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We develop a model of multi-dimensional misspecified learning in which an overconfident agent 

learns about groups in society from observations of his and others’ successes. We show that the average 

person sees his group relative to other groups too positively, and this in-group bias exhibits systematic 

comparative-statics patterns. First, a person is most likely to have negative opinions about other groups he 

competes with. Second, while information about another group’s achievements does not lower a person’s 

prejudice, information about economic or social forces affecting the group can, and personal contact with 

group members has a beneficial effect that is larger than in classical settings. Third, the agent’s beliefs are 

subject to “bias substitution”, whereby forces that decrease his bias regarding one group tend to increase 

his biases regarding unrelated other groups.
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1. INTRODUCTION

Individuals’ beliefs about each other are crucial determinants of social and economic behaviour. 

While the typical assumption in economics is that beliefs are correct given available informa- 

tion, a growing literature recognizes the possibility that individuals have incorrect beliefs about 

others (Bordalo et al., 2016; Heidhues et al., 2018; Bohren et al., 2019; Hestermann and Le 

Yaouanq, 2021; Frick et al., 2022; Chauvin, 2023; Bohren et al., 2025). Theoretical work has 

begun to explore how false social beliefs can arise because a person makes inferences using an 

incorrect, “misspecified” model of the world, and empirical work documents instances of false 

social beliefs.1

1. We cite relevant evidence, including for empirical claims in the introduction, when presenting our formal 

results below.
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2 REVIEW OF ECONOMIC STUDIES

We build on this research to develop a theory of prejudiced inter-group beliefs, making three 

contributions to the economics literature. To start, we provide the first general explanation for 

one of the most central stylized facts about inter-group beliefs, (relative) in-group bias—that 

the average person sees his group relative to other groups too positively. Second, we allow 

social beliefs to be richly multi-dimensional, uncovering connections that can help account 

for observed empirical patterns. Third, we identify types of information that are effective in 

debiasing agents, and types that are not.
In Section 2, we present our model. Society is composed of individuals in disjoint groups. 

An agent makes many independent observations of the “recognition”—i.e. achievement, social 

status, or other measure of success—of each individual, including himself. He understands 

that recognition depends in part on the “calibre”—i.e. ability, work ethic, or other measure 

of deservingness—of a person. But he allows for the possibility that various types of “dis- 

crimination”—i.e. attitudes, policies, or economic forces with group-dependent impacts—affect 

recognition as well. Each type of discrimination redistributes recognition between groups 

according to fixed proportions, which we can think of as deriving from an underlying com- 

petition structure. While the agent knows the proportions, he does not know the degrees of 

discrimination, so he does not know how much redistribution is going on.
Crucially, to these ingredients we add a single non-classical but empirically well- 

founded assumption. Namely, the agent holds stubborn, unrealistically positive—i.e. overcon- 

fident—views about himself, formalized as a point belief about his calibre that exceeds the true 

value. Otherwise, the agent is agnostic and rational, starting from a full-support prior about the 

degrees of discrimination and others’ calibres, and updating his beliefs using Bayes’ Rule.
Section 3 identifies properties of the agent’s long-run beliefs, beginning with two widely 

documented patterns. The first derives from a force identified by Heidhues et al. (2018) and
Hestermann and Le Yaouanq (2021) in other environments: that an overconfident agent misat- 

tributes (what appear to him) low outcomes to unfavourable external factors. In our setting, this 

leads him to overestimate discrimination against and underestimate discrimination in favour of 

his group. Consistent with opinion surveys, this implies that outsiders consider discrimination 

against a group as less severe than group members do. Going further, individuals’ misesti- 

mates about discrimination lead them to develop excessively positive opinions about other group 

members, and consequently to exhibit relative in-group bias.
Beyond explaining the above basic patterns, our theory makes a rich set of comparative- 

statics predictions. One set of insights centres around the effects of competition. Suppose that 

a new type of discrimination pits an outside group against the agent, for instance because the 

group moves to his neighbourhood and he finds himself on opposite sides of a social or eco- 

nomic issue with them. Because of his misestimate of the new type of discrimination, the agent’s 

opinion of the group decreases. This insight helps explain why factors such as the presence 

of other ethnic groups in one’s city, immigration to one’s vicinity, and perceived competi- 

tion with a group increase prejudice. More subtly, the agent’s biases regarding all groups not 

affected by the new type of discrimination decrease. Intuitively, armed with a new explanation 

for his low recognition, the agent’s need for other explanations diminishes. This bias substitution 

provides a beliefs-based mechanism for how focusing on a competitor outside group—a com- 

mon political tactic—can help unify a population hitherto riddled with mutual prejudice. All of 

these effects occur even if the agent competes more with members of his own group than with 

outsiders.
Another set of insights concerns the effects of information. While better information about a 

group’s recognition does not lower biases, better information about a type of discrimination that 

affects the agent has a range of positive effects. It lowers his bias about his own group as well 

as about any group also affected by the discrimination, and it improves his opinion about the
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Heidhues et al. OVERCONFIDENCE AND PREJUDICE 3

average other group. This provides a novel perspective on the influential and well-documented 

contact hypothesis (Allport, 1954), which says that contact with an individual from a different 

racial group can lower prejudice. Plausibly, one main effect of such contact is that the agent 

learns the calibre of the individual, giving him information about discrimination and hence low- 

ering his bias regarding all of the individual’s group. Hence, in a sense our model predicts a 

stronger positive effect of contact than does a model of correctly specified learning. In such a 

conventional framework, information about one person often has a small effect on beliefs about 

a large group.
In Section 4, we consider variants of our basic model. We demonstrate that our framework’s 

central mechanism can be operational even when the agent neither entertains the possibility of 

systematic discrimination, nor starts off thinking of society in terms of distinct groups. Suppose 

that individual j’s recognition is the sum of j’s calibre, a mean-zero common shock scaled by
ψ j , and a mean-zero idiosyncratic shock. The agent does not know the effects of the common 

shock, ψ j , which could be different across individuals and could be positive or negative. He 

uses observations of everyone’s recognitions to update about individuals’ calibres as well as 

the ψ j . We show that the agent develops a positive bias about individuals whose ψ j has the 

same sign as his, and a negative bias about individuals whose ψ j has the opposite sign. In 

addition, he correctly learns the signs but overestimates the absolute values of the ψ j ’s. These 

results can be interpreted as saying that endogenous in- and out-groups develop based on who 

is in the “same boat” with the agent, and the agent exaggerates the importance of groups in 

determining outcomes. We also consider a model in which the agent’s beliefs about his calibre 

are not fixed, but he interprets observations about himself in a positively biased way. We show 

that he develops overconfidence, which has the same effect on his other beliefs as in our basic 

model. Finally, we investigate the extent to which our results on long-run beliefs hold in the 

short run.
All of the formal analysis in our article relies on general tools we have developed for study- 

ing learning under high-dimensional misspecified models. We explain these tools in Section 5. 

Due to the lack of such tools, prior analysis of misspecified learning has typically focused on 

misinferences about a single-dimensional state of the world.
We discuss related literature in Section 6. While a few theories have implications for beliefs 

about groups, no previous paper derives a general relative in-group bias, makes predictions 

regarding spillovers between multiple interdependent incorrect beliefs about others, or devel- 

ops a theory of group beliefs based on overconfidence. But our theory is of course not intended 

to explain all social biases. Some prejudices are stoked by politicians (Glaeser, 2005); many 

stereotypes are about less value-laden characteristics than our notion of calibre (Bordalo et al., 

2016); and individuals often also have prejudices about groups they are not in tangible competi- 

tion with. We conclude in Section 7 with a discussion of what our model of beliefs might imply 

for discriminatory behaviour.

2. INFERENCES ABOUT INDIVIDUALS AND GROUPS

2.1. Setup

There are I individuals in G disjoint groups subject to K types of “discrimination”. Individual
j ∈ {1, . . . , I } has fixed “calibre” a j ∈ R and group membership g j ∈ {1, . . . ,G}, and θk ∈ R
denotes the fixed extent of discrimination of type k. We consider society from the perspective of 

one member, agent i ∈ {1, . . . , I }; we will also compare the views of different agents, and anal- 

yse average views. Agent i repeatedly observes each individual’s “recognition” q j ∈ R as well 

as signals ηk ∈ R of θk . In both the true model and agent i’s subjective model, these observations
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4 REVIEW OF ECONOMIC STUDIES

are generated according to

q j = a j +

K∑︂
k=1

φg j kθk + ϵ
q 

j , j = 1, . . . , I

ηk = θk + ϵ
η
k , k = 1, . . . , K ,

(1)

where φgk ∈ R is the fixed incidence of type-k discrimination on group g, and the ϵq 

j and ϵηk are 

mean-zero normally distributed errors that are identically and independently drawn over time.2

Denoting by mg the population frequency of group g, we impose that
∑︁

g mgφgk = 0 for all k,
i.e. the effect of discrimination is redistributive.

In the true model, the vector of calibres a equals A, the vector of the levels of discrimination
θ equals Θ, and the errors ϵq 

j , ϵ
η
k are all independent and have variances vq 

j , v
η
k . In agent i’s sub- 

jective model, g j and φgk are known and the same as in the true model, but others’ calibres a−i , 

the levels of discrimination θ , and the covariance matrix Σ of the errors (ϵq , ϵη) are unknowns. 

The agent’s prior belief regarding (a−i , θ ) has support RI−1
× RK , and his prior belief about

Σ conditional on any a−i , θk is supported on all positive definite symmetric matrices whose 

eigenvalues are greater than λ, where λ is chosen to be sufficiently small.3 Crucially, the agent 

is overconfident about himself: his subjective model assigns probability 1 to ai = ãi > Ai . He 

applies Bayes’ Rule to update his beliefs. We look for the limit of his beliefs in the long run.

2.2. Interpretation and discussion

The calibre a j could stand for a person’s ability or general character, and recognition q j for 

their income, wealth, or broader social status. Both a j and q j can be defined in absolute as well 

as relative terms. The degrees of discrimination θk might capture the severity of discriminatory 

behaviour, strength of policies, or intensity of economic forces that affect groups differently, 

while the signals ηk about θk could come from observations the agent makes in his own life, or 

from academic or journalistic research he hears about. For the purposes of the present paper, the
θk are exogenous.4

We think of the incidences φgk of discrimination on groups as being determined by an under- 

lying competition structure. For instance, affirmative action is perceived to harm Asians and 

whites due to competition for college spaces, and a pro-immigration policy is perceived to harm 

low-income natives due to competition for jobs. This perspective does not preclude—and hence 

our results are consistent with—the possibility that a person competes more with in-group than 

with out-group members.5 Furthermore, our assumption that the agent knows the φgk reflects the

2. The assumption that recognition is linear in its components is purely for tractability.
3. For a discussion of this technical assumption, an explicit formula for λ, and other specifications of the support 

of the prior, see Section 5. In particular, our results are the same if the agent knows the covariance matrix.
4. For presentational simplicity, we refer to q j as individual j’s recognition, but our formalism also captures the 

case in which q j is a noisy signal of individual j’s recognition that is observable to agent i. Furthermore, while we 

present the model and results by referring to individual j as a person, an equivalent model obtains if some observations
q j are average recognitions of groups or subgroups. For groups the agent knows little about, these observations could 

be very noisy. Also note that while in reality different groups often have access to different information, our basic 

model abstracts from this consideration. In a correctly specified model, differences in information do not by themselves 

generate systematic disagreement.
5. To formalize, let f (g, g′) measure the (perceived) frequency or importance of competition for recognition 

that an individual with group membership g faces from individuals with group membership g′. Denoting by Gk ⊂ 

{1, . . . ,G} the set of groups that benefit from discrimination of type k, define φgk =
∑︁

g′∈G\Gk
f (g, g′) if g ∈ Gk

and φgk = −
∑︁

g′∈Gk
f (g, g′) if g ∈ G \ Gk . Intuitively, the impact of discrimination of type k on an individual is 

determined by how many people he tends to compete with on the other side of the issue. The extent f (g, g) to which
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Heidhues et al. OVERCONFIDENCE AND PREJUDICE 5

idea that he can learn competition patterns from sources such as the media or public discussions, 

or infer them from knowledge such as how college admissions work.
Given the above competition perspective—according to which one person’s gain from dis- 

crimination comes at the expense of someone else—it is natural to assume that the effect of 

discrimination is redistributive (
∑︁

g mgφgk = 0). This assumption allows us to make statements 

about beliefs regarding calibres averaged across multiple groups, but plays no other role.6

While we focus on limiting beliefs, by definition these approximate the agent’s beliefs after 

sufficiently long finite time. Furthermore, while we assume that the agent is certain about his 

calibre, the results extend to some settings in which he is slightly uncertain. Specifically, suppose 

that the agent starts with a Normal prior, is uncertain about the fundamental, and knows the 

covariance matrix of signals. At any fixed finite time, his beliefs with a sufficiently certain prior 

about his calibre are close to his beliefs with a degenerate prior—which, after a long time, are 

close to the limiting beliefs we derive. The latter is true even if the agent is correctly specified, 

so he eventually learns everything correctly.
There is evidence for our main premise, overconfidence, from many aspects of life (e.g.

