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Abstract

Introduction: Two-stage revision with an antibiotic-loaded, temporary static cement spacer
is a common treatment for periprosthetic joint infection (PJI) of the knee. However, limited
data exists on in vivo antibiotic elution kinetics after spacer implantation. This pilot study
uses the technique of microdialysis (MD) to collect intra-articular knee samples. The aim
was to evaluate MD as an intra-articular sampling method to detect spacer-eluted antibi-
otics within 72 h after surgery and to determine whether they show specific elution kinetics.
Methods: Ten patients (six male, four female; age median 71.5 years) undergoing two-stage
revision for knee PJI were included. A MD catheter was inserted into the joint during
explantation of the infected inlying implant and implantation of a custom-made static
spacer coated with COPAL cement (0.5 g gentamicin (G) and 2 g vancomycin (V)). Over
72 h postoperatively, samples were collected and analyzed for spacer-eluted antibiotics,
intravenously administered antibiotics (e.g., cefazolin and cefuroxime), metabolic markers
(glucose and lactate), and Interleukin-6 (IL-6). Local and systemic levels were compared.
Results: All catheters were positioned successfully and well tolerated for 72 h. Antibi-
otic concentrations in MD samples peaked within the first 24 h (G: median 9.55 pg/mL
; V:37.57 ug/mL [95% CI: 3.26-81.6]) and decreased significantly over 72 h (for both p < 0.05,
G:4.27 pg/mL [95% CI: 2.26-7.2]; V: 9.69 ng/mL [95% CI: 3.86-24]). MD concentrations
consistently exceeded blood levels (p < 0.05), while intravenously administered antibiotics
showed higher blood concentrations. Glucose in MD samples decreased from 17.71 mg/dL
to 0.89 mg/dL (p < 0.05). IL-6 and lactate concentrations showed no difference between
MD and blood samples. Conclusions: Monitoring antibiotics eluted by a static spacer with
intra-articular MD for 72 h is feasible. Gentamicin and vancomycin levels remained above
the minimal inhibitory concentration. Differentiating infection from surgical response using
metabolic and immunological markers remains challenging. Prolonged in vivo studies
with MD are required to evaluate extended antibiotic release in two-stage exchanges.

Keywords: treatment monitoring; bone cement; minimal inhibitory concentration; PJI;
arthroplasty; infection; two-stage exchange
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1. Introduction

Periprosthetic joint infection (PJI) is a severe complication following total knee joint
arthroplasty (TKA), often leading to revision surgery and prolonged antibiotic treatment.
PJI incidence is approximately 1.4% to 1.7% after primary TKA and 4.9% to 7.8% after
revision arthroplasty [1,2]. With increasing life expectancy, numbers of primary TKAs are
estimated to increase by 45% in Germany until 2040, inevitably accompanied by rising
numbers in revision arthroplasty due to PJI [3].

Treatments for PJI aim at eradicating infection and maintaining limb function. They
include debridement, antibiotics, and implant retention (DAIR) in the case of well-fixed
implants and a short duration of symptoms or one- or two-stage exchange in the case of a
chronic infection or loosened implant [4]. Currently, two-stage revision is the gold standard
for treating chronic PJIs [5,6]. Operative steps include complete removal of the infected
implant, debridement of the infected soft tissue, irrigation, and implantation of a temporary
custom-made cement prosthesis called a spacer [7]. The latter serves a dual function: one,
by including antibiotics (e.g., gentamicin and vancomycin) within the used bone cement, it
provides a high antibiotic concentration for local treatment while minimizing systemic side
effects, and two, it maintains the size of the knee joint cavity [4,8]. In a second procedure,
typically after six to eight weeks of beginning intravenously and followed by oral antibiotic
therapy, the spacer is removed, debridement and irrigation are repeated, and a new knee
prosthesis is implemented.

This two-stage revision approach has proven to be a successful treatment for PJI of the
knee [5,9]. However, it presents a burden to both the patient and the health care system.
Patients diagnosed with PJI experience a diminished quality of life, compounded by limited
mobility of the affected joint, prolonged antibiotic treatment, extended hospitalization, and
potential need for multiple surgical interventions [10,11]. Furthermore, individuals with
a PJI face a significantly higher risk of morbidity when compared to those undergoing
primary arthroplasty [12]. Moreover, treating PJI is becoming a socioeconomic burden
for health care systems. Several studies have shown that revision arthroplasty for PJI is
associated with severely high costs, with two-stage revision costing twice as much as DAIR
for PJI after TKA [2,13,14].

