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Zusammenfassung

Diese Dissertation behandelt die Periodengeometrie in Kompaktifizierungen der Stringtheo-
rie des Typs IIB im Kontext der supersymmetrischen Flussvakua und der Kondensation von
Schwarzen Löchern. Als zentrale Fragestellung untersuchen wir, wie Übergänge zwischen Fami-
lien von Calabi–Yau Mannigfaltigkeiten die vielen a priori verschiedenen Kompaktifizierungen
miteinander verknüpfen. Wir zeigen, dass Fixpunktloci im Modulraum der komplexen Struk-
tur unter geeigneten diskreten Symmetrien eine rationale Aufspaltung der Perioden innehaben,
welche erforderlich ist für Modulistabilisierungen auf symmetrischen Loci und des Weiteren
eine Einbettung bekannter Flussvakua in Mehrparametermodelle bewirkt. Wir vereinfachen
die Suche nach Flussvakua in vierdimensionalen Einparameter-Kompaktifizierungen zu Attrak-
torpunkten auf deren Yifan-Yang Rücktransport. Entlang singulären Komponenten des Mod-
ulraums identifizieren wir Einparametermodelle welche durch sogenannte „strong coupling“-
bzw. „conifold“-Übergänge entstehen. Im zweiten Fall glättet eine Kondensation von Schwarzen
Löchern die Singularität und führt zu einer gemischten Coulomb/Higgs-Phase mit einer in-
duzierten integralen Periodenstruktur. Wir kategorisieren Übergänge in Genus-1-Faserungen
über torische Basen welche durch reflexive Polygone beschrieben werden und identifizieren neue
Verbindungen zwischen mehreren Familien. Ein Formalismus wird vorgeschlagen und unter-
stützt durch Beispielrechnungen, der mutmaßlich-integrale Periodenbasen für alle (n > 3)-
dimensionale nicht-entartete Calabi–Yau Familien konstruiert.

Abstract

This dissertation investigates the period geometry in compactifications of type IIB string theory
on restricted moduli spaces in the context of supersymmetric flux vacua and black hole conden-
sations. The guiding question of this work is how transitions among families of Calabi–Yau mani-
folds connect the vast number of seemingly different compactifications. We show that fixed-point
loci in the complex-structure moduli space under suitable discrete symmetries furnish a rational
splitting of periods, which is necessary for symmetric moduli stabilisation and embeds known
flux vacua into multi-parameter models. We reduce the search for flux vacua in compactifica-
tions on one-parameter Calabi–Yau four-folds to attractor points on their Yifan-Yang pullback.
Along singular components of the moduli space, we identify one-parameter models arising in
strong coupling and conifold transitions. In the latter case, black hole condensation smooths out
the singularity and gives rise to a mixed Coulomb/Higgs branch with an induced integral pe-
riod structure. We categorise the transitions in genus-one fibrations over toric bases described
by reflexive polygons and identify new connections among several families. A formalism is pro-
posed that constructs conjecturally integral period bases for (n > 3)-dimensional non-degenerate
Calabi–Yau families, which is supported by exemplary computations.
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Chapter 1

Introduction

One of the most profound questions in modern physics is about the existence of a theory unifying
quantum theory with Einstein’s theory of gravity. In the second half of the last century, a proposal
was developed replacing point-like particles by strings, which are one-dimensional extended ob-
jects that trace out two-dimensional world-sheets in spacetime instead of single world-lines. The
vibrational modes of the classical string are lifted to operators in the quantum theory that excite
its ground state and characterise its physical properties such as spin and mass. In the origins of
the bosonic string as a description of hadron interactions, the massive excitations matched the
affine relation between total spin and mass squared of the Regge trajectory. Additionally, the
closed string has a massless spin-two excitation, which was unexpected in hadron physics and
only later identified as a graviton candidate. Order-by-order finiteness of string theory makes it a
UV-complete theory of gravity, which is non-renormalisable as a point-particle theory. The UV
divergences in quantum field theory come from short-distance interactions, which are absent in
string theory due to finiteness of the string length lS. Strings are not the only dynamical object
in the spectrum: an open string ends on (p + 1)-dimensional objects called Dp-branes, which
themselves are dynamical objects.

In point-particle quantum field theories, one builds a Lagrangian from empirical evidence of
experiments and tunes the parameters—such as couplings or masses—to fit the observations.
This is in stark contrast to string theory, where the only free parameter is the string length. The
string coupling gS = exp⟨ϕ⟩, for example, is determined by the vacuum expectation value of the
dilaton field ϕ. String scatterings replace the sum over Feynman integrals by smooth world-sheet
integrals with vertex operators. The different channels are incorporated in a single expression,
which was the motivating description for the dual resonance model of hadronic interactions.

The ground state of the bosonic string is a tachyon and it destabilises the vacuum. By introduc-
ing fermions as superpartners to the bosonic fields, one can remove the tachyon after a projection
that furthermore renders the spectrum spacetime-supersymmetric. By 1985, five consistent su-
persymmetric string theories were developed that have either N = 1 or N = 2 supersymmetry.
For them to incorporate Einstein’s concept of relativity, one finds that they are consistent only
in ten spacetime dimensions instead of the four we can observe. It follows that the six internal
extra dimensions should be compact and small in relation to sizes accessible to us. The Kaluza–
Klein momentum modes become massive with MKK ∼ 1/R and decouple in the effective theory
as the characteristic length R shrinks. Strings can, however, also wind around the cycles. The
masses of winding states scale as R/l2S. The large volume assumption lS ≪ R implies that both
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1. Introduction

momentum and winding states become increasingly heavy. The excitations of the string have
massesMS ∼ 1/lS and are then heavier than the momentum modes. In the low-energy approxi-
mation of supergravityE ≪ 1/R, all these states can be integrated out and the spectrum consists
only of the ground states. During the compactification on a flat manifold, e.g. a six-torus, a sin-
gle Majorana–Weyl spinor with 16 real supercharges in ten dimensions decomposes into four
Majorana spinors in four dimensions with four real supercharges each. It follows that super-
string theories on T 6 yield N = 4 or N = 8 theories in four dimensions. Internal spaces with
non-trivial holonomy group break part of the supersymmetry. Preserving supersymmetry in the
four-dimensional theory restricts the internal manifold to possess covariantly constant spinors,
which is equivalent to the holonomy group to be contained in SU(3). Spaces with this property
were known to mathematicians under the name Calabi–Yau manifolds. We will reserve the name
for manifolds whose holonomy group is precisely SU(3), which have a single pair of covariantly
constant spinors of opposite chirality. Their existence imply that the manifold is furthermore
Ricci-flat and thus a solution to the Einstein field equations in a vacuum. The compactified the-
ory then has the same N = 1 or N = 2 symmetry as in ten dimensions. Supersymmetry can,
for example, be halved by orientifold projections or broken completely by giving generic back-
ground values to the field strengths. In the years after 1985, dualities among the superstring
theories were identified that relate, for example, the strongly coupled regime of one with the
weak coupling region of another. For us the most important duality is mirror symmetry, linking
type IIA compactifications on a Calabi–YauX with type IIB on its mirror manifold X̂. Before the
turn of the century, all five were recognised as different limits of an eleven-dimensional theory
called M-theory. In this work, we will mostly work with a theory called type IIB and its non-
perturbative extension F-theory. Type IIB has an SL(2,Z) symmetry that connects its strongly
and weakly coupled regime. This is manifested in F-theory by geometrising the responsible scalar
as the complex-structure modulus of an elliptic curve, which is naturally invariant under the
symmetry. F-theory compactifications to four dimensions demand complex four-dimensional
Calabi–Yau manifolds with a genus-one fibration as internal spaces. The geometry of the com-
pactification manifold describes a large part of the four-dimensional physics, such as spectrum
and coupling strengths. The massless scalar fields parametrising the vacuum configuration are
called moduli. Cycles of suitable dimensions yield fields in supersymmetry multiplets reduced
from the ten-dimensional field content. The volume of such cycles determines the coupling of
super Yang–Mills theory on D-branes wrapped around them. On D3-branes, the complexified
coupling is given by τ = C0+i e−ϕ and one identifies the expectation value of C0 with a θ-angle.

The absence of massless scalar fields in the standard model requires a potential that assigns
vacuum expectation values to the moduli and removes them from the effective theory by making
them massive. For the moduli parametrising the complex structure, such a potential is obtained
by fixing the cohomology classes of the field strengths F3 and H3 . The cohomology class is rep-
resented by a flux, which yields the integrals of the field strengths over internal cycles. Supersym-
metry puts restrictions on the allowed choices of flux configurations and Calabi–Yau manifolds
with a suitable Hodge structure furnishing a flux vacuum are special. For families of Calabi–Yau
manifolds with a single complex structure modulus, the specific value of this modulus corre-
sponding to a manifold with a supersymmetric flux configuration is an attractor point. This is
because the equations governing the condition involve Calabi–Yau periods and are equivalent to
that of the attractor mechanism, which dictate its value for the existence of a BPS black hole
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in the four-dimensional theory. Attractor points are the analogue of points of complex multi-
plication on elliptic curves and feature interesting arithmetic properties. Similar identifications
in multi-parameter families are more involved and all known loci of flux vacua on Minkowski
backgrounds originate from symmetry properties of the moduli space.

Looking at the vast number of distinct Calabi–Yau three-folds, it might seem impossible to
identify the internal space which explains the observations in experiments. Even before Calabi–
Yau manifolds became of interest to string theorists, mathematicians were aware of transitions
between two topologically different families. At so-called conifold points, the manifolds look like
a cone with base S2 × S3. At the singularity, one has two choices to regularise the space: either
one glues in an S2 or an S3. These correspond to manifolds with different Hodge numbers and
the two possibilities connect the moduli spaces of two distinct families. In type IIB theory, the
topology determines the numbers of hyper- and vectormultiplets. At the singularity, hypermul-
tiplets become massless and appear in the effective theory, which give mass to some of the vector
multiplets via the Higgs mechanism. The hypermultiplets correspond to extremal black holes
in the effective theory and the curing of the singularity is hence called black hole condensation.
The resolution S3 → S2 is called conifold transition, while the degeneration of S2 → S3 is
called strong-coupling transition, due to its identification with strongly coupled type IIA theory.
One should note that these transitions here are schematic and that, in general, there are multiple
cycles shrinking simultaneously subject to relations in homology. Several examples have been
found that connect two moduli spaces in this way and it is an open conjecture that the ambiguity
in the vacuum choice is resolved by an interconnectedness of all Calabi–Yau families.

We will study supersymmetric flux vacua and black hole condensations in type IIB compacti-
fications. Both phenomena arise along special loci in the complex-structure moduli space, which
are smooth in the first case and singular in the second. The thesis is partly based on the following
joint work.

• [1] “Calabi–Yau Period Geometry and Restricted Moduli in Type II Compacti-
fications” by J. Dücker, A. Klemm and J. F. Piribauer, JHEP 07 (2025), p. 225,
doi: 10.1007/JHEP07(2025)225.

• [2] “Geometry and Arithmetic of Transitions in Type II String Theory”
by P. Blesse, J. Dücker, A. Klemm and J. F. Piribauer, In preparation.

In [1], we studied the relations between symmetries of the moduli space and flux vacua on their
fixed-point loci. Section 5.6 and Chapter 6 are based on this article. We identified the flux con-
ditions of type IIB compactifications with those in F-theory on its antisymmetric-product lift. A
construction for a cohomology basis was given that transforms under the Gauss–Manin connec-
tion in block-anti-diagonal form, which has further application in the computation of Feynman
integrals in the form of iterated integrals. The article in preparation [2] gives an identification
of strong coupling and conifold transitions as Hadamard products of the fibre and base of the
fibration. We connect a variety of types of Calabi–Yau families and furthermore give a geometric
realisation of an integral period structure on the Hadamard products. The results of chapter 7
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1. Introduction

will be part of this article. Unless otherwise indicated, the material reproduced in this work are
the author’s own work.

The quantities we compute and analyse are typically period integrals, i.e. pairings between the
homology and cohomology. A holomorphic description of the complex structure is obtained by
the integrals of the unique (n, 0)-form Ω(z) over a fixed topological basis in homology. These
periods are coordinates for the complex-structure moduli space. Due to Griffiths transversality,
the derivative under the Gauss–Manin connection acts on the vector space of periods as a linear
operator, which can be reduced to the scalar differential equation called Picard–Fuchs equation.
This information is encoded in the generators of the Mori cone of the family. For Calabi–Yau
families embedded in toric ambient spaces, we extracted them together with the topological data
given by integrals of the Chern classes with Sagemath. All other computations were performed
in Mathematica. A Sagemath code for the computation of toric data and Mathematica imple-
mentations for the integral basis construction of Chapter 5 and the decomposition of the middle
cohomology under quotients in section 6.1 are available upon request. The Yukawa couplings in
the Batyrev coordinates given in eq. (5.4.50) were obtained with aMathematica program written
by Albrecht Klemm.

We begin with a brief review on Calabi–Yau manifolds in chapter 2, focusing on constructive
methods for embeddings in toric ambient spaces. This is followed by a minimal introduction to
string theory, its unification and flux vacua in chapter 3. The chapter ends with a discussion of
black hole condensation as the string-theoretic realisation of strong coupling/conifold transitions.
Chapter 4 reviews the period geometry for Calabi–Yau families of dimensions n ≤ 3. The math-
ematical tools to describe periods in higher dimensions are collected in chapter 5. There, we also
propose a novel formalism to construct integral bases in n > 3 and supplement it with examples.
This will furthermore allow us to give a canonical splitting of the period matrix into a unipotent
and semisimple part in the last section. The restriction to smooth loci in the moduli space in
terms of supersymmetric flux vacua is the topic of chapter 6. We analyse the fixed-point loci of
finite order symmetries and show that, there, the F-terms for orthogonal directions are satisfied
automatically and explain how the rational splitting of the periods can be used to construct flux
vacua. We derive the equivalence between vacua conditions on a four-fold compactification with
that in type IIB on its Yifan-Yang pullback. The period structure of an F-theory flux vacuum
found in [1] is identified as a Hadamard product. This general phenomenon of a shrinking cycle
describing a transition to a fibre product is utilised in Chapter 7 to categorise strong coupling and
conifold transitions in the context of black hole condensation in type IIB string theory.

We extend the study of Picard–Fuchs differential equations governing the local period struc-
tures to higher genus moduli spaces in Appendix A. The first genus-zero invariants of certain
two-parameter (n > 4)-folds are listed in Appendix B, obtained with the formalism of Chap-
ter 5.

— 4 —



Chapter 2

Families of Calabi–Yau manifolds

String theory introduces Calabi–Yau manifolds in a natural way by demanding supersymmetry
after a compactification of extra dimensions. For reasons we will discuss in chapter 3, they are
defined in a ten-dimensional spacetime, which must therefore include six small, compact dimen-
sions that are invisible to us. It turns out that the geometry of these extra dimensions is tightly
constrained by the requirement of supersymmetry in four dimensions. These conditions for the
internal six-dimensional space precisely align with the definition of Calabi–Yau manifolds: Kähler
manifolds with vanishing first Chern class. Although the definition involves some mathematical
groundwork, their properties allowed mathematicians and physicists to develop immensely pow-
erful techniques to discover their astonishingly rich structure. We will begin this section with a
brief review of the formal definition of these manifolds in section 2.1 and continue with a practical
introduction to their description as embeddings in toric ambient spaces in section 2.2. In sec-
tion 2.3, we will end with a more detailed view on the special case of hypersurfaces in projective
spaces and give the definition of quotient families used in later sections.

2.1 Preliminaries

Calabi–Yau n-folds are complex n-dimensional manifolds with further structure, which we will
review here briefly. The lecture notes [3] serve as a good reference for further study. Given a
complex manifold with complex structure J : TX → TX , i.e. J2 = −1with vanishing Nijenhuis
tensor, it is called hermitian if it has a metric that is invariant under J in the sense that it satis-
fies g(u, v) = g(Ju, Jv) . The complex structure J splits the tangent bundle into eigenspaces,
where Jei = i ei and Jeȷ̄ = −i eȷ̄ . In these coordinates, the hermitian metric can be written as
ds = gµν̄dz

µdz̄ν̄ . In real coordinates, one defines Jmn = J a
mgan with Jmn = −Jnm , giving the

components of a two-form

ω =
1

2
Jmndx

m ∧ dxn . (2.1.1)

Such a complex manifold is called Kähler, if ω is closed, meaning dω = 0 . In this case, ω is
called the Kähler form. Closedness implies that the metric components can be written in terms of
a Kähler potential K as

gµν̄ = ∂µ∂ν̄K . (2.1.2)

The metric is independent under a shift of the Kähler potential with a holomorphic function f(z)
that maps

K(z, z̄) 7→ K(z, z̄)− f(z)− f̄(z̄) (2.1.3)

called Kähler-gauge transformation.
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2. Families of Calabi–Yau manifolds

The complex structure splits the exterior derivative into a holomorphic and anti-holomorphic
piece d = ∂ + ∂̄ and thus the de Rahm cohomology groups

Hr(X,C) =
⊕
p+q=r

Hp,q(X) , (2.1.4)

where Hp,q(X) is part of the Dolbeault cohomology. Note that the Kähler form ω is part of
H1,1(X). The complex dimensions of H i(X,C) is the i-th Betti number bi and we write for the
dimensions of the Dolbeault classes hp,q := dimHp,q(X) . Complex conjugation and the Hodge
star operation act as symmetries and identify

Hq,p(X) ∼= Hp,q(X) ∼= Hn−p,n−p(X). (2.1.5)

While there are many equivalent definitions of Calabi–Yau manifolds building on the above, we
define it as having trivial first Chern class c1(TX) = 0 (we will comment on the other definitions
further below). This path to Calabi–Yau geometry includes an instructive review of the adjunction
formula used to obtain explicit geometric models.

The total Chern class of the tangent bundle is built from the Riemann curvature as

c(TX) = det

(
1 +

iR

2π

)
(2.1.6)

and yields invariants of the manifold under smooth deformations. For the tangent bundle, the
Chern roots xi are given by eigenvalues of iR/2π and allow for an expansion as

c(TX) =
n∏
i=1

(1 + xi(TX)) = 1 +
n∑
i=1

ci(TX), (2.1.7)

where the Chern-classes ci(TX) are integral classes in H i,i(X) (due to R being a (1, 1)-form)
and are given by the i-th elementary symmetric polynomials in the Chern roots xi . For smooth
manifolds, the Chern classes integrate to integers and thus

ci(TX) ∈ H2i(X,Z) ∩H i,i(X) . (2.1.8)

Since we will mostly deal with the Chern classes of the tangent bundle TX , we will sometimes
omit their argument in these cases. More precisely, using the formula det(A) = exp(tr(logA))

on eq. (2.1.6) yields, for example, 2πc1 = i trR and 2(2π)2c2 = trR2 − (trR)2. For mani-
folds that are defined inside an ambient space as the zero locus of a single polynomial restriction
(hypersurface) or several of such (complete intersection), the adjunction formula allows for a sim-
ple computation of these invariants using intersection theory on the ambient space. While the
origins of this formula involve some technicalities, the end result boils down to a simple Taylor
expansion. There, the normal bundle NX = TP|X/TX is defined as the quotient of the tangent
bundle of the ambient space P restricted to X by that of the hypersurface X. These bundles fit
into the short exact sequence

0 −→ TX −→ TP
∣∣
X

−→ NX −→ 0 , (2.1.9)

which implies that the Chern class satisfies the relation

c(TX) =
c(TP)
c(NX)

. (2.1.10)
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2.1. Preliminaries

For a hypersurface X being in the divisor-class D, the normal bundle is a line bundle with D as
its first Chern class and thus c(NX) = 1 +D, which generalises with eq. (2.1.10) to the complete
intersection of r divisors Di to c(NX) =

∏r
i=1(1 + Di) . To apply eq. (2.1.10) , one expresses

D(i) in terms of the divisor classes of the ambient space. In the next subsection, we will see an
example of how this works when the latter is toric. The numerator of eq. (2.1.10) , i.e. the total
Chern class of the toric ambient space, is then given by c(TP) =

∏
i(1+Di), where j enumerates

all toric divisors Di . For the case when P is a weighted projective space with weights wi, one finds
Di = wiH for H the hyperplane class. The above is sufficient information to construct the sim-
plest Calabi–Yau n-fold families: Consider the ambient spaces Pn+1 with Di = H , 1 ≤ i ≤ n+ 2.
According to eq. (2.1.10) , a hypersurface in Pn+1 with H-degree k has total Chern class

c(TXk) =
(1 +H)n+2

1 + kH
= 1 + (n+ 2− k)H +O

(
H2
)
. (2.1.11)

Such families have vanishing first Chern class if and only if k = n + 2. For n = 1, 2, 3, these
are the degree-three hypersurfaces in P2, degree-four in P3 and so forth. Possibly the most
popular example is the family of quintic hypersurfaces in P4 used in the seminal work on mirror
symmetry [4]. In this way, one also obtains the higher Chern classes as a degree-k polynomial in
the toric divisors Di .

One can extend the above in two ways: consider embeddings in products of spaces and gener-
alise hypersurfaces to complete intersections. For the first, one uses that the Chern class is mul-
tiplicative and the numerator of eq. (2.1.10) generalises to the product of the individual Chern
classes. By successive application of the adjunction formula, several restrictions are represented
by the products of the normal bundle’s Chern classes in the denominator. In this work, we will
encounter complete intersections in products of (weighted) projective spaces Pw with weights w.
One denotes them (or their mirror) by the configuration matrix Pw1

ω1
1 · · · ωr1

...
...

...

Pwk
ω1
k · · · ωrk

 , (2.1.12)

where each column (ωij)j corresponds to one hypersurface restriction. The adjunction formula
then translates a vanishing first Chern class to

r∑
i=1

ωij = ∥wj∥1 , ∀ j . (2.1.13)

In other words, the rows of the degrees wji in eq. (2.1.12) must add up to the sum of weights of
the projective space on the left. A common abbreviation for complete intersection Calabi–Yau is
CICY.

While (i) c1 = 0 is a sufficient Calabi–Yau condition for a Kähler manifold, there are five
further equivalent conditions (see for example [5])

(ii) The canonical class KX is trivial.

(iii) Each Kähler class of X has a unique Kähler metric with vanishing Ricci tensor Riȷ̄ = 0.
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2. Families of Calabi–Yau manifolds

(iv) There exists a unique (up to normalisation), nowhere vanishing, holomorphic (n, 0)-form
called Ω.

(v) The holonomy group is contained in SU(n).

(vi) There exists a globally defined pair of covariantly constant spinors (ε, ε), which are of the
same/opposite chirality if n is even/odd.

As is common in the literature, we will furthermore restrict Calabi–Yau manifolds to be con-
nected and to have the full SU(n) as their holonomy groups. As we will study only compact
manifolds, the first condition implies dimH0,0(X) = 1 and the latter excludes products of lower-
dimensional examples.

The original conjecture by Calabi [6] states that, for any Kähler manifold with vanishing first
Chern class, there exists a Ricci-flat Kähler metric. This was proven by Yau in [7]. The physicist’s
interest in these manifolds was sparked by Candelas, Horowitz, Strominger and Witten [8] who
showed such manifolds can be used in the compactification of ten-dimensional string theory to
a four-dimensional theory with N = 1. Supersymmetry also demands the existence of covari-
antly constant spinors on the internal manifold. If the holonomy group is precisely SU(n), there
is only a single pair of such spinors and each supersymmetry generator of the original theory
yields one generator upon compactification. For product manifolds, additional constant spinors
yield further supersymmetries. One can furthermore show that forms in H0,p(X) correspond
to covariantly constant forms, which cannot exist for full holonomy as the only invariant repre-
sentations of SU(n) are in the trivial H0,0(X) and antisymmetric Hn,0(X) representation. With
eq. (2.1.5) , this implies, for example, that the Hodge diamond of a Calabi–Yau three-fold sim-
plifies to

1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

. (2.1.14)

The description of Hn−1,1(X) as the complex-structure moduli space’s tangent space goes back
to Kodaira and Spencer [9]. As we saw in the beginning of the subsection, the complex structure
J tells us which directions on the Calabi–Yau are holomorphic and which are anti-holomorphic.
Changes in the complex structure correspond to elements A ∈ H0,1(X,TX), where A rotates
one holomorphic index of J into an anti-holomorphic one. ContractingAwith the (n, 0)-formΩ

corresponds to an isomorphismH0,1(X,TX) ∼= Hn−1,1(X). These deformations inHn−1,1(X)

correspond to infinitesimal deformations and, a priori, could be corrected by higher order terms.
Due to Tian [10] and Todorov [11], one knows that the complex-structure moduli space for
Calabi–Yau manifolds is unobstructed, i.e. that these deformations can be integrated to give com-
plex structures.

The other important moduli space of Calabi–Yau manifolds is that of the Kähler structure. De-
formation to the Kähler form (2.1.1) are given by real forms inH1,1(X,R), whose real dimension
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2.2. Compact Calabi–Yau manifolds in toric varieties

is given by h1,1. Positivity of the metric furthermore restricts ω to lie in the h1,1-dimensional
Kähler cone, as we will see in the next section. In string theory, one complexifies this cone to
account for the R-R B-field, cf. section 4.3.

In section 3.1, we will identify these moduli spaces with the vector- and hypermultiplet moduli
spaces of type II compactifications on Calabi–Yau three-folds. The mirror conjecture states that
each Calabi–Yau X comes with a mirror partner X̂ where the complex-structure moduli space
of X is locally isomorphic to the complexified Kähler moduli space of X̂ and vice versa. We will
return to this identification in later sections.

2.2 Compact Calabi–Yau manifolds in toric varieties

Many families of Calabi–Yau n-folds can be described in terms of reflexive (n+ 1)-dimensional
reflexive lattice polytopes. In fact, all these polytopes together with their polar duals correspond
to mirror pairs of such families. The toric ambient space constructed from such a polytope
has a natural anti-canonical divisor class −K and a generic global section P of the associated
line bundle OX(−K) has Calabi–Yau manifolds as its zero locus. Here, we will briefly repeat
the results of Batyrev [12] most useful for us and give two examples illustrating the methods of
this formalism. We will also review the extension to complete intersection Calabi–Yau families
(CICY) due to Batyrev and Borisov [13, 14].

Let ∆ be a convex lattice polytope in the integral lattice Zn+1 containing the origin. The polar
dual is defined as the subset in the real dual space as

∆◦ =
{
x ∈ Zn+1 ⊗ R

∣∣ ⟨x|y⟩ ≥ −1 ∀y ∈ ∆
}
. (2.2.1)

One calls ∆ reflexive if ∆◦ is again integral, i.e. if all its vertices are in Zn+1. Due to (∆◦)◦ = ∆,
these then constitute a pair of reflexive polytopes. As a simple example, consider the polytope
sketched in Figure 2.1a

∆ = convex hull
{
(1, 0), (0, 1), (−1,−1), (0,−1)

}
. (2.2.2)

With equation eq. (2.2.1) , we find the conditions for the dual polytope

x ≥ −1 , y ≥ −1 , x+ y ≤ 1 , y ≤ 1 , (2.2.3)

leading immediately to the polytope in Figure 2.1b. Since its vertices are integral, (∆,∆◦) is a
pair of reflexive polytopes.

The ambient space P∆ is constructed from a reflexive polytope ∆ equipped with a triangula-
tion that is fine, star and regular. Explicitly, this means the triangulation includes all points of ∆
(except for those in facets, see below), every maximal simplex contains the interior point, and all
resulting cones have unit simplicial volume. We denote the fan constructed from this triangula-
tion by Σ(∆). The generators {νi | i ∈ {1, . . . , s}} of this fan correspond to the coordinates xi of
P∆. As will be demonstrated later in this section, one can safely disregard generators terminat-
ing at points located within codimension-one faces (facets) of P∆. This is because their divisor
{ρ = 0} does not intersect the Calabi–Yau manifolds and we can consider the patch ρ ̸= 0 and set
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2. Families of Calabi–Yau manifolds

(a) Original polytope ∆ (b) Dual polytope ∆◦

Figure 2.1: A pair of reflexive polytopes corresponding to families of elliptic curves.

ρ = 1. We denote these one-dimensional cones generating the fan byΣ(1). The Stanley–Reisner
ideal Z(Σ) is generated by the divisors

xi1 = . . . = xik = 0 (2.2.4)

for index sets I = {i1, . . . , ik} where {νi}i∈I does not generate a cone in Σ(∆). Let us assume
that there are m relations among the generators νi given by

0 =
s∑
i=1

Qijνi, Q ∈ Mats×m(Z) . (2.2.5)

Then, the coordinates xi obey the scaling relations

Q∗,j(λ) : (x1, . . . , xs) 7→
(
λQ1,jx1, . . . , λ

Qs,jxs
)
, λ ∈ C∗. (2.2.6)

The matrix Q is also called charge matrix and gives the continuous part of the toric group. For
non-regular fans, it contains a discrete subgroup given by Zn+1/N , where N is the sub-lattice
N ⊂ Zn+1 spanned by the generators νi over Z. For the regular triangulations considered here,
we may write the toric variety corresponding to the fan Σ(∆) as

P∆ =
Cs \ Z(Σ)

Q
. (2.2.7)

In general, the ambient space depends strongly on the fan Σ(∆), which is left implicit in our
notation.

We return to the example polytope ∆ in Figure 2.1a. The space P∆ is described by four
coordinates xi, with the two scaling relations coming from linear dependencies of the vertices

Q∗,1(λ) : (x1, x2, x3, x4) 7→ (λx1, λ x2, λ x3, x4) , (2.2.8)

Q∗,2(λ) : (x1, x2, x3, x4) 7→ (x1, λ x2, x3, λ x4) . (2.2.9)

There is only one regular, fine, star triangulation consisting of the zero-dimensional cone given
by the origin, the rays towards the vertices as the one-dimensional cones and the top-dimensional
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2.2. Compact Calabi–Yau manifolds in toric varieties

cones are the four triangles separated by the one-dimensional cones1. The Stanley–Reisner ideal
is generated by

x1 = x3 = 0 and x2 = x4 = 0 . (2.2.10)

The toric variety P∆◦ is generated by eight coordinates with 8− 2 = 6 scaling relations. As four
of them lie in facets of ∆◦, we can ignore them for the construction of a fan and, for the patch
we are interested in, again obtain four variables with two scaling relations.

An important ingredient for the period geometry of a Calabi–Yau manifold is the Kähler form
ω ∈ H1,1(X,R). By mirror symmetry, the complex-structure moduli space Mc.s. (in which we
are interested the most) is identified with the complexified Kähler moduli space of the mirror
H1,1(X̂,C). A Kähler form ω of X is defined by the conditions∫

Sk

ωk > 0 (2.2.11)

for all homologically non-trivial k-dimensional subvarieties Sk ⊆ X , 1 ≤ k ≤ n. More precisely,
one speaks of the Kähler cone generated by h1,1 forms Ji ∈ H1,1(X,R), where ω =

∑h1,1

i=1 tiJi
with Kähler moduli ti ∈ R>0. We will explain the construction of this cone as the dual to the Mori
cone. For a more rigorous treatment, see the original derivation in [15] or, for the application to
Calabi–Yau manifolds, [16].

As an example, we consider the polytope ∆ corresponding to the weighted projective space
P6,2,2,1,1 with vertices

ν1 = (1, 0, 0, 0) , ν2 = (0, 1, 0, 0) ,

ν3 = (0, 0, 1, 0) , ν4 = (0, 0, 0, 1) ,

ν5 = (−6,−2,−2,−1) .

(2.2.12)

Computing the scaling relations eq. (2.2.6) , one readily verifies that the space is indeed P6,2,2,1,1.
This space contains a singular curve at x4 = x5 = 0 and to construct a fan describing a resolved
ambient space P∆, we need to subdivide the polytope which, besides the vertices and the origin,
also contains the two points

ν6 = (−3,−1,−1, 0) , ν∗7 = (−1, 0, 0, 0) . (2.2.13)

The vertex ν6 = (ν4 + ν5)/2 lies on a two-dimensional cone and comes from the resolution of
the singular curve [17]. On the other hand, ν∗7 = (2ν2 + 2ν3 + ν4 + ν5)/6 is contained in the
facet spanned by these four vertices and can be ignored. The Mori cone consists of all curves in
the ambient space and is generated by the irreducible curves Ci. The latter are represented by
vectors

l(i) =
(
−l(i)0 ; l

(i)
1 , . . . , l(i)n

)
. (2.2.14)

The integers l(i)j are the intersection of Ci · Di, where Di is the divisor class of {xi = 0} and

l
(i)
0 = Ci·K withK = −

∑
iDi the canonical divisor class. To find these intersection numbers, one

1For more complicated (also higher-dimensional) polytopes, the following Sagemath commands can be used

pc=PointConfiguration([(0,0),(1,0),(0,1),(-1,-1),(0,-1)])

pc.restrict_to_star_triangulations((0,0)).restrict_to_fine_triangulations().triangulations_list()
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2. Families of Calabi–Yau manifolds

identifies them as strictly convex, piecewise linear (SCPL) functions u(v) on the extended polytope
∆̄ = {(1, ν) | ν ∈ ∆} with the following property: For each (n+1)-dimensional simplex σ ⊂ ∆,
we assign variables ui to each of the vertices ν̄0 = (1, 0), ν̄1, . . . , ν̄n and denote an element in σ
by v = c0ν̄0 + . . .+ cnν̄n. Then, in each simplex, an SCPL function u(v) = c0u0 + . . .+ cnun is
described by a vector wσ with

u(v) = ⟨wσ, v⟩ , if v ∈ σ , (2.2.15)

u(v) > ⟨wσ, v⟩ , else. (2.2.16)

We return to the example polytope of eq. (2.2.12) to see how these inequalities give rise to the
Mori cone. The polytope ∆̄ has the vertices

ν̄0 = (1, 0, 0, 0, 0) , ν̄1 = (1, 1, 0, 0, 0) ,

ν̄2 = (1, 0, 1, 0, 0) , ν̄3 = (1, 0, 0, 1, 0) ,

ν̄4 = (1, 0, 0, 0, 1) , ν̄5 = (1,−6,−2,−2,−1) ,

ν̄6 = (1,−3,−1,−1, 0) .

(2.2.17)

Let us first consider the simplex with vertices ν̄0, . . . , ν̄4. Inverting the conditions ui = ⟨wσ, ν̄i⟩,
1 ≤ i ≤ 4, implies that

wσ = (u0, −u0 + u1, −u0 + u2, −u0 + u3, −u0 + u4). (2.2.18)

Then, the inequalities ui > ⟨wσ, ν̄i⟩, 5 ≤ i ≤ 6, read in terms of the variables ui

0 < −12u0 + 6u1 + 2u2 + 2u3 + u4 + u5 , (2.2.19)

0 < −6u0 + 3u1 + u2 + u3 + u6 . (2.2.20)

Choosing the simplex with vertices ν̄0, ν̄1, ν̄2, ν̄5, ν̄6, we find the more stringent condition

0 < −2u6 + u4 + u5 , (2.2.21)

0 < −6u0 + 3u1 + u2 + u3 + u6 . (2.2.22)

Note that eq. (2.2.19) is a consequence of eqs. (2.2.21) and (2.2.22) . To obtain the Mori cone,
we write the restrictions as 0 < ⟨wσ, l

(i)
σ ⟩. For each simplex σ, these integral vectors l(i)σ span a

cone. The Mori cone contains those vectors that satisfy the positivity bound globally and thus
consists of the union of all these simplices. Here, we find that the other simplices do not extend
the cone described by eqs. (2.2.21) and (2.2.22) and we conclude

l(1) = (−6; 3, 1, 1, 0, 0, 1) , (2.2.23)

l(2) = (0; 0, 0, 0, 1, 1,−2) . (2.2.24)

To find the dual basis inH1,1(X,R), i.e. the Kähler cone, we pick two independent divisor classes,
say2 D1 and D6. The Kähler divisors D1 and D2 are defined implicitly by(

D1

D2

)
= A

(
D1

D6

)
, A ∈M2×2(Q) , (2.2.25)

2In this example, D1 and D4 would of course be orthonormal to l(1) and l(2). To exemplify the methods we
purposely make a poor choice.
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2.2. Compact Calabi–Yau manifolds in toric varieties

where duality means

1 =

(
3 1

0 −2

)T
·A −→ A =

1

6

(
2 0

1 −3

)
. (2.2.26)

Before computing the intersection numbers of the divisors Di, we want to give some relations
among the toric divisors Di obtained from the polytope3 ∆. Writing D =

∑
iDiνi, we have

0 = ⟨D, v⟩, ∀v ∈ Rn. This gives us the relations

1

3
D1 = D2 = D3 = 2D5 +D6 ≡ D1 , (2.2.27)

D4 = D5 ≡ D2 . (2.2.28)

The intersection number of n divisors Di1 , . . . , Din is given by |νTi1 , . . . , ν
T
in
|. Thus, we have

D4
1 =

(
2|νT1 , νT2 , νT3 , νT5 |+ |νT1 , νT2 , νT3 , νT6 |︸ ︷︷ ︸

=0

)
/3 =

2

3
, (2.2.29)

D3
1D2 =

(
|νT1 , νT2 , νT3 , νT4 |

)
/3 =

1

3
, (2.2.30)

D2
1D

2
2 = D1D

3
2 = D4

2 = 0 . (2.2.31)

To obtain the intersection numbers on the Calabi–Yau manifold, we must intersect the three-fold
intersection with the anti-canonical class (also called hypersurface class) −K, which, in this ex-
ample, is given by 6D1. Here, we have (D3

1)CY ≡ D3
1(6D1) = 4 and, equivalently, (D2

1D2)CY = 2

while the other two vanish. We will omit the subscript “CY”, since it should be clear by dimen-
sionality which intersection is meant.

We mentioned above that the Calabi–Yau hypersurfaces are given by the zero loci of sections
of the anti-canonical bundle. We note that the entries lki , i > 0, reflect the relations eq. (2.2.6) of
the vertices. So for P∆ to be a well-defined function of P∆, it transforms homogeneously under
a scaling xi 7→ λl

(k)
i xi for all k, where l(k)0 gives the weight. Then, in the example above, for P∆

to be a section of the anti-canonical bundle, it must obtain a factor λ6 under the scalings

Q−K(λ, µ) : (x1, . . . , x6) 7→ (λ3 x1, λ x2, λ x3, µ x4, µ x5, λ µ
−2 x6), (2.2.32)

where we used eq. (2.2.27) to express D6 as D1 − 2D2. To find an explicit expression of these
sections, we turn to specific coordinates of the space. All (n+ 1)-dimensional toric varieties P∆

contain an open subset that is isomorphic to the algebraic torus (C\{0})n. We denote these affine
coordinates by4 t1, . . . , tn+1. For any Weil divisor D =

∑
ρ∈Σ(1) aρDρ, its sections are given by

characters from lattice points of the polytope [18]

∆D =
{
x ∈ Zn+1 ⊗ R

∣∣ ⟨x|y⟩ ≥ −aρ ∀ρ ∈ Σ(1)
}
. (2.2.33)

For the anti-canonical divisor −K, we have ai = 1, ∀ i, and therefore

∆−K = ∆◦ . (2.2.34)

3Note that, by considering the extension ∆̄ instead, one additionally obtains an equation D0 ≡ K = −
∑n

i=1 Di.
4These are not to be confused with the mirror maps of section 4.3.
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2. Families of Calabi–Yau manifolds

In the torus patch of P∆, the sections of the anti-canonical bundle are given by the Laurent
polynomials

P∆(a, t) =
∑
ν◦∈∆◦

aν◦t
ν◦ , aν◦ ∈ C , (2.2.35)

where the above characters are given by tν
◦ ≡ t

ν◦1
1 . . . t

ν◦n+1
n . In the toric coordinates xi, these

polynomials take the form

P∆(a, x) =
∑
ν◦∈∆◦

aν◦
∏

ρ∈Σ(1)

x⟨ρ|ν
◦⟩+1

ρ . (2.2.36)

All Calabi–Yau manifolds obtained by tuning aν◦ in P∆ together form a family, which we some-
times denote by a calligraphic letter X . Hypersurfaces in weighted projective spaces are often-
times written as X = Pw[d], where d =

∑
iwi for a trivial canonical bundle.

To see why we were allowed to omit in Σ(1) rays ρ′ ending in facets, let ρ′ ∈ Σ(1). The unique
vertex ν◦ρ′ ∈ ∆◦ with the property ⟨ρ′|ν◦ρ′⟩ = −1 for all points in the facet of ρ′ will then give
rise to the only term in (2.2.36) with xρ′-exponent zero. This means that the divisor xρ′ = 0

intersects the hypersurface for

0 = PX∆

∣∣∣
xρ′=0

= cν◦
ρ′

∏
ρ∈Σ(1)\{ρ′}

x
⟨ρ|ν◦

ρ′ ⟩+1

ρ . (2.2.37)

The inner product of ν◦ρ′ with any element in the face dual to ν◦ρ′ is also −1. Denoting the vertex
opposite to this face by ρ∗, the condition simplifies to 0 = xρ∗ . But since vertices cannot share
a simplex with points in their opposite face in a regular triangulation, the Stanley–Reisner ideal
contains the set {xρ∗ = xρ′ = 0} and the intersection is not part of the ambient space. If there
are several vertices not part of the facet of ρ′, still, one of them needs to be zero for the monomial
to vanish. Also in this case, the Stanley–Reisner ideal excludes these loci from the ambient space.
Therefore, the entire hypersurface can be described in a patch with xρ′ = 1. This argument for
a single point inside a facet extends to multiple such points.

Instead of hypersurfaces, one can also consider complete intersections of r polynomials in an
n + r dimensional ambient space. The idea is to decompose the anti-canonical bundle into a
tensor product of line bundles Li. The joint zero locus of their sections P∆i is called a complete
intersection. It follows from the adjunction formula and the fact that the first Chern class of the
tensor product is the sum of the line bundle’s divisor classes that the complete intersection is
indeed Calabi–Yau. From the point of view of the polytope, it was shown in [14] how to obtain a
suitable decomposition of the anti-canonical bundle: For two polytopes ∆1 and ∆2 in Rd, their
Minkowski sum is given by

∆1 +∆2 = {v + w | v ∈ ∆1, w ∈ ∆2} ⊂ Rd . (2.2.38)

If an (n+ r)-dimensional reflexive polytope has a Minkowski decomposition into r lattice poly-
topes ∆r containing the origin,

∆ = ∆1 + . . .+∆r, (2.2.39)

then the sections P∆i give rise to Calabi–Yau manifolds on their intersection

{P∆1 = . . . = P∆r = 0} . (2.2.40)
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2.2. Compact Calabi–Yau manifolds in toric varieties

This decomposition is also called a NEF (numerically effective) partition, due to the divisors of
the corresponding line bundles being NEF. Since the polytopes ∆i are not reflexive, we cannot
simply take their polar duals to obtain the mirror family. Instead, the mirror construction by
Borisov [13] proposes a mirror polytope

∇ = ∇1 + . . .+∇r , (2.2.41)

where the summands in this Minkowski decomposition are defined by

∇i = {x ∈ Rd | ⟨x, y⟩ ≥ −1∀ y ∈ ∆i ⟨x, z⟩ ≥ 0∀ z ∈ ∆j , j ̸= i} . (2.2.42)

For an approachable review with an example pair of such partitions, see [19]. In this work, we will
restrict ourselves to CICYs in products of (weighted) projective spaces P∆ =

⊕k
i=1 Pwi

[16] with
wi the projective weights. We denote the dimension of Pwi

by di and assume that wdi+1 = 1.
Then, the (mirror) polytope is given by

∆ = ∆1 × . . .×∆k ⊂ Rd1 × . . .× Rdk , (2.2.43)

where ∆r is the convex hull of the di + 1 vertices ej , 1 ≤ j ≤ di, and (−wi,1, . . . ,−wi,di). To
obtain a NEF partition, one decomposes the set of vertices νi,j , 1 ≤ i ≤ r, 1 ≤ j ≤ di, into sets⋃r
i=1Ei, where the total weight ω(i)

j of vertices in ∆j in the set Ei is subject to the Calabi–Yau
condition given in section 2.1. As an example, let us consider the K3-family given by the mirror
of (

P2 2 0
P2,13 1 4

)
. (2.2.44)

The polytope ∆ has the vertices

ν1 = (1, 0, 0, 0) , ν2 = (−1, 0, 0, 0) ,

ν3 = (0, 1, 0, 0) , ν4 = (0, 0, 1, 0) ,

ν5 = (0, 0, 0, 1) , ν6 = (0,−2,−1,−1) ,

(2.2.45)

where ν1 and ν2 describe the P1 and the remaining four P2,13 . Noticing that x3 is the coordinate
with weight two, we obtain the NEF partition given by

{ν1 , ν2 , ν4} ∪ {ν3 , ν5 , ν6} , (2.2.46)

where the first set describes the polynomial (2 1)T and the second one (0 4)T . To obtain the
Mori cone, we proceed similarly to the hypersurface case above. We consider a simplex σ in the
polytope ∆, say the one with vertices ν1, ν3, ν4 and ν5. Then, we consider the extended polytope
∆̄ with vertices (ei, νj), where i = 1, 2 depending on in which set of eq. (2.2.46) the vertex lies,
and (ei, 0) for i = 1, 2. In contrast to the case before, we now have two “origins” (ei, 0), which
are parametrised by the variables u0i. The condition for piecewise linearity implies

zσ = (u01, u02, u1 − u01, u2 − u02, u3 − u02, u4 − u02) . (2.2.47)

Then, the conditions for ν2, ν6 ̸= σ imply

0 < −2u01 + u1 + u2 , (2.2.48)

0 < −u01 − 4u02 + 2u3 + u4 + u5 + u6 . (2.2.49)
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2. Families of Calabi–Yau manifolds

More generally, CICYs of the form eq. (2.1.12) with coprime5 weights always have a Mori cone
generated by

l(i) = (−ω1
i , . . . ,−ωri ; 0, . . . , 0, wi,1, . . . , wi,di+1, 0, . . . , 0) , (2.2.50)

where the parts to the right of the semicolon have disjoint supports; that is, none of the other
l-vectors have non-zero entries at positions where l(i) does. Note that the Calabi–Yau property
is again reflected in the vanishing of the sum over all components of each l(i). The defining
(Laurent) polynomials P∆i are constructed as for the hypersurface case. An example can be
found in section 4.4, where we will use the explicit form of the sections to compute the so-called
fundamental period of the above CICY.

