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Abstract

In this thesis, we study the detection of patterns in spatio-temporal data sets in the
form of trajectory data. Many application areas collect unstructured trajectory data.
Applications for the analysis of such data range from gait analysis of human movement
to traffic-flow analysis, epidemiological hotspot detection, and Lagrangian analysis of
particle simulations. Trajectory data is typically modeled as a sequence of points that
defines a polygonal curve via linear interpolation between consecutive points. One of the
most fundamental ways of detecting patterns in any kind of data is clustering, which
aims to partition the data into groups where points from the same group are ‘close’ to
one another and those from different groups are ‘far apart’. The clustering of polygonal
curves is the main focus of this thesis.

The first clustering problem we study is the (k, ℓ)-median problem for polygonal
curves, which asks for k center curves, each with at most ℓ points, minimizing the sum
of dynamic time warping (DTW) distances from each input curve to its closest center.
Numerous classical results for clustering problems have been extended to many different
settings. A common assumption made is that the distance function is a metric, which
DTW is not. Despite this, we provide a polynomial-time approximation algorithm with
an approximation factor of O(mℓ), where m is the maximum number of points in any
input curve. This is achieved by extending known algorithms for coreset construction—
i.e., problem-specific input condensations—from metric spaces to the non-metric space
of polygonal curves under DTW.

The second clustering problem we consider is Subtrajectory Covering, motivated by
the need to detect patterns within a single curve by segmenting it into its constituent
semantic parts. This is formulated as a set cover problem based on the continuous Fréchet
distance. Given a polygonal curve with n points, the goal is to compute the smallest set
of center curves, each with at most ℓ points, such that every point on the input curve is
covered by some center. A point is considered covered if it lies on a subtrajectory of the
input curve whose (continuous) Fréchet distance to some center curve is at most ∆. We
provide bicriteria approximation algorithms for arbitrary curves as well as for a subclass
of realistic curves. Both algorithms approximate the required number k∆ of centers by a
factor of O(log n) and the distance threshold ∆ by a factor of O(1). For arbitrary curves,
the algorithm runs in roughly O(

√
k∆n

5/2) time. For the subclass of realistic curves (or
more formally, c-packed curves whose arc length inside any ball of radius r is bounded
by cr), the algorithm runs in roughly O(k∆cn2) time. We demonstrate the viability of
both the problem formulation and the algorithm on real-world data.

Additionally, we investigate two related questions. First, given a clustering of trajec-
tory data, a natural question is how to classify a new trajectory which is not part of the
input. To this end, we design a data structure that answers approximate nearest neighbor
queries: Given n input curves of complexity m and a query curve q, compute the closest
input curve to q w.r.t. the continuous Fréchet distance. Our data structure answers such
queries in roughly O(F (m,Φ) log n) time, where F (m,Φ) depends only on m and the
spread Φ of vertices and edges. Second, we analyze the detection of erroneous patterns
within a curve: Given two curves, how can we optimally modify one curve by replacing
pieces of the curve with line segments so as to minimize the continuous Fréchet distance
to the other curve? We show that this problem is not fixed-parameter tractable in the
number of modifications and give a polynomial-time O(1)-approximation algorithm for
its decision variant.
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Chapter 1

Introduction

Recent technological developments have enabled affordable and widely available hard-
ware capable of tracking a vast range of phenomena—from everyday human activity to
large-scale environmental and biological systems. These range from smartwatches and
smartphones collecting geographical and physiological data, such as location, tempera-
ture, heart rate, and blood oxygen levels, to scientific instruments tracking the movement
of terrestrial and aquatic animals, ocean currents, and sea temperatures. The result is
a huge amount of temporal data points across a wide range of domains. These datasets
are analyzed with respect to various quality measures, such as estimating physiological
markers based on heart rate variability [RAPJK+06], analyzing human gait in locomotion
studies [CS08], estimating migratory patterns of individual animals [KSSF22], predict-
ing human motion in multimodal settings [ZAFG21], and assessing the effects of climate
change on ocean currents and marine ecosystems [WFH+16].

Most of these applications model their data as spatio-temporal sequences, where each
data point is recorded in some ambient space over time. This includes GPS tracking data,
where each point is a geographical coordinate; motion capture data, where each point is
a set of three-dimensional joint coordinates; and heartbeat data, where each data point
indicates the electrical intensity of the heart’s contraction. We refer to such sequences of
points as curves.

With the size of the underlying data often being large, there is a growing need to
automate the analysis of these data sets. An important theoretical measure of such an
automated process, or algorithm, is the notion of the asymptotic running time, which
measures the number of basic operations on the data points the algorithm performs in
the worst-case. Similar to the running time of an algorithm, we are also interested in
the analysis of the quality of its output. Does the algorithm produce the best possible
solution to the given problem, or does it only produce a rough estimate of the best
possible solution? The ratio between the worst-case output and the optimal solution is
the so-called approximation ratio. Alongside the running time, the approximation ratio
plays a key role when analyzing algorithms and will be a recurring concept throughout
this thesis.

We investigate foundational algorithmic problems related to processing data sets con-
sisting of curves. The overarching goal in Chapter 3 and Chapter 4 is the transformation
of a large collection of curves into a smaller, representative set that still preserves essen-
tial characteristics of the original data. This broad objective touches on core problems in
classical machine learning, such as clustering [XW05], where the task is to find a small
number of representative points that minimize the distance to the input data. Another
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CHAPTER 1. INTRODUCTION

fundamental task that we consider in Chapter 5 is the construction of nearest neighbor
data structures, where, given a set of representatives and a query point, the aim is to
find the closest representative [KS13].

In the classical Euclidean setting, the distance measure (i.e., the Euclidean distance) is
well-understood [OBS94]. This understanding does not translate easily to curves. There
are different distance measures for curves used in practice, each with its own advantages
and disadvantages, and limited understanding of them is the main roadblock to designing
algorithms that mimic the qualities of state-of-the-art algorithms in the classical setting.

Two distance measures frequently used in practice—and which will be central to this
thesis—are the Fréchet distance and the dynamic time warping distance (DTW). While
both will be formally defined in Section 2.1, we provide an informal overview below.

Both the Fréchet distance and DTW are often introduced via the following man-
and-dog metaphor: Imagine two curves, with a man walking along one and a dog, on
a leash, walking along the other. Both start at the beginning of their respective curves
and continuously move along their curve with varying speeds without backtracking. The
(continuous) Fréchet distance is the length of the shortest leash required to allow both
to reach the end of their respective curves—that is, the Fréchet distance is the minimum
possible value of the maximum distance between man and dog at any point during their
traversal. If the man and the dog are instead restricted to discrete movements, where
in each discrete time step they either jump from one point to the next, or remain in
place, the resulting measure is known as the discrete Fréchet distance. In contrast, the
dynamic time warping distance measures the average distance between the man and the
dog throughout such a restricted traversal. It captures the minimal possible average
distance over all valid man-dog alignments constrained to input coordinates.

There are different extensions of the classical machine learning problem of clustering
input points to inputs consisting of curves. The most straightforward extension we tackle
in this thesis is the following:

Q 1: Given a set of curves, can we compute few representative curves such that any input
curve is close to at least one representative?

Here, we extend clustering to curves by each curve acting like a point in the classical
formulation, with distances being defined via the Fréchet distance or DTW.

A property curves exhibit, which points do not, is the fact that small pieces of curves
still hold information. Consider, for example, the set of curves shown in the upper half of
Figure 1.1, which track the ocean currents [LC19]. Each curve is the result of an ocean
surface drifter over the period of up to two years. Often, it is natural to segment such
curves into smaller pieces, especially when looking for local features, such as currents or
ocean pathways, rather than global features of the data set. This motivates a different
extension to clustering which we answer:

Q 2: Given a set of curves, can we segment the curves into pieces and compute few repre-
sentative curves such that any piece is close to at least one representative curve?

The main difference between Question 1 and Question 2 is that for the latter, it is
not apparent where the curve pieces start and end. As it turns out, this is also the main
crux when trying to design algorithms to answer this question. Despite this, we show
that Question 2 can be answered by designing efficient algorithms that, when given the
aforementioned set of curves, produce the representative curves shown in Figure 1.1.

9



CHAPTER 1. INTRODUCTION

Figure 1.1: Illustration of roughly 2000 ocean surface drifters (blue) and a set of repre-
sentative curves (red).

Computing a clustering of input data is usually just one of the first steps in some
algorithmic pipeline. The computed set of representative curves should be made acces-
sible to different types of queries. This can then be used to answer questions about the
underlying data set. One such basic query is to compute the nearest neighbor to some
query curve:

Q 3: Given a set of curves, can we preprocess them to compute, for a given query curve,
the input curve closest to the query curve?

Questions 1–3 are concerned with detecting important patterns in the underlying
data set of curves. In some applications, it may be necessary to detect and discard less
important patterns instead. This may be the case when the data was generated by a
faulty sensor, or certain assumptions on the input result in ‘detours’ that one would like
to explicitly ignore. As the Fréchet distance is a bottleneck distance, it can be distorted
by even a single outlier or detour. One extension to the Fréchet distance, which aims to
measure the distance between two curves without being influenced by outliers or detours,
does so by allowing simple modifications to one of the input curves, replacing pieces of the
curve with a single straight edge, referred to as a shortcut. This gives rise to the shortcut
Fréchet distance: Given two curves, what is the smallest Fréchet distance achievable
between the two curves if one may be modified by shortcuts? Similar to Question 2,
this poses the intermediate question of where optimal shortcuts should start and end.
Overall, the algorithmic challenge which we aim to answer is the following:

Q 4: Given two curves, can we efficiently compute their shortcut Fréchet distance when
at most k shortcuts are allowed?

10



CHAPTER 1. INTRODUCTION

In the following sections, we elaborate on the questions posed in Question 1 to 4,
outline how they are addressed in this thesis and summarize the contributions made by
the author of this thesis. Each chapter thereafter focuses on Question 1 to 4 as follows:

• Chapter 3 investigates coreset constructions for a k-median-like problem for curves
under DTW, relating to Question 1,

• Chapter 4 addresses two problems called Subtrajectory Covering and Subtrajectory
Coverage Maximization, relating to Question 2,

• Chapter 5 explores approximate nearest neighbor data structures for curves under
the continuous Fréchet distance, relating to Question 3, and

• Chapter 6 considers the computability of the Fréchet distance with shortcuts, re-
lating to Question 4.

1.1 Coresets for k-Median of Curves

Clustering is arguably one of the most fundamental problems in theoretical computer
science and computational geometry. Broadly speaking, clustering deals with the identi-
fication of structure in a set of data points. A powerful approach to clustering problems
involving massive data sets is data reduction, and the construction of ε-coresets is an
approach that has received substantial attention. An ε-coreset is a problem-specific con-
densate of the given input set. It captures the core properties of the underlying input
set w.r.t. the problem at hand and can be used as a proxy set for slower algorithms
producing solutions with a small relative error of (1± ε).

Clustering in general, and the k-median problem in particular, represent fundamental
computational problems that have been extensively studied in many classical settings.
With the growing availability of geospatial tracking data, clustering problems for curves
have received growing attention both from a theoretical and applied perspective. In
practice, curve classification largely relies on the dynamic time warping (DTW) distance
and is widely used in the area of data mining. Simple nearest neighbor classifiers under
DTW are considered hard to beat [Kat16, TLNH19], and much effort has been put into
making classification using DTW computationally efficient [JJO11, PFW+14, PFW+16,
RCM+13]. In contrast to its cousin, the Fréchet distance, DTW is less sensitive to
outliers, but is also less well understood, owing to the fact that it is not a metric. In
particular, the wealth of research surrounding k-median clustering for metric spaces does
not directly apply to clustering problems under DTW.

For curves, k-median is often studied in the form of the (k, ℓ)-median problem, where
the sought-after center curves are restricted to have a complexity (i.e., number of points
in the sequence) of at most ℓ [DKS16, BDvG+22].

Results In Chapter 3, we give the first construction of ε-coresets for the (k, ℓ)-
median problem under DTW. We adapt the framework of sensitivity sampling introduced
in [FL11] to our setting, develop fast approximation algorithms solving (k, ℓ)-median
clustering under DTW, and use coresets to improve existing (k, ℓ)-median algorithms for
curves under DTW.

Our approach relies on approximations of nearly all objects involved in our inquiry,
but most importantly on curve simplifications and an approximation of DTW based on

11



CHAPTER 1. INTRODUCTION

its shortest-path metric. This allows us to apply state-of-the-art techniques for the k-
median problem in this metric space, circumventing the use of heavy k-median machinery
in non-metric spaces which would incur exponential dependence on k [BDvG+22]. Our
main ingredient is a new insight into the notion of relaxed triangle inequalities for DTW.
We then construct a coreset based on the approximation algorithm. For this, we bound
the so-called ‘sensitivity’ of the elements of the given data set, as well as their sum.
An element’s sensitivity measures its importance and determines its sample probability
in the coreset construction. We construct an ε-coreset for the (k, ℓ)-median clustering
problem, with size quadratic in 1/ε and k, logarithmic in the number n of input curves,
and depending on the complexity m of the input curves as well as ℓ. We achieve this
by upper bounding the VC dimension of a range space defined by all approximate DTW
balls, with the bound depending logarithmically on m. Informally, the VC dimension
measures the largest set of curves such that every partition into two sets can be realized
by the intersection of the set of curves with some approximate DTW ball.

[DNPP21, BD23] observed that the VC dimension of the discrete and continuous
Fréchet distance exhibits a near-linear dependency on the complexity of the sequences
used as centers of the ranges, yet it depends only logarithmically on the size of the curves
within the set of curves. This distinction holds significant implications in the analysis of
real data sets, where queries may involve simple, short sequences, but the data set itself
may consist of complex, lengthy sequences. We show that there is an approximation of
DTW, for which similar bounds apply. More precisely, we show that for any given set
of input sequences requiring DTW-based analysis, there is an approximation of DTW
whose associated range space of bounded VC dimension. This is sufficient to enable a
broad array of algorithmic techniques that leverage the VC dimension, particularly in
scenarios where approximate computations are allowed.

Bibliographical Notes The results presented in Chapter 3 are based on the fol-
lowing work:

Jacobus Conradi, Benedikt Kolbe, Ioannis Psarros, and Dennis Rohde. Fast
Approximations and Coresets for (k, ℓ)-Median Under Dynamic Time Warp-
ing. In 40th International Symposium on Computational Geometry (SoCG
2024), pages 42:1–42:17, 2024. doi:10.4230/LIPICS.SOCG.2024.42.

This paper resulted from a dynamic and collaborative development process, with all
authors contributing equally. The author of this thesis contributed the adaptation of
the analysis of the sensitivity-bounds under DTW and the approximation of DTW via
its shortest-path metric to obtain a fast initial approximation for (k, ℓ)-median. The
detailed analysis was carried out jointly by all authors.

1.2 Clustering Subtrajectories

In the (k, ℓ)-median problem we cluster curves as if they were points in a space endowed
with a complex distance measure. When clustering subtrajectories, we instead want to
find clusters of subcurves, i.e., small pieces of the input curves, that represent complex
patterns that reoccur along the curves [AFM+18, BKK20, LYW+24], such as commuting
patterns in traffic data.

We study two variants of a problem posed in [ABCD23], which are based on the
well-known set cover and coverage maximization problems. Both rely on the definition
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CHAPTER 1. INTRODUCTION

of a geometric set system, which is built using metric balls under the Fréchet distance.
In both variants one is provided with a polygonal curve, and is asked to compute a set
of ‘center’ curves, each of complexity at most ℓ, that either

1. is of minimal cardinality and covers the entirety of the input curve, or
2. covers as much as possible of the input curve under cardinality constraints.

The first problem we refer to as Subtrajectory Covering, the second problem we refer to
as Subtrajectory Coverage Maximization. In either setting a point p of the input curve
is considered as ‘covered’, if there is a subcurve πp of the input curve that contains p and
has small Fréchet distance to some center curve. Note that a point p may be covered by
several center curves. For the precise formulation, refer to Section 4.1. This formulation
extends immediately to a set of input curves—instead of one curve—where one is now
tasked to cover the entirety (respectively as much as possible) of all points on all input
curves combined.

Results for Subtrajectory Covering Given a curve defined by n points, let k∆
be the minimal cardinality of any set of curves that covers (in the sense described above)
the entirety of the given curve. In Chapter 4, we first show that there is an algorithm with
running time in Õ(k∆n3) which computes a set of O(k∆ log n) center curves that cover
the input curve, where Õ(·) hides polylogarithmic factors in n. For this, we show that
the Subtrajectory Covering problem can be reduced to a discretized set cover instance,
where the set family consists of Õ(n2) sets of O(n) intervals in [0, 1] and the ground set
consists of the induced arrangement of all Õ(n3) intervals.

We extend the analysis of this algorithm to the class of c-packed curves. A curve is
c-packed, if its total arc length inside any ball of radius r is at most cr. Notably, curves
encountered in practice often are c-packed for small c [GSW20]. We bound the running
time of the algorithm provided with a c-packed curve by roughly Õ(k∆cn2). This result
is complemented with experimental results that highlight the versatility and robustness
of the approach, but also suggest that the provided bounds of the running time are not
necessarily tight.

Lastly, we improve the worst-case running time of Õ(k∆n3). For this we show that the
set family consisting of Õ(n2) sets of O(n) intervals can be partitioned into few ordered
lists where the sets of intervals of consecutive elements from the lists are ‘structurally
similar’. We exploit this structure by reusing the computations performed to compute the
intervals of preceding elements in the lists to compute the intervals of later elements more
efficiently. This structure together with an intricate two-staged sampling of the ground
set [0, 1] results in an algorithm with running time in Õ(

√
k∆n

5/2) which computes a set
of O(k∆ log n) center curves that cover the input curve.

Results for Subtrajectory Coverage Maximization Given a curve P defined
by n points as well as a cardinality constraint k, let Λ be the maximal total arc length of
the pieces of P that can be covered by k center curves. In Section 4.9, we combine the
insights of the set family with a linearization of the free space (region in the parameter
space of the two curves where the corresponding distances stay below a threshold) which
yields an algorithm that can compute the element from the set system with (approxi-
mately) maximal arc length of newly covered pieces in Õ(n2) time. With this at hand,
we present an algorithm with running time in Õ(kn2) which computes k center curves
that cover pieces of P of length at least e−1

16e Λ.
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Bibliographic Notes The results presented in Chapter 4 are based on the following
three works:

Frederik Brüning, Jacobus Conradi, and Anne Driemel. Faster Approxi-
mate Covering of Subcurves Under the Fréchet Distance. In 30th Annual
European Symposium on Algorithms (ESA 2022), pages 28:1–28:16, 2022.
doi:10.4230/LIPICS.ESA.2022.28.

Jacobus Conradi and Anne Driemel. Finding Complex Patterns in Trajec-
tory Data via Geometric Set Cover. arXiv preprint arXiv:2308.14865, 2023.
doi:10.48550/ARXIV.2308.14865.

Jacobus Conradi and Anne Driemel. Subtrajectory Clustering and Coverage
Maximization in Cubic Time, or Better. In 33rd Annual European Symposium
on Algorithms (ESA 2025), pages 12:1–12:18 2025. doi:10.4230/LIPICS.ESA
.2025.12.

These papers resulted from a dynamic developing process that all authors contributed
to equally. In the first paper the author of this thesis contributed the analysis of a
preliminary version of the set system for both general and c-packed curves. Other results
from the paper not presented in this thesis include a combination of the set system with
probabilistic techniques to yield an algorithm that computes an approximate solution to
the Subtrajectory Covering problem which only consists of edges. In the second paper
the author of this thesis contributed the extension of the probabilistic approach to a
deterministic approach which computes centers of non-constant complexity and validated
this approach with an experimental work. In the third paper, the author of this thesis
contributed a linearization of the free space, a new approximation of the set system, and
insights into the set system presented in [vdHvdHO25], which yields the first deterministic
approximation algorithm with cubic running time and, in certain cases, even subcubic
running time.

1.3 Approximate Nearest Neighbor for Curves

Nearest neighbor searching is one of the most fundamental problems in theoretical com-
puter science and computational geometry. Formally, it asks: Given a set S of n points
in a space M and a query point q in M , what is the nearest neighbor in S to q? This
question has been studied since the 1960s [MP69] and finds applications in many differ-
ent areas such as RNA sequencing [BS06], disease diagnosing [STS12], motion pattern
detection [GvKS04], shape indexing [BL97], or handwritten digit recognition [Lee91].
Classically, M is the Euclidean plane R2 and the distance between two points is given by
the Euclidean distance. In this case, classical results such as point location in a Voronoi
diagram achieve a query time of O(log n) while using O(n log n) space in R2 [SH75],
which was later improved upon to only require linear space and preprocessing time with
logarithmic query time [Kir83].

While these classical results provide efficient exact solutions in low-dimensional Eu-
clidean spaces, their performance degrades in higher dimensions, motivating the study of
approximate versions [HPIM12]. This is formalized in the c-approximate nearest neigh-
bor problem (c-ANN) for c > 1: Given a set S of n points in a space M and a query
point q in M , identify a point in S whose distance to q is at most c times the distance
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from q to its exact nearest neighbor. One complexity measure often used to generalize
approaches for Euclidean spaces to more general metric spaces is the notion of doubling
dimension [GKL03, KR02, Tal04]. The doubling dimension is the smallest number d
such that any metric ball inside the metric space can be covered by 2d many balls of half
the radius. It is a well-known fact that the doubling dimension of the Euclidean space
corresponds roughly to its dimension d. More precisely, the doubling dimension of Rd is
in Θ(d). The approximate nearest neighbor problem in spaces with low doubling dimen-
sion has been studied extensively [KR02] and results are known that roughly match the
bounds known for Rd [HPM06].

Unfortunately, the metric space of curves under the continuous Fréchet distance has
been shown to have unbounded doubling dimension [DKS16]. As a curve may consist of
arbitrarily short and arbitrarily long edges, the ratio between the longest and shortest
edge length is unbounded. This arbitrarily large ratio is the central property enabling
the construction in [DKS16] which shows that the doubling dimension is unbounded.

Results In Chapter 5, we first consider the space of curves in Rd consisting of at
most k edges whose shortest edge has length at least λ and the longest edge has at most
length Λ. We show that the doubling dimension of this subspace depends only on Λ/λ, d
and k. We further show that this subspace is very close (their Gromov-Hausdorff distance
is at most λ) to the space of all curves consisting of at most k edges whose longest edge
has at most length Λ. We combine this bound of the doubling dimension of the close-by
space together with the construction of a (1 + ε)-ANN data structure given a bounded
doubling dimension from [HPM06]. The result is a (1 + ε)-ANN data structure for a set
S of n curves in d-dimensional space, by choosing the parameters Λ and λ based on the
set S. These choices depend on ε and the spread of the points defining the curves in S,
i.e., the ratio between the largest and smallest point-to-point distance. Overall, the data
structure has linear size in n. The query time has logarithmic dependence on n.

Our approach is in line with the more general idea of using results for spaces of
bounded doubling dimension in the context of spaces that are close to a space of bounded
doubling dimension, even if they do not themselves have this property [SS22].

We complement our upper bound of the doubling dimension of the subspace of curves
with bounded edge lengths with a lower bound construction, showing that our analysis
is not far from being tight.

Bibliographical Notes The results presented in Chapter 5 are based on the fol-
lowing work:

Jacobus Conradi, Anne Driemel, and Benedikt Kolbe. (1 + ε)-ANN Data
Structure for Curves via Subspaces of Bounded Doubling Dimension. Com-
puting in Geometry and Topology, 3(2):6:1–6:22, 2024. doi:10.57717/CGT.V3
I2.45.

This paper resulted from a dynamic developing process that all authors contributed to
equally. The author of this thesis contributed the main volumetric bounds allowing the
bounds on the doubling dimension. The detailed analysis was mainly carried out by the
author of the thesis under the supervision and consultation of Anne Driemel and in close
cooperation with Benedikt Kolbe.
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1.4 Shortcut Fréchet Distance

The Fréchet distance is a bottleneck distance, and may be heavily influenced by outliers,
measurement errors or local distortions, limiting the practical use of the classical Fréchet
distance. This has motivated a growing body of work on partial and robust variants of the
Fréchet distance. These include a partial Fréchet distance as defined in [BBW09], which
maximizes the portions of the two curves matched to one another within some given
distance threshold, and the shortcut Fréchet distance [DHP12], which allows replacing
subcurves with straight-line shortcuts in the spirit of edit distances, as well as a variant
introduced in [ABRU19] which permits discrete ‘jumps’ (backwards and forwards) in the
curve traversal.

It is conceivable that computing a partial dissimilarity based on the Fréchet distance
should be more difficult than the standard Fréchet distance because of the structure
of the optimization problems involved. While the (discrete or continuous) Fréchet dis-
tance can be computed in roughly quadratic (in n) time for two polygonal curves of n
vertices [AG95, AHPK+06, BBMM17, Bri14, BM16, BOS19], the overall picture on the
computational complexity of the partial variants is very heterogeneous.

On the one hand, the problem of computing the partial Fréchet distance is not solvable
by radicals over Q and the degree of the polynomial equations involved is unbounded
in general [DGM+14]. On the other hand, some variants of the partial Fréchet distance
can be computed exactly in polynomial time [BBW09]. Similarly, the shortcut Fréchet
distance was shown to be NP-hard [BDS14] when shortcuts are allowed anywhere along
the curve. The discrete Fréchet distance with shortcuts was shown to be computable in
strictly sub-quadratic time, however, which is faster than computing the discrete Fréchet
distance without shortcuts [AFK+15]. The variant defined in [ABRU19] turns out to be
NP-hard, but allows for fixed-parameter tractable algorithms.

Results In Chapter 6, we study a parameterized version of the shortcut Fréchet
distance, where the number of allowed shortcuts is bounded by a parameter k. This
model offers a trade-off between the classical and fully shortcut-based versions. Our
main contributions are threefold.

First, we provide an exact exponential-time algorithm for deciding whether the k-
shortcut Fréchet distance between two polygonal curves in the plane is at most a given
threshold δ. The running time of the algorithm is in O(kn2k+2 log n) and has a space
requirement in O(kn2k+2). It proceeds in k rounds over the classical free space dia-
gram [AG95], each round corresponding to one additional shortcut. To identify valid
shortcut intervals, we use line-stabbing wedges [GHMS94], as also employed in [BDS14].

Second, we prove a conditional lower bound. Assuming the Exponential Time Hy-
pothesis (ETH), there is no algorithm with running time no(k) for deciding the k-shortcut
Fréchet distance in Rd for d ≥ 2. Our reduction is based on a k-SUM variant called k-
Table-SUM, adapting previous constructions from [BDS14] via a novel gadget to reduce
the number of shortcuts per decision step to a constant independent of n.

Third, we develop an approximation algorithm for c-packed curves. For two c-packed
curves [DHW12] of total complexity n, and given parameters δ > 0 and ε ∈ (0, 1],
we provide an algorithm whose running time is in O

(
kcnε−5 log2(nε−1)

)
with a space

requirement inO
(
kcnε−4 log2(ε−1)

)
. The algorithm returns either (i) dkS(T,B) ≤ (3+ε)δ

or (ii) dkS(T,B) > δ, in either case it is correct. Since any polygonal curve of complexity
n is 2n-packed, the result implies an O(kn2ε−5 log2(nε−1)) time algorithm for general
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curves in the plane.
Our approximation algorithm exploits the approximate monotonicity of the Fréchet

distance between a shortcut and a subcurve [DHP12], enabling it to safely use the shortest
feasible shortcut in each round. Instead of evaluating the Fréchet distance of shortcuts
to subcurves directly via line-stabbing wedges, we rely on a data structure that computes
the Fréchet distance from a segment to a subcurve, using a convex hull approximation.
To ensure near-linear running time, we apply curve simplification techniques that bound
the complexity of the free space diagram between c-packed curves.

Bibliographical Notes The results presented in Chapter 6 are based on the fol-
lowing work:

Jacobus Conradi and Anne Driemel. On Computing the k-Shortcut Fréchet
distance. ACM Transactions on Algorithms, 20(4):29:1–29:37, 2024. doi:10.
1145/3663762.

This paper builds on the author’s Master’s thesis supervised by Anne Driemel. The
research was collaborative, with all authors contributing equally to the overall design
and insights. The main analysis was performed by the author of this thesis under the
supervision of Anne Driemel.
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Chapter 2

Basic Notation, Concepts and
Techniques

We begin by formally defining and discussing the most important objects, their basic
properties, and the notation we use in this thesis. For a natural number n we denote the
set {1, . . . , n} by [n]. For a set X we denote its power set—the set containing all subsets
of X—by P(X). Our primary focus in this thesis lies on curves, which we usually think of
as lying in an ambient Euclidean space Rd. In Euclidean space we measure the distance
of points via the Euclidean norm ∥x∥ =

√
⟨x, x⟩ =

√∑
i∈[d] x

2
i , where the Euclidean

distance between two points p, q ∈ Rd is then given by ∥p − q∥. For a metric space
M = (M,d), p ∈ M and r ∈ R≥0 we define the closed ball DM

r (p), sometimes referred
to as a disk, as the set {q ∈ M | d(p, q) ≤ r}. Whenever the metric space is clear from
context, we may simply write Dr(p).

2.1 Polygonal Curves and Similarity Measures

We call an ordered set (p1, . . . , pn) ⊂ Rd of points in d-dimensional Euclidean space a
point sequence. We call the cardinality of a point sequence P its complexity, and
denote it by |P |. A polygonal curve is a map P : [0, 1] → Rd defined by a point
sequence of complexity n together with n values 0 = t1 < t2 < . . . < tn = 1, where
P (t) = pi + (pi+1 − pi) t−ti

ti+1−ti
if ti ≤ t ≤ ti+1. We call the set (t1, . . . , tn) the vertex

parameters of P and the points p1, . . . , pn the vertices of P . The complexity |P | of a
polygonal curve is the complexity of the underlying point sequence. A polygonal curve
of complexity 2 is called an edge. An edge defined by the point sequence (p, q) ⊂ Rd

we denote by p q. Conversely, a polygonal curve of complexity n can be thought of as
the concatenation of the n − 1 edges p1 p2 ⊕ p2 p3 ⊕ . . . ⊕ pn−1 pn. These edges we call
the edges of P . A point P (t) is said to lie on the ith edge of P if ti ≤ t ≤ ti+1. For
any polygonal curve P and values 0 ≤ s ≤ t ≤ 1 we define P [s, t] to be the subcurve
of P from s to t, which itself is a polygonal curve of complexity at most |P |, where
P [s, t](t′) = P (s + (1 − t′)(t − s)) for any t′ ∈ [0, 1]. We further define the reversal
rev(P ) of P as the polygonal curve resulting from P by reversing the parametrization,
i.e., rev(P )(t) = P (1 − t) for any t ∈ [0, 1]. Observe the relationship rev(P [s, t]) =
rev(P )[1− t, 1− s] for every curve P , and 0 ≤ s ≤ t ≤ 1.

The arc length ∥e∥ of an edge e = p q is the Euclidean distance ∥q − p∥. The arc
length ∥P∥ of a polygonal curve P is the sum of arc lengths of its edges. A curve P is
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said to be c-packed, if its arc length inside any disk Dr(p), denoted by ∥P ∩ Dr(p)∥, is
at most cr.

The set of all polygonal curves in Rd of complexity at most m we denote by Xd,m.
The subset of curves whose complexity is exactly m we denote by Xd,=m. The subset of
curves in Xd,m whose edges have length at most Λ we denote by Xd,m

Λ .
The continuous Fréchet distance of two curves P and Q, is defined as

dF (P,Q) = inf
f,g

max
t∈[0,1]

∥P (f(t))−Q(g(t))∥,

where f and g range over all surjective non-decreasing functions. Recall the metaphor
from Chapter 1, in which the Fréchet distance was introduced via a man and a dog
traversing the two curves P and Q. Here, f and g play the roles of the man and the
dog, respectively, with their parameterizations chosen to minimize the maximal distance
between them over time. We may refer to a pair (f, g) of such curves as a traversal or a
reparameterization. The discrete Fréchet distance has been proposed as a discretization
of the continuous Fréchet distance. Let p1, . . . , pn and q1, . . . , qm be the vertices of P
and Q respectively. Define the space T n,m of (n,m)-traversals as the set of sequences
((a1, b1), (a2, b2), . . . , (al, bl)), such that

1. a1 = 1 and b1 = 1; and al = n and bl = m,
2. for all i ∈ [l − 1] it holds that (ai+1, bi+1)− (ai, bi) ∈ {(1, 0), (0, 1), (1, 1)}.

The space of (n,m)-traversals plays the role of the discretization of the set of all repa-
rameterizations in the continuous case. The discrete Fréchet distance is defined as

ddF (P,Q) = min
T∈T n,m

max
(i,j)∈T

∥pi − qj∥.

Both the continuous and discrete Fréchet distances are bottleneck distances, i.e., they
minimize the maximal Euclidean distance between points matched during a traversal, and
as such can be heavily influenced by outliers. In practice, we sometimes prefer distances
that are more robust to such outliers. One such distance measure is the dynamic time
warping distance (DTW), which can be thought of as the ‘average discrete Fréchet
distance’, and is defined as

dtw(P,Q) = min
T∈T n,m

∑
(i,j)∈T

∥pi − qj∥.

The dynamic time warping distance can be thought of as the minimum 1-norm of the
distance vector induced by any traversal. Similarly, the discrete Fréchet distance can be
thought of as the minimum∞-norm of the distance vector induced by any traversal. We
study a generalization of which both the discrete Fréchet distance and DTW are special
cases, namely the p-dynamic time warping distance

dtwp(σ, τ) = min
T∈T n,m

 ∑
(i,j)∈T

∥σi − τj∥p
1/p

.

Various extensions of the continuous Fréchet distance which are less sensitive to out-
liers have been proposed. Broadly, they fall into two categories: Extensions of the dy-
namic time warping distance to the continuous domain and partial similarity measures.
We will focus on the latter, studying the shortcut Fréchet distance. Given a curve P , we
say P ′ is a shortcut curve of P if P ′ results from P by replacing subcurves of P with edges.
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P

Q

ddF :
dtw :

dF : dS :

Figure 2.1: Two curves P and Q in X2,4. Further illustrated are the traversals and
reparametrizations realizing the discrete Fréchet distance, dynamic time warping, con-
tinuous Fréchet distance and shortcut Fréchet distance. Additionally highlighted are the
point-to-point distances realizing the bottleneck distances: the discrete Fréchet distance,
continuous Fréchet distance and shortcut Fréchet distance.

More precisely, P ′ is defined via P and values 0 ≤ s1 ≤ t1 ≤ s2 ≤ . . . ≤ sm ≤ tm ≤ 1,
with P ′ being the concatenation of P [0, s1], P [s1, t1], P [t1, s2], . . ., P [sm, tm] and P [tm, 1],
where P [s, t] is the shortcut P (s)P (t). Define the shortcut Fréchet distance dS(P,Q)
of P and Q as the minimum Fréchet distance of any shortcut curve P ′ and Q. Note
that the shortcut Fréchet distance is directional, that is, dS(P,Q) ̸= dS(Q,P ). For an
overview of the distances refer to Figure 2.1. In Chapter 6 we study a parametrized
version of the shortcut Fréchet distance: the k-shortcut Fréchet distance dkS(P,Q)
is defined as the the minimum Fréchet distance of any shortcut curve P ′ with at most
k shortcuts and Q. Similarly to the non-parametrized shortcut Fréchet distance, the
k-shortcut Fréchet distance in general is not symmetric.

Note that for curves of complexity 2 (i.e., edges) the distances are trivial.

Observation 2.1.1. Given two curves P and Q in Rd each defined by sequences of two
points (a, b) and (c, d) respectively. Then

• dF (P,Q) = max(∥a− c∥, ∥b− d∥),

• ddF (P,Q) = max(∥a− c∥, ∥b− d∥)

• ∀k ∈ N : dkS(P,Q) = max(∥a− c∥, ∥b− d∥), and

• dtw(P,Q) = ∥a− c∥+ ∥b− d∥.

Lastly, observe the following relation between the distance measures.

Observation 2.1.2. Given two curves P and Q in Rd. Then for any k

dS(P,Q) ≤ dkS(P,Q) ≤ dF (P,Q) ≤ ddF (P,Q) ≤ dtw(P,Q).

2.2 Computational Model

Throughout this thesis we formulate and analyze algorithms in the realRAM model. In
this model the input to any algorithm consists of reals which we may store, and on which
we may perform the basic arithmetic operations +, −, × and / as well as the binary
comparison operations <, ≤, =, ≥ and > in constant time. We additionally assume that
the we may perform the square-root operation

√
· computing the square root of a given

(non-negative) real in constant time.
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2.3 Free Space Diagram

[AG95] introduced the so-called free space diagram as an algorithmic concept to com-
pute the continuous Fréchet distance of two given polygonal curves.

Definition 2.3.1 (Free Space Diagram). Let P and Q be two polygonal curves. The
free space diagram of Q and P is defined as the joint parametric space [0, 1]2 together
with a not necessarily uniform grid, where each vertical grid line corresponds to a vertex
parameter of P and each horizontal grid line corresponds to a vertex parameter of Q.
The ∆-free space (refer to Figure 2.2) of Q and P is defined as

D∆(Q,P ) =
{
(x, y) ∈ [0, 1]2 | ∥P (x)−Q(y)∥ ≤ ∆

}
.

This is the set of points in the parametric space, whose corresponding points on Q and
P are at a distance of at most ∆. The edges of Q and P segment the free space diagram
into cells. Denote by D(i,j)

∆ (Q,P ) = D∆(Q,P )∩Ci,j the ∆-free space inside the cell Ci,j

corresponding to the ith edge of P and the jth edge of Q. We call the intersection of
D∆(Q,P ) with the boundary of cells the free space intervals.

[AG95] noted that the Fréchet distance of Q and P is at most ∆, iff there is a
monotone (in both x- and y-direction) path from (0, 0) to (1, 1) in the ∆-free space of
Q and P . They further observed that the free space inside any cell is described by an
ellipse intersected with the cell, and thus is convex and has constant complexity. Hence,
the ∆-free space can be used to decide whether the Fréchet distance of two curves of
complexity n and m is at most ∆ in O(mn) time.

In [DHW12] it was shown that the number of cells with non-empty ∆-free space of
suitable simplifications of two c-packed curves is in O(c ·max(m,n)), which enables linear
time approximation algorithms for the decision of whether the Fréchet distance is at most
∆ for two c-packed curves. This will be an important and reoccurring concept, as curves
encountered in practice are often c-packed for small c [GSW20].

We now present a generalization of the ∆-free space, the approximate free space. The
approximate free space will be an important tool in Chapter 4.

Definition 2.3.2 (Approximate Free Space). Let P and Q be two polygonal curves
parametrized over [0, 1]. Let ∆ ≥ 0 and α ≥ 1 be given. We say A is an α-approximate
∆-free space (or (α,∆)-free space) of Q and P , if

1. D∆(Q,P ) ⊂ A ⊂ Dα∆(Q,P ),
2. A is convex inside the interior of every cell of the free space diagram and
3. any point p on the boundary of a cell of the free space diagram is in A iff for every

cell p lies in it is in the closure of the restriction of A to the interior of that cell.

The (1,∆)-free space ofQ and P is unique and coincides withD∆(Q,P ). By definition
any approximate free space of Q and P also defines an approximate free space of rev(Q)
and P by mirroring it along the x-axis and translating it by (0, 1).

Any monotone path from (a, b) to (c, d) in an (α,∆)-free space of Q and P implies
that dF (P [a, c], Q[b, d]) ≤ α∆.

Definition 2.3.3 (Extremal Points). Let A be an (α,∆)-free space. As A is convex
in any cell C, the set of points of A minimizing the x-coordinate in C are described
by a vertical line segment of length at least 0. We call the start- and endpoint of this
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∆α∆

Q
P D∆(Q,P )

A

Dα∆(Q,P )

A

Q

P

Figure 2.2: The ∆-free space and the α∆-free space of two curves P and Q, as well as an
α-approximate ∆-free space A of P and Q. Additionally marked are the extremal points
of A.

line segment the leftmost points of A in C. Similarly A has at most two bottommost,
rightmost and topmost points in C. The union over all left-, bottom-, right- and topmost
points of A in every cell defines the set of extremal points of A (refer to Figure 2.2).

We impose a total order on the y-coordinates of extremal points via symbolic per-
turbation, where extremal points inside a cell are ordered such that the topmost points
lie above the left- and rightmost points, which in turn lie above all bottommost points
in that cell. If points from different cells have the same y-coordinate, we say that points
from cells with lexicographically smaller index lie below points from cells with higher
index. Lastly, comparing two topmost (resp. bottommost) points from the same cell we
order them such that the left topmost point is below the right topmost point.

Aside from the (1,∆)-free space we will make use of an approximate ∆-free space in
this work, which we describe in the following.

Piecewise Linear Approximate ∆-Free Space

We provide an approximation to the ∆-free space that is independent of the dimension
of the ambient space that the polygonal curves live in. This is constructed by projecting
every pair of edges e1 and e2 (corresponding to some cell of the ∆-free space) into R3

resulting in ê1 and ê2 such that for any (x, y) ∈ [0, 1]2 the distances ∥e1(x)− e2(y)∥ and
∥ê1(x) − ê2(y)∥ coincide. Importantly, in R3 we can (1 + ε)-approximate the ball with
radius ∆ by a polytope represented as the intersection of at most O(ε−2) halfspaces in
R3. This polytope defines a polygon in [0, 1]2 which (1 + ε)-approximates the ∆-free
space of ê1 and ê2 which coincides with the ∆-free space of e1 and e2.

22



CHAPTER 2. BASIC NOTATION, CONCEPTS AND TECHNIQUES

Theorem 2.3.4. Let P and Q be two polygonal curves in Rd. Let ε ∈ (0, 1] be given. In
O(|P ||Q|ε−2 log(ε−1)) time one can compute a (1 + ε,∆)-free space of P and Q whose
restriction to the interior of any cell of the free space diagram is described by a convex
polygon of complexity O(ε−2).

We prove this theorem via the following folklore lemmas. For the sake of completeness,
we provide proofs for these lemmas.

Lemma 2.3.5. Let p, q, r, s ∈ Rd be given. One can compute in O(d) time four points
p̂, q̂, r̂, ŝ ∈ R3 such that for any (x, y) ∈ [0, 1]2 it holds that

∥p+ y(q − p)− (r + y(s− r))∥ = ∥p̂+ x(q̂ − p̂)− (r̂ + y(ŝ− r̂))∥.

Proof. Assume d > 3. Without loss of generality assume p = 0 by translating all
points by −p. Then q, r, and s lie on a three-dimensional subspace of Rd. Let e1,
e2 and e3 be pairwise orthogonal vectors of length 1 spanning the same subspace,
which may be computed from q, r, and s by, for example, the Gram-Schmidt pro-
cess. Then q̂ = (⟨q, e1⟩, ⟨q, e2⟩, ⟨q, e3⟩) and similarly r̂ = (⟨r, e1⟩, ⟨r, e2⟩, ⟨r, e3⟩), and
ŝ = (⟨s, e1⟩, ⟨s, e2⟩, ⟨s, e3⟩). As q, r and s are in the subspace spanned by e1, e2 and e3
we also have that q = ⟨q, e1⟩e1 + ⟨q, e2⟩e2 + ⟨q, e3⟩e3 and similarly for r and s. Now, as
e1, e2 and e3 are pairwise orthogonal, i.e., ⟨ei, ej⟩ is 0 if i ̸= j, and ⟨ei, ei⟩ = 1 for i ≤ 3
we have that

⟨q, q⟩ =
〈
⟨q, e1⟩e1 + ⟨q, e2⟩e2 + ⟨q, e3⟩e3, ⟨q, e1⟩e1 + ⟨q, e2⟩e2 + ⟨q, e3⟩e3

〉
= ⟨q, e1⟩⟨q, e1⟩+ ⟨q, e2⟩⟨q, e2⟩+ ⟨q, e2⟩⟨q, e2⟩ = ⟨q̂, q̂⟩,

and similarly ⟨q, r⟩ = ⟨q̂, r̂⟩, ⟨q, s⟩ = ⟨q̂, ŝ⟩, ⟨r, r⟩ = ⟨r̂, r̂⟩, ⟨r, s⟩ = ⟨r̂, ŝ⟩, and ⟨s, s⟩ =
⟨ŝ, ŝ⟩. Hence for any (x, y) ∈ [0, 1]2 it holds that

⟨xq − (r + y(s− r)), xq − (r + y(s− r))⟩ = ⟨xq̂ − (r̂ + y(ŝ− r̂)), xq̂ − (r̂ + y(ŝ− r̂))⟩ ,

and thus

∥p+ x(q − p)− (r + y(s− r))∥ = ∥p̂+ x(q̂ − p̂)− (r̂ + y(ŝ− r̂))∥.

Lemma 2.3.6. Let ε ∈ (0, 1/5]. One can compute a convex polytope D of complexity
O(ε−2) in R3 such that D1(0) ⊂ D ⊂ D1+4ε(0) in time O(ε−2 log ε−1).

Proof. Consider a grid with side length ε−1 in R3. LetG be all points of the grid that lie in
D1(0). One can compute in O(ε−2 log ε−1) a set of O(ε−2) points S such that the convex
hull of S and G coincide. For this compute for every −⌈ε−1⌉ ≤ i, j ≤ ⌈ε−1⌉ the minimum
k− and the maximum k+ of the set Gi,j = {k ∈ Z | |k| ≤ ⌈ε−1⌉ &

√
(i2 + j2 + k2)ε ≤ 1}

via binary search. These two values define two points (iε, jε, k−ε) and (iε, jε, k+ε) whose
convex hull contains all other points (iε, jε, kε) for k ∈ Gi,j and hence all (iε, jε, kε) ∈ G
for k ∈ Z. Thus, the union of all these O(n2) points defines S.

Let now C be the convex hull of S represented as the intersection ofO(ε−2) halfspaces,
which can be computed in O(ε−2 log ε−1) time. Observe that G ⊂ C ⊂ D1(0).

Now, for any point x ∈ D1(0) it holds that miny∈C ∥x − y∥ < 2ε−1, as otherwise
there is a disk of radius ε−1 contained in D1(0) \C. As the side length of the grid is ε−1

there would then be a grid point p in this disk of radius ε−1 and thus also in D1(0) \ C
contradicting the fact that G ⊂ C. Hence D1−2ε(0) ⊂ C ⊂ D1(0).

Scaling C by a factor of (1+4ε) proves the claim, as 1 ≤ 1+2ε−8ε2 = (1+4ε)(1−2ε)
and (1 + 4ε)(1− 2ε) ≤ (1 + 4ε).
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Lemma 2.3.7. Let e1 and e2 be two edges in R3 and let D be a polytope in R3 described
by the intersection of C halfspaces. Then the set

{(x, y) ∈ [0, 1]2 | e1(x)− e2(y) ∈ D}

is a polygon of complexity O(C) and can be computed in O(C logC) time.

Proof. Let H1, . . . ,HC be the halfspace describing D represented via their normal vector
ni and value di (that is Hi = {x ∈ R3 | ⟨ni, x⟩ ≤ di}) in R3 describing the polytope D.
Then the set {(x, y) ∈ [0, 1]2 | e1(x)− e2(y) ∈ D} is described as the intersection of the
C halfspaces in R2 (intersected with [0, 1]2) given by ⟨ni, e1(x)− e2(y)⟩ ≤ di.

Proof of Theorem 2.3.4. This is a consequence of Lemma 2.3.5, Lemma 2.3.6 as well
as Lemma 2.3.7. Let ε̂ = ε/5 ≤ 1/5. First, compute in time O(ε−2 log(ε−1)) time a
polytope D ⊂ R3 such that D∆(0) ⊂ D ⊂ D(1+4ε̂)∆(0). With the polytope D at hand, in
O(|P ||Q|ε−2 log ε−1) time compute for every cell Ci,j corresponding to the edges ei = a b

of Q and e′j = c d of P first the four points â, b̂, ĉ, and d̂ according to Lemma 2.3.5,
and then the polygon Di,j = {(x, y) ∈ [0, 1]2 | êi(x) − ê′j(y) ∈ D} where êi and ê′j are
the two edges in R3 defined by â and b̂, and ĉ and d̂ respectively. Now observe that
D∆(ei, e

′
j) ⊂ Di,j ⊂ D1+4ε∆(ei, e

′
j), and Di,j define a (1 + ε)-approximate ∆-free space

in the interior of every cell. These polygons define a (1 + ε,∆)-free space, where on the
shared boundary of a set of cells the (1 + ε)-approximate ∆-free space is exactly the
intersection of all polygons associated to cells in that set concluding the proof.

Observe that the extremal points and polygon vertices of the approximate free space
computed via Theorem 2.3.4 may also be endowed with a total order, where topmost
points of any cell lie above all left- and rightmost points, which in turn lie above all
bottommost points.

2.4 Dimensionality Measures

Both the running time and the approximation ratio of many geometric algorithms in
Euclidean space Rd depend on the dimension. In this thesis, we focus on the space of
curves under various distance measures. While we typically think of curves as lying in an
ambient Euclidean space, the notion of ‘dimension’ for the space Xd,m is less immediate.
For more general spaces different measures of dimensionality have been proposed which
generalize the dimension of the Euclidean space. Let M = (M,d) be a metric space.
The doubling constant of M is the smallest number D such that any metric ball of
radius r can be covered by D balls of radius r/2. The doubling dimension of M
is the logarithm log2(D) of the doubling constant. It is well known that the doubling
dimension of the d-dimensional Euclidean space Rd is in Θ(d). For the space of all curves
Xd,m endowed with the discrete Fréchet distance observe that a curve P has discrete
Fréchet distance at most r to Q if every vertex of P is at distance at most r to some
vertex of Q. Choosing for every vertex q of Q a set of 2Θ(d) disks with radius r/2
covering Dr(v) and enumerating all sequences of length at most m of centers of such
disks guarantees that the Fréchet distance of P and at least one such sequence is at most
r/2. This implies that the doubling dimension of (Xd,m, ddF ) is in O(m(d+log(m)). For
the space of all curves Xd,m under the continuous Fréchet distance, [DKS16] showed that
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Figure 2.3: Illustration of the VC-dimension for the range space whose ground set is R2

and whose set system is the set of all halfspaces in R2. Any set of three points, that are
not colinear, can be shattered, while no set of four points can be shattered by Radon’s
Lemma.

the doubling dimension is unbounded, even if m = 3 (refer to Theorem 5.4.3 for a proof
of a stronger statement).

A different dimensionality measure we will work with is the so-called VC-dimension.
It measures the richness of a range space. A range space is a pair (X,R), where X
is a set and R ⊂ P(X) is a set of subsets of X. The set X is called the ground
set of (X,R), and R is called the set system of (X,R). For a given range space
(X,R) a set A ⊂ X is said to be shattered, if for any subset A′ ⊂ A there is an
r ∈ R such that A′ = A ∩ r. The VC-dimension is the cardinality of the biggest
subset of X that is shattered. Simple examples include (R2, {Dr(x)|x ∈ R2, r > 0}),
whose VC-dimension is 3, (R2, {all halfspaces in R2}), whose VC-dimension is 3 (refer
to Figure 2.3), (R2, {all triangles in R2}), whose VC-dimension is 7, and ([n],P([n])),
whose VC-dimension is n.
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Chapter 3

(k, ℓ)-Median under Dynamic Time
Warping

In this chapter, we study the p-dynamic time warping distance and whether the (k, ℓ)-
median problem under p-DTW admits coresets and, based on such a coreset, an efficient
algorithm.

Problem 1 ((k, ℓ)-Median under p-DTW). Let T = {τ1, . . . , τn} ⊂ Xd,m, and let
k, ℓ, p ∈ N be given. Compute k center curves C = {c1, . . . , ck} ⊂ Xd,ℓ that minimize

costp(T,C) =
∑
τ∈T

min
c∈C

dtwp(τ, c).

Our results improve upon the algorithm in [BDvG+22] in that we provide the first
polynomial-time algorithm with constant success probability.

The main content of this chapter previously appeared as the paper Fast Approx-
imations and Coresets for (k, ℓ)-Median under Dynamic Time Warping [CKPR24] by
Jacobus Conradi, Benedikt Kolbe, Ioannis Psarros, and Dennis Rohde which was pub-
lished in the Proceedings of the 40th International Symposium on Computational Geom-
etry (SoCG 2024). A full version of the paper is available on arXiv [CKPR23]. An
initial version of the work has also been presented at the 40th European Workshop on
Computational Geometry (EuroCG 2024) based on an extended abstract without formal
publication.

3.1 Introduction

In the last decade, the problems of (k, ℓ)-median and (k, ℓ)-center clustering for time
series in Rd under the Fréchet distance have gained significant attention. The problem
is NP-hard [BDG+19, BDS20, DKS16], even if k = 1 and d = 1, and the (k, ℓ)-center
problem is even NP-hard to approximate within a factor of (3−ε) for d ≥ 2, and (1.5−ε)
for d = 1 [BDG+19, BCD+25].

For the (k, ℓ)-median problem, all presently known (1+ ε)-approximation algorithms
are based on an approximation scheme [BDR23, CH23b, DKS16] which has been gener-
alized several times [ABS10, KSS04]. The most recent version of this scheme [BDR23,
Theorem 7.2] can be used to approximate any k-median-type problem in an arbitrary
space X with a distance function. All it needs is a plugin algorithm that, when given a set
T of elements from some (problem-specific) subset Y ⊆ X, computes a set of candidates
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C such that for any set T ′ ⊆ T with |T ′| ≥ |T |/k the set C contains an approximate
median of T ′ with high probability. The resulting approximation quality depends on the
approximation factor of the plugin algorithm. The running time depends on the size |C|
of the candidate set and k with a factor of O(|C|k).

For the Fréchet distance, plugin algorithms exist that yield (1 + ε)-approximations
[BDR23, CH23b]. For DTW, however, the best plugin algorithm [BDvG+22] has running
time exponential in k—roughly with a dependency of Õ((32k2ε−1)k+2n)—and approxi-
mation guarantee of (8+ ε)(mℓ)1/p with constant success probability. In principle, some
of the ideas from plugins for the Fréchet distance could be adapted, but the more involved
plugins, i.e., the ones yielding (1 + ε)-approximations, crucially make use of the metric
properties of the distance function.

In practice, an adaption of Gonzalez algorithm for (k, ℓ)-center clustering under the
Fréchet distance performs well [BDvdLN19]. Similar ideas have also been used for clus-
tering under (a continuous variant of) DTW [BBK+20], but there are no approximation
guarantees, and the usual analysis is based on repeated application of the triangle in-
equality.

An influential approach to solving k-median-like problems is to construct a point set
that acts as a proxy on which to run computationally more expensive algorithms that
yield solutions with approximation guarantees. The condensed input set is known as a
coreset (refer to Figure 3.1).