Malmendier and Tate, 2005; Landier and Thesmar, 2009; Spinnewijn, 2015; Augenblick and 

Rabin, 2019; Huffman et al., 2022). Furthermore, since individuals in these and other studies 

have had plenty of opportunity to learn about themselves, overconfidence is stubborn: it is either 

not eliminated by learning, or it is eliminated very slowly. Our analysis of long-run beliefs is 

appropriate for a person who has had sufficient scope to learn about society but has (like most 

individuals observed in the empirical work) remained overconfident so far. To complement these 

main insights, in Section 4.3 we discuss short-run beliefs. We note that if the agent starts with 

a sufficiently uncertain (high-variance) prior, our results on his long-run biases approximate 

his average short-run biases. We also show that if K = 1, the directions of the agent’s short- 

run and long-run biases are identical. Otherwise, however, short-run and long-run biases can be 

directionally different.

3. PATTERNS IN BELIEFS

We now analyse our model. We say that agent i’s beliefs about discrimination and individuals’ 

calibres concentrate on (θ̃ i , ãi ) ∈ RK
× RI if the probability he assigns to any open set around

(θ̃ i , ãi ) converges to one. Based on a general result in Section 5, we obtain:

Theorem 1 (Long-Run Biases). Agent i’s beliefs concentrate on a single (θ̃ i , ãi ) almost surely. 

His long-run bias about discrimination of type k is

θ̃ i 

k −Θk = 

−φgi kv
η
k

v
q 

i +
∑︁

k ′ φ2
gi k ′v

η
k ′

· (ãi − Ai ), (2)

and his long-run bias about the calibre of individual j ̸ = i is

ãi 

j − A j =

∑︁
k φgi kφg j kv

η
k

v
q 

i +
∑︁

k ′ φ2
gi k ′v

η
k ′

· (ãi − Ai ). (3)

individuals compete fiercely with other members of their own group does not affect φgk , as within-group competition 

does not influence the impact of between-group discrimination.
6. More precisely, we use the assumption in Proposition 1 (all parts, except for the claim that each group overes- 

timates itself relative to the truth), Proposition 2, Part III, and Proposition 3, Part IV. The other results hold unchanged 

without the assumption.
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6 REVIEW OF ECONOMIC STUDIES

First, the direction of the agent’s bias about discrimination of type k has the opposite sign 

from the effect of this discrimination on his group. Second, the direction of the agent’s bias about 

an individual depends on a weighted sum of how similarly discrimination affects the agent’s and 

the individual’s groups. Types of discrimination that affect the agent and individual in the same 

direction contribute positively to this sum, and types of discrimination that affect the two people 

in opposite directions contribute negatively. We organize and discuss economic implications in 

the following subsections.

3.1. In-group bias

We start with two basic, empirically documented patterns in beliefs. Equation (2) implies that 

the agent overestimates discrimination that harms him (φgi k < 0), and underestimates discrim- 

ination that benefits him (φgi k > 0). Intuitively, the distorted beliefs explain to the agent why 

his recognition is not as high as he overconfidently expects. Though not derived formally 

in previous research, such views resemble misattributions in work on learning with overcon- 

fidence (Heidhues et al., 2018; Hestermann and Le Yaouanq, 2021) and selective attention 

(Schwartzstein, 2014). Further, a person’s underestimation of beneficial discrimination can be 

seen as a formalization of social dominance theory’s notion of a “legitimizing myth”—an illu- 

sion that rationalizes a “dominant” group’s advantages over “dominated” groups (e.g. Pratto et 

al., 2006).
The above implies that members estimate the level of discrimination against a group as higher 

than non-members who are unaffected by or benefit from the discrimination. Such contrasting 

views are a common finding in opinion surveys.7 Relatedly, our theory predicts that a person is 

biased about a type of discrimination only if it affects him. For example, a white male professor 

may understand discrimination in policing and firm hiring but fail to appreciate discrimination 

in academia. We are unaware of evidence on this prediction.
Beliefs regarding discrimination have implications for beliefs about groups. We state our 

results as averages over groups. To do so, we assume that vq 

j is the same for all individuals in 

group g, and denote it by vq 

g . We also let Ag be the average calibre of group g, and ãg 

g′ the average 

opinion of group g about (others in) group g′.

Proposition 1 (In-group bias).

(I) (In-group overestimation). Each group overestimates itself relative to the truth (ãg 

g >
Ag), but on average estimates groups correctly (

∑︁
g′ mg′ ãg 

g′ =
∑︁

g′ mg′ Ag′ ).
(II) (Absolute in-group bias). If groups’ calibres (Ag) are equal, then each group thinks 

others in their group are better than the average (ãg 

g >
∑︁

g′ mg′ ãg 

g′ ).
(III) (Relative in-group bias). On average, a group’s view of its fellow members relative to 

another group’s members is positive:
∑︁

g,g′ mgmg′(ãg 

g − ãg 

g′) > 0.

Part I says that on average, an agent overestimates other members of his group relative to 

the truth. Intuitively, since he overestimates discrimination hurting and underestimates discrim- 

ination benefiting fellow group members—who are subject to the same discrimination effects 

as him—he attributes too much of their recognitions to their calibres. Because the effect of

7. See, for instance, Newport (2014) on race, Pew Research Center (2017) on gender, Pew Research Cen- 

ter (2018) on income, and “Weniger Respekt und wachsende Fremdenfeindlichkeit”, Frankfurter Allgemeine Zeitung, 

September 12, 2019, on immigrants.
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Heidhues et al. OVERCONFIDENCE AND PREJUDICE 7

discrimination is redistributive, however, a group’s misestimates of discrimination do not bias 

its average estimate of calibre in the population.
The combination of in-group overestimation and overall correct estimation generates two 

manifestations of in-group bias. If the average calibres of groups are equal, then a person esti- 

mates his group to be above this level, and other groups to be below it on average. Hence, he 

thinks that his group is better than average (Part II). More generally, the average person estimates 

the average other member of his group to be better than average (Part III).8

To connect our results to stylized facts, suppose that there are two groups. Then, if the average 

calibres of the groups are equal (A1 − A2 = 0), each group believes itself to be better than the 

other group. This kind of bias is the most basic stylized fact in the literature on stereotypes, dis- 

crimination, prejudice, and racism.9 Furthermore, some evidence indicates that the bias reflects 

a mistake (Bohren et al., 2019; Lambin and Palikot, 2019).
A group may, however, fail to think of itself as better if the groups’ true average calibres dif- 

fer, or, stepping slightly outside our model, there are other biases that affect views equally across 

groups. In models by Frick et al. (2022) and Chauvin (2023), for instance, both a dominated 

and a dominant group may underestimate the privileges of the dominant group. If (fixing other 

parameters) the difference in average calibres or underestimation of privileges is sufficiently 

large, then the less fortunate group will think of itself as worse than the more fortunate group.
Our theory predicts that even then, the two groups exhibit relative in-group bias: Group 1 

members’ opinion of Group 1 relative to Group 2 is more positive than Group 2 members’ 

opinion about the same (ã1 

1 − ã1 

2 > ã2 

1 − ã2 

2). Indeed, when researchers do not find unanimous 

support for absolute in-group bias, they typically observe relative in-group bias.10 Sometimes, 

however, groups do not even display relative in-group bias (e.g. Card et al., 2020), and our theory 

cannot account for this evidence.
Note that in Parts II and III of Proposition 1, in-group bias holds in an average sense. In Part 

II, in particular, each group overestimates itself relative to the average other group. The question 

arises whether in-group bias holds pairwise in general when there are more than two groups. 

The following example shows that it does not:

Example 1. G = 3, K = 1, vη1 = 1, m1 = m2 = m3 = 1/3, φ11 = 3, φ21 = −2, φ31 = −1,
v

q 

g = 1 for all g, ã j − A j = 1 for all j, and all true calibres are normalized to zero. Then, by 

equation (3), we obtain

ã3 

2 = 1; ã3 

3 = 1/2; ã2 

2 = 4/5; ã2 

3 = 2/5.

There are three groups (G = 3), and one type of discrimination (K = 1). Discrimination 

benefits Group 1 and hurts Groups 2 and 3, but it hurts Group 2 more (φ11 > 0 > φ31 > φ21). 

This example captures one potential perception of affirmative action in college admissions. Sup- 

pose that Group 1 is blacks, Group 2 is Asians, and Group 3 is whites. Affirmative action, if it 

exists (recall that our framework allows any type of discrimination to be non-existent or go the 

other way), benefits blacks and hurts whites and especially Asians. Then, Group 3 overestimates 

Group 2 more than it does itself, and more than Group 2 overestimates itself. Hence, restricting

8. Related to our in-group bias, Hestermann and Le Yaouanq (2021) show that a person thinks too highly of an 

outsider who receives the same outcome in the same circumstances as he does. They do not, however, explore general 

implications for group-based prejudices.
9. Classics are Allport (1954) and Tajfel (1982). Mullen et al. (1992) provide a meta-analysis.
10. For instance, Shayo and Zussman (2011), Gagliarducci and Paserman (2012), Zussman (2013), De Paola and 

Scoppa (2015), and Mengel et al. (2018).
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8 REVIEW OF ECONOMIC STUDIES

attention to this pair of groups, both absolute and relative in-group bias are violated. Intuitively, 

since members of Group 3 are hurt by discrimination, they overestimate it. Furthermore, since 

they know that Group 2 is hurt even more by discrimination, they overestimate members of 

Group 2 more than other members of Group 3. Nevertheless, consistent with Part II of Proposi- 

tion 1, Group 3 still exhibits an absolute in-group bias relative to the average other group. Indeed, 

Group 3 members’ view regarding Group 1 is ã3 

1 = −3/2, so their average view of other groups 

is negative.

3.2. The effects of competition

We now consider how the development of opposing interests with another group affects a group’s 

views. Suppose that groups g and g′ are initially not affected by the same types of discrimination 

(φgkφg′k = 0 for all k). Then a new type of discrimination emerges, positioning groups g and g′

against each other: mgφgK+1 + mg′φg′ K+1 = 0, with φgK+1 ̸ = 0. As a potential example, north- 

ern whites experiencing an inflow of blacks could think that they are on opposite sides of local 

issues, such as housing, schools, and jobs.

Proposition 2. The new type of discrimination:

(I) (Competition effect). Lowers the view of group g about group g′.
(II) (Excuse effect). Raises the view of group g about itself.

(III) (Bias substitution). Raises the average view of group g about groups other than g, g′.

A member of group g overestimates discrimination in favour of or underestimates discrim- 

ination against group g′, negatively biasing his opinion of group g′ (Part I). This effect helps 

explain evidence that greater local ethnic diversity increases racial animus (e.g. Branton and 

Jones, 2005), and that immigration triggers hostile reactions by natives (Tabellini, 2019). More 

generally, the result says that a person has more negative views about groups he considers com- 

petitors. This pattern is one of the cornerstones of group conflict theory (e.g. Jackson, 2011). For 

instance, Stephan et al. (1999) document that the negative stereotyping of immigrants in the U.S. 

is correlated with perceived competition for jobs and social transfers. Examining the direction 

of causality in an experiment, Esses et al. (1998) find that manipulating the sense of competition 

with an imaginary immigrant group leads subjects to see the group in a more negative light.
By Part II, new competition raises a person’s (already too high) view of his own group. His 

bias regarding the new type of discrimination provides a new excuse for his low recognition, and 

means that he attributes more of group members’ recognitions to their calibres.
At the same time, Part III says that bias substitution occurs: while group g’s opinion of group

g′ decreases, its opinion of other out-groups improves. As the agent attributes his low recognition 

in part to the new type of discrimination, his biases regarding the other types of discrimination 

decrease. This means that he attributes more of the other groups’ recognitions to their calibres.
In an example of bias substitution, Fouka et al. (2022) document that the inflow of blacks 

to northern U.S. cities reduced the (previously substantial) stereotyping of Irish and Italian 

immigrants. Bias substitution also provides one rationale for a common political tactic, focus- 

ing citizens’ attention on a competitor outside group to help unify a heterogeneous nation or 

constituency. In our setting, this mitigates negative views domestic groups may hold about each 

other.

3.3. The effects of information

This subsection analyses the effects of information on the agent’s beliefs. Note that if a correctly 

specified agent has sufficient information to form confident (deterministic) beliefs—as the agent
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Heidhues et al. OVERCONFIDENCE AND PREJUDICE 9

does in our model—then those beliefs must be correct and hence impervious to additional infor- 

mation. The same is not the case for a misspecified agent, leading to the natural question: can 

more information mitigate such an agent’s biases about others?
Theorem 1 implies that two types of information cannot. First, since we are focusing on long- 

run beliefs, access to more realizations of the same signals does not necessarily lower biases. 

Second, since vq 

j does not appear in equation (3), an improvement in the agent’s information 

about others’ recognitions does not affect his long-run biases. Intuitively, knowing more about 

the successes of other groups does not help because it does not affect the central tension driving 

the agent’s biases: the gap between his overconfident self-view and his actual outcomes. These 

predictions are consistent with some null effects of information on discrimination documented 

in the literature (e.g. Bertrand and Mullainathan, 2004; Boring, 2017).11

Instead, consider providing information about discrimination:

Proposition 3. Suppose discrimination of type k affects agent i (φgi k ̸ = 0). An increase in the 

precision 1/vηk of information about discrimination of type k:

(I) (Direct effect). Lowers agent i’s bias | θ̃ i 

k −Θk | regarding discrimination of type k.
(II) (No-excuse effect). Lowers his view ãi 

gi
about others in his group.

