

Complete genome sequence of *Pediococcus pentosaceus* 13.7 2A-1 isolated from a Holstein Friesian dairy cattle

Nadine Mariani Corea,¹ Fritz Titgemeyer,¹ Jennifer Wachtarczyk,¹ Frank Meyer,¹ Sebastian W. Fischer^{1,2}

AUTHOR AFFILIATIONS See affiliation list on p. 2.

ABSTRACT *Pediococcus pentosaceus* was isolated from a Holstein Friesian dairy cattle from a conventionally operated farm. The complete genome of strain *P. pentosaceus* 13.7 2A-1 comprises 1.84 Mbp and 1,746 protein-coding sequences. The decoded genome sequence will serve to further study the strain for its use in food fermentation and food safety.

KEYWORDS lactic acid bacteria, probiotics, protective cultures, nanopore, biofilm, food, food safety

Strains of *Pediococcus pentosaceus* are used for food fermentation and preservation (1, 2). We aim to isolate *P. pentosaceus* strains from natural environments to describe their efficacy against pathogenic, food-borne microorganisms (3, 4).

P. pentosaceus 13.7. 2A-1 was isolated from a Holstein Friesian dairy herd on a conventionally managed farm in Münsterland, Germany. The teat canal biofilm was collected from the teat canal using a swab and transferred to a 0.9% NaCl solution. Dilutions were plated onto De Man, Rogosa, and Sharpe (MRS)-Bouillon-agar containing 0.5 g/L cysteine and 10 mg/L bromophenol blue and incubated anaerobically at 30°C for 48 h (5). A single colony was subjected to polymerase chain reaction using primers 27f (5'-AGAGTTGATCTGGCTCAG-3') and the self-designed N1492r, in which positions 6 and 17 were replaced by Y bases (5'-TACGGYTACCTGTTAYGACTT-3') compared to the original universal primer 1492R (6). The Sanger-sequenced DNA of 1,067 bp was 100% identical to positions 66 to 1,133 of *rrnA* of type strain *P. pentosaceus* ATCC 25745 (NC_008525.1) (7).

Genomic DNA was isolated using the Wizard HMW DNA Extraction Kit (Promega, USA) and quantified on a DeNovix QFX fluorometer (DeNovix, USA). Two independent libraries were prepared with the Oxford Nanopore SQK-RAD004 kit. Sequence data were collected by two independent nanopore runs using Flongle R9.4.1 Flow Cells. Basecalling was performed with Guppy v.6.3.8 (model dna_r9.4.1_450bps_hac.cfg), retaining reads with a quality score \geq Q9 (8). Adapters were trimmed using Porechop v0.2.4. Filtlong v0.2.1 discarded the lowest 15% of reads and < 1 kb. (9, 10). The data set for genome assembly was characterized with Nanoq v.0.10.0 and yielded 28,792 reads (131.9 Mbp; N50 = 5,081 bp; median/avg = 3,284/4,580 bp; max = 86,128 bp; mean Q = 9.8). The quality metrics of 30.8%/6.1% \geq Q20/Q30 were calculated with SeqKit v.2.9.0 (11, 12). The genome was assembled using Flye v.2.9.2, Raven v.1.8.2, and Miniasm v.0.3 + MiniPolish v.0.1.3 implemented in the Trycycler v.0.5.4 pipeline (13–17). The draft was polished and verified (Medaka v.1.8.0; Bandage v.0.9.0) (18, 19). FAST5 reads were re-basecalled for final polishing (Dorado v.0.9.6; model dna_r9.4.1_e8_sup@v3.6 with foundation), then aligned (Dorado Aligner), and filtered (Samtools v.1.22.1; MAPQ \geq 20; flags QC-failed 0x200, secondary 0x100, and supplementary 0x800 excluded; ≥ 1 kb) (20, 21). The genome was polished with Medaka v.2.1.0 and Homopolish v.0.4.1 (polish, modpolish)

Editor Zhenjiang Zech Xu, Nanchang University, Nanchang, Jiangxi, China

Address correspondence to Sebastian W. Fischer, sebastian.fischer@fh-muenster.de.

The authors declare no conflict of interest.

See the funding table on p. 2.

Received 11 August 2025

Accepted 13 September 2025

Published 2 October 2025

Copyright © 2025 Mariani Corea et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

TABLE 1 Assembly and quality metrics for the complete chromosome of *P. pentosaceus* 13.7 2 A-1

Replicon	Length (bp)	G + C (%)	Contigs coverage	BUSCO genome completeness (%)	CheckM2 genome completeness and Genome fraction (%) contamination (%)
Chromosome	1,836,247	37.1	51.7x	97.8	100/0.18 87.9

and reoriented to *dnaA* as the first base (Dnapler v.1.2.0) (18, 22, 23). Unless otherwise noted, all bioinformatics tools were used with default settings.

