ∗ ϕε(x− λn)dλ ≤ C(Ω)∥γ∥∞

√
ε,

where
√
ε is due to the set of directions n ∈ S2 that are tangent to the boundary ∂Ω. Thus,

using also the well-known inequality |e−b − e−a| ≤ |a− b| for a, b ≥ 0 we compute

ˆ
Ω
dx |Bε(uε)(x)− Bε(uε)(x+ h)|2

≤ C(D,G)∥γ∥∞K2 sup
n∈S2

sup
0≤r≤D

wwwww
∞∑

m>M

(−1)m

m!
|Ln,r (γ(uε) ∗ ϕε) (·)|m

wwwww
2

∞

+ C∥γ∥2∞K2
M∑
m=0

(M + 1)
(m
m!

)2
(∥γ∥∞D)2(m−1)

ˆ
Π3

D

dx

ˆ D

0
dr

×
 
S2
dn |Ln,r (γ(uε) ∗ ϕε) (x)− Ln,r (γ(uε) ∗ ϕε) (x+ h)|2

(A.50)
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+ C

ˆ
Π3

D

dx

 
S2
dn

M∑
m=0

M + 1

(m!)2
∥γ∥2m∞ Dm

ˆ D

0
dλ1...

ˆ D

0
dλm

∣∣∣∣∣
ˆ D

max0≤i≤M (λi)
dr

×
[
((γ(uε) ∗ ϕε)uε) (x− rn)− ((γ(uε) ∗ ϕε)uε) (x+ h− rn)

]∣∣∣∣2
+ C(G)

M∑
m=0

(M + 1)
(m
m!

)2
(∥γ∥∞D)2(m−1)

ˆ
Π3

D

 
S2
dn |Ln,D (γ(uε) ∗ ϕε) (x)

−Ln,D (γ(uε) ∗ ϕε) (x+ h)|2 + C(G,Ω)
(
∥γ∥2∞ε+K2|h|2

)
.

In order to obtain these last estimates we used also that Ω ⊂ Π3
D since we are considering

non-negative integrands. Moreover, in order to obtain the term containing

ˆ D

0
dλ1...

ˆ D

0
dλm

∣∣Ln,D−max(λ)[(γ(uε) ∗ ϕε)uε](x)

−Ln,D−max(λ)[(γ(uε) ∗ ϕε)uε](x+ h)
∣∣2

for max(λ) = max0≤i≤M (λi) we changed the order of integration applying Fubini’s Theorem
and we saw recursively that

ˆ D

0
dr

(ˆ r

0
dλ

)m
=

ˆ D

0
dr

ˆ r

0
dλ1...

ˆ r

0
dλm

=

ˆ D

0
dλ1...

ˆ D

0
dλm

ˆ D

max0≤i≤M (λi)
dr. (A.51)

Hence, applying Fubini’s Theorem and afterwards Jensen’s inequality we conclude∣∣∣∣ˆ D

0
dr

(ˆ r

0
dλ (γ(uε) ∗ ϕε) (x− λn)

)m
× [((γ(uε) ∗ ϕε)uε) (x− rn)− ((γ(uε) ∗ ϕε)uε) (x+ h− rn)]

∣∣∣∣2
=

∣∣∣∣ˆ D

0
dλ1 (γ(uε) ∗ ϕε) (x− λ1n)...

ˆ D

0
dλm (γ(uε) ∗ ϕε) (x− λmn)

×
ˆ D

max(λ)
dr [((γ(uε) ∗ ϕε)uε) (x− rn)− ((γ(uε) ∗ ϕε)uε) (x+ h− rn)]

∣∣∣∣2
≤ Dm∥γ∥2m

ˆ D

0
dλ1...

ˆ D

0
dλm

∣∣∣∣∣
ˆ D

max(λ)
dr [((γ(uε) ∗ ϕε)uε) (x− rn)

− ((γ(uε) ∗ ϕε)uε) (x+ h− rn)]

∣∣∣∣2.
We apply now the modification of Proposition A.1 as in Lemma A.1. Let us take the

sequence εj =: 1
j for j ∈ N. As we can notice in equation (A.50) we have to consider the

operators Ln,t and Ln,D−t for some 0 ≤ t ≤ D acting respectively on two different sequences
of functions, i.e.

(
γ(uεj ) ∗ ϕεj

)
j
respectively

([
γ(uεj ) ∗ ϕεj

]
uεj
)
j
. In order to simplify the

notation we write fj instead of fεj . We recall that these sequences are uniformly bounded.
Young’s convolution inequality implies indeed

sup
j≥0

∥γ(uj) ∗ ϕj∥∞ ≤ ∥γ∥∞ and sup
j≥0

∥ (γ(uj) ∗ ϕj)uj∥∞ ≤ K∥γ∥∞.
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Hence, we can apply Lemma A.1 to these sequences.

Let now β > 0 be arbitrarily small. We consider the terms appearing in (A.50). The
convergence of the exponential implies the existence of M0(β) > 0 such that

C(D,G)∥γ∥∞K2 sup
n∈S2

sup
0≤r≤D

wwwww
∞∑

m>M

(−1)m

m!
|Ln,r (γ(uj) ∗ ϕj) (·)|m

wwwww
2

∞
<
β

4
,

for any M ≥M0. Moreover, Lemma A.1 applied to Ln,r [γ(uj) ∗ ϕj ] (x), Ln,D [γ(uj) ∗ ϕj ] (x),
and Ln,D−max(λ) [(γ(uj) ∗ ϕj)uj ] (x) implies the existence of some h0(M0, β) > 0 such that

C∥γ∥2∞K2
M0∑
m=0

(M0 + 1)
(m
m!

)2
(∥γ∥∞D)2(m−1)

ˆ
Π3

D

dx

ˆ D

0
dr

×
 
S2
dn |Ln,r (γ(uj) ∗ ϕj) (x)− Ln,r (γ(uj) ∗ ϕj) (x+ h)|2

+ C

ˆ
Π3

D

dx

 
S2
dn

M0∑
m=0

M0 + 1

(m!)2
∥γ∥2m∞ Dm

ˆ D

0
dλ1...

ˆ D

0
dλm

∣∣∣∣∣
ˆ D

max0≤i≤M0
(λi)

dr

×
[
((γ(uj) ∗ ϕj)uj) (x− rn)− ((γ(uj) ∗ ϕj)uj) (x+ h− rn)

]∣∣∣∣2
+ C(G)

M0∑
m=0

(M0 + 1)
(m
m!

)2
(∥γ∥∞D)2(m−1)

ˆ
Π3

D

 
S2
dn |Ln,D (γ(uj) ∗ ϕj) (x)

−Ln,D (γ(uj) ∗ ϕj) (x+ h)|2 < β

4
. (A.52)

This is true because we are applying Lemma A.1 finitely many times, since the sum is finite.
Moreover, the equi-integrability result of Lemma A.1 is uniform with respect to the length
of the line along which we are integrating. It applies hence to all terms appearing in (A.52).
Taking now in (A.50)

J0 =
4C(D,G)∥γ∥2∞

β
and h1 <

√
β

2K
√
C(G,Ω)

,

we obtain ˆ
Ω
dx
∣∣Bj(uj)(x)− Bj(uj)(x+ h)

∣∣2 < β

for all j ≥ J0 and for all |h| < min (h0, h1). The continuity of the functions uj and the fact
that for j < J0 we have only finitely many elements of the sequence imply the existence of
some 0 < H0 ≤ min (h0, h1) such that

ˆ
Ω
dx
∣∣Bj(uj)(x)− Bj(uj)(x+ h)

∣∣2 < β

for all j ≥ 0 and all |h| < H0. Hence, the sequence
(
Bj(uj)

)
j∈N is compact in L2 and

there exists a subsequence
(
Bjl(ujl)

)
l∈N and a function u ∈ L2(Ω) ∩ L∞(Ω) such that ujl =

Bjl(ujl) → u both in L2 and pointwise almost everywhere as l → ∞.

The uniformly boundedness of ujl and also of γ (ujl) implies the convergence in Lp for
p < ∞ of γ (ujl) ∗ ϕjl → γ(u) as l → ∞ and hence for a subsequence (say still ujl) the



A.3. EXISTENCE FOR EMISSION-ABSORPTION 105

convergence holds also pointwise almost everywhere. Indeed,

∥γ (ujl) ∗ ϕjl − γ(u)∥p
≤ ∥γ (ujl) ∗ ϕjl − γ(u) ∗ ϕjl∥p + ∥γ (u) ∗ ϕjl − γ(u)∥p
≤ ∥γ (ujl)− γ(u)∥p∥ϕjl∥1 + ∥γ (u) ∗ ϕjl − γ(u)∥p → 0 uniformly in l,

where we used the Young’s convolution inequality combined with the fact that ϕjl are pos-
itive and with the dominated convergence. Finally another application of the dominated
convergence theorem implies

ujl = Bjl(ujl) → u = B(u) (A.53)

pointwise almost everywhere as l → ∞ and u = B(u) pointwise a.e. Hence, u is the desired
solution to (A.23).

A direct corollary of the proof of Theorem A.4 is the following.

Corollary A.2. Let {φj}j∈N and {ψj}j∈N be two bounded sequences in L∞(Ω) for Ω ⊂ R3

bounded with C2-boundary and strictly positive curvature. Let also f ∈ L∞(S2) be non-
negative. Then the sequences

ˆ
S2
dn

ˆ D

0
drφj(x− rn) exp

(
−
ˆ r

0
ψj(x− λn)dλ

)
and ˆ

S2
dn f(n) exp

(
−
ˆ D

0
ψj(x− λn)dλ

)
are compact in L2(Ω). In particular they are L2-equiintegrable in the following way: For any
ε > 0 there exists some h0 > 0 such that for all j ∈ N and all |h| < h0 both estimates holds

ˆ
Ω
dx

∣∣∣∣ˆ
S2
dn

ˆ D

0
dr

[
φj(x− rn) exp

(
−
ˆ r

0
ψj(x− λn)dλ

)
−φj(x+ h− rn) exp

(
−
ˆ r

0
ψj(x+ h− λn)dλ

)]∣∣∣∣2
≤ 4π

ˆ
Ω
dx

ˆ
S2
dn

∣∣∣∣ˆ D

0
dr

[
φj(x− rn) exp

(
−
ˆ r

0
ψj(x− λn)dλ

)
−φj(x+ h− rn) exp

(
−
ˆ r

0
ψj(x+ h− λn)dλ

)]∣∣∣∣2 < ε

and

ˆ
Ω
dx

∣∣∣∣ˆ
S2
dnf(n)

[
exp

(
−
ˆ D

0
ψj(x− λn)dλ

)
− exp

(
−
ˆ D

0
ψj(x+ h− λn)dλ

)]∣∣∣∣2
≤ 4π∥f∥L∞

ˆ
Ω
dx

ˆ
S2
dnf(n)

∣∣∣∣exp(−ˆ D

0
ψj(x− λn)dλ

)
− exp

(
−
ˆ D

0
ψj(x+ h− λn)dλ

)∣∣∣∣2 < ε.

Combining this result with Corollary A.1 we see that the following proposition holds.
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Proposition A.2. Let Ω ⊂ R3 bounded with C2-boundary and strictly positive curvature. Let
also {φj(x, ω)}j∈N ⊂ C

(
S2, L∞ (Ω)

)
be uniformly bounded and satisfying the assumption of

Corollary A.1; i.e.,

∥φj(·, n1)− φj(·, n2)∥L∞(Ω) ≤ σ(d(n1, n2)) → 0,

uniformly in j ∈ N if d(n1, n2) → 0, where d is the metric on the sphere and σ ∈ C (R+,R+)
with σ(0) = 0 is a uniform modulus of continuity.. Let {ψj(x)}j∈N ⊂ L∞ (Ω) be a uniform
bounded sequence. Then the new sequence

ˆ
S2
dn

ˆ D

0
drφj(x− rn, n) exp

(
−
ˆ r

0
ψj(x− λn)dλ

)
is compact in L2(Ω).

Proof. We apply Federer-Besicovitch covering Lemma for the sphere S2 as we did in Corollary
A.1 to the result of Corollary A.2.

This completes the proof of the existence of solutions to the case of Grey approximation.
Then we can further use this result to prove our main theorem (Theorem A.1) for the pseudo
Grey case as follows.

Proof of Theorem A.1. We expect for the pseudo Grey case the same result to hold. Let

αν(T (x)) = Q(ν)h(T (x)),

for some non-negative bounded function Q(ν). Then define

u(x) = 4π

ˆ ∞

0
dν Q(ν)Bν(T (x)) = F (T (x)).

We notice that by the monotonicity in of Bν(T ) in T also F is monotone with respect to T
and hence T (x) = F−1(u)(x). Denoting by γ = h(F−1) and by fν = Bν(F

−1) we see that u
solves

u(x) =

ˆ ∞

0
dν

ˆ
Ω
dη

Q(ν)2γ(u(η))fν(u(η)

|x− η|2 ) exp

(
−
ˆ
[x,η]

Q(ν)γ(u (ζ))dζ

)

+

ˆ ∞

0
dν

ˆ
S2
dn exp

(
−
ˆ
[x,y(x,n)]

Q(ν)γ(u(ζ))dζ

)
Q(ν)gν(n). (A.54)

We regularize this equation in the same way as in Section A.2.3 and (A.25) and obtain for ϕε
a standard positive and symmetric mollifier the following fixed-point equation.

u(x) = Bε(u)(x) =
ˆ ∞

0
dν

ˆ
Ω
dη

Q(ν)2 (γ(u) ∗ ϕε) (η)fν(u(η))
|x− η|2

× exp

(
−
ˆ
[x,η]

Q(ν) (γ(u) ∗ ϕε) (ζ)dζ
)

+

ˆ ∞

0
dν

ˆ
S2
dn exp

(
−
ˆ
[x,y(x,n)]

Q(ν) (γ(u) ∗ ϕε) (ζ)dζ
)
Q(ν)gν(n). (A.55)

Then the L∞-estimate and the equicontinuity (or more precisely uniform Hölder continuity)
of the right-hand side of (A.55) hold once more in the same way as in Subsection A.3.3. Also,
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Bε is a continuous operator. We hence have solutions uε. We need to show the compactness
of the sequence of regularized solutions uj , where ε = 1

j . We consider similarly as in the
proof of Theorem A.3 the line operators acting on some suitable sequence given for r ∈ [0, D]
by

Q(ν)Ln,r (γ(uj) ∗ ϕj) (x) and Ln,D−r

(
γ(uj) ∗ ϕj

ˆ ∞

0
Q(ν)Bν

(
F−1(u)

)
dν

)
(x).

By the definition of u obtain the following uniform estimate

sup
x∈Ω

∣∣∣∣γ(uj) ∗ ϕj(x)ˆ ∞

0
Q(ν)Bν

(
F−1(uj)

)
(x)dν

∣∣∣∣ ≤ ∥γ∥∞∥u∥∞,

where ∥u∥∞ is the uniform upper bound of uj . Hence, we can write as before the operator Bj
in polar coordinates according to

Bj(uj)(x) =
ˆ ∞

0
dνQ(ν)

ˆ
S2
dn

ˆ s(x,n)

0
dr [(γ(uj) ∗ ϕj)Q(ν)fν(uj)] (x− rn)

× exp (−Q(ν)Ln,r (γ(uj) ∗ ϕj) (x))

+

ˆ ∞

0
dν

ˆ
S2
dn exp

(
−Q(ν)Ln,s(x,n) (γ(uj) ∗ ϕj) (x)

)
Q(ν)gν(n).

Thus, using the boundedness of Q and the estimate
´∞
0 Qm+1(ν)fν(x) ≤ ∥Q∥m∞∥u∥∞ similarly

as we did for equation (A.50) we can obtain

ˆ
Ω
dx |Bj(uj)(x)− Bj(uj)(x+ h)|2

≤ C(D,Ω, g)∥γ∥2∞∥Q∥2∞∥uj∥2∞ sup
ν≥0
n∈S2

0≤r≤D

wwwww
∞∑

m>M

(−1)m

m!
Qm(ν) |Ln,r (γ(uj) ∗ ϕj) (·)|m

wwwww
2

∞

+ C∥γ∥2∞∥uj∥2∞
M∑
m=0

(M + 1)
(m
m!

)2
(∥γ∥∞D)2(m−1) ∥Q∥2m+2

∞

ˆ
Π3

D

dx

ˆ D

0
dr

×
ˆ
S2
dn |Ln,r (γ(uj) ∗ ϕj) (x)− Ln,r (γ(uj) ∗ ϕj) (x+ h)|2

+ C

ˆ
Π3

D

dx

ˆ
S2
dn

M∑
m=0

M + 1

(m!)2
∥γ∥2m∞ Dm

ˆ D

0
dλ1...

ˆ D

0
dλm

∣∣∣∣∣
ˆ D

max0≤i≤M (λi)
dr

ˆ ∞

0
dν

×
[ (

(γ(uj) ∗ ϕj)Qm+2(ν)fν(uj)
)
(x− rn)−

(
(γ(uj) ∗ ϕj)Qm+2(ν)fν(uj)

)
(x+ h− rn)

]∣∣∣∣2
+ C(gν)

M∑
m=0

(M + 1)
(m
m!

)2
(∥γ∥∞D)2(m−1) ∥Q∥2m+2

∞

ˆ
Π3

D

ˆ
S2
dn

∣∣∣∣Ln,D (γ(uj) ∗ ϕj) (x)

− Ln,D (γ(uj) ∗ ϕj) (x+ h)

∣∣∣∣2 + C(gν , Q,Ω)

(
∥γ∥2∞

1

j
+ ∥u∥2∞|h|2

)
, (A.56)

where we used the triangle inequality as we did in (A.49). In addition, for the tails of the
exponential terms in the estimate, we use the supremum norm and use that

´∞
0 Q(ν)fν(uj) =

uj . For the terms involving the finite difference of powers of line integrals we argue as we
did in (A.50) taking the absolute value inside the integrals, estimating each term using the
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boundedness of Q(ν) and the integrability of fν and applying Jensen’s inequality in the end.
The term in the fifth line of (A.56) is obtained using the identity (A.51) given by Fubini’s
theorem and changing the order of integration so that the integral with respect to ν is the
most interior one. Hence, we conclude with Jensen’s inequality. The last term in (A.56) is
obtained exactly as the last term in (A.50). We conclude the compactness of the sequence
uj = Bj(uj) in L2 as we did in the proof of Theorem A.3. We hence fix first of all the M0 > 0

such that the first term in the right hand side of (A.56) is smaller than β
5 for an arbitrarily

small β > 0. This is possible because

sup
ν≥0, n∈S2

0≤r≤D, x∈Ω

|Q(ν)Ln,r (γ(uj) ∗ ϕj) (x)| ≤ D∥Q∥∞∥γ∥∞.

After that, since the sequence γ(uj) ∗ ϕj(x)
´∞
0 Qm+2(ν)Bν

(
F−1(uj)

)
(x)dν is uniformly

bounded for all m ≤ M0 + 1, all arguments in the proof of Theorem A.3 still apply and
hence the line integral of this sequence is also equi-integrable. Hence, arguing in the same
way as in the proof of Theorem A.3 we see that a subsequence ujl converges pointwise almost
everywhere to the desired solution u = B(u).

A.4 Full equation with both scattering and emission-absorp-
tion

In this section we consider the full equation with both scattering and emission-absorption
terms. We study the case when the scattering coefficient and the absorption coefficient depend
on the local temperature T (x). The radiative transfer equation can be written as

n · ∇xIν(x, n) = αaν (T (x)) (Bν (T (x))− Iν(x, n))

+ αsν (T (x))

[(ˆ
S2
dn′ K(n, n′)Iν(x, n′)

)
− Iν(x, n)

]
. (A.57)

We consider as in the previous sections equation (A.57) coupled with the condition of
divergence-free total flux in equation (A.6) and the incoming boundary condition (A.7). We
will consider in this paper only the case of isotropic scattering, i.e. the case where the scat-
tering kernel is invariant under rotation.

We notice first of all that the isotropic property of the scattering kernel implies its sym-
metry.

Lemma A.2. Let K(n, n′) be rotation invariant, i.e. K(n, n′) = K(Rn,Rn′) for all n, n′ ∈ S2
and R ∈ SO(3). Then K(n, n′) = K(n′, n).

Proof. Let n, n′ ∈ S2. We denote by θ ∈ [0, π] the angle formed by n, n′ on the plane spanned
by these unit vectors. We denote moreover by Rθ ∈ SO(3) the rotation matrix defined by a
rotation of π around the bisectrix of θ lying in the plane spanned by n and n′. Then we see that
Rθn = n′ and Rθn′ = n. Hence by assumption, K(n, n′) = K (Rθn

′, Rθn) = K(n′, n).

A.4.1 Main result in the case of the Grey approximation

We consider first the case of Grey approximation, i.e. we assume the coefficients and the
scattering kernel to be independent of the frequency and we denote αaν = αa and αsν = αs.
We will now prove a theorem about the existence of solutions to (A.57) similar to Theorem A.3.
The main difference with the setting of Theorem A.3 is the presence of the scattering operator.
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In the pure emission-absorption case the motion of the photons between one emission and the
next absorption is rectilinear. On the contrary, in the presence of scattering, the photons
move along a polygonal path between emission and absorption events. In order to take it into
account we will define suitable Green functions that incorporate the polygonal motion due to
the scattering. Using these Green functions it will be possible to find a fixed-point equation
for the temperature analogous to (A.20) that includes the non-rectilinear motion between
emission and absorption events (cf. equation (A.61)). We show the following theorem.

Theorem A.4. Let Ω ⊂ R3 be bounded, convex and open with C2-boundary and strictly
positive curvature. Let αa and αs be positive and bounded C1-functions of the temperature,
independent of the frequency. Assume K ∈ C1

(
S2 × S2

)
be non-negative, rotationally sym-

metric and independent of the frequency with the property (A.4). Then there exists a solution
(T, Iν) ∈ L∞(Ω) × L∞ (Ω, L∞ (S2, L1(R+)

))
to the equation (A.57) coupled with (A.6) sat-

isfying the boundary condition (A.7), where the Iν is a solution to (A.57) in the sense of
distribution.

For the proof we proceed in the following way. As indicated above we begin constructing
a fixed-point equation for the temperature which contains information about the scattering
processes. We will hence regularize the problem, similarly as we did in Section A.2.3 and will
prove the existence of regularized solution using the Schauder fixed-point theorem. At the
end we will use the compactness theory developed in Subsection A.3.2 in order to show the
convergence of a subsequence of the regularized solutions to the desired solution.

We define for x, x0 ∈ Ω and n ∈ S2 the fundamental solution Ĩ(x, n;x0) solving the
following equation in distributional sense

n · ∇xĨ(x, n;x0) = αs(T (x))

ˆ
S2
K(n, n′)Ĩ(x, n′;x0) dn′

− (αa (T (x)) + αs (T (x))) Ĩ(x, n;x0) + δ(x− x0) (A.58)

and the boundary condition for x ∈ ∂Ω

Ĩ(x, n;x0)χ{n·nx<0} = 0,

where nx denotes the normal outer vector to ∂Ω at x. Similar to the Poisson kernel for the
Laplace equation, for x ∈ Ω, x0 ∈ ∂Ω and n, n0 ∈ S2 we define the function ψ(x, n;x0, n0) by
the equation

n · ∇xψ(x, n;x0, n0) = αs(T (x))

ˆ
S2
K(n, n′)ψ(x, n′;x0, n0) dn′

− (αa (T (x)) + αs (T (x)))ψ(x, n;x0, n0), x ∈ Ω,

ψ(x, n;x0, n0)χ{n·nx<0} = δ∂Ω(x− x0)
δ(2)(n, n0)

4π
, x ∈ Ω, n0 ·Nx0 < 0,

(A.59)

where we denoted by δ(2) the two dimensional delta distribution on the sphere and by δ∂Ω the
two dimensional delta distribution on ∂Ω. This allows to include the effect of the boundary.
Before moving to the computations of such functions we see that the intensity of radiation
can be expressed by these two functions as follows.

Iν(x, n) =

ˆ
Ω
dx0 α

a(T (x0))Bν(T (x0))Ĩ(x, n;x0)

+

ˆ
S2
dn0

ˆ
∂Ω
dx0 gν(n0)ψ(x, n;x0, n0). (A.60)
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Thus, plugging (A.60) into (A.6) and using (A.3) we obtain

0 = ∇x · F(x) = div

(ˆ ∞

0
dν

ˆ
S2
dn

ˆ
Ω
dx0 α

a(T (x0))Bν(T (x0))nĨ(x, n;x0)

+

ˆ ∞

0
dν

ˆ
S2
dn

ˆ
S2
dn0

ˆ
∂Ω
dx0 gν(n0)nψ(x, n;x0, n0)

)
= σ

ˆ
S2
dn

ˆ
Ω
dx0 α

a(T (x0))T
4(x0)

[
δ(x− x0)− αa(T (x))Ĩ(x, n;x0)

]
+ σ

ˆ
S2
dn

ˆ
Ω
dx0 α

a(T (x0))T
4(x0)α

s(T (x))

[ˆ
S2
dn′K(n, n′)Ĩ(x, n′;x0)− Ĩ(x, n;x0)

]
+

ˆ
S2
dn

ˆ
S2
dn0

ˆ
∂Ω
dx0 G(n0)

[
αs(T (x))

ˆ
S2
K(n, n′)ψ(x, n′;x0, n0) dn′

− (αs(T (x)) + αa(T (x)))ψ(x, n;x0, n0)

]
= 4πσαa(T (x))T 4(x)− αa(T (x))σ

ˆ
S2
dn

ˆ
Ω
dx0 α

a(T (x0))T
4(x0)Ĩ(x, n;x0)

− αa(T (x))

ˆ
S2
dn

ˆ
S2
dn0

ˆ
∂Ω
dx0 G(n0)ψ(x, n;x0, n0),

where we defined G(n) =:
´∞
0 dν gν(n), and the last equality holds by the property (A.4)

of the kernel K integrating first with respect to n. Hence, defining u(x) = 4πσT 4(x) and
dividing by αa(T (x)) we get the following non-linear fixed-point equation

u(x) =

ˆ
Ω
dx0

ˆ
S2
dn

αa(u(x0))u(x0)

4π
Ĩ(x, n;x0)

+

ˆ
S2
dn0

ˆ
S2
dn

ˆ
∂Ω
dx0 G(n0)ψ(x, n;x0, n0), (A.61)

where by an abuse of notation we define αa(·) = αa
(

4
√ ·

4πσ

)
.

A.4.2 Construction of the Green functions in the Grey case

Let us now construct the Green functions Ĩ and ψ. We start with the first function. Denoting
by H(·) the Heaviside function and by P⊥

n the projection P⊥
n = I − n ⊗ n, we see using the

Fourier transform that the distribution f0(x, n;x0) = H(n · (x− x0))δ
(2)
(
P⊥
n (x− x0)

)
solves

in distributional sense the equation

n · ∇xf0(x, n;x0) = δ(x− x0)

with zero boundary condition.

Hence, the function f1(x, n;x0) = f0(x, n;x0) +
´
R3 dy F (y)f0(x, n; y) solves in distribu-

tional sense the equation

n · ∇xf1(x, n;x0) = F (x) + δ(x− x0).

Notice that by definition of f0 we have
´
R3 dy F (y)f0(x, n; y) =

´ s(x,n)
0 dtF (x− tn). Moreover,

the function f2(x, n;x0) = f0(x, n;x0) exp
(
−
´
[x0,x]

α(ξ)ds(ξ)
)
solves in distributional sense

the equation

n · ∇xf2(x, n;x0) = δ(x− x0)− α(x)f2(x, n;x0),
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since x−x0
|x−x0| · ∇x

´
[x0,x]

α(ξ)ds(ξ) = α(x). Hence, we conclude that

f(x, n;x0) = f0(x, n;x0) exp

(
−
ˆ
[x0,x]

α(ξ)ds(ξ)

)

+

ˆ
R3

dy F (y)f0(x, n; y) exp

(
−
ˆ
[y,x]

α(ξ)ds(ξ)

)
,

solves in distributional sense the equation

n · ∇xf(x, n;x0) = δ(x− x0)− α(x)f(x, n;x0) + F (x).

Thus, with these considerations we write the Green function Ĩ as

Ĩ(x, n;x0)

= χΩ(x0) exp

(
−
ˆ
[x0,x]

[αa(u(ξ)) + αs(u(ξ))] dξ

)
H(n · (x− x0))δ

(2)
(
P⊥
n (x− x0)

)
+

ˆ s(x,n)

0
dt αs(u(x− tn)) exp

(
−
ˆ
[x−tn,x]

[αa(u(ξ)) + αs(u(ξ))] dξ

)

×
ˆ
S2
dn′K(n, n′)Ĩ(x− tn, n′;x0). (A.62)

This is a recursive formula. After having regularized it we will write down the Duhamel series
for this Green function.

Similarly, we can construct the function ψ. We notice first of all that for x0 ∈ ∂Ω the
distribution ψ solving the equation (A.59) is a solution to the equation

n · ∇xW (x, n;x0, n0) = αs(T (x))

ˆ
S2
K(n, n′)W (x, n′;x0, n0) dn′

− (αa (T (x)) + αs (T (x)))W (x, n;x0, n0) + δ(x− x0)
δ(2)(n, n0)

4π
.

As we have computed above for f0, as x approaches to x0 the leading term of the distribution
W (x, n;x0, n0) is given by

W (x, n;x0, n0) ≃ H(n0 · (x− x0))δ
(2)
(
P⊥
n0
(x− x0)

) δ(2)(n, n0)
4π

.

As for the Poisson Kernel in the case of the Poisson equation, we expect W to differ from ψ
only for a Jacobian as x → x ∈ ∂Ω with n ·Nx < 0 and n0 ·Nx0 < 0. We compute now the
Jacobian. Hence, we consider φ ∈ C∞

c (∂Ω) with supp(φ) ⊂ B∂Ω
ε (x). We assume without loss

of generality x = 0, Nx = −e1 and n · e3 = 0. We compute

ˆ
S2
dn0

ˆ
∂Ω
dx0 φ(x0)H(n0 · (x− x0))δ

(2)
(
P⊥
n0
(x− x0)

) δ(2)(n, n0)
4π

=

ˆ
∂Ω
dx0 φ(x0)H(n · (x− x0))δ

(2)
(
P⊥
n (x− x0)

)
. (A.63)

For ε > 0 small enough we can approximate ∂Ω ∩ B∂Ω
ε (0) by R3

+ ∩ Bε(0) and we define for
x10 > 0 the constant extension φ(x10, x

2
0, x

3
0) = φ(x20, x

3
0). Moreover we see that in the rotated
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coordinate system given by y1 ∥ n and y3 ∥ e3 we have

δ(2)(P⊥
n (x− x0)) = δ(y2)δ(y3)

= δ

(
−
√
1− |n ·Nx|2

(
x1 − x10

)
+ |n ·Nx|

(
x2 − x20

))
δ
(
x3 − x30

)
=

1

|n ·Nx|
δ
(
− tan(θ)

(
x1 − x10

)
+
(
x2 − x20

))
δ
(
x3 − x30

)
, (A.64)

where θ is the angle between n and e1, hence |n ·Nx| = cos(θ). Since x→ x, we conclude our
computation putting (A.64) into (A.63) and thus

ˆ
S2
dn0

ˆ
∂Ω
dx0 φ(x0)H(n0 · (x− x0))δ

(2)
(
P⊥
n0
(x− x0)

) δ(2)(n, n0)
4π

=

ˆ
R3

+

dx0 δ(x
1 − x10)

1

|n ·Nx|
φ(x0)δ

(
− tan(θ)

(
x1 − x10

)
+
(
x2 − x20

))
δ
(
x3 − x30

)
=

φ(x)

|n ·Nx|
. (A.65)

We have just proved that in distributional sense we have

H(n0 · (x− x0))δ
(2)
(
P⊥
n0
(x− x0)

) δ(2)(n, n0)
4π

−→
x→x

δ∂Ω(x− x0)

|n ·Nx|
δ(2)(n, n0)

4π

D′
=
δ∂Ω(x− x0)

|n0 ·Nx0 |
δ(2)(n, n0)

4π
.

Hence, as x→ x the distribution ψ is given at the leading order by

|n0 ·Nx0 |H(n0 · (x− x0))δ
(2)
(
P⊥
n0
(x− x0)

) δ(2)(n, n0)
4π

. (A.66)

We note also, that P⊥
n (x− x0) is not non-trivial only in a neighborhood of y(x, n) ∈ ∂Ω and

y(x,−n) ∈ ∂Ω. Moreover, H(n · (x − y(x,−n))) = 0 while H(n · (x − y(x, n))) = 1. Hence,
with the same reasoning as in equations (A.63) and (A.65) we see that for any x ∈ Ω

ˆ
S2
dn0

ˆ
∂Ω
dx0 |n0 ·Nx0 |φ(x0)H(n0 · (x− x0))δ

(2)
(
P⊥
n0
(x− x0)

) δ(2)(n, n0)
4π

= φ(y(x, n)). (A.67)

We conclude the derivation of the Green function ψ integrating by characteristics the equation
(A.59) with the boundary value given by (A.66) and we obtain

ψ(x, n;x0, n0) = |n0 ·Nx0 |H(n0 · (x− x0))

× δ(2)
(
P⊥
n0
(x− x0)

) δ(2)(n, n0)
4π

exp

(
−
ˆ
[x0,x]

[αa(u(ξ)) + αs(u(ξ))] dξ

)

+

ˆ s(x,n)

0
dt αs(u(x− tn)) exp

(
−
ˆ
[x−tn,x]

[αa(u(ξ)) + αs(u(ξ))] dξ

)

×
ˆ
S2
dn′K(n, n′)ψ(x− tn, n′;x0, n0). (A.68)
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A.4.3 Regularized fixed-point equation in the Grey case

We proceed now with the regularization of the fixed-point problem stated in (A.61). Similarly
as we did in Section A.2 we regularized the fixed-point equation mollifying with a standard
positive and rotationally symmetric mollifier the absorption and scattering coefficients. For
l ∈ {a, s} denote in order to simplify the notation αl(u) ∗ ϕε(x) = αlε(x). Notice that αlε(x)
still depends on the temperature. We recall also thatˆ

R3

f(ξ)δ[x,y] ∗ ϕε(ξ) dξ =
ˆ
[x,y]

f ∗ ϕε(ξ) ds(ξ).

Hence, we define Iε(x, n;x0) and ψε(x, n;x0, n0) solving the regularized equations

n · ∇xIε(x, n;x0) = αsε(x)

ˆ
S2
K(n, n′)Iε(x, n′;x0) dn′

− (αaε (x) + αsε (x)) Iε(x, n;x0) + δ(x− x0), (A.69)

with zero incoming boundary conditions and

n · ∇xψε(x, n;x0, n0) = αsε(x)

ˆ
S2
K(n, n′)ψε(x, n′;x0, n0) dn′

− (αaε (x) + αaε (x))ψε(x, n;x0, n0), x ∈ Ω

ψε(x, n;x0, n0)χ{n·nx<0} = δ∂Ω(x− x0)
δ(2)(n, n0)

4π
, x ∈ Ω, n0 ·Nx0 < 0.

(A.70)

Hence, the exact recursive formulas defining the regularized distributions are given by

Iε(x, n;x0)

= χΩ(x0) exp

(
−
ˆ
[x0,x]

[αaε(ξ) + αsε(ξ)] dξ

)
H(n · (x− x0))δ

(2)
(
P⊥
n (x− x0)

)
+

ˆ s(x,n)

0
dt αsε(x− tn) exp

(
−
ˆ
[x−tn,x]

[αaε(ξ) + αsε(ξ)] dξ

)

×
ˆ
S2
dn′K(n, n′)Iε(x− tn, n′;x0), (A.71)

and

ψε(x, n;x0, n0) = |n0 ·Nx0 |H(n0 · (x− x0))

× δ(2)
(
P⊥
n0
(x− x0)

) δ(2)(n, n0)
4π

exp

(
−
ˆ
[x−tn,x]

[αaε(ξ) + αsε(ξ)] dξ

)

+

ˆ s(x,n)

0
dt αsε(x− tn) exp

(
−
ˆ
[x−tn,x]

[αaε(ξ) + αsε(ξ)] dξ

)

×
ˆ
S2
dn′K(n, n′)ψε(x− tn, n′;x0, n0). (A.72)

Next we show the existence of regularized solutions uε to the equation

uε(x) =

ˆ
Ω
dx0

ˆ
S2
dn

αaε(uε(x0))uε(x0)

4π
Iε(x, n;x0)

+

ˆ
S2
dn0

ˆ
S2
dn

ˆ
∂Ω
dx0 G(n0)ψε(x, n;x0, n0)

=: Bε(uε)(x) + Cε(uε)(x). (A.73)
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We aim to use Schauder fixed-point theorem. We start showing that the operator mapping
u ∈ {C(Ω) : 0 ≤ u ≤M} to the right-hand side of (A.73) is a self map takingM large enough.
Similarly as in (A.21) we will first show that Bε is a contractive operator. To this end we
consider the function

Hε(x, n) =

ˆ
Ω
dx0α

a
ε(u(x0))Iε(x, n;x0) (A.74)

and we will show by means of the weak maximum principle formulated in the next Subsection
that 0 ≤ Hε(x, n) ≤ θ < 1, which will imply the contractivity as

|Bε(u)(x)| ≤ ∥u∥sup
ˆ
Ω
dx0

ˆ
S2
dn

αaε(u(x0))

4π
Iε(x, n;x0) ≤ θ∥u∥sup. (A.75)

A.4.4 Weak maximum principle

In order to show that Bε is a contractive operator we consider first the function Hε defined
in (A.74). Integrating with respect to x0 the differential equation (A.69) satisfied by Iε we
obtain the differential equation satisfied by the function Hε in the sense of distribution:

0 = Lε(Hε)(x, n)− αaε(x)

= n · ∇xHε(x, n)− αaε(x) (1−Hε(x, n))

− αsε(x)

ˆ
S2
dn′ K(n, n′)

(
Hε(x, n)−Hε(x, n

′)
)
. (A.76)

With the following weak maximum principle we will show that 0 ≤ Hε(x, n) ≤ 1. To this end
we consider the adjoint operator defined by

L∗
ε(φ)(x, n) = −n · ∇xφ(x, n) + (αaε(x) + αsε(x))φ(x, n)

− αsε(x)

ˆ
S2
dn′ K(n, n′)φ(x, n′). (A.77)

Lemma A.3 (Weak maximum principle). If a continuous bounded function F (x, n) sat-
isfies the boundary condition F (x, n) ≥ 0 for x ∈ ∂Ω and n · nx < 0 and the inequality´
S2 dn

´
Ω dx L

∗
ε(φ)(x, n)F (x, n) ≥ 0 for all non-negative φ ∈ C1

(
Ω̄× S2

)
with φ(x, n) = 0

for x ∈ ∂Ω and n · nx ≥ 0, then F (x, n) ≥ 0 for all x, n ∈ Ω× S2.

Remark. Before proving Lemma A.3 we notice that by definition Hε is a continuous function
which also satisfies Hε(x, n) = 0 for x ∈ ∂Ω and n · nx < 0.

Proof. Assume that the claim of Lemma A.3 is not true. Then there exists an open set
U ⊂ Ω̄× S2 such that F (x, n) < 0 for every (x, n) ∈ U . Let ξ ∈ C1

c (U) with ξ ≥ 0 and ξ ̸= 0.
We then consider the continuously differentiable function φ defined by

L∗
ε(φ)(x, n) = ξ(x, n). (A.78)

Let us assume first that such φ exists. Then we can compute

0 ≤
ˆ
S2
dn

ˆ
Ω
dx L∗

ε(φ)(x, n)F (x, n) =

ˆ
S2
dn

ˆ
Ω
dx ξ(x, n)F (x, n)

=

ˆ
U
dn dx ξ(x, n)F (x, n) < 0.
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This contradiction implies the claim F (x, n) ≥ 0 for all x, n ∈ Ω× S2.
We show now that such φ exists. Solving by characteristics the equation

L∗
ε(φ)(x, n) = ξ(x, n),

with boundary condition φ(x, n) = 0 for x ∈ ∂Ω and n · nx > 0 we obtain the following
recursive formula

φ(x, n) =

ˆ s(x,−n)

0
ξ(x+ tn, n) exp

(
−
ˆ t

0
[αaε(x+ τn) + αsε(x+ τn)] dτ

)
dt

+

ˆ s(x,−n)

0
dt αsε(x+ tn) exp

(
−
ˆ t

0
[αaε(x+ τn) + αsε(x+ τn)] dτ

)
×
ˆ
S2
dn′K(n, n′)φ(x+ tn, n′),

where s(x,−n) is the length of the line connecting x ∈ Ω with the boundary ∂Ω in direction
n ∈ S2. We still have to prove that φ is continuously differentiable and that it is non-negative.
Since all functions αlε, K and the exponential functions are non-negative and continuously
differentiable we consider the Duhamel expansion of φ as

φ(x, n) =

ˆ s(x,−n)

0
ξ(x+ tn, n) exp

(
−
ˆ t

0
[αaε(x+ τn) + αsε(x+ τn)] dτ

)
dt

+

ˆ s(x,−n)

0
dt αsε(x+ tn) exp

(
−
ˆ t

0
[αaε(x+ τn) + αsε(x+ τn)] dτ

)ˆ
S2
dn′K(n, n′)

×
ˆ s(x+tn,−n′)

0
ξ(x+ tn+ t1n

′, n′) exp
(
−
ˆ t

0
(αaε + αsε)(x+ tn+ τn′)dτ

)
dt1

+ · · · =
∞∑
i=1

Ti(x, n). (A.79)

Recursively, using
ˆ D

0
dr − d

dr
exp

(
−
ˆ r

0
[αaε(z + rn) + αsε(z + rn)]

)
≤ 1− e∥α∥∞Dθ < 1

for D = diam(Ω) and ∥α∥∞ = ∥αs + αa∥∞, the symmetry of K so thatˆ
S2
dn′ K(n, n′) = 1,

we can estimate each term of the Duhamel expansion of φ by |Ti(x, n)| ≤ ∥ξ∥∞Dθi−1 and
hence we obtain the absolute convergence of the Duhamel series since

∥φ∥∞ ≤ ∥ξ∥∞D
∞∑
i=0

θi <∞.

This implies the non-negativity and the continuity of φ. To prove that φ is differentiable
one proceeds in the same way. We write the recursive formula for the derivative of φ and we
estimate the Duhamel expansion similarly as we did for the boundedness of φ using this time
also the uniformly boundedness of φ. We omit this computation since it is very similar to the
one in (A.79).

With this weak maximum principle we can carry on the proof of the contractivity of the
operator Bε in (A.73).
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A.4.5 Existence of solution to the regularized problem

We can apply the weak maximum principle to 1 − Hε(x, n). Indeed, Lε(1 − Hε) = 0 in
distributional sense. With an approximation argument we see that

ˆ
S2
dn

ˆ
Ω
dx L∗

ε(φ)(x, n)(1−Hε(x, n)) ≥
ˆ
S2
dn

ˆ
∂Ω
dx φ(x, n)(1−Hε(x, n))n · nx ≥ 0

for any non-negative φ ∈ C1
(
Ω̄× S2

)
with φ(x, n) = 0 if x ∈ ∂Ω and n · nx ≥ 0. For similar

arguments see also [82]. Therefore the weak maximum principle implies Hε(x, n) ≤ 1 for all
x, n ∈ Ω× S2.

Hence, estimating then Hε(x, n) by 1 in the following equation obtained by integrating
the equation (A.71) for Iε we get

Hε(x, n) =

ˆ
Ω
dx0 α

a
ε(u(x0)) exp

(
−
ˆ
[x0,x]

[αaε(ξ) + αsε(ξ)] dξ

)
×H(n · (x− x0))δ

(2)
(
P⊥
n (x− x0)

)
+

ˆ s(x,n)

0
dt αsε(x− tn) exp

(
−
ˆ
[x−tn,x]

[αaε(ξ) + αsε(ξ)] dξ

)

×
ˆ
S2
dn′K(n, n′)Hε(x− tn, n′) =

ˆ s(x,n)

0
dt αaε(x− tn) exp

(
−
ˆ
[x−tn,x]

[αaε(ξ) + αsε(ξ)] dξ

)

+

ˆ s(x,n)

0
dt αsε(x− tn) exp

(
−
ˆ
[x−tn,x]

[αaε(ξ) + αsε(ξ)] dξ

)

×
ˆ
S2
dn′K(n, n′)Hε(x− tn, n′)

≤
ˆ s(x,n)

0
dt (αaε(x− tn) + αsε(x− tn)) exp

(
−
ˆ
[x−tn,x]

[αaε(ξ) + αsε(ξ)] dξ

)
≤
(
1− e−∥α∥∞D

)
= θ < 1,

where D is the diameter of Ω, ∥α∥∞ = ∥αa + αs∥∞. The second equality is given solving the
delta distribution together with the Heaviside function, while the first inequality is obtained
by the isotropy of K so that

´
S2 K(n, n′) dn′ = 1. Thus, equation (A.75) implies that Bε is

contractive with |Bε(u)(x)| ≤ θ∥u∥sup.
We move now to the estimate for the boundary term given by Cε(u). It is enough to show

that this term is uniformly bounded (say by a constant C > 0), then for M ≥ C
1−θ we have

|Bε(u) + Cε(u)| ≤ M for all x ∈ Ω and 0 ≤ u ≤ M . In order to prove the boundedness
we expand this boundary term in its Duhamel series taking as starting point the equation
satisfied by Cε(u). We simplify the notation denoting by Alε(y, z − y) the function

Alε(y, z − y) =
αlε(u(y)) exp

(
−
´
[y,z] [α

a
ε(u) + αsε(u)] dξ

)
|z − y|2 , (A.80)

for l ∈ {a, s} and by Eε(z, ω) the function of ω ∈ S2 and z ∈ Ω given by

Eε(z, ω) = exp

(
−
ˆ
[y(z,ω),z]

[αaε(u) + αsε(u)] dξ

)
. (A.81)
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We put (A.72) into the definition of Cε in (A.73), we use (A.67) and the notation above
and we compute

Cε(u)(x) =
ˆ
S2
dn G(n)Eε(x, n)

+

ˆ
Ω
dηAsε(η, x− η)

ˆ
S2
dn0G(n0)Eε(η, n0)K

(
x− η

|x− η| , n0
)

+

ˆ
Ω
dηAsε(η, x− η)

ˆ
Ω
dη1 A

s
ε(η1, η − η1)K

(
x− η

|x− η| ,
η − η1
|η − η1|

)
×
ˆ
S2
dn0G(n0)Eε(η1, n0)K

(
η − η1
|η − η1|

, n0

)
+ · · · =

∞∑
i=1

Uεi (u)(x). (A.82)

We now estimate every term Uεi . The first term is estimated by

|Uε1(u)| ≤ 4π∥G∥∞,

since the exponential term is bounded by 1. Estimating again the exponential term by 1 and
g(n) by ∥G∥∞ and using the isotropy of the scattering kernel we compute

|Uε2(u)| ≤ ∥G∥∞
ˆ
Ω
dηAsε(η, x− η)

≤ ∥G∥∞
ˆ
S2
dn

ˆ D

0
dr

(
− d

dr
exp

(
−
ˆ r

0
dt [αaε(x− tn) + αsε(x− tn)]

))
≤ 4πθ∥G∥∞, (A.83)

where θ = 1− e−∥α∥∞D. For the next terms we proceed similarly.

|Uε3(u)| ≤ ∥G∥∞
ˆ
Ω
dηAsε(η, x− η)

ˆ
Ω
dη1 A

s
ε(η1, η − η1)K

(
x− η

|x− η| ,
η − η1
|η − η1|

)
≤ θ∥G∥∞

ˆ
Ω
dη Asε(η, x− η) ≤ 4πθ2∥G∥∞, (A.84)

where we estimatedˆ
S2
dn

ˆ D

0

(
− d

dr
exp

(
−
ˆ r

0
dt [αaε(η − tn) + αsε(η − tn)]

))
K

(
x− η

|x− η| , n
)

≤ θ.

Recursively, we conclude that the boundary term is uniformly bounded as

|Cε(u)(x)| ≤
∞∑
i=1

|Uεi (u)(x)| ≤ 4π∥G∥∞
∞∑
i=0

θi = 4π∥G∥∞
1

1− θ
<∞. (A.85)

In a similar way, combining the fact that each term Uεi maps continuously bounded (con-
tinuous) maps to bounded (continuous) maps and the uniform absolute convergence of the
Duhamel series we can conclude that Cε is a continuous operator. Next we prove that
Bε(u)(x) + Cε(u)(x) is Hölder continuous. This will imply on the one hand that the oper-
ator is a self map and on the other hand that it is compact. Hence, Schauder fixed-point
theorem concludes the existence of the regularize solutions satisfying (A.73). Before starting
this proof we recall that we have shown in Section A.3.1 the Hölder continuity of all kind of
operators given by

ˆ
Ω
dη

αlε(u(η)) exp
(
−
´
[η,x] [α

a
ε(u) + αsε(u)] dξ

)
|x− η|2 ,



118 APPENDIX A. EXISTENCE AND COMPACTNESS THEORY

for l ∈ {a, s} and ˆ
S2
dn exp

(
−
ˆ
[y(x,n),x]

[αaε(u) + αsε(u)] dξ

)
.

Moreover, in order to see the Hölder continuity of the interior term we have to expand the
recursive formula of Bε in its Duhamel series. We hence put (A.71) into the definition of Bε
in (A.73) and we compute

Bε(u)(x) =
ˆ
Ω
dx0

Aaε(x0, x− x0)u(x0)

4π

+

ˆ
Ω
dη

ˆ
Ω
dη1 A

s
ε(η, x− η)

Aaε(η1, η − η1)u(η1)

4π
K

(
x− η

|x− η| ,
η − η1
|η − η1|

)
+

ˆ
Ω
dη

ˆ
Ω
dη1

ˆ
Ω
dη2 A

s
ε(η, x− η)Asε(η1, η − η1)

Aaε(η2, η1 − η2)u(η2)

4π

×K

(
x− η

|x− η| ,
η − η1
|η − η1|

)
K

(
η − η1
|η − η1|

,
η1 − η2
|η1 − η2|

)
+ · · · =

∞∑
i=1

Vεi (u)(x), (A.86)

where we used that ˆ
S2
dn H(n · (x− x0))δ

(2)(P⊥
n (x− x0)) =

1

|x− x0|2
,

in distributional sense.

Remark. Notice that (A.82) and (A.86) encode the fact that due to the scattering the photons
move along a polygonal line.

Notice in addition that also Bε maps continuously bounded (continuous) functions to
bounded (continuous) functions. This is due to the uniform absolute convergence of the
Duhamel series (similar calculation as for (A.85) and (A.89)) and the continuity of each term
Vεi in (A.86).

We aim to show the Hölder continuity of the operators Bε and Cε. We consider hence
u ∈ C(Ω) with 0 ≤ u ≤ M . As we did in Subsection A.3.1 we extend u continuously on the
boundary ∂Ω and then u, αa(u) and αs(u) by zero outside Ω̄. We proceed now estimating
term by term the following difference for h ∈ R3 and x, x+ h ∈ R3

|Bε(u)(x)− Bε(u)(x+ h)| ≤
∞∑
i=1

|Vεi (x)− Vεi (x+ h)| .

For the first term we use the result in (A.28) and (A.32) and conclude

|Vε1(x)− Vε1(x+ h)| ≤ C(Ω, ∥α∥∞, ϕε)∥u∥∞ |h| 12 .

For the next order terms we need also to estimate expressions of the form∣∣∣∣K ( x− η

|x− η| ,
η − ξ

|η − ξ|

)
−K

(
x+ h− η

|x+ h− η| ,
η − ξ

|η − ξ|

)∣∣∣∣ .
Using the property of K being continuously differentiable in both variables and making use
of the triangle inequality we know that there exists a constant CK > 0 depending exclusively
on K such that∣∣∣∣K ( x− η

|x− η| ,
η − ξ

|η − ξ|

)
−K

(
x+ h− η

|x+ h− η| ,
η − ξ

|η − ξ|

)∣∣∣∣ ≤ 2CK |h| 12
|x+ h− η| 12

. (A.87)
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We can hence proceed with the second term of the Duhamel series. We apply the triangle
inequality first and then we combine the results for (A.28) and (A.32) with the estimate (A.87)

and with the fact that |x|− 5
2 ∈ L1(B1(0)). Then we have

|Vε2(x)− Vε2(x+ h)| ≤ ∥u∥
ˆ
Ω
dη

ˆ
Ω
dη1

Aaε(η1, η − η1)

4π
K

(
x− η

|x− η| ,
η − η1
|η − η1|

)
× |Asε(η, x− η)−Asε(η, x+ h− η)|

+ ∥u∥
ˆ
Ω
dη

ˆ
Ω
dη1

Aaε(η1, η − η1)

4π
Asε(η, x+ h− η)

×
∣∣∣∣K ( x− η

|x− η| ,
η − η1
|η − η1|

)
−K

(
x+ h− η

|x+ h− η| ,
η − η1
|η − η1|

)∣∣∣∣
≤ ∥u∥∞θ

ˆ
Ω
dη

1

4π
|Asε(η, x− η)−Asε(η, x+ h− η)|

+ ∥u∥∞CK |h| 12 θ
ˆ
Ω
dη

Asε(η, x+ h− η)

|x+ h− η| 12
≤ ∥u∥∞θ

(
C(Ω, ϕε, ∥α∥∞) + 4πCK∥α∥∞D

1
2

)
|h| 12 , (A.88)

where we estimated as we did above

ˆ
Ω
dη1 A

a
ε(η1, η − η1)K

(
x− η

|x− η| ,
η − η1
|η − η1|

)
≤
ˆ
S2
dn

ˆ D

0
dr − d

dr
exp

(
−
ˆ r

0
...

)
K

(
x− η

|x− η| , n
)

≤ θ,

with θ = 1− e−∥α∥∞D and similarly alsoˆ
Ω
dη1 A

a
ε(η1, η − η1)

1

4π
≤ θ.

We can iterate this procedure for all terms in the Duhamel series and we obtain the following
estimate

|Bε(u)(x)− Bε(u)(x+ h)|

≤ ∥u∥∞
(
C(Ω, ϕε, ∥α∥∞) + 4πCK∥α∥∞D

1
2

)
|h| 12

∞∑
i=0

θi

= ∥u∥∞
(
C(Ω, ϕε, ∥α∥∞) + 4πCK∥α∥∞D

1
2

)
|h| 12 1

1− θ
. (A.89)

Using the result (A.34) combined with (A.87) we see in the same way that also the boundary
term operator is Hölder continuous with

|Cε(u)(x)− Cε(u)(x+ h)|

≤ 4π∥G∥∞
(
C(Ω, ϕε, ∥α∥∞) + CKD

1
2 ∥α∥∞

)(
1 +

1

1− θ

)
|h| 12 . (A.90)

Indeed, we compute using (A.34) for the first term in the Duhamel series of the boundary
term

|Uε1(x)− Uε1(x+ h)| ≤ ∥G∥∞
ˆ
S2
dn |Eε(x, n)− Eε(x+ h, n)| ≤ ∥G∥∞CεC(Ω)|h|

1
2 .
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Moreover, the estimates (A.28), (A.32) together with (A.87) gives for the second term

|Uε2(x)− Uε2(x+ h)|

≤ ∥G∥∞
ˆ
S2
dn0

ˆ
Ω
dη K

(
x− η

|x− η| , n0
)
|Asε(η, x− η)−Asε(η, x+ h− η)|

+ ∥G∥∞
ˆ
S2
dn0

ˆ
Ω
dη Asε(η, x+ h− η)

∣∣∣∣K ( x− η

|x− η| , n0
)
−K

(
x+ h− η

|x+ h− η| , n0
)∣∣∣∣

≤ ∥G∥∞|h| 12
(
CεC(Ω) + CK4πD

1
2

)
.

Similarly integrating first with respect to n0, then with respect to η1 and finally with respect
to η we obtain

|Uε3(x)− Uε3(x+ h)|

≤ ∥G∥∞
ˆ
Ω
dη

ˆ
Ω
dη1

ˆ
S2
dn0 A

s
ε(η1, η − η1)K

(
x− η

|x− η| ,
η − η1
|η − η1|

)
×K

(
η − η1
|η − η1|

, n0

)
|Asε(η, x− η)−Asε(η, x+ h− η)|

+ ∥G∥∞
ˆ
Ω
dη

ˆ
Ω
dη1

ˆ
S2
dn0 A

s
ε(η1, η − η1)A

s
ε(η, x+ h− η)K

(
η − η1
|η − η1|

, n0

)
×
∣∣∣∣K ( x− η

|x− η| ,
η − η1
|η − η1|

)
−K

(
x+ h− η

|x+ h− η| ,
η − η1
|η − η1|

)∣∣∣∣
≤ ∥G∥∞θ

ˆ
Ω
dη |Asε(η, x− η)−Asε(η, x+ h− η)|

+ ∥G∥∞θCK |h| 12
ˆ
Ω
dη
Asε(η, x+ h− η)

|x+ h− η| 12
≤ ∥G∥∞θ|h|

1
2

(
CεC(Ω) + CK4πD

1
2

)
.

Iterating this procedure we obtain the estimate (A.90).

Hence, (A.89) and (A.90) imply that the operator Bε+ Cε is a compact selfmap, mapping
continuously uniformly bounded continuous functions to Hölder continuous functions. Thus,
by the Schauder fixed-point theorem we obtain for every ε > 0 a solution uε to (A.73).

A.4.6 Compactness of the sequence of regularized solution and proof of
Theorem A.4

Proof of Theorem A.4. In order to end the proof of Theorem A.4, we will show that the
sequence of regularized solution uε to the equation (A.73) is compact in L2. We already know
that this is true in the case of pure absorption and emission, as we have seen in Subsection
A.3.3. We will use the compactness result of Subsection A.3.3 in order to show that the same
result holds also in the case of scattering. A crucial role is played in this proof by the result of
Proposition A.2. Let us consider a sequence εj =

1
j . In order to simplify the notation we define

the sequence of regularized solutions uεj = uj , the coefficients αlεj (uεj ) = αlj(uj) as well as all

kind of operators Bεj = Bj , Cεj = Cj , Alεj (y, z + y) = Alj(y, z + y) and Eεj (z, ω) = Ej(z, ω).

By the uniformly boundedness of the sequence and the boundedness of Ω we have only to
show the equicontinuity, i.e. we want to prove that for any β > 0 there exists a H1(β) > 0
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such that

ˆ
Ω
dx |Bj(uj)(x) + Cj(uj)(x)− Bj(uj)(x+ h)− Cj(uj)(x+ h)|2

< C(αs, αa,Ω,M,G)β (A.91)

for all |h| < H1 and all j ∈ N. Notice that the constant C(αs, αa,Ω,M,G) is independent
of j ∈ N, of β > 0 and of h ∈ R3. This would imply the L2−compactness of the sequence
Bj(uj) + Cj(uj).

In order to prove this statement we start recalling the boundedness of the interior term
Bj(uj) and of the boundary term Cj(uj) as

sup
x∈Ω

|Bj(uj)(x)| ≤ sup
x∈Ω

∞∑
i=1

∣∣∣Vji (x)∣∣∣ ≤Mθ

∞∑
i=0

(θ)i =
Mθ

1− θ
, (A.92)

where θ = 1 − e∥α∥∞D < 1. The computation is similar to the one we did in (A.85) for the
boundary term and to the Hölder estimate in (A.88). Moreover, (A.85) implies

sup
x∈Ω

|Cj(uj)(x)| ≤ sup
x∈Ω

∞∑
i=1

∣∣∣U ji (x)∣∣∣ ≤ 4π

1− θ
∥G∥∞.

Hence, let β > 0. There exists an N0(β) > 0 such that

sup
x∈Ω

∣∣∣∣∣∣
∞∑

i=N0

∣∣∣Vji (x)∣∣∣+ ∣∣∣U ji (x)∣∣∣
∣∣∣∣∣∣
2

< β. (A.93)

Thus, using the triangle inequality we obtain

ˆ
Ω
dx |Bj(uj)(x) + Cj(uj)(x)− Bj(uj)(x+ h)− Cj(uj)(x+ h)|2

≤ 2β|Ω|+ 2

ˆ
Ω
dx

∣∣∣∣∣
N0−1∑
i=1

Vji (x)− Vji (x+ h)

∣∣∣∣∣
2

+ 2

ˆ
Ω
dx

∣∣∣∣∣
N0−1∑
i=1

U ji (x)− U ji (x+ h)

∣∣∣∣∣
2

≤ 2β|Ω|+ 2N0

N0−1∑
i=1

ˆ
Ω
dx
∣∣∣Vji (x)− Vji (x+ h)

∣∣∣2
+ 2N0

N0−1∑
i=1

ˆ
Ω
dx
∣∣∣U ji (x)− U ji (x+ h)

∣∣∣2 . (A.94)

We aim to use for each term
ˆ
Ω
dx
∣∣∣Vji (x)− Vji (x+ h)

∣∣∣2 and

ˆ
Ω
dx
∣∣∣U ji (x)− U ji (x+ h)

∣∣∣2 ,
for 0 ≤ 1 ≤ N0 − 1 the results in Corollary A.2 and Proposition A.2 in order to show that
they are equi-integrable.
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Let us start considering the interior terms and we write each of them in spherical coordi-
nates. We extend by 0 all the functions αl and uj which are defined only on the domain Ω.
We denote by D = diam(Ω) as usually. For i = 1 we have

Vji (x) =
ˆ
S2
dn

ˆ D

0
druj(x− rn)αaj (uj(x− rn))

× exp

(
−
ˆ r

0

[
αaj (uj(x− λn)) + αsj (uj(x− λn))

]
dλ

)
.

We notice that taking φj(x) = uj(x)α
a
j (uj(x)) and ψj(x) = αaj (uj(x)) + αsj (uj(x)) Corollary

A.2 implies the compactness of the first interior term. Let us consider the second term. There
we define

F
(2)
j (x, ω) =

ˆ D

0
dλ

ˆ
S2
dn K(ω, n)uj(x− rn)αaj (uj(x− λn))

× exp

(
−
ˆ λ

0

[
αaj (uj(x− rn)) + αsj (uj(x− rn))

]
dr

)
We notice that F

(2)
j is uniformly bounded in both variables and that it is uniformly continuous

with respect to the second variable. Indeed, we can estimate on the one hand∣∣∣F (2)
j (x, ω)

∣∣∣ ≤Mθ

ˆ
S2
dn K(ω, n) =Mθ (A.95)

and on the other hand also∣∣∣F (2)
j (x, ω1)− F

(2)
j (x, ω2)

∣∣∣ ≤Mθ

ˆ
S2
dn |K(ω1, n)−K(ω2, n)| ≤ 4πMθCKd(ω1, ω2). (A.96)

Hence, defining also the error term

R(2)
j (x) =

 
S2
dn

ˆ D

(s(x,n))
dλF

(2)
j (x− λn, n)αsj (uj(x− λn))

× exp

(
−
ˆ λ

0

[
αaj (uj(x− rn)) + αsj (uj(x− rn))

]
dr

)
(A.97)

we can write the second term of the operator Bj as

V2
j (x) = −R(2)

j (x) +

 
S2
dn

ˆ D

0
dλF

(2)
j (x− λn, n)αsj (uj(x− λn))

× exp

(
−
ˆ λ

0

[
αaj (uj(x− rn)) + αsj (uj(x− rn))

]
dr

)
. (A.98)

We notice that since αj(uj) is supported in Ω + 1
j we can estimate the error term by

∣∣∣R(2)
j (x)

∣∣∣ ≤M∥α∥∞θC(Ω)
(
1

j

) 1
2

.

Hence, taking φj(x, ω) = F
(2)
j (x, ω)αsj (uj(x)) and ψj(x) = αaj (uj(x))+α

s
j (uj(x)), Proposition

A.2 implies the compactness in L2(Ω) of V2
j (x) +R(2)

j (x).
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We are ready now for the generalization of this result. We define for i ≥ 2 the functions

F
(i)
j (x, ω) and R(i)

j (x) by

F
(i)
j (x, ω) =

ˆ D

0
dλ2...

ˆ D

0
dλi

ˆ
S2
dn2...

ˆ
S2
dni K(ω, n2)...K(ni−1, ni)

× αsj (uj(x− λ2n2)) exp

(
−
ˆ λ2

0

[
αaj (uj(x− rn2)) + αsj (uj(x− rn2))

]
dr

)
× ...× uj(x− λ2n2 + · · · − λini)α

a
j (uj(x− λ2n2 + · · · − λini))

× exp

(
−
ˆ λi

0

[
αaj (uj(x− λ2n2 + · · · − rni)) + αsj (uj(x− λ2n2 + · · · − rni))

]
dr

)
(A.99)

and

Vji (x) +R(i)
j (x) =

 
S2
dn

ˆ D

0
dλF

(i)
j (x− λn, n)αsj (uj(x− λn))

× exp

(
−
ˆ λ

0

[
αaj (uj(x− rn)) + αsj (uj(x− rn))

]
dr

)
. (A.100)

Thus, we estimate∣∣∣F (i)
j (x, ω)

∣∣∣ ≤Mθi−1,
∣∣∣R(i)

j (x)
∣∣∣ ≤ (i− 1)M∥α∥∞θi−1C(Ω)

(
1

j

) 1
2

,

as well as ∣∣∣F (i)
j (x, ω1)− F

(i)
j (x, ω2)

∣∣∣ ≤ 4πMθi−1CKd(ω1, ω2).

Again, Proposition A.2 implies the L2-compactness of Vji (x) +R(i)
j (x). The compactness of

Vji (x) +R(i)
j (x) for 1 ≤ i < N0(β) implies the existence of an h0 > 0 such that

ˆ
Ω
dx
∣∣∣Vji (x)− Vji (x+ h)

∣∣∣2 ≤ β

2N0(β)
+ |Ω|N0M∥α∥∞θi−1C(Ω)

(
1

j

)
(A.101)

for all |h| < h0, for all j ≥ 0 and for all 1 ≤ i < N0. Hence,

ˆ
Ω
dx |Bj(uj)(x)− Bj(uj)(x+ h)|2

≤ 2β|Ω|+ 2N0

N0−1∑
i=1

ˆ
Ω
dx
∣∣∣Vji (x)− Vji (x+ h)

∣∣∣2
≤ β (2|Ω|+ 1) + C(Ω, ∥α∥∞,M)N2

0

1

j
, (A.102)

for all |h| < h0 and for all j ≥ 0.
We examine now to the operator Cj(x) associated to the boundary term. We proceed

similarly as for the interior term rewriting each expression U ji in spherical coordinates. We
start as usual with i = 1, where we have

U j1(x) =
ˆ
S2
dn G(n) exp

(
−
ˆ s(x,n)

0

[
αaj (uj(x− rn)) + αsj (uj(x− rn))

]
dr

)

=

ˆ
S2
dn G(n) exp

(
−
ˆ D

0

[
αaj (uj(x− rn)) + αsj (uj(x− rn))

]
dr

)
+R(1)

j (x),
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where

∣∣∣R(1)
j (x)

∣∣∣ = ∣∣∣∣∣
ˆ
S2
dn G(n)

[
exp

(
−
ˆ s(x,n)

0

[
αaj (uj(x− rn)) + αsj (uj(x− rn))

]
dr

)

− exp

(
−
ˆ D

0

[
αaj (uj(x− rn)) + αsj (uj(x− rn))

]
dr

)]∣∣∣∣
≤
ˆ
S2
dn G(n)

ˆ D

s(x,n)

∣∣αaj (uj(x− rn)) + αsj (uj(x− rn))
∣∣ dr

≤ ∥G∥L1∥α∥∞C(Ω)
(
1

j

) 1
2

.

Moreover, taking ψj = αaj (uj) + αsj(uj) and f = G, Corollary A.2 implies the compactness of

U j1 −R(1)
j in L2(Ω).

We proceed with i = 2. Here with the change of variables η = x− λ1n1 we obtain

U j2(x) =
ˆ
Ω
dη Asj(η, x− η)

ˆ
S2
dn0G(n0)Ej(η, n0)K

(
x− η

|x− η| , n0
)

=

ˆ
S2
dn1

ˆ s(x,n1)

0
dλ1

ˆ
S2
dn0K(n1, n0)G(n0)α

s
j(uj(x− λ1n1))

× exp

(
−
ˆ λ1

0

[
αaj (uj) + αsj (uj)

]
(x− rn1)dr

)
× exp

(
−
ˆ s(x−λ1n1,n0)

0

[
αaj (uj) + αsj (uj)

]
(x− λ1n1 − rn0)dr

)

= R(2)
j (x) +

ˆ
S2
dn1

ˆ D

0
dλ1Q

(2)
j (x− λ1n1, n1)α

s
j(uj(x− λ1n1))

× exp

(
−
ˆ λ1

0

[
αaj (uj) + αsj (uj)

]
(x− rn1)dr

)
,

where

Q
(2)
j (x, ω) =

ˆ
S2
dn G(n)K(ω, n) exp

(
−
ˆ D

0

[
αaj (uj) + αsj (uj)

]
(x− rn)dr

)
and ∣∣∣R(2)

j (x)
∣∣∣ ≤ C(G,Ω)∥α∥∞ (θ + 1)

(
1

j

) 1
2

.

Moreover, we see
∣∣∣Q(2)

j (x, ω)
∣∣∣ ≤ ∥G∥∞ and a similar computation to the one in (A.96) shows

∣∣∣Q(2)
j (x, ω1)−Q

(2)
j (x, ω2)

∣∣∣ ≤ ∥G∥L1CKd(ω1, ω2).

Hence, Proposition (A.2) implies for φj(x, ω) = αsj(uj(x))Q
(2)
j (x, ω) and ψj = αaj (uj)+α

s
j(uj)

the L2-compactness of U j2 −R(2)
j .
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We proceed iteratively. We define for i ≥ 3 the functions

Q
(i)
j (x, ω) =

ˆ
S2
dn2

ˆ D

0
dλ2K(ω, n2)α

s
j(uj(x− λ2n2))

× exp

(
−
ˆ λ2

0

[
αaj (uj) + αsj (uj)

]
(x− rn2)dr

)
× ...×

ˆ
S2
dniG(ni)K(ni−1, ni)

× exp

(
−
ˆ D

0

[
αaj (uj) + αsj (uj)

]
(x− λ2n2 − ...− rni)dr

)
(A.103)

and R(i)
j = U ji −Q

(i)
j . Similarly as for the case i = 2 we can estimate∣∣∣Q(i)

j (x, ω)
∣∣∣ ≤ θ(i−2)∥G∥∞

and ∣∣∣Q(i)
j (x, ω1)−Q

(i)
j (x, ω2)

∣∣∣ ≤ θ(i−2)∥G∥L1CKd(ω1, ω2).

Moreover, the remainder statisfies∣∣∣R(i)
j (x)

∣∣∣ ≤ C(G,Ω)∥α∥∞θ(i−2)

(
1

j

) 1
2

.

Again, Proposition A.2 implies the L2-compactness of U ji (x)−R(i)
j (x). The compactness

of U ji (x)−R(i)
j (x) for 1 ≤ i < N0(β) implies the existence of an h1 > 0 such that

ˆ
Ω
dx
∣∣∣U ji (x)− U ji (x+ h)

∣∣∣2 ≤ β

2N0(β)
+ |Ω|N0C(G,Ω)∥α∥∞θ(i−2)

(
1

j

)
(A.104)

for all |h| < h1, for all j ≥ 0 and for all 1 ≤ i < N0. Hence,

ˆ
Ω
dx |Cj(uj)(x)− Cj(uj)(x+ h)|2

≤ 2β|Ω|+ 2N0

N0−1∑
i=1

ˆ
Ω
dx
∣∣∣U ji (x)− U ji (x+ h)

∣∣∣2
≤ β (2|Ω|+ 1) + C(Ω, ∥α∥∞, G)N2

0

1

j
, (A.105)

for all |h| < h1 and for all j ≥ 0. Putting equations (A.102) and (A.105) in (A.94) we obtain
for β > 0, which was chosen arbitrary, the following estimate

ˆ
Ω
dx |Bj(uj)(x) + Cj(uj)(x)− Bj(uj)(x+ h)− Cj(uj)(x+ h)|2

≤ β (4|Ω|+ 2) + C(Ω, ∥α∥∞, G,M)N2
0

1

j
, (A.106)

for all |h| < min (h0, h1) and for all j ≥ 0. Taking now J0 =
2N0(β)2

β we obtain

ˆ
Ω
dx |Bj(uj)(x) + Cj(uj)(x)− Bj(uj)(x+ h)− Cj(uj)(x+ h)|2

≤ C(Ω, ∥α∥∞, G,M)β, (A.107)
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for all |h| < min (h0, h1) and for all j ≥ J0. Since J0 ∈ N is finite and Bj(uj) and Cj(uj) are
continuous there exists an H0 ≤ min (h0, h1) such that

ˆ
Ω
dx |Bj(uj)(x) + Cj(uj)(x)− Bj(uj)(x+ h)− Cj(uj)(x+ h)|2 ≤ β, (A.108)

for all |h| < H0 and 1 ≤ j < J0. Hence, we have just proved that the uniformly bounded
and tight sequence Bj(uj) + Cj(uj) is equicontinuous in L2 and thus compact. There exists
hence a subsequence ujl = Bjl(ujl) + Cjl(ujl) and a function u ∈ L2(Ω) ∩ L∞(Ω) such that
ujl = Bjl(ujl) + Cjl(ujl) → u in L2(Ω) and pointwise almost everywhere as l → ∞.

The uniformly boundedness of ujl and also of αa (ujl) and α
s (ujl) implies the convergence

in Lp of αa (ujl) ∗ ϕjl → αa(u) and αs (ujl) ∗ ϕjl → αs(u) as l → ∞ for p < ∞. Therefore for
a subsequence (say still ujl) the convergence holds also pointwise almost everywhere. Finally
a combination of the dominated convergence theorem for finitely many terms in terms in the
Duhamel series and the convergence of such Duhamel series implies

ujl = Bjl(ujl) + Cjl(ujl) → u = B(u) + C(u) (A.109)

pointwise almost everywhere as l → ∞ and u = B(u) + C(u) pointwise almost everywhere.
Hence, u is the desired solution to (A.61).

A.4.7 Existence of solution for the pseudo Grey case

We want to show the existence of solutions also in the pseudo Grey case, i.e. when the
absorption and scattering coefficient depends also on the frequency via the relation αaν(T (x)) =
Qa(ν)α

a(T (x)) and αsν(T (x)) = Qs(ν)α
s(T (x)). We assume that Qi ∈ C1 (R+) and αi ∈

C1 (R+) for i = a, s. It is not difficult to see that similarly as Theorem A.3 implies Proposition
A.2 and the Corollary A.2, also Theorem A.1 and the Federer-Besicovitch covering’s lemma
implies the following Proposition.

Proposition A.3. Let {φj}j∈N ⊂ L∞ (Ω, L1(R+)
)
and {ψj}j∈N ⊂ L∞ (Ω, L1(R+)

)
be two

non-negative bounded sequences with Ω ⊂ R3 bounded, convex with C2-boundary and strictly
positive curvature. Let also f ∈ L∞ (S2, L1(R+)

)
be non-negative. Then the sequences

ˆ
S2
dn

ˆ D

0
dr

ˆ ∞

0
dνφj(x− rn, ν) exp

(
−
ˆ r

0
ψj(x− λn, ν)dλ

)
and ˆ

S2
dn

ˆ ∞

0
dν f(n, ν) exp

(
−
ˆ D

0
ψj(x− λn, ν)dλ

)
are compact in L2(Ω). If moreover {φj}j∈N ⊂ C

(
S2, L∞ (Ω, L1(R+)

))
with

∥φj(·, ·, ω1)− φj(·, ·, ω2)∥L∞(Ω,L1(R+)) ≤ σ(d(ω1, ω2)) → 0

as d(ω1, ω2) → 0, where d is the metric on the sphere and σ ∈ C (R+,R+) with σ(0) = 0 is a
uniform modulus of continuity, then the sequence

ˆ
S2
dn

ˆ D

0
dr

ˆ ∞

0
dνφj(x− rn, ν, n) exp

(
−
ˆ r

0
ψj(x− λn, ν)dλ

)
is also compact in L2(Ω).

Now we are ready to prove the existence of solution in the pseudo Grey case.
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Proof of Theorem A.2. We proceed similarly as we did in the proof of Theorem A.4 indicating
where differences arise. With the same notation as in Theorem A.4 we define therefore the
Green functions Ĩν(x, n x0) ψν(x, n;x0, n0) by

n · ∇xĨν(x, n;x0) = Qs(ν)α
s(T (x))

ˆ
S2
K(n, n′)Ĩν(x, n′;x0) dn′

− (Qa(ν)α
a (T (x)) +Qs(ν)α

s (T (x))) Ĩν(x, n;x0) + δ(x− x0) (A.110)

with boundary condition for x ∈ ∂Ω

Ĩν(x, n;x0)χ{n·nx<0} = 0

and

n · ∇xψν(x, n;x0, n0) = Qs(ν)α
s(T (x))

ˆ
S2
K(n, n′)ψν(x, n′;x0, n0) dn′

− (Qa(ν)α
a (T (x)) +Qs(ν)α

s (T (x)))ψν(x, n;x0, n0), x ∈ Ω,

ψν(x, n;x0, n0)χ{n·nx<0} = δ∂Ω(x− x0)
δ(2)(n, n0)

4π
, x ∈ Ω, n0 ·Nx0 < 0.

(A.111)

Then the intensity of radiation can be expressed in terms of these two functions as follows.

Iν(x, n) =

ˆ
Ω
dx0 Qa(ν)α

a(T (x0))Bν(T (x0))Ĩν(x, n;x0)

+

ˆ
S2
dn0

ˆ
∂Ω
dx0 gν(n0)ψν(x, n;x0, n0). (A.112)

Once again plugging in the definition of Iν(x, n) into equation (A.6) we obtain the following
fixed-point equation

u(x) =

ˆ
S2
dn

ˆ ∞

0
dν

ˆ
Ω
dx0 Qa(ν)

2αa(u(x0))Bν
(
F−1(u(x0))

)
Ĩν(x, n x0)

+

ˆ ∞

0
dν

ˆ
S2
dn

ˆ
S2
dn0

ˆ
∂
Ωdx0 Qa(ν)gν(n0)ψν(x, n;x0, n0), (A.113)

where u(x) = 4π
´∞
0 Qa(ν)Bν(T (x)) = F (T (x)). Since Bν is a monotone function of the

temperature, F is invertible.
Once more, we regularize the equation through a a sequence ϕε of standard positive radial

symmetric mollifiers. We hence define Iεν(x, n x0) and ψ
ε
ν(x, n;x0, n0) by

n · ∇xI
ε
ν(x, n;x0) = Qs(ν)α

s(T (·)) ∗ ϕε(x)
ˆ
S2
K(n, n′)Iεν(x, n

′;x0) dn′

− (Qa(ν)α
a (T (·)) ∗ ϕε(x) +Qs(ν)α

s (T (·)) ∗ ϕε(x)) Iεν(x, n;x0) + δ(x− x0) (A.114)

with boundary condition for x ∈ ∂Ω

Iεν(x, n;x0)χ{n·nx<0} = 0

and

n · ∇xψ
ε
ν(x, n;x0, n0) = Qs(ν)α

s(T (·)) ∗ ϕε(x)
ˆ
S2
K(n, n′)ψεν(x, n

′;x0, n0) dn′

− (Qa(ν)α
a (T (·)) ∗ ϕε(x) +Qs(ν)α

s (T (·)) ∗ ϕε(x))ψεν(x, n;x0, n0), x ∈ Ω,

ψεν(x, n;x0, n0)χ{n·nx<0} = δ∂Ω(x− x0)
δ(2)(n, n0)

4π
, x ∈ Ω, n0 ·Nx0 < 0.

(A.115)
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The associated regularized fixed-point equation for

u(x) =

ˆ ∞

0
dν Qa(ν)Bν(T (x)) = F (T (x)),

is defined for any ε > 0 by

uε(x) =

ˆ ∞

0
dνQa(ν)

2

ˆ
Ω
dx0

ˆ
S2
dn αaε(x0)Bν

(
F−1(uε(x0))

)
Iεν(x, n;x0)

+

ˆ ∞

0
dνQa(ν)

ˆ
S2
dn0

ˆ
S2
dn

ˆ
∂Ω
dx0 G(n0)ψ

ε
ν(x, n;x0, n0)

=: Bε(uε)(x) + Cε(uε)(x), (A.116)

where uε is the solution of the fixed-point equation for ε > 0 and we used the notation
αiε(x) = αi(uε(·)) ∗ ϕε(x) for i = a, s. The same reasoning and computations we did in
Subsection (A.4.2) hold also in this case, so that we can write the explicit recursive formula
for both Iεν and ψεν as

Iεν(x, n;x0) = χΩ(x0) exp

(
−
ˆ
[x0,x]

[Qa(ν)α
a
ε(ξ) +Qs(ν)α

s
ε(ξ)] dξ

)
×H(n · (x− x0))δ

(2)
(
P⊥
n (x− x0)

)
+

ˆ s(x,n)

0
dt Qs(ν)α

s
ε(x− tn) exp

(
−
ˆ
[x−tn,x]

[Qa(ν)α
a
ε(ξ) +Qs(ν)α

s
ε(ξ)] dξ

)

×
ˆ
S2
dn′K(n, n′)Iε(x− tn, n′;x0), (A.117)

and

ψεν(x, n;x0, n0) = |n0 ·Nx0 |H(n0 · (x− x0))

× δ(2)
(
P⊥
n0
(x− x0)

) δ(2)(n, n0)
4π

exp

(
−
ˆ
[x−tn,x]

[Qa(ν)α
a
ε(ξ) +Qs(ν)α

s
ε(ξ)] dξ

)

+

ˆ s(x,n)

0
dt Qs(ν)α

s
ε(x− tn) exp

(
−
ˆ
[x−tn,x]

[Qa(ν)α
a
ε(ξ) +Qs(ν)α

s
ε(ξ)] dξ

)

×
ˆ
S2
dn′K(n, n′)ψε(x− tn, n′;x0, n0). (A.118)

With these expressions we recover also the Duhamel representation of the bulk and boundary
operators by

Bε(u)(x) =
ˆ ∞

0
dνQa(ν)

ˆ
Ω
dx0

Qa(ν)α
a
ε(x0)Bν (u(x0))

|x− x0|2

× exp

(
−
ˆ
[x0,x]

[Qa(ν)α
a
ε(ξ) +Qs(ν)α

s
ε(ξ)] dξ

)
(A.119)
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+

ˆ ∞

0
dνQa(ν)

ˆ
Ω
dη

ˆ
Ω
dη1 K

(
x− η

|x− η| ,
η − η1
|η − η1|

)
Qs(ν)α

s
ε(η)

|x− η|2

× exp

(
−
ˆ
[η,x]

[Qa(ν)α
a
ε(ξ) +Qs(ν)α

s
ε(ξ)] dξ

)
Qa(ν)α

a
ε(η1)Bν (u(η1))

|η − η1|2

× exp

(
−
ˆ
[η1,η]

[Qa(ν)α
a
ε(ξ) +Qs(ν)α

s
ε(ξ)] dξ

)

+

ˆ ∞

0
dνQa(ν)

ˆ
Ω
dη

ˆ
Ω
dη1

ˆ
Ω
dη2 A

s
ε(η, x− η, ν)Asε(η1, η − η1, ν)

×Aaε(η2, η1 − η2, ν)Bν(u(η2))K

(
x− η

|x− η| ,
η − η1
|η − η1|

)
K

(
η − η1
|η − η1|

,
η1 − η2
|η1 − η2|

)
+ · · · =

∞∑
i=1

Vεi (u)(x),

where we used the definition

Aiε(z, y − z, ν) =
Qi(ν)α

i
ε(z)

|y − z|2 exp

(
−
ˆ
[z,y]

[Qa(ν)α
a
ε(ξ) +Qs(ν)α

s
ε(ξ)] dξ

)
.

For the boundary operator we obtain similarly

Cε(u)(x)

=

ˆ ∞

0
dν Qa(ν)

ˆ
S2
dn gν(n) exp

(
−
ˆ
[y(x,n),x]

[Qa(ν)α
a
ε(u) +Qs(ν)α

s
ε(u)] dξ

)

+

ˆ ∞

0
dν Qa(ν)

ˆ
Ω
dηAsε(η, x− η, ν)

ˆ
S2
dn0gν(n0)

× exp

(
−
ˆ
[y(η,n0),η]

[Qa(ν)α
a
ε(u) +Qs(ν)α

s
ε(u)] dξ

)
K

(
x− η

|x− η| , n0
)

+

ˆ ∞

0
dν Qa(ν)

ˆ
Ω
dηAsε(η, x− η, ν)

ˆ
Ω
dη1 A

s
ε(η1, η − η1, ν)

×K

(
x− η

|x− η| ,
η − η1
|η − η1|

) ˆ
S2
dn0gν(n0)

× exp

(
−
ˆ
[y(η1,n0),η]

[Qa(ν)α
a
ε(u) +Qs(ν)α

s
ε(u)] dξ

)
K

(
η − η1
|η − η1|

, n0

)

+ · · · =
∞∑
i=1

Uεi (u)(x). (A.120)

It can be shown, as we did in the pure Grey case, that the operator Bε is a contraction, while
the operator Cε is bounded. For the first claim, we need to use a new version of the weak
maximum-principle. We see that defining the function Hε(x, n, ν) by

Hε(x, n, ν) =

ˆ
Ω
dx0 Qa(ν)α

a
ε(x0)I

ε
νν(u(x0))
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it satisfies the equation

0 = Lε(Hε)(x, n, ν)−Qa(ν)α
a
ε(x)

= n · ∇xHε(x, n, ν)−Qa(ν)α
a
ε(x) (1−Hε(x, n, ν))

−Qs(ν)α
s
ε(x)

ˆ
S2
dn′ K(n, n′)

(
Hε(x, n, ν)−Hε(x, n

′, ν)
)
. (A.121)

Notice that also in this case by definition Hε is non-negative, continuous and bounded, where
the last assertions are due to its Duhamel expansion. Defining the adjoint operator by

L∗
ε(φ)(x, n, ν) = −n · ∇xφ(x, n, ν) + (Qa(ν)α

a
ε(x) +Qs(ν)α

s
ε(x))φ(x, n, ν)

−Qs(ν)α
s
ε(x)

ˆ
S2
dn′ K(n, n′)φ(x, n′, ν) (A.122)

we use the following weak-maximum principle

Lemma A.4. If a continuous bounded F (x, n, ν) satisfies the boundary condition F (x, n, ν) ≥
0 for x ∈ ∂Ω and n · nx < 0 and the inequality

ˆ ∞

0
dν

ˆ
S2
dn

ˆ
Ω
dx L∗

ε(φ)(x, n, ν)F (x, n, ν) ≥ 0

for all non-negative φ ∈ C1
(
Ω̄× S2 × R+

)
with φ(x, n, ν) = 0 for x ∈ ∂Ω and n ·nx ≥ 0, then

F (x, n, ν) ≥ 0 for all x, n, ν ∈ Ω× S2 × R+.

Proof. We assume that Lemma A.4 is not true. Hence, there exists an open set U ⊂ Ω̄×S2×R+

such that F (x, n, ν) < 0 there. Taking then a function ξ ∈ C1
c (U) with ξ ≥ 0 and ξ ̸= 0 we

define the non-negative continuously differentiable function φ(x, n, ν) by

L∗
ε(φ)(x, n, ν) = ξ(x, n, ν)

and with boundary condition φ(x, n, ν) = 0 for x ∈ ∂Ω and n · nx > 0. As we did in the
proof of Lemma A.3 one can show that φ ≥ 0 and that it is continuously differentiable in all
variables. Finally, one uses the constructed function in order to obtain a contradiction since

0 ≤
ˆ ∞

0
dν

ˆ
S2
dn

ˆ
Ω
dxL∗

ε(φ)(x, n, ν)F (x, n, ν) =

ˆ
U
dνdndxξ(x, n, ν)F (x, n, ν) < 0.

Using the fact that Lε(1 −Hε)(x, n, ν) = 0 and the weak maximum principle in Lemma
A.4 we conclude that 0 ≤ Hε ≤ 1, where we used that by definition Hε(x, n, ν) = 0 for x ∈ ∂Ω
and n · nx < 0. Once again, using the recursive formula for Hε(x, n, ν) and the estimate

ˆ D

0
dr|f(x− rn)| exp

(
−
ˆ r

0
|f(x− tn)|dt

)
≤ 1− e−∥f∥∞D < 1,

we obtain, by defining θ = 1 − e−∥αν∥D < 1 for ∥αν∥ = ∥Qaαa + Qsα
s∥∞, the following
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estimate

0 ≤ Hε(x, n, ν) =

ˆ s(x,n)

0
dt αaε(x− tn)Qa(ν)

× exp

(
−
ˆ t

0
[Qa(ν)α

a
ε(x− rn) +Qs(ν)α

s
ε(x− rn)] dr

)
+

ˆ s(x,n)

0
dt αsε(x− tn)Qs(ν) exp

(
−
ˆ t

0
[Qa(ν)α

a
ε(x− rn) +Qs(ν)α

s
ε(x− rn)] dr

)
×
ˆ
S2
dn′K(n, n′)Hε(x− tn, n′, ν)

≤
ˆ s(x,n)

0
dt (αaε(x− tn)Qa(ν) + αsε(x− tn)Qs(ν))

× exp

(
−
ˆ t

0
[Qa(ν)α

a
ε(x− rn) +Qs(ν)α

s
ε(x− rn)] dr

)
≤ θ < 1.

Hence, we conclude the contractivity of the bulk operator via

0 ≤ Bε(u)(x) =
ˆ ∞

0
dνQa(ν)

2

ˆ
Ω
dx0

ˆ
S2
dn αaε(x0)uε(x0)I

ε
ν(x, n;x0)

≤
ˆ ∞

0
dνQa(ν)Bν

(
F−1(∥u∥∞)

)
Hε(x, n, ν)

≤ θF
(
F−1(∥u∥∞)

)
= θ∥u∥∞.

On the other hand also the boundary term is bounded, indeed in the same way as we had in
the pure grey case using the fact that

ˆ ∞

0
dνQa(ν)

ˆ
S2
dn gν(n) ≤ ∥Q∥∞∥g∥,

we obtain
|Uεi (x)| ≤ ∥Q∥∞∥g∥θi−1,

for θ = 1− e−∥αν∥D < 1. Hence, the Duhamel series is absolutely convergent and

|Cε(u)(x)| ≤ C(Q,α,D, g) <∞.

Moreover, the continuity of the operator Bε + Cε can be shown using the convergence of the
Duhamel expansions as we argued in Subsection A.4.5.

Thus, the operator Bε + Cε is a continuous self-map on the set {u ∈ L∞(Ω) : 0 ≤ u ≤M}
for some M > 0 large enough. Moreover, in the same way as we have shown the Hölder
continuity in the pure Grey case in Subsection A.4.5, using that

ˆ ∞

0
dν Qa(ν)Bν

(
F−1(∥u∥∞)

)
≤ ∥u∥∞,

we can show that Bε + Cε acting on {u ∈ C(Ω) : 0 ≤ u ≤ M} is a continuous self-map map-
ping continuous functions to Hölder continuous function, hence it is a compact continuous
self-map. Schauder’s fixed-point theorem implies the existence of regularized solutions uε to
the equation (A.116).

We are ready for the last step of the proof. We want to show the compactness of the
sequence of regularized solutions u 1

j
=: uj . To this end we will use Proposition A.3. We
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proceed in the same way as in the proof of the pure Grey case of Theorem A.4. We write the
terms in the Duhamel expansion of the bulk and boundary operators in spherical coordinates.
For the interior terms we replace the definition of F ij in (A.99) by

F
(i)
j (x, ω, ν) =

ˆ D

0
dλ2...

ˆ D

0
dλi

ˆ
S2
dn2...

ˆ
S2
dni K(ω, n2)...K(ni−1, ni)

×Qs(ν)α
s
j(x− λ2n2) exp

(
−
ˆ λ2

0

[
Qa(ν)α

a
j (x− rn2) +Qs(ν)α

s
j(x− rn2)

]
dr

)
× ...×Bν

(
F−1(uj(x− λ2n2 + ..− λini))

)
Qa(ν)α

a
j (x− λ2n2 + ..− λini)

× exp

(
−
ˆ λi

0

[
Qa(ν)α

a
j (x− λ2n2 + ..− rni) +Qs(ν)α

s
j(x− λ2n2 + ..− rni)

]
dr

)
,

for i ≥ 2 and F
(1)
j (x, ω, ν) = Qa(ν)Bν

(
F−1(u)(x)

)
. We notice that

0 ≤
ˆ ∞

0
dνF

(i)
j (x, ω, ν) ≤ θi−1M.

Moreover, F
(i)
j is also uniformly continuous with respect to the variable ω. Then, Proposition

A.3 implies that all terms of the form

Ṽ ij =
ˆ ∞

0
dν

ˆ D

0
dt

ˆ
S2
dnF

(i)
j (x− tn, n, ν)Qs(ν)α

s
j(x− tn)

× exp

(
−
ˆ t

0

[
Qa(ν)α

a
j (x− rn2) +Qs(ν)α

s
j(x− rn2)

]
dr

)
,

for i ≥ 2 and

Ṽ1
j =

ˆ ∞

0
dν

ˆ D

0
dt

ˆ
S2
dnF

(1)
j (x− tn, n, ν)Qa(ν)

2αaj (x− tn)

× exp

(
−
ˆ t

0

[
Qa(ν)α

a
j (x− rn2) +Qs(ν)α

s
j(x− rn2)

]
dr

)
,

are compact in L2(Ω). Since the error terms can be still estimated by

∣∣∣V ij(x)− Ṽ ij(x)
∣∣∣ ≤ C(M, ∥α∥, ∥Q∥,Ω)θi−1 1

j

and the Duhamel series is convergent, for any β there exists some N0 > 0 and an h0 > 0 such
that

ˆ
Ω
dx |Bj(uj)(x)− Bj(uj)(x+ h)|2 ≤ β (2|Ω|+ 1) + C(Ω, ∥α∥, ∥Q∥,M)N2

0

1

j
, (A.123)

for all |h| < h0 and for all j ≥ 0.