The effectiveness of local antibiotic delivery by spacers when managing a PJI is an
ongoing discussion [5], particularly concerning the elution kinetics from the spacer and
sustaining therapeutic levels throughout implantation [8,15]. While systemic pharmacoki-
netics are well documented, local intra-articular antibiotic kinetics are less understood [8].
In this context, our preliminary study introduces microdialysis (MD) as a novel in vivo
technique for real-time sampling directly from the knee joint. MD emerged as a promising
minimally invasive technique for continuous measurement of unbound drug concentra-
tions, such as antibiotics, in interstitial fluid of human tissue [16,17]. It quickly became
a widely used tool in pharmacokinetic and pharmacodynamic research, in both animal
models and clinical studies [18-23]. The technique operates on the principle of passive
diffusion driven by concentration gradients across a semipermeable membrane within a
probe [16,17]. This probe is inserted into the target tissue, and a physiological perfusion
fluid is continuously pumped through it at low flow rates between 0.2 and 5 pL/min. As
the perfusate flows, analytes of interest diffuse from the surrounding tissue into the probe.
The resulting solution, known as dialysate, contains the recovered analytes and is collected
in microvials for analysis.

With this pilot study, we want to evaluate the feasibility and diagnostic value of
the MD technique for the first time in an in vivo PJI treatment to provide insights into
postoperative pharmacokinetics of locally delivered antibiotics within the knee joint cavity.
Therefore, the primary aim of this pilot study was to evaluate MD as an intra-articular
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sampling method, to detect spacer-released antibiotics within 72 h after surgery and to
determine specific elution kinetics. Additionally, the MD technique was used to assess the
metabolic and inflammatory constitution of the operated knee joint within the first three
postoperative days.

2. Results

Demographic data, side of operated knee, number of previous PJIs, comorbidities, and
cement mass used for the ten patients are represented in Table 1.

Table 1. Demographic data and patient comorbidities.

Number of Patients n=10
6 Male
Gender 4 Female
Age (years) 71.5 [67-78]
BMI (kg/m?) 36.91 [35.11-42.68]
Operated limb 73ri§fktlt
Amount of prepared cement (g) 90 [63-132]
Comorbidities
Arterial hypertension 8
Type 2 diabetes 5
Cardiac insufficiency 5
Adipositas (Grade I/11/11I) 7 (1/3/3)
Previous PJI 5

Data presented as median and 95% CI in square brackets.

Three patients had no detectable pathogens in intraoperatively taken tissue samples.
The other seven patients showed “common” organisms for PJI, including Staphylococcus
epidermidis, Staphylococcus aureus, Staphylococcus haemolyticus, Cutibacterium acnes, and Can-
dida metamorphosis. For intravenous antibiotic treatment, patients received either cefazolin,
cefuroxime, clindamycin, or piperacillin and tazobactam, or a combination thereof. Three
patients received vancomycin intravenously postoperatively, one as a preoperative treat-
ment. We performed separate analyses regarding vancomycin concentrations (“vancomycin
all” group, n = 10) and patients only receiving vancomycin through the spacer (“spacer
only” group, n = 6). MD continuously generated intra-articular samples of the knee joint
cavity, and no adverse effects (e.g., swelling, redness, pus, and warmth or pain at incision
site) were observed.

2.1. Antibiotic Concentrations

During the observation period, vancomycin and gentamicin displayed comparable
kinetics in MD samples with initial high concentrations after 24 h (median gentamicin
9.55 ug/mkL [95% CI: 0.4-17.36]; vancomycin all 37.57 pg/mL [95% CI: 3.26-81.6]; van-
comycin spacer only 62.06 ug/mL [95% CI: 17.4-125]) followed by a significant decrease in
concentrations within 72 h by 1.7-fold and 2.5-fold for gentamicin and 1.9-fold and 4.1-fold
for vancomycin, respectively (gentamicin 4.27 pug/mL [95% CI: 2.26; 7.2]; vancomycin all
9.69 ng/mL [95% CI: 3.86-24]; vancomycin spacer only 9.79 [95% CI: 0.163-27.2]). For both
antibiotics, the reduction in concentration in MD samples from 24 h to 72 h was significant
with p < 0.05 (Figure 1). Inter-individual variability in antibiotic concentrations was high.
Gentamicin and vancomycin (spacer only) concentrations were significantly higher in MD
compared to blood serum samples (p < 0.05).
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Figure 1. Gentamicin and vancomycin concentrations in microdialysis and blood samples. Gen-
tamicin and vancomycin concentrations in knee microdialysis samples (aspirate, above) and blood
samples (serum, below) for 72 h postoperative. Data are portrayed as median with the Interquartile
Range as boxes and the minimum and maximum as whiskers. Lower limit of detection (LOD) and
lower limit of quantification (LLOQ) are specific for each antibiotic and analytical method: gentamicin
LOD: 0.4 ug/mL, LLOQ: 0.8 pg/mL; vancomycin LOD: 0.163 ug/mL, LLOQ: 0.489 ug/mL.

