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We develop a model of multi-dimensional misspecified learning in which an overconfident agent
learns about groups in society from observations of his and others’ successes. We show that the average
person sees his group relative to other groups too positively, and this in-group bias exhibits systematic
comparative-statics patterns. First, a person is most likely to have negative opinions about other groups he
competes with. Second, while information about another group’s achievements does not lower a person’s
prejudice, information about economic or social forces affecting the group can, and personal contact with
group members has a beneficial effect that is larger than in classical settings. Third, the agent’s beliefs are
subject to “bias substitution”, whereby forces that decrease his bias regarding one group tend to increase
his biases regarding unrelated other groups.
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1. INTRODUCTION

Individuals’ beliefs about each other are crucial determinants of social and economic behaviour.
While the typical assumption in economics is that beliefs are correct given available informa-
tion, a growing literature recognizes the possibility that individuals have incorrect beliefs about
others (Bordalo et al., 2016; Heidhues et al., 2018; Bohren et al., 2019; Hestermann and Le
Yaouanq, 2021; Frick et al., 2022; Chauvin, 2023; Bohren et al., 2025). Theoretical work has
begun to explore how false social beliefs can arise because a person makes inferences using an
incorrect, “misspecified” model of the world, and empirical work documents instances of false
social beliefs.!

1. We cite relevant evidence, including for empirical claims in the introduction, when presenting our formal
results below.

The editor in charge of this paper was Andrea Galeotti.
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We build on this research to develop a theory of prejudiced inter-group beliefs, making three
contributions to the economics literature. To start, we provide the first general explanation for
one of the most central stylized facts about inter-group beliefs, (relative) in-group bias—that
the average person sees his group relative to other groups too positively. Second, we allow
social beliefs to be richly multi-dimensional, uncovering connections that can help account
for observed empirical patterns. Third, we identify types of information that are effective in
debiasing agents, and types that are not.

In Section 2, we present our model. Society is composed of individuals in disjoint groups.
An agent makes many independent observations of the “recognition”—i.e. achievement, social
status, or other measure of success—of each individual, including himself. He understands
that recognition depends in part on the “calibre”—i.e. ability, work ethic, or other measure
of deservingness—of a person. But he allows for the possibility that various types of “dis-
crimination”—i.e. attitudes, policies, or economic forces with group-dependent impacts—affect
recognition as well. Each type of discrimination redistributes recognition between groups
according to fixed proportions, which we can think of as deriving from an underlying com-
petition structure. While the agent knows the proportions, he does not know the degrees of
discrimination, so he does not know how much redistribution is going on.

Crucially, to these ingredients we add a single non-classical but empirically well-
founded assumption. Namely, the agent holds stubborn, unrealistically positive—i.e. overcon-
fident—views about himself, formalized as a point belief about his calibre that exceeds the true
value. Otherwise, the agent is agnostic and rational, starting from a full-support prior about the
degrees of discrimination and others’ calibres, and updating his beliefs using Bayes’ Rule.

Section 3 identifies properties of the agent’s long-run beliefs, beginning with two widely
documented patterns. The first derives from a force identified by Heidhues et al. (2018) and
Hestermann and Le Yaouanq (2021) in other environments: that an overconfident agent misat-
tributes (what appear to him) low outcomes to unfavourable external factors. In our setting, this
leads him to overestimate discrimination against and underestimate discrimination in favour of
his group. Consistent with opinion surveys, this implies that outsiders consider discrimination
against a group as less severe than group members do. Going further, individuals’ misesti-
mates about discrimination lead them to develop excessively positive opinions about other group
members, and consequently to exhibit relative in-group bias.

Beyond explaining the above basic patterns, our theory makes a rich set of comparative-
statics predictions. One set of insights centres around the effects of competition. Suppose that
a new type of discrimination pits an outside group against the agent, for instance because the
group moves to his neighbourhood and he finds himself on opposite sides of a social or eco-
nomic issue with them. Because of his misestimate of the new type of discrimination, the agent’s
opinion of the group decreases. This insight helps explain why factors such as the presence
of other ethnic groups in one’s city, immigration to one’s vicinity, and perceived competi-
tion with a group increase prejudice. More subtly, the agent’s biases regarding all groups not
affected by the new type of discrimination decrease. Intuitively, armed with a new explanation
for his low recognition, the agent’s need for other explanations diminishes. This bias substitution
provides a beliefs-based mechanism for how focusing on a competitor outside group—a com-
mon political tactic—can help unify a population hitherto riddled with mutual prejudice. All of
these effects occur even if the agent competes more with members of his own group than with
outsiders.

Another set of insights concerns the effects of information. While better information about a
group’s recognition does not lower biases, better information about a type of discrimination that
affects the agent has a range of positive effects. It lowers his bias about his own group as well
as about any group also affected by the discrimination, and it improves his opinion about the
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Heidhues et al. OVERCONFIDENCE AND PREJUDICE 3

average other group. This provides a novel perspective on the influential and well-documented
contact hypothesis (Allport, 1954), which says that contact with an individual from a different
racial group can lower prejudice. Plausibly, one main effect of such contact is that the agent
learns the calibre of the individual, giving him information about discrimination and hence low-
ering his bias regarding all of the individual’s group. Hence, in a sense our model predicts a
stronger positive effect of contact than does a model of correctly specified learning. In such a
conventional framework, information about one person often has a small effect on beliefs about
a large group.

In Section 4, we consider variants of our basic model. We demonstrate that our framework’s
central mechanism can be operational even when the agent neither entertains the possibility of
systematic discrimination, nor starts off thinking of society in terms of distinct groups. Suppose
that individual j’s recognition is the sum of j’s calibre, a mean-zero common shock scaled by
v, and a mean-zero idiosyncratic shock. The agent does not know the effects of the common
shock, y;, which could be different across individuals and could be positive or negative. He
uses observations of everyone’s recognitions to update about individuals’ calibres as well as
the ;. We show that the agent develops a positive bias about individuals whose y; has the
same sign as his, and a negative bias about individuals whose ; has the opposite sign. In
addition, he correctly learns the signs but overestimates the absolute values of the y;’s. These
results can be interpreted as saying that endogenous in- and out-groups develop based on who
is in the “same boat” with the agent, and the agent exaggerates the importance of groups in
determining outcomes. We also consider a model in which the agent’s beliefs about his calibre
are not fixed, but he interprets observations about himself in a positively biased way. We show
that he develops overconfidence, which has the same effect on his other beliefs as in our basic
model. Finally, we investigate the extent to which our results on long-run beliefs hold in the
short run.

All of the formal analysis in our article relies on general tools we have developed for study-
ing learning under high-dimensional misspecified models. We explain these tools in Section 5.
Due to the lack of such tools, prior analysis of misspecified learning has typically focused on
misinferences about a single-dimensional state of the world.

We discuss related literature in Section 6. While a few theories have implications for beliefs
about groups, no previous paper derives a general relative in-group bias, makes predictions
regarding spillovers between multiple interdependent incorrect beliefs about others, or devel-
ops a theory of group beliefs based on overconfidence. But our theory is of course not intended
to explain all social biases. Some prejudices are stoked by politicians (Glaeser, 2005); many
stereotypes are about less value-laden characteristics than our notion of calibre (Bordalo et al.,
2016); and individuals often also have prejudices about groups they are not in tangible competi-
tion with. We conclude in Section 7 with a discussion of what our model of beliefs might imply
for discriminatory behaviour.

2. INFERENCES ABOUT INDIVIDUALS AND GROUPS
2.1. Setup

There are I individuals in G disjoint groups subject to K types of “discrimination”. Individual
Jj €{l,..., I} has fixed “calibre” a; € R and group membership g; € {1,..., G}, and 6y € R
denotes the fixed extent of discrimination of type k. We consider society from the perspective of
one member, agent i € {1, ..., I}; we will also compare the views of different agents, and anal-
yse average views. Agent i repeatedly observes each individual’s “recognition” g; € R as well
as signals 7, € R of ;. In both the true model and agent i’s subjective model, these observations
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are generated according to

K
gj=a;+ > ¢eubi+el, j=1,...1

p M
77k=(9k+€1?, k=1,...,K,

where ¢, € R is the fixed incidence of type-k discrimination on group g, and the 67 and ¢/ are
mean-zero normally distributed errors that are identically and independently drawn over time.?
Denoting by m, the population frequency of group g, we impose that > ¢ MgPei = 0 for all k,
i.e. the effect of discrimination is redistributive.
In the true model, the vector of calibres a equals A, the vector of the levels of discrimination
0 equals ©, and the errors €7, ¢/ are all independent and have variances v, v/. In agent i’s sub-
jective model, g; and ¢4 are known and the same as in the true model, but others’ calibres a_;,
the levels of discrimination #, and the covariance matrix 3 of the errors (€, €”) are unknowns.
The agent’s prior belief regarding (a_;, @) has support R’~! x RX, and his prior belief about
> conditional on any a_;, 6; is supported on all positive definite symmetric matrices whose
eigenvalues are greater than A, where A is chosen to be sufficiently small.> Crucially, the agent
is overconfident about himself: his subjective model assigns probability 1 to a; = a; > A;. He
applies Bayes’ Rule to update his beliefs. We look for the limit of his beliefs in the long run.

2.2. Interpretation and discussion

The calibre a; could stand for a person’s ability or general character, and recognition ¢g; for
their income, wealth, or broader social status. Both a; and ¢; can be defined in absolute as well
as relative terms. The degrees of discrimination &, might capture the severity of discriminatory
behaviour, strength of policies, or intensity of economic forces that affect groups differently,
while the signals #; about 6; could come from observations the agent makes in his own life, or
from academic or journalistic research he hears about. For the purposes of the present paper, the
Oy are exogenous.*

We think of the incidences ¢ of discrimination on groups as being determined by an under-
lying competition structure. For instance, affirmative action is perceived to harm Asians and
whites due to competition for college spaces, and a pro-immigration policy is perceived to harm
low-income natives due to competition for jobs. This perspective does not preclude—and hence
our results are consistent with—the possibility that a person competes more with in-group than
with out-group members.’ Furthermore, our assumption that the agent knows the ¢ reflects the

2. The assumption that recognition is linear in its components is purely for tractability.
3. For a discussion of this technical assumption, an explicit formula for A, and other specifications of the support

of the prior, see Section 5. In particular, our results are the same if the agent knows the covariance matrix.

4. For presentational simplicity, we refer to g; as individual j’s recognition, but our formalism also captures the
case in which g; is a noisy signal of individual j’s recognition that is observable to agent i. Furthermore, while we
present the model and results by referring to individual j as a person, an equivalent model obtains if some observations
q;j are average recognitions of groups or subgroups. For groups the agent knows little about, these observations could
be very noisy. Also note that while in reality different groups often have access to different information, our basic
model abstracts from this consideration. In a correctly specified model, differences in information do not by themselves
generate systematic disagreement.