In a very similar way we consider the terms in the Duhamel expansion of the boundary
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operator written in spherical coordinates. Here we replace the definition of Q
(i)
j in (A.103) by

Q
(i)
j (x, ω, ν) =

ˆ
S2
dn2

ˆ D

0
dλ2K(ω, n2)Qs(ν)α

s
j(x− λ2n2)

× exp

(
−
ˆ λ2

0

[
Qa(ν)α

a
j (uj) +Qs(ν)α

s
j (uj)

]
(x− rn2)dr

)
× ...×

ˆ
S2
dniQa(ν)gν(ni)K(ni−1, ni)

× exp

(
−
ˆ D

0

[
Qa(ν)α

a
j (uj) +Qs(ν)α

s
j (uj)

]
(x− λ2n2 − ...− rni)dr

)
, (A.124)

for i ≥ 2. Again, Q
(i)
j satisfies the assumption of Proposition A.3 with

0 ≤
ˆ ∞

0
dν Q

(i)
j (x, ω, ν) ≤ ∥Q∥∞∥g∥L∞(S2,L1(R+))θ

i−2.

Hence, all terms of the form

Ũ ij =
ˆ ∞

0
dν

ˆ D

0
dt

ˆ
S2
dn Q

(i)
j (x− tn, n, ν)Qs(ν)α

s
j(x− tn)

× exp

(
−
ˆ t

0

[
Qa(ν)α

a
j (x− rn2) +Qs(ν)α

s
j(x− rn2)

]
dr

)
,

for i ≥ 2 and

Ũ1
j =

ˆ ∞

0
dν

ˆ
S
dn Qa(ν)gν(n)

× exp

(
−
ˆ D

0

[
Qa(ν)α

a
j (x− rn2) +Qs(ν)α

s
j(x− rn2)

]
dr

)
,

are compact in L2(Ω). Once more, the error terms can be still estimated by∣∣∣U ij(x)− Ũ ij(x)
∣∣∣ ≤ C(∥g∥, ∥α∥, ∥Q∥,Ω)θi−2 1

j

and ∣∣∣U1
j (x)− Ũ1

j (x)
∣∣∣ ≤ C(∥g∥, ∥α∥, ∥Q∥,Ω)1

j
.

This together with the absolute convergence of the Duhamel series implies for any β the
existence of some N0 > 0 and an h1 > 0 such that

ˆ
Ω
dx |Cj(uj)(x)− Cj(uj)(x+ h)|2 ≤ β (2|Ω|+ 1) + C(Ω, ∥α∥, ∥Q∥, ∥g∥)N2

0

1

j
, (A.125)

for all |h| < h1 and for all j ≥ 0. Now we can conclude exactly as in the proof of Theorem A.4
that the sequence uj = Bj(uj)+Cj(uj) is compact in L2. Extracting a subsequence converging
pointwise almost every where to some u and arguing with the dominated convergence theorem
and the absolute convergence of the Duhamel series we can show the existence of a solution
to the fixed-point equation (A.113).
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Appendix B

Equilibrium and Non-equilibrium
diffusion approximation for the
radiative transfer equation

Abstract: In this paper we study the distribution of the temperature within a body where
the heat is transported only by radiation. Specifically, we consider the situation where both
emission-absorption and scattering processes take place. We study the initial boundary value
problem given by the coupling of the radiative transfer equation with the energy balance
equation on a convex domain Ω ⊂ R3 in the diffusion approximation regime, i.e. when the
mean free path of the photons tends to zero. Using the method of matched asymptotic
expansions we will derive the limit initial boundary value problems for all different possible
scaling limit regimes and we will classify them as equilibrium or non-equilibrium diffusion
approximation. Moreover, we will observe the formation of boundary and initial layers for
which suitable equations are obtained. We will consider both stationary and time dependent
problems as well as different situations in which the light is assumed to propagate either
instantaneously or with finite speed.

B.1 Introduction

The kinetic equation which describes the interaction of matter with photons is the radia-
tive transfer equation. The radiative transfer equation can be written including absorption-
emission processes and scattering processes in a rather general setting as

1

c
∂tIν(t, x, n) + n · ∇xIν(t, x, n) = αeν − αaνIν(t, x, n)

+ αsν

(ˆ
S2
K(n, n′)Iν(t, x, n′) dn′ − Iν(t, x, n)

)
. (B.1)

We denote by Iν(t, x, n) the radiation intensity, i.e. the distribution of energy of photons
moving at time t > 0, at position x ∈ Ω ⊂ R3 and in direction n ∈ S2 with frequency ν > 0.
Moreover, c is the speed of light in the medium that will be assumed to be constant. The
parameters αe, αa and αs are respectively the emission, absorption and scattering coefficients.
These are functions that can depend on the frequency ν, on the position x or in the case of
local thermal equilibrium on the local temperature T (x). The function K is the scattering
kernel. It can be considered as the probability rate of a photon to be deflected from an incident
direction n′ ∈ S2 to a new direction n ∈ S2. The scattering kernel K can be assumed also

135
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to depend on the frequency ν ∈ R+. However, in this paper we omit the dependence on ν in
order to simplify the notation. Notice that all the results that we will present in this paper
hold also in the case where K is also a function of ν.

In this paper we will study the heat transfer by means of radiation under some assumptions.
First of all we consider only the case of local thermal equilibrium in which the temperature
T (t, x) is well-defined at any point x ∈ Ω and for any time t > 0. This is not necessarily the
case in situations where the microscopic processes driving the system towards equilibrium are
slow. Such problems arise in applications to astrophysics (cf. [114]). Under this assumption
the emission coefficient takes a particular form. Indeed it is given by αeν = αaνBν(T (t, x)),

where Bν(T ) =
2hν3

c2
1

e
hν
kT −1

is the Planck distribution of a black body. We assume also that

the considered material is isotropic without a preferred direction of scattering. Hence, the
scattering kernel K is invariant under rotations.

We couple the radiative transfer equation with the energy balance equation

C∂tT (t, x) +
1

c
∂t

(ˆ ∞

0
dν

ˆ
S2
dn Iν(t, x, n)

)
+ div

(ˆ ∞

0
dν

ˆ
S2
dn nIν(t, x, n)

)
= 0, (B.2)

where C > 0 is the volumetric heat capacity of the material. The combined system (B.1)
and (B.2) allows to determine the temperature of the system at any point when the heat is
transferred only by means of radiation. Notice that in (B.2) we are not considering other heat
transport processes such as conduction or convection. After a suitable time rescaling we can
assume C = 1. As boundary condition we consider a source of radiation placed at infinity.
Mathematically we impose

Iν(t, x, n) = gν(t, n) if x ∈ ∂Ω and n · nx < 0, (B.3)

where nx ∈ S2 is the outer normal to the boundary at point x. However, we could consider a
more general setting with the incoming boundary profile gν(t, x, n) depending also on x ∈ ∂Ω.

In this paper we will consider both time dependent and stationary cases. Assuming Ω ⊂ R3

bounded and convex and as initial values the bounded functions I0(x, n, ν) and T0(x), we
consider the following initial-boundary value problem

1
c∂tIν(t, x, n) + n · ∇xIν(t, x, n) = αaν(x) (Bν(T (t, x))− Iν(t, x, n))

+ αsν(x)
(´

S2 K(n, n′)Iν(t, x, n′) dn′ − Iν(t, x, n)
)

x ∈ Ω, n ∈ S2, t > 0

∂tT + 1
c∂t
(´∞

0 dν
´
S2 dn Iν(t, n, x)

)
+ div

(´∞
0 dν

´
S2 dn nIν(t, n, x)

)
= 0 x ∈ Ω, n ∈ S2, t > 0

Iν(0, x, n) = I0(x, n, ν) x ∈ Ω, n ∈ S2

T (0, x) = T0(x) x ∈ Ω

Iν(t, n, x) = gν(t, n) x ∈ ∂Ω, n · nx < 0, t > 0

(B.4)
and the following stationary boundary value problem

n · ∇xIν(x, n) = αaν(x) (Bν(T (x))− Iν(x, n))

+ αsν(x)
(´

S2 K(n, n′)Iν(x, n′) dn′ − Iν(x, n)
)

x ∈ Ω, n ∈ S2

div
(´∞

0 dν
´
S2 dn nIν(n, x)

)
= 0 x ∈ Ω, n ∈ S2

Iν(n, x) = gν(n) x ∈ ∂Ω, n · nx < 0.

(B.5)
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Problems like (B.4) and (B.5) or similar equations related to radiative transfer are of-
ten studied in the framework of the so-called diffusion approximation (see [108, 152]). This
approximation is valid when the mean free path of the photons is much smaller than the
macroscopic size of the system. However, the mean free path of the photons can be small
because either the scattering mean free path or the absorption mean free path is smaller than
the size of the system. The main consequence for that is that, depending on the ratio between
the different mean free paths, the radiation intensity can be approximated by the Planck
distribution, i.e. Bν(T ), or it cannot be. The first case is denoted as equilibrium diffusion
approximation while the second one is referred to as non-equilibrium diffusion approxima-
tion. These concepts have been extensively discussed in the physical literature on radiation
(cf. [108,152]). The goal of this paper is to obtain a precise mathematical characterization of
these concepts, specifically to derive an accurate mathematical condition for the validity of
the equilibrium diffusion approximation and to determine the regions where the equilibrium
or non-equilibrium diffusion approximation holds for the specific problems (B.4) and (B.5).
To this end, we will use perturbative methods and matched asymptotic expansions in order
to study different scaling limits for the scattering and absorption mean free paths.

B.1.1 Scaling lengths and results

We study the solutions of the time dependent and stationary radiative transfer equations
(B.4) and (B.5) under different scaling limits and we obtain suitable problems satisfied by
the limit of the solutions of the original problems. For these problems we will obtain either
the equilibrium or the non-equilibrium diffusion approximation. To this end we start defining
some characteristic lengths.

We consider a convex domain Ω ⊂ R3 with diameter of order 1 and such that the size of the
domain is comparable in all directions of the space. Moreover, the characteristic macroscopic
length L is assumed to be L = 1. We remark that many of the results obtained in this paper
are valid also in non-convex domain. However, in non-convex domains we should take into
account also the consequences of incoming radiation into cavities, an issue that we will not
consider in this paper (see [83] for more details).

We will replace the absorption coefficient αaν(x) by

αaν(x)

ℓA
(B.6)

and the scattering coefficient αsν(x) by

αsν(x)

ℓS
, (B.7)

where now αaν(x) = O(1) and αsν(x) = O(1) are bounded by a constant of order one in both
variables. We denote by ℓA the absorption length and by ℓS the scattering length. These are
also the mean free paths of the absorption/emission processes and the scattering processes,
respectively. In some physical applications it is convenient to assume αaν(x) or α

s
ν(x) to tend

to zero for large or small frequencies ν. The exact dependence of these functions on ν will
be made after. Roughly speaking, we have to assume that they have to decay not too fast in
order to obtain that some integrals arising in the analysis are convergent.

In many technological applications it can be assumed that αsν ≪ αaν (cf. [152]). However,
there are also applications where the scattering plays a more important role than the absorp-
tion/emission process. This is the case for example in the analysis of planetary atmospheres,
see [54,114].
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Another important scaling length that we should consider is the Milne length, which is
given by the minimum between absorption and scattering length,

ℓM = min{ℓA, ℓS}. (B.8)

The Milne length can be considered to be the effective mean free path of the whole radiative
process. The key feature of the Milne length is that at distances of order ℓM to the boundary
the radiation intensity becomes isotropic, i.e. independent of the direction n ∈ S2. Since we
are interested in the diffusion approximation, we assume in the rest of this paper ℓM ≪ L = 1.

Another length which plays a crucial role in the analysis of this paper is the quantity that
we will denote as thermalization length which is the geometrical mean of the absorption and
the Milne length

ℓT =
√
ℓAℓM . (B.9)

The thermalization length is the characteristic distance from the boundary in which the
radiation intensity Iν approaches the Planck equilibrium distribution of the temperature.

We now replace in (B.4) and (B.5) the absorption and scattering coefficients by the ex-
pression in (B.6) and (B.7). The changes of the temperature take place in times of order

τh =
ℓA

min{ℓ2T , 1}
≫ 1,

which will be denoted as heat parameter. Therefore, in order to obtain an equation that
changes in times t of order 1 we will replace t by τht. Notice that, after this change of variable,
the changes of times t of order 1 are associated to relevant changes of the temperature of order
1. We will use this notation throughout the paper, i.e. we will denote by t the time after the
change of variable. Hence, (B.4) writes using L = 1



1
c∂tIν(t, x, n) + τhn · ∇xIν(t, x, n) =

αa
ν(x)τh
ℓA

(Bν(T (t, x))− Iν(t, x, n))

+ αs
ν(x)τh
ℓS

(´
S2 K(n, n′)Iν(t, x, n′) dn′ − Iν(t, x, n)

)
x ∈ Ω, n ∈ S2, t > 0

∂tT + 1
c∂t
(´∞

0 dν
´
S2 dn Iν(t, n, x)

)
+ τh div

(´∞
0 dν

´
S2 dn nIν(t, n, x)

)
= 0 x ∈ Ω, n ∈ S2, t > 0

Iν(0, x, n) = I0(x, n, ν) x ∈ Ω, n ∈ S2

T (0, x) = T0(x) x ∈ Ω

Iν(t, n, x) = gν(t, n) x ∈ ∂Ω, n · nx < 0, t > 0.

(B.10)
We will also consider the case where the speed of light is infinite, i.e. c = ∞. This approx-
imation is justified if the characteristic time for the temperature to change is much smaller
than the time required for the light to cross the domain. In this case the equation will be



n · ∇xIν(t, x, n) =
αa
ν(x)
ℓA

(Bν(T (t, x))− Iν(t, x, n))

+ αs
ν(x)
ℓS

(´
S2 K(n, n′)Iν(t, x, n′) dn′ − Iν(t, x, n)

)
x ∈ Ω, n ∈ S2, t > 0

∂tT + τh div
(´∞

0 dν
´
S2 dn nIν(t, n, x)

)
= 0 x ∈ Ω, n ∈ S2, t > 0

T (0, x) = T0(x) x ∈ Ω

Iν(t, n, x) = gν(t, n) x ∈ ∂Ω, n · nx < 0, t > 0.

(B.11)
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Similarly, the stationary problem (B.5) can be written as


n · ∇xIν(x, n) =

αa
ν(x)
ℓA

(Bν(T (x))− Iν(x, n))

+ αs
ν(x)
ℓS

(´
S2 K(n, n′)Iν(x, n′) dn′ − Iν(x, n)

)
x ∈ Ω, n ∈ S2

div
(´∞

0 dν
´
S2 dn nIν(n, x)

)
= 0 x ∈ Ω, n ∈ S2

Iν(n, x) = gν(n) x ∈ ∂Ω, n · nx < 0.

(B.12)
It is important to remark that we assume gν(t, n) in (B.10) and (B.11) to change in times of
order 1 after rescaling the time, i.e. we assume the incoming radiation gν to change in the
same time scale as the one for meaningful changes of the temperature.

Notice that at the first glance the time τh does not seem to have units of time. However,
we must take into account that since L = 1, omitted in all the equations, all quantities ℓA,
ℓS , ℓM and ℓT are non-dimensional parameters that have to be understood as ℓA

L , ℓSL , ℓML and
ℓT
L . In addition we recall that we have chosen a particular unit of time for which the heat
capacity is C = 1. Hence, all the space and time variables appearing in (B.10)- (B.12) are
non-dimensional. We will see in Sections B.4 to B.6 that the definition of the heat parameter,
namely τh , is motivated by the behavior of the radiation intensity in the bulk and it is the
order of time in which the temperature changes.

There are three characteristic lengths in (B.10)- (B.12), namely ℓA, ℓS and L = 1, and we
can consider several relative scalings between them. Since ℓM ≪ 1 in the case of the diffusion
approximation, the solutions can be described by means of different boundary layers. It turns
out that the relative size and the structure of these boundary layers can be characterized
using the relative scaling of ℓM (cf. (B.8)), ℓS (cf. (B.9)) and L = 1. In order to consider
these different scalings, in the following sections we will set for the equations (B.10), (B.11)
and (B.12) ℓM = ε≪ 1 and we will choose ℓA, ℓS and c as power of ε.

Notice that the incoming radiation gν to the boundary of Ω is not necessarily isotropic
and in general it is different from the Planck distribution, i.e. it is not in thermal equilibrium.
This implies the onset (in principle) of two nested boundary layers near the boundary where
the intensity Iν changes its behavior. The thickness of these layers is ℓM and ℓT , respectively.
In the first layer, which we call Milne layer, the radiative intensity Iν becomes isotropic. In
the latter, which we denote as thermalization layer, Iν approaches the Planck distribution
for a suitable temperature that has to be determined and it is one of the unknowns of the
problem. Notice moreover that, since by definition ℓM ≤ ℓT , the Milne layer appears always
before the thermalization layer. On the other hand, if ℓM is comparable to ℓT both layers can
coincide. It is worth to notice that beyond the thermalization layer the radiative intensity
Iν is given by a Planck distribution. In the time dependent problem besides the formation
of boundary layers we observe the formation of initial layers in which the radiation intensity
becomes isotropic or the equilibrium distribution, respectively.

Table B.1 summarizes the behavior of the solution (T, Iν) to the equations (B.10)-(B.12)
for different scaling limits yielding equilibrium or non-equilibrium diffusion approximation.
Moreover, for any considered regime we observe the onset or not of Milne layers or ther-
malization layers. Finally, when ℓT is of the same order of the characteristic length L the
thermalization, i.e. the transition of Iν to the equilibrium distribution Bν(T ), takes place in
the bulk of the domain Ω.
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ℓM = ℓT ≪ L ℓM ≪ ℓT ≪ L ℓM ≪ ℓT = L ℓM ≪ L≪ ℓT
Milne layer Milne = Yes Yes Yes

Thermalization
layer

Thermalization Yes ≈ Bulk No

Bulk
Equilibrium
diffusion
approximation

Equilibrium
diffusion
approximation

Transition from
equilibrium to
non-equilibrium
approximation

Non-
equilibrium
diffusion
approximation

Table B.1: Main results.

B.1.2 Revision of the literature

The problem concerning the distribution of temperature of a material interacting with elec-
tromagnetic waves is not only a relevant question in many physical applications but also it
is the source of several interesting mathematical problems. The radiative transfer equation
is the kinetic equation describing the interaction of photons with matter. Its derivation and
its main properties are explained in [29, 108, 114, 125, 152]. In particular, the validity of the
diffusion approximation and a discussion of the situations where the radiation intensity is
expected to be or not to be given approximately by the Planck distribution are considered
in [108,152].

Starting from the seminal work of Compton [31], the interaction of matter and radiation
has been widely studied both in the physical and mathematical literature. Some of the
early results can be found in the paper of Milne [109], who considered a simplified model of
monochromatic radiation depending only on one space variable.

When considering the diffusion approximation of the radiative transfer equation, a bound-
ary layer near the boundary appears in which the distribution of radiation becomes isotropic.
The specific equation describing this layer involves a radiative transfer equation depending
on one space variable, whose details depend on the problem under consideration. This class
of problems is known in the mathematical literature as Milne problems and they have been
extensively studied at least for some particular choices of αaν and αsν .

While it is difficult to find explicit solutions of the radiative transfer equation, in the case
of small photon’s mean free path (i.e. in the diffusion approximation) this problem reduces
to an elliptic (in the stationary case) or parabolic (in the time dependent case) problem. The
mathematical properties of these problems are much better understood than the properties
of the non-local radiative transfer equation (B.1). Due to this the diffusion approximation of
the radiative transfer equation has been studied in great detail.

Before discussing the currently available mathematical results about the diffusion approx-
imation and the Milne problems, it is worth to introduce an equation which is closely related
to the radiative transfer equation (B.1). In the absence of emission-absorption processes, i.e.
when αaν = 0, and when αsν is independent of the frequency ν the radiative transfer equation
(B.1) reduces to

∂tu(t, x, n) + n · ∇xu(t, x, n) = α(x)

(ˆ
S2
K(n, n′)u(t, x, n′) dn′ − u(t, x, n)

)
, (B.13)

where u =
´∞
0 Iν(t, x, n) dν. This equation is mathematically identical to the one-speed

neutron transport equation. Moreover, in the stationary case the radiative transfer equation
reduces to (B.13) also in the presence of absorption-emission processes if both αa and αs are
independent of the frequency. The case where both absorption and scattering coefficients are
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independent of the frequency is usually denoted in the literature as the Grey approximation.
Therefore, the one-speed neutron transport equation and the radiative transfer equation for
the Grey approximation are mathematically equivalent. See [33] for more details. As a
matter of fact, the neutron transport equation, especially its diffusion approximation, was
largely studied in the late 70’s. The reason is that this problem is important in order to
determine the critical size for neutron transport, i.e. the smallest size of the system for which
the scattering eigenvalue problem has a stable solution. This is relevant in nuclear reactor
engineering. For more details about this issue we refer to [33].

In several articles [66, 98, 100–104] Larsen and several coauthors studied many properties
of the neutron transport equation and its diffusion approximation. Moreover, in [97] the
authors studied via asymptotic analysis the diffusion approximation of the radiative transfer
equation for both absorption and scattering taking as initial and boundary value the Planck
distribution. This choice of boundary data simplifies the treatment of the problem because
no boundary layers or initial transport problems arise at least to the leading order.

To the best of our knowledge the first mathematically rigorous article about the diffusion
approximation for the neutron transport equation is [19]. In that article the authors studied
equation (B.13) under different boundary conditions including also the absorbing boundary
condition that we are considering in (B.3). In particular, using probabilistic methods they
studied the Milne problem arising for the boundary layers and proved the convergence of
the solution of the original neutron transport equation to the solution of a diffusive problem.
Moreover, the scattering kernel considered is assumed to be strictly positive, bounded and
rotationally symmetric.

More recently Guo and Wu studied in a series of papers [76, 146–149] both the station-
ary and time dependent diffusion approximation for the neutron transport equation with a
constant scattering kernel and a constant scattering coefficient. They proved rigorously the
convergence to such diffusion problem computing also a geometric correction for the boundary
layer. Their method is based on the derivation of suitable L2 −Lp−L∞ estimates, a method
that has been extensively used in the study of kinetic equations (cf. [75, 86]).

The mathematical theory of the radiative transfer equation has been also extensively
studied. The well-posedness and the diffusion approximation for the time dependent problem
without scattering has been studied using the theory of m-accretive operators in [13–15].

In a recent paper [37] we developed an alternative method to derive the equilibrium dif-
fusion approximation starting with the stationary radiative transfer equation. Specifically,
in [37] the Grey approximation and the case of absence of scattering are considered. The pro-
cedure developed in [37] consists in reformulating the problem (B.12) as a non-local elliptic
equation for the temperature for which maximum principles techniques are applicable.

As indicated before an important class of problems, which need to be studied in order to
derive the boundary condition for the diffusion approximation, are the Milne problems.

In the case of pure absorption, namely when αsν = 0, the well-posedness for the Milne
problem can be found for instance in [68] and also in [37] using different methods. In particular
in [68] well-posedness is shown for a very large class of absorption coefficients.

In the case of pure scattering radiative transfer equation for the Grey approximation
(equivalently the neutron transport equation), the well-posedness of the Milne problem has
been studied in [17, 19]. More recently, geometric corrections to the solution of the Milne
problem have been obtained in [76,146–149].

To our knowledge the only example of Milne problem involving both emission/absorption
and scattering has been studied in [127]. The case considered in this paper is the one of
constant scattering kernel and constant scattering coefficient and more general absorption
coefficient. The proof relies on the accretiveness of the operators used similarly to the Perron
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method applied to solve boundary value problem for elliptic equations.

It is finally worth to mention that also for other kinetic equations, such as for example the
Boltzmann equation, the diffusion limit and hence the boundary layer equations have been
studied. The equations describing the boundary layers are also often denoted in the literature
by Milne problems, see for instance [11,45–47].

Besides the studies about the diffusion approximation, the radiative transfer equation
has been analyzed in numerous works. In recent times there has been a graving interest of
the study of problems involving the radiative transfer equation in different contexts. The
well-posedness of the stationary equation (B.5) has been considered in [35, 83]. The authors
proved the existence of solutions to the stationary radiative transfer equation with or without
scattering in the cases of constant coefficients, coefficients depending on the frequency but
not on the temperature of the system and finally coefficients depending on both the frequency
and the temperature of the particular form αν(T ) = Q(ν)α(T ).

Finally, the radiative transfer equation has been considered also for more complicated
interactions between matter and photons. We refer to [69,71,108,152] for problems concerning
the interaction of matter with radiation in a moving fluid. For the study of interaction of
electromagnetic waves with a Boltzmann gas whose molecules have different energy levels we
refer to [34, 81, 114, 122]. Several authors considered problems where the heat is transported
in a body by means of both radiation and conduction, we refer to [62, 63, 95, 96, 116, 138,
139]. Finally, homogenization problems in porous and perforated domains where the heat is
transported by conduction, radiation and possibly also convection are studied in [3–5, 121].
Specifically, in [121] the authors applied the method of multiple scales to a homogenization
problem describing the heat transport in a porous medium. The heat transport is assumed
to be due to the conduction in the solid part of the material and due to the radiation in the
gas filled cavities.

Derivations of the scattering kernel for the radiative transfer equation taking as starting
point the Maxwell equations has been also extensively studied in [110].

B.1.3 Structure of the paper

The paper is organized as follows. In Section B.2 we will study some of the mathematical
properties of the scattering operator and of the absorption-emission process appearing in the
radiative transfer equation. We will then proceed to the derivation of the limit problems in
the diffusion approximation under different scaling limits. In Section B.3 we consider the
stationary diffusion approximation for the radiative transfer equation and we derive using the
method of matched asymptotic expansions the new limit boundary value problem as well as
the boundary layer equations. Moreover, we will see for which choice of characteristic lengths
the equilibrium diffusion approximation holds and for which ones it fails. We will then proceed
with the study of the time dependent diffusion approximation, for which we will use again the
method of matched asymptotic expansions. In Section B.4 the focus is on the case of infinite
speed of light (i.e. instantaneously transport of the radiation in the domain), namely on the
problem (B.11). Besides the construction of the limit problems and their classification as
equilibrium and non-equilibrium diffusion approximations, we will also derive the initial layer
and initial-boundary layer equations. In Section B.5 and in Section B.6 we proceed similarly
to Section B.4 studying first the time dependent diffusion approximation in the case of finite
speed of light, i.e. speed of light of order one, (cf. Section B.5) and later in the case where
the speed of light is assumed to scale like a power law c = ε−κ for κ > 0 and ε = ℓM (cf.
Section B.6).
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B.2 Preliminary results

In this section we collect some properties of the scattering operator and absorption operator
that will be used later in the analysis of the diffusion approximation.

B.2.1 Properties of the scattering operator

Before deriving suitable diffusion approximations according to the different values of ℓM and
ℓT , we describe some properties of the scattering kernel and of the scattering operator.

We consider throughout the paper the kernel K ∈ C
(
S2 × S2

)
to be non-negative and

satisfying´
S2 K(n, n′)dn = 1. We also assume in the whole article that the kernel K is invariant under
rotations, i.e.

K(n, n′) = K(Rn,Rn′) for all n, n′ ∈ S2 and for any R ∈ SO(3).

Moreover, for any n, ω ∈ S2 we define by Rn,ω ∈ SO(3) the rotation of π around the bisectrix
of the angle between n and ω lying in the plane containing both vectors. This rotation satisfies
Rn,ω(n) = ω and Rn,ω(ω) = n. As shown in [35], this implies that the scattering kernel K is
symmetric. Notice that this is not true in two dimensions unless we assume K to be invariant
also under reflections.

We define the scattering operator as the bounded linear operator given by

H : L∞ (S2)→ L∞ (S2)
φ 7→ H[φ] =

ˆ
S2
K(·, n′)φ(n′) dn′.

(B.14)

With this notation we can formulate the following Proposition which contains the most im-
portant properties of the scattering operator.

Proposition B.1. Let K ∈ C
(
S2 × S2

)
, invariant under rotations, non-negative and satis-

fying ˆ
S2
K(n, n′)dn = 1.

Assume φ ∈ L∞ (S2) satisfies H[φ] = φ. Then

(i) φ is continuous,

(ii) φ is constant,

(iii) Ran(Id−H) =
{
φ ∈ L∞(S2) :

´
S2 φ = 0

}
.

The proof of Proposition B.1 can be found in the Section B.8. A direct consequence
of Proposition B.1 is the following Proposition for a continuous scattering kernel K with
K ∈ C

(
S2 × S2 × Ω× R+

)
invariant under rotations for each pair (x, ν).

Proposition B.2. Let K ∈ C
(
S2 × S2 × Ω× R+

)
. For any x, ν ∈ Ω × R+ we define

Kx,ν(n, n
′) = K(n, n′, x, ν). Assume that for any x, ν ∈ Ω × R+ the kernel Kx,ν is invariant

under rotations, non-negative and satisfies
´
S2 Kx,ν(n, n

′)dn = 1. Then the following holds.

(i) For any x, ν ∈ Ω×R+ and n, ω ∈ S2 there exist finitely many n1, · · · , nN ∈ S2 such that
(B.91) holds for Kx,ν ;
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(ii) if φ ∈ L∞ (S2 × Ω× R+

)
satisfies H[φ] = φ, then φ is continuous and it is constant for

every x, ν ∈ Ω× R+,

(iii) Ran(Id−H) =
{
φ(·, x, ν) ∈ L∞(S2) :

´
S2 φ(n, x, ν) dn = 0

}
for every x, ν ∈ Ω× R+.

Proof. Apply Proposition B.1 to the continuous kernel Kx,ν .

Remark. In the following Sections we will consider the diffusion approximation for scattering
kernels K independent of x ∈ Ω and ν ≥ 0. However, under the assumptions of Proposition
B.2 the same results would apply for more general kernels depending continuously on x and
ν.

Remark. The assumption of K being invariant under rotations is crucial for the validity of
Proposition B.1 and Proposition B.2. Consider for example the following continuous function

k(n) =
2

3π

(
χ{|n·e3|≤ 1

4
}(n) + (2− 4|n · e3|)χ{ 1

4
<|n·e3|< 1

2
}(n)

)
.

Then the kernel K(n, n′) = k(n)χS2(n
′) is continuous in both variables, is non-negative and

satisfies ˆ
S2
K(n, n′) dn =

ˆ
S2
k(n) dn = 1.

However, K is not invariant under rotations. This kernel describes the scattering properties of
a non-isotropic medium. It is easy to see that in this case H[c](n) = ck(n), for c ∈ R. Hence,
the constant functions are not a solution to H[φ] = φ. Actually, all solutions of H[φ] = φ
satisfy φ(n) = k(n)

´
S2 φ(n

′) dn′ and have hence the form φ = λk where λ ∈ R is an arbitrary
constant. Therefore, the subspace of eigenvectors of H with eigenvalue 1 is one-dimensional.

Remark. As we noticed above, in two dimensions the invariance under rotations of K does
not imply directly its symmetry under reflections. However, it is still possible to show that
the only eigenfunctions of H with eigenvalue 1 are the constants. To check this we recall
the well-known fact that the one-dimensional sphere S1 can be parameterized by θ ∈ [0, 2π).
Moreover, we can assume without loss of generality that any scattering kernel K invariant
under rotations has the formK(n, n′) = K(θ(n)−θ(n′)). Let now f ∈ L∞(S1) an eigenfunction
with eigenvalue 1 for H. We then see

ˆ 2π

0
K(θ − φ)f(φ) dφ = f(θ).

This equation can be solved using Fourier series. We hence obtain the following identity for
the Fourier coefficients

f̂(n)
(
1− 2πK̂(n)

)
= 0. (B.15)

For n = 0 we have K̂(0) = 1
2π

´ 2π
0 K(θ) dθ = 1

2π . On the other hand, we obtain for n ̸= 0

∣∣∣K̂(n)
∣∣∣ < 1

2π

ˆ 2π

0
K(θ) dθ =

1

2π
.

Therefore, the identity (B.15) is satisfied if and only if f̂(n) = 0 for all n ̸= 0. This implies
that f is constant.



B.3. STATIONARY DIFFUSION APPROXIMATION 145

B.2.2 Relation between the temperature and the radiation intensity

We derive here an identity that relates temperature and radiation intensity and that will
be repeatedly used in the stationary problem, for instance in the stationary boundary layer
equations.

Using the identity div
(´∞

0 dν
´
S2 dn nIν(x, n)

)
=
´∞
0 dν

´
S2 dn n ·∇xIν(x, n) and plugging

the first equation of (B.5) into the second one we see that we haveˆ ∞

0
dν

ˆ
S2
dn αaν(x) (Bν(T (x))− Iν(x, n)) = 0, (B.16)

where we used also that the integral over the sphere S2 of the scattering term is 0 due to the
symmetry of the kernel K. With this identity we can recover the value of the temperature
given the radiation intensity. Let us define by F : R+ × Ω → R+ the following function

F (T, x) =

ˆ ∞

0
αaν(x)Bν(T ) dν. (B.17)

Since Bν is monotone in T , the function F (·, x) is invertible. Hence, (B.16) implies that

T (x) = F−1

((ˆ ∞

0
dν

 
S2
dn αaν(x)Iν(x, n)

)
, x

)
, (B.18)

where F−1 is the inverse with respect to the first variable, i.e. F (T, x) = ξ implies T =
F−1(ξ, x). Equations (B.16) and (B.18) will appear often in the following sections, in partic-
ular in the study of the boundary layers.

B.3 The stationary diffusion approximation: different scales

We first study the stationary diffusion regime for different scalings. We consider (B.12) for
αaν and αsν strictly positive and bounded. Moreover, in the diffusion regime we have ℓM ≪ 1.
Hence, in (B.12) we assume ℓM = min{ℓA, ℓS} = ε. Moreover, we impose ℓA = ε−β and
ℓS = ε−γ , for suitable choices of γ, β ≥ −1 with min{γ, β} = −1. Notice that at least one of
β and γ is negative. This choice of ℓA and ℓS as an inverse power law of ε > 0 for β, γ ≥ −1
will be convenient in order to make the computations simpler in the following subsections.
Under these assumptions we rewrite equation (B.12) as

n · ∇xIν(x, n) = εβαaν(x) (Bν(T (x))− Iν(x, n))

+ εγαsν(x)
(´

S2 K(n, n′)Iν(x, n′) dn′ − Iν(x, n)
)

x ∈ Ω, n ∈ S2

div
(´∞

0 dν
´
S2 dn nIν(n, x)

)
= 0 x ∈ Ω, n ∈ S2

Iν(n, x) = gν(n) x ∈ ∂Ω, n · nx < 0.

(B.19)
Moreover, we assume the scattering kernel K ∈ C(S2 × S2) to be invariant under rotations,
non-negative and with

´
S2 K(n, n′)dn = 1. We consider also Ω ⊂ R3 to be a bounded convex

domain with C1-boundary. For x ∈ ∂Ω we denote by nx ∈ S2 the outer normal to the
boundary at x.

Before describing in details the limit diffusion problems for the different choices of scaling
parameters, we shortly explain how we will use the method of matched asymptotic expansions
to derive the limit problems for each case. In order to find the limit problem valid in the bulk,
the so-called outer problem, we expand the radiation intensity as

Iν(x, n) = ϕ0(x, n, ν) +
∑
k≥0

εδ+kψk+1(x, n, ν) +
∑
l>0

εlϕl(x, n, ν) (B.20)
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for a suitable δ > 0 depending on the choice of the scaling parameters. To be more precise,

δ =

{
γ + 1 if β = −1 (i.e. ℓA = ℓM ),

β − ⌊β⌋ if γ = −1 (i.e. ℓS = ℓM ).
(B.21)

We remark that if −1 < β < 0 by our definition δ = β + 1 > 0. The choice of δ in (B.20)
is due to the following observations. If ℓA = ℓM the leading term of the radiative transfer
equation is the emission-absorption term, so that

αaν(x)(Iν(x, n)−Bν(T (x))) = εn · ∇xIν(x, n)− αsν(x)ε
γ+1(H − Id)[Iν(x, ·)](n),

where we used the notation of (B.14). Therefore, it is natural to look for a solution of this
equation in form of a series of powers of ε with exponents 1 and γ + 1. On the other hand, if
ℓS = ℓM the leading term is the scattering term yielding

αsν(x)(H − Id)[Iν(x, ·)](n) = εn · ∇xIν(x, n)− εβ+1αaν(x)(Iν(x, n)−Bν(T (x))).

As we have seen in Proposition B.1, the solvability of this equation requires to impose a
compatibility condition on the right hand side. More precisely, (Id − H) is invertible in
the space of functions with

´
S2 f(n)dn = 0. This compatibility condition is provided by the

transport term εn · ∇xIν(x, n). In particular, the relevant feature is that the problem

αsν(x)(H − Id)[Iν(x, ·)](n)− εn · ∇xIν(x, n) = f(x, n, ν) (B.22)

is not solvable if ε = 0, unless
´
S f(x, n, ν)dn = 0. On the contrary, in the case of ε > 0 and

small, it turns out that problem (B.22) can be solved for general f . However, the solution
becomes of the order ε−2∥f∥∞. This explains why we have to add terms much larger than
εβ+1 in the expansion (B.20) for β > 0. We remark that the expansion (B.20) is used also in
the time-dependent case. There, the value of δ when ℓS = ℓM is justified by the behavior of
the radiation intensity for smaller time scales and by the need to impose this orthogonality
condition.

Having expansion (B.20), we proceed plugging it into the boundary value problem (B.12)
and we compare all terms of the same order of magnitude. In this way we will obtain different
diffusive equations solved by ϕ0 in the interior of Ω that will yield the leading order of the
radiation intensity Iν .

However, to solve the resulting equation for ϕ0 we need some boundary condition whose
derivation requires to analyze boundary layer equations for (B.19). The resulting boundary
layer problems are related to the description of the radiation intensity in the regions close to
the boundary. The thickness of these layers is given by the Milne length and the thermalization
length. Therefore, we will rescale the space variable according to ℓM and to ℓT and we will
analyze the resulting one-dimensional problems.

The matching between the outer and the inner solutions will provide the boundary con-
dition for the equation satisfied in the bulk.

B.3.1 Case 1.1: ℓM = ℓT ≪ ℓS and L = 1. Equilibrium approximation

Since we set ℓM = ε ≪ 1, the case ℓM = ℓT ≪ ℓS arises when ℓA = ε (i.e. β = −1) and
ℓS = ε−γ for γ > −1. Notice that in this case ℓS could be small, namely ℓS ≪ L = 1, but also
large, e.g. if γ > 0.

In order to find the outer problem, we choose δ = γ +1 and we substitute (B.20) into the
first equation in (B.19) and we identify all terms with the same power of ε, i.e. ε−1, εγ (if
0 < |γ| < 1) and ε0. The terms of order ε−1 give

0 = αaν(x)(Bν(T (x))− ϕ0(x, n, ν)).
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Hence, the leading order satisfies ϕ0(x, n, ν) = Bν(T (x)), where Bν is the Planck distribution
which is independent of n ∈ S2. This corresponds to the diffusion equilibrium approximation,
since in the interior the radiation intensity is at the leading order the equilibrium Planck
distribution.

The terms of order εγ imply ψ1 = 0. Indeed, since ϕ0(x, n, ν) = Bν(T (x)) is independent
of n ∈ S2 we have

´
SK(n, n′)ϕ0(x, ν)dn′ − ϕ0(x, ν) = 0, so that

αaνψ1(x, n, ν) =

ˆ
S2
K(n, n′)ϕ0(x, ν)dn′ − ϕ0(x, ν) = 0.

Finally, we compare all terms of order ε0. In this case we have

n · ∇xBν(T (x)) = −αaν(x)ϕ1(x, n, ν),

where in the case γ = 0 we used again that (H − Id)Bν(T ) = 0.
Therefore, we obtain the following expansion for Iν

Iν(x, n) = Bν(T (x))− ε
1

αaν(x)
n · ∇xBν(T (x)) + · · · , (B.23)

where T (x) is a function which is at this stage still unknown.
We now plug (B.23) into the second equation of (B.19). The term of order ε0 cancels out

because Bν(T ) is isotropic, hence

div

(ˆ ∞

0
dν

ˆ
S2
dn nBν(T (x))

)
= 0.

We find that the leading term is the one of order ε1 and we obtain

div

(ˆ ∞

0
dν

1

αν(x)

(ˆ
S2
dn n⊗ n

)
∇xBν(T (x))

)
= 0.

Finally, using that
´
S2 n ⊗ n dn = 4π

3 Id we conclude that the limit problem solved at the
interior by T is

div

(ˆ ∞

0

∇xBν(T (x))

αν(x)
dν

)
= 0. (B.24)

In order to obtain the behavior of Iν close to the boundary ∂Ω, we now derive a boundary
value problem that can be written in a single variable. This boundary layer equation is known
in the literature as Milne problem. The matching of the solution of the Milne problem with
the outer solution will provide the boundary value for the equation (B.24) solved by the
temperature T .

We take p ∈ ∂Ω. Assuming that near the boundary the radiation intensity and the
temperature only depend on the distance to the boundary, we can further assume that they
depend only on the distance to the boundary in direction np. This is possible due to the
smallness of the thickness of the boundary layer and the continuity of α. We hence define for
x ∈ Ω in a neighborhood of p the new scalar rescaled variable

y = −x− p

ε
· np. (B.25)

We recall that −(x−p)·np is non-negative, since x−p points in the interior of the domain, and
it is exactly the length of the cathetus with endpoint p of the triangle having as hypotenuse
x− p (cf. Figure B.1).
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p

x

np

−np · (x − p)

Figure B.1: Representation of the change of variables.

Defining Rp(x) = Rotp(x−p) as a rigid motion mapping p to zero with Rotp(np) = −e1 we
see that we can also write y as the first component of y1 = Rp

(
x
ε

)
1
. Hence, as ε→ 0 we obtain

that both the absorption and scattering coefficients satisfy αjν(x) = αjν (εRotp(x) + p) →
αjν(p), j ∈ {a, s}.

We can now write the one-dimensional problem obtained by this new scaling and by the
limit ε→ 0. Since εγ+1 → 0 as ε→ 0, the scattering term is negligible and we obtain for any
p ∈ ∂Ω

−(n · np)∂yIν(y, n; p) = αaν(p)(Bν(T (y, p))− Iν(y, n; p)) y > 0 , n ∈ S2

div
(´∞

0 dν
´
S2 dn (n · np)Iν(y, n; p)

)
= 0 y > 0, n ∈ S2

Iν(0, n; p) = gν(n) n · np < 0.

(B.26)

The Milne equation (B.26) is the equation describing the boundary layer for the diffusion
approximation. In the pure absorption case the Milne problem was rigorously studied in [68].
The well-posedness of (B.26) is shown there for constant absorption coefficients and also for
coefficients depending only on the frequency ν, as well as for coefficients depending on both
frequency and temperature of the form αaν(p) = Q(ν)α(T (p)). Moreover, also the asymptotic
behavior of Iν at infinity has been computed in this paper. It is indeed shown in [68] that as
y → ∞ the solution of the Milne problem converges to the Planck distribution, i.e.

lim
y→∞

Iν(y, n; p) = I∞ν (p) = Bν(T∞(p)),

for some T∞(p) depending only on gν and p. Notice that I∞ν (p) is independent of n ∈ S2.
Moreover, since in this case the thermalization length and the Milne length are the same

this is the only boundary layer appearing. The radiation intensity Iν becomes simultaneously
isotropic and at equilibrium Bν(T ) in the same length scale. This gives a matching condition
for the temperature that has to be used as boundary condition for the new limit problem. In
particular, the temperature and the radiation intensity solving the Milne problem (B.26) are
related by equation (B.16). In particular,

T∞(p) = lim
y→∞

F−1

((ˆ ∞

0
dναaν(p)I

∞
ν (p)

)
, p

)
, (B.27)

where F is defined in (B.17) and g 7→ I∞ν (p) is a functional that determines the limit intensity
for each boundary point p ∈ ∂Ω.

Summarizing, the limit problem for the stationary radiative transfer equation (B.12) in
the case ℓM = ℓT ≪ ℓS is given by the following boundary value problem{

div
(´∞

0
∇xBν(T (x))

αν(x)
dν
)
= 0 x ∈ Ω

T (p) = T∞(p) p ∈ ∂Ω,

where T∞(p) is given by (B.27).
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B.3.2 Case 1.2: ℓM = ℓT = ℓS ≪ L. Equilibrium approximation

Due to the definitions ℓM = ε ≪ 1 and ℓT =
√
ℓAℓM we have ℓM = ℓS = ℓT = ℓA = ε in

(B.12), i.e. β = γ = −1 in (B.19).
We consider the expansion (B.20) for δ = 0, or equivalently without the expansion∑
k≥0 ε

δ+kψk+1. We plug (B.20) into (B.19) and we compare all terms of the same power

of ε, namely ε−1 and ε0. The term of order ε−1 yields

0 = αaν(x)(Bν(T (x))−ϕ0(x, n, ν))+αsν(x)
(ˆ

S2
K(n, n′)ϕ0(x, n′, ν)dn′ − ϕ0(x, n, ν)

)
. (B.28)

Notice that ϕ0(x, n, ν) = Bν(T (x)) is a solution to (B.28). This follows from Proposition B.1
and the isotropy of Bν(T ). We show now that the solution to (B.28) is unique.

To this end for every x ∈ R3 and ν > 0 we define 0 < θν,x = αs
ν(x)

αa
ν(x)+α

s
ν(x)

< 1. Moreover,
we define also the following operator which maps for every fixed x, ν non-negative continuous
functions to non-negative continuous functions and given by

Aν,x[φ](n) = θν,x

ˆ
S2
K(n, n′)φ(n′) dn′. (B.29)

Then equation (B.28) can be rewritten as

ϕ0(x, n, ν) = Aν,x[ϕ0](x, n, ν) +
αaν(x)

αaν(x) + αsν(x)
Bν(T (x)). (B.30)

Since the maps ϕ0 7→ Aν,x(ϕ0) is a linear contraction, the Banach fixed-point theorem implies
that (B.30) has a unique solution for every T (x) ∈ R+. Hence, ϕ0 = Bν(T ). Therefore, also
in this case we recover the equilibrium diffusion approximation.

We turn now to the terms of order ε0. In this case we have

n · ∇xBν(T (x)) = −αaν(x)ϕ1(x, n, ν)− αsν(x)

(ˆ
S2
K(n, n′)ϕ1(x, n′, ν) dn′ − ϕ1(x, n, ν)

)
.

Then, using the operator Aν,x defined as in (B.29), we can rewrite this equation as

− 1

αaν(x) + αsν(x)
n · ∇xBν(T (x)) = (Id−Aν,x)ϕ1(x, n, ν). (B.31)

The same argument as for the term of order ε−1 holds also in this case and Banach fixed-point
theorem ensures the existence of a unique solution to (B.31) given by

ϕ1(x, n, ν) = − 1

αaν(x) + αsν(x)
(Id−Aν,x)

−1 (n) · ∇xBν(T (x)),

where for any x, ν we used the notation

(Id−Aν,x)
−1 (n) =

(Id−Aν,x)
−1 (n1)

(Id−Aν,x)
−1 (n2)

(Id−Aν,x)
−1 (n3)

 ,

which is well-defined due to the action of the linear operator Aν,x only on the variable n ∈ S2.
Hence, we obtain the following expansion

Iν(x, n) = Bν(T (x))− ε
1

αaν(x) + αsν(x)
(Id−Aν,x)

−1 (n) · ∇xBν(T (x)) + ε2ϕ2 + · · · (B.32)
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Plugging (B.32) into the second equation of (B.12) and using that the Planck distribution
is isotropic, we obtain the following limit problem solved in the domain Ω that yields the
temperature T (x) to the leading order

0 =div

(ˆ ∞

0
dν

ˆ
S2
dn n

1

αaν(x) + αsν(x)
(Id−Aν,x)

−1 (n) · ∇xBν(T (x))

)
=div

(ˆ ∞

0
dν

1

αaν(x) + αsν(x)

(ˆ
S2
dn n⊗ (Id−Aν,x)

−1 (n)

)
∇xBν(T (x))

)
.

(B.33)

The behavior of Iν close to the boundary ∂Ω is given again by a boundary layer equation
which can be written in one variable. The derivation of the Milne problem for this case follows
exactly the same steps as Subsection B.3.1 under the scaling (B.25). In this case both emission
and scattering terms appear, since they are of the same order. Hence, for every p ∈ ∂Ω the
Milne problem is given by

−(n · np)∂yIν(y, n, p) = αaν(p)(Bν(T (y, p))− Iν(y, n, p))

+αsν(p)
(´

S2 K(n, n′)Iν(y, n′, p) dn′ − Iν(y, n, p)
)

y > 0 , n ∈ S2

div
(´∞

0 dν
´
S2 dn (n · np)Iν(y, n, p)

)
= 0 y > 0, n ∈ S2

Iν(0, n, p) = gν(n) n · np < 0.

(B.34)
The mathematical properties of the Milne problem for both absorption and scattering pro-
cesses have been considered in [127]. Although the results provided in [127] have been obtained
only for the case of constant scattering kernel and constant scattering coefficient, the argu-
ments there suggest that for more general choices of K and αsν the solution Iν of (B.34)
converges to the Planck equilibrium distribution as y → ∞.

Notice that in this case, the thermalization length and the Milne length are the same, hence
the boundary layers coincide. Matching inner and outer solutions we obtain the following
boundary condition for equation (B.33)

T∞(p) = lim
y→∞

F−1

((ˆ ∞

0
dν

 
S2
dn αaν(p)Iν(y, n, p)

)
, p

)
, (B.35)

with F as in (B.17). Indeed as we have seen in Subsection B.2.2, the temperature T and the
radiation energy Iν satisfying the Milne problem (B.34) are related by the identity (B.16).

Summarizing, the limit problem for the stationary radiative transfer equation (B.12) in
the case ℓM = ℓT = ℓS is given by the following boundary value problem{

div
(´∞

0
dν

αa
ν(x)+α

s
ν(x)

(´
S2 dn n⊗ (Id−Aν,x)

−1 (n)
)
∇xBν(T (x))

)
= 0 x ∈ Ω

T (p) = T∞(p) p ∈ ∂Ω,

where T∞ is defined as in (B.35) for the solution Iν(y, n, p) to the Milne problem (B.34).

B.3.3 Case 2: ℓM ≪ ℓT ≪ L. Equilibrium approximation

The assumption ℓT =
√
ℓMℓA ≫ ℓM implies ℓA > ℓM and hence ε = ℓM = ℓS . We thus

consider ℓA = ε−β for β > −1. Moreover, since ℓT = ε
1−β
2 ≪ L = 1 we restrict to the case

ℓA = ε−β for β ∈ (−1, 1).
Since ℓM = ℓS ≪ ℓA, the scattering process has a greater effect than the absorption-

emission process. We expect hence the Milne problem to depend exclusively on the scattering
process. In the bulk we expect also the scattering process to be present in the diffusive
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equation derived for the limit problem, but we will also show that at the interior the leading
order of the radiation intensity is still the Planck distribution. Thus, we are again in the case
of the equilibrium diffusion approximation. In this case the thermalization length is much
larger than the Milne length but it is also still much smaller than the characteristic length
of the domain. A second boundary layer, the so-called thermalization layer, will therefore
appear. The equation describing this new layer will depend on both absorption-emission and
scattering processes. Moreover, while the radiative energy becomes isotropic in the Milne
layer, in the thermalization layer Iν will approach the Planck distribution.

We use again the expansion (B.20) for the radiation intensity with δ = β − ⌊β⌋, i.e.
δ = β + 1 if β < 0 and δ = β if β ≥ 0, and we plug it into the first equation in (B.12). We
proceed as usual with the identification of the terms with the same power of ε.

Using the notation of (B.14) the terms of order ε−1 give

H[ϕ0(x, ·, ν)](n) = ϕ0(x, n, ν).

Proposition B.1 implies hence that ϕ0 is independent of n ∈ S2 and hence ϕ0 = ϕ0(x, ν).
Next we consider β < 0. The terms of power εβ give

αaν(x)(Bν(T (x))− ϕ0(x, n)) = αsν(H − id)ψ1(x, n, ν).

An integration over S2 implies Bν(T (x)) = ϕ0(x, ν). Hence, as for ϕ0 we conclude that
ψ1 = ψ1(x, ν) is independent of n ∈ S2. The terms of power ε0 give

n · ∇xϕ0(x, ν) = αsν(x) (H[ϕ2](x, n, ν)− ϕ2(x, n, ν)) . (B.36)

Now we consider β > 0. In this case δ = β. The terms of power εβ−1 give

H[ψ1(x, ·, ν)](n) = ψ1(x, n, ν),

which implies that ψ1(x, ν) is independent of n ∈ S2. The terms of power ε0 yield again
equation (B.36), while the terms of power εβ imply

n · ∇xψ1(x, ν) = αaν(x)(Bν(T (x))− ϕ0(x, n)) + αsν(x)(H − id)[ψ2(x, ·, ν)](n), (B.37)

for which an integration over S2 and the isotropy of both ϕ0 and ψ1 give Bν(T (x)) = ϕ0(x, ν).
Finally, it remains to study the case β = 0. In this case there is no expansion

∑
k≥0 ε

δψk+1.

Therefore, the terms of order ε0 give equation

n · ∇xϕ0(x, ν) = αaν(x) (Bν(T (x))− ϕ0(x, ν)) + αsν(x) (H[ϕ2](x, n, ν)− ϕ2(x, n, ν))

which integrated over S2 implies, due to the isotropy of ϕ0, as for (B.37).
Hence, for all β ∈ (−1, 1) the identification of all terms of power ε−1, εβ, εβ−1 (if β > 0)

and ε0 gives ϕ0 = Bν(T ), ψ1 = ψ1(x, ν) and

− 1

αsν(x)
n · ∇xBν(T (x)) = (Id−H)[ϕ1(x, ·, ν)](n). (B.38)

We now study the equation (B.38). As we know from Proposition B.1 the kernel of the
operator (Id−H) is given by the constant functions and its range are all functions with zero
mean integral, i.e. Ran(Id − H) = {φ ∈ L∞(S2) :

´
S2 φ = 0}. Hence, the following linear

operator is bijective

(Id−H) : L
∞(S2)

/
N (Id−H) → Ran(Id−H),



152 APPENDIX B. EQUILIBRIUM AND NON-EQUILIBRIUM

where L
∞(S2)

/
N (Id−H) denotes the quotient space. Let ei ∈ R3 be the unit vector, we

consider the equation
n · ei = (Id−H)φ(n). (B.39)

Since n · ei ∈ Ran(Id − H), for any c ∈ R the function φ(n) = (Id − H)−1(n · ei) + c is a
solution to (B.39). Therefore, using the notation

(Id−H)−1 (n) =

(Id−H)−1 (n · e1)
(Id−H)−1 (n · e2)
(Id−H)−1 (n · e3)


and using the linearity of (Id−H) we see that ϕ2 is given by

ϕ2(x, n, ν) = − 1

αsν(x)
(Id−H)−1(n) · ∇xBν(T (x)) + c(x, ν) (B.40)

where c(x, ν) is independent of n ∈ S2. The isotropic function c(x, ν) does not contribute
in the divergence free condition of (B.12), therefore we will not compute the exact value of
c(x, ν). Equation (B.40) implies that the first three terms in the expansion of Iν are given for
all β ∈ (−1, 1) by

Iν(x, n) = Bν(T (x)) + εβ−⌊β⌋ψ1(x, ν)−
ε

αsν(x)
(Id−H)−1(n) · ∇xBν(T (x)) + εc(x, ν) + · · ·

The divergence free condition in (B.12) implies in the same manner as in the derivation of
(B.33) the following equation, which yields the limit problem in the interior of the domain Ω

div

(ˆ ∞

0
dν

1

αsν(x)

(ˆ
S2
dn n⊗ (Id−H)−1 (n)

)
∇xBν(T (x))

)
= 0. (B.41)

The behavior of Iν close to the boundary ∂Ω is described by two nested boundary layer
equations. As anticipated at the beginning of Subsection B.3.3, since ℓM ≪ ℓT ≪ L we
observe the formation of two distinct boundary layers. The first one, the Milne layer, has a
thickness of size ℓM and it is described by the Milne problem, whose derivation is similar to
the derivation of the Milne problems (B.26) and (B.34). The next boundary layer, which we
will denote by thermalization layer, has a thickness of size ℓT and it is described by a new
boundary layer equation, which we will denote as thermalization equation and which we will
construct immediately after deriving the Milne problem.

Following the same procedure as in Subsection B.3.1 we can derive the Milne problem for
this scaling limit under the rescaling (B.25). In this case we obtain a closed equation for Iν
which depends only on the scattering process, since this is the largest term. Indeed, rescaling
the space variable we obtain

−(n · np)∂yIν(y, n, p) = αsν (p+O(ε))
(´

S2 K(n, n′)Iν(y, n′, p) dn′ − Iν(y, n, p)
)

+εβ+1αaν (p+O(ε)) (Bν(T (y; p))− Iν(y, n; p)) y > 0 , n ∈ S2´∞
0 dν

´
S2 dn (n · np)∂yIν(y, n, p) = 0 y > 0, n ∈ S2

Iν(0, n, p) = gν(n) n · np < 0.

(B.42)
Hence, for every p ∈ ∂Ω the Milne problem is given by{
−(n · np)∂yIν(y, n, p) = αsν(p)

(´
S2 K(n, n′)Iν(y, n′, p) dn′ − Iν(y, n, p)

)
y > 0 , n ∈ S2

Iν(0, n, p) = gν(n) n · np < 0.

(B.43)
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On the other hand, we also obtain an equation for the temperature. Indeed, plugging the first
equation of (B.42) into the second one, we obtain to the leading order

ˆ ∞

0
dν

ˆ
S2
dn αaν(p) (Bν(T (y; p))− Iν(y, n; p)) = 0. (B.44)

This equation has a steady distribution for the temperature T completely determined. At
a first glance, this appears strange since in the limit equation (B.43) the absorption coeffi-
cient αaν(p) does not appear and the only processes able to modify the temperature are the
absorption and emission of photons. However, the solution of this apparent paradox is that
since (B.43) describes a stationary solution, it is implicitly understood that the system was
running during an infinite amount of time before and the absorption/emission process had
time to bring the system to a steady state, even when this process is very small.

The Milne problem for the pure scattering case has been studied in several papers such
as [17,19,76,127] in the context of neutron transport. Although all these results are actually
obtained for functions αs independent of the frequency, since the one-speed approximation
for the neutron transport (cf. (B.13)) was considered, they are expected to hold pointwise
for every frequency ν. For example, in [17] it is shown that there exists a unique solution to
(B.43) for strictly positive bounded and rotational symmetric scattering kernels. Moreover,
as y → ∞ the solution approaches a function I(ν; p) independent of n ∈ S2. Hence, in the
Milne layer the radiation intensity becomes isotropic.

We now turn to the thermalization layer. In this layer we expect the radiation intensity to
approach the Planck equilibrium distribution. Moreover, the boundary value for the problem
(B.41) can be also found analyzing the thermalization layer. In order to construct the new
boundary layer equation, i.e. the thermalization equation, we rescale the space variable ac-
cording to the one-dimensional variable η = −x−p

ℓT
·np for p ∈ ∂Ω and we obtain the following

equation
−ε 1+β

2 (n · np)∂ηIν(η, n, p) = αaν

(
p+ ε

1−β
2 Rotp(η)

)
ε1+β(Bν(T (η, p))− Iν(η, n, p))

+αsν

(
p+ ε

1−β
2 Rotp(η)

) ((´
S2 dn

′K(n, n′)Iν(η, n′, p)
)
− Iν(η, n, p)

)
η > 0 , n ∈ S2

div
(´∞

0 dν
´
S2 dn (n · np)Iν(η, n, p)

)
= 0 η > 0, n ∈ S2

Iν(0, n, p) = I(ν; p) p ∈ ∂Ω,

(B.45)
where I(ν; p) = lim

y→∞
IM (y, n, ν; p) for IM the solution to the Milne problem (B.43). In order

to find the thermalization equation we proceed in a way similar to the derivation of the outer
problem. We hence expand the radiation intensity according to

Iν(η, n; p) = φ0(η, n, ν; p) + ε
1+β
2 φ1(η, n, ν; p) + ε1+βφ2(η, n, ν; p) + · · ·

and we identify in (B.45) all terms of the same power of ε, namely ε0, ε
1+β
2 and ε1+β. We

remark first that the functions φi for i ∈ N could depend on ε. Moreover, the choice of the
powers of ε in the expansion of Iν is motivated by the order of magnitude of the sources in
(B.45).

The terms of order ε0 give ˆ
S2
K(n, n′)φ0dn

′ = φ0

and hence by Proposition B.1 φ0(η, n, ν; p) = φ0(η, ν; p) is independent of the direction n ∈ S2.
The isotropy of φ0 was expected as it is matched with the solution of the Milne problem, which
becomes isotropic. Moreover, we see also that φ0 does not depend on ε.
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The terms of order ε
1+β
2 give

(n · np)∂ηφ0 = αsν (pε) (Id−H)(φ1),

where we defined pε = p+ ε
1−β
2 Rotp(η). Thus, arguing as in the derivation of (B.40), Propo-

sition B.1 implies

φ1(η, n, ν; p) =
1

αsν (pε)
(Id−H)−1(n) · np∂ηφ0 + c(η, ν),

for some function c(η, ν). Finally, identifying the terms of order ε1+β implies after an inte-
gration over S2

− 1

αsν (pε)

( 
S2
(n · np)(Id−H)−1(n) · np dn

)
∂2ηφ0(η, ν; p)

=αaν (pε) (Bν(T (η; p))− φ0(η, ν; p)) .

We now consider the limit as ε → 0 and we obtain by the continuity of the absorption and
scattering coefficient

− 1

αsν (p)

( 
S2
(n · np)(Id−H)−1(n) · np dn

)
∂2ηφ0(η, ν; p) = αaν (p) (Bν(T (η; p))− φ0(η, ν; p)) .

(B.46)
Moreover, the second equation in (B.45) yields

ˆ ∞

0
dν

1

αsν(p)

( 
S2
(n · np)(Id−H)−1(n) · np dn

)
∂2ηφ0(η, ν; p) = 0, (B.47)

where we again considered the limit ε → 0. Thus, the thermalization layer equation is given
for every p ∈ ∂Ω by

φ0(η, ν; p)− 1
αa
ν(p)α

s
ν(p)

(ffl
S2(n · np)(Id−H)−1(n) · np dn

)
∂2ηφ0(η, ν; p)

= Bν(T (η; p)) η > 0´∞
0 dν αaν(p)Bν(T (η; p)) =

´∞
0 dν αaν(p)φ0(η, ν; p) η > 0

φ0(0, ν; p) = I(ν; p) p ∈ ∂Ω,

(B.48)
where the second equation is implied by (B.47) taking the integral over the frequency of
(B.46). As far as we know, the thermalization problem has not been studied so far in the
literature and its well-posedness properties have not been described in detail. Nevertheless,
we claim that the problem is well-posed under suitable assumptions and that the solution φ0

to (B.48) converges to the Planck distribution, i.e.

lim
η→∞

φ0(η, ν; p) = φ(ν, p) = Bν(T∞(p)).

From the second equation in (B.48) we recover the relation (B.16) between the temperature
and the radiation intensity φ0. Hence, T (η; p) = F−1

((´∞
0 dν αaν(p)φ0(η, ν; p)

)
, η; p

)
for F

defined in (B.17). In particular,

T∞(p) = F−1

((ˆ ∞

0
dν αaν(p)φ(ν, p)

)
, p

)
. (B.49)
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We remark that since I(ν; p), the limit as y → ∞ of the solution IM (y, n, ν; p) of the Milne
problem (B.43), is a functional of the boundary condition gν , so are φ(ν, p) and T∞(p) func-
tionals of the boundary condition gν . Summarizing, in the case of ℓM ≪ ℓT ≪ L the solution
to (B.12) is expected to solve in the limit problem the following equilibrium diffusion approx-
imation given by the stationary boundary value problem{

div
(´∞

0 dν 1
αs
ν(x)

(´
S2 dn n⊗ (Id−H)−1 (n)

)
∇xBν(T (x))

)
= 0 x ∈ Ω

T (p) = T∞(p) p ∈ ∂Ω,

where T∞ is defined in (B.49)

B.3.4 Case 3: ℓM ≪ ℓT = L. Transition from equilibrium to non-equilibrium.

Since ℓM = ε and ℓT =
√
εℓA = L = 1, we have to consider ℓS = ε and ℓA = ε−1.

This case is intriguing, because as we will see it yields the transition between the equilib-
rium approximation and the non-equilibrium approximation, i.e. the case where in the limit
the radiation intensity is not given by the Planck distribution at the leading order in the bulk
of the domain Ω.

As usual we plug the expansion (B.20) for δ = 0, thus without terms ψk, into the first
equation of (B.19) and we identify all terms of the same power of ε, namely ε−1, ε0 and ε1.

The terms of order ε−1 give

ϕ0(x, n, ν) = H[ϕ0(x, ·, ν)](n),

and hence by Proposition B.1 the leading order is independent of n ∈ S2, i.e. ϕ0 = ϕ0(x, ν).
The terms of order ε0 give

n · ∇xϕ0(x, ν) = αsν(x) (H[ϕ1(x, ·, ν)](n)− ϕ1(x, n, ν)) .

Due to the isotropy of ϕ0, Proposition B.1 implies that ϕ1 is given by

ϕ1(x, n, ν) = − 1

αsν(x)
(Id−H)−1 (n) · ∇xϕ0(x, ν) + c(x, ν),

where c(x, ν) is some function independent of n ∈ S2. As in subsection B.3.3 the isotropic
function c(x, ν) will not contribute to the divergence free condition, hence it will not be
explicitly computed.

Finally, the terms of order ε1 yield, after an integration over S2

4παaν(x)ϕ0(x, ν)− div

(
1

αsν(x)

(ˆ
S2
n⊗ (Id−H)−1 (n) dn

)
∇xϕ0(x, ν)

)
= 4παaν(x)Bν(T (x)), (B.50)

where we used the invariance under rotations of the scattering kernel K and the identity
n · ∇xf = div(nf).

Moreover, plugging the expansion

Iν(x, n) = ϕ0(x, ν)−
ε

αsν(x)
(Id−H)−1 (n) · ∇xϕ0(x, ν) + εc(x, ν) + ε2 · · ·

into the divergence free equation in (B.19) we obtain at the leading order

div

(ˆ ∞

0
dν

1

αsν(x)

(ˆ
S2
n⊗ (Id−H)−1 (n) dn

)
∇xϕ0(x, ν)

)
= 0,
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which implies integrating (B.50) the following equation for the temperatureˆ ∞

0
dν αaν(x)ϕ0(x, ν) =

ˆ ∞

0
dν αaν(x)Bν(T (x)).

Hence, using the definition of F in (B.17) we obtain the limit problem for ϕ0 in the interior,
namely

ϕ0(x, ν)−
1

4παaν(x)
div

(
1

αsν(x)

(ˆ
S2
n⊗ (Id−H)−1 (n) dn

)
∇xϕ0(x, ν)

)
=Bν

(
F−1

((ˆ ∞

0
dν αaν(x)ϕ0(x, ν)

)
, x

))
.

Once more the boundary condition for the diffusion equation is given by the matching of the
outer solution with the solution to a suitable boundary layer equation. Since ℓT = L = 1, the
thermalization layer corresponds to the outer problem. Indeed, the radiation intensity is out
of equilibrium in the limit as ε → 0. Hence, there is only one boundary layer, namely the
Milne layer. The Milne problem describing the boundary layer for (B.19) as ℓM ≪ L = ℓT is
given once more by the (B.43). Indeed, the scattering term is the term of larger order with
ℓM = ℓS . Therefore, the computations in Subsection B.3.3 hold in this case too. Summarizing,
if ℓM ≪ ℓT = L the radiation intensity and the temperature satisfy the following equation
ϕ0(x, ν)− 1

4παa
ν(x)

div
(

1
αs
ν(x)

(´
S2 n⊗ (Id−H)−1 (n) dn

)
∇xϕ0(x, ν)

)
= Bν (T (x)) x ∈ Ω´∞

0 dν αaν(x) (Bν(T (x))− ϕ0(x, ν)) = 0 x ∈ Ω

ϕ0(p, ν) = I∞ν (p) p ∈ ∂Ω,

where I∞ν (p) = lim
y→∞

Iν(y, n; p) for Iν(y, n; p) the solution to (B.43) which converges to the

isotropic function I∞ν . It is important to remark here that in this case we are not obtaining
an equilibrium diffusion regime. Indeed, the leading order ϕ0 is not the Planck distribution
and therefore this case is an example of the non-equilibrium diffusion approximation.

B.3.5 Case 4: ℓM ≪ L ≪ ℓT . Non-Equilibrium approximation

Since ℓM = ε, the case where ℓT =
√
εℓA ≫ L = 1 corresponds to ℓS = ε and ℓA = ε−β for

β > 1. Under this assumption we obtain ℓT = ε
1−β
2 → ∞ as ε → 0. Therefore, in this last

subsection we study the case when the thermalization length ℓT is growing to infinity as ε→ 0.
In this case we do not expect the solution to (B.12) to approach at the interior the Planck
distribution. We will indeed see that in this case we obtain the so called non-equilibrium
diffusion approximation.

In order to derive the outer problem for (B.19), we plug expansion (B.20) with δ = β − 1
into the first equation of (B.19) and we identify all terms of the same power of ε, namely ε−1,
εβ−2, ε0, εβ−1 and ε1. The terms of order ε−1 and εβ−⌊β⌋ yield

´
S2 K(n, n′)f(n′)dn′ = f(n) for

f ∈ {ϕ0, ψ1}, respectively. Therefore, at the leading order the radiation intensity is isotropic,
i.e. ϕ0 = ϕ0(x, ν). Moreover, also ψ1 = ψ1(x, ν).

The terms of power ε0 give

− 1

αsν(x)
n · ∇xϕ0 = (Id−H)[ϕ1(x, ·, ν)](n).

Hence, Proposition B.1 implies the existence of some function c(x, ν) independent of n ∈ S2
such that

ϕ1(x, n, ν) = − 1

αsν(x)
(Id−H)−1(n) · ∇xϕ0 + c(x, ν). (B.51)
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Similar to the terms of order ε0, the terms of power εβ−⌊β⌋+1 give ψ2 = − 1
αs
ν(x)

(Id −
H)−1(n) · ∇xψ1 + c(x, ν). As in subsection B.3.3 the isotropic function c(x, ν) does not
contribute to the divergence free condition and it will not be explicitly computed.

Finally, the terms of order ε1 imply

n · ∇xϕ1 = αsν(x)(H − Id)[ϕ2(x, ·, ν)](n).

Hence, using (B.51) and integrating over S2 we obtain the desired interior limit problem for
ϕ0

div

(
1

αsν(x)

(ˆ
S2
n⊗ (Id−H)−1 (n) dn

)
∇xϕ0(x, ν)

)
= 0.

Plugging now the first equation of (B.12) into the second one we obtain also the following
equation solved by the leading order of the temperature

ˆ ∞

0
dν αaν(x) (Bν(T (x))− ϕ0(x, ν)) = 0.

We remark that ϕ0 does not need to be the Planck distribution. This is also implied by the
asymptotic expansion of the radiation intensity. Indeed, the comparison of the terms of order
εβ gives

n · ∇xψk(x, n, ν) = αaν(x)(Bν(T (x))− ϕ0(x, ν)) + αsν(x)(H − Id)[ψk+1(x, ·, ν)](n),

where k = ⌊β⌋+ 1 ≥ 2. Since ψk does not need to be isotropic for k ≥ 2, an integration over
the sphere implies the orthogonality condition

div

( 
S2
nψ⌊β⌋+1(x, n, ν) dn

)
= αaν(x) (Bν(T (x))− ϕ0(x, ν)) .

As in Subsection B.3.3 the Milne problem for the Milne layer is given by (B.43). As in sub-
section B.3.4 there is no thermalization layer since the radiation intensity does not approach
the equilibrium distribution. Hence, denoting by Iν(y, n, p) the solution to (B.43) and by
I∞ν (p) = lim

y→∞
Iν(y, n; p) we obtain for this case the following limit stationary boundary value

problem 
div
(

1
αs
ν(x)

(´
S2 n⊗ (Id−H)−1 (n) dn

)
∇xϕ0(x, ν)

)
= 0 x ∈ Ω´∞

0 dν αaν(x) (Bν(T (x))− ϕ0(x, ν)) = 0 x ∈ Ω

ϕ0(p, ν) = I∞ν (p) p ∈ ∂Ω.

B.4 Time dependent diffusion approximation. The case of in-
finite speed of light (c = ∞)

We turn now to the time dependent case. In physical applications the order of magnitude
of the speed of light c is so large compared with the speed of heat transfer that it is often
considered infinite (cf. [152]). This approximation is valid if the distance traveled by the
light in the time scale in which meaningful changes of the temperature take place is much
larger than the characteristic length of the body L. We consider in this section the diffusion
approximation for the time dependent radiative transfer equation (B.10) when c = ∞ and
in the next sections we will consider other choices of c. Under this assumption the initial-
boundary value problem (B.10) reduces to (B.11). This is the case when the radiation is
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instantaneously transported in the domain Ω. Notice that, since under this assumption in
equation (B.11) there is no term containing ∂tIν , we do not need to impose any initial value
for Iν .

We recall that the diffusion regime holds if ℓM = ε≪ 1. We will consider different choices
of ℓA and ℓS given as powers of ε. We will construct the resulting initial-boundary value
limit problems as follows. We will first derive the outer problems valid in the interior of Ω.
Afterwards we will construct the initial layer problems describing the transient behavior of
the radiation intensity for very small times. We will formulate also boundary layer equations
describing Iν near the boundary of Ω. It turns out that the latter are the Milne problems
and the thermalization problems derived in Section B.3. Finally, the matching between the
outer, the boundary layer and the initial layer solutions will provide the initial value and the
boundary conditions for the limit problem in the diffusion approximation under consideration.

B.4.1 Outer problems

In this subsection we derive the outer problems arising from equation (B.11) under the as-
sumption ℓM = ε≪ 1 and for different choices of ℓA = ε−β and ℓS = ε−γ . As in the stationary
case analyzed in Section B.3 there are five different cases to be considered which yield five
different diffusive problems.

In order to determine the outer problems yielding the form of the solutions in the bulk of
Ω we use the expansion

Iν(t, x, n) = ϕ0(t, x, n, ν) +
∑
k≥0

εδ+kψk+1(t, x, n, ν) +
∑
l>0

εlϕl(t, x, n, ν) (B.52)

for δ defined as in (B.21) depending on ℓA and ℓS , plugging (B.52) into (B.11) and identifying
all terms of the same power of ε. It turns out that the diffusive problems are in this case the
time dependent version of the stationary outer problems of Section B.3. Indeed, since c = ∞
the first equation in (B.11) is a stationary equation for the intensity Iν . Therefore, the same
computations of Section B.3 show that for any choice of ℓA and ℓS the first order term ϕ0 is
isotropic and the next non-isotropic term arising in the expansion of Iν is of order ε1.

Hence, in the case ℓT ≤ 1, i.e. τh = 1
ε , since the time derivative of the temperature in the

second equation of (B.11) is a term of order ε0 which is balanced by the divergence of the
flux of energy, we obtain the following outer problems

(i) for ℓM = ℓT ≪ ℓS

∂tT (t, x)−
4π

3
div

(ˆ ∞

0

∇xBν(T (t, x))

αν(x)
dν

)
= 0, (B.53)

(ii) for ℓM = ℓT = ℓS

∂tT (t, x) = div

(ˆ ∞

0
dν

1

αaν(x) + αsν(x)

(ˆ
S2
dn n⊗ (Id−Aν,x)

−1 (n)

)
∇xBν(T (t, x))

)
,

(B.54)

(iii) for ℓM ≪ ℓT ≪ L

∂tT (t, x) = div

(ˆ ∞

0
dν

1

αsν(x)

(ˆ
S2
dn n⊗ (Id−H)−1 (n)

)
∇xBν(T (t, x))

)
, (B.55)
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(iv) for ℓM ≪ L = ℓT− 1
αa
ν(x)

div
(

1
αs
ν(x)

(ffl
S2 n⊗ (Id−H)−1 (n) dn

)
∇xϕ0(t, x, ν)

)
= Bν (T (t, x))− ϕ0(t, x, ν)

∂tT (t, x)− div
(´∞

0 dν 1
αs
ν(x)

(ffl
S2 n⊗ (Id−H)−1 (n) dn

)
∇xϕ0(t, x, ν)

)
= 0.

(B.56)

In the case ℓM ≪ L≪ ℓT , namely when τh = 1
εβ

for β > 1 the outer problem is{
div
(

1
αs
ν(x)

(ffl
S2 n⊗ (Id−H)−1 (n) dn

)
∇xϕ0(t, x, ν)

)
= 0

∂tT (t, x)−
´∞
0 dν αaν(x) (Bν (T (t, x))− ϕ0(t, x, ν)) = 0.

(B.57)

Indeed, plugging the expansion (B.52) with δ = β − 1 into the first equation in (B.11) we
obtain, arguing as in Section B.3.5, that the leading order ϕ0 is isotropic and solves the
stationary equation

div

(
1

αsν(x)

( 
S2
n⊗ (Id−H)−1 (n) dn

)
∇xϕ0(t, x, ν)

)
= 0.

Moreover, plugging the second equation of (B.11) into the second one yields

∂tT (t, x)−
ˆ ∞

0
dν αaν(x) (Bν (T (t, x))− ϕ0(t, x, ν)) = 0.

These are the equations describing the radiation intensity and the temperature on the bulk
away from the boundary and for positive times.

We remark that as for the stationary problem the regimes of equilibrium diffusion approx-
imations are for ℓT ≪ L and correspond to the problems (B.53), (B.54) and (B.55) while the
regimes of non-equilibrium approximations are for ℓT ≳ L and are described by (B.56) and
(B.57).

B.4.2 Initial layer equations and boundary layer equations

As in the case of the stationary diffusion approximation, the radiation intensity Iν and the
temperature T can change abruptly near the boundaries, i.e. boundary layers might arise.
In addition, in the time dependent case also the behavior of (T, Iν) could change quickly for
small times. We will denote the latter as initial layers. In this subsection we construct the
initial layers for distances to the boundary of order 1 and boundary layers for positive times
of order 1. We denote by initial layer equations the problems derived for times t ≪ 1 and
solved at the interior of Ω. Similarly, the boundary layer equations are problems derived from
rescaling the space variable only and solved for any t > 0.

In the considered case, i.e. c = ∞, there are no initial layers for the temperature appearing
on the bulk, i.e. for distances to the boundary of order 1. To see this we have to consider two
different cases. We recall that the second equation in (B.11) is

∂tT (t, x) + τh div

(ˆ ∞

0
dν

ˆ
S2
dn nIν(t, x, n)

)
= 0. (B.58)

Hence, if ℓT ≤ 1 the heat parameter is τh = 1
ε . Therefore, in equation (B.58) the divergence

of the flux of radiative energy is multiplied by ε−1. As indicated before ϕ0 is isotropic. In
addition to that, since the first non-isotropic term is of order ε, it follows that in (B.58) the
term containing the divergence is of order 1 in the bulk. Therefore, ∂tT is of order 1 and as a
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consequence T ≃ T0 for small times t≪ 1 and no initial layer appears. On the other hand, in
the case ℓT ≫ 1 the heat parameter is τh = ℓA = 1

εβ
for β > 1. In this case the leading term

of the divergence of the total flux of energy is of order εβ and it is given by

εβ div

(ˆ ∞

0
dν

ˆ
S2
dn nϕ3

)
= εβ

ˆ ∞

0
dν

ˆ
S2
dn αaν (Bν(T )− ϕ0) ,

where ϕ3 is the term of order εβ in the expansion (B.52) obtained for δ = β− 1. This implies
again that ∂tT is of order 1 and hence, there are also in this case no initial layers.

We now examine the boundary layers appearing for times of order 1. In this case, similarly
as in the stationary case, Milne and thermalization layers arise. It turns out that the equations
describing the radiation intensity near the boundary are given either by the stationary Milne
problems (B.26), (B.34), (B.43), or by the thermalization problem (B.48) or by a combination
of both of them depending on the choice of ℓA and ℓS .

We begin describing first the Milne layers. We rescale the space variable according to
y = −x−p

ε · np, where ℓM = ε and p ∈ ∂Ω. We express also the absorption and scattering
lengths according to ℓA = ε−β, ℓS = ε−γ with min{β, γ} = −1. With this notation, (B.11)
becomes

−(n · np)∂yIν(t, y, n; p) = εβ+1αaν (p+O (ε)) (Bν(T )− Iν)

+εγ+1αsν (p+O (ε))
(´

S2 K(n, n′)Iν dn′ − Iν
)

y > 0

∂tT (t, y; p)− τh
ε

(´∞
0 dν

´
S2 dn (n · np)∂yIν

)
= 0 y > 0

T (0, y; p) = T0(y; p) y > 0

Iν(t, 0, n; p) = gν(t, n) n · np < 0.

(B.59)

Letting ε → 0 we obtain different Milne problems for different choices of β and γ. With
similar arguments as in Section B.3 we can see that the Milne problems are the same as the
one derived for the stationary case, except for the fact that the unknowns depend also on the
variable t. However, the variable t appears only as a parameter and the Milne problems are
stationary. These are given by (B.26) in the case γ > −1, by (B.34) if γ = β = −1 and finally
by (B.43) if β > −1. Notice that we are assuming that, if the incoming radiation gν depends
on time, it does it only for times t of order one.

We remark that when β > −1 the Milne problem (B.43) is a closed problem involving
only the radiation intensity Iν . If ℓT ≪ L, in order to determine the temperature close to the
boundary we have to solve the stationary equation

ˆ ∞

0
dν

ˆ
S2
dn αaν(p) (Bν(T (t, y; p))− Iν(t, y, n; p)) = 0.

This is the same equation that we obtained in the stationary case in (B.44). On the other
hand, if ℓT ≳ L the temperature is related to the radiation intensity by a time dependent
equation similar to the second one in (B.56) and (B.57), namely the equations describing the
temperature in the bulk, i.e.

∂tT (t, y; p) +

ˆ ∞

0
dν

ˆ
S2
dn αaν(p) (Bν(T (t, y; p))− Iν(t, y, n; p)) = 0. (B.60)

Besides the Milne layer, in the case ℓM ≪ ℓT ≪ L we observe also the formation of a
thermalization layer at distance ℓT to the boundary. The equation describing this layer is
obtained with a change of variable η = −x−p

ℓT
· np for p ∈ ∂Ω. Recall that in this case we
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consider ℓS = ε and ℓA = ε−β for β ∈ (−1, 1) and hence ℓT = ε
1−β
2 and τh = 1

ε . Thus, (B.11)
becomes under this rescaling

−ε 1+β
2 (n · np)∂ηIν(t, η, n; p) = αaν

(
p+O

(
ε

1−β
2

))
εβ+1(Bν(T )− Iν)

+αsν

(
p+O

(
ε

1−β
2

)) (´
S2 K(n, n′)Iν dn′ − Iν

)
η > 0

∂tT (t, η; p)− ε
β−3
2

(´∞
0 dν

´
S2 dn (n · np)∂ηIν

)
= 0 η > 0.

(B.61)

We see once more that the thermalization layer equation is equation (B.48), the equation
constructed for the stationary problem in Section (B.3.3).

Finally, matching the solution of the boundary layer equations with the outer problem we
can construct the boundary condition for the diffusive initial-boundary limit problem. We
will summarize these problems in the following subsection.

B.4.3 Limit problems in the bulk

We summarize now the time dependent PDE problems that we obtain for the equation (B.11)
as ℓM → 0 for all different choices of ℓ’s. They are given by the outer problems (B.53)-(B.57)
valid in the bulk for positive times. Since there are no initial layers appearing for times t≪ 1,
the initial condition is T (t, x) = T0(x) for any choice of ℓA and ℓS . Moreover, the boundary
condition is given by the matching of the solution of the boundary layer problems with the
outer solution.

(i) If ℓM = ℓT ≪ ℓS then the problem is given by
∂tT (t, x)− 4π

3 div
(´∞

0
∇xBν(T (t,x))

αν(x)
dν
)
= 0 x ∈ Ω, t > 0

T (0, x) = T0(x) x ∈ Ω

T (t, p) = lim
y→∞

F−1
((´∞

o dναaν(p)Iν(t, y, n; p)
)
, y, p

)
p ∈ ∂Ω, t > 0,

(B.62)

where Iν(y, n; p) is the solution to the Milne problem (B.26).

(ii) If ℓM = ℓT ≪ L, we obtain the following limit problem

∂tT (t, x)

= div
(´∞

0 dν 1
αa
ν(x)+α

s
ν(x)

(´
S2 dn n⊗ (Id−Aν,x)

−1 (n)
)
∇xBν(T (x))

)
x ∈ Ω, t > 0

T (0, x) = T0(x) x ∈ Ω

T (t, p) = lim
y→∞

F−1
((´∞

0 dν
ffl
S2 dn α

a
ν(p)Iν(t, y, n, p)

)
, y, p

)
p ∈ ∂Ω, t > 0,

(B.63)
where Iν(y, n, p) solves the Milne problem (B.34).

(iii) We turn now to the case ℓM ≪ ℓT ≪ L, which corresponds to the case ℓM = ε = ℓS and
ℓA = ε−β for β ∈ (−1, 1). We obtain the following limit problem
∂tT − div

(´∞
0 dν 1

αs
ν(x)

(´
S2 dn n⊗ (Id−H)−1 (n)

)
∇xBν(T (x))

)
= 0 x ∈ Ω

T (0, x) = T0(x) x ∈ Ω

T (t, p) = lim
η→∞

F−1
((´∞

0 dν
ffl
S2 dn α

a
ν(x)φ0(t, η, ν; p)

)
, y, p

)
p ∈ ∂Ω, t > 0,

(B.64)
where φ0(t, η, ν; p) solves the thermalization equations (B.48) with boundary value
φ0(t, 0, ν; p) = lim

y→∞
Iν(t, y, n, ν; p) for Iν the solution to the Milne problem (B.43) with

boundary value gν(t, n).
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(iv) We consider now the last two cases where ℓM ≪ L ≲ ℓT . The limit problem in the case
ℓT = L is

− 1
αa
ν(x)

div
(

1
αs
ν(x)

(ffl
S2 n⊗ (Id−H)−1 (n) dn

)
∇xϕ0(t, x, ν)

)
= Bν (T (t, x))− ϕ0(t, x, ν) x ∈ Ω, t > 0

∂tT (t, x)−
´∞
0 dν

´
S2 dn dn α

a
ν(x) (Bν (T (t, x))− ϕ0(t, x, ν)) = 0 x ∈ Ω, t > 0

T (0, x) = T0(x) x ∈ Ω

ϕ0(t, p, ν) = lim
y→∞

ffl
S2 Iν(t, y, n, p) p ∈ ∂Ω, t > 0,

(B.65)
where Iν(t, y, n, p) solves the Milne problem (B.43) for the boundary value gν(t, n).
Notice that in the problem (B.43) the time t appears just as a parameter.

(v) Finally, if L≪ ℓT with the same notation as above the limit problem in this case is
div
(

1
αs
ν(x)

(ffl
S2 n⊗ (Id−H)−1 (n) dn

)
∇xϕ0(t, x, ν)

)
= 0 x ∈ Ω, t > 0

∂tT (t, x) +
´∞
0 dν

´
S2 α

a
ν(x) (Bν(T )(t, x)− Iν(t, x, n)) = 0 x ∈ Ω, t > 0

T (0, x) = T0(x) x ∈ Ω

ϕ0(t, p, ν) = lim
y→∞

ffl
S2 Iν(t, y, n, p) p ∈ ∂Ω, t > 0.

(B.66)

Also for this case the boundary condition is obtained by the solution of the boundary
layer described by the Milne problem (B.43).

B.4.4 Initial-boundary layers

It is important to notice that in regions very close to the boundary and for a times t ≪ 1
new layers could appear. These are the regions where the radiation intensity Iν and the
temperature T change from the solution of the initial layer equation to the solution of the
boundary layer equation. For this reason we denote these layers as initial-boundary layers.
In this section we will derive the equations describing them for any choice of ℓA and ℓS . In
the following we will always denote by p a point belonging to the boundary, i.e. p ∈ ∂Ω.

(i) If ℓM = ℓT ≪ ℓS we observe the formation of only one initial-boundary layer. It
is described by an equation which can be constructed rescaling the space variable as
y = −x−p

ε · np and the time by t = ε2τ . Indeed, since in this case β = −1 (because
ℓA = ε) and τh = ε−1 we see that the leading term of divergence of the flux of energy is
of order ε−2 in the following equation

∂tT (t, y; p) + τhε
β

ˆ ∞

0
dν

ˆ
S2
dn αaν(p) (Bν(T (t, y; p))− Iν(t, y, n; p)) = 0. (B.67)

This equation is obtained plugging the first equation in (B.59) into the second one. We
recall that equation (B.59) is obtained after a rescaling of only the space variable. Hence,
the time rescaling t = ε2τ gives a non-trivial equation for the temperature. Thus, the
radiation intensity Iν and the temperature T solve the following initial-boundary layer
equation

−(n · np)∂yIν(τ, y, n; p) = αaν(p)(Bν(T (τ, y))− Iν(τ, y, n; p)) y > 0, τ > 0

∂tT (τ, y)−
(´∞

0 dν
´
S2 dn (n · np)∂yIν(τ, y, n; p)

)
= 0 y > 0, τ > 0

T (0, y; p) = T0(p) y > 0

Iν(τ, 0, n; p) = gν(0, n) n · np < 0, τ > 0.
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(ii) In the case ℓM = ℓT = ℓS under the scaling y = −x−p
ℓM

· np and t = ε2τ we obtain as
above the following initial-boundary layer equation

−(n · np)∂yIν(τ, y, n; p) = αaν(p)(Bν(T (τ, y))− Iν(τ, y, n; p))

+ αsν
(´

S2 K(n, n′)Iν(τ, y, n′; p) dn′ − Iν(τ, y, n; p)
)

y > 0, τ > 0

∂τT (τ, y) + div
(´∞

0 dν
´
S2 dn nIν

)
= 0 y > 0, τ > 0

T (0, y; p) = T0(p) y > 0

Iν(τ, 0, n; p) = gν(0, n) n · np < 0, τ > 0.

(iii) If ℓA ≪ ℓT ≪ L we obtain two different initial-boundary layers. This is consistent with
the fact that there are two boundary layers appearing, namely the Milne layer, in which
Iν becomes isotropic, and the thermalization layer, in which Iν approaches to the Planck
distribution. We now notice that rescaling the space variable by y = −x−p

ε · np and the
time variable according to t = ε1−βτ equation (B.67) gives the following initial-boundary
Milne layer equation

−(n · np)∂yIν(τ, y, n; p)
= αsν(p)

(´
S2 K(n, n′)Iν(τ, y, n′; p)dn′ − Iν(τ, y, n, ν; p)

)
y > 0, τ > 0

∂tT (τ, y) +
´∞
0 dν

´
S2 dn α

a
ν(p) (Bν(T )(τ, y; p)− Iν(τ, y, n; p)) = 0 y > 0, τ > 0

T (0, y; p) = T0(p) y > 0

Iν(τ, 0, n; p) = gν(0, n) n · np < 0, τ > 0.

(B.68)
Moreover, rescaling the space variable according to η = −x−p

ℓT
· np and the time by

t = ε1−βτ from equation (B.61) we obtain the following initial-boundary thermalization
layer equation

φ0(τ, η, ν; p)− 1
αa
ν(p)α

s
ν(p)

(ffl
S2(n · np)(Id−H)−1(n) · np dn

)
∂2ηφ0(τ, η, ν; p)

= Bν(T (τ, η; p)) η > 0, τ > 0

∂τT −
´∞
0 dν

´
S2 dn α

a
ν(p) (Bν(T )(τ, η; p)− Iν(τ, η, n; p)) = 0 η > 0, τ > 0

T (0, η; p) = T0(p) y > 0

φ0(τ, 0, ν; p) = I(0, ν; p) p ∈ ∂Ω, τ > 0.

This is the initial-boundary layer equation describing the transition from the initial value
to the boundary value in the limit problem (B.64).

(iv)+(v) Finally, in the last two considered case, namely when ℓT ≳ L we do not obtain a initial-
boundary layer. However, under the space variable rescale y = −x−p

ε · np for the Milne
problem (B.43) we obtained also an evolution equation for the temperature valid for all
t > 0 given as we saw in (B.60) by

−(n · np)∂yIν(t, y, n; p)
= αsν(p)

(´
S2 K(n, n′)Iν(t, y, n′; p)dn′ − Iν(t, y, n, ν; p)

)
y > 0, t > 0

∂tT (t, y) +
´∞
0 dν

´
S2 α

a
ν(p) (Bν(T )(t, y; p)− Iν(t, y, n; p)) = 0 y > 0, t > 0

T (0, y; p) = T0(p) y > 0

Iν(t, 0, n; p) = gν(t, n) n · np < 0, t > 0.
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B.5 Time dependent diffusion approximation. The case of
speed of light of order 1

In this section we construct the limit problem solved by the solution of the time dependent
equation (B.10) when ℓM → 0 and the speed of light is finite. Without loss of generality
we consider first the case c = 1. Physically this means that the characteristic time for the
propagation of light is similar to the time of the heat transfer process. This situation can
be expected to be relevant only in astrophysical applications. The strategy is the same as in
Section B.4. We will first formulate the limit problem valid at the interior of the domain Ω
for positive times. In Subsection B.5.2 we will consider the formation of initial and boundary
layers. In this case we will obtain non-trivial initial layer equations. On the other hand,
as in Section B.4 the boundary layer equations are stationary and are the same equations
we constructed in Section B.3. Finally, in Subsections B.5.3 and B.5.4 we will summarize
the initial boundary value problem that we have obtained and we will construct the initial-
boundary layer equations that we have to consider in order to describe the behavior of the
solution in a small neighborhood of the boundary for times t≪ 1.