A significant positive correlation was observed between cement mass and intra-
articular antibiotic levels (gentamicin r = 0.4863, vancomycin r = 0.4771).

Systemically administered antibiotics were detected in both compartments with con-
sistently higher and effective but not quite significantly different levels in blood samples
(p > 0.05).

2.2. Metabolic and Inflammatory Markers

Glucose levels dropped significantly over time from 17.71 mmol/L (95% CI: 5.59-63.03)
at 24 h to 0.89 mmol/L (95% CI: 0.14-20.14) after 72 h (p < 0.05). There was no signifi-
cant variation in lactate concentrations, with median levels between 5.11 mmol/L and
7.11 mmol/L.

For Interleukin-6 (IL-6), there was no statistically significant difference between serum
and MD concentrations. We observed a trend towards decreasing IL-6 concentrations
within 72 h in the blood and knee MD (Table 2).
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Table 2. Concentrations of Interleukin-6 (IL-6) in blood serum and knee aspirate samples.
24 h 48 h 72 h
Median 95% CI Median 95% CI Median 95% CI
i serum 24.83 [7.46-126.2] 17.18 [0-116.4] 11.85 [0-122.8]
IL-6 [pg/mL] aspirate 73.99 [36.54-125.9] 27.71 [0-64.07] 17.74 [0-36.07]
p-value 0.275 0.734 0.652

Data displayed as median and 95% confidence interval. The p-value for serum and aspirate measurements was
not significant for p > 0.05.

3. Discussion

This pilot trial was able to successfully monitor local antibiotic therapy continuously
in PJI therapy by implementing an MD catheter for the first time in the knee joint. Initial
spacer-eluted antibiotic concentrations were high, followed by a consistent decline over
72 h postoperatively. Gentamicin and vancomycin concentrations were significantly higher
in knee MD compared to serum samples. Further, metabolic markers (lactate and glucose)
and IL-6 were detected in intra-articular samples.

3.1. Microdialysis

MD enables continuous measurement of unbound, pharmacologically active antibiotic
concentrations at the target site, which may significantly differ from plasma levels due
to local distributional barriers and tissue-specific kinetics [16,24]. While this method has
been widely applied in neurological and soft tissue contexts, its application in monitoring
antibiotic elution from static knee spacers remains underexplored. Other studies have
already used MD for intra-articular antibiotic sampling in porcine models [23,25,26]. To the
best of the authors’ knowledge, this has not been transferred to a human model so far. In
this pilot study, we demonstrate the feasibility and safety of intra-articular MD for tracking
gentamicin and vancomycin concentrations over 72 h in vivo, reproducing elution patterns
observed in previous reports.

The semipermeable membrane of the MD probe serves as a selective barrier, prevent-
ing large molecules and bacteria from crossing into the perfusate, thereby minimizing
infection risk during sampling [24]. However, a key limitation of the technique is that the
collected dialysate represents only a fraction of the actual extracellular concentration. This
“relative recovery” is highly influenced by the perfusate flow rate: higher flow rates (e.g.,
2-5 puL/min) reduce recovery due to insufficient equilibration, whereas lower flow rates
(e.g., 0.2-0.5 pL/min) provide better approximation of true tissue concentrations but re-
quire longer collection periods and reduce temporal resolution [16,24]. Given the novelty
of the sampling site and analytical process, we opted for a flow rate of 2 uL/min to ensure
sufficient sample volume for analysis [24,27].