5. To formalize, let f(g, g’) measure the (perceived) frequency or importance of competition for recognition
that an individual with group membership g faces from individuals with group membership g’. Denoting by Gy C
{1,..., G} the set of groups that benefit from discrimination of type k, define ¢gf = Zg’EG\Gk flg, &) if g e Gy
and ¢gp = — Zg’eGk fg, &) if g € G\ Gy. Intuitively, the impact of discrimination of type k on an individual is
determined by how many people he tends to compete with on the other side of the issue. The extent f(g, g) to which
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idea that he can learn competition patterns from sources such as the media or public discussions,
or infer them from knowledge such as how college admissions work.

Given the above competition perspective—according to which one person’s gain from dis-
crimination comes at the expense of someone else—it is natural to assume that the effect of
discrimination is redistributive (3 ¢ MgPek = 0). This assumption allows us to make statements

about beliefs regarding calibres averaged across multiple groups, but plays no other role.®

While we focus on limiting beliefs, by definition these approximate the agent’s beliefs after
sufficiently long finite time. Furthermore, while we assume that the agent is certain about his
calibre, the results extend to some settings in which he is slightly uncertain. Specifically, suppose
that the agent starts with a Normal prior, is uncertain about the fundamental, and knows the
covariance matrix of signals. At any fixed finite time, his beliefs with a sufficiently certain prior
about his calibre are close to his beliefs with a degenerate prior—which, after a long time, are
close to the limiting beliefs we derive. The latter is true even if the agent is correctly specified,
so he eventually learns everything correctly.

There is evidence for our main premise, overconfidence, from many aspects of life (e.g.
Malmendier and Tate, 2005; Landier and Thesmar, 2009; Spinnewijn, 2015; Augenblick and
Rabin, 2019; Huffman et al., 2022). Furthermore, since individuals in these and other studies
have had plenty of opportunity to learn about themselves, overconfidence is stubborn: it is either
not eliminated by learning, or it is eliminated very slowly. Our analysis of long-run beliefs is
appropriate for a person who has had sufficient scope to learn about society but has (like most
individuals observed in the empirical work) remained overconfident so far. To complement these
main insights, in Section 4.3 we discuss short-run beliefs. We note that if the agent starts with
a sufficiently uncertain (high-variance) prior, our results on his long-run biases approximate
his average short-run biases. We also show that if K = 1, the directions of the agent’s short-
run and long-run biases are identical. Otherwise, however, short-run and long-run biases can be
directionally different.

3. PATTERNS IN BELIEFS

We now analyse our model. We say that agent i’s beliefs about discrimination and individuals’
calibres concentrate on (§', a') € RX x R’ if the probability he assigns to any open set around
(6", a") converges to one. Based on a general result in Section 5, we obtain:

Theorem 1 (Long-Run Biases). Agent i’s beliefs concentrate on a single (@', @'y almost surely.
His long-run bias about discrimination of type k is

_ U
O; — O = Pkt - (@ — A, ()

of + 3, ¢§’k,vk/
and his long-run bias about the calibre of individual j # i is

n
. . k0
5‘}—AJ=M'@—AJ 3)
i+ 2 P Ou

individuals compete fiercely with other members of their own group does not affect gy, as within-group competition
does not influence the impact of between-group discrimination.

6. More precisely, we use the assumption in Proposition 1 (all parts, except for the claim that each group overes-
timates itself relative to the truth), Proposition 2, Part III, and Proposition 3, Part IV. The other results hold unchanged
without the assumption.
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6 REVIEW OF ECONOMIC STUDIES

First, the direction of the agent’s bias about discrimination of type k has the opposite sign
from the effect of this discrimination on his group. Second, the direction of the agent’s bias about
an individual depends on a weighted sum of how similarly discrimination affects the agent’s and
the individual’s groups. Types of discrimination that affect the agent and individual in the same
direction contribute positively to this sum, and types of discrimination that affect the two people
in opposite directions contribute negatively. We organize and discuss economic implications in
the following subsections.

3.1. In-group bias

We start with two basic, empirically documented patterns in beliefs. Equation (2) implies that
the agent overestimates discrimination that harms him (¢gx < 0), and underestimates discrim-
ination that benefits him (¢, > 0). Intuitively, the distorted beliefs explain to the agent why
his recognition is not as high as he overconfidently expects. Though not derived formally
in previous research, such views resemble misattributions in work on learning with overcon-
fidence (Heidhues et al., 2018; Hestermann and Le Yaouanq, 2021) and selective attention
(Schwartzstein, 2014). Further, a person’s underestimation of beneficial discrimination can be
seen as a formalization of social dominance theory’s notion of a “legitimizing myth”—an illu-
sion that rationalizes a “dominant” group’s advantages over “dominated” groups (e.g. Pratto et
al., 2006).

The above implies that members estimate the level of discrimination against a group as higher
than non-members who are unaffected by or benefit from the discrimination. Such contrasting
views are a common finding in opinion surveys.” Relatedly, our theory predicts that a person is
biased about a type of discrimination only if it affects him. For example, a white male professor
may understand discrimination in policing and firm hiring but fail to appreciate discrimination
in academia. We are unaware of evidence on this prediction.

Beliefs regarding discrimination have implications for beliefs about groups. We state our
results as averages over groups. To do so, we assume that v? is the same for all individuals in

group g, and denote it by vg. We also let A, be the average calibre of group g, and Elg, the average
opinion of group g about (others in) group g'.

Proposition 1 (In-group bias).

(D (In-group overestimation). Each group overestimates itself relative to the truth (51§ >
Ayg), but on average estimates groups correctly () g M g/dg, => g Mg Ag).

(I) (Absolute in-group bias). If groups’ calibres (Ag) are equal, then each group thinks
others in their group are better than the average (as > Zg, mg/&j .

(II) (Relative in-group bias). On average, a group’s view of its fellow members relative to
another group’s members is positive: Zg’g, memg (ag — &g,) > 0.

Part I says that on average, an agent overestimates other members of his group relative to
the truth. Intuitively, since he overestimates discrimination hurting and underestimates discrim-
ination benefiting fellow group members—who are subject to the same discrimination effects
as him—he attributes too much of their recognitions to their calibres. Because the effect of

7. See, for instance, Newport (2014) on race, Pew Research Center (2017) on gender, Pew Research Cen-
ter (2018) on income, and “Weniger Respekt und wachsende Fremdenfeindlichkeit”, Frankfurter Allgemeine Zeitung,
September 12, 2019, on immigrants.
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discrimination is redistributive, however, a group’s misestimates of discrimination do not bias
its average estimate of calibre in the population.

The combination of in-group overestimation and overall correct estimation generates two
manifestations of in-group bias. If the average calibres of groups are equal, then a person esti-
mates his group to be above this level, and other groups to be below it on average. Hence, he
thinks that his group is better than average (Part IT). More generally, the average person estimates
the average other member of his group to be better than average (Part IIT).3

To connect our results to stylized facts, suppose that there are two groups. Then, if the average
calibres of the groups are equal (A; — A, = 0), each group believes itself to be better than the
other group. This kind of bias is the most basic stylized fact in the literature on stereotypes, dis-
crimination, prejudice, and racism.’ Furthermore, some evidence indicates that the bias reflects
a mistake (Bohren et al., 2019; Lambin and Palikot, 2019).

A group may, however, fail to think of itself as better if the groups’ true average calibres dif-
fer, or, stepping slightly outside our model, there are other biases that affect views equally across
groups. In models by Frick er al. (2022) and Chauvin (2023), for instance, both a dominated
and a dominant group may underestimate the privileges of the dominant group. If (fixing other
parameters) the difference in average calibres or underestimation of privileges is sufficiently
large, then the less fortunate group will think of itself as worse than the more fortunate group.

Our theory predicts that even then, the two groups exhibit relative in-group bias: Group 1
members’ opinion of Group 1 relative to Group 2 is more positive than Group 2 members’
opinion about the same (5111 - Zz% > Ez% — Zz%). Indeed, when researchers do not find unanimous
support for absolute in-group bias, they typically observe relative in-group bias.'® Sometimes,
however, groups do not even display relative in-group bias (e.g. Card et al., 2020), and our theory
cannot account for this evidence.

Note that in Parts II and III of Proposition 1, in-group bias holds in an average sense. In Part
I1, in particular, each group overestimates itself relative to the average other group. The question
arises whether in-group bias holds pairwise in general when there are more than two groups.
The following example shows that it does not:

Example 1. G = 3, K = 1, 1);7 = 1, m; =my=m3= 1/3, ¢]| =3, ¢2] = —2, ¢31 = —1,
v =1forall g,a; —A; =1 for all j, and all true calibres are normalized to zero. Then, by
equation (3), we obtain

a,=1; a3=1/2; a;=4/5 az=2/5.

There are three groups (G = 3), and one type of discrimination (K = 1). Discrimination
benefits Group 1 and hurts Groups 2 and 3, but it hurts Group 2 more (¢1; > 0 > ¢z > ¢P21).
This example captures one potential perception of affirmative action in college admissions. Sup-
pose that Group 1 is blacks, Group 2 is Asians, and Group 3 is whites. Affirmative action, if it
exists (recall that our framework allows any type of discrimination to be non-existent or go the
other way), benefits blacks and hurts whites and especially Asians. Then, Group 3 overestimates
Group 2 more than it does itself, and more than Group 2 overestimates itself. Hence, restricting

8. Related to our in-group bias, Hestermann and Le Yaouanq (2021) show that a person thinks too highly of an
outsider who receives the same outcome in the same circumstances as he does. They do not, however, explore general

implications for group-based prejudices.

9. Classics are Allport (1954) and Tajfel (1982). Mullen et al. (1992) provide a meta-analysis.

10. For instance, Shayo and Zussman (2011), Gagliarducci and Paserman (2012), Zussman (2013), De Paola and
Scoppa (2015), and Mengel et al. (2018).
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8 REVIEW OF ECONOMIC STUDIES

attention to this pair of groups, both absolute and relative in-group bias are violated. Intuitively,
since members of Group 3 are hurt by discrimination, they overestimate it. Furthermore, since
they know that Group 2 is hurt even more by discrimination, they overestimate members of
Group 2 more than other members of Group 3. Nevertheless, consistent with Part II of Proposi-
tion 1, Group 3 still exhibits an absolute in-group bias relative to the average other group. Indeed,
Group 3 members’ view regarding Group 1 is sz = —3/2, so their average view of other groups
is negative.

3.2.  The effects of competition

We now consider how the development of opposing interests with another group affects a group’s
views. Suppose that groups g and g’ are initially not affected by the same types of discrimination
(¢grdgx = 0 for all k). Then a new type of discrimination emerges, positioning groups g and g’
against each other: mgpgox 11 + mgpexi1 = 0, with pox 41 # 0. As a potential example, north-
ern whites experiencing an inflow of blacks could think that they are on opposite sides of local
issues, such as housing, schools, and jobs.

