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ABSTRACT ARTICLE HISTORY

Crop maps play an important role in a variety of applications, from Received 12 June 2025
calculating crop areas and forecasting food production quantities Accepted 21 September 2025
to the analysis of agri-environmental interactions, highlighting the
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necessity of timely and accurate information on agricultural land
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use. The availability of remote sensing data has permitted numer- accuracy; supervised

ous crop classification studies, which have investigated a variety of classification; meta-analysis;
methods to improve classification performance, such as the selec- preprocessing;

tion of remote sensing sources, classification algorithms, and pre- postprocessing

processing methods. This paper compares these approaches with
respect to classification accuracy in a European context. The study
also investigates aspects such as classification level, study area
division, and class granularity. The review shows that optical pro-
ducts provide more information for crop identification than radar
products, however, combining optical data with radar backscatter
increases accuracy. Classification accuracy benefits from specific
features such as red-edge and spectral indices for optical products
and Haralick textures for radar. Compared to traditional machine
learning and distance-based classification methods, deep learning
algorithms have been shown to achieve superior performance.
Nevertheless, random forest's comparative accuracy at relatively
low computational cost makes it a viable alternative for large-
scale applications. Finally, preprocessing methods and data on
topography, climate, and crop growth patterns appear to improve
accuracy.

1. Introduction

Timely, reliable, and comprehensive information on agricultural land use is critical for
promoting sustainable land management practices and assessing the ecological, eco-
nomic, and societal effects of climate change on agriculture (Asam et al. 2022). Many
agricultural applications, such as estimating crop areas, forecasting yields, assessing crop
conditions, and determining land use intensity, heavily rely on the utilization of crop maps
(Kussul et al. 2018). Satellite remote sensing is a pivotal tool for creating crop maps, crop
health evaluation, and yield prediction, providing essential insights into agricultural land
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use and production (Dhumal, YogeshRajendra, and Mehrotra 2013). Currently, satellite
data with global coverage is readily accessible to the public at no cost, featuring
enhanced temporal and spatial resolutions, alongside growing computational capabilities
(Blickensdorfer et al. 2022). The availability of satellite remote sensing (RS) data, in the
following simply called ‘remote sensing data’, has enabled numerous crop classification
studies, revealing a wide range of possible methodologies driven by technical improve-
ments. These studies employ different strategies that vary regarding the selection of RS
sources, classification algorithms, and preprocessing techniques, to continuously improve
classification performance.

This study aims to review existing literature and provide a systematic comparison of
how different RS sources, classification algorithms, and preprocessing techniques com-
pare in terms of classification performance. The review is restricted to studies providing
crop classifications for Europe. We identify how methods and RS sources have evolved
over the last two decades. Furthermore, this study emphasizes other elements that
influence classification accuracy, such as the number of classes, study area definition,
and classification granularity. Wherever possible, comparisons are made to determine
their respective contributions to categorization accuracy.

Existing literature already provides reviews of crop classification studies. For example,
Fan et al. (2021) conducted a comprehensive review of research progress in farmland
vegetation identification and classification using remote sensing over the last 25 years.
They summarized several classification methods, such as using vegetation indices, spec-
tral bands, multi-source data fusion, machine learning, and drone remote sensing. Teixeira
et al. (2023) conducted a comprehensive study of deep learning (DL) algorithms for crop
classification based on remote sensing data. Emphasizing the importance of different
fusion techniques, Orynbaikyzy, Gessner, and Conrad (2019) provide a comprehensive
review of studies concentrating on crop-type categorization using a fusion of optical and
radar data. Their review looks into alternative fusion methodologies, categorization
strategies, and the feasibility of mapping specific crop types. In their study, Almalki
et al. (2022) investigate the characteristics of dry and semi-arid vegetation cover and
their link to remote sensing, and they review the methods for mapping and monitoring
changes in vegetation cover using RS data in arid and semi-arid areas. Pluto-Kossakowska
(2021) conducted a review of multitemporal classification approaches for automatically
identifying agricultural and arable land using optical satellite imagery. Emphasizing the
advancements in RS platforms and machine learning, Potgieter et al. (2021) evaluate the
current state of digital technology in broad-acre cropping systems worldwide. In their
thorough literature review study, Alami et al. (2023) trace the historical evolution of crop
mapping using remote sensing methods and assess recent advances in the topic, with
a special emphasis on machine and deep learning models. Our study contributes to the
existing literature in terms of thoroughly examining multiple aspects that may be
encountered during remote sensing-based crop classification including data sources,
preprocessing, classification algorithms, and postprocessing techniques without
a special focus on certain algorithms or data sources. Our aim of providing a systematic
comparison of different methods in terms of crop classification performance is useful as
a reference for future crop categorization research in terms of methodology and data
selection. This review also provides a benchmark in terms of what has been achieved in
classification performance as well as regional and temporal coverage.



INTERNATIONAL JOURNAL OF REMOTE SENSING . 8253

In the following, we first present the methodology of the review process. Then, we
summarize the reviewed research in terms of regional coverage, ground truth data type,
data availability, and the number of crop types. In the third section, various aspects
affecting the classification performance such as the types of remote sensing data used,
classification algorithms, classification level, additional features, and additional post-
processing methods are scrutinized. Each subsection provides detailed descriptions of
methods and data, along with their contributions to accuracy, comparisons with other
methods where possible, and their contributions to the reviewed studies.

2. Methodology

The studies included in the review were searched through Google Scholar and the Web of
Science. The main inclusion criteria are that satellite remote sensing imagery is the main
source of classification data the study area is located over Europe (including Turkey), the
publication year is later than 2000, and the publication language is English. The full list of
reviewed studies can be found in the Appendix A1.

For the search on Google Scholar only the publication date filter is applied while for the
search done over the Web of Science, more available filters are utilized for the efficiency of
the process. Those filters are:

e Research areas: environmental sciences and ecology, remote sensing, imaging
science photographic technology, geology, engineering, physical geography, agri-
culture, water resources, plant sciences, computer science, science technology, other
topics, optics, instruments instrumentation, biodiversity conservation

¢ Excluded micro citation: glacier, ocean colour, aerosols, tectonics, mars, asteroids,
earthquakes, archaeology

e Type: article

¢ Excluded meso citation: marine biology, ocean dynamics, astronomy

¢ |In the marked fields: crop, classification, remote sensing

After these filters, 730 studies are identified. Further, the authors went through each study
to eliminate any that didn't meet the requirements for inclusion. Following the exclusion
of irrelevant studies, 148 relevant papers remain, including 13 conference papers and 135
journal articles collected from both research platforms.

For each study, we then systematically noted study area location, study area size,
mapping and publication years, classification algorithm, classification accuracy, prepro-
cessing methods, postprocessing methods, classification level, crop classes, ground truth,
and satellite data sources used in the studies. For studies with multiple study areas, only
the results and methods of the ones in Europe are considered and for studies over
multiple years, the results of the year with the highest overall performance are included
in the comparison.

Based on the recorded information, a systematic performance comparison is con-
ducted. First, accuracy comparisons are done within each study to avoid biased conclu-
sions when comparing the performance across studies which might differ, for example, in
terms of area covered, ground truth data, or number of classes. After a within-study
comparison, the accuracy of the methods is compared by analysing the overall success of
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the method between the studies. In addition to performance comparison of commonly
used methods, advantages of methods and data sources that are not commonly com-
pared within the studies are also discussed in relevant sections of the study.

3. Types of crop cover classification map
3.1. Regional coverage

Figure 1 illustrates the study areas covered in the reviewed papers and maps. Each
country is colour-coded based on the total number of studies conducted within its
borders, while the number of national-scale studies is indicated numerically inside each
country. In addition, smaller study areas are marked with red dots on the map. Although
crop classification studies exist for many European countries, comprehensive, country-
wide classification maps remain scarce in most regions. Most studies focus on France and
Germany, with multiple countrywide crop maps available. In particular, Germany stands
out as the leading country in terms of both the overall number of studies and those
conducted at the national level. Conversely, there is a noticeable lack of studies in Eastern
and Northern Europe.

Figure 2 presents a histogram showing the extent of the areas covered by the
reviewed studies, revealing that large-scale studies are still relatively limited. Among
them, d’Andrimont et al. (2021) offer the broadest coverage, producing the first
continental-scale crop map at a 10-metre resolution across the EU-28 countries. This
study leverages Sentinel-1 data (Attema et al. 2010) and the 2018 LUCAS Copernicus

Legend
® Small Study Areas
Number of Studies

Lo

Figure 1. Study areas of the reviewed papers and maps. Each country is colour-coded according to the
number of total studies over the country. The number of national-scale studies is also shown in
numbers inside the country’s borders.
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Figure 2. Histogram of the extent of the study areas of the reviewed studies.

survey to identify 19 crop types using Random Forest (RF) classification (Breiman
2001). Using the same ground truth data and covering the same spatial extent,
Ghassemi et al. (2022a) produced the second remote sensing — based crop-type map
of EU countries, this time relying on Sentinel-2 imagery (European Space Agency
2018).

3.2. Ground truth

Supervised classification requires reference data, often referred to as ‘ground-truth’
data, to train the model. In addition to this training data, a separate, independent
dataset is essential for evaluating the classification’s performance. In the context of
remote sensing-based crop classification, ground-truth data typically consists of crop
type information linked to specific geographic coordinates. One way to gather ground
truth data, that is used in the reviewed studies (e.g. Kussul et al. 2015; Shelestov et al.
2017; X. Xie and Quiel 2000), is to perform surveys to collect land-use information
across the study area. In addition to surveys, ground truth information is available
through farmer’s declarations (e.g. Debella-Gilo and Kristian Gjertsen 2021; Heupel,
Spengler, and Itzerott 2018; Sitokonstantinou et al. 2018). In the EU this is the
Integrated Administration and Control System (IACS), which is used to payout sub-
sidies under the Common Agricultural Policy (CAP). Administrative checks and on-the-
spot inspections of this information ensure a relatively high level of data quality
(Snevajs et al. 2022). IACS, with its geographical module Land-Parcel Identification
System (LPIS), is a tool to manage direct payment support at the national level
(European Commission. Joint Research Centre. Institute for the Protection and the
Security of the Citizen., 2008). LPIS data is commonly used for training and validation
purposes in the reviewed studies, especially for country-wise crop maps (e.g. Planque
et al. 2021; N. Teimouri, Dyrmann, and Nyholm Jgrgensen 2019; WozZniak et al. 2022).
Another EU-based data set is The Land Use/Cover Area Frame Survey (LUCAS), which is
a survey that collects harmonized and comparable data on land use and cover across
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the entire EU area. Due to the wide-range availability of the data over EU countries,
LUCAS data is utilized to create large-scale crop cover maps over the EU
(e.g. d’Andrimont et al. 2021; Esch et al. 2014; Ghassemi et al. 2022).

Existing land-use maps are also used as a source for training and validation data. In the
study of Inglada et al. (2017), the approach chosen is to use existing databases to create
reference datasets required for supervised classification and subsequent validation of
land cover maps. The study combines four different data sources, including Corine Land
Cover (CLC) and LPIS. Luo et al. (2022) obtained reference data from established nation-
wide crop field datasets or land cover maps. The first dataset, Crop Map of England
(CROME), encompasses over 20 main crop types, grassland, and non-agricultural land
covers. The second dataset consisted of 10 m land cover maps for France (https://www.
theia-land.fr/en/product/land-cover-map) and the third dataset, obtained from the Base
Registration Crop Parcels (BRP) in the Netherlands, provided cultivated crop information
at the parcel level. Additionally, the study utilized LUCAS in situ data to directly validate
classification results for all EU countries in 2018. As an alternative or complementary
approach, M. M. Teimouri et al. (2023) proposed generating virtual training labels by
subdividing existing training samples into subclasses using self-organizing maps and
assigning labels to unlabelled pixels based on their distance to these subclasses in feature
space. This method reduces the need for extensive manual labelling and can improve
classification accuracy by effectively expanding the training dataset, addressing
a common challenge in supervised crop mapping.

In addition to the mentioned datasets, benchmark datasets for crop cover classification
applications are proposed by some of the reviewed studies. These benchmark datasets
contain ground truth data made more accessible and ready-to-use for classification by
incorporating spectral information from selected satellite data. Turkoglu et al. (2021)
provide the ZueriCrop dataset, which is produced from Swiss farm census data and
includes annotated field polygons from Zurich and Thurgau in 2019. This dataset has 48
diverse classes, as well as a labelled hierarchical tree for improved training. Sykas et al.
(2022) provide Sen4AgriNet, a multicounty, multiyear dataset covering Catalonia and
France from 2016 to 2020. The dataset consists of 42.5 million plots compiled from farmer
declarations collected through LPIS, is larger than any other accessible archive, and
includes all spectral information. Additionally, Weikmann, Paris, and Bruzzone (2021)
contribute TimeSen2Crop, a pixel-based dataset containing over one million Sentinel-2
time-series samples for 16 crop types across Austria. And lastly, Selea (2023) introduces
AgriSen-COG, a large-scale crop-type mapping dataset that uses Sentinel-2 and LPIS data
and spans five European nations (Austria, Belgium, Spain, Denmark, and the Netherlands).

3.3. Data availability

Following the trend of open-source science, some authors shared either their dataset,
source code, or the output of their work publicly for other researchers or organizations to
explore. Table 1 shows those studies and their data availability information. Out of 136
studies, only 14 provided open-source data, code, or results, which does not meet the
expectations of today’s open-access scientific standard. To enhance reproducibility and
facilitate comparisons, future research should prioritize sharing data more consistently.
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Table 1. Studies that shared data and/or source codes.

Crop Reference Source

Study Study Area map  Dataset Code
RuBwurm and Kérner Munich, Germany X

(2018)
Tricht et al. (2018) Belgium X
Griffiths, Nendel, and Germany X

Hostert (2019)
Preidl, Lange, and Doktor Germany X

(2020)
Turkoglu et al. (2021) Zurich and Thurgau, Switzerland X X
d’Andrimont et al. (2021) Europe X
Martini et al. (2021) Brittany, France X X
Metzger et al. (2021) Munich, Germany & Zurich and Thurgau, Switzerland X
Asam et al. (2022) Germany X
Blickensdorfer et al. Germany X

(2022)
Luo et al. (2022) England, Netherlands, Germany, Denmark, France, Italy, X

Poland, Hungary, Slovakia, Czech Republic

Fare Garnot, Vivien, and  France X

Chehata (2022)
Snevajs et al. (2022) South Moravia, Czech Republic X X
Campos-Taberner et al.  Castellé & Valencia, Spain X X

(2023)
Gallo et al. (2023) Lombardy, Italy X X
Han et al. (2023) Brandenburg, Germany X X
Rusnak et al. (2023) Danubian Lowland & Slovakian X

Lowlands, Slovakia

RuBwurm et al. (2023) Brittany, France & Bavaria, Germany X

Table 2. Accuracies from studies that compared the performance of
multiple class number.

Study Class number Accuracy
Bargiel and Herrmann (2011) 4 classes 76.22%
3 classes 89.69%
2 classes 94.77%
Fontanelli et al. (2014) Level 2 ~88,5%
Level 1 ~92,5%
Villa et al. (2015) Level 1 85.3%
Level 0 96.7%
Sitokonstantinou et al. (2018) type 0.87 ()
family 0.91 ()
season 0.91 (k)
Piedelobo et al. (2019) 15 crops 87%
7 grouped crops 92%
Ghassemi et al. (2022) 21 individual classes 77.6%
8 grouped classes 82.5%

3.4. Class granularity

Classes on crop maps can have different granularity levels, or thematic levels, depending
on the ground truth data availability and the detail needed by the user of the map.
A common practice is to merge certain types of crops according to their spectral profiles
or similarity in species family, season, or similarity of the use of the crop. Grouping all
legumes or all grains in aggregated classes are example of this approach. When the detail
level of the map can be compromised depending on the requirements for the planned
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use of the resultant map, merging certain classes can increase the overall accuracy (OA) of
the classification. Table 2 summarizes studies comparing classification accuracy across
different numbers of classes, hierarchical levels, and grouping strategies. The results
indicate that grouped classes generally achieve higher accuracy compared to individual
classes or finer-grained levels. Consequently, a fair comparison between approaches
requires consideration of the aggregation level of the crop types classified. Class granu-
larity, along with regional coverage and ground truth data, significantly affects the
performance of classification maps. Therefore, in Chapter 4, the performance of various
crop classification approaches is compared within the study, ensuring these variables
remain consistent for a fair evaluation of methods.

4. Performance of different approaches for crop classification
4.1. Remote sensing sources

There are two main types of remote sensing satellites: optical and radar. Optical satellites
generate signals at multiple wavelengths and capture multispectral images with various
bands of data, while radar satellites produce signals at a single wavelength and interact
with land features to extract information on surface roughness and moisture content
(Joshi et al. 2016). The study’s assessment of both product types and features extracted
from the products is provided in this section.

4.1.1. Optical remote sensing products and features

Optical remote sensing products are passive remote sensing products that receive
reflected sunlight from the target (Di and Yu 2023). They provide reflectance values at
visible, near-infrared (NIR), and short-wave infrared (SWIR) ranges of the electromagnetic
spectrum, which are important for the identification of crops. Most optical products do
not require excessive pre-processing since they are available in levels that are radio-
metrically and geometrically corrected. Another advantage of optical products for crop
classification is that they enable the calculation of spectral indices utilizing differences in
characteristic band reflectance of each land/crop cover. One disadvantage of optical
products is that due to them being passive sensors, they are affected by the cloud
cover over the study area. It is important to take this disadvantage into account when
the study area has a humid and cloudy climate and suffers from excessive cloud cover
(Francis, Sidiropoulos, and Muller 2019).

As is seen in Figure 3, Sentinel-2 and Landsat are the most commonly used optical
products in crop cover classification. Landsat’s first mission was released in 1984 and
since then revised and more advanced versions are being released with better resolu-
tions. The last mission of Landsat, Landsat 8 is the most popular mission as its
functioning time interval coincides with the popularization of remote sensing-based
land cover classification studies. Landsat 8 has 30 m spatial, 16-day temporal, and 8-bit
radiometric resolution. It has a 185 km swath width and a global coverage. After its
release, Sentinel-2 increasingly replaced Landsat as the main source. One of the
reasons that Sentinel-2 is more popular in crop classification studies is the advantage
of better resolutions with 10-metre spatial (for visible and NIR bands) and 5-day
temporal resolution (European Space Agency 2018). Shorter re-visit times also come
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Figure 3. Use of popular remote sensing products over time.

with the advantage of more frequent non-cloudy days and consequently more fre-
quent temporal information on vegetation growth. It also includes red-edge bands,
unlike Landsat 8, and these bands are shown to be beneficial for accurate crop
classification. One disadvantage of Sentinel-2 is the temporal coverage since it is
a rather new satellite that was only released in 2015.

The number of studies that utilize the different RS sources over time is shown in
Figure 3. One of the first conclusions is that Sentinel and Landsat are the most commonly
used remote sensing data sources. It can be seen that Landsat gradually lost its popularity
to Sentinel after 2018. After the Sentinel mission started, the use of RapidEye and Satellite
pour I'Observation de la Terre (SPOT) (European Space Agency n.d.) decreased like
Landsat. Another observation is that optical satellites are preferred over radar satellites
in almost all years. The intense use of remote sensing sources in crop map classification
since 2012 may be an indication that the utilization of this technology in this field will
increase with more available data sources and advanced techniques in the future.

4.1.1.1. Optical features. Optical remote sensing products have multiple bands with
varying along the electromagnetic spectrum from 400 nm to 1 mm covering the visible,
infrared, and thermal wavelengths. Each of these bands contributes differently to the
identification of crop classes. In the following part of this section, optical bands that are
found to be more or less beneficial in the reviewed studies are reviewed.