B.5.1 Outer problems

We consider equation (B.10) in the case c = 1 and under the assumption ℓM = ε for the
different choices of ℓA = ε−β and ℓS = ε−γ . Expanding Iν according to (B.52) and identifying
in (B.10) all terms of the same order we conclude as we computed in Section B.3 and Section
B.4 that the first order ϕ0(t, x, n, ν) of the intensity Iν is isotropic and the first non-isotropic
term is of order ε1. Moreover, as long as ℓT ≪ L we have ϕ0(t, x, ν) = Bν(T (t, x)). The outer
problems in the case ℓT ≤ 1, i.e. τh = 1

ε are given

(i) for ℓM = ℓT ≪ ℓS by

∂tT (t, x) + 4πσ∂tT
4(t, x)− 4π

3
div

(ˆ ∞

0

∇xBν(T (t, x))

αν(x)
dν

)
= 0,

(ii) for ℓM = ℓT = ℓS by

∂tT (t, x) + 4πσ∂tT
4(t, x)

= div

(ˆ ∞

0
dν

1

αaν(x) + αsν(x)

(ˆ
S2
dn n⊗ (Id−Aν,x)

−1 (n)

)
∇xBν(T (t, x))

)
,

(iii) for ℓM ≪ ℓT ≪ L by

∂tT (t, x) + 4πσ∂tT
4(t, x)

= div

(ˆ ∞

0
dν

1

αsν(x)

(ˆ
S2
dn n⊗ (Id−H)−1 (n)

)
∇xBν(T (t, x))

)
,

(iv) for ℓM ≪ L = ℓT by
∂tϕ0(t, x, ν)− div

(
1

αs
ν(x)

(ffl
S2 n⊗ (Id−H)−1 (n) dn

)
∇xϕ0(t, x, ν)

)
= αaν(x) (Bν (T (t, x))− ϕ0(t, x, ν))

∂tT (t, x) + 4π
´∞
0 dν αaν(x) (Bν(T (t, x))− ϕ0(t, x, ν)) = 0.

(B.69)
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In the case ℓT ≫ 1, i.e. τh = ℓA = ε−β for β > 1, a similar computation to the one for the
derivation of the problem (B.57) yields{

div
(

1
αs
ν(x)

(ffl
S2 n⊗ (Id−H)−1 (n) dn

)
∇xϕ0(t, x, ν)

)
= 0

∂tT (t, x) + 4π
´∞
0 dν αaν(x) (Bν(T (t, x))− ϕ0(t, x, ν)) = 0.

(B.70)

Indeed, in the first equation of (B.10) the leading order of the term containing the time
derivative of Iν is of power ε0 as the emission-absorption term. On the other hand, the
leading order ϕ0 of the radiation intensity is isotropic and the first non-isotropic term is of
order ε1. Therefore, the identification in the first equation of (B.10) of the terms of order
ε1−β ≫ ε0 gives the stationary equation in (B.70) solved by ϕ0. Finally, plugging the first
equation of (B.10) into the second one yields the equation for the temperature as in (B.70).

B.5.2 Initial layer equations and boundary layer equations

In this subsection we will describe the initial layers and the boundary layers appearing for time
scales smaller than the heat parameter τh and for regions close to the boundary, respectively.
We start with the initial layers and we will see that similarly as for the boundary layers
considered in Sections B.3 and B.4 there are two nested initial layers appearing. Indeed, in a
first layer, i.e. for a very small time scale, the radiation intensity becomes isotropic, while in
a second initial layer it becomes eventually the Planck distribution for the temperature. We
will denote the first layer as initial Milne layer and the second one as initial thermalization
layer, due to their analogy with the boundary layers considered in Sections B.3 and B.4. We
will also see that while the initial Milne layer appears for every choice of ℓA and ℓS , the initial
thermalization layer coincides with the initial Milne layer (if ℓM = ℓT ), appears after the
initial Milne layer (if ℓM ≪ ℓT ≪ L) or it is not present at all (if ℓT ≳ L).

We recall that under the assumption ℓA = ε−β and ℓS = ε−γ for min{β, γ} = −1 equation
(B.10) writes

∂tIν(t, x, n) + τhn · ∇xIν(t, x, n) = αaν(x)ε
βτh (Bν(T (t, x))− Iν(t, x, n))

+ αsν(x)ε
γτh

(´
S2 K(n, n′)Iν(t, x, n′) dn′ − Iν(t, x, n)

)
x ∈ ∂Ω, n ∈ S2, t > 0

∂tT + ∂t
(´∞

0 dν
´
S2 dn Iν(t, n, x)

)
+ τh div

(´∞
0 dν

´
S2 dn nIν(t, n, x)

)
= 0 x ∈ ∂Ω, n ∈ S2, t > 0

Iν(0, x, n) = I0(x, n, ν) x ∈ ∂Ω, n ∈ S2

T (0, x) = T0(x) x ∈ ∂Ω

Iν(t, n, x) = gν(t, n) x ∈ ∂Ω, n · nx < 0, t > 0.

(B.71)
Notice that the leading term in the first equation is of order ε

τh
. Therefore, under a time

rescaling t = ε
τh
τ the first equation writes

∂τIν = εβ+1αaν(x) (Bν(T )− Iν) + εγ+1αsν(x)

(ˆ
S2
K(n, n′)Iν dn′ − Iν

)
+ εn · ∇xIν

while the second one is

∂τT + ∂τ

(ˆ ∞

0
dν

ˆ
S2
dn Iν

)
+ εdiv

(ˆ ∞

0
dν

ˆ
S2
dn nIν

)
= 0.

It is hence easy to see that for any choice of ℓM and ℓS there is an initial layer with thickness
of order ε

τh
. Notice that as long as ℓT ≲ 1 (i.e. τh = ε−1) this initial layer has thickness of
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order ε2, while in the case ℓT ≫ 1 (i.e. τh = ε−β for β > 1) the order is ε1+β. This layer plays
the role of the Milne boundary layer in the time dependent case, as in this layer the radiation
intensity becomes isotropic. For this reason we will denote it as the initial Milne layer.

(i) In the case ℓM = ℓT ≪ ℓS the initial Milne layer is described by the following initial
Milne equation for the leading order of the radiation intensity

∂τφ0(τ, x, n, ν) = αaν(x) (Bν(T (τ, x))− φ0(τ, x, n, ν)) τ > 0

∂τT (τ, x) +
´∞
0 dν

´
S2 dn α

a
ν(x) (Bν(T (τ, x))− φ0(τ, x, n, ν)) = 0 τ > 0

φ0(0, x, n, ν) = I0(x, n, ν)

T (0, x) = T0(x).

(B.72)

This equation plays the same role of the Milne problem and we expect T → T∞ and
φ0 → Bν(T∞) as τ → ∞. Indeed, given a bounded solution to the equation (B.72),
assuming T∞(x) = lim

τ→∞
T (τ, x) and using simple ODE’s arguments we have

φ0(τ, x, n, ν) = I0e
−αa

ν(x)τ +

ˆ τ

0
αaν(x)e

−αa
ν(x)(τ−s)Bν(T (s, x) ds −→

τ→∞
Bν(T∞(x)).

(B.73)

(ii) We turn now to the case ℓM = ℓT = ℓS ≪ L. The initial Milne equation is

∂τφ0(τ, x, n, ν) = αaν(x) (Bν(T (τ, x))− φ0(τ, x, n, ν))

+ αsν(x)
(´

S2 K(n, n′)φ0(τ, x, n
′, ν) dn′ − φ0(τ, x, n, ν)

)
τ > 0

∂τT (τ, x) +
´∞
0 dν

´
S2 dn α

a
ν(x) (Bν(T (τ, x))− φ0(τ, x, n, ν)) = 0 τ > 0

φ0(0, x, n, ν) = I0(x, n, ν)

T (0, x) = T0(x).

(B.74)
Again, assuming T∞(x) = lim

τ→∞
T (τ, x) for a bounded solution to (B.74) we can write an

explicit formula for φ0 and we also obtain

φ0(τ, x, n, ν) =I0e
−(αa

ν(x)+α
s
ν(x))τ +

ˆ τ

0
αaν(x)e

−(αa
ν(x)+α

s
ν(x))(τ−s)Bν(T (s, x)) ds

+

ˆ τ

0
αsν(x)e

−(αa
ν(x)+α

s
ν(x))(τ−s)H[φ0](τ, x, n, ν)

=e−(αa
ν(x)+α

s
ν(x))τ

∞∑
n=0

(αsν(x)τ)
n

n!
Hn[I0](x, n, ν)

+

ˆ τ

0
αaν(x)e

−αa
ν(x)(τ−s)Bν(T (s, x)) ds

−→
τ→∞

Bν(T∞(x)).

(iii) For the case ℓM ≪ ℓT ≪ L, similarly as for the boundary layers, we expect the solution
to the initial Milne layer equation to become isotropic but not necessarily to become the
Planck distribution. In this case the initial Milne equation is

∂τφ0(τ, x, n, ν) = αsν(x)
(´

S2 K(n, n′)φ0(τ, x, n
′, ν) dn′ − φ0(τ, x, n, ν)

)
τ > 0

∂τT (τ, x) = 0 τ > 0

φ0(0, x, n, ν) = I0(x, n, ν)

T (0, x) = T0(x).

(B.75)
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On one hand we have T (τ, x) = T0(x) for all τ > 0, on the other hand we have

φ0(τ, x, n, ν) = exp(−αsν(x)τ(Id−H))I0.

Using standard spectral theory for H ∈ L
(
L2(S2), L2(S2)

)
, a compact self-adjoint opera-

tor, we see that the greatest eigenvalue of H is 1 with eigenfunctions being the constants.
Hence, an application of the spectral gap theory and of the continuous functional calculus
(cf. [120]) yields the limit

lim
τ→∞

φ0(τ, x, n, ν) = φ(x, ν),

where φ is independent of n ∈ S2. Moreover, φ(x, ν) =
ffl
S2 I0(x, n, ν). Indeed, integrating

over S2 the first equation of (B.75) we obtain using that
´
S2 K(n, n′)dn = 1 the equation{

∂τ
ffl
S2 φ0(τ, x, n, ν)dn = 0 τ > 0ffl

S2 φ0(0, x, n, ν)dn =
ffl
S2 I0(x, n, ν)dn.

Hence, we conclude by the isotropy of φ 
S2
I0(x, n, ν)dn =

 
S2
φ0(τ, x, n, ν)dn −→

τ→∞
φ(x, ν).

The study of the Milne initial layer described by (B.75) has been rigorously studied in
the context of the one-speed neutron transport equation in [19] and in [147], i.e when
αsν is independent of ν. While in [19] the behavior of the neutron distribution for small
times is analyzed for general kernels using stochastic methods, in [147] equation (B.75)
is solved for a very specific scattering kernel, namely the constant kernel K = 1

4π .

Moreover, there is also an initial thermalization layer. Indeed, under the rescaling t =
ε1−βτ for β ∈ (−1, 1), γ = −1 and therefore τh = 1

ε equation (B.71) becomes
∂τIν(τ, x, n, ) + ε−βn · ∇xIν(τ, x, n) = αaν(x) (Bν(T (τ, x))− Iν(τ, x, n))

+αs
ν(x)
ε1+β

(´
S2 K(n, n′)Iν(τ, x, n′) dn′ − Iν(τ, x, n)

)
τ > 0

∂τT (τ, x) +
´∞
0 dν

´
S2 dn ∂τIν(τ, x, n)

+ε−β div
(´∞

0 dν
´
S2 dn Iν(τ, x, n)n

)
= 0 τ > 0

(B.76)
As we have seen several times, the leading order φ0 of Iν in (B.76) is isotropic. Moreover,
for β ≥ 0 also the term of order εβ is isotropic. Hence, the initial thermalization layer
equation for the leading order of the radiation intensity is given by

∂τφ0(τ, x, ν) = αaν(x) (Bν(T (τ, x))− φ0(τ, x, ν)) τ > 0

∂τT (τ, x) +
´∞
0 dν

´
S2 dn ∂τφ0(τ, x, ν) = 0 τ > 0

φ0(0, x, n, ν) = φ(x, ν) =
ffl
S2 I0(x, n, ν)dn

T (0, x) = T0(x).

(B.77)

As for equation (B.72) arguing as in (B.73) we expect φ0(τ, x, ν) → Bν(T∞(x)) as τ → ∞
denoting by T∞(x) = lim

η→∞
T (τ, x).

(iv)+(v) Finally, in both cases ℓM ≪ ℓT = L and ℓM ≪ L ≪ ℓT , i.e. in the non-equilibrium
diffusion case, we observe the formation of only the initial Milne layer in which the
radiation intensity becomes isotropic. In both cases the initial Milne layer equation is
once again (B.75).
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We study now the boundary layers. We notice that in (B.71) ∂tIν has relative order τ−1
h

compared to n · ∇xIν . Therefore, any rescaling of the space variable by ξ = −x−p
εα · np for

εα ∈ {ℓM = ε, ℓT } ≪ L and p ∈ ∂Ω yields the boundary layer equations constructed in Section
B.4.2. Indeed, under such procedure the system becomes

εα

τh
∂tIν(t, ξ, n; p)− (n · np)∂ξIν(t, ξ, n; p) = αaν(p+O(εα))εβ+α (Bν(T (t, ξ; p))− Iν(t, ξ, n; p))

+ αsν(p+O(εα))εγ+α
(´

S2 K(n, n′)Iν(t, ξ, n′; p) dn′ − Iν(t, ξ, n; p)
)

∂tT (t, ξ; p) + ∂t
(´∞

0 dν
´
S2 dn Iν(t, ξ, n; p)

)
− ε−ατh∂ξ

(´∞
0 dν

´
S2 dn (n · np)Iν(t, ξ, n; p)

)
= 0

Iν(0, ξ, n; p) = I0(ξ, n, ν; p)

T (0, ξ) = T0(ξ)

Iν(t, 0, n; p) = gν(t, n) if n · np < 0.

(B.78)
Under these rescalings we obtain namely the Milne problems (B.26) for ℓM = ℓT ≪ ℓS and
(B.34) for ℓM = ℓT = ℓS ≪ L. In the case ℓM ≪ ℓT ≪ L there are two boundary layers
appearing described by the Milne problem (B.43) and by the thermalization equation (B.48).
Finally, if ℓM ≪ L ≲ ℓT the Milne boundary layer is described by (B.43).

B.5.3 Limit problems in the bulk

We summarize now the PDEs which are expected to be solved by the solution of (B.10) in
the limit ℓM = ε→ 0 for any different choice of ℓT as the speed of light is finite, i.e. c = 1.

(i) In the case when ℓM = ℓT ≪ ℓS , the limit problem is given by
∂tT (t, x) + 4πσ∂tT

4(t, x)− 4π
3 div

(´∞
0

∇xBν(T (t,x))
αν(x)

dν
)
= 0 t > 0, x ∈ Ω

T (0, x) = T∞(x) x ∈ Ω

T (t, x) = lim
y→∞

(´∞
0 αaν(p)Iν(t, y, n; p)

)
p ∈ ∂Ω,

where Iν(t, y, n; p) is the solution to the Milne problem (B.26) for the boundary value
gν(t, n) and
T∞(x) = lim

τ→∞
T (τ, x) is defined as the limit of the solution to the initial layer (B.72).

(ii) If ℓM = ℓT = ℓS ≪ L, i.e. ℓS = ℓA = ε and τh = ε−1, the limit problem that describes
the temperature in the interior of Ω for positive times is

∂tT (t, x) + 4πσ∂tT
4(t, x)

= div
(´∞

0 dν 1
αa
ν(x)+α

s
ν(x)

(´
S2 dn n⊗ (Id−Aν,x)

−1 (n)
)
∇xBν(T (t, x))

)
t > 0, x ∈ Ω

T (0, x) = T∞(x) = lim
τ→∞

T (τ, x) x ∈ Ω

T (t, x) = lim
y→∞

(´∞
0 αaν(p)Iν(t, y, n; p)

)
p ∈ ∂Ω,

where Iν(t, y, n; p) is the solution to the Milne problem (B.34) for the boundary value
gν(t, n) and T (τ, x) the solution to the initial layer (B.74).

(iii) We move now to the case ℓM ≪ ℓT ≪ L, hence we consider ℓS = ε and ℓA = ε−β for
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β ∈ (−1, 1) and τh = ε−1. The limit problem is

∂tT (t, x) + 4πσ∂tT
4(t, x)

= div
(´∞

0 dν 1
αs
ν(x)

(´
S2 dn n⊗ (Id−H)−1 (n)

)
∇xBν(T (t, x))

)
t > 0, x ∈ Ω

T (0, x) = T∞(x) = lim
τ→∞

T (τ, x) x ∈ Ω

T (t, p) = lim
y→∞

(´∞
0 dν αaν(p)φ0(t, η, ν; p)

)
p ∈ ∂Ω,

where T (τ, x) solves the initial layer (B.77) and φ0 is the solution to the thermalization
problem (B.48).

(iv) If ℓM ≪ L = ℓT the limit problem is

∂tϕ0(t, x, ν)− div
(

1
αs
ν(x)

(ffl
S2 n⊗ (Id−H)−1 (n) dn

)
∇xϕ0(t, x, ν)

)
= (Bν (T (t, x))− ϕ0(t, x, ν)) x ∈ Ω, t > 0

∂tT (t, x) + 4π
´∞
0 dν αaν(x) (Bν(T (t, x))− ϕ0(t, x, ν)) = 0 x ∈ Ω, t > 0

ϕ(0, x, ν) = φ(x, ν) =
ffl
S2 I0(x, n, ν)dn

T (0, x) = T0(x) x ∈ Ω

ϕ0(t, p, ν) = lim
y→∞

ffl
S2 Iν(t, y, n, p) p ∈ ∂Ω, t > 0,

(B.79)
where Iν(t, y, n, p) solves the Milne problem (B.43) for the boundary value gν(t, n) and
φ(p, ν) = lim

τ→∞
φ0(τ, p, n, ν) for the solution to (B.75).

(v) Finally, if ℓM ≪ L≪ ℓT the limit problem is with the same notation as in (B.79)
div
(

1
αs
ν(x)

(ffl
S2 n⊗ (Id−H)−1 (n) dn

)
∇xϕ0(t, x, ν)

)
= 0 x ∈ Ω, t > 0

∂tT (t, x) + 4π
´∞
0 dν αaν(x) (Bν(T (t, x))− ϕ0(t, x, ν)) = 0 x ∈ Ω, t > 0

T (0, x) = T0(x) x ∈ Ω

ϕ0(t, p, ν) = lim
y→∞

ffl
S2 Iν(t, y, n, p) p ∈ ∂Ω, t > 0.

(B.80)

B.5.4 Initial-boundary layers

We conclude Section B.5 considering the initial-boundary layer equations, which can be found
studying (B.78). This equation shows that on the one hand under the space rescale ξ =
−x−p

εα · np for p ∈ ∂Ω and εα ∈ {ℓM , ℓT } the time derivative term ∂tIν becomes of the same
order of ∂ξIν rescaling the time by t = εα

τh
τ , on the other hand it becomes of the same order

of the absorption-emission term if we consider t = τ
εβτh

. It is not difficult to see that rescaling
the space variable according to the Milne length ℓM = ε we obtain a non-trivial equation of
the leading order of Iν in both time and space variables only rescaling the time by t = ε

τh
τ .

In the case ℓM ≪ ℓT ≪ L, i.e. when ℓS = ε and ℓA = ε−β with β ∈ (−1, 1) and τh = 1
ε , a

thermalization layer also appears. It is described for small times and for x ∈ Ω close to ∂Ω

by the equation obtained rescaling the space variable by ℓT = ε
1−β
2 and the time variable in

a suitable way so that the resulting equation is non-trivial in both variables. This is the case
when t = ε1−βτ .

(i) If ℓM = ℓT ≪ ℓS , i.e. if β = −1 and γ > −1 and τh = ε−1, rescaling the spatial
variable by y = −x−p

ε · np for p ∈ ∂Ω and under the time rescaling t = ε2τ we obtain
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the initial-boundary layer equation



∂τIν(τ, y, n; p)− (n · np)∂yIν(τ, y, n; p) =
αaν(p)(Bν(T (τ, y))− Iν(τ, y, n; p)) y > 0, τ > 0

∂tT (τ, y) +
´∞
0 dν

´
S2 dn ∂τIν(τ, y, n; p)

−∂y
(´∞

0 dν
´
S2 dn (n · np)Iν(τ, y, n; p)

)
= 0 y > 0, τ > 0

Iν(0, y, n; p) = I0(p, n, ν) y > 0

T (0, y; p) = T0(p) y > 0

Iν(τ, 0, n; p) = gν(0, n) n · np < 0, τ > 0.

(ii) In the case ℓM = ℓT = ℓs we rescale again the variables according to y = −x−p
ℓM

· np for

p ∈ ∂Ω and t = ε2τ and we obtain the following initial-boundary layer equation



∂τIν(τ, y, n; p)− (n · np)∂yIν(τ, y, n; p) = αaν(p)(Bν(T (τ, y))− Iν(τ, y, n; p))

+αsν
(´

S2 K(n, n′)Iν(τ, y, n′; p) dn′ − Iν(τ, y, n; p)
)

y > 0, τ > 0

∂τT (τ, y)
´∞
0 dν

´
S2 dn ∂τIν(τ, y, n; p)

−∂y
(´∞

0 dν
´
S2 dn (n · np)Iν(τ, y, n; p)

)
= 0 y > 0, τ > 0

Iν(0, y, n; p) = I0(p, n, ν) y > 0

T (0, y; p) = T0(p) y > 0

Iν(τ, 0, n; p) = gν(0, n) n · np < 0, τ > 0.

(iii) If ℓM ≪ ℓT ≪ L there are two initial-boundary layers appearing. In order to find
the initial-boundary layer equation describing the transition from T∞ to the limit value
lim
y→∞

(´∞
0 dν αaν(p)φ0(t, η, ν; p)

)
, we rescale first the space variable according to η =

x−p
ℓT

· np for p ∈ ∂Ω with ℓT = ε
1−β
2 and the time variable according to t = ε1−βτ and

following the same computations as we did in Section B.4 in equation (B.68) we obtain
the initial-boundary layer equation



∂τφ0(τ, η, ν; p)− 1
αs
ν(p)

(ffl
S2(n · np)(Id−H)−1(n) · np dn

)
∂2ηφ0(τ, η, ν; p)

= αaν(p) (Bν(T (τ, η; p))− φ0(τ, η, ν; p)) η > 0, τ > 0

∂τT (τ, y; p) +
´∞
0 dν

´
S2 dn α

a
ν(p) (Bν(T (τ, η; p))− φ0(τ, η, ν; p)) = 0 η > 0, τ > 0

φ0(0, η, ν; p) = φ(p, ν) =
ffl
S2 I0(p, n, ν)dn η > 0

T (0, η; p) = T0(p) η > 0

φ0(τ, 0, ν; p) = I(0, ν; p) n · np < 0, τ > 0,

where we used I(0, ν; p) = lim
y→∞

Iν(0, y, n; p) for the solution to the Milne problem (B.43)

and also‘ φ(p, ν) = lim
τ→∞

φ0(τ, p, n, ν) for the solution to (B.75).

Rescaling now both space and time variables according to y = x−p
ε · np for p ∈ ∂Ω and

t = ε2τ we obtain another initial-boundary layer equation which explains the transition
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from I(0, ν; p) to φ(p, ν). This is given by the following equation

∂τIν(τ, y, n; p)− (n · np)∂yIν(τ, y, n; p) =
+ αsν

(´
S2 K(n, n′)Iν(τ, y, n′; p) dn′ − Iν(τ, y, n; p)

)
y > 0, τ > 0

∂τT (τ, y) = 0 y > 0, τ > 0

Iν(0, y, n; p) = I0(p, n, ν) y > 0

T (0, y; p) = T0(p) y > 0

Iν(τ, 0, n; p) = gν(0, n) n · np < 0, τ > 0.

(B.81)

(iv)+(v) If ℓT ≳ L under the rescaling y = x−p
ε ·np for p ∈ ∂Ω and t = ε2τ we obtain the problem

(B.81) as initial-boundary layer equation.

(v) Moreover, in the case ℓT ≫ L we notice in equation (B.80) that the leading order ϕ0
of the radiation intensity solves a stationary equation. The transition from the solution
of a time dependent equation, as the one of the original problem, to the solution of
a stationary equation happens in times of order εβ−1. Indeed, under a time rescaling
t = εβ−1τ = τ

τhε
we obtain the following equation solved by the leading order ϕ0 in the

bulk

∂τϕ0(τ, x, ν)

−div
(

1
αs
ν(x)

(ffl
S2 n⊗ (Id−H)−1 (n) dn

)
∇xϕ0(τ, x, ν)

)
= 0 x ∈ Ω, τ > 0

∂τT (τ, x) = 0 x ∈ Ω, τ > 0

ϕ(0, x, ν) = φ(x, ν) =
ffl
S2 I0(x, n, ν)dn x ∈ Ω

T (0, x) = T0(x) x ∈ Ω

ϕ0(τ, p, ν) = lim
y→∞

ffl
S2 Iν(τ, y, n, p) p ∈ ∂Ω, τ > 0,

(B.82)
where φ(x, ν) is defined by the initial layer equation (B.75). This equation can be derived
in the same way as the outer problem (B.70) taking into account that under this time
scale the term containing ∂τIν is of order ε

1−β ≫ ε0. Moreover, also the second equation
in (B.10) gives ∂τT = 0 since the absorption emission terms are of order ε0 ≪ ε1−β.

B.6 Time dependent diffusion approximation. The case of
non-dimensional speed of light scaling as a power law of
the Milne length

In this last section we repeat all the procedures used in Sections B.3, B.4 and B.5 and we
construct the limit problem solved by the solution of the time dependent equation (B.10)
when ℓM = ε → 0 and in the case in which the speed of light is a power-law of the form
c = ε−κ for κ > 0. The strategy is the same as in Section B.5. It will turn out that the
limit problems valid at the interior of the domain Ω and for positive times are the same as
the one we found in the case of infinite speed of light. On the other hand, differently from
the case of infinite speed of light, in this case time layers appears also in regions far from the
boundary. Similarly as in Section B.4 and B.5, the boundary layer equations are stationary
and are the same equations constructed in Section B.3. Finally, we will summarize the initial
boundary value problems that we have obtained and we will construct the initial-boundary
layer equations that we have to consider in order to describe the behavior of the solution for
small times in regions close to the boundary.
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B.6.1 Outer problems

We consider equation (B.10) in the case c = ε−κ, κ > 0. In order to find the outer problems
solved in the limit we proceed as we did in the previous three sections. It turns out that the
outer problems are the same evolution equations obtained for the infinite speed of light case.
Indeed, under the assumption c = ε−κ and ℓA = ε−β, ℓS = ε−γ with min{α, γ} = −1 equation
(B.10) becomes

εκ∂tIν(t, x, n) + τhn · ∇xIν(t, x, n) = αaν(x)ε
βτh (Bν(T (t, x))− Iν(t, x, n))

+ αsν(x)ε
γτh

(´
S2 K(n, n′)Iν(t, x, n′) dn′ − Iν(t, x, n)

)
x ∈ Ω, n ∈ S2, t > 0

∂tT + εκ∂t
(´∞

0 dν
´
S2 dn Iν(t, n, x)

)
+ τh div

(´∞
0 dν

´
S2 dn nIν(t, n, x)

)
= 0 x ∈ Ω, n ∈ S2, t > 0

Iν(0, x, n) = I0(x, n, ν) x ∈ Ω, n ∈ S2

T (0, x) = T0(x) x ∈ Ω

Iν(t, n, x) = gν(t, n) x ∈ ∂Ω, n · nx < 0, t > 0.

(B.83)
Then, plugging the usual expansion (B.52) for Iν into equation (B.83) and identifying all
terms of the same power of ε give the same results as in Section B.4. This is due to the fact
that in the first equation of (B.83) the term involving the time derivative of the radiation
intensity is of order εκ and hence it is much smaller than ε0 ≪ ε−1 ≪ τhε

−1, i.e. the
orders of magnitude which lead to the resulting first two terms in the expansion Iν(t, x, n) =
ϕ0(t, x, ν)+ εϕ1(t, x, n, ν)+ · · · . As we noticed in the previous sections, ϕ0 is isotropic and as
long as ℓT ≪ L it is the Planck distribution Bν(T ). Since also in the second equation of (B.83)
the leading term containing ∂tT is of order 1, the term εκ∂t

´∞
0 dν

´
S2 dn Iν is negligible. The

outer problems are hence as in Section B.4 equation (B.53) for ℓM = ℓT ≪ ℓS , equation (B.54)
for ℓM = ℓT = ℓS , equation (B.55) for ℓM ≪ ℓT ≪ L, the system (B.56) for ℓM ≪ L = ℓT
and the system (B.57) for ℓM ≪ L≪ ℓT .

B.6.2 Initial layer equations and boundary layer equations

In contrast to Section B.4 (i.e. the case c = ∞), besides the formation of boundary layers also
time layers appear. The equations describing them can be obtained similarly as in Section
B.5. The first equation in (B.83) has leading order τhε

−1, hence a time rescaling t = ε1+κ

τh
τ

gives

∂τIν = εβ+1αaν(x) (Bν(T )− Iν) + εγ+1αsν(x)

(ˆ
S2
K(n, n′)Iν dn′ − Iν

)
− εn · ∇xIν

and

ε−κ∂τT + ∂τ

(ˆ ∞

0
dν

ˆ
S2
dn Iν

)
+ εdiv

(ˆ ∞

0
dν

ˆ
S2
dn nIν

)
= 0,

which implies ∂τT = 0 at the leading order. Hence, an initial layer of thickness of order ε1+κ

τh
is appearing for any choice of ℓA and ℓS . This is the so called initial Milne layer.

(i) If ℓM = ℓT ≪ ℓS the initial Milne layer is described by{
∂τφ0(τ, x, n, ν) = αaν(x) (Bν(T0(x))− φ0(τ, x, nν)) if τ > 0

φ0(0, x, n, ν) = I0(x, n, ν).
(B.84)

Therefore, as τ → ∞ we obtain using a simple ODE argument lim
τ→∞

φ0(τ, x, n, ν) =

Bν(T0(x)).
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(ii) In the case ℓM = ℓT = ℓS and hence τh = 1
ε with the scaling t = τε2+κ we obtain on one

hand ∂τT = 0 and on the other hand for the first order φ0 the identity

∂τφ0(τ, x, n, ν) = αaν(x) (Bν(T0(x))− φ0(τ, x, nν))

+ αsν(x)

(ˆ
S2
K(n, n′)φ0(τ, x, n

′, ν) dn′ − φ0(τ, x, n, ν)

)
.

Again, using semigroup theory we can write the solution as

φ0 = e−α
a
ν(x)τ

(
e−α

s
ντ(Id−H)I0

)
+
(
1− eα

a
ν(x)τ

)
Bν(T0).

Hence, we have once more lim
τ→∞

φ0(τ, x, n, ν) = Bν(T0(x)).

(iii) For all cases ℓM ≪ ℓT ≪ L, i.e. ℓS = ε and ℓA = ε−β for β ∈ (−1, 1) and τh = 1
ε , under

the scaling t = τε2+κ we have the initial Milne layer equation
∂τφ0(τ, x, n, ν) = αsν(x)

(´
S2 K(n, n′)φ0(τ, x, n

′, ν) dn′ − φ0(τ, x, n, ν)
)

τ > 0

∂τT (τ, x) = 0 τ > 0

φ0(0, x, n, ν) = I0(x, n, ν)

T (0, x) = T0(x).

(B.85)
This is exactly the same equation as (B.75). Thus, an application of spectral theory
implies again
lim
τ→∞

φ0(τ, x, n, ν) = φ(x, ν) =
ffl
S2 I0(x, n, ν)dn.

However, as for the finite speed of light case, there is also a thermalization layer appear-
ing. Indeed, with a time rescaling t = ε1−β+κτ the term involving ∂tIν becomes of the
same order of the emission-absorption term according to
∂τIν(τ, x, n) + ε−βn · ∇xIν(τ, x, n) = αaν(x) (Bν(T (x))− Iν(τ, x, n))

+ αs
ν(x)
ε1+β

(´
S2 K(n, n′)Iν(τ, x, n′) dn′ − Iν(τ, x, n)

)
1
εκ∂τT (τ, x) +

(´∞
0 dν

´
S2 dn ∂τIν(τ, x, n)

)
+ ε−β div

(´∞
0 dν

´
S2 dn nIν(τ, x, n)

)
= 0.

(B.86)
Hence, as we have seen in (B.76) the leading order φ0 of Iν in (B.86) is isotropic, as
well as the term of order εβ for β ≥ 0. Moreover, once more the temperature T is just
the initial temperature T0(x) to the leading order. This yields the initial thermalization
layer equation {

∂τφ0(τ, x, ν) = αaν(x) (Bν(T0(x))− φ0(τ, x, ν)) τ > 0

φ0(0, x, ν) = φ(x, ν).

Hence, similarly to (B.84) we have lim
τ→∞

φ0 = Bν(T0(x)) as τ → ∞.

(iv)+(v) For the cases ℓM ≪ L ≲ ℓT the initial Milne layer equation is obtained again rescaling

the time variable by t = ε1+κ

τh
τ and it is given by equation (B.85).
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For the boundary layer equations we argue similarly as in the case c = ∞ and c bounded.
Rescaling the space variable by ξ = −x−p

εα · np for εα ∈ {ℓM , ℓT } and p ∈ ∂Ω equation (B.83)
becomes

−(n · np)∂ξIν(t, ξ, n; p) = αaν (p+O(εα)) ε
α

ℓA
(Bν(T )− Iν)

+ εα

ℓS
αsν (p+O(εα))

(´
S2 K(n, n′)Iν dn′ − Iν

)
− εα+κ

τh
∂tIν(t, ξ, n) + ε2α · · · ξ > 0

∂tT (t, ξ; p) + εκ
(´∞

0 dν
´
S2 dn∂tIν

)
+ ε−ατh div

(´∞
0 dν

´
S2 dn nIν

)
= 0 ξ > 0

Iν(0, ξ, n; p) = I0(p, n, ν)

T (0, ξ; p) = T0(p)

Iν(t, 0, n; p) = gν(t, n) n · np < 0.

(B.87)
Therefore, the boundary layers are described by the same stationary equation we constructed
in Section B.3. Indeed we obtain for ℓM = ℓT ≪ ℓS the Milne problem (B.26) and for
ℓM = ℓT = ℓS ≪ L the Milne problem (B.34). The two boundary layers appearing in the case
ℓM ≪ ℓT ≪ L are described by the Milne problem (B.43) and by the thermalization equation
(B.48). Finally, if ℓM ≪ L ≲ ℓT the Milne problems are given by (B.43).

B.6.3 Limit problems in the bulk

We now summarize the PDE problems which are expected to be solved by the solution of
(B.10) when c = ε−κ, κ > 0 in the limit ℓM = ε → 0 for any choice of ℓA and ℓS . Matching
the solution to the outer problems valid in the bulk for positive times t > 0 with the solution to
the initial layer equations and boundary layer equations, we obtain as limit equation exactly
the same PDE problems in Section B.4. Indeed, on one hand the boundary layer problems are
exactly the Milne and thermalization problems constructed for the stationary problem and
valid also for the time dependent problem. On the other hand, in the initial layer equations
derived in the previous subsection B.6.2 the temperature is constant, hence it is T = T0, the
same result we that obtained in the case c = ∞ in Subsection B.4.2. Therefore, since the
outer problems coincides in both cases when c = ∞ and c = ε−κ with κ > 0 and ε → 0, we
conclude as in Section B.4 that the limit PDE problems are given by (B.62) if ℓM = ℓT ≪ ℓS ,
by (B.63) if ℓM = ℓT = ℓS , by (B.64) if ℓM ≪ ℓT ≪ L, by (B.65) if ℓM ≪ L = ℓT and finally
by (B.66) if ℓM ≪ L≪ ℓT .

B.6.4 Initial-boundary layers

As in Sections B.4 and B.5 we will derive the initial-boundary layer equations, which describe
the behavior of the solutions for very small times and in regions close to the boundary. The
initial-boundary layer equations are obtained rescaling in a suitable way the space and time
variables. Considering equation (B.87) resulting from the space rescale according to the Milne
length or the thermalization length we notice that the term involving the time derivative of
the radiation intensity has order εα+κ

τh
. Hence, the initial-boundary Milne layer equation is

obtained by the rescaling y = −x−p
ε · np and t = ε1+κ

τh
τ for p ∈ ∂Ω. In the case ℓM ≪ ℓT ≪ L

(i.e. when ℓA = εβ for β ∈ (−1, 1), ℓS = ε and τh = 1
ε ) the initial-boundary thermalization

equation is obtained rescaling η = −x−p
ℓT

· np and t = ε1−β+κ, where ℓT = ε−
1−β
2 and p ∈ ∂Ω.

(i) If ℓM = ℓT ≪ ℓS rescaling the spatial variable by y = −x−p
ε ·np for p ∈ ∂Ω and the time
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variable by t = ε2+κτ we see that the initial-boundary layer equation is given by
∂τIν(τ, y, n; p)− (n · np)∂yIν(τ, y, n; p) =

αaν(p)(Bν(T0(p))− Iν(τ, y, n; p)) y > 0, τ > 0

Iν(0, y, n; p) = I0(p, n, ν) y > 0, τ > 0

Iν(τ, 0, n; p) = gν(0, n) n · np < 0, τ > 0,

where we used that equation
1
εκ∂tT (τ, y) + ∂τ

(´∞
0 dν

´
S2 dn Iν(τ, y, n; p)

)
= ∂y

(´∞
0 dν

´
S2 dn (n · np)Iν(τ, y, n; p)

)
y > 0, τ > 0

T (0, y; p) = T0(p) y > 0,

(B.88)

implies T (τ, y; p) = T0(p).

(ii) If ℓM = ℓT = ℓS rescaling the variables according to y = −x−p
ε · np for p ∈ ∂Ω and

t = ε2+κτ we obtain the following initial-boundary layer equation
∂τIν(τ, y, n; p)− (n · np)∂yIν(τ, y, n; p) = αaν(p)(Bν(T0(p))− Iν(τ, y, n; p))

+αsν
(´

S2 K(n, n′)Iν(τ, y, n′; p) dn′ − Iν(τ, y, n; p)
)

y > 0, τ > 0

Iν(0, y, n; p) = I0(p, n, ν) y > 0

Iν(τ, 0, n; p) = gν(0, n) n · np < 0, τ > 0,

where we used (B.88) again.

(iii) If ℓM ≪ ℓT ≪ L there are again two different initial-boundary layers. We consider
first the thermalization problem. We hence rescale the space variable according to
η = x−p

ε
1−β
2

· np for p ∈ ∂Ω and the time variable according to t = εκ+1−βτ and following

the same computations as we did in Section B.4 in equation (B.68) and using a similar
argument as in (B.88) we obtain the initial-boundary layer equation as

∂τφ0(τ, η, ν; p)− 1
αs
ν(p)

(ffl
S2(n · np)(Id−H)−1(n) · np dn

)
∂2ηφ0(τ, η, ν; p)

= αaν(p) (Bν(T0(p))− φ0(τ, η, ν; p)) η > 0, τ > 0

φ0(0, η, ν; p) = φ(p, ν) η > 0

φ0(τ, 0, ν; p) = I(0, ν; p) p ∈ ∂Ω, τ > 0,

where I(0, ν; p) = lim
y→∞

Iν(0, y, n; p) for the solution to the Milne problem (B.43) for the

boundary value gν(t, n) and φ(p, ν) = lim
τ→∞

φ0(τ, p, n, ν) for the solution to (B.85).

As we have seen in Section B.5 there is another initial-boundary value equation which
describes the transition from the initial value φ(x, ν) to the boundary value I(0, ν; p).
This is obtained rescaling the space variable according to y = x−p

ε · np for p ∈ ∂Ω and
the time variable according to t = εκ+2τ . Using (B.88) we obtain hence

∂τIν(τ, y, n; p)− (n · np)∂yIν(τ, y, n; p)
= αsν

(´
S2 K(n, n′)Iν(τ, y, n′; p) dn′ − Iν(τ, y, n; p)

)
y > 0, τ > 0

Iν(0, y, n; p) = I0(p, n, ν) y > 0

Iν(τ, 0, n; p) = gν(0, n) n · np < 0, τ > 0.
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(iv) In the case ℓM ≪ ℓT = L rescaling η = x−p
ε ·np for p ∈ ∂Ω and t = ε2+κτ we obtain also

the initial boundary layer equation for this case
∂τIν(τ, y, n; p)− (n · np)∂yIν(τ, y, n; p) =

+ αsν
(´

S2 K(n, n′)Iν(τ, y, n′; p) dn′ − Iν(τ, y, n; p)
)

y > 0, τ > 0

Iν(0, y, n; p) = I0(p, n, ν) y > 0

Iν(τ, 0, n; p) = gν(0, n) n · np < 0, τ > 0.

(B.89)
Similar to the case where ℓT ≫ 1 and c = 1 in Section B.5, we notice that the radiation
intensity Iν has a transition from a solution of a time dependent equation, as it was in
the original problem (B.10), to a solution of a stationary equation, as it is in (B.65).
This transition takes place at times of order εκ. Indeed, under the time rescaling t = εκτ
we obtain the following equation for the leading order ϕ0 of Iν for all x ∈ Ω

∂τϕ0(τ, x, ν)− div
(

1
αs
ν(x)

(ffl
S2 n⊗ (Id−H)−1 (n) dn

)
∇xϕ0(τ, x, ν)

)
= (Bν (T (τ, x))− ϕ0(τ, x, ν)) x ∈ Ω, τ > 0

∂τT (τ, x) = 0 x ∈ Ω, τ > 0

ϕ(0, x, ν) = φ(x, ν) x ∈ Ω

T (0, x) = T0(x) x ∈ Ω

ϕ0(τ, p, ν) = lim
y→∞

ffl
S2 Iν(0, y, n, p) p ∈ ∂Ω, τ > 0,

(B.90)
where Iν(0, y, n, p) solves the Milne problem (B.43) for the boundary value gν(0, n) and
we used the notation φ(x, ν) = lim

τ→∞
φ0(τ, x, n, ν) for the solution to (B.85). In order to

derive equation (B.90) we notice that under the time rescale t = εκτ the term in the first
equation of (B.10) containing ∂τIν becomes of order ε0 as the absorption-emission term.
This implies the first equation in (B.90) as we did in Section B.5 for (B.69). On the
other hand, in the second equation of (B.90) the leading term is ∂τT of order ε−κ ≫ ε0.

(v) Finally, if ℓM ≪ L≪ ℓT the initial-boundary layer equation is again (B.89). Also for this
last case we notice the leading order ϕ0 of Iν , which solves a time-dependent equation
(B.10), solves in the limit a stationary equation (B.66). The transition from time-
dependent solution to stationary solution takes place at time of order εβ−1+κ. Under
the time rescale t = εβ−1+κτ we derive in the same way as for equation (B.82) the
equation solved by ϕ0 in the bulk describing this transition. It turns out that it is
exactly given by (B.82) for the initial condition ϕ(0, x, ν) = φ(x, ν) given by the solution
to (B.85).

B.7 Concluding remarks

In this paper we considered the problem of describing the temperature distribution in a body
where the heat is transported only by radiation. We considered the case where the mean free
path of the radiative process tends to zero, i.e. ℓM → 0. Therefore, we coupled the radiative
transfer equation (B.1) with the energy balance equation (B.2) and we studied the diffusion
approximation for the time dependent equations (B.10) and (B.11) and the stationary equation
(B.12).

For all different scaling limit regimes using the method of asymptotic expansions we de-
rived the full limit models describing the temperature of the body and the radiation intensity.
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The resulting models have been classified depending on the form of the radiation intensity
at the leading order on the bulk of the domain. The cases where the isotropic leading order
of the radiation intensity is given by the Planck distribution for the temperature yield the
diffusion equilibrium approximation, while the models in which the radiation intensity is not
approximated by the Planck distribution are denoted by diffusion non-equilibrium approxi-
mation. Notice that the diffusion approximation is valid only on the bulk of the domain Ω
where the leading order of the radiation intensity is isotropic. On the other hand, at the
boundary layers and at the initial layers the diffusion approximation fails. We also described
for each considered case the boundary and initial layers appearing. Moreover, a summary
of the available results about the diffusion approximation and the boundary layer problem
for similar settings is included. Many of the derived problems in this article have to be still
studied.

For the time dependent problem we studied three different cases. First we analyzed the
problem for the speed of light assumed to be c = ∞, i.e. when the transport of radiation
can be assumed to be instantaneous. We then considered the case where the speed of light
is of order 1, i.e. when the time used by the light for spanning distances of order 1 is of the
same order of the time needed by the temperature for having meaningful changes. Finally,
we studied the case where the speed of light scales as a power law of the Milne length, i.e.
c = ε−κ for κ > 0 and ℓM = ε.

B.8 Appendix: Proof of Proposition B.2.1

We prove now Proposition B.1. To this end we need the following auxiliary Lemma.

Lemma B.1. Let K ∈ C
(
S2 × S2

)
, invariant under rotations, non-negative and satisfying

ˆ
S2
K(n, n′)dn = 1.

Let n, ω ∈ S2. Then there exists finitely many n1, · · · , nN ∈ S2 such that

K(ni−1, ni) > 0 for all i ∈ {1, · · · , N + 1}, (B.91)

where we defined n0 = n and nN+1 = ω.

Proof. SinceK ≥ 0 but it is not equal zero, there exists a pair n′, n′′ ∈ S2 such thatK(n′, n′′) >
0. Hence, applying the rotation Rn,n′ yields the existence of n∗ such that K(n, n∗) > 0. By
continuity the set Bn = {ñ ∈ S2 : K(n, ñ) > 0} is open. Hence, there exists δ > 0 and n1 ∈ S2
such that Bδ(n1) ⊂ Bn. We remark that δ > 0 is independent of the choice of n ∈ S2. Indeed,
for any n′ ∈ S2 there exists some n′′ ∈ S2 such that Bδ(n

′′) ⊂ Bn′ . This is a consequence of
the invariance under rotations of K. Indeed, it is not difficult to see that Rn,n′(Bn) = Bn′

and so Rn,n′(Bδ(n1)) = Bδ(Rn,n′(n1)) ⊂ Bn′ .

Let us consider the set

An = {ñ ∈ S2 : there exist n1, ..., nN ∈ S2 such that (B.91) holds for n0 = n and nN+1 = ñ}.

By the previous consideration we know that An is not empty. We claim now that Bδ(n
′) ⊂ An

for any n′ ∈ An. Indeed, let δ > 0 as above. Since n′ ∈ An, then Bn′ is not empty and there
exists some n1 ∈ S2 such that Bδ(n1) ⊂ Bn′ . It is easy to see that n1 ∈ An. Let now
ñ ∈ Bδ(n

′), then Rn′,n1(ñ) ∈ Bδ(n1). Hence, K(n′,Rn′,n1(ñ)) = K(n1, ñ) > 0. Since also
K(n′, n1) > 0, we conclude that Bδ(n

′) ⊂ An for all n′ ∈ An. Hence, An is open and it
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is the whole sphere S2. Indeed, assume An ̸= S2. Then, since An is open, the boundary
∂An = An \ An is not empty. Let n∗ ∈ ∂An and let n0 ∈ An with d(n∗, n0) < δ

3 , where
d(n∗, n0) is the distance on S2 between the two points n∗, n0 ∈ S2. Since n∗ ∈ ∂An, it is true
that

B δ
3
(n∗) ∩An ̸= ∅ and B δ

3
(n∗) ∩Acn ̸= ∅.

On the other hand, we know that Bδ(n0) ⊂ An and therefore

B δ
3
(n∗) ⊂ B δ

2
(n∗) ⊂ Bδ(n0) ⊂ An.

This contradiction concludes the proof of Lemma B.1.

Proof of Proposition B.1. We first show that φ is continuous. Let ε > 0. By the continuity
of the kernel K there exists some δ > 0 such that∣∣K(n1, n

′
1)−K(n2, n

′
2)
∣∣ < ε

4π∥φ∥∞
for all n1, n2, n

′
1, n

′
2 ∈ S2 with d(n1, n2)+d(n′1, n′2) < δ. Let hence n1, n2 ∈ S2 with d(n1, n2) <

δ then it is easy to see that φ is continuous since

|φ(n1)− φ(n2)| = |H[φ](n1)−H[φ](n2)|

≤
ˆ
S2

∣∣K(n1, n
′)−K(n2, n

′)
∣∣ |φ(n′)| dn′ < ε.

We move now to the proof of claim (ii). Let M = maxn∈S2(φ(n)). By continuity there
exists some n∗ ∈ S2 such that M = φ(n∗). We define the set AM =

{
n ∈ S2 : φ(n) =M

}
.

Thus, AM is not empty and by continuity it is also closed. We claim that AM is also open,
which implies claim (ii). Let n ∈ AM . Consider Bn = {ñ ∈ S2 : K(n, ñ) > 0}. Let ε > 0 and
Bε
n = {ñ ∈ Bn : φ(ñ) < M − ε}. We show φ(ñ) = M for all ñ ∈ Bn. It is easy to see that

this is true if Bε
n = ∅ for all ε > 0. If not, let ε > 0 so that Bε

n ̸= ∅. Then

M = φ(n) =

ˆ
Bε

n

K(n, n′)φ(n′)dn′ +
ˆ
(Bε

n)
c
K(n, n′)φ(n′)dn′ < M − ε

ˆ
Bε

n

K(n, n′)dn′ < M.

Arguing as in the proof of Lemma B.1 there exists a δ > 0 such that Bδ(n0) ⊂ Bn for
some n0 ∈ Bn. Hence, using the same argument, since n0 ∈ AM it is also true that φ(ñ) =M
for all ñ ∈ Bn0 . Using the rotation invariance of the kernel analogously as we have done in
Lemma B.1 we see that

Rn,n0 (Bδ(n0)) = Bδ(n) ⊂ Rn,n0(Bn) = Bn0 ⊂ AM .

We have just proved that closed non-empty set AM is open and hence it must be the whole
sphere S2.

Finally, we prove claim (iii). To this end we notice that the linear operator H maps Lp-
functions to continuous bounded functions. Analogously as in the proof of (i), this is a direct
consequence of the Hölder inequality and the fact that the scattering kernel K is continuous.
Hence, (Id − H)1 : L1(S2) → L1(S2) given by (Id − H)1φ = φ − H[φ] is a well-defined
operator which maps integrable functions to integrable functions. Since H[φ] ∈ C(S2) for any
φ ∈ L1(S2), if (Id −H)1φ = 0 then also (ii) applies and hence φ = const. This means that
the null space of (Id−H)1 as an operator acting on L1(S2) is given by

N ((Id−H)1) = span⟨1⟩ = {f = c : c ∈ R}.
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It is not difficult to see that the dual operator (Id−H)∗1 : L
∞(S2) → L∞(S2) is exactly given

by (Id−H). Indeed, let f ∈ L1(S2) and g ∈ L∞(S2). We compute using the invariance under
rotations of the kernel K

ˆ
S2
dn g(Id−H)1[f ] =

ˆ
S2
dn g(n)f(n)−

ˆ
S2
dn

ˆ
S2
dn′ K(n, n′)g(n)f(n′)

=

ˆ
S2
dn g(n)f(n)−

ˆ
S2
dn′

ˆ
S2
dn K(n′, n)g(n)f(n′) =

ˆ
S2
dn (Id−H)[g]f.

Therefore, by the orthogonality of the null-space to the range of the dual operator we conclude

Ran(Id−H) =

{
φ ∈ L∞(S2) :

ˆ
S2
φ(n)f(n) dn = 0 ∀f ∈ N ((Id−H)1)

}
=

{
φ ∈ L∞(S2) :

ˆ
S2
φ(n) dn = 0

}
.
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Appendix C

On the diffusion approximation of
the stationary radiative transfer
equation with absorption and
emission

Abstract: In this paper we study the distribution of temperature of a body due to the
transfer of radiation. Specifically the boundary value problem for the stationary radiative
transfer equation is considered. In all the analysis we assume the so-called local thermal
equilibrium (LTE), i.e. there is a well defined temperature of the body at each point. We
consider the limit in which the mean free path of the photons is much smaller than the
characteristic length of the domain. In this case we can approximate the solution by means
of the so-called diffusion approximation. The analysis of this paper is restricted to the case
in which the absorption coefficient is independent of the frequency ν (the so-called Grey
approximation). We ignore also scattering effects. Under these assumptions we show that the
density of radiative energy u, which is proportional to the fourth power of the temperature,
solves in the limit an elliptic equation. The boundary values for that limit equation can
be determined uniquely analyzing a suitable boundary layer problem. The method developed
here allows to prove all the results using maximum principle arguments for a class of non-local
elliptic equations.

C.1 Introduction

The radiative transfer equation is the kinetic equation which describes the distribution of
energy and direction of motions of a set of photons, which can be absorbed and scattered by
a medium. This equation can be used to describe the transfer of heat in a material due to
radiative processes. The radiative transfer equation can be written in its more general form
as

1

c
∂tIν(x, n, t)+n·∇xIν(x, n, t) = αeν−αaνIν(x, n, t)−αsνIν(x, n, t)+αsν

ˆ
S2
K(n, n′)Iν(x, n′, t)dn′.

(C.1)
We denote by Iν(x, n, t) the intensity of radiation (i.e. radiating energy) of frequency ν at
position x ∈ Ω and in direction n ∈ S2 and at time t ≥ 0. The coefficients αaν , α

e
ν and αsν

are respectively the absorption, the emission and the scattering coefficient. In the scattering
term the kernel is normalized such that

´
S2 K(n, n′)dn′ = 1. The speed of light is indicated
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by c. We remark that the radiation intensity and the emission, absorption and scattering
coefficients are functions of the frequency ν ∈ R+.
In this paper we focus on the stationary problem and on processes, where the scattering is
negligible. Therefore the equation we will study reduces to

n · ∇xIν (x, n) = αeν − αaνIν (x, n) . (C.2)

In this article we consider the situation of local thermal equilibrium (LTE), which means
that at every point x ∈ Ω there is a well-defined temperature T (x) ≥ 0. This yields, accord-
ing to the Kirchhoff’s law (cf. [152]), the following relation for the absorption and emission
coefficient

αeν(x) = αaν(x)Bν(T (x)),

where Bν(T (x)) = 2hν3

c2
1

e
hν
kT −1

is the Planck emission of a black body at temperature T (x)

and k the Boltzmann constant. Moreover, it is well-known that
ˆ ∞

0
Bν (T (x)) dν = σT 4(x), (C.3)

where σ = 2π4k4

15h3c2
is the Stefan-Boltzmann constant. We will denote for simplicity from now

on as the absorption coefficient αaν as αν .

The solution Iν(x, n) of (C.2) can be used to compute the flux of energy at each point
x ∈ Ω of the material, which is given by

F(x) :=

ˆ ∞

0
dν

ˆ
S2
dn n Iν (x, n) . (C.4)

In the stationary case, if the temperature is independent of time at every point, the total
incoming and outgoing flux of energy should balance. In mathematical terms this can be
formulated by the condition for the flux of energy to be divergence free, i.e.

∇x · F(x) = 0.

This situation is denoted in the physical literature by pointwise radiative equilibrium.

We study the situation when the radiation is coming from a very far source of infinite
distance. This can be formalized in mathematical terms by means of the boundary condition

Iν (x, n) = gν (n) ≥ 0 (C.5)

if x ∈ ∂Ω and n · Nx < 0 for Nx the outer normal vector of the boundary at point x ∈ ∂Ω.
Throughout this paper we will consider Ω ⊂ R3 to be a bounded convex domain with C3-
boundary.

We are concerned in this paper with the study of the diffusion approximation that arises
in optically thick media, i.e. the case in which the mean free path of the photons is very
small compared to the characteristic length of the system. Hence, we rescale and for ε ≪ 1
we consider the following boundary value problem

n · ∇xIν (x, n) =
αν(x)
ε (Bν (T (x))− Iν (x, n)) x ∈ Ω, n ∈ S2, ν ∈ R+

∇x · F = 0 x ∈ Ω,

Iν (x, n) = gν (n) x ∈ ∂Ω and n ·Nx < 0, ν ∈ R+.

(C.6)
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Notice that this problem has two unknowns, namely the intensity of radiation Iν(x, n) and the
temperature T (x). This feature is due to the presence of absorption-emission processes which
also change the temperature of the body. This is not the case when scattering is considered in
the radiative transfer equation but absorption-emission processes are ignored. Indeed, in that
situation the intensity of radiation and the temperature change independently. Moreover, we
remark that the divergence-free condition of the flux of energy F (cf. (C.4)) yields a non-
trivial coupling between different frequencies ν ∈ R+. Therefore the problem (C.6) cannot be
solved independently on the frequency. For the solution to equation (C.6) we will prove that
the intensity of radiation Iν(x, n) is approximately the Planck distribution Bν(T (x)) with the
local temperature at each point x ∈ Ω, i.e. we will show

(Iεν(x, n), Tε(x)) → (Bν(T (x)), T (x)) as ε→ 0 (C.7)

uniformly in every compact set K ⊂ Ω as functions with values in L∞ (S2, L1(R+)
)
× R+.

Notice however, that this approximation cannot be expected for points x that are close to the
boundary ∂Ω. The situations in which (C.7) holds are denoted in the physical literature as
cases in which the diffusion equilibrium approximation holds (see e.g. [108] and [152]). More
precisely, we will consider the limit problem when ε→ 0 and we will rigorously prove that it
is given by a Dirichlet problem for the heat equation of the temperature with boundary value
uniquely determined by the incoming source gν(n) and the outer normal Nx for x ∈ ∂Ω. The
main result we will prove in this paper is for the so called Grey approximation, i.e. the case
when the absorption coefficient is independent of the frequency ν. The main reason for that
is that some of the estimates are already in this case very technical. Hopefully, the type of
methods we are developing in this paper can be extended to the non-Grey case.

Theorem C.1. Let αν(x) = α(x) independent of ν, α ∈ C3 (Ω), gν ≥ 0 with
´∞
0 gν(n) dν ∈

L∞ (S) in (C.6), Ω bounded convex with C3-boundary and strictly positive curvature. Let
(Iεν , Tε) be the solution to the initial value problem (C.6). Then there exists a functional
TΩ : L∞ (S2, L1 (R+)

)
→ C (∂Ω) which maps gν to a continuous function TΩ[gν ](p) on the

boundary p ∈ ∂Ω such that

Tε(x) → T (x)

uniformly in every compact subset of Ω, where T is the solution to the Dirichlet problem{
−div

(
σ4T 3

α ∇T
)
= 0 x ∈ Ω,

T (p) = TΩ[gν ](p) p ∈ ∂Ω.

Moreover,

Iεν(x, n) → Bν (T (x))

uniformly in every compact subset of Ω as a function with values in L∞ (S2, L1(R+)
)
.

C.1.1 Motivation and previous results

The computation of the distribution of temperature of matter interacting with radiation is an
important issue in many physical application and in addition it rises interesting mathematical
questions. The kinetic equation describing the interaction of matter with radiation is the
radiative transfer equation. A detailed explanation of its derivation and its main properties
can be found in [29,108,114,125,152]. In particular, in [108,152] there is an extensive discussion
about the diffusion equilibrium approximation and the situations where this can be expected
or not.
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Since the earlier result by Compton [31] in 1922 the interaction of a gas with radiation has
been extensively studied. Milne for example studied a simplified model, where the radiation
is monochromatic and the gas density depends only on one space variable (cf. [109]).

A question which has been much studied in mathematical literature is the situation in
which αeν = αaν = 0 in (C.1), i.e. the interaction between matter and radiation is due to
scattering only. In this case the problem reduces to

1

c
∂tIν(x, n, t) + n · ∇xIν(x, n, t) = −αsν(x)Iν(x, n, t) + αsν(x)

ˆ
S2
K(n, n′)Iν(x, n′, t)dn′. (C.8)

The same equation arises also in the study of neutron transport, a problem which has been
extensively studied in mathematics.

It turns out that in the Grey approximation, i.e. when αν(x) = α(x), the problem (C.6)
can be reduced exactly to the study of a particular case of neutron transport equation, namely
the case when the kernel K is constant 1. Indeed, denoting by J(x, n) =

´∞
0 Iν(x, n) dν and

combining the first two equations of (C.6) we obtain
´∞
0 Bν(T (x)) dν =

ffl
S2 J(x, n) dn =

1
4π

´
S2 J(x, n) dn. Hence, equation (C.6) is equivalent to the study of{

n · ∇xJ(x, n) =
α(x)
ε

(ffl
S2 J(x, n) dn− J(x, n)

)
if x ∈ Ω,

J(x, n) =
´∞
0 gν(n) dν if x ∈ ∂Ω, n ·Nx < 0.

(C.9)

However, the equivalence between (C.6) and (C.9) does not hold in the non-Grey case. The
properties of equation (C.9) as well as the diffusion approximation limit have been studied
for a long time, starting with the seminal paper [19] of 1979, where the stationary version
of (C.8) was studied. In that work the authors proved the diffusion approximation for the
neutron transport equation using a stochastic method. The result they obtained for J would
imply in particular our main Theorem C.1. We emphasize that if in (C.6) the absorption
coefficient αν(x) has a non-trivial dependence on the frequency ν or if the neutron transport
equation describes situations different from the so-called one-speed approximation, which is
given by (C.9), the radiative transfer equation and the neutron transport equation would be
far from equivalent from each other.

More recently, in a series of papers [76, 146–149] Yan Guo and Lei Wu have studied the
diffusion approximation of both the stationary and the time dependent neutron transport
equation (C.8) when K ≡ 1 and αsν(x) ≡ 1, independent of x, for different classes of boundary
conditions in 2 and 3 dimensions, in bounded convex domains or annuli (in 2D). In particular
the result in paper [147] imply again the main Theorem C.1 when α ≡ 1. Their proof relies on
PDE methods and not on a stochastic approach. Moreover, they also computed the geometric
approximation in the structure of the boundary layer.

The main goal of this paper is to develop a method which allows to obtain diffusive
limit approximations like the one in Theorem C.1 for the radiative transfer equation (C.1)
using PDE methods that rely only in maximum principle tools. This tools are different from
those used by Guo and Wu. Specifically, the method in [76, 146–149] relies on the L2-Lp-L∞

estimates that were introduced for the analysis of kinetic equations by Yan Guo in [75]. In
particular, the method is based on the estimates of the velocity distribution J . Our approach
is based on the direct derivation of estimates for the temperature T (x) associated to a given
distribution of radiation Iν(x, n). More precisely, equation (C.6) can be reformulated as a non-
local integral equation for the temperature (cf. [83]). In the case of the Grey approximation
we have the following equation for u(x) = 4πσT 4(x)

u(x)−
ˆ
Ω
Kε(x, η)u(η) dη = S(x), (C.10)
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where the precise form of the kernel Kε and of the source S(x) are discussed in Sections 4
and 5.

Equation (C.10) can be thought as a non-local elliptic equation which in particular sat-
isfies good properties, such as the maximum principle. Specifically, our proof relies only in
finding suitable supersolutions and applying the maximum principle. The way in which we
constructed these supersolutions is mimicking particular solutions of elliptic equations with
constant coefficients. These supersolutions give also an insight of the behavior of the solu-
tion near the boundary ∂Ω. Our hope is that the method developed in this paper could be
extended to the non-Grey case, at least for some suitable choice of αν(x). One reason why
this should be possible is that [83] shows how to solve the non-local equation (C.10) for some
class of non-Grey problems.

Another type of diffusion approximation for (C.1) is the one in [73,74] in which it has been
considered the situation when αsν → ∞ while αeν and αaν remain bounded combined with the
equation for balancing the energy either in the one dimensional case or in the whole space.

The well-posedness and the diffusion approximation of the time dependent problem (C.8)
in the frame work of L1-functions using the theory of m-accretive operators has ben studied
in a series of papers [13, 16]. Seemingly, although the techniques in these papers allow to
develop a theory for the time dependent problem, they do not provide information about the
stationary solution.

Some versions of the stationary problem involving the radiative transfer equation can be
found in [62,63,95,96,115,138]. The problems studied in these papers include also heat con-
duction and different type of boundary condition of our model (for a more detailed discussion
see [83]). Moreover, in [63] the authors consider the diffusive limit of a stationary radiative
heat system, in which the radiative transfer equation with constant absorption coefficient and
without scattering is coupled to the heat equation for the temperature. The convergence to
the limit equation for this system is achieved with an L2 − L∞ approach.

It is important to emphasize that equation (C.6) is very different in the non-Grey case
from the scattering problem (C.8), in the sense that the system (C.6) provides an equation
for the temperature. Specifically, the equation ∇x · F = 0 is automatic satisfied in the
stationary version of (C.8). Physically, this is due to the fact that the radiation arriving at
every point is just deflected. Equation (C.6) plays the same role as the Laplace equation in
order to describe the stationary distribution of temperature in systems where the energy is
transported by means of heat conduction. In the case of (C.6) the energy is transported by
means of radiation which results in non-locality for determining the temperature distribution.
The fact that the determination of the temperature in a body where the energy is transported
by radiation is non-local was first formulated in [78]. Since the approximation (C.7) fails at the
boundary, some boundary layers appears for which the intensity of radiation Iεν differs from
the Planck distribution Bν(T ). Hence, a careful analysis must be made for these boundary
layers where the radiation is out of equilibrium. This will be essential in order to determine the
functional TΩ in Theorem C.1, which defines the temperature at every point of the boundary.

Finally, we mention that one can consider more complicated interactions between radiation
and matter. For instance when the matter that interacts with radiation is a moving fluid.
(cf. [69, 71, 108, 152]). The case when the interacting medium is a Boltzmann gas whose
molecules can be in different energy layers has been considered in [34,81,114,122].

C.1.2 Structure of the paper. Sketch of the proof. Notation

We aim to prove Theorem C.1. As first step in Section 2 we will derive the expected form
of the solution using formal arguments from the theory of matched asymptotic expansions.
In particular, this analysis shows that there exist thin boundary layers close to the boundary



186 APPENDIX C. DIFFUSION APPROXIMATION OF STATIONARY RTE

of the domain in which the radiation evolves from non-equilibrium (close to the boundary of
the domain) to equilibrium (when moving towards the interior of the domain). Specifically,
the intensity of radiation becomes close to the Planck distribution Bν(T ) at distances larger
than ε from the boundary. In Section 3 we deal with the detailed mathematical study of this
boundary layer equation which can be written as a linear integral equation in the half-line.
In particular, we use as main tool Fourier analysis methods in order to prove well-posedness
for this problem as well as to obtain the asymptotic behavior of the solution at points far
from the boundary. Section 4 deal with the case of constant absorption coefficient α ≡ 1. We
prove that the energy densities uε = T 4

ε converge to a harmonic function in the interior of the
domain Ω as ε → 0. Moreover, we can also obtain the boundary value for the limit function
u using the detailed description of the boundary layer which has been developed in Section 3.
Both in Section 3 and 4 we use in a fundamental way that we can reduce the problem (C.6) to
a non-local elliptic equation for the temperature T . This allows us to use maximum principle
arguments, something that we do extensively in Section 4. Specifically, we construct several
sub- and super-solutions that we can use to estimate the functions uε and to characterize the
boundary values of the limit function u. The way in which we obtain these boundary values
is reminiscent to the barrier functions used in the Perron method for the Laplace equation.
Finally, in Section 5 we extend the previous results to the case of non-constant coefficient
α(x).

We introduce here some notation we will use throughout this paper. First of all, Ω ⊂ R3 is
an open bounded convex domain with C3-boundary and strictly positive curvature. In order
to avoid meaningless constants we assume without loss of generality that 0 ∈ Ω. Nx indicates
always the outer normal vector for a point x ∈ ∂Ω.

We assume Ω to be convex in order to simplify some geometrical argument. First of all
this assumption implies that for every point p ∈ ∂Ω the tangent plane to the boundary at
p divided the space R3 in two disjoint half-spaces, one of them containing the whole domain
Ω. This will be used several times in the definition for every point p ∈ ∂Ω of the isometric
transformation mapping p to 0 and Ω in the positive half-space R+ ×R2. The assumption of
convexity can be relaxed and the geometrical estimates should still hold, but we would need
a more careful analysis of the geometry of the problem.
Moreover, for gν(n) ≥ 0 with

´∞
0 gν(n) dν ∈ L∞ (S2) we define the norms

∥g∥1 :=
ˆ ∞

0

ˆ
S2
gν(n) dν dn (C.11)

and

∥g∥∞ := sup
n∈S2

(ˆ ∞

0
gν(n) dν

)
. (C.12)

Remark. The reason why we are assuming the seemingly restrictive boundary condition (C.5)
is because we are supposing that the source of radiation is placed at infinity. We can obtain
analogous results to the one of the paper if we consider the more general boundary condition
gν(n, x) depending also on x ∈ ∂Ω. In addition to the assumption above we need to require
gν(n, x) to be a C1-function with respect to x ∈ ∂Ω.
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Np

p

Ω

gν(n)

Figure C.1: Representation of the boundary value problem.

For any point p ∈ ∂Ω we choose a fixed isometry mapping p to 0 and the vector p+Np to
−e1. This rigid motion is denoted byRp : R3 → R3 and can be defined asRp(x) = Rotp(x−p),
where Rotp ∈ SO(3) is the chosen (and from now on fixed) rotation such that Rotp(Np) = −e1.
Then the rigid motion Rp has the following properties:

Rp(p) = 0 and Rp(Np + p) = −e1. (C.13)

Finally, we define by

π∂Ω :
{
x ∈ R3 : dist(x, ∂Ω) < δ

}
→ ∂Ω

x 7→ π∂Ω(x)
(C.14)

the projection to the unique closest point in the boundary ∂Ω. This function is continuous
and well-defined in small neighborhood of ∂Ω, i.e. for δ > 0 small enough.

C.2 Derivation of the limit problem

C.2.1 Formal derivation of the limit problem in the diffusive equilibrium
approximation

We first remind how to obtain formally the equation for the interior in the limit problem.
First of all we expand the intensity of radiation

Iν (x, n) = f0ν (x, n) + εf1ν (x, n) + ε2... (C.15)

Substituting it in the first equation of (C.6) and identifying the terms containing ε−1 and ε0

we see
f0ν (x, n) = Bν (T (x))

and

f1ν (x, n) = − 1

αν(x)
n · ∇xBν (T (x))

Using the second equation in (C.6) and the expansion in (C.15) we deduce

0 =

ˆ ∞

0
dν

ˆ
S2
dn n · ∇xIν (x, n)

= div

[ˆ ∞

0
dν

ˆ
S2
dn nBν (T (x))

]
− εdiv

[ˆ ∞

0
dν

ˆ
S2
dn (n⊗ n)

1

αν(x)
∇xBν (T (x))

]
= −ε4

3
π div

((ˆ ∞

0
dν

1

αν(x)
∇xBν (T (x))

))
,
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where we used ˆ
S2
dn(n⊗ n) =

4

3
πId and

ˆ
S2
dn n = 0.

Therefore,
div (κ (T )∇xT ) = 0, (C.16)

where κ (T ) :=
´∞
0 dν ∂TBν(T (x))

αν(x)
. In the particular case of the Grey approximation when

αν(x) = 1 we have κ(T ) = 4σT 3(x). Then defining u(x) := 4πσT 4(x) we obtain the following
equation

∆u = 0.

This is the limit problem we will study.

C.2.2 Formal derivation of boundary condition for the limit problem in the
diffusive equilibrium approximation

In order to obtain the intensity of radiation closed to the boundary of Ω we derive a boundary
layer equation, whose solution will be used to determine the value of the temperature at the
boundary by means of a matched argument. Suppose that x0 ∈ ∂Ω, without loss of generality
we can assume x0 = 0 and Nx0 = N = −e1 using the rigid motion Rx0 defined in (C.13)
and putting gν(n) := gν

(
Rot−1

x0 (n)
)
. We rescale x = εy, where y ∈ 1

εΩ. Thus, at the leading
order as ε → 0 we obtain αν(x) = αν(εy) = αν(0) +O(ε). Taking ε → 0 we obtain that the
intensity of radiation satisfies

n · ∇yIν (y, n) = αν(0) (Bν (T (y))− Iν (y, n)) y ∈ R+ × R2

∇y · F = 0 y ∈ R+ × R2

Iν (y, n) = gν (n) y ∈ {0} × R2 and n ·N < 0

(C.17)

This problem is also known in the literature as Milne problem. We will now derive an equiv-
alent formulation as a non-local integral elliptic equation for the temperature T . To this
end we solve the first equation in (C.17) for Iν using the method of characteristics. Given
y ∈ R+ × R2 and n ∈ S2 with n · N < 0 we call Y (y, n) the unique point belonging to
∂
(
R+ × R2

)
= {0} × R2 such that

y = Y (y, n) + s(y, n)n,

where s(y, n) = |y − Y (y, n)|. Notice that s(y, n) is the distance to the first intersection point
of the boundary {0} × R2 with the half line {y − tn : t > 0}. For n · N ≥ 0 we define
s(y, n) = ∞. Solving the equation by characteristics we obtain

Iν (y, n) =gν(n)e
−αν(0)s(y,n)χn·N<0 +

ˆ s(y,n)

0
e−αν(0)tαν(0)Bν (T (y − tn)) dt.

Using the second equation in the rescaled problem (C.17) we calculate

0 =div

[ˆ ∞

0
dν

ˆ
n·N<0

dn ngν(n)e
−αν(0)s(y,n)

+

ˆ ∞

0
dν

ˆ
S2
dn

ˆ s(y,n)

0
dt ne−αν(0)tανBν (T (y − tn))

]

=−
ˆ ∞

0
dν

ˆ
n·N<0

dn gν(n)ανn · ∇ys(y, n)e
−αν(0)s(y,n)

+ div

(ˆ ∞

0
dν

ˆ
R+×R2

dη
y − η

|y − η|3
e−αν(0)|y−η|αν(0)Bν (T (η))

)
(C.18)
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=−
ˆ ∞

0
dν

ˆ
n·N<0

dn gν(n)αν(0)e
−αν(0)s(y,n) + 4π

ˆ ∞

0
dν(0) ανBν (T (y))

−
ˆ ∞

0
dν

ˆ
R+×R2

dη
α2
ν(0)

|y − η|2
e−αν(0)|y−η|Bν (T (η)) .

The second equality holds via the spherical change of variable

S2 × R+ → R+ × R2

(n, t) 7→ η = y − tn

so that n = y−η
|y−η| . For the third inequality we use on the one hand that divy

(
y−η

|y−η|3
)

=

4πδ(y − η) and on the other hand that n · ∇ys(y, n) = 1. The latter can be seen by the fact
that

Y (y, n) + s(y + tn, n)n = y + tn = Y (y + tn, n) + s(y + tn, n)n.

This implies that Y (y+tn, n) is t-constant and therefore 1 = ∂ts(y+tn, n) = (∇ys(y + tn, n))·
n. We assume now that the temperature depends only on the first variable. This can be
expected because we are considering limits for ε ≪ 1 and hence the temperature can be
considered to depend only on the distance to the point x0, which is approximated by the
first variable in this setting. After the change of variables ξ = (y2 + η2, y3 − η3) and calling
y − η := y1 − η1 the last integral in (C.18) can be written as

ˆ ∞

0
dν

ˆ
R+

dη

ˆ
R2

dξ α2
ν(0)

e−αν(0)
√

(y−η)2+|ξ|2

(y − η)2 + |ξ|2 Bν (T (η)) .

Using polar coordinates we obtain

ˆ
R2

dξ
e−αν(0)

√
(y−η)2+|ξ|2

(y − η)2 + |ξ|2 =π

ˆ ∞

|y−η|2
dx

e−αν(0)
√
x

x

=2π

ˆ ∞

αν(0)|y−η|
dt
e−t

t
= 4πK(αν(0)|y − η|),

(C.19)

where we will denote K(x) = 1
2

´∞
|x| dt

e−t

t as the normalized exponential integral.

Notice that s(y, n) = y1
|n·N | if n ·N < 0. We can summarize the equation the temperature

satisfies in the non-Grey approximation as follows
ˆ ∞

0
dν αν(0)Bν (T (y1))−

ˆ ∞

0
dν

ˆ ∞

0
dη α2

ν(0)K (αν(0) |y1 − η1|)Bν (T (η1))

=

ˆ ∞

0
dν

ˆ
n·N<0

dn gν(n)αν(0)e
−αν(0)

y1
|n·N| .

(C.20)

In the particular case of the Grey approximation when α ≡ 1 using that u(y) = 4πσT 4(y) we
can simplify equation (C.20) by property (C.3)

u(y1)−
ˆ ∞

0
dη K(y1 − η)u(η) =

ˆ ∞

0
dν

ˆ
n·N<0

dn gν(n)e
− y1

|n·N| . (C.21)

In some occasions, when the dependence of the boundary layer function u on the point p ∈ ∂Ω
is needed, we will use the notation u(y1, p), where this function solves according to the rigid
motion Rp in (C.13)

u(y1, p)−
ˆ ∞

0
dη K(y1 − η)u(η, p) =

ˆ ∞

0
dν

ˆ
n·Np<0

dn gν(n)e
− y1
|n·Np| . (C.22)
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For the rest of Section 2 and Section 3 we will focus on the study of u(y1, p) for an arbitrary
given p ∈ ∂Ω, hence we will call u(y1) = u(y1, p) and N = Np. In order to simplify the reading

from now on we set G(x) =
´∞
0 dν

´
n·N<0 dn gν(n)e

− x
|n·N|χ{x>0} and if we want to stress out

the dependence on p ∈ ∂Ω we write Gp(x) =
´∞
0 dν

´
n·Np<0 gν(n)e

− x

|n·Np|χ{x>0}.

From now on until Section 5 we consider the case of constant absorption coefficient α ≡ 1.

C.2.3 Some properties of the kernel

We consider the kernel K introduced in Section 2.2. We remark that K(x) = 1
2E1(|x|), where

E1 is the standard exponential integral function. See [1]. We collect some properties of the
normalized exponential integral.

Proposition C.1. The function K satisfies
´∞
−∞ dx K(x) = 1, K ∈ L1 (R) ∩ L2 (R) and the

following estimate holds

1

4
e−|x| ln(1 +

2

|x|) ≤ K(x) ≤ 1

2
e−|x| ln(1 +

1

|x|).

Moreover, the Fourier transform of K is K̂(ξ) = 1√
2π

arctan(ξ)
ξ .

Proof. Since K is even and non negative we can calculate, applying Tonelli’s Theorem

ˆ ∞

−∞
K(s) ds = 2

ˆ ∞

0
K(s) ds =

ˆ ∞

0

ˆ ∞

s

e−t

t
dt ds =

ˆ ∞

0

e−t

t

ˆ t

0
ds dt =

ˆ ∞

0
e−t dt = 1.

This proves also that K ∈ L1 (R).
For the square integrability we refer to equation 5.1.33 in [1] and see

´
R |K(x)|2 dx = ln(2).

Estimate 5.1.20 in [1] also implies 1
4e

−|x| ln(1 + 2
|x|) ≤ K(x) ≤ 1

2e
−|x| ln(1 + 1

|x|).
We now move to the computation of the Fourier transform of the kernel K. The kernel is

an even function, hence we compute

K̂(ξ) =
1√
2π

ˆ ∞

−∞
e−iξxK(x) dx =

1√
2π

ˆ ∞

0
cos (ξx)

ˆ ∞

x

e−t

t
dt dx

=
1√
2π

1

ξ

ˆ ∞

0

e−t

t
sin(ξt) dt =

1√
2π

arctan(ξ)

ξ
.

The last identity can be justified noticing that F (ξ) =
´∞
0

e−t

t sin(ξt) dt has derivative F ′(ξ) =
1

ξ2+1
.

The following calculation will also be very useful in the next section.

Proposition C.2. Let x > 0. Then we can compute

ˆ ∞

−x
K(s) ds = 1− e−x

2
+ xK(x); (C.23)

ˆ ∞

x
K(s) ds =

e−x

2
− xK(x); (C.24)

ˆ ∞

−x
sK(s) ds =

ˆ ∞

x
sK(s) ds =

xe−x

4
+
e−x

4
− x2

2
K(x); (C.25)
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Proof. The proof relies on basic integral computations. We have to compute several integrals
changing the order of integration applying Tonelli’s Theorem and integrating by parts. We
assume x > 0. We prove only (C.23), since all other formulas can be obtained in a similar
way. ˆ ∞

−x
K(s) ds =

1

2

ˆ 0

−x

ˆ ∞

|s|

e−t

t
dt ds+

1

2

ˆ ∞

0

ˆ ∞

s

e−t

t
dt ds

=
1

2

ˆ x

0

e−t

t

ˆ t

0
ds dt+

1

2

ˆ ∞

x

e−t

t

ˆ x

0
ds dt+

1

2

=1− e−x

2
+ xK(x).

C.3 The boundary condition for the limit problem

We now start with the boundary layer analysis. This boundary layer problem, know in the
literature as Milne problem, was studied with different approaches, e.g. [13,16,33,68,79]. We
will present another proof of the boundary layer analysis for the equation (C.21) of the tem-
perature, which is equivalent to the Milne problem (C.17). The proof uses a combination of
comparison arguments and Fourier analysis. In addition, instead of considering the intensity
of radiation the analysis is made directly for the temperature.

Our aim is now to solve equation (C.21). Indeed, according to the method of matched
asymptotic expansions we expect the boundary condition for the limit problem to be the
limit of u as y → ∞ for every point x ∈ ∂Ω. In order to simplify the notation we call
L (u) (x) := u(x)−

´∞
0 dy K (x− y)u(y) and L (u) (x) := u(x)−

´∞
−∞ dy K (x− y)u(y).

C.3.1 The homogeneous equation

We start with the study of the homogeneous equation, i.e. (C.21) with G(x) ≡ 0. We will
show using maximum principle that any bounded solution is the trivial solution u ≡ 0. We
will use the following version of the maximum principle for the non-local operator L.
Lemma C.1. Let u ∈ C ([0,∞)) with lim

x→∞
u(x) ∈ [0,∞] be a supersolution of (C.21), i.e.{

u(x)−
´∞
0 dy K (x− y)u(y) ≥ 0 x > 0

u(x) = 0 x < 0

Then u ≥ 0 for all x ≥ 0.

Proof. Let us assume the contrary, i.e. that there exists some x ∈ [0,∞] such that u(x) < 0.
By assumption x ∈ [0,∞). Since u is continuous in [0,∞) and it has non-negative limit at
infinity which is bounded or infinity, u attains its global minimum in [0,∞), i.e. there exists
some x0 ∈ [0,∞) such that u(x0) = infx∈[0,∞) u(x) < 0. Since u is a super solution we can
calculate

0 ≤L(u)(x0) = u(x0)−
ˆ ∞

0
dy K (x0 − y)u(y)

=

ˆ ∞

−∞
dy K (x0 − y)u(x0)−

ˆ ∞

0
dy K (x0 − y)u(y)

=

ˆ 0

−∞
dy K (x0 − y)u(x0) +

ˆ ∞

0
dy K (x0 − y) (u(x0)− u(y)) < 0,
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where we used the positivity of K (x0 − y), the fact that the integral of the kernel K is 1
and the fact that u(x0) is the minimum of u and it is strictly negative. This leads to a
contradiction and thus we conclude the proof.

With the maximum principle we can now show the following theorem on the triviality of
the solution to the homogeneous equation.

Theorem C.2. Assume u is a bounded solution to

L(u)(x) = 0 (C.26)

with u(x) ≡ 0 for x < 0. Then u = 0 for almost every x ∈ R.

Proof. We will construct a supersolution u which converges to infinity and we will apply
Lemma C.1 to the supersolutions u − u and u + u. First of all we see that for x > 0 the
bounded solution u is continuous, indeed u(x) = K ∗ u(x). Since K ∈ L1 (R) and u ∈ L∞ (R)
then the convolution is a continuous bounded function. Moreover we can extend continuously
u in 0. Indeed, we define

u(0) = lim
x→0

[
G(x) +

ˆ ∞

0
dy K (x− y)u(y)

]
.

This limit exists because G is continuous in [0,∞) and for the integral term we can apply
the generalized dominated convergence theorem using that the sequence K (x− y) → K (y)
as x→ 0 pointwise and in L1 (R).

We consider now the function

u(x) =

{
1 + x x ≥ 0

0 x < 0

u is a supersolution. It is indeed possible to calculate L(u)(x). Let x ≥ 0. Then L(u) =
L(Id) + L(1). By a simple calculation we get on the one hand

L(Id)(x) =x−
ˆ ∞

0
dy K (x− y) y = x−

ˆ ∞

−x
dy K (y) (x+ y) =

x

4
e−x − e−x

4
− x2

2
K(x)

and on the other hand

L(1)(x) =1−
ˆ ∞

0
dy K (x− y) = 1−

ˆ ∞

−x
dy K (y) =

e−x

2
− xK(x).

Therefore we want to show that the function f(x) := L(u)(x) = e−x

4 (1+ x)− x
2K(x)(2+x) is

non-negative for all x ≥ 0. It is not difficult to see that f(0) = 1
4 > 0 and that lim

x→∞
f(x) = 0.

Moreover, we can consider the derivative

f ′(x) =
1

2

(
e−x −K(x)(2x+ 2)

)
≤ 1

2

(
e−x − e−x

2
ln

(
1 +

2

x

)
(x+ 1)

)
≤ 0.

The first inequality is given by the estimate of Proposition C.1 and the second one is due to
the well-know estimate ln(1 + x) ≥ 2x

2+x . The non-positivity of the derivative implies that f
is monotonously decreasing, and therefore L(u)(x) = f(x) ≥ 0 for all x ≥ 0.

Let now ε > 0 arbitrary. We know that u is bounded and u converges to infinity, moreover
both u and u are continuous in [0,∞). Also u is a homogeneous solution of (C.21) and the
operator L is linear. Therefore we can apply Lemma C.1 to the supersolutions εu − u and
u + εu and get that the infx∈[0,∞) [εu(x)− u(x)] ≥ 0 and infx∈[0,∞) [εu(x) + u(x)] ≥ 0. This
implies that for any x ∈ R the following holds

−εu(x) ≤ u(x) ≤ εu(x)

Since ε was arbitrary we conclude u(x) = 0 for all x ∈ R.
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C.3.2 Well-posedness theory for the inhomogeneous equation

We can now move to the well-posedness theory for the inhomogeneous equation, for which
the next theorem is the main result.

Theorem C.3. Let H : R+ → R+ be a continuous function bounded by an exponential
function, i.e. |H(x)| ≤ Ce−Axχ{x>0} for C,A > 0. Then there exists a unique bounded
solution to the equation{

u(x)−
´∞
0 dy K (x− y)u(y) = H(x) x > 0,

u(x) = 0 x < 0.
(C.27)

Moreover, u is continuous on (0,∞).

Proof. The assumption on the exponential decay of H yields H ∈ L1 (R) ∩ L2 (R) ∩ L∞ (R).
In order to find a bounded solution for (C.27) we will follow several steps. We will look for
functions ũ and v solutions of the following equations

ũ(x)−
ˆ ∞

−∞
K(x− y)ũ(y) dy = H(x) := H(x)−H(−x) x ∈ R

and {
v(x)−

´∞
−∞K(x− y)v(v) dy = 0, x > 0

v(x) = −ũ(x) x < 0.
(C.28)

Then u = ũ+ v will be the desired solution.

Step 1: Construction of ũ.
We can construct the solution ũ via Fourier method. First of all we notice that any affine
function is a solution to the homogeneous equation in the whole space R. This is because´∞
−∞K(x) dx = 1 and

´∞
−∞ xK(x) dx = 0. Since by assumption H ∈ L2 (R) also H ∈ L2 (R).

We define for an integrable function f the kth-moment as mk (f) =
´∞
−∞ xkf(x) dx assuming

it exists. Then clearly by construction m0

(
H
)
= 0 while m1

(
H
)
= 2C

A > 0. Moreover, since
H has exponential decay, all moments mk

(
H
)
<∞ are bounded.

We define also the function F (x) = L
(
3
2sgn

)
(x). It can be compute that

F (x) =
3

2

(
sgn(x)−

ˆ ∞

−∞
K(x− y)sgn(y) dy

)
=

3

2

(
sgn(x)−

ˆ x

−x
K(y) dy

)
.

It is not difficult to see that F (0) = 0, lim
|x|→∞

F (x) = 0 and that F is a stepwise continuous

function with the discontinuity in 0. Therefore F (x) is bounded. We proceed with the
construction of ũ. We can write it as ũ = u(1)+u(2)+a+ bx, where u(1)(x) = m1

(
H
)

3
2sgn(x)

solves the equation

L
(
u(1)

)
(x) = m1

(
H
)
F (x) x ∈ R

and u(2) solves
L
(
u(2)

)
(x) = H(x)−m1

(
H
)
F (x) x ∈ R. (C.29)

applying now the Fourier transform to the equation (C.29), recalling the convolution rule and
the Fourier transforms of the kernel K and of the sgn function we get first in distributional
sense

û(2)(s)

(
s− arctan(s)

s

)
= F(H)(s) +

3m1

(
H
)

√
2π

i

s

s− arctan(s)

s
. (C.30)
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The Fourier transform of H is in C∞, since H has exponential decay and therefore it has all
kth-moment finite. Therefore there exists a function H̃ such that H̃(0) = H̃ ′(0) = 0 such
that F(H)(s) = − i√

2π
m1

(
H
)
s + H̃(s), since m0

(
H
)
= 0 and by definition F(H)′(s)

∣∣
s=0

=

− i√
2π
m1

(
H
)
. We can therefore find first formally u(2) analyzing its Fourier transform

û(2)(s) =
s

s− arctan(s)
F(H)(s) +

3m1

(
H
)

√
2π

i

s

=− is2

s− arctan(s)

m1

(
H
)

√
2π

+
3m1

(
H
)

√
2π

i

s
+ H̃(s)

s

s− arctan(s)

=H(s).

(C.31)

It is important to notice that lim
s→0

s2

s−arctan(s) − 3
s = 0, since s

s−arctan(s) = 3
s2

+ 9
5 + O(s2) near

zero. Using L’Hôpital rule we see also that lim
s→0

H̃(s) s
s−arctan(s) is finite. On the other hand

s
s−arctan(s) is bounded for |s| > 1. Since F(H)(s) and 1

s are both square integrable functions

and since H is bounded near 0 we conclude that H ∈ L2 (R). Therefore also the in (C.31)
defined û(2) is square integrable. We can hence invert it

u(2)(x) := F−1 (H) (x) ∈ L2 (R) .

Since this function solves (C.30) not only in distributional sense but also pointwise almost
everywhere, we can conclude rigorously that indeed the function in (C.31) is the desired u(2)

solving (C.29). Moreover, u(2) = K ∗u(2)+H −F and since both K and u(2) itself are square
integrable and both H and F are bounded, then also u(2) is bounded. We can conclude this
step therefore defining

ũ(x) =
3

2
m1

(
H
)
sgn(x) + a+ bx+ u(2)(x). (C.32)

Step 2: Construction of v.

We recall that the equation v shall solve (C.28). As we found out in the first step,
ũ = 3

2m1

(
H
)
sgn(x)+a+ bx+u(2)(x). As we already pointed out, affine solutions are always

solution of the homogeneous equation in the whole space R. Therefore, we shall look for a
function of the form

v(x) =
3

2
m1

(
H
)
− a− bx+ v(2)(x) (C.33)

where v(2) solves similarly as above{
v(2)(x)−

´∞
−∞K(x− y)v(v) dy = 0 x > 0,

v(2)(x) = −u(2)(x) x < 0.
(C.34)

We proceed now iteratively constructing the desired solution. We call B > 0 the constant
such that

wwu(2)ww∞ ≤ B and we define v = B and v = −B. Inductively we define v0 := v and
for k ≥ 1 we set

vk(x) =

{
−u(2)(x) x < 0,´∞
−∞K (x− y) vk−1(y) dy x > 0.

We claim that v = v0 ≤ v1 ≤ v2 ≤ ... ≤ vk ≤ vk+1 ≤ ... and that vk ≤ v for all k ∈ N. Clearly
for k = 0 both statements hold. On the one hand since

´∞
−∞K (x− y) v0(y) = −B we see

that

v1(x)− v0(x) =

{
−u(2)(x) +B ≥ 0 x < 0,

0 x > 0,
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on the other hand per definition we have v− v = 2B ≥ 0. We see also that v− v1 ≥ 0, indeed

v(x)− v1(x) =

{
B + u(2)(x) ≥ 0 x < 0,

2B x > 0.

We now prove inductively that vk ≥ vk−1 and v ≥ vk. Hence, we assume that these inequalities
are satisfied for k and we prove them for k + 1. Indeed this just follows from the identities

vk+1(x)− vk(x) =

{
0 x < 0,´∞
−∞K (x− y) (vk(y)− vk−1(y)) ≥ 0 x > 0,

v(x)− vk+1(x) =

{
B + u(2)(x) ≥ 0 x < 0,´∞
−∞K (x− y) (B − vk(y)) ≥ 0 x > 0,

where we used again that the integral in the whole line of the kernel K is 1. Therefore the
sequence vk(x) is increasing and bounded. This means that there exists a pointwise limit. By
the dominated convergence theorem and by construction this will be also the desired solution
of (C.34), i.e.

v(2)(x) := lim
k→∞

vk(x)

solves the equation (C.34) and it is by construction bounded.

