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Abstract
A hallmark of biological and artificial neural networks is that neurons tile the range of con-
tinuous sensory inputs and intrinsic variables with overlapping responses. It is charac-
teristic for the underlying recurrent connectivity in the cortex that neurons with similar
tuning predominantly excite each other. The reason for such an architecture is not clear.
Using an analytically tractable model as well as spiking neural networks, we show that it
can naturally arise from a cooperative coding scheme. In this scheme neurons with sim-
ilar responses specifically support each other by sharing their computations to obtain
the desired population code. This sharing allows each neuron to effectively respond to a
broad variety of inputs, while only receiving few feedforward and recurrent connections.
Few strong, specific recurrent connections then replace many feedforward and less spe-
cific recurrent connections, such that the resulting connectivity optimizes the number of
required synapses. This suggests that the number of required synapses may be a cru-
cial constraining factor in biological neural networks. Synaptic savings increase with the
dimensionality of the encoded variables. We find a trade-off between saving synapses
and response speed. The response speed improves by orders of magnitude when uti-
lizing the window of opportunity between excitatory and delayed inhibitory currents that
arises if, as found in experiments, spike frequency adaptation is present or strong recur-
rent excitation is balanced by strong, shortly-lagged inhibition.

Author summary
Neurons represent continuous sensory or intrinsic variables in their joint activity, with
rather broad and overlapping individual response profiles. In particular there are often
many neurons with highly similar tuning. In the cortex, these neurons predominantly
excite each other. We provide a new explanation for this type of recurrent excitation,
showing that it can arise in a novel cooperative coding scheme that minimizes the num-
ber of required synapses. This suggests the number of required synapses as a crucial
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constraining factor in biological neural networks. In our cooperative coding scheme,
neurons use few strong and specific excitatory connections to share their computations
with those neurons that also need it. This way, neurons can generate a large part of their
response by leveraging inputs from neurons with similar responses, requiring fewer
feedforward inputs. We find a trade-off between saving synapses and response speed.
Theoretical estimates and numerical simulations show that specific features of biolog-
ical single neurons and neural networks can drastically increase the response speed,
improving the trade-off.
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Introduction
The brain encodes continuous sensory or intrinsic variables in the coordinated activity of
populations of neurons. The tuning curves (response profiles) of individual neurons in such
populations are rather broad, leading to large overlaps between them [1,2]. Further, there
are often many neurons with highly similar tuning. Neuron populations with such features
include simple cells in the primary visual cortex (V1) [3,4], head direction cells in the ante-
rior thalamic nucleus [5], tactile neurons in primary somatosensory cortex [6], place cells in
the hippocampus [7] and grid cells in the medial entorhinal cortex [8,9]. In machine learning,
convolutional networks have overlapping receptive fields (RFs) that tile the input space [10].
RFs similar to those in visual cortex emerge by learning a sparse code for natural images [11],
and RFs similar to grid cells emerge through training on navigation tasks [12,13].

Neurobiological data show that neurons with strongly overlapping RFs are predominantly
excitatorily coupled: Synaptic connections between similarly tuned excitatory principal neu-
rons are more likely [14], stronger and more often bidirectional [15,16]. In line with this, the
strongest incoming synapses provide excitation that matches a neuron’s RF [16,17]. Further-
more, highly similarly tuned principal neurons have overall, i.e., including indirect, polysy-
naptic connections, a net excitatory effect on each other [18,19]. In contrast, if the tuning is
barely similar or dissimilar, the net effect is inhibitory.

Such recurrent excitatory connectivity may seem unintuitive from a normative standpoint,
as it amplifies noise [20] and can increase response times [21,22]. Previous studies suggested
that it may support persistent activity and thus working memory [23,24] or sampling-based
inference [25].

Neural networks, however, evolved subject to physiological and physical constraints [26–
29], including metabolic cost and available space. Optimizing for specific features can largely
determine the neural network and lead to solutions that are in other aspects sub-optimal. A
prominent example for this is a recent version of the efficient coding hypothesis [30–34]. It
posits that neural networks greedily minimize the number of used spikes or the rate activ-
ity, which contribute to metabolic cost. The network connectivity obtained from the opti-
mization is, however, very dense, which is not found in experiments. Further, the coding
scheme is “competitive”, in the sense that similarly tuned neurons compete for the opportu-
nity to generate spikes. In other words, such neurons take away spikes and activity from each
other. This predicts inhibitory couplings between very similarly tuned neurons, contrary to
the experimentally observed physiological and effective excitatory interconnectivity between
them.

Here we explore the implications of “cooperative coding” in a neural network. In this
newly proposed scheme, neurons avoid replicating computations through feedforward
weights whose results are already accessible from the activity of other feature neurons.
Instead, each feature neuron performs only a non-redundant feedforward computation. It
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then achieves the required response by additionally incorporating the results obtained by
similarly tuned feature neurons through recurrent connections. In other words, feature neu-
rons do not independently replicate shared parts of the computations through feedforward
weights, but they transmit them through recurrent connections to each other. The resulting
connectivity is like-to-like, i.e., strong and effectively excitatory between similarly tuned prin-
cipal neurons, as observed in experiments. Interestingly the scheme can optimize the number
of synapses in a network, while maintaining the required neural network dynamics. Such an
optimization differs from the common focus on saving dynamical quantities such as spikes
and may be imposed by space restrictions and the cost of maintaining synapses [28,35].

Results
To demonstrate the concept of cooperative coding, we consider a layer of feature neurons
(output neurons), which receive feedforward input from an input layer as well as recurrent
input. The task of the feature neurons is to generate a weighted sum of the inputs with weight
strengths that decay exponentially with the distance of an input from the preferred input.
We assume that the functionally relevant network response, representing the desired features
(outputs), is the steady state activity. The desired outputs are linear functions of the inputs.
Neural responses can hence be characterized by linear RFs and implemented by feedforward
connectivity alone. Importantly, they can also be implemented using mixtures of feedforward
and recurrent input.

We will compare the different network implementations in terms of the space requirement,
approximated by the number of required synapses, and in terms of the metabolic cost to keep
up the stationary state. Furthermore, we will compare the response times and demonstrate
how they can be substantially decreased in networks with spike frequency adaptation (SFA)
or balancing inhibition. Finally we will verify that our findings translate to cooperative coding
in spiking neural networks.

We will analyze three concrete examples of cooperative coding: (i) encoding a one-
dimensional stimulus, (ii) simultaneously encoding two one-dimensional stimuli with linear
mixed selectivity (MS) and (iii) encoding a two-dimensional stimulus. For ease of description,
we focus on translationally invariant RFs. (Approximate) translational invariance, meaning
that offset RFs have similar shapes, is a common characteristic of experimentally encoun-
tered RFs [2,4,5,8,9]. Further, it is a common characteristic of RFs that emerge in machine
learning [10,11]. Although the RFs that we consider do not have the precise shape of mea-
sured RFs, for example those of simple cells in V1 [36], they share the key properties of local-
ized, overlapping and broadening RFs that tile the represented space. Indeed, RFs of neu-
rons in hierarchically higher layers are often broader and constructed from those in lower
layers [37,38].

Encoding a 1D stimulus
As a concrete, analytically tractable model that illustrates how cooperative coding works and
can save synapses, we consider RFs that tile the one-dimensional parameter space of a stimu-
lus (see Fig 1A). An input neuron j, j = 1, ...,N, signals the presence and strength of a stimulus
with a specific parameter j by nonzero activity rj > 0. The task of the feature layer is to gener-
ate a response that is maximal at the preferred stimulus parameter and then decays exponen-
tially the more different the stimulus becomes from the preferred one. This behavior is qual-
itatively similar to commonly observed tuning curves such as orientation tuning curves or
place fields. We further assume that if multiple stimuli are present, the feature layer responses
to their different parameters superpose linearly.
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Fig 1. Receptive field and response of 1D network. (A) The RF of neuron i is peaked at j = i and decays exponentially with
|i – j|. The RF width parameter is here d = 2. (B) Top: The network response to an isolated unit input, here located at j0 = 2,
has the same shape and amplitude as a neuron’s RF. It peaks at i = j0. Bottom: Input and feature neurons are shown with
color-coded activities rj and xi, respectively. Increasingly dark red color represents higher activity; white squares indicate
inactive neurons.

https://doi.org/10.1371/journal.pcbi.1012156.g001

As an example, the inputs may be interpreted as a simple model for the representation of
the orientation of a bar in the early visual system. rj > 0 then means that the orientation is
within the jth bin of the total orientation range [0, 180○]. The transformation from input to
features in our model describes the combination of responses from hierarchically lower visual
areas to hierarchically higher ones [39]. As another example, the neurons may model the
activity of place cells on a periodic, closed track. The transformation then models the trans-
formation from input neurons with smaller place fields to neurons with larger place fields.
Such a transformation may take place from the hippocampal dentate gyrus to the downstream
area CA3 [40]. In our model, the input generates a simple encoding of the current location,
where input neuron j is active if the animal is in the jth location.

The desired stationary feature layer activity can be expressed as

xresp
i =

N
∑
j=1

RFijrj, RFij = e–
|i–j|
d = 𝛾|i–j|. (1)

Here rj is the activity of the jth input neuron, 𝛾 = exp(–1/d) and d defines the width of the
RF. We use periodic boundary conditions. For computations with neuron indices, this means
that |i – j| means minn∈{–1,0,1} |i – j + nN|. There are as many input as feature neurons. We note
that, because of the symmetry RFij = RFji, the vector RFk⋅, describing the RF of feature neu-
ron k, is the same as RF⋅k, the network response when only input neuron k is active, compare
Fig 1A and 1B. Summarized in a formula, we have xresp

k ∣rj=𝛿jl = RFkl = RFlk = xresp
l ∣rj=𝛿jk , where

k is fixed and l variable.
Feedforward implementation. To model the temporal dynamics of the neurons, we

choose a standard simple linear rate network model [41,42]. The purely feedforward network
that generates the response Eq 1 as stationary state is then given by

𝜏 ̇xi(t) = –xi(t) +
N
∑
j=1

Wff
ijrj(t), (2)
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with Wff
ij = RFij and a time constant 𝜏. In the stationary state, we have ̇xi = 0 for all i and thus

xi =
N
∑
j=1

Wff
ijrj =

N
∑
j=1

RFijrj = xresp
i . (3)

This state is asymptotically stable and globally attracting; the flow is a contraction to it.
These properties follow immediately from the fact that the system is linear and has a unique
fixed point, which is asymptotically stable because all eigenvalues of the matrix specifying
the homogeneous differential equation are negative, equal to –1/𝜏 [43,44]. To approximate
the network with a characteristic number of feedforward weights that is smaller than N, we
require synapses Wff

ij = 𝛾|i–j| only where |i – j|≤ d. This defines the RF size nRF = 2d + 1 as the
number of feedforward synapses per neuron needed to implement the RF within a distance d
around its center.

Cooperative implementation. The same stationary neuronal responses can be obtained
as the steady state of a recurrent network that uses cooperative coding. It requires only three
synapses per feature neuron, two recurrent and one feedforward synapse. This network’s
dynamics are given by

𝜏 ̇xi(t) = –xi(t) +
N
∑
j=1

Wrec
ij xj(t) +

N
∑
j=1

Wff
ijrj(t) (4)

= –xi(t) +wrec(xi+1(t) + xi–1(t)) +wffri(t), (5)

with weights wrec = 1
𝛾+𝛾–1 = 𝛾

1+𝛾2 and wff = 1 – 2𝛾wrec = 1–𝛾2

1+𝛾2 . If the RFs are not narrow (d is not
small against 1), the two recurrent connections are strong, in the sense that wrec is not small
against 1. Thus the network features strong like-to-like excitation and is driven by feedforward
input. One can straightforwardly verify that xi = xresp

i is indeed a stationary state of the net-
work, by inserting Eq 1 into Eq 5, see Eq S2 in S1 Appendix. The reason for this is ultimately
that the desired response of a neuron i can be largely generated by summing the responses of
the two neurons i ± 1 neighboring i, see Eq 11 and Fig 2B. This is achieved by the recurrent
connections. The missing part is contributed by the feedforward input. This state is asymptot-
ically stable as all real parts of the eigenvalues of the matrix defining the homogeneous system
are negative, see Eq S12 in S1 Appendix. For broad RFs (where 𝛾 ≲ 1), the recurrent connec-
tions are nearly as strong as possible: their sum 2wrec is close to 1, the value beyond which the
network becomes unstable. The stationary state is also the only stationary state. Since the sys-
tem is linear, the state is therefore a global attractor as for the feedforward network [43,44].
Thus, for constant input the network forms this stable response pattern.