(III) (Bias substitution). Raises his bias | θ̃ i 

k ′ −Θk ′ | regarding any other type of discrimination 

that affects him (type k ′
̸ = k for which φgi k ′ ̸ = 0).

(IV) (Indirect benefit). Raises his average view
∑︁

g ̸ =gi
mgãi 

g of other groups.
(V) (Bias substitution). Raises his bias | ãi 

g − Ag| about any group g not affected by 

discrimination of type k (φgk = 0).

More information about discrimination of type k has both benefits and drawbacks. It directly 

reduces the plausibility of a biased view about type-k discrimination, lowering the agent’s bias 

on this dimension (Part I). Similarly, the information reduces the plausibility of a biased view 

about overall discrimination affecting the agent, lowering his misperceptions about other in- 

group members (Part II). Seeking alternative explanations for his recognition, however, bias 

substitution again occurs: the agent’s biases about other types of discrimination affecting him 

increase (Part III).
The effects on the agent’s views about other groups are mixed as well. Part IV says that his 

average view of outside groups rises, so that he improves his opinion of at least one group. By 

Part V, however, his bias regarding groups that are not affected by discrimination of type k rise. 

In particular, if he harbours any unrelated prejudices, these increase.
The above results yield a novel perspective on Allport’s (1954) influential and well- 

documented contact hypothesis—that contact between groups reduces prejudices (for evidence, 

see Pettigrew and Tropp, 2006; Lowe, 2021; Corno et al., 2022). Consistent with the common 

view that a primary channel is informational, we think of contact as providing information about 

the calibre of an out-group member. In a model of correctly specified learning, information about 

one person is likely to have a limited spillover effect on views about a large and diverse group, 

especially for an agent who has plenty of information to begin with. In our model, in contrast, 

the spillover effect can be more drastic. Suppose that agent i learns individual j’s calibre (so 

that ãi 

j = a j ), and j is subject to only one type of discrimination, k (φg j k ̸ = 0, but φg j k ′ = 0

11. Some studies that do find a positive effect of information, such as Kaas and Manger (2012) looking at refer- 

ence letters and Tjaden et al. (2018) looking at online reviews, involve direct information about the person’s character 

or quality. We analyse such information below.
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10 REVIEW OF ECONOMIC STUDIES

for all k ′
̸ = k).12 Then, j’s recognition q j becomes another signal of—and hence improves 

agent i’s information about—discrimination θk . As a result, agent i’s bias about j’s entire group 

decreases.13

Unlike better information about a single type of discrimination, a balanced improvement in 

information about all types of discrimination is unambiguously beneficial:

Proposition 4. A proportional increase in the precisions 1/vηk of the agent’s signals about 

discrimination lowers all his (non-zero) biases regarding discrimination and others’ calibres.

For example, it is plausible that members of a disadvantaged group observe discrimination 

with less noise. They may, for instance, see more direct evidence of discrimination, such as 

arbitrary searches by police, or they may be more attentive to the issue. Proposition 4 says that 

the disadvantaged group will then have less biased beliefs.
The preceding results provide ways to distinguish our model from a “reverse-causality” 

alternative in which overconfidence derives from false beliefs about discrimination or others’ 

calibres, rather than vice versa. An agent may, for instance, inherit stubborn, negatively biased 

beliefs about competitor groups from his parents. Observing the recognitions of these groups, 

he concludes that there is discrimination in favour of them and against his groups. Observing his 

own recognition, then, he overestimates his calibre.
While sharing the basic prediction that overconfidence and false social beliefs are related, 

the reverse-causality model differs in at least three ways from ours. First, it fails to predict 

changes in beliefs about groups in response to information about discrimination. This is because 

beliefs about groups are either stubborn (and hence do not change) or derive directly from stub- 

born beliefs about discrimination. Second, similarly, the reverse-causality model does not predict 

bias-substitution-type changes in beliefs about unrelated groups in response to competition with 

a new group. Third, by equation (3), our model predicts that a person’s bias about himself is 

greater than his bias about his fellow group members.14 As a result, the average person overes- 

timates himself relative to his in-group. In the reverse-causality model, the agent’s biases about 

himself and his average in-group member are identical—both equal his total bias about the types 

of discrimination affecting the group.

3.4. Similarity bias

In this subsection, we consider the special case of our model in which groups are defined by 

vectors of characteristics, such as black/white and female/male. We identify sufficient (albeit 

not necessary) conditions for a variant of in-group bias, similarity bias: that a person has a more 

positively biased opinion about more similar others.
Suppose that individual j has characteristics c j = (c j1, . . . , c j K ) ∈ {0, 1}

K , where c jk = 1 

means that she has characteristic k (e.g. is black). A group consists of individuals who share all 

characteristics, and is thus defined by a characteristic vector c. Furthermore, discrimination of 

type k affects individuals who have characteristic k and those who do not in opposite directions. 

We say that agent i is more similar to individual j than to individual j ′ if whenever j ′ shares a

12. In Appendix B, we show that the logic applies also if j is subject to more types of discrimination.
13. Some papers find that contact reduces prejudice only in specific environments, e.g. when the interaction is 

cooperative (e.g. Lowe, 2021). Our theory is consistent with such findings if these environments generate more accurate 

information about the out-group member, but it does not explain why this would be the case.
14. This is immediate from observing that for a fellow group member (g j = gi ), the coefficient scaling the 

agent’s overconfidence in the equation is

∑︁
k φ

2
gi kv

η
k

v
q 

i +
∑︁

k′ φ2
gi k′ v

η

k′

< 1.
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Heidhues et al. OVERCONFIDENCE AND PREJUDICE 11

characteristic with i, so does j (i.e. c j ′k = cik ⇒ c jk = cik); and the relationship is strict if the 

characteristic vectors of j and j ′ are not identical.

Proposition 5 (Similarity bias). Suppose that φck does not depend on ck ′ for any k ′
̸ = k. If 

agent i is (strictly) more similar to individual j than to individual j ′, then his long-run bias 

regarding the calibre of j is (strictly) greater than his long-run bias regarding the calibre of j ′, 

i.e. ãi 

j − A j ≥ ãi 

j ′ − A j ′ .

A sufficient condition for similarity bias is that the impact of type-k discrimination depends 

only on whether a person has characteristic k. Then, similarity determines how much agent i
believes that discrimination hurting him also hurts rather than helps individual j, so it determines 

how much of j’s recognition i attributes to calibre.15

When there is a single dimension, similarity bias reduces to a two-group version of in-group 

bias discussed above. While the multi-attribute version of similarity bias has to our knowledge 

not been directly tested, some evidence does seem consistent with it. Jackson et al. (2022) doc- 

ument that students are more likely to form friendship and study links with others who match 

more of their attributes, and Banal-Estañol et al. (2023) find that grant applicants are more likely 

to be successful if panellists share more of their characteristics. These findings could be driven 

by similarity-biased beliefs, but also by taste (although, as we discuss in the conclusion, those 

“tastes” may actually be driven by incorrect beliefs).

4. MODEL VARIANTS

4.1. Prejudice without discrimination or group knowledge

We show that prejudiced beliefs can arise even if the agent does not entertain the possibility of 

systematic discrimination, and has no pre-existing notion of groups. Suppose that I ≥ 3, and 

agent i observes a sequence of realizations of each individual j’s recognition,

q j = a j + ψ jϵg + ϵ j , (4)

where a j is j’s calibre, ϵg and ϵ j are independent mean-zero Normal shocks with variances vg

and v j , respectively, and ψ j ∈ R with realization Ψ j ̸ = 0 is the incidence of the group-level 

shock ϵg on j. As in our previous model, agent i is stubbornly overconfident about himself, but 

agnostic about the calibres of others. Furthermore, he knows vg , but not the ψ j and v j , with 

his prior supported on RI
× [v,∞)I , where 0 < v ≤ min j v j .16 He understands the rest of the 

situation correctly, and updates his beliefs using Bayes’ Rule. Since models with ψ1, . . . , ψI

and −ψ1, . . . ,−ψI are equivalent, we normalizeΨi , ψ̃i ≥ 0. Then, individuals withΨ j > 0 are 

“in the same boat” with—i.e. are affected by the group-level shock ϵg similarly to—the agent, 

and in this sense belong to his in-group; and those with Ψ j < 0 belong to his out-group. But the 

agent does not initially know who is in which group.

15. One type of discrimination the agent may consider is “exclusive discrimination” directed only against him. 

This corresponds to a characteristic k that only he has, with φck < 0 for his characteristic vector c. Assuming that 

exclusive discrimination is actually zero (Θk = 0), the agent develops the “paranoid” view that there is some of it 

(θ̃ i 

k > 0), believing that “the world is out to get him”. So long as the agent entertains the possibility of other types of 

discrimination too, his social biases are qualitatively unchanged.
16. An increase in vg and a rescaling of allψ j are observationally equivalent, so assuming that the agent correctly 

understands vg is effectively a normalization.
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12 REVIEW OF ECONOMIC STUDIES

Proposition 6. Agent i’s beliefs concentrate on a single (ãi , ψ̃ i ). The agent’s long-run belief 

about individual j’s calibre is

ãi 

j = A j +
ΨiΨ jvg

v
q 

i +Ψ
2
i vg

· (ãi − Ai ), (5)

and his long-run belief about ψ j is ψ̃ i 

j = κ ·Ψ j , where κ > 1 is a constant.

Proposition 6 says that the agent learns his in-group and out-group, develops an in-group bias 

and comes to exaggerate the importance of groups in determining recognition (i.e. overestimates
|ψ j |). To develop intuition for these results, suppose first that the agent knows the ψ j . Given 

his overconfidence, qi is to him often surprisingly low, so he thinks that he must be unlucky. 

Since part of his luck derives from the common shocks, he thinks that individuals with ψ j > 0 

must also have been unlucky, and those with ψ j < 0 must have been lucky. Hence, given their 

recognitions, he overestimates the former individuals and underestimates the latter ones.
But agent i does not know the ψ j . It turns out that he correctly infers the sign of each ψ j , 

so that the above logic regarding the estimation of calibres still holds. Additionally, the agent 

overestimates the importance of common shocks. For an intuition, suppose that ψ j , ψ j ′ > 0. 

Then, agent i overestimates individuals j and j ′. In a prototypical observation, therefore, both
q j and q j ′ seem to him unexpectedly low. Hence, agent i exaggerates the correlation between q j

and q j ′ , leading him to overestimate ψ j and ψ j ′ .

4.2. Overconfidence through biased learning

Our main model captures stubborn overconfidence by assuming that the agent has a fixed, overly 

positive belief about his calibre. We now consider one possible microfoundation for stubborn 

overconfidence, biased learning about oneself.
We modify the model introduced in Section 2 in the following ways. The agent has a full- 

support prior regarding his own calibre, and observes (in addition to q j and ηk) signals si =

ai + b + ϵa 

i , where ϵa 

i is a normally distributed error with mean zero and variance va 

i that is 

independent of the other errors. In reality, b = B > 0, but the agent believes with certainty that 

it is b = b̃ = 0: he is interpreting signals about himself in a biased way.

Proposition 7. The agent’s long-run bias about his own calibre is

ãi − Ai =
v

q 

i +
∑︁

k φ
2
gi kv

η
k

va 

i + v
q 

i +
∑︁

k ′ φ2
gi k ′v

η
k ′

· B, (6)

while his long-run bias about the calibre of individual j ̸ = i is

ãi 

j − A j =

∑︁
k φgi kφg jkv

η
k

va 

i + v
q 

i +
∑︁

k ′ φ2
gi k ′v

η
k ′

· B =

∑︁
k φgi kφg jkv

η
k

v
q 

i +
∑︁

k ′ φ2
gi k ′v

η
k ′

· (ãi − Ai ). (7)

His bias regarding discrimination of type k is

θ̃ i 

k −Θk = 

−φgi kv
η
k

va 

i + v
q 

i +
∑︁

k ′ φ2
gi k ′v

η
k ′

· B = 

−φgi kv
η
k

v
q 

i +
∑︁

k ′ φ2
gi k ′v

η
k ′

· (ãi − Ai ). (8)

Being described by the same formulas as in Theorem 1, the relationship between the agent’s 

social beliefs and his overconfidence is exactly the same as in our main model. Accordingly,
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Heidhues et al. OVERCONFIDENCE AND PREJUDICE 13

predictions regarding his social beliefs relative to each other are unchanged. Furthermore, it 

readily follows that the comparative statics in Propositions 2 to 5 also hold.17,18

In this version of the model, however, overconfidence can depend on the learning environ- 

ment. We point out one relevant implication. To motivate our result, notice that in our basic 

model, agent i’s biases are increasing in his overconfidence ãi − Ai (equations (2) and (3)). This 

implies that if an outsider can make the agent more realistic about himself, then all his social 

prejudices decrease. Here, in contrast:

Corollary 1. Making his own recognition a more precise signal of calibre (lowering vq 

i ) lowers 

the agent’s overconfidence and increases all his other biases.