Step 3: Properties of u.

Now we are ready to write down the whole solution. As we remarked at the beginning
u = ũ + v, where ũ solves as in Step 1 (C.3) and v solves as in Step 2 (C.28). Therefore by
(C.33) and by (C.32)

u(x) =

{
6m1 (H) + u(2)(x) + v(2)(x) x > 0,

0 x < 0,

solves the initial problem (C.27) and it is by construction bounded. Moreover, since K is
integrable and H is continuous in [0,∞) also u = K ∗ u+H is continuous in [0,∞).

Step 4: Uniqueness.

Let us assume that u1 and u2 are two bounded solution to the problem (C.27). Then
u1−u2 will be a bounded continuous solution to the homogeneous problem (C.26). Therefore
by Theorem C.2 u1 − u2 = 0. Hence, there exists a unique bounded solution u to the
inhomogeneous problem (C.27). This concludes the proof.

Corollary C.1. Let p ∈ ∂Ω and Gp(x) as defined in (C.22). Let gν(n) ≥ 0 and assume that´∞
0 dν gν(n) ∈ L∞ (S2). Then there exists a unique bounded solution to the equation{

u(x)−
´∞
0 dy K (x− y)u(y) = Gp(x) x > 0,

u(x) = 0 x < 0.
(C.35)

Moreover, u is continuous on (0,∞).

Proof. By assumption Gp is continuous for x > 0 and |Gp(x)| ≤ ∥g∥1e−yχ{x>0}. Hence we
can apply Theorem C.3.
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It is also possible to show, that the bounded solution u is non-negative

Lemma C.2. Let u be the unique bounded solution to (C.35). Then u(x) ≥ 0 for all x ∈ R.

Proof. The proof is very similar to the proof of Theorem C.2. We consider the supersolution

u(x) =

{
1 + x x ≥ 0

0 x < 0
.

As we have seen before, u = K ∗ u + G is continuous in [0,∞). Moreover, since G > 0 as
x ≥ 0, u is a supersolution too. Let now ε > 0 be arbitrary. Let us consider the supersolution
εu+u. This is continuous in [0,∞) and since u is bounded it converges to infinity as x→ ∞.
Therefore Lemma C.1 implies that there exists no x0 ∈ [0,∞) such that

inf
x∈[0,∞)

(εu(x) + u(x)) = εu(x0) + u(x0) < 0.

Hence u ≥ −εu and since ε > 0 was arbitrary we conclude u ≥ 0.

Remark. Theorem C.3 can be proved also using the Wiener-Hopf solution formula for the
problem (C.21) as given in [77]. It is true that in this way one obtains an explicit formula,
which not only assures the well-posedness of the planar problem we are studying but also
directly shows the existence of a limit for the solution u when x→ ∞. However, the Wiener-
Hopf method produces a complicate formula which requires a careful analysis with complex
variables in order to be understood. We have preferred to use this soft method approach
which in particular allows us to prove some relevant properties of the solution, such as the
positivity.

C.3.3 Asymptotic behavior of the bounded solution of the inhomogeneous
equation

We were able to show that the equation for the boundary value in the Grey approximation
has a unique bounded solution which is positive whenever G > 0. As we anticipated at the
beginning of this section, we would like to study the limit as x→ ∞ of the solution u(x). We
will show, that such limit exists and is uniquely characterized by gν(n) and N . To this end
we first prove that the function u is uniformly continuous.

Lemma C.3. Let u be the unique bounded solution to the problem (C.21). The u is uniform
continuous on [0,∞) and it satisfies for x, y ∈ [0,∞)

|u(x)− u(y)| ≤ |G(x)−G(y)|

+ ∥u∥∞
[ |e−x − e−y|

2
+ 2

(
1− e

|x−y|
2

)
+ 4

∣∣∣∣y − x

2

∣∣∣∣K (y − x

2

)
+ |xK(x)− yK(y)|

]
.

(C.36)

Proof. This is a consequence of the uniform continuity of G and xK(x). Clearly, since u solves
the problem (C.35), we have the estimate

|u(x)− u(y)| ≤ |G(x)−G(y)|+
ˆ ∞

0
|K (η − x)−K (η − y)|u(η) dη. (C.37)

Since G is continuous on [0, 1], and therefore uniformly continuous on [0, 1] and since G is
Lipschitz continuous in [1,∞), G is uniform continuous in [0,∞). The latter affirmation is
true, since

sup
x≥1

∣∣G′(x)
∣∣ ≤ ˆ ∞

0
dν

ˆ
n·N<0

dn gν(n)
e
− 1

|n·N|

|n ·N | <∞,
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where the finiteness is due to the fact that lim
|n·N |→0

e
− 1

|n·N|
|n·N | = 0.

For the integral term in (C.37) we assume that x < y. Then we can calculate using the
fact that for positive arguments the kernel K is decreasing

ˆ ∞

0
|K (η − x)−K (η − y)|u(η) dη

=

ˆ x+y
2

0
(K (η − x)−K (η − y))u(η) dη +

ˆ ∞

x+y
2

(K (η − y)−K (η − x))u(η) dη

≤∥u∥∞

[ˆ x+y
2

0
(K (η − x)−K (η − y)) dη +

ˆ ∞

x+y
2

(K (η − y)−K (η − x)) dη

]

We can calculate explicitly the last two integrals using the result of Proposition C.2, indeed
by a change of variable

ˆ ∞

0
|K (η − x)−K (η − y)|u(η) dη

≤∥u∥∞

[ˆ y−x
2

−x
K (η) dη −

ˆ x−y
2

−y
K (η) dη +

ˆ ∞

x−y
2

K (η) dη −
ˆ ∞

y−x
2

K (η) dη

]

= ∥u∥∞
[
e−y − e−x

2
+ 2

(
1− e

x−y
2

)
+ 4

y − x

2
K

(
y − x

2

)
+ xK(x)− yK(y)

]
.

Recalling that x < y we get the estimate (C.36). From the well-known estimates |e−x − e−y| ≤
|x− y| and

∣∣∣1− e
x−y
2

∣∣∣ ≤ |x−y|
2 we see that we shall only consider the function f(x) = xK(x).

Since f(0) = 0 and f is continuous, f is uniformly continuous on [0, 1], on the other hand f
is Lipschitz continuous on [1,∞]. This is because

sup
x≥1

∣∣f ′(x)∣∣ = sup
x≥1

∣∣K(x)− e−x
∣∣ ≤ 1

e
+K(1) <∞.

Therefore f is uniform continuous on [0,∞). By the continuity of f in 0 we also now that
given an ε > 0 there exists some δ such that y−x

2 K
(y−x

2

)
< ε for all |x− y| < δ. Hence, we

conclude that u is uniform continuous.

We want now to show that the limit lim
y→∞

u(y) exists. To this end we proceed again using

Fourier methods.

Theorem C.4. Let u be the unique bounded solution to the problem (C.35). Then lim
x→∞

u(x)

exists and it is uniquely determined by G and u itself. Moreover, the limit is positive if{
n ∈ S : n ·N < 0 and

´∞
0 dνgν(n) ̸≡ 0

}
is not a zero measure set.

Proof. Since u is the unique bounded solution, u solves for all x ∈ R

u(x)−
ˆ ∞

−∞
K(y − x)u(y) dy = G(x) χ{x>0} −

ˆ ∞

0
K(y − x)u(y) dy χ{x<0} ≡W (x). (C.38)

Indeed, this is equivalent to (C.35). This can be seen easily, since u solves for x < 0

u(x)−
ˆ 0

−∞
K(y − x)u(y) dy = 0
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and since u = 0 for x < 0 is a possible solution, by uniqueness, this is the only possible
solution. It is not only true that W ∈ L1 (R) ∩ L2 (R) but also that W has all moments
bounded. This follows from the similar property of G (cf. Step 1 in Theorem C.3) as well as

from the inequality 0 ≤
´∞
0 K(y− x)u(y) dyχ{x<0} ≤ ∥u∥∞ χ{x<0}

(
e−|x|
2 − |x|K(x)

)
. Notice

that |x|K(x) ≤ e−|x|
2 . Hence, finite moments and Riemann-Lebesgue Theorem imply that W

has a Fourier transform Ŵ ∈ C0 (R) ∩ C∞ (R) ∩ L2 (R). Moreover, looking at the left hand
side of (C.38) we recall as in [119] that in distributional sense for all ϕ ∈ S (R)

⟨û−F (u ∗K) , ϕ⟩ := ⟨u− u ∗K, ϕ̂⟩ = ⟨u,F
(
(1−

√
2πK̂)ϕ

)
⟩,

where the last equality is due to an elementary calculation involving the convolution and we
define ⟨f, g⟩ =

´
R f(x)g(x) dx. We recall also that 1−

√
2πK̂(ξ) = ξ−arctan(ξ)

ξ := F (ξ). Hence,
for all ϕ ∈ S (R) we have

⟨u,F(ϕF )⟩ = ⟨Ŵ , ϕ⟩. (C.39)

Now we consider for ε > 0 the sequence of standard mollifiers ϕε(ξ) :=
1
εϕ
(
ξ
ε

)
∈ C∞

c (R) ⊂
S (R) such that in distributional sense ϕε ⇀ δ. The smoothness of Ŵ implies ⟨Ŵ , ϕ⟩ → Ŵ (0)
as ε → 0. It is our first aim to show that Ŵ (0) is zero. To this end we study the left hand
side of (C.39). We calculate

⟨u,F(ϕεF )⟩ =
1√
2π

ˆ ∞

0
dx u(x)

ˆ
R
dξ ϕε(ξ)F (ξ)e

−iξx

=
1√
2π

ˆ 1

0
dx u(x)

ˆ
R
dξ ϕε(ξ)F (ξ)e

−iξx − 1√
2π

ˆ ∞

1
dx

u(x)

x2

ˆ
R
dξ (ϕε(ξ)F (ξ))

′′ e−iξx,

where for the last equality we integrated twice by parts in ξ. By a change of coordinates and
the dominated convergence theorem, since F (0) = 0 and |F (εξ)ϕ(ξ)| ≤ |ϕ(ξ)| we see for the
first term as ε→ 0∣∣∣∣ 1√

2π

ˆ 1

0
dx u(x)

ˆ
R
dξ ϕε(ξ)F (ξ)e

−iξx
∣∣∣∣ ≤ 1√

2π

ˆ 1

0
dx u(x)

ˆ
R
dξ |F (εξ)ϕ(ξ)| → 0.

Thus, we shall consider only the second term. We use the following well-known estimate∣∣e−iξx − 1
∣∣ ≤ 2|ξ|δ|x|δ for 0 < δ < 1 and x ∈ R. Then using

´
R (ϕεF )

′′ = 0

1√
2π

ˆ ∞

1
dx

u(x)

x2

ˆ
R
dξ (ϕε(ξ)F (ξ))

′′ e−iξx

=
1√
2π

ˆ ∞

1
dx

u(x)

x2

ˆ
R
dξ (ϕε(ξ)F (ξ))

′′
(
e−iξx − 1

)
,

and hence∣∣∣∣ 1√
2π

ˆ ∞

1
dx

u(x)

x2

ˆ
R
dξ (ϕε(ξ)F (ξ))

′′ e−iξx
∣∣∣∣ ≤ 1√

2π

ˆ ∞

1
dx

u(x)

x2−δ

ˆ
R
dξ
∣∣(ϕε(ξ)F (ξ))′′∣∣ 2|ξ|δ.

Now we notice that
´∞
1 dx u(x)

x2−δ < ∞ and also we see that F (ξ) ≃ ξ2

3 as x → 0, similarly as

ξ → 0 also F ′(ξ) ≃ 2
3ξ and F ′′(ξ) ≃ 2

3 . Hence, with a change of variables we see that

ˆ
R
dξ
∣∣(ϕε(ξ)F (ξ))′′∣∣ |ξ|δ

≤
ˆ
R
dξ

[
|ϕ(ξ)||F ′′(εξ)|εδ|ξ|δ + 2|ϕ′(ξ)| |F

′(εξ)||ξ|δ
ε1−δ

+ |ϕ′′(ξ)| |F (εξ)||ξ|
δ

ε2−δ

]
.
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With the consideration above about F and since ϕ ∈ C∞
c (R) we see that there exists a

constant C = 2∥ϕ∥C∞
c (R)

(
max
suppϕ

|ξ|
)2+δ

<∞ such that

|ϕ(ξ)||F ′′(εξ)|εδ|ξ|δ + |ϕ′(ξ)| |F
′(εξ)||ξ|δ
ε1−δ

+ |ϕ′′(ξ)| |F (εξ)||ξ|
δ

ε2−δ
≤ Cεδ

for any ξ ∈ supp(ϕ). Thus, again with the dominated convergence theorem we conclude∣∣∣∣ 1√
2π

ˆ ∞

1
dx

u(x)

x2

ˆ
R
dξ (ϕε(ξ)F (ξ))

′′ e−iξx
∣∣∣∣→ 0,

which implies the first claim, namely Ŵ (0) = 0.

As next step we prove that the limit lim
x→∞

u(x) exists. First of all we know that in distri-

butional sense û solves the equation

Fû
S′
= Ŵ . (C.40)

Given any distributional solution û to (C.40) also û + ûh is a solution, where ûh is the

homogeneous solution to Fûh
S′
= 0. Let us consider the tempered distribution given by ûh

and let φ ∈ S(R) be any testfunction with support away from zero, i.e. supp(φ) ⊂ R \ {0}.
Since F (ξ) = 0 if and only ξ = 0 and since it is bounded, the function φ

F ∈ S (R). Hence,´
R ûhφ = 0. This implies (see [120]) that ûh

S′
=

∑
0≤α<m

cα(D
αδ), for cα constants and a suitable

m ∈ N. Since cαF (Dαδ) ̸≡ 0 for any α ≥ 2 we conclude

ûh = c0δ + c1δ
′

for suitable constants c0, c1. Using the smoothness of Ŵ we can write Ŵ (ξ) = Ŵ ′(0)ξ+H(ξ)

where Ŵ ′(0) = m1(W )√
2πi

and H ∈ C∞ (R) with H(0) = H ′(0) = 0. Let us consider the behavior

of F

F (ξ) ≃
{

ξ2

3 − ξ4

5 +O(ξ6) ξ → .0,

1− π
2ξ +O

(
1
ξ2

)
ξ → ∞ (C.41)

Hence,

f(ξ) := Ŵ (ξ)− 3m1(W )√
2πi

F (ξ)

ξ
∈ L2 (R) (C.42)

and it also satisfies

f(ξ) ≃ H ′′(0)ξ2 +O(ξ3) as ξ → 0. (C.43)

By the boundedness of F and given its behavior as in (C.41) we conclude that the function
ĥ := f

F ∈ L2 (R), in particular ĥ is well-defined in zero. It is easy to see that û solves

F (ξ)û(ξ)
S′
=

3m1(W )√
2πi

F (ξ)

ξ
+ f(ξ). (C.44)

Therefore, since ĥ ∈ L2(R) we have that û(ξ) = 3m1(W )√
2πi

PV
(
1
ξ

)
+ ĥ(ξ) is a solution to (C.44).

We denote by PV (·) the principal value. Thus, adding the homogeneous solution we conclude

û(ξ)
S′
= c0δ + c1δ

′ +
3

2i
m1(W )

√
2

π
PV

(
1

ξ

)
+ ĥ(ξ),
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which yields

u(x)
S′
=

c0√
2π

− c1i√
π
x+

3

2
m1(W )sgn(x) + h(x),

where h ∈ L2(R) is the inverse transform of ĥ. Since u is bounded and satisfies u(x) = 0 for
all x < 0, we have in distributional sense

u(x) =
3

2
m1(W ) +

3

2
m1(W )sgn(x) + h(x).

Hence for x > 0 also u(x) = 3m1(W ) + h(x) pointwise. Lemma C.3 implies also that h is
uniformly continuous in the positive real line. Hence, lim

x→∞
h(x) = 0 and therefore the limit

of u as x→ ∞ exists and is uniquely determined by gν(n) and N . This is true since

lim
y→∞

u(y) = 3m1(W ) = 3

(ˆ ∞

0
dx xG(x)−

ˆ 0

−∞
dx x

ˆ ∞

0
dy K(y − x)u(y)

)
≥ 0.

Also the positivity of the limit is guaranteed when
{
n ∈ S : n ·N < 0 and

´∞
0 dνgν(n) ̸≡ 0

}
is not a zero measure set.

We will define u∞(p) := lim
y→∞

u(y, p) for p ∈ ∂Ω. We can also show that u converges to

u∞ with exponential rate.

Lemma C.4. Let u be the unique bounded solution to the problem (C.35) and u∞ = lim
x→∞

u(x).

Then there exists a constant C > 0 such that

|u− u∞| ≤ Ce−
|x|
2 .

Proof. We use the same notation as in Theorem C.4. Hence, we know that

û(ξ)
S′
=
u∞
2

√
2πδ +

u∞
2

√
2

π
PV

(
1

ξ

)
+ ĥ(ξ), (C.45)

with F (ξ)ĥ(ξ) = Ŵ (ξ)− 3m1(W )√
2πi

F (ξ)
ξ . By the definition of W we see

lim
x↗0

W (x)− lim
x↘0

W (x) =W (0+)−W (0−) = u(0). (C.46)

We recall that W has exactly one discontinuity in x = 0 and that Wχ{x<0} ∈ C∞ (R−) and
Wχ{x>0} ∈ C∞ (R+). By the monotonicity of the two functions Wχ{x<0} and Wχ{x>0} and
since W ∈ L∞ (R) we see that W ′χ{x<0} ∈ L1(R−) and W ′χ{x>0} ∈ L1(R+). Moreoevr, we

have the asymptotics Ŵ (ξ) ≃ u(0)√
2πiξ

+O
(

1
ξ1+δ

)
as |ξ| → ∞ for 0 < δ < 1. Indeed, integrating

by parts and using that lim
|x|→∞

W (x) = 0 we compute

√
2πŴ (ξ) =

ˆ 0

−∞
W (x)e−iξx dx+

ˆ ∞

0
W (x)e−iξx dx

=
u(0)

iξ
+

1

iξ

(ˆ 0

−∞
W ′(x)e−iξx dx+

ˆ ∞

0
W ′(x)e−iξx dx

)
=
u(0)

iξ
− 1

iξ

(ˆ −1

−∞
dx

ˆ ∞

0
dy

e−(y−x)u(y)
2(y − x)

e−iξx +
ˆ 0

−∞
dx

ˆ ∞

1
dy

e−(y−x)u(y)
2(y − x)

e−iξx
)

− 1

iξ

(ˆ 0

−1
dx

ˆ 1

0
dy

e−(y−x)u(y)
2(y − x)

d

dx

e−iξx − 1

−iξ

)

+
1

iξ

(ˆ ∞

1
G′(x)e−iξx dx+

ˆ 1

0
G′(x)

d

dx

e−iξx − 1

−iξ

)
(C.47)
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We conclude integrating by parts and applying the Riemann-Lebesgue Theorem in the fol-

lowing way. First of all, the function ∂x
e−(y−x)

(y−x) is integrable on (−∞, 1) × R+ ∪ R− × (1,∞)

and also G′′(x) is integrable in (1,∞). Moreover, using
∣∣e−iξx − 1

∣∣ ≤ 2|ξ|δ|x|δ for 0 < δ < 1
we have ˆ 0

−1
dx

ˆ 1

0
dy ∂x

(
e−(y−x)u(y)
(y − x)

)
|x|δ ≤ C

ˆ 0

−1
dx
(
|x|δ−1

)
<∞

and ˆ 1

0
dx G′′(x)|x|δ ≤ C

ˆ 1

0

e−x

x1−δ
dx <∞.

For this last estimate we also used that d
dθe

x
cos(θ) = x e

x
cos(θ)

cos2(θ)
sin(θ), which implies |G′′(x)| ≤

2π∥g∥∞ e−x

x . Thus, by the definition of ĥ and using (C.41) we have

ĥ(ξ) ≃
{
O(1) |ξ| → 0,
u(0)√
2π

1
iξ − u∞√

2π
1
iξ +O

(
1

ξ1+δ

)
|ξ| → ∞.

(C.48)

By the definition of û in (C.45) we see

v̂(ξ) := û(ξ)− u∞
2

√
2πδ − PV

(
1

iξ

)(
u∞
2

√
2

π

1

1 + ξ2
+
u(0)√
2π

ξ2

1 + ξ2

)
∈ L2(R). (C.49)

We claim that

(i) v̂ is analytic in the strip S = {z ∈ C : |ℑ(z)| < 3
4};

(ii) |v̂(ξ)| ≤ C
|1+ξ1+δ| ;

(iii) v(x) = u(x)− u∞ + e−|x|
2 (u∞ − u(0)) for x > 0 and v(x) = F−1(v̂)(x).

A contour integral implies then the lemma. Indeed for x > 0 we can compute

√
2π|v(x)| = lim

R→∞

∣∣∣∣ˆ R

−R
v̂(ξ)eiξx dξ

∣∣∣∣
≤ lim
R→∞

∣∣∣∣∣i
ˆ 1

2

0
v̂(R+ it)eiRxe−tx dt

∣∣∣∣∣+ lim
R→∞

∣∣∣∣∣i
ˆ 1

2

0
v̂(−R+ it)e−iRxe−tx dt

∣∣∣∣∣
+ lim
R→∞

∣∣∣∣ˆ R

−R
v̂

(
t+

1

2
i

)
eitxe−

x
2 dt

∣∣∣∣
≤e−x

2 lim
R→∞

ˆ R

−R

C
1
2 + t1+δ

dt = Ce−
x
2 ,

(C.50)

where for the first inequality we used the triangle inequality and the analycity of v̂ by (i), the
second inequality is due to dominate convergence and the claim (ii), finally the last integral
is finite. Equation (C.50) and claim (iii) imply |u(x)− u∞| ≤ Ce−

x
2 for x > 0.

We prove now the claims. To prove claim (i) it is enough to show that ĥ is analytic in S.
Then, (C.45) and (C.49) implies (i). First of all we recall thatW has an exponential decay like

|W (x)| ≤ Ce−|x|, hence |W (x)|e 3
4
|x| ∈ L1 (R) and therefore Paley-Wiener Theorem implies

that Ŵ is analytic in S. Since arctan(z) = 1
2i ln(

1+iz
1−iz ) is analytic in {z ∈ C : |ℑ(z)| < 1} and
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since F (z) = z−arctan(z)
z has exactly one zero in z = 0, which is of degree 2, the definition of

ĥ = f
F together with (C.42) implies that ĥ is analytic in S since (C.43) implies that 0 is a

removable singularity.

For claim (ii) we just put together equations (C.45), (C.48) and (C.49). We notice also
that the constant C > 0 of claim (ii) depends only on Ŵ .

Claim (iii) is more involved. We have to consider again two different contour integrals in
order to compute the inverse Fourier transform of v̂. We start with considering the function

PV (f(ξ)) = PV
(

1
iξ(1+ξ2)

)
. Let first of all x > 0 and let γ+1 the path around i given as in

the following picture.

− 1
R R−R 1

R

0

i

1

Figure C.2: sketch of γ+1 .

Hence, we compute

F−1

(
PV

(
1

iξ

1

1 + ξ2

))
(x) =

1√
2π

lim
R→∞

(ˆ − 1
R

−R
f(ξ)eiξx dξ +

ˆ R

1
R

f(ξ)eiξx dξ

)

=
1√
2π

lim
R→∞

(ˆ
γ+1

f(ξ)eiξxdξ

)
+

1√
2π

lim
R→∞

(ˆ π

0
f

(
eiθ

R

)
ieiθ

R
e−

sin(θ)x
R e

i cos(θ)x
R dθ

)
− 1√

2π
lim
R→∞

(ˆ π

0
f
(
Reiθ

)
Rieiθe−R sin(θ)xeiR cos(θ)x dθ

)
=

√
π

2

(
1− e−x

)
.

For the computation of these integrals we used the Cauchy’s residue theorem and
Resif(ξ)e

iξx = ie−x

2 , the second integral converges to π as R → ∞ and the third converges
to zero, both limit are due to the Lebesgue dominated convergence theorem. Denoting by γ−1
the mirrored path to γ+1 with respect to the real axis and arguing similarly we also get that

for x < 0 the inverse Fourier transformation is F−1
(
PV

(
1
iξ

1
1+ξ2

))
(x) = −

√
π
2

(
1− e−|x|).

Hence,

F−1

(
PV

(
1

iξ

1

1 + ξ2

))
(x) = sgn(x)

√
π

2

(
1− e−|x|

)
. (C.51)

For the function g(x)(ξ) = ξ
i(1+ξ2)

we consider again first of all x > 0 and the path γ+2 around

i given by

−R R

i

1

Figure C.3: sketch of γ+2 .
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Hence, the Cauchy’s residue theorem and the dominated convergence imply

F−1

(
ξ

i(1 + ξ2)

)
(x) =

1√
2π

lim
R→∞

ˆ R

−R
g(ξ)eiξx dξ

=
1√
2π

lim
R→∞

(ˆ
γ+2

g(ξ)eiξxdξ

)
− 1√

2π
lim
R→∞

(ˆ π

0
g
(
Reiθ

)
Rieiθe−R sin(θ)xeiR cos(θ)x dθ

)
=

√
π

2
e−x,

where we also used that Resig(ξ)e
−ξx = e−x

2i . Denoting similarly as before by γ−2 the mirrored

path to γ+2 with respect to the real axis we obtain F−1(g)(x) = −
√

π
2 e

−|x|for x < 0 and thus

F−1

(
ξ

i(1 + ξ2)

)
(x) = sgn(x)

√
π

2
e−|x|. (C.52)

Hence, the definition of u and equations (C.51), (C.52) imply claim (iii) for x > 0

v(x) = u(x)− u∞ +
e−|x|

2
(u∞ − u(0)) .

There are still two important properties of u(y, p) we will need for the rest of the paper
and which are explained in the next two Lemmas. First of all u(y, p) is uniformly bounded in
both variables.

Lemma C.5. Let u(y, p) be the non-negative bounded solution to the problem (C.22) for gν(n)
satisfying the assumption as in Theorem C.3. Then there exists a constant C such that

sup
y∈R, p∈∂Ω

u(y, p) ≤ C <∞.

Proof. By definition u satisfies L(u)(y) = Gp(y) for y > 0 and u(y, p) = 0 for y < 0. Moreover,
recalling the norm as in (C.11) the source can be estimated by

0 ≤ Gp(y) ≤ ∥g∥1e−y,

since |n ·Np| ≤ 1.
Theorem C.3 assures us the existence of a unique bounded continuous (in the positive

line) solution v of L(v)(y) = ∥g∥1e−y for y > 0 and v(y) = 0 for y < 0. Hence, we can apply
the maximum principle of Theorem C.1 as we did in Lemma C.2 to the function v− u(·, p) ∈
C ([0,∞]) and we conclude

0 ≤ u(y, p) ≤ v(y) ≤ ∥v∥∞ := C <∞

for all y ∈ R and p ∈ ∂Ω.

Also, the rate of convergence of u(y, p) to u∞(p) can be bounded independently of p ∈ ∂Ω.

Corollary C.2. There exists a constant C > 0 independent of p ∈ ∂Ω such that

|u(y, p)− u∞(p)| ≤ Ce−
y
2

.
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Proof. This is a consequence of Lemma C.4 and Lemma C.5. From Lemma C.5 we know that
there exists a constant C > 0 independent of p ∈ ∂Ω such that

|W (x)| ≤ C
(
e−|x| + |x|K(x)χ{x<0}

)
∈ L1(R) ∩ L2(R) ∩ L∞(R),

where W is the function defined in (C.38). Since |x|K(x) ≤ e−|x|
2 all moments of W are finite

and for any n ∈ N there exists a constant Cn > 0 independent of p ∈ ∂Ω such that

|mn (W )| ≤ Cn <∞.

Hence, Ŵ ∈ C0(R)∩C∞(R)∩L2(R) and also all derivatives are uniformly bounded in p ∈ ∂Ω

since
∣∣∣Ŵ (n)(ξ)

∣∣∣ ≤ Cn√
2π
. Thus, the function ĥ in (C.48) defined using (C.43) can be bounded

independently of p ∈ ∂Ω.

Moreover, we notice that in (C.47) as |ξ| → ∞ we can bound

∣∣∣∣Ŵ (ξ)− u(0)√
(2π)iξ

∣∣∣∣ by C

|ξ1+δ|
with a constant C > 0 independent of p ∈ ∂Ω. Indeed, as we have seen in Lemma C.4 we
have |G′′(x)| ≤ 2π∥g∥∞ e−x

x and by Lemma C.5 we have also |u(y, p)| ≤ C.
Hence, we conclude as we did in Lemma C.4 that there exists a constant C > 0 independent

of p ∈ ∂Ω such that |v̂(ξ)| ≤ C
|1+ξ1+δ| , where v̂ was defined in (C.49).

Arguing now exactly as in Lemma C.4 using also Lemma C.5 we conclude that there exists
a constant C > 0 independent of p ∈ ∂Ω such that |u(y, p)− u∞(p)| ≤ Ce−

y
2 .

Next, using again the maximum principle we can also show that u(y, p) is Lipschitz con-
tinuous with respect to p ∈ ∂Ω uniformly in y.

Lemma C.6. Let gν(n) be as in Theorem C.3 and let u be the unique bounded solution to
(C.22). Then u is uniformly continuous with respect the variable p ∈ ∂Ω uniformly in y. More
precisely, it is Lipschitz continuous, i.e. there exists a constant C > 0 such that for every
p, q ∈ ∂Ω

sup
y≥0

|u(y, p)− u(y, q)| ≤ C|p− q| := ω1(|p− q|).

Proof. The proof is based on the maximum principle. We start taking 0 < δ̃ < 1 sufficiently
small and we consider p, q ∈ ∂Ω with |p−q| < δ̃. We denote by Sp(q) the plane defined by the

vector
⇀
pq and the unit vector Np. Given that ∂Ω is a C3-surface we can define ρp to be the

radius of curvature of the curve Cp(q) := Sp(q)∩ ∂Ω at p. Since by assumption the curvature
of ∂Ω is bounded from below by a positive constant, for δ̃ small enough we can estimate

1

2
ρpθpq ≤ |p− q| ≤ 2ρpθpq, (C.53)

where θpq is the angle between Np and Nq. This is true, because for δ̃ sufficiently small the
angle θpq is not zero and it is approximately the central angle between the rays connecting p
and q with the center of the circle with radius ρp tangent to p. We denote by R the minimal
radius of curvature of ∂Ω, hence ρp ≥ R. Now we consider the operator L acting on the
difference u(y, p)−u(y, q). We can estimate its absolute value by the sum of the following six
terms

|L ( u(y, p)− u(y, q))| ≤
ˆ
A1

ˆ ∞

0
gν(n)e

− y
|n·Np| dν dn+

ˆ
A2

ˆ ∞

0
gν(n)e

− y
|n·Nq | dν dn

+

ˆ
A3

ˆ ∞

0
gν(n)

∣∣∣e− y
|n·Np| − e

− y
|n·Nq |

∣∣∣ dν dn+

ˆ
A4

ˆ ∞

0
gν(n)

∣∣∣e− y
|n·Np| − e

− y
|n·Nq |

∣∣∣ dν dn
+

ˆ
A5

ˆ ∞

0
gν(n)

∣∣∣e− y
|n·Np| − e

− y
|n·Nq |

∣∣∣ dν dn+

ˆ
A6

ˆ ∞

0
gν(n)

∣∣∣e− y
|n·Np| − e

− y
|n·Nq |

∣∣∣ dν dn,
(C.54)
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where we denote by Ai the following sets

A1 :=
{
n ∈ S2 : n ·Np < 0, n ·Nq ≥ 0

}
, A2 :=

{
n ∈ S2 : n ·Np ≥ 0, n ·Nq < 0

}
,

A3 :=

{
n ∈ S2 : n ·Np < 0, n ·Nq < 0, |n ·Np| ≥ |n ·Nq|, |; |n ·Np| >

4

R
|p− q|

}
,

A4 :=

{
n ∈ S2 : n ·Np < 0, n ·Nq < 0, |n ·Np| ≥ |n ·Nq|, |; |n ·Np| ≤

4

R
|p− q|

}
,

A5 :=

{
n ∈ S2 : n ·Np < 0, n ·Nq < 0, |n ·Nq| ≥ |n ·Np|, |; |n ·Nq| >

4

R
|p− q|

}
and

A6 :=

{
n ∈ S2 : n ·Np < 0, n ·Nq < 0, |n ·Nq| ≥ |n ·Np|, |; |n ·Nq| ≤

4

R
|p− q|

}
.

By symmetry, we need to estimate only the first, the third and the fourth terms. We start
with the first line of equation (C.54). The set A1 is contained by the set given by all the n
such that their angle with Np is in the interval (π2 ,

π
2 + θpq). Using the fact that y

|n·Np| > y,

we estimate the exponential by e−y and hence we see
ˆ
A1

ˆ ∞

0
gν(n)e

− y
|n·Np| dν dn ≤ ∥g∥∞2πθpqe

−y ≤ 4π

R
∥g∥∞e−y. (C.55)

The second term in (C.54) is estimated similarly. For the third term of equation (C.54) we
estimate the difference of the exponential as follows, assuming |n ·Np| ≥ |n ·Nq|∣∣∣e− y

|n·Np| − e
− y

|n·Nq |
∣∣∣ ≤ e

− y
|n·Np| y

∣∣∣∣ 1

|n ·Nq|
− 1

|n ·Np|

∣∣∣∣ ≤ e
− y

|n·Np| y

∣∣∣∣ |n ·Np| − |n ·Nq|
|n ·Nq||n ·Np|

∣∣∣∣ ,
where we used for x > 0 the inequality 1−e−x ≤ x. By definition |n·(Np−Nq)| ≤ θpq ≤ 2

R |p−q|
which implies

0 ≤ |n ·Np| − |n ·Nq| = |n · (Nq −Np)| ≤
2

R
|p− q|.

Since |n ·Np| > 4
R |p− q| we see also that

|n ·Nq| ≥ |n ·Np| −
2

R
|p− q| ≥ |n ·Np|

2
.

Hence, ∣∣∣e− y
|n·Np| − e

− y
|n·Nq |

∣∣∣ ≤ e
− y

|n·Np| y
4|p− q|
R|n ·Np|2

.

Putting together these inequalities we compute

ˆ
A3

ˆ ∞

0
gν(n)

∣∣∣e− y
|n·Np| − e

− y
|n·Nq |

∣∣∣ dν dn ≤ 4|p− q|
R

∥g∥∞
ˆ
A3

dn e
− y

|n·Np|
y

|n ·Np|2

≤4|p− q|
R

∥g∥∞4π

ˆ π
2

0
e
− y

cos(θ)
y sin(θ)

cos2(θ)
dθ =

16π|p− q|
R

∥g∥∞e−y,
(C.56)

where we estimated the last integral in A3 using polar coordinates in S2 using as reference
Np. It remains to estimate the integral on A4. For this term we use the inclusion

A4 ⊂
{
n ∈ S2 : n ·Np < 0, |n ·Np| ≤

4

R
|p− q|

}
⊂
{
(φ, θ) ∈ [0, 2π]× [0, π] : θ ∈

(
−π
2
,−π

2
+ C(R)|p− q|

)
∪
(π
2
− C(R)|p− q|, π

2

)}
,
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where the last inclusion is due to the smallness of 4
R |p − q| < 1 and the expansion of the

arc-cosine. Moreover, C(R) is a constant depending only on R. Hence, as we estimated in
(C.55) we have

ˆ
A4

ˆ ∞

0
gν(n)

∣∣∣e− y
|n·Np| − e

− y
|n·Nq |

∣∣∣ dν dn ≤ C(R)4π∥g∥∞|p− q|. (C.57)

Now, with equations (C.55),(C.56) and (C.57) we estimate the operator by

|L (u(y, p)− u(y, q))| ≤ C(R)∥g∥∞|p− q|e−y,

where C(R) > 0 is a constant depending only on the minimal radius of curvature R. Theo-
rem C.3 and the maximum principle imply the existence of a unique non-negative bounded
continuous function V solution to the equation L(V )(y) = e−y for y ≥ 0. Hence, we ap-
ply the maximum principle of Theorem C.1 as in Lemma C.2 to the continuous functions
C(R)∥g∥∞|p− q|V − (u(y, p)− u(y, q)) and C(R)∥g∥∞|p− q|V − (u(y, q)− u(y, p)). We con-
clude the uniformly continuity of u(y, p) in p uniformly in y

|u(y, p)− u(y, q)| ≤ C(R)∥g∥∞|p− q|.

The modulus of continuity ω1 is hence defined by ω1(r) = C(R)∥g∥∞r.

Corollary C.3. The limit u∞ is Lipschitz continuous in p ∈ ∂Ω.

Proof. This is a direct consequence of the previous Lemma C.6. The modulus of continuity
of u∞ is still the same ω1 of u(y, p).

Finally, we summarize all properties of u in the following proposition.

Proposition C.3. Let gν(n) be as in Theorem C.3 and Ω as in the assumption. For every
p ∈ ∂Ω there exists a unique non-negative bounded solution u(y, p) to (C.22). For every
p ∈ ∂Ω the function u(·, p) is uniformly continuous in [0,∞) and has a non-negative limit
u∞(p) = lim

y→∞
u(y, p), which is strictly positive if

{
n ∈ S : n ·Np < 0 and

´∞
0 dνgν(n) ̸≡ 0

}
is not a zero measure set. Moreover, u(y, p) is uniformly bounded in both variables and
it is Lipschitz continuous with respect to p ∈ ∂Ω uniformly on y ∈ R+. Finally, u∞ is
Lipschitz continuous and there exists a constant C > 0 independent of p ∈ ∂Ω such that

|u(y, p)− u∞(p)| ≤ Ce−
|y|
2 .

C.4 Rigorous proof of the diffusion equilibrium approximation
for constant absorption coefficient

This section of the paper deals with the rigorous proof of the diffusion equilibrium approxi-
mation for the constant absorption coefficient case. We will show that the Stefan-Boltzmann
law uε(x) = 4πσT 4

ε (x) for the temperature Tε associated to the boundary value problem (C.6)
converges pointwise as ε→ 0 to v, the solution to the Dirichlet problem{

−∆v = 0 in Ω,

v = u∞ on ∂Ω,
(C.58)

where u∞ is defined as in Proposition C.3.
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C.4.1 Derivation of the equation for uε

Let us call Iεν the solution to the initial boundary value problem (C.6). We start with the
derivation of the integral equation satisfied by uε = 4πσT 4

ε . To this end we solve by charac-
teristics the equation

n · ∇xIν (x, n) =
1

ε
(Bν (T (x))− Iν (x, n))

Let x ∈ Ω and n ∈ S2. The convexity of Ω implies the existence of a unique xΩ(x, n) ∈ ∂Ω

connecting x in direction −n with the boundary ∂Ω. Hence, x−xΩ(x,n)
|x−xΩ(x,n)| = n and we define

s(x, n) = |x− xΩ(x, n)|. Then x = xΩ(x, n) + s(x, n)n. Integrating along the characteristics
equation (C.6) we get

Iεν(x, n) = gν(n)e
−|x−xΩ(x,n)|

ε +
1

ε

ˆ s(x,n)

0
e−

t
εBν (T (x− tn)) dt. (C.59)

Using the heat equation, i.e. ∇x · F = 0 (see (C.6)), we calculate

0 =

ˆ ∞

0
dν

ˆ
S2
dn n · ∇xI

ε
ν(x, n) =

1

ε

ˆ ∞

0
dν

ˆ
S2
dn Bν(Tε)(x)− Iεν(x, n).

We define uε(x) = 4πσT 4
ε (x) =

´∞
0 dν

´
S2 dnBν (Tε(x)) according to (C.3). Hence also u

ε(x) =´∞
0 dν

´
S2 dn Iεν(x, n). We integrate now the expression we got for the intensity and we

conclude with the equation satisfied by uε as follows

uε(x) =

ˆ ∞

0
dν

ˆ
S2
dn gν(n)e

−|x−xΩ(x,n)|
ε +

1

4πε

ˆ
S2
dn

ˆ s(x,n)

0
e−

t
εuε(x− tn) dt

=

ˆ ∞

0
dν

ˆ
S2
dn gν(n)e

−|x−xΩ(x,n)|
ε +

1

4πε

ˆ
Ω

e−
|x−η|

ε

|x− η|2
uε(η) dη,

where the last equality is due to the change of variables S2×(0,∞) → Ω with (n, t) 7→ x−tn =
η. Hence the sequence uε of exact solutions solves

uε(x)−
ˆ
Ω

e−
|x−η|

ε

4πε |x− η|2
uε(η) dη =

ˆ ∞

0
dν

ˆ
S2
dn gν(n)e

−|x−xΩ(x,n)|
ε . (C.60)

We define the kernel Kε(x) :=
e−

|x|
ε

4πε|x|2 and we notice that its integral in R3 is 1.

Remark. There exists a unique solution uε continuous and bounded. We adapt the proof
in [83]. The existence and uniqueness of a solution uε ∈ L∞ (Ω) can be shown with the
Banach fixed-point Theorem. We define for every given g and ε > 0 the self map Aεg :
L∞ (Ω) → L∞ (Ω) by

Aεg(u)(x) =

ˆ
Ω
Kε (η − x)u(η) dη +

ˆ ∞

0
dν

ˆ
S2
dn gν(n)e

−|x−xΩ(x,n)|
ε .

Then since
´
ΩKε(η − x) dη <

´
R3 Kε(η − x) dη = 1 we conclude that Aεg is a contraction,

hence there is a unique fixed-point, which is the desired unique solution. Moreover, GεxΩ(x) :=´∞
0 dν

´
S2 dn gν(n)e

−|x−xΩ(x,n)|
ε is continuous and since uε ∈ L∞ (Ω) and Kε(x− ·) ∈ L1

(
R3
)

we conclude that the convolution
´
ΩKε(η − x)uε(η) dη is continuous and bounded. Hence,

uε is continuous and bounded. We can also extend continuously uε to the boundary ∂Ω
defining |x− xΩ(x, n)| = 0 for x ∈ ∂Ω and n ·Nx ≤ 0. Then using the generalized dominated
convergence theorem we see that both integral terms in (C.60) are continuous up to the
boundary. Hence, uε ∈ C

(
Ω
)
. Moreover, uε is non-negative. This is because of the maximum

principle as stated in the following theorem.
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Theorem C.5 (Maximum Principle). Let v be bounded and continuous, v ∈ C
(
Ω
)
. Let

LεΩ(v)(x) = v(x)−
´
ΩKε(η − x)v(η) dη. Assume v satisfies one of the following properties:

(i) LεΩ(v)(x) ≥ 0 if x ∈ Ω;

(ii) LεΩ(v)(x) ≥ 0 if x ∈ O ⊂ Ω open and v(x) ≥ 0 if x ∈ Ω \O.

Then, v ≥ 0.

Proof. Let y ∈ Ω such that v(y) = minx∈Ω v(x). Assume v(y) < 0.
Assume that property (i) holds. By continuity of the the operator we have that LεΩ(v)(x) ≥

0 for all x ∈ Ω. Then

0 ≤LεΩ(v)(y) = v(y)−
ˆ
Ω
Kε(η − y)v(η) dη

=

ˆ
Ω
Kε(η − y) (v(y)− v(η)) dη + v(y)

ˆ
Ωc

Kε(η − y) dη < 0,

(C.61)

where we used the normalization of the kernel Kε. Hence, this contradiction yields v ≥ 0.
Assume now that (ii) holds. Then in this case y ∈ O. Then again by the continuity of the

operator we obtain exactly as in (C.61) a contradiction. Thus the Theorem is proved.

C.4.2 Uniform boundedness of uε

In this section we will show that the sequence uε is uniformly bounded in ε. We will use
the maximum principle again. Indeed, we will construct functions Φε uniformly bounded

such that LεΩ(Φε)(x) ≥ ∥g∥1e−
dist(x,∂Ω)

ε . We will use this to prove LεΩ (Φε − uε) (x) ≥ 0 which
implies using the maximum principle 0 ≤ uε ≤ Φε. The main result of this subsection is the
following.

Theorem C.6. There exists suitable constants 0 < µ < 1, 0 < γ(µ) < 1
3 , C1, C2, C3 > 0

and there exists some ε0 > 0 such that the function

Φε(x) = C3∥g∥1
(
C1 − |x|2

)
+ C2∥g∥1


1− γ

1 +
(
d(x)
ε

)2
 ∧

1− γ

1 +
(
µR
ε

)2

 ,

for a ∧ b = min (a, b), R > 0 the minimal radius of curvature R = minx∈∂ΩR(x) and d(x) :=

dist (x, ∂Ω), satisfies LεΩ (Φε) (x) ≥ ∥g∥1e−
d(x)
ε in Ω uniformly for all ε < ε0. Moreover, the

solutions uε of (C.60) are uniformly bounded in ε.

We split the proof of this theorem in two lemmas.

Lemma C.7. Let C1 := 2maxx∈Ω |x|2 + 2 diam (Ω)2 + 4 diam (Ω) + 4, let 0 < ε < 1. Then

LεΩ
(
C1 − |x|2

)
≥ 2ε2.

Proof. We start computing the action of LεR3 on |x|2.

LεR3

[
|·|2
]
(x) = |x|2 −

ˆ
R3

Kε (η − x) |η|2 dη

=−
ˆ
R3

Kε (η − x) |η − x|2 dη = −2ε2,
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where we expanded |η|2 = |x + (η − x)|2 and we used that
´
R3 Kε = 1 and the symmetry of

the kernel Kε.
Le D := diam(Ω) and let B = 2maxx∈Ω |x|2 and β = 2D2 + 4D + 4. Thus, C1 = B + β.

Then

LεΩ
(
K + β − |·|2

)
(x) = (B + β)

ˆ
Ωc

Kε (η − x) dη − LεR3

[
|·|2
]
(x)−

ˆ
Ωc

Kε (η − x) |η|2 dη

≥ (B + β)

ˆ
Ωc

Kε (η − x) dη + 2ε2 − 2 |x|2
ˆ
Ωc

Kε (η − x) dη − 2

ˆ
Ωc

Kε (η − x) |η − x|2 dη,

where we used |η|2 ≤ 2 |x|2 + 2 |η − x|2. Moreover using that B − 2|x|2 ≥ 0 and splitting for
x ∈ Ω the complement of the domain as Ωc = (Ωc ∩BD(x)) ∪Bc

D(x) we obtain

LεΩ
(
K + β − |·|2

)
(x) ≥2ε2 +

ˆ
Bc

D/ε
(0)
Kε (η)

(
β − 2ε2 |η|2

)
dη

=2ε2 + βe−
D
ε − e−

D
ε
(
2D2 + 4Dε+ 4ε2

)
≥ 2ε2,

where in the first inequality we used that 2 |η − x|2 ≤ 2D2 ≤ β for η, x ∈ BD(x) and for the
integral in Bc

D(x) we changed variables η−x
ε 7→ η and we computed the resulting integral using

also that ε < 1.

In order to proceed further with the construction of the supersolution, we will use repeat-
edly the distance function and its relation to the curvature of the domain’s boundary. All the
properties of this function can be found in the Appendix “Boundary curvatures and distance
functions” in [67]. It is well-know that if the boundary ∂Ω is C3, then in a neighborhood of
the boundary the distance function can be expanded by Taylor as

d(η) = d(x) +∇d(x) · (η − x) +
1

2
(η − x)⊤∇2d(x) (η − x) +O

(
|η − x|3

)
(C.62)

Moreover, the following proposition holds.

Proposition C.4. For x ∈ Ω in a neighborhood of the boundary the gradient of the distance
function is the inner normal, so that |∇d(x)| = 1. Moreover, denoting R = minx∈∂ΩR(x) > 0
the minimal radius of curvature and letting µ ∈ (0, 1) we have

ξ⊤∇2d(x)ξ ≤ 1

(1− µ)R
(C.63)

for every x ∈ {y ∈ Ω : d(y) < Rµ} and ∥ξ∥ = 1.

Proof. See 14.6, Appendix “Boundary curvatures and distance functions” ( [67]).

Using these properties of the distance function we can prove the next lemma.

Lemma C.8. Let ψ(x) :=

(
1− γ

1+
(

d(x)
ε

)2

)
∧
(
1− γ

1+(µR
ε )

2

)
. Then there exists some 0 < µ <

1 small enough, 0 < γ(µ) < 1
3 , 0 < ε1 < 1 small enough and constants C0 := C0(R,Ω, µ, γ) >

0 and c := c(R,µ, γ) > 0 such that for all 0 < ε ≤ ε1

LεΩ (ψ) (x) ≥


C0e

− d(x)
ε 0 < d(x) ≤ Rµ

2

−cε2 Rµ
2 < d(x) < Rµ

0 d(x) ≥ Rµ

(C.64)
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Proof. We start with some preliminary consideration on the distance function. We define
d(η)
ε := dε (η). For every x, η ∈ {y ∈ Ω : d(y) < Rµ} we have using (C.62)

dε (η)
2 =dε (x)

2 +
2d(x)∇d(x) · (η − x)

ε2
+
d(x) (η − x)⊤∇2d(x) (η − x)

ε2

+
(∇d(x) · (η − x))2

ε2
+O

(
d(x)

ε2
|η − x|3

)
.

(C.65)

Then Taylor’s expansion shows

1

1 + dε (η)
2 =

1(
1 + dε (x)

2
)(

1 +
[
dε (η)

2 − dε (x)
2
]

1
1+dε(x)

2

)
=Q(1)

ε (x, η) +Q(2)
ε (x, η) +Q(3)

ε (x, η),

(C.66)

where we the terms Q
(i)
ε are defined as follows.

Q(1)
ε (x, η) =

1

1 + dε (x)
2 − 2d(x)∇d(x) · (η − x)

ε2
(
1 + dε (x)

2
)2 ,

Q(2)
ε (x, η) = −d(x) (η − x)⊤∇2d(x) (η − x)

ε2
(
1 + dε (x)

2
)2 − (∇d(x) · (η − x))2

ε2
(
1 + dε (x)

2
)2 +

4d2(x) (∇d(x) · (η − x))2

ε4
(
1 + dε (x)

2
)3 ,

Q(3)
ε (x, η) = O

d(x)
ε2

|η − x|3(
1 + dε (x)

2
)2
+O

d(x)
ε4

|η − x|3(
1 + dε (x)

2
)3
 .

We consider now the function ψ(x) defined in the statement of Lemma C.8. We take M = 1
µ2

for 0 < µ < 1 small enough and 0 < ε < 1 also small enough such that 0 < Mε < Rµ
2 , i.e.

0 < ε < Rµ3

2 , and we decompose Ω in four disjoint sets

Ω = {d(x) ≥ Rµ} ∪ {d(x) < Mε} ∪
{
Mε ≤ d(x) ≤ Rµ

2

}
∪
{
Rµ

2
< d(x) < Rµ

}
.

We proceed estimating LεΩ(ψ)(x) for x in each of these regions of Ω.

{d(x) ≥ Rµ}

{Rµ2 < d(x) < Rµ}

{Mε ≤ d(x) ≤ Rµ
2 }

{d(x) < Mε}

Figure C.4: Decomposition of Ω.
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For further reference we write

LεΩ (ψ) (x) =ψ(x)−
ˆ
Ω∩{d(η)<Rµ}

dηKε(η − x)

(
1− γ

1 + dε (η)
2

)

−
ˆ
Ω∩{d(η)≥Rµ}

dηKε(η − x)

1− γ

1 +
(
µR
ε

)2
 .

(C.67)

In order to estimate LεΩ(ψ)(x) in the region {d(x) ≥ Rµ} we will use the fact that the min-
imum of supersolutions is again a supersolution. In the region where d(x) < Mε we will use
the explicit form of the kernel to see that the main contribution has the right sign. Finally, in
the region {Mε ≤ d(x) < Rµ} the idea behind the arguments we will present is that LεΩ(ψ)(x)
can be approximated by −ε2∆ψ using Taylor.

Step 1: {d(x) ≥ Rµ}
First of all we notice that if d(x) ≥ Rµ then LεΩ(ψ)(x) ≥ 0. Indeed, ψ(η) ≤ ψ(x) =

1− γ

1+(µR
ε )

2 in the first integral of (C.67) since d(η) < Rµ there. Hence

LεΩ (ψ) (x) ≥ LεΩ

1− γ

1 +
(
µR
ε

)2
 ≥ 0. (C.68)

Step 2: {d(x) < Mε}
We consider now the region {d(x) < Mε}. After a suitable rigid motion we can assume

0 ∈ ∂Ω and x = (d(x), 0, 0). Hence, Ω ⊂ R+ × R2 and

ˆ
Ωc

e−
|η−x|

ε

4πε |η − x|2
dη ≥

ˆ −d(x)/ε

−∞
K (η) dη ≥

ˆ −M

−∞
K (η) dη := νM > 0.

K is as usual the normalized exponential integral. On the other hand, using that 1
1+dε(x)

2 ≤ 1

and choosing γ < νM
2 we can conclude

LεΩ (ψ) (x) =− γ

1 + dε (x)
2 +

ˆ
Ωc

dηKε(η − x)

+ γ

ˆ
Ω
dηKε(η − x)

 1

1 + dε (η)
2 ∨ 1

1 +
(
µR
ε

)2
 ≥ νM

2
≥ νM

2
e−dε(x),

(C.69)

where a ∨ b = max(a, b).

Step 3:
{
Mε ≤ d(x) ≤ Rµ

2

}
We consider now the set

{
Mε ≤ d(x) ≤ Rµ

2

}
. As first step we plug (C.66) into the right

hand side of (C.67). To this end we define three integral terms J1, J2, J3 as

J1 =1− γ

1 + dε (x)
2 −

ˆ
Ω∩{d(η)<Rµ}

dη Kε(η − x)
(
1− γQ(1)

ε (x, η)
)

−
ˆ
Ω∩{d(η)≥Rµ}

dη Kε(η − x)

(
1− γ

1 + R2µ2

ε2

)
,

(C.70)
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J2 =

ˆ
Ω∩{d(η)<Rµ}

dη Kε(η − x)
(
γQ(2)

ε (x, η)
)
, (C.71)

J3 =

ˆ
Ω∩{d(η)<Rµ}

dη Kε(η − x)
(
γQ(3)

ε (x, η)
)
. (C.72)

Hence, we have

LεΩ(ψ)(x) = J1 + J2 + J3. (C.73)

The main contribution to these terms is due to J2. Therefore we start with this term and we
show that for 0 < µ < 1 small enough there exists a constant C̃(µ) > 0 independent of ε such
that

J2 ≥
C̃(µ)γ(

1 + dε (x)
2
)2 . (C.74)

In order to prove this estimate we first notice that

4dε (x)
2(

1 + dε (x)
2
) − 1 =3− 4(

1 + dε (x)
2
) ≥ 3− 4

(1 +M2)
≥ 0. (C.75)

Hence, multiplying this inequality by Kε(η−x)γ(∇d(x)·(η−x))
2

ε2(1+dε(x)2)
2 and integrating on {d(η) < Rµ}

we obtain

ˆ
Ω∩{d(η)<Rµ}

dη Kε(η − x)

−γ (∇d(x) · (η − x))2

ε2
(
1 + dε (x)

2
)2 +

4γd2(x) (∇d(x) · (η − x))2

ε4
(
1 + dε (x)

2
)3


≥
γ
(
3− 4

1+M2

)
(
1 + dε (x)

2
)2 ˆ

BMε(x)
dη Kε(η − x)

(∇d(x) · (η − x))2

ε2

(C.76)

=
γ
(
3− 4

1+M2

)
(
1 + dε (x)

2
)2 1

4π

ˆ 2π

0
dφ

ˆ π

0
dθ sin(θ) cos2(θ)

ˆ M

0
dr e−rr2 =

γC(M)
(
3− 4

1+M2

)
(
1 + dε (x)

2
)2 ,

where used that BMε(x) ⊂ {d(η) < Rµ} and we define the constant C(M) = 1
3

´M
0 dr e−rr2 =

1
3(2 − 2e−M − 2Me−M −M2e−M ) which depends on M = 1

µ2
. Notice that C(M) → 2

3 as

M → ∞ and hence for M sufficiently large we have also C(M) ≥ 1
2 .

In order to conclude the estimate for J2 we use the result (C.63) to estimate the Hessian
of the distance function, thus

γd(x) (η − x)⊤∇2d(x) (η − x)

ε2
(
1 + dε (x)

2
)2 ≤ γµ |η − x|2

ε2(1− µ)
(
1 + dε (x)

2
)2 (C.77)

and we conclude

−
ˆ
Ω∩{d(η)<Rµ}

dη Kε(η − x)
γd(x) (η − x)⊤∇2d(x) (η − x)

ε2
(
1 + dε (x)

2
)2 ≥ −C γµ

(1− µ)
(
1 + dε (x)

2
)2 ,
(C.78)
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for some constant C > 0.
Combining (C.76) and (C.78) we obtain (C.74).

We proceed now with the term J1 in (C.70). Using the symmetry of the scalar product in
R3 we write

J1 =

ˆ
Ωc

dη Kε(η − x)
(
1− γQ(1)

ε (x, η)
)

+

ˆ
Ω∩{d(η)≥Rµ}

dη Kε(η − x)

(
γ

1 + R2µ2

ε2

− γQ(1)
ε (x, η)

)
= J1,1 + J1,2.

(C.79)

We proceed with the estimate for J1,1 in (C.79). By means of a suitable coordinate system
we can assume again 0 ∈ ∂Ω and x = (d(x), 0, 0). We notice that if η ∈ (−∞, d(x))×R2 then
∇d(x) · (η − x) = η1 − d(x) ≤ 0, while if η ∈ (d(x),∞)×R2 then ∇d(x) · (η − x) ≥ 0. Hence,
we obtain

J1,1 ≥
ˆ
Ωc∩(−∞,d(x))×R2

dη Kε(η − x)
(
1− γQ(1)

ε (x, η)
)
. (C.80)

We now decompose the set Ωc∩
(
(−∞, d(x))× R2

)
=
(
(−∞, 0)× R2

)
∪
(
Ωc ∩

(
(0, d(x))× R2

))
.

Using that
d(x)

ε2
(
1 + dε (x)

2
)2 =

1

d(x)
(
1 + dε (x)

2
) − 1

d(x)
(
1 + dε (x)

2
)2 (C.81)

and since γ < 1
3 we have 1− γ

1+dε(x)
2 > 0 and therefore we obtain

ˆ
(−∞,0)×R2

dη Kε(η − x)
(
1− γQ(1)

ε (x, η)
)
≥
ˆ
(−∞,0)×R2

dη Kε(η − x)
2γ∇d(x) · (η − x)

dε (x) ε
(
1 + dε (x)

2
)

=− 2γ

dε (x)
(
1 + dε (x)

2
) ˆ ∞

dε(x)
dz K (z) z ≥ − γ

2dε (x)

1 + dε (x)

1 + dε (x)
2 e

−dε(x)

≥− γC

M

1(
1 + dε (x)

2
)2 ,

(C.82)

where we also changed variable (dε (x)−z) 7→ z, we used the identity (C.25) for the normalized
exponential integral in Proposition C.2, we estimated dε (x) ≥M and finally we denote by C

the constant such that (1+x2)2

2 e−|x| ≤ C.
Concerning the integral in the set Ωc ∩

(
(0, d(x))× R2

)
we proceed similarly using again

(C.81) and also the fact that if z > 0 then z − d(x) > −d(x). Hence, we have

ˆ
Ωc∩((0,d(x))×R2)

dη Kε(η − x)
(
1− γQ(1)

ε (x, η)
)

≥
ˆ
Ωc∩((0,d(x))×R2)

dη Kε(η − x)

1− γ

1 + dε (x)
2 +

2γ∇d(x) · (η − x)

dε (x) ε
(
1 + dε (x)

2
)


=

ˆ
Ωc∩((0,d(x)×R2)

dz Kε(η − d(x)e1)

1− γ

1 + dε (x)
2 +

2γ(η1 − d(x))

d(x)
(
1 + dε (x)

2
)
 ≥ 0

(C.83)
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Hence, for Mε ≤ d(x) < Rµ and γ < 1
3 we can summarize

J1,1 ≥ − γ(
1 + dε (x)

2
)2 CM . (C.84)

Remark. Notice that the estimates (C.80)-(C.84) are valid in the whole region {Mε ≤ d(x) <
Rµ}.

We still have to consider the integral J1,2 in (C.79). We notice that for all η ∈ Ω with

d(η) ≥ Rµ we have on the one hand |η − x| ≥ Rµ
2 and on the other hand ∇d(x) · (η − x) ≥ 0

since d(η) > d(x). We recall that D := diam (Ω) and that Ω ∩ {d(η) ≥ Rµ} ⊂ BD(x).
Therefore, we estimate

J1,2 ≥−
ˆ
Ω∩{d(η)≥Rµ}

dη Kε(η − x)
γ

1 + dε (x)
2 ≥ − γe−

Rµ
2ε

1 + dε (x)
2

ˆ
BD(0)

dz
1

4πε|z|2

≥− γ
e−

dε(x)
2

1 + dε (x)
2

4D

Rµ
≥ −γCD

R

µ(
1 + dε (x)

2
)2 (C.85)

where we used the well-known estimate xe−x ≤ e−1 combined with e−
Rµ
4ε ≤ e−

d(x)
2ε and we

denoted by C the constant such that 4x(1 + x2)e−
x
2 ≤ C and finally the relation M = 1

µ2
.

Finally we estimate the term J3 in (C.72). Here we have to estimate the integral term

containing the error terms Q
(3)
ε (x, η) of the Taylor expansion (C.65). If Mε ≤ d(x) ≤ Rµ

2 and
if ε < 1 we use x

1+x2
= 1

x − 1
x(1+x2)

and we calculate

γ

ˆ
Ω∩{d(η)<Rµ}

dη Kε(η − x)

d(x)
ε2

|η − x|3(
1 + dε (x)

2
)2 +

d(x)

ε4
|η − x|3(

1 + dε (x)
2
)3


≤
ˆ
R3

dη
γe−|η|

4π

|η|(
1 + dε (x)

2
)2
d(x)ε+ 1

d(x)
ε

− 1
d(x)
ε

(
1 + dε (x)

2
)


≤ Cγ(
1 + dε (x)

2
)2 (Rµ2 + µ2

)
.

(C.86)

Hence, also J3 ≥ − Cγ

(1+dε(x)2)
2

(
Rµ
2 + µ2

)
.

We conclude putting together estimates (C.74) (C.79), (C.84), (C.85) and (C.86) the
existence of a constant C(Ω) > 0 independent of µ, γ, ε such that

LεΩ (ψ) (x) ≥ γ(
1 + dε (x)

2
)2 [C(M)

(
3− 4

1 +M2

)
− C(Ω)

µ

1− µ

]
. (C.87)

Choosing 0 < µ < 1 small enough, depending only on Ω, such that C(M) > 1
3 and C(Ω) µ

1−µ <
1
6 we obtain

LεΩ (ψ) (x) ≥ γ

6
(
1 + dε (x)

2
)2 ≥ Ce−

d(x)
ε (C.88)
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for Mε ≤ d(x) ≤ Rµ
2 and some constant C depending on Ω, R, γ, µ but independent of ε.

Step 4:
{
Rµ
2 < d(x) < Rµ

}
It remains to calculate the behavior of LεΩ(ψ) when Rµ

2 < d(x) < Rµ. Here, we show that
there exists a constant c(R,µ, γ) such that LεΩ (ψ) (x) ≥ −cε2. We can use several results we
obtained in Step 3. We decompose again the operator LεΩ(ψ)(x) = J1 + J2 + J3 according to
(C.73) using the integral terms defined in (C.70)-(C.72).

First of all (C.75) implies

ˆ
Ω∩{d(η)<Rµ}

dη Kε(η − x)

−γ (∇d(x) · (η − x))2

ε2
(
1 + dε (x)

2
)2 +

4γd2(x) (∇d(x) · (η − x))2

ε4
(
1 + dε (x)

2
)3

 ≥ 0

and hence we estimate J2 using (C.77) and (C.78)

J2 ≥−
ˆ
Ω∩{d(η)<Rµ}

dη Kε(η − x)
γd(x) (η − x)⊤∇2d(x) (η − x)

ε2
(
1 + dε (x)

2
)2

≥− C
γµ

(1− µ)
(
1 + dε (x)

2
)2 ≥ − 8γC

(1− µ)R3
ε3,

(C.89)

where we used 1 + dε (x)
2 ≥ dε (x)

2 ≥
(
Rµ
2ε

)2
and 0 < ε < Rµ3

2 .

We now proceed to estimate J1. To this end we use again the decomposition (C.79). The
estimate (C.84) for J1,1 is also valid in the region {Rµ2 < d(x) < Rµ}, as we indicated in the

remark after (C.84). Hence we have for ε < Rµ3

2

J1,1 ≥ − γµ2C(
1 + dε (x)

2
)2 ≥ −8γC

R2
ε3.

Concerning the term J1,2 we have to argue slightly different than in Step 3. Using now the
first inequality in (C.85) and

´
R3 dηKε(η − x) = 1 we compute

J1,2 ≥−
ˆ
Ω∩{d(η)≥Rµ}

dη Kε(η − x)
γ

1 + dε (x)
2 ≥ − γ

1 + dε (x)
2 ≥ − 4γ

(Rµ)2
ε2. (C.90)

Finally, we estimate J3 as defined in (C.72). Arguing as in (C.86) and using 1 + x2 ≥ x2 and

0 < ε < Rµ3

2 we compute

ˆ
Ω∩{d(η)<Rµ}

dη Kε(η − x)

d(x)
ε2

|η − x|3(
1 + dε (x)

2
)2 +

d(x)

ε4
|η − x|3(

1 + dε (x)
2
)3


≤γ
(
d(x)2 + 1

)
4π (dε (x))

5

ˆ
R3

dη e−|η| |η| ≤ 2γC
(
R2 + 2

)
R3

ε2.

(C.91)

Thus, also J3 ≥ −2γC(R2+2)
R3 ε2.
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Hence, (C.89),(C.8),(C.90) and (C.91) imply the existence of a constant c(R,µ, γ) > 0
independent of ε such that

LεΩ (ψ) (x) ≥ −cε2 (C.92)

for all Rµ2 < d(x) < Rµ .

We know summarize the results. Equations (C.68), (C.69), (C.88), (C.92) imply the claim
in (C.64). We remark that µ, γ and ε1 are chosen as follows. First of all µ is chosen according
to Step 3 as in (C.87), then γ is taken according to Step 2 such that 0 < γ < νM

2 and finally

ε1 satisfies 0 < ε1 <
Rµ3

2 . This concludes the Lemma C.8.

Using Lemma C.7 and C.8 we can now prove Theorem C.6.

(Proof of Theorem C.6). Let C1 be the constant defined in Lemma C.7 and let γ, µ, C0, c
be as in Lemma C.8. We define C2 :=

1
C0

and C3 :=
C0+c
2C0

> 1
2 . Notice that all these constants

are independent of ε. Hence, Lemma C.7 and C.8 imply

LεΩ (Φε) (x) ≥ ∥g∥1


e−

d(x)
ε + 2C3ε

2 0 < d(x) ≤ Rµ
2 ,

ε2 Rµ
2 < d(x) < Rµ,

2C3ε
2 d(x) ≥ Rµ,

≥ ∥g∥1


e−

d(x)
ε 0 < d(x) ≤ Rµ

2 ,

ε2 Rµ
2 < d(x) < Rµ,

ε2 d(x) ≥ Rµ.

(C.93)
We define now ε0 := min {1, a, ε1} with a such that 2a ln( 1a) <

Rµ
2 and ε1 > 0 as in Lemma

C.8. Then ε2 ≥ e−
Rµ
2ε ≥ e−

d(x)
ε for all d(x) > Rµ

2 .
We now apply the maximum principle in Theorem C.5 to the function Φε − uε. This

function satisfies the continuity and boundedness assumption. Indeed, for any ε > 0 the
function uε is continuous and bounded as we have seen at the beginning of Section 4.1.
Moreover, by construction Φε is continuous and it is easy to see that it is even uniformly
bounded since

0 ≤ Φε(x) ≤ ∥g∥1 (2C3C1 + C2) .

We also have

LεΩ (Φε − uε) (x) ≥ ∥g∥1e−
d(x)
ε −

ˆ ∞

0
dν

ˆ
n·NxΩ

<0
dn gν(n)e

−|x−xΩ(x,n)|
ε ≥ 0,

since |x− xΩ(x, n)| ≥ d(x). Hence, Theorem C.5 implies that Φε − uε ≥ 0 and thus

0 ≤ uε ≤ Φε ≤ C̃ <∞

uniformly in ε and x ∈ Ω.

C.4.3 Estimates of uε − u near the boundary ∂Ω

In this subsection we will prove that for each point p ∈ ∂Ω the function u defined in (C.22) is a

good approximation of uε in a neighborhood of size close to ε
1
2 . Notice that this neighborhood

is much greater than the region of size ε. We will do it by means of the maximum principle
in Theorem C.5. Now we start estimating the action of the operator LεΩ on u− uε.

Lemma C.9. Let p ∈ ∂Ω and let Rp be the isometry defined in (C.13). Then the following
holds for x ∈ Ω, δ > 0 sufficiently small and independent of ε and a suitable 0 < A < 1 and
constant C > 0∣∣∣∣LεΩ(u(Rp(·) · e1

ε
, p

)
− uε

)
(x)

∣∣∣∣ ≤ Ce−
Ad(x)

ε

{
εδ if |x− p| < ε

1
2
+2δ,

1 if |x− p| ≥ ε
1
2
+2δ.

(C.94)
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Proof. Let us denote by Πp the half space Πp := R−1
p

(
R+ × R2

)
. Then the function U ε(x, p) :=

u
(
Rp(x)·e1

ε , p
)

is a continuous bounded function which maps Πp × ∂Ω to R+. Notice that

U ε(x, p) is the solution to the planar equation (C.22) before rescaling and rotating. Our plan
is to approximate LεΩ

(
U ε
)
by LεΠp

(
U ε
)
. Let x ∈ Πp and p ∈ Ω. Using the definition of u in

(C.22) we can compute

ˆ ∞

0
dη K

(
η − Rp(x) · e1

ε

)
u(η, p) =

ˆ
R+×R2

dη
e
−
∣∣∣η−Rp(x)

ε

∣∣∣
4π
∣∣∣η − Rp(x)

ε

∣∣∣2u (η1, p)
=

ˆ
R+×R2

dη
e−

|η−Rp(x)|
ε

4πε |η −Rp(x)|2
u
(η1
ε
, p
)
=

ˆ
Πp

dη Kε(η − x)U ε(η, p),

where we used in the first equality the translation invariance of the integral with respect to
the second and third variable, the definition of the planar kernel and the definition of y. For
the second equality we used the change of variables η̃ = εη and in the last identity the change
of variables η̃ = R−1

p (η) gives the result. In order to write the value of LεΠp

(
U ε
)
we use

once again equation (C.22) and we define xΠp(x, n) as the point on the boundary of Πp with
x−xΠp (x,n)

|x−xΠp (x,n)| = n, i.e. x = xΠp(x, n) +
∣∣x− xΠp(x, n)

∣∣n if n ·Np < 0. By construction we see

that
Rp(x)·e1
|n·Np| =

∣∣x− xΠp(x, n)
∣∣. Hence,

LεΠp

(
U ε(·, p)

)
(x) =

ˆ ∞

0
dν

ˆ
n·Np<0

dn gν(n)e
− |x−xΠp

(x,n)|
ε .

We will hence estimate the two integrals terms on the right hand side of the following equation

∣∣LεΩ (U ε(·, p)− uε
)
(x)
∣∣ ≤ˆ

Πp\Ω
dηKε(η − x)U ε(·, p)

+

ˆ ∞

0
dν

ˆ
S2
dn gν(n)

∣∣∣∣∣e− |x−xΠp
(x,n)|

ε − e−
|x−xΩ(x,n)|

ε

∣∣∣∣∣ = S1 + S2,

(C.95)

where we put
∣∣x− xΠp(x, n)

∣∣ = ∞ if n ·Np ≥ 0.

Step 1: estimate of S1.

It is always possible to estimate S1 by e−
d(x)
ε , indeed using Bd(x)(x) ⊂ Ω we compute

ˆ
Πp\Ω

dηKε(η − x)U ε(η, p) ≤
ˆ
Bc

d(x)
(x)
dηKε(η − x)U ε(η, p) ≤ Ce−

d(x)
ε , (C.96)

where C > 0 is the uniform bound on u that we have obtained in Lemma C.5.

Our goal is to obtain a better estimate for the region |x−p| < ε
1
2
+2δ (cf. (C.94)). Therefore

we will now assume |x−p| < ε
1
2
+2δ and since d(x) < |x−p| we can also assume d(x) < ε

1
2
+2δ.



218 APPENDIX C. DIFFUSION APPROXIMATION OF STATIONARY RTE
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θ

Figure C.5: Decomposition of Πp \ Ω.

Let p ∈ ∂Ω and Πp the half space defined at the beginning of the proof. Let x ∈ Ω with

|x − p| < ε
1
2
+2δ for ε > 0 as small as needed. Let π∂Ω(x) ∈ ∂Ω be the projection of x on

the boundary as in (C.14). Then x = π∂Ω(x) − d(x)Nπ∂Ω(x). We denote further by θ(x) the
angle between the normal vectors Np and Nπ∂Ω(x). Let Tp and Tπ∂Ω(x) the tangent planes to
∂Ω containing p respectively π∂Ω(x). We define also ζ = Tp ∩

{
x+ tNπ∂Ω(x) : t ≥ 0

}
and Tζ

the plane orthogonal to Nπ∂Ω(x) containing ζ. We denote by ℓ(x) =
∣∣ζ −Nπ∂Ω(x)

∣∣ the distance
between Tζ and Tπ∂Ω(x).

We decompose now Πp \ Ω in three larger regions, i.e. Πp \ Ω ⊂ A1 ∪A2 ∪A3. We define
A1 := Ππ∂Ω(x)\Ω, A2 is the region containing all points between the planes Tπ∂Ω(x) and Tζ and
finally A3 :=

{
ζ ∈ R3 : 0 ≤ Nπ∂Ω(x) · (η − ζ) ≤ sin(θ(x))|η − ζ|

}
. The choice of these regions

has been made in order to obtain integrals that are symmetric and easier to compute.

By standard differential geometry arguments we know that θ(x) ≤ 1
Rε

1
2
+2δ and that for

some constant C(Ω) > 0 also θ(x) ≤ C(Ω)|x − p|. Moreover, denoting by ρ the radius of
curvature of the curve given by the intersection of ∂Ω with the plane uniquely defined by Np,
Nπ∂Ω(x) and containing p we obtain

ℓ(x) ≤ Cρθ(x)2 ≤ C(Ω)|x− p|2.

In case θ = 0 and hence Nπ∂Ω(x) = Np we only consider A1.

Region A1

We begin with the integral on the set A1. Elementary differential geometry implies that
A1 ⊆ Ππ∂Ω(x)∩Bc

R
2

(
π∂Ω(x)− R

2Nπ∂Ω(x)

)
. Let us also denote by Bc,+

r (0) := Bc
r(0)∩

(
R+ × R2

)
.

Moreover, using that

{
(η1, η̃) ∈ [0,

R

2
]× R2 :

(
η1 −

R

2

)2

+ |η̃|2 ≥ R2

4

}
⊆
{
(η1, η̃) ∈ R+ × R2 : |η̃|2 ≥ R

2
η1

}
.
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Hence, with a suitable change of variables we compute

ˆ
A1

dηKε(η − x) ≤
ˆ
R2

dη̃

ˆ 2
|η̃|2
R

0
dη1

e−
√

|d(x)−η1|2+|η̃|2
ε

4πε (|d(x)− η1|2 + |η̃|2)

+

ˆ
Bc,+

R
2

(0)
dη Kε

(
η −

(
d(x)− R

2

)
e1

)

≤
ˆ
Bd(x)(0)

dη̃

ˆ 2|η̃|2
R

0
dη1

e−
√

|d(x)−η1|2+|η̃|2
ε

4πε (|d(x)− η1|2 + |η̃|2)

+

ˆ
Bc

d(x)
(0)
dη̃

ˆ 2
|η̃|2
R

0
dη1

e−
√

|d(x)−η1|2+|η̃|2
ε

4πε (|d(x)− η1|2 + |η̃|2) +
ˆ
Bc,+

R
2

(0)
dη

e−
|η|
ε

πεR2

≤
ˆ
Bd(x)(0)

dη̃
4|η̃|2e− d(x)

2ε

πεRd2(x)
+

ˆ
Bc

d(x)
(0)
dη̃
e−

|η̃|
ε

2πRε
+

4ε2C

R2

ˆ ∞

R
4ε

dr e−r

≤2d2(x)

Rε
e−

d(x)
2ε + Cεe−

d(x)
2ε +

4ε2C

R2
e−

R
4ε ≤ C(Ω)εe−

d(x)
4ε .

(C.97)

We also used that if (η1, η̃) ∈
[
0, 2|η̃|

2

R

]
×Bd(x)(0) we can estimate

|d(x)− η1| = d(x)− η ≥ d(x)

(
1− 2ε

1
2
+2δ

R

)
≥ d(x)

2
, (C.98)

since d(x) < ε
1
2
+2δ and we combined (C.98) with |d(x) − η1|2 + |η̃|2 ≥ |d(x) − η1|2. If

(η1, η̃) ∈
[
0, 2|η̃|

2

R

]
× Bc

d(x)(0) then we can estimate |d(x) − η1|2 + |η̃|2 ≥ |η̃|2. Moreover, if

η ∈ Bc,+
R
2

(0) then η1 +
R
2 − d(x) ≥ η1 and

∣∣η − (d(x)− R
2

)
e1
∣∣ ≥ R

2 . In the third inequality

we computed the first two integrals on the 2 dimensional balls using also the fact that there
exists a constant C > 0 such that e−xx ≤ Ce−

x
2 if x ≥ 0 and the last integral holds by the

existence of a constant C > 0 such that x2e−
x
2 ≤ C for x ≥ 0. For the last estimate we notice

first of all that R ≥ d(x) and we consider two different cases. If d(x) ≤ ε the result follows

from the fact that d2(x)
2Rε ≤ ε

2R . If d(x) ≥ ε we use the well-known estimate e−xx2 ≤ Ce−
x
2 for

x ≥ 0.

Region A2

We proceed with the integral on A2. We compute using a change of variables

ˆ
A2

dη Kε(η − x) =

ˆ
R2

dη̃

ˆ d(x)+ℓ(x)

d(x)
dη

e−
√

η2+|η̃|2
ε

4πε (η2 + |η̃|2) =

ˆ
R2

dη̃

ˆ d(x)+ℓ(x)
ε

d(x)
ε

dη
e−

√
η2+|η̃|2

4π (η2 + |η̃|2)

=

ˆ d(x)+ℓ(x)
ε

d(x)
ε

dη K (η) ,

(C.99)

where we rescaled by ε and we used the definition of the normalized exponential integral K as
in (C.19). The estimate of the last integral depends on the values for d(x) and ℓ(x). We recall
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that d(x) < ε
1
2
+2δ and that ℓ(x) ≤ C(Ω)ε1+4δ. Proposition C.1 implies also the following

estimate for the normalized exponential integral

K(η) ≤ C

{
1 + | ln(η)| if 0 ≤ η ≤ 2,

e−η if η ≥ 1.
(C.100)

for some constant C > 0. Let us assume first d(x) ≥ ε. Then (C.99) and (C.100) imply

ˆ
A2

dη Kε(η − x) ≤ C

ˆ d(x)+ℓ(x)
ε

d(x)
ε

e−η dη ≤ C(Ω)ε4δe−
d(x)
ε . (C.101)

Let us assume now d(x) < ε. If ℓ(x) < d(x) we can use the monotonicity of the logarithm
together with estimate (C.100). Thus,

ˆ
A2

dη Kε(η − x) ≤C
ˆ d(x)+ℓ(x)

ε

d(x)
ε

(1 + | ln(η)|) dη ≤ C

(
ℓ(x)

ε
+
ℓ(x)

ε

∣∣∣∣ln(d(x)ε
)∣∣∣∣)

≤C(ε4 + εδ) ≤ Cεδe−
d(x)
ε ,

(C.102)

where we used the estimates
√
x |ln(x)| ≤ 2

e ≤ 1 for all x ∈ [0, 1] and e−1 ≤ e−
d(x)
ε .

If ℓ(x) ≥ d(x) we argue similarly as in (C.102) using also (d(x), d(x) + ℓ(x)) ⊂ (0, 2ℓ(x))
and we conclude

ˆ
A2

dη Kε(η − x) ≤C
ˆ 2ℓ(x)

ε

0
(1 + | ln(η)|) dη ≤ C

(
ℓ(x)

ε
+

2ℓ(x)

ε

∣∣∣∣ln(2ℓ(x)

ε

)∣∣∣∣)
≤C(ε4 + ε2δ) ≤ Cε2δe−

d(x)
ε .

(C.103)

Region A3

We are now ready for the estimate of the integral on the set A3. We recall that for some
constant C(Ω) we can estimate θ(x) ≤ C(Ω)|x − p| < C(Ω)ε

1
2
+2δ. Arguing similarly as in

(C.97) we compute using tan(θ(x)) ≤ 2θ(x) and a suitable change of variables

ˆ
A3

dη Kε(η − x) =

ˆ
R2

dη̃

ˆ d(x)+ℓ(x)+2θ|η̃|

d(x)+ℓ(x)
dη1

e−
√

η21+|η̃|2
ε

4πε
(
η21 + |η̃|2

)
=

ˆ
Bd(x)+ℓ(x)(0)

dη̃

ˆ d(x)+ℓ(x)+2θ|η̃|

d(x)+ℓ(x)
dη1

e−
√

η21+|η̃|2
ε

4πε (η2 + |η̃|2)

+

ˆ
Bc

d(x)+ℓ(x)
(0)
dη̃

ˆ d(x)+ℓ(x)+2θ|η̃|

d(x)+ℓ(x)
dη1

e−
√

η2+|η̃|2
ε

4πε (η2 + |η̃|2)

≤
ˆ
Bd(x)+ℓ(x)(0)

dη̃
θ|η̃|e− d(x)+ℓ(x)

ε

2πε (d(x) + ℓ(x))2
+

ˆ
Bc

d(x)+ℓ(x)
(0)
dη̃
θe−

|η̃|
ε

2π|η̃|ε

≤θd(x) + ℓ(x)

3ε
e−

d(x)+ℓ(x)
ε + 2θe−

d(x)+ℓ(x)
ε ≤ Cθe−

d(x)
2ε ≤ C(Ω)ε

1
2
+2δe−

d(x)
2ε ,

(C.104)

where we used in the first inequality that η21 + |η̃|2 ≥ η2 ≥ (d(x) + ℓ(x))2 and also that

η21 + |η̃|2 ≥ |η̃|2 and the well-know estimate |x|e− |x|
2 ≤ 1.
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Summarizing: estimate of S1
Since Lemma C.5 implies U ε ≤ C(Ω, gν), then estimates (C.96), (C.97), (C.101), (C.102),

(C.103) and (C.104) yield the existence of a constant C > 0 independent of ε, x, p, δ such that

ˆ
Πp\Ω

dηKε(η − x)U ε(η, p) ≤ C

{
εδe−

d(x)
4ε |x− p| < ε

1
2
+2δ

e−
d(x)
4ε |x− p| ≥ ε

1
2
+2δ

. (C.105)

Step 2: estimate of S2.
In order to end the proof for this lemma we now estimate the integral term S2 of (C.95).

If |x − p| ≥ ε
1
2
+2δ since

∣∣x− xΠp(x, n)
∣∣ ≥ |x− xΩ(x, n)| ≥ d(x) we have the estimate

S2 ≤ 8π∥g∥∞e−
d(x)
ε . We now assume |x − p| < ε

1
2
+2δ. As before this implies d(x) < ε

1
2
+2δ.

In order to estimate S2 we will divide the integral on S2 in three integrals, which will be
estimated using different approaches.

Figure 6 represents the decomposition we are going to consider. We denote θ1 and θ2 the

angles given by tan(θ1) = ε
1
2+2δ

ε
1
2+δ

= εδ and tan(θ2) = 2ε
1
2 and we denote by θ(n) the angle

between −n and Np, i.e. θ(n) = arg(cos(−n·Np)). We decompose the sphere in three different
regions S2 = U1 ∪ U2 ∪ U3, were we define

U1 :=
{
n ∈ S2 : −n ·Np > sin(θ1)

}
,

U2 :=
{
n ∈ S2 : n ·Np > sin(θ2)

}
and

U3 :=
{
n ∈ S2 : − sin(θ1) ≤ n ·Np ≤ sin(θ2)

}
.

p

Np

ε
1
2+2δ ε

1
2+δ

U2

U1

U3

θ1

θ2
n

Figure C.6: Decomposition of S2.

Region U1

Let us consider n ∈ U1 and x = (y1, y2, y3)
⊤ ∈ Ω with |x−p| < ε

1
2
+2δ. Let us denote by xΩ

the intersection point of the axis-symmetric paraboloid with curvature κ = 1
R approximating

from the inside of the domain Ω the boundary ∂Ω in a neighborhood of the point p with the
line connecting x and xΩ. It is not difficult to see that |xΠp − xΩ| ≤ |xΠp − xΩ|. Without loss
of generality we can assume n = (n1, n2, 0) with n2 < 0 and as usual Πp = R+ × R2. Hence,

xΠp(x, n) = (0, σ, y3) and xΩ(x, n) = (x1, x̃, y3) and |x| < ε
1
2
+2δ. We see then that σ ≥ x̃ and

|σ| ≤ |x1|
tan(θ1)

≤ ε
1
2
+δ. Using the curvature of the boundary we know that the point xΩ satisfies

the following system of equations {
x1 =

2
R

(
x̃2 + y23

)
,

x1 =
σ−x̃
tan(θ) .
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Hence we calculate

∣∣xΠp − xΩ
∣∣ ≤ |xΠp − xΩ| =

√
|x1|2 + (σ − x̃)2 =

σ − x̃

sin(θ)
=

2
(
x̃2 + y23

)
R cos(θ)

≤ ε1+2δC

Rεδ
= C(Ω)ε1+δ.

Where we used that for 0 < ε < 1 sufficiently small also tan θ1 ≈ sin θ1. Thus, we estimate

ˆ ∞

0
dν

ˆ
U1

dn gν(n)

∣∣∣∣∣e− |x−xΠp
(x,n)|

ε − e−
|x−xΩ(x,n)|

ε

∣∣∣∣∣
≤∥g∥∞

ˆ
U1

dn e−
|x−xΩ(x,n)|

ε

∣∣∣∣∣1− e−
|x−xΠp

(x,n)|−|x−xΩ(x,n)|
ε

∣∣∣∣∣
≤4π∥g∥∞e−

d(x)
ε

∣∣x− xΠp(x, n)
∣∣− |x− xΩ(x, n)|
ε

= 4π∥g∥∞e−
d(x)
ε

∣∣xΩ − xΠp

∣∣
ε

≤4π∥g∥∞C(Ω)εδe−
d(x)
ε ,

(C.106)

where we used that x, xΠp , xΩ lie all on the same line.

Region U2

Let us consider n ∈ U2 and x ∈ Ω with |x − p| < ε
1
2
+2δ. We see first of all that n ·Np ≥

sin(θ2) ≥ 0. Thus, by definition e−
|x−xΠp

(x,n)|
ε = 0. In this case we have that |x− xΩ(x, n)| ≥

|x − xΩ(x, ñ)|, where ñ · Np = sin(θ2). We denote by Q ∈ ∂Ω the intersection of the line
{x + tNp : t > 0} and the boundary ∂Ω. As usual NQ is the other normal at Q ∈ ∂Ω.

Since |x − p| < ε
1
2
+2δ also |p − Q| < ε

1
2
+2δ and hence there exists a constant C > 0 such

that θpQ < Cε
1
2
+2δ, where θpQ is the angle between Np and NQ. Let us also denote by θ̃

the angle such that ñ · NQ = sin(θ̃). By a geometrical argument on the sphere it is not

difficult to see that choosing ε sufficiently small, i.e. 0 < ε < min
(

3
24 , (4C)

− 1
2δ

)
, we have

θ̃ ≥ θ2 − θpQ ≥ 3
2ε

1
2 . Choosing a suitable coordinate system we can assume Q = (0, 0, 0),

NQ = −e1 and ñ = (− sin(θ̃),− cos(θ̃), 0). Let us denote by xΩ(x, ω) the intersection point
between the line {x − tω : t > 0} and the axis-simmetric paraboloid with curvature κ = 1

R
inside Ω tangent to ∂Ω at Q. Then, since now xΩ(x, ñ) lies outside this paraboloid we obtain
|x− xΩ(x, ñ)| ≥ |x− xΩ(x, ñ)|. Moreover, notice that since the angle between the axis −NQ

and the vector x−Q is given by θpQ < Cε
1
2
+2δ we see that x lies inside the paraboloid choosing

ε sufficiently small.

For ε > 0 small enough we also see that sin(θ̃) ≥ ε
1
2 . Hence, it is also true that for

Ñ =
(
−ε 1

2 ,−
√
1− ε, 0

)
we have |x − xΩ(x, ñ)| ≥ |x − xΩ(x, Ñ)|. Thus, let us denote by

xΩ(x, Ñ) = (y1, y2, y3) and x = (x1, x2, x3) ∈ Ω. To compute the position of xΩ(x, Ñ) we
solve the following system. 

y1 =
1
R

(
y22 + y23

)
,

y1 = x1 + tε
1
2 ,

y2 = x2 + t
√
1− ε,

y3 = x3.

We want to estimate from below the value of t > 0. Hence we consider the quadratic equation

(1− ε)t2 + t
(
2
√
1− εx2 −Rε

1
2

)
−∆ = 0,
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where ∆ = Rx1 − x22 − x23 ≥ 0 since x ∈ Ω inside the paraboloid. Moreover, since x2 < ε
1
2
+2δ

for ε small enough (i.e. ε < (R/4)1/2δ) we have that Rε
1
2 − 2

√
1− εx2 ≥ R

2 ε
1
2 . Thus,

(1− ε)t2 ≥ R

2
ε

1
2 t+∆ ≥ R

2
ε

1
2 t

and therefore for ε < 1 we have

|x− xΩ(x, n)| ≥ |x− xΩ(x, ñ)| ≥ |x− xΩ(x, Ñ)| ≥ t ≥ R

4
ε

1
2 = C(Ω)ε

1
2 .

Hence, using the usual estimate xe−
x
2 ≤ 1 and that |x− xΩ(x, n)| ≥ d(x) we estimateˆ ∞

0
dν

ˆ
n·Np≥sin(θ2)

dn gν(n)e
−|x−xΩ(x,n)|

ε ≤ ∥g∥∞
ˆ
n·Np≥sin(θ2)

dn
2ε

|x− xΩ(x, n)|
e−

|x−xΩ(x,n)|
2ε

≤2πC(Ω)−1∥g∥∞εδe−
d(x)
2ε ,

(C.107)

since ε
1
2 ≤ εδ if δ ≤ 1

2 .

Np

NQ

−ñ

θ̃

θpQ

θpQ

θ2

Figure C.7: Representation of the angles.

NQ

−ñ

Q

x

xΩ(x, ñ)

xΩ(x, ñ)
xΩ(x, Ñ)

Figure C.8: Representation of the intersection
points.

Region U3

Now, for the last estimate we notice that |U3| ≤ 2π(θ1 + θ2) ≤ 4πεδ for δ < 1
2 . Since it is

always true that

∣∣∣∣∣e− |x−xΠp
(x,n)|

ε − e−
|x−xΩ(x,n)|

ε

∣∣∣∣∣ ≤ 2e−
d(x)
ε , we estimate

ˆ ∞

0
dν

ˆ
U3

dn gν(n)

∣∣∣∣∣e− |x−xΠp
(x,n)|

ε − e−
|x−xΩ(x,n)|

ε

∣∣∣∣∣ ≤ C∥g∥∞εδe−
d(x)
ε . (C.108)

Summarizing: estimate S2
We put together equations (C.106),(C.107), (C.108) and we conclude

S2 ≤ C

{
εδe−

d(x)
2ε |x− p| < ε

1
2
+2δ,

e−
d(x)
2ε |x− p| ≥ ε

1
2
+2δ,

(C.109)
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for a constant C > 0 independent of x, p, ε, δ.

Equations (C.109) and (C.105) imply the lemma.

We are ready to construct a super-solution that will allow us to estimate |uε−u| near the
boundary at a distance smaller than ε

1
2 . We recall the rigid motion Rp defined in (C.13).

Proposition C.5. Let p ∈ ∂Ω, 0 < A < 1 the constant of Lemma C.9. Let L > 0 large
enough and 0 < ε < 1 sufficiently small. Let 0 < δ < 1

8 . Then there exists a non negative
continuous function Wε,L : Ω → R+ such that

Wε,L ≥ C > 0 for |Rp(x) · ei| ≥ ε
1
2
+3δ;

LεΩ (Wε,L) (x) ≥ Cεδe−
Ad(x)

ε for |Rp(x) · ei| < ε
1
2
+3δ;

0 ≤Wε,L ≤ C
(
εα + 1√

L

)
for |Rp(x) · ei| < ε

1
2
+4δ,

(C.110)

for some constant C > 0 and α > 0.