The red-edge spectral characteristic is identified by the wavelength range of 690-740
nm, which corresponds to the highest gradient found in the reflectance profile of green
vegetation (Kim and Yeom 2014). The absorption of chlorophyll and the scattering of light
between leaf cells are the causes of the low reflectance at red wavelengths (~690 nm) and
the high reflectance in the near-infrared (~740 nm), respectively (Kim and Yeom 2014).
Most of the commonly used optical satellites include the red-edge band (Sentinel-2,
RapidEye, etc.) as this channel improves the separability of crop types (Ustuner, Balik
Sanli, and Dixon 2015) with its capability of capturing the chlorophyll content of the target
vegetation. In the reviewed studies, Ustuner, Balik Sanli, and Dixon (2015) observed that
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by including the red-edge band in the classification, the OA increases by up to 4.6%, and
Griffiths, Nendel, and Hostert (2019) showed that in all cases, the OA achieved when red-
edge bands are included was higher than when those bands were left out. Immitzer,
Vuolo, and Atzberger (2016) showed in their study that when the spectral bands based on
the importance measure Mean Decrease in Accuracy (MDA) obtained from the RF are
ranked, red-edge has the highest importance. In addition to that, in the studies of Asam
et al. (2022) and Luo et al. (2022), red-edge was shown to be the most valuable band
among all features after the used vegetation indices.

The short-wave infrared channel falls into the range of 1 nm to 2.5 nm wavelength on
the electromagnetic spectrum. The SWIR band is particularly important due to its strong
relation with the water content in the vegetation (Panigrahy, and Ray 2009). Many of the
studies that are reviewed emphasize the importance of SWIR bands for crop classification.
Immitzer, Vuolo, and Atzberger (2016) showed that the SWIR band was among the five
most important bands in their classification, two were located in the SWIR spectral region,
and Luo et al. (2022) showed that SWIR was in the top most important features. However,
Matton et al. (2015) discarded the SWIR band, as it was found to not provide valuable
enough information after the pre-selection step. Even though the band’s value was
emphasized in many studies, as opposing results are also obtained, the SWIR band can
be recommended to be used after a preselection procedure when faced with limited
feature space and computational resources.

Near-infrared light refers to light between the wavelengths 800 and 2500 nm. The most
important feature of this channel is that healthy vegetation reflects prominently more
lights falling into the NIR region as opposed to unhealthy vegetation (Kogan 2019), and
thus the NIR bands of optical satellites can be used to distinguish crops. The benefit of the
NIR is shown by some of the studies reviewed. As an example, in their study,
Blickensdorfer et al. (2022) showed that among 19 environmental spectral and radar
features, the NIR band has the 3rd highest performance. Based on principal component
analysis (Wold, Esbensen, and Geladi 1987), Schmedtmann and Campagnolo (2015)
observed that the NIR spectral region was always selected to be used in the classification.
Similarly, Crnojevic et al. (2014) observed that the NIR band has a significant influence on
classifiers’ performance after analysing the significance of individual spectral bands. In
addition to that, Matton et al. (2015) reported that the NIR reflectance was selected for the
final features after being one of the best-performing 5 features out of 20, including four
spectral bands of the five crop growth characteristics, after their preselecting procedure.
One study that did not observe the benefit of NIR in the classification was by Immitzer,
Vuolo, and Atzberger (2016), reporting that the NIR bands of Sentinel-2 interestingly did
not score high in the MDA obtained from the RF model.

Utilizing the spectral reflectance difference between red and NIR wavelengths, one
often used measure is the Normalized Difference Vegetation Index (NDVI) (Bremer et al.,
2011). A green leaf’'s maximum absorption of chlorophyll occurs at roughly 690 nm or red
wavelength; absorption significantly decreases at the NIR wavelength interval, which is
between 650 and 850 nm (Myneni et al., 1995). It is appropriate to use this spectral
difference to distinguish vegetation from other classes. Additionally, in the classification
of land cover, vegetation classes can be distinguished from one another using the
magnitude and/or time interval of the maximum NDVI. The benefit of using NDVI is
demonstrated by many crop classification studies. In their study, Asam et al. (2022)
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reported that the NDVI band is identified as being the most important Sentinel-2 feature
among the feature set consisting of NDVI and all bands of Sentinel-2. And, August NDVI
was consistently ranked as the feature with the highest contribution among bands
Sentinel-2 bands B5, B6, B7, B8, B11, B12, NDVI, Normalized Difference Yellow Index
(NDYI), and Red Edge Position (REP) (Filella and Penuelas 1994) while classifying the
major crop types across EU countries in the classification of Luo et al. (2022). Similarly,
the five most important predictors were based on NDVI observations among combined
Sentinel-1 and Sentinel-2 features when the Gini importance of features is compared in
the study of Tricht et al. (2018). Beyond its strong performance in classification, NDVI also
offers computational advantages. According to Lozano-Tello et al. (2023) neural network
models trained solely on NDVI reduced training time by 59.35% and required less storage
compared to models using all 12 Sentinel-2 bands, while maintaining nearly equivalent
accuracy. Finally, in the study of Blickensdorfer et al. (2022), NDVI has performed
the second best among 19 environmental spectral and radar features. In their study, the
best-performing indices are found to be the Soil-Adjusted Vegetation Index (SAVI), which
is a vegetation index that uses a soil brightness and colour factor to reduce the influence
of soil colour and brightness (Huete 1988). Due to its advantage over soil-covered
surfaces, it is also found to be beneficial by Palchowdhuri et al. (2018) while classifying
the crops in an early stage of growth, where the underlying soil is a lot more visible
through the growing vegetation canopy. Another observation made by the authors was
that since the green band makes up the Green Normalized Difference Vegetation Index
(GNDVI) (Gitelson, Merzlyak, and Lichtenthaler 1996) ratio rather than the red band, it is
more sensitive to the amount of chlorophyll in the plant. Consequently, GNDVI is likely to
be more effective for plants with larger leaves or those that are phenologically more
advanced or mature. Another optical index found to be beneficial for an accurate crop
classification is Normalized Difference Red Edge Index (NDRE) (Barnes et al., 2000), which
is shown to outperform NDVI and GNDVI by Ustuner et al. (2014) when the classification
performance of the indices is compared through multiple cases with different combina-
tions of the indices. Finally, Sitokonstantinou et al. (2018) showed that the Plant
Senescence Reflectance Index (PSRI) (Filella and Pefiuelas 1994) is the most consistent
of the VIs, having high weights of feature importance among PSRI, NDVI, and Normalized
Difference Water Index (Gao, 1996) for nearly all scenes they used for the classification.

4.1.1.2. Handling cloud cover. To avoid misclassifications caused by missing pixels,
pixels contaminated with cloud cover should be removed from the data, in other
words, they should be masked. The most commonly used cloud masking method in the
reviewed papers is setting a cloud probability for each image. Cloud probability informa-
tion embedded in most Level 2 optical satellite products, which have undergone atmo-
spheric correction, can be used to limit the probability of clouds in the images that will be
used for crop classification. The limit set for the probability of the cloud cover over an
image does not have concrete rules or formulations in the literature and it is more
dependent on the decision of the user, the availability of cloudless images over the
region, and the performance expected from the classification. In the reviewed studies,
10% is mostly set for the satellite images. It is also a practice to use completely cloud-free
images (e.g. Campos-Taberner et al. 2023) or set a higher probability limit such as 20%
(e.g. Dimitrov et al. 2021; Sitokonstantinou et al. 2018).,
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Another commonly used, but more sophisticated cloud masking algorithm is the
Function of mask (Fmask) (Zhu and Woodcock 2012). The method uses the physical
characteristics of clouds to distinguish between pixels with clear skies and those that
could become clouds. Temperature, brightness probabilities, and spectral variability are
used to create distinct cloud masks for land and ocean locations. To accomplish precise
cloud and cloud shadow detection in Landsat images, Fmask uses these masks with
probable cloud pixels to identify cloud layers, produce shadow layers, and forecast
cloud shadow locations (Zhu and Woodcock 2012). Since the algorithm is available in
commonly utilized software and its performance is satisfactory, it is utilized by many
studies that are reviewed (e.g. Blickensdorfer et al. 2022; Ghazaryan et al. 2018;
Orynbaikyzy et al. 2020; Shelestov et al. 2017; Skakun et al. 2016; Teke and Cetin 2021).

Multi-Mission Atmospheric Correction and Cloud Screening (MACCS) tool is a method
for cloud detection and atmospheric correction developed by Petrucci et al. (2015) in the
process of preparing the Level 2A processors for Sentinel-2 satellites and VENuS
(Vegetation and Environment monitoring on a Micro Satellite). With an optional proces-
sing step available to correct topography-induced illumination distortions, the algorithm
used in MACCS gains robustness by using temporal information to distinguish between
rapidly varying elements like clouds and slowly changing landscape features (Petrucci
et al,, 2015). As a consequence of the algorithm’s robustness, Defourny et al. (2019),
Matton et al. (2015) and Pelletier et al. (2016, 2017) utilized the algorithm for cloud
masking.

After cloud masking, when no data is available for some parts of an image used for
classification, it is not possible to classify those parts properly with most classification
algorithms. So, those data gaps should be filled for a proper classification map. Temporal
interpolation is a gap-filling method widely used when multitemporal data is available.
The most popular method of temporal interpolation is linear interpolation, which is
performed by averaging the reflectance values of the previous and next images in the
time series, assuming equal time intervals between each image. When time intervals are
not equal or consecutive images are contaminated with clouds, time-weighted averaging
can be used for temporal gap filling. Due to the simplicity and the efficiency of the
method, it is the most commonly used way of cloud-gap filling among the reviewed
studies (e.g. Debella-Gilo and Kristian Gjertsen 2021; Giordano et al. 2020; Inglada et al.
2015, 2016; Orynbaikyzy et al. 2020; Pageot et al. 2020; Pelletier et al. 2016; Teke and Cetin
2021; Valero et al. 2021; Weilandt et al. 2023). Spatial interpolation is another method for
simple cloud gap filling. It can be performed over the object (pixel groups) by interpolat-
ing the values of the object pixels for the gaps in that object.

Another commonly used, but more sophisticated gap-filling way is utilizing Self-
Organizing Maps (e.g. Kussul et al. 2016; Shelestov et al. 2017; Skakun et al. 2016).
Kohonen's self-organizing map (SOM) technique is used to correct weather-related inac-
curacies in data, such as those brought on by clouds or shadows. Incorrect values are not
immediately addressed by SOM,; rather, it is handled as missing data (Abdel Latif et al.
2008). It operates by initially training on clean data that isn't affected by clouds. Then, it
treats incorrect values as missing and finds and eliminates them. Ultimately, SOM esti-
mates the accurate reflectance values by filling up these missing data. This method has
proven effective in managing weather-related data (Abdel Latif et al.2008). As another
sophisticated method to mitigate the cloud cover - related limitations on optical-based
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crop classification efforts, Zhou et al. (2023) applied contrastive learning to fill cloud-
induced gaps by transforming spectral data into complete time-series feature representa-
tions. Their method uses temporal consistency augmentation and spectral band masking,
combined with crop-type information, to learn robust feature embeddings that recon-
struct missing data. This approach improves gap filling and enhances classification
accuracy without relying on traditional interpolation techniques.

4.1.2. Radar Remote Sensing products and features

Active remote sensing products receive reflected pulses sent by the instrument and
operate in the microwave region of the electromagnetic spectrum, allowing them to
penetrate through clouds, thus overcoming limitations caused by the cloud cover over
the target (Lee and Pottier 2017). This capability ensures imagery even in challenging
atmospheric conditions. These products provide valuable information on the structure
and geometry of the observed target. However, proper use of active remote sensing
products requires pre-processing due to its inherently noisy nature. Although extensive
processing is required, the data from active remote sensing greatly aids in the compre-
hension and characterization of the target.

4.1.2.1. Sentinel-1. The Sentinel-1 mission consists of a pair of polar-orbiting satellites
(Sentinel-1A was launched in 2014 and Sentinel-1B launched in 2016) that operate in the
C-band synthetic aperture radar imaging mode day and night, allowing them to obtain
imagery in any weather (sentinels.copernicus.eu). The product has a 6-day temporal and
up to 5-metre spatial resolution. It is the most commonly used radar product in the
reviewed studies, and it is mostly used together with Sentinel-2. Fine resolution of the
product and the capability of overcoming any climatic challenges due to the nature of
radar products, it is becoming more popular in remote sensing-based land cover classi-
fication studies.

4.1.2.2. Polarization (VV-VH-HH). Arbitrary electromagnetic wave polarizations can be
described by ellipses determined by two geometrical parameters, the ellipticity angle and
the ellipse orientation angle (Evans et al. 1988). Zero degrees ellipticity angle represents
linear polarization. For the linear case, orientation angles of 0‘and 180’ indicate horizontal
polarization and 90” indicates vertical polarization (Evans et al. 1988). Radar sensors can
operate in different types and combinations of polarization modes. As an example,
Sentinel-1 can transmit a signal in either horizontal (H) or vertical (V) polarization, and
receive in both V and H polarisations. Radar polarization modes commonly used in crop
cover classification can be summarized as HH - for horizontal transmit and horizontal
receive, VV - for vertical transmit and vertical receive, HV - for horizontal transmit and
vertical receive, and VH - for vertical transmit and horizontal receive. The performance of
different polarization modes, their combinations, and their ratios are tested by multiple
reviewed studies. When the performance of VV and VH is compared, VV was found to yield
higher accuracies (e.g. Arias, Campo-Bescés, and Alvarez-Mozos 2018; Clemente et al.
2020; Karjalainen, Kaartinen, and Hyyppa 2008; Mestre-Quereda et al. 2020; Tomppo,
Antropov, and Praks 2019). In their study, Mestre-Quereda et al. (2020) attribute this
better performance of VH to the higher signal-to-noise ratio (SNR) and smaller temporal
decorrelation of VV compared to VH. In the comparison between VV and HH polarizations,
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studies of Bargiel and Herrmann (2011) and Fontanelli et al. (2022) show that VV polariza-
tion yields superior performance compared to HH, and Busquier, Lopez-Sanchez, and
Bargiel (2020) noted that the overall performance of the coupled use of HH and VV is
equal to VV alone only with some improved accuracies for a few numbers of crop types.
On the other hand, Skriver et al. (2011) reported HH-polarization performed slightly
better. In addition to separate use of the channels, Demarez et al. (2019) showed that
VH/VV yields better results than separate use of the modes and d’Andrimont et al. (2021)
showed that the combination of VV and VH gives the highest accuracy when it is
compared with for the polarization backscattering coefficients themselves and, the cross-
ratio index (VH/VV) along with their combinations.

4.1.2.3. Haralick textures. Haralick et al. (1973) proposed quantifying the spatial rela-
tionship between neighbouring pixels in an image by utilizing a gray-level co-occurrence
matrix (GLCM). Since they are easy to understand and can be computed from the GLCM,
Haralick texture features are frequently utilized in remote sensing applications (Lofstedt
et al. 2019). Haralick textures include measures such as energy, entropy, correlation, and
inertia, all referring to different texture characteristics of the image. Studies that are using
radar images as remote sensing sources while performing crop classification, leveraged
Haralick textures. In their study, Demarez et al. (2019) showed that Haralick textures,
especially the entropy of channel VV, outperformed the raw VV and VH channel features in
terms of variable importance together with the VV/VH ratio. In addition to that, an analysis
of the most relevant features derived from SAR imagery performed by Inglada et al. (2016)
revealed that among Haralick, local statistics, ratios, and raw images, Haralick textures
(entropy, inertia), the polarization ratio, the local mean, and VV imagery contain the
majority of the information required for accurate classification.

4.1.3. Multisource classification
The utilization of classification features derived from multiple remote sensing sources can
be referred to as multisource classification. This method aims to combine and benefit
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from the information offered by multiple sources. Multisource classification can be
performed using multiple optical, multiple radar, or a combination of both types of
sources. Studies investigating different remote sensing sources are given in Figure 4
with the comparison of the accuracies of those sources and their combinations, where
the mapping year is given in parentheses for the studies that mapped multiple years. The
figure shows once again how Landsat 8 lost its popularity after 2020 and Sentinel
products fill that gap. Another point concerning the use of products, only three studies
utilized Sentinel-2 with Landsat, but the number of multisource studies combining radar
and optical products is 17, which shows that this combination was found to bring more
information to the classification than the combination of two optical satellites. When the
overall performance of individual satellites is inspected, it can be seen that Sentinel-1
does not perform well when it is used alone. Sentinel-2 outperforms Sentinel-1 in all cases
where their accuracies are compared except for two cases. For the majority of the cases,
multisource classification yields better results than single-source classification. It is an
expected conclusion since different sources bring more information for the differentiation
of each crop class. Especially, when a radar source is combined with an optical product,
crops can be distinguished by both their textural and spectral features. Another advan-
tage of using a combination of optical and radar data is that it is possible to fill potential
optical data gaps occurring due to cloud cover.

4.1.4. Multitemporal classification

Multitemporal classification is performed by using features from remote sensing products
acquired over multiple dates. Since temporal information is available using remote
sensing, it is possible to explicitly examine the correlations between multiple temporal
phases of a given crop (Ji et al., 2018). Using images from multiple dates allows us to
analyse time series and/or perform harmonic analysis of the reflectance changes over
time. By integrating temporal patterns of reflectance and backscatter, these methods
allow more accurate discrimination of crop types, particularly those with similar spectral
properties at individual time points.
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Figure 5. Accuracies from studies that compared the performance of multitemporal information and
observed more than 15% accuracy increase with added temporal data.
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Studies investigating multitemporal classification are given in Figures 5 and 6 with the
comparison of the accuracies over time. The figures depict similar types of information,
but for better clarity, the accuracy results are categorized based on the degree of accuracy
increase over time. Both figures indicate that accuracy does not exhibit significant
increases after the day of the year (DOY) 220 (mid-August), corresponding to the end of
the crop season when most fields are either harvested. The peaks of accuracy increase
occur between DOY 120 and 150 (May) and DOY 180 to 210 (July), suggesting substantial
variations in spectral and scatter signatures during these months for major crops.

In Figure 6, it is notable that some studies did not observe an increase in accuracy with
the added temporal data. For instance, Matton et al. (2015) noted a minimal increase in
accuracy at the Belgium study site, possibly because the time series starts after May.
Conversely, a significant accuracy boost was observed at the France test site from the start
after May. The discrepancy in accuracy increases between Ukraine and France, despite
similar start dates, could be attributed to climate and cropping season variations across
these countries. In the study of David, Giordano, and Mallet (2021), a different accuracy
profile was observed. They found that early results (until April) were inferior to middle
results (until July), with late results (until November) not showing significantly superior
performance compared to middle. The authors suggest that the differences in accuracy
across different stages may be attributed to variations in phenological stages or the
emergence of another crop type in November. In contrast to other studies, M. Teimouri
et al. (2022) conducted tests over single-date images throughout the season, rather than
time series, as represented with lines with markers in Figure 6. Their study revealed the
best accuracy results during May, with optical time series significantly improving the crop
classification accuracy by at least 3.9%. Demarez et al. (2019) demonstrate that images
acquired from April to the end of June notably enhance accuracy, corresponding to the
onset of the irrigation campaign, which holds significant importance for water manage-
ment. However, the accuracy gain becomes less significant after this period. An explana-
tion for the difference between these two figures may be found in the fact that, in most of
the studies represented in Figure 5 (except for Matton et al. (2015) and Tomppo,
Antropov, and Praks (2019)), which show a significant increase in accuracy, barley and
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Figure 6. Accuracies from studies that compared the performance of multitemporal information and
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wheat crops are classified as two separate classes. These two common crops, which
exhibit similarities in their spectral signatures, appear as distinct classes in only five studies
within the second group shown in Figure 6. In other studies, such as those by Valero et al.
(2021) and Ghazaryan et al. (2018), these two classes of cereal crops are combined under
a single heading to mitigate the disadvantage of similar spectral characteristics that could
lead to decreased accuracy. Alternatively, in the work of M. Teimouri et al. (2022), only one
of these crops is represented among the classes in the study area. The differences in
accuracy changes can be a result of better separation of crops with similar spectral
characteristics due to the use of more temporal data. This is especially relevant since
these crops can show minimal differences in their growth stages, which can only be
detected through frequent observations throughout the cropping season.