Cooperative coding. Cooperative coding can be understood as sharing of the informa-
tion that an individual neuron obtains from external input specifically with those neurons
that also need it. This allows to generate most of the neuronal responses from sparse recurrent
connectivity. Especially very similarly tuned neurons will project strongly excitatorily onto
each other; oppositely tuned neurons would inhibit each other.

As a concrete example, we introduced the networks Eq 5, where it suffices that each neu-
ron receives input from only one input and two feature neurons. Still, each neuron effectively
responds toO(d) input neurons. This is possible because the feature neurons recurrently
share their activity, and hence their access to feedforward input, with their neighbors. These
in turn share it with their neighbors, thus propagating it through the network. The network
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response then forms dynamically through the interplay of feedforward input and recurrent
interactions.

The coding harnesses the fact that despite very few feedforward and recurrent synapses,
poly-synaptic connectivity can still be far-reaching [45,46]: To show this, we consider the for-
mal steady-state solution of Eq 4 for constant input, which provides the network’s desired
response if a solution exists. It can be obtained by setting ̇x = 0 and solving for x by multiply-
ing with the inverse of 𝟙 –Wrec. The solution reads

x = (𝟙 –Wrec)–1Wffr. (6)

For the considered excitatory weight matrix with a spectral radius smaller than 1, the
inverse exists and can be expanded into a Neumann series, yielding

x = (𝟙 +Wrec + (Wrec)2 +⋯)Wffr. (7)

The network response is thus determined by Wrec and its higher powers, which reflect the
redistribution of feedforward input via poly-synaptic recurrent pathways. As the higher-order
terms correspond to longer pathways, they will shape the response at later times. This can be
well seen from the approximate, discretized dynamics [47,48]

xi((n + 1)𝜏)≈
N
∑
j=1

Wrec
ij xj(n𝜏) +

N
∑
j=1

Wff
ijrj, (8)

which lead to the same steady state as the time-continuous dynamics. The response to a con-
stant input r after n time constants is

x(n𝜏) = (𝟙 +Wrec +⋯ + (Wrec)n–1)Wffr; (9)

higher-power, poly-synaptic terms add to it at successively later times. Viewed differently, a
recurrent neural network can be equivalently described by a deep feedforward network that
is “unrolled in time” [49], with higher layers generating the results of later computations,
through a higher stack of copies of the recurrent weight matrix.

The coding scheme can also be understood as feedforward inputs providing a correction
to the response that is mainly constructed from the sparse recurrent input. To clarify this
we focus on elementary stationary responses, namely those that are driven by a single unit
input from neuron j; the input activity is rk = 𝛿kj. Responses to more complicated input pat-
terns are weighted linear sums of such elementary responses. Consider feature neuron i and
assume that all other neurons already respond correctly. The desired stationary activity of
neuron i in response to a single unit input from neuron j is then RFij, while the responses of
the other network neurons k are RFkj. Eq 4 with ̇xi = 0 implies that RFij is the sum of the RFs
of its presynaptic feature neurons and its feedforward connectivity,

RFij =∑
k
Wrec

ik RFkj +Wff
ij . (10)

For the specific network Eq 5 we have

RFij =wrec(RFi–1,j + RFi+1,j) +wff𝛿ij, (11)
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illustrated in Fig 2C. This implies that the desired response of feature neuron i is fully gener-
ated by recurrent inputs, unless the unit input comes from input neuron i and there is also a
feedforward contribution. The weighted and summed responses of neuron i’s nearest neigh-
bors are thus already very close to neuron i’s target response. This is enabled by the specific
exponential shape of the RFs. Only for the preferred input of a feature neuron, the response
is too low. The neuron corrects for this by recruiting the missing input through a feedforward
connection. Such an “explanatory gap” that is left by the recurrent inputs and can be filled
by external input is important for cooperative coding, because the output must depend on
external input.

Spatial demand and metabolic cost. To compare the efficiency of the introduced imple-
mentations, we focus on two cost dimensions: the space needed to implement the network
and the metabolic cost of generating the stationary dynamics. As measure for the space
needed for the network we take the number of synaptic connections, or, in other words, the
L0 norm of the synaptic weight matrix. In the feedforward network Eq 2, it increases linearly
with the width d of the RF if small responses can be neglected. This holds in particular when
using our convention that the number of relevant synapses equals 2d + 1 (see section “Feed-
forward implementation”). In the recurrent network Eq 5 three synapses per neuron suffice to
generate the desired stationary response regardless of the RF size. We show after Eq S18 in S1
Appendix that the recurrent network Eq 5 therefore minimizes the L0 norm.

For the metabolic cost of generating the stationary dynamics, we may focus on the cost
of generating the postsynaptic currents, which is proportional to their L1 norm (see S1
Appendix). This is because all other contributors, such as the neuronal activity, are identical
between both network architectures. Since in both implementations all modeled synaptic cur-
rents are excitatory, the L1 norm of synaptic currents equals the total synaptic current. In the
stationary state this current is the same in both implementations, because neurons have the

Fig 2. Schematics of feedforward and cooperatively coding networks. (A) Top: In the feedforward network, the response xrespi (gray solid curve) to an isolated input
is fully generated by the neurons’ feedforward inputs (blue lines and dots, line thickness represents input strength). For the displayed RF width d = 2, five neurons receive
feedforward input, so that the network response (gray solid curve) represents ≈ 63% of the summed target response (gray dashed curve). Bottom: Feature and input
neuron activities as in Fig 1. Outgoing feedforward synapses from the active input neuron j = 2 and incoming feedforward synapses to feature neuron i = 6 are shown in
blue. (B) Top: In the cooperatively coding network model, the network response (gray solid curve) is the sum of feedforward input (blue line and dot) and recurrent input
(brown-purple dashed curve). For the displayed case of an isolated input, only one neuron receives feedforward input, which induces a part of the stationary response of
the most active feature neuron. The rest of the response and all other responses are induced by recurrent input from neighboring neurons. The total recurrent input that
each feature neuron receives is the sum of recurrent input from the right (brown solid curve) and left neighbor (purple solid curve). Bottom: Each feature neuron receives
one feedforward synapse (blue lines) and two recurrent synapses (black lines, all recurrent connections are bidirectional). (C) The RF of feature neuron i (RFij for varying
j, gray solid curve) is the weighted sum (brown-purple dashed curve) of the RFs of its left (RFi–1 j, purple) and right neighbors (RFi+1 j, brown) plus a contribution from
feedforward input (Wff

ij , blue line and dot). All shown RFs have width d = 2.

https://doi.org/10.1371/journal.pcbi.1012156.g002
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same stationary activity; therefore also the cost is the same. We conclude that the metabolic
cost for maintaining the stationary network state is the same in both the feedforward and the
recurrent network implementation.

Response speed. In the feedforward network, activity converges with the intrinsic time
constant 𝜏, which we define as its response time. In the cooperatively coding network, the
excitatory recurrent connectivity increases the response time: Fig 3 shows the dynamics of the
response formation.

The network activity splits into independently evolving, orthogonal eigenmodes that
approach their steady state values at different speeds, see Eq S8 in S1 Appendix. We use the
L1-norm of the deviation of the response from the steady state,

L(t) = |x(t) – xsteady|1, (12)

as a loss measure. The linearized loss (∑i x
steady
i – xi(t)) equals a constant offset minus the pro-

jection of the activity x(t) onto the vector of ones (1,⋯, 1), which coincides with the slowliest-
decaying eigenmode. The linearized loss, as well as the full loss for the constant-zero activity
initialization used here, thus decays exponentially. We define the response time 𝜏resp of the
network as the time constant of this decay,

𝜏resp ≡
𝜏

1 –wrec
sum

, (13)

(see Fig 4), where wrec
sum =∑jW

rec
ij is the sum of recurrent weights arriving at (or, equivalently,

originating from) a neuron. For generic initial conditions, this provides the time constant of
the slowliest-converging activity mode and thus the time constant that dominates the long-
term convergence of the full loss; the linearized loss decays with time constant 𝜏resp during the
entire time evolution. 𝜏resp scales inversely with the difference of the largest eigenvalue of the

Fig 3. Response formation and activity propagation. (A) Network activity at different times (shaded curves) after r100 has
been set from 0 to 1. For long times, network activity approaches the target response (black curve). (B) Development of the
activity of neurons (y axis) with time (x axis), measured relative to their target activities. The diagonal fronts of equal relative
activities indicate propagation of activity with constant propagation speed. The points where neurons reach 50% of their
final activity are connected by a red dashed line. Parameters: wrec = 0.5 ⋅ 1/(1 – 1/100), such that 𝜏resp = 100𝜏 (see Eq 13),
N = 200 neurons.

https://doi.org/10.1371/journal.pcbi.1012156.g003
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Fig 4. Loss evolution and response speed - synapse number trade-off. (A) Exemplary loss evolution for a network with
wrec = 0.5 ⋅ (1 – 1/100) so that 𝜏resp = 100𝜏. Experimentally, 𝜏resp is determined as the time (gray vertical line) at which the
loss drops to e–1 (gray horizontal line, blue open circle). (B) Response times 𝜏resp (circles: simulation results; dotted line:
analytical solution Eq 14) for target RFs of different widths nRF. Data was created by scanning nRF, setting wrec

sum to yield an
RF of size nRF and determining 𝜏resp from the loss dynamics.

https://doi.org/10.1371/journal.pcbi.1012156.g004

network, which is equal to wrec
sum (cf. Eq S12 in S1 Appendix), from 1. In particular, it depends

only on the summed recurrent weights.
Eq 13 holds generally, for networks of the type Eq 4 with purely excitatory circulant recur-

rent weight matrix and convergent dynamics. We now specialize the result to networks with
nearest-neighbor coupling Eq 5 that generate the RFs Eq 1. In these networks, wrec

sum = 2wrec.
Inserting wrec = 1/(𝛾 + 𝛾–1) and 𝛾 = exp(–1/d) relates the response time to the RF width. By
approximating exp(±1/d)≈ 1 ± 1/d + 1/(2d2) for large d, we obtain wrec ≈ 1/(2 + 1/d2) and,
inserting this into Eq 13,

𝜏resp ≈
𝜏

1 – 2
2+ 1

d2

= (1 + 2d2) 𝜏 ≈ 2d2𝜏 ≈ 1
2
n2

RF𝜏. (14)

In the last part of the equation we used that nRF = 1 + 2d≈ 2d for large d. Eq 14 shows
that wide RFs require long equilibration time. This is because they need strong recurrent
weights with a largest eigenvalue close to 1. Further the equation reveals the trade-off between
response time and number of employed synapses: The feedforward implementation Eq 2
needs nRF synapses and has a response time 𝜏. The recurrent implementation thus saves nRF –
3≈ nRF synapses per feature neuron. Eq 14 shows that the response time increases quadrati-
cally in the number of saved synapses, see also Fig 4B.

The quadratic dependence of the response time on d reflects that, as the RF becomes wider,
not only does activity have to spread further, it also spreads more slowly: this is consistent
with the idea that the settling of a neuron depends (indirectly) more on activity propagating
back from more distant neurons that settle after it.

Faster response with spike frequency adaptation. For activity to rapidly spread through
the network, neurons need to be able to cause a large activity change in their neighbors within
a short period of time. To achieve this, they need strong recurrent weights. However, recur-
rent weights are restricted to wrec

sum < 1 to not cause runaway activity. We now show how spike
frequency adaptation (SFA) can help ease this conflict and speed up network dynamics. SFA is
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typical for excitatory principal neurons and induces a reduction of their response to constant
inputs in the long run [42,50,51].