In order to construct this supersolution Wε,L we first need some definition for the ge-
ometrical setting. First of all we denote for simplicity xi = Rp(x) · ei. Let us define for

i = 2, 3 the radii ρ±i (x) =

√(
x1 +

L
2 ε
)2

+
(
xi ± ε

1
2
+3δ
)2

and the angles θ±i (x) given by

cos
(
θ±i
)
= 1

ρ±i (x)

(
x1 +

L
2 ε
)
. The function Wε,L is constructed with the following auxiliary

functions

F±
i (x) =

π

2
∓ arctan

(
xi ± ε

1
2
+3δ

x1 +
L
2 ε

)
, (C.111)

G±
i (x) = a

(
cos
(
θ±i (x)

)
ρ±i (x)/ε

) 1
2

, (C.112)

H±
i (x) = −b

(
cos
(
θ±i (x)

)
ρ±i (x)/ε

)2

(C.113)

for i = 2, 3 and a > b > 0. Moreover, we define for i = 2, 3

W±
i (x) = F±

i (x) +G±
i (x) +H±

i (x). (C.114)

We will prove that the desired supersolution of Proposition C.5 is given by

Wε,L(x) =

3∑
i=2

(
W+
i (x) +W−

i (x)
)
+

C̃√
L
ϕ 1

8
,ε + CεδϕA,ε, (C.115)

where ϕA,ε = Φ
ε
A the supersolution defined in Theorem C.6 and C, C̃ > 0 some suitable

constants. We also define the following subsets of Ω for i = 2, 3.

C+
i,2δ :=

{
x ∈ Ω : xi ≤ −ε 1

2
+3δ or |xi| < ε

1
2
+3δ, x1 ≥ ε

1
2
+3δ
}
; (C.116)

C−
i,2δ :=

{
x ∈ Ω : xi ≥ ε

1
2
+3δ or |xi| < ε

1
2
+3δ, x1 ≥ ε

1
2
+3δ
}
; (C.117)

C3δ :=
{
x ∈ Ω : x1 < ε

1
2
+3δ and |xi| < ε

1
2
+3δ for i = 2, 3

}
; (C.118)

Ci,4δ :=
{
x ∈ Ω : |xi| < ε

1
2
+4δ and x1 < ε

1
2
+4δ
}
. (C.119)

In order to prove Proposition C.5 we need the following computational lemma.
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Lemma C.10. Assume p ∈ Ω, 0 < ε < 1, L, δ as indicated in Proposition C.5. Let xi =
Rp(x) · ei for i = 1, 2, 3. Let W±

i as in (C.114). Then there exist a constant α > 0 depending
only on δ and a constant C > 0 depending on Ω and gν but independent of ε and p and
suitable b > 0 and L > 0 such that for i = 2, 3

W±
i (x) ≥ 0 in Ω (C.120)

W±
i (x) ≥ π

2
− arctan(2) in C±

i,2δ (C.121)

W±
i (x) ≤ Cεα in Ci,4δ (C.122)

LεΩ
(
W±
i

)
(x) ≥ − C√

L
e−

d(x)
8ε in C3δ, (C.123)

where the sets C±
i,2δ, Ci,4δ and C3δ are defined in (C.116), (C.117), (C.119) and (C.118).

Proof. Due to symmetry consideration it is enough to prove the lemma for W =W−
2 . For the

sake of simplicity we write ρ(x) = ρ−2 (x) and θ(x) = θ−2 (x). Similarly we consider F = F−
2 ,

G = G−
2 and H = H−

2 . We also denote by Cjδ the sets C−
2,jδ, C2,jδ and Cjδ for j = 2, 3, 4.

First of all we notice that W is smooth on x1 > −L
2 ε. Moreover, since the arctangent is

bounded from below by π
2 we have that F ≥ 0. Since x1 ≥ 0 for x ∈ Ω we see that ρ ≥ L

2 ε
and hence for L big enough ρ

ε >
L
2 > 1. On the other hand 0 ≤ cos(θ) ≤ 1 and hence for

a > b we have that

G+H = a

(
cos
(
θ−2 (x)

)
ρ−2 (x)/ε

) 1
2

− b

(
cos
(
θ−2 (x)

)
ρ−2 (x)/ε

)2

≥ (a− b)

(
cos
(
θ−2 (x)

)
ρ−2 (x)/ε

) 1
2

≥ 0,

which yields (C.120).

Assume now x2 ≥ ε
1
2
+3δ. This implies x2−ε

1
2+3δ

x1+
L
2
ε

≥ 0 and thus F (x) ≥ π
2 . The non-

negativity of G+H yields W (x) ≥ π
2 .

Let us assume x1 ≥ ε
1
2
+3δ and |x2| < ε

1
2
+3δ. A similar computation as above shows

x2−ε
1
2+3δ

x1+
L
2
ε

≥ −2 ε
1
2+3δ

ε
1
2+3δ

(
1+L

2
ε
1
2−3δ

) ≥ −2. Hence, W (x) ≥ F (x) ≥ π
2 − arctan(2) > 0 for x ∈ C2δ

as in (C.121).
We move now to the proof of (C.122). Let therefore x ∈ C4δ. First of all W (x) ≤ F +G.

Moreover, x2 − ε
1
2
+3δ < ε

1
2
+3δ(εδ − 1) < 0 and x1 +

L
2 ε < ε

1
2
+4δ
(
1 + L

2 ε
1
2
−4δ
)
< 3

2ε
1
2
+4δ if

δ < 1
8 , L > 0 large enough and 0 < ε < 1 sufficiently small such that L < ε−β for β = 1−8δ

2 .
This computation implies

x2 − ε
1
2
+3δ

x1 +
L
2 ε

< −2

3

1

εδ
(1− εδ) < −1

3

1

εδ

for ε > 0 small enough. With an application of Taylor expansion for y → −∞ we conclude
F (x) ≤ 3εδ, since π

2 + arctan(y) ≈ |y|−1 − 1
3|y|3 . Moreover, since ρ

ε > 1 and also ρ ≥ |x2 −

ε
1
2
+3δ| ≥ ε

1
2+3δ

2 if ε small enough, we have that cos(θ) =
x1+

L
2
ε

ρ < 3
ε

δ
. Hence, 0 ≤ cos(θ)

ρ < 3εδ

implies G(x) <
√
3εδ/2. Taking then α = δ

2 we conclude W ≤ Cεα.
It remains now to show, thatW satisfies the estimate (C.123). The main idea for this proof

is to approximate the operator LεΩ by a Laplacian expanding the function W by Taylor. Let

us assume from now on that x ∈ C3δ, i.e. |x3|, |x2|, x1 < ε
1
2
+3δ. We first notice that for these x

the function F is harmonic and the functions G and H are super-harmonic. In order to prove
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this we change the coordinates in cylinder coordinates: (x1, x2, x3) 7→ (ρ(x1, x2), θ(x1, x2), x3).
With this notation, since F,G,H are actually functions only of x1 and x2, we can write F
as F (ρ, θ) = π

2 − θ. Thus, since in cylinder coordinates the Laplacian can be written as
−∆ = −1

ρ∂ρ (ρ∂ρ) − 1
ρ2
∂2θ − ∂2x3 , we compute −∆F = 0. On the other hand we can also

compute for H

ε2

ρ
∂ρ

(
ρ∂ρ

cos2(θ)

ρ2

)
+
ε2

ρ2
∂2θ

cos2(θ)

ρ2
=

4ε2 cos2(θ)

ρ4
+

2ε2 sin2(θ)

ρ4
− 2ε2 cos2(θ)

ρ4
=

2ε2

ρ4
. (C.124)

And similarly we have also for G

−ε
1
2

ρ
∂ρ

(
ρ∂ρ

cos
1
2 (θ)

ρ
1
2

)
− ε

1
2

ρ2
∂2θ

cos
1
2 (θ)

ρ
1
2

=− ε
1
2 cos

1
2 (θ)

4ρ
5
2

− ε
1
2

2ρ
5
2

(
− cos

1
2 (θ)− sin2(θ)

2 cos
3
2 (θ)

)

=
ε

1
2

4 cos
3
2
(θ) ρ

5
2

.

(C.125)

We will use the (super-)harmonicity of these functions while applying the Taylor expansion
on suitable domains.

Before moving to the exact estimate of the operator acting on W we estimate the deriva-
tives of these functions. We start with analyzing F . As we have seen before F = π

2 −θ (x1, x2)
and hence we have ∂1F (x1, x2) =

sin(θ)
ρ and ∂2F (x1, x2) = − cos(θ)

ρ . Since the numerator con-
tains only power laws of cosine and sine with exponent greater or equal 1 and the denominator
also only power laws of ρ with exponent greater or equal 1, using the definition of derivatives
in polar coordinates we see that there exists a constant CF,n > 0 for n ≥ 1 such that

|∇n
xF (x)| ≤

CF,n
ρn

,

where we also estimated the cosine and the sine by 1.

Let us move to the function H = −bε2 cos2(θ)
ρ2

. We use a similar argument. We compute us-

ing polar coordinates ∂1H(x) =
(
cos(θ)∂ρ − sin(θ)

ρ ∂θ)
)
H(x) = −2bε2 cos

3(θ)
ρ3

+ 2bε2 sin
2(θ) cos(θ)
ρ3

and similarly ∂2H(x) =
(
sin(θ)∂ρ +

cos(θ)
ρ ∂θ)

)
H(x) = −2bε2 sin(θ) cos

2(θ)
ρ3

− 2bε2 cos
2(θ) sin(θ)
ρ3

.

Again, the numerator only contains power of cosine and sin of degrees greater or equal 1,
while the denominator only power of ρ of degree 3. Hence, applying again the definition of
derivative in polar coordinates and estimating cosine and sine by 1 we conclude again the
existence of a constant CH,n > 0 such that

|∇n
xH(x)| ≤ b

CH,nε
2

ρn+2
.

While the function F and H produce non singular derivatives for x ∈ Ω, G produces sigular
terms in the derivatives. This is because the denominator of this function contains a square
root of the cosine, hence when differentiating by θ, it appears in the denominator, indeed

∂1G(x) =

(
cos(θ)∂ρ −

sin(θ)

ρ
∂θ)

)
G(x) = −aε 1

2
cos

3
2 (θ)

2ρ
3
2

+ aε
1
2

sin2(θ)

2ρ
3
2 cos

1
2 (θ)

;

∂2G(x) =

(
sin(θ)∂ρ +

cos(θ)

ρ
∂θ)

)
G(x) = −aε 1

2
cos

1
2 (θ) sin(θ)

ρ
3
2

.
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Hence, the singular terms appear when differentiating with respect to x1. Using that cos(θ) <
1, sin(θ) < 1 and that cos−α(θ) > cos−β(θ) for α > β ≥ 0 we conclude the existence of a
constant CG,n > 0 such that

|∇n
xG(x)| ≤ a

CG,nε
1
2

cosn−
1
2 (θ)ρ

1
2
+n
.

We remark that we used always that by construction cos(θ) ≥ 0.

As we anticipated we will estimate LεΩ(W )(x) applying the Taylor expansion on F , G and
H on suitable subsets of R3 where these functions are smooth. The functions F and H will
be expanded until the third derivative and we will write

F (η) = F (x)+∇xF (x) · (η−x)+
1

2
(η−x)⊤∇2

xF (x)(η−x)+
∑
|α|=3

DαF (x)

α!
(η−x)α+E4

F (η, x)

(C.126)

H(η) = H(x)+∇xH(x) ·(η−x)+ 1

2
(η−x)⊤∇2

xH(x)(η−x)+
∑
|α|=3

DαH(x)

α!
(η−x)α+E4

H(η, x).

(C.127)
The function G will be expanded only until the second derivative, hence

G(η) = G(x) +∇xG(x) · (η − x) +
1

2
(η − x)⊤∇2

xG(x)(η − x) + E3
G(η, x). (C.128)

We recall also that for any smooth function φ(x1, x2) the following is true

ˆ
B3

r (x)
dη

e−
|η−x|

ε

4πε |η − x|2
1

2
(η − x)⊤∇2

xφ(x)(η − x) =
1

6
∆φ(x)

ˆ
B3

r (x)
dη

e−
|η−x|

ε

4πε |η − x|2
|η − x|2

=
1

6
∆φ(x)ε2

ˆ r
ε

0
t2e−tdt =

ε2

3
∆φ(x)− (r2 + 2εr + 2ε2)e−

r
ε
1

6
∆φ(x).

(C.129)

We can now move to the estimate of LεΩ (W ) (x) for |x2|, |x3| < ε
1
2
+3δ and 0 < x1 < ε

1
2
+3δ. We

will consider three different cases: ρ(x) < Lε, ρ(x) > Lε with d(x) < ε and finally ρ(x) > Lε
with d(x) > ε.

Case 1: ρ(x) < Lε

Let us assume ρ(x) < Lε. Then, we remark first of all that if η ∈ B ρ(x)
4

(x) then η1 ≥
x1 − ρ(x)

4 > −L
4 ε > −L

2 ε, which implies the smoothness of W on the whole ball B ρ(x)
4

(x).

Moreover, it is also true that cos(θ) =
x1+

L
2
ε

ρ ≥ Lε
2ρ >

1
2 . Hence, in this case the derivative of G

is not singular and we can estimate |∇n
xG(x)| ≤

CG,n2
n− 1

2

ρ
1
2+n

. Moreover, if η ∈ B ρ(x)
4

(x), then from

one hand we have 3
4ρ(x) < ρ(η) < 5

4ρ(x) and on the other hand cos(θ(η))ρ(η) = η1+
L
2 ε >

L
4 ε,

thus cos (θ(η)) > 1
5

sup
η∈B ρ(x)

4

(x)

[
1

cos
5
2 (θ(η)) ρ

7
2 (x)

]
≤ 5

5
2

(
4

3

) 7
2
(

1

ρ(x)

) 7
2

≤ 2C

εL

(
1

ρ(x)

) 5
2

,
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where at the end we used that ρ(x) > Lε
2 for all x ∈ Ω. For the computation of the operator

LεΩ for the function W we will use the Taylor expansion of this function on the ball B ρ(x)
4

(x).

The error terms as defined in (C.126), (C.127) and (C.128) satisfy then

∣∣E4
F (η, x)

∣∣ ≤ (4

3

)4 CF,4
ρ(x)4

|x− η|4,
∣∣E4

H(η, x)
∣∣ ≤ b

(
4

3

)6 CH,4
ρ(x)6

|x− η|4ε2 and

∣∣E3
G(η, x)

∣∣ ≤ a
CG,3

Lρ(x)
5
2

|x− η|3
ε

ε
1
2 .

(C.130)

We can now proceed with the estimate for the operator. Applying the Taylor expansion
we obtain

LεΩ(W )(x) =W (x)−
ˆ
B ρ(x)

4

(x)∩Ω
Kε (η − x)W (η) dη −

ˆ
Bc

ρ(x)
4

(x)∩Ω
Kε (η − x)W (η) dη

≥W (x)−
ˆ
B ρ(x)

4

(x)
Kε (η − x)W (η) dη −

ˆ
Bc

ρ(x)
4

(x)∩Ω
Kε (η − x)W (η) dη

=W (x)

1−
ˆ
B ρ(x)

4

(x)
Kε (η − x) dη

− (∇xW (x)) ·
ˆ
B ρ(x)

4

(x)
Kε (η − x) (η − x) dη

− 1

2

ˆ
B ρ(x)

4

(x)
Kε (η − x) (η − x)⊤∇2

xW (x)(η − x) dη

−
∑
|α|=3

Dα(F +H)(x)

α!

ˆ
B ρ(x)

4

(x)
Kε (η − x) (η − x)α dη

−
ˆ
B ρ(x)

4

(x)
Kε (η − x) (E4

F + E4
H + E3

G)(η, x) dη −
ˆ
Bc

ρ(x)
4

(x)∩Ω
Kε (η − x)W (η) dη

(C.131)

For the terms of the Taylor expansion containing the first and third derivatives we use now
the symmetry of the integral in R3, while for the second degree derivative terms we use the
Laplacian identity as in equation (C.129), together with the fact that F is harmonic while
H and G are super-harmonic as in equations (C.124) and (C.125). Denoting by CF , CG, CH
constants depending on F,G resp. H only and changing the coordinates y 7→ (η − x) we
estimate using the estimates for the error terms as in (C.130)

LεΩ(W )(x) ≥ −CF

ε
ρ

ˆ
Bc

ρ(x)
4

(0)

e−
|y|
ε

4πε2|y| dy +
ε3

ρ3

ˆ
Bc

ρ(x)
4

(0)

e−
|y|
ε |y|

4πε4
dy


− CHb

ε3
ρ3

ˆ
Bc

ρ(x)
4

(0)

e−
|y|
ε

4πε2|y| dy +
ε4

ρ4

ˆ
Bc

ρ(x)
4

(0)

e−
|y|
ε

4πε3
dy +

ε5

ρ5

ˆ
Bc

ρ(x)
4

(0)

e−
|y|
ε |y|

4πε4
dy


(C.132)
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− CGa

 ε

L
1
2 ρ

ˆ
Bc

ρ(x)
4

(0)

e−
|y|
ε

4πε2|y| dy +
ε2

L
1
2 ρ2

ˆ
Bc

ρ(x)
4

(0)

e−
|y|
ε

4πε3
dy


+

2b

3

ε4

ρ4
− CF

ε4

ρ4
− CHb

ε6

ρ6
+

1

12

aε
5
2

cos
3
2 (θ)ρ

5
2

− a
CGε

5
2

Lρ(x)
5
2

− (π + a)e−
ρ
4ε

≥2

3

ε4

ρ4

(
b− 3

2
(CF + πC̃)− 3CHb

2L2
− 3CF C̃

2L
− 3bCHC̃

2L3

)
+
aε

5
2

ρ
5
2

(
1

12
− CG

L
− C̃

L
3
2

− CGC̃

L3

)
.

Moreover, we used that ρ
ε >

L
2 > 1 and the well-known estimates

´∞
r
ε
e−xxn ≤ Cne

− r
2ε ≤ C̃ ε4

r4

for n = 0, 1, 2, 3, as well as εn

ρn <
ε
ρ <

2
L and the fact that 0 < cos(θ) < 1. Choosing

b > 3CF (1 + 2C̃π) and L > max{C̃,
√
6CH , (24CG + 12)2}. (C.133)

We can conclude

LεΩ(W )(x) ≥ 0. (C.134)

Case 2: ρ(x) > Lε and d(x) < ε

We consider now the case when ρ(x) > Lε with d(x) < ε for |x2|, |x3| < ε
1
2
+3δ and

0 < x1 < ε
1
2
+3δ. First of all, we see that if d(x) < ε then also x1 < 2ε. This is true since for all

these x the distance can be estimated ε > d(x) = |x−z| for a unique π∂Ω(x) = z ∈ ∂Ω. Hence,
x1 < ε + z1 since also by the convexity and for ε sufficiently small we have z1 ≤ x1. Thus,
if z1 ≥ ε approximating the curvature by a sphere of radius R from the interior tangent to
{0}×R2 we see that zi ≥ C(R)ε

1
2 for an i ∈ {2, 3} and hence d(x) = |x−z| ≥ ε

1
2 (C(R)−ε3δ) >

ε for ε > 0 sufficiently small. This implies a contradiction, and thus x1 < 2ε. Let us consider
now η ∈ B ρ(x)

4

(x) ∩ Ω, then 3
4ρ(x) < ρ(η) < 5

4ρ(x). Hence, using the definition of cosine

cos (θ(x))− cos (θ(η)) =
x1 +

L
2 ε

ρ(x)
− η1 +

L
2 ε

ρ(η)
≤ x1 +

L
2 ε

ρ(x)
−

2L
5 ε

ρ(x)

=
1

ρ(x)

(
x1 +

1

10
Lε

)
=

1

ρ(x)

(
x1
2

+
L

4
ε

)
+

1

ρ(x)

(
x1
2

− 3L

20
ε

)
≤ cos (θ(x))

2

if L > 20
3 . This implies that cos (θ(η)) ≥ 1

2 cos (θ(x)) and therefore using cos(θ)ρ = x1+
L
2 ε ≥

L
2 ε we obtain

sup
η∈B ρ(x)

4

(x)∩Ω

[
cos−

5
2 (θ(η)) ρ−

7
2 (x)

]
≤ 5

5
2

(
4

3

) 7
2

cos (θ(x))−
5
2 ρ(x)−

7
2

≤ 2C

εL
cos (θ(x))−

3
2 ρ(x)−

5
2 . (C.135)

We can now proceed similarly as we did in equations (C.131) and (C.132). We apply the
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Taylor expansion on the set B ρ(x)
4

(x) ∩ Ω where W is smooth.

LεΩ(W )(x) =W (x)−
ˆ
B ρ(x)

4

(x)∩Ω
Kε (η − x)W (η) dη −

ˆ
Bc

ρ(x)
4

(x)∩Ω
Kε (η − x)W (η) dη

≥W (x)−
ˆ
B ρ(x)

4

(x)∩Ω
Kε (η − x)W (η) dη −

ˆ
Bc

ρ(x)
4

(x)
Kε (η − x) (F +G)(η) dη

=W (x)

1−
ˆ
B ρ(x)

4

(x)∩Ω
Kε (η − x) dη

− (∇xW (x)) ·
ˆ
B ρ(x)

4

(x)∩Ω
Kε (η − x) (η − x) dη

− 1

2

ˆ
B ρ(x)

4

(x)∩Ω
Kε (η − x) (η − x)⊤∇2

xW (x)(η − x) dη

−
∑
|α|=3

Dα(F +H)(x)

α!

ˆ
B ρ(x)

4

(x)∩Ω
Kε (η − x) (η − x)α dη

−
ˆ
B ρ(x)

4

(x)∩Ω

e−
|η−x|

ε

4πε |η − x|2
(E4

F + E4
H + E3

G)(η, x) dη −
ˆ
Bc

ρ(x)
4

(x)
Kε (η − x) (F +G)(η) dη

(C.136)

Once again we use the symmetry for the first and third order term on the set B d(x)
4

(x) ⊂

B ρ(x)
4

(x)∩Ω estimating the integral on B ρ(x)
4

(x)∩
(
Ω \B d(x)

4

(x)
)
by the integral on the larger

set Bc
d(x)
4

(x). Once more we need the identity for the Laplacian on the set B d(x)
4

(x) too. We

estimate the error terms of F and H by (C.130) and the error term of G by the last equation
(C.135). Hence, we estimate

LεΩ(W )(x) ≥ −CF

ε
ρ

ˆ
Bc

d(x)
4

(0)

e−
|y|
ε

4πε2|y| dy +
ε3

ρ3

ˆ
Bc

d(x)
4

(0)

e−
|y|
ε |y|

4πε4
dy


− CHb

ε3
ρ3

ˆ
Bc

d(x)
4

(0)

e−
|y|
ε

4πε2|y| dy +
ε4

ρ4

ˆ
Bc

d(x)
4

(0)

e−
|y|
ε

4πε3
dy +

ε5

ρ5

ˆ
Bc

d(x)
4

(0)

e−
|y|
ε |y|

4πε4
dy


− CGa

 ε

L
1
2 ρ

ˆ
Bc

d(x)
4

(0)

e−
|y|
ε

4πε2|y| dy +
ε

L
3
2 ρ

ˆ
Bc

d(x)
4

(0)

e−
|y|
ε

4πε3
dy


+

2b

3

ε4

ρ4
− CF

ε4

ρ4
− CHb

ε6

ρ6
+

1

12

aε
5
2

cos
3
2 (θ)ρ

5
2

− a
CGε

5
2

L cos
3
2 (θ)ρ(x)

5
2

− (π + a)e−
ρ
4ε

≥− Ce−
d
8ε
ε

ρ

(
a+ CF +

aCG

L
1
2

+
bCH
L2

)
+

2

3

ε4

ρ4

(
b− 3

2
CF − 3CHb

2L2

)
+

1

12

aε
5
2

cos
3
2 (θ)ρ

5
2

(
1− 12

CG
L

)
.

(C.137)
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In all the estimate above we used that e−
ρ
4ε ≤ Cε

ρ e
− d

8ε , since ρ > Lε > d(x). Hence, choosing

b > 3CF and L > max

{
20

3
, 12CG,

√
3CH

}
(C.138)

we conclude using L ≥
√
L

LεΩ(W )(x) ≥ −C(a, π, b, CF )√
L

e−
d(x)
8ε . (C.139)

Case 3: ρ(x) > Lε and d(x) > ε
We can finish the proof of this Lemma by estimating the operator acting on W when

ρ(x) > Lε and d(x) > ε for x ∈ C3δ. We notice that by definition d(x) ≤ ρ(x). In this case, we
estimate first the operator acting only on F +H proceeding as for the derivation of (C.136)
and (C.137) with the only difference that this time

(F +H)(x)

1−
ˆ
B ρ(x)

4

(x)∩Ω
Kε (η − x) dη

 ≥− bε2 cos(θ)2

ρ2

ˆ
Bc

d
4

(x)
Kε (η − x) dη

≥− bε2

ρ2
e−

d(x)
4ε ≥ − b

L2
e−

d(x)
4ε .

Hence we get for F +H

LεΩ(F +H)(x) ≥− Ce−
d(x)
8ε

1

L

(
CF + π +

bCH
L2

+
b

L

)
+

2

3

ε4

ρ4

(
b− 3

2
CF − 3CHb

2L2

)
≥− Ce−

d(x)
8ε

1

L
(π + 2b),

for b and L as in (C.138). We consider now the operator acting only on G and we compute

LεΩ(G)(x) = G(x)−
ˆ
B d(x)

4

(x)
Kε (η − x)G(η) dη −

ˆ
B ρ(x)

4

(x)∩Ω\B d(x)
4

(x)
Kε (η − x)G(η) dη

−
ˆ
Bc

ρ(x)
4

(x)∩Ω
Kε (η − x)G(η) dη

≥G(x)−
ˆ
B d(x)

4

(x)
Kε (η − x)G(η) dη − 2a√

3L
e−

d(x)
4ε − Ca

L
e−

d(x)
8ε .

We used ρ(η) ≥ 3
4ρ(x) ≥ 3

4Lε for η ∈ B ρ(x)
4

(x) ∩ Ω \ B d(x)
4

(x), the integral on B ρ(x)
4

(x) ∩
Ω \ B d(x)

4

(x) can be estimated from above by the one on Bc
d(x)
4

(x) and the last integral was

estimated as in (C.136) and (C.137) using e−
ρ(x)
4ε ≤ C

L e
− d(x)

8ε . In order to estimate the integral
on B d(x)

4

(x) we will expand G by Taylor and therefore we have to control the singularity

(cos(θ))−
5
2 of the error term E3

G defined in (C.128). Let hence η ∈ B d(x)
4

(x) for d(x) > ε.

Since d(x) ≤ x1, we know that x1 > ε and also that η1 > x1 − d(x)
4 > 3

4x1. That d(x) ≤ x1
can be proved in the following way. Let z = {x− te1 : t ≥ 0} ∩ ∂Ω, hence z1 ≥ 0. Then
d(x) ≤ |x− z| = x1 − z1 ≤ x1. We can thus estimate

cos (θ(η)) =
η1 +

L
2 ε

ρ(η)
>
x1 − d(x)

4 + L
2 ε

ρ(η)
>

3
4x1 +

L
2 ε

ρ(η)

=
3

4

x1 +
L
2 ε

ρ(η)
+

1

8

Lε

ρ(η)
>

3

4

x1 +
L
2 ε

ρ(η)
>

3

5

x1 +
L
2 ε

ρ(x)
=

3

5
cos (θ(x)) ,
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where we used that ρ(η) < ρ(x) + d(x)
4 < 5

4ρ(x) since ρ(x) ≥ x1 +
L
2ε ≥ d(x) + L

2ε > d(x).
Similarly ρ(η) > 3

4ρ(x). Hence,

sup
η∈B d(x)

4

(x)

[
cos−

5
2 (θ(η)) ρ−

7
2 (x)

]
≤
(
5

3

) 5
2
(
4

3

) 7
2

cos (θ(x))−
5
2 ρ(x)−

7
2

≤2C

εL
cos (θ(x))−

3
2 ρ(x)−

5
2 ,

where we used in addition cos(θ)ρ = x1+
L
2 ε ≥ L

2 ε. Now we are ready to conclude the estimate
for G. We proceed as we did in (C.131) and in (C.136) using the Taylor expansion. We have
then for L as in (C.138)

LεΩ(G)(x) ≥ − 2a√
3L
e−

d(x)
4ε − Ca

L
e−

d(x)
8ε − aCG

L
3
2

e−
d(x)
8ε +

1

12

aε
5
2

cos
3
2 (θ)ρ

5
2

(
1− 12

CG
L

)
≥− C(a)√

L
e−

d(x)
8ε ,

Thus, we obtain once more

LεΩ(W )(x) ≥ −C(a, π, CF , b)√
L

e−
d(x)
8ε . (C.140)

Equations (C.134), (C.139) and (C.140) imply the last claim (C.123). Indeed, there exists a
constant C > 0 independent of ε, L, δ such that for L > L0 as in (C.133) and (C.138) and for

0 < ε < 1 sufficiently small such that L < ε−
1−8δ

2 , x ∈ C3δ it holds

LεΩ(W )(x) ≥ − C√
L
e−

d(x)
8ε .

This conclude the proof of the Lemma.

We can now prove Proposition C.5.

Proof of Proposition C.5. Let Wε,L be as in (C.115). For W :=
∑3

i=2

(
W+
i (x) +W−

i (x)
)

Lemma C.10 implies that for any i = 1, 2, 3
W (x) ≥ 0 if x ∈ Ω;

W (x) ≥ π
2 − arctan(2) if |xi| ≥ ε

1
2
+3δ;

W (x) ≤ Cεα if |xi| < ε
1
2
+4δ;

LεΩ(W )(x) ≥ − C√
L
e−

d(x)
8ε if |xi| < ε

1
2
+3δ.

(C.141)

Moreover, Theorem C.6 imply that there exists a constant C̃(Ω, gν) such that C̃√
L
ϕ 1

8
,ε satisfies

LεΩ

(
C̃√
L
ϕ 1

8
,ε

)
(x) ≥ C√

L
e−

d(x)
8ε ∀x ∈ Ω,

where C is the constant in (C.141). Theorem C.6 implies also 0 ≤ ϕA,ε(x) ≤ C(Ω) < ∞ for
any 0 < A < 1 and any 0 < Aε ≤ ε0. Hence, Wε,L is non negative and we can conclude
equation (C.110) for α = δ

2 , for some constant C(Ω, gν) > 0 independent of δ, p ∈ ∂Ω, ε, L and

for L > 0 and 0 < ε < 1 sufficiently small such that L > ε−
2

1−8δ .
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The properties of Wε,L imply now the boundedness of |uε − u| near the boundary ∂Ω.

Corollary C.4. Let 0 < δ < 1
16 . There exists a constant C > 0, a large L > 0 and an α > 0

independent of x, p, ε such that∣∣∣∣u(Rp(·) · e1ε
, p

)
− uε

∣∣∣∣ (x) ≤ C

(
εα +

1√
L

)
for all |x− p| < ε

1
2
+4δ.

Proof. Let L > 0 large as in Proposition C.5 and let 0 < ε < 1 sufficiently small such that

L < ε
− 1

β for β = 1−8δ
2 . Let δ < 1

16 and α = δ
2 . If |x − p| < ε

1
2
+4δ with x ∈ Ω then

0 < x · (−Np) < ε
1
2
+4δ and |Rp(x) · ei| < ε

1
2
+4δ for i = 2, 3. Let us consider Wε,L as defined

in (C.115). As we know, u
(
Rp(·)·e1

ε , p
)
and uε are both uniformly bounded, independently

of p. Let us call K > 0 this bound. Moreover, Wε,L ≥ π
2 − arctan(2) := C̃ > 0. Hence, for

all |Rp(x) · ei| ≥ ε
1
2
+3δ we have that K

C̃
Wε,L(x) −

∣∣∣u(Rp(·)·e1
ε , p

)
− uε

∣∣∣ (x) ≥ 0. The function

K
C̃
Wε,L is also continuous and satisfies K

C̃
LεΩ (Wε,L) ≥ Cεδ K

C̃
e−

Ad(x)
ε for all |Rp(x) ·ei| < ε

1
2
+3δ.

Using the maximum principle of Theorem C.5 and the estimate for the operator acting on

u
(
Rp(·)·e1

ε , p
)
− uε in Lemma C.9 we obtain∣∣∣∣u(Rp(·) · e1ε

, p

)
− uε

∣∣∣∣ (x) ≤ C

(
εα +

1√
L

)
for all |x− p| < ε

1
2
+4δ.

This is a key estimate for the proof of the convergence of the exact solutions uε up to the
boundary ∂Ω.

C.4.4 Convergence of uε to the solution of the new boundary value problem

This last section is devoted to the proof of the pointwise convergence of uε to the solution of
the Laplace equation in Ω with boundary value u∞ (cf. Proposition C.3). We proceed defining

new regions. We define Ω̂ε :=
{
x ∈ Ω : d(x) > ε

1
2
+4δ
}
, Σε :=

{
x ∈ Ω : ε

1
2
+6δ < d(x) ≤ ε

1
2
+4δ
}

and their union Ωε = Ω̂ε ∪ Σε. We also define for 0 < σ ≪ 1 independent of ε the set
Ωσ := Ω ∪ {x ∈ Ωc : d(x) < σ}. We recall the continuous projection π∂Ω as given in (C.14).

Ω

Ωσ

Ωε

Ω̂ε

Σε

Figure C.9: Decomposition of Ω
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Lemma C.11. Let 0 < ε < 1 and 0 < δ < 1
16 . Let C,L, α be as in the Corollary C.4. Then

it holds

sup
x∈Σε

|u∞ (π∂Ω(x))− uε(x)| ≤ C

(
εα +

1√
L

)
+ ω̃1

(
ε

1
2
−6δ
)
, (C.142)

where ω̃1(r) = Ce−
r
2 for a suitable constant C > 0.

Proof. By Corollary C.2 there exists a constant C > 0 independent of p ∈ ∂Ω such that
|u(y, p)− u∞(p)| ≤ Ce−

y
2 = ω̃1(y). Hence, let x ∈ Σε. Then

|u∞ (π∂Ω(x))− uε(x)|

≤
∣∣∣∣uε(x)− u

(
Rπ∂Ω(x)(x) · e1

ε
, π∂Ω(x)

)∣∣∣∣− ∣∣∣∣u∞ (π∂Ω(x))− u

(
Rπ∂Ω(x)(x) · e1

ε
, π∂Ω(x)

)∣∣∣∣
<C

(
εα +

1√
L

)
+ ω̃1

(
ε

1
2
−6δ
)
,

where we used the result of Corollary C.4 and the fact that since ε
1
2
+6δ < d(x) < ε

1
2
+4δ

then we have that ε−
1
2
+6δ ≤

∣∣∣Rπ∂Ω(x)(x)·e1
ε

∣∣∣ ≤ ε−
1
2
+4δ. Moreover, since δ < 1

16 , we have that
1
2 − 6δ > 1

8 > 0.

We recall first the definition of v as solution to the Laplacian (cf. (C.58)){
−∆v(x) = 0 x ∈ Ω,

v(p) = u∞(p) p ∈ ∂Ω.

Clearly by the uniformly continuity of u∞ we have that v ∈ C∞ (Ω) ∩ C
(
Ω
)
. We call ω2 its

modulus of continuity. Further, we need to consider another function, harmonic on the larger
domain Ωσ {

−∆vσ(x) = 0 x ∈ Ωσ,

v(x) = u∞ (π∂Ω(x)) x ∈ ∂Ωσ.

We recall that π∂Ω : ∂Ωσ → ∂Ω is a continuous bijection if σ > 0 small enough and therefore
vσ ∈ C∞ (Ωσ) ∩ C

(
Ωσ
)
. Denoting ω its modulus of continuity a simple application of the

maximum principle for harmonic functions implies supx∈Ω |vσ(x)− v(x)| ≤ ω(σ). Indeed,
vσ − v is harmonic on Ω and thus the maximum must be attained on ∂Ω. Hence, using that
π∂Ω is a bijection we obtain

vσ(x)− v(x) ≤ max
x∈∂Ω

(vσ(x)− v(x)) = max
x∈∂Ωσ

(vσ(π∂Ω(x))− vσ(x)) ≤ ω(σ), (C.143)

since |x− π∂Ω(x)| = σ for x ∈ ∂Ωσ. The same can be estimated for v − vσ.

Lemma C.12. Let x ∈ Ω̂ε. Then

|LεΩ (vσ − uε) (x)| ≤ C(Ω, gν)e
−Ad(x)

ε

(
εβ +

ε

σ

)
+
C

σ3
ε3, (C.144)

for some constant C(Ω, gν) > 0 and ε > 0 sufficiently small.

Proof. We already know that in general we always have the estimate |LεΩ (uε) (x)| ≤ Ce−
d
ε

(cf. Theorem C.6). Since for x ∈ Ω̂ε the distance to the boundary satisfies d(x) > ε
1
2
+4δ, we

estimate for these points

|LεΩ (uε) (x)| ≤ Ce−
d
ε ≤ Ce−

d
2ε 2

ε

ε
1
2
+4δ

≤ Ce−
d
2ε ε

1
2
−4δ = Ce−

d
2ε εβ, (C.145)
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where β = 1
2 − 4δ > 0 for δ < 1

16 .

Let us consider now the operator LεΩ acting on vσ. We apply as usual the Taylor expansion
to vσ(η) = vσ(x)+∇xvσ(x)·(η−x)+ 1

2(η−x)⊤∇2
xvσ(x)(η−x)+E3(η, x). Since x ∈ Bσ(x) ⊂ Ωσ

for all x ∈ Ω by the harmonicity of vσ we obtain

|∂αvσ(x)| ≤ C(|α|)∥vσ∥∞σ
3

σ3+|α| = C(|α|)∥u∞∥∞
σ|α|

≤ C

σ|α|
,

where we used that vσ attains its maximum on the boundary and that u∞ is uniformly
bounded. Hence, we calculate for x ∈ Ω̂ε and ε > 0 sufficiently small

|LεΩ (vσ) (x)|

=

∣∣∣∣vσ(x)− ˆ
Ω
Kε (η − x)

[
vσ(x) +∇xvσ(x) · (η − x) +

1

2
(η − x)⊤∇2

xvσ(x)(η − x)

]
dη

∣∣∣∣
+

∣∣∣∣ˆ
Ω
Kε (η − x)E3(η, x) dη

∣∣∣∣
≤vσ(x)

ˆ
Bc

d(x)(x)

Kε (η − x) dη +
Cε

σ

ˆ
Bc

d(x)(0)

e−
|y|
ε

4πε2|y| dy +
Cε2

σ2

ˆ
Bc

d(x)(0)

e−
|y|
ε

4πε3
dy

+
Cε3

σ3

ˆ
R3

e−
|y|
ε

4πε3
|y|
ε
dy

≤Ce−
d(x)
ε

(
1 +

ε

σ

)
+
Cε3

σ3
,

(C.146)

where we used the symmetry of the kernel for the first order term, the fact that vσ is harmonic
for the second order term, the boundedness of

´∞
0 e−rr3 dr and the fact that Ωc ⊂ Bc

d(x)(x).

Equations (C.145) and (C.146) yield (C.144).

Lemma C.13. Let x ∈ Σε and ε > 0 small enough. Then the following uniform bound holds

|vσ(x)− uε(x)| ≤ ω(σ) + ω2

(
ε

1
2
+4δ
)
+ C

(
εα +

1√
L

)
+ ω̃1

(
ε

1
2
−6δ
)
.

Proof. Let x ∈ Σε. Then, d(x) = |x− π∂Ω(x)| < ε
1
2
+4δ. Hence, |v(x)− u∞ (π∂Ω(x))| <

ω2(ε
1
2
+4δ). Thus using equation (C.143) and Lemma C.11 we conclude

|vσ(x)− uε(x)| ≤ |vσ(x)− v(x)|+ |v(x)− u∞ (π∂Ω(x))|+ |u∞ (π∂Ω(x))− uε(x)|

≤ω(σ) + ω2

(
ε

1
2
+4δ
)
+ C

(
εα +

1√
L

)
+ ω̃1

(
ε

1
2
−6δ
)
.

(C.147)

With an application of the maximum principle on Ωε := Ω̂ε ∪Σε we can prove the conver-
gence of uε to the harmonic function v ε→ 0.

Theorem C.7. uε converges to v uniformly in every compact set.
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Proof. As we mentioned above we will use the maximum principle for the operator LεΩε
. We

start estimating for x ∈ Ω̂ε this operator acting on vσ − uε. Thus, for ε > 0 sufficiently small

∣∣LεΩε
(vσ − uε) (x)

∣∣ ≤ |LεΩ (vσ − uε) (x)|+
ˆ
Ω\Ωε

Kε (η − x) (vσ(η)− uε(η)) dη

≤ Ce−
d(x)
ε

(
1 +

ε

σ

)
+
Cε3

σ3
+
C

ε
exp

(
−ε

8δ−1
2

2

)ˆ
Ω\Ωε

1

|η − x|2 dη

≤ Ce−
d(x)
2ε

(
ε

1−8δ
2 +

ε

σ

)
+
Cε3

σ3
+ C (Ω) ε3,

(C.148)

where we used Lemma C.12, the fact that if η ∈ Ω \ Ωε and 0 < ε < 2−
1
2δ we have

|x− η| > ε
1
2
+4δ(1− ε2δ) > ε

1
2+4δ

2 and that d(x) ≥ ε
1
2
+4δ. Moreover, we used that Ω \ Ωε ⊂ Ω

and that for any n ∈ N there exists a constant Cn such that |x|ne−|x| ≤ Cn. We chose here
δ < 1

72 and n = 9.

We now set for C > 0 the maximum between the constants appearing in estimates (C.147)
and (C.148)

Kε = C

(
ε

1−8δ
2 +

ε

σ
+

ε

σ3
+ ω(σ) + ω2

(
ε

1
2
+4δ
)
+ C

(
εα +

1√
L

)
+ ω̃1

(
ε

1
2
−6δ
))

.

Analogously to Theorem C.6 we define

ψ(x) = Kε2C3

(C1 − |x|2
)
+ C2


1− γ

1 +
(
dε(x)
2ε

)2
 ∧

1− γ

1 +
(
µR
4ε

)2


 ,

where C1(Ω) := 2maxx∈Ω |x|2+2 diam (Ω)2+4 diam (Ω)+4 and C2(Ω), C3(Ω) are independent
of ε. We denote dε := dist(x, ∂Ωε). We claim that ψ is a supersolution for LεΩε

. This is true
because the geometrical properties of Ωε, in particular its regularity and the estimate for the
radii of curvature, are identical to those for Ω. More precisely, if ε < ε0 sufficiently small the
minimal radius of curvature Rε for ∂Ωε satisfies R

2 < Rε < R. Moreover, dε(x) ≤ d(x) and
therefore ∥∇2

xdε∥op ≤ 1
(1−µ)R

2

for µ ∈ (0, 1) and dε(x) <
R
2 µ. Hence, C2, C3, γ, µ can be chosen

as in Theorem C.6. Thus, ψ has uniform upper and lower bound independently on ε and all
calculations we performed in Lemma C.7 and Lemma C.8 apply also for LεΩε

(ψ)(x). Hence,
since dε(x) ≤ d(x) we estimate using equation (C.93)

LεΩε
(ψ) (x) ≥ Kε

(
e−

dε(x)
2ε + ε2

)
≥ Kε

(
e−

d(x)
2ε + ε2

)
. (C.149)

We remark that ψ ≥ 8KεC3 by the definition of C1. Hence, multiplying ψ by K =
max{1, 1

8C3
} we have Kψ ≥ Kε. We apply now use the maximum principle for LεΩε

acting on
Kψ−(vσ−uε). Indeed, Kψ(x) ≥ |vσ(x)−uε(x)| if x ∈ Σε by Lemma C.13 and the definition of
Kε. We notice also that estimates (C.148) and (C.149) imply LεΩε

(Kψ − (vσ(x)− uε(x))) (x) ≥
0 as well as LεΩε

(Kψ − (uε(x)− vσ(x))) (x) ≥ 0 if x ∈ Ω̂ε. Hence, using the maximum princi-
ple for the operator LεΩε

we conclude |uε−vσ| ≤ Kψ ≤ CKε for x ∈ Ωε and for some constant
C(Ω,K, gν) since ψ is bounded (cf. Theorem C.6). Thus,

CKε − vσ(x) ≤ uε(x) ≤ CKε + vσ(x) (C.150)
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for all x ∈ Ωε. Since lim
ε→0

Kε = C
(
ω(σ) + 1√

L

)
, we obtain

C

(
ω(σ) +

1√
L

)
− vσ(x) = lim inf

ε→0
uε(x) ≤ lim sup

ε→0
uε(x) = C

(
ω(σ) +

1√
L

)
+ vσ(x).

Letting first L→ ∞ and then σ → 0 we conclude

v(x) = lim inf
ε→0

uε(x) ≤ lim sup
ε→0

uε(x) = v(x)

and hence
lim
ε→0

uε(x) = v(x)

for all x ∈ Ω. The convergence is not only pointwise but also uniform in every compact set.
Let indeed A ⊂ Ω be compact. Then there exists an ε0 such that A ⊂ Ωε for all ε < ε0. Since
CKε is independent of x ∈ Ω and |v−vσ| ≤ ω(σ) uniformly in x ∈ Ω equation (C.150) implies

sup
x∈A

|uε(x)− v(x)| ≤ CKε + ω(σ) −→ 0

as ε→ 0, L→ ∞ and σ → 0 in this order. Hence, Theorem C.7 follows.

We end this section with the following corollary which shows the convergence as ε→ 0 of
the solution (Iεν , Tε) of the problem (C.6) to the vector (Bν(T ), T ), where 4πσT 4 = v is the
solution to the boundary value problem (C.58). This result implies Theorem C.1.

Corollary C.5. Let (Iεν(x, n), Tε(x)) be the solution of the problem (C.6) and let v(x) be

the solution of (C.58). Then Tε converges to T =
(

v
4πσ

)1/4
uniformly in every compact set.

Moreover, Iεν(x, n) converges to Bν(T (x)) uniformly in every compact set K ⊂ Ω as a function
with values in L∞(S2, L1(R+)).

Proof. The convergence of Tε to T is a direct implication of the previous Theorem (C.7) and
of the definition of uε = 4πσT 4

ε .
The convergence of the radiation intensity to the Planck distribution follows from an

application of the dominated convergence theorem. Indeed, from equation (C.59), changing
the variable t 7→ t

ε we see that

Iεν(x, n) = gν(n)e
−|x−xΩ(x,n)|

ε +

ˆ |x−xΩ(x,n)|
ε

0
e−tBν (Tε(x− εtn)) dt.

Hence, for any compact K ∈ Ω there exists some ε0 such that K ⊂ Ωε for all ε < ε0. Thus,

|x− xΩ(x, n)|
ε

> ε−
1
2
+6δ > ε−

1
8

for all x ∈ K, n ∈ S2 and ε < ε0. Moreover, for ε0 small enough the set

A =

{
x− τn : x ∈ K,n ∈ S2, τ ∈

[
0, ε

1
2
+7δ

0

]}
⊂ Ω

is compact. Therefore by the uniform convergence in compact sets of Tε we conclude with the
dominated convergence theorem thatˆ ∞

0
|Iεν(x, n)−Bν(T (x))| dν

≤
ˆ ∞

0
gν(n)e

−|x−xΩ(x,n)|
ε dν +

ˆ |x−xΩ(x,n)|
ε

0
e−t |uε(x− εtn)− v(x)| dt

≤ e−ε
− 1

8 ∥g∥∞ + ∥uε − v∥C(A)

ˆ ε−
1
2+7δ

0
e−tdt+

(
∥uε∥C(Ω) + ∥v∥C(Ω)

) ˆ ∞

ε−
1
2+7δ

e−tdt→ 0
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uniformly in n ∈ S2 and in the compact set K ∈ Ω. Notice that we used also the uniform
boundedness of the sequence uε.

C.5 Diffusion approximation for space dependent absorption
coefficient

We could prove in the previous sections the convergence of the initial boundary value problem
(C.6) to the solution of the Laplacian for constant absorption coefficient. In this section we
will show an analogous result for the case, when the absorption coefficient depends on x ∈ Ω,
but it does not depend on the frequency.

C.5.1 The limit problem and the boundary layer equation

We assume, as we did throughout the paper, Ω ⊂ R3 to be a convex bounded domain with
C3-boundary and strictly positive curvature. From now on we also assume α ∈ C3(Ω) with
0 < c0 ≤ α(x) ≤ ∥α∥C3 := c1 < ∞. We define α ∈ C3

b (R) to be the extension of α in the
whole space with 0 < c0 ≤ α(x) ≤ c1 and α |Ω = α. For conivience we will denote α by α.
We assume gν to satisfy the same assumption as in the rest of the paper, namely gν(n) ≥ 0
with

´∞
0 gν(n) dν ∈ L∞ (S2). We study the limit as ε → 0 of the following boundary value

problem
n · ∇xIν (x, n) =

α(x)
ε (Bν (T (x))− Iν (x, n)) x ∈ Ω,

∇x · F = 0 x ∈ Ω,

Iν (x, n) = gν (n) x ∈ ∂Ω and n ·Nx < 0.

(C.151)

We proceed in the same way as in the case of constant absorption coefficient. Following the
computation in Section 2.1 we obtain the limit problem in the interior Ω for u(x) = 4πσT 4(x)
as the elliptic equation

−div

(
1

α(x)
∇xu(x)

)
= 0. (C.152)

For the boundary layer equation we argue similarly as in Section 2.2. Let x0 ∈ ∂Ω and let
Rx0 be the rigid motion in (C.13). We rescale x = ε

α(x0)
R−1
x0 (y) + x0 for y ∈ α(x0)

ε Rx0 (Ω)

and we define gν(n) = gν
(
Rot−1

x0 (n)
)
. Moreover, since α is a C3-function we also have for ε

sufficiently small that α(x) = α(x0) +
ε

α(x0)
O(|y|), and hence taking ε → 0 we obtain once

again for N = Rotx0(Nx0)
n · ∇yIν (y, n) = (Bν (T (y))− Iν (y, n)) y ∈ R+ × R2,

∇y · F = 0 y ∈ R+ × R2,

Iν (y, n) = gν (n) y ∈ {0} × R2 and n ·N < 0.

This implies, that the boundary layer equation for u(y1, p) = 4πσT 4(y) is also in this case
given by the integral equation (C.22)

u(y1, p)−
ˆ ∞

0
dη K(y1 − η)u(η, p) =

ˆ ∞

0
dν

ˆ
n·Np<0

dn gν(n)e
− y1
|n·Np| ,

where K is the normalized exponential integral. Hence, the whole theory developed in Section
3 is still valid and can be summarized by the Proposition (C.3).
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Before moving to the rigorous proof of the convergence to the solution of the elliptic

equation given in (C.152) we remark that the function U ε(x, p) := u
(
α(p)
ε Rp(x) · e1, p

)
solves

the integral equation

U ε(x, p)−
ˆ
Πp

dη
α(p)e−

α(p)|x−η|
ε

4πε|x− η|2 U ε(η, p) =

ˆ ∞

0
dν

ˆ
n·Np<0

dn gν(n)e
−

α(p)|x−xΠp
(x,n)|

ε .

(C.153)

C.5.2 Rigorous proof of the convergence: equation for uε and properties of
the kernel

We can now move to the proof of the convergence of the solution to the problem (C.151)
to the elliptic equation (C.152). We will follow all arguments given in Section 4 and change
them were needed. Hence, first of all we find the integral equation that the sequence uε(x) =
4πσT 4

ε (x) associated to the solution Iεν(x, n) of (C.151) satisfies. We follow the computations
of Section 4.1. Let x ∈ Ω, n ∈ S2, xΩ(x, n) ∈ ∂Ω the unique intersection point of the line
{x− tn : t > 0} with the boundary. Let s(x, n) = |x−xΩ(x, n)| and let us denote for x, z ∈ Ω
by

´
[x,z] α(ξ) ds(ξ) the integral along the line connecting x with z, i.e.

´
[x,xΩ(x,n)]

α(ξ) ds(ξ) =´ s(x,n)
0 α(x− tn) dt. Solving the first equation in (C.151) by characteristics we obtain

Iεν(x, n) = gν(n)e
−
´
[x,xΩ(x,n)]

α(ξ)
ε

ds(ξ)
+

ˆ s(x,n)

0
e−

´ t
0

α(x−τn)
ε

dτ α(x− tn)

ε
Bν (T (x− tn)) dt.

Therefore, analogously as in Section 4.1 using that the flux is divergence free together with
the first equation in (C.151), equation (C.3), the characteristic solution of Iε and changing
from spherical coordinates to space coordinates we obtain the following integral equation for
uε(x) = 4πσT 4

ε (x)

uε(x)−
ˆ
Ω

α(η)e
−
´
[x,η]

α(ξ)
ε
ds(ξ)

4πε|x− η|2 uε(η) dη =

ˆ ∞

0
dν

ˆ
S2
dn gν(n)e

−
´
[x,xΩ(x,n)]

α(ξ)
ε

ds(ξ)
. (C.154)

For x, η ∈ R3 we define the kernel Kε by

Kε(x; η) =
α(η)e

−
´
[x,η]

α(ξ)
ε
ds(ξ)

4πε|x− η|2 . (C.155)

Notice that Kε has been defined in the whole R3 extending α by α. We remark that Kε(x; η)
is not symmetric, i.e. Kε(x; η) ̸= Kε(η;x). In the following we summarize some properties of
the kernel Kε.

Proposition C.6. The kernel Kε defined in (C.155) has integral equal 1. Moreover, it can
be decomposed in the following three different ways:

(i) Let x, η ∈ R3, then Kε(x; η) = K
α(x)
ε (x− η) +Rxε (x; η), where

Kα(x)
ε (x− η) =

α(x)e−
α(x)|x−η|

ε

4πε|x− η|2 .

Moreover, the remainder satisfies

|Rxε (x; η)| ≤ C(c0, c1)
c0e

− c0|x−η|
ε

4πε|x− η|2

{(
|x− η|+ |x−η|2

ε

)
|x− η| < √

ε

1 |x− η| ≥ √
ε.



240 APPENDIX C. DIFFUSION APPROXIMATION OF STATIONARY RTE

(ii) Let x, η ∈ R3 and p ∈ ∂Ω with |x − p| < ε
1
2
+2δ for δ > 0 very small. Then Kε(x; η) =

K
α(p)
ε (x− η) +Rpε(x; η), where the remainder satisfies

|Rpε(x; η)| ≤C(c0, c1)
c0e

− c0|x−η|
ε

4πε|x− η|2

×
{(

|x− p|+ |x− η|+ |x−η|2
ε + |x−η|

ε |x− p|
)

|x− η| < ε
1
2
+2δ

1 |x− η| ≥ ε
1
2
+2δ.

(iii) Let x, η ∈ R3, then Kε(x; η) = K
α(x)
ε (x− η) +K1

ε(x− η) +K2
ε(x− η) + R̃xε (x; η), where

K1
ε(x− η) = −1

2

α(x)e−
α(x)|x−η|

ε

4πε|x− η|2 ∇xα(x) · (η − x)
|x− η|
ε

and

K2
ε(x− η) =

e−
α(x)|x−η|

ε

4πε|x− η|2∇xα(x) · (η − x).

Moreover, the remainder satisfies

∣∣∣R̃xε (x; η)∣∣∣ ≤ C(c0, c1)


c0e

− c0|x−η|
ε

4πε|x−η|2
(
|x−η|3
ε + |x−η|4

ε2

)
|x− η| < √

ε

c0e
− c0|x−η|

2ε

4πε|x−η|2 (1 + ε+ ε2) |x− η| ≥ √
ε.

(C.156)

Notice that (iii) is a refinement of (i).

Proof. We start proving that the integral of Kε is 1. We compute changing to spherical
coordinates as η = x− rn

ˆ
R3

α(η)e
−
´
[x,η]

α(ξ)
ε
ds(ξ)

4πε|x− η|2 dη =

ˆ
S2
dn

ˆ ∞

0
dr

α(x− rn)

4πε
e−

´ r
0

α(x−tn)
ε

dt

= −
ˆ
S2
dn

ˆ ∞

0
dr

1

4π

d

dr
e−

´ r
0

α(x−tn)
ε

dt =

ˆ
S2
dn

1

4π

(
1− e−

´∞
0

α(x−tn)
ε

dt
)
= 1,

since α ≥ c0 > 0.

We now proceed with the decompositions of the kernel. We start with claim (i). To this
end we consider first of all |x− η| < √

ε. We can expand by Taylor and get

α(η) = α(x) +O (|x− η|) and

ˆ 1

0

α(x− τ(x− η))dτ |x− η|
ε

=
α(x)|x− η|

ε
+O

( |x− η|2
ε

)
.

(C.157)
Since |x− η| < √

ε we can conclude

e
−
´
[x,η]

α(ξ)
ε
ds(ξ)

= e−
α(x)|x−η|

ε

(
1 +O

( |x− η|2
ε

))
. (C.158)

By assumptions c0 ≤ α(x) ≤ c1 and hence (C.157) and (C.158) imply claim (i) in the case
|x− η| < √

ε. In the case |x− η| ≥ √
ε we use the rough estimate∣∣∣∣α(η)e− ´

[x,η]
α(ξ)
ε
ds(ξ) − α(x)e−

α(x)|x−η|
ε

∣∣∣∣ ≤ 2c1e
− c0|x−η|

ε . (C.159)
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Concerning claim (ii) we argue similarly. Let p ∈ ∂Ω and |x− p| < ε
1
2
+2δ. Let us first of

all consider |x − η| < ε
1
2
+2δ, then |η − p| < ε

1
2
+δ for ε > 0 sufficiently small. We expand α

again by Taylor around p. Hence, similarly as before

α(η) = α(p) +O (|η − p|) and

e
−
´
[x,η]

α(ξ)
ε
ds(ξ)

=e−
α(p)|x−η|

ε

(
1 +O

( |x− η|2 + |x− p||x− η|
ε

))
.

(C.160)

Using on one hand |η − p| ≤ |η − x| + |x − p| and on the other hand a rough estimate as in
(C.159) we conclude also the proof of claim (ii).

It remains to show claim (iii). We assume again first of all |x − η| < √
ε. We expand α

using Taylor. Since α ∈ C3
b

(
R3
)
all terms in the computation below are well-defined. Hence,

we see

α(η) = α(x) +∇xα(x) · (η − x) +O
(
|x− η|2

)
(C.161)

and

1

ε

ˆ 1

0
α(x− τ(x− η))dτ |x− η| =1

ε

ˆ 1

0
α(x) + τ∇xα(x) · (η − x) +O

(
|x− η|2

)
dτ |x− η|

=
α(x)|x− η|

ε
+

1

2
∇xα(x) · (η − x)

|x− η|
ε

+O
( |x− η|3

ε

)
.

Thus, this implies for |x− η| < √
ε the estimate

e
−
´
[x,η]

α(ξ)
ε
ds(ξ)

= e−
α(x)|x−η|

ε

(
1− 1

2
∇xα(x) · (η − x)

|x− η|
ε

+O
( |x− η|3

ε
+

|x− η|4
ε2

))
.

(C.162)

Equations (C.161) and (C.162) imply the decomposition Kε(x; η) = K
α(x)
ε (x − η) + K1

ε(x −
η) +K2

ε(x− η) + R̃xε (x; η) and the estimate on R̃xε when |x− η| < √
ε, while a rough estimate

similar to (C.159) and the well-known inequality e−|x||x|n ≤ Cne
− |x|

2 imply the claim (iii) for
|x− η| ≥ √

ε.

This proposition is one of the key results which will allow us to generalize the results
obtained in the previous section when the absorption coefficient depends smoothly enough on
the space variable. There are two very important consequences. First of all, the Banach fixed
point theorem guarantees a unique continuous bounded solution uε. Indeed, the continuity
of the function 1

|x|2 and its integrability in Ω together with the uniform continuity in x and

uniform boundedness of e
−
´
[x,η]

α(ξ)
ε
ds(ξ)

imply that the operator Aεg : C(Ω) → C(Ω) is a
selfmap, where we consider

Aεg(u)(x) =

ˆ
Ω
dηKε(x; η)u(η) +

ˆ ∞

0
dν

ˆ
S2
dn gν(n)e

−
´
[x,xΩ(x,n)]

α(ξ)
ε
ds(ξ)

.

Moreover, since the integral on R3 of the kernel Kε is 1, arguing as in Section 4.1 we conclude
that Aεg is a contraction.

The second consequence is that we can prove for the integral operator LεΩ(u)(x) := u(x) −´
Ω dη Kε(x;n)u(η) comparison properties identical to the one in Theorem C.5 (Maximum
principle). Hence, uε in (C.154) is non-negative.
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C.5.3 Rigorous proof of the convergence: uniform boundedness of uε

Next we generalize Section 4.2 for the case α(x) ∈ C3(Ω). We want to show that the sequence
uε is uniform bounded in ε. As we have seen in Section 5.2 the maximum principle of Theorem
C.5 holds. We want to apply it with a suitable supersolution. Indeed, using the notation
εdε = d(x) as in Lemma C.8 we see

´
[x,xΩ(x,n)]

α(ξ)
ε ds(ξ) ≥ c0|x−xΩ|

ε ≥ c0dε(x) and thus

|LεΩ (uε) (x)| ≤ ∥g∥1e−c0dε(x).
The supersolution we will consider is similar to the one constructed in Theorem C.6.

However, it is now not true anymore that there exists a constant C > 0 such that LεΩ(C −
|x|2) ≥ 2ε2 for every x ∈ Ω. This can be already been looking at the expected limit elliptic

operator L = −div
(

1
α(x)∇x

)
, for which the inequality L

(
C − |x|2

)
≥ 0 holds for arbitrary

functions α depending on x only for small values of |x|. We remark that the supersolution
constructed in Theorem C.6 contains two parts, namely a multiple of C − |x|2 and a function
proportional to the function ψ constructed in Lemma C.8. The role of the function ψ is
to control the value of the operator LεΩ near the boundary ∂Ω. The contribution of ψ is
relevant only in the region where e−dε(x) ≥ ε2. We will see that the function ψ still gives a
supersolution for the new operator LεΩ (up to an error of order ε2). Therefore, in order to
prove the analogous of Theorem C.6 we need to replace the function C − |x|2 by exponential
functions.

Theorem C.8. There exist suitable constants 0 < µ < 1, 0 < γ(µ) < 1
3 , C1, C2, C3 > 0,

λ > 0 large enough and there exists some ε0 > 0 such that the function

Φε(x) = C3∥g∥1

(eλD + C1 − eλx1
)
+ C2


1− γ

1 +
(
c0d(x)
ε

)2
 ∧

1− γ

1 +
(
c0µR
ε

)2


,

for a ∧ b = min (a, b), R > 0 the minimal radius of curvature, D = diam(Ω) and d(x) :=

dist (x, ∂Ω), satisfies LεΩ (Φε) (x) ≥ ∥g∥1e−
c0d(x)

ε in Ω uniformly for all ε < ε0. Moreover, the
solutions uε of (C.154) are uniformly bounded in ε.

Proof. We will use the notation of Theorem C.6 and Lemma C.7 and C.8. Notice first of all
that

c0
c1
Kc1
ε (x− η) ≤ Kε(x; η) ≤

c1
c0
Kc0
ε (x− η), (C.163)

where we used the notation of Proposition C.6. Moreover, using the decomposition of claim (i)
in Proposition C.6 we can always estimate for any n ∈ N the integral

´
R3 |Rxε (x; η)||(η−x)|n dη

by

ˆ
R3

|Rxε (x; η)||(η − x)|n dη ≤C(c0, c1)
ˆ
|x−η|<√

ε
Kc0
ε (x− η)

( |η − x|2+n
ε

+ |x− η|1+n
)

|dη

+ C(c0, c1)

ˆ
|x−η|≥√

ε
Kc0
ε (x− η)|(η − x)|n dη

≤C(c0, c1)εn+1

ˆ ∞

0
e−rrn+1(1 + r) dr + C(c0, c1)ε

n

ˆ ∞

c0√
ε

e−rrn dr

≤C(c0, c1, n)εn+1 + C(c0, c1, n)ε
ne

− c0
2
√
ε ≤ C(c0, c1, n)ε

n+1,

(C.164)
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where we used e−|x||x|m ≤ Cm. Let now x ∈ Ω. Let x0 ∈ ∂Ω be a point such that |x− x0| =
d(x). Then we estimate with the help of Proposition C.6

LεΩ(1) =
ˆ
Ωc

dη Kε(x; η) ≥
ˆ
Πx0

dη Kε(x; η) ≥
c0
c1

ˆ
R−×R2

Kc1
ε (d(x)e1 − η)

=
c0
c1

ˆ −c1dε(x)

−∞
K(y) dy ≥

{
c0
c1
νc1M0 dε (x) ≤M0,

0 ∀x ∈ Ω.

This estimate will play a crucial role the proof. We proceed considering the function φ(x) =
eλD − eλx1 . It is not difficult to see that for x ∈ Ω we get φ(x) ≥ 0. Moreover, expanding by

Taylor eλη1 = eλx1+λeλx1(η1−x1)+λ2

2 e
λx1(η1−x1)2+E3(x; η) with |E3(x; η)| ≤ λ3

6 e
λD|x1−η1|3

we compute

LεΩ
(
eλx1

)
= eλx1 −

ˆ
Ω
Kε(x; η)e

λη1dη

=eλx1
ˆ
Ωc

Kε(x; η) dη − λeλx1
ˆ
Ω
Kε(x; η)(η1 − x1) dη

− λ2

2
eλx1

ˆ
Ω
Kε(x; η)(η1 − x1)

2 dη −
ˆ
Ω
Kε(x; η)E3(x; η) dη.

(C.165)

The first term on the right hand side can be controlled by eλD. For the second term we use

the decomposition of claim (i) in Proposition C.6, the symmetry of the operator K
α(x)
ε and

the estimate (C.164). Moreover, we remind that Ωc ⊂ Bc
d(x)(x). Hence,

−λeλx1
ˆ
Ω
Kε(x; η)(η1 − x1) dη =

λeλx1
ˆ
Ωc

Kα(x)
ε (x− η)(η1 − x1) dηλe

λx1

ˆ
Ω
Rε(x; η)(η1 − x1) dη

≤λc1
c20
εe−

c0dε(x)
2 eλx1 + C(c0, c1)λe

λx1ε2.

(C.166)

For the third term in equation (C.165) we can proceed as follows using the decomposition of
claim (i) of Proposition C.6 and (C.164)

λ2

2
eλx1

ˆ
Ω
Kε(x; η)(η1 − x1)

2 dη =
λ2

2
eλx1

ˆ
R3

Kα(x)
ε (x− η)(η1 − x1)

2 dη

− λ2

2
eλx1

ˆ
Ωc

Kα(x)
ε (x− η)(η1 − x1)

2 dη +
λ2

2
eλx1

ˆ
Ω
Rε(x; η)(η1 − x1)

2 dη

≥2ε2

3c21
λ2eλx1 − ε2

c20
λ2eλx1e−

c0dε(x)
2 − c(c0, c1)λ

2eλx1ε3.

(C.167)

Finally, using the estimate (C.163) for Kε we compute for the term containing the error
E3(x; η)

ˆ
Ω
Kε(x; η)E3(x; η) dη ≤ λ3eλDC(c0, c1)ε

3

ˆ
R3

e−rr3 ≤ C(c0, c1)λ
3eλDC(c0, c1)ε

3. (C.168)

Hence, (C.166), (C.167) and (C.168) imply for λ > 0 large enough and 0 < ε < 1 sufficiently



244 APPENDIX C. DIFFUSION APPROXIMATION OF STATIONARY RTE

small

LεΩ
(
eλD − eλx1

)
≥2ε2

3c21
λ2eλx1 − C(c0, c1)λe

λx1
(
εe−

c0dε(x)
2 + ε2 + ε2λe−

c0dε(x)
2

)
− c(c0, c1, λ,D)ε3

≥
{
−A1εe

− c0dε(x)
2 if d(x) < 2ε

c0
ln
(
1
ε

)
,

A2ε
2 if d(x) ≥ 2ε

c0
ln
(
1
ε

)
,

where A1(c0, c1, λ,D) > 0 and A2(c0, c1, λ,D) > 0 are constants independent of ε.

We proceed estimating the operator acting on ψ(x) =

(
1− γ

1+
(

c0d(x)
ε

)2

)
∧
(
1− γ

1+
(

c0µR
ε

)2

)
.

Arguing similarly as in Lemma C.8 we can show that for µ > 0 and 0 < γ < 1
3 small

enough and ε < ε1 <
Rµ3

2 sufficiently small there exists constants A3(R,Ω, µ, γ) > 0 and
A4(R,µ, γ) > 0 such that

LεΩ(ψ)(x) ≥


A3

1
(1+(c0dε(x))2)

2 if 0 < d(x) ≤ Rµ
2 ,

−A4ε
2 if Rµ2 < d(x) < Rµ,

0 if d(x) ≥ Rµ.

The proof works following the same steps of Lemma C.8. Indeed, for the regions {d(x) ≥ Rµ}
and {0 < d(x) < Mε}, for M = 1

µ2
, the proof does not change. We use the estimate (C.163)

for Kε and the fact that its integral in R3 is 1. The constant γ must be chosen sufficiently
small so that γ <

νc1M c0
2c1

. For the regions {Mε ≤ d(x) ≤ Rµ
2 } and {Rµ2 < d(x) < Rµ} we use

again the Taylor expansion, the estimates on Kε, the fact that ε < Rµ2

2 and M = 1
µ2
. Beside

the fact that Kε has integral 1 in R3 we use its decomposition Kε = K
α(x)
ε +Rxε according to

claim (i) in Proposition C.6 and the estimate (C.164) for the remainder. In every computation
where we used the symmetry of the kernel, e.g. for the first term of the Taylor expansion, we

decompose Kε and apply the symmetry argument for K
α(x)
ε and estimate the remainder. We

omit the details of the proof, since the computations are similar to those in Lemma C.8.

We now finish the proof of Theorem C.8. Let ε0 ≤ ε1 such that Rµ
2 > 2ε

c0
ln
(
1
ε

)
for all

0 < ε < ε0. Let C2 = A2
2A4

. Moreover, since (1 + x2)2e−
x
2 → 0 as x → ∞ there exists some

M0 > 0 such that if dε (x) ≥M0 then

−A1εe
− c0dε(x)

2 +
C2A3

(1 + (c0dε (x))2)
2 ≥ C2A3

2 (1 + (c0dε (x))2)
2 ≥ C2A3

12
e−c0dε(x).

Let C1 > 0 satisfy C1 >
A1c1

c0νc1M0
. Then for all dε (x) < M0 we obtain

LεΩ(C1) ≥ C1
c0
c1
νc1M0 > A1εe

− c0dε(x)
2 .

Finally, taking C−1
3 = min{A2

2 ,
C2A3
12 } we get the desired lower estimate

LεΩ (Φε) (x) ≥ ∥g∥1e−
c0d(x)

ε .

We conclude the proof of this Theorem applying the maximum principle of Theorem C.5 to
the continuous function Φε − uε.
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Remark. We notice for further reference that we have obtained a stronger estimate than

LεΩ (Φε) (x) ≥ ∥g∥1e−
c0d(x)

ε , namely

LεΩ (Φε) (x) ≥ ∥g∥1


6

(1+(c0dε(ε))2)
2 if d(x) < 2ε

c0
ln
(
1
ε

)
ε2 + 6

(1+(c0dε(ε))2)
2 if 2ε

c0
ln
(
1
ε

)
≤ d(x) < Rµ

2

ε2 if d(x) ≥ Rµ
2

≥ ∥g∥1ε2, (C.169)

since 6
(1+(c0dε(ε))2)

2 ≥ e−
c0d(x)

ε ≥ ε2 if d(x) < 2ε
c0

ln
(
1
ε

)
. This estimate will be important at the

end of the paper.

C.5.4 Rigorous proof of the convergence: estimates of uε−u near the bound-
ary ∂Ω

In this section we will extend the results of Section 4.3 also for the case of space dependent
absorption coefficient. We will show a slightly different result than the one in Section 4.3.
We will prove that U ε(x, p) as defined in (C.153) is a good approximation of uε(x) in a

neighborhood of p ∈ ∂Ω of size close to ε
2
3 istead of ε

1
2 . We will use once more the maximum

principle of Theorem C.5. We start with the estimate of LεΩ
(
U ε(·, p)− uε

)
.

Lemma C.14. Let p ∈ ∂Ω and let Rp be the rigid motion defined in (C.13). Then the
following holds for x ∈ Ω, δ > 0 sufficiently small and independent of ε and a suitable
0 < A < 1

4 and constant C > 0∣∣∣∣LεΩ(u(α(p)Rp(·) · e1
ε

, p

)
− uε

)
(x)

∣∣∣∣ ≤ Ce−Ac0dε(x)
{
1, ∀x ∈ Ω

εδ if |x− p| < ε
1
2
+2δ.

(C.170)

Proof. We start with the rough estimate for x ∈ Ω. The operator can be estimated by∣∣LεΩ (U ε(x, p)− uε(x)
)∣∣ ≤ ∣∣LεΩ (U ε(x, p))∣∣+ |LεΩ (uε(x))| .

As we have seen in Section 5.3 it is always true that |LεΩ (uε(x))| ≤ ∥g∥1e−c0dε(x). Hence, we
have to consider U ε(x, p) = u∞(p) + V ε(x, p) with V ε(x, p) = U ε(x, p) − u∞(p) and thus by

Lemma C.4
∣∣V ε(x, p)

∣∣ ≤ Ce−
c0|Rp(x)·e1|

2ε .

By the geometry of the problem we can estimate |Rp(x) · e1| ≥ d(x). Indeed, let xp ∈ ∂Ω
be the unique intersection point of the line {x + tNp : t > 0} with the boundary ∂Ω, i.e.
xp = x+ tpNp. Then, since Ω is convex,

|Rp(x) · e1| = (x− p) · (−Np) ≥ (x− xp) · (−Np) = tp = |x− xp| ≥ d(x). (C.171)

Hence, using also that |x− η| ≥ |d(η)− d(x)| we compute

|LεΩ
(
U ε(x, p)

)∣∣ ≤ u∞(p)

ˆ
Ωc

Kε(x; η)dη + Ce−
c0
2
dε(x) + C

ˆ
Ω
Kε(x; η)e−

c0
2
dε(η) dη

≤C(c0, c1)∥u∞∥∞e−
c0
2
dε(x)

ˆ ∞

0
e−

r
2 dr + Ce−

c0
2
dε(x)

+ C(c0, c1)

ˆ
d(η)<d(x)

e−
c0|x−η|

2ε

4πε|x− η|2 e
− c0

2
dε(x) dη + Ce−

c0
2
dε(x)

ˆ
d(η)≥d(x)

Kε(x; η) dη

≤C(c0, c1, ∥u∞∥∞)e−
c0
2
dε(x).
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We now prove the estimate when |x − p| < ε
1
2
+2δ. In this case we use the decomposition

Kε = K
α(p)
ε +Rpε in claim (ii) of Proposition C.6. Similarly as in (C.164) we can estimate

ˆ
R3

|Rpε(x; η)||x− η|n dη ≤ C(c0, c1)ε
nε

1
2
+2δ. (C.172)

Hence, using the decomposition above we compute for |x− p| < ε
1
2
+2δ

|LεΩ
(
U ε(x, p)− uε(x)

)∣∣
≤
∣∣∣∣∣
ˆ ∞

0
dν

ˆ
S2
dn gν(n)e

−
´
[x,xΩ(x,n)]

α(ξ)
ε

ds(ξ) −
ˆ ∞

0
dν

ˆ
n·Np<0

dn gν(n)e
−

α(p)|x−xΠp
(x,n)|

ε

∣∣∣∣∣
+

ˆ
Πp\Ω

dη Kα(p)
ε (x− p)U ε(η, p) +

ˆ
Ω
dη |Rpε(x; η)|U ε(η)

=I1 + I2 + I3.

We estimate now these three terms. Analogous to Lemma C.9 we decompose S2 = U1∪U2∪U3.
For the term I1 we only have to notice that if n ∈ U1 then |xΩ−x| ≤ ε

1
2
+δ(C(Ω)ε

1
2 +1+εδ) ≤

2ε
1
2
+δ for ε > 0 sufficiently small. Hence, |ξ−p||x−xΩ|

ε < 4ε2δ < 1 for any ξ = x − t(x − xΩ),
0 ≤ t ≤ 1 and ε > 0 sufficiently small. Thus, we obtain using the Taylor expansion on α(ξ)
as we did in (C.160)

I1 |U1
≤
ˆ ∞

0
dν

ˆ
U1

dn gν(n)

∣∣∣∣∣e−α(p)|x−xΩ(x,n)|
ε − e−

α(p)|x−xΠp
(x,n)|

ε

∣∣∣∣∣
+

ˆ ∞

0
dν

ˆ
U1

dn gν(n)

∣∣∣∣e− ´
[x,xΩ(x,n)]

α(ξ)
ε

ds(ξ) − e−
α(p)|x−xΩ(x,n)|

ε

∣∣∣∣
≤C(Ω)∥g∥∞εδe−c0dε(x) + C∥g∥∞

ˆ
U1

dn e−
α(p)|x−xΩ(x,n)|

ε ε2δ ≤ C(Ω)∥g∥∞εδe−c0dε(x),

where to estimate the first term in the first inequality we used Lemma C.9, specifically equation
(C.106), and to estimate the second term we expanded α(ξ) at ξ = p. To estimate the

contributions in the regions U2 and U3, the estimate
´
[x,xΩ(x,n)]

α(ξ)
ε ds(ξ) ≥ −c0 |x−xΩ(x,n)|ε

together with the result of Lemma C.9 implies the bound on I1. The term I2 can be handled
exactly as in Lemma C.9. Finally, for I3 we use the uniform boundedness of u(y, p) and
equation (C.172). This implies∣∣LεΩ (U ε(x, p)− uε(x)

)∣∣ ≤ C(Ω, c0, c1, g)ε
δe−c0dε(x) + Cε

1
2
+2δ.

We conclude by interpolation. Indeed, if d(x) ≤ 4ε
c0

ln
(
ε−

1
2
−δ
)
, then ε

1
2
+2δ ≤ εδe−

c0dε(x)
4 ,

while if d(x) > 4ε
c0

ln
(
ε−

1
2
−δ
)
we use the global estimate to get e−

c0dε(x)
2 ≤ ε

1
2
+δe−

c0dε(x)
4 .

It only remains to adapt the supersolution Wε,L of Proposition C.5. As we anticipated
at the beginning of Section 5.4 we are going to prove that u is a good approximation of uε

in a neighborhood of p ∈ ∂Ω of size close to ε
2
3 . First of all we notice that if δ < 1

12 then
2
3 >

1
2 + 2δ and hence we have also that∣∣∣∣LεΩ(u(Rp(·) · e1

ε
, p

)
− uε

)
(x)

∣∣∣∣ ≤ Ce−Ac0dε(x)
{
1 if |x− p| ≥ ε

2
3

εδ if |x− p| < ε
2
3 .

The result we prove is the following
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Proposition C.7. Let p ∈ ∂Ω, 0 < A < 1
4 the constant of Lemma C.14. Let L > 0 large

enough and 0 < ε < 1 sufficiently small. Let 0 < δ < 1
12 . Then there exists a non negative

continuous function Wε,L : Ω → R+ such that
Wε,L ≥ C > 0 for |Rp(x) · ei| ≥ ε

2
3
+δ;

LεΩ (Wε,L) (x) ≥ Cεδe−
Ad(x)

ε for |Rp(x) · ei| < ε
2
3
+δ;

0 ≤Wε,L ≤ C
(
εα + 1√

L

)
for |Rp(x) · ei| < ε

2
3
+2δ,

for some constant C > 0 and α > 0.

This proposition implies arguing as in Section 4.3, the following corollary (see Corollary
C.4).

Corollary C.6. There exists a constant C > 0, a large L > 0 and an α > 0 independent of
x, p, ε such that ∣∣∣∣u(Rp(·) · e1ε

, p

)
− uε

∣∣∣∣ (x) ≤ C

(
εα +

1√
L

)
for all |x− p| < ε

2
3
+2δ.

In order to adapt the supersolutionWε,L of Proposition C.5 in this case we start considering
a new slightly different geometrical setting. Once more we denote for simplicity xi = Rp(x)·ei.

We define now for i = 2, 3 the radii ρ±i (x) =

√(
x1 +

L
2 ε
)2

+
(
xi ± ε

2
3
+δ
)2

and the angles

θ±i (x) given by cos
(
θ±i
)
= 1

ρ±i (x)

(
x1 +

L
2 ε
)
. We construct then the function Wε,L using now

these definitions for ρ±i (x) and θ
±
i (x) analogously to Section 4.3

Wε,L(x) =
3∑
i=2

(
W+
i (x) +W−

i (x)
)
+

C̃√
L
ϕ 1

8
,ε + CεδϕA,ε, (C.173)

where ϕA,ε = Φ
ε
A the supersolution defined in Theorem C.8, C, C̃ > 0 some suitable constants

andW±
i = F±

i (x)+G±
i (x)+H

±
i (x) given by the auxiliary functions defined in (C.111),(C.112)

and (C.113) adapted to the new geometrical setting. Analogously to Section 4.3 we define the
following subsets of Ω for i = 2, 3.

C+
i :=

{
x ∈ Ω : xi ≤ −ε 2

3
+δ or |xi| < ε

2
3
+δ, x1 ≥ ε

2
3
+δ
}
;

C−
i :=

{
x ∈ Ω : xi ≥ ε

2
3
+δ or |xi| < ε

2
3
+δ, x1 ≥ ε

2
3
+δ
}
;

Cδ :=
{
x ∈ Ω : x1 < ε

2
3
+δ and |xi| < ε

2
3
+δ for i = 2, 3

}
;

Ci,2δ :=
{
x ∈ Ω : |xi| < ε

2
3
+2δ and x1 < ε

2
3
+2δ
}
.

Also Lemma C.10 can be extended. We can prove using the geometrical setting above and
the defined functions and sets the following Lemma.

Lemma C.15. Assume p ∈ Ω, 0 < ε < 1, L, δ as indicated in Proposition C.7. Let xi =
Rp(x) · ei for i = 1, 2, 3. Let W±

i as above. Then there exist a constant α > 0 depending only
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on δ and a constant C > 0 depending on Ω, gν , c0 and c1 but independent of ε and p and
suitable b > 0 and L > 0 such that for i = 2, 3

W±
i (x) ≥ 0 in Ω, (C.174)

W±
i (x) ≥ π

2
− arctan(2) in C±

i , (C.175)

W±
i (x) ≤ Cεα in Ci,2δ, (C.176)

LεΩ
(
W±
i

)
(x) ≥ − C√

L
e−

c0dε(x)
8 in Cδ. (C.177)

Proof. As in the proof of Lemma C.10 it is enough to prove it for W = W−
2 . Again we

consider ρ = ρ−2 , θ = θ−2 , F = F−
2 , G = G−

2 , H = H−
2 , C2δ = C2,2δ and C = C2. We only

have to show claim (C.177), since all other claims work exactly in the same way. The only

thing that is needed is that ε
2
3
+2δ = εδε

2
3
+δ = ε2δε

2
3 . In this case we have β = 1−12δ

3 > 0 and

ε <
(
1
L

) 1
β .

In order to prove (C.177) we follow the strategy of Lemma C.10. We expand hence by
Taylor the function W putting together equations (C.126), (C.127) and (C.128). Exactly as
in Section 4.3 we consider for x ∈ Cδ the three cases ρ(x) < Lε, ρ(x) ≥ Lε with d(x) < ε
and ρ(x) ≥ Lε with d(x) ≥ ε. For each of these situations the same estimates of the error
term E3(η, x) as in (C.130) holds. We substitute for W (η) in the formulation of LεΩ(W )(x)
the Taylor expansion. For all terms containing the first, second and third derivatives of W we
argued in Lemma C.10 by the symmetry of the kernel. In this case is not possible anymore.

Hence, for that terms, we decompose the kernel Kε(x; η) = K
α(x)
ε (x− η)+Rxε (x; η) according

to claim (i) of Proposition C.6. For K
α(x)
ε we use the same arguments as in Section 4. For

the terms with the remainder Rxε we estimate in a different way. We notice first of all that if
x ∈ Cδ, then

ρ(x) ≤ 2ε
2
3
+δ < ε

2
3 (C.178)

taking ε > 0 sufficiently small. Since ρ > L
2 ε and cos(θ(x))ρ(x) ≥ L

2 ε we recall also that for
n ≥ 1

εn |∇n
xW (x)| ≤CF

εn

ρn(x)
+ bCH

εn+2

ρn+2(x)
+ aCG

ε

Ln−
1
2 εnρ(x)

.

This implies, using the estimates (C.164) and (C.178) and ρ > L
2 ε that

|∇n
xW (x)|

ˆ
R3

dη |Rxε (x; η)||x− η|n ≤ C(c0, c1)ε
2

ρ(x)

(
CF ε

n−1

ρn−1
+ bCH

εn+1

ρn+1(x)
+

aCG

Ln−
1
2

)
=
C(c0, c1)ε

4

ρ4(x)

(
CF ε

n−1

ρn−1
+ bCH

εn+1

ρn+1(x)
+

aCG

Ln−
1
2

)
ε

(
ρ(x)

ε

)3

≤C(c0, c1)ε
4

ρ4(x)

(
CF ε

n−1

ρn−1
+ bCH

εn+1

ρn+1(x)
+

aCG

Ln−
1
2

)
≤C(c0, c1)ε

4

ρ4(x)

(
CF +

bCH
L2

+
aCG√
L

)
.

Hence, since ε4

ρ4(x)
=
(

ε
ρ(x)

) 5
2
(

ε
ρ(x)

) 3
2
all arguments and estimates we had in the proof of

Lemma C.10 for the first case when ρ(x) < Lε can be obtained also for this function W and
for α ∈ C3 (Ω). For the other two cases, when ρ(x) ≥ Lε with d(x) < ε or d(x) ≥ ε we need
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also to add to the assumption a > b the assumption a = 2b (or even a = b + 1). Then the
term coming from the integral

− |∇n
xG(x)|

ˆ
R3

dη |Rxε (x; η)||x− η|n ≥ −C(c0, c1)2bCGε
4

√
Lρ4(x)

can be always absorbed taking L large enough by the term coming from the Laplacian of H

when integrating the second derivative term of the Taylor expansion with the kernel K
α(x)
ε ,

i.e. it is absorbed by 2b
3α2(x)

ε4

ρ4(x)
≥ 2b

3c21

ε4

ρ4(x)
. The remaining arguments and computation are

similar to the one in the proof of Lemma C.10. We thus refer to the that proof which implies
Lemma C.15.

Arguing as in Section 4.3, Lemma C.15 implies now Proposition C.14 for the supersolution
Wε,L as given in equation (C.173). In this case we have to use Theorem C.8 instead of Theorem
C.6.

C.5.5 Rigorous proof of the convergence of uε to the solution of the new
boundary value problem

We are now ready conclude the proof of the convergence of uε to the function v, solution of
the boundary value problem{

−div
(

1
α(x)∇xv(x)

)
= 0 x ∈ Ω,

v(p) = u∞(p) p ∈ ∂Ω.
(C.179)

To this end, we generalize Section 4.4 for the case α ∈ C3
(
Ω
)
. Again, we decompose Ω

in new regions. In this case though, their distance from the boundary will be of the order
ε

2
3 . Since the results in this last section are analogous to those we obtained in Section 4.4

we use the same notation. Hence, we define in this case Ω̂ε :=
{
x ∈ Ω : d(x) > ε

2
3
+2δ
}
,

Σε :=
{
x ∈ Ω : ε

2
3
+4δ < d(x) ≤ ε

2
3
+2δ
}

and their union Ωε = Ω̂ε ∪ Σε. We also define for

0 < σ < 1 sufficiently small independent of ε the set Ωσ := Ω ∪ {x ∈ Ωc : d(x) < σ}. Recall
the continuous projection π∂Ω as given in (C.14) and the estimate

∣∣Rπ∂Ω(x)(x) · e1
∣∣ ≥ d(x) as

we have seen in (C.171). Then as in Lemma C.11 we can prove the following result.

Lemma C.16. Let 0 < ε < 1 sufficiently small, C, α, L, 0 < δ < 1
12 according to Corollary

C.6. Then

sup
x∈Σε

|u∞ (π∂Ω(x))− uε(x)| ≤ C

(
εα +

1√
L

)
+ C(c0, c1)ε

1
3
−4δ.

Proof. We combine the estimate in (C.171) with Lemma C.4, we use the Corollary C.6, the
fact that 0 < δ < 1

12 and the following estimate

sup
x∈Σε

|u∞ (π∂Ω(x)) −uε(x)|

≤ sup
x∈Σε

∣∣u∞ (π∂Ω(x))− U ε (x, π∂Ω(x))
∣∣+ sup

x∈Σε

∣∣U ε (x, π∂Ω(x))− uε(x)
∣∣ .

Similarly to Section 4.4 we consider the function vσ, solution to the boundary value prob-
lem {

−div
(

1
α(x)∇xvσ(x)

)
= 0 x ∈ Ωσ,

v(x) = u∞(π∂Ω(x)) x ∈ ∂Ωσ,
(C.180)
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where we consider the smooth extension of α as defined at the beginning of Section 5.1.
Since α ∈ C3(R3), π∂Ω is a continuous bijection and u∞ is Lipschitz, the theory on elliptic
regularity assures that vσ uniquely exists and it is also three times continuously differentiable,
i.e. vσ ∈ C3 (Ωσ)∩C

(
Ωσ
)
. For the same reason also the function v defined in (C.179) belongs

to C3(Ω) ∩ C(Ω). We denote again by ω the modulus of continuity of vσ and by ω2 the one
of v. Moreover, the elliptic equation satisfies the maximum principle, hence for all x ∈ Ω we
can estimate

|v(x)− vσ(x)| ≤ max
x∈∂Ωσ

|vσ (π∂Ω(x))− vσ(x)| ≤ ω(σ).

We can now prove a suitable new version of Lemma C.12.

Lemma C.17. Let x ∈ Ω̂ε, 0 < δ < 1
12 and β = 1−6δ

3 > 0. Then

|LεΩ (vσ − uε) (x)| ≤ C(Ω, gν , c0, c1)e
− c0d(x)

2ε

(
εβ + Cσε

)
+ C(Ω, σ, c0, c1)ε

3,

for some constants C(Ω, gν , c0, c1) > 0 and C(Ω, σ, c0, c1) and 0 < ε < 1 sufficiently small.

Proof. Since x ∈ Ω̂ε then d(x) > ε
2
3
+2δ. Hence, as we have seen at the beginning of Section

5.3 we obtain for β as in the Lemma

|LεΩ (uε) (x)| ≤ ∥g∥1e−
c0d
ε ≤ C(gν , c0)e

− c0d
2ε εβ.

We consider now the operator acting on vσ. Since Ω ⊊ Ωσ there exists a constant cσ > 0
depending on vσ such that sup

0≤n≤3
sup
x∈Ω

∥∇n
xvσ∥∞ ≤ cσ. We expand vσ in Ω with Taylor as

vσ(η) = vσ(x) +∇xvσ(x) · (η − x) + 1
2(η − x)⊤∇2

xvσ(x)(η − x) +E3(η, x), where
∣∣E3(η, x)

∣∣ ≤
cσ|x−η|3. We want to use the expansion of vσ together with the fact that this function solves
the elliptic equation as given in (C.180). In the case of constant coefficient, the estimate on
the operator was the result of the symmetry of the kernel. Indeed, the integral in R3 of the
term with the first derivative in the Taylor expansion was zero and for the term with the
second derivative we obtained the Laplacian, which was in that case also zero. As we have
already noticed, when the absorption coefficient α is space dependent the kernel Kε is no
longer symmetric and moreover vσ solves a more general elliptic equation.

Our strategy now is to find a decomposition of the kernel Kε in such a way that we can
recover the elliptic equation (C.180) and with a remainder which gives errors of the order
ε3. This decomposition is given by claim (iii) in Proposition C.6. We recall Kε(x; η) =

K
α(x)
ε (x−η)+K1

ε(x−η)+K2
ε(x−η)+ R̃xε (x; η). Analogously as we have computed in (C.164)

we see in this case ˆ
R3

R̃xε (x; η)|x− η|n dη ≤ C(c0, c1)ε
n+2. (C.181)

With this decomposition we recover the elliptic equation. Indeed, using equation (C.129) we
compute

ˆ
R3

dη
(
Kα(x)
ε (x− η) +K1

ε(x− η) +K2
ε(x− η)

) 1

2
(η − x)⊤∇2

xvσ(x)(η − x) =
ε2

3α2(x)
∆vσ(x),

(C.182)
where we used that K1

ε and K2
ε are antisymmetric while (η−x)⊤∇2

xvσ(x)(η−x) is symmetric.
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Before moving to the term containing ∇xvσ(x) · (η − x) we notice that for any symmetric
function F (x− η) we can computeˆ

R3

dη F (x− η) (∇xα(x) · (η − x)) (∇xvσ(x) · (η − x))

=
∑
i ̸=j

∂iα(x)∂jvσ(x)

ˆ
R3

dη F (x− η)(η − x)i(η − x)j

+
3∑
i=1

∂iα(x)∂ivσ(x)

ˆ
R3

dη F (x− η)(η − x)2i

=
1

3
∇xα(x) · ∇xvσ(x)

ˆ
R3

dη F (x− η)|η − x|2,

(C.183)

where we used the symmetry of F . Hence, since K
α(x)
ε is symmetric using the definition of

K1
ε and K2

ε and equation (C.183) we conclude

ˆ
R3

dη
(
Kα(x)
ε (x− η) +K1

ε(x− η) +K2
ε(x− η)

)
(∇xvσ(x) · (η − x))

=

ˆ
R3

dη
α(x)e−

α(x)|x−η|
ε

4πε|x− η|2
(

1

α(x)
− |x− η|

2ε

)
(∇xα(x) · (η − x)) (∇xvσ(x) · (η − x))

=
1

3
∇xα(x) · ∇xvσ(x)

ˆ
R3

dη
α(x)e−

α(x)|x−η|
ε

4πε|x− η|2
(

1

α(x)
− |x− η|

2ε

)
|η − x|2

=
ε2

3α3(x)
∇xα(x) · ∇xvσ(x)

ˆ
R3

dη
e−|η|

4π|η|2
(
1− |η|

2

)
|η|2 = − ε2

3α3(x)
∇xα(x) · ∇xvσ(x).