The figures also show that from 2008 to 2023 there has been a consistent and growing
interest in multitemporal classification methods. Early work in the late 2000s and early
2010s has already explored these approaches, and since then, the frequency and variety
of research using multitemporal remote sensing data have increased significantly. The
continued rise in publications over recent years indicates that multitemporal classification
has become a standard and essential practice in crop monitoring studies. This trend
highlights the increasing recognition of the value of temporal dynamics in remote sensing
for accurately distinguishing crop types and understanding growth patterns, which
single-date classifications often fail to achieve.

4.1.5. Temporal compositing

Temporal compositing is the merging of the information of remote sensing images acquired
on multiple dates over the same region. It can be performed by summarizing the pixel value
using statistical methods like taking the mean/min/max/median of existing multiple pixel
values. While observing time-series data, using all possible images can result in abundant data
and cause storage and computational cost problems. When compromising little reflectance
changes over consequent images, temporal information can be summarized with this
method. It is also helpful for eliminating data gaps due to excessive cloud cover as the gaps
will be filled with the information in the time series. Studies investigating different temporal
compositing units are given in Table 3, and the accuracies of different temporal resampling
units are compared. It can be concluded from the table that using more frequent images
increases classification accuracy. Griffiths, Nendel, and Hostert (2019) attribute this

Table 3. Accuracies from studies that compared the performance of multiple temporal
resampling units.

Study Resampling Unit Accuracy (%)
Griffiths, Nendel, and Hostert (2019) 10-day 81
Monthly 79
Seasonal 75
Mestre-Quereda et al. (2020) 6-day 775
12-day 73.8
18-day 69.7
Debella-Gilo and Kristian Gjertsen (2021) 7-day 94
14-day 93
21-day 92
28-day 90
Busquier et al. (2021) 8 images over 240 days 59.7

40 images over 240 days 76.1
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improvement in accuracy to the importance of high temporal repetition observations for
mapping dynamic phenomena like agricultural cultivation, with short interval composites
maintaining most of the necessary temporal information. Even though more frequent data
brings more information to the classification and yields better performance, computation
time should also be a measure for efficiency assessment for resampling units. Debella-Gilo and
Kristian Gjertsen (2021) discuss another challenge related to frequent data, specifically, the
difficulty of obtaining cloud-free optical images. They use temporal interpolation to solve this
problem, demonstrating its efficiency in preserving accuracy even when the dataset contains
cloudy images.

4.2. Classification algorithms

4.2.1. Overview of classification algorithms

In this section of the study, the most commonly used classifiers are briefly explained, and
their advantages and limitations in comparison to other methods are highlighted based
on the reviewed studies.

4.2.1.1. Decision trees. The decision tree classifier classifies an unknown sample step-by
-step using a set of decision functions, and this classification strategy can be represented
by a tree diagram (Swain and Hauska 1977). An attribute of the data is chosen at each
node of the tree to best divide its set of samples into subsets enriched in one or more
classes. The C5.0 decision tree technique, a popular option for supervised learning, was
utilized by Esch et al. (2014) with a collection of input characteristics that included spectral
bands from five input scenes, NDVI, and seasonality layers. They point out that as long as
the chosen classes are well represented in the training dataset, the algorithm will choose
pertinent features and appropriate thresholds for class assignment automatically. As more
advanced algorithms develop, decision trees are gradually losing popularity in remote
sensing-based crop classification research. Simén Sanchez et al. (2022) evaluated the
performance of decision trees compared to more complex categorization algorithms
serve as an example of this trend. According to their findings, decision trees under-
performed the more sophisticated techniques of Multi-Layer Perceptrons (MLPs), convo-
lutional neural networks (CNNs), and RF, demonstrating their shortcomings as reliable
models for crop categorization training.

4.2.1.2. Random Forests. RF, developed by Breiman (2001), are an ensemble of decision
trees that produce predictions by choosing the most popular prediction results of grown
trees for classification tasks. The power of RF comes from the randomization of split
features for each tree resulting in uncorrelated trees, thus making the algorithm more
robust to overfitting (Hastie et al. 2009; James et al. 2013). RF is also robust to outliers and
noise (Rodriguez-Galiano et al. 2012), which can occur in remote sensing images often
due to their nature.

Due to its aforementioned advantages, RF is the most common classification algo-
rithm used in the reviewed crop classification studies. A study by Hitt, Waldhoff, and
Bareth (2020) demonstrates its robustness on high-dimensional data that is not
normally distributed. RF is also shown to be more robust to random class label
noise by Pelletier et al. (2017) when performance is compared to support vector
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machines (Cortes and Vapnik 1995). Another advantage of RF is the ease of use and
low computational cost of the algorithm, which makes the algorithm more popular for
large-scale applications when compared to more complex classification algorithms
such as neural networks and SVM. Stefanski, Mack, and Waske (2013) emphasize its
simple handling and fast training times with high-dimensional feature spaces even
with limited training samples. Wozniak et al. (2022) confirm the efficiency of RF in
large-scale applications, reporting the highest with a short computing time.
Furthermore, Ok, Akar, and Gungor (2012) emphasize the consistency of the RF, by
testing the performance of the algorithm with varying hyperparameter combinations
and yielding similar performance with these combinations.

4.2.1.3. Support Vector Machines. As a supervised non-parametric statistical learning
method, support vector machines (SVMs) do not make any assumptions about the under-
lying data distribution (Mountrakis, Im, and Ogole 2011). The SVM training algorithm
seeks to identify a hyperplane that divides the dataset into a definite specified number of
classes in a way that is consistent with the training examples (Mountrakis, Im, and Ogole
2011). SVM splits the problem into binary classification subproblems, fclasses (Rusnak
et al. 2023). Hyperparameters to be tuned throughout the optimization process include
the type of kernel functions, box constraint level, kernel scale, and multiclass strategy
(Rusnak et al. 2023).

In the reviewed crop classification papers, SVMs are the second most used approach
among commonly used classification algorithms, and their advantages are demonstrated
in these studies. Rusnak et al. (2023) used SVMs for classification, leveraging the algo-
rithm’s capacity to map training examples in high-dimensional space and identify the
best-separating hyperplanes, which effectively reduced overfitting and produced well-
separated classes. They also emphasized how SVM can handle large feature spaces and
can adapt to a variety of data distributions. While Rusidk et al. (2023) found SVMs
beneficial for handling large feature spaces, Ustuner, Balik Sanli, and Dixon (2015) high-
lighted SVM’s effectiveness in achieving high classification accuracy with small training
datasets. Ustuner, Balik Sanli, and Dixon (2015) noted that SVM outperformed conven-
tional techniques for agricultural classification across a range of model types, including
linear, polynomial, radial basis function, and sigmoid. They concluded that SVM out-
performed the conventional Maximum Likelihood Classification (MLC) (Otukei and
Blaschke 2010) technique in terms of performance. Additionally, Camps-Valls et al.
(2004) highlighted how effectively SVM performed in classification and regression tasks,
even in situations with a lot of potentially relevant input characteristics and unclear
patterns, and it is also observed to be effective at recognizing noisy features. In terms
of recognition and misrecognition rates, they observed that SVM outperformed neural
networks, and it was also successful in identifying noisy bands in a variety of categoriza-
tion settings. Additionally, Camps-Valls et al. (2004) showed how the method can handle
the existence of confusing patterns and features in datasets and proposed that SVMs offer
an advantage in areas where feature selection is not practical given technological speci-
fications. Additionally, they emphasized how SVMs can produce simple solutions with
a low rate of support vectors, which may make it easier to compress hyperspectral images
while preserving important information.
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4.2.1.4. Maximum Likelihood classifier. One of the well-known parametric classifica-
tion algorithms used for supervised classification is the maximum likelihood approach. For
each class, second-order statistics of a Gaussian probability density function (pdf) are used
by the maximum-likelihood classifier (MLC) (Paola and Schowengerdt 1995). If the class
pdfs are Gaussian, then it is the best classifier, which is why it is frequently used as
a benchmark for classifier comparison (Paola and Schowengerdt 1995). Using multi-
temporal Landsat 8 OLI data from 2013, Azar et al. (2016) showed that MLC was the
most accurate algorithm compared to distance-based classifiers Euclidean Minimum
Distance (EMD), Spectral Angle Mapper (SAM), and NN. They reported that this result is
consistent with earlier research that shows MLC's ability to map different crop kinds
utilizing satellite data with a medium resolution. Similarly, for crop classification,
Fontanelli et al. (2014) looked into a number of supervised techniques, such as MLC,
Energy Minimization Distance, and SAM. They concluded that MLC outperformed its
competitors and continuously demonstrated higher OA performance in each thematic
level, time step, and using both optical and SAR input data. Furthermore, a comparative
study of classifiers for pan-sharpened and multispectral imaging was carried out by
Castillejo-Gonzalez et al. (2009) and the results showed that MLC was the best classifier
for all land uses. The robustness and dependability of MLC in crop classification tasks
across various datasets and environmental situations are highlighted by these collective
outcomes.

4.2.1.5. K-Nearest neighbor. Another method explored in the reviewed studies is the
K-nearest neighbour (kNN) algorithm. The main principle behind a conventional kNN
approach is to predict a test data point’s label using the majority rule, which is to say,
using the major class of its k most similar training data points in the feature space to
predict the test data point’'s label (Cheng et al. 2017). To classify crops, Chakhar et al.
(2020) evaluated a set of 22 classification methods, such as decision trees, ensemble
classifiers, SVM, closest neighbour, and discriminant analysis. Out of all the approaches
they assessed, they observed that the subspace ensemble method with nearest neigh-
bour learners stood out as the most robust algorithm. This was followed by the nearest
neighbour classifier with fine kNN, which provided the best balance between processing
time and accuracy.

4.2.1.6. Neural Networks. To identify patterns in data, neural networks (NN) use a chain
of interconnected input, hidden, and output layers. The architecture of the NN is custo-
mized based on the complexity of the data and the desired performance (Rusrak et al.
2023). Rusndk et al. (2023) describe how NNs, which are well-known for their adaptability,
can be optimized for certain data kinds and distributions varying hyperparameters like
layer sizes and activation functions.

Skakun et al. (2016) and Shelestov et al. (2017) used committees of neural networks,
specifically MLPs with hyperbolic tangent activation function for neurons in the hidden
layer and logistic activation function in the output layer, to improve classification accuracy
in crop classification application. Skakun et al. (2016) highlighted the benefits of the
committee approach, emphasizing its capacity to resolve classification problems and
produce probabilistic results. Shelestov et al. (2017) also emphasized how ensemble
NNs, in particular, MLP, are more effective than single classifiers like SVM, DT, and RF at
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enhancing classification performance. While acknowledging the potential of other classi-
fiers, Shelestov et al. (2017) suggested that variations in performance when compared to
other techniques could be explained by the fact that NNs’ full potential in remote sensing
is still to be discovered.

As an alternative to MLPs, the Radial Basis Function (RBF) is also explored for crop
classification. Foody (2004) conducted a study to compare the performance of MLP and
RBF, suggesting that the presence of untrained classes poses a significant challenge in
classifications resulting in a notable decrease in accuracy. The study highlights the RBF
network’s potential for partitioning local feature space and eliminating unusual cases
from further analysis, indicating that it is a better option than MLP for some remote
sensing applications and deserves more research.

The most popular deep learning algorithm for spatial pattern analysis, convolutional
neural networks (CNNs), are made to identify the spatial features — such as edges, corners,
textures, or more abstract shapes - that best characterize a target class or quantity
(Kattenborn et al. 2021). Convolutions, or multiple and sequential transformations of
the input data on various spatial scales (such as via pooling operations), are the funda-
mental building blocks for learning these characteristics because they make it easier to
recognize and combine both high-level concepts and low-level information (Kattenborn
etal. 2021). In their 2017 study, Kussul et al. highlighted the advantages of CNNs in remote
sensing applications over more conventional techniques like RF and MLPs. Their research
showed that hierarchical representations of spectral and temporal information may be
created using CNNs, leading to more precise classification. In particular, they discovered
that 2-D CNNs performed better than 1-D CNNs, despite certain restrictions in managing
small objects that were smoothed and incorrectly classified in the final classification maps.

To classify crops and distinguish between irrigated and non-irrigated areas, Simodn
Sanchez et al. (2022) suggested a novel method that makes use of CNNs. Using convolu-
tion-based algorithms to make multispectral temporal patterns explicit, they were able to
improve classification accuracy by organizing pixel information as a 2D yearly fingerprint.
They also added oversampling methods to handle phenological changes and improve the
classification process’ resilience. The study highlighted how well CNNs performed in
comparison to other models, with CNNs providing a good balance between classification
accuracy and computational efficiency. M. Teimouri et al. (2022) noted that CNNs have
a high computational cost in addition to the demand for large training datasets in CNN-
based crop classification. They also emphasized the significance of precisely creating
virtual training samples from real data in order to effectively meet this requirement.
Studies comparing CNNs with other classifiers, like MLPs, were carried out by Debella-
Gilo and Kristian Gjertsen (2021) and Mazzia, Khalig, and Chiaberge (2020). CNNs are
better at learning than MLPs, according to their research, and the decision between
1-D and 2-D CNN designs is based on certain trade-offs between generalization perfor-
mance and training time.

Recurrent Neural Networks (RNNs) are a class of deep learning algorithms that account
for dependence between sequential inputs (Sharma, Liu, and Yang 2018). RNNs are often
employed to account for variations in crop stages over time, as time-series analysis plays
a significant role in crop cover classification. The advantage of RNN models in making use
of temporal relationships in remote sensing data was emphasized by Ndikumana et al.
(2018). Their study showed that RNNs are useful for identifying and taking advantage of
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temporal correlations, especially in classes that show consistent temporal patterns over
extended periods. Because of this feature, RNN models are superior to popular classifica-
tion strategies that do not leverage temporal correlations directly. Furthermore, RNN-
based methods excelled in identifying temporal relationships in remote sensing data,
which improved classification precision for a variety of agricultural classes. Mazzia, Khaliq,
and Chiaberge (2020) conducted a comparison between the suggested Pixel R-CNN
model (RNN in combination with CNN) and conventional machine learning techniques,
including kernel SVM, RF, gradient boosting machine (XGBoost), and SVM. The results of
the study showed that the Pixel R-CNN methodology outperformed these popular tech-
niques in terms of OA and kappa values, highlighting its usefulness in using time-series
data for multi-temporal classification problems. Another comparison was made by
Farmonov et al. (2023) between conventional machine learning algorithms RF and SVM
and their proposed CNN-based method for crop-type mapping. They presented a novel
wavelet attention 2-D-CNN that outperformed RF and SVM in terms of classification
accuracy and robustness. Their study, which made use of hyperspectral data from the
DLR Earth Sensing Imaging Spectrometer sensor (German Aerospace Center, 2019),
showed how well the suggested CNN architecture could learn characteristics for the
classification of images, especially when it came to adding fine-grained details of features
in the high-frequency domain.

Another study utilizing RNN and CNN in combination is conducted by Turkoglu et al.
(2021) with the ms-convSTAR technique. This technique encodes a convolutional recur-
rent neural network (convRNN) with a three-level label hierarchy. This method helps the
model acquire joint feature representations for rare classes at higher levels, like orchards,
by predicting three labels for each pixel at different granularities. The ms-convSTAR
approach uses a CNN-based label-refinement component to provide consistency
throughout the classification process, in addition to a hierarchical tree structure of labels
to achieve simultaneous classification across several hierarchy levels. In line with recent
advances in spatio-temporal modelling, a novel approach called Spatio-Temporal Multi-
level Attention (STMA) was proposed by Han et al. (2023) to improve crop classification
using time-series SAR imagery. Unlike traditional DL-based models that operate with
limited spatio-temporal receptive fields, STMA integrates multi-scale spatio-temporal
features through a multi-level attention mechanism. Additionally, it employs a learnable
spatial attention position encoding to adaptively generate position priors, enhancing the
extraction of multi-granularity features.

Furthermore, a deep learning technique tailored for multitemporal remote sensing
images, the Pixel-Set Encoder - Temporal-Attention Encoder (PSETAE) model
(V. S. F. Garnot et al. 2019) is utilized by Weilandt et al. (2023). They demonstrated the
method’s superiority over an RF algorithm in terms of F1 score (0.91 for PSE-TAE versus
0.72 for RF). Their results are consistent with earlier studies, although their study
employed far larger datasets, and they found that deep learning models perform better
since they can handle vast volumes of data iteratively. While the RF algorithm can still be
further optimized, preliminary findings suggest that its efficacy might not be on par with
the deep learning method.

4.2.1.7. Distance-based classifiers. Two distance-based classifiers are used in the
reviewed studies before ML algorithms become more popular. One of these classifiers is
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the Spectral Angle Mapper (SAM). SAM is defined by (Boardman, 1993) as a tool enabling
swift mapping of spectral similarity between image spectra and reference spectra. By
computing the angle between them in a space whose dimensions match the number of
bands, SAM compares the spectral similarity between the image and reference spectra,
which are obtained from either laboratory or field measurements or extracted from the
image, assuming data transformation into ‘apparent reflectance’ without biases (Kruse
et al. 1993). The second most popular distance-based classifier used in the reviewed
studies is the Euclidean-based minimum distance classification algorithm (EMD). The
primary goal of the technique is to classify an unclassified pixel to the nearest class,
where the nearest is established using Euclidean distance in N-band space. Azar et al.
(2016) used a variety of techniques to classify crop cover and found that non-parametric
and statistical algorithms, such as MLC and NN, performed better than the distance-based
classifiers, EMD, and SAM. The authors explained this underperformance by pointing to
the fact that SAM and EMD were originally designed to rely on spectrum information
rather than multi-temporal information and that they were also limited in their ability to
handle intra-class variance within classification decision rules (Kruse et al., 1993; South,
Jiaguo, and Lusch 2004).

The number of studies that utilized each classification algorithm annually is depicted in
Figure 7. As seen in the figure, MLC became less common after 2018 although its use was
more common during the 2010s. The most popular classifier from 2016 to 2022 is RF, but
the most popular classification technique in 2023 is NN, which may indicate that deep
learning potentially might replace other machine learning techniques in the future. Since
machine learning algorithms became more widely utilized, SAM has not been employed.

4.2.2. Accuracies obtained by the classification algorithms
RF is the most frequently used classification method in crop classification studies due to
its robustness, simplicity, and efficiency. It handles high-dimensional and non-normally
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Figure 7. Use of popular classification algorithms over time. (EMD: Euclidean-based minimum
distance, SAM: spectral angle mapper, MLC: maximum likelihood classifier, KNN, k-nearest neighbour,
DT: decision trees, NN: neural networks, SVM: support vector machines, RF: random forests).
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distributed data effectively (Hutt, Waldhoff, and Bareth 2020) and remains resilient to
label noise (Pelletier et al. 2017). Its ease of use and low computational cost make it well-
suited for large-scale applications (Wozniak et al. 2022), and it performs reliably across
varying hyperparameter settings (Ok, Akar, and Gungor 2012). However, despite these
strengths, RF can be outperformed by more advanced models when temporal or spatial
complexity is high.