Confirming the classical intuition, providing better information about the agent lowers his 

overconfidence. But disconfirming the insight from the basic model that lowering overconfi- 

dence helps debias the agent, all his other biases increase. Intuitively, the agent attributes his low 

performance partly to discrimination, and partly to bad luck. With less noise, bad luck becomes 

a worse explanation, raising the need for the discrimination explanation. To reliably lower the 

agent’s biases, one must decrease the root misspecification—overconfidence in the basic model, 

misinterpreting signals about himself in this variant—that he has. In practice, however, it seems 

difficult to determine what this root bias is.
Uncertainty regarding the cause of overconfidence also has implications for the empirical 

testing of our predictions. Namely, because our theory does not imply an unambiguous positive 

relationship between overconfidence and social biases, it cannot be tested by simply looking 

at correlations between the two types of distorted beliefs. At the same time, controlling for 

all the information a person has appears impossible in practice. Nevertheless, our theory has 

many predictions that can be tested—and that, as we have discussed, are consistent with existing 

evidence.

4.3. Short-run beliefs

In this section, we investigate short-run beliefs in our main model (Section 2) when agent i
knows the covariance matrix of the errors, and starts off with the prior that others’ calibres and 

the degrees of discrimination are independently and normally distributed.
First, we investigate situations with a single type of discrimination (K = 1). We denote the 

prior variances of discrimination and individual j’s calibre by v̄θ , v̄a 

j , expected mean beliefs in 

period t by θ̃ i (t), ãi 

j (t), the expected mean beliefs of an agent who correctly assesses his calibre 

(ãi = Ai ) by θ i (t), ai 

j (t), and long-run beliefs derived in Theorem 1 by θ̃ i , ãi 

j .

Proposition 8. Let K = 1. The biases in agent i’s mean beliefs in period t are given by

θ̃ i (t)− θ i (t) = βt (θ̃
i
−Θ) and ãi 

j (t)− ai 

j (t) = βt
t/vq 

j

1/v̄a 

j + t/vq 

j

(︁
ãi 

j − A j
)︁
,

17. For Proposition 2, this requires imposing that va 

i is common across a group (like vq 

i is).
18. In a model of learning with selective memory, Fudenberg et al. (2024, Section IV.B and Proposition 6) 

establish an analogue of Proposition 7. They show that the implications of dogmatic overconfidence for long-run beliefs 

are identical to those of a positive memory bias that generates the same level of overconfidence. This suggests that one 

can also think of our model as capturing the effect of a positive memory bias, so that the exact source of overconfidence 

is not crucial for our main qualitative findings.
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14 REVIEW OF ECONOMIC STUDIES

where

βt =
t/vη

1/v̄θ + t/vη +
∑︁

j (φg j 1)
2 · 1/v̄a 

j ·
t/vq 

j

1/v̄a 

j +t/vq 

j

.

The proposition implies that the agent’s short-run biases have the same sign as and a lower 

magnitude than his long-run biases. Thus, for K = 1 our qualitative results survive.
Next, we note that if the variance of the agent’s prior belief is sufficiently large—i.e. he is 

sufficiently uncertain to start with—then the long-run biases we have derived approximate his 

average biases in every period for any K.19 Hence, in this case all of our insights hold on average 

in any period (in addition to holding with probability 1 in the long run).
To conclude, we show through an example that if the agent’s prior is not sufficiently uncertain 

and K > 1, then short-run and long-run biases can be qualitatively different.

Example 2. I = 3, K = 2, i = 1, each (representative) individual is in a separate group, φ11 =

φ32 = −1, φ21 = φ22 = 1, φ12 = φ31 = 0, and all priors and errors have variance 1.

Type-1 discrimination affects Groups 1 and 2, while Type-2 discrimination affects Groups 

2 and 3. Theorem 1 then implies that agent 1 is in the long run unbiased about θ2 and a3. Yet 

applying the updating formula for Normal distributions, it is easy to check that after finite time 

he is on average biased about both. Intuitively, due to his overconfidence, agent 1 immediately 

starts overestimating the degree of discrimination θ1 against him. Consequently, individual 2’s 

recognition—which he thinks increases in type-1 discrimination—appears to him too low. In the 

short run, he attributes this discrepancy partly to a2 and partly to θ2, thinking that individual 2 

suffers from type-2 discrimination. He therefore underestimates individual 3’s calibre a3 as well. 

In the long run, however, agent 1 attributes individual 2’s (seemingly) low recognition solely to
a2, as a biased belief about θ2 does not help him explain other observations.

Nor does bias substitution generally hold in the short run. Indeed, suppose that the agent 

receives extremely precise information about θ1. Then, his bias about θ1 becomes small, and 

by the above logic, so do his biases about θ2 and a3. The short-run biases about θ1 and θ2 are 

complements because the latter bias derives from the former.20

5. MULTI-DIMENSIONAL MISSPECIFIED LEARNING

This section derives a theoretical result that we used throughout the article, and that might be 

useful for others studying implications of misspecifications in multidimensional settings. To 

the best of our knowledge, ours is the first closed-form solution for the long-run outcome of a 

misspecified learning process with high-dimensional interdependent beliefs.21

19. To see this, denote the mean and covariance matrix of the prior by (ā, θ̄ ) and Σ0, respectively. The agent’s 

expected posterior mean belief in period t is given by (ã(t) θ̃ (t))T = (Σ−1 

0 + tΣ̂−1)−1(Σ−1 

0 (ā θ̄ )T + tΣ̂−1(ã θ̃ )T ); 

see the proof of Proposition 8. If the prior variance goes to infinity, Σ−1 

0 converges to the null matrix and hence
(ã(t), θ̃ (t)) converges to the long-run belief (ã, θ̃ ).

20. For formal simplicity, our example features unbiased long-run beliefs about θ2 and a3. But a modification 

in which φ12 is slightly negative shows that short-run and long-run biases can have strictly opposite signs. Then, agent 

1 is in the long run positively biased about individual 3, but by continuity of his beliefs in φ12, in the short run he is 

still negatively biased. Furthermore, in this case, biases about θ1 and θ2 are strict substitutes in the long run but strict 

complements in the short run.
21. Spiegler (2016, 2020) also develops and solves in closed form models of high-dimensional interdependent 

misspecified inferences. These models are not based on an explicit learning process, and their economic logic and 

solution methods are completely different from ours.
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Heidhues et al. OVERCONFIDENCE AND PREJUDICE 15

The agent makes inferences about a fixed vector of fundamentals f ∈ RL , whose realization 

is F. In each period t, he observes a signal

rt = M f + ϵt ∈ RD,

where M ∈ RD×L is a matrix of rank L and ϵt ∈ RD is a vector of errors that are jointly normally 

distributed with mean zero and positive definite covariance matrix Σ, and that are independent 

over time.22 The agent updates using Bayes’ rule: given a prior belief P0 over the set of funda- 

mentals and positive definite covariance matrices, the probability that his posterior Pt assigns to 

the set A after the sequence of signals r = (r1, r2, . . . , rt ) is

Pt A =

∫︁
1( f ′,Σ′)∈Aℓt (r | f ′,Σ′)dP0( f ′,Σ′)∫︁

ℓt (r | f ′,Σ′)dP0( f ′,Σ′) 

,

where the likelihood equals

ℓt (r | f ′,Σ′) =

t∏︂
z=1

1√︁
(2π )L detΣ′

exp
(︃

−
1
2
(r − M f ′)TΣ′(r − M f ′)

)︃
. (9)

The agent is misspecified: he believes with certainty that fi equals f̃i . We consider three dif- 

ferent inference problems depending on which parts of the agent’s beliefs are fixed by his prior 

belief, and which are derived from his observations. We denote byM the set of positive definite 

symmetric matrices whose eigenvalues are all greater than λ, where λ is chosen to be sufficiently 

small.23 In our main specification, the agent is trying to infer the fundamentals f as well as the 

covariance matrix Σ:

supp P0 =

{︂
( f ′,Σ′) ∈ RL

× RD×D
: f ′

i = f̃i ,Σ
′
∈M

}︂
. (Case III)

Because they are potentially of interest in other applications, we also consider two simpler infer- 

ence problems. We ask what the agent infers about the fundamentals when his beliefs about the 

covariance matrix are fixed at some positive definite Σ̃:

supp P0 =

{︂
( f ′,Σ′) ∈ RL

× RD×D
: f ′

i = f̃i ,Σ
′
= Σ̃

}︂
. (Case I)

And we ask what the agent infers about the covariance matrix when his beliefs about all
fundamentals are fixed at f̃ = ( f̃1, . . . , f̃L)

T :

supp P0 =

{︂
( f ′,Σ′) ∈ RL

× RD×D
: f ′

= f̃,Σ′
∈M

}︂
. (Case II)

We say that the agent’s beliefs concentrate on a point ( f̃, Σ̃) if for every open set A such that
( f̃, Σ̃) ∈ A, almost surely the agent will in the limit assign probability 1 to A: P[limt→∞ Pt A =

1] = 1. For stating our theorem, note that any positive definite covariance matrix Σ̃ is invertible,

22. If M had lower rank, there would be different vectors of fundamentals that entail the same distribution of 

signals and hence the agent could not learn the fundamentals.
23. Formally, one can choose any λ less than the smallest eigenvalue of Σ+ (M( f̃ − F))(M( f̃ − F))T , where

f̃ is given exogenously in Case (II); and equals f̃ j = F j +
[MT
Σ

−1 M]
−1
i j

[MTΣ−1 M]
−1
i i
( f̃i − Fi ) for j ̸ = i in Case (III). The agent’s 

long-run beliefs do not depend on the precise choice of λ.
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16 REVIEW OF ECONOMIC STUDIES

so the matrix MT
Σ̃

−1 M is well-defined; and since M has rank L, this matrix is positive definite 

and hence invertible.

Theorem 2 (Long-run beliefs). In Cases (I), (II), and (III), the agent’s beliefs concentrate on a 

single point ( f̃, Σ̃). Furthermore:

(I) If the agent has fixed beliefs Σ̃ about the covariance matrix but is uncertain about the 

fundamentals j ̸ = i , then in the limit his bias about fundamental j is

f̃ j − F j =
(MT
Σ̃

−1 M)−1
i j

(MT Σ̃−1 M)−1
i i

( f̃i − Fi ). (10)

(II) If the agent has fixed beliefs f̃ about the fundamentals but is uncertain about the 

covariance matrix, then in the limit his bias about the covariance matrix is

Σ̃− Σ = (M( f̃ − F))(M( f̃ − F))T . (11)

(III) If the agent is uncertain about both the fundamentals j ̸ = i and the covariance matrix, 

then in the limit his bias about fundamental j is

f̃ j − F j =

[︁
MT
Σ

−1 M
]︁−1

i j[︁
MTΣ−1 M

]︁−1
i i

( f̃i − Fi ), (12)

and his bias about the covariance matrix is given by Expression (11).

The initial part of the proof of Theorem 2 follows steps commonly used in econometric and 

statistical analyses of misspecification. First, we verify that the assumptions in Berk (1966) are 

satisfied. Then, applying Berk’s seminal result, beliefs concentrate on the set of minimizers of 

the Kullback–Leibler divergence. Now it is well-known that for Normal signals, the Kullback– 

Leibler divergence assigned to the parameters ( f̂, Σ̂) when the true parameters equal (F,Σ) is

D
(︂

F,Σ ∥ f̂, Σ̂
)︂

=
1
2

(︄
tr(Σ̂−1

Σ)+ (M( f̂ − F))T Σ̂−1 M( f̂ − F)− n + log 

det Σ̂
detΣ

)︄
. (13)

In the second part of the proof, we derive the unique minimizer of (13) over the support speci- 

fied in Cases (I), (II), and (III). Since our type of misspecification has not been analysed in the 

literature, this part of the proof is novel. Case (I) can be verified by taking first-order conditions 

with respect to the fundamentals. But Cases (II) and (III) are non-trivial semi-definite program- 

ming problems because (13) involves the determinant of Σ̂, which is not a tractable function in 

general. We proceed by looking at the eigenvalues of a well-chosen matrix in each case, greatly 

reducing the dimensionality of the problems as well as eliminating the determinant from the 

objective.
Notwithstanding the technical nature of our proof, intuition for our results can be gleaned by 

looking at (13) in the special case where the covariance matrix Σ is known and errors are inde- 

pendent, so thatΣ is diagonal. Then, the objective function reduces to (M( f̂ − F))TΣ−1 M( f̂ −

F): the agent minimizes the weighted sum of the squared mean errors in his observations (the 

differences between his observations and his expectations), with weights equal to the precisions 

of his signals. Our formulas in Theorem 1 derive from this problem, and we have used properties 

of this problem to explain the logic behind our main results. In particular, the agent’s misspec- 

ification (overconfidence) introduces errors in his observations (e.g. in his recognition), which
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Heidhues et al. OVERCONFIDENCE AND PREJUDICE 17

is reduced by biased beliefs about other fundamentals (e.g. discrimination against his group). 