(C.184)

Hence, equations (C.182) and (C.184) implyˆ
R3

dη
(
Kα(x)
ε (x− η) +K1

ε(x− η) +K2
ε(x− η)

)
×
(
∇xvσ(x) · (η − x) +

1

2
(η − x)⊤∇2

xvσ(x)(η − x)

)
=

ε2

3α(x)

(
∆vσ(x)

α(x)
− ∇xα(x)

α(2x)
· ∇xvσ(x)

)
=

ε2

3α(x)
div

(
1

α(x)
∇xvσ(x)

)
= 0.

(C.185)

We are ready now to conclude the estimate of the operator acting on vσ. Using indeed that
|x− η| > d(x) for η ∈ Ωc we compute

|LεΩ (vσ) (x)|

≤
∣∣∣∣vσ(x)− ˆ

Ω
Kε (η − x)

[
vσ(x) +∇xvσ(x) · (η − x) +

1

2
(η − x)⊤∇2

xvσ(x)(η − x)

]
dη

∣∣∣∣
+

∣∣∣∣ˆ
Ω
Kε (η − x)E3(η, x) dη

∣∣∣∣
≤ vσ(x)

ˆ
Bc

d(x)
(x)
Kε (η − x) dη + C(cσ)

ˆ
R3

dη
∣∣∣R̃xε (x; η)∣∣∣ (|x− η|+ |x− η|2

)
+ C(c0, c1, σ)(ε+ ε2 + ε3)

ˆ
Bc

dε(x)
(0)

e−|y|

4π|y|2
(
|y|+ |y|2 + |y|3 + |y|4

)
dy

+ C(c0, c1, σ)ε
3

ˆ
R3

e−
|y|
ε

4πε3
|y|
ε
dy ≤ C(c0, c1, σ,Ω)e

− c0d(x)
2ε

(
εβ + ε

)
+ C(c0, c1, σ)ε

3,
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where we first used d(x) > ε
2
3
+2δ, then we decomposed the kernel according to claim (iii)

in Proposition C.6, we applied the result in (C.185), the estimate for the remainder R̃xε as
given in (C.181) and finally the estimate Kε ≤ C(c0, c1)K

c0
ε . This ended the proof of Lemma

C.17.

Similarly as in Lemma C.142, Lemma C.16, the maximum principle for elliptic operators
and the uniform continuity of v imply the following result

Lemma C.18. Let x ∈ Σε and ε > 0 small enough. Then the following uniform bound holds

|vσ(x)− uε(x)| ≤ ω(σ) + ω2

(
ε

2
3
+2δ
)
+ C

(
εα +

1√
L

)
+ C(c0, c1)ε

1
3
−4δ.

We have now all elements for completing the proof of the convergence of uε to v.

Theorem C.9. uε converges to v uniformly in every compact set.

Proof. We argue exactly as in Theorem C.7 applying the maximum principle to the operator
LεΩε

. To this end we see first of all that

ˆ
Ω\Ωε

dη Kε(x η) |vσ(η)− uε(η)| ≤ C(c0, c1, g)

ε
exp

(
−ε

6δ−1
3

2

)ˆ
Ω\Ωε

dη
1

|x− η|2 ≤ Cε3,

for C = C(c0, c1,Ω, g > 0 and where we used |x− η| > ε
2
3+2δ

2 for η ∈ Ω \Ωε and ε sufficiently

small and the well-known estimate |x|ne−|x| ≤ Cn with n = 13 and δ < 1
78 . Hence, Lemma

C.17 implies for x ∈ Ω̂ε and β = 1−6δ
3∣∣LεΩε

(vσ − uε) (x)
∣∣ ≤ C(Ω, gν , c0, c1)e

− c0d(x)
2ε

(
εβ + Cσε

)
+ C(Ω, σ, c0, c1)ε

3.

Moreover, Lemma C.18 assures that

|vσ(x)− uε(x)| ≤ ω(σ) + ω2

(
ε

2
3
+2δ
)
+ C

(
εα +

1√
L

)
+ C(c0, c1)ε

1
3
−4δ

for x ∈ Σε.
As we have seen in (C.169) the supersolution Φε(x) satisfies also LεΩ (Φε) (x) ≥ Cε2. Hence,

we refer now to the proof Theorem C.7, which works here in the same way just replacing the
supersolution with the suitable Φε defined in Theorem C.8. Since the arguments are the same
we omit the details.

We conclude with the corollary about the convergence as ε→ 0 of the solution (Iεν(x, n), Tε(x))
of the problem (C.6) to (Bν(T ), T ), where 4πσT = v is a solution to (C.179). This corollary
implies once again Theorem C.1. We will omit the proof since it relies on the same arguments
used in the proof of Corollary C.5.

Corollary C.7. Let (Iεν(x, n), Tε(x)) be the solution of the problem (C.6) and let v(x) be

the solution of (C.179). Then Tε converges to T =
(

v
4πσ

)1/4
uniformly in every compact set.

Moreover, Iεν(x, n) converges to Bν(T (x)) uniformly in every compact set K ⊂ Ω as a function
with values in L∞(S2, L1(R+)).



Appendix D

Well-posedness for a two-phase
Stefan problem with radiation

Abstract: In this paper we consider a free boundary problem for the melting of ice where
we assume that the heat is transported by conduction in both the liquid and the solid part
of the material and also by radiation in the solid. Specifically, we study a one-dimensional
two-phase Stefan-like problem which contains a non-local integral operator in the equation
describing the temperature distribution of the solid. We will prove the local well-posedness of
this free boundary problem combining the Banach fixed-point theorem and classical parabolic
theory. Moreover, constructing suitable stationary sub- and supersolutions we will develop a
global well-posedness theory for a large class of initial data.

D.1 Introduction

In this paper we study a one-dimensional two-phase free boundary problem which considers
the melting of ice due to conduction and radiation. Specifically, we study the situation in
which R3 is filled by a material in its liquid and solid phase. The moving interface is the
surface of contact between the liquid and the solid and it changes its position according to
the melting of the solid or the solidification of the liquid. The temperature of the interface
equals the melting temperature TM of the material, while the temperature of the liquid phase
is larger than TM and the temperature of the solid phase is smaller than TM . We also
assume that the heat is transferred by conduction in both phases of the material, similarly
to the classical Stefan problem. In addition, we assume that in the solid phase the heat is
transferred also by radiation. This is equivalent to the assumption of a transparent liquid
phase, where the material does not interact with the radiation, and of an opaque solid phase,
where both absorption and emission processes take place.

To be more precise, we consider a model in which at the initial time t = 0 the liquid
phase of the material fills the negative half-space {x ∈ R3 : x1 < 0} and the solid phase fills
the positive half-space {x ∈ R3 : x1 > 0}. Hence, the interface is at time t = 0 the plane
{0} × R2. The model that we study is a one-dimensional free boundary problem obtained
under the further assumption that the temperature depends only on the variable x1 and that
both phases have the same constant density.

253
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T > TM

t = 0

Conduction Conduction

Radiation

x1

T < TM

T = TM

x3

x2

Figure D.1: Illustration of the considered model at the initial time t = 0.

In the case where the heat is transferred by conduction, the evolution equation for the
temperature is given by the well-known heat equation

C∂tu = K∂2xu, (D.1)

where C > 0 is the heat capacity of the material andK > 0 is the conductivity of the material.

When the heat is transferred also by radiation we have to include in the model, besides the
terms describing heat conduction, the ones associated to the radiative transfer equation, i.e.
the kinetic equation for the density of radiative energy. Let us consider first a body Ω ⊂ R3

interacting with radiation. Defining by Iν(t, x, n) the radiation intensity, i.e. the density of
energy carried by photons with frequency ν > 0, at position x ∈ Ω, moving in direction n ∈ S2
at time t > 0, the radiative transfer equation is given by

1

c
∂tIν(t, x, n) + n · ∇xIν(t, x, n) = αeν − αaνIν(t, x, n)

+ αsν

(ˆ
S2
K(n, n′)Iν(t, x, n′) dn′ − Iν(t, x, n)

)
,

where K is the scattering kernel and αeν , α
a
ν and α

s
ν are the emission parameter, the absorption

and the scattering coefficient, respectively. They are used in order to describe the emission,
absorption and scattering of photons, which are the processes involved in the interaction
of radiation with the matter. In this paper we neglect the scattering process and we set
αsν = 0. Emission and absorption are the only processes through which the radiation changes
the temperature of a material, although scattering could change the spatial distribution of
radiation. Moreover, we consider local thermal equilibrium, i.e. we assume that at any time
t > 0 and at any point x there is a well-defined temperature. Under this assumption, the
emission parameter takes the specific form αeν = αaνBν(T (t, x)), where Bν(T ) = 2hν3

c2
1

e
hν
kT −1

is the Planck distribution of a black body. Furthermore, we consider in this paper only the
Grey approximation with constant absorption coefficient, i.e. we assume that the αaν does not
depend on the frequency ν nor on the space variable x.

Thus, defining αaν = α, the radiative transfer equation we will study takes the form

1

c
∂tIν(t, x, n) + n · ∇xIν(t, x, n) = α (Bν(T (t, x))− Iν(t, x, n)) . (D.2)

The evolution of the temperature due to the radiation process is given by the energy balance
equation

C∂tT (t, x) +
1

c
∂t

(ˆ ∞

0
dν

ˆ
S2
dn Iν(t, x, n)

)
+ div

(ˆ ∞

0
dν

ˆ
S2
dn nIν(t, x, n)

)
= 0 (D.3)
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coupled with the radiative transfer equation (D.2) and with suitable boundary conditions.

Turning back to the free boundary problem, we assume that the temperature depends
only on x1. Therefore, the interface is given by the plane {s(t)} × R2 normal to the x1-axis.
In this paper we assume that there is no external source of radiation. Mathematically, we
consider as boundary condition for the radiation at the interface

Iν (t, (s(t), x2, x3), n) = 0 if n1 > 0, (D.4)

where n1 = n · e1 for n ∈ S2. We emphasize that radiation can escape the solid, i.e.
Iν(t, s(t), n) ̸= 0 for n1 < 0. Since the liquid is transparent, the escaped photons do not
interact with the liquid and they do not change their direction. Specifically, the escaped ra-
diation cannot return in the solid. This is the reason why in absence of external sources the
incoming boundary condition at the interface is given by (D.4). Moreover, since we are study-
ing a problem where the heat is transferred by both conduction and radiation we may assume
that the radiation intensity solves the stationary radiative transfer equation and consequently
that in (D.3) the time derivative of the total radiation energy is negligible. Indeed, since the
photons travel with speed c, i.e. speed of light, the radiation intensity stabilizes in a much
shorter time than the characteristic time required for significant changes of the temperature
due to the transport of heat by both conduction and radiation. Finally, the evolution equation
for the temperature in the case of heat transfer due to conduction and radiation takes into
account the heat production rate due to both processes and it is a combination of the heat
equation (D.36) and the energy balance equation (D.3) for the radiative transfer equation,
i.e. in this case

C∂tT (t, x)−K∂2xT (t, x) + div

(ˆ ∞

0
dν

ˆ
S2
dn nIν(t, x, n)

)
= 0. (D.5)

The interface moves according to the Stefan condition, i.e. the energy balance law at the
interface, which is given by

ṡ(t) =
1

L

(
KS∂x1T (t, s(t)

+)−KL∂x1T (t, s(t)
−)
)
, (D.6)

where KS and KL are the conductivity of the solid and the liquid, respectively, and L is the
specific latent heat. Notice that the Stefan condition is the same as the one for the classical
Stefan problem. This can be explained by the fact that the intensity of radiation Iν in the
liquid is given by the constant continuation of the radiation intensity at the interface. Indeed,
the liquid is assumed to be transparent, i.e. the radiation is still present and it passes through
the liquid region without interacting with it. In other words, in the liquid the temperature
evolves also according to (D.5) for Iν solving (D.2) with α = 0. Note that in the case in which
Iν is constant, e.g. in the liquid, the divergence term disappears and (D.5) is equivalent to
(D.1). Therefore, the Stefan condition, according to which the discontinuity of heat flux at
the boundary is proportional to the speed of the motion of the interface, is given by (D.6)
since the flux of radiating energy is continuous. Defining by CS and CL the heat capacity of
the solid and the liquid and putting together equations (D.1), (D.2), (D.5), (D.4) and (D.6)
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we study the following free boundary problem

CL∂tT (t, x1) = KL∂
2
x1T (t, x1) x1 < s(t),

CS∂tT (t, x1) = KS∂
2
x1T (t, x1)− div

(´∞
0 dν

´
S2 dnnIν(t, x, n)

)
x1 > s(t),

n · ∇xIν(t, x, n) = α (Bν(T (t, x1))− Iν(t, x, n)) x1 > s(t),

Iν(t, x, n) = 0 x1 = s(t), n1 > 0,

T (t, s(t)) = TM x1 = s(t),

T (0, x) = T0(x) x1 ∈ R,
ṡ(t) = 1

L (KS∂x1T (t, s(t)
+)−KL∂x1T (t, s(t)

−)) .

(D.7)

We emphasize that the main peculiarity of the model (D.7) is that only the solid is emitting
radiation. This is due to the assumption of a perfectly transparent solid. Another interesting
problem would be to consider in addition a non-trivial external source of radiation heating
the solid from far away, i.e. to set as boundary conditions

(t, (s(t), x2, x3), n) = gν(n) > 0 if n1 > 0.

In this case we expect to observe superheated solid, i.e. regions in the solid phase where the
temperature is greater than the melting temperature.

Finally, we mention that in the upcoming paper [38] we continue the analysis of the
problem presented in this article constructing traveling wave solutions for (D.7), which are
the natural candidates to describe the long time asymptotics for the solution to (D.7).

D.1.1 Summary of previous results

In this paper we consider a free boundary problem similar to the classical two-phase Stefan
problem modeling the melting of ice assuming in addition that the heat is transferred by
radiation in the solid. The pioneer of the study of such free boundary problems was J. Stefan,
after whom these problems are named, in the late 80’s (cf. [135]). The same person worked also
on heat radiation developing the well-known Stefan law, otherwise called Stefan-Boltzmann
law, which states that the total radiation of a black body is proportional to the fourth power
of the temperature (cf. [133]). In this subsection we revise important results on both the
theory of free boundary problems and of radiative heat transfer.

Starting from the work of J. Stefan, the one and two-phase Stefan problem for the melting
of ice has been extensively studied in both one-dimensional and higher dimensional versions,
and different definitions of solutions were considered, such as classical solutions and weak
enthalpy solutions. The first are defined as strong solutions of the Stefan problem, while
the latter are defined as the weak solutions of the enthalpy formulation of the free boundary
problem.

The well-posedness theory for classical solutions to the Stefan problem has been consid-
ered for example in [55,56,123] showing the local well-posedness via a fixed-point equation for
integral equations of Volterra type. The global well-posedness is proved applying the maxi-
mum principle. In [56] another approach involving the Baiocchi transform is also considered.
In [59, 60] a well-posedness result based on the study of a suitable variational inequality is
presented. Other results about the well-posedness theory for classical solutions can be found
in [26,27,106]. In [56,106] the asymptotic behavior of the one-dimensional one-phase problem
is considered and it is proved that the temperature is given by a self-similar profile as t→ ∞.
Important results about the theory of weak (enthalpy) solutions can be found in [57], for the
two-phase one-dimensional problem, and in [58], for the higher dimensional one and two-phase
problem.
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An important difference between classical and weak enthalpy solutions is in the context
of supercooled, superheated and mushy regions. Regions of liquid (or solid) at a temperature
T < TM (or T > TM ) are denoted in the classical theory supercooled (resp. superheated)
regions. In the absence of such regions, weak and classical solutions are equivalent. In the
enthalpy formulation the onset of mushy regions, i.e. {(t, x) : T (t, x) = TM} with positive
measure, is allowed, whereas supercooled or superheated regions cannot appear.

Concerning the study of mushy regions for Stefan problems with volumetric heat sources,
in [51] the authors give a clear distinction between classical and weak enthalpy solutions
and introduce the notion of classical enthalpy solutions, which allow the formation of mushy
regions. In [89] the authors consider the classical solutions to a one-dimensional two-phases
Stefan problem with volumetric heat sources and show the formation of regions of supercooled
liquid or superheated solid. Other examples of studies of the formation of mushy regions
are [20,50,90,117,142,143].

Moving to the transfer of heat by radiation, this problem has been widely studied starting
form the seminal works of Compton [31] in 1922 and of Milne [109] in 1926. The mathematical
theory behind the interaction of photons with matter deals with the study of the radiative
transfer equation, as given in (D.2). The derivation and the main properties of this kinetic
equation can be found for instance in [29,108,114,125,152].

Also in recent years many different problems were considered, such as well-posedness
results, the diffusion approximation and the combination of radiative transfer with other
existing models. In [35, 83] the authors proved the well-posedness theory for the stationary
radiative transfer equation. Another extensively studied problem is the so-called diffusion
approximation, i.e. the limit of the radiative transfer equation when the mean free path of
the photons is very small. See for instance [13,14,36,37] and the reference therein.

The radiative heat transfer has been also considered in problems concerning more involved
interaction between radiation and matter. For instance, problems studying these interactions
in a moving fluid can be found in [69, 71, 108, 152]. We refer to [34, 81] and the reference
therein for problems considering models of coupled Boltzmann equations and radiative trans-
fer. Moreover, also problems where the heat is transported in a body by conduction and
radiation and homogenization problems in porous and perforated domains, where the heat
is transported by conduction, by radiation and in some cases also by convection, have been
studied in several works. We refer to the literature of our previous work [36].

Finally, models of melting processes assuming transport of heat by conduction and ra-
diation has been considered numerically in some engineering applications, for instance in
[28,124,129,130,140]. There, free boundary problems concerning phase transition due to both
conduction and radiation are numerically analyzed and several one-dimensional models con-
sidering one, two, and three-phase Stefan-like problems are formulated based on experimental
results. Another relevant numerical application, which has been extensively studied in recent
years, is the analysis of free boundary problems modeling the vaporization of droplets where
the heat is transported by radiation and conduction. For example in [2,84,92,126,128,145,150]
numerical simulations show that the radiative heat transfer plays an important role in the
vaporization of droplets.

D.1.2 Main results and plan of the paper

In this paper we study the well-posedness theory for problem (D.7) and it is structured as
follows.

First of all, in the next subsection D.1.3 we will perform some rescaling obtaining an
equivalent version of the problem (D.7) which we will consider for the rest of the paper, while
in subsection D.1.4 we clarify some notations that we will use throughout this paper.
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In the following Section D.2, using Banach fixed-point theorem and classical parabolic
theory, we show a local well-posedness result, which can be summarized as the following

Theorem D.1. Let T0 ∈ C0,1(R) be the initial temperature satisfying the condition

T0(x) > TM if x < 0, T0(0) = TM , T0(x) < TM if x > 0.

Under suitable assumptions on the regularity of T0 in R± there exists a time t∗ > 0 such that
there exists a unique solution to the problem (D.7) for t ∈ [0, t∗]. Moreover, the temperature
satisfies

T0(x) > TM if x < s(t), T0(s(t)) = TM , T0(x) < TM if x > s(t).

In addition to the local well-posedness theory, in Section D.3 we will also prove a more
general global well-posedness result, which applies for a large family of initial data. The
following theorem will be proved constructing a suitable family of sub- and supersolutions
and applying the maximum principle to the parabolic equations in (D.7).

Theorem D.2 (Global Well-posedness). Let T0 as in Theorem D.1. There exists a large class
of initial data for which there exists a unique global in time solution to the problem (D.7).

As we will see in Section D.3, the assumptions on the initial data concern the upper bound
on the initial temperature of the liquid.

D.1.3 Some scaling

In this subsection we rescale the problem (D.7) obtaining an equivalent problem in order to
reduce the number of parameters. In this paper we will not assuming a positive source of
radiation. Nevertheless, we remark that the computations we perform in this subsection can
be also adapted in the presence of a non-trivial source of radiation.

First of all we reduce the radiative term and the radiative transfer equation to a non-local
integral term. To this end we solve{

n · ∇xIν(t, x, n) = α (Bν(T (t, x1))− Iν(t, x, n)) x1 > s(t),

Iν(t, x, n) = 0 x1 = s(t), n1 > 0,

by characteristics. This procedure is similar to the computation in Section 2.2 of [37].

d(t, x, n)
n

x

x1

y(x, n)

s(t)

x3

x2

Figure D.2: Illustration of the characteristics.
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We define for (t, x, n) ∈ (0,∞)×{ξ ∈ R3 : ξ1 > s(t)}×S2 the point y(t, x, n) ∈ {s(t)}×R2

to be the intersection of the half-line starting from x and moving in direction −n and we
denote d(t, x, n) to be the distance of x to the interface {s(t)} × R2 in direction −n. We are
hence considering

y(t, x, n) = {s(t)} × R2 ∩ {x− tn : t > 0} and

d(t, , n) = |x− y(t, x, n)| such that x = y(t, x, n) + d(t, x, n)n.

We also define d(t, x, n) = ∞ if n1 < 0. An easy application of trigonometry shows also that

d(t, x, n) · cos(θ(n, e1)) = x1 − s(t),

where θ(n, e1) is the angle between the unit vectors n and e1 = (1, 0, 0). This implies that

d(t, x, n)n1 = x1 − s(t) if n1 > 0.

Solving the radiative transfer equation by characteristics we hence obtain for x1 > s(t)

Iν(t, x, n) =

ˆ d(t,x,n)

0
dτα exp (−ατ)Bν(T (t, x1 − τn1)).

As we pointed out above, Iν is not zero on the liquid, i.e. for x1 < s(t), but is constant to the
radiation intensity at the interface. Thus,for x1 < s(t) we have

Iν(t, x, n) = 1{n1≤0}

ˆ ∞

0
dτα exp (−ατ)Bν(T (t, s(t)− τn1)).

This proves also the previous claim about the continuity of the radiative flux through the
interface.

While div
(´∞

0 dν
´
S2 dnnIν(t, x, n)

)
= 0 for x1 < s(t), a similar computation as in [37]

shows for x1 > s(t)

div

(ˆ ∞

0
dν

ˆ
S2
dnnIν(t, x, n)

)
=4πσαT 4(t, x1)− 4πσα

ˆ ∞

s(t)
dη
αE1(α|x1 − η|)

2
T 4(t, η),

where E1(x) =
´∞
|x|

e−t

t dt is the exponential function. This can be proved using that

ˆ
R2

dξ
e−α

√
y2+ξ2

y2 + ξ2
= 2π

ˆ ∞

0
dρ ρ

e−α
√
y2+ρ2

y2 + ρ2
= π

ˆ ∞

0
dr
e−α

√
y2+r

y2 + r

= 2π

ˆ ∞

|y|
dz
e−αz

z
= 2π

ˆ ∞

α|y|
dz
e−z

z
.

Therefore, we can write the system (D.7) as follows

CL∂tT (t, x1) = KL∂
2
x1T (t, x1) x1 < s(t),

CS∂tT (t, x1) = KS∂
2
x1T (t, x1)− 4πσαIα[T ](t, x1) x1 > s(t),

T (t, s(t)) = TM x1 = s(t),

T (0, x) = T0(x) x1 ∈ R,
ṡ(t) = 1

L (KS∂x1T (t, s(t)
+)−KL∂x1T (t, s(t)

−)) ,

where

Iα[T ](t, x1) = T 4(t, x1)−
ˆ ∞

s(t)
dη
αE1(α|x1 − η|)

2
T 4(t, η).
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Notice that we have obtained a system of equations depending only on the space variable x1.
In order to simplify the reading, we write x instead of x1.

Next, we see that we can assume without loss of generality CS = KS = 4πσα = 1. To

this end we define τ = 4πσα
CS

t and ξ =
√

4πσα
KS

x. Let us also consider T (t, x) = T̃ (τ, ξ) and

s̃(τ) =
√

4πσα
KS

s(t). In this way we obtain

∂tT (t, x) =
4πσα

CS
∂τT̃ (τ, ξ) and ∂2xT (t, x) =

4πσα

KS
∂2ξ T̃ (τ, ξ).

Defining α̃ =
√

KS
4πσαα we see also that for the radiation term a change of variable gives

Iα[T ](t, x) =T
4(t, x)−

ˆ ∞

s(t)
dη
αE1(α|x− η|)

2
T 4(t, η)

=T̃ 4(τ, ξ)−
ˆ ∞

s(t)
dη

αE1

(
α
√

KS
4πσα

∣∣∣√4πσα
KS

(x− η)
∣∣∣)

2
T̃ 4

(
τ,

√
4πσα

KS
η

)
=T̃ 4(τ, ξ))−

ˆ ∞

s̃(τ)
dζ
α̃E1 (α̃ |ξ − ζ|)

2
T̃ 4 (τ, ζ) = Iα̃[T̃ ](τ, ξ).

We see that ṡ(t) = ∂t

√
KS
4πσα s̃

(
4πσα
CS

t
)
=

√
KS4πσα
CS

˙̃s(τ) and also

1

L

(
KS∂x1T (t, s(t)

+)−KL∂x1T (t, s(t)
−)
)
=
KS

L

√
4πσα

KS

(
∂ξT̃ (τ, s̃(τ)

+)− KL

KS
∂ξT̃ (τ, s̃(τ)

−)
)

Moreover, we define also K = KL
KS

, C = CL
CS

, and finally L̃ = L
CS

. With the change of variable
above we obtain under this notation

C∂τ T̃ (τ, ξ) = K∂2ξ T̃ (τ, ξ) ξ < s̃(τ),

∂τ T̃ (τ, ξ) = ∂2ξ T̃ (τ, ξ)− Iα̃[T̃ ](τ, ξ) ξ > s̃(t),

T̃ (τ, s̃(τ)) = TM ξ = s̃(τ),

T̃ (0, ξ) = T̃0(ξ) ξ ∈ R,
˙̃s(τ) = 1

L̃

(
∂ξT̃ (τ, s̃(τ)

+)−K∂ξT̃ (τ, s̃(τ)
−)
)
.

(D.8)

In order to simplify the notation we will write ξ = x, t = τ , T̃ = T , s̃ = s, α̃ = α, and finally
L̃ = L.

In the following we will study the problem (D.8) in a spatial coordinate system which is
at rest. Therefore we now perform a change of variable. To this end we define y = x − s(t)
and we set T (t, x) = T̃ (t, x− s(t)) = T̃ (t, y). The time derivative becomes

∂tT (t, x) = ∂tT̃ (t, y)− ṡ(t)∂yT̃ (t, y).



D.1. INTRODUCTION 261

Furthermore, the radiation term I[T ] is

Iα[T ](t, x) =T
4(t, x)−

ˆ ∞

s(t)
dη
αE1(α|x− η|)

2
T 4(t, η)

=T̃ 4(t, x− s(t))−
ˆ ∞

s(t)
dη
αE1(α|x− s(t)− (η − s(t))|)

2
T̃ 4(t, η − s(t))

=T̃ 4(t, x− s(t))−
ˆ ∞

0
dξ
αE1(α|x− s(t)− ξ|)

2
T̃ 4(t, ξ)

=T̃ 4(t, y)−
ˆ ∞

0
dξ
αE1(α|y − ξ|)

2
T̃ 4(t, ξ) = Iα[T̃ ](t, y).

In order to simplify the notation we will write T̃ = T and we obtain the following system

∂tT (t, y)− ṡ(t)∂yT (t, y) =
K
C ∂

2
yT (t, y) y < 0,

∂tT (t, y)− ṡ(t)∂yT (t, y) = ∂2yT (t, y)− Iα[T ](t, y) y > 0,

T (t, 0) = TM y = 0,

T (0, y) = T0(y) y ∈ R,
ṡ(t) = 1

L (∂yT (t, 0
+)−K∂yT (t, 0

−)) .

(D.9)

The rest of the paper is devoted to the study of the free boundary problem (D.7) in its equiv-
alent formulation (D.9).

D.1.4 Some notation

Let U ⊆ R. Throughout this article we will denote by Ck,β(U) the space of k-times continuous
differentiable functions f with

∥f∥k,β = max
0≤j≤k

(
sup
U

∣∣∂jxf ∣∣)+ sup
x,y∈U

∣∣∂kxf(x)− ∂kxf(y)
∣∣

|x− y|β <∞.

We remark that f ∈ Ck,β(U) has all k derivatives bounded.

In a similar way we consider the space Cn,kt,x ((0, τ)× U) to be the space of functions f ∈
C0 ((0, τ)× U) with continuous derivatives ∂jt f ∈ C0 ((0, τ)× U) and ∂lxf ∈ C0 ((0, τ)× U)
for any 0 ≤ j ≤ n and 0 ≤ l ≤ k. Notice that the functions and their derivatives are continuous
up to the boundary but their norms have not to be bounded.

Moreover, for 0 ≤ a < τ the space Cn+β,k+δt,x ([a, τ ]× U) is the space of functions f ∈
Cn,kt,x ([a, τ ]× U) with

sup
[a,τ ]×U

∣∣∣∂jt f ∣∣∣ <∞ for 0 ≤ j ≤ n and sup
[a,τ ]timesU

∣∣∣∂lxf ∣∣∣ <∞ for 0 ≤ l ≤ k

and with

sup
t,s∈(a,τ), x∈U

|∂nt f(t, x)− ∂nt f(s, x)|
|t− s|β <∞ and sup

x,y∈U, t∈(a,τ)

∣∣∂kxf(t, x)− ∂kxf(t, y)
∣∣

|x− y|δ <∞.

In particular, if 2(n + β) = k + δ the derivatives of the function f ∈ Cn+β,k+δt,x ([a, τ ]× U)

satisfy also ∂jt ∂
l
xf ∈ C0 ([a, τ ]× U) for all 2j + l < k and β, δ ∈ [0, 1).

Finally, when we write that the domain of the functions vi is R± (or [0,±R]) we always
mean that v1 is a function on R− (resp. on [−R, 0]) and that v2 is a function on R+ (resp.
on [0, R]).
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D.2 Local well-posedness

In this section we prove the local well-posedness theory for the free boundary problem (D.9).
Later, in Section D.3 we will extend the result for a large class of initial data for which a
global well-posedness result will be proved. In the following subsections we will show with a
fixed-point argument the existence of a unique solution for small times. Further on we will
show the regularity and some properties of the solutions.

D.2.1 Fixed-point method

We show the local well-posedness for the system (D.9). We will moreover denote by T1 the
temperature defined for t > 0 and y < 0 and by T2 the temperature defined for t > 0 and
y > 0. Hence the system can be rewritten as

∂tT1(t, y)− ṡ(t)∂yT1(t, y) =
K
C ∂

2
yT1(t, y) y < 0,

∂tT2(t, y)− ṡ(t)∂yT2(t, y) = ∂2yT2(t, y)− Iα[T2](t, y) y > 0,

T1(t, 0) = T2(t, 0) = TM y = 0,

T1(0, y) = T0(y) and T2(0, y) = T0(y) y ∈ R,
ṡ(t) = 1

L (∂yT2(t, 0
+)−K∂yT1(t, 0

−)) t > 0

s(0) = 0.

(D.10)

Theorem D.3. Let T0 ∈ C0,1
b (R) be bounded and positive with T0(0) = TM , T0(y) > TM if

y < 0 and T0(y) < TM if y > 0. Let also T0 |R± ∈ C2(R±) with bounded first and second
derivative. Then for a time t∗ > 0 small enough there exists a unique bounded solution
(T1, T2, s) ∈ C0,1

t,y ((0, t
∗)× R−)× C0,1

t,y ((0, t
∗)× R+)× C1((0, t∗)) solving the problem (D.10) in

distributional sense.

Proof. We follow the same strategy used by Rubenštĕın in [123] and by Friedman in [55]. We
will construct with the help of suitable Green’s functions the (implicit) solution formula for
T1, T2 and s and we will use a contraction argument in order to show the existence of a unique
solution.

In order to simplify the computations we consider the equivalent problem for u1 := T1−TM
and u2 := T2 − TM . Hence we consider the system

∂tu1(t, y)− ṡ(t)∂yu1(t, y) =
K
C ∂

2
yu1(t, y) y < 0,

∂tT2(t, y)− ṡ(t)∂yu2(t, y) = ∂2yu2(t, y)− Iα[u2 + TM ](t, y) y > 0,

u1(t, 0) = u2(t, 0) = 0 y = 0,

u1(0, y) = u0(y) and u2(0, y) = u0(y) y ∈ R,
ṡ(t) = 1

L (∂yu2(t, 0
+)−K∂yu1(t, 0

−)) t > 0

s(0) = 0,

(D.11)

where u0 := T0 − TM satisfies u0(0) = 0 and u0 > 0 if y < 0 as well as u0 < 0 if y > 0.

Let

G(x, ξ, a(t− τ)) := Φ(x− ξ, a(t− τ))− Φ(x+ ξ, a(t− τ))

be the Green’s function for the half space R+, where Φ(z, s) = 1√
4πz

exp
(
− z2

4s

)
is the funda-

mental solution of the heat equation. Recall that with the help of the Green’s function G the
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solution of the following Cauchy problem on R+ or on R−
∂tv − a∂2xv = f x > 0 resp. x < 0,

v(0, t) = 0 t > 0,

v(x, 0) = g0(x) x > 0 resp. x < 0

has the integral representation

v(t, x) =

ˆ ∞

0
g0(ξ)G(x, ξ, at)dξ +

ˆ ∞

0

ˆ t

0
f(ξ, τ)G(x, ξ, a(t− τ))dτdξ

on R+ and

v(t, x) =

ˆ 0

−∞
g0(ξ)G(x, ξ, at)dξ +

ˆ 0

−∞

ˆ t

0
f(ξ, τ)G(x, ξ, a(t− τ))dτdξ

on R−. Hence, we obtain for u1 and u2 the following identities considering ṡ(t)∂yu1 resp.
ṡ(t)∂yuu2 − Iα[u2 + TM ] as sources

u1(t, y) =

ˆ 0

−∞
u0(ξ)G(y, ξ, κt)dξ +

ˆ 0

−∞

ˆ t

0
ṡ(τ)∂ξu1(τ, ξ)G(y, ξ, κ(t− τ))dτdξ, (D.12)

where we used the notation κ = K
C , and

u2(t, y) =

ˆ ∞

0
u0(ξ)G(y, ξ, t)dξ +

ˆ ∞

0

ˆ t

0
ṡ(τ)∂ξu2(τ, ξ)G(y, ξ, (t− τ))dτdξ

−
ˆ ∞

0

ˆ t

0
Iα[u2 + TM ](τ, ξ)G(y, ξ, (t− τ))dτdξ. (D.13)

We now have to differentiate these expressions with respect to the spatial coordinate in order
to find an expression for ṡ. We recall that

∂yG(y, ξ, a(t− τ)) = −∂ξ (Φ(y − ξ, a(t− τ)) + Φ(y + ξ, a(t− τ))) = −∂ξg(y, ξ, a(t− τ)),

where g(y, ξ, a(t− τ)) = Φ(y − ξ, a(t− τ)) + Φ(y + ξ, a(t− τ)). This implies on one hand

∂yu1(t, y) =

ˆ 0

−∞
∂ξu0(ξ)g(y, ξ, κt)dξ −

ˆ 0

−∞

ˆ t

0
ṡ(τ)∂ξu1(τ, ξ)∂ξg(y, ξ, κ(t− τ))dτdξ, (D.14)

where we integrated by parts

−
ˆ 0

−∞
u0(ξ)∂ξg(y, ξ, κt)dξ =

ˆ 0

−∞
∂ξu0(ξ)g(y, ξ, κt)dξ

since u0(0) = 0 and g → 0 as |ξ| → ∞ for every fixed y.

On the other hand we have also

∂yu2(t, y) =

ˆ ∞

0
∂ξu0(ξ)g(y, ξ, t)dξ −

ˆ ∞

0

ˆ t

0
ṡ(τ)∂ξu2(τ, ξ)∂ξg(y, ξ, (t− τ))dτdξ

+

ˆ ∞

0

ˆ t

0
Iα[u2 + TM ](τ, ξ)∂ξg(y, ξ, (t− τ))dτdξ. (D.15)
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Hence, ṡ(t) is given by

ṡ(t) =
1

L

(ˆ ∞

0
∂ξu0(ξ)g(0

+, ξ, t)dξ −
ˆ ∞

0

ˆ t

0
ṡ(τ)∂ξu2(τ, ξ)∂ξg(0

+, ξ, (t− τ))dτdξ

+

ˆ ∞

0

ˆ t

0
Iα[u2 + TM ](τ, ξ)∂ξg(0

+, ξ, (t− τ))dτdξ −K

ˆ 0

−∞
∂ξu0(ξ)g(0

−, ξ, κt)dξ

+K

ˆ 0

−∞

ˆ t

0
ṡ(τ)∂ξu1(τ, ξ)∂ξg(0

−, ξ, κ(t− τ))dτdξ

)
. (D.16)

Equations (D.12), (D.13) and (D.16) define the operator L(u1, u2, ṡ), for which we will show
that there exists a unique fixed-point in a suitable set. This will conclude the proof of the
existence of a unique solution for small times. Indeed, since s(0) = 0 the solution to the

problem (D.11) is given by
(
u1, u2,

´ t
0 ṡ(τ)dτ

)
. Before defining the space in which we will

work and proving the contraction property for the operator L, we collect some key estimates.

First of all since ∂ξΦ(y − ξ, a(t− τ)) = (ξ−y)
2a(t−τ)

1√
4πa(t−τ)

exp
(
− |y−ξ|2

4a(t−τ)

)
we estimate

ˆ ∞

0
|∂ξg(y, ξ, a(t− τ))| dξ ≤

ˆ ∞

0

|ξ − y|
2a(t− τ)

1√
4πa(t− τ)

exp

(
− |y − ξ|2
4a(t− τ)

)
dξ

+

ˆ ∞

0

|ξ + y|
2a(t− τ)

1√
4πa(t− τ)

exp

(
− |y + ξ|2
4a(t− τ)

)
dξ

=

ˆ ∞

−y

|ξ|
2a(t− τ)

1√
4πa(t− τ)

exp

(
− |ξ|2
4a(t− τ)

)
dξ

+

ˆ ∞

y

|ξ|
2a(t− τ)

1√
4πa(t− τ)

exp

(
− |ξ|2
4a(t− τ)

)
dξ

=

ˆ ∞

0

ξ

a(t− τ)

1√
4πa(t− τ)

exp

(
− |ξ|2
4a(t− τ)

)
dξ =

1√
πa(t− τ)

, (D.17)

where we used the change of coordinate ξ′ = ξ − y resp. ξ′ = ξ + y and the fact that the
resulting function is even. In the very same way we can estimate alsoˆ 0

−∞
|∂ξg(y, ξ, a(t− τ))| dξ ≤ 1√

πa(t− τ)
.

A direct consequence of these estimates are the following resultsˆ ∞

0

ˆ t

0
|∂ξg(y, ξ, a(t− τ))| dξdτ ≤

ˆ t

0

1√
πa(t− τ)

dτ =
1√
aπ

ˆ t

0

1√
τ
dτ =

2
√
t√
aπ
, (D.18)

where we used Fubini’s theorem and (D.17). Analogously we also haveˆ 0

−∞

ˆ t

0
|∂ξg(y, ξ, a(t− τ))| dξdτ ≤ 2

√
t√
aπ
. (D.19)

Another important estimates are the following onesˆ ∞

0
|G(y, ξ, a(t− τ))| dξ ≤

ˆ ∞

0
Φ(y − ξ, a(t− τ)) + Φ(y + ξ, a(t− τ))dξ

= 2

ˆ ∞

|y|
Φ(ξ, a(t− τ))dξ +

ˆ |y|

−|y|
Φ(ξ, a(t− τ))dξ

= 2

ˆ ∞

0
Φ(ξ, a(t− τ))dξ =

ˆ ∞

−∞
Φ(ξ, a(t− τ))dξ = 1, (D.20)
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where we used the change of variables ξ′ = ξ − y resp. ξ′ = ξ + y and the fact that Φ is a
non-negative even function with integral 1. The same holds on the negative real lineˆ 0

−∞
|G(y, ξ, a(t− τ))| dξ ≤ 1. (D.21)

Similarly, using the definition of g(y, ξ, a(t− τ)) we computeˆ ∞

0
|g(y, ξ, a(t− τ))| dξ ≤

ˆ ∞

−∞
Φ(ξ, a(t− τ))dξ = 1 (D.22)

and ˆ 0

−∞
|g(y, ξ, a(t− τ))| dξ ≤

ˆ ∞

−∞
Φ(ξ, a(t− τ))dξ = 1. (D.23)

We define now the metric space for which we will apply the Banach fixed-point theorem. Let
us first introduce the notation that we will use throughout this section. On C0,1

t,y ((0, t∗)× R±)
we consider the norm ∥f∥0,1 := max{∥f∥C0 , ∥∂yf∥C0}. Let θ ∈ (0, 1) and let

C1, C2 >
∥u0∥1
1− θ

and C3 >
1 +K

L

∥u0∥1
1− θ

.

We consider the following closed metric space

AC1,C2,C3 =
{
(u1, u2, ṡ) ∈ C0,1

t,y ((0, t∗)× R−)× C0,1
t,y ((0, t∗)× R+)× C0((0, t∗)) :

∥u1∥0,1 ≤ C1, ∥u2∥0,1 ≤ C2, ∥ṡ∥C0 ≤ C3

}
,

with the metric induced by the norm ∥(u1, u2, ṡ)∥A := ∥u1∥0,1+ ∥u2∥0,1+ ∥ṡ∥C0 . We consider
the following operator acting on A

L : A = AC1,C2,C3 → C0,1
t,y ((0, t∗)× R−)× C0,1

t,y ((0, t∗)× R+)× C0((0, t∗))

(u1, u2, ṡ) 7→ (L1((u1, u2, ṡ)),L2((u1, u2, ṡ)),L2((u1, u2, ṡ))) ,

where we defined according to (D.12), (D.13) and (D.16)

L1((u1, u2, ṡ))(t, y) =

ˆ 0

−∞
u0(ξ)G(y, ξ, κt)dξ +

ˆ 0

−∞

ˆ t

0
ṡ(τ)∂ξu1(τ, ξ)G(y, ξ, κ(t− τ))dτdξ,

L2((u1, u2, ṡ))(t, y) =

ˆ ∞

0
u0(ξ)G(y, ξ, t)dξ +

ˆ ∞

0

ˆ t

0
ṡ(τ)∂ξu2(τ, ξ)G(y, ξ, (t− τ))dτdξ

−
ˆ ∞

0

ˆ t

0
Iα[u2 + TM ](τ, ξ)G(y, ξ, (t− τ))dτdξ

and

L3((u1, u2, ṡ))(t) =
1

L

(ˆ ∞

0
∂ξu0(ξ)g(0

+, ξ, t)dξ

−
ˆ ∞

0

ˆ t

0
ṡ(τ)∂ξu2(τ, ξ)∂ξg(0

+, ξ, (t− τ))dτdξ

+

ˆ ∞

0

ˆ t

0
Iα[u2 + TM ](τ, ξ)∂ξg(0

+, ξ, (t− τ))dτdξ −K

ˆ 0

−∞
∂ξu0(ξ)g(0

−, ξ, κt)dξ

+K

ˆ 0

−∞

ˆ t

0
ṡ(τ)∂ξu1(τ, ξ)∂ξg(0

−, ξ, κ(t− τ))dτdξ

)
.
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With the help of (D.14) and (D.15) and using the properties of the Green’s functions, it is not
difficult to see that the operator is well-defined. We prove next that choosing a time t∗ > 0
small enough and for C1, C2, C3 large enough the operator is a self-map. To this end, we
need to estimate the norms of the three components of L.

We assumed

∥u0∥1 = max
{
∥u0∥C0 , ∥∂yu0∥C0(R−), ∥∂yu0∥C0(R+)

}
<∞.

Recall that α > 0, K > 0, L > 0 and κ > 0 are all constants. Combining the triangle
inequality as well as Hölder’s inequality with the estimate (D.21) we can conclude

∥L1((u1, u2, ṡ))∥C0 ≤∥u0∥C0 sup
0<t≤t∗

ˆ 0

−∞
|G(y, ξ, κt)|dξ

+ ∥u1∥0,1∥ṡ∥C0 sup
0<t≤T

ˆ 0

−∞

ˆ t

0
|G(y, ξ, κ(t− τ))|dτdξ

≤∥u0∥1 + t∗∥u1∥0,1∥ṡ∥C0 .

(D.24)

Before moving to the estimate for the second component of the operator L we have to consider
the radiation term Iα. Using

´∞
−∞

E1(ξ)
2 dξ = 1 and |a+ b|4 ≤ 8|a|4 + 8|b|4 we obtain

∥Iα[u2 + TM ]∥C0 = sup
0<t≤t∗,y>0

∣∣∣∣ˆ ∞

0

αE1(α(y − η))

2
(u2(t, η) + TM )4dη − (u2(t, y) + TM )4

∣∣∣∣
≤∥(u2 + TM )4∥C0 sup

y>0

(ˆ ∞

0

αE1(α(y − η))

2
dη + 1

)
≤16

(
∥u2∥4 + T 4

M

)
.

(D.25)

Hence, using now (D.20) we obtain similarly as in (D.24)

∥L2((u1, u2, ṡ))∥C0 ≤ ∥u0∥1 + t∗
(
∥u2∥0,1∥ṡ∥C0 + 16∥u2∥40,1 + 16T 4

M

)
. (D.26)

We now estimate the norm of the derivative of the first two component of L. Notice that
∂yL1(u1, u2, )̇ is given by the right hand side of (D.14), while ∂yL2(u1, u2, )̇ is given by the
right hand side of (D.15). Hence, using this time (D.23) and (D.19), we obtain in a similar
manner as (D.24)

∥∂yL1((u1, u2, ṡ))∥C0 ≤ ∥u0∥1 +
2√
κπ

√
t∗∥u1∥0,1∥ṡ∥C0 . (D.27)

Analogously, (D.22), (D.18) and (D.25) imply

∥∂yL2((u1, u2, ṡ))∥C0 ≤ ∥u0∥1 +
2√
π

√
t∗
(
∥u2∥0,1∥ṡ∥C0 + 16∥u2∥40,1 + 16T 4

M

)
. (D.28)

Finally, combining (D.27) and (D.28) we have

∥L3((u1, u2, ṡ))∥C0 ≤ 1

L

(
(1 +K)∥u0∥1

+
2√
π

√
t∗
(
∥u2∥0,1∥ṡ∥C0 +

K√
κ
∥u1∥0,1∥ṡ∥C0 + 16∥u2∥40,1 + 16T 4

M

))
. (D.29)
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Therefore, for (u1, u2, ṡ) ∈ A combining (D.24), (D.26), (D.27), (D.28) and (D.29) we obtain

∥L1((u1, u2, ṡ))∥0,1 ≤ ∥u0∥1 +
(
t∗ +

2√
κπ

√
t∗
)
C1C3,

∥L2((u1, u2, ṡ))∥0,1 ≤ ∥u0∥1 +
(
t∗ +

2√
π

√
t∗
)(

C2C3 + 16C4
2 + 16T 4

M

)
,

and finally

∥L3((u1, u2, ṡ))∥C0 ≤ 1

L

(
(1 +K)∥u0∥1 +

2√
π

√
t∗
(
C2C3 +

K√
κ
C1C3 + 16C4

2 + 16T 4
M

))
.

Then defining

t1 =
1

2
min

{
θ

C3
,
θ2κπ

8C2
3

}
,

t2 =
1

6
min

{
θ

C3
,

θ

16C3
2

,
θC2

16T 4
M

,
1

6

(√
πθ

2C3

)2

,
1

6

( √
πθ

32C3
2

)2

,
1

6

(√
πθC2

32T 4
M

)2
}

and

t3 =
L2πθ2

64
min

{(
1

C2

)2

,

( √
κ

KC1

)2

,

(
C3

16C4
2

)2

,

(
C3

16T 4
M

)2
}

we conclude for t∗ ≤ min{t1, t2, t3} that

∥L1((u1, u2, ṡ))∥0,1 ≤ C1, ∥L2((u1, u2, ṡ))∥0,1 ≤ C2 and ∥L3((u1, u2, ṡ))∥C0 ≤ C3,

and hence L maps A into itself. We show now that for t∗ > 0 small enough L is also a
contraction. To this end we assume (u1, u2, ṡ), (ū1, ū2, ˙̄s) ∈ A. First of all we consider the
radiation term. Using that a4 − b4 = (a − b)(a3 + a2b + ab2 + b3) = (a − b)p3(a, b) and that
p3(a, b) ≤ 2(|a|3 + |b|3) we estimate

∥Iα[u2 + TM ]− Iα[ū2 + TM ]∥C0

= sup
0<t≤t∗,y>0

∣∣∣∣ˆ ∞

0

αE1(α(y − η))

2
(u2(t, η)− ū2(t, η))p3(u2 + TM , ū2 + TM )(t, η)dη

− (u2(t, y)− ū2(t, y))p3(u2 + TM , ū2 + TM )(t, y)

∣∣∣∣
≤2∥u2 − ū2∥0,1

(
∥|u2 + TM |3∥0,1 + ∥|ū2 + TM |3∥0,1

)
sup
y>0

(ˆ ∞

0

αE1(α(y − η))

2
dη + 1

)
≤32

(
C3
2 + T 3

M

)
∥u2 − ū2∥0,1.

(D.30)

Hence, using triangle inequality as well as (D.21) and (D.19) we see

∥L1((u1, u2, ṡ))− L1((ū1, ū2, ˙̄s))∥0,1

≤ sup
0<t≤t∗,y>0

∣∣∣∣ˆ 0

−∞

ˆ t

0
(ṡ(τ)∂ξu1(τ, ξ)− ˙̄s(τ)∂ξu1(τ̄ , ξ))G(y, ξ, κ(t− τ))dτdξ

∣∣∣∣
+ sup

0<t≤t∗,y>0

∣∣∣∣ˆ 0

−∞

ˆ t

0
(ṡ(τ)∂ξu1(τ, ξ)− ˙̄s(τ)∂ξu1(τ̄ , ξ)) ∂ξg(y, ξ, κ(t− τ))dτdξ

∣∣∣∣
≤
(
t∗ +

2√
κπ

√
t∗
)
(C1∥ṡ− ˙̄s∥C0 + C3∥u1 − ū1∥0,1) .
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Similarly, using (D.30), (D.20) and (D.18) we have

∥L2((u1, u2, ṡ))− L2((ū1, ū2, ˙̄s))∥0,1 ≤
(
t∗ +

2√
π

√
t∗
)
(C2∥ṡ− ˙̄s∥C0 + C3∥u2 − ū2∥0,1)

+ 32(C3
2 + T 3

M )

(
t∗ +

2√
π

√
v

)
∥u2 − ū2∥0,1.

Finally, combining the results for the derivatives we obtain

∥L3((u1, u2, ṡ))− L3((ū1, ū2, ˙̄s))∥C0 ≤ 2√
κπL

√
t∗ (C1∥ṡ− ˙̄s∥C0 + C3∥u1 − ū1∥0,1)

+
2√
πL

√
t∗
(
C2∥ṡ− ˙̄s∥C0 + C3∥u2 − ū2∥0,1 + 32(C3

2 + T 3
M )∥u2 − ū2∥0,1

)
.

Hence, we have

∥L((u1, u2, ṡ))− L((ū1, ū2, ˙̄s))∥A ≤
(
t∗ +

2√
κπ

√
t∗ +

2√
κπL

√
t∗
)
C3∥u1 − ū1∥0,1

+

(
t∗ +

2√
π

√
t∗ +

2√
πL

√
t∗
)(

C3 + 32(C3
2 + T 3

M )
)
∥u2 − ū2∥0,1

+

[(
t∗+

2√
κπ

√
t∗ +

2√
κπL

√
t∗
)
C1 +

(
t∗ +

2√
π

√
t∗ +

2√
πL

√
t∗
)
C2

]
∥ṡ− ˙̄s∥C0 .

Let λ ∈ (0, 1). We take

t∗ = min

{
t1, t2, t3,

λ

3C3
,

(
λ
√
κπ

6C3

)2

,

(
λ
√
κπL

6C3

)2

,
λ

3
(
C3 + 32(C3

2 + T 3
M )
) ,(

λ
√
π

6
(
C3 + 32(C3

2 + T 3
M )
))2

,

(
λ
√
πL

6
(
C3 + 32(C3

2 + T 3
M )
))2

,

λ

3(C1 + C2)
,

(
λ
√
π

6(C1κ−1 + C2)

)2

,

(
λ
√
πL

6(C1κ−1 + C2)

)2}
.

It is now easy to see that L is a contraction with

∥L((u1, u2, ṡ))− L((ū1, ū2, ˙̄s))∥A ≤ λ∥(u1, u2, ṡ)− (ū1, ū2, ˙̄s)∥A.

Thus, an application of Banach fixed-point theorem yields the existence of a unique solution
(u1, u2, ṡ) ∈ AC1,C2,C3 to the fixed-point system defined by the equations (D.12), (D.13) and
(D.16). Moreover, this is the unique solution in the sense that if (ū1, ū2, ˙̄s) ∈ AC̄1,C̄2,C̄3

is another fixed-point solution on [0, t̄∗] for (C1, C2, C3) ̸= (C̄1, C̄2, C̄3), then (u1, u2, ṡ) =

(ū1, ū2, ˙̄s) for all t ≤ {t∗, t̄∗}. We notice that by construction
(
u1, u2,

´ t
0 ṡ(τ)dτ

)
solves the

problem (D.11) in distributional sense. Notice that ṡ satisfies the Stefan condition strongly.
Thus, the theorem is proved.

In the next subsection we prove that the unique distributional solution found in Theorem
D.3 is also a classical solution with Hölder regularity.
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D.2.2 Regularity

In this section we show that the local distributional solutions u1 ∈ C0,1
t,y ([0, T ]× R−) and

u2 ∈ C0,1
t,y ([0, T ]× R+) of the parabolic equations

∂tu1(t, y)− ṡ(t)∂yu1(t, y) =
K
C ∂

2
yu1(t, y) y < 0,

∂tu2(t, y)− ṡ(t)∂yu2(t, y) = ∂2yu2(t, y)− Iα[u2 + TM ](t, y) y > 0,

u1(t, 0) = u2(t, 0) = 0 y = 0,

u1(0, y) = u0(y) and u2(0, y) = u0(y) y ∈ R.

(D.31)

are strong solutions, i.e. u1 ∈ C1,2
t,y ((0, t∗]× R−) and u1 ∈ C1,2

t,y ((0, t∗]× R+). Moreover,
we will show that these solutions have also locally Hölder regularity in the sense that ui ∈
C1+δ/2,2+δ ([ε, t∗]× R±) for any ε > 0 and for some δ ∈ (0, 1). To this end, we will use the
following classical result for the heat equation (cf. [91] p.273).

Proposition D.1. Let Φ(x, t) = 1√
4πt
e−

x2

4t 1t>0 be the fundamental solution of the heat equa-

tion. Then for F ∈ Cδ/2,δt,y ([0, t∗]× R), φ ∈ C2,δ(R) and g ∈ C1,δ/2([−∞, t∗]) the following
estimates are true

∥Φ ∗ F∥1+δ/2,2+δ ≤ c∥F∥δ/2,δ,

∥Φ ∗y φ∥1+δ/2,2+δ ≤ c∥φ∥δ (D.32)

and

∥∂yΦ ∗t g∥1+δ/2,2+δ ≤ c∥g∥1+δ, (D.33)

where in (D.32) we mean

Φ ∗y φ(t, y) =
ˆ
R
φ(ξ)Φ(y − ξ, t)dξ

and in (D.33)

∂yΦ ∗t g(t, y) =
ˆ t

−∞
g(τ)∂yΦ(y, t− τ)dτ.

Moreover, if g ∈ C1,δ/2([0, t∗]), then ∂yΦ ∗t g ∈ C1+δ/2,2+δ
t,y ([ε, t∗]× R) for all ε > 0.

We remark that the last statement can be proved following the estimates in [91]. The
proof of the regularity of the solutions u1 and u2 follows from classical parabolic theory. Nev-
ertheless, we recall the key estimates that we will use.

Lemma D.1. Let φ ∈ C1,1(R). Then

φ ∗y Φ(·, t) ∈ C1/2,1+1
t,y ([0, t∗]× R) (D.34)

with

[φ ∗y Φ]t,1/2 ≤ ∥φ′∥∞ and [φ′ ∗y Φ]y,Lip ≤ ∥φ′∥∞.
Moreover,

φ ∗y Φ(·, t) ∈ C1+1/2,2+1
t,y ([ε, t∗]× R)

for any ε > 0.



270 APPENDIX D. WELL-POSEDNESS FOR STEFAN PROBLEM

Proof. We see that by a change of variables η = ξ−y√
t
we obtain

φ ∗y Φ(y, t) =
ˆ
R
φ(y +

√
tη)

e−η
2/4

√
4π

dη.

A simple computations shows (D.34) as well as the estimates for the Hölder seminorms. We
remark that |√a−

√
b| ≤ |a− b|1/2 for all a, b > 0. In a similar way we can also see that for

any ε > 0 the function φ ∗y Φ has the claimed higher Hölder regularity on [ε, t∗] × R. For
example, we see integrating by parts that∣∣∣∣∂2y ˆ

R
φ(ξ)Φ(y − ξ, t)dξ

∣∣∣∣ = ∣∣∣∣∂y ˆ
R
φ′(ξ)Φ(y − ξ, t)dξ

∣∣∣∣
=

∣∣∣∣∣
ˆ
R
φ′(y +

√
tη)

ηe−η
2/4

√
4πt

dξ

∣∣∣∣∣ ≤
√
2∥φ′∥∞√

ε
.

In a similar way we can prove the estimates for ∂tφ ∗y Φ as well as the one for the Hölder
seminorms.

Further we will use also the following result

Lemma D.2. Let G(y, ξ, at) = Φ(y − ξ, t) − Φ(y + ξ, at) be the fundamental solution of the
heat equation in the half-space. Let also f± ∈ C0,0

t,y ([0, t∗]× R±). Then

f± ∗G ∈ Cα/2,1+βt,y ([0, t∗]× R±)

for any α, β ∈ (0, 1), where we define

f± ∗G(t, y) =
ˆ t

0

ˆ
R±

f±(τ, ξ)G(y, ξ, a(t− τ))dξdτ.

Moreover, the norm of f± ∗ G in the space Cα/2,1+βt,y ([0, t∗]× R±) depends only on ∥f∥∞, t∗,
α, β.

Proof. It is enough to prove this Lemma only for f = f+ ∈ C0,0
t,y ([0, t∗]× R+) and a = 1.

Using that −∂ξg(y, ξ, t) = ∂yG(y, ξ, t) and equation (D.18) we have already seen that f ∗G ∈
C0,1
t,y ([0, t∗]× R+) with norm bounded by ∥f ∗ G∥0,1 ≤ Cmax{t∗,

√
t∗}∥f∥∞. Now we only

need to show the Hölder regularity of f ∗G. Let hence 0 < s < t < t∗. Since if s < t− s, then
|t|+ |s| ≤ 3|t− s| so that |f ∗G(t, y)− f ∗G(s, y)| ≤ 3|t− s|∥f∥∞ by (D.20), it is enough to
consider s > t− s.∣∣∣∣ˆ t

0

ˆ
R+

f(τ, ξ)Φ(y ± ξ, t− τ)dξdτ −
ˆ s

0

ˆ
R+

f(τ, ξ)Φ(y ± ξ, s− τ)dξdτ

∣∣∣∣
≤∥f∥∞

ˆ t

s−(t−s)

ˆ
R+

|Φ(y ± ξ, t− τ)| dξdτ + ∥f∥∞
ˆ s

s−(t−s)

ˆ
R+

|Φ(y ± ξ, s− τ)| dξdτ

+ ∥f∥∞
ˆ s

0

ˆ
R+

|Φ(y ± ξ, t− τ)− Φ(y ± ξ, s− τ)| dξdτ

≤3∥f∥∞|t− s|

+ ∥f∥∞
ˆ s−(t−s)

0

ˆ
R+

Φ(y ± ξ, t− τ)
|y ± ξ|2
4(t− τ)

t− s

s− τ
+Φ(y ± ξ, s− τ)

√
t− s√
t− τ

dξdτ

≤∥f∥∞
(
4 +

√
2
)√

t∗|t− s|1/2,
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where we used that t − s ≤ s − τ if τ < s − (t − s).We turn to the Hölder continuity of
the spatial derivative. Let us consider 0 ≤ x < y. Since ∂yf ∗ G is uniformly bounded in
[0, t∗]×R+, we have only to show the Hölder condition for |x− y| < 1. Let hence |x− y| < 1.
If t ≤ |y − x|2 then by (D.18) we see that∣∣∣∣ˆ t

0

ˆ
R+

f(τ, ξ) (∂ξg(y, ξ, t− τ)− ∂ξg(x, ξ, t− τ)) dξdτt

∣∣∣∣ ≤ C∥f∥∞
√
t ≤ C∥f∥∞|x− y|.

Let now t > |x− y|2. Using that if |y ± ξ| > |x± ξ|, the following estimate holds

|∂ξΦ(y ± ξ, τ)− ∂ξΦ(x± ξ, τ)| ≤|x− y|
2τ

Φ(y ± ξ, τ) + |x− y| |x± ξ

2τ
Φ(x± ξ, τ)

|y ± ξ|+ |x± ξ|
4τ

≤|x− y|
2τ

Φ(y ± ξ, τ) + Φ

(
x± ξ√

2
, τ

)( |x− y|2
4τ3/2

+
|x− y|
τ

)
.

We estimate for any β ∈ (0, 1)

ˆ t

0

ˆ
R+

|f(t− τ, ξ)| |∂ξΦ(y ± ξ, τ)− ∂ξΦ(x± ξ, τ)| dξdτ

≤
ˆ |x−y|2

0

ˆ
R+

|f(t− τ, ξ)| |∂ξΦ(y ± ξ, τ)− ∂ξΦ(x± ξ, τ)| dξdτ

+

ˆ t

|x−y|2

ˆ
R+

|f(t− τ, ξ)| |∂ξΦ(y ± ξ, τ)− ∂ξΦ(x± ξ, τ)| dξdτ

≤ 2∥f∥∞
ˆ |x−y|2

0

ˆ
R
|∂ξΦ(ξ, τ)| dξdτ + 2C∥f∥∞|x− y|

ˆ t

|x−y|2
1

τ
dτ

≤2∥f∥∞|x− y|+ 2C∥f∥∞|x− y|β
ˆ t

|x−y|2
τ−

1+β
2 dτ

≤C̃ ∥f∥∞
1− β

max
{
1, (t∗)(1−β)/2

}
|x− y|β,

where we also used that |x− y| < 1.

Finally, we will also use the following result, which can be found in [91].

Proposition D.2. Let E ∈ {R,R±}. Let u ∈ Cα,1+βt,y ([0, t∗]× E). Then ∂yu is αβ
1−β -Hölder

in time.

Proof. We refer to Lemma 3.1, Chapter II of [91]. This proposition can be proved in an easier
way using that for any x, y ∈ E and any t, s ∈ [0, t∗] we have the following estimates

u(t, y) = u(t, x)∂xu(t, x)(y − x) +O(|x− y|1+β) for any t ∈ [0, t∗]

and
|u(t, x)− u(s, x)| ≤ C|s− t|α for any x ∈ E.

Thus,we conclude

|∂xu(t, x)− ∂xu(s, x)| ≤ C1
|t− s|α
|x− y| + C2|x− y|β ≤ C|t− s|

αβ
1+β

choosing |x− y| = |t− s|
α

1+β .
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We are now ready to prove the following Theorem.

Theorem D.4. Let u0 ∈ C0,1 (R) be bounded with u0(0) = 0, u0(y) > 0 if y < 0 and u0(y) < 0
if y > 0. Moreover, let δ ∈

(
0, 12
)
and u0 |R± ∈ C2,δ(R±). Then, for a time t∗ > 0 small

enough there exists a unique solution

(u1, u2, s) ∈ C1,2
t,y ((0, t∗)× R−)× C1,2

t,y ((0, t∗)× R+)× C1([0, t∗])

to the problem (D.11). Moreover,

(u1, u2, ṡ) ∈ Cδ/2,1+δt,y ((0, t∗)× R−)× Cδ/2,1+δt,y ((0, t∗)× R+)× Cδ/2([0, t∗])

for δ < 1
2 . Furthermore, for any ε > 0 it is also true that u1 ∈ C1+δ/2,2+δ

t,y ([ε, t∗]×R−) as well

as u2 ∈ C1+δ/2,2+δ
t,y ([ε, t∗]× R+).

Proof. We have to show that the fixed-point solution (u1, u2, s) found in Theorem D.3 has the
desired regularity. We already know that the interface s(t) =

´ t
0 ṡ(τ)dτ solves in a classical

sense the equation

ṡ(t) =
1

L

(
∂yu2(t, 0

+)−K∂yu1(t, 0
−)
)

with initial value s(0) = 0. Moreover, s ∈ C1([0, t∗]).
We will now show that (u1, u2) ∈ C1,2

t,y ((0, t∗)× R−)× C1,2
t,y ((0, t∗)× R+). This will imply

that they solve the parabolic equations (D.31) strongly in (0, t∗] × R±. For the fixed-point
solution (u1, u2, ṡ) of Theorem D.3 we define the sources

F1(t, y) = ṡ(t)∂yu1(t, y) for y < 0

and

F2(t, y) = ṡ(t)∂yu2(t, y) + Iα[u2 + TM ]for y > 0.

We will show that Fi ∈ Cδ/2,δ([0, t∗],R±), this will imply the regularity of the functions u1, u2.
We first show that u1, u2 are α

2 -Hölder in time. To this end we define

ū0,1(y) =

{
u0(y) y ≤ 0

−u0(−y) y > 0
and ū0,2(y) =

{
u0(y) y ≥ 0

−u0(−y) y < 0
.

Since the continuous function u0 satisfies u0 ∈ C2,δ(R±), then ū0,i ∈ C1,1(R±). Hence, Lemma

D.1 implies that ū0,i ∗y Φ ∈ C1/2,1+1
t,y ([0, t∗]×R±) as well as ū0,i ∗y Φ ∈ C1+1/2,2+1

t,y ([ε, t∗]×R±)

for any ε > 0. We also know that Fi ∈ C0,0
t,y ∈ ([0, t∗],R±). Therefore Lemma D.2 implies that

Fi ∗G ∈ Cα/2,1+βt,y ([0, t∗],R+) for any α, β ∈ (0, 1). Thus,

ui = u0,i ∗y Φ+ Fi ∗G ∈ Cα/2,1+βt,y ([0, t∗],R±) for any α, β ∈ (0, 1).

This result has two important consequences. First of all, Proposition D.2 implies that the
functions ∂yui are

δ
2 -Hölder in time for some δ ∈

(
0, 12
)
. Indeed, it is not difficult to see that

for any 0 < δ < 1
2 there exists α, β ∈ (0, 1) such that αβ

1+β = δ. This implies also that the

derivatives ∂yui(t, 0) are δ
2 -Hölder in time and thus by definition ṡ(t) ∈ Cδ/2([0, t∗]). This

yields further a better regularity for F1, indeed F1 ∈ Cδ/2,1+δ ([0, t∗],R−).
A similar result can be shown also for F2. We first of all remark that since u2 is bounded,

then (u2 + TM ) ∈ Cα/2,1+βt,y ([0, t∗],R+) for any α, β ∈ (0, 1). Thus, we have to show that
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Iα[u2 + TM ] ∈ Cδ/2,δ([0, t∗] × R+). Clearly, it is δ/2-Hölder in time, since u2 is so. For the
space variable we use that E1 ∈ L1(R) ∩ L2(R), hence by interpolation also E1 ∈ Lq(R) for
any q ∈ [1, 2]. Let b > a > 0, then for any δ ∈ [0, 1/2] we have

ˆ b

a

α

2
E1(αη)dη ≤ 1

2
|a− b|δ∥E1∥

L
1

1−δ
.

Therefore, for v ∈ C0,δ(R+) and y > x > 0 we estimate∣∣∣∣ˆ ∞

0

α

2
v4(η) (E1(α(y − η))− E1(α(x− η))) dη

∣∣∣∣
=

∣∣∣∣ˆ ∞

−y

α

2
v4(η + y)E1(αη)dη −

ˆ ∞

−x

α

2
v4(η + x)E1(αη)dη

∣∣∣∣
≤
∣∣∣∣ˆ ∞

−x

α

2
E1(αη)

(
v4(η + y)− v4(η + x)

)
dη

∣∣∣∣+ ∣∣∣∣ˆ −x

−y

α

2
E1(αη)v

4(η + y)dη

∣∣∣∣
≤ ∥v4∥δ|x− y|δ + 1

2
∥v4∥C0∥E1∥

L
1

1−δ
|x− y|δ. (D.35)

Hence, we can conclude that Iα[u2 + TM ] ∈ Cδ/2,δ([0, t∗] × R+) and consequently that F2 ∈
Cδ/2,δ([0, t∗]× R+).

In order to prove finally that (u1, u2) is a classical solution to (D.31) we use that any
bounded solution wi ∈ C1,2

t,y ([0, t
∗]× R±) of the heat equation

∂twi(t, y)− ∂2ywi(t, y) = Fi(t, y) (0, t∗)× R±
wi(0, y) = u0(y) y ∈ R±
wi(t, 0) = 0 t ∈ [0, t∗]

(D.36)

can be written both by
wi = ū0,i ∗y Φ+ Fi ∗G

and by the sum wi = vi + hi of two functions vi, hi solutions to an inhomogeneous heat
equation in the whole space and a homogeneous equation in the half-space, respectively.

Let us consider the even extensions of Fi

F̄1(t, y) =

{
F1(t, y) y ≤ 0

F1(t,−y) y > 0
and F̄2(t, y) =

{
F2(t, y) y ≥ 0

F2(t,−y) y < 0.

Then, F̄i ∈ Cδ/2,δ([0, t∗],R). By Proposition D.1 and Lemma D.1 we see that

vi(t, y) := (ū0,i ∗y Φ) (t, y) +
(
F̄i ∗ Φ

)
(t, y) ∈ C1+δ/2,2+δ

t,y ([ε, t∗]× R)

for any ε > 0. Thus, vi ∈ C1,2
t,y ((0, t

∗]× R) is a strong solution to{
∂tvi(t, y)− ∂2yvi(t, y) = F̄i(t, y) (0, t∗)× R
vi(0, y) = ū0,i(y) y ∈ R

Moreover, since vi(t, 0) =
(
F̄i ∗ Φ

)
(t, 0) by Proposition D.1 we see that vi(t, 0) ∈

C1,δ/2
t,y ([0, t∗]). Thus, by Proposition D.1 we can conclude that

hi(t, y) := 2 (∂yΦ ∗t v(·, 0)) (t, y) ∈ C1+δ/2,2+δ
t,y ([ε, t∗]× R±)
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for all ε > 0. Using the property of the double-layer potential (cf. [91]) we obtain that
hi ∈ C1,2

t,y ((0, t
∗),R±) is a strong solution to

∂thi(t, y)− ∂2yhi(t, y) = 0 (0, t∗)× R±
hi(0, y) = 0 y ∈ R±
hi(t, 0) = −vi(t, 0) t ∈ [0, t∗].

Thus, it is not difficult to see that wi = vi + hi is a strong solution of (D.36) in the interior
(0, t∗) × R±. Moreover, wi is the unique bounded solution of (D.36) and it has the same
integral representation of ui. Hence ui = wi and using the regularity of vi, hi we conclude

ui ∈ C1,2
t,y ((0, t

∗),R±) and ui ∈ C1+δ/2,2+δ
t,y ([ε, t∗]× R±) for all ε > 0.

D.2.3 Maximum principle

The local solutions u1, u2 were obtained as ui = Ti−TM , where TM is the melting temperature
and T1, T2 are the solutions to (D.10). Since the temperature is a non-negative quantity, we
want to show that the solutions Ti are non-negative as long as they are defined. Moreover,
we expect that in the liquid, i.e. y < 0, the temperature satisfies T1 > TM while in the solid
(y > 0) the temperature satisfies T2 < TM . In bounded domains the maximum principle
yields these results. Since we are working on an unbounded domain we will first consider
some suitable problems in bounded domains, where the maximum principle assures the desired
properties of the temperature, and then we will show that their solutions converge to u1 and
u2, the solutions to the problem in the whole space.

For R ≥ 2 we fix ηR ∈ C∞(R) with the property that ηR ≡ 1 if |y| ≤ R − 1 and
ηR ≡ 0 if |y| ≥ R and |η| ≤ 1. Moreover, we choose ηR with ∥η′R∥∞ ≤ 2 as well as
max {∥η′′R∥∞, ∥η′′′R∥∞} ≤ C for a fixed constant C > 0 independent of R. We will consider uR1
and uR2 solutions to
∂tu

R
1 − ṡ∂yu

R
1 = κ∂2yu

R
1

uR1 (t, 0) = 0 (0, t∗)× (−R, 0)
uR1 (t,−R) = 0

uR1 (0, y) = u0(y)ηR(y)

and


∂tu

R
2 − ṡ∂yu

R
2 = ∂2yu

R
2 − IRα [uR2 + TM ]

uR2 (t, 0) = 0 (0, t∗)× (0, R)

uR2 (t, R) = 0

uR2 (0, y) = u0(y)ηR(y)

(D.37)

IRα [v](t, y) = v4(t, y)−
´ R
0

α
2E1(α(y − η))v4(t, η)dη and ṡ is the time derivative of the moving

interface s, which is together with u1, u2 of Theorem D.4 the unique solution of problem
(D.11) for t ∈ (0, t∗). We will show the following Lemma.

Lemma D.3. Let R ≥ 2. Let u0 be as in Theorem D.4 and let ηR as above. Then there exist
a time 0 < t∗ ≤ t∗ small enough and independent of R such that there exist unique solutions
uR1 ∈ C1,2

t,y ((0, t∗) × [−R, 0]) and uR2 ∈ C1,2
t,y ((0, t∗) × [0, R]) to (D.37) which satisfy the Hölder

regularity

uR1 ∈ Cδ/2,1+δt,y ([0, t∗]× [−R, 0]) and uR1 ∈ Cδ/2,1+δt,y ([0, t∗]× [0, R])

with uniformly bounded Hölder norms.

Let also ui be the solutions to (D.11) of Theorem D.4, then there exist two subsequences
uRn
i which converge to ui as n→ ∞ uniformly in every compact set and pointwise everywhere.



D.2. LOCAL WELL-POSEDNESS 275

Proof. We consider the Green’s function for the heat equation on the interval [−R, 0] and
[0, R] given by

G̃R(y, ξ, at) =
∑
n∈Z

Φ(y − ξ − 2nR, at)− Φ(y + ξ − 2nR, at).

Let FR1 (t, y) = ṡ(t)∂yu
R
1 (y) and F

R
2 (t, y) = ṡ(t)∂yu

R
1 (t, y)− IRα [U

R
2 +TM ](t, y). We obtain the

following fixed-point representations for the solutions to (D.37)

uR1 (t, y) =LR1 (uR1 )(t, y)

=

ˆ 0

−R
u0(ξ)ηR(ξ)G̃R(y, ξ, κt)dξ +

ˆ 0

−R

ˆ t

0
FR1 (τ, ξ)G̃R(y, ξ, κ(t− τ))dτdξ,

(D.38)

and

uR2 (t, y) = LR2 (uR2 )(t, y) =
ˆ R

0
u0(ξ)ηR(ξ)G̃R(y, ξ, t)dξ+

ˆ R

0

ˆ t

0
FR2 (τ, ξ)G̃R(y, ξ, (t− τ))dτdξ.

(D.39)
We will prove the existence of a unique fixed-point for the operators defined by LR1 : AR

1 →
C0,1
t,y ([0, t∗]× [0, R]) and LR2 : AR

2 → C0,1
t,y ([0, t∗]× [−R, 0]) for all R ≥ 2, where

AR
1 =

{
u ∈ C0,1

t,y ([0, t∗]× [−R, 0]) : ∥u∥0,1 ≤ C1

}
and

AR
2 =

{
u ∈ C0,1

t,y ([0, t∗]× [0, R]) : ∥u∥0,1 ≤ C2

}
for constants (1− θ)Ci > 4∥u0∥1 for a fixed θ ∈ (0, 1).

First of all we see that it is possible to extend in an odd manner u0ηR to the whole real
line. Indeed, we can consider as usual the odd extension of the initial value as

ũR0,1(y) =

{
u0(y)ηR(y) −R ≤ y ≤ 0

−u0(−y)ηR(−y) 0 < y ≤ R
and ũR0,2(y) =

{
u0(y)ηR(y) 0 ≤ y ≤ R

−u0(−y)ηR(−y) −R ≤ y < 0.

We define

ūR0,1(y) = ūR0,1(y + 2nR) and ũR0,2(y) = ūR0,2(y + 2nR) for y ∈ [−(2n+ 1)R, (−2n+ 1)R]

One can easily see then that

(
ūR0,1 ∗ Φ(·, κ·)

)
(t, y) =

ˆ 0

−R
u0(ξ)ηR(ξ)G̃R(y, ξ, κt)dξ

and (
ūR0,2 ∗ Φ(·, ·)

)
(t, y) =

ˆ R

0
u0(ξ)ηR(ξ)G̃R(y, ξ, t)dξ.

Similarly, it is not difficult to see that with a change of coordinate

ˆ ±R

0

∣∣∣G̃R(y, ξ, at)∣∣∣ dξ ≤∑
n∈Z

ˆ (2n+1)R

2nR
|Φ(y − ξ, at)|+ |Φ(y + ξ, at)| dξ ≤ 2

ˆ
R
|Φ(ξ, at)|dξ ≤ 2.

(D.40)
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The same estimate holds for the integral in [−R, 0]. In the same way we have also

ˆ ±R

0

∣∣∣∂yG̃R(y, ξ, at)∣∣∣ dξ ≤∑
n∈Z

ˆ (2n+1)R

2nR
|∂ξΦ(y − ξ, at)|+ |∂ξΦ(y + ξ, at)| dξ

≤ 2

ˆ
R
|∂ξΦ(ξ, at)|dξ ≤

2
√
2√
at
. (D.41)

Thus, for ui, vi ∈ AR
i we have

∥LR1 (u1)∥0,1 ≤4∥u0∥1 + 2∥ṡ∥∞C1

(
t∗ +

√
2t∗√
κ

)
and

∥LR1 (u2)∥0,1 ≤4∥u0∥1 + 2
(
∥ṡ∥∞C2 + 2 (C2 + TM )4

) (
t∗ +

√
2t∗
) (D.42)

and

∥LR1 (u1)− LR1 (v1)∥0,1 ≤ 2∥ṡ∥∞∥u1 − v1∥0,1
(
t∗ +

√
2t̄√
κ

)
(D.43)

as well as

∥LR1 (u2)− LR1 (v2)∥0,1 ≤ 2∥u2 − v2∥0,1
(
∥ṡ∥∞ + 16

(
C3
2 + T 3

M

)) (
t∗ +

√
2t̄
)
. (D.44)

Since the estimates (D.42), (D.43) and (D.44) do not depend on R, there exists 0 < t∗ ≤ t∗

independent of R and small enough such that by the Banach fixed-point Theorem there exist
unique fixed-points uR1 ∈ C0,1

t,y ([0, t∗] × [−R, 0]) and uR2 ∈ C0,1
t,y ([0, t∗] × [0, R]) of the operators

LR1 and LR2 of (D.38) and (D.39), respectively.
Adapting Lemma D.2 to the Green’s function G̃R one can prove that for any function

f± ∈ C0,0
t,y ([0, t∗], [0,±R]) the convolution f± ∗ G̃R ∈ Cα/2,1+βt,y ([0, t∗], [0,±R]) for any α, β ∈

(0, 1). We omit the proof since it an easy calculation based on the proof of Lemma D.2 and
on a suitable change of variables as in estimates (D.40) and (D.41). This result together with
Lemma D.1 applied to the odd extensions ūR0,i for i = 1, 2 implies the desired Hölder regularity

uR1 ∈ Cδ/2,1+δt,y ([0, t∗]× [−R, 0]) and uR2 ∈ Cδ/2,1+δt,y ([0, t∗]× [0, R])

for any δ ∈ (0, 1). Moreover, the Hölder norms are uniformly bounded in R. Indeed, ∥FR1 ∥∞ ≤
∥C1ṡ∥∞ and ∥FR2 ∥∞ ≤ ∥C2ṡ∥∞ + 2(C2 + TM )4 and hence Lemma D.1 and Lemma D.2 yield

∥uRi ∥δ/2,1+δ ≤ max

{
Ci, ∥u0∥1, C

(
t∗, t

(1−δ)/2
∗

) ∥FRi ∥∞
1− δ

}
for i = 1, 2,

where C
(
t∗, t

(1−δ)/2
∗

)
> 0 does not depend on R.

Before proving that the functions uRi are also classical solutions to (D.37), we prove the

convergence result. Let us extend uRi for |y| > R by a function ūRi ∈ Cδ/2,1+δt,y ([0, t∗],R±)
with norm ∥ūRi ∥δ/2,1+δ ≤ 2∥uRi ∥δ/2,1+δ. Then the uniform boundedness of the Hölder norm

implies that ūRi is a compact sequence in Cα/2,1+αt,y ([0, t∗], [a, b]) for every compact set [a, b] ∈
R± and for α < δ. Therefore, for any sequence Rn → ∞ a diagonal argument yields the
existence of a subsequence Rnk

, which we will denote for simplicity by Rn, and of a function

ūi ∈ C0,1
t,y ([0, t∗]× R±) ∩ Cα/2,1+αloc ([0, t∗]× R±) such that

ūRn
i → ūi and ∂yū

Rn
i → ∂yūi as n→ ∞
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uniformly in every compact set and pointwise everywhere.

We show now ūi = ui. It is not difficult to see that u0ηRn → u0 pointwise for y ∈ R.
Notice that also uRn

i (y) → ūi(y) and ∂yu
Rn
i (y) → ∂yūi(y) for Rn > |y| and n→ ∞, and that∣∣∣∣ˆ Rn

0

α

2
E1(α(η − ξ))

(
uRn
2 + TM

)4
dη −

ˆ ∞

0

α

2
E1(α(η − ξ)) (ū2 + TM )4 dη

∣∣∣∣→ 0 as n→ ∞.

Hence, we see that

FRn
1 (t, y) → F̄1(t, y) = ṡ(t)∂yū1(t, y) for y < 0 and n→ ∞

and

FRn
2 (t, y) → F̄2(t, y) = ṡ(t)∂yū2(t, y) + Iα[ū2 + TM ]for y > 0 and n→ ∞.

Using that

G̃Rn(y, ξ, at) = G(y, ξ, at) +
∑
|n|≥1

G(y − 2nR, ξ, at) → G(y, ξ, at) as n→ ∞

we can conclude using Lebesgue dominated convergence theorem that the functions ūi solve
the integral equations

ūi(t, y) =

ˆ
R±

u0(ξ)G(y, ξ, ait)dξ +

ˆ t

0

ˆ
R±

F̄i(τ, ξ)G(y, ξ, ai(t− τ))dτdξ, (D.45)

where a1 = κ and a2 = 0. An easy application of Banach fixed-point theorem shows that
(D.45) has a unique fixed-point for bounded functions in C0,1

t,y ([0, t∗],R±) with bounded deriva-
tive. Thus, since ui solves also (D.45), we can conclude that ūi = ui.

Finally, we prove that the functions uRi are classical solutions to the heat equations (D.37).

Clearly, by Lemma D.1 we have that ūR0,i ∗ Φ ∈ C1+δ/2,2+δ
t,y ([ε, t∗] × [0,±R]). We need to

prove the differentiability of FRi ∗ G̃R. First of all we notice that because of ∂tG̃R(y, ξ, at) =
a∂2yG̃R(y, ξ, at) we only need to show that there exists the second spatial derivative since also

lim
ε→0

ˆ ±R

0
FRi (t− ε, ξ)G̃R(y, ξ, aε)dξ = lim

ε→0

ˆ ±R

0
FRi (t− ε, ξ)Φ(y − ξ, aε)dξ = FRi (t, y)

for any y ∈ (−R, 0) or y ∈ (0, R). Thus, we compute using the change of coordinates as in
(D.40) and (D.41)∣∣∣∣ˆ t

0

ˆ ±R

0
FRi (t− τ, ξ)∂2yG̃R(y, ξ, aτ)dξdτ

∣∣∣∣
≤
∣∣∣∣ˆ t

0

ˆ ±R

0

(
FRi (t− τ, ξ)− FRi (t− τ, y)

)
∂2yG̃R(y, ξ, aτ)dξdτ

∣∣∣∣
+

∣∣∣∣ˆ t

0
FRi (t− τ, y)

ˆ ±R

0
∂2yG̃R(y, ξ, aτ)dξdτ

∣∣∣∣
≤2∥FRi ∥δ

ˆ t

0

ˆ
R
|y − ξ|δ

∣∣∂2ξΦ(ξ, aτ)∣∣+ ∣∣∣∣ˆ t

0
FRi (t− τ, y)

ˆ ±R

0
∂2ξ G̃R(y, ξ, aτ)dξdτ

∣∣∣∣ <∞.

We remark that we obtain the first term since |y − (η + 2nR)| ≤ min{|y − η|, |y + η|} for
any η ∈ [−2nR, (−2n + 1)R]. Moreover, the boundedness of the first term is a well-known
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property of the fundamental solution of the heat equation. The boundedness of the second
term is a classical result in parabolic theory which combines the fact that∣∣∣∣ˆ t

0
FRi (t− τ, y)

ˆ ±R

0
∂2ξΦ(y ± ξ − 2nR, aτ)dξdτ

∣∣∣∣
=

∣∣∣∣ˆ t

0
FRi (t− τ, y) (∂ξΦ(y ±R− 2nR, aτ)− ∂ξΦ(y − 2nR, aτ)) dξdτ

∣∣∣∣ ≤ C∥FRi ∥∞

and the fact that the tail of the series
´ t
0

´ ±R
0

∣∣∣∂2ξ G̃R(y, ξ, aτ)∣∣∣ dξdτ converges. Finally, the

Hölder continuity of FRi is due to the Hölder regularity of uRi and of ṡ as well as to the convo-
lution with the exponential integral as in (D.35). Thus, we conclude that uR1 ∈ C1,2

t,y ((0, t∗)×
[−R, 0]) and uR1 ∈ C1,2

t,y ((0, t∗)× [0, R]) are classical solutions of (D.37).

This approximation result will be used in order to show that u1 > 0 as well as 0 < u2 <
−TM . Before applying the maximum principle though, we need to show that the maximal
interval of existence of the solutions for the original equation (D.11) can be approximated by
the one of the solutions to (D.37). This is due to the uniform convergence in compact domain
of any subsequence of solutions to (D.37). Thus, the norms of the convergent sequence are
uniformly bounded in time.

Lemma D.4. Let [0, t∗] be the maximal interval of existence for the solution (u1, u2, ṡ) to the

problem (D.11). For any ε > 0 there exists a sequence
(
u
Rε

n
1 , u

Rε
n

2

)
solving (D.37) on [0, t∗−ε]

with

u
Rε

n
i → ui as n→ ∞

uniformly in every compact set and for i = 1, 2.

Proof. We argue by contradiction. For any sequence {Rn}n∈N with Rn → ∞ as n → ∞ we

define the maximal time of existence of the sequence uRn
i by

t∗(Rn) := sup
{
t∗ > 0 : uRn

i exists in [0, t∗], for all n and i = 1, 2
}
.

By the convergence result of Lemma D.3 we know that t∗(Rn) ≤ t∗. Hence we consider

t̄ := sup{t∗(Rn) : Rn is an increasing diverging sequence} ≤ t∗.

If t̄ = t∗ then Lemma D.4 is proved. Indeed, by the definition of t̄ for any ε > 0 there exists
an increasing diverging sequence Rεn such that t∗(Rεn) > t̄−ε = t∗−ε. Thus, taking a suitable
subsequence we conclude the lemma.

Let us assume that t̄ < t∗. Let also δ > 0 and let Rδn be an increasing sequence such

that t∗
(
Rδn
)
> t̄ − δ. By Lemma D.3 there exists a subsequence Rδnk

such that u
Rδ

nk
i → ui

uniformly in every compact set. We hence see by the convergence result that the norms of

u
Rδ

nk
i are uniformly bounded on [0, t∗

(
Rδn
)
] by the (bounded) norm of ui on the larger interval

time [0, t̄]. Thus, the solutions u
Rδ

nk
i can be extended for larger times so that

t∗
(
Rδnk

)
≥ t∗

(
Rδn

)
+ θ(t̄) > t̄− δ + θ(t̄),

where θ(t̄) > 0 depends on the norm of ui on [0, t̄] and not on δ. Since δ is arbitrary we obtain
the contradiction t̄ ≥ t̄+ θ(t̄). This concludes the proof of this lemma.
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We can now prove with the maximum principle the following proposition.

Proposition D.3 (Properties of the solution). Let u0 ∈ C0
b (R) be as in the assumptions of

Theorem D.4. Let (u1, u2, ṡ) be the local solution to (D.11) of Theorem D.4 for t ∈ [0, t∗],
which is the maximal interval of existence. Then u1 ≥ 0 and −TM ≤ u2 ≤ 0. Moreover,
u1(t, y) > 0 for all y ∈ (−a, b) ⊂ (−∞, 0] and −TM < u2(t, y) < 0 for all y ∈ (−a, b) ⊂ [0,∞).

Proof. As we have seen in Lemma D.4 for any ε > 0 there exists an increasing diverging
sequence {Rεn}n such that the solutions u

Rε
n

i of (D.37) exist on the interval [0, t∗ − ε] and
converge to the solutions ui uniformly in every compact set.

First of all, for any R > 0 we apply the classical maximum principle to the functions uR1
and uR2 solving the parabolic problem (D.37) on the bounded domains [0, t∗(R)]× [−R, 0] and
[0, t∗(R)] × [0, R]. Where for the sake of readability we denote t∗ = t∗(R) the maximal time
of existence for the solutions uR1 , u

R
2 .

Let us first consider uR1 . Then, since u0(y)ηR(y) > 0 for all y ∈ (−R, 0) and uR1 (t, 0) =
uR1 (t−, R) = 0 for all t ∈ (0, t∗), the strong maximum principle for the parabolic equa-
tion solved by uR1 implies that the minimum is attained only at the parabolic boundary, i.e.
uR1 (t, y) > 0 for all (t, y) ∈ (0, t∗]× (−R, 0). Let now ε > 0. Using Lemma D.4 and the point-
wise convergence result of Lemma D.3 we obtain u1(t, y) ≥ 0 for all (t, y) ∈ [0, t∗ − ε] × R−.
Thus, since ε > 0 is arbitrary, we conclude u1(t, y) ≥ 0 in [0, t∗] × R−. Let us now consider
(a, b) ∈ R−. On one hand by assumption we know that u0(y) > 0 for all y ∈ (a, b), on
the other hand we have just seen that u1(t, a), u1(t, b) ≥ 0. Applying once more the strong
maximum principle to the parabolic equation solved by solution u1 on (0, t∗)× (a, b) we can
conclude that also u1(t, y) > 0 for all y ∈ (a, b).

We now pass to the analysis of uR2 . Let us assume that uR2 (t, y) ≤ −TM for some (t, y) ∈
[0, t∗] × [0, R]. Then, since u0(y)ηR(y) > −TM , there exists a t0 ∈ (0, t∗], the first time such
that a y0 ∈ (0, R) exist with uR2 (t0, y0) = −TM . Hence, uR2 (t, y) > −TM for all 0 ≤ t < t0
and y ∈ [0, R]. This implies ∂tu

R
2 (t0, y0) ≤ 0, ∂yu

R
2 (t0, y0) = 0 and also ∂2yu

R
2 (t0, y0) ≥ 0.

Moreover, on the one hand
(
uR2 (t0, y0) + TM

)4
= 0 and on the other hand there exists an

interval (0, y1) ∈ (0, R) such that uR2 (t0, y) > −TM . Hence,

0 = ∂tu
R
2 (t0, y0)− ṡ(t0)∂yu

R
2 (t0, y0)− ∂2yu

R
2 (t0, y0) + IRα [u

R
2 + TM ](t0, y0)

≤ −
ˆ R

0

α

2
E1(α(y − η))

(
uR2 (t0, y) + TM

)4
dη < 0.

This contradiction implies uR2 (t, y) > −TM for all [0, t∗]× [0, R].

Let now (t0, y0) ∈ [0, t∗]× [0, R] be such that max
[0,t∗]×[0,R]

uR2 (t, y) = uR2 (t0, y0). Assume first

that (t0, y0) ∈ (0, t∗] × (0, R). Then, ∂tu
R
2 (t0, y0) ≥ 0, ∂yu

R
2 (t0, y0) = 0 and ∂2u

R
2 (t0, y0) ≤ 0.

Moreover, since uR2 > −TM we have also
(
uR2 (t0, y0) + TM

)4 ≥ (uR2 (t, y) + TM
)4
.
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This implies

0 = ∂tu
R
2 (t0, y0)− ṡ(t0)∂yu

R
2 (t0, y0)− ∂2yu

R
2 (t0, y0) + IRα [u

R
2 + TM ](t0, y0)

≥
(ˆ 0

−∞

α

2
E1(α(y − η))dη +

ˆ ∞

R

α

2
E1(α(y − η))dη

)(
uR2 (t0, y0) + TM

)4
+

ˆ 0

R

α

2
E1(α(y − η))

[(
uR2 (t0, y0) + TM

)4 − (uR2 (t0, y) + TM
)4]

dη

≥
(ˆ 0

−∞

α

2
E1(α(y − η))dη +

ˆ ∞

R

α

2
E1(α(y − η))dη

)(
uR2 (t0, y0) + TM

)4
> 0.