3.2. Antibiotics

To the best of the authors’” knowledge, there is no current guideline regarding the
concentration or type of cement or its preparation when treating PJI of the hip or knee.
There are multiple in vitro studies investigating various conditions for antibiotic elution of
spacers [28-30]. Our results are well in line with these in vitro studies, showing initially
high antibiotic concentrations followed by a rapid decline within three days [29,31,32]. The
transfer of in vitro results to an in vivo situation should be carried out cautiously since
in vivo a spacer is exposed to different conditions (vascularized tissue, joint fluid variability,
and varying cement surface area) [29].
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3.3. Antibiotic Elution Kinetics and Therapeutic Effects

Antibiotic elution from the spacer has been described as a process of diffusion, enabling
joint fluid to release antibiotics through the washout process [33]. Therefore, the surface
area of the spacer and amount of surrounding joint fluid are critical factors influencing
the release kinetics, next to the dosage and quantity of antibiotics and the type of bone
cement and its porosity and preparation process [8]. All these varying factors explain the
observed high inter-personal variability of gentamicin and vancomycin concentrations in
intra-articular samples (Figure 1).

The initial burst is caused by a surface phenomenon, eluting antibiotics from outer
cement layers followed by a sustained release phase, which is driven by elution from deeper
zones based on the slow perfusion of joint fluid or hematoma through the cement [34].
This sustained release phase is attributed to being the primary reason for the prolonged
maintenance of lower antibiotic concentrations [34]. Mutimer et al. analyzed intra-articular
gentamicin levels in a synovial knee MD during spacer explantation surgery after a mean
implantation period of 99 days and detected a median concentration of 0.46 mg/L towards
the end [35]. This indicates that antibiotic concentrations were still detectable after about
three months, suggesting a functional release for a prolonged time and consistent with
other studies [36,37]. However, the amount of antibiotics must be put into context of their
therapeutic levels and, therefore, effectiveness.

In this study, the median concentrations measured on day three in MD samples were
eight times greater for gentamicin and five times greater for vancomycin than the minimal
inhibitory concentrations. Therapeutic levels for vancomycin in the blood were between
15 and 20 mg/L and for gentamicin between 5 and 8 png/mL [38,39]. Applying these
values to intra-articularly taken samples for our study, therapeutic target concentrations for
gentamicin were reached in all patients and in five patients for vancomycin. Serum levels
remained subtherapeutic unless vancomycin was given systemically. This supports the
concept that local delivery is effective in achieving high site-specific concentrations, with
minimal systemic exposure. Only systemically administered antibiotics had higher and
effective levels in blood samples.

3.4. Immunological and Metabolic Parameters

Several parameters have been discussed as diagnostic criteria for PJI, including glucose,
lactate, and IL-6 [40—42]. As PJI includes the adherence of bacteria to the prosthesis or
surrounding tissue, glucose used for metabolic consumption by bacteria can be inversely
related to infection [43]. The normal glucose level in synovial fluid is within 0.56 mmol/L
of the blood glucose level [44]. Kinugasa et al. suggests that a joint fluid level of glucose
less than 2.22 mmol/L indicates pathogens [45]. Most patients had intra-articular glucose
below the 2.22 mmol/L threshold, supporting a potential bacterial presence.

Elevated lactate concentrations have been reported during infection as a byproduct of
anaerobic metabolism in bacteria [46]. Studies have shown lactate as being a promising
marker for differentiating between septic and non-septic arthritis, with cut-off values
between 6.95 mmol/L and 7.5 mmol/L [40,41,47]. From the current study, five of the
patients were above 6.95 mmol/L for at least three of the six assessed time points, indicating
bacterial activity. Elevated lactate concentrations could also be explained by hypo-perfused
tissue during inflammation of PJI, leading to an analogous increase in anaerobic metabolism
or as a result of surgical intervention [46].

As a pro-inflammatory cytokine, IL-6 is released by immune cells (e.g., macrophages
and T cells) in response to bacterial infection to initiate C-reactive protein produc-
tion, making it a sensitive marker to monitor inflammation [42,48]. In a meta-analysis,
Xie et al. concluded that, while IL-6 demonstrates a high diagnostic value for PJI, no defini-
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tive cut-off values have been established, with reported values ranging from 359.3 pg/mL to
13.35 pg/mL, all of which considerably exceed the synovial IL-6 levels observed in our
study [42]. Increases in IL-6 serum concentrations can be linked to tissue injury and
surgery [49,50]. Therefore, elevated lactate concentrations within the first 24 h are more
likely caused by local surgical reactions than a bacterial infection.