Further, if one of the agent’s observations becomes more precise (e.g. regarding one type of 

discrimination), the weights in the minimization problem change, leading to bias substitution.
The trickier parts of our proofs are in establishing that the above logic works also when the 

agent does not know the covariance matrix. Indeed, notice that plugging Σ̃ = Σ into Expression 

(10) yields Expression (12). Hence, when the agent is initially agnostic about the covariance 

matrix, then—although he misinfers the covariance matrix—his long-run beliefs about the fun- 

damentals are the same as when he correctly understands the covariance matrix. Investigating 

what happens when in addition the errors are correlated (as in Proposition 6) is also much less 

obvious.
Our flexible theoretical apparatus provides a tool that can help researchers understand the 

implications of biases beyond overconfidence. Building on our results, for instance, He et al. 

(2024) analyse what a misspecified agent concludes about the biases of his information sources;
Kornemann (2024) studies what happens when the agent is misspecified about the matrix M, 

such as when he interprets observations using a simplified, sparse model; and in Appendix B, we 

consider the situation in which the agent has stubborn beliefs about two fundamentals. Economic 

applications abound. In the political arena, for instance, a person may have the stubborn belief 

that Democrats/Republicans are evil, with implications for his views about a multitude of social 

issues. Going further, our model can serve as an input into theories of propaganda, asking what 

misspecified beliefs a politician wants to instil given a set of goals and constraints. And in 

the personal arena, an individual may misperceive an aspect of others’ preferences or beliefs, 

and thus misinterpret a range of their behaviours. Although a multitude of such misperceptions 

have been documented (see Bursztyn and Yang, 2022, for a review), their ultimate sources, 

interrelationship, and implications for multidimensional observations have not been analysed in 

detail.

6. RELATED LITERATURE

In this section, we relate our theory to research not discussed so far. Most importantly, existing 

work does not derive a general in-group bias, develop a theory of group beliefs based on over- 

confidence, or make predictions regarding spillovers between multiple interdependent incorrect 

beliefs about others. Indeed, previous research on misspecified learning typically restricts atten- 

tion to a one- or two-dimensional state of the world.24 Unlike many others, however, we do not 

investigate behaviour, and assume normally distributed signals.
The agent’s biased interpretation of the signal about his own calibre in Section 4.2 is naturally 

interpreted as driven by motivated reasoning (Bénabou and Tirole, 2016). Within discrimination 

settings, Rackstraw (2022), Eyting (2024), and Stoetzer and Zimmermann (2024) experimentally 

investigate whether motivated reasoning drives subjects’ updating. In contrast, we theoretically 

derive what stereotypes an agent eventually holds while allowing for multiple dimensions of 

discrimination.
There is a large sociology and social-psychology literature on prejudice, but to our knowl- 

edge no theory is based on overconfidence, connects prejudice to opinions about discrimination, 

or makes precise comparative-statics predictions. Most related, social identity theory (Tajfel,

24. Papers in this literature not mentioned previously focus on different issues than our article, including infer- 

ences by individuals who ignore some explanatory variables (Hanna et al., 2014), misunderstand causal relationships 

(Levy et al., 2022), misinterpret social observations (Bohren, 2016; Levy and Razin, 2017; Bohren and Hauser, 2019;
Frick et al., 2020), or draw incorrect inferences from their own past behaviour (Heidhues et al., 2022).
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18 REVIEW OF ECONOMIC STUDIES

1982) posits that individuals identify with a few relevant groups, so that thinking positively 

about these in-groups and negatively about out-groups leads them to think and feel positively 

about themselves. Our theory also connects a person’s prejudices to his views about himself, but 

through a different—in a sense reverse—logic: he thinks positively about himself, and this leads 

him to develop social biases.
An influential body of research demonstrates that prejudice and discrimination can operate 

implicitly outside the person’s awareness (e.g. Bertrand et al., 2005). Our framework is predi- 

cated on an inferential process, and hence may appear contradictory to implicit bias. But once the 

agent has drawn conclusions along the lines of our model, he may act on them without conscious 

thought. Indeed, the idea that learned connections can unwittingly affect judgment is common- 

place in psychology, and formed the basis from which the literature on implicit discrimination 

started (Jost et al., 2009). In this sense, our model is not contradictory to implicit bias.
Bordalo et al. (2016) model stereotypes by assuming that a person considers a trait more typ- 

ical in a group if it is relatively more common in the group than in the relevant comparison group. 

This approach does not comfortably explain why stereotypes are often derogatory prejudices 

and why many views are self-serving, and unless different groups have different comparison 

groups, it also does not explain why different groups hold different views. On the other hand, 

our framework does not explain neutral stereotypes, such as the view that Swedes are blonde.
Glaeser (2005) presents a political-economy model of hate in which beliefs about the harm- 

fulness of others are created by politicians’ messages. Unlike our framework, this model explains 

how the political environment affects people’s beliefs about minorities, and which messages are 

communicated by which politicians. At the same time, our theory helps understand why nega- 

tive attitudes often persist without politicians stoking them, or even despite politicians’ attempts 

to debias.

7. CONCLUSION

While we have studied beliefs, it is natural to ask what our theory implies for discriminatory 

behaviour. To make predictions regarding choices, we need to add an assumption about the 

agent’s objectives. One possibility is to posit classical outcome-based preferences (e.g. earnings 

from one’s firm). Then, our model can be thought of as one of misspecified statistical discrim- 

ination—the agent uses group membership as a signal to guide behaviour (e.g. whom to hire), 

but he does so incorrectly.25 Another possibility is to assume that the agent dislikes rewarding 

or interacting with individuals he considers less deserving. Then, the agent treats other groups 

worse than his own because he has incorrectly concluded that they are less worthy. In this case, 

our model can be thought of as a microfoundation for taste-based discrimination. In fact, we 

suspect that the “pure” dislike of other groups assumed in the classical theory of taste-based dis- 

crimination is psychologically unrealistic. For instance, we do not think that a person dislikes 

a particular skin colour unless it is associated in his mind with some meaning about what such 

others are like.

APPENDIX

A. Proofs

Theorem 1 follows from Theorem 2 which we prove later in the Appendix.

25. Others also note that it is essential to distinguish correct statistical discrimination from “error discrimination” 

(England and Lewin, 1989) or “inaccurate statistical discrimination” (Bohren et al., 2025).
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Proof of Theorem 1: Let Σq ,Ση be the covariance matrices of ϵq and ϵη ,

Σ
q

= diag(vq
1 , . . . , v

q 

I ), Σ
η

= diag(vη1 , . . . , v
η
K )

and observe that they are invertible as the variances are greater than zero. We next show that this model can be reduced 

into our model in Section 5. Observe that one can write the vector (q η )T in matrix notation as(︃
q
η

)︃
=

(︃
I d Φ
0 I d

)︃
·

(︃
a
θ

)︃
+

(︃
ϵq

ϵη

)︃
, (14)

where the entry (Φ) jk = φg j k of the matrix Φ is the impact of discrimination k on group g j ’s output. Let

M =

(︃
I d Φ
0 I d

)︃
.

As M has determinant 1, it is invertible, and

[︂
M

T
Σ

−1 M
]︂−1

= M−1
Σ(M−1)T =

(︃
I d −Φ

0 I d

)︃ (︃
Σ

q 0 

0 Σ
η

)︃ (︃
I d 0

−Φ
T I d

)︃
=

(︃
I d −Φ

0 I d

)︃ (︃
Σ

q 0
−Σ

η
Φ

T
Σ
η

)︃
=

(︃
Σ

q
+ΦΣ

η
Φ

T
−ΦΣ

η

−Σ
η
Φ

T
Σ
η

)︃
.

By Theorem 2, agent i’s bias about the calibre of agent j is given by

ãi 

j − A j =

[︂
M

T
Σ

−1 M
]︂−1

i j[︂
MT
Σ

−1 M
]︂−1

i i

Δi =

[︂
Σ

q
+ΦΣ

η
Φ

T
]︂

i j[︂
Σ

q +ΦΣηΦT
]︂

i i

(ãi − Ai ) =

∑︁
k φgi kφg j kv

η
k

v
q 

i +
∑︁

k φ
2
gi kv

η
k

· (ãi − Ai ).

By a similar argument,

θ̃ i 

k −Θk =

[︂
M

T
Σ

−1 M
]︂−1

i(I+k)[︂
MT
Σ

−1 M
]︂−1

i i

Δi =

[︂
−Σ

η
Φ

T
]︂

ik[︂
Σ

q +ΦΣη ΦT
]︂

i i

(ãi − Ai ) = 

−φgi kv
η
k

v
q 

i +
∑︁

k φ
2
gi kv

η
k

· (ãi − Ai ). □

Proof of Proposition 1: I. By Theorem 1, the view of group g about group g′ is

ãg 

g′ =

∑︂
i∈g

ãi 

g′

I mg
=

∑︂
i∈g

∑︂
j∈g′\{i}

ãi 

j

I mg × (I mg′ − I{g=g′})
= Ag′ +

∑︁K 

k=1 φgkφg′kv
η
k

v
q
g +

∑︁K 

k=1 φ
2
gkv

η
k

(ãg − Ag),

so its view of group g is

ãg
g = Ag +

∑︁K 

k=1 φ
2
gkv

η
k

v
q
g +

∑︁K 

k=1 φ
2
gkv

η
k

(ãg − Ag).

Hence, clearly ãg
g > Ag .

Furthermore,

∑︂
g′

mg′ ãg 

g′ =

∑︂
g′

mg′ Ag′ +

∑︂
g′

mg′

∑︁K 

k=1 φgkφg′kv
η
k

v
q
g +

∑︁K 

k=1 φ
2
gkv

η
k

(ãg − Ag)

=

∑︂
g′

mg′ Ag′ +

∑︁K 

k=1 φgk (
∑︁

g′ mg′φg′k )v
η
k

v
q
g +

∑︁K 

k=1 φ
2
gkv

η
k

(ãg − Ag) =

∑︂
g′

mg′ Ag′ ,

where in the last step we have used that
∑︁

g′ mg′φg′k = 0.
II. Immediate from Part I.

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/advance-article/doi/10.1093/restud/rdaf048/8166803 by O

rientalisches Sem
inar user on 19 D

ecem
ber 2025



20 REVIEW OF ECONOMIC STUDIES

III. Let ãg =
∑︁

i∈g ãi/I mg , and note that by Theorem 1 ãg > Ag . We have

∑︂
g,g′

mgmg′ (ãg
g − ãg 

g′ ) =

∑︂
g

mg
∑︂
g′

mg′ ãg
g −

∑︂
g

mg
∑︂
g′

mg′ ãg 

g′

=

∑︂
g

mg ãg
g −

∑︂
g

mg
∑︂
g′

mg′ Ag′ =

∑︂
g

mg ãg
g −

∑︂
g′

mg′ Ag′

=

∑︂
g

mg ãg
g −

∑︂
g

mg Ag =

∑︂
g

mg

∑︁K 

k=1 φ
2
gkv

η
k

v
q
g +

∑︁K 

k=1 φ
2
gkv

η
k

(ãg − Ag) > 0.
□

Proof of Proposition 2: We work with K + 1 types of discrimination, with type K + 1 having effects sφgK+1 and
sφg′K+1 on the two groups. Then, s = 0 corresponds to a situation with K types of discrimination, and s = 1 to the new 

situation.
I. The view of group g about g′ is

ãg 

g′ = Ag′ +

∑︁K 

k=1 φgkφg′kv
η
k + s2φgK+1φg′K+1v

η
K+1

v
q
g +

∑︁K 

k=1 φ
2
gkv

η
k + s2φ2

gK+1v
η
K+1

(ãg − Ag)

= Ag′ +
s2φgK+1φg′K+1v

η
K+1

v
q
g +

∑︁K 

k=1 φ
2
gkv

η
k + s2φ2

gK+1v
η
K+1

(ãg − Ag),

where we have used that φgkφg′k = 0 for all k ≤ K . Since φgK+1 ̸ = 0, this immediately implies that the bias of group
g about g′ is negative when s = 1 and zero when s = 0, establishing Part I.

II. The view of group g about group g is

ãg
g = Ag +

∑︁K 

k=1 φ
2
gkv

η
k + s2φ2

gK+1v
η
K+1

v
q
g +

∑︁K 

k=1 φ
2
gkv

η
k + s2φ2

gK+1v
η
K+1

(ãg − Ag).