This contradiction yields that the maximum is attained at the parabolic boundary, i.e.

uR2 (t, y) < max{u0(y)ηR(y), 0} = 0 for all (t, y) ∈ (0, t∗]× (0, R).

by the initial condition uR2 (0, y) = ηR(y)u0(y) < 0 for all y ∈ (0, R) we conclude that uR2 (t, y) <
0 for all (t, y) ∈ (0, t∗] × (0, R). Let ε > 0. Using once more Lemma D.4 and the pointwise
convergence result of Lemma D.3 we obtain −TM ≤ u2(t, y) ≤ 0 for all (t, y) ∈ [0, t∗−ε]×R+.
The erbitrary choice of ε > 0 implies again that −TM ≤ u2(t, y) ≤ 0 for all (t, y) ∈ [0, t∗]×R+.
To prove that also −TM < u2(t, y) < 0 for all y ∈ (a, b) ⊂ [0,∞) we apply the maximum
principle to the function u2 again. Let R > b and assume that min

[0,t∗]×[0,R]
u2 = −TM . Since

u0(y) > −TM for all y ∈ [0, R] and u2(t, 0) = 0 and u2(t, R) ≥ −TM , there exists t0 > 0 the
first time for which there exists some y0 ∈ (0, R] such that u2(t0, y0) = −TM . Hence,

0 = ∂tu2(t0, y0)− ṡ(t0)∂yu2(t0, y0)− ∂2yu2(t0, y0) + Iα[u2 + TM ](t0, y0)

≤ −
ˆ ∞

0

α

2
E1(α(y − η)) (u2(t0, y) + TM )4 dη < 0,

where we used that u2 ≥ −TM and that the strict inequality holds in a set of positive measure.
This contradiction implies that u2(t, y) > −TM for all y ∈ (a, b). Let us assume now that
max

[0,t∗]×[a,b]
u2 = u2(t0, y0) = 0 for a (t0, y0) ∈ (0, t∗]× (a, b). Since u2(t, a), u2(t, b) ≤ 0 for t > 0

we see that

0 = ∂tu2(t0, y0)− ṡ(t0)∂yu2(t0, y0)− ∂2yu2(t0, y0) + Iα[u2 + TM ](t0, y0)

≥ T 4
M −

ˆ ∞

0

α

2
E1(α(y − η)) (u2(t0, y) + TM )4 dη ≥ T 4

M

(
1−

ˆ ∞

−b

α

2
E1(αη)dη

)
> 0,

where we also used y0 < b. Thus, since also u0(y) < 0 for y ∈ (a, b) we conclude that
u2(t, y) < 0 for all y ∈ (a, b).

D.3 Global well-posedness

In this section we will show that for a class of initial data, the system (D.11) has a unique
global solution in time. Our aim is to construct a function w ∈ C0,1(R) twice continuously
differentiable in R± such that w(0) = 0 and such that u1 ≤ w on R− and u2 ≥ w on R+. This
would imply global well-posedness. Instead of considering the shifted temperature ui we will
now study the original temperature Ti = ui + TM .
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Theorem D.5 (Global Well-posedness). Let T0 ∈ C0,1(R) with T0 |R± ∈ C2,δ(R±). Let also
T0(0) = TM , TM < T0(y) for y < 0 and 0 < T0(y) < TM for y > 0. Then, if in addition

sup
R−

T0 < TM + κL2

KTM
and inf

R+

T0 > 0, there is a unique global solution (T1, T2, s) of (D.10).

Theorem D.5 will be proved applying in a suitable way the maximum principle. We will
also need the following Lemma, which will be proved at the end of this section.

Lemma D.5. Let T0 be as in the assumption of Theorem D.5. Let w ∈ C0,1(R) be defined by

w(y) =


TM − ακ

C1

(
1− exp

(
C1
κ y
))

for y < 0

TM for y = 0

w(y) = TMe
−C2y

(
1− T 3

M

12C2
2
+

T 3
Me−3C2y

12C2
2

)
for y > 0.

(D.46)

Then there exist C1, C2 > 0 satisfying C2 >
T

3/2
M

2
√
3
, C1 >

(
T 5
M+1

L2

)1/2
with Γ−(C1) < C2 <

Γ+(C1), where Γ±(C1) =
LC1±

√
L2C2

1−T 5
M

2TM
, and − L

KC2 < α < 0 such that T0 < w on R−,
T0 > w on R+ and sup

R±
|∂yT0(y)| < |∂yw(0±)|. Moreover, for any R > 0 there exists a > 0

such that |T0(y)− w(y)| > a for all |y| > R.

We prove now Theorem D.5 with the help of Lemma D.5

Proof of Theorem D.5. Let C1, C2 > 0 satisfying C2 >
T

3/2
M

2
√
3
, C1 >

(
T 5
M+1

L2

)1/2
such that

Γ−(C1) < C2 < Γ+(C1), where Γ±(C1) =
LC1±

√
L2C2

1−T 5
M

2TM
. Let us also consider a solution w

to 

κ∂2yw − C1∂yw = 0 y < 0

∂2yw + C2∂yw ≥ w4 y > 0

w(0) = TM

∂yw(0
−) > − L

KC2

∂yw(0
+) > −LC1

w ≥ 0

A simple ODE argument, solving the first equation for v = w′ and integrating, shows that on
the negative real line w is given by

w(y) = TM − ακ

C1

(
1− exp

(
C1

κ
y

))
for y < 0,

for some α ∈ R with − L
KC2 < α < 0. Hence, ∂yw(y) = αeC1/κ < 0

For y > 0 we consider the function

w(y) = TMe
−C2y

(
1− T 3

M

12C2
2

+
T 3
Me

−3C2y

12C2
2

)
.

We see that w ≤ TMe
−C2y as well as w ≥ 0, since C2 >

T
3/2
M

2
√
3
. Moreover, the function w

satisfies

w′′(y) + C2w
′(y)

= C2
2TMe

−C2y

(
1− T 3

M

12C2
2

)
+

4

3
T 4
Me

−4C2y − C2
2TMe

−C2y

(
1− T 3

M

12C2
2

)
− 1

3
T 4
Me

−4C2y

= T 4
Me

−4C2y =
(
TMe

−C2y
)4 ≥ w4.
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Notice in addition that w is monotonically decreasing, since

w′(y) = −C2TMe
−C2y

(
1− T 3

M

12C2
2

)
− 1

3C2
T 4
Me

−4C2y < 0.

Finally, we see that ∂yw(0
+) > −LC1. Indeed, we need to show that

w′(0) = −C2TM +
T 4
M

12C2
− 1

3C2
T 4
M = −4C2

2TM + T 4
M

4C2
> −LC1,

which is equivalent to show that

4C2
2TM − 4LC1C2 + T 4

M < 0.

Since the two roots are given by Γ±(C1) =
LC1±

√
L2C2

1−T 5
M

2TM
and since by assumption C1 >(

T 5
M+1

L2

)1/2
we see that Γ±(C1) are well defined with Γ+(C1) >

T
3/2
M
2 >

T
3/2
M

2
√
3
. Hence, we

conclude w′(0) > −LC1 using that by assumption

Γ−(C1) < C2 < Γ+(C1).

Let us now consider Ti = TM + ui the solutions of (D.10) considered in Theorem D.3
and D.4 and in Proposition D.3 on the maximal time interval [0, t∗]. Let us assume that
t∗ < ∞ and that (T1, T2, ṡ) cannot be extended for t > t∗, otherwise it is already the global
in time solution. We will show that ∥Ti∥∞ ≤ C(w) < ∞, ∥∂yTi∥∞ < C(w, t∗) < ∞ and
∥ṡ∥∞ < C(w) < ∞, where the sup-norms are taken on [0, t∗]. This will imply that the
solutions can be extended for t > t∗ as we did in Theorem D.3 and D.4, and hence t∗ = ∞.

Lemma D.5 implies that for the initial value T0 as in the assumption of the Theorem there
are C1, C2 > 0 satisfying the prescribed conditions such that T0(y) < w(y) for y < 0 and
that T0(y) > w(y) for y > 0 and such that |w′(0±)| > sup

R±
|∂yT0(y|). Thus, by the uniform

continuity of Ti −w ∈ C1/2,1/2
t,y ([0, t∗]×R±), by the positivity ∂y(Ti(0, y − w))|y=0 > 0 as well

as by the fact that for any R > 0 there exists a > 0 such that |T0(y)−w(y)| > a for all |y| > R,
there exists a positive time t0 ≤ t∗ such that T1(t, y) < w(y) for y < 0 and T2(t, y) > w(y) for
y > 0 and 0 ≤ t < t0. Let us define

t0 = inf{t ∈ [0, t∗] : ∃y ̸= 0 such that T1(t, y) = w(y) if y < 0 or T2(t, y) = w(y) if y > 0}.

Let us assume that t0 < t∗. Then, since T1(t, 0) = TM = w(0) = T2(t, 0) we have 0 ≥
∂yT1(t, 0

−) ≥ ∂yw(0
−) as well as 0 ≥ ∂yT2(t, 0

+) ≥ ∂yw(0
+) for t ∈ [0, t0]. Hence, for t ∈ [0, t0]

we obtain that −C1 < ṡ(t) < C2. Let us also denote by L1(v) = ∂tv − ṡ(t)∂yv − κ∂2yv for
y < 0 and L2(v) = ∂tv − ṡ(t)∂yv − ∂2yv + v4 for y > 0. We note that,

L1(w) = −(ṡ(t) + C1)∂yw(y) > 0.

Hence, L1(T1 − w)(t, y) < 0 for all (t, y) ∈ (0, t0] × R− and T1(t, y) − w(y) ≤ 0 for (t, y) ∈
{0} × R− ∪ (0, t0) × {a, b}, where (a, b) ⊂ R−. An application of the maximum principle
to the bounded function T1 − w on domains [0, t0] × [a, b] for any [a, b] ∈ R− shows that
T1(t, y) < w(t, y) for all (t, y) ∈ (0, t∗]× (a, b) for any (a, b) ∈ R−.

Moreover, for y > 0 we see

L2(w) = −(w′′(y) + C2w
′(y)− w4(y)) + (C2 − ṡ(t))∂yw(y) ≤ (C2 − ṡ(t))∂yw(y) < 0.
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This implies

L2(T2)(t, y)− L2(w)(t, y) >

ˆ ∞

0

α

2
E1(α(y − η))T 4

2 (t, η)dη > 0.

Hence, if for R > 0 there exists some y0 ∈ (0, R) such that T2(t0, y0) − w(y0) = 0 we obtain
the contradiction

0 < L2(T2)(t0, y0)− L2(w)(t0, y0) ≤ 0.

This is because ∂tT2(t0, y0) ≤ 0 as well as T2(t0, y0) − w(y0) = 0 would be a minimum in
space. Thus, T2(t, y) > w(y) for all (t, y) ∈ (0, t0]× (a, b) for every (a, b) ∈ R+. Hence, by the
definition of t0 follows that t0 = t∗ and

∥Ti∥∞ ≤ max {∥w∥∞, TM} <∞.

Moreover, since Ti(t, 0) = TM = w(0) we have that 0 ≥ ∂yTi(t, 0
±) ≥ ∂yw(0

±) and hence by
construction

∥ṡ∥∞ ≤ max{C1, C2} <∞.

We will now show that also the norms of ∂yTi are bounded. We will use the maximum
principle applied to the equation solved by ∂yTi. Before considering those equations we
shall argue that ∂yTi are indeed twice differentiable. This follows using classic parabolic
theory. Let ε > 0 and γ > 0 be arbitrary. We have already shown in Theorem D.4 that

Ti ∈ C1+δ/2,2+δ
t,y ([ ε2 , t

∗] × R±) ∩ Cα/2,1+βt,y ([0, t∗],R±), for δ ∈
(
0, 12
]
and α, β ∈ (0, 1). One can

prove that Ti ∈ C1+δ/2,3+δ
t,y ([ε, t∗]× [±γ,±∞)) since ṡ∂2yT1 ∈ Cδ/2,δt,y

(
[ ε2 , t

∗]× R−
)
and

ṡ∂2yT2−4T 3
2 ∂yT2 +

α

2
T 4
ME1(α·)

+4

ˆ ∞

0

α

2
E1(α(y − η))T 3

2 (η)∂ηT2(·, η)dη ∈ Cδ/2,δ
([ε

2
, t∗
]
×
[γ
2
,∞
))

.

Since the computations are similar to the one in Proposition D.1, Lemma D.1 and Lemma
D.2 we omit the details. Hence, differentiating the equations satisfied by Ti, we obtain that
∂y∂tTi exists and it is continuous. Furthermore, differentiating the representation formulas
and using classic parabolic theory again, we conclude that the derivatives ∂t∂yTi exist and
that they are continuous for every t, y ∈ [ε, t∗] × [±γ,±∞). Thus, ∂y∂tTi = ∂y∂tTi at the
interior of (0, t∗]× R±. Differentiating the operators L1 and L2 we see that ∂yTi solve

L1(∂yT1)(t, y) = 0 for t > 0, y < 0,

L1
2(∂yT2)(t, y) =

α

2
T 4
ME1(αy) > 0 and L2

2(∂yT2)(t, y) = 0 for t > 0, y > 0,

where we defined

L1
2(v) = ∂tv − ṡ(t)∂yv − ∂2yv + 4T 3

2 v − 4

ˆ ∞

0

α

2
E1(α(· − η))T 3

2 (η)v(·, η)dη

as well as

L2
2(v) = ∂tv − ṡ(t)∂yv − ∂2yv + 4T 3

2 v − 4

ˆ ∞

0

α

2
E1(α(· − η))T 3

2 (η)v(·, η)dη −
α

2
T 4
ME1(α·).

Let us consider for t ≥ 0 the functions ψ±(t) = ∓∂yw(0−)(1 + t). It is easy to see that
L1(ψ±) = ∓∂yw(0−) and therefore ψ+ is a supersolutions while ψ− is a subsolution for L1.
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Moreover, ψ− < ∂yT1(0, y) < ψ+ as well as ψ− < ∂yT1(t, 0
−) < ψ+ for t ∈ [0, t∗] and y < 0.

We define

t0 = inf {t0 ∈ [0, t∗] : ∃y0 < 0 s.t. ∂yT1(t0, y0) = ψ+(t0) or ∂yT1(t0, y0) = ψ−(t0)} .

Let us assume that t0 < t∗. Then, by the uniform continuity of ∂yT1−ψ± ∈ C1/2,1/2
t,y ([0, t∗]×R−)

and since sup
y∈R−

∂yT1(0, y) > ∂yw(0
−), we know that t0 > 0 as well as y0 < 0. Let us assume

that y0 < 0 is the smallest such that ∂yT1(t0, y0) = ψ+(t0). Then, ∂t(∂yT1 − ψ+)(t0, y0) ≥ 0
as well as ∂yT1(t0, ·) has a maximum in y0. Thus,

0 > L1(∂yT1 − ψ+)(t0, y0) ≥ 0.

A similar contradiction is obtained applying the maximum principle to ∂yT1 − ψ− assuming
that ∂yT1(t0, y0)− ψ−(t0) = 0. Hence, we conclude that t0 = t∗ so that

∥∂yT1∥∞ ≤ |∂yw(0−)|(1 + t∗) <∞.

We now consider ∂yT2. Let us define φ− = ∂yw(0
+)e4T

3
M t < 0. Then, since 0 <

´∞
0

α
2E1(α(y−

η))T 3
2 (η)dη ≤ T 3

M we see that

L1
2(φ−)(t, y) ≤ 4T 3

2 (t, y)φ−(t) < 0.

Moreover, φ−(0) < sup
y∈R+

∂yT2(0, y) for y > 0 as well as φ−(t) < ∂yT2(t, 0
−) ≤ 0 for t ∈ [0, t∗].

We remark that ∂yT2 − φ− ∈ C1/2,1/2
t,y ([0, t∗]× R+). Defining again via uniform continuity

t0 = inf {t0 ∈ [0, t∗] : ∃y0 > 0 s.t. ∂yT2(t0, y0) = φ−(t0)} > 0,

assuming t0 < t∗ and applying the maximum principle to L1
2(∂yT2 − φ−)(t, y) > 0 at (t0, y0)

we obtain a contradiction. Indeed, (∂yT2 − φ−)(t0, y) ≥ 0 so that (∂yT2 − φ−)(t0, y0) is a
minimum. Hence,

0 < L1
2(∂yT2 − φ−)(t0, y0) ≤ −4

ˆ ∞

0

α

2
E1(α(y − η))T 3

2 (η)(∂yT2 − φ−)(t0, η)dη < 0.

This contradiction implies ∂yT2(t, y) ≥ ∂yw(0
+)e4T

3
M t∗ for all t ∈ [0, t∗]. Let us now define

g(y) = −T 4
M

ˆ y

0
dξ

ˆ ξ

0
dze−(ξ−z)α

2
E1(α(z))η(z),

where η ∈ C∞([0,∞)) with 0 ≤ η ≤ 1, η(z) ≡ 1 for y ∈
[
0, 12
]
and η(z) ≡ 0 for y ≥ 1. A

simple computation shows −T 4
M ≤ g(y) ≤ 0 as well as −T 4

M
2 ≤ g′(y) ≤ 0. We remark that

g ∈ C0,1/2(R+). Moreover, for y > 0 the function g solves

−g′′(y)− g′(y) = T 4
M

α

2
E1(α(y))η(y).

We also consider the function h ∈ C0,1/2([0, t∗]) given by

h(t) =

[
|∂yw(0+)|+ T 4

M +
TM
4

(
1 +

C1 + 1

2
+ 4T 3

M

)]
e4T

3
M t − TM

4

(
1 +

C1 + 1

2
+ 4T 3

M

)
≥
[
|∂yw(0+)|+ T 4

M

]
e4T

3
M t ≥

[
|∂yw(0+)|

]
e4T

3
M t + |g(y)| > 0.
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Using the estimates α
2E(α(y)) ≤ 1 for all y ≥ 1

2 and −ṡ(t) ≤ C1 we compute for φ+(t, y) =

h(t) + g(y) ≥ |∂yw(0+)|e4T 3
M t > sup

y∈R+

|∂yT2(0, y)| > 0 the following

L2
2(φ+)(t, y) =∂th(t) + 4T 3

2 (t, y)(φ+)(t, y)−
ˆ ∞

0

α

2
E1(α(y − η))T 3

2 (η)φ+(t, η)dη

+ (−ṡ(t) + 1)∂yg(y) +
α

2
T 4
ME1(αy)(η(y)− 1)

>∂th(t)− 4T 3
MT

4
M − (C1 + 1)

T 4
M

2
− T 4

M > 0.

For this estimate we used that g ≤ 0 and h > 0. We also notice that by construction
∂yT2(0, y) < φ+(t, y) as well as ∂yT2(t, 0) ≤ 0 < φ+(t, y) for t ∈ [0, t∗] and y > 0. Using the

uniform continuity of ∂yT2 − φ+ ∈ C1/2,1/2
t,y ([0, t∗]× R+) we define

t0 = inf {t0 ∈ [0, t∗] : ∃y0 < 0 s.t. ∂yT2(t0, y0) = φ+(t0, y0)} > 0.

Assuming t0 < t∗, arguing by continuity and applying once more the maximum principle to
L2
2(∂yT2 − φ+)(t, y) < 0 at (t0, y0) we obtain a contradiction. Indeed, we use that (∂yT2 −

φ+)(t0, y) ≤ 0 and therefore (∂yT2 − φ+)(t0, y0) is a maximum. Thus,

0 > L2
2(∂yT2 − φ+)(t0, y0) ≥ 0.

We finally conclude that

∥∂yT2∥∞ ≤
[
|∂yw(0+)|+ T 4

M +
TM
4

(
1 +

C1 + 1

2
+ 4T 3

M

)]
e4T

3
M t∗ .

Therefore, (T1, T2, ṡ) can be extended for t > t∗.

Finally, we prove Lemma D.5.

Proof of Lemma D.5. By our assumptions on T0 we can fix some θ ∈ (0, 1) such that sup
R−

T0 ≤

TM + L2κ
TMK

(1−θ)
4 . Let us also define

C0
2 > max

{
T
3/2
M

2
√
3
,Γ−

((
T 5
M + 1

L2

)1/2
)
,
T
3/2
M

2
,

(
T 5
M + 1

)1/2
2TM

, sup
R+

|∂yT0|
TM

, sup
R−

|∂yT0|K
L(1− θ)

}

and let us denote f
C0

2
− (y) = TM + (1−θ)L2κ

2TMK

(
1− e

2TMC0
2

Lκ
y

)
for y < 0 and f

C0
2

+ (y) = TMe
−C0

2y

for y > 0. Then, since 0 ≥ ∂yT0(0
−) > ∂yf

C0
2

− (0−) and 0 ≥ ∂yT0(0
+) > ∂yf

C0
2

+ (0+), by
monotonicity there exist constants δ1(C

0
2 ), δ2(C

0
2 ) > 0 such that

T0(y) < f
C0

2
− (y) for y ∈ (−δ1(C0

2 ), 0) and f
C0

2
+ (y) < T0(y) for y ∈ (0, δ2(C

0
2 )).

We remark that since C2 7→ fC2
− (y) is increasing in C2 > 0 for y < 0 and since C2 7→ fC2

+ (y)

is decreasing in C2 > 0 for y > 0 the estimates T0(y) < fC2
− (y) and fC2

+ (y) < T0(y) are valid
in the intervals (−δ1(C0

2 ), 0) and (0, δ2(C
0
2 )), respectively. Thus, defining

C2 = max

C0
2 ,

Lκ

2TMδ1(C0
2 )

ln

(
1

2

)
,

1

δ2(C0
2 )

ln

 2TM
inf
R+

T0


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we see that fC2
− (y) > T0(y) for y < 0 as well as T0(y) > fC2

+ (y) for y > 0. Moreover, we notice

that C2 <∞ by assumption on T0. We now choose α = − (1−θ)LC2

K and C1 = 2TM
L C2. Notice

that by definition C1 >
(
T 5
M+1

L2

)1/2
. Then, for the chosen constants C1, C2, α the function w

defined by (D.46) satisfies

w(y) = fC2
− (y) for y < 0 and w(y) < fC2

+ (y) for y > 0.

Thus, we have found constants C1, C2 > 0 such that

w(y) < T0(y) for y < 0 and T0(y) > 0 for y > 0.

Notice that by construction for any R > 0 there exists a > 0 such that |T0(y)−w(y)| > a for
all |y| > R. Moreover, by definition

|∂yw(0−)| = |α| = (1− θ)LC2

K
> sup

R−
|∂yT0| and |∂yw(0+)| > C2TM > sup

R+

|∂yT0(y)|.

Finally, since C2 >
T

3/2
M
2 we conclude

∂yw(0
+) = −C2TM

(
1 +

T 3
M

4C2
2

)
> −2C2TM = −LC1,

which implies Γ−(C1) < C2 < Γ+(C1) as well as the fact

w(0−) = α = −(1− θ)LC2

K
> − L

K
C2.

We also remark that the considered class of initial data is optimal for the argument in
Theorem D.5 involving w as a barrier function defined in (D.46). Since we can take C2

arbitrary large as C2 =
1
ε → ∞ we obtain

w(y) ≤ TMe
− y

ε for y > 0 and ∂yw(0
+) = −TM

ε

(
1 +

T 3
Mε

2

4

)
→ −∞ as ε→ 0.

Moreover, C1 >
TM
Lε

(
1 +

T 3
Mε2

4

)
so that ∂yw(0

−) = −|α| > − K
Lε → −∞ as ε→ 0 and

w(y) <TM +
κL

KC1

1

ε

(
1− exp

(
C1

κ
y

))
<TM +

κL2

KTM

1(
1 +

T 3
Mε2

4

) (1− exp

(
C1

κ
y

))
→ TM +

κL2

KTM

as ε→ 0 and y < 0. Moreover, ṡ(t) ∈ (−∞,∞).

Remark. Observe also that the class of initial values T0 considered in Theorem D.5 is optimal
for the argument presented in the proof of the Theorem. Indeed, instead of considering for
y > 0 the subsolution w′′ + C2w

′ ≥ w4, we could have considered the solution to
w′′(y) + C2w

′(y) = w4(y) y > 0

w(0) = TM

w(y) → 0 as y → ∞
w ≥ 0

(D.47)
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That such a solution exists can be proven considering the variational problem given by the
functional

I(w) =

ˆ ∞

0
eC2y

( |∂yw(y|2)
2

+
w5(y)

5

)
dy.

By the direct method of calculus of variations one can prove that there exists a unique mini-
mizer of I on the closed convex set

A =
{
g ≥ 0 : g ∈W 1,2

(
R+; e

C2ydy
)
∩ L5

(
R+; e

C2ydy
)
, g(0) = TM

}
.

Since then e
C2
2
yg ∈ L∞ ∩C0,1/2(R+) it also follows that if g ∈ A then lim

y→∞
g = 0. The unique

minimizer w ∈ A is also bounded by TM , since I[min{w, TM}] ≤ I[w] ≤ I[min{w, TM}].
Moreover, w solves weakly the following variational inequality

−∂y
(
eC2y∂yw(y)

)
+ w4(y)eC2y ≥ 0,

and is a weak solution of −∂y
(
eC2y∂yw(y)

)
+ w4(y)eC2y = 0 in the region w > 0. With the

weak maximum principle it can be also shown that {y > 0 : w(y) > 0} = R+. This implies
that the unique minimizer w is a weak solution of

−∂y
(
eC2y∂yw(y)

)
+ w4(y)eC2y = 0 in R+.

Using elliptic regularity we obtain easily that since w ∈ L∞ ∩ C0,1/2(R+) also w4 ∈ L∞ ∩
C0,1/2(R+) and hence locally w ∈ C

2+1/2
loc (R+) so that iterating this argument we have w ∈

C∞(R+) ∩ L∞(R+). Thus, w is a strong solution solving the boundary problem (D.47).
Finally, the solution w of (D.47) is unique. This is a consequence of the strong maximum

principle.

Let us assume now again that C2 =
1
ε is arbitrarily large. Then using the rescaling y = εη

and w(y) = w(εη) = w̃(η) we see that the leading order of w̃ solves as ε→ 0
w̃′′(η) + w̃′(η) = 0 η > 0

w̃(0) = TM

w̃(η) → 0 as η → ∞
w̃ ≥ 0

Hence, w̃(η) = TM (e−η). Thus, w(y) = TM
(
e−y/ε

)
at the leading order, so that we need to

take

C1 >
TM
εL

,

which implies for y < 0 as above that

w(y) < TM +
κL

KC1

1

ε
< TM +

κL2

KTM
as ε→ 0.
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Appendix E

Traveling waves for a two-phase
Stefan problem with radiation

Abstract: In this paper we study the existence of traveling wave solutions for a free-boundary
problem modeling the phase transition of a material where the heat is transported by both
conduction and radiation. Specifically, we consider a one-dimensional two-phase Stefan prob-
lem with an additional non-local non-linear integral term describing the situation in which the
heat is transferred in the solid phase also by radiation, while the liquid phase is completely
transparent, not interacting with radiation. We will prove that there are traveling wave so-
lutions for the considered model, differently from the case of the classical Stefan problem in
which only self-similar solutions with the parabolic scale x ∼

√
t exist. In particular we will

show that there exist traveling waves for which the solid expands. The properties of these
solutions will be studied using maximum-principle methods, blow-up limits and Liouville-type
Theorems for non-linear integro-differential equations.

E.1 Introduction

In this paper we continue the study of the free-boundary problem presented in [39] considering
a one-dimensional Stefan-like problem which describes the melting of ice (resp. the solidifica-
tion of water) under the assumption that the heat is transported by conduction in both phases
of the material and additionally by radiation in the solid. To be more precise, we are studying
the problem in which R3 is divided in two regions, one liquid region with a temperature T
greater then the melting temperature TM and one solid region with 0 < T < TM . At the
contact surface between the two phases the temperature satisfies T = TM . This surface moves
as the solid melts or the liquid solidifies and it is thus called moving interface. Analogously
to the classical Stefan problem, the heat is transferred by conduction in both the liquid and
the solid phase. In addition we assume that the heat is transported also by radiation only
in the solid. Equivalently, we assume the liquid to be perfectly transparent not allowing any
interaction with radiation.

At the initial time t = 0, the liquid is considered to fill the half-space R3
− = {x ∈ R3 :

x1 < 0} and the solid to fill R3
+ = {x ∈ R3 : x1 > 0}. Thus, the interface is initially the plane

{0} × R2. Furthermore, we assume the temperature to depend only on the first variable, i.e.
T (t, x) = T (t, x1). This implies that the interface is described by the plane {s(t)}×R2 for all
t ≥ 0 and the problem reduces to the study of a one-dimensional model.

289
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T > TM

t = 0

Conduction Conduction

Radiation

x1

T < TM

T = TM

x3

x2

Figure E.1: Illustration of the considered model at initial time t = 0.

We also assume the material to satisfy local thermal equilibrium (i.e. there exists a well-
defined temperature for all t > 0, x ∈ R3) and we consider the case in which the scattering
process is negligible. Hence, the interaction of photons with matter is described in the solid
phase by the (stationary) radiative transfer equation, which under the further assumption of
constant Grey approximation (i.e. α ≡const.) writes

n · ∇xIν(t, x, n) = α (Bν(T (t, x))− Iν(t, x, n)) ν > 0, x1 > s(t), n ∈ S2, t > 0, (E.1)

where Iν is the radiation intensity , i.e. the energy of photons with frequency ν > 0, at
position x ∈ Ω, moving in direction n ∈ S2 at time t > 0, and Bν(T ) = 2hν3

c2
1

e
hν
kT −1

is the

Planck distribution of a black body.

In the transport term of equation (E.1) the term containing the time derivative of Iν ,
i.e. 1

c∂tIν(t, x, n) has been neglected since the characteristic time scale required in order to
obtain significant changes of the temperature is much larger than the time scale in which the
radiation intensity becomes stable. This is due to the fact that photons travel with the speed
of light.

In this paper it is assumed also the absence of external sources of radiation. Thus, since
the photons do not interact with the liquid phase, at the interface the radiation intensity has
to satisfy

Iν (t, x, n) = 0 if x1 = s(t), n1 > 0. (E.2)

We remark that the transparency of the liquid implies that the radiation escaping the solid
(i.e. traveling with direction n1 < 0) passes through the liquid without interacting with it
and hence without any possibility to return in the solid phase. Thus, radiation helps the solid
to cool faster.

Under all these assumptions, the two-phase free boundary problem that we study in this
paper is given by

CL∂tT (t, x1) = KL∂
2
x1T (t, x1) x1 < s(t),

CS∂tT (t, x1) = KS∂
2
x1T (t, x1)− div

(´∞
0 dν

´
S2 dnnIν(t, x, n)

)
x1 > s(t),

n · ∇xIν(t, x, n) = α (Bν(T (t, x1))− Iν(t, x, n)) x1 > s(t),

Iν(t, x, n) = 0 x1 = s(t), n1 > 0,

T (t, s(t)) = TM x1 = s(t),

T (0, x) = T0(x) x1 ∈ R,
ṡ(t) = 1

L (KS∂x1T (t, s(t)
+)−KL∂x1T (t, s(t)

−)) ,

(E.3)
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where CS , CL are the volumetric heat capacities of the solid and liquid, KS , KL the conduc-
tivities of the two phases and L is the latent heat. Notice that for simplicity we are assuming
that the two phases have the same constant density. For a more detailed explanation of the
derivation of (E.3) and in particular of the Stefan condition for the moving interface we refer
to [39]. As remarked there, the main feature of system (E.3) is that there is no external source
of radiation and only the solid is emitting radiation. The addition of a non-trivial external
source of radiation heating the solid from far away is another very interesting problem that
could be studied, not only developing a well-posedness theory but also examining the possible
existence of traveling waves. In this case we would consider as boundary condition

(t, (s(t), x2, x3), n) = gν(n) > 0 if n1 > 0.

Moreover, in our previous article [39] we showed that reducing the radiative transfer equation
to a non-local non-linear integral operator for T 4 and performing suitable rescalings, the
system (E.3) is equivalent to

∂tT (t, x) = κ∂2xT (t, x) x < s(t),

∂tT (t, x) = ∂2xT (t, x)− Iα[T ](t, x) x > s(t),

T (t, s(t)) = TM

T (0, x) = T0(x) x ∈ R,
ṡ(t) = 1

L (∂xT (t, s(t)
+)−K∂xT (t, s(t)

−)) ,

(E.4)

where

Iα[T ](t, x1) = T 4(t, x1)−
ˆ ∞

s(t)
dη
αE1(α|x1 − η|)

2
T 4(t, η)

for E1(x) =
´∞
|x|

e−t
t being the exponential integral. Given a solution T of (E.4), the intensity

of radiation is obtained solving by characteristics the radiative transfer equation (E.1) with
boundary conditions (E.2) as

Iν(t, x, n) =

ˆ d(x,n)

0
dτα exp (−ατ)Bν(T (t, x1 − τn1)) for x1 > 0,

where d(x, n) is the distance of x ∈ R3 to the interface {s(t)} × R2 in direction −n ∈ S2
and it is possibly infinity. In [39] a local and global well-posedness theory for (E.4) has been
developed. Thus, a natural question that arises concerns the asymptotic behavior of the
solutions to (E.4) as t → ∞. In this paper we construct traveling waves of (E.4) and we
study their properties. Therefore, considering solutions of the form T (t, x) = T (x− s(t)) and
s(t) = −ct for c ∈ R, in this article we study the system

c∂yT1(y) = κ∂2yT1(y) y < 0

c∂yT2(y) = ∂2yT2(y)− T 4
2 (y) +

´∞
0 αE1(α(y−η))

2 T 4
2 (η)dη y > 0

T2(0) = T1(0) = TM

c = 1
L (K∂yT1(0

−)− ∂yT2(0
+)) ,

(E.5)

where we changed the variables according to y = x− ct.

E.1.1 Summary of previous results

This paper studies a problem arising from the combination of a classical Stefan problem with
the radiative transfer equation. It is therefore worth revising the most important results for
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these two particular problems, which as far as we know were consider together rigorously
firstly in our previous paper [39].

Starting from the seminal work [135] of J. Stefan, who also discovered the well-known
Stefan-Boltzmann law for the total emission of a black body (cf. [133]), the Stefan problem
for melting of ice has been comprehensively studied in both the one-phase and the two-phase
formulations, in the case of classical (i.e. strong) and weak enthalpy solutions, i.e. the weak
solutions of the enthalpy formulation of the problem.

The well-posedness theory for classical solutions to the Stefan problem has been considered
in many works, like for instance [26, 27, 55, 56, 59, 60, 106, 123], using among other methods
fixed-point equations for Volterra-type integrals and the maximum principle, the Baiocchi
transform, a variational inequality. Concerning the long time behavior of the one-dimensional,
one-phase Stefan problem, [56,106] prove that the temperature approaches a self-similar profile
as t→ ∞, which is given by an error function. The works [57,58] deal with the well-posedness
theory of weak (enthalpy) solutions for the one and two-phase free boundary problem.

Another interesting question emerging for the higher dimensional local and non-local (cf.
fractional Laplacian) Stefan problem concerns the regularity of the free boundary, which can
be studied through its formulation as a parabolic obstacle problem. This has been considered
in [9, 24,25,43,53].

Finally, an important class of results addresses of the formation of supercooled liquid
(i.e. liquid regions where T < TM ) or superheated solid (i.e. T > TM ) for the classical
solutions of the Stefan problem (cf. [89]) as well as the creation of mushy regions (i.e. where
T = TM ) of positive measure for the weak enthalpy formulation of the freee boundary problem,
cf. [20, 50,51,90,117,142,143].

Besides the theory of free boundary problems, this paper deals also with the theory of
radiative transfer, an issue extensively studied starting from the pioneer works of Compton [31]
in 1922 and of Milne [109] in 1926. The kinetic equation describing the interaction of photons
with matter is the radiative transfer equation, whose derivation and main properties can be
found in [29,108,114,125,152].

In recent years, several different problems concerning the study of the distribution of
temperature due to radiation have been considered, such as well-posedness results for the
stationary radiative transfer equation as in [35,83], diffusion approximation (see [13,14,36,37]
and the references therein), the interaction of radiation and fluids (for instance in [69, 71,
108, 152]) and in Boltzmann gases (cf. [34, 81] and the reference therein). Also the study of
heat transfer due to conduction and radiation as well as homogenization problems have been
studied, we refer to the literature of our previous article [36].

Finally, we want to mention that free boundary problems where heat is transported by
conduction and radiation have been considered numerically in engineering applications in
terms of melting problems (see for instance [28,124,129,130,140]) and in numerical applications
in the context of vaporization problems for droplets (cf. [2, 84,92,126,128,145,150])

E.1.2 Main results, plan of the paper and notation

In this paper we will study problem (E.3) and we will see that the addition of the radiative
operator to the one-dimensional two-phase Stefan problem yields interesting phenomena which
differs from the well-known results for the classical Stefan problem. Specifically, we will also
show that there exist traveling wave solutions for the problem (E.3). This is very different
from the classical two-phase Stefan problem, for which self-similar profiles exist while traveling
wave solutions are impossible to obtain. We will show also that the interface moves towards
the liquid region, i.e. in our case ṡ = −c < 0, implying that the traveling wave solutions exist
only when the solid expands.
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Theorem E.1. There exists cmax > 0 such that for any c ∈ (0, cmax] there exists a solution to
the system (E.3) (without initial condition), such that the interface satisfies s(t) = −ct and
the temperature is a traveling wave defined by T (y) = T (x− s(t)) with T > TM for y < 0 and
T < TM for y > 0. Moreover, for c < 0 there exists no solution with s(t) = −ct such that T is
a traveling wave. Finally, for any c ∈ (0, cmax] and for TM small enough the traveling waves
are unique.

We will see that also for c = 0 traveling waves exist. However, in this case the asymptotic
behavior as y → ∞ is more involved and it has not been considered yet.

The results of Section E.2 and of Section E.3 will imply Theorem E.1. Specifically, in
Section E.2 we will show the existence of traveling wave solutions in the case of negative
speed of the interface, i.e. when the ice is expanding. While the traveling waves in the liq-
uid are given by the well-known solution to the ODE ÿ = λẏ for x < 0, the existence of
traveling wave solutions in the solid is more involved. By a variational argument we will
prove the existence of such traveling waves (cf. subsection E.2.1), which will be shown to be
monotonically increasing with respect to the melting temperature ((cf. subsection E.2.2)).
In Subsection E.2.3 we will also show that for very small melting temperatures there exists
a unique strictly positive traveling wave solution, which also converges with exponential rate
to a positive constant as x → ∞. In Section E.3 the analysis of the traveling wave is carried
on. In particular several applications of the maximum principle will be used together with
blow-up limits, Liouville-type theorems, and Harnack-type arguments in order to show that
the traveling waves have a limit as x → ∞. Finally, in Section E.4 we will conclude this
paper using asymptotic arguments with a formal picture of the long time asymptotic of the
solutions to (E.3) for arbitrary values of lim

y→−∞
T (y) = T (−∞) and lim

y→∞
T (y) = T (∞).

Throughout this article we will denote by Ck,β(U), where U ⊆ R is possibly unbounded,
the space of k-times continuous differentiable functions f with

∥f∥k,β = max
0≤j≤k

(
sup
U

∣∣∂jxf ∣∣)+ sup
x,y∈U

∣∣∂kxf(x)− ∂kxf(y)
∣∣

|x− y|β <∞.

Notice that f ∈ Ck,β(U) has all k derivatives bounded.

E.2 Existence of traveling wave solutions

In the following section we construct traveling wave solutions solving (E.5) and we will prove
some important properties satisfied by such functions. First of all, we will see that the traveling
waves propagate necessarily with negative velocity. Hence, the interface is moving towards
the liquid part and the ice is expanding. This behavior is intriguing at a first glance. However,
it can be expected. Indeed, while in the liquid the heat is transferred only by conduction, in
the solid the heat is also transferred by radiation. Since a radiative source is absent in this
problem, the radiation escaping from the solid is helping the ice to cool faster.

Recall that the system (E.5) has been obtained considering solutions to the original prob-
lem (E.4) of the form T (t, x) = T (t, x − s(t)) := T (y) and s(t) = −ct with c ∈ R. First of
all we see that in order to obtain the existence of bounded solutions to the problem (E.5) c
must be positive, thus since ṡ(t) = −c < 0 the ice is expanding. Indeed, if c < 0 then the
temperature of the liquid should satisfy{

c∂yT1(y) = κ∂2yT1(y) y < 0

T1(0) = TM
(E.6)
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and hence

T1(y) = TM +

∣∣∣∣Ac
∣∣∣∣κ(e− |c|

κ
y − 1

)
→ ∞ as y → −∞. (E.7)

Let thus c > 0. In the next subsections we will prove the following theorem.

Theorem E.2. For c < 0 the problem (E.5) does not admit any bounded solution. However,
there exists cmax > 0 such that for any c ∈ (0, cmax] there exists traveling waves T1, T2 solving
(E.5). Moreover, for c ∈ (0, cmax] the solutions satisfy T1(y) > TM for y < 0 and 0 < T2(y) <
TM for y > 0, and the limits lim

y→−∞
T1(y) and lim

y→∞
T2(y) exist.

Proof. As we have seen in (E.6) and in (E.7), if c < 0 the problem (E.5) does not have any
bounded solution. Thus, we set c > 0 and we see that for any c and any α ∈ R the solution
to 

c∂yT1(y) y < 0

T1(0) = TM

∂yT1(0) = −A
is given by

T1(y) = TM +
A

c
κ
(
1− e

c
κ
y
)
.

Moreover, lim
y→−∞

T1(y) = TM + A
c κ . Since T1 describes the temperature in the liquid, we are

interested only in A ≥ 0.

In the following subsections we will study
∂2yf(y)− c∂yf(y)− f4(y) = −

´∞
0 αE1(α(y−η))

2 f4(η)dη y > 0

f(0) = TM

f ≥ 0

(E.8)

We will prove the existence of functions f ∈ C2,1/2(R+) solving the problem (E.8). We will
show also that there exists cmax > 0 such that ∂yf(0

+) ≤ −Lc for all 0 < c < cmax. Then for

c ∈ (0, cmax) and A = −Lc+∂yT2(0+)
K the functions T1(y) = TM + A

c κ
(
1− e

c
κ
y
)
and T2 := f

are traveling waves solving (E.5).

Before moving to the existence theory for the solutions to (E.8) we do the following remark.
It is enough to prove that the traveling wave solutions in the solid exists, that they are bounded
from below and have a limit only for α = 1 and c > 0. Indeed, let α > 0, c > 0 and TM > 0
and let f solve (E.8). Then the function f̃ defined by

f(y) := α2/3f̃(αy) = α2/3f̃(η)

satisfies the following equation
∂2η f̃(η)− cα−1∂ηf̃(η)− f̃4(η) = −

´∞
0

E1(η−ξ)
2 f̃4(ξ)dξ η > 0

f̃(0) = TMα
−2/3

f̃ ≥ 0

(E.9)

This is true since ∂yf(y) = α5/3∂ηf̃(η) as well as ∂
2
yf(y) = α8/3∂2η f̃(η). Notice also that f and

f̃ have the same regularity. Moreover, using that η = αy and changing the variable αξ = z
we haveˆ ∞

0
α
E1(α(y − ξ))

2
f4(ξ)dξ =

ˆ ∞

0
α
E1(η − αξ)

2
α8/3f̃4(αξ)dξ = α8/3

ˆ ∞

0

E1(η − z)

2
f̃4(z)dz.
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Hence, we see that defining E(x) = E1(x)
2 it is enough to consider the solutions to

∂2yf(y)− c∂yf(y)− f4(y) = −
´∞
0 E(y − η)f4(η)dη y > 0

f(0) = TM

f ≥ 0

(E.10)

E.2.1 Existence of traveling wave solutions for y > 0

Before proving the existence of traveling wave solutions for y > 0 we prove the following
technical proposition.

Proposition E.1. Let c > 0 and g ∈ C0,1/2(R+) with −A4 < g ≤ 0 for some A > 0. Let also

AA,c =
{
f ≥ 0 measurable s.t. f ∈W 1,2

(
e−cydy,R+

)
∩ L5

(
e−cydy,R+

)
, f(0) = A > 0

}
.

Then the functional

Ig[f ] =

ˆ ∞

0
e−cy

(
(∂yf(y))

2

2
+
f(y)5

5
+ g(y)f(y)

)
dy

has a unique minimizer f ∈ AA,c. Moreover, 0 < f ≤ A for y ∈ [0,∞). Finally, f ∈
C2,1/2(R+) solves the ODE

∂y
(
e−cy∂yf(y)

)
=
(
f4(y) + g(y)

)
e−cy

and satisfies the bounds

|f ′(y| ≤ A4

c
, |f ′′(y)| ≤ A4 and [f ′′]1/2 ≤ max

{
2A4, 2A4c+

4A7

c
+ [g]1/2

}
.

Proof. Let us define the measure µ given by the density dµ(y) = e−cydy. First of all we notice
that if f ∈W 1,2(µ,R+)∩L5(µ,R+), then fe

−c/2y ∈W 1,2(R+). Thus, by Morrey’s embedding
theorem fe−c/2y ∈ C0,1/2(R+). Hence, if f ∈ A, then f is continuous. This implies that
the condition for f ∈ AA,c to be f ≥ 0 holds everywhere in R+ as well as the boundary
condition f(0) = A, which for general functions in W 1,2(µ,R+) is to be intended as trace
condition, holds pointwise. These observations yield that AA,c is a closed and convex subset
of W 1,2(µ,R+) ∩ L5(µ,R+). We also remark that the trace operator for ∂R+ = {0} is a
continuous operator with respect to the norm ∥ · ∥W 1,2(µR+).

Further, we notice that Ig is well-defined for f ∈ AA,c with

|Ig[f ]| ≤
1

2
∥f∥2W 1,2(µ) +

1

5
∥f∥5L5(µ) +

1

2c
∥g∥2∞.

Moreover, Ig[f ] is bounded from below and coercive. Indeed, using both Young’s inequality

|g(y)|f(y) ≤ 8 · 21/4
5c

|g(y)|5/4 + f5(y)

10

and Hölder’s inequality (ˆ ∞

0
e−cy|f(y)|2dy

)5/2

≤ 1

c3/2
∥f∥5L5(µ)
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we estimate

I0[f ] ≥ min

{
c3/2

10
,
1

2

}(
∥∂yf∥2L2(µ) + ∥f∥5L2(µ)

)
+

1

10
∥f∥5L5(µ) → ∞ as ∥f∥A → ∞

if g ≡ 0 and

Ig[f ] ≥ min

{
c3/2

20
,
1

2

}(
∥∂yf∥2L2(µ) + ∥f∥5L2(µ)

)
+

1

20
∥f∥5L5(µ) −

8 · 21/4
5c

∥g∥4/5∞ → ∞

as ∥f∥A → ∞ if g ̸≡ 0. Moreover, I0[f ] ≥ 0 as well as Ig[f ] ≥ −8·21/4
5c ∥g∥4/5∞ .

Therefore, there exists a bounded minimizing sequence fk ∈ AA,c such that Ig[fk] →
inf

f∈AA,c

I[f ] as k → ∞. The boundedness of this sequence, the uniqueness of the weak and

strong limit as well as the fact that L2(µ) ⊂ L5/4(µ) =
(
L5(µ)

)∗
imply the existence of a

common subsequence fkj such that

fkj
L2(µ)−−−−−→

ptw. a.e.
f ∈ L2(µ) and fkj

weak W 1,2(µ)−−−−−−−−→
weak L5(µ)

f ∈W 1,2(µ) ∩ L5(µ) as j → ∞.

The closedness and the convexity of AA,c imply also f ∈ AA,c. Moreover, the pointwise
convergence almost everywhere and the weak lower semicontinuity of the L2 norm imply the
weak lower semicontinuity of the functional Ig. Hence, f is a minimizer of Ig, i.e. Ig[f ] =
inf

f∈AA,c

[f ]. In addition to that, since the functional Ig is strictly convex for non-negative

functions, the minimizer is unique.

We remark that f ∈ C
0,1/2
loc (R+) with f(y) ≥ 0 for y ≥ 0 and f(0) = A. Next we prove that

f ≤ TM if g ≡ 0 and that f ≤ 5A if g ̸≡ 0. Both claims are a consequence of the uniqueness
of the minimizer of Ig in AA,c. If g ≡ 0 let us consider h0 = min {f, A} ∈ AA,c , since the
minimum of two Sobolev functions is a Sobolev function. Then the functional I0 acting on h0
gives

I0[h0] =

ˆ ∞

0
e−cy

( |∂yf |2
2

1{f≤A} +
h50
5

)
dy

≤
ˆ ∞

0
e−cy

( |∂yf |2
2

+
f5

5

)
dy = I0[f ] = inf

f∈AA,c

I0[f ],

where we used that 0 ≤ h0 ≤ f . By uniqueness we conclude 0 ≤ f ≤ A. In a similar way, if
g ̸≡ 0 we consider h1 = min{f, 5A}. It is not difficult to see that

1{f>5A}

(
h51
5

− |g|h1
)

= 1{f>5A}
(
53A4 − |g|

)
5A

< 1{f>5A}

(
f4

5
− |g|

)
5A < 1{f>5A}

(
f5

5
− |g|f

)
.

For this chain of inequalities we used the definition of h1 and the fact that |g| < A4. Therefore

0 <
(
53A4 − |g|

)
<
(
f4

5 − |g|
)
in the set {f > 5A}. We conclude

Ig[h1] =

ˆ ∞

0
e−cy

( |∂yf |2
2

1{f≤5A} +
h51
5

+ gh1

)
dy

≤
ˆ ∞

0
e−cy

( |∂yf |2
2

+
f5

5
+ gf

)
dy = Ig[f ] = inf

f∈AA,c

Ig[f ].
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Hence, f = h ≤ 5A. These results show that f ∈ Cb(R+).

We now study the Euler-Lagrange equations associated to the functional Ig. It turns out
that the minimizer f is the weak solution of the following inequality

−∂y
(
e−cy∂yf

)
+ e−cyf4(y) + e−cyg ≥ 0. (E.11)

Hence, f satisfies

0 ≤
ˆ ∞

0
e−cy

(
∂yf∂yψ + f4(y)ψ(y) + g(y)ψ(y)

)
dy, (E.12)

for all ψ ≥ 0, ψ ∈ C∞
c (R+) or also ψ ∈ W 1,2

0 (µ) ∩ L5(µ). Moreover, on the open set {f > 0}
the minimizer f is a weak solution of the equation

−∂y
(
e−cy∂yf

)
+ e−cyf4(y) + e−cyg(y) = 0. (E.13)

Indeed, on the open set {f > 0} for any ψ ∈ C∞
c ({f > 0}) the function f + εψ ∈ A for ε > 0

small enough. Hence

0 = ∂εI[f + εψ]
∣∣
ε=0

=

ˆ ∞

0
e−cy

(
∂yf∂yψ + f4(y)ψ(y) + g(y)ψ(y)

)
dy, (E.14)

for all ψ ∈ C∞
c ({f > 0}) or also ψ ∈ W 1,2

0 (µ, {f > 0}) ∩ L5(µ, {f > 0}). We remark that
equations (E.11)-(E.14) hold for both g ≡ 0 and g ̸≡ 0.

We aim to show that actually the minimizer f is a strong solution to (E.13) in the whole
real line. To this end we will first show that {f > 0} = R+, which implies that f is a weak
solution of (E.13) in R+, and finally we will use elliptic regularity theory for (E.13).

Let us assume that {f > 0} ⊊ R+. Then there exists a ∈ R+ such that f(y) > 0 for all
y < a and f(a) = 0. We have to consider two cases: first the case where f(y) ≡ 0 in an
interval (a, a+ r) for some r > 0 and second the case where f(y) ̸≡ 0 on the interval (a, a+ r)
for any r > 0.

Let us assume first that there exists r > 0 such that f(y) = 0 for all y ∈ (a, a+ r). Since
f is continuous there exists 0 < ε < min

{
r, c2
}
small enough such that f(a − ε) = δ ≪ 1 as

well as f(a+ ε) = 0. Let us define for y ∈ [a− ε, a+ ε] the following function

f̄(y) = δ

(
1− y − (a− ε)

2ε

)
.

It is easy to see that 0 < f̄ < δ < 1 for y ∈ (a − ε, a + ε), f̄(a − ε) = f(a − ε) as well as
f̄(a + ε) = f(a + ε) = 0. Moreover, f̄(a) = δ

2 > 0. Finally, since f̄4 ≤ δ and 2ε < c, an easy
computation shows

−f̄ ′′(y) + cf̄ ′(y) + f̄ ′(y) = − cδ
2ε

+ f̄4(y) ≤ δ
(
1− c

2ε

)
< 0. (E.15)

Thus, −
(
e−cyf̄ ′(y)

)′
+ e−cyf̄4(y) < 0. Since f(a) = 0 < f̄(a), there exists an interval

(y0, y1) ⊆ (a−ε, a+ε) such that f(y0) = f̄(y0), f(y1) = f̄(y1) and f(y) < f̄(y) for y ∈ (y0, y1).
Using the weak maximum principle we show now that this is not possible. Therefore, we test
(E.15) with a suitable test function ψ ≥ 0. Let us consider the smooth solution to{

∂2yψ(y)− c∂yψ(y) = −1 (y0, y1);

ψ(y0) = ψ(y1) = 0
(E.16)
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The solution is given by the explicit formula ψ(y) = y−y0
c − y1−y0

c
ec(y−y0)−1
ec(y1−y0)−1

. By a simple

application of the maximum principle we see that ψ > 0 in (y0, y1). Indeed, if ψ would have
a minimum at y∗ ∈ (y0, y1) on that point ψ would not solve the equation, since ψ′′(y∗) −
cψ′(y∗) ≥ 0. Hence, let us consider ψ̄ as the extension by 0 of ψ in the whole positive real
line, i.e.

ψ̄(y) =

{
ψ(y) y ∈ (y0, y1)

0 else.

Clearly ψ̄ ∈W 1,2
0 (R+, µ) ∩ L5(R+, µ). Then,

−
(
e−cyf̄ ′(y)

)′
ψ̄(y) + e−cyf̄4(y)ψ̄(y) ≤ 0,

where we used that ψ̄ ≡ 0 on R+ \(a−ε, a+ε). Therefore, using also that the weak derivative
of ψ̄ is supported also on [a− ε, a+ ε] we obtain

ˆ ∞

0
e−cy

(
f̄ ′(y)ψ̄′(y) + f̄4(y)ψ̄(y)

)
dy ≤ 0. (E.17)

Hence, using (E.12), (E.17) and the definition of ψ̄ we have

0 ≤
ˆ ∞

0
e−cy

(
∂y(f − f̄)∂yψ̄ +

(
f4 − f̄4

)
ψ̄ + gψ̄

)
dy

=

ˆ y1

y0

(f − f̄)∂y
(
−e−cy∂yψ

)
+ e−cy

(
f4 − f̄4

)
ψ + e−cygψdy

=

ˆ y1

y0

e−cy
(
(f − f̄)

(
−∂2yψ + c∂yψ

)
+
(
f4 − f̄4

)
ψ + gψ

)
dy < 0

(E.18)

where we used also that
(
f − f̄

)
|{y0,y1} = 0, 0 ≤ f < f̄ on (y0, y1) as well as g ≤ 0. This con-

tradiction implies that f(y) ≥ f̄(y) > 0 on (a−ε, a+ε). But since we assumed f(a) = 0 < f̄(a)
we conclude that there cannot exist any r > 0 such that f(y) = 0 for y ∈ (a, a+ r).

Hence, we assume that f(y) ̸≡ 0 for y ∈ (a, a+ r) and r > 0. Since f(a) = 0 by continuity
there exist 0 < ε1, ε2 < min{r, c4} small enough such that f(a−ε1) = δ ≪ 1 and f(a+ε2) =

δ
2 .

We then define for y ∈ [a− ε1, a+ ε2] the function

f̄(y) = δ

(
1− y − (a− ε1)

2(ε1 + ε2)

)
.

Also in this case f̄ satisfies 0 < δ
2 < f̄ < δ < 1 for y ∈ (a− ε1, a+ ε2), f̄(a− ε1) = f(a− ε2),

f̄(a+ ε2) = f(a+ ε2), f̄(a) ≥ δ
2 > 0, as well as

−f̄ ′′(y) + cf̄ ′(y) + f̄ ′(y) = − cδ

2(ε1 + ε2)
+ f̄4(y) ≤ δ

(
1− c

2(ε1 + ε2)

)
< 0.

We now argue as in the case f(a + ε2) = 0. As we have seen before, since f(a) = 0 < f̄(a),
there exists an interval (y0, y1) ⊆ (a − ε, a + ε) such that f(y0) = f̄(y0), f(y1) = f̄(y1) and
f(y) < f̄(y) for y ∈ (y0, y1). Then, testing f − f̄ against the function ψ̄ defined as the zero
extension of ψ in (E.16) we obtain the following contradiction as for (E.18)

0 ≤
ˆ ∞

0
e−cy

(
∂y(f − f̄)∂yψ̄ +

(
f4 − f̄4

)
ψ̄ + gψ̄

)
dy < 0.
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This contradiction yields that {f > 0} = R+. Thus, f is a weak solution to (E.13).
In the case where g ̸≡ 0, we proved that f ≤ 5A. We now prove that also f ≤ A holds.

To this end we consider for R > 0 the function ϕR(y) defined by ϕR(y) = A+4Aec(y−R) ≥ A.
We see that ϕR(0) > A = f(0) as well as ϕR(R) = 5A ≥ f(R). By continuity we know that
there exists some x0 ∈ [0, R] such that min

[0,R]
ψR − f = ψR(x0) − f(x0). Hence, let us assume

that min
[0,R]

ψR − f = ψR(x0) − f(x0) < 0. Since ϕR − f |{0,R} ≥ 0, there exists an interval

x0 ∈ (a, b) ⊂ [0, R] in which ϕR − f < 0 and ϕR − f(a) = ϕR(b)− f(b) = 0. We also see that
ϕR is a supersolution for the operator L[ϕ] = −ϕ′′ + cϕ′ + ϕ4 + g on [0, R]. Indeed

L[ϕR] = ϕ4R + g > A4 −A4 = 0.

Let us consider once again the zero extension ψ̄ of the function ψ > 0 given by (E.16) on the
interval (a, b). Then we see that

0 ≤
ˆ ∞

0
e−cy

(
∂yϕR∂yψ̄ + ϕ4Rψ + g(y)ψ̄(y)

)
dy.

Therefore we obtain the following contradiction using once more that (f − ϕR) |{a,b} = 0, that
0 < ϕR < f on (a, b), and that f is a weak solution solving (E.13)

0 ≤
ˆ ∞

0
e−cy

(
∂y(ϕR − f)∂yψ̄ +

(
ϕ4R − f4

)
ψ̄
)
dy

=

ˆ b

a
e−cy

(
(ϕR − f)

(
−∂2yψ + c∂yψ

)
+
(
ϕ4R − f4

)
ψ
)
dy

=

ˆ b

a
e−cy

(
(ϕR − f) +

(
ϕ4R − f4

)
ψ
)
dy < 0.

Hence, for any y ∈ [0, R] we have f(y) ≤ A + 4Aec(y−R). Letting now R → ∞, we conclude
that 0 ≤ f ≤ A.

We finish the proof of Proposition E.1 showing that f is also a strong solution to (E.13).
This can be proved using the elliptic Schauder regularity. Indeed, since f ∈ AA,c is bounded

and continuous, we have that f ∈ W 1,2(µ) ∩ L∞(R+). Hence, f ∈ W 1,2
loc (R+, dy) ∩ L∞(R+),

so that also f4e−cy ∈ W 1,2
loc (R+, dy) ∩ L∞(R+). Morrey’s embedding theorem implies that

f ∈ C
0,1/2
loc (R+), which yields also f4e−cy ∈ C

0,1/2
loc (R+). Applying now the elliptic regularity

theory to the equation (E.13) we obtain that f ∈ C
2,1/2
loc (R+) since also ge−cy ∈ C0,1/2(R+).

Thus, f ∈ C2(R+) is a strong solution to (E.13).

We now show that f has also bounded first and second derivative. This is due to the fact
that also f ′ ∈W 1,2(µ). Indeed,

ˆ ∞

0
e−cy

(
|f ′′|2 + |f ′|2

)
dy ≤

ˆ ∞

0
e−cy

(
|f4 + cf ′ + g|2 + |f ′|2

)
dy

≤ C(A, c)

(
∥f∥W 1,2(µ) +

A8

c

)
.

Hence, e−
c
2
yf ′ ∈ W 1,2(R+, dy), which implies that e−cy(f ′)2 is bounded since its derivative

2ecyf ′f ′′ − ce−cy(f ′)2 is integrable. Thus, the consequent boundedness of e−
c
2
y |f ′| implies

that
lim
y→∞

e−cy|f ′|(y) = 0. (E.19)
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Since f solves (E.13), using (E.19) and integrating in (y,∞) we obtain the desired estimate

|f ′|(y) ≤ ecy
ˆ ∞

y
e−cξ

∣∣f4(ξ) + g(ξ)
∣∣ dξ ≤ A4

c
.

Moreover, multiplying (E.13) by ecy we conclude that f is a C2-solution to

f ′′ − cf ′ = f4 + g on R+.

This yields the boundedness of the second derivative of f as

|f ′′|(y) ≤ c|f ′|(y) +
∣∣f4(y) + g(y)

∣∣ ≤ A4,

where we used also 0 ≤ f4 ≤ A4 and −A4 ≤ g ≤ 0. These estimates imply that f ∈ C1,1(R+)
with bounded first and second derivatives. Since cf ′ + f4 + g ∈ C0,1/2(R+) we conclude that
f ∈ C2,1/2(R+) with Hölder seminorm bounded by

[f ′′]1/2 ≤ max
{
2∥f ′′∥∞, c∥f ′′∥∞ + 4∥f∥3∞∥f ′∥∞ + [g]1/2

}
≤ max

{
2A4, 2A4c+

4A7

c
+ [g]1/2

}
.

Let us now consider the sequence fn ∈ C2(R+) with fn ≥ 0 such that
∂2yfn+1(y)− c∂yfn+1(y)− f4n+1(y) = −

´∞
0 αE(y − η)f4n(η)dη y > 0; n ≥ 1

f0 = 0 n = 0

fn+1(0) = TM

fn+1 ≥ 0

(E.20)

We prove the following theorem

Theorem E.3. Let TM , c > 0. Then there exists a solution f ∈ C2,1/2(R+) with f > 0 at the
interior of R+ solving (E.10). Moreover, f is obtained as the limit of the monotone increasing
bounded sequence

0 ≤ f1 ≤ f2 ≤ ... ≤ fn ≤ fn+1 ≤ ... ≤ TM

with (fn)n∈N ∈ C2,1/2(R+) with ∥fn∥2,1/2 uniformly bounded and with fn > 0 in the interior
of R+ solving the recursive system (E.20).

Proof. We start considering the function f1 solving the problem
∂2yf1(y)− c∂yf1(y)− f41 (y) = 0 y > 0;

f1(0) = TM

f1 ≥ 0

(E.21)

The differential equation is equivalent to the elliptic ODE(
e−cyf ′

)′
= e−cyf4.

Hence, we consider the minimization problem of the functional

I0[f ] =

ˆ ∞

0
e−cy

(
(∂yf(y))

2

2
+
f(y)5

5

)
dy
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on the set

ATM ,c =
{
f ≥ 0 measurable s.t. f ∈W 1,2

(
e−cydy,R+

)
∩ L5

(
e−cydy,R+

)
, f(0) = TM

}
.

(E.22)
Proposition E.1 shows that there exists a unique f1 ∈ ATM ,c minimizing the functional I0.
Moreover, f1 solves (E.21) and satisfies 0 < f1(y) ≤ TM for y ≥ 0. In addition to that,
f1 ∈ C2,1/2(R+) has bounded first and second derivative according to

|f ′1(y)| ≤
T 4
M

c
and |f ′′2 (y)| ≤ T 4

M

and Hölder seminorm bounded by

[f ′′1 ]1/2 ≤ max{2T 4
M , 2T

4
Mc+

4T 7
M

c
}.

We now show the existence of the solutions fn ∈ C2,1/2(R+) of the equation (E.20) for n ≥ 2.
We do the proof only for n = 2, since the very same arguments will work recursively for
all n ≥ 2. Let us define g = −

´∞
0 E(y − η)f41 (η)dη. We readily see that −T 4

M < g < 0.

Moreover, since f41 ∈ C1(R+) with bounded derivative we conclude that g ∈ C0,1/2(R+) with
the seminorm [·]1/2 bounded by

[g]1/2 ≤ max{2∥g∥∞, 4∥f1∥3∞∥f ′1∥∞ + ∥f1∥4∞∥E∥L2} ≤ max

{
2T 4

M ,
4T 7

M

c
+ T 4

M∥E∥L2

}
.

Indeed, the normalized exponential integral has the property that E ∈ Lq(R)for any q ∈ [1, 2],
since E ∈ L1(R)∩L2(R). This yields together with the Hölder ’s inequality that for b > a > 0
and δ ∈ [0, 1/2] ˆ b

a
E(η)dη ≤ |a− b|δ∥E∥

L
1

1−δ
.

Therefore, for v ∈ C0,δ(R+) and y > x > 0 we estimate∣∣∣∣ˆ ∞

0
v4(η) (E((y − η))− E((x− η))) dη

∣∣∣∣ = ∣∣∣∣ˆ ∞

−y
v4(η + y)E(η)dη −

ˆ ∞

−x
v4(η + x)E(η)dη

∣∣∣∣
≤
∣∣∣∣ˆ ∞

−x
E(η)

(
v4(η + y)− v4(η + x)

)
dη

∣∣∣∣+ ∣∣∣∣ˆ −x

−y
E(η)v4(η + y)dη

∣∣∣∣
≤ [v4]δ|x− y|δ + ∥v4∥∞∥E∥

L
1

1−δ
|x− y|δ. (E.23)

We remark that if v ∈ C1(R+) with bounded derivative and if |x− y| < 1, one can estimate∣∣∣∣ˆ ∞

0
v4(η) (E((y − η))− E((x− η))) dη

∣∣∣∣ ≤ ∥(v4)′∥∞|x− y|δ + ∥v4∥∞∥E∥
L

1
1−δ

|x− y|δ

since also |(y + η)− (x+ η)| < 1.
Similarly as for the function f1, we will consider a suitable minimization problem for which

the unique minimizer will be f2. Let us consider the minimization problem associated to the
functional

Ig[f ] =

ˆ ∞

0
e−cy

(
(∂yf(y))

2

2
+
f(y)5

5
+ gf

)
dy

on the set ATM ,c defined in (E.22). Another application of Proposition E.1 shows that there
exists f2 ∈ C2,1/2(R+) solution to (E.20) for n = 2 with

|f ′2(y)| ≤
T 4
M

c
, |f ′′2 (y)| ≤ T 4

M and
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[f ′′2 ]1/2 ≤ max

{
2T 4

M , 2T
4
Mc+

4T 7
M

c
+max

{
2T 4

M ,
4T 7

M

c
+ T 4

M∥E∥L2

}}
.

Moreover, 0 < f2(y) ≤ TM for y ≥ 0. A recursive application of Proposition E.1 shows the
existence of a sequence (fn)n∈N ∈ C2,1/2(R+) with fn > 0 in the interior of R+ solving the
recursive system (E.20). Moreover, for all n ≥ 1 we have the uniform bounds

fn(y) ≤ TM , |f ′n(y)| ≤
T 4
M

c
, |f ′′n(y)| ≤ T 4

M

and

[f ′′n ]1/2 ≤ max

{
2T 4

M , 2T
4
Mc+

4T 7
M

c
+max

{
2T 4

M ,
4T 7

M

c
+ T 4

M∥E∥L2

}}
,

where the uniform bound of the Hölder seminorm is a consequence of the uniform bounds of
fn−1, f

′
n−1 and f ′′n−1. We will now prove that the solutions form a monotonous sequence

such that 0 ≤ f1 ≤ f2 ≤ ... ≤ fn ≤ fn+1 ≤ TM . We only need to show that fn ≤ fn+1 for all
n ∈ N. We prove it by induction. Let us consider n = 1. Then we define φ = f2 − f1 and

a1(y) = f31 (y) + f32 (y) + f21 (y)f2(y) + f1(y)f
2
2 (y) > 0.

The strict positivity is due to the fact that by construction fn > 0 in any open set of R+ and
in y = 0. Let R > 0. Then φ(0) = 0 as well as |φ(R)| ≤ TM . Moreover,

φ′′ − cφ′ − a1(y)φ(y) ≤ 0.

Let us consider now ψR(y) = −TMec(y−R). Then we have on one hand that φ(0)−ψR(0) > 0
as well as φ(R)− ψR(R) ≥ 0 and on the other hand that

ψ′′
R − cψ′

R − a1(y)ψR = −a1(y)ψR ≥ 0.

Hence, an application of the maximum principle to the function φ − ψR shows that there is
no negative minimum on [0, R] since

(φ− ψR)
′′ − c(φ− ψR)

′ − a1(φ− ψR) ≤ 0.

Therefore, f2(y)−f1(y) ≥ −TMec(y−R) for all y ≤ R. Hence, for R→ ∞ we conclude f2 ≥ f1.

Let us assume now that for n ∈ N it is true that fn−1 ≤ fn. We shall now show that fn ≤
fn+1. We define φn = fn+1−fn and an(y) = f3n(y)+f

3
n+1(y)+f

2
n(y)fn+1(y)+fn(y)f

2
n+1(y) > 0.

Moreover, since by induction 0 < fn−1 ≤ fn we also have that

ˆ ∞

0
E(y − η)

(
f4n(η)− f4n−1(η)

)
dη ≥ 0.

Hence, we have once more that φn(0)− ψR(0) > 0 and φn(R)− ψR(R) ≥ 0 as well as

(φn − ψR)
′′ − c(φn − ψR)

′ − an(φn − ψR) ≤ 0

on [0, R]. We can conclude with the maximum principle that fn − fn+1 ≥ −TMec(y−R) for all
y ≤ R. This yields the claim fn ≥ fn+1.

This concludes the proof of the existence fn ∈ C2,1/2(R+) with uniformly bounded C2,1/2-
norm solving the recursive system (E.20) and satisfying

0 ≤ f1 ≤ f2 ≤ ... ≤ fn ≤ fn+1 ≤ TM .
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We now prove the existence of a solution to (E.10). Let f(y) = lim
n→∞

fn(y). This function

exists, since the sequence is monotone and bounded. Moreover, on any compact set [0, R]
the sequence converges also uniformly in C2,1/4([0, R]) to the function f . Hence, Lebesgue
dominated convergence theorem assures that

ˆ ∞

0
E(y − η)f4n(η)dη →

ˆ ∞

0
E(y − η)f4(η)dη as n→ ∞

and the C2-uniform convergence in compact sets implies that f ∈ C2(R+) ∩ C1,1(R+) ∩
C

2,1/2
loc (R+) solves (E.10), where the C2,1/2−regularity is once again a consequence of elliptic

regularity theory. Finally, we prove that f ∈ C2,1/2(R+) globally. Indeed, f ∈ C1,1(R+) solves
strongly (E.10). Thus,

f ′′ = cf ′ + f4 −
ˆ ∞

0
E(· − η)f4(η)dη ∈ C0,1/2(R+),

where we used that the convolution of a Hölder continuous function with the exponential
integral E is Hölder continuous as we have proven in (E.23). This concludes the proof of the
existence of traveling wave for (E.5) if y > 0. Moreover, the monotonicity of the sequence fn
implies also f(y) > 0 for any y > 0.

In order to finish the proof of Theorem (E.2) we have to show the existence of such
cmax > 0. This will be done in the following Lemma and Corollary.

Lemma E.1. Let TM > 0 and c > 0. Let f ∈ C2(R+) ∩ Cb(R+) be a solution to (E.10) with
|f | ≤ TM . Then f(y) > TM for all y > 0 and ∂yf(0

+) < 0.

Proof. The proof is an adaptation of the proof of Hopf-Lemma. First of all, we notice that
by the maximum principle f(y) < TM for any y ∈ (0, R) with R > 0. Indeed, by assumption
we have max

[0,R]
f = TM . If we assume that there exists y0 ∈ (0, R) such that f(y0) = TM , we

obtain the following contradiction

0 = f ′′(y0)− cf ′(y0)− T 4
M +

ˆ ∞

0
E(η − y0)f

4(η)dη ≤ T 4
M

(
−1 +

ˆ ∞

−R
E(η)dη

)
< 0.

Thus, since f4(0) −
´∞
0 E(η)f4(η) ≥ T 4

M
2 > 0 by continuity there exists δ > 0 such that

f(δ) < TM and f4(y)−
´∞
0 E(η − y)f4(η)dη > 0 for all y ∈ (0, δ).

Let us now consider the operator L = ∂2y − c∂y. By construction we see L(f)(y) > 0 for

all y ∈ (0, δ). For α > c and 0 < ε < TM−f(δ)
eαδ−1

we define the auxiliary function z(y) = eαy − 1.
Then a simple computation shows

L(f + εz)(y) > 0 for all y ∈ (0, δ) as well as f(0) + εz(0) = TM > f(δ) + ε(δ).

Hence, the maximum principle for L implies that f(y) + εz(y) ≤ TM for all y ∈ (0, δ). This
yields that

f ′(0+) + εz′(0+) = f ′(0+) + εα ≤ 0

and therefore since α > 0 we conclude ∂yf(0
+) < 0.

A direct consequence of Lemma E.1 is the following Corollary.

Corollary E.1. There exists cmax > 0 such that for any c ∈ (0, cmax) the solution f c of (E.8)
constructed as in Theorem E.3 satisfies ∂yf

c(0+) < −Lc.
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Proof. Let c > 0 and let f c ∈ C2,1/2(R+) be the solution to (E.8) given by f = α2/3f̃ c̃(αy),
where f̃ c̃ is the solution of (E.10) of Theorem E.3 for c̃ = c

α and melting temperature T̃M =
TM
α2/3 . Using the bound of the first derivative obtained in Theorem E.3 and the definition of
the rescaling, we conclude

∥∂yf c∥∞ = α5/3∥∂ηf̃ c̃∥∞ ≤ α5/3 T̃M
c̃

=
T 4
M

c
.

Lemma E.1 implies ∂yf
c(0+) < 0. Thus, the set {c > 0 : ∂yf

c(0+) < −Lc} is not empty. We
hence define

cmax := sup{c > 0 : ∂yf
c(0+) < −Lc}.

In the next section we will prove that in the solid the traveling waves are bounded from
below by a positive constant and they converge to a positive constant as y → ∞.

E.2.2 Monotonicity with respect to the melting temperature of the travel-
ing wave solutions for y > 0

In this section we will show that for y > 0 to the traveling waves constructed in the previous
section are monotone increasing with respect to the melting temperature, i.e. if f1(0) = θ1
and f2(0) = θ2 with θ1 < θ2 and f1, f2 solve (E.8), then f1 ≤ f2. We prove the following
Lemma

Lemma E.2. Let 0 < θ1 < θ2 and let f1, f2 ∈ C2,1/2(R+) be the two solutions of (E.8)
constructed with the iterative scheme in Theorem E.3 for TM = θ1 and TM = θ2, respectively.
Then f1 ≤ f2.

Proof. Let f1, f2 be given by the limit of the monotone bounded sequences fni ∈ C2,1/2(R+)
solving the recursive problem

∂2yf
n+1
i (y)− c∂yf

n+1
i (y)−

(
fn+1
i (y)

)4
= gni (y) y > 0; n ≥ 1

f0i = 0 n = 0

fn+1
i (0) = θi

fn+1
i ≥ 0

where

gni (y) = −
ˆ ∞

0
E(y − η) (fni (η))

4 dη.

We show by induction that fn1 ≤ fn2 for all n ∈ N. This will imply the lemma, since
fi(y) := lim

n→∞
fni (y).

Let us define φn = fn2 − fn1 . Then φ0 = 0 and for n ≥ 1 it solves
∂2yφn(y)− c∂yφn(y)− an(y)φn(y) = hn−1(y) y > 0; n ≥ 1

φn(0) = θ2 − θ1 > 0

φn ∈ [−θ1, θ2]

where hn−1(y) = gn−1
2 (y)− gn−1

1 (y) =
´∞
0 E(y − η)

(
fn−1
1 (η)4 − fn−1

2 (η)4
)
dη and

an(y) =
fn2 (y)

4 − fn1 (y)
4

fn2 (y)− fn1 (y)
= fn2 (y)

3 + fn1 (y)
3 + fn2 (y)

2fn1 (y) + fn2 (y)f
n
1 (y)

2 > 0.
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The positivity of an(y) is given by the strict positivity of fni in the interior of R+ and in y = 0
as shown before. Moreover, φn ∈ [−θ1, θ2] since 0 ≤ fni ≤ θi for i ∈ 1, 2 by the construction
in Theorem E.3. We show inductively that φn ≥ 0 for all n ≥ 1. To this end we consider
for R > 0 the function ψR = −θ1ec(y−R). It satisfies ψR(0) ≥ −θ1 as well as ψR(R) = −θ1.
Hence, on [0, R] we have

∂2y (φn(y)− ψR(y))− c∂y (φn(y)− ψR(y))− an(y) (φn(y)− ψR(y))

= hn−1(y) + an(y)ψR(y) ≤ hn−1(y) y ∈ [0, R]; n ≥ 1

φn(0)− ψR(0) > 0

φn(R)− ψR(R) ≥ 0

Let us now consider n = 1. Since h0 = 0 the supersolution φ1 − ψR solves

∂2y (φ1(y)− ψR(y))− c∂y (φ1(y)− ψR(y))− a1(y) (φ1(y)− ψR(y)) ≤ 0.

An application of the maximum principle assuming the existence of a negative minimum, gives
φ1 = f12 − f11 ≥ −θ1ec(y−R) for y ∈ [0, R]. Thus, letting R→ ∞ we conclude f12 ≥ f11 .

Let us now assume that for n ∈ N we know that fn−1
2 ≥ fn−1

1 . We show that fn2 ≥ fn1 .

First of all we see that by the induction step we have hn−1 ≤ 0, since
(
fn−1
1

)4 ≤
(
fn−1
2

)4
.

Then the maximum principle applied to the supersolution φn − ψR solving

∂2y (φn(y)− ψR(y))− c∂y (φn(y)− ψR(y))− an(y) (φn(y)− ψR(y)) ≤ 0

implies as before fn2 ≤ fn1 . This concludes the proof of the lemma.

In the following we aim to show that for y > 0 the constructed traveling wave solutions
are bounded from below by a positive constant. This can be proved using the monotonicity
property of the traveling wave solutions with respect to the melting temperature. We will
indeed show that for very small melting temperature the traveling wave solutions are unique,
strictly positive and with a positive limit.

E.2.3 Traveling wave solutions for small melting temperatures for y > 0

In this section we will show that for any TM = ε < ε0 with ε0 > 0 small enough there exists
a unique solution f to (E.8) which converges to a positive constant with exponential rate
y → ∞. Moreover, f is bounded from below by a positive constant. We will show it in several
steps. We will first prove that any solution f obtained in Theorem E.3 for TM = ε small
enough has a limit f∞ as y → ∞ and converges to f∞ with exponential rate. Afterwards, we
will prove that both f and f∞ are positive and bounded from below by a positive constant.
Finally, we will prove that for TM = ε small enough there exists a unique solution to (E.8)
converging with exponential rate to a constant.

Lemma E.3. Let f be a solution to (E.10) as in Theorem E.3. Then for TM = ε > 0 small
enough there exists A > 0, α ∈ (0, 1) and f∞ ∈ [0, TM ] such that

|f(y)− f∞| ≤ ε4Ae−αy.

Proof. Let f be the function obtained in Theorem E.3. First of all we notice that it is
equivalent to consider f solving the equation

∂2yf(y)− c∂yf(y)− ε3f4(y) = −ε3
´∞
0 E(y − η)f4(η)dη y > 0

f(0) = 1

f ≥ 0

(E.24)
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Indeed, (E.24) is obtained considering f̃ defined by εf̃(y) = f(y). Clearly, if f̃ converges
with exponential rate to a constant f̃∞ as y → ∞, then also f converges with same rate to
f∞ = εf̃∞. Therefore, we will show the lemma for f̃ . In order to simplify the notation we
will consider in this proof f = f̃ solving (E.24).

Since f is bounded and it solves strongly (E.24), then it solves also

(
e−cyf ′

)′
= ε3e−cy

(
f4 −

ˆ ∞

0
E(y − η)f4(η)dη

)
.

Hence, using that by the boundedness of the first derivative we have lim
y→∞

e−cyf ′(y) = 0, we

obtain integrating in (y,∞)

f ′(y) = −ε3ecy
ˆ ∞

y
e−cη

(
f4(η)−

ˆ ∞

0
E(η − z)f4(z)dz

)
dη.

Integrating once more in (0, y), we conclude that f solves also the following fixed-point equa-
tion

f(y) = 1 + ε3
ˆ y

0
ecξ

ˆ ∞

ξ
e−cη

(ˆ ∞

0
E(η − z)f4(z)dz − f4(η)

)
dηdξ. (E.25)

We define now

osc
(R,R+1)

f = sup
y1,y2∈(R,R+1)

|f(y1)− f(y2)|.

Since f is non-negative and it is bounded by 1, we know that osc
(R,R+1)

f ≤ 1 for all R > 0. For

M > 0 we also define

λ(M) = sup
R≥M

osc
(R,R+1)

f.

Notice that λ(M) is decreasing with λ(M) ≤ λ(0) ≤ 1. We will show that λ(M) decays like

e−
M
2 . To this end we consider for M > 0 and R ≥ M the points y1, y2 ∈ [R,R + 1] (w.l.o.g.

y1 ≤ y2) and we compute

|f(y1)− f(y2)| ≤ε3
ˆ y2

y1

ecξ
ˆ ∞

ξ
e−cη

∣∣∣∣ˆ ∞

0
E(η − z)f4(z)dz − f4(η)

∣∣∣∣ dηdξ
≤ε3

ˆ y2

y1

ecξ
ˆ ∞

y1

e−cη
∣∣∣∣ˆ ∞

0
E(η − z)f4(z)dz − f4(η)

∣∣∣∣ dηdξ
=ε3

ecy2 − ecy1

c

ˆ ∞

y1

e−cη
∣∣∣∣ˆ ∞

0
E(η − z)f4(z)dz − f4(η)

∣∣∣∣ dη,
where in the first inequality we used the triangle inequality, in the second we used that ξ ≥ y1
and the last equality is given by integrating with respect to ξ. We use now that 0 ≤ y2−y1 ≤ 1,
so that

ecy2 − ecy1

c
= ecy2

1− e−c(y2−y1)

c
≤ ecy2 |y2 − y1| ≤ ecy2 ≤ exp(c)ecy1 .
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Thus,we can further estimate

|f(y1)− f(y2)| ≤ ε3 exp(c)

ˆ ∞

y1

e−c(η−y1)
∣∣∣∣ˆ ∞

0
E(η − z)f4(z)dz − f4(η)

∣∣∣∣ dη
=ε3 exp(c)

ˆ ∞

y1

e−c(η−y1)
∣∣∣∣ˆ ∞

−η
E(z)f4(z + η)dz − f4(η)

∣∣∣∣ dη
=ε3 exp(c)

ˆ ∞

y1

e−c(η−y1)
∣∣∣∣ˆ ∞

−η
E(z)

(
f4(z + η)− f4(η)

)
dz −

(ˆ ∞

η
E(z)dz

)
f4(η)

∣∣∣∣ dη
≤ε3 exp(c)

2

ˆ ∞

y1

e−c(η−y1)e−ηdη + ε3 exp(c)

ˆ ∞

y1

e−c(η−y1)
∣∣∣∣ˆ ∞

−η
E(z)

(
f4(z + η)− f4(η)

)
dz

∣∣∣∣ dη
≤ε3 exp(c)

2
e−M + ε3 exp(c)

ˆ ∞

y1

e−c(η−y1)
∣∣∣∣ˆ ∞

−η
E(z)

(
f4(z + η)− f4(η)

)
dz

∣∣∣∣ dη
(E.26)

where the first equality follows by a change of coordinates z → z − η using the symmetry
of the kernel E and the second one is a consequence of the normalization of the kernel E.
Moreover, the last inequality uses the boundedness of f ≤ 1 and the estimate

ˆ ∞

a
E(z)dz ≤ e−a

2
(E.27)

for any a > 0. Finally, we considered η − y1 ≥ 0 as well as y1 ≥M .

We now estimate the second term in the last line of (E.26). First of all, using that
|f4(a)− f4(b)| ≤ 4|f(a)− f(b)| ≤ 4 we can rewrite it as the sum of three integrals

ε3 exp(c)

ˆ ∞

y1

e−c(η−y1)
∣∣∣∣ˆ ∞

−η
E(z)

(
f4(z + η)− f4(η)

)
dz

∣∣∣∣ dη
≤4ε3 exp(c)

ˆ ∞

y1

e−c(η−y1)
ˆ −M

−η
E(z)dzdη

+ 4ε3 exp(c)

ˆ ∞

y1

e−c(η−y1)
ˆ ∞

0
E(z) |(f(z + η)− f(η))| dzdη

+ 4ε3 exp(c)

ˆ ∞

y1

e−c(η−y1)
ˆ 0

−M
E(z) |(f(z + η)− f(η))| dzdη

≤A1 +A2 +A3

(E.28)

The first integral term can be estimated easily by

A1 ≤ 2ε3
exp(c)

c
e−M , (E.29)

where we used (E.27) and we solved
´∞
y1
e−c(η−y1)dη = 1

c . For the terms A2 and A3 we will

argue in a different way. We recall that λ(M) is decreasing. Hence, if z ∈ (0, 1) for η ≥ y1 ≥M
we have |f(η)− f(η+ z)| ≤ λ(η) ≤ λ(M) as well as |f(η)− f(η− z)| ≤ λ(η− 1) ≤ λ(M − 1).
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Thus, using a telescopic sum for η ≥ y1 ≥M we compute

ˆ ∞

0
E(z) |f(z + η)− f(η)| dz =

∞∑
n=0

ˆ n+1

n
E(z) |f(z + η)− f(η)| dz

≤
∞∑
n=0

ˆ n+1

n
E(z)

(
|f(η + z)− f(n+ η)|+

n∑
k=1

|f(η + k)− f(η + k − 1)|
)
dz

≤λ(M)
∞∑
n=0

ˆ n+1

n
E(z)(n+ 1)dz ≤ λ(M)

∞∑
n=0

ˆ n+1

n
E(z)(z + 1)dz

=λ(M)

ˆ ∞

0
E(z)(z + 1)dz ≤ λ(M),

(E.30)

where at the end we used also E(a)a ≤ e−a

2 for all a > 0. Thus, (E.30) implies

A2 ≤ 4ε3
exp(c)

c
λ(M). (E.31)

Similarly as we did in (E.30), using again a telescopic sum and estimating λ(0) ≤ 1, we
estimate for η ≥ y1 ≥M

ˆ 0

−M
E(z) |f(z + η)− f(η)| dz

=

ˆ M

0
E(z) |f(η)− f(η − z)| dz =

M∑
n=1

ˆ n

n−1
E(z) |f(η)− f(η − z)| dz

≤
M∑
n=1

ˆ n

n−1
E(z)

(
|f(η − z)− f(η − (n− 1))|+

n−1∑
k=1

|f(η − (k − 1))− f(η − k)|
)
dz

≤
M∑
n=1

ˆ n

n−1
E(z)

(
λ(M − n) +

n−1∑
k=1

λ(M − k)

)
dz ≤

M∑
n=1

λ(M − n)

ˆ n

n−1
E(z)ndz

≤
M∑
n=1

λ(M − n)

ˆ n

n−1
E(z)(z + 1)dz ≤

M∑
n=1

λ(M − n)

ˆ ∞

n−1
E(z)(z + 1)dz

≤
M∑
n=1

λ(M − n)e−(n−1) ≤ e−(M−1) + e
M−1∑
n=1

e−nλ(M − n). (E.32)

Hence, we have also the following estimate

A3 ≤ 4ε3
exp(c+ 1)

c

[
e−M +

M−1∑
n=1

e−nλ(M − n)

]
. (E.33)

Finally, putting together (E.26), (E.28), (E.29), (E.31) and (E.33) we obtain for M ≤ R ≤
y1 ≤ y2 ≤ R+ 1

osc
(R,R+1)

f ≤ |f(y1)− f(y2)|

≤ ε3 exp(c)

(
1

2
+

2

c
+

4e

c

)
e−M + 4ε3

exp(c)

c
λ(M) + 4ε3

exp(c+ 1)

c

M−1∑
n=1

e−nλ(M − n).

(E.34)
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Let us take

ε < ε1(c) = 3

√
c

8 exp(c)
(E.35)

and let us define B(c) = exp(c)
(
1 + 4+8e

c

)
. Then taking the supremum over all R ≥ M we

have

λ(M) ≤ Bε3e−M +Bε3
M−1∑
n=1

e−nλ(M − n). (E.36)

We now show by induction that λ(M) ≤ 2Bε3e−M/2 for all ε < min{ε1(c), ε2(c)}, where

ε2(c) =
3

√
1

2Bγ
(E.37)

for γ = 5 1/2

1−e−1/2 = 5
2

∑∞
n=0 e

−n/2. Moreover, since 1/2

1−e−1/2 >
1
2 we have γ > 2. This implies

also that Bε3 < 1
2γ <

1
4 . First of all we see that if M = 0 the estimates (E.32) and (E.33)

reduce to A3 = 0. Hence, using (E.26), (E.28), (E.29), (E.31) we obtain

λ(0) ≤ ε3
(
exp(c)

2
+

2 exp(c)

c

)
+ 4ε3

exp(c)

c
λ(0).

Thus, for ε < ε1 we have
λ(0) ≤ Bε3 ≤ 2Bε3.

Let us consider M = 1. In this case (E.32) and (E.33) reduce to A3 = 4ε3 exp(c)
c λ(0)e−0 ≤

4ε3 exp(c+1)
c λ(0)e−1, where we used λ(0) ≤ 1. Thus, we obtain once more for ε < min{ε1, ε2}

λ(1) ≤ Bε3e−1 ≤ 2Bε3e−1/2.

Let us now consider M = 2. In this case the sum on the right hand side of (E.34) is non-zero.
We compute using (E.36)

λ(2) ≤ Bε3e−2 +Bε3λ(1)e−1.

Using now the estimate for λ(1) and that ε < ε2 and so that Bε3 < 1/4 we have

λ(2) ≤ Bε3

(
e−2 +

e−3/2

2

)
≤ 2Bε3e−1.

Let us now assume that λ(k) satisfies

λ(k) ≤ 2Bε3e−k/2

for k = 2, ...,M ∈ N. We show that also

λ(M + 1) ≤ 2Bε3e−(M+1)/2.

This is a consequence of the choice of ε2 depending on γ. Indeed, by (E.36) we have

λ(M + 1) ≤ Bε3e−(M+1) +Bε3
M∑
n=1

e−nλ(M + 1− n)

≤ Bε3e−(M+1) +Bε3e−(M+1)/2
M∑
n=1

2Bε3e−n/2

≤ Bε3e−(M+1) +Bε3e−(M+1)/2 2Bε3

1− e−1/2
< 2Bε3e−(M+1)/2,
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where at the end we used the definition of γ as well as Bε3γ < 1/2 for ε < ε2. This concludes
the proof of the exponential decay of λ(M). We will use this result in order to prove the
convergence at exponential rate of f . Let us consider x, y ∈ R+ with x < y. Then there exists
A > 0 such that |f(x)− f(y)| ≤ ε3Ae−x/2. Indeed we have

|f(x)− f(y)| ≤ |f(x)− f(⌊x⌋)|+ |f(y)− f(⌊y⌋)|+ |f(⌊x⌋)− f(⌊y⌋)|

≤ 2Bε3e1/2
(
e−x/2 + e−y/2

)
+

⌊y⌋−1∑
n=⌊x⌋

|f(n)− f(n+ 1)|

≤ 4Bε3e1/2e−x/2 + 2Bε3
e−⌊x⌋/2 − e−⌊y⌋/2

1− e−1/2
≤ ε3Ae−x/2,

where A = 4Be1/2 + 2B e1/2

1−e−1/2 . Therefore, |f(x) − f(y)| ≤ ε3Ae−x/2 → 0 as x, y → ∞.

This implies that for any increasing sequence {xn}n∈N ⊂ R+ with lim
n→∞

xn = ∞, the sequence

f(xn) is a Cauchy sequence and hence has a limit as n→ ∞. Indeed,

|f(xn)− f(xm)| ≤ ε3Ae−
min{xn,xm}

2 → 0 as n,m→ ∞.

Let hence, {xn}n∈N ⊂ R+ and {yn}n∈N ⊂ R+ be two increasing sequences with xn, yn → ∞
as n→ ∞ and such that

f∞− = lim inf
y→∞

f(y) = lim
n→∞

f(yn) ≤ lim
n→∞

f(xn) = lim sup
y→∞

f(y) = f∞+.

Let δ > 0. Then there exists some N0 ∈ N such that

ε3Ae−
min{xn,yn}

2 <
δ

3
for all n ≥ N0

and

|f∞+ − f(xn)| <
δ

3
as well as |f∞− − f(yn)| <

δ

3
for all n ≥ N0.

Hence, for all n ≥ N0 we conclude

|f∞− − f∞+| ≤ |f∞+ − f(xn)|+ |f∞− − f(yn)|+ |f(xn)− f(yn)| < δ.

This implies that f has a limit for y → ∞ which is denoted by

lim inf
y→∞

f(y) = lim sup
y→∞

f(y) = lim
y→∞

f(y) = f∞.

A consequence of the existence of a limit is that any sequence {f(xn)}n∈N defined by an
increasing diverging sequence {xn}n∈N has to converge to f∞. Hence, also for y ∈ R+ we have
lim
n→∞

f(y + n) = f∞.