We model SFA through a negative-feedback adaptation current u(t), which is triggered by
neuronal activity x(t) and characterized by its scale aSFA and time constant 𝜏SFA,

𝜏 ̇xi(t) = –xi(t) +
N
∑
j=1

Wrec
ij xj(t) +

N
∑
j=1

Wff
ijrj(t) – aSFAui(t), (15)

𝜏SFAu̇i(t) = –ui(t) + xi(t). (16)

This model is a slightly simplified version of that in [52] and the same as in [53,54]. Setting
̇xi(t) = 0 and u̇i(t) = 0 yields the steady state. We see immediately that it implies ui = xi. Insert-

ing this into Eq 15 shows that in the stationary state the spike frequency adaptation results in
a stronger leak current, –(1 + aSFA)xi. Dividing by 1 + aSFA yields

0 = –xi +
N
∑
j=1

Wrec
ij

1 + aSFA
xj +

N
∑
j=1

Wff
ij

1 + aSFA
rj. (17)

Consequently, in order to implement the same response as a network without SFA
(aSFA = 0, cf. Eq 4), the recurrent and feedforward weights have to be scaled up by a factor of
1 + aSFA. The additional excitatory synaptic input compensates in the steady state the added
inhibitory adaptation current.

To understand the network dynamics, it is instructive to consider the limit 𝜏SFA → 0
where ui(t)→ xi(t) as in the steady state. Inserting this into Eq 15 and again dividing by 1 +
aSFA yields an equation equivalent to Eq 4 with smaller neuronal time constant and smaller
weights,

𝜏
1 + aSFA

̇xi(t) 𝜏SFA→0= –xi(t) +
N
∑
j=1

Wrec
ij

1 + aSFA
xj(t) +

N
∑
j=1

Wff
ij

1 + aSFA
rj(t). (18)

We see that a network with arbitrarily fast SFA and appropriately upscaled weights has the
same dynamics as a network without SFA, but with its time constant reduced by 1 + aSFA. This
factor only depends on aSFA and is independent of the RF width that the network implements.
We might thus expect that introducing SFA with a given aSFA and small 𝜏SFA causes a constant
speedup, but still results in a quadratic dependence of 𝜏SFA

resp on nRF (see Eq 14).
There is, however, an additional possibility: SFA might yield faster dynamics for finite,

nonzero 𝜏SFA. This is because then ui(t) lags behind xi(t), which creates a temporal “window
of opportunity”. Within this window, the up-scaled weights can mediate strong interactions
that are not yet cancelled by the retarded adaptation currents of the receiving neurons. In our
networks, this leads to the following concept to exploit SFA: During the initial response phase,
strong weights should cause a fast response while SFA keeps the steady state before and after
an input change at the desired activity values as well as dynamically stable. In particular, the
modified recurrent synaptic weights may then be (and to optimally exploit SFA: should be) so
strong that without the SFA current the network dynamics are unstable.

To incorporate SFA in a cooperatively coding network, we modify the weights in Eq 5 as
described above and add the SFA current. For the neuron activities, this yields the dynamical
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equation

𝜏 ̇xi(t) = –xi(t) + (1 + aSFA)wrec(xi+1(t) + xi–1(t))

+ (1 + aSFA)wffri(t) – aSFAui(t), (19)

where the adaptation current obeys Eq 16. We find that the second of the above-described
possibilities applies to such networks: Measuring the response time as a function of 𝜏SFA,
we observe that it first decreases when increasing 𝜏SFA from zero and reaches a minimum
at a nonzero, optimal value of the SFA time scale (Fig A in S1 Appendix). Increasing 𝜏SFA
further eventually causes diverging activity, because the retarded adaptation current u(t)
becomes so slow that it never compensates the stronger input due to the upscaled weights.
We note that also when keeping 𝜏SFA at a fixed value, there is an optimal nonzero value of the
inhibitory feedback strength aSFA, which we define to minimize the integrated loss (Fig A
in S1 Appendix). Importantly, we find that introducing SFA with finite 𝜏SFA and optimal
aSFA improves the scaling of 𝜏SFA

resp with nRF from quadratic as without or with arbitrarily fast
SFA to linear. The accelerating effect is a form of “balanced amplification” [21], where the
matrix governing a dynamical system is non-normal, featuring a hidden feedforward struc-
ture from difference modes (here: high neuronal activity but still low adaptation currents) to
sum modes (here: high neuronal activity and adaptation currents).

We now further analyze the balanced amplification [21] in cooperative coding networks
with SFA, by reducing the dynamics Eq 19 to effective single neuron dynamics with feedback.
For this we assume that all neuronal activities receive the same inputs ri(t) = r(t) and follow
the same time course xi(t) = x(t), so that we can replace xi–1(t) + xi+1(t) = 2x(t). We note
that we thereby study the eigenmode related to the L1 loss, see Eq S13 in Appendix S7. The
resulting effective single neuron dynamics read

( ̇x(t)
u̇(t)) =

⎛
⎝

2(1+aSFA)wrec–1
𝜏 – aSFA

𝜏
1

𝜏SFA
– 1
𝜏SFA

⎞
⎠
(x(t)
u(t)) + (1 + aSFA)wff (r(t)

0
) . (20)

A complex Schur decomposition of the matrix defining the effective neuron’s intrinsic 2D
linear dynamics (homogeneous part of Eq 20) reveals a strong feedforward coupling from a
difference mode (real parts of the eigenvector components have opposite sign) to a sum mode
(real parts of the eigenvector components have the same sign). In our numerical evaluations
we consider networks where the inhibitory feedback strength aSFA is optimized such that the
integrated loss is minimal. For these networks 2(1 + aSFA)wrec – 1 is positive (as the network
is unstable without adaptation); furthermore, both the sum and difference mode are oscil-
latory (as oscillations help to reduce the integrated error), i.e., the matrix in Eq 20 has com-
plex eigenvalues. This is similar to the two-population networks in Ref [21], which, however,
have mostly real, non-positive eigenvalues and thus non-oscillatory modes without Hebbian
amplification.

Concerning the use of resources, SFA does not require additional synaptic connections, so
the spatial demand of the cooperatively coding network is the same as in the original model
Eq 5. The increased weights, however, lead to stronger synaptic currents. Together with the
added adaptation currents, this increases the energetic cost of maintaining the stationary
state.

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1012156 July 3, 2025 11/ 38

https://doi.org/10.1371/journal.pcbi.1012156


ID: pcbi.1012156 — 2025/8/28 — page 12 — #12

PLOS COMPUTATIONAL BIOLOGY Cooperative coding

Balanced networks
The networks we studied so far had only excitatory synapses, while biological neural networks
also have recurrent inhibition, which balances the excitation [32,55]. These are likely required
for a range of reasons, such as ensuring network stability and maintaining irregular spiking
activity [56–60]. Given their existence, we here show how inhibition can be used to speed up
the network response, in an architecture that still relies on few synapses.

Experiments show that individual excitatory and inhibitory currents can be much larger
than their sum and precisely temporally balanced with a lag smaller than the neuronal time
constant [61,62]. Further, many inhibitory neurons are rather sharply tuned [62–64], some-
times similarly sharply as excitatory ones. To incorporate inhibition consistent with these
findings, we add inhibitory neurons to the existing network of excitatory feature neurons.
Specifically, we assume that there are as many inhibitory neurons as feature neurons and that
each inhibitory neuron follows the activity of one feature neuron with a small delay, 𝜏lag, such
that we do not need to introduce a separate dynamical equation for it. Eq 4 thus becomes

𝜏 ̇xi(t) = –xi(t) +
N
∑
j=1

Wrec,E
ij xj(t) +

N
∑
j=1

Wrec,I
ij xI

j(t) +
N
∑
j=1

Wff
ijrj(t) (21)

= –xi(t) +
N
∑
j=1

Wrec,E
ij xj(t) +

N
∑
j=1

Wrec,I
ij xj(t – 𝜏lag) +

N
∑
j=1

Wff
ijrj(t), (22)

where xI
i(t) is the inhibitory activity, which equals the delayed excitatory feature neuron

activity xi(t – 𝜏lag). Wrec,I
ij ≤ 0 is the coupling from inhibitory neuron j to feature neuron i.

We note that an alternative, more common choice is to model inhibitory activity as low-pass
filtered version of excitatory activity, 𝜏I ̇xI

j(t) = –xI
j(t) + xE

j (t) with 𝜏I = 𝜏lag. We exemplarily
checked that this leads to qualitatively similar results (Fig D in S1 Appendix).

We now introduce the state change of feature neuron i between t – 𝜏lag and t,

Δxi(t) = xi(t) – xi(t – 𝜏lag). (23)

To rewrite the network dynamics in terms of a net interaction and a balanced interaction,
we define the new weights

Wrec,net
ij =Wrec,E

ij +Wrec,I
ij , (24)

Wrec,bal
ij = –Wrec,I

ij , (25)

which we call net and balanced weights, respectively. The balanced weights Wrec,bal
ij ≥ 0

describe the part of recurrent excitation that is in the stationary regime balanced (canceled)
by inhibition; the net weights describe the unbalanced remainder of the recurrent interaction,
which could in principle also be inhibitory. These definitions allow to rewrite Eq 22 as

𝜏ẋi(t) = –xi(t) +
N
∑
j=1

Wrec,net
ij xj(t) +

N
∑
j=1

Wrec,bal
ij Δxj(t) +

N
∑
j=1

Wff
ijrj(t). (26)

We now insert the values of the cooperatively coding network Eq 5 and further assume that
the inhibitory neurons inhibit and balance the same sets of neurons that their driving feature
neurons excited, i.e., Wrec,E

ij =wrec,E (𝛿i+1,j + 𝛿i–1,j) and Wrec,I
ij =wrec,I (𝛿i+1,j + 𝛿i–1,j) . Eq 22 then
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becomes

𝜏ẋi(t) = –xi(t) +wrec,E(xi+1(t) + xi–1(t))

+wrec,I(xi+1(t – 𝜏lag) + xi–1(t – 𝜏lag)) +wffri(t). (27)

Further, defining the net weights wrec,net =wrec,E + wrec,I and the balanced weights wrec,bal =
–wrec,I, Eq 27 becomes

𝜏 ̇xi(t) = –xi(t) +wrec,net(xi+1(t) + xi–1(t))

+wrec,bal(Δxi+1(t) +Δxi–1(t)) +wffri(t). (28)

The balanced interaction term (proportional to wrec,bal) describes the combined effect of
delayed inhibition and immediate excitation of the same strength. It depends on Δxi±1(t) and
therefore only acts when there are activity changes during the preceding brief E-I lag. Any
change 𝛿xj in the activity of neuron j causes postsynaptic activity changes in neuron i that
integrate to 𝜏lag

𝜏 Wrec,bal
ij 𝛿xj (see Eq S21 in S1 Appendix). Once 𝜏lag

𝜏 wrec,bal
sum > 1, where wrec,bal

sum =
∑iW

rec,bal
ij , an activity change 𝛿x in one neuron causes directly further activity changes that

are, integrated over time and neurons, larger than 𝛿x. Correspondingly, and taking into
account the stabilizing contracting dynamics due to the net interactions, the network dynam-
ics become unstable once 𝜏lag

𝜏 wrec,bal
sum becomes slightly larger than 1, Fig 5.

Henceforth we consider wrec,net and wrec,bal to be the independent variables. This means, in
particular, that increasing the balanced weights, or equivalently the strength of the inhibitory
weights, implies a concurrent increase of the excitatory weights to keep the net weights invari-
ant. To connect Eq 28 to our previous, unbalanced network Eq 5, we set

wrec,net =wrec. (29)

The dynamical equations then agree if wrec,bal = 0 or Δxi(t) = 0. The latter is satisfied in
the steady state. The steady state is thus independent of the strength of the EI-balance, which
is given by wrec,bal. In particular, the steady state is the same as in Eq 5 (which is the special
case of wrec,bal = 0). The stability of the steady state, however, depends on wrec,bal. We may thus
think of wrec,net as defining the RF, and of wrec,bal as affecting the dynamics by modulating the
EI-balance. During the build-up of the response strong excitation ramps up slightly before
the balancing inhibition. For networks with large wrec,net, the analytical solution of Eq 28 and
our stability analysis (see Sec. ‘Response Speed in the balanced network’ below and Fig B in S1
Appendix) show that throughout this window of opportunity excitation may be up to approx-
imately 𝜏/𝜏lag + 1 times larger than the net interaction without destabilizing the network. This
strong interaction allows a much quicker propagation of activity, convergence to the steady
state, and decay of the loss function.