This is higher for s = 1 than for s = 0, proving Part II.
III. Notice that

mg ãg
g + mg′ ãg 

g′ = mg Ag + mg′ Ag′ +

∑︁K 

k=1 mgφ
2
gkv

η
k + s2(mgφ

2
gK+1 + mg′φgK+1φg′K+1)v

η
K+1

v
q
g +

∑︁K 

k=1 φ
2
gkv

η
k + s2φ2

gK+1v
η
K+1

(ãg − Ag)

= mg Ag + mg′ Ag′ +

∑︁K 

k=1 mgφ
2
gkv

η
k

v
q
g +

∑︁K 

k=1 φ
2
gkv

η
k + s2φ2

gK+1v
η
K+1

(ãg − Ag),

where we have used that mgφgK+1 + mg′φg′K+1 = 0. The above is lower for s = 1 than for s = 0. Since group g has 

an average bias over all groups equal to zero, the average view of g regarding other groups must be higher for s = 1 than 

for s = 0. □

Proof of Proposition 3: By Theorem 1,

⃓⃓
φgi k

⃓⃓
 

⃓⃓⃓
θ̃ i 

k −Θk

⃓⃓⃓
=

φ2
gi kv

η
k

v
q 

i +
∑︁

k′ φ2
gi k′v

η
k′

· | ãi − Ai | , (15)

As the above term is increasing in vηk , Part I follows. Part II is implied as for an individual j who is a member of agent 

i’s group

ãi 

j − A j =

∑︁
k′ φ2

gi k′v
η
k′

v
q 

i +
∑︁

k′ φ2
gi k′v

η
k′

· (ãi − Ai )
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which is increasing in vηk . Part III is implied as for k′′
̸ = k the term in (15) is (weakly) decreasing in vηk , and strictly so if

φgi k′′ ̸ = 0. Part IV follows since
∑︁

g mg ãi
g =

∑︁
g mg Ag and by Part (II) ãi

gi
is decreasing, so that

∑︁
g ̸ =gi

mg ãi
g must 

be increasing. For Part V, observe that as φgk = 0 for group g, Theorem 1 implies that

⃓⃓⃓
ãi

g − Ag

⃓⃓⃓
=

⃓⃓⃓⃓
⃓⃓

 

∑︁
k′ ̸ =k φgi k′φgk′v

η
k′

v
q 

i +
∑︁

k′ φ2
gi k′v

η
k′

⃓⃓⃓⃓
⃓⃓ · | ãi − Ai | ,

and the first term on the right-hand side is (weakly) decreasing in vηk , and strictly so whenever the bias about group g is 

non-zero. □

Proof of Proposition 4: Consider a proportional change that lowers all vηk by some constant factor α < 1. By Theorem
1, this implies that agent i’s long-run bias about discrimination toward group k is

| θ̃ i 

k −Θk | =

⃓⃓⃓⃓
⃓⃓⃓ −φgi kv

η
k

v
q 

i
α +

∑︁
k′ φ2

gi k′v
η
k′

⃓⃓⃓⃓
⃓⃓⃓ · (ãi − Ai ) ≤

⃓⃓⃓⃓
⃓⃓ −φgi kv

η
k

v
q 

i +
∑︁

k′ φ2
gi k′v

η
k′

⃓⃓⃓⃓
⃓⃓ · (ãi − Ai ),

with the inequality strict whenever φgi k ̸ = 0. Similarly, his long-run bias about individual j’s calibre becomes

⃓⃓⃓
ãi 

j − A j

⃓⃓⃓
=

⃓⃓⃓⃓
⃓⃓⃓

 

∑︁
k φgi kφg j kv

η
k

v
q 

i
α +

∑︁
k′ φ2

gi k′v
η
k′

⃓⃓⃓⃓
⃓⃓⃓ · (ãi − Ai ) ≤

⃓⃓⃓⃓
⃓⃓

 

∑︁
k φgi kφg j kv

η
k

v
q 

i +
∑︁

k′ φ2
gi k′v

η
k′

⃓⃓⃓⃓
⃓⃓ · (ãi − Ai ),

with the inequality strict whenever
∑︁

k φgi kφg j kv
η
k ̸ = 0. □

Proof of Proposition 5: Theorem 1 implies that the difference in agent i’s long-run bias about individual j and j ′ is

(ãi 

j − A j )− (ãi 

j ′ − A j ′ ) = −

∑︂
k

(θ̃ i 

k −Θk )(φc jk − φc j ′k
).

Consider an agent i who is more similar to agent j than to agent j ′. Then c j ′k = cik implies that c jk = cik and hence that
φc j ′k

= φc jk = φcik . Furthermore, if c j ′k = c jk then φc j ′k
= φc jk . Using these facts the above equation simplifies to

(ãi 

j − A j )− (ãi 

j ′ − A j ′ ) =

∑︂
k:c j ′k ̸ =cik∧c j ′k ̸ =c jk

−(θ̃ i 

k −Θk )(φc jk − φc j ′k
).

Since characteristics are binary, for any dimension k in which c j ′k ̸ = cik ∧ c j ′k ̸ = c jk , one has c jk = cik and thus
φc jk = φcik . Furthermore sgn φc j ′k

̸ = sgn φcik = sgn φc jk . Using these facts and Theorem 1 (i) φcik > 0 implies

−(θ̃ i 

k −Θk ) > 0 and (φc j ,k − φc j ′ ,k ) > 0; and (ii) φcik < 0 implies −(θ̃ i 

k −Θk ) < 0 and (φc j ,k − φc j ′ ,k ) < 0. We 

conclude that in any dimension k in which c j ′k ̸ = cik ∧ c j ′k ̸ = c jk , we have −(θ̃ i 

k −Θk )(φc j ,k − φc j ′ ,k ) > 0. Thus,

(ãi 

j − A j )− (ãi 

j ′ − A j ′ ) > 0. □

To prove Proposition 6, we solve a more general model first in which recognition q j = a j + ϵ′j is an unbiased signal 

of calibre that allows the error terms ϵ′j to have any positive definite covariance matrix Σq for which all eigenvalues 

are greater than some sufficiently small λ that is less than the solution stated in the Proposition A.1 below. All other 

assumptions remain unchanged. In this case, one has:

Proposition A.1 (Correlated Errors and Biases). Agent i’s long-run bias about j is

ãi 

j − A j =

Σ
q 

i j

Σ
q 

i i
(ãi − Ai ), (16)
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while his bias about the covariance matrix is given by

Σ̃
q 

j j ′ −Σ
q 

j j ′ = (ãi 

j − A j )(ã
i 

j ′ − A j ′ ) =

Σ
q 

i j ′Σ
q 

i j

(Σ
q 

i i )
2
(ãi − Ai )

2. (17)

Proof: We apply Part III of Theorem 2 to f = a, M = I d . Then, [MT
Σ

−1 M]
−1

= Σ, and M( f̃ − F) = ã − A, 

yielding the formulas in the proposition. □

Proof of Proposition 6: Observe that the true model of Proposition 6 is a special case of the model of Proposition A.1
in which ϵ′j = ψ j ϵg + ϵ j , where ϵg and ϵ j are independent mean-zero Normal shocks with variances vg and v j . Note 

that the sum of Normal random variables is Normal, and the true variance–covariance matrix of the shocks ϵ′j has entries

Σ
q 

j j ′ = ψ jψ j ′vg for j ̸ = j ′ and Σq 

j j = v
q 

j + ψ2
j vg .26

The agent considers the subclass of subjective covariance matrices for which Σ̃q 

j j ′ = ψ̃ j ψ̃ j ′vg for j ̸ = j ′ and

Σ̃
q 

j j = ṽ
q 

j + ψ̃2
j vg . Note that this class of subjective models satisfies the assumptions of Berk’s Theorem, and hence by

Berk (1966, main theorem p. 54), the support of the agent’s beliefs will concentrate on the set of points that minimize 

the Kullback–Leibler divergence to the true model parameters (A,Σ) over the support of the agent’s subjective models. 

To solve this minimization problem, we minimize a relaxed problem in which we ignore the restriction that there must 

exist ψ̃ j ’s such that Σ̃q 

j j ′ = ψ̃ j ψ̃ j ′vg for j ̸ = j ′ and Σ̃ j j = ṽ
q 

j + ψ̃2
j vg , and then verify that the solution to the relaxed 

problem satisfies these constraints.
By Proposition A.1, we have that in the solution to the relaxed problem is given by

ãi 

j = A j +
ψiψ jvg

v
q 

i + ψ2
i vg

· (ãi − Ai ),

and

Σ̃
q 

j j ′ = Σ
q 

j j ′ +

Σ
q 

i j ′Σ
q 

i j

(Σ
q 

i i )
2
(ãi − Ai )

2.

Hence,

Σ̃
q 

j j ′ = ψ jψ j ′vg

⎡ ⎢⎣1 +
ψ2

i vg(︂
v

q 

i + ψ2
i vg

)︂2 (ãi − Ai )
2

⎤ ⎥⎦ for j ̸ = j ′,

and

Σ̃
q 

j j = v
q 

j + ψ2
j vg +

ψ2
jψ

2
i v

2
g(︂

v
q 

i + ψ2
i vg

)︂2 (ãi − Ai )
2 for j ̸ = i, (18)

and finally

Σ̃
q 

i i = v
q 

i + ψ2
i vg + (ãi − Ai )

2.

To show that the solution to the relaxed problem is among the class of subjective models the agent considers, we are left 

to show that there exists ψ̃ j ’s such that

ψ̃ j ψ̃ j ′vg = ψ jψ j ′vg

⎡ ⎢⎣1 +
ψ2

i vg(︂
v

q 

i + ψ2
i vg

)︂2 (ãi − Ai )
2

⎤ ⎥⎦ for all j ̸ = j ′, (19)

26. To see that the chosen vg, v j implies a uniform bound on the covariance matrix as required by Theorem
2, observe that the covariance matrix is given by vg × (ψ ⊗ ψ ′)+ diag(v1, v2, . . . , vI ), where diag(v1, v2, . . . , vI )
denotes the diagonal matrix with entries v1, . . . , vI . The smallest eigenvector of the covariance matrix is thus greater 

than minx :|x |=1 xT
[vg × (ψ ⊗ ψ ′)+ diag(v1, v2, . . . , vI )]x ≥ xT diag(v1, v2, . . . , vI )x = min j v j .
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and

ṽ
q 

j + ψ̃2
j vg = v

q 

j + ψ2
j vg +

ψ2
jψ

2
i v

2
g(︂

v
q 

i + ψ2
i vg

)︂2 (ãi − Ai )
2 for j ̸ = i, (20)

and finally

ṽ
q 

i + ψ̃2
i vg = v

q 

i + ψ2
i vg + (ãi − Ai )

2. (21)

Observe that (19) to (21) are solved by

ψ̃ j = ψ j

⌜⃓⃓⃓
⎷⃓
⎡ ⎢⎣1 +

ψ2
i vg(︂

v
q 

i + ψ2
i vg

)︂2 (ãi − Ai )2

⎤ ⎥⎦, (22)

and own variances

ṽ
q 

i = v
q 

i +

(︂
v

q 

i + ψ2
i vg

)︂2
−

(︂
ψ2

i vg
)︂2

(︂
v

q 

i + ψ2
i vg

)︂2 (ãi − Ai )
2 and ṽ

q 

j = v
q 

j . (23)

We now argue that for I ≥ 3, the solution given by (22) and (23) is unique. Dividing (19) for j, j ′ ̸ = j by that for
j, j ′′ ̸ = j, j ′ implies that ψ̃ j ′/ψ̃ j ′′ = ψ j ′/ψ j ′′ , so that ψ̃ j ′/ψ̃ j ′′ is unique. By (19), ψ̃ j ′ ψ̃ j ′′ is also unique. Together with 

the normalization that ψ̃i ≥ 0, this implies that all ψ̃ j are unique. With all ψ̃ j uniquely given, own variances are unique 

by (20) and (21). □

Proof of Proposition 7: Let ei be the ith unit row vector, and Φ the matrix with (Φ) jk = φg j k . In the notation of 

Theorem 2,

f =

⎛ ⎝b 

a
θ

⎞ ⎠ , r =

⎛ ⎝si
q
η

⎞ ⎠ , M =

⎛ ⎝1 ei 0 

0 I d Φ
0 0 I d

⎞ ⎠ , Σ =

⎛ ⎝va 

i 0 0 

0 Σq 0 

0 0 Σ
η

⎞ ⎠ ,
and the agent is misspecified regarding b, with b̃ − B = −B. It is easy to check that

M−1
=

⎛ ⎝1 −ei φi
0 I d −Φ

0 0 I d

⎞ ⎠ ,
where φi is the row vector (φgi 1, . . . , φgi K ). We thus have

M−1
Σ(M−1)T =

⎛ ⎜⎜⎝
1 −ei φi

0 I d −Φ

0 0 I d

⎞ ⎟⎟⎠ 

⎛ ⎜⎜⎝
va 

i 0 0 

0 Σq 0 

0 0 Σ
η

⎞ ⎟⎟⎠ 

⎛ ⎜⎜⎝
1 0 0

−eT 

i I d 0

φT 

i −Φ
T I d

⎞ ⎟⎟⎠

=

⎛ ⎜⎜⎜⎝
1 −ei φi

0 I d −Φ

0 0 I d

⎞ ⎟⎟⎟⎠ 

⎛ ⎜⎜⎜⎝
va 

i 0 0

−v
q 

i eT 

i Σ
q 0

Σ
ηφT 

i −Σ
η
Φ

T
Σ
η

⎞ ⎟⎟⎟⎠ =

⎛ ⎜⎜⎜⎝
va 

i + v
q 

i + φΣηφT . . . . . .

−v
q 

i eT 

i −ΦΣ
ηφT 

i . . . . . .

Σ
ηφT 

i . . . . . .

⎞ ⎟⎟⎟⎠ .

The formulas follow by applying Theorem 2, Part III. □

Proof of Corollary 1: The result follows from taking the derivative of the respective biases in Proposition 7 with respect 

to vq 

i . □
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Proof of Proposition 8: Recall that the agent observes the signals

q j (t) = A j +

K∑︂
k=1

φg j k Θk + ϵ
q 

j (t), j = 1, . . . , I, 

η (t) = Θ+ ϵη(t).