The genome of type strain *P. pentosaceus* ATCC 25745 ([NC_008525.1](#)) was taken as reference to obtain genome length, G + C content, and percentage of overlap (genome fraction) using QUAST v.5.3.0 (Table 1). The read depth, determined by reassigning the filtered reads, yielded a coverage of 51.7x across the entire chromosome (minimap2 v.2.30; samtools v.1.22.1) (21, 24–26). Genome completeness was inferred with BUSCO v.5.8.3 (data set *pediococcus_odb12*) and CheckM2 v.1.1.0 (neural-network model) (27, 28). The genome was annotated with PGAP v.6.10, identifying 1,746 protein-coding sequences, 15 rRNA genes, and 55 tRNA genes (29).

ACKNOWLEDGMENTS

This publication was supported by the Open Access Publication Fund of the University of Bonn.

S.W.F., J.W., F.M., N.M.C.: Data curation, Formal analysis, Investigation, and Methodology. S.W.F.: Genome assembly and quality control. S.W.F., N.M.C., F.T.: Writing – original draft, review, and editing

AUTHOR AFFILIATIONS

¹Department of Food, Nutrition, Facilities, FH Münster, Münster, Germany

²Institute for Hygiene and Public Health, University Clinics Bonn, Bonn, Germany

AUTHOR ORCIDs

Nadine Mariani Corea <http://orcid.org/0009-0007-6530-0476>

Fritz Titgemeyer <http://orcid.org/0009-0002-6235-398X>

Sebastian W. Fischer <http://orcid.org/0000-0002-4450-5487>

FUNDING

Funder	Grant(s)	Author(s)
Open Access Publication Fund of the University of Bonn		Sebastian W. Fischer

AUTHOR CONTRIBUTIONS

Nadine Mariani Corea, Data curation, Formal analysis, Investigation, Methodology, Writing – original draft, Writing – review and editing | Fritz Titgemeyer, Writing – original draft, Writing – review and editing | Jennifer Wachtarczyk, Data curation, Formal analysis, Investigation, Methodology | Frank Meyer, Data curation, Formal analysis, Investigation, Methodology | Sebastian W. Fischer, Data curation, Formal analysis, Investigation, Methodology, Supervision, Validation, Writing – original draft, Writing – review and editing

DATA AVAILABILITY

Whole-genome sequencing data for *P. pentosaceus* isolate 13.7 2 A-1 have been deposited in the NCBI Sequence Read Archive (SRA) under BioProject accession number [PRJNA1297324](#). The raw sequencing reads are available via the SRA under the corresponding BioSample [SAMN50231305](#) entry. The assembled and annotated genome is available at DDBJ/ENA/GenBank accession numbers [CP197205](#) and [GCA_052059775.1](#).