Spatial demand and metabolic cost in the balanced network. Compared to the unbal-
anced network, the balanced network requires three additional synapses per principal feature
neuron, one E-to-I and two I-to-E synapses, i.e., a total of six synapses. This is again inde-
pendent of the RF width, such that for large RFs, the balanced, cooperatively coding network
still saves synapses compared to the feedforward network. It requires additional space for the
inhibitory neurons, which may, however, be needed for other purposes anyways.

Also the metabolic maintenance cost increases, since there are more neurons. Further,
there is an increased metabolic cost to sustain the synaptic currents in the stationary state: In

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1012156 July 3, 2025 13/ 38

https://doi.org/10.1371/journal.pcbi.1012156


ID: pcbi.1012156 — 2025/8/28 — page 14 — #14

PLOS COMPUTATIONAL BIOLOGY Cooperative coding

this state, large parts of the excitatory and inhibitory currents cancel to give rise to a net cur-
rent that equals the one in the purely excitatory recurrent network, see Eq 24 and Eq 29. In
the L1 norm of the synaptic currents, the excitatory currents and the absolute inhibitory cur-
rents, however, add up. The metabolic cost thus increases by the amount of excitatory and
inhibitory currents that cancel each other.

Response speed in the balanced network. Under some additional assumptions, the evo-
lution of the L1-loss Eq 12 can be analytically approximated as the solution of a linear delay
differential equation, see Eq S28 in S1 Appendix for details. The resulting dynamics are those
of a damped oscillator, see Fig 5A: For weak EI-balance, characterized by small wrec,bal, they
are “overdamped” in the sense that they are well described by the sum of two exponentials
with different decay rates. At a specific intermediate balance, the two decay rates agree and we
have “critical damping”. For stronger balance the dynamics are “underdamped” in the sense
that the loss behaves as the absolute value of an oscillation with exponentially decaying ampli-
tude. Overly strong balance, and hence for fixed net interactions overly strong excitation,
causes divergence of the dynamics (see Fig 5B and Fig Ba in S1 Appendix).

In the overdamped regime, the smaller decay rate is the relevant one, as it dominates the
speed of the decay for longer times. The larger decay rate rather describes how quickly faster
dynamics, that may be present due to the initial conditions, are suppressed and the dynamics
converge to the slower mode. The smaller decay rate increases when the balance approaches
its critical strength. The same holds for the single decay rate in the oscillatory regime. At the
critical balance the overall decay of the loss is thus fastest, see Fig 5B.

Fig 5. Loss evolution for different strengths of EI-balance. (A) Loss evolution (dashed: analytical approximation (cf. Eq
S30 and S41 in S1 Appendix, partly occluded; solid: network simulation) for balance strengths that are slightly weaker
(orange), equal (blue) or slightly stronger (teal) than the critical balance, on a logarithmic scale. The slope of the decay
is given by 𝜆 (see (B)), explicitly highlighted for the overdamped dynamics. The oscillation period of the underdamped
dynamics is Tosci = 2𝜋/𝜔. In case of oscillations, the analytic approximation briefly reaches zero loss once in a period (sharp
dips in dashed curve). In the network simulation there is also a pronounced oscillation, but there always remains a finite
error. (B) Real part (decay rate 𝜆, black/gray) and imaginary part (oscillation frequency𝜔 times ±1, red) of the complex
frequency of the exponential loss evolution, scaled by 𝜏. For weak EI-balance, measured by wrec,bal

sum , there are two exponen-
tially decaying modes (𝜆, black and gray curve). At the critical balance wrec,bal

sum,c (blue dashed vertical line), there is only a
single decay rate and no oscillation; the decay rate (in the overdamped case: of the relevant slower-decaying mode) is max-
imized. For stronger balance, network activity begins to oscillate (nonzero𝜔, red), and diverges once 𝜆 becomes negative.
This happens approximately at

𝜏lag
𝜏 wrec,bal

sum ≈ 1 +
𝜏lag

3𝜏resp , which is slightly larger than 1 because of the stabilizing effect of the
contracting dynamics of the unbalanced network. Dashed vertical lines show the balance strengths scaled by 𝜏lag/𝜏 for the
curves in (A) ((𝜏lag/𝜏)wrec,bal

sum,c – 0.02, (𝜏lag/𝜏)wrec,bal
sum,c , (𝜏lag/𝜏)wrec,bal

sum,c + 0.02). Parameters: wrec,net
sum = 0.99, 𝜏 = 1, 𝜏lag = 0.1, and

N = 200 for the network simulation.

https://doi.org/10.1371/journal.pcbi.1012156.g005
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We find analytically that its decay time constant is approximately proportional to the geo-
metric mean of the response time in absence of inhibition and of the inhibitory delay,

𝜏bal,c
resp ≈

√
𝜏resp𝜏lag

2
, (30)

(cf. Eq S55 in S1 Appendix); the superscript “c” indicates that the result holds for critical
balance.

Importantly, this implies that the scaling of the response time with the RF width and size
improves compared to the purely excitatory network. This is because 𝜏bal,c

resp ∼
√𝜏resp. Inserting

Eq 14 into Eq 30 for the 1D network, we obtain

𝜏bal,c
resp ≈

√
(1 + 2d2) 𝜏𝜏lag

2
≈ d√𝜏𝜏lag ≈

1
2
nRF
√𝜏𝜏lag, (31)

which is only linear in the RF width d and size nRF, instead of quadratic as in the case of
wrec,bal

sum = 0, compare Eq 31 with Eq 14 and in Fig 6A the red and blue dotted curves. As a
consequence also the speedup gained through the balance, 𝜏resp/𝜏bal,c

resp , increases for wider
RFs.

We finally note that the balanced interactions mediated by Wrec,bal can also be thought of
as implementing an excitatory transmission of activity changes: an activity change in neuron

Fig 6. Response speed of networks with inhibition and linear MS. (A) Response times for the 1D network and for the 2D linear MS network. The quadratic scaling
of 𝜏resp with nRF for the excitatory networks (blue) can be improved to a linear dependence by introducing balancing, delayed inhibition (red) or SFA (orange). Open
(1D network) and filled (MS network) circles display numerical results. Alike-colored dotted (1D network) or continuous (MS network) curves show theoretical esti-
mates (Eqs 14, 31, 37, 38) or, for the SFA network, fit results (monomial fit: 𝜏SFA

resp(nRF) = 0.66724(nRF)1.07063). We use the slowliest-decaying eigenmode to theoretically
estimate the response times (see (C) and Eq S46 in S1 Appendix). Since the balanced networks are not initialized in this eigenmode (in contrast to the purely excitatory
networks), the numerically measured response times (red markers) lie above the theoretical values (red lines). (B) Schematic of a 2D network with linear MS. Feature
neurons are arranged on a two-dimensional grid (labeled “Response x”). Each receives feedforward input from two arrays of input neurons (labeled “Inputs r(1|2)”) and
four recurrent inputs. Feedforward and recurrent synapses are shown in blue (exemplarily) and black, respectively. Input and feature neuron activities are color-coded.
The (linear) network response is the sum of the responses to input one and input two. (C) Exemplary loss evolution of a 1D network with lagged inhibition. Due to the
temporally constant initialization (xi(0) = 0, Δxi(0) = 0), the network activity (solid red curve) converges initially more slowly than the network’s slowest eigenmode
(dotted red line). The experimentally measured response time (continuous vertical gray line) is defined as the time when the loss has decayed by 1/e (red open circle,
horizontal gray line), see also Fig 4A. It is larger than that of the network’s eigenmode (dotted gray line), which we use as analytical estimate of the response time. We
created the data in (A) by scanning nRF, setting wrec,net

sum to yield an RF of size nRF, setting wrec,bal
sum to 0 or its critical value, and determining 𝜏resp or 𝜏bal

resp from the loss
dynamics. For the SFA network we set 𝜏SFA = 𝜏, scanned aSFA and used the value that minimized the temporally integrated loss.

https://doi.org/10.1371/journal.pcbi.1012156.g006
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j adds an activity change with the same sign to neuron i, because Wrec,bal = –Wrec,I in Eq 26 is
positive. Thus activity changes in different neurons in the network amplify each other. In the
limit of small 𝜏lag, the temporal derivative is transmitted, see below Eq S21 in S1 Appendix.

Linear mixed selectivity
Neurons often respond selectively to more than one stimulus or input feature [65]. This phe-
nomenon is called mixed selectivity (MS). Since our networks are linear, we consider linear
mixed selectivity, where neuronal responses are linear functions of multiple stimuli. This is a
simplification compared to the nonlinear mixed selectivity that is ubiquitous in the brain [65,
66]. Concretely, neurons with activities xij, i, j = 1,⋯,N, are arranged on a two-dimensional
grid and respond with equal selectivity to two input features, represented by input neurons
r(1)k and r(2)l with k, l = 1,⋯,N,

xresp
ij =

N
∑
k=1

RF(1)ijk r
(1)
k +

N
∑
l=1

RF(2)ijl r
(2)
l . (32)

Due to the linearity in the input representation and in the network, the total response is
the sum of the responses to the single input features. We take the grid axes to be aligned with
the stimulus dimensions, so that the first index in xij determines its response to r(1) and the
second that to r(2). We model this dependence as the same localized, exponentially decaying
shape as for the 1D network (cf. Fig 6B),

RF(1)ijk = 𝛾
|i–k| RF(2)ijk = 𝛾

|j–k|. (33)

The desired network response can be generated as the steady state of a recurrent network
that is equivalent to the 1D network Eq 5 in each dimension of the 2D grid (see next section),

𝜏 ̇xij = –xij +wrec,MS(xi+1,j + xi–1,j + xi,j+1 + xi,j–1)

+wff,MS(r(1)i + r
(2)
j ), (34)

with the modified constants wrec,MS = wrec

1+2wrec = 𝛾
(1+𝛾)2 and wff,MS = wff

1+2wrec = 1–𝛾
1+𝛾 . Each neuron

receives two external inputs and is connected to its nearest neighbors along each stimulus
axis. The network has thus only six synapses per neuron, regardless of the RF width. Also a
feedforward network where each dimension of the 2D grid is equal to the 1D network Eq 2
generates the desired response. This implementation requires nMS

RF = 2nRF = 2(2d + 1) synapses
per neuron, a number that increases linearly with the RF width.

Mapping to a 1D system. In the following, we trace the network dynamics Eq 34 back to
those of the 1D system Eq 5. Due to the linearity of Eq 34, network responses again super-
pose. It thus suffices to study the network in the case where only one input neuron is active:
we choose r(1)i , which specifies a property of the first stimulus, to be nonzero. Since the input
is independent of j, the dynamics Eq 34 are (for initial conditions homogeneous in j such as
xij(0) = 0) independent of j, xij(t) = xi(t). The recurrent inputs wrec,MS(xi,j+1(t) + xi,j–1(t)) =
2wrec,MSxi(t) then simply amount to a modification of the leak current to –(1 – 2wrec,MS)xi,

𝜏 ̇xi = –(1 – 2wrec,MS)xi +wff,MSr(1)i +w
rec,MS(xi+1 + xi–1). (35)
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After dividing by (1 – 2wrec,MS), the differential equation for xi becomes

a𝜏 ̇xi = –xi + awrec,MS(xi+1 + xi–1) + awff,MSr(1)i , (36)

where we introduced a = (1 – 2wrec,MS)–1 for brevity. With the values of the constants wrec,MS

and wff,MS highlighted after Eq 34 this is equivalent to the one-dimensional network dynam-
ics Eq 5 up to a different neuronal time constant a𝜏 instead of 𝜏. (We note that we obtained
the modified constants such that this holds. For example, equating the prefactors of the recur-
rent term in Eq 36 and Eq 5 gives wrec = awrec,MS = (1 – 2wrec,MS)–1wrec,MS, which then can
be solved for wrec,MS.) As a direct consequence, while the 1D network must have recurrent
coupling strength of wrec < 0.5 for being stable, the 2D MS network must have wrec,MS < 0.25.
This is because in the MS network, a neuron receives direct recurrent input from four nearest
neighbors instead of two as in the 1D case.