Support Vector Machines (SVM) are the second most applied technique, valued for
their ability to manage high-dimensional feature spaces and define optimal separating
hyperplanes. SVMs perform well even with small training datasets (Ustuner, Balik Sanli,
and Dixon 2015), adapt to various data distributions (Rusndk et al. 2023), and effectively
filter noisy features (Camps-Valls et al. 2004). Their performance often surpasses conven-
tional approaches like Maximum Likelihood Classification (MLC) and neural networks in
specific scenarios. However, SVMs can be computationally expensive and sensitive to
kernel and parameter choices, especially with large datasets.

Maximum Likelihood Classification (MLC), though more traditional, continues to show
strong performance, especially with medium-resolution, multi-temporal satellite data.
Several studies have shown MLC outperforming distance-based classifiers such as
Euclidean Minimum Distance (EMD) and Spectral Angle Mapper (SAM) (Azar et al. 2016;
Castillejo-Gonzélez et al. 2009; Fontanelli et al. 2014). Its strengths lie in statistical model-
ling, but it is less effective when intra-class variability is high or when spectral information
alone is insufficient for discrimination.

Neural networks (NNs), including multilayer perceptrons (MLPs), convolutional neural
networks (CNNs), and recurrent neural networks (RNNs), offer powerful tools for handling
complex, high-dimensional, and temporally rich data. MLP ensembles have been shown
to outperform RF, SVM, and decision trees in some cases (Shelestov et al. 2017). CNNs are
particularly effective at learning spatial and spectral hierarchies (Kussul et al. 2017), with
2-D architectures generally offering better accuracy than 1-D CNNs. RNNs further enhance
performance by modelling temporal dependencies, improving classification of crop types
with consistent seasonal patterns (Mazzia, Khalig, and Chiaberge 2020). Hybrid architec-
tures like Pixel R-CNN and attention-based CNNs (Farmonov et al. 2023) achieve superior
accuracy and robustness but come with increased computational demands and often
require large, well-annotated datasets.

The performance comparison of various classification algorithms across studies is
illustrated in Figure 8, which also includes the sizes of the study areas. The figure
illustrates the relationship between classification algorithms and their accuracy, taking
into account the influence of study area size on the choice of algorithm. It shows a trend
of increasing study area sizes over time, likely due to advancements in technology and
computational resources. Although high accuracies were achieved in the early 2000s, the
study areas were more limited. One thing that draws attention is that the maximum
likelihood classifier was a promising option for crop classification before machine learning
algorithms became popular. The potential of yielding more than 90% accuracy shows that
a parametric algorithm can also give satisfactory classification results. However, when
machine learning methods started to be used, MLC could not outperform those algo-
rithms and lost its popularity. It can also be observed that the performance of kNN and
decision trees (DT) were tested from time to time between 2016 and 2022, but they never
yielded the best accuracy among the options. Similarly, SAM never yields the best results
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Bubble Chart of Algorithm Accuracies by Study Area
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Figure 8. Accuracies from studies that compared the performance of multiple classification algorithms
with study area sizes. The colours of the bubbles indicate the type of algorithm used with similar

accuracy values grouped in the same bubble, while their size corresponds to the area of the study in
square kilometres.

when it is compared to the other methods. Meanwhile, except for one case, NN yielded
the best results, showing the potential of deep learning techniques. The use of NN in
large-scale studies, despite their complexity, indicates their strong performance potential
for handling complex tasks. The most commonly used algorithms were RF and SVM,
yielding close accuracies. The number of reviewed studies covering areas larger than
30,000 km? demonstrates the widespread use of RF for large-scale classification, with 13
out of 23 large-scale studies utilizing RF. This demonstrates that RF’s efficiency for large
data sets makes it an ideal tool for mapping crop cover. Considering this close perfor-
mance and the simplicity of the algorithm, RF can be a favourable choice when +90%
accuracy is not aimed.

4.3. Classification level

There are two main possible levels of classification units; pixel-level and object-level.

4.3.1. Pixel level classification

With pixel-level classification, each pixel has its input features and each pixel is classified
separately. It is simpler and less sophisticated than object-based methods. One of the
disadvantages of pixel-level classification is that the images and hence the product map
can suffer from salt and pepper noise, and the process of classification can be more
computationally costly because of the larger number of units that are classified.

4.3.2. Object level classification
To obtain a crop cover map consisting of objects, pixels can be grouped as single-class
objects after the classification. With this method, after the classification is done at the
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pixel level, majority voting (e.g. Kussul et al. 2016; Vaudour, Noirot-Cosson, and Membrive
2015) or taking the mode of all classes within the object (e.g. Turker and Ozdarici 2011)
can be implemented on the pixel’s classes over a specified area. To do this, coordinates or
areas should be pre-defined such as field boundaries. If the field boundary information is
available, then each field can be assigned to a crop class by majority voting of the pixel
classes within the field boundary (e.g. David, Giordano, and Mallet 2021). If not, classified
pixels can be grouped considering spatial relations to eliminate the salt and pepper effect
(e.g. Griffiths, Nendel, and Hostert 2019).

Another way of performing object-based classification is to create the object, in other
words, create the pixels groups, image pixels that are similar according to their features
can be assigned as a single object to be classified. After grouping, each group (segment,
cluster) of pixels is treated as a single object, and the classification is performed at the
object level. For crop classification applications, one way of doing this is using available
field (parcel) boundary data. Features of the pixels in each field can be represented by
single or multiple values for each feature (by taking the mean, median, etc. of the pixels
inside the field) and these values can be used as classification inputs to assign a crop class
to each field. This method can reduce the computational cost and increase the classifica-
tion accuracy significantly.

LPIS (or IACS), which supplies the geospatial data for crop delineation and local farm-
ers’ declarations as part of their CAP subsidy applications, provided ground truth data
and/or object boundary information in many of the reviewed studies (e.g. Arias, Angel
Campo-Bescés, and Alvarez-Mozos 2020; loannidou et al. 2022; Kyere et al. 2019;
Sitokonstantinou et al. 2018; Sykas et al. 2022; Tomppo, Antropov, and Praks 2019).
These studies calculated parcel-wise statistics to summarize the optical or scattering
information of each pixel inside the parcels, like other studies that employed object-
based classification with available parcel boundary data through different sources (e.g.
Foerster et al. 2012; Larrafiaga and Alvarez-Mozos 2016; Teke and Cetin 2021).

Object-based classification is also feasible when field data is not available, in this case
different segmentation and boundary detection algorithms can be used to create pixel
groups and decrease the computational cost of the classification while potentially increas-
ing the classification accuracy by eliminating the salt and pepper effect and minor
heterogeneities of the land cover. Studies using segmentation algorithms for before-
classification object-based crop classification use statistical measures, most typically the
mean value of the pixel features inside of the objects, similar to the studies with parcel
boundary information (e.g. Belgiu and Csillik 2018; Esch et al. 2014; Immitzer, Vuolo, and
Atzberger 2016).

4.3.2.1. Segmentation/Boundary detection techniques for object level classifica-
tion. Segmentation in the context of remote sensing imagery is grouping pixels of the
region of interest considering common features of the pixels, according to similarities of
those features. Castillejo-Gonzalez et al. (2009) utilized the Fractal Net Evolution Approach
(FNEA) segmentation algorithm on Quickbird imagery before performing segmentation.
They highlighted the benefit of the method, emphasizing that users can modify the
segmentation output by varying factors like the size, colour, and form of the generated
image objects in addition to weighing the input data specifications. Hoekman, Vissers,
and Tran (2011) introduced a new method for unsupervised and supervised image
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classification that is capable of handling various types of data, including full-polarimetric
data, partial-polarimetric data, and multitemporal observations. The method includes
several steps. The first step involves (reverse) transforming the full polarimetric radar
information into nine backscatter intensity values. Subsequently, the process proceeds to
unsupervised clustering, which includes a simple region-growing segmentation, allowing
for incomplete and over-segmented regions. Following this, model-based agglomerative
clustering and expectation maximization are applied to the pixels within these segments.
Classification is then performed using Markov random field filtering applied to the original
data. They observed that the unsupervised strategy had significantly more thematic
detail, while the supervised approach had higher accuracy scores.

To segment Sentinel-2 photos into homogenous objects, Belgiu and Csillik (2018)
utilized the multi-resolution segmentation (MRS) algorithm, one of the well-known seg-
mentation approaches in Object-Based Image Analysis (OBIA). They found that segment-
ing multitemporal images was a useful technique for defining crop fields — particularly
those impacted by irrigation systems — which highlights the efficacy of this strategy. The
MRS algorithm is also used by Stefanski, Mack, and Waske (2013) to compare the novel
method they introduced in their paper. Using a novel segmentation technique and RF for
object-based classification of multitemporal data, Stefanski, Mack, and Waske (2013)
present a semi-automatic optimization strategy. Several segmentation levels are pro-
duced by the Superpixel Contour (SPc) (Mester, Conrad, and Guevara 2011) method by
parameter adjustments within a user-specified range. The best set of parameters is then
selected using the RF-provided out-of-bag (OOB) error. They observed that the SPc
algorithm produces segmentation maps that are accurate and as good as those of the
commonly used MRS, and it is easy to handle with just two primary parameters. The
approach suggested by the authors, which selects parameters based on the OOB error
rate, is reported to work well and produce better classification accuracy and optimized
image segmentation.

The Sequential Maximum a Posteriori (SMAP) (Bouman and Shapiro 1992) technique
was used for segmentation by X. Xie and Quiel (2000), who emphasized the advantages of
this algorithm. The Gaussian mixture distribution spectral class model is used by the SMAP
image segmentation technique to process multispectral images. SMAP divides the image
into areas by utilizing the fact that neighbouring pixels are likely to have the same class, as
opposed to segmenting each pixel separately. It works at different resolutions or scales,
using coarser segmentations to guide finer ones. In addition to lowering misclassifica-
tions, SMAP, according to the authors, also produces more connected regions within
a class, which may be useful in some situations.

Esch et al. (2014) used the Definiens Developer software (version 8.7) to segment
images before the classification step. They highlighted that the method first presented
by Esch et al. (2008) has the goal of minimizing over- and under-segmentation to obtain
more accurate results that are especially suited to spatially heterogeneous landscapes.
Another way to create objects for object-based classification is edge detection. Some of
the reviewed studies preferred this technique instead of segmentation. Inglada et al.
(2015) stated that the reason for choosing this technique is that tuning of segmentation
approaches is difficult to automatize for different crops and field types, which causes
errors. For this reason, the authors used edge-preserving smoothing filtering in the first
phase of the mean-shift approach. Another study by Lavreniuk, Kussul, Shelestov, et al.



8278 (&) E.DONMEZET AL.

(2018) also used edge detection to approximate the derivatives based on the Sobel
operator for each pixel, one for changes in the horizontal direction and another for
changes in the vertical direction.

A more recent approach is panoptic segmentation, which combines classification and
segmentation by simultaneously detecting parcel boundaries and classifying each par-
cel’s crop type without relying on predefined field boundaries (Kirillov et al. 2019). This
method was tested by Fare Garnot, Vivien, and Chehata (2022) for crop classification using
the publicly available PASTIS-R - Panoptic Segmentation of Radar and Optical Satellite
image Time Series dataset. Although it underperformed compared to object-based
methods using known parcel boundaries, it still outperformed pixel-based approaches,
demonstrating strong potential when parcel boundary information is unavailable.

4.3.3. Accuracy comparison

The results of studies that performed classification at both the object and pixel level on
the same work area and compared the accuracy at these two levels are given in Figure 9. It
can be seen that object-level classification yields better accuracy except for three cases:
Belgiu and Gsillik (2018) over Italy and Matton et al. (2015) over France and Belgium.

4.4. Additional features

Features retrieved from sources other than optical and radar satellites can be used to
improve classification accuracy. The most common types of additional features used in
crop classification studies are climatic and topographic features. Balzter et al. (2015)
analysed the first two Sentinel-1A SAR image acquisitions over Thuringia, Germany.
They used a Digital Terrain Model (DTM), a Canopy Height Model (CHM), and slope
and aspect maps from the Shuttle Radar Topography Mission (SRTM) as input bands to
analyse the landscape’s geomorphological properties. They found that including
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Figure 9. Accuracies from studies that compared the performance of multiple classification levels.
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SRTM-based inputs, such as slope and aspect, improved the classification accuracy by
20.9%. Another study investigating the added utility of topographic features to crop
classification was conducted by Demarez et al. (2019), investigating the impact of
Sentinel-1 images combined with Landsat 8 optical imagery and DEM. The study is
conducted in a temperate zone in southwest France and focuses on irrigated maize
crops using the RF classifier. Integrating radar, optical, and SRTM data improved the
early crop classifications (k=0.89) as compared to using each data source separately
(k=10.84). While the digital elevation model was useful in the early phases, its effec-
tiveness reduced as crops matured. Kyere et al. (2020) incorporated elevation and
slope data from the SRTM-DEM in their study. They utilized multi-temporal
Harmonized Landsat Sentinel-2 (HLS) data and a target-oriented cross-validation mod-
elling approach with the RF algorithm to classify 13 crop types. In contrast with the
other studies that evaluated the performance of SRTM, they reported that the addition
of topographic information to the spectral predictors did not enhance the overall
classification performance. Pageot et al. (2020) proposed a method to identify irrigated
and rainfed plots in a temperate region (southwestern France) by combining Sentinel-
2, Sentinel-1, and SAFRAN meteorological time-series data using an RF classification
algorithm. Using monthly cumulative indices obtained from these satellite data, the
study used 2 years of data with various meteorological characteristics to evaluate the
performance of the method over different climatic conditions. The authors reported
that combining data from radar, optical, and weather sources improved irrigated crop
categorization accuracy compared to individual data sources. Blickensdorfer et al.
(2022) used predictor factors such as terrain, temperature, and precipitation to address
agro-ecological gradients across Germany, as well as extensive time-series data from
Sentinel-2 and Landsat 8, paired with monthly Sentinel-1 composites. Topographic
variables like elevation, hillslope, and aspect were calculated using a DEM given by the
German Federal Agency for Cartography and Geodesy, as well as the Topographic
Wetness Index (TWI) (Gruber and Peckham 2009). Climate parameters such as tem-
perature and precipitation were studied using high-resolution climatological data, with
special attention paid to deviations from the average climatology for the years
2017-2019. Meteorological and soil moisture data has been obtained from the
German weather service. Thirty-nine environmental factors were developed to capture
regional and seasonal changes in growing conditions. Integrating optical, SAR and
environmental data improved the total accuracy by 6% to 10% over single-sensor
strategies. Seasonal and long-term environmental variables were included in the
model to account for variability, resulting in enhanced parcel homogeneity and less
regional-specific class confusion identified through visual interpretation of the maps.

4.5. Additional methods

Some extra steps can be implemented to increase the accuracy or to decrease the
computational cost of the classification. In this section, additional methods used in the
reviewed studies enhancing the classification either by increasing accuracy or decreasing
computational time are presented.
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4.5.1. Hierarchical classification

Hierarchical classification performs classification multiple times on different granularities.
Results of the first classification granularity level with coarser classes can be used to mask
irrelevant classes before the classification with more detailed classes (i.e. the first classi-
fication divides the study area as cropland & non-cropland, then performing classification
over cropland for different crop types). This method can potentially decrease the compu-
tational cost by reducing the study area of the detailed classification. It can also poten-
tially increase classification accuracy by eliminating classes that can be confused with
detailed classes beforehand (e.g. Chen et al., 2009; Turkoglu et al. 2021). Asam et al. (2022)
performed a two-phase hierarchical classification to first distinguish the cropland area and
classify the crop cover in the second phase. Similarly, Tricht et al. (2018), and d’Andrimont
et al. (2021) first performed a classification with broad land cover classes and performed
a second level of classification for crop classes. With the hierarchical approach Tricht et al.
(2018) reported improved accuracy (+1.5% OA) compared to the non-hierarchical
approach in which classification is performed in one single step. As a different approach
to the implementation of hierarchical classification, Foerster et al. (2012) first classified the
whole data into three groups consisting of summer crops, winter crops, and perennial
field grass/fallow land, and in the second phase, single crops are classified with their NDVI
temporal profiles. Lastly Ya'nan et al. (2024) implemented hierarchical crop classification
with a first level grouping crops by growing season (summer, winter, spring, and other) at
the coarse level, followed by individual crop classification at the fine level. Their method
employs a tree hierarchical loss (THL) to enforce consistency between levels and
a temporal proposal block (TPB) to focus on important time segments for detailed
classification.

4.5.2. Feature selection
For a more efficient classification, the number of classification features can be
decreased by performing feature selection or feature reduction. Feature selection is
a way of decreasing the number of the classification of features according to their
contribution to classification performance. This way features that have less contribu-
tion to the accuracy are eliminated from the input dataset. The most widely used
feature selection method in the reviewed papers is random forest importance, e.g.
(Inglada et al. (2016); Sitokonstantinou et al. (2018); Tricht et al. (2018); Crnojevic et al.
(2014); Kenduiywo, Bargiel, and Soergel (2017); Kyere et al. (2020) that offers an
equitable method of comparison that can assist in determining the predictor variables
that are actually meaningful (Strobl et al. 2008). On the other hand, feature reduction
is reducing the number of features to keep only the most relevant information, but not
necessarily keeping the original features. A common method used in the reviewed
paper is principal component analysis (PCA). PCA is used to fit a low-dimensional
subspace to a set of data points in a high-dimensional space. PCA is used for feature
space reduction in two of the reviewed studies; Mazzia, Khaliq, and Chiaberge (2020)
and Schmedtmann and Campagnolo (2015). Performing feature selection instead of
reduction can be more useful in terms of understanding the contribution of certain
features to the classification.

Separability Analysis can be performed to be informed and take action about how the
algorithm’s capability of discriminating each class combination. Dabboor et al. (2014)
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Table 4. Accuracies from studies that compared the performance of multiple division units.

Study Division units Accuracy
Inglada et al. (2017) tile 82%
climatic 86%
Arias, Angel Campo-Bescés, and Alvarez-Mozos (2020) no division 72%
agroclimatic regional 77%
Asam et al. (2022) no division 75.5%
landscape regions 74.7%
Campos-Taberner et al. (2023) no division >11.0 pp
regional >3.0 pp
Donmez, Yilmaz, and Yucel (2024) no divison 91.54%
temperature zones 92.35%

describe the Jeffries-Matusita (JM) distance as a frequently used statistical separability
criterion with a parametric nature, as well as its typical application for separability
assessment using the normal distribution. They point out that it takes into account the
distance and distribution values of class means by including covariance matrices, imply-
ing that it may be used to assess dataset eligibility for classification and highlight areas
that require more features. Arias, Angel Campo-Bescés, and Alvarez-Mozos (2020) use the
JM distance, calculating a mean value across the study period to compare the significance
of various polarizations and statistical features.

4.5.3. Division of the study area

When classification is performed over large areas, the study area can be divided into sub-
areas for several reasons; decreasing the computational time by parallel computing
considering the spatial variations of features, and compensating for the different data
availability over the study area. Studies with divided study areas are given in Table 4 with
the comparison of the accuracies of different division units. It can be concluded that
dividing the study area considering the climatic information increases the accuracy while
only using administrative units does not.