Definition 3.1.1 (ε-Coreset). Let T ⊂ Xd,m be a finite set and ε ∈ (0, 1). Then a
weighted multiset S ⊂ Xd,m with weight function w : S → R>0 is a weighted ε-coreset
for the (k, ℓ)-median problem of T under dtwp if for all C ⊂ Xd,ℓ with |C| = k

(1− ε)costp(T,C) ≤
∑
s∈S

w(s)min
c∈C

dtwp(s, c) ≤ (1 + ε)costp(T,C).

For the Fréchet distance, ε-coresets can be constructed [BCJ+22, BR22] that help fa-
cilitate the practicability of available algorithms. Using such ε-coresets w.r.t. the Fréchet
distance, a (5 + ε)-approximation algorithm for the 1-median problem was recently an-
alyzed [BR22], yielding a total running time of roughly nmO(1) + (m/ε)O(ℓ), in contrast
to a running time of n(m/ε)O(ℓ) without the use of coresets [BDR23].

For DTW, no coreset construction is known to this point. This is at least partially due
to prominent coreset frameworks assuming a normed or at least a metric space [FL11,
LS10]. Also, recently a coreset construction relying solely on uniform sampling was
developed that greatly simplifies existing coreset constructions [BCJ+22], including the
aforementioned coresets under the Fréchet distance. Unfortunately, the construction
again relies on different incarnations of the triangle inequality, limiting its use for DTW.

3.1.1 Results

To construct ε-coresets, we use approximations of the range space defined by balls under
p-DTW and bound their VC dimension. Assuming that the input is a set of n curves
of complexity at most m, we present an approximation algorithm (Theorem 3.5.2) for
(k, ℓ)-median with running time in roughly Õ(n) (hiding other factors) that improves
upon existing work in terms of running time, with comparable approximation guarantees.
Our approach relies on curve simplifications and a new insight into the notion of relaxed
triangle inequalities for p-DTW (Lemma 3.4.6). We use this relaxed triangle inequality
to give an algorithm which computes a bicriteria approximation for the (k, ℓ)-median
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X1

X2

X3

Figure 3.1: Illustration of a coreset (red), i.e., a weighted sparse representation of the
original set of curves (in red and black). The weights in this case are w(X1) = 3,
w(X2) = 2 and w(X3) = 1.

problem via the finite metric space consisting of all input curves and their simplifications
where the distances are defined by the shortest-path metric w.r.t. p-DTW.

Definition 3.1.2 ((α, β)-approximation). Let a set T = {τ1, . . . , τn} ⊂ Xd,m of n curves
be given. A set Ĉ ⊂ Xd,ℓ is called an (α, β)-approximation of (k, ℓ)-median, if |Ĉ| ≤ βk
and

costp

(
T, Ĉ

)
≤ αcostp(T,C)

for any C ⊂ Xd,ℓ of size k.

We use the approximation computed by the bicriteria approximation algorithm to
bound the sensitivity of each input curve. The bound of the sensitivities together with
the aforementioned bound on the VC dimension of the approximate range space of p-
DTW balls enables application of a modified version of sensitivity sampling as introduced
in [FL11]. Overall, this results in an ε-coreset for (k, ℓ)-median clustering of size quadratic
in 1/ε and k, logarithmic in n, and depending on (mℓ)1/p and ℓ (Corollary 3.5.4).

3.2 VC Dimension of DTW

We now derive bounds on the VC dimension of a range space that approximates the
range space of p-DTW balls in Xd,m:(

Xd,m,
{
{x ∈ Xd,m | dtwp(x, τ) ≤ r} ⊂ Xd,m

∣∣∣τ ∈ Xd,ℓ, r > 0
})

.

Our reasoning for bounding the VC dimension exclusively relies on establishing the pre-
requisites of Theorem 3.2.2 below.

Definition 3.2.1 ([AB99]). Let H be a class of {0, 1}-valued functions defined on a
set X, and F a class of real-valued functions defined on Rd × X. We say that H is
a k-combination of sign(F ) if there is a function g : {−1, 1}k → {0, 1} and functions
f1, . . . , fk ∈ F so that for all h ∈ H there is a parameter vector α ∈ Rd such that for all
x in X,

h(x) = g(sign(f1(α, x)), . . . , sign(fk(α, x))).

The definition of the sign function we use is that sign(x) = 1 for R ∋ x ≥ 0 and
sign(x) = −1 for x < 0. Observe that the class H of functions corresponds to a set
system consisting of subsets of X.
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Theorem 3.2.2 (Theorem 8.3 [AB99]). Let F be a class of maps from Rs × X to R,
so that for all x ∈ X and f ∈ F , the function α 7→ f(α, x) is a polynomial on Rs of
degree δ. Let H be a κ-combination of sign(F ). Then the VC dimension of H is less
than 2s log2(12δκ).

Theorem 3.2.2 implies a bound on the VC dimension of range spaces defined by p-
DTW for even values of p which was independently observed for p = 2 in [BD23]: The
decision of whether p-DTW exceeds a given threshold can be formulated as a |T m,ℓ|-
combination of signs of polynomial functions; each one realizing the cost of a traversal.
This yields an upper bound of O(dℓ2 log(mp)). The situation becomes more intriguing in
the general case, since for any odd p, and in particular p = 1, the cost of each traversal is
no longer a root of a polynomial. To overcome this, we investigate range spaces defined
by approximate p-DTW balls and show that we get bounds that do not depend on p.

The following lemma shows that one can determine (approximately) the p-DTW
distance between two sequences, based solely on the signs of certain polynomials that are
designed to provide a sketchy view of all pointwise distances.

Lemma 3.2.3. Let τ ∈ Xd,=ℓ, σ ∈ Xd,=m, r > 0 and ε ∈ (0, 1]. For each i ∈ [ℓ], j ∈ [m]
and z ∈ [⌊ε−1 + 1⌋], define

fi,j,z(τ, r, σ) = ∥τi − σj∥2 − (z · εr)2.

There is an algorithm that, given as input the values of sign(fi,j,z(τ, r, σ)), for all i ∈ [ℓ],
j ∈ [m] and z ∈ [⌊ε−1 + 1⌋], outputs a value in {0, 1} such that:

• if dtwp(τ, σ) ≤ r then it outputs 1,

• if dtwp(τ, σ) > (1 + (m+ ℓ)1/pε)r then it outputs 0 and

• if dtwp(τ, σ) ∈ (r, (1 + (m+ ℓ)1/pε)r] the output is either 0 or 1.

Proof. The algorithm first iterates over all i and j. For each i and j we assign a variable
ϕi,j as follows: if Zi,j := {z ∈ [⌊ε−1 + 1⌋] | sign(fi,j,z(τ, r, σ)) = −1} ≠ ∅, then ϕi,j :=
min(Zi,j)εr, otherwise ϕi,j := ∞. After having computed all ϕi,j , we return a value as
follows: if

Φ(τ, σ) := min
T∈T ℓ,m

 ∑
(i,j)∈T

(ϕi,j)
p

1/p

≤ (1 + (m+ ℓ)1/pε)r,

then the output is 1. Otherwise, the output is 0.
We now prove the correctness of the algorithm. For this let us first observe that

for all i ∈ [ℓ] and j ∈ [m] it holds that ∥τi − σj∥ < ϕi,j . Further if ∥τi − σj∥ ≤ r
then ϕi,j − εr ≤ ∥τi − σj∥. This follows from the fact that Zi,j coincides with the set
{z ∈ [⌊ε−1 + 1⌋] | zεr ≥ ||τi − σj ||}.

Now, the fact that for all i ∈ [ℓ] and j ∈ [m] it holds that ∥τi − σj∥ < ϕi,j , wee see
that Φ(τ, σ) ≥ dtwp(τ, σ), as for any (ℓ,m)-traversal T we see that ∑

(i,j)∈T

(ϕi,j)
p

1/p

≥

 ∑
(i,j)∈T

∥τi − σj∥p
1/p

≥ dtwp(τ, σ).

In particular, if dtwp(τ, σ) > (1+(m+ ℓ)1/pε)r then Φ(σ, τ) > (1+(m+ ℓ)1/pε)r, and as
such the algorithm outputs 0. It remains to show that if dtwp(τ, σ) ≤ r, then Φ(σ, τ) ≤
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(1 + (m + ℓ)1/pε)r. To show this, let dtwp(τ, σ) ≤ r and let T ∗ be an (ℓ,m)-traversal
realizing dtwp(τ, σ). In particular, for all (i, j) ∈ T ∗, ∥τi−σj∥ ≤ r, so ϕi,j ≤ ∥τi−σj∥+εr
for all (i, j) ∈ T ∗. We conclude that

Φ(σ, τ) ≤

 ∑
(i,j)∈T ∗

(ϕi,j)
p

1/p

≤

 ∑
(i,j)∈T ∗

|∥τi − σj∥+ εr|p
1/p

≤

 ∑
(i,j)∈T ∗

∥τi − σj∥p
1/p

+

 ∑
(i,j)∈T ∗

(εr)p

1/p

≤ r + (|T ∗|)1/p · εr ≤ r + (m+ ℓ)1/p εr,

where the inequalities hold by the Minkowski inequality and 1 ≤ |T ∗| ≤ m+ ℓ.

The algorithm of Lemma 3.2.3 essentially defines a function that implements approx-
imate p-DTW ball memberships, and satisfies the requirements set by Theorem 3.2.2.
However, it is only defined on curves in Xd,=ℓ and Xd,=m. We extend the approach to all
curves in Xd,m.

Lemma 3.2.4. Let ε ∈ (0, 1], and let m, ℓ ∈ N be given. There are injective functions
πℓ : Xd,ℓ → R(d+1)ℓ and πm : Xd,m → R(d+1)m and a class of functions Fε mapping from(
R(d+1)ℓ × R

)
× R(d+1)m to R, such that for any f ∈ Fε the function α 7→ f(α, x) is a

polynomial function of degree 2. Furthermore, there is a function g : {−1, 1}k → {0, 1}
and functions f1, . . . , fk ∈ Fε, where k = mℓ⌊ε−1+1⌋+m+ℓ, such that for any τ ∈ Xd,ℓ,
r > 0 and σ ∈ Xd,m it holds that

• if dtwp(σ, τ) ≤ r then

g(sign(f1(πℓ(τ), r, πm(σ))), . . . , sign(fk(πℓ(τ), r, πm(σ)))) = 1,

• if dtwp(σ, τ) > (1 + (m+ ℓ)1/pε)r then

g(sign(f1(πℓ(τ), r, πm(σ))), . . . , sign(fk(πℓ(τ), r, πm(σ)))) = 0.

Proof. For σ ∈ Xd,=m′ ⊂ Xd,m define σ̃ = πm(σ). The curve σ̃ consists of m points in
Rd+1, where the first m′ points consist of the points in σ together with a 1 in the (d+1)th

coordinate. The (m′ + 1)th to mth point is defined to be the point (−1, . . . ,−1) ∈ Rd+1.
The points of τ̃ = πℓ(τ) are defined similarly padding τ to a length of ℓ similar to σ. Let
τi and σj denote the first d coordinates of the ith and jth point in τ̃ and σ̃. That is, for
j ≤ m′ the point σj is exactly the jth point of σ, and for j > m′ the point σj is the point
(−1, . . . ,−1) ∈ Rd. Let τd+1

i and σd+1
j denote the (d+1)th coordinate of the ith and jth

(d+ 1)-dimensional point in τ̃ and σ̃ respectively.
The set Fε consists of all functions fi,j,z(τ̃ , r, σ̃) = ∥τi − σj∥2 − (zεr)2, where i ∈ [ℓ],

j ∈ [m] and z ∈
[⌊
ε−1 + 1

⌋]
. It further contains the functions gi(τ̃ , r, σ̃) = τd+1

i and
hj(τ̃ , r, σ̃) = σd+1

j . The function g has k = ℓm·⌊ε−1+1⌋+m+l arguments, corresponding
to the signs of the functions fi,j,z, gi, and hj always ordered in the same way. To compute
g we first use the sign of gi and hj to infer the values of m′ and ℓ′, that is, the complexities
of σ and τ , as sign(gi) = 1 if and only if i ≤ ℓ′, and similarly sign(hj) = 1 if and only if
j ≤ m′. It then invokes and outputs the result from the algorithm of Lemma 3.2.3 with
input sign(f1,1,1(τ̃ , r, σ̃)), . . . , sign(fℓ′,m′,⌊ε−1+1⌋(τ̃ , r, σ̃)), concluding the proof.
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Using the previous lemmas, we define a distance function d̃twp between elements of
Xd,m and Xd,ℓ, which we will use throughout the chapter as an approximate function of
dtwp . To get an estimate of the VC dimension of the range space induced by balls under
d̃twp and decide membership of points to these balls, the approximate distance will only
take discrete values.

Definition 3.2.5. Let ε ∈ (0, 1] and define the set of radii Rε = {(1 + ε/3)z | z ∈ Z}.
Lemma 3.2.4 defines an approximation of dtwp(σ, τ) for any σ ∈ Xd,ℓ and τ ∈ Xd,m, by
virtue of the functions g and f1, ..., fk for Fε/6(m+ℓ)1/p , as

d̃twp(σ, τ) = (1 + ε/3) ·min{r ∈ Rε | g(sign(f1(πℓ(τ), r, πm(σ))), . . .) = 1}.

In the following lemma, we formally show that d̃twp(σ, τ) approximates p-DTW be-
tween σ and τ within a factor of 1 + ε.

Lemma 3.2.6. Let ε ∈ (0, 1]. For any σ ∈ Xd,m and τ ∈ Xd,ℓ it holds that

dtwp(σ, τ) < d̃twp(σ, τ) < (1 + ε) dtwp(σ, τ).

Proof. Let r∗ = d̃twp(σ, τ) and let ε̂ = ε/3. By definition of d̃twp the function g (with
the class of functions with Fε/6(m+ℓ)1/p = Fε̂/2(m+ℓ)1/p) from Definition 3.2.5 outputs 0

with σ, r∗/(1 + ε̂)2, and τ . However, the function g outputs 1 with σ, r∗/(1 + ε̂), and
τ . Hence r∗/(1 + ε̂)2 < dtwp(σ, τ) and r∗/(1 + ε̂) ≥ dtwp(σ, τ)/(1 + ε̂/2). This in turn
implies that

dtwp(σ, τ) ≤ (1 + ε̂)r∗/(1 + ε̂/2) < r∗ < (1 + ε̂)2 dtwp(σ, τ) < (1 + ε) dtwp(σ, τ).

From the definition of d̃twp , we conclude that g serves as a membership predicate for
balls defined by d̃twp .

Lemma 3.2.7. Let ε ∈ (0, 1], τ ∈ Xd,ℓ and r ∈ Rε. For any σ ∈ Xd,m the output of the
function g of Definition 3.2.5 with σ, τ and r is 1 iff d̃twp(σ, τ) ≤ (1 + ε/3)r, i.e., iff
σ ∈ {x ∈ Xd,m | d̃twp(x, τ) ≤ (1 + ε/3)r}.

Proof. Let r∗ = d̃twp(σ, τ) and ε̂ = ε/3. Observe that g outputs 0 for σ, τ and any
r ∈ Rε if r ≤ r∗/(1 + ε̂)2, and 1 for r = r∗/(1 + ε̂). Now by Lemma 3.2.6 we know that
dtwp(σ, τ) < r∗. Hence g outputs 1 for σ, τ and any r ≥ r∗. Thus we conclude that g
outputs 1 for σ, τ and r ∈ Rε if and only if r ≥ d̃twp(σ, τ)/(1 + ε̂) = d̃twp(σ, τ)/(1 +
ε/3).

We conclude with the main result of this section, namely an upper bound on the VC
dimension of the range space that approximates the p-DTW range space.

Theorem 3.2.8. Let ε ∈ (0, 1]. The VC dimension of the range space(
Xd,m,

{
{x ∈ Xd,m | d̃twp(x, τ) ≤ r} ⊂ Xd,m

∣∣∣τ ∈ Xd,ℓ, r > 0
})

is at most

2(d+ 1)ℓ log2(12ℓm⌊(m+ ℓ)1/pε−1 + 1⌋+ 12m+ 12ℓ) = O(dℓ log(ℓmε−1)).
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Proof. This follows from Theorem 3.2.2, Lemma 3.2.4 and Lemma 3.2.7, and the fact
that any ball of radius r > 0 under d̃twp coincides with some ball with radius r̃ ∈ Rε

under d̃twp . Finally, the statement is implied by the injectivity of the functions πm and
πℓ.

In this section, we defined a distance function d̃twp between curves in Xd,m and
those in Xd,ℓ, which (1 + ε)-approximates dtwp . We also derived an upper bound on
the VC dimension of the range space induced by balls of d̃twp , thereby producing an
approximation of the p-DTW range space that we make use of below. We emphasize
that the sole purpose of d̃twp is to obtain bounds on the size of a sample constituting a
coreset through the knowledge of the VC dimension. At no point do we compute d̃twp .

3.3 Sensitivity Bounds and Coresets for DTW

To make use of the sensitivity sampling framework for coresets by Feldman and Lang-
berg [FL11], we recast the input set T ⊂ Xd,m to a set of functions. Consider for
any y ∈ Xd,m the real valued function fy defined on (finite) subsets of Xd,ℓ where
fy(C) = minc∈C dtwp(y, c) for C ⊂ Xd,ℓ, transforming T into FT = {fτ | τ ∈ T}. To con-
struct a coreset, one draws elements from T according to a fixed probability distribution
over T , and reweighs each drawn element. Both the weight and sampling probability
are expressed in terms of the sensitivity of the drawn element t, which describes the
maximum possible relative contribution of t to the cost of any set of curves C ⊂ Xd,ℓ. In
our case, as we restrict a solution to a size of k, it turns out that it suffices to analyze
the sensitivity with respect to inputs of size k.

Definition 3.3.1 (sensitivity). Let F be a finite set of functions from P
(
Xd,ℓ

)
\ {∅} to

R. For any f ∈ F define the sensitivity

s(f, F ) = sup
C={c1,...,ck}⊂Z:

∑
g∈F g(C)>0

f(C)∑
g∈F g(C)

.

The total sensitivity S(F ) of F is defined as
∑

f∈F s(f, F ).

A crucial step in our approach is to show that any (α, β)-approximation for (k, ℓ)-
median under dtwp can be used to obtain a bound on the total sensitivity associated
to approximate distances. This is facilitated by the following lemma that is a weaker
version of the triangle inequality, as in general dtwp is not a metric (see Figure 3.2).

Lemma 3.3.2 (weak triangle inequality [Lem09]). For two curves x, z ∈ Xd,m and any
curve y ∈ Xd,ℓ it holds that

dtwp(x, z) ≤ m1/p(dtwp(x, y) + dtwp(y, z)).

Note that the distance function we bounded the VC dimension of is not dtwp , but the
(1+ε)-approximation d̃twp of dtwp . Hence we also analyze the functions f̃y corresponding
to the approximation d̃twp ; for any y ∈ Xd,m and ε > 0, let f̃y : P(Xd,ℓ)\{∅} → R where
f̃y(C) = minc∈C d̃twp(y, c). Similarly, let F̃T be the set {f̃τ | τ ∈ T} for any T ⊂ Xd,m.
Note that by Lemma 3.2.6 fτ ≤ f̃τ ≤ (1 + ε)fτ . We now analyze the sensitivity of the
corresponding functions w.r.t. d̃twp only in terms of dtwp .
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s

t

x

y

1

ε

ε

Figure 3.2: Violated triangle inequality as dtw(s, t) ≈ 12, but dtw(s, x) ≈ 0 (matching
in blue), dtw(y, t) ≈ 0 (red matching) and dtw(x, y) ≈ 3 (green matching).

Lemma 3.3.3. Let ε ∈ (0, 1] and let T ⊂ Xd,m be the input of size n for (k, ℓ)-median
and let Ĉ = {ĉ1, . . . , ĉk̂} ⊂ Xd,ℓ be an (α, β)-approximation to the (k, ℓ)-median problem
of T with cost ∆̂ =

∑
τ∈T minĉ∈Ĉ dtwp(τ, ĉ), of size k̂ ≤ βk. For any i ∈ [k̂] let V̂i =

{τ ∈ T | dtwp(τ, ĉi) = minĉ∈Ĉ dtwp(τ, ĉ)} be the Voronoi region of ĉi, where ties are
broken arbitrarily. These sets partitions T . Let ∆̂i =

∑
τ∈V̂i

dtwp(τ, ĉi) be the cost of V̂i.
For all τ ∈ V̂i define

γ(f̃τ ) := (mℓ)1/p

(
2α dtwp(τ, ĉi)

∆̂
+

4

|V̂i|
+

8α∆̂i

∆̂|V̂i|

)
.

Then s(f̃τ , F̃T ) ≤ γ(f̃τ ) for any τ ∈ T , and S(F̃T ) ≤
∑

τ∈T γ(f̃τ ) ≤ (mℓ)1/p(4k̂ + 10α).

Proof. Fix an arbitrary set C = {c1, . . . , ck} ⊆ Xd,ℓ, i ∈ [k̂]. Let further B̂i = {σ ∈
V̂i | dtwp(σ, ĉi) ≤ 2∆̂i/|V̂i|}. Observe that for any σ ∈ B̂i it holds that f̃σ(Ĉ) ≤
(1+ε)2∆̂i/|V̂i| ≤ 4∆̂i/|V̂i|. Breaking ties arbitrarily, let c(x) ∈ C be the nearest neighbor
of x ∈ X among C.

We observe that |B̂i| ≥ |V̂i|/2, since otherwise
∑

σ∈V̂i\B̂i
dtwp(σ, ĉi) > ∆̂i. Addition-

ally note that
∑

f̃σ∈F̃T
f̃σ(C) ≥ ∆̂/α.

For any σ ∈ B̂i Lemma 3.3.2 implies that f̃σ(C) ≥ dtwp(σ, c(σ)) ≥ dtwp(ĉi,c(σ))

ℓ1/p
− 4∆̂i

|V̂i|
.

Now as dtwp(ĉi, c(σ)) ≥ dtwp(ĉi, c(ĉi)) it holds that

∑
f̃σ∈F̃T

f̃σ(C) ≥ max

∑
σ∈B̂i

f̃σ(C),
∆̂

α

 ≥ max

{
|V̂i|
2

(
dtwp(ĉi, c(ĉi))

ℓ1/p
− 4∆̂i

|V̂i|

)
,
∆̂

α

}
.

Let us now fix some τ ∈ V̂i. Let (2ℓ1/p) ∆̂+2α∆̂i

α|V̂i|
=: δi and consider the function

hi,τ : [δi,∞)→ R>0, x 7→
2m1/p(ℓ1/p dtwp(τ, ĉi) + x)

|V̂i|x
2ℓ1/p

− 2∆̂i

and observe that it is monotone and thus its maximum is either hi,τ (δi) or limx→∞ hi,τ (x).
Assume now that |V̂i|

2

(
dtwp(ĉi,c(ĉi))

ℓ1/p
− 4∆̂i

|V̂i|

)
≥ ∆̂

α , i.e., dtwp(ĉi, c(ĉi)) ≥ δi. Lemma 3.3.2
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implies that f̃τ (C) ≤ (1 + ε)m1/p(dtwp(τ, ĉi) + dtwp(ĉi, c(ĉi))) and hence

f̃τ (C)∑
f̃σ∈F̃T

f̃σ(C)
≤ 2m1/p(dtwp(τ, ĉi) + dtwp(ĉi, c(ĉi)))

|V̂i|
2

(
dtwp(ĉi,c(ĉi))

ℓ1/p
− 4∆̂i

|V̂i|

) ≤ hi,τ (dtwp(ĉi, c(ĉi))).

If instead dtwp(ĉi, c(ĉi)) < δi, then

f̃τ (C)∑
f̃σ∈F̃T

f̃σ(C)
≤ f̃τ (C)

∆̂/α
<

(1 + ε)m1/p(dtwp(τ, ĉi) + δi)

∆̂/α
≤ hi,τ (δi).

Thus it follows that

s(f̃τ , F̃T ) = sup
C={c1,...,ck}⊆Z

f̃τ (C)∑
f̃σ∈F̃T

f̃σ(C)
≤ max

{
hi,τ (δi), lim

x→∞
hi,τ (x)

}
= max

{
(mℓ)1/p

(
2α dtwp(τ, ĉi)

∆̂
+

4

|V̂i|
+

8α∆̂i

∆̂|V̂i|

)
,
4(mℓ)1/p

|V̂i|

}
= γ(f̃τ ).

Overall it follows that

S(F̃T ) ≤ (mℓ)1/p
k̂∑

i=1

∑
σ∈V̂i

(
2α dtwp(τ, ĉi)

∆̂
+

4

|V̂i|
+

8α∆̂i

∆̂|V̂i|

)

= (mℓ)1/p
k̂∑

i=1

(
2α∆̂i

∆̂
+ 4 +

8α∆̂i

∆̂

)
= (mℓ)1/p

(
2α+ 4k̂ + 8α

)
.

Lemma 3.3.4. Let ε ∈ (0, 1]. A weighted ε-coreset S for (k, ℓ)-median of T under the
approximate distance d̃twp is a weighted 3ε-coreset for (k, ℓ)-median of T under dtwp.

Proof. Let C ⊂ Xd,ℓ with |C| = k be given. Let w(f̃τ ) for every τ ∈ S be the weights of
S. In particular

(1− ε)
∑
τ∈T

f̃τ (C) ≤
∑
τ∈S

w(f̃τ )f̃τ (C) ≤ (1 + ε)
∑
τ∈T

f̃τ (C).

Then by Lemma 3.2.6

(1− 2ε)
∑
τ∈T

fτ (C) ≤
1− ε
1 + ε

∑
τ∈T

fτ (C) ≤
1− ε
1 + ε

∑
τ∈T

f̃τ (C)

≤ 1

1 + ε

∑
τ∈S

w(f̃τ )f̃τ (C) ≤
∑
τ∈S

w(f̃τ )fτ (C),

and ∑
τ∈S

w(f̃τ )fτ (C) ≤
∑
τ∈S

w(f̃τ )f̃τ (C) ≤ (1 + ε)
∑
τ∈T

f̃τ (C)

≤ (1 + ε)2
∑
τ∈T

fτ (C) ≤ (1 + 3ε)
∑
τ∈T

fτ (C).
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Definition 3.3.5 ([HPS11, Definition 2.3]). Let ε, η ∈ (0, 1) and (X,R) be a range space
with finite non-empty ground set. An (η, ε)-approximation of (X,R) is a set S ⊆ X,
such that for all R ∈ R∣∣∣∣ |R ∩X||X|

− |R ∩ S|
|S|

∣∣∣∣ ≤
{
ε · |R∩X|

|X| , if |R ∩X| ≥ η · |X|
ε · η, else.

We employ the following theorem to obtain (η, ε)-approximations.

Theorem 3.3.6 ([HPS11, Theorem 2.11]). Let (X,R) be a range space with finite non-
empty ground set and VC dimension D. Let ε, δ, η ∈ (0, 1). There is an absolute constant
c ∈ R>0 such that a sample of

c

η · ε2
·
(
D log

(
1

η

)
+ log

(
1

δ

))
elements drawn independently and uniformly at random with replacement from X is a
(η, ε)-approximation for (X,R) with probability at least 1− δ.

Theorem 3.3.7. For f̃ ∈ F̃ , let λ(f̃) = 2⌈log2(γ(f̃))⌉, with γ(f̃) the sensitivity bound
of Lemma 3.3.3, associated to an (α, β)-approximation consisting of k̂ ≤ βk curves,
for (k, ℓ)-median for curves in Xd,m under dtwp, Λ =

∑
f̃∈F̃ λ(f̃), ψ(f̃) = λ(f̃)

Λ and
δ, ε ∈ (0, 1). A sample S of

Θ
(
ε−2αk̂(mℓ)1/p

(
(dℓ log(ℓmε−1))k log(k) log(αn) log(αk̂(mℓ)1/p) + log(1/δ)

))
elements τi ∈ T , drawn independently with replacement with probability ψ(f̃i) and en-
dowed with the weight w(f̃i) = Λ

|S|λ(f̃i)
is a weighted ε-coreset for (k, ℓ)-median clustering

of T under dtwp with probability at least 1− δ.

Let c̃ostp(T,C) =
∑

τ∈T f̃τ (C) for T = {τ1, . . . , τn} ⊆ Xd,m, and let F̃ = {f̃1, . . . , f̃n},
with f̃i = f̃τi .

Our proof relies on the reduction to uniform sampling, introduced by [FL11] and
improved by [BFL+16], allowing us to apply Theorem 3.3.6. In the following, we adapt
and modify the proof of [FSS20, Theorem 31] and combine it with results from [MSSW18]
to handle the involved scaling, similarly to [BR22, Theorem 4].

The proof is structured as follows: We first show that S can be thought of as a uniform
sample S′ from a multiset G of functions. We secondly show that we can think of the
functions g ∈ G as integrals of membership functions of a range space with ground set G.
Next we show that a (η, ε)-approximation S′ of the range space is a coreset under d̃twp

before finally bounding the VC dimension of the range space and with it the required
size of S′.

Proof. We begin by analyzing different estimators for c̃ostp(T,C) for C ⊆ Xd,ℓ arbitrary
with |C| = k. Consider first the estimator

ĉostp(S,C) =
∑
τi∈S

w(f̃i) ·min
c∈C

d̃twp(τi, c) =
∑
τi∈S

w(f̃i) · f̃i(C) =
∑
τi∈S

Λ

|S|λ(f̃i)
f̃i(C)

35



CHAPTER 3. (k, ℓ)-MEDIAN UNDER DYNAMIC TIME WARPING

for c̃ostp(T,C). We see that ĉostp(S,C) is unbiased by virtue of

E
[
ĉostp(S,C)

]
=

|S|∑
i=1

∑
τj∈T

ψ(f̃j)
Λ

|S|λ(f̃j)
f̃j(C) =

|S|∑
i=1

∑
τj∈T

f̃j(C)

|S|
= c̃ostp(T,C).

We next reduce the sensitivity sampling to uniform sampling by letting G be a multiset
that is a copy of F̃ , where each f̃ ∈ F̃ is contained |F̃ |λ(f̃) times and is scaled by 1

|F̃ |λ(f̃)
,

so that |G| = |F̃ |Λ and ψ(f̃) = |F̃ |λ(f̃)
|G| . We clearly have

∑
g∈G

g(C) =
∑
f̃∈F̃

|F̃ |λ(f̃)
|F̃ |λ(f̃)

f̃(C) =
∑
f̃∈F̃

f̃(C) = c̃ostp(T,C).

For a sample S′, with |S′| = |S|, drawn independently and uniformly at random with
replacement from G, consider the estimator for c̃ostp(T,C) defined by

costp
(
S′, C

)
=
|G|
|S′|

∑
g∈S′

g(C),

where again C ⊆ Xd,ℓ with |C| = k. We see that costp(S
′, C) is unbiased by virtue of

E
[
costp

(
S′, C

)]
=
|G|
|S′|

|S′|∑
i=1

∑
f̃∈F̃

f̃(C)

|F̃ |λ(f̃)
|F̃ |λ(f̃)
|G|

=
1

|S′|

|S′|∑
i=1

∑
f̃∈F̃

f̃(C) =
|S′|
|S′|

c̃ostp(T,C).

We now assume that S′ =
{

1

|F̃ |λ(f̃i)
· f̃i
∣∣∣τi ∈ S}, which yields

costp
(
S′, C

)
=
|F̃ |Λ
|S′|

∑
g∈S′

g(C) =
∑
τi∈S

Λ

|S|λ(f̃i)
f̃i(C) = ĉostp(S,C). (I)

For any subset H ⊆ G, C ⊆ Xd,ℓ with |C| = k and r ∈ R≥0, define the set
range(H,C, r) = {g ∈ H | g(C) ≥ r}. Observe that range(H,C, r) = range(G,C, r)∩H.
For all such C ⊆ Z and all H ⊆ G, we have that∑

g∈H
g(C) =

∑
g∈H

∫ ∞

0
1(g(C) ≥ r) dr =

∫ ∞

0
|range(H,C, r)| dr, (II)

where all of the involved functions are integrable. Consider now the range space (G,R)
over G, where R = {range(G,C, r) | r ∈ R≥0, C ⊆ Z, |C| = k}. For the following, we
apply Theorem 3.3.6 with the given δ, ε/2 and η = 1/Λ, so as to guarantee that S′ is a
(1/Λ, ε/2)-approximation of (G,R). Given C ⊆ Z with |C| = k, we compute that

∣∣∣c̃ostp(T,C)− ĉostp(S,C)
∣∣∣ (I)
=
∣∣∣c̃ostp(T,C)− costp

(
S′, C

)∣∣∣ =
∣∣∣∣∣∣
∑
g∈G

g(C)− |G|
|S′|

∑
g∈S′

g(C)

∣∣∣∣∣∣
=

∣∣∣∣∫ ∞

0
|range(G,C, r)| dr − |G|

|S′|

∫ ∞

0
|range

(
S′, C, r

)
| dr

∣∣∣∣
=

∣∣∣∣∫ ∞

0
|range(G,C, r)| − |G|

|S′|
|range

(
S′, C, r

)
| dr

∣∣∣∣
≤
∫ ∞

0

∣∣∣∣|range(G,C, r)| − |G||S′|
|range

(
S′, C, r

)
|
∣∣∣∣ dr.
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As r 7→ |range(G,C, r)| is monotone, R1(C) = {r ∈ R≥0 | |range(G,C, r)| ≥ η · |G|}
and R2(C) = R≥0 \ R1(C) are intervals. Denoting ru(C) = max

g∈G
g(C), we have that for

r ∈ (ru(C),∞), it holds that |range(G,C, r)| = 0. Therefore,∣∣∣∣ |range(G,C, r)||G|
− |range(S

′, C, r)|
|S′|

∣∣∣∣ ≤ ε

2

|range(G,C, r)|
|G|

,

for r ∈ R1(C), since S′ is a (1/Λ, ε/2)-approximation of the range space (G,R) and
similarly for r ∈ R2(C). Thus,∣∣∣c̃ostp(T,C)− ĉostp(S,C)

∣∣∣ ≤∫
R1(C)

∣∣∣∣|range(G,C, r)| − |G||S′|
|range

(
S′, C, r

)
|
∣∣∣∣dr

+

∫
R2(C)

ε

2
η|G|dr

≤ε
2

∞∫
0

|range(G,C, r)| dr + εη|G|
2

ru(C)∫
0

dr

=
ε

2

∑
g∈G

g(C) +
εη|G|ru(C)

2
, (III)

where the last equality is due to (II). We now bound the last term in (III) with the help
of the sensitivity bounds derived in Lemma 3.3.3, where we use that γ(f̃) ≤ λ(f̃). For
each g ∈ G, we have

g(C)∑
g∈G g(C)

=

1

|F̃ |λ(f̃)
f̃(C)∑

f̃∈F̃ f̃(C)
≤ 1

|F̃ |λ(f̃)
λ(f̃) =

1

|F̃ |
,

where f̃ ∈ F̃ is the function that g is a copy of, implying that ru(C) ≤ 1

|F̃ |

∑
g∈G g(C).

Thus,

εη|G|ru(C)
2

≤ ε

2

1

Λ
|F̃ |Λ 1

|F̃ |

∑
g∈G

g(C) =
ε

2

∑
g∈G

g(C).

All in all, (III) implies that |c̃ostp(T,C)− ĉostp(S,C)| ≤ ε ·
∑

g∈G g(C) = ε · c̃ostp(T,C)
for all C ⊆ Z with |C| = k, with probability at least 1 − δ, so S is an ε-coreset for the
approximate distance function.

By Lemma 3.3.4, upon rescaling ε by 1/3, it remains to show the asserted bounds on
the size of S′. Observe that γ(f̃) ≤ λ(f̃) ≤ 2 · γ(f̃) so that Λ ≤ 2Γ(F̃ ) = O(αk̂(mℓ)1/p),
by Lemma 3.3.3. Thus, assuming the VC dimension of the range space (G,R) is in
O(dℓ log(ℓmε−1)k log(k) log(αn)), Theorem 3.3.6 implies the claim.

To bound the VC dimension, let us first consider the simple case that for all f̃ ∈ F̃ ,
λ(f̃) = c̃ for some c̃, so that the scaling of the elements of G is uniform and can be ignored
in the context of the VC dimension. For given r ≥ 0 and c ∈ Xd,ℓ, let Dr(c) = {σ ∈
Xd,m| d̃twp(σ, c) ≤ r} ∩ T . The range space (G,R) can then alternatively be described
as (T, {T \

⋃
c∈C B̃r,T (c))|C ⊂ Xd,ℓ, |C| = k, r ∈ R≥0}), which in turn has VC dimension

at most equal to that of (Xd,m, {Xd,m \
⋃

i∈[k]Di|D1, ...,Dk}), with each Di of the form
Dr(c) for a c ∈ Xd,ℓ. The last range space has the same VC as its complementary range
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space, which by the k-fold union theorem [BEHW89, Lemma 3.2.3] has VC dimension at
most 2Dk log2(3k) ≤ cDk log k ∈ O(Dk log k), where D = O(dℓ log(ℓmε−1)) is the VC
dimension of balls in Xd,m under d̃twp by Theorem 3.2.8.

Let now t denote the number of distinct values {c1, ..., ct} of λ(f̃), as f̃ ranges over
F̃ and partition G into the sets {G1, ..., Gt} such that for all g ∈ Gi there is a f̃ ∈ F̃
with g = 1

|F̃ |λ(f̃)
f̃ = 1

|F̃ |ci
f̃ . Assume, for the sake of contradiction, that G′ ⊂ G is a

set with |G′| > t · cDk log k that is shattered by R. Consider the sets G′
i = G′ ∩ Gi

as well as induced range spaces Ri = Gi ∩ R on each Gi for i ∈ [t]. Since the Gi are
disjoint, each G′

i is shattered by Ri and there must exist at least one j ∈ [t] such that
|G′

j | ≥
|G′|
t > t·cDk log k

t = cDk log k. However, this contradicts the VC dimension of
(Gj ,Rj) in the case that the scaling of the functions in G is uniform, established above.
We now derive explicit bounds on t. By Lemma 3.3.3, for τ ∈ V̂i with i ∈ [k′], we have

(mℓ)1/p
4

|V̂i|
≤ γ(f̃) ≤ (mℓ)1/p

(
2α+

4

|V̂i|
+

8α

|V̂i|

)
,

implying that the number of distinct values of λ(f̃) is that number for ⌈log2(γ(f̃))⌉,
which is

log2

(
(mℓ)1/p

(
2α+

4

|V̂i|
+

8α

|V̂i|

))
− log2

(
(mℓ)1/p

4

|V̂i|

)

= log2

(2α+
8α

|V̂i|
+

4

|V̂i|

)(
4

|V̂i|

)−1
 ≤ log2

(nα
2

+ 2α+ 1
)
.

Thus, the VC dimension of (G,R) is at most 2Dk log2(3k) log2(nα2 + 2α+ 1) concluding
the proof.

We remark that in the limit p → ∞, the constructed coreset has a very similar size
as a recent construction for coresets for the Fréchet distance [BR22].

3.4 Linear Time (O((mℓ)1/p), 1)-Approximation Algorithm
for (k, ℓ)-Median

In this section, we develop approximation algorithms for (k, ℓ)-median for a set T ⊂ Xd,m

of n curves. For this, we approximate DTW on T by a metric using a new inequality for
DTW (Lemma 3.4.6). This allows the use of any approximation algorithm for k-median
in metric spaces, leading to a first approximation algorithm of the original problem.
However, computing the whole metric space would take O(n3) time. We circumvent this
by in turn using the DTW distance to approximate the metric space. Combined with
a k-median algorithm in metric spaces [Ind99], we obtain a linear-time (O((mℓ)1/p), 1)-
approximation algorithm.

3.4.1 Approximate ℓ-Simplifications under p-DTW

We briefly discuss simplifications for curves under p-DTW. These simplifications will
serve as candidates, to which we restrict possible solutions of the (k, ℓ)-median problem
incurring a constant approximation factor only.
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Figure 3.3: Illustration of a lopsided traversal.

Definition 3.4.1 ((1+ε)-approximate ℓ-simplifications). Let σ ∈ Xd,m, ℓ ∈ N and ε > 0.
We call σ∗ ∈ Xd,ℓ an (1 + ε)-approximate ℓ-simplification if

inf
σℓ∈Xd,ℓ

dtwp(σℓ, σ) ≤ dtwp(σ
∗, σ) ≤ (1 + ε) inf

σℓ∈Xd,ℓ
dtwp(σℓ, σ).

We reduce the problem of finding a (1 + ε)-approximate simplification to finding a
(1 + ε)-approximation of a center point for a set of ≤ m points, where the objective
is to minimize the sum of the individual distances to the center point raised to the pth

power. Note that for p = ∞, the problem reduces to finding a minimum enclosing ball,
and for p = 2, it reduces to finding the center of gravity of the set of discrete points.
Both problems can be solved exactly. We show (Lemma 3.4.5) that for all dtwp , there
is a deterministic 2-approximation which is a crucial ingredient for our approximation
algorithms of (k, ℓ)-median under p-DTW.

Definition 3.4.2. A traversal ((a1, b1), (a2, b2), . . . , (al, bl)) ∈ T m,ℓ is said to be lopsided
(refer to Figure 3.3) if for all i we have that (ai+1, bi+1)− (ai, bi) ∈ {(0, 1), (1, 1)}.

Lemma 3.4.3. Let σ ∈ Xd,m and τ ∈ Xd,ℓ. There is an optimal traversal T ∗ ∈ T m,ℓ that
realizes dtw(σ, τ) and for all 1 ≤ i ≤ |T ∗| − 2 it holds that (ai+2, bi+2)− (ai, bi) ̸= (1, 1).

Proof. Let T be an arbitrary traversal for which there is an index i such that (ai+2, bi+2)−
(ai, bi) = (1, 1). Observe that we can remove the index pair (ai+1, bi+1) from the traversal
without increasing the distance, which implies the claim.

Lemma 3.4.4. Let τ ∈ Xd,m. Then there is a curve σ ∈ Xd,ℓ with

dtwp(σ, τ) = inf
σ′∈Xd,ℓ

dtwp(σ
′, τ).

such that dtwp(σ, τ) can be realized with a lopsided traversal.

Proof. Refer to Figure 3.4. Assume that dtwp(σ, τ) is not attained by a lopsided traversal.
It suffices to show that there is then a curve σ′ ∈ Xd,ℓ with dtwp(σ

′, τ) ≤ dtwp(σ, τ).
Hence, fix some (m, ℓ)-traversal that is not lopsided, i.e., there is an index i such that

(ai+1, bi+1)−(ai, bi) = (1, 0). Observe that removing vertex σai+1 from σ does not increase
dtwp(σ, τ). Indeed, by Lemma 3.4.3, we can assume that (ai+2, bi+2) − (ai+1, bi+1) ̸=
(0, 1), so ai+2 = ai+1 + 1. Therefore, discarding σai+1 from σ removes exactly one
summand from the sum in dtwp(σ, τ), concluding the proof.
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Figure 3.4: Illustration of Proof of Lemma 3.4.4. The vertex that can safely be deleted
is marked on the left, and removed on the right.

Lemma 3.4.5. For σ = (σ1, . . . , σm) ∈ Xd,m and integer ℓ > 0, one can compute in
O(m2(d+ ℓ+m)) time a curve σ∗ ∈ Xd,ℓ such that

inf
σℓ∈Xd,ℓ

dtwp(σℓ, σ) ≤ dtwp(σ
∗, σ) ≤ 2 inf

σℓ∈Xd,ℓ
dtwp(σℓ, σ).

Proof. First compute in O(m2d) time all pairwise distances of vertices of σ, and store
them for later use. Next, compute C(a, b, i) =

∑
a≤j≤b ∥σi − σj∥p for all 1 ≤ a ≤

i ≤ b ≤ m in total time O(m3) via the recurrence C(a, a, a) = 0, C(a − 1, b, i) =
C(a, b, i) + ∥σi − σa−1∥p and C(a, b+ 1, i) = C(a, b, i) + ∥σi − σb+1∥p. With C(a, b, i) at
hand for every 1 ≤ a ≤ i ≤ b ≤ m, we compute C(a, b) = mina≤i≤b

∑
a≤j≤b ∥σi − σj∥p

for all 1 ≤ a ≤ b ≤ m, again in total time O(m3).
Consider now for 1 ≤ a ≤ b ≤ m,

D(a, b) = min
σ′=(σ1,...,σb)

S=(s1,...,sa) subsequence of σ′
sa=σb

a∑
i=1

C(si−1 + 1, si),

with s0 := 0, which corresponds to the optimal partitioning of the first b indices into a
contiguous disjoint intervals under the cost function C. Computing the value D(ℓ,m)
takes O(m2ℓ) time via the recurrence D(a, b) = minb′≤bD(a − 1, b′) + C(b′ + 1, b). The
subsequence realizing D(ℓ,m) defines σ∗. For correctness, observe that the optimal
simplification also yields a partition of the vertices of σ into ℓ contiguous disjoint intervals.
Let T be the partition computed, and let T opt = ([a1, b1], . . . , [aℓ, bℓ]) be an optimal
partition of [m] that realizes infσℓ∈Xd,ℓ dtwp(σℓ, σ). For a vertex vi in a fixed optimal
simplification, let πi be a closest point among {σai , . . . , σbi}. Then ∑

[a,b]∈T

C(a, b)

1/p

=

 ∑
[a,b]∈T

min
a≤i≤b

∑
a≤j≤b

∥σi − σj∥p2

1/p

≤

 ∑
[a,b]∈T opt

min
a≤i≤b

∑
a≤j≤b

∥σi − σj∥p2

1/p

≤

 ∑
[a,b]∈T opt

∑
a≤j≤b

∥πi − σj∥p2

1/p

≤

 ∑
[a,b]∈T opt

∑
a≤j≤b

(∥πi − vi∥2 + ∥vi − σj∥2)p
1/p

40



CHAPTER 3. (k, ℓ)-MEDIAN UNDER DYNAMIC TIME WARPING

≤

 ∑
[a,b]∈T opt

∑
a≤j≤b

(2∥vi − σj∥2)p
1/p

≤ 2

 ∑
[a,b]∈T opt

∑
a≤j≤b

∥vi − σj∥p2

1/p

= 2 inf
σℓ∈Xd,ℓ

dtwp(σℓ, σ).

3.4.2 Dynamic Time Warping Approximating Metric

We begin with the following more general triangle inequality for dtwp , which motivates
analyzing the metric closure of the input set. While dtwp does not satisfy the triangle
inequality (see Figure 3.2), the inequality shows it is never ‘too far off’. Remarkably, the
inequality does not depend on the complexity of the curves ‘visited’.

Lemma 3.4.6 (Iterated triangle inequality). Let s ∈ Xd,ℓ, t ∈ Xd,ℓ′ and X = (x1, . . . , xr)
be an arbitrary ordered set of curves in Xd,m. Then

dtwp(s, t) ≤ (ℓ+ ℓ′)1/p

(
dtwp(s, x1) +

∑
i<r

dtwp(xi, xi+1) + dtwp(xr, t)

)
.

Proof. To ease exposition, assume that r = 2, that is, X = (x, y). Let Wsx be an optimal
traversal of s and x realizing dtwp(s, x). Similarly define Wxy and Wyt. From this we now
construct a traversal of s and t endowed with additional information on which vertices
of x and y were used to match the vertices of s and t. More precisely, we will construct
an ordered set W of indices ((α1, β1, γ1, δ1), (α2, β2, γ2, δ2), . . .), such that for any i ≥ 2
it holds that (αi, δi)− (αi−1, δi−1) ∈ {(0, 1), (1, 0), (1, 1)}, and for any i ≥ 1 it holds that
(αi, βi) ∈ Wsx, (βi, γi) ∈ Wxy, and (γi, δi) ∈ Wyt. Refer to Figure 3.5 for a schematic
view of the constructed set W .

We begin with W = ((1, 1, 1, 1)), which clearly has the stated properties as (1, 1) is
in any traversal. Now recursively define the next element in W based on the last element
(α, β, γ, δ) of W .

If α = ℓ and δ = ℓ′, we stop adding elements to W . Otherwise, if δ < ℓ′ let
δ′ = δ + 1. From this let γ′ = min{j ≥ γ | (j, δ′) ∈ Wyt}, which exists, because Wyt

itself is a traversal. Similarly from γ′ define β′ and from β′ define α′. If α′ ≤ α + 1,
then (α′, β′, γ′, δ′) is added to W , and the steps are recursively repeated. Observe that
α′ ≥ α, which implies that the properties of W are preserved. If instead α′ > α+ 1, let
α′′ = α + 1. From this define β′′ = min{b ≥ β | (α′′, b) ∈ Wsx}. Clearly β′′ < β′, as
α′′ < α′. Similarly from this define γ′′ for which it holds that γ′′ < γ′ and from this define
δ′′ for which it holds that δ′′ < δ′ = δ + 1. But by definition δ ≤ δ′′, thus δ = δ′′. Thus
we add (α′′, β′′, γ′′, δ′′) preserving the properties of W . From here recursively repeat the
steps above.
In the case where δ = ℓ′, we set α′ = α+ 1. From this we similarly define β′ = min{b ≥
β | (α′, b) ∈ Wsx}, from which we similarly define γ′, from which we define δ′. But as
ℓ′ = δ ≤ δ′ ≤ ℓ′ it follows that δ′ = ℓ′ and thus adding (α′, β′, γ′, δ′) to W also preserves
its properties. From here recursively repeat the steps above.

Observe now that ∑
(α,β,γ,δ)∈W

∥sα − xβ∥p2

1/p

≤

 ∑
(α,β)∈Wsx

|W | · ∥sα − xβ∥p2

1/p

= |W |1/p dtw(s, x)p.
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(4, 2, 3, 3)
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t t1 t2 t3 t4

(1, 1, 1, 1)
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(2, 1, 1, 1) (3, 1, 1, 1) (4, 2, 3, 2) (4, 3, 4, 4)W = ( )

s
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Figure 3.5: Illustration of how the optimal traversals Wsx, Wxy and Wyt of visited curves
can be ‘composed’ to yield a set W that induces a traversal W̃ (in red) of s and t. Any
single matched pair of vertices in Wsx, Wxy or Wyt is at most |W | ≤ ℓ+ ℓ′ times a part
of W .

This similarly holds for x and y, and y and t. Further, we acquire a traversal W̃ =
((α1, δ1), . . .) of s and t from W by dropping the middle two indices of each element of
W . Now overall

dtwp(s, t) ≤

 ∑
(α,δ)∈W̃

∥sα − tδ∥p2

1/p

=

 ∑
(α,β,γ,δ)∈W

∥sα − tδ∥p2

1/p

≤

 ∑
(α,β,γ,δ)∈W

(∥sα − xβ∥2 + ∥xβ − yγ∥2 + ∥yγ − tδ∥2)p
1/p

≤ |W |1/p dtw(s, x)p + |W |1/p dtw(x, y)p + |W |1/p dtw(y, t)p,

which concludes the proof, as |W | = |W̃ | ≤ ℓ+ ℓ′.
Observe that this analysis immediately extends to r > 2. In this case W consists of

tuples of length r + 2, while |W | = |W̃ | ≤ ℓ+ ℓ′ still holds.

Definition 3.4.7 (metric closure). Let (X,ϕ) be a finite set endowed with a distance
function ϕ : X×X → R≥0. The metric closure ϕ of ϕ (refer to Figure 3.6) is the function

ϕ : X ×X → R, (s, t) 7→ min
r≥2,{τ1,...,τr}⊂X

s=τ1,t=τr

∑
i<r

ϕ(τi, τi+1).

The metric closure of a distance function is a semi-metric and can be extended to a
metric by removing duplicates or small perturbations.
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Figure 3.6: Illustration of the metric closure. On the left a distance function on five
points represented as a graph. In the middle the shortest path tree rooted at x inducing
all values of the metric closure of the distance function from some element to x. On the
right the metric closure.

Observation 3.4.8. Let X be a finite set with distance function ϕ. Let Y ⊂ X. Then
for any σ, τ ∈ Y it holds that ϕ(σ, τ) ≤ ϕ|Y (σ, τ) ≤ ϕ(σ, τ).

By Lemma 3.4.6 and Observation 3.4.8, dtwp on any finite set of curves in Xd,m is
approximated by its metric closure, with approximation constant depending on m.

Lemma 3.4.9. For any set of curves X and two curves σ, τ ∈ X of complexity at most
m it holds that dtwp(σ, τ) ≤ (2m)1/pdtwp |X(σ, τ) ≤ (2m)1/p dtwp(σ, τ).

3.4.3 Cubic Time Algorithm

We now give a bicriteria approximation algorithm for (k, ℓ)-median under dtwp with
cubic (in n) running time. This algorithm will later serve as a basis for a bicriteria
approximation algorithm with linear dependence in n.

Lemma 3.4.10. Let X ⊂ Xd,m be a set of n curves and k and ℓ be given. Let X∗ = {τ∗ |
τ ∈ X}, where τ∗ is a (1+ε)-approximate ℓ-simplification of τ . Let C ⊂ X∗ be an (α, β)-
approximation of the k-median problem of X∗ in the metric space (X∗,dtwp |X∗). Then
C is a

(
(4mℓ)1/p ((4 + 2ε)α+ 1 + ε) , β

)
-approximation of the (k, ℓ)-median problem on

X.

Proof. For any curve τ∗ ∈ X∗ let c(τ∗) be the closest element among C under the metric
dtwp |X∗ and for any curve τ let c(τ) be the closest element among C under dtwp , and
let ∆ =

∑
τ∈X dtwp(τ, c(τ)) be the cost of C. Let Copt = {copt1 , . . . , coptk } be an optimal

solution to the (k, ℓ)-median problem on X with cost ∆∗.
Let Vi = {τ ∈ X | ∀j : dtwp(τ, c

opt
i ) ≤ dtwp(τ, c

opt
j )} be the Voronoi cell of copti , which

we assume partitions X by breaking ties arbitrarily. We can assume that all sets Vi are
non-empty by removing the elements of Copt with empty Vi. For any i, fix the closest
πi ∈ Vi to copti under dtwp . Letting ∆∗

i =
∑

σ∈Vi
dtw(copti , σ), we have ∆∗ =

∑
i≤k ∆

∗
i .