Eq 36 means that the RF of the MS network, along one axis, has the same shape and width
d as the equivalent one-dimensional network. In particular, d is related to the recurrent
weight strength awrec,MS via awrec,MS =wrec = 𝛾

(1+𝛾)2 and 𝛾 = exp(–1/d); the two RF compo-

nents in Eq 33 are the same as the RFs in Eq 1, for example RF(1)ijk = RFik.
Response speed. From the mapping of the MS to the 1D system, Eq 36, we see that the

MS dynamics behave in response to a single input like the 1D dynamics with the neuronal
time constant 𝜏 enlarged by a factor of a. The response time is thus given by Eq 14, but with
enlarged neuronal time constant, 𝜏 → a𝜏. For sufficiently large d, we have 𝛾 ≈ 1 (reflecting the
spatially slow RF decay), wrec ≈ 1/2, wrec,MS ≈ 1/4 and thus a≈ 2. The scaling of the response
time with the RF width d and size nMS

RF is thus again quadratic,

𝜏MS
resp ≈ (1 + 2d2) 2𝜏 ≈ 4d2𝜏 ≈ 1

4
(nMS

RF )
2 𝜏. (37)

In the last equation we used nMS
RF = 2(2d + 1)≈ 4d. Compared to the 1D case (Eq 14), the

response time as a function of d is therefore larger by a factor a≈ 2. In contrast, it is smaller
by a factor 1/2 as a function of the RF size, compare Eq 37 with Eq 14 and the blue continuous
and dotted curves in Fig 6A. In other words: the trade-off between response time and number
of needed synapses improves for sufficiently large RFs by a constant factor of about 1/2 com-
pared to the 1D network. This is because the MS network effectively implements two 1D RFs
(Eq 32).

Balanced network. We now incorporate the effect of inhibitory neurons into the MS net-
work. As in the 1D case, we assume that the generated inhibition precisely tracks excitation
with a short time delay. We thus add to each recurrent excitatory connection an inhibitory
one that is slightly delayed. This results in a delayed differential equation like Eq 28 for the
balanced MS network dynamics. The parameters are given by those of the 1D balanced system
up to a factor a = 1 + wrec,net

sum , like in Eq 36. Further, it is again sufficient to study the response
dynamics to a single input, which can be reduced to those of the 1D balanced network Eq 28
with adapted parameters. As in the purely excitatory case, for a fair comparison of response
times, we consider MS and 1D networks with the same neuronal time constant 𝜏. The effective
time constant of the MS dynamics is then a𝜏. Therefore the response time of the MS network
is given by that of the 1D network Eq 31 with neuronal time constant 𝜏 replaced by a𝜏 ≈ 2𝜏,

𝜏bal,c,MS
resp ≈

√
(1 + 2d2) 𝜏𝜏lag ≈

√
2d√𝜏𝜏lag ≈

1
2
√

2
nMS

RF
√𝜏𝜏lag. (38)
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At the critical balance, the response time thus scales again with the square root of the
response time of the unbalanced network (Eq 30). Therefore it scales linearly with the RF
width d and size nMS

RF . The response time is as a function of the RF size by a factor of about
1/
√

2 smaller than that in the 1D case, Eq 31, see Fig 6A, red continuous and dotted curves. In
other words, the trade-off between response time and number of required synapses improves
by a factor of 1/

√
2. This is again because the MS network effectively implements two RFs in

the MS case; the RF size doubles for the same width compared to the 1D network.
As for the 1D stimulus, the balanced networks have twice as many neurons and additional

synapses: Each (excitatory) feature neuron drives one inhibitory neuron, which mirrors its
activity. This inhibitory neuron in turn forms inhibitory synapses to the four nearest neigh-
bors that its presynaptic feature neuron excites. In total, the balanced, cooperatively coding
network thus requires eleven synapses per feature neuron, instead of six for the unbalanced
network. This is independent of the RF width, such that the balanced, cooperatively coding
network saves synapses for sufficiently wide RFs.

Higher-dimensional linear MS. We can straightforwardly extend the introduced scheme
to networks that have MS with P>2 stimuli. Neurons are then arranged on a hyper-grid with
one grid axis per stimulus dimension, so that NP feature neurons respond to PN input neu-
rons. In the cooperatively coding network, each neuron receives P feedforward and 2P recur-
rent inputs, requiring a total of 3P synapses per neuron. The feedforward network, in con-
trast, needs for each stimulus dimension 2d + 1 synapses, in total P(2d + 1) synapses per neu-
ron. The number of saved synapses thus grows linearly with the number of encoded stimulus
dimensions and the RF width.

Encoding a 2D stimulus
We finally consider the encoding of a two-dimensional stimulus, with both input and feature
neurons arranged on a two-dimensional grid, see Fig 7A. Two-dimensional input appears
for example in vision [36] or planar navigation tasks [67]. Each feature neuron responds to
inputs that are close to its preferred input in both stimulus dimensions. The RFs of neighbor-
ing neurons thus overlap and neuronal responses tile the represented stimulus space. A purely
excitatory cooperative coding network generating such activity as stationary state is given by

𝜏ẋij = – xij +wrec,2D(xi+1,j + xi–1,j + xi,j+1 + xi,j–1) +wff,2Drij. (39)

It has the same recurrent connectivity as the network with linear MS Eq 34, but the feed-
forward input is arranged on a grid. The activity of feature neuron ij in the stationary state
is

xsteady
ij =

N
∑
kl=1

RFijklrkl. (40)

The neuron thus responds to a combination of two input features represented by input
neurons rij with i, j = 1,⋯,N. The RF is explicitly given by (see Eq S62 in S1 Appendix)

RFijkl ≈ c ⋅ K0(𝛾2D𝜌ijkl), (41)

with c = 1
2𝜋

wff,2D

wrec,2D , 𝛾2D =
√

1–4wrec,2D

wrec,2D and 𝜌ijkl =
√

|i – k|2 + |j – l|2. K0 is the zeroth modified
Bessel function of the second kind, which decays with distance 𝜌 approximately as K0(𝜌)≈
𝜋
2 e–𝜌/

√𝜌 + 1/8 [68]. The RF is thus approximately radially symmetric. The RF size depends
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on wrec,2D and the response amplitude also on wff,2D. The network requires 5 synapses per
neuron.

We also construct a balanced network by introducing for each excitatory recurrent input a
delayed inhibitory one, like in the balanced 1D and MS networks. A balanced implementation
with explicit inhibitory neurons requires twice as many neurons and synapses than the purely
excitatory network: it requires additionally one inhibitory neuron per principal neuron, one
inhibitory synapse for each excitatory recurrent synapse and one synapse from each principal
neuron to its corresponding inhibitory neuron.

Response speed. To estimate the dependence of the response speed on the RF size, we
first need to appropriately adapt the definition of the RF size, which we introduced after Eq 3.
For the one-dimensional network, this definition can be reformulated as follows: we count
the number of synapses that are necessary to generate the largest (around the center) RF
responses such that these responses summed together amount to a fraction of about 1 – e–1 ≈
63% of the summed non-truncated RF. Accordingly, for the 2D network at hand we define the
RF size as the number of feedforward synapses that are necessary to implement the largest RF
entries, such that together they account for a fraction of approximately 63% of the summed
nontruncated RF. We denote the so-defined RF sizes by n̂RF.

As for the 1D and linear MS networks, the response time with or without lagged inhibi-
tion depends only on the summed excitatory weights or on the summed net and inhibitory
weights. It is thus given by Eq 13 or by Eq 30 in terms of wrec

sum = 4wrec,2D or in terms of the
alike obtained wrec,net

sum and wrec,bal
sum . Fig 7B shows that the scaling of the response time with the

RF size is linear for unbalanced and square-root-like for balanced networks. We give a geo-
metric argument for this general scaling in the next paragraph. The scaling is more econom-
ical than for the 1D and 2D linear MS networks, cf. Fig 6.

Fig 7. 2D network schematic and response times versus RF size. (A) Schematic of a two-dimensional network respond-
ing to a two-dimensional stimulus. Feature neurons (labeled “Response x”) and input neurons (labeled “Inputs r”) are
arranged on two-dimensional grids. In the cooperatively coding network each feature neuron receives one feedforward and
four recurrent inputs; activities and shown connections are color-coded as in Fig 2. (B) Response times in the cooperatively
coding 2D network increase linearly (without inhibition, blue. Monomial fit: 𝜏2D

resp = 0.46115 (n̂RF)1.00085) or square-root-
like (with inhibition, red. Monomial fit: 𝜏bal,2D

resp = 0.31995 (n̂RF)0.50202) with the RF size n̂RF. Dotted lines represent the
monomial fits. Data was created by scanning wrec,net

sum , setting wrec,bal
sum to 0 or its critical value, and determining n̂RF and 𝜏resp

or 𝜏bal
resp, respectively, from the response curves after network activity converged.

https://doi.org/10.1371/journal.pcbi.1012156.g007
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Multi-dimensional stimuli. For P≥ 2-dimensional stimuli, the fact that activity simul-
taneously propagates along all dimensions suggests that the scaling of the response time with
d, the characteristic RF width along one of the dimensions, does not change with the number
of dimensions. However, the RF size nRF, the number of synapses needed in a purely feed-
forward implementation, can be assumed to scale as nRF ∼ (2d + 1)P (number of neurons in
a cube with 2d + 1 neurons at each edge), with a prefactor that depends on geometry. This
reasoning suggests that the response time of networks encoding higher-dimensional stimuli
scales like 𝜏resp ∼ n2/P

RF (spreading time of activity along one of the dimensions, since spreads in
all dimensions happen simultaneously) and 𝜏bal

resp ∼ n1/P
RF (spreading time of activity along one

dimension for the balanced network), which we verified for P = 1, 2. For higher-dimensional
stimuli, the trade-off between response time and saved synapses would thus become highly
beneficial: the response time 𝜏resp or 𝜏bal

resp would grow only slowly with the number of saved
synapses due to the strongly sublinear relationship with nRF for larger P.

Cooperative coding in spiking neural networks
Excitatory networks. So far, we implemented and analyzed cooperative coding in lin-

ear rate networks. We now show that the main results concerning synaptic savings as well as
scaling of response speed with and without balanced amplification also apply to cooperatively
coding spiking neural networks. We demonstrate this for a one-dimensional feature layer with
periodic boundary conditions (Fig 8A, cf. Fig 1). Each feature (rate) neuron becomes a fea-
ture population composed of multiple spiking neurons. Specifically, we use leaky integrate-
and-fire (LIF) neurons (see Methods, Eq 47). Synaptic coupling is sparse and random; cou-
plings are restricted to neurons of the same and neighboring feature populations (Fig 8A).
The feedforward input is modeled as a constant mean drive, which is the same for all neu-
rons of a given feature population. Every neuron also receives independent Gaussian white
noise mimicking balanced background activity. For a moderate amount of noise and when
omitting the absolute refractory period, the single neuron transfer function becomes approx-
imately threshold-linear (Fig 8B). Since we require threshold-linearity only for the network’s
operating regime between 0 Hz and a peak rate xmax, small absolute refractory periods can be
incorporated without deviating too much from threshold-linearity.

We use an analytical approximation to construct appropriate networks: We first approxi-
mate synaptic inputs with a diffusion approximation. Using the threshold-linear approxima-
tion of the single neuron transfer function, we then derive a self-consistency condition for
the stationary feature population rates (Eq S64 in S1 Appendix). This yields for any target RF
with size nRF and peak rate xmax the feedforward stimulation Ionext and the recurrent synaptic
weight JEE for which the network is expected to settle into the target rates (Eq S74 – S77 in S1
Appendix).

For small RF sizes, the analytically obtained stimulation and weight sizes directly yield net-
works that generate the desired RFs (Fig 8C, gray crosses). Larger RFs depend more sensi-
tively on the recurrent synaptic coupling strength, so we further optimize JEE numerically to
obtain the desired RFs (Fig 8C, black circles; see also Discussion and Fig G in S1 Appendix).
We decided not to co-tune the feedforward strength Ionext since the simpler, one-dimensional
optimization of only JEE already yields satisfactory matches to the target fields.