5. Conclusion

The primary goal of this study is to evaluate crop classification studies across Europe
and report the impact of various methodologies and data sources on classification
accuracy. It aims to determine the advantages of each method for constructing a crop
map with the aim of high accuracy. The report also serves as a review of crop
classification efforts over the last 23 years in Europe, as well as the types of data
sources available. The reviewed studies’ limitations include a lack of reliable and long-
term ground truth datasets, as well as computational capacity. It is also observed
that - probably due to these factors - large-scale and country-scale crop maps are
rarely provided. A comparison of the accuracy contributions of remote sensing meth-
ods reveals that optical products provide more information for crop identification than
radar products, and integrating optical information with radar backscatter improves
classification accuracy. To maximize the potential of optical remote sensing, future
research should prioritize developing advanced cloud masking and gap-filling algo-
rithms, since no universal solution exists for handling cloud cover. Among optical
features, red-edge bands and spectral indices contribute most significantly to
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classification accuracy, with studies consistently highlighting NDVI as one of the top-
performing spectral indicators for crop classification. Additionally, SAVI, which reduces
the influence of soil brightness and colour, proves especially beneficial when classify-
ing crops at early growth stages where the underlying soil is still visible through the
sparse vegetation canopy. Another important index, the GNDVI, which uses the green
band instead of the red, is more sensitive to chlorophyll content and is thus likely
more effective for plants with larger leaves or more advanced phenological stages. For
radar data, VV channels combined with Haralick texture features have proven useful
for crop classification. When comparing the performance of VV and VH polarizations,
VV generally yields higher accuracy. This is attributed to VV's higher signal-to-noise
ratio (SNR) and smaller temporal decorrelation compared to VH. However, studies have
shown that using the ratio VH/VV improves results beyond using each polarization
separately. Furthermore, combining VV and VH polarizations provides the highest
classification accuracy compared to using individual backscatter coefficients or the
cross-ratio index (VH/VV) alone or in combination.

The incorporation of multitemporal image data was found to improve classification
accuracy when image acquisition dates were selected according to crop growth patterns
in the study area. Peaks in accuracy typically occur between DOY 120 and 150 (May) and
DOY 180 to 210 (July), indicating substantial variations in spectral and scatter signatures
during these periods for major crops. However, accuracy improvements vary depending
on study design, climatic conditions, and cropping systems. Combining spectrally similar
crops like barley and wheat into single classes tends to reduce accuracy gains from
temporal data, while separating them can lead to higher classification improvements.
Frequent temporal observations are particularly valuable for distinguishing crops with
similar growth stages. When computational efficiency or cloud cover limits the use of
frequent observations, temporal composites of multiple-date images offer a practical
alternative to maintain classification accuracy.

When comparing the accuracy contributions of different classification methods, DL
algorithms consistently stand out. Recent advancements in DL, including CNNs, RNNs, and
transformer-based architectures, enable the extraction of complex spatial and temporal
features from multi-source remote sensing data. These models can capture subtle phe-
nological variations and spatial patterns across crop types, which traditional ML algo-
rithms often fail to detect. Moreover, developments in transfer learning, data
augmentation, and attention mechanisms have further improved DL performance, allow-
ing models to generalize better across regions and seasons. As a result, DL-based
approaches have increasingly demonstrated superior accuracy in crop classification,
suggesting that future studies may progressively rely on DL as the primary method.
Despite the clear advantages of DL, classical ML methods, particularly RF, remain highly
relevant. RF continues to offer a robust combination of high accuracy, low computational
cost, and ease of implementation, making it suitable for large-scale crop mapping where
processing resources are limited. Recent improvements in RF, such as optimized hyper-
parameter tuning, ensemble strategies, and integration with feature selection techniques,
have further enhanced its efficiency and performance, ensuring it remains a practical
alternative when DL is not feasible.

Object-based classification produces higher accuracies and more homogeneous
crop maps than pixel-based techniques. Despite their clear advantages, field boundary
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data is difficult to obtain, and segmentation algorithms require additional focus.
Topographic and climatic factors have been demonstrated to improve classification
accuracy, but they are not sufficient alone for effective crop classification. It is also
recommended to employ topographic and climatic data to divide the study area to
increase classification accuracy.

Limitations encountered throughout the evaluation process included insufficient
reporting of computing cost in the crop classification literature, resulting in a lack of
discussion and conclusion concerning the efficiency of the approaches. Moving forward,
more research and resources are needed across various aspects of crop mapping, includ-
ing refining cloud cover techniques, enhancing segmentation algorithms, and augment-
ing the availability of ground truth data to achieve greater accuracy and practicality in
crop classification studies and applications.

Acknowledgments

Elif Donmez is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) — SFB 1502/1-2022 - Projekt-nummer: 450058266. Hugo Storm is funded by the DFG
under Germany'’s Excellence Strategy - EXC 2070 - 390732324.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The work was supported by the Deutsche Forschungsgemeinschaft [390732324,450058266].

ORCID

Thomas Heckelei (i) http://orcid.org/0000-0002-6251-3480
Hugo Storm (%) http://orcid.org/0000-0003-3791-3615

References

Abdel Latif, B., R. Lecerf, G. Mercier, and L. Hubert-Moy. 2008. “Preprocessing of Low-Resolution Time
Series Contaminated by Clouds and Shadows.” IEEE Transactions on Geoscience & Remote Sensing
46 (7): 2083-2096. https://doi.org/10.1109/TGRS.2008.916473.

Alami, M. M., L. E. Mansouri, Y. Imani, O. Bourja, O. Lahlou, Y. Zennayi, F. Bourzeix, |. Hanadé
Houmma, and R. Hadria. 2023. “Crop Mapping Using Supervised Machine Learning and Deep
Learning: A Systematic Literature Review.” International Journal of Remote Sensing 44 (8):
2717-2753. https://doi.org/10.1080/01431161.2023.2205984.

Alganci, U, E. Sertel, M. Ozdogan, and C. Ormeci. 2013. “Parcel-Level Identification of Crop Types
Using Different Classification Algorithms and Multi-Resolution Imagery in Southeastern Turkey.”
Photogrammetric Engineering & Remote Sensing 79 (11): 1053-1065. https://doi.org/10.14358/
PERS.79.11.1053.

Almalki, R., M. Khaki, P. M. Saco, and J. F. Rodriguez. 2022. “Monitoring and Mapping Vegetation
Cover Changes in Arid and Semi-Arid Areas Using Remote Sensing Technology: A Review.”
Remote Sensing 14 (20): 5143. https://doi.org/10.3390/rs14205143.


https://doi.org/10.1109/TGRS.2008.916473
https://doi.org/10.1080/01431161.2023.2205984
https://doi.org/10.14358/PERS.79.11.1053
https://doi.org/10.14358/PERS.79.11.1053
https://doi.org/10.3390/rs14205143

8284 (&) E.DONMEZET AL.

Andrimont, R. D., A. Verhegghen, G. Lemoine, P. Kempeneers, M. Meroni, and M. van der Velde. 2021.
“From Parcel to Continental Scale — A First European Crop Type Map Based on Sentinel-1 and
LUCAS Copernicus In-Situ Observations.” Remote Sensing of Environment 266 (December):
112708. https://doi.org/10.1016/j.rse.2021.112708.

Arias, M., M. Angel Campo-Bescés, and J. Alvarez-Mozos. 2020. “Crop Classification Based on
Temporal Signatures of Sentinel-1 Observations Over Navarre Province, Spain.” Remote Sensing
12 (2): 278. https://doi.org/10.3390/rs12020278.

Arias, M., M. A. Campo-Bescés, and J. Alvarez-Mozos. 2018. “Crop Type Mapping Based on Sentinel-1
Backscatter Time Series.” IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing
Symposium 6623-6626. https://doi.org/10.1109/IGARSS.2018.8519005.

Asam, S., U. Gessner, R. Almengor Gonzalez, M. Wenzl, J. Kriese, and C. Kuenzer. 2022. “Mapping Crop
Types of Germany by Combining Temporal Statistical Metrics of Sentinel-1 and Sentinel-2 Time
Series with LPIS Data.” Remote Sensing 14 (13): 13. https://doi.org/10.3390/rs14132981.

Attema, E., C. Cafforio, M. Gottwald, P. Guccione, A. Monti Guarnieri, F. Rocca, and P. Snoeij. 2010.
“Flexible Dynamic Block Adaptive Quantization for Sentinel-1 SAR Missions.” IEEE Geoscience &
Remote Sensing Letters 7 (4): 766-770. https://doi.org/10.1109/LGRS.2010.2047242.

Azar, R, P. Villa, D. Stroppiana, A. Crema, M. Boschetti, and P. Alessandro Brivio. 2016. “Assessing
In-Season Crop Classification Performance Using Satellite Data: A Test Case in Northern Italy.”
European Journal of Remote Sensing 49 (1): 361-380. https://doi.org/10.5721/EuJRS20164920.

Balzter, H., B. Cole, C. Thiel, and C. Schmullius. 2015. “Mapping Corine Land Cover from Sentinel-1A
SAR and SRTM Digital Elevation Model Data Using Random Forests.” Remote Sensing 7 (11):
14876-14898. https://doi.org/10.3390/rs71114876.

Bargiel, D. 2017. “A New Method for Crop Classification Combining Time Series of Radar Images and
Crop Phenology Information.” Remote Sensing of Environment 198 (September): 369-383. https://
doi.org/10.1016/j.rse.2017.06.022.

Bargiel, D., and S. Herrmann. 2011. “Multi-Temporal Land-Cover Classification of Agricultural Areas
in Two European Regions with High Resolution Spotlight TerraSAR-X Data.” Remote Sensing 3 (5):
859-877. https://doi.org/10.3390/rs3050859.

Barnes, EM, TR Clarke, SE Richards, P.D. Colaizzi, J. Haberland, M. Kostrzewski, P. Waller, et al. 2000.
“Coincident Detection of Crop Water Stress, Nitrogen Status and Canopy Density Using Ground
Based Multispectral Data.” 1691 (6).

Belgiu, M., and O. Gsillik. 2018. “Sentinel-2 Cropland Mapping Using Pixel-Based and Object-Based
Time-Weighted Dynamic Time Warping Analysis.” Remote Sensing of Environment 204 (January):
509-523. https://doi.org/10.1016/j.rse.2017.10.005.

Benevides, P., H. Costa, F. D. Moreira, D. Moraes, and M. Caetano. 2021. “Annual Crop Classification
Experiments in Portugal Using Sentinel-2.” 2021 IEEE International Geoscience and Remote Sensing
Symposium IGARSS, Brussels, Belgium. Vol. 11, 5838-5841. July. https://doi.org/10.1109/
IGARSS47720.2021.9555009.

Blickensdorfer, L., M. Schwieder, D. Pflugmacher, C. Nendel, S. Erasmi, and P. Hostert. 2022.
“Mapping of Crop Types and Crop Sequences with Combined Time Series of Sentinel-1,
Sentinel-2 and Landsat 8 Data for Germany.” Remote Sensing of Environment 269 (February):
112831. https://doi.org/10.1016/j.rse.2021.112831.

Bouman, C., and M. Shapiro. 1992. “Multispectral Image Segmentation Using a Multiscale Model.”
3:565-568.

Breiman, L. 2001. “Random Forests.” Machine Learning 45:5-32. https://doi.org/10.1023/
A:1010933404324.

Bremer, D. J.,, H. Lee, K. Su, and S. J. Keeley. 2011. ‘Relationships between Normalized Difference
Vegetation Index and Visual Quality in Cool-Season Turfgrass: Il. Factors Affecting NDVI and Its
Component Reflectances’. Crop Science 51 (5): 2219-2227. https://doi.org/10.2135/cropsci2010.
12.0729.

Busquier, M., J. M. Lopez-Sanchez, and D. Bargiel. 2020. “Added Value of Coherent Copolar
Polarimetry at X-Band for Crop-Type Mapping.” IEEE Geoscience & Remote Sensing Letters 17 (5):
819-823. https://doi.org/10.1109/LGRS.2019.2933738.


https://doi.org/10.1016/j.rse.2021.112708
https://doi.org/10.3390/rs12020278
https://doi.org/10.1109/IGARSS.2018.8519005
https://doi.org/10.3390/rs14132981
https://doi.org/10.1109/LGRS.2010.2047242
https://doi.org/10.5721/EuJRS20164920
https://doi.org/10.3390/rs71114876
https://doi.org/10.1016/j.rse.2017.06.022
https://doi.org/10.1016/j.rse.2017.06.022
https://doi.org/10.3390/rs3050859
https://doi.org/10.1016/j.rse.2017.10.005
https://doi.org/10.1109/IGARSS47720.2021.9555009
https://doi.org/10.1109/IGARSS47720.2021.9555009
https://doi.org/10.1016/j.rse.2021.112831
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.2135/cropsci2010.12.0729
https://doi.org/10.2135/cropsci2010.12.0729
https://doi.org/10.1109/LGRS.2019.2933738

INTERNATIONAL JOURNAL OF REMOTE SENSING . 8285

Busquier, M., J. M. Lopez-Sanchez, F. Ticconi, and N. Floury. 2022. “Combination of Time Series of L-,
C-, and X-Band SAR Images for Land Cover and Crop Classification.” IEEE Journal of Selected Topics
in Applied Earth Observations & Remote Sensing 15:8266-8286. https://doi.org/10.1109/JSTARS.
2022.3207574.

Busquier, M., R. Valcarce-Difeiro, J. M. Lopez-Sanchez, J. Plaza, N. Sdnchez, and B. Arias-Pérez. 2021.
“Fusion of Multi-Temporal PAZ and Sentinel-1 Data for Crop Classification.” Remote Sensing
13 (19): 3915. https://doi.org/10.3390/rs13193915.

Campos-Taberner, M., F. Javier Garcia-Haro, B. Martinez, S. Sanchez-Ruiz, A. Moreno-Martinez,
G. Camps-Valls, and M. Amparo Gilabert. 2023. “Land Use Classification Over Smallholding
Areas in the European Common Agricultural Policy Framework.” ISPRS Journal of
Photogrammetry & Remote Sensing 197 (March): 320-334. https://doi.org/10.1016/j.isprsjprs.
2023.02.005.

Camps-Valls, G., L. Gomez-Chova, J. Calpe-Maravilla, J. D. Martin-Guerrero, E. Soria-Olivas, L. Alonso-
Chorda, and J. Moreno. 2004. “Robust Support Vector Method for Hyperspectral Data
Classification and Knowledge Discovery.” IEEE Transactions on Geoscience & Remote Sensing
42 (7): 1530-1542. https://doi.org/10.1109/TGRS.2004.827262.

Castillejo-Gonzélez, I. L., F. Lépez-Granados, A. Garcia-Ferrer, J. M. Pefa-Barragan, M. Jurado-
Expdsito, M. S. de la Orden, and M. Gonzalez-Audicana. 2009. “Object- and Pixel-Based Analysis
for Mapping Crops and Their Agro-Environmental Associated Measures Using quickbird Imagery.”
Computers and Electronics in Agriculture 68 (2): 207-215. https://doi.org/10.1016/j.compag.2009.
06.004.

Chakhar, A., D. Ortega-Terol, D. Hernandez-Lépez, R. Ballesteros, J. F. Ortega, and M. A. Moreno.
2020. “Assessing the Accuracy of Multiple Classification Algorithms for Crop Classification Using
Landsat-8 and Sentinel-2 Data.” Remote Sensing 12 (11): 11. https://doi.org/10.3390/rs12111735.

Cheng, D., S. Zhang, X. Liu, K. Sun, and M. Zong. 2017. “Feature Selection by Combining Subspace
Learning with Sparse Representation.” Multimedia Systems 23 (3): 285-291. https://doi.org/10.
1007/500530-015-0487-0.

Clemente, J. P., G. Fontanelli, G. G. Ovando, Y. L. B. Roa, A. Lapini, and E. Santi. 2020. “Google Earth
Engine: Application of Algorithms for Remote Sensing of Crops in Tuscany (Italy).” In 2020 IEEE
Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile. 195-200.
https://doi.org/10.1109/LAGIRS48042.2020.9165561 .

Cortes, C, and V. Vapnik. 1995. “Support-Vector Networks.” Machine Learning 20 (3): 273-297.
https://doi.org/10.1023/A:1022627411411.

Crnojevic, V., P. Lugonja, B. Brkljac, and B. Brunet. 2014. “Classification of Small Agricultural Fields
Using Combined Landsat-8 and RapidEye Imagery: Case Study of Northern Serbia.” Journal of
Applied Remote Sensing 8 (1): 083512. https://doi.org/10.1117/1.JRS.8.083512.

Dabboor, M., S. Howell, M. Shokr, and J. Yackel. 2014. “The jeffries—Matusita Distance for the Case of
Complex Wishart Distribution as a Separability Criterion for Fully Polarimetric SAR Data.”
International Journal of Remote Sensing 35 (19): 6859-6873.

David, N., S. Giordano, and C. Mallet. 2021. “Investigating Operational Country-Level Crop
Monitoring with Sentinel~1 and~2 Imagery.” Remote Sensing Letters 12 (10): 970-982. https://
doi.org/10.1080/2150704X.2021.1950940.

Debella-Gilo, M., and A. Kristian Gjertsen. 2021. “Mapping Seasonal Agricultural Land Use Types
Using Deep Learning on Sentinel-2 Image Time Series.” Remote Sensing 13 (2): 289. https://doi.
org/10.3390/rs13020289.

Defourny, P., S. Bontemps, N. Bellemans, C. Cara, G. Dedieu, E. Guzzonato, O. Hagolle, et al. 2019.
“Near Real-Time Agriculture Monitoring at National Scale at Parcel Resolution: Performance
Assessment of the Sen2-Agri Automated System in Various Cropping Systems Around the
World.” Remote Sensing of Environment 221 (February): 551-568. https://doi.org/10.1016/j.rse.
2018.11.007.

Demarez, V., F. Helen, C. Marais-Sicre, and F. Baup. 2019. “In-Season Mapping of Irrigated Crops
Using Landsat 8 and Sentinel-1 Time Series.” Remote Sensing 11 (2): 2. https://doi.org/10.3390/
rs11020118.


https://doi.org/10.1109/JSTARS.2022.3207574
https://doi.org/10.1109/JSTARS.2022.3207574
https://doi.org/10.3390/rs13193915
https://doi.org/10.1016/j.isprsjprs.2023.02.005
https://doi.org/10.1016/j.isprsjprs.2023.02.005
https://doi.org/10.1109/TGRS.2004.827262
https://doi.org/10.1016/j.compag.2009.06.004
https://doi.org/10.1016/j.compag.2009.06.004
https://doi.org/10.3390/rs12111735
https://doi.org/10.1007/s00530-015-0487-0
https://doi.org/10.1007/s00530-015-0487-0
https://doi.org/10.1109/LAGIRS48042.2020.9165561
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1117/1.JRS.8.083512
https://doi.org/10.1080/2150704X.2021.1950940
https://doi.org/10.1080/2150704X.2021.1950940
https://doi.org/10.3390/rs13020289
https://doi.org/10.3390/rs13020289
https://doi.org/10.1016/j.rse.2018.11.007
https://doi.org/10.1016/j.rse.2018.11.007
https://doi.org/10.3390/rs11020118
https://doi.org/10.3390/rs11020118

8286 (&) E.DONMEZET AL.

De Wit, A. J. W., and J. G. P. W. Clevers. 2004. “Efficiency and Accuracy of Per-Field Classification for
Operational Crop Mapping.” International Journal of Remote Sensing 25 (20): 4091-4112. https://
doi.org/10.1080/01431160310001619580.