Proposition 2. The new type of discrimination:

(I) (Competition effect). Lowers the view of group g about group g'.
(IT) (Excuse effect). Raises the view of group g about itself.
(II) (Bias substitution). Raises the average view of group g about groups other than g, g'.

A member of group g overestimates discrimination in favour of or underestimates discrim-
ination against group g’, negatively biasing his opinion of group g’ (Part I). This effect helps
explain evidence that greater local ethnic diversity increases racial animus (e.g. Branton and
Jones, 2005), and that immigration triggers hostile reactions by natives (Tabellini, 2019). More
generally, the result says that a person has more negative views about groups he considers com-
petitors. This pattern is one of the cornerstones of group conflict theory (e.g. Jackson, 2011). For
instance, Stephan et al. (1999) document that the negative stereotyping of immigrants in the U.S.
is correlated with perceived competition for jobs and social transfers. Examining the direction
of causality in an experiment, Esses et al. (1998) find that manipulating the sense of competition
with an imaginary immigrant group leads subjects to see the group in a more negative light.

By Part II, new competition raises a person’s (already too high) view of his own group. His
bias regarding the new type of discrimination provides a new excuse for his low recognition, and
means that he attributes more of group members’ recognitions to their calibres.

At the same time, Part I1I says that bias substitution occurs: while group g’s opinion of group
g’ decreases, its opinion of other out-groups improves. As the agent attributes his low recognition
in part to the new type of discrimination, his biases regarding the other types of discrimination
decrease. This means that he attributes more of the other groups’ recognitions to their calibres.

In an example of bias substitution, Fouka et al. (2022) document that the inflow of blacks
to northern U.S. cities reduced the (previously substantial) stereotyping of Irish and Italian
immigrants. Bias substitution also provides one rationale for a common political tactic, focus-
ing citizens’ attention on a competitor outside group to help unify a heterogeneous nation or
constituency. In our setting, this mitigates negative views domestic groups may hold about each
other.

3.3. The effects of information

This subsection analyses the effects of information on the agent’s beliefs. Note that if a correctly
specified agent has sufficient information to form confident (deterministic) beliefs—as the agent
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does in our model—then those beliefs must be correct and hence impervious to additional infor-
mation. The same is not the case for a misspecified agent, leading to the natural question: can
more information mitigate such an agent’s biases about others?

Theorem 1 implies that two types of information cannot. First, since we are focusing on long-
run beliefs, access to more realizations of the same signals does not necessarily lower biases.
Second, since v? does not appear in equation (3), an improvement in the agent’s information
about others’ recognitions does not affect his long-run biases. Intuitively, knowing more about
the successes of other groups does not help because it does not affect the central tension driving
the agent’s biases: the gap between his overconfident self-view and his actual outcomes. These
predictions are consistent with some null effects of information on discrimination documented
in the literature (e.g. Bertrand and Mullainathan, 2004; Boring, 2017).!!

Instead, consider providing information about discrimination:

Proposition 3. Suppose discrimination of type k affects agent i (pg, 7 0). An increase in the
precision 1/v] of information about discrimination of type k:

(D) (Direct effect). Lowers agent i’s bias |§,§ — Oy| regarding discrimination of type k.
(IT) (No-excuse effect). Lowers his view &;iz; about others in his group.
(II) (Bias substitution). Raises his bias |0}, — O | regarding any other type of discrimination
k
that affects him (type k' # k for which g # 0).
(IV) (Indirect benefit). Raises his average view e mgd; of other groups.
(V) (Bias substitution). Raises his bias |a. — A,| about any grou not affected by
g g group g
discrimination of type k (¢qr = 0).

More information about discrimination of type k has both benefits and drawbacks. It directly
reduces the plausibility of a biased view about type-k discrimination, lowering the agent’s bias
on this dimension (Part I). Similarly, the information reduces the plausibility of a biased view
about overall discrimination affecting the agent, lowering his misperceptions about other in-
group members (Part II). Seeking alternative explanations for his recognition, however, bias
substitution again occurs: the agent’s biases about other types of discrimination affecting him
increase (Part III).

The effects on the agent’s views about other groups are mixed as well. Part IV says that his
average view of outside groups rises, so that he improves his opinion of at least one group. By
Part V, however, his bias regarding groups that are not affected by discrimination of type k rise.
In particular, if he harbours any unrelated prejudices, these increase.

The above results yield a novel perspective on Allport’s (1954) influential and well-
documented contact hypothesis—that contact between groups reduces prejudices (for evidence,
see Pettigrew and Tropp, 2006; Lowe, 2021; Corno et al., 2022). Consistent with the common
view that a primary channel is informational, we think of contact as providing information about
the calibre of an out-group member. In a model of correctly specified learning, information about
one person is likely to have a limited spillover effect on views about a large and diverse group,
especially for an agent who has plenty of information to begin with. In our model, in contrast,
the spillover effect can be more drastic. Suppose that agent i learns individual j’s calibre (so
that Zz; =a;), and j is subject to only one type of discrimination, k (¢g,x # 0, but ¢ =0

11. Some studies that do find a positive effect of information, such as Kaas and Manger (2012) looking at refer-
ence letters and Tjaden et al. (2018) looking at online reviews, involve direct information about the person’s character
or quality. We analyse such information below.
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10 REVIEW OF ECONOMIC STUDIES

for all k' # k).!” Then, j’s recognition ¢; becomes another signal of—and hence improves
agent i’s information about—discrimination 6;. As a result, agent i’s bias about j’s entire group
decreases.'?

Unlike better information about a single type of discrimination, a balanced improvement in
information about all types of discrimination is unambiguously beneficial:

Proposition 4. A proportional increase in the precisions 1/v] of the agent’s signals about
discrimination lowers all his (non-zero) biases regarding discrimination and others’ calibres.

For example, it is plausible that members of a disadvantaged group observe discrimination
with less noise. They may, for instance, see more direct evidence of discrimination, such as
arbitrary searches by police, or they may be more attentive to the issue. Proposition 4 says that
the disadvantaged group will then have less biased beliefs.

The preceding results provide ways to distinguish our model from a “reverse-causality”
alternative in which overconfidence derives from false beliefs about discrimination or others’
calibres, rather than vice versa. An agent may, for instance, inherit stubborn, negatively biased
beliefs about competitor groups from his parents. Observing the recognitions of these groups,
he concludes that there is discrimination in favour of them and against his groups. Observing his
own recognition, then, he overestimates his calibre.

While sharing the basic prediction that overconfidence and false social beliefs are related,
the reverse-causality model differs in at least three ways from ours. First, it fails to predict
changes in beliefs about groups in response to information about discrimination. This is because
beliefs about groups are either stubborn (and hence do not change) or derive directly from stub-
born beliefs about discrimination. Second, similarly, the reverse-causality model does not predict
bias-substitution-type changes in beliefs about unrelated groups in response to competition with
a new group. Third, by equation (3), our model predicts that a person’s bias about himself is
greater than his bias about his fellow group members.'* As a result, the average person overes-
timates himself relative to his in-group. In the reverse-causality model, the agent’s biases about
himself and his average in-group member are identical—both equal his total bias about the types
of discrimination affecting the group.

3.4. Similarity bias

In this subsection, we consider the special case of our model in which groups are defined by
vectors of characteristics, such as black/white and female/male. We identify sufficient (albeit
not necessary) conditions for a variant of in-group bias, similarity bias: that a person has a more
positively biased opinion about more similar others.

Suppose that individual j has characteristics ¢; = (cj1, ..., ¢jx) € {0, 1}X, where cik=1
means that she has characteristic k (e.g. is black). A group consists of individuals who share all
characteristics, and is thus defined by a characteristic vector c¢. Furthermore, discrimination of
type k affects individuals who have characteristic k and those who do not in opposite directions.
We say that agent i is more similar to individual j than to individual j" if whenever j’ shares a

12. In Appendix B, we show that the logic applies also if j is subject to more types of discrimination.

13. Some papers find that contact reduces prejudice only in specific environments, e.g. when the interaction is
cooperative (e.g. Lowe, 2021). Our theory is consistent with such findings if these environments generate more accurate
information about the out-group member, but it does not explain why this would be the case.

14. This is immediate from observing that for a fellow group member (g; = g;), the coefficient scaling the
2k ‘/%t kDI:’

agent’s overconfidence in the equation is ———5——-
v; +2 d’g-k’“k’
1
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Heidhues et al. OVERCONFIDENCE AND PREJUDICE 11

characteristic with i, so does j (i.e. cjx = cjx = cjir = cix); and the relationship is strict if the
characteristic vectors of j and j’ are not identical.

Proposition 5 (Similarity bias). Suppose that ¢ does not depend on cy for any k' # k. If
agent i is (strictly) more similar to individual j than to individual j', then his long-run bias
regarding the calibre of j is (strictly) greater than his long-run bias regarding the calibre of j’,
Le. d; — Aj > Zz;, — Ajr.

A sufficient condition for similarity bias is that the impact of type-k discrimination depends
only on whether a person has characteristic k. Then, similarity determines how much agent i
believes that discrimination hurting him also hurts rather than helps individual j, so it determines
how much of j’s recognition i attributes to calibre.'>

When there is a single dimension, similarity bias reduces to a two-group version of in-group
bias discussed above. While the multi-attribute version of similarity bias has to our knowledge
not been directly tested, some evidence does seem consistent with it. Jackson et al. (2022) doc-
ument that students are more likely to form friendship and study links with others who match
more of their attributes, and Banal-Estafol et al. (2023) find that grant applicants are more likely
to be successful if panellists share more of their characteristics. These findings could be driven
by similarity-biased beliefs, but also by taste (although, as we discuss in the conclusion, those
“tastes” may actually be driven by incorrect beliefs).

4. MODEL VARIANTS
4.1.  Prejudice without discrimination or group knowledge

We show that prejudiced beliefs can arise even if the agent does not entertain the possibility of
systematic discrimination, and has no pre-existing notion of groups. Suppose that / > 3, and
agent i observes a sequence of realizations of each individual j’s recognition,

qj =aj tyje te€), “)

where a; is j’s calibre, €, and ¢; are independent mean-zero Normal shocks with variances v,
and v, respectively, and y; € R with realization ¥; # 0 is the incidence of the group-level
shock €; on j. As in our previous model, agent i is stubbornly overconfident about himself, but
agnostic about the calibres of others. Furthermore, he knows v, but not the y; and v;, with
his prior supported on R’ x [0, 00)!, where 0 < v < min; v j.16 He understands the rest of the
situation correctly, and updates his beliefs using Bayes’ Rule. Since models with 1, ..., v,
and —y, ..., —y; are equivalent, we normalize ¥, tZ/,- > 0. Then, individuals with ¥; > 0 are
“in the same boat” with—i.e. are affected by the group-level shock €, similarly to—the agent,
and in this sense belong to his in-group; and those with ¥; < 0 belong to his out-group. But the
agent does not initially know who is in which group.

15. One type of discrimination the agent may consider is “exclusive discrimination” directed only against him.
This corresponds to a characteristic k that only he has, with ¢.; < O for his characteristic vector c. Assuming that
exclusive discrimination is actually zero (©; = 0), the agent develops the “paranoid” view that there is some of it
(éli > 0), believing that “the world is out to get him”. So long as the agent entertains the possibility of other types of
discrimination too, his social biases are qualitatively unchanged.

16. Anincrease in vg and a rescaling of all y ; are observationally equivalent, so assuming that the agent correctly
understands vy is effectively a normalization.
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Proposition 6. Agent i’s beliefs concentrate on a single (@', w'). The agent’s long-run belief
about individual j’s calibre is

\I’i\lljl)g

i =A 4+ I8
! ! U?"'\I’z‘z”g

(@i — Aj), (&)

and his long-run belief about vy ; is t/~/; =« - V;, where x > 1is a constant.

Proposition 6 says that the agent learns his in-group and out-group, develops an in-group bias
and comes to exaggerate the importance of groups in determining recognition (i.e. overestimates
|w;|). To develop intuition for these results, suppose first that the agent knows the ;. Given
his overconfidence, g; is to him often surprisingly low, so he thinks that he must be unlucky.
Since part of his luck derives from the common shocks, he thinks that individuals with y; > 0
must also have been unlucky, and those with y; < 0 must have been lucky. Hence, given their
recognitions, he overestimates the former individuals and underestimates the latter ones.

But agent i does not know the ;. It turns out that he correctly infers the sign of each v,
so that the above logic regarding the estimation of calibres still holds. Additionally, the agent
overestimates the importance of common shocks. For an intuition, suppose that y;, w; > 0.
Then, agent i overestimates individuals j and j’. In a prototypical observation, therefore, both
g; and g seem to him unexpectedly low. Hence, agent i exaggerates the correlation between g
and ¢/, leading him to overestimate ; and .

4.2.  Overconfidence through biased learning

Our main model captures stubborn overconfidence by assuming that the agent has a fixed, overly
positive belief about his calibre. We now consider one possible microfoundation for stubborn
overconfidence, biased learning about oneself.

We modify the model introduced in Section 2 in the following ways. The agent has a full-
support prior regarding his own calibre, and observes (in addition to ¢; and #;) signals s; =
a; + b+ €, where €/ is a normally distributed error with mean zero and variance v that is
independent of the other errors. In reality, b = B > 0, but the agent believes with certainty that
itis b = b = 0: he is interpreting signals about himself in a biased way.

Proposition 7. The agent’s long-run bias about his own calibre is

. ol + 2% ;k”;j
a; — Ai = a q 2 7 : Ba (6)
of + 0] + 2k P rp

while his long-run bias about the calibre of individual j # i is

~i _ Zk ¢gik¢g,fk DI:I _ Zk ¢g,k¢g,‘kv;¢7 ~

a;—Aj=———3 2 1 P T g > @ = A, Q)
of + o + 20 e il o) + 2 Per Ol

His bias regarding discrimination of type k is
i — Pk} —Pgk0; N
6, — O = & B=—28k G —A). )
2 2 1 1

vf +0f + 2 Bprvi v + 2k BVl

Being described by the same formulas as in Theorem 1, the relationship between the agent’s
social beliefs and his overconfidence is exactly the same as in our main model. Accordingly,
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predictions regarding his social beliefs relative to each other are unchanged. Furthermore, it
readily follows that the comparative statics in Propositions 2 to 5 also hold.'”-!

In this version of the model, however, overconfidence can depend on the learning environ-
ment. We point out one relevant implication. To motivate our result, notice that in our basic
model, agent i’s biases are increasing in his overconfidence a; — A; (equations (2) and (3)). This
implies that if an outsider can make the agent more realistic about himself, then all his social
prejudices decrease. Here, in contrast:

Corollary 1. Making his own recognition a more precise signal of calibre (lowering v} ) lowers
the agent’s overconfidence and increases all his other biases.

Confirming the classical intuition, providing better information about the agent lowers his
overconfidence. But disconfirming the insight from the basic model that lowering overconfi-
dence helps debias the agent, all his other biases increase. Intuitively, the agent attributes his low
performance partly to discrimination, and partly to bad luck. With less noise, bad luck becomes
a worse explanation, raising the need for the discrimination explanation. To reliably lower the
agent’s biases, one must decrease the root misspecification—overconfidence in the basic model,
misinterpreting signals about himself in this variant—that he has. In practice, however, it seems
difficult to determine what this root bias is.

Uncertainty regarding the cause of overconfidence also has implications for the empirical
testing of our predictions. Namely, because our theory does not imply an unambiguous positive
relationship between overconfidence and social biases, it cannot be tested by simply looking
at correlations between the two types of distorted beliefs. At the same time, controlling for
all the information a person has appears impossible in practice. Nevertheless, our theory has
many predictions that can be tested—and that, as we have discussed, are consistent with existing
evidence.

4.3.  Short-run beliefs

In this section, we investigate short-run beliefs in our main model (Section 2) when agent i
knows the covariance matrix of the errors, and starts off with the prior that others’ calibres and
the degrees of discrimination are independently and normally distributed.

First, we investigate situations with a single type of discrimination (K = 1). We denote the
prior variances of discrimination and individual j’s calibre by 57, v}, expected mean beliefs in
period 7 by 07 (1), &; (1), the expected mean beliefs of an agent who correctly assesses his calibre
(@ = A;) by 0'(1), @} (1), and long-run beliefs derived in Theorem 1 by o', a:.

Proposition 8. Let K = 1. The biases in agent i’s mean beliefs in period t are given by

/v )
hd @ —4;),

00 -0 =h@ -0) and &0 -0 =hm g
j J

17. For Proposition 2, this requires imposing that v;‘ is common across a group (like o is).

18. In a model of learning with selective memory, Fudenberg et al. (2024, Section IV.B and Proposition 6)
establish an analogue of Proposition 7. They show that the implications of dogmatic overconfidence for long-run beliefs
are identical to those of a positive memory bias that generates the same level of overconfidence. This suggests that one
can also think of our model as capturing the effect of a positive memory bias, so that the exact source of overconfidence
is not crucial for our main qualitative findings.

G20z Jequieoaq | UO Jasn Jeulwas sayosiielusiO Aq £089918/8101ep/pPnsal/ca01 01 /10p/8|oIB-80uBAPE/PN]Sal/Woo dno-olWwapese//:sdiy wolj papeojumoq



14 REVIEW OF ECONOMIC STUDIES

where

t/o"
ﬁt: _ ~ /ol .
1/0% + 1 /o1 + 3" (Pg,1)* - 1/0 - m

The proposition implies that the agent’s short-run biases have the same sign as and a lower
magnitude than his long-run biases. Thus, for K = 1 our qualitative results survive.

Next, we note that if the variance of the agent’s prior belief is sufficiently large—i.e. he is
sufficiently uncertain to start with—then the long-run biases we have derived approximate his
average biases in every period for any K.!” Hence, in this case all of our insights hold on average
in any period (in addition to holding with probability 1 in the long run).

To conclude, we show through an example that if the agent’s prior is not sufficiently uncertain
and K > 1, then short-run and long-run biases can be qualitatively different.

Example 2. [ =3, K = 2,i = 1, each (representative) individual is in a separate group, ¢;; =
P32 = =1, P21 = 2o = 1, p12 = ¢31 = 0, and all priors and errors have variance 1.

Type-1 discrimination affects Groups 1 and 2, while Type-2 discrimination affects Groups
2 and 3. Theorem 1 then implies that agent 1 is in the long run unbiased about 8, and a3. Yet
applying the updating formula for Normal distributions, it is easy to check that after finite time
he is on average biased about both. Intuitively, due to his overconfidence, agent 1 immediately
starts overestimating the degree of discrimination 6; against him. Consequently, individual 2’s
recognition—which he thinks increases in type-1 discrimination—appears to him too low. In the
short run, he attributes this discrepancy partly to a, and partly to 6, thinking that individual 2
suffers from type-2 discrimination. He therefore underestimates individual 3’s calibre a3 as well.
In the long run, however, agent 1 attributes individual 2’s (seemingly) low recognition solely to
ay, as a biased belief about 8, does not help him explain other observations.

Nor does bias substitution generally hold in the short run. Indeed, suppose that the agent
receives extremely precise information about ¢,. Then, his bias about #; becomes small, and
by the above logic, so do his biases about 6, and a3. The short-run biases about 8, and 6, are
complements because the latter bias derives from the former.?°

5. MULTI-DIMENSIONAL MISSPECIFIED LEARNING

This section derives a theoretical result that we used throughout the article, and that might be
useful for others studying implications of misspecifications in multidimensional settings. To
the best of our knowledge, ours is the first closed-form solution for the long-run outcome of a
misspecified learning process with high-dimensional interdependent beliefs.?!

19. To see this, denote the mean and covariance matrix of the prior by (@, #) and X, respectively. The agent’s
expected posterior mean belief in period ¢ is given by @n o) = (Eal + tf)*l)*l (Zal @’ + tﬁ)fl(é §)T);
see the proof of Proposition 8. If the prior variance goes to infinity, 35 ! converges to the null matrix and hence
(@(r), 6(1)) converges to the long-run belief (@, ).

20. For formal simplicity, our example features unbiased long-run beliefs about 65 and a3. But a modification
in which ¢1, is slightly negative shows that short-run and long-run biases can have strictly opposite signs. Then, agent
1 is in the long run positively biased about individual 3, but by continuity of his beliefs in ¢5, in the short run he is
still negatively biased. Furthermore, in this case, biases about 8; and 6, are strict substitutes in the long run but strict
complements in the short run.