Analogously to the rate model, the spiking network can exhibit cooperative coding, i.e.,
the neurons can have wide RFs despite narrow feedforward and limited recurrent connectiv-
ity. The stationary spiking activity in our numerically simulated networks is asynchronous
(Fig 8D, 8E). For an isolated, constant input to one feature population (black arrow in
Fig 8A), the stationary firing rates, averaged within feature populations and over time (Fig 8D,
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Fig 8. Cooperative coding in an excitatory spiking network of leaky integrate-and-fire neurons. (A) Network wiring
diagram. Connections are marked in black if their strength depends on RF size, and in gray otherwise. (B) Single neuron
transfer function (black solid) and threshold-linear fit (gray dashed). Inset highlights onset nonlinearity. (C) Top: Simulated
vs. target RF size. Light gray crosses: networks with analytically computed weights; black circles: networks with numerically
optimized weights. Middle: excitatory synaptic weights (normalized for arbitrary indegree: the voltage increase in response
to one spike is given by wEE = JEE/KEE) . Bottom: Feedforward input to stimulated population (on) and to others (off ), used
both for networks with analytically or numerically computed weights. Left and right dashed vertical lines mark example
simulation shown in (D) and (E). The target RF peak rate was set here to xmax = 150 Hz. (D) Example simulation for target
RF size nRF = 3. Top: Binned average firing rates of 41 feature populations. Middle: Raster plot showing spikes of 10 exem-
plary neurons from each feature population. Color codes distance from the stimulated population (population index 21, the
population includes neurons 200-209 shown in black). Bottom: Feedforward stimulation. Right: Stationary population rates
(gray), exponential fit (black dashed), and target rate profile (red). (E) Example simulation for target RF size nRF = 11. All
panels are as in (D).

https://doi.org/10.1371/journal.pcbi.1012156.g008

8E, right panel, gray bars), decay with distance from the stimulated population, as desired.
The slight deviations from the exponentially decaying target profile (Fig 8D, 8E, right panel,
red dotted line) likely arise from the onset nonlinearity of the transfer function (see inset in
Fig 8B).

For the simulations shown in Fig 8, we fixed the indegree of the recurrent synaptic cou-
pling and used relatively large feature populations to stabilize the dynamics and facilitate the
estimation of stationary rates and response speeds. We confirmed in exemplary simulations
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that cooperative coding is still possible with smaller (e.g. NE = 500) feature populations with
random Erdős-Rényi connectivity and under Poisson spiking input (Fig H in S1 Appendix).

Number of synaptic connections. As in the rate model, cooperative coding can save
synapses compared to a feedforward network: With pure feedforward coding, every feature
neuron needs to receive input from as many input populations as the RF is large (∼ nRF, cf.
Fig 2A) — as well as recurrent input from its peers, if we include within-population coupling
for comparability with the cooperatively coding network. On average this yields

NFF = nRFKFF +Kin
EE (42)

synaptic inputs per feature neuron, where KFF denotes the average feedforward indegree from
an input to a feature population and Kin

EE denotes the average indegree of recurrent coupling
within a feature population. In the cooperatively coding network, the number of synaptic
inputs is independent of RF size: Every feature population receives input from only one input
population, from itself, and from its two neighboring feature populations (Fig 2B, Fig 8A):

NCC =KFF +Kin
EE + 2Kcross

EE , (43)

where Kcross
EE denotes the average indegree for connections across two neighboring feature

populations. We note that synaptic coupling within feature populations (Kin
EE > 0) is not

required for either feedforward or cooperative coding, but was included here for biological
plausibility. In biological neural networks, it might be used for cooperative coding between
identically tuned neurons to save further feedforward synapses. In our simplest model we
assume that all indegrees are equal, KFF =Kin/cross

EE =∶ K. In this case, the number of synapses
per feature neuron is smaller in the cooperative coding network for all RF sizes larger than
three:

NCC = 4K < (1 + nRF)K =NFF for nRF > 3 . (44)

The total number of synapses in the network depends also on the size NE of the NF feature
populations. We have Ntotal

FF =NFNENFF and Ntotal
CC =NFNENCC synapses for feedforward and

cooperative coding architectures, respectively. Furthermore, if we assume a fixed connection
probability pEE between neurons of connected feature populations, Kin/cross

EE increases with NE.
The total number of synapses in the network then becomes

Ntotal
FF =NFNENFF = nRFNFKFFNE + pEENFN2

E, (45)

Ntotal
CC =NFNENCC =NFKFFNE + 3pEENFN2

E. (46)

(If, instead, the indegree of each neuron stayed constant, i.e., independent of NE, the scal-
ings would only be linear in NE.) We observe that for larger feature populations synaptic
savings happen from larger field sizes on, Fig 9. The cooperative scheme relies on averaging
recurrent synaptic input and therefore requires a certain minimal population size NE. Our
estimate Fig 9 suggests that a cooperative spiking network with 1000 neurons per feature
population may save synapses for RFs larger than ∼3.

Response speed and balanced networks. In the purely excitatory spiking network, the
response time increases approximately quadratically with RF size for larger RFs (Fig 10C,
blue). In rate networks, we observed a speedup and even an improved scaling of the response
time for balanced networks. To investigate whether this also occurs in spiking networks, we
implement a spiking version of the balanced rate network described in Eq 21 (see Methods,
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Fig 9. Number of synaptic connections for the feedforward and cooperative coding architecture depending
on RF size, for different sizes of feature populations. Total number of synapses in a network of NF = 41 feature
populations as a function of RF size nRF and number of neurons NE per feature population (color-coded). In the
feedforward network the number of synapses Ntotal

FF (solid lines) depends linearly on RF size with a slope proportional
to NE. In the cooperative network the number of synapses Ntotal

CC (dotted lines) is independent of RF size but increases
quadratically with NE. Vertical lines mark the minimal RF size for which the cooperative network saves synapses
compared to the feedforward network (Ntotal

CC ≤Ntotal
FF ). Synapse numbers are shown here for KFF = 100 and pEE = 0.1.

https://doi.org/10.1371/journal.pcbi.1012156.g009

Eq 48 and Eq 49, and Fig 10A). Taking advantage of the approximately threshold-linear trans-
fer functions of single neurons, we tune the synaptic strength from excitatory to inhibitory
feature populations such that the inhibitory populations fire at approximately the same sta-
tionary rate as their excitatory counterparts, analogous to our rate models (Eq S78 in S1
Appendix). To construct a balanced network, we increase the excitatory recurrent coupling
JEE by a factor s>1, and tune the inhibitory-to-excitatory projections such that the balanced
network exhibits an RF of approximately the same size as the excitatory reference network
(Fig 10B, Eq S81 in S1 Appendix). For each target RF size nRF we broadly grid-search for
the scaling factor s that yields the shortest rate response time (Fig 10C). For such optimal
amplification sopt, the scaling of the response speed with respect to RF size improves from
quadratic to linear as in the rate model (cf. Fig 6). As expected from the theory (Eq S43 in S1
Appendix), the optimal scaling factor increases with RF size (Fig 10C, bottom). The speedup
of the response is likely due to balanced amplification as in the rate network.

We note that, depending on the nature and strength of the noise, spiking neurons can
exhibit fast rate responses with transient onmodulated oscillations to step current input [69–
71]. We observe such oscillations in our purely excitatory spiking networks for small RF sizes
(where we have strong feedforward input), e.g. Fig 8D. This is in contrast to our purely exci-
tatory rate networks. We also find transient oscillatory rate modulations in our spiking EI
networks, e.g. Fig 10E.

Given their often rather sharp tuning [62–64], it is conceivable that not only excitatory, but
also inhibitory feature populations receive tuned feedforward input. We thus also construct a
network where the feedforward input to both subpopulations is the same (see Eq S101 in S1
Appendix). Inspired by “Model A” of [72] we furthermore use the same connectivity and bio-
physical parameters for both excitatory and inhibitiory subpopulations, such that they have
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Fig 10. Response times of cooperatively coding spiking neural networks (A) Network wiring diagram of the balanced
excitatory-inhibitory spiking network. Connections are marked in black if their strength depends on RF size, and in gray
otherwise. (B) Stationary rate profiles of excitatory (blue) and balanced networks (red) in response to isolated inputs match.
There is no balanced network simulation shown for nRF = 1, since there is no recurrent coupling between or within popula-
tions in that case. (C) Top: Response times. Blue: purely excitatory network (cf. Fig 8). Red: balanced excitatory-inhibitory
network. Dashed horizontal line: membrane time constant. Quadratic and linear scaling is indicated by the dashed and dot-
ted lines, respectively. Bottom: scaling factor s used to scale up the excitatory synaptic coupling strength JEE in the balanced
network. (D) Activity of a balanced network with RF size 11. Panels as in Fig 8D, 8E; top: excitatory, bottom: inhibitory
populations. (E) Direct comparison of the rate of the stimulated population (index 21) around stimulus onset in the purely
excitatory network (blue, cf. black trace in Fig 8E), and in the balanced network (red, cf. black trace in panel D, top). Rates
are shown for a finer binsize of 0.5 ms.

https://doi.org/10.1371/journal.pcbi.1012156.g010

the same stationary rates. We fix the coupling strengths within EI feature populations and
only tune the across-population coupling and feedforward input to achieve the desired RF size
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(Eq S108 and S110) in S1 Appendix). Interestingly, in this network it seems that the balanced
amplification mechanism cannot come into effect: In the terminology of [21], both feedfor-
ward and recurrent inputs recruit only sum, not difference modes. Nevertheless, we find that
the response speed of this network is enhanced compared to an excitatory-only network with
the same excitatory within-population coupling strength (Eq S85 and Fig I in S1 Appendix).
This may be a consequence of the fact that embedding neurons in balanced EI nodes slightly
flattens their transfer function (Fig Ib in S1 Appendix). Thus, the across-population coupling
strength required for a certain RF size to emerge is larger than in the purely excitatory net-
work (Fig Ic in S1 Appendix). This increase in cross-population coupling may induce the
speed-up of signal propagation.

Discussion
Cooperative coding. In this work, we have studied networks that encode continuous vari-
ables with neurons that have overlapping response properties. We developed a cooperative
coding scheme, which enables similarly tuned neurons to share and distribute computations,
crucially using (net) excitatory connections. In general, the signature of cooperative coding
is that the network trades feedforward and less specific recurrent synapses for fewer specific
recurrent ones.

Saving synapses. How can a network save synapses by constructing a given response from
different sets of recurrent and feedforward connections? The key observation is that the out-
puts of few similarly tuned neurons already provide a “large part” of a neuron’s input-output
transformation, as well as indirect access to many input neurons. For the simplest considered
networks this sharing of computations minimizes the number of required synapses while the
total amount of synaptic current remains the same as in a purely feedforward implementa-
tion. For networks of neurons that represent higher-dimensional stimuli [65,66], the num-
ber of saved synapses is especially large. Our results thus suggest the number of synapses and
space constraints as a possible normative reason underlying the cortical like-to-like excitation,
which currently lacks such explanation.

Response time. The saving of synapses comes at the cost of longer response times. In our
most simple, purely excitatory cooperatively coding networks the response is slowed down
compared to that of single neurons due to recurrent excitation, which implements a positive
feedback loop. This type of amplification has been termed “Hebbian amplification” in [21].
Using rate neuron models, we find, however, that neurons with SFA and neurons in networks
in which excitation is largely balanced by delayed inhibition can use the window of opportu-
nity between the arrival of excitation and inhibition to significantly speed up their conver-
gence to the steady state response. This balanced amplification [21] decreases response times
by orders of magnitude and improves their scaling with RF size. Implementing cooperative
coding in spiking neural networks, we find that these show the same scaling and improvement
through balancing inhibition.

Our balanced spiking networks exhibit response times of ∼2–20 ms for RFs of sizes 1–11.
This is roughly consistent with experimental measurements of response times, which vary
between 5–10 ms measured in V1 single cells from response onset [73] to ≥50 ms measured
in populations from stimulus onset [74,75]. However, a direct comparison of our model’s
response time with experimental data is challenging, since (1) the onset of feedforward input
currents is often unknown in experiments, and (2) our biophysical model parameters have
not been matched to any cortical region in particular. Response times are generally thought
to increase along the cortical hierarchy [76–79]. This is consistent with an accumulation
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of response slowdowns and with increased response times for larger RFs, which are both
expected in our model.