Dey, S., U. Chaudhuri, N. Bhogapurapu, J. M. Lopez-Sanchez, B. Banerjee, A. Bhattacharya, D. Mandal,
and Y. S. Rao. 2021. “Synergistic Use of Tandem-X and Landsat-8 Data for Crop-Type Classification
and Monitoring.” IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing
14:8744-8760. https://doi.org/10.1109/JSTARS.2021.3103911.

Dhumal, R. K., K. V. YogeshRajendra, and S. C. Mehrotra. 2013. “Classification of Crops from Remotely
Sensed Images: An Overview.” International Journal of Engineering Research and Applications
(LJERA) 3 (3): 758-761.

Di, L., and E. Yu. 2023. “Remote Sensing.” In Remote Sensing Big Data, edited by Liping Di and Eugene
Yu, 17-43. Springer International Publishing. https://doi.org/10.1007/978-3-031-33932-5_2.

Dimitrov, P., L. Filchev, E. Roumenina, and G. Jelev. 2021. “Crop Type Mapping in Bulgaria Using
Sentinel-1/2 Data.” Aerospace Research in Bulgaria 33:40-50. https://doi.org/10.3897/arb.v33.e04.

Donmez, E.,, M. T. Yilmaz, and I. Yucel. 2024. “Added Utility of Temperature Zone Information in
Remote Sensing-Based Large Scale Crop Mapping.” Remote Sensing Applications: Society &
Environment 35 (August): 101264. https://doi.org/10.1016/j.rsase.2024.101264.

Durgun, Y., A. Gobin, R. Van De Kerchove, and B. Tychon. 2016. “Crop Area Mapping Using 100-m
PROBA-V Time Series.” Remote Sensing 8 (7): 585. https://doi.org/10.3390/rs8070585.

Esch, T., A. Metz, M. Marconcini, and M. Keil. 2014. “Combined Use of Multi-Seasonal High and
Medium Resolution Satellite Imagery for Parcel-Related Mapping of Cropland and Grassland.”
International Journal of Applied Earth Observation and Geoinformation 28 (May): 230-237. https://
doi.org/10.1016/j.jag.2013.12.007.

Esch, T, M. Thiel, M. Bock, A. Roth, and S. Dech. 2008. “Improvement of Image Segmentation
Accuracy Based on Multiscale Optimization Procedure.” IEEE Geoscience & Remote Sensing
Letters 5 (3): 463-467. https://doi.org/10.1109/LGRS.2008.919622.

European Space Agency. 2018. Sentinel-2 MSI Level-2A BOA Reflectance. European Space Agency.
https://doi.org/10.5270/S2_-6eb6imz.

European Space Agency. n.d. “SPOT 1-5 ESA Archive’.” European Space Agency. https://doi.org/10.
5270/esa-6mxo3sr.

Evans, D. L., T. G. Farr, J. J. Van Zyl, and H. A. Zebker. 1988. “Radar Polarimetry: Analysis Tools and
Applications.” IEEE Transactions on Geoscience & Remote Sensing 26 (6): 774-789.

Fan, D., X. Su, B. Weng, T. Wang, and F. Yang. 2021. “Research Progress on Remote Sensing
Classification Methods for Farmland Vegetation.” AgriEngineering 3 (4): 971-989. https://doi.
org/10.3390/agriengineering3040061.

Fare Garnot, S., L. L. Vivien, and N. Chehata. 2022. “Multi-Modal Temporal Attention Models for Crop
Mapping from Satellite Time Series.” ISPRS Journal of Photogrammetry & Remote Sensing
187 (May): 294-305. https://doi.org/10.1016/j.isprsjprs.2022.03.012.

Farmonov, N., K. Amankulova, J. Szatmari, A. Sharifi, D. Abbasi-Moghadam, S. M. Mirhoseini Nejad,
and L. Mucsi. 2023. “Crop Type Classification by DESIS Hyperspectral Imagery and Machine
Learning Algorithms.” IEEE Journal of Selected Topics in Applied Earth Observations & Remote
Sensing 16:1576-1588. https://doi.org/10.1109/JSTARS.2023.3239756.

Filella, I, and J. Penuelas. 1994. “The Red Edge Position and Shape as Indicators of Plant Chlorophyll
Content, Biomass and Hydric Status.” International Journal of Remote Sensing 15 (7): 1459-1470.
https://doi.org/10.1080/01431169408954177.

Foerster, S., K. Kaden, M. Foerster, and S. ltzerott. 2012. “Crop Type Mapping Using Spectral-
Temporal Profiles and Phenological Information.” Computers and Electronics in Agriculture
89 (November): 30-40. https://doi.org/10.1016/j.compag.2012.07.015.

Fontanelli, G., A. Crema, R. Azar, D. Stroppiana, P. Villa, and M. Boschetti. 2014. “Agricultural Crop
Mapping Using Optical and SAR Multi-Temporal Seasonal Data: A Case Study in Lombardy
Region, Italy.” In 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC,
Canada. 1489-1492. https://doi.org/10.1109/IGARSS.2014.6946719 .

Fontanelli, G., A. Lapini, L. Santurri, S. Pettinato, E. Santi, G. Ramat, S. Pilia, et al. 2022. “Early-Season
Crop Mapping on an Agricultural Area in Italy Using X-Band Dual-Polarization SAR Satellite Data


https://doi.org/10.1080/01431160310001619580
https://doi.org/10.1080/01431160310001619580
https://doi.org/10.1109/JSTARS.2021.3103911
https://doi.org/10.1007/978-3-031-33932-5_2
https://doi.org/10.3897/arb.v33.e04
https://doi.org/10.1016/j.rsase.2024.101264
https://doi.org/10.3390/rs8070585
https://doi.org/10.1016/j.jag.2013.12.007
https://doi.org/10.1016/j.jag.2013.12.007
https://doi.org/10.1109/LGRS.2008.919622
https://doi.org/10.5270/S2_-6eb6imz
https://doi.org/10.5270/S2_-6eb6imz
https://doi.org/10.5270/esa-6mxo3sr
https://doi.org/10.5270/esa-6mxo3sr
https://doi.org/10.3390/agriengineering3040061
https://doi.org/10.3390/agriengineering3040061
https://doi.org/10.1016/j.isprsjprs.2022.03.012
https://doi.org/10.1109/JSTARS.2023.3239756
https://doi.org/10.1080/01431169408954177
https://doi.org/10.1080/01431169408954177
https://doi.org/10.1016/j.compag.2012.07.015
https://doi.org/10.1109/IGARSS.2014.6946719

INTERNATIONAL JOURNAL OF REMOTE SENSING . 8287

and Convolutional Neural Networks.” IEEE Journal of Selected Topics in Applied Earth Observations
& Remote Sensing 15:6789-6803. https://doi.org/10.1109/JSTARS.2022.3198475.

Foody, G. M. 2004. “Supervised Image Classification by MLP and RBF Neural Networks with and
without an Exhaustively Defined Set of Classes.” International Journal of Remote Sensing 25 (15):
3091-3104. https://doi.org/10.1080/01431160310001648019.

Francis, A., P. Sidiropoulos, and J.-P. Muller. 2019. “Cloudfcn: Accurate and Robust Cloud Detection
for Satellite Imagery with Deep Learning.” Remote Sensing 11 (19): 2312. https://doi.org/10.3390/
rs11192312.

Gallo, I, L. Ranghetti, N. Landro, R. La Grassa, and M. Boschetti. 2023. “In-Season and Dynamic Crop
Mapping Using 3D Convolution Neural Networks and Sentinel-2 Time Series.” ISPRS Journal of
Photogrammetry & Remote Sensing 195 (January): 335-352. https://doi.org/10.1016/j.isprsjprs.
2022.12.005.

Garnot, V. S. F., L. Landrieu, S. Giordano, and N. Chehata. 2019. “Satellite Image Time Series
Classification with Pixel-Set Encoders and Temporal Self-Attention.” Version 1. https://doi.org/
10.48550/ARXIV.1911.07757.

Garnot, V. S., L. Landrieu, and N. Chehata. 2022. “Multi-Modal Temporal Attention Models for Crop
Mapping from Satellite Time Series.” ISPRS Journal of Photogrammetry & Remote Sensing
187 (May): 294-305. https://doi.org/10.1016/j.isprsjprs.2022.03.0112.

Gella, G. W., W. Bijker, and M. Belgiu. 2021. “Mapping Crop Types in Complex Farming Areas Using
SAR Imagery with Dynamic Time Warping.” ISPRS Journal of Photogrammetry & Remote Sensing
175 (May): 171-183. https://doi.org/10.1016/j.isprsjprs.2021.03.004.

Ghassemi, B., A. Dujakovic, M. Zéttak, M. Immitzer, C. Atzberger, and F. Vuolo. 2022. “Designing a
European-Wide Crop Type Mapping Approach Based on Machine Learning Algorithms Using
LUCAS Field Survey and Sentinel-2 Data.” Remote Sensing 14 (3): 541. https://doi.org/10.3390/
rs14030541.

Ghazaryan, G., O. Dubovyk, F. Low, M. Lavreniuk, A. Kolotii, J. Schellberg, and N. Kussul. 2018. “A
Rule-Based Approach for Crop Identification Using Multi-Temporal and Multi-Sensor
Phenological Metrics.” European Journal of Remote Sensing 51 (1): 511-524. https://doi.org/10.
1080/22797254.2018.1455540.

Giordano, S., S. Bailly, L. Landrieu, and N. Chehata. 2020. “Improved Crop Classification with Rotation
Knowledge Using Sentinel-1 and -2 Time Series.” Photogrammetric Engineering & Remote Sensing
86 (7): 431-441. https://doi.org/10.14358/PERS.86.7.431.

Gitelson, A. A, M. N. Merzlyak, and H. K. Lichtenthaler. 1996. “Detection of Red Edge Position and
Chlorophyll Content by Reflectance Measurements Near 700 Nm.” Journal of Plant Physiology 148
(3-4): 501-508.

Griffiths, P., C. Nendel, and P. Hostert. 2019. “Intra-Annual Reflectance Composites from Sentinel-2
and Landsat for National-Scale Crop and Land Cover Mapping.” Remote Sensing of Environment
220 (January): 135-151. https://doi.org/10.1016/j.rse.2018.10.031.

Gruber, S., and S. Peckham. 2009. “Chapter 7 Land-Surface Parameters and Objects in Hydrology.” In
Developments in Soil sciencedevelopments in Soil Science, 33. https://doi.org/10.1016/50166-2481
(08)00007-X.

Han, Z., C. Zhang, L. Gao, Z. Zeng, B. Zhang, and P. M. Atkinson. 2023. “Spatio-Temporal Multi-Level
Attention Crop Mapping Method Using Time-Series SAR Imagery.” ISPRS Journal of
Photogrammetry & Remote Sensing 206 (December): 293-310. https://doi.org/10.1016/j.isprsjprs.
2023.11.016.

Haralick, R. M., K. Shanmugam, and I. Dinstein. 1973. “Textural Features for Image Classification.” IEEE
Transactions on Systems, Man, and Cybernetics SMC-3 3 (6): 610-621. https://doi.org/10.1109/
TSMC.1973.4309314.

Hastie, T., R. Tibshirani, J. H. Friedman, and J. H. Friedman. 2009. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Vol. 2. Springer.

Heupel, K., D. Spengler, and S. ltzerott. 2018. “A Progressive Crop-Type Classification Using
Multitemporal Remote Sensing Data and Phenological Information.” PFG - Journal of
Photogrammetry, Remote Sensing and Geoinformation Science 86 (2): 53-69. https://doi.org/10.
1007/s41064-018-0050-7.


https://doi.org/10.1109/JSTARS.2022.3198475
https://doi.org/10.1080/01431160310001648019
https://doi.org/10.3390/rs11192312
https://doi.org/10.3390/rs11192312
https://doi.org/10.1016/j.isprsjprs.2022.12.005
https://doi.org/10.1016/j.isprsjprs.2022.12.005
https://doi.org/10.48550/ARXIV.1911.07757
https://doi.org/10.48550/ARXIV.1911.07757
https://doi.org/10.1016/j.isprsjprs.2022.03.0112
https://doi.org/10.1016/j.isprsjprs.2021.03.004
https://doi.org/10.3390/rs14030541
https://doi.org/10.3390/rs14030541
https://doi.org/10.1080/22797254.2018.1455540
https://doi.org/10.1080/22797254.2018.1455540
https://doi.org/10.14358/PERS.86.7.431
https://doi.org/10.1016/j.rse.2018.10.031
https://doi.org/10.1016/S0166-2481(08)00007-X
https://doi.org/10.1016/S0166-2481(08)00007-X
https://doi.org/10.1016/j.isprsjprs.2023.11.016
https://doi.org/10.1016/j.isprsjprs.2023.11.016
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1007/s41064-018-0050-7
https://doi.org/10.1007/s41064-018-0050-7

8288 (&) E.DONMEZET AL.

Hoekman, D. H., M. A. M. Vissers, and T. N. Tran. 2011. “Unsupervised Full-Polarimetric SAR Data
Segmentation as a Tool for Classification of Agricultural Areas.” IEEE Journal of Selected Topics in
Applied Earth Observations & Remote Sensing 4 (2): 402-411. https://doi.org/10.1109/JSTARS.2010.
2042280.

Huete, A. R. 1988. “A Soil-Adjusted Vegetation Index (SAVI).” Remote Sensing of Environment 25 (3):
295-309. https://doi.org/10.1016/0034-4257(88)90106-X.

Hutt, C,, G. Waldhoff, and G. Bareth. 2020. “Fusion of Sentinel-1 With Official Topographic and
Cadastral Geodata for Crop-Type Enriched LULC Mapping Using FOSS and Open Data.” ISPRS
International Journal of Geo-Information 9 (2): 120. https://doi.org/10.3390/ijgi9020120.

Immitzer, M., F. Vuolo, and C. Atzberger. 2016. “First Experience with Sentinel-2 Data for Crop and
Tree Species Classifications in Central Europe.” Remote Sensing 8 (3): 3. https://doi.org/10.3390/
rs8030166.

Inglada, J., M. Arias, B. Tardy, O. Hagolle, S. Valero, D. Morin, G. Dedieu, et al. 2015. “Assessment of an
Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution
Satellite Optical Imagery.” Remote Sensing 7 (9): 12356-12379. https://doi.org/10.3390/
rs70912356.

Inglada, J., A. Vincent, M. Arias, and C. Marais-Sicre. 2016. “Improved Early Crop Type Identification
by Joint Use of High Temporal Resolution SAR and Optical Image Time Series.” Remote Sensing
8 (5): 5. https://doi.org/10.3390/rs8050362.

Inglada, J., A. Vincent, M. Arias, B. Tardy, D. Morin, and I. Rodes. 2017. “Operational High Resolution
Land Cover Map Production at the Country Scale Using Satellite Image Time Series.” Remote
Sensing 9 (1): 1. https://doi.org/10.3390/rs9010095.

loannidou, M., A. Koukos, V. Sitokonstantinou, |. Papoutsis, and C. Kontoes. 2022. “Assessing the
Added Value of Sentinel-1 PolSAR Data for Crop Classification.” Remote Sensing 14 (22): 5739.
https://doi.org/10.3390/rs14225739.

James, G., D. Witten, T. Hastie, and R. Tibshirani. 2013. An Introduction to Statistical Learning.Vol. 112.
Springer.

Ji, S, C. Zhang, X. Anjian, Y. Shi, and Y. Duan. 2018. “3D Convolutional Neural Networks for Crop
Classification with Multi-Temporal Remote Sensing Images.” Remote Sensing 10 (2): 75. https://doi.
org/10.3390/rs10010075.

Joshi, N., M. Baumann, A. Ehammer, R. Fensholt, K. Grogan, P. Hostert, M. Jepsen, et al. 2016.
“A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use
Mapping and Monitoring.” Remote Sensing 8 (1): 70. https://doi.org/10.3390/rs8010070.

Karjalainen, M., H. Kaartinen, and J. Hyyppa. 2008. “Agricultural Monitoring Using ENVISAT
Alternating Polarization SAR Images.” Photogrammetric Engineering & Remote Sensing 74 (1):
117-126. https://doi.org/10.14358/PERS.74.1.117.

Kattenborn, T., J. Leitloff, F. Schiefer, and S. Hinz. 2021. “Review on Convolutional Neural Networks
(CNN) in Vegetation Remote Sensing.” ISPRS Journal of Photogrammetry & Remote Sensing
173 (March): 24-49. https://doi.org/10.1016/j.isprsjprs.2020.12.010.

Kenduiywo, B. K., D. Bargiel, and U. Soergel. 2017. “Higher Order Dynamic Conditional Random
Fields Ensemble for Crop Type Classification in Radar Images.” IEEE Transactions on Geoscience &
Remote Sensing 55 (8): 4638-4654. https://doi.org/10.1109/TGRS.2017.2695326.

Kim, H.-O., and J.-M. Yeom. 2014. “Effect of Red-Edge and Texture Features for Object-Based Paddy
Rice Crop Classification Using RapidEye Multi-Spectral Satellite Image Data.” International Journal
of Remote Sensing, October 13:1-23. https://doi.org/10.1080/01431161.2014.965285.

Kirillov, A., K. He, R. Girshick, C. Rother, and P. Dollar. 2019. “Panoptic Segmentation.” In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA,
USA, 9404-9413. IEEE.

Kluger, D. M., S. Wang, and D. B. Lobell. 2021. “Two Shifts for Crop Mapping: Leveraging Aggregate
Crop Statistics to Improve Satellite-Based Maps in New Regions.” Remote Sensing of Environment
262:112488. https://doi.org/10.1016/j.rse.2021.112488.

Kogan, F. 2019. “Vegetation Health Method.” In Remote Sensing for Food Security, edited by F. Kogan.
Springer International Publishing. https://doi.org/10.1007/978-3-319-96256-6_4.


https://doi.org/10.1109/JSTARS.2010.2042280
https://doi.org/10.1109/JSTARS.2010.2042280
https://doi.org/10.1016/0034-4257(88)90106-X
https://doi.org/10.3390/ijgi9020120
https://doi.org/10.3390/rs8030166
https://doi.org/10.3390/rs8030166
https://doi.org/10.3390/rs70912356
https://doi.org/10.3390/rs70912356
https://doi.org/10.3390/rs8050362
https://doi.org/10.3390/rs9010095
https://doi.org/10.3390/rs14225739
https://doi.org/10.3390/rs14225739
https://doi.org/10.3390/rs10010075
https://doi.org/10.3390/rs10010075
https://doi.org/10.3390/rs8010070
https://doi.org/10.14358/PERS.74.1.117
https://doi.org/10.1016/j.isprsjprs.2020.12.010
https://doi.org/10.1109/TGRS.2017.2695326
https://doi.org/10.1080/01431161.2014.965285
https://doi.org/10.1016/j.rse.2021.112488
https://doi.org/10.1007/978-3-319-96256-6_4

INTERNATIONAL JOURNAL OF REMOTE SENSING . 8289

Kruse, F. A., A. B. Lefkoff, J. W. Boardman, K. B. Heidebrecht, A. T. Shapiro, P. J. Barloon, and A. F. H.
Goetz. 1993. “The Spectral Image Processing System (sips)—Interactive Visualization and Analysis
of Imaging Spectrometer Data.” Remote Sensing of Environment 44 (2-3): 145-163. https://doi.
org/10.1016/0034-4257(93)90013-N.

Kussul, N., G. Lemoine, F. Javier Gallego, S. V. Skakun, M. Lavreniuk, and A. Y. Shelestov. 2016. “Parcel-
Based Crop Classification in Ukraine Using Landsat-8 Data and Sentinel-1A Data.” IEEE Journal of
Selected Topics in Applied Earth Observations & Remote Sensing 9 (6): 2500-2508. https://doi.org/
10.1109/JSTARS.2016.2560141.