Finally, let y ∈ R+. We show that f converges to f∞ with an exponential rate.

|f(y)− f∞| =
∞∑
n=0

|f(y + n)− f(y + n+ 1)| ≤ Aε3e−
y
2

∞∑
n=0

e−
n
2 =

A
√
eε3√

e− 1
e−

y
2 .

We continue the theory for small melting temperatures showing that the solution f of
theorem E.3 is bounded from below by a positive constant. This will imply that also the limit
f∞ is strictly positive. We prove the following lemma.
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Lemma E.4. Let f be a solution to (E.10) as in Theorem E.3. Then for TM = ε > 0 small
enough there exists c0 > 0 such that

f(y) ≥ c0ε for all y ∈ R+.

This implies also f∞ ≥ c0ε.

Proof. As for Lemma (E.3) we consider f = εf̃ , where f̃ solves (E.24). We will show that

f̃(y) ≥ c0 for all y ∈ R+. This implies clearly the claim of Lemma E.4. In order to simplify

the notation, we will denote in this proof f̃ by f . By Lemma E.3 there exist f∞ and A > 0
such that |f(y)− f∞| ≤ Aε3e−y/2 for ε > 0 small enough. As we have seen in Lemma E.3 the
solution f to (E.24) solves the fixed-point equation (E.25). This can be rewritten as

f(y) = 1 + ε3
ˆ y

0

ecξ
ˆ ∞

ξ

e−cη

(ˆ ∞

0

E(η − z) [(f(z)− f∞) + f∞]
4
dz − [(f(η)− f∞) + f∞]

4

)
dηdξ.

We recall that

[(f − f∞) + f∞]4 = (f − f∞)4 + 4(f − f∞)3f∞ + 6(f − f∞)2f2∞ + 4(f − f∞)f3∞ + f4∞.

Hence, using on the one hand that 0 ≤ f∞ ≤ 1, |f −f∞| ≤ 1 and that |f(y)−f∞| ≤ Aε3e−y/2

we see easily that
[(f(y)− f∞) + f∞]4 ≤ f4∞ + 15ε3Ae−y/2. (E.38)

On the other hand, using in addition that (f − f∞)4 ≥ 0 as well as (f − f∞)2f2∞ ≥ 0 we have

[(f(y)− f∞) + f∞]4 ≥ f4∞ − 8ε3Ae−y/2. (E.39)

We can hence estimate from below f as

f(y) ≥ 1− ε3f4∞

ˆ y

0
ecξ

ˆ ∞

ξ
e−cη

ˆ ∞

η
E(z)dzdηdξ

− 8ε6A

ˆ y

0
ecξ

ˆ ∞

ξ
e−(c+

1
2)η

ˆ ∞

−η
E(z)e−

z
2 dzdηdξ − 15ε6A

ˆ y

0
ecξ

ˆ ∞

ξ
e−(c+

1
2)ηdηdξ

≥1− ε3

2

ˆ y

0
ecξ

ˆ ∞

ξ
e−(c+1)ηdηdξ − ε6A

(
16 artanh

(
1

2

)
+ 15

) ˆ y

0
ecξ

ˆ ∞

ξ
e−(c+

1
2)ηdηdξ

=1− ε3

2(c+ 1)

ˆ y

0
e−ξdξ − ε6A

c+ 1
2

(
16 artanh

(
1

2

)
+ 15

) ˆ y

0
e−

ξ
2dξ

≥1− ε3
(

1

2(c+ 1)
+

4ε3A

2c+ 1

(
16 artanh

(
1

2

)
+ 15

))
.

(E.40)

We used for the second inequality the fact that 0 ≤ f∞ ≤ 1, as well as (E.27). Moreover, for
the equality we used that for any a ∈ [0, 1)

ˆ ∞

−∞
E(z)e−azdz =

ˆ ∞

0
E1(z) cosh(az)dz =

artanh(a)

a
.

Equation (E.40) implies that for any c0 ∈ (0, 1) defining

ε3 = min

1,
3

√
(1− c0)

(
1

2(c+ 1)
+

4A

2c+ 1

(
16 artanh

(
1

2

)
+ 15

))−1
 (E.41)
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and choosing ε < min{ε1, ε2, ε3} according to (E.35), (E.37) and (E.41), we conclude that the
function f satisfies

f(y) ≥ c0.

This concludes the proof of the lemma.

Lemma E.2 and Lemma E.4 imply the following Corollary.

Corollary E.2. Let TM > 0 and let f be a solution to (E.10) as in Theorem E.3. Then there
exists λ > 0 such that f(y) ≥ λ > 0 for all y ≥ 0.

Finally, we show that if TM = ε small enough the solution of (E.10) of Theorem E.3 is also
unique. Indeed, we show that there is a unique solution of the fixed-point equation (E.25)
converging to a constant with exponential rate. This is stated in the following theorem.

Theorem E.4. Let TM = ε. Then, for ε < ε0 small enough there exists a unique solution
f ∈ C2,1/2(R+) of (E.10) with lim

y→∞
f(y) = f∞ and |f(y)− f∞| ≤ Ae−y/2. Moreover, f(y) ≥

c0ε as well as f∞ ≥ c0ε for c0 ∈ (0, 1).

Proof. First of all we remark that it is enough to prove the existence and uniqueness of the
solution f̃ to the equation (E.24). Indeed, then f = εf̃ is the desired unique solution of
Theorem E.4. We will indeed prove the theorem for f̃ , which is denoted in the rest of the
proof by the sake of simplicity f̃ = f .

Moreover, it is enough also to show the existence and uniqueness of the solution to the
fixed-point equation (E.25). Indeed, any strong solution f to (E.24) satisfies f ∈ C2,1/2(R+)
and it solves (E.25).

Let us consider for B > 1 and for A > 0 the following space

X =
{
f ∈ Cb(R+) : |f(y)| ≤ B, ∃f∞ s.t. |f(y)− f∞| ≤ Ae−y/2

}
equipped with the metric dX induced by the following norm

∥f∥X = |f∞|+ sup
y∈R+

ey/2|f(y)− f∞|.

We also define the following seminorm

[f ]X = sup
y∈R+

ey/2|f(y)− f∞|

so that ∥f∥X = |f∞|+[f ]X . One can prove that (X , dX ) is a complete metric space. We omit
the elementary proof.

We will now prove that the map

L[f ](y) = 1 + ε3
ˆ y

0
ecξ

ˆ ∞

ξ
e−cη

(ˆ ∞

0
E(η − z)f4(z)dz − f4(η)

)
dηdξ

is a selfmap L : X → X and that it is a contraction for ε < ε4 small enough. The Banach
fixed-point theorem will imply the existence of a unique fixed-point f solving (E.24).
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Let now f ∈ X . We observe that if f ∈ Cb(R+) then L[f ] is continuous. We move
on proving that for f ∈ X also L[f ] is bounded. Indeed, using that |f | ≤ B as well as
|f − f∞| ≤ 2B, we obtain similarly as for (E.38) and for (E.39) that

[(f(y)− f∞) + f∞]4 ≤ f4∞ + 40B3Ae−y/2

and
[(f(y)− f∞) + f∞]4 ≥ f4∞ − 20B3Ae−y/2.

Thus, we estimate similarly as in (E.40)

|L[f ](y)| ≤ 1 + ε3B3

(
B

2(c+ 1)
+

4AB

2c+ 1

(
40 artanh

(
1

2

)
+ 20

))
. (E.42)

Hence, defining by c1(A,B) =
(

B
2(c+1) +

4AB
2c+1

(
40 artanh

(
1
2

)
+ 20

))
and taking

ε5 =
1

B
3

√
B − 1

c1(A,B)
(E.43)

we see that for ε < ε5 we have
|L[f ](y)| ≤ B.

We have now to show that L[f ] has also a limit as y → ∞, which we will call L∞[f ]. Moreover,
we shall show that |L[f ](y)− L∞[f ]| ≤ Ae−y/2. This is the consequence of the convergence
of f to f∞ with exponential rate. Let us define

L∞[f ] = 1 + ε3
ˆ ∞

0
ecξ

ˆ ∞

ξ
e−cη

(ˆ ∞

0
E(η − z)f4(z)dz − f4(η)

)
dηdξ.

By (E.42) we know that L∞[f ] is bounded. Moreover, using that∣∣f4(y)− f4∞
∣∣ ≤ 4B3 |f(y)− f∞| ≤ 4AB3e−y/2

we can estimate

|L [f ](y)− L∞[f ]| ≤ ε3
ˆ ∞

y

ecξ
ˆ ∞

ξ

e−cη

∣∣∣∣(ˆ ∞

0

E(η − z)f4(z)dz − f4(η)

)∣∣∣∣ dηdξ
=ε3

ˆ ∞

y

ecξ
ˆ ∞

ξ

e−cη

∣∣∣∣(ˆ ∞

0

E(η − z)
(
f4(z)− f4∞

)
dz −

(
f4(η)− f4∞

))
−
ˆ ∞

η

E(z)dzf4∞

∣∣∣∣ dηdξ
≤ε34AB3

ˆ ∞

y

ecξ
ˆ ∞

ξ

e−(c+1/2)η

(ˆ ∞

−∞
E(z)e−z/2dz + 1

)
dηdξ + ε3

B4

2

ˆ ∞

y

ecξ
ˆ ∞

ξ

e−(c+1)ηdηdξ

≤ε3B3

[
4A

2 artanh
(
1
2

)
+ 1

2c+ 1

]
e−y/2 + ε3

B4

2(c+ 1)
e−y.

Hence, defining

ε6 =

[
B3

A

(
4A

2 artanh
(
1
2

)
+ 1

2c+ 1
+

B

2(c+ 1)

)]− 1
3

(E.44)

we can conclude that there exists a limit

lim
y→∞

L[f ](y) = L∞[f ]

such that
|L[f ](y)− L∞[f ]| ≤ Ae−y/2
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for all ε < min {ε5, ε6}, defined in (E.43) and (E.44). This concludes the proof of L being a self-map.
We now finish the proof of the theorem showing that L is also a contraction map.

We first prove that there exists a constant c2(A,B) such that if f, g ∈ X , then

∥f4 − g4∥X ≤ c2(A,B)∥f − g∥X .

We recall that if g ∈ X , then [g]X ≤ A and |g| ≤ B. Hence, we have the estimate

ey/2 |
(
f(y)4 − g(y)4

)
−
(
f4∞ − g4∞

)∣∣ = ey/2
∣∣∣(f(y)− f∞ + f∞)

4 − (g(y)− g∞ + g∞)
4 −

(
f4∞ − g4∞

)∣∣∣
≤ey/2

∣∣∣(f(y)− f∞)
4 − (g(y)− g∞)

4
∣∣∣+ ey/2

∣∣∣4f∞ (f(y)− f∞)
3 − 4g∞ (g(y)− g∞)

3
∣∣∣

+ ey/2
∣∣∣6f2∞ (f(y)− f∞)

2 − 6g2∞ (g(y)− g∞)
2
∣∣∣+ ey/2

∣∣4f3∞ (f(y)− f∞)− 4g3∞ (g(y)− g∞)
∣∣

≤ (16 + 24 + 12)AB2|f∞ − g∞|+ (32 + 48 + 24 + 4)B3[f − g]X

=52AB2|f∞ − g∞|+ 108B3[f − g]X .

Thus, using that |f4∞ − g4∞| ≤ 4B3|f∞ − g∞| and defining c2(A,B) = max{52AB2 + 4B3, 108B3} we
conclude that

∥f4 − g4∥X ≤ c2(A,B)∥f − g∥X .
Moreover, we see that [f4 − g4]X ≤ c2(A,B)∥f − g∥X , which implies∣∣(f(y)4 − g(y)4

)
−
(
f4∞ − g4∞

)∣∣ ≤ c2(A,B))∥f − g∥X e−y/2.

Hence, we estimate

|L∞[f ] −L∞[g]| ≤ ε3
ˆ ∞

0

ecξ
ˆ ∞

ξ

e−cη

∣∣∣∣(ˆ ∞

0

E(η − z)
(
f4(z)− g4(z)

)
dz −

(
f4(η)− g4(η)

))∣∣∣∣ dηdξ
=ε3

ˆ ∞

0

ecξ
ˆ ∞

ξ

e−cη

∣∣∣∣(ˆ ∞

0

E(η − z)
(
f4(z)− f4∞ −

(
g4(z)− g4∞

))
dz

−
(
f4(η)− f4∞ −

(
g4(η)− g4∞

)))
−
ˆ ∞

η

E(z)dz
(
f4∞ − g4∞

)∣∣∣∣ dηdξ
≤ε3[f4 − g4]X

(
2 artanh

(
1

2

)
+ 1

)ˆ ∞

0

ecξ
ˆ ∞

ξ

e−(c+1/2)ηdηdξ

+ ε3
∣∣f4∞ − g4∞

∣∣
2

ˆ ∞

0

ecξ
ˆ ∞

ξ

e−(c+1)ηdηdξ

≤ε3c2(A,B)

(
4
2 artanh

(
1
2

)
+ 1

2c+ 1
+

1

c+ 1

)
∥f − g∥X .

In a similar way we can estimate

|L[f ](y)− L[g](y)− (L∞[f ]− L∞[g])|

≤ε3
ˆ ∞

y

ecξ
ˆ ∞

ξ

e−cη

∣∣∣∣(ˆ ∞

0

E(η − z)
(
f4(z)− g4(z)

)
dz −

(
f4(η)− g4(η)

))∣∣∣∣ dηdξ
≤ε3[f4 − g4]X

(
2 artanh

(
1

2

)
+ 1

)ˆ ∞

y

ecξ
ˆ ∞

ξ

e−(c+1/2)ηdηdξ

+ ε3
∣∣f4∞ − g4∞

∣∣
2

ˆ ∞

y

ecξ
ˆ ∞

ξ

e−(c+1)ηdηdξ

≤ε3c2(A,B)

(
4
2 artanh

(
1
2

)
+ 1

2c+ 1

)
∥f − g∥X e−y/2 + ε3

c2(A,B)

c+ 1
|f∞ − g∞|e−y.

This estimate implies easily

[L[f ](y)− L[g](y)]X ≤ ε3c2(A,B)

(
4
2 artanh

(
1
2

)
+ 1

2c+ 1
+

1

c+ 1

)
∥f − g∥X .
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Therefore, taking θ ∈ (0, 1) and

ε7 =

[
2c2(A,B)

θ

(
4
2 artanh

(
1
2

)
+ 1

2c+ 1
+

1

c+ 1

)]− 1
3

(E.45)

we conclude that the map L : X → X is a contraction self-map for ε < min{ε5, ε6, ε7} = ε4, given in
(E.43), (E.44) and (E.45). Hence, there exists a unique fixed-point f̃ of the equation (E.25), which
solves also (E.24). Finally, f = εf̃ ∈ C2,1/2(R+) solves (E.10). Taking now ε0 = min{ε1, ε2, ε3, ε4}, for
εi defined in (E.35), (E.37), (E.41) and above, Lemma E.3 and Lemma E.4 imply Theorem E.4.

E.3 Existence of the limit of the traveling wave solutions as
y → ∞

We have proved in Theorem E.3 the existence for any c > 0 of a traveling wave f in R+

solving (E.10) and with the property that that f ∈ C2,1/2(R+). Moreover, as we have seen
in Corollary E.2, f is bounded from below by a positive constant as long as TM > 0. In this
section we will show that f has a limit as y → ∞.

We will proceed as follows. We will show that for any sequence {yn}n∈N increasing and
diverging, the sequence fn(y) = f(y + yn) has a subsequence converging to a function, which
will be denoted by an abuse of notation as ω-limit. This definition relies on the similarity
with the notion of ω-limit point for dynamical systems. Analogously, the ω-limit set is given
in this setting by all the existing limit functions lim

k→∞
f(y + yk), i.e

ω(f) :=

{
f̄ : R → R such that

∃{yk}k, yk < yk+1, yk → ∞ as k → ∞,

satisfying lim
k→∞

f(y + yk) = f̄(y)

}
.

We will prove that any ω-limit is a constant function. This will be used in the end in order
to show that f has a limit.

E.3.1 Elementary properties of the ω-limits of the traveling waves

Let us consider {yn}n∈N ⊂ R+ any increasing sequence with lim
n→∞

yn = ∞ and let us consider

fn(y) := f(y + yn). Then fn : [−yn,∞) → R+ solves for λ > 0 small enough
∂2yfn(y)− c∂yfn(y)− f4n(y) = −

´∞
−yn E(y − η)f4n(η)dη for y > −yn

f(−yn) = TM

f ≥ λ > 0.

Since fn ∈ C2,1/2[−yn,∞), by compactness a diagonal argument shows that there exists a
subsequence fnk

such that fnk
→ f̄ in C2,α([−R,R]) for α ∈

(
0, 12
)
and for any R > 0.

Therefore f̄ ∈ C2(R) and by the uniform boundedness of f ′n and f ′′n we also have ∥f̄ ′∥∞ ≤ 2T 4
M
c

and ∥f̄ ′′∥∞ ≤ 4T 4
M . Moreover, an application of the dominated convergence theorem yields

that f̄ solves {
∂2y f̄(y)− c∂yf̄(y)− f̄4(y) = −

´∞
−∞E(y − η)f̄4(η)dη y ∈ R

0 < λ ≤ f̄ ≤ TM .
(E.46)

Hence, regularity theory implies f̄ ∈ C2,1/2(R), since the convolution E ∗ f̄4 ∈ C0,1/2(R).
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Lemma E.5. Let f solve (E.46). Then f does not attain its supremum and infimum at the
interior, unless f is constant.

Proof. The proof is a direct consequence of the maximum principle. Let us assume that f is not
constant and that there exists ym ∈ R or yM ∈ R such that sup

R
f = f(yM ) or inf

R
f = f(ym).

Then by the positivity of f we see that f4(y) − f4(yM ) ≤ 0 as well as f4(y) − f4(ym) ≥ 0.
Moreover, f differs from its maximum and minimum in sets of positive measures, since f is
continuous and non-constant. Hence, we obtain the following contradictions

0 = f ′′(yM )− cf ′(yM ) +

ˆ
R
E(η − y)

[
f4(η)− f4(yM )

]
dη < 0

if the supremum is attained at the interior or

0 = f ′′(ym)− cf ′(ym) +
ˆ
R
E(η − y)

[
f4(η)− f4(ym)

]
dη > 0

if the infimum is attained at the interior. This concludes the proof of the lemma.

This result implies that, if f̄ is not constant, it have to attain its supremum and infimum
at +∞ or −∞. We will prove that this is not possible. We start showing that f̄ does not
attain its supremum and infimum at +∞.

Lemma E.6. Let f solve (E.46). Then f does not attain its supremum at +∞, that is
lim sup
y→∞

f(y) < sup
R
f , unless f is constant.

Proof. The proof is based once again on the maximum principle. Let us assume that f is
not constant and that lim sup

y→∞
f(y) = sup

R
f =: A. We consider the function ω = A − f ≥ 0.

Moreover, since f is not constant also ω > 0 at the interior by Lemma E.5. Hence, ω solves

−ω′′(y) + cω′(y)− (A− ω(y))4 +

ˆ
R
E(y − η)(A− ω(η))4dη = 0. (E.47)

We will show that ω(y) > 0 as y → ∞, which is a contradiction with the assumption of f at-
taining its supremum at +∞. To this end we construct a suitable family of subsolutions ψδ(y)
with the property f ≥ ψδ and such that ψδ > 0 for y ∈ [0, Rδ) for a suitable Rδ → ∞ as δ → 0.

We define the following constants. First of all we take θ = 1
5 and R > 0 fixed so that

ˆ R+y

y
E(η)dη >

ˆ ∞

R+y
E(η)dη for all y > 0. (E.48)

Moreover, we define c0 = min{1, c} and we take β ∈
(
0, c04

)
fixed so that

artanh(4β)

4β
<

3

2
and β2 − c0

4
β + 4A3

(
artanh(β)

β
− 1

)
≤ 0. (E.49)

For a suitable constant C(β,A, θ) > 0, which will be computed later, we also fix

ε < min

 min[
−R, ln(2)

β

]{A− f(y)}, C(β,A, θ)

 . (E.50)
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Finally, for δ0 =
εθ
2 we consider the following family of subsolutions

ψδ(y) =


0 y < −R
ε− δeβy y ∈ [−R, 0)
εθ − δeβy y ∈ [0, Rδ]

0 y > Rδ,

(E.51)

where Rδ =
1
β ln

(
εθ
δ

)
→ ∞ as δ → 0 as well as εθ − δeβRδ = 0. By construction, ψδ ≤ ω for

y ∈ R \ (0, Rδ). We will show that on (0, Rδ) the family ψδ consists of subsolutions to (E.47).
However, before moving to the proof of this claim we show that equations (E.48) and (E.49)
are well-defined. We first show the function

h(y) =

ˆ R+y

y
E(η)dη −

ˆ ∞

R+y
E(η)dη

is a decreasing function. Using the definition of the kernel E, we notice

h(0) =
1

2
− e−R + 2RE(R) > 0 for R > 0 large enough.

Moreover, lim
y→∞

h(y) = 0. We compute also for R > max{1, ln(2)} = 1

h′(y) = 2E(R+ y)− E(y) and h′′(y) =
e−y

2y
− e−(y+R)

y +R
>
e−y

y

(
1

2
− e−R

)
> 0.

Since lim
y→0

h′(y) = −∞ and lim
y→∞

h′(y) = 0, we conclude h′(y) < 0. This implies that h is

monotonically decreasing for R > 1. Therefore, there exists an R > 0 such that (E.48) holds.

We move to the existence of β ∈
(
0, c04

)
solving (E.49). First of all, let us define g(y) =

artanh(y)
y . Then g : (0, 1) → R+. Hence, β ∈

(
0, c04

)
is well-defined. Moreover, elementary

calculus implies

lim
y→0

g(y) = 1, lim
y→1

g(y) = ∞, g′(y) ≥ 0 with g′(0) = 0, and g′′(y) ≥ 0.

Therefore, g is a convex monotone non-decreasing function with g(0) = 1. Hence, there
exists β0 ∈

(
0, c04

)
such that g(4β) < 3

2 for all β < β0. Moreover, the function k(β) =
β2 − c0

4 β + 4A3(g(β)− 1) is convex as sum of convex functions. Since k(0) = 0, k
(
c0
4

)
> 0 as

well as

k′(β) = −c0
4

+ [2β + 4A3g′(β)] −→
β→0

−c0
4
< 0

we conclude the existence of a β satisfying (E.49).

We prove now that ψδ are subsolutions to (E.47) for y ∈ (0, Rδ), where the functions are
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smooth. We compute for y ∈ (0, Rδ)

−ψ′′
δ (y) + cψ′

δ(y)− (A− ψδ(y))
4 +

ˆ
R
E(y − η) (A− ψδ(η))

4 dη

=−
(
c− c0

4

)
βδeβy + δeβy

(
β2 − c0

4
β
)
−
(
A− εθ + δeβy

)4
+

ˆ −R

−∞
E(y − η)A4dη

+

ˆ 0

−R
E(y − η)

(
A− ε+ δeβη

)4
dη +

ˆ Rδ

0
E(y − η)

(
A− εθ + δeβη

)4
dη

+

ˆ ∞

Rδ

E(y − η)
(
A− εθ + δeβRδ

)4
dη

≤− 3c0
4
βδeβy + δeβy

(
β2 − c0

4
β
)
−
(
A− εθ + δeβy

)4
+

ˆ −R

−∞
E(y − η)

(
A+ δeβη

)4
dη

+

ˆ 0

−R
E(y − η)

(
A− ε+ δeβη

)4
dη +

ˆ Rδ

0
E(y − η)

(
A− εθ + δeβη

)4
dη

+

ˆ ∞

Rδ

E(y − η)
(
A− εθ + δeβη

)4
dη,

(E.52)

where we used the definition of c0, the fact that A4 ≤
(
A+ δeβη

)4
as well as that eβRδ ≤ eβη

for η > Rδ. Expanding the power-law, ordering terms together and using thatˆ
R
E(η − y)eαηdη =

artanh(α)

α
eαy (E.53)

for all |α| < 1, we compute

−ψ′′
δ (y)+cψ

′
δ(y)−(A− ψδ(y))

4+

ˆ
R
E(y−η) (A− ψδ(η))

4 dη (E.54)

≤− 3c0
4
βδeβy + δeβy

(
β2 − c0

4
β + 4A3

(
artanh(β)

β
− 1

))
(I11 )

+ 4A3ε

[
θ −

ˆ 0

−R
E(y − η)dη − θ

ˆ ∞

0
E(y − η)dη

]
(I12 )

+ 4Aε3
[
θ3 −

ˆ 0

−R
E(y − η)dη − θ3

ˆ ∞

0
E(y − η)dη

]
(I13 )

− 6A2ε2
[
θ2 −

ˆ 0

−R
E(y − η)dη − θ2

ˆ ∞

0
E(y − η)dη

]
(I14 )

− ε4
[
θ4 −

ˆ 0

−R
E(y − η)dη − θ4

ˆ ∞

0
E(y − η)dη

]
(I15 )

+ 4δ3e3βyε

[
θ −

ˆ 0

−R
E(y − η)e3β(η−y)dη − θ

ˆ ∞

0
E(y − η)e3β(η−y)dη

]
(I16 )

+ 4δeβyε3
[
θ3 −

ˆ 0

−R
E(y − η)eβ(η−y)dη − θ3

ˆ ∞

0
E(y − η)eβ(η−y)dη

]
(I17 )

− 6δ2e2βyε2
[
θ2 −

ˆ 0

−R
E(y − η)e2β(η−y)dη − θ2

ˆ ∞

0
E(y − η)e2β(η−y)dη

]
(I18 )

− 6A2δ2e2βy
[
1−

ˆ
R
E(η − y)e2β(η−y)dη

]
(I19 )
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− 4Aδ3e3βy
[
1−

ˆ
R
E(η − y)e3β(η−y)dη

]
(I110)

− δ4e4βy
[
1−

ˆ
R
E(η − y)e4β(η−y)dη

]
(I111)

+ 12A2εδeβy
[
θ −

ˆ 0

−R
E(y − η)eβ(η−y)dη − θ

ˆ ∞

0
E(y − η)eβ(η−y)dη

]
(I112)

+ 12Aεδ2e2βy
[
θ −

ˆ 0

−R
E(y − η)e2β(η−y)dη − θ

ˆ ∞

0
E(y − η)eβ(2η−y)dη

]
(I113)

− 12Aε2δeβy
[
θ2 −

ˆ 0

−R
E(y − η)eβ(η−y)dη − θ2

ˆ ∞

0
E(y − η)eβ(η−y)dη

]
. (I114)

We proceed now estimating all different terms in (E.54). By the choice of β in (E.49) we have

(I11 ) ≤ −3c0
4
βδeβy. (E.55)

We now proceed estimating the terms (I12 )-(I
1
5 ). Using the symmetry of E, the definition of

R and the choice of θ = 1
5 , we compute

(I12 ) =4A3ε

[
θ

ˆ ∞

y
E(η)dη −

ˆ R+y

y
E(η)dη

]
= 4A3ε

[
θ

ˆ ∞

R+y
E(η)dη − (1− θ)

ˆ R+y

y
E(η)dη

]
=4A3ε

[
−θ
(ˆ R+y

y
E(η)dη −

ˆ ∞

R+y
E(η)dη

)
− 3θ

ˆ R+y

y
E(η)dη

]
≤− 12A3εθ

ˆ R+y

y
E(η)dη.

(E.56)

Similarly, since 1− θ3 = 124θ3 we have

(I13 ) ≤− 492Aε3θ3
ˆ R+y

y
E(η)dη. (E.57)

Choosing ε < 2Aθ, which by the choice of θ implies that ε < 492Aθ3, we obtain

(I14 ) =− 6A2ε2
[
θ2
ˆ ∞

y
E(η)dη −

ˆ R+y

y
E(η)dη

]
≤6A2ε2

ˆ R+y

y
E(η)dη ≤ 12A3εθ

ˆ R+y

y
E(η)dη

(E.58)

and

(I15 ) = −ε4
[
θ4
ˆ ∞

y
E(η)dη −

ˆ R+y

y
E(η)dη

]
≤ ε4

ˆ R+y

y
E(η)dη ≤ 492Aε3θ3

ˆ R+y

y
E(η)dη.

(E.59)

Hence, (E.56)-(E.59) imply
(I12 ) + (I13 ) + (I14 ) + (I15 ) ≤ 0. (E.60)

Besides the choice of β as in (E.49) we use in the remaining estimates the fact that for
y ∈ (0, Rδ) the following holds true

δeβy ≤ δeyRδ = εθ < ε.
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Hence, we see that

(I16 ) ≤ 4δ3e3βyεθ ≤ 4ε3δeβy, (I17 ) ≤ 4δeβyε3θ3 ≤ 4ε3δeβy, (E.61)

and

(I18 ) ≤ 6δ2e2βyε2

(ˆ −y

−(R+y)
E(η)e2βηdη + θ2

ˆ ∞

−y
E(η)e2βηdη

)

≤ 6δ2e2βyε2
ˆ ∞

−∞
E(η)e2βηdη6δ2e2βyε2

artanh(2β)

2β
≤ 9ε3δeβy, (E.62)

where we used also that β 7→ artanh(β)
β is monotonically increasing. Finally, for the last six

terms we estimate

(I19 ) = 6A2δ2e2βy
(
artanh(2β)

2β
− 1

)
≤ 3A2δ2e2βy ≤ 3εA2δeβy, (E.63)

(I110) = 4Aδ3e3βy
(
artanh(3β)

3β
− 1

)
≤ 2ε2Aδeβy, (E.64)

(I111) = δ4e4βy
(
artanh(4β)

4β
− 1

)
≤ 1

2
ε3δeβy, (E.65)

(I112) ≤ 12A2εδeβy, (I113) ≤ 12Aε2δeβy, and (I114) ≤ 18Aε2δeβy. (E.66)

Therefore, defining the constant in equation (E.50)

C(β,A, θ) = min

{
1, 2Aθ,

c0β

2(18 + 15A2 + 32A)

}
and combining the estimates (E.55),(E.60)-(E.66) we conclude that

−ψ′′
δ (y) + cψ′

δ(y)− (A− ψδ(y))
4 +

ˆ
R
E(y − η) (A− ψδ(η))

4 dη ≤ −c0
4
βδeβy < 0

for all y ∈ (0, Rδ).

We now notice that by the choice of δ0 we have ψδ0 ≤ ω on R. In particular, since
Rδ0 = 1

β ln(2) the definition of ε in (E.50) implies that ψδ0(y) ≤ ψδ0(0) =
εθ
2 < ω on [0, Rδ0 ] as

well as inf
y>0

(ω − ψδ0) ≥ εθ
2 > 0. We remark that on {y > 0} the functions ψδ are continuous.

We aim to show that ψδ ≤ ω on [0, Rδ] for all δ ≤ δ0. To this end we assume the contrary,
i.e. we assume that there exists some 0 < δ < δ0 such that

inf
y>0

(ω − ψδ) < 0. (E.67)

By construction this yields that inf
y>0

(ω − ψδ) = min
[0,Rδ]

(ω − ψδ) < 0. The uniform continuity of

[δ, δ0] ∋ δ̄ 7→ ψδ̄ as functions on [0, Rδ] and their monotonicity (δ 7→ ψδ is increasing) imply
that there exists

δ∗ := sup

{
δ < δ∗ < δ0 : min

[0,Rδ]
(ω − ψδ∗) < 0

}
(E.68)

such that
min
[0,Rδ]

(ω − ψδ∗) = ω(y0)− ψδ∗ = 0
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for some y0 ∈ (0, Rδ∗). Indeed, by construction ψδ∗ < ω on y ≥ Rδ∗ as well as ψδ∗(0) =
εθ − δ∗ < ω(0). Hence, we can apply the maximum principle for (E.47) at the point y0 since
on (0, Rδ∗) the function ψδ∗ is smooth. We obtain the following contradiction

0 <− (ω − ψδ∗)
′′ (y0) + c (ω − ψδ∗)

′ (y0)− (A− ω(y0))
4 + (A− ψδ∗)

4

+

ˆ
R
E(y − η) (A− ω)4 dη −

ˆ
R
E(y − η) (A− ψδ∗)

4 dη

≤
ˆ
R
E(y − η) (A− ω)4 dη −

ˆ
R
E(y − η) (A− ψδ∗)

4 dη ≤ 0,

(E.69)

since by construction 0 ≤ ψδ∗ ≤ ω for all y ∈ R \ (0, Rδ∗). Moreover, 0 ≤ ψδ∗ ≤ ω for
y ∈ (0, Rδ∗). Thus, (A− ψδ∗) ≥ (A− ω) ≥ 0 on R. This contradiction implies that such δ∗ as
in (E.68) and consequently such δ satisfying (E.67) do not exist. Therefore we conclude that

inf
y>0

(ω − ψδ) ≥ 0

for all δ < δ0.

This implies that for all y ∈ [0, Rδ] we can estimate w(y) ≥ εθ− δeβy for all δ < δ0. Thus,
taking the pointwise limit as δ → 0 we conclude

A− f(y) = w(y) ≥ εθ > 0.

This is clearly a contradiction to the assumption that lim sup
y→∞

f(y) = A. Hence, f does not

attain its supremum at +∞.

A similar argument shows that f̄ , solution to (E.46), does not attain its infimum at +∞,
unless it is constant.

Lemma E.7. Let f solve (E.46). Then f does not attain its infimum at +∞, i.e.
lim inf
y→∞

f(y) < inf
R
f , unless f is constant.

Proof. We assume again that f is not constant and that lim inf
y→∞

f(y) = inf
R
f =: B > 0. We

consider the function ω = f − B ≥ 0. Moreover, since f is not constant also ω > 0 at the
interior by Lemma E.5. Hence, ω solves

−ω′′(y) + cω′(y) + (B + ω(y))4 −
ˆ
R
E(y − η)(B + ω(η))4dη = 0. (E.70)

As we did in Lemma E.6 we will show that ω(y) > 0 as y → ∞, which is a contradiction to
the assumption of lim inf

y→∞
f(y) = inf

R
f . We will consider the family of functions ψδ defined as

in (E.51) for θ = 1
5 , β as in (E.49) and R defined in (E.48). Moreover, we take ε > 0 satisfying

ε < min

 min[
−R, ln(2)

β

]{f(y)−B}, C(β,B, θ)

 , (E.71)

where C(β,B, θ) > 0 is a constant that will be computed later. Finally, we consider δ < δ0 =
εθ
2 .
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By construction we see that ψδ ≤ ω on R \ (0, Rδ). Moreover, it is important to remark
that for y ∈ (0, Rδ) the functions ψδ are smooth, as well as ψδ are continuous on y ≥ 0. Hence,
we can compute for y ∈ (0, Rδ) the following

−ψ′′
δ (y) + cψ′

δ(y) + (B + ψδ(y))
4 −

ˆ
R
E(y − η) (B + ψδ(η))

4 dη

=−
(
c− c0

4

)
βδeβy + δeβy

(
β2 − c0

4
β
)
+
(
B + εθ − δeβy

)4
−
ˆ −R

−∞
E(y − η)B4dη

−
ˆ 0

−R
E(y − η)

(
B + ε− δeβη

)4
dη −

ˆ Rδ

0
E(y − η)

(
B + εθ − δeβη

)4
dη

−
ˆ ∞

Rδ

E(y − η)
(
B + εθ − δeβRδ

)4
dη

≤− 3c0
4
βδeβy + δeβy

(
β2 − c0

4
β
)
+
(
B + εθ − δeβy

)4
−
ˆ −R

−∞
E(y − η)

(
B − δeβη

)4
dη

−
ˆ 0

−R
E(y − η)

(
B + ε− δeβη

)4
dη −

ˆ Rδ

0
E(y − η)

(
B + εθ − δeβη

)4
dη

−
ˆ ∞

Rδ

E(y − η)
(
B + εθ − δeβRδ

)4
dη.

(E.72)

As for (E.52) we used here the definition of c0 as well as the fact that B4 ≥
(
B − δeβη

)4
for

η < −R. Expanding the power-law, ordering terms together and using (E.53), we compute

−ψ′′
δ (y)+cψ

′
δ(y)+(B + ψδ(y))

4−
ˆ
R
E(y−η) (B + ψδ(η))

4 dη (E.73)

≤− 3c0
4
βδeβy + δeβy

(
β2 − c0

4
β + 4B3

(
artanh(β)

β
− 1

))
(I21 )

+ 4B3ε

[
θ −

ˆ 0

−R
E(y − η)dη − θ

ˆ ∞

0
E(y − η)dη

]
(I22 )

+ 4Bε3
[
θ3 −

ˆ 0

−R
E(y − η)dη − θ3

ˆ ∞

0
E(y − η)dη

]
(I23 )

+ 6B2ε2
[
θ2 −

ˆ 0

−R
E(y − η)dη − θ2

ˆ ∞

0
E(y − η)dη

]
(I24 )

+ ε4
[
θ4 −

ˆ 0

−R
E(y − η)dη − θ4

ˆ ∞

0
E(y − η)dη

]
(I25 )

− 4δ3e3βyε

[
θ −

ˆ 0

−R
E(y − η)e3β(η−y)dη − θ

ˆ ∞

0
E(y − η)e3β(η−y)dη

]
(I26 )

− 4δeβyε3
[
θ3 −

ˆ 0

−R
E(y − η)eβ(η−y)dη − θ3

ˆ ∞

0
E(y − η)eβ(η−y)dη

]
(I27 )

+ 6δ2e2βyε2
[
θ2 −

ˆ 0

−R
E(y − η)e2β(η−y)dη − θ2

ˆ Rδ

0
E(y − η)e2β(η−y)dη

]
(I28 )

− 6δ2e2βyε2θ2
ˆ ∞

Rδ

E(y − η)e2β(Rδ−y)dη
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+ 6B2δ2e2βy
[
1−

ˆ Rδ

−∞
E(η − y)e2β(η−y)dη −

ˆ ∞

Rδ

E(η − y)e2β(Rδ−y)dη
]

(I29 )

− 4Bδ3e3βy
[
1−

ˆ
R
E(η − y)e3β(η−y)dη

]
(I210)

+ δ4e4βy
[
1−

ˆ Rδ

−∞
E(η − y)e4β(η−y)dη −

ˆ ∞

Rδ

E(η − y)e4β(Rδ−y)dη
]

(I211)

− 12B2εδeβy
[
θ −

ˆ 0

−R
E(η − y)eβ(η−y)dη − θ

ˆ ∞

0
E(η − y)eβ(η−y)dη

]
(I212)

− 12Bε2δeβy
[
θ2 −

ˆ 0

−R
E(η − y)eβ(η−y)dη − θ2

ˆ ∞

0
E(η − y)eβ(η−y)dη

]
(I213)

+ 12Bεδ2e2βy
[
θ −

ˆ 0

−R
E(η − y)e2β(η−y)dη − θ

ˆ Rδ

0
E(η − y)e2β(η−y)dη

]
(I214)

− 12Bθεδ2e2βy
ˆ ∞

Rδ

E(η − y)e2β(Rδ−y)dη,

where we used that enβRδ ≤ enβη for any n = 1, 2, 3, 4 and η ≥ Rδ.

Arguing as in the proof of (E.55), (E.56) and (E.57) we see that also

(I21 ) ≤ −3c0
4
βδeβy, (I22 ) ≤ 0 and (I23 ) ≤ 0.

As we argued for (E.56) and (E.57) using that 1− θ2 = 24θ2 and 1− θ4 = 624θ4 we estimate

(I24 ) ≤ −138B2ε2θ2
ˆ R+y

y
E(η)dη < 0 and (I25 ) ≤ −623ε4θ4

ˆ R+y

y
E(η)dη < 0.

(E.74)

Finally, estimating only the positive terms, using that δeβy ≤ εθ for y < Rδ and using the
definition of β in (E.49), we compute

(I26 ) ≤4ε
artanh(3β)

3β
δ3e3βy ≤ 6ε3δeβy, (I27 ) ≤ 4ε3

artanh(β)

β
δeβy ≤ 6ε3δeβy, (I28 ) ≤ 6ε3δeβy

(I29 ) ≤6εB2δeβy, (I210) ≤ 6ε2Bδeβy, (I211) ≤ ε3δeβy,

(I212) ≤18B2εδeβy, (I213) ≤ 18Bε2δeβy, and (I214) ≤ 12Bε2δeβy.

Hence, choosing in the definition (E.71) of ε the constant C(β,B, θ) > 0 as

C(β,B, θ) = min

{
1,

c0β

2(18 + 36B + 24B2)

}
,

we conclude that

−ψ′′
δ (y) + cψ′

δ(y) + (B + ψδ(y))
4 −

ˆ
R
E(y − η) (B + ψδ(η))

4 dη = −c0
4
βδeβy < 0.

We see once more that by the choice of all the parameters we have ψδ0 ≤ ω on R as well as
ψδ0 < ω on [0, Rδ0 ]. Moreover, for all δ < δ0 it is true that ψδ ≤ ω on R \ (0, Rδ) as well
as ψR(0) < ω and ψδ(Rδ) < ω. Hence, arguing as in the proof of Lemma E.6 we see that
assuming the existence of some δ < δ0 with

inf
y>0

(ω − ψδ) = min
[0,Rδ]

(ω − ψδ) < 0
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there exists also some δ < δ∗ < δ0 defined by δ∗ := sup

{
δ < δ∗ < δ0 : min

[0,Rδ]
(ω − ψδ∗) < 0

}
such that

min
[0,Rδ]

(ω − ψδ∗) = ω(y0)− ψδ∗ = 0

for some y0 ∈ (0, Rδ∗). However, the application of the maximum principle for the equation
(E.70) to the functions ω and ψδ∗ yields as in (E.69) the contradiction 0 < −

´
RE(y −

η)
[
(B + ω(η))4 − (B + ψδ∗(η))

4
]
dη < 0. Therefore, we conclude that

inf
y>0

(ω − ψδ) ≥ 0

for all δ < δ0, so that w(y) ≥ εθ − δeβy for all δ < δ0 and all y ∈ [0, Rδ]. Thus, taking the
pointwise limit as δ → 0 we establish

f(y)−B = w(y) ≥ εθ > 0,

which contradicts the assumption that lim inf
y→∞

f(y) = B. Hence, f does not attain its infimum

at +∞.

E.3.2 The ω-limits of the traveling waves are constant

Lemma E.5, Lemma E.6 and Lemma E.7 imply that the limit function f̄ solving (E.46) is
either constant or it takes the supremum and infimum at −∞, i.e.

inf
R
f̄ = lim inf

y→−∞
f̄(y) < lim sup

y→−∞
f̄(y) = sup

R
f̄ .

We will show that f̄ is constant, showing that lim inf
y→−∞

f̄(y) = lim sup
y→−∞

f̄(y). We start proving

the following Theorem, which is a fundamental stability result.

Theorem E.5. Let f solve (E.46) for 0 < λ < TM . Then there exists an ε0 = ε0(TM , λ, c) > 0
such that for all ε < ε0 there exists L0(ε, Tm, λ, c) > 0 with the property that if

osc
[−L,L]

f < ε

then also

osc
[L,∞)

f < 3ε

for all L > L0.

Proof. Let us assume that f satisfy osc
[−L,L]

f < ε for some L > 0 and some ε > 0. We show

that for ε > 0 small enough and for L > 0 large enough this assumption implies osc
[L,∞)

f < 3ε.

In the course of the proof we will also define ε0 and L0(ε).

If osc
[−L,L]

f < ε, then the maximum max
[−L,L]

f =:ML < TM and the minimum min
[−L,L]

f =: mL > λ

satisfy

ML −mL < ε.
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We now construct two suitable families of subsolutions and supersolutions, for which the
maximum principle will show the claim in a similar way as in the proofs of Lemma E.6 and
of Lemma E.7. Let us consider the following functions

ψLδ (y) = mL − ε+


−(mL − ε) y < −L
ε− δeβ(y−L) −L ≤ y < L

εθ − δeβ(y−L) y ∈ [L,Rδ]

−(mL − ε) y > Rδ,

(E.75)

where Rδ = 1
β ln

(
mL−(1−θ)ε

δ

)
+ L is so defined that ψLδ is continuous on [L,∞). Moreover,

we notice that ψLδ is smooth in (L,Rδ). We consider ε < λ as well as δ < mL − λ, so that
mL−ε > 0 and Rδ > L, and we study the family of functions ψLδ for δ < δ0, where δ0(ε, L) > 0
will be specified later. We also fix θ = 1

5 and c0 = min{c, 1}. In addition we choose

β < min

{
1

24
,
c0
2
,
c0

2T 3
M

,

(
10

8

c0
77T 3

M

)24
}

(E.76)

satisfying also

β2 − c0
2
β + 4T 3

M

(
artanh(β)

β
− 1

)
+ 4T 3

M

(
artanh(3β)

3β
− 1

)
≤ 0. (E.77)

For c1 = 6artanh
(
1
6

)
we take ε < ε1 defined by

ε1 = min

{
1, λ,

c0β

8(4c1 + 16c1T 2
M + 12T 2

M + 12TMc1 + 6TM )

}
. (E.78)

We also consider a fixed L > L1(ε) satisfying(
1 +

TM
εθ

+
T 3
M

(εθ)3

)ˆ ∞

L1+y
E(z)dz <

ˆ L1+y

y−L1

E(z)dz for all y > L1, e
−L1 < β2 and L1 >

1√
β
.

(E.79)
We remark that β given by (E.77) and L1 defined by (E.79) are well-defined. For β one argues
similarly as for (E.49), while for L1 we need to adapt the proof for (E.48). This adaptation
however is easy. As we proved in (E.48), one can readily see that for any A > 0

A

ˆ ∞

N+y
E(z)dz <

ˆ N+y

0
E(z)dz for N = N(A) > 0 large enough and for all y > 0.

Taking A = 1 + TM
εθ +

T 3
M

(εθ)3
and L1 = N(A)

2 , we conclude (E.79). Moreover, we remark that

the function

N 7→ A

ˆ ∞

N+y
E(z)dz −

ˆ N+y

0
E(z)dz

is monotonically decreasing for N > N(A). Hence, (E.79) holds also for all L > L1(ε).
Finally, we set

δ0 = (mL − (1− θ)ε)e−βRε > 0, (E.80)

where Rε is the distance such that

f(y)−mL ≥ −1− θ

2
ε for all y ∈ [L−Rε, L+Rε]. (E.81)



326 APPENDIX E. TRAVELING WAVES FOR STEFAN PROBLEM

It is important to notice that Rε is independent of L. This can be proved using the uniform
continuity of f , according to which there exists Rε such that f(y) − f(x) ≥ −1−θ

2 ε for all
|x− y| < Rε. Finally, x = L and f(L) ≥ mL implies (E.81). Thus, with δ0 defined in (E.80)
we see that

Rδ0 =
1

β
ln
(
eβRε

)
= Rε + L.

Hence, for all y ∈ [L,Rδ0 ] we have by construction ψLδ0 ≤ mL − (1 − θ)ε as well as f(y) ≥
mL − 1−θ

2 ε. This implies

f(y)− ψLδ0 ≥ 1− θ

2
ε > 0.

for y ∈ [L,Rδ0 ].

Moreover, by definition we know that ψLδ < f(y) for y ∈ R \ (L,Rδ) and for all δ ≤ δ0.
We remark also that ψLδ (L) = mL − (1 − θ)ε < mL ≤ f(L) as well as ψLδ (Rδ) = 0 < f(Rδ).
Hence, ψLδ0 < f in R.

We will now show that ψLδ is a subsolution to the equation (E.46) for y ∈ (L,Rδ), where
the function is also smooth.

Let us first of all assume that y ∈
[
Rδ − 1√

β
, Rδ

)
∩ (L,Rδ). We compute

δeβ(y−L) ≥ δeβ(Rδ−L)e−
√
β = (mL − (1− θ)ε)e−

√
β.

Hence,

0 ≤ ψLδ (y) ≤ (mL − (1− θ)ε)
(
1− e−

√
β
)
.

This implies that

− ( ψLδ
)′′

(y) + c
(
ψLδ
)′
(y) +

(
ψLδ (y)

)4 − ˆ
R
E(η − y)

(
ψLδ (η)

)4
dη

<(mL − (1− θ)ε)(β2 − cβ) + (mL − (1− θ)ε)4
(
1− e−

√
β
)4

≤(mL − (1− θ)ε)4
[

β2 − c0β

(mL − (1− θ)ε)3
+ β2

]
≤(mL − (1− θ)ε)4

[
− c0β

2(mL − (1− θ)ε)3
+ β2

]
≤ (mL − (1− θ)ε)4

[
− c0β

2T 3
M

+ β2
]
< 0.

(E.82)

We used besides the definition of β in (E.76) also that (mL − (1− θ)ε) ≤ TM , c ≤ c0 as well
as 1− e−|x| ≤ |x|.

It remains to show that ψLδ is a subsolution also for y ∈
(
L,Rδ − 1√

β

)
. Without loss

of generality we assume
(
L,Rδ − 1√

β

)
̸= ∅, since this is true for δ small enough. Moreover,

for all δ ≤ δ0 with
[
Rδ − 1√

β
, Rδ

)
∩ (L,Rδ) = (L,Rδ) estimate (E.82) gives the result about

ψLδ being a subsolution. We collect many estimates similar to the ones made for (E.54) and
(E.73). For the following computation we use c ≥ c0 and that eβRδ < eβη for η > Rδ, we
expand the power law, and we order similar terms together.
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−
(
ψLδ
)′′

(y)+ c
(
ψLδ
)′
(y)+

(
ψLδ (y)

)4 − ˆ
R
E(η− y)

(
ψLδ (η)

)4
dη (E.83)

≤− c0
2
βδeβ(y−L) (I31 )

+ δeβ(y−L)
(
β2 − c0

4
β − 4(mL − ε)3 + 4(mL − ε)3

ˆ ∞

−L
E(η − y)eβ(η−y)dη

)
− 4(mL − ε)δ3e3β(y−L)

(
1−

ˆ ∞

−L
E(η − y)e3β(η−y)dη

)
(I32 )

+ 6(mL − ε)2δ2e2β(y−L)
(
1−

ˆ Rδ

−L
E(η − y)e2β(η−y)dη

)
(I33 )

− 6(mL − ε)2δ2
ˆ ∞

Rδ

E(η − y)e2β(Rδ−L)

+ δ4e4β(y−L)
(
1−

ˆ Rδ

−L
E(η − y)e4β(η−y)dη

)
− δ4

ˆ ∞

Rδ

E(η − y)e4β(Rδ−L) (I34 )

+ 4(mL − ε)3
[
εθ +

ˆ −L

−∞
E(η − y)(mL − ε)dη − ε

ˆ L

−L
E(η − y)dη

]
(I35 )

− 4(mL − ε)3εθ

ˆ ∞

L
E(η − y)dη

+ 4(mL − ε)

[
(εθ)3 +

ˆ −L

−∞
E(η − y)(mL − ε)3dη − ε3

ˆ L

−L
E(η − y)dη

]
(I36 )

− 4(mL − ε)(εθ)3
ˆ ∞

L
E(η − y)dη

+ 6(mL − ε)2
[
(εθ)2 −

ˆ −L

−∞
E(η − y)(mL − ε)2dη − ε2

ˆ L

−L
E(η − y)dη

]
(I37 )

− 6(mL − ε)2(εθ)2
ˆ ∞

L
E(η − y)dη

+ (εθ)4 −
ˆ −L

−∞
E(η − y)(mL − ε)4dη − ε4

ˆ L

−L
E(η − y)dη − (εθ)4

ˆ ∞

L
E(η − y)dη (I38 )

− 4ε3δeβ(y−L)
(
θ3 −

ˆ L

−L
E(η − y)eβ(η−y)dη − θ3

ˆ ∞

L
E(η − y)eβ(η−y)dη

)
(I39 )

− 4εδ3e3β(y−L)
(
θ3 −

ˆ L

−L
E(η − y)e3β(η−y)dη − θ

ˆ ∞

L
E(η − y)e3β(η−y)dη

)
(I310)

+ 6ε2δ2e2β(y−L)
(
θ2 −

ˆ L

−L
E(η − y)e2β(η−y)dη − θ2

ˆ Rδ

L
E(η − y)e2β(η−y)dη

)
(I311)

− 6(εθδ)2e2β(Rδ−L)
ˆ ∞

Rδ

E(η − y)dη

− 12(mL − ε)2εδeβ(y−L)
(
θ −

ˆ L

−L
E(η − y)eβ(η−y)dη − θ

ˆ ∞

L
E(η − y)eβ(η−y)dη

)
(I312)

− 12(mL − ε)ε2δeβ(y−L)
(
θ2 −

ˆ L

−L
E(η − y)eβ(η−y)dη − θ2

ˆ ∞

L
E(η − y)eβ(η−y)dη

)
(I313)

+ 12(mL − ε)εδ2e2β(y−L)
(
θ −

ˆ L

−L
E(η − y)e2β(η−y)dη − θ

ˆ Rδ

L
E(η − y)e2β(η−y)dη

)
(I314)

− 12(mL − ε)εδ2e2β(Rδ−L)
ˆ ∞

Rδ

E(η − y)dη.
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Next, using (E.53) and estimating (m− ε) ≤ TM as well as δeβ(y−L) ≤ m− (1− θ)ε ≤ TM we
can compute

(I31 ) + (I32 ) ≤− c0
2
βδeβ(y−L)

+ δeβ(y−L)
[
β2 − c0

4
β + 4T 3

M

(
artanh(β)

β
− 1

)
+ 4T 3

M

(
artanh(3β)

3β
− 1

)]
≤− c0

2
βδeβ(y−L)

(E.84)

by the choice of β as in (E.77). Next we consider (I37 ) and (I38 ). Here we use (E.56), (E.57)
and (E.74), obtaining

(I37 ) ≤ 6(mL − ε)2
[
(εθ)2 − ε2

ˆ L

−L
E(η − y)dη − (εθ)2

ˆ ∞

L
E(η − y)dη

]
≤ 0 (E.85)

as well as

(I38 ) ≤ (εθ)4 − ε4
ˆ L

−L
E(η − y)dη − (εθ)4

ˆ ∞

L
E(η − y)dη ≤ 0 (E.86)

Using θ = 1
5 and L ≥ L1 as defined in (E.79), we also estimate

(I35 ) ≤4(mL − ε)3
[
εθ

ˆ L

−∞
E(η − y)dη + TM

ˆ −L

−∞
E(η − y)dη − ε

ˆ L

−L
E(η − y)dη

]
≤4(mL − ε)3

[
εθ

ˆ −L

−∞
E(η − y)dη + TM

ˆ −L

−∞
E(η − y)dη − 4εθ

ˆ L

−L
E(η − y)dη

]
=4(mL − ε)3εθ

[(
1 +

TM
εθ

)ˆ −L

−∞
E(η − y)dη − 4

ˆ L

−L
E(η − y)dη

]
≤ 0

(E.87)

and

(I36 ) ≤4(mL − ε)

[
(εθ)3

ˆ L

−∞
E(η − y)dη + T 3

M

ˆ −L

−∞
E(η − y)dη − ε3

ˆ L

−L
E(η − y)dη

]
≤4(mL − ε)(εθ)3

[(
1 +

T 3
M

(εθ)3

)ˆ −L

−∞
E(η − y)dη − 124

ˆ L

−L
E(η − y)dη

]
≤ 0.

(E.88)

Using artanh(nβ)
nβ ≤ c1 for n ≤ 4, θ = 1

5 as well as the estimate δeβ(y−L) ≤ TM for y ≤ Rδ we
compute furthermore

(I39 ) ≤ 4ε3δeβ(y−L)
artanh(β)

β
≤ 4ε3c1δe

β(y−L), (E.89)

(I310) ≤ 4εδ3e3β(y−L)
artanh(3β)

3β
≤ 4εT 2

Mc1δe
β(y−L), (E.90)

(I311) ≤ 6ε2TMδe
β(y−L), and (I312)+(I313)+(I314) ≤ 12εTMδe

β(y−L) (TM (c1 + 1) + c1) . (E.91)

Finally, we have to estimate the remaining terms (I33 ) and (I34 ). To this end we recall that we
are considering the case for which Rδ − y ≥ 1√

β
and that we have chosen L > L1 such that

e−L1 ≤ β2. Additionally, we also use that

e
− 1√

β < β
5
4 for all β > 0. (E.92)
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We hence estimate

(I3) ≤6(mL − ε)2δ2e2β(y−L)
(
1−

ˆ Rδ

−L
E(η − y)e2β(η−y)dη

)
=6(mL − ε)2δ2e2β(y−L)

(
1− artanh(2β)

2β
+

ˆ −L

−∞
E(η − y)e2β(η−y)dη

)
+ 6(mL − ε)2δ2e2β(y−L)

ˆ ∞

Rδ

E(η − y)e2β(η−y)dη

≤6T 3
Mδe

β(y−L)
(ˆ −(L+y)

−∞
E(η)e2βηdη +

ˆ ∞

Rδ−y
E(η)e2βηdη

)

≤6T 3
Mδe

β(y−L)
(
e−(L+y)

2
+

ˆ ∞

1√
β

e−(1−2β)η

2
dη

)
≤ 6T 3

Mδe
β(y−L)

(
β2

2
+

3

5
e
− 5

6
√
β

)
≤6T 3

Mδe
β(y−L)

(
β2

2
+

3

5
ββ

1
24

)
.

(E.93)

We also used in the second inequality that artanh(a)
a ≥ 1, as well as in the third inequality the

estimate e2β(η) ≤ 1 for η ≤ −(L+ y) ≤ 0, the estimate (E.27) and the inequality E(z) ≤ e−|z|
2

for |z| > 1 since β−
1
2 > 1. For the fourth inequality we used (1− 2β) ≥ 5

6 since β < 1
24 <

1
12

and we concluded the fifth estimate with (E.92). In a very similar way, using again that
(1− 4β) ≥ 5

6 since β < 1
24 , we also have the estimate

(I4) ≤ δ4e4β(y−L)
(
1−

ˆ Rδ

−L
E(η − y)e4β(η−y)dη

)
=δ4e4β(y−L)

(
1− artanh(4β)

4β
+

ˆ −L

−∞
E(η − y)e4β(η−y)dη +

ˆ ∞

Rδ

E(η − y)e4β(η−y)dη
)

≤T 3
Mδe

β(y−L)
(ˆ −(L+y)

−∞
E(η)e4βηdη +

ˆ ∞

Rδ−y
E(η)e4βηdη

)
≤ T 3

Mδe
β(y−L)

(
β2

2
+

3

5
ββ

1
24

)
.

(E.94)

Putting now together all estimates (E.84)-(E.91) and (E.93)-(E.94), and using that β <(
10
8

c0
77T 3

M

)24
and ε < 1 we conclude for y ∈

(
L,Rδ − 1√

β

)
−
(
ψLδ
)′′

(y) + c
(
ψLδ
)′
(y) +

(
ψLδ (y)

)4 − ˆ
R
E(η − y)

(
ψLδ (η)

)4
dη

≤δeβ(y−L)
(
−c0

2
β + ε

(
4c1 + 16c1T

2
M + 12T 2

M + 12c1TM + 6TM
)
+

77T 3
M

10
ββ

1
24

)
≤δeβ(y−L)

(
−c0

2
β +

c0
8
β +

c0
8
β
)
= −c0

4
βδeβ(y−L) < 0,

(E.95)

where at the end we used the choice of ε < ε1 and of β according to (E.78) and (E.76),
respectively.

Estimates (E.82) and (E.95) show that for all δ < δ0 and for all y ∈ (L,Rδ) the functions
ψLδ are subsolutions, i.e.

−
(
ψLδ
)′′

(y) + c
(
ψLδ
)′
(y) +

(
ψLδ (y)

)4 ≤ 0.
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Since by construction ψLδ0 < f in R with ψLδ0 −f ≤ −1−θ
2 ε < 0 for all y ≥ L, as well as ψLδ ≤ f

for y ∈ R \ (L,Rδ) with ψLδ |{L,Rδ} < f |{L,Rδ}, applying the maximum principle in the same
way as we did in the proof of Lemma E.6 and Lemma E.7 and using the uniform continuity
and the increasing monotonicity of δ 7→ ψLδ on compact sets as well as the fact that ψLδ are
subsolutions on (L,Rδ) we conclude that

ψLδ (y) ≤ f(y) for all y ∈ R and δ < δ0.

Hence, for any y > L we have for δ < δ0 small enough

f(y) ≥ mL − (1− θ)ε− δeβ(y−L).

Taking δ → 0 and thus Rδ → ∞ yields

f(y) ≥ mL − (1− θ)ε for all y > L. (E.96)

In a similar way we show now that f(y) ≤ ML + (1 − θ)ε for y > L. We consider a similar
family of functions called {ψLγ } which we will prove to be supersolutions. In this case we
define

ψLγ (y) =ML + ε+


2TM − (ML + ε) y < −L
γeζ(y−L) − ε −L ≤ y < L

γeζ(y−L) − εθ L ≤ y ≤ Rγ

2TM − (ML + ε) y > Rγ ,

(E.97)

where Rγ = 1
ζ ln

(
2TM−(ML+(1−θ)ε)

γ

)
+ L. We consider also ε < TM and γ < TM −ML, so

that 2TM −ML − ε > 0 as well as Rγ > L. We remark that since f does not take supremum
and infimum at the interior, TM −ML > 0. Moreover, we notice that this family of functions
is continuous on (L,∞) as well as smooth on (L,Rγ). For a γ0(ε, L) > 0 defined later we
study the family of functions

{
ψLγ
}
for γ < γ0. We also fix as usual θ = 1

5 and c0 = min{1, c}.
Additionally, we choose

ζ < min

{
1

4
,
c0
2

}
such that

artanh(4ζ)

4ζ
<

3

2
and

c0
2
ζ − ζ2 − 15(2TM )3

(
artanh(4ζ)

4ζ
− 1

)
> 0. (E.98)

We also consider ε < ε2 defined by

ε2 = min

{
1, TM ,

ζc0
4

1

4 + 27(2TM ) + 28(2TM )2
,
2

5
λ

}
. (E.99)

We notice that ζ depends only on c, so that ε2 = ε2(c, λ, TM ). Moreover, we study the family
of functions for L > L2(ε, TM ) satisfying(

1 +
2TM
εθ

+
(2TM )2

(εθ)2
+

(2TM )3

(εθ)3
+

(2TM )4

(εθ)4

) ˆ ∞

L2+y
E(z)dz <

ˆ y+L2

y−L2

E(z)dz for all y > L2.

(E.100)
We remark that such ζ as in (E.98) and such L2 as in (E.100) exist, as we have seen already
several times. Moreover, (E.100) holds true for all L > L2.
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We will also consider γ0 = (2TM − (ML + (1− θ)ε)) e−ζRε , where Rε is once again the
distance such that ML−f(y) ≥ −1−θ

2 ε for all y ∈ [L−Rε, L+Rε]. By the uniform continuity
of f and since f(L) ≤ML we know that such Rε exists and it is independent of L. Moreover,
by definition we obtain

Rγ0 = Rε,

which implies that for all y ∈ [L,Rγ0 ] we have

ψLγ0(y)− f(y) >
1− θ

2
ε > 0,

since ψLγ0 ≥ML + (1− θ)ε and f(y) ≤ML + 1−θ
2 ε.

We also remark that by construction we have that for all γ ≤ γ0

ψLγ (y) > f(y) for all y ∈ R \ (L,Rγ)
and also ψLγ (L) > ML ≥ f(y) as well as ψLγ (Rδ) = 0 < f(Rγ). Thus, ψ

L
γ0 > f in R.

We now show that the functions ψLγ are supersolutions to the equation (E.46) for y ∈
(L,Rγ), the interval where the functions are smooth. This will be done in the spirit of (E.54),
(E.72) and (E.83). We use that −eζ(η−L) ≤ −eζ(Rγ−L) for all η > Rγ , we expand the power
law, and we rearrange the terms. Moreover, using also c ≥ c0 we obtain

−
(
ψLγ
)′′

(y) + c
(
ψLγ
)′
(y) +

(
ψLγ (y)

)4 − ˆ
R
E(η − y)

(
ψLγ (η)

)4
dη (E.101)

≥c0
2
ζγeζ(y−L) + γeζ(y−L)

(
c0
2
ζ − ζ2 + 4(ML + ε)3 − 4(ML + ε)3

ˆ ∞

−L
E(η − y)eζ(η−y)dη

)
(I41 )

+ 4(ML + ε)γ3e3ζ(y−L)
(
1−

ˆ ∞

−L
E(η − y)e3ζ(η−y)dη

)
(I42 )

+ 6(ML + ε)2γ2e2ζ(y−L)
(
1−

ˆ ∞

−L
E(η − y)e2ζ(η−y)dη

)
(I43 )

+ γ4e4ζ(y−L)
(
1−

ˆ ∞

−L
E(η − y)e4ζ(η−y)dη

)
(I44 )

− 4(ML + ε)3
[
εθ +

ˆ −L

−∞
E(η − y) (2TM − (ML + ε)) dη − ε

ˆ L

−L
E(η − y)dη

]
(I45 )

+ 4(ML + ε)3εθ

ˆ ∞

L
E(η − y)dη

− 4(ML + ε)

[
(εθ)3 +

ˆ −L

−∞
E(η − y) (2TM − (ML + ε))3 dη − ε3

ˆ L

−L
E(η − y)dη

]
(I46 )

+ 4(ML + ε)(εθ)3
ˆ ∞

L
E(η − y)dη

+ 6(ML + ε)2
[
(εθ)2 −

ˆ −L

−∞
E(η − y) (2TM − (ML + ε))2 dη − ε2

ˆ L

−L
E(η − y)dη

]
(I47 )

− 6(ML + ε)2(εθ)2
ˆ ∞

L
E(η − y)dη

+ (εθ)4 −
ˆ −L

−∞
E(η − y) (2TM − (ML + ε))4 dη − ε4

ˆ L

−L
E(η − y)dη (I48 )

− (εθ)4
ˆ ∞

L
E(η − y)dη
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− 4ε3γeζ(y−L)
(
θ3 −

ˆ L

−L
E(η − y)eζ(η−y)dη − θ3

ˆ ∞

L
E(η − y)eζ(η−y)dη

)
(I49 )

+ 4εθγ3e3ζ(Rγ−L)
ˆ ∞

Rγ

E(η − y)dη

− 4εγ3e3ζ(y−L)
(
θ −

ˆ L

−L
E(η − y)e3ζ(η−y)dη − θ

ˆ ∞

L
E(η − y)e3ζ(η−y)dη

)
(I410)

+ 43γ3eζ(Rγ−L)
ˆ ∞

Rγ

E(η − y)dη

+ 6ε2γ2e2ζ(y−L)
(
θ2 −

ˆ L

−L
E(η − y)e2ζ(η−y)dη − θ2

ˆ Rγ

L
E(η − y)e2ζ(η−y)dη

)
(I411)

− 6(εθγ)2e2ζ(Rγ−L)
ˆ ∞

Rγ

E(η − y)dη

− 12(ML + ε)2εγeζ(y−L)
(
θ −

ˆ L

−L
E(η − y)eζ(η−y)dη − θ

ˆ Rγ

L
E(η − y)e2ζ(η−y)dη

)
(I412)

+ 12(ML + ε)2εθγeζ(Rγ−L)
ˆ ∞

Rγ

E(η − y)dη

− 12(ML + ε)εγ2e2ζ(y−L)
(
θ −

ˆ L

−L
E(η − y)e2ζ(η−y)dη − θ

ˆ Rγ

L
E(η − y)e2ζ(η−y)dη

)
(I413)

+ 12(ML + ε)εθγ2e2ζ(Rγ−L)
ˆ ∞

Rγ

E(η − y)dη

+ 12(ML + ε)ε2γeζ(y−L)
(
θ2 −

ˆ L

−L
E(η − y)eζ(η−y)dη − θ2

ˆ Rγ

L
E(η − y)eζ(η−y)dη

)
(I414)

− 12(ML + ε)ε2θ2γ2eζ(Rγ−L)
ˆ ∞

Rγ

E(η − y)dη.

We now proceed to estimate all the terms. First of all, using the identity (E.53), the estimate
(ML + ε) ≤ 2TM as well as the definition of ζ in (E.98) we compute

(I41 ) + (I42 )+(I43 ) + (I44 ) ≥
c0
2
ζγeζ(y−L) + γeζ(y−L)

(
c0
2
ζ − ζ2 − 4(2TM )3

(
artanh(ζ)

ζ
− 1

))
− 4(2TM )γ3e3ζ(y−L)

(
artanh(3ζ)

3ζ
− 1

)
− 6(2TM )2γ2e2ζ(y−L)

(
artanh(2ζ)

2ζ
− 1

)
+ γ4e4ζ(y−L)

(
artanh(4ζ)

4ζ
− 1

)
≥ c0

2
ζγeζ(y−L) + γeζ(y−L)

(
c0
2
ζ − ζ2 − 4(2TM )3

(
artanh(4ζ)

4ζ
− 1

))
−4(2TM )3γeζ(y−L)

(
artanh(4ζ)

4ζ
− 1

)
−6(2TM )3γeζ(y−L)

(
artanh(4ζ)

4ζ
− 1

)
+ (2TM )3γeζ(y−L)

(
artanh(4ζ)

4ζ
− 1

)
=
c0
2
ζγeζ(y−L) + γeζ(y−L)

(
c0
2
ζ − ζ2 − 15(2TM )3

(
artanh(4ζ)

4ζ
− 1

))
≥ c0

2
ζγeζ(y−L),

(E.102)

where we used also that ζ 7→ artanh(ζ)
ζ − 1 is a monotonically increasing non-negative function

and that γeζ(y−L) ≤ 2TM for y ≤ Rγ .
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We estimate the terms (I45 ), (I
4
6 ), (I

4
7 ) and (I48 ). We compute using θ = 1

5 and the choice
of L > L2 as in (E.100)

(I45 ) + (I47 ) ≥ −4(ML + ε)3
[
εθ

ˆ −L

−∞
E(η − y)dη +

ˆ −L

−∞
E(η − y) (2TM − (ML + ε)) dη

]
+ 16(ML + ε)3θε

ˆ L

−L
E(η − y)dη + 6(ML + ε)2(εθ)2

ˆ L

−∞
E(η − y)dη

− 6(ML + ε)2
[ˆ −L

−∞
E(η − y) (2TM − (ML + ε))2 dη + ε2

ˆ L

−L
E(η − y)dη

]
≥− 4(ML + ε)3εθ

[(
1 +

2TM
εθ

)ˆ −L

−∞
E(η − y)dη − 4

ˆ L

−L
E(η − y)dη

]
+ 6(ML + ε)2

[
(εθ)2

ˆ L

−∞
E(η − y)dη − (2TM )2

ˆ −L

−∞
E(η − y)dη − ε2

ˆ L

−L
E(η − y)dη

]
≥4(ML + ε)3

[
3θε

ˆ L

−L
E(η − y)dη

]
− 6(ML + ε)2

[
ε2
ˆ L

−L
E(η − y)dη

]
=6(ML + ε)2ε

ˆ L

−L
E(η − y)dη

(
2

5
(ML + ε)− ε

)
> 0

(E.103)

for ε < ε2 as in (E.99) since ML + ε > λ. Since 492
125 >

2
5 , in a similar way we can estimate

(I46 ) + (I48 ) ≥− 4(ML + ε)

[
(εθ)3

ˆ −L

−∞
E(η − y)dη +

ˆ −L

−∞
E(η − y) (2TM )3 dη

]
− 124(4(ML + ε))(θε)3

ˆ L

−L
E(η − y)dη + (εθ)4

ˆ L

−∞
E(η − y)dη

−
ˆ −L

−∞
E(η − y) (2TM )4 dη − ε4

ˆ L

−L
E(η − y)dη

≥4(ML + ε)(εθ)3
[
123(θε)3

ˆ L

−L
E(η − y)dη

]
− ε4

ˆ L

−L
E(η − y)dη,

so that

(I46 ) + (I48 ) ≥ε3
ˆ L

−L
E(η − y)dη

(
492

125
(ML + ε)− ε

)
> 0. (E.104)

We estimate the last terms using artanh(4ζ)
4ζ < 3

2 as well as γeζ(y−L) ≤ 2TM .

(I49 ) ≥ −4ε3θ3γeζ(y−L) ≥ −4εγeζ(y−L), (I410) ≥ −4εθ(2TM )2γeζ(y−L), (E.105)

(I411) ≥ −6ε2γ2e2ζ(y−L)
artanh(2ζ)

2ζ
≥ −9ε(2TM )γeζ(y−L) (E.106)

and similarly
(I412) + (I413) + (I414) ≥ −12(2TM )εγeζ(y−L) (2(2TM ) + 18) (E.107)

Finally, using ε < ε2 as given in (E.99) and combining the equations (E.101)-(E.107) we
conclude that ψLγ are supersolutions in (L,Rγ), i.e.

−
(
ψLγ
)′′

(y) + c
(
ψLγ
)′
(y) +

(
ψLγ (y)

)4 − ˆ
R
E(η − y)

(
ψLγ (η)

)4
dη ≥ c0

4
ζγeζ(y−L) > 0
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for all y ∈ (L,Rγ).

We recall that by construction ψLγ0 > f in R with ψLγ0 − f ≥ 1−θ
2 ε > 0 for all y ≥ L and

ψLγ ≥ f for y ∈ R \ (L,Rγ) with ψLγ |{L,Rγ} > f |{L,Rγ}. Hence, once again arguing with the
maximum principle as we did in the proof of Lemma E.6 and of Lemma E.7 we conclude, by
the uniform continuity of γ 7→ ψLγ on compact sets and their decreasing monotonicity, that

ψLγ (y) ≥ f(y) for all y ∈ R and γ < γ0,

since ψLγ are supersolutions on (L,Rγ). Hence, for any y > L we have for γ < γ0 small enough

f(y) ≤ML + (1− θ)ε+ γeζ(y−L).

Finally, taking γ → 0 and thus Rγ → ∞ we conclude

f(y) ≤ML + (1− θ)ε for all y > L. (E.108)

Let us now define ε0(TM , λ, c) = min{ε1, ε2} for ε1 and ε2 defined in (E.78) and (E.99), re-
spectively. For any given ε < ε0 we define also L0(ε, TM , λ, c) = max{L1, L2}, where L1, L2

are given in (E.79) and (E.100), respectively, and θ = 1
5 .

The estimates (E.96) and (E.108) yield the proof of Theorem E.5. Indeed, we have just
proved that, if f solves (E.46), there exists some ε0(TM , λ, c) > 0 such that, if

osc
[−L,L]

f < ε

for ε < ε0 and for L > L0(ε, TM , λ, c), then

osc
[L,∞)

f ≤ML + (1− θ)ε−mL + (1− θ)ε = (3− 2θ)ε < 3ε,

where we also use that mL ≤ f(L) ≤ML.

In order to use Theorem E.5 we need to have functions satisfying the oscillation assump-
tion. The next lemma shows that there exist sequences of functions satisfying both (E.46)
and the oscillation condition.

Lemma E.8. Let f solve (E.46) for 0 < λ < TM . Let us assume that f is not constant. Then
there exist {xn}n∈N and {ξk}k∈N monotonically decreasing sequences with lim

n→∞
xn = −∞ as

well as lim
k→∞

ξk = −∞ satisfying

lim
n→∞

f(xn) = sup
R
f and lim

k→∞
f(ξk) = inf

R
f.

Moreover, they satisfy

lim
n→∞

osc
[−L,L]

f(xn + ·) = 0 and lim
k→∞

osc
[−L,L]

f(ξk + ·) = 0

for all L > 0.

Proof. Since f is not constant, according to Lemma E.5, Lemma E.6 and Lemma E.7 it has
to attain its supremum and infimum at −∞. Hence, there exist monotonically decreasing
sequences {xn}n∈N and {ξk}k∈N satisfying

lim
n→∞

xn = −∞, lim
k→∞

ξk = −∞, lim
n→∞

f(xn) = sup
R
f and lim

k→∞
f(ξk) = inf

R
f.
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We now prove the statement for the supremum. We define fn = f(xn+ ·). Then fn solves the
same equation (E.46) by the translation invariance of this equation. Moreover, fn ∈ C2,1/2(R).
Thus, by compactness for α ∈

(
0, 12
)
there exists a subsequence fnj = f

(
xnj + ·

)
→ g

in C2,α(R) in every compact set and hence uniformly everywhere. Moreover, g solves also
(E.46). By regularity theory we see that g ∈ C2,1/2(R).

It is important to notice also that

g(0) = lim
j→∞

f
(
xnj

)
= sup

R
f ≥ sup

R
g ≥ g(0).

Since g attains its supremum at the interior, it is constant according to Lemma E.5. Thus,
fnj → g = sup

R
f uniformly in every compact set.

Let ε > 0 and L > 0. By the uniform convergence in [−L,L] there exists N0(ε, L) > 0
such that for all j ≥ N0 we have

∥(fnj − g) |[−L,L] ∥∞ <
ε

2
.

We thus conclude that

osc
[−L,L]

fnj = max
[−L,L]

fnj − min
[−L,L]

fnj <
ε

2
+ g − g +

ε

2
= ε.

This proves lim
j→∞

osc
[−L,L]

f(xnj + ·) = 0 for all L > 0. Thus, the sequence {x̃j}j∈N = {xnj}j∈N
satisfies the statement of Lemma E.8 concerning the supremum.

Using that any solution to (E.46) which attains its infimum at the interior is constant
according to Lemma E.5, we conclude the proof of this lemma repeating the same arguments
for the sequence fk = f(ξk+ ·), for which a subsequence converges uniformly in every compact
set to g = inf

R
f .

Finally, Lemma E.8 and Theorem E.5 together with the previous results in Lemma E.5,
Lemma E.6 and Lemma E.7 imply that the solution f to (E.46) is constant.

Theorem E.6. Let f solve (E.46) for 0 < λ < TM . Then f is constant.

Proof. Let f solve (E.46). Let us assume that f is not constant. By Lemma E.5, Lemma E.6
and Lemma E.7 there exist {xn}n∈N and {ξk}k∈N monotonically decreasing sequences with
lim
n→∞

xn = −∞ as well as lim
k→∞

ξk = −∞ satisfying

lim
n→∞

f(xn) = sup
R
f and lim

k→∞
f(ξk) = inf

R
f.

Let also ε < ε0 be arbitrary and L > L0(ε) for ε0 and L0(ε) as in Theorem E.5. According to
Lemma E.8 there exists N0(ε, L) such that

osc
[−L,L]

f(xn + ·) < ε for all n ≥ N0.

Since by the translation invariance f(xn + ·) solve (E.46) with λ ≤ f(xn + ·) ≤ TM , Theorem
E.5 implies that

osc
[L,∞)

f(xn + ·) < 3ε for all n ≥ N0.

Thus,
osc

[−L,∞)
f(xn + ·) < 4ε for all n ≥ N0.
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Similarly, there exists K0(ε, L) > 0 such that

osc
[−L,∞)

f(ξk + ·) < 4ε for all k ≥ K0.

Hence, for any n ≥ N0 and k ≥ K0 it is either xn − ξk > 0 or ξk − xn > 0. In the
first case we estimate |f(ξk)− f(xn)| ≤ osc

[−L,∞)
f(ξk + ·) < 4ε, while in the latter situation

|f(xn)− f(ξk)| ≤ osc
[−L,∞)

f(xn + ·) < 4ε. Therefore,

|f(xj)− f(ξj)| < 4ε for all j ≥ max{N0,K0}.

Taking now the limit as j → ∞ we conclude

sup
R
f − inf

R
f ≤ 4ε.

Since ε < ε0 was arbitrary, this implies that sup
R
f = inf

R
f and hence f is constant.

E.3.3 Existence of a positive limit of the traveling waves as y → ∞
We now finish this section proving that any traveling wave solving (E.10) for y > 0 has a limit
as y → ∞. We first of all need to show a corollary to the stability result in Theorem E.5.

Corollary E.3. Let f solve (E.10) according to Theorem E.3 for 0 < λ ≤ f ≤ TM and
c > 0. Let ε < ε0(c, λ, TM ) and L0(ε, λ, TM , c) be as in Theorem E.5. Let also a > L0(ε) and
f̃(y) := f(a+ y). Then f̃ : [−a,∞) → R+ solves

−f̃ ′′(y) + cf̃ ′(y) + f̃4(y)−
ˆ ∞

−a
E(η − y)f̃4(η)dη = 0 (E.109)

with f̃(−a) = TM and 0 < λ ≤ f̃ ≤ TM . Moreover, if

osc
[−L,L]

f̃ < ε for L0(ε) < L < a

then
osc
[L,∞)

f̃ < 3ε.

Proof. It is easy to see that f̃ solves (E.109). In order to simplify the reading we use the same
notation as in Theorem E.5. Let hence mL and ML being the minimum and the maximum
of f̃ on [−L,L], respectively. Moreover, β, ζ > 0, δ < δ0 and γ < γ0 are defined for f̃ as
in Theorem E.5. Let finally ψLδ as in (E.75) and ψLγ as in (E.97). We argue that ψLδ 1[−a,∞)

and ψLγ 1[−a,∞) are subsolutions and supersolutions for the equation (E.109) on (L,Rδ) and
(L,Rγ), respectively.

Indeed, by definition ψLδ 1[−a,∞) = ψLδ since L0(ε) < L < a and ψLδ = 0 for y < −L. This
implies that

ˆ ∞

−a
E(η − y)

(
ψLδ (η)

)4
dη =

ˆ ∞

−L
E(η − y)

(
ψLδ (η)

)4
dη =

ˆ ∞

−∞
E(η − y)

(
ψLδ (η)

)4
dη.

Hence, for y ∈ (L,Rδ) the functions ψ
L
δ 1[−a,∞) are subsolutions for the equation (E.109) with

ψLδ 1[−a,∞) ≤ f̃ on [−a,∞) \ (L,Rδ), ψ
L
δ

∣∣{L,Rδ} < f̃
∣∣{L,Rδ} , as well as ψLδ01[−a,∞) < f̃ on
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[−a,∞).

Similarly, ψLγ 1[−a,∞) ≤ ψLγ since L0(ε) < L < a and ψLγ = 2TM for y < −L. This implies
that ˆ ∞

−a
E(η − y)

(
ψLγ (η)

)4
dη ≤

ˆ ∞

−∞
E(η − y)

(
ψLγ (η)

)4
dη.

Thus, the functions ψLγ 1[−a,∞) are supersolutions for the equation (E.109) for y ∈ (L,Rγ).

Moreover, they satisfy ψLγ 1[−a,∞) ≥ f̃ on [−a∞) \ (L,Rγ), ψLγ
∣∣{L,Rγ} > f̃

∣∣{L,Rγ} , as well as

ψLγ 1[−a,∞) > f̃ on [−a,∞).

Hence, as we saw in Theorem E.5, an application of the maximum principle and of the
uniform continuity on compact sets of the families of sub- and supersolutions with respect of
δ and γ, respectively, implies

osc
[L,∞)

f̃ < 3ε.

Finally, we can prove the convergence of the traveling wave to a positive constant as
y → ∞.

Theorem E.7. Let f solve (E.10) according to Theorem E.3 for TM > 0 and c > 0. Then
there exists a limit

lim
y→∞

f(y) =: f∞ > 0.

Proof. By Theorem E.3, Lemma E.2 and Theorem E.4 we know that f ≥ λ > 0 for some
λ > 0. Let us take {xn}n∈N and {ξn}n∈N two diverging monotone increasing sequences such
that

lim
n→∞

f(xn) = lim sup
y→∞

f(y) =: f∞ and lim
n→∞

f(ξn) = lim inf
y→∞

f(y) =: f∞.

We notice that f∞, f∞ ∈ [λ, TM ]. Up to subsequences we know that f(xn + ·) and f(ξn +
·) converge to constant functions, as we have proved in Theorem E.6. We denote these
subsequences xn and ξn. Hence, we have

lim
n→∞

f(xn + ·) = f∞ and lim
n→∞

f(ξn + ·) = f∞

uniformly on compact sets. Therefore, for all L > 0 there exists N0(L) such that xn, ξn > L
for all n ≥ N0(L) and such that

osc
[−L,L]

f(xn + ·) → 0 and osc
[−L,L]

f(ξn + ·) → 0 as n→ ∞ and n ≥ N0(L).

Let now ε < ε0(c, λ, TM ) and L0(ε, c, λ, TM ) as defined in Theorem E.5 and in Corollary
E.3. Then there exists N1(ε, L0(ε)) > 0 such that xn, ξn > L0(ε) for all n ≥ N1. Let also
L ∈ (L0(ε),min{xN1 , ξN1}). Then there exists N2(ε, L) ≥ N1(ε) such that

osc
[−L,L]

f(xn + ·) < ε and osc
[−L,L]

f(ξn + ·) < ε for all n ≥ N2(ε, L).

We remark that L0(ε) < L < min{xn, ξn} for all n ≥ N2(ε, L). Then by the Corollary E.3 we
can conclude that

osc
[L,∞)

f(xn + ·) < 3ε and osc
[L,∞)

f(ξn + ·) < 3ε for all n ≥ N2(ε, L).
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This implies that
|f(xn)− f(ξn)| < 4ε for all n ≥ N2(ε, L). (E.110)

Indeed, let n ≥ N2(ε, L). If xn − ξn > 0 we compute

|f(ξn)− f(xn)| ≤ osc
[−L,∞)

f(ξn + ·) < 4ε,

while if ξn − xn > 0
|f(xn)− f(ξn)| ≤ osc

[−L,∞)
f(xn + ·) < 4ε.

Taking the limit n→ ∞ in (E.110) we obtain

0 ≤ f∞ − f∞ ≤ 4ε,

which implies that f has a limit, since ε < ε0 is arbitrarily small, i.e.

f∞ = f∞ = f∞.

E.4 Formal description of the long time asymptotic for arbi-
trary values of T (±∞)

In this last section we conclude giving the expected behavior of the solution to the Stefan
problem (E.4) as t→ ∞. We remark that what we present here is formal.

Theorem E.1 shows the existence of cmax > 0 such that for any c ∈ (0, cmax) there exists
traveling waves T1(x + ct) =: T c1 (y) and T2(x + ct) =: T c2 (y) solving the Stefan problem for
s(t) = −ct. The first problem we should solve concerns the uniqueness of the traveling waves.

Problem E.4.1. Prove or disprove that for any c ∈ (0, cmax) and T > 0 the traveling waves
T c1 , T

c
2 solving (E.5) are unique.

Notice that it is enough to have the uniqueness of the traveling wave in the solid solving
(E.8).

Recall that lim
y→∞

T c2 > 0 and lim
y→−∞

T c1 = TM − cL+∂yT c
2 (0+)

LK . Moreover, we notice that also

for c = cmax there exist traveling waves. Indeed, T cmax
2 exists by Theorem E.3. By definition

∂yT
cmax
2 (0+) = −Lcmax. Thus, since ∂yT

cmax
1 (0−) = 0, in this case the traveling wave is

constant in the liquid part, i.e. T cmax
1 = TM .

Also the existence of a traveling wave T 0
2 solving (E.8) for c = 0 is an important problem

that should be considered.

Problem E.4.2. Prove or disprove that there exists a unique traveling wave T 0
2 solving (E.8)

for c = 0. Moreover, T 0
2 converges to a positive constant as y → ∞.

Remark. The existence of T 0
2 can be proved as follows using an iterative argument. First of

all the function

f1(y) =
A

(B + y)
2
3

, where A =
2
3
√
9
and B =

1

3

(
2

TM

) 2
3

,

is a solution to f ′′1 −f41 = 0 on R+ with f1(0) = TM . Moreover, f1 is monotonically decreasing
with lim

y→∞
f1(y) = 0. It is also possible to show the existence of a monotone sequence 0 ≤
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f1 ≤ f2 ≤ ... ≤ fn ≤ fn−1 ≤ ... ≤ TM solving for n ≥ 2 equation (E.10) for c = 0. In
this case though, the variational principle method we used in Proposition E.1 does not work.
Nevertheless, knowing for n ≥ 2 the existence of fn−1 ∈ C0,1/2(R+) with f1 ≤ fn−1 ≤ TM ,
the method of sub- and supersolutions (c.f [49]) can be implemented in order to find for any
R > 0 a solution fRn ∈ C2,1/2([0, R]) of the boundary value problem

−
(
fRn
)′′

(y) +
(
fRn (y)

)4
=
´∞
0 E(y − η)f4n−1(η)dη y ∈ (0, R)

fRn (0) = TM

fRn (R) = f1(R).

Indeed, f1 and TM are sub- and supersolutions of the operator L(u) = −∂2yu+4T 3
Mu and the

function λ 7→ −λ4 +4T 3
Mλ is increasing for λ ∈ [0, TM ]. Moreover, since ∥fRn ∥∞ ≤ TM as well

as ∥∂2yfRn ∥∞ ≤ T 4
M we conclude that fRn ∈ C2,1/2([0, R]) with uniformly bounded norm with

respect to R. Hence, taking the limit we prove the existence of a function fn ∈ C2,1/2(R+)
solution to (E.10) for c = 0. Since the monotonicity argument in Theorem E.3 applies also
in this case, such a monotone sequence exists. This implies the existence of a traveling wave
solving (E.8) for c = 0 and y > 0. However, the uniqueness and the existence of a positive
limit are more involved problems.

This remark shows that T 0
2 exists, moreover, ∂yT

0
2 (0

+) < 0 by the Hopf-principle. Hence,

in the liquid the traveling wave T 0
1 solves ∂2yT

0
1 = 0 with T 0

1 (0) = TM and ∂yT
0
1 (0

−) = ∂yT 0
2 (0

+)
K .

Thus, we obtain

lim
c→0

T c1 (y) = TM − ∂yT
0
2 (0

+)

K
y with lim

y→−∞
T 0
1 (y) = ∞.

These observations lead to the following open problem.

Problem E.4.3. Prove or disprove that for any T−∞ ∈ [TM ,∞] there exists a unique c ∈
[0, cmax] such that in the liquid the traveling wave T c1 of Theorem E.2 satisfies

lim
y→−∞

T c1 (y) = T−∞.

On the contrary, in the solid we already know that there exists θ > 0 such that for any
c ≥ 0 the traveling waves satisfy lim

y→∞
T c2 = T cint ≥ θ. Therefore, we cannot expect that T cint can

attain all the values in [0, TM ] for c ∈ [0, cmax]. Nevertheless, we can reach any value in [0, TM ]
if we include an additional layer in which the radiative transfer equation is approximated using
the diffusion approximation. More precisely, we expect to approximate the evolution equation
of the temperature by an equation of the form

Tt = Txx +
(
T 4
)
xx

in a domain x > s(t) where T changes in a length scale much larger than 1.
We conclude the final picture of the asymptotic of the solution (T1, T2, s) to the Stefan

problem (E.4) as t→ ∞ with the following claim.

Given T−∞ ∈ [TM ,∞] and T∞ ∈ [0, TM ] there exist c ∈ [0, cmax] and functions T c1 , T2 with
the following properties:

(i) s(t) = −ct;

(ii) T c1 is the traveling wave of Theorem (E.3) for y < 0 with lim
y→−∞

T c1 (y) = T−∞;
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(iii) T2 is given by the traveling wave T c2 of Theorem (E.3) for y > 0 and by a self-similar
profile F connecting T cint to T∞, which solves

− z
2F

′(z)− F ′′(z)− 1
α2

(
F 4(z)

)′′
= 0

F (−∞) = T cint
F (∞) = T∞.

(E.111)

TM

T−∞

T c
int

T∞

−c

√
t

s(t) x

T

Figure E.2: Illustration of the expected profile as t→ ∞.

Remark. The self-similar profile F and equation (E.111) can be expected due to the diffusion

approximation of the radiative transfer equation. Indeed, let us define T2(x, t) = F
(
x√
t

)
:=

F (z) for x > −ct as t → ∞. Then, using the Hölder regularity of T2 we compute for the
radiation term

F

(
x√
t

)4

−
ˆ ∞

−ct

αE1(α(η − x))

2
F

(
η√
t

)4

dη

=F (z)4 −
ˆ ∞

−ct

αE1(α(η −
√
tz))

2
F

(
z +

η −
√
tz√
t

)4

dη

=F (z)4 −
ˆ ∞

−ct−z
√
t

αE1(αη)

2

[
F 4(z) + ∂zF

4(z)
η√
t
+
∂2zF

4(z)

2

η2

t
+O

( |η|2+δ
t1+δ/2

)]
=F 4(z)

ˆ ∞

ct+z
√
t

αE1(αη)

2
dη − ∂zF

4(z)√
t

ˆ ∞

ct+z
√
t

αE1(αη)

2
ηdη

+
∂2zF

4(z)

2t

ˆ ∞

−ct−z
√
t

αE1(αη)

2
η2dη +O

(´∞
−ct−z

√
t
αE1(αη)

2 |η|2+δdη
t1+δ/2

)
.

Using that

t

ˆ ∞

α(ct+z
√
t)
E(η)dη ∼ te−α(ct+z

√
t) −→
t→∞

0,

ˆ ∞

−∞
E(η)|η|2+δdη <∞ and

√
t

ˆ ∞

α(ct+z
√
t)
E(η)ηdη ∼

√
t(α(ct+ z

√
t) + 1)e−α(ct+z

√
t) −→
t→∞

0,

we conclude multiplying by t and letting t→ ∞ that

t

(
F

(
x√
t

)4

−
ˆ ∞

0
E(η − x)F

(
η√
t

)4

dη

)
−→
t→∞

∂2zF
4(z)

2α2

ˆ ∞

−∞
E(η)η2dη =

1

α2
∂2zF

4(z).

Finally, we recover (E.111) observing that ∂tF
(
x√
t

)
= − z

tF
′(z) and ∂2xF

(
x√
t

)
= 1

tF
′′(z).
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[134] , Über die Diffusion von sauren und basen gegen einander, Sitzungsberichte /
Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Klasse,
98 (1889), pp. 616–634.
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