4. Materials and Methods
4.1. Study Design

This diagnostic-interventional pilot study was part of the routine treatment of
10 patients with a PJI of the knee at the Department of Orthopedics and Trauma Surgery at
the University Hospital Bonn between January and June 2024. This study was approved
by the local ethics committee of the University Hospital Bonn (local review board number
334/23-EP). Participation required patients to have MSIS-confirmed P]I and approval for
surgery by the orthopedic and anesthesiologic departments [51]. Furthermore, patients
had to be over 18 years of age and had to give written, informed consent. Patients with
known allergies to gentamicin and vancomycin were excluded from the study.

Local (gentamicin and vancomycin) and systemic (e.g., cefazolin and cefuroxime)
antibiotic concentrations were measured in intra-articular and systemic blood samples for
72 h postoperatively. To further characterize the inflammatory response within the knee
joint, IL-6 as an immunological marker was measured in both compartments along with
metabolic factors (lactate and glucose).

4.2. Intraoperative Procedures

After removing the infected implant, tissue samples from bone and soft tissue were
taken for bacterial culture. The custom-made static spacer, consisting of two 6 mm titan
rods (Cempadic R 6 x 400 mm, Implantcast, Buxtehude, Germany), was coated with
COPAL gentamicin- and vancomycin-loaded bone cement (Heraeus Medical, Wehrheim,
Germany). The rods were inserted into the tibial and femoral medullary canals and fixated
with connectors at the overlapping ends (Figure 2A). One package of 43 g acrylic bone
cement contained 0.5 g gentamicin and 2 g vancomycin. The preparation of the bone cement
followed the manufacturer’s instructions. The bone cement was prepared in non-vacuum
conditions, and antibiotics were commercially mixed within the cement. Further bone
cement preparation depended on joint cavity size, with additional cement used as needed
(Figure 2B).

The MD catheter (71 High Cut-Off, M Dialysis AB, Stockholm, Sweden) was inserted
into the knee joint cavity post-polymerization (Figure 2B). For protection of its sensitive
membrane and to ensure complete removal, it was inserted through a regular 16-gauge
wound drainage tube (B. Braun SE, Melsungen, Germany). The MDs design and drainage
tube can be seen in Figure 3. Placement of the drainage tube was standardized laterally
to the cavity filling cement. The catheter allowed for the diffusion of particles up to
100,000 Dalton along a semipermeable membrane due to a perfusion flow maintained by
the 107 Microdialysis Pump (M Dialysis AB, Stockholm, Sweden). Samples were collected
in microvials (M Dialysis AB, Stockholm, Sweden).
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A

Figure 2. Spacer and catheter placement. (A) Postoperative X-ray photograph showing the metal
rods implanted into the tibia and femur and connected at the previous knee joint line. The redon
tube with the microdialysis catheter is seen on the left and the pump connected to the catheter on
the right. (B) The modeling of the spacer has been concluded. The drainage tube containing the
microdialysis catheter has been inserted in the lateral compartment of the knee joint (tube held with
forceps) and will be placed laterally on the cement. The inlet and outlet tube (held in hand) will be
connected accordingly to the microdialysis pump and microvial. The second drainage tube located
further cranial is used as a redon drain.

Figure 3. Microdialysis catheter. The microdialysis catheter is connected to its pump (1) shown
next to a drainage tube (6). The syringe is already inserted into the pump from where the inlet tube
(2) continues to the dialysis membrane (3). The outlet tube (4) connects to the microvial holder (5).
The drainage tube (6) was used to insert the catheter.

4.3. Sample Collection Protocol

MD sample collection was conducted over 72 h at 0.5 pL/min and 2 pL/min
flow. Samples were pooled every 24 h for pharmacological and immunological analysis.
Two vials per interval were reserved for metabolic analysis. Venous blood samples were
drawn daily before antibiotic administration to ensure trough levels.
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4.4. Analysis

Intra-articular samples in microvials were stored in a fridge (5-8 °C) during collection
and after aliquoting were stored frozen at —80 °C alongside blood serum samples after
centrifugation for further analysis. Antibiotic concentrations and IL-6 were analyzed
in both MD and blood samples, whereas metabolic parameters were only analyzed in
MD samples.