Kussul, N., L. Mykola, A. Shelestov, and S. Skakun. 2018. “Crop Inventory at Regional Scale in Ukraine:
Developing in Season and End of Season Crop Maps with Multi-Temporal Optical and SAR
Satellite Imagery.” European Journal of Remote Sensing 51 (1): 627-636. https://doi.org/10.1080/
22797254.2018.1454265.

Kussul, N., S. Skakun, A. Shelestov, M. Lavreniuk, B. Yailymov, and O. Kussul. 2015. “‘Regional Scale
Crop Mapping Using Multi-Temporal Satellite Imagery’.” International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences XL-7/W3 (April): 45-52.
https://doi.org/10.5194/isprsarchives-XL-7-W3-45-2015.

Kyere, I, T. Astor, R. Gra3, and M. Wachendorf. 2019. “Multi-Temporal Agricultural Land-Cover
Mapping Using Single-Year and Multi-Year Models Based on Landsat Imagery and IACS Data.”
Agronomy 9 (6): 309. https://doi.org/10.3390/agronomy9060309.

Kyere, 1., T. Astor, R. GraBB, and M. Wachendorf. 2020. “Agricultural Crop Discrimination in
a Heterogeneous Low-Mountain Range Region Based on Multi-Temporal and Multi-Sensor
Satellite Data.” Computers and Electronics in Agriculture 179 (December): 105864. https://doi.
org/10.1016/j.compag.2020.105864.

Larrafaga, A, and J. Alvarez-Mozos. 2016. “On the Added Value of Quad-Pol Data in a
Multi-Temporal Crop Classification Framework Based on RADARSAT-2 Imagery.” Remote Sensing
8 (4): 335. https://doi.org/10.3390/rs8040335.

Lavreniuk, M., N. Kussul, and A. Novikov. 2018. “Deep Learning Crop Classification Approach Based
on Sparse Coding of Time Series of Satellite Data.” In IGARSS 2018 - 2018 IEEE International
Geoscience and Remote Sensing Symposium, 4812-4815. July. https://doi.org/10.1109/IGARSS.
2018.8518263.

Lavreniuk, M., N. Kussul, A. Shelestov, O. Dubovyk, and F. Léw. 2018. “Object-Based Postprocessing
Method for Crop Classification Maps.” In IGARSS 2018 - 2018 IEEE International Geoscience and
Remote Sensing Symposium, Valencia, Spain, 7058-7061. IEEE. https://doi.org/10.1109/IGARSS.
2018.8519199.

Lavreniuk, M., A. Shelestov, N. Kussul, O. Rubel, V. Lukin, and K. Egiazarian. 2019. “Use of Modified
BM3D Filter and CNN Classifier for SAR Data to Improve Crop Classification Accuracy.” In 2079 IEEE
2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), Lviv, Ukraine, 1-6. IEEE.
https://doi.org/10.1109/UKRCON.2019.8879805.

Lee, J.-S., and E. Pottier. 2017. Polarimetric Radar Imaging: From Basics to Applications. CRC press.

Lin, C,, L. Zhong, X.-P. Song, J. Dong, D. B. Lobell, and Z. Jin. 2022. “Early-and in-Season Crop Type
Mapping without Current-Year Ground Truth: Generating Labels from Historical Information via
a Topology-Based Approach.” Remote Sensing of Environment, 112994 274.

Lofstedt, T., P. Brynolfsson, T. Asklund, T. Nyholm, and A. Garpebring. 2019. “Gray-Level Invariant
Haralick Texture Features.” PLOS ONE 14 (2): e0212110. https://doi.org/10.1371/journal.pone.
0212110.

Loosvelt, L., J. Peters, H. Skriver, B. De Baets, and N. E. C. Verhoest. 2012. “Impact of Reducing
Polarimetric SAR Input on the Uncertainty of Crop Classifications Based on the Random Forests
Algorithm.” [EEE Transactions on Geoscience & Remote Sensing 50 (10): 4185-4200. https://doi.org/
10.1109/TGRS.2012.2189012.

Loosvelt, L., J. Peters, H. Skriver, H. Lievens, F. M. B. Van Coillie, B. De Baets, and N. E. C. Verhoest.
2012. “Random Forests as a Tool for Estimating Uncertainty at Pixel-Level in SAR Image
Classification.” International Journal of Applied Earth Observation and Geoinformation
19 (October): 173-184. https://doi.org/10.1016/j.jag.2012.05.011.


https://doi.org/10.1016/0034-4257(93)90013-N
https://doi.org/10.1016/0034-4257(93)90013-N
https://doi.org/10.1109/JSTARS.2016.2560141
https://doi.org/10.1109/JSTARS.2016.2560141
https://doi.org/10.1080/22797254.2018.1454265
https://doi.org/10.1080/22797254.2018.1454265
https://doi.org/10.5194/isprsarchives-XL-7-W3-45-2015
https://doi.org/10.5194/isprsarchives-XL-7-W3-45-2015
https://doi.org/10.3390/agronomy9060309
https://doi.org/10.1016/j.compag.2020.105864
https://doi.org/10.1016/j.compag.2020.105864
https://doi.org/10.3390/rs8040335
https://doi.org/10.1109/IGARSS.2018.8518263
https://doi.org/10.1109/IGARSS.2018.8518263
https://doi.org/10.1109/IGARSS.2018.8519199
https://doi.org/10.1109/IGARSS.2018.8519199
https://doi.org/10.1109/UKRCON.2019.8879805
https://doi.org/10.1371/journal.pone.0212110
https://doi.org/10.1371/journal.pone.0212110
https://doi.org/10.1109/TGRS.2012.2189012
https://doi.org/10.1109/TGRS.2012.2189012
https://doi.org/10.1016/j.jag.2012.05.011

8290 (&) E.DONMEZET AL.

Lozano-Tello, A., G. Siesto, M. Ferndndez-Sellers, and A. Caballero-Mancera. 2023. “Evaluation of the
Use of the 12 Bands vs. NDVI from Sentinel-2 Images for Crop Identification.” Sensors 23 (16):
7132. https://doi.org/10.3390/523167132.

Luo, Y., Z. Zhang, L. Zhang, J. Han, J. Cao, and J. Zhang. 2022. “Developing High-Resolution Crop
Maps for Major Crops in the European Union Based on Transductive Transfer Learning and
Limited Ground Data.” Remote Sensing 14 (8): 8. https://doi.org/10.3390/rs14081809.

Martinez-Casasnovas, J. A., A. Martin-Montero, and M. Auxiliadora Casterad. 2005. “Mapping
Multi-Year Cropping Patterns in Small Irrigation Districts from Time-Series Analysis of Landsat
TM Images.” The European Journal of Agronomy 23 (2): 159-169. https://doi.org/10.1016/j.eja.
2004.11.004.

Martini, M., V. Mazzia, A. Khalig, and M. Chiaberge. 2021. “Domain-Adversarial Training of
Self-Attention-Based Networks for Land Cover Classification Using Multi-Temporal Sentinel-2
Satellite Imagery.” Remote Sensing 13 (13): 2564. https://doi.org/10.3390/rs13132564.

Matton, N., G. Canto, F. Waldner, S. Valero, D. Morin, J. Inglada, M. Arias, S. Bontemps, B. Koetz, and
P. Defourny. 2015. “An Automated Method for Annual Cropland Mapping Along the Season for
Various Globally-Distributed Agrosystems Using High Spatial and Temporal Resolution Time
Series.” Remote Sensing 7 (10): 13208-13232. https://doi.org/10.3390/rs71013208.

Mazzia, V., A. Khalig, and M. Chiaberge. 2020. “Improvement in Land Cover and Crop Classification
Based on Temporal Features Learning from Sentinel-2 Data Using Recurrent-Convolutional
Neural Network (R-CNN).” Applied Sciences 10 (1): 238. https://doi.org/10.3390/app10010238.

Mester, R., C. Conrad, and A. Guevara. 2011. “Multichannel Segmentation Using Contour Relaxation:
Fast Super-Pixels and Temporal Propagation.” 250-261.

Mestre-Quereda, A., J. M. Lopez-Sanchez, F. Vicente-Guijalba, A. W. Jacob, and M. E. Engdahl. 2020.
“Time-Series of Sentinel-1 Interferometric Coherence and Backscatter for Crop-Type Mapping.”
IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing 13:4070-4084.
https://doi.org/10.1109/JSTARS.2020.3008096.

Metzger, N., M. Ozgur Turkoglu, S. D’Aronco, J. Dirk Wegner, and K. Schindler. 2021. “Crop
Classification Under Varying Cloud Cover with Neural Ordinary Differential Equations.” IEEE
Transactions on Geoscience & Remote Sensing 60:1-12. https://doi.org/10.1109/TGRS.2021.
3101965.

Mountrakis, G., J. Im, and C. Ogole. 2011. “Support Vector Machines in Remote Sensing: A Review.”
ISPRS Journal of Photogrammetry & Remote Sensing 66 (3): 247-259. https://doi.org/10.1016/j.
isprsjprs.2010.11.001.

Myneni, R. B., F. G. Hall, P. J. Sellers, and A. L. Marshak. 1995. “The Interpretation of Spectral
Vegetation Indexes.” IEEE Transactions on Geoscience & Remote Sensing 33 (2): 481-486. https://
doi.org/10.1109/TGRS.1995.8746029.

Ndikumana, E., D. Ho Tong Minh, N. Baghdadi, D. Courault, and L. Hossard. 2018. “Deep Recurrent
Neural Network for Agricultural Classification Using Multitemporal SAR Sentinel-1 for Camargue,
France.” Remote Sensing 10 (8): 1217. https://doi.org/10.3390/rs10081217.

Nidamanuri, R. R, and B. Zbell. 2011b. “Transferring Spectral Libraries of Canopy Reflectance for
Crop Classification Using Hyperspectral Remote Sensing Data.” Biosystems Engineering 110 (3):
231-246. https://doi.org/10.1016/j.biosystemseng.2011.07.002.

Nidamanuri, R. R., and B. Zbell. 2011c. “Use of Field Reflectance Data for Crop Mapping Using
Airborne Hyperspectral Image.” ISPRS Journal of Photogrammetry & Remote Sensing 66 (5):
683-691. https://doi.org/10.1016/j.isprsjprs.2011.05.001.

Nidamanuri, R. R., and B. Zbell. 2012. “Existence of Characteristic Spectral Signatures for Agricultural
Crops - Potential for Automated Crop Mapping by Hyperspectral Imaging.” Geocarto
International 27 (2): 103-118. https://doi.org/10.1080/10106049.2011.623792.

Ntouros, K. D., I. Z. Gitas, and G. N. Silleos. 2009. “Mapping Agricultural Crops with EO-1 Hyperion
Data.” In 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote
Sensing (WHISPERS), Grenoble, France, 1-4. IEEE. https://doi.org/10.1109/WHISPERS.2009.5289057


https://doi.org/10.3390/s23167132
https://doi.org/10.3390/rs14081809
https://doi.org/10.1016/j.eja.2004.11.004
https://doi.org/10.1016/j.eja.2004.11.004
https://doi.org/10.3390/rs13132564
https://doi.org/10.3390/rs71013208
https://doi.org/10.3390/app10010238
https://doi.org/10.1109/JSTARS.2020.3008096
https://doi.org/10.1109/JSTARS.2020.3008096
https://doi.org/10.1109/TGRS.2021.3101965
https://doi.org/10.1109/TGRS.2021.3101965
https://doi.org/10.1016/j.isprsjprs.2010.11.001
https://doi.org/10.1016/j.isprsjprs.2010.11.001
https://doi.org/10.1109/TGRS.1995.8746029
https://doi.org/10.1109/TGRS.1995.8746029
https://doi.org/10.3390/rs10081217
https://doi.org/10.1016/j.biosystemseng.2011.07.002
https://doi.org/10.1016/j.isprsjprs.2011.05.001
https://doi.org/10.1080/10106049.2011.623792
https://doi.org/10.1109/WHISPERS.2009.5289057

INTERNATIONAL JOURNAL OF REMOTE SENSING . 8291

Ok, A. O., O. Akar, and O. Gungor. 2012. “Evaluation of Random Forest Method for Agricultural Crop
Classification.” European Journal of Remote Sensing 45 (1): 421-432. https://doi.org/10.5721/
EuJRS20124535.

Orynbaikyzy, A., U. Gessner, and C. Conrad. 2019. “Crop Type Classification Using a Combination of
Optical and Radar Remote Sensing Data: A Review.” International Journal of Remote Sensing
40 (17): 6553-6595. https://doi.org/10.1080/01431161.2019.1569791.

Orynbaikyzy, A., U. Gessner, B. Mack, and C. Conrad. 2020. “Crop Type Classification Using Fusion of
Sentinel-1 and Sentinel-2 Data: Assessing the Impact of Feature Selection, Optical Data
Availability, and Parcel Sizes on the Accuracies.” Remote Sensing 12 (17): 2779. https://doi.org/
10.3390/rs12172779.

Otukei, J. R, and T. Blaschke. 2010. “Land Cover Change Assessment Using Decision Trees, Support
Vector Machines and Maximum Likelihood Classification Algorithms.” International Journal of
Applied Earth Observation and Geoinformation 12:527-31. https://doi.org/10.1016/j.jag.2009.11.
002.

Ozdarici-Ok, A., A. Ok, and K. Schindler. 2015. “Mapping of Agricultural Crops from Single High-
Resolution Multispectral Images—Data-Driven Smoothing vs. Parcel-Based Smoothing.” Remote
Sensing 7 (5): 5611-5638. https://doi.org/10.3390/rs70505611.

Pageot, Y., F. Baup, J. Inglada, N. Baghdadi, and V. Demarez. 2020. “Detection of Irrigated and
Rainfed Crops in Temperate Areas Using Sentinel-1 and Sentinel-2 Time Series.” Remote Sensing
12 (18): 3044. https://doi.org/10.3390/rs12183044.

Palchowdhuri, Y., R. Valcarce-Difieiro, P. King, and M. Sanabria-Soto. 2018. “Classification of
Multi-Temporal Spectral Indices for Crop Type Mapping: A Case Study in Coalville, UK." The
Journal of Agricultural Science 156 (1): 24-36. https://doi.org/10.1017/50021859617000879.

Panigrahy, R. K., S. S. Ray, and S. Panigrahy. 2009. “Study on the Utility of irs-P6 AWIiFS SWIR Band for
Crop Discrimination and Classification.” Journal of the Indian Society of Remote Sensing 37 (2):
325-333. https://doi.org/10.1007/512524-009-0026-6.

Paola, J. D., and R. A. Schowengerdt. 1995. “A Detailed Comparison of Backpropagation Neural
Network and Maximume-Likelihood Classifiers for Urban Land Use Classification.” IEEE Transactions
on Geoscience & Remote Sensing 33 (4): 981-996. https://doi.org/10.1109/36.406684.

Pelletier, C.,, S. Valero, J. Inglada, N. Champion, and G. Dedieu. 2016. “Assessing the Robustness of
Random Forests to Map Land Cover with High Resolution Satellite Image Time Series over Large
Areas.” Remote Sensing of Environment 187 (December): 156-168. https://doi.org/10.1016/j.rse.
2016.10.010.

Pelletier, C., S. Valero, J. Inglada, N. Champion, C. Marais Sicre, and G. Dedieu. 2017. “Effect of
Training Class Label Noise on Classification Performances for Land Cover Mapping with Satellite
Image Time Series.” Remote Sensing 9 (2): 173. https://doi.org/10.3390/rs9020173.

Petrucci, B., M. Hug, T. Feuvrier, C. Ruffel, O. Hagolle, V. Lonjou, and C. Desjardins. 2015. MACCS :
Multi-Mission Atmospheric Correction and Cloud Screening Tool for High-Frequency Revisit Data
Processing. Edited by Lorenzo Bruzzone. https://doi.org/10.1117/12.2194797.

Piedelobo, L., D. Herndndez-L6pez, R. Ballesteros, A. Chakhar, S. Del Pozo, D. Gonzélez-Aguilera, and
M. A. Moreno. 2019. “Scalable Pixel-Based Crop Classification Combining Sentinel-2 and
Landsat-8 Data Time Series: Case Study of the Duero River Basin.” Agricultural Systems
171 (May): 36-50. https://doi.org/10.1016/j.agsy.2019.01.005.

Planque, C., R. Lucas, S. Punalekar, S. Chognard, C. Hurford, C. Owers, C. Horton, et al. 2021. “National
Crop Mapping Using Sentinel-1 Time Series: A Knowledge-Based Descriptive Algorithm.” Remote
Sensing 13 (5): 846. https://doi.org/10.3390/rs13050846.

Pluto-Kossakowska, J. 2021. “Review on Multitemporal Classification Methods of Satellite Images for
Crop and Arable Land Recognition.” Agriculture 11 (10): 999. https://doi.org/10.3390/agricul
ture11100999.

Potgieter, A. B., Y. Zhao, P. J. Zarco-Tejada, K. Chenu, Y. Zhang, K. Porker, B. Biddulph, et al. 2021.
“Evolution and Application of Digital Technologies to Predict Crop Type and Crop Phenology in
Agriculture.” Silico Plants 3 (1): diab017. https://doi.org/10.1093/insilicoplants/diab017.


https://doi.org/10.5721/EuJRS20124535
https://doi.org/10.5721/EuJRS20124535
https://doi.org/10.1080/01431161.2019.1569791
https://doi.org/10.3390/rs12172779
https://doi.org/10.3390/rs12172779
https://doi.org/10.1016/j.jag.2009.11.002
https://doi.org/10.1016/j.jag.2009.11.002
https://doi.org/10.3390/rs70505611
https://doi.org/10.3390/rs12183044
https://doi.org/10.1017/S0021859617000879
https://doi.org/10.1007/s12524-009-0026-6
https://doi.org/10.1109/36.406684
https://doi.org/10.1016/j.rse.2016.10.010
https://doi.org/10.1016/j.rse.2016.10.010
https://doi.org/10.3390/rs9020173
https://doi.org/10.1117/12.2194797
https://doi.org/10.1016/j.agsy.2019.01.005
https://doi.org/10.3390/rs13050846
https://doi.org/10.3390/agriculture11100999
https://doi.org/10.3390/agriculture11100999
https://doi.org/10.1093/insilicoplants/diab017

8292 (&) E. DONMEZETAL.

Preidl, S., M. Lange, and D. Doktor. 2020. “Introducing APiC for Regionalised Land Cover Mapping on
the National Scale Using Sentinel-2A Imagery.” Remote Sensing of Environment 240 (April):
111673. https://doi.org/10.1016/j.rse.2020.111673.

Rodriguez-Galiano, V. F., B. Ghimire, J. Rogan, M. Chica-Olmo, and J. Pedro Rigol-Sanchez. 2012. “An
Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification.” ISPRS
Journal of Photogrammetry & Remote Sensing 67:93-104. https://doi.org/10.1016/j.isprsjprs.2011.
11.002.

Rusidk, T., T. Kasanicky, P. Malik, J. Mojzis, J. Zelenka, M. Svicek, D. Abrahdm, and A. Halabuk. 2023.
“Crop Mapping Without Labels: Investigating Temporal and Spatial Transferability of Crop
Classification Models Using a 5-Year Sentinel-2 Series and Machine Learning.” Remote Sensing
15 (13): 3414. https://doi.org/10.3390/rs15133414.

RuBwurm, M., N. Courty, R. Emonet, S. Lefevre, D. Tuia, and R. Tavenard. 2023. “End-to-End Learned
Early Classification of Time Series for In-Season Crop Type Mapping.” ISPRS Journal of
Photogrammetry & Remote Sensing 196 (February): 445-456. https://doi.org/10.1016/j.isprsjprs.
2022.12.016.