There are several equivalent definitions of a hypersurface becoming singular. For example,
singularities are given by points in the moduli space where the Jacobian ∂iP∆j drops in rank. For
a hypersurface, this happens at

0 = P∆ = ∂xρP∆ , ∀ ρ ∈ Σ(1) . (2.2.51)

This is equivalent to saying that the tangent space is of larger dimension than the Calabi–Yau
itself, corresponding to a point where the tangent space is ill-defined. The singular locus can be
obtained from the polytope ∆̄ [20] (see also [21]): For each face of ∆̄ (this includes ∆̄ itself)
whose points are linearly dependent, we denote the entries of the kernel matrix by sij , where
1 ≤ j ≤ |Σ̄|. Note that, as in the above, points inside facets will be ignored in this analysis. In a
suitable basis, this matrix gives rise to Batyrev coordinates (defined later in eq. (4.4.8) )

zi =

|Σ̄|∑
j=1

a
sij
j , (2.2.52)

where the aj correspond to the deformations aν◦j of P∆. Then, the singular locus is parametrised
by (λ1 : . . . : λr) ∈ Pr−1 subject to

zi =

|Σ̄|∑
j=1

(
r∑

k=1

skjλk

)sij
. (2.2.53)

One finds the discriminant locus as the vanishing of a polynomial in the Batyrev coordinates by
eliminating the variables λi from eq. (2.2.53) . Let us consider the example CICY K3 family with
polytope and NEF partition as in eqs. (2.2.45) and (2.2.46) . Extending the polytope ∆ with the
NEF partition to ∆̄ as explained above, we obtain the two Mori cone (cf. eq. (2.2.50) ) generators

l(1) = (−2, 0; 1, 1, 0, 0, 0, 0) , (2.2.54)

l(2) = (−1,−4; 0, 0, 2, 1, 1, 1) . (2.2.55)

From the whole polytope, we obtain from eq. (2.2.53) the relations

z1 =
λ21

(2λ1 + λ2) 2
, z2 = − λ2

64 (2λ1 + λ2)
, (2.2.56)

5If the weights are not coprime one might need to desingularise the space first, which introduces exceptional
divisors. Each of these divisors will give rise to another l-vector and Batyrev coordinate. This is also the origin of the
two Mori cone generators in eqs. (2.2.23) and (2.2.24) , where one desingularises the space by including ν6.
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2.3. Hypersurfaces in weighted projective spaces and their quotients

where we eliminate λ1 and λ2 to obtain the discriminant factor

∆1 = 4z1 − (1 + 64z2)2 . (2.2.57)

The three points related by l(1) are also contained in lower dimensional faces of ∆̄, which is not
true for those of l(2). From these faces, the coordinate λ1 in eq. (2.2.53) cancels automatically
and we immediately obtain the second and last factor

∆2 = 1− 4z1 . (2.2.58)

2.3 Hypersurfaces in weighted projective spaces and their quotients

In section 2.2, we showed how to obtain hypersurfaces and CICYs as the vanishing loci of certain
sections from reflexive polytopes. The complex-structure moduli space consist of the deforma-
tions P∆ (cf. eqs. (2.2.35) and (2.2.36) ) parametrised by the aν◦ . The Calabi–Yau does not
change, when we perform a change of variables in the ambient space. It follows that there is a
redundancy in the description of the moduli space in terms of the aν◦ , which we will account for
in this subsection. Here, we will restrict ourselves to hypersurfaces in weighted projective space.
This allows us to describe the complex structure moduli space in more detail and, furthermore, to
introduce the notion of a quotient family. The latter acts as a framework to compute the mirror
family as first done in [22].

Let X be a family of Calabi–Yau manifolds given by the zero locus of a section P∆ of the
anti-canonical bundle of a toric variety P∆ as introduced in section 2.2. The moduli space6

MX is given by the polynomial deformations aν of the defining polynomials P∆i modulo the
automorphisms of the ambient space P∆

MX∆
=

⊕r
i=1 Def({P∆i = 0})

Aut(P∆)
. (2.3.1)

The identity component of the automorphism group of P∆ consists of coordinate scalings and
so-called roots [23]. The other components are obtained via suitable coordinate permutations.
By the definition of P∆ in eq. (2.2.7) , the automorphisms are given by those of Cs \Z(∆) which
commute with the action of Q. This implies that coordinate scalings are part of Aut(P∆). Roots
deform the coordinates by suitable monomials of the others, preserving homogeneity under the
scalings. This follows from commutativity with Q and thus they are given by

xi 7→ xi + µxD, for degQ(x
D) = degQ(xi), µ ∈ C . (2.3.2)

For example, let us consider the family of degree-six hypersurfaces X = P2,1,1,1,1[6]. The torus
action is given by

Q : (x1, x2, x3, x4, x5) 7→ (λ2x1, λx2, λx3, λx4, λx5) , λ ∈ C∗. (2.3.3)

6From now on, we will always refer to the complex-structure moduli space when writing about “the moduli space”.
Consequently, we drop the subscript “c.s.” and indicate the correspondong family instead.
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2. Families of Calabi–Yau manifolds

Besides the five rescalings, we have the roots

x1 7→ x1 +

5∑
j,k=2

A
(1)
jk xjxk , (2.3.4)

xi 7→ xi +
5∑

j=2,j ̸=i
A

(i)
j xj , i ∈ {2, 3, 4, 5} . (2.3.5)

Since A(1)
jk is symmetric, it has ten degrees of freedom. Adding these to the 3 ·4 = 12 parameters

of A(i)
j and the five scaling relations, we have

dim(Aut(P∆)) = 22 + 5 = 27 . (2.3.6)

A simple counting of monomials with Q-degree six tells us that there are 130 deformations of
X . In this way, we find

h2,1(X ) = dim(MX ) = 130− 27 = 103 . (2.3.7)

In practise, the automorphisms of the ambient space allow us to transform x in a way such that
the defining polynomial becomes of the form

P∆(a, x) = P0(x) +
∑
j

ajdefj(x) (2.3.8)

with dimMX monomials defj(x). The infinitesimal coordinate transformations give equiva-
lences among monomials of lower degree, generated by {∂xiP∆(a, x)}i. These elements span
the Jacobian ideal Jaca(P∆) of P∆. In eq. (2.3.8) , all monomials of PX∆

are inequivalent over
the Jacobian ideal, which, for a generic hypersurface with all deformations present, generates the
same equivalences as Aut(P∆).

Another way of taking into account the reparametrisations of the ambient space is the removal
of monomials in (2.2.36) that correspond to points inside codimension one faces of ∆◦. A point
ν̃◦ inside a facet yields a relation 0 = ∂xρP∆ with ρ the vertex with ⟨ρ, ν◦⟩ = −1 for all ν◦ in
that face. This relation allows us to set the monomial parametrised by aν̃◦ to zero. Besides these
polynomial deformations, there are also non-polynomial deformations. Denoting the points in
the interior of a face θ by l̂(θ) and the total points of the polytope by l(∆), Batyrev derived the
following formula for the number of complex-structure moduli

hn−1,1(X∆) = l(∆)− (n+ 2)−
∑

codim(θ)=1

l̂(θ) +
∑

codim(θ)=2

l̂(θ) · l̂(θ∗) , (2.3.9)

where the number of Kähler parameters is obtained by applying eq. (2.3.9) to its mirror

h1,1(X∆) = hn−1,1(X∆◦) . (2.3.10)

A similar combinatorical formula for the number of moduli hn−1,1 in CICYs can be found in
[14]. One can consider the Calabi–Yau family in a patch where coordinates not corresponding
to vertices are non-zero and use the scaling relations to set them equal to one. For hypersurfaces
in weighted projective space, this implies that the defining polynomial in eq. (2.2.36) becomes
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2.3. Hypersurfaces in weighted projective spaces and their quotients

a function of n + 2 variables xi. For the degree-twelve hypersurfaces in P6,2,2,1,1, we needed to
introduce the coordinate x6 to regularise the ambient space. There, the dual polytope ∆◦ gives
rise to the restriction

P∆ = a1 x
4
1 + a2 x

3
1x2 + a3 x

3
1x

2
4x6 + . . . . (2.3.11)

In the patch x6 ̸= 0, we can use eq. (2.2.32) with µ =
√
λx6 to set x6 = 1 and recover the

degree-twelve hypersurfaces in P6,2,2,1,1. This model is discussed in much detail in [17]. We will
compute the periods of its mirror X∆◦ in section 4.4.

For the rest of the subsection, we will restrict ourselves to hypersurfaces Pw1,...,wn+2 [d] in
weighted projective spaces with weights wi and wn+1 = 1 where the moduli independent term
of the defining polynomial is Fermat, i.e. given by

P0(x) =
n+2∑
i=1

x
d/wi

i with d =
n+2∑
i=1

wi . (2.3.12)

After dividing out the automorphism group of the ambient space, the familyX∆ still has a residual
symmetry group G consisting of discrete phase symmetries that act on the variables x. We will
consider the extension Ĝ, which also acts on the moduli a such that the defining polynomial is
invariant under its action. This allows us to see Ĝ as an automorphism of Mc.s.. We denote an
element g in G (or ĝ in Ĝ) by Zp : (β1, . . . , βn+2), which then acts with α = e2πi/p as

ĝ :
xi 7→ g(xi) = αβixi , βi ∈ {0, . . . , d− 1} ,

aj 7→ aj
defj(x)
g(defj(x))

,
(2.3.13)

where g acts on the deformation monomials multiplicatively. The action of Ĝ on the moduli
is such that it cancels the phase obtained by defi(x) and renders the defining polynomial P∆

invariant. Since these symmetries identify points in the moduli space corresponding to equivalent
hypersurfaces, it is natural to study the moduli space modulo these symmetries. Elements of
this quotient then represent closed paths in the moduli space, which, owing to the flatness of
the Gauss–Manin connection (cf. section 4.2), yield monodromy actions dependent only on the
cycles’ homotopy class. We will revisit this topic in section 6.1.

With this residual symmetry group, we can construct new Calabi–Yau families over fixed-point
loci of a subgroup Ŝ ⊂ Ĝ: We refer to the part of the moduli space that is invariant under the
induced action of Ŝ as InvŜ(MX ). Then, we define the quotient of X∆ by Ŝ as

X
Ŝ

:= π−1
(
InvŜ(MX )

)
. (2.3.14)

The invariant slice InvŜ(MX∆
) is nothing more than MX with ai = 0 for all moduli ai that

transform non-trivially under Ŝ. For the defining polynomial in (2.3.8) , this means that only the
invariant deformations appear in the defining polynomial of X∆/Ŝ.

To make this more explicit and draw the connection to the mirror construction by Greene and
Plesser [22], we consider a hypersurface in a weighted projective space. The abelian symmetry
group Ĝ is isomorphic to

Ĝ ∼= Zd/w1
× . . .× Zd/wn+2

. (2.3.15)
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2. Families of Calabi–Yau manifolds

There is one factor coming from the projective scaling of the ambient space, which is called
the quantum symmetry Q̂. The mirror group Ĥ used in the mirror construction is given by the
elements in Ĝ/Q̂ which leave the symmetric deformation a0 (coming from ν◦ = 0 and belonging
to
∏n+2
i=1 xi) invariant.

As an example, consider the family X = P4,1,1,1,1[8]. The defining polynomial has phase
symmetries Ĝ ∼= Z2 × Z4

8 generated, for example, by

Z2 : (1, 0, 0, 0, 1)

Z8 : (0, 1, 0, 0, 7)

Z8 : (0, 0, 1, 0, 7)

 Ĥ

Z8 : (0, 0, 0,−1, 0)

 Ĝ/Q̂ ,

Z8 : (4, 1, 1, 1, 1)
}
Q̂ .

The last generator corresponds to the scaling symmetry of the ambient space while the second to
last Z8 does not act trivially on

∏
i xi. Its action on the modulus ψ is given by ψ 7→ exp(2πi/8)ψ.

The quotient family X/Ĥ is described by the polynomial

PX/Ĥ(ψ, x) = x21 + x82 + x83 + x84 + x85 − 8ψ
5∏
i=1

xi , (2.3.16)

where we ignored the monomial x22x
2
3x

2
4x

2
5 that can be removed with the element in the Jacobian

ideal 0 = ∂x1PX/Ĥ(ψ, x). Coming from the mirror side directly, this monomial comes from
a point inside a facet: Due to eq. (2.2.34) , the polynomial defining the mirror is given by the
polytope defining P4,1,1,1,1, which has vertices e1, . . . , e4 and (−4,−1,−1,−1). One easily shows
that above monomial comes from the point (−1, 0, 0, 0) inside the facet generated by the last four
vertices.

While we will ignore deformations coming from points inside facets in the rest of this work,
it is interesting to see how the machinery eliminates the redundancy when they are included. In
section 4.4, we will introduce the Picard–Fuchs differential equations giving a local basis for the
periods. At the so-called MUM point, the solution structure to this differential ideal is highly re-
stricted. The holomorphic and single-logarithmic periods are homogeneous coordinates for the
complex-structure moduli space and there should be hn−1,1 of the latter. Omitting points inside
facets, for n > 1, we get exactly hn−1,1 Batyrev coordinates and hn−1,1 solutions that are of the
form log zi+O(z). No restriction of the Frobenius structure is necessary at the single-logarithmic
order and the differential ideal is generated by operators of order greater than one. The structure
for including points inside facets is very similar to the case of elliptic curves. In the latter case,
h0,1 = 1 and multiple Batyrev coordinates should give rise to only a single single-logarithmic
period. It follows that operators of order one exist that restrict the solution space to a single holo-
morphic and one single-logarithmic period. If we were to include the point (−1, 0, 0, 0) in the
toric description of the model above, we would, besides the operator of order four, also find an
operator of order one. While the number of solutions remains the same, the Batyrev coordinates
give a redundant parametrisation of the moduli space. However, the periods still act as proper
coordinates and are not affected by this toric aspect.
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Chapter 3

String theories, M-theory and F-theory

String theory originated in the 1970s in the context of strong interactions: The force field be-
tween a quark-antiquark pair subject to colour confinement can be described as a quantised
bosonic string, whose excitations reproduce the potential between them. Shortly after the four-
point scattering amplitudes due to Veneziano [24], Virasoro [25] and Shapiro [26] in the late
1960s, a stringy interpretation was given independently by Nambu [27], Susskind [28] and
Nielsen [29]. A precise description of the quantised bosonic string was given in 1973 [30],
which is consistent only in 26 spacetime dimensions and whose groundstate is tachyonic. The
removal of the latter went hand in hand with the introduction of the supersymmetric string due
to Ramond [31], Neveu and Schwarz [32] after performing the GSO-projection onto a super-
symmetric spectrum named after the authors of [33]. The first time string theory was proposed
to be a unifying theory including the graviton as its massless spin-two excitation was in 1974
[34]. The rest of the century was shaped by two superstring revolutions: The discovery of gauge
and gravity anomaly cancellation for ten-dimensional supergravity with gauge group SO(32) or
E8 ×E8 due to Greene and Schwarz in 1984 [35] initiated the construction of the two heterotic
superstring theories [36]. Shortly after, supersymmetric theories in ten dimensions were found
to allow for supersymmetry in four dimensions when compactified on Calabi–Yau manifolds [8].
After some years of extensive research in the field and the discovery of mirror symmetry in 1990
[4], unification of the five superstring theories as different limits of M-theory sparked the second
superstring revolution. U-duality as a unification of S- and T-duality between the string theories
was proposed [37] which lead to the construction of M-theory [38] (see also [39]) by Witten in
1995. Polchinski [40] showed that D-branes are fundamental objects that source the R–R fields
and are half-BPS, meaning that they satisfy the BPS bound and that the effective world-volume
theory on the brane has half the supercharges of the bulk theory. Further evidence for M-theory
was provided with the duality between its decompactification on S1/Z2 and the strongly coupled
E8×E8 superstring [41]. In 1996, Vafa furthermore manifested the SL(2,Z)-symmetry of type
IIB theory in the geometric construction of its non-perturbative extension called F-theory [42].

This chapter sets the stage for the findings on supersymmetric flux vacua and conifold transi-
tions in chapters 6 and 7. We begin with a minimal introduction to the five superstring theories
together with M- and F-theory in sections 3.1 and 3.2, followed by a review on effective N = 1

four-dimensional theories from type II orientifold compactifications. The moduli of the inter-
nal manifold can be stabilised by giving background values to the n-form fields (fluxes) with
n = 3, 4 its complex dimension. For the study of flux vacua, we review the conditions for un-
broken supersymmetry in both type IIB and F-theory in section 3.4. Families of Calabi–Yau

— 21 —



3. String theories, M-theory and F-theory

manifolds are connected by transitions at singular points of their moduli space. Mathematically,
this corresponds to two topologically different desingularisations, which was identified with the
condensation of extremal black holes in type IIB compactifications [43]. Section 3.5 gives a brief
mathematical and physical account of these transitions.

3.1 Superstring theories

Bosonic string theory as a conformal field theory on the world-sheet has critical number of di-
mensions D = 26, where it becomes anomaly-free and negative-norm states are absent. In
its classical description, the D bosonic fields are coordinates for the string in spacetime. The
world-sheet theory can be supplemented with fermions to realise world-sheet supersymmetry.
In superconformal gauge, the resulting CFT is given by [44]

S = − 1

8π

∫
d2σ

(
2

α′∂αX
µ∂αXµ + 2iψ

µ
ρα∂αψµ

)
. (3.1.1)

The superstring has critical dimension D = 10, which follows from the central charge of the
ghost CFT with central charge c = −15: The Weyl anomaly can only be cancelled by the D
bosons with their D fermionic superpartners, which contribute 1

2 and 1 to the central charge,
respectively, demanding D = 10. During the derivation of the equations of motions for the
fermionic fields ψµ with NN boundary conditions, the vanishing of the boundary term allows
for two sectors. Without loss of generality, we can redefine the fields such that both sectors
have ψµ+(0) = ψµ−(0) and the difference lies at the other string end. The Ramond sector (R) is
described by a positive sign in ψµ+(l) = ±ψµ−(l), while a negative sign yields the Neveu–Schwarz
(NS) sector. The spectra of these sectors differ: The ground state in (NS) is a tachyon and
the first excited level consists of a massless SO(8) vector representation (8v), whereas the ground
state of (R) is massless and contains one SO(8) spinor and co-spinor representation (8s⊕8c). The
Gliozzi–Scherk–Olive (GSO) projection [45] assigns to each state the eigenvalue of (−1)F with
the fermion number F and singles out those with either (−1)F = 1 or (−1)F = −1. For (NS),
one demands (−1)F = 1 to remove the tachyon from its spectrum leaving two choices for (R).
Besides removing the tachyon, this projection furthermore renders the surviving spectrum space-
time supersymmetric and restores invariance of the one-loop partition function under SL(2,Z).
The closed string spectrum is given by the tensor product of two open strings’ spectra. The above
translates to two inequivalent theories called type IIA and type IIB, where the difference lies in
the relative sign between the GSO projections in the two (R) sectors. Denoting the fermion
numbers of the left- and right-moving sectors by F and F , respectively, type IIA corresponds to
the choice (−1)F = −(−1)F and IIB to (−1)F = +(−1)F . Before listing the massless spectrum
of these two theories, we list the tensor product decompositions that appear here

8v ⊗ 8v = 1⊕ 28⊕ 35v , (3.1.2)

8s/c ⊗ 8s/c = 1⊕ 28⊕ 35+/− , (3.1.3)

8s ⊗ 8c = 8v ⊕ 56v , (3.1.4)

8v ⊗ 8s/c = 8c/s ⊕ 56c/s . (3.1.5)

Equation (3.1.2) produces a scalar (dilaton), an antisymmetric rank-two tensor and a symmetric
traceless tensor (graviton). The (35+/−) in eq. (3.1.3) are rank-four selfdual/anti-selfdual anti-
symmetric tensors and (56v) is an antisymmetric rank-three tensor. Lastly, the representations
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(56c/s) include the gravitini of given chirality. It then follows that the massless states of type IIA
are collected in

bosonic: [1⊕ 28⊕ 35v](NS,NS) ⊕ [8v ⊕ 56v](R,R) ,

fermionic: [8c ⊕ 56c](NS,R) ⊕ [8s ⊕ 56s](R,NS) ,
(3.1.6)

where the subscripts denote the sectors the representations originate from. Here, it is important
to note that the chiralities of the gravitini (and dilatinos) are opposed and the theory is thus non-
chiral. The bosonic spectrum consists of the dilaton, the metric and the B-field in the NS-NS
sector together with a one- and three-form C1 and C3 in the R-R sector. This is in contrast to
the massless spectrum of type IIB:

bosonic: [1⊕ 28⊕ 35v](NS,NS) ⊕ [1⊕ 28⊕ 35+](R,R) ,

fermionic: [8c ⊕ 56c](NS,R) ⊕ [8c ⊕ 56c](R,NS) .
(3.1.7)

Due to equal chirality of the gravitini, this theory is chiral. While the NS-NS sector has the same
field content as type IIA, the R-R sector now contributes a scalar (axion) C0, a two form C2 and
a self-dual four-form C4 . The choice (−1)F = (−1)F in type IIB treats the left- and right-
moving sectors symmetrically. The open string theory arising from the quotient of type IIB by
this symmetry is called type I, due to its N = 1 supersymmetry. The surviving spectrum is

bosonic: [1⊕ 35v](NS,NS) ⊕ [28](R,R) ,

fermionic: [8c ⊕ 56c](NS,R),(R,NS) ,
(3.1.8)

which is supplemented by massless gauge bosons of an SO(32) gauge symmetry coming from
the inclusion of 32 D9-branes that cancel the R–R charge of the O9-plane. In section 3.3, we will
review the orientifold projections for the compactified theories to realiseN = 1 four-dimensional
vacua from type IIB theory. There are two further string theories that are heterotic, meaning that
they treat the right moving sector as the 10D superstring and the left-movers as the 26D bosonic
string. The difference in dimensions is accounted for by compactifying the 16 extra-dimensions
in the left sector on a 16-torus T 16. The internal momenta of the latter need to lie on an even
self-dual lattice for modularity of the torus partition function. In 16 dimensions, these are given
by the root lattices of E8 × E8 and Spin(32)/Z2. Depending on the choice of the lattice, the
resulting theory has gauge symmetry E8 × E8 or SO(32).

The reappearance of the gauge group SO(32) leads us to dualities between these five super-
string theories. In fact, type I has been shown to be dual to heterotic SO(32) with inverse coupling
strengths [46, 47, 48]. These kind of relations between weakly and strongly coupled regimes are
known as non-perturbative dualities. Further example are given by self-duality of type IIB (S-
duality) [49] and the duality between type IIA on a K3 and heterotic on T 4, where the gauge
group of the heterotic theory is reflected on the IIA-side byH2(X,Z) of the K3 [38]. Compact-
ifying the latter duality further leads to a strong-weak relation between type IIA on K3-fibred
three-folds and heterotic on T 6 [50], where the singular locus in the three-fold’s vector mod-
uli space mapping to the weak-coupling limit is thus called strong-coupling discriminant [51].
These perturbative dualities are in contrast to those that relate theories by their order-by-order
expansion in the string coupling, which exchange, for example, the two heterotic theories [52]
and connect type IIA with type IIB [53] by compactifying both theories on circles with inverted
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radii (T-duality). In the latter case, circle inversion flips the chirality of the ground state in (R),
which exchanges their spectra. Above connections among the five string theories led Witten to
formulate an eleven-dimensional unification called M-theory [38], which has N = 1 supergrav-
ity as its low-energy limit. We will introduce this theory in section 3.2 as a decompactification
of strongly coupled type IIA. Furthermore, we will give a brief review of the non-perturbative
extension of Type IIB, which is described elegantly by F-theory [42] created by Vafa. For the rest
of this section, we will return to the type II theories and review their description of supergravity
in ten dimensions.

In the low-energy limit where the mass scale 1/
√
α′ becomes large, the type II theories reduce

to ten-dimensional N = 2 supergravity theories with 32 supercharges. The field content is
described purely by the massless sector, while all other excitations decouple. As we discussed
above, both theories feature a dilaton ϕ, a B-field and the metric gµν from the NS-NS sector.
The field strength of the B-field is denoted by H3 = dB2 and for the fields in the R-R sector
we write Fp+1 = dCp. Up to normalisations, their interactions are fixed by supersymmetry. The
bosonic action is given by summands from the NS-NS and R-R sectors together with a Chern–
Simons term

S = SNS-NS + SR-R + SCS. (3.1.9)

The NS-NS sectors for IIA and IIB are the same and their contribution to the action is given by

SNS-NS =
1

2κ210

∫
dx10

√
−g e2ϕ

(
R+ 4∂µϕ∂

µϕ− 1

2
|H3|2

)
(3.1.10)

with R the scalar curvature and the gravitational constant relates to the string parameters as
2κ210 = (2π)7α′ 4g2S . The dilaton parametrises the string coupling as gS = eϕ. In type IIA
supergravity, the remaining two terms are given by

S(IIA)
R-R = − 1

4κ210

∫
dx10

√
−g
(
|F2|2 + |F̃4|2

)
, (3.1.11)

S(IIA)
CS = − 1

4κ210

∫
B2 ∧ F4 ∧ F4 (3.1.12)

with F̃4 := F4 − C1 ∧H3 . The self-duality of the five-form field-strength in type IIB cannot be
enforced by a covariant action and give an additional constaint. The two remaining terms in the
action are given by

S(IIB)
R-R = − 1

4κ210

∫
dx10

√
−g
(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
, (3.1.13)

S(IIB)
CS = − 1

4κ210

∫
C4 ∧H3 ∧ F3 , (3.1.14)

where the R-R term uses F̃3 = F3−C0∧H3 and F̃5 = F5− 1
2C2∧H3+

1
2B2∧F3. The equations

of motion for the latter are given by

dF̃5 = H3 ∧ F3 (3.1.15)

with the additional self-duality constraint F̃5 = ∗F̃5 . In the Einstein frame, the action of type
IIB supergravity becomes manifestly SL(2,R) invariant, where

(
a b
c d

)
∈ SL(2,R) acts on the

axio-dilaton
τ = C0 + i e−ϕ (3.1.16)
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as a Möbius transformation while (F3, H3) behaves as a vector. In the full string theory, the
mixing of F3 and H3 supplements the fundamental string by (p, q)-strings with p units of B2-
charge and q units of C2-charge, where the charges (1, 0) correspond to the fundamental one.
These BPS objects exist for all coprime integers (p, q), where non-coprime charges represent
stacks of them. Charge quantisation implies the breaking of the symmetry group to SL(2,Z)1.

The (p + 1)-form fields are sourced by Dp-branes, which are extended objects in p spatial
dimensions on which open strings end. These branes are non-perturbative, as their tension

τDp =
1

gS(2π)pα′(p+1)/2
(3.1.17)

is anti-proportional to the string coupling and they are infinitely heavy at weak coupling. The
field content of the two supergravity theories implies the existence of Dp-branes for p even (odd)
in type IIA (IIB). The string coupling can also be given as gS = τF1/τD1 and the strong-weak
duality of the SL(2,Z) duality in type IIB exchanges the fundamental string with the D1-brane
coupling to C2 instead of B2. The latter is also called “D-string” and corresponds to the (0, 1)-
string above. The D0-brane will play an important role in the introduction of M-theory in the
next section.

3.2 M- and F-theory

The dualities among the five superstring theories discussed in the previous section motivated Wit-
ten to formulate M-theory [38] with eleven-dimensional supergravity as its low-energy limit. Of
the five superstring theories, the two heterotic and type I posses N = 1 supersymmetry whereas
type II has N = 2. In ten dimensions, these correspond to 16 and 32 supercharges, respectively,
where 16 is the number of components of the smallest Majorana-Weyl spinor. Theories with
more than 32 supercharges include particles whose spins exceed two, which leads to inconsis-
tencies [54, 55]. As the smallest Majorana spinor in D = 11 has 32 components, M-theory
with N = 1 has maximal supersymmetry. A spinor in four-dimensions has at least four real
degrees of freedom and reducing M-theory (or type II) to four dimensions without breaking any
supersymmetry would lead to N = 8.

Starting from strongly coupled type IIA, a state with N units of D0-brane charge and mass
N/gSα

1/2 can be seen as a Kaluza–Klein excitation of the supergraviton in eleven dimensions
compactified on a circle with radius R = gSα

1/2 . The strong-coupling limit of type IIA theory
can therefore be seen as a decompactification to eleven dimensions, called M-theory. The bosonic
field content of the low-energy theory is given by the metric and a three-form potential A3 with
field strength G4 = dA3. The fermionic counterpart is formed by the single gravitino. The
bosonic part of the supergravity action reads

S =
1

2κ211

∫
dx11

√
−g
(
R− 1

2
|G4|2

)
− 1

12κ211

∫
A3 ∧G4 ∧G4 (3.2.1)

with κ11 the eleven-dimensional gravity constant. After the above Kaluza–Klein reduction on
the circle, the metric yields the ten-dimensional metric, the dilaton and C1, while A3 reduces

1Another indication for the breaking to SL(2,Z) is invariance of the contribution of D(-1)-branes to the path
integral of the form e2πiτ .
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to C3 and B2 . The electric and magnetic sources for A3 are formed by M2 and M5 branes,
respectively. Upon reduction, the wrapped and unwrapped branes give the brane content of type
IIA (except for D0, which comes from KK-modes). Furthermore, the fundamental string arises
as an M2 brane wrapping the circle.

The strong-coupling extension of type IIB is called F-theory [42] and builds on the transfor-
mation properties of the axio-dilaton (3.1.16) to interpret it as the complex-structure parameter
of an elliptic curve. We refer to [56] for a review on the matter. The two extra dimension are
however fictitious and their sole purpose is to allow for a non-perturbative description. Starting
with M-theory on a T 2 = S1

A×S1
B where the radius of the first circle is RA = gSα

1/2 (see above),
this theory is T-dual to type IIB theory on a circle with radius R′

B = α′/RB . As the elliptic
curve degenerates to zero volume with RB → 0, type IIB decompactifies to ten dimensions.
This description is generalised by considering instead elliptic fibrations over bases B, where the
axio-dilaton becomes a function of the coordinates of B. Elliptic fibrations over complex d-
dimensional compact bases allow for a compactification to a (10 − 2d)-dimensional theory. For
a compactification on an elliptically fibred compact K3 (d = 1), the points of degeneration, i.e.
the zeros of the elliptic curve’s discriminant, mark the positions of 7-branes in the uncompacti-
fied dimensions. The fibration can be brought into Weierstraß-form y2 = x3 + x f(u)x+ g(u)

with discriminant ∆ = 27f3 − 4g2. For the base to be a P1, one shows that 24 7-branes are
required and that ∆ must be of degree 24. The axio-dilaton is subject to a monodromy trans-
formation during transportation around a 7-brane and its conjugacy class determines the type
of the so-called (p, q)-brane and the Kodaira fibre type. Resolving the singularities introduces
intersecting P1s whose intersecting graph is a Dynkin diagram determining the gauge group. In-
tersections of such loci in the base, i.e. singular loci in co-dimensions two and three yield matter
and Yukawa coupling, respectively. The properties of singularities in such fibrations are used for
model building with realistic gauge sectors. F-theory relates to type IIB in the Sen limit [57, 58]
in the following way. One starts from the coefficients of the Weierstraß-equation in the form

f = Cη − 3h2 , g = h (C η − 2h2) + C2χ (3.2.2)

with h, η and χ functions of the base coordinates u. It follows thatC → 0 describes weak coupling
in which the discriminant is given by

∆ = −C2h2 (η2 + 12hχ) +O
(
C3
)
. (3.2.3)

The locus (η2 + 12hχ) = 0 describes the positions of D7-branes and h = 0 that of O7-planes.
This limit is also reached from compactification of type IIB on the double covering of the base

h− ξ2 = 0 (3.2.4)

with an orientifold projection acting on the internal manifold as ξ 7→ −ξ. We note that not all
F-theory models exhibit a weak coupling limit [59]. While hypersurface three-folds of the form
(3.2.4) can be described naturally as a Sen limit, the range of possible upflifts was enlarged by
the articles [60, 61].

3.3 Effective theories from Calabi–Yau compactification

To obtain theories describing our four-dimensional spacetime, the ten-dimensional superstring
theories discussed in the previous sections need to be compactified on a six-dimensional man-
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ifold. In the seminal article [8], the authors provided a description of this internal space and
showed that ten-dimensional N = 1 is reduced to four-dimensional N = 1 precisely when it is
given by a Calabi–Yau three-fold, i.e. a complex three-dimensional Kähler manifold with vanish-
ing first Chern class (cf. section 2.1). In terms of supercharges, compactification on Calabi–Yau
n-folds reduces their count by 1/2n−1. The 32 or 16 supercharges in ten dimensions thus be-
come 8 and 4 in D = 4, which again corresponds to N = 2 and N = 1. Note that F-theory has
the same amount of supercharges as type IIB (32), which reduces to four supercharges orN = 1

in compactifications on elliptically fibred four-folds.

The spectrum of type II theories on Calabi–Yau three-folds is given by one gravity multiplet
together with both vector- and hypermultiplets whose count is determined by the geometry of
the Calabi–Yau. More precisely, type IIA has (h2,1 + 1) hypermultiplets, where the “+1” refers
to the universal one, and h1,1 vectormultiplets. Type IIB has (h1,1 +1) hypermultiplets and h2,1

vectormultiplets. Supersymmetry implies that the scalars of both types of multiplets do not mix
and that the moduli space is a direct product. Denoting the number of hyper-/vectormultiplets by
nh/v, the moduli space of vectormultiplets is so-called2 special Kähler and of complex dimension
nv and the four real scalar degrees of freedom in the hypermultiplet yield an nh-dimensional
quaternionic space. In type IIB, the vectormultiplet moduli space is described by the complex-
structure moduli, whereas the scalars in hypermultiplets descend from ϕ, C0, C2 and C4 and are
supplemented by the complexified Kähler parameters of the metric and B-field. Below, we will
consider an orientifold projection that removes the two-forms B2 and C2 from the spectrum and
breaks half of the supersymmetry. The scalars of the chiral multiplets inN = 1 are then given by
the axio-dilaton and h2,1 complex-structure moduli together with h1,1 real Kähler moduli from
the metric and h1,1 real scalars coming from C4, combining to h1,1 complex moduli.

It is conjectured that each Calabi–Yau X comes with a mirror partner X̂ , where the vectormul-
tiplet moduli spaces of type IIA on X̂ and type IIB on X are locally isomorphic. While, at the
time of this writing, mirror symmetry has not been proven, strong evidence for it was established
and it has been verified in special cases such as hypersurfaces in toric ambient spaces [62].

One important aim is to reduce the number of free moduli by giving background values to
the field strengths H3 and F3 (fluxes), which turns the theory into gauged supergravity [63] and
yields a scalar potential [64, 65]:

V = eKtot

∑
A,B

gABDAWDBW − 3|W |2
 (3.3.1)

with the Gukov–Vafa–Witten superpotential

W =

∫
X
G3 ∧ Ω , (3.3.2)

where we definedG3 := F3−τH3 and the sum runs over all scalars zA . In M/F-theory, where we
already have N = 1 supersymmetry, the scalar potential V is built from the four-fold equivalent

2The term “special” refers to special geometry, cf. section 4.6.
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of eq. (3.3.2)

W =

∫
Y
G4 ∧ Ω (3.3.3)

with Y the Calabi–Yau fourfold and G4 the field strength for A3. This results in a similar scalar
potential as in eq. (3.3.1) where the 3 is exchanged with a 4. The total Kähler potential Ktot is
defined below (3.3.6) and depends on the axio-dilaton and both vector- and hypermultiplets. As
discussed in section 2.1, it yields the Kähler metric

gAB :=
∂

∂zA

∂

∂zB
Ktot (3.3.4)

and furthermore the covariant derivative DA = ∂A + ∂AKtot . Fluxes either break N = 2 com-
pletely or leave it untouched [66] and a breaking to N = 1 presupposes an orientifold projection
[67], see [1] for a more careful review of the following. We consider an O3/O7 orientifold
projection (inverting an even number of complex coordinates on X) and demand h2,1 = h2,1− ,
h1,1 = h1,1+ under the induced action on the cohomology. In this way one obtains h2,1 complex-
structure moduli fields and the axio-dilaton, while B2 and C2 are removed from the theory and
the Kähler moduli now describe h1,1 scalars in the chiral multiplet. At tree level, they are given
by

Tα = −hα +
i

2
cαβγv

βvγ , (3.3.5)

where the real moduli vα and hα come from the metric andC4, respectively. The Kähler potential
is then given by

Ktot := Kcs +Kτ +KKs . (3.3.6)

At zeroth order in α′ and gS, the contribution of the axio-dilaton reads

Kτ = − log (−i(τ − τ)) (3.3.7)

and, seeing vα as functions of Tα and hα, one writes for the Kähler moduli term

KKs = −2 log
(
cαβγv

αvβvγ
)
, (3.3.8)

This form of the total Kähler potential allows one to derive a “no-scale property” effectively
cancelling the contributions of the Kähler moduli with the term −3|W |2 in eq. (3.3.1) . This
simplification is however broken by corrections in α′ and gS. The complex-structure Kähler
potential Kcs is a function of the complex-structure moduli and will be given in eq. (4.1.14) .

The action for type IIB supergravity implies a no-go theorem, which follows from the ten-
dimensional Einstein equations for a compactification on a warped background and prohibits
non-zero values for G3. To still generate a scalar potential in the above way, one needs to in-
troduce brane sources to the action [68]. For a Dp-brane filling the uncompactified dimensions
and wrapping a (p−3)-cycle Ξ in the internal Calabi–Yau manifold, this additional term is of the
form

Sloc = −TDp

∫
R4×Ξ

dξp+1√−g + τDp

∫
R4×Ξ

Cp+1 (3.3.9)

with the Einstein-frame tension TDp given by

TDp = |τDp|e(p−3)ϕ/4 (3.3.10)
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for positive-tension objects. This introduces another term in the equation of motion for the
self-dual field strength F̃5 (3.1.15)

dF̃5 = H3 ∧ F3 + 2κ210TD3ρ3 (3.3.11)

with ρ3 the density of O3-planes and D3- and D7-branes. The coupling of the latter to C4 comes
from a world-volume flux F2 on the D7-brane and is described by

∫
ΣC4∧F2∧F2. By integrating

eq. (3.3.11) over the internal Calabi–Yau, we find the tadpole constraint∫
X
H3 ∧ F3 = −2κ210TD3Q3 (3.3.12)

with the total D3-brane charge Q3 =
∫
X ρ3. We will not be concerned with specific brane con-

figurations and simply demand a non-zero l.h.s. to avoid the no-go theorem above.

The eleven-dimensional low-energy limit of M-theory is described by the action in eq. (3.2.1) .
It obtains quantum corrections of the form

δS = −TM2

∫
A3 ∧X8 , (3.3.13)

with an eight-form X8 given in terms of the curvature two-form

X8 =
1

(2π)4

(
1

192
trR4 − 1

768

(
trR2

)2)
. (3.3.14)

As in the case of type IIB, one introduces source terms for M2 and M5 branes to allow for non-
zero G4. The equations of motion for its field A3 then read

d ⋆ G4 = −1

2
G4 ∧G4 − 2κ211TM2

(
X8 +

∑
i

QiM2δ
(8)
i +

∑
i

QiM5δ
(5)
i ∧A3

)
. (3.3.15)

To derive a tadpole restriction for four-fold compactifications, we need to integrate eq. (3.3.15)
over the four-fold Y . The X8-form can be expressed in Pontryagin classes which translate for a
Calabi–Yau geometry with Chern classes ci to

X8 =
1

192

(
c41 − 4c21c2 + 8c1c3 − 8c4

)
, (3.3.16)

Since c1(Y ) = 0 and its Euler number is defined as χ =
∫
Y c4, one derives the tadpole restriction

NM2 +
1

4κ211TM2

∫
X
G4 ∧G4 =

χ

24
. (3.3.17)

Here, our searches for fluxes are restricted to 1
4κ211TM2

∫
X G4∧G4 ≤ χ

24 , which allows to reconstruct

the number of M2 branes.

3.4 Flux vacua criteria

In the previous subsection, we mentioned that background values for F3 and H3 give an N = 1

superpotential V (3.3.1) in the four-dimensional effective theory. Generically, these fluxes break
N = 1 supersymmetry obtained fromN = 2 after the orientifold projection. For a general metric
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background, the vacuum expectation values of the supersymmetry variations for the gravitino ψµ
and the chiral multiplet superpartners χA to the scalars zA read (cf. [69], section 18.2)

⟨δχA⟩ = − 1√
2
eKtot/2gABDBWPLε = 0 , (3.4.1)

⟨δPLψµ⟩ = Dµ (PLε) +
1

2
eKtot/2WγµPRε = 0 . (3.4.2)

The first equation yields directly the F-term equations for the moduli fields

eKtot/2DAW = 0 . (3.4.3)

In the case of a Minkowski background, the covariant derivative in eq. (3.4.2) of the supersym-
metry parameter ε vanishes if its is chosen to be constant and one is left with

eKtot/2W = 0 (Minkowski) . (3.4.4)

Generally, however, this leads to a Killing spinor equation for ϵ with the gravitino mass

m3/2 = eKtot/2W . (3.4.5)

A solution to this equation exists only for a cosmological constant given by[70]

Λ = −3m2
3/2 = −3eKtot |W |2 , (3.4.6)

in which case the gravitino is shown to have two polarisations (physically massless) and super-
symmetry is unbroken. In the string picture, negative cosmological constants arise, for example,
due to D3-branes wrapping euclidean four-cycles and thus introduce terms in the superpotential
that are dependent on Kähler moduli. A proposal to lift an AdS vacuum constructed that way
via anti-D3-branes to a dS vacuum is known as KKLT mechanism [71]. While configurations
with W ̸= 0 can lead to AdS vacua, in this work, we will consider only Minkowski vacua with
eq. (3.4.4) .

To translate these conditions to properties of the Calabi–Yau geometry, we express the flux G
in a homology basis Γi

W =

∫
G ∧ Ω = gTΣΠ , Πi =

∫
Γi

Ω , (3.4.7)

with dual-intersection form Σ and periods Π, cf. section 4.1. Equation (3.4.7) holds for both
three- and four-dimensional compactifications, where g3 = f3 − τh3 in the former case. The
fluxes must satisfy a Dirac–Zwanziger [72] quantisation condition which requires the entries of
f3 and h3 to be integral. In M-theory, Witten’s flux quantisation condition [73]

G4 +
c2(Y )

2
∈ H4(Y,Z) (3.4.8)

requires special attention for four-folds with odd c2-integrals. Returning to the vacuum con-
ditions in eqs. (3.4.3) and (3.4.4) , we consider ranges of the moduli fields where Kτ and KKs

are regular. While varying the complex structure, when necessary, we perform a Kähler gauge
transformation (2.1.3) such that the prefactor e−Ktot is regular and can be omitted. The vacua
conditions then translate into a splitting of the integral Hodge structure as we will see in the
following.
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We begin by considering compactifications on three-folds X. The F-term condition for the
axio-dilaton τ requires

0 = DτW = ∂τW + (∂τKτ )W

= −
∫
X
H3 ∧ Ω ,

(3.4.9)

where we used W = 0 for the second equality. Inserting this back into the definition of the
superpotential (3.3.2) also yields

0 =

∫
X
F3 ∧ Ω . (3.4.10)

In terms of cohomology classes, these equations imply that both F3 and H3 are orthogonal to
H0,3(X) . Since these are real fields, the same is true for H3,0(X). The tadpole condition in
eq. (3.3.12) requires that hTΣ f ̸= 0 and antisymmetry of Σ thus implies that h and f must be
linearly independent and span a rank-two lattice Λ in the middle cohomology H3(X,Z). More
precisely, the latter splits as

H3(X,Z) = Λ⊕ Λ⊥ (3.4.11)

with Λ ⊂ H3(X,Z) ∩ (H2,1(X,C) ⊕ H1,2(X,C)) . Schematically, this splits the Hodge struc-
ture into (0, 1, 1, 0) ⊕ (1, h2,1 − 1, h2,1 − 1, 1) . The flux vacua we study in this work lie along
codimension one loci in the moduli space. If one finds two fluxes f and h along zvac = 0 , the
F-terms for the remaining vector moduli zA, A ̸= vac, are satisfied automatically as W is flat in
these directions. The only further restriction follows from DzvacW = 0, which puts a restriction
on the axio-dilaton

τ(zA, zvac = 0) =

∫
X F3 ∧DzvacΩ∫
X H3 ∧DzvacΩ

∣∣∣∣
zvac=0

. (3.4.12)

For h2,1 = 1, type IIB flux vacua are also called attractor points due to their appearance in the
description of extremal black hole solutions in supergravity [74].

For four-fold compactifications, supersymmetry implies additionally thatG4 must be self-dual,
which can be enforced by an additional superpotential for the Kähler moduli in terms of the
Kähler form J

W 1,1 =

∫
Y
J ∧ J ∧G4 . (3.4.13)

The Kähler F-terms 0 = ∂iW
1,1 then guarantee J ∧G4 = 0, i.e. that G4 is primitive. The same

flux conditions of eqs. (3.4.3) and (3.4.4) translate to a similar yet different Hodge splitting on
four-folds. Together with reality of the flux, they restrict the configurations to G4 ∈ H2,2

prim(Y )

and we are left with a decomposition of the primitive middle cohomology

(0, 0, 1, 0, 0)⊕ (1, h3,1, h2,2prim − 1, h3,1, 1) . (3.4.14)

3.5 Black hole condensation

There exist connections between the moduli spaces of (some) families of Calabi–Yau manifolds
in the sense that one can shrink cycles and resolve the singularity by gluing in a cycle of different
dimension. Such transitions between two families change the Hodge numbers and have been
known to Mathematicians since the 1980s [75, 76]. Reid’s conjecture [77] that all families are
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connected in this way is still open and, so far, has only been shown for CICYs in products of
projective spaces [78]. Locally, such transitions can be understood as two different resolutions of
a conic singularity. Following [79], a conifold fibre of a three-fold family looks like the zero locus

4∑
i=1

w2
i = 0 . (3.5.1)

The obvious regularisation deforms this cone to contain an S3

4∑
i=1

w2
i = ϵ (3.5.2)

with a parameter ϵ > 0. Instead, one can perform a change of variables to express (3.5.1) as

X Y − U V = det

(
X U

V Y

)
= 0 . (3.5.3)

One can perform a small resolution/blow-up by including a P1 ∼= S2 parametrised by (λ1 : λ2)

at the singularity (
X U

V Y

)(
λ1
λ2

)
= 0 . (3.5.4)

Note that eq. (3.5.4) reduces to eq. (3.5.3) away from the singularity. Looking at a conifold
fibre, there are two ways of desingularisation that lead to different families of manifolds. In other
words, the singularity allows us to travel from one family to another.

In the seminal work [43], Greene, Morrison and Strominger found a physical realisation of
such transitions in type IIB string vacua with D3-branes wrapping vanishing three-cycles, re-
lating compactifications on different Calabi–Yau families X. The article was built upon Stro-
minger’s description [80] of three-branes wrapping vanishing cycles and producing massless
black holes curing their singularities. While the vast number of possible compactifications made
the search for realistic vacua seem intractable, these findings gave new hope that all such vacua are
in fact connected. The results were extended to type IIA vacua on mirrors X̂ , where D2-branes
wrapping vanishing two-cycles can give rise to non-abelian gauge-symmetries and localised mat-
ter [81, 82, 83, 84].

In the type IIB picture, the number of vectormultiplets is given by h2,1 and the hypermultiplets
are counted by h1,1 (plus the universal one). Due to [80], three-cycles wrapped by D3-branes
correspond to BPS hypermultiplets, whose masses are thus proportional to their Ω-volume. Ap-
proaching a conifold, there is an S3 shrinking to zero size. At this singularity, one finds that the
BPS hypermultiplet from the D3-brane appears in the effective theory. Importantly, the hyper-
multiplet is charged under the U(1) vector V I coming from reducing C4 on the dual cycle to the
vanishing Γ. Reducing the four-form in a cohomology basis (αI , βI), C4 = V I ∧ αI + VI ∧ βI

yields the coupling

µ3

∫
Γ×γ

C4 = µ3 Γ ∩ ΓI︸ ︷︷ ︸
=qI

∫
γ
V I . (3.5.5)
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One can resolve the singularity in the Coulomb branch3 by giving a vev to the hypermultiplet.
Via the Higgs effect, the vectormultiplet becomes massive by absorbing the hypermultiplet. In
general, there are several, say k, vanishing three-cycles that satify r relations in homology. Still,
for each of the k vanishing cycles, there will appear one massless hypermultiplets in the effective
theory. After giving vevs to the hypermultiplet scalars, k − r (then massive) vectormultiplets
disappear and r additional massless hypermultiplets remain in the spectrum. Turning on these
vevs leads one from the Coulomb branch to a mixed branch with a Higgs-branch direction. In
[43], the authors identified such a transition for the quintic hypersurfaces where 16 S3’s subject
to one relation in homology vanish. The dual model with h2,1 = 101− 15 = 86 and h1,1 = 1+1

was identified with the octic hypersurfaces in P2,2,2,1,1. In section 7.2, we will study the period
geometry of these transitions in detail and catalogue those arising in genus-one fibrations over
bases described by reflexive polygons.

After this discovery, similar results were found in type IIA compactified on Calabi–Yau three-
folds, where D2-branes wrap vanishing two-cycles. Ignoring the graviphoton, the gauge group
U(1)h

1,1
coming from reducing C3 on H1,1(X) is enhanced to U(1)h

1,1−r ×G, where r is the
rank ofG, whose Cartan matrix is given by the negative of vanishing cycles’ intersection numbers
[81]. The groupG is of the same Dynkin type as an ADE surface singularity over a curveC in the
three-fold that is resolved by the intersecting two-cyles. If their intersection is of typeAN−1 over
a genus g curve C, there are additionally g hypermultiplets in the adjoint representation [82].
Similarly to the findings in F-theory (cf. section 3.2), at points on C where the gauge-symmetry
enhances due to another two-cycle that shrinks to zero size, localised fundamental matter ap-
pears [85, 84]. Mirror symmetry allows one to study these gauge enhancements in type IIB on
the mirror family. In this language, the loci of shrinking of the two-cycles translates into van-
ishing periods representing the associated Kähler parameter ti under the mirror map. The locus
of enhanced gauge symmetry is then again described by a Calabi–Yau families whose topological
data follow from the prepotential at ti = 0. It is gratifying to observe that this transition is exact,
in the sense that the instanton corrections re-sum to that of the gauge-enhanced theory on the
mirror family. We will review these transitions and their period geometry in section 7.1.

3The Coulomb branch describes the moduli space for vanishing vevs of the charged hypermultiplets. Note that the
h1,1 + 1 hypermultiplets from the closed string spectrum are neutral.
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Chapter 4

Period geometry for elliptic curves, K3 surfaces and CY

three-folds

4.1 Periods and the middle homology

In string theory compactifications, understanding how Calabi–Yau manifolds vary as one moves
in moduli space is essential, both mathematically and physically. Crucially, each point in this
moduli space represents a different geometry and transitioning between these points reveals how
physical quantities, like D-brane charges or coupling constants, change continuously. To track
these changes systematically, one uses periods, integrals of the unique holomorphic form over
topological cycles on the Calabi–Yau manifold. These periods encode physical data, such as cen-
tral charges of D-branes or couplings in the effective theory, and evolve smoothly across the
moduli space according to special differential equations known as Picard–Fuchs equations. From
this perspective, the Gauss–Manin connection emerges naturally as the tool that captures how the
middle cohomology, including brane charges and fluxes, transform as the geometry varies.

First, let us consider a specific Calabi–Yau manifold X. There are two important pairings
for the description of the complex structure and with it the middle (co-)homology: There is an
intersection form1 in homology between cycles

Σ̂ : Hn(X,Z)×Hn(X,Z) → Z , (4.1.1)

which represents how two of them intersect or are linked, and a pairing between the homology
and cohomology, whose components give the so-called period matrix

Π : Hn(X,Z)×Hn(X,Q) → C . (4.1.2)

To give the components of these two forms, we introduce a topological basis for Hn(X,Z) con-
sisting of cycles Γi, 1 ≤ i ≤ bn . The term topological means that these cycles are invariant under
small2 deformations of the complex structure, which will be of importance when considering
variations of the Hodge structure. In components, we have Σ̂ij = Γi ∩ Γj . Let us denote the
dual basis to {Γi}i in cohomology by {γj}j , satisfying

∫
Γi
γj = δji . We note that this is not the

Poincaré-dual basis denoted by ηi ∈ Hn(X,C) where∫
Γi

γ =

∫
X
γ ∧ ηi , ∀ γ ∈ Hn(X,C) . (4.1.3)

1We will use the term intersection form for both Σ and Σ̂. It should be clear from the context whether it relates to
homology or cohomology.

2Globally, the cycles are subject to monodromy transformations.
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4.1. Periods and the middle homology

These have the same intersection form as the cycles∫
X
ηi ∧ ηj = Σ̂ij , (4.1.4)

while the dual basis γi = Σikηk we will mostly use yields an intersection form in cohomology
given by the inverse of this matrix. First, note that

δij =

∫
Γj

γi =

∫
X
γi ∧ ηj = Σik

∫
X
ηk ∧ ηj = ΣikΣ̂kj , (4.1.5)

implying Σ = Σ̂−1. Furthermore, the dual pairing is given by∫
X
γi ∧ γj = ΣikΣjl

∫
X
ηk ∧ ηl = Σij . (4.1.6)

Some authors choose to use the Poincaré-dual basis, which for three-folds give an expansion of
the (3, 0)-form with a negative sign between the A- and B-periods. In this work, we only use the
basis γi with expansion of Ω given by

Ω = γi
∫
Γi

Ω . (4.1.7)

We conclude that the intersection form in homology Σ̂ induces a pairing in the middle coho-
mology as

Σ : Hn(X,Q)×Hn(X,Q) → Q ,

Σij =

∫
X
γi ∧ γj = (Σ̂−1)ij .

(4.1.8)

In (odd) even dimensions, the non-degenerate pairings Σ and Σ̂ are (anti-)symmetric. In sec-
tion 5.3, we will construct bases for the homology that bring Σ̂ into a particular simple form (cf.
eq. (5.3.14) ). In this basis, the second pairing Π is trivially given by Π j

i =
∫
Γi
γj = δji . To

extract data about the complex structure of the manifold, it is useful to use a different basis for
the cohomology. From section 2.1, we know that there exists a unique holomorphic (n, 0)-form
Ω. We call periods the integrals of this form over the cycles Γi , which we collect in the period vector

Π =

∫
Γ
Ω . (4.1.9)

Having discussed the intersection form and period integrals for a single Calabi–Yau manifold X ,
we now consider what happens as the manifold itself varies smoothly in a family X . These have
been introduced in section 2.2 and we recall that they are defined over their complex-structure
moduli space Mc.s. by the map

π : X −→ Mc.s. . (4.1.10)

Let zi, 1 ≤ i ≤ hn−1,1, be local coordinates on Mc.s. . The Calabi–Yau manifolds are given by
fibres of π, which we denote by Xz = π−1(z). As we move continuously through the moduli
space, the holomorphic top form Ω(z) changes smoothly, causing its period integrals to vary as
well. This leads directly to the concept of variations of Hodge structures [86, 87], where one
studies precisely how the decomposition of the middle cohomology changes as we vary moduli.
In this broader picture, the intersection form Σ remains constant (since it is topological), while
the periods evolve, governed by differential equations known as Picard–Fuchs equations. Before
we get to the latter, we must introduce some more structure.
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4. Period geometry for elliptic curves, K3 surfaces and CY three-folds

The moduli space Mc.s. is typically not smooth but contains singular points or loci, where the
fibre Xz0 becomes a singular manifold3. From the point of view of the periods, singularities are
characterised by cycles growing or shrinking to infinite size. A typical example is the conifold,
where an Sn shrinks to a point. One must then resolve these singular loci (e.g. by so-called blow-
ups) to ensure that the proper transforms ∆̂k of all discriminant components together with the
exceptional divisors introduced to resolve the singularities have normal crossings. The periods
Π are multivalued functions on the resolved moduli space, as becomes apparent seeing them as
solutions to a Picard–Fuchs system of differential equations, which we will discuss in more detail in
section 4.4. There, we describe methods obtaining local solutions and patching these together to
a global basis of periods. Moving along a closed path around a singular locus, this branch structure
is reflected in a non-trivial monodromy action Π 7→M Π for M a bn × bn matrix. For a general
basis of the periods, these matrices are complex. However, for many applications, one needs a
basis that has only rational or even integral monodromy matrices. For an arithmetic discussion
and computation of a local ζ-function, for example, one needs rationality of the basis, while for
applications in physical theories, the Dirac–Zwanziger quantisation condition demands integral-
ity of the basis. We will continue using the notion of ’rationality/integrality of a period basis’,
meaning that all monodromy matrices have rational/integer entries. The whole purpose of sec-
tion 5.3 is to give a description of obtaining integral periods for families in any dimension. Since
the matrix Σ represents the intersection of a topological basis, it is not affected by monodromy
actions

MTΣM = Σ . (4.1.11)

For odd dimensions, the monodromy group of an integral basis is a subgroup of Sp(bn,Z) 4.
For even dimensions, we call the integral matrix group with relation eq. (4.1.11) O(Σ,Z) . The
moduli space is Kähler (cf. section 2.1) and its so-called Weil–Petersson metric5 is given by

giȷ̄ = ∂zi∂zȷ̄K(z, z̄) , (4.1.13)

where the Kähler potential K is defined implicitly by

e−K = in
∫
X
Ω ∧ Ω = inΠ†ΣΠ > 0 . (4.1.14)

Due to the additional special geometry structure in n = 3, there, the moduli space is called special
Kähler. Positivity of the above is the special case p = n , q = 0 of the Hodge–Riemann bilinear
relations

ip−q
∫
X
α ∧ α > 0 , α ∈ Hp,q(X) (4.1.15)

3It is important to note that singularities of the differential equations describing the periods may also come from
poor choices of coordinates for a patch of the moduli space. An example are the (smooth) Fermat hypersurfaces,
where the differential equations obtain an orbifold singularity.

4In appendix A.1, starting from a specific modular congruence sub-group, we derive a Picard–Fuchs system with
this monodromy group over the fundamental domain with genus one.

5With the covariant derivative introduced in eq. (4.2.18) , we find

giȷ̄ = −in∂i

(
eK

∫
X

∂ȷ̄Ω ∧ Ω

)
= −ineK

(
∂iK

∫
X

∂ȷ̄Ω ∧ Ω+

∫
X

∂ȷ̄Ω ∧ ∂iΩ

)
= −ineK

∫
X

∂ȷ̄Ω ∧ χi = −ineK
∫
X

χȷ̄ ∧ χi.

(4.1.12)

Due to the Hodge–Riemann relations (eq. (4.1.15) ), independence of the choice of basis for the tangential space
implies that giȷ̄ is positive definite.
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The overall sign in eq. (4.1.14) is a matter of convention. Here, it suits the choice of Σ in
eq. (5.3.15) . The expression for giȷ̄ in eq. (4.1.13) presumes a connection—called Gauss–Manin
connection—on the vector space of periods. We will introduce it in section 4.2 and show that
eq. (4.1.13) indeed defines a metric by defining a covariant derivative Di on the moduli space.

The Kähler-gauge freedom of eq. (2.1.3) corresponds to a moduli-dependent re-scaling of the
holomorphic form Ω(z) 7→ ef(z)Ω(z). To preserve holomorphicity of Ω in the moduli, f must
itself be holomorphic. Another way of phrasing this is that Ω(z) is a section of a holomorphic
line bundle L over the moduli space Mc.s. and e−K is a section of L ⊗ L.

4.2 Rational middle cohomology and Gauss–Manin connection

In [88], Griffiths showed that, for Calabi–Yau manifolds Xz embedded in toric ambient spaces
P∆, one can obtain their rational middle cohomology from rational forms defined on P∆ \Xz .
While this result has been generalised to complete intersections [89] (see also [90]), we will restrict
the review to hypersurfaces. This will hopefully suffice to convey the idea and spare the reader
from technicalities. We will follow the discussion of [91].

We denote rational p-forms on P∆ \Xz by Ap(Xz). Given an n-cycle Γ on Xz , the elements
in An+1(Xz) yield differential forms under the residue map and we have

1

2πi

∫
T (Γ)

ϕ =

∫
Γ

Res(ϕ) , (4.2.1)

where T (Γ) is a tubular neighbourhood of Γ in P∆ \Xz. It turns out that this constitutes a map

from the cohomology group H(Xz) =
An+1(Xz)
dAn(Xz)

to the primitive middle cohomology group of
the hypersurface

Res : H(Xz) → Hn(Xz,C) . (4.2.2)

Here and in the following, we consider the complexified middle cohomology. Splitting the co-
homology class above into those of forms with poles of order k along Xz

Hk(Xz) =
An+1
k (Xz)

dAn
k−1(Xz)

, (4.2.3)

one obtains a filtration
H1(Xz) ⊂ . . . ⊂ Hn+1(Xz) = H(Xz) . (4.2.4)

The result of Griffiths’ theorem is that eq. (4.2.2) maps the filtrant Hk+1 into the k-th Hodge
filtrant F k in

F 0(Xz) ⊂ . . . ⊂ Fn(Xz) ≡ Hn(Xz,C) , (4.2.5)

with

F i(Xz) =
i⊕

j=0

Hn−j,j(Xz) . (4.2.6)

The differential forms are invariant under the scaling relations of the ambient weighted projective
space. It follows that, under the residue map, homogeneous polynomials of degree kd correspond
to an element in F k(Xz,C). The kernel of this map is given by the Jacobian ideal, spanned by

— 37 —
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the derivatives of the defining polynomial w.r.t. the coordinates of the ambient space. To obtain
a one-to-one map, we consider the ring

Rz =
n⊕
k=0

C [x1, . . . , xn+2]kd
Jacz(P )

, (4.2.7)

where C [x1, . . . , xn+2]kd denotes the polynomial ring of weighted degree kd. From the filtration
structure one deduces that each summand is generated by hn−k,k monomials. We end up with
the map

Res :
C [x1, . . . , xn+2]kd

Jac(P, z)
→ Hn−k,k(Xz) ,

Q 7→ Pn−k,k Res
[
Qµ

P k+1

]
,

(4.2.8)

where we use the projection Pn−k,k into Hn−k,k(Xz) and the volume form

µ :=

n+2∑
i=1

(−1)iwixi dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn+2 , omit k̂ . (4.2.9)

As a special case, we find that the holomorphic (n, 0)-form on a hypersurface can be con-
structed as

Ω = Res
[ µ
P

]
=

1

2πi

∮
T

µ

P
(4.2.10)

with T encircling the hypersurface. The derivatives of Ω with respect to the complex-structure
moduli generate the horizontal middle cohomology. For three-folds, all forms in the middle
cohomology are primitive since h1,0 = 0. In higher dimensions, the horizontal cohomology is
just a subset of the primitive cohomology, which itself is only a subset of the middle cohomology.
The derivative has the effect of increasing the exponent of P and consequently maps the residue
into the next filtrant. So, for example, we have

∂iΩ(z) ∈ Hn,0(Xz,C)⊕Hn−1,1(Xz,C) . (4.2.11)

Since the cohomology is finitely generated, we obtain an expression for the variation of Hodge
structure on the Calabi–Yau family

(∂zi −Ai)α = 0, α ∈ Hn(X,Q) , (4.2.12)

called the Gauss–Manin connection. In mathematical terms , the filtrants F p(Xz) of eq. (4.2.5) fit
into locally free constant sheaves Fp over the moduli space [92]

F0 ⊂ . . . ⊂ Fn , (4.2.13)

where Fn is the holomorphic vector bundle Rnπ∗(C)⊗C OMc.s. with Rnπ∗(C) the n-th derived
functor of π∗ capturing the middle cohomology. The periods are flat sections of this connection

∇ : Fn −→ Fn ⊗ Ω1
Mc.s.

(4.2.14)

with Ω1
Mc.s.

the bundle of one-forms on Mc.s.. Following a path in the moduli space, the periods
are transported parallelly w.r.t. ∇. The statement that derivatives map into the next filtrant is
called Griffiths transversality and reads in this language

∇Fp ⊂ Fp+1 ⊗ Ω1
Mc.s.

. (4.2.15)
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In fact, the periods can be calculated by solving the system of differential equation eq. (4.2.12) .
Oftentimes, it is easier to transform this system to a higher order but scalar system of equations.
These so-called Picard–Fuchs differential equations have been studied extensively and we will review
some techniques for solving them in section 4.4.

Returning to eq. (4.2.11) , we want to express the derivatives of Ω as

∂iΩ(z) = αi(z)Ω(z) + χi(z), with χi(z) ∈ Hn−1,1(Xz,C) . (4.2.16)

By using orthogonality of the Hn−p,p and Hp,n−p for p ̸= q, we derive an expression for αi

−∂iK e−K = ∂i

∫
X
Ω ∧ Ω =

∫
X
Ω ∧ ∂iΩ = αi e

−K . (4.2.17)

Since e−K > 0 (4.1.14) , we can define the covariant derivatives

Di : H
n−k,k(X,C) → Hn−k−1,k+1(X,C) ,

γ 7→ ∂iγ + (∂iK)γ .
(4.2.18)

The generators of Hn−1,1(X,C) are denoted by χi := DiΩ , 1 ≤ i ≤ hn−1,1. The term covariant
is meant w.r.t. the Kähler gauge symmetryΩ 7→ efΩ for holomorphic functions f , cf. section 4.1.
We recall that, under this symmetry, the Kähler potential transforms as K 7→ K − f − f̄ , which
implies that the classes χi transform covariantly:

χ 7→ (∂i + ∂iK − ∂if)e
fΩ = efχ . (4.2.19)

With the same argument, we can let H1,n−1(X,C) be generated by χȷ̄ := Dȷ̄Ω, where the
complex-conjugated derivative reads Dȷ̄ = ∂ȷ̄ + ∂ȷ̄K.

Griffiths transversality (4.2.15) implies that derivatives of Ω(z) of order less than n have no
contributions ofH0,n(X). Consequently, these forms wedged with Ω cannot give a form inHn,n

and their integrals overX vanish. At ordern, however, the integral produces non-trivial functions
in the moduli: ∫

X
∂IΩ ∧ Ω =

{
0 if |I| < n ,

Ci1,...,in(z) if |I| = n .
(4.2.20)

These so-called n-point or Yukawa couplings Ci1,...,in are sections of L⊗2⊗Sym3(T ∗Mc.s.) with
T ∗Mc.s. the holomorphic cotangent bundle of Mc.s.. We will introduce them from a physical
standpoint in section 4.5. Importantly, in the Batyrev coordinates we usually express the Picard–
Fuchs system in, these couplings are rational functions. For any dimension n, they can always
be written as products of three-point functions, as one might expect seeing these couplings as
correlators in a conformal field theory. This decomposition is dictated by the Frobenius algebra
structure, which we will discuss in section 5.1.

4.3 Periods as moduli space coordinates and mirror symmetry

So far, this section was concerned with the geometry of a single family of Calabi–Yau manifolds.
In chapter 2, we discussed the observation that many such families come in mirror pairs. The
astonishing connection between the mirror partners is that the complex-structure moduli space
of one is locally isomorphic to the complexified Kähler moduli space of the other. The complex-
ification of the latter is a stringy effect and we will comment on it below.
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4. Period geometry for elliptic curves, K3 surfaces and CY three-folds

In section 2.2, we first introduced the Kähler cone with generators Ji as being dual to the irre-
ducible curves Ci. These parametrise the deformations of the metric δgiȷ̄ while the deformations
of mixed index entries δgij are described by H0,1(X,TX) ∼= H2,1(X). In closed string theories,
there are further massless scalar degrees of freedom coming from NS–NS sector, more precisely,
from the antisymmetric rank-two tensor. These are the components of the B-field (also called
Kalb–Ramond field). We can encode both the deformation δBiȷ̄ and δgiȷ̄ in the real and imag-
inary parts of the complexified Kähler parameters ti. The volume of a two cycle C(k) is given
by

vk ∝
∫
C(k)

ω . (4.3.1)

Note that one might call vk the un-complexified Kähler parameters, as ω = viJi. We define the
complexified Kähler form by

ωC = B − iω , (4.3.2)

where, again by duality of Ji and C(i), the complexified Kähler parameters are given by

tk =
1

(2πi)2α′

∫
C(k)

ωC =
1

(2πi)2α′

(
bk − i vk

)
. (4.3.3)

We choose a normalisation such that the coupling of the B-field to the world-sheet appears in
the string theory’s path integral as a factor6 [93]

exp

(
1

2πα′

∫
Σ
ωC

)
= exp

(
2πi tini

)
, (4.3.4)

where the integers ni give the expansion of Σ in C(i). From eq. (4.3.4) , we deduce the B-field
shift symmetry

t 7−→ t+ 1 . (4.3.5)

The volume vk of the cycle C(k) w.r.t. the Kähler form ω is encoded in the complexified Kähler
parameter tk as

vk =
1

4π2α′ Imt
k . (4.3.6)

As we will see shortly, the volumes tk are the coordinates that mirror symmetry relates to the
complex-structure moduli of the mirror manifold. The above defined the complexified Kähler
cone for three-folds motivated by string compactifications to four dimensions. In the follow-
ing, we will give coordinates for the complex structure that are mapped to the ti under mirror
symmetry. This identification works for all Calabi–Yau mirror pairs and is not limited to three
(complex) dimensions. For n ≥ 3, the periods and the couplings obtain corrections of the form
eq. (4.3.4) which vanish in the large volume limit vk → ∞.

This limit is of particular interest to us, since, there, the identification between the Kähler
moduli space of X and the complex-structure moduli space on the mirror X̂ becomes exact.
This limit corresponds to the MUM point of the B-side and we will see below how the logarithmic
period structure gives rise to the mirror map between these two moduli spaces. The periods of the
unique (n, 0) form Ω over the topological basis γi have, at the MUM point, one regular solution
and hn−1,1 ones with single-logarithmic divergences. These cycles are called A-cycles and we

6The coordinates TA of [93] is related to our ti by ti = iT i

4π2α′ .
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index this setAI by uppercase Roman letters I, J, . . . ∈ {0, . . . , hn−1,1}, whereas lowercase letters
are reserved for the indices in {1, . . . , hn−1,1}. By a local Torelli theorem, the periods of Ω over
the cycles AI give coordinates on the complex-structure moduli space which we define as

XI(z) :=

∫
AI

Ω(z) . (4.3.7)

We emphasise that the cycles AI are topological and independent of the moduli z. The co-
ordinates XI are homogeneous due to the Kähler gauge freedom Ω 7→ efΩ. Inhomogeneous
coordinates are obtained by normalising the functions XI by the fundamental period X0. In
section 4.4, we will see that (in a suitable Kähler gauge) the fundamental period is of the form
X0(z) = 1+O(z). Due to the work of Deligne [87], one identifiesXi with the single-logarithmic
solutions of the form Xi(z) = log(zi)X0(z)/(2πi) + O(z). We note that the absence of a con-
stant term makes this choice unique. It follows that the inhomogeneous coordinates are of the
form

ti(z) =
Xi(z)

X0(z)
=

log(z)

2πi
+O(z) . (4.3.8)

The conventions are such that the coordinates ti are exactly those we introduced for the Kähler
moduli space. We verify that zi → 0 yields Imti → ∞. Locally, eq. (4.3.8) is invertible, allowing
us to express the Batyrev coordinate as zi = qi +O(q) with qi = exp 2πi ti.

The mirror maps ti have the important property that they are flat coordinates on the moduli
space and that the covariant derivative Di we introduced in section 4.2 becomes the ordinary
derivative ∂i in these coordinates. This will be an elementary ingredient for the analysis of the
CY-Frobenius algebra in section 5.1 and the construction of a canonical cohomology basis in
section 5.6.

4.4 Picard–Fuchs differential equations and their global solutions

In this section, we give an account of the computation of the complex vector space of periods of
Ω(z). We reserve the symbol Π for the periods over the integral basis Γ introduced in section 4.1
and use ϖ for an arbitrary set of generators over C. It will be the topic of section 5.3 to find
linear combinations of ϖ that yield Π. While one can, in principle, solve the Gauss–Manin
differential equation eq. (4.2.12) to obtain periodsϖ(z), it is usually easier to solve the equivalent
(higher-order) scalar differential system called Picard–Fuchs system. The information of the
matrices {Ai}i can be packaged into a differential ideal generated by operators

{
L(k)
j (z)

}
j
. As

these are rational in the moduli, we can always normalise them such that they are polynomials in
the logarithmic derivatives θi = zi∂zi of order k

L(k)
i (z) =

k∑
|r|=0

o∑
|s|=0

ai,r,s(z) z
s θr (4.4.1)

with zs =
∏
i∈s z

i and θr =
∏
i∈r θ

i for some degree o ∈ N. The ideal has the property that
the solution space is precisely the vector space of periods. A crucial piece of information is that
if a period is annihilated by a differential operator, then so are all the other periods. Having an
expression for one period, we can therefore obtain elements in the ideal systematically by starting
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at k = o = 1 and working ourselves up in the k-o-grid. A set of operators generates the ideal
if the solution space is exactly bhor

n -dimensional. There is a useful approximation of how many
operators one typically expects at each order k. Before explaining this, we should discuss the
general solution structure given by the Frobenius method.

Given a Picard–Fuchs system, we are now interested in computing solutions, i.e. a local basis
for the periods, to this ideal. At any point z = 0 in the resolved moduli space, there always exists
at least one solution of the form

ϖ(0)
α (z) =

h2,1∏
i=1

(zi)αi f(z) (4.4.2)

with f(z) = (1 + O(z)) a power series in the moduli. Applying L(k)
i (z) on this solution, we

obtain the indicial equations by demanding that the coefficient to lowest order in z vanishes for all
operators

k∑
|r|=0

ai,r,0 αr = 0 . (4.4.3)

The solutions αi are then called indicials at this point z = 0. In models with more than one
modulus, these equations typically do not restrict the possible set sufficiently to fix the leading
order behaviour of the periods completely. In any case, the indicial equation helps us forming
an ansatz of the form eq. (4.4.2) where we solve for the coefficients of f(z). If an indicial α is
degenerate, i.e. it is a higher-order zero of the indicial equation, the Frobenius method tells us
that there exist solutions

ϖ(k)
α =

k∑
i=0

P (k−i)(log(z))σ(i)α , (4.4.4)

where P (k−i) are rational polynomials of order k− i and σ(0)α = ϖ
(0)
α . At generic (non-singular)

points in the moduli space, there exist bhor
n power series solution to the differential ideal. The

monodromy representation around a divisor zi = 0 is obtained by considering the leading order
behaviour of the local solutions ϖ and mapping

log(zi) 7→ log(zi) + 2πi and (zi)αi 7→ e2πiαi(zi)αi . (4.4.5)

The monodromy matrices Mi express the transformed periods in terms of the original ones
ϖ̃ =Miϖ. Clearly, the monodromy around non-singular points is trivial and its matrix repre-
sentation is the identity. The families of Calabi–Yau manifolds that we study always have a point
of maximal unipotent monodromy, also called MUM-point, with

(Mi − 1)k ̸= 0 , k ≤ n , (4.4.6)

but (Mi − 1)n+1 = 0 . (4.4.7)

The indicials at this point are all zero and there are hn−k,k solutions with a k-fold logarithmic
pole for 0 ≤ k ≤ n .

From now on, the coordinates z will always be defined to have the MUM point at their origin
z = 0. Given a geometric realisation of the underlying Calabi–Yau family as a hypersurface
or CICY in a toric ambient space, it is known how to obtain such coordinates in terms of the
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deformation parameter of the defining polynomial(s). In section 2.2, we reviewed these kinds of
families and found generators of the Mori cone l(i). These tell us, how to construct the Batyrev
coordinates z in terms of the parameters aν of the sections, cf. eq. (2.2.36) ,

zi =

∏|∆|
j=1 a

l
(i)
j

j∏r
k=1(−a0k)l

(i)
0k

. (4.4.8)

As in section 2.2, r is the codimension of the Calabi–Yau in the ambient space and subscripts 0∗
refer to the points (ej , 0) of ∆ and to the entries of l(i) left of the semicolon, respectively.

The rule of thumb for the expected number of operators generating the ideal mentioned above
works as follows: The Frobenius method creates

(
m+k−1

k

)
solutions inm variables of logarithmic

order k. In many—but not all—cases, an operator of order k′ yields one restriction at logarithmic
order k′. Furthermore, one can multiply the operator from the left with a logarithmic derivative
to obtain further restrictions at higher logarithmic order. With the knowledge of the Hodge
structure, one can then make an estimate of how many operators at which order one needs. We
stress that, in general, this estimate is neither sufficient nor necessary. Instead of trusting the
predicted set of operators, one should always verify that no further solutions to the PFDI exist,
see for example [16]. Even then, a smaller set of operators might generate the PFDI, see the
PFDI of X (3)

10 in [1].

By construction, each (n+ r)-dimensional toric space contains an open set that is isomorphic
to the algebraic torus (C{0})n+r. We expressed the defining sections P∆i in coordinates for this
patch in section 2.2. The torus contains the real (n + r)-cycle Tn+r = |ti| = ϵ, which, for
suitable values of the parameters ai, is a tubular neighbourhood of the complete intersection.
The generalisation of section 4.2 to CICYs implies that we have a period given by

ϖ0(z) =

∫
Tn+r

r∏
i=1

1

P∆r(z, t)

n+r∏
j=1

dti
ti
. (4.4.9)

This period can be evaluated via an expansion for small parameters z and the residue formula. It
is commonly referred to as the fundamental period. We present two example computations: one
for a hypersurface and one for a CICY.

Let us first consider the hypersurface in P∆(1) with ∆(1) the convex hull of the points in
eq. (2.2.12) . With eq. (2.2.35) , the defining polynomials are given by

P∆1(a, t) = a0 + a1t1 + a2t2 + a3t3 + a4t4 +
a5

t21t
2
2t

2
3t4

+
a6

t1t2t3
. (4.4.10)

We use the freedom to re-scale the variables ti and P∆(1) itself to set ai = 1, 0 ≤ i ≤ 4 . From
the l-vectors in eqs. (2.2.23) and (2.2.24) and eq. (4.4.8) , we obtain the relation

a5 = (z1)2z2 and a6 = z1 . (4.4.11)

Finally, we expand

1

P∆1

=
1

1−
(
−t1 − . . .− z1

t1t2t3

) =
∞∑
k=0

(
−t1 − . . .− z1

t1t2t3

)k
. (4.4.12)
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Equation (4.4.9) tells us that an expansion of ϖ0(z) is given by the terms in eq. (4.4.12) inde-
pendent of any ti

ϖ
(1)
0 (z) = 1 + 24z1 + 2520(z1)2 + 5040(z1)2z2 + 369600(z1)3 +O

(
z4
)
. (4.4.13)

For a CICY example, we return to the polytope∆(2) of eq. (2.2.45) . The NEF partition eq. (2.2.46)
implies that the two restrictions are given by

P
∆

(2)
1

= a01 + a1t1 +
a2
t1

+ a4t3 , (4.4.14)

P
∆

(2)
2

= a02 + a3t2 + a5t4 +
a6

t22t3t4
. (4.4.15)

Re-scalings as for P∆(1) leave a2 and a6 as independent moduli, which are related to the Batyrev
coordinates via the l-vectors

a2 = z1 and a6 = z2 . (4.4.16)

The product of the restrictions has the expansion

1

P
∆

(2)
1

P
∆

(2)
2

=

∞∑
k1,k2=0

(
−t1 −

z1

t1
− t3

)k1 (
−t2 − t4 −

z2

t22t3t4

)k2
(4.4.17)

and the terms independent of t give the fundamental period (up to factors of 2πi)

ϖ
(2)
0 (z) = 1 + 2z1 + 12z2 + 6(z1)2 + 72z1z2 + 420(z2)2 +O

(
z3
)
. (4.4.18)

As mentioned above, the fundamental period can be used to compute differential operators in
the Picard–Fuchs ideal.

The period ϖ0(z) can be given directly in terms of the Mori cone generators. By solving the
general integral eq. (4.4.9) , one finds the fundamental period in anm = hn−1,1 parameter model
in codimension r with |∆| = δ

ϖ0(z) =
∑
n∈Nm

0

∏r
i=1 Γ(1 +

∑m
j=1 l

(j)
0i nj)∏δ

i=1 Γ(1 +
∑m

j=1 l
(j)
i nj)

m∏
j=1

(zj)nj . (4.4.19)

The differential ideal annihilating this period is a special case of a Gel’fand–Kapranov–Zelevinskii
system [94], which is determined by the generators of the Mori cone. However, the operators
coming from this description do not yield the generators of the Picard–Fuchs system and one
needs to factorise them first. While this by itself can be computationally expensive, these fac-
torised operators do not even need to generate the Picard–Fuchs system, as was discussed, for
example, in [16]. In our experience, it is much easier to expand the period eq. (4.4.9) to a suf-
ficient order and search for differential operators with an ansatz of the form eq. (4.4.1) directly.
The explicit form of the GKZ differential operators allows to give the solutionϖ0(z, α) with open
indicials α. While the indicial equation demands all of them to be zero, this structure allows to
construct the whole solution space via the Frobenius method by taking derivatives w.r.t. these
indicials before setting them to zero. To obtain the hn−p,p periods with logarithmic order p, one
must take linear combinations of the solutions similar to the restriction of sheaves we will discuss
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in section 5.3. We again experienced that a direct computation of the periods by first computing
the PFDI and then solving for the solutions by making an ansatz of the form eq. (4.4.4) is in
general significantly faster than computing derivatives of the Γ-functions appearing in ϖ0(z, α).
For this reason, we will not discuss the GKZ system in more detail and refer the reader to the two
references mentioned above instead.

Having obtained the PFDI and a local basis for the periods ϖ at the MUM point, we need to
perform an analytical continuation of this basis throughout the moduli space. While this seems
unnecessary for the local basisϖ, it will be of importance for the integral basis Π we will construct
in section 5.3, since the known methods allow only for its construction at the MUM point. To find
local solutions at a different point u = 0 in the moduli space, one expresses the operators in the
PFDI in terms of the coordinates u and solves for solutions satisfying the indicial equations of the
transformed PFDI. Oftentimes, one considers solutions in a neighbourhood of the intersection
of m = hn−1,1 = dimMc.s. discriminant factors ∆i. As discussed in section 4.1, one must
ensure that these singular loci have normal intersection, since, otherwise, one might not be able
to express all solutions in terms of (logarithmic) power series as in eq. (4.4.4) . If the regions of
convergence of two solutions do not intersect, one must choose points between them to form a
chain of such regions that intersect. Assuming that solutions ϖ and ϖ̃ at the points z = 0 and
u = 0 have overlapping regions of convergence, there are two ways to obtain the transition matrix
Tz,u satisfying

ϖ̃ = Tz,uϖ (4.4.20)

at points where both solutions converge: one can either evaluate the period matrices7 of the
solutions at a single point in the intersection or demand that eq. (4.4.20) holds at bn points in
the intersection. We note that, away from the MUM point, there does not exist a prescription of
the local period matrix and one needs to carefully choose linear independent derivatives of the
solution vector. For this reason, we used exclusively the latter method of evaluating the solutions
at different points. Due to the finite precision of the solutions, it is important to pick points that
are sufficiently close to each other. For an application to two-parameter three-folds, see [17, 95],
and for a similar study of a four-fold, see [1].

The computation of periods and the description of the complex-structure moduli space sim-
plify immensely in the one-parameter case with hn−1,1 = 1. There, the Picard–Fuchs ideal is
generated by a single operator in the modulus z. For dimensions n > 3, it is possible that not all
classes in the middle homology are one-dimensional. In the terminology we will introduce in sec-
tion 5.1, these are said to have degenerate Frobenius algebra. In contrast to the non-degenerate
case with hn−p,p = 1, 0 ≤ p ≤ n, where the differential operator is always of order n + 1, the
degenerate cases have higher-order operators. Besides the n + 1 solutions of the indicial equa-
tion at α = 0, there are further solutions with different indicials. In [96], the authors constructed
four-fold families with Hodge structure (1, 1, 2, 1, 1) and showed that the Picard–Fuchs operator
is of order six (instead of five). Next to the five periods with indicial zero, there is another power
series solution with indicial one. We expect that similar families exist in higher dimensions.

7These period matrices for a local solution ϖ are generalisations of the Wronskian of the one-parameter case. To
obtain bn independent solutions, in general, one must let specific linear combinations of derivatives act on the solution
vector. We will discuss this further in section 5.6.

— 45 —



4. Period geometry for elliptic curves, K3 surfaces and CY three-folds

Non-degenerate one-parameter families are a vast field of study by themselves. For three-
folds, the term Calabi–Yau operator was coined in the article [97], which allows for a natural
generalisation to higher dimensions. The defining properties are motivated by those that are
known to have a geometric realisation. An irreducible operator

L(n+1)(z) =
n+1∑
r=0

pr(z)∂
r
z ∈ Z[z, ∂z] , (4.4.21)

is a Calabi–Yau operator, if it

• is of Fuchian type,

• is essentially self-adjoint,

• has at least one MUM point,

• has integral coefficients in the fundamental period ϖ(z) = 1 + O(z) and the coordinate
q(z) = e2πi t(z)

• and has integral instanton numbers.

Let us explain what each of these points means: the singularities of the operator are the zeros of
pn+1. An operator is Fuchsian [98], if all singularities z0 are regular, meaning that the orders of
the poles satisfy ordz0(pr/pn+1) ≤ n + 1 − r. The adjoint of an operator is w.r.t. the standard
inner product ⟨f, g⟩ =

∫
fg dz and given by

L(n+1)∨(z) =

n+1∑
i=0

(−∂z)iai(z) . (4.4.22)

An operator is essentially self-adjoint, if there exists a function α(z) with which

L(n+1)αf(z) = (−1)n+1αL(n+1)∨f(z) (4.4.23)

holds for all sufficiently differentiable functions f(z). Let us normalise the operator such that
pn+1 = 1. Then, we can compare the coefficients of ∂nz f(z) on both sides of eq. (4.4.23) , yielding

α′(z) = − 2

n+ 1
pn(z)α(z) . (4.4.24)

In general, the solution α(z) is an algebraic function. Oftentimes, roots indicate an unsuitable
Kähler gauge or that the differential system is defined over a branched cover of P1. In section 4.5,
we will see that the Yukawa couplings of one-parameter families satisfy the same differential equa-
tion and we can therefore identifyα(z) (up to a constant normalisation) with the n-point coupling
Cz...z. Above integrality conditions concern the coefficients ofϖ0(z) and the exponentiated mir-
ror map q = exp 2πit (see (4.3.8) ) as a power series around z = 0 and the instanton numbers.
We postpone a discussion of the latter to section 4.5. In short, the coupling Cz...z expressed in
terms of the mirror coordinate t (or q) obtains exponential (or power series) corrections, whose
coefficients (after a re-summation) are identified with curve-counting invariants, called instanton
numbers. Integrality of ϖ(z) and the instanton numbers presume a suitable normalisation of z
and of α, respectively.
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A prominent database for Calabi–Yau three-fold operators was created by the authors of [99,
100, 101] and can currently be accessed at [102]. It is customary to express the operator in
logarithmic derivatives θ = z∂z and normalise to be of the form L(n+1)(z) = θn+1 + O(z) .
The singularities zi are given by the poles of α(z) together with a possible singularity at infinity.
These, together with their indicials, are summarised in the Riemann symbol, which we write as

PL(n+1)


0 z1 · · · ∞
0 α1 · · · · · ·
...

... · · · · · ·
0 αn+1 · · · · · ·

, z

 . (4.4.25)

Much of the local structure can be read off from this expression. The indicials indicate special
points such as MUM-, conifold-, K- and orbifold points. While the first three all have logarithmic
divergences and thus infinite order monodromies, orbifold points are characterised by having
finite order monodromies, whose exact order can be read off from the indicials.

4.5 Yukawa couplings

In the analysis of Calabi–Yau operators in section 4.4, we encountered a function α(z) which we
claimed is related to an n-point coupling Cz...z. There are in fact four different couplings that,
in the context of heterotic string theory, correspond to the Yukawa couplings between massless
fields transforming in certain representations of the gauge group. For a review on heterotic string
theory and its effective theory, see e.g. [44, 93]. When compactifying heterotic E8 × E8 string
theory on a Calabi–Yau three-fold, one needs to embed the spin connection SU(3) in this gauge
group. In this process, one of the E8 is broken to

E8 −→ SU(3)× E6 , (4.5.1)

where E6 is the commutant with SU(3) inside E8. The matter content in the four-dimensional
theory descends from the adjoint representation 248 of E8, which splits under the symmetry
breaking (4.5.1) as

248 −→ (3,27) + (3,27) + (1,78) + (8,1) . (4.5.2)

The four-dimensional field content arranges itself—among others—into h2,1 and h1,1 charged
chiral multiplets transforming in the 27 and 27 representation, respectively. There are also
b1(X,End(TX)) neutral chiral multiplets in the singlet 1 of the E6 part of the gauge group.
These fields can interact via fourE6-invariant triple couplings, also called Yukawa couplings, given
by ⟨273⟩, ⟨273⟩, ⟨13⟩ and ⟨27271⟩, where the first two utilise the fully symmetric invariant χijk
of E6. In this work we will only be concerned with these first two.

The h2,1 chiral superfields in the effective theory transforming in 27 are described by the
cohomology classes u(i) ∈ H1(X,TX) ∼= H2,1(X). To express their Yukawa couplings ⟨273⟩
explicitly, recall that

Hn−1,p(X) ∼= H0,p(X,TX) (4.5.3)

and, with p = 1 for n = 3, we write u(i) = u
(i)

l̄
∂idx̄

l̄. The isomorphism eq. (4.5.3) consists of

contracting these elements with Ω ∈ H3,0(X) to obtain u(i)
l̄
Ωistdx̄

l̄∧dxs∧dxt ∈ H2,1(X). Their
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Yukawa coupling is thus given by

⟨OiOjOk⟩⟨273⟩ =

∫
X
u
(i)

l̄
u
(j)
p̄ u

(k)
q̄ ΩijkΩrstdx

r ∧ dxs ∧ dxt ∧ dx̄l̄ ∧ dx̄p̄ ∧ dx̄q̄, (4.5.4)

which one can rewrite using the Kodaira–Spencer map as

⟨OiOjOk⟩⟨273⟩ =

∫
X
∂i∂j∂kΩ ∧ Ω . (4.5.5)

Importantly, this coupling is exact and can be computed explicitly.

The h1,1 chiral multiplets in the 27 representation correspond, on the other hand, to the ele-
ments J (i) ∈ H1(X,T ∗X) ∼= H1,1(X) and give rise to couplings

⟨OiOjOk⟩⟨273⟩ =

∫
X
J (i) ∧ J (j) ∧ J (k) + instanton corrections , (4.5.6)

where the constant term is given by the classical intersection numbers cijk and the instanton
corrections are of the form O(e2πi t) in the complexified Kähler parameters t. The computation
of the instanton corrections is extremely involved—unless one exploits mirror symmetry, which,
in the context of heterotic compactifications exchanges the representations 27 and 27. If we make
the compactification explicit in the notation for the couplings, this implies

⟨OiOjOk⟩
(X)

⟨273⟩
= ⟨OiOjOk⟩

(X̂)
⟨273⟩. (4.5.7)

As a first computational confirmation of mirror symmetry, the authors of [4] considered the het-
erotic string on the quintic three-foldX ⊂ P4. Recall that this family has one Kähler modulus and
101 complex-structure moduli. They computed the instanton corrections for the Yukawa cou-
pling ⟨OiOjOk⟩⟨273⟩ by evaluating eq. (4.5.5) on the mirror X̂ as a function of the one complex-
structure modulus z and expressing it in the mirror coordinate t ∼ log z, see eq. (4.3.8) . To see
how this works, we will first derive the aforementioned equality between α(z) and ⟨273⟩ on the
mirror quintic. As the most prominent Calabi–Yau families have few Kähler moduli and many
complex-structure moduli, one usually considers only the sector 27 on X , which is equivalent
under mirror symmetry to 27 on X̂. We therefore introduce the notation

Czizjzk =

∫
X̂
∂zi∂zj∂zkΩ ∧ Ω . (4.5.8)

The quintic mirror has a PFDI generated by the operator

L(4)(z) = θ4 − 5z

4∏
i=1

(5θ + i) . (4.5.9)

Following section 4.4, we normalise this operator such that its fourth derivative has coefficient
one

L̃(4)(z) = ∂4z + p3(z)∂
3 + . . . , (4.5.10)

where, here, p3(z) = 6−8·55z
z(1−55z)

. As we can expandΩ in terms of the periods, which are annihiliated
by this differential operator, we deduce

0 =

∫
X̂
L̃(4)Ω ∧ Ω =

∫
X̂
∂4zΩ ∧ Ω+ p3Czzz = 2∂zCzzz + p3Czzz , (4.5.11)
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where we used the identity (cf. Appendix A.2 of [1])

∂(i0Ci1...in) =
2

n+ 1
Ci0i1,...in . (4.5.12)

Equation (4.5.11) is the same differential equation we obtained in eq. (4.4.24) , showing that
α(z) from section 4.4 is, up to a constant factor, identical to the coupling Czzz. Here, this fixes
the Yukawa coupling up to a constant number c to

Czzz =
c

z3(1− 55z)
. (4.5.13)

Computing the holomorphic and single-logarithmic solution to L(4), one obtains the mirror map

2πit = log z + 770z + 717825z2 +
3225308000

3
z3 +O

(
z4
)
, (4.5.14)

z = q − 770q2 + 171525q3 − 81623000q4 +O
(
q5
)
, q = e2πit. (4.5.15)

For the identification of the couplings, it is important to note that both ⟨273⟩ and ⟨273⟩ transform
as components of a symmetric rank-three tensor. Furthermore, Ω is expanded in homogeneous
coordinates for the moduli space, while the coupling ⟨273⟩ is expressed in the inhomogeneous
Kähler coordinates t. It follows that we must divide the coupling Czizjzk by the square of the
fundamental period. Writing

Cijk ≡ Ctitjtk =

∫
X
Ji ∧ Jj ∧ Jk + instanton corrections (4.5.16)

with Ji the Kähler cone generators, the Yukawa coupling ⟨273⟩ is obtained via

Cijk =
1

ϖ2
0

∂zr

∂ti
∂zs

∂tj
∂zt

∂tk
Czrzszt . (4.5.17)

In the case of the quintic, one obtains the expression

C111 = 5 + 2875q + 4876875q2 + 8564575000q3 + 15517926796875q4 +O
(
q5
)
, (4.5.18)

where we used c = 5 in eq. (4.5.13) to identify the leading order term with the classical inter-
section number

∫
X H

3 = 5 on the quintic. The instanton corrections stem from rational curve
classes and we can express the couplings as [103]

Cijk = cijk +
∑
l>0

nlliljlk
1− ql

ql , (4.5.19)

where nl are called the genus-zero instanton numbers of degree l, which count the number of
holomorphic curves of degree l in X. While only conjectured and not proven at the time, the
numbers of such curves on the quintic three-fold, where computed in [4] to be

n1 = 2875 , n2 = 609250 , n3 = 317206375 , . . . . (4.5.20)

By considering the higher genus amplitudes, one can also compute the analogues of nl, which
then count holomorphic maps from genus g surfaces into X.
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4. Period geometry for elliptic curves, K3 surfaces and CY three-folds

For multi-parameter models, the computation of the couplings Czizjzk is done by solving a
system of differential equations similar to the one-parameter case we saw in section 4.4 [16].
Writing the generators of the PFDI as

Li(z) =
∑
r

p
(r)
i (z)∂r , (4.5.21)

one obtains the following linear relations among the couplings

0 =
∑
r

p
(r)
i (z)Czr(z) . (4.5.22)

Together with eq. (4.5.12) and further relations from operators of the form ∂zLi, one can solve
this system of equations for the triple couplings Czizjzk . If one has already computed an inte-
gral basis for the periods at the MUM point—using e.g. the topological data from the mirror
(cf. section 5.3)—the series expansion of Cijk in terms of the mirror coordinates t can be ob-
tained directly by using t as coordinates for the complex-structure moduli space in eq. (4.5.8) .
Expanding Ω in terms of the periods Π(t) (where we now divided Π by ϖ0 to obtain inhomoge-
neous coordinates), one finds

Cijk = ∂ti∂tj∂tkΠ
TΣΠ . (4.5.23)

Except for the re-summation and identification in terms of instanton numbers, all these meth-
ods carry over to n-point couplings in higher-dimensional mirror pairs [104], where the above
generalises to

Ci1...in = ∂i1 . . . ∂inΠ
TΣΠ . (4.5.24)

As expected from results of conformal field theory, all higher couplings can be expressed in terms
of triple couplings. The three-point couplings on compactifications in dimensions n > 3 are
more subtle and require us to introduce the CY-Frobenius algebra (cf. section 5.1).

In section 4.1, we explained that the family has singular fibres that lie over certain loci in the
complex-structure moduli space. The singular points are given by the vanishing locus of the
discriminant ∆ (not to be confused with the polytope in the toric construction). The factors ∆i

in ∆ correspond to different components of the set of singularities. In section 4.4, we identified
the singular points of the differential system as the poles of the Yukawa coupling α(z) = Czzz. In
the multi-parameter cases, the Yukawa couplings Czizjzk again become singular along these loci.

4.6 Conventional period geometry for (n ≤ 3)-folds

Before discussing more involved methods necessary for the description of the period geometry
of Calabi–Yau manifolds of dimension n ≥ 4, this section reviews the known methods for the
analysis of elliptic curves, K3 surfaces and Calabi–Yau three-folds.

Elliptic curves

The simplest example of compact Calabi–Yau manifolds is given by elliptic curves, which are
complex one-dimensional and therefore have the following Hodge diamond

1

1 1

1

(4.6.1)
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4.6. Conventional period geometry for (n ≤ 3)-folds

They are useful to introduce the concepts of complex-structure variations, periods and Hodge
decomposition, which we will extend to higher-dimensional manifolds with a richer structure in
the following subsections.

For the middle homology of rank two, we introduce a symplectic basis (A,B) with intersection
form8

Σ = −Σ̂ =

(
0 −1

1 0

)
, (4.6.2)

meaning A ∩ B = −B ∩ A = 1. The dual basis (α, β) satisfies
∫
A α =

∫
B β = 1 while the other

pairings vanish. The holomorphic (1, 0)-form Ω then yields the periods Π = (
∫
AΩ,

∫
B Ω) .

To find an explicit expression for these periods in terms of the complex-structure moduli, let
us return to the example of the hypersurface in the toric space described by the polytope ∆ in
section 2.2 with

∆ = convex hull
(
(1, 0), (0, 1), (−1,−1), (0,−1)

)
, (2.2.2)

∆◦ = convex hull
(
(0, 1), (2,−1), (−1,−1), (−1, 1)

)
. (4.6.3)

The sections of the anti-canonical bundle are given by the points of the dual polytope ∆◦ that
are not in the interior of facets

P∆ = a0 + a1t2 + a2
t21
t2

+ a3
1

t1t2
+ a4

t2
t1

= a0x1x2x3x4 + a1x1x
2
2 + a2x

3
1x

2
4 + a3x

3
3x

2
4 + a4x

2
2x3 ,

(4.6.4)

where we expressed P∆ first in the affine and then in homogeneous coordinates of P∆. With the
techniques of section 2.2 and the help of Sagemath, we obtain the Mori cone generators

l(1) = (−2;−1, 1, 0, 2) , (4.6.5)

l(2) = (−2; 2, 0, 1,−1) . (4.6.6)

To compute the fundamental period (4.4.9) in terms of the Batyrev coordinates (4.4.8) , we can
either perform the integral directly (as we have done in section 4.4) or use the closed form given
in eq. (4.4.19)

ϖ0 = 1 + 24z1z2 + 60z1(z2)2 + 60(z1)2z2 + 2520(z1)2(z2)2 +O(z5) . (4.6.7)

As expected from the l-vectors, the solutions are symmetric in the Batyrev coordinates. With
this period, we can search for operators in the PFDI.

In section 4.4, we mentioned a rule of thumb for the numbers of operators we expect at each
order; this seems like a good place to give an example: As shown in Table 4.1, the Frobenius
structure of a two-parameter system has k + 1 solutions at order k. To obtain a Hodge structure
of (1, 1), we expect one operator of order one and one of order two.

8This intersection form is the negative of the general formula we propose in section 5.3. This is because two
conditions are contradicting for elliptic curves: Either one can have that the asymptotic period vector is of the form
(1, t), or that the sign of the intersection form is as in eq. (5.3.15) . The convention used here is more prominent in
the literature.
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4. Period geometry for elliptic curves, K3 surfaces and CY three-folds

logarithmic order 0 1 2

n.o. solution 1 2 3

L(1) – −1 −2

L(2) – – −1

Hodge numbers 1 1 0

Table 4.1: Estimate for the PFDI of a two-parameter elliptic curve family. One concludes that
one operator of order one and one of order two generically restrict the solution space to the
Hodge structure of the elliptic curve.

In this specific example, we indeed find the operators

L(1)(z) = θ1 − θ2 +
(
z1 + 2z2

)
θ1 −

(
2z1 + z2

)
θ2 + 54z1z2 (θ2 − θ1)

− 36z1z2
(
z1 − z2

)
(2θ1 + 2θ2 + 1) ,

(4.6.8)

L(2)(z) = (θ1 − θ2) (θ1 + θ2 − 1)

+ z1 (θ1 + 4θ2) (θ1 − 2θ2) + z2 (2θ1 − θ2) (4θ1 + θ2) .
(4.6.9)

There is only one logarithmic solution (and especially no higher logarithmic solution) given by

ϖ1 = (log z1 + log z2)ϖ0 + z1 + z2 − (z1)2

2
+ 104z1z2 − (z2)2

2
+O

(
z3
)
. (4.6.10)

We note that, while there exist two Batyrev coordinates, there is only one complex-structure
modulus t =

∫
B Ω/

∫
AΩ, which is parametrised redundantly by z1 and z2. The integral basis of

an elliptic curve family has leading order

Π(t) = ϖ0(t)

(
1

t

)
. (4.6.11)

In the limit zi → 0, one identifies 2πi t with the expression log z1 + log z2 multiplying the fun-
damental period, yielding

Π =

(∫
B Ω∫
AΩ

)
=

(
ϖ0
ϖ1
2πi

)
. (4.6.12)

This allows us to express the complex-structure parameter in terms of Batyrev coordinates

t = log z1 + log z2 + z1 + z2 − (z1)2

2
+ 104z2z1 − (z2)2

2
+O

(
z3
)
. (4.6.13)

In the conventions we use, the Hodge–Riemann bilinear (4.1.15) and the non-trivial Griffiths
transversality condition (4.2.15) take the form

0 < iΠ†ΣΠ = 2Imt , (4.6.14)

1 = ∂tΠ
TΣΠ . (4.6.15)

For Griffiths transversality, we used/concluded that Ct = 1. We emphasise that the identification
of the mirror coordinate t is fundamentally different in the higher-dimensional cases. There, all
single-logarithmic solutions (divided by the fundamental period) give independent coordinates
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4.6. Conventional period geometry for (n ≤ 3)-folds

ti for the complexified Kähler moduli space of the mirror. It is only for the elliptic curve9 that
the space of single-logarithmic solutions is restricted and a special linear combination is identified
with the mirror coordinate.

K3 surfaces

Going one dimension higher, we reach the complex two-dimensional K3 surfaces. The three K
represent the mathematicians Kummer, Kähler and Kodaira and the name is a reference to the
mountain K2. The Hodge diamond for these manifolds is given by

1

0 0

1 20 1

0 0

1

(4.6.16)

and the dimension of the middle homology is b2 = 22. An important concept in the study of K3
surfaces is the Picard lattice given by the elements in the integral cohomology that are purely of
Hodge-type (1, 1)

Pic(X) = H1,1(X) ∩H2(X,Z) . (4.6.17)

The rank of this lattice is called the Picard number ρ(X) := rk(Pic(X)). It gives the dimen-
sion of the vector space in which the Kähler cone is embedded. The orthogonal complement in
H2(X,Z) is called the transcendental lattice

T (X) = Pic(X)⊥ . (4.6.18)

For us, the most important thing is that, by Poincaré duality, the classes in the Picard lattice give
rise to vanishing periods, as the wedge product with Ω gives a form in H3,1(X) which is zero for
a K3. The Picard lattice and thus its rank depends on the specific manifold of the family. As
we move around in the moduli space, integral linear combinations of the periods may vanish,
indicating an increment of the Picard number. This is the same mechanism that we will study
for three- and four-folds to identify flux vacua in type II string theory and F-theory, respec-
tively. Mirror symmetry for K3 families exchanges the Picard lattice with with its orthogonal
complement in H1,1(X). It follows that the Picard number of the mirror is ρ(X̂) = 20− ρ(X).

Let us consider an example: One of the most prominent families is given by the quartic hy-
persurfaces in P3. This ambient space is described by the polytope with vertices ei, 1 ≤ 1 ≤ 3

and (−1,−1,−1). By the methods of section 2.2, we find a single Mori cone generator

l(1) = (−4; 1, 1, 1, 1) (4.6.19)

and thus deduce that, generically, ρ(X) = 1. For the mirror, this implies that the transcenden-
tal lattice has the Hodge structure (1, 1, 1) and we expect three independent periods of Ω(z).
Following section 4.4, we obtain the fundamental period in the Batyrev coordinate

ϖ0(z) = 1 + 24z + 2520z2 + 369600z3 + 63063000z4 +O(z5) . (4.6.20)
9This assumes that the coordinates zi parametrise the moduli space faithfully. If e.g. points inside facets are in-

cluded in the toric description of the anti-canonical bundle, such a restriction is also necessary for higher-dimensional
families, see the paragraph at the end of section 2.3.
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4. Period geometry for elliptic curves, K3 surfaces and CY three-folds

This period restricts the Picard–Fuchs ideal to be generated by the third-order operator

L(3)(z) = θ3 − 4z
3∏
i=1

(4θ + i) . (4.6.21)

The full local solution consists also of a single- and a double-logarithmic solution. A period basis
over an integral lattice in homology is obtained by identifying log(zi) ∼ 2πi ti in the limit zi → 0

and the leading order behaviour

Π(t) = ϖ0(t)

 1

t
1
2cijt

itj

 , (4.6.22)

where cij =
∫
X Ji ∧ Jj are the classical intersection numbers of the Kähler cone generators Ji.

An important difference between elliptic curves and K3 surfaces on one side and the higher-
dimensional families on the other is that the expression in eqs. (4.6.11) and (4.6.22) are exact,
i.e. they do not obtain corrections in O

(
e2πit

)
. This basis in homology implies the intersection

form in cohomology10

Σ =

 1

−cij
1

 . (4.6.23)

The Hodge–Riemann bilinear relation restricts the moduli t to satisfy

0 < Π†ΣΠ = 2cijImti Imtj . (4.6.24)

The first two relations from Griffiths transversality (4.2.15) are satisfied trivially with eqs. (4.6.22)
and (4.6.23) . Due to the exactness of eq. (4.6.22) , the third relation

∂ti∂tjΠ
TΣΠ = Cij = cij , (4.6.25)

holds without corrections, which we expressed by Cij = cij . Recall from section 4.5 that the
couplings without a reference to the variables are in the mirror coordinates t and that c denote
the classical intersection numbers and thus the constant term in the n-point couplings C.

In the example of the quartic, there is only one Kähler cone generator and, following sec-
tion 2.2, we find c11 = 4. This allows us to express the period vector in the Batyrev coordinate

Π(z) =

 1 0 0

0 − i
2π 0

0 0 − 1
π2


 ϖ0(z)

log(z)ϖ0(z) + σ1(z)
1
2 log(z)

2ϖ0(z) + log(z)σ1(z) + σ2(z)

 , (4.6.26)

where the vector is our local solution to L(4)(z) and the matrix was obtained by the above iden-
tification. Such a matrix transforming a local basis into an integral one is called transition matrix.
Here, σi(z) are formal power series given by

σ1(z) = 104z + 12276z2 +
5632160

3
z3 + 327270650z4 +O

(
z5
)
, (4.6.27)

σ2(z) = 5408z2 + 1146912z3 +
688332760

3
z4 +O

(
z5
)
. (4.6.28)

10As for the elliptic curve, the conventions of section 5.3 are incompatible with this intersection form. To guarantee
the period structure of eq. (4.6.22) , we must use a basis of sheaves that generally has non-integer HRR pairing Σ−1.
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4.6. Conventional period geometry for (n ≤ 3)-folds

To describe the periods globally, we deduce its singular points from the denominator of the
Yukawa coupling given by the solution to the differential equation (4.5.11)

Czz(z) =
4

z2(1− 256z)
. (4.6.29)

The normalisation (which is irrelevant for the following) can be obtained by demanding that
the coupling in the mirror coordinate has the classical intersection number as the constant term
Ctt(t) = 4 + O(q). Here, we are only interested in the poles of this function, i.e. z0 = 0 and
z1 = 1/256. We express the differential operator in the coordinate u1 = z − z1 to solve for the
indicials at z1. The function Czz does not give us any information about the behaviour at infinity.
Therefore, we must always express the operator in the variable u∞ = 1/z (where θ∞ = −θ))
and verify whether the indicials make it a singular point. In general, a point is singular point if
and only if it has indicials that are not integral and/or not all different. Both conditions imply
that the monodromy transformation is non-trivial. Here, the Riemann symbol reads

PL(3)


0 1/256 ∞
0 0 1

4

0 1
2

1
2

0 1 3
4

, z

 . (4.6.30)

As explained in section 4.4, we express the operator L(4)(z) in coordinates around the other two
singularities and obtain local solutions with the indicials as in eq. (4.6.30) . Then, we perform an
analytical continuation of Π(z) to these points. The monodromy transformations are computed
to be

M0 =

 1 0 0

1 1 0

2 4 1

 , M1/256 =

 0 0 −1

0 1 0

−1 0 0

 , M∞ =

 −2 4 −1

−1 1 0

−1 0 0

 . (4.6.31)

These obey M0M1/256M∞ = 1, which is expected since a path encircling all singularities con-
tains, when seen from the other “hemisphere” of the P1, no singularities at all and is thus trivial.

At the beginning of this subsection, we mentioned that the Picard number can increase for
special fibres of the family. Furthermore, smooth fibres with ρ = 20 are called attractive. The K3
surfaces over the two singularities z1 = 1/256 and z2 = ∞ are examples of this phenomenon.
Importantly, the fibre at z1 is singular and technically not attractive by definition. It reflects,
however, the structure of integral linear combinations of period values and we therefore mention
it on an equal footing. The singularity of the differential operator at infinity is due to a quartic
covering in the Batyrev coordinate and corresponds to a smooth fibre instead. Either by the
methods of section 6.1 or the explicit expression of Π(zi), 1 ≤ i ≤ 2, we find that there exist
integral vectors fi with fiΣΠ(zi) = 0. The former tells us that the monodromy representations
both contains a one-dimensional representation with eigenvalue −1. These periods then must
vanish at the singularity. From the explicit monodromy representations in eq. (4.6.31) or from
the kernel of ΣΠ(zi), we identify

f1 =
(
1 0 1

)
, f2 =

(
2 1 2

)
. (4.6.32)

We conclude that these special fibres have Picard numbers ρ(X1/256) = ρ(X∞) = 20. The term
attractive is derived from attractor points of three-fold families, which we will discuss in more
detail later.
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One-parameter K3 families have another interesting property: Their period geometry can
be described by the symmetric square of the solutions to a second order Calabi–Yau operator.
Denoting the two solution of the second order operator L(2)(z) byϖ(2)(z), we find that the three
solutions of the K3 operator L(3)(z) are given by

(
ϖ

(2)
0

)2
, ϖ

(2)
0 ϖ

(2)
1 ,

(
ϖ

(2)
1

)2
. (4.6.33)

One calls L(3)(z) the symmetric square of L(2)(z) and writes

L(3) = Sym2
(
L(2)

)
. (4.6.34)

The origin for this description is the decomposition of the fundamental representation of

SO(2, 1)0 ∼=
SL(2,R)

±1
(4.6.35)

into the symmetric square of the fundamental of SL(2,R), see e.g. [105]. As not all monodromy
transformations of the K3 family are necessarily in the identity component of SO(2, 1), the mon-
odromy transformations of the second order operator are not guaranteed to be real. In general,
they lie in a imaginary quadratic field extension of Q.

Let us again consider the degree-four hypersurfaces in P3. We find that the functions ϖ(2)
i (z)

obtained by inverting eq. (4.6.33) are solutions to the Calabi–Yau operator

L(2)(z) = θ2 − 4z(1 + 8θ)(3 + 8θ) . (4.6.36)

with Riemann symbol

PL(2)


0 1/256 ∞
0 0 1

8

0 1
2

3
8

, z

 . (4.6.37)

It follows from the leading order of the K3 periods (4.6.22) that the integral basis, in general,
cannot be written as a symmetric square of two solutions of a second order operator. However,
the local solutions can always be expressed in this way. Treating the operator of eq. (4.6.36) with
the methods of the previous subsection, the monodromies are matrices valued in Q[

√
−2].

Calabi–Yau Threefold

From many perspectives, three-dimensional families are the most intriguing embodiment of
Calabi–Yau manifolds. On one side, this is of course due to their application in the compactifica-
tion of ten-dimensional string theories to four-dimensional theories. On the other, the increasing
complexity—arising from instanton corrections in the periods and the couplings—is balanced out
by a rich structure coming from mirror symmetry and Griffiths transversality. As we will discuss
in more detail below, the latter ensures the existence of a prepotential containing much of the
information of the period geometry. The moduli space is said to be special Kähler.
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Due to complex conjugation and Hodge star duality, the only independent Hodge numbers
are h2,1 and h1,1 and the Hodge diamond has the form

1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

(2.1.14)

We have seen in chapter 2 that these two numbers count the number of complex-structure
moduli and Kähler moduli in type II compactifications. As in section 4.3, uppercase indices
I, J,K, . . . ∈ {0, . . . , h2,1} and lowercase indices i, j, k, . . . ∈ {1, . . . , h2,1} represent homo-
geneous and inhomogeneous coordinates for the complex-structure moduli space, respectively.
Since the intersection form Σ̂ is antisymmetric for odd n, one introduces a symplectic basis in
the middle homology {AI , BI}I ⊂ H3(X,Z) and a dual basis {αI , βI}I ⊂ H3(X,Z), satisfying
AI ∩ Bb3+1−J = −Bb3+1−J ∩ AI = −δIJ and

∫
AI αJ =

∫
BJ
βI = δIJ where all other pairings

vanish. In matrix form, the pairing in cohomology is then given by

Σ =



1

. .
.

1

−1

. .
.

−1


, (4.6.38)

The periods consist of so-called A- and B-periods XI =
∫
AI Ω and FI =

∫
BI

Ω with which the
period vector takes the form

Π =
(
X0, . . . , Xh2,1 , Fh2,1 , . . . , F0

)T
. (4.6.39)

In turn, we can express Ω in terms of the periods in the basis dual basis in cohomology

Ω = XIαI + FIβ
I . (4.6.40)

As explained in section 4.3, the periods XI serve as homogeneous coordinates on the complex-
structure moduli space and give rise to the mirror maps ti. Comparing to the period structure
of elliptic curves (4.6.11) and K3 surfaces (4.6.22) , the B-periods FI contain corrections in the
form of formal power series in q = exp 2πi t. Nevertheless, the asymptotic structure, i.e. the
part polynomial in t, can be obtained from a prepotential. The instanton corrections can then
be obtained by matching the asymptotic period vector with the solutions to the Picard–Fuchs
differential ideal.

To derive the existence of a prepotential, one considers the relation coming from Griffiths
transversality (4.2.15) with ∂I = ∂XI

0 = ⟨Ω|∂IΩ⟩ = ΠTΣ ∂XIΠ = XJ∂JFI − FJ = ∂I(X
JFJ)− 2FJ . (4.6.41)
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It follows that the B-periods are given by FI = ∂IF with the prepotential

F =
1

2
XIFI , (4.6.42)

which is thus a function of the homogeneous coordinatesXI . To get an expression for the asymp-
totic behaviour of the periods in terms of the mirror maps, we define the inhomogeneous pre-
potential

F(t) =
F (X)

(X0)2
. (4.6.43)

This function allows us to write the period vector as

Π = X0
(
1, t1, . . . , th

2,1
, ∂
th

2,1F , . . . , ∂t1F , 2F − ti∂iF
)
. (4.6.44)

Homological mirror symmetry gives a prescription of the asymptotic behaviour of the periods
(the polynomial structure in t) via the Γ̂-class formalism. We will review it in section 5.2 as it is
part of a more complex mechanism to describe the integral periods in higher dimensions. Here,
the only necessary result is that an integral basis can be given in terms of the topological data of
the mirror X̂ :

F =
cijk
3!
titjtk − Aij

2!
titj − c2 ·Di

24
ti − χ ζ3

2(2πi)3
+ Finst(q) . (4.6.45)

Let us explain what each of these terms means: cijk are again the classical intersection numbers,
the quadratic coefficients are given by

Aij =
1

2

∫
X̂
i∗c1(Di) ∧ Jj = −1

2

∫
X̂
Ji ∧ Ji ∧ Jj , (4.6.46)

where integer shifts in these numbers correspond to Sp(4,Z) transformations on the periods.
The linear term includes the integers c2 · Di ≡

∫
X̂ c2 ∧ Ji and χ is the Euler number (again of

the mirror X̂). We also included a term Finst containing the instanton corrections

Finst(q) =
1

(2πi)3

∑
l>0

nl Li3

(
ql
)
. (4.6.47)

In section 4.5, we introduced the triple coupling on a three-fold as the pairing of Ω and the third
derivative of it. In the t coordinates, we obtain with eq. (4.6.44)

Cijk =
1

(X0)2
∂i∂j∂kΠ

TΣΠ = ∂i∂j∂kF . (4.6.48)

Note that the form of the prepotential together with eq. (4.6.48) implies the formula for the
instanton-corrected triple coupling formula we gave in eq. (4.5.19) .

Since we already encountered an explicit example for the three-fold structure in section 4.5,
we will refrain from discussing another example for the classical treatment at this dimension. In
subsection 5.4.1, we will describe their period structure using the Γ̂-class formalism. As three-
folds are well-understood due to the special geometry property, it is a suitable dimension to
introduce these more technical concepts.
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Chapter 5

Integral structures in higher dimensions

We saw in the previous chapter how the solutions to the Picard–Fuchs differential ideal combine
to an integral period basis for n ≤ 3. For elliptic curves and K3 surfaces, the period vector is given
by polynomials in the mirror coordinates t. In the latter case, the classical intersection numbers
appear in the highest-logarithmic period F0. Importantly, these expressions for Π are exact and
no non-perturbative corrections appear. This changes for Calabi–Yau three-folds, where both the
periods and the Yukawa coupling is instanton-corrected. However, the prepotential dictates the
behaviour of the B-periods and the period geometry requires no further structure. For higher
dimensions, we need more elaborate techniques to obtain an integral structure for the period
geometry. A crucial role is played by the Frobenius algebra we introduce in section 5.1. The
leading order of the periods, i.e. the polynomial part in t, is described by central charges of B-
branes, which correspond to structure sheaves on certain divisors on the mirror manifold. We
will review the necessary structure in section 5.2. This will allow us to introduce our method
to obtain the asymptotic period vector in section 5.3. We will supplement this subsection with
examples in section 5.4. This integral structure is not only necessary for the compactification to
lower dimensions, but also yields a canonical splitting of the period matrix into a unipotent and
semisimple part. It follows that the periods can be written as an iterated integral, which is used
in the computation of Feynman integrals.

5.1 Frobenius algebra

We review the Frobenius algebra structure [106] following [107], see also [104]. A mathematical
review can be found in [108]. The idea is to identify the cohomology groups Hn−p,p(X) with
vector spaces A(p) for 0 ≤ p ≤ n. The whole middle cohomology is then represented by the
graded vector space A =

⊕n
p=0A(p). The Yukawa coupling introduced in section 4.5 is a special

case of the more general map

C(a,b,c) : A(a) ×A(b) ×A(c) −→ C . (5.1.1)

The three indicials in the Yukawa couplings Cijk all belonged to the cohomology group H2,1 or
p = 1. For three-folds, the Yukawa couplings are therefore represented by C(1,1,1)

ijk . The indices

i, j and k represent a choice of basis, which, for any of the A(p), we denote by
{
e
(p)
i

}
i
. The

(non-degenerate) bilinear Frobenius form is given by a map

Σ : A×A −→ Q , (5.1.2)
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whose matrix representation in the above basis are denoted by Σij with inverse Σ̂ij . In chapter 4,
we always chose bases for the middle homology with block-anti-diagonal intersection forms, see
eqs. (4.6.2) , (4.6.23) and (4.6.38) . This is crucial for the grading of the Frobenius algebra—it
will be assumed in the following and ensured in the explicit construction of a homology basis in
section 5.3. We denote the blocks on the anti-diagonal of Σ and Σ̂ by σ(a) and σ̂(a), respectively.
Note that this implies

σik(a)σ̂
(n−a)
kj = δij . (5.1.3)

By the properties of a CY-Frobenius algebra, we mean, in particular, the following identities for
the functions C(a,b,c).

(i) Permutation symmetry: C(a,b,c)
ijk = C

σ(a,b,c)
σ(ijk) , ∀σ ∈ S3 .

(ii) Griffiths transversality: C(a,b,c) = 0 if a+ b+ c < n .

Due to property (ii) , it is customary to abbreviate the couplings as C(a,b) := C(a,b,n−a−b). For
better readability, we will thus omit the third degree whenever the dimensionality n is clear from
context.

(iii) Unit: A(0) = C · 1 and C(0,a)
1,i,j = σ̂

(a)
ij .

(iv) Associativity: C(a,b)
ijp σpq(n−a−b)C

(a+b,c)
qkl = C

(a,c)
ikr σrs(n−a−c)C

(a+c,b)
sjl .

(v) Fusion rule: e(a)i · e(b)j = C
(a,b)
ijk σkl(n−a−b)e

(a+b)
l .

We mentioned above that one should think of the A(p) as the cohomology group Hn−p,p(X).
The origin of these elements lies, however, in the mirror partner’s cohomology group

Hp
(
X̂,∧pTX̂

)
∼= Hp,p(X̂) ∼= Hn−p,p(X) , (5.1.4)

where the first relation comes from Dolbeault’s theorem and the second one assumes mirror
symmetry between X and X̂. As an example, we can use the above rules (i) , (iii) and (v) to
obtain the triple coupling of a three-fold via

e
(1)
i · e(1)j · e(1)k = C

(1,1)
ijl σls(1)e

(2)
s · e(1)k = C

(1,1)
ijl σls(1)C

(2,1)
sk1︸ ︷︷ ︸
σ̂
(2)
sk

= C
(1,1)
ijk , (5.1.5)

where we used eq. (5.1.3) in the last equality. More interestingly, the rules also give the decom-
position of n-point couplings (cf. eq. (4.5.24) ) into triple couplings for n > 3. This phenomenon
is expected from a conformal field theoretic point of view. The n-point couplings for four- and
five-folds decompose as

n = 4 : e
(1)
i · e(1)j · e(1)k · e(1)l = C

(1,1)
ijr σrs(2)e

(2)
s · e(1)k · e(1)l

= C
(1,1)
ijr σrs(2)C

(2,1)
skt σ

tu
(1)σ̂

(3)
ul = C

(1,1)
ijl σls(2)C

(1,1)
kls ,

(5.1.6)

n = 5 : e
(1)
i · e(1)j · e(1)k · e(1)l · e(1)m = C

(1,1)
ijr σrs(3)e

(2)
s · e(1)k · e(1)l · e(1)m

= C
(1,1)
ijr σrs(3)C

(2,1)
skt σ

tu
(2)e

(3)
u · e(1)l · e(1)m

= C
(1,1)
ijr σrs(3)C

(2,1)
skt σ

tu
(2)C

(3,1)
ulv σvw(1)e

(4)
w · e(1)m

= C
(1,1)
ijr σrs(3)C

(1,2)
kst σ

tu
(2)C

(1,1)
lmu .

(5.1.7)

In section 5.6, we will see how this pattern fits together nicely with the general form of the Gauss–
Manin connection in the corresponding period basis and eq. (4.5.24) .
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In this work, we discuss only families with Frobenius algebras that are generated by A(1). This
means that the fusion rule (v) for a = 1 can be inverted, i.e. each element e(b+1)

i is a linear
combination of the elements e(1)j · e(b)k . This inversion will play a central role in the construction
of an integral basis in section 5.3. This condition is typically phrased in the literature as

(vi) Non-degeneracy: A is generated by A(1).

It was observed in [96] that this is not guaranteed in dimensions n > 3. There, one-parameter
four-fold families given by complete intersections in Grassmanian varieties were analysed. The
Hodge structure of these models is (1, 1, 2, 1, 1), in contrast to the (1, 1, 1, 1, 1) structure of a non-
degenerate one-parameter four-fold. Non-degenerate one-parameter models furthermore have
a Picard–Fuchs operator of order n + 1. For the four-folds in [96], the degeneracy is reflected
in a order-six Picard–Fuchs operator with indicials (05, 1). The additional holomorphic solution
mixes with the others to form a second second-order logarithmic period.

Similar to the instanton expansion of the couplings for three-folds in eq. (4.5.19) , the expan-
sions of the triple-couplings of higher-dimensional families also give rise to genus-zero invari-
ants. For n > 3, the couplings have either one or two indices in A(1). The single couplings with
two such indices enjoy the expansion

C α
ij = c α

ij +
∑
l>0

nαl lilj
ql

1− ql
, (5.1.8)

while the remaining couplings can be written as

C β
iα = c β

iα +
∑
l>0

n β
lα li

ql

1− ql
. (5.1.9)

The invariants nαl and n β
lα are conjectured to be integral. In appendix B, we list the first such

invariants for Calabi–Yau families of dimension five, six and seven.

As done in section 4.1, one can express Ω in a basis γi dual to the topological homology ba-
sis Γi, where the coefficients are given by the periods over these cycles. This basis allows us to
supplement Ω ∈ A(0) with pure elements of the Frobenius algebra to obtain a basis for the (hor-
izontal) middle cohomology. An element in called pure, if it is contained in one of the vector
spaces A(i). Multiplication with e(1)i is represented by the derivative ∂i w.r.t. the mirror coordi-
nate ti. As shown in [104], the mirror maps ti are flat coordinates on the moduli space for which
the covariant derivative Di (cf. section 4.2) reduces to the ordinary derivative ∂i. Then, the fu-
sion rule (v) implies that the Gauss–Manin connection—the matrix representation of ∂ti on the
cohomology basis—is of a particular canonical form, which we will discuss further in section 5.6.

5.2 Γ̂-class and central charges of B-branes

To obtain an integral period basis, one identifies the solutions to the Picard–Fuchs equations with
the asymptotic period vector, which is polynomial in the mirror coordinates t. For dimensions
n > 3, one needs to use the fact that the asymptotic behaviour is given by central charges of
branes, see below. The key takeaways of this section are eqs. (5.2.5) and (5.2.8) computing the
asymptotic period vector and the intersection form in terms of topological data of the mirror.
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5. Integral structures in higher dimensions

We begin with some mathematical preliminaries. Given a rank-r vector bundle E, the Chern
roots xi are formal roots of the total Chern class

c(E) := 1 +

r∑
i=1

cr(E) =

r∏
i=1

(1 + xi(E)) .

The r.h.s. allows us to view the bundle as the sum of r line bundles and write it as E =
⊕r

i=1 Li
with c1(Li) = xi. This is known as the splitting principle and can be used to reduce many state-
ments for rank-r bundles down to line bundles. We will encounter it again further below to
describe the dual bundle. The Γ̂-class is defined in terms of the Chern roots as [109]

Γ̂(E) =
r∏
i=1

Γ

(
1− xi(E)

2πi

)
= exp

−γc1(TX) +
∑
k≥2

(−1)k(k − 1)!ζkchk(TX)

 ,

with γ being the Euler constant and chk = 1
k!

∑r
i=1

(
− ci

2πi

)k . For a Calabi–Yau manifold with
c1(TX) = 0, this results in the series expansion

Γ̂(TX) = 1 +
c2
24

+
c3ζ3
(2πi)3

+

(
7c22 − 4c4

)
5760

+
(c5 − c2c3) ζ5 − c2c3ζ2ζ3

(2πi)5
+O (6) ,

where we wrote ci = ci(TX). The Todd class is given by

Td(E) =
r∏
i=1

xi
1− e−xi

.

To give a simple relation between the Todd class and the Γ̂ class for Calabi–Yau manifolds, we
introduce the dual bundle E∨ of E, where each fibre of E∨ consists of the linear maps from the
corresponding fibre of E to C:

E∨ = Hom(E,C) .

For a line bundle L, the bundle L ⊗ L∨ = Hom(L,L) has the identity as a nowhere vanishing
section and its first Chern class is therefore zero. It follows that 0 = c1(L ⊗ L∨) = c1(L) +

c1(L
∨) . Using the splitting principle as introduced above, one finds for the Chern roots xi(E∨) =

−xi(E) , which implies ck(E∨) = (−1)kck(E) . With Euler’s reflection formula Γ(z)Γ(1− z) =

π/ sin(πz) and Γ(z + 1) = zΓ(z) , one obtains

Γ
(
1 +

x

2πi

)
Γ
(
1− x

2πi

)
=

x

2i sin x
2i

= e−x/2
x

1− e−x
.

Using
∑r

i=1 xi = c1, one gets for Calabi–Yau manifolds

Td(TX) = Γ̂(TX) Γ̂(TX∨) .

We will now show how the Γ̂- and Td-class give rise to the leading order of an integral basis of
periods.
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5.2. Γ̂-class and central charges of B-branes

A-branes and B-branes are described using the language of sheaves and derived categories. On
the A-model side, A-branes correspond to special Lagrangian cycles within a Calabi–Yau man-
ifold, which are submanifolds that minimise volume in their homology class and satisfy certain
calibration conditions related to the manifold’s geometry. On the B-model side, B-branes are
described purely algebraically as coherent sheaves (or, more precisely, objects in the derived cate-
gory of coherent sheaves on the mirror Calabi–Yau manifold). Mirror symmetry relates these two
pictures by mapping A-branes on a Calabi–Yau manifoldX to B-branes on its mirror X̂ , and vice
versa. This equivalence, famously conjectured by Kontsevich as the homological mirror symme-
try conjecture [110], asserts that the category of A-branes, described by special Lagrangian cycles,
is equivalent to the derived category of coherent sheaves on the mirror manifold.

The identification uses the map [111]

µ : K(X) → H∗(X,Z) ,
E 7→ ch(E)Γ̂(TX) ,

(5.2.1)

where we will let the K-theory group K(X) be generated by rational linear combinations of the
structure sheaf onX , on divisors generating the Kähler coneDi , 1 ≤ i ≤ h1,1(X), and on succes-
sive intersections thereof. The highest-dimensional D-brane on the A-side is the D(2n)-brane
and the corresponding sheaf is the structure sheaf on the whole manifold OX with ch(OX) = 1.
TheD(2n−2)-branes are described by the structure sheaves on divisorsDi and lower-dimensional
branes by the structure sheaves on their intersections. Let I ⊂ {1, . . . , h1,1} be an index set. The
Chern character of the structure sheaf on S =

⋂
i∈I Di can be obtained by the long exact se-

quence

0 −→ OX(−
∑
i∈I

Di) −→
⊕
j∈I

OX(−
∑
i∈I\j

Di) −→ . . .

. . . −→
⊕
i∈I

OX(−Di) −→ OX −→ OS −→ 0
(5.2.2)

combined with the fact that the alternating sum over the elements’ Chern characters vanishes. In
this sequence, we use that the Chern character of a line bundle OX(D) associated with a divisorD
is given by eJ , where J is the first Chern class of the line bundle or equivalently the Poincaré-dual
form in H1,1(X). For example, for D(2n− 2)-branes, we choose S = Di and find

ch(ODi) = ch(OX)− ch(OX(−Di)) = 1− e−Ji . (5.2.3)

and, for D(2n− 4)-branes, we use S = D1 ∩D2 and obtain

ch(ODi·Dj ) = ch(OX)− (ch(OX(−Di)) + ch(OX(−Dj))) + ch(OX(−Di −Dj))

= 1− e−Ji − e−Jj + e−Ji−Jj .
(5.2.4)

The central charges of these sheaves can then be computed via

ΠE = Z(E) =
∫
X
e
∑

i t
i·Ji ∧ µ(E∨) . (5.2.5)

In other works [96], the D2 and D0 branes were described by twisted structure sheaves on curves
dual to the Kähler divisors and the skyscraper sheaf, respectively. In our conventions, their central
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charges are always given by

ΠEi
D2

= ti , (5.2.6)

ΠED0
= 1 . (5.2.7)

The Hirzebruch–Riemann–Roch (HRR) pairing is defined as

χ(E ,F) =

∫
X
µ(E) ∧ µ(F∨) =

∫
X
Td(TX) ∧ ch(E) ∧ ch(F∨) . (5.2.8)

Evaluated in the basis corresponding to the period basis, we have χ = Σ̂ and its inverse is giving
rise to the intersection form (χ)−1 = Σ for the periods.

In section 5.3, we will construct integral period bases for Calabi–Yau n-folds. There, we will
use certain rational linear combinations of structure sheaves on intersections of Kähler divisors,
where µ and thus eq. (5.2.5) extend linearly to other sheaves. In n ≤ 4, the above yields a suffi-
cient set of sheaves to obtain the leading order of a rational basis of periods of the mirror1. For
higher dimensions, however, it is a priori unclear how to obtain an independent set of sheaves
for, for example, sheaves in dimension two. Another problem is finding a basis that has an inter-
section form of block-anti-diagonal form. This is crucial for the simplification of many identities
such as the Griffiths transversality conditions and will also allows us to construct a basis for the
cohomology in which the Gauss–Manin connection is of a particular simple and canonical form.
We will show that the classical part of the (inverse) couplings naturally give rise to such a basis.

5.3 Integral period bases

In the previous section, we reviewed how homological mirror symmetry identifies the leading
order structure of the periods to the central charges of B-branes. Much of the period structure of
a Calabi–Yau family is revealed only in a K-theory basis with block-anti-diagonal HRR pairing
χ. We note that this pairing is also given by the cup product Σ̂ = χ of the cycles that support the
sheaves. Here, we will propose a formalism that yields a period basis that has block-anti-diagonal
intersection form Σ and conjecturally integral monodromies. We will support the latter with ex-
plicit analytical continuations and the integrality of genus-zero invariants of several models.

The proposed basis consists of two different sets of periods, which we will call A- and B-
periods. These names are chosen by analogy to the three-dimensional case (section 4.6)). How-
ever, this should not mislead one to assume that the structures carry over to higher dimensions.
TheB-periods are central charges of structure sheaves on divisors ofX and intersections thereof.
For a Calabi–Yau three-fold, F0 corresponds to the structure sheaf on X while Fi to those on di-
visors Di. In n dimensions, there are B-periods coming from zero up to ⌈n/2⌉− 1 intersections
of divisors. In the Hodge structure of the middle cohomology at the MUM point, these elements
correspond to the groups that are strictly on the right side Hp,n−p(X), p < ⌈n/2⌉. The rest of
the middle cohomology is represented by A-periods, which are defined as being dual to the B-
periods in the sense that the intersection form resembles that of for the three-fold (4.6.38) , see

1For n = 4, one must restrict to an independent basis of sheaves for dimension two, see subsection 5.4.2. Fur-
thermore, integrality demands that this choice generates the whole space integrally.
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eq. (5.3.15) . To obtain their leading order behaviour, we need to define inverses c to the classical
intersection numbers c.

To each vector space A(n−k) in the Frobenius algebra, we want to assign a basis represented
by tuples of length k. The tuples give the support of the structure sheaves, where the entries
correspond to the divisors we intersect. We thus define index sets Nk for the Frobenius algebra
with m generators in A(1)

Nk :=
(
[i1, . . . , ik] | 1 ≤ il ≤ m,

k⋂
l=1

Dil ̸= 0
)
, 1 ≤ k ≤ n . (5.3.1)

As the index sets shall represent intersections of divisors, we demand that the their intersection
is non-vanishing. First of all, these intersections are not necessarily independent in homology.
The number of independent elements, which is equivalent to the Betti number, is given by the
rank of the pairing

ck := ci1,...,ik,j1,...,jn−k
, i ∈ Nk, j ∈ Nn−k , (5.3.2)

where c denotes the classical intersection numbers. The ck should be seen as a two-by-two matrix
for computing the rank. It follows that cn−k = cTk . We furthermore demand that the following
inverses c to the classical intersection numbers exist

δji =
∑

l1,...,ln−k

ci1,...,ik,l1,...,ln−k
cl1,...,ln−k,j1,...,jk . (5.3.3)

We will call the subsets of Nk that allow for such an inverse Nk. Before we start identifying these
sets with sheaves, we must restrict the set further.

There is another subtlety that is crucial for integrality of the monodromies: As we will see
in subsection 5.4.2, the brane charge ΠODi

obtains a contribution of ±ΠODi∩Dj
under a mon-

odromy around zj = 0. When projecting onto an independent basis, it is important that ΠODi∩Dj

is given by an integer combination of the generators. As we will explain in detail below, the pre-
liminary (with intersection form in general not block-anti-diagonal) basis of sheaves we propose
consists of two parts: The B-periods of logarithmic order p >

⌈
n−1
2

⌉
correspond directly to

periods ΠOS
with S =

⋂
i∈nDi for some n ∈ Nk, while the A-periods will be contracted with

the inverse couplings c. For the latter set, the resulting sheaf is independent of the restriction
to independent elements in Nk due to the multiplication with c—they are defined to be dual to
their opposing period. However, in the first set we must pay attention to select generators that
generate all sheaves at this level integrally.

To find such generators, we consider the matrices cTk and focus on the kernel. We write a
set of generators of the kernel as rows into a matrix and perform a Gaussian elimination. We
then divide each row by its greatest common divisor. If there exist at least dim(ker(cTk )) basis
elements for which there exists a generator with a ±1 in that element’s position, we may omit
these elements to obtain an independent basis for this level. This sufficient but not necessary
condition then naturally preserves integrality of the monodromies. Let us give an example.
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We consider the four-fold hypersurface family P18,12,3,13 [36] with intersection ring

72J4
3 + 12J1J

3
3 + 36J2J

3
3 + 2J2

1J
2
3 + 18J2

2J
2
3 + 6J1J2J

2
3 + 9J3

2J3 + 3J1J
2
2J3 + J2

1J2J3 .

Sorting the set of indices for this level as2

N2 = ([1, 1], [1, 2], [1, 3], [2, 2], [2, 3], [3, 3]) , (5.3.4)

the intersection matrix has rank bhor
2,2 = 4 and reads

cT2 = c2 =



0 0 0 0 1 2

0 0 1 0 3 6

0 1 2 3 6 12

0 0 3 0 9 18

1 3 6 9 18 36

2 6 12 18 36 72


. (5.3.5)

We find that the four-point coupling is invertible as in eq. (5.3.3) for

N2 = ({1, 2, 3, 5}, {1, 2, 3, 6}, {1, 3, 4, 5}, {1, 3, 4, 6}) , (5.3.6)

where the numbers represent the elements in N2 as in eq. (5.3.4) . Performing a Gaussian elim-
ination on the kernel generators of cT2 , these read

k =

(
0 3 0 −1 0 0

0 0 0 0 2 −1

)
. (5.3.7)

From the above we conclude that integrality is guaranteed, if we omit the fourth and sixth ele-
ment, i.e. if we generate level two by

{[1, 1], [1, 2], [1, 3], [2, 3]} ≡ {1, 2, 3, 5} .

Choosing another one of the four possible bases, one obtains non-integral monodromies around
the MUM point. Nevertheless, if one divides the sheaves OD2∩D2 and OD3∩D3 by a factor of
three and two (coming from the relations of the kernel generators) one gets the same central
charge lattice for any of the four sets (up to permutations). This example shows the importance
of a proper choice for a basis for the B-periods already at n = 4.

Finally, we demand that the tuples are horizontal, i.e. that each tuple at level k comes from a tu-
ple of level k−1 extended by one index. Let us call the final index set at each level sk = (s1k, s

2
k, . . .) ,

which has length hn−k,khor . The inverse couplings ck from before are then defined by

δji =
∑

l∈sn−k

ci,lc
l,j
k , (5.3.8)

where we shortened the indices for better readability. For each level, one obtains a vector of
sheaves

Õk :=

(
OSi

k

∣∣∣∣∣ Sik = D
si,1k

∩ . . . ∩D
si,kk

1 ≤ i ≤ bhor
n−k,k

)
. (5.3.9)

2At level one, N1 = ([1], [2], [3]) and cT1 is a 9 × 3 matrix with nullity zero. Therefore, we omit none of the
elements in N1 = ({1, 2, 3}).
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We can then define a K-theory basis consisting of two parts (corresponding toA- andB-periods)

Õ =

∑
l∈sk

ci,lk Õk,l

∣∣∣∣∣ i ∈ sn−k , n ≥ k ≥
⌈
n+ 1

2

⌉
∪

(
(−1)k+nÕk,i

∣∣∣∣∣ i ∈ sk ,

⌈
n− 1

2

⌉
≥ k ≥ 0

)
.

(5.3.10)

The awkward range for k in both tuples is such that Õ is sorted in ascending order by dimension
of the sheaves’ support, i.e. the skyscraper sheaf given by a linear combination of Õn is the first
entry while the structure sheaf Õ0,1 = OX comes last. This will lead to a period vector that is in
ascending logarithmic order. The HRR pairing of this set is not in block-anti-diagonal form. To
achieve this, we perform for each level k <

⌊
n+1
2

⌋
a basis transformation Rk with coefficients

(Rk)i,j =


1 , if i = j ,

−⟨Õbn+1−j , Õi⟩ , if i > j & i+ j < bn + 1 & j ∈ B(k) ,

−1
2⟨Õi, Õi⟩ , if i > j & i+ j = bn + 1 & j ∈ B(k) ,

0 , else,

(5.3.11)

where we transform Õ 7→ RkÕ for the computation of Rk+1. We denoted the index range in
{1, . . . , bn} corresponding to level k by B(k). In the above example for P18,12,3,13 [36], there are
two matrices

R1 =



1 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0

−46 0 0 0 1 0 0 0 0 0 0 0
−14 0 0 0 0 1 0 0 0 0 0 0
−6 0 0 0 0 0 1 0 0 0 0 0
−2 0 0 0 0 0 0 1 0 0 0 0
−37 0 0 0 0 0 0 0 1 0 0 0
−9 0 0 0 0 0 0 0 0 1 0 0
−1 0 0 0 0 0 0 0 0 0 1 0
−1 0 0 0 0 0 0 0 0 0 0 1


, R2 =



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 4 9 9 1 0 0 0 0 0 0 0
0 1 2 1 0 1 0 0 0 0 0 0
0 0 0 −1 0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 1 0 0 0 0
0 13 37 37 0 0 0 0 1 0 0 0
0 6 9 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1


.

(5.3.12)
Note that, for n > 4, this basis change is generally not integral due to the rational factors we
included in the linear combinations of the A-periods’ sheaves in eq. (5.3.10) . Finally, we obtain
our K-theory basis

O = · · ·R2 ·R1 · Õ , (5.3.13)

which has, depending on the dimension, the HRR pairing

Σ̂even =



1

. .
.

1

σ̂(n/2)

1

. .
.

1


, Σ̂odd =



−1

. .
.

−1

1

. .
.

1


,

(5.3.14)
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where σ̂(n/2) denotes the pairing of the elements in Hn,n, which is positive/negative if n/2 is
even/odd. It follows that the intersection form Σ = (Σ̂)−1 in cohomology is of the form

Σeven =



1

. .
.

1

σ(n/2)
1

. .
.

1


, Σodd =



1

. .
.

1

−1

. .
.

−1


.

(5.3.15)
Since, in this period basis, there is only one bilinear form of the Frobenius algebra that appears
non-trivially, we will sometimes omit the index n/2 of σ(n/2) and σ̂(n/2). In the following subsec-
tion, we will give examples to this construction, starting from n = 3, where we will emphasise the
advantage of this formalism over the prepotential approach of section 4.6. Afterwards, we will
describe the asymptotic period vector for four-folds used, for example, in F-theory compactifi-
cations to four-dimensions and extend the discussion to higher dimensions.

5.4 Three- and four-folds using Γ̂-class

The techniques of the previous sections are first exemplified on the already discussed case of
three-folds (cf. section 4.6) and then applied on four-folds in subsection 5.4.2, where the ab-
sence of a prepotential requires homological mirror symmetry for the construction of an integral
period basis. The three-fold example includes a suitable description of the integral structure on
symmetric quotient families. The example four-fold is the popular elliptic X6-fibration over P2,
which we will encounter again in the study of supersymmetric F-theory flux vacua in section 6.3,
see also [1].

5.4.1 Three-folds revisited

The model we will consider was already discussed in the context of flux compactifications in [1]

X (3)
sym =

 P2 1 1 1
P2 1 1 1
P2 1 1 1


3,48

−90

. (5.4.1)

Using the toric methods discussed in section 2.2, one readily obtains the classical intersection
numbers

R = 3J2
1J2 + 3J2

1J3 + 3J1J
2
2 + 3J1J

2
3 + 6J1J2J3 + 3J2J

2
3 + 3J2

2J3 (5.4.2)

and integrals of the Chern classes

χ = −90 , c2 · Ji = 36 , i ∈ {1, 2, 3} . (5.4.3)
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For the Γ̂-class formalism, we actually need the full forms of the Chern classes, which are given
by

c2 = 3 (J1J2 + J1J3 + J2J3) , (5.4.4)

c3 = −3 (J1 + J2) (J1 + J3) (J2 + J3) . (5.4.5)

Following section 5.3, we have N0 = ([]), N1 = ([1], [2], [3]). There is only a single choice to
match the Betti numbers h3,0 = 1 and h2,1 = 3 and we have N0 = ({1}) and N1 = ({1, 2, 3}).
For the B-periods, N2 and N3 have cardinality six and seven

N2 = ([1, 1], [1, 2], [1, 3], [2, 2], [2, 3], [3, 3]) , (5.4.6)

N3 = ([1, 1, 2], [1, 1, 3], [1, 2, 2], [1, 2, 3], [1, 3, 3], [2, 2, 3], [2, 3, 3]) . (5.4.7)

Note that we omitted the index tuples representing the vanishing intersections Di ∩ Di ∩ Di

for 1 ≤ i ≤ 3. There are 17 possible ways to choose h1,2 = 3 elements in N2 with invertible
couplings, which are collected in N2. We will choose the element

s2 = (2, 4, 5) ≡ ([1, 2], [2, 2], [2, 3]) . (5.4.8)

Horizontality implies that we cannot take the generators [1, 1, 3] or [1, 3, 3] for s3 = (s13) and we
thus choose s13 = [1, 1, 2]. As the B-periods follow directly from eq. (5.3.10) and the computa-
tion of the Chern characters via the Koszul complex we discussed in section 5.2, we focus on the
A-periods. Let us start with the skyscraper sheaf at k = n = 3: The inverse coupling(s) defined
by eq. (5.3.8) must satisfy

δji =
∑
l∈N0

ci,lc
l,i =⇒ 1 = c211c

211 =⇒ c211 =
1

3
. (5.4.9)

Then, we obtain immediately

Õn,1 =
1

3
OD1∩D2∩D2 . (5.4.10)

For the remaining A-periods, we have k = n − 1 = 2 and obtain the relevant couplings in
eq. (5.3.8)

ci,l =

c121 c122 c123
c221 c222 c223
c231 c232 c233

 =

3 3 6

3 0 3

6 3 3

 . (5.4.11)

The row index i runs through N2 while l is in N1. Then, the inverse couplings are obtained by

cl,j =

c112 c122 c123

c212 c222 c223

c312 c322 c323

 =

3 3 6

3 0 3

6 3 3


−1

=
1

6

−1 1 1

1 −3 1

1 1 −1

 . (5.4.12)

It follows that the sheaves in Õ2 are given by

Õ2 =
1

6

−1 1 1

1 −3 1

1 1 −1


OD1∩D2

OD2∩D2

OD2∩D3

 . (5.4.13)
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Together with

Õ1 =

OD1

OD2

OD3

 and Õ0 =
(
OX

)
, (5.4.14)

these central charges give an integral basis of the periods. The Chern characters of these sheaves
Õ are given by

ch(Õ) =



1
3
J2
1J2

−J3
2
6

+ 1
12
J1J

2
2 − 1

12
J3J

2
2 +

J2
2
6

+ 1
12
J2
1J2 − 1

12
J2
3J2 − J1J2

6
+ J3J2

6
J3
2
2

− 1
12
J1J

2
2 − 1

12
J3J

2
2 − J2

2
2

− 1
12
J2
1J2 − 1

12
J2
3J2 +

J1J2
6

+ J3J2
6

−J3
2
6

− 1
12
J1J

2
2 + 1

12
J3J

2
2 +

J2
2
6

− 1
12
J2
1J2 +

1
12
J2
3J2 +

J1J2
6

− J3J2
6

J3
3
6

− J2
3
2

+ J3

J3
2
6

− J2
2
2

+ J2

J3
1
6

− J2
1
2

+ J1

−1


. (5.4.15)

However, their intersection form is not in block-anti-diagonal form and we need to perform a
basis change as in eq. (5.3.13) . Here, the only non-trivial matrix is given by

R1 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

−3 0 0 0 1 0 0 0

−3 0 0 0 0 1 0 0

−3 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


. (5.4.16)

In the new basis O, the corresponding periods are subject to the intersection form eq. (4.6.38) .
We compute the central charges of these branes with eq. (5.2.5) , yielding

Π(t) ∼



1

t1
t2
t3

3
2

(
t21 + (4t2 + 2t3 − 1) t1 + t2 (t2 + 2t3 − 1)− 1

)
3
2

(
t21 + (2t2 + 4t3 − 1) t1 + t3 (2t2 + t3 − 1)− 1

)
3
2

(
t22 + (2t1 + 4t3 − 1) t2 + t3 (2t1 + t3 − 1)− 1

)
− 3

2

(
(t2 + t3) t

2
1 +

(
t22 + 4t2t3 + t23 + 1

)
t1 + (t2 + t3) (t2t3 + 1)

)
− 90ζ(3)

(2πi)3


. (5.4.17)

Note that entries six and seven are obtained from entry five by the replacements t2 ↔ t3 and
t1 ↔ t3, respectively, and that the last entry is completely symmetric in the three coordinates.
This information is sufficient to compute the monodromies Mi around the Batyrev coordinate
axes zi = 0, 1 ≤ i ≤ 3. As the coordinates are permutation symmetric, M2 and M3 can be
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logarithmic order 0 1 2 3 4

n.o. solution 1 3 6 10 15

L(2) – – −3 −9 −15

Hodge numbers 1 3 3 1 0

Table 5.1: Estimate for the PFDI of a three-parameter three-fold family. Generically, three
second-order operators should restrict the solution space sufficiently.

obtained from symmetry considerations and

M1 =



1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 3 6 3 1 0 0 0

0 3 3 6 0 1 0 0

0 0 3 3 0 0 1 0

−3 0 −3 −3 0 0 −1 1


. (5.4.18)

The Mori cone is generated by (see eq. (2.2.50) )

l(1) = (−1,−1,−1; 1, 1, 1, 0, 0, 0, 0, 0, 0) , (5.4.19)

l(2) = (−1,−1,−1; 0, 0, 0, 1, 1, 1, 0, 0, 0) , (5.4.20)

l(3) = (−1,−1,−1; 0, 0, 0, 0, 0, 0, 1, 1, 1) . (5.4.21)

For three-folds with three-parameters, we usually expect to have three operators of order two
generating the PFDI, see Table 5.1. Here, we indeed find three operators

L(2)
1 (z) = −2θ21 + θ2θ1 + (θ1 − θ2) θ3

+ z1
(
2θ21 + (5θ2 + 5θ3 + 4) θ1 + 3θ22 + (θ3 + 1) (3θ3 + 2) + θ2 (7θ3 + 5)

)
+ z2

(
−θ21 − (θ2 + θ3 + 1) θ1 + θ3 (θ2 + 3θ3 + 1)

)
(5.4.22)

+ z3
(
−θ21 − (θ2 + θ3 + 1) θ1 + θ2 (3θ2 + θ3 + 1)

)
,

where L(2)
2 and L(2)

3 are obtained by coordinate permutations z1 ↔ z2 and z1 ↔ z3, respectively.

The Z2 symmetries between the Batyrev coordinates give rise to supersymmetric flux vacua
along the two-dimensional fixed-point loci in the complex-structure moduli space. We will dis-
cuss this further in section 6.2. There, we will also see that the symmetry between the three
permutations symmetries guarantees that the intersection of the fixed-point loci yields a super-
symmetric vacuum. This one-dimensional locus is parametrised by z ≡ z1 = z2 = z3 and the
periods are given by solutions to the operator [97]

L(4)
AESZ17(z) = 25θ4 − 15z1 (51θ

4 + 84θ3 + 72θ2 + 30θ + 5)

+ 6z21 (531θ
4 + 828θ3 + 541θ2 + 155θ + 15)

− 54z31 (423θ
4 + 2160θ3 + 4399θ2 + 3795θ + 1170)

+ 243z41 (279θ
4 + 1368θ3 + 2270θ2 + 1586θ + 402)

− 59049z51 (1 + θ)4 .

(5.4.23)

— 71 —



5. Integral structures in higher dimensions

We focus on the asymptotic structure at the MUM point of the family over the symmetric locus
inherited from the three-parameter model. First, we give the Riemann symbol of this operator:

PL(4)
AESZ17



0 i
3
√
3

− i
3
√
3

1
27

5
9 ∞

0 0 0 0 0 1

0 1 1 1 1 1

0 1 1 1 3 1

0 2 2 2 4 1

, z


. (5.4.24)

The point z = 5/9 is a so-called apparent singularity and does not affect the operator’s regions of
convergence. The local solutions are linear combinations of formal power series and the mon-
odromy around this point is thus trivial. Such points correspond to zeros of the Yukawa coupling

Czzz =
90(1− 9/5z)

z3(1− 27z)(1 + 27z2)
. (5.4.25)

For the normalisation, we took the limit ti → t in eq. (5.4.17) , which yields the asymptotic
one-parameter period vector

Π(t) ∼

 1

t

15t2 − 3t− 3
2

−15t3 − 9
2
t+ 90iζ3

(2πi)3

 . (5.4.26)

Comparing the cubic term in F0/X
0 with the appearance of the classical intersection numbers

in the prepotential (4.6.45) , we find κ111 = 90. In the symmetric limit ti → t, the prepotential
of the three-parameter model becomes

F (3)
∣∣
ti→t

=
90

3!
t3 − 9

2
t2 − 3 · 36

24
t− (−90)ζ3

2(2πi)3
+O(q) . (5.4.27)

The asymptotic periods in eq. (5.4.26) can also be described with a prepotentialF (1) = F (3)
∣∣
ti→t

.
However, the double logarithmic period is given by F 1/X0 = 1

3∂tF . In the triple-logarithmic
period, the normalisation of 1

3 cancells against the summation over the three Kähler parameter
and we have F0/X

0 = 2F − t∂tF . For such symmetric sub-families, the intersection form is
not of the form eq. (5.3.15) but we must account for multiplicities of the intersections

Σ =


1

3

−3

−1

 . (5.4.28)

An intuitive explanation for this matrix comes from the expression Π†ΣΠ in the Kähler poten-
tial K in eq. (4.1.14) . For K to be identical to that of the restricted three-parameter model,
the intersection form must be of the form eq. (5.4.28) . An analytical continuation yields the
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monodromy group generated by

M0 =


1 0 0 0

1 1 0 0

12 30 1 0

−24 −54 −3 1

 , M i
3
√
3

=


10 0 3 3

3 1 1 1

0 0 1 0

−27 0 −9 −8

 ,

M− i
3
√
3

=


−8 −18 −3 3

3 7 1 −1

−18 −36 −5 6

−27 −54 −9 10

 , M 1
27

=


1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1

 ,

M∞ =


−5 −36 −3 −7

−4 −11 −2 −3

0 42 1 6

24 72 12 19

 ,

(5.4.29)

which satisfy MTΣM = Σ and M i
3
√
3

M0M− i
3
√
3

M 1
27
M∞ = 1 . Finally, we give the first couple

of instanton numbers of the one-parameter model:

n1 = 108 , n2 = 351 , n3 = 2124 , n4 = 12987 . (5.4.30)

These numbers can also be obtained from the instanton numbers nijk of the three-parameter
model, where the symmetric limit corresponds to ni =

∑
|m|=i nm with m ∈ N3

0.

5.4.2 Four-folds

While the special geometry property of the complex-structure moduli space for three-folds is suf-
ficient for the computation of an asymptotic integral period basis, this no longer holds in higher
dimensions. When we introduced the formalism to obtain integral period bases for Calabi–Yau
n-folds in section 5.3, we explained the restriction of the tuples Nk which results in an integral
monodromy using the hypersurfaces P18,12,3,13 [36]. Here, we will discuss the four-fold structure
on the simpler family P12,8,14 [24] with toric data in Table 5.2 further and exemplify the decom-
position of the four-point couplings into triple couplings.

We again first give the topological data consisting of the intersection ring

R = 64J4
1 + 16J3

1J2 + 4J2
1J

2
2 + J1J

3
2 (5.4.31)

and the integrals of the Chern classes

c2 · J2
1 = 728 , c2 · J1J2 = 182 , c2 · J2

2 = 48 , (5.4.32)

c3 · J1 = −3860 , c3 · J2 = −960 , (5.4.33)

χ = 23328 . (5.4.34)

At level two, representing the cohomology group H2,2, we start with the three tuples

N2 = ([1, 1], [1, 2], [2, 2]) , (5.4.35)
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points l-vectors

(1 0 0 0 0 0) -6 0

(1 1 0 0 0 0) 3 0

(1 0 1 0 0 0) 2 0

(1 0 0 1 0 0) 0 1

(1 0 0 0 1 0) 0 1

(1 0 0 0 0 1) 0 1

(1 -12 -8 -1 -1 -1) 0 1

(1 -3 -2 0 0 0) 1 -4

Table 5.2: Integral points and their scaling relations for the mirror of P12,8,14 [24].

corresponding to J1
1 , J1J2 and J2

2 . The intersection form follows from eq. (5.4.31)

c2 =

64 16 4

16 4 1

4 1 0

 . (5.4.36)

The kernel of this matrix is generated by (1,−4, 0). Following section 5.3, we conclude that we
should omit [1, 1] in N2. In general, one can show that the central charge corresponding to the
sheaf Oi under a monodromy around zr obtains the contribution

Mr : ΠODi
7−→ ΠOi +ΠODi∩Dr

+ Cirrjt
j . (5.4.37)

We deduce that integrality of the monodromies demands that the central charges of ODi∩Dr

must be obtained by integral combinations of the basis elements at this level. The set N2 then
consists only of the single element s2 = (2, 3) and we have for the 2× 2-block in the intersection
form Σ̂ (5.3.14)

σ̂ =

(
0 1

1 4

)
. (5.4.38)

Note that we sort the generalised B-periods in reverse order, causing the reversed orientation
compared to eq. (5.4.36) . At level three, we have

N3 = ([1, 1, 1], [1, 1, 2], [1, 2, 2], [2, 2, 2]) , (5.4.39)

where the first one is not horizontal to s2. There are two possibilities N3 = ({2, 4}, {3, 4}); here,
we choose s3 = (3, 4) = ([1, 2, 2], [2, 2, 2]). At level four, there are two horizontal non-vanishing
choices N4 = ({[1, 1, 2, 2]}, {[1, 2, 2, 2]}); we pick the first one s14 = [1, 1, 2, 2]. Starting from the
back, we immediately find

c11224 =
1

4
(5.4.40)

and thus

Õn,1 =
1

4
OD1∩D1∩D2∩D2 . (5.4.41)
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At level three, we have the intersection form

c3i,l =

(
c31221 c31222
c32221 c32222

)
=

(
4 1

1 0

)
, (5.4.42)

where the row index i is in N3 and l is in N1. This implies that the inverse couplings read

cl,j3 =

(
c11223 c12223

c21223 c22223

)
=

(
4 1

1 0

)−1

=

(
0 1

1 −4

)
. (5.4.43)

These give the basis of sheaves at this level via

Õ3 =

(
0 1

1 −4

)(
OD1∩D2∩D2

OD2∩D2∩D2

)
. (5.4.44)

Recall that theB-periods, corresponding to the levels k ≤ 2, are obtained directly from the tuples
and no contraction with inverse couplings takes place, cf. eq. (5.3.10) . For this model, the two
basis changes taking Õ to a block-anti-diagonal intersection form via eq. (5.3.13) are given by

R1 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

3 0 1 0 0 0 0 0

−4 0 0 1 0 0 0 0

−19 0 0 0 1 0 0 0

−2 0 0 0 0 1 0 0

−33 0 0 0 0 0 1 0

−1 0 0 0 0 0 0 1


, R2 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 −1 0 1 0 0 0 0

0 2 2 0 1 0 0 0

0 17 2 0 0 1 0 0

0 33 0 0 0 0 1 0

0 0 0 0 0 0 0 1


. (5.4.45)

We use the map eq. (5.2.1) to assign Chern characters to these sheaves and compute their central
charges with eq. (5.2.5) . The result is the asymptotic period vector

Π(t) ∼



1

t1
t2

2t21 + t1t2 − 2t1 − 2

8t21 + 4t1t2 +
t22
2
− 8t1 − t2

2
− 91

12

− 1
3
8t31 − 2t21t2 − 1

2
t1t

2
2 + t21 +

t1t2
2

+ 37t1
4

− 1 + 120iζ3
π3

− 1
3
32t31 − 8t21t2 − 2t1t

2
2 −

t32
6
+ 16t21 + 8t1t2 + t22 − 8t1 − 41t2

4
− 91

6
+ 965iζ3

2π3

8t41
3

+ 8
3
t31t2 + t21t

2
2 +

1
6
t1t

3
2 +

91t21
6

+ 91t1t2
12

+ t22 − 5i(193t1+48t2)ζ3
2π3 − 43

6


. (5.4.46)

For a detailed analysis of the complex-structure moduli space and the monodromies around the
singular loci, see [1]. For the instanton-corrected discussion in the following, we match the solu-
tions of the Picard–Fuchs operator with eq. (5.4.46) to obtain the integral period vector.

For a two-parameter four-fold family with Hodge structure (1, 2, 2, 2, 1), we expect one second
and one fourth order differential operator, see Table 5.3. Let us note here that this counting of
generic solutions must take into account relations among the z-constant terms of the differential
operators. For example, for three-parameter models with Hodge structure (1, 3, 4, 3, 1), one typ-
ically finds two second-order and one third-order operator. Counting solutions as in Table 5.3,
one must subtract one restriction at logarithmic order five, stemming from a relation among the
two operators ∂2L(2)

i . For the model at hand, we find from the l-vectors

l(1) = (−6; 3, 2, 1, 0, 0, 0, 0), l(2) = (0; 0, 0,−4, 1, 1, 1, 1) (5.4.47)
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logarithmic order 0 1 2 3 4 5

n.o. solution 1 2 3 4 5 6

L(2) – – −1 −2 −3 −4

L(4) – – – – −1 −2

Hodge numbers 1 2 2 2 1 0

Table 5.3: Estimate for the PFDI of a two-parameter four-fold family. Such families typically
have one second-order together and one fourth-order operator spanning the differential ideal.

the generators of the Picard–Fuchs system

L(2) = θ1 (θ1 − 4θ2)− 12z1 (6θ1 + 1) (6θ1 + 5) , (5.4.48)

L(4) = θ42 − z2 (θ1 − 4θ2 − 3) (θ1 − 4θ2 − 2) (θ1 − 4θ2 − 1) (θ1 − 4θ2) . (5.4.49)

The four-point couplings are obtained by solving the system of eqs. (4.5.12) and (4.5.22) . As
for the previous models, we normalise them such that the constant terms in Cijkl are given by
the classical intersection numbers3

Cz1z1z1z1 =
64

z41∆1
, Cz1z1z1z2 =

16(1− 432z1)

z31z2∆1
,

Cz1z1z2z2 =
4(1− 432z1)

2

z21z
2
2∆1

, Cz1z2z2z2 =
(1− 432z1)

3

z1z32∆1
,

Cz2z2z2z2 =
64 (864z1 − 1) (1− 864z1 (1− 432z1))

z32∆1∆2
,

(5.4.50)

where we denoted the discriminant factors by ∆1 = (1− 432z1)
4 − 8916100448256z41z2 and

∆2 = 1− 256z2. These can either be read-off from the couplings or computed by toric methods
as discussed at the end of section 2.2. The q-expansions Cijkl(t) of the couplings can be obtained
from eq. (4.5.17) . We mentioned before that all (p > 3)-point couplings can be written in
terms of three-point couplings. To see how this works for four-folds, we turn to the Griffiths
transversality conditions (4.2.15) . Working in t coordinates, we expand the holomorphic (4, 0)-
form in terms of the periods in eq. (5.4.46)

Ω0 = α0 + tiαi +Hαγα + Fiβ
i + F0β

0 . (5.4.51)

The homology basis (αI , γα, βI) was introduced in section 4.1. For better readability, we write
the contraction with the respective block in Σ as “·” and abbreviate the derivative as ∂ti ≡ ∂i.
Then, the relations from Griffiths transversality read [112]

0 = 2X · F +H ·H , (5.4.52)

0 = ∂iF0 − tj∂iFj +H · ∂iH − Fi , (5.4.53)

0 = ∂i∂jF0 − tk∂i∂jFk +H · ∂i∂jH , (5.4.54)

0 = ∂i∂j∂kF0 − tl∂i∂j∂kFl +H · ∂i∂j∂kH , (5.4.55)

Cijkl = ∂i∂j∂k∂lF0 − tm∂i∂j∂k∂lFm +H · ∂i∂j∂k∂lH . (5.4.56)

3These couplings were obtained with a Mathematica code written by Albrecht Klemm.
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We differentiate eqs. (5.4.54) and (5.4.55) and obtain the relations

0 = ∂i∂j∂kF0 − tl∂i∂j∂kFl − ∂i∂jFk + ∂kH · ∂i∂jH +H · ∂i∂j∂kH
(5.4.55)
= −∂i∂jFk + ∂kH · ∂i∂jH ,

(5.4.57)

0 = ∂i∂j∂k∂lF0 − tm∂i∂j∂k∂lFm − ∂i∂j∂kFl + ∂lH · ∂i∂j∂kH +H · ∂i∂j∂k∂lH
(5.4.56)
= Cijkl − ∂i∂j∂kFl + ∂lH · ∂i∂j∂kH .

(5.4.58)

Finally, we consider the derivative of eq. (5.4.57) and compare it to eq. (5.4.57) , yielding the
decomposition

Cijkl = ∂i∂jH · ∂k∂lH = σαβC
α

ij C
β

kl . (5.4.59)

Recall that σ is given by the inverse of σ̂ in eq. (5.4.38) . The functions Cαij = ∂i∂jH
α are the

three-point functions. Their q-expansions are readily computed to be

C 1
11 = 4 +O

(
q2
)
, C 2

11 = 16 + 960q1 +O
(
q2
)
,

C 1
12 = 1 +O

(
q2
)
, C 2

12 = 4 +O
(
q2
)
,

C 1
22 = −20q2 +O

(
q2
)
, C 2

22 = 1 +O
(
q2
)
.

(5.4.60)

Note that the constant terms follow directly from the asymptotic form of Π in eq. (5.4.46) while
the instanton corrections stem from the solutions to the Picard–Fuchs equation and the mirror
map z(q).

In section 4.6, we reviewed the description of the one-parameter K3 period geometry as a sym-
metric square of a second order Calabi–Yau operator. Similarly, the periods of a one-parameter
four-fold family can be described by the anti-symmetric square of a Calabi–Yau three-fold oper-
ator. We will discuss this in more detail in section 6.4, where we will study the relation between
three- and four-fold operators in the context of type IIB and M-theory flux vacua.

5.5 Higher-dimensional Calabi–Yau families

The description of an integral period basis proposed in section 5.3 is especially interesting for
dimensions n > 4. Special geometry yields an integral basis for three-folds via a prepotential,
cf. section 4.6. In the language of sheaves, the A-periods (holomorphic and single-logarithmic)
correspond to the skyscraper sheaf (5.2.7) and twisted structure sheaves on curves dual to Kähler
divisors (5.2.6) . The B-periods are, as in our formalism, described by structure sheaves on the
entire manifold and on divisors. For four-folds, this basis is extended by structure sheaves on
independent intersections of divisors. The double-logarithmic A-periods appearing at n = 5

require us to describe them as linear combinations of structure sheaves on triple intersections of
divisors, where integrality of the monodromies and an intersection of canonical form follow after
contraction with the inverse couplings as in eq. (5.3.10) .

In this subsection, we supplement the proposed formalism with data for several Calabi–Yau
families. We begin with an analytical continuation of the five-fold family P15,10,15 [30] to a coni-
fold singularity and the orbifold point. We identify the vanishing conifold cycle and the splitting
of Hodge structure at infinity. This model is an elliptic fibration over P4 and the five-fold rela-
tive of the well-known three- and four-fold models P9,6,13 [18] and P12,8,14 [24]. Afterwards, we
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points l-vectors

(1 0 0 0 0 0 0) 0 −6

(1 1 0 0 0 0 0) 0 3

(1 0 1 0 0 0 0) 0 2

(1 0 0 1 0 0 0) 1 0

(1 0 0 0 1 0 0) 1 0

(1 0 0 0 0 1 0) 1 0

(1 0 0 0 0 0 1) 1 0

(1 -15 -10 -1 -1 -1 -1) 1 0

(1 -3 -2 0 0 0 0) -5 1

Table 5.4: Integral points and their scaling relations of the polytope describing the mirror of
P15,10,15 [36]. The origin is parametrised by the modulus ψ and the last entry by ϕ.

discuss the global monodromy groups of the hypersurfaces in Pn+1 for 5 ≤ n ≤ 9. Finally, we
list the first genus-zero invariants of the aforementioned five-fold together with one six- and one
seven-dimensional two-parameter CICY in appendix B. For these two-parameter models, we
verified integrality of the invariants up to degree ten.

5.5.1 Elliptically fibred five-fold

The family in P15,10,15 is given by the vanishing locus of the defining polynomial

PX30 = x21 + x32 +
7∑
i=3

x30i + ψ
7∏
i=1

xi + ϕ
6∏
i=3

x6i . (5.5.1)

The classical intersections of the two Kähler classes J1 and J2 corresponding to the fibre and the
base, respectively, are given by

R = 625J5
1 + 125J4

1J2 + 25J3
1J

2
2 + 5J2

1J
3
2 + J1J

4
2 . (5.5.2)

The Chern classes integrate to

c2 · J3
1 = 7125 , c2 · J2

1J2 = 1425 , c2 · J1J2
2 = 285 , c2 · J3

2 = 60 , (5.5.3)

c3 · J2
1 = −37700 , c3 · J1J2 = −7540 , c3 · J2

2 = −1500 , (5.5.4)

c4 · J1 = 227955 , c4 · J2 = 45600 , (5.5.5)

χ = −1367400 . (5.5.6)

We collect the toric data together with the generators of the Mori cone in Table 5.4. The Picard–
Fuchs ideal is generated by

L(2) = θ1 (θ1 − 5θ2)− 12
(
36θ21 + 36θ1 + 5

)
z1 , (5.5.7)

L(5) = θ52 + z2
[
− θ51 + 5θ41 (5θ2 + 2)− 5θ31

(
50θ22 + 40θ2 + 7

)
+ 25θ21

(
50θ32 + 60θ22 + 21θ2 + 2

)
− θ1

(
3125θ42 + 5000θ32 + 2625θ22 + 500θ2 + 24

)
+ 5θ2

(
625θ42 + 1250θ32 + 875θ22 + 250θ2 + 24

) ]
.

(5.5.8)
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We note that a similar analysis as for the four-fold in Table 5.3 shows that these are again the
operators one would expect generically.

Here, we will shorten the discussion of the integral period basis construction and refer to the
three- and four-fold cases above for elaborate examples. We supplement s0 = () and s1 =

([1], [2]) to an index basis with

s2 = ([1, 2], [2, 2]) , s3 = ([1, 2, 2], [2, 2, 2]) ,

s4 = ([1, 2, 2, 2], [2, 2, 2, 2]) , s5 = ([1, 1, 2, 2, 2]) .
(5.5.9)

This yields the asymptotic period basis

Π(t) ∼



1

t1
t2

1
2
t1 (5t1 + 2t2)− 5

2
t1 − 5

2
t22
2
− t2

2
+ 5

8

− 1
6
t1

(
25t21 + 15t2t1 + 3t22

)
+ 3

2
t1 (5t1 + 2t2) +

5
24

(41t1 + 12t2)− 15
2
+ 375iζ(3)

2π3

− 1
6
(5t1 + t2)

3 + 3
2
(5t1 + t2)

2 + 1
24

(1025t1 + 253t2)− 285
8

+ 1885iζ(3)

2π3

1
24
t1 (5t1 + 2t2)

(
25t21 + 10t2t1 + 2t22

)
− 1

12
t1

(
25t21 + 15t2t1 + 3t22

)
...+ 1

48

(
1445t21 + 578t2t1 + 60t22

)
− 5

48

(
24i(377t1+75t2)ζ(3)

π3 + 547t1 + 12t2
)
− 265

16
+ 375iζ(3)

4π3

1
24

(5t1 + t2)
4 − 5

12
(5t1 + t2)

3 + 385
48

(5t1 + t2)
2 − 5(5t1+t2)(335π3+9048iζ(3))

48π3

...− 50267
384

+ 9425iζ(3)

4π3

− 1
24
t1

(
125t41 + 125t2t

3
1 + 50t22t

2
1 + 10t32t1 + t42

)
− 5

48

(
475t31 + 285t2t

2
1 + 57t22t1 + 4t32

)
...+

5i(1885t21+754t2t1+75t22)ζ(3)
4π3 + 1

384
(22883t1 + 4600t2) +

35825iζ(3)

16π3 − 234375iζ(5)

8π5



.

(5.5.10)
Note that the last three periods extend over two lines each. The three basis changes (5.3.13)
bringing Σ into canonical form (5.3.15) are integral. The monodromies Mi around the loci
zi = 0 are given by

M1 =



1 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 5 1 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 −10 0 −5 −1 1 0 0 0 0

0 −50 0 −25 −5 0 1 0 0 0

0 180 28 25 5 0 −1 1 0 0

0 750 130 75 15 0 −5 0 1 0

−126 −750 −130 −75 −15 0 5 0 −1 1


, (5.5.11)

M2 =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0

0 0 0 −1 0 1 0 0 0 0

0 0 2 −5 −1 0 1 0 0 0

0 28 5 3 0 −1 0 1 0 0

−51 130 26 5 1 0 −1 0 1 0

−5 −79 −5 −3 0 1 0 −1 0 1


. (5.5.12)

We match the leading order in Π(t) with the solutions of the Picard–Fuchs system to obtain the
integral period vector Π(z). The discriminant of the polytope of Table 5.4 has two components

— 79 —



5. Integral structures in higher dimensions

given by the vanishing locus of

∆1 = (1− 432z1)
5 − 22031555z51z2 , (5.5.13)

∆2 = 1− 55z2 . (5.5.14)

We perform an analytical continuation to the neighbourhood of (z1 = 0,∆2 = 0) to verify
integrality of the monodromy representation of a path encircling the discriminant component
∆2 = 0

M∆2 =



1 0 0 0 0 0 0 0 0 0

0 1 51 10 3 0 −2 −5 1 0

0 0 −254 −50 −15 0 10 25 −5 0

0 0 −102 −19 −6 0 4 10 −2 0

0 0 0 0 1 0 0 0 0 0

0 0 −153 −30 −9 1 6 15 −3 0

0 0 −510 −100 −30 0 21 50 −10 0

0 0 −2601 −510 −153 0 102 256 −51 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1


. (5.5.15)

Furthermore, we find that the vanishing cycle is expressed in the homology basis {γi}i (cf. sec-
tion 4.1) by

gTΣ = (0, 0,−102,−20,−6, 0, 4, 10,−2, 0) , (5.5.16)

with gTΣΠ(z1,∆2 = 0) = 0 . This vanishing cycle is the analogue of the supersymmetric four-
fold vacuum discussed in [1]. Its origin will be discussed further in section 7.2, where we will
give an instruction on how to find such vanishing cycles from the toric data alone.

As further support for the integrality claim, we want to discuss another integral property of the
family. In short, the Hodge structure splits at the point ψ = ϕ = 0, which we verify explicitly
below. Assuming familiarity with section 6.1, one concludes this as follows. In the language
of section 2.3, the mirror family has the residual symmetry Z30 : (0, 0, 0, 0, 0, 0, 1) acting as
(ψ, ϕ) 7→ (αψ, α6ϕ). Furthermore, the cohomology has the Z30-weights

{1,5, 7, 11, 13, 17, 19, 23,25, 29} ,

where we emboldened the unfaithful eigenvalues [113]. These values 5 and 25 correspond to
ψ5 and ψ

5
parametrising the deformations x2x43x

4
4x

4
5x

4
6x

4
7 and its conjugate. Here, we used the

Jacobian ideal4 to remove all appearances of xi with exponent larger or equal to wi−1. Note that
the Z30-weights of the forms obtain one unit from Ω. At ϕ = 0 (and only there5), ϕ is subject to
a cyclic symmetry of order six, which implies a Hodge splitting at ψ = ϕ = 0.

To perform an analytical continuation to the neighbourhood of ψ = ϕ = 0, we follow the
analysis of the moduli space of the four-fold analogue P12,8,14 [24] in [1]. In fact, the moduli spaces
of the elliptic fibrations over P3 and P4 are natural generalisation of those of the fibration over

4The usage of the Jacobian ideal to reduce the exponents of the deformations can be simplified by including
the points in faces of codimension one, here (−1, 0, 0, 0, 0, 0), (−1,−1, 0, 0, 0, 0) and (−2,−1, 0, 0, 0, 0) and using
eq. (2.2.36) to express them in homogeneous coordinates as x2

2x
2
3x

2
4x

2
5x

2
6, x1x

3
3x

3
4x

3
5x

3
6 and x2x

4
3x

4
4x

4
5x

4
6.

5Putting it in terms used in [113], the periodicity condition is not satisfied due to D ∤ N , where D = 5 is the order
in Z30 of ϕ and N = 6 the order of the deformation decoupling.
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P2. The limited region of convergence at the MUM point requires us to take several intermediate
points6, where we obtained the monodromy representations

MD′
1
=



1 −1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 −5 1 −1 0 0 0 0 0 0

0 5 0 1 0 0 0 0 0 0

0 −35 0 −5 1 1 0 0 0 0

0 −10 0 −5 0 1 0 0 0 0

0 −10 0 −28 −5 0 1 1 0 0

0 5 0 0 0 0 0 1 0 0

0 126 5 0 15 25 −5 0 1 1

0 0 0 0 0 0 0 0 0 1


, (5.5.17)

M∆0 =



0 1 0 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 0 0

5 0 0 1 0 0 0 0 0 0

5 −5 −1 1 0 0 0 0 0 0

−15 25 5 0 0 −1 0 0 0 0

15 −15 −5 5 1 1 0 0 0 0

10 0 0 28 5 0 0 −1 0 0

55 −5 −3 0 −5 −5 1 1 0 0

0 −126 −5 0 −15 −25 5 0 0 −1

1 0 55 10 15 15 −5 −5 1 1


, (5.5.18)

ME0 =



1 1 55 10 15 15 −5 −5 1 1

0 1 55 10 15 15 −5 −5 1 0

0 0 −275 −49 −75 −75 25 25 −5 0

0 −5 −276 −49 −75 −75 25 25 −5 0

0 25 830 150 225 224 −75 −75 15 0

0 −15 −830 −145 −224 −224 75 75 −15 0

0 0 −550 −72 −145 −150 50 49 −10 0

0 −5 −3028 −550 −830 −830 276 276 −55 0

0 −126 −5 0 −15 −25 5 0 0 −1

0 0 0 0 0 0 0 0 0 1


, (5.5.19)

MS0 =



0 0 −55 −10 −15 −15 5 5 −1 −1

−1 1 −55 −10 −15 −15 5 5 −1 0

5 0 331 60 90 90 −30 −30 6 1

6 −1 330 61 90 90 −30 −30 6 0

−20 0 −1156 −210 −314 −315 105 105 −21 −1

21 −1 1155 211 315 316 −105 −105 21 0

10 −5 382 75 106 105 −34 −35 7 −3

61 −26 3075 558 840 841 −280 −279 56 −5

0 −130 −4373 −790 −1185 −1185 396 395 −78 −79

5 51 0 0 0 0 0 1 0 −4


, (5.5.20)

whose labels correspond to those used in Fig. 1 of [1]. The pointψ = ϕ = 0 lies at the intersection
S0 ∩∆0. We verified that all monodromies leave the pairing Σ invariant. Note that, as expected,
M5
S0

= M∆0 . Following section 6.1, we rotate the Frobenius basis of the PF ideal into a basis

6I thank Janis Dücker for explaining the geometry of the resolved moduli space to me.
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with monodromy representation in block diagonal form

mS0 =



1 −1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 −1 −1 0 1 1 1 0 −1


, (5.5.21)

where the first block is the Z6-representation corresponding to {ψ5, ψ
5} and the second one the

remaining irreducible Z30 representation. The conjugation matrix to the representation on the
integral basis is given by

A−1 =



−1 −49 52 11 14 15 −5 −6 1 1

0 −76 52 8 20 21 −6 −6 1 0

1 20 3 32 10 4 −1 −1 0 0

0 15 1 33 9 3 −1 −1 0 0

0 10 0 33 8 2 −1 −1 0 0

−1 6 −55 22 −8 −14 4 4 −1 0

1 4 59 40 26 20 −7 −6 1 1

0 56 1 27 4 −1 −1 0 0 0

0 35 0 21 3 −1 −1 0 0 0

0 20 0 15 2 −1 −1 0 0 0


(5.5.22)

with AmS0A
−1 =MS0 . We furthermore verified numerically that the transition matrix T can be

written as T = AC with C a block matrix that commutes with mS0 (cf. section 6.1). We identify
the first two rows in the matrix A−1 as the fluxes contained in the decoupled Z6 representation
and contained in the orthogonal complement of H5,0 ⊕H0,5

fT1 Σ = (−1,−49, 52, 11, 14, 15,−5,−6, 1, 1) , (5.5.23)

fT2 Σ = (0,−76, 52, 8, 20, 21,−6,−6, 1, 0) , (5.5.24)

where fTi ΣΠ(ψ = ϕ = 0) = 0 . These two fluxes have the symplectic pairing fT1 Σf2 = 5 . In
analogy to the splitting of the local ζ-function of lower dimensional Calabi–Yau manifolds, here,
we expect that the decomposition of the representation is accompanied again by a factorisation
of the ζ-function of this fibre.

We list the first genus-zero invariants for this model in appendix B.1, following the expansions
of the triple couplings according to eqs. (5.1.8) and (5.1.9) . Additionally, in appendices B.2
and B.3, we list the genus-zero invariants of two-parameter six- and seven-fold respectively and
verify integrality up to degree ten.

5.5.2 Hypersurfaces in Pn+1

In this section, we want to give further motivation for the formalism introduced in section 5.3
by performing a global analysis of the mirror complex-structure moduli spaces of degree-(n+2)
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hypersurfaces in Pn+1 for 5 ≤ n ≤ 8 . Their defining polynomials are given by

Pn =
n+2∑
i=1

xn+2
i − nψ

n+2∏
i=1

xi . (5.5.25)

Their classical intersection ring is R = nJn with J the single Kähler form of the original hy-
persurface. We list the topological invariants in Table 5.5. The generators of the Mori cones
read

l = (−n− 2; 1, . . . , 1︸ ︷︷ ︸
n

) , (5.5.26)

which give fundamental periods annihilated by the operators

L(n+1)(z) = θn+1 − (n+ 2)z
n+1∏
i=1

((n+ 2)θ + i) . (5.5.27)

Depending on whether n is even or odd, the Riemann symbols of these operators are of the forms

PL(n+1)
odd



0 zcon ∞
0 0 1

n+2
... 1 2

n+2
...

...
...

... n−1
2

...
... n−1

2

...
...

...
...

0 n− 1 n+1
n+2

, z



, PL(n+1)
even



0 zcon ∞
0 0 1

n+2
... 1 2

n+2
...

...
...

... n
2 − 1

...
... n−1

2

...
... n

2 + 1
...

...
...

...

0 n− 1 n+1
n+2

, z



(5.5.28)

n c2 · Jn−2 c3 · Jn−3 c4 · Jn−4 c5 · Jn−5 c6 · Jn−6 c7 · Jn−7 c8 · Jn−8

5 147 -784 5733 -39984 – – –
6 224 -1344 11312 -90048 720608 – –
7 324 -2160 20574 -184032 1657044 -14913072 –
8 450 -3300 35100 -348480 3486900 -34867800 348678450

Table 5.5: Integrals of Chern classes for hypersurfaces in Pn+1. The Euler number is given by
cn · J0 .
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with zcon = (n+2)−(n+2) . Using the asymptotic basis following section 5.3, we find the following
monodromies M (n) around the MUM points z = 0:

M
(5)
0 =


1 0 0 0 0 0

1 1 0 0 0 0

0 1 1 0 0 0

0 0 −7 1 0 0

0 14 7 −1 1 0

−7 −14 −7 1 −1 1

 , M
(8)
0 =



1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0

0 0 0 10 1 0 0 0 0

0 0 −20 −5 −1 1 0 0 0

0 21 20 25 1 −1 1 0 0

−8 −21 −41 −25 −1 1 −1 1 0

8 29 41 25 1 −1 1 −1 1


,

M
(6)
0 =


1 0 0 0 0 0 0

1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 0 −4 1 0 0 0

0 10 4 −2 1 0 0

−6 −10 −14 2 −1 1 0

6 16 14 −2 1 −1 1

 , M
(7)
0 =



1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 9 1 0 0 0

0 0 −30 −9 −1 1 0 0

0 27 30 9 1 −1 1 0

−9 −27 −30 −9 −1 1 −1 1


.

(5.5.29)

As expected due to the Seidel–Thomas twist discussed in [114], the conifold monodromies act
only on the periods X0 and F0. The projected action is given by

M even
zcon

=

(
0 −1

−1 0

)
and Modd

zcon
=

(
1 1

0 1

)
. (5.5.30)

We verified in all cases that the orbifold monodromy is given by (M0 ·Mzcon)
−1, which is again

integral due to unimodularity of the other two monodromies. All these monodromies leave the
intersection form in eq. (5.3.15) invariant. We end this subsection with Table 5.6 containing the
first genus-zero invariants for these hypersurfaces. We verified integrality of these corrections up
to degree d = 20 .

coupling d = 1 2 3 4
C(113) 144256 17462826584 4361238820782872 1482599929913698021888
C(122) -1707797 -510787745643 -222548537108926490 -113635631482486991647224
C(114) 1998080 4174644963328 19261281755942677248 125084361408234016487458816
C(123) -18751488 -112170352078848 -1000375205093670690816 -10561059503662331728690397184
C(115) 28165644 1084202037851040 99728961580840259930004 13439327313130862477878431246528
C(124) 84883788 10419699458741616 1985988729230040155135220 457418815196953955416250051679264
C(133) 1069047153 156037426159482684 33815935806268253433549768 8638744084627099110538662706812804
C(116) 412077600 315199135892955600 629888601165740265138213600 1929728022282541043209656667884600000
C(125) 1527495200 4034229838611922400 17482438911295547741805501600 94258251921709009829764714658559040000
C(134) 27768048000 100290980400305376000 546627811934015785499223984000 3538531932815556807325167617597092800000

Table 5.6: Genus-zero invariants of hypersurfaces in Pn+1. The entries are the corrections n 1
d

or n 1
d,1 to the triple couplings given by eqs. (5.1.8) and (5.1.9) .

5.6 Unipotent period matrix

So far, we have focused exclusively on the periods of the holomorphic (n, 0)-form Ω. However,
in certain cases—such as the computation of maximal cuts of Feynman integrals given by Calabi–
Yau periods—the whole period matrix, that is, all pairings between the middle cohomology and
homology, becomes relevant. While the topological homology basis {Γi}i we introduced in sec-
tions 4.1 and 5.3, is standard in the literature, depending on individual preferences and specifics
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5.6. Unipotent period matrix

of the problem, different bases for the middle cohomology are used. In practise, the choice of a
basis is determined by which combinations of the periods of Ω and its derivatives make up the
period matrix. In the past, many works dealt with one-parameter families whose period matrix
can be given as the Wronskian of the n periods of Ω, so Π together with its n− 1 derivatives. For
n = 3, this was generalised to families with m > 1 complex-structure moduli in [115]. besides
the zeroth- and m first-order derivatives, one requires independent linear combinations for the
orders two and three. The authors used the inverse classical couplings c (cf. section 5.3) to con-
tract the

(
m+1
2

)
second-order and

(
m+2
3

)
third-order derivatives to obtain such m+1 derivatives

of Π that complete the period matrix.

In [1], we constructed a basis for the middle cohomology that brings the Gauss–Manin con-
nection into its arguably simplest form. Before reviewing the specifics of these bases for different
dimensions further below, we note that inverse couplings naturally arise q-corrected. This is the
reason why the discussion of [1] starts with a period matrix where the derivatives are contracted
with the full inverse couplings C instead of their classical parts c. Clearly, this is just a matter of
convention and—as we explained in [1]—the q-corrections in the inverse couplings do not affect a
p-adic analysis. Whichever period matrix one obtains, one can decompose it into the product of a
semisimple and a unipotent matrix. This is also known as a Jordan–Chevalley decomposition [116].
Here, we will leave the semisimple matrix implicit and focus on the unipotent period matrix.
As we will see below, the latter corresponds to a basis choice in cohomology which furthermore
simplifies the Gauss–Manin connection drastically and brings it into a canonical form, revealing
much of the Frobenius algebra’s rich structure.

As of the time of this writing, the most prominent use-case for this decomposition appears in
the computation of Feynman integrals. In multi-loop calculations, these integrals are sometimes
given by periods of Calabi–Yau manifolds, whose complex-structure parameters correspond to
physical quantities such as masses or momenta of the involved particles. One can reduce the set of
possible integrals to a finite set of so-called master integrals with integration-by-parts identities
(IBPs) [117]. The vector of master integrals satisfies a first order differential equation [118],
which depends on the dimensional regularisation parameter ϵ

∇I(z, ϵ) := (dz −B(z, ϵ))I(z, ϵ) = 0 . (5.6.1)

Solving this system of differential equations simplifies, if one finds a rotation R(z, ϵ) with J = RI

that brings it into ϵ-factorised form [119], see also [120, 121],

∇J(z, ϵ) := (dz − ϵA(z))J(z, ϵ) = 0 . (5.6.2)

Finding such a rotation matrix R is non-trivial and in general a challenging task. In the fac-
torisation procedure proposed in [120], one essential step consists in the splitting of the period
matrix into a semisimple and a unipotent part. The solutions of the ϵ-factorised differential equa-
tion (5.6.2) are then given by iterated integrals

J(z, ϵ) = P exp

[
ϵ

∫ z

z0

A(z)dz

]
J(z0, 0)

=

[
1+ ϵ

∫ z

z0

A(z′)dz′ + ϵ2
∫ z

z0

∫ z′

z0

A(z′)dz′A(z′′)dz′′ +O
(
ϵ3
)]
J(z0, 0) .

(5.6.3)
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We will review the discussion for dimensions 1 ≤ n ≤ 5 and address the higher-dimensional
cases only qualitatively. For explicit results in the case n = 6 and for the semisimple parts bringing
it into the form discussed above, we refer the reader to [1].

5.6.1 General idea

The focal object of the unipotent period matrix and thus the decomposition is given by a basis in
cohomology corresponding to pure elements in the Frobenius algebra. Recall that an element is
called pure, if it is contained in one of the graded pieces A(i) of the vector space A =

⊕n
p=1A(p) .

The action of the derivative ∂ti on the elements in the middle cohomology is represented in A
by multiplication with e(1)i ∈ A(1). The fusion rule

e
(a)
i · e(b)j = C

(a,b)
ijk σkl(n−a−b)e

(a+b)
l ((v) )

then implies that the derivatives of basis elements e(p)j ∈ A(p) = Hn−p,p are given by

∂ie
(p)
j = C

(1,p),k
ij e

(p+1)
k , (5.6.4)

with ∂i = ∂ti . Note that the covariant derivative Di in the mirror coordinates reduces to the
ordinary derivative ∂i [104]. As a consequence, the Gauss–Manin connection in a basis for the
middle cohomology consisting of pure elements is a block matrix with non-zero entries only on
the secondary diagonal7. In this section, we will be concerned only with the unipotent period
matrix, which comes from pairing this basis with the topological homology basis {Γi}i (cf. sec-
tion 4.1) as we will show in the following. We mentioned above that any linearly independent
combination of the derivatives of Π can be used for the period matrix, which can then be de-
composed into the unipotent part discussed in the following and a semisimple rotation matrix
defined implicitly.

The first row of the period matrix is given by the expansion of Ω in terms of the cohomology
basis

{
γi
}
i
dual to the basis {Γi}i . We will work in the mirror coordinates t (4.3.8) and normalise

Ω ≡ Ω0 such that the torus period, i.e. the coefficient of the differential form γ0 dual to the torus
Tn, is one. The expansion thus takes the form8

Ω0 = γ0 + tiγi + . . . . (5.6.5)

In the following, we will use different Greek letters α, β,. . . to denote the cohomology elements
γi depending on the specific Dolbeault class. As we want to be left with a period matrix of the
unipotent form

Π =


1 ∗ · · · ∗

0
. . .

. . .
...

...
. . .

. . . ∗
0 · · · 0 1

 , (5.6.6)

7The results for 1 ≤ n ≤ 5 are given below in eqs. (5.6.9) , (5.6.13) , (5.6.17) , (5.6.18) and (5.6.32) for
n = 1, . . . , 5 .

8We move the indices of the forms γi following the convention that the mirror coordinates carry a contravariant
index.
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we can use the ti-derivatives of Ω for the elements in A(1)

χi = ∂iΩ0 . (5.6.7)

As the next term in eq. (5.6.5) is generally not simply a quadratic term in t, further elements in
the cohomology involve more complicated expressions. Regardless of the dimension, however,
eq. (5.6.6) implies that the last form is given by the form symplectically paired with γ0. In
the next subsection, we will see how the triple couplings necessarily appear for unipotency of Π
in dimensions n ≥ 3. Equation (5.6.7) should be seen as the p = 0 case of eq. (5.6.4) , where
C

(1,0),k
i∗ = δki following from item (iii) in section 5.1 and the canonical intersection form (5.3.15) .

5.6.2 Examples

Elliptic curves The holomorphic (1, 0)-form has the expansion Ω0 = α + tβ. As mentioned
above, we set Ω0 := β. Here, this coincides with χ1 = ∂tΩ0 and completes the cohomology basis
yielding the unipotent period matrix

Πn=1 =

(
1 t

0 1

)
. (5.6.8)

The Gauss–Manin connection takes the form

∂t

(
Ω0

Ω0

)
=

(
0 1

0 0

)(
Ω0

Ω0

)
. (5.6.9)

K3 surfaces At n = 2, things become slightly more interesting. There, the expansion of Ω and
its derivatives read

Ω0 = α+ tiγi +
1

2
cijt

itjβ , (5.6.10)

χi = ∂iΩ0 = γi + cijt
jβ , (5.6.11)

with cij being the classical intersections of the Picard lattice, see section 4.6. Translating the
above into the period matrix yields

Πn=2 =

1 tT 1
2 t
T c t

0 1 c t

0 0 1

 . (5.6.12)

The Gauss–Manin connection for this cohomology basis reads

∂i

Ω0

χj
Ω0

 =

0 δki 0

0 0 cij
0 0 0


Ω0

χk
Ω0

 . (5.6.13)

So far, the connection matrix contained only constants. At dimensions three and higher, the
connection will contain q-corrected triple couplings. The matrix cij in eq. (5.6.13) can be inter-

preted as the couplings C(1,1,0)
ij∗ (cf. section 5.1) or its inverses, depending on the placement of

the indices. The same is true for the Kronecker-δ in eq. (5.6.13) , where the only difference to
the entry cij is the index placement.
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Three-folds In higher dimensions, this structure of the couplings naturally extends, where now
triple couplings appear that are generally q-corrected. For three-folds, we follow section 4.6 in
expanding the (3, 0)-form in terms of the prepotential (cf. eq. (4.6.40) ) and define χi as above

Ω0 = α0 + tiαi + ∂iFβi + (2F − ti∂iF)β0 ,

χi = ∂iΩ0 = αi + ∂i∂jFβj + (∂iF − tj∂i∂jF)β0 .

Now, the next forms contracted with the triple couplings should return the derivatives of χi. A
suitable extension of the above to a basis for the middle cohomology is given by [122]

χi = βi − tiβ0 , (5.6.14)

Ω0 = β0 . (5.6.15)

With ∂i∂j∂kF = Cijk (4.6.48) , we find immediately

∂iχj = Cijk(β
k − tkβ0) = Cijkχ

k . (5.6.16)

In the above basis, the Gauss–Manin connection then takes the form

∂i


Ω0

χj
χj

Ω0

 =


0 δki 0 0

0 0 Cijk 0

0 0 0 −δji
0 0 0 0



Ω0

χk
χk

Ω0

 . (5.6.17)

Four-folds We recall the results of subsection 5.4.2. Expanding the holomorphic form as

Ω0 = α0 + tiαi +Hαγα + Fiβ
i + F0β

0 , (5.4.51)

one obtains a splitting of the four-point coupling (defined as the pairing of Ω0 with its fourth
derivative)

Cijkl = ∂i∂jH · ∂k∂lH = σαβC
α

ij C
β

kl , (5.4.59)

giving an implicit definition of the triple couplings C α
ij = ∂i∂jH

α . We will construct the coho-
mology basis that is subject to the connection

∂i


Ω0

χj
hα
χj

Ω0

 =


0 δki 0 0 0

0 0 C β
ij 0 0

0 0 0 Cikγ 0

0 0 0 0 δji
0 0 0 0 0




Ω0

χk
hβ
χk

Ω0

 . (5.6.18)

As before, we must set χi := ∂iΩ0 . The remaining generators are defined as

hα = γα + ∂iHαβ
i − (Hα − ti∂iHα)β

0, (5.6.19)

χi = βi + tiβ0, (5.6.20)

Ω0 = β0 . (5.6.21)

To verify eq. (5.6.18) , we calculate

∂iχj = ∂i∂jH
βγβ + ∂i∂jFkβ

k + ∂i∂jF0β
0

= C β
ij γβ + C β

ij ∂kHββ
k − C β

ij (Hβ − ti∂iHβ)β
0

= C β
ij hβ ,

(5.6.22)

where, in the second equality, the coefficients of β0 and βk follow with eqs. (5.4.54) and (5.4.57) .
The remaining relations of eq. (5.6.18) follow directly from the definition of the triple coupling.
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Five-folds In dimensions n ≥ 5, one needs to define inverses of the triple couplings to define
the pure cohomology bases. We will review the results for n = 5, which, together with n = 6,
where first found by J. Dücker in [1]. As for the case n = 4, one requires identities originating in
Griffiths transversality. We expand the holomorphic (5, 0)-form as

Ω0 = α0 + tiαi +Hαγα +Kαδ
α + Fiβ

i + F0β
0 (5.6.23)

and enumerate the relations with the Roman numeral representation of k, where

(k) : 0 = ∂IΠ
TΣΠ , |I| = k . (5.6.24)

Then, we obtain the following identities used below

0 = ∂i∂jH
αKα − ∂i∂jKαH

α − tk∂i∂jFk − ∂i∂jF0 , (II)

∂(II)− (III) : 0 = ∂i∂jH
α∂kKα − ∂i∂jKα∂kH

α − ∂i∂jFk , (∆III)

∂(III)− (IV) : 0 = ∂i∂j∂kH
α∂lKα − ∂i∂j∂kKα∂lH

α − ∂i∂j∂kFl , (∆IV)

∂(∆III)− (∆IV) : 0 = ∂i∂jH
α∂k∂lKα − ∂i∂jKα∂k∂lH

α . (∆2IV)

It follows from eq. (5.6.4) that the two triple-couplings are given by

C
(1,1,3)
ijα = ∂i∂jHα , (5.6.25)

C
(1,2,2)
iαβ = ∂i

(
Cjkα∂j∂kKβ

)
, (5.6.26)

where we defined the inverse of C(1,1,3) by demanding

C
(1,1,3)
ijα Cijβ = δβα (5.6.27)

with Einstein summation convention. To improve readability, we omit the superscripts indicating
the indices’ weights. The coupling C(1,1,3) always has one Greek index while C(1,2,2) has two.
Besides χi = ∂iΩ0, the proposed basis is given by

hα = γα + Cijβ∂i∂jKαδ
β +

(
∂kKα − Clmα∂l∂mKβ∂kH

β
)
βk

+
(
Kα − Clmα∂l∂mKβH

β − tk
[
∂kKα − Clmα∂l∂mKβ∂kH

β
])
β0 ,

(5.6.28)

kα = δα − ∂kH
αβk +

(
−Hα + tk∂kH

α
)
β0 , (5.6.29)

χi = βi − tiβ0 , (5.6.30)

Ω0 = β0 . (5.6.31)

The claim is that, in this basis, the Gauss–Manin connection is given by

∂i



Ω0

χj
hα
kα

χj

Ω0


=



0 δki 0 0 0 0

0 0 C β
ij 0 0 0

0 0 0 Ciαβ 0 0

0 0 0 0 −C α
ik 0

0 0 0 0 0 −δji
0 0 0 0 0 0





Ω0

χk
hβ
kβ

χk

Ω0


. (5.6.32)
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To verify eq. (5.6.32) , we calculate

∂iχj = C α
ij γα + ∂i∂jKαδ

α + ∂i∂jFiβ
i + ∂i∂jF0β

0 . (5.6.33)

To split off the coupling C α
ij , we insert a δβα = C α

kl C
kl
β in the δα-component and use (∆III) and

(II) for the components of βk and β0, respectively. This leaves us with

∂iχj = C α
ij γα + C α

kl C
kl
β∂i∂jKβδ

α +
(
C α
ij ∂kKα − ∂i∂jKα∂kH

α
)
βk

+
(
∂i∂jH

αKα − ∂i∂jKαH
α − tk

[
C α
ij ∂kKα − ∂i∂jKα∂kH

α
])
β0 .

(5.6.34)

Using (∆2IV) to exchange the indices (kl) and (ij) in the δα-component and using the same trick
to split off the couplings in the βk and β0 parts, one derives the second entry of eq. (5.6.32) . To
verify the third entry, we compute

∂ihα = Ciαβδ
β +

(
∂i∂kKα − ∂i∂kH

βClmα∂l∂mKβ − ∂kH
βCiαβ

)
βk + (. . .)β0 , (5.6.35)

where we used the definition of Ciαβ (5.6.26) . The first two terms in the βk-term cancel each
other due to (∆2IV) . Applying the same methods to the component of β0 shows the identity.
The rest of eq. (5.6.32) follows directly from the definition of C α

ij in eq. (5.6.25) .

Higher dimensions In general, the triple-couplings can be obtained from the period vector
Π for a homology basis with block-anti-diagonal intersection form as follows: The first cou-
pling appearing when taking derivatives of Ω0 is C(1,1) and is given by the second derivatives
of the double-logarithmic periods. The following couplings can be defined iteratively by using
eq. (5.6.4) and demanding unipotency of the period matrix. For the triple-coupling C(1,r) with
1 ≤ r ≤ ⌊n−1

2 ⌋, one considers the periods Π(r+1) with logarithmic order r + 1 and takes deriva-
tives while removing any lower couplings C(1,s), s < r, by contracting with its inverses. Unipo-
tency of the period matrix and general form of the Gauss–Manin connection discussed above
implies that one ends up with the coupling C(1,r) after taking r + 1 derivatives. Independent of
the dimension, the first couplings are given by

C
(1,1)
ijα = ∂i∂jΠ

(2)
α , (5.6.36)

C
(1,2)
iαA = ∂i

(
Cjk(1,1),α∂j∂kΠ

(3)
A

)
, (5.6.37)

C
(1,3)
iAa = ∂i

(
Cjα(1,2),A∂j

(
Ckl(1,1),α∂k∂lΠ

(4)
a

))
, (5.6.38)

...

For a purely horizontal middle cohomology (i.e. with non-degenerate Frobenius algebra), the
computation of the inverse couplings can be reduced to a simple matrix inversion. There, we
define the functions

C̃(p,n−p) : A(p) ×A(n−p) → C , (5.6.39)

C̃αA(p,n−p) =
((
C

(1,p−1,n−p)
α1,α∗,A

)
αA

)−1
, (5.6.40)

where the indexα = (α1, α
∗)was split using horizontality into indices inA(1) andA(p−1). Instead

of the two-fold sums over the first two indices of C, it suffices to sum over independent elements
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5.6. Unipotent period matrix

in the K-theory group. This simplification is captured in the functions C̃ and we can write the
above triple-functions as derivatives of matrix multiplications

C
(1,2)
iαA = ∂i

((
C(2,n−2)

) β
α
∂β1∂β2Π

(3)
A

)
, (5.6.41)

C
(1,3)
iAa = ∂i

((
C(3,n−3)

) B
A
∂B1

((
C(2,n−2)

) β

B∗ ∂β1∂β2Π
(4)
a

))
. (5.6.42)

Together with the integral basis construction in section 5.3, this form is particularly useful for
computing triple-couplings with computer algebra systems.
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Chapter 6

Symmetric moduli spaces and flux vacua

Until now, the discussion has been restricted to the study of specific Calabi–Yau families over their
moduli spaces. Relations among different families and transitions into each other are mathemat-
ically rich and physically significant as they offer deep insights into their underlying structure and
play an important role in string theory. Mathematically, such relations typically correspond to a
splitting of Hodge structure of pure or mixed motives, depending on whether the fibre is smooth
or singular. As reviewed in chapter 3, these transitions from one family to another are known
to be related to two phenomena in string theory: On the one hand, non-zero background values
for the field strengths F3 and H3 generically break supersymmetry completely. It turns out that,
if a fibre allows for such background values while protecting supersymmetry, its Hodge structure
splits. Sometimes, one part of this splitting corresponds to another Calabi–Yau family of the
same dimension whose complex-structure moduli space can thus be embedded into the original
moduli space. While this happens over generically smooth loci, the second phenomenon—black
hole condensation—arises along conifold singularities. The latter will be the topic of chapter 7.

Another realisation of Hodge splitting is that of cyclic quotient families introduced in sec-
tion 2.3. The middle cohomology splits into irreducible representations of the symmetry group
and one can identify the one containing Ω again with the middle cohomology of a family with
less complex-structure deformations. We will consider some explicit constructions in section 6.1.
These will make a reappearance in section 6.2, where we will analyse flux vacua in several fami-
lies. We will show how the order of a cyclic symmetry impacts the existence of flux vacua along
the fixed-point locus and discuss the compatibility of multiple simultaneous flux configurations.
Lastly, we discuss briefly flux vacua in compactifications of M/F-theory on Calabi–Yau four-folds.
The vacuum at hand was found in [1] and uses a vanishing cycle given by a shrinking S4 at the
conifold locus. The toric description of the conifold locus will serve as a bridge to the next section,
where these loci signal transitions to different Calabi–Yau families.

6.1 Symmetry quotients and their splitting of Hodge structure

Quotients of families made a prominent appearance in the mirror construction in [22]. As we
have reviewed in section 2.3, taking the quotient of a hypersurface family w.r.t. the mirror group
Ĥ yields the defining polynomial of the mirror. However, any subgroup Ŝ ⊂ Ĥ can be used to
construct a family of Calabi–Yau manifolds. In [1], we showed that the rational cohomology splits
into irreducible monodromy representation associated with the symmetry group Ĝ/Q̂, where the
quantum symmetry Q̂ reflecting the ambient scaling acts trivially. It follows that, on a locus in
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6.1. Symmetry quotients and their splitting of Hodge structure

points l-vectors

(1 0 0 0 0) 0 0 -3

(1 1 0 0 0) 0 0 1

(1 0 1 0 0) 0 1 0

(1 0 0 1 0) 1 0 0

(1 0 0 1 2) 1 0 0

(1 -2 -1 -2 -2) 0 1 0

(1 0 0 1 1) -2 0 1

(1 -1 0 -1 -1) 0 -2 1

Table 6.1: Integral points and their scaling relations for the defining polynomial of X (3)
6 .

the moduli space where all deformation parameters ai with Ŝai ̸= ai are zero, the cohomology
and thus the Hodge structure splits over the rationals. Rationality is important for the quantisation
condition in the context of flux configurations. First, we will introduce the three-parameter quo-
tient X (3)

6 used in [1] that serves as an example not only for the quotient construction but also for
the compatibility of flux vacua in section 6.2 and strong coupling transitions in section 7.1. Later
in this subsection, we then review briefly the argument we gave in [1] for a splitting of Hodge
structure on fixed-point loci, which was based on and inspired by [123, 113]

We begin with the degree-six hypersurfaces in P2,1,1,1,1 and consider the quotient by the group
Ŝ generated by

g1 = Z3 : (1, 0, 0, 0, 2) , g2 = Z3 : (1, 1, 1, 0, 0) , g3 = Z6 : (2, 1, 0, 0, 3) . (6.1.1)

The elements are expressed in the convention used in section 2.3. The deformations invariant
under the action of Ŝ are collected in the defining polynomial of the quotient family

PX (3)
6

= x31 + x62 + x63 + x64 + x65 − a0

5∏
i=1

xi − a6x
3
2x

3
5 − a7x

3
3x

3
4 , (6.1.2)

To find the anti-canonical bundle of which PX (3)
6

is a section, we must find a reflexive polytope

whose points map linearly to the Newton polytope of eq. (6.1.2) . In practise, one searches in the
database of reflexive four-dimensional polytopes [124] for one with at least 5+3+1 = 9 integral
points, h2,1 ≥ 3 and whose points map linearly to the Newton polytope. Note that the quotient
family can have non-polynomial deformations and thus h2,1 > 3 and further points inside co-
dimension one faces. The polytope reflecting the defining polynomial of X (3)

6 together with its
Mori cone generators is given in Table 6.1. For the Mori cone generators, we used Sagemath
to obtain the unique fine star triangulation of this polytope. Furthermore, we find the following
topological data

R = 3J1J2J3 + 6J1J
2
3 + 6J2J

2
3 + 12J3

3 , (6.1.3)

c2 · J1 = 24 , c2 · J2 = 24 , c2 · J3 = 60 , χ = −120 . (6.1.4)
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The Picard–Fuchs ideal is generated by the operators

L(2)
1 (z) = θ21 − z1(2θ1 − θ3 + 1)(2θ1 − θ3) , (6.1.5)

L(2)
2 (z) = θ22 − z2(2θ2 − θ3 + 1)(2θ2 − θ3) , (6.1.6)

L(2)
3 (z) = θ3 (θ3 − 2θ1 − 2θ2) + 4θ1θ2 − z3 (27θ3(θ3 + 1) + 6) (6.1.7)

with z the Batyrev coordinates (4.4.8) of the l-vectors in Table 6.1. This model can also be
written as a complete intersection in products of projective spaces

X (3)
6 =

 P1 0 2 0
P1 0 0 2
P4 3 1 1


3,63

−120

, (6.1.8)

where we added (h21, h11) and the Euler number as the super- and subscript, respectively. Then,
its Mori cone generators are given by (2.2.50)

l1 = (0,−2, 0; 1, 1, 0, 0, 0, 0, 0, 0, 0) ,

l2 = (0, 0,−2; 0, 0, 1, 1, 0, 0, 0, 0, 0) ,

l3 = (−3,−1,−1; 0, 0, 0, 0, 1, 1, 1, 1, 1) .

(6.1.9)

The intersection ring, the remaining topological data and the instanton numbers are identical to
that of the hypersurface. The holomorphic periods of the two models obey the relation

ϖ0,CICY(z1, z2, z3) =
1√

(1− 4z1)(1− 4z2)
ϖ0,HS

(
z1, z2,

z3
(1− 4z1)(1− 4z2)

)
. (6.1.10)

We obtained the description as a CICY while studying the conifold transition of this model to the
hypergeometric family X3,2,2, see section 7.2. For the explicit analytical continuation to various
neighbourhoods of the moduli space, we refer the reader to [1].

These quotients are sub-families of the original manifold in the sense that their moduli space
is embedded in the original complex-structure moduli space. Being a sub-family means that the
linear dependent periods over the quotient’s moduli space are again solutions to a Picard–Fuchs
differential ideal. In the context of flux compactifications, it is crucial that the linear dependencies
are rational to guarantee that flux vacua of a theory compactified on a quotient are present in a
compactification on the original family. In the following, we will repeat the argument we gave in
[1], which verifies the statement under a single assumption that holds in all cases we considered.

The automorphisms of the ambient space are encoded in both the points of the toric polytope
inside faces of codimension one and the Jacobian ideal. While in most cases one typically removes
redundancies of these reparametrisations by ignoring these points in the polytope, this conceals
a beautiful group-theoretic structure of the middle cohomology. For this subsection, we will
instead us the relations of the Jacobian ideal

0 ≡ ∂xiP = wix
d/wi−1
i − ... (6.1.11)

to remove all appearances of xi with exponents larger or equal to d/wi − 1 in the deformation
monomials. For example, for the octic hypersurfaces in P4,14 (cf. eq. (2.3.16) ), one would remove
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6.1. Symmetry quotients and their splitting of Hodge structure

x1 in the single deformationψ
∏5
i=1 xi to getψ2

∏5
i=2 x

2
i . Note that this deformation corresponds

to the point (−1, 0, 0, 0) contained in a codimension one face of the underlying polytope. We
denote the moduli parametrising these deformations by ai. In the example above, we thus have
a0 = ψ2.

Following section 4.2, we choose as a basis for the middle cohomology

H3(X,C) = spanC

(
{Ω} ∪

{
∂aiΩ

∣∣∣ i ∈ {0, . . . , h2,1 − 1}
}
∪ c.c.

)
(6.1.12)

with Ω = Res
( µ
P

)
. The properties of the covariant derivative (4.2.18) imply

−Res
(

defi µ
P 2

)
= ∂aiΩ = DaiΩ︸ ︷︷ ︸

∈H2,1

− (∂aiK) Ω︸ ︷︷ ︸
∈H3,0

. (6.1.13)

Along loci in the moduli space where the Kähler potential is flat in a certain direction ai, the form
∂aiΩ is contained inH2,1. The residual symmetry group Ĥ leaves Ω invariant, which implies that
the Kähler potential (4.1.14) is flat at fixed-point loci ai = 0 of transforming moduli ai in these
directions. Thus, if Ŝ ⊂ Ĥ with InvŜ = {ai = 0}, we have

∂aiK
∣∣∣
InvŜ

= 0 and ∂aiΩ
∣∣∣
InvŜ

∈ H2,1 . (6.1.14)

By itself, this statement is not particularly interesting. However, if the group Ŝ is of a suitable
order, these forms span a subspace in the rational cohomology H3(X,Q) as we will show in the
following. First, we consider a single modulus that is subject to a symmetry ai 7→ e2πi/nai where
the remaining moduli are invariant. We generalise this to multiple moduli and comment on the
rational splitting for a quotient by Ŝ ⊂ Ĥ. Finally, we discuss the connection to the Gepner-
point/orbifold vacua found in [123, 113] and explain the extension to higher dimensions.

Assume that a family has the symmetryσ : ai 7→ e2πi/kai for some i under which the rest of the
moduli are invariant. In the fundamental domain of the moduli space, one identifies ai ≡ e2πi/kai
and the σ describes a closed path in it and thus induces a monodromy transformation. The action
on the cohomology basis in eq. (6.1.12) is of the form1 0 0

0 e2πi/k 0

0 0 e−2πi/k

 . (6.1.15)

For k ∈ {2, 3, 4, 6}, we can rotate the basis to one with integral representation

Ni =

(
1 0

0 n

)
, (6.1.16)

where the 2× 2 matrix n is given by

n2 =

(
1 1

e2πi/k e−2πi/k

)(
e2πi/k 0

0 e−2πi/k

)(
1 1

e2πi/k e−2πi/k

)−1

∈M2×2(Z) . (6.1.17)
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The monodromy transformation of the integral basis1 Π, denoted byMi, is—just asNi—a ratio-
nal matrix of finite order k. Such matrices are rationally similar [125], i.e. there exists a rational
matrix A with

Mi = ANiA
−1. (6.1.18)

It follows that the transition matrix rotating a local period basis ϖ with monodromy Ni into
Π = Tϖϖ is of the form

Tϖ = AC (6.1.19)

with C a matrix commuting with Ni that is generally complex. Expressing C in block form, we
have

0 = Ni

(
C11 C12

C21 C22

)
−

(
C11 C12

C21 C22

)
Ni =

(
1C11 − C111 1C12 − C12n2
n2C21 − C211 n2C22 − C22n2

)
. (6.1.20)

Since all eigenvalues of n2 are unequal to one, the off-diagonal Sylvester equations [126] imply
that C12 = C21 = 0 and that the matrix C preserves the rational splitting into the two sub-
representations of the monodromy. Families with such a symmetry of order k ∈ {2, 3, 4, 6} have
a period vector that can be split rationally into an invariant and transforming part

A−1Π =

(
Πinv

Πn-inv

)
, A ∈Mb3×b3(Q) , (6.1.21)

where Πn-inv is of length two and vanishes at the fixed point. In the context of flux vacua, the
last two rows of A−1 thus correspond to fluxes, which, together with a suitable value of the axio-
dilaton, yield a supersymmetric flux vacuum. At the same time, invariance of Πinv renders its
derivative w.r.t. ai zero. Together with the flat Kähler potential (6.1.14) , the F-term equations
in eq. (3.4.3) for ai are satisfied automatically on ai = 0 for fluxes formed out of the first b3 − 2

rows of A−1.

We now want to discuss the rational splitting of the cohomology in the mirror construction,
i.e. we will argue that the integral middle cohomology of the mirror quotient forms a sublattice
inside that of the original family under one condition which we observe to be true in all cases
considered. That is, the representation of Ĝ on the middle cohomology must decompose into
at least two sub-representations, one of which is the cohomology group of the mirror. This
is indeed the case when choosing the representatives in the quotient ring as explained above.
We will review the construction of these sub-representations of Ĝ together with their integral
representation at the end of the subsection. For now, let us assume that the condition holds.
Then, the monodromies of X around the divisors ai = 0 have four independent representations
Mi corresponding to the four generators of Ĝ/Q̂. We can express these again in terms of the
block matrix of the integral sub-representations

Mi = ANiA
−1, (6.1.22)

where T = AC is the transition matrix from the local integral basis to that of Π with C a (com-
plex) matrix commuting now with all four Ni. For all sub-representations except the mirror

1By Poincaré duality, each basis in cohomology has a period basis with equivalent monodromy transformation
properties. The statements in cohomology therefore translate into homology and Ω-period bases.
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cohomology, there exists an Ni belonging to a generator of Ĥ under which it does not have an
eigenvalue one. Otherwise, it would be part of the mirror cohomology. By the same argument
as above for Sylvester equations, commutativity with Ni implies that C does not mix the mirror
cohomology with the rest. We deduce that the splitting of the cohomology is rational and that it
is viable to restrict to the mirror locus when studying flux vacua on the original family.

The decomposition into sub-representations corresponds to a partition of the set S of gener-
ators of H3(X,C)

S =
⋃
i

si , si ∩ sj = ∅ , i ̸= j , (6.1.23)

such that for each si = (m1, . . . ,mni) there exist integers l(k) such that the phase mk obtains
under Nj is given by a power of that of m1 as

Nj

∣∣
mk

= N
l(k)
j

∣∣
m1
. (6.1.24)

Furthermore, these sets si are chosen such that the image of l are the coprime numbers in
d
δ (1, . . . , δ − 1) for δ a divisor of the hypersurface of degree d. This property implies that we
can choose linear combinations of the elements in si such that they transform integrally under
all Nj . This new basis is defined in terms of a d-th primitive root of unity β

µ1 = m1 + . . .+mni ,

µ2 = βl(1)m1 + . . .+ βl(ni)mni ,

...

µni = βl(1) (ni−1)m1 + . . .+ βl(ni) (ni−1)mni .

(6.1.25)

As an example, let us consider the sextic hypersurfaces in P2,14 . All representations are either
one- or two-dimensional with the image of l being 6

6{1, 5}, 6
3{1, 2} or 6

2{1}. The possible bases
are given by

µ
(1)
1 = m1 +m2 , µ

(1)
2 = βm1 + β5m2 , (6.1.26)

µ
(2)
1 = m1 +m2 , µ

(2)
2 = β2m1 + β4m2 , (6.1.27)

µ
(3)
1 = m1 +m2 . (6.1.28)

The corresponding blocks in Ni are given by

n(1) =

(
0 1

−1 1

)
, n(2) =

(
0 1

−1 −1

)
, n(3) =

(
−1
)
. (6.1.29)

For this specific model, we find a decomposition into 99 representations n(1) and 5 of n(2). Note
that this agrees with b3 = 2(h2,1+1) = 208 = 2(99+5) . The rank-four mirror cohomology itself
splits into a sum of n(1) and n(2), which can be seen in form of an attractor point at ψ = 0 [74].

For more examples in this formalism we refer to [1]. The above discussion can be generalised
to higher-dimensional families, where one needs to pay some more attention to the monomials
yielding the generators. For three-folds, we assemble this set from the deformation monomials
alone (6.1.12) , which is insufficient for n > 3 . In general, we must consider monomials of order
d · k, where 1 ≤ k ≤ ⌊n2 ⌋ . Modulo the Jacobian ideal, these generate the primitive middle
cohomology according to section 4.2.
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A simple four-fold family exemplifying this structure is given by the degree eight hypersurfaces
in P22,14 . The deformations parametrising H4,0 ⊕H3,1 are

1 and
6∏
i=1

xi . (6.1.30)

As a one-parameter model, the horizontal cohomology includes one further element inH2,2 cor-
responding to

∏6
i=1 x

2
i . However, in the primitive cohomology, there exists one further deforma-

tion in H2,2 given by
∏6
i=3 x

4
i and its Frobenius algebra is therefore degenerate (cf. section 5.1).

This element is crucial for the completion of the sub-representations of M around ψ = 0, which
are given by2

Z8 :

〈
1,

6∏
i=1

x2i ,
6∏
i=3

x4i , 1

〉
with Z8-weights {1, 3, 5, 7} , (6.1.31)

Z4 :

〈
6∏
i=1

xi,

6∏
i=1

xi

〉
with Z4-weights {1, 3} . (6.1.32)

Note that the deformations for H2,2 do not appear complex conjugated.

In subsection 5.5.1, we identified a splitting of Hodge structure on the five-fold family given
by the degree 30 hypersurfaces in P15,10,15 . With the deformation monomials

k = 1 : χ1 = x2

7∏
i=3

x4i , χ2 =

7∏
i=3

x6i , (6.1.33)

k = 2 : χ1χ2 , χ
2
2 , (6.1.34)

and their complex conjugates, we find the following decomposition into irreducible representa-
tions of Z30

Z30 :
〈
1, χ2, χ1χ2, χ

2
2

〉
∪ c.c. with Z30-weights {1, 7, 11, 13, 17, 19, 23, 29} , (6.1.35)

Z6 : ⟨χ1, χ1⟩ with Z6-weights {1, 5} . (6.1.36)

It is important to note that M6
ψ is not a symmetry of the family since the modulus parametrising

χ2 is not invariant under it. This violated periodicity condition [113] restricts the splitting to
ψ = ϕ = 0, which we verified explicitly in subsection 5.5.1.

We finish this subsection by giving the rational splitting into mirror periods and orthogonal
parametrisations for the sextic quotient introduced in the beginning. The origin of the splitting
is the existence of two Z2 symmetries in the ambient space

σ± :
x2 ↔ x3

±x4 ↔ x5
, (6.1.37)

whose induced maps on the moduli space σ̂± have the fixed-point loci a± = 0 (cf. eq. (6.1.2) ),
respectively, where

a± := a6 ± a7 . (6.1.38)
2The weights of the monodromy can also be read-off from the indicials at infinity of the model’s Picard–Fuchs

operator L(6)(z) = (1− 2θ) θ5 + 32z (4θ + 1) (4θ + 3) (8θ + 1) (8θ + 3) (8θ + 5) (8θ + 7) .
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The decomposition of Π into invariant and non-invariant periods in eq. (6.1.21) takes the form

Πinv

Π+

Π−

 (a) =



0 0 0 −3 1 −1 −1 2

1 1 1 −1 1 0 0 0

1 1 1 11 −3 0 0 0

1 0 0 0 0 0 0 0

1 1 1 3 −1 1 1 0

1 1 1 0 0 0 0 0

0 1 −1 0 0 0 0 0

0 1 −1 0 0 1 −1 0


Π(a) , (6.1.39)

where Π± changes sign under a± 7→ −a± while the other components are invariant. In [1], we

performed the above analysis also for the two other three-parameter quotients X (3)
8 and X (3)

10

with a similar splitting. In section 6.2, we will see that the two rows of above matrix yielding Π±
are fluxes for a supersymmetric vacuum along the locus a± = 0. We verified that the Kähler
potential at a± = 0 is flat along a± guaranteeing that the F-term equations for a± are satisfied on
this locus for a supersymmetric vacuum on the mirror locus. It follows that the attractor point at
the Fermat point a0 = a+ = a− = 0 is a supersymmetric vacuum in a compactification on X (3)

6 .

6.2 Type IIB flux vacua

The splittings of Hodge structures discussed before are essential for the study of flux vacua. In
section 3.4, we saw that vacua presuppose a rank-two lattice inside

Hc(X,Z) = H3(X,Z) ∩ (H2,1(X,C)⊕H1,2(X,C)) , (6.2.1)

which generically has rank zero. Points in the moduli space where this lattice has rank one are
called rank-one attractor points. For rank two, the integral generators f and h together with
a suitable value for the axio-dilaton then give rise to a superpotential which preserves N = 1

supersymmetry (cf. section 3.3). The F-term equations restrict the moduli to certain loci in the
moduli space. This restriction is known as moduli stabilisation, which plays an important part
in string phenomenology. Here, we will analyse flux configurations arising from the symmetry
considerations of section 6.1. In many-moduli cases, turning on fluxes of different such rank-
two lattices is possible, if the values for the axio-dilaton are compatible. We will show that this
compatibility is a non-trivial statement and use the familyX (3)

6 as an example where it is violated.

To introduce the concepts, we first consider the attractor point/flux vacuum at the Fermat sex-
tic [74]. At the orbifold, one finds four solutions ϖ̃i , i ∈ {1, 2, 4, 5}, to the Picard–Fuchs operator
with indicials i/6. As we explained in section 6.1, these solutions form two irreducible represen-
tations of the Z6 symmetry group. As in eqs. (6.1.26) and (6.1.27) , these sub-representations
have integral generators given by

ϖ =
3

32


ϖ̃1 + ϖ̃4

β ϖ̃1 + β5ϖ̃4

ϖ̃2 + ϖ̃3

β2ϖ̃2 + β4ϖ̃3

 , (6.2.2)
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in a normalisation such that the transition matrix to the integral symplectic basis with Π = Tψϖ

is given by

T−1
ψ =


−6 −3 6 3

−3 12 3 −1

−6 −1 2 3

3 2 −1 −3

 . (6.2.3)

As the second two periods of ϖ correspond to elements in the lattice Hc(X,Z), it is generated
by the last two rows of T−1

ψ . We verify the former statement with the behaviour of the integral
period vector around ψ = 0

Π

ψ
∝
(
1− i

√
3, 2, 1− 3i

√
3, 2

)
+O(ψ) , (6.2.4)

where we performed a Kähler gauge transformation Π 7→ Π/ψ to preserver regularity of the
Kähler potential. The two fluxes

fTΣ = (−6,−1, 2, 3) and hT = (3, 2,−1,−3) (6.2.5)

imply with the F-term equation DψW = 0

(f − τh)TΣDψ Π
∣∣
ψ=0

!
= 0 ⇒ τ = −1

2
− i

√
3

2
. (6.2.6)

The axio-dilaton is, due to the choice of fluxes in the rank-two lattice, defined only up to a
GL(2,Z) transformation. For a given tadpole, this freedom is reduced to SL(2,Z). In a sim-
ilar manner, one can analyse the orbifold attractor points for the one-parameter hypergeometric
models X4,3 and X6,2 .

This procedure to construct flux configurations extends to any such vacua along codimension-
one loci in the moduli space. For vacua in higher codimension, the condition G ∈ H2,1 may
not be realisable due to conflicting values for the axio-dilaton for the different sets of fluxes. We
will now show this incompatibility explicitly for the three-parameter model X (3)

6 . At the end
of the section, we will consider another example where a symmetry between the flux configu-
rations guarantees agreeing values for the axio-dilaton on the vacuum locus. In the language of
section 6.1, we have the differential forms

ωi = Res
(

defiµ
P 2

)
(6.2.7)

with

def0 =
5∏
i=1

xi , def6 = x32x
3
5 and def7 = x33x

3
4 . (6.2.8)

Then, the middle cohomology decomposes into the four representations generated by

H3(Xa,Z) =
〈
Ω,Ω

〉
⊕ ⟨ω0, ω0⟩ ⊕ ⟨ω6, ω6⟩ ⊕ ⟨ω7, ω7⟩ . (6.2.9)

While the integral representations of the first two (corresponding to the mirror cohomology) was
given above, for the last two, we find the integral generators

α1 = ω6 + ω6 , α2 = β4 ω6 + β2 ω6 ,

β1 = ω7 + ω7 , β2 = β ω7 + β5 ω7

(6.2.10)
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with M5ω6 = α4ω6 and M5ω7 = αω7 . This basis (α1, α2, β1, β2) transforms under the mon-
odromy M5 as

M5 =


0 1 0 0

−1 −1 0 0

0 0 0 1

0 0 −1 1

 . (6.2.11)

We define the elements ω± := ω6±ω7, which are contained inH2,1⊕H1,2 for fibres over a± = 0.
The integral generators above can be expressed as

α1 + β1 = ω+ + ω+ (6.2.12)

and α2 − β2 = −αω+ − α5ω+ , (6.2.13)

which shows that, in these special fibres, the elements generate a rank-two lattice denoted by
Hc(Xa+=0,Z) . A similar basis exists on the locus a− = 0 .

The defining polynomial of X (3)
6 in eq. (6.1.2) has a residual symmetry given by b = Z6 :

(0, 0, 0, 0, 5), which acts on the above parameters as

b :
a0 7→ β a0
a− ↔ a+

, β6 = 1 . (6.2.14)

Thus, the following discussion of the vacua along the loci a± = 0 are mapped into each other
under b, while rotating a0. The splitting of eq. (6.1.39) implies that the fluxes on a− = 0 lie in
the lattice generated by

fT−Σ = (0, 1,−1, 0, 0, 0, 0, 0) , (6.2.15)

hT−Σ = (0, 1,−1, 0, 0, 1,−1, 0) , (6.2.16)

since gTΣ·Π
∣∣
a−=0

= 0 for g ∈ {f−, h−}. The F-term equation for a− imply that supersymmetric
vacua demand

τ− = −1

2
+

i
√
3

2
+ a0

(
9
(√

3− i
)
Γ
(
2
3

)6
16 22/3π3

+O
(
a2+
))

+ a20

−
27
((√

3− i
) (

3i+
√
3
)
Γ
(
2
3

)12)
512 · 21/3π6

+O
(
a2+
)+O

(
a30
)
.

(6.2.17)

Note that, up to an SL(2,Z) transformation, the constant term corresponds to the value at the
one-parameter vacuum a+ = a0 = 0 in eq. (6.2.6) . Along a+ = 0, the fluxes of eq. (6.1.39) are
given by

fT+Σ = (1, 1, 1, 3,−1, 1, 1, 0) , (6.2.18)

hT+Σ = (1, 1, 1, 0, 0, 0, 0, 0) (6.2.19)

with the resulting axio-dilaton value

τ+ = −1

2
+

i
√
3

2
+ a0

(
9Γ
(
2
3

)6
4 22/3

(
−i+

√
3
)
π3

+O
(
a2−
))

+ a20

(
27
(
3− i

√
3
)
Γ
(
2
3

)12
256 3

√
2π6

+O
(
a2−
))

+O
(
a30
)
.

(6.2.20)
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The above mentioned equivalence under b-symmetry is expressed as

τ−(αa0, a∓) = τ+(a0, a±) . (6.2.21)

Thus, the two sets of vacua intersect on the mirror locus a+ = a− = 0 but a viable vacuum is
present only at a0 = 0 .

The axio-dilaton value gives the complex-structure parameter of an elliptic curve associated to
a specific vacuum fibre. For continuous vacua, one finds a family of elliptic curves whose periods
are given by the numerator and denominator of τ as in eq. (3.4.12) . Along a=0, the periods(

fT+Σ∂a+Π

hT+Σ∂a+Π

)∣∣∣∣∣
a±=0

(a0) (6.2.22)

are annihilated by the elliptic operator

L(2)
el,+(z) = θ2 − 12z(3θ + 1)(3θ + 2) , (6.2.23)

PL(2)
el,+


0 1

108 ∞
0 0 1

3

0 0 2
3

, z

 . (6.2.24)

where z = 1/a30 and θ = z∂z . This family is given by a hypersurface of degree three in P2 and
the operator corresponds to operatorB in Table 7.5. We find an integral symplectic period basis
for this operator given by

Πel,+(z) =

(
1 0

− i log 2
π

1
2πi

)
ϖel,+(z) , (6.2.25)

with the Frobenius basis ϖel,+(z) = (1, log(z))+O(z). In the patch z > 1/108, the components
of τ+ in eq. (6.2.22) are given by(

fT+Σ∂a+Π

hT+Σ∂a+Π

)∣∣∣∣∣
a±=0

(a0) =
1

π

(
1 3

1 0

)
Πel,+(a0) . (6.2.26)

As expected from the b-symmetry (6.2.14) , we have L(2)
el,−(z) = L(2)

el,+(−z). An integral basis is,
for example, given by

Πel,−(z) =

(
1 0

1
2 − i log 2

π
1
2πi

)
ϖel,−(z) , (6.2.27)

which implies (
fT−Σ∂a−Π

hT−Σ∂a−Π

)∣∣∣∣∣
a±=0

(a0) =
1

π

(
1 0

4 −3

)
Πel,−(a0) . (6.2.28)

Finally, we note that the j-invariant is given by

j(τ el,±(z)) = ± (1± 864z)3

4z(1∓ 108z)3
. (6.2.29)

— 102 —



6.3. F-theory flux vacua

As a counterexample where two codimension one vacua extend to a vacuum on their intersec-
tion, we review briefly the symmetric flux vacuum on the three-parameter mirror family of the
CICY

X (3)
sym =

 P2 1 1 1
P2 1 1 1
P2 1 1 1


3,48

−90

. (6.2.30)

The model is completely symmetric in all three complex-structure moduli z1, z2 and z3. To
compare it to the model X (3)

6 , we change to the new coordinates u1 = z1, u2 = z1 − z2 and
u3 = z1 − z3. Note that the divisors u2 = 0 and u3 = 0 are fixed-point loci of the Z2 symmetries
z1 ↔ z2 and z1 ↔ z3, respectively. There, one finds one set of fluxes each with values for the
axio-dilaton that agree on u2 = u3 = 0

τ(z) = −3i log (z)

π
+

45iz2

2π
− 999iz4

4π
+O

(
z5
)
, (6.2.31)

where we parametrise the one-parameter locus by z ≡ z1 = z2 = z3. The compatibility of the
axio-dilaton values follow from a Z2 symmetry between the symmetries mapping z2 ↔ z3. In
[1], we showed that the one-parameter model defined over this symmetric locus has an attractor
point at z = −1 whose flux vacuum yields an axio-dilaton value agreeing with eq. (6.2.21) .
From the above, one expects to see a factorisation at zi = −1 in the local zeta function of the
form R3(T ) = p1(T )p2(T )

3, where pi(T ) are quadratic polynomials and p2(T ) corresponding to
the elliptic curve with complex-structure modulus τ(−1).

6.3 F-theory flux vacua

Similarly to type IIB theory, the supersymmetry conditions for flux compactifications to four
dimensions in M/F-theory imply a splitting of the integral Hodge structure. In the previous sub-
section, we saw that type IIB on three-folds yield flux vacua along loci with a sub-lattice of Hodge
structure (0,1,1,0). As discussed in section 3.4, on four-folds, this lattice is required to be of type
(0,0,1,0,0) in the primitive cohomology. In [1], we studied a vacuum locus of the four-fold fam-
ily P12,8,14 [24], see subsection 5.4.2 for a review of the specific family. There, the superpotential
is given by the integral of the holomorphic (4, 0)-form Ω(z) over an S4 which vanishes along
a conifold locus. The explicit analytical continuation throughout the complex-structure moduli
space has been been performed before in [127]. Here, we would like to shed light on this vacuum
locus from a different perspective. In chapter 7, we will study strong coupling/conifold transition
in type IIB compactified on three-folds. We find that the period structure along this vacuum
locus is closely related to the discussion there, which is expected due to the similar origin of a
shrinking Sn.

We used the mirror of P12,8,14 [24] in subsection 5.4.2 to exemplify the integral period structure
of four-fold families. The toric and topological data for this model together with the Picard–
Fuchs system can be found there. The Hadamard product of two formal power series given by
F (z) =

∑∞
i=0 fiz

i and G(z) =
∑∞

i=0 giz
i is defined as

(F ∗G)(z) =
∞∑
i=0

figiz
i . (6.3.1)
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The holomorphic period of the four-fold can then be written as the Hadamard product (in z2)
of the holomorphic solution to the order-two operator D (cf. Table 7.5) corresponding to the
elliptic fibre and the period

ϖ
(2)
0 (z1, z2) =

1

(2πi)2

∮
|xi|=1

1

1 + x41 + x42 + x43 + x44 + z
−1/4
2 x1x2x3x4

×
∏4
i=1 dxi

x1x2x3x4 + z1z
1/4
2

.

(6.3.2)

At z−1/4
2 = 4, this function becomes a solution to a self-adjoint third order operator

L(3)(z) = θ3 − 4z(2θ(θ(2θ + 3) + 2) + 1) + 16z2(θ + 1)(6θ(θ + 2) + 7)

− 128z3(θ + 1)(θ + 2)(2θ + 3)
(6.3.3)

with Riemann symbol

PL(3)


0 1

8
1+i
8

1−i
8 ∞

0 0 0 0 1

0 1
2

1
2

1
2

3
2

0 1 1 1 2

, z

 . (6.3.4)

We note that the degree three order-two operator whose symmetric square yields L(3) is again
self-adjoint, has integral mirror map and holomorphic solution and a Yukawa coupling that has
order-two branch cuts between the four singularities besides the MUM point.

Along the vacuum locus z−1/4
2 = 4, the two-parameter family transitions to a one-parameter

model described by a seventh-order operator L(7) = L(3) ∗ L(2)
D , which is of z-degree three.

Instead of giving its lengthy definition, we show only its Riemann symbol:

PL(7)



0 1
864

1+i
864

1−i
864 ∞

0 0 0 0 1
6

0 1 1 1 5
6

0 3
2

3
2

3
2

7
6

0 2 2 2 9
6

0 3 3 3 11
6

1 4 4 4 13
6

2 5 5 5 17
6

, z1


. (6.3.5)

In [1], J. Dücker gave the explicit form of the vanishing flux, verified the tadpole bound and
showed that the vacuum extends into the regime z1 → 0 corresponding to weak coupling as
Im tE ∼ 1/gs → ∞ .

6.4 (De-)constructing four-fold flux compactifications

For families with one complex-structure parameter, the discussions of the previous section for
three- and four-folds are intimately related. At the end of section 4.6, we reviewed the decom-
position of any one-parameter K3 Picard–Fuchs operator into the symmetric square of a second
order differential operator. This is possible, because, locally, the monodromy groups of these
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operators are isomorphic, cf. eq. (4.6.35) . A similar relation holds for the fundamental repre-
sentation of the monodromy group of four-fold operators

SO0(3, 2) ∼=
Sp(4,R)

±1
. (6.4.1)

The antisymmetric representation of Sp(4,R) decomposes into the sum of the fundamental and
the trivial representation of SO(3, 2). The pullback of a fifth-order operator to one of order four
is named after Yifan Yang (YY) and was studied in [99, 128]. The fifth-order operators belonging
to the 14 hypergeometric three-fold families where given explicitly in [129].

This section repeats our discussion in [1], where we have shown that type IIB flux vacua on a
three-fold are equivalent to satisfying the M-theory flux conditions on the geometry described
by its YY lift. Vice versa, one can search for M-theory flux vacua on four-folds by analysing its
YY pullback with the powerful techniques developed for three-fold operators. To our knowledge,
there is little reason to believe that a YY partner to a Picard–Fuchs operator describing the period
geometry of a Calabi–Yau family again has a geometric realisation. As for the pullbacks of K3-
type operators to order two, for monodromies that are not contained in the identity component of
the monodromy group, the monodromies on the pullback generally loose integrality and instead
lie in an (imaginary) quadratic field extension.

Given a CY-type operator of order four (possibly describing a three-fold geometry) with so-
lutions ϖ, we denote the minors of its Wronskian by

W i,j
ϖ = 2πi det

(
ϖi ϖj

θϖi θϖj

)
, (6.4.2)

which are solutions to the fifth-order operator given by the YY lift. Since we are interested in
flux vacua, we need to obtain an integral basis Π(4) for this operator, which can be inferred from
the integral basis of the three-fold. We mentioned above that the antisymmetric square yields
the sum of the fundamental and trivial representation of SO(3, 2). The latter is identified with
the relation from Griffiths transversality (4.2.20)

Π(3)TΣ∂zΠ
(3) = 0 =⇒ 0 =W 1,4

Π(3) +W 2,3

Π(3) , (6.4.3)

reducing the six minors to five independent solution to the fifth-order operator. In the following
we will be ignoring the minor W 1,4

Π(3) and denote

Π(4) =
(
W 1,2

Π(3) , W
1,3

Π(3) , W
2,3

Π(3) , W
2,4

Π(3) , W
3,4

Π(3)

)
. (6.4.4)

We recall that for type IIB flux vacua, the superpotential W obeys

W = F + τH = 0 and ∂W = ∂F + τ∂H = 0 , (6.4.5)

F = H = 0 . (6.4.6)

We identify eq. (6.4.5) with the vanishing of the minor

G = 2πi det

(
F H

θF θH

)
. (6.4.7)
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Linearity of the determinant implies that G can be expressed as an integral linear combination
of the integral basis Π(4). The second M-theory flux condition follows from the vanishing of F
and H

θG = 2πi
(
Fθ2H −Hθ2F

)
= 0 . (6.4.8)

Consider, for example, the bi-cubic in P5 described by the Picard–Fuchs operator AESZ 1.4 in
Table 7.6. This model has an attractor point or flux vacuum at z = −1/2336 [130] with a flux
lattice spanned by

fT3,3Σ = (−3, 0, 0, 1) , hT3,3Σ = (0, 0, 1, 4) . (6.4.9)

The integral period basis of the YY lift satisfies the M-theory flux conditions G = ∂G = 0 at the
same point z = −1/2336, where the flux is given by

g̃ = (0, 3,−12, 0, 1) , (6.4.10)

with g̃ · Π(4)(−1/2336) = 0 . We also verified that the attractor points of X6,4, X6 and X4,3

yield supersymmetric fluxes for the YY lift. The orbifold of the hypergeometric familiesX5, X8,
X10 and X2,12 have a Hodge splitting over a quadratic field extension, meaning that their fibres
satisfy the vacuum condition with flux values in that extension. While these do not correspond to
supersymmetric vacua, the irrationality cancels in the antisymmetric product yielding an integral
supersymmetric flux for the fibre of the YY lift. More precisely, the fluxes for the three-fold
families are given by

fT Σ =
(
a, 0,−b+

√
c, d
)
, hT Σ =

(
0, a, 0,−b−

√
c
)
, (6.4.11)

for some a, b, c, d ∈ N. With F = fT ΣΠ(3) and H = hT ΣΠ(3), we find that the irrational
contribution with

√
c in eq. (6.4.7) is proportional to the vanishing expression of eq. (6.4.3) .

This recovers integrality of the fluxes on the YY lift and the resulting flux satisfies the vacuum
conditions.

The above description of the Picard–Fuchs system of a three-fold in terms of an order five
operator of CY-type may serve as a testing ground for four-fold vacua in one-parameter models.
But, as we mentioned above, we are unaware of an example where these YY lifts correspond to
geometric four-fold families. For the rest of this subsection, we will turn to the possibly more
interesting direction of describing four-fold vacua with a CY3-type operator. As examples, we
will consider the hypergeometric families X6 ⊂ P5 and X10 ⊂ P5,15 and the symmetric sub-
family of the Hulek–Verrill four-fold. The idea is to make an ansatz for the Frobenius basis for
the third-order operator whose antisymmetric square yields the solutions of the four-fold’s PF
operator. As for the other direction discussed above, the connection between the two operators
is not just local but the integrality of the four-fold period basis obtained, for example, from the
Γ̂-class singles out a specific rationality condition for the fourth-order operator. Rationality for
a three-fold is expressed through the ratio c = χ/c111 of the Euler number and the triple inter-
section number and a rational period basis can be obtained from a prepotential (4.6.45) of the
form

F =
t3

3!
− c ζ3

2(2πi)3
+O(q) . (6.4.12)

Let us denote Π(3) as the basis obtained from matching the local solutions of the YY pullback to
the asymptotic basis of this prepotential. In [1], we observed two equivalent ways of determining
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c for the YY pullback: (1) the matrix relating the minorsWΠ(3) to the four-fold basisΠ(4) becomes
rational and (2) the entries of the Frobenius Fp becomes, to any finite p-adic order, an algebraic
function. For more information on the arithmetic properties of the pullback, we refer to [1] and
the references therein. Here, we will focus on the argument (1) and give the mappings for the
three geometries under consideration.

The two hypergeometric families are described by the Picard–Fuchs operators

L(5)
Y6

= θ5 − 6z
5∏
i=1

(6θ + i) , (6.4.13)

L(5)
Y10

= θ5 − 25z(10θ + 1)(10θ + 3)(10θ + 5)(10θ + 7)(10θ + 9) (6.4.14)

with Riemann symbols

PL(5)
Y6



0 1/2636 ∞

0 0 1
6

0 1 1
3

0 3
2

1
2

0 2 2
3

0 3 5
6

, z


, PL(5)

Y10



0 1/21055 ∞

0 0 1
10

0 1 3
10

0 3
2

1
2

0 2 7
10

0 3 9
10

, z


. (6.4.15)

From the indicials, we deduce that the monodromies around the conifold and orbifold points
have determinant −1 and we expect that their pullbacks have monodromies in a field extension
around these points. The pullbacks of the sextic and decic are given by Kähler-gauge transformed
versions of the operators AESZ 2.45 and AESZ 2.40, respectively. Here, they appear as

L(4)
2.45 = θ4 + 2232z(217− 18θ(3θ − 1)(8θ(12θ + 7) + 23))

+ 2438z2(144θ(48θ(9θ(2θ + 1) + 2)− 7) + 10633)

− 212314z3(36θ(6θ(24θ(4θ + 3) + 19) + 43)− 301)

+ 222322z4θ(2θ + 1)(3θ + 1)(6θ + 1) ,

(6.4.16)

L(4)
2.40 = θ4 − 245z(2000θ(θ(20θ(4θ + 1) + 3)− 7)− 7189)

+ 21556z2(500θ(θ(120θ(2θ + 1) + 23)− 5) + 10079)

− 225511z3(250θ(8θ(10θ(4θ + 3) + 7) + 19)− 1121)

+ 232516z4(20θ − 1)(20θ + 3)(20θ + 7)(20θ + 11)

(6.4.17)

with Riemann symbols

PL(4)
2.45



0 1/2636 ∞

0 1
4 0

0 3
4

1
6

0 7
4

1
3

0 9
4

1
2

, z


, PL(4)

2.40



0 1/21055 ∞

0 1
4 − 1

20

0 3
4

3
20

0 7
4

7
20

0 9
4

11
20

, z


. (6.4.18)
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6. Symmetric moduli spaces and flux vacua

Y6-pullback: AESZ 2.45 Y10-pullback: AESZ 2.40

conifold
Mµ

i
√
3

192


−120 0 −192 0

0 120 0 192

11 0 120 0

0 −11 0 −120

 i
576


−840 0 −576 0

0 840 0 576

649 0 840 0

0 −649 0 −840


f, h (11, 0, 8(15− 8

√
3), 0), (0, 11, 0, 8(15 + 8

√
3)) (59, 0, 24, 0), (0, 11, 0, 24)

g (1, 0, 0, 0, 1) (1, 0, 0, 0, 1)

orbifold
M∞

i
√
3

192


216 −192 192 0

88 −24 −192 −192

−71 120 −120 0

9 −49 120 120

 i
576


1128 −576 576 0

744 −552 −576 −576

−1069 840 −840 0

−509 229 840 840


f, h (1, 1, 16, 24), (0, 11, 104, 168) (649, 0,−24

(
6
√
5− 35

)
, 288), (0, 649, 792, 24(6

√
5 + 35)

g (4,−8,−1, 2, 4) (4,−6,−1, 2, 4)

Table 6.2: Yifan-Yang pullbacks of four-fold geometries. We supplemented the data with the
four-fold fluxes g at the singularities. All fluxes were obtained after a desingularising Kähler-
gauge transformation.

We give the matrices relating the bases as Π(4) = T WΠ(3) as a function of the rationality coeffi-
cient c, where we omit the minor (1, 4) as in eq. (6.4.4) :

TY6 =

 1 0 0 0 0

0 1 0 0 0

−15
4 −3 6 0 0

3
8

(
−5 + i(c+140)ζ(3)

π3

)
−3

4 3 3 0

−75
64 −3i(c+140)ζ(3)

8π3
15
4 0 −3

 , TY10 =

 1 0 0 0 0

0 1 0 0 0

−35
12 −1 2 0 0

−35
24 + i(c+580)ζ(3)

8π3 −1
4 1 1 0

−1225
576 − i(c+580)ζ(3)

8π3
35
12 0 −1

 . (6.4.19)

We observe that they become rational for c = −140 and c = −580, respectively. With these
values for c in the prepotential, we perform an analytical continuation around the singularities
and list the monodromy representations in Table 6.2. There, we also give fluxes corresponding
to vanishing periods at the singularities. We observe that the pullback of a rational four-fold ba-
sis has monodromy representations in imaginary quadratic field extensions. In [1], a change of
coordinates combined with a Kähler-gauge transformation was found that yields rational mon-
odromies for AESZ 2.45.

As a last example, we consider the symmetric locus of the Hulek–Verril four-fold (HV4) given
by the mirror of the configuration

HV4 =



P1 1 1
P1 1 1
P1 1 1
P1 1 1
P1 1 1
P1 1 1


. (6.4.20)

With the methods of section 5.3, we find an integral period basis for this six-parameter model
with Hodge structure (1, 6, 15, 6, 1). Along the symmetric locus zi = z, 1 ≤ i ≤ 6, the periods
are described by the PF operator

L(5)
HV4

= θ5 − 2z(2θ + 1)
(
14θ(θ + 1)

(
θ2 + θ + 1

)
+ 3
)

+ 4z2(θ + 1)3(196θ(θ + 2) + 255)− 1152z3(θ + 1)2(θ + 2)2(2θ + 3)
(6.4.21)

— 108 —



6.4. (De-)constructing four-fold flux compactifications

with Riemann symbol

PL(5)
HV4



0 1/36 1/16 1/4 ∞
0 0 0 0 1

0 1 1 1 1

0 3
2

3
2

3
2

3
2

0 2 2 2 2

0 3 3 3 2

, z


. (6.4.22)

An asymptotic integral basis can be deduced from that of the six-parameter ambient model. For
the following, we choose

Π(t) ∼
(
1, t, 6t2 − 1

2
,−20t3 +

10iζ(3)

π3
,−5

8
+ 15t

(
2t3 + t− 4iζ(3)

π3

))
, (6.4.23)

which corresponds to the intersection form3

Σ =


0 0 0 0 1

0 0 0 6 0

0 0 5 0 0

0 6 0 0 0

1 0 0 0 0

 . (6.4.24)

The monodromy representations together with their fluxes at the singularities are given in Ta-
ble 6.3. For the flux at infinity, a Kähler-gauge transformation Π(4) 7→ Π(4)/(z log z) was per-
formed to regularise the periods. The YY pullback of the operator L(5)

HV4
(z) is described by a

Kähler-gauged version of AESZ 6.1, which is of degree twelve and has Riemann symbol

PL(4)
6.1



0 1/36 1/16 1/4 ∞

0 1
4

1
4

1
4

1
4

0 3
4

3
4

3
4

3
4

0 7
4

7
4

7
4

3
4

0 9
4

9
4

9
4

5
4

, z


. (6.4.25)

We refer to [1] for its explicit form. The matrix T relating the four-fold basis and the minors of
the L(4)

6.1 via Π(4) = T WΠ(3) becomes rational for c = −4/3 . In this specific basis, we find the
monodromies and fluxes at the singularities given in Table 6.3. While all four singularities of the
four-fold besides the MUM point are equipped with a flux satisfying the vacua conditions, only
for the singularity at infinity, the integrality translates to the YY pullback’s flux lattice, where we
identify a supersymmetric IIB flux vacuum.

3Here, we derived the intersection form from the orthogonality relations of the monodromies.
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6. Symmetric moduli spaces and flux vacua

HV4 pullback: AESZ 6.1

z = 0 M0


1 0 0 0 0

1 1 0 0 0

6 12 1 0 0

−25 −60 −10 1 0

60 150 30 −6 1




1 0 0 0

1 1 0 0
1
2 1 1 0

−1
6 −1

2 −1 1



z = 1
36

M 1
36


0 0 0 0 −1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

−1 0 0 0 0

 i
√

5/2


−40 0 −960 0

0 40 0 960

−1 0 40 0

0 1 0 −40


fluxes (1, 0, 0, 0, 1)

(
1, 0, 16

√
10− 40, 0

)
,
(
0, 1, 0,−16

√
10− 40

)

z = 1
16

M 1
16


−5 30 0 −6 −6

−1 6 0 −1 −1

0 0 1 0 0

5 −25 0 6 5

−6 30 0 −6 −5


i
√

3/5

48


−120 480 −2880 0

−40 120 0 2880

−3 0 120 480

0 3 −40 −120


fluxes (1,−5, 0, 1, 1) (1, 0,−40 + 16

√
5/3,−160), (0, 3,−40,−120− 48

√
5/3)

z = 1
4

M 1
4


−44 150 −30 −30 −15

−15 51 −10 −10 −5

−18 60 −11 −12 −6

75 −250 50 51 25

−135 450 −90 −90 −44


i
√

2/3

16


−216 960 −2880 0

−80 216 0 2880

−11 0 216 960

0 11 −80 −216


fluxes (−3, 10,−2,−2,−1) (11, 0,−8(27− 4

√
3/2),−960), (0, 11,−80,−8(27 + 4

√
3/2))

z = ∞
M∞


−99 300 −90 −36 −10

−45 136 −40 −15 −4

−84 252 −71 −24 −6

245 −735 210 76 20

−490 1470 −420 −150 −39

 i
32


−512 2400 −7680 −11520

−232 992 −2880 −3840

−48 180 −448 −480

5 −12 8 −32


fluxes (7,−21, 6, 3, 1) (3, 0,−40,−160), (0, 9,−56,−152)

Table 6.3: Yifan-Yang pullback of symmetric sub-family of HV4. All fluxes were obtained in a
suitable Kähler gauge.
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Chapter 7

Black hole condensation

The following sections 7.1 and 7.2 deal with strong coupling and conifold transitions, respec-
tively. As we have reviewed in section 3.5, these can be seen as two degeneration branches of col-
lapsing two- and three-cycles in the internal Calabi–Yau. The conifold transitions on the type IIB
side signal the condensation of massless extremal black holes at the (resolved) singularity [43].
Strong coupling transitions have been studied in the past in the context of type II/heterotic du-
ality and their effect on the period geometry is relatively well-known. To our knowledge, the
period geometry arising along conifold singularities has not been studied in the literature and the
geometric realisation of an integral period basis for the rank-four motive over the singular locus
are the first of its kind. We note that integral bases for such operators were obtained in [131],
which are however in general different to the ones obtained from the Γ̂-class of the geometry.
In section 6.3, we caught a glimpse of the fibration structure in its generalisation to four-folds,
where the vanishing cycles at conifold singularities give rise to supersymmetric flux vacua.

7.1 Strong coupling transitions

Here, we are concerned with the side of the transition where an S2 shrinks. Typically, the origin
of such S2 are curve singularities which are resolved by blow-ups introducing exceptional divisors
P1 ∼= S2 and yield additional points on edges of the toric polytope. In type IIA compactifications
on such families, this leads to gauge symmetry enhancement, as explain in section 3.5. We
describe this phenomenon via mirror symmetry on the mirror family in type IIB. The volume
of this S2 is identified by (the imaginary part of) a complexified Kähler parameter t1, i.e. a ratio of
periods. As t1 → 0, the mirror pair transitions to another such pair, where we identify the partner
in type IIB as a subfamily with one less complex structure parameter. There, the expansion
variable q1 = exp 2πi t1 is one and the instanton corrections to the prepotential become (cf.
eq. (4.6.47) )

(2πi)3Finst(q) =
∑
l>0

nl Li3

(
ql
)
−→ ζ3

∑
i>0

ni,0 +
∑
k>0

∑
i>0

ni,k Li3

(
q̃k
)
, (7.1.1)

where we used Li3(1) = ζ3 and denoted q̃ = (q2, . . . , qm). Comparing with the general form
of the prepotential (4.6.45) , it follows that the Euler number and instantons of the (m − 1)-
parameter model are given by

χm−1 = χ− 2
∑
i>0

ni,0 , (nm−1)k =
∑
i>0

ni,k . (7.1.2)
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7. Black hole condensation

points l-vectors

(1 0 0 0 0) 0 -4

(1 1 0 0 0) 0 1

(1 0 1 0 0) 0 1

(1 0 0 1 0) 0 1

(1 0 0 0 1) 1 0

(1 -2 -2 -2 -1) 1 0

(1 -1 -1 -1 0) -2 1

Table 7.1: Integral points and their scaling relations for the octic mirror family in P2,2,2,1,1.

First, we will review the well-known transition of the two parameter family of octics in P2,2,2,1,1,
which is a K3-fibration over P1. The points in the toric polytope and the Mori-cone generators
for this model are given in Table 7.1. More generally, strong coupling transitions arise in K3-
fibrations over rational normal curves of degree k [132]. In this picture, the octic hypersurfaces
above areX4-fibrations over P1, whereX4 is the quartic in P3 and P1 is the rational normal curve
of degree one. Before considering this fibration over higher-degree bases, we consider the octic
strong coupling transition in detail.

The Kähler cone generators dual to the l-vectors in Table 7.1 yield the following and topolog-
ical data

R = 4J2
1J2 + 8J3

2 , (7.1.3)

c2 · J1 = 24 , c2 · J2 = 56 , χ = −168 . (7.1.4)

The Picard–Fuchs ideal is generated by the operators

L(2) = θ21 − z1 (2θ1 − θ2) (2θ1 − θ2 + 1) , (7.1.5)

L(3) = (2θ1 − θ2) θ
2
2 + 8z2 (2θ2 + 1) (4θ2 + 1) (4θ2 + 3) . (7.1.6)

The integral period basis has the asymptotic form

Π ∼



1

t1
t2

4t2 (t1 + t2)− 4t2 − 7
3

2t22 − 1

−2
3 t

2
2 (3t1 + 2t2)− t1 − 7t2

3 + 21iζ3
π3


. (7.1.7)

The discriminant locus of the model can be determined by using eq. (2.2.53) and has the two
components

∆1 = 1− 4z1 and ∆2 = 1− 512z2 (1− 128z2 (1− 4z1)) . (7.1.8)
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7.1. Strong coupling transitions

The transition happens along the discriminant of the base, which is ∆1 = 0 or z1 = 1/4 . In a
neighbourhood of the point (∆1, z2) = 0, we find a local period basis given by

ϖsc(∆1, z2) =



ϖ0

log(z2)ϖ0 + σ1
1
2 log(z2)

2ϖ0 + log(z2)σ1 + σ2
1
6 log

3 (z2)ϖ0 +
1
2 log(z2)

2σ1 + log(z2)σ2 + σ3√
∆1 σ4√

∆1 (log(∆1) + log(z2))σ4 +
√
∆1 σ5


. (7.1.9)

Performing a numerical analytical continuation from the MUM point to this region, we find the
transition matrix

T =



1 0 0 0 0 0

0 0 0 0 2
π

0
i log(2)

2π
− i

2π
0 0 − 1

π
0

− 7
3
− log2(2)

π2 − 2i log(2)
π

log(4)+2iπ

π2 − 2
π2 0 4

π
0

1
6

(
−7− 3 log2(2)

π2

)
log(2)

π2 − 1
π2 0 2(π+i(log(8)−2))

π2
2i
π2

− i(−132ζ3−log3(2)+7π2 log(2))
6π3

i(7π2−3 log2(2))
6π3

i log(2)

π3 − i
π3 0 0

 (7.1.10)

with Π(∆1, z2) = T · ϖsc(∆1, z2) . Along the locus ∆1 = 0 , we identify the remaining four
periods with an integral basis for the CICY X4,2 in P2,15 of bi-degree (4, 2)

Π4,2(z) =


1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

 ·Π(∆1, z) (7.1.11)

annihilated by the operator AESZ 1.6 in Table 7.6. We verify integrality by computing the
monodromies along this one-parameter locus, given by

M
(4,2)
0 =

 1 0 0 0

1 1 0 0

0 8 1 0

−6 −8 −1 1

 , M
(4,2)
1

512

=

 1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1

 (7.1.12)

and M (4,2)
∞ =

(
M

(4,2)
0 ·M (4,2)

1/512

)−1. The identities in eq. (7.1.2) can be easily verified with the
topological data for both models. For the explicit numbers, we refer the reader to [81]. We
performed the resummation for the three-parameter model X (3)

6 of section 6.1 in [1]. In this
work, we want to focus on the period structure of these fibrations and the resulting one-parameter
model as a Hadamard product. The base of the fibration is described torically by the diagram

(2)

corresponding to a P1 . The node (2) represents the value of the deformation parameter at the
transition, see below. The face polynomial is thus of the form x21+ϕx1x2+x

2
2, where we used the

scaling relations of the ambient space to set the coefficients of x2i to one. The holomorphic period
of the three-fold family is now given by a Hadamard product in z2 between the holomorphic
period of the quartic and the expression

ϖ
(2)
0 (z1, z2) =

1

(2πi)2

∮
|xi|=1

1

1 + x21 + x22 +
√
z1

−1x1x2
× dx1 dx2
x1x2 +

√
z1z2

, (7.1.13)
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7. Black hole condensation

where we used Batyrev coordinates with z−1/2
1 = ϕ . Strong coupling transitions arise when the

face polynomial of the base factorises completely, i.e. can be written as (x1 ± x2)
k+1. For the

case k = 1 at hand, this implies ϕ = ±2 or ∆1 = 0. Here, the second factor in the Hadamard
product ϖ(2)

0 becomes a solution to the differential operator

L(1)(z) = θ − 2z (2θ + 1) (7.1.14)

corresponding to a zero-dimensional Calabi–Yau family or two points. It follows that the period
of this operator has the torus integral representation

ϖ
(2)
0 (z) =

1

(2πi)2

∮
|xi|=1

1

1 + x21 + x22 + 2x1x2
× dx1 dx2
x1x2 + z

=
1

(2πi)2

∮
|s|=|t|=1

1

1 + s(1 + t)2
× ds dt

s t+ z
=

∞∑
i=0

(
2i

i

)
zi

=
1√

1− 4z
.

(7.1.15)

We included the second line, since these expressions allow for a direct generalisation to higher
degree k. The rational normal curve of degree k is given by an embedding

ν : P1 −→ Pk ,
(x : y) 7−→ (X0 : . . . : Xk) = (xk : xk−1y : . . . : yk) .

(7.1.16)

In the coordinates s = xk and t = x/y, the polynomial in the denominator of above integrand
becomes s(1 + t)k = (x+ y)k, which is the face polynomial at the transition. We note that, in
the GKZ formula for the periods (4.4.19) , the transition embodies the Γ-function identity

∞∑
n1=0

′ 1

4n1Γ(n1 + 1)2Γ(1− 2n1 + n2)
=

Γ(1 + 2n2)

2n2Γ(1 + n2)3
, (7.1.17)

where the summmands with n1 > ⌊n2/2⌋ vanish due to the second Γ-factor. The r.h.s. allows
one to identify the limit with the fundamental period of the CICY X4,2.

Let us now consider X4-fibrations over higher-degree rational normal curves. For k = 2 , we
have the base described torically by

(3) (3)
.

The toric data together with the l-vectors of a three-fold model with this fibration structure is
given in Table 7.2. The fact that the l-vector of X4 is not a generator but lies inside the cone
at l(1) + l(3) simply means that the fundamental period remains a formal power series under
z3 → z̃3 := z1z3. The fundamental period of the quartic is given byϖ0(z1 = z2 = 0, z̃3) . For the
face-polynomial to factor into (x1+x2)

3, we must set the deformation parameters to the binomial
coefficients (3,3). The one-parameter model can then again be written as the Hadamard-product
of X4 together with the period

ϖ
(3)
0 (z) =

1

(2πi)2

∮
|s|=|t|=1

1

1 + s(1 + t)3
× dsdt

s t+ z
=

∞∑
i=0

(
3i

i

)
zi . (7.1.18)
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points l-vectors

(1 0 0 0 0) 0 0 -4

(1 1 0 0 0) 0 0 1

(1 0 1 0 0) 0 0 1

(1 0 0 1 0) 0 0 1

(1 0 0 0 1) 0 1 0

(1 -3 -3 -3 -2) 1 0 -1

(1 -2 -2 -2 -1) -2 1 2

(1 -1 -1 -1 0) 1 -2 0

Table 7.2: Integral points and their scaling relations for theX4-fibration over the rational normal
curve of degree k = 2.

points l-vectors

(1 0 0 0 0) 0 0 0 0 -4

(1 1 0 0 0) 0 0 0 0 1

(1 0 1 0 0) 0 0 0 0 1

(1 0 0 1 0) 0 0 0 0 1

(1 0 0 0 1) 0 0 0 1 0

(1 -5 -5 -5 -4) 0 0 1 0 -3

(1 -4 -4 -4 -3) 0 1 -2 0 4

(1 -3 -3 -3 -2) 1 -2 1 0 0

(1 -2 -2 -2 -1) -2 1 0 1 0

(1 -1 -1 -1 0) 1 0 0 -2 0

Table 7.3: Integral points and their scaling relations for theX4-fibration over the rational normal
curve of degree k = 4.
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7. Black hole condensation

As a last example, we give the fibration over the degree-four rational normal curve, which—as we
will show—transitions to the well-known mirror quintic. This model is given by the configuration
given in Table 7.3. As before, we must set the deformations of the base to the binomial coefficients
according to the nodes in the toric diagram

(5) (10) (10) (5)

such that the face polynomial becomes (x+ y)5 . As for the case k = 2 above, the l-vector of the
quartic in the fibre is not a generator of the Mori cone. Instead, it is given by l(1)+2l(2)+3l(3)+l(5),
which urges us to define the coordinate z̃5 = z1z

2
2z

3
3z5. The quartic fundamental period is then

recovered as ϖ0(z1 = z2 = z3 = z4 = 0, z̃5) . Then, at the transition, the fundamental period of
the five-parameter model becomes the fundamental period of the quintic given by the Hadamard
product of the quartic and the k = 5 generalisation of eqs. (7.1.15) and (7.1.18)

ϖ
(5)
0 (z) =

1

(2πi)2

∮
|s|=|t|=1

1

1 + s(1 + t)5
× dsdt

s t+ z
=

∞∑
i=0

(
5i

i

)
zi . (7.1.19)

Expressing hypergeometric function as Hadamard products of lower-dimensional periods has
already been discussed in [133]. There, a formulation in terms of iterated integrals was given.
We can translate our above analysis into this form by writing the Hadamard product of

ϖ
(k)
0 (z) =

1

(2πi)2

∮
|s|=|t|=1

1

1 + s(1 + t)k
× ds dt

s t+ z
=

∞∑
i=0

(
k i

i

)
zi (7.1.20)

with a function f(z) =
∑∞

j=0 cjz
j as the contour integral

ϖ
(k)
0 (z) ∗ f(z) = 1

2πi

∮
|t|=1

dt

t
f

(
z(1 + t)k

t

)
. (7.1.21)

To verify this, we expand the integrand

f

(
z(1 + t)k

t

)
=

∞∑
j=0

cjz
j(1 + t)k jt−j (7.1.22)

and let the contour integral pick out the t-independent term in eq. (7.1.22) . This yields the
binomial coefficient in eq. (7.1.20) and identifies the integral with the l.h.s. of eq. (7.1.21) .

7.2 Conifold transitions

In the previous subsection, we studied strong coupling transitions which arise from curve singu-
larities that are resolved by additional points on edges of the toric polytope. Here, we will extend
the discussion to conifold transitions, which are point singularities whose regularisations intro-
duce points lying in faces given by reflexive polygons. These models are typically elliptic/genus-
one fibrations over two-dimensional bases and we find again Hadamard-product descriptions of
the models. The discussion is similar to that of the previous section, where the K3 fibres are
replaced by elliptic fibres and the rational normal curves in the base and their zero-dimensional
Calabi–Yau periods become two-dimensional bases with elliptic periods in the Hadamard prod-
uct.
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7.2. Conifold transitions

We again begin by studying one simple model in detail. This model is the P3,2,1[6]-fibration
over P2 or, equivalently, the degree-18 hypersurfaces in P12,8,13 . We perform an analytical
continuation to the transition locus and identify the vanishing S3-cycle. Besides the four one-
parameter periods, we find one cycle that breaks open to a chain, which we deduce from an
inhomogeneity in the Picard–Fuchs equation. In this way, we obtain an integral basis for a one-
parameter model which cannot be described by a prepotential of the form known in the liter-
ature (4.6.45) . We will discuss more briefly two further examples of genus-one fibrations over
different bases. We end the subsection with a local study of all possible bases given by reflexive
two-dimensional polytopes and their transitions to one-parameter models given by Hadamard-
products.

points l-vectors

(1 0 0 0 0) 0 -6

(1 1 0 0 0) 0 3

(1 0 1 0 0) 0 2

(1 0 0 1 0) 1 0

(1 0 0 0 1) 1 0

(1 -9 -6 -1 -1) 1 0

(1 -3 -2 0 0) -3 1

Table 7.4: Integral points and their scaling relations for the mirror family in P9,6,1,1,1.

The polytope together with the Mori cone generators of P12,8,13 [18] are given in Table 7.4.
In the dual Kähler generators, the topological data read

R = J1J
2
2 + 3J2

1J2 + 9J3
2 , (7.2.1)

c2 · J1 = 36 , c2 · J2 = 102 , χ = −540 . (7.2.2)

The conifold transition happens along the discriminant locus 0 = ∆1 = 1 + 27z1, where ∆1

comes from eq. (2.2.53) for the face containing (−3,−2, 0, 0) . In terms of the deformation
parameters ai of the point i in Table 7.4, this factor vanishes as a6 → −3 , assuming avertex = 1 .
Note also that the face polynomial again factorises as for the strong coupling transitions

x3 + y3 + z3 + a6xyz
a6→−3−−−−→ (x+ y + z)(x+ α y + α2z)(x+ α2y + α z) , (7.2.3)

where α is a third root of unity. With the above topological data, we find an asymptotic integral
period vector

Π ∼



1

t1
t2

1
4

(
2t21 + 12t2t1 + 18t22

)
− 1

4 (2t1 + 18t2)− 17
4

1
2 t2 (2t1 + 3t2)− t2

2 − 3
2

1
4

(
−6t32 − 6t1t

2
2 − 2t21t2

)
− 1

4 (6t1 + 17t2) +
135iζ3
2π3


, (7.2.4)
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7. Black hole condensation

which we match with the solutions to the Picard–Fuchs differential ideal spanned by

L(2)(z) = (3θ1 − θ2) θ2 + 12z2 (6θ2 + 1) (6θ2 + 5) , (7.2.5)

L(3)(z) = θ31 + z1 (3θ1 − θ2) (3θ1 − θ2 + 1) (3θ1 − θ2 + 2) . (7.2.6)

In the neighbourhood of (∆1 = 0, z2 = 0), we find a local basis given by

ϖ(∆1, z2) =


σ1

∆1σ2

σ1 log(z2) + σ3

∆1σ2 log(∆1) + σ4

σ1 log(z2)
2 + 2 (σ3 − 9∆1σ2) log(z2) + σ5

σ1 log(z2)
3 + 3 (σ3 − 9∆1σ2) log(z2)

2 + 3σ5 log(z2)− σ6

 , (7.2.7)

where σi are formal power series in the variables ∆1 and z2. The transition matrix is obtained
numerically and identified with

T∆1,z2 = (7.2.8)

1 0 0 0 0 0
1
2 + 27i

√
3L

8π2
27i

√
3

4π2 0 −27i
√
3

4π2 0 0
i(π log(81)−9

√
3L)

8π2 −9i(
√
3−2π)
4π2 − i

2π
9i
√
3

4π2 0 0

−−27i
√
3L+35π2+9 log2(3)+12iπ log(3)

8π2

27i(
√
3−2π+3i log(3))

4π2
3(log(27)+2iπ)

4π2 −27i
√
3

4π2 − 9
8π2 0

−35
24 − 3 log2(3)

8π2

3(2
√
3π−9 log(3))
4π2

3 log(3)
4π2 0 − 3

8π2 0
9i(356ζ3+log3(3))−37π3+9π log2(3)−105iπ2 log(3)

48π3

81i(log2(3)−3L)−3π2(4
√
3+105i)+54π log(3)

16π3

i(35π2−9 log2(3)+6iπ log(3))
16π3 0 3(π+3i log(3))

16π3 − 3i
16π3



and yields the integral basis as Π(∆1, z1) = T∆1,z2ϖ(∆1, z1) . The constant1 L is the Dirichlet
L-function

L =
∞∑
n=1

χ3(n)

n2
= 0.781302412896486 · · · (7.2.9)

with the character

χ3(n) =


0 n ≡ 0 mod 3

1 n ≡ 1 mod 3

−1 n ≡ 2 mod 3

. (7.2.10)

On the locus ∆1 = 0 , we find one flux

f = (0, 3,−1, 3, 0, 0) (7.2.11)

with fTΣΠ(∆1 = 0, z2) = 0 corresponding to the vanishing S3 . Defining the one-parameter
coordinate as z = −3z2 together with the mirror map t = log z

2πi , the asymptotic period vector
reads

Π(∆1 = 0, z) ∼



1
1
2 + 27i

√
3L

8π2

−9i
√
3L

8π2 + t+ 1
2

1
8

(
36t2 + 12t− 38 + 27i

√
3L

π2

)
1
12

(
18t2 + 18t− 13

)
1
12

(
−18t3 − 36t2 − 75t+ 801iζ3

π3 − 40
)


. (7.2.12)

1Its decimal expansion is listed in the OEIS as A086724.
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7.2. Conifold transitions

new number AZ label info operator

2.1.1 A X2,2 ⊂ P1 × P1 θ2 − 4z(2θ + 1)2

2.1.2 B X3 ⊂ P2 θ2 − 3z(3θ + 1)(3θ + 2)

2.1.3 C X4 ⊂ P2,1,1 θ2 − 4z(4θ + 1)(4θ + 3)

2.1.4 D X6 ⊂ P3,2,1 θ2 − 12z(6θ + 1)(6θ + 5)

2.2.1 f BZ: B θ2 − 3z
(
3θ2 + 3θ + 1

)
+ 27z2(θ + 1)2

2.2.2 b BZ: D θ2 − z
(
11θ2 + 11θ + 3

)
− z2(θ + 1)2

2.2.3 d BZ: E θ2 − 4z
(
3θ2 + 3θ + 1

)
+ 32z2(θ + 1)2

2.2.4 a BZ: A θ2 − z
(
7θ2 + 7θ + 2

)
− 8z2(θ + 1)2

2.2.5 c BZ: C θ2 − z
(
10θ2 + 10θ + 3

)
+ 9z2(θ + 1)2

2.2.6 g BZ: F θ2 − z
(
17θ2 + 17θ + 6

)
+ 72z2(θ + 1)2

2.2.7 — — (z − 1)
(
θ2 − z(θ + 1)2

)
2.2.8 e µ(A) θ2 − 4z

(
8θ2 + 8θ + 3

)
+ 256z2(θ + 1)2

2.2.9 h µ(B) θ2 − 3z
(
18θ2 + 18θ + 7

)
+ 729z2(θ + 1)2

2.2.10 i µ(C) θ2 − 4z
(
32θ2 + 32θ + 13

)
+ 4096z2(θ + 1)2

2.2.11 j µ(D) θ2 − 12z
(
72θ2 + 72θ + 31

)
+ 186624z2(θ + 1)2

2.2.12 k — θ2 − 3z(2θ + 1)− 81z2(θ + 1)2

2.2.13 l — θ2 − 4z(2θ + 1)− 64z2(θ + 1)2

2.2.14 m — θ2 − 24z(2θ + 1)− 1296z2(θ + 1)2

Table 7.5: Elliptic operators of degree one and two [134]. The numbering refers to [135].

The period vector Π(∆1 = 0, z) satisfies an inhomogeneous differential equation

L(4)
2.23(z)Π(∆1 = 0, z) = f

135i
√
3z

π2
(7.2.13)

where the operator L(4)
2.23(z) [99] is listed as AESZ 2.23 in [102]. It is given by the Hadamard

product D ∗ f . The two operators are listed in Table 7.5. One immediately identifies the
operator D with that of the fibre of the three-fold. As we will discuss below, the appearance of f
is a property of the base P2. The Riemann symbol reads

PL(4)
2.23



0 a ā ∞
0 0 0 1

6

0 1 1 5
6

0 1 1 7
6

0 2 2 11
6

, z


, (7.2.14)

with a = −3+i
√
3

7776 and ā being the roots of 5038848z2 + 3888z + 1. The action of the Picard–
Fuchs operator on the holomorphic (n, 0)-form produces an exact differential whose integrals
over cycles vanishes. Let L(4)

2.23(z)Ω(z) = dβ, then the inhomogeneity follows with

L(4)
2.23(z)Πi =

∫
Γi

dβ =

∫
∂Γi

β = ⟨Γi,Φ⟩︸ ︷︷ ︸
fi

∫
∂Φ
β , (7.2.15)

where Φ is the vanishing cycle dual to the flux f . By comparing eqs. (7.2.14) and (7.2.15) , we
deduce

∫
∂Φ β = 135i

√
3z/π2. Linearity of the inhomogeneous term implies that all periods are

solutions to the fifth-order operator (θ − 1)L(4)
2.23 .
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7. Black hole condensation

new number geometry operator Hadamard

1.1 X5 θ4 − 5z(5θ + 1)(5θ + 2)(5θ + 3)(5θ + 4) —
1.2 X10 θ4 − 80z(10θ + 1)(10θ + 3)(10θ + 7)(10θ + 9) —
1.3 X2,2,2,2 θ4 − 16z(2θ + 1)4 A*A
1.4 X3,3 θ4 − 9z(3θ + 1)2(3θ + 2)2 B*B
1.5 X3,2,2 θ4 − 12z(2θ + 1)2(3θ + 1)(3θ + 2) A*B
1.6 X4,2 θ4 − 16z(2θ + 1)2(4θ + 1)(4θ + 3) A*C
1.7 X8 θ4 − 16(8θ + 1)(8θ + 3)(8θ + 5)(8θ + 7)z —
1.8 X6 θ4 − 36z(3θ + 1)(3θ + 2)(6θ + 1)(6θ + 5) B*D
1.8 X12,2 θ4 − 144z(12θ + 1)(12θ + 5)(12θ + 7)(12θ + 11) —
1.10 X4,4 θ4 − 16z(4θ + 1)2(4θ + 3)2 C*C
1.11 X4,3 θ4 − 12z(3θ + 1)(3θ + 2)(4θ + 1)(4θ + 3) B*C
1.12 X6,4 θ4 − 48z(4θ + 1)(4θ + 3)(6θ + 1)(6θ + 5) C*D
1.13 X6,6 θ4 − 144z(6θ + 1)2(6θ + 5)2 D*D
1.14 X6,2 θ4 − 48z(2θ + 1)2(6θ + 1)(6θ + 5) A*D

Table 7.6: Three-fold operator of degree one [136]. The last column refers to the known
Hadamard-product descriptions in terms of the elliptic hypergeometric operators in Table 7.5.
The numbering refers to [135].

While the appearance of Hadamard products in the process of black hole condensations is
interesting in and of itself, it also brings forth an integral period structure for these models that
deviates from the classical treatment. We define a one-parameter basis

Π(1)(z) =


1 0 0 0

−2 1 0 0

0 0 1 0

0 0 2 1

 ·


1 0 0 0 0 0

0 1 3 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Π(∆1 = 0, z) , (7.2.16)

where the 4 × 6-matrix projects onto an independent set of homogeneous solutions to L(4)
2.23,

i.e. it omits the vanishing cycle and the degenerating cycle obtaining a boundary. The square
matrix allows for a prepotential description as it removes t2-terms in the last period. The latter is
symplectic w.r.t. the standard intersection form in eq. (5.3.15) . The period vector Π(1) has the
asymptotic behaviour

Π1 ∼
(
1, 3t,

1

3
∂tF , 2F − t∂tF

)
, (7.2.17)

where we defined the prepotential as

F(t) =
9

3!
t3 +

9/2

2
t2 − 78

24
t−

(
−534− 44iπ3

ζ3

)
ζ3

2(2πi)3
. (7.2.18)

We expressed F in a way that allows for a comparison to the general form we gave in eq. (4.6.45) .
Expanding the constant term shows a rational contribution of −11

4 . This basis then leads to an
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7.2. Conifold transitions

integral basis with the following monodromy matrices

M0 =


1 0 0 0

3 1 0 0

3 1 1 0

−8 0 −3 1

 , Ma =


9 −1 1 1

8 0 1 1

8 −1 2 1

−64 8 −8 −7

 , (7.2.19)

Mā =


4 0 −1 1

−3 1 1 −1

0 0 1 0

−9 0 3 −2

 , M∞ =


6 0 0 1

0 0 1 0

0 −1 1 0

−31 0 0 −5

 . (7.2.20)

They are all symplectic w.r.t. the standard intersection form and fulfil the closed contour relation
1 =MaM0MāM∞.

The exact same approach for the P2[3]-fibration over P2 leads to an integral basis for the op-
erator AESZ 2.21 with Riemann symbol

PL(4)
2.21



0 b b̄ ∞
0 0 0 1

3

0 1 1 2
3

0 1 1 4
3

0 2 2 5
3

, z


, (7.2.21)

with b = −
(
3 + i

√
3
)
/486 and b̄ roots of 19683z21 + 243z1 + 1 . As expected from the fibration,

this one-parameter limit is the Hadamard-product B ∗ f .

points l-vectors

(1 0 0 0 0) 0 -3

(1 1 0 0 0) 0 1

(1 0 1 0 0) 0 1

(1 0 0 1 0) 1 0

(1 1 2 1 3) 1 0

(1 -4 -5 -2 -3) 1 0

(1 -1 -1 0 0) -3 1

Table 7.7: Integral points and their scaling relations for the P2[3]-fibration over P2.

With the toric data collected in Table 7.7, the topological data are given by

R = J1J
2
2 + 3J2

1J2 + 9J3
2 , (7.2.22)

c2 · J1 = 12 , c2 · J2 = 30 , χ = −72 . (7.2.23)

and, after the same projection as in eq. (7.2.16) , we find the one-parameter prepotential

F(t) =
9

3!
t3 +

9/2

2
t2 − 6

24
t−

(
−66− 12iπ3

ζ3

)
ζ3

2(2πi)3
, (7.2.24)
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7. Black hole condensation

with a rational constant contribution of −3/4. This leads to the monodromy group

M0 =


1 0 0 0

3 1 0 0

3 1 1 0

−2 0 −3 1

 , Mb =


4 0 −3 3

−3 1 3 −3

0 0 1 0

−3 0 3 −2

 , (7.2.25)

Mā =


7 −3 3 3

6 −2 3 3

6 −3 4 3

−12 6 −6 −5

 , M∞ =


4 0 0 3

0 −2 3 0

0 −1 1 0

−7 0 0 −5

 . (7.2.26)

We note that, while the author of [131] generalised the ansatz for a prepotential to obtain in-
tegral bases for these Hadamard-products, for the operator describing B ∗ f , the values for the
topological data disagree with the present realisation via conifold transitions.

Genus-one fibrations over P2 have holomorphic periods that can be written as a Hadamard
product of the fibre (depending on z2) and

ϖ
(2)
0 (z1, z2) =

1

(2πi)3

∮
|xi|=1

1

1 + x31 + x32 + x33 + (z1)−1/3x1x2x3

× dx1 dx2 dx3

x1x2x3 + z
1/3
1 z2

,
(7.2.27)

where the modulus parametrising the inner point is given by ϕ = z
−1/3
1 . On the locus of the

conifold transition, so at ϕ = −3 or z1 = (−3)−3 and z2 = −3z , this period becomes the
holomorphic solution to the operator2

L(2)
f (z) = θ2 + 3z

(
3θ2 + 3θ + 1

)
+ 27z2(θ + 1)2 (7.2.28)

given by

ϖ0(z) =
1

(2πi)3

∮
|xi|=1

1

1 + x31 + x32 + x33 − 3x1x2x3
× dx1 dx2 dx3
x1x2x3 + z

= 1− 3z + 9z2 +O
(
z3
)
.

(7.2.29)

The above motivates us to describe the one-parameter models arising in conifold transitions
as Hadamard-products, where the two factors are properties of the fibres and bases, respectively.
Before generalising the above to other bases, we want to study two more of them in detail. These
are depicted in Figures 7.1b and 7.1c, where Figure 7.1a represents the above case of a P2-base.

In these polygons, we already indicated the values of the deformation parameters where the
transition happens. For both bases (d) and (a), we will give the Hadamard-factor in the holomor-
phic period and give one example model.

2Comparing to the operators in Table 7.5, here, we find it expressed in −z.
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7.2. Conifold transitions

-3

(a) Face of f-transition.

42

(b) Face of d-transition.

22

3 3

(c) Face of a-transition.

Figure 7.1: The faces of conifold transitions of type a, d and f . The numbers correspond to the
values of the deformation parameters where the transition happens.

Conifold transition d This base is the Hirzebruch surface F2 which in turn is equivalent to
F0 [137]. We consider the toric description in Figure 7.1b with l-vectors

l(1) = (. . . ; . . . , 1, 1, 0,−2, 0) , (7.2.30)

l(2) = (. . . ; . . . , 0, 0, 1, 1,−2) , (7.2.31)

where the last two entries correspond to the points in Figure 7.1b with values two and four,
which are parametrised by a6 and a7, respectively. We assume that the fibre is parametrised
by the coordinate z3 and that the l-vector looks like (. . . ; . . . , 0, 0, 0, 0, 1) . Then, we can again
express the holomorphic period as a Hadamard product of the fibre and a period, which now
depends on three moduli:

ϖ
(3)
0 (z1, z2, z3) =

1

(2πi)3

∮
|xi|=1

1

1 + x21 + x42 + x43 + z
−1/2
1 x22x

2
3 + z

−1/4
1 z

−1/2
2 x1x2x3

× dx1 dx2 dx3

x1x2x3 + z
1/4
1 z

1/2
2 z3

, (7.2.32)

with a6 = z
−1/2
1 and a7 = z

−1/4
1 z

−1/2
2 . On the conifold locus a6 = 2 and a7 = 4 parametrised

by z3 = 4z , above period is the holomorphic solution at the MUM point of the Picard–Fuchs
operator

L(2)
d (z) = θ2 − 4z

(
3θ2 + 3θ + 1

)
+ 32z2(θ + 1)2 (7.2.33)

and can be expressed as

ϖ0(z) =
1

(2πi)3

∮
|xi|=1

1

1 + x21 + x42 + x43 + 2x22x
2
3 + 4x1x2x3

× dx1 dx2 dx3
x1x2x3 + z

= 1 + 4z + 20z2 +O
(
z3
)
,

(7.2.34)

where we again identify the face polynomial at the transition in the denominator of the integrand.
A realisation of this fibration is given by the degree-24 hypersurface in P12,8,2,12 whose mirror
has three complex-structure parameters. The fibre is of type P3,2,1[6] and the one-parameter
model is thus D ∗ d.
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7. Black hole condensation

Conifold transition a Here, the face at the transition is depicted in Figure 7.1c. The l-vectors
are given by

l(1) = (. . . ; . . . , 0, 0,−1, 1, 0, 1,−1) , (7.2.35)

l(2) = (. . . ; . . . , 0, 0, 1,−2, 1, 0, 0) , (7.2.36)

l(3) = (. . . ; . . . , 0, 1, 0, 1,−2, 0, 0) , (7.2.37)

l(4) = (. . . ; . . . , 1, 0, 1, 0, 0,−2, 0) , (7.2.38)

where the last four entries, in backwards order, corresponds to the inner point (0, 0), (−1, 0),
(1,−1) and (0,−1) in Figure 7.1c. Here, the holomorphic period is given by a Hadamard prod-
uct of the fibre and

ϖ
(3)
0 (z1, z2, z3, z4, z5) =

1

(2πi)3

∮
|xi|=1

dx1 dx2 dx3

x1x2x3 + z1z
2/3
2 z

1/3
3 z

1/2
4 z5

(7.2.39)

× 1

1+x21+x
6
2+x

3
3+z

−1/2
4 x1x32+z

−1
1 z

−2/3
2 z

−1/3
3 z

−1/2
4 x1x2x3+z

−2/3
2 z

−1/3
3 x42x3+z

−1/3
2 z

−2/3
3 x22x

2
3

,

with the deformation parameters set to a6 = z
−2/3
2 z

−1/3
3 , a7 = z

−1/3
2 z

−2/3
3 , a8 = z

−1/2
4 and

a9 = z−1
1 z

−2/3
2 z

−1/3
3 z

−1/2
4 . On the conifold locus at a6 = a7 = 3 and a8 = a9 = 2 implying

z5 = 2z , above period is the holomorphic solution at the MUM point of the Picard–Fuchs
operator

L(2)
a (z) = θ2 − z

(
7θ2 + 7θ + 2

)
− 8z2(θ + 1)2 , (7.2.40)

which can thus be written as

ϖ0(z) =
1

(2πi)3

∮
|xi|=1

dx1 dx2 dx3
x1x2x3 + z

× 1

1 + x21 + x62 + x33 + 2x1x32 + 2x1x2x3 + 3x42x3 + 3x22x
2
3

.

(7.2.41)

A realisation is given by the degree-36 hypersurface in P18,12,3,2,1. The fibre is again given by
P3,2,1[6] and the transition results therefore in D ∗ a.

For the rest of the subsection, we will consider one-parameter fibrations with l-vector of the
form

l(h
2,1) = (. . . ; ∗, . . . , ∗︸ ︷︷ ︸

vertices

, 0, . . . , 0, 1) (7.2.42)

over different bases. Given a triangulation of a toric three-fold, it is sufficient for this vector to
lie in the Mori cone, i.e. that it is given by a positive linear combination of the l-vectors. From
the point of view of the holomorphic period, restricting to a sub-cone of the Mori cone yields
monomials in the Batyrev coordinates with non-minimal exponents in the sense that a coordi-
nate transformation exists that reduces the monomials’ degrees while preserving holomorphicity.
Extending the Mori cone, however, would introduce fractions of the Batyrev coordinates which
can introduce terms in the holomorphic period that are absent for a model with such l-vectors,
since the Γ-functions in the denominator would diverge, cf. eq. (4.4.19) .
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7.2. Conifold transitions

The bases we consider are described torically by reflexive two-dimensional polytopes classified
in [138]. All 16 of them can be embedded in either the bi-quadratic in P1 × P1 (Figure 7.2a),
the quartic in P2,1,1 (Figure 7.3a) or the cubic in P2 (Figure 7.4a). By tuning the deformation
parameters, one obtains the different bases depicted in Figures 7.2b, 7.3b and 7.4b, where those
corresponding to the vertices (filled circles) are set to one while the inner points (hollow circles)
are free moduli. The embedding allows us to obtain the Hadamard factor of the base in terms of
contour integrals

ϖ
(2,2)
0 (z) =

1

(2πi)4

∮
C

1

1 + P (s, t, v, w)

ds dtdv dw

stvw + z
, (7.2.43)

ϖ
(4)
0 (z) =

1

(2πi)3

∮
C

1

1 + P (p, q, r)

dp dq dr

pqr + z
, (7.2.44)

ϖ
(3)
0 (z̃) =

1

(2πi)3

∮
C

1

1 + P (x, y, z)

dx dy dz

xyz + z̃
, (7.2.45)

where the contours C are defined by the absolute values of all integration variables to be one. The
notation z̃ in ϖ(3)

0 is due to the clashing of conventions in [139] with the Batyrev coordinates z
and has no further meaning. We summarise our findings for the three embeddings in Tables 7.8
to 7.10, respectively. There, the ai correspond to the values of the free moduli of the base at the
transition, where bold entries indicate that the point is either a vertex (1) or outside the diagram
(0). With the Weierstraß-form of these embeddings3 given in [139], we obtain the coefficients g2
and g3 as functions of the deformation parameters ai. Setting the edge deformations to the values
of the transition and leaving a0 untouched for now, we give the j-invariant for the embeddings.
Following the Kodaira classification of singular fibres [140], we identify the singular fibres with
the Picard–Fuchs operators of elliptic families [134, 101] (cf. Table 7.5). For the bases (4) and
(10), we instead obtain an essentially self-adjoint operator of degree four in z given by4

L(2)
5a (z) = 7θ2 − z

(
4θ2 + 24θ + 7

)
− z2

(
139θ2 + 238θ + 105

)
− 5z3

(
69θ2 + 139θ + 72

)
− 250z4(θ + 1)2

(7.2.46)

with Riemann symbol

PL(2)
5a


−7/10 0 ∆ = 0 ∞

0 0 0 1

2 0 0 1

, z

 . (7.2.47)

Here ∆ = 1 − 2z − 17z2 − 25z3 and ∆ = 0 represents its three roots. Note that z = −7/10 is
an apparent singularity and not one of the five singular fibres. We observe that the two hyper-
geometric families A and B (bi-quadratic and cubic) appear together with their µ-transformed
[101] operators (e and h) and that the classification respects the fact that operators a, c and g all
belong to the same Beauville family IV [141], see also [134]. Even when taking into account the
equivalence of the families a, c and g, we still find four bases ((1), (7), (13) and (15)) that allow
for transitions with different elliptic fibres and thus serve as connections between one-parameter
three-fold families.

3I thank Albrecht Klemm for providing me with the Mathematica implementation.
4The index 5 refers to the number of singular fibres. We obtain two such operators that we index by a and b. There

is no connection between them and the second-order operators a and b.
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7. Black hole condensation

We note that we restricted the search summarised in Tables 7.8 to 7.10 to non-zero deforma-
tion values. Leaving the edge-deformations ai, i > 0 fixed as in the tables, we observe further
rational zeros of the discriminant at a0 = 0. For example, transitions that would yield the oper-
ator d at finite a0-values give transitions at a0 = 0 described by L(2)

A (z2) . Similarly, those listed

as f transition at a0 = 0 to L(2)
B (z3) . Edge-deformations giving B (or µ(B) = h) result in a

reparametrised operator B. Lastly, polygon number 16 has a transition at a0 = 0, where the
base-factor of the Hadamard product is annihilated by the operator

L(2)
5b (z) = 8θ2 + z θ (17θ − 1)− z2

(
55θ2 + 128θ + 64

)
− 12z3

(
30θ2 + 78θ + 47

)
− 4z4

(
103θ2 + 250θ + 147

)
− 99z5

(
θ2 + 3θ + 2

) (7.2.48)

with Riemann symbol

PL(2)
5b


−8/9 0 ∆ = 0 ∞

0 0 0 1

2 0 0 2

, z

 (7.2.49)

with now ∆ = 1 + z − 8z2 − 36z3 − 11z4 of degree four while infinity is a regular point.
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7.2. Conifold transitions

s2w2 s2v2

t2v2t2w2

s2vw

a2

stv2
a1

t2vw

a3

stw2
a4 stvw

a0

(a) Deformations in bi-quadratic.

(1) (2)

(3) (4)

(5) (6)

(b) Sub-polytopes of Figure 7.2a.

Figure 7.2: Elliptic families embedded in the bi-quadratic in P1 × P1. Polytopes (1,2) and (3,4)
form reflexive pairs while 5 and 6 are self-dual. Polytopes (2,4,6) can also be embedded in the
quartic family in Figure 7.3 and (2-6) in the cubic family of Figure 7.4.

no.
deformations

j(a0)
transition

a1 a2 a3 a4 a0 L(2) sing. fibres

1 2
2 (a20+8a0−32)3

1728(a0−4)(a0+12)

4 A
I1, I∗1 , I4-12 e = µ(A)

-2 (a40−16a20+256)3

1728a40(a0−4)2(a0+4)2
±4 d I2, I2, I4, I4

2 1 (a40−16a20+16)3

1728a20(a0+4)(a0−4)
±4 d I1, I1, I2, I8

3 1 2 − (a40−40a20+120a0−80)3

1728(a0−3)5(a20+5a0−25)
3 b I1, I1, I5, I5

4 1 − (a40−16a20+24a0+16)3

1728(a0−1)2(a30−a20−18a0+43)
1 L(2)

5a I1, I1, I1, I2, I7

5 1 a30(a30−24a0+48)3

1728(a0−3)2(a0−2)3(a0+6)

2 a

I1, I2, I3, I63 c

-6 g

6 1 2 a30(a30−24a0+48)3

1728(a0−3)2(a0−2)3(a0+6)

2 a

I1, I2, I3, I63 c

-6 g

Table 7.8: Transitions for bi-quadratic bases depicted in Figure 7.2. The singular fibres follow
the Kodaira classification and were obtained from the polynomials f and g of the Weierstraß
form.
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7. Black hole condensation

p4

q4

r2
pqr

a0

p3q
a2

p2q2
a3

pq3
a4 q2r

a5

p2r

a1

(a) Deformations in quartic.

(7) (8)

(9) (10)

(11) (12)

(b) Sub-polytopes of Figure 7.3a.

Figure 7.3: Elliptic families embedded in the quartic in P2,1,1. Polytopes (7,8) and (9,10) form
reflexive pairs while 11 and 12 are self-dual, where (8) and (10) can also be embedded in both
the bi-quadratic in Figure 7.2 and the cubic in Figure 7.4.

no.
deformations

j(a0)
transition

a1 a2 a3 a4 a5 a0 L(2) sing. fibres

7
2

4 6 4 2
(a20+8a0−32)3

1728(a0−4)(a0+12)

4 A
I1, I∗1 , I4−12 e = µ(A)

-2 (a40−16a20+256)3

1728a40(a20−16)2
±4 d I2, I2, I4, I4

8 0 1 2 1 0 (a40−16a20+16)3

1728a20(a20−16)
±4 d I2, I2, I4, I4

9 1 3 3 2
−(a40−40a20+120a0−80)3

1728(a0−3)5(a20+5a0−25)
3 b I1, I1, I5, I5

10 1 2 1 0 −(a40−16a20+24a0+16)3

1728(a0−1)2(a30−a20−18a0+43)
1 L(2)

5a I1, I1, I1, I2, I7

11 1 0 1 2 2 a30(a30−24a0+48)3

1728(a0−3)2(a0−2)3(a0+6)

2 a

I1, I2, I3, I63 c

-6 g

12 0 1 3 3 2 a30(a30−24a0+48)3

1728(a0−3)2(a0−2)3(a0+6)

2 a

I1, I2, I3, I63 c

-6 g

Table 7.9: Transitions for quartic bases depicted in Figure 7.3. The singular fibres follow the
Kodaira classification and were obtained from the polynomials f and g of the Weierstraß form.
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y3

z3 x3

xyz

a0

y2z
a3

yz2
a4

xz2

a5

x2z

a6

xy2

a2

x2y

a1

(a) Deformations in quartic.

(13) (14)

(15) (16)

(b) Sub-polytopes of Figure 7.3a.

Figure 7.4: Elliptic families embedded in the cubic in P3,2,1. Polytopes (13,14) and (15,16) form
reflexive pairs, where (14) and (16) can also be realised in both the bi-quadratic and the quartic
of Figure 7.2 and Figure 7.3, respectively.

no.
deformations

j(a0)
transition

a1 a2 a3 a4 a5 a6 a0 L(2) sing. fibres

13

3 − (a0−6)(a0+18)3

1728(a0+21)

6 B
I1, I3, IV ∗

-21 h = µ(B)

-1 −

(
a40
12

−2a20−16a0+60

)
3

(a0−3)(a0−2)6(a0+6)2

2 a

I1, I2, I3, I63 c

-6 g

0 − a30(a30−216)3

1728(a30+27)3
6

f I1, I1, I1, I9-3

14 1 0 − a30(a30+24)3

1728(a30+27)
-3 f I1, I1, I1, I9

15
2

1 2 3
(a20+8a0−32)3

1728(a0−4)(a0+12)

4 A
I1, I∗1 , I4-12 e = µ(A)

-2 (a40−16a20+256)3

1728a40(a0−4)2(a0+4)2
±4 d I2, I2, I4, I4

16 1 0 0 1 0 (a40−8a20+24a0+16)3

1728(a40−a30−8a20+36a0−11)
–5 I1, I1, I1, I1, I8

Table 7.10: Transitions for cubic bases depicted in Figure 7.4. The singular fibres follow the
Kodaira classification and were obtained from the polynomials f and g of the Weierstraß form.

5As explained in the text, a transition exists at a0 = 0 with base operator L(2)
5b .
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Chapter 8

Conclusions

Our central question was how string compactifications on different families of Calabi–Yau mani-
folds are related by physical processes. While the interconnectedness of all families is still out of
reach, we extended the web with new methods that fall into two categories.

In Chapter 6, we studied smooth fixed-point loci in the moduli space of residual discrete sym-
metries in the moduli space. For all quotients of hypersurface families we considered, a rational
splitting of the period vector into invariant and non-invariant parts was obtained. Both compo-
nents are given by rational linear combinations of the integral basis obtained from the Γ̂-class at
the MUM point. Even in models with a number of complex-structure moduli large enough to
make an explicit analysis of the periods intractable, we can deduce two important results. First,
there exist integral fluxes given by the rows of the splitting matrix (cf. eq. (6.1.39) ) that drive the
moduli towards the fixed-point loci. Importantly, for loci of codimension larger than one, this
presumes compatibility of the individual flux configurations. Second, the F-term equations for
the non-invariant moduli are satisfied automatically by superpotentials built from linear com-
binations of the invariant periods. It follows that searches for supersymmetric flux vacua on
symmetric loci in moduli spaces of many-parameter families can be reduced to those on the
sub-family over that locus. The compatibility of axio-dilaton values τ in consecutive moduli sta-
bilisations is an essential requirement and generically not guaranteed, which we exemplified on
the model X (3)

6 with two flux vacua along codimension-one loci with conflicting values for τ on
their intersection (cf. eq. (6.2.21) ). Only at a specific point a0 = 0 do the values agree and realise
a known one-parameter flux vacuum inside the three-parameter model.

We utilised the Yifan-Yang pullback to study pairs of one-parameter Calabi–Yau operators of
order four and five to show the equivalence of the supersymmetric flux vacua conditions in type
IIB on three-folds and in M-theory on their Yifan-Yang lift. This allows for an application of the
tools developed for finding attractor points in three-folds families on four-fold compactifications
and may simplify the search for supersymmetric flux vacua in M-theory .

Linking to the second category of transitions arising along singular loci, the conditions for
supersymmetric flux vacua in F-theory are satisfied at fibres with a shrunken S4. In section 6.3,
we expressed the periods along a known vacuum of this form as a Hadamard product whose
factors depend only on the fibre and base of the fibration, respectively.

We studied singular transitions in type IIB compactifications in Chapter 7, where we gave pre-
cise descriptions of the period structures in exemplary models arising in strong coupling and
conifold transitions. Since the former is conceptually already well understood, we focused on
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drawing a connection to flux vacua. To our knowledge, the precise analysis of conifold tran-
sitions in genus-one fibrations given in section 7.2 is the first of its kind. It is illuminating to
see how the shrinking S3 breaks open its dual cycle and makes its period a solution to an inho-
mogeneous Picard–Fuchs equation, cf. eq. (7.2.15) . The remaining integrals of Ω(z) over the
cycles are identified with Hadamard products, where one factor belongs to the elliptic fibre and
the other depends on the geometry of the two-dimensional base. For all bases described tor-
ically by reflexive polygons, we observed at least one transition to a Hadamard product. Four
of them have multiple distinct one-parameter models embedded in their moduli space, which
serves as new connections in the web of Calabi–Yau families. The realisation of these models
inside well-understood geometries provides them with an integral structure in the vector space
of periods. The embedding supports a conjectural form of the prepotential, which includes a
constant rational term.

The Γ̂-class formalism necessary for integral bases in four-fold compactifications enabled us
to construct a Jordan–Chevalley splitting of period matrices in any dimension into unipotent
and semisimple parts in section 5.6. This decomposition has applications in the computation of
multi-loop Feynman integrals as it helps to bring the differential equation into an ϵ-factorised
form. It furthermore motivated our proposal in section 5.3 for an integral period basis in non-
degenerate Calabi–Yau families in any dimension. We supported the claim of integrality by mon-
odromy calculations and genus-zero invariants in several higher-dimensional models.

Outlook. The methods presented here to find and describe strong coupling and conifold tran-
sitions can be utilised in the context of compactifications of M- and F-theory. In section 6.3, we
touched on the simplest example of an elliptic fibration over P3. The flux dual to the S4 vanishing
for suitable values of the deformation parameters plays the role of the S3 in conifold transitions in
type IIB compactifications. We expect that a classification analogous to that of section 7.2 yields
a variety of supersymmetric flux vacua in genus-one fibrations over three-dimensional bases de-
scribed by three-dimensional reflexive polyhedra. Together with transitions at suitable values of
deformations originating from points inside faces of codimension three and four, these will be
part of an upcoming article.
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Chapter A

Picard–Fuchs systems over non-simply-connected spaces

The landscape conjectures by Ooguri and Vafa [142] exclude the existence of non-trivial cycles
of minimal length. In the future, it might therefore become interesting to search for three-
folds over moduli spaces with such cycles. These exist, if the moduli space itself is of higher
genus. To our knowledge, three-fold families with this property have not yet been found. In
the following two sections, we give examples of how Picard–Fuchs systems defined over higher
genus moduli spaces yield the monodromy representations after an identification of the branch
cuts. The modular forms, group generators and some code snippets given in footnotes are taken
from the LMFDB [143].

A.1 L(3) over X0(11)

We consider the modular congruence subgroup

Γ0(11) =

{(
a b

c d

)
∈ SL(2,Z)

∣∣ c ≡ 0 mod 11

}
, (A.1.1)

generated by1

g =

{(
1 1

0 1

)
,

(
7 −2

11 −3

)
,

(
8 −3

11 −4

)
,

(
−1 0

0 −1

)}
. (A.1.2)

The corresponding modular curve X0(11) = Γ0(11)\H given by2

y2 + y = x3 − x2 − 10x− 20 (A.1.3)

has genus one and j-invariant −21231311−5. There are two weight-two modular forms of Γ0(11)

with q-expansion3

m1 = 1 + 12q2 + 12q3 + 12q4 + 12q5 +O(q6) , (A.1.4)

m2 = q − 2q2 − q3 + 2q4 + q5 +O
(
q6
)
. (A.1.5)

As an invariant coordinate, we define a ratio of (linear combinations of) these modular forms
that is of the form q +O(q2)

z(q) =
m2

m1

= q − 2q2 − 13q3 + 14q4 + 169q5 +O
(
q6
)
.

(A.1.6)

1Sagemath: Gamma0(11).generators()
2https://www.lmfdb.org/EllipticCurve/Q/11/a/2
3Sagemath: ModularForms(Gamma0(11),2).basis()
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A.1. L(3) over X0(11)

We invert this series and find

q(z) = z + 2z2 + 21z3 + 156z4 + 1486z5 +O
(
z6
)
. (A.1.7)

Expressing now the two modular forms mi in terms of z makes them solutions to differential
operators of degree three L(3)

i mi = 0. The two operators are not independent but are related via

L(3)
2 = zL(3)

1

1

z
(A.1.8)

and we will therefore write L(3) ≡ L(3)
1 with

L(3) = θ3 − 2z θ (θ + 1)(2θ + 1)− 8z2(θ + 1)(11θ (θ + 2) + 12)

− 150z3(θ + 1)(θ + 2)(2θ + 3)− 304z4(θ + 1)(θ + 2)(θ + 3) .
(A.1.9)

The Riemann P-symbol of L(3) is given by

PL(3)


a ā −1

4 0 b ∞
0 0 0 0 0 0
1
2

1
2

1
2 0 1

2 1

1 1 1 0 1 2

, z

 , (A.1.10)

where

a =
1

228

(
− 3

√
627

√
33 + 6947− 3

√
6947− 627

√
33− 56

)
+

i

76
√
3

(
3

√
6947− 627

√
33− 3

√
627

√
33 + 6947

)
≈ −0.407− 0.053i ,

(A.1.11)

b =
1

228

(
2

3

√
627

√
33 + 6947 +

3

√
55576− 5016

√
33− 56

)
≈ 0.078 (A.1.12)

and a, ā and b are the three roots of the polynomial ∆c := 76z3 + 56z2 + 8z − 1 . This operator
is essentially self-adjoint with Yukawa coupling

C11(z) ∝
1

z2(1 + 4z)∆c
. (A.1.13)

To verify that this moduli space is indeed given byX0(11), we consider the elliptic curve family
whose symmetric square makes up the K3 family under consideration. This will allow us to
identify the monodromy group with the generators of Γ0(11). Performing this analysis for the
K3, we would obtain the symmetric representation of the modular group. The Picard–Fuchs
operator for the elliptic family is the one that annihilates

√
m1(z):

L(2) = θ2 − 2z θ (2θ + 1)− 8z2(11θ (θ + 1) + 3)− 150z3(θ + 1)(2θ + 1)

− 76z4(4θ (θ + 2) + 3) .
(A.1.14)

Its Riemann P-symbol reads

PL(2)


a ā −1

4 0 b ∞
0 0 0 0 0 1

2
1
2

1
2

1
2 0 1

2
3
2

, z

 (A.1.15)
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A. Picard–Fuchs systems over non-simply-connected spaces

Ma =
1

i
√
11

(
11 −4

33 −11

)
Mā =

1
i
√
11

(
22 −15

33 −22

)

M− 1
4
= 1

i
√
11

(
11 −6

22 −11

)
M0 =

(
1 1

0 1

)

Mb =
1

i
√
11

(
0 −1

11 0

)
M∞ =

(
−1 0

0 −1

)

Table A.1: Monodromy representation on solutions Π of L(2) defined on X0(11).

−1
4

0 b ∞

ā

a

z0 2

1

Figure A.1: A-cycle: Starting at a point z0, the period vector is transported counterclockwise
around a and then −1

4 . The monodromy representation is given by g2.

and the operator is essentially self-adjoint Yukawa coupling

C1(z) ∝
√
C11(z) ∝

1

z
√

(1 + 4z)∆c

. (A.1.16)

For C1(z) to be well-defined, its domain of definition must be a double cover of P1 where the
four roots of (1 + 4z)∆c are connected to branch cuts. There are several choices of inserting
these and we will show below that closed cycles on this space give rise to integral monodromy
transformations. It would be naïve to expect a basis of periods where the monodromies around
all singularities become integral, since, due to the double-cover-property of the domain of defi-
nition, the cycles around some singularities cannot correspond to closed contours.

Choosing the basis of solutions of L(2) around z = 0 given by

Π(z) =

(
log(z)
2πi

1

)
+O(z) , (A.1.17)

we find the monodromy representation collected in Table A.1. The monodromies around sin-
gularities connected to a branch cut are not integral but square to the identity. Only when going
around these points twice, one returns to the same point. Therefore, these points are not typical
singularities of the family.

We identify the generators g1 = M0 and g4 = M∞ . The remaining two generators corre-
spond to the transport around closed loops sketched in Figures A.1 and A.2. They are given in
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A.1. L(3) over X0(11)

−1
4

0 b ∞

ā

a

z0

2

1

Figure A.2: B-cycle: Starting at a point z0, the period vector is transported counterclockwise
around ā and then −1

4 . The monodromy representation is given by g3.

terms of the monodromy matrices listed in Table A.1

g2 =M− 1
4
·Ma , (A.1.18)

g3 =Mā ·M− 1
4
. (A.1.19)

Encircling the singularities in opposite order reverses the direction of the path. This is reflected
in the matrix representation in the sense that g−1

2 =Ma ·M− 1
4

and g−1
3 =M− 1

4
·Mā .

Another verification of the differential system to be defined overX0(11) is the computation of
the j-invariant. We may map the singularities to that of the Legendre curve given by

y2 = x(x− 1)(x− λ), λ /∈ {0, 1}

via a Möbius transformation over SL(2,C) . We place the branch cuts of the Legendre curve
along [∞, 0] and [1, λ] . The Möbius transformation is then determined by the mapping of the
three points

{b, a,−1

4
} 7→ {0, 1,∞} ,

implying ā 7→ λ ≈ 0.908125 + i 0.418699. This allows us to recover the j-invariant of X0(11)

via the formula

j(λ) = 256

(
λ2 − λ+ 1

)3
λ2(λ− 1)2

= −212313

115
.

Finally, we may compute the mirror map of the operator L(2) given by

t(z) =
Π1

Π2
,

which satisfies the relation

e2πi t(z) = q(z) ,

with q(z) as in eq. (A.1.7) . This is a direct consequence of L(3) being the symmetric square of
L(2).
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A. Picard–Fuchs systems over non-simply-connected spaces

A.2 L(4) over Xχ15
(15)

Similarly to the proceedings of appendix A.1, we can obtain an fourth-order operator given by
the symmetric cube of a second-order one. The group we consider is defined by

Γχ15(15) =

{(
a b

c d

)
∈ SL(2,Z)

∣∣ c ≡ 0 mod 15 and χ15(a) = 1

}
(A.2.1)

with the quadratic Dirichlet character given by χ15(n) = χ3(n)χ5(n) and for a prime p

χp(n) =


1 ∃ r ∈ N : n ≡ r2 mod p ,

0 p|n ,
−1 else.

(A.2.2)

In other words, the entry a is restricted to {1, 2, 4, 8}. The lowest weight of modular forms is
three. Their q-expansions read4

m1 = q − q2 + 3q3 − 3q4 − 5q5 +O
(
q6
)
, (A.2.3)

m2 = q2 − 3q3 + 5q5 +O
(
q6
)
. (A.2.4)

We obtain the Batyrev coordinate again as z = m2/m1, whose inversion yields the mirror map

q(z) = z + 2z2 + 13z3 + 81z4 + 588z5 +O
(
z6
)
. (A.2.5)

The degree-four operator annihilating the normalised modular form m1/z as a function of z
is of z-degree twelve and can be written as L(4) = Sym3

(
L(2)

)
with the essentially self-adjoint

second-order operator

L(2)(z) = 9θ2 − 3z(2θ + 1)(6θ + 1)− z2(432θ2 + 402θ + 119)

− 3z3
(
366θ2 + 463θ + 165

)
− 2z4(6θ + 5)(99θ + 76)

− 6z5(3θ + 2)(32θ + 41)− 11z6(3θ + 2)(3θ + 5)

(A.2.6)

with Riemann symbol

PL(2)


a −1 b ā 0 b̄ ∞
0 1

3 0 0 0 0 2
3

1
2

1
3

1
2

1
2 0 1

2
5
3

, z

 . (A.2.7)

Here, we denoted the singularities by a = −(3 +
√
5)/2 and b = −(9 + 5

√
5)/22 , where

barred means
√
5 7→ −

√
5 . With an asymptotic period basis as in eq. (A.1.17) , one obtains

the monodromies listed in Table A.2 together with M∞ = e−2πi/3
1 . We note that the propor-

tionality to a root of unity of M−1 and M∞ can be resolved by a Kähler-gauge transformation
Π 7→ (1+ z)−1/3Π and that all monodromies around points with indials (0, 1/2) square to unity.
Furthermore, we verified that the product of monodromy transformations in the order in the

4Sagemath:
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(15, base_ ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1]))
Newforms(chi, 3)

— 136 —



A.2. L(4) over Xχ15(15)

Ma =
1

i
√
15

(
15 −4

60 −15

)
Mā =

1
i
√
15

(
15 −8

30 −15

)

Mb =
1

i
√
15

(
45 −17

120 −45

)
Mb̄ =

1
i
√
15

(
0 −1

15 0

)

M−1 = e2πi/3

(
−14 5

−45 16

)
M0 =

(
1 1

0 1

)

Table A.2: Monodromy representation on solutions Π of L(2) defined on Xχ15(15).

Riemann symbol is trivial. With branch cuts between (a, b) and (ā, b̄), we identify four genera-
tors of the rank-five group Γχ15(15)

M0 =

(
1 1

0 1

)
, MA :=Ma ·Mb =

(
−13 5

−60 23

)
,

MB :=Mb ·Mā =

(
−11 7

−30 19

)
, MC :=M−1 ·M∞ =

(
−14 5

−45 16

)
.

(A.2.8)

The monodromy representation on the order-four operator is given by the symmetric cube of
the above. We note that, there, infinity becomes a regular point and that the monodromy around
z = −1 is integral by itself. All instanton corrections to the triple coupling vanish, which is
expected for symmetric cubes of second-order operators.
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Chapter B

Genus-zero invariants of higher-dimensional two-parameter

families

This appendix lists the first genus-zero invariants for two-parameter five-, six- and seven-folds
computed with the formalism of section 5.3.

B.1 Five-fold P15,10,15[30]

Tables B.1 and B.2 contain the genus-zero invariants for the degree-30 hypersurface in P15,10,15 .
This model was discussed in more detail in subsection 5.5.1.

n 1
d1d2

d2 = 0 1 2 3 4
d1 = 0 – 130 -58345 55837430 -73589158000

1 0 -55500 41337000 -56023509000 95692879557000
2 0 14314500 -15970505250 29728628829000 -64866615149502000
3 0 -3190201000 4521652482000 -11158432052002500 30609325097795488000
4 0 575513349750 -1032624284555250 3310653667485273000 -11280847682905657902000

n 2
d1d2

d2 = 0 1 2 3 4
d1 = 0 – -650 291725 -279187150 367945790000

1 1500 241500 -193563000 268338729000 -463423560804000
2 3000 -58234500 71165528250 -137352543993000 305433626311098000
3 4500 12717419000 -19432506624000 50037802437232500 -140631707204082788000
4 6000 -2098887405750 4300685843195250 -14467844481295497000 50711035757695842006000

Table B.1: Corrections to the components C α
ij of the triple couplings C(1,1,3) belonging to the

five-fold P15,10,15 [30].

B.2 Complete intersection six-fold

As a second example, we consider the six-fold complete intersection given by the configuration
(cf. section 2.2) (

P1 0 2
P7 7 1

)
(B.2.1)

with Hodge structure (1, 2, 2, 2, 2, 2, 1) and intersection ring given by

R = 7J1J
5
2 + 14J6

2 . (B.2.2)
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B.3. Complete intersection seven-fold

n 1
d1d2,1

d2 = 0 1 2 3 4
d1 = 0 – 0 0 0 0

1 0 87000 -88053000 145836336000 -289794139173000
2 0 -41953500 66078582000 -151975940112000 387743791488726000
3 0 11247432000 -26385247644000 82815777839355000 -268662318135628656000
4 0 -2316774073500 7492529798596500 -31499193318974785500 128621623038866406747000

n 2
d1d2,1

d2 = 0 1 2 3 4
d1 = 0 – 0 0 0 0

1 -1500 36000 -13122000 11778816000 -15040836981000
2 -6000 -42426000 34892496000 -53271434304000 101028526771824000
3 -13500 19481508000 -23788181358000 50776237757340000 -124611083496124956000
4 -24000 -5451403122000 9260364467574000 -27004642733470722000 84453546674741406516000

n 1
d1d2,2

d2 = 0 1 2 3 4
d1 = 0 – -245 289035 -499858460 1013558891950

1 0 106500 -207544500 506590888500 -1328646245206500
2 0 -28622250 81762541500 -272311461024750 909393935613849000
3 0 5861483000 -23291351752000 103190445948877500 -432819166908356696000
4 0 -960037032375 5283232845747750 -30757856154831156375 160526772200304513189000

Table B.2: Corrections to the components C β
iα of the triple couplings C(1,2,2) belonging to the

five-fold P15,10,15 [30]. Due to the symmetry in the couplings, we have n 2
d1d2,2

= n 1
d1d2,1

.

The non-vanishing integrals of Chern classes yield

c2 · J1J3
2 = 147 , c2 · J4

2 = 308 , (B.2.3)

c3 · J1J2
2 = −784 , c3 · J3

2 = −1582 , (B.2.4)

c4 · J1J2 = 5733 , c4 · J2
2 = 11774 , (B.2.5)

c5 · J1 = −39984 , c5 · J2 = −81844 , (B.2.6)

χ = 573216 . (B.2.7)

Here, we are interested only in the genus-zero invariants coming from the triple couplings.
These are listed in Tables B.3 and B.6. Considering a similar transformation of variables as
in eq. (6.1.10) for describing the three-parameter three-fold hypersurface X6 as a CICY

ϖ̃0(z1, z2) =
√
1− 4z1ϖ0 (z1, z2(1− 4z1)) , (B.2.8)

we find that this two-parameter six-fold period becomes one of a six-fold one-parameter model
as z1 → 1/4 . We did not verify whether this is a transition of the entire integral structure of the
middle (co-)homology. The one-parameter model is—up to a rescaling of the complex-structure
modulus—the mirror family of degree-eight hypersurfaces in P7. This model together with its
invariants was discussed briefly in subsection 5.5.2.

B.3 Complete intersection seven-fold

As a last example, we compute the genus-zero invariants for the seven-fold complete intersection
with configuration matrix (cf. section 2.2)(

P2 0 3
P7 6 2

)
(B.3.1)

with Hodge structure (1, 2, 3, 3, 3, 3, 2, 1) and intersection ring given by

R = 18J6
1J2 + 12J5

1J
2
2 . (B.3.2)
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B. Genus-zero invariants of higher-dimensional two-parameter families

n 1
d1d2

d2 = 0 1 2 3 4
d1 = 0 – 102312 16517690280 4769975120009400 1783670482131896286936

1 -2 -102312 0 13884917535601728 13878201868881305449536
2 0 0 -16517690280 -13884917535601728 0
3 0 0 0 -4769975120009400 -13878201868881305449536
4 0 0 0 0 -1783670482131896286936

n 2
d1d2

d2 = 0 1 2 3 4
d1 = 0 – 144256 17462826584 4361238820782872 1482599929913698021888

1 1 246568 111214311768 60280546074034888 35582521273000808347024
2 0 0 33980516864 74165463609636616 98957248755268188958344
3 0 0 0 9131213940792272 49460723141882113796560
4 0 0 0 0 3266270412045594308824

Table B.3: Corrections to the components C α
ij of the triple couplings C(1,1,4) belonging to the

six-fold CICY with configuration (B.2.1) .

n 1
d1d2

d2 = 0 1 2 3
d1 = 0 – 24 60 72

1 31248 1884672 29312352 246666816
2 864771840 251330413248 13448862258048 325897035614208
3 48806303416560 37587089999646720 4729909879978778880 244361471415416879616

n 2
d1d2

d2 = 0 1 2 3
d1 = 0 – 6 -6 0

1 52056 1131840 9926496 57490560
2 1751053248 237515715504 8141727014784 143263083868560
3 110451495327912 44325978297836544 3809259647533642752 148534191907426263744

n 3
d1d2

d2 = 0 1 2 3
d1 = 0 – -9 9 0

1 6480 -6480 -6480 19440
2 468555840 22534293960 331045477200 2684891924280
3 36098796486960 6996784294736640 340157317297898880 7975643229362097360

Table B.4: Corrections to the components C α
ij of the triple couplings C(1,1,5) belonging to the

seven-fold CICY with configuration (B.3.1) .

The non-vanishing integrals of Chern classes are

c2 · J5
1 = 144 , c2 · J4

1J2 = 360 , c2 · J3
1J

2
2 = 192 , (B.3.3)

c3 · J4
1 = −432 , c3 · J3

1J2 = −1440 , c3 · J2
1J

2
2 = −864 , (B.3.4)

c4 · J3
1 = 3600 , c4 · J2

1J2 = 9612 , c4 · J1J2
2 = 5448 , (B.3.5)

c5 · J2
1 = −20736 , c5 · J1J2 = −56880 , c5 · J2

2 = −32544 , (B.3.6)

c6 · J1 = 125856 , c6 · J2 = 341784 , (B.3.7)

χ = −756000 . (B.3.8)

We computed the corrections to all three kinds of triple couplings C(1,1,5), C(1,2,4) and C(1,3,3)

and verified integrality for all invariants up to degree ten. Tables B.4, B.5 and B.7 contain only
those up to degree six.
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B.3. Complete intersection seven-fold

n 1
d1d2,1

d2 = 0 1 2 3
d1 = 0 – 0 0 0

1 51408 4646592 81078192 713536128
2 3480188544 1638018262080 102614475965760 2700408095048448
3 340699613797008 443580519776385024 66746494882328109696 3808839040148938175424

n 2
d1d2,1

d2 = 0 1 2 3
d1 = 0 – 0 0 0

1 159408 3977424 34708176 200819088
2 15354551808 2508720993072 91410103984032 1649786984060112
3 1842317884132848 910220645248233984 84987202697514235008 3461752753566352373520

n 3
d1d2,1

d2 = 0 1 2 3
d1 = 0 – 0 0 0

1 56376 -56376 -56376 169128
2 12662640576 638518427064 9498379105008 77441416430472
3 1970806334319000 406698336573147648 20299181309916803712 482482007499962659176

n 1
d1d2,2

d2 = 0 1 2 3
d1 = 0 – 24 120 216

1 0 4063104 145475424 1974341952
2 0 792196666560 97547371167744 3853185239923200
3 0 152646749932087296 44146180958592215808 3731345234028755383680

n 2
d1d2,2

d2 = 0 1 2 3
d1 = 0 – 6 -12 0

1 31248 5120352 84729744 716072832
2 1729543680 1585305899856 106161995483136 2798799527906640
3 146418910249680 395034539070915072 66069779379280490880 3889320232968935396064

n 3
d1d2,2

d2 = 0 1 2 3
d1 = 0 – -9 18 0

1 52056 496800 1045656 -1191024
2 3502106496 652736337624 17968769365824 221288575643352
3 331354485983736 239740983855804672 20862042260120541504 717208482226285343520

n 1
d1d2,3

d2 = 0 1 2 3
d1 = 0 – 8 80 144

1 0 944640 59846976 983387520
2 0 138464375616 29778304538880 1496493979157952
3 0 21496923053051904 10982311619619110400 1205419021134994635264

n 2
d1d2,3

d2 = 0 1 2 3
d1 = 0 – 12 0 0

1 0 1859904 44129088 409701888
2 0 378437228064 38168465855616 1219320016231968
3 0 72969792055197696 18870292826536596480 1385985212447789565504

n 3
d1d2,3

d2 = 0 1 2 3
d1 = 0 – -18 0 0

1 0 -30240 -3945888 -33032448
2 0 145115226000 5493651469056 62807354169552
3 0 45222971429730816 5970377187935352576 247238235764772444000

Table B.5: Corrections to the components C A
iα of the triple couplings C(1,2,4) belonging to the

seven-fold CICY with configuration (B.3.1) .
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B. Genus-zero invariants of higher-dimensional two-parameter families

n 1
d1d2,1

d2 = 0 1 2 3 4
d1 = 0 – -1009792 -244479572176 -91586015236440312 -41512798037583544612864

1 0 -5141570 -4965596259918 -4246906117760960430 -3477625650092761877945774
2 0 0 -2020568042990 -7244630844138458820 -13706392224511660576981848
3 0 0 0 -1031787508592869476 -8217610959088745828503162
4 0 0 0 0 -588297859142101773554288

n 2
d1d2,1

d2 = 0 1 2 3 4
d1 = 0 – 0 0 0 0

1 -1 -490539 -317309353165 -218775592666383389 -154971594113359025142469
2 0 0 -215682899621 -580781296121491794 -922963841927237173163492
3 0 0 0 -115605567354848998 -731089752189236330987719
4 0 0 0 0 -67808889665659254558152

n 1
d1d2,2

d2 = 0 1 2 3 4
d1 = 0 – -6151362 -2265047615166 -1123373523829309788 -629810657179685318167152

1 0 -6151362 -9931192519836 -11491536961899419250 -11695236609181507706448936
2 0 0 -2265047615166 -11491536961899419250 -27412784449023321153963696
3 0 0 0 -1123373523829309788 -11695236609181507706448936
4 0 0 0 0 -629810657179685318167152

n 1
d1d2,2

d2 = 0 1 2 3 4
d1 = 0 – -243971 -72969677949 -31792648158418070 -16233661640355284521032

1 0 -634795 -709370894274 -672941559993242855 -597826264651086383940916
2 0 0 -250608552789 -968706577420959895 -1958056032073094368140264
3 0 0 0 -128689283817197614 -1072921822374843288408932
4 0 0 0 0 -73739289385314046645704

Table B.6: Corrections to the components C A
iα of the triple couplings C(1,2,3) belonging to the

six-fold CICY with configuration (B.2.1) .

n 1
d1d2,1

d2 = 0 1 2 3
d1 = 0 – 0 0 0

1 374976 62532864 1227921984 11154848256
2 20754524160 21822618405888 1623748819567104 46091237254566912
3 1757026922996160 5828568982666831872 1077438759065501501952 67917096495232635619584

n 2
d1d2,1

d2 = 0 1 2 3
d1 = 0 – 0 0 0

1 2838240 164026944 2450707488 20250336960
2 246898015488 79412370217920 4275629866493568 103344246119419200
3 28240407657940320 26313513524024813568 3440966909368285285632 180194967152754904906560

n 3
d1d2,1

d2 = 0 1 2 3
d1 = 0 – 0 0 0

1 5178816 103576320 911471616 5282392320
2 749905433856 92800356120576 3102643862205696 54113192709493248
3 110786116630769856 42255450273862849536 3553111889756245744128 137120538895675571098368

n 1
d1d2,2

d2 = 0 1 2 3
d1 = 0 – 288 1440 2592

1 0 58095360 2268711936 31837743360
2 0 12491635511808 1698454087681536 70419524279687424
3 0 2561907357813841920 827653058905474031616 74079182437277297013504

n 2
d1d2,2

d2 = 0 1 2 3
d1 = 0 – 504 2016 3888

1 616896 184996224 5012601408 61286979456
2 41762262528 53731276319808 4922479282576896 168736438415077056
3 4088395365564096 13562068585975289856 2892594017628967444992 209630110774538312007552

n 1
d1d2,3

d2 = 0 1 2 3
d1 = 0 – 96 960 1728

1 0 14335488 952971264 16081473024
2 0 2347865222400 542565640203264 28210866264168192
3 0 391264002124849152 218865069056061554688 25033426068683141125632

Table B.7: Corrections to the components C b
ia of the triple couplings C(1,3,3) belonging to the

seven-fold CICY with configuration (B.3.1) . The remaining invariants follow from the symme-
try of the couplings in the last two indices.
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