Model choices. Linear rate networks are sufficient for the main part of our study, as we
do not model nonlinear phenomena such as feature competition [18]. They allow to capture
in an intuitively well-accessible manner the core insight that a desired response can be con-
structed using few, specific excitatory inputs from similarly tuned neurons (and few feed-
forward inputs), instead of many feedforward inputs. In addition, linear rate networks can
be mathematically well analyzed. This enables a detailed understanding of their response
dynamics. In particular, we analytically obtain the network response times and their scaling
behavior.

We test the results in spiking neural networks of LIF neurons for a one-dimensional stim-
ulus. Encouragingly, we observe the same qualitative rate dynamics and RFs as in the linear
rate networks.

Networks with SFA. To speed up the response, we first introduce SFA, a typical feature of
excitatory principal neurons [42,50,51]. In the networks with SFA, excitation still dominates,
i.e., we have on the one hand Hebbian amplification. On the other hand, we have balanced
amplification [21], which speeds up responses. The delayed inhibition thereby originates from
private adaptation currents, instead of inhibitory neurons as for balanced amplification in
EI-networks.

Balanced networks. We model the inhibitory activity in our rate networks as mirroring
excitatory activity with an explicit lag. This enables an analysis of the convergence toward
equilibrium with techniques from the theory of delay differential equations. Depending on
the strength of the balance and the lag of inhibition, this revealed qualitatively different types
of dynamics, which are familiar from the harmonic oscillator, namely overdamped, criti-
cal, and underdamped dynamics. In our networks with SFA and in balanced amplification
networks of others [21], the effective lag of inhibitory feedback originates instead from the
fact that inhibitory currents are evoked by a low-pass filtered version of the excitatory activ-
ity. In contrast to such models, the inhibitory activity in our balanced networks contains the
undamped high-frequency components of the excitatory activity and shifts them by the same
delay as the low frequency ones. Because we evaluate our balanced networks at the critical
balance, where the time scale of the network dynamics is much larger than the lag, high-
frequency components are likely unimportant. Therefore, we do not expect qualitative dif-
ferences and only small quantitative differences between both implementations in our linear
rate networks. Exemplary simulations confirm this expectation, Fig D in S1 Appendix. The
reasoning also explains why we find the same qualitative dynamics in our spiking networks,
where the inhibitory neurons are fully modeled as LIF neurons with biologically plausible
membrane time constants and synaptic delays that govern the delayed feedback to excitatory
populations. The basic mechanism of shortening the impulse response and speeding up the
reaction to inputs is the same in all these cases.

RFs in model and experiment. In the brain the responses of neurons from lower areas
are combined to determine the responses of hierarchically higher ones [80,81]. This offers
the general opportunity to harness the concept of cooperative coding. RF size often increases
along the processing hierarchy, for example by a factor of about 3 to 10 along the ventral
visual stream of humans and macaques [82,83]. Ref. [40] suggests a ∼10-fold increase in place
field size from dentate gyrus [84] to CA3 [85]. For such changes in RF size, our cooperative
coding scheme predicts prominent savings in the number of required synapses compared to
purely feedforward networks.
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The exponentially decaying RFs that we consider act as tractable models for experimen-
tally encountered localized, overlapping and broadening RFs [2,38,40]. They allow to ele-
gantly illustrate how neurons can use recurrent interactions to cooperatively share feedfor-
ward information and shape the network response. However, experimentally measured RFs
have different and often more complex shapes [7–9,36]. We are optimistic that these can be
approximated by the steady state of a cooperatively coding recurrent network with sparse
connectivity, although more synapses will be required. Determining the necessary network
parameters might involve minimizing a loss with L0 regularization, which is challenging.

Related work. Conceptually, our 1D model is a ring model, operating in the input-driven
regime with a single stable ground state [42]. Ring models have been proposed to model ori-
entation selectivity in the visual cortex [23,53] (see also [86]), head direction cells [87] and
spatial memory [88]. Similarly, our 2D and 2D mixed selectivity models have a toroidal or,
when removing the periodicity, a planar structure. Such networks may be important for spa-
tial navigation [67]. Previous models have broad coupling fields or ranges of coupling prob-
abilities, equivalent to many recurrent synaptic connections that extend over neurons with
quite different preferred stimuli [23,42,53,67,87,88]. In contrast, in cooperatively coding net-
works, we have very sparse synaptic connections between neurons with highly similar tuning.

Our work considers the encoding of continuous variables in a scheme with minimal num-
bers of required synapses. Ref. [89] investigated a different but related problem: the binary
and multinomial classification of random patterns in large networks of neurons with limited
and fixed indegrees. The study finds that if an intermediate layer (which is the analogue to
our feature layer) is equipped with sparse, excitatory like-to-like recurrent connections, then
sparse feedforward connectivity and a sparse readout are sufficient for classification regardless
of network size. This connectivity and the resulting saving of synapses imply that the networks
realize cooperative coding in our sense. We note that in their Hopfield network intermediate
layers could implement cooperative coding by realizing stronger weights with higher (instead
of equal) probability.

In a 1D-ring model, ref. [18] had to incorporate strong nearest-neighbor-like excitatory
interactions to match experimentally found responses, as they stabilize network responses in
the presence of input noise. In our model such connections even determine the RF.

Ref [90] found that local recurrent connectivity in Hebbian assemblies of spiking neurons
can reduce the number of feedforward connections between assemblies required for mem-
ory replay. The total number of synapses in their model is, however, minimized by a purely
feedforward architecture.

Consistent with our results for shallow networks, intermediate-depth ML networks fea-
turing recurrent and feedback connections can match the performance of much deeper feed-
forward networks while requiring less units and parameters [91]. It would be interesting to
investigate whether the recurrent connectivity in such networks is also like-to-like. If so, this
would indicate that cooperative coding naturally appears also in ML networks. It may be help-
ful in particular in convolutional networks, like our models, to save feedforward connections
and rely on very sparse recurrent connectivity instead.

Properties of connectivity. Our cooperative coding scheme relies on the presence of few
strong recurrent excitatory connections between similarly tuned cells; inhibition needs to
leave the functional connectivity excitatory. This fits data in visual cortex, which shows that
pyramidal neurons with similar RFs connect at higher rates and with stronger synapses [14–
16]. Recurrent connections are generally sparse in the cortex [92–95]. Furthermore, net func-
tional connectivity is excitatory between (spatially close) neurons with similar tuning [19] and
most correlated responses [18]. Refs. [18,19] also show an inhibitory effect on largely differ-
ently tuned neurons. Ref [18] found net inhibition between rather similarly tuned neurons
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as well. This is assumed to implement feature competition, which we did not include in our
model.

A particular benefit of our cooperative coding scheme is that it allows feedforward con-
nections to be sparse. This fits for example experimental observations in V1, where the
vast majority of inputs are local recurrent ones, while only a few percent are feedforward
inputs [96,97]. Ref. [98] estimated based on experimental studies [99] that a single hypercol-
umn in primate V1 receives only 10-30 feedforward inputs from the magnocellular layer of
dorsal LGN mediating retinal input, with single cells in L4𝛼 receiving as little as 0 - 6 inputs.
Pyramidal cells in the hippocampal region CA3 may receive input from only about 50 dentate
gyrus neurons but from 6000 other CA3 pyramidal cells [100,101]. This is in line with cooper-
ative coding of spatial inputs from dentate gyrus in CA3 and could explain the enlargement
of place fields along this pathway [40]. Note, however, that CA3 also receives inputs from
entorhinal cortex [102–104].

Experiments that aim to disentangle feedforward from recurrent contributions to orien-
tation selectivity resulted in mixed findings. Ref. [105] showed that excitatory postsynaptic
potentials in simple cells in L4 of cat V1 exhibit orientation tuning to drifting gratings, even
when recurrent inputs are suppressed by cortical cooling. In line with this, ref. [17] found that
thalamic and cortical contributions to the first harmonic (F1) of the response curve to drift-
ing gratings are co-tuned. However, the temporally averaged response (F0) is tuned only in
cortical but not in thalamic inputs. A recent study, ref. [106], suggests that the total input cur-
rent from L4 of mouse primary visual cortex to L2/3 may lack orientation tuning and that
orientation selectivity is determined by recurrent inputs from within L2/3.

Optimality. We assessed optimality in terms of energy, synapse numbers, and response
speed. We find that the simplest, purely excitatory cooperatively coding network minimizes
the number of required synapses and has a similar metabolic cost as a feedforward implemen-
tation. Adding SFA or balancing inhibition reduces response times but increases metabolic
cost. Balancing inhibition also requires additional synapses and neurons. We conclude that
the brain might use cooperative coding to save synapses and space compared to a purely
feedforward or more wasteful recurrent implementation, but might invest some synapses,
neurons, space and energy in balancing inhibition to retain a reasonable response speed.

Previous studies often minimized the number of spikes or, more generally, the neuronal
activity needed to represent encoded features. Refs. [30,32,34] follow this approach and sug-
gest that tight EI-balance may be a signature of a highly coordinated and competitive code
that, despite the irregular firing, is orders of magnitude more precise than a Poisson rate code.
This spike-code depends on an extremely structured, dense connectivity, through which sim-
ilarly coding neurons quickly inhibit each other to prevent redundant spiking. From this
standpoint the findings of excitatory functional connectivity between very similarly tuned
neurons [15,16,18,19] seem counter-intuitive.

Spiking networks. We verified that the central insights from linear rate networks hold
also for biologically more detailed models, by creating cooperatively coding spiking neural
networks. In particular, cooperative coding can still save synapses for reasonably sized RFs
and introducing balancing inhibition improves the scaling of the response time with the RF
size from quadratic to linear. The spiking networks consist of a set of discrete feature pop-
ulations, with the same connectivity statistics for all neurons within one population. In the
stationary state, each feature population encodes as latent variable the stationary activity of a
feature neuron of our linear rate networks. The stationary spiking activity thus lies in a low-
dimensional manifold of the space spanned by all neurons [107]; the dimensionality is given
by the number of feature populations. However, different circuit structures can give rise to
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the same low-dimensional activity [33,108,109]. We expect that similar dominant latent vari-
ables as in our current spiking networks can be reached with spiking neurons arranged quasi-
continuously along a ring (or in 2D space) and with tuning-dependent sparse like-to-like
connectivity that realizes cooperative coding.

Sensitivity to recurrent weight strength. To produce larger RFs, the cooperative network
requires larger recurrent weights, which converge toward a critical value. Thus, for larger RFs,
the cooperative network is increasingly sensitive toward variation in the recurrent weight
and an accurate numerical integration of the spiking networks requires increasingly fine dis-
cretization time steps (cf. Fig E in S1 Appendix). Stability can be increased in a hybrid coding
model, which uses a small fraction of the inputs from the feedforward model, and comple-
ments them with cooperatively coding recurrent inputs. We expect that this may again save
synapses compared to the feedforward model.

Experimental predictions. In our cooperatively coding models, feedforward input is
sparse [98,99,110] and, compared to recurrent input, weak [17]. It directly contributes to
only a small part of a neuron’s receptive field or response. In our models, only the center neu-
ron/population receives direct feedforward input. When taken literally, our model predicts
strong excitatory connections only between very similarly tuned cells, consistent with some
recent experimental findings [18]. A hybrid coding model would yield co-tuning of feedfor-
ward and recurrent inputs [17,81,105]. In either case, feedforward input is amplified through
recurrent connections, which redistribute it and thereby establish the full response. Our mod-
els thus predict that removal of recurrence should lead to responses and receptive fields that
are much smaller in amplitude, and deficient in the sense that they lack responses to many
inputs within the full RF.

Conclusion. To conclude, net excitatory connectivity between similarly tuned neurons is
compatible with a novel cooperative coding scheme that generates network responses with a
minimal number of synapses. This suggests space constraints as an important factor in shap-
ing neural networks, providing a possible normative explanation for excitatory like-to-like
connectivity. The window of opportunity between excitation and balancing, delayed adap-
tation or inhibition may be harnessed to rapidly propagate activity changes through the net-
work, speeding up equilibration times by orders of magnitude.