To determine the concentration of gentamycin in serum and MD samples, an auto-
mated immunoassay based on the kinetic interaction of microparticles in solution (KIMS)
was used, utilizing GENT2 ONLINE TDM Gentamicin and a Cobas® ¢ 703 (Roche Diagnos-
tics, Mannheim, Germany). Other antibiotics were measured via liquid chromatography—
tandem mass spectrometry (LC-MS/MS) using the ClinMass® TDM Kit System by RECIPE
(RECIPE Chemicals + Instruments, Munich, Germany).

IL-6 concentrations were determined with an enzyme-linked immunosorbent assay
(ELISA, Human IL-6 DuoSet, Bio-Techne, Minneapolis, MN, USA) and metabolic parame-
ters with an ISCUSflex Microdialysis Analyser (M Dialysis AB, Stockholm, Sweden).

Pathogen identification was performed using matrix-assisted laser desorption/ionization
time-of-flight (MALDI-TOF) mass spectrometry (bioMérieux, Niirtingen, Germany). An-
timicrobial susceptibility testing was primarily conducted using the automated Vitek2
system (bioMérieux, Niirtingen, Germany). For anaerobic organisms, susceptibility testing
was conducted using a semi-automated microtiter broth dilution method (MICRONAUT,
Merlin, Bornheim, Germany). Interpretation of susceptibility results followed the EUCAST
clinical breakpoints, version 13.1 (2023).

4.5. Statistics

Data were collected in Microsoft Excel 2024 (Microsoft Corporation, Richmond, VA,
USA) and analyzed using GraphPad Prism 9.1.2 (GraphPad Software, Boston, MA, USA).
All data are reported as median values with 95% confidence intervals. The Wilcoxon
matched pair signed rank test was used for comparison, with p < 0.05 considered significant.

5. Conclusions

In this pilot study, we demonstrate the feasibility and safety of intra-articular MD for
continuous monitoring of spacer-derived antibiotic concentrations, gentamicin and van-
comycin, over 72 h, reproducing elution patterns observed in previous reports. Metabolic
and inflammatory markers (glucose, lactate, and IL-6) provided supplementary insights
into joint environment changes, though their specificity remains limited in the early post-
operative period.

This study provides foundational data on local antibiotic kinetics following spacer
implantation, supporting future efforts to evaluate therapeutic success and defining ap-
propriate spacer duration based on antibiotic elution. By using this technology and the
growing information regarding local antibiotic therapy and inflammation monitoring, MD
application could be used in the future to individualize therapy durations, determine opti-
mal timing for prosthesis reimplantation, thereby reducing hospital costs, and ultimately
optimize PJI treatment.

Limitations

A small sample size of ten multimorbid patients, along with the heterogeneity of par-
enterally applied antibiotics and detected microbiological pathogens, made a comparison
across the cohort and the generalization of our findings difficult. The short observation
period limits the insight into long-term intra-articular antibiotic elution by the spacer.
Furthermore, this study lacks a control group, and we focused on a single type of spacer,
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always including gentamicin and vancomycin but varying cement amounts. While these
factors restrict broader generalization, we believe that for a proof-of-concept study of the
applied MD technique, the cohort is sufficient.

Additionally, several limitations intrinsic to MD may have affected the accuracy of the
measured concentrations. These include the absence of probe calibration (e.g., retrodialysis),
the usage of varying perfusate flow rates, and possible variation in diffusion kinetics due
to factors such as varying amounts of joint fluid or postoperative hematoma surrounding
the catheter. Our used, comparatively high perfusion flows tend to underestimate the
target site concentrations. Preanalytical factors, such as storage conditions including tem-
perature fluctuations (during sample generation next to the patient, storage at 5 °C before
conglomeration, storage at —80 °C until analysis), may also contribute to the degradation
or adsorption of targeted molecules.

Regarding antibiotic analysis, LC-MS/MS represents a sensitive method where late-
phase (72 h) or low-exposure (systemic antibiotics in MD) samples lead to uncertainty in
result interpretation when falling close or below the LLOQ. Regarding our analysis, when
comparing IL-6 values, methods of analysis have to be considered as reasons for possible
differences between studies.

Future studies aiming for more accurate intra-articular pharmacokinetic profiling
should consider lower perfusate flow rates, along with appropriate calibration techniques
(e.g., retrodialysis or other in vivo approaches), to improve quantification and resolution.
Furthermore, investigating a larger cohort with multiple spacer types including different
antibiotics and preparation procedures (e.g., preformed spacers) should be over a pro-
longed period of time (e.g., 10 days) to follow the displayed elution kinetics and improve
clinical applicability.
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