Let X = X ∪X∗ ∪ Copt. By Observation 3.4.8, for any i ≤ k and τ ∈ Vi, it holds that

dtwp |X(copti , π∗i ) ≤ dtwp |X(copti , πi) + dtwp |X(πi, π∗i )
≤ dtwp(c

opt
i , πi) + dtwp(πi, π

∗
i )

≤ dtwp(c
opt
i , πi) + (1 + ε) dtwp(πi, c

opt
i )

≤ (2 + ε) dtwp(c
opt
i , τ),
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copti

coptj

Vi Vj

πi

π∗
i

τ

τ∗

Figure 3.7: Illustration to Proof of Lemma 3.4.10: Assigning τ∗ (the (1+ε)-simplification
of τ which lies inside the Voronoi cell Vi of copti ) to π∗i (the (1 + ε)-simplification of the
closest element πi in Vi to copti ) under dtwp |X∗ is at most 4+2ε times as bad as assigning
τ to copti under dtwp .

and further observe that for

dtwp |X(τ∗, copti ) ≤ dtwp |X(τ∗, τ) + dtwp |X(τ, copti )

≤ dtwp(τ
∗, τ) + dtwp(τ, c

opt
i )

≤ (1 + ε) dtwp(c
opt
i , τ) + dtwp(τ, c

opt
i )

≤ (2 + ε) dtwp(c
opt
i , τ).

And thus it holds that
∑

i

∑
τ∈Vi

dtwp |X(τ∗, π∗i ) ≤ (4 + 2ε)∆∗ (refer to Figure 3.7). In
conjunction with Lemma 3.4.6, Observation 3.4.8, and Lemma 3.4.9 this yields

∆ =
∑
τ∈X

dtwp(τ, c(τ)) ≤
∑
τ∈X

dtwp(τ, c(τ
∗))

≤ (2m)1/p
∑
τ∈X

dtwp |X(τ, c(τ∗))

≤ (2m)1/p
∑
τ∈X

(
dtwp |X(τ, τ∗) + dtwp |X(τ∗, c(τ∗))

)
≤ (2m)1/p

(∑
τ∈X

dtwp(τ, τ
∗) +

∑
τ∈X

dtwp |X∗(τ∗, c(τ∗))

)

≤ (2m)1/p

∑
i

∑
τ∈Vi

dtwp(τ, τ
∗) + α

∑
i

∑
τ∈Vi

dtwp |X∗(τ∗, π∗i )


≤ (2m)1/p

∑
i

∑
τ∈Vi

dtwp(τ, τ
∗) + α

∑
i

∑
τ∈Vi

dtwp(τ
∗, π∗i )


≤ (2m)1/p

∑
i

∑
τ∈Vi

(1 + ε) dtwp(τ, c
opt
i ) + α(2ℓ)1/p

∑
i

∑
τ∈Vi

dtwp |X(τ∗, π∗i )


≤ (2m)1/p

(
(1 + ε)∆∗ + α(2ℓ)1/p(4 + 2ε)∆∗

)
≤ (4mℓ)1/p((4 + 2ε)α+ 1 + ε)∆∗.
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Lemma 3.4.11. Let X ⊂ Xd,ℓ be a set of n curves. The metric closure dtwp |X for all
pairs of curves in X can be computed in O(n2ℓ2d+ n3) time.

Proof. First compute the value dtwp(σ, τ) for all pairs of curves σ, τ ∈ X. This takes
O(n2ℓ2) time. Using these values, we define the complete graph G(X) = (X,

(
X
2

)
) on

X, where edge weights correspond to the computed distances. The metric closure of
dtwp corresponds to the weights of a shortest path in G(X). All these

(
n
2

)
values can be

computed in O(n3) time by n applications of Dijkstra’s algorithm.

Theorem 3.4.12 ([Che09]). Given a set P of n points in a metric space, for ε ∈ (0, 1],
one can compute a (10+ε)-approximate k-median clustering of P in O(nk+k7ε−5 log5 n)
time, with constant probability of success.

Theorem 3.4.13. Let X be a set of curves of complexity at most m. Let k and ℓ be
given. Let X∗ = {τ∗ | τ ∈ X} be a set of (1 + ε)-approximate optimal ℓ-simplifications.
There is an algorithm with input X∗ which computes a (10 + ε, 1)-approximation to the
k-median problem of X∗ in (X∗,dtwp |X∗) in O(n2ℓ2d+ n3 + nk + k7ε−5 log5 n) time.

Proof. This is a direct consequence of Lemma 3.4.11 and Theorem 3.4.12.

Corollary 3.4.14. Let X be a set of curves of complexity at most m. Let k and ℓ be
given. There is an algorithm which computes a ((4mℓ)1/p(62 + O(ε)), 1)-approximation
to the (k, ℓ)-median problem on X under dtwp in O(nm3+n2ℓ2+n3+nk+k7ε−5 log5 n).

Proof. This is a direct consequence of Theorem 3.4.13, Lemma 3.4.10 and Lemma 3.4.5.

We next show how to combine our ideas with a sampling technique for bicriteria
k-median approximations [Ind99] to achieve linear dependence on n.

3.4.4 Linear Time Algorithm

With Theorem 3.4.13 (and by extension also Corollary 3.4.14), we have ran into the fol-
lowing predicament: We would like to apply linear-time algorithms to the metric closure
of dtwp . However, constructing the metric closure takes cubic time. We circumvent this
by applying a technique from [Ind99], which reduces a k-median instance with n points to
two k-median instances with O(

√
n) points via sampling. More precisely, we will apply

this technique twice, so that we will compute the metric closure only on sampled subsets
of size O(n1/4).

In this section we want to analyze the problem of computing a k-median of a set X
in the metric space (X,ϕ), where ϕ is a distance function on X with the guarantee that
there is a constant ζ such that for any x, y ∈ X it holds that ϕ(x, y) ≤ ζϕ(x, y), with
a linear running time, and more precisely, only a linear number of calls to the distance
function ϕ, and no calls to ϕ. By Lemma 3.4.9, the results in this section translate
directly to ϕ = dtwp |X with ζ = (m+ ℓ)1/p.

Observe that similar to Theorem 3.4.13, the following lemma holds.

Lemma 3.4.15. Let X be a set of n points, equipped with a distance function ϕ that can
be computed in time Tϕ. There is a (10+ ε, 1)-approximate algorithm for k-median of X
in (X,ϕ) that has constant probability of success and has running time O(n2Tϕ + n3 +
nk + k7ε−5 log5 n).
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Algorithm 1 k-median framework
procedure k-Routine((X,ϕ), ε,A)

a← Θ(ε−1
√

log(ε−1)), b← Θ(a2)
s← a

√
kn log k

Choose a set S of s points sampled without replacement from X
C ′ ← A((S, ϕ))
Select the set M of points x with the bkn log k

s largest values of minc′∈C′ ϕ(x, c′)
return C = C ′ ∪ A((M,ϕ))

procedure k-Median((X,ϕ), ε,A)
a← Θ(ε−1

√
log(ε−1)), b← Θ(a2)

s← a
√
kn log k

Choose a set S of s points sampled without replacement from X
C ′ ← k-Routine((S, ϕ|S), ε,A)
Select the set M of points x with the bkn log k

s largest values of minc′∈C′ ϕ(x, c′)
return C = C ′ ∪ k-Routine((M,ϕ|M ), ε,A)

Lemma 3.4.16. Let X be a set of n points, equipped with a distance function ϕ, such
that ϕ ≤ ζϕ for some ζ > 0, and Y ⊂ X. An (α, β)-approximation for the k-median
problem for Y in (Y, ϕ|Y ) is an (αζ, β)-approximation for the k-median problem for Y in
(Y, ϕ|Y ).

Proof. Let C ⊂ Y be an (α, β)-approximation for the k-median problem for Y in (Y, ϕ|Y ),
and let Copt = {copt1 , . . . , coptk } ⊂ Y be an optimal solution for the k-median problem
for Y in (Y, ϕ|Y ) with cost ∆opt. For any τ ∈ Y let cY (τ) be the closest element among
C under ϕ|Y , and let coptX (τ) be the closest element among Copt under ϕ = ϕ|Y . Then
∆opt =

∑
τ∈Y ϕ(τ, c

opt
X (τ)). Overall by Observation 3.4.8 we see that∑

τ∈Y
ϕ(τ, cY (τ)) ≤

∑
τ∈Y

ϕ|Y (τ, cY (τ)) ≤ α
∑
τ∈Y

ϕ|Y (τ, cX(τ))

≤ α
∑
τ∈Y

ϕ(τ, cX(τ)) ≤ α
∑
τ∈Y

ζϕ(τ, cX(τ)) = ζα∆opt.

Theorem 3.4.17 ([Ind99, Theorem 1]). Let X be a set of n points, and let ϕ be a
distance function on X. Let A be an algorithm that provided with S and ϕ computes an
(α, β)-approximation for k-median of S w.r.t. ϕ|S. Then for any ε > 0 the k-Routine in
Algorithm 1 provided with A computes a (3(1+ε)(2+α), 2β)-approximation for k-median
in the metric space (X,ϕ) with constant success probability.

Lemma 3.4.18. Let X be a set of n points, and let ϕ be a distance function that can be
computed in Tϕ time for any x, y ∈ X. Let TA(n) be the algorithm A that provided with S
and ϕ computes an (α, β)-approximation for k-median of S w.r.t. ϕ|S. Then k-Routine
has a running time of O(n2Tϕ + TA(min(n, ε−1

√
kn log(k) log(ε−1)))).

Proof. The only steps that take time outside the two calls to A are sampling S and
constructing M . Computing the values minc′∈C′ ϕ(x, c′) for all x ∈ X can be done in a
single execution of Dijkstra’s algorithm, starting with the points of C ′ ⊂ X at distance 0,
by adding a temporary point with distance 0 to all points in C ′ and starting Dijkstra’s
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algorithm on this temporary point. This takes O(n2Tϕ) time, which also dominates the
time it takes to sample S as well as constructing M from these computed values.

Lemma 3.4.19. Let X be a set of n points, and let ϕ be a distance function on X, which
can be computed in time Tϕ, and further there is a constant ζ such that ϕ ≤ ζϕ. Let
Y ⊂ X. Let ε > 0 and let A be the (10 + ε, 1)-approximation for metric k-median of
Lemma 3.4.15 which provided with S and ϕ computes a (10+ε, 1)-approximation for met-
ric k-median w.r.t ϕ|S. Then k-Routine returns a (3(1 + ε)ζ(12 + ε), 2)-approximation
of k-median in the metric space (Y, ϕ|Y ) in time O(|Y |2Tϕ + |Y |2k log(k)ε−2 log(ε−1) +
k7ε−5 log5(|Y |)).

Proof. The running time bound follows by Lemma 3.4.18 and Lemma 3.4.15, together
with the fact that min(|Y |, ε−1

√
k|Y | log(k) log(ε−1))3 ≤ |Y |2k log(k)ε−2 log(ε−1). The

approximation guarantee follows by Theorem 3.4.17, Lemma 3.4.16, and Lemma 3.4.15.

We obtain our two main results of the section. The first is Theorem 3.4.21, which
provides a linear-time approximation algorithm for k-median in metric closures, assuming
the underlying distance is reasonably well approximated by its metric closure. The
second is Corollary 3.4.22, combining Theorem 3.4.21 with Lemma 3.4.10 to yield an
approximation algorithm for p-DTW with an unoptimized approximation guarantee.

Lemma 3.4.20 ([Ind99, Proof of Theorem 1]). Assume that C ′, computed in the al-
gorithm k-Median, is an (α, β)-approximation of k-median of S in the metric space
(S, ϕ|S). With constant probability depending only on a and b, there is a subset of
X of size at least n − bkns log k, whose cost under ϕ with C ′ as medians is at most
(1 + ε)(2 + α)∆opt, where ∆opt is the cost of an optimal k-median under ϕ of X.

Theorem 3.4.21. Let X be a set of points and let ϕ be a distance function on X with
ϕ ≤ ζϕ. Let ε > 0 and let A be the (10+ε, 1)-approximation for metric k-median of Theo-
rem 3.4.13. Then k-Median returns a (11ζ2(1+ε)2(12+ε), 4)-approximation of k-median
of X in the metric space (X,ϕ) in time O(nk log(k)Tϕ + nk2 log2 k + k7ε−5 log5(n)).

Proof. Let ∆opt be the cost of an optimal solution to the k-median problem on X under
ϕ. By Lemma 3.4.19, the set C ′ is a (3(1+ε)ζ(12+ε), 2)-approximation of k median of S
in (S, ϕ|S). This set can be computed in time O(nk log(k)Tϕ+nk2 log2(k)ε−4 log2(ε−1)+
k7ε−5 log5(n)). The set M can be computed in O(knTϕ) time. By Lemma 3.4.19, the
set C ′′ is a (3(1 + ε)ζ(12 + ε), 2)-approximation of k median of M in (M,ϕ|M ) and can
be computed in time O(nk log(k)Tϕ + nk2 log2(k)ε−4 log2(ε−1) + k7ε−5 log5(nk)).

Now observe that by the choice of M it holds that
∑

x∈X\M ϕ(x,C ′) ≤
∑

x∈O ϕ(x,C
′)

for the set O of Lemma 3.4.20, and hence∑
x∈X\M

ϕ(x,C ′) ≤
∑

x∈X\M

ϕ(x,C ′) ≤
∑
x∈O

ϕ(x,C ′)

≤
∑
x∈O

ζϕ(x,C ′) ≤ ζ(1 + ε)(2 + 3(1 + ε)ζ(12 + ε))∆opt.

Further observe that by replacing every point of the optimum on X with its closest point
in M there exists a set of points CM ⊂ M of size k with

∑
x∈M ϕ|M (x,CM ) ≤ 2∆opt.
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Thus, ∑
x∈M

ϕ(x,C ′′) =
∑
x∈M

ϕ|M (x,C ′′) ≤ 6(1 + ε)ζ(12 + ε)∆opt.

Overall we get a (11ζ2(1 + ε)2(12 + ε), 4)-approximation (as ζ ≥ 1 and ε > 0) in time
O(nk log(k)Tϕ + nk2 log2(k)ε−4 log2(ε−1) + k7ε−5 log5(n)).

Corollary 3.4.22. For any ε > 0 the procedure k-Median from Algorithm 1 can be
used to compute a (72(1 + ε)2(12 + ε)(16mℓ3)1/p, 4)-approximation for (k, ℓ)-median for
an input set X of n curves of complexity m under dtwp in time

O(nm3d+ nk log(k)ℓ2d+ nk2 log2(k)ε−4 log2(ε−1) + k7ε−5 log5(n)).

Proof. Let X∗ = {τ∗ | τ ∈ X} be a set of 2-approximate optimal ℓ-simplifications of X.
By Lemma 3.4.5, X∗ can be computed in O(nm3d) time. We now apply Theorem 3.4.21
and Lemma 3.4.9 to obtain a (12(2ℓ)2/p(1 + ε)2(12 + ε), 4)-approximation of k-median
of X∗ in (X∗,dtwp |X∗) in O(nk log(k)ℓ2d + nk2 log2(k)ε−4 log2(ε−1) + k7ε−5 log5(n))
time. By Lemma 3.4.10, the computed set is a (6(4mℓ)1/p12(2ℓ)2/p(1 + ε)2(12 + ε), 4)-
approximation for (k, ℓ)-median for X under dtwp .

3.5 Putting It All Together

The theoretical derivations of the previous sections culminate in an approximation algo-
rithm (Theorem 3.5.2) to (k, ℓ)-median that is particularly useful in the big data setting,
where n≫ m. Our strategy is to first compute an efficient but not very accurate approx-
imation (Corollary 3.4.22) of (k, ℓ)-median. Subsequently, we use the approximation to
construct a coreset. The metric closure of the coreset is then used as the proxy set for
metric approximation algorithms, where by virtue of the size reduction we can greatly
reduce the running time of slower more accurate approximation algorithms, yielding a
better approximation.

Theorem 3.5.1 ([AGK+04, Che09]). Given a set X of n points in a metric space,
one can compute a (5 + ε)-approximate k-median clustering of X in O(ε−1n2k3 log n)
time. If P is a weighted point set, with total weight W , then the time required is in
O(ε−1n2k3 logW ).

Theorem 3.5.2. Let ε ∈ (0, 1]. The algorithm (k, ℓ)-Median in Algorithm 2 is a ((32+
ε)(4mℓ)1/p, 1)-approximate algorithm of constant success probability for (k, ℓ)-median on
curves under dtwp with a running time of Õ

(
n(m3d+ k2 + kℓ2d) + ε−6d3ℓ3k7

p
√
m6ℓ12

)
,

where Õ hides polylogarithmic factors in n, m, ℓ, k and ε−1.

Proof. By Corollary 3.4.22, computing a (O(m1/pℓ3/p), 4)-approximation takes time in
O(nm3d + nk log(k)ℓ2 + nk2 log2(k) + k7 log5(n)) and has constant success probability.
From this we can compute a ε′-coreset S by Theorem 3.3.7 of size

O(ε−2dℓk2(m2ℓ4)1/p log3(mℓ) log2(k) log(ε−1) log(n))

with constant success probability, and in time O(kn). Computing S∗ takes O(nm3)
time. Computing the metric closure of S∗ takes O(|S|3) time and computing a (5 + ε′)-
approximate solution to the k-median solution of S∗ takes O(ε−1|S|2k3 log |S|) time by
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Algorithm 2 ((32 + ε)(4mℓ)1/p, 1)-approximate (k, ℓ)-median
procedure (k, ℓ)-Median(X ⊂ Xd,m, p, ε)

ε′ ← ε/46
Compute (O((16mℓ3)1/p), 4)-approximation C ′ (Corollary 3.4.22)
Compute bound of sensitivity for each curve x ∈ X from C ′ (Lemma 3.3.3)
Compute sample size s← O(ε−2dℓk2(m2ℓ4)1/p log3(mℓ) log2(k) log(ε−1) log(n))
Sample and weigh ε′-coreset S of X of size s (Theorem 3.3.7)
Compute a 2-simplification for every s ∈ S resulting in the set S∗ (Lemma 3.4.5)
Compute metric closure values ϕ = dtwp |S∗ (Lemma 3.4.11)
return (5 + ε′, 1)-approximation of weighted k-median in (S∗, ϕ) (Theorem 3.5.1)

Theorem 3.5.1. This is a (4mℓ)1/p(32+13ε′)(1+ε′)-approximation to (k, ℓ)-median of X
by Lemma 3.4.10 and Theorem 3.3.7. Overall the approximation factor is (4mℓ)1/p(32+ε)
and the running time is in

O
(
n
(
m3d+ k log kℓ2 + (k log k)2

)
+ ε−6d3ℓ3k7

p
√
m6ℓ12L(n,m, ℓ, k, ε−1)

)
,

where L(n,m, ℓ, k, ε−1) = log9(mℓ) log6(k) log5(n) log3(ε−1).

Combining the computed ε-coreset with the (k, ℓ)-median algorithm from [BDvG+22,
Theorem 35] instead, we achieve a matching approximation guarantee and improve the
dependency on n. The improved approximation guarantee from Corollary 3.5.3 compared
to Theorem 3.5.2 comes at the cost of an exponential dependency in k, as is also present
in their results.

Corollary 3.5.3. Let ε, δ ∈ (0, 1] be given. There is an ((8+ε)(mℓ)1/p, 1)-approximation
for (k, ℓ)-median with Θ(1− δ) success probability and running time in

Õ
(
n(m3d+ k2 + kℓ2) + k7 +

(
32k2ε−1 log(1/δ)

)k+2
md
(
m3 + ε−2dℓk2

p
√
m2ℓ4

))
,

where Õ hides polylogarithmic factors in n, m, ℓ, k and ε−1.

Finally, combining Theorem 3.5.2 with Theorem 3.3.7 yields the following result.

Corollary 3.5.4. The algorithm (k, ℓ)-Median in Algorithm 2 can be used to construct
an ε-coreset for (k, ℓ)-median in time Õ

(
n(m3d+ k2 + kℓ2d) + ε−6d3ℓ3k7

p
√
m6ℓ12

)
with

constant success probability of size

O
(
ε−2dℓk2(m2ℓ2)1/p log3(mℓ) log2(k) log(ε−1) log(n)

)
.
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Chapter 4

Clustering Subtrajectories

In this chapter, we study the Subtrajectory Covering and Subtrajectory Coverage Max-
imization problems and whether they permit efficient approximation algorithms from
both a theoretical and experimental perspective.

The main content of this chapter previously appeared in the following three papers.
The theoretical groundwork was laid in the paper Faster Approximate Covering of Sub-
curves under the Fréchet Distance [BCD22a] by Frederik Brüning, Jacobus Conradi, and
Anne Driemel which was published in the Proceedings of the 30th Annual European Sym-
posium on Algorithms (ESA 2022). A full version of the paper is available on arXiv
[BCD22b]. The extension to non-constant complexity center curves and the experimen-
tal validation appeared as the paper Finding Complex Patterns in Trajectory Data via
Geometric Set Cover [CD23] by Jacobus Conradi and Anne Driemel on arXiv. An initial
version of the work has also been presented at the 41st European Workshop on Compu-
tational Geometry (EuroCG 2025) based on an extended abstract without formal publi-
cation. The theoretical improvements to subcubic dependency in the input complexity
appeared in the paper Subtrajectory Clustering and Subtrajectory Coverage Maximiza-
tion in Cubic Time, or Better [CD25a] by Jacobus Conradi and Anne Driemel which
was published in the Proceedings of the 33rd Annual European Symposium on Algorithms
(ESA 2025). A full version of the paper is available on arXiv [CD25b].

4.1 Problem Definition

We begin by formally defining the problem as posed in [ABCD23].

Definition 4.1.1 (∆-Coverage). Let P be a polygonal curve in Rd, and let ∆ ∈ R>0

and ℓ ∈ N≥2 be given. For any C ⊂ Xd,ℓ define the ∆-coverage of C on P as

CovP (C,∆) =
⋃
Q∈C

 ⋃
0≤s≤t≤1, dF (P [s,t],Q)≤∆

[s, t]

 ⊂ [0, 1].

For a curve Q ∈ Xd,ℓ we may denote the ∆-coverage CovP ({Q},∆) by CovP (Q,∆)
instead (refer to Figure 4.1).

Problem 2 (Subtrajectory Covering (SC)). Let P be a polygonal curve in Rd, and
let ∆ ∈ R>0 and ℓ ∈ N≥2 be given. Compute a set C of curves in Xd,ℓ minimizing |C|
such that CovP (C,∆) = [0, 1].
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Figure 4.1: a): Example of all points on P that lie on subcurves of P that have Fréchet
distance at most ∆ to a curve Q of complexity 3. b): The set CovP (Q,∆) ⊂ [0, 1].

Definition 4.1.2 (Bicriteria approximation for SC). Let P be a polygonal curve in Rd,
and let ∆ ∈ R>0 and ℓ ∈ N≥2 be given. Let C∗ be a set of minimal size k∆, such that
CovP (C

∗,∆) = [0, 1]. An algorithm that outputs a set C ⊂ Xd,ℓ of size α|C∗| such that
CovP (C, β∆) = [0, 1] is called an (α, β)-approximation for SC.

A natural extension to the SC problem is computing k centers that cover ‘as much
as possible’.

Problem 3 (Subtrajectory Coverage Maximization (SCM)). Let P be a polygonal
curve in Rd, and let ∆ ∈ R>0, ℓ ∈ N≥2 and k ∈ N≥1 be given. Compute a set C of k
curves in Xd,ℓ maximizing the Lebesgue measure λ(CovP (C,∆)).

Definition 4.1.3 (Bicriteria approximation for SCM). Let P be a polygonal curve in
Rd, and let ∆ ∈ R>0 and ℓ ∈ N≥2 be given. Let C∗ ⊂ Xd,ℓ be a set of size k such that
λ(CovP (C

∗,∆)) is maximal. An algorithm that outputs a set C ⊂ Xd,ℓ of size k such
that λ(CovP (C, β∆)) ≥ αλ(CovP (C∗,∆)) is called an (α, β)-approximation for SCM.

4.2 Introduction

Prior to the line of work on the SC and SCM problem, [BBG+11] presented one of the
earlier works on clustering subtrajectories for both the discrete and continuous Fréchet
distance. Their work focuses on finding the largest cluster of disjoint subtrajectories,
where different variants of ‘largest’ are considered. They present hardness results for
(2− ε)-approximations for any ε and a matching polynomial time 2-approximation algo-
rithm. In subsequent work, [GW22] presented a cubic lower-bound conditioned on SETH
for the same problem. They further showed that this lower bound is tight. We remark
that the condition that the subtrajectories are disjoint is essential to their lower bound
construction and does not readily extend to either the SC or the SCM problem as sub-
trajectories defining the coverage of a center may overlap. The formulation in [BBG+11]
was also studied in subsequent work [GV14, BBD+17, BBG+20, BKK20].
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[AFM+18] formulate the problem of clustering subtrajectories based on facility loca-
tion, an alternative well-known clustering formulation. In this problem formulation there
is an opening cost associated with every center curve, a cost associated to every point
on the input that is assigned to a cluster, and a different cost for points that are not as-
signed. They show conditional NP-hardness results and give an O(log2 n)-approximation
for well-behaved classes of curves under the discrete Fréchet distance.

The SC problem was first introduced in [ABCD23]. They identified a curve S that
approximates the input P , such that any solution to the problem induces an approximate
solution of similar size consisting of only subcurves of edges of S. This set of edges defines
a set system which turns out to have low VC dimension. This enables randomized set
cover algorithms resulting in an (O(d2ℓ2 log2(k∆dℓ)),O(1))-approximation algorithm for
SC with expected running time in Õ(k∆ℓ3Λ2∆−2 +Λn∆−1) where Λ corresponds to the
arc length of the curve P . This approach, based on the VC dimension of the set system,
was improved upon in [BCD22a] resulting in an (O(ℓ log(k∆ℓ))),O(1))-approximation
algorithm for SC with expected running time in O(n(k∆)3(log4(Λ/∆) + log3(n/k∆)) +
n log2 n). In this chapter we instead focus our efforts on deterministic algorithms for the
SC and SCM problems based on the well-known greedy set cover algorithm. Subsequent
to our work [BCD22a] on a purely combinatorial discretization of the set system and
the public release of our arXiv manuscript [CD23], in which we extend the set system
to candidates with non-constant complexity and provide an implementation of our ap-
proach, [vdHvdHO24] made an arXiv manuscript publicly available, which has recently
been published [vdHvdHO25], improving upon the theoretical work in [CD23], giving
additional insights into the structure of the set system. They reduce the size of the set
system by a factor of roughly nℓ, resulting in an algorithm with running time in Õ(k∆n3).

4.2.1 Results

We first give a brief overview of the results and techniques used in this chapter.

Subtrajectory Covering in Quartic Time via a Discretized Set System

We start in Section 4.3 by describing general algorithmic techniques central to both the
SC and SCM problem. In particular, we describe how to obtain a discrete set of candidate
center curves C consisting of few subcurves of a simplification S of the input curve P
which contains an approximately optimal solution to both the SC and SCM problem.
The cardinality of C is in Õ(n2)1, where n is the complexity of the input curve P . This
results in a discrete range space, to which we apply standard greedy set cover arguments
obtaining an (O(log n), 4)-approximation algorithm for the SC problem (Section 4.3). Its
running time is in Õ(k∆n3). For the special case that P is c-packed, we show that C has
cardinality Õ(c2n) and hence the algorithm has a running time of Õ(k∆cn2).

Experiments

In Section 4.5 we present an implementation of the greedy algorithm described in Sec-
tion 4.4. We evaluate our approach on GPS data of ocean drifters, with a total complexity

1In the original arXiv manuscript [CD23], we showed a bound of O(n3ℓ). The cardinality can be
reduced to Õ(n2) via a critical insight into the set system presented in [vdHvdHO25]. Since we build
upon the reduced set system, we present the relevant results from [vdHvdHO25] in Sections 4.3 and 4.4
as well, marking them as such.
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of n ≥ 106 and high-dimensional full-body motion capture data and compare the output
to a state-of-the-art motion segmentation algorithm to argue the merit of our approach.
We observe that, in practice, the running time is significantly better than the theoretical
bound of Õ(k∆n3). We further demonstrate that in practice the approximation quality
of our solutions is much better than suggested by the theoretical worst-case guarantees
by comparing to the size of a greedily computed independent set.

Sweep-Sequences

In Section 4.6, we analyze the discretized range space from Section 4.3, with the goal
of improving the running time of the greedy set cover algorithm. In each step of the
algorithm, we have to find the element c ∈ C that maximizes the coverage that is added
to a partial solution. To this end, we identify a new structure, which we call sweep-
sequences, in Section 4.6.1. The goal is to reduce the inherently two-dimensional search
space of subcurves of S to few one-dimensional search spaces that may be processed
via a sequence of sweep algorithms. In Sections 4.6.2 and 4.6.3, we describe how sweep-
sequences allow efficient maintenance of the ∆-coverage and with Theorem 4.6.21 describe
the main interface to this identified structure enabling efficient algorithms for SC and
SCM: for a weighted set A ⊂ [0, 1] of points we are able to efficiently compute the total
weight of points that lie inside the ∆-coverage of every element in the sweep-sequence.

Subtrajectory Covering in Cubic Time, or Better

In Section 4.7 and Section 4.8, we present two (O(log n), 4)-approximation algorithms for
Subtrajectory Covering based on Sections 4.3 and 4.6. We obtain a first approximation
algorithm for SC with running time in Õ(|C|n + k∆|C|). The algorithm first computes
the arrangement in Õ(|C|n) time. Afterwards, each round of the greedy algorithm runs
in (roughly) logarithmic time per element in C by repeatedly querying the subroutine
from Theorem 4.6.21. In Section 4.8, we describe an improvement to this algorithm.
Instead of computing the arrangement explicitly, we first identify a representative subset
of size roughly O(

√
k∆n

3/2) of the arrangement which we cover in an initial pass. The
solution covering this representative subset already covers almost every element in the
arrangement. The remaining roughly O(

√
k∆n

5/2) elements of the arrangement are then
explicitly identified and covered in a second pass with the algorithm from Section 4.7
resulting in the following theorem.

Theorem 4.2.1. There is a (96 ln(n) + 128, 4)-approximation for SC. Given a curve
P of complexity n, together with values ∆ > 0 and ℓ ≤ n, its running time is in
O
((
n2ℓ+

√
k∆n

5
2

)
log2 n

)
, where k∆ is the size of the smallest subset C∗ ⊂ Xd

ℓ such
that CovP (C∗,∆) = [0, 1].

As k∆ ≤ ⌈nℓ ⌉, Theorem 4.2.1 yields an algorithm with (near-)cubic running time.
Further, in the case that k∆ ∈ O(n1−ε), it yields an algorithm with subcubic running
time.

Subtrajectory Coverage Maximization in Quadratic Time

In Section 4.9, we show how the Lebesgue measure of the coverage of the elements in C can
be approximated efficiently by few piecewise linear functions. This approximation can
also be maintained efficiently by using the identified sweep-sequences from Section 4.6,
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allowing the evaluation of the aforementioned Lebesgue measure of the coverage of every
element in C in total time Õ(|C|). This results in the following theorem, which compares
favorably to the best known algorithm with running time Õ(kn3) [vdHvdHO25].

Theorem 4.2.2. Let ε ∈ (0, 1]. There is an ( e−1
16e , 4 + ε)-approximation algorithm for

SCM, where e is the base of the natural logarithm. Given a polygonal curve P of complex-
ity n, ∆ > 0, ℓ ≤ n, and k > 0, its running time is in O((k + ℓ)n2ε−2 log2 n log2(ε−1)).

4.3 Range Space Discretization

The problem can be framed as a set cover/coverage maximization problem of the range
space (

[0, 1],
{
CovP (π,∆)

∣∣∣π ∈ Xd,ℓ
})

.

Unfortunately, both the ground set as well as the set system of this range space are
uncountably large. In this section we will work towards a discrete approximation of
this range space in the sense that computing an approximate set cover solution in the
approximate range space amounts to computing an approximate set cover solution in the
original range space.

4.3.1 Maximal Curve Simplifications

We begin by defining the notion of curve simplification central to this chapter. Our
notion of curve simplification is inspired by [dBCG13] and [DHW12].

Definition 4.3.1 (Maximal Simplification). Let P be a polygonal curve in Rd. Let
(t1, . . . , tn) be the vertex parameters of P , and pi = P (ti) the vertices of P . Consider
indices 1 ≤ i1 < . . . < ik ≤ n defining vertices pij . We call a curve S defined by
such an ordered set of vertices (pi1 , . . . , pik) ∈ (Rd)k a simplification of P . We say a
simplification S of P is (∆, ε)-maximal, if the following properties hold:

(i) ∥pij − pij+1∥ ≥ ε for j ∈ [k − 1],
(ii) dF (P [tij , tij+1 ], pij pij+1) ≤ ∆+ ε for all j ∈ [k − 1],
(iii) dF (P [t1, ti1 ], pi1 pi1) ≤ ∆+ ε and dF (P [tik , tn], pik pik) ≤ ∆+ ε, and
(iv) dF (P [tij , tij+2 ], pij pij+2) > ∆ for all j ∈ [k − 2].

Note that a (∆, ε)-maximal simplification S of a curve P has small Fréchet distance
to P , i.e., dF (S, P ) ≤ ∆+ ε by property (ii) and (iii). Outside the context of c-packed
curves, we usually only talk about (∆, 0)-maximal simplifications, which we may simply
call ∆-maximal. In fact, the notion of a (∆, 0)-maximal simplification coincides with the
simplification introduced in [dBCG13], and the notion of a (0, ε)-maximal simplification
coincides with the simplification introduced in [DHW12].

We turn to proving that any solution to the SC and SCM problem can be restricted
to subcurves of a maximal simplification of P .

Definition 4.3.2 (Container [dBCG13]). Let P be a polygonal curve, let π = P [s, t] be
a subcurve of P , and let (t1, . . . , tn) be the vertex parameters of P . For a simplification
S of P defined by index set I = (i1, . . . , ik), define the container cS(π) of π on S as
S[ta, tb], with a = max ({i1} ∪ {i ∈ I | ti ≤ s}) and b = min ({i ∈ I | ti ≥ t} ∪ {ik}).

54



CHAPTER 4. CLUSTERING SUBTRAJECTORIES

[dBCG13] proved the following lemma for 2∆-maximal simplifications. We restate
and reprove it here with respect to our notion of simplification.

Lemma 4.3.3 ([dBCG13]). Let P be a polygonal curve in Rd, and let S be a (2∆, ε)-
maximal simplification of P . Let Q ∈ Xd,2 be an edge in Rd and let π be a subcurve of P
with dF (Q, π) ≤ ∆. Then cS(π) consists of at most 3 edges.

Proof. Assume for the sake of contradiction that cS(π) contains at least 4 edges, that
is, it has three internal vertices s1, s2, s3. By Definition 4.3.2, these three vertices are
also interior vertices of π. As dF (Q, π) ≤ ∆, there are points q1, q2, and q3 along Q
that get matched to s1, s2, and s3 respectively during a traversal with associated cost
∆, and hence ∥si − qi∥ ≤ ∆. This implies dF (π[s1, s3], q1 q3) ≤ ∆. It also implies that
dF (s1 s3, q1 q3) ≤ ∆. But then

dF (s1 s3, P [s1, s3]) = dF (s1, s3, π[s1, s3]) ≤ dF (s1 s3, q1 q3) + dF (π[s1, s3], q1 q3) ≤ 2∆,

contradicting the assumption that S is a (2∆, ε)-maximal simplification.

Via the pigeon hole principle, we extend this lemma to curves of higher complexity.

Lemma 4.3.4. Let P be a polygonal curve in Rd and let S be a (2∆, ε)-maximal simpli-
fication of P . Let Q ∈ Xd,ℓ and let π be a subcurve of P with dF (Q, π) ≤ ∆. Then cS(π)
consists of at most 2ℓ+ 1 edges.

Proof. Assume for the sake of contradiction that cS(π) contains 2ℓ+ 2 edges, that is, it
has 2ℓ+1 internal vertices. By the pigeon hole principle and the fact that dF (Q, π) ≤ ∆,
there is an edge Qi of Q and three points q1, q2, and q3 along Qi that get matched
with three such internal vertices during the traversal of Q and π. But then there is a
subcurve π′ of π such that dF (Qi, π

′) ≤ ∆ and cS(π′) has at least 4 edges contradicting
Lemma 4.3.3.

Corollary 4.3.5. Let P be a polygonal curve and let S be a (2∆, ε)-maximal simplifi-
cation of P . For any curve π ∈ Xd,ℓ there is a subcurve π̂ of S of complexity at most
2ℓ+ 1—that is π̂ ∈ Xd,2ℓ+1—such that CovP (π,∆) ⊂ CovP (π̂, 4∆ + ε).

Proof. This is an immediate consequence of Lemma 4.3.4, the definition of a (2∆, ε)-
simplification and the triangle inequality.

Lemma 4.3.6. Let π be a curve. For any 0 ≤ t ≤ t′ ≤ 1 it holds that

CovP (π,∆) ⊂ CovP ({π[0, t′], π[t, 1]},∆).

Proof. Let P [a, b] be such that dF (π, P [a, b]) ≤ ∆. Then there are values a ≤ s ≤ s′ ≤ b
such that dF (π[0, t

′], P [a, s′]) ≤ ∆ and dF (π[t, 1], P [s, b]) ≤ ∆. And hence

[a, b] = [a, s′] ∪ [s, b] ⊂ CovP ({π[0, t′], π[t, 1]},∆).

Summarizing, Corollary 4.3.5 and Lemma 4.3.6 imply that for any (2∆, ε)-maximal
simplification S of P and curve π ∈ Xd,ℓ there are at most three subcurves π1, π2, and
π3 of S of complexity at most ℓ such that CovP (π,∆) ⊂ CovP ({π1, π2, π3}, 4∆ + ε).

The following lemma suggests that we may cover a (0, ε∆)-maximal simplification P ′

of P instead of P , relaxing ∆ by at most a factor of (1 + ε).
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Lemma 4.3.7. Let P and P ′ be curves such that dF (P, P ′) ≤ ε. Let C ⊂ Xd,ℓ such that
CovP (C,∆) = [0, 1]. Then CovP ′(C,∆+ ε) = [0, 1].

Proof. Let (f, g) be a traversal of P and P ′, with associated cost at most ε. Let µP (x) =
{y ∈ [0, 1] | ∃t ∈ [0, 1] : f(t) = x, g(t) = y}, that is, all the (parametrized) points along
P ′ that get matched to P (x) during some traversal with associated distance at most
ε. Note that µP ([0, 1]) = [0, 1], and more importantly for [a, b] ⊂ [c, d], it holds that
µP ([a, b]) ⊂ µP ([c, d]), as f and g are monotone.

We claim that

[0, 1] = µP ([0, 1]) = µP (CovP (C,∆)) ⊆ CovP ′(C,∆+ ε)

implying CovP ′(C,∆+ ε) = [0, 1].
Observe that by the triangle inequality it holds for any 0 ≤ t ≤ t′ ≤ 1 and any Q ∈ C

with dF (P [t, t
′], Q) ≤ ∆, and for any s ∈ µP (t) and s′ ∈ µP (t′) that

dF (P
′[s, s′], Q) ≤ dF (P

′[s, s′], P [t, t′]) + dF (P [t, t
′], Q) ≤ ∆+ ε.

Hence

[0, 1] = µP (CovP (C,∆)) =
⋃
Q∈C

⋃
0≤t≤t′≤1

{x ∈ µP ([t, t′]) | dF (P [t, t′], Q) ≤ ∆}

⊂
⋃
Q∈C

⋃
0≤s≤s′≤1

{x ∈ [s, s′] | dF (P ′[s, s′], Q) ≤ ∆+ ε}

= CovP ′(C,∆+ ε).

The second step follows from the above observation since µP ([t, t
′]) = [s, s′] for any

s ∈ µP (t) and s′ ∈ µP (t′) with s ≤ s′ since f and g are monotone.

4.3.2 Set System Discretization

In this section, we describe how, given a curve P of complexity n, and a 2∆-maximal sim-
plification S there is a set CS of O(n2 log n) subcurves of S such that for any set of curves
C ⊂ Xd,ℓ there is a subset Ĉ ⊂ CS of size O(|C|) such that CovP (C,∆) ⊂ CovP (Ĉ, 4∆).
We will prove this statement in more general forms w.r.t. (α,∆)-approximate freespaces
and (2∆, ε)-simplifications instead, as these underlie our results for SC for general and
c-packed curves as well as SCM for general curves. We begin by defining CS .

Definition 4.3.8 (Subcurve types). Let S be a polygonal curve. Let π be a subcurve
of S. We say π is a vertex-vertex-subcurve of S if π starts and ends at vertices of S.
We say π is a subedge of S, if π has complexity 2, i.e., it is a subcurve of a single edge
of S. We say π is an edge-affix of S if it is a subedge of S which starts or ends at a
vertex of S.

Definition 4.3.9 (Type (I)-, (II)- and (III)-subcurves). Let P be a polygonal curve
and let S be a simplification of P . Let α, ∆ and ℓ be given. Let AS be an (α,∆)-free
space of S and P . For every edge e of S let Ae be the restriction of AS onto the edge
e—that is Ae is an (α,∆)-free space of e and P—and let Ee = {ε1, . . .} be a finite sorted
superset of the y-coordinates of extremal points E(Ae) of Ae (refer to Figure 4.2). Define
three types of subcurves of S via the set E = (Ee1 , Ee2 , . . .).
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Q

Type (III) Type (II)Type (I)

j = 4 j = 2 j = 1

Figure 4.2: Illustration of all Type (I)-, (II)- and (III)-subcurves of Q (as vertical lines)
that are not reversals, induced by an approximate free space. Further marked are the
values j, which induced the set of Type (III)-subcurves on the first edge of Q.

(I): A Type (I)-subcurve of S is a vertex-vertex-subcurve of S that starts at some
ith vertex of S and ends at the (i+ j)th vertex for j ∈ {2m | 0 ≤ m ≤ ⌊log2(ℓ)⌋}.

(II): A Type (II)-subcurve of S induced by E is either an affix-subcurve e[0, εi] or
e[εi, 1] of some edge e of S that is defined by a vertex of S and some value εi ∈ Ee

or its reversal rev(e[0, εi]) or rev(e[εi, 1]).
(III): A Type (III)-subcurve of S induced by E is either a subedge e[εi, εi+j ] of an

edge e of S that is defined by two values εi, εi+j ∈ Ee, such that j is a power of
2, i.e., j ∈ {2m | 0 ≤ m ≤ ⌊log2(|Ee|)⌋}, or its reversal rev(e[εi, εi+j ]).

By a slight abuse of notation we may call E a finite sorted superset of the y-coordinates
of E(AS) and Ee the restriction of E onto the edge e of S. The set of all Type (I)-, (II)-,
and (III)-subcurves of S induced by E we denote by CS(E).

The set CS(E) serves as our discretized set system. A variant of this set of candidates
was originally presented in [vdHvdHO25]. We now analyze its central properties w.r.t. the
notion of the coverage computed via an approximate free space.

Definition 4.3.10 (Free Space Coverage). Let A be an (α,∆)-free space of curves S
and P . For 0 ≤ b ≤ d ≤ 1 define the free space coverage CovA(S[b, d]) of S[b, d] to be
the union of all intervals [a, c] ⊂ [0, 1] such that there is a monotone path from (a, b) to
(c, d) inside A.

Trivially, for an (α,∆)-free space of S and P and values 0 ≤ b ≤ d ≤ 1 it holds that

CovP (S[b, d],∆) ⊂ CovA(S[b, d]) ⊂ CovP (S[b, d], α∆).

We may extend Lemma 4.3.6 to the free space coverage.
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Observation 4.3.11. Let S and P be curves. Let A be an approximate free space of S
and P . Then for any 0 ≤ a ≤ b ≤ c ≤ d ≤ 1 it holds that

CovA(S[a, d]) ⊂ CovA({S[a, c], S[b, d]}).

Recall (Section 2.3) that any (α,∆)-free space of curves S and P is also an (α,∆)-free
space A′ of rev(S) and P and as such we extend the free space coverage to subcurves of
reversals of S, with CovA(rev(S[a, b])) := CovA′(rev(S)[1− b, 1− a]). Observe that if A
is the (1,∆)-free space then CovA(·) = CovP (·,∆).

Definition 4.3.12. Let e be an edge and let P be a polygonal curve. Let Ae be an
(α,∆)-free space of e and P . Then define li(·) as the function mapping any y to the
x-coordinate of the leftmost point of the ith cell in Ae at height y. If this point does not
exist, li(y) =∞. Similarly define rj(y) to be the x-coordinate of the rightmost point at
height y, and ∞ otherwise.

The two types of free spaces we will discuss in this section are the ones discussed in
Section 2.3. For a (1,∆)-free space both li(·) and rj(·) can be computed in O(1) time,
and for a (1 + ε,∆)-free space which, inside any cell, consists of a convex polygon of
complexity at most O(ε−2), li(·) and rj(·) may be computed in O(log(ε−1)) time via a
binary search over the O(ε−2) edges defining the polygon representing the free space in
each cell.

Lemma 4.3.13. Let P be a polygonal curve and let S be a simplification of P . Let ∆ be
given. Let π be a subcurve of S of complexity at most 2ℓ+1. There is a set S′

π consisting
of either one subedge of S or two vertex-vertex-subcurve, of complexity at most ℓ and two
edge-affixes of S such that

CovP (π,∆) ⊂
⋃
s∈S′

π

CovP (s,∆).

Proof. This is an immediate consequence of Lemma 4.3.6 splitting the curve π at its
second, (ℓ+ 1)th, and penultimate vertex parameter.

Lemma 4.3.14. Let P be a polygonal curve and let S be a simplification of P . Let AS

be an (α,∆)-free space of S and P . Let E be a finite sorted superset of the y-coordinates
of E(AS). Let further e be an edge of S and let π be a subcurve of the edge e. Then there
is a set S′′

π = {e[s1, t1], . . . , e[s4, t4]} consisting of at most four subedges of the edge e of
S starting and ending at values s1, t1, . . . , s4, t4 ∈ Ee and

CovP (π̂,∆) ⊂
⋃
s∈S′′

π

CovAS
(s).

If π̂ is an edge-affix, then S′′
π consists of only two such subcurves which are edge-affixes

of e starting and ending at values in Ee.

Proof. Let 0 ≤ s ≤ t ≤ 1 such that π = e[s, t]. Let ε1 be the largest value among Ee such
that ε1 ≤ s and let ε2 be the smallest value among Ee such that ε2 ≥ s. Let similarly ε3
be the largest value among Ee such that ε3 ≤ t and ε4 be the smallest value among Ee

such that ε4 ≥ t. In particular, both ε1 and ε2 as well as ε3 and ε4 are consecutive in Ee.
Assume first that ε2 ≤ ε3. Observe that there is no extremal point of Ae between s

and ε1, and between s and ε2, and there is no extremal point of Ae between t and ε3,
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and between t and ε4. Hence, if there is a monotone path from some cell i at height s
to cell j at height t, then there are also monotone paths from cell i at height ε1 (resp.
ε2) to cell j at height ε3 (resp. ε4). By the convexity of the free space in every cell and
the fact that the y-coordinates of the leftmost points are also in Ee it holds further that
min(li(ε1), li(ε2)) ≤ li(s) and ri(t) ≤ max(rj(ε3), rj(ε4)). And thus

CovP (π,∆) ⊂ CovAS
({e[ε1, ε3], e[ε1, ε4], e[ε2, ε3], e[ε2, ε4]}).

If s itself is an extremal coordinate, then ε1 = ε2. Similarly if t itself is an extremal
coordinate, then ε3 = ε4. This is the case if π is an edge-affix. In this case, CovP (π,∆)
is a subset of either CovAS

({e[ε1, ε3], e[ε1, ε4]}) or CovAS
({e[ε1, ε3], e[ε2, ε3]}).

If instead ε2 > ε3 then in particular ε1 = ε3 < ε2 = ε4. Similarly as before, observe
that there is no extremal point of Ae between s and ε1, and between s and ε2, and there
is no extremal point of Ae between t and ε3, and between t and ε4. Hence, if there is
a monotone path from some cell i at height s to cell j at height t, then there are also
monotone paths from cell i at height ε1 to cell j at height ε3. There are further monotone
paths from cell i at height ε1 to cell j at height ε4 and from cell i at height ε2 to cell
j at height ε4. Lastly there is also a path from cell i at height ε3 to cell j at height ε2
that is monotonously increasing in the x-coordinate and monotonously decreasing in the
y-coordinate. But this implies that

CovP (π,∆) ⊂ CovAS
({e[ε1, ε3], e[ε1, ε4], rev(e[ε3, ε2]), e[ε2, ε4]}).

If s itself is an extremal coordinate, then ε1 = ε2. Similarly if t itself is an extremal
coordinate, then ε3 = ε4. This is the case if π is an edge-affix. In this case CovP (π,∆) is
a subset of either CovAS

({e[ε1, ε3], e[ε1, ε4]}) or CovAS
({e[ε1, ε3], rev(e[ε3, ε2])}), which

concludes the proof.

The following two theorems are morally the same with slightly modified proofs and
statements geared towards SC and SCM. The underlying technique is the 2j-trick : Given
a subedge π defined by the ath and bth y-coordinate εa and εb in Ee defined by an ap-
proximate free space A, that is, π = e[εa, εb], let j = ⌊log2(b− a)⌋. Then e[εa, εa+2j ] and
e[εb−2j , εb] are both Type (III)-subcurves, and as a+ 2j ≥ b− 2j we have by Observa-
tion 4.3.11 that CovA(π) ⊂ CovA({e[εa, εa+2j ], e[εb−2j , εb]}). This similarly applies for
vertex-vertex-subcurves resulting in two Type (I)-subcurves.

Theorem 4.3.15 (adapted from [vdHvdHO25]). Let P be a polygonal curve and let ε ∈
(0, 1], ∆ ≥ 0, and ℓ ∈ N be given. Let further P ′ be a (0, ε∆)- and S a (2∆, ε∆)-maximal
simplification of P . Let E be the y-coordinates of all extremal points E(D(4+2ε)∆(S, P

′)).
Let C ⊂ Xd,ℓ be a set such that CovP (C,∆) = [0, 1]. Then there is a set C ′ ⊂ CS(E) of
size 8|C| such that

[0, 1] = CovA(C
′) ⊂ CovP (C

′, (4 + 3ε)∆).

Proof. Let C ⊂ Xd,ℓ be such that CovP (C,∆) = [0, 1]. Corollary 4.3.5 together with
Lemma 4.3.14 imply that for every c ∈ C there is a set Sc consisting of either one
subedge of S or two vertex-vertex-subcurves of complexity at most ℓ and two edge-
affixes of S such that CovP (

⋃
c∈C Sc, (4 + ε)∆) = [0, 1]. Hence by Lemma 4.3.7 we have

that CovP (
⋃

c∈C Sc, (4 + 2ε)∆) = [0, 1] and thus CovA(
⋃

c∈C Sc) = [0, 1]. Now it suffices
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to prove that for any such set Sc Lemma 4.3.14 and Observation 4.3.11 imply that for any
Sc there is a set S′

c consisting of at most 8 Type (I)-, (II)- or (III)-subcurves induced
by E such that CovA(Sc) ⊂ CovA(S

′
c).

If Sc consists of one subedge, Lemma 4.3.14 implies that there are four subedges
π1, π2, π3, and π4 starting and ending at values in E such that the coverage CovA(Sc) is
a subset of CovA({π1, π2, π3, π4}), and for any such πi the 2j-trick implies that there are
two Type (III)-subcurves πi,1 and πi,2 such that CovA(πi) ⊂ CovA({πi,1, πi,2}) implying
the claim.

If instead Sc consists of two edge-affixes and two vertex-vertex-subcurves of complex-
ity at most ℓ, then similarly via the 2j-trick for any vertex-vertex-subcurve π of complex-
ity at most ℓ there are Type (I)-subcurves π1 and π2 with CovA(π) ⊂ CovA({π1, π2}),
and by Lemma 4.3.14 for any edge-affix π there are two Type (II)-subcurves π1 and π2
such that CovA(π) ⊂ CovA({π1, π2}) implying the claim.

Hence overall we identified a set C ′ of Type (I)-, (II)-, and (III)-subcurves induced
by E of size at most 8|C| such that CovA(C

′) = [0, 1]. Lastly, Lemma 4.3.7 implies that
[0, 1] ⊂ CovP (C

′, (4 + 3ε)∆).

Theorem 4.3.16. Let P be a polygonal curve and let ∆ ≥ 0, α ≥ 1 and ℓ ∈ N be given.
Let further S be a 2∆-maximal simplification of P . Let A be an (α, 4∆)-free space of S
and P . Let E be a finite sorted superset of the y-coordinates of all extremal points E(A).
Let C ⊂ Xd,ℓ. Then there is a set C ′ ⊂ CS(E) of size 8|C| such that

CovP (C,∆) ⊂ CovA(C
′) ⊂ CovP (C

′, 4α∆).

Proof. Let C ⊂ Xd,ℓ be given. By Corollary 4.3.5 and Lemma 4.3.14 for every c ∈ C there
is a set Sc consisting of either one subedge of S or two vertex-vertex-subcurves of com-
plexity at most ℓ and two edge-affixes of S such that CovP (C,∆) ⊂ CovP (

⋃
c∈C Sc, 4∆).

Hence we have that CovP (C,∆) ⊂ CovA(
⋃

c∈C Sc). Now it suffices to prove that for any
such set Sc, Lemma 4.3.14 and Observation 4.3.11 imply that for any Sc there is a set
S′
c consisting of at most 8 Type (I)-, (II)- or (III)-subcurves induced by E such that

CovA(Sc) ⊂ CovA(S
′
c).

If Sc consists of one subedge, Lemma 4.3.14 implies that there are four subedges
π1, π2, π3, and π4 starting and ending at values in E such that the coverage CovA(Sc) is
a subset of CovA({π1, π2, π3, π4}), and for any such πi the 2j-trick implies that there are
two Type (III)-subcurves πi,1, and πi,2 such that CovA(πi) ⊂ CovA({πi,1, πi,2}) implying
the claim.

If instead Sc consists of two edge-affixes and two vertex-vertex-subcurves of complex-
ity at most ℓ, then similarly via the 2j-trick for any vertex-vertex-subcurve π of complex-
ity at most ℓ there are Type (I)-subcurves π1 and π2 with CovA(π) ⊂ CovA({π1, π2}),
and by Lemma 4.3.14 for any edge-affix π there are two Type (II)-subcurves π1 and π2
such that CovA(π) ⊂ CovA({π1, π2}) implying the claim.

Hence overall we identified a set C ′ of Type (I)-, (II)-, and (III)-subcurves induced
by E of size at most 8|C| such that CovP (C) ⊂ CovA(C

′). Lastly, as A is an (α,∆)-
approximate free space, CovA(C ′) ⊂ CovP (C

′, 4α∆).

4.4 Subtrajectory Covering via Greedy Set Cover

In this section we focus exclusively on the SC problem. In particular, the set E inducing
CS(E) will be exactly the set of y-coordinates of extremal points of the given free space,
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E(
A
)

A(A)

Figure 4.3: Construction of atomic intervals based on the extremal points E(A) of a free
space A.

and not an arbitrary super set. We begin by discretizing the ground set of the range
space which in turn makes the use of classical set cover algorithms feasible.