RuBwurm, M., and M. Koérner. 2018. “Multi-Temporal Land Cover Classification With Sequential
Recurrent Encoders.” ISPRS International Journal of Geo-Information 7 (4): 129. https://doi.org/
10.3390/ijgi7040129.

Schmedtmann, J., and M. Campagnolo. 2015. “Reliable Crop Identification with Satellite Imagery in
the Context of Common Agriculture Policy Subsidy Control.” Remote Sensing 7 (7): 9325-9346.
https://doi.org/10.3390/rs70709325.

Selea, T. 2023. “AgriSen-COG, a Multicountry, Multitemporal Large-Scale Sentinel-2 Benchmark
Dataset for Crop Mapping Using Deep Learning’.” Remote Sensing 15 (12): 2980. https://doi.org/
10.3390/rs15122980.

Sharma, A, X. Liu, and X. Yang. 2018. “Land Cover Classification from Multi-Temporal, Multi-Spectral
Remotely Sensed Imagery Using Patch-Based Recurrent Neural Networks.” Neural Networks
105 (September): 346-355. https://doi.org/10.1016/j.neunet.2018.05.019.

Shelestov, A., M. Lavreniuk, N. Kussul, A. Novikov, and S. Skakun. 2017. “Exploring Google Earth
Engine Platform for Big Data Processing: Classification of Multi-Temporal Satellite Imagery for
Crop Mapping.” Frontiers in Earth Science: 17. https://doi.org/10.3389/feart.2017.00017.

Siachalou, S., G. Mallinis, and M. Tsakiri-Strati. 2015. “A Hidden Markov Models Approach for Crop
Classification: Linking Crop Phenology to Time Series of Multi-Sensor Remote Sensing Data.”
Remote Sensing 7 (4): 3633-3650. https://doi.org/10.3390/rs70403633.

Siachalou, S., G. Mallinis, and M. Tsakiri-Strati. 2017. “Analysis of Time-Series Spectral Index Data to
Enhance Crop Identification Over a Mediterranean Rural Landscape.” IEEE Geoscience & Remote
Sensing Letters 14 (9): 1508-1512. https://doi.org/10.1109/LGRS.2017.2719124.

Siesto, G., M. Fernandez-Sellers, and A. Lozano-Tello. 2021. “Crop Classification of Satellite Imagery
Using Synthetic Multitemporal and Multispectral Images in Convolutional Neural Networks.”
Remote Sensing 13 (17): 3378. https://doi.org/10.3390/rs13173378.

Simén Sanchez, A.-M., J. Gonzélez-Piqueras, L. de la Ossa, and A. Calera. 2022. “Convolutional Neural
Networks for Agricultural Land Use Classification from Sentinel-2 Image Time Series.” Remote
Sensing 14 (21): 5373. https://doi.org/10.3390/rs14215373.

Sitokonstantinou, V., I. Papoutsis, C. Kontoes, A. Arnal, A. Armesto Andrés, and J. Garraza Zurbano.
2018. “Scalable Parcel-Based Crop Identification Scheme Using Sentinel-2 Data Time-Series for
the Monitoring of the Common Agricultural Policy.” Remote Sensing 10 (6): 911. https://doi.org/
10.3390/rs10060911.

Skakun, S., N. Kussul, A. Yu, M. L. Shelestov, and O. Kussul. 2016. “Efficiency Assessment of
Multitemporal C-Band RADARSAT-2 Intensity and Landsat-8 Surface Reflectance Satellite
Imagery for Crop Classification in Ukraine.” IEEE Journal of Selected Topics in Applied Earth
Observations & Remote Sensing 9 (8): 3712-3719. https://doi.org/10.1109/JSTARS.2015.2454297.

Skriver, H., F. Mattia, G. Satalino, A. Balenzano, V. R. N. Pauwels, N. E. C. Verhoest, and M. Davidson.
2011. “Crop Classification Using Short-Revisit Multitemporal SAR Data.” IEEE Journal of Selected
Topics in Applied Earth Observations & Remote Sensing 4 (2): 423-431. https://doi.org/10.1109/
JSTARS.2011.2106198.


https://doi.org/10.1016/j.rse.2020.111673
https://doi.org/10.1016/j.isprsjprs.2011.11.002
https://doi.org/10.1016/j.isprsjprs.2011.11.002
https://doi.org/10.3390/rs15133414
https://doi.org/10.1016/j.isprsjprs.2022.12.016
https://doi.org/10.1016/j.isprsjprs.2022.12.016
https://doi.org/10.3390/ijgi7040129
https://doi.org/10.3390/ijgi7040129
https://doi.org/10.3390/rs70709325
https://doi.org/10.3390/rs70709325
https://doi.org/10.3390/rs15122980
https://doi.org/10.3390/rs15122980
https://doi.org/10.1016/j.neunet.2018.05.019
https://doi.org/10.3389/feart.2017.00017
https://doi.org/10.3390/rs70403633
https://doi.org/10.1109/LGRS.2017.2719124
https://doi.org/10.3390/rs13173378
https://doi.org/10.3390/rs14215373
https://doi.org/10.3390/rs10060911
https://doi.org/10.3390/rs10060911
https://doi.org/10.1109/JSTARS.2015.2454297
https://doi.org/10.1109/JSTARS.2011.2106198
https://doi.org/10.1109/JSTARS.2011.2106198

INTERNATIONAL JOURNAL OF REMOTE SENSING . 8293

Snevajs, H., K. Charvat, V. Onckelet, J. Kvapil, F. Zadrazil, H. Kubickova, J. Seidlova, and I. Batrlova.
2022. “Crop Detection Using Time Series of Sentinel-2 and Sentinel-1 and Existing Land Parcel
Information Systems.” Remote Sensing 14 (5): 1095. https://doi.org/10.3390/rs14051095.

South, S., Q. Jiaguo, and D. P. Lusch. 2004. “Optimal Classification Methods for Mapping Agricultural
Tillage Practices.” Remote Sensing of Environment 91 (1): 90-97.

Stefanski, J., B. Mack, and O. Waske. 2013. “Optimization of Object-Based Image Analysis with
Random Forests for Land Cover Mapping.” IEEE Journal of Selected Topics in Applied Earth
Observations & Remote Sensing 6 (6): 2492-2504. https://doi.org/10.1109/JSTARS.2013.2253089.

Strobl, C., A.-L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis. 2008. “Conditional Variable
Importance for Random Forests.” BMC Bioinformatics 9 (1): 307. https://doi.org/10.1186/1471-
2105-9-307.

Swain, P. H,, and H. Hauska. 1977. “The Decision Tree Classifier: Design and Potential.” IEEE
Transactions on Geoscience Electronics 15 (3): 142-147. https://doi.org/10.1109/TGE.1977.
6498972.

Sykas, D., M. Sdraka, D. Zografakis, and I. Papoutsis. 2022. “A Sentinel-2 Multiyear, Multicountry
Benchmark Dataset for Crop Classification and Segmentation with Deep Learning'.” IEEE Journal
of Selected Topics in Applied Earth Observations & Remote Sensing 15:3323-3339. https://doi.org/
10.1109/JSTARS.2022.3164771.

Teimouri, M., M. Mokhtarzade, N. Baghdadi, and C. Heipke. 2022. “Fusion of Time-Series Optical and
SAR Images Using 3D Convolutional Neural Networks for Crop Classification.” Geocarto
International 37 (27): 15143-15160. https://doi.org/10.1080/10106049.2022.2095446.

Teimouri, M., M. Mokhtarzade, N. Baghdadi, and C. Heipke. 2023. “Generating Virtual Training Labels
for Crop Classification from Fused Sentinel-1 and Sentinel-2 Time Series.” PFG - Journal of
Photogrammetry, Remote Sensing and Geoinformation Science 91 (6): 413-423. https://doi.org/
10.1007/541064-023-00256-w.

Teimouri, N., M. Dyrmann, and R. Nyholm Jgrgensen. 2019. “A Novel Spatio-Temporal FCN-LSTM
Network for Recognizing Various Crop Types Using Multi-Temporal Radar Images.” Remote
Sensing 11 (8): 990. https://doi.org/10.3390/rs11080990.

Teixeira, I., R. Morais, J. J. Sousa, and A. Cunha. 2023. “Deep Learning Models for the Classification of
Crops in Aerial Imagery: A Review.” Agriculture 13 (5): 965. https://doi.org/10.3390/agricul
ture13050965.

Teke, M., and Y. Y. Cetin. 2021. “Multi-Year Vector Dynamic Time Warping-Based Crop Mapping.”
Journal of Applied Remote Sensing 15 (1): 016517-016517. https://doi.org/10.1117/1.JRS.15.
016517.

Tomppo, E., O. Antropov, and J. Praks. 2019. “Cropland Classification Using Sentinel-1 Time Series:
Methodological Performance and Prediction Uncertainty Assessment.” Remote Sensing 11 (21):
2480. https://doi.org/10.3390/rs11212480.

Tricht, V., A. G. Kristof, S. Gilliams, and I. Piccard. 2018. “Synergistic Use of Radar Sentinel-1 and
Optical Sentinel-2 Imagery for Crop Mapping: A Case Study for Belgium.” Remote Sensing 10 (10):
1642. https://doi.org/10.3390/rs10101642.

Turker, M., and M. Arikan. 2005. “Sequential Masking Classification of Multi-Temporal Landsat7 ETM
+ Images for Field-Based Crop Mapping in Karacabey, Turkey.” International Journal of Remote
Sensing 26 (17): 3813-3830. https://doi.org/10.1080/01431160500166391.

Turker, M., and A. Ozdarici. 2011. “Field-Based Crop Classification Using SPOT4, SPOT5, IKONOS and
QuickBird Imagery for Agricultural Areas: A Comparison Study.” International Journal of Remote
Sensing 32 (24): 9735-9768. https://doi.org/10.1080/01431161.2011.576710.

Turkoglu, M. O., S. D'Aronco, G. Perich, F. Liebisch, C. Streit, K. Schindler, and J. D. Wegner. 2021.
“Crop Mapping from Image Time Series: Deep Learning with Multi-Scale Label Hierarchies.”
Remote Sensing of Environment 264 (October): 112603. https://doi.org/10.1016/j.rse.2021.
112603.

Ustuner, M., F. Balik Sanli, and B. Dixon. 2015. “Application of Support Vector Machines for Landuse
Classification Using High-Resolution RapidEye Images: A Sensitivity Analysis.” European Journal of
Remote Sensing 48 (1): 403-422. https://doi.org/10.5721/EuJRS20154823.


https://doi.org/10.3390/rs14051095
https://doi.org/10.1109/JSTARS.2013.2253089
https://doi.org/10.1186/1471-2105-9-307
https://doi.org/10.1186/1471-2105-9-307
https://doi.org/10.1109/TGE.1977.6498972
https://doi.org/10.1109/TGE.1977.6498972
https://doi.org/10.1109/JSTARS.2022.3164771
https://doi.org/10.1109/JSTARS.2022.3164771
https://doi.org/10.1080/10106049.2022.2095446
https://doi.org/10.1007/s41064-023-00256-w
https://doi.org/10.1007/s41064-023-00256-w
https://doi.org/10.3390/rs11080990
https://doi.org/10.3390/agriculture13050965
https://doi.org/10.3390/agriculture13050965
https://doi.org/10.1117/1.JRS.15.016517
https://doi.org/10.1117/1.JRS.15.016517
https://doi.org/10.3390/rs11212480
https://doi.org/10.3390/rs10101642
https://doi.org/10.1080/01431160500166391
https://doi.org/10.1080/01431161.2011.576710
https://doi.org/10.1016/j.rse.2021.112603
https://doi.org/10.1016/j.rse.2021.112603
https://doi.org/10.5721/EuJRS20154823

8294 (&) E.DONMEZET AL.

Ustuner, M., F. B. Sanli, S. Abdikan, M. T. Esetlili, and Y. Kurucu. 2014. “Crop Type Classification Using
Vegetation Indices of RapidEye Imagery.” International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences XL-7 (September): 195-198. https://doi.org/10.5194/
isprsarchives-XL-7-195-2014.

Valcarce-Difeiro, R., B. Arias-Pérez, J. M. Lopez-Sanchez, and N. Sanchez. 2019. “Multi-Temporal
Dual- and Quad-Polarimetric Synthetic Aperture Radar Data for Crop-Type Mapping.” Remote
Sensing 11 (13): 1518. https://doi.org/10.3390/rs11131518.

Valero, S., L. Arnaud, M. Planells, and E. Ceschia. 2021. “Synergy of Sentinel-1 and Sentinel-2 Imagery
for Early Seasonal Agricultural Crop Mapping.” Remote Sensing 13 (23): 4891. https://doi.org/10.
3390/rs13234891.

Vaudour, E., P. E. Noirot-Cosson, and O. Membrive. 2015. “Early-Season Mapping of Crops and
Cultural Operations Using Very High Spatial Resolution Pléiades Images.” International Journal
of Applied Earth Observation and Geoinformation 42 (October): 128-141. https://doi.org/10.1016/j.
jag.2015.06.003.

Villa, P, D. Stroppiana, G. Fontanelli, R. Azar, and P. Brivio. 2015. “In-Season Mapping of Crop Type
with Optical and X-Band SAR Data: A Classification Tree Approach Using Synoptic Seasonal
Features.” Remote Sensing 7 (10): 12859-12886. https://doi.org/10.3390/rs71012859.

Waldhoff, G., C. Curdt, D. Hoffmeister, and G. Bareth. 2012. “Analysis of Multitemporal and
Multisensor Remote Sensing Data for Crop Rotation Mapping.” ISPRS Annals of the
Photogrammetry, Remote Sensing & Spatial Information Sciences 1:177-182. https://doi.org/10.
5194/isprsannals-1-7-177-2012.

Waldhoff, G., U. Lussem, and G. Bareth. 2017. “Multi-Data Approach for Remote Sensing-Based
Regional Crop Rotation Mapping: A Case Study for the Rur Catchment, Germany.” International
Journal of Applied Earth Observation and Geoinformation 61 (September): 55-69. https://doi.org/
10.1016/j.jag.2017.04.009.

Weikmann, G, C. Paris, and L. Bruzzone. 2021. “Timesen2Crop: A Million Labeled Samples Dataset of
Sentinel 2 Image Time Series for Crop-Type Classification’.” IEEE Journal of Selected Topics in
Applied Earth Observations & Remote Sensing 14:4699-4708. https://doi.org/10.1109/JSTARS.2021.
3073965.

Weilandt, F., R. Behling, R. Goncalves, A. Madadi, L. Richter, T. Sanona, D. Spengler, and J. Welsch.
2023. “Early Crop Classification via Multi-Modal Satellite Data Fusion and Temporal Attention.”
Remote Sensing 15 (3): 799. https://doi.org/10.3390/rs15030799.

Wold, S., K. Esbensen, and P. Geladi. 1987. “Principal Component Analysis.” Chemometrics and
Intelligent Laboratory Systems 2 (1-3): 37-52. https://doi.org/10.1016/0169-7439(87)80084-9.

Wozniak, E., M. Rybicki, W. Kofman, S. Aleksandrowicz, C. Wojtkowski, S. Lewinski, J. Bojanowski, et al.
2022. “Multi-Temporal Phenological Indices Derived from Time Series Sentinel-1 Images to
Country-Wide Crop Classification.” International Journal of Applied Earth Observation and
Geoinformation 107 (March): 102683. https://doi.org/10.1016/j.jag.2022.102683.

Xie, X., and F. Quiel. 2000. “Crop Classification in Southern Sweden with Multitemporal ERS-2 SAR
Data.” In ERS-ENVISAT Symposium: Looking down to Earth in the New Millennium, Gothenburg,
Sweden.

Ya'nan, Z., Z. Weiwei, F. Li, G. Jianwei, C. Yuehong, Z. Xin, and L. Jiancheng. 2024. “Hierarchical
Classification for Improving Parcel-Scale Crop Mapping Using Time-Series Sentinel-1 Data.”
Journal of Environmental Management 369 (October): 122251. https://doi.org/10.1016/j.jenv
man.2024.122251.

Zhou, Y., Y. Wang, N. Yan, L. Feng, Y. Chen, T. Wu, J. Gao, X. Zhang, and W. Zhu. 2023. “Contrastive-
Learning-Based Time-Series Feature Representation for Parcel-Based Crop Mapping Using
Incomplete Sentinel-2 Image Sequences.” Remote Sensing 15 (20): 5009. https://doi.org/10.
3390/rs15205009.

Zhu, Z., and C. E. Woodcock. 2012. “Object-Based Cloud and Cloud Shadow Detection in Landsat
Imagery.” Remote Sensing of Environment 118 (March): 83-94. https://doi.org/10.1016/j.rse.2011.
10.028.


https://doi.org/10.5194/isprsarchives-XL-7-195-2014
https://doi.org/10.5194/isprsarchives-XL-7-195-2014
https://doi.org/10.3390/rs11131518
https://doi.org/10.3390/rs13234891
https://doi.org/10.3390/rs13234891
https://doi.org/10.1016/j.jag.2015.06.003
https://doi.org/10.1016/j.jag.2015.06.003
https://doi.org/10.3390/rs71012859
https://doi.org/10.5194/isprsannals-I-7-177-2012
https://doi.org/10.5194/isprsannals-I-7-177-2012
https://doi.org/10.1016/j.jag.2017.04.009
https://doi.org/10.1016/j.jag.2017.04.009
https://doi.org/10.1109/JSTARS.2021.3073965
https://doi.org/10.1109/JSTARS.2021.3073965
https://doi.org/10.3390/rs15030799
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1016/j.jag.2022.102683
https://doi.org/10.1016/j.jenvman.2024.122251
https://doi.org/10.1016/j.jenvman.2024.122251
https://doi.org/10.3390/rs15205009
https://doi.org/10.3390/rs15205009
https://doi.org/10.1016/j.rse.2011.10.028
https://doi.org/10.1016/j.rse.2011.10.028

	Abstract
	1. Introduction
	2. Methodology
	3. Types of crop cover classification map
	3.1. Regional coverage
	3.2. Ground truth
	3.3. Data availability
	3.4. Class granularity

	4. Performance of different approaches for crop classification
	4.1. Remote sensing sources
	4.1.1. Optical remote sensing products and features
	4.1.1.1. Optical features
	4.1.1.2. Handling cloud cover

	4.1.2. Radar Remote Sensing products and features
	4.1.2.1. Sentinel-1
	4.1.2.2. Polarization (VV-VH-HH)
	4.1.2.3. Haralick textures

	4.1.3. Multisource classification
	4.1.4. Multitemporal classification
	4.1.5. Temporal compositing

	4.2. Classification algorithms
	4.2.1. Overview of classification algorithms
	4.2.1.1. Decision trees
	4.2.1.2. Random Forests
	4.2.1.3. Support Vector Machines
	4.2.1.4. Maximum Likelihood classifier
	4.2.1.5. K-Nearest neighbor
	4.2.1.6. Neural Networks
	4.2.1.7. Distance-based classifiers

	4.2.2. Accuracies obtained by the classification algorithms

	4.3. Classification level
	4.3.1. Pixel level classification
	4.3.2. Object level classification
	4.3.2.1. Segmentation/Boundary detection techniques for object level classification

	4.3.3. Accuracy comparison

	4.4. Additional features
	4.5. Additional methods
	4.5.1. Hierarchical classification
	4.5.2. Feature selection
	4.5.3. Division of the study area


	5. Conclusion
	Acknowledgments
	Disclosure statement
	Funding
	ORCID
	References