(24)

We assumed that there is a single dimension of discrimination, so that e.g. Θ = Θ1 ∈ R. The agent now observes two 

signals that are purely about discrimination: (1) the signal directly about discrimination

η = Θ+ ϵη

and (2) the signal about the agent’s own calibre

qi = Ai + φgi 1Θ+ ϵ
q 

i .

We transform qi into a new signal q̂i , which agent i believes to be an unbiased signal of Θ,

q̂i = (qi − ãi )/φgi 1 = Θ− 

ãi − Ai
φgi 1

+
1
φgi 1

ϵ
q 

i .

The direct signal η has precision 1/vη and the second signal q̂i has precision (φgi 1)
2/v

q 

i . This means that the overall 

information of these two signals can be summarized into a single signal given by

η̂i =
1/vη η + (φgi 1)

2 1/vq 

i q̂i

1/vη + (φgi 1)2 1/vq 

i
=

1/vη η + φgi 1 1/vq 

i (qi − ãi )

1/vη + (φgi 1)2 1/vq 

i
.

The precision of this signal η̂i is equal to 1/vη + (φgi 1)
2 1/vq 

i . The signal η̂i is a sufficient statistic forΘ from the point 

of view of the agent, in the sense that her posterior belief about Θ will be the same after observing (η , qi ) or η̂i .27 The 

objective expectation of the signal η̂i is given by the long-run belief

E[ η̂i ] = Θ−
φgi 11/vq 

i

1/vη + (φgi 1)2 1/vq 

i
(ãi − Ai ) = Θ−

φgi 1v
η

v
q 

i + (φgi 1)2vη
(ãi − Ai ).

We can now also transform the signal about agent j ̸ = i’s ability q j in an invertible way such that agent i believes it to 

be an unbiased signal about a j by defining q̂ j as

q̂ j = q j − φg j 1η̂i .

The objective expectation of q̂ j is given as

E[ q̂ j ] = A j + φg j 1
φgi 1v

η

v
q 

i + (φgi 1)2vη
(ãi − Ai ) .

As the distribution of q j only depends on θ and a j , we get that (q̂−i , η̂i ) is a sufficient statistic for computing the agent’s 

beliefs about (a−i , θ ).
By slight abuse of notation, we denote byΦ the vector (φg j 1) j ̸ =i and by a the vector (a j ) j ̸ =i to avoid the subindices 

in Φ−i , a−i . Recall that we denote by (ãi , θ̃ i ) the long-run belief of agent i. The objective expectation of (q̂, η̂i ) is 

exactly equal to the long-run belief derived in Theorem 2 and given as

E
[︃(︃

q̂−i
η̂i

)︃]︃
−

(︃
A
Θ

)︃
=

(︃
ã
θ̃ i

)︃
−

(︃
A
Θ

)︃
=

(︃
−Φ

1

)︃ (︂
θ̃ i

−Θ

)︂
.

27. This follows from the updating rules for Normal signals given a Normal prior.
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According to the agent’s subjective expectation

Ẽ[ q̂ j ] = A j and Ẽ[ η̂i ] = Θ.

The signals (q̂, η̂i ) have the subjective covariance matrix

Σ̂ =

[︃
Σ

q
+ vηΦΦT

−vηΦ

−vηΦT vη

]︃
.

HereΣq
= diag(vq

1 , v
q
2 , . . .) is a diagonal matrix with the variance of the outputs of the different agent’s on the diagonal. 

Denote by ãi (t), θ̃ i (t) the expected posterior mean belief in period t when the agent assigns probability 1 to his own 

calibre being ãi , and by ā j , θ̄ the prior means of individual j’s calibre and discrimination, respectively. By the updating 

formula for Normal beliefs from Normal signals,28 we have that(︃
ãi (t)
θ̃ i (t)

)︃
= (Σ−1 

0 + tΣ̂−1)−1
(︃
Σ

−1 

0

(︃
ā
θ̄

)︃
+ tΣ̂−1

(︃
ãi

θ̃ i

)︃)︃
.

Here

Σ0 = diag(v̄a
1 , v̄

a
2 , . . . , v̄θ ) =

(︃
Σ

a
0 0 

0 v̄θ

)︃
is a diagonal matrix with the variance of the prior belief about the different agents’ calibres a1, a2, . . . and the state Θ
on the diagonal. Denote by a(t), θ (t) the expected posterior mean belief in period t when the agent is correctly specified 

and assigns probability 1 to his own calibre being Ai . We have that(︃
ai (t) 

θ i (t)

)︃
= (Σ−1 

0 + tΣ̂−1)−1
(︃
Σ

−1 

0

(︃
ā
θ̄

)︃
+ tΣ̂−1

(︃
A
Θ

)︃)︃
.

We get that the difference between the mean belief of the correctly specified agent and the agent who misestimates his 

own calibre is given by (︃
ãi (t)
θ̃ i (t)

)︃
−

(︃
ai (t) 

θ i (t)

)︃
= (Σ−1 

0 + tΣ̂−1)−1tΣ̂−1
[︃(︃

ãi

θ̃ i

)︃
−

(︃
A
Θ

)︃]︃
.

The matrix Σ̂ has an inverse equal to

Σ̂
−1

=

[︄
Σ

q −1
Σ

q −1
Φ 

Φ
T
Σ

q −1 1/vη +Φ
T
Σ

q −1
Φ

]︄
.

We observe that [︄
Σ

q −1
Σ

q −1
Φ 

Φ
T
Σ

q −1 1/vη +Φ
T
Σ

q −1
Φ

]︄ [︃(︃
ãi

θ̃ i

)︃
−

(︃
A
Θ

)︃]︃

=

[︄
Σ

q −1
Σ

q −1
Φ 

Φ
T
Σ

q −1 1/vη +Φ
T
Σ

q −1
Φ

]︄ (︃
−Φ

1

)︃
(θ̃ i

−Θ) =

(︃
0 

1/vη

)︃
(θ̃ i

−Θ).

Multiplying by (Σ−1 

0 + tΣ̂−1) yields that

[︂
Σ

−1 

0 + tΣ̂−1
]︂ 

(︃
ãi (t)− ai (t)
θ̃ i (t)− θ i (t)

)︃
=

(︃
0

t/vη

)︃
(θ̃ i

−Θ)

⇔

[︄
Σ

a
0
−1

+ tΣq −1 tΣq −1
Φ 

Φ
T tΣq −1 1/v̄θ + t/vη +Φ

T tΣq −1
Φ

]︄ (︃
ãi (t)− ai (t)
θ̃ i (t)− θ i (t)

)︃
=

(︃
0

t/vη

)︃
(θ̃ i

−Θ).

28. See e.g. here https://en.wikipedia.org/wiki/Conjugate prior#When likelihood function is a continuous
distribution.
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The solution to this equation is given as

ãi (t)− ai (t) = −

(︂
Σ

a
0
−1

+ tΣq −1
)︂−1

tΣq −1
Φ

(︂
θ̃ i (t)− θ i (t)

)︂
θ̃ i (t)− θ i (t) =

t/vη × (θ̃ i
−Θ)

1/v̄θ + t/vη +ΦT tΣq −1
Φ−ΦT tΣq −1

(︂
Σ

a
0
−1

+ tΣq −1
)︂−1

tΣq −1
Φ

=
t/vη

1/v̄θ + t/vη +
∑︁

j (φg j 1)2 1/v̄a 

j 

t/vq 

j
1/v̄a 

j +t/vq 

j

(θ̃ i
−Θ).

Where, in the last equation we used that Σa
0 and Σq are diagonal matrices. Expressing the above equations component- 

wise yields the formulas in the statement. □

Proof of Theorem 2: For brevity, we denote the agent’s long-run bias about fundamental j by

Δ j = f̃ j − F j ,

and letΔ = (Δ1, . . . ,ΔL )
T .

We first verify that the assumptions of Berk (1966) are satisfied. Part I requires that the subjective density is 

continuous in ( f ′,Σ′) ∈ supp P0. The subjective density is

1√︁
(2π )L detΣ′

exp
(︃

−
1
2
(r − M f ′)(Σ′)−1(r − M f ′)

)︃
,

which is continuous as the determinant and the inverse of a matrix are continuous functions of the coefficients of the 

matrix, and the determinant of a matrix whose eigenvalues are bounded from below by λ is bounded from below by
λn > 0. Part II is that the above density equals zero only on a set of measure zero with respect to the true distribution, 

which is satisfied as the above density is always strictly positive. Part III states that for some open neighbourhood
U ⊂ supp P0 of every parameter value ( f ′,Σ′) ∈ supp P0 the expected maximal log-likelihood is finite, i.e. for the 

random first period observation r1

E

[︄
sup

( f ′′,Σ′′)∈U

⃓⃓
log ℓ1(r1 | f ′′,Σ′′)

⃓⃓
 

]︄
< ∞.

Let λmax(Σ
′′) be the largest and λmin(Σ

′′) the smallest eigenvalue of Σ′′. Then,

| log ℓ1(r1 | f ′′,Σ′′)| =
1
2

⃓⃓⃓
log[(2π )L detΣ′′

] + (r1 − M f ′′)T (Σ′′)−1 (r1 − M f ′′)
⃓⃓⃓

≤
1
2

⃓⃓⃓⃓
L log[(2π )λmax(Σ

′′)] +
1

λmin(Σ
′′)

||r1 − M f ′′
||

2
⃓⃓⃓⃓
.

As the eigenvalues are a continuous function of the entries of the matrix and bounded from below by λ, we get that the 

above function is continuous in ( f ′′,Σ′′) and thus that the supremum is finite over every neighbourhood U.
Finally, Part IV is that for every constant γ ∈ R there exists a set D ⊂ supp P0 with compact complement

(supp P0) \ D such that

E

[︄
sup

( f ′′,Σ′′)∈D
log ℓ1(r1 | f ′′,Σ′′)

]︄
≤ γ . (25)

Fix δ1, δ2 > 0 and let D be the set of ( f ′′,Σ′′) such that either ||M(F − f ′′)|| > δ1 or the covariance matrix Σ′′ has its 

largest eigenvalue strictly greater than δ2. For all ( f ′′,Σ′′) ∈ D and ||Mϵ1|| ≤ δ1/4 the log-likelihood satisfies

log ℓ1(r1 | f ′′,Σ′′) = −
1
2

(︂
log[(2π )L detΣ′′

] + (r1 − M f ′′)T (Σ′′)−1 (r1 − M f ′′)
)︂

≤ −
1
2

(︃
L log(2π )+ (L − 1) log λmin(Σ

′′)+ log(λmax(Σ
′′))+

1
λmax(Σ′′)

||r1 − M f ′′
||

2
)︃
.
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Denote by a ∧ b the minimum of a and b. As log(x)+ y/x is minimized at x = y with value log(y)+ 1 we can bound 

the above term by

≤ −
1
2

(︂
L log(2π )+ (L − 1) log λmin(Σ

′′)+ log(δ2 ∧ ||r1 − M f ′′
||

2)
)︂

= −
1
2

(︂
L log(2π )+ (L − 1) log λmin(Σ

′′)+ log(δ2 ∧ ||M(F − f ′′)+ Mϵ1||
2)
)︂

≤ −
1
2
(L log(2π )+ (L − 1) log λmin(Σ

′′)

+ log(δ2 ∧ [||M(F − f ′′)||2 + ||Mϵ1||
2

− 2||M(F − f ′′)|| × ||Mϵ1||])).

As right-hand-side above is decreasing in ||M(F − f ′′)|| for ||Mϵ1|| < δ1/2, the maximum is attained at ||M(F −

f ′′)|| = δ1 and we obtain the following bound

≤ −
1
2

(︂
L log(2π )+ (L − 1) log λmin(Σ

′′)+ log
(︂
δ2 ∨ δ2

1/2
)︂)︂
.

As the lowest eigenvalue of all covariance matrices in supp P0 is bounded from below by λ < 1 we have 

log ℓ1(r1 | f ′′,Σ′′) ≤ L/2| log(λ)| for δ1, δ2 large enough. That implies for δ1, δ2 large enough

E

[︄
sup

( f ′′,Σ′′)∈D
log ℓ1(r1 | f ′′,Σ′′)

]︄
≤ E

[︄
1||Mϵ1||≤δ1/4 sup

( f ′′,Σ′′)∈D
log ℓ1(r1 | f ′′,Σ′′)

]︄
+ L/2| log(λ)| 

≤ −
1
2
(L log(2π )+ (L − 1) log λ+ log

(︂
δ2 ∧ δ2

1/2
)︂
)P[||Mϵ1|| ≤ δ1/4] + L/2| log(λ)|.

As limδ1→∞ P[||Mϵ1|| ≤ δ1/4] = 1 it follows that the left-hand-side of (25) becomes arbitrarily small for δ1 and δ2
large enough. We are left to argue that the complement of D is compact for every δ1, δ2. Note, that the complement 

of D is the subset of supp P0 of positive definite matrices where all eigenvalues are in [λ, δ2] and vectors f ′′ with
||M(F − f ′′)|| ≤ δ1. As ||Σ

′′
|| equals the largest eigenvalue, and thus is less than δ2, it follows from norm equivalence 

that the set of covariance matrices in the complement of D form a compact set. We can define the pseudo inverse of M
as M∗

= (MT M)−1 MT and note that for fundamental vectors f ′′ in the complement of D it holds that ||F − f ′′
|| = 

||M∗M(F − f ′′)|| ≤ ||M∗
|| × ||M(F − f ′′)|| ≤ δ1||M∗

||. Thus, the complement of D is compact.
As shown by Berk (1966, main theorem p. 54), the support of the agent’s beliefs will concentrate on the set of points 

that minimize the Kullback–Leibler divergence to the true model parameters (F,Σ) over the support of P0

arg min
( f̂,Σ̂)∈supp P0

D
(︂

F,Σ ∥ f̂, Σ̂
)︂
, (26)

where the Kullback–Leibler divergence is given by

D
(︂

F,Σ ∥ f̂, Σ̂
)︂

= E

[︄
log

ℓ1(r1 | F,Σ)

ℓ1(r1 | f̂, Σ̂)

]︄
.