Definition 4.4.1 (Atomic Intervals). Let A be an approximate ∆-free space. Let G be
the set of all intersection points of horizontal lines rooted at y for y ∈ E(A) with the
boundary of the free space A. From this, define the set of atomic intervals A(A) as the
set of intervals describing the arrangement of [0, 1] defined by the set {x ∈ [0, 1] | ∃y ∈
[0, 1] : (x, y) ∈ G} (Figure 4.3).

Observe that for any atomic interval a ∈ A(A) and any Type (I)-, (II)- or (III)-
subcurve π induced by the y-coordinates of E(A) either a ⊂ CovA(π), or a∩CovA(π) = ∅.
Hence the following observation holds.

Observation 4.4.2. Let S and P be polygonal curves of complexity at most n and let
∆ > 0 be given. Then |E(D∆(S, P ))| ≤ 8n2. As each horizontal line intersects at most
n cells, and the free space in every cell is convex it follows that the set of all midpoints
of atomic intervals A(D∆(S, P )) is a set of points A ⊂ [0, 1] of size 16n3 such that for
any set C of Type (I)-, (II)-, and (III)-subcurves induced by y-coordinates of points in
E(D∆(S, P )) it holds that

CovP (C,∆) = [0, 1] ⇐⇒ A ⊂ CovP (C,∆).

The Subtrajectory Covering algorithm we present relies upon the following theorem.

Theorem 4.4.3. Let P be a curve of complexity n, let ∆, ε and ℓ be given. Let S be
a (2∆, ε∆)-maximal simplification of P and let P ′ be a (0, ε∆)-maximal simplification
of P . Let A ⊂ [0, 1] be the set of midpoints of atomic intervals of the (4∆ + 2ε∆)-free
space of S and P ′. Let E be the set of y-coordinates of E(D(4+2ε)∆(S, P )). Let k∆ be the
size of a smallest set C∗ ⊂ Xd,ℓ such that

⋃
c∈C∗ CovP (c,∆) = [0, 1]. Any algorithm that

iteratively adds the curve c among CS(E) to R maximizing∣∣∣∣∣
{
a ∈ A

∣∣∣∣∣a ∈
(
CovP (c, 4∆ + 2ε∆) \

(⋃
r∈R

CovP (r, 4∆ + 2ε∆)

))}∣∣∣∣∣
terminates after 8(3 ln(n) + ln(16) + 1)k∆ iterations.
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Algorithm 3 Curve simplification
1: procedure SimplifyCurve(curve P in Rd,ε, ∆)
2: Let Ŝ be an empty stack.
3: Ŝ.push(1)
4: for 2 ≤ i ≤ n do
5: j ← Ŝ.next_to_top()
6: while j is defined and dF (P [tj , ti], pj pi) ≤ ∆ do
7: Ŝ.pop()
8: j ← Ŝ.next_to_top()
9: j ← Ŝ.top()

10: if ∥P (tj)− P (ti)∥ ≥ ε then
11: Ŝ.push(i)
12: return simplification S defined by the indices in Ŝ

Proof. By Theorem 4.9.1 there is a set C of size 8k∆ in CS(E) such that CovAS
(C) =

[0, 1] ⊃ A. By standard arguments for the greedy set cover algorithm [Joh73, Lov75,
Ste74], the algorithm thus terminates after (ln |A|+ 1)8k∆ iterations.

4.4.1 Simplification Algorithm

In this section we describe an algorithm to construct a (∆, ε)-maximal simplification S
for a given polygonal curve P .

Theorem 4.4.4. Let P be a polygonal curve in Rd. Let (t1, . . . , tn) be the vertex pa-
rameters of P and pi = P (ti) its vertices. Let ∆ ≥ 0 and ε ≥ 0 be given. There exists
an algorithm that outputs an index set defining a (∆, ε)-maximal simplification of P .
Furthermore, it does so in O(n2) time and O(n) space.

Proof. Consider Algorithm 3. We want to show that the simplification S of P defined
by the index set Ŝ is (∆, ε)-maximal. For this we have to show that S fulfills properties
(i)–(iv) of Definition 4.3.1. Note that property (i) follows immediately, as otherwise any
index considered in line 11 would not have been added to Ŝ.

Denote by s the last item of Ŝ, which is updated whenever Ŝ changes. We show
the following invariance: Whenever we start some generic iteration of the loop in line 4,
where we try to add i to the index set, then P [ts, ti−1] ⊂ D∆+ε(ps).

At the start of the first iteration, Ŝ = (1) and i = 2. As P [t1, ti−1] = P [t1, t1] = p1,
the invariance holds.

Now assume we are at the start of some iteration, where we try to add i to Ŝ, and
assume the invariance holds. Assume for now that during the current iteration we do not
enter line 7. In particular, when arriving at line 9, the invariance still holds. We either
enter line 11, in which case at the start of the next iteration i+1 we have that s = i and
the invariance holds, or we do not enter line 11, in which case both P [ts, ti−1] and P (ti)
and hence also P [ts, ti] are in D∆+ε(ts) and thus the invariance also holds at the start of
the next iteration.

Hence let us instead assume that we do enter line 7. Thus, when arriving at line 9
we have that dF (P [ts, ti], ps pi) ≤ ∆. We again either enter line 11, in which case at the
start of the next iteration i + 1 we have that s = i and the invariance holds, or we do
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not enter line 11. In the latter case we have that

dF (P [ts, ti], ps ps) ≤ dF (P [ts, ti], ps pi) + dF (ps pi, ps ps) ≤ ∆+ ε,

and hence the invariance holds at the start of the next iteration.
We observe that whenever i is added to Ŝ in iteration i, we have that either the

invariance holds, or Ŝ was modified between the start of the iteration and the ar-
rival at line 9. The latter implies that dF (P [ts, ti], ps pi) ≤ ∆ and thus in either case
dF (P [ts, ti], ps pi) ≤ ∆+ ε, implying that the resulting simplification has property (ii).

Property (iii) similarly is an immediate consequence of the invariance. First observe
that P [t1, ti1 ] = P [t1, t1] and thus dF (P [t1, ti1 ], pi1 pi1) = 0 ≤ ∆+ε. Second observe that
at the end of iteration n the invariance holds, and hence dF (P [ts, tn], ps pn) ≤ ∆+ ε.

Lastly, for property (iv) observe that, if dF (P [tij , tij+2 ], pij pij+2) < ∆ for some ij
and ij+2 in the resulting index set I, the algorithm would have removed ij+1 from I in
Line 6, as when we add ij+2, Ŝ.next_to_top() = ij .

The space requirement follows as we only store S, Ŝ, and possibly the ∆-free space
of a subcurve of P with a single edge. For analyzing the running time, note that each
vertex of P is inserted to and removed from the index set at most once. Therefore,
the total running time is bounded by the at most O(n) checks of whether the Fréchet
distance between a polygonal curve of complexity n and an edge is at most ∆. This can
be computed in O(n) time concluding the proof.

If instead ∆ = 0, the algorithm has linear running time. In this case, the computed
simplification coincides exactly with the simplification introduced in [DHW12].

Theorem 4.4.5. Let P be a polygonal curve in Rd. Let ε ≥ 0 be given. There exists
an algorithm that outputs an index set defining a (0, ε)-maximal simplification of P .
Furthermore, it does so in O(n) time.

Proof. Consider Algorithm 3 and Theorem 4.4.4. If ∆ = 0, each loop takes O(1) time
concluding the proof.

4.4.2 The Algorithm for General Curves

We now present a bicriteria approximation algorithm for the SC problem.

Lemma 4.4.6 ([vdHvdHO25]). Let π ∈ Xd,ℓ and P ∈ Xd,n be two curves and let ∆ be
given. Then CovP (π,∆) consists of at most O(n) continuous closed disjoint intervals.
These intervals can be computed in O(nℓ log2 n) time.

Theorem 4.4.7. Algorithm 4 is a (24 ln(n)+32, 4)-approximation for SC. Given a polyg-
onal curve P of complexity n, ∆ ≥ 0 and ℓ ≤ n, its running time is in O

(
k∆n

3 log3 n
)
,

where k∆ is the size of the smallest subset C∗ ⊂ Xd
ℓ such that CovP (C∗,∆) = [0, 1].

Proof. Theorem 4.3.15, Theorem 4.4.3, and Observation 4.4.2 imply that Algorithm 4
is a (24 ln(n) + 32, 4)-approximation for SC. The running time is clearly dominated by
computing CovP (c, 4∆), A and computing |A∩CovP (c, 4∆)| for every c in CS(E) in every
round. By Lemma 4.4.6, computing the O(n) disjoint intervals representing CovP (c, 4∆)
takes O(n log2 n) time for Type (II)- and (III)-subcurves and O(nℓ log2 n) for Type (I)-
subcurves. Since there are O(n log n) Type (I)-subcurves and O(n2 log n) Type (II)-
and (III)-subcurves, computing and storing CovP (c, 4∆) for every c in CS(E) takes
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Algorithm 4 Subtrajectory Covering
1: procedure ComputeSubtrajectoryCovering(P ,∆)
2: Compute (2∆, 0)-maximal simplification S of P
3: Compute D4∆(S, P ) and with it E(D4∆(S, P )) and A(D4∆(S, P ))
4: Compute the set E of y-coordinates of E(D4∆(S, P ))
5: Compute the set CS(E) of Type (I)-, (II)− and (III)-subcurves of S
6: Compute and store CovP (c, 4∆) for every c ∈ CS(E)
7: Store the midpoints A of atomic intervals A(D4∆(S, P )) in a balanced binary tree
8: R← ∅
9: while A ̸= ∅ do

10: Identify c∗ ∈ CS(E) such that |A ∩ CovP (c
∗, 4∆)| is maximum

11: R← R ∪ {c∗}, A← A \ CovP (c∗, 4∆)

12: return R

O(n3 log3 n) time. The set A is computed via the O(n3) intersection points of O(n2)
horizontal lines with the free space and thus computed in O(n3 log n) time. Computing
|A ∩ CovP (c, 4∆)| for c in CS(E) takes O(n log n) time by storing A in a binary tree,
where each inner node is augmented with the minimal interval containing all elements in
A stored in the subtree rooted at that node as well as the number of leaves in that subtree.
By Theorem 4.4.3, the algorithm terminates after a total of O(k∆ log n) iterations and
hence the total running time is bounded by O(k∆n3 log3 n).

4.4.3 Improvements for c-Packed Curves

If the input curve is a c-packed polygonal curve, we can obtain results that depend on c.
The first two lemmas and proofs of this section are reminiscent of Lemma 4.2 and Lemma
4.3 in [DHW12]. The main difference is the definition of the simplifications used. The
third lemma uses the second lemma to show that given a c-packed curve P , the number of
extremal points in the (4 + 2ε)∆-free space of a (2∆, ε∆)-maximal and (0, ε∆)-maximal
simplification of P is in O(ncε−2) for c-packed curves improving upon the naïve bound
of O(n2) in the worst-case.

Lemma 4.4.8. Let P be a curve in Rd. Let S be a simplification of P with dF (P, S) ≤ ∆.
Then for any ball Dr(p) it holds that the total arc length ∥S ∩Dr(p)∥ of S in Dr(p) is at
most ∥P ∩Dr+∆(p)∥.

Proof. Consider any segment u of the simplification S that intersects Dr(p), defined by
vertices pi and pj of P , with P (ti) = pi and P (tj) = pj , and let v = u ∩Dr(p). Observe
that P [ti, tj ] lies inside a capsule of radius ∆ around u. Now erect two hyperplanes
passing through the endpoints of v. P [ti, tj ] must intersect both, hence the length of
P [ti, tj ] inside a capsule of radius ∆ around v is at least ||v||. As this capsule lies
completely inside Dr+∆(p), the claim follows.

Lemma 4.4.9. Let P be a c-packed curve, and let ε ∈ (0, 1], ∆ > 0 and S a simplification
of P such that any edge of S has length at least ∆/ε and dF (S, P ) ≤ (2 + ε)∆ be given.
Then S is 18c/ε-packed.
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Proof. Let µ = dF (P, S) and observe that µ ≤ 3∆. Assume for the sake of contradiction
that the arc length ∥S ∩ Dr(p)∥ of S inside some disk Dr(p) is larger than 18cr/ε. If
r ≥ µ let r′ = 2r. Then by Lemma 4.4.8 together with our assumption

||P ∩Dr′(p)|| ≥ ||P ∩Dr+µ(p)|| ≥ ||S ∩Dr(p)|| > 18cr/ε > 9cr′/ε > 9cr′.

This contradicts the fact that P is c-packed. If r < µ let U denote the segments of S
intersecting Dr(p) and let k = |U |. Observe that k > (18cr/ε)/2r = 9c/ε as any segment
can contribute at most 2r to the length of S inside Dr(p).

||S ∩D2µ(p)|| ≥ ||S ∩Dr+µ(p)|| ≥ ||U ∩Dr+µ(p)|| ≥ kmin(µ, ε∆)

> 9c/εmin(ε∆, µ) = 3cmin(3∆, 3µ/ε) ≥ 3cmin(µ, µ) = 3cµ,

since every segment of B has minimal length ε∆. Hence by Lemma 4.4.8

||P ∩D3µ(p)|| ≥ ||S ∩D2µ(p)|| > 3cµ,

again contradicting the fact that P is c-packed.

Lemma 4.4.10. Let P be a c-packed polygonal curve. Let ∆ and ε be given. Let S be a
(2∆, ε∆)-maximal simplification of P and let P ′ be a (0, ε∆)-maximal simplification of
P . Then |E(D4∆+2ε(S, P

′))| = O(cn/ε2).

Proof. This follow the proof of [DHW12, Lemma 4.4]. There are at most 8 extremal
points for every non-empty cell in D4∆+2ε(S, P

′). A cell defined by edges u of S and v
of P ′ is non-empty if and only if there is a point p on u and q on v such that ∥p− q∥ ≤
(4 + 2ε)∆. Charge any such pair of edges to the shorter of the two edges.

Now consider an edge u of S and in particular the ball of radius r = 3/2∥u∥+(4+2ε)∆
centered at the midpoint m of u. Every segment v of P ′ participating in a pair with u
which is charged to u must intersect the ball D∥u∥/2+(4+2ε)∆(m). Hence, as ∥v∥ > ∥u∥,
the arc length of v in the ball Dr(m) must be at least ∥u∥. By Lemma 4.4.9, both P ′

and S are 18c/ε-packed. Hence we have that the number of charges to u is at most

∥P ′ ∩Dr(m)∥
∥u∥

≤ 18c/ε(3/2∥u∥+ (4 + 2ε)∆)

∥u∥
≤ 27c/ε+

18c/ε(4 + 2ε)∆

ε∆
= O

(
c/ε2

)
.

Similarly, if u is an edge of P ′ instead. Thus the total charges to all edges is at most
O(nc/ε2).

Theorem 4.4.11. Let ε ∈ (0, 1] be given. There is a (24 ln(n)+32, 4+3ε)-approximation
for SC. Given a c-packed polygonal curve P of complexity n in Rd, ∆ > 0 and ℓ ≤ n, its
running time is in O

(
n2ℓ log2 n+ k∆cn

2ε−2 log3 n
)
, where k∆ is the size of the smallest

subset C∗ ⊂ Xd
ℓ such that CovP (C∗,∆) = [0, 1].

Proof. The proof follows the proof of Theorem 4.4.7. The algorithm starts by comput-
ing a (2∆, ε∆)-maximal simplification S of P and a (0, ε∆)-maximal simplification P ′

of P . Then it executes line 3 to line 12 of Algorithm 4 with S ← S, P ← P ′ and
∆← (1 + ε/2)∆. The correctness follows from Theorem 4.3.15, Theorem 4.4.3, and Ob-
servation 4.4.2. The running time is clearly dominated by computing CovP ′(c, (4+2ε)∆),
A and computing |A ∩ CovP ′(c, (4 + 2ε)∆)| for every c in CS(E) in every round. By
Lemma 4.4.6, computing the O(n) disjoint intervals representing CovP ′(c, (4 + 2ε)∆)
takes O(n log2 n) time for Type (II)- and (III)-subcurves and O(nℓ log2 n) for Type

65



CHAPTER 4. CLUSTERING SUBTRAJECTORIES

(I)-subcurves. Since there are O(n log n) Type (I)-subcurves and O(ncε−2 log n) Type
(II)- and (III)-subcurves by Lemma 4.4.10, computing and storing CovP ′(c, (4+ 2ε)∆)
for every c in CS(E) takes O(n2cε−2 log3 n) time. Observe that by Lemma 4.4.10, the
cardinality |A| is at most O(min(n3, n2cε−2)). Hence the set A can be computed in
O(n2cε−2 log n) time. Computing |A ∩ CovP (c, 4∆)| for c in CS(E) takes O(n log n)
time. By Theorem 4.4.3 the algorithm terminates after a total of O(k∆ log n) iterations
and hence the total running time is bounded by O(n2ℓ log2 n+ k∆cn

2ε−2 log3 n).

4.5 Experimental Evaluation

So far, we have established a bicriteria approximation algorithm for the SC problem. We
have observed that in theory this algorithm scales well with realistic (i.e., c-packed for
small/constant c) input curves. The approximation guarantees and constants hidden in
the asymptotic notation may, however, make the algorithm not practically viable. In
this section we give empirical evidence that this is not the case, that is, the algorithm
performs well in practice. All experiments were conducted on a Linux system with 16GB
of memory with an Intel i5-9600 CPU.

4.5.1 Implementation Details

Our C++-implementation is available online2. The input of the algorithm consists of a
set {P1, . . . , Pm} of curves and three parameters ∆simp, ∆free, and ℓ. It first computes
(2/3∆simp, 1/3∆simp)-maximal simplifications Si of Pi for all i with parameter ∆simp,
and then computes the ∆free-free space of Si and Sj as well as their extremal points for
all pairs (i, j) ∈ [m]2. Next it computes all pairs of extremal coordinates that (i) lie on
the same curve, (ii) the resulting subcurve has complexity at most ℓ and (iii) there is a
power of 2 of other extremal coordinates in the interval between them (c.f. Definition 4.3.9
and [vdHvdHO25]). For every such pair of extremal coordinates (a, b) on curve Si we
compute the ∆free-coverage of Si[a, b] via the computed ∆free-spaces of Si with any other
Sj . This ∆free-coverage is a subset of [m]× [0, 1] and defines a set cover instance. This set
cover instance we solve via a greedy set cover algorithm that iteratively picks and adds
the candidate which maximizes the arc length (computed on each Si) of the additional
coverage. This step is repeated until [m] × [0, 1] is covered. This resembles solving the
SCM problem rather than the SC problem without a cardinality constraint k. However,
it allows us to stop the greedy algorithm after a small number of rounds and still have
a partial solution that covers a large fraction of the input. We introduced the two
parameters ∆simp and ∆free to test the stability of the threshold parameter ∆ in both
the simplification and free-space computation step. Given some ∆, setting ∆simp = 3∆
and ∆free = 8∆ yields bounds on the running time comparable to Theorem 4.4.11.

4.5.2 Ocean Drifters

We evaluate our implementation to trajectories from the NOAA Global Drifter Pro-
gram [LC19]. This is a comprehensive data set consisting of almost 20 000 ocean surface
drifters that have been released across the ocean as far back as 1979. For the evalua-
tion, we focus on the subset of trajectories consisting of all drifters recorded in the years

2archive.softwareheritage.org/swh:1:dir:a5910d607f46de40d9b7f271f9156e5a048cc351
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Figure 4.4: Influence of different combinations of parameters on the running time evalu-
ated on the data set from the NOAA Global Drifter Program [LC19].

2022–2024. This subset consist of 5500 different trajectories which consist on average of
500 points resulting in a total input complexity of n ≥ 2 · 106. Refer to Figure 1.1 on
page 10, in which the data set and the computed set of center curves with ∆simp = 20km,
∆free = 400km and ℓ = 20 is depicted.

Evaluation

We apply our techniques with a range of radii with ∆simp between 5km and 120km, ∆free
between 10km and 320km, as well as a range of complexity bounds with ℓ between 1
and 10. Figure 4.4 shows the running times. We observe that the running time appears
to be mostly independent of the exact values of ∆simp and ∆free, and scales favorably in
n compared to the theoretical results. In the n ≤ 105 regime, the running time of the
algorithm appears to scale near-linearly, with an observed running time of approximately
O(n1.2). As n increases, the observed running time approaches O(n2), compared to
the theoretical running time of O(k∆n3 log3 n) and O(k∆cn2 log3 n). In addition, we
empirically evaluate the approximation ratio of our set cover algorithm using the size of
a greedily computed independent set as a lower bound. We observe that for all tested
instances the approximation ratio is less than 3 compared to 24 lnn+ 32 ≈ 350.
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Figure 4.5: Trial 01 of subject 86 with its ground truth labels. Colors correspond to the
labels walk (yellow), jump (orange), punch (light red), kick (magenta) and transition
(black). Underneath, the resulting labeling using our techniques with different values for
ℓ, temporal segmentation (TS), (hierarchical) aligned cluster algorithm (HACA/ACA)
and spectral clustering (SC) [KVW+17, ZDlTH12, ZDlTH08], with gray lines correspond-
ing to the start/end of the coverage of some computed center.

4.5.3 Full-Body Motion Tracking Data

Motion segmentation finds applications in many different fields, such as robotics, sports
analysis or traffic monitoring [MGAM20]. We apply our techniques to this problem on
the CMU data set [MoC07]. This data set consists of motion tracking data of 31 trackers
attached to the joints of subjects doing physical activities (refer to Figure 4.5). Each
frame of such a motion capture sequence is labeled with one of 15 semantic labels, such
as walk, jump, or punch [KVW+17]. We treat such a sequence of frames as a curve
in 93-dimensional Euclidean space by concatenating the three-dimensional coordinates
of all joints back to back to form a pose. Each trial consists of up to 104 poses. We
apply our bicriteria approximation algorithm for the SC problem with ∆simp = 0.8 and
∆free ≈ 1.35 and a complexity bound ℓ between 5 and 15, where the exact parameters
have been identified via an exhaustive search to yield the best accuracy for the given
complexity bound ℓ. The output consists of a set of curves that act as cluster centers.
For each center, we identify the ground truth label that best corresponds to it and label
all points in its ∆free-coverage with the identified label. Whenever different labels are
assigned to a point along the curve we mark it as a transition between motion labels.

Evaluation

Figure 4.5 shows the resulting labeling. Observe in particular that an increase in ℓ de-
creases the number of patterns identified with the total number of labeled segments ap-
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Figure 4.6: Quantative analysis on trial 1 to 14 of subject 86 from [MoC07] and com-
parison of our techniques to temporal segmentation (TS), (hierarchical) aligned clus-
ter algorithm (HACA/ACA), and spectral clustering (SpC) from [KVW+17, ZDlTH12,
ZDlTH08].

proaching that of the state-of-the-art, while the accuracy decreases only slightly. We com-
pute the accuracy of the resulting segmentations on ground truth data from [KVW+17]
and compare this accuracy with the accuracy of the temporal segmentation approach
(TS) discussed in [KVW+17] as well as the aligned cluster algorithm (ACA), hierarchical
aligned cluster algorithm (HACA), and spectral clustering (SpC) discussed in [ZDlTH12,
ZDlTH08]. Figure 4.6 shows the resulting accuracies. The quantitative accuracy of our
techniques compares well to the state-of-the-art techniques, with a (roughly) tenfold
improvement in the running time.

In addition to the comparable accuracy and the improved running time, we also want
to highlight the small number of parameters—namely ℓ, ∆free and ∆simp—as compared
to some of the other approaches, such as HACA, with up to twelve tunable parame-
ters [ZDlTH12], or TS with a variety of parameters ranging from sub-sampling frequen-
cies, to different radii and importance cut-off values for feature selection [KVW+17].

4.6 Structuring the Solution Space

We now return to the theoretical analysis of the range space

([0, 1], {CovA(c) ⊂ [0, 1] | c ∈ CS(E)}) .

The goal of this section, as well as Section 4.7, and Section 4.8 is the improvement of
the running time of the greedy set cover algorithm by improving the running time of the
coverage computation in each round.
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4.6.1 Sweep-Sequences

In this section we identify an ordering of the Type (II)- and Type (III)-subcurves from
Theorem 4.3.15 which allows maintaining a symbolic representation of (an approximation
of) the coverage, as well as construction of a data structure that allows efficient point-
queries returning the set of all Type (II)- and Type (III)-subcurves whose coverage
includes the query point.

Throughout this section we are given a polygonal curve P̂ of complexity n, values ∆̂,
ε, α ≥ 1, and ℓ. Let S be a (2∆̂, ε∆̂)-maximal simplification and P a (0, ε∆̂)-maximal
simplification of P̂ . Let ∆ = (4 + 2ε∆̂). Let D be an (α,∆)-free space of S and P and
let D′ be the (α,∆)-free space of rev(S) and P resulting from D by mirroring it along
the x-axis. Let E be a finite sorted superset of the set of y-coordinates of the extremal
points E(D) of D. Recall that Ee denotes the restriction of E onto the edge e of S. For
ease of exposition we assume that for every edge e the set Ee has cardinality in O(n) and
thus |E| = O(n2) and |CS(E)| = O(n2 log n). We will additionally assume that for every
edge e, the functions li(·) and ri(·) of the free space D can be computed in O(1) time.

Definition 4.6.1 (Sweep-sequence). Let E = (e1, . . .) be a sorted list of values in R.
We say s is a sweep-sequence of E if s is a list of tuples of E such that either (i) for
all consecutive tuples (ea, eb) and (ec, ed) it holds that a ≤ b, c ≤ d, 0 ≤ a − c ≤ 1 and
0 ≤ b − d ≤ 1 or (ii) for all consecutive tuples it holds that a ≥ b, c ≥ d, 0 ≤ c − a ≤ 1
and 0 ≤ d− b ≤ 1.

Lemma 4.6.2. Let e be an edge of S. There is a set Se of O(log n) sweep-sequences of
Ee, each of length O(n), such that for any Type (II)- or Type (III)-subcurve π on the
edge e there is a tuple (εi, εj) in one of the sweep-sequences in Se such that π = e[εi, εj ]
if εi ≤ εj, and π = rev(e[εj , εi]) if εi > εj. Further, for the first and last pair (ea, eb) in
every sweep-sequence it holds that a = b.

Proof. Let Ee = {ε1, . . . , εm}. We construct one sweep-sequence for the Type (II)-
subcurves, and O(log n) sweep-sequences for the Type (III)-subcurves.

For the Type (II)-subcurves, the sought-after sweep-sequence is precisely the se-
quence {(ε1, ε1), (ε1, ε2), . . . , (ε1, εm−1), (ε1, εm), (ε2, εm), . . . , (εm, εm)}.

For the Type (III)-subcurves we construct two sweep-sequences for any j ∈ {2m |
0 ≤ m ≤ ⌊log2(n)⌋}, namely the sequences {(ε1, ε1+2j ), (ε2, ε2+2j ), . . . , (εm−2j , εm)} and
{(ε1+2j , ε1), (ε2+2j , ε2), . . . , (εm, εm−2j )}. To satisfy the requirement that the first and
last pair consists of two copies of the same value, we append and prepend the sequence
{(ε1, ε1), (ε1, ε2), . . . , (ε1, ε2j )} (resp. {(ε1, ε1), (ε2, ε1), . . . , (ε2j , ε1)}) and append the se-
quence {(εm−2j+1, εm), . . . , (εm, εm)} (resp. {(εm, εm−2j+1), . . . , (εm, εm)}) (refer to Fig-
ure 4.7).

The claim then follows by definition of Type (II)- and (III)-subcurves as well as the
fact that m = |Ee| = O(n).

Observe that for any edge e of S these sweep-sequences Se can be constructed in
O(n log n) time.

In the remainder of this section we focus our analysis on sweep-sequences where for
every tuple (εa, εb) it holds that a ≤ b. Any analysis of such sweep-sequences carries
over to sweep-sequences where for every tuple (εa, εb) it holds that a > b, by setting
S ← rev(S), and thus to all sweep-sequences constructed in Lemma 4.6.2.
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e

Figure 4.7: Illustration of three of the eight sweep-sequences in Se of the edge e that are
constructed for Type (III)-subcurves. One for j = 1, one for j = 2, and one for j = 4.

4.6.2 Combinatorial Representation and the Proxy Coverage

In this section we define an approximation to the notion of free space coverage as well
as an underlying structure, the reduced combinatorial representation, which we later on
show how to maintain efficiently. An important consequence is the definition of the proxy
coverage (Definition 4.6.7) which allows efficient maintenance along a sweep-sequence.

Definition 4.6.3 (Combinatorial Representation). Let e be an edge of S and let 0 ≤ s ≤
t ≤ 1 be given. The combinatorial representation R(e[s, t]) of the coverage CovD(e[s, t])
of e[s, t] is the set of all inclusionwise maximal pairs of indices (i, j), such that there are
points s′ and t′ on the ith and jth edge of P respectively and a monotone path from (s′, s)
to (t′, t) in D. A pair of indices (i, j) includes another pair (i′, j′) if i ≤ i′ and j′ ≤ j.

The combinatorial representation separates into two sets, the global group G(e[s, t])
consisting of all index pairs (i, j) ∈ R(e[s, t]) such that i < j and the local group L(e[s, t])
consisting of all index pairs (i, j) ∈ R(e[s, t]) with i = j.

Observation 4.6.4. Let e[s, t] be a subedge of an edge of S and let P be given. Then

CovD(e[s, t]) =
⋃

(i,j)∈R(e[s,t])

[li(s), rj(t)]

=

 ⋃
(i,j)∈G(e[s,t])

[li(s), rj(t)]

 ∪
 ⋃

(i,i)∈L(e[s,t])

[li(s), ri(t)]

 .

The overall goal is to find a representation of CovD(e[s, t]) that is computationally
easy to maintain. More precisely, we want to represent CovD(e[s, t]) as a disjoint union
of intervals.

Let an edge e of S together with 0 ≤ s ≤ t ≤ 1 be given. We say an index i is bad for
e[s, t], if all topmost points in cell i of the free space of e and P are to the left of both li(s)
and ri(t), and both li(s) and ri(t) are to the left of all bottom most points in cell i. Call
this set of bad indices B(e[s, t]). If i ̸∈ B(e[s, t]), i is said to be good for e[s, t]. Intuitively,
an index is bad if the free space inside the cell corresponding to the index is a ‘diagonal’
from the top left to the bottom right. For later structural lemmas (Lemma 4.6.9 and
Lemma 4.6.10) to hold, the definition of a bad index is slightly stronger and depends on
s and t.

Observation 4.6.5. If i is good for e[s, t] and li(s) ̸=∞ ≠ ri(t), then li(s) ≤ ri(t).
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Figure 4.8: Illustration of the proxy coverage of e[s, t] and rev(e[s, t]) compared to the
coverage of e[s, t]. Cells with bad index are marked red. The global group of e[s, t] is
{(1, 4), (4, 5)}, and the reduced global group of e[s, t] is {(1, 5)}.

Definition 4.6.6 (Reduced Global Group). Let e be an edge of S and let 0 ≤ s ≤ t ≤ 1
be given. Based on the global group G(e[s, t]) we define the reduced global group G̃(e[s, t])
which results from G(e[s, t]) after merging all pairs of index pairs (a, b) and (c, d) if either
a < c < b < d, or b = c and b = c is good for e[s, t].

Definition 4.6.7 (Proxy Coverage). For edge e of S and 0 ≤ s ≤ t ≤ 1 define

l̂i,e[s,t](s) =

{
li(s), if i is good for e[s, t]
ri(s), if i is bad for e[s, t]

r̂j,e[s,t](t) =

{
lj(t), if j is good for e[s, t]
rj(t), if j is bad for e[s, t].

With these at hand, define the proxy coverage of subedges of S as the union

ĈovD(e[s, t]) =

 ⋃
i∈L(e[s,t])\B(e[s,t])

[li(s), ri(t)]

 ∪
 ⋃

(i,j)∈G̃(e[s,t])

[l̂i,e[s,t](s), r̂j,e[s,t](t)]

 ,

where by a slight abuse of notation let L(e[s, t]) \ B(e[s, t]) be all index pairs (i, i) in
L(e[s, t]) such that i is not in B(e[s, t]) (refer to Figure 4.8).

Intuitively, the proxy coverage is almost exactly the free space coverage, except for
in cells with a bad index b, which the proxy coverage avoids, unless there is a path from
some cell i < b to some cell j > b. For this refer to Figure 4.8: the index of the second
cell of D in Figure 4.8 is bad for e[s, t] and yet ĈovD(e[s, t]) covers the entirety of the
second cell as there is a path from the first to the forth cell. Observe that in certain cases
the combinatorial description of the free space coverage of neighboring elements from a
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c1

c2

c3

c4

c5

CovP (c5, 4∆)
CovP (c4, 4∆)
CovP (c3, 4∆)
CovP (c2, 4∆)
CovP (c1, 4∆)

Figure 4.9: Illustration of how the combinatorial description of the free space coverage of
two neighboring elements in a sweep-sequence may differ by up to n index pairs. Instead,
Ĉov(ci) = ∅ for all i.

sweep-sequence can greatly differ, while the proxy coverage of neighboring elements in
the sweep-sequence does not differ at all (Figure 4.9).

We observe that the proxy coverage can in fact be expressed as a disjoint union via
the reduced global group:

Lemma 4.6.8. Let e be an edge and let 0 ≤ s ≤ t ≤ 1. Then ĈovD(e[s, t]) coincides
with the following disjoint union

ĈovD(e[s, t]) =

 ⊔
(i,i)∈L(e[s,t])\B(e[s,t])

[li(s), ri(t)]

 ⊔
 ⊔

(i,j)∈G̃(e[s,t])

[l̂i,e[s,t](s), r̂j,e[s,t](t)]


⊂ CovD(e[s, t]).

Proof. The only way for two index pairs (a, b) and (c, d) among the index pairs in
L(e[s, t]) \ B(e[s, t]) and G̃(e[s, t]) to have their corresponding intervals overlap is if
b = c is bad for e[s, t] and (a, b) and (c, d) are in G̃(e[s, t]). But then by definition
[l̂a,e[s,t](s), r̂b,e[s,t](t)] = [l̂a,e[s,t](s), lb(t)] and [l̂c,e[s,t](s), r̂d,e[s,t](t)] = [rb(s), r̂d,e[s,t](t)]. As
(a, b) is in the reduced global group, there is a path which starts to the left of cell b and
ends in cell b, which implies that the approximate free space in cell b intersects the left
boundary and lb(s) lies to the left of all topmost points in cell b. Similarly rb(t) lies to
the right of all bottommost points. As b is bad, this implies that lb(t) < rb(s) and hence
[l̂a,e[s,t](s), r̂b,e[s,t](t)] and [l̂c,e[s,t](s), r̂d,e[s,t](t)] do not intersect, implying the claim that
ĈovD(·) is indeed the described disjoint union.

Finally, as li(s) ≤ l̂i,e[s,t](s) and r̂i,e[s,t](t) ≤ ri(t) and hence [l̂i,e[s,t](s), r̂j,e[s,t](t)] is a
subset of [li(s), rj(t)], it follows that

ĈovD(e[s, t]) ⊂
⋃

(i,j)∈(G̃(e[s,t]))∪(L(e[s,t])\B(e[s,t]))

[li(s), rj(t)] ⊂ CovD(e[s, t]).

Next, we show that ĈovD approximates CovD in the sense that for every element
π ∈ CS(E) there are two elements π1, π2 ∈ CS(E) such that

CovP (π, 4∆) = CovD(π) ⊂ ĈovD(π1) ∪ ĈovD(π2).
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In order to do so, we start by extending the proxy coverage ĈovD to also be defined
for vertex-vertex-subcurves of S, where we simply set ĈovD(S[s, t]) = CovD(S[s, t]), and
reversals of subedges of S, where we define ĈovD(rev(e[s, t])) = ĈovD′(rev(e[s, t])). For
reversals of subedges of S the notion of good and bad indices is defined relative to D′.
In the remainder of this section we will analyze the proxy coverage for subedges only, as
the above statement is trivial for vertex-vertex-subcurves by setting π1 = π2 = π.

Lemma 4.6.9. If i is bad for e[s, t], then i is good for rev(e[s, t]). Furthermore, li(s)
and ri(t) lie in [li(t), ri(s)].

Proof. Let i be bad for e[s, t]. This implies that all bottommost points in cell i of De

are to the right of all topmost points. As D′
e results from De by mirroring it along the

y-axis, all bottommost points of cell i in D′
e lie to the left of all topmost points. Hence i

can not be bad for rev(e[s, t]).
For the second claim first observe that li(s) ̸= ∞ ̸= rj(t) and thus by Observa-

tion 4.6.5 li(t) < ri(s). Further observe that t lies between s and the y-coordinate of the
topmost point of cell i. Thus by convexity of the free space and the fact that li(s) lies to
the right of the topmost point there is a point in the free space at height t that is left of
li(s) and thus in particular li(t) < li(s). Similarly it follows that ri(t) < ri(s) and thus
the claim follows.

Lemma 4.6.10. The proxy coverage approximates the coverage (refer to Figure 4.8),
i.e.,

CovD(e[s, t]) ⊂ ĈovD(e[s, t]) ∪ ĈovD(rev(e[s, t])).

Proof. If i is in L(e[s, t]) \ B(e[s, t]), then [li(s), ri(t)] ⊂ ĈovD(e[s, t]). If instead i is in
L(e[s, t]) ∩ B(e[s, t]) then by Lemma 4.6.9 it follows that [li(s), ri(t)] ⊂ [li(t), ri(s)] ⊂
ĈovD(rev(e[s, t])).

Let now instead (i, j) ∈ G̃(e[s, t]). We show that

[li(s), ri(s)] ∪ [ri(s), lj(t)] ∪ [lj(t), rj(t)] ⊂ ĈovD(e[s, t]) ∪ ĈovD(rev(e[s, t])).

First observe that [ri(s), lj(t)] ⊂ ĈovD(e[s, t]), as (i, j) ∈ G̃(e[s, t]). Assume i is bad for
e[s, t], as otherwise [li(s), ri(s)] ⊂ [li(s), lj(t)] ⊂ ĈovD(e[s, t]). But then by Lemma 4.6.9
[li(s), ri(s)] ⊂ [li(t), ri(s)] ⊂ ĈovD(rev(e[s, t])) (refer to Figure 4.10). Conversely, re-
gardless of if j is bad or not for e[s, t], [lj(t), rj(t)] ⊂ ĈovD(e[s, t]) ∪ ĈovD(rev(e[s, t]))
implying the claim.

Theorem 4.6.11. For any curve π ∈ Xd,ℓ there is a set Sπ ⊂ CS(E) of size at most 16
such that

CovP (π,∆) ⊂
⋃
s∈Sπ

ĈovD(s).

Proof. This follows from the definition of the proxy coverage, Lemma 4.6.10, and Theo-
rem 4.3.16.
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CovD(e[s, t]) ĈovD(e[s, t])ĈovD(rev(e[s, t]))

Figure 4.10: Illustration of how the path starting in cell i from the global group of the
coverage of e[s, t] is dominated by the proxy coverage of e[s, t] and rev(e[s, t]) if i is bad for
e[s, t] and hence good for rev(e[s, t]). Importantly [li(s), rj(t)] ⊂ [li(t), ri(s)]∪[l̂i(s), rj(t)].

4.6.3 Maintaining the Proxy Coverage Along a Sweep-Sequence

In this section we show that during a linear scan of a sweep-sequence one can correctly
maintain a symbolic representation of ĈovD(e[s, t]) in (roughly) logarithmic time per
element in the sweep-sequence. To this end we show that one can correctly maintain
G̃(e[s, t]), L(e[s, t]) \ B(e[s, t]), and B(e[s, t]). This involves maintaining G(e[s, t]) which
in turn involves maintaining the set U(e[s, t]) consisting of all inclusionwise maximal
index pairs (i, j) such that there is a monotone path from cell i at height s into cell j at
some height t′ ≤ t. By inclusionwise maximality observe that for any index i there is at
most one index j with (i, j) ∈ U(e[s, t]). Similarly for any j there is at most one i with
(i, j) ∈ U(e[s, t]).

Maintenance of U(·)

For an index pair (i, j) and value s such that ls(i) ̸=∞ we define its left extension
←−−−
(i, j)s

to be the index pair (i∗, j) where i∗ ≤ i is the biggest index such that the leftmost point
in cell i∗ at height s does not lie in the left free space interval, or i∗ = 1. In particular, if
(i, j) ∈ U(e[s, t]), then

←−−−
(i, j)s ∈ U(e[s, t]) and

←−−−
(i, j)s includes (i, j). Similarly, for an index

pair (i, j) define its right restriction
−−−→
(i, j)s to be the index pair (i∗, j) where i < i∗ ≤ j

is the smallest index such that there is a leftmost point in cell i∗ at height s. Unlike the
left extension, the right restriction does not necessarily exist. We will later observe that,
given the right data structure, both the left extension and the right restriction can be
computed efficiently. Conceptually, both the left extension and the right restriction for
the index pair (i, j) are the index pair (i∗, j), where i∗ is the index of the cell in which
a horizontal ray starting in cell i at height s oriented to the left (resp. right) intersects
the boundary of the free space.

The following lemmas give precise instructions on how to update U(e[s, t]) to result in
U(e[s′, t′]) with onlyO(1) changes to the set, or more precisely, how to update U(e[s, t]) to
result in U(e[s′, t]), and how to update U(e[s′, t]) to result in U(e[s′, t′]) in O(1) changes,
given s < s′ and t < t′ are consecutive elements in Ee.

Lemma 4.6.12. Let s′ < s ≤ t ∈ Ee be given, with s′ and s consecutive. Let Is and Is′
be all index pairs (i, j) such that there is a monotone path from cell i at height s (resp.
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s′) to a point in cell j at height at most t. Denote for any set I of index pairs the set of
inclusionwise maximal index pairs by M(I). Then

(i) U(e[s, t]) =M(Is) and U(e[s′, t]) =M(Is′),
(ii) if s does not correspond to some bottommost point then M(Is) =M(Is ∩ Is′)
(iii) if s corresponds to the bottommost point in cell i and (i, j) ∈ U(e[s, t]) for some

j, then let (i∗, j) be the right extension
−−−→
(i, j)s. If it exists, let j∗ be such that

(i∗, j∗) ∈M(Is) and j∗ > j. If j∗ exists, then

M(Is ∩ Is′) =M(Is) \ {(i, j)},

otherwise
M(Is ∩ Is′) =M(Is) \ {(i, j)} ∪ {(i∗, j)} ,

(iv) if s′ corresponds to neither a topmost point of some cell, or the topmost point in
the left free space interval of some cell, then M(Is′) =M(Is ∩ Is′).

(v) if s′ corresponds to the topmost point in cell i, then M(Is′) =M(Is ∩ Is′)∪ {(i, i)},
(vi) if s′ corresponds to the topmost point in the left free space interval of cell i, then

(i, j) ∈M(Is ∩ Is′) and

M(Is′) =M(Is ∩ Is′) \
{←−−−−−−−−−−
(i− 1, i− 1)s′ , (i, j)

}
∪
{←−−−−
(i, j)s′

}
,

Proof. Observe that (i) holds by definition of U(e[s, t]) and U(e[s′, t]).
For (ii), let us first assume that s does not correspond to the bottommost point of

some cell. Then any path from some cell i at height s to some cell j at height t′ ≤ t
induces a path from cell i at height s′ to cell j at height t′′ ≤ t, where t′′ = t′ unless
i = j, in which case t′′ = s′ ≤ t. As such Is ⊂ Is′ and hence Is ∩ Is′ = Is.

For (iii), let s correspond to the bottommost point in cell i and let I be all index
pairs (i, b) such that there is a monotone path from cell i at height s to cell b at some
height t′ ≤ t. In particular, Is ∩ Is′ = Is \ I, as any path from some cell a at height
s to some cell b at height t′ ≤ t induces a path from cell a at height s′ to some cell b
at some height t′′ ≤ t unless a = i. Let (i, j) be the inclusionwise maximal element in
I. If (i, j) ̸∈ M(Is), then in particular M(Is ∩ Is′) = M(Is \ I) = M(Is). Let instead
(i, j) ∈M(Is). Let J be the subset of Is ∩ Is′ included in (i, j). Then, if (i∗, j) =

−−−−→
(i, j)s′

exists, it is the inclusionwise maximal element in J , and J = ∅ otherwise. Hence, any
index pair in Is∩Is′ is included in some index pair inM(Is)\{(i, j)}∪{(i∗, j)}, and as such
M(Is ∩ Is′) ⊂M(Is) \ {(i, j)} ∪ {(i∗, j)}. The only element in M(Is) \ {(i, j)} ∪ {(i∗, j)}
that may not be inclusionwise maximal is (i∗, j), which is not inclusionwise maximal if
and only if some j∗ > j exists such that (i∗, j∗) ∈M(Is).

For (iv), observe that a monotone path from cell a at height s′ to some cell b at some
height t′ ≤ t induces a path from cell a at height s to cell b at some height t′′ ≤ t, unless
the path passes through a free space interval that is not possible by a path starting at
height s, or it starts in a cell, where there is no point in D at height s. This corresponds
exactly to topmost free space intervals and topmost points of cells.

For (v), let s′ correspond to the topmost point of cell i. As no point in cell i of D
is at height s, and by the total order of y-coordinates of extremal points (discussed in
Section 2.3) no path starting at height s′ may enter or exit via the free space intervals of
cell i. Thus, Is′ = Is∩I ′s∪{(i, i)}. Further, as no path starting at height s can pass cell i,
(i, i) is not included in any index pair in Is ∩ I ′s. As such, M(Is′) =M(Is ∩ Is′)∪{(i, i)}.

Lastly, for (vi), let s′ correspond to the topmost point in the left free space interval
of cell i. Observe that Is′ \ Is corresponds exactly to all index pairs including (i− 1, i),
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i.e., index pairs corresponding to paths passing the left free space interval of cell i. As
any such path corresponding to the index pair (a, b) must pass the left free space interval
at height exactly s′, any such path splits into first a horizontal line segment from cell
a to cell i − 1 at height s′, and secondly a path starting in cell i at height s′ to cell b
at some height t′ ≤ t. Let I and J be the sets of index pairs corresponding to all first
and all second such paths respectively. Clearly, every index pair in I is dominated by←−−−−−−−−−−
(i− 1, i− 1)s′ . For any (i, b) ∈ J , observe that any corresponding path induces a path
starting at height s in cell i to cell b at some height t′′ ≤ t. As no path starting at height
s may enter cell i, there is an element (i, j) ∈M(Is ∩ Is′) including all index pairs in J ,
and hence the inclusionwise maximal element (i, j) of J must be in M(Is ∩ Is′). Finally,
←−−−−
(i, j)s′ includes all element of I and J and is in Is′ \ Is, and hence M(Is′) is precisely the
set M(Is ∩ Is′) \

{←−−−−−−−−−−
(i− 1, i− 1)s′ , (i, j)

}
∪
{←−−−−
(i, j)s′

}
, concluding the proof.

Lemma 4.6.13. Let s ≤ t′ < t ∈ Ee be given, with t′ and t consecutive. If t corresponds
to the bottommost point in the left free space interval of some cell m then there is at
most one index pair (i, j) ∈ U(e[s, t]) with i < m ≤ j. If there is no such i and j, then
U(e[s, t′]) = U(e[s, t]). Otherwise, let (i∗, j) be the right extension

−−−−→
(m, j)s. If it exists,

let j∗ be such that (i∗, j∗) ∈ U(e[s, t]) and j∗ > j. If j∗ exists, then

U(e[s, t′]) = U(e[s, t]) \ {(i, j)} ∪ {(i,m− 1)} ,

otherwise
U(e[s, t′]) = U(e[s, t]) \ {(i, j)} ∪ {(i,m− 1), (i∗, j)} .

Proof. Let It and It′ be all index pairs (a, b) such that there is a monotone path from
cell a at height s to cell b at height t and t′ respectively. First observe that It′ ⊂ It, as
any monotone path from some cell a at height s to some cell b at height t′′ ≤ t′ is also
a path to cell b at height t′′ ≤ t. Next, observe that the only index pairs in It \ It′ are
those corresponding to index pairs that can pass through a free space interval that can
no longer be reached with a maximal height of t′. As such, unless t corresponds to the
bottommost point in a free space interval, It = It′ and hence U(e[s, t′]) = U(e[s, t]).

Instead, let t correspond to the bottommost point in the left free space interval of
some cell m. Any index pair in It′ ⊂ It must hence include (m−1,m). Further, any path
corresponding to such an index pair (a, b) splits into first a path from cell a at height s
to cell m − 1 at height exactly t, and secondly a path from cell m starting at height t
and ending in cell b at height t. Let I and J be the set of index pairs corresponding to
all such first and second paths respectively. Let (i,m− 1) be the inclusionwise maximal
element in I, and (m, j) the inclusionwise maximal element in J . Clearly (i, j) is the
inclusionwise maximal element in It′ ⊂ It and must also be in U(e[s, t]). Next, observe
that the set of index pairs in It not contained in U(e[s, t]) \ {(i, j)} are either contained
in (i,m − 1), or are contained in (m, j), and hence are included in either (i,m − 1) or
−−−−→
(m, j)s, which both are in It′ . Lastly (i∗, j) =

−−−−→
(m, j)s is not in U(e[s, t′]) if and only if

there is some path from cell i∗ at height s to some cell j∗ > j at some height t′′ ≤ t. But
then (i∗, j∗) is also in U(e[s, t]). Hence if j∗ exists then

U(e[s, t′]) = U(e[s, t]) \ {(i, j)} ∪ {(i,m− 1)} ,

otherwise
U(e[s, t′]) = U(e[s, t]) \ {(i, j)} ∪ {(i,m− 1), (i∗, j)} .
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Figure 4.11: Illustration of the left extension and right restriction updates to a path
inducing an index pair in U(e[s, t]) to a path inducing an index pair in U(e[s′, t]).

We now provide data structures that allow performing the described updates to U(·)
in logarithmic time, which involves computing left extensions and right restrictions (refer
to Figure 4.11).

Lemma 4.6.14 (Shoot-left data structure). Let I = {I1, . . . , In} be a list of intervals
in R. One can build in O(n log n) time a data structure that allows queries with input
i ≤ n and x ∈ R correctly outputting the smallest index j ≤ i such that x ∈

⋂
j≤s≤i Is or

determining that there is no such j.

Proof. Store the intervals in a balanced binary tree, where every inner node stores the in-
tersection of the intervals stored in its children nodes. This construction takes O(n log n)
time. Thus if the query point x lies in the interval stored at some node r of the tree,
then it also lies in the intersection of all intervals stored in the leaves of the tree rooted
at r.

Now, let i and x be given. If x ̸∈ Ii, return that there is no such j. Otherwise we
temporarily modify the tree as follows: Traverse the tree upwards starting at the node of
Ii removing all children of nodes that represent trees of intervals whose index is strictly
bigger than i, updating the intervals along the way. This modification takes O(log n)
time. It results in a tree of height log n whose leaves are all intervals {I1, . . . , Ii} such
that every node stores the intersection of all intervals of the leaves on its subtree. Next
we traverse the tree starting at the root, checking whether x lies in the stored interval at
the root. If it does, we can output the index 1. Otherwise assume there is an interval Ij
which is the interval with the largest index that does not contain x. We now maintain
the value ĵ such that x is in all intervals Iĵ , . . . , Ii. Initially, ĵ = i. We recursively
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check for the current node the interval stored in its two children. If the interval stored
in the right child contains x, then we update ĵ as the smallest index of leaves among the
subtree rooted at the right child and recurse on the left child. If the interval stored in the
right child does not contain x we instead recurse on the right child, not updating ĵ. We
output ĵ once we arrived at a leaf. The correctness and running time are an immediate
consequence of the traversal of the tree with its stored data.

Lemma 4.6.15 (Jump-right data structure). Let A = {a1, . . . , an} be a list of values.
One can build in O(n log n) time a data structure that allows queries with input i correctly
outputting the smallest index j > i such that ai > aj or determining that there is no such
j in O(1) time.

Proof. First sort the indices {1, . . . , n} with the values {a1, . . . , an} as keys in time
O(n log n). The resulting list of indices is then iteratively inserted into a sorted list
(this time by index). Each insertion takes O(log n) time. Furthermore, when some index
i is inserted at position k, the smallest index j > i such that ai > aj (if it exists), is at
position k + 1. Hence, when inserting this index i, look up the index at position k + 1
and store it as the answer to the query with index i.

Maintenance of G̃(·) and L(·) \ B(·)

Next, we analyze how to obtain L(e[s, t]) \ B(e[s, t]) and G(e[s, t]) from U(e[s, t]). Im-
portantly, we will observe that both L(e[s, t]) \ B(e[s, t]) and G(e[s, t]) can be updated
alongside U(e[s, t]).

Lemma 4.6.16. Let e be an edge of S and let s ∈ Se be a sweep-sequence of Ee. For
every i the set Bi = {(s, t) ∈ s|i is bad for e[s, t]} is a contiguous subset of s. The
boundaries of all Bi can be computed in time O(n log n).

Proof. This is an immediate consequence of the fact that for the rightmost topmost point
at x-coordinate xtop, the set {(s, t) ∈ s|li(s) ̸=∞, li(s) ≥ xtop} is contiguous. So is the
set {(s, t) ∈ s|ri(t) ̸= ∞, ri(t) ≤ xbottom}, where xbottom is the x-coordinate of the left-
most bottommost point. Bi is simply the intersection of these two sets. The boundaries
of this contiguous set can be computed via binary search over s.

Observation 4.6.17. For any edge e of S and 0 ≤ s ≤ t ≤ 1 by definition of L(e[s, t]),
U(e[s, t]), and B(e[s, t])

L(e[s, t]) \ B(e[s, t]) = {(i, j) ∈ U(e[s, t]) | i = j, rj(t) ̸=∞, and i ̸∈ B(e[s, t])}.

Lemma 4.6.18. For every s ≤ t ∈ Ee it holds that G(e[s, t]) is the set of index pairs (i, j)
such that rj(t) ̸=∞, i is the smallest index such that there is a j′ with (i, j′) ∈ U(e[s, t])
and for all j < j∗ ≤ j′ it holds that rj∗(t) =∞.