21. Spiegler (2016, 2020) also develops and solves in closed form models of high-dimensional interdependent
misspecified inferences. These models are not based on an explicit learning process, and their economic logic and
solution methods are completely different from ours.
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The agent makes inferences about a fixed vector of fundamentals f € RL, whose realization
is F. In each period ¢, he observes a signal

rt=Mf+6,€RD,

where M € RP*L is a matrix of rank L and ¢, € R is a vector of errors that are jointly normally
distributed with mean zero and positive definite covariance matrix 3, and that are independent
over time.?? The agent updates using Bayes’ rule: given a prior belief P, over the set of funda-
mentals and positive definite covariance matrices, the probability that his posterior P, assigns to
the set A after the sequence of signals r = (ry, 72, ..., ;) is

p s — JLumealiC ] £, 2P, )
' [er|f,2)dPy(f, %)

where the likelihood equals

! 1 1
L, =] ——— —
e E\/(Zn)l‘ det &’ eXp( 2"

The agent is misspecified: he believes with certainty that f; equals f, We consider three dif-
ferent inference problems depending on which parts of the agent’s beliefs are fixed by his prior
belief, and which are derived from his observations. We denote by M the set of positive definite
symmetric matrices whose eigenvalues are all greater than A, where A is chosen to be sufficiently
small.?®> In our main specification, the agent is trying to infer the fundamentals f as well as the
covariance matrix X:

- MY (r - Mf’)) : ©)

supp Py = {(f’, Y)eREXRP*P: f/ = f,, % € M} . (Case I1I)

Because they are potentially of interest in other applications, we also consider two simpler infer-
ence problems. We ask what the agent infers about the fundamentals when his beliefs about the
covariance matrix are fixed at some positive definite X:

supp Py = {(f’,E’) e RL x RPXD; f/:ﬁ,Z/:i}. (Case )

And we ask what the agent infers about the covariance matrix when his beliefs about all
fundamentals are fixed at f = (f,..., f1)7:

suppPoz{(f/,E’)eRLxRDXD: f/=f~,2/€/\/l}. (Case IT)

We say that the agent’s beliefs concentrate on a point ( £, 2) if for every open set A such that
(f,X) € A, almost surely the agent will in the limit assign probability 1 to A: P[lim,. P/A =
1] = 1. For stating our theorem, note that any positive definite covariance matrix X is invertible,

22. If M had lower rank, there would be different vectors of fundamentals that entail the same distribution of
signals and hence the agent could not learn the fundamentals.
23. Formally, one can choose any A less than the smallest eigenvalue of & + (M (f — F))(M(f — F ))T, where
M7 s~ m!

U (fi — F;) for j # i in Case (III). The agent’s

ly in Case (II); and equals fj = Fj + —————p
f is given exogenously in Case (II); and equals f; j+ [MTZ*lM];.l

long-run beliefs do not depend on the precise choice of A.
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so the matrix M7~ M is well-defined; and since M has rank L, this matrix is positive definite
and hence invertible.

Theorem 2 (L~0r1g-run beliefs). In Cases (1), (1I), and (II), the agent’s beliefs concentrate on a
single point (f, ¥). Furthermore:

(D) If the agent has fixed beliefs S about the covariance matrix but is uncertain about the
fundamentals j # i, then in the limit his bias about fundamental j is

s MTE' My
fi—Fj= m(ﬁ - F). (10

(1) If the agent has fixed beliefs f about the fundamentals but is uncertain about the
covariance matrix, then in the limit his bias about the covariance matrix is

S-S =M -F)yMmf-F). (11)

(IIT) If the agent is uncertain about both the fundamentals j # i and the covariance matrix,
then in the limit his bias about fundamental j is
[MTs M)
fi—Fi=——F—"5i-F), 12)
[MTE'M

ii

and his bias about the covariance matrix is given by Expression (11).

The initial part of the proof of Theorem 2 follows steps commonly used in econometric and
statistical analyses of misspecification. First, we verify that the assumptions in Berk (1966) are
satisfied. Then, applying Berk’s seminal result, beliefs concentrate on the set of minimizers of
the Kullback-Leibler divergence. Now it is well—kqown that for Normal signals, the Kullback—
Leibler divergence assigned to the parameters ( f, >)) when the true parameters equal (F, X)) is

D (F, 207 z) - %(u(i—‘z) T M(f = F)'S"M(f — F)—n +log j::;) (13)

In the second part of the proof, we derive the unique minimizer of (13) over the support speci-
fied in Cases (I), (II), and (III). Since our type of misspecification has not been analysed in the
literature, this part of the proof is novel. Case (I) can be verified by taking first-order conditions
with respect to the fundamentals. But Cases (II) and (III) are non-trivial semi-definite program-
ming problems because (13) involves the determinant of X, which is not a tractable function in
general. We proceed by looking at the eigenvalues of a well-chosen matrix in each case, greatly
reducing the dimensionality of the problems as well as eliminating the determinant from the
objective.

Notwithstanding the technical nature of our proof, intuition for our results can be gleaned by
looking at (13) in the special case where the covariance matrix X is known and errors are inde-
pendent, so that ¥ is diagonal. Then, the objective function reduces to (M ( f — F)'s~tm( f -
F): the agent minimizes the weighted sum of the squared mean errors in his observations (the
differences between his observations and his expectations), with weights equal to the precisions
of his signals. Our formulas in Theorem 1 derive from this problem, and we have used properties
of this problem to explain the logic behind our main results. In particular, the agent’s misspec-
ification (overconfidence) introduces errors in his observations (e.g. in his recognition), which
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is reduced by biased beliefs about other fundamentals (e.g. discrimination against his group).
Further, if one of the agent’s observations becomes more precise (e.g. regarding one type of
discrimination), the weights in the minimization problem change, leading to bias substitution.

The trickier parts of our proofs are in establishing that the above logic works also when the
agent does not know the covariance matrix. Indeed, notice that plugging ¥ = Yinto Expression
(10) yields Expression (12). Hence, when the agent is initially agnostic about the covariance
matrix, then—although he misinfers the covariance matrix—his long-run beliefs about the fun-
damentals are the same as when he correctly understands the covariance matrix. Investigating
what happens when in addition the errors are correlated (as in Proposition 6) is also much less
obvious.

Our flexible theoretical apparatus provides a tool that can help researchers understand the
implications of biases beyond overconfidence. Building on our results, for instance, He et al.
(2024) analyse what a misspecified agent concludes about the biases of his information sources;
Kornemann (2024) studies what happens when the agent is misspecified about the matrix M,
such as when he interprets observations using a simplified, sparse model; and in Appendix B, we
consider the situation in which the agent has stubborn beliefs about two fundamentals. Economic
applications abound. In the political arena, for instance, a person may have the stubborn belief
that Democrats/Republicans are evil, with implications for his views about a multitude of social
issues. Going further, our model can serve as an input into theories of propaganda, asking what
misspecified beliefs a politician wants to instil given a set of goals and constraints. And in
the personal arena, an individual may misperceive an aspect of others’ preferences or beliefs,
and thus misinterpret a range of their behaviours. Although a multitude of such misperceptions
have been documented (see Bursztyn and Yang, 2022, for a review), their ultimate sources,
interrelationship, and implications for multidimensional observations have not been analysed in
detail.

6. RELATED LITERATURE

In this section, we relate our theory to research not discussed so far. Most importantly, existing
work does not derive a general in-group bias, develop a theory of group beliefs based on over-
confidence, or make predictions regarding spillovers between multiple interdependent incorrect
beliefs about others. Indeed, previous research on misspecified learning typically restricts atten-
tion to a one- or two-dimensional state of the world.2* Unlike many others, however, we do not
investigate behaviour, and assume normally distributed signals.

The agent’s biased interpretation of the signal about his own calibre in Section 4.2 is naturally
interpreted as driven by motivated reasoning (Bénabou and Tirole, 2016). Within discrimination
settings, Rackstraw (2022), Eyting (2024), and Stoetzer and Zimmermann (2024) experimentally
investigate whether motivated reasoning drives subjects’ updating. In contrast, we theoretically
derive what stereotypes an agent eventually holds while allowing for multiple dimensions of
discrimination.

There is a large sociology and social-psychology literature on prejudice, but to our knowl-
edge no theory is based on overconfidence, connects prejudice to opinions about discrimination,
or makes precise comparative-statics predictions. Most related, social identity theory (Tajfel,

24. Papers in this literature not mentioned previously focus on different issues than our article, including infer-
ences by individuals who ignore some explanatory variables (Hanna et al., 2014), misunderstand causal relationships
(Levy et al., 2022), misinterpret social observations (Bohren, 2016; Levy and Razin, 2017; Bohren and Hauser, 2019;
Frick et al., 2020), or draw incorrect inferences from their own past behaviour (Heidhues et al., 2022).
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1982) posits that individuals identify with a few relevant groups, so that thinking positively
about these in-groups and negatively about out-groups leads them to think and feel positively
about themselves. Our theory also connects a person’s prejudices to his views about himself, but
through a different—in a sense reverse—logic: he thinks positively about himself, and this leads
him to develop social biases.

An influential body of research demonstrates that prejudice and discrimination can operate
implicitly outside the person’s awareness (e.g. Bertrand et al., 2005). Our framework is predi-
cated on an inferential process, and hence may appear contradictory to implicit bias. But once the
agent has drawn conclusions along the lines of our model, he may act on them without conscious
thought. Indeed, the idea that learned connections can unwittingly affect judgment is common-
place in psychology, and formed the basis from which the literature on implicit discrimination
started (Jost et al., 2009). In this sense, our model is not contradictory to implicit bias.

Bordalo et al. (2016) model stereotypes by assuming that a person considers a trait more typ-
ical in a group if it is relatively more common in the group than in the relevant comparison group.
This approach does not comfortably explain why stereotypes are often derogatory prejudices
and why many views are self-serving, and unless different groups have different comparison
groups, it also does not explain why different groups hold different views. On the other hand,
our framework does not explain neutral stereotypes, such as the view that Swedes are blonde.

Glaeser (2005) presents a political-economy model of hate in which beliefs about the harm-
fulness of others are created by politicians’ messages. Unlike our framework, this model explains
how the political environment affects people’s beliefs about minorities, and which messages are
communicated by which politicians. At the same time, our theory helps understand why nega-
tive attitudes often persist without politicians stoking them, or even despite politicians’ attempts
to debias.

7. CONCLUSION

While we have studied beliefs, it is natural to ask what our theory implies for discriminatory
behaviour. To make predictions regarding choices, we need to add an assumption about the
agent’s objectives. One possibility is to posit classical outcome-based preferences (e.g. earnings
from one’s firm). Then, our model can be thought of as one of misspecified statistical discrim-
ination—the agent uses group membership as a signal to guide behaviour (e.g. whom to hire),
but he does so incorrectly.”> Another possibility is to assume that the agent dislikes rewarding
or interacting with individuals he considers less deserving. Then, the agent treats other groups
worse than his own because he has incorrectly concluded that they are less worthy. In this case,
our model can be thought of as a microfoundation for taste-based discrimination. In fact, we
suspect that the “pure” dislike of other groups assumed in the classical theory of taste-based dis-
crimination is psychologically unrealistic. For instance, we do not think that a person dislikes
a particular skin colour unless it is associated in his mind with some meaning about what such
others are like.

APPENDIX

A. Proofs

Theorem 1 follows from Theorem 2 which we prove later in the Appendix.

25. Others also note that it is essential to distinguish correct statistical discrimination from “error discrimination”
(England and Lewin, 1989) or “inaccurate statistical discrimination” (Bohren et al., 2025).
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Proof of Theorem 1: Let 9, X" be the covariance matrices of €4 and €,
29 =diagw!, ..., o), 7 =diagw!,....0})

and observe that they are invertible as the variances are greater than zero. We next show that this model can be reduced
into our model in Section 5. Observe that one can write the vector (g n)T in matrix notation as

q\ _(1d ® a €l
() -(57)-6)+ (@) s
where the entry (®) jx = gbgj & of the matrix ® is the impact of discrimination k on group g;’s output. Let
Id ®
=3 1)
As M has determinant 1, it is invertible, and
T 1 -1 a1 _1\7 _ (1d =@ 34 0 Id 0
[ME M} =MEEM =y 1)\ o o) \—eT 1a
_(1d -® 2 0 _ (S + 5107 —oxn
“\o 1d)\-znaT z) -zl =1

By Theorem 2, agent i’s bias about the calibre of agent j is given by

T
M M 24 + o317 7
P [ ]ij A [ + j|ij G — A = 2k Pgikbg kv @ A
/ J = —1 T — T 1 l q 1 v
[MTE?IM:I" I:Eq + dX"P :|ii + Zk ¢g kvk
12
By a similar argument,
T —1
M s im| el
0l -0 = [ ]'(”l")A» = [ l" @ — A;) = O S ~Puki @ —AD. O
[MTE_IM] [Eq +ox q,T]“ +>% ¢gz ”k
ii 12

Proof of Proposition 1: 1. By Theorem 1, the view of group g about group g’ is

a = =2 2 4 = Ay —z" 1Pk k0 - (dg — Ag),

g Z g
icg lmg ies jeanty [Me x Umg —Tig—g)) of + i $30f

so its view of group g is
K 2
e Pl

ag =Ag+
og + 35 1 eon

(ag — Ag).

Hence, clearly &§ > Ag.
Furthermore,

K ’7
~ Zk 1¢gk¢ kY% -
E mg/ag/ = E mg’Ag’ + E mer —g( ag — Ag)
" 7 g og + 2o | baror

Zk 1¢gk(2g/m ’¢g k)vk
of + Xfi $50f

Ag) = ng’Ag”

= ng’Ag’ +
%

where in the last step we have used that Zg/ mg/¢g/k =0.
II. Immediate from Part I.
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III. Let ag = Zieg aj/Img, and note that by Theorem 1 ag > Ag. We have
ngm /(ag —a ,)—ng Zm /ag ngZm ,al o
= ngag ng ng/Ag/ = ngag Zm /Ag/

_ngag zmgAg—Z mg qZk_l¢gk .

e (g — Ag) > 0.
T v+ e 1 barof

Proof of Proposition 2: We work with K + 1 types of discrimination, with type K + 1 having effects s¢gx 1 and
s¢>g/ K +1 on the two groups. Then, s = 0 corresponds to a situation with K types of discrimination, and s = 1 to the new
situation.

1. The view of group g about g’ is

K n 2 n
Zk—] ¢'gk¢g’k”k +s ¢’gK+1¢g’K+lDK+1

of + Xhsi S0k + 5202k 10k 1

&; =Ag+ (g — Ag)

7
— A s ¢gk+]¢g’K+lDK+1 - A

=4y + 3 K 2 1, 22 7 (dg — Ag),
Vg 2km1 Perlk T 5 Pk 11K +1

where we have used that ¢ ¢g/ x = Oforallk < K. Since ¢y +1 # 0, this immediately implies that the bias of group
g about g’ is negative when s = 1 and zero when s = 0, establishing Part I.
II. The view of group g about group g is

2,42 7
p 1¢gk”k TSPk 410Kk 41

o
of + 30 1¢ (o s ¢gK+1 K+1

af = Ag+ g — Ag).

This is higher for s = 1 than for s = 0, proving Part II.
III. Notice that

K
Zk:l mg¢ Uk +s (mg¢g](+1 +m ’¢gK+l¢g/K+l)UK+1

7
DRI ¢gk”k +520k 10k 1

Mgl +myas, =mgAg +my Ay + (g — Ag)

Zk—1 mg¢ o]
= ok Uk ~
=mgAg +mg/Ag/+ 7 3 7 (ag — Ag),
242 n
Vg + 2kt PekVk TS Pek 410K +1
where we have used that mggg 41 + mg/¢g/,<+1 = 0. The above is lower for s = 1 than for s = 0. Since group g has

an average bias over all groups equal to zero, the average view of g regarding other groups must be higher for s = 1 than
fors = 0. |

Proof of Proposition 3: By Theorem 1,

2 0
‘ _ ¢g,kvk

boik] 0 — Ok = 55—
|g “k v; +Zk’ k’Dk/

“lap — Al 15)

As the above term is increasing in vZ, Part I follows. Part II is implied as for an individual j who is a member of agent
i’s group
2 n
S 2k PV
a-—Ajzi (a; — A;)
1) + > ¢? o k’Dk/
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which is increasing in o, . Part Il is implied as for the term in is (weal ecreasing in v, and strictly so i
hich is i ing i ZP 111 is implied as for kK # k th in (15) is (weakly) d ing i ,’Z d strictly so if

P 1 # 0. Part IV follows since 2 mg&é =2 mgAg and by Part (II) Ezi,l_ is decreasing, so that Zg#g,- mgﬁi, must

be increasing. For Part V, observe that as ¢g = 0 for group g, Theorem 1 implies that

n
o | 2k Bk Borrvyr |
a, — Ag| = | —F——————| - la; — A;l,
g 8 q 2 ! !
o + 2w ¢g,«k’nk/

and the first term on the right-hand side is (weakly) decreasing in DZ, and strictly so whenever the bias about group g is
non-zero. g

Proof of Proposition 4: Consider a proportional change that lowers all vZ by some constant factor & < 1. By Theorem
1, this implies that agent i’s long-run bias about discrimination toward group & is

- 7¢g.kl)’1 B *¢g-kv”
0p — Okl = | e (a; — Aj) = L

- = 2 | @A)
q 2 n 1 )
v ;
TR ¢;,27-k/v;<7/ v+ 2w ¢gik’vk'
1

with the inequality strict whenever ¢ ¢ # 0. Similarly, his long-run bias about individual j’s calibre becomes

n n
_; 2k Peikbg KV 3 2k boikbgikvy |
“j*A.i‘: . |@-A)s SIS (@ — Ap),
i 2 n V- X s
o T > ¢g,-k/vk/ ! K ek "k
with the inequality strict whenever > ¢, k¢gjkl);z #0. O

Proof of Proposition 5: Theorem 1 implies that the difference in agent i’s long-run bias about individual j and j’ is

@ —Aj) - (éj" —Aj) == >0 — Or)(bejy — $e )
k

Consider an agent i who is more similar to agent j than to agent j’. Then ¢ 'k = Cik implies that ¢ j; = c;j and hence that

¢"j’ = ¢L'jk = ¢, - Furthermore, if ¢ 'k = Cjk then ¢'L'j’ = ¢'L'jk' Using these facts the above equation simplifies to

@ —Aj) =@l —Aj) = > ~0} — OO (ejy, — be -

k:cj/k #Cik A€ 1k #Cjk

Since characteristics are binary, for any dimension k in which Cjk # Cik N Cjk # Cjk. one has cjx = cji and thus
¢Cjk = ¢¢;y, - Furthermore sgn ¢Cj’k # SN ¢y = sgn ¢C_/k' Using these facts and Theorem 1 (i) ¢;, > 0 implies
—(0; —©¢) > 0 and (¢Cj,k - ¢cj/,k) > 0; and (i) ¢¢;; < 0 implies — (0 — ©f) < 0 and (¢cj,k - ¢cj/,k) < 0. We
conclude that in any dimension k in which ¢ ;r; 3 cix A cjr # ¢ jk, we have —(élé - ek)(¢c/,k - ¢Cj/’k) > 0. Thus,
(Ezj.fAj)f(&j.,fAj/)>0. a

To prove Proposition 6, we solve a more general model first in which recognitiong; = a; + e} is an unbiased signal
of calibre that allows the error terms €’; to have any positive definite covariance matrix ¥4 for which all eigenvalues
are greater than some sufficiently smaﬁ A that is less than the solution stated in the Proposition A.1 below. All other
assumptions remain unchanged. In this case, one has:

Proposition A.1 (Correlated Errors and Biases). Agent i’s long-run bias about j is

_ =,
aj = Aj =g @ — A, (16)
ii
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while his bias about the covariance matrix is given by

q 9

Zijr i 2
(a; — Ap)”. an
q 2
=

zjj - z‘j%j/ = (a; - Aj)(a;, —Ap) =

Proof: We apply Part III of Theorem 2 to f =a, M = Id. Then, MTs=Ipm~ 1 =%, and M(ff Fy=a—A,
yielding the formulas in the proposition. O

Proof of Proposition 6: Observe that the true model of Proposition 6 is a special case of the model of Proposition A.1
in which e} = yj€g + €, where €, and € are independent mean-zero Normal shocks with variances vg and v ;. Note

that the sum of Normal random variables is Normal, and the true variance—covariance matrix of the shocks e} has entries
q  _ . -/ q _ .4 2. 26
Ejj’ =y g for j # j and Ejj =0; + yivg:

The agent considers the subclass of subjective covariance matrices for which i(;’j’ =y j v Vg for j # j’ and

9. =57+ y~/2.v ¢~ Note that this class of subjective models satisfies the assumptions of Berk’s Theorem, and hence by
Berk (1966, main theorem p. 54), the support of the agent’s beliefs will concentrate on the set of points that minimize
the Kullback—Leibler divergence to the true model parameters (A, ) over the support of the agent’s subjective models.
To solve this minimization problem, we minimize a relaxed problem in which we ignore the restriction that there must
exist y ;s such that ilji.j, =y j v j'vg for j # j’ and by ji = 5? + y)jz.vg, and then verify that the solution to the relaxed
problem satisfies these constraints.

By Proposition A.1, we have that in the solution to the relaxed problem is given by

Viyjvg

i =A;+ (@ — A;)
J 1 1)
J viq + y/izvg
and
&g q Elqj/EfI/ 2
., =1+ ———(@ — A)“.
Hence,
~ l//zvg
B = wiwjog | 1+ ————— @ — AD* | forj # ',
(v? + l//izl)g)
and
2,22
- ViV vg - .
S = vl 4 ytog+ — @ - a)? forj £i, (18)
1)? + y/izng)
and finally

S 2 ~ 2
E;fi ZU?—l—l//i vg + (@ — A;j)".

To show that the solution to the relaxed problem is among the class of subjective models the agent considers, we are left
to show that there exists ;s such that

2
Vivg

3@ — Ap? | forall j # ', (19)
(v? + y/izvg)

l/~lj(/~/j/l)g =yjyjg 1+

26. To see that the chosen vg, v; implies a uniform bound on the covariance matrix as required by Theorem
2, observe that the covariance matrix is given by vg X (y ® y') + diag(vy, vy, ..., vy), where diag(vy, vy, ..., v7)
denotes the diagonal matrix with entries vy, ..., v;. The smallest eigenvector of the covariance matrix is thus greater
than miny;|y|=1 xT[vg x (¢ ® ') +diag(vy, va, ..., 07)]x = xTdiag(vy, 02, ..., 07)x = min; v;.
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and
l//2l/2 2
~ ~ 1 . .
v?—i—l//jz»vg:v?-i-y/?vg-i- J 2(a,—A) for j # 1,

( +Wt Vg

and finally

13:.7 + ‘/;i%g = vl{] + (//l-zl)g + (a; — A,~)2.

Observe that (19) to (21) are solved by

2
~ Wivg -
= @ - A

q 2
(1) ; TV Ug)
and own variances

~q q
and 0; =0,
J J

2 2
s _ g (U?+Wizug) _(szvg) ~ 2
;=0 + . 5\ (@ — A

(Ui T Ug)

23

(20)

2n

(22

(23)

We now argue that for 7 > 3, the solution given by (22) and (23) is unique. D1v1d1ng (19) for j, j' # j by that for
j. " # j, j implies that //y/J// =v //y/]// so that v //WJ// is unique. By (19), Wiy n is also unique. Together with

the normalization that y; > 0, this implies that all y/] are unique. With all y/] uniquely given, own variances are unique

by (20) and (21).

O

Proof of Proposition 7: Let ¢; be the ith unit row vector, and ® the matrix with (®) jx = qﬁgj k- In the notation of

Theorem 2,
b Si 1 e O of 0 0
f=\lal, r=1q}), M=|01d &), =0 X7 0],
4 n 00 Id 0 0 X7
and the agent is misspecified regarding b, with b — B = —B. It is easy to check that
1 —e @i
mM~t=|0o 14 -2,
0 0 Id
where ¢; is the row vector (¢g; 1, . . ., g, k). We thus have
L—ei #i\ (o4 0 0 L0 0
M lsmHT =0 1a —a|| 0 x¢ o ||-¢f 12 0
00 1a)\0 0 X"/ \g¢l - 1d
1 —e ¢ ve 0 0 vd ol + Xl
=0 1d —@||-vlel 1 0 |=|-vlel —oxngpl
0 0 1d) \x1g] —xsnel xn gl

The formulas follow by applying Theorem 2, Part III.

Proof of Corollary 1: The result follows from taking the derivative of the respective biases in Proposition 7 with respect

q
toui.

O
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Proof of Proposition 8: Recall that the agent observes the signals

K

qj() = Aj+ D bgk Ok +el @), j=1...1
k=1

n@t) =0 +€().

(24)

We assumed that there is a single dimension of discrimination, so that e.g. © = ©; € R. The agent now observes two
signals that are purely about discrimination: (1) the signal directly about discrimination

n=0+¢l
and (2) the signal about the agent’s own calibre
qi = Aj + ;10 + €.
We transform ¢; into a new signal g;, which agent i believes to be an unbiased signal of ©,

&l‘—Ai+ 1 4
Pgil Pein !

Gi = (qi —a;)/dg;1 = © —

The direct signal # has precision 1/v" and the second signal g; has precision (¢gi 1)2 / v?. This means that the overall
information of these two signals can be summarized into a single signal given by

= Lo+ B0 1ol 4 10T+ g 1 /o] (ai — @)
L1/ + (pg )2 1] 1/0" + (g, 1) 1/0]
The precision of this signal 7; is equal to 1/0" + (¢g;1 )2 1/ u?. The signal 7); is a sufficient statistic for © from the point

of view of the agent, in the sense that her posterior belief about © will be the same after observing (7, ¢;) or #; 27 The
objective expectation of the signal #; is given by the long-run belief

¢gi11/”?
1/0" + (g, 1) 1/0]

¢gilv77

E[#:1=© — &
[7;] D;I +(¢gi1)20'7

@ —Ay) = @ — Ap).

We can now also transform the signal about agent j # i’s ability ¢; in an invertible way such that agent i believes it to
be an unbiased signal about a; by defining §; as

4j =4;j — Pg;17ii-
The objective expectation of §; is given as

¢g,~10"

Elgil=A; +¢o.1 ———(a;
J J 8j U?+(¢g,~l)20” !

—A).

As the distribution of ¢ ; only depends on ¢ and a j, we get that (g—i, ;) is a sufficient statistic for computing the agent’s
beliefs about (a_;, ).
By slight abuse of notation, we denote by & the vector (ngj 1) ji and by a the vector (a;) j«; to avoid the subindices

in ®_;,a_;. Recall that we denote by @,0" the long-run belief of agent i. The objective expectation of (g, 7;) is
exactly equal to the long-run belief derived in Theorem 2 and given as

o)) (9)-6)- (@) -() e -0

27. This follows from the updating rules for Normal signals given a Normal prior.
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According to the agent’s subjective expectation

E[gj1=A; and E[#;]=6.

The signals (g, 7;) have the subjective covariance matrix

- [zq +ol1edT —1)’7<I>:|
S= T )
—01® o'l

Here 329 = diag(vlq s vg , ...) is adiagonal matrix with the variance of the outputs of the different agent’s on the diagonal.

Denote by al(t), 0 (t) the expected posterior mean belief in period r when the agent assigns probability 1 to his own
calibre being G;, and by a, 0 the prior means of individual j’s calibre and discrimination, respectively. By the updating

formula for Normal beliefs from Normal signals,28 we have that

@Y _ el emt—1 (a1 (@ ot (@
(i) =o'+ =7 (=0 (3) +=7 ().

Here
a
. a - _9 >80
Yo =diag®{,05,...,0") = ( 00 6‘9)
is a diagonal matrix with the variance of the prior belief about the different agents’ calibres ay, ap, ... and the state ©

on the diagonal. Denote by a(t), 6(¢) the expected posterior mean belief in period r when the agent is correctly specified
and assigns probability 1 to his own calibre being A;. We have that

i _ e _1{a ~_1 (A
(i) = '+ (50 () + 57 (3))-

We get that the difference between the mean belief of the correctly specified agent and the agent who misestimates his

own calibre is given by
amy) _ («'® —1 eyt (@Y _ (A
o — . = > > ~ | — .
(o) ~ (i) = e+ [ (G) - (8
The matrix 3 has an inverse equal to
a1 _ a1 i1
eTse=! 11+ eTxi e |
We observe that
g1 -1 at A
oTxa! 11+ 0Txna" e || \§ S
a1 vile —®\ 5 0\ s
= |:(I>T2ql 1/u’7+<I>TE‘11<I>}( 1 )(9 7@)_(1/0’7) @ — 0).
Multiplying by (£ +r5~1) yields that
1, et (@O —=d O _( 0\ i
[20 X ](@i(t)—ei(t) = /o © -9

sa—l 4 pya-] 24 1le a0 —a (1) 0\ 5
0 . . = L
é{ olima= 150 4o+ 0Tz e (9’(1)79’0)) (I/D”) @ =9

28. See e.g. here https://en.wikipedia.org/wiki/Conjugate_prior#When_likelihood_function_is_a_continuous_
distribution.
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The solution to this equation is given as

a0 —d()=— (Eg" +z2‘1—1)71 24 e (é"(z) - Hi(t))
/0" x (' — ©)

0" (t) = 6" (1) —
150 +1/0m + ®T1297 1@ — @Tyxa-1 (23‘1 + zzq—l) 241
t/o"

= — @ - o).

160 +1/01 43 (¢ )Zl/ﬁ@L
j\Pejl IRV

Where, in the last equation we used that 28 and X7 are diagonal matrices. Expressing the above equations component-
wise yields the formulas in the statement. ]

Proof of Theorem 2: For brevity, we denote the agent’s long-run bias about fundamental j by
Aj=1i=Fj

andlet A = (A, ..., AT,
We first verify that the assumptions of Berk (1966) are satisfied. Part I requires that the subjective density is
continuous in (f/, X) € supp Py. The subjective density is

1

B ——
V@2r)L dety

which is continuous as the determinant and the inverse of a matrix are continuous functions of the coefficients of the
matrix, and the determinant of a matrix whose eigenvalues are bounded from below by A is bounded from below by
A" > 0. Part 11 is that the above density equals zero only on a set of measure zero with respect to the true distribution,
which is satisfied as the above density is always strictly positive. Part III states that for some open neighbourhood
U C supp Py of every parameter value (f’, ') € supp Py the expected maximal log-likelihood is finite, i.e. for the
random first period observation rq

1
m(iv—Mfmn*v—MM)

E|: sup  [logti(ry |f”,2//)i| < 0.
(f7.5"MeU

Let Amax (X”) be the largest and Ay (X”) the smallest eigenvalue of . Then,

log (161 117,31 = 5 flogl @)t det "1+ — M ()™ (o — by

llry — Mf"|?

IA

1
2 ‘L log[(27 ) Amax (E”)] +

1
/lmin(z//)

As the eigenvalues are a continuous function of the entries of the matrix and bounded from below by A, we get that the
above function is continuous in (f”, £ and thus that the supremum is finite over every neighbourhood U.

Finally, Part IV is that for every constant y € R there exists a set D C suppPy with compact complement
(supp Pp) \ D such that

]E|: sup  logl1(r1 | f”, E”)} <7. (25)
(f",.="eD

Fix d1, 6, > 0 and let D be the set of (f”, £") such that either || M (F — f"")|| > J; or the covariance matrix X" has its
largest eigenvalue strictly greater than &,. For all (f”, %) € D and ||Me|| < 1 /4 the log-likelihood satisfies

tog (111 £, 57 = —3 (logl @) det 1+ (1 — M) ()™ — my ™))

1
Amax (Z")

1
=3 (L log(27) + (L — 1) 10g Ain (2") + log(Amax (£)) + llr1 — Mf”||2) .
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Denote by a A b the minimum of @ and b. As log(x) + y/x is minimized at x = y with value log(y) + 1 we can bound
the above term by

1
= —5 (L 108@m) + (L = D) log Ain () +Log(@2 A l1r1 = M£"11%))

5 (L1022 + (1~ 1) log Ayin (=) +108(0s A IMF ~ )+ Mer|P)

1
< —5 (L 1og2m) + (L = 1) log Apyin (=)

+log(dy AIM(F — )12+ [1Meq|I* = 21IM(F — f")I| x ||Mep]D).

As right-hand-side above is decreasing in ||M(F — f")|| for ||Me1|| < 1/2, the maximum is attained at ||M(F —
£l = 61 and we obtain the following bound

1
=3 (L log27) + (L — 1) log Apin(Z") + log (52 v 5,2/2)) .

As the lowest eigenvalue of all covariance matrices in suppPqy is bounded from below by 2 <1 we have
log¢1(r1 | f,%") < L/2|log(Q)| for 61, d, large enough. That implies for 61, d, large enough

E[ sup  log€1(ry | f”, E”)} <E [1|ng(>‘l/4 sup
( )

log 1(r1 | f", 2”)] + L/2|log()]
f”,z”)ED (f”,Z )ED

1
< —5(L1ogQm) + (L — ) logd+ log (% A 67 /2) Pl Mey || = 61/41+ L/2l log()]

As limg, 00 P[||Me1|] < 61/4] = 1 it follows that the left-hand-side of (25) becomes arbitrarily small for 6, and 6,
large enough. We are left to argue that the complement of D is compact for every Jy, d>. Note, that the complement
of D is the subset of supp Py of positive definite matrices where all eigenvalues are in [1, 5] and vectors f” with
[IM(F — f")|| < d1. As ||Z”|| equals the largest eigenvalue, and thus is less than Jy, it follows from norm equivalence
that the set of covariance matrices in the complement of D form a compact set. We can define the pseudo inverse of M
as M* = (MT M)~ MT and note that for fundamental vectors f” in the complement of D it holds that || F — f”|| =
|M*M(F — || < |IM*|| x ||[M(F — f")|| < 61||M*]||. Thus, the complement of D is compact.

As shown by Berk (1966, main theorem p. 54), the support of the agent’s beliefs will concentrate on the set of points
that minimize the Kullback—Leibler divergence to the true model parameters (F, 3) over the support of Py

argmin D (F, s £ f)) s (26)
(f.)esupp Py

where the Kullback—Leibler divergence is given by

D(F,E|ﬁi):ﬁz[1ogw]

a1 %)

We will argue that (26) admits a unique solution when the prior Py satisfies either (Case I), (Case II), or (Case III) and
thus beliefs concentrate on a single point. As the true and §ubjective models are both Normal, the Kullback-Leibler
divergence is given by 13).2 Throughout, we denote by f, 3 the agent’s subjective long-run beliefs about the mean of
the fundamentals and the covariance matrix. Define the matrix

B=MTS" 1y e REXL

and denote its elements by (B k) j ke(1,...,L}- For future reference, note that since Sis symmetric, so is MTS=1M, and
thus Bjx = By;. Furthermore, as s positive definite, so is S~landB=MTS" M.

29. See for example https://en.wikipedia.org/wiki/Multivariate_normal_distribution.
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We first analyse Case (1): We solve (26) over A = f — F. As we can ignore all terms in (13) that do not depend on

f , the problem becomes

argmm(M(f F))ZIM(f F)= arg min AT(MTfflM)A
I fi=F; AiAFfi—fi
L L
=F+ argmin > > BiiAA;. @7

A Ni=fi—fi k=1 j=1

Here, the sum symbolizes the addition of F to every element by element in the set of minimizers. Taking the first-order
conditions in the bias about fundamental A, for i # i and using that B j; = By; yields

L

0=2 z Byj Ay
k=1

—1
B,
Dividing by 2 and plugging in Ay = Blﬁ A on the right-hand-side yields

113
Bii A B 1 Bl = B S By B- = 2 g1y,
Z’V k_z kJ —1 12 kj ki_B—lz Jk ki_B—l( )jis
i i ii k=1

i

—1
. 1. R L By . .
which equals zero as BB Lis the identity and i # j. Hence, Ay = Blﬁ 1 A; satisfies the first order condition.

Let ¢ be the kth unit vector, for k € {1, ..., L}. We next verify thal{ the first order condition is sufficient for a global
minimum. To do so, we rewrite the part of the objective (27) in terms of A_; = Zj# ejA;

T
ATBA = (ejAi+D ejAj| Bleidi+ > ejA;) = (e +A_ O B(eia +A)
J# J#
= (AN Be; A+ AT BA_; +2(e; 0T BA_;. (28)

The Hessian with respect to A_; of (28) equals 2B. As any quadratic form with a positive definite matrix Hessian has a
unique global minimum that satisfies the first-order condition, it follows that indeed

By TEha!
BT MTs- IM)_I

122

Ay =

is the unique global minimizer for all k 7 i. This completes (I).
‘We next analyse Case (I): In this case, we minimize (13) over X:

detS
arg min tr(Z 12) + (MA)T 71(MA) +log ——= © (29)
5 det X

Denote by - ® - : RP x RP — RP*D the Kronecker product. In matrix notation, we want to show that the unique
minimum of (29) is attained at

S =S4 MA@ (MA)T
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To simplify notation let y = M A. We first manipulate the objective function

r(S7ID) + TSy +log ZZE =E7'D) + r(T 7 1y) + log(det ) — log(det )
=uE'S) + @y ® y71) — log(det S — log(det )
=rE (S + [y ® y']) — log(det =71 — log(det &)
=S+ Iy ®yTD) —logdetS (S + [y ® yT1) + logdet(X (S + [y ® yT 1))

=o' ES+ Iy ey D) —logdetEHE + [y ® yT 1)) + logdet(Id + =~ 'y @ yD). (30

Here, we used in the first equality that a real number equals its trace and the log of the ratio equals the difference of the
logs. The second equality uses that the trace of A7 B equals the trace of BAT . For third equality, we use that the trace is
an additive function. In the second to last equality, we use that the sum of logarithms equals the logarithm of the product
and that the product of determinants equals the determinant of the product. Now notice that since 3 and y do not depend
on i), the set of minimizers equals

argmin - o(E7' S+ [y @y D) —log@etET S+ [y @ y ). 31
>
Let 11, ..., Ap be the eigenvalues of the matrix $-1 E+Dhe yT]). Since the trace is the sum of eigenvalues and the

determinant is the product of eigenvalues, (31) is minimized by all matrices 33 such that the eigenvalues of byl =+
[y ® yT1) minimize

D D
Z A — Z log Ag. (32)
k=1 k=1

As (32) is strictly convex, we can take the first order condition to identify the unique minimizer. This yields that
(32) uniquely minimized if and only if 4 =1 for all k. As all eigenvalues equal one and S+ y®yl) is
symmetric—and hence diagonalizable—, »-1 E+Dhe yT]) is the identity matrix. This establishes that

S=3+lyey 1=S+MA) @ MA) (33)
is the unique minimizer of (29) and thus the subjective long-run belief of the agent about the covariance matrix. This

establishes (II).
Finally, we prove Case (IIT): We now solve

1{ . det

arg min 3 (tr(E_lZ) + yTE_ly — D +log detE)' (34)
. - e

(AD): Aj=fi—F;

As shown in (30) this objective is equivalent to 1/2 times
tET S+ 1y y") —logdetE T (S + [y © y'1) - D+ logdet(td + =7 [y @ 7).

Plugging in the minimizer for the covariance matrix X + [y ® yT] derived in part two simplifies the objective to

logdet(Id + £ ' [y ® yT1). 35)
We first observe that as the determinant is the product of eigenvalues, (35) equals the sum of the logarithms of the
eigenvalues of Id + »-! [y ® yT]. Furthermore, if A is an eigenvalue of 1d + »-! [y ® yT ] with associated eigenvector
v then A — 1 is an eigenvalue of E*l[y ® yT] as

Ww=Ud+S ' yey Do =A-o=="1yey .

Denoting the eigenvalues of »-1 [y® yT] by A1, ..., Ap, the objective (35) becomes

K
> log(Ay + 1).

i=1

G20z Jequieoaq | UO Jasn Jeulwas sayosiielusiO Aq £089918/8101ep/pPnsal/ca01 01 /10p/8|oIB-80uBAPE/PN]Sal/Woo dno-olWwapese//:sdiy wolj papeojumoq



30 REVIEW OF ECONOMIC STUDIES

As eigenvalues are independent of the basis, we next choose an orthogonal basis xp, ..., xp such that x; = y (we can
always do so by picking an arbitrary basis and applying the Gram—Schmidt process). Denote, 1 = (1) the 1 x 1 identity
matrix. As x; is orthogonal to y = x1, we have that

R N SR R r . Jo ifi £ 1
¥y =Ereiieyl == rbiel x’]_[(yTy)(E—ly) ifim1

Hence, D — 1 of the eigenvalues of »-1 [y® yT] equal zero. We will next show that v = pot) y is an eigenvector with
associated non-zero eigenvalue. Let v = ZiD=1 a;x; be the representation of v = =1y in the basis x. We have that

2y ey =a 6T nE ) =a 6Ty

and thus v is an eigenvector of POl y® yT] with eigenvalue a (yT y). As a1 is given by the projection of v on y, we

T . _
have o) = ;T; , so the non-zero eigenvalue of X 1[y ® yT] equals

a10Ty) =yTo =yTu"ly.

Consequently, the agent’s long-run belief about the mean of the state satisfies

f:F-i— arg min yTE_ly
A: Aj=fi—fi

=F+ argmin AT(MTE’IM)A.
A Aj=fi—f;

By (I), we then have that the unique minimizer and thus the long-run belief of the agent is

[MT »-! MT
Ap=—— KA fork #i
[MTE_IM]_ : 36)
12
S=S+WMA) @ MA)T
This completes the proof of (III). ]

B. Two dimensions of stubborn beliefs

We consider the variant of our model in which the agent has fixed stubborn beliefs about two fundamentals, f;, and
fi,- We restrict attention to the analogue of Case I in Theorem 2, supposing that the agent knows the correct covariance
matrix 2.

Using the notation B = M Ts=1M, the agent’s long-run bias about fundamental j is

B-l(B!

—1 -1, p—1
L HBLL AL = BiL AL + BB

1 ] S|
2
—1 p—1 —1
B! Bt~ (Bih)

This satisfies the first-order condition in the proof of Theorem 2, Case 1.

We use (37) to prove a more general version of our result that contact with a group lowers the agent’s bias regard-
ing that group. Consider the model of Section 2 in which the fundamentals i1, i, j equal i1’s, i7’s, and j’s calibres,
respectively, but suppose that agent i1 knows the true calibre of individual i5. Let individuals j and i> belong to the same
group. Using that A;, = 0, (37) reduces to

B LA
Alz BilizAll). 37

.
|

—1 p—1 —1 p—1
BiyjBiziy ~ BiyjBirin

A T\ T
B! Bt~ (Bih)
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Since individuals i> and j belong to the same group, we have le i = le I
—1 -1 -1
B . B . —B. .
o _hJ iziy i2J )
J T -1 i
B —1 —1
i Biziz_( 111) /Biiy

Without contact with individual i, agent i1 s bias regarding individual j is (Bl_l; / Bl_llll) A . Hence, to show that
contact lowers his bias, it is sufficient to establish that

-1 (Biu') 11 _1\2
Bizj > 78._.1 or Biszilil > (Bilj)
i1

Plugging in the expressions for the entries of B~ from the proof Theorem 1, and again using that i» and j belong to the
same group, the above inequality becomes

2

7
Z¢g KoF 11“‘2‘% wi | > Z¢gilk¢g_/k”k ,
X

which holds by the Cauchy—Schwarz inequality.
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