REFERENCES

- Qi Y, Huang L, Zeng Y, Li W, Zhou D, Xie J, Xie J, Tu Q, Deng D, Yin J. 2021. *Pediococcus pentosaceus*: screening and application as probiotics in food processing. *Front Microbiol* 12:762467. <https://doi.org/10.3389/fmicb.2021.762467>
- Fischer SW, Titgemeyer F. 2023. Protective cultures in food products: from science to market. *Foods* 12:1541. <https://doi.org/10.3390/foods12071541>
- de Souza de Azevedo PO, Mendonça CMN, Moreno ACR, Bueno AVI, de Almeida SRY, Seibert L, Converti A, Watanabe I-S, Gierus M, de Souza Oliveira RP. 2020. Antibacterial and antifungal activity of crude and freeze-dried bacteriocin-like inhibitory substance produced by *Pediococcus pentosaceus*. *Sci Rep* 10:12291. <https://doi.org/10.1038/s41598-020-68922-2>
- Yin H-B, Chen C-H, Colorado-Suarez S, Patel J. 2022. Biocontrol of *Listeria monocytogenes* and *Salmonella enterica* on fresh strawberries with lactic acid bacteria during refrigerated storage. *Foodborne Pathog Dis* 19:324–331. <https://doi.org/10.1089/fpd.2021.0091>
- Lee HM, Lee Y. 2008. A differential medium for lactic acid-producing bacteria in a mixed culture. *Lett Appl Microbiol* 46:676–681. <https://doi.org/10.1111/j.1472-765X.2008.02371.x>
- Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. *J Bacteriol* 173:697–703. <https://doi.org/10.1128/jb.173.2.697-703.1991>
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. *J Mol Biol* 215:403–410. [https://doi.org/10.1016/S0022-2836\(05\)80360-2](https://doi.org/10.1016/S0022-2836(05)80360-2)
- Oxford Nanopore Technologies. 2022. Guppy (version 6.3.8). Oxford Nanopore Technologies. <https://nanoporetech.com/software/other/guppy>.
- Wick RR. 2018. Porechop (version 0.2.4). GitHub. <https://github.com/rrwick/Porechop>.
- Wick RR. 2021. Filtlong (version 0.2.1). GitHub. <https://github.com/rrwick/Filtlong>.
- Shen W, Sipos B, Zhao L. 2024. SeqKit2: a swiss army knife for sequence and alignment processing. *Imeta* 3:e191. <https://doi.org/10.1002/imt2.191>
- Steinig E, Coin L. 2022. Nanoq: ultra-fast quality control for nanopore reads. *JOSS* 7:2991. <https://doi.org/10.21105/joss.02991>
- Wick RR, Judd LM, Cerdeira LT, Hawkey J, Méric G, Vezina B, Wyres KL, Holt KE. 2021. Trycycler: consensus long-read assemblies for bacterial genomes. *Genome Biol* 22:266. <https://doi.org/10.1186/s13059-021-02483-z>
- Kolmogorov M, Yuan J, Lin Y, Pevzner PA. 2019. Assembly of long, error-prone reads using repeat graphs. *Nat Biotechnol* 37:540–546. <https://doi.org/10.1038/s41587-019-0072-8>
- Vaser R, Šikić M. 2024. Time- and memory-efficient genome assembly with Raven. *Nat Comput Sci* 1:332–336. <https://doi.org/10.1038/s43588-021-00073-4>
- Li H. 2016. Minimap and miniasm: fast mapping and *de novo* assembly for noisy long sequences. *Bioinformatics* 32:2103–2110. <https://doi.org/10.1093/bioinformatics/btw152>
- Wick RR, Holt KE. 2021. Benchmarking of long-read assemblers for prokaryote whole genome sequencing. *F1000Res* 8:2138. <https://doi.org/10.12688/f1000research.21782.4>
- Oxford Nanopore Technologies. 2024. Medaka (versions 1.8 and 2.1). GitHub. <https://github.com/nanoporetech/medaka>.
- Wick RR, Schultz MB, Zobel J, Holt KE. 2015. Bandage: interactive visualization of *de novo* genome assemblies. *Bioinformatics* 31:3350–3352. <https://doi.org/10.1093/bioinformatics/btv383>
- Oxford Nanopore Technologies. 2025. Dorado (version 0.9.6). Oxford Nanopore Technologies. <https://nanoporetech.com/software/other/dorado>.
- Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, Li H. 2021. Twelve years of SAMtools and BCFtools. *Gigascience* 10:giab008. <https://doi.org/10.1093/gigascience/giab008>
- Bouras G, Grigson SR, Papudeshi B, Mallawaarachchi V, Roach MJ. 2024. Dnaapler: a tool to reorient circular microbial genomes. *JOSS* 9:5968. <https://doi.org/10.21105/joss.05968>
- Huang Y-T, Liu P-Y, Shih P-W. 2021. Homopolish: a method for the removal of systematic errors in nanopore sequencing by homologous polishing. *Genome Biol* 22:95. <https://doi.org/10.1186/s13059-021-02282-6>
- Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. *Bioinformatics* 29:1072–1075. <https://doi.org/10.1093/bioinformatics/btt086>
- Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* 34:3094–3100. <https://doi.org/10.1093/bioinformatics/bty191>
- Li H. 2021. New strategies to improve minimap2 alignment accuracy. *Bioinformatics* 37:4572–4574. <https://doi.org/10.1093/bioinformatics/btab705>
- Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. 2021. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. *Mol Biol Evol* 38:4647–4654. <https://doi.org/10.1093/molbev/msab199>
- Chklovski A, Parks DH, Woodcroft BJ, Tyson GW. 2023. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. *Nat Methods* 20:1203–1212. <https://doi.org/10.1038/s41592-023-01940-w>
- Li W, O'Neill KR, Haft DH, DiCuccio M, Chetvernin V, Badretdin A, Coulouris G, Chitsaz F, Derbyshire MK, Durkin AS, Gonzales NR, Gwadz M, et al. 2020. RefSeq: expanding the prokaryotic genome annotation pipeline reach with protein family model curation. *Nucleic Acids Res* 49:D1020–D1028. <https://doi.org/10.1093/nar/gkaa1105>