Proof. Let (i, j) ∈ G(e[s, t]). Trivially, rj(t) ̸= ∞. The index i is the smallest index
such that there is a path from cell i at height s to cell j at some height t′ ≤ t. But this
coincides with the smallest index i such that there is an index j′ with (i, j′) ∈ U(e[s, t])
and i ≤ j ≤ j′. As (i, j) ∈ G(e[s, t]), there is no j∗ with j < j∗ ≤ j′ with rj∗(t) ̸= ∞ as
otherwise there would be a path from cell i at height s to cell j∗ at some height t and
hence (i, j) ̸∈ G(e[s, t]).
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Algorithm 5 Maintenance of the reduced global group
1: procedure Maintain(e, D, sweep-sequence s = {(s1, t1), . . . , (sm, tm)} of Ee)
2: Construct shoot-left data structure based on left free space intervals of cells in D
3: Construct jump-right data structure based on lowest points of cell in D
4: For every i compute Bi = {(s, t) ∈ s | i is bad for e[s, t]}
5: Let s = sm and t = tm
6: Compute CovD(e[s, t]) represented as O(n) disjoint intervals
7: Compute Rt = {j | rj(t) ̸=∞} and B(e[s, t])
8: Compute U(e[s, t]) and with it L(e[s, t]) \ B(e[s, t]), G(e[s, t]) and G̃(e[s, t])
9: Sort Rt, U(e[s, t]), L(e[s, t]) \ B(e[s, t]), G(e[s, t]) and G̃(e[s, t])

10: For every (i, j) ∈ U(e[s, t]) compute j∗(i,j) = max{j∗ ∈ Rt | i ≤ j∗ ≤ j}
11: Compute G = {(i, j, j(i,j)) | (i, j) = min{(i′, j′) ∈ U(e[s, t]) | i′ ≤ j(i,j) ≤ j′}}
12: for (s′, t′) ∈ {(sm−1, tm−1), . . . , (s1, t1)} do
13: if s′ < s then
14: Update U(e[s, t]) to store U(e[s′, t]) instead, according to Lemma 4.6.12
15: else if t′ < t then
16: Update U(e[s′, t]) to store U(e[s′, t′]) instead, according to Lemma 4.6.13
17: Update Rt to store Rt′ instead
18: Update B(e[s, t]) via the sets Bi

19: Update G and with it G(e[s, t]) via the updates to U(e[s, t]) and Rt

20: Update L(e[s, t]) \ B(e[s, t]) via the updates of U(e[s, t]) and B(e[s, t])
21: Update G̃(e[s, t]) via the updates to G(e[s, t]) and B(e[s, t])
22: (s, t)← (s′, t′)

Thus, the strategy for an algorithm maintaining L(·) \ B(·) and G(·) during a linear
scan of a sweep sequence is as follows (refer to Algorithm 5): We maintain a sorted list
Rt consisting of all indices j such that rj(t) ̸=∞ together with a sorted list consisting of
index pairs in U(e[s, t]). This list may be sorted by either its first or last index, resulting in
the same ordering by the inclusionwise maximality of the elements in U(e[s, t]). Based on
the updates performed to U(·) and Rt we can maintain L(·)\B(·) easily, while maintaining
G(·) takes slightly more effort. For it, maintain the set G consisting of all triples of
indices (i, j, ĵ) such that (i, j) ∈ U(·), ĵ ∈ Rt, i ≤ ĵ ≤ j, for the next smallest index pair
(i′, j′) < (i, j) in ∈ U(·) it holds that j′ < ĵ and for the next biggest index ĵ′ > ĵ in Rt it
holds that ĵ′ > j. By Lemma 4.6.18, the set G(·) is precisely the set of pairs of the first
and last index in any triple in G. Furthermore, G can be maintained under addition and
removal of elements from U(·) and Rt in logarithmic time per addition or removal, using
O(1) searches over the maintained sorted lists. Overall, throughout the linear scan, there
are O(n) updates to G(·), where at any point no index pair is contained in another index
pair. As B(·) is also correctly maintained, G̃(·) may be maintained. At every update to
G(·) we check whether G̃(·) changes depending only on the updated index pair and its
two neighboring index pairs and change G̃(·) accordingly. Similarly, at every update to
B(·) we check whether G̃(·) changes depending only on the at most two elements in G(·)
whose first or second index changed according to the update to B(·), and change G̃(·)
accordingly.

Theorem 4.6.19. At the end of each iteration of the loop in Line 12 in Maintain
in Algorithm 5, the sets of index pairs G̃(e[s, t]) and L(e[s, t]) \ B(e[s, t]) are correctly
updated. Further, executing Maintain takes O(n log n) time.
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Proof. By definition of Se, for the last element (s, t) in any s ∈ Se it holds that s =
t. Hence, initially CovD(e[s, t]) coincides with the intersection of D with a horizontal
line rooted at height s = t. The connected components of this intersection induce
G(e[s, t]) and L(e[s, t]) and hence U(e[s, t]). Hence initially, by Lemma 4.4.6, it holds
that U(e[s, t]) = G(e[s, t]) ∪ L(e[s, t]) is computed correctly in time O(n log n) time.
As the boundaries of the sets Bi are also computed correctly by Lemma 4.6.16, so are
B(e[s, t]), so are the sets L(e[s, t]) \ B(e[s, t]) and G(e[s, t]) and G̃(e[s, t]).

Now consider some iteration of the for-loop. By Lemma 4.6.12 and Lemma 4.6.13
together with Lemma 4.6.14 and Lemma 4.6.15 the updates to U(e[s, t]) can be performed
in O(log n) time. Rt can be updated in O(log n) time, as only one index is added or
removed depending on whether t corresponds to a top- or bottommost point of D in some
cell.

There are B(s,t) = |B(e[s, t])\B(e[s′, t′])|+ |B(e[s′, t′])\B(e[s, t])| updates to B(e[s, t]).
By Lemma 4.6.16 each Bi is a contiguous subset of s, and its boundaries can be computed
in O(log n) time. Hence B(e[s′, t′]) can be updated based on B(e[s′, t′]) and all sets Bi

whose boundaries are either s, s′, t or t′ in total time O(B(s,t) log n) time.
Next the updates to G can be performed based on the O(1) updates to Rt and

U(e[s, t]) in O(log n) time each, as each addition or removal to Rt and U(e[s, t]) results
in at most O(1) triples in G changing, being inserted, or deleted. These can be identified
and modified in O(log n) time each. The updates to L(e[s, t])\B(e[s, t]) can be performed
as by Observation 4.6.17 each update to B(e[s, t]) and U(e[s, t]) influence the decision
of whether an index is in L(e[s, t]) \ B(e[s, t]) for at most one index, and hence can be
performed in O(B(s,t) log n) total time. Lastly the updates to G̃(e[s, t]) depend only on
the O(1) updates to G(e[s, t]) and the B(s,t) updates to B(e[s, t]), and each addition
or removal from the two sets induce a change in G̃(e[s, t]) for which, by inclusionwise
maximality of the partaking elements, we need to only check the two neighbors of the
inserted or removed index or index pair to apply the according change to G̃(e[s, t]).

In total the running time of the algorithm is in

O

 ∑
(s,t)∈s

(
log n+B(s,t) log n

) = O

n log n+
∑

(s,t)∈s

log n

 = O(n log n).

Corollary 4.6.20. Let e be an edge of S and let s ∈ Se be a sweep-sequence. There are
m = O(n) index pairs p1 = (i1, j1), . . . , pm = (im, jm) together with m contiguous subsets
Ii = {(sai , tai), . . . , (sbi , tbi)} ⊂ s, such that for every (s, t) ∈ s it holds that

G̃(e[s, t]) ∪ (L(e[s, t]) \ B(e[s, t])) =
⋃

1≤i≤m
with (s,t)∈Ii

{pi}.

Further for pk = (ik, jk) the index ik is either always good or always bad for e[s, t] for
(s, t) ∈ Ik, and the index jk is either always good or always bad for e[s, t] for (s, t) ∈ Ik.
The index pair pi as well as the values ai and bi can be computed for all i in total time
O(n log n).

Proof. This is an immediate consequence of Theorem 4.6.19, as throughout Algorithm 5
G̃(e[s, t])∪ (L(e[s, t])\B(e[s, t])) is correctly maintained along s in O(n) updates to O(n)
initial index pairs. We store any index pair in G̃(e[s, t])∪(L(e[s, t])\B(e[s, t])) whenever it
gets added, removed, modified, or either of its entries changes from good to bad proving
the claim.
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Thus, we are able to maintain a symbolic representation of ĈovD(·) during a linear
scan of a sweep-sequence s ∈ Se in total time O(n log n).

Putting It All Together

Finally, we present the following theorem which uses the maintained sets G̃(·) and L(·) \
B(·) for batch point-queries and constitutes the main result of this section. It is one
of the central algorithmic insights underlying the cubic time algorithms we explore in
Section 4.7 and Section 4.8.

Theorem 4.6.21. Let s ∈ Se, and let Q ⊂ [0, 1] together with wQ : Q → N be a
weighted point set. Let for any Q′ ⊂ Q its weight wQ(Q

′) be defined as
∑

q∈Q′ wq(q).
There is an algorithm which computes wQ(Q ∩ ĈovD(e[s, t])) for every (s, t) ∈ s in
O(|Q| log |Q|+ n log n) time.

Proof. Let Qi be the set of points in Q that lie on the ith edge of P . Define the following
values for all i, j along the sweep-sequence s where for (s, t) ∈ s:

Li((s, t)) =
∑
q∈Qi

l̂i,e[s,t](s)̸=∞
l̂i,e[s,t](s)≤q

wQ(q), Rj((s, t)) =
∑
q∈Qj

r̂j,e[s,t](t)̸=∞
q≤r̂j,e[s,t](t)

wQ(q),

Mi((s, t)) =
∑

q∈Qi, i̸∈B(e[s,t])
li(s)̸=∞, ri(t)̸=∞

li(s)≤q≤ri(t)

wQ(q), D(i, j) =
∑

i≤m≤j
q∈Qm

wQ(q).

The value Li(s, t) corresponds to the weight of points in Qi that lie right of l̂i,e[s,t](s).
Similarly Ri(s, t) corresponds to the weight of points in Qi that lie left of r̂i,e[s,t](t). The
value Mi(s, t) corresponds to the weight of points in Qi that lie in between l̂i,e[s,t](s) and
r̂i,e[s,t](t) if i is good for e[s, t]. Lastly D(i, j) corresponds to the total weight of points
in
⋃

i≤m≤j Qm. Then for any (s, t) ∈ s and any (i, i) ∈ L(e[s, t]) \ B(e[s, t]) it holds
that Mi((s, t)) = wQ(Q ∩ [li(s), ri(t)]). Similarly, for any (i, j) ∈ G̃(e[s, t]) it holds that
Li((s, t)) +D(i+ 1, j − 1) +Rj((s, t)) equals wQ(Q ∩ [l̂i,e[s,t](s), ri,e[s,t](t)]). Hence

wQ(Q ∩ ĈovD(e[s, t])) =

=

 ∑
i∈L(e[s,t])\B(e[s,t])

wQ(Q ∩ [li(s), ri(t)])

+

 ∑
(i,j)∈G̃(e[s,t])

wQ(Q ∩ [l̂i,e[s,t](s), r̂j,e[s,t](t)])


=

 ∑
i∈L(e[s,t])\B(e[s,t])

Mi((s, t))

+

 ∑
(i,j)∈G̃(e[s,t])

Li((s, t)) +D(i+ 1, j − 1) +Rj((s, t))

 .

Observe that D(i, j) can be computed via a data structure, constructed beforehand,
that first computes di =

∑
q∈Qi

wQ(q) for every i in total time O(|Q| log n) and stores
them in a balanced binary tree as leaves, where every inner node stores the sum of the
values of its children. For every i ≤ j the value D(i, j) =

∑
i≤m≤j dm can then be

returned in O(log n) time by identifying in O(log n) time all O(log n) maximal subtrees
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Figure 4.12: Construction of the set Iq encoding when l̂i,e[s,t](s) ≤ q from Proof of
Theorem 4.6.21 via the sets Lq and Rq encoding when li(s) ≤ q and ri(s) ≥ q and the
set Bi for all (s, t) ∈ s.

whose children lie in the interval [i, j] and then returning the sum of the stored values in
the root of each maximal subtree.

Next, we show that Li(·) (resp. Rj(·) and Mi(·)) can correctly be maintained when
performing the sweep of s. To this end let

Iq = {(s, t) ∈ s | q ∈ Qi and l̂i,e[s,t](s) ̸=∞, l̂i,e[s,t] ≤ q}.

Refer to Figure 4.12. Note that the free space in every cell is convex, throughout the
sweep-sequence s the first indices are monotone, and the y-coordinates of the leftmost
and rightmost points are stored in E(Ae). Hence the boundaries describing the contiguous
subsets

Lq = {(s, t) ∈ s | q ∈ Qi and li(s) ̸=∞, li(s) ≤ q} and

Rq = {(s, t) ∈ s | q ∈ Qi and li(s) ̸=∞, ri(s) ≥ q}

can be computed in O(log n) time for every q ∈ Q via searches over s starting at the
y-coordinate corresponding to the left- and rightmost points of cell i. Similarly, the set
Bi = {(s, t) ∈ s | i is bad for e[s, t]} is a contiguous subset of s and all the boundaries of
Bi can be computed in O(log n) time. Then for any q ∈ Qi

Iq = (Lq ∩ (s \Bi)) ∪ ((s \Rq) ∩Bi),

and thus Iq consists of O(1) contiguous disjoint subsets of s. Thus all sets Iq (repre-
sented by the O(1) boundaries of its contiguous subsets of s) can be computed in time
O(|Q| log n+ n log n). Further,

Li((s, t)) =
∑
q∈Qi

1q∈IqwQ(q),
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and hence Li(·) can be maintained in total time O(|Q|+n log n) after one initial compu-
tation of all Iq, by adding wQ(q) for q ∈ Qi whenever (s, t) enters the O(1) contiguous
disjoint subsets of Iq, and subtracting wQ(q) for q ∈ Qi whenever (s, t) exits the O(1)
contiguous disjoint subsets of Iq. Sorting the boundaries of all Iq preparing them for
the maintenance of Li(·) takes O(|Q| log |Q|) time. Similarly Mi(·) and Rj(·) can be
maintained.

Overall, the values Li(·), Rj(·), Mi(·) and D(i, j) are correctly maintained in total
time O(|Q| log |Q|) time such that they can be evaluated in O(log n). By Corollary 4.6.20
there are only O(n) total updates to G̃(·) and L(·) \ B(·). Hence, wQ(Q ∩ ĈovD(·)) can
be correctly maintained during a linear scan of s by updating it whenever Li(·), Rj(·),
Mi(·), G̃(·), L(·) \ B(·) or B(·) change. Thus computing wQ(Q ∩ ĈovD(e[s, t])) for all
(s, t) ∈ S takes O(|Q| log |Q|+ n log n) time.

4.7 Cubic Subtrajectory Covering

The goal of this section is the following theorem.

Theorem 4.7.1. Let P be a polygonal curve of complexity n and let ∆ > 0 and ℓ ≤ n
be given. Let k∆ be the size of the smallest set C∗ ⊂ Xd,ℓ such that

⋃
c∈C∗ CovP (c,∆) =

[0, 1]. There is an algorithm that given P , ∆ and ℓ computes a set C ⊂ Xd,ℓ of size
O(k∆ log n) such that

⋃
c∈C CovP (c, 4∆) = [0, 1]. Further, it does so in O(n3 log2 n +

k∆n
2 log3 n) time using O(n3 log n) space.

4.7.1 Molecular Intervals

The proxy coverage is defined by intervals starting and ending at boundaries of atomic
intervals. Hence, akin to Observation 4.4.2, the set of all midpoints of atomic intervals
A(D4∆(S, P )) is a set of points A ⊂ [0, 1] of size 16n3 such that for any set C of Type
(I)-, (II)-, and (III)-subcurves induced by E(D4∆(S, P )) it holds that

ĈovD4∆(S,P )(C) = [0, 1] ⇐⇒ A ⊂ ĈovD4∆(S,P )(C).

Theorem 4.7.2. Let P be a curve of complexity n, let ∆, and ℓ be given. Let S be a
2∆-maximal simplification of P . Let A ⊂ [0, 1] be the set of midpoints of atomic intervals
of the 4∆-free space of S and P . Let E be the set of y-coordinates of E(D4∆(S, P )). Let
k∆ be the size of a smallest set C∗ ⊂ Xd,ℓ such that

⋃
c∈C∗ CovP (c,∆) = [0, 1]. Any

algorithm that iteratively adds the curve c among CS(E) to R maximizing∣∣∣∣∣
{
a ∈ A

∣∣∣∣∣a ∈
(
ĈovD4∆(S,P )(c) \

(⋃
r∈R

ĈovD4∆(S,P )(r)

))}∣∣∣∣∣ ,
terminates after 16(ln |A|+ 1)k∆ iterations.

Proof. Let D be the 4∆-free space of S and P . By Theorem 4.6.11 there is a set C1 of
size 16k∆ in CS(E) such that ĈovD(C1) = [0, 1]. Hence, by standard greedy set cover
algorithm arguments, the algorithm terminates after (ln |A|+1)16k∆ iterations, returning
a set C ⊂ CS(E) of size (ln |A|+ 1)16k∆ such that ĈovD(C) = [0, 1].

84



CHAPTER 4. CLUSTERING SUBTRAJECTORIES

E(
D
)

A(D)

M(D, e) = A(De)

6 32 2

Figure 4.13: Construction of both the atomic and molecular intervals for an edge e based
on the free space D. If a molecular interval contains more than one atomic interval, the
number of atomic intervals contained in a molecular intervals is shown.

Observation 4.7.3. Let D be the 4∆-free space of two polygonal curves S and P . For
any edge e of S it holds that E(De) ⊂ E(D) and as such the atomic intervals of e and P
partition the atomic intervals of S and P , where each atomic interval of e and P can be
described as a contiguous subset of atomic intervals of S and P .

To clarify the difference of atomic intervals A(D4∆(S, P )) of the entire free space
and atomic intervals A(D4∆(e, P )) of the free space restricted to some edge e of S, we
will call the latter molecular intervals, where every molecular interval is the union of
(usually) multiple atomic intervals, and denote them byM(D4∆(S, P ), e) (Figure 4.13).

4.7.2 The Algorithm

The algorithm can be seen in Algorithm 6. It repeatedly calls the subroutine from
Theorem 4.6.21 to identify the element in CS(E) maximizing the number of midpoints
of atomic intervals. It does so via the midpoints of molecular intervals weighted by the
number of atomic intervals contained within each molecular interval.

Lemma 4.7.4. Let D be the 4∆-free space of S and P . Let A ⊂ [0, 1] be a set. Let e be
an edge of S. Let We = {(s, t) ∈ M(D, e) | |A ∩m| ̸= 0} together with w(m) = |A ∩m|
and the midpoint pm of m for every m ∈ We be given. Let s ∈ Se be a sweep-sequence.
Then

∑
m∈We

1[pm ∈ ĈovD(e[s, t])]w(m) = |A∩ ĈovD(e[s, t])| can be computed for every
(s, t) ∈ s in total time O(|We| log n+ n log n).

Proof. This is an immediate consequence of Theorem 4.6.21 and the definition of the
molecular intervalsM(D, e).

Lemma 4.7.5. At the beginning of each iteration of the while-loop in Line 10 of Algo-
rithm 6 it holds that A = A \

⋃
r∈R ĈovD(r) and We = {m ∈ M(D, e) | |A ∩m| ̸= 0}

and for every m ∈We it holds that w(m) = |A∩m|. Further it holds that for every Type
(II)- and (III)-subcurve π (stored in some sweep sequence) the weight ŵ(π) coincides
with |A ∩ ĈovD(π)|.
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Algorithm 6 Covering a finite subset of [0, 1]
1: procedure CoverA(D,A ⊂ [0, 1],{Se | edge e of S},{We = {m ∈ M(D, e) | |A ∩
m| ≠ 0} | edge e of S})

2: Compute all Type (I)-curves and their proxy coverage ĈovD(·)
3: Store A in a balanced binary tree
4: For every edge e of S endow m ∈ We with weight w(m) = |A ∩ m| and the

midpoint pm of m
5: For every edge e of S store We with its endowed data in a balanced binary tree
6: for edge e of S do
7: for s ∈ Se do
8: For every (s, t) ∈ s let ŵ(e[s, t]) =

∑
m∈We

1[pm ∈ ĈovD(e[s, t])]w(m)

9: R← ∅
10: while A ̸= ∅ do
11: for every Type (I)-curve π compute ŵ(π) = |A ∩ ĈovD(π)|
12: Identify Type (I)-, (II)- or (III)-subcurve c∗ maximizing w(c∗)
13: R← R ∪ {c∗}, A′ = A ∩ ĈovD(c

∗), update tree storing A via A← A \A′

14: for edge e of S do
15: compute W ′

e = {m ∈We | |m ∩A′| ≠ 0}
16: For every m ∈W ′

e compute w′(m) = |A′ ∩m|
17: for s ∈ Se do
18: For every (s, t) ∈ s let ŵ′(e[s, t]) =

∑
m∈W ′

e
1[pm ∈ ĈovD(e[s, t])]w

′(m)

19: ŵ(e[s, t])← ŵ(e[s, t])− ŵ′(e[s, t]) for every (s, t) ∈ s

20: for m ∈W ′
e do

21: w(m)← w(m)− w′(m)
22: If w(m) = 0 remove m from We updating its tree
23: return R

Proof. Observe that at the beginning of the first iteration this is true, as R = ∅. Let c∗

be the element added to R in some iteration of the while-loop. As A′ = A ∩ ĈovD(c
∗),

A is correctly updated. As initially every set We = {m ∈ M(D, e) | |A ∩m| ≠ 0} and
for every m ∈We the weight w(m) is computed correctly, W ′

e is computed correctly, and
for every m ∈ We it holds that w′(m) = |A′ ∩ m| ≠ 0 ⇐⇒ m ∈ W ′

e. Hence We is
updated correctly at the end of the while-loop. Further, ŵ′(e[s, t]) = |A′∩ ĈovD(e[s, t])|
and thus at the end of the while-loop ŵ(e[s, t]) = |(A \ A′) ∩ ĈovD(e[s, t])|, and hence
ŵ(e[s, t]) = |A ∩ ĈovD(e[s, t])| at the beginning of the next loop.

Lemma 4.7.6. Let P be a polygonal curve of complexity n and let ∆ > 0 and ℓ ≤ n
be given. Let S be a simplification of P . Let D be the 4∆-free space of S and P . Let
A ⊂ [0, 1] be a set of O(n3) points. For every edge e of S let Se be O(log n) sweep-
sequences, each of length O(n), together containing all O(n log n) Type (II)- and (III)-
subedges of e, and let We be the set of molecular intervals m such that |A ∩m| ̸= 0. Let
k∆ be the size of the smallest set C∗ ⊂ Xd,ℓ such that

⋃
c∈C∗ CovP (c,∆) = [0, 1]. The

algorithm CoverA from Algorithm 6 computes a set C ⊂ Xd,ℓ of size (48 ln(n) + 64)k∆
such that A ⊂ ĈovAS

(C). Further, it does so in time

O(n2ℓ log n2 + |A| log n+ k∆n
2 log3 n+ log n

∑
e

|We|).
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3 1 11

0∗

11

Figure 4.14: Illustration of ŵ(·) after a curve has been added to the partial solution R.
Only constantly many molecular intervals per cell are updated but do not have ŵ(·) set
to 0 (in red). All intervals that have ŵ(·) set to 0 are updated for the final time and can
be removed from We. These are further marked with a ∗.

Proof. By Observation 4.4.2, Theorem 4.7.2, and Lemma 4.7.5 the algorithm correctly
outputs a solution as claimed after O(k∆ log n) iterations of the while-loop in Line 10.

By Lemma 4.4.6, computing all Type (I)-curves and their proxy coverage takes a
total of O(n2ℓ log n log ℓ) time. As A is stored in a tree, computing w(m) = |A ∩ m|
for every m ∈ We for every e takes total time O(log n

∑
e |We|). By Theorem 4.6.21

computing and storing ŵ(e[s, t]) for every (s, t) ∈ s for every s ∈ Se for an edge e of S
takes a total of O(|We| log n+n2 log2 n) time. Thus the precomputation steps before the
while-Loop take a total of O(n2ℓ log n log ℓ +

∑
e(|We| log n + n log n)) time. Assume

that We and W ′
e are sorted.

Now, for the ith iteration of the while-Loop let Ri denote the set stored in R and
let Ai denote the set stored in A coinciding with A \ ĈovD(Ri). Let ri be the element
added to R in this iteration. Let further We,i denote the set of molecular intervals stored
in We, and similarly W ′

e,i be the set of molecular intervals stored in W ′
e. Observe that

Wei = {m ∈M(D, e) | |m∩Ai| ≠ 0} and W ′
ei = {m ∈M(D, e) | |m∩(Ai∩ ĈovD(ri))| ≠

0}. The coverage ĈovD(ri) consists of at most n intervals and hence there are at most
n molecular intervals m ∈ Wei such that neither m ⊂ ĈovD(ri) nor m ∩ ĈovD(ri) = ∅
holds. Hence |W ′

e,i| ≤ |Wei \ We,i+1| + n (refer to Figure 4.14). Thus W ′
e,i can be

computed in time O(|Wei \We,i+1|+ n log n). By Theorem 4.6.21, computing ŵ′(e[s, t])
for a fixed edge e, fixed s ∈ Se, and every (s, t) ∈ s can be done in O(|W ′

e,i|+ n log n) =

O(|Wei \We,i+1|+ n log n) time. After having computed ŵ′(e[s, t]) for the edge e, every
s ∈ Se, and every (s, t) ∈ s, the update to Wei and ŵ(e[s, t]) resulting in We,i+1 takes
O(|Wei \We,i+1|+ n log n). Updating Ai takes total time O(|Ai \Ai+1| log n+ n log n).

Hence, k iterations of the while-Loop take time in

O

(
k∑

i=0

(
|Ai \Ai+1| log n+ n log n+

(∑
e

∑
s∈Se

(|We,i \We,i+1|+ n log n)

)))
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Algorithm 7 Cubic Subtrajectory Covering
1: procedure ComputeSubtrajectoryCovering(P ,∆)
2: Compute (2∆, 0)-maximal simplification S of P
3: Compute D = D4∆(S, P ) and with it E(D) and A(D)
4: Compute the set E of y-coordinates of E(D)
5: Compute the set CS(E) of Type (I)-, (II)- and (III)-subcurves of S
6: Store Type (II)- and (III)-subcurves of S in sweep sequences {Se | edge e of S}
7: Compute midpoints A of atomic intervals A(D)
8: Compute molecular intervalsM(D, e) for every edge e of S based on D4∆(S, P )
9: return CoverA(D,A,{Se | edge e of S},{M(D, e) | edge e of S})

= O

(
|A| log n+ kn log n+

k∑
i=0

(
log n

∑
e

(|We,i \We,i+1|+ n log n)

))

= O

(
|A| log n+ kn log n+ kn2 log2 n+ log n

∑
e

k∑
i=0

(|We,i \We,i+1|)

)

= O

(
|A| log n+ kn2 log2 n+ log n

∑
e

|We|

)
.

By Theorem 4.7.2 the algorithm terminates after O(k∆ log n) rounds, and hence its
running time is in O(n2ℓ log n2+ |A| log n+k∆n2 log3 n+log n

∑
e |We|) time, concluding

the proof.

Theorem 4.7.1. Let P be a polygonal curve of complexity n and let ∆ > 0 and ℓ ≤ n
be given. Let k∆ be the size of the smallest set C∗ ⊂ Xd,ℓ such that

⋃
c∈C∗ CovP (c,∆) =

[0, 1]. There is an algorithm that given P , ∆ and ℓ computes a set C ⊂ Xd,ℓ of size
O(k∆ log n) such that

⋃
c∈C CovP (c, 4∆) = [0, 1]. Further, it does so in O(n3 log2 n +

k∆n
2 log3 n) time using O(n3 log n) space.

Proof. Consider Algorithm 7. The algorithm first computes a simplification S of P .
It then computes the 4∆-free space of S and P and with it E(D4∆(S, P )) as well as
A(D4∆(S, P )) in O(n3 log n) time. Finally, in total time O(n2 log2 n) time per edge e, it
computes all molecular intervalsM(D4∆(S, P ), e).

Lastly we compute A of size O(n3) via Observation 4.4.2, storing their midpoints in
a balanced binary tree, and with it compute the sets We = {m ∈ M(D4∆(S, P ), e) |
|m∩A| ≠ 0} for every edge e of S, with

∑
e |We| = O(n3). Then Lemma 4.7.6 concludes

the proof.

4.8 Improved Subtrajectory Covering

In this section we want to reduce the dependency on n. As in the previous section, we
assume P to be a polygonal curve of complexity n, S a 2∆-maximal simplification and
D the 4∆-free space of S and P . Let further E be the set of y-coordinates of E(D).

Observe that there are two steps in the algorithm described in Theorem 4.7.1 that
can take up to Õ(n3) time that are somewhat inevitable. The first is the computation
of the discretization, that is, A(D) may be of cubic size, and similarly the n coarsenings
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via molecular intervalsM(D, e) in total take O(n3) time to compute. The later updates
depend on the number of molecular intervals with non-zero weight. In this section we in-
troduce a subproblem which is closely related to rank-selection [FJ84] in matrices in order
to pick O(nα) interval boundaries of A(D) which are ‘well-separated’ in time Õ(n1+α).
These boundaries are separated in the sense that between two consecutive boundaries
(defining a coarse interval) there are no more than O(n3−α) intervals of A(D). Morally,
the midpoints of coarse intervals play a similar role to coresets (compare Chapter 3),
where a solution covering the midpoints is already ‘pretty good’.

The algorithm will in a first round solve the set cover instance defined by the mid-
points of these coarse intervals. The coverage of such a solution can be described by
the union of O(k∆n log n) intervals, and thus at most O(k∆n log n) of the coarse inter-
vals are not yet covered. As no coarse interval contains too many intervals of A(D),
at most O(k∆n4−α) molecular intervals are not yet covered by the solution. These we
determine in an output-sensitive manner, and then cover with the algorithm described
in Section 4.7. The result is an algorithm with running time in Õ(k∆n5/2) by setting
α = 3/2. By multiplicatively testing for k∆ and being slightly more careful how α is
chosen the running time improves to Õ(

√
k∆n

5
2 ) which is truly subcubic if k∆ ∈ O(n1−ε).

4.8.1 Subquadratic Coarsening of Atomic Intervals

We now describe a subroutine used for constructing the aforementioned coarse intervals.

Theorem 4.8.1. Let n lists Li be given, each containing mi sorted values such that all
values are distinct, for every list Li and for every j identifying the item at position j takes
O(logmi) time, and for given v determining the maximal index j such that the jth item
is less than v takes O(logmi) time. Then for every K ≤

∑
imi in O(Kn logmaximi)

time one can determine O(K) values v1, . . . such that
1. vi < vi+1 for all i,
2. for every x ∈

⋃
i Li there is an i such that x ∈ [vi, vi+1] and

3. |[vi, vi+1] ∩
⋃

i Li| = O
(∑

i mi

K

)
for all i.

Proof. Let N =
∑

imi. Initially, identify the minimal v and maximal v̂ value in
⋃

i Li

in O(n logmaximi) time. We define a subproblem instance via v and v̂ by n intervals of
indices describing the interval of Li that lies between v and v̂. Initially all intervals have
the form [1,mi]. The goal is to iteratively split this subproblem into smaller subproblems
until each subproblem contains at most N/K values.

Let now a subproblem instance be given, defined by values l, r, and n intervals with
li values for i ≤ n. If

∑
i li ≤ N/K, then there is no need to split it.

If instead
∑

i li ≤ 20n, then we simply sort all values in the n intervals in total
time O(n log n) time and identify the value m splitting the sorted list into half. From
this construct two subproblems in O(n log n) time where the number of values in each
subproblem is ⌈

∑
i li/2⌉ and ⌊

∑
i li/2⌋ respectively.

If
∑

i li > 20n, then for every list Li, identify 5 values splitting Li into 5 pieces all
containing either ⌊li/5⌋ or ⌈li/5⌉ values. This results in 5 intervals, where each interval
is endowed with a weight wI corresponding to the number of values from Li that lie in it.
This results in a total set I of O(n) intervals which can be computed in O(n logmaximi)
time, and so can its arrangement. For every interval in the arrangement pick its midpoint
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as the potential splitting value, and collect them in a sorted list C. For every c ∈ C define

w(c) =
∑

I∈I,I<c

wI −
∑

I∈I,I>c

wI .

All these values can be computed in O(n logmaximi) time as w(c) and w(c′) differ by
at most two wI if c and c′ lie in neighboring cells of the arrangement, thus we can sweep
through the arrangement to compute these values. Now identify the last c ∈ C such that
w(c) ≥ 0, that is, in particular w(c) ≤ ⌈maxi li/5⌉ ≤ ⌈

∑
i li/5⌉ ≤

∑
i li/4. And hence∑

I∈I,I>c

wI ≤
∑

I∈I,I<c

wI ≤
∑

I∈I,I>c

wI +
∑
i

li/4

Further observe that∑
I∈I,I<c

wI +
∑

I∈I,I>c

wI ≥
∑
I∈I

wI −
∑

I∈I,c∈I
wI ≥

∑
i

li −
∑
i

⌈li/5⌉

≥
∑
i

li −
∑
i

li/5− n ≥
∑
i

li −
∑
i

li/4 = 3/4
∑
i

li

Thus we conclude that both
∑

I∈I,I>cwI ≥ 1/4
∑

i li and
∑

I∈I,I<cwI ≥ 1/4
∑

i li.
Hence splitting at c will result in two subproblems, each of which contains at most
3/4

∑
i li points. These subproblems can similarly be constructed in O(n logmaxmi)

time. As each split decreases the number of values in the subproblem by a constant frac-
tion, after O(K) splits each subproblem will have at most O

(∑
i mi

K

)
values concluding

the proof.

Lemma 4.8.2. For every α ∈ [0, 3] in O(n1+α log n) time one can determine O(nα)
intervals partitioning A(D), each containing at most O(n3−α) intervals of A(D).

We will call a set of intervals partitioning A(D) such that any interval contains
O(n3−α) intervals of A(D) a set of α-coarse intervals.

Proof. For a fixed edge e we will implicitly provide two lists Lu and Ll such that
1. Lu ∪ Ll coincides with all boundaries of molecular intervals inM(D, ε),
2. |Lu| and |Ll| is known,
3. for either list the value at position j can be computed in O(log n) time, and
4. for any value v the maximal index j such that the value at position j is less than
v can be computed in O(log n) time.

To construct Lu we compute in every cell the at most 4 closures of the at most 4 pieces
of the free space boundary (i.e., an ellipse) that lie in the interior of the cell and are x-
and y-monotone. From this we pick the at most 2 pieces that lie above (in y-direction)
the free space. Refer to Figure 4.15. Observe that for these O(n) pieces from all cells
it holds that their projections onto the x-axis are interior-disjoint and thus sorted. For
every piece we compute the interval and number of elements of Ee in O(log n) time that
lie in the projection onto the y-axis of each piece. These form the list Lu. Observe that
we can compute |Lu| in O(n) time and store it. Further, with the information imbued
on each piece property 3 and property 4 also hold: to find for example the boundary
at position j among the boundaries induced by Lu, we first search over the O(n) pieces
identifying the piece inducing the jth boundary, and then search over the corresponding
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Lu

Ll

Figure 4.15: Illustration to proof of Lemma 4.8.2. The boundary of the free space in every
cell is split into its four monotone pieces. If the y-coordinates of the extremal points are
sorted, then the boundaries of molecular intervals induced by extremal points intersecting
the upper pieces (in red, blue, orange, and green) of the two cells are already sorted as well
and can be binary searched over without explicit computation of all molecular interval
boundaries.

interval of Ee in O(log n) total time. We similarly compute Ll via the lower, instead of
the upper pieces of the boundary. Observe that the union over both lists formM(D, e).
Further, all values that occur with multiplicity in each list can be made unique with
two points from different cells being compared first w.r.t their x-coordinate and second
w.r.t. the lexicographic order of the indices of their respective cells.

Computing this for every edge in O(n2 log n) time leaves us with O(n) lists each con-
taining at most O(n2) values without any multiplicities. Thus, applying Theorem 4.8.1
with K ← nα results in O(nα) interval boundaries of A(D) in O(n1+α log n) time such
that between two such values there are at most O(n3−α) intervals of A(D).

Observation 4.8.3. We remark that the implicitly provided lists Ll and Lu for the edge
e from the proof of Lemma 4.8.2 can be constructed in O(n log n) time and can be used,
to identify for a given point p ∈ [0, 1] the molecular interval in M(D, e) containing p in
O(log n) time.

4.8.2 Subtrajectory Covering Without Explicit Atomic Intervals

The final piece of the puzzle is the output-sensitive identification of all atomic and molec-
ular intervals that are not part of some initial coarse solution that we compute based on
coarse intervals.

Lemma 4.8.4. For every α ∈ [0, 3] and every K let C ⊂ CS(E) be a solution cov-
ering all midpoints of α-coarse intervals of size O(K log n). Then there are at most
O(Kn4−α log n) atomic intervals and O(Kn4−α log n + Kn2 log n) molecular intervals
that are not contained in ĈovD(C). Further they can be computed in O(Kn4−α log2 n+
Kn2 log2 n) time.
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Proof. First observe that there are at most O(Kn4−α log n) atomic intervals that are
not in ĈovD(C), as ĈovD(C) does not contain at most O(Kn log n) α-coarse intervals
and hence at most O(Kn4−α log n) atomic intervals. Similarly, the set of molecular
intervals that are not contained in ĈovD(C) consists of all molecular intervals that have
a boundary that is not in ĈovD(C), or that contain some interval boundary of ĈovD(C).
Thus in total there are O(Kn4−α log n+Kn2 log n) such molecular intervals.

To compute them observe that ĈovD(C) consists of O(Kn log n) disjoint intervals,
and thus so does [0, 1] \ ĈovD(C). Let I be the set of O(Kn log n) intervals that result
from the disjoint intervals in [0, 1] \ ĈovD(C) after splitting them at every vertex pa-
rameter of P . That is, any interval in I lies on only one edge. The intervals in I are
not necessarily disjoint, but the intersection of any two intervals is in at most one point.
Let [a, b] ∈ I lie on edge i of P . We compute the sets represented as O(1) contiguous
intervals in Ee

1. Se,1 = {li(s) | s ∈ Ee : li(s) ∈ [a, b]},
2. Se,2 = {ri(s) | s ∈ Ee : ri(s) ∈ [a, b]},
3. Se,3 = {li(s) | s ∈ Ee : li(s) ≤ a} and Se,4 = {ri(s) | s ∈ Ee : ri(s) ≤ a}, and
4. Se,5 = {li(s) | s ∈ Ee : li(s) ≥ b} and Se,6 = {ri(s) | s ∈ Ee : ri(s) ≥ b}.

in total time O(log n) via binary searches over Ee. Then the union {a, b} ∪
⋃

e∈S(Se,1 ∪
Se,2) is precisely the set of all interval boundaries of atomic intervals that lie in [a, b].
These can thus be computed in O((|[a, b]∩A(D)|+1) log n) time. Thus overall computing
all atomic intervals that intersect [0, 1] \ ĈovD(C) can be done in O(Kn4−α log2 n +
Kn log2 n) time.

Similarly {max(Se,3∪Se,4),max(Se,5∪Se,6)}∪Se,1∪Se,2 contain all interval boundaries
of molecular intervals of e and P that intersect [a, b] and can be computed in time
O((|{m ∈M(D, e) | m ⊂ [a, b]}|+1) log n) time. Thus computing all molecular intervals
that intersect [0, 1] \ ĈovD(C) can be done in O(Kn4−α log2 n+Kn2 log2 n) time.

Theorem 4.2.1. There is a (96 ln(n) + 128, 4)-approximation for SC. Given a curve
P of complexity n, together with values ∆ > 0 and ℓ ≤ n, its running time is in
O
((
n2ℓ+

√
k∆n

5
2

)
log2 n

)
, where k∆ is the size of the smallest subset C∗ ⊂ Xd

ℓ such
that CovP (C∗,∆) = [0, 1].

Proof. Consider Algorithm 8. Line 1 to 6 take time O(n2ℓ log n log ℓ) by Lemma 4.4.6,
the fact that the extremal points in all cells of the free space can be computed in O(n2)
time, and Lemma 4.6.2.

Now let K be as in the beginning of some iteration of the while-Loop in Line 8.
We show that in one iteration of the while-Loop the algorithm computes a solution
of size 2k∆ log n or correctly determines that K < k∆ and sets K ← 2K. Initially,
K = 1 ≤ k∆. Let α = 3

2 +
logK
2 logn + log logn

logn and let λ = (48 lnn+ 64) ≥ 16(ln(16n3) + 1).
By Lemma 4.8.2, the algorithm first computes a set of α-coarse intervals, and thus their
midpoints A correctly. It then computes all molecular intervals containing some point of
A via Observation 4.8.3. Next it attempts to cover them in λK rounds of CoverA from
Algorithm 5. If it terminates within λK rounds, then CoverA returns a solution of size
at most λk∆ covering all midpoints of the α-coarse intervals. Otherwise λK < λk∆ and
in particular K < k∆, in which case we correctly set K ← 2k and restart the while-Loop.

Via Lemma 4.8.4, the algorithm then determines all uncovered atomic intervals and
the molecular intervals which contain these points. Next, the algorithm invokes CoverA
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Algorithm 8 Covering [0, 1] in subcubic time
1: procedure CoverAFast(P ,∆,ℓ)
2: Compute a simplification S of P
3: Compute the 4∆-free space D of S and P
4: Compute the set E of y-coordinates of E(D)
5: Compute the sweep-sequences Se of Ee for every edge e
6: Compute the proxy coverage for every Type (I)-curve and provide them to Cov-

erA from Algorithm 6
7: K ← 1, covers← False, λ← (48 ln |P |+ 64)
8: while covers is False do
9: α← 3

2 + logK
2 logn + log logn

logn , covers← True and R← ∅
10: Compute a set of α-coarse intervals and from them their midpoints A
11: Compute set of molecular intervals We with wA(·) ̸= 0 for every edge e of S
12: if CoverA(D,A,{Se},{We}) does not terminate after λK rounds then
13: K ← 2K, covers← False
14: else
15: R← CoverA(D,A,{Se},{We})
16: Compute all atomic intervals in A(S, P ) \ ĈovD(R) and their midpoints A
17: Compute set of molecular intervals We with wA(·) ̸= 0 for all edges e of S
18: if CoverA(D,A,{Se},{We}) does not terminate after λK rounds then
19: K ← 2K, covers← False
20: else
21: R← R ∪CoverA(D,A,{Se},{We}), covers← True

22: return R

again, this time with the set of midpoints of uncovered atomic intervals, and the set of
molecular intervals that contain at least one of these midpoints. If it terminates within
λK rounds, then CoverA returns a solution of size at most λk∆ covering all midpoints
of the α-coarse intervals. Otherwise λK < λk∆ and in particular K < k∆, in which case
we correctly set K ← 2k and restart the while-Loop.

Thus, within the while-Loop, the algorithm correctly determines that either K < k∆
and restarts with K ← 2K or outputs a solution of size (96 ln(n)+128)k∆. This ensures
that the algorithm correctly computes a solution of claimed size.

As K ∈ O(k∆) and thus K ∈ O(n), the running time of the while-Loop is

O(n1+α log n+Kn4−α log3 n+Kn2 log2 n)

= O(n1+α log n+ n
4−α+ logK

logn log3 n+Kn2 log2 n)

= O(K
1
2n

5
2 log2 n+K

1
2n

5
2 log2 n+Kn2 log2 n) = O(K

1
2n

5
2 log2 n).

And thus overall the running time of the algorithm is

O

n2ℓ log2 n+

log(k∆)∑
K=1

((
2K
) 1

2 n
5
2 log2 n

)
= O

(
n2ℓ log2 n+ k∆

1
2n

5
2 log2 n

)
.

Proposition 4.8.5. If k∆ = O(n1−ε) and ℓ = O(n1−ε) then the running time is subcubic,
namely Õ(n3−ε/2).
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4.9 Subtrajectory Coverage Maximization

The goal of this section is the following theorem.

Theorem 4.2.2. Let ε ∈ (0, 1]. There is an ( e−1
16e , 4 + ε)-approximation algorithm for

SCM, where e is the base of the natural logarithm. Given a polygonal curve P of complex-
ity n, ∆ > 0, ℓ ≤ n, and k > 0, its running time is in O((k + ℓ)n2ε−2 log2 n log2(ε−1)).

Throughout this section we assume that we are given P and we have computed the
simplification S via Theorem 4.4.4 and an (1 + ε, 4∆)-free space AS of S and P via
Theorem 2.3.4 consisting of convex polygons of complexity O(ε−2) in each cell.

The quality of the algorithm hinges upon the following theorem.

Theorem 4.9.1. Let P be a curve of complexity n, let ∆ and ℓ be given. Let S be
a simplification of P . Let E be the y-coordinates of the extremal points and vertices
describing the polygon defining AS in each cell. Any algorithm that iteratively adds the
curve c among CS(E) to R maximizing

λ

(
ĈovAS

(c) \

(⋃
r∈R

ĈovAS
(r)

))
,

computes after k rounds a set R ⊂ Xd
ℓ such that for any other set C∗ of cardinality k it

holds that
λ(CovP (R, (4 + ε)∆)) ≥ e− 1

16e
λ(CovP (C

∗,∆)).

Proof. Let Opt∗
Cov,k be the subset of CS(E) of size k maximizing λ(CovAS

(·)). Let
OptCov,k be some subset of Xd

ℓ of size k maximizing λ(CovP (·,∆)). Then by Theo-
rem 4.3.16 we know that

λ(CovAS
(Opt∗

Cov,k)) ≥
1

8
λ(Cov(OptCov,k,∆)).

Let
←−−−−−−
Opt∗

Cov,k be the set of reversed sub-edges in Opt∗
Cov,k. Then by Lemma 4.6.10

λ
(
ĈovAS

(
Opt∗

Cov,k ∪
←−−−−−−
Opt∗

Cov,k

))
≥ λ

(
CovAS

(Opt∗
Cov,k)

)
.

Let further Opt∗
Ĉov,k

and Opt∗
Ĉov,2k

be the sets of size k and 2k in CS(E) respectively,

maximizing ∥ĈovAS
(·)∥. Then by sub-additivity of λ(·)

2λ
(
ĈovAS

(
Opt∗

Ĉov,k

))
≥ λ

(
ĈovAS

(
Opt∗

Ĉov,2k

))
≥ λ

(
ĈovAS

(
Opt∗

Cov,k ∪
←−−−−−−
Opt∗

Cov,k

))
.

Lastly as λ(ĈovAS
(·)) is submodular, by standard greedy submodular function max-

imization arguments [NWF78, KG14] it holds that

λ
(
ĈovAS

(R)
)
≥ e− 1

e
λ
(
ĈovAS

(
Opt∗

Ĉov,k

))
.

And finally
λ(CovP (R, (4 + ε)∆)) ≥ λ(CovAS

(R)) ≥ λ(ĈovAS
(R)).

Thus overall, we observe that after k iterations it holds that

λ(CovP (R, (4 + ε)∆)) ≥ e− 1

16e
λ(CovP (OptCov,k,∆)).
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The following lemma constructs values so that the Lebesgue measure of the cover-
age of elements in sweep sequences can be computed via a simple sweep algorithm in
logarithmic time per element in a sweep-sequence.

Lemma 4.9.2. Let (τ1, . . . , τn) be the vertex parameters of P . Let I ⊂ [0, 1] be a set
of intervals. Let e be an edge of S and let ((s1, t1), . . .) = s ∈ Se be a sweep-sequence.
There are values LI

(s,t), R
I
(s,t) and CI

(s,t) for every (s, t) ∈ s such that for every (sk, tk) ∈ s
it holds that

λ(ĈovA(e[sk, tk]) \ I) =

∑
i≤k

LI
(si,ti)

 sk +

∑
i≤k

RI
(si,ti)

 tk +

∑
i≤k

CI
(si,ti)

 .

If I = ∅, then the values can be computed in O(nε−2 log n log ε−1) time. Starting with
I = ∅ we may iteratively add a (previously unknown) set J consisting of O(n) disjoint
intervals where at most O(1) intersect any [τi, τi+1] to I updating LI

(s,t), R
I
(s,t) and CI

(s,t)

to LI∪J
(s,t), R

I∪J
(s,t) and CI∪J

(s,t). If we add such a set K times, the total time for these updates
takes O(Knε−2 log n log ε−1) time.

Proof. By Theorem 2.3.4 and Corollary 4.6.20 there are m = O(nε−2) index pairs p1 =
(i1, j1), . . . , pm = (im, jm) and contiguous subsets Ii ⊂ s such that

ĈovA(e[sk, tk]) =
⊔

a≤m,(sk,tk)∈Ia

[laia(sk), r
a
ja(tk)],

where laia(·) = lia(·) if ia is good for all (s, t) ∈ Ia, and laia(·) = ria(·) if ia is bad for all
(s, t) ∈ Ia. Similarly raja(·) = rja(·) if ja is good for all (s, t) ∈ Ia, and raja(·) = lja(·) if
ja is bad for all (s, t) ∈ Ia. Now let M(i, j, I) = λ([τi, τj ] \ I) if i ≤ j, and M(i, j, I) =
−λ([τj , τi] \ I) if i > j. Then

λ
(
ĈovA(e[sk, tk]) \ I

)
=

∑
a≤m,(sk,tk)∈Ia

λ([laia(sk), r
a
ja(tk)] \ I)

=
∑
a≤m

1[(sk, tk) ∈ Ia] ·
(
λ([laia(sk), τia+1] \ I) +M(ia + 1, ja, I) + λ([τja , r

a
ja(tk)] \ I)

)
.

The m values M(ia+1, ja, I) for every a ≤ m do not depend on k. Hence for every a and
its contiguous set Ia = {(su, tu), . . . , (sv, tv)} we may define M I,a

(su,tu)
= M(ia + 1, ja, I),

and M I,a
(sv+1,tv+1)

= −M(ia + 1, ja, I) such that for every (sk, tk) ∈ s it holds that

∑
a≤m

1[(sk, tk) ∈ Ia] ·M(ia + 1, ja, I) =
∑
i≤k

∑
a≤m

M I,a
(si,ti)

 ,

and hence (by symmetry for li(·) and rj(·)) it suffices to show that for every a it holds
that there are values LI,a

(s,t) and CI,a
(s,t) with

1[(sk, tk) ∈ Ia] · λ([lia(sk), τia+1] \ I) =

∑
i≤k

LI,a
(si,ti)

 sk +

∑
i≤k

CI,a
(si,ti)

 .
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ĈovD(R)

λ1 λ2

cell i cell i+ 1

I(i,i+1)

J2

J1

m

e1
e2
e3

··
·

e4

e5
e6

e7

L
(e1 ,e1) = −m

L
(e5 ,e9) = m

C
(e1 ,e1) = λ1 + λ2 +me1

C
(e5 ,e9) = −λ1 −me1

C
(e7 ,e11) = −λ2

Figure 4.16: Construction of the sets J1, . . . ⊂ I(i,i+1) ⊂ s from the proof of Lemma 4.9.2
along which l

(i,i+1)
i (·) is the same linear function. Its parameters are stored in the first

item of each Ji and the first item after each Ji. Only non-zero L(a,b) and C(a,b) are shown.

We split the set Ia into two contiguous sets I+a ⊂ Ia and I−a ⊂ Ia based on whether for the
element (s, t) ∈ Ia the value s is above or below all y-coordinates of leftmost points in the
cell ia. We handle I+a and I−a analogously hence we focus on I+a = {(s1, t1), . . . , (sr, tr)}.
We may further assume that a < b implies sa < sb. Now I+a is partitioned into contiguous
sets J1 = {(s1, t1), . . . , (sc, tc)}, J2 = {(sc+1, tc+1), . . .}, . . . depending on whether lia(s) ∈
I or not. For every second set J2i for all elements (s, t) ∈ Ji it holds that lia(s) ∈ I and
for every other J2i+1 and its elements (s, t) ∈ J2i+1 it holds that lia(s) ̸∈ I. We refine
this sequence of sets one last time splitting every J2i+1 at the at most O(ε−2) elements
(s, t) such that s corresponds to the y-coordinate of a vertex of the left boundary of the
polygon in cell ia defining the free space. We are now left with a partition of I+a into
few contiguous sets such that inside any set (i) the local slope of the left boundary of
the polygon defining the free space in cell ia is constant and (ii) either all or none of the
x-coordinates lia(s) are inside I. Let J1, . . . , Jr be this sequence of contiguous subsets
(refer to Figure 4.16). Let initially all LI,a

(s,t) and CI,a
(s,t) be zero.

Fix some Ji and let (s∗, t∗) be its first element. If Ji is such that lia(s) ∈ I for all
(s, t) ∈ Ji then let Mi = 0 and Ci = λ([lia(s

∗), τia+1] \ I). If Ji is such that lia(s) ̸∈ I for
all (s, t) ∈ Ji, then let Mi = −m be the local slope of the left boundary of the polygon
defining the free space in cell ia and Ci = λ([lia(s

∗), τia+1] \ I) + ms∗. Then add Mi

to LI,a
(s∗,t∗) and Ci to CI,a

(s∗,t∗) and −Mi to LI,a
(s′,t′) and −Ci to CI,a

(s′,t′) for the first element
(s′, t′) in s after the last element in Ji. Then for any (sk, tk) ∈ Ji with lia(s) ∈ I we have(∑

i≤k

LI,a
(si,ti)

)
sk +

(∑
i≤k

CI,a
(si,ti)

)
=Misk + Ci = Ci = λ([lia(s

∗), τia+1] \ I)

= λ([lia(sk), τia+1] \ I).
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For (sk, tk) ∈ Ji with lia(s) ̸∈ I we have∑
i≤k

LI,a
(si,ti)

 sk +

∑
i≤k

CI,a
(si,ti)

 =Misk + Ci

= λ([lia(s
∗), τia+1] \ I)−m(sk − s∗) = λ([lia(sk), τia+1] \ I),

implying the claim.
To compute these values for I = ∅ observe that all values M(·, ·, ∅), Mi and Ci can

each be computed in O(log n log ε−1) time. As there are O(ε−2) polygon vertices per
cell, the claim follows. If we are instead updating the values from I to I ∪J observe that
firstly the values M(·, ·, I ∪ J) can be computed in O(log n) time each. Next observe for
an index pair (ia, ja) and set Ia ⊂ s and any interval boundary of J \ I in [τia , τia+1] at
most constantly many updates are necessary to maintain the partition J1, . . . , Jr of Ia
and thus updating Mi and Ci takes O(log n log ε−1) time. Throughout the K updates
any edge [τia , τia+1] requires at most O(K) updates induced by an interval boundary of
J \I, via a simple charging argument. Thus the index pair (ia, ja) is considered across all
updates at most O(K) times and as any sweep-sequence contains at most nε−2 elements
the total time all updates take is bounded by O(Knε−2 log n log ε−1).

This lemma suffices to construct the algorithm.

Theorem 4.2.2. Let ε ∈ (0, 1]. There is an ( e−1
16e , 4 + ε)-approximation algorithm for

SCM, where e is the base of the natural logarithm. Given a polygonal curve P of complex-
ity n, ∆ > 0, ℓ ≤ n, and k > 0, its running time is in O((k + ℓ)n2ε−2 log2 n log2(ε−1)).

Proof. First compute a 2∆-maximal simplification S of P and a (1 + ε, 4∆)-free space
D of S and P such that the free space in each cell consists of a convex polygon of
complexity O(ε−2) via Theorem 2.3.4. The algorithm maintains a solution R which is
initially empty and a set IR of disjoint intervals with IR =

⋃
r∈R ĈovD(r). Based on D we

compute the set of Type (I)-, (II)- and (III)-subcurves induced by all O(n2) extremal
points and O(n2ε−2) vertices of polygons defining the free space. Type (II)- and (III)-
subcurves we store in sweep sequences. For the Type (I)-subcurves we compute their
proxy coverage ĈovD(·). This overall takes O(n2ℓ log2 n+n2ε−2 log n log ε−1) time. Now
in K rounds we repeatedly compute the Type (I)-, (II)- or (III)-subcurve c∗ maximizing
λ(ĈovD(c

∗) \ IR). For the Type (I)-subcurves we compute λ(ĈovD(·) \ IR) explicitly in
total time O(n2 log2 n) time. For Type (II)- and (III)-subcurves we maintain the values
from Lemma 4.9.2 with I ← IR. As there are O(log(nε−1)) sweep sequences per edge,
and at most K updates to IR, this allows us to compute λ(ĈovD(·) \ IR) in total time
O(Kn2ε−2 log2 n log2 ε−1). Finally Lemma 4.9.2 and Theorem 4.9.1 imply the correctness
of the output.
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Chapter 5

Approximate Nearest Neighbor
under the Fréchet Distance

In this chapter, we study the Fréchet distance, and whether we can construct a data
structure answering approximate nearest neighbor queries for a given set of curves.

Problem 4 ((1 + ε)-Approximate Nearest Neighbor Problem). Let (M, dM) be
a metric space. Let P ⊂M be a set of points inM and a parameter ε > 0 be given. For
a given point q ∈M the (1 + ε)-Approximate Nearest Neighbor Problem ((1 + ε)-ANN)
is to find a point x̂ ∈ P whose distance to q approximates the distance to the nearest
neighbor in P . Specifically, x̂ ∈ P is a valid solution iff for all x ∈ P it holds that

dM(q, x̂) ≤ (1 + ε) dM(q, x).

The main content of this chapter previously appeared as the paper (1 + ε)-ANN
Data Structure for Curves via Subspaces of Bounded Doubling Dimension [CDK24] by
Jacobus Conradi, Anne Driemel, and Benedikt Kolbe, which was published in the Special
Issue of Selected Papers from the 39th European Workshop on Computational Geometry
(EuroCG 2023) of the journal Computing in Geometry and Topology. An initial version
of the work has also been presented at the 39th European Workshop on Computational
Geometry (EuroCG 2023) based on an extended abstract without formal publication.

5.1 Introduction

Most of the work on Nearest Neighbor data structures for curves has focused on the
discrete Fréchet distance. One notable example is a data structure for the (1 + ε, r)-
Approximate Near Neighbor Problem for curves in Rd of size n · O(1/ε)md presented
in [FFK23], with a query time of O(md), where n is the number of input curves, and
m is the complexity of the input curves. In the (1 + ε, r)-Approximate Near Neighbor
Problem the goal is the construction of a data structure on a set of input curves which
for a given query curve outputs an input curve that is at distance at most (1 + ε)r if
there is at least one curve in the input set within distance r. When the complexity k of
the query curve is small compared to the complexity m of the input curves, the space
can be improved to n · O(1/ε)kd with query time O(kd log(nkd/ε)).

Results for the (1 + ε, r)-Approximate Near Neighbor problem readily extend to the
(1+ε)-Approximate Nearest Neighbor Problem [HPIM12]. Their reduction incurs merely
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an additional polylogarithmic factor O(log2(n)) in the size, and O(log n) in the query
time.

In contrast to the multitude of approaches to the discrete Fréchet distance for arbi-
trary dimension, results w.r.t. the continuous Fréchet distance appear harder to come
by. Consider the naïve approach of approximating the continuous Fréchet distance via
the discrete Fréchet distance. For this, let a set of n curves in Xd,k

Λ as well as the ap-
proximation parameter ε be given. For the discrete Fréchet distance to approximate the
continuous Fréchet distance up to an additive term of rε for some r > 0, we require
successive vertices to lie at most Θ(rε) far apart. Thus we subdivide every edge into
edges of length at most rε, resulting in a set of n curves each of complexity O(kΛ/(rε)).
Building the (1 + ε, r)-Approximate Near Neighbor data structure from [FFK23] results
in a space requirement of n · O(1/ε)O(dkΛ/(rε)). As the radii used in the reduction can be
as small as r∗/n, where r∗ is roughly the distance of some two input curves, this extends
to a data structure of size O(n log2(n)) ·O(1/ε)O(ndkΛ/(r∗ε)) for the (1+ε)-ANN problem,
where the exponential dependence in n and Λ/r∗ are particularly undesirable.

In one dimension, [BDNP22] showed that there is a (1 + ε, r)-Approximate Near
Neighbor data structure for the continuous Fréchet distance, which uses n ·O(mkε)

k space,
needs O(nm) ·O(mkε)

k expected preprocessing time, and achieves a query time of O(k2k).
They also show tightness of their data structure bounds in several scenarios. More pre-
cisely, they show conditional lower bounds based on the Orthogonal Vectors Hypothesis
that give reason to believe that one cannot achieve both polynomial (in n) preprocessing
time and query time in O(n1−ε′), when k is 1 ≪ k ≪ log n and m > k · nc/k, for some
c depending on ε and ε′, even if d = 1. Their arguments also apply to the (1 + ε)-ANN
problem under the continuous Fréchet distance for any ε < 1.

In two dimensions, [AD18] presented a data structure based on semi-algebraic range
searching that solves the (exact) Near Neighbor Problem under the Fréchet distance.
The space required to construct this data structure is in O(n(log log n)O(m2)) and its
query time is in O(

√
n logO(m2) n).

In higher dimensions, [Mir23] presented a data structure result for the (1 + ε, r)-
Approximate Near Neighbor Problem under the continuous Fréchet distance, using space
in n ·O((max(1, D)

√
d/ε2)kd) and query time in O(kd), where D denotes the diameter of

the underlying vertex set of the input curves. However, as presented this data structure
works only if ε < r. The data structure covers the entirety of the input curves with a grid
of edge-length roughly εr, to precompute an answer for every sequence of k gridpoints.
A query curve is then snapped to the closest grid points and the precomputed answer is
given as the output. For smaller values of r one would have to scale the input, increasing
D accordingly. As a result, combining this data structure with the standard reduction
from [HPIM12] does not lead to an efficient data structure for the ANN-problem.

Independent to our work, a (1 + ε)-ANN data structure for polygonal curves in
arbitrary dimension under the continuous Fréchet distance was presented in [CH23a].
The data structure uses space in Õd

(
k(mndd/εd)O(k+1/ε2)

)
and achieves query time in

Õd

(
k(mn)0.5+ε/εd + k(d/ε)O(dk)

)
, where Õd(·) hides polylogarithmic factors with expo-

nents in O(d).

5.1.1 Results

In this chapter, we provide a (1 + ε)-ANN data structure for a set of curves in arbitrary
dimensions under the continuous Fréchet distance. The preprocessing time of this data
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structure depends linearly on n, with its query time depending only logarithmically on
n. This comes at the expense of a factor of roughly (ε−1Λ/r∗)k in both the preprocessing
time, space, and query time. One of the main ingredients to the construction of our data
structure is the construction of a suitable subspace of the space of all polygonal curves.
This subspace has small distance to the original space (i.e., small Gromov-Hausdorff
distance as metric spaces) and additionally, unlike the space of all polygonal curves,
bounded doubling dimension.

Throughout this chapter we will not distinguish between small or large k, that is, we
assume k = m. In Section 5.5 we present the following result.

Theorem 5.1.1. Given a set S of n polygonal curves in Xd,k
Λ and parameters ε ∈ (0, 1]

and ε′ > 0, one can construct a data structure that for given q ∈ Xd,k outputs an element
s∗ ∈ S such that for all s ∈ S it holds that dF (s∗, q) ≤ (1+ε)dF (s, q)+ε

′. The query time
is O

(
2O(d)k(1 + Λ/ε′)

)k
log n + O

(
2O(d)k(1 + Λ/ε′)

)−k log(ε), the expected preprocessing
time is O

(
2O(d)k(1 + Λ/ε′)

)k
n log n and the space used is O

(
2O(d)k(1 + Λ/ε)

)k
n.

To turn this into a data structure with a purely multiplicative error, we choose ε′ as
the smallest Fréchet distance of any two distinct input curves over ε. Thus, the running
time and space complexity of our data structure polynomially depends on a numerical
value, which we call the bundledness of the set of input curves.

Definition 5.1.2 (bundledness). Given a set of curves S ∈ Xd,k, the bundledness G(S)
of S is defined as

G(S) =
mins̸=s′∈S dF (s, s

′)

maxe∈E(S) ∥e∥

where E(S) denotes the set of edges of curves in S.

Note that this measure is scale- and translation-independent, as translating all ele-
ments in S by the same offset changes neither their pairwise Fréchet distances nor the
length of the edges of the curves. Similarly, scaling the elements of S scales both the
pairwise Fréchet distances and the lengths of the edges of the curves, thus not changing
the bundledness.

The bundledness is reminiscent of the global stretch—a measure of complexity on
geometric graphs—which was introduced in [Eri05] and further analyzed in [BCL+10].
The bundledness is closely related to the spread of the set of vertices and edges of the
input curves in that it is lower bounded by the reciprocal of the spread (see Lemma 5.5.3).

Definition 5.1.3 (spread). For a point set P in some metric space (M, dM) we define
the spread Φ(P ) as the ratio between the maximal and minimal pairwise distance of
points in P . Similarly, define the spread Φ(S) of a collection of sets as the ratio between
the maximal and minimal non-zero pairwise distances of sets in S, where the distance
between two sets A,B ⊂M is defined as dM(A,B) = mina∈Aminb∈B dM(a, b).

With these definitions, our principal results can be summarized as follows.

Theorem 5.1.4. Given a set S of n polygonal curves in Xd,k and ε ∈ (0, 1], one can
construct a data structure answering (1 + ε)-approximate nearest neighbor queries. The
query time is F (d, k, S, ε) log n + F (d, k, S, ε)− log(ε), the expected preprocessing time is
F (d, k, S, ε)n log n and the space required for the data structure is at most F (d, k, S, ε)n,
where F (d, k, S, ε) = O

(
2O(d)k(1 + G(S)−1ε−1)

)k.
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Replacing the bundledness with the more pessimistic spread of the vertices and edges
of the input curves yields the following result.

Corollary 5.1.5. Given a set S of n polygonal curves in Xd,k and ε ∈ (0, 1] one can
construct a data structure answering (1 + ε)-approximate nearest neighbor queries. The
query time is F (d, k, S, ε) log n + F (d, k, S, ε)− log(ε), the expected preprocessing time is
F (d, k, S, ε)n log n and the space required for the data structure is at most F (d, k, S, ε)n,
where F (d, k, S, ε) = O

(
2O(d)kΦ(S)ε−1

)k, where Φ(S) denotes the spread of the set of
vertices and edges of the curves in S.

In the special case that all curves in S are c-packed for some constant c > 0, the
parameter F (d, k, S, ε) is instead in O

(
2O(d)(1 + G(S)−1ε−1)

)k, or, more pessimistically,
in O

(
2O(d)Φ(S)ε−1

)k.
5.1.2 Technical Overview

In Section 5.2, we introduce a subspace X∗ of (Xd,k, dF ) and show how the subspace
relates to (Xd,k, dF ). A significant part of our work is concerned with analyzing properties
of this subspace X∗. In Section 5.3, we present the analysis of the upper bound on the
doubling constant and dimension of X∗, which constitutes our main technical result,
Theorem 5.3.5. We show that for a curve Q to have a small Fréchet distance (at most
∆) to another curve C, there is only a small subset of Rd in which any vertex of Q can
lie in. In fact, it turns out that this subset can be covered by roughly 2dkµ (Rd-)balls
of radius ∆/2, depending on the doubling dimension Θ(d) of Rd. As Q consists of k
vertices, Q is then described by one of at most (2dkµ)k sequences of (Rd-)balls, implying
that the doubling dimension is at most log2((2dkµ)k) = k(d+ log2(kµ)). We extend this
analysis to the special case that the curves are c-packed, resulting in an improvement in
the upper bound.

In Section 5.4, we extend the lower bound construction from [DKS16] to argue that
our bounds on the doubling dimension of X∗ are almost tight.

Finally, in Section 5.5, we use the bound on the doubling dimension of X∗ to construct
an (1 + ε)-ANN data structure based on [HPM06].

5.2 Curve Spaces

Recall that [DKS16] showed that for k ≥ 3, the doubling dimension of (Xd,k, dF ) is
unbounded. A straightforward modification to their construction yields the following
theorem, a stronger version of which we will present in Section 5.4.

Theorem 5.2.1. The doubling constant of (Xd,k
Λ ,dF ) is unbounded for any k ≥ 3 and

Λ > 0.

Theorem 5.2.1 motivates the search for a subspace (X∗,dF ) of (Xd,k
Λ , dF ) of bounded

doubling dimension. To answer (1 + ε)-ANN queries in Xd,k
Λ , the ansatz is to map the

input curves to (X∗,dF ) and answer queries in this subspace. The mapping decreases
the quality guarantee of (1 + ε)-ANN queries by an additional additive factor, roughly
depending on the distortion of the map between (Xd,k

Λ , dF ) and (X∗, dF ).

Definition 5.2.2 ((µ, ε)-curves). For any ε > 0 and µ ∈ N, define the space of (µ, ε)-
curves in Xd,k as the subspace of (Xd,k, dF ) induced by the set of polygonal curves in
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ε

11ε11ε

5ε

13ε

6ε

4ε

14ε

Figure 5.1: Example of a curve P ∈ Xd,k
Λ in blue, and an ε-curve close to P resulting

from Lemma 5.2.3 in red.

Xd,k whose edge lengths are all exact multiples of ε. We further require the edge lengths
to be bounded by µε. The space of (µ, ε)-curves in Xd,k naturally forms a subspace of
(Xd,k

µε ,dF ).

We may abuse notation slightly, and not specify the ambient space Xd,k of the space
of (µ, ε)-curves, if the ambient space is clear. We may likewise write M when talking
about the metric space (M,dM), if the metric is clear.

Lemma 5.2.3. Let P ∈ Xd,k
Λ be a polygonal curve and ε > 0. We can construct a

(⌈Λ/ε⌉+ 1, ε)-curve P ′ in Xd,k such that dF (P, P ′) ≤ ε/2 in O(k log(Λ/ε)) time.

Proof. Refer to Figure 5.1. Let p1, . . . , pk be the vertices of P and P ′ = ∅. We begin
by adding p′1 = p1 to P ′. Now assume p′i−1 is the last vertex of P ′. Compute the value
µi ∈ N, such that the magnitude |µiε − ∥pi − p′i−1∥| is minimal. Then add p′i = p′i−1 +

(µiε)
pi−p′i−1

∥pi−p′i−1∥
to P ′. Note that by construction ∥pi−p′i∥ ≤ ε/2. Hence, dF (P, P ′) ≤ ε/2.

The length of the edges of P ′ are bounded by (⌈Λ/ε⌉+1)ε. Indeed, ∥pi − p′i∥ ≤ ε/2 and
∥pi − pi−1∥ ≤ Λ imply that ∥p′i − p′i−1∥ ≤ Λ + ε.

For the running time, for every i ≤ n, the value µi such that the magnitude |µiε −
∥pi − p′i−1∥| is minimal can be identified in O(log(Λ/ε)) time. This is done by first
identifying the smallest power of 2 larger than ∥pi − p′i−1∥/ε and then binary searching
over the integer multiples of ε up to this power of 2. As we do this once for every edge,
the claimed running time follows.

Note that via Lemma 5.2.3 we obtain a map from Xd,k to its subspace of (∞, ε)-curves.
The additive error incurred when answering ANN queries in the subspace depends on

the distortion of the map from Xd,k
Λ to the space of (M, ε)-curves in Xd,k. The Gromov-

Hausdorff distance is a related measure of the distance between metric spaces. Intu-
itively, it measures the smallest possible distortion of maps between the two spaces. The
space of (∞, ε)-curves in Xd,k has (depending on ε) small Gromov-Hausdorff distance to
the ambient space Xd,k of curves:

Definition 5.2.4 (Gromov-Hausdorff distance). The Gromov-Hausdorff distance is a
distance measure on metric spaces. Let M and N be two metric spaces. Then the
Gromov-Hausdorff distance is defined as

dGH(M,N ) = inf
Z
{dZH(f(M), g(N )) | f :M→ Z, g : N → Z isometric embeddings},

where Z ranges over metric spaces and dZH(X,Y ) denotes the Hausdorff distance of two
sets in Z defined as max{supx∈X infy∈Y dZ(x, y), supy∈Y infx∈X dZ(x, y)}.
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Corollary 5.2.5. Let d, k, and ε > 0 be given. For any µ ∈ N, denote by Cµ the space
of (µ, ε)-curves in Xd,k. Then dGH(Xd,k, C∞) ≤ ε/2.

Proof. For every P ∈ Xd,k and ε > 0 there is a finite integer M <∞, such that P ∈ Xd,k
Mε.

Then by Lemma 5.2.3 there is a P ′ ∈ CM+1 ⊂ C∞ with dF (P, P
′) ≤ ε/2. As C∞ is a

subspace of Xd,k, the claim holds.

5.3 Upper Bound for Doubling Dimension of (µ, ε)-Curves

In this section, we study the doubling dimension of the space of (µ, ε)-curves in Xd,k.
Unfortunately, our bound is non-constructive. As such, it does not provide a doubling
oracle that, for a given ball of radius r in the metric space, outputs a set of balls of radius
r/2 which cover the ball of radius r.

5.3.1 Properties of the Euclidean Space

Before diving into the analysis of the doubling dimension of the space of (µ, ε)-curves,
we begin by analyzing properties of the ambient space Rd. For this we often inspect so
called ∆-neighborhoods of subsets of Rd. For any subset A, the ∆-neighborhood of A
is defined by N∆(A) = {x ∈ Rd | ∃a ∈ A : d(x, a) ≤ ∆}. Note that the ∆-neighborhood
of a single point x coincides with a ball of radius ∆ centered at x.

Recall that the doubling dimension of Rd under the Euclidean norm is in Θ(d). We
prove a more general statement which relates the volume of some arbitrary set to the
amount of balls needed to cover it. For this, we denote by λd the Lebesgue measure in
Rd and by λd(A) the volume of a (measurable) set A ⊂ Rd.

Lemma 5.3.1. Let A ⊂ Rd be a bounded set, and let r > 0 be fixed. Then there is a
set of points C ⊂ A of cardinality ⌈λd(Nr/2(A))/V

d
r/2⌉ such that A ⊂

⋃
c∈C Dr(c), where

V d
r/2 denotes the volume of a d-dimensional ball of radius r/2.

Proof. We construct the set C greedily. For this we start with C = ∅, and then iteratively
add some point from A \

⋃
c∈C Dr(c), until A ⊂

⋃
c∈C Dr(c). As any two points in C

have a distance of at least r, balls centered at points of C with radius r/2 are disjoint
and clearly contained in Nr/2(A). Thus |C| is bound by ⌈λd(Nr/2(A))/V

d
r/2⌉.

Lemma 5.3.2. For any r > 0 and c > 1, any ball Dr(p) ⊂ Rd can be covered by
O((2c+ 1)d) balls of radius r/c.

Proof. This follows from the classical result that V d
r = πd/2

Γ(d/2+1)r
d, where Γ denotes the

Gamma-function [Par13]. As Nr/2c(Dr(p)) = Dr(2c+1)/2c(p), Lemma 5.3.1 implies that
any Dr(p) can be covered with ⌈(r(2c+ 1)/2c)d/(r/2c)d⌉ = O((2c+ 1)d) balls of radius
r/c.

We will use this lemma to obtain a set of points (i.e., the centers of the balls used in
such a covering) as candidates for vertices of curves that will be centers of balls in Xd,k.

When analyzing the doubling dimension, we will consider what an edge might look
like that has Fréchet distance at most ∆ > 0 to a subcurve of an input curve. The basic
tool we use for this analysis is the observation that the edge under consideration then is
a ∆-stabber of the vertices (and indeed any ordered set of points along the subcurve) of
the subcurve.

103



CHAPTER 5. (1 + ε)-ANN UNDER THE FRÉCHET DISTANCE

P

P (s)

Lλ,∆(P, s)

∆

p

q

P (t)

λ

p q

∆

Figure 5.2: Illustration of the set Lλ,∆(P, s) in dark green, together with the points p
and P (t) realizing a point q in Lλ,∆(P, s), that is, ∥p− q∥ = λ and dF (P [s, t], p q) ≤ ∆.

Definition 5.3.3 (∆-stabber). Let an ordered set of points (p1, . . . , pn) in Rd be given.
An edge l = a b is called a ∆-stabber of (p1, . . . , pn) if there are values 0 ≤ t1 ≤ . . . ≤
tn ≤ 1 such that ∥l(ti)− pi∥ ≤ ∆ for all 1 ≤ i ≤ n.

The notion of ∆-stabbers has been introduced in [GHMS94], and is closely related
to the Fréchet distance. Any edge that has Fréchet distance at most ∆ to a polygonal
curve defined by vertices p1, . . . , pn is a ∆-stabber of the ordered point set (p1, . . . , pn).
Similarly, a ∆-stabber of the ordered point set (p1, . . . , pn) contains an edge that has
Fréchet distance at most ∆ to the polygonal curve defined by the vertices p1, . . . , pn.

Observation 5.3.4. Let a polygonal curve P and ∆ > 0 be given. Let e = p q be an
edge such that for given 0 ≤ s ≤ t ≤ 1 the Fréchet distance dF (P [s, t], e) is at most ∆.
Then for any s ≤ m ≤ t the edge e is a ∆-stabber of (P (s), P (m), P (t)).

5.3.2 Packing the Metric Ball

We now turn to proving the following theorem.

Theorem 5.3.5. Let k, µ, d ∈ N and ε > 0. The doubling constant of the space of (µ, ε)-
curves in Xd,k is bounded by O(43dkµ)k and thus the doubling dimension of the space of
(µ, ε)-curves is bounded by O(k(d+ log(kµ))).

Let P be a (µ, ε)-curve in Xd,k. Our objective is to cover the ∆-neighborhood of P
with respect to dF with balls of radius ∆/2. We encounter the question of where, given
p ∈ Rd, we may place a second point q such that there is a subcurve of P that is close to
p q. Indeed, for any curve Q with dF (P,Q) ≤ ∆, the endpoint q of any edge p q of Q is a
potential such point for the start point p. Thus if we answer the above stated question,
we can iteratively build up any curve Q with dF (P,Q) ≤ ∆.

Definition 5.3.6. Let P be a polygonal curve and λ ≥ 0 and ∆ ≥ 0. For s ∈ [0, 1] define
the locus of edge endpoints of edges close to subcurves of P starting at the parameter s
(refer to Figure 5.2) as the set

Lλ,∆(P, s) =
{
q ∈ Rd | ∃p ∈ Rd and ∃t ∈ [s, 1] with ∥p− q∥ = λ, dF (P [s, t], p q) ≤ ∆

}
.
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∆

P (s)

P (t∗)
λ− 2∆

p
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5∆

P (t)

P

Figure 5.3: Illustration to the proof of Lemma 5.3.7.

The following lemma motivates discretizing the lengths of edges, as for a fixed length
λ the set Lλ,∆(P, s) is contained in a single ball of constant size.

Lemma 5.3.7. Let P be a polygonal curve. Let λ ≥ 0 and ∆ ≥ 0 be given. Then for
every s ∈ [0, 1] there is a point p∗ ∈ Rd, such that

Lλ,∆(P, s) ⊂ D5∆(p
∗).

Proof. Assume Lλ,∆(P, s) is non-empty, as otherwise we are done. Similarly assume
λ ≥ 4∆ as otherwise Lλ,∆(P, s) is trivially contained in Dλ+∆(P (s)) ⊂ D5∆(P (s)). Now
let t∗ ≥ s be the smallest value such that ∥P (s)−P (t∗)∥ ≥ λ− 2∆. Then we claim that
the sought-after point is p∗ = P (t∗).
For the remainder of this proof refer to Figure 5.3. Let q ∈ Lλ,∆(P, s) be given. Then by
definition there is a point p and a value t, such that p q has length λ and dF (P [s, t], p q) ≤
∆. Thus ∥P (s)− p∥ ≤ ∆ and similarly ∥P (t)− q∥ ≤ ∆. Then by the triangle inequality
∥P (t)−P (s)∥ ≥ λ− 2∆. Thus t ≥ t∗. Hence, by Observation 5.3.4, p q is a ∆-stabber of
(P (s), P (t∗), P (t)). This implies that there is a point m along p q with ∥m−P (t∗)∥ ≤ ∆.
As m lies on p q, we have that ∥p−q∥ = ∥p−m∥+∥m−q∥. As ∥P (s)−P (t∗)∥ ≥ λ−2∆,
we get that ∥p−m∥ ≥ λ−4∆, and thus ∥m−q∥ ≤ 4∆. And thus finally ∥P (t∗)−q∥ ≤ 5∆,
implying the claim.

Definition 5.3.8. Let P be a polygonal curve and λ ≥ 0 and ∆ ≥ 0. For p ∈ Rd define
the locus of edge endpoints of edges starting at p which are close to subcurves of P as
the set

Lλ,∆(P, p) =
{
q ∈ Rd

∣∣∣ ∥p− q∥ = λ and ∃s, t with 0 ≤ s ≤ t ≤ 1, dF (P [s, t], p q) ≤ ∆
}
.

Similarly to Lemma 5.3.7, we can identify balls that cover the entirety of Lλ,∆(P, p)
for given P, λ,∆ and p. However, instead of a constant number of balls we need up to k
balls of constant radius to cover this set.

Lemma 5.3.9. Let P ∈ Xd,k be a polygonal curve. Let λ ≥ 0 and ∆ ≥ 0 be given. Then
for every p ∈ Rd there are k points p∗1, . . . , p

∗
k ∈ Rd such that

Lλ,∆(P, p) ⊂
k⋃

i=1

D5∆(p
∗
i ).
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Proof. The set I = {s ∈ [0, 1] | P (s) ∈ D∆(p)} can be described as a disjoint union of
at most k closed intervals, as the complexity of P is bounded by k. Assume that it is
described by exactly k such intervals, that is, I =

⋃k
i=1[li, ri].

It suffices to show that Lλ,∆(P, p) ⊂
⋃k

i=1 Lλ,∆(P, li), as Lemma 5.3.7 then implies
the claim. Assume that an arbitrary q ∈ Lλ,∆(P, p) is given. Then by definition there are
values 0 ≤ s ≤ t ≤ 1 such that dF (P [s, t], p q) ≤ ∆. This implies that ∥p − P (s)∥ ≤ ∆,
and hence s ∈ I and in turn s ∈ [li, ri] for some 1 ≤ i ≤ k. Then the subcurve P [li, s]
is contained in D∆(p), and thus dF (P [li, t], p q) ≤ ∆ implying that q ∈ Lλ,∆(P, li) and
thus the claim.

Corollary 5.3.10. For every polygonal curve P in Rd, ∆ > 0, λ > 0, c > 1 and point
p ∈ Rd, the set N∆/c

(
Lλ,(1+c−1)∆(P, p)

)
can be covered by a set of balls of radius ∆/c

centered at O(k(10c+ 3)d) points.

Proof. For any point p ∈ Rd, ∆ > 0 and c > 1, the sets N∆/c(D5∆(p)) and D(5+c−1)∆(p)
coincide, so Lemma 5.3.2 and Lemma 5.3.9 imply the claim.

Lemma 5.3.11. Let P be a polygonal curve. Let λ ≥ 0, ∆ ≥ 0 and c ≥ 1 be given.
Then for every p ∈ Rd and p′ ∈ Rd with ∥p− p′∥ ≤ ∆/c we have that

Lλ,∆(P, p) ⊂ N∆/c

(
Lλ,(1+c−1)∆(P, p

′)
)
.

Proof. Let q ∈ Lλ,∆(P, p). This implies that there are values 0 ≤ s ≤ t ≤ 1 such that
dF (P [s, t], p q) ≤ ∆ and ∥p − q∥ = λ. Let q′ = q + (p′ − p). Then, as ∥p − p′∥ ≤ ∆/c
and thus ∥q− q′∥ ≤ ∆/c, we get that dF (p q, p′ q′) ≤ ∆/c by Observation 2.1.1, and thus
dF (P [s, t], p′ q′) ≤ (1 + c−1)∆. Finally, ∥p′− q′∥ = ∥p− q∥ = λ and thus the point q′ lies
in Lλ,(1+c−1)∆(P, p

′), implying the claim.

We now prove a stronger version of Theorem 5.3.5, which allows us to analyze the
doubling constant of (µ, ε)-curves in Xd,k.

Lemma 5.3.12. Let k, µ, d ∈ N and ε > 0 be given. Further, let a (µ, ε)-curve P in
Xd,k be given, as well as ∆ > 0 and c ≥ 1. There is a family of curves CP ⊂ Xd,k

µε+∆/c

of size O(kµ(10c+ 3)d)k, such that for any (µ, ε)-curve Q with dF (P,Q) ≤ ∆ there is a
Q∗ ∈ CP with dF (Q,Q

∗) ≤ ∆/c.

Proof. We construct the set CP as follows. First, choose an element (m1, . . . ,mk−1) ∈
{1, . . . , µ}k−1. Next, choose one circle center of a cover of D∆(P (0)) consisting of O((2c+
1)d) many balls of radius r/c, which exists by Lemma 5.3.2. Iteratively choose one point
among the circle centers of a cover of N∆/c

(
Lmi−1ε,(1+c−1)∆(P, q

∗
i−1)

)
of Corollary 5.3.10,

consisting of O(k(10c + 3)d) many balls of radius r/c as the vertex q∗i of Q∗ for i ≤ k.
Then Q∗ ∈ Xd,k

µε+∆/c, as for any i the fact that q∗i lies in N∆/c

(
Lmi−1ε,(1+c−1)∆(P, q

∗
i−1)

)
implies that there is a point q ∈ Lmi−1ε,(1+c−1)∆(P, q

∗
i−1), with ∥q∗i−1 − q∥ = mi−1ε and

∥q − q∗i ∥ ≤ ∆/c. Hence, ∥q∗i − q∗i−1∥ ≤ m1ε + ∆/c ≤ µε + ∆/c. Accounting for all the
choices, we have that |CP | = O(kµ(10c+ 3)d)k.

Let Q be a given (µ, ε)-curve, with dF (P,Q) ≤ ∆. The curve Q consists of k−1 edges
and induces an ordered set (m1, . . . ,mk−1) ∈ {0, . . . , µ}k−1 representing the lengths of
the edges in order. Let q1, . . . , qk be the vertices of Q. For all 1 ≤ i ≤ k it holds that
qi ∈ Lmi−1ε,∆(P, qi−1), by construction.

As dF (P,Q) ≤ ∆, the first vertex q1 lies in D∆(P (0)), and thus there is a point q∗1 of
the cover of D∆(P (0)) consisting of balls of radius r/c that lies at distance at most ∆/c
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to q1. For every subsequent qi, by Lemma 5.3.11 and because qi ∈ Lmi−1ε,∆(P, qi−1),
qi ∈ N∆/c

(
Lmi−1ε,(1+c−1)∆(P, q

∗
i−1)

)
and thus there is a point q∗i of the ∆/c-cover of

N∆/c

(
Lmi−1ε,(1+c−1)∆(P, q

∗
i−1)

)
that is at distance at most ∆/c to qi. This implies that

there is an element Q∗ (defined by exactly this choice of points) in CP that has distance
ddF (Q,Q

∗) ≤ ∆/c and thus, by Observation 2.1.2, it holds that dF (Q,Q
∗) ≤ ∆/c.

With Lemma 5.3.12 at hand, Theorem 5.3.5 follows immediately.

Proof of Theorem 5.3.5. Let P be a (µ, ε)-curve in Xd,k and a value ∆ be given. By
Lemma 5.3.12, there is a family CP of curves of size O(kµ(43)d)k in Xd,k

µε+∆/4 ⊂ Xd,k, such
that for any (µ, ε)-curve Q with dF (P,Q) ≤ ∆ there is curve Q∗ in CP with dF (Q,Q

∗) ≤
∆/4. For any Q∗ ∈ CP , identify some (µ, ε)-curve Q̂∗ such that dF (Q∗, Q̂∗) ≤ ∆/4. If no
such element exists, ignore Q∗. Otherwise for any (µ, ε)-curve Q with dF (P,Q) ≤ ∆ there
is a curve Q∗ in CP with dF (Q,Q

∗) ≤ ∆/4, and thus by the triangle inequality, there is
a (µ, ε)-curve Q̂∗ with dF (Q, Q̂∗) ≤ ∆/2, proving the bounded doubling dimension.

Corollary 5.3.13. Let k, µ, d ∈ N and ε > 0. The doubling dimension of the space of
(µ, ε)-curves in Xd,k under the discrete Fréchet distance is bounded by O(k(d+log(kµ))).

Proof. This is a consequence of the proof of Lemma 5.3.12 and Theorem 5.3.5. By
Observation 2.1.2, for any two curves P andQ in Xd,k it holds that dF (P,Q) ≤ ddF (P,Q),
and thus any ∆-ball centered at a curve P under the discrete Fréchet distance is contained
in the ∆-ball under the continuous Fréchet distance. In the proof of Lemma 5.3.12 the
∆-ball is covered by ∆/2-balls under the discrete Fréchet distance, thus a proof similar
to that of Theorem 5.3.5 implies the claim.

5.3.3 Improvements for c-Packed Curves

In this section, we make the additional assumption that the curves in the space of (µ, ε)-
curves are c-packed, which leads to an improvement of the above bounds on the doubling
dimension.

Lemma 5.3.14. Let P ∈ Xd,k be a c-packed curve with complexity at most k. Let λ ≥ 0
and ∆ ≥ 0 be given. Then for every p ∈ Rd there are 2c = O(c) points p∗1, . . . , p

∗
2c ∈ Rd

such that

Lλ,∆(P, p) ⊂
2c⋃
i=1

D5∆(p
∗
i ).

Proof. Assume λ ≥ 5∆, as otherwise Lλ,∆(P, p) ⊂ D5∆(p) clearly holds, implying the
claim. For the sake of contradiction, assume that Lλ,∆(P, p) cannot be covered by 2c
balls of radius 5∆. This implies that there are at least 2c + 1 points {p1, . . .} =: P
in Lλ,∆(P, p) with a pairwise distance of at least 10∆. For any pi ∈ P, we know that
∥pi − p∥ = λ and there are values si < ti such that dF (P [si, ti], p pi) ≤ ∆. For any two
distinct pi, pj ∈ P, the points pi, pj and p form an isosceles triangle with side lengths
λ, λ and ∥pi− pj∥ ≥ 10∆. This implies that for any point q along p pi, the distance to pj
is at least 2∆. This means that tj cannot lie in the interval [si, ti] as ∥pj − P (tj)∥ ≤ ∆.
This in turn implies that all intervals [s1, t1], . . . are pairwise disjoint. We have thus
identified 2c + 1 disjoint (in the domain) subcurves of P with a total length of at least
(2c + 1)(λ − 2∆), contained in the ball Dλ(p). However, since λ ≥ 5∆, we have that
(2c + 1)(λ − 2∆) > cλ, contradicting the fact that P is c-packed. This in turn implies
the claim.

107



CHAPTER 5. (1 + ε)-ANN UNDER THE FRÉCHET DISTANCE

Corollary 5.3.15. Let k, µ, d ∈ N and c, ε > 0. The doubling constant of the space of
c-packed (µ, ε)-curves in Xd,k is bounded by O(43dcµ)k and thus its doubling dimension
is bounded by O(k(d+ log(cµ))).

Proof. This follows from a minor modification of Theorem 5.3.5 using Lemma 5.3.14.

5.4 Lower Bound for Doubling Dimension of (µ, ε)-Curves

In this section we want to show that the bound on the doubling dimension of O(k(d +
log(kµ))) is not too pessimistic. We begin with a straightforward argument which implies
a lower bound of Ω(d), before discussing the lower bound of Ω(k logµ), which results in
a lower bound of Ω(d+ k logµ).

The lower bound of Ω(d) follows trivially as the space of (µ, ε)-curves in Xd,1 consists
of every singleton in Rd and thus the doubling dimension of the (µ, ε)-curves in Xd,1 must
be at least that of Rd.

5.4.1 Lower Bound of Ω(k log µ)

In this section, we give a lower bound for the doubling dimension of both c-packed and
non-c-packed (µ, ε)-curves in Xd,k that shows the necessity of the factor µk in the bound
of the doubling constant. The construction we give is an adaptation of the construction
given in [DKS16] that shows an unbounded doubling dimension for the space (X1,3, dF ).

Lemma 5.4.1. Let d = 1. Given µ > 1, k ∈ N, and m ≤ k/2, we can construct a (µ, 1)-
curve C, of complexity k − 2m, and

(
(k−2m)µ

m

)
(µ, 1)-curves Gi, such that dF (C,Gi) ≤

1/2 for all i. Additionally, for all i ̸= j there is no (µ, 1)-curve X in Xd,k such that
dF (X,Gi) ≤ 1/4 and dF (X,Gj) ≤ 1/4.

The main intuition behind this proof is a variant of the main ingredient of the proof of
Theorem 5.2.1. Namely, we imagine a center curve C in R1 (refer to Figure 5.4) that goes
strictly to the right (in positive direction) for some length L. Modifying C by introducing
small zig-zags of length 1 results in a new curve G that has Fréchet distance 1/2 to C.
Importantly, any curve that has Fréchet distance 1/4 to G must also imitate the zig-zag
whenever G has a zig-zag. Now imagine there are two curves G and G′ resulting from
C by introducing m zig-zags each. The Fréchet distance of G and G′ may be 1/2, but
as long as the introduced zig-zags are sufficiently far from one another, any (µ, 1)-curve
that has Fréchet distance ≤ 1/4 to G has Fréchet distance > 1/4 to G′. Conversely, we
also show that there is also no (µ, 1)-curve M such that {G,G′} ⊂ D1/4(M).

Proof of Lemma 5.4.3. Define C via the points (c1, . . . , ck−2m+1), where ci = (i−1)µ for
i ∈ [k−2m+1]. We now identify a large set of curves such that no two distinct elements
of this set are at a distance at most 1/4 to any (µ, 1)-curve in X1,k. For this, choose an
ordered subset (n1, . . . , nm) ⊂ {0, . . . , (k− 2m)µ− 1}. There are

(
(k−2m)µ

m

)
such choices.

Based on the choice, we construct a curve G(n1,...,nm) from C by first cutting m + 1
pieces C0, . . . , Cm from C, where C0 goes from 0 to n1 + 1, Ci from ni to ni+1 + 1 for
i ∈ [m], and Cm from nm to ((k − 2m)µ). For i ∈ [m − 1], construct curves Ti defined
by two vertices si = (ni + 1), ti = (ni). Then, retrieve G(n1,...,nm) via the concatenation
C0 ⊕ T1 ⊕ C1 ⊕ · · · ⊕ Tm ⊕ Cm. The set of curves constructed in this way forms the
sought-after large set of curves. We show that G(n1,...,nm) consists of k edges. For this
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C

G(2,6,10)

G(5,7,12)

N

Figure 5.4: Illustration of the construction from Lemma 5.4.1 of two (5, 1)-curves G(2,6,10)

and G(5,7,12) in X1,9 that have Fréchet distance 1/2 to the center curve C at the top.

we show that every cut introduces 2 new edges. If neither ni nor ni + 1 are vertices of
C, then we are done, so assume that ni is a vertex of C. Then we introduce exactly two
new edges: one from (ni) to (ni +1) and one from (ni +1) to (ni). Similarly, if ni +1 is
a vertex of C, we also introduce two new edges, one from (ni + 1) to (ni) and one from
(ni) to (ni + 1). Observe that dF (C,G(n1,...,nm)) = 1/2, as C goes to the right, whereas
G(n1,...,nm) follows C except in the introduced pieces Ti, where it goes left for a distance
of 1.

Let X be a curve that has Fréchet distance at most 1/4 to some curve G = G(n1,...,nm)

constructed above. Let ni ∈ (n1, . . . , nm). Then the vertex si = (ni + 1) and ti = (ni)
define the connecting piece Ti between Ci−1 and Ci of G. Now, X has to first enter the
interval [ni + 3/4, ni + 5/4] and then [ni − 1/4, n1 + 1/4]. As these two intervals are
disjoint and ni < ni + 1, the first interval lies to the right of the second interval. By
construction, the vertex of G before si also lies to the left of ti. Similarly, the vertex
after ti lies to the right of si. Hence, X has a vertex to the left of ti, then a vertex in
[ni + 3/4, ni + 5/4], then a vertex inside [ni − 1/4, ni + 1/4], and subsequently a vertex
to the right of si. Thus, a curve X also has to go to the left near ni + 1. Note that as
every edge of X has to have a length which is a multiple of 1, any curve that does not
go left near ni + 1 has to have a Fréchet distance of at least 1/2 to X. This has to hold
for all ni ∈ (n1, . . . , nm). Since for any two distinct such constructed curves, there is a
point where one travels to the left while the other does not, this then implies the claim
as there are

(
(k−2m)µ

m

)
such constructed curves.

Corollary 5.4.2. For d = 1 and given µ and k, the doubling dimension of the space of
(µ, 1)-curves in Xd,k is in Ω(k logµ).

Proof. Lemma 5.4.1 with m← k/3 implies the claim as(
(k/3)µ

k/3

)
≥ ((k/3)µ)(k/3)

(k/3)(k/3)
= Ω

(
µ(k/3)

)
.

Theorem 5.4.3. For d = 1 and given µ, k, and ε > 0, the doubling dimension of the
space of (µ, ε)-curves in Xd,k is in Ω(d+ k logµ).

Proof. This is a consequence of Corollary 5.4.2 and the trivial Ω(d) lower bound.

Corollary 5.4.4. For d = 1, c ≥ 6 and given µ, k, and ε > 0, the doubling dimension
of the space of c-packed (µ, ε)-curves in Xd,k is in Ω(d+ k logµ).

Proof. Observe that the constructed curves are 6-packed. Thus, Theorem 5.4.3 implies
the claim.
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5.5 Approximate Nearest Neighbor

[HPM06] showed that one can construct a (1 + ε)-ANN data structure in metric spaces
of bounded doubling dimension.

Theorem 5.5.1 ([HPM06]). Given a set S of n points in a metric space M of bounded
doubling dimension ν, one can construct a data structure for answering (1 + ε)-ANN
queries. The query time is 2O(ν) log n+ε−O(ν), the expected preprocessing time is bounded
by 2O(ν)n log n and the space used is 2O(ν)n.

A careful reading reveals an important specification for our purposes, namely that
the doubling dimension is that of the n-point metric space defined by S induced by the
metric of M and not the doubling dimension of the entire metric space M. Note that
by Lemma 5.5.2 the doubling dimension of the metric space induced on the subset is
at most twice the doubling dimension of the ambient space. For an example where the
doubling dimension increases, refer to Figure 5.5.

Lemma 5.5.2. Let (M,dM) be a metric space, and let S be some subset of M. Then
the doubling dimension of (S, dM) is at most twice the doubling dimension of (M, dM).

Proof. Let ν be the doubling dimension of M. Let s ∈ S and r > 0 be given and let
DS

r (s) ⊂ S be the ball in S, of radius r and centered at s, i.e., DS
r (s) = DM

r (s) ∩ S.
The ball DM

r (s) can be covered by (2ν)2 balls of radius r/4. For any such ball, check
if the intersection with S is nonempty. If this is the case, pick some element from this
intersection, and center a ball in S of radius r/2 around it. Clearly, any such larger
ball contains the intersection of the smaller ball with S. Therefore, DS

r (s) is contained
in the union of at most (2ν)2 balls of radius r/2 in S, which implies the claim, as
log2((2

ν)2) = 2ν.

By Theorem 5.3.5, we know that the doubling dimension of the space of (µ, ε)-curves
in Xd,k is bounded. We further know that for any ε > 0 we can map any curve of
Xd,k
Λ into the space of (⌈Λ/ε⌉ + 1, ε)-curves in Xd,k with a distortion of at most ε/2, by

Lemma 5.2.3. Hence, Theorem 5.5.1 together with Lemma 5.5.2 imply Theorem 5.1.1,
a central piece to constructing a data structure solving the (1 + ε)-ANN problem for
polygonal curves under the Fréchet distance.

Theorem 5.1.1. Given a set S of n polygonal curves in Xd,k
Λ and parameters ε ∈ (0, 1]

and ε′ > 0, one can construct a data structure that for given q ∈ Xd,k outputs an element
s∗ ∈ S such that for all s ∈ S it holds that dF (s∗, q) ≤ (1+ε)dF (s, q)+ε

′. The query time
is O

(
2O(d)k(1 + Λ/ε′)

)k
log n + O

(
2O(d)k(1 + Λ/ε′)

)−k log(ε), the expected preprocessing
time is O

(
2O(d)k(1 + Λ/ε′)

)k
n log n and the space used is O

(
2O(d)k(1 + Λ/ε)

)k
n.

Proof. Define ε̂ = ε′/2. Let µ = ⌈Λ/ε̂⌉ + 1 = Θ(1 + Λ/ε′). We begin by simplifying
every polygonal curve s ∈ S via Lemma 5.2.3, resulting in a set S′ of (µ, ε̂)-curves. This
takes O (log(µ)nk) time. As S′ lies in the space of (µ, ε̂)-curves, the doubling dimension
of the set S′ with the Fréchet distance is bounded by ν = O(k(d+ log(k(1+Λ/ε′)))) via
Theorem 5.3.5 and Lemma 5.5.2. Note that for every s ∈ S and its simplification s′ ∈ S′

it holds that dF (s, s
′) ≤ ε̂/2. We apply Theorem 5.5.1 to the set S′ and ε. Note that

Theorem 5.5.1 assumes that the distance between any two points in the metric space of
(µ, ε)-curves can be computed in O(1) time. The computation of the continuous Fréchet
distance takes polynomial time in k which is dominated by 2k and hence the running

110



CHAPTER 5. (1 + ε)-ANN UNDER THE FRÉCHET DISTANCE

DR
1,2(0)

DR
0.6(−0.6) ∪DR

0.6(0.6) = DR
0 (1.2)

DZ
1.2(0) = {−1, 0, 1}

DZ
0.6(−1) ∪DZ

0.6(0) ∪DZ
0.6(1) = {−1} ∪ {0} ∪ {1}

Figure 5.5: Example of a subset Z of the metric space R whose doubling dimension is
larger than that of its ambient space. The disk centers are marked by circles.

time is as claimed. We then query the data structure with q, returning an element ŝ′
such that for every s′ ∈ S′ it holds that dF (q, ŝ′) ≤ (1 + ε)dF (q, s

′). Lastly, the element
of S returned by the data structure will be the element ŝ ∈ S which corresponds to ŝ′.
We then get for every s ∈ S that

dF (q, ŝ) ≤ dF (q, ŝ′) + ε̂/2 ≤ (1 + ε)dF (q, s
′) + ε̂/2 ≤ (1 + ε)(dF (q, s) + ε̂/2) + ε̂/2

≤ (1 + ε)dF (q, s) + ε̂+ εε̂/2 = (1 + ε)dF (q, s) + ε̂(1 + ε/2)

≤ (1 + ε)dF (q, s) + ε′.

To get rid of the additive error, we want to set ε′ to O(mins ̸=s′∈S dF (s, s
′)). As ε′

impacts the running time, we reformulate the running time in terms of the spread.

Lemma 5.5.3. Given a set of curves S ∈ Xd,k with pairwise non-zero Fréchet distance,
then

G(S)−1 = O(Φ(S))
where Φ(S) denotes the spread of the set of vertices and edges of curves in S.

Proof. Note that the Fréchet distance between two curves P and Q is approximated up
to a constant by the Euclidean distance of either one vertex of P and one vertex of Q or
the Euclidean distance of a vertex and an edge (one of P and one of Q) as sets. Thus

min
s ̸=s′∈S

dF (s, s
′) = Ω

 min
o,o′∈V (S)∪E(S)

d(o,o′)>0

d(o, o′)


where V (S) denotes the set of vertices and E(S) denotes the set of edges defining the
curves in S. Further note that as the length of any edge of a curve s in S is defined as
the distance of two vertices defining s. As such, observe that

max
s∈S,e∈E(s)

∥e∥ ≤ max
p,q∈V (S)

d(p, q) ≤ max
o,o′∈V (S)∪E(S)

d(o, o′).

Thus the claim follows.

Theorem 5.1.4. Given a set S of n polygonal curves in Xd,k and ε ∈ (0, 1], one can
construct a data structure answering (1 + ε)-approximate nearest neighbor queries. The
query time is F (d, k, S, ε) log n + F (d, k, S, ε)− log(ε), the expected preprocessing time is
F (d, k, S, ε)n log n and the space required for the data structure is at most F (d, k, S, ε)n,
where F (d, k, S, ε) = O

(
2O(d)k(1 + G(S)−1ε−1)

)k.
111



CHAPTER 5. (1 + ε)-ANN UNDER THE FRÉCHET DISTANCE

Proof. Let ε′ = ε/4 and ε′′ = ε′
(
mins ̸=s′∈S dF (s, s

′)
)
. Let E(S) be the set of edges of

curves in S and let further Λ = maxe∈E(S) ∥e∥, thus clearly S ⊂ Xd,k
Λ . We then apply

Theorem 5.1.1 with ε′ and ε′′ resulting in the described data structure. Let q ∈ Xd,k

be given. Let s∗ be the element in S minimizing the distance to q. Querying the data
structure with q results in an element ŝ with the the property that

dF (q, ŝ) ≤ (1 + ε′)dF (q, s
∗) + ε′

(
min

s̸=s′∈S
dF (s, s

′)

)
.

Assume first that (2 + ε′)dF (q, s
∗) < (1− ε′)mins ̸=s′∈S dF (s, s

′). Then for every s′ ̸= s∗

we know that

dF (q, s
′) ≥ dF (s

∗, s′)− dF (q, s
∗) ≥ min

s ̸=s′∈S
dF (s, s

′)− dF (q, s
∗)

> (1− ε′)
(

min
s ̸=s′∈S

dF (s, s
′)

)
+ ε′

(
min

s ̸=s′∈S
dF (s, s

′)

)
− dF (q, s

∗)

= (1 + ε′)dF (q, s
∗) + ε′

(
min

s̸=s′∈S
dF (s, s

′)

)
and thus ŝ = s∗, implying dF (q, ŝ) ≤ (1 + ε)dF (q, s

∗).
If instead (2 + ε′)dF (q, s

∗) ≥ (1− ε′)mins ̸=s′∈S dF (s, s
′), then we observe that

dF (q, ŝ) ≤ (1 + ε′)dF (q, s
∗) + ε′

(
min

s ̸=s′∈S
dF (s, s

′)

)
≤ (1 + ε′)dF (q, s

∗) + ε′
(
2 + ε′

1− ε′

)
dF (q, s

∗).

Now since ε ≤ 1, we know that ε′ ≤ 1/4 and thus 2+ε′

1−ε′ ≤ 3. This then concludes the
case-distinction, as

dF (q, ŝ) ≤ (1 + ε′)dF (q, s
∗) + ε′

(
2 + ε′

1− ε′

)
dF (q, s

∗)

≤ (1 + 4ε′)dF (q, s
∗) = (1 + ε)dF (q, s

∗).

For the claimed bound of the running time, observe that Λ/mins ̸=s′∈S dF (s, s
′) = G(S)−1.

Hence, as ε′ = Θ(ε) and ε′′ = Θ(ε
(
mins ̸=s′∈S dF (s, s

′)
)
), the preprocessing time, query

time, and space is as claimed.

Corollary 5.1.5. Given a set S of n polygonal curves in Xd,k and ε ∈ (0, 1] one can
construct a data structure answering (1 + ε)-approximate nearest neighbor queries. The
query time is F (d, k, S, ε) log n + F (d, k, S, ε)− log(ε), the expected preprocessing time is
F (d, k, S, ε)n log n and the space required for the data structure is at most F (d, k, S, ε)n,
where F (d, k, S, ε) = O

(
2O(d)kΦ(S)ε−1

)k, where Φ(S) denotes the spread of the set of
vertices and edges of the curves in S.

Proof. The spread of any collection of sets is at least 1, implying that (1 + Φ(S)ε−1) =
O(Φ(S)ε−1). Thus, the claim is a consequence of Theorem 5.1.4 and Lemma 5.5.3.
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Chapter 6

The k-Shortcut Fréchet Distance

In this chapter we study the k-shortcut Fréchet distance and whether we can design
efficient exact and approximate algorithms for its computation.

The main content of this chapter previously appeared as the paper On Computing
the k-Shortcut Fréchet Distance [CD24] by Jacobus Conradi and Anne Driemel, which
was published in the journal ACM Transactions on Algorithms. An extended abstract
was also published in the Proceedings of the 49th EATCS International Colloquium on
Automata, Languages and Programming (ICALP 2022) [CD22].

6.1 Introduction

The shortcut Fréchet distance was introduced in [DHP12], in which a near-linear time
(3 + ε)-approximation algorithm for the class of c-packed curves was given. However,
they only consider shortcuts that start and end at vertices of the base curve. In the
unrestricted setting, where shortcuts are allowed to start and end anywhere along the
curve, [BDS14] presented a 3-approximation algorithm for the decision variant—i.e.,
decide whether dS(P,Q) ≤ ∆ for given curves P and Q, and value ∆—with running
time in O(n3 log n). They complemented this result with a construction showing that
solving the decision variant exactly is NP-hard via a reduction from SUBSET-SUM.
Prior to our work, exact algorithms for the shortcut Fréchet distance dS(·, ·) and the
parametrized k-shortcut Fréchet distance dkS(·, ·) with unrestricted shortcuts had not
been studied. Obtaining the exact algorithm was surprisingly simple, once the relevant
techniques were combined in the right way.

6.1.1 Results

In Section 6.3, we present an exact algorithm for deciding whether the k-shortcut Fréchet
distance is smaller than a given threshold ∆. This algorithm extends to the non-
parameterized variant by setting k = n − 1. Our first main result is the following
theorem.

Theorem 6.1.1. Let T and B be two polygonal curves in the plane with overall com-
plexity n, together with a value ∆ > 0. There exists an algorithm with running time in
O
(
kn2k+2 log n

)
and space in O

(
kn2k+2

)
that decides whether dkS(B, T ) ≤ ∆.

As the k-shortcut Fréchet distance is directional, that is, dkS(P,Q) is obtained by
introducing shortcuts to P only, we will refer to the curve to which we introduce shortcuts
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as the base curve B, and the other curve is called the target curve T . Deciding whether
dkS(B, T ) ≤ ∆ can be thought of as modifying the base curve to look (up to ∆) like the
target curve.

Recall that the classical algorithm for the decision problem of the Fréchet distance
scans the ∆-free space one cell at a time from bottom left to top right, computing the
set of points in each cell that is reachable via a monotone path starting at (0, 0). We will
extend this algorithm by scanning the ∆-free space a total of k + 1 times. In the initial
round we will simply proceed as in the classical algorithm computing the set of points
reachable by a monotone path. In the ith round we consider the points reachable in the
∆-free space when we are allowed to modify the curve B by i shortcuts. Shortcuts take
the form of ‘hops’ or ‘tunnels’ in the ∆-free space which allow reaching new, previously
unreachable points. In the ith round we compute the set of points reachable by exactly
i such tunnels based on the set of points reachable in the previous round. To compute
the set of points reachable by a tunnel, we make use of so-called line-stabbing wedges
introduced in [GHMS94] as was employed in the approximate decision algorithm for the
shortcut Fréchet distance in [BDS14].

Our algorithm has exponential running time. Specifically, the subset of points of
some cell reachable by exactly s shortcuts may fragment into roughly ns components.
This fragmentation may propagate to cells in later rounds, resulting in a running time
of O

(
kn2k+2 log n

)
. In Section 6.4, we give evidence that this high complexity due to

fragmentation is not an artifact of our algorithm, but may be inherent to the problem
itself. For this, we assume that the exponential time hypothesis (ETH) holds, which
states that 3-SAT in n variables cannot be solved in 2o(n) time [IP99]. We obtain the
following conditional lower bound:

Theorem 6.1.2. Unless ETH fails, there is no algorithm for the k-shortcut Fréchet
distance decision problem in Rd for d ≥ 2 with running time no(k).

Our conditional lower bound of Theorem 6.1.2 is obtained via a reduction from a
variant of the k-SUM problem, called k-Table-SUM. In this problem one is given k sets
of integers A1, . . . , Ak and a target values σ and is asked to produce ai ∈ Ai such that∑

i ai = σ. We construct two curves B and T for a given k-Table-SUM instance such
that d4k+2

S (B, T ) = 1 iff the k-Table-SUM instance has a solution. Our construction is
based on the NP-hardness reduction presented in [BDS14]. Their construction reduces
SUBSET-SUM to the decision of whether the shortcut Fréchet distance between two
curves is at most 1. SUBSET-SUM is related to the k-Table-SUM problem in that it
asks for a single set A and target value σ whether there is a subset S ⊂ A such that∑

a∈S a = σ. Their construction implicitly encodes partial solutions for the SUBSET-
SUM instance as reachable intervals on the edges of one of the curves. Via an intricate
construction of a ‘choice gadget’, every fourth shortcut corresponds to the binary choice
of whether an item from A should be added to S. This leads to a number of shortcuts
linear in the number of items in A. We instead give a new construction for this ‘choice
gadget’ such that every fourth shortcut is instead presented with n choices instead, where
the jth option corresponds to selecting the jth item from some Ai.

In light of the above results, it is interesting to consider approximation algorithms
and realistic input assumptions for this problem. In Section 6.5, we show that there is
an efficient approximation algorithm for the decision problem. If we assume the input
curves to be c-packed, we obtain a near-linear time algorithm for constant k:
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Theorem 6.1.3. Let T and B be two c-packed curves in the plane with overall complexity
n, together with values ε ∈ (0, 1] and ∆ > 0. There exists an algorithm with running
time in O

(
kcnε−5 log2

(
nε−1

))
and space in O

(
kcnε−4 log2

(
nε−1

))
which outputs one

of the following: (i) dkS(B, T ) ≤ (3 + ε)∆ or (ii) dkS(B, T ) > ∆. In any case, the output
is correct.

In general, any curve of complexity n is c-packed for some c ≤ 2n. Thus, the theorem
also implies a running time of O

(
kn2ε−5 log2

(
nε−1

))
for any two curves in the plane.

The main ingredient in the approximation algorithm is a central property of tunnels
originally observed in [DHP12]. They show that for a 3-approximation, it suffices to
propagate the reachable points by (i − 1) tunnels to a cell in the ith round of the algo-
rithm from only a single point. This completely negates the observed propagation of the
fragmentation. To improve the running time, we consider an approximation of the line-
stabbing wedge which we obtain via a data structure from [DHP12] answering distance
queries of the form dF (p q, T [s, t]) for line segments defined by p, q ∈ Rd and subcurves
of T defined by 0 ≤ s ≤ t ≤ 1 efficiently. We combine this approximate line-stabbing
wedge with the property of c-packed curves that the complexity of the free space diagram
of two c-packed curves is only linear in cn when the curves are appropriately simplified.
This property was originally observed in [DHW12]. We discussed variants of this result
in Section 4.4.3.

6.2 Preliminaries

In the following, we will usually fix two curves T and B for which we want to decide
whether dkS(B, T ) ≤ ∆. We may omit T and B when referring to the ∆-free space,
writing D∆ instead of D∆(B, T ). We begin by making the aforementioned concepts of
tunnels and the reachable space when introducing s shortcuts more concrete.

Definition 6.2.1 (Reachable Space). We define the (∆, s)-reachable free space of B and
T as

R∆,s(B, T ) = {(xp, yp) ∈ [0, 1]2 | dsS(T [0, xp], B[0, yp]) ≤ ∆}.
We denote the intersection of R∆,s(B, T ) with the cell Ci,j corresponding to edge i and
j of T and B respectively, by R(i,j)

∆,s (B, T ) = R∆,s(B, T ) ∩ Ci,j . We call the intersection

R(i,j)
∆,s (B, T )∩Ca,b for any (a, b) ∈ {(i− 1, j), (i, j − 1), (i+1, j), (i, j +1)} a reachability

interval of the cell Ci,j . In particular for (a, b) ∈ {(i − 1, j), (i, j − 1)} we call them
incoming reachability intervals and for (a, b) ∈ {(i+1, j), (i, j+1)} we call them outgoing
reachability intervals.

We will write R∆,s and R(i,j)
∆,s whenever T and B are fixed. Observe that the reach-

ability intervals for every cell Ci,j and s are contained in the boundary set ∂Ci,j , and
each reachability interval is described by a (possibly empty) single interval, since any
two points in the reachability interval can be connected via a monotone path that stays
inside the ∆-free space.

Definition 6.2.2 (Tunnel). A tunnel τ(p, q) is a pair of points p = (xp, yp) and q =
(xq, yq) in the parametric space of B and T , with xp ≤ xq and yp ≤ yq. τ(p, q) is called
feasible if p and q are in D∆. We say that a tunnel is proper, if the endpoints of the
shortcut do not lie on the same edge of B. We say a tunnel has a price prc(τ(p, q)) =
dF (T [xp, xq], B[yp, yq]). Refer to Figure 6.1.
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B

T

p

q

T (px)

B(py)

T (qx)

B(qy)

T

B

Figure 6.1: Free space diagram for a base curve B and a target curve T . The figure
shows a feasible proper tunnel τ(p, q). The shortcut B[py, qy] is shown in purple, and the
subcurve T [px, py] in green. The price of τ(p, q) is the Fréchet distance of the shortcut
and the subcurve.

When considering any k-shortcut curve B′ of B and any traversal (f, g) of B′ and T
with associated cost ∆, then (f, g) induces traversals (f ′, g′) with associated cost at most
∆ on every shortcut B[s, t] and some corresponding subcurve T [u, v] of T . In particular,
τ((u, s), (v, t)) has price at most ∆. Thus there is a correspondence between monotone
paths in the ∆-free space augmented by s tunnels and R∆,s. The k-shortcut Fréchet
distance of T and B is at most ∆ if and only if (1, 1) ∈ R∆,k(B, T ). We observe that
similar to the classical decision problem of the Fréchet distance, the problem of deciding
whether the k-shortcut Fréchet distance is at most ∆ reduces to the problem of finding a
monotone path augmented with tunnels in the free space diagram starting at (0, 0) and
ending at (1, 1).

Observe that any tunnel τ(p, q) with p = (xp, yp) and q = (xq, yq) that is not proper
induces a traversal of B[yp, yq] = B[yp, yq] and T [xp, xq]. Thus we can omit the tunnel
from any monotone path augmented by it and replace it with a monotone path from p
to q in D∆. Therefore it suffices to only consider monotone paths with proper tunnels.

Definition 6.2.3 (Monotone Path with Tunnels). A monotone path with k proper tun-
nels in the ∆-free space of two curves consists of k + 1 monotone (in x and y) paths in
the ∆-free space from si to ti for i ∈ [k + 1], where s1 = (0, 0), ti lies to the left and
below si+1 for i ∈ [k], and the tunnels τ(ti, si+1) are proper for i ∈ [k].

Observation 6.2.4. Let T and B be two polygonal curves. The set R∆,s(B, T ) is exactly
the set of points p ∈ D∆(B, T ) such that there exists a monotone path with at most s
proper tunnels ending in p, where each tunnel has price at most ∆.

A cell is reachable via a tunnel τ((px, py), (qx, qy)) only if the tunnel has price at most
∆. By definition, the tunnel has price at most ∆ iff dF (T [xp, xq], B[yp, yq]) ≤ ∆. And
dF (T [xp, xq], B[yp, yq]) ≤ ∆ if B(yp)B(yq) ‘stabs through’ the ordered set of ∆-disks
centered at the vertices of T [xp, xq]. This is formalized via the notion of an ordered
stabber (and line-stabbing wedge) as defined in [GHMS94] (compare Definition 5.3.3):

Definition 6.2.5 (Line-Stabbing Wedge). For a sequence O1, . . . , On of convex objects,
an ordered stabber of the sequence is a line segment l(x) = (1 − x)s + xt from s to t
such that points 0 ≤ x1 ≤ x2 ≤ . . . ≤ xn ≤ 1 exist with pi = l(xi) ∈ Oi. We call pi the
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O1

O2

O3

O4

O5

O6

Figure 6.2: Illustration of the line-stabbing wedge for a line segment O1 and disks
O2, . . . , O6. The line-stabbing wedge is shown in gray, with its boundary in blue.

realizing points of l. We say that l stabs through O1, . . . , On. We call the set of points
t that are endpoints of ordered stabbers of O1, . . . , On the line-stabbing wedge of this
sequence.

[GHMS94] provided an algorithm to compute the line-stabbing wedge for a sequence
of n unit-disks and convex polygons of constant size, with running time O(n log n).
This line-stabbing wedge is described by O(n) circular arcs, polygonal chains, and two
tangents that go to infinity (see Figure 6.2). The following observation is morally the
same as Observation 5.3.4.

Observation 6.2.6. Let B, T and ∆ be given. Let v1, . . . , vn be the vertices of T . For
any feasible tunnel τ(p, q) with p = (xp, yp) ∈ Ca,b and q = (xq, yq) ∈ Ci,j, it holds that
B[yp, yq] stabs through the ordered set {D∆(va+1), . . . ,D∆(vi)}, iff prc(τ(p, q)) ≤ ∆.

6.3 Exact Decider Algorithm

In this section we describe an exact decider algorithm for the k-shortcut Fréchet distance
for two polygonal curves. In Section 6.3.1, we describe the algorithm before analyzing
its correctness and running time in Section 6.3.2.

6.3.1 Description of the Algorithm

The input of the algorithm is the parameter k, a value ∆, and the two polygonal curves
T and B in the plane with n1 and n2 edges respectively. The algorithm iterates over the
∆-free space of B and T in k + 1 rounds. In round s we compute the set of points that
are reachable by a monotone path with s proper tunnels, based on the points that are
reachable by a monotone path with s−1 proper tunnels computed in the previous round.
In each round, we handle the cells of the free space diagram in a row-by-row order, and
within each row from left to right. For every cell Ci,j we consider three possible ways
that a monotone path with proper tunnels can enter.

1. A monotone path can enter the cell Ci,j from the neighboring cell Ci−1,j to the left
or from the neighboring cell Ci,j−1 below. This does not directly involve a tunnel.
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a) N s
i,j b) V s

i,j c) Q(Ds
i,j) ∩ D(i,j)

δ d) Q(N s
i,j ∪Ds

i,j ∪ V s
i,j) ∩ D(i,j)

δ

I

Figure 6.3: Example of the composition of the reachable space within a free space cell.
The fragmentation of the reachable space in this cell P s

i,j = Q(N s
i,j ∪Ds

i,j ∪ V s
i,j) ∩ D

(i,j)
∆

results in a large family of intervals I when projecting P s
i,j onto the edge ei of B, which

occurs when computing P s+1
k,l for some i < k and j < l.

2. A monotone path can reach Ci,j with a proper tunnel. We distinguish between
vertical and diagonal tunnels (compare [BDS14, DHP12] for a similar distinction).

(i) The tunnel may start in any cell Ca,b with a < i and b < j. We call this a
diagonal tunnel.

(ii) The tunnel may start in any cell Ci,b for b < j. We call this a vertical tunnel.

Note that we do not consider horizontal tunnels starting in a cell Ca,j with a < i,
since we only consider proper tunnels. Using this distinction of diagonal and vertical
tunnels, we will describe how to compute the set of points reachable by a monotone path
with s proper tunnels, for each cell. We denote the set computed by the algorithm for
cell Ci,j in round s with P s

i,j . The (∆, s)-reachable space corresponds to the union of

these sets over all rounds R(i,j)
∆,s =

⋃
0≤s′≤s P

s′
i,j .

To simplify the description of the algorithm, we use the following set function which
receives a set P ⊆ Ci,j for some cell Ci,j and extends P to all points above and to the
right of it:

Q(P ) = {(x, y) ∈ [0, 1]2 | ∃(a, b) ∈ P such that a ≤ x and b ≤ y}.

We usually intersect this set with D(i,j)
∆ to obtain all points that are reachable from a

point of P by a monotone path that stays inside the ∆-free space of this cell. Figure 6.3
c) shows an example of the resulting set. Note that the boundary of the resulting set
can be described by pieces of the boundary of D(i,j)

∆ , pieces of the boundary of P , and
horizontal and vertical line segments.

Now for the algorithm, initially define P 0
1,1 = D(1,1)

∆ , if (0, 0) ∈ D∆, and otherwise
P 0
1,1 = ∅. Next, consider some cell Ci,j in some round s in which we compute P s

i,j . We
describe the three subroutines with which we compute P s

i,j :

Step 1: Neighboring Cells Since we traverse the cells of the diagram in a lexico-
graphical order, we have already computed the (possibly empty) sets P s

i−1,j and P s
i,j−1 by

the time we handle cell Ci,j in round s. Therefore, we compute the incoming reachability
intervals by intersecting P s

i−1,j and P s
i,j−1 with Ci,j . We then apply the function Q to

the union of these sets (refer to Figure 6.3 a)) obtaining

N s
i,j = Q

(
P s
i−1,j ∩ Ci,j) ∪ (P s

i,j−1 ∩ Ci,j)
)
∩ D(i,j)

∆ .
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s t
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W
T

B

∆

Figure 6.4: Example of the set J (in red) computed by the diagonalTunnel procedure.

Step 2 (i): Diagonal Tunnels (only for s ≥ 1) We invoke the following procedure
for every a < i and b < j with P s−1

a,b .

The procedure is given a set of points P s−1
a,b in the ∆-free space D(a,b)

∆ and computes all

points in D(i,j)
∆ that are endpoints of tunnels starting in P s−1

a,b with price at most ∆. The
procedure first projects P s−1

a,b onto the edge eb of the base curve. The resulting set consists
of disjoint line segments I = {s1 t1, . . .} along eb (refer to Figure 6.3 d) ). The procedure
then computes the line-stabbing wedge W through s1 t1 and disks D∆(va+1), . . . ,D∆(vi)
centered at vertices of T . The wedge W is then intersected with the edge ej , resulting
in a set J on ej corresponding to a horizontal slab in Ci,j (compare Figure 6.3 c) and
Figure 6.4 ). This resulting set is intersected with D(i,j)

∆ obtaining all endpoints of feasible
shortcuts with price at most ∆ starting in s1 t1. The procedure performs the above steps
for every line segment s t ∈ I and returns the union of these sets. An illustration of the
resulting set can be found in Figure 6.3 c). Repeating this procedure for every a < i and
b < j and taking the union over all resulting sets of points results in a subset of D(i,j)

∆

which we refer to as Ds
i,j .

Step 2 (ii): Vertical Tunnels (only for s ≥ 1) Let p be a point in
⋃

l≤j−1 P
s−1
i,l with

minimal x-coordinate. A feasible vertical tunnel always has price at most ∆. Hence,
we compute the intersection of a halfplane that lies to the right of the vertical line at p
with the ∆-free space in Ci,j . We denote this set with V s

i,j . Refer to Figure 6.3 b) for an
example.

Putting It All Together We compute the set P s
i,j by taking the union of the computed

sets and extending this set by using the function Q defined above:

P s
i,j = Q(N s

i,j ∪Ds
i,j ∪ V s

i,j) ∩ D
(i,j)
∆ .

After the (k + 1)th round we have computed P s
i,j for every i ∈ [n1], j ∈ [n2] and 0 ≤

s ≤ k. We check if (1, 1) is in any P s
n1,n2

and if so, output that (1, 1) is in R∆,s, i.e.,
dkS(B, T ) ≤ ∆, and dkS(B, T ) > ∆ otherwise.
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6.3.2 Analysis

We now analyze the described algorithm. We begin by showing that the described rou-
tines correctly compute points reachable by diagonal and vertical tunnels before analyzing
the correctness and running time of the entire algorithm.

Correctness

We argue that the structure of the sets P s
i,j computed by the algorithm is as claimed.

That is, for all i, j, and s, it holds that R(i,j)
∆,s =

⋃
0≤s′≤s P

s′
i,j .

Lemma 6.3.1. Let T and B be two polygonal curves with n1 and n2 edges respectively.
For any i ∈ [n1], j ∈ [n2] and s ∈ [k] let Ds

i,j be the set of endpoints of diagonal tunnels,
as computed in the algorithm described in Section 6.3.1, and let R =

⋃i−1
a=1

⋃j−1
b=1 P

s−1
a,b be

the set of reachable points by exactly s − 1 proper tunnels in the lower-left quadrant of
Ci,j. For any q ∈ Ci,j the tunnel τ(p, q) has price prc(τ(p, q)) ≤ ∆ for some p ∈ R if
and only if q ∈ Ds

i,j.

Proof. First let a and b be fixed and look at P = P s−1
a,b . The diagonal tunnel procedure

begins by projecting P onto the edge eb of B, resulting in I. By the correctness of
the procedure computing the line-stabbing wedge presented in [GHMS94], the diagonal
tunnel procedure computes among other things the set of points in R2 that are endpoints
of stabbers through I and D∆(va+1), . . . ,D∆(vi) centered at vertices of T . Intersecting
this set with ej results in all endpoints of stabbers through the ordered set ending on
ej . Call this set J . For every point B(yq) in J there is at least one point B(yp) in I,
such that B[yp, yq] stabs through {D∆(va+1), . . . ,D∆(vi)}. Hence, by Observation 6.2.6,
every point p ∈ D(a,b)

∆ with y-coordinate yp and every point q ∈ D(i,j)
∆ with y-coordinate

yq form a feasible tunnel τ(p, q) with price at most ∆.
Conversely, since the line-stabbing algorithm correctly computes all possible end-

points of stabbers starting in I and ending on ej , Observation 6.2.6 implies that any q
such that there exists p ∈ R with prc(τ(p, q)) ≤ ∆ also must be in Ds

i,j . As the algorithm
iterates over all cells in the lower-left quadrant of Ci,j and in the end defines Ds

i,j as the
union of above computed sets, the claim follows.

Lemma 6.3.2. Let T and B be two polygonal curves with n1 and n2 edges, respectively.
For any i ∈ [n1], j ∈ [n2] and s ∈ [k] let V s

i,j be the points reachable by a vertical tunnel
as computed in the algorithm and let R =

⋃j−1
b=1 P

s−1
i,b be the set of reachable points by

exactly s− 1 proper tunnels in the column below Ci,j. For any q ∈ Ci,j the tunnel τ(p, q)
has price prc(τ(p, q)) ≤ ∆ for some p ∈ R if and only if q ∈ V s

i,j.

Proof. Note that any vertical tunnel costs at most ∆ if it is feasible by Observation 2.1.1.
Let p be the leftmost point in R. Now assume τ(r, q) is an arbitrary vertical tunnel with
r ∈ R and q ∈ Ci,j . Since a tunnel must be monotone, xr ≤ xq. As p is the leftmost point
in R, we have xp ≤ xr ≤ xq. As V s

i,j is constructed by intersecting a vertical halfplane

rooted at p with D(i,j)
∆ , it follows that q ∈ V s

i,j .

Theorem 6.3.3. Let T and B be two polygonal curves in the plane with overall complexity
n together with a value ∆ > 0. Let P s

i,j be the set of reachable points with exactly s proper
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tunnels as computed in the algorithm for all i, j and s. It holds that⋃
s′≤s

P s′
i,j = R

(i,j)
∆,s (B, T ).

Thus the algorithm correctly decides whether the k-shortcut Fréchet distance of T and B
is at most ∆.

Proof. We show that the reachable space R(i,j)
∆,s is correctly computed via induction in i, j

and s. Note that R(1,1)
∆,s′ is computed correctly for all s′ ≤ k since D(1,1)

∆ is convex and the

algorithm checks whether (0, 0) ∈ D(1,1)
∆ . Thus, if (0, 0) ∈ D(i,j)

∆ , R(1,1)
∆,0 = D(1,1)

∆ = P 0
1,1 is

computed in the first step, by convexity of D(1,1)
∆ , otherwise it is empty. For s′ > 0 the

set P s′
1,1 is empty since no cell is below or to the left of it. Hence, R(1,1)

∆,s′ = R(1,1)
∆,0 is also

computed correctly.
By induction all cells C≤n1,<j and C<i,j and in particular Ci−1,j and Ci,j−1 have been

handled correctly up to round s and hence the set P s
i,j is computed correctly. Let some

point q ∈ R(i,j)
∆,s be given. By Observation 6.2.4, the point q corresponds to a monotone

path with s′ ≤ s proper tunnels. There are three possible ways via which this point in
the parametric space is reachable. The path reaching q could take s′ shortcuts to reach
Ci−1,j or Ci,j−1, and enter via a monotone path through the boundary into Ci,j at some
point a ∈ ∂Ci,j . As Ci−1,j and Ci,j−1 has been handled correctly for s′, the incoming
reachability intervals on the boundary has been computed correctly containing a, thus q
is also in P s′

i,j . Alternatively, the path could enter some cell Ci,l with s′−1 shortcuts and
then take a vertical shortcut into Ci,j for some l < j to reach q. Lemma 6.3.2 implies
that q is in P s′

i,j . Lastly, the path could take a diagonal shortcut to the cell Ci,j to reach
q. Lemma 6.3.1 implies that q is in P s′

i,j .
Now let q ∈ P s′

i,j for s′ ≤ s. Then q is either in (i) N s′
i,j , (ii) V s′

i,j , (iii) Ds′
i,j or (iv) is

reachable by a monotone path from some point q′ in one of the three preceding cases.
Thus it suffices to analyze the first three cases. For (i), observe that the cells Ci,j−1 and
Ci−1,j have been handled correctly up to round s′, and thus q must also be in R(i,j)

∆,s′ .

For (ii) and (iii), Lemma 6.3.2 and Lemma 6.3.1 imply that q must be in V s′
i,j or R(i,j)

∆,s′

respectively. Thus R(i,j)
∆,s (B, T ) =

⋃
s′≤s P

s′
i,j .

Running Time

Lemma 6.3.4. Let T and B be two polygonal curves in the plane with overall complexity
n, together with a distance threshold ∆ > 0. The algorithm described in Section 6.3.1
has running time in O(kn2k+2 log n) and uses O(kn2k+2) space.

Proof. The sets N s
i,j , D

s
i,j and V s

i,j computed by the algorithm are described as unions

of intersections of D(i,j)
∆ with halfplanes. For a fixed P s

i,j let ni,j,s be the total number
of such operations (unions and intersections) from which P s

i,j was obtained. As such,
O(ni,j,s) bounds the complexity of this set.

The complexity of N s
i,j and V s

i,j is constant. The complexity of Ds
i,j is bounded by

the sum of the complexities of all cells to the lower-left:

ni,j,s ∈ O

 ∑
a∈[i−1]

∑
b∈[j−1]

na,b,s−1

 .
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As i, j ∈ [n], s ≤ k, and na,b,0 ∈ O(1) for all a and b, it holds that ni,j,s ∈ O(n2k).
Computing Ds

i,j takes O(
∑

a<i

∑
b<j na,b,s−1 log n + n2 log n) = O(n2k log n) time.

This follows from the fact that we compute O(n) line-stabbing wedges, and for every cell
Ca,b with a < i and b < j we handle na,b,s−1 line segments based on P s−1

a,b . Computing
N s

i,j takes O(ni−1,j,s + ni,j−1,s) = O(n2k) time, as we need to compute the reachability
intervals from neighboring cells. Computing V s

i,j takesO(
∑

b<j ni,b,s−1) = O(n2k−1) time,
as we need to compute the leftmost point among all P s−1

i,<j . Computing Q(N s
i,j∪V s

i,j∪Ds
i,j)

takes linear time in the complexity of N s
i,j ∪ V s

i,j ∪ Ds
i,j , i.e., O(n2k). As we do this for

every cell in every round, the running time overall is O(kn2k+2 log n).
Finally, the space required to store P s

i,j is in O(n2k) and hence the space is bounded
by O(kn2k+2).

Lemma 6.3.4 together with Theorem 6.3.3 implies Theorem 6.1.1.

Theorem 6.1.1. Let T and B be two polygonal curves in the plane with overall com-
plexity n, together with a value ∆ > 0. There exists an algorithm with running time in
O
(
kn2k+2 log n

)
and space in O

(
kn2k+2

)
that decides whether dkS(B, T ) ≤ ∆.

Since for any k there can be at most n − 1 proper tunnels, we obtain the following
corollary by setting k = n− 1.

Corollary 6.3.5. Let T and B be two polygonal curves in the plane with overall com-
plexity n, together with a value ∆ > 0. There exists an algorithm with running time in
O
(
n2n+1 log n

)
and space in O

(
n2n+1

)
that decides whether the shortcut Fréchet distance

of T and B is at most ∆.

6.4 Hardness

We next explore conditional lower bounds for the problem of deciding whether the k-
shortcut Fréchet Distance is at most ∆. More specifically, we reduce the decision problem
for the (4k + 2)-shortcut Fréchet distance to the k-Table-SUM variant of the k-SUM
problem.

Problem 5 (k-Table-SUM). We are given k lists S1, . . . , Sk of n non-negative integers
{si,1, . . . , si,n} and a non-negative integer σ. Decide whether there are indices ι1, . . . , ιk
such that

∑k
i=1 si,ιi = σ.

The k-Table-SUM problem cannot be solved in no(k) time. This is well known and can
be shown via a reduction from k-SUM. We provide a proof for the sake of completeness.

Problem 6 (k-SUM). We are given a list S of n non-negative integers {s1, . . . , sn} and a
non-negative integer σ. Decide whether there are k distinct indices 1 ≤ ι1 < . . . < ιk ≤ n
such that

∑k
i=1 sιi = σ.

Theorem 6.4.1 (Folklore). Assuming the exponential time hypothesis, for any fixed
k > 0 the k-Table-SUM problem cannot be solved in no(k) time.

Proof. The exponential time hypothesis states that the well-known 3-SAT problem in n
variables cannot be solved in 2o(n) time [IP99]. Assuming the exponential time hypoth-
esis, [PW10] showed that k-SUM cannot be solved in no(k) time.
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We reduce a k-SUM instance to a k-Table-SUM instance. We begin by randomly
partitioning the original integer list into k non-empty parts. With probability at least
k!/kk > e−k, any given solution is then split, with one item in each of the k lists. This
can be derandomized by computing a k-perfect family of hash functions, introduced in
[SS90]. A deterministic construction for a suitable k-perfect family of hash functions can
be found in [AYZ95] resulting in a family of size 2O(k) log n. Thus overall we can solve
one k-SUM instance by solving 2O(k) log n instances of the k-Table-SUM problem. This
in turn implies that there is at least one k-Table-SUM instance which cannot be solved
in no(k)/(2O(k) log n) = no(k)/2O(k) time. There exists a constant c, such that

no(k)/2O(k) ≥ no(k)/ck = no(k)/nk/ logc n ≥ no(k)−k/ logc n = no(k),

where the last equation holds for any fixed k, and any n ≥ n0 if we choose n0 large
enough, concluding the proof.

Without loss of generality we assume that each table has a minimum entry of value 0.
This is equivalent to the above stated k-Table-SUM problem by subtracting the minimum
value of each list from every value of that list as well as the sum of all minimum values
from the target value σ. We further assume that all k lists are sorted.

6.4.1 General Idea

A k-Table-SUM instance consists of k lists of integers and a target value and asks whether
the target value can be rewritten as a sum of values, one from each list. Based on such
an instance, we construct a (4k+ 2)-shortcut Fréchet distance instance consisting of the
target curve T and the base curve B with the property that they have a distance of 1 if
and only if the underlying instance has a solution.

The target curve T lies on a horizontal line going to the right. The set of points in R2

which have a distance of at most 1 to any point of the target curve we call the hippodrome.
The base curve consists of several horizontal edges going to the left on the boundary of
the hippodrome. All other edges of the base curve lie outside the hippodrome. Any
shortcut curve of B that has Fréchet distance at most 1 to T we call feasible. Trivially,
any feasible shortcut curve must lie completely inside the hippodrome. Since any edge of
the base curve that is inside the hippodrome lies on the boundary of the hippodrome and
is oriented in the opposite direction of the base curve, no feasible shortcut curve consists
of any subcurve of the target curve. Hence, every shortcut on a feasible shortcut curve
has to start where the previous shortcut ended.

To restrict the set of feasible shortcut curves even further, we place so called twists on
the target curve. A twist can only be traversed by a shortcut by going through precisely
one point. We call this point the focal point or projection center. For a simplified
structural view of the curves refer to Figure 6.5. These twists are constructed by going
a distance of 2 to the left, before continuing rightwards (c.f. ‘zig-zags’ in Section 5.4.1).
We do not place any edges of the base curve too close to twists, so that a shortcut must
be taken to traverse every twist.

Intuitively, we can think of the horizontal edges of the base curve as mirrors that
disperse incoming light in all directions and focal points as a wall with a hole, similar to
that of a pinhole camera. A shortcut curve can be thought of as the path of a photon
bouncing from mirror to mirror, always passing through a focal point. A feasible shortcut
curve exists if and only if it is possible to send a photon from the beginning of the base
curve to the very end.
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Figure 6.5: Simplified global layout of the target curve and its focal points in green,
and the base curve consisting of red mirror edges and blue connector edges. A feasible
shortcut curve is drawn in black, hippodrome in gray.

We keep track of the partial sum encoded by any feasible shortcut curve by tracking
the position on each mirror edge from which such a photon bounces off of, i.e., where the
feasible shortcut curve starts a new shortcut. By the careful placement of mirror edges
we ensure that the relative position on each mirror edge where such a photon bounces
off of is similar to the relative position of where the photon arrives on the next mirror
edge. Our construction presents a shortcut curve with choices of diverging paths, with
each diverging path affecting the relative offset along the later mirror edges differently.
We place multiple edges, one for each item in a list Si of the k-Table-SUM instance, at
distances between 1

2 and 1 of the base curve. The shortcut curve has to choose between
these edges and this choice encodes which element of Si is taken.

These can be thought of as semi-transparent mirrors, since a shortcut curve can either
end a shortcut on such a mirror edge or pass through it ending on a different mirror edge,
akin to a photon either bouncing off of a semi-transparent mirror or traveling through it.
Bouncing off of such a semi-transparent mirror corresponds to taking the corresponding
item from a list in the k-Table-SUM instance. Since the distance from these edges to the
target curve can be less than 1, it can happen that a feasible shortcut curve traverses
the edge before taking the next shortcut. Hence, the relative position along an edge no
longer encodes precise values but approximates the partial sums. We introduce a scaling
in the horizontal direction to contain this error. A second problem that occurs is that
edges may overlap in the vertical direction such that photons may visit multiple edges.
We address this issue similarly, by scaling.

6.4.2 Construction

In this section we describe the construction of the curves T and B given a k-Table-SUM
instance.

First, we describe the overall layout of the instance. The instance consists of k + 2
basic blocks, which we call gadgets. It consists of an initialization gadget g0, k encoding-
gadgets g1, . . . , gk that encode the individual lists of the k-Table-SUM instance and a
terminal gadget gk+1 used to verify that the relative offset encoded by a feasible shortcut
curve is the same as the target value σ. Each gadget gi consist of two curves Ti and
Bi, which we concatenate to get T and B in the end. We denote by Hy the horizontal
line at y in R2 and by H>y all points above Hy. Similarly for ≥,≤, and <. And finally
H<b

≥a = H≥a ∩H<b. The target curve T lies in H0.

The base curve has leftwards oriented horizontal edges inH≤1
≥1/2 andH≤−1/2

≥−1 which we
call mirror edges. All other edges of Bi that connect these mirror edges we call connector
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Figure 6.6: Traversal of a shortcut through a twist. The target curve is distorted, to
emphasize the structure of the twist.

edges. The connector edges mostly lie outside of the hippodrome. The placement for
connector edges that lie outside of the hippodrome is irrelevant. We have to carefully
look at any exception, since we want any feasible shortcut curve to only interact with the
mirror edges. Since all points lie on a small set of horizontal lines, we may occasionally
denote the x-coordinate of a point and the point itself with the same variable but in
different fonts. For example the point xi

j has x-coordinate xij .
The edges of the target curves Ti are, with the exception of twists, oriented in positive

x-direction. A twist centered at the focal point (p, 0) is a subcurve defined by the points
(p− 1, 0), (p+ 1, 0), and (p− 1, 0) connected by straight lines. Around each focal point
we introduce a buffer rectangle of length 2ε = 5 and height 3, where we let ε be a global
constant for the construction. The base curve never intersects these buffer zones, which
is important for the twists to restrict the feasible shortcut curves as intended.

The instance has two more global parameters. The first parameter γ ≥ 1 is a global
scaling factor in y-direction, which ensures that feasible shortcut curves never enter
connector edges. Furthermore, it ensure that the approximate encoding of two different
partial sums stays disjoint. The parameter γ will be in O(k). Lastly, β is a spacing
parameter ensuring that edges are far enough apart from one another.

Before presenting the precise construction, we first provide justification for the cor-
rectness of the twists; see Figure 6.6 for details. Assume we have two mirror edges of
length λ, one placed from (λ, 1) to (0, 1), the other from (2λ + 2ε,−1) to (λ + 2ε,−1),
which are connected by connector edges. We have a twist centered at (λ + ε, 0) on an
otherwise rightwards oriented target curve. Assume furthermore that we have a partial
feasible shortcut curve, which reaches some point (p, 1) on the first mirror edge. Since the
distance to the target curve is precisely 1, any reparametrization with a distance at most
1 for the shortcut Fréchet distance matches the point (p, 1) of B to the point (p, 0) of T .
Since the target curve is oriented in the opposite direction to the mirror edge, the only
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Figure 6.7: Construction of the Initialization gadget. The first forced shortcut is drawn
in black. Mirror edges are red, connector edges are blue, and the target curve is green.

way to continue the feasible shortcut curve is by a shortcut to the right. It cannot jump
to any point on the first mirror edge, since all points who come after (p, 1) (w.r.t. the
curve B) lie left of (p, 1). The shortcut has to traverse the buffer zone of the twist. And
since there are no edges of the base curve in the buffer zone, the shortcut has to traverse
it completely. To analyze all shortcuts at a distance of at most 1, we place two auxiliary
disks centered at (λ + ε ± 1, 0) of radius 1. Any feasible shortcut curve traversing the
buffer zone must traverse both of these disks, since otherwise no reparametrization can
pair to the points (λ+ ε± 1, 0) at distance at most 1, which are part of the target curve.

Since the twist first goes to (λ + ε + 1, 0) and then to (λ + ε − 1, 0), any feasible
shortcut curve must also traverse the disks in this order. The first disk lies to the right
of the second disk, and we try to traverse these disks from the left. The only possible
way to traverse them with a straight line is through the intersection of the disks. And
the only point in the intersection is exactly the focal point. So any shortcut of a feasible
shortcut curve that traverses the buffer zone of a twist must traverse its focal point.
A possible partial traversal is given in the upper plot in Figure 6.6. Note that it is in
t-x-space, corresponding to how the two points paired by the reparametrizations traverse
the curves in the x-direction.

Initialization Gadget g0

For the construction refer to Figure 6.7. Both curves T0 and B0 start at x-coordinate 0
placing the start point for the base curve at (0, 1), and the start point for the target curve
at (0, 0). The target curve goes rightwards, up to the first twist centered at (ε+γ, 0) and
continue rightwards after that. The base curve immediately leaves the hippodrome to the
left and connects to the first mirror edge from a0∗ = (3γ + 2ε,−1) to b0

∗ = (γ + 2ε,−1).

126



CHAPTER 6. THE k-SHORTCUT FRÉCHET DISTANCE

p1 p2

λλλ ββ ε

φ1

φ1 − ε− λ

d1 c1

e1

d2 c2

e2

d3c3

e3

bi−1
∗ ai−1

∗

ei−1
∗

λ

p2 p3 p4d′1 c′1

e′1

d′2 c
′
2

e′2

d′3c
′
3

e′3

ab

e′

ελ λ λβ βε

φ2

φ2 − ε− λ− γmaxS γmaxS + λ

ai∗bi∗

ei∗

ε

Figure 6.8: Construction of the encoding gadget. Mirror edges are red, connector edges
blue and the target curve is green. Projection cones are black.
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Step 1: p1 = ai−1
∗ + (φ1 − ε− λ, 1)

d1 = L(ai−1
∗ ,p1) ∩H1 for L(x, y) the supporting line of x y

c1 = L(bi−1
∗ ,p1) ∩H1

Step 2: p2 = p1 + (φ1, 0)
dj = L(ai−1

∗ ,p1) ∩ L(d1 − sj ,p2) with sj = ((j − 1)(β + λ), 0)
cj = L(b,p1) ∩ L(c1 − sj ,p1)

Step 3: p3 = p2 + (φ2, 0)
c′1 = L(d1,p2) ∩H−1

d′
1 = L(c1,p2) ∩H−1

b = (L(c′1,p3) ∩H1)− (γmaxSi, 0)
a = L(d′

1,p3) ∩H1

c′j = L(dj ,p2) ∩ L(bj ,p3) with bj = b+ γ((maxSi)− si,j , 0)
d′
j = L(cj ,p2) ∩ L(aj ,p3) with aj = a− γ(si,j , 0)

Step 4: p4 = p3 + (φ2, 0)
bi
∗ = L(a,p4) ∩H−1

ai∗ = L(b,p4) ∩H−1

Table 6.1: Precise construction of the ith encoding gadget. Index i is omitted in most
cases.

Encoding Gadget gi

The overall structure of a gadget gi for some i ∈ [k] is depicted in Figure 6.8. This
gadget encodes the ith table Si = {si1, . . . , sin} of the k-Table-SUM instance. Table 6.1
shows the construction of the precise values. As for the parameters, λi is the length
of the entry edge, determined by the previous gadget gi−1, and β is the global spacing
parameter. We do not specify φi

1 and φi
2 explicitly but show that choosing them to be

in Θ(poly(n, λi, β, ε,maxSi)) ensures in a correct reduction. Excluding the entry edge,
the base curve Bi consists of 2n+ 2 mirror edges and O(n) connector edges. For j ∈ [n]
the first n mirror edges eij are defined by cij and di

j , and the second n mirror edges e′ij
are defined by c′ij and d′i

j . The last two mirror edges are defined by āi and b̄i, and ai∗

and bi
∗. All of these mirror edges lie in either H≤1

≥1/2 or H≤−1/2
≥−1 by construction. The

target curve Ti has four twists centered at pi
1, . . . ,p

i
4. Since the index i does not change

other than for the entry and exit edge, we omit these indices in the construction of this
gadget.

The intuition behind the construction is as follows: The first two steps place the first
projection center at a distance from the entry edge, such that n copies of the entry edge
fit into its projection cone. The projection cone refers to the cone formed by projecting
the edge through a projection center. The edges must satisfy further constraints, namely
that all of the edges lie in H≤1

≥1/2 and they have sufficient distance in x-direction.
These n edges correspond to the choice, which item from list Si should be added to

the partial solution encoded by a shortcut curve. Step 3 places an edge e′ from ā to b̄,
where all the diverging paths have to meet, and then places n copies of the entry edge in
the n disjoint projection cones such that their projections onto e′ have a relative offset
according to the values in the list. Step 4 defines the entry edge to the next gadget. The
edges in Step 3 and 4 are used to recombine the diverging paths making sure that the
offset between the paths corresponds to the value of the items in the list Si.
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λ ε ε+ λ− γ(σ + 1)

y

x

ek∗

tpak∗bk∗

Figure 6.9: Construction of the Terminal-Gadget. Mirror edges are red, connector edges
are blue and the target curve is green.

A shortcut curve traversing this gadget looks as follows: A shortcut curve reaches
some point in the entry edge ei−1

∗ . From here it takes a shortcut to some eij . The next
shortcuts are forced to land on e′ij , then e′i and finally ei∗.

Terminal Gadget gk+1

The terminal gadget gk+1 is the dual to the initialization gadget (refer to Figure 6.9).
The entry edge from (bk∗ + λk,−1) to (bk∗,−1) is defined by the previous gadget. The
target curve Tk+1 has a single twist at (bk∗+λ+ε, 0) and ends at (bk∗+2λ+2ε−γ(σ+1), 0).
The base curve Bk+1 connects the entry edge to (bk∗ +2λ+2ε− γ(σ+1), 1) from outside
the hippodrome. The final vertex B(1) of the base curve is placed such that a shortcut
from the entry edge ek∗ has to start precisely at x-coordinate bk∗ + γ(σ + 1) in order to
pass through the projection center (bk∗ + λ+ ε, 0) and end at B(1), where σ is the target
value from the k-Table-SUM instance.

6.4.3 Correctness for One-Touch Shortcut Curves

We now argue that this construction is correct. That is, there exists a feasible shortcut
curve with (4k + 2) shortcuts if and only if the original k-Table-SUM instance has a
solution. We begin by showing this for a subset of shortcut curves we call one-touch.
For general shortcut curves this will be shown in Section 6.4.5. These one-touch shortcut
curves consist of only shortcuts and never take subcurves of the base curve B. In the
following section we often have to argue with distances that get preserved when get-
ting projected through a projection center. This argument is captured in the following
observation.

Observation 6.4.2. If an edge lies on some H−β with length λ, and some point p on H0

is given, we can then project the edge through p onto some Hα of length λ′. This forms
two congruent triangles such that λ′ = αλ

β . See ei−1
∗ and e3 in Figure 6.8 for an example.
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Figure 6.10: The path of a shortcut curve through the gadget gi in the case, where si,j is
selected from the ith list (Lemma 6.4.5). Most top indices i are omitted. For presentation
purposes, the mirror edges have horizontal overlap. In the construction they do not.

Definition 6.4.3 (One-Touch Encoding). Let I = ι1, . . . , ιk be an index set of a k-
Table-SUM instance. We construct a one-touch shortcut curve BI of the base curve
incrementally. The first two vertices on the initial gadget are defined as follows. We
choose the first vertex of the base curve B(0) for v0

0, then we project it through the first
projection center p0 onto e0∗ to obtain v0

∗. Now for i ∈ [k] we project vi−1
∗ through pi

1 to
land on eiιi to obtain vi

1. We continue by projecting vi
l through pl + 1 onto Bi to obtain

vi
l+1 for 1 ≤ l ≤ 3 (refer to Figure 6.10). Since these projections are all forced, no choices

have to be made. Let vi
∗ = vi

4. We continue this construction throughout all gadgets in
order of i. Finally, we choose B(1) as the last vertex of our shortcut curve.

Lemma 6.4.4. For any i ∈ [k] and j ∈ [n] let xi
j be the leftmost point on ei∗ reachable

by projections starting on edge eij. Then xij − bi∗ = γsi,j.

Proof. This follows directly from the construction (refer to Figure 6.10 and Table 6.1) and
repeated application of Observation 6.4.2. The value xj is determined by the projection
of cj through p2, which is d′

j . Projecting this through p3 lands on aj which by another
projection through p4 lands on xj . The offset between aj and a is precisely the offset
between xj and b′. And this offset is by construction γsi,j .

Lemma 6.4.5. Given a shortcut curve BI , which is a one-touch encoding, let vi
∗ be the

vertex of BI on the entry edges ei∗ of gadgets gi for all 0 ≤ i ≤ k. Then ||vi
∗ − bi

∗|| =
γ(σi + 1), where σi is the ith partial sum of the values si,ιi with ιi in the index set I
encoded by BI .

Proof. We prove this via induction. For i = 1 this is correct by construction of the ini-
tialization gadget. Refer for the following argument to Figure 6.10 and Observation 6.4.2.
For all choices of j we have ||vi−1

∗ − bi−1
∗ || = ||vi

∗ − xi
j ||. This follows immediately from

following the projections:

||vi−1
∗ − bi−1

∗ || = αj ||vi
1 − cj || = α′

j ||vi
2 − d′

j || = ||vi
3 − aj || = ||vi

∗ − xi
j ||.

Together with Lemma 6.4.4 we have

||vi
∗ − bi

∗|| = ||vi
∗ − xi

j ||+ ||xi
j − bi

∗|| = γ(σi−1 + 1) + γsi,j = γ(σi + 1).
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Lemma 6.4.6. Let oij = (j − 1)(λi−1 + β). Then cij, d
i
j, c

′i
j and d′i

j are given by

cij = pi
1 +

(
(φi

1 − ε)φi
1

φi
1 + oij

,
φi
1

φi
1 + oij

)
,

di
j = pi

1 +

(
(φi

1 − ε− λ)φi
1

φi
1 + oij

,
φi
1

φi
1 + oij

)
,

c′
i
j = pi

2 +

(
(ε+ oij + λ)φi

2

φi
2 − γsi,j + oij

,
−φi

2

φi
2 − γsi,j + oij

)
, and

d′i
j = pi

2 +

(
(ε+ oij)φ

i
2

φi
2 − γsi,j + oij

,
−φi

2

φi
2 − γsi,j + oij

)
.

Proof. We will only show this for di
j , as the computations for the other points are very

similar. We translate the instance such that pi
1 coincides with the origin. Then di

j

is defined as the intersection of a line l1 from (0, 0) to (φi
1 − ε − λi−1, 1) and l2 from

(φi
1− ε−λi−1− (j−1)(λi−1+β), 1) to (φi

1, 0). Thus the x-coordinate of the intersection
point satisifies

dij
φi
1 − ε− λi−1

= 1−
dij − (φi

1 − ε− jλi−1 − (j − 1)β)

ε+ jλi−1 + (j − 1)β

and hence

dij =
(φi

1 − ε− λi−1)φi
1

φi
1 + (j − 1)λi−1 + (j − 1)β

.

Since l1 has slope
(
φi
1 − ε− λi−1

)−1 we have

di
j =

1

φi
1 + (j − 1)(λi−1 + β)

(
(φi

1 − ε− λi−1)φi
1, φ

i
1

)
.

Lemma 6.4.7. Assume φi
1 and φi

2 are given such that φi
1 ≥ 3ε + λi−1 and φi

2 ≥ 2ε +
γsi,j +(j− 1)(λi−1+β)+2λi−1 holds for every i ∈ [k] and j ∈ [n]. Then the constructed
base curve never enters any buffer zone centered at a projection center.

Proof. We will not explicitly discuss the connector edges outside the hippodrome, since
they can easily be placed such that they do not enter buffer zones. We first consider the
encoding gadget gi. In this proof we omit the top index i − 1 from λi−1 and top index
i from all other variables, as we only look at a single gadget at a time. For the buffer
zones centered at p2 and p4 for i ∈ [k] the claim is implied by construction.

For the buffer zone centered at p1 the closest edge in x-direction inside the hippo-
drome is by construction en. And for this edge, dn is the closest point. Lemma 6.4.6
and the fact that φ1 ≥ 2ε + λ + ε holds, imply that dn ≥ p1 +

φ1−λ−ε
2 > p1 + ε holds.

This implies the claim for the projection center p1 as well.
For the buffer zone centered at p3 the closest edge in x-direction inside the hippo-

drome is by construction e′n. And for this edge, c′n is the closest point. Lemma 6.4.6
together with the fact that φ2 ≥ 2ε+sn+oj+2λ holds, imply that we get c′n ≤ p2+φ2/2
and thus p3 ≥ c′n + φ2/2 ≥ c′n + ε. The last two buffer zones left to analyze are those
centered at the projection center in the initialization and end gadget. For these the claim
follows immediately from construction.
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Lemma 6.4.8 (4-monotonicity [BDS14]). Any feasible shortcut curve is rightwards 4-
monotone. That is, if x1 and x2 are the x-coordinates of two points that appear on the
shortcut curve in that order, then x2 + 4 ≥ x1. Furthermore, it lies inside or on the
boundary of the hippodrome.

Proof. Any point on the feasible shortcut curve has to lie within distance 1 to some point
of the target curve, thus the curve cannot leave the hippodrome. As for the monotonicity,
assume for the sake of contradiction that there exist two such points with x2 + 4 < x1.
Let x̂1 be the x-coordinate of the point on the target curve matched to x1 and let x̂2 be
the one for x2. By the Fréchet matching it follows that x̂2 − 1 + 4 < x̂1 + 1. This would
imply that the target curve is not 2-monotone which contradicts the way we constructed
it.

Lemma 6.4.9. For every λ > 0, β ≥ 5, ε > 0 and integer n > 0 there are values
φi
1, φ

i
2 ∈ Θ(poly(ε, λ, (β−4)−1, β, γmaxSi, n)) for every i ∈ [n] such that any two mirror

edges of the gadget gi are at least 4 apart and all mirror edges lie inside the hippodrome
and in either H≤1

≥1/2 or H≤−1/2
≥−1 .

Proof. We first consider the encoding gadget gi. For this we omit the top index i − 1
from λi−1 and top index i from all other variables as we only look at a single gadget at
a time. Recall from Lemma 6.4.6

dj =
1

φ1 + (j − 1)(λ+ β)

(
(φ1 − ε− λ)φ1, φ1

)
and

cj =
1

φ1 + (j − 1)(λ+ β)

(
(φ1 − ε)φ1, φ1

)
.

Hence for any φ1 ≥ (n−1)(λ+β) the y-coordinate of any such edge lies in [1/2, 1]. Next
we show that cj+1 + 4 < dj holds, implying that the edges e1, . . . , en have a pairwise
distance of at least 4. The expression cj+1 + 4 < dj is equivalent to

λφ1j(λ+ β) + 4
(
φ1 + j(λ+ β)

)(
φ1 + (j − 1)(λ+ β)

)
+ (λ+ β)φ1ε < βφ2

1.

As both sides are second degree polynomials in φ1 and the second order coefficient on
the left hand side is 4 whereas on the right hand side it is β (recall β ≥ 5), there is
a value Φ1 ∈ O(poly(λ, (β − 4)−1, β, ε, n)) such that for every φ1 > Φ1 the expression
cj+1 + 4 < dj holds for all j ∈ [n− 1].

Let us next look at the edges e′j . Similarly recall from Lemma 6.4.6 that

c′j =
1

φ2 − γsj + (j − 1)(λ+ β)

(
(ε+ jλ+ (j − 1)β)φ2,−φ2

)
and

d′
j =

1

φ2 − γsj + (j − 1)(λ+ β)

(
(ε+ (j − 1)λ+ (j − 1)β)φ2,−φ2

)
.

Hence there is a Φ2 ∈ O(poly(maxi si, n, λ, β)) such that for any φ2 > Φ2 the y-coordinate
of any such edge lies in [−1,−1/2]. Lastly, the expression c′j + 4 < dj+1 is equivalent to(

ε+ jλ+ (j − 1)β
)(
γ(sj − sj+1) + λ+ β

)
φ2

+ 4
(
φ2 − γsj + (j − 1)(λ+ β)

)(
φ2 − γsj+1 + j(λ+ β)

)
<βφ2

(
φ2 − γsj + (j − 1)(λ+ β)

)
.
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We again have two second order polynomials in φ2 on both sides, with the second order
coefficient on the left hand side being 4 and on the right hand side being β ≥ 5. Hence
there is a Φ′

2 ∈ O(poly(maxj sj , n, λ, (β − 4)−1, β, ε)) such that all φ2 > Φ′
2 satisfy this

equation.
Thus we can chose φ1, φ2 ∈ Θ(poly(ε, λ, (β − 4)−1, β,maxj sj , n)) such that φ1 >

max((n−1)(λ+β),Φ1) and φ2 > max(Φ2,Φ
′
2). Thus all edges e1, . . . , en have a pairwise

distance of at least 4, and all edges e′1, . . . , e′n have a pairwise distance of at least 4.
Further they all lie within the hippodrome and lie in either H≤1

≥1/2 or H≤−1/2
≥−1 . As all

other mirror edges are separated by buffer zones and their position is trivially inside the
hippodrome and at distance at least 1/2 to B, this concludes the proof.

Observation 6.4.10. If β ≥ 5 and ε > 2 holds, we can choose values φi
1 and φi

2 in
Θ(poly(ε, λi−1, (β−4)−1, β, γmaxj si,j , n)) for all i ∈ [k] such that the conditions of both
Lemma 6.4.7 and Lemma 6.4.9 hold.

Lemma 6.4.11. If ε > 2, then a feasible shortcut curve passes through every buffer zone
of the target curve via its projection center and furthermore it does so from left to right.

Proof. Any feasible shortcut curve has to start at B(0) and end at B(1), and all of its
vertices must lie in the hippodrome or on its boundary. By Lemma 6.4.7, the base curve
does not enter any of the buffer zones and therefore the feasible shortcut curve has to
pass through the buffer zone by using a shortcut. If we choose the width of a buffer zone
2ε > 4, then the only way to do this while matching to the two associated vertices of the
target curve in their respective order is to go through the intersection of their unit disks.
The intersection lies at the center of the buffer zone, as we saw in the above.

Lemma 6.4.12. If ε > 2, β ≥ 5 and all φi
1 and φi

2 are chosen according to Obser-
vation 6.4.10, then a feasible shortcut curve that is one-touch visits exactly one of the
edges eij and exactly one of the edges e′ij for some j ∈ [n] in every gadget gi for i ∈ [k].
Furthermore, it visits all edges ei∗ for 0 ≤ i ≤ k.

Proof. By Lemma 6.4.8, any feasible shortcut curve is 4-monotone. Furthermore, it starts
at B(0) and ends at B(1). By Lemma 6.4.11, it goes through all projection centers of the
target curve from left to right. We first want to argue that it visits at least one mirror
edge between two projection centers, i.e., that it cannot ‘skip’ such a mirror edge by
matching to two twists in one shortcut. Such a shortcut would have to lie on H0, since it
has to go through the two corresponding projection centers lying on H0. By construction
the only possible endpoints of such a shortcut lie on the connector edges that connect
to mirror edges. Assume such a shortcut could be taken by a shortcut curve starting
from B(0). Then there must be a connector edge which intersects a line from a point
on a mirror edge through the projection center. In particular since the curve has to go
through all projection centers, one or more of the following must be true for some i ∈ [k]:

- there exists a line through pi
1 intersecting a mirror edge ei−1

∗ and a connector edge
of eij ,

- there exists a line through pi
2 intersecting a mirror edge eij and a connector edge

of e′il for some l, or
- there exists a line through pi

3 intersecting a mirror edge e′ij and a connector edge
of e′il for some l > j.
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However, this was prevented by the careful placement of these connector edges.
It remains to prove that for each i ∈ [k] the shortcut curve cannot visit more than

one eij and cannot visit more than one e′ij and therefore visits exactly one mirror edge
between two projection centers. The shortcut curve has to lie inside or on the boundary
of the hippodrome and is 4-monotone (Lemma 6.4.8). At the same time, we constructed
the gadget such that the mirror edges between two consecutive projection centers have
distance at least 4 to one another by Lemma 6.4.9, choosing φi

1 and φi
2 in the process.

Furthermore, inside the projection cone from e′ij to pi
3 all mirror edges come before (as

parametrized by the base curve) e′ij , implying the claim.

To summarize, we may think of a one-touch shortcut curve as a one-touch encoding,
as any one-touch shortcut curve visits exactly one of the edges eij . Let eiιi be this edge
for gadget gi. This defines the one-touch encoding I = {ι1, . . . , ιk}.

Putting the above lemmas together implies the correctness of the reduction for short-
cut curves that are one-touch.

Lemma 6.4.13. If ε > 2 and β ≥ 5 and all φi
1 and φi

2 are chosen according to Observa-
tion 6.4.10, then for any feasible one-touch shortcut curve B⋄ it holds that the index set I
encoded by B⋄ sums to σ. Furthermore, for any index set I that solves the k-Table-SUM
instance there is a feasible one-touch shortcut curve that encodes it.

Proof. Lemma 6.4.11 and Lemma 6.4.12 imply that B⋄ must be a one-touch encoding as
defined in Definition 6.4.3. By Lemma 6.4.5, the penultimate vertex of B⋄ is the point
on the edge ek∗ which is at distance γ(σ⋄ + 1) to bk

∗ where σ⋄ is the sum encoded by
the values selected by B⋄. The last vertex of B⋄ is equal to B(1), which we placed in
distance γ(σ + 1) to the projection of bk

∗ through pk+1
1 . Thus the last shortcut of B⋄

passes through the last projection center of the target curve if and only if σ⋄ = σ. It
follows that if σ⋄ ̸= σ, then B⋄ cannot be feasible.

For the second part of the claim we construct a one-touch encoding as defined in
Definition 6.4.3. By the above analysis it will be feasible if the selected values sum to σ,
since the curve visits every edge of B in at most one point and in between uses shortcuts
which pass through every buffer zone from left to right and via the buffer zones projection
center.

6.4.4 Size of Coordinates

Lemma 6.4.14. The curves can be constructed in O(kn) time. Furthermore, if we choose
ε = 5

2 and β = 5 and φi
1 and φi

2 according to Observation 6.4.10, then the coordinates
used are in O(poly(k, n, γ

∑
imaxSi)).

Proof. From the construction we know that pi4− p
i−1
4 = 2φi

1 +2φi
2. Further by Observa-

tion 6.4.10 we know that we can choose φi
1 and φi

2 to be in Θ(poly(ε, n, λi−1, γmaxSi, (β−
4)−1, β)) = Θ(poly(n, λi−1, γmaxSi)) as ε = 5

2 and β = 5.
The length of the entire instance is given by the combined lengths of all of the gadgets.

Thus the length is given by

ε+ γ +

(
n∑

i=1

(
2φi

1 + 2φi
2

))
+ ε+ λn + (ε+ λn − γ(σ + 1)) .

This is in O(poly(k, n, γ
∑

imaxSi)), as λ0 = 2γ and λi = λi−1 + γmaxSi.
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As for the complexity, each of the constructed gadgets uses O(n) vertices, since we
need to place O(n) mirror and connector edges. Because we construct k + 2 gadgets,
the overall number of vertices used is in O(kn). The curves T and B can be constructed
using a single iteration from left to right, therefore the overall construction takes O(kn)
time.

6.4.5 Correctness for General Shortcut Curves

When we consider general feasible shortcut curves that might not necessarily be one-
touch, they might follow a mirror edge for a short while instead of immediately taking
the next shortcut. This results in a small error when comparing the shortcut curve with
a one-touch curve encoding the same index set. We now want to contain this incremental
error with the control parameter γ.

Lemma 6.4.15. Choose ε > 2 and β ≥ 5 and all φi
1 and φi

2 according to Lemma 6.4.9.
If we choose γ > 16k + 5, then given a feasible shortcut curve B⋄, it has at least one
shortcut end on every exit edge ei∗, and for every i ∈ [k] there is exactly one ιi ∈ [n] such
that the curve B⋄ has a shortcut end on edge eij encoding an index set I = {ι1, . . . , ιk}.
Further, let vi be any point of B⋄ on the exit edge ei∗ of the gadget gi and let σi be the ith

partial sum of values encoded by I. Then

bi∗ + γ(σi + 1)− ξi ≤ vi ≤ bi∗ + γ(σi + 1) + ξi

holds where ξi = 16i+5 is an upper bound of the maximum error possible for any shortcut
curve traversing up to gadget gi.

Proof. We prove this claim by induction on i. For i = 0 the claim follows by construction
of the initialization gadget: As B⋄ has to start at B(0) and B⋄ has to lie completely in
the hippodrome B⋄ has to take a shortcut, and since B⋄ has to pass a twist it must
traverse its projection center. The only point where this shortcut can end is on the entry
edge of g1. By construction, this point is at a distance of γ from b0∗. Since the edge is
oriented leftwards, B⋄ can only follow it in that direction. However, by Lemma 6.4.8, B⋄
is rightwards 4-monotone. It follows that

b0∗ + γ − 4 ≤ v1 ≤ b0∗ + γ.

Since ξ0 = 5 > 4 and σ0 = 0 this implies the claim for i = 0.
For i > 0 the curve B⋄ entering gadget gi from edge ei−1

∗ has to pass the first twist
and must do so through the projection center. By induction

bi−1
∗ + γ(σi−1 + 1)− ξi−1 ≤ vi−1 ≤ bi−1

∗ + γ(σi−1 + 1) + ξi−1.

Since γ > ξi = ξi−1 + 16 it follows that the distance of vi to the endpoints of the edge is

γ(σi−1 + 1)− ξi−1 ≥ γ − ξi−1 > 16

and
γ(σi−1 + 1) + ξi−1 ≤ (λi−1 − γ) + ξi−1 ≤ λi−1 − 16,

thus vi−1 lies at a distance greater than 4 from the endpoints of the entry edge of gadget
gi. Therefore the only edges on which a shortcut through the projection center pi1 can
end are ej . Let ι be the edge on which this shortcut ends.
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Denote by omax = γ(σi−1 +1)+ ξi−1 and omin = γ(σi−1 +1)− ξi−1 the maximal and
minimal offset vi may have from bi−1

∗ . Furthermore, let αι be the y-coordinate of the
edge eiι, and similarly α′

ι for the edge e′iι . We will again omit the top index of i since
it is fixed for the gadget gi from now on. Then the interval of x-coordinates where the
shortcut may end on eι is

[cι − αιomax , cι − αιomin].

The length of the edge eι is αιλ
i−1. Thus the endpoint lies inside the edge. Now B⋄ may

follow this edge as well. Again it can do so only leftwards. As the curve is rightwards
4-monotone it may do so a distance of at most 4. As αι ≥ 1

2 and omax > λ + 16, the
shortcut curve cannot leave this edge by following it. Thus all possible points for B⋄ are
determined by the interval

[cι − αιomax − 4 , cι − αιomin].

Hence the shortcut curve must leave this edge via a shortcut through p2. It then may
again follow the edge up to a distance of 4 to the left resulting in the interval[

d′ι + α′
ιomin − 4 , d′ι + α′

ι

(
omax +

4

αι

)]
.

Repeated application for the next two edges results in the interval for the edge e′[
ā− γsi,ι −

(
omax +

4

αι

)
− 4 , ā− γsi,ι −

(
omin −

4

α′
ι

)]
.

Note that āι = ā− γsi,ι by construction. And for e∗ it lands in the interval[
b∗ + omin + γsi,ι −

4

α′
ι

− 4 , b∗ + omax + γsi,ι +
4

αι
+ 4

]
.

Since αι ≥ 1
2 and α′

ι ≥ 1
2 holds, we get for the item si,ι taken by the shortcut curve

bi∗ + γ(σi + 1)− ξi = bi∗ + γsi,ι + γ(σi−1 + 1)− ξi−1 − 16 ≤ vi
as well as

vi ≤ bi∗ + γsi,ι + γ(σi−1 + 1) + ξi−1 + 16 = bi∗ + γ(σi + 1) + ξi,

implying the claim.

Theorem 6.1.2. Unless ETH fails, there is no algorithm for the k-shortcut Fréchet
distance decision problem in Rd for d ≥ 2 with running time no(k).

Proof. Let some k-Table-SUM instance be given. Let ε = 5
2 , β = 5 and γ = 16(k+1)+5.

Choose φi
1 and φi

2 according to Lemma 6.4.9. Let B⋄ be any feasible shortcut curve of
the constructed instance for the k-Table-SUM instance. Since B⋄ is feasible, it must visit
the exit edge of the last gadget gk at distance γ(σ+ 1) to bk∗, since this is the only point
that connects to B(1) via a shortcut. Let vk = bk∗ + γ(σ + 1) be the x-coordinate of this
visiting point and let σ⋄ be the sum of the values encoded by B⋄. Lemma 6.4.15 implies
that

bk∗ + γ(σ⋄ + 1)− ξk ≤ vi = bk∗ + γ(σ⋄ + 1) ≤ bk∗ + γ(σ⋄ + 1) + ξk,

since γ = 16(k + 1) + 5 > ξk. Therefore,

σ⋄ −
ξk
γ
≤ σ ≤ σ⋄ +

ξk
γ
.

Since γ > ξk it follows that σ⋄ must be σ since both are integers. Hence any feasible
shortcut curve solves the k-Table-SUM instance, implying the claim.
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6.5 Approximate Decision Algorithms

In light of the previous section, we now describe a (3 + ε)-approximation algorithm for
the decision problem of the k-shortcut Fréchet distance of two polygonal curves in the
plane. The algorithm has near-quadratic running time in n. In Section 6.5.3, we show
that the algorithm can be modified to have running time near-linear in n for c-packed
curves.

6.5.1 Description of the Algorithm

We describe how to modify the algorithm of Section 6.3 to circumvent the exponential
complexity of the reachable space and obtain a polynomial-time approximation algo-
rithm.

Let two polygonal curves T and B be given, together with a distance threshold ∆ and
approximation parameter ε. As before, the algorithm (see Algorithm 9) iterates over the
cells of the free space diagram and computes sets N s

i,j , V
s
i,j , and Ds

i,j for each cell Ci,j .
The main difference now is that, instead of computing the exact set of points that can be
reached by a diagonal tunnel, we want to use an approximation for this set. For this, we
give an approximate diagonal tunnel procedure (refer to Algorithm 10). This procedure
is called with the rightmost point rs−1

i−1,j−1 in
⋃

a<i;b<j P
s−1
a,b , ε and distance parameter 3∆.

Crucially, the set resulting from one call to the procedure has constant complexity and is
sufficient to approximate the setDs

i,j . We then compute P s
i,j = Q(N s

i,j∪Ds
i,j∪V s

i,j)∩D
(i,j)
∆ ,

as in Section 6.3. From this we compute (i) the leftmost point lsi,j in
⋃

b≤j P
s
i,b based on

P s
i,j and lsi,j−1, (ii) the rightmost point rsi,j in

⋃
a≤i;b≤j P

s
a,b based on P s

i,j , r
s
i−1,j and rsi,j−1,

and (iii) the outgoing reachability intervals of P s
i,j . We store these variables for use in

the next round. Finally, after k rounds, we check if (1, 1) is contained in the computed
set of reachable points.

Our approximate diagonal tunnel procedure makes use of a data structure introduced
in [DHP12], which is summarized in the following lemma. This data structure is built
once for T in the beginning and is then available throughout the algorithm.

Lemma 6.5.1 (Distance oracle [DHP12]). Given a polygonal curve Z with n vertices
in Rd and ε > 0, one can build a data structure Fε in O

(
χ2n log2 n

)
time that uses

O
(
nχ2

)
space such that given a query segment p q and any two points u and v on the

curve, one can (1 + ε)-approximate dF (p q, Z[u, v]) in O
(
ε−2 log n log log n

)
time, where

χ = ε−d log
(
ε−1
)
.

Definition 6.5.2. Define the scaled integer grid as G∆ =
{
(∆x,∆y) | (x, y) ∈ Z2

}
.

Approximate Diagonal Tunnel Procedure The procedure (see Algorithm 10) is
provided with parameters ε, ∆, some r′ = (rT , rB) in cell Ca,b and the edge ej that is
associated with a cell Ci,j as well as the data structure Fε presented in Lemma 6.5.1.
We want to compute a set of stabbers starting at r = B(rB) that contains every stab-
ber through the disks D∆(va+1), . . . ,D∆(vi), and is contained in the set of all stabbers
through disks of radius (1 + ε)2∆ centered at the same vertices. We approximate this
set of stabbers as follows.

We iterate over all grid points t in the disk G∆ε√
2

∩ D(1+ε)∆(vi), and make queries to

the data structure Fε to determine if the Fréchet distance of the query segment r t to
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Algorithm 9 Approximate Decider
1: procedure ApproximateDecider(curve T , curve B, ∆ > 0, 0 < ε ≤ 1)
2: if ||T (0)−B(0)|| > ∆ or ||T (1)−B(1)|| > ∆ then
3: return ‘dkS(T

′, B′) > ∆’
4: Let Fε be the data structure of Lemma 6.5.1 built on T with ε
5: Let As and Ās be arrays of size n1 for each 0 ≤ s ≤ k
6: Let gsr and gsl be two-dimensional arrays of size n1 × n2 for each 0 ≤ s ≤ k
7: for s = 0, . . . , k do
8: for j = 1, . . . , n2 do
9: Copy array As into Ās

10: for i = 1, . . . , n1 do
11: Compute D(i,j)

∆

12: if i = 1, j = 1 and s = 0 then
13: P s

i,j = D
(i,j)
∆′

14: else
15: //Compute set of points directly reachable from neighboring cells
16: Let Iv = ∅ and Ih = ∅
17: if j > 1 then Iv is the incoming reachability interval from Ās

[i]
18: if i > 1 then Ih is the incoming reachability interval from As[i−1]

19: Let N s
i,j = (Q(Iv) ∪Q(Ih)) ∩ D

(i,j)
∆

20: if s > 0 then
21: //Approximate set of points reachable by diagonal tunnel
22: Let r = gs−1

r [i− 1, j − 1] be the rightmost point in P s−1
<i,<j

23: Let Ds
i,j = apxDiagonalTunnel(r, (i, j), ε,Fε, 3∆)

24: //Compute set of points reachable by vertical tunnel
25: Let l = gs−1

l [i, j − 1] be the leftmost point in P s−1
i,<j .

26: Let V s
i,j = verticalTunnel(l, (i, j),∆)

27: else
28: Let Ds

i,j = ∅ and V s
i,j = ∅

29: P s
i,j = Q(N s

i,j ∪Ds
i,j ∪ V s

i,j) ∩ D
(i,j)
∆

30: if P s
i,j ̸= ∅ then

31: Store rightmost point among P s
i,j , g

s
r [i−1, j] and gsr [i, j−1] in gsr [i, j]

32: Store leftmost point among P s
i,j and gsl [i, j − 1] in gsl [i, j]

33: Compute outgoing reachability intervals using P s
i,j

34: Store outgoing reachability intervals in As[i].
35: if (1, 1) ∈ As[n1] then
36: return ‘dkS(T

′, B′) ≤ 3(1 + ε)2∆’ with s ≤ k shortcuts
37: else
38: return ‘dkS(T

′, B′) > ∆’ with at most k shortcuts
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Algorithm 10 Approximate Diagonal Tunnel
1: procedure apxDiagonalTunnel((rT , rB), (i, j), ε, Fε, ∆)
2: Let r = B(rB)

3: for t ∈
(
G∆ε√

2

∩D3(1+ε)∆(vi)

)
do

4: Query Fε for the distance dF (r t, T [rT , vi]) and store the answer in ∆′

5: if ∆′ ≤ (1 + ε)2∆ then
6: Mark t as eligible
7: Compute the convex hull H of eligible points
8: if r ∈ H then
9: return C = D(i,j)

∆

10: else
11: Let U be the cone with apex r formed by tangents t1 and t2 from r to H
12: Let pi ∈ H be a supporting point of the tangent ti for i ∈ {1, 2}
13: Let L be the subchain of ∂H with endpoints p1 and p2 which is facing r
14: Let H ′ ⊂ U be the set bounded by L and the rays supported by t1 and t2

facing away from r
15: Let C ′ be the set of points on edge ej in H ′

16: return the set C of points in D(i,j)
∆ corresponding to C ′

the subcurve of T from T (rT ) to vi is sufficiently small. We mark t if the approximate
distance returned by the data structure is at most (1 + ε)2∆. We then compute the
convex hull H of all marked grid points, and the two tangents t1 and t2 of H through
B(rB). The true set of endpoints of stabbers is approximated by the set H ′ of points
that lie inside and ‘behind’ the convex hull H, from the perspective of r. Figure 6.11
illustrates this. We then intersect H ′ with the edge ej resulting in a single horizontal
slab in Ci,j . This resulting set is then intersected with D(i,j)

∆ and returned.

6.5.2 Analysis of the Approximation Algorithm

We now analyze the described algorithm, namely the ApproximateDecider in Algo-
rithm 9 procedure.

We argue that the structure of P s
i,j as approximated by the ApproximateDecider

procedure is as claimed. Namely for all i, j and s it holds that

R(i,j)
∆,s ⊂

⋃
0≤s′≤s

P s′
i,j ⊂ R

(i,j)
3(1+ε)2∆,s

.

We again consider any monotone path with s proper tunnels ending in some cell and
show the set inclusion by induction. To prove correctness, we make use of the following
lemma from [DHP12]. Intuitively, the lemma states that if a feasible tunnel τ(r, q) costs
more than 3∆, then any feasible tunnel τ(p, q) with xp ≤ xr costs more than ∆.

Lemma 6.5.3 (monotonicity of tunnels [DHP12]). Given a value ∆ > 0 and two curves
T1 and T2 such that T2 is a subcurve of T1, and given two line segments B̄1 and B̄2 such
that dF (T1, B̄1) ≤ ∆ and the start and end point of T2 are within distance ∆ to the start
and end point of B̄2 respectively, then dF (T2, B̄2) ≤ 3∆.
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va+1
vi−1

vi

(1 + ε)∆

(1 +
ε)∆

∆

r

p2

p1

t1

t2

H ′

H

Figure 6.11: Illustration to the approximate diagonal tunnel procedure. The true line-
stabbing wedge for disks with radius ∆ is shown in blue. The convex hull of eligible grid
points is shown in red. The approximate line stabbing wedge is shown in green.

In the following, we denote with {D∆(vi)}i a finite sequence of disks {D∆(v1), . . .}.
Lemma 6.5.4. Let a, b1, b2 ∈ Rd together with a sequence of vertices v1, . . . , vn be given.
If a b1 stabs through disks {D∆(vi)}i, and a b2 stabs through {D∆(vi)}i, then for any
t ∈ [0, 1] the line segment a b(t) stabs through {D∆(vi)}i, where b(t) = b1 + t(b2 − b1).
Proof. Refer to Figure 6.12. Consider the triangle with sides (b1 − a), (b2 − a), and
(b1−b2), where the first two sides correspond to the original stabbers and the last side to
b(t). Note that any line segment a b(t) lies completely within this triangle with (b1 − a)
on the one and (b2 − a) on the other side. Hence, for every i and realizing points pi of
a b1 and qi of a b2, pi lies on the one and qi on the other side of a b(t). Since D∆(vi)
is convex and pi and qi are inside this disk, the intersection of pi qi and a b(t) is inside
the disk as well. Let ri denote this intersection point. The points {ri}i are realizing
points for a b(t). This follows from the fact that {pi}i and {qi}i are ordered along their
respective line segments, and thus pi qi never crosses another pj qj . Thus for i < j, ri
appears before rj along a b(t), implying the claim.

Lemma 6.5.5. Let a1, a2, b1, b2 ∈ R2 together with a sequence of vertices v1, . . . , vn be
given. If a1 b1 stabs through {D∆(vi)}i, and ∥a1 − b1∥ ≤ ∆′ and ∥a2 − b2∥ ≤ ∆′, then
a1 b1 stabs through {D∆+∆′(vi)}i.
Proof. By Observation 2.1.1, dF (a1 b1, a2 b2) ≤ ∆′ via the reparameterization (f, g) with
f(t) = t and similarly g(t) = t. As p = a1 b1 stabs through {D∆(vi)}i, there exist
realizing points pi = p(ti) for some ordered values {ti}i, with pi lying in the ∆-disk
centered at vi. Then

∥q(ti)− vi∥ ≤ ∥q(ti)− p(ti)∥+ ∥p(ti)− vi∥ ≤ ∆′ +∆.

Lemma 6.5.6. Given r ∈ R2, Ci,j, ε and ∆ like in the apxDiagonalTunnel pro-
cedure. Denote by S∆ the set of endpoints of all ∆-stabbers (that is, stabbers through
D∆(vm) for a + 1 ≤ m ≤ i) on the edge ej starting at r and let C ′ be the point set
computed in line 15 of the procedure. Then

S∆ ⊆ C ′ ⊆ S(1+ε)2∆.
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Figure 6.12: Linear interpolation between two ∆-stabbers starting in a. Illustrations to
the proof of Lemma 6.5.4. In blue a b(t), and in red pi qi is illustrated. Their intersections
form the realizing points ri of a b(t).

Proof. Let y ∈ C ′. Then q = B(y) ∈ H ′ where H ′ is set of points computed by the
algorithm. Denote the intersection of r q and the boundary of H ′ by h. The point h is
then a linear combination of at most two grid points whose stabbers from r have been
marked as eligible, i.e., who are (1 + ε)2∆-stabber. Hence, Lemma 6.5.4 implies that r q
is also a (1 + ε)2∆-stabber, implying C ′ ⊆ S(1+ε)2∆.

Now let y ∈ S∆ be an arbitrary value such that for q = ej(y) the edge r q is a ∆-
stabber. Let t be the last realizing point of r q. The line segment r t is a ∆-stabber and
t lies in D∆(vi). We claim that t lies in H. Consider the set G = G∆ε√

2

∩Dε∆(t). By the

properties of the grid, t lies within the convex hull of G. Moreover, G ⊂ D(1+ε)∆(vi).
Lemma 6.5.5 implies that r t′ is a ((1+ ε)∆)-stabber for any t′ ∈ G. This in turn implies
that for the first point s′ of r t′ inside D∆(1+ε)(va), s′ t′ is a ((1 + ε)∆)-stabber, hence, t′

would have been marked as an eligible endpoint as the distance computed via Fε is at
most (1+ ε)2∆ (by Lemma 6.5.1). Since H is the convex hull of eligible points, it follows
that t ∈ conv(G) ⊂ H. Therefore q ∈ H ′ and thus y ∈ C ′.

Lemma 6.5.7. For any i ∈ [n1], j ∈ [n2], and s ∈ [k], let Ds
i,j be the endpoints of

diagonal tunnels as computed in the ApproximateDecider procedure, and let R =⋃i−1
a=1

⋃j−1
b=1 P

s−1
a,b be the set of reachable points by exactly s − 1 proper tunnels in the

lower-left quadrant of the cell Ci,j. It holds that
(i) there exists a point p ∈ R such that for any q ∈ Ci,j if the diagonal tunnel τ(p, q) has

price prc(τ(p, q)) ≤ 3∆ then q ∈ Ds
i,j. If q ∈ Ds

i,j, then prc(τ(p, q)) ≤ 3(1 + ε)2∆,
and

(ii) there exists no other b ∈ Ci,j \Ds
i,j that is the endpoint of a diagonal tunnel from

R with price at most ∆.

Proof. The first part follows from Lemma 6.5.6 together with the process described
by the algorithm: The point p is simply the rightmost point in R, which is main-
tained in g′r (by an induction argument) at the time, where Ci,j is processed. Let
p = (xp, yp) lie in cell Ca,b. We call the apxDiagonalTunnel procedure with p
and the vertices va+1, . . . , vi between the ath and ith edge of the target curve. It re-
turns points q = (xq, yq) inside the ∆-free space such that B[yp, yq] stabs through the
sequence D3(1+ε)2∆(va+1), . . . ,D3(1+ε)2∆(vi). Since p and q are in the ∆-free space of
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B and T , ∥T (xp) − B(yp)∥ ≤ ∆ and ∥T (xq) − B(yq)∥ ≤ ∆, which together imply
dF (B[yp, yq], T [xp, xq]) ≤ 3(1 + ε)2∆.

Assume for the sake of contradiction of the second part that such a point b does exist
and the start point of the shortcut is s ∈ R. Then by Lemma 6.5.3, all tunnels τ(r, b)
with xs < xr have price at most 3∆. In particular prc(τ(p, b)) ≤ 3∆, but then b would
have been in Ds

i,j already.

Lemma 6.5.8. Given two polygonal curves T and B in the plane as well as parameters
ε > 0 and ∆ > 0, the ApproximateDecider computes a decision of either dkS(B, T ) >
∆ or dkS(B, T ) ≤ 3(1 + ε)2∆.

Proof. We show that

R∆,s(B, T ) ⊂
⋃
s′≤s

P s′ ⊂ R3(1+ε)2∆,s(B, T ),

for s ≤ k.
This proof is by induction on the order of handled cells. We show the inclusions from

the theorem for each cell, i.e.,

R(i,j)
∆,s (B, T ) ⊂

⋃
s′≤s

P s′
i,j ⊂ R

(i,j)
3(1+ε)2∆,s

(B, T ).

Assume that (0, 0) ∈ D(1,1)
∆ , as otherwise the algorithm would have returned a correct

decision in line 3. For i = j = 1, we have that P 0
i,j = D

(1,1)
∆ which is correct by convexity

of D(1,1)
∆ . For all other s we have that P s

1,1 = ∅. This follows from the fact that there are
no points in the column below or in the lower-left quadrant of C1,1. Thus, for i = j = 1,
we have

⋃
s′≤s P

s′
i,j = R

(i,j)
∆,s ⊂ R

(i,j)
3(1+ε)2∆,s

.
Consider the algorithm handling some cell Ci,j . By induction, all cells C≤n1,<j and

C<i,j and in particular Ci−1,j and Ci,j−1 have been handled correctly up to s. Hence,
their reachability intervals and left- and rightmost points have been computed correctly
and are stored in their respective arrays. We need to show that R(i,j)

∆,s ⊂
⋃

s′≤s P
s′
i,j . Thus

let q ∈ R(i,j)
∆,s be the endpoint of a monotone path from (0, 0) walking monotonously

through D(i,j)
∆ using s′ ≤ s proper tunnels of cost ∆. There are three possibilities of how

the path could have entered Ci,j .
The path could have taken s′ shortcuts to enter a neighboring cell and then walked

into Ci,j through its boundary at some point a. Since Ci−1,j and Ci,j−1 have been handled
correctly, a is in the computed reachability interval of the neighboring cell. Since the
path must be monotone, q lies in the closed halfplane fixed at the lower or left end of the
reachability interval in the respective directions, thus q is also in P s′

i,j . Alternatively the
path could have entered some cell Ci,l with s′ − 1 shortcuts and then took a horizontal
shortcut into Ci,j for some j < l. By Lemma 6.3.2 together with the induction hypothesis
for Pi,<j we have that q is in P s′

i,j . Similarly, if the path took a diagonal shortcut, we can
apply Lemma 6.5.7 together with the induction hypothesis for P<i,<j , showing that q is
in P s′

i,j , implying the left inclusion R(i,j)
∆,s ⊂

⋃
s′≤s P

s′
i,j .

Now let q ∈ P s′
i,j for some s′ ≤ s. Then either (i) q is in N s

i,j , (ii) q is in V s
i,j , (iii)

q is in Ds
i,j , or (iv) q is in the upper right quadrant of some point p, where p satisfies

(i), (ii) or (iii). Thus it suffices to analyze the first three cases. For (i), observe that
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P s′
i−1,j and P s′

i,j−1 have been computed correctly up to round s′, and thus q must also be

in R(i,j)
3(1+ε)2∆,s

(B, T ). For (ii), observe that P s′
i,<j have been computed correctly and the

leftmost point is stored correctly in ḡs
′−1

l , hence Lemma 6.3.2 implies that q must also be
in R(i,j)

3(1+ε)2∆,s
(B, T ). Finally, for (iii), observe that P s′

<i,<j have been computed correctly.
Hence, the rightmost point in the lower-left quadrant of Ci,j that was reachable by s′−1
shortcuts is correctly stored in ḡs

′−1
r . By Lemma 6.5.7, the apxDiagonalTunnel

computes endpoints of shortcuts that are contained within the set of shortcuts with price
at most 3(1 + ε)2∆. Thus q is in R(i,j)

3(1+ε)2∆,s
(B, T ). Hence P s′

i,j is computed correctly
and all relevant left- and rightmost points as well as reachability intervals are stored
correctly. Hence, R∆,s(T

′, B′) ⊂
⋃

s′≤s P
s′ ⊂ R3(1+ε)2∆,s(T

′, B′). Finally, the algorithm
output corresponds to whether (1, 1) is in P≤k proving the claim.

Theorem 6.5.9. Let T and B be two polygonal curves in the plane with overall complexity
n, together with values ε ∈ (0, 1] and ∆ > 0. There exists an algorithm with running
time in O

(
kn2ε−5 log2

(
nε−1

))
and space in O

(
kn2ε−4 log2

(
ε−1
))

which outputs one of
the following: (i) dkS(B, T ) ≤ (3 + ε)∆ or (ii) dkS(B, T ) > ∆. In any case, the output is
correct.

Proof. We claim that the ApproximateDecider procedure (after rescaling ε ← ε/9)
fulfills these requirements.

For the precomputation we construct the data structure from Lemma 6.5.1. This
precomputation takes O

(
ε−4 log2

(
ε−1
)
n log2(n)

)
time. We iterate over all O(n2) cells

k times. The computation for each of these O(kn2) steps is dominated by a call to the
apxDiagonalTunnel procedure. This procedure iterates over O

(
ε−2
)

gridpoints, thus
queries the data structure O

(
ε−2
)

times where each query takes O
(
ε−2 log n log logn

)
time. Finally, we construct a convex hull and intersect it with a line. This can be done in
O
(
ε−2 log ε−1

)
time as we construct the convex hull of O

(
ε−2
)

points. Thus the overall
running time of the apxDiagonalTunnel procedure is O

(
ε−4 log n log log n

)
. Thus

the overall running time of the ApproximateDecider procedure is

O
(
ε−4 log2

(
ε−1
)
n log2(n) + kn2ε−1

(
ε−4 log n log logn

))
= O

(
ε−5n log2(n) + kn2ε−5 log n log log n

)
= O

(
kn2ε−5 log2

(
nε−1

))
.

The space bound is a consequence of the space needed for the approximate distance data
structure. All other data structures necessary for the algorithm use O(kn2) or O

(
ε−2
)

space. Hence, the space is in O
(
kn2 + nε−4 log2

(
ε−1
))

. The correctness of the output
is guaranteed by Lemma 6.5.8. Lastly, notice that due to the rescaling of ε ← ε/9 we
have that 3(1 + ε/9)2∆ < (3 + ε)∆.

6.5.3 Modified Algorithm for c-Packed Curves

In the case that the input curves are c-packed, for some constant c, we can modify the
algorithm and achieve near-linear running time in n. For this, we follow the approach
in [DHW12] to first simplify the curves. Recall that Theorem 4.4.5 (on page 63) implies
that Algorithm 3 (on page 62) computes a (0, ε)-maximal simplification of a polygonal
curve with complexity n in O(n) time. Further, recall that by Lemma 4.4.10, there
are at most O(cn/ε2) non-empty cells in a suitable free space of a (2∆, ε∆)-maximal
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simplification and (0, ε∆)-maximal simplification of a c-packed curve. This analysis goes
back to the following lemma due to [DHW12].

Lemma 6.5.10 ([DHW12, Lemma 4.4]). For any two c-packed curves B and T in Rd

of total complexity n, and two parameters ε ∈ (0, 1] and ∆ > 0 and (0, ε∆)-maximal
simplifications B∗ and T ∗ of B and T respectively, there are at most O(cnε−1) cells in
the free space diagram with non-empty ∆-free space.

As for a (0, ε∆)-maximal simplification B∗ of B we have that dF (B,B
∗) ≤ ε∆ and

implying the following lemma.

Lemma 6.5.11 ([DHW12]). Given a simplification parameter µ and two polygonal curves
B and T , let B∗ and T ∗ denote (0, µ)-maximal simplifications of B and T . For all k ∈ N
it holds that

dkS(B
∗, T ∗)− 2µ ≤ dkS(B, T ) ≤ dkS(B∗, T ∗) + 2µ.

Modifications

The three major modifications we apply to Algorithm 9, in order the achieve near-linear
running time, are the following.

First, we compute (0, ε∆)-maximal simplifications of both input curves T and B,
such that D∆(B

′, T ′) only has O(cnε−1) non-empty cells by Lemma 6.5.10.
Secondly, instead of iterating over all cells, we only want to iterate over these non-

empty cells. We solve this with an output-sensitive algorithm for computing the inter-
sections of edges and the boundary of ∆-neighborhoods of these edges. For this we first
compute the O(n) boundaries of neighborhoods of edges, whose geometric shape we refer
to as a capsule in O(n) time. We then compute the intersections between all edges and
capsules of B and T with a slight modification (to handle capsules) of the classical sweep
line algorithm presented in [BO79]. From these intersections, we can then reconstruct
which cells have non-empty ∆-free space.

Lastly, in order to store and retrieve the left- and rightmost points in a column below
and in the lower-left quadrant of a cell, we use two dimensional range trees described in
[dBCvKO08]. Both storing and retrieving takes logarithmic time, but now we are able
to retrieve these points, while only storing and updating these points whenever we are
in a non-empty cell.

Intersection Finder

In this section we describe the aforementioned slight modification of the sweep line al-
gorithm presented in [BO79] to compute which cells of the ∆-free space are non-empty.

Lemma 6.5.12. Given two polygonal curves B and T in R2, a parameter ∆ ≥ 0 and let
B∗ and T ∗ be (0, ε∆)-maximal simplifications of B and T . One can find all O( cnε ) cells
in the free space diagram that have non-empty ∆-free space in O( cnε log( cnε )) time.

Proof. Without loss of generality it suffices to find all edges of the curve B∗ that enter
and exit a ∆-neighborhood of any edge of T ∗, since any edge that is completely contained
in this neighborhood lies between two edges entering and leaving the neighborhood. In
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Algorithm 11 Intersection Finder
1: procedure IntersectionFinder((0, ε∆)-maximal simplifications X∗ and Y ∗, ∆)
2: Insert every start- and end-point of edges and every start- and end-points of arcs

of ∆-capsules of edges of X∗ and Y ∗ like in Figure 6.13 into a priority queue E
3: Sort E by firstly the x-coordinate and secondly by the y-coordinate
4: Let A be a self-balancing empty binary tree and I an empty array
5: while E ̸= ∅ do
6: pop the head object off E into x
7: if x is the first vertex to be inserted of an object o then
8: sorted insert o into A by its current y-coordinate
9: compute the intersection point of x and its at most two neighbors

10: sorted insert this point by its x-coordinate into E
11: if x is the second vertex to be inserted of an object o then
12: let l and r be the two neighbors of o
13: remove o from A
14: compute the intersection point of l and r updating E
15: if x corresponds to an intersection between o and o′ then
16: insert the intersection to I
17: swap o and o′ in A
18: compute the intersection point of new neighbors updating E
19: Return I

the special case that the start or end vertex of B∗ lies in such a neighborhood it is easily
checked by looking whether the first (resp. last) such edge is entering or leaving the
neighborhood. Entering and exiting such a neighborhood is the same as intersecting its
boundary. Thus we can modify for example the classical sweep-line algorithm to find all
intersections in a set of edges as introduced in [BO79] (refer to Algorithm 11).

We sweep along the x-axis and, in an array of size O(n), keep track of all objects
that cross the sweeping line. Every time a new object enters the array it checks with
its at most two neighbors how far the sweeping line would have to sweep to get to the
intersection point of the new object. If an intersection occurs at some time in the future,
we add this event to the event queue of the sweeping line. If the sweeping line is at
an intersection event, it swaps the two objects in question and updates all new O(1)
neighbors. We can modify this easily to work with capsules (the geometric shape of the
∆-neighborhood of an edge) by introducing two sections of the capsule into the array
instead of a single line, as can be seen in Figure 6.13. Intersections with its neighbors
can still be checked and updated in O(1). The algorithm runs in O((n + k) log(n + k))
time for k intersecting objects.

By Lemma 6.5.10 there are O( cnε ) cells in the 2∆-free space of B∗ and T ∗, B∗ and
B∗, and T ∗ and T ∗ each. Hence the number of intersections of the described objects is
in O( cnε ), implying the claim.

Analysis of the Algorithm

We now turn to analyzing the modified algorithm as described above.

Theorem 6.1.3. Let T and B be two c-packed curves in the plane with overall complexity
n, together with values ε ∈ (0, 1] and ∆ > 0. There exists an algorithm with running
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Figure 6.13: Arc definition for the intersection procedure.

time in O
(
kcnε−5 log2

(
nε−1

))
and space in O

(
kcnε−4 log2

(
nε−1

))
which outputs one

of the following: (i) dkS(B, T ) ≤ (3 + ε)∆ or (ii) dkS(B, T ) > ∆. In any case, the output
is correct.

Proof. The algorithm first computes (0, ε∆)-maximal simplifications T ∗ and B∗ of T and
B, and all cells of the free space diagram with non-empty ∆-free space. It then invokes the
algorithm ApproximateDecider from Algorithm 9 replacing the two loops iterating
over all cells to instead loop over the identified non-empty cells in lexicographic order.
Lemma 6.5.8 guarantees a correct decision of either dkS(B

∗, T ∗) > ∆ or dkS(B
∗, T ∗) ≤

3(1+ε)2∆. By Lemma 6.5.11, this decision implies a correct decision of either dkS(B, T ) >
∆− 2ε∆ = (1− 2ε)∆ or dkS(B

∗, T ∗) ≤ 3(1 + ε)2∆+ 2ε∆ = (3(1 + ε)2 + 2ε)∆.
Rescaling ∆ ← ∆/(1 − ε/10) and ε ← ε/20 does not affect the asymptotic running

time, but turns the decision output by the algorithm into a correct decision of either
dkS(B, T ) > ∆ or dkS(B

∗, T ∗) ≤ (3 + ε)∆, as(
1− 2ε

20

)
∆

1 + ε/10
= ∆,

and as ε ≤ 1 we have that

3
(
1 + ε

20

)2
+ 2 ε

20

1− ε
10

∆ ≤ (3 + ε)∆.

Now for the running time observe that the non-trivial steps of the algorithm are:
(i) Precomputation on the curves, (ii) finding all non-empty cells, (iii) iterating over
these cells, (iv) the apxDiagonalTunnel procedure, and (v) storing and restoring the
rightmost point in the lower-left quadrant of any cell. By Theorem 4.4.5, we can compute
the (0, ε∆)-simplifications in O(n) total time.

For the precomputation we initialize the data structure described in Lemma 6.5.1.
This precomputation takes O

(
ε−4 log2

(
ε−1
)
n log2(n)

)
time. By Lemma 6.5.12, finding

all intersections can be done in O
(
cnε−1 log

(
cnε−1

))
time. Sorting these intersections

in O
(
cnε−1 log

(
cnε−1

))
time lexicographically by the indices of the corresponding cell

allows us to iterate over the cells with non-empty ∆-free space as described in the algo-
rithm. In Section 6.5.1 we described the apxDiagonalTunnel procedure. As described
in the proof of Theorem 6.5.9, the overall running time of the apxDiagonalTunnel
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procedure is O
(
ε−4 log n log logn

)
. We call this procedure O

(
kcnε−1

)
times, k times for

each non-empty cell.
To store and retrieve the rightmost point in the lower-left quadrant we can use two

two-dimensional range trees as described in [dBCvKO08]. We build these trees with
O
(
cnε−1

)
points at the end of each outer loop storing all right- and leftmost points

for the next iteration in O
(
cnε−1 log

(
cnε−1

))
time. As we do this k times, this re-

sults in an overall running time of O
(
kcnε−1 log

(
cnε−1

))
, where the space used is

O
(
cnε−1 log

(
cnε−1

))
.

Thus the overall running time is

O
(
cnε−1 log

(
cnε−1

)
+ ε−4 log2

(
ε−1
)
n log2(n) + kcnε−1

(
ε−4 log n log log n

))
= O

(
cnε−1 log

(
nε−1

)
+ ε−5n log2(n) + kcnε−5 log n log log n

)
= O

(
kcnε−5 log2

(
nε−1

))
.

The space follows directly from the space needed for the approximate distance data
structure. All other data structures necessary for the algorithm use O(cn/ε log(n)) or
O
(
ε−2
)

space. Hence, the space is O
(
cn/ε log(n) + nε−4 log2

(
ε−1
))

.

The non-parametrized Shortcut Fréchet Distance

The algorithm presented and analyzed in Theorem 6.1.3 can be modified to also yield
results for the non-parametrized shortcut Fréchet distance dS(·, ·). The only two differ-
ences to the algorithm from Theorem 6.1.3 are that we do not store the subset of the
(∆, s)-reachable space reachable by exactly s proper shortcuts in every cell, but rather
the union over all s, and instead of storing all left- and rightmost points at the end of
each round in its own range tree we need to store them all in the same range tree and
make them accessible immediately. The first is a straightforward modification by simply
not keeping track of the number of proper shortcuts s instead passing over the ∆-free
space only once. For the latter, we may use standard techniques such as the Bentley-Saxe
method [BS80], increasing the query time by a logarithmic factor.

Theorem 6.5.13. Let T and B be two c-packed polygonal curves in the plane with overall
complexity n, together with values 0 < ε ≤ 1 and ∆ > 0. There exists an algorithm with
running time in O

(
cnε−5 log2

(
nε−1

))
and space in O

(
cnε−4 log2

(
ε−1
))

which outputs
one of the following: (i) dS(B, T ) ≤ (3 + ε)∆ or (ii) dS(B, T ) > ∆. In any case, the
output is correct.

Proof. This is an immediate consequence of the proof of Theorem 6.1.3 and the described
modifications as well as the techniques from [BS80].

147



Chapter 7

Conclusion

In this thesis we explored algorithmic approaches for identifying and leveraging patterns
in spatio-temporal data. We developed clustering algorithms for two distinct problem
settings: detecting global patterns across a set of curves, and identifying local patterns of
variable length within individual or small numbers of long curves. Both settings produce
representative curves that summarize recurring behavior. Additionally, we proposed a
data structure for classifying previously unseen curves based on a set of known represen-
tatives. Lastly, we examined a variant of the Fréchet distance aimed at filtering noise or
irrelevant substructures from input curves.

In the following we discuss open problems and further research directions with respect
to the individual problems discussed.

7.1 ε-Coresets for (k, ℓ)-Median under p-DTW

In Chapter 3 we discussed the (k, ℓ)-median problem under p-DTW. Our contributions
involve investigating the VC dimension of range spaces characterized by arbitrarily small
perturbations of DTW distances. While our results hold for a relaxed variant of the
range spaces in question, they establish a robust link between numerous sampling results
dependent on the VC dimension and DTW distances. Indeed, our first algorithmic con-
tribution is the construction of coresets for (k, ℓ)-median through the sensitivity sampling
framework presented in [FL11]. Apart from the VC dimension, the crux of adapting the
sensitivity sampling framework to our (non-metric) setting was to use a known weak ver-
sion of the triangle inequality satisfied by DTW. This inequality prompted us to further
explore approximation algorithms by approximating DTW with a metric. By reducing
to the metric case and plugging in our coresets, we designed an algorithm for the (k, ℓ)-
median problem with running time linear in the number of the input sequences, and
an approximation factor predominantly determined by our generalized iterated triangle
inequality.

Although our primary motivation lies in constructing coresets, there are additional
direct consequences through sampling bounds that establish a connection between the
sample size and the VC dimension. For instance, suppose that we have a large set of
time series following some unknown distribution, and we want to estimate the probability
that a new time series falls within a given DTW ball b. Suppose that we also allow for
small perturbations of the distances, i.e., we only want to guarantee that the estimated
probability is realized by some small perturbations of the distances. This probability
can be approximated within a constant additive error, by considering a random sample
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of size depending solely on the VC dimension and the probability of success (over the
random sampling) and measuring its intersection with b (see e.g., Theorem 3.3.6). Such
an estimation can be used for example in anomaly detection, where one aims to detect
time series with a small chance of occurring, or in time series segmentation, where diverse
patterns may emerge throughout the series.

Future Direction 1 (Size-Independent ε-Coresets for (k, ℓ)-Median under p-DTW). In
our work, we constructed ε-coresets for the (k, ℓ)-median problem under p-DTW using
sensitivity sampling. The resulting coreset size depends logarithmically on the number
of input curves.

In recent work, [BCJ+22] showed how to construct ε-coresets with size independent
of the input size for k-median-type problems in metric spaces, including the continuous
Fréchet distance. Their method relies heavily on triangle inequality properties, which
does not hold for p-DTW. This raises the question: Can we construct size-independent
ε-coresets for (k, ℓ)-median under p-DTW? It is unclear whether such coresets can exist
in the non-metric setting of DTW, and if so, whether new techniques beyond those in
[BCJ+22] are required.

Future Direction 2 (Constant Factor Approximation Algorithm for (k, ℓ)-Median un-
der p-DTW). Based on our ε-coresets for (k, ℓ)-median under p-DTW, we obtained a
linear-time (O(ℓm), 1)-approximation algorithm. This relies on the polynomial-time
(O(ℓm), 1)-approximation algorithm we introduced. In fact, coresets can reduce the
running time of any polynomial time algorithm to only have linear dependency in the
number of curves.

However, no constant-factor (i.e., (O(1), 1)) approximation algorithm for this problem
is currently known. This leads to the open question: Does there exist a polynomial-
time (O(1), 1)-approximation algorithm for (k, ℓ)-median under p-DTW? Addressing this
likely requires novel algorithmic ideas due to the non-metric nature of DTW.

7.2 Subtrajectory Covering and Coverage Maximization

In Chapter 4, we investigated the problem of clustering subtrajectories under the Fréchet
distance, with a focus on approximation algorithms for the Subtrajectory Covering (SC)
and Subtrajectory Coverage Maximization (SCM) problems. Rather than reducing the
size of the smallest known candidate set from [vdHvdHO25], we analyzed structural
aspects of the underlying greedy approach. Our main contributions include the intro-
duction of the sweep-sequence and proxy coverage structures, which enabled the first
deterministic cubic-time (O(log n), O(1))-approximation algorithm.

For the case of c-packed curves, we are able to improve the running time of the
approximation algorithm for the SC problem to depend roughly quadratically on the
input complexity. We observed further that a quartic version of the algorithm appears
practical with real-world data, which suggests that the dependence in n for c-packed
curves is not tight.

Future Direction 3 (Improved Algorithms for SC and SCM). Our (O(log n),O(1))-
approximation algorithm for Subtrajectory Covering runs in cubic time, and roughly
quadratic time for c-packed curves. However, the cubic running time—particularly with
fractional exponents in the general case—suggests room for improvement. This raises
several questions: Can we design an (O(log n),O(1))-approximation algorithm for SC
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with truly quadratic dependency on n? Furthermore, for c-packed curves, can the de-
pendence on n be reduced to linear? The former question likely requires new algorithmic
techniques beyond those explored here, while the latter may even be shown with existing
techniques for c-packed curves [DHW12].

Future Direction 4 ((Conditional) Lower Bounds for SC and SCM). Complementing
the algorithmic side, it is natural to ask about computational hardness. [ABCD23]
showed that computing exact solutions for SC or SCM is NP-hard. The situation for
approximation and restricted versions appears more opaque.

A key question is: Can we establish approximation hardness for SC or SCM similar to
that of set cover (e.g., hardness within o(log n))? How about if we consider the restricted
version where, given a reference curve S and a curve P , one must compute the subcurve
π ⊆ S of complexity ℓ that maximizes λ (CovP (π, 4∆)), as is the case in our algorithm,
where S is a maximal simplification of P? For a related problem, [GW22] presented
a conditional lower bound stating that determining the ‘largest’ cluster takes at least
cubic (in n) time. Our approximation algorithm based on the proxy coverage avoids
such lower bounds by sidestepping exact computation of the optimal subcurve. A better
understanding of these lower bounds could clarify whether our algorithms are close to
optimal.

Future Direction 5 (Practicality of Cubic Time Algorithm). Our empirical results
suggest that the algorithm from [ABCD23], as well as our extension to centers of non-
constant complexity, capture meaningful structure in trajectory data. However, our
implementation does not yet incorporate all known optimizations (e.g., [vdHvdHO25]),
nor our structural insights into the proxy coverage from Section 4.6–4.8.

This leads to the following question: To what extent can these improvements reduce
the running time in practice, or are we approaching an algorithm that is theoretically
efficient but suffers from large hidden constants? Understanding this trade-off would help
bridge the gap between theory and application for the SC and SCM problems.

7.3 (1 + ε)-ANN under the Continuous Fréchet Distance

In Chapter 5, we addressed approximate nearest neighbor (ANN) search for curves un-
der the Fréchet distance, despite its inherently high complexity. We showed that while
Xd,k has unbounded doubling dimension, there are spaces which are arbitrarily close to
Xd,k with bounded doubling dimension which can be used for efficient ANN queries.
Our method constructs ANN data structures in these neighboring spaces and extends
naturally to special cases such as c-packed curves, yielding improved query times. This
construction opens up questions about fully combinatorial ANN data structures and
tighter dimensional bounds for restricted curve families.

Future Direction 6 (Combinatorial ANN Data Structure With Fast Queries). Our
approach to ANN for Fréchet distance in arbitrary dimension leverages an embedding
into a space with bounded doubling dimension. However, this incurs a dependency on
numerical parameters like the spread, either in preprocessing or query time. [CH23a]
showed how to avoid such dependencies in a purely combinatorial structure, but their
query time still depends on

√
n.

This motivates the question: Can we design a purely combinatorial ANN data struc-
ture for Fréchet distance with logarithmic query time (e.g., roughly O(log n))? Such a
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structure would eliminate numerical dependencies and could offer substantial improve-
ments in practical settings.

Future Direction 7 (Doubling Dimension). We presented both upper and lower bounds
on the doubling dimension of the space of (µ, ε)-curves in Xd,k

Λ . In particular, for c-packed
curves, the gap between these bounds is small. However, neither of the bounds are tight.

Thus, a natural question is: Can the gap in the doubling dimension bound be further
narrowed, or even closed? It seems plausible that the intrinsic dimension of the space is
at least kd when k = m and d ∈ O(log nm). Any improvement in this direction would
give new theoretical understanding of the structure of curve spaces.

7.4 Computing the k-Shortcut Fréchet Distance

In Chapter 6 we presented multiple results on the computability of the k-shortcut Fréchet
distance. We gave an exact decision algorithm for the k-shortcut Fréchet distance and
the non-parametrized Shortcut Fréchet distance with exponential running time. We
complemented this result with a conditional lower bound showing that computing a
decision of whether dkS(P,Q) ≤ ∆ requires no(k) time for specific P , Q, and ∆. The
main insight for the exact case being that the reachable space inside a cell may fragment
into no(k) pieces which we propagate individually to later cells. Circumventing this
fragmentation, we presented a (3 + ε)-approximate decision algorithm which exploited a
critical insight given in [BDS14] which states that it suffices to propagate only a single
point per cell. This results in an approximation algorithm with a running time roughly
in O(kn2), and O(n2) for the non-parametrized version. In the special case of c-packed
curves in the plane the running time improves to roughly O(kcn) and O(cn) respectively.

Future Direction 8 (Exact Computation). We gave an exact decision algorithm for
the k-shortcut Fréchet distance and its non-parametrized variant. Following the classical
Fréchet distance setting, one might try to compute the distance by searching over a finite
set of events, at which the decision algorithm for the k-shortcut Fréchet distance changes
combinatorially.

However, unlike the classical case, where such events include point-to-point and point-
to-edge distances, no such characterization is known for the shortcut variants. Such a set
of candidate events ought to include the smallest distance ∆∗ such that for a sequence of
cells in the parametric space, tunnels from each cell to its subsequent cell of price ∆∗ exist,
such that each tunnel starts where the previous ends. This most likely depends on specific
geometric configurations and it is not entirely clear how to compute such values ∆∗. Is
it possible to identify a suitable set of events for the k-shortcut Fréchet distance or the
non-parametrized Shortcut Fréchet distance to enable exact computation nonetheless?
Without such a set, it remains unclear whether a fully combinatorial algorithm exists.

Future Direction 9 (Approximate Computation). Similar to the exact case, our ap-
proximate decision algorithm could be extended to compute the distance if a suitable
candidate set of events is known. For approximations, it suffices to search over a set
containing at least one value that gives a constant-factor approximation.

This raises the question: Can we construct such a candidate set efficiently—ideally
in Õ(n2) time—that enables approximate computation of the shortcut Fréchet distance?
A similar logic to the exact case applies making it hard to geometrically describe and
compute such a set.
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