We will argue that (26) admits a unique solution when the prior P0 satisfies either (Case I), (Case II), or (Case III) and 

thus beliefs concentrate on a single point. As the true and subjective models are both Normal, the Kullback–Leibler 

divergence is given by (13).29 Throughout, we denote by f̃, Σ̃ the agent’s subjective long-run beliefs about the mean of 

the fundamentals and the covariance matrix. Define the matrix

B = MT
Σ̃

−1 M ∈ RL×L

and denote its elements by (B jk ) j,k∈{1,...,L}. For future reference, note that since Σ̃ is symmetric, so is MT
Σ̃

−1 M , and 

thus B jk = Bk j . Furthermore, as Σ̃ is positive definite, so is Σ̃−1 and B = MT
Σ̃

−1 M .

29. See for example https://en.wikipedia.org/wiki/Multivariate normal distribution.
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We first analyse Case (I): We solve (26) overΔ = f̂ − F . As we can ignore all terms in (13) that do not depend on
f̂ , the problem becomes

arg min
f̂ : f̂i = f̃i

(M( f̂ − F))T Σ̃−1 M( f̂ − F) = F + arg min
Δ : Δi = f̃i − fi

Δ
T
(︂

MT
Σ̃

−1 M
)︂
Δ

= F + arg min
Δ : Δi = f̃i − fi

L∑︂
k=1

L∑︂
j=1

Bk jΔkΔ j . (27)

Here, the sum symbolizes the addition of F to every element by element in the set of minimizers. Taking the first-order 

conditions in the bias about fundamentalΔh for h ̸ = i and using that B jk = Bk j yields

0 = 2
L∑︂

k=1

Bk jΔk .

Dividing by 2 and plugging inΔk =
B−1

ki
B−1

i i
Δi on the right-hand-side yields

L∑︂
k=1

Bk jΔk =

L∑︂
k=1

Bk j
B−1

ki

B−1
i i

Δi =
Δi

B−1
i i 

L∑︂
k=1

Bk j B−1
ki =

Δi

B−1
i i 

L∑︂
k=1

B jk B−1
ki =

Δi

B−1
i i

(B B−1) j i ,

which equals zero as B B−1 is the identity and i ̸ = j . Hence,Δk =
B−1

ki
B−1

i i
Δi satisfies the first order condition.

Let ek be the kth unit vector, for k ∈ {1, . . . , L}. We next verify that the first order condition is sufficient for a global 

minimum. To do so, we rewrite the part of the objective (27) in terms ofΔ−i =
∑︁

j ̸ =i e jΔ j

Δ
T BΔ =

⎛ ⎝eiΔi +

∑︂
j ̸ =i

e jΔ j

⎞ ⎠T

B

⎛ ⎝eiΔi +

∑︂
j ̸ =i

e jΔ j

⎞ ⎠ =
(︁
eiΔi +Δ−i

)︁T B
(︁
eiΔi +Δ−i

)︁
= (eiΔi )

T B (eiΔi )+Δ
T
−i BΔ−i + 2 (eiΔi )

T BΔ−i . (28)

The Hessian with respect toΔ−i of (28) equals 2B. As any quadratic form with a positive definite matrix Hessian has a 

unique global minimum that satisfies the first-order condition, it follows that indeed

Δk =
B−1

ki

B−1
i i

Δi =

(MT
Σ̃

−1 M)−1
i j

(MT Σ̃−1 M)−1
i i

Δi

is the unique global minimizer for all k ̸ = i . This completes (I).
We next analyse Case (II): In this case, we minimize (13) over Σ̂:

arg min
Σ̂

(︄
tr(Σ̂−1

Σ)+ (MΔ)T Σ̂−1(MΔ)+ log 

det Σ̂
detΣ

)︄
. (29)

Denote by · ⊗ · : RD
× RD

→ RD×D the Kronecker product. In matrix notation, we want to show that the unique 

minimum of (29) is attained at

Σ̂ = Σ+ (MΔ)⊗ (MΔ)T
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To simplify notation let y = MΔ. We first manipulate the objective function

tr(Σ̂−1
Σ)+ yT

Σ̂
−1 y + log 

det Σ̂
detΣ

= tr(Σ̂−1
Σ)+ tr(yT

Σ̂
−1 y)+ log(det Σ̂)− log(detΣ)

= tr(Σ̂−1
Σ)+ tr(Σ̂−1

[y ⊗ yT
])− log(det Σ̂−1)− log(detΣ)

= tr(Σ̂−1(Σ+ [y ⊗ yT
]))− log(det Σ̂−1)− log(detΣ)

= tr(Σ̂−1(Σ+ [y ⊗ yT
]))− log det(Σ̂−1(Σ+ [y ⊗ yT

]))+ log det(Σ−1(Σ+ [y ⊗ yT
]))

= tr(Σ̂−1(Σ+ [y ⊗ yT
]))− log det(Σ̂−1(Σ+ [y ⊗ yT

]))+ log det(I d +Σ
−1

[y ⊗ yT
]). (30)

Here, we used in the first equality that a real number equals its trace and the log of the ratio equals the difference of the 

logs. The second equality uses that the trace of AT B equals the trace of B AT . For third equality, we use that the trace is 

an additive function. In the second to last equality, we use that the sum of logarithms equals the logarithm of the product 

and that the product of determinants equals the determinant of the product. Now notice that since Σ and y do not depend 

on Σ̂, the set of minimizers equals

arg min
Σ̂

tr(Σ̂−1(Σ+ [y ⊗ yT
]))− log(det(Σ̂−1(Σ+ [y ⊗ yT

])). (31)

Let λ1, . . . , λD be the eigenvalues of the matrix Σ̂−1(Σ+ [y ⊗ yT
]). Since the trace is the sum of eigenvalues and the 

determinant is the product of eigenvalues, (31) is minimized by all matrices Σ̂ such that the eigenvalues of Σ̂−1(Σ+ 

[y ⊗ yT
]) minimize

D∑︂
k=1

λk −

D∑︂
k=1

log λk . (32)

As (32) is strictly convex, we can take the first order condition to identify the unique minimizer. This yields that 

(32) uniquely minimized if and only if λk = 1 for all k. As all eigenvalues equal one and Σ̃−1(Σ+ [y ⊗ yT
]) is 

symmetric—and hence diagonalizable—, Σ̃−1(Σ+ [y ⊗ yT
]) is the identity matrix. This establishes that

Σ̃ = Σ+ [y ⊗ yT
] = Σ+ (MΔ)⊗ (MΔ)T (33)

is the unique minimizer of (29) and thus the subjective long-run belief of the agent about the covariance matrix. This 

establishes (II).
Finally, we prove Case (III): We now solve

arg min
(Δ,Σ̂) : Δi = f̃i −Fi

1
2

(︄
tr(Σ̂−1

Σ)+ yT
Σ̂

−1 y − D + log 

det Σ̂
detΣ

)︄
. (34)

As shown in (30) this objective is equivalent to 1/2 times

tr(Σ̂−1(Σ+ [y ⊗ yT
]))− log det(Σ̂−1(Σ+ [y ⊗ yT

]))− D + log det(I d +Σ
−1

[y ⊗ yT
]).

Plugging in the minimizer for the covariance matrix Σ+ [y ⊗ yT
] derived in part two simplifies the objective to

log det(I d +Σ
−1

[y ⊗ yT
]). (35)

We first observe that as the determinant is the product of eigenvalues, (35) equals the sum of the logarithms of the 

eigenvalues of I d +Σ
−1

[y ⊗ yT
]. Furthermore, if λ is an eigenvalue of I d +Σ

−1
[y ⊗ yT

] with associated eigenvector
v then λ− 1 is an eigenvalue of Σ−1

[y ⊗ yT
] as

λv = (I d +Σ
−1

[y ⊗ yT
])v ⇒ (λ− 1)v = Σ

−1
[y ⊗ yT

]v .

Denoting the eigenvalues of Σ−1
[y ⊗ yT

] by λ1, . . . , λD , the objective (35) becomes

K∑︂
i=1

log(λk + 1).
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As eigenvalues are independent of the basis, we next choose an orthogonal basis x1, . . . , xD such that x1 = y (we can 

always do so by picking an arbitrary basis and applying the Gram–Schmidt process). Denote, 1 = (1) the 1 × 1 identity 

matrix. As xi is orthogonal to y = x1, we have that

Σ
−1

[y ⊗ yT
]xi = Σ

−1
[y ⊗ yT

][1 ⊗ xi ] = Σ
−1

[y1] ⊗ [yT xi ] =

{︄
0 if i ̸ = 1
(yT y)(Σ−1 y) if i = 1

.

Hence, D − 1 of the eigenvalues of Σ−1
[y ⊗ yT

] equal zero. We will next show that v = Σ
−1 y is an eigenvector with 

associated non-zero eigenvalue. Let v =
∑︁D 

i=1 αi xi be the representation of v = Σ
−1 y in the basis x. We have that

Σ
−1

[y ⊗ yT
]v = α1(y

T y)(Σ−1 y) = α1(y
T y)v

and thus v is an eigenvector of Σ−1
[y ⊗ yT

] with eigenvalue α1(yT y). As α1 is given by the projection of v on y, we 

have α1 =
yT v
yT y

, so the non-zero eigenvalue of Σ−1
[y ⊗ yT

] equals

α1(y
T y) = yT v = yT

Σ
−1 y.

Consequently, the agent’s long-run belief about the mean of the state satisfies

f̃ = F + arg min
Δ : Δi = f̃i − fi

yT
Σ

−1 y

= F + arg min
Δ : Δi = f̃i − fi

Δ
T
(︂

MT
Σ

−1 M
)︂
Δ.

By (I), we then have that the unique minimizer and thus the long-run belief of the agent is

Δk =

[︂
M

T
Σ

−1 M
]︂−1

ki[︂
MT
Σ

−1 M
]︂−1

i i

Δi for k ̸ = i

Σ̃ = Σ+ (MΔ)⊗ (MΔ)T

. (36)

This completes the proof of (III). □

B. Two dimensions of stubborn beliefs

We consider the variant of our model in which the agent has fixed stubborn beliefs about two fundamentals, fi1 and
fi2 . We restrict attention to the analogue of Case I in Theorem 2, supposing that the agent knows the correct covariance 

matrix Σ.
Using the notation B = MT

Σ
−1 M , the agent’s long-run bias about fundamental j is

Δ j =

B−1
i1 j (B

−1
i2i2
Δi1 − B−1

i1i2
Δi2 )+ B−1

i2 j (B
−1
i1i1
Δi2 − B−1

i1i2
Δi1 )

B−1
i1i1

B−1
i2i2

−

(︂
B−1

i1i2

)︂2 . (37)

This satisfies the first-order condition in the proof of Theorem 2, Case I.
We use (37) to prove a more general version of our result that contact with a group lowers the agent’s bias regard- 

ing that group. Consider the model of Section 2 in which the fundamentals i1, i2, j equal i1’s, i2’s, and j’s calibres, 

respectively, but suppose that agent i1 knows the true calibre of individual i2. Let individuals j and i2 belong to the same 

group. Using thatΔi2 = 0, (37) reduces to

Δ j =

B−1
i1 j B−1

i2i2
− B−1

i2 j B−1
i1i2

B−1
i1i1

B−1
i2i2

−

(︂
B−1

i1i2

)︂2 ·Δi1 .
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Since individuals i2 and j belong to the same group, we have B−1
i1i2

= B−1
i1 j , so

Δ j =

B−1
i1 j

B−1
i1i1

·

B−1
i2i2

− B−1
i2 j

B−1
i2i2

−

(︂
B−1

i1 j

)︂2
/B−1

i1i1

·Δi1 .

Without contact with individual i2, agent i1’s bias regarding individual j is (B−1
i1 j /B−1

i1i1
) ·Δi1 . Hence, to show that 

contact lowers his bias, it is sufficient to establish that

B−1
i2 j >

(︂
B−1

i1 j

)︂2

B−1
i1i1

or B−1
i2 j B−1

i1i1
>
(︂

B−1
i1 j

)︂2

Plugging in the expressions for the entries of B−1 from the proof Theorem 1, and again using that i2 and j belong to the 

same group, the above inequality becomes

⎛ ⎝∑︂
k

φ2
g j kv

η
k

⎞ ⎠ 

⎛ ⎝vq 

i1
+

∑︂
k

φ2
gi1 kv

η
k

⎞ ⎠ >

⎛ ⎝∑︂
k

φgi1 kφg j kv
η
k

⎞ ⎠2

,

which holds by the Cauchy–Schwarz inequality.
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