Methods
Rate models
All simulations have periodic boundary conditions. Fixed network parameters are the num-
ber of neurons N for 1D and N2 for 2D networks, the neuronal time-constant 𝜏 and, in net-
works with inhibition, the EI-lag 𝜏lag. We set N = 200, 𝜏 = 1 and 𝜏lag = 0.1. In the networks with
SFA we use a fixed value of 𝜏SFA = 𝜏 = 1 and, for each RF size, obtain the value of aSFA that
minimizes the temporal mean of the normalized L1-loss, (1/T) ∫

T
0 dt |x(t) – x∗(t)|1/|x∗|1,

through a linear grid search. Here T = 500𝜏 is the length of a trial as described in Fig Aa in
S1 Appendix and x*(t) the target corresponding to the present input. Fig Ae,c show the scans
over aSFA and the individual loss curves for the optimal aSFA values. In all networks with
inhibition, we set wrec,bal

sum to its critical value given by Eq S43 in S1 Appendix.
We simulate our networks with SFA using the Euler method and all other networks using

the midpoint method with stepsize dt = 0.01. To simulate the networks with delayed inhibi-
tion, we also need midpoint values of the delayed activity. We obtain them by copying the
midpoint values of the non-delayed activity 𝜏lag (𝜏lag/ dt simulation steps) before.

For the data in Figs 4 and 6, we obtain RFs with different sizes by setting wrec
sum or wrec,net

sum
to appropriate values: In the case of 1D networks with and without SFA and in the case of 2D
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linear MS networks, we have analytical expressions for the RF sizes as a function of wrec
sum or

wrec,net
sum . We thus chose wrec

sum or wrec,net
sum such that the RF sizes are sampled linearly from n1D

RF = 6
to n1D

RF = 50 in steps of two. For the 2D network, we simulate networks with 20 different values
of wrec

sum or wrec,net
sum and measure the RF sizes that the networks generate after convergence. We

obtain wrec
sum or wrec,net

sum as wrec
sum(or wrec,net

sum ) = 1 – 𝜏/𝜏resp by varying 𝜏resp from 10 to 1,000 with
equal spacing on a logarithmic scale.

To numerically determine a network’s response time, we first simulate the network for a
long time, clearly longer than the convergence time, and define the resulting state as the final,
target state x*. The loss is the L1 norm of the difference between x* and the current state. We
then simulate the network for a second time. We obtain 𝜏resp or 𝜏bal

resp as the earliest time at
which the loss drops and stays below e–1 times the initial loss.

Spiking models
Excitatory network. We model NF feature populations arranged on a one-dimensional

ring. Every feature population contains NE excitatory neurons, which are modeled as leaky
integrate-and-fire (LIF) neurons. Feature populations are connected randomly and sparsely to
their neighbors, as well as recurrently within themselves.

The membrane potential of neuron k in feature population i is described by the stochastic
differential equation (SDE)

𝜏m ̇vik = –vik +Vrest + Iiext +wEE𝜏m∑
ΓE
ik

∑
̂t
𝛿 (t – ̂t –ΔEE) +

√
2𝜏m𝜎𝜉ik(t) . (47)

We set Vrest = 0 mV and leave it out in the following to simplify the notation. When the
membrane potential reaches the threshold Vthr, a spike is generated and the membrane poten-
tial is reset to Vreset. There is no absolute refractory period. All neurons of a feature popula-
tion i receive the same feedforward input Iiext: For the stimulated population (denoted as i = 0
in the following) this feedforward input is stronger (I0ext = Ionext), while all other populations
receive a lower background input (Iiext = Ioffext, i ≠ 0). Each neuron receives independent Gaus-
sian white noise 𝜉 with ⟨𝜉ik(t)⟩ = 0, and ⟨𝜉ik(t)𝜉jl(t′)⟩ = 𝛿ij𝛿kl𝛿(t – t′); 𝜎 specifies its strength.
Further, a neuron receives excitatory input from a pool ΓE

ik = ΓE,in
ik ∪ ΓE,out

ik of neurons from
its own population i (ΓE,in

ik ) as well as from the two neighboring populations i ± 1 (ΓE,out
ik ).

The pool of presynaptic neurons is constructed by drawing from each admissible popula-
tion KEE = pEENE presynaptic neurons (excluding autapses) — i.e., the indegree is fixed. The
inner sum in Eq 47 is taken across all spike times ̂t of all neurons in these presynaptic pools.
Each presynaptic spike induces a jump of the postsynaptic membrane potential of size wEE

after a delay ΔEE. Synaptic delays are drawn randomly from a uniform distribution between
0 and 2 ms. Table 1 summarizes all parameter values. The tuning of the recurrent synap-
tic weight strength wEE and the feedforward input Ionext, Ioffext is described in Eq S74 – S77 in
S1 Appendix.

Balanced network. We add NF inhibitory feature populations, each containing NI

inhibitory neurons. The membrane potential of a neuron k in excitatory feature population i
is given by the SDE

𝜏m ̇vEik = –vEik + Iiext + w̄EE𝜏m ∑
ΓE,in
ik ∪ΓE,out

ik

∑
̂t
𝛿 (t – ̂t –ΔEE)

+wEI𝜏m ∑
ΓI,in
ik ∪ΓI,out

ik

∑
̂t
𝛿 (t – ̂t –ΔEI) +

√
2𝜏m𝜎𝜉Eik(t) . (48)
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Table 1. Parameters of spiking network models. Top: excitatory-only network (Fig 8). Bottom: additional
parameters for balanced network (Fig 10). Equation numbers refer to S1 Appendix.
Parameter Value Definition
NF 41 Number of feature populations
NE 4000 Excitatory neurons per feature population
pEE 0.1 Connection probability from E to E
wEE Eq S75 Synaptic weight (E to E)
Vthr 10 mV Spike threshold
Vrest 0 mV Resting voltage
Vreset 0 mV Reset voltage
𝜏m 20 ms Membrane time constant
𝜏ref 0 ms Refractory period
ΔEE ∼ U(0, 2)ms Synaptic delay from E to E
dt 0.01 ms Simulation time step
NI 1000 Inhibitory neurons per feature population
pEI 0.1 Connection probability from I to E
pIE 0.1 Connection probability from E to I
w̄EE Eq S79 (increased) Synaptic weight (E to E)
wIE Eq S78 Synaptic weight (E to I)
wEI Eq S81 Synaptic weight (I to E)
ΔIE ∼ U(0, 2)ms Synaptic delay from E to I
ΔEI ∼ U(0, 2)ms Synaptic delay from I to E

https://doi.org/10.1371/journal.pcbi.1012156.t001

The membrane potential of a neuron k in inhibitory feature population i similarly obeys

𝜏m ̇vIik = –vIik + Ioffext +wIE𝜏m ∑
ΓE,in
ik

∑
̂t
𝛿 (t – ̂t –ΔIE) +

√
2𝜏m𝜎𝜉Iik(t) . (49)

Excitatory and inhibitory populations are connected as described for the balanced rate net-
work and illustrated in Fig 10A: An inhibitory neuron k in population i receives excitatory
synaptic input from the excitatory partner population (ΓE,in

ik ). An excitatory neuron k in pop-
ulation i receives synaptic inputs from the inhibitory partner population (ΓI,in

ik ), as well as its
two neighbors (ΓI,out

ik ). Excitatory-to-excitatory connections are as in the purely excitatory net-
work described above. For all pathways, synapses are again drawn randomly with a connec-
tion probability of 10%, while imposing a fixed indegree. Inhibitory neurons have the same
biophysical parameters as excitatory cells. All synaptic delays are drawn randomly from a uni-
form distribution between 0 and 2 ms. Table 1 summarizes all parameter values. The feedfor-
ward input to inhibitory neurons is untuned. The tuning of the weights between excitatory
and inhibitory populations is described in Eq S78 and S81 in S1 Appendix.

Numerical simulations. All spiking network simulations are performed using the spiking
network simulator Brian2 [111]. For RF sizes of nRF ≤ 13 we simulate NF = 41 feature popu-
lations. For larger fields (nRF ≥ 15) we use NF = 61 to reduce boundary effects. The feedfor-
ward stimulation is chosen to target the central population (i.e., population 21 for NF = 41 or
population 31 for NF = 61, respectively). First, the network is simulated for 500 ms with only
background-level feedforward input. Then the feedforward input to the stimulated population
is increased instantaneously and the network is simulated for three seconds to ensure that a
stable state has been reached.

We estimate the stationary firing rates by averaging over the last second of the simula-
tion (second 2–3 after stimulus onset). Response times are estimated as described for the rate
model, based on the L1 loss of the instantaneous population rates after t = 500ms, using an
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exponential fit. For response time estimation, we use unfiltered population rates, computed
as the average number of spikes per simulation time bin. For plotting, population rates are
displayed in larger bins of 1 ms.

We numerically optimized the excitatory synaptic weights in Fig 8C by repeatedly simu-
lating the network with fine variations in the weight parameter, until a rate profile within the
range of [ntarget

RF –0.5, ntarget
RF ] was found. Note that we did not enforce a strict match of the peak

rate xmax in this optimization process, which would require a covariation of the stimulation
strength Ionext.

The “optimal” scaling factors in Fig 10C were found by simulating balanced excitatory-
inhibitory networks for each field size with scaling factors varied in the range of s∈ [1.1, 1.9]
in steps of 0.1 (see horizontal dashed lines in Fig 10C, bottom). For each scaling factor the
(analytically predicted) balancing inhibitory synaptic strength (Eq S81 in S1 Appendix) had to
be optimized numerically in order to assure a close match of the EI-rate profile to the target.

Numerical integration was performed in Brian2 using a simple Euler-Maruyama scheme
with a discrete time step of 0.01 ms. As the RF size increases, the recurrent weights of the
cooperative network approach the point where the network becomes unstable. Close to this
instability point, an accurate “clock-driven” numerical integration of the network dynam-
ics requires increasingly small time steps. With spike times restricted to the “grid” set by
{0, dt, 2dt, 3dt,…}, spikes can be missed or recorded late [112]. This affects not only the slope
of the rate response at the onset of a step stimulus, but also the steady state into which the
rates settle. This effect can already be observed in a single population with recurrent coupling
approaching the instability point, Fig F in S1 Appendix. In our cooperative network with mul-
tiple coupled populations, the time step sensitivity increases for larger fields. For the simula-
tions shown here we used a timestep of 0.01 ms. At this resolution we find satisfactory conver-
gence of the dynamics of networks tuned to RF sizes nRF ≤ 11. Larger RF sizes would require
even smaller time steps, see Fig E in S1 Appendix.

Supporting information
S1 Appendix. Details, derivations, proofs and supporting simulations. In Sec A we derive
the stationary state and the evolution of eigenmodes for the 1D cooperatively coding net-
works without SFA and balancing inhibition. Section B derives the evolution of their L1 loss.
In Sec C we proof that their architecture indeed minimizes the number of synapses. Section
D argues that we can compare the metabolic cost of generating the stationary state in the
different implementations by the L1 norms of their synaptic currents. Sec E and Fig A in S1
Appendix study the dynamics of a 1D cooperatively coding network with SFA. In Sec F we
define and calculate the effective strength of the balanced interaction. Section G derives the
evolution of the L1 loss for cooperatively coding networks with delayed, balancing inhibi-
tion, and expressions for the critical balance strength and network response time. Fig B in S1
Appendix characterizes the loss evolution for different balance strengths. In Sec H and Fig C
in S1 Appendix we explain the difference between the loss evolution after constant initializa-
tion and in the slowliest-decaying eigenmode. Section I and Fig D in S1 Appendix demon-
strate that dynamics are similar whether inhibition is modeled with an explicit lag or leak-
ily integrates excitation. In Sec J we derive the stationary response of networks that cooper-
atively encode 2D stimuli. In Sec K we derive an analytical tuning of the excitatory and bal-
anced spiking networks as a function of RF size and peak rate. We comment on the addi-
tional numerical optimization of recurrent synaptic weights. In Sec L we illustrate the need
for small discretization time steps for the numerical integration of spiking networks with
large RFs (Fig E in S1 Appendix), and analyze the sensitivity of RF formation with respect to
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the recurrent weight strength (Fig G in S1 Appendix), and finite size fluctuations (Fig H in
S1 Appendix). In Sec M we present an alternative, homogeneous network architecture, for
which we observe a similar response speedup when balancing inhibition is added (Fig I in S1
Appendix).
(PDF)
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