g-Hodge filtrations,
Habiro cohomology, and ku

Dissertation
zur
Erlangung des Doktorgrades (Dr. rer. nat.)
der
Mathematisch-Naturwissenschaftlichen Fakultat
der

Rheinischen Friedrich-Wilhelms-Universitidt Bonn

vorgelegt von
Ferdinand Wagner
aus

Leipzig

Bonn, 2025



Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultat

der Rheinischen Friedrich-Wilhelms-Universitidt Bonn

Gutachter/Betreuer: Prof. Dr. Peter Scholze

Gutachter: Prof. Dr. Benjamin Antieau

Tag der Promotion: 8. Januar 2026
Erscheinungsjahr: 2026



g-Hodge filtrations,
Habiro cohomology, and ku

Ferdinand Wagner

Abstract

Peter Scholze has raised the question whether some variant of the g-de Rham
complex is already defined over the Habiro ring H = lim,,en Z[q] (Aqm,l)‘ Such a
variant should then be called Habiro cohomology.

In Part I, we’ll show that Habiro cohomology exists whenever the g-de Rham
complex can be equipped with a g-Hodge filtration: a g-deformation of the Hodge
filtration, subject to some reasonable conditions. To any such g-Hodge filtration we’ll
associate a small modification of the g-de Rham complex, which we call the ¢g-Hodge
complex, and show that it descends canonically to the Habiro ring. This construction
recovers and generalises the Habiro ring of a number field from [GSWZ24] and is
closely related to the g-de Rham-Witt complexes from [Wag24].

While there’s no canonical g-Hodge filtration in general, we’ll show that it does
exist in many cases of interest. For example, for a smooth scheme X over Z, the
g-de Rham complex ¢-Qx,7 can be equipped with a canonical ¢-Hodge filtration as
soon as one inverts all primes p < dim(X/Z).

In Part IT we’ll explain how another large class of examples arises from homotopy
theory: If R is quasi-syntomic and admits a spherical Eo-lift Si, then the graded
pieces of the even filtration on TC™ (ku ® Sg/ku) and TC™ (KU ® Sg/KU) give rise
to a g-Hodge filtration on the (derived) g-de Rham complex of R and the associated
g-Hodge complex, respectively. We’ll also explain the Habiro descent of the ¢-Hodge
complex in terms of a genuine refinement of the S!-action on THH(KU ® Sg/KU).

In Part IIT, which is based on joint work with Samuel Meyer [MW24], we’ll study
a refinement of THH/TC™, constructed by Efimov and Scholze as a consequence of
Efimov’s theorem on the rigidity of localising motives [Efi-Rig]. Using the results
from Part II, we'll compute 7, TC™* (ku ® Q/ku) and 7, TC™*(KU ® Q/KU).



CONTENTS

Contents

1. Introduction

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.
1.7.

Part 1.

g-de Rham cohomology . . . . . . . . . . .. .
Can the Hodge filtration be g-deformed? . . . . . . . .. ... ... ... ...
g-Hodge filtrations from topological Hochschild homology over ku . . . . . . .
Habiro cohomology and genuine equivariant homotopy theory . . . ... ...
Refined localising invariants and THH™ (Q) . . . .. .. ... .. ... ....
Synthesis: Towards a new cohomology theory for Q-varieties . . . . . . . . ..
Notations and conventions . . . . . . . . .. ... .o oo

g-Hodge complexes over the Habiro ring

2. Habiro rings of étale extensions

2.1.
2.2.

A general descent principle . . . . . . .. L
Habiro rings of étale extensions . . . . . . . . . ... ... ... ... .. ..

3. Habiro descent for g-Hodge complexes

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.

g-Hodge filtrations and the ¢-Hodge complex . . . . . . . ... .. ... ....
The main result . . . . . . . . . . . . . e
Deformations of g-de Rham-Witt complexes . . . . . .. ... .. ... ....
The Nygaard filtration on ¢-de Rham-Witt complexes . . . . ... ... ...
The twisted g-Hodge filtration . . . . . . . . . . .. ... ... ... .. ....
Habiro descent for ¢-Hodge complexes . . . . . . ... ... ... ... ....
Habiro descent for ¢-de Rham complexes . . . . . ... ... ... ... ....
Habiro descent in derived commutative algebras . . . . . . .. ... ... ...

4. Functorial g-Hodge filtrations

4.1.
4.2.

Part II.

Functorial ¢-Hodge filtrations away from small primes . . . . . . . .. .. ...
Functorial ¢-Hodge filtrations for certain quasi-regular quotients . . . . . . . .

g-de Rham cohomology and topological Hochschild homology
over ku

5. The solid even filtration

5.1.
5.2.
5.3.
5.4.

Definitions and basic properties . . . . . . . .. ... L Lo
Recollections on trace-class morphisms and nuclear objects . . . . . . . .. ..
Solid even flatness in the nuclear case . . . . . . . ... ... ... ... ..
Solid faithfully flat descent in the nuclear case . . . . . . .. .. .. ... ...

6. The solid even filtration for THH

6.1.
6.2.
6.3.
6.4.

Solid THH . . . . . . . o o e
The solid even filtration via even resolutions . . . . . . . ... ... ... ...
Base change . . . . . . . .o
Comparison of even filtrations . . . . . . . .. .. oo oL

ii

Co Ul W =

12
13
18
21

25

27
27
29

34
34
39
42
46
54
59
62
64

67
67
74

83

85
85
89
92
95



CONTENTS

g-de Rham cohomology and TC™ over ku

7.1. The p-complete comparison (case p >2) . . . ... .. ... ....
7.2. The p-complete comparison (case p=2) . . ... ... ... ....
7.3. The case of quasi-regular quotients . . . . .. .. ... ... ....
7.4. Theglobal case . . . . . .. ... . ..

Habiro descent via genuine equivariant homotopy theory

8.1. Recollections on genuine equivariant homotopy theory . . . .. ..
8.2. The oo-category of cyclonic spectra . . . . . . . ... ... ...
8.3. Genuine equivariant ku . . . .. ... ..o

8.4. Cyclonic even filtrations and Habiro descent of ¢-Hodge complexes

Examples

9.1. Examples of spherical lifts . . . . . ... ... ... ... ......
9.2. The case of a framed smooth algebra . . . ... ... ... ... ..
9.3. The Habiro ring of a number field, homotopically . . . .. ... ..

Part ITII. g-Hodge complexes and refined THH/TC™

10.

11.

12.

Refined localising invariants and how to compute them

10.1. Killing (pro-)algebra objects . . . . . . ... ...
10.2. Generalities on refined localising invariants . . . . . . ... ... ..
10.3. A recipe for computation . . . . . ... ...
10.4. Burklund’s E;-structures and square-zero extensions . . . . . ...

Refined THH and TC™ over ku

11.1. g-Hodge filtrations and TC™™ (ku@ Q/ku) . . ... ... .....
11.2. Explicit ¢-Hodge filtrations . . . . . . . ... ... ... ... ...

Algebras of overconvergent functions

12.1. Adic spaces as analytic stacks . . . . . . ... ... .. ...
12.2. Graded adic spaces . . . . . . ..o
12.3. Proof of Theorems 1.40 and 1.41 . . . . . . . . .. ... ... ....

Appendix

A.

The g-de Rham complex

A.1. Rationalised g-crystalline cohomology . . . . . . . .. .. ... ...
A.2. The global ¢-de Rham complex . . . .. ... ... ... ......
A.3. The g-de Rham complex via TC™ . . . . ... ... ... .. ....

Habiro-completion
Even Ex-cell structures on flat polynomial rings

On the equivariant Snaith theorem

References

iii

109
109
116
118
119

125
125
132
138
142

153
153
155
158

159

161
161
165
168
172

178
178
187

190
190
196
200

204

204
205
209
212

215
219
220

222



ACKNOWLEDGEMENTS

Acknowledgements

First and foremost, I'd like to thank my advisor Peter Scholze. I'm especially grateful for his
trust to let me keep working on this project, even though my Master’s thesis turned up an
unexpected negative result. Four years after this initial setback, the Habiro cohomology he
envisioned is becoming reality, and I'm excited to be a part of this.

Large parts of this thesis are based on work of Sasha Efimov, Sanath Devalapurkar, and
Arpon Raksit, which at that time has been—or still is—unpublished. I thank them heartily for
their openness to explain their ongoing work to me, without which this thesis would have been
impossible.

It has been especially encouraging to have people interested in my work early on, at a time
when I wasn’t sure myself whether something would come out of it. I would like to thank
Quentin Gazda, Stavros Garoufalidis, and Campbell Wheeler for their interest and for the
many exciting discussions that followed.

It has been a pleasure to work on joint projects with Samuel Meyer and Deven Manam
and I’'m looking forward to continuing the collaborations. I would like to thank Herbert
Gangl, Kaif Hilman and Dominik Kirstein, Christian Kaiser, Arthur-César Le Bras, Robert
Osburn, Peter Teichner, Nathalie Wahl, and Torsten Wedhorn for inviting me to present my
work at various opportunities. I would also like to thank Gabriel Angelini-Knoll, Johannes
Anschiitz, Ben Antieau, Ko Aoki, Omer Bojan, Guido Bosco, Robert Burklund, Bastiaan
Cnossen, Jeremy Hahn, Lars Hesselholt, Akhil Mathew, Lucas Piessevaux, Florian Riedel, Juan
Esteban Rodriguez Camargo, and Bora Yalkinoglu for helpful conversations as well as Anna
Pape for helpful comments on a draft version.

Last but not least, I'm immensely grateful to all my friends and family for their continuing
support. A special thank you goes to Cara Hobohm for putting up with and providing valuable
feedback to my mathematical ramblings during all this time.

iv



§1. INTRODUCTION

§1. Introduction

This thesis attempts to answer the following question, which was raised by Peter Scholze:

1.1. Question. — Is it possible to construct a version of q-de Rham cohomology with
coefficients in the Habiro ring?

Before we go into any details, let us give an overview of what these objects are and why
Question 1.1 is relevant.

1.2. What’s g-de Rham cohomology? — We’ll answer this question in detail in §1.1
below. For now, it’s enough to know the following: ¢-de Rham cohomology is a cohomology
theory for smooth schemes over Z that was constructed by Bhargav Bhatt and Peter Scholze
[Sch17; BS19]. The ¢-de Rham cohomology of a X a smooth scheme over Z is the sheaf
cohomology

Hy ar (X) = H*(X, ¢-Qx/z)

of the g-de Rham complex q-Q2x/z. This object, in turn, is a sheaf of complexes of Z[q — 1]-
modules on X, whose reduction modulo (¢ — 1) is the usual de Rham complex of X:

a-Qx/z/(¢— 1) ~ Q%7
In other words, the ¢-de Rham complex is a g-deformation of the usual de Rham complex.

1.3. What’s the Habiro ring? — If Z[q]@qm_l) denotes the completion of the polynomial

ring Z[q] at the ideal (¢™ — 1), we define the Habiro ring as the limit

Hoi= lim Z[alfyn .
Here and in the following, N denotes the set of positive integers, partially ordered by divisibility.
An equivalent presentation (and the one originally used in [Hab04]) would be

H = lim Z[q]/ (@ )n

where (¢;¢)n = (1 — q)(1 — ¢*) -+ (1 — ¢") denotes the g-Pochhammer symbol.

We note that for every root of unity ¢ there exists a ring morphism H — Z[(][¢ — (]; in
particular, for ( = 1 we get a map H — Z[q — 1]. These can be shown to be injective, and so
the Habiro ring can be informally thought of as the “subring of Z[q — 1] of those power series
that admit Taylor expansions around each root of unity”.

We can thus informally restate Question 1.1 as follows:

1.1'. Question. — Given that the de Rham complex admits an interesting deformation
around q = 1, what can we say around other roots of unity?

In the following, we’ll call a putative answer to Question 1.1 Habiro cohomology. Let us
now explain why Habiro cohomology should be interesting.

1.4. Motivation from arithmetic geometry. — In arithmetic geometry we’re looking
for the “one cohomology to rule them all”. For p-adic formal schemes and p-adic coefficients,
a good candidate for such a theory is Bhatt—Scholze’s prismatic cohomology [BS19]. But in
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general, for schemes over Z—which we’ll usually call global—and arbitrary coeflicients, very
little is known.

But at least we know this: After completion at any prime p, the ¢-de Rham complex
(-2 X/Z)J/D\ computes prismatic cohomology of the formal scheme X x SpfZy[(,], where ¢,
denotes a primitive p'" root of unity. In fact, g-de Rham cohomology is the only known
non-trivial case in which the various prismatic cohomologies for all primes p can be combined
into one global object!

This makes g-de Rham cohomology interesting. Now a positive answer to Question 1.1
should be even more interesting, since it would contain a lot more information. To explain what
form this information takes, it is best to adopt a geometric perspective. This leads us to a brief
digression about stacky approaches to cohomology theories. The idea behind stacky approaches
is the following: To any reasonable cohomology theory Hj(—) and any geometric object X, it
should be possible to associate another geometric object X’ (often a stack, hence the name
stacky approach) in such a way that the cohomology Hj(X) is given by the sheaf cohomology

HY(X) = H*(X", 0),

where O denotes the structure sheaf of X’. This reduces studying the algebraic properties
of H(X) to studying the geometric properties of X*, which often holds much more refined
information.

The first instance of a stacky approach is Carlos Simpson’s de Rham stack X® [Sim96],
whose sheaf cohomology computes de Rham cohomology, as the name suggests. In recent years,
this idea has received much attention through the construction of a stacky approach to prismatic
cohomology by Drinfeld and Bhatt-Lurie [Dri24; BL22a; BL22b], the construction of a de
Rham stack for rigid-analytic varieties by Rodriguez Camargo [RC24b], and the subsequent
ongoing efforts to combine both constructions into a stacky approach to prismatic cohomology
for rigid-analytic varieties.

Stacky approaches also fit remarkably well with the philosophy that the “one cohomology to
rule them all” should be a sheaf on “X x SpecZ”, where the product is not taken in schemes,
but over the “absolute base” (the “field with one element”). This doesn’t exist, of course,
but we hope that a geometric object playing the role of “X x SpecZ” can be constructed
nonetheless. Any cohomology theory H3(—) with a stacky approach should then give rise to a
map X’ — “X x SpecZ”. Through these maps we can probe the elusive object “X x Spec Z”
and try to understand its geometry.

It’s currently unknown whether g-de Rham cohomology admits a stacky approach X
But assume that it does, and assume Habiro cohomology as in Question 1.1 not only exists, but
also admits a stacky approach X™. Then X7 would be a lot larger than X7 IR because already
the formal spectrum Spf A is much larger and much more complicated than Spf Z[q — 1]; we
attempt to draw a picture in Fig. 2. We expect that X" would be able to see much more of
“X x SpecZ” than X9 9R; in particular, X should see some interesting geometry that would
be invisible to X9 9R We’ll see a concrete instance of this expectation in 1.5 below, and we’ll
continue the discussion of X79® and X (in a slightly different setting) in §1.6.

g-dR

1.5. Motivation from 3-manifold topology. — The Habiro ring originally comes from
3-manifold topology: Habiro [Hab02] constructs an invariant of knots and homology 3-spheres
with values in his ring H.

Through work of Garoufalidis, Scholze, Wheeler, and Zagier [GZ23; GZ24; GSWZ24; GW25],

we now have evidence to believe that Habiro’s invariant is just the first instance of a much
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broader theory."") Due to the author’s ignorance, we won’t discuss their work in detail, but
let us at least mention the following construction: Given a number field F' and an integer
A divisible by 6 and by the discriminant of F'| the four authors construct a formally étale
H-algebra Hp,.[1/a] (the Habiro ring of the number field) and a morphism of abelian groups

K3(F) — Pic(Ho,[1/a])

(the regulator map); see [GSWZ24, Theorem 2]. Then they show that certain g-hypergeometric
series that arise in complex Chern—Simons theory naturally form sections of line bundles in the
image of K3(F) — Pic(Ho,[1/a])-

The Habiro ring of the number field Ho,.[1/a] is the Habiro cohomology of the scheme
X = Spec Op[1/A] (see Corollaries 2.13 and 3.13) and the formal spectrum SpfHo,.[1/a]
should be—at least in first approximation—the Habiro stack X™ envisioned in 1.4 above.
Thus, already in the simplest possible case, where X is étale Z, the Habiro stack X exhibits
interesting geometry in form of the line bundles above. Moreover, this geometry would be
invisible to any g-de Rham stack, since the line bundles in the image of K3(F') — Pic(Ho,[1/a])
all become trivial after (¢ — 1)-completion.

Even more recently, and again motivated by complex Chern—Simons theory (more precisely,
the asymptotics of the 3D index), Garoufalidis—-Wheeler [GW25] have constructed examples that
don’t yield sections of line bundles, but cohomology classes in non-zero degree. It’s currently
still conjectural whether these classes are contained in the Habiro cohomology that we will
construct in this thesis, but all the evidence we have is pointing towards this indeed being the
case.

All of this is suggests that Habiro cohomology should be at the center of a fruitful connection
between 3-manifold topology and arithmetic geometry. For a low dimensional topologist, Habiro
cohomology should provide a framework in which generalisations of Habiro’s invariant take
values. For arithmetic geometers, 3-manifold topology should provide a source of explicit classes
in Habiro cohomology. We hope to explore this much further in future work.

We’ve argued why it should be worthwhile to pursue Question 1.1, from the perspective of
arithmetic geometry but also through an unexpected connection to 3-manifold topology. Let us
now explain in some detail the contents of this thesis.

§1.1. g-de Rham cohomology

We start with a review of ¢-de Rham cohomology. For a much more technical introduction,
which contains the relevant constructions and proofs, the reader should consult §A.

Throughout the introduction we’ll always work over Z for simplicity. In the main body of
the text our base will instead be a A-ring A which is perfectly covered in the sense defined in
1.50 below.

1.6. g-derivatives. — For a polynomial ring Z[z], one can define a g-derivative (or Jackson
derivative after [Jacl0]) ¢-0: Z[z, q] — Z[z, q] via

Q‘af(l',q) — f(qaz, Q) - f(l'aq) )

qr — T

(D Perhaps even a topological quantum field theory.


https://arxiv.org/pdf/2412.04241.pdf#proposition.2
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For example, ¢-0(z™) = [m],z™"!, where [m], == 1+ g+ --- + ¢™ ! denotes the Gaussian
g-analogue of m. For a polynomial ring in several variables Z[x1,...,z,], one can similarly
define partial q-derivatives q-0; for i = 1,...,n and organise them into a g-de Rham complez,
as was first done by Aomoto [Aom90].

1.7. The g-de Rham complex. — In [Sch17], Scholze observed that, upon completing
at (¢ — 1), this construction can be extended beyond the case of polynomial rings. Define a
framed smooth Z-algebra to be a pair (S,0) of a smooth algebra S over Z and an étale map
O: Z[x1,...,z,] — S. Note that every smooth scheme over Z admits a Zariski cover by framed
smooth Z-algebras. Scholze shows that the partial g-derivatives can be extended to maps

q-0;: Slg — 1] — Slg —1]

as follows: Let v;: Z[z1,...,z,][q — 1] — Z[x1,...,x,][q — 1] be morphism of rings that sends
x; — qx; and leaves the other variables fixed. Then there exists a unique lift in the following
diagram of rings:

of s

Slg-1] ——— 5

Indeed, the left vertical arrow is the (¢ — 1)-completion of an étale morphism and the right
vertical map is a (¢ — 1)-complete pro-infinitesimal thickening, so existence and uniqueness
follows from the unique lifting property of étale morphisms against infinitesimal thickenings.
This lift will also be denoted ;. By construction, v; =id mod (¢ — 1). By lifting against
Slqg — 1] /(¢ — 1)x; — S instead, which is still a (¢ — 1)-complete pro-infinitesimal thickening,
we see that even 7; =id mod (¢ — 1)x;. This allow us to extend Jackson’s g-derivatives to all
f € Slqg—1] via
G-0,f = vilf) = f
qr; — I;
for i =1,...,n. Note that ¢-0; and ¢-0; commute for all ¢ and j. Indeed, this reduces to the
same assertion for v; and ;, which follows once again by an infinitesimal lifting argument. We
may thus construct the g-de Rham complex of (S,0) as the Koszul complex of the commuting
Z[q — 1]-module endomorphisms ¢-01, ..., q-0y:

-v -v VvV n
Qe = (Sl — 11 25 Qg — 1] 25 - 5 08l - 1)

where ¢-V = Y"1 | ¢-0; dx;.

1.8. Coordinate (in-)dependence. — The g-derivatives from 1.6 are extremely sensitive
to coordinate transformations such as x — x + 1, and there’s no way to make the complex
q-Q5% /2,0 independent of the choice of coordinates O, not even in the simplest case S = Z[z]. It
then comes as a small miracle that ¢-2% YASIELE! object in the derived category D(Z[q — 1]),
is independent of [, and functorial in S. More precisely, we have the following theorem due to
Bhatt and Scholze:

1.9. Theorem (Bhatt-Scholze; see Theorem A.1). — There exists a functor

q—Q_/ZZ SmZ — CAlg (ﬁ(q—l) (Z[[q - 1]]))
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from the category of smooth Z-algebras into the co-category (q—1)-complete Eoo-Z[q—1]-algebras,
satisfying the following properties:

(a) qQgz/(qg—1) ~ Q5y is the usual de Rham complex.

(b) For all primes p, the p-completion (Q*QS/Z)Q > §1¢)/Z[a—1] @grees with the prismatic
cohomology of S,[¢p] over the q-de Rham prism (Zy[q — 1], [ply)-

(¢) (q-Q/2 % Q)z\qfl) ~ (Qg/2 % Q)q — 1] becomes the trivial q-deformation.

(d) For every framed smooth Z-algebra (S,00), the underlying object of G-S0g/z in the derived
oo-category of Z[q — 1] can be represented as

q-Qsyz ~ q- Qg7 -

We note that as a consequence of (a) (or a combination of (b) and (c)), ¢-Q2_ /7 satisfies
Zariski (even étale) descent and so Theorem 1.9 guarantees the existence of a g-de Rham
complex g-{2x /7 for any smooth scheme X over Z.

A proof of this theorem will be explained in the appendix; see §A. The essential step is
to identify the p-completions (g-£2% /Zﬂ);\ with prismatic cohomology, which was achieved in
[BS19, Theorems 16.18 and 16.22].

§1.2. Can the Hodge filtration be g-deformed?

Given that the de Rham complex admits this canonical g-deformation, it is natural to ask how
much additional structure can be ¢-deformed along. One such piece of structure that features
very prominently in the classical theory is the Hodge filtration ﬁlfldg Q% /7 given by

i . i \%4 i v v n
filiyag 257 = (0—’ = 0= Qg — Qg — —>QS/Z)‘

1.10. Question. — Is there a “g-Hodge filtration” ﬁl;_Hdg q-Qg/z, which is a module over the
filtered ring (¢ — 1)*Z]q — 1] in the filtered derived co-category FilD(Z) and which q-deforms
the usual Hodge filtration in the sense that that we have a base change equivalence

iy tag -5z Oy 1yvzfq—1] Z — filfrag 52?7

In Part I of this thesis, we study this natural question and find that it has several surprises
in store, including a connection to Question 1.1.

(a) There is no functorial choice for fil} y4, ¢-2g/z, at least not if one imposes a few natural
additional compatibilities (namely, the ones in Definition 1.14 below).

(b) A functorial choice for fil] pq, ¢-C2g/7 does exist once we invert all primes p < dim(S/Z).

()  Whenever fil} 4, ¢-$2g/7 does exist, the g-de Rham complex ¢-{2g/z (and in fact, already
the ¢-Hodge complex introduced below) descends canonically to the Habiro ring.

We'll discuss these in the order (a), (¢), (b). Let us start with why a functorial ¢g-Hodge filtration
is impossible. A direct objection is known to the experts and will be reproduced in Lemma 3.3
below; here we’ll explain a somewhat indirect objection, which will also introduce a construction
that will become very important in the later discussion.


https://arxiv.org/pdf/1905.08229.pdf#theorem.16.18
https://arxiv.org/pdf/1905.08229.pdf#theorem.16.22
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1.11. A coordinate-dependent g-Hodge filtration. — For a framed smooth Z-algebra
(s,0) as in 1.7, there’s an obvious guess for what the g-Hodge filtration should be: We could
define filf_yq, 0 q_QZ‘/Z,D to be the complex

((a=17Sla =10 = (¢ = )7 Qpla =1 = -+ = Vyzla — 1 = - = Qe — 1])

The question then becomes: Can this filtration be made functorial as well? As it turns out,
this is most likely not the case. To formulate a precise objection, let us introduce another
construction.

1.12. A coordinate-dependent g-Hodge complex. — Given a framed smooth Z-algebra
(S,0), the g-Hodge complez of (S,0) is the complex
q—1)qV

—1)¢-V —1)¢-V
a-Hdghy 0 = (1o — 11 25 Qfjgle - 1] I - DT g g - 1)

given by multiplying all the differentials in the de Rham complex by (¢ — 1).

The g-Hodge complex was first studied by Pridham [Pril9], and it was suggested by Peter
Scholze to be a more natural object to descend to the Habiro ring than the g-de Rham complex
itself. There are several mathematical reason to for this expectation (and it will ultimately be
proven right in Theorem 1.16), but let us give a plausibility argument instead: Any cohomology
theory that descends to the Habiro ring should “treat all roots of unity equally”, and so instead
of g-derivatives that send ™ +— [m]qu*1 dx, which gives “special treatment” to ¢ = 1, we
should have differentials that send ™ +— (¢™ — 1)2™ ! dz. This precisely gives rise to the
g-Hodge complex from 1.12.

Observe that if fil] 14, 0 g-2% /2,0 could be made functorial, then the same would be true
for the g-Hodge complex, as it can also be obtained as

(¢-1) (¢-1) A

q—HdgE/z,D = colim (ﬁlg—Hdg,D q—Qg/Z,D - ﬁl;—Hdg,D Q‘QE/Z,D - )(q71) .

However, in [Wag24] we’ve found a strange objection to functoriality of the ¢-Hodge complex:
For all m € N and all rings R, we introduce differential-graded Z[q]-algebras ¢-W,,Q7}, 1z that

we call m-truncated q-de Rham—Witt complexes. The system (q—Win/Z)meN, together with
certain Frobenius and Verschiebung operators

Enja: WL 5 — W 5 and Vi, a0 ¢-WoE 7 — ¢-Wi, Q5

for all divisors d | m, satisfies a similar universal property as the usual de Rham—Witt pro-
complex with its Frobenii and Verschiebungen (compare [Wag24, Definitions 3.1 and 3.6] and
[LZ04, §1.3]). We then show the following result:

1.13. Theorem (see [Wag24, Theorems 4.27 and 5.1]). — Let (S,0) be a framed smooth
Z-algebra. Then the following is true:

(a) For every m € N, there’s an isomorphism of differential-graded Z|q]-algebras
~ A
H* (q-Hng/z,m/(qm - 1)) = (Q‘ngg‘/z)(qq) )
where the differential on the left-hand side is the Bockstein differential. In particular,
the cohomology of q—Hdgg/Zﬂ/(qm — 1) is independent of the choice of coordinates OJ.
Moreover, under the isomorphism above, the Frobenius operators F,, q are induced by the
canonical projections q—Hdgg/Z o/(@"—1) — q—Hdgi"g/Z o/ (g% —1).
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§1.2. CAN THE HODGE FILTRATION BE ¢-DEFORMED?

(0) (8,0) — ¢-Hdgg,; o cannot be extended to a functor ¢-Hdg_z: Smz — ﬁ(q_l)(Z[[q —1])
in such a way that the identifications from (a) also become functorial.

Theorem 1.13 is by all means a weird result. Part (a) promises functoriality and a wealth
of extra structure. Moreover, the fact that not ¢-W,,Q% /2 itself appears, but only its (¢ — 1)-
completion, looks encouraging when we’re seeking to descend the g-Hodge complex to the
Habiro ring. But then part (b) shows that functoriality of the ¢-Hodge complex is impossible,
at least not in a way compatible with the extra structure.

As we've argued above, this also raises a serious objection to whether the coordinate-
dependent g-Hodge filtration fil}_yq, 5 ¢-Q% /2,00 can be made coordinate-independent (and as
mentioned before, a more direct no-go is known and will be explained in Lemma 3.3). Unfazed
by this, we can introduce the following notion:

1.14. Definition (see Definition 3.2 for a more precise version). — Let S be smooth over Z.
A g-Hodge filtration on q-Sg/7 is a module over the filtered ring (¢ — 1)*Z[g — 1] in the filtered
derived category FilD(Z) such that:

(a) ﬁlg—Hdg q-Qs/z ~ q-Qg/z; that is, fil7 g4, ¢-Qg/z is a filtration on ¢-Qg/7.
(b) Al pag -s/z ®%q_1)*Z[[q_1]] Z ~ filjyy, Q5,7 is the usual Hodge filtration.
(c) After rationalisation, (filj_yq, ¢-S2s/2 ®% Q)(Aqfl) ~ filf g, -1 (QE/Z ®% Q)[g — 1] becomes

the (¢ — 1)-completed tensor product of the Hodge filtration on QE/Z and the (¢ — 1)-adic
filtration on Q[q — 1].

() Similarly, 81 gy (g2 (1) 1) > Blngg g1y (2%2)p[1/pg = 1] for primes p.

Moreover, to any g-Hodge filtration as above, we associate a g-Hodge complex

. (g-1) (g-1) A
q_Hdg(S,ﬁlg,Hdg)/Z = colim (ﬁlngdg, ‘J‘QS/Z q—> ﬁl;—Hdg Q‘QS/Z q—> s ) (-1) .
1.15. Remark. — As you’ll find, our definition Definition 3.2 in the main text allows for

arbitrary animated rings, not only smooth Z-algebras, and thus necessarily uses the derived
g-de Rham complex (see 1.49). We'll explain in Remark 3.6 that it doesn’t matter whether we
study ¢-Hodge filtrations on derived or underived ¢g-de Rham complexes.

With this Definition 1.14, we’ll give a partial answer to Question 1.1 and simultaneously
show an improved version of Theorem 1.13(a).

1.16. Theorem (see Theorem 3.11 and Corollary 3.54). — Let quszdg be the category of
pairs (S, il yag ¢-Qsz), where S is smooth over Z and fil} yq, ¢-Qg)7 is a g-Hodge filtration.

(a) The q-Hodge complex functor ¢-Hdg_ /4 Sm%_Hdg — ﬁ(q_l)(Z[[q —1]) admits a non-trivial
factorisation

(I’/Hdg—/Z - (7)/\
-7 (¢—1)

-Hdg ~ S
Smz " g, Pl (Zla))

where ﬁH(Z[q]) denotes the full sub-oo-category of Habiro-complete objects in the derived
oo-category of Z[q] (see the appendiz, §B).
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(b) For all m € N there’s a natural isomorphism
H*(¢-Hdg_,4/(¢™ = 1)) = -WpQZ .

() Lng-1)q-Hdg_ 4 ~ q-Q_ 4 is the g-de Rham complex, and so Ln,_1)q-Hdg_,, defines
similar factorisation of the functor ¢-Q_,4: Sm%‘Hdg — Dg—1)(Z[q])-

The proof of Theorem 1.16 is the technical heart of Part I and will occupy most of §3. At this
point, we haven’t seen any examples of g-Hodge filtrations except ﬁl;,Hdg’D q-2% /2,0 from 1.11
(in this case ¢-Hdg_ /4 can also be explicitly described as a complex; see Example 3.12). So it’s
not clear whether there are any non-trivial examples to which Theorem 1.16 applies. Fortunately,
it turns out that there are plenty:

1.17. Theorem (see Theorem 4.11). — A functorial q-Hodge filtration exists as soon as

one inverts all primes up to the dimension. More precisely: Let Smygiy-17 be the category of

smooth Z-algebras S such that all primes p < dim(S/Z) are invertible in S. Then the forgetful
q-Hdg . . .

functor Smy, — Smy, admits a partial section

(= AL} p1ag -0 z) * SMz[gim-1] — Sm% .

We'll prove this theorem in §4.1, but let us already sketch the construction in the case
where dim(S/Z) < 1 (so that no primes need to be inverted), as the idea is very simple.

1.18. Canonical g-Hodge filtrations in relative dimension < 1. — Let .S be smooth
over Z. The most naive idea to equip g-{2g/7 with a ¢-Hodge filtration would be to simply take
the pullback

il Hag sz —— ¢ Qsyz

L

filfiag s/z Qg7

This cannot work, of course, because in this pullback each filtration step ﬁl;_Hdg q-$g/7 will
contain all of (¢ — 1) ¢-Qg/z. In view of Definition 1.14(c) this is only ok for x < 1.

Now if S has relative dimension dim(S/Z) < 1, then filjjy, Q0§ /7 1s trivial in filtration degrees
* > 2. Consequently any filtration ﬁl;,Hdg q-Qg/7, satistying Definition 1.14(b) will necessarily
be given by the (g — 1)-adic filtration (¢ —1)*"1 ﬁlé—Hdg q-Q2g/ 4 in filtration degrees > 1. We may
thus define the first filtration step ﬁlé,Hdg q-Q25/4 using the pullback above and then construct
the rest of the filtration fil} 4, ¢-Qg/7 as

(q—QS/Z — i1} 1140 ¢-Qsyz — (¢ — 1) L] 105 ¢-Qs/z — (¢ — 1) A1) 1140 ¢-Qsyz — - ) :

One can (and we will) check that this satisfies all expected properties.

§1.3. g-Hodge filtrations from topological Hochschild homology over ku

Another rich source of examples of ¢g-Hodge filtrations, to which Theorem 1.16 (or its fully
derived version Theorem 3.11) can be applied, comes from homotopy theory. This will be the
content of Part II of this thesis.

To explain how this works, let us first recall how the Hodge filtration on the (derived) de
Rham complex is related to Hochschild homology and its cousins.
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1.19. Hochschild and negative cyclic homology. — Recall that the Hochschild homology
of a ring R is defined as
HH(R) = R ®pgr pon R

Here R is not necessarily commutative and R°P denotes the ring with the same underlying
abelian group but the opposite multiplication.

Note that the unit circle S, which we always identify with the topological group U(1),
acts naturally on HH(R). In the case where R is commutative, this is easy to explain: HH(R)
is the colimit of the constant R-valued functor const R: S' — CAlgD(Z) from S! into the
oo-category of E..-Z-algebras, essentially because pushouts in CAlg D(Z) are given by (derived)
tensor products. So we get an action S* ~ HH(R) ~ colimg:1 R via S! acting on itself. In the
general case, the S'-action can still be constructed, albeit not quite as easily; see e.g. [NS18,
Definition I11.2.3]. In any case, we define the topological negative cyclic homology of R as the
homotopy fixed points

HC™(R) := HH(R)"S" .

It turns out that these constructions are intimately connected to the de Rham complex. The
first result in that direction is the celebrated Hochschild-Kostant-Rosenberg theorem [HKR62],
which states that

H. (HH(S)) = Q%

when S is smooth over Z. A much refined version of this result for HC™ has been obtained
by Ben Antieau, following previous constructions by Loday [Lod92] for Q-algebras and by
Bhatt—-Morrow—Scholze [BMS19] in the p-complete case.

1.20. Theorem (Antieau [Ant19]). — For commutative rings R, there exists a motivic
filtration fil}, . HC™(R), which is ezhaustive and complete if R is quasi-syntomic, and whose

associated graded .
N7 grk o HC™(R) ~ filjg, ARz

mot

is given (up to shift) by the completed Hodge filtration on the derived de Rham complex of R.

1.21. “Motivic filtration = even filtration”. — Note that in the definition of Hochschild
and negative cyclic homology, one can replace the base Z by any E-ring spectrum k and R by
any [Ei-k-algebra. The resulting constructions are usually called topological Hochschild/negative
cyclic homology relative to k and denoted

THH(R/k) and TC™(R/k).

By an amazing insight due to Hahn—Raksit—Wilson [HRW22], the motivic filtration—and thus
a notion of “Hodge-filtered de Rham complex over k”—can also be defined for any E,-ring
spectrum k! Their construction works as follows: For any E.-ring spectrum 7', they define the
even filtration of T to be
filx T:= i E
eV T—»lEHelwen 7>2*( ) ’
where the limit is taken over all maps of E-ring spectra 7" — E such that 7, (E) vanishes in
odd degrees. If T' comes equipped with an S'-action, one can also define an S'-equivariant
version: ) )
ﬁl:v’hsl Ths = lim 7-22* (Ehs ) 5

T—FE even
Sl-equivariant


https://arxiv.org/pdf/1707.01799#thm.3.2.3
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where we now also impose that T — E is S'-equivariant. If R is an E..-k-algebra, these
constructions can be applied to T'= THH(R/k) to get filtrations

fily, THH(R/k) and fil%, , o THH(R/k)"S

on THH(R/k) and THH(R/k)"S' ~ TC™(R/k), respectively. In the case where k = Z and R
is quasi-syntomic, Hahn-Raksit-Wilson [HRW22, Theorem 5.0.2] show that Antieau’s motivic
filtration agrees with their S'-equivariant even filtration:

fil}

mot

HC™(R) ~ fil}, g HH(R)"" .
WEe’ll be interested in the case where k is one of the following E,.-ring spectra.

1.22. Complex K-theory spectra. — We define the periodic complex K-theory spec-
trum KU as the spectrum representing periodic complex K-theory, so that KUO(X ) is the
Grothendieck group of C-vector bundles on X whenever X is a compact Hausdorff space. We
also define the connective complex K-theory spectrum ku := 759(KU) as the connective cover
of KU. These are well-known to admit E,-structures and their homotopy groups are given by

m«(KU) = Z[f*!] and . (ku) = Z[3],
where the generator 5 € m(KU) is called the Bott element.

The following unpublished calculation of Arpon Raksit reveals an astonishing connection
between the Sl-equivariant even filtration on TC™ (—/ku) and another construction that we’ve
seen before.

1.23. Theorem (Raksit, unpublished; see Theorem 9.10). — Let ku[z] denote the flat
polynomial ring over ku. Then the associated graded of the S'-equivariant even filtration

2_2* grzvvhsl TC™ (ku[m] /ku) ~ ﬁl;—Hdg,D q_QZ[x]/Z,D

is given (up to shift) by the q-Hodge filtration from 1.11, applied to Z|z] equipped with the
identical framing O: Z[z] — Z[x].

1.24. Remark. — In fact, Raksit’s calculation works more generally for TC™ (e[x]/e), where
e = 7> (FE) is the connective cover of an even-periodic Eq-ring spectrum. The resulting 0"
graded piece grgv,hSl TC™ (e[x]/e) turns out to be the Fg-de Rham complex of Z[z] in the
sense of [DM23, Definition 4.3.6], where Fg is the formal group law associated to a complex
orientation t € m_o(EM 1). Roughly, the Fg-de Rham complex is a generalisation of the ¢-de
Rham complex of (Z[z],), in which the differentials send 2™ — (m)g(t)2™ ! dx, where
(m)g(t) == [m]g(t)/t denotes the reduced m-series of Fp.

This opens up the exciting possibility of higher chromatic versions of g-de Rham cohomology.
We’ll include some speculation in that direction in 1.46.

Our main goal in Part II is to show the following generalization of Raksit’s result, which
also yields a ¢-de Rham analogue of Antieau’s Theorem 1.20.

1.25. Theorem (see Theorem 7.27). — Let R be quasi-syntomic and 2 € R*. Suppose
that R admits a lift to a connective Eo-ring spectrum S such that R ~ Sp ® Z. Then there

10
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exists a q-Hodge filtration ﬁl;_Hdg q-dR gz on the derived q-de Rham complex of R such that

the associated graded of the SY-equivariant even filtration*?)

DR gri, nst TC™ (ku ® Sp/ku) =~ filf g, q—&f{R/Z
is given (up to shift) by the completion of this filtration.

1.26. Remark. — Given that ku is a deformation of Z ~ ku/f in “homotopical direction”,
it shouldn’t come as a surprise that we see a deformation of ﬁl’f{dg dRp/z appearing. It is
surprising, however, that the deformation is always g-de Rham cohomology.

Under the identification above, ¢ corresponds to a canonical class in Fo(kuhS 1): If we regard
the standard C-representation of S' as a C-vector bundle on the classifying space BS?, then its
image under KU?(BS?) 2 7o (ku® 1) agrees with the image of ¢.

1.27. Remark. — Thanks to Burklund’s breakthrough on the construction of multiplicative
structures on quotients [Bur22], it’s easy to construct quasi-syntomic rings R for which a
spherical lift Sg as in Theorem 1.25 exists. We’ll discuss several such examples in §9.

The constructions in and the proof of Theorem 1.25 will occupy §§5-7. The key ingredient
is a result by Sanath Devalapurkar ([Dev25, Theorem 6.4.1]; see Theorem 7.2), who constructs
an equivalence of S'-equivariant E..-ring spectra

THH (Z,[G,]/Spla — 11)) = 70 (ku'?)

for all primes p > 2. As an S'-equivariant E;-equivalence, this was shown for all primes in
unpublished work of Thomas Nikolaus (see Theorem 7.17). The S'-equivariant E.-equivalence
is also conjectured to be true for p = 2; if this could be shown, the condition 2 € R* in
Theorem 1.25 could likely be removed.

Devalapurkar’s equivalence allows us to relate the p-completion TC™ (ku ® SR/ku);\ to

TC*(EP[Cp]/ Spla — 1])2. The S!'-equivariant even filtration on the latter is known to compute
prismatic cohomology (see Proposition A.17), which in the case at hand agrees with the p-
completed derived de Rham complex (¢-dR /Z);;\ by Theorem 1.9(b). This allows us to go from
g-de Rham complexes to TC™ (—/ku), which eventually gives rise to the theorem. See also
[Dev25, Corollary 6.4.2] for a closely related observation.

Furthermore, we’ll show a version of Theorem 1.25 in which Sg is allowed to only be E{. This
case will be particularly interesting because it’ll allow us to compute g-Hodge filtrations explicitly
in Part III. To formulate the Eq-version, let us put ourselves in a p-complete situation, where p
is any prime (with p = 2 allowed) and let us assume that R/p is semiperfect in the sense that
the Frobenius (—)P: R/p — R/p is surjective. In combination with R being p-quasi-syntomic,
this assumption guarantees that TC™ (ku ® Sg/ku),) is even (see the argument in Remark 6.4).
So we can consider the double-speed Whitehead filtration 752, TC™ (ku®Sg/ku);; as an ad-hoc
replacement of the even filtration, which isn’t defined in this case as TC™ (ku ® Sg/ku) is only
an Eg-ring spectrum. The assumption also guarantees that the p-completed derived (¢-)de
Rham complexes (¢g-dRr /Z)Q and (dRp /Z)Q are concentrated in degree 0, so that we may regard
them as ordinary rings (see Lemma 4.18). The result in the E; case is then as follows:

(1-2)Note that in this situation THH(ku ® Sg/ku) is only an E;-ring spectrum, so the Hahn-Raksit-Wilson
construction of the even filtration won’t apply. Instead, we’ll be working with a version of that construction
due to Piotr Pstragowski [Pst23], which also applies to Ei-ring spectra. We’ll furthermore use a construction of
Raksit [PR; AR24] to get an S'-equivariant version of Pstragowski’s even filtration. The details are explained in
6.8 and 7.23.
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1.28. Theorem (see Theorem 7.18). — Let R be a p-complete p-torsion free p-quasi-syntomic
ring such that R/p is semiperfect. Suppose that R admits a lift to a p-complete connective
E1-ring spectrum Sgi such that R ~ Sgp ® Z. Then there exists a filtration ﬁl;—Hdg(q_dRR/Z)z/)\}
which q-deforms the p-completed Hodge filtration, such that

724 TC™ (ku ® Sp/ku) ~ A% 4. (¢-dRp/z)n

is the completion of this filtration. Moreover, ﬁl;_Hdg(q—dRR/Z);,\ can explicitly described as the
preimage of the combined Hodge and (q — 1)-adic filtration ﬁlz(Hdg7q—1)(dR’R/Z)l/)\[]‘/p] lq — 1]
under the canonical map

(¢-dRpyz), — (dRpyz), [2]lg — 1]
In particular, the filtration ﬁl;,Hdg(q—dRR/Z);\ is independent of the choice of Sg!

1.29. Remark. — It’s natural to ask whether the spherical lifts Sg in Theorems 1.25
and 1.28 can be replaced by lifts kurp to ku. We don’t expect that this works. At the very
least Theorem 1.28 cannot work with lifts to ku, since the ring that we use to obtain the
contradiction in Lemma 3.3 admits an E;-lift to ku (e.g. by [HW18]).

We do, however, expect that Theorem 1.28 and the p-complete variant of Theorem 1.25 (see
Theorem 7.9) are already true if we replace Sg with a lift jr to the j spectrum, which is defined
as the connective cover j := 7>0(Sg (1)) of the K(1)-local sphere. If we had a chromatic height 2
analogue of the equivalence THH(Z,);; ~ T>0( §%¢r) from [DR25, Theorem 0.1.4] available, this
could be shown along the lines of [DR25, §5].

A lift to j also seems to be the right condition in light of the following: It will be apparent
from the construction that the equivalences from Theorem 1.28 and the p-complete variant of
Theorem 1.25 (see Theorem 7.9) are Z)-equivariant with respect to the Adams action on kug
and a certain Adams action on the g-de Rham complex that we’ll explain in A.20. Now a lift
jr is roughly the same as a lift kug together with lifts of the Adams operations, so to get the
additional Z; -equivariance, we need at least a lift to j.

§1.4. Habiro cohomology and genuine equivariant homotopy theory

By Theorem 1.25, we can construct examples of g-Hodge filtrations using topological Hoch-
schild /negative cyclic homology over ku. We can then apply Theorem 1.16 (or its fully derived
version Theorem 3.11) to these ¢g-Hodge filtrations to see that the associated ¢-Hodge complexes
descend canonically to the Habiro ring. It’s a natural question if this Habiro descent can also
be expressed in terms of THH(—/ku). This is indeed the case, as we’ll explain in §8.

The homotopical incarnation of the Habiro descent involves genuine equivariant homotopy
theory. Since this is not part of the standard repertoire of arithmetic geometry, we’ll offer the
reader a crash course in §8.1. For now, we’ll only explain the rough idea in the case of KU.

1.30. Genuine equivariant KU. — Let G be a compact Lie group, which we let act trivially
on KU. It would certainly be nice if the homotopy fixed points KU"® were the spectrum that
represents the cohomology theory given by C-vector bundles with G-action. More precisely,
for every compact Hausdorff space X, we would like for (KU"@)%(X) to be the Grothendieck
group of bundles of G-representations on Y.
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Unfortunately, this turns out to be quite false. It fails already in the simplest possible case,
where G = C,, is a finite cyclic group of order m > 1 and X ~ = is a point: In this case the
Grothendieck group would be the representation ring

Re(Cm) = Z[q)/(q™ — 1), whereas (KU"“)"(x) = Z[q — 1] /(¢™ — 1)

holds by the Atiyah—Segal completion theorem [ASG9].

Genuine G-equivariant homotopy theory fixes such issues by incorporating G-actions on a
more fundamental level into the way we build spectra. To any genuine G-equivariant spectrum Y
one can associate a spectrum Y& of genuine fized points, which behaves more like we would
expect. For example, KU can be naturally equipped with a genuine G-equivariant structure for
every compact Lie group G, and in the case G = C), the genuine fixed points really satisfy

mo(KUS™) = Z[q]/(¢™ - 1),

as we’ll see 8.33. In general, genuine fixed points often behave like a decompletion of homotopy
fixed points, just like Question 1.1 asks for a decompletion of g-de Rham cohomology.

1.31. Genuine equivariant structure on THH. — The cyclotomic structure on THH(SRr)
allows us to upgrade the action of the finite cyclic subgroup C,, C S' to a genuine action for
all m € N (see e.g. [NS18, Theorem I1.6.3]). Together with the corresponding structure on KU
from 1.30, we obtain an upgrade of the C,-action on THH(KU ® Sp/KU) ~ THH(Sgr) ® KU
to a genuine C),-action.

The genuine Cy,-fixed points THH(KU ®Sg/KU) ™ will still carry a residual S*/C,,-action
and so we can form )
(THH(KU ® Sg/KU)Cm)"(5/m)

In 8.47 and 8.59, we’ll propose a construction of suitable genuine S'-equivariant even filtrations
ﬁl;y g1 on these objects. Afterwards we’ll show that these indeed realise the Habiro descent
from Theorem 1.25 homotopically:

1.32. Theorem (see Theorem 8.63). — Let R be quasi-syntomic and 2 € R*. Suppose
that R admits a lift to a connective Eo-ring spectrum®3) S such that R ~ Sp ® Z and let
ﬁl;_Hdg q-dRp/z be the q-Hodge filtration from Theorem 1.25. Then the associated q-Hodge
complex is

q_Hdg(Rvﬁlé—Hdg)/Z = grgv,hsl TC™ (KU ® SR/KU) ’

and its descent to the Habiro ring from Theorem 1.16 is given by

. h(S1/Cm,
HAE b1,/ > Jim 28, o0 ((THH(KU @ S/KU)Cr) "5/

§1.5. Refined localising invariants and THH™(Q)

The homotopical theory of g-Hodge filtrations and Habiro cohomology that we develop in
Part IT has the major drawback that it cannot be functorial in R, since the spherical Eo- (or
E;-)lifts cannot be chosen functorially. However, if R is a Q-algebra, then spherical lifts exist
tautologically: We can just take R itself, since R ~ R® Z is true for Q-algebras.

(1‘3)Again, there will also be an E;-version under certain additional assumptions on R.
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But the results won’t be interesting in this case. For instance, the g-Hodge filtration from
Theorem 1.25 will just be the combined Hodge and (¢—1)-adic filtration filfyy,, 1) dRr/z[g—1]:
This is essentially due to the fact that ku ® Q ~ Q[S] is a polynomial algebra on a generator
in homotopical degree 2 and it’s closely related to Theorem 1.9(c), which tells us that ¢-de
Rham cohomology doesn’t contain any new information rationally. In particular, whatever
cohomology theory for Q-varieties X we might be able to construct out of the even filtration
on TC™ (ku® X /ku), the result will always be rational again. Therefore, it will never allow for
any comparison map to non-rational cohomology theories, like singular cohomology of X (C) or
étale cohomology of Xg with torsion coefficients.

In Part IIT of this thesis, we’ll investigate a refined version of TC™(—/ku), due to Efimov
and Scholze, which should be able to overcome these issues. Let first explain how this refinement
works and what we know about it, then we’ll speculate in §1.6 how this should lead to improved
versions of g-de Rham/g-Hodge/Habiro cohomology for Q-varieties.

1.33. Rigid symmetric monoidal oco-categories. — The construction of refined TC™ is
based on the following notion due to Gaitsgory—Rozenblyum (see [GR17, Definition 1.9.1.2]
as well as [Ram24, Corollary 4.57] for a proof that their definition is equivalent to the one
we use here). A presentable stable symmetric monoidal(!**) is called rigid if the following two
conditions are satisfied:

(a) The tensor unit 1 € £ is compact.

(b) & is generated under colimits by objects of the form X ~ colim(X; — Xy — -+ ), where
each transition map X,, — X, 41 is trace-class. That is, if X,/ == Homg(X,,, 1) denotes
the predual of X,,, there exists a morphism 1: 1 — XY ® X,,+1 such that X,, — X, 11
agrees with the composition

X > X, ®1 -5 X, ®X) @ X1 — 1® X1 ~ X -

(see the review in §5.2).

We note that a compactly generated symmetric monoidal presentable stable co-category £ is
rigid if and only if “compact < dualisable” holds in £.

1.34. Rigidity of localising motives. — Let Prgtjw denote the oco-category of compactly
generated presentable stable co-categories and functors that preserve colimits and compact
objects. For us, a localising invariant is a functor

T: Prk

st,w D

into a stable oo-category D such that T preserves filtered colimits and sends short exact
sequences in Prgt,w (that is, sequences C' — C — C” that are both fibre and cofibre sequences)
to cofibre sequences in D.
Blumberg—Gepner-Tabuada [BGT16] defined an oco-category Mot!°¢ of localising motives as
the target of the universal localising invariant
uc: prl . Moto°,

st,w

Any localising invariant 7" as above then factors uniquely through a functor Mot'* — D, which
we usually (by slight abuse of notation) still denote by 7" and call a localising invariant.

(1-9By convention, we’ll always assume that the tensor product — ® — in a presentable symmetric monoidal
oo-category commutes with colimits in both variables.
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A relative variant of this construction was introduced by Efimov [Efi25, Definition 1.20]:
For any rigid presentable stable symmetric monoidal co-category £, he defines an oo-category
MotlgOC of localising motives over £. In [Efi-Rig], Efimov shows the remarkable theorem that
the presentable stable symmetric monoidal co-category MotlgOC is again rigid.

1.35. Refined localising invariants. — By an observation of Efimov and Scholze, the
rigidity of localising motives can be used to construct refined versions of certain localising
invariants as follows: Suppose

T: Motg® — D

is a symmetric monoidal localising invariant whose target is not rigid. By abstract nonsense, T'
factors uniquely through the rigidifaction D"& of D:

Mot¢ —L— D

\ 1\
~
~
N
~
Tref ~ <

Drig
We then define refined T' to be the factorisation T : Mot¢ — D',

1.36. Refined THH/TC™~. — If k is an E..-ring spectrum, we can apply the above to the
case €& = Mody(Sp). Write Motio® := Motﬁ%dk(sp) for short. Then

THH(—/k): Mot —s Mod,(Sp)BS"

is an example of a symmetric monoidal localising invariant with rigid source but non-rigid
target. We let THH™ (—/k) denote its refinement.

If k is complex orientable and t € m_o (k™ 1) is a complex orientation generator, then taking
S!-fixed points induces a symmetric monoidal equivalence

(—)"5": Mody(Sp)P%" = Mod, g1 (Sp)7

between k-modules with S'-action and t-complete k™' -modules (see Lemma 11.2). Scholze
and Efimov then define TC™"f(—/k) to be the composition

ref
TC_’ref(*/k)I Mot}coc THH™ (- /k) (

Mody,(Sp)25")™ ~ (Mod, 51 (Sp)i) "8 .

In this case, [Efi25, Theorem 4.2] allows us to pin down the rigidification on the right-hand
side: It agrees with Efimov’s oco-category Nuc(khs 1) of nuclear k" 1—modules, defined as the
full sub-oco-category of Ind(Mod,rs! (Sp);') generated under colimits by sequential ind-objects
of the form “colim”(M; — My — ---) such that each M,, — M,,; is trace-class.

1.37. Remark. — The refinement procedure from 1.35 is very sensitive to the choice of £.
This is a feature, not a bug: It offers a lot of flexibility, even if we stick to THH. For example,
if C' is a complete non-archimedean algebraically closed field, one can look at the refinement
THH;%C(—; Zp) of the functor

A

1
THH(—; Z,): Mot§¢, — Modrum(oz,) (Sp"° ), -
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That is, we refine (p-completed) absolute THH, but only accept motives over O¢ as input.(1-?)
This is vastly different from THH"(—; Zp), where we would allow all localising motives.

Scholze and Efimov [Sch24a] have sketched a computation of THH‘;%C (C;Z,)—or rather
TC/_(’;gf(C ; Zyp), which is equivalent by Lemma 11.2—, by reducing the problem to the known
computation of THH(O¢/p*; Z,) for all @ > 1. We'll explain a general version of this reduction
in Theorem 10.17 and Example 10.27.

This brings us to the main question that we investigate in Part III of this thesis.
1.38. Question. — What is THH™!(Q)?

It’s clear from the start that the answer to this question is non-trivial: While THH(Q) ~ Q,
the p-completions THHref(Q);,\ are non-zero for all primes p. Indeed, this follows from Efimov’s
and Scholze’s result in Remark 1.37, or alternatively from Theorem 1.40 below. The observation
THHref(Q)Q # 0 is certainly welcome in view of the discussion at the beginning of §1.5

But actually computing THH“’f(Q)7 or just its p-completions, seems currently out of reach:
We'll explain in Example 10.27 how to reduce this to a computation of THH(S/p®) for all
sufficiently large «, but computing these spectra seems impossible at the moment.

Scholze and Efimov have suggested that a more approachable goal would be to compute
the base change THH* (Q) ® MU ~ THH" (MU ® Q/MU) and then to attack the original
question—to the extent in which that’s possible—via Adams—Novikov descent. While we still
don’t know how to compute THH(S/p®) after base change to MU, we can compute the answer
after base change to ku thanks to Theorems 1.25 and 1.28. This leads to a computation of

THH™ (ku ® Q/ku) and THH™(KU® Q/KU).

In §§11-12, which are based on the joint work [MW24] with Samuel Meyer, we explain this
computation. First note that it is an equivalent problem to compute TC ™" (ku ® Q/ku) and
TC™ (KU ® Q/KU). Via Burklund’s results from [Bur22], we construct a certain system of
[E;-algebra structures on S/m, where m ranges through a certain coinitial sub-poset N C N.
From these E;-algebras and Theorem 1.2819) we'll construct pro-systems of completed g-Hodge
filtrations and g-Hodge complexes

‘7‘71116111\1{;’ fil} gag ¢-AR(z/my/z  and ‘;{ieﬁl\};’ q-Hdg(z/m)/z -

We’ll show that these are idempotent as pro-algebras. Using the notion of killing idempotent
pro-algebras that we’ll explain in §10.1, we’ll then derive a preliminary description of homotopy

groups of TC™™ (ku ® Q/ku) and TC™" (KU ® Q/KU):

1.39. Theorem (joint with Meyer [MW24]; see Theorem 11.15). — TC™**(ku® Q/ku) and

TCf’ref(KU ® Q/KU) are concentrated in even degrees. Moreover, their even homotopy groups

are described as follows:

(a) mou TCT (ku®Q/ku) = Af , where A is the idempotent nuclear graded Z[B][t]-algebra
obtained by killing the idempotent pro-algebra “lim;, s ﬁl;,Hdg ¢-dRz/m)/z-

(5 Historically, THH’;‘};C(—; Zyp) is the first refined invariant considered by Scholze and Efimov.

(1-6)Note that Theorem 1.28 doesn’t apply in the case R = Z/p®, since this ring is not torsion free. We’ll instead
apply it in the case R = Zp{r}oo/x*, where Zp{z}o denotes the free perfect §-ring on a generator z, and then
use base change along the §-ring map Zp{z}sc — Zp that sends x — p.
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(b)  mow TCT™ (KU ® Q/KU) = Agy[BT'], where Axy is the idempotent nuclear Z[q — 1]-
algebra obtained by killing the idempotent pro-algebra “limp, cn¢ ¢-Hdg(z/m) /2.-

In §11.2, we’ll compute ﬁl;,Hdg q—&f{(z /m)/z. and ¢-Hdg(z, /.,y /7, explicitly, which enables us to
make the above descriptions more concrete. To be able to formulate such a concrete description
in geometric terms, we’ll replace ku and KU by their p-completions ku{,\ and KU{D\ for an
arbitrary prime p. Let us first formulate the geometric result for KU;,\, as it is easier to state.
We put

Agu,p = m TC™™ (KU} @ Q/KU}),

SO T2 TCf’ref(KUg ®Q/KU)) = Akup[BF]. Let also X = SpaZ,[q— 1]~ {p=0,q = 1} be
the “analytic locus” where p or ¢ — 1 is invertible. Then Aky ) has the following description,
confirming a conjecture of Scholze and Efimov:

1.40. Theorem (joint with Meyer [MW24]). — Let Z C X denote the union of the closed
subsets Spa(Fy((q — 1)), Fplg — 1]) and Spa(Qp({pn), Zp[Cpn]) for alln > 0. Let ZT denote the
overconvergent neighbourhood of Z in X and let O(Z') be the nuclear Z,[q — 1]-algebra of
overconvergent functions on Z. Then

Axu, = 0(Z7).

In Fig. 1 we show a picture of ZT. It should be reminiscent of Scholze’s famous prismatic pic-
ture (a nice depiction of which can be found in [HN20, p. 4]), but the rays are “overconvergently
blurred” and the “origin” {p = 0,¢ = 1} has been removed.

Fig. 1: The overconvergent neighbourhood Z7.

Since Z' visibly contains the entire infinitesimal neighbourhood of {p = 0} except for
the “origin”, we see that TC*’ref((KUQ ® Q)/KU))» # 0. In particular, it follows that
THHref(Q);\ # 0, as we’ve claimed above.
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A

P

with its (p,t)-adic topology. We wish to encode the graded (p,t)-complete ring Z,[3][t] in
A

terms of an action of G, on SpaZ|f,t] (p.t)> 8BS usual—but we have to be careful: Since we
wish that ¢ is a topologically nilpotent element in non-zero graded degree, we can only act
by units u “of norm |u| = 1”. More precisely, we have to replace G,, by the “adic unit circle”
T := Spa(Z[u*!], Z[u*!]).

With this modification, everything works (as we’ll elaborate in §12.2): Declaring 8 and ¢ to
have degree 2 and —2, respectively, determines an action of T on Spa Z|[#, t]@) ) and we can

identify Zp[B][t] with the structure sheaf on (SpaZ[z, t]@) t)) /T, where the quotient is always

taken in the derived (or “stacky”) sense. We also let X* := Spa Z[ﬁ,t]@) HN {p=0,5t =0}
Since p and St are homogeneous, X* inherits an action of T. Putting

To formulate a similar geometric result for ku/', consider the ungraded ring Z[ﬁ,t]f\p "

Af,p = TCT™ (ku) @ Q/kuyp)

we see that Af,  is a graded Z,[S][t]-module, hence we can regard it as a quasi-coherent
sheaf on (SpaZ[$, t](Ap t)) /T. As we'll see, it is already the pushforward of a sheaf on the open
substack X*/T. This sheaf, which we’ll also denote Aﬁu’p, can be described as follows:

1.41. Theorem (joint with Meyer [MW24]). — Let Z* C X* be union of the T-equivariant
closed subsets {p = 0} and {[p"|xu(t) = 0} for all n > 0, where [p"|iu(t) = (1 + Bt)P" —1)/B
denotes the p™-series of the formal group law of ku. Let Z*% denote the overconvergent
neighbourhood of Z*. Then Z*% inherits a T-action and

* ~
Aku,p == Oz*,T/T .

§1.6. Synthesis: Towards a new cohomology theory for (Q-varieties

Let us end with an outlook and a bit of speculation. First, it should be possible to adapt the
formalism of even filtrations from [HRW22; Pst23] to the nuclear setting to define an even
filtration il ;o TC™(—/ku). We already take some steps towards this goal in §5.

1.42. g-de Rham/g-Hodge cohomology for Q-varieties. — For a smooth variety X over
Q, we can use this even filtration on TC™"f(—/ku) to define cohomology theories RTo,(X)
and RT'ky(X), the former automatically equipped with a filtration, via

fl* Rl (X) = 5" gr¥, o0 TCT ™ (ku @ X/ku) ,
RIku(X) = grd, g1 TCT (KU ® X/KU).
Morally, fil* R['y,(X) should be the “g-Hodge-filtered g-de Rham cohomology of X7 and
RI'ky(X) should be the “¢-Hodge cohomology of X”. But in contrast to the naive notions,
which would be rational, RI'k,(X) and RI'ky(X) will be non-trivial modulo any prime p, as
Theorems 1.40 and 1.41 already show.

So it is not out of the question to hope for comparisons to étale cohomology RI'¢;(Xg,Z/N)
with torsion coefficients. We intend to return to this in future work.

1.43. Habiro descent of RI'kuy(X). — We expect that RI'ky(X) can be canonically
descended to an object RI'y (X)) satisfying

RIku(X) = RT%(X) @5 Z[g — 1]
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(here —®L™ — denotes the solid tensor product; see 5.1 below). It should be possible to construct
RI'%(X) via an “analytic” version of Theorem 1.16, but there should also be a construction via
genuine equivariant homotopy theory as in Theorem 1.32: Namely, we can regard THH(—/KU)
as a functor

THH(—/KU): Moti{, — Modyy(CycnSp)

into the oco-category of KU-modules in cyclonic spectra (see §8.2). Applying the refinement to
this functor, we get a version of THH™!(—/KU) with values in NucInd(Modky(CycnSp)). It
should again be possible to construct a version of the even filtration in this co-category. Finally,
RI'y(X) should arise as the 0 graded piece of that even filtration on THH* (KU ® X/KU).

The ring of coefficients Agxy = RI'y(Spec Q) roughly looks as follows: Generically, it should
agree with the Habiro ring, but p-adically, each factor in

Hy~ [ ZolGnlla — Gul
(m,p)=1

should be replaced by a base change of Fig. 1. Here’s an attempt at a picture:

“SpecFq[q]”

Fig. 2: The analytic spectrum of Aky. The picture shows how different roots of unity (the
“fibres over Iy [g]”) collide p-adically. Around each collision, AnSpec Ay should be an
overconvergent neighbourhood of the colliding rays, with the collision point removed.

1.44. Habiro stacks. — We furthermore expect that RI'y,(—), R['ku(—), and RI'y(—)
naturally admit stacky approaches as in 1.4. In forthcoming work of Devalapurkar-Hahn—Raksit—
Yuan [DHRY] (some of which is already contained in [Dev25, §7.1]), it will be explained that
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the theory of even filtrations can be supplemented by a theory of even stacks, which roughly
replaces the limit fil}, 7' ~ limp_ g oven 7>24(E) by the colimit

SpevT = colim Specmo(F)/Gy,.
T—E even

We hope that an appropriate S'-equivariant or cyclonic nuclear version of this construction
should provide the desired stacky approaches X*", XKU and X™.

At this point it is high time to mention that Peter Scholze [Sch25] has proposed another
construction of a Habiro stack X12P which lives over a certain “analytic” version H®" of the
Habiro ring. Funnily enough, H*" and the base ring Ak from 1.43 are almost “complementary”
in that g is “close, but not too close” to a root of unity in H?®", whereas ¢ is “overconvergently
close” to a root of unity in Agy. We hope to combine both constructions in future work, each
filling in the missing pieces of the other.

Switching back from varieties over Q to smooth schemes over Z, let us summarise what we
now know about Question 1.1.

1.45. The current state of Habiro cohomology. — For a smooth scheme X over Z, we
are presently in the comfortable situation where Question 1.1 has not one, but at least three
positive answers. Namely:

(a) The sheaf cohomology RI'(X!ab ) of Scholze’s Habiro stack.
(b) The cohomology RI'y(Xq) of the generic fibre as sketched in 1.43.

(¢) If n:= dim(X/Z), we can combine Theorems 1.16(a) and 1.17 to construct a sheaf of
Habiro-descended ¢g-Hodge complexes ¢-Hdg Xop/my/Z O1 X7[1/n1)- Its sheaf cohomology
RI'(X, ¢-Hdg Xa(1/m /z) is another reasonable candidate for the Habiro cohomology of X.

We hope that all three options will turn out to be compatible. For (a) and (b) we don’t
know how to do this, but hope to return to this question in future work. For (b) and (c), the
comparison should work by a variant of Theorem 1.32.

By construction, (a) has a stacky description, and we’ve explained in 1.44 why we expect
the same for (b). For (c), this is impossible, due to the rather subtle monoidality properties of
the construction that we’ll discuss in 4.12. Up to this shortcoming, option (c) gives the best
integrality properties for primes p > n. But also note that both (a) and (b) contain non-trivial
information at primes p < n that (¢) can’t see.

1.46. Higher chromatic speculation. — Finally, let us point out that the constructions
from 1.42 should work just as well if ku and KU are replaced by any E..-ring spectrum. It
would also be really interesting to see if “analytic” versions of Raksit’s Fg-de Rham complex
from Remark 1.24 appear if ku and KU are replaced by e and FE.

The long term goal should be to understand TC™**!(—/MU), or better yet, the absolute
refined topological Hochschild homology

THH™ (—): Mot'°® — NucInd(CyctSp)

and its cyclotomic nuclear even stack (which would need to be defined). In the context of
varieties over Q, we should point out that THHmf(Q) is an E.-algebra over the K-theory
spectrum K (Q), which vanishes upon 7'(n)-localisation for n > 2. Due to the delicate nature
of the refinement, this doesn’t mean that the answer over a higher chromatic base would
be trivial, and TC™" (MU ® X/MU) should still contain strictly more information than
TC™ ™ (ku ® X/ku), but that information will necessarily be rather subtle.
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§1.7. Notations and conventions

1.47. Conventions on oo-categories. — We freely use the language of co-categories. We
denote by Ani and call anima what outside of Bonn is known as the oco-category of spaces.

Stable oco-categories. We denote by Sp the oco-category of spectra and by S € Sp the
sphere spectrum. For an ordinary ring R, we let D(R) denote the derived oo-category of R.
We often implicitly regard objects of D(R) as spectra via the Eilenberg-MacLane functor H,
but we’ll always suppress this functor in our notation.

For a stable oco-category C, we let Home(—, —) denote the mapping spectra in C. The
shift functor and its inverse will always be denoted by ¥ and =1 (even for D(R)), to avoid
confusion with shifts in graded or filtered objects.

Symmetric monoidal co-categories. For a symmetric monoidal co-category C, we usually
denote by ®¢ and 1¢ its tensor product and tensor unit. If no confusion can occur, we
simply write ® and 1 instead. If C is symmetric monoidal, we let Algy (C) and CAlg(C)
denote the oco-categories of E,-algebras and E.-algebras in C, respectively.

Whenever we consider a symmetric monoidal co-category C which is stable or presentable,
we always implicitly assume that the tensor product commutes in both variables with finite
colimits or arbitrary colimits, respectively. In the presentable case, we let Hom,(—, —)
denote the internal Hom in C and XV := Hom¢(X, 1) the predual of an object X € C.

1.48. Conventions on graded and filtered objects. — For a stable co-category C, we
let Gr(C) and Fil(Sp) denote the oco-categories of graded and (descendingly) filtered objects in

C.

The shift in graded or filtered objects is denoted (—)(1). We’ll always try to distinguish

between graded/filtered degree and homotopical/homological degree.

Descending and ascending filtrations. Unless specified otherwise, filtrations will be
descending by default. An object with a descending filtration is typically denoted

filF X = (---<—ﬁ1”X<—ﬁ1”+1X<—--->

and we let gr* X denote the associated graded, given by gr™ X := cofib(fil""! X — fil"* X).
We mostly work with filtrations that are constant in degrees < 0 (such as the Hodge filtration
and its variants). In this case we’ll abusingly write fil* X = (fl° X « fil' X « -..); this
should be interpreted as the constant fil® X-valued filtration in degrees < 0.

Sometimes we also consider ascending filtrations. Ascendingly filtered objects will be
denoted fil, X = (--- — fil,, X — fil,41 X — ---) and the associated graded by gr, X, where
gr,, X = cofib(fil" 1 X — fil" X).

Graded and filtered tensor products. If C is presentable stable symmetric monoidal,
we'll equip Gr(C) and Fil(C) with the Day convolution symmetric monoidal structures.
We frequently use the following fact: Let 1g, and lp; denote the tensor units in Gr(C)
and Fil(C), respectively. Then the underlying graded object of 1g; can be identified with
the graded polynomial ring 1g;[t], where ¢ sits in graded degree —1, the forgetful functor
Fil(C) — Gr(C) induces an equivalence

FII(C) = MOler[t] (GI‘(C)) 3

and under this equivalence, the associate graded gr*: Fil(C) — Gr(C) becomes identified
with the base change functor — ®q, 1] Lcr. See [Rak21, Proposition 3.2.9] for example.
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o Exhaustive and complete filtrations. We say that a filtered object fil* X is an exhaustive
filtration on X if X ~ colim,,_,_~ fil" X. We say that fil* X is complete if 0 >~ limp, o0 fil" X
Given an exhaustive filtration fil* X on X, we define its completion fil* X via

fil* X := lim cofib(fil™*" X — fil* X).

This is an exhaustive filtration on X := lim,_o cofib(fil* X — X). By construction, we
have a pullback square

~

fil* X —— fil* X

I
X X
We’ll often refer to this by saying that every filtration is the pullback of its completion.

Let us also remark that under the identification of filtered objects with graded 1g;[t]-
modules, the notions of completeness and completion agree with those of t-completeness and
t-completion that we’ll review in 1.49 below. Moreover, this exhibits the pullback square
above as a special case of a general fracture square.

1.49. Conventions on derived algebra. — Most algebraic constructions in this thesis will
be derived (with one notable exception in §4.2) and we’ll use the following terminology:

e Animated rings. If £ is an ordinary ring, we denote by AniAlg, the oco-category of
animated k-algebras. In the case k = Z we’ll write AniRing and say animated rings instead.
AniAlg,, is the oo-category freely generated under sifted colimits by the category Poly; of
polynomial k-algebras in finitely many variables; equivalently, AniAlg; can be described as
the (oco-categorical) localisation of the category sCAlg,. of simplicial commutative k-algebras
at the weak equivalences.

An animated ring which is concentrated in homological degree 0 (and hence an ordinary
ring) will be called static (“un-animated”). We’ll use the same terminology for spectra
concentrated in homotopical degree 0. We don’t use the more common term discrete to
avoid confusion with condensed spectra that are equipped with the discrete (“un-condensed”)
topology; see 5.1.

e Animation/nonabelian derived functors. If F': Poly, — D is any functor into oo-
category D with all sifted colimits, then F' extends uniquely to a sifted colimit preserving
functor LF': AniAlg;, — D, which we call the animation or (non-abelian) derived functor of
F (both names will be used synonymously). The main examples of interest are

Ql/k: Poly, — D(k), Qi/k: Poly, — D(k), ¢-Q_/4: Polyy — ﬁ(q_l) (Alg —1])

for a A-ring A. The corresponding derived functors will be denoted L_; (the cotangent
complex), dR_ ), (the derived de Rham compler), and ¢-dR_,4 (the derived q-de Rham
complex), respectively.

o Derived quotients. For an E;-ring spectrum R, a homotopy class f € m,(R), and a left-
or right- R-module M, we denote

M/ f = cofib(f: X"M — M).

For several homotopy classes fi,..., fr, we let M/(f1,...,fr) = (-~ (M/f1)/fa )/ fr
Observe that if M is a static module over a static ring R, then M/(f1,..., f.) agrees with
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the usual quotient only if (f1,..., fr) is a Koszul-regular sequence on M, but we’ll never use
the notation in a case where this is not satisfied.
Similarly, if R* is a graded E;-ring spectrum, f € m,(R?), and M* is a left or right-R-
module, we put
M*/f == cofib(f: X" M (i) — M)

and define M*/(f1,..., fr) analogously. The same notation will also be used in the filtered
setting, by regarding filtered objects as graded 1¢,[t]-modules, as explained in 1.47.

e Completions. For an E,-ring spectrum R, finitely many homogeneous homotopy classes
fi,..., fr € mx(R), and an R-module spectrum M, we let

M(fl,..‘,fr) = }zlg M/(flna ct f;l)

denote the (f1,..., fr)-adic completion of M. Analogous notions will sometimes also be
used in the graded or the filtered setting.

Since the completion only depends on the ideal I = (fi,..., fr) C m(R), we often just
write M (or (=)} for longer arguments). If R is an ordinary ring, this recovers the notion
of derived I-completion; in particular, all completions in this article will be derived. For the
p-completions of Z and the sphere spectrum S we omit the hat and just write Z, and S,.

We let Modg(Sp); € Modg(Sp), or D;(R) C D(R) for static rings R, denote the full
sub-oco-category spanned by the I-complete objects, that is, those M for which M ~ M, 1. The
following fact will be used countless times: If M is (f1,..., fr)-complete, and the homotopy
groups of M/(f1,..., fr) vanish in some degree d, then also the homotopy groups of M must
vanish in degree d.

e Fracture squares. We'll frequently use the fact that in the general situation above there
are natural pullback squares

M g M 1;[Mp
J | J and - J
M[3] — Fy[4) M0 —— [[Te0
p

where the product on the right is taken over all primes p. In the case where f = N is an
integer, we’ll refer to the pullback square on the left as the arithmetic fracture square; the
same terminology will be used for the pullback on the right.

1.50. Perfectly covered A-rings. — Throughout the text, A will denote a A-ring, which
we’ll usually assume to be perfectly covered. By this we mean that the Adams operations
Y™ A — A are faithfully flat for all m; or equivalently, that A admits a faithfully flat A-ring
morphism A — A into a perfect A-ring. We remark that perfectly covered A-rings are
p-torsion free for all primes p, because the same is true for perfect A-rings.
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PART I.
g-Hodge complexes over the Habiro ring

In this part, we show that whenever a ¢-Hodge complex can be defined, it descends canonically
to the Habiro ring. More precisely, for any perfectly covered A-ring A, we’ll introduce an
oo-category AniAng{Hdg of pairs (R, fil] g4, ¢-dRp/4) consisting of an animated A-algebra R
and a filtration on the derived g-de Rham complex ¢-dRpg,4, which g¢-deforms the Hodge
filtration ﬁlf{dg dRp/4 and satisfies a few natural compatibilities. To any such pair we associate

the q-Hodge complex

. (4—1) (@)
q-Hdg (g gy 4;,,)/4 = colim (ﬁlg-Hdg g-dRp/a ~— filj g ¢-dRpja —— -+ ) 1)
We'll then show in Theorem 3.11 that the functor ¢-Hdg_ /,: AniAlgi{Hdg — ﬁ(q_l) (Alq])

admits a non-trivial factorisation

Dy (Alq])
F e (T
-7 -
AniAlg? s Dg-1)(Alq])

¢-Hdg_ /4

where Dy (A[q]) denotes the derived oo-category of Habiro-complete A[q]-modules in the sense
of §B. The non-triviality of the factorisation will be measured in a precise way using derived
versions of the ¢g-de Rham-Witt complexes from [Wag24].

Overview of Part I. — This part is organised as follows: In §2, we’ll construct ¢-Hdg_ /A in
the case where R is étale over A. This is much cleaner than the general case, and we’ll recover
the construction of the Habiro ring of a number field from [GSWZ24]. In the long and technical
section §3, we’ll construct g-Hdg_,4 in general. In §4, we’ll show that even though there’s no
functorial choice of a g-Hodge filtration—that is, the forgetful functor AniAng{Hdg — AniAlg 4
provably has no section—such sections exist on surprisingly large full subcategories of AniAlg 4.

In particular, there are many examples to which Theorem 3.11 can be applied.






§2. HABIRO RINGS OF ETALE EXTENSIONS

§2. Habiro rings of étale extensions

Fix a perfectly covered A-ring A. The goal of this section is to construct a relative Habiro ring
Hp/a for any étale algebra R over A, and to relate this construction to the theory of ¢-Witt
vectors. In the case where A = Z, our construction Hp,z recovers the ring Hp from [GSWZ24,
Definition 1.1].

As we’ll see in §3, the construction of Hp/4 is a special case of a much more general
construction. However, the general case is vastly more technical, so it will be worthwhile to
spell out the étale case first.

§2.1. A general descent principle

To construct Hp,4, we'll first construct the completions (Hgp / A)gm (@) for all m € N and then
“glue them together” using a very general descent principle that we’ll explain in this subsection.
It will probably seem a little overkill for now, but we’ll use the same descent principle again in
§3.3 to construct the twisted ¢g-de Rham complexes q—ng%mI)L‘.

2.1. Setup. — Let Z be a site whose underlying category is a partially ordered set. Let D be
a presentable stable symmetric monoidal co-category. Suppose that for every Z € 7 we have a
full stable sub-co-category Dy satisfying the following conditions:

(a) The inclusion Dz C D admits a left adjoint Lz: D — Dy.

(b) Whenever Z; — Z3 is a morphism in Z, we have Dz, C Dy,. Note that Lz, : Dz, — Dy,
is still a left adjoint of this inclusion.

(¢) Forall z,y € D and all Z € Z, the canonical morphism Lz (z®y) — Lz(Lz(z) ®vy) is an
equivalence in D.

In this case, sending Z +— Dz and (Z1 — Z3) — (Lz,: Dz, — Dz, ) defines a contravariant
functor
D(_y: I°° — CAlg(Pr};)

into the oo-category of presentable stable symmetric monoidal oco-categories. Indeed, let’s
ignore the symmetric monoidal structure for the moment and let Dz C Z x D be the full
sub-oo-category spanned fibrewise by D, C {Z} x D. By (b), Dz — T is still a cocartesian
fibration and so it defines a covariant functor D(_y: T — Catoo. By (a), this functor factors
through PrY. Using Prk ~ (Pr})° by [L-HTT, Corollary 5.5.3.4], we get the desired functor
D(_y: I — Prl.

To incorporate the symmetric monoidal structure, let D be the oco-operad D® associated to
the given symmetric monoidal structure on D. By (¢) and [L-HA, Proposition 2.2.1.9], for all
Z € 7, the inclusion of the full sub-co-operad D%) C D% spanned by Dy admits a symmetric
monoidal left adjoint L%): DO — D? which recovers Lz on underlying co-categories. Using this
observation, the same argument as above can be repeated with D replaced by D®.

2.2. Lemma. — In the situation of 2.1, assume that covers in I always have finite refinements
and that for any finite covering family {Z; — Z}i=1,...r, the functors Ly, : Dz — Dy, are jointly
conservative. Then

D_y: I — CAlg(Prk)

is a sheaf on I. In particular, CAlg(D_)): T — Prl is a sheaf as well.
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Proof sketch. Everything can be checked on the level of underlying oco-categories, so we can
disregard the symmetric monoidal structure (but it was still essential to include the symmetric
monoidal structure in the construction). By assumption, it’s enough to check the sheaf property
for a finite cover {Z; — Z}i=1,..». If Zo denotes its Cech nerve, we need to show Dy ~ lima Dy,.
Since 7 is a partially ordered set, we have Z; x z Z; = Z; for all i. It follows that the cosimplicial
limit can be simplified to a limit indexed by the set 1" .= P({1,...,r}) \ {0} of non-empty
subsets of {1,...,r}, partially ordered by inclusion. Therefore, we must show

Dy ~ lim Dy
Selgr 957

where we put Zg == Z;, X z X - - - X z Z;, for every non-empty subset S = {ig,...,ix} C {1,...,7}.
To prove that Dz — limge i Dz, is fully faithful, we have to show that

Hosz (xa y) - HOHIDZS (LZS ($)7 LZS (y))

is an equivalence for all z,y € Dz. Rewriting Homp, (Lzg(z), Lzg(y)) ~ Homp(z, Lz,(y)),
this reduces to showing that y — limge ;» Lz, (y) is an equivalence. This can be checked
after applying the jointly conservative functors Lz, : Dz — Dgz,. After applying Lz, each
Lz4(y) = Lz, becomes an equivalence. This easily implies Lz, (y) ~ limge i Lz, (Lz4(y))
(for example, by the dual of [L-HA, Lemma 1.2.4.15]). Since Ly, preserves finite limits, this
shows that y — limge » Lz, (y) is an equivalence after applying Lz,, and so fully faithfulness
follows. The same argument shows essential surjectivity. O

2.3. Remark. — The quintessential example for Lemma 2.2 is the case where R is some ring,
D :=D(R) and Z is the partially ordered set of closed subsets Z C Spec R with quasi-compact
complement. Every such Z is the vanishing set of a finitely generated ideal I and we define
Dy = D;(R); note that this only depends on Z, not on the choice of I. The functors L = (=)}
clearly satisfy the conditions from 2.1, and the condition from Lemma 2.2 is easily checked (see
e.g. [Wag24, Lemma 2.4]). Hence the descent from Lemma 2.2 is applicable.

In the case that we're actually interested in, the descent diagram simplifies considerably; in
particular, no coherence data needs to be provided!

2.4. Corollary. — Let m € N. Suppose we’re given the following data:
(a) For all divisors d | m, a derived ®4(q)-complete Ex-Alq]-algebra Ey.

(b)  For all divisors pd | m, where p is a prime, an equivalence of Ex-A[q]-algebras
ha: (Epa)y — (Eq)) -

Then there exists a unique (¢ — 1)-complete E-Alq]-algebra E together with equivalences

E; ~ E(/ﬁd(q) for all d | m such that hgq becomes identified with the identity on E(A@d(q),@pd(q))‘

Proof. The idea is to apply descent for R = A[g] and the cover V(¢ — 1) = Uy, V(®a(q))-
The simplifications come from the observation that many intersections are empty; see [Wag24,
Lemma 2.1] for example.

For a precise argument, let 7" be the set of positive divisors of m and let 17 = P(T) \ {0}
denote the set of non-empty subsets of T', partially ordered by inclusion. For every S C T, put
Dg = ﬁ(q,d(q) | des)(Alg]). Then Lemma 2.2 implies

Dign-1y(Alg]) = Jim Ds.
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For every pair (d,p), where d | m is a divisor of m and p is a prime such that p t d, we let
Tap={d,pd,..., p”P(m)d} C T(m) and write _1Te¢» C |7 for the corresponding sub-partially
ordered set. By [Wag24, Lemma 2.1], we have Dg ~ 0 if S ¢ Ua,p 7. By inspection, this
means that 13(_) : T — CAlg(Prh) is right-Kan extended from Ud,p “Ta.p € JT. Furthermore,
if S C S are elements of _I74» such that |S| > 2, then the same result tells us that the
corresponding morphism S — S’ is sent to the identity, as both 255 and 235/ agree with the full
sub-oo-category R
Dp.au(a) (Aldl) € P(Ald]) -

Again, by inspection, this means that 15(_) Ud.p Tap — CAlg(Prgt) is right-Kan extended from
P CUap “ITa.» where P denotes the sub-partially ordered set spanned by T, dp € Uap *[Ta.p(m)
for all d, p (note that this includes all subsets of the form {d}, where d is a divisor of m, as
{d} = Ty if ¢ is any prime not dividing m). In total, this implies ﬁ(qm,l)(A[q]) ~ limgep Dy
and thus R R

CAlg(Dign1)(Alal) ) = lim CAlg(Ds).

After unravelling of definitions, an object in the limit on the right-hand side is precisely given
by the data (a) and (b). O
2.5. Remark. — In Corollary 2.4, we've glued E from its ®4(q)-completions Egd( 9 = E, for
all d | m. But E can also be glued from from the completed localisation E[1/ m]é\qm_l) and the
completions E(/;) gm—1) for all primes p | m via the usual arithmetic fracture square (see 1.49).

For later use, let us explain how to extract the latter from the former: If m = p®n, where n is
coprime to p, then

E[%](Aqm_l) o~ }l_[ Ed[%]gd(q) and E(Ap’qul) ~ g[(Epid)]/)\ forany 0 < i < .
m n

For the equivalence on the left, just observe that the factors in (¢™ — 1) = []g),, Pa(q) become
coprime as soon as m is invertible. For the equivalence on the right, observe that after p-
completion the f-adic gluings for £ # p become vacuous, so the only gluing that happens is
along (Eg), ~ (Epa), ~ - =~ (Epeq);, for all d | n.

2.6. Remark. — Corollary 2.4 remains true if we replace E..-A[g]-algebras by derived
commutative A[g]-algebras in the sense of [Rak21, Example 4.3.1]. The proof is entirely
analogous.

§2.2. Habiro rings of étale extensions
In the following, we fix a perfectly covered A-ring A as before.

2.7. Relative Habiro rings. — Let R be an étale A-algebra. For all primes p, the p'"
Adams operation yP: A — A can be uniquely extended to a Frobenius lift ¢, : }A%p — IA%p. Let
us denote by R R

Sp/a: (Fp ®a,yr A);\ — Ry

the linearised Frobenius. It is an equivalence as indicated. Indeed, this can be checked modulo
p, where it becomes classical; see [Stacks, Tag 0EBS]. We also remark that A being perfectly
covered implies that A is p-torsion free (because this is true for the perfect A-ring A), and so
all p-completions above are static.
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For all m € N, let us now define a (¢ — 1)-complete Eo.-A[q]-algebra Hp/4 ,, via Corol-
lary 2.4: For every d | m, let By = (R® 4 ya A)[q]gd(q) and for every pd | m, where p is a prime,
let the gluing equivalence hq be the A[g]-linear map induced by ¢y, 4.

For all d | m, Corollary 2.4 provides a preferred equivalence Hr 4 4 ~ (Hp/ A7m)(Aq a_1y: In
particular, we get maps Hg/a,m — Hr/a,4- The Habiro ring of R relative to A is then defined
as the limit(21)

Hp/a = 7}1116% HR/Am -

2.8. Remark. — If we were to construct R[q]@] m_1) using Corollary 2.4, we would take
E; = R[q]gd(q), together with the identity maps on R[q]@]’@d(q)) (instead of ¢,/4) as gluing

A
(gm—1)
(rather than only its p-completions) admits Frobenius lifts for all prime factors p | m. In the

case A =7, a precise obstruction of this kind is shown in [Wag24, Corollary 2.52].

equivalences. Thus, there’s no reason to expect that Hp 4, ~ R|[q] unless R itself

We can now formulate the relation between Hp,4 and ¢-Witt vectors relative to A. To
this end, recall from [Wag24, Proposition 2.48] that ¢-W,,(R/A) is an étale algebra over
-Win(A/A) = Alq]/(q™ = 1).

2.9. Theorem. — Let A be a perfectly covered A-ring, R an A-algebra, and m € N. Then

Hr/am/(@" = 1) = ¢-Win(R/A).

In fact, Hg/a,m is the unique lift of the étale A[q]/(¢™ — 1)-algebra ¢-W,,(R/A) to a (¢™ —1)-
complete By -algebra over A[q](Aqul). In particular, Hg/a,m s an ordinary ring for all m € N,

and the same is true for the relative Habiro ring Hp /4.

Proof. Let, temporarily, W denote the unique lift of ¢-W,,(R/A) to a (¢"™ — 1)-complete
Eo-algebra over A[q]f\qm_l). If p is prime and pd | m, then the ghost maps for the usual Witt
vectors Wy, (A/p) and W, (R/p) satisfy gh,, (%) = ghy, /pa(@)P. It follows that the ghost maps

for relative g-Witt vectors fit into a commutative diagram

(R @yt A)[a]/Bpa(a) ~m W (R/A) 2 (R@y ya A)l)/Balg)
(R/p®ap,yva A/p)[a)/ ®palq) (R/p®4sppt A/p)[al/Palq)

where the bottom horizontal map is induced by the relative Frobenius R/p®4/p, (—y» A/p — R/p.
After passing to unique deformations of étale algebras everywhere, we obtain a similar diagram

(R®ayre A)lals, ) w (R ®a,pa A)[d)g,q)
(Bp ®a,yra A)a](p,0,4(0) (Bp ® a0 A y0u(0)

RO\ pedantic remark: To even write down this limit, we need to assemble the maps Hr/a,m — Hr 4,4 into a
functor Hgrya,(—y: N — CAlgD(A[q]), where N denotes the category of natural numbers partially ordered by
divisibility. With a little more effort, this functoriality can be squeezed out of Corollary 2.4. Alternatively, we
can take the limit over the sequential subdiagram {n!},>1, where the existence of maps is enough. Or we could
use Theorem 2.9 to realise that we’re working with ordinary rings, so there are no higher coherences to check
and functoriality can be obtained by hand.
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where the bottom horizontal map is induced by ¢,,4 from 2.7. By construction of Hg/4 ., this
yields an E.-A[q]-algebra map W — H /4, As both sides are (¢™ — 1)-complete, whether
this is an equivalence can be checked modulo ®4(q) for all d | m. By [Wag24, Corollary 2.51]
and 2.7,

W/®4(q) ~ R®y o Alq]/Pa(q) ~ Hr/a,m/Pd-

As the equivalence on the left is induced via the ghost map gh,, /d» it is apparent from our
construction that W/®4(q) — Hpr/a,m/®Pai(q) is given by the chain of equivalences above. This
finishes the proof that Hg/4 ,, is the unique deformation of ¢-W,(R/A).

Since Hp/a,m is (¢™ — 1)-complete and becomes static modulo p, we see that Hp/ 4 ,,, must
be static as well. Therefore it is an ordinary ring. To conclude the same for Hpg/4, we've seen
above that Hp/a/®m(q) is static for all m € N. Then Corollary B.4 can be applied. O

2.10. Remark. — By tracing through the proof of Theorem 2.9 and checking on ghost
coordinates, we see that the maps Hg/am — Hpja,q from 2.7 deform the ¢-Witt vector
Frobenii F, /4: ¢-Wy,(R/A) — ¢-W4(R/A). Then the construction of Hg/4 is reminiscent of
the construction of Ay, from [BMS18, Lemma 3.2].

In [GSWZ24, Definition 1.1], the Habiro ring of a number field is defined in terms of power
series in ¢ — (, for ¢ ranging through roots of unity. We’ll now give a similar hands-on description
of Hp/a. This will imply that our construction recovers the one from [GSWZ24].

2.11. p-adic reexpansions around roots of unity. — In the following, we choose a system
of roots of unity ((;m)men in such a way that

Cmn = (mGp if (m,n) =1 and Cp"‘ = C£a+1 .

One possible choice would be ¢, =[], e2i/p""™ " The conditions above are also required
in [GSWZ24, §1.2] and they ensure v,((m — Gnp) > 0 whenever p is prime, so that after
p-completion, any power series in (¢ — () can be reexpanded as power series in (¢ — (pm). In
other words, there’s a canonical zigzag

Z[Gmlla = Gnl — Zp[Gomlla — Gnl = Zp[Cpm, Q]E\qum,qupm) — Z[Gm]la — Gpml
In the situation we're interested in, we get a similar zigzag

(R®a.0m Dnlla — Gnl — By ®awm 4) )Gl [a — Gud 2 (R@at g D Gomlla — Gom]

where the map on the right is induced by the relative Frobenius ¢,,4 from 2.7, followed by a
reexpansion of power series as above. We'll call the map on the left the canonical map and the
map on the right the Frobenius.

2.12. Lemma. — The ring Hr 4 agrees with following equaliser (which can be taken both in
Ew-Alq]-algebras or in ordinary Alq]-algebras):

Hr/a ~eq (H(R ®a,ym A)[Cmlla — ¢l g II (Rp ®a,ym A);\[Cpm] lq — Cm]]> :

m é/4 p,m

Here can and ¢4 are the canonical maps and Frobenius maps described in 2.11.
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Proof. Let, temporarily, ' denote the derived equaliser. By construction, Hg,4 can be written
as a similar equaliser, with (R ®4,ym A)[(nl]lg — Gl replaced by (R ®a, ym A) [q]gm(q). We
clearly get a map of underived equalisers, hence a map Hpr/ 4 — mo(E) as Hp /4 1s static. Since
the derived equaliser E is coconnective, this yields a map Hr/4 — E as well. Since both sides
are Habiro-complete in the sense of B.1, whether this map is an equivalence can be checked
after (—); for all primes ¢ and after (— ®y, @)gd(q) for all d € N.

Proof after (-completion. After (—);, all factors in E with p # ¢ die, and the surviving
Frobenii ¢y, 4 become equivalences. Similarly, in Hg/4, all p-adic gluings for p # ¢ vanish, and
the f-adic gluings become equivalences. It follows that after /-completion, the map has the form

[T Be®awr A))[dl0any — 11 Be®awm A),[Gnllg — Gn]
(m,0)=1 (m,£)=1

So it will be enough to show that Z, [q]&@m @) — Ze [¢m]lg — ¢m] is an equivalence whenever
(m,¢) = 1. This can be checked modulo (¢,®,,(¢)). The left-hand side clearly becomes
Folq]/Pm(q) ~ F¢(¢m) since the cyclotomic polynomial ®,,(g) is irreducible in Fy[q] if (m, £) = 1.
Moreover, ®,,(q) has distinct roots in Fy, and so ®,,(¢)/(q— ¢m) will be a unit in Fo(¢n)[q— G-
It follows that Zg[(m]lg — Cm]/ (4, Prm(q)) ~ Fe((m) as well. This concludes the argument after
{-completion.

Proof after ®4(q)-completed rationalisation. By 2.7, the ®4(q)-completion of Hp,/ 4 is
(R®4 A)[q]gd(q) and so

(Hr/a®z @)Qd(q) ~ (R®4,ya A) @z Q)[dlp, ) =~ (R®4ya A) @z Q) g — ¢l -

Here we use that @[q]gd @ Q(¢m)[g — ¢n] is an equivalence. Indeed, this can be checked
modulo ®,,(q). Since ®,,(q) is irreducible and has distinct roots in Q, the same argument as
above shows that both sides become Q((,,) modulo ®,,(¢q), as desired.

Let’s compute E%(q) next. Since (R®a,ym A)[Gn]lg — (m] is @m(g)-complete, it’ll vanish
upon ®,4(q)-completion unless m/d is a prime power (possibly with negative exponent). More-
over, if m/d = p® is a power of p, then the ®4(q)-completion of (R ®4,ym A)[(m]lg — Gn] will
also be p-complete, unless o = 0. It follows that all surviving Frobenii will become equivalences,
except if their source is (R®a,ym A)[Ca]lg — Cal-

For all primes p, let oy, = vp(d) and write d = p®»d,. By massaging the limit using our
observations so far, we find that Elq) 4(g) Sits inside a pullback diagram

Eo,() (R®a,pt A)[Callg — ¢l
l | J((z)zfA)p
[1(By @4y A)0 16, )la — Ca,] —— TT(By @4y A))[Calla — Ca,]

p

Observe that the bottom horizontal arrow is a split injection on underlying Z[¢]|-modules,
because in each factor Z[(y,] — Z[(4] is a split injection of abelian groups. However, as we've

seen above, Q[q]gd(q) ~ Q(¢q)[g — C4] contains (4. Thus the bottom horizontal arrow becomes

an equivalence after (— ®z Q)% J(q)- 1t follows that

(E Xz Q)gd(q) =~ ((R ®A,¢d A) ®z Q[Cm]) [[q - Cm]] :

Thus Hp /4 — E also becomes an equivalence after (— ®z @)gd( Q) O]
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2.13. Corollary. — If F' is a number field with discriminant A and R = Op[1/A], then
Hpz agrees with the Habiro ring Hr defined in [GSWZ2/, Definition 1.1].

Proof. This follows immediately from Lemma 2.12. O
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§3. Habiro descent for g-Hodge complexes

In this section, we’ll show that in those situations where a well-behaved derived ¢-Hodge
complex can be defined, it descends automatically to the Habiro ring, and furthermore a derived
analogue of Theorem 1.13(a) holds true.

Throughout this section, we fix a perfectly covered A-ring A.

3.1. Convention. — In the following we’ll consider filtered modules over the filtered ring
(¢™ — 1)*A[q] for various m. For such a filtered module fil* M, we always let fil* M /(¢™ — 1)
denote the base change

1 M/ (g™ = 1) == fil* M @fym_1)e afq A

in filtered objects, or in other words, the quotient by (¢ — 1) sitting in filtration degree 1, not
filtration degree 0. In particular, the n*? filtered piece of the quotient fil* M/(¢™ — 1) will be

cofib((¢™ —1): fil"~! M — fil" M).

§3.1. g-Hodge filtrations and the g-Hodge complex

Let us start by introducing an appropriate oco-category of A-algebras equipped with a well-
behaved ¢-deformation of the Hodge filtration. Since Definition 3.2 below is a bit of a mess,
let us informally summarise the key points first: In addition to the obvious ¢-deformation
condition (b), we also wish the filtration to be compatible with the rational equivalence

(4-dRp/a ®F Q) () =~ (ARp/a ®F Qg — 1],

which leads to condition (c¢). For technical reasons, we also need to require the same for the
rationalisations of the p-completed (¢-)de Rham complexes, which is why we have to include
condition (¢,) below. These conditions need to satisfy some obvious compatibilities; recording
those, we end up with the following slightly messy definition:

3.2. Definition (¢-Hodge filtrations). — Let R be an animated A-algebra. A g-Hodge
filtration on q-dR /4 is a filtered (¢ — 1)*A[g]-module

fil} fag ¢-dRR 4 ~ (ﬁlg—Hdg q-dRp 4 — fil] g ¢-dRp/a — A1 114, ¢-dRpja — - ) ;

equipped with the following data and compatibilities31):

(a) An equivalence of A[g]-modules ¢-dRp/4 ~ ﬁlg,Hdg q-dRpg/4. In other words, we require
that fil} 4, ¢-dR /4 defines a descending filtration on the derived g-de Rham complex.

(b) An equivalence of filtered A-modules

C(g—1): Ail} gag ¢-dRpya/(q — 1) — filfyy, dRp 4,

which in filtered degrees < 0 agrees with the usual equivalence g-dRp/4/(q — 1) >~ dRg/4
under the identification from (a). In other words, the filtration fil}_y4, ¢-dRg/4 has to be
a (¢ — 1)-deformation of the Hodge filtration.

3-DSince we're working with oco-categories, each compatibility is again a datum that needs to be provided.
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An equivalence of filtered (¢ — 1)*(A ® Q)[¢]-modules
cq: (A1} gy ¢-dR /4 ®F @)(Aq Ly filfhgg g1y (AR R/ ®2 Q)[a — 1],

where ﬁlfHdg’ q—1) denotes the (¢ — 1)-completed tensor product of the Hodge filtration on
dR /4 and the (¢ — 1)-adic filtration on Q[q — 1]; in the following, we'll often call this the
combined Hodge and (¢ —1)-adic filtration. In addition, we require that cg agrees in filtered
degrees < 0 with the usual equivalence (¢-dRpg/4 R Q)@_l) ~ (dRpg/a ®%Q)[g— 1] under
the identification from (a), and that cg and c(,_1) from (b) fit into a commutative diagram

fil7 pag ¢-dR R 4 filgnag 4-dRprya/ (¢ = 1) ——— filiiag AR R4

| |

* A ~ * *
(61} 145 -dR /4 ®7 Q) (¢—1) g M(Hdgq-1) (AR p/a ®7 Q)[g — 1] — filjiqg AR p/a ®F Q

which again must agree in filtered degrees < 0 with the corresponding unfiltered diagram
under the identification from (a).

For every prime p, an equivalence of filtered (¢ — 1)*A,[1/p][g — 1]-modules

cg, Al mag (a-dRpya) ) [E10 1) = lfag 1) (ARrya) [310a = 11,

which is required to agree in filtered degrees < 0 agrees with the usual equivalence
(q—dRR/A);\[l/p]f\q_l) ~ (dRp/a)p[1/p]lg — 1] under the identification from (a). In addi-
tion, we require that cg and cg, are compatible in form of a commutative diagram

A ~

(815105 4-dRor/a €2 Q) 1)~ Alfnag.g-1) (Rrya ©Z Qg — 1]

| |

~

ﬁlngdg (q_dRR/A);\[;%]E\q_l) c(;p ’ ﬁl?Hdg,q—l) (dRR/A);\[%,] lq —1]

which in filtered degrees < 0 must agree with the usual compatibility under the identifica-
tion from (a), and that ¢,_1y and cg, fit into a commutative diagram

fil} ag (Q‘dRR/A);\ —— fil} jqq (Q‘dRR/A);\ /(g—1) C(q—:)> filf1gq (dRR/A);\

| |

15 g (-dRiya) ) (110, 1) w Blfag.q—1) (QRaya)) [3]1a = 1] — filiig, (AR eya) [ 5]

which must agree in filtered degrees < 0 with the corresponding unfiltered diagram under
the identification from (a). Finally, we require that this diagram is compatible with the
diagram from (c) under the previous diagram relating cg and cq,, and that in filtered
degrees < 0 this compatibility agrees with the usual compatibility under the identification
from (a).

We let AmiAng{Hdg denote the co-category of pairs (R, fil} yq, ¢-dR /1), where R is an animated
A-algebra and filj 4, ¢-dRpg/4 is a g-Hodge filtration on ¢g-dRp/4. Formally, the oo-category

AniAlg‘i{Hdg can be expressed as an iterated pullback of AniAlg, and several oco-categories of
filtered modules; this is straightforward, but not very enlightening, so we omit the details.

35



§3. HABIRO DESCENT FOR ¢-HODGE COMPLEXES

It is natural to ask whether ¢g-Hodge filtrations can be chosen functorially. Surprisingly, this
turns out to be false.

3.3. Lemma. — If A is not a Q-algebra, then the forgetful functor AniAng{Hdg — AniAlg 4

is not essentially surjective. In particular, it has no section, not even when restricted to the full
subcategory Smy C AniAlg 4 of smooth A-algebras.

Proof sketch. As far as the author is aware, this result hasn’t been published, but the objection
is known among the experts in the field.

Let p be a prime such that Ap #£ 0. Let ﬁp{w}oo be the free p-complete perfect §-ring on a
generator z. We’ll show that the ¢-de Rham complex of R = /Tp{:c}oo /x admits no ¢-Hodge
filtration. Suppose it does. Note that (¢g-dR / A)z/)\ is given by the prismatic envelope

() }

[p]q (p,g—1) .

(a-dRpya), =~ Ap{z}ocla - 1]]{

In particular, it is static. Since the Hodge filtration filjjq,(dRp/4), is just the divided
power filtration of the PD-envelope (dRp/4);, =~ D3, (z).. (), Definition 3.2(b) implies that
fil} 114g(¢-dR g/4), must also be a descending chain of submodules of (¢-dRp/4);,. Moreover, we
see that ﬁllq),Hdg(Q‘dRR/A)I/g\ must contain an element ¥, (x) such that 5,(x) = 2P/p mod (¢—1).
Using Definition 3.2(¢,), we see that 7, must also be contained in the ideal (x,q — 1)P after
completed rationalisation. But it is straightforward to check that the prismatic envelope above
doesn’t contain any Y,(z) with these properties (for the details, see Example 4.24 below).
This shows that AniAng{Hdg — AniAlg 4 is not essentially surjective. Hence it can’t have
a section, not even over Smy4 C AniAlg 4, because we could always animate to extend such a
section to all of AniAlg 4. O]

3.4. Remark. — Despite the general non-existence, it’s possible to construct many interesting
objects of the co-category AniAlqu_Hdg, and the forgetful functor AniAlgg{Hdg — AniAlg 4 does
admit sections when restricted to certain full subcategories of AniAlg,. We'll discuss several
such examples in §4.

In the remainder of this subsection, we’ll study the following objects:

3.5. g-Hodge complexes. — Given a g-Hodge filtration fil* ¢-dRp/4 for R over A, we can
construct the g-Hodge complex as

(¢-1)

Hd — colim (I° ARy, 7Y, g AR, 20"
q- g(Rvﬁlg—Hdg)/A = colim ¢-Hdg q- R/A q-Hdg q- R/A e (q_l) .

If the g-Hodge filtration is clear from the context, we usually just write ¢-Hdgp 4.

3.6. Remark. — In Definition 1.14 we’ve seen a variant of Definition 3.2 and 3.5 that only
allows for the case where R = S is a smooth A-algebra. Moreover, that variant uses the ¢g-de
Rham complex ¢-Q25/4 instead of its derived version ¢-dRg/ 4.

Note that ¢-Q2g/4 usually doesn’t agree with the derived g-de Rham complex ¢-dRg/ 4,
because Q¢ /A and dRg/4 usually differ in characteristic 0. But this is not a problem. If we're
given a filtration filj 4, g-2g/4 that satisfies the obvious analogues of Definition 3.2(a)—(c;),
then its pullback along the canonical map g-dRg/4 — q-€25/4 yields a filtration ﬁl;_Hdg q-dR R4

as in Definition 3.2. Indeed, this follows from the fact that QF A~ (IRS/ 4 always agrees with
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the Hodge-completed derived de Rham complex and the fact that any filtration is the pullback
of its completion (see 1.48).

Conversely, we’ll show in Proposition 3.47 that for any (S, il 4, ¢-dRg/4) € AniAlg)
such that S is smooth over A, we have an equivalence

q-Hdg

q-Qls/a ~ Q‘d/RS/A

of the underived ¢-de Rham complex and the ¢g-Hodge completed derived ¢-de Rham complex.
Finally, let us remark that in the definition of the g-Hodge complex it doesn’t matter whether we
use fil7_ Hdg ¢-dR R/ or its completion fil}, Hdg 4~ dRR/A, since every element in ﬁlq Hdg AR R/4
becomes divisible by (¢ —1)" in ¢g-Hdgpg,/4 and the g-Hodge complex is (¢ — 1)-complete.

3.7. Proposition. — AniAlg? Hde o dmits a canonical symmetric monoidal structure. The
tensor product of two objects (Ry, il yao ¢-dR g, /4) and (Re, il ya, ¢-dR g, 4) is given by

* A
(Rl ®' R, (617 Hag ¢-dR ;14 ®%q—1)*A[q] il pag q_dRPQ/A)(qfl)) ’

where in the second component we take the derived tensor as filtered modules over the filtered
ring (¢ — 1)*Alq]. Furthermore, the functor

. -Hd N
g-Hdg_ /4 AniAlg? "% — D(q,l)(A[q])
can be equipped with a canonical symmetric monoidal structure.

To prove Proposition 3.7, let us first construct a filtration on g-Hdg_ /A /(g —1).
3.8. The conjugate filtration. — Let (R,fil} 4, g-dRp/4) be an object in AniAlg?, Hdg
Let’s consider the localisation of the filtered (¢ — 1)*A[g]-module fil] 4, ¢-dRp/4 at (¢ — 1):

* . * ( _1) * ( _1)
1% p1ag ¢-dRpja [ 7] ~ colim (ﬁlq,Hdg ¢-dRpa T AU g-dRps T ) :

Upon completing the filtration, this filtered object becomes the (¢ — 1)-adic filtration on the
g-Hodge complex q—Hng/A.

Before taking the colimit, the diagram above can be regarded as a bifiltered object, with
one ascending (“horizontal”) filtration, given by the steps in the colimit, and one descending
(“vertical”) filtration, given by the filtrations on each step ﬁlﬁﬁg q-dR /4. If we pass to the

associated graded in the vertical direction, we obtain

. (¢-1) (a-1)
q-Hdgg/4/(q — 1) ~ colim (gr(q)—Hdg g-dRp/a ~— 8ty g ¢-ARR/A —— .. ) :

This representation as a colimit defines an exhaustive ascending filtration on ¢-Hdgp/4/(¢ — 1),
which we define to be the conjugate filtration il (¢-Hdgp 14/(@—1)).

3.9. Lemma. — The associated graded of the conjugate filtration fi15°™ q—Hng/A/(q —1) is
given by
8l COHJ (q Hng/A/(q - 1)) _*dR}k%/A ~ grﬁdg dRR/A .
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Proof. To avoid ambiguous notation, let us identify the filtered ring (¢ — 1)*A[g] with the
graded ring A[B,t], where |8] = 1, |t| = —1, and At = ¢ — 1.3?) The filtered structure on
A[fB,t] comes from the A[t]-module structure (see 1.48), so ¢t can be regarded as the filtration
parameter and ( can be regarded as the element “(q — 1) sitting in degree 17. If we regard
fil] nag ¢-dR R 4 as a graded A[B,t]-module, then

ﬁl;—Hdg q_dR’R/A/B ~ ﬁl*Hdg dRR/A and ﬁl;—Hdg q—dRR/A/t ~ gr;_Hdg q—dRR/A

as graded A[t]- or A[f]-modules, respectively. The first equivalence follows from Defini-
tion 3.2(b), the second follows because modding out ¢ is the same as taking the associated
graded (see 1.48). Hence also

17 Hag ¢-dRp/a/(B,t) ~ griiag ARR)a

as filtered A-modules. Finally, by construction, we can identify ¢-Hdgp/4/(¢ — 1) with
(fil} nag ¢-dR R4 ®i[ﬂ] A[B*])0/(Bt), where (—)o denotes the restriction of a graded object to
its degree-0 part. Then the desired assertion follows from Lemma 3.10 below. O

3.10. Lemma. — Let M* be a graded module over the graded ring A[S,t], where || =1,
[t| = —1. Then (M* ®i[ﬁ] A[B])o/(Bt) admits a canonical exhaustive ascending filtration

whose associated graded is M*/(j3,t).

Proof. We formally get (M* ®i[ﬁ] A[B])o/(Bt) ~ (M*/t@i[ﬁ] A[BH])o. Let B7*A[3] denote
the ascendingly filtered graded ring

AR = (- Alg1) 2 A1) 2 A[)(-1) ),

where A[S](i) denotes the shift of the graded object A[S] by i (to account for the fact that
multiplication by /3 shifts degrees). The colimit of this filtration is colim 3~*A[A] ~ A[B*!].
Hence (M*/t@fjl[/@],@_*fl[ﬂ])o defines an exhaustive ascending filtration on (M*/t@i[B]A[ﬁﬂ])o
(by inspection, this is also precisely how the conjugate filtration from 3.8 arises). Since the
associated graded of 37*A[S] is @,y A(—1), the associated graded of the filtration we've just
constructed is indeed

(@ ey A(—i))o - (@ M*/w,w(—z‘))o ~ M*/(B1). n

1E€EL 1€Z

Proof of Proposition 3.7. AniAIg‘ngg can be written as an iterated pullback of symmetric
monoidal co-categories along symmetric monoidal functors, so there’s a canonical way to equip
it with a symmetric monoidal structure itself. The forgetful functors
. -Hd . . -Hd . A
AniAlgf " — AniAlg, and AniAlg)"® — Mod(,_1)+a[q] (FllD(A))(qil)
will then be symmetric monoidal, which shows the formula for tensor products.
To construct a symmetric monoidal structure on ¢g-Hdg_ /4, we use 3.8. Since localising is
symmetric monoidal and passing to the O filtration step is lax symmetric monoidal, we get

32In Remark 7.4 we'll recognise (¢ — 1)*Z[q — 1] = Z[B][t] = wz*(kuhsl), where 8 € ma(ku) is the Bott
element and ¢ € ﬂ_z(kuhsl) is a suitable complex orientation.
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a lax symmetric monoidal structure on g-Hdg_ 4. Strict symmetric monoidality can then be
checked modulo (¢ — 1) because the values of ¢-Hdg_ /A are (¢ — 1)-complete.

From the proof of Lemma 3.10 above, it is clear that fil{°™ (q—Hdg_/A/(q— 1)) can be equipped
with a lax symmetric monoidal structure compatible with the one on ¢g-Hdg_ /4 /(¢—1) (modding
out t or B as well as — ®I;1[6] B~*A[S] are symmetric monoidal and (—)p is lax symmetric
monoidal). Furthermore the equivalence

grs™ (¢-Hdg_/4/(q — 1)) ~ griiag dR_/a

is an equivalence of lax symmetric monoidal functors. Strict symmetric monoidality of
fil;"(¢-Hdg_,4/(q¢ — 1)) can now be checked on the associated graded, so we win since
it’s well-known that ng*{dg dR_/4 is symmetric monoidal. O

§3.2. The main result

We can now state the general Habiro descent result. We let ¢-W,,,2* /A denote the m-truncated
g-de Rham Witt complex from [Wag24, Definition 3.12] and ¢-W,,dR_,4: AniAlg, — D(A[q])
its non-abelian derived functor.

3.11. Theorem. — Let A be a perfectly covered A-ring and AmiAlgqulHdg be the oco-category
of animated A-algebras equipped with a q-Hodge filtration on their q-de Rham complex.

(a) Let Dyu(Alq]) € D(A[q]) denote the full sub-co-category of Habiro-complete objects (in
the sense of B.1). Then the q-Hodge complex functor admits a symmetric monoidal
factorisation

D (Alq])

gHdg_ja -7 A
L l(‘)(q—n

. -Hd, '~
AniAlg? "8 T Dy-1)(Alq])
b) For all m € N, the quotient g-Hdg_ q™ — 1) admits an exhaustive ascending filtration
/A
fileWm® (g-Hdg /4/(@™ — 1)) with associated graded

gr? " (g-Hdg_jx /(™ — 1)) = 7 ¢-WpdR* 4.

Furthermore, 817V (¢-Hdg 4/ (@™ —1)) can be equipped with a canonical laz symmetric
monoidal structure compatible with the one on q—?—[dg_/A/(qm — 1), and the equivalence
above is an equivalence of lax symmetric monoidal functors.

3.12. Example. — If S is a smooth over A and O: A[z1,...,2,] — S is an étale framing,
then we can define a filtration on the coordinate-dependent g-de Rham complex ¢-2% /A0 via

max{n—:*,0}

il Hag,0 ¢-s/a0 = (¢ — 1) a-Q5/a0-

(compare the construction in 1.11). As explained in Remark 3.6, we can take the pullback along
q-dRg/a — q-2% /a0 to get a filtration ﬁl;_Hdgﬂ q-dRg/4 on the derived g-de Rham complex.
It’s straightforward to equip it with the additional structure from Definition 3.2(a)—(c,): Just
construct everything on the level of complexes and then take the pullback.
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Therefore, the pair (S, fil} j1q, 0 ¢-dRg/4) determines an Eq-algebra in AniAlg?{Hdg. We'll

explain in Remark 9.14 that it can be refined to an E,.-algebra. The derived ¢-Hodge complex
associated to (S, filj yq, o ¢-dRg/4) is the coordinate-dependent g-Hodge complex ¢-Hdgy A0
Indeed, as we’ve seen in Remark 3.6, in the definition of ¢-Hdg_ /4 1t doesn’t matter whether
we work with the ¢-Hodge filtration on ¢-dR_ /4 or its completion. Since ﬁl;_HdgE q-Q% /A0
is already complete, it’s automatically the completion of its pullback ﬁl;_Hng q-dRg/4. We
conclude that the corresponding derived g-Hodge complex is
lim ( £i1° TSP Ca Ry O TSP Ca) ~ ¢-Hdg®
collmi iy gag,od-245/a,0 — Mg Hdg 04 0s/a0 — 7 ) = 4 HA8g/4 O

as claimed.

In this case, Theorem 3.11(a) shows that g-Hdg(, 4  descends to an Eoc-algebra ¢-Hdgg,a o

in ﬁH(A[q]) As we’ll see in Corollary 3.31 below, X" ¢-W,,dR /4~ @~ W /A holds for all
n. Thus, Theorem 3.11(b) shows

H*(¢-Hdgg/an/(¢" — 1)) = Wi Q254

as graded A[q]/(¢™ — 1)-modules. With a little more effort (see Corollary 3.54 below), we can
even get an equivalence as differential-graded A[q]/(¢™ — 1)-algebras, so we obtain an improved
version of [Wag24, Theorem 4.27].63%)

In fact, ¢-Hdgg /4,0 can be described as an explicit complex; this was first presented in
[Sch25, Lecture 4]. To this end, equip A[z1,...,z,] with the toric A-A-algebra structure in
which the Adams operations are given by 9" (z;) = z!" and consider the relative Habiro ring
Hs/A[z1,...,zn]- FOr i = 1,...,n let v; be the A[g]-algebra endomorphism of A[x1,...,2n,q]
given by v;(x;) = qz; and ~;(x;) = x; for j # i. We wish to extend ~; to an automorphism of
Hs/A[z1,....en]- 1O do so, we'll extend ~; to each of the factors of the equaliser in Lemma 2.12.
Fix m € N and put S(™ = (§ ®A[z1,...zn]om A[T1, -+ 20])[Gn]. Consider the diagram

A[xlavxn>cm][[q_<:m]] L) (m)[[q—Cm]]

m _-Y
|

Stm) [[q - Cm]]

where %(m) is given by the identity on the tensor factor S, ngm) (z;) = {ma;, and ﬁgm) () =
for j # 4. By the infinitesimal lifting property of formally étale morphisms, there exists a
unique dashed arrow 'yi(m) making the diagram commutative. Then (’yi(m))m N defines the
desired automorphism v; of Hg/a[z,,....a,,] Via Lemma 2.12. It’s also straightforward to check
that v =id mod z;.

Letting q—gi = (y; —id)/z; and q—% =3 q—(i- dx;, the Koszul complex of the commuting
endomorphisms q—gi,

-V -V -V
<HS/A[m1,...,mn] i @HS/A[ml,...,zn] dw; R HS/A[ml,..,,:vn] dxy - dxn) )

Is an explicit complex representing ¢-Hdgg 4 5. This can be shown by unravelling the proof of
Theorem 3.11 (which is less horrible than it sounds).

(3-3)But this theorem is being used in the proof, so we don’t get a new proof.
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Example 3.12 covers in particular the case of étale A-algebras. In this special case, we
recover a familiar construction.

3.13. Corollary. — If R is étale over A, then q-Hdgr,4 is the relative Habiro ring Hg/a
constructed in 2.7.

Proof. This is clear from the explicit presentation in Example 3.12, but it can also be shown
without having to unravel the proof of Theorem 3.11.

We'll see in Corollary 3.31 that ¢-W,,,dR'; /A= YT g-W, Q /A holds for all n > 0 whenever
R is smooth over A. If R is étale, then combining this observation with Theorem 3.11(a) and
[Wag24, Proposition 3.31] shows

¢-Hdgr/a/(q" = 1) ~ ¢-Wi(R/A) ~ Hpa/(¢" = 1).

By uniqueness of deformations of étale extensions, these automatically lift to a unique equivalence
of Ex-H-algebras (¢-Hdgp / A)(Aqul) ~ Hp/A,m; furthermore, uniqueness also ensures that these
equivalences are compatible for varying m. It follows that ¢-Hdgp a4 ~ Hpr/a, as desired. [

The proof of Theorem 3.11 has many ingredients and will occupy §§3.3-3.6. Before we get

lost in the technicalities, let us already outline the main argument and point out where the
missing pieces will be provided.

Proof outline of Theorem 3.11. In §3.3 we’ll introduce twisted q-de Rham complexes for all
m € N. These are (¢ — 1)-complete E.-A[g]-algebras q—ngr/LA satisfying

ARG /(¢ — 1) ~ ¢-WindRp 4
(see Proposition 3.1964 )) By animating the stupid filtration ¢g-W Q>7 A* , we obtain a filtration
ﬁl;‘_[dgm ¢-WndR_ /4 on ¢-Wp,dR_ /4. For m =1, this is the Hodge filtration on dR_,4; for
higher m, it should be thought of as a ¢-Witt vector analogue of the Hodge filtration. By
construction,

8r%dg,, - WmdR_ja ~ ¢-WndR” .

In §3.5, specifically Proposition 3.39, we’ll show that given a g-Hodge filtration on ¢-dRpg/ 4,

we can construct a filtration fil7_ Hdg, 4 ng}A satisfying

13 34ag,, 4- dRR/A/( —1) ~ fil}qy, ¢-WmdRp/a
where (¢ —1) sits in filtration degree 1. We'll also verify that ﬁlg,Hdgm q—dRsF?}z4 is lax symmetric
monoidal in (R, fil} g4, ¢-dRp/4) and the equivalence above is an equivalence of lax symmetric
monoidal functors AniAlg "4 — Mod (gm 1)« a[q] (Fil D(A)).
With this construction, we’ll build the desired Habiro descent of ¢-Hdgr/4 in §3.6 by
mimicking the definition of the ¢-Hodge complex in 3.5. For all m € N, we define

@,y

G- Hdg g0, = colim (61, g-dRY7, 6l 0, g-dRY)) .

G- Informally, just as the g-de Rham complex is a g-deformation of dRg 4 =~ ¢-WidRp/a, the twisted g-de
Rham complexes are ¢"-deformations of ¢-W,,dRpg,4.
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In Proposition 3.43, we’ll show (q_Hng/AJn)é\qdfl) ~ q-Hdgg/a,q whenever d | m. It follows
that ¢-Hdgpr, 4 = limpmen ¢-HdgR) 4,5, determines a Habiro descent of g-Hdgp, 4, thus proving
Theorem 3.11(a), except for the symmetric monoidality statement. As in the proof of Proposi-
tion 3.7, it’s formal to construct a lax symmetric monoidal structure on g-Hdg_ 4 which reduces
to the one on ¢-Hdg_,, after (¢ — 1)-completion; see 3.45 for the details. Strict symmetric
monoidality will then be checked in Lemma 3.46, finishing the proof of Theorem 3.11(a).

To show Theorem 3.11(b), we will mimic the arguments for the conjugate filtration (and in
fact, for m = 1, the desired filtration on ¢-Hdgp/a/(¢—1) ~ ¢-Hdgp /(¢ — 1) is the conjugate
filtration). By the same argument as in 3.8, we obtain

m . m) (¢™-1) m) (¢™-1)
4-HAgr/am/(a" — 1) = colim (10 3q, a-dARY7y T grlpya, a-dRY) )

The colimit defines an exhaustive ascending filtration on ¢-Hdgr/a m /(¢™ — 1), which we take
to be our definition of fild™Wm®(¢-Hdg /a,m/ (@™ —1)). The associated graded of this filtration
can be determined by via Lemma 3.10 (for this we identify the filtered ring (¢™ — 1)*A[q] with
the graded ring Alq, 8,t]/(5t — (¢"™ — 1)), where |¢| =0, || =1, and |t| = —1): We obtain

grd " (q-Hdgp am/ (@™ = 1)) > 7 ¢-WindRYy 4 ~ g8ag,, ¢-WindRp 4 -

As in the proof of Proposition 3.7, the lax symmetric monoidality statements are formal, and
so the proof of Theorem 3.11(b) is finished. O

§3.3. Deformations of g-de Rham-Witt complexes

We fix a perfectly covered A-ring A as before. We let ™ denote its Adams operations,
which we extend to a map ¥™: A[q] — Alq] via ¥ (q) == ¢™. We'll also frequently use the
Berthelot-Ogus décalage functor Lay,,), (see [BMS18, §6] or [Stacks, Tag OF7N]).

In this subsection, we’ll study twisted q-de Rham complexes: For S smooth over A, these
are certain (¢ — 1)-complete E-A[q]-algebras q—QgZ)q, refining the (¢ — 1)-complete Eo.-A[q]-
algebras L), ¢-S2s/4 for all m € N. The rationale behind our notation and the name twisted
g-de Rham complexes is as follows: If the global ¢-de Rham complex would admit Adams
operations ¥™ inducing equivalences

A
P <q—QS/A @M gl wm A[Q]) — Lnpm, - Ls/a

(g-1)
then the corresponding twisted ¢g-de Rham complex could simply be constructed as the (¢ —1)-
completion of the “Adams-twist” ¢-{2g/4 ®I;l[q],wm A[q].®®)  However, such global Adams
operations don’t exist in general (this already fails if S is étale over A, as A-structures usually
don’t extend along étale maps). The best we have is, for every prime p, a Frobenius ¢, on the
p-completion (¢-2 s/ A)J/D\' Still, these p-adic Frobenii are enough to construct q—QgZZ‘.

3.14. Twisted g-de Rham complexes — Let S be a smooth A-algebra. We’ll construct a
(¢"™ — 1)-complete Exo-A[g]-algebra using Corollary 2.4. In the notation of that corollary, take

. L /\
Eq = (L"?[m/d]q 082574 ® [}y A[Q]) Palg)

BIf ™ is finite (for example, this holds if A = Z or more generally if A is a polynomial ring), then
q-S2s/a ®i[q],wm Alq] is already (¢™ — 1)-complete.

42


https://arxiv.org/pdf/1602.03148#section.6
https://stacks.math.columbia.edu/tag/0F7N

§3.3. DEFORMATIONS OF ¢-DE RHAM—WITT COMPLEXES

We must also provide p-adic gluing equivalences. For p a prime such that pd | m, the required
gluing equivalence (E,q), ~ (Eq);, should be of the form

A

~ L
— (L”[m/ dly 825/4 ©ifg), e A[q]) (n®aa)

A
L Q74 @1y Ala])
< Mm/pd]q 47255/A ®A[q]7w1’d [q] (P, ®,a(q))
To construct this, we may replace Lo, pq), and Lnp,/q), by Lipe), and Lnpa+1),, where
a = vp(m/pd), because the factor [m/pd],/[p®], will be invertible on either side. It will thus

be enough to construct an equivalence

A

— (L’I’][pa+1]q q—QS/A> S

A
(e, 09257 S0 A1),
Now (Lnppe, q-Qg/4)) =~ L’r/[pa]q(q_QS/A)Z/)\. Indeed, q-§2g/4 is (g — 1)-complete, so p-completion
agrees with [p®]s-completion, which always commutes with Lr,a, (see [BMS18, Lemma 6.20]).
Thus, we may replace ¢g-{2g/4 by its p-completion on the left-hand side; the same argument
applies to the right-hand side as well.

Finally, if (B, J) denotes the prism (A4,[¢—1], [p],) and T := S,[¢,], then (¢-Qs/a)p =~ 1/B)
and so the desired gluing equivalence can be constructed using the general fact that the relative
Frobenius induces an equivalence (see [BS19, Theorem 15.3])

¢/B¢ T/B @Ié,¢3 B = Lny T/B -

According to Corollary 2.4, we can glue the E; for all d | m to a (¢™ — 1)-complete Eo-A[q]-
algebra q—Qg;ZIZX. This is the m™ twisted q-de Rham complex of S over A. Via animation, we

can then define a functor
g-dR"™),: AniAlg, — CAlg (ﬁ(qm_l) (A[q])) ,

which agrees with q—Q(lni1 on polynomial-A-algebras (but not on all smooth A-algebras, due to

the usual issues in characteristic 0).

The arithmetic fracture square for q—Q(Smjl (in the sense of 1.49) can be read off from the
construction.

3.15. Lemma. — Fizm € N and N # 0 divisible by m. For any prime p | N and any divisor
d | m write m = p”l’(m)mp and d = p”P(d)dp, where my, and d, are coprime to p. Let also

A

p

Dp/alql s T Ls/a g e Ald] — (-Qs/4)

denote the relative Frobenius coming from the identification with prismatic cohomology. Then
we have a functorial pullback square

_olm) -Q apareroa Alal)
q-3lg/a }_J[denp (q 5/4 ®A[Q]7¢p P dy [Q]>(p,<1>dp(Q))
| gz | (2557 1
A A
11 (q‘QS/A Sitatve Al q]>¢d<q> 1111 (q‘QS/A ®lifg) v A[q])p oo

dlm p|N d|m
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Proof. Using Remark 2.5, the desired pullback square can be identified with the (¢™ — 1)-
completed arithmetic fracture square

q—Qfg%); II (Q‘Qf%) 2
p|N

- |

QA [F oy — TT@Q50) o
p|N

Here we also use that [m/d], is mapped to a unit under %: A[q] — A[1/N, q]gd(q), SO0 we
may ignore Ly, q), for any d | m in the bottom left corner. Similarly, we may ignore any

Ln[m Jpr(m ], in the top or bottom right corner. ]

3.16. Transition maps. — Whenever n | m, there’s a map of Eo.-A[g]-algebras
(m)\A (n)
(q‘QS/A) (gn-1) 4 g4

functorial in S. To construct this map, we once again appeal to the gluing procedure of
Corollary 2.4. On ®4-completions, where d | n, the desired map is induced by the symmetric
monoidal natural transformation Ly, q), = L[, q),- It’s straightforward to check that this is
compatible with the p-adic gluings from 3.14. Alternatively, we can use the pullback square

from Lemma 3.15: On the bottom part of the diagram, (q—Qgﬂ‘)?qn_l) — (1—9(5724 is induced

by projection to those factors where d | n. In the top right corner, we also need to apply the

relative Frobenius (;5:’; Am/]n) in any factor where d), | n,,.

These maps can be assembled into a functor q—Qgﬂl: N — CAlg(ﬁH(A[q])), where N
denotes the category of natural numbers partially ordered by divisibility. Furthermore, this
functor is itself functorial in S. We’ll refrain from spelling out the argument, as it would just
add one more layer of technicalities. To construct the Habiro descent eventually, we only need
the individual maps, not the whole functor with all its higher coherences, since any lim,,cn can
be replaced by the limit over the sequential subdiagram given by {n!},>1.

3.17. Remark. — The maps (q Qg /21)( y q—Q(Sn/)A are usually quite far from being

equivalences, as can be seen from the dlscrepancy between L, /q), and Lo, q),- Thus, we can
form the limit (m)
. m
ek 05
but it will usually be a pathological object (unless S is étale over A, in which case we recover
2.7). In particular, it won’t be a Habiro descent of ¢-{2g/4.

3.18. Remark. — To get (q—Qg}Z)(Aqn_l) — q—Q(b% closer to being an equivalence, a natural

idea goes as follows: The Berthelot-Ogus décalage functors Ly, q), and L, /q), come equipped
with canonical filtrations (see [BMS19, Proposition 5.8]). If these filtrations would glue to give

filtrations on q—an/g and q—Qg;)A, we could modify q—QgZZ‘ and q—Qg;)A by “making elements in
each filtration degree i divisible by [m ] and [n ] respectively”. It is then reasonable to hope

that the map between the modiﬁcations is an equlvalence after (¢" — 1)-completion, so that in
the limit we get a Habiro descent of g-{2g/4.
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However, the filtrations on Lnj,,/q), do not glue. To make the idea work, we need the
additional datum of a g-Hodge filtration on ¢-{2g/4; and, we won’t get a Habiro descent of
q-S2s/a, but of g-Hdgg, 4. This is precisely how we’ll prove Theorem 3.11. See the outline at
the end of §3.2. Also see §3.7 for a discussion of Habiro descent for g-{2g, 4.

Let us now explain the relationship between quEqmjX and the g-de Rham-Witt complexes.
To this end, recall from [Wag24, Proposition 3.17] that we have a map of graded A[q]/(¢™ — 1)-
algebras Fy,, /q: ¢-W,, Q05 /A" q-W a5 /A for all divisors d | m (the ljmbenius on g-de Rham—Witt
complexes). This satisfies d o Fy,, /g = (m/d) o Fy;, /4. Therefore, if F,,, /4 is given by (m/d)"F,, /4
in degree n, then

is a map of differential-graded A[q]/(¢™ — 1)-algebras.

3.19. Proposition. — Let A be a perfectly covered A-ring and let S be a smooth A-algebra.
There’s a functorial equivalence of Ex-Alq]/(¢™ — 1)-algebras

q-qu%/ (¢" = 1) = ¢WpQg/a -

Under this identification, the map q—Qg}g/(qm -1)— q—di/)A/(qd — 1) induced by 3.16 agrees
with the map F,, /4 above.

Proof sketch. By [Wag24, Corollary 4.37], for any N # 0 divisible by m the arithmetic fracture
square for ¢-W,, (25,4 has the the following form:

A
G-WiSs/a II 11 <QS/A ®i,¢pvp<M>dp A[Q]> /®q, (g ™)
p|N dp|mp b
(ghm/d)d|mh | J(ﬁ’/ﬁm/d))pw, -
A
IT (2574 %y AT a]) /2ale) —— T T (54 ®h o ALa)) [31/2a(a)
dlm p|N d|m

This agrees with the reduction modulo (¢™ — 1) of the arithmetic fracture square from
Lemma 3.15. Here we note that upon reduction modulo (¢™ — 1), every occurence of the g-de
Rham complex g-{25,4 in Lemma 3.15 can be replaced by {2g,4. For example, for the d*™ factor
in the bottom left corner, reduction modulo (¢"™ — 1) is the same as reduction modulo ®4(q),
as (¢™ — 1) and ®4(q) only differ by a unit in A[1/N,q]3, - Now (¢ — 1) maps to 0 under
Yt Alq] — A[1/N,q]/®4(q), so indeed g-Qg/4 can be replaced by Qg4 in that corner. Similar
arguments apply to the other corners.

This yields the desired equivalence q—an/g (@™ —1) ~ ¢-W,,Q s/a- It’s straightforward to
check that this equivalence doesn’t depend on the choice of N (compare 3.38 below).

The additional assertion about qugq/g /(" —1) — qu(SC?A /(q% — 1) follows similarly by a
comparison of arithmetic fracture squares (where we may now choose the same N'). The only non-
trivial step is to check that under the equivalence (g-WpaQg/4); =~ (QS/A®ZWQ Alql/(¢"" =1))}
the maps F), and ¢,/ 4 get identified. This is explained in [Wag24, Corollary 4.38]. O
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§3.4. The Nygaard filtration on g-de Rham—-Witt complexes

In this subsection, we’ll study an auxiliary filtration on ¢-de Rham—Witt complexes. Throughout
§3.4, we fix a prime p. We’ll also write ¢ instead of ¢P for the p'* Adams operation of the
A-ring A. We extend ¢ to A[q] via ¢(q) == ¢P.

Let’s first recall the Nygaard filtration on ¢-de Rham cohomology.

3.20. The Nygaard filtration on g-de Rham cohomology. — Let S be a smooth
A-algebra. By Lemma 3.15, for all a > 0,

A

(07} = (05 Eliggon )

agrees with the a-fold Frobenius-twist of (¢-Qg, A)Z/j\. Since g-de Rham cohomology is a special
case of prismatic cohomology, the general theory of Nygaard filtrations [BS19, §15] provides a

filtration fil}, (q—QES?/)A) ": 1t is the preimage of the filtered décalage filtration on Lne,(g)(q-2s/a);
under the relative Froﬁenius

brata) (4-2004)7 — L, g) (4-Qsya). -

Via pullback along ¢*~!: A[q] — A[q], we also get Nygaard filtrations fil}, (q—Q(;ﬁl));\ for all
« > 2. By construction, these Nygaard filtrations are canonically filtered E.-algebras over the
filtered ring ®,o(g)* A[q], hence over (¢?" — 1)*A[q] as well. By Proposition 3.19, we also have

an equivalence
(0T /(@ = 1) = (¢-WpaQ5/4)

Our goal in this subsection is to identify the image of the Nygaard filtration under this
equivalence with an explicit filtration on the complex ¢-W,a Q% e

3.21. The Nygaard filtration on g-de Rham—Witt complexes. — Let S be smooth
over A. The the Nygaard filtration is the filtration fil}, ¢-W,, Q% /A whose n'* term is the
subcomplex fil}, g-Wa Q% /4 € q-Wpa Q% /A given by

(pn—lv})(q_wpa_lgg/A) BN po%(q_wpa_lgg/j) — - Wpe Q) — ) .

3.22. Proposition. — For smooth A-algebras S, there exists a unique functorial equivalence

of filtered Eoo-Alq]/(¢"" — 1)-algebras
il (¢-0)3)) /(6"

(the quotient on the left-hand side is taken in accordance with Convention 3.1) which in degree 0

o ~ N

— 1) — il (¢-Wpe Qs/a),
recovers the equivalence (q—Qg’aA));\/(qpa —1) ~ (q—Wpags/A);)\ from 3.20.

The proof of Proposition 3.22 requires several preliminary lemmas.

3.23. Lemma. — Let S be smooth over A. For all n > 0, the Frobenius ﬁp, when restricted
to fily q—WpaQi’;/A, is divisible by p". The divided Frobenius p~"F), induces a map

p_”ﬁ'p: griv q—WpaQZ/A —s 7P (q—Wpafl QE/A/p)

which is surjective in degree n and an isomorphism in all other degrees.
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Proof. 1t follows directly from the construction that ﬁp is divisible by p" on fil}\y ¢-W,a Q7% /A"
The Verschiebung V,,: ¢-W a1 QE/A — q-Wpa QE/A satisfies F), oV}, = p and q—Wpaflﬂg/A is
degree-wise p-torsion free by [Wag24, Proposition 4.1], hence V,, must be injective. It follows
that

pFp: griy q‘Wpan‘/A - q-Wpa—19§/A/p
is an isomorphism in degrees < n — 1. Also gri{, ¢-Wy,a Q% /A vanishes in degrees > n+ 1. In
degree n, the map above is given by

Fy: q—WpaQ}}/A/V}) - Q‘Wpa—lgg/A/p‘

%ince d o F,, = p(F) o d), this map lands in ker(d: q—Wpa_ng/A/p — ¢-Wya Qgﬁ/p), and so
F,/p"™ indeed factors through 75" (qg-Wa-1Q% /A /D).

To finish the proof, we must show that F}, maps surjectively onto this kernel. First suppose
that S = P is a polynomial A-algebra. If £ € ¢-Wya-1Q7} /A satisfies d¢ = 0 mod p, then
[Wag24, 4.3(d)] shows that there exist w and 7 satisfying £ = Fj,(w) + pn, proving the desired
surjectivity in the polynomial case. If S admits an étale map [1: P — S, then surjectivity
follows via base change along the étale map ¢-Wya (P/A) — ¢-W,a(S/A). Here we use [Wag24,
Propositions 2.48 and 3.31] as well as the observation that

d: g¢-Wpa1Q4/p — q—WpaﬂQg;j/p

is a map of g-Wpa (S/A)-modules, as d o F, =0 mod p. For general S, we find a Zariski cover
S — S’ such that S’ admits an étale map from a polynomial A-algebra. Then we can again
argue via base change along the étale cover ¢-Wpa (S/A) — ¢-W,a (S'/A). O

3.24. Lemma. — Let S be smooth over A. There exists canonical isomorphisms
QL4 @ g AlGpe] = ker(Fp: G- Wy Q4 — q-wpaflﬁgm)
= ker(Fy: q-WpeQ)4/Vy — 4-Wia1 Q4/p)

Proof. We prove the second isomorphism first. For injectivity, suppose w € g-Wpa Q' /A satisfies
F,(w) = 0, but is also contained in the image of V,,, say, w = V,,(n). Then 0 = F,(w) = pn
implies 7 = 0 by p-torsion freeness, hence w = 0. For surjectivity, suppose w € g-Wpa {23 /A
satisfies F},(w) = pn for some 7. Then w — V,(n) is contained in the kernel of F},. This proves
the second isomorphism.

To show the first isomorphism, consider the ghost map

ghy: ¢-Wpe Qg — Q54 ®a g0 A[Gpe].

We claim that gh; maps the kernel of F}, isomorphically onto (¢, —1)(Q2% /4®4,p0 A[(pe]), which
would provide the desired isomorphism, as ({, — 1) is a non-zerodivisor. We only need to show
this claim in the case where S = P is a polynomial A-algebra; the general case will follow by
the same base change arguments as in the proof of Lemma 3.23 above.

To show injectivity, recall from [Wag24, Lemma 4.5] that gh; is surjective with kernel
im V,, +imdV},. Thus, suppose w € ¢-W a7, /A is contained both the kernel of F}, and of gh,
then we may write w = V() + dV,(m1). Using F, od oV, =d, we get 0 = Fj,(w) = pno + dm.
In particular, dny; =0 mod p. By [Wag24, 4.3(d,)], m1 can be written as m = F,(&) + p&1, so
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that dn; = pF,(d&p)+pd&. Now png = — dmp and p-torsion freeness imply 1y = —Fp(dép) —d&;.
Thus

w = Vp(no) + dVp(m) = =VpFp(déo) — Vp(d&r) + dV,Fy(&o) +pdVp(6) -

Using V), 0 F), = ®pa and V), 0od = p(d o V},), we conclude w = 0. This proves injectivity.

Let us now show that the image is precisely (¢, — 1)(Q0% 4 @4, A[(pe]). By p-torsion
freeness, it’s enough to check this after p-completion and after inverting p. Once we invert p, the
g-de Rham-Witt complexes ¢-W,a (27, /A and ¢-W a1 Q7% /A split into products of base-changed
de Rham complexes by [Wag24, Corollary 3.34] and the assertion is clear.

So let us see what happens after p-completion. First observe that we can replace (ker Fp)ﬁ
by the kernel of F),: (q—WpaQ}’;/A)I/,\ — (q—Wpan};/A);\. Indeed, to show that the image
is contained in (¢, — 1)(Q% /4 @4, A[¢pe])p, this is certainly sufficient. To see that all of
(G — 1) /4 @4, g0 A[{pe]),, is hit, we may use base change [Wag24, Lemma 3.16] and reduce
to the case where A = Z. In this case we're dealing with finitely generated modules over a
noetherian ring [Wag24, Corollary 2.39 and Proposition 3.12(a)], so p-completion commutes
with kernels.

In any case, we can now use [Wag24, Theorem 4.27] to identify the g-de Rham—Witt
Frobenius F: (q—WpaQ}';/A)Z/)\ — (q—Wpan}‘;/A);,\ with

a—1

H*((¢-Hdg}a 0)p /(6" — 1)) — H*((¢-Hdgh o)y /(¢ — 1)),

where the framing [0 can be any choice of coordinates of the polynomial ring P. Also note
that we can ignore the (¢ — 1)-completion in the cited theorem, because everything is p-
completed but also (¢”* — 1)-torsion. In [Wag24, 4.28-4.30] we construct a direct summand
(q—Hdg;’/OA’D);,\ C (q—Hdgj‘g/Aﬂ);} that fits into a commutative diagram

(e

H* ((¢-Hdgp), o)y /(@ — 1)) — H*((¢-Hdg}), 1))/ (¢

ghy J J;

(V4 ®age AlGpe])) «— (Vpya Bage Alg)/ (@ = 1)) —> (Vpya @age Alg)/ (@ 1))

a—1

_ 1))

Il

It is also checked there that the complementary direct summand is sent to 0 under gh;. It follows
that the image of ker F}, under gh; is the image of (quHl — 1)(Q}")/A ®a,40 Alq]/ (g7 — 1)), in

(254 ®4,00 A[pe]),, which is indeed exactly (¢, — 1)(973/14 ®A,¢o A[pe]); in degree n. This
finishes the proof. O

3.25. Corollary. — Let R be an animated A-algebra and let ¢-WpedR_, 4 denote the (p-
completed) animations of the q-de Rham—Witt complex functors. For alln > 0 and all a > 0,
there exists a functorial divided Frobenius

P " Fy: gl e Wyo dR g/ — A1 (dRgya /p) @ goor Alal/ (@ — 1)

with fibre given by ﬁb(p_"ﬁ'p) ~ YRy 4 ®a,¢a A[lpe]. Here filcoM (dRpya/p) denotes the
conjugate filtration on the derived de Rham complex, i.e. the animation of Tg*(Q,/A/p).

Proof. For S smooth over A, Lemmas 3.23 and 3.24 provide a short exact sequence of complexes

n " F n
0 — Qg/a[—n] ®a,00 A[Gpe] — ke ¢-Wpellg/a F 2, < (¢-Wpa-1Qg/4/p) — 0.
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Using ¢-Wpa-1Qg/4/p ~ Qg/a4/p ®i7¢a—1 Alq]/(¢P"~" = 1) by [Wag24, Proposition 4.2], this
provides the desired cofibre sequence. The case of general R follows by passing to animations. [

3.26. Corollary. — For all animated A-algebras R and all o > 0, let us denote the animated

Nygaard filtration by filyr ¢-WyedRp 4. Then:

(a) fil}(¢-WpadRp/a); satisfies quasi-syntomic descent in R.

(b) If R is smooth over A, then filj;(¢-WpadRp/a)), agrees with its un-animated variant
BIAr (G-Wpe Qg a)p-

Proof. 1t’s clear that (¢-WyedRp/a)p ~ (ARgja®} 4o Alg]/(¢"" —1)); satisfies quasi-syntomic
descent and agrees with its un-animated variant when R is smooth over A. To prove (a) and (b),
it will thus be enough to show that grit,(¢-WpyadRp, A) satisfies quasi-syntomic descent for
all n > 0 and agrees with gri-(¢-WyaQp, A) When R is smooth. Both assertions follow from
Corollary 3.25. O

Next we construct an analog of the fibre sequence from Corollary 3.25 for the other Nygaard

filtration fil}, (q Qg / A) ) /(gP" —1). After that we’ll prove Proposition 3.22 by carefully comparing
these fibre sequences.

3.27. Lemma. — Let R be an animated A-algebra. For brevity, let us write

* * )\ A o
filly g0 = ﬁlN(q—ng/ﬁ)p/ (¢ —1)

and let gr}"v—’qﬂ denote the associated graded of this filtered object. Let also ¢4 denote the
relative Frobenius on (dRR/A);,\. Then for all n > 0 there are canonical maps

Pt grh g0 — AN (AR g a/p) @Y oot Aldl/ (" 1)

with fibre fib(p~"¢/4) ~ X" (AR} ®Y g0 AlGpe ).

Proof. By definition of the Nygaard filtration, the Frobenius on g-de Rham cohomology is
divisible by ®pa(g)" on fil}, (q—ng/f)‘) Therefore, for all n > 0 there’s a commutative diagram

(¢"" -1)

i (a-dRY ), g (a-dRE) ) )
Ppa(q)~ "V 4, ]Jﬁ ll‘%a (@7 "¢/a1q]

0 pa71_1 ) o1
RIS (q-dR Y, ) /@y (q)) T 61 (¢-dRE} ) /0 (q)

The vertical arrows are equivalences by [BS19, Theorem 15.2(2)] (plus quasi-syntomic descent
and passing to animations to allow for arbitrary animated A-algebras R).

Now ngﬂ -0 is the cofibre of the top horizontal arrow and thus also the cofibre of the bottom
horizontal arrow; we wish to compute the latter. To this end, note that

17 (R e (0)) /(" = 1) = B (AR /p) &5 s Ala)/ (@~ 1).

Indeed, without the Frobenius-twists, ﬁl;onj(q—dRR/A/CI)p(q)) ®I/Jl[[q—1]] A ~ ﬁlflonj(dRR/A/p)
follows from the base change result in [BS19, Theorem 15.2(3)] plus quasi-syntomic descent,
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using that — ®k[[ a—1] A commutes with all limits. To incorporate the Frobenius twists, just

take the base change along ¢*~!.
As a consequence, we obtain the desired canonical map

_ s a—1
P bya: grir g0 — Gl (AR RyA/D) @ gor Aldl/ (677 —1).
By the diagram above and the Hodge-Tate comparison for prismatic cohomology (see [BS19,

Construction 7.6]) the fibre is indeed gré®™ (q—ng/ci;l)/@pa () =~ Z7"(dR /4 ®%7¢a Al D)y,
as desired. O

3.28. Remark. — By contemplating the bottom row of the diagram in the proof above, we
find that fib(p™"¢,4) — 8 4 sits inside the following diagram for all n > 0:

il (¢-dR{Z)))

l \‘I’pa(q)_%m[q]

. a—1 . a—1
grs (AR ) /By () ——————— @ g0 A1 (g-dR ), /e (q)

(qpm J /

. a—1
grs™ (g-dR ), ) /e (q)

Proof of Proposition 3.22. Thanks to Corollary 3.26, we can tackle the question using quasi-
syntomic descent. Let R be a p-complete quasi-syntomic A-algebra which is large in the sense
of [BS19, Definition 15.1], i.e. there exists a surjection Ap<x;/p | i € I) - R for some set I.
Let fil}/ , o and fil}, , w denote the two filtrations on (dRp/4 ®ﬁ7 oo Alal/ (¢"" — 1))} given by

il 0 = B3 (AR 1) /(@ = 1) and I} g = il (¢-WpadRp a))

Our assumptions on R ensure that (dRp/4 ®I;L oo Aldl/ (" — 1));, is static and that fily, , ¢ is
a descending filtrations by ordinary ideals. So once we’ve shown fil}, , o = fil}r .. as ideals,
the comparison will automatically be functorial in R (of the given form) and an equivalence of
filtered Eo-A[g]-algebras. Moreover, uniqueness will also be clear. Via quasi-syntomic descent
we can then recover the smooth case.

To prove the proposition for R, we show using induction on n that fili; , o = fili ,.w as
ideals in the ring (dR /4 ®ﬁ7¢a Alq]/(¢*" = 1)));. The case n = 0 is clear. So assume we know
fil - = filiy -w =t fil} for some n > 0. Let

K = fib (p—”¢ sa: il — B (AR g/ /p) ® gor Aldl/ (¢ — 1)) .

Via fil, = filjy .o we know that p™"¢,, is surjective and so K is static. According to
Corollary 3.25 we have an equivalence

cofib(BI 1y — K) = 7" (AR 4 @ go AlGpe])) -

Moreover, this equivalence can be explicitly described as follows: Consider the ghost map
gh; for ¢-WpadRp, 4, which by [Wag24, Proposition 4.2] just corresponds to the canonical
projection
(oY A N
(dRg/a ®h,¢>a Alql/(¢" — 1))p — (dRR/a ®i7¢a A[Cpa])p
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sending g — (po. When restricted to fily, = fil}y, , v, this lands in (filfy, dRp/4 ®i’ o AlGpe])p-
Indeed, for smooth A-algebras this follows directly from 3.21, as the image of V,, dies under
gh,; the general case follows via animation. By tracing through the proof of Lemma 3.24, we
now see that the diagram

cofib(fIff ]y — K) K filR,
n L A n L A
griag (AR r/a ®4 g AlGe]),, filfiag (AR R/A ® g0 AlGpe]),
(Gp—1) l

8rfiag (AR p/A @' go A[pe]) ;

commutes. Thus K is mapped into the submodule ({, — 1)(grfig, dRr/a ®IA7¢Q A[{pe]); and
filyf )y is the fibre of this map.

According to Lemma 3.27 and the left half of the diagram from Remark 3.28, for ﬁlﬁﬁ;Q
we have a similar diagram:

cofib(filjf ] o — K) K fily,
. a—1 J
g (-dR Y, /@y (0) BN g0
(" -1 l

g (g-dRE) ) /@y (q))

Note that (¢?* ' — 1) is sent to (¢p — 1) under g — (po. Therefore, to show ﬁl/’(;r; Q= ﬁl”Jrl
and thus to finish the induction, it will be enough to show that the following diagram commutes
here we also use the right half of the diagram from Remark 3.28:

I3 (¢-dR{) ), fili
Qpa(q)™ "¢/ J J
-1
ﬁICOHJ (q dRR/A )/q) ( )) ﬁlﬁdg (dRR/A ®ﬁ,¢°‘ A[Cpa]);\
gy reo™ (q dRR/A /(I) ( )) HodgefTat:comparison gr%dg (dRR/A ®IA7¢Q A[Cpa]);\

To show commutativity, let us first get rid of (o — 1) Frobenius-twists (thus reducing to o = 1),
as these Frobenius-twists just amount to a pullback. Moreover, commutativity can be checked
after the faithfully flat base change along the map A — A, into the colimit perfection of the
perfectly covered A-ring A. Since everything is p-complete, working relative to Ao is the same
as working absolutely, so we can reduce to the case A = Z. We can then use the method from
[BS19, §12]. Let us first check commutativity in the single case R = Z,(x/P™) /z.
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In this case, everything is explicit: First off, (¢-dR g /Z)I/J\ is the ring

Zpla - 1H<$l/pm>{ @ZZJ) };,q—n Qa@/p] ol [LlJqu’><Ap,q1) '

The graded piece grijq,(dRRr/z ®% Z[(p)); is generated by the divided power 2™ /n!, which is
the image of the ¢-divided power z"/[n], ' € ¢-dRg/z. We have

-n z" xP" _ ‘:Up/cbp( ) "
2:() ¢<[n]q!> B [n]ge! - @p(q)" - ( n! : ) mod ®;(9)

By [BS19, Lemma 12.6], [n]q!- ®5(¢)™ is a unit multiple of [pn],!. This shows that ¢(z™/[n],!)
is divisible by ®,(¢q)"™ and so the image of " /[n],! under (¢-dRp/z);, — (qdeg)Z)é\ lies in
Nygaard filtration degree n. The proof of [BS19, Lemma 12.7] also explains that the graded
algebra gry”™(¢-dRpg/z/®p(q)) is generated by divided powers of z”/®,(q) and that these
generators induce the Hodge-Tate comparison. As we’ve seen above, said divided powers are

precisely the images of 2™ /[n],!, so we obtain commutativity in our special case.
The method from [BS19, §12] then shows commutativity in general: First consider the

case R = Zp<xi/poo, . ,:cql/poo>/(x1, ..., Zpn). This follows from the special case above by
multiplicativity. Next consider the case R = R'/(f1,..., f»), where R’ is a perfectoid ring and
(f1,-.., fr) is a p-completely regular sequence. If each f; admits compatible p-power roots, we
can reduce to the previous special case via base change. In general, by Andre’s lemma [BS19,
Theorem 7.14], we find a p-completely faithfully flat cover R" — R’ such that R’ is perfectoid
again and each f; admits compatible p-power roots in R”, so we can conclude via descent.
Now assume R is p-completely smooth over Z,. In this case we can choose a surjection
Zp(z1,...,xy) — R and put
A

1/p>® oo
Roo = <Zp<$1/p AR 'r}L/p > ®Zp<x17--~7xn> R)p

Using descent for R — Roo, we only need to check the assertion for each term in the Cech nerve
(RE?OR‘)Q. These terms are Zariski-locally of the form considered in the previous paragraph and
so the smooth case follows. Finally, the case of arbitrary R follows by passing to animations. [

The same slightly convoluted method of proof can be used to show the following technical
lemma, which we’ll need below.

3.29. Lemma. — The equivalence (¢-dRp/a); [l/p](q 1 = ~ (dRpsa)y[1/pllg — 1] upgrades
uniquely to an equivalence of filtered Eoo-A[1/p, q]-algebras

AU (-dR{Z))) (5, o) — lftag.a, @) (Rja ©f o A))[2alg () -

where filfy, o)) denotes the combined Hodge and ®p(q)-adic filtration.

Proof. Let us first construct the map. It’s enough to do this in the case where R a p-
complete quasi-syntomic A-algebra which is large in the sense that there exists a surjection

Ap@?g /P | i € I) > R for some set I. Via quasi-syntomic descent, we can then recover the
case where R is smooth over A, and the general case follows via animation.
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If R is as above, then (¢-dRp/4); [1/p] (4—1) ~ (dRp/a)p[1/p]lg — 1] are static and so are
the filtrations on them. So we have to compare two descending filtrations of a ring by ideals.
It follows at once that the comparison, if it exists, must be unique, and it will automatically
be compatible with the filtered E-A[1/p, ¢]-algebra structures. Moreover, to compare the
two filtrations by ideals, we may base change along the faithfully flat map A — A..(39)
Since working relative to the perfect §-ring A, is equivalent to working absolutely, we may
thus assume A = Z. Then we use the method from [BS19, §12] as in the previous proof of
Proposition 3.22.

So we only have to check the single case R = Z,(x'/P™) /. In this case, (q—ng)Z)I/)\ is given
by a completed direct sum

arigl)y > (@ zlo- [LzJ]iqp')A

e (0.2p(a))

By definition, ﬁlﬁf(q—ng}Z)g consists of those elements whose Frobenius becomes divisible by
®,(q)". By inspection, these are precisely

ﬁlN(q dRR/Z) ~ < @ D, ( max{n_LZJ’O}Zp[[q -1]- W) )
1€N[1/p] q (p,2p(2))
After (—)[1/p]3 (., this becomes the ideal (z, ®,(g))", which is the n'! step in the combined
Hodge and ®,(q ) adlc filtration on (dRp/z),[1/p, 4l ®,(¢)- This finishes the discussion of the
special case and thus the construction of the comparison between the two filtrations.

To show that we get an equivalence, let A be arbitrary again and let R be any animated
A-algebra. We'll show that both sides agree if we reduce them modulo ®,(q), where ®,(q) sits
in filtration degree 1. Since both sides also agree in filtration degree 0, it will follow inductively
that they agree everywhere. By construction,

ﬁl?Hdgﬁbp(q)) (dRR/A ®i,¢ A);A) [%’ ‘1] gp(q)/q)P(Q) = ﬁlﬁdg (dRR/A ®I;L¢ A[CP]): [%]

is just a base change of the Hodge filtration. So let’s see what happens on the left-hand side.
Since (¢ — 1) becomes invertible after (—)[1/ p]gp( 4)» We may as well reduce modulo (¢ — 1),
again sitting in filtration degree 1. Then Proposition 3.22 shows

il (¢- dRSR}A) [ ] q)/(q -1)~ ﬁl/*\/(q—wdeR/A);\[;%]gp(q)’

We claim that the right-hand side is equivalent to (filjjq, AR /4 ®IA s AlGp])p [1/p] via the ghost
map gh;. This may be checked in the case where R is smooth over A, as then the general case
follows via animation. As we’ve seen above, (—)[1/ p]gp( g) forces (¢ — 1) to be invertible, and so
all the images of V], in 3.21 die because they’re all (¢ — 1)-torsion. It follows that for R smooth
over A, the ghost map

hl : ﬁlj\/' (Q‘WPQE/A);\[%]%@) — ﬁlﬁdg (QE/A ®A,¢ A[Cp]);\[%]

is already an isomorphism on the level of complexes and so we’re done. O

3-6Recall from Remark A.7 that for every fixed n > 0 there exists an N such that the canonical map

(¢-dRpya)p — (dRgya)p[1/p]lg — 1]/(g — 1)™ already factors through p~ ™ (dRg/a)p[q — 1]/(g¢ — 1)". The

existence of a map
N

() \A * L AT1
filir (¢-dR 7 4), — fillsag. o, (a) (ARr/a ®i.6 A), [5:4]e o
boils down to an inclusion of ideals. Using the observation above, this inclusion can be checked modulo powers
of p and ®,(q), and so we can use base change along A — A, without having to worry about completion issues.
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§3.5. The twisted g-Hodge filtration

>N, ®

For smooth A-algebras S, let ﬁl;_[dgm W, 2% /A denote the stupid filtration given by ¢-W,, 25 /A
in degree n. In general, let

fi345,, - WindR 4 AniAlgy — CAlg(Fil D(Alg]/(¢" ~ 1)) )

be the animation of this functor. In this subsection, we’ll show that once ¢-dRg/4 is equipped
with a g-Hodge filtration, the filtration ﬁl;‘_[dgm q¢-W,,,dR g/ 4 admits a canonical ¢™-deformation

* (m)
filg 71dg, . q—dRR/ :

This will eventually allow us to prove Theorem 3.11 in §3.6 below. Let us first explain how
ﬁl;—[dgm q-WmdR R, 4 is related to the Nygaard filtration from §3.4.

3.30. Lemma. — For all smooth A-algebras S, all primes p and all o > 1 the diagram

ﬁl%dgpa q_Wp"‘ Qg/A ﬁlﬁ[ q—Wpa Q;’/A
s
ﬁlz}l_[dgpa71 q—wpa—IQE/A _— C]—Wpa—l QZ/A
becomes a pullback in D(A[q]) for allm > 0.

Proof. 1t’s enough to check that the induced map on horizontal cofibres is an equivalence. Since
ﬁl;ﬁldgpa G-Wya Q% /A~ fillyr ¢-Wpa Q% /A is injective, the cofibre agrees with the cokernel, which
is given by

(p"fl{/;?(q—Wpaleg/A) — e — pOVp(q—Wpaleg/_j) —-0—-0—-- ) .
Under p*”ﬁp, this complex is mapped isomorphically onto
(q—Wpan%/A — q—Wpaleg/_j —0—0— ) ,
which is the cokernel (and the cofibre) of ﬁl;f[ngW L G Wpa—1 €05 4 — - Wi (05 O

3.31. Corollary. — If S is smooth over A, then q—Wdeg/A ~ 3" q—WmQTS‘/A for all
m € N and all degrees n > 0.

Proof. 1t’s enough to show this rationally and after p-completion for all primes p. Rationally,
[Wag24, Corollary 3.34] shows

0 W24 @2, Q = [ (24 @0 (ABQ)[C))
dlm

and it’s well-known that the values of Q™ /4 ON smooth A-algebras don’t change under animation.

After p-completion, [Wag24, Lemma 4.36] allows us to restrict to the case where m = p® is a

prime power. Since ¢-WpadRY /A = 8% dg o 4~ Wpe dRg/a, it will be enough to show that the
D

filtration ﬁl;‘[dgpa Wy Q2% /A is unchanged under animation. This follows via induction on «

from Lemma 3.30 and Corollary 3.26(b). O
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We now set out to construct the desired ¢"*-deformation of ﬁl;—[dgm Wy, dR R/ 4.
3.32. The twisted g-Hodge filtration (p-adically). — Let’s first construct the filtration
for prime powers m = p® and after p-completion. We’ll use a recursive definition. For a = 0,
0
Q‘ng/i ~ q-dRp/4 is just the g-de Rham complex and we choose

A

(0]
£ 300 o (a-dR{E )} = il 11a, (a-dRgya))

to be the given ¢-Hodge filtration. For a > 1, we consider the “rescaling” of the filtration
(P*~ 1)\ A :
ﬁlg—Hdgpa_l (q—dRR/A )p by ®,, that is,

* Ppe(q) Ppa(q)
(bpa (q)* ﬁlqudgpafl = (ﬁlgﬂdgpal <p_ ﬁl;’Hdgpa—l (p— . > .

We also equip (q—ngZ;l));\ with its ®,a (g)-adic filtration. Then we define ﬁl;_[dgpa (q—ng;;)‘)g
as the following pullback of filtered objects:

* (P*)\A * (P*)\A
ﬁquHdgpa (q_dR’]g/A)p ﬁlN (q_deg/A)p
J | J%/A[q]
(P~ A (P> \A
Py (4) iy ag ., (-dRE)y ), — e ()" (AR, )7
Using this pullback diagram, we can also inductively equip ﬁl;_Hdgpa (q—ng;)l)Q with the
structure of a filtered module over the filtered ring (¢** — 1)*A[q].
3.33. Remark. — If we reduce the pullback diagram above modulo (¢P" — 1) (where we

invoke Convention 3.1 as usual), we obtain the pullback diagram from Lemma 3.30. Indeed,
this follows via induction on «, using Proposition 3.22. It follows that

15 71dg (q—ng/f)l); /(@ = 1) ~ filyag o (¢-WpadRp/a)), -

3.34. Lax symmetric monoidal structure I. — The functor

(PINA . A A1,a-Hdg . A
ﬁl:;'[dgpa (q—dRi/A)p : AniAlgl ™™ — Mod(gpe _ 1) aqq] (FllD(A[q])) )
comes equipped with a canonical lax symmetric monoidal structure. This follows from the
recursive construction. For a = 0, Proposition 3.7 even provides a symmetric monoidal structure.
For a > 1, we must equip the legs of the pullback in 3.32 with the structure of symmetric
monoidal transformations. This is not hard. First, the Frobenius

@ a—1
¢/Alq)" ﬁlj\/(q_ng/f)l);\ - ‘I)pa(Q)*(q‘ng/A ))2

becomes a symmetric monoidal transformation by quasi-syntomic descent from the case where
R is a p-complete quasi-syntomic A-algebra with a surjection gp<$;/poo | i € I) - R. In this
case, we're dealing with filtrations of rings by ideals, so symmetric monoidality is automatic.

Second, the functor that “rescales” a filtration by ®,(g) as in 3.32 is lax symmetric monoidal.
Indeed, if we regard our filtered objects as graded modules over Z[q,t], with the filtration
parameter ¢ in graded degree —1, then rescaling corresponds to restriction along the Z[g]-linear
map Z[q,t] — Z|[q,t] that sends t — ®pa(g)t. This is lax symmetric monoidal.
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3.35. Lax symmetric monoidal structure II. — It follows from the construction in 3.32
that we have a canonical map

A
p

(P*)\A (1)
ﬁl%dgpa (q‘dRR/A)p - ﬁl;{dgpa—l (q‘dRR/A )
: : : : : (P*)\A (P*"\A
compatible with the relative Frobenius ¢,/ 4[4 (q—dRR / A)p — (q—dR R/A )p, because the
“rescaling” by ®,a(q) of any filtration in non-negative degrees has a canonical map back to
the original filtration. Moreover, by the discussion in 3.34, the map above can be canonically
equipped with the structure of a symmetric monoidal transformation.

3.36. Lemma. — For all primes p and all a > 0, there exists a canonical equivalence of

filtered (P — 1)* A[q]-modules

N N

113 74dg, (q‘dR%ﬁ)ﬁ[ﬂ@pa @~ it 60 (@) (ARi/a ® g A)7[ 5l

pOz

where ﬁl?Hdg )0 (9)) denotes the combined Hodge and ®pe(q)-adic filtration. This equivalence is
compatible with (q-dRgya), [1/p](,_1) =~ (dRR )y [1/p]la — 1].

Proof. For a = 0, this is the condition from Definition 3.2(c,). So let a > 1. After applying

(—)[1/pl5 ., (@) the polynomial (q?’w1 —1) becomes invertible, and so the filtered (¢?" —1)*A[q]-
p

module

a—1
ﬁlZ—Hdgpaq (q_ng/A )) 2 [%]gpa (q)

must be the constant filtration on (q dR% /A );\[1 /pl% w(q)" Consequently, after applying
p

(—)[1 /p]gpa(q) the bottom horizontal arrow in the pullback diagram from 3.32 becomes an

equivalence and thus the top horizontal arrow becomes an equivalence too. The desired assertion
then follows via base change from Lemma 3.29. O

3.37. Lemma. — For all primes p, all « > 1, and all 0 < i < a — 1, the canonical map from
3.35 induces an equivalence of filtered (¢*" — 1)*A[ ]- modules

(o1 ~ a—1
ﬁlg-Hdgpa (q_ng/j);[%]gpi(q) - ﬁl;"Hdgpa—l (q_ng/A ));[%]gpi(q) :

Proof. After (—)[1 /p]é,pi () the polynomial ®a (g) becomes invertible. Consequently, the
“rescaling” of filtrations in 3.32 has no effect anymore. Moreover, it follows that the filtered
e (¢)* Alg]-module

i (a-dR D)) (250

. (PN\AT1IN .
must be the constant filtration on (q—dR]f/A)p [5]%1' (@) Thus, after applying (—)[l/p]gpi (a)’
the pullback from 3.32 collapses to the desired equivalence. O

Let us finally construct the filtration fil’; a-Mdg,, 9 ng% /34 in general.

3.38. The twisted g-Hodge filtration (globally) — Choose N # 0 divisible by m (we’ll
argue below that the choice of N doesn’t matter). For every divisor d | m and every prime p | N,
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write m = p”P(m)mp and d = p”P(d)dp, where m,, and d,, are coprime to p. Using the animated
version of Lemma 3.15, we obtain a pullback diagram

A
q- dRE/L II 11 (q‘dRR/A D ifq] 7™ A[Q])(p 4, (q))
p|N dp|mp s
{ - [
A A
TT (a-dRpya @700 AL qD@d(q) TT T (4-dR s @i g Ala) [113,0

dm p|N d|m

To construct ﬁlq Hdg,, 4 ng% /L, we’ll equip each factor of the pullback above with a filtration

and then check that these filtrations are compatible.

a) On the factor (¢-dRp,4 @Y JA[1/N,q))4 for any d | m, we put the base-changed
/A S Alq) % ©4(q)
q-Hodge filtration

A
L
(ﬁlﬁ-Hdg g-dRp/a ®A[q],wd Alw, qD Bala)

b) On the factor (¢-dR g4 ® < Alg 1 D, q for any prime p | NV and any d | m, we
/AP Alq) 4 (9)
put again the base-changed ¢-Hodge ﬁltratlon
(c) On the factor (g-dR g4 ®I;1[q]7wpvp<m>dp A[q])@)@dp(q)) for any prime p | N and any dy, | my,
we put the base-changed filtration

A

(pvP (™)) A
<ﬁ1q Hdg,vp(m) (q_dR}éJ/A ) ®A[ 1,yP A[q]> (P, ®a, () .

Moreover, each of these filtrations is canonically a module over the filtered ring (¢™ — 1)*A[q].
It’s clear that (a) and (b) are compatible as filtered (¢"* — 1)*A[g]-modules. To check that
(c) and (b) are compatible, we may reduce via base change to the case where m = p® is a
power of p. From Lemmas 3.36 and 3.37 and our assumptions on ﬁl;_Hdg we deduce that both
filtrations can be identified with the combined Hodge and ®,«(g)-adic filtration

A

ﬁlfHdg,cbpa (@) (dRR/A ®A R A) [p’ q]q, al(q)”?

P

which yields the desired compatibility.

Let us now argue that the choice of N is irrelevant. Suppose N | N’. Then the pullback
diagrams for N’ is obtained from the pullback square for N by replacing the bottom left corner
[L4jm(g-dRR/a ®113[q],wd A[1/N, q])gd(q) by the pullback square

TT I (a-dRaya @510 Al 0]

q(q) ¢ dim (€, 24(q))
| : J

N A
[T (4R &gy v Aliroal), o T (4R @l 00 AT 0], [Ha
dlm £ dm

N A

T1 (a-dRpja @Y1 Al-4])

dlm

where the product is taken over all primes ¢ such that ¢ | N’ but £ N. Note that for any

such prime we also have £t m, so each vy(m/d) = 0 and so each iterated Frobenius (sz Am/]d)
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is the identity. Moreover, we see that the filtrations we put on the different factors is always
ﬁl;,Hdg, base changed along ¥¢. Tt follows that the filtrations constructed using N and using
N’ must indeed agree, as claimed. To get a canonical construction, we can let N vary through
a totally ordered initial sub-poset of N (like {n!},>,,) and then take the limit. This finishes the

construction of ﬁl;_H dg,, q-ng’;‘A‘
The construction is clearly functorial. Using 3.34 and 3.35 we also see that the functor

. “Hd . A
ﬁl;—Hdgm q—dR(j;L: AniAlg? "% — Mod (gm_1) a[q] (FllD(A[q])) ()
comes equipped with a canonical lax symmetric monoidal structure.

3.39. Proposition. — For all m € N, the equivalence q—ng/L,)Ll/(qm —1) ~ ¢W,,dRp/4

from the animated version of Proposition 3.19 upgrades canonically to an equivalence of filtered

Alq]/ (g™ — 1)-modules
il uag,, - ARG)L /(07— 1) = 6litgg, @-WodRjeya

(the quotient on the left-hand side is taken in accordance with Convention 3.1).

Proof sketch. We analyse the effect of (—)/(¢™—1) on each of the factors in 3.38. For the factors
in 3.38(c), note that (¢™ — 1) and @dp(qpvp(m)) will only differ by a unit upon (p, ®4,(q))-adic
completion. Then the argument in Remark 3.33 plus base change shows that after modding
out (¢™ — 1) we get

A vp(m)
(ﬁl;{dgpmm) -Wyepem) dRR /4 ®i[q],'¢)d1’ A[q]>p /P, (qp ! )

It follows from [Wag24, Lemma 4.36] that fil q, (¢-WyndRpg/4);, is indeed a product of factors
of this form.

For the factors in 3.38(a), note that (¢ — 1) and ®4(¢) will only differ by a unit after
(—)[1/N]gd(q). By construction, the g-Hodge filtration becomes the Hodge filtration modulo

g — 1). Thus, after base change along ¥%: A[q] — A[q], we get
(¢—1)
A
(ﬁI;—Hdg ¢-dRg/a ®'41 ya Al R Q])qbd(q)/@d(Q) ~ filfigg AR /4 @4 ya Al 375 Ca] -

It follows from [Wag24, Corollary 3.34] that filj 4, ¢-WindRp/a[1/N] is indeed a product of
factors of this form. The same argument applies for the factors in 3.38(b). O

3.40. Remark. — It follows from the proof that the equivalence in Proposition 3.39 is, in fact,
an equivalence of lax symmetric monoidal functors AniAng{Hdg — FilD(A[q]/(¢™ — 1)). Thus,

if (R, ﬁl;Hdg q-dRp/4) admits the structure of an E,-algebra in AniAng{Hdg for any 0 < n < oo,
then the equivalence in Proposition 3.39 will be one of filtered E,,-A[q]/(¢™ — 1)-algebras.

3.41. Transition maps. — Whenever n | m, there’s a canonical map of filtered objects

LY g q—ng)}A s i1 g q—ngL/) "

To construct this, we look at the factors of the pullback from 3.38 (we're allowed to use the
same N for both m and n). For the factors from 3.38(a) and (b), we simply project to those
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where d | n. For the factors from 3.38(c), we first project to those where d), | n, and then we
use the maps from 3.35, base changed along v : A[q] — A[q].

It’s clear from the construction that these maps ﬁl;,Hdgm q—ngg}ll — ﬁlgﬂ-{dgn q—ng/) A
assemble canonically into a symmetric monoidal transformation of lax symmetric monoidal
functors. With some more effort, one can also make these transformations functorial in n,m € N,
where N denotes the category of natural numbers partially ordered by divisibility. For our
purposes, the existence of the individual maps is enough, as any lim,,cn can be replaced by
the limit over the sequential subdiagram given by {n!},>1. We will therefore not spell out the
construction of this additional functoriality.

§3.6. Habiro descent for g-Hodge complexes

In this subsection, we’ll finish the proof of Theorem 3.11, following the outline that we have
explained at the end of §3.2.

3.42. The (¢™ — 1)-complete descent. — For all m € N, we consider the colimit
. (¢m-1) (¢m-1) A
q-Hdgr/a,m = colim (ﬁlg-Hdgm q—ng;l)4 Em— ﬁlé-?—[dgm Q‘ng/ll; e ) (gm—1) "

In the following, we’ll informally write

(gm—1)

q-HdgRr/a,m ~ Q*dRSzmix

AN
1> 1]
(g™-1)

and we'll say that ¢-Hdgg/a ,, s given by adjoining (¢ —1)7* ﬁl;—?—[dgm to q—ng/Ll)q. We'll
also use similar notation and terminology for related filtrations such as the Nygaard filtration

or the combined Hodge and ®4(q)-adic filtration for some d | m.

3.43. Proposition. — Let m € N. For all divisors n | m, the map from 3.41 induces an
equivalence

~

(q_%ng/A,m)&n_l) — q_Hng/A,n .

In particular, ¢-Hdgp/a,n, is a descent of ¢-Hdgp 4 along Z[q](Aqul) — Z[q —1].

Proof sketch. Again, we look at the different factors from 3.38. Let’s start with those from
3.38(a) for some d | m. If d 1 n, then ®4(q) and (¢" —1) are coprime in Q[¢] and so the factor will
die after (¢" —1)-completion. Therefore in (¢-Hdgp, AJTL)E\q"fl) only those factors where d | n will
survive. These are precisely the factors that are also used in the construction of of ¢-Hdgg /4 »-
Moreover, if d | n then both (¢" — 1) and (¢" — 1) are unit multiples of ®4(¢) in Q[q]&\,d(q), so it
doesn’t matter whether we adjoin (¢™ — 1) filfygy o, (g)) OF (¢" — 1) filfigg o, (g))- 1t follows
that on the factors from 3.38(a) we get indeed an equivalence. The same argument applies to
the factors from 3.38(b).

It remains to show that we also get an equivalence on the factors from 3.38(c). So let’s
consider such a factor for some prime p and some d, | m,. Using induction, we may assume
that m and n differ only by a single prime factor. If that prime is different from p, then (¢™ —1)
and (¢" — 1) will differ by a unit after (p, ®4,(q))-completion and we can argue as above. So
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assume n = m/p. Via base change along ¥% : A[q] — A[q], we may reduce to the case where
m = p® is a prime power and n = p®~!. From 3.32 we obtain a pullback diagram

A

[ fil? i
_aMdge | o (areoy| il
) @ —1|'7 0] (-dR;a) [(qpa — 1)
(p.g?® 1)

L |

g-Hdg,a-1 | . a1 1 "
4 1= 0] e (q—ng/A )) |:(qpa1_1):|
( , po‘_lfl)

A

(¢-dR ) 0z 0]
(™' -1)

afl)

(q_ng/A )

P ——

| (¢ —1) (p.q?* ' —1)

To finish the proof, we must show that the left vertical arrow is an equivalence. Since the diagram

is a pullback, it will be enough to show that the right vertical arrow is an equivalence. (37
This is now purely an assertion about the Nygaard filtration. Via base change, we may

reduce to the case o = 1. This case will be shown in Lemma 3.44 below. O
3.44. Lemma. — e relative Frobenius ¢,/ ar,1: (q- — (q-dRpg/4);, induces functo-
L The relative Probenius ¢)a1q): (¢-dR) ()" dRp/a)) induces f

rial equivalences
il "
(q_ng)A);\ [(I) (N)i (> 0] — (q_dRR/A);\7

g (p,q—1)
i A A

@) A fly ~ A1

@R s [ 120] = (dr))| ~0.
AP | (gp = 1) (P,a—1) Pllg—=1) (p,g-1)

Proof. We start with the first equivalence. Since both sides are ®,(q)-complete, it will be
enough to show the equivalence modulo ®,(g). The same argument as in 3.8 shows

p(q)

(¢-dR) )A{ filyy gr}, 2@ )

R/A P Q)p(q)z

P> O] /Pp(q) ~ colim(gr?v

The divided Frobenius ®,(q) ‘¢, [, maps griy, isomorphically onto ﬁlfonj(q—dRR/ 4/Pp(q))
(by [BS19, Theorem 15.2] plus quasi-syntomic descent and animation to cover all animated
A-algebras R). Since the conjugate filtration is exhaustive, this shows the first of the two
claimed equivalences.

For the second equivalence, note that the inclusion of the diagonal into any Zx( x Z>o-shaped
diagram is coinitial. Therefore, we can write

fﬂ?\[ Pp(q) ﬁl}\/— @p(q)

J(q—l) l(q—l)
i>0] ~ colim | 19, 2@, gt @

o | il
(q dRR/A)p [<qp — 1)

Jav e

(37 Also note that the bottom right corner vanishes, so it will follow that the top right corner vanishes as well.
But this will be irrelevant for our argument.
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By the first equivalence, the (p,q — 1)-completed colimit of every row in this diagram is
(¢-dRpg/ A)Q. If we then take the colimit in the vertical direction, the second equivalence follows
and we're done O

3.45. The Habiro descent — Let (R, fil} jjq, ¢-dRp/4) be an object in AniAng{Hdg. We
define the Habiro—Hodge complex of R over A to be

¢-Hdgp 4 = lim q-HdgR 4 m -

The same argument as in the proof of Proposition 3.7 allows us to equip ¢-Hdg_ 4 ,, with
a lax symmetric monoidal structure for all m € N; thanks to 3.41, the equivalences from
Proposition 3.43 will be compatible with this lax symmetric monoidal structure. It follows that
there’s a diagram of lax symmetric monoidal functors

Du(Alq])

gHAg_ja -7 A
LT J(_)(qfl)

. -Hd S
AniAlg? 8 e Dig-1)(Alq])

3.46. Lemma. — The laz symmetric monoidal functor ¢-Hdg_ - AniAlg%’Hdg — ﬁH(A[q])
18, in fact, symmetric monoidal.

Proof. Tt will be enough to show that for all m € N the functor

q-Hdg_/4/(¢" — 1)[{(qd - 1)71}d\m,d7ém]

is symmetric monoidal. The same argument as in the proof of Proposition 3.7 allows us to
equip the filtration 817V (¢-Hdg /4/(¢™ — 1)) from Theorem 3.11(b) with a lax symmetric
monoidal structure. Symmetric monoidality can then be checked on the associated graded

gr‘jjw’"Q (q—Hdg_/A/(qm — 1)) ~ 3N q—Wdei/A ~ grﬁldgm Wy dR_ 4.

Thus, it would be enough to show that ﬁl;[dgm q¢-W,,dR_ /4 is symmetric monoidal. This is

not true on the nose. However, once we invert (¢¢ — 1) for all divisors d | m, d # m, we claim
that the first ghost map

ghy: il g, ¢-WidR_ 4 — filfig, dR_ /4 ®} ym A[Gn]

becomes an equivalence. If we can show this, we’re done, since the Hodge filtration ﬁl*Hdg dR_ /s
is symmetric monoidal.

To prove this claim, observe that for any ordinary R-algebra A and any d | m, d # m, the
g-de Rham-Witt complex ¢-W 07, /A is (¢* — 1)-torsion and so it dies after inverting (¢¢ — 1).
With this observation, a simple comparison of universal properties (compare the argument in
[Wag24, Lemma 4.5]) shows that

gh;: q—WmQ}}/A[{(qd — 1) Yy, d;ém] = Qp/a ®a,ym A[Cm, {(¢d = 1) Y gm, d;ém]

is an isomorphism of complexes. In particular, it induces an isomorphism on stupid filtrations.
By passing to animations, the above claim about gh; follows and so we’re done. O

At this point, we've assembled all the ingredients to carry out the proof of Theorem 3.11 as
outlined at the end of §3.2, and so the proof is finally finished.
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§3.7. Habiro descent for g-de Rham complexes

In this short subsection, we discuss to what extent the g-de Rham complex ¢g-dRpg/4 can or
cannot be descended to the Habiro ring. Let’s start with the case that works.

3.47. Proposition. — Let (S, fil} 4, ¢-dRg/4) € AniAlgi{Hdg be an object such that S is a
smooth A-algebra. Then:

(a) qSg/a =~ Q‘&RS/A is the completion of ¢-dR g4 at the g-Hodge filtration fil7 4,
b) We have Lin,_1) q-Hdg ~ q-Qpr/a- In particular, Lin,_1) ¢-Hdg is a Habiro descent
(a—1) S/A / (¢-1) S/A
of ¢-Sg/4-

Proof. We construct the equivalence g-{0g/4 ~ q—cﬂ\% s/4 using an arithmetic fracture square.
Let us first construct an equivalence after p-completion for any prime p. Note that the
canonical maps ¢-dRg/s — ¢-Qg/4 and ¢-dRg/4 — q—&RS/ 4 become equivalences after p-
completion for any prime p. Indeed, this can be checked modulo (¢ — 1), where we recover
the well-known fact (Qg/4), =~ (dRg/a), (dRS/ 4)p- So we obtain the desired equivalence
(/) =~ (¢-dRg/a)y-

Let us now construct the equivalence rationally. We know that dRg/4 ®IZ Q— Qg4 ®]Z Q
identifies the right-hand side with the completion of the left-hand side at the Hodge filtration.
Consequently, (dRg/4 ®% Q)[q — ]] (Hdg,g—1) = (L2s/a ®% Q)[q — 1], which yields the desired
equivalence rationally. The data from Deﬁnition 3.2(cp) ensures that the p-complete and
rational equivalences glue, which finishes the proof of (a).

To prove (b), first observe that the natural map ¢-dRg/a — ¢-Hdgg/ 4 factors through the
completion at the ¢-Hodge filtration, because each filtration step ﬁlé,Hdg becomes divisible by
(¢—1)" in g-Hdgg/4 and ¢-Hdgg, is (¢ —1)-complete. Now consider the map of filtered objects

e Q‘CTRS/A = Q‘CTRS/A — ﬁlngdg Q‘CTRS/A A ﬁl;—Hdg Q‘&RS/A A

l(qfl)2 l(q—l) - l J

(g—1)
c e q-Hdggy < q-Hdggs q-Hdgg,/ 4 q-Hdgg/q — -+

We claim that the top row is the connective cover of the bottom row in the Beilinson ¢-structure.
If we can prove this, then [BMS19, Proposition 5.8] will show q—(IF\{S/A ~ Lng-1)¢-Hdgg)a,
hence g-Q0g/4 ~ Ln,_1)q-Hdgg s by (a), as desired. Since Ln_1) commutes with (¢ — 1)-
completion [BMS18, Lemma 6.20], we also deduce that Lng-1)¢-Hdgg, 4 is indeed a Habiro
descent of g-(2g, 4.

To show the claim, let us first verify that the top row is indeed connective in the Beilinson
t-structure. We must show that ng_Hdg q-dRg/ 4 is concentrated in cohomological degrees < n
for all n. If n <0, this is clear as then grj 4, ¢-dRg/4 ~ 0. If n > 0, we have a finite-length
filtration

-1 (a—1)

(g—1) ( n
0 — g1} yag -dRg/a 4 8T pag 1-dRs)4 8 Hdg -dRs/a -

The i*" graded piece of this filtration is Z_’Qg/ 4 by Lemma 3.9, which is concentrated

in cohomological degree i. Hence gry 14, g-dRg/4 is indeed concentrated in cohomological
degrees < m and so the top row is Beilinson-connective.
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Moreover, the argument shows that gry ., ¢-dRs/a — ¢-Hdgg 4 /(¢ — 1) induces an equiva-
lence gry! yy, ¢-dRgja >~ 75"(¢-Hdgg 4 /(q — 1)). By [BMS19, Theorem 5.4(2)], this shows that
the map from the top row to the Beilinson-connective cover of the bottom row is an equivalence
on associated gradeds. As both filtered objects are complete, we're done. O

Let us now discuss what probably doesn’t work.

3.48. Remark. — For an arbitrary object (R, fil} yq, ¢-dRp/4) in AniAIgi{{Hdg, without a
smoothness assumption on R, we don’t know how to construct a Habiro descent of ¢-dRp 4. A
naive guess would be
A
> 0] ,

m (2

[ml (™—1)
)

but this object doesn’t exist, since ﬁl;—Hdgm q—ng} ’y is only a filtered module over the filtered

7
fily 34g,,

i ap(m)
ek T Ra/a

ring (¢ — 1)*A[g], but not necessarily over [m]7A[q].

3.49. Remark. — We also don’t expect that the Habiro descent of g-{2g,4 in Proposition 3.47
can be constructed without the datum of a ¢-Hodge filtration ﬁlg,Hdg q-dRg/4, let alone
functorially in S. While it seems hard to get any definite no-go theorem, let us at least explain
why the most natural attempt doesn’t work.

In Remark 3.18, we’ve explained an attempt to construct a filtration ﬁlfm q—Qg}g: Each
Lf)[m/q), carries a natural filtration via [BMS19, Proposition 5.8]. If these filtrations could be
glued to give the desired ﬁlfm, we could attempt to construct a Habiro descent of ¢g-{2g,4 via

fili "

. _ (m) Ln .

71nuelll\lq 2/ [ [m]; vz O]( N
qm_

However, the filtrations on Lnj,,/q), do not glue. This can already be seen in the case m = p.
In this case we have a pullback diagram

A

q—Qg)A (q—QS/A ®lijg],vr A[Q])
J - J%/A[g]

Loy, (4-Qs74)

[plq

L), a-Ss/a )

The filtration on Ly, = id is trivial. But the trivial filtration on (¢-Qg/4 ®I;‘[q] P A[q])@)]q
will not be compatible with the natural filtration on Ly, (g-S2s/ A)g, so gluing fails.

To make the gluing work, we should instead equip (¢-2g/4 ®i[q] P A[q])[Ap ), With a global
version of the Nygaard filtration. But such a global Nygaard filtration likely doesn’t exist. To
see this, let’s attempt to construct it via an arithmetic fracture square. On the p-completion
(a-Qg/a ®i[q] P A[q])@7 [p],) Ve put the usual Nygaard filtration. In view of Lemma 3.29, on
the rationalisation we should put the combined Hodge and [p],-adic filtration. But then on the
{-completion (¢-Qg/4 ®I;1[ gl A[q])&,[p]q) for any prime £ # p, we would need to put a filtration
that becomes the combined Hodge and [p],-adic filtration after (—)[1 /E]ﬁo]q.

It is entirely unclear (at least to the author) how to construct such a filtration, unless we're
already given a ¢-Hodge filtration ﬁlZ,Hdg q-dRg/4. This explains the need for the additional
datum of fil} y4, ¢-dRs/4-
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§3.8. Habiro descent in derived commutative algebras

Raksit [Rak21] has introduced oo-categories of derived commutative algebras, along with filtered,
graded, and differential-graded variants. The filtrations ﬁl;ldgm q¢-W,dRpg/4 admit canonical
filtered derived commutative A[q]/(¢™ — 1)-algebra structures (if R is a polynomial A-algebra,
these structures can be constructed on the level of complexes, then one can pass to animations)
and the Eoo-structure on the derived g-de Rham complex ¢g-dR /4 can be canonically enhanced
to a derived commutative A[g]-algebra structure (see A.13).

In this subsection, we sketch how Theorem 3.11 can be made compatible with these derived
commutative structures. As a warm-up, let us instead consider [E,-monoidal structures for
some 0 < n < oo.

3.50. E,-monoidal upgrade. — Let (R, fil} 14, ¢-dRp/a) € AniAng{Hdg. Suppose that

the ¢g-Hodge filtration ﬁl;,Hdg q¢-dRp/4 can be equipped with the structure of an E,-algebra
in filtered (g — 1)*A[g]-modules, compatible with the E..-A[g]-algebra structure on g-dR g/ 4.
Suppose furthermore that the data from Definition 3.2(a)—(c,) can be made compatible with
this E,-structure. Then (R, fil} 114, ¢-dRR/4) becomes an E,-algebra in AniAlg? e,

By the symmetric monoidality statement in Theorem 3.11(a), we can conclude that the
Habiro-Hodge complex ¢-Hdgpr 4 becomes an E,-algebra in ﬁH(A[q]) Similarly, the lax
symmetric monoidality statements in Theorem 3.11(b) show that fil4™"V =% (¢-Hdg » 14/ (@™ = 1))
becomes a filtered E,-algebra and the identification of its associated graded

grd " (¢-Hdgp a/(q" — 1)) = S7* ¢-WodRE 4 ~ gr5ae  ¢-WindRp/a
becomes a graded E,-monoidal equivalence.

3.51. Derived commutative upgrade I. — Similar to 3.50, suppose that ﬁl;,Hdg q-dR g4
can be equipped with the structure of a filtered derived commutative algebra over (¢ — 1)*A[q],
that is, an element in the slice co-category (Fil DAlgA[q])(q,l)*A[q]/, where Fil DAlgA[q] is
Raksit’s co-category of filtered derived commutative A[g]-algebras [Rak21, Definition 4.3.4].
Suppose furthermore that this derived commutative structure is compatible with the derived
commutative A[g]-algebra structure on ¢-dRp/4 (see A.13) and that the data from Defini-
tion 3.2(a)-(¢p) can be made compatible with the filtered derived commutative algebra structures
everywhere.

For example, this can be done in the special cases from Example 3.12 above and Construc-
tion 4.28 below. In the former case, we’ll verify this in Remark 9.14, in the latter case see
Remark 4.31.

3.52. Lemma. — In the situation of 3.51, q-Hdgr 4 admits a canonical derived commutative

Alq]-algebra structure. Furthermore, for all m € N, ﬁlz’w’"ﬂ(q—’Hng/A/(qm — 1)) admits
a filtered derived commutative Alq]/(¢"™ — 1)-algebra structure, compatible with the derived
commutative Alq]/(qg™ — 1)-algebra structure on ¢-Hdgp/4/(q™ — 1), and the equivalence

grd " (g-Hdgp a/(q" — 1)) = 57 ¢-WndRE 4 ~ grfiae . ¢-WimdRp/a
from Theorem 3.11(b) is an equivalence of graded derived commutative A[q]/(¢™ — 1)-algebras.

Proof sketch. First note that our results about the Nygaard filtration, specifically Proposi-
tion 3.22 and Lemma 3.29, also hold true as equivalences of filtered derived commutative
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algebras, since the proofs work in this setting as well. By tracing through 3.32-3.41, we now
see that each ﬁl;—?—ldgm qdegr/LA acquires a filtered derived commutative algebra structure over
(¢™ — 1)*A[g], and that the transition maps in 3.41 are compatible with these structures.
The construction from 3.42 produces a canonical derived commutative algebra structure on
HR/A,m, because we can view the construction as a filtered localisation followed by restriction
to filtered degree 0; compare 3.8. It is then clear from 3.45 that ¢g-Hdgpr/ 4 acquires a derived
commutative A[q]-algebra structure. Moreover, since the filtration fil?™" " (¢-Hdg 5 /4/(@™ 1))
and the identification of its associated graded were constructed in a completely way (see the
proofs of Lemmas 3.9 and 3.10), they will also work on the level of derived commutative algebras.
The only input this needs is that Proposition 3.39 holds as an equivalence of filtered derived
commutative A[q]/(¢™ — 1)-algebras, which is again apparent from the constructions. O

But there’s one more piece of structure.

3.53. Derived commutative upgrade II. — Since ¢-W,,Q* /A is a functor with val-
ues in commutative differential-graded A[q]/(¢™ — 1)-algebras, we see that its animation
Y* g-W,, dR* /A = gr;‘{dgm q¢-W,,,dR_ /4 upgrades to a functor with values in Raksit’s oo-
category DG_ DAIlg 414/(ym—1) Of derived differential-graded A[q]/(¢™ — 1)-algebras [Rak?21,
Definition 5.1.10].

By transfer of structure, the associated graded griﬁwmﬂ(q—’Hdg r/a/ (g™ — 1)) becomes an
element in DG_ DAIg 441 /(qm—1) @s well. Via the following corollary, we can figure out what
the differentials are, at least in the case where R is smooth over A.

3.54. Corollary. — Let (S, fil} 4, ¢-dRg/4) € AniAlgi{Hdg be an object such that S is smooth
over A. Then:

(a) ﬁli’WmQ(q—Hng/A/(qm — 1)) is the Whitehead filtration 7>.(¢-Hdgg/a/(q™ — 1)).

(b) The equivalence from Theorem 3.11(b) becomes an isomorphism of graded Alq]/(¢"™ — 1)-
modules

H*(¢-Hdgg/a/(@™ — 1)) = ¢-Win Q)4

(and an isomorphism of graded Alq]/(¢™ — 1)-algebras as soon as (S, filj yq, ¢-dRg/a) is

at least an Eq-algebra in AniAlquL{Hdg).

(¢)  Under the isomorphism from (b), the canonical differential on q—Wng/A corresponds to
the Bockstein differential on H*(¢-Hdgg/a/(¢™ — 1)).

Proof. We’ve seen in Corollary 3.31 that q—Wng /A= ¢-W,,dRY /A for all n. It follows that
each graded piece gr"Vm®(g-Hdgg 4/ (g™ —1)) is concentrated in cohomological degree n. Since
fildVm (-Hdg /4/(¢™ — 1)) is bounded below and thus complete, it has to be the Whitehead
filtration. This shows (a) as well as the graded A[q]/(¢"™ — 1)-module isomorphism from (b).
The isomorphism as graded A[q]/(¢™ — 1)-algebras follows from 3.50.

It remains to show (c¢). Similar to the proof of Lemma 3.9, let us identify the filtered ring
(¢"™ — 1)*A|q] with the graded ring Alq, 5,tm]/(Btm — (¢™ — 1)), where |¢| =0, |5] = 1, and
ltm| = —1.3%) The filtered structure comes from the A[t,,]-module structure. In particular,
modding out t,, is the same as passing to the associated graded. Let us also regard the

G8)1n 8.33, we'll recognise Z[q, B, tm]/(Btm — (g™ — 1)) = w4 (ku®m).
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filtrations filf 5,4, q—ng}g and fily, 4, ¢-WpdRg 4 as graded Alg, B,tm]/(Btm — (¢™ — 1))-
modules fil_ 4,4, and fil3;4,. Finally, let us denote by 37*A[j] the ascendingly filtered graded
ring
—k B B B B
A8 = (- A[Bl1) - A[B1(0) 2 AlB)(-1) ),

As explained in the proof of Lemma 3.10, the filtration ﬁlZ’WmQ(q—’Hng/A/(qm — 1)) can be
written as follows:

18 (g-Hdggya/(q™ = 1)) = (61 pqq /tm Sligs) B AB]),

(note that # on the right-hand side refers to the graded degree whereas * corresponds to the
filtration degree). Now consider the Bockstein cofibre sequence for fil; 4,4, /tm. It fits into a
commutative diagram of graded A[q, 5, tm]/(Btm — (¢ — 1))-modules

tm
ﬁlzf?—[dg(_]‘)/tm — ﬁl;‘fHdg /tzn E— ﬁl;fHdg /tm

d %1)

i3 3yag /tm

If we apply (— ®%[5] A[B*1])o to this diagram, the left vertical arrow becomes an equivalence
and so the cofibre sequence from the top row will become equivalent to the Bockstein cofibre
sequence

m m—1 m m
¢ Hdgpa/ (@™ — 1) T g Hdgp /(g — 1) — g-Hdgga/ (@™ — 1).

If we apply (— ®i[5] B~*A[B])o to the top row, we get a filtration on this cofibre sequence.
By (a), this filtration will be of the form

T (¢ Hdggya/ (@™ — 1)) — (filgnag /1, ®djs B AIB]) ) — 75" (¢-Hdggya/ (@™ — 1))

where (filgg/ag /t2, ®i[ﬁ] ,B_*A[B])O is an ascending filtration on ¢-Hdgg/4/(¢™ — 1)? that lies

between 7% and 7S*1. After passing to associated gradeds, the connecting morphism will

then necessarily be the usual Bockstein differential

H*(q-Hdgga/(¢™ — 1)) — H*"' (¢-Hdgg/a/(¢™ - 1)) .

On the other hand, the associated graded of f~*A[3] is given by @P,.;, A(—4). If we apply
(— ®I;‘[/3] @z A(=i))o to the top row of the diagram, we get the Bockstein cofibre sequence

1) g (—1) [t 2 il 4, /12, — il ag [t |

because fil3;q, = filj 3,4, /8 by Proposition 3.39. Since fil3;4, ¢-W.dR g/ 4 is the stupid filtration
on the complex ¢-W,, Q27 A0 the differential of ¢-W,, Q7 /4 Agrees with the connecting morphism
for the Bockstein cofibre sequence of fil3;4, /tm. This finishes the proof of (c). O
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§4. Functorial g-Hodge filtrations

Fix a perfectly covered A-ring A. We've seen in Lemma 3.3 that it’s impossible to get a
functorial g-Hodge filtration for all animated A-algebras, or even just for smooth A-algebras.
Despite this general no-go result, we’ll see in this section that functorial ¢-Hodge filtrations
exist for fairly large full subcategories of AniAlg,.

A further ample source of examples comes from homotopy theory and will be discussed at
length in Part II.

§4.1. Functorial g-Hodge filtrations away from small primes

In this subsection, we’ll give an elementary construction of a functorial ¢g-Hodge filtration on
certain smooth A-algebras. In the introduction (see 1.18), we’ve already explained the idea in
the case of relative dimension < 1. The general case follows the same simple idea.

4.1. Canonical g-Hodge filtrations I. — Let S be smooth of arbitrary dimension over A
and let n be a positive integer such that all primes p < n are invertible in S. This assumption
ensures that the canonical map ¢-Qg/4 — Qg/4 factors through an E-A[q — 1]-algebra map

q-Qs/a — Qgyalg —1]/(¢ = 1)".

Indeed, by construction of the global g-de Rham complex (see Construction A.12), it’s enough
to check this after completion at any prime p. In general, (¢-(2g/ A);)\ — (g A);,\ factors through
(-Qs/4)p — (Qs/4)pla —1]/(q¢ — 1)P~" by Lemma A.6. For primes p > n, this does what we
want. For p < n, our assumption on S ensures that (¢-Qg/ A)Q vanishes, so this case is fine too.

Let us now equip Qg/4[g — 1]/(¢ — 1)" with the following filtration: We first define
ilfiag,q—1) s7ala — 1] = (filfiag Q574 ®% (¢ — 1)*Z][q — 1}])@1_1) to be the combined Hodge
and (¢ — 1)-adic filtration, as usual. We then let filfyq, ,_1)2s/4[¢ — 1]/(¢ — 1)™ denotes its
reduction modulo (¢ — 1), which we regard as an element in filtration degree n.**!) We may
then form the following pullback of filtered objects in degrees < n:

ﬁl;i?dg,n q—QS/A Q—QS/A

| - J

ﬁl?ﬁgg,q—l) QS/A[[q - 1]]/((] — 1)” R QS/A[[(] _ 1]]/((] _ 1)n

Here ﬁl?éggq_l) Qg/allq — 1]/(g — 1)" denotes the restriction of the to degrees x < n; more
precisely, we apply the truncation functor 7,¥ from Lemma 4.2 below.

We then wish to extend ﬁlandg,n q-Qg/4 to degrees x > n + 1. Intuitively, this should be
done via the (¢ — 1)-adic filtration (¢ — 1)* 7" fily g4, ,, ¢-25/4 as in 1.18. To do this formally

and make the resulting filtered (¢ — 1)*A[g — 1]-module structure apparent, we need to show a
technical lemma.

4.2. Lemma. — Let Fil*° D(Z) denote the full sub-co-categories of filtered objects that are
constant in filtration degrees » < 0. Let Fill»™ D(Z) C Fil*° D(Z) denote the full sub-co-
category of filtered objects that also vanish in filtration degree x > n + 1.

(4-D8aid differently, we wish to equip Z[g—1]/(g—1)" with the finite filtration given by (¢—1)*Z[¢—1]/(¢—1)"
in degree i. This is not the (¢ — 1)-adic filtration in our sense, since the latter would be Z[¢ — 1]/(¢ — 1)" in
every degree, with transition maps given by multiplication by (¢ — 1).
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(a) The inclusion Fill%™ D(Z) — Fil*° D(Z) has a left adjoint 7, which on objects is given
by replacing all filtration degrees x > n+ 1 by 0. Moreover, if fil* M and fil" N are filtered
Z-modules, the canonical map

T;; (ﬁl* M ®% 7 (f1* N)) = (ﬁl* M % fil* N)

is an equivalence. Consequently there’s a canonical way to equip Fil[o’"]D(Z) and
7% FiIP° D(Z) — Fill>™ D(Z) with symmetric monoidal structures.

(b)  For any filtered Eo-algebra T € CAlg(Fil?°D(Z)), the induced symmetric monoidal
functor
7 Mody (Fil** D(Z)) — Mod .+ (Fill""1 D(Z))
admits an oplax symmetric monoidal left adjoint
721 Mod, s (Fill®™ D(Z)) — Modr (Fil*° D(Z))
(if T is clear from the context, we’ll often just write T, ).

(¢) Let Ty — Ty be any map in CAlg(Fil*°D(Z)) and let il* M € ModTﬁT(Fil[O’"]D(Z)).
Then there’s a natural equivalence

T3 (A M @, s, 72T2) — 74 (A1 M) @, T .

Proof. We start with (a). It’s straightforward to see that 7,* exists and is given as claimed. To
show the equivalence, since 7,* and the inclusion preserve colimits, it will be enough to check the
case where fil* M ~ 7Z(i) and fil* N ~ Z(j), where 7,5 > 0. If j < n, then 7,7Z(j) — Z(j) is an
equivalence and the claim is clear. If j > n+1, then we must check that 7,5Z(i+j) — 7 Z(i+n) is
an equivalence. This is clear as both sides are just Z(n). The final claim in (a) is general abstract
nonsense about symmetric monoidal structures on localisations (see [L-HA, Proposition 2.2.1.9]
for example).

Let us now prove (b) and (c) simultaneously. For any map 7 — T in CAlg(Fil*" D(Z,)),
the diagram

Modg, (Fil* D(Z)) —2 Mod, sy, (Fil®") D(Z))

| |

Mody, (FiI*0 D(Z)) —’ Mod_ s, (Fill*" D(2))

commutes. In the special case where T} = Z is the filtered tensor unit and 7> = T, this
allows us to show that 7*: Modp(Fil*° D(Z)) — Mod,«7(Fill®™ D(Z)) preserves all limits and

colimits. Therefore the claimed left adjoint Tg: ; exists by Lurie’s adjoint functor theorem. By

abstract nonsense, ’Tg: ; will automatically acquire an oplax symmetric monoidal structure. This
shows (b). By passing to left adjoints in the diagram above, we immediately obtain (c). O

4.3. Canonical g-Hodge filtrations II. — We resume the discussion from 4.1. As we know
now, the pullback defining ﬁ1;§£dg,n q-2g/4 can be taken in ModT;f((q_l)*A[[q_l]])(Fil[o’"] D(Z)).
Applying the functor 7,1 from Lemma 4.2(b), we obtain a filtered (¢ — 1)*A[g — 1]-module

AN
(a-1)

We can also take the pullback along ¢-dRg/4 — ¢-{25/4 to construct ﬁl;fHdg,n q-dRg/4 (in order
to be in line with Definition 3.2).

i1g-Hag,n 4-Stsya 1= Ta,) (ﬁlféldg,n q-QS/A)
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4.4. Remark. — If S satisfies the assumptions of 4.3 and is additionally equipped with an
étale framing [1: A[z1,...,x,] — S, then there exists an equivalence of filtered (¢ —1)*AJg —1]-
modules

A1} t1ag,n 4-574 — il 14,005 /a.0

between the ¢g-Hodge filtration from 4.3 and the one from Example 3.12. Indeed, we observe
ﬁl;<H”dg 0 @2s/a = 75 (1 qag o q—Qg/A’D), since both sides fit into the same pullback diagram
by construction. Since 7,1 was defined as a the left adjoint of 7,¥, we obtain the map above.
To see that it is an equivalence, we may reduce modulo (¢ — 1), where we get the identity on
filfqg 2574 by inspection and Lemma 4.6 below.

4.5. Remark. — Here’s another way to do the construction from 4.1 and 4.3. Fix a prime p.
Recall that Bhatt-Lurie [BL22a, Construction 4.8.3] have defined a p-de Rham complex
P23, /4, Explicitly, it is the homotopy-fixed points of the action of 11,1 on (¢-Qg,4),,, Where
we let pp—1 C Z,; act via the Adams operations from A.20.

We can then define ﬁl}*flfdg »P-Q5 /2, as the pullback of the Hodge filtration along the
canonical map p-Q3,/x, — (s/a)) (no combined Hodge and (g — 1)-adic filtration is needed
here), extend via 7, 1, and then ﬁnally base change to (¢ — 1)*Z,[q — 1] to define a p-completed
g-Hodge filtration fil} 14, ,(¢-Qs/4);-

These filtrations for all p can be glued with the combined Hodge and (¢ — 1)-adic filtration
on (Qg/4 ®; Q)[q — 1] to get the same filtration fil} 4, , ¢-2s/4 as in 4.3. We prefer the
construction in 4.3, since spelling out the gluing argument is a bit of a pain.

4.6. Lemma. — With notation as in 4.1, assume additionally that dim(S/A) < n. Then
ﬁlq—Hdg,nq dRg/a can naturally be equipped with the structure of a q-Hodge filtration as in
Definition 3.2.

Proof. In the following, we’ll regard (¢—1) as sitting in filtration degree 1, as per Convention 3.1.
We first compute
ﬁlq Hdg,n 4~ QS/A/(C] - 1) = T (ﬁl* Hdg,n 9~ QS/A ® ¥ ((g=1)*Z[q—1]) )
= n,!Tn (ﬁlHdg QS/A)
>~ ﬁlf{dg QS/A .

In the first equivalence we apply Lemma 4.2(c) to (¢ —1)*Z[qg— 1] — Z. The second equivalence
follows by construction. To see the third equivalence, first observe that the Hodge filtration
filfigg (2574 is already contained in Fill®" D(Z) because we assume dim(S/A) < n. Since the

right adjoint of 7*: Fil* D(Z) — Fill®™ D(Z) is fully faithful, so is the left adjoint 7, 7%!, which
yields the third equivalence. Similarly,

(ﬁl)t;fHdg,n q_QS/A ®% Q) E\qfl) = Tp,! ((ﬁl* Hdg,n 4~ QS/A ®Z Q) )
= i (710 Q574 &% 72 (g = 1)* Qe — 1)), )
~ il pag 1) (574 ®7 Q) [ — 1]

The first equivalence is Lemma 4.2(c) applied to Z — Q. For the second equivalence, we
apply (— ®% Q)z\q—l) to the pullback defining ﬁl’qﬁHdgyn q-$s/4 in 4.3 and use the fact that
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(-Qs/4 ®F Q)é\q_l) ~ (/4 ® Q)[q — 1]. The third equivalence is Lemma 4.2(c) applied to

Z— (q—1)"Q[g —1].
In a completely analogus way, we obtain natural equivalences

ﬁl;—Hdg,n(q_QS/A);\[%]?qfl) — ﬁlz(Hdg,qfl) (QS/A)I/,\[%] [[q - 1]]

for all primes p. Via pullback along ¢-dRg/4 — ¢-{25/4, we obtain analogous equivalences for
ﬁl;,Hdgm q¢-dRg/4. The required compatibilities from Definition 3.2 can all be induced from
those for ¢-dRg/4, and so ﬁl;—Hdg,n q¢-dRg/4 can indeed be equipped with the structure of a
g-Hodge filtration. O

4.7. Lemma. — With assumptions as in Lemma 4.6, ﬁl;_Hdgm q-Qg/4 is automatically the
completion of fil} yqg ,, ¢-dRg/4-

Proof. By Proposition 3.47, g-{g,4 is automatically the completion of g-dRg/4 at the filtration
fil}, Hag,n ¢-dRs/a- Since il yq, ,, ¢-dRg)4 is defined as the pullback of fil} yq, ,, ¢-25/4 along
q-dRg/a — q-Qg/4, the desired assertion follows. O

We will now make the construction from 4.3 functorial.

4.8. Functoriality across dimensions. — For all non-negative integers n and d let
Sm Afni—1] Pe the category of all smooth A-algebras S of relative dimension dim(S/A) < d such
that all primes p < n are invertible in .S. Then 4.3 and Lemma 4.6 provide us with a functor

(= fil} t1agn -dR_ja) s SmiE 1y — AniAlg) Hdg

We let Smf‘?dim!,l] C Smy be the full subcategory spanned by Ug<,, Smj? a1 and we put

SmA dim!-1] = U SmA dim!—1]
n>0

Our goal is to show that the functors above for varying n combine into a single functor defined
on all of Sm 4[gim-17- This will be achieved by the technical Lemmas 4.9 and 4.10 below.

4.9. Lemma. — For alln > 0, the following diagram is a pushout of co-categories:

<n—+1
S 1y — Sy

Lo

<n+1

1 SmA[dim!fl]

SmA[dlm' 1

Proof. Let P denote the pushout. Since the diagram above commutes, we get a functor
P — Smj”dﬁﬂ,l]. This functor is clearly essentially surjective. To show that it is fully faithful,
we must show that

Homp (S, S2) — Homg <ni1 (51, 52)

Aldim!—1]

is an equivalence for all 51,52 € P. We may assume without loss of generality that S; and Sy

are the images of objects in Smj?dim!,l] or Smj&iil)!,l].
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By an observation of Maxime Ramzi [Ram], fully faithful functors are preserved under
pushouts. Since both legs of our pushout are fully faithful, the claimed equivalence is clear if
S1 and S5 come from the same cofactor. It remains to deal with the following two cases.

Case 1: Sy € Sm and Sy € Sm<"Jrl _17- Observe that the fully faithful functor

Aldim!—1] Al(n+1)!1-1]

SmA[( - SmA[dlm' 1]

n+1)1-1]

has a left adjoint given by localisation at (n + 1)!. It follows formally that Smj?dfrln!,l] — P

also has a left adjoint and that the diagram of left adjoints is still a pushout (and in particular
commutative). Indeed, we can simply define unit and counit by taking the pushout of the
original unit and counit; the triangle identities will automatically be satisfied. Therefore, we
can replace S1 by S1[(n + 1)!7!] and thus reduce to the case where S; and S come from the
same cofactor.

Case 2: 51 € Smjﬁ:il)!,l] and Sy € Smj?dim!,l]. We may additionally assume that (n+1)!
is not invertible in So; otherwise we would be in a case already covered. But then

HOHIS <n+1 (Sl, 52) ad @

Aldim!—1]
and so the map in question must be an equivalence, since only () maps to . ]
4.10. Lemma. — For alln > 0, in the co-category of functors Smjﬁnﬂ)!_l] — AniAngHdg,

there exists a natural equivalence

(_7 ﬁl;—Hdg,n q_dR—/A) = (_7 ﬁl;—Hdg,n—f—l q_dR—/A) .

Proof First observe that every morphism in Fil*° D(Z) that is sent to an equivalence by

¥ FIP'D(Z) — Fill®" D(Z) is also sent to an equivalence by 7*. Since 7* i1 18 a symmetric
monoidal localisation, there exists a unique (up to contractible ch01ce) symmetric monoidal

functor 77, such that

Fil*’ D(Z)

>
* _-7
Tn+1l _-7 %

Fill0» 1 D(7)

11 D(z)

commutes. Moreover, arguing as in Lemma 4.2(b), we see that for any filtered E.-algebra
T € CAlg(Fil*° D(Z)), the induced symmetric monoidal functor

Trns1: Mod, s o (FIlO" I D(Z)) — Mod s (Fill*" D(2))
admits an oplax symmetric monoidal left adjoint
Tttt Modxp (Fill®™ D(2)) — ModT:fHT(Fil[O’"“] D(Z)).

Let us now apply this in the case where T'= (¢ — 1)*AJq — 1]. Let S be a smooth A-algebra
such that dim(S/A) < n and all primes p < n + 1 are invertible in S. Plugging the canonical

projection filfyg, o 1y(Q2s/ala — 1] /(g — 1"ty — filfag, g—1)(Q2s/alg — 1] /(¢ — 1)") into the
pullback from 4.1, we obtain a morphism

*<n+1
il

'n n+ g-Hdg,n+1 7 QS/A - ﬁlq Hdg,n q- QS/A :
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Applying Tnyy(—)é\q_l) on both sides and using the counit 7, 41,107 41 = id, we obtain a

canonical zigzag

~ A ~
fil}, Hag nt1 4-2s/4 < Ta,) (T e ﬁlﬁﬁg}nﬂ q—QS/A) ) — il g 2574
It is now straightforward to check that both morphisms are equivalences. Indeed, everything is
filtered (q — 1)-complete, so we may check this after reduction modulo (¢ —1). For the outer two
terms, the reduction is filfjg, {25/4 by the calculation in the proof of Lemma 4.6. An analogous
calculation shows that the inner term also becomes ﬁlf{dg 2g/4 and that the morphisms become
the identity.

The zigzag above provides a functorial equivalence fil} yqg 511 ¢-2— /4 ~ il yag , -2 /4.
Taking the pullback along g-dRg/4 — ¢-{2g/4, we get what we want. O

In total we’ve shown:

4.11. Theorem. — Let A be a perfectly covered A-ring and let S be a smooth A-algebra such
that all primes p < dim(S/A) are invertible in S. Then ¢-dRg/4 admits a canonical q-Hodge
filtration. More precisely, there exists a functor

(= 117 1ag ¢-AR ) - Smajgimy-1] — AniAlgh™

which is a partial section of the forgetful functor AniAlg?&Hdg — AniAlg 4.

Proof. This is the quintessence of 4.1-4.10. O

4.12. Monoidality. — We wish to study to what extent the g-Hodge filtrations from 4.3 can
be equipped with multiplicative structures. To this end, it would be nice to equip the functor
from Theorem 4.11 with a symmetric monoidal structure. This is made complicated by the
following issue:

(1) Smapgimi-1] is not closed under tensor products in Smy and we don’t see a way of equipping
it with a symmetric monoidal structure.

To address this problem, let Sm% — Fin, be the oo-operad associated with the symmetric
monoidal structure on Sm 4. We define a sub-oo-operad Sm?f[ 1 C Smf’? as follows:

dim!—1
(a) An object (Si,...,S5;) € SmY in the fibre over (i) € Fin, is contained in Sm g[qimt-1] if
and only S, ...,.5; are all contained in Sm ggim1-1]-
(b) A morphism (S1,...,S8;) — (S1,...,5;) over a: (i) — (i) is contained in Sm y[gimi-1]
if and only if both source and target satisfy the condition from (a) and the target
of a cocartesian lift of o with source (S1,...,S;) also satisfies the condition from (a).

Equivalently, we only retain those morphisms that factor through a cocartesian lift of
their image in Fin,.
Let us immediately warn the reader that Sm%[ dim!~1] is not the full sub-co-operad of Sm%
spanned by the full subcategory Sm 4[gim1-1] € Sma, precisely because the condition from (b)
yields a non-full sub-oco-operad.
Below we’ll sketch how to make the functor from Theorem 4.11 into a functor of co-operads

(this wouldn’t work if we had used the full sub-co-operad spanned by Sm A[dimt-1])- Let us
discuss what kind of multiplicative structures this induces on ﬁl;—Hdg q¢-dRg/4. In general,
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any multiplicative structure on S as an object in Sm [gjy1-17 Will induce the same kind of
multiplicative structure on fil} 4, g-dRg/4. For arbitrary S € Sm g[gimi-1] there’s nothing we
can say. But as soon as all primes p < 2dim(S/A) are invertible in .S, the multiplication map
S®4 S — S is a morphism in Sm y[giy-1], and so S will have an Ag-structure in Sm%dim!_l];
that is, a homotopy-unital multiplication. If for some r > 3 all primes p < rdim(S/A) are
invertible in S, then the multiplication will be A,; that is, coherently associative for up to r

factors. A similar analysis works for commutativity.

We’ll now sketch how to make the functor from Theorem 4.11 into a functor of co-operads.
Let us temporarily fix n > 0.

4.13. Lemma. — Let ModTﬁ((q_l)*Aﬂq_lﬂ)(Fil[o’”] D(Z)) be as in 4.3 and equip the full sub-
oo-category of (g — 1)-complete objects ModTﬁ((q_l)*A[q_lﬂ)(Fil[o’"] D(Z))(Aq_l) with the (¢ — 1)-
completed tensor product. Then the functor

A

A5 agn @-AR_ 4t Smap-1) — Mod,#((,_ 1)+ a1y (Fil"™ D(Z)) (4-1)

from 4.3 can be equipped with a symmetric monoidal structure.

Proof sketch. From the construction it’s straightforward to get a lax symmetric monoidal
structure. Whether it is symmetric monoidal can be checked modulo (¢ — 1), where we reduce
to the fact that 7, (filjjq; dR_/4) is symmetric monoidal. O

4.14. Lax vs. oplax symmetric monoidal functors. — For every symmetric monoidal
oo-category with associated cocartesian fibration C® — Finy, let (C®)V — Fin® denote the
dual cartesian fibration. Lax symmetric monoidal functors C — D are then encoded as functors
C® — D® in Cat., /Fins, that preserve cocartesian lifts of inert morphisms, whereas oplax
symmetric monoidal functors are encoded as functors (C®)¥ — (D%)Y in Cat, pyor that
preserve cartesian lifts of inert morphisms.

In general, the dual cartesian fibration (C®)Y — Fin, has a very nice description in terms
of span oco-categories. This is due to Barwick—Glasman—Nardin; see [BGN18, 1.2]. We will now
apply this to the oplax symmetric monoidal structure on

. -Hd

(-, fil} Hag.n q—dR_/A) : Sm gp,-1) — AniAlgh

that we obtain by composing the symmetric monoidal functor from Lemma 4.13 with the oplax
symmetric monoidal functor Tn’!(—)é\qil).

4.15. Lemma. — If ¢: (S,...,50) — (S1,...,5i) is a cartesian morphism in (Smﬁ[n!,l])v
such that SY,...,S! are all of relative dimension < n over A, then ¢ is sent to a cartesian

morphism under ® v . v 1.g-Hdg,@\V
(SmA[nlfl]) — (AmAlgA ) .

Proof sketch. This essentially reduces to the observation that whenever a tensor product of
smooth A[n!~!]-algebras S; ®4 --- ®4 S; has relative dimension < n over A, the ¢-Hodge

filtration fil} g, , ¢-dRs, @ ,..@45,/4 Will agree with

A

* L L *
(80 g 4-0Ri51 70 ©F1y5a1q 1+ ©y 1)< a1a 1) Bl 4-0Ris 1) 1)’

Indeed, this can be checked modulo (¢ — 1), where the desired claim follows using symmetric
monoidality of filjjy, dR_ /4. O
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4.16. Corollary. — The functor from Theorem 4.11 underlies a functor of co-operads
. -Hdg,
Sm(?l[dim!—l] — AniAlgf ™ ®,
which preserves all cocartesian lifts that exist in the source.

Proof sketch. As in 4.12, we can define a sub-oco-operad SmA? ® 1 - Smﬁ[n!,l] given by those
objects whose entries are of dimension < n and those morphisms that factor through a
cocartesian lift of their image in Fin,. Analogously, we can define (Smjﬁﬁl])v C (Sm%n!,l])v
given by those objects whose entries are of dimension < n and those morphisms that factor
through a cartesian lift of their image in Fin{P.

The dualising construction from [BGN18, 1.2] can not only be applied to cartesian fibrations,
but also to (Sm<7[L ® ])V and it is straightforward to check that we get back Sm\? © 1) in this
case. Moreover, by Lemma 4.15, the functor

(Smj’[%!_l])v — (AniAlg? &)Y

preserves all cartesian lifts that exist in the source. We may thus dualise via [BGN18, 1.2] to
obtain a functor

<®

Smyio-1 — AniAlg?, Hdg.®

Now the oo-operad Smf? dim!~1] is built from Sm<; Afnl-1] for all n > 0 via a sequence of pushouts
as in Lemma 4.9. Combining this with a stralthforward analogue of Lemma 4.10, we can
inductively construct the desired map of co-operads. O

§4.2. Functorial g-Hodge filtrations for certain quasi-regular quotients

In this subsection, we’ll explain another elementary construction of functorial ¢-Hodge filtrations.
To this end, let us first fix a prime p and work in a p-complete setting (at the end of this
subsection, we’ll get back to the global case). Throughout this subsection, all (¢-)de Rham
complexes or cotangent complexes relative to p-complete rings will be implicitly p-completed.

4.17. Rings of interest. — Temporarily, A will not be a perfectly covered A-ring, but a
p-completely perfectly covered d-ring, by which we mean a p-complete é-ring for which the map
A — A, into its p-completed colimit perfection is p-completely faithfully flat. Equivalently,
the Frobenius ¢: A — A is p-completely flat (as being faithful is automatic). Since perfect
d-rings are p-torsion free, it follows that A must be p-torsion free too.

Throughout, we will consider p-quasi-lci algebras over A: These are p-complete rings R
for which the cotangent complex Lg, (which, by our convention above, we always take to
be implicitly p-completed) has p-complete Tor-amplitude over R concentrated in degree [0, 1].
Additionally, we’ll usually assume that R/p is relatively semiperfect over A: That is, the relative
Frobenius R/p ®4,o A - R/p is surjective. This forces Q}%/A/p to vanish, so Ly 4 will have
p-complete Tor-amplitude over R concentrated in degree 1.

An important special case are A-algebras of perfect-regular presentation: These are the
quotients R = B/J, where B is a p-complete relatively perfect §-A-algebra, by which we mean
that the relative Frobenius ¢p/4: (B ®4,¢ A),; — B is an isomorphism, and J C B is an ideal
generated by a Koszul-regular sequence. We’ll sometimes refer to B/J as a perfect-reqular
presentation of R.

The reason for restricting to rings R as above is the following lemma.
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4.18. Lemma. — Let R be a p-torsion free A-algebra such that L4 has p-complete Tor-
amplitude over R concentrated in degree 1.

(a) The de Rham complex dR g4, its Hodge-completion JRR/A, every degree in the completed

Hodge filtration ﬁl’ﬁdg d/f{R/A, and the q-de Rham complexr q-dRp, 4 are all static and
p-torsion free.

(b)  The un-completed Hodge filtration filjy, dR /4 is static in every degree if and only if R/p
is relatively semiperfect over A.

Proof. To show that every degree in the completed Hodge filtration is static and p-torsion
free, just observe that the same is true for the associated graded grﬁdg (TRR/A ~ YTFAF Lp/a,
because our assumption on R guarantees that XL /4 is a p-completely flat module over the
p-torsion free ring R. To show that the (¢ — 1)-complete object ¢g-dR /4 1s static and p-torsion
free, it will be enough to show the same for ¢g-dRp/4 /(g—1) ~ dRp /a- Now all assertions
about dRp/4 and its Hodge filtration can be checked after base change along the p-completely
faithfully flat map A — Ax.

So let us put Roo = (R®4 AOO);,\ and consider dRg_ /4., and let Ro = Roo/p. Since Ay
is a perfect d-ring, L4 /7, ~ 0, so we may as well consider dRpr__z,. To see that dRg_,/z, is
static and p-torsion free, it suffices to check that its modulo p reduction dRp_, /7, /p ~dRR_ JF,
is static. The latter admits an ascending exhaustive filtration, the conjugate filtration, whose
associated graded X ~* A\* Lz /p, ~ X% A*Lg_ z,/p is static in every degree since Y 1Lg /7,
is p-completely flat over the p-torsion free ring Ro. This shows that dRg_ /r, is indeed static
and we’ve finished the proof of (a).

For (), we've already seen that dRg__ /7, and the associated graded of the Hodge filtration are
static and p-torsion free in every degree. Hence ﬁlﬁdg dRg.,/z, is degree-wise static if and only
if it consists of sub-modules of dRp__ /z,, which must be p-torsion free too. Thus ﬁlf{dg dRr,/z,
is degree-wise static if and only if the same is true for filfag AR R /2, /P ~ filfge ARE. /F,- In
the case where R, is semiperfect, this holds by [BMS19, Proposition 8.14]. Conversely, assume
filfg, AR, JF, is degree-wise static. If filliy WdR%_ /F, denotes the Nygaard filtration on the
derived de Rham—-Witt complex, then

filyy WAR%, jr, /Pl WARE v, ~ filiia, dR7/m,

holds for all n by deriving [BMS19, Lemma 8.3]. Inductively it follows that WdR g__ /z, and
each step in its Nygaard filtration must be static too. By definition, filyy WAR%__ /p, is the fibre
of
¢
WdR%_ r, — WdRE, /5, — WdRz_/r,/D"

so this composition must be surjective for all n. Then ¢: WdRz_ /5, — WdRE_ /F, must be
surjective as well. Since WdRg_ /r, /p ~dR7_, JF, — Roo is surjective by our assumption that
ﬁlhdg dRR, /F, is static, we conclude that the Frobenius on R4 must be surjective too. O

4.19. Remark. — In the case where R = B/J is of perfect-regular presentation over A,
everything can be made explicit: dRr/4 ~ Dp(J) is the (p-completed) PD-envelope of J,
the Hodge filtration is just the PD-filtration, and the ¢g-de Rham complex ¢-dRp/4 is the
corresponding ¢g-PD-envelope in the sense of [BS19, Lemma 16.10].

4.20. Remark. — There exist p-complete Z,-algebras whose cotangent complex has p-
complete Tor-amplitude concentrated in degree 1, but whose reduction modulo p is not
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semiperfect. For example, if p > 3, the Fp-algebra constructed in [Gul21] can be lifted
in a straightforward way to a p-complete Zy,-algebra with this property.

Let us now define a g-Hodge filtration for rings R as in Lemma 4.18.

4.21. Construction. — Suppose R is a p-torsion free quasi-lci A-algebra such that R/p is
relatively semiperfect over A. By Lemma A.4, after rationalisation, dRg/4 and ¢-dRp/4 are
related via a functorial equivalence

A
q_dRR/A[%](qfl) = dRR/A[%] [[q - 1ﬂ :
By Lemma 4.18, both sides are static rings. Let us equip the right-hand side with the combined
Hodge and (¢ — 1)-adic filtration filfyy4, ,_1)dRr/a[1/p][q — 1] as in Definition 3.2(cp). This is
a descending filtration by ideals.
We now construct filj jjq, ¢-dRg/4 as the 1-categorical (!) preimage of this filtration under
q-dRp/a — dRp/a[1/p][g — 1]; in other words, as the pullback

fily ag ¢-AR /4 — fl{ag,q—1) ARr/al5]la — 1]

J : |

g-dRp 4 dRpyaly]la—1]

taken in the 1-category of filtered (¢ — 1)*A[g — 1]-modules. We remark that fil} y4, g-dR /4
will be a descending filtration of ideals in the static ring ¢-dRp/4, hence it’s automatically a
filtered Eoo-algebra over (¢ — 1)*Afq — 1].
Let us also remark that the canonical projection g-dRg/4 — dRpg/4 induces a (necessarily
unique) filtered map
fil7 ag ¢-dRRr/a — filfiqg AR R 4 -

Indeed, to see this, we must check that filjjy, dR /4 is the preimage of filjy, dRg/4[1/p] under
dRp/a — dRpg/a[1/p]. Since any filtration is the preimage of its completion, we may further
replace the Hodge filtration filjjy, dR g/4[1/p] by its completion filjjq, dRz/4[1/ p]ﬁdg. To check
that ﬁlﬁdg dRp/4 is the preimage, it will thus be enough to check that the map on associated
gradeds is injective. Now

7" ALrsa — 27" ALgsal;]

will be injective for all n > 0, because %" A" Lg/4 is a p-completely flat module over the
p-torsion free ring R and thus p-torsion free itself.

In general, the ¢-Hodge filtration from Construction 4.21 will be nonsense. But it does
behave as desired in the following cases:

4.22. Theorem. — Let A be a p-completely perfectly covered §-ring and let R be a p-torsion

free quasi-lci A-algebra such that R/p is relatively semiperfect over A. Suppose that one of the

following two additional assumptions is satisfied:

(a) There exists a perfect-reqular presentation R = B/J, where the ideal J C B is generated by
a Koszul-reqular sequence of higher powers, that is, a Koszul-regular sequence (x3*, ..., xzo")
with o; = 2 for all 1.
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e ring R = 4 Axo)l admits a lift to a p-complete connective Ei-ring spectrum

b) The ring R R®a Ax), admits a lift t let tive Eq-ri t
Sr,, satisfying Reo ~ Sgr,, ®s, Zp.

Then ﬁl;,Hdg q-dR g4 is a g-deformation of ﬁlﬁdg dRp/a in the sense that the canonical map

from Construction 4.21 induces an equivalence

fil% yag ¢-dRpja/(q — 1) — filijg, dR R4 -

Here we take the quotient in filtered (¢ — 1)*Alq — 1]-modules, with (¢ — 1) regarded as an
element in filtration degree 1.

4.23. Remark. — For primes p > 2, Theorem 4.22(b) implies (a). Indeed, if we put
By = (B®4a Aoo)]/;, then B, is a perfect d-ring and so it lifts uniquely to a connective
p-complete Eo-ring spectrum. We can then use Burklund’s theorem on E,-structures on
quotients [Bur22, Theorem 1.5] to construct an E;-structure on

Sk.. =Sp. /(2 ..., z7) .

More precisely, since p > 2, each Sp__ /z; admits a right-unital multiplication (the relevant
obstruction Q1 (x;) is 2-torsion), and so Burklund’s result provides E;-structures on Sp__ /"
in Mods,__ (Sp), of which we can take the tensor product.

For p =2, Sp__/? still admits a right-unital multiplication (see [Bur22, Remark 5.5]) and
so the same argument shows that Theorem 4.22(b) implies (a) if all «; are even and > 4. It is
somewhat surprising that Theorem 4.22(a) is true without this additional restriction at p = 2.

Before we prove Theorem 4.22, let us discuss two examples.

4.24. Example. — Let A := Zp{x};\ be the free p-complete d-ring on a generator x and let
R = Zp{x}, /x* for some a > 1. Then Theorem 4.22(a) will apply as soon as a > 2, but not for
a = 1. So let’s see what goes wrong for @ = 1 and how higher powers (or divine intervention?)
fix the issue.

In the case at hand, dRg/4 and g-dRp/4 are the usual PD-envelope and the ¢-PD envelope

o) } o }(1>

respectively. If the ¢-Hodge filtration were to be a g-deformation of the Hodge filtration, then
fil}, j14¢ 4~ Do would need to contain a lift §,(2*) of the divided power y(z®) := 7 /p € filj, Da.
Certainly, g-D,, itself contains such a lift; namely, the ¢-divided power

)

Do = yfi} wd gD, = 2, {obla - 11

%) — ¢<$a) — 5(x®

The problem is that ~,(z®) is usually not contained in ﬁllq{Hdg q-Dy. So for the g-Hodge
filtration to be a g-deformation of the Hodge filtration, it must be possible to modify ~,(x“) by
elements from (¢ — 1) g-D,, to get an element in ﬁlg—Hdg q-D,. As we’ll see momentarily, this is
impossible for @ = 1, but it works for a > 2.

By definition, fil7 4, ¢-dR g/4 is the preimage of the combined Hodge and (g — 1)-adic filtra-
tion on Dy[1/p][g — 1]. Since every filtration is the preimage of its completion, we may replace
the latter by its completion, which is the (2%, ¢—1)-adic filtration on Q,(5(x), §(z), ... )[z,¢—1].
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So our task is to modify v,(z®) by elements from the (¢ — 1) ¢-D, such that the result is
contained in the ideal (z%, ¢ — 1)? C Q,(8(z), 6%*(z), ... )z, q — 1].

Write [p], = pu + (¢ — 1)P~!, where u =1 mod ¢ — 1. In particular, u is a unit in g-D,.
In Q,(6(z),8%(x),...)[x,q — 1], we can rewrite v,(z%) as

ap P s :Lap wl— _u—Qﬂ —1)P x®

Here O((q — 1)P) denotes “error terms” which are divisible by (¢ — 1)P. Observe that these
error terms are contained in (z®, ¢ — 1)P, so we can safely ignore them. Also z®?/[p], is clearly
contained in (%, ¢ — 1)P. The term (v~ — 1)§(x®) is contained in (¢ — 1) g¢-Dq, so we can just
kill it. This leaves the term u~2(q — 1)P~18§(x®)/p.

If a = 1, there’s nothing we can do: No modification by elements from (¢ — 1) g-D,, will ever
get rid of a non-integral multiple of 6(x), as d(z) is a polynomial variable in Z,{x}. This shows
that for @« = 1, the g-Hodge filtration on ¢-D,, is not a g-deformation of the Hodge filtration.
For o = 2, however, we have §(2?) = 22P§(x) + pd(z)?. Now the term 22P§(x)u"2(q — 1)P~1/p
is contained in (z2,q — 1)? and so

8

Vg (zV) = yq(x®) — (=t —=1)6(z?) +u2(q - 1)p_1(5(w)2

is contained in ﬁlg—Hdg q-D,, and satisfies Y,(z%) = 2?P/p mod ¢ — 1, as desired. For a > 3, we
can similarly decompose 6(z®) into a multiple of zP(®*~1) and a multiple of p.

This explains what goes wrong at « = 1 and how the objection is resolved for a > 2. In the
latter case, it is possible to continue the analysis above and construct for all n > 1 a lift of the
divided power z°" /n! that lies in in filj 4, ¢-dR /4. This will be explained in §11.2 and leads
to an elementary proof of Theorem 4.22(a).

4.25. Example. — An example for Theorem 4.22(b) that is not covered by Theorem 4.22(a)
is the case A = Zy[x], with d-structure defined by d(x) =0, and R = A/(x — 1) = Z,. Then A
lifts to the p-complete Eqo-ring spectrum Sp[z]) and A — R lifts to an Eoo-map Sp[z]) — S,.
Base changing along S,[z]) — Splz!/ 7’00]1/)\ yields a lift of R, even as an Eyo-ring. In this case,
q-dR /4 is the ¢-PD envelope

¢-D = Zy[a]lq - 1]]{”5;]‘;};@_1) .

It can be shown that this ring contains elements of the form (z — 1)(z — q) - -+ (z — ¢" 1) /[n],!
for all m > 1 (see Lemma 9.11 for an argument). After completed rationalisation, these elements
are visibly contained in the ideal (z —1,¢ —1)". Hence they belong to filj 4, ¢-dR /4 and lift
the usual divided powers.

Let us now prove Theorem 4.22, albeit large parts of the argument will be postponed to
later sections. We start with the observation that only surjectivity is critical.

4.26. Lemma. — Let R be a p-torsion free p-quasi-lci A-algebra such that R/p is relatively
semiperfect over A. Then the canonical map from Construction 4.21 induces a degree-wise
injection

fil} qag ¢-dRRya/(q — 1) = filfg; AR /4 -
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Proof. We need to check

(¢ — D fil) gy ¢-dR gy = fil} 11qg ¢-dRgya N (¢ — 1) g-dRp 4

for all n. This immediately reduces to the analogous assertion for the combined Hodge and
(¢ — 1)-adic filtration on dRg/4[1/p][g — 1], which is straightforward to check. O

The g-Hodge filtration from Construction 4.21 enjoys a general flat base change property.
This will allow us to reduce the proof of Theorem 4.22 to the case where A is perfect.

4.27. Lemma. — Let R be a p-torsion free p-quasi-lci A-algebra such that R/p is relatively
semiperfect over A. Let A — A’ be a p-completely flat morphism of §-rings, where A’ is also
p-completely perfectly covered, and put R' == (R®2a A’)I/)\. Then the canonical map

~

A
(fﬂ;—Hdg q-dRp/a ®121 A/) (pg-1) ﬁl;—Hdg q-dRprjar
is an equivalence.

Proof. This is not completely automatic since we have to be careful with completions. Fix n.
By Remark A.7, the canonical map ¢-dRr/4 — (dRp/4 ®z Q)[q — 1] /(¢ — 1)" already factors
through p*NdRR/A g —1]/(q — 1)" for sufficiently large N. Since filj yq, ¢-dR /4 contains
(g —1)"g-dR R 4, we can also express it as a pullback of AJg — 1]-modules

ﬁlZfHdg q_dRR/A q_dRR/A

J s l

PN illag g 1) ARr/ale — 11/(¢ = )" —— p NdRpyalg —11/(¢—1)"

(here the combined Hodge and (¢ — 1)-adic filtration filfy,, . 1y dRpr/ale — 1]/(¢ — )" is
constructed as in 4.1 above).

It will be enough to show that the pullback is preserved (— ®% A’ )(Ap’ g—1)" To this end, let P
denote the derived pullback (that is, the pullback taken in the derived oco-category D(A[q — 1]))
and recall that derived tensor products preserve derived pullbacks. It is then enough to check
that (H_1(P) ®4 A’)é\p’q_l) is static. We claim that H_;(P) is (¢ — 1)"-torsion and p™-torsion
for sufficiently large m. Believing this for the moment, p-complete flatness of A — A’ guarantees
that H_1(P) ®Y A’ is static. Since it is also p™- and (g — 1)"-torsion, the completion doesn’t
change anything and we’re done.

To prove the claim, observe that the cokernel of ¢-dRg 4 — pNdRp /4 must clearly be

pN-torsion. Hence the cokernel of the right vertical map
¢-dRpja — p NdRpalq — 1]/(¢ — 1)"

is p""-torsion and also (g — 1)"-torsion. Since H_;(P) is a quotient of that cokernel (explicitly
the quotient by the bottom left corner of the pullback diagram), we conclude that H_;(P) is
p™V-torsion and (g — 1)"-torsion too, as desired. O

Proof of Theorem 4.22. By Lemma 4.26, we only need to check surjectivity. By Lemma 4.27,
we can check this after the p-completely faithfully flat base change A — A, and thus assume
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that A is perfect. Since in this case ¢-dRr/4 ~ ¢-dRp/z,, we may further reduce to the case
A =17y

Then part (b) is a special case of Theorem 7.18 below. As we’ve explained in Remark 4.23,
this also proves part (a) if p > 2. In §11.2, we’ll give an elementary proof of (a), which also
covers the case p = 2. O

To finish this subsection, we’ll extract a global construction from the above. From now on,
we cancel the assumptions from 4.17 and return to our usual notation, where A is a perfectly
covered A-ring.

4.28. Construction. — Let R be an A- algebra such that for all primes p, R is p-torsion
free, the p-completion R is p-quasi-lci over Ap, and R/p is relatively semiperfect over A We
construct filj yq, ¢-dRp/4 as the pullback

fils g ¢-dR R4 [ 161 g a-dR 7, /3,
p

- |

fil{f1dg,4—1) (AR R/A ®7Q)g—1] — Al g, g—1) <H dR, /1, ®F Q> g —1]
p

taken in the co-category filtered E-algebras over (¢q—1)*AJg—1]. To see that the right vertical
map in the pullback exists, observe that we’re dealing with two filtrations by submodules,
so there’s only a set-level condition to check, which follows directly from the definition of

ﬁl;‘Hdg q_dRé\p/zp ’

4.29. Theorem. — Let A be a perfectly covered A-ring and let QReg? aHaE b the category
of all A-algebras R such that for all primes p, R is p-torsion free, the p-completion Rp is
p-quasi-lci over gp, R/p is relatively semiperfect over Ap, and the canonical morphism from
Construction 4.21 induces an equivalence

I} pag ¢-dRR, 4,/ (¢ — 1) — filizag ARR, /4, -
Then Construction 4.28 determines a functor

(= % 1ag -dR_/4) : QRegh ™8 — CAlg(AniAlg? "),

which is a partial section of the forgetful functor CAlg(AniAlg?, Hdg) — AniAlg,.

Proof sketch. Let us construct the required data from Definition 3.2. In degree 0, the pullback
square from Construction 4.28 becomes the one from Construction A.12, which provides the
datum from Definition 3.2(a). If we reduce the pullback from Construction 4.28 modulo (¢ — 1),
we’ll get the arithmetic fracture square for ﬁl*Hdg dRp/4 by our assumptions on R. This provides
the data from Definition 3.2(b). Similarly, if we apply (— ®% Q)f\qfl) or (=), [1/1’]@71) to the
pullback, we get the data from Definition 3.2(c) and (c,).

So (R, filj yag ¢-dRR/4) can be made into an object of AniAlgf{{Hdg. Since all constructions
above can also be done on the level of filtered E..-algebras, it immediately upgrades to
an object of CAlg(AniAlg? Hdg). Finally, all steps of the construction can easily be made
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functorial in R. To this end, one writes CA]g(AniAlgf{{Hdg) as an iterated pullback of CAlg(—)
of various symmetric monoidal oco-categories of filtered objects. We know how to make
ﬁlfHdqu_l)(dRR/A ®% Q)[q — 1] functorial; in the other factors of the iterated pullback, the
objects in question will be 1-categorical in nature, so all functorialities and compatibilities can
easily be constructed by hand. O

4.30. Remark. — Thanks to Theorem 4.22, it’s easy to write down objects of QRegZ{Hdg.

For example, it contains the category QRegfL‘ of A-algebras R which are p-torsion free for all
primes p and can be written in the form R = B/J, where B is a relatively perfect A-A-algebra
(by which we mean that the relative Adams operations )} A B®4,4m A — B are isomorphisms)
and J C B is an ideal generated by a Koszul-regular sequence of higher powers, that is, a
Koszul-regular sequence (x7', ..., z%") with o; > 2 for all 4.

4.31. Remark. — We can not only equip ﬁl;_Hdg q-dRp/4 with a filtered Eoc-algebra
structure, but even with the structure of a filtered derived commutative (¢ —1)* A[q — 1]-algebra
as in 3.51, and the various compatibilities all respect this structure.

4.32. Monoidality. — Similar to 4.12, the functor from Theorem 4.29 can be equipped with
an oo-operad structure. To this end, let

QReg% M@ C AniAlg®

be the non-full sub-oo-operad spanned by those objects whose entries are all contained in
QReg‘ngg and those morphisms that factor through a cocartesian lift of its image in Fin,
(compare the construction of Sm(?l[dim!*l] in 4.12).

dg

Note that QReg‘i{Hdg@ — Fin, is not a cocartesian fibration, because QReg'XH is not

closed under tensor products in AniAlg,. The problem is that R; ®k R9 might not be static
or not p-torsion free for some prime p. As we’ll see momentarily, this is the only obstruction.

4.33. Lemma. — Let R, Ry € QRegngg and put R = R; ®Y Ry.

(a) If R is static and p-torsion free for all primes p, then also R € QRegngg.

(b) In the situation from (a) the canonical map

N
(ﬁlg—Hdg q-dRpR, /4 ®(Lq_1)*A[[q_1]] fil} Hag ¢-dR R, /A) (

= fil* -d
q—l)—) ¢-Hdg AR /4

is an equivalence of filtered E-algebras over (¢ — 1)*Afq — 1].

Proof. Let p be any prime. Using Lp/4 >~ (Lg, /4 ®Y% Ro) ® (R1 ®% Lg,/4), it’s clear that fzp is
again p-quasi-lci over ﬁp. Similarly, R/p will still be relatively semiperfect over jp. To show
R e QRengdg, it remains to verify that

A1} 19g -dR7, /4, /(g — 1) — filijg, AR, /3, -

is an equivalence. By Lemma 4.26, only surjectivity needs to be checked. But since we have
filfiag ARR, /4, ~ (filjqg dRR, /4, ®Y% filjjqg AR R, ,/4,)p» surjectivity for R follows from the
analogous assertions for Ry and Ry. This shows (a).

To show (b), we can reduce both sides modulo (¢ — 1) and then once again reduce to the
well-known fact that ﬁlf{dg dR_/4 is symmetric monoidal. O
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4.34. Corollary. — The functor from Theorem 4.29 underlies a functor of co-operads
QReg!1&® ., CAlg(AniAlg] )%,

which preserves all cocartesian lifts that exist in the source. In particular, when we restrict
to the full subcategory QRequ*Hdg’b C QReg’XHdg spanned by those R that are flat over A, the
functor from Theorem 4.29 is symmetric monoidal.

Proof sketch. To construct the functor of co-operads, we repeat the argument from the proof
of Theorem 4.29: Write CAlg(AniAlqu'Hdg)® as an iterated pullback of CAlg(—)® of various
symmetric monoidal co-categories of filtered objects. For ﬁlfHdg’ q_l)(dR_ /A ®% Q)[g — 1] we
know what to do, for all other factors of the iterated pullbacks the objects in question are
1-categorical in nature, so everything can be constructed by hand.

That all existing cocartesian lifts are preserved boils down to Lemma 4.33(b). Finally, if
Ri, Ry € QRegi{{Hdg are flat over A, then R; ®Y Ry will be static and p-torsion free for all p,
so Lemma 4.33(a) implies that the full sub-co-operad of QRegf{{Hdg@ spanned by QRegz{Hdg’b
will be a cocartesian fibration. Since our map preserves all cocartesian lifts, we deduce that we

indeed get a symmetric monoidal functor

(= il g ¢-dR_/4): QRegd"*®” — CAlg(AniAlg], ") . 0
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PART II.
g-de Rham cohomology and topological
Hochschild homology over ku

In this part, we’ll prove a version of Antieau’s Theorem 1.20 over the connective complex
K-theory spectrum ku. We’ll show in Theorem 7.27 that for any quasi-syntomic ring R (with
2 € R*), if R admits a lift to an Eo-ring spectrum Sg such that R ~ Sp ® Z, then the derived
g-de Rham complex ¢-dR g,z can be equipped with a g-Hodge filtration ﬁl;_Hdg q-dR g,z in the
sense of Definition 3.2 in such a way that the associated graded of the even filtration

> gty st TC™ (ku ® Sp/ku) ~ filf g, q—(ﬁ{R/Z

is the completion of this filtration (up to shift). We’ll also show a version if Sg is only E; under
additional hypotheses.

This provides another large supply of examples to which the Habiro descent from The-
orem 3.11 can be applied. For these examples the Habiro descent can also be obtained
homotopically: First, the g-Hodge complex arises as ¢-Hdgp /7 ~ grgv’ hSl TC™ (KU ® Sp/KU).
To get its descent to the Habiro ring, we use the cyclotomic structure on THH(Sg) and the
usual genuine equivariant structure on KU to see that for all m € N the action of the cyclic
subgroup C,, C S' on THH(KU ® Sg/KU) ~ THH(Sg) ® KU can be refined to a genuine
action. We’ll then construct appropriate even filtrations on (THH(KU @ Sg/KU)Cm)hs"/Cm
and recover the Habiro descent ¢g-Hdgp/; in Theorem 8.63 via

¢-Hdgpyz, ~ lim g, 1 (THH(KU @S JKU)Cm )M/ C)

Overview of Part II. — This part is organised as follows: In §5 we’ll develop a version of the
even filtration in the solid condensed setting. This makes it much easier to compare, for example,
even filtrations on THH(—/ku); and THH(—/Q[f]), but it may also be of independent interest.
In §6, we’ll apply this construction to THH(—/ku) and show that it satisfies all expected
properties. In §7 we’ll explain the connection to ¢-de Rham cohomology. In §8 we’ll show how
the Habiro descent from Theorem 3.11 can also be recovered in this framework. Finally, we’ll
use the short section §9 to discuss several examples, including the one mentioned below.

Relation to work of Devalapurkar and Raksit. — It will become apparent to the reader
that the results in §7 are very closely connected to work of Sanath Devalapurkar and Arpon
Raksit. In fact, it was Raksit who first computed in unpublished work that

S gk, e TC (kulz] /ku) ~ i1} gae 0 0-p/2.0

is the explicit g¢-Hodge filtration from 1.11. This amazing observation has motivated much of
our work in Parts II and III, and we’ll give it a proof in Theorem 9.10.

Our proof of Theorem 7.27 crucially uses the equivalence THH(Z,);, ~ 7>0(j of Devala-
purkar and Raksit ([DR25, Theorem 0.1.4]; reproduced as Theorem 7.13 below) as well as
its variant THH(Zy[(p]/Splq — 1]);, ~ 750(kut®?) from Devalapurkar’s thesis ([Dev25, Theo-
rem 6.4.1]; reproduced as Theorem 7.2 below). That these results could be used to prove a
result like Theorem 7.27 has already been anticipated in Devalapurkar’s thesis; see e.g. the
discussion after [Dev25, Corollary 6.4.2].

th)


https://arxiv.org/pdf/2505.02218.pdf#block.0.1.4
https://sanathdevalapurkar.github.io/files/thesis.pdf#sublemma.6.4.1
https://sanathdevalapurkar.github.io/files/thesis.pdf#sublemma.6.4.2




§5. THE SOLID EVEN FILTRATION

§5. The solid even filtration

In this section we’ll sketch how to adapt Pstragowski’s perfect even filtration [Pst23] to Eq-
algebras in solid condensed spectra. This facilitates many p-completion arguments later on.
However, as we’ll see, not all of the nice properties of the perfect even filtration carry over to
the solid condensed case. But in the cases we need—and probably most cases of interest in
general—it works as expected. It would be desirable to develop a more complete (and perhaps
less naive) theory of the perfect even filtration in the condensed setting.

Before we begin, let us briefly recall the solid condensed setting. There are no properly
published sources yet, so we have to refer the reader to the recordings of [CS24] and the
unfinished notes [RC24a].

5.1. Solid condensed recollections. — Let Cond(Sp) denote the oco-category of (light)
condensed spectra, that is, hypersheaves of spectra on the site of light profinite sets as defined
by Clausen and Scholze [CS24]. The evaluation at the point (—)(*): Cond(Sp) — Sp admits a
fully faithful symmetric monoidal left adjoint (—): Sp — Cond(Sp), sending a spectrum X to
the discrete condensed spectrum X.

One can develop a theory of solid condensed spectra along the lines of [CS24, Lectures 5-6].
Let Null := cofib(S[{oo}] — S[NU{oc}]) be the free condensed spectrum on a null sequence. Let
o: Null — Null be the endomorphism induced by the shift map (=) +1: NU {oo} — N U {oo}.
Recall that a condensed spectrum M is called solid if

1 — 0*: Homg(Null, M) — Homg(Null, M)

is an equivalence, where Homg denotes the internal Hom in Cond(Sp). We let Spg C Cond(Sp)
denote the full sub-co-category of solid condensed spectra. Then Sp, is closed under all
limits and colimits. This implies that the inclusion Spy € Cond(Sp) admits a left adjoint
(—)": Cond(Sp) — Spa. It satisfies (M ® N)* ~ (M™ ® N)®, which allows us to endow Spg
with a symmetric monoidal structure, called the solid tensor product, via M @* N := (M ® N)".

5.2. Solid condensed spectra and p-completions. — If X is a p-complete spec-
trum, then X is usually not p-complete in Cond(Sp) because (—) doesn’t commute with
limits. After passing to p-completions, we still get an adjunction on p-complete objects
(=);: Spj, = Cond(Sp) :(—)(*) and the left adjoint is still fully faithful because the unit is
still an equivalence.

It’s straightforward to check that any discrete condensed spectrum is solid. By closure under
limits it follows that (—);: Sp;, — Cond(Sp); takes values in Sp,. The solid tensor product
has the magical property that if M and N are p-complete and bounded below solid condensed
spectra, then M ®® N is again p-complete; see [CS24, Lecture 6] or [Bos23, Proposition A.3].
In particular, the fully faithful embedding (=), : Spg — Spg i symmetric monoidal when
restricted to bounded below objects.

§5.1. Definitions and basic properties

In the following we let R be an E;-algebra in the symmetric monoidal oo-category of solid
condensed spectra Spg and we let

— ®% —: RModg(Spg) x LModg(Spg) — Spa

denote the relative tensor product over R. We start setting up the theory in a completely
analogous way to [Pst23, §§2-3].
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5.3. Solid perfect even modules. — We let Nullgz := R ®" Null®, where we define
Null := cofib(S[{o0}] — S[NU {c0}]) to be the free condensed spectrum on a null sequence as
in 5.1. It can be shown that the solidification Null® agrees with [[x S and defines a compact
generator of Spg, so that Nullg is a compact generator of LModg(Spg)-
We say that an R-module @ is solid perfect even if it is contained in the smallest sub-co-
category
Perfe,(Ra) € LModgr(Spg)

which contains ¥2"Nullg for all n € Z and is closed under extensions and retracts.

Note that R[S]" is solid perfect even for all light condensed sets S. Also note that in
contrast to the uncondensed situation, it is no longer true that Perfe,(Ra) is closed under duals.
Already for R = S we have Homg(Nulls, S) ~ @S, which is not solid perfect even. This is
ultimately the reason why the solid theory is not quite as nice.

5.4. The solid even filtration. — Equip Perfe,(Rg) with a Grothendieck topology in which
covers are maps P — @ whose fibre is again solid perfect even. Every left- R-module M defines
a Spg-valued sheaf on the additive site Perfe,(Ra) via

Homp(—, M): Perfe,(Ra)® — Spg -

We can form its truncations 79, Homp(—, M) in the sheaf oo-category Sh(Perfe,(Ra), SPg)
and then define the solid even filtration of M as the sections

ﬁlzv /R M = 1_‘Perfe\,(R.) (R7 T>2, Homp(—, M)) .

If R is clear from the context, we’ll often just write fil}, M. In particular, if we write fil}, R, it
is understood that we take the solid even filtration of R over itself.

For any half-integer weight w, we also define the even sheaf of weight w, denoted Fys(w), as
the sheafification of the presheaf of solid abelian groups mo,, Homp(—, M): Perfo,(Ra)°® — Abg.
For w = 0 we just write Fas := Far(0). We call M solid homologically even if Fpr(w) = 0 for
all proper half-integers w € % + Z.

The results from [Pst23, §2] can be carried over verbatim to the solid setting. In particular,
it’s still true that an R-module E, whose condensed homotopy groups 7. (F) are concentrated
in even degrees, will be homogically even and its solid even filtration will be the double-speed
Whitehead filtration ilf, /5 E' ~ 7>0.(E).

5.5. Monoidality of the solid even filtration. — The arguments from [Pst23, §3] can
mostly be adapted to the solid situation, but we need some enriched oco-category to do so.
Let us first set up the enriched setting. We use the formalism from [Hei23]. The oco-category
LModr(Spy) is naturally a module over Spg in Prl* and so it will be enriched in the sense of
[Hei23]. Explicitly, for left R-modules M and N, the mapping spectrum Hompg(M, N) comes
with a natural condensed structure Hom (M, N') which will be solid if N is (we’ve already used
this in 5.4). Restricting the module structure, we see that LModg(Spg) is also a module over
the connective part Spy ¢ in PrY, which yields an enrichment given by 75 Homp(M, N). The
full sub-oo-category Perfe,(Ra) € LModr(Spy) inherits an enrichment over Spy (. There is
an established notion of an enriched presheaf co-category PShSPa.>0(Perfe, (Ry), Spy, = 0) with
an enriched Yoneda embedding; see [Hin20; Hei25]. By considering enriched presheaves which
are additive and local with respect to all covering sieves, we can also define an enriched version
of additive sheaves. To avoid cumbersome notation, we’ll drop the superscript and just write
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Shy(Perfey (), Spy >0) and Shy(Perfe,(Ra), Spy) in the following, implicitly assuming that
all sheaves are enriched over Spg -¢.

Let us now explain how to adapt [Pst23, §3] to turn the solid even filtration into a lax
symmetric monoidal functor

fil, /_(—): LMod(Spy) — LMod(Fil Spy) .

Let ¢42° and U denote the cocartesian unstraightenings of the functors lax symmetric monoidal
functors R +— Shy(Perfe,(Ru), Spg »0) and Shy(Perfe,(Ra), Spg). The co-category of enriched
(pre)sheaves satisfies a similar universal property as usual; see [Hei23, Theorem 5.1]. As in
[Pst23, Construction 3.8], we obtain a symmetric monoidal natural transformation between

the lax symmetric monoidal functors R + Shy(Perfey(/a), Spa o) and R — LModg(Spy)-
Applying unstraightening, we obtain a diagram

U=’ £ LMod(Sp,)

~

Algg, (Spa)

where the vertical arrows are cocartesian fibrations and the top horizontal arrow F' is symmetric
monoidal.

The functor F' admits a fibre-wise right adjoint: In the fibre over R, the right adjoint is
given by the restricted enriched Yoneda embedding LModg(Spg) — Shs(Perfey(/a), Spa >0)
sending M +— 750 Homp(—, M). Since our sheaves take values in Spy -, the truncation can be
performed section-wise and no sheafification is necessary. By [L-HA, Corollary 7.3.2.7], the fibre-
wise right adjoints assemble into a lax symmetric monoidal right adjoint G': LMod(Spg) — U=".
We'll now study the composition

LMod(Spg) Surt —u.

In the fibre over R, this composition is given by sending M — vg(M) = 759 Homp(—, M),
where now the truncation is performed in Shy,(Perfey(Ra), Spa)-

Another application of the universal property [Hei23, Theorem 5.1] allows us to extend
the lax symmetric monoidal functor 7>_o, Homg(—,S): Z — Shy(Perf.,(Sa), Spg) to a lax
symmetric monoidal functor

Fil Spg — Shy (Perfey(Sa), Spa)

As in [Pst23, Construction 3.20], for any R € Algg, (Spy), Shx(Perfe, (Ra),Spy) is a module
over Shy(Perfey(Sa), Spe) and thus over Fil Sp,. Therefore, if X and Y are Spg-valued sheaves
on Perfe,(Ra), we can define a filtered solid condensed mapping spectrum Hom*(X,Y'). Using
the enriched Yoneda lemma of [Hin20], we can argue as in [Pst23, Lemma 3.23] to show

Hom*(vr(R),vr(M)) ~ fil}, ,z M.

Now consider the functor R +— Shy (Perfe,(Ra), Spa). As in [Pst23, Construction 3.27] we can
refine it to a lax symmetric monoidal functor Algg, (Spg) — Algg, (Modry Sp.(PrL)).
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We don’t know if this functor factors through the image of the fully faithful embedding
Algg, (Fil Spg) — Algg, (Modrisp, (Pr%)), as it does in the uncondensed setting.®!) But this
fully faithful embedding has a right adjoint by [L-HA, Theorem 4.8.5.11], which sends a Fil Spg-
module M with a distinguished object X € M to End*(X) € Algg, (Fil Sp,). Composing with
this right adjoint allows us to turn R — fil}, /R R into a lax symmetric monoidal functor

fily, ,_(=): Algg, (Spa) — Algg, (Fil Sp,)

ev /—

and provides a symmetric monoidal natural transformation from R +— Shy(Perfe,(Ra), Spg)
to R +— Modg+ P r(FilSpg). The unstraightening of the latter functor is the the pullback of

LMod(Fil Spg) — Algg, (Fil Sp,) along file, ,_(—)*. We obtain a diagram

u LMod(Fil Spy)
| o]
Algg, (Spa) —/=— Algg, (Fil Sp,)

with lax symmetric monoidal horizontal arrows. We can now finally define a functorial lax
symmetric monoidal solid even filtration as the composite

filey /(=) : LMod(Spe) > U?® — U — LMod(Fil Sp,) .

5.6. Calculus of solid evenness. — Deviating from [Pst23, Definition 4.4], let us call a
left- R-module M solid ind-perfect even if it can be written as a filtered colimit of solid perfect
evens, and solid even flat if 7,(E ®%, M) is concentrated in even degrees for any right- R-module
E such that 7, (E) is concentrated in even degrees. In the uncondensed setting these notions
are equivalent by the “even Lazard theorem” [Pst23, Theorem 4.14]. In the solid setting it is
still true that solid ind-perfect even modules are solid even flat (as we’ll see). However, we
don’t know if the converse is true. Similarly, we don’t know if [Pst23, Theorem 4.16] still works.
In §5.2, we’ll discuss what the problem is, and in §5.3 we’ll see how to fix this, at least under
certain additional assumptions.

Despite these problems, the formalism of 7, -even envelopes can entirely be carried over to
the solid setting: Any left- R-module M admits a map M — E such that:

(a) cofib(M — E) is ind-solid perfect even.
(b) m«(F) is concentrated in even degrees.

(¢) for any other map M — F into a left-R-module F' such that m(F) is even, a dashed
arrow can be found to make the following diagram commutative:

N,

-DIn particular, we don’t know if the analogue of [Pst23, Proposition 3.26] is true, i.e. whether

Hom* (vr(R), —): Shy (Perfev(Ra), Spa) — LModgna* (vx (r)) (Fil Spa)

is an equivalence. The problem is that the even filtration fil}, ,z (M) only knows about the values of the sheaf
Ty2+« Hompg(—, M) on R (plus even shifts, extensions, and retracts thereof), but not about the value on Nullg.

88


http://people.math.harvard.edu/~lurie/papers/HA.pdf#theorem.4.8.5.11
https://arxiv.org/pdf/2304.04685.pdf#theorem.4.4
https://arxiv.org/pdf/2304.04685.pdf#theorem.4.14
https://arxiv.org/pdf/2304.04685.pdf#theorem.4.16
https://arxiv.org/pdf/2304.04685.pdf#theorem.3.26

§5.2. RECOLLECTIONS ON TRACE-CLASS MORPHISMS AND NUCLEAR OBJECTS

The proof is the same as in the uncondensed setting, except that we have to consider maps
>"Nullg — M from odd suspensions of Nullg.

5.7. Comparison with the uncondensed theory. — Let R be a discrete solid condensed
ring and let M be a discrete left-R-module. Let fil_., M be Pstragowski’s perfect even filtation,
regarded as a filtered discrete solid spectrum. Since Pstragowski’s category Perfo,(R) is a full
sub-oo-category of Perfo,(Ra), we get a canonical comparison map

filp o, M — fils, M .
As a consequence of the fact that m.-even envelopes still work, we obtain:

5.8. Corollary. — With assumptions as in 5.7, let M be homologically even as a left-R-module.
If M s solid homologically even as well, then the comparison map

Al ., M — 15, M

P-ev
18 an equivalence. In particular, this applies if M = R.

Proof. 1t’s straightforward to check that the construction of a m.-even envelopes of M as a
discrete left- R-module in [Pst23, Proposition 4.11] also yields a m-even envelope as a solid
condensed left- R-module.(>?) Assuming homological evenness, both gry o, M and gri, M can
be computed by repeatedly taking m.-even envelopes, as explained in [Pst23, §5]. It follows
that filp ., M — fil§, M is an equivalence on associated gradeds. Since both filtrations are
exhaustive, we conclude. ]

5.9. Remark. — We believe that in the context of Corollary 5.8 it’s automatically true that
M is solid homologically even.

§5.2. Recollections on trace-class morphisms and nuclear objects

In contrast to the mostly smooth sailing of 5.3-5.8, it’s not so clear how to transport Pstra-
gowski’s discussion of even flatness—in particular, the powerful results [Pst23, Theorems 4.14
and 4.16]—to the solid setting. The main problem is the following: In the proofs, Pstragowski
repeatedly uses the trick that a map P — @ of perfect even R-modules can be equivalently
described by a map S — PV ®g Q. This doesn’t work anymore in the solid setting, since most
solid perfect even R-modules are not dualisable, the quintessential example being Nullg.

This is not the first time that such a problem occurs in solid condensed mathematics. The
usual way to deal with these issues (which will also work in our case) is to replace dualisable
objects by the weaker notions of trace-class morphisms and nuclear objects that we’ll review in
this subsection.

5.10. Trace-class morphisms. — Let C be a presentable symmetric monoidal®3) oco-
category. Let R be an Ej-algebra in C. By Lurie’s adjoint functor theorem, for all left- R-modules
M and N there exists an object Homp(M, N) € C characterised by

Home (—, Homp(M, N)) ~ Homp(M ® —, N).

(-2 Implicitly, we use that discrete condensed abelian groups have vanishing higher cohomology on any light
profinite set; see [CS24, Lecture 4].

(59 By convention, this includes the assumption that — ® — commutes with colimits in both variables, so the
adjoint functor theorem is applicable.
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We remark that Homp(M, R) is naturally a right-R-module. A morphism ¢: M — N of
left- R-modules is called trace-class if there exists a morphism 7: 1¢ — Hompz(M, R) ®r N,
such that ¢ is the composition

M~M®Ile - MQ@Homgz(M,R) @z N 4, RQr N ~ N .
We often call n the classifier of .

Trace-class morphism have a number of nice properties. We'll often use the properties from
[CS22, Lemma 8.2] as well as the following lemma.

5.11. Lemma. — Let I': C — D be a symmetric monoidal functor between presentable
symmetric monoidal co-categories. Let R € Algg (C). By abuse of notation, we’ll denote both
Hom () and Hom () (— F(R)) by (-)".

(a) There exists a natural transformation F((—)V) = F(—)V.

(b) If M — N is a trace-class morphism in LModg(C), then NV — MY is trace-class in
RModg(C) and F(M) — F(N) is trace-class in LModggy(D).

(c) The commutative square in RModp(g) (D) formed by the morphisms from (a) and (b)

F(NY) —— F(MY)

El
-
-
-
-
-
-

F(N)! —— F(M)"

admits a canonical diagonal map F(N)Y — F(M") that makes both triangles commute.

Proof. The natural transformation from (a) is adjoint to F((—)") ®pr) F(—) = F(R), which
is in turn given by applying F' to the evaluation (—)Y ®g (—) = R.

Now let M — N be trace-class in LModg(C) with classifier 1¢ — MV®gN. If we apply F to
the classifier and compose with the morphism F(M") — F(M)" from (a), we obtain a morphism
lp = F(MY)®pr) F(N) = F(M)"®pg)F(N), which serves as a classifier for F(M) — F(N).
If we compose instead with N — NVV, we obtain 1¢ — MY ®r N — MY ®gr N"V, which serves

as a classifier for NV — M" being trace-class. This shows (b). To show (c), we construct the
diagonal map F(N)Y — F(MV) as follows:

F(N)Y — F(M" ®r N)®p F(N)" ~ F(M") ®p(ry F(N) ®p F(N)" — F(M").
Here we use the classifier 1c — MY ®pz N and the evaluation map for F'(N). O
5.12. Nuclear objects — In addition to the assumptions from 5.10, let us now assume that

C is stable, compactly generated, and 1 is compact.

(a) A left-R-module M is called nuclear if every morphism P — M from a compact left-R-
module P is trace-class.

(b) We call a left-R-module M basic nuclear if M can be written as a sequential colimit
M ~ colim(My — My — ---) such that each transition map M,, — M, 1 is trace-class.

We let Nuc(LModg(C)) € LModg(C) denote the full sub-co-category spanned by the nuclear
left- R-modules.
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5.13. Theorem. — Let C be a presentable stable symmetric monoidal co-category such that
C is compactly generated and the tensor unit 1¢ € C is compact. Let R € Algg (C)

(a) Nuc(LModg(C)) € LModg(C) closed under shifts and colimits. Moreover, if M is a
nuclear left-R-module and X € Nuc(C), then M ® X € Nuc(LModg(C)).

(b) Nuc(LModgr(C)) is wi-compactly generated and the wi-compact objects are precisely the
basic nuclears.

(¢) IfR— S is a map of Eq-algebras in C, then S ®r —: LModr(C) — LModg(C) preserves
the full sub-co-categories of nuclear objects.

(d) Suppose that for all compact left-R-modules P and all compact C' € C the tensor product
P ® C is still compact as a left-R-module. If P is compact and M is nuclear, the natural
map

Hom (P, R) ®r M = Homp(P, M)

is an equivalence. Furthermore, if R — S is a map of Ei-algebras in C such that S is
nuclear as a left-R-module, then the forgetful functor LModg(C) — LModg(C) preserves
the full sub-oco-categories of nuclear objects.

Proof sketch. For parts (a) and (b), the case R ~ 1¢ is covered in [CS22, Theorem 8.6]; the
arguments given therein apply verbatim for general R as well. For (c), it’s straightforward to
check that S ® g — preserves trace-class maps, hence basic nuclear objects and thus all nuclear
objects by (b).

For (d), the assumption implies that every compact left- R-module is also internally compact
in the sense that Homp (P, —) preserves filtered colimits. We may thus reduce to the case
where M is basic nuclear. Write M as a sequential colimit M ~ colim(My — M; — ---) with
trace-class transition maps. If n: 1¢ — Homp(M,,, R) ®r My+1 is a classifier for M,, — M, +1
and c¢: Homp(P, M,,) ® Homp(M,,, R) — Homp(P, R) is the canonical composition map, we
get a commutative diagram

Hom (P, M,) Homp(P, Mpy1)

] |

Homp (P, M,,) ® Homp(M,, R) ®r Mp+1 —— Homp(P, R) ®r My11

Using these diagrams for all n we see that colim Homp(P, R) ®g M,, — colim Homp(P, M,,)
has an inverse. It follows that Hompg(P, R) ® g M ~ Hompg(P, M), as desired.

Now let IV be a nuclear left-S-module and let P — N be a map from a compact left-R-
module. Then S ®r P — N is trace-class, because it factors through S ®r P — S ®r N and
S ®pr — preserves trace-class morphisms. If : 1 — Homg(S ®g P, S) ®s N is a classifier, we
note Homg(S®pg P, S) ~ Homp (P, S) ~ Homz (P, R) ®r S by our assumption that S is nuclear.
Thus Homg(S®p P, S)®s N ~ Homp(P, R)®gr N and so 7 is also a classifier witnessing P — N
being trace-class. This shows that the forgetful functor LModg(C) — LModg(C) preserves the
full sub-oco-categories of nuclear objects. O

5.14. Remark. — If Cy is a small stable symmetric monoidal co-category, then Theorem 5.13
can be applied to Ind(Cp). Since every trace-class map in Ind(Cy) factors through a compact
object by [CS22, Lemma 8.4], we see that the basic nuclear objects in Ind(Cy) are of the form
“colim”(X; — Xy — --+), where each X,, — X,, 11 is trace-class in Cp.
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If C is a presentable stable symmetric monoidal oo-category (hence C is large unless C ~ 0),
one can still make sense of Nuc Ind(C) without running into set-theoretic problems. Indeed, if k
is a sufficiently large regular cardinal such that C is k-compactly generated and 1 is k-compact,
the same argument as in [CS22, Lemma 8.4] shows that every trace-class morphism in C factors
through a x-compact object. Then every basic nuclear object is equivalent to one in which each
X, is k-compact and so the basic nuclear objects in form an essentially small co-category. We
may then define NucInd(C) as Ind,, (—) of the co-category of basic nuclear objects.

§5.3. Solid even flatness in the nuclear case

In this subsection we explain that the analogues of [Pst23, Theorems 4.14 and 4.16] are still
true under certain additional nuclearity assumptions.

5.15. Assumptions on R. — From now on let us assume that R satisfies the following
condition:

(R) Homp(Nullg, R) is nuclear and solid ind-perfect even both as a left-R-module and as a
right-R-module.

Here we use that Nullp ~ [[yS ®" R is naturally a bimodule over R. Also note that Assump-
tion (R) implies that that Homp(P, R) is nuclear and solid ind-perfect even for any solid perfect
even left- or right- R-module P.

5.16. Lemma. — Let R° be a discrete condensed Eq-ring spectrum and let M° be any discrete
condensed left-R°-module.

(a) Assumption 5.15(R) is satisfied for R = R°. Moreover, M° is nuclear as a left-R°-module.

(b)  Assumption 5.15(R) is satisfied for R = (R°);). Moreover, if R° is connective, then (M°);)
is nuclear over (R°).

(¢)  Assumption 5.15(R) is satisfied for R = (R°),[1/p]. Moreover, if R° is connective, then
(M°)[1/p] is nuclear over (R°)p[1/p].

Proof. In the following, we won’t specify whether we’re working with left- or right- R-modules,
since the arguments will be valid in either case. For arbitrary solid E;-algebras R, we have
Homp(Nullg, R) ~ Homg([[xS, R). If R = R° is discrete, then Homg([[yS, R) ~ @y R°,
which is solid ind-perfect even. Since R is nuclear over itself and nuclear objects are closed
under shifts and colimits, it follows that every discrete R-module is nuclear. This shows (a).

If R = (R°);, then the same argument shows Homg([yS, R) ~ (@ R°);. To show the
solid ind-perfect evenness condition, write

N
°) ~ i f(n)
(@), ~ g T
P imy—oe N

where the colimit is taken over all functions f: N — N such that f(n) — oo as n — co. We
claim that whenever g < f is growing so slowly that f(n) — g(n) — oo, the transition map
o’ R — [Inp? (") R is trace-class and factors through Nullp. This will show that every map
from a compact left-R-module to (Py R°); is trace-class and factors through Nullg, so that
(@y R°);, is nuclear and solid ind-perfect even by the solid analogue of [Pst23, Proposition 4.3].

To show the claim, we may as well assume g = 0 and show that (pf("))neN: [INR—=IIyRis
trace-class and factors through Nullg. Let e, denote the n'" basis vector in the standard basis
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of @y R°. Then Y- p/™ (e, ®ey) is a well-defined mo-class in (Dy 7>0(R°)); R (» I 7>0(R),
since the solid tensor product of connective p-complete objects will be p—comp/lete again. The

image of this mo-class in (Py R°);, ®F [In R defines a morphism

S — Hompg(Nullg, R) &% [[ R.
N

which classifies a trace-class map Nullp — [[yR. By inspection, this is a factorisation of
(pf ™) en: Ty R — [y R, as desired.

This argument shows, in particular, that the p-completion of any countable direct sum of
copies of R° is nuclear over R. We deduce the same for arbitrary direct sums, as p-completion
commutes with wi-filtered colimits. Now suppose R° is connective. First consider the case where
M?° is bounded below. Let M be the p-completion of M°. Define a sequence of left- R-modules
My, My, ... as follows: My := M; for n > 0, we choose a map P X" R° — M, that is surjective
on m, and then define M, 1 := cofib(@® X" R° — M,);. Then M = colim fib(M — M,); note
that the colimit doesn’t need to be p-completed, since each term is p-complete and in each
homotopical degree the colimit stabilises after finitely many steps. Thus, it will be enough to
check that each fib(M — M,,) is nuclear, which follows from our observation that p-completions
of arbitrary direct sums of copies of R° are nuclear. This shows that (M O)Q is nuclear in the
bounded below case. For general M®, note that (M°), and (7>, M°®); agree in homotopical
degrees > —n + 1. It follows that (M°); ~ colim,>o(7>—nM°);. By the bounded below case,
this is a (non-p-completed) colimit of nuclear objects and so (M°);) must be nuclear too. This
finishes the proof of (b).

If R = (R°),[1/p], then Homg([Iy S, R) ~ (Py R°),[1/p] by compactness of [[yS. The
desired assertions then follow from (b) using base change for nuclear modules (Theorem 5.13(c)).
This shows (c). O

Under Assumption 5.15(R), we can show the following weaker analogue of the “even Lazard
theorem” [Pst23, Theorem 4.14].

5.17. Lemma. — Let R be a solid condensed Eq-ring spectrum and let M be a left-R-module.
(a) If M is solid ind-perfect even, then M is solid even flat.

(b) Let M be solid even flat. If R satisfies Assumption 5.15(R) and M is nuclear, then is
solid ind-perfect even.

Proof. For (a), we only need to check that Nullp is solid even flat. This follows from the fact
that Nully ~ [Jy Z is flat for the solid tensor product on Abg by [CS24, Lecture 6].

For (b), let ¢: P — M be a map from a compact left- R-module. By the solid analogue of
[Pst23, Proposition 4.3], it will be enough to show that ¢ factors through a solid perfect even.
Since M is nuclear, ¢ will be trace-class, with classifier n: S — Hompz(P, R) ®% M. As in the
proof of [Pst23, Theorem 4.14], let us choose a map Homp(P, R) — E whose suspension is a
Ty-even envelope in right- R-modules. Then 7, (£ ®% M) is concentrated in odd degrees, hence
the composite

S — Homp(P,R)Q@p M — EQ% M

must vanish.®%) Tt follows that the classifier n lifts to a map n': S — 2~1C ®% M, where
C ~ cofib(Homp(P, R) — E). By definition of ms-even envelopes, £ ~1C is solid ind-perfect

(- This argument still works with condensed homotopy groups since any cover of the one-point set # in the
site of light profinite sets is split.
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even as a right-R-module. Writing ¥~!'C' as a filtered colimit of solid perfect evens and using
that S is compact, we obtain a further factorisation

1

S i Q% M

T |

where @ is solid perfect even. Assumption 5.15(R) guarantees that Homp(P, R) is nuclear,
hence the composition Q@ — X 71C — Homp (P, R) is trace-class as a map of right- R-modules.
Choose a classifier ¥: S — Homp(P, R) ®% Homp(Q, R). We see that the original map
p: P — M is given by tensoring P with 7” and 9 and then applying the evaluation maps
evg: Homp(Q, R)®"Q — R and evp: P®" Homp(P, R) — R. This can be done in any order,
hence ¢ also agrees with the composition

P -2 P&" PY @% Homp(Q, R) &2 Homp(Q, R) - Homp(Q, R) @ Q &% M 24 M

where we wrote PV := Homp (P, R) for short. We conclude that ¢ factors through Homp(Q, R).
Again by Assumption 5.15(R), Hompz(Q, R) is a filtered colimit of solid perfect even left- R-
modules. Since P is compact, we conclude that ¢: P — M factors through a solid perfect even
left- R-module, as desired. O

We can also show the following weaker analogue of [Pst23, Theorem 4.16].

5.18. Lemma. — Let R be a solid condensed E1-ring spectrum and let M be a left-R-module.

(a) M is solid homologically even if and only if every map P — XM, where P is solid perfect
even, factors through a map P — XQ, where Q is solid perfect even.

(b)  Suppose M is solid homologically even. If E is a solid even flat right-R-module such that
74 (E) is even, then any map S — E @F, XM vanishes.

(¢c) Suppose R satisfies Assumption 5.15(R) and M is nuclear. Suppose furthermore that
for any solid ind-perfect even right-R-module E such that 7(E) is even, any morphism
S — E®% XM vanishes. Then M is solid homologically even. In particular, this applies
if M is nuclear and solid even flat.

Proof. For part (a), the proof of [Pst23, Theorem 4.16(2)] can be copied verbatim. For (b), let
n: S — E®% XM be any map. Let M — F be a my-even envelope and let C' := cofib(M — F).
Since FE is solid even flat, m.(E ®% XF') is concentrated in odd degrees and so the composite

S—>E®7%EM—>E®7%EF

must vanish. Choosing a null-homotopy, we see that 1 factors through a map ': S — E®%, C.
By assumption, C' is solid ind-perfect even. Since S is compact, i’ factors through another map
n":S — E®%, P, where P is solid perfect even. Since M is solid homologically even, (a) shows
that the composite P — C' — XM factors through 3Q, where @ is solid perfect even. Now )
is solid even flat by Lemma 5.17(a) and so 7, (£ @, £Q) is concentrated in odd degrees. Thus
any map S — F ®%, XQ vanishes. Composing with 3¢ — XM, we find that our original map
S — E ®% XM must vanish as well, as desired.
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Let us now show (¢). Let P — XM be any map from a solid perfect even. Since M is assumed
to be nuclear, any such map is trace-class. Choose a classifier n: S — Hompz(P, R) % XM
as well as a m-even envelope Homp(P, R) — E in right-R-modules. By Assumption 5.15(R),
Homp (P, R) is solid ind-perfect even, hence the same is true for any m-even envelope. Our
assumption then implies that any map S — F ®% XM vanishes. It follows that 7 factors
through a map n': S — X71C ®%, M, where C = cofib(Homp(P, R) — E). By assumption,
C is solid ind-perfect even; since S is compact, we find a solid perfect even right- R-module @
and a commutative diagram

S — - 3lQe%EM

T

Hompz(P,R) Q% XM

By Assumption 5.15(R), Homp(P, R) is nuclear as a right- R-module and so the composition
Y 1Q — ©71C — Homp(P, R) is trace-class. Arguing as in the proof of Lemma 5.17(b), we
find that our original map P — XM factors through Homp(X71Q, R). By Assumption 5.15(R)
again, Homp(Q, R) is solid ind-perfect even. Writing Homz(X7'Q, R) ~ ¥ Hompz(Q, R) as a
filtered colimit of suspensions of solid perfect even left R-modules and using that P is compact,
we deduce that P — XM factors through the suspension of a solid perfect even left- R-module,
as desired.

For the “in particular”, just observe that M being solid even flat implies that 7, (£ ®F M)
is concentrated in odd degrees and so indeed any map S — E ®%, XM vanishes. ]

§5.4. Solid faithfully flat descent in the nuclear case

In this subsection we’ll show a flat descent result for the solid even filtration. We start with
the definition of faithful flatness; it is slightly more restrictive than [Pst23, Definition 6.15],
but we expect that this doesn’t cause any problems in practice.

5.19. Definition. — A map R — S of solid condensed E;-algebras is called solid faithfully
even flat if S and cofib(R — S) are solid even flat both as left- and as right- R-modules.

5.20. Theorem. — Let R — S be a solid faithfully even flat map of solid condensed K-
algebras such that R satisfies Assumption 5.15(R) and S is nuclear as a left-R-module. We
denote the Cech nerve of R — S by R — S°®. Then for every nuclear solid homologically even
left-R-module M, the canonical map

ﬁl:v/RM - hinﬁlgv/R(S. ®7% M)

s an equivalence up to completing the filtrations on either side.

Proof. Put C = cofib(R — 5) for short. First observe that S ®zr M and C ®g M are again
nuclear by Theorem 5.13(¢) and (d). If E is any m-even and solid even flat right- R-module, then
E®% S is me-even and solid even flat since S is solid even flat both as as a left- and as a right- R-
module. Using that M is solid homologically even, we find that any map S — F ®% S ®% XM
vanishes by Lemma 5.18(b). Since S ®% M is nuclear, we conclude that it must be solid
homologically even by Lemma 5.18(c). The same argument applies to C ®%, M.
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Therefore we get a short exact sequence 0 — Fay — F. S M — fc@% m — 0. Arguing as in
the proof of [Pst23, Theorem 6.26], we conclude that the Moore complex

0 — Fur — Fsemnm — Fsgmsemm —

is exact. Replacing M by an even suspension, we deduce the same for F(_(w) for every integral
weight w € Z. For proper half-integral weights w € % + Z this is true as well for trivial reasons,
since our argument above shows that all terms in S® ®%, M are homologically even. We can
thus apply the solid analogue of [Pst23, Proposition 5.5]. O

We also need the following variant of faithfully flat descent.

5.21. Theorem. — Let Ry be a solid condensed E-algebra and let Sy be an Ei-algebra
in Ro-modules such that Ry — Sy is solid faithfully even flat and Sy is nuclear over Ry. We
denote the Cech nerve of Ry — So by Ry — S§. Let Ry — R be another map of solid condensed
E;-algebras such that R satisfies Assumption 5.15(R). Then for every solid homologically flat
Ro-module My, the canonical map

612, (R &%, Mo) — L, (R &%, Mo &%, SB)

s an equivalence up to completing the filtrations on both sides.

Proof. This doesn’t follow from Theorem 5.20 since we can’t produce an E;-structure on
R®%, So. But the argument can be adapted in a straightforward way.

Let Cy == cofib(Ry — Sp). A combination of Theorem 5.13(c) and (d) shows again that
R ®?20 My ®7;50 Sy and R®?%O My ®?30 Cy are nuclear over R. Moreover, both are solid even flat
as left- R-modules, hence solid homologically even by Lemma 5.18(c). It follows that

0= Frem My — FRef, Mo@h So — FRef Mo Co — 0

is a short exact sequence. Since the cosimplicial Ro-module My ®%, So ®%, S§ is split, we can
still use an analogous argument as in the proof of [Pst23, Theorem 6.26] to conclude that the
Moore complex

0 — Frem Mo — FRef, Mo@% S0 — TR Mol So@% So 7 1

is exact. The same follows for F(_(w) for every half-integral weight w: If w € Z, replace Mo by
an even suspension, otherwise exactness holds for trivial reasons as the whole complex vanishes
by solid homological evenness. We can thus apply the solid analogue of [Pst23, Proposition 5.5]
again to finish the proof. O

5.22. Remark. — Note that M = R satisfies the nuclearity and homological evenness assump-
tion in Theorem 5.20. Similarly, My = R satisfies the assumptions in Theorem 5.21. So in either
case we get a way of computing fil?, /r R via descent, provided R satisfies Assumption 5.15(R).
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§6. The solid even filtration for THH

The purpose of this section is to construct and study an appropriate even filtration on
TC™ (kur/kua), where kug and kup denote certain lifts to ku of rings A and R (subject
to strong additional assumptions to be specified below). In the subsequent section §7 we’ll show
that the associated graded of this even filtration is closely related to the ¢-de Rham complex
q-dRpR/a-

Throughout §6 and §§7.1-7.3, we fix a prime p as well as rings A and R satisfying the
following assumptions:

6.1. Assumptions on A. — We let A be a p-complete and p-completely perfectly covered
d-ring as in 4.17. We assume that A is equipped with the following additional structure:

(*“») A has a lift to a p-complete connective Bog-ring spectrum Sy such that Sy ®s, Lp ~ A
and such that the Tate-valued Frobenius

tC
¢th: Sp— SAP

agrees with the 6-ring Frobenius ¢: A — A on mg. Furthermore, ¢ic, must be equipped
with an S*-equivariant structure as a map of Eoo-ring spectra, where S receives the trivial
St-action and SZGP the induced S* ~ S'/C)-action.

The S'-equivariant structure in (*“») ensures that S4 is a p-cyclotomic base: By the universal
property of THH, the augmentation THH(S4) — S4 becomes a map of Ey-algebras in
cyclotomic spectra in a unique way, where the p-cyclotomic Frobenius on Sy is ¢, with its
chosen Sl-equivariant structure. In particular, THH(—/S,) ~ THH(-) ®THH(S,) Sa carries a
p-cyclotomic structure. We also put kuy == (ku®Sa)).

6.2. Assumptions on R. — We let R be a p-complete A-algebra of bounded p*°-torsion.
We assume that R is p-quasi-lci over A in the sense that the cotangent complex Lg 4 has
p-complete Tor-amplitude in homological degrees [0, 1] over R. In addition, one of the following
two conditions must be satisfied:

(E2) R has a lift to a p-complete connective Eo-algebra Sk € Algg,(Mods, (Sp)) such that
Sgr s, Z, ~ R.
(E1) R is p-torsion free and has a p-quasi-syntomic cover R — Ry, such that:

(a) Roo/p is relatively semiperfect over A in the sense that its relative Frobenius over
the 6-ring A is a surjection Roo/p ®a4,6 A - Roo/D-

(b) If RS, denotes the p-completed Cech nerve of R — Ru, then the augmented cosim-
plicial diagram R — R3S, has a lift to an augmented cosimplicial diagram Sg — Sge_
in Algg, (Mods , (Sp)), which is p-complete and connective in every degree.

We put kup := (ku ® Sg),, and, in case (E), kugs, = (ku ®Sgs ).

6.3. Remark. — Even though the assumptions in 6.1 and 6.2 seem quite restrictive, they
allow for many interesting examples, as we’ll see in §9.1.

6.4. Remark. — Let us motivate the rather artificial condition 6.2(E;). If our lifts are
only Ey, there’s no even filtration on TC™ (kug/kua);,. However, if TC™ (kug/kua);, happens
to be an even spectrum, then we can still consider its double-speed Whitehead filtration
T2, TC™ (kug/kua),. This case turns out to be quite interesting: As we’ll see in §7.3, the
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g-deformation of the Hodge filtration that we get in this case is independent of the choice of
the Eq-lift Sg! This is the reason why we don’t content ourselves with the Eo-case.

More generally, given a resolution Sg — Sge_ as in 6.2(E;), then TC™ (kuge_ /kua);, is
even in every cosimplicial degree, so we can use it to define an ad-hoc replacement of the
even filtration. Indeed, evenness can be checked modulo 3, so we only need to check that
HC™ (RS, /A)g is even. By assumption, R /p is relatively semiperfect over A, hence the
same is true for RS /p in every cosimplicial degree. Then the desired evenness follows from
Lemma 4.18(a) and [BMS19, Theorem 1.17].

6.5. Remark. — Throughout §6, we won’t use that the lifts kuy and kug come from
spherical lifts Sy and Sg, nor will we use the structure of a p-cyclotomic base on S 4. But for
the comparison with ¢-de Rham cohomology in §7, these assumptions will become relevant.

§6.1. Solid THH

Throughout §§6-7, we’ll work in the world of solid condensed spectra (see 5.1). In many cases,
it makes no difference whether we work solidly or p-completely; for the most part, the reader
not familiar with the solid theory may safely replace each “®” by a p-completion. But working
solidly has the advantage that that THH will automatically be p-complete (Lemma 6.7). This
simplifies the p-completed descent for the even filtration (Lemma 6.12) and it makes it much
easier to deal with rationalisations, as not having to p-complete allows us to appeal directly to
the fact that kuﬁ ®Q ~ Q5]

6.6. Convention. — For readability we’ll adopt the following abusive convention: If X is a
p-complete spectrum, we’ll identify X with the solid condensed spectrum X ZA), otherwise we
identify X with the discrete solid condensed spectrum X. In particular, we’ll regard ku as a
discrete condensed spectrum, but kug and kuy as a p-complete ones.

For any Ey-algebra k in Spg, the module co-category Mody(Spg) is symmetric monoidal
for the solid tensor product — ®% —. We can then consider topological Hochschild homology
inside Mody(Spg). This yields a functor

THHa(—/k): Algg, (Mody(Spa)) — Mody,(Spa)P®" .
We also let TCg (—/k) := THHa(—/k)"S" and TPa(—/k) := THHa(—/k)"S", where the fixed
points and Tate construction are taken inside Mody(Spg)®® "

6.7. Lemma. — Let k° be a discrete connective Eqo-ring spectrum and let T° be a discrete
connective Ey-algebra in k°-modules. Let k = (k°)} and T = (T°),). Then solid condensed
spectrum THHg(T'/k) is the p-completion of the discrete spectrum THH(T®/k®).

Proof. By the magical property of the solid tensor product,
THH. (T/k) ~T ®;’op®;T T

is again p-complete. Hence we get a map THH(T°/k°);) — THHa(T'/k). Whether this map is an
equivalence can be checked modulo p°. By Burklund’s result [Bur22, Theorem 1.2], the quotient
k/p> ~ k®"S/p® admits an Ey-k-algebra structure, and so we may regard T/p® ~ T R k/ PP
as an Ej-algebra in the Ej-monoidal oo-category RMody, /5 (Spa)- Since k/p® ~k°®S/p° and
T/p® ~T°®S/p® are discrete and the inclusion of discrete objects into all solid condensed
spectra preserves tensor products, we obtain

THH(T°/k%), /p° ~ (T/p") ®?T/p5)op®;/p5 (zype) (T/p°) ~ THHa(T/k)/p. 0
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§6.2. The solid even filtration via even resolutions

Let us now construct the desired even filtrations. We’ll use the adaptation of Pstragowski’s
perfect even filtration to the solid setting that we’ve sketched in §5.

Throughout this subsection, we’ll fix a connective even E.,-ring spectrum k such that
mox (k) is p-torsion free. The example of interest is of course k = ku, but we’ll later apply the
same results in other cases as well (e.g. for ku ® Q or the geometric fixed points kuq’c’”), SO
the additional generality will be worthwhile. We put k4 = k ®® S4, kr = k Q" Sg, and in
case 6.2(IE1) also kpe =k @" Sge_, where we regard k, Sa, and Sk as solid condensed spectra
per Convention 6.6. Note that these are all even by our assumptions on k, A, and R, but they
are not necessarily p-complete; in the case k = ku however, p-completeness is satisfied.

6.8. Even filtrations. — If we are in situation 6.2(Ez), then THHg(kr/k4) is an E;-algebra
and so we can define
fil%, THHa (kg /k 1)

vV

to be its solid even filtration as a module over itself. For k = ku, we’ll see in Corollary 6.24
below that fil5, THHg(kug/kuy) is the p-completion of Pstragowski’s perfect even filtration
on the discrete Ei-ring spectrum THH(kug/kua). For k = Z, we’'ll see in Corollary 6.21, that
fil}, HHg(R/A) agrees with the Hahn-Raksit-Wilson/HKR filtration on HH(R/A),.

In situation 6.2(E;), THHg(kr/ka) doesn’t have any multiplicative structure; instead, we
use the following ad-hoc definition as discussed in Remark 6.4:

ﬁlgv THH.(kR/kA) = hgl T>2% THH.(kR;O/kA) .

To define filtrations on TCg (kr/ka) and TPa(kr/k4) in either situation, we use a construction
due to Pstragowski and Raksit that will appear in forthcoming work [PR] and has already been
used in [AR24]. Let Sey := filX, S and Te, := fil%, S[S'] denote the even filtrations of S and S[S'],
respectively.(6-1) Following [AR24, Definition 2.11], we define the co-category of synthetic solid
condensed spectra to be SynSpg := Mods,, (FilSpg). Then Te, is a bicommutative bialgebra
in SynSp, and we can equip Modr,, (SynSp,) with the symmetric monoidal structure coming
from the coalgebra structure on Tey. By monoidality of the even filtration, fily, THHg(kr/ka)
is an object in Modr,, (SynSp,) (in case 6.2(Ey) it is even an Ej-algebra). We can then finally
define the desired filtrations as

fil%, 51 TCa (ki /ka) = (61}, THHa(kp/ka))"™
f1%, 51 TPa(kn/ka) = (AL, THHa(kn/ka))""

where the fixed points and Tate constructions (—)hTeV and (—)ﬂrev with respect to Te, are
defined as in [AR24, §2.3].(6'2)

(6Dt doesn’t matter whether they are defined in & la Hahn—Raksit—Wilson or a la Pstragowski or in the solid
setting. Indeed, by [Pst23, Theorem 7.5], the Hahn—Raksit—Wilson filtration is the completion of Pstragowski’s
filtration in either case (to apply this result, we use that S[S'] — S and S — MU are eff by [AR24, Corollary 2.36]
and [HRW22, Proposition 2.2.20]). But the filtrations are also exhaustive: For Pstragowski’s, this is always the
case, for the Hahn—-Raksit—Wilson filtration of connective E-rings it is an unpublished result of Burklund and
Krause. Finally, the comparison with the solid version is Corollary 5.8.

(6-2To avoid confusion with the genuine fixed points that will appear later, we deviate from the notation in
[AR24] and write (—)"Tev instead of (—)Tev.
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In situation 6.2(E;), the ad-hoc even filtration being given as a cosimplicial limit gives us
good control over it. We’ll now show a similar description in situation 6.2(Es).

6.9. Even resolutions. — Assume we're in situation 6.2(Eg). Let P := Z[z; | i € I] be
a polynomial ring with a surjection P — R. Since Sp := S[z; | i € I] is the free E;-ring on
commuting generators x;, we get an Ej-map Sp — kug. It is a folklore result that Sp admits
an even cell decomposition as an Es-ring; see Lemma C.1 for a proof. Since kg is even, the
map Sp — kg can be upgraded to an Eo-map.

Now let Z — P* denote the Cech nerve of Z — P and define S — Spe similarly. We
also let Z, — 151; and S, — Sp, denote the p-completed Cech nerves. The Cech nerve of
the augmentation THHg(Sp,) — Sp, is the cosimplicial diagram THHg(Sp, / Sﬁ};). If we base
change this diagram along the Ei-map THHa(Sp,) — THHa(kugr/kus), we get an augmented
cosimplicial diagram of left-THHg(kgr/k4)-modules

THHa(kr/ka) — THHa(kr/ka ®" Sps) .

In the case k = Z, this becomes the descent diagram HHa(R/A) — HHa(R/A®}, ]3},')

6.10. Remark. — Instead of the resolution from 6.9, we could also use the following: Let
Sp, = S[xil/p | i € I], let Sp — Sps be the Cech nerve of Sp — Sp_ and define

kRgo = (k‘R ®sp SPo'o);/;\ .

In this way we get resolutions of the same form in both cases 6.2(E;) and (E2). Most arguments
below would work for this resolution as well, but the one from 6.9 is more convenient for
Corollary 6.24 and for the global case in §7.4.

6.11. Proposition. — Assume we are in situation 6.2(Ey). Then the cosimplicial resolution
from 6.9 induces a canonical equivalence

filX, THHa(kp/ka) — lim 7>, THHa(kr/ka ®" Spe) .

To prove Proposition 6.11, we’ll send two technical lemmas in advance.

6.12. Lemma. — The augmentation maps THHe(Sp) — Sp and THHx(Sp,) — Sp, are solid
faithfully even flat in the sense of Definition 5.19. Moreover, Sp is nuclear as a THHg(Sp)-
module and Sp, is nuclear as a THHa(Sp,)-module.

Proof. The nuclearity assumptions follow from Lemma 5.16. We only show solid faithful even
flatness for THHg(Sp,) — Sp,; the argument for THHg(Sp) — Sp is similar (but easier). Let
E be a m4-even module over THHg(Sp,). We have a convergent spectral sequence

B2 -, (W*(E) R rmna(s7,) m(Sﬁp)) — (E ®imte (57, Sﬁp) .

To show that the right-hand side is even, so that Sp, will be solid even flat as a THHg (Sﬁp)—
module, it will be enough to show that the E2-page is concentrated in even bidegrees. The
calculation in the proof of [HRW22, Proposition 4.2.4] shows that

7+ THHa(SB,) = 7.(SB,) ®%, A7, (dz; | i € 1),
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is a graded p-completed exterior algebra over 7. (Sp,) on generators dx; in bidegree (1,0). Since
7« (F) is concentrated in even degrees, each dz; must act by 0, and so

7+ (E) ®7I?: THHa(S5,) ”*(Sﬁp) ~ 7y (E) ®IZ; FZP(JQ%' | i€ I)I/;\,

where FZP(UQQ:Z- | i eI )2 denotes a p-completed divided power algebra on generators in
bidegree (2,0). Thus, to show that the E2-page is concentrated in even bidegrees, we only
need to check that any p-completed direct sum (P Zp)g is solid even flat over Z,. For finite
direct sums this is obvious, for countable direct sums we can use the argument from the proof
of Lemma 5.16, and for uncountable direct sums we can reduce to the countable case since
p-completion commutes with wi-filtered colimits. This finishes the proof of evenness of the
E%-page, so that Sp, is indeed solid even flat over THHg(S5, ).

Since the unit component Z, — I'; (0%z; | i € I);, is a direct summand, we see that the
condensed homotopy groups

. (E @ wiitg(s5,) ofib(THHa(S5,) — Sﬁp))

are also computed by a spectral sequence with E2-page concentrated in even bidegrees. This
shows that cofib(THH&(Sp,) — Sp,) is also solid even flat over THHg(Sp,) and we're done. [

6.13. Lemma. — There exists a natural convergent spectral sequence
E;, = H, (HHa(R/A) ®F® m25(k)) = mp1s THHu(kp/ka) -

Proof. The argument is the same as in [HRW22, Proposition 4.2.4] except for different grading
conventions. Consider the filtered spectrum THHg(7>4(kr)/7>+(k4)). This is an exhaustive
and complete (due to increasing connectivity) filtration on THHg(kgr/k4) and so it determines
a convergent spectral sequence.

It remains to check that the E?-page has the desired form. The associated graded
of the filtered spectrum above is THHg(X*7,(kr)/E*m4(ka)). Since m.(ka) and 7y (kr)
are concentrated in even graded degrees and Z-linear, the shearing functor X* is symmet-
ric monoidal and commutes with THH. The associated graded can thus be rewritten as
Y* HHg (74 (kR)/ms(ka)) ~ X* HHg(R/A) @™ 7. (k). This yields the desired E2-page. O

Proof of Proposition 6.11. Using the spectral sequence from Lemma 6.13 (applied to S 4 @" Sﬁ;
instead of S4) and our asssumption that A ®7 ]3p — R is p-quasi-lci and surjective, we see that
THHa(kr/ka ®" Sps) is even. It follows by the solid analogue of [Pst23, Lemma 2.36] that the
solid even filtration (taken in left modules over THHg(kgr/k4)) is the double speed Whitehead
filtration

fily, THHg (kr/ka @" Sps) ~ T>2, THHa(kr/ka ®" Sps) .

Using the flat descent result from Theorem 5.21, which applies thanks to Lemmas 6.12
and 5.16(b), we find that

filX, THHg(kg/ka) — h/gl T>0. THHa (kr/ka ®" SPs )
becomes an equivalence upon completion of the filtrations. Since the left-hand side is exhaustive

whereas the right-hand side is complete, to finish the proof of the THH case, it will be enough
to check that the right-hand side is also exhaustive.
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In other words, we must show THHa(kr/ka) ~ lima THHa(kr/ka ®" Sps). By the same
argument as in [BMS19, Corollary 3.4(2)], it’s enough to show instead

THHe(kr/ka) @F T<2sk — h/in (THH.(k:R/k:A ®" Sps) @ T@sk:)

for all s > 0. This can be checked on associated gradeds in s. So we must show that
HHa(R/A) ®F mas(k) ~ lima (HHa(R/A ®Y ]3p’) ®7Y mas(k)) for all s > 0. By our assumptions
on R and A, the HKR filtrations filjjxgr HHa(R/A) and filijxg HHa(R/A ®Y ]3p’) increase in
connectivity as * — oo. They are therefore still complete after — ®7} mas(k). So we may also
pass to the associated graded of the HKR filtration. It remains to show that

/\ LR/A ®IZ. mas(k) — hgl (/\ LR/A®ZP‘ ®IZ. WQS(k)>

is an equivalence for all n,s > 0 (here the cotangent complexes are implicitly p-completed). By
descent for the cotangent complex, this would be true without — ®Ii' mas(k) on either side, so
we must check that — ®]Z' mos(k) commutes with the cosimplicial limit. Since R is p-quasi-lci
over A and P — R is surjective, each A" Lg/4g, pe is concentrated in homological degree n.
Writing A" Lr/a@,pi =~ X"Li, it follows that the cosimplicial limit lima A" Lg/ag, pe is given
by the unnormalised Moore complex L, ~ (--- « Lj « Lyg), sitting in homological degrees
(—o0,n]. Now since mos(k) is p-torsion free and discrete by our assumptions on k, we see that
L; ®IZ' mos(k) ~ L; ®F mas(k) is static. It follows that

L, ®IZ. mas(k) ~ ( S (Ll ®y 7T28(k)) — (LU ®7 71'23(]{:))> .
So in this case it is indeed true that — @™ ma5(k) commutes with the cosimplicial limit. This
finishes the proof. O

6.14. Corollary. — In both situations 6.2(E,) and 6.2(Ez), fils, THHa(kr/ka) is an exhaus-
tive complete filtration on THHg(kr/ka).

Proof. In case 6.2(E;) completeness is clear and exhaustiveness follows from the same argument
as in the proof of Proposition 6.11 above. In case 6.2(Ey) exhaustiveness is automatic and
completeness follows from Proposition 6.11. O

6.15. Corollary. — Put (T<2sk)a = (Sa ® 7<2:k);, and (T<2sk)r = (Sr ® T<2sk);, for all

s =2 0. In both situations 6.2(E;) and 6.2(Ez), consider the bifiltered object given by
fil* fil}, THHa(kgr/ka) = fil}, THHa((7<2:k) r/(T<25k) ) -

(a) We have fil;, THHg(kr/ka) ~ lims>o fil* fily, THHa(kr/ka).
(b) If filjjkg denotes the usual HKR filtration, then for all s > 0,

gr® fil}, THHa(kp/ka) ~ (A& HHa(R/A)) @ 225 o, (k) .

Proof. We explain the argument in the context of 6.2(lE;). The other case is analogous, using
the cosimplicial resolution from Proposition 6.11 instead. Put (7<2sk)ge, = (Sre, ® ngsk‘)l/)\
and consider the cosimplicial bifiltered object

fil®* 720, THHa(kgs_/ka) = To2. THHa ((T<25k) re, /(T<25k) A) -
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Then clearly 7>o, THHg(kRge_ /ka) ~ limg>ofil° 750, THHa(kRs_ /ka). Applying limp on both
sides already shows (a). To prove (b), observe that the functor 7>9,(—) is non-exact in general,
but nevertheless it preserves the cofibre sequence

HHg(R?, /A) @Y% 2519, (k) — THHa(kpse_ /ka) ®F 7<2sk — THHga(kpe_/ka) ®f T<o(s—1)k -

Indeed, consider the spectral sequence(®?) from Lemma 6.13 with k replaced by 7<,(k) or
TQ(S,l)(k). Our assumptions on RS, guarantee that both E2-pages are concentrated in even
bidegrees and so the spectral sequences collapse. A closer examination of the induced map on
E2-pages then shows that 752,(—) indeed preserves the cofibre sequence above.

Using this observation, we conclude that the graded pieces of fil* 79, THHg(kgs_/k4) are

given by(64)

o1® 759, THHa(kps_/ka) = S50, (HH.(R;O /A) QL EQSWQS(k)) .

The right-hand side agrees with 7-9(,_) HHa(R23,/A) R Y25H (k) since mos (k) was assumed
to be discrete and p-torsion free. Now the HKR filtration can be computed as the cosimplicial
limit filfjxg HHa(R/A) ~ limp 72, HHa(R%,/A). Thus, to prove (b), it remains to check that
— ®Ii' mos(k) commutes with the cosimplicial limit. Since the HKR filtration stays complete
after — @™ mo,(k) (due to increasing connectivity), we may pass to the associated graded. This
reduces us to an assertion that was checked in the proof of Proposition 6.11 above. 0

6.16. Corollary. — In situation 6.2(IE;), the given cosimplicial resolution induces equivalences
ﬁlZV,hsl TC._ (kR/kA) S hin T>2% TC._ (k‘R;O/k'A) s

fil*

ev,t

o1 TPa(kr/ka) — lim 72, TPu(krs, /ka) -

If we are in situation 6.2(Es), the cosimplicial resolution from 6.9 induces equivalences
ﬁlzv,hsl TCgq (kr/ka) = 1%117’22* TC, (k‘R/k‘A ™ Sﬁ}:) ,

fil%, 151 TPa(kr/ka) — lim s, TPa(kn/ka ®® Sp2) -

Proof. To see the assertion for TC™ in both cases, just observe that (—)"Tev commutes with the
cosimplicial limit and that (7so, THHg(—))"Tev ~ 755, TCq (—) holds in this case by [AR24,
Lemma 2.75(vi)]. To show the same for TP, we need to commute (—)p1,, ~ Sey ®T_, — past
the cosimplicial limit.

Let us explain how to do this in case 6.2(E;); the other case is analogous. We use the
bifiltration from Corollary 6.15. By Corollary 6.15(b), cofib(fil® fil§, — fil%,) is * + s-connective.
Using Corollary 6.15(a) follows that (fil},)nr., ~ (limgso fil® fil},)pr., >~ limgso(fil® fil}, )pr., . So
we may pass to the associated graded in s-direction and thus, using Corollary 6.15(b) again, it
will be enough to check

(biscr HHa(R/A) @8 7 (1)) = lim (oo, HHa (2 /4) @8 74 (K) 15, )

ev

(6-9n the construction of the spectral sequence in Lemma 6.13 we used the Postnikov filtration 7k, while here
we're working with the double speed Whitehead filtration 7<2.k. We could have used the Postnikov filtration as
well to construct a similar spectral sequence as in Lemma 6.13. But we still use the one from Lemma 6.13.

6D Note that gr® is defined as a cofibre, not a fibre. Hence the extra X.
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Now both sides are Z-linear. By [AR24, Proposition 2.54], the construction (—)pr,, agrees
with the orbits with respect to Raksit’s filtered circle [Rak21, Notation 6.3.2]. Combining
this observation with [BMS19, Corollary 3.4(1)] (plus an easy argument as in the proof of
Proposition 6.11 to deal with the extra —®3®mos(k)), we conclude that both sides are exhaustive
filtrations on (HHg(R/A) %™ 72 (k))pgt-

The equivalence can now be checked on associated gradeds. By [Rak21, Proposition 6.3.3],
the n'™ graded piece of (filfjxy HHa(R/A) ®@%® mas(k))nr,, Will be an iterated extension of
gt HHa(R/A) @® mo5(k) for i = 0,1,...,n. A similar argument applies on the right-hand
side. So we can finally deduce the desired equivalence from Proposition 6.11. ]

§6.3. Base change

We continue to fix a k as specified at the beginning of §6.2. As a consequence of Proposition 6.11,
we show that the even filtrations constructed in 6.8 satisfy all expected base change properties.

6.17. Corollary. — Let k — | be any map of Eq-1ing spectra where [ is also connective,
even, and p-torsion free in every homotopical degree. Letly =1 Q™S4 and lgp =1 Q" Sr. Let
furthermore key = T2,k and ley == T>2,l. Then the canonical base change morphism is an
equivalence

fily, THHa(kgr/ka) ®F,, lov — fily, THHa(lg/l4) .

Proof. Using Corollary 6.14, we see that both sides are exhaustive filtrations on THHga(lg/l4).
It is thus enough to check the equivalence on associated gradeds. Let us now assume we’re in
case 6.2(Ey); the 6.2(Ez) is analogous using the resolution from Proposition 6.11. Using the spec-
tral sequence from Lemma 6.13, we see that the cosimplicial graded object mo, THHa(krs_ /ka)
has a finite filtration(6-5)
satisfies

in every graded degree-wise finite filtration whose associated graded

gr* To(utx) THHa(kRe_ /ka) ~ mo. HHa (RS, /A) @7 724 (k)

as cosimplicial bigraded objects. Applying lima (which commutes with — ®%® 72, (k) by the
argument in the proof of Proposition 6.11), we find that gr}, THHg(kr/k4) has a finite filtration
in every graded degree in such a way that the associated graded satisfies

gr* gr T THHa(kRr/ka) ~ griicr HHa(R/A) ®% Y219, (k)

as bigraded objects. This equivalence is compatible with gr* ke, ~ X2*mo, (k), since the latter
can be obtained from the spectral sequence for THHg(k/k). Using the same for I, the desired
equivalence now follows from the trivial observation

(erfikn HHa(R/A) ®F 52 mas (k) @y, 1) E- T4 (1) ~ griikn HHa(R/A) @F S m2 (1),
so we're done. O

6.18. Corollary. — Let k — [ be as in Corollary 6.17 and put k‘gfl = 720, (k"") as well as
l,?{,sl = T;Q*(lhsl). Let also t € W_Q(khsl) be a complex orientation of k. We regard t as sitting
in homotopical degree —2 and filtration degree —1 of ké‘fl Then the canonical base change
morphism is an equivalence

A
(ﬁlzv,hsl TCq (kr/ka) ®st51 lgfl)t — Al ps1 TCq (IR/14) -

(6-9)This is not the filtration from Corollary 6.15.
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Proof. Using Corollary 6.16, we see that both sides are t-complete. Upon reduction modulo t,
we get the equivalence from Corollary 6.17. O

A similar base change equivalence exists for fil,, ;51 TPa(kr/k4), but one has to be a little
careful about completions. One way to formulate the result would be via Corollary 6.18
combined with the following:

6.19. Corollary. — Let k'S' = 155, (k™"). We have a canonical equivalence

ﬁl:v,hsl TC._ (kR/kA) ®Zg\§1 kégl — ﬁl;v,tsl TPl(kR/kA) .

Proof. Using Corollary 6.16, we see that both sides are exhaustive filtrations on TPg(kr/k4).
It is thus enough to check the equivalence on associated gradeds. Using Corollary 6.16, we find
that

gty nst TCu (kr/ka) — g1l 151 TPu(kr/ka)

is an equivalence in negative graded degrees and that the right-hand side is periodic. Since
— ®gr* phs! gre ké;,ql will also make the left-hand side periodic, we’re done. O

§6.4. Comparison of even filtrations

As another consequence of Proposition 6.11, we can show that the even filtrations from 6.8
agree with the those defined by [BMS19; HRW22; Pst23].

6.20. Even filtrations on ordinary Hochschild homology. — In the case k = Z, the
constructions in 6.8 yield filtrations

ﬁlzv HH.(R/A) P} ﬁl:v’hsl HC._ (R/A) P} and ﬁl:V,tsl HP.(R/A) .

But HHa(R/A) ~ HH(R/A), is a p-complete Eq-ring spectrum and so we can also consider
the Hahn—Raksit—Wilson even filtrations
filfirw v HH(R/ A);\ » iR ev,nst HCT (R/ A);/a\ ,and filjgy oy, 51 HP(R/ A);\'

These can be regarded as filtrations on HHg(R/A), HCg (R/A), and HPg(R/A) in a natural way.
For HH, we simply regard p-complete spectra as solid condensed spectra per Convention 6.6
and use Lemma 6.7. For HC™ and HP, we must be a little more careful: If HH(R/A) — E is
an S'-equivariant Eo.-map into an even p-complete ring spectrum with bounded p>-torsion,
we regard EhS' as a solid condensed spectrum by performing both the p-completion and the
homotopy fixed points (—)"* "in Spa- We then regard

- ; hS!
filfirw-ev,nst HCT(R/A)) ~ HH(}%/IE)HE T (E™) ;

as a solid condensed spectrum by also performing the limit in Sp,. In the same way we can
regard filfpy oy 151 HP(R/A), as a filtered solid condensed spectrum.

If F is even, then the perfect even filtration of F is the double-speed Whitehead filtration
Ts2.(E) by [Pst23, Lemma 2.36] and its solid analogue. Moreover, (7s2,(E))"Tev ~ 150, (EMS")
by [AR24, Lemma 2.75(vi)] and similarly (7s2,(E))!Tev ~ 159, (E®S"). It follows that there’s a
canonical map fil}, — filfjpw_cy i each case.
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6.21. Corollary. — Via the comparison maps constructed in 6.20 above, the filtrations
fil;, HHa(R/A), fI5, 60 HCG(R/A), and S}, o1 HPa(R/A),
agree with the Hahn—Raksit—-Wilson/HKR even filtrations
filurw-ev HH(R/A), ,  filyrw-ev,nst HCT(R/A),,  and  filgpw-ev,est HP(R/A)} -

Proof. The solid even filtration fil}, HHa(R/A) can be computed by a certain cosimplicial
resolution (in case 6.2(E;) by definition, in case 6.2(Ez) by Proposition 6.11). The same
resolutions also compute the even filtration of Hahn—Raksit—Wilson. The same argument also
works for HCy and HPg thanks to Corollary 6.16. O

6.22. Remark. — For later use, let us point out the following consequence: Using Corol-
lary 6.18 for ku — ku® Q ~ Q[S] and Z — Q|S], we deduce that

* - ] A * - ] hst\"
(ﬁlev,hS1 TCl (kuR/kuA) ® Q)t = <ﬁlev,h5'1 HCI (R/A) ®ZQ‘§1 Q[ﬁ]ev )t :

Moreover, the filtration on the right-hand side is the usual Hahn—Raksit—Wilson/HKR even
filtration. This will give us good control over the constructions in §7 after rationalisation.

The filtration on TC~(S/Saq — 1]])[1/1‘]@, -1
graded computes prismatic/g-de Rham cohomology, is also recovered by the solid even filtration.

) from Proposition A.17, whose associated

6.23. Corollary. — If S is any p-complete p-quasi-lci A[(p]-algebra of bounded p™-torsion,
then there’s a canonical filtered Eoo-equivalence

Tev ~

A ~ _ A
(ﬁlgv THHg (S/SA [[q - 1]]) [%]p) - ﬁl;[Rerv,hSl (TC (S/SA[[q - 1]]) [%](p,q—l))
(where the right-hand side is regarded as a filtered solid condensed spectrum in the way described
in 6.20 above).

Proof. Let us first construct the canonical map in question. For every S'-equivariant Eo.-map
THH(S/Salq — 1])[1/u] — E into a p-complete even ring spectrum, we get a canonical filtered
Eoo-map

Tev

(f1z, THHa(S/Sala — 1)[2])) 7 — (o2 B)' ™ = ron, (BM)

using [AR24, Lemma 2.75(vi)]. This induces the desired comparison map. To prove that
we get an equivalence, we can use the same arguments as before: Choose a polynomial ring
P =Z|xz; | i € I] with a surjection P — S and then show that both sides are computed by the

cosimplicial resolution 7>, TCq (S/(Sa ®" Sps)[a — 1])[1/u], 4 1)- O

Finally, we show that in the case k = ku our solid even filtration on THHg(kupr/ku,) agrees
with the p-completion of Pstragowski’s perfect even filtration filj_,, THH(kug/ku4). This won'’t
be needed in the rest of the text, but it is perhaps a nice sanity check.

6.24. Corollary. — The canonical map induced by 5.7 is an equivalence

(filf_, THH(kup/ku A))Q =, fil*, THHg (kug /kuy) .

106


https://arxiv.org/pdf/2411.19929.pdf#theorem.2.75

§6.4. COMPARISON OF EVEN FILTRATIONS

Proof. Let T := THH(kug/kua) for short. Since THH(Sp) — Sp is eff, we can compute
filp_, T using descent; more precisely, using the uncondensed version of Theorem 5.21. We find
that

ﬁl;—ev/T T — 112“ filp ey (T ®run(sp) THH(SP/Spe )

is an equivalence up to completing the filtrations on both sides. Let us now study the right-hand
side. Fix some cosimplicial degree ¢ and put M = THH(kugr/kug ® Sp:) for short. We claim
that there is a canonical equivalence

—~

(ﬁljlg—ev M);\ — ﬁlf’—ev MP = 7_22*(MP) .
If we can show this, we’re done. Indeed, by comparison with the resolution from Proposi-
tion 6.11, we find that (filp_., THH(kup/ku A));\ — fil5, THHg(kug/ku4) is an equivalence up
to completion. But the filtrations on both sides are exhaustive and the right-hand side is
complete by Proposition 6.11 again, and so the map must be an equivalence.

To show the claim, first observe that the homotopy groups of M\p /B ~HH(R/A®z P"))
are concentrated in even degrees and p-completely flat over R, where the R-module structure
on Ty (M\p /) comes from the left-T-module structure on M. We would like to show that the
same conclusion is true for 7, (Homp(Q, ]\/471,) /) for any perfect even T-module @; however,
the seemingly obvious argument doesn’t quite work, since T is only E; and so there’s no
left-T-module structure on Homp(—, —).

To fix this, observe that T'®rps,) Sp has a right-Sp-module structure commuting with
the left-T-module structure. Restricting to mo(Sp) = P, we get a right homotopy action of P
on T ®runu(s,) Sp- Since mo THH(Sp) = P as well, this action agrees with the right action of P
on T via P - R = 7y(T'). In particular, the right homotopy action by P factors through R. An
analogous right homotopy action of R can be constructed on M ~ T @ty (s,) S%THH(SP )(Hl),
by picking our favourite tensor factor.

This explains how 7 Homp(—, ]\//\[p) can be equipped with an R-module structure. With
this R-module structure, it is still true that the homotopy groups ﬂ*(M\p /) are concentrated
in even degrees and are p-completely flat R-modules, because HH(R/A ®; P?) is commutative.
This allows us to deduce that the homotopy groups 7, (Homp(Q, M\p) /) are also concetrated
in even degrees and p-completely flat over R for any perfect even left T-module (). Since M
is bounded below, we deduce that also Homp(Q, M\p) is even and its homotopy groups are
p-completely flat R-modules. In particular, this is true for ]\//.TP itself. By [BMS19, Lemma 4.7],
the p>-torsion in 7o, Homp(Q, ]\/Zp) is therefore bounded. In fact, there’s a uniform bound N
that works for all @), since we can use the same bound as for R.

Let us use this to analyse the canonical map

8p-ov Mp — limerp o, (Mp/p®)

By definition, (grp._, M\p) /p® is given by the sections over T of the sheafification of the spectra-
valued presheaf ¥.2* (1o, Homp(—, M\p)) /p® on the perfect even site Perfey(7"). In homotopical
degree 2#, this presheaf agrees with ¥2* 9, Homy(—, ]\//.71, /p®), but in homotopical degree 2% + 1
it has an extra torsion component. However, if we go from o + N to «, then the transition
map will vanish on the torsion component, because NN is a uniform bound for the p°°-torsion.
Thus, in the limit we get an equivalence limq>q(grp. o, M\p) /p% ~ limg> grl"sfev(]/\ip /p*). The
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left-hand side agrees with WQ*(M\p) since M\p is already even and p-complete. We conclude that
Tona(My) = filf oy My, — lim filf o, (M, /p")

is an equivalence up to completion of the filtration on the right-hand side.
Since THH(Sp) — Sp is eff, M will be even flat, hence homologically even over T'. Thus

[Pst23, Remark 2.35] shows fills ., M ~ I} "/? M. By definition, (I}

P-ev
the sections over T' of the sheafification of the spectra-valued presheaf

M)/p® is given by

coﬁb(po‘: T>25—1 Homp(—, M) — 7>9,_1 Homp(—, M))

on Perfq, (7). In homotopical degrees > 2x, this presheaf agrees with -9, Homp(—, M /p®),
but in homotopical degree 2x — 1 there might be an additional component that injects into
»2*~ 1y, 1 Homp(—, M/p®). However, the transition maps from o+ N to a will vanish on this
additional component by our uniform p>-torsion bound, so in the limit we get an equivalence

(e M)y > e (Bl e, M)/p% > L il o, (M /7).

At this point we’ve shown that (filp_ ., M )]/)\ — 7'22*(]\710) is an equivalence up to completion.
But both sides are already complete: The right-hand side by inspection, the left-hand side by
[Pst23, Theorem 8.3(2)]. So we're done. O

6.25. Remark. — The argument can be adapted to any even ring spectrum k such that
(k) is a graded polynomial ring over Z with finitely many generators in each given degree.
In particular, it works for kK = MU. We don’t know to what extent Corollary 6.24 is true
in complete generality. At the very least, one would need some finiteness assumption on k;
otherwise k4 and kr won’t be p-complete in general.
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§7. g-de Rham cohomology and TC™ over ku
In this section we’ll finally formulate and prove the precise relationship between the even
filtration on TC™ (kur/kus) and the g-de Rham complex ¢g-dRp /4.

7.1. Convention — To avoid excessive use of completions, throughout §7, all (¢-)de Rham
complexes and cotangent complexes relative to a p-complete ring will be implicitly p-completed.

§7.1. The p-complete comparison (case p > 2)

We fix a prime p > 2. We'll also continue to fix rings A and R satisfying the assumptions
from 6.1 and 6.2.

Our main tool will be a striking result of Devalapurkar. To formulate this result, let us
regard Zy,[(p] as a Sp[q—1]-algebra via ¢ — (. We let S* act on THH(Z,[(p]/S,[g—1])p in the
usual way and let ZX act via A.20. We let S* act on ku'“? via the residual S' ~ S'/C)-action
and let Z; act via the Adams operations on kul/,\.

7.2. Theorem (Devalapurkar [Dev25, Theorem 6.4.1]). — For primes p > 2, there exists an
St x Z; -equivariant equivalence of Exo-ring spectra

THH(Z,[C,]/Splg — 1]]);\ = 750 (kutcp) )
Moreover, this equivalence fits into a commutative diagram of S*-equivariant Eo.-algebras
THH(Z,[(p]/Splg — 11);, —— 70(ku’)

T

THH(F,) T50(ZICP)

where the bottom row is the equivalence from [NS18, Corollary IV.4.13].

7.3. Remark. — Theorem 7.2 was conjectured for all p by Lurie and Nikolaus. By an
unpublished result of Nikolaus, Theorem 7.2 is true as an S'-equivariant Ei-equivalence for
all p (see Theorem 7.17 below). As far as the author is aware, constructing an S!-equivariant
Eo-equivalence case p = 2 is still open.

7.4. Remark. — If we also let ¢ € mo(ku"® 1) = ku®(BS') denote the class corresponding to
the standard representation of S' on C, then the map from Theorem 7.2 sends ¢ — q.

Moreover, there’s a unique complex orientation ¢ € 7r_2(kuhs 1) satisfying ¢ — 1 = t. In the
following, we’ll frequently use 7y (ku'® 1) = Z|[B][t], and we’ll identify this graded Z[t]-algebra
with the filtered ring (¢ — 1)*Z[q — 1], where (¢ — 1) in degree 1 corresponds to /3.

7.5. The comparison map I. — We import the equivalence from Theorem 7.2 into the
solid world via 6.6. Using this equivalence, we can construct an S'-equivariant map of solid
condensed spectra as follows:

(THHa(Sr/Sa) @8, 4, Sa) ®" THHa(Z,[(p]/Spla — 1]) —— THHa(Sr/S 2)1% @ ku'Cr

| |

THHa ((R® 5 A)p[G]/Salg = 1]) ----------------> - THHa(kug/kuy)'
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The map in the top row is given by ¢, /s, ®" (7.2), where ¢, /s, denotes the relative cyclotomic
Frobenius on THH(—/S4). The right vertical arrow comes from lax symmetric monoidality
of (). The left vertical arrow is an equivalence since THH is symmetric monoidal. So the
dashed bottom horizontal arrow exists.

Now THHg(Z,[¢p]/Spllq—1]) — ku'“? sends the generator u € m to a unit. Indeed, this can
be checked modulo (¢ —1) = ft, so we reduce to the same question for THH(F,) — Z;Cp . Under
the equivalence ZZCP ~ THH(F,)!“?, this map becomes the cyclotomic Frobenius for THH(F,,),
which is well-known to send u to a unit. The diagram above thus induces an S!'-equivariant
map

Yr: THHa(R®[¢,]/Salg — 1)[1] — THHa(kug/ku,)<r

u

where R®) .= (R ®ﬁ,¢ A); as in A.19. From tp, we can now construct a filtered map

Wi A3, TCq (RP[G)/Sala — 11)[4], 1) — At TPalkug/kua),

where the filtration on the left-hand side agrees with the Bhatt—Morrow—Scholze filtration, the
Hahn-Raksit-Wilson, and the Pstragowski-Raksit even filtration. To construct 1%, we have to
distinguish the two cases:

(E1) In situation 6.2(IE;), we construct ¢% as the limit

_ e 7.5) .

lim 720 TCq (R%) P [G:)/Sala — ) [A]G, oy LGN lip 7o, TPa(Kus, /Kii)
The left-hand side is filX, TCq (R [(,]/Sallq — 1])[1/ u]a2 g—1) Py quasi-syntomic descent
for the Bhatt—-Morrow—Scholze even filtration and the right-hand side is filey TPg(kug/ku,)
by definition.

(E2) In situation 6.2(Es), we construct 1% by applying (fil%,(—))»T/C»)

and composing with a certain canonical map

v to the map from 7.5

M(T/Cp)ev

(15, THHq(kup/kua)'?) — fil}, ;1 TPa(kup/kua),

that will be constructed in 7.7 below.

7.6. Even filtrations and the Tate construction. — To construct such a map, let more
generally T be a complex orientable solid E;-ring spectrum and let M be an S'-equivariant
left-T-module such that M"? is solid homologically even over T"C». Let TS b= filx, 75 '
and Tet;?l = fil%, T ", First observe that we have an equivalence
TE @ Bl jncy MM =5 615, o, MO

Indeed, choose a complex orientation t € m_o(T"5"). It’s well-known that TS ~ ThS'[¢=1]
and M*C» ~ M"C»[t~1]. In particular, we see that both sides above are exhaustive filtrations
on M'®» and so it’s enough to check the equivalence on graded pieces. Since t sits in even
degree —2, if we take any m.-even envelope over ThS" or T"Cr and invert t, we get a my-even
envelope over Tt 'or T*Cr | respectively. Since the associated graded of the even filtration can

be computed by successively taking m.-even envelopes (see [Pst23, §5]; the solid analogue is
discussed in 5.6), the claimed equivalence follows.
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Now let (—)"“rev and (—)!“rev denote the synthetic fixed point and Tate constructions
from [AR24, Definition 2.61]. We have canonical maps

B, ey MPCr — (83, 1) P

Té{?l ®;£,51 (ﬁl:v /T M) hCp,ev _ (ﬁlgv T M)ther '

Composing these with the equivalence above, we get a canonical map

LY, pec, MICr — (812, 0 M)

7.7. The comparison map II. — To construct the map that we need in 7.5(E3), we apply
(—)MT/Cplev to the general construction from 7.6, where (—)MT/Cp)ev denotes fixed points in
the sense of [AR24, §2.3] with respect to the even filtration on S[S*/C,]. It then remains to
check that the canonical map

~ BT/ Cpev
fil%, TPa(kup/ku) —— <(ﬁlgv THH, (kupg/ku A))tcp,cv) »

is an equivalence. To see this, we’ll use the cosimplicial resolution from Proposition 6.11. A
similar argument as in the proof of Corollary 6.16 can be used to verify that (—)!“»ev commutes
with the cosimplicial limit. We can thus reduce to the case where THHg(kup/kua) is already
even. The desired result then follows from [AR24, Lemma 2.75(vi)], its analogue for (—)nc, ..,

and the classical fact that (—)*" ~ ((=)!%»)A(5"/C) holds on bounded below p-complete spectra
by [NS18, Lemma I1.4.2].

7.8. The g-Hodge filtration. — We can pass to the 0 graded piece of our filtered
comparison map 9% and use Proposition A.17 to obtain a map

U ¢-dRpja — g, ;1 TPa(kug/kua) = gre, g1 TCq (kug/kuy) .

Now gr¥ , 1 TCq (kugr/kua) is a graded module over gr¥ , o (kuhSl) ~ 22*7r2*(kuh51). Hence
the double shearing ¥~ 2* grhy, nst TCa (kug/kua) is a graded module over Zy[8][t], with 3| = 2,

t| = —2.(") We can regard t as a filtration parameter, so that the graded Z,[3][t]-module
N2 grk o1 TCq (kug/kuy) defines a filtration on grd , o TCy (kug/kus). We define the
q-Hodge filtration as the pullback

15 g - dRppa —— 277 gl o TCx (ke /kua)

| - |

q-dRp/4 grgwhsl TC, (kugr/kua)

The name q-Hodge filtration is justified by the fact that fil} 4, ¢-dR g/ 4 is indeed a g-deformation
of the Hodge filtration on dRpg,4. This is part of the main result of this subsection, which
we can now formulate and prove. Here we identify the graded Z[t]-algebra Z,[S][t] with the
(g — 1)-adic filtration (¢ — 1)*Z,[q — 1] as explained in Remark 7.4.

(71 Also note that since everything is Z-linear, the double shearing functor £2* is symmetric monoidal.
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7.9. Theorem. — Let p > 2 be a prime and let A and R satisfy the assumptions from 6.1
and 6.2. Then the map ¢% from 7.7 induces an equivalence of graded Z,|B][t]-modules

fil} Hag q_d/RR/A — X grk e TCq (kup/kua),

where the left-hand side denotes the completion of the q-Hodge filtration fil} 4, ¢-dRp/a from
7.8. Moreover, modulo B and after rationalisation, we get equivalences

il tag -AR r/a O, (5171 Zp[t] — filiag AR /A ,

* A ~ *
fily nag q-dRR/A[%](q,l) — filffg, 1) ARR/A[5][a — 1]

with the usual Hodge filtration and the combined Hodge and (q — 1)-adic filtration, respectively.

7.10. Remark. — In case 6.2(Ey), all equivalences in Theorem 7.9 are canonically E;-
monoidal. In fact, if Sg can be equipped with an [E,-algebra structure in S 4-modules for any
2 < n < oo, then all equivalences will be canonically E,_;-monoidal. To see this, observe that
for any T € Algg,(Mods, (Spy)), We can use the same construction as in 7.5 to produce an
Sl-equivariant map
THHa (T ®8, 4,0, S4) ®" Zp[¢)/Sala — 1]) ;] — THHa(ku®" T/kus)"";

these maps assemble into a symmetric monoidal transformation of symmetric monoidal functors
Algg, (Modsg, (Spe)) — Algg, (Sp.BSl). If Sg admits an E,-algebra structure in S 4-modules, then
Sk € Algg, ,(Algg,(Mods, (Spe))) and so v is S'-equivariantly E,_s as a map in Algg, (Spa),
hence S'-equivariantly E,_; as a map in Sp,. The other parts of the construction clearly
preserve E,,_j-monoidality.

If we are in case 6.2(E;), then a priori we only get Egp-monoidal structures. However, we
can a posteriori upgrade everything from Eg to Eo, by applying Theorem 7.18 below to the
given resolution R — RZ.

The main step in the proof of Theorem 7.9 is to describe % modulo (¢ — 1).

7.11. Lemma. — The reduction modulo (¢ — 1) = Bt of the map w% from 7.7 agrees with the
canonical Hodge completion map

dRR/A — (TRR/A >~ grgv’tsl HP.(R/A) .

Proof (initial reduction). In the following, we’ll assume we're in case 6.2(Ey). In case 6.2(E,),
we repeat the arguments below instead for each term in the cosimplicial resolution R?, with
the even filtration replaced by 7>24.

Put R= R ®IZP F, and RP) = E@i s A for short. If we reduce the diagram from 7.5
modulo (¢ — 1) = t, we obtain the following commutative diagram:

THHa(Sr/S4) @ Sa) ®" THH(F,) —— THHa(Sg/Sa)'» @" Z{Cr
Asbrey P

. |

THHa (R?)/S4) ----------mmmm-mmo-- - HHa(R/4)'
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The top row is induced by the equivalence THH(F),) ~ T}O(Z;Cp ) from [NS18, Corollary IV.4.13]
and the relative cyclotomic Frobenius ¢,/s, for THH(—/S4). After passing to homotopy S L
fixed points, the bottom row of this diagram factors induces a map

UF TCq (RW)/S4)[£]) — HPa(R/A).

The key observation is now that the map E}}%Sl can be constructed without the choice of a
spherical lift Sg. Let us interrupt the proof for the moment and discuss how this works. [

7.12. Constructing E’}’%Sl without a spherical lift. — Let us first assume that A = W(k)
is the ring of Witt vectors over a perfect field of characteristic p. In this case, Petrov and
Vologodsky [PV23] construct an equivalence TPg(R/S4) ~ HPg(R/A) without choosing any
spherical lift Sp. We claim that this equivalence holds, in fact, for arbitrary A, and that the
composition with the relative cyclotomic Frobenius

Oh%,: TCq (RW/S4)[1]) — TP(R/S4)

agrees with the map W}ES ', Both of these claims follow from work of Devalapurkar and Raksit
[DR25]: They give a new proof of the equivalence TPg(R/S4) ~ HPg(R/A), which works for
arbitrary A, and from their proof it will be apparent that the maps indeed coincide. The new
proof is based on the following result:

7.13. Theorem (Devalapurkar-Raksit [DR25]). — Let j := 7>0(Sg(1)) be the connective
cover of the K(1)-local sphere.

(a) There is an equivalence THH(Z,)) ~ 75(5'“7)

P as well as a commutative diagram

j— THH(Z,,)Q

J /A l

7, — THH(F,)

of St-equivariant (in fact, cyclotomic) Eoo-rings. Moreover, there exists a dashed diagonal
arrow that makes the upper left but not the lower right triangle commute S*-equivariantly.

(b) The horizontal maps j — THH(ZP)Q and Z, — THH(F,) are S*-nilpotent, that is, for any
spectrum X with S'-action the maps X ®j — X®THH(Zp)1/D\ and X ®7Z, — X @THH(IF,)

. 1
become equivalences upon (—)*" .

The new proof of the equivalence TPg(R/S4) ~ HPg(R/A) in [DR25, §5] then proceeds as
follows: By Theorem 7.13(a) we have an S'-equivariant commutative diagram

1

(218

1 v

(=)tﬂ
~\tS
THHa(R/S4) ®® THH(F,) = THH(R/S4) sttt (z,) THH(F,)
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By Theorem 7.13(b), the horizontal arrows and the left vertical arrow become equivalences
after applying (—)*° ".(7:2) Hence after (—)t° " the dashed vertical arrow exists and it induces
the desired equivalence HPg(R/A) ~ TPg(R/S4).

Using THHa(R/S4) ~ THHa(Sgr/S4)®" THHa(Z,), it is also apparent that the composition
of this equivalence with the relative cyclotomic Frobenius ¢Z7q§1A agrees with the map E}}%S 1, as
we’ve claimed above.

Proof of Lemma 7.11 (end of proof). The proof can now be finished as follows: Let S be a
p-torsion free p-complete p-quasi-lci A-algebra, put S = S/p and Sk .= g ®I;L o A. Via
quasi-syntomic descent as in the proof of Proposition A.17, we can define a Bhatt—Morrow—
Scholze-style even filtration filgyrg o, p51 TCa (S®) /S A)[1/ uly together with a map

@Ef ﬁlEMSfev,hsl TCq (g(p)/SA) [%],/,\ - ﬁlgMS—ev,tsl HPa(S/A);

to construct this map, we use 7.12 above. By passing to animations, we can also cover the case
S = R.(73) A comparison with prismatic cohomology as in the proof of Proposition A.17 shows
that the 0" graded piece of 1% has the form

0% Fwa =~ dRga — dRg/a

here we also use the crystalline comparison for prismatic cohomology [BS19, Theorem 5.2]
and the fact that the de Rham cohomology of S agrees with the crystalline cohomology of its
reduction S. If we can show that @% is the canonical Hodge completion map, then we’ll be
done, because from the comparison results in Corollaries 6.21 and 6.23 it’s clear that in the
case S = R the map 1% agrees with the reduction of 9% modulo (¢ — 1).

To show that 1/1% has the desired form, we can now use quasi-syntomic descent. In particular,
we may reduce to a situation where S/p is relatively semiperfect over A (i.e. the relative
Frobenius S/p®a,o A - S/p is surjective). Then everything is even, hence both sides of 1%
are double speed Whitehead filtrations on even spectra and @% is a map between two static
condensed rings. Whether this map is the correct one can be checked on the level of sets and
hence after any p-completely faithfully flat base change. Let Ao, denote the p-completed colimit
perfection of A. By our assumption 6.1, A — A, is p-completely faithfully flat, and it can be
lifted to an Ex-map Sg4 — Sa_, (see Lemma A.15 for example). Via base change along this
map, we may reduce to the case where A is perfect. Then S/p is semiperfect on the nose and
SO Ajpf = W(Sb) —» S is surjective.

Now everything becomes rather explicit: Let J := ker(Aijyy — R) and let Acrys = Da, ,(J)
denote the p-completed PD-envelope of J. It’s well-known(74) that

dRS/A = dRR/Aimc = Acrys .

Since the un-p-completed PD-envelope A?. . of J C Ajy¢ is contained in Ajy¢[1/p], the Hodge

crys
completion map Acrys — Acrys is uniquely characterised by the following two properties:

("2 The functor (—)tS1 factors through a certain category, denoted @;V[sl] by [PV23] and (Mod?sl)z\pwl)
by [Dev25]; the S'-nilpotence property from Theorem 7.13(b) ensures that j — THH(Z,), and Z, — THH(F,)
become equivalences in that category.

(73 Observe that R® might only be an animated ring.

(7‘4)Indeed, the first equivalence follows from the fact that A and Ain¢ being are perfect §-rings. For the
second, note that dRg/4, , is p-torsion free and contains divided powers for all x € J, as can be seen from
dRz/z1:) — dRR/a,,,- Hence there’s a map Acrys — dRpgya,,,, and this map is an equivalence modulo p by
[BMS19, Proposition 8.12].
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(a) 1t is a map of Apg-modules.
(b) It is continuous with respect to the natural topologies on either side.

It’s clear from the construction that ¢$ satisfies (b) since it is a map of condensed rings. To

see (a), just observe that in the construction of 1%, instead of working with THHg(—/S4),

we could have worked with THHg(—/Sa, ), where Sa, , denotes the unique lift of the perfect

0-ring Ajur to a p-complete connective Eo.-ring spectrum. O
Next let us describe 1/1% after rationalisation.

7.14. Lemma. — The rationalisation of the map w% from 7.7 fits into a commutative diagram

Y20 _
q—dRR/A [%]E\qfl) — grgv,hsl TC- (kuR/kuA)[l%]gfl)

:J J:

dRR/A[%,] lq —1] dRR/A[,%]ﬁdg lq—1]

where the left vertical arrow is the usual equivalence for rationalised q-de Rham cohomology,
the right vertical arrow is obtained via Remark 6.22, and the bottom arrow is the natural Hodge
completion map.

Proof. The following argument was suggested by Peter Scholze (any errors are due to the author).
Observe that the usual rationalisation equivalence ¢-dRp/4[1/ p]@l 1y = dRpya[1/p]lg — 1] is
Z,-equivariant, where the action on the left-hand side is the one discussed in A.20 and on
the right-hand side u € Z; acts via ¢ — ¢“. Since the equivalence from Theorem 7.2 is also
Z, -equivariant, we obtain a Z,-equivariant map

dRpya[3]lg — 1] — dRpya 2] ja,la — 11,

which we must show to agree with the natural Hodge completion map. In general, if M € D(Q,)
is equipped with the trivial action of Z, there’s a functorial equivalence

M = MJq — 1]]hZPX ®IZJhZ; Ly .
p

Indeed, the fixed points M[q — 1]]hZ; would be M @ X~'M; to kill the shifted copy of M, we
take the tensor product along Z;}Zg — L.

Applying this in the situation at hand, we get a map dRg/4[1/p] — dRR/A[l/p]ﬁdg. By
comparison with the reduction modulo (¢ — 1) and using Lemma 7.11, we see that this map
must be the canonical Hodge completion map. By applying (— ®5p Qpllg — 1]])(\(1_1) to this map,
we deduce that the original map must have been the natural Hodge completion as well. O

Proof of Theorem 7.9. By definition of the filtration fil} 4, ¢-dRR/4 (see 7.8), the base change
ﬁl;_Hdaq—dRR/A ®%p[ﬁ] ] Zy[t] is the pullback of the filtered module 3~ g1y, ns1 HCa (R/A)
along ¢%: dRp/a — gl ;1 HCq (R/A). The rationalisation fil} pag Q‘dRR/A[l/P]E\q,l) can be
described analogously. Using Lemmas 7.11 and 7.14 as well as the fact that any filtration is the
pullback of its completion (see 1.48), we deduce that

il fag -AR r/a ®F, (517 Zp[t] — filigg AR /A ,

* A ~ *
fily pag q_dRR/A[%](q—l) - ﬁl(H<ig41—1) dRR/A[zla] [¢—1]
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are indeed equivalences. Finally, whether
fil} Hag g-dRpa — X% gr¥, TCq (kup/kuy)

is an equivalence can be checked modulo 5. By the base change result that we’ve already shown,
this follows from filjjy, dRp/4 ~ Y g HCq (R/A). O

§7.2. The p-complete comparison (case p = 2)

In this subsection, we’ll discuss how much of §7.1 can be salvaged in the case p = 2. We expect
that Theorem 7.9 is still true for p = 2, but our proof fails at several places. Here are the two
main issues:

1) The S'-equivariant Eo -equivalence THH(Z S,lg—1]) ~ 750(ku‘“?) from Theorem 7.2
plopl/Op >
is still conjectural for p = 2.

(1) Theorem 7.13 is provably false for p = 2.

The objection in the second issue is essentially the discrepancy between Nygaard and divided
power completion at p = 2; see [DR25, Remark 0.5.3] for example. The goal of this subsection
is to show that both issues only affect the case 6.2(Es).

7.15. Theorem. — If R satisfies the assumptions from 6.2(IEy), then the conclusions of The-
orem 7.9 are true in the case p = 2 as well.

7.16. Remark. — Note that a priori ﬁl;Hdg q¢-dR /4 will only be a graded Eq-algebra over
Zp|B][t]. A posteriori, we get an E-structure by applying Theorem 7.18 below to the given
cosimplicial resolution R — RZ_.

To show Theorem 7.15, let us first address the less serious issue (!) above.

7.17. Theorem (Nikolaus, unpublished). — For all primes p there exists an S*-equivariant
equivalence of Eq-ring spectra

THH(ZP[Cp]/Sp[[q - 1]]);,\ — T>0 (kuth) )

compatible with THH(F,) ~ =9 (ZZCP ). For p > 2, this equivalence agrees with the underlying
S1-equivariant Ei-equivalence of Theorem 7.2.

Proof. We thank Sanath Devalapurkar for explaining the following argument to us; any errors
are our own responsibility. Let us first construct an S'-equivariant E.-map S[g — 1] — kutCr,
where the left-hand side receives the trivial S' action and the right-hand side the residual
St~ 8ty Cp-action. It’s enough to construct an § Lequivariant Es-map S[q — 1] — ku"“?, or
equivalently, an Eo-map S[q — 1] — (ku/Cr)h(S'/Cp) ~ ku"S". But the element ¢ € Wo(kuhsl)
is is detected by an Es-map S[g] — ku"® 1; see Corollary D.2. This factors over the (¢ — 1)-
completion S[¢q] — S[¢ — 1] and so we obtain the desired map.

Now let us construct an Eo-S,[¢q — 1]-algebra map Z,[(y] — kut“”. To this end, observe that
Zyp|Cp] is the free (¢ —1)-complete Eo-Sp[q — 1]-algebra satisfying [p], = 0. Indeed, since [p], = 0
holds in Zy[(p], it certainly receives an Ep-Sy[¢ — 1]-map from the free guy. Whether this map
is an equivalence can be checked modulo (¢ — 1), where it reduces to the classical fact that I, is
the free Ep-algebra satisfying p = 0. Since [p], = 0 holds in 7, (ku!“r) = . (kutsl)/[p]q and any
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nullhomotopy witnessing this must be unique by evenness, we get our desired Eg-S),[¢—1]-algebra
map Zp[(p] — ku'?. Tt induces S'-equivariant E;-S,[q — 1]-algebra maps

THH (Z,[G]/Spllg — 11)]) — THH (k' /S[g — 1]) — ku',

where the arrow on the right comes from the universal property of THH(—/S[¢ — 1]) on
Eoo-S[g — 1]-algebras.("-?) Since the left-hand side is connective, the above composition factors
through an S'-equivariant E1-S,[q — 1]-algebra map THH(Z,[(,]/S,[q — 1])) — 70 (kutc?).

We wish to show that this map is an equivalence. This can be checked modulo (¢ — 1), so it
will be enough to prove that modulo (¢ — 1) we obtain the equivalence THH(F),) ~ 7>¢ (Z;Cp )
from [NS18, Corollary IV.4.13]. To this end, observe that by the universal properties of Zj[(p]
and [F), as free Eo-algebras, the Eo-map kut®r — Z;,Cp fits into a commutative diagram of
[Eq-algebras

Zp[Cp] —— ku'r

| |

) —— 7
which on the level of underlying spectra exhibits the bottom row as the mod-(¢ — 1)-reduction
of the top row. Using the same recipe as above, the bottom row induces an S'-equivariant
maps of Ei-algebras
C C
THH(F,) — THH(Z;"») — Zi*

After passing to connective covers, we get an S'-equivariant Ei-map THH(F,) — 7>¢ (Z;C” )
We claim that this map necessarily agrees with the underlying E;-map of the S'-equivariant
Eco-equivalence THH(F,) ~ 750(Z'“r) from [NS18, Corollary IV.4.13]. Indeed, by the universal
property of THH for E..-ring spectra, this equivalence must also be given by a composition as
above, where the first arrow is given by the non-equivariant E.-map F, — ZZC” induced by the
equivalence. But IF}, is the free E-algebra with p = 0. Since Z;Cp is even, any nullhomotopy
witnessing p = 0 is unique, and so there’s a unique Eg-map F,, — Z;,C” . This shows that the S*-
equivariant E;-map THH(F,) — T;o(Z;Cp ) agrees with the equivalence THH(F,) ~ 7 (Z;Cp )
and concludes the proof that THH(Z,[(,]/Splq — 1]), — =0 (ku‘®?) is an equivalence.

To show that for p > 2 this equivalence agrees with the underlying S'-equivariant Ei-
equivalence of Theorem 7.2, we can use the same argument as above, noting that the Eo-
S[g — 1]-algebra map Z,[¢,] — ku'“? is unique. O

We can now show Theorem 7.15.

Proof sketch of Theorem 7.15. Let us indicate how to modify the arguments in order to avoid
those that don’t work for p = 2. To construct the comparison map w% as an Eg-map, we don’t
need the full strength of Theorem 7.2, so Theorem 7.17 will suffice. In the proof of Lemma 7.11,
we don’t need quasi-syntomic descent (and in particular, we don’t need Theorem 7.13, so we
circumvent the more serious issue (!!) above), since the given resolution R — RS, places us
already in a relatively semiperfect situation.

(75)In particular, this map THH(ku‘“? /S,[¢—1]); — ku‘“? is not the usual augmentation, as the augmentation
would only be S'-equivariant for the trivial S*-action on ku“».
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It remains to explain how to adapt the proof of Lemma 7.14. We don’t know if the Z; -
equivariance argument still works, but fortunately, we can replace it by a simple argument similar
to the proof of Lemma 7.11. In the given resolution, RS /p is already relatively semiperfect
over A and so TCy (ku Re, ®"Qp/kus @™ Q,) is already even. This reduces the question whether
¢OR,Q,, is the correct map to a question that can be checked on underlying sets. In particular,
we can base change again to a situation where A is already perfect, so that RS, /p is semiperfect
on the nose. If we put AS; = W((R%)"), J* = ker(A$,; — RZ%.), and let Al,ys denote the
p-completed PD-envelope of J®, then

q- dRR' /A[ ]( 1) — dRR‘ /A[ ][[q_ 1ﬂ Crys[ ][[q_ 1]]

So to prove Lemma 7.14 in this particular case, we must check whether a certain map
Alys[1/pllg — 1] — Agys[1/plfagla — 1] agrees with the canonical Hodge completion map. As

crys

in the proof of Lemma 7.11, the Hodge completion map is uniquely determined by:
(a) It is a map of A [q — 1]-modules.
(b) It is continuous with respect to the natural topologies on either side.

Condition (b) is again clear from our condensed setup, whereas (a) follows by working over
Sae . rather than S4. This finishes the proof. O

§7.3. The case of quasi-regular quotients

Let us continue to fix a prime p (with p = 2 allowed) and keep Convention 7.1. Let A be a
d-ring as in 6.1 and suppose that R is an A-algebra satisfying 6.2(IE;) for the identical cover
id: R — R. In other words, R is a p-quasi-lci A-algebra with a lift to a p-complete connective
[Ei-algebra Sp € Algg, (Mods, (Sp)) such that R/p is relatively semiperfect over A.

These assumptions ensure that ¢-dRg/4 and dRp/4 are static rings and that the Hodge
filtration filfjq, dR /4 is a descending filtration by ideals (see Lemma 4.18(b)). As it turns out,
the g-Hodge filtration from 7.8 has a very explicit description in this case.

7.18. Theorem. — Under the assumptions above, the q-Hodge filtration ﬁl;_Hdg q-dRp/a is
the descending filtration by ideals given by the (1-categorical) preimage of the combined Hodge-
and (q — 1)-adic filtration under the rationalisation map q-dRpja — dRg/a[1/p]lg — 1]. In
other words, there’s a pullback

17 Hag ¢-dRRr/a — Alfjag q—1) dRR/A[ lg — 11

| : |

g-dR R4 dRpyaly]la—1]

in the 1-category of filtered (q — 1)*Alq — 1]-modules. In particular, filj yq, ¢-dRp 4 is inde-
pendent of the choice of the spherical E1-lift Sg, and canonically a filtered E.-algebra over the
filtered ring (¢ — 1)*Aflq — 1].

Proof. That g-dR g, 4 is static and ﬁl;_Hdg q-dRp/ 4 is a descending filtration by subgroups follows
from the corresponding assertions for dR /4 and filfjq, dR g/ 4, using ¢-dRg/4/(¢—1) ~ dRpg/a
and fil§ yq, ¢-dRpa/8 ~ filjq; dR /4 by Theorems 7.9 and 7.15.
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To show the description as a preimage, we first note that ﬁl;_Hdg q-dR R/, is the preimage of
its completion under g-dRp 4 — q—&RR/A and likewise for ﬁlfHdg’qfl) dRp/al1/p]lg—1]. Thus,
it remains to show that the filtration on mo TCq (kur/kua) induced by the homotopy fixed point
spectral sequence is the preimage of the analogous filtration on 7 TCu(kup ®" Q,/kus ®" Q,)
under the rationalisation map

7o TCq (kur/kus) — 7o TCa(kup @" Q,/kus @" Q,) .

As both filtrations are complete, it will be enough to show that the map on associated gradeds
is injective. That is, we must show 7o, THHa(kug/kus) — 72, THHa(kug ®@" Q,/kus @" Q)
is injective. This can be checked modulo 3, so we’ve reduced the problem to checking injectivity
of mo, HHa(R/A) — 72, HHa(R ®" Q,/A ®" Q). By the HKR theorem, we must show that

S ALga — 7" A\ Lra ®" Q,

is injective for all n. Our assumptions guarantee that X 'Ly /4 1s a p-completely flat module
over the p-torsion free ring R and so each ¥7" A" L4 will be a p-torsion free R-module. [J

§7.4. The global case

In this subsection we’ll sketch a global analogue of the p-complete comparison between g-dR g4
and TC™ (kugr/kuy) from §7.1. So let us no longer fix a prime p and update our assumptions
on A and R accordingly.

7.19. New assumptions on A and R. — From now on, 4 and R must satisfy the following:

(A) We assume that A is a perfectly covered A-ring (in the sense defined in 1.50) such that
for all primes p the p-completion A, satisfies 6.1(tCP), with S3, denoting the p-complete
spherical lift.

(R) We assume that R is a quasi-lci A-algebra in the sense that the cotangent complex Lr/a
has Tor-amplitude in homogical degrees [0,1] over R. In addition, for every prime p, the
ring R must have bounded p>-torsion and its p-completion }A%p must satisfy one of the
conditions 6.2(FE2) or (E1) (but not necessarily the same for every p). We let Sg, denote
the p-complete spherical lift of ﬁzp.

We note that the p-complete lifts Sz, and Sg, for all primes p can be glued with A®Q and R®Q
to a connective Eq-ring spectrum S4 and a connective Ej-algebra Sg € Algg, (Mods, (Sp))
satisfying

SA®Z~A and SpR®Z~R.

By construction, S4 acquires the structure of a cyclotomic base. If 6.2(Ey) was chosen for
every p, then Sg will be an Es-algebra in S-modules. We also let kuz, = (ku® S3, );\ and
kuy = ku® S, and define kug, and kug analogously.

7.20. Remark. — Despite the restrictive hypotheses, there are many examples of such A
and R, as we’ll see in §9.1.

To carry out our global constructions, we’ll proceed by gluing the p-complete constructions
from §7.1 with the rational case. For the gluing to work, we’ll the notion of profinite completion
and the fact that it interacts well with the solid tensor product; see the review in B.8.
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7.21. Profinite even filtrations. — Let A and R denote the profinite completions of A
and R. Let k be any connective even E,-ring spectrum such that (k) is p-torsion free for
all primes p (the most relevant case is of course k = ku, but we’ll also need k = ku® Q and
later k = kuq)Cm). Let k3 =k Q@" Hp SA, and kg ==k " Hp Sg,. We wish to construct an
appropriate even filtration

fil}, THHa (kR/k2X) -

Once we have this, we can also construct versions for TC, and TPy via

fil%, st TCa (kR/kZ) = (filf, THHa(k/k2))"""
fil?, 1 TPa(k/kZ) = (fils, THHa(k/k7))"™

Before we discuss the construction in general, let us start with two special cases:

(Ey) If we chose condition 6.2(E;) for all primes p, and Sg, — SRs. . are the given cosimplicial
resolutions, we put kgs, =k ®" ][, Sﬁ; _, and define our filtration via

fil}, THHa (kz/k2) = lim 7, THHa (kRs_/k2) -

(Eq) If instead 6.2(Ey) was chosen for all primes p, so that k7 is an Eg-algebra in kz-modules,
we simply define fil}, THHg(kz/k2) to be the solid even filtration of THHg(kR/k2) as a
left module over itself.

In general, let P; and P, be the set of primes where we choose 6.2(FE;) and 6.2(IE2), respectively.
Let kR g, = Hp€P1 kg, and kR g, = HpEPz kg,. Then

THHa (k%/kZ) ~ THHa (kR &, /kA) X THHa (kR k. /kZ)

and we can apply the constructions from (E;) and (Ey) to the two factors separately.

The results from §§6.2-6.4 can all be adapted to the profinite case in a straightforward
way and the proofs can be copied verbatim. For example, in case (Eq), let P = Z[x; | i € I]
be a polynomial ring with a surjection P — R and let P be its profinite completion. Let
Sp = S[z; | ¢ € I] and let Sp be its profinite completion. Finally, let S — Sp. denote the
profinitely completed Cech nerve of S — Sp. Then

fily, THHa (kg /kZ) — n/in 2. THHa (kR/kZ ®" Spe) .
To show this, we can simply copy the proof of Proposition 6.11. The key points are that

THHR(Sp) — Sp is still solid faithfully even flat, which can be shown by the same argument as
in Lemma 6.12, and that HHe(R/A ®7 P*) is still even.

7.22. Lemma. — For k = ku, we have canonical equivalences

fil;, THH. (kug/kuz) — ][ fily, THHa(kuz,/kuz, ),
p
fil}, 51 TCq (kuz/kuz) =, H fil%, ps1 TCq (kug, /kuz, ) ,
p

B, 50 TPu(kui/kuz) — J[ 6L, 151 TPa(kug, /kug,)
p
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Proof. Let us first show the assertion for fily, THHg. Note that kuz ~ [1, kui, ~ (kug)” is the
profinite completion of ku4 and likewise for kug. Using Lemma 6.7 and its profinite analogue,
we see
THH, (kuz/kui) ~ THH(kug/kua)" ~ | [ THHa (kug, /kuz,) -
P

Applying the same observation to the cosimplicial resolutions THHg(kuzs_ /kuz) (in the special
case 7.21(E1)) or THHg(kug/kuz ®" Spe) (in the special case 7.21(E;)) or a mixture thereof
(in the general case), we get the desired equivalence for fil,, THH,.

The equivalence for ﬁl’efv, net TCq immediately follows. For ﬁl:v,t g1 TPa, we must explain
why (=)aT., =~ Sev ®,_ — commutes with the infinite product [],. By arguing as in the proof
of Corollary 6.16 (or just reduction modulo (), we can reduce this to showing that (—);,s
commutes with the infinite product in [, filjjkg HH.(EP /A,). Since the HKR filtration increases
in connectivity, it’s enough to show the same for each graded piece [[, grijxr HH.(ﬁp/ ﬁp).
Since R was assumed to be quasi-lci over A, each graded piece is concentrated in a finite range
of degrees. Thus, in any given homotopical degree, only finitely many cells of CP* ~ BS"' will
contribute to (—)pg1, so it commutes with the infinite product. O

Finally, we can put everything together.

7.23. Global even filtrations. — Since kuy and kup are discrete, THHg agrees with the
usual THH. We can thus equip THH(kur ® Q/kus ® Q) with the solid even filtration, which
agrees with Pstragowski’s perfect even filtration by Corollary 5.8, and with the Hahn-Raksit—
Wilson filtration by [Pst23, Theorem 7.5] and our assumption that R is quasi-lci over A. We
can now define an even filtration on THH(kug/kuy) via the pullback diagram

fily, THH(kug/ku,) fily, THHa (kuz/kuz)

vV

J - J

fil}, THH(kur ® Q/kus ® Q) —— fil}, THHa (kuz ®" Q/kuzi ®" Q)

where the right vertical map is given by 7.21 applied to £k = ku and k£ = ku® Q.

We must explain where the bottom horizontal map comes from. It’s straightforward to
check that fil}, THH(kug ® Q/kus ® Q) ~ fil5, HH(R/A) ® Q[S]ev. Moreover, since the base
change result from Corollary 6.17 is still true in the profinite situation (see the discussion in
7.21), we can use base change for Z — Q[f] ~ ku® Q to get

fils, THHa (kup ®®" Q/kui ®" Q) ~ fils, HHa(R/A) @ Q[B]ev -

Moreover, the profinite analogue of Corollary 6.21 shows that fil¥, HHg(R/A) agrees with
[1, filiirw oy HH(R/A)). We then have a canonical map filj, HH(R/A) — fil5, HHy(R/A),
which provides us with the desired bottom horizontal map in the diagram above.

Once we have constructed fil}, THH(kug/kuy), we can also construct filtrations on TC™
and TP in the usual manner:

ﬁlgv,hsl TC™ (kuR/kuA) = (ﬁ]’gv THH(kuR/kuA)) hTev :

1%, ;o1 TP(kug/kua) = (A% THH(kug/kus))™™ .

ev,t

Here’s a sanity check:
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7.24. Lemma. — Suppose we chose condition 6.2(Ey) for all primes p, so that kup is
an Ea-algebra in kuy-modules. Then fily, THH(kug/kua) agrees with the solid perfect even
filtration on the solid Ei-ring THHg(kugr/kua), and also with Pstrggowski’s perfect even
filtration filp_, THH(kug/kuga).

Proof sketch. The solid even filtration agrees with Pstragowski’s construction by Corollary 5.8.
To show that both agree with the pullback fily, THH(kug/kua) from 7.23, we verify that all
even filtrations in sight can be computed by cosimplicial resolutions as in Proposition 6.11.
To show this, the proof of said proposition can be adapted in a straightforward way. The
key points are that THHg(Sp) — Sp is still solid faithfully even flat by Lemma 6.12 and that

HH(R/A ®z P*) is still even. O

We’re now ready to construct the global comparison with g-de Rham cohomology. Due to
the problems at p = 2 that we’ve discussed at the end of §7.1, we need a small addendum to
the assumptions from 7.19(R).

7.19a. New assumptions on A and R. — From now on we’ll assume that R satisfies not
only 7.19(R) but also:

(Ry) The 2-adic completion Ry satisfies 6.2(E,).

We note that this is true, in particular, if 2 is invertible in R.

7.25. The global comparison map. — Let us denote ¢-dRz,7 = [[,¢-dRg, /4, and
dRg a1 =[I,dRg, /4, for short. Then the global g-de Rham complex sits inside a pullback

q-dRp/a ¢-dRRp/a

J . |

(dRp/a ®7 Q)lg — 1] —— (dRp/2®7 Q)[g — 1]

(see Construction A.12). We claim that this diagram maps canonically to the pullback square

grgv7hsl TC_ (kuR/kuA) grgv7hs1 TC._ (kuﬁ/ku;{)

J . J

g1l pst TC (kup ® Q/kua ® Q) —— grl, 1 TCy (kuk " Q/kuz @" Q)

coming from 7.23. To construct this map of pullback squares, we need:
(a) A map ¢-dRp/3 — gr? , o TCq (kug/kuz). This we get by taking the product of the
maps 1/1% from 7.7 for all primes p.
P

(b) A map (dRp/a ®z Q)[q — 1] — gl TC™ (kup @ Q/kuy ® Q). Since kus@Q ~ A® Q[A]
and kup ® Q ~ R® Q|[f], we get

TC™ (kug ® Q/kus ® Q) ~ HC™ (R®Q[A]/A®Q[A]) -

A standard computation identifies grg, with the Hodge completion (dR g4 ®Q)figgla — 11,
so we can choose our desired map to be the Hodge completion map.
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(¢) A map (dRz/A2®z Q)[g — 1] — g]rgvﬁs1 TCq (kup ®@" Q/kui ®" Q). This works as in (b)
above.

Clearly (b) and (c) are compatible; compatibility of (a) and (¢) will be checked in Lemma 7.29
below. So we get our map of pullback squares and thus a map

VY q¢-dRpja — grSwhSl TC™ (kugr/kugy).

7.26. The global g-Hodge filtration. — As in the p-complete case 7.8, we identify
1
Pt gr:whsl(kuhs ) ~ Z[F][t] with the filtered ring (¢ — 1)*Z[q — 1], where t is the filtration

parameter and /3 corresponds to (¢ — 1) in filtration degree 1. We then define the g-Hodge
filtration as the pullback

fil} qag ¢-dRR/4 —— »2* 8ty nst TC™ (kug/kua)

| - |

VY -
g-dRp/a R grd, pst TC™ (kup/kuy)

As the name suggests, ﬁl;,Hdg q-dRp/ 4 is indeed a g-Hodge filtration in the sense of Definition 3.2.

7.27. Theorem. — Suppose A and R satisfy the assumptions from 7.19 along with the
addendum (Rs). Then the map ¥% from 7.25 induces an equivalence of graded Z[B][t]-modules

1% g ¢-dRp/a — B2 gr, o TC™ (kup/kuy)

where the left-hand side denotes the completion of the q-Hodge filtration ﬁl;“_Hdg q-dRp/a from
7.26. Moreover, modulo 8 and after rationalisation, we get equivalences

il tag 4-AR r/a ®pgp ZIt] — filfiag AR p/a
A1} 1144 (1-dR g 4 ®F Q) (Aq,l) = filfjag 4 1) (AR R/2 ®7 Q) [q — 1]

with the usual Hodge filtration and the combined Hodge and (q — 1)-adic filtration, respectively.
Via these equivalences, (R,ﬁl;,Hdg q-dRR/a) becomes canonically an object in AniAlgz{Hdg.

7.28. Remark. — Fix 2 < n < oo. If for every prime p either 6.2(E;) was chosen or Sg,
admits an E,-algebra structure in S3 -modules, then all equivalences in Theorem 7.27 are
canonically E,_j-monoidal. Indeed, for those primes where Sg, is E,, we get E,_;-monoidality
by carefully tracing through all constructions. For the other primes use Theorem 7.18. It

follows that (R, fil} jjq, ¢-dRg/4) is canonically an E,_j-algebra in AniAlg% M8 (compare 3.50).

7.29. Lemma. — The maps from 7.25(a) and (c) fit into a commutative diagram

A

(g-1)

R 7.25(a) _ =R =R
(q‘dRR/A ®IZ Q)gfl) - (gr(e]v,hsl TCyq (kug/kuz) ®" Q)

7.25(c

(AR7/2 ®% Qg — 1] 2% il 50 HCy (R @™ QIB)/A@* Q[5])

where the left vertical arrow is the usual equivalence for rationalised q-de Rham cohomology
and the right vertical arrow is obtained as explained in 7.23.
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Proof. In the following, we’ll assume that 2 is invertible in R. To treat the general case, we
can just split off the factor p = 2 from (Hp q-dRR, /4, ®IZ @) E\q—l) and use Lemma 7.14.(7:6)
We'll use an adaptation of the argument from the proof of Lemma 7.14. Observe that all

maps in question are equivariant with respect to the Adams action of 7% = 1L, Zy, so the

problem boils down to checking that a certain Zx-equivariant map
P o A
(dRg/a ®7 Q)[g — 1] —(dR7/4 Q% Q)Hdg[[q —1]

is the canonical Hodge completion map.
To see this, consider the element v := (¢,—1(1+p)), € [, Z,;, where (1 € Z,; denotes any
primitive (p — 1)%* root of unity. We claim that for any M € D(Z), equipped with the trivial

~N

action of Z*, one has a functorial equivalence
(M@5Q)[q— 1" ~ (M5 Q) @x (M &% Q)

To show the claim, it’ll be enough to show H_y(Z[q — 1]¥=/(¢ — 1)) ~ Z @ (torsion group)
for every n. This H_; agrees with w_1 of the spectrum

TT(0ag)™ )"~ T (g =)™

p

The homotopy groups of (kuﬁ)wzl are Zjy in degrees {—1,0} and torsion groups in degrees
> 2p — 3. Since CP" has a finite even cell decomposition, the torsion groups in positive degrees
will only contribute to 7_1 (Hp((kungl)wn) for finitely many primes, and so the result will
indeed be of the form Z @ (torsion group). This proves the claim.

To deduce that our map above must be the canonical Hodge completion, we apply
(—)¥=t ®]2w:1 Z to get a map dRg/ 2 ®IZ Q — (dRg/a ®% Q)ﬁdg. By comparison with the
reduction modulo (¢ — 1) and Lemma 7.11 (applied for all primes p), we know that this map
must be the canonical Hodge completion. By applying (— ®b Q[qg — lﬂ)(Aq_l) to this map, we
deduce that our original map must be the Hodge completion as well. O

Proof sketch of Theorem 7.27. Using Corollary 6.21, we see that the base change of our even
filtration fil} ;g1 TC™ (kugr/kua) along ku/d f Zhs " is the Hahn-Raksit-Wilson even filtration
on HC™(R/A). Moreover, it’s clear from the construction in 7.25 and Lemma 7.11 that the
induced map -

@%: dRR/A — dRR/A ~ gr(P)IRW—ev,hsl HC™ (R/A)
is the canonical Hodge completion map. Similarly, by the construction in 7.25(b), the rationali-
sation

Vo (ARp/a ®F Q)g — 1] — grey ps1 TC™ (kug ® Q/kus ® Q)

gets identified with the canonical Hodge completion map. With these two observations, the
proof of Theorem 7.9 can be copied verbatim to show everything but the last claim.

To give (R, fil} y1q5 ¢-dR/4) the structure of an object in AniAIgi{Hdg , the equivalences from
Definition 3.2(b) and (c) have already been constructed; the compatibility between them follows
by comparing the even filtrations on TC™ (kup ® Q/kus ® Q) ~ HC™ (R®Q[S8]/A® Q|[f]) and
HCT(R®Q/A® Q). For Definition 3.2(c,), we use Theorem 7.9; the compatibilities come for

free via the adelic gluing constructions in 7.23 and 7.25. O

(76 Recall that Lemma 7.14 still works for p = 2 as long as 6.2(E1) was chosen; see the argument in the proof
of Theorem 7.15.
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§8. Habiro descent via genuine equivariant homotopy theory

We've seen in Theorem 7.27 that the even filtration on TC™ (kug/ku4) gives rise to a ¢-Hodge
filtration ﬁl;—Hdg q-dRp/4 in the sense of Definition 3.2. In particular, this provides many
examples to which Theorem 3.11 can be applied.

The goal of this section is to show that, in the situation at hand, the Habiro descent
from Theorem 3.11 can also be obtained homotopically. As a straightforward corollary of
Theorem 7.27, one checks that the ¢-Hodge complex associated to ﬁl;_Hdg q-dR /4 agrees with

q-Hdgp 4 ~ grd, pg1 TCT(KUp/KU,),

where we put KU, := KU® S4 and KUy := KU ® Sg. To get the Habiro descent, we’ll show
that for every m € N the action of the cyclic subgroup C,, € S* on THH(KUg/KU4) can be
made genuine. We'll then construct an even filtration on (THH(KU g /KU 4)Cm)"(5'/Cm)  The
Habiro descent g-Hdgp,4 will finally be recovered as the 0" graded piece

This section is organised as follows: In §§8.1-8.3 we review genuine equivariant homotopy
theory, its special case of cyclonic spectra, and the genuine equivariant structure on ku. In §8.4,
we finally construct the desired even filtrations in the cyclonic setting and prove that they give
rise to the same Habiro descent as in Theorem 3.11.

§8.1. Recollections on genuine equivariant homotopy theory

In this subsection, we briefly review theory of genuine equivariant spectra. We’ll follow the
model-independent treatment of [GM23, Appendix C] and the lecture notes [Hau24].

8.1. Genuine equivariant anima. — Let G be a compact Lie group (of relevance to us
will only be the case of S and its finite cyclic subgroups C,, C S'). We let Orbg denote the
category whose objects are quotient spaces G/H, where H C G is a closed subgroup, and whose
morphisms are G-equivariant maps. Orbg is canonically topologically enriched; through this
enrichment we view it as an oco-category.

We define the co-category of G-anima (or G-spaces) as well as its pointed variant as

Ani® := PSh(Orbg) and  Ani$ := PSh(Orbg)s

where PSh(—) = Fun((—)°P, Ani) and PSh(—), := Fun((—)°P, Ani,) denote the presheaf oco-
category and its pointed variant. The pointwise product or smash product induces symmetric
monoidal structures on Ani” and Ani{ and thus turns them into objects in CAlg(Pr"). We
denote the evaluation at G/H by (=) : Ani — Ani and likewise for Ani{’. By construction,
these functors are symmetric monoidal.

8.2. Genuine equivariant spectra. — For every finite-dimensional real G-representation
V', we have a topologically enriched functor Orb%? — Top,, sending G/H +— S VH, where SV
denotes the 1-point compactification of the vector space V. This functor defines a pointed
G-anima SV € Ani*G, which we call the representation sphere of V. We finally define the
oo-category of genuine G-equivariant spectra

SpY = Ani{ [{(SV)®_1 }V]
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to be the initial Anif—algebra in Pr" in which all representation spheres SV become ®-invertible.
Explicitly, Sp“ can be written as a colimit in Pr" of a diagram whose objects are copies of Anif
and whose transition maps are of the form SV A —: Anif — Ani*G, where V' ranges through
finite-dimensional G-representations; see [GM23, §C.1]. By construction, SpY comes with a
symmetric monoidal functor

»%: Ani¢¥ — Sp©

in Pr", which thus admits a lax monoidal right adjoint QF - Sp¢ — Ani*G.

We let =V: Sp® — Sp® denote the functor EOGOSV ® —. By construction, this functor is an
equivalence, and we let £~V denote its inverse. If (—);: Ani — Ani¢ denotes the left adjoint
of the forgetful functor, we also define

S [_1: AniC 2+ .G YC o .G
¢[—]: Ani® —= Aniy — Sp
and we let Sg := Sg[*] be the genuine G-equivariant sphere spectrum.

The oco-category Anif is compactly generated, with a set of compact generators given by
(G/H), for all closed subgroups H C G. The transition maps SV A — preserve compact objects
and Prlj — Pr" preserves colimits. It follows that Sp” is compactly generated, with a set

of compact generators given by X~V Sg[G/H] for all representation spheres and all closed
subgroups H C G. In fact, we can do slightly better; see Lemma 8.9 below.

8.3. Pullback functors. — Given any morphism ¢: G — K of compact Lie groups, we can
define a functor Orbg — Orbg by sending G/H — K/p(H). By precomposition, we obtain a
symmetric monoidal functor p*: Anif — Ani*G in Pr", which sends representation spheres to
representation spheres and therefore determines a unique symmetric monoidal colimit-preserving
functor

©*: Spf — SpY.
8.4. Lemma. — For every morphism ¢: G — K of compact Lie groups, the following

diagrams commute:

* %

Anif < Ani¢ Anif < Ani¢
R
£ *

Proof sketch. The diagram on the left commutes by construction. To see that the diagram on
the right commutes as well, rewrite the colimits defining Sp® and Sp” as limits in Pr®. It’s
then enough to check that ¢*: Anif — Ani*G intertwines the right adjoints of SV A — and
§#*(V) A — for any finite-dimensional K-representation V. Since p*: AniX — Ani¢ has a left
adjoint ¢y, given by left Kan extension, we may pass to left adjoints and show the equivalent
assertion ¢(S¢*(V) A =) ~ SV A ¢(—). Now in general, for any functor ¢: C — D of small
oo-categories, the adjunction ¢;: PSh(C), = PSh(D), :¢* satisfies the “projection formula”
o1(e*(Y)ANX) ~Y Agi(X) by abstract nonsense. O

8.5. Lemma. — Let i: H < G be the inclusion of a closed subgroup. Then i*: Sp® — Spf
preserves all limits and and thus admits a left adjoint i: Sp — Sp%.81)  If we also let

(& The functor 4 is usually denoted Ind% and called induction.
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IE Anif — Anif denote the left Kan extension functor, then the following diagram commutes:

Anifl . Ani¢
o7 | =z

SpH i SpG
In particular, Sy ~ Sq[G/H].

Proof sketch. To form Sp, it’s enough to invert all representation spheres of the form SFV)
in Anif , where V is a finite-dimensional G-representation. Thus, we can obtain Sp® and Sp?
by colimit diagrams of the same shape in Pr. Treating them as limit diagrams in Pr® and
noting that the transition maps still commute with i*: Ani¢ — Ani (see the argument in
the proof of Lemma 8.4) shows that ¢* indeed preserves limits. Commutativity of the diagram
follows from the right diagram in Lemma 8.4 by passing to left adjoints. O

8.6. Borel-complete spectra. — The full sub-co-category spanned by G/{1} € Orb}
defines a functor BG — Orb/’. Via precomposition we get a symmetric monoidal functor
Ani¢ — Ani®“. Since all representation spheres SV € Ani¢ become ®-invertible under
2 AniEG — SpB¢, we can use the universal property of Sp® to obtain a commutative
diagram

;G :BG
Ani; i,

o

SpG Uc SpBG

—— An

of symmetric monoidal functors in Pr¥. For a genuine G-equivariant spectrum X, we think of
Ug(X) as the underlying spectrum with its non-genuine G-action, and we’ll often suppress Ug
in the notation. Genuine G-equivariant spectra in the image of the right adjoint

Be: SpP¢ — sp¢
will be called Borel-complete and we call the functor Bg o Ug Borel completion.
8.7. Lemma. — The functor Bg: SpP® — SpY is fully faithful.

Proof. Asin Lemma 8.5, one shows that Ug also preserves limits and hence admits a left adjoint
L. Tt will be enough to show that the unit u: id = Ug o L is an equivalence. Since both Ug
and L preserve all colimits, we only need to check that u is an equivalence on the generator
S[G] of SpB¢.

To see this, note that the forgetful functor SpP¢ — Sp is conservative. Moreover, it’s
clear from the construction that Sp® — SpP% — Sp equals e*: Sp© — Sp, where e: {1} - G
is the inclusion of the identity element. Since S[G] is the image of S under the left adjoint
of SpBY — Sp, it will thus be enough to check that S — e*eS is an equivalence. Using the
commutative diagram of Lemma 8.5, this reduces to checking that S© — eje* S is an equivalence
in Ani,, which is clear since Kan extension along a fully faithful functor is fully faithful. [

8.8. Genuine fixed points. — For every morphism ¢: G — K of compact Lie groups,
the right adjoint ¢, : Sp& — SpX of p* is lax symmetric monoidal and still preserves colimits.
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Indeed, since ¢, is an exact functor between compactly generated stable oco-categories, it will
be enough to check that ¢* preserves compact objects, which is clear from the description of
compact generators in 8.2. In the case where ¢ is the projection 7g: G — {1} to the trivial

group, we also denote 7 s by
(—)%: Sp” — Sp
and call this the genuine G-fized points. We have (—)¢ ~ Homg (S, (—)%) ~ Homg ¢ (Sa, —)
by adjunction, and so (=) is represented by Sg.
If X € Sp® and i: H — G is the inclusion of a closed subgroup, we’ll usually write X7

instead of (i*X)H for brevity. It follows formally that (—)¥: Sp® — Sp is represented by
Sy ~ Sq|G/H].

8.9. Lemma. — The oo-category Sp® is compactly generated, with a set of compact generators
given by X7 "Sq|G/H] for alln > 0 and all closed subgroups H C G.

Proof. The following argument is taken from [Hau24, Proposition 2.7]. We use induction
on (dim G, |mg(G)|), ordered lexicographically. Suppose a genuine G-equivariant spectrum X
satisfies Homg o (X7"S¢[G/H], X) ~ 0 for all closed subgroups H and all n > 0. If i: H — G

is the inclusion of any such H, then for any closed subgroup K C H we have
0 ~ Homg ¢ (S¢[G/K], X) ~ Homg ¢ (iSy[H/K], X) ~ Homg n (Sy[H/K],i*(X))

and therefore i*(X) ~ 0 by the inductive hypothesis. As a consequence, we see that
Homg ¢ (X7V'S¢[G/H], X) ~ 0 for all proper closed subgroups H C G and all finite-dimensional
G-representations V.

It remains to show Homg o (27VSg, X) ~ 0 for all V. Let j: Orb.g < Orbg denote the
inclusion of the full sub-co-category spanned by all objects except the terminal object G/G. Let
Ani% := PSh(Orb.g)s. A straightforward application of the Kan extension formula shows that
the left Kan extension functor ji: Anis® — Ani¢ is fully faithful, with essential image given by
those pointed genuine G-equivariant anima Y that satisfy Y& ~ x (i.e. those presheaves that
vanish on G/G € Orbg). Since cofib(SYV — SV is of this form, it can be written as a colimit
of (G/H)4 for proper closed subgroups H C G. It follows that coﬁb(ZVGX — YVX)~0,
since it can be written as a colimit of terms of the form

S¢lG/HI®@ X ~iSp @ X ~i(Sy ®i*(X)) ~0.

By our assumption on X, we also have HomSpG (Sq, »ex ) ~ HomSpG(Z_"Sg, X) ~ 0, where
n = dim V¢ We conclude 0 ~ Homg ¢ (Sc, YWX) ~ Homspc(E_VSG7 X), as desired. O

8.10. Lemma. — If G is finite, then the compact objects Sq[G/H] € Sp® are self-dual for
all subgroups H C G. In particular, Sp© is a rigid symmetric monoidal co-category.

Proof sketch. We need to construct a coevaluation n: S¢ — S¢[G/H] ® S¢[G/H] and an
evaluation ¢: S¢[|G/H]| ® S¢[G/H]| — S¢ satisfying the triangle identities. To construct e, we
simply apply £ to the map (G/HxG/H); — S O that sends the diagonal to the non-basepoint
and everything else to the basepoint.

Let us now construct 7. Let V := R[G/H]. Equip V with an inner product in such a
way that {0},cq/m is an orthonormal basis. Consider the “diagonal map” V' — V x (G/H),

th

whose o™ component is given by R[G/H| — Ro — Ro x {0}, where the first map is the
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orthogonal projection. This map is G-equivariant and proper, so it induces a G-equivariant map
of one-point compactifications, which takes the form SV — SV A (G/H),. Applying EOGO_V,
we obtain a map tr$;: Sg — Sg[G/H], called the transfer. Let also A: G/H — G/H x G/H
denote the diagonal. We finally define 7 as the composite

trf Sg[A]
n: S¢ — S¢|G/H] —— S¢|[G/H] ® S¢|G/H] .

The triangle identities can already be verified on the level of genuine G-equivariant anima. [J

8.11. Remark. — For arbitrary compact Lie groups G, it is still true that Sq[G/H] are
dualisable, so that Sp” is still rigid. See e.g. [Hau24, §2.3].

8.12. Genuine vs. homotopy fixed points. — By abuse of notation, let us denote the
composition ofthe functor Ug: Sp® — SpP¢ from 8.6 with the homotopy fixed point functor
(—)"G: SpBY — Sp also by (—)"C. For any X € Sp“ we have

(BaUs(X)) ~ Homg,c (S, BaUca(X)) ~ Homg e (S, Ua(X)) ~ X"C.

Thus, the natural transformation id = Ug o Bg (Borel-completion) induces a symmetric
monoidal transformation of lax symmetric monoidal functors

()¢ = ()€

In general, this is far from being an equivalence; in fact, the goal of this whole section is to
explain how the Habiro descent of the g-Hodge complex is accounted for by the failure of
THH(KUR/KU4)¢" — THH(KUg/KU4)"“" to be an equivalence.

8.13. Geometric fixed points. — The functor £ o (—)¢: Ani{ — Sp is symmetric
monoidal and inverts all representation spheres. Therefore it induces a symmetric monoidal
functor

(—)*9: Sp¥ — Sp

(8.2)

in Pr", called geometric fized points. There always exists a natural transformation

()¢ = (-)*C.
One way to construct this would be as the following composite (see [Hau24, §2.2]):
XC ~ Homspc (Sg, X) — Homyg, (SgG,X(I)G) ~ Homgy, (S7X@G) ~ X%G

Just as for genuine fixed points, for every closed subgroup H C G, we also consider the functor
(—)®H . Sp% — Sp, suppressing the pullback Sp® — Sp* in the notation.

8.14. Lemma. — The family of functors {(—)"}gcg in Fun(Sp®, Sp) is jointly conservative.
The same is true for {(—=)*"}pyceq.

Proof. Both assertions are classical; see e.g. [Sch18, Proposition 3.3.10] for the case of geometric
fixed points. We’ll give a proof by abstract nonsense, following [Hau24, §§2.2-2.3].

For genuine fixed points, joint conservativity follows immediately from Lemma 8.9. For
geometric fixed points, assume X € Sp® satisfies X®# ~ 0 for all H. We wish to show

(82 Geometric fixed points are usually denoted ®. We chose (—)® to be in line with (—)¢, (=), and (—)*¢.
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X ~ 0. Arguing by induction over (dim G, |mo(G)|), we may assume *(X) ~ 0 for all
inclusions i: H — G of proper closed subgroups. As in the proof of Lemma 8.9, this implies
Sq|G/H]® X ~ 0 for all such H.

As in the proof of Lemma 8.9, let now j: Orb.g — Orbg denote the inclusion of the
full sub-co-category spanned by all objects except G/G and put Ani<® := PSh(Orb¢). Let
5: {G/G} — Orbg denote the complementary inclusion. Let ji: Ani<¢ = Ani® :j* be the
adjunction given by left Kan extension/restriction along j and let s*: Anif = Ani, :s, be
the adjunction given by restriction/right Kan extension along s. We denote EPg = jij*(x*)
and EPg = 5,5*S° (in the classical setup this has intrinsic meaning; for us it’s just notation).
Then the Kan extension formula shows that

SO fH=G
(EPg)" ~ { 1

+ fHCG

0 itH=G ~ g

. HHCC and (EPg)"” ~ {
Thus the canonical sequence (EPg)y — SO — EP¢ induced by the universal property of Kan
extension is a cofibre sequence in Ani¢. It follows that Sg[EPg] — Sg — EOGO(Epg) is a cofibre
sequence in Sp”, respectively. We have S¢[EPg] ® X ~ 0 as Sg[EP¢] is contained in the full
sub-oo-category generated under colimits by S¢[G/H] for proper closed subgroups H C G. It
will thus be enough to show Z?(EP@) ® X ~ 0. Since (—)®# is symmetric monoidal, we still
have (E?(EP@) ® X)®H ~ 0 and so the inductive hypothesis shows (EOGO(EP(;) ® X)H ~ 0 for
all proper closed subgroups H C G. It remains to show (X (EPg) ® X)C ~ 0, which follows
from the assumption X®¢ ~ 0 using Lemma 8.15 below. O

8.15. Lemma. — With notation as above, for any X € Sp® there is a functorial equivalence
(5% (EPq) @ X)7 = X

Proof. Let us first construct the functorial map. With notation as in the proof of Lemma 8.14
above, we have Sg[EPg]®¢ ~ S[(EP¢)“] ~ 0. Thus, if we apply the natural transformation
(—)€ = (=)®C to the cofibre sequence S¢[EPa] ® X — S¢® X — I¥(EPg) ® X, it will
induce the desired map.

Let us now verify that this map is an equivalence. Since (=) and (—)®¢ preserve colimits,
it’s enough to check the case X ~ Sg[G/H]. For proper subgroups H C G we have (G/H)% ~
and so Sg[G/H]?¢ ~ 0 as well as

2 (EP) @ S[G/H] ~ £F (EPG A (G/H) 1) = 5F (x) ~ 0.

It remains to show that EOGO(E)’Pg)G — SE¢ ~ S is an equivalence. This can be checked on
underlying anima. Using the definition of Sp® as a colimit, we see

Q®(EF (Epg)G) ~ (°° Homg ¢ (Se, EOGO(ENIP(;)) ~ c‘(/)lgi{{n Map ¢ (SV, SV A EPG> ;

where U is a complete G-universe, that is, a direct sum of countably many copies of each
irreducible G-representation, and V' ranges through all finite-dimensional subrepresentations of
U. Now recall that EPG ~ 5,5%59%, Using the Kan extension formula, it’s straightforward to
check SV A s,5*80 ~ 5,8 V¢ and so the colimit above can be rewritten as desired:

. Vv VG . VG VG
cglglan MapAmg (S , 845 ) ~ c‘s)lglzr/{n Mappp;, (S ,S ) ~ O°S. O
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Using a similar argument, we can also show the following assertion:

8.16. Lemma. — Let G be finite. For a genuine G-equivariant spectrum X, the following
are equivalent:

(a) For all subgroups H C G, the genuine fized points X are bounded below.
(b)  For all subgroups H C G, the geometric fized points X®H are bounded below.

Proof. Via induction on |G/, it will be enough to show under the hypothesis that X is bounded
below for all proper subgroups H C G, the genuine fixed points X are bounded below if and
only if the geometric fixed points X ®¢ are bounded below. Using Lemma 8.15 and the proof of
Lemma 8.14, we find a cofibre sequence (Sg[EPg] ® X)¢ — X¢ — X®C. Moreover, Sq[EP¢]
can be written as a colimit of S¢[G/H] for proper subgroups H C G. Thus, it will be enough
to show that each (S¢[G/H]® X)© is bounded below (here we use finiteness of G' to ensure
that there are only finitely many H). This follows from

(Sc[G/H] ®X)G ~ Homg ¢ (S¢:, S¢[G/H] ® X) ~ Homg ¢ (Sc[G/H], X) ~ X",
where we use self-duality of S¢[G/H] (Lemma 8.10) O

8.17. Inflation maps. — Given any morphism ¢: G — K of compact Lie groups, one has a
symmetric monoidal natural transformation of lax symmetric monoidal functors

inf,: (—)K = (¢*(—)°

Indeed, from 8.8 we see that (—)¢ ~ (—)¥ o ¢, and then the desired natural transformation
arises by postcomposing the unit transformation id = ¢, o ¢* with (—)%.

If ¢ is injective, the transformation above is called restriction and denoted resg . We're
instead interested in the case where ¢ is surjective, where it is customary to call these maps
inflations. In the surjective case, there’s also a symmetric monoidal inflation

inf,: (—)*F = (p*(—))*C.

Indeed, on the level of genuine equivariant pointed anima, the pullback ¢*: Anif — Anif
satisfies (—)% ~ (¢*(—))¢ (this needs surjectivity, so that evaluation at K /K € Orb}’ agrees
with evaluation at K/¢(G)) and then the desired inflation transformation is induced by the
universal property of SpX as an Anif -algebra in Pr. It’s straightforward to check that for all
X € SpX the diagram

inf,

X —2 (¢*X)“

J |

XK infy (go*X)‘I)G

commutes functorially in X, where the horizontal maps are the inflations and the vertical maps
are the ones from 8.13.

8.18. Residual actions. — Let i: N — G be the inclusion of a normal subgroup, let
m: G — G/N denotes the canonical projection and let e: {1} < G/N the inclusion of the
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identity element. Then the diagram

SpG T SpG’/N

| E

spV g
p —9p
commutes. Indeed, commutativity can be checked after passing to left adjoints, and then it
follows from n*e/S ~ 7*S¢q/n[G/N] ~ Sg[G/N] ~ i|Sy, using the diagram from 8.8 to compute
the values of 7 and e.

In particular, for any X € Sp®, the genuine fixed points XV can be equipped with a residual
genuine G /N -action. In a similar way, one can equip X N with a residual genuine G /N-action,
and it can be checked that XV — X%V is genuine G /N-equivariant.

8.19. Lemma. — With the residual actions from 8.18, for all X € Sp® we have canonical

equivalences
XG ~ (XN)G/N and X<I>G ~ (X(DN)(I)(G/N) )

Proof. If mg: G — {1} and 7g/n: G/N — {1} denote the canonical projections, then clearly
G~ T oTs N Since adjoints compose, the equivalence for genuine fixed points follows. To
see the equivalence for geometric fixed points, it’s enough to check the case X ~ Sg[Y] for Y a
genuine G-equivariant anima; this case follows from Y& ~ (YN)G/N, O

§8.2. The oo-category of cyclonic spectra

After reviewing the general framework of genuine equivariant homotopy theory, from now on
we’ll restrict to the following special case:

8.20. Cyclonic spectra. — In the following, we’ll consider spectra with an S'-action that
is genuine with respect to all finite cyclic subgroups C,, C S'. These were introduced under
the name cyclonic spectra by Barwick and Glasman [BG16].

While the original construction uses spectral Mackey functors, we’ll follow [AMR17, No-
tation 2.3(3)] and construct co-category of cyclonic spectra as the full stable sub-oo-category
CycnSp C Sp° ' generated under colimits by ¥ ""Sg1[S!/C,,] for all finite cyclic subgroups
C,, €St and all n > 0.

8.21. Lemma. — The family of functors {(—)"}men in Fun(CycnSp, Sp) is jointly conser-
vative. The same is true for {(—)®¢m}en.

Proof. For genuine fixed points this follows since {$7"Sg1[S!/Cpm]}men nzo is a system of
generators for CycnSp by construction. The assertion about geometric fixed points then follows
from Lemma 8.14. O

8.22. Illemma. — The fully faithful inclusion j: CycnSp — SpS1 admits a right adjoint
j*: Sp® — CycnSp with the following properties:
(a) j* still preserves all colimits.

(b)  The counit transformation c: ji0j* = id is an equivalence after applying (—)m or (—)®m
for any finite cyclic subgroup C,, C S*.
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(¢) Forall XY € Sps1 the canonical map
FX®Y) — (X ®Y)

is an equivalence. Thus, there’s a canonical way to equip CycnSp and j*: Sp° - CycnSp
with symmetric monoidal structures.

Proof. The right adjoint j* exists since ji preserves all colimits. Since CycnSp is compactly
generated and ji preserves compact objects, j7* preserves filtered colimits and thus all colimits
by exactness, proving (a). By construction,

Homg 1 (Ssi[S'/Cnl, jif* X) ~ Homg s (Ss1[S'/Ci, X)

and so (j1j*X)% — X is indeed an equivalence. Since this is true for all divisors d | m,
Lemma 8.14 shows that (jj*X)®¢n — X®Um is an equivalence as well. This shows (b).
Whether j*(X ® 717*Y) — j*(X ®Y') is an equivalence can be checked on geometric fixed
points by Lemma 8.21. But after applying (ji(—))*“™, both sides become X *¢» @ Y*¢m by
(b) and symmetric monoidality of (—)®¢. This shows the first claim in (c); the second claim is
general abstract nonsense about localisations of symmetric monoidal co-categories (see [L-HA,
Proposition 2.2.1.9] for example). O

In the following, we’ll usually suppress ji and j* in the notation.

8.23. Lemma. — For m,n € N, let us identify Cpn/Cpm = Chn, Chpn/Cpn = Cyp. For all
cyclonic spectra X, the residual actions from 8.18 satisfy the following functorial identites:

(a) (XCm)Cn ~ XCW", (X¢>Cm)<I>Cn ~ X@Cmn’ and (XhC’m)hCn ~ XhCmn
(b)  If m and n are coprime, then (Xm)®Cn ~ (X®Cn)Cm,

Proof. The first two assertions from (a) are special cases of Lemma 8.19, the third assertion
is classical. For (b), let us first note that Orbc,,, ~ Orb¢,, x Orbc,, which easily implies
Spc,,,, =~ Spc,, ® Spg,, for the Lurie tensor product. By construction of geometric fixed points
it’s clear that (—)®: Sp, ® Spe,. — Spg,, is given by applying (—)®“": Sp, — Sp in the
second tensor factor. If we can show a similar assertion for (—)“m, we’ll be done.

To this end, let 7: Cp,, — C, and 7, : Cy, — {1} denote the canonical projections. It
is again clear from the construction that 7*: Sp, — Sp¢g, ® Spe, is given by applying
75, 1 Sp — Spg,, in the first tensor factor. Its right adjoint 7, must then also be given by
applying the right adjoint m¢,, » (which is also a functor in PrL) in the first tensor factor,
because we can just apply — ® Spg, to the unit, the counit, and the triangle identities. ]

Nikolaus—Scholze [NS18, Theorem I1.6.9] showed that on bounded below objects, the
structure of a cyclotomic spectrum is equivalent to a “naive” notion, in which one only asks for
Sl-equivariant maps X — X*“». We’ll now show a similar result in the cyclonic case. This is
based on the following well-known fact (see e.g. [HM97] or [NS18, Lemma I1.4.5]):

8.24. Lemma. — There’s a pullback square of symmetric monoidal transformations between
laz symmetric monoidal functors in Fun(Sp®r, Sp)

()% =2 ()%

(8.12)ﬂ 1 M

()1 — (=)
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Proof. 1f we regard the orbit C,/C; as a genuine Cp-equivariant anima via the Yoneda em-
bedding, we find (C,/C1)%? ~ () and (C,/C1)¢" ~ C,. By direct inspection, it follows that
EPc, ~ (Cp/C1)nc,, where C, acts on C,/C1 in the obvious way.

For every genuine Cj-equivariant spectrum X, we've seen in Lemma 8.15 that the fibre
of X% — X*%% is given by (S¢,[EP¢,] ® X). Using that (—)“ preserves all colimits and
Sc, [Cyp] is self-dual by Lemma 8.10, we find

(Sc, [EPe,] ® X) 7 ~ (8¢, [Colne, ® X) P ~ ((5¢,[C,] © X)), ~ X,

In the case where X is Borel-complete, it’s straightforward to check that the induced map
Xne, — X% ~ X" ig the norm map and so X®% ~ X'C» for Borel-complete X. In general,
composing the Borel completion transformation id = B¢, Uc, with the natural trasformation
(—)CP = (—)‘DCP, we obtain the desired commutative square. It is a pullback square since the
row-wise fibres are given by (—)xc,, as we've just verified. Symmetric monoidality is also clear
from the construction. O

8.25. Naive cyclonic spectra — Informally, a naive cyclonic spectrum should consist of
a collection of spectra (Y;,)men, each Yy, equipped with an (S'/C,,)-action, together with
(S1/Cpm)-equivariant maps ¢p.m: Ypm — Y% for all m and all primes p. The intuition is
that Y, ~ X® records the geometric fixed points of some cyclonic spectrum X. To see
obtain the maps ¢, : X ®Cpm _, (X CI’Cm)wP in this case, we plug X®“ into the natural
transformation (—)®% = (—)!¢»; by naturality, the map ¢, ,, that we obtain is (non-genuinely)
(S'/Cpm)-equivariant.

Formally, we define the co-category of naive cyclonic spectra to be the lax equaliser (in the
sense of [NS18, Definition I1.1.4])

CycnSpnaiV — LEq( H SpB(Sl/Cm) L H H SpB(Sl/Cpm)> ,

meN ((_)th)P*m p meN

where p runs through all primes, the top functor is given by (Yi,)m — (Ypm)p,m, and the bottom
functor is given by (Yi)m — (Y;;LC” )p,m- By the universal property of lax equalisers there is a
functor

naiv

(—)CDC: CycenSp — CyenSp

which sends X + (X®%m),, o, equipped with the canonical maps ¢y, ,, : X ®Crm — (X PCm)tCy
described above. Using Lemma 8.27 below, we can also equip CycnSp™®" with a symmetric
monoidal structure in such a way that (—)®¢ is symmetric monoidal.

Let us also call a cyclonic spectrum X bounded below if each X“™ is bounded below (not
necessarily with a uniform bound for all m); equivalently by Lemma 8.16, all X ®¢» are bounded
below. Similarly, a naive cyclonic spectrum Y = ((Y;n)m, (¢p,m)p,m) will be called bounded
below if each Y, is bounded below (not necessarily with a uniform bound). We denote by
CycnSp, and CycnSpS‘fiV the respective full sub-oo-categories of bounded below objects.
8.26. Proposition. — When restricted to the respective full sub-oo-categories of bounded
below objects, the functor (_)q>c becomes a symmetric monoidal equivalence

naiv

(—)%¢: CycnSp,. = CycnSp¥

To prove Proposition 8.26, let us first construct the desired symmetric monoidal structure.
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8.27. Lemma. — Let F': C — D be a symmetric monoidal functor and let G: C — D be a
lax symmetric monoidal functor of symmetric monoidal co-categories. Let F® and G® denote
the corresponding functors between the co-operads C® — Fin, and D® — Fin, and define

LEq(F,G)® := LEq(F®,G®) X LBa(idping idpiny, ) Fill -

(a) LEq(F,G)® — Finy is an oc-operad associated to a symmetric monoidal structure on the
oo-category LEq(F, G) and LEq(F,G) — C is symmetric monoidal.

(b) If C and D are presentably symmetric monoidal, F' preserves colimits, and G is accessible,
then LEq(F, G) is again presentably monoidal.

Proof sketch. Let (i) € Fin,. Using LEq(idyyy,1d4))) = *, the fact that lax equalisers commute
with pullbacks, and the fact that the fibres over F® and G® over (i) are F': C' — D' and
G': C' — D' respectively, we find that the fibre of LEq(F, G)® — Fin, over (i) € Fin, is of the
desired form:

LEq(F®, G®) XLEq( ) LEq(ld{<l>},1d{<l>}) ~ LEq(FZ, GZ) ~ LEq(F, G)Z .

idFin* 7idFin*

Let us next check that LEq(F, G)® — Fin, is a cocartesian fibration. For simplicity, we’ll only
describe locally cocartesian lifts of the unique active morphism fa: (2) — (1); it will be obvious
how to perform the construction in general, as will be the fact that the locally cocartesian lifts
compose, so that we obtain a cocartesian fibration by the dual of [L-HTT, Proposition 2.4.2.8].
So suppose we're given ((x1,¢1), (72,92)) € LEq(F,G)?, where o1: F(r1) — G(x1) and
po: F(x2) — G(x2). Let ¢ denote the composite

1 F21 @c w2) = Fl21) ®p F(9) 222 G(a1) @p Gl2) — Gl ®c 2),

where we use strict and lax symmetric monoidality of F' and G, respectively. Now let
p: (z1,72) — 71 ®c o2 be a locally cocartesian lift of fo along C® — Fin,. Moreover, let
pr =~ FO(p): (F(x1), F(x2)) — F(21) ®p F(22) and pe: (G(21),G(22)) — G(21) ®p G(22) be
locally cocartesian lifts of fo along D® — Fin,. We have g o up ~ ugo (o1, ¢2) by construction
of ¢, and so we obtain a morphism ((z1, 1), (72, ¢2)) — (21 ®¢ 22, ¢) in LEq(F, G)®. Using
the formula for mapping anima in lax equalisers from [NS18, Proposition I1.1.5(ii)] and the
general criterion from the dual of [L-HT'T, Proposition 2.4.4.3], it’s straightforward to verify
that this morphism is indeed a locally cocartesian lift of fo, as desired.

Therefore, LEq(F,G)® — Fin, is indeed a cocartesian fibration. From the description
of cocartesian lifts above, it’s clear that LEq(F, G)® — C® preserves cocartesian lifts, hence
LEq(F,G) — C is indeed symmetric monoidal. This finishes the proof sketch of (a).

For (b), we must check that LEq(F, G) is presentable and that the tensor product preserves
colimits in either variable. Both assertions follow from [NS18, Proposition II.1.5(iv)—(v)]. O

Let us now commence with the proof of Proposition 8.26. The main ingredient is a formula
that allows to compute genuine fixed points for finite cyclic groups in terms of homotopy fixed
points, geometric fixed points, and the Tate construction.

8.28. Lemma. — Let X be a cyclonic spectrum and let m € N. If the geometric fixed points
X®Ca are bounded below for all divisors d | m, then the following canonical (S*/Chy,)-equivariant
map is an equivalence:

XCm =, eq(H(X‘I’Cd)hCm/d =181 ((X‘Dcd)tcp)hcmfpd> .

dlm o p pd|m
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Here the second product is taken over all primes p. The two maps can and ¢ in the equaliser
are given as follows:

(chcd)hcm/d ~ ((Xécd)hcp)hcm/pd N ((chcd)tcp)hcm/pd’

(Xrbcpd)hcm/pd ~ ((chcd)fbcp)hc‘m/pd N ((chcd)tcp)hCm/pd,

using the natural transformations (—)"Cr = (=) and (—)®% = (=), respectively.

Proof. We use induction on m. If m = p® is a prime power, the assertion is [NS18, Corol-
lary 11.4.7]. Now let m be arbitrary. We may assume that all but one prime factors of m act
invertibly on X, because an arbitrary X can be written as a finite Cech limit of such objects
(also the assumption that all X ®Ca are bounded below is preserved under any localisation).
Write m = p®m,, where p is the not necessarily invertible prime and m,, is coprime to p.
Using the inductive hypothesis and the fact that the Tate construction (—)w‘Z vanishes on
S[1/¢]-modules, we find
XCmp ~ H (X(bcdp)hcmp/dp.

dp|mp

Also observe that all homotopy fixed points (—)hcmp/ 4 in this formula can be computed as
finite limits, as BC,, ;4 has a finite cell structure once m,, is invertible. An argument as
in Lemma 8.23(b) then allows us to deduce that the formula above is also true as genuine
Cpe-equivariant spectra and that the homotopy fixed points (—)hCmP/ 4 commute with the
geometric fixed points (—)*“*. With these observations, the formula for XOm ~ (X%m»)Cs

becomes precisely the desired equaliser. O

With a similar argument, one can show the following technical lemma.

8.29. Lemma. — Let Y = ((Yin)m, (¢p,m)p,m) be a naive cyclotomic spectrum. Then'Y is
bounded below if and only if for all m € N the following equaliser is bounded below:

eq(H thm/d C_} H H tcp hcm/pd) .

dlm p pdlm

Proof. We only prove the “only if” part, the “if” will follow from Proposition 8.26 (and won’t
be used in the proof). So let Y be bounded below. We may once again assume that all but one
prime factors of m act invertibly on Y, since the property of being bounded below is preserved
under finite Cech limits. So write m = p“myp, where p is the not necessarily invertible prime
and m,, is coprime to p. Since the Tate constructions (—)** vanish for all primes p # £, the
equaliser simplifies to

hChy g 2% hC
o T 25 T 0
dlm bp pd|m

Let pd | m and write d = pidp, where ¢ < o — 1 and d,, is coprime to p. Using the Tate fixed
point lemma [NS18, Lemma I1.4.1], we find

o (31 = (1)) = (W)

Since (—) hC, o Preserves bounded below objects and (=) Cm/p2ap can be written as a finite
limit in our situation, we deduce that the fibre is bounded below. An easy induction shows

that the equaliser in question must be bounded below as well. O
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Proof of Proposition 8.26. Let us first show that (—)®¢: CyenSp, — CycmSpﬂlraiv is fully faith-
ful. For any m € N, we have

S[SY/Cpuja]l ifd|m

0 else

Ss1[S1/Cpn]®C4 = {

By unravelling the general formula for mapping anima/spectra in lax equalisers [NS18, Proposi-
tion IL.1.5(ii)], we find that Homgy g maiv (Sg1 [S1/C,,]%¢, X ®C) is given by the equaliser from
Lemma 8.28 for all cyclonic spectra X. If X is bounded below, it follows that

HOmCycnspnaiv (851 [Sl/cm]¢’6’7 XCPC) ~ XOm ~ Homcycnsp (851 [Sl/Cm], X) ,

as desired. Since CycnSp is generated under colimits by shifts of Sg1[S*/C),,] for all m € N, we
deduce that (—)®: CyenSp, — CycnSp*" is indeed fully faithful.

Using [NS18, Proposition 11.1.5(iv)—(v)], we see that (—)®¢: CycnSp — CycnSp™™" is a
colimit-preserving functor between presentable oo-categories and so it admits a right adjoint
R: CycnSp™™V — CycnSp. We note that R restricts to a functor R: CycnSpr‘iV — CyenSp,, .
Indeed, an analogous computation as above shows that

R(y)cm ~ HomCycnSpnaiV (SSI [Sl/Cm]qDC, Y) ~ eq (H YdhCm/d g H H (Y;Cp)hcm/lﬂd>

dlm ¢ p pd|m

for all Y € CycnSp™. Thus, if Y is bounded below, Lemma 8.29 shows that R(Y") will be
bounded below as well.

The same calculation shows that R is conservative. Indeed, if Y — Y is a morphism of
naive cyclonic spectra such that R(Y) — R(Y”) is an equivalence, then the induced morphisms
on the equalisers from Lemma 8.29 are equivalences for all m € N. Arguing inductively, this
implies that Y, — Y,/ must be an equivalence for all m € N and so Y — Y’ is indeed an
equivalence as well.

In general, if the left adjoint in any adjunction is fully faithful and the right adjoint is
conservative, the adjunction is a pair of inverse equivalences. This finishes the proof. O

8.30. Remark. — Ayala—Mazel-Gee—Rozenblyum derive another “naive” description of
cyclonic spectra in [AMRI17, Corollary 0.4]. In contrast to Proposition 8.26, which is only
valid in the bounded below case, their result covers all cyclonic spectra. This comes at a cost
of additional coherence data. The moral reason why, in the bounded below case, we can get
away with only the maps X®¢rm — (X®C» )t with no coherence data to be specified, is the
following: For X bounded below, the composition maps for the proper Tate construction are

equivalences
XTCmn =~ (XTCm>TCn ,

and unless m and n are powers of the same prime, both sides vanish. This determines all
coherence data uniquely. We expect that by formalising this observation, one can deduce
Proposition 8.26 from [AMR17, Corollary 0.4], but we have not attempted to do so.

8.31. Cyclonic vs. cyclotomic spectra. — Let CyctSp denote the oco-category of cyclo-
tomic spectra and let CyctSp™"V denote its naive variant introduced by Nikolaus—Scholze [NS18,
Definition II.1.6(i)]. We have a symmetric monoidal functor

naiv

CyctSp™™Y — CycnSp
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sending a cyclotomic spectrum X to the constant family ((X)n, (¢p,m)p,m) in which each ¢, ,
is given by the cyclotomic Frobenius X — X‘r. This functor is not fully faithful (this will
become useful in 8.43 below).

One can also construct a functor CyctSp — CycnSp on the non-naive co-categories (see
[AMRI17, §2.5] for example) which agrees with the functor above on bounded below objects.

§8.3. Genuine equivariant ku

In this subsection we’ll equip ku with the structure of a cyclonic spectrum and compute its

genuine and geometric fixed points ku® and ku®“™ for all m.

8.32. Cyclonic ku. — Recall that Schwede [Sch18, Construction 6.3.9] constructs a model
kug of ku as an ultracommutative global®3) ring spectrum. Throwing away most of the structure,
this yields an Ey-algebra kugi € CAlg(Spg1) with underlying non-equivariant E.-algebra ku.
We still have a Bott map 3: $2Sg1 — kug: (in fact, 3 already exists for kug) and we define
KUg: = kugi[87!]. In the following we’ll often abusingly drop the index and just write ku
or KU for the genuine S'-equivariant versions. We also note that by restriction, ku and KU
define E-algebras in cyclonic spectra.

8.33. Genuine fixed points of ku. — Let ¢ denote the standard representation of S*
on C via rotations, so that the complex representation rings of S' and C,, are given by
RU(SY) = Z[¢*'] and RU(Cy,) = Z[q]/(¢™ — 1). Via the canonical map RU(S?) — mo(kuS"),
we can regard ¢ as a class in Wo(kus 1), compatible with Remark 7.4. It’s a well-known fact
that ¢ is a strict element, that is, it is detected by an Ey-algebra map S[gq] — kuS'. See
Corollary D.2 for a proof.

For the finite groups C,,, the analogous maps RU(C,,) — mo(ku®™) are isomorphisms [Sch18,
Theorem 6.3.33] and so, by equivariant Bott periodicity,

me(ku®) = Z[B,q]/(¢™ — 1) and m (KU) = Z[8* q]/(¢™ — 1).

In particular, ku®m ~ T>0 (KUCm). Using the homotopy fixed point spectral sequence, we can
also compute the homotopy fixed points of the residual (S'/C,,)-action:

e (kO MOy = 78, g [t / (Bt — (@™ = 1)) ,

where |t,,| = —2. The canonical map (ku®m)(S'/Cm) _, kuhs " sends t,, — [m]qt. In particular,
on 7 this map recovers the (¢ — 1)-completion Z[q]é\qul) — Z[q—1], and t,, = [m]xu(t) agrees
with the m-series of the formal group law of ku.

8.34. Inflation maps for ku. — Consider the inflation maps from 8.17 in the special case
where ¢ is the n'® power map (—)": S' — S! for some n > 1. We have p*kug: ~ kugi, since
the genuine S'-equivariant structure comes from a global spectrum kug), where all actions are
trivial (compare [Sch18, §4.1]). Since (=)™ maps the subgroups Ci,, to C,,, we get inflations

inf,,: ku®" — ku®m  and inf,, : ku®Cm — ku®Cmn

These are maps of E..-algebras in Spgi for the residual genuine S' ~ S!/C,,-equivariant
structure on the left-hand sides and the residual S' ~ S 1/ Cinn-equivariant structure on the
right-hand sides. A straightforward check shows inf,(¢) = ¢" and inf,(5) = 8 (compare D.3).

(8:3)«Global” in the sense of global homotopy theory, not in the sense of §7.4. Very roughly, it means to have
compatible trivial actions by all compact Lie groups. “Ultracommutative” refers to the fact that Schwede’s
model admits a strictly commutative multiplication on the point-set level.
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8.35. Corollary. — For all m and n, the inflation map induces an S'-equivariant equivalence
of Exo-algebras

inf, : ku®m ®s[q],um Sla] — ku®mn |

where Y™ : S[q] — S[q] is given by ¥"(q) = q".
Proof. This can be checked on homotopy groups, where it follows from 8.33 and 8.34. O

8.36. Remark. — The notation ¥™: S[q] — S[g] is chosen to be compatible with the Adams
operations on the A-ring Z[q]. One can also construct equivariant Adams operations on ku
(see D.5), but these do not coincide with inf,,.

8.37. Geometric fixed points of ku. — To prove our Habiro descent result, it will be
crucial to know the geometric fixed points ku®m as well, at least after inverting m and after
p-completion for any prime p | m. This will be our goal for the rest of this subsection. Our
strategy will be to compute the geometric fixed points inductively using Lemma 8.28. To
apply said lemma, observe that we already know that each ku®“™ is bounded below thanks to
Lemma 8.16.

For KU, the geometric fixed points can essentially already be found in the literature (even
though the author could only find the precise result in the case where m is a prime power): We
have an equivalence of S'-equivariant E,.-ring spectra

KU© [{(qd - 1)_1}d|m, d;ém] — KU

One way to prove this is via the corresponding statement for equivariant MU [Sin01, Proposi-
tion 4.6] and the equivariant Conner—Floyd theorem [Cos87]. The result can also be deduced
from Proposition 8.42 below.

8.38. Lemma. — The canonical map ku[1/m]¢m — ku[l/m]®“m induces an equivalence of
St-equivariant Eog -ring spectra

(k[ ]7")5, ) — kul

PCh,
@,,(q) ] )

1
In particular, 7. (ku[1/m]®“m) = Z[1/m, B, q]/®m(q).

Proof. Since we already know that ku®“@ is bounded below for all d | m, we can apply the
formula from Lemma 8.28 to ku[1/m]. Because we’ve inverted m, all Tate constructions will
vanish, and the formula becomes an equivalence

ku[4]° ~ [ k[ 1],

dlm
The claim then follows via induction on m and Corollary 8.35. ]
8.39. Lemma. — Let m = p®m,y, where p is a prime and my, is coprime to p. The inflation

map induces an S'-equivariant equivalence of Eoo-ring spectra
A

infmp . ((kuq)cpa );\ ®S[q]7wmp S[q]) B (q) — (ku(bcm)
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Proof. Note that m, is invertible on (ku‘pcpa);\. The same argument as in the proof of
Lemma 8.38 shows that the canonical map

((kuécpa );\)Cmp ~ ((kllq)cp& )Cmp );\ N ((kuq)cpa )@Cmp )I/)\ ~ (kutme);\

exhibits the target as the (p, ®,,,(¢))-completion of the source. It remains to show that inflation
induces an equivalence (ku®%»" )p ®s[q],wm» Sla] =~ ((ku®Cpe)Cmyp )p- As both sides are p-complete,
this can be checked modulo p. Moreover, note that with geometric fixed points replaced by
genuine fixed points, this would follow from Corollary 8.35. In fact, applying Corollary 8.35 to
ku% for all i < «, we deduce that

infy,, : ku/p ®sjqp,yme Slq] — (ku/p)“mr

is an equivalence of genuine Cpe-equivariant spectra, as it induces equivalences on genuine fixed

points for all subgroups (see 8.8). Then it must induce equivalences on geometric fixed points
as well, which proves what we want. ]

8.40. Lemma. — For all primes p and all o > 1, the following assertions are true.

(a) The canonical map ku®“r* — (kuq)cp“‘l)tcp induces an S'-equivariant equivalence of
E-ring spectra
(ku@cpa );\ sl 7_20 ((kuq’cpa—l )th) .

~

(b)  On homotopy groups, we have my((ku®° )p) = Lplupe, q]/Ppa(q) where |upe| = 2, and
a\AVR(ST/Cpa)\ ~
W*(((kucbcp );\) (57/Cy )> = Zp[“p“y@][[tp“]]/(upatpa - @pa(Q)) .

With notation as in 8.33, the canonical map (kuCr*)h(S"/Coe) _ ((ku®Cre );\)h(sl/op")
1

sends q — q, tyo — tpo, and B (¢° — L)upo.

(¢) The inflation map induces an equivalence of S'-equivariant Eo-ring spectra
A

: . oC = PC a\ N

inf a-1: (ku ? Osq] g S[q])p — (ku®®r )p .
Proof. We show all three assertions at once using induction on «. In general, using Lemma 8.28,
or more directly the iterated pullback diagram from [NS18, Corollary I1.4.7], we obtain a
pullback square

kucpa kuq)Cpa

Loos

(kucﬁail )th (ku‘bC’pa,l )th

A
p?
(kuhcp){,\ — ku®” is an equivalence in homotopical degrees < —1. From the pullback square
we deduce that (kuq)cp)]ﬁ ~ 750(ku!®?), proving (a). Assertion (b) for a = 1 is then a standard
calculation; see [DR25, Proposition 3.3.1] for example. Assertion (c¢) is tautological for oo = 1.

For the inductive step, let a > 2. We claim that
e (kur* ) = m, (kur) g, 00" Zlal
(ka1 C0) = e (1) @, s Zg],
e (1) 2, (R0 @y s 2l

For o = 1, we see that ku® — ku"“» induces an equivalence (kuCP)Z/?\ ~ 750(ku"“?)?, and

12

12
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Indeed, the first two isomorphism follow from Corollary 8.35 and the third one from (b) for
ku®“»~1 which we already know by induction. Then (b) and (c) follow 1mmed1ately from the
pullback square above. Moreover, we see that the vertical map ku®® — (ku®*~1)"C» induces
an equivalence (ku®»” )p =~ Ts0((ku®ro? )hcp)ﬁ, and that after p-completion the horizontal map
((kucpo“l)hoﬂ)g — (ku®@* 1) is an equivalence in homotopical degrees < —1. As in the

case a = 1, this implies (a). O

8.41. Remark. — Let p > 2, so that THH(Z,[(,]/Splq — 1]), =~ 750(kut“?) holds as S'-
equivariant Eoo-ring spectra by Theorem 7.2. As a consequence of Lemma 8.40(a), we get an
equivalence

THH (Z,[¢p)/Spla — 1]]); ~ (kuw”)ﬁ

of S'-equivariant E.-ring spectra.

But we can say even more. Devalapurkar shows in [Dev25, Theorem 6.4.1] that the
equivalence THH(Z,[(p]/Splq — 1]);) ~ 750(ku'“) holds as cyclotomic Eoo-ring spectra, where
T}o(kutcp) is equipped with the cyclotomic structure induced from the trivial cyclotomic
structure on ku (see [DR25, Construction 1.1.3]). Since the inflation maps for ku are similarly
induced via the trivial S'-action on the global ultracommutative ring spectrum kug), we see
that the cyclotomic Frobenius

Gp: T>0 (kutcp) — (Tgo(kutcp))wp

agrees, up to passing to the connective cover in the target, with inf),: (kuq>cp)p (ku‘bc P2 )

p )
as maps of S'-equivariant E,.-ring spectra. Therefore we obtain a commutative diagram

(ku™)?" @sfq,yo Sla] (ku®)
THH(Z,[G,]/Slq — 11)") @y, Slal —2% THH(Z,[G,1/S,lq — 1)

of S'-equivariant E..-ring spectra.

For our purposes, the description of ku®“™ that we get from Lemmas 8.38-8.40 would be
enough, but for the sake of completeness, let us deduce a complete computation of ﬂ*(kuq)Cm).

8.42. Proposition. — Let m € N. For all divisors d | m let [d]iu(t) = 87 (¢? — 1) denote
the d-series of the formal group law of ku. Then

i (k0) = 216,61/ I () [ {1 ) |

)20 on the right-hand side denotes the restriction to non-negative graded degrees.

where (—

Proof sketch. We use the arithmetic fracture square (see 1.49)

[T (™),

| l

ku[L Om __, H @C’"

m

ku®Em

141


https://sanathdevalapurkar.github.io/files/thesis.pdf#sublemma.6.4.1
https://arxiv.org/pdf/2505.02218.pdf#block.1.1.3

§8. HABIRO DESCENT VIA GENUINE EQUIVARIANT HOMOTOPY THEORY

Using Lemmas 8.38-8.40, one readily checks that the right vertical and bottom horizontal maps
are jointly surjective on m,. Therefore, we also get a pullback on 7. It is then straightforward
to construct a map Z[S3, t]/[m]iu () [{[dxu(®) ™ }ajm, doem | S0 7 T (ku®“™). Whether this map
is an equivalence can be checked after localising m and after p-completion for all p | m, which
is again straightforward via Lemmas 8.38-8.40. O

§8.4. Cyclonic even filtrations and Habiro descent of g-Hodge complexes

Let A and R be rings that satisfy the assumptions from 7.19 and assume that 2 € R* (so that
the addendum (Rs) is automatically satisfied as well). In this subsection, we’ll finally explain
how to obtain the Habiro descent ¢g-Hdgpr /4 of the g-Hodge complex from a cyclonic structure
on THH(KUR/KUy,).

To this end, let us first discuss how to equip THH(kug/kuys) ~ THH(Sr/S4) ® ku with
a suitable cyclonic structure. At first, one would expect that the cyclonic structure on
THH(SR/S4) coming from its cyclotomic structure via 8.31 would do the job. But it doesn’t! For
example, the constructions in §3 are all A[q]-linear. But THH(Sg/S4)®“ — THH(Sg/Sa)!?,
which by definition agrees with the cyclotomic Frobenius, is not S 4-linear; instead, it is semilinear
over the Tate-valued Frobenius ¢yc,: Sa — SZ P It is thus unclear how one would construct
an A[q]-linear structure on the associated graded of some even filtration on THH(kug/ku4)C?.

8.43. Cyclonic structure on THH(kur/kua). — To fix this, we need to modify the
cyclonic structure on THH(Sg/S4). This requires yet another assumption on A.

(Ag) Let S‘X’Ct and SYV denote the cyclonic structures on Sa given by the cyclotomic structure
from 7.19(A) and the trivial cyclotomic structure, respectively. Then we must assume that
there exists a map

S?Ct N Sgiv

of Eoo-algebras in CyenSp®4) whose underlying map of S*-equivariant Eso-algebras is the

identity on S4, equipped with the trivial action.

Now let THH(Sg/S4)¥" denotes the cyclonic structure on THH(Sg/S4) coming from the
usual cyclotomic structure. Assuming (As), we can instead consider the following cyclonic
structure:

THH(SR/S4)¥ Rgever sS4,

We'll then regard THH (kug/kua) ~ THH(Sg/S4) ® ku as a cyclonic spectrum in the apparent
way, using the above cyclonic structure on THH(Sr/S4) as well as the cyclonic structure on
ku from 8.32. As we’ll see, this has the desired properties.

Let us unravel Assumption (As). Since both S7* and SV are cyclotomic spectra, we have
(ST)2Cm ~ Sy and (SYV)®Cm ~ S4 for all m, identifying the residual (S'/C,,)-action with
the trivial S'-action on Sa. In particular, after taking (—)®¢™, a map ST — S% induces
Sl-equivariant Eoo-maps ¢™: Sy — Sy that fit into commutative diagrams

pm

SAw—’SA

N

m\tC
Si‘cp (ypm)*=p

tCp
Sy

(4 Beware that there may be more maps as cyclonic E.-algebras than as cyclotomic E-algebras.
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for all m € N and all primes p. It follows inductively that )" : Sy — S4 must be a lift of the
A-ring Adams operation ¢ : A — A.

8.44. Lemma. — The data of S*-equivariant Eoo-maps "™ : Sy — Sa together with commu-
tative diagrams as above uniquely determines a map S‘X’Ct — Si{i" of cyclonic E-algebras.

Proof. By Proposition 8.26 we may equivalently construct S7 — S%¥ as a map of Eo.-algebras
in naive cyclonic spectra. It’s clear from the construction in Lemma 8.27 that

CAlg(CyenSp™™) ~ LEq H CAIg(SpB(Sl/C’”)) e — H H CAlg( SpB(S /Cpm))> 7
meN ((= )tCP)Pm p meN
and so the given data indeed uniquely determines such a map. O

We'll verify in §9.1 that in all examples we can construct, Assumption (As) is satisfied as well.
This concludes our discussion of the cyclonic structure on THH(kug/kua). For convenience,
let us also introduce the following notation.

8.45. Definition. — For all m € N, the m** topological cyclonic homology of kugr over kuy
is the spectrum
1
O~ (kup /kuy) = (THH (kup kuy)Cm) " /)
8.46. Cyclonic even filtrations in general. — Let T" be a cyclonic E;-algebra and let

M be a cyclonic left T-module. Suppose that T and M are bounded below and that for
all m € N the geometric fixed points T®¢™ are complex orientable (but we don’t require
any genuine equivariant or cyclonic complex orientation). In this situation, we expect that
the correct filtration to put on M®Em is simply the non-equivariant even perfect filtration
fils, M ®Cm .— ﬁlP ev/T#Cm M®PCm of MPCm as a left module over T, Moreover, the genuine
Cn-fixed points should be equipped with the filtration

A, /T,Crm MO :=eq <H (filz, M‘wd hCom e 20 H H ((f1%, M®Ca)tCy, cv)hcm/Pd ev> .
djm p pdlm

Here (—)"Cm/dev (=)tCrev and (—)"Cm/rdev refer to the filtered fixed points and Tate con-
struction defined [AR24, §2.3].(3%) The map can in the equaliser is induced by the natural
transformation (—)"Cr.ev = (=)!.ev and the map ¢ is induced by the canonical maps

filx

P—ev/Tq)de ((M(I)Cd)tcp) — filg

tCp ((M‘Pcd)tcp) (ﬁl M@Cd)th,ev

P-ev/(T®Ca) P-ev/T®C4d

using the construction from 7.6. To apply this construction, we need the additional assumption
that (M®¢)"Cr is homologically even over (T®¢m)"Cr. this is certainly satisfied in the case
M =T that is relevant for us.

A genuine equivariant version of the even filtration is currently in the works; for example,
the author has been informed of (independent) work in progress by Jeremy Hahn and Lucas
Piessevaux. We have little doubt that in the foreseeable future, an intrinsically defined genuine
equivariant even filtration will be available and we expect that for M as above (maybe subject
to some extra assumptions), the true even filtration will agree with our formula.

(85 This needs the residual S*-actions, so as stated the formula above only applies in the cyclonic setting but
not in the genuine Cj,-equivariant setting.

143


https://arxiv.org/pdf/2411.19929.pdf#subsection.2.3

§8. HABIRO DESCENT VIA GENUINE EQUIVARIANT HOMOTOPY THEORY

8.47. Cyclonic even filtrations on THH(kug/kuy). — Put R = R@I;me A. Note
that R(™) is static, since the Adams operation ™ is flat in any perfectly covered A-ring.
Moreover, R(™ satisfies the assumptions from 7.19(R); in particular, it admits a spherical lift
given by Spm) = Sgp ®s,,ym Sa, where ¢ : S5 — Sy is the lift of the A-ring Adams operation
from 8.43. We may thus define fil}, THH(kupm)/kua) via 7.23. Via base change along the
inflation inf,, : ku — ku®“" we may then equip the geometric fixed points THH (kup/ku4)*Cm
with the filtration

filX, THH (kug /kua) 9™ = fil5, THH(kU pm) /ku4) Qpe,, kKUZE™

where ku2m = 745, (ku®“m) denotes the double-speed Whitehead filtration. We’ll check in
Lemma 8.48 below that this agrees with the usual perfect even filtration on THH(kug/ku)®¢m,
as long as the latter is defined. Next, we construct the filtration on genuine fixed points

fil}, o, THH(kug/kuy)“m

via the formula in 8.46. Finally, using the notation introduced in Definition 8.45, we define

1%, g1 TC~0™ (kup/leug) = (81, ¢, THH(kug/kuy)Cm)" /O

)

where (—)MT/Cmev denotes fixed points in the sense of [AR24, §2.3] with respect to the even
filtration on S[St/C),].

Here are two sanity checks:

8.48. Lemma. — Suppose we chose condition 6.2(E2) for all primes p, so that kug is an
Eo-algebra in kua-modules. Then fil¥, THH(kug/kua)®“™ agrees with Pstrqgowski’s perfect
even filtration on the Eq-ring THH (kug /kus)®Cm.

Proof sketch. We know from Lemma 7.24 that file, THH(kupm) /kua) agrees with Pstragowski’s
perfect even filtration. It will thus be enough to show that the canonical base change map

filf_ oy THH (KU gm) /K014 @, kuSE™ — filf . THH(kug /ku ) *Om

v

is an equivalence. It’s enough to check this on associated gradeds as both sides are exhaustive
filtrations on THH (ku p(m) /k14) ®pu ku®™ ~ THH(kug /kua)®¢™. Now on associated gradeds
(and in fact, one the nose) both sides can be computed by a cosimplicial resolution as in
Proposition 6.11, because THH(Sp) — Sp is faithfully even flat. We can then use a similar
argument as in Corollary 6.17 to show the desired base change equivalence. Here we use that
ku®“™ is even with p-torsion free homotopy groups for all primes p by Proposition 8.42. [

8.49. Lemma. — For allm € N,

fil%, o, THH(kug/kua)“™  and A}, oo TC™™ (kug/kuy)

are complete exhaustive filtrations on THH(kug/kua)“m and TC~™ (kug/kuy), respectively.

Proof sketch. For completeness, apply [AR24, Lemma 2.75(iv)] to each of the constituents of the
equaliser from 8.46. The only non-obvious thing to check is that (filX, THH(kug/kus)®Ca)tCr.ev
is complete, which follows from an argument as in 7.7. For exhaustiveness, apply [AR24,
Lemma 2.75(iv)] to each of the constituents in the equaliser from 8.46. To see that this lemma
applies, one can use Corollary 6.15. O
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We can now formulate the main result of §8.

8.50. Return of the twisted g-Hodge filtration. — We can plug the ¢-Hodge filtration
fil} qag ¢-dR /4 from Theorem 7.27 into construction 3.38 to obtain the twisted g-Hodge
filtration

* (m)
ﬁlq—Hdgm q- dRR/A

We will relate this to gr’ o TC~ ™) (kug/kuy). To this end, we must explain how the latter
acquires a filtered structure.

Observe that il o TC™ ™ (ku/ku) ~ 722*((ku0m)h(51/cm)). This computation is not
completely trivial, but it can be done in the same way as Theorem 8.51 below.®%) As a
consequence, we see that in general,

S grk, g TC™ M (kug /kuy)

is a module over the graded ring Z[B, ¢][tm]/(Btm — (g™ — 1)) = mou((ku®m)M(S/Cm)) (see
8.33). Regarding t,, as the filtration parameter, this graded ring can be identified with the
(¢™ — 1)-adic filtration (¢™ — 1)*Z[q ]( m_1y-

8.51. Theorem. — Let m € N. Suppose A and R satisfy the assumptions from 7.19 along
with the addenda 2 € R* and 8.43(Ay). Then there exists a canonical equivalence of filtered

Z[/Ba Q] [[tm]]/(ﬁtm - (qm - 1))—m0dules

17 4q5,, a-dAR Y7, — S gk, o TC0 (kup ks
where the left-hand side denotes the completion of the twisted q-Hodge filtration ﬁl;—Hdgm c_ldegr/Ll)4
from 8.50 and the right-hand side is defined in 8.47.

To show Theorem 8.51, we’ll decompose Y2 gy, 51 TC~ ™ (kug/kuy) into a fracture
square and match it up with 3.38.

8.52. Fracture squares for even filtrations. — Let N be a positive integer. We construct
an even filtration

filY, THH (kug[ 4 ]/kua[£])

as in 7.23, except that we replace every occurence of ku by a ku[l/N]. Moreover, for any
prime p we let

fily, THHa (kug, /kuz,), and fil}, THHa(kug,[2 ]/kugp[%])

be the even filtrations given by applying 6.8 for k& = ku and k& = ku[1/p], respectively. By
construction, we then have a pullback square

filX, THH (kug /ku,) I1 fils, THHa (kuz, /kuz, )

p|N

- |
fil%, THH (kug| & | /kua| & ) —— [T filt, THHa(kuz, [1] /kuz, [2])
pIN

(®61n fact, it is almost a special case of that theorem, except that 2 ¢ Z*. Even so, to formulate the theorem
properly, we need this special case first.
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A similar fracture square exists for the geometric C,,-fixed points. To this end, replace R by
R(™) in the above construction and apply the base change — ®xy., kuq>c’” to obtain

fil3, THH (kug[ 4] /kua[ £]) "™,
fil?, THHg (kuz, /kuz, )" and  fil%, THHa(kug, [L]/kug, [L]) "

These fit into a pullback square

fil*, THH(kug /kuq) 2 [ fils, THHa (kug, /kuz, ) *"
pIN
: |
1%, THH (kup[ ] /kua[ 4] —— [ filz, THH, (kug, [L]/kug, [L]) "
pIN

We also note that if we define the oo-category of cyclonic solid condensed spectra as the
Lurie tensor product CycnSp ® Spy, then THHg(kuz, /kuz,) and THHa(kug, [1/p]/kuz,[1/p])
can be equipped with cyclonic solid condensed structures as in 8.43 and so the expressions

THHa(kuz, /kuz, )®¢ and THHa(kug, [1/p]/kui,[1/p])*C™ make sense. Finally, the construc-
tions from 8.47 can also be applied in this setting, and so we obtain

fily, 1 TC™ (kug[ 5] /kual % ])
ﬁlev St TC'_(m) (kuﬁp /ku;‘\p) and ﬁlev,S1 TC' m )(kuﬁp [%]/ku*’a\p [%]) ’

which fit into a pullback square

B3, g1 TO™0™ (laug ) [Tk, s TCa ™ (kug, /kuz,)

pIN
- |
ﬁlev St TC™ () (kuR[ ]/kIlA - H ﬁlev St TC'_(m) (kuﬁp [%]/kugp [%])
pIN

We will now analyse this pullback. Let us begin with the part where N is invertible.

8.53. Lemma. — Suppose N is divisible by m. Then the inflation map inf,,: ku — ku®¢
induces a filtered S*-equivariant (or more precisely, Te,-module) equivalence

(512, THI ([ [ ]) @50 )

oy e THH (e[ ]/l DFem.
m\q

Proof. Observe that the ®,,(q)-adic completion is just the projection to the m'" factor in the
decomposition

S[#4]/( ~ IS+ 4]/®a(a)-

dlm

The claim then follows from Lemma 8.38 and the definition of fil}, THH(kug[1/N]/kua[1/N])
and fil}, THHa(kug, [1/p]/kuz,[1/p]) as base changes along — ®ku,, kul&m, O
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Let us now analyse the p-adic part.

PCr,

8.54. Lemma. — For all primes p, the inflation map inf,, : ku — ku induces a filtered

St-equivariant (or more precisely, Tey-module) equivalence

> fil¥, THH, (kug, [ 1] /kuz, [1]) "9

A
(fits, THH (kugg [4]/kug, []) @sgyp o Sla)) 1

@ (q)

Proof. Analogous to Lemma 8.53. O

8.55. Lemma. — Write m = p®m,,, where p is a prime and my, is coprime to p. Then the
inflation map infy,, ku®Cre — ku®®m induces a filtered S*-equivariant (or more precisely,
Tev-module) equivalence

) @Cpa ) PC,, )

A ~
(ﬁlzv THHa (kug(m™) /kug, ®s[ql, v S[q]> o fily, THHa (kug, /kui,

m(q)

Proof. As in the proof of Lemma 8.53, observe that the ®,,(¢)-adic completion, which agrees
with ®,,,(q)-adic completion as everything is already p-complete, is just a projection to the
m;h factor in the product decomposition

(slal/(a™ =), ~ T (Solal/(a"™ = 1) (0, (0

dp|mp
The claim then follows from the constructions and Lemma 8.39. O
8.56. Lemma. — In the case m = p%, where p > 2 is a prime and o > 1, we have a canonical

equivalence of filtered Zp|upa, q|[tpa]/(upatpe — Ppa(q))-modules

RORWA ~ _ * Y A\DPCa\h(T/Cpa)ev
I3 (g-dR Y1) 0,y — £ g ((l, THHg (lug, /kug, ) )"/
Proof. We’ll explain the case o = 1; the general case will follow from an analogous argument

using Lemma 8.40(c). Let Eé,p ), S, and kug(® denote the p-completions of R®) Sy, and
kup, respectively. By Remark 8.41, (kuthp)g ~ THHa(Zy[¢p]/Splg — 1]), and so we get
Sl-equivariant equivalences

THHa (kuz, /kui,)*”” ~ THHa(SE® /S,) @ ku®®r ~ THHa (R®)[¢,]/S7,[q — 1]) -

This also induces an equivalence of S'-equivariant even filtrations

<ﬁlz THH, (kuﬁp /ku;fp) @Cp) h(T/Cp)ev

vV

= ﬁl*HRW—ev,hS1 TC™ (}Azz()p) [Cp]/SA\p [[q - 1]]);/;\ .

Indeed, depending on whether we are in case 6.2(E;) or (Ez), the given resolution }ABp — }AE'OO or
the resolution from Proposition 6.11 will also compute the Hahn—Raksit—Wilson even filtration.
By Proposition A.17 and A.19, the associated graded

e STHRW-ev,hs? 1O (fz;p) [¢o1/S4, g - 1]]);\ ~ fil}y (Q*ng)A)a;,N)

is the completion of the Nygaard filtration on (q—ng/) A);, as desired. O
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8.57. Lemma. — In the case m = p®, where p > 2 is a prime and o > 1, we have a canonical
equivalence of filtered Z,[B, q][tpe]/(Btpe — (¢P" — 1))-modules

A

) N Y Bloy. 51 TC;(pa) (kug, /kuz,)

ﬁlZ—Hdgpa (q—cfl\%g (2)

Proof. We use induction on «. Unravelling the equaliser from 8.46 in the case m = p® provides
us with a pullback diagram

il g1 TCa ") (kug, /kuz,) ;

J i j
o R(T/Cpa ey
fil%, g1 TCa ) (kug, /kug,) —— ((ﬁlgv THH.(kuﬁp/kupr)q’C”a’l)tC”’“) e

h Cha ev
(1, THHa (g, /luz,) " ) e

Let us first consider the case a = 1. In this case the bottom left corner of the diagram
above is just fil}, , g1 TCyq (kug,/ku, ), whose associated graded is fil] yq,(¢-dRg/4); by The-
orem 7.9. The argument in 7.7 shows that the bottom right corner can be identified with
fil7, ;51 TPu(kup, /kuj,), whose associated graded is (¢-dRg/4),, in every degree. The associ-
ated graded of the top right corner has been computed in Lemma 8.56. We conclude that the
associated graded of the pullback diagram above will be of the form

N7 gk, o TCa ) (kug, /kuz,) —— filir(q-dRY),)0
l - J%/A[q]
£} 114 (4-dR /)., (4-dRpya),

By A.18 and the construction of the comparison map in 7.5-7.7, we see that the right vertical
map is indeed the relative Frobenius ¢,/ 4[4 on ¢-de Rham cohomology.
The filtered structure on ﬁlj\/(q—ng; A)(Ap ) comes from the structure as a graded module

over Zp[uy, q][t]/(upt, — ®p(q)), whereas the filtered structure on fily j14,(¢-dRg/4), and the
constant filtration on (¢-dRp/4); are presented as graded Z[S][t]-modules. Changing the
filtration parameter from ¢ to t, = ®,(¢q)t has the effect of “rescaling” filtrations by ®,(q) as
in 3.32. The resulting diagram almost looks like the completion of the defining pullback of

ﬁl;,Hdgp (q—ng/) )y except for the following subtlety: The rescaled filtrations

®,(q)* fily jag(q-dRpya), and  ®,(q)*(¢-dRpya);

are already complete, so ®,(q)* ﬁl;_Hdg(q—ch\{R/A)g and <I>p(q)*(q—<ﬁ{R/A);)\ are not the com-

pletions of these filtrations. To see that the pullback above still yields the completion of

ﬁl;,Hdgp (q—ng/) A)J/D\, just observe that the pullback

A3 pag (Q‘dRR/A);\ — (Q‘dRR/A);\

S

fil} g (- AR r/a), —— (¢-dRrya),
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stays a pullback after rescaling everything by ®,(¢). This is clear since rescaling preserves all
limits. This concludes the proof in the case o = 1.

Now let o > 2. Using a similar argument as in 7.7, we see that the associated graded of
((fil;, THHg(kug,/ l{llgp)(bcpo‘*1 )ECp.en)(T/Cpe)ev i given by (q—ng/:l))(An ) Inevery degree.
Thus, the associated graded of the pullback diagram from the beginning of the proof will take
the form

S gk, 5 TCa ) (kug, /kug,) —— Sl (a-dRY )0 v
l - J‘%/A[Q]
% — a—1 A a—1
1} 34, (-dRY, ) (a-dRig 4 )

Again, changing the filtration parameter from ¢,a-1 to tp« introduces a “rescaling” by ®,a(q) in
the bottom row. The resulting diagram looks almost like the completion of the defining pullback

of fily. Hdg, o (q ng% /,4)1) except that again the rescaled filtrations are already complete. To fix

this and to finish the proof, it will be enough to check that the diagram

a—1 a—1
ﬁlq—”ﬂdgpa_l (q_ng/A ));\ fill (- dRE—z/A ))2 (q_ng/A ));
| | | | |
fil* (g-dRY N —— Al (¢-dRE, )N —— (g-dRET )
g-Hdg,a1 \ T R/A ) NTER/a ) (o) TRrsa ) (o)

consists of two pullback squares (so that we still get a pullback after rescaling the outer rectangle
by ®,(q)). Now the right square is a pullback since every filtration is the pullback of its
completion. To see that the left square is a pullback, we observe that in the definition of
a—1 1
ﬁl;_Hdgp%l (q—ng/A ));\ the only occuring non-complete filtration is fil, (q ng/A ))2, as the
other two filtrations are rescaled by ®,.-1(¢) and thus automatically complete. O

Proof sketch of Theorem 8.51. We analyse the factors of the last fracture square from 8.52 in
the case where N is divisible by m and check that they match up with those from 3.38.

(a) Once we invert N, all filtered Tate constructions (—)“»ev for p | m will vanish, using that
the non-filtered Tate construction (—)!“» vanishes on S[1/p]-modules plus an argument as
in 7.7. So the equaliser from 8.46 will just be a product. Together with Lemma 8.53, we
conclude that il « TC~ ™ (kug[1/N]/kua[1/N]) is the product

H(ﬁlgvTC (kuR[ ]/kuA[ ]) ®§[q]7wd S[q])/\

dim ®4(q)

and therefore 72 gra, g1 TC™ (m) (kur[1/N]/kua[1l/N]) is the completion of the filtered
Z1B, qlltm]/(Btm — (¢™ 1)) module

A
11 (ﬁl;_Hdg ¢-dRp/a ®i[q],wd Alx, q])

dim ®a(q)
(b) A similar analysis as in (a) shows that ©=2* gr* o, TC™ (m )(kuﬁp [1/p]/kuz,[1/p]) is the
completion of the filtered Z[B, q|[tm]/(Btm — ( — 1))-module
* L A A
11 (ﬁquHdg 0-AR /4 ®4pq) e A[q]>p [%]%(q) '

dlm

149



§8. HABIRO DESCENT VIA GENUINE EQUIVARIANT HOMOTOPY THEORY

(¢) After p-completion for any p | N, we observe as in (a) that all filtered Tate constructions
—)tCeev vanish for £ # p. Simplifying the equaliser accordingly and using Lemma 8.55,
ymng gly g
we find that fil’ TC (M) (kug,/kuz,) is given by the product

A

dH (it 51 TC0™) (lupi /ku, ) @gpy o S[Q])%p(q) ’
p|Mp

where we put m = p*m,, with m, coprime to p. Using Lemma 8.56, we deduce that
the sheared associated graded X% gr* TC— (™) (kug,/kuz,) is the completion of the
filtered Z[53, q][tm]/(Btm — (¢"™ — 1))-module

A

IT (0 e, (a-ORE0)) ©hiy o Ald))
»Pdp

dp|myp

Evidently, (a)-(c) above match up with 3.38(a)—(c). It’s straightforward to check (using
Lemma 7.14) that also the maps between them match up. This proves what we want. O

As a consequence we obtain a “TR-style” description of derived ¢g-de Rham—Witt complexes.
The question whether such a description exists was first raised by Johannes Anschiitz in the
author’s Master’s thesis defense.

8.58. Corollary. — The associated graded of the even filtration fil3, o THH (kug /kus)cm
s given by
ST ek o THH (kup/kuy)om ~ q-WmdR% 4 -

Proof sketch. This follows from Theorem 8.51 and Proposition 3.39. O

Finally, let us explain how to recover the Habiro-Hodge complex ¢g-Hdgp JA-

8.59. Cyclonic even filtrations on THH(KUgr/KU4). — Put KUy = KU® S4 and
KUpgr = KU®Sg. We equip KU with its cyclonic structure from 8.32 and

THH(KUR/KUA) ~ THH(kuR/kuA) Ru KU
with the base change of the cyclonic structure from 8.43. We also let

fil}, o, THH(KUR/KU4)“™ = fil}, o, THH(kug/kua)“" ®, cn KUS™
where kul™ = 750, (ku®m) and KUS™ = 759, (KUY"). Observe that — Oy Crm KU can
be regarded as a localisation at the element § sitting in homotopical degree 2 and filtration
degree 1. Finally, we construct

15, g1 TC~0M (KUR/KU,) = (81}, ¢, THH(KU /KU 4)Cm)"T/Cm)es

8.60. Remark. — If we believe that our construction of fil5, - THH(kug/kus)®™ is the
“correct” filtration to put on THH(kupg/kus)®™ (see the discussion in 8.46), then the construc-
tion from 8.59 provides the correct even filtration for THH(KUg/KU 4)¢™, since taking even

filtrations should commute with filtered colimits.
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8.61. Lemma. — For all m € N, the filtered objects
filf, o, THH(KUR/KUA)“" and fil}, g TC™™ (KUR/KU )

are complete and ezhaustive filtrations on THH(KUg/KU 4)%m and TC~ ™ (KUr/KU,), re-
spectively.

Proof sketch. Observe that inverting the element S in homotopical degree 2 and filtration
degree 1 preserves the assumptions of [AR24, Lemma 2.75(iv)]. We can thus use the same
argument as in Lemma 8.49. O

8.62. Remark. — In the general setup of 8.46, we have canonical maps
Cm
ﬁlgv /T,Cm, M - (ﬁlzv /T,Ch,

whenever n | m. Indeed, upon applying (—)"“m/n.ev_ the equaliser diagram for fil*, o, M Cn
becomes a subdiagram of that for fily IT,Com MCm . As a consequence, we get canonical maps

fil}, g1 TC™™ (KUR/KU ) — il g1 TC™™(KUR/KU ).

and similarly for ku. It’s possible to construct these maps coherently, that is, assemble them
into functor N — SynSp. Since we’re only interested in the limit, the individual maps will
suffice, as we can always restrict to the sequential subposet {n!},~1 C N.

8.63. Theorem. — Let m € N. Suppose A and R satisfy the assumptions from 7.19 along
with the addenda 2 € R* and 8.43(As). Then there exists a canonical Z[BT']-linear equivalence

q-Hdg g4 651 > gr* (lim L}, 1 TC™0) (KUR/KU,)) .
Proof. Let us first verify that

(2, 0 TC ) G lun))[571) | = il 0 TC O (KUR/KUL),

where [ sits in homotopical degree 2 and filtration degree 1, whereas t,, sits in homotopi-
cal degree —2 and filtration degree —1 of T}Q*((kqu)h(Sl/ Cm)). Indeed, we can identify
the t,,-adic filtration on (—)"T/Cm)ev with the filtration coming from the CW filtration on
ku[S!/Cin]ev in the sense of [AR24, Construction 2.52]. This shows that both sides above
are t,,-complete, so the map exists, and after reduction modulo ¢,, we recover the defining
equivalence fil5; o THH(kug/kua)C=[71] ~ fils, o, THH(KUgR/KU4)%", so also the map
above is an equivalence.

As a consequence of this observation and Theorem 8.51, we obtain that the filtration
fil, g1 TC~™(KUg/KU,) is periodic and each graded piece is equivalent to

AN
i> 1] ,
(gm-1)

where we use the notation from 3.42. Also observe that since we complete at (¢" — 1) anyway,

%

0 —(m H(m)
g1l 51 TC™ " (KUR/KU) = q—dRR/A'M

it doesn’t matter whether we use q—(ﬁ{%nz)4 or q—ngn?4 in this formula, so the right-hand side
agrees with ¢-Hdgg /4 -
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By tracing through the constructions it’s straightforward to check that the associated graded
of filX, ¢ TC~ ™ (kug/kuy) — fil%, o1 TC~ ™ (kug/kuy) from Remark 8.62 is the completion
of the transition map
(m

/

L gy a-dRY) — A1 50, q—ngf/) N

A

from 3.41. Thus, the associated graded of limy,en fil5, o1 TC~ ™ (KUg/KU,) is indeed given
by limyen ¢-Hdgr)a,m[B5'] =~ ¢-Hdgg/a[67']. O
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§9. Examples

§9.1. Examples of spherical lifts

The assumptions of our main results—Theorems 7.27, 8.51, and 8.63—seem quite restrictive
at first. In this subsection we’ll show that there are nevertheless many nontrivial examples to
which the theorems apply. We'll start with examples of A-rings A that satisfy the assumptions
from 7.19(A).

9.1. Example. — If A = Z[z; | ¢ € I] is a polynomial ring equipped with the toric A-
structure in which ¢™(z;) = «I"* for all m, then the assumptions from 6.1 are satisfied. Indeed,
we can choose Sy ~ S[x; | i € I] to be flat spherical polynomial ring. As explained in [BMS19,
Proposition 11.3], this is a cyclotomic basis and for every prime p the Tate-valued Frobenius
satisfies ¢yc, (x5) = @} = PP (z3).

9.2. Example. — If A is a perfect A-ring, then the assumptions from 6.1 are also satisfied:
For every prime p, the spherical Witt vector ring Sw(4/p) from [L-Ellj;, Example 5.2.7] yields
a p-complete lift of A. These can be glued with A ® Q in a canonical way to yield S4. To
construct the structure of a cyclotomic base and check 6.1(!“?) for all primes p, we must equip
the Tate-valued Frobenius

bic,: Sa — Sy

with an S'-equivariant structure, where S, receives the trivial action and Silc” the residual
St/ Cp ~ S'-action. Equivalently, we must factor ¢1c, through an E..-map

Sq — (Silcp)h(sl/cp) ~ (Sffl);\
By the universal property of spherical Witt vectors, for all m € N and all primes p the Adams
operation ¢ : A — A lifts to an Eoo-map ™ Sw(a/p) — Swa/p)- These can be glued with
the rationalisation to obtain an Eo.-map ™: S4 — S4. From the trivial S'-action we also
obtain a map S4 — SZS ' that splits the usual limit projection. The desired factorisation of
¢tc, is then given by

D
Sa 2584 — S — (s)) — s
To see that the composition is really ¢yc,, we use the universal property of spherical Witt

vectors again: It’s enough to check that the map on mo(—)/p is the Frobenius on A/p, which is
clear from the construction.

9.3. Example. — We can also combine Examples 9.1 and 9.2 and consider A to be a
polynomial ring over a perfect A-ring, or even a localisation of such a ring, as long as it still
carries a A-structure.

The examples where A is a polynomial ring (over a perfect A-ring) are the most relevant
for us, since they are expected to show up in the connection with the work of Garoufalidis—
Scholze-~Wheeler-Zagier ([GSWZ24], but the relative case was only discussed in [Sch24b]).
Nevertheless, there are examples that are not of this form, such as the following.

9.4. Example. — Recall that the polynomial ring Z[y] admits one more A-structure besides
the toric one ([Cla94]; see also [Manl6]). This other A-structure is called the Chebyshev
A-structure, since Y™ (y) is given by the Chebyshev polynomial T}, (y). If Z[zT'] is equipped
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with the toric A-structure, then the Chebyshev A-structure on Z[y] can be identified with the
fixed points of the Co-action on Z[z*1] that sends = + 2~!. Under this identification we have
Yy=x+ s

We'll show that A = Z[3,y] still satisfies 7.19(A). Indeed, as soon as 2 is invertible, the
homotopy fixed points S[%,y] := S[5, 211" define the desired Eo-lift. To verify that 6.1(*C7)
is satisfied for all primes p, there’s nothing to do for p = 2, as then S[%, y]t¢? ~ 0. For p # 2,
(—)r and (—)"“2 commute (see [KN17, Lemma 9.3] for example) and so 6.1(*“%) follows from
the corresponding assertions for S[%, 1] by applying (—)"“2. The same argument shows that
the addendum from 8.43(As) is satisfied as well.

9.5. Remark. — Recall that a cyclotomic spectrum X has Frobenius lifts in the sense of
[KN17, Definition 8.2] if for each prime p the cyclotomic Frobenius ¢,: X — X tCr factors
Sl-equivariantly through a map Pp: X — X hCv such that the Y, commute for different primes.

In each of Examples 9.1-9.4 it’s clear that S4 admits Frobenius lifts as a cyclotomic Eq-
algebra. Using Lemma 8.44, this implies that Assumption 8.43(Az) is satisfied. Indeed, since the
Sl-action is trivial, we may equivalently regard Yp: Sa — SZC" as an S'-equivariant E..-algebra
map 9?: S4 — Sa. The commutativity datum simply provides homotopies P o t)¢ ~ ¢ o 9p? for
all p # £. Inductively defining 9! = id, ¥P™ := 9™ o0 9P, we obtain the necessary commutative
diagrams

pm
Sqg —— Sa

N

m\tC.
Silcp (pm)*=p qucp
and thus the desired map Si‘th — Shiv,
9.6. Non-example. — In the case where A = Z{z}, is a free A-ring, it’s not known whether

a spherical lift Sy as in 6.1 exist.( 1)

Let us now give several examples of A-algebras R that satisfy the assumptions of 7.19(R).

9.7. Example. — Suppose that S is a smooth A-algebra equipped with an étale map
O: Alzy,...,z,] — S. By [L-HA, Theorem 7.5.4.3], O lifts uniquely to an étale map
Salzi,...,2n] — Sg o of Exo-ring spectra. Then R = S satisfies the assumptions of 7.19(R),
choosing 6.2(IEz) for every prime p. We’ll continue to study this example in §9.2 below.

9.8. Example. — In the setting from Example 9.7, suppose that (yi,...,y,) is a regular
sequence in S. By Burklund’s theorem about multiplicative structures on quotients [Bur22,
Theorem 1.5] (see also the argument in Remark 4.23), the spectrum

Sk =Sso/ (Y, u")

admits an Eq-structure in Sy-modules (even in Sgn-modules) if all o are even and > 6. If 2 is
invertible in S, it’s already enough to have all a; > 3, with no evenness assumption. In either
case, we see that R = S/(y1",...,y%") satisfies the assumptions of 7.19(R), choosing 6.2(Es)
for every prime p.

O-D1p fact, it is a conjecture of Thomas Nikolaus that such a spherical lift doesn’t exist.
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If we only assume that all o; are even and > 4, or 2 is invertible in S and all o; > 2, then S
still admits an Eq-structure in Sg o-modules. Provided that R is p-torsion free, condition 6.2(E;)
is satisfied for every prime p. Indeed, if we put

N R 1/p> 5\
By = <Ap<1:1 Y@ Rp)p .
then the p-completed Cech nerve of ﬁép — ﬁip,oo admits a spherical E;-lift, given by the p-
completed base change along Sa[x1,...,x,] — Sg of the Cech nerve of the Ey-algebra map
S S 1/p™ 1/p>
Alz1, ..., zn] — Salz] xi "]

geeey

9.9. Example. — The easiest way for 6.2(E) to be satisfied is the case where R/p is already
relatively semiperfect over A, so that we can take the trivial descent diagram for the identity
on R Then the only condition is for R to admit an Eq-lift Sg, in S4-modules.

Thanks to Burklund’s result again, it’s easy to write down rings for which this is satisfied for
all primes p. Here’s one possible construction: Let B be a relatively perfect A-A-algebra such
that A — B is quasi-lci.(?) For example, we could take B = A[z!'/™ | n > 1] with the toric
A-structure or B = A ®z Z{z} A pert, the free A-A-algebra on a perfect generator. Let B’ be an
étale B-algebra and let (yi,...,y,) be a regular sequence in B’. Then R = B'/(y7",...,y%")
satisfies 6.2(E;) if all «; are even and > 4. If 2 is invertible in R, it’s already enough to have
all a; > 2 with no evenness assumption.

Indeed, since each p-completions EI’D is all p-completely formally étale over A, it lifts uniquely
to a p-complete connective Eqo-S 4-algebra S By Our assumptions on the «; ensure that [Bur22,
Theorem 1.5] applies, so that

Sk, = Sg;}/(y‘f‘l, .. ,yff"")

admits an Ei-structure in S4-modules (even in Sg,-modules), as desired.

§9.2. The case of a framed smooth algebra

In the situation of Example 9.7, the g-deformation of the Hodge filtration that we see has a
very nice explicit description. This result is due to Arpon Raksit; in fact, his result is what
motivated our investigation. To formulate the result, recall that in the situation at hand, the
(underived) g-de Rham complex ¢-Q2 s5/4 can be represented by an explicit complex

v v vV An
- Qfyan = (STa— 115 Qhyala — 11 25 - 25 0% 4[0 - 11)

9.10. Theorem (Raksit, unpublished). — Let (S,00) be a framed smooth A-algebra as in
Ezample 9.7 and put kugn = ku®Sgs . For all integers i we let ﬁlZ-Hdg,D q—Q"bi/A’D denote the
subcomplex

((@-1'Sla—10— (a= 1" alg = 1] = - = Qyalg— 1 — - = Wala - 11).
of the coordinate-dependent q-de Rham complex q—Qg/AD (which we regard as sitting in homo-
topical degrees [—n,0]). Then
N2 grév TC™ (kusn/kug) ~ ﬁl;_Hdgﬂ Q‘Qg/A,D .

(92)For every prime p, the relatively perfect map of 6-rings A, — B, will automatically be p-quasi-lci, so A — B
being quasi-lci is a rational condition.
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While Raksit’s original proof uses geometric arguments, we’ll give a more algebraic proof of
Theorem 9.10. We first need a general fact about ¢-divided powers.

9.11. Lemma. — Fiz a prime p. Consider Z,|z,y,q|, equipped with the toric d-structure,
and let N
Pz —y
q-D = Zy[z,y, q]{() :
[Plq (p,a—1)

Then q-D is the (p,q— 1)-completion of the subalgebra of Qp[z,y|[q— 1] generated by Zy|x,y, q|
as well as elements (q — 1)df~yg(a: —y) for alld > 1, where we put

(z—y)(z—qy)-(x—q"!

Y)
(4;0)a '

gle —y) =

Proof. It will be enough to show that ¢-D contains (¢ — 1)457(z — y) for all d > 1, as then
the fact that these are generators as well as the claimed description of ¢-D can be checked
modulo (¢ —1).

First observe that (p,q — 1) is a regular sequence in ¢-D. Indeed, ¢-D/(q — 1), where the
quotient is taken in the derived sense as usual, is the PD-envelope of (z —y) C Zy[z, y|, which
is a p-torsion free ring. It follows that (p, (¢;q)q) is a regular sequence for all d > 1. Indeed, up
to factors that are invertible in g-D, the Pochhammer symbol is a product of factors of the
form (1 —¢""), and (1 —¢*") = (1 —¢)?" mod p. In particular, each (g; q)4 is a non-zerodivisor
in ¢g-D.

If we equip Zp[z,y, q] with the toric A-structure, then the Adams operations Yt for € # p
are -ring maps. Using the universal property it is then straightforward to check that the 1*
extend to ¢-D, hence ¢-D carries a A-Zy[x, y, ¢]-structure extending the given d-structure. This
A-structure extends then uniquely to the localisation ¢-D[(g;¢);" | d > 1]. In the localisation,

we have
dfT Y\ _ ~d .

see [Pril9, Lemma 1.3]. So we must show (¢ — 1)d)\d(x Y) € ¢-D. To this end, first observe that
(¢ — 1)1/1‘7[(”:;_;11’) € g-D for all d > 1. Indeed, it’s enough to check this if d = p® is a power of p.
So we must check that 27" — y?* is divisible by [p®], in g-D. Since ¢-D is (p, g — 1)-completely
flat over Zy[q — 1] by [BS19, Lemma 16.10] and thus flat on the nose over Z[q], it will be
enough to check that zP* — P is divisible by each cyclotomic polynomial in the factorisation
[p°]q = @p(q)Pp2(q) - - - Ppe(g). Since a?" — yP" divides 2P — y?” for i < «, it suffices to show
that 27" — yP” is divisible by ®,e(q), which follows by applying ¢! to o(x —y)/[plg-

Now let us put A(—) = Ygoo A(—)t" and (=) = Y41 ¥(—)t?, where ¢ is a formal
variable. Our observation above shows that 1,1 (q 1) has coefﬁments in g-D. From the

general A-ring formula ¢, = —t% log A_; we deduce that A_1y ( = 1) has coefficients in
q-D[p~1]. Since (p, (¢;q)q) is a regular sequence in g-D, the we get

¢-D[p~']N¢-D[(¢:9);'] = ¢-D,

where the intersection is taken in g-D[p~!, (g; q)fl] (and on the level of sets—nothing derived
is happening). This shows (¢ — l)d/\d(‘r y) € ¢-D, as desired. O]

9.12. A cosimplicial resolution. — To show Theorem 9.10, we’ll compute the even
filtration via an explicit resolution. To this end, let us fix the following notation:
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(a) Let P:= A|zxy,...,zy] and Sp == Sa[x1,...,2y]. Let A — P*® and S4 — Spe denote the
Cech nerves of A — P and Sy — Sp and put kupe := ku ® Spe.

(b) Let :L'Z(T) € P* = p®a(*+tD) denote the element 1 Q@+ ® 1@z, ®1® ---® 1 coming from
the 7" tensor factor for any 1 <r < e+ 1.

() Let ¢g-D* denote the (¢ — 1)-completion of the sub-algebra of (S®4(*t1) ®@; Q)[q — 1]
generated by S®4(*+1)[¢ — 1] as well as the elements (¢ — 1)dﬁf]l (ml(r) - xl(-s)) for all integers

d > 1, all tensor factors 1 <r,s < e+ 1, and all indices 1 <7 < n.

(d) Let fil] yq, g-D°® be the descending filtration of ideals generated by (¢ — 1) in filtration

degree 1 and the elements (¢ —1)?¢ (xl(r) Z(S))

denote the completion of this filtration.

in filtration degree d, and let fil} 4, g- D*

9.13. Lemma. — With notation as above, there exists a canonical isomorphism of graded

Z[B][t] = (¢ — 1)*Z[q — 1]-modules

Proof. We know from Theorem 7.27 that m, TC™ (kug o/kups) is the completion of a filtration
ﬁl;,Hdg q-dRg/pe. Consider the arithmetic fracture square for the completed filtration:

17 g ¢-dRes) pe LT 68} s1ag (a-dRispe) 2
p

] l A

ﬁl?Hdg,qfl) (dRS/P' ®z Q)/I-\Idg la =11 ﬁl?Hdg,qfl) (H (dRS/P'>;\ ®z Q) Hae [g—1]
P

Observe that all corners of this pullback square are static in every filtration degree. Indeed,
this can easily be checked modulo (¢ — 1). More precisely, if we identify the (¢ — 1)-adic
filtration (¢ — 1)*Z[q — 1] with the graded ring Z[S][¢] as in 7.26, then everything is S-complete;
modulo 3, we’re then reduced to checking that ﬁlf{dg dRg/pe as well as its p-completions and
its Hodge-completed rationalisation are static, which is standard.

We conclude that this diagram is also a pullback of filtered abelian groups, which will make
it easy to construct a map ﬁlq Hdg 4 D — ﬁlq “Hdg 4~ dRs/ pe. To this end, let us now analyse
the factors of the pullback. Let us start with the p-completed ¢g-de Rham complex (g- dRg, p.) .
Since §-structures extend uniquely along p-completely étale maps, the toric - A-algebra structure
on 131; extends uniquely to a d-A-algebra structure on (S®A(’+1)) Then (¢-dRg, p.) is the
g-PD-envelope in the sense of [BS19, Lemma 16.10] of the (p,q — 1) completely regular ideal

f]; = ker((S®A('+1)) — 8 )

Using Lemma 9.11 we see that (¢-dRg,pe);, contains all the elements (¢ — 1) fyq( (r) _ (s)).
By Theorem 7.18, for any fixed d, these elements are contained in ﬁlq,Hdg(q dRg/ps);-

The rational factor is similar: Since P — S is étale, the Hodge-completed de Rham
complex satisfies &Rg/p. ~ &ES/S@A("H)u and so (dRg/pe ®z Q)ﬁdgﬂq —1] is the (Jg»q—1)-adic

completion of (S®4(*+1) ®, Q)[q — 1], where

Jg = ker((S®A('+1) Xz Q) — (S ®z @)) .
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Since :BET) - ZEES) is an element of J§, it’s also clear that S'/g(xl(r) - :L‘Z(S)) is contained in

ﬁl’(kHd&q_l)(dRS/p. ®z Q)ﬁdgﬂq — 1]. Using the pullback above we get a filtered map

ﬁl;;Hdg q—ﬁ. — ﬁl;—Hdg q_({ﬁS/P. .

Reducing modulo (¢ — 1), or more precisely modulo 3, we see that this map is an isomorphism,
which finishes the proof. O

Proof of Theorem 9.10. The even filtration in question can be computed via the cosimplicial
resolution

fils, TC™ (kug,n/kuy) ~ liin T2, TC™ (kug o /kupe) .

Using Lemma 9.13, it remains to show that the totalisation of the cosimplicial filtered ring
fil} pag ¢-D° is quasi-isomorphic to the filtered complex fil} yq, 1 ¢-2§ /0. We'll show this
using a similar argument as in the proof of [BS19, Theorem 16.22].

To this end, first observe that the g-divided powers from Lemma 9.11 interact with the
g-derivatives as follows:

-0:(V(x —y) =3 Nz —y) and ¢-0,(Fz—y)) =" (z—qy).

It follows that the g-derivatives extend to q—ﬁ'. We can then consider the filtered cosimplicial
filtered complex fil* g-M** given by

. * ° * -V
(ﬁqudgq D* Y A D ®@pe Qba g T A2 gD @pe Qg T )

Then each column fil* g-M*%* is quasi-isomorphic to fil* ¢-M%*; indeed, this can be checked
modulo (¢ — 1), and then it follows from the Poincaré lemma for the completed Hodge-filtered
de Rham complex. On the other hand the rows fil* ¢-M®J for j > 0 are acyclic; this can be
seen e.g. by [Stacks, Tag 07L7] applied to the cosimplicial filtered ring fil} 4, q-D*. Tt follows
formally that the 0" column fil* g-M%* is quasi-isomorphic to the totalisation of the 0 row

fil* g-M*°, which is exactly what we wanted to show. ]

9.14. Remark. — As a consequence of Theorem 9.10, the filtered complex ﬁlé—Hdg,D q-Q5% /A0
can be promoted to a filtered Eo-algebra over the filtered ring (¢ — 1)*AJg — 1]. In fact, we
even get the structure of a filtered derived commutative algebra, as we desired in 3.51.

§9.3. The Habiro ring of a number field, homotopically

As a final example, let us give a homotopical description of the Habiro ring of a number field
from [GSWZ24, Definition 1.1].

9.15. Corollary. — Let F' be a number field and let A be divisible by 6 and by the discriminant
of F. Let Sp,[1/a] denote the unique lift of Op[1/A] to an étale extension of S. Then

~ . h(St/Cm
’HOF[UA]:ﬂo(gllgllw(THH(KU®SOF[1/A]/KU)CW) (/).

Proof. By Corollary 3.13, ¢-Hdgo,1/a]/z = Hoy[1/a]- In particular, the Habiro-Hodge com-

plex must be static. By Theorem 8.63, the filtration lim,,en fil’, g1 TC™ (m) (KU®So,[1/4]/KU)
must be the double-speed Whitehead filtration 72, and the result follows. OJ
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PARrT III.
qg-Hodge complexes and refined THH/TC™

This part is based on joint work with Samuel Meyer [MW24]. We’ll discuss the construction
of refined localising invariants due to Efimov and Scholze, and we’ll explain a recipe how to
compute them in certain cases (see Theorem 10.17), using the notion of killing an idempotent
pro-algebra. We’ll then apply this recipe to compute

T TCT™(k®Q/k) for k € {ku, KU, ku), KU} }

in Theorem 11.15.

The main input is a complete computation of the homotopy groups 7, TC™ ((ku®S/p*) /ku)
for « > 2 (the case p = 2 needs « even and > 4 instead), where S/p® is equipped with a
Burklund-style Eq-structure. To perform this computation, we use the relation between ¢-de
Rham cohomology and TC™ (—/ku), particularly Theorem 7.18 as well as an explicit description
of the canonical ¢-Hodge filtration filj 4, ¢-dR (7, (2}o0 /e z, from Construction 4.21. This
leads to proofs of Theorems 1.40 and 1.41 as well as to an elementary proof of Theorem 4.22(a).

Overview of Part III. — This part is organised as follows: In §10, we’ll discuss the
construction of refined localising invariants and the recipe for computation. In §11, we apply
this recipe to describe the homotopy groups m, TC™" (ku ® Q) and 7, TC™™(KU ® Q/KU).
In §12, we study overconvergent neighbourhoods in analytic stacks and then derive the simpler
descriptions of 7, TC_’ref(kuﬁ ® Q/kuy) and 7 TC_’ref(KUQ ® Q/KUy) from Theorems 1.40
and 1.41
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§10. Refined localising invariants and how to compute them

In this section we’ll present Efimov—Scholze’s construction of refined localising invariants and
we’ll explain a method for computing them in the case of certain “open submotives” of “smooth
and proper” rigid symmetric monoidal co-categories over some base (these notions will be made
precise below). As a consequence, we’ll get a recipe for computing THH™ (Q), which we’ll
carry out (after base change to ku) in §§11-12, but the method would apply just as well to
other cases like THHref(LfLS(p) /S)) or THH™ (S[x]).

§10.1. Killing (pro-)algebra objects

In this subsection we review the general formalism for passing to the “open complement” of
an algebra object. We’ll follow [CS24, Lecture 13]. Throughout, let’s fix a presentable stable
symmetric monoidal co-category C.

10.1. Killing algebras. — Let A € C be an object equipped maps u: AQ A — A and
1 — A such that p is left-unital (or right-unital; this doesn’t matter). We let C4 C C be the
full sub-oco-category spanned by those U € C for which

Home(A,U) ~ 0,

where Hom, denotes the internal Hom of C, as usual.

Clearly C# is closed under limits in C. If x is a sufficiently large cardinal such that S ® A
are k-compact for all S in a set of generators for C, then C# is also closed under k-filtered
colimits. By the oo-categorical reflection theorem [RS22], it follows that the inclusion C4 — C
admits a left adjoint j*: C — C4. Since C* is also clearly closed under Hom, (Y, —) for any
Y € C, we see that

FX®Y) = (["(X)®Y)
is an equivalence for all X,Y € C. By abstract nonsense about symmetric monoidal localisations
(see [L-HA, Proposition 2.2.1.9]), it follows that C4 and j*: C — C4 can be equipped with
canonical symmetric monoidal structures and the inclusion C4 — C with a lax symmetric
monoidal structure. In particular, j*(1) is an E-algebra in C. We'll often say that j*(1) is
obtained from 1 by killing A.

Our first goal is now to give a formula for j* in certain cases.
10.2. Lemma. — Let Z :=fib(1 — A). Then for every X € C the canonical map
nx: X = Home (1, X) — Home(Z, X)
becomes an equivalence upon applying Home(—,U) for any U € CA.

Proof. Tt’s enough to show Home(fib(nx),U) ~ 0. Note that the fibre fib(ny) ~ Hom.(A, X)
is a weak A-module in the sense that there exists a unital multiplication map

A® Home(A, X) — Home (A4, X).

In particular, Hom,(A, X) is a retract of A ® Hom,(A, X) and so it suffices to show that
Home¢(—, U) vanishes on the latter. Now Home(A® Y, U) ~ Home (Y, Hom(A4,U)) ~ 0 holds
for all Y € C, so we conclude. O
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10.3. Proposition. — With notation as above, suppose that one of the following two
conditions is satisfied:

(a) For all X € C, we recursively put Xo := X and X, 41 = Hom(Z, X,,). Then the diagram

X X ox, Iy, M
stabilises at some finite stage (for example, this is satisfied if A is idempotent—then the
colimit always stabilises after the first step).

(b) The functor Homg (A, —) commutes with sequential colimits (for example, this is satisfied
if A is dualisable in C).

Then j*(X) is the colimit of the diagram from (a) for all X € C.

Proof. Let us denote the colimit of the diagram from (a) by Xo. Then Lemma 10.2 ensures
that Home (X oo, U) — Home (X, U) is an equivalence for all U € C4, so we only need to check
Xoo € C4; that is, Home (A, Xoo) =~ 0. Equivalently, nx..: Xoo — Homy(Z, Xoo) needs to be an
equivalence. But either of the two assumptions above makes sure that Hom(Z,—) commutes
with the colimit defining X, and so nx,_. is an equivalence by construction. O

We'll now explain a variant of the construction above in a pro-/ind-setting.

10.4. Killing pro-algebras — We keep C a presentable symmetric monoidal stable oo-
category. The tensor product on C extends to symmetric monoidal structures on Pro(C) and
Ind(C).(w'l) Observe that Hom, can also be extended to a functor

Ind(Hom,)
—_—

Pro(C)°? ® Ind(C) ~ Ind(C°?) ® Ind(C) Ind(C),

which, by abuse of notation, we still denote Hom,. Explicitly,

4H0mc( ElemJ Y Cl?élfI(n Zk) = (j,kggblgngHomC (¥5:21) -
Let now A = “lim]_; A; € Pro(C) be a pro-object equipped with maps p: A® A — A and
1 — A such that p is left-unital. We let Ind(C)? C Ind(C) denote the full sub-co-category
spanned by those ind-objects for which

Hom, (A, M) ~0.

Our goal is again to describe a left adjoint j*: Ind(C)* — Ind(C) of the inclusion. To this end,
let Z := fib(1 — A) and consider the canonical maps nx: X ~ Hom(1,X) — Hom.(Z, X) for
all X € Ind(C), as in Lemma 10.2.

10.5. Lemma. — The inclusion of Ind(C)4 admits a left adjoint j*: ITnd(C) — Ind(C)%,
which can be explicitly described as follows: For X € C we recursively put Xg = X and
Xn+1 = Home(Z, X,,). Then

J75(X) :colim(X o x, P x, ey )

(10-DWe'll ignore the set-theoretic difficulties that arise with applying Pro(—) and Ind(—) to large co-categories.
In all cases of interest, we can safely replace C by its k-compact objects C* C C for some large enough regular
cardinal x (usually kK = w1 is enough).
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Proof. Since Hom.(A, —): Ind(C) — Ind(C) preserves filtered colimits, we can argue as in the
proof of Proposition 10.3 to see that j*(X) € Ind(C)4. It remains to show that the canonical
morphism X — j*(X) induces equivalences

Homy,g(c) (7*(X),U) — Hompnge)(X, U)

for all U € Ind(C)4. Tt will be enough to show the same for nx, or equivalently, that

Hompyq(ey(Home (A, X),U) =~ 0. To this end, let M € Ind(C) be any object for which the

10.2)

natural transformation Hom.(A, —) = Home (1, —) ~ (—) admits a section. Via such a

section M — Hom¢ (A, M), the identity on Homp,qc)(M,U) factors through
Hompyqc) (Home (A, M), Home(A4,U)) ~ 0,
and so Homy,q(¢y(M, U) =~ 0. Since such a section exists for M = Hom¢ (4, X), we conclude. [J

10.6. Killing idempotent pro-algebras. — Suppose that A is idempotent in Pro(C), that
is, 1 — A induces an equivalence

A~T®A S ARA.

Let us spell out how j*(1) looks like in this case: We write A = “lim” A; and denote by
(—)Y :== Home(—, 1) the predual in C. Then Lemma 10.5 implies that there is a cofibre sequence

“Ci(éllicglw A;/ G N ]*(11) .

For idempotent A, we check in Lemma 10.7 below that j*: Ind(C) — Ind(C)* can be equipped
with a symmetric monoidal structure (we don’t know if this works in general-—the argument
from 10.1 doesn’t seem to work anymore). As a consequence, j*(1) will be an E-algebra in
Ind(C). We'll say that j*(1) is obtained from 1 by killing the idempotent pro-algebra A.

10.7. Lemma. — Suppose that A is an idempotent pro-object. Then for all X,Y € Ind(C),
the canonical morphism

FXQY) = j*(*(X)®Y)

is an equivalence. In particular, there’s a canonical way to equip 5*: Ind(C) — Ind(C)* with a
symmetric monoidal structure.

Proof. By Lemma 10.5 and idempotence of A, j*(X) ~ cofib(Hom(A4, X) — X). Thus, to
show the first assertion, we may equivalently show that the canonical morphism

Hom, (A4, Home (A4, X) ® YY) — Home (4, X)®Y

induced by 1 — A is an equivalence. To see this, first observe that this morphism has a left
inverse given by

Hom (A4, X) ®Y ~ Hom¢ (A, Home(4, X)) ® Y — Hom, (A, Home (A4, X)®Y)

using idempotence of A and Y ~ Hom.(1,Y). Now, in general, let M € Ind(C) be an ind-
object for which Home(A, M) — M has a left inverse. We can then exhibit Home(A, M) — M

(0-2Intuitively, the condition should be that M admits a unital multiplication A ® M — M, but this doesn’t
make sense in our setting. So we replace this by the condition that Hom. (A, M) — M admits a section.
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as a retract of Hom,(A, Hom,(A, M)) — Hom,(A, M). But the latter is an equivalence by
pro-idempotence of A, so already Home(A, M) — M must be an equivalence.

This finishes the proof that j*(X ® Y) — 7%(5%(X) ® Y) is an equivalence. By abstract
nonsense about symmetric monoidal structures on localisations (see [L-HA, Proposition 2.2.1.9]),

it follows that j* can be canonically equipped with a symmetric monoidal structure. O
10.8. Remark. — In general, j*(1) is not an idempotent Ex-algebra in Ind(C); it is
idempotent if and only if AV := “colim},_ ., A} is an ind-idempotent coalgebra in the sense that

AV — 1 induces an equivalence AY ® AV ~ AY in Ind(C).

In the following lemma we’ll study a special situation in which this is the case. This uses
the notions of trace-class maps and nuclear objects; see the review in §5.2.

10.9. Lemma. — Let A = “limj_; A; be an idempotent pro-object whose transition maps
are eventually trace-class in the sense that for all i € I there exists an object j — i such that

Aj — A; is trace-class. Let AV := “colim]_; A. Then the canonical map

X®AY = Homq(A, X)

is an equivalence for all X € Ind(C). In particular, this implies:
(a) AV is an idempotent coalgebra in Ind(C) with eventually trace-class transition maps.

(b)  5*(1) is an idempotent nuclear Eoo-algebra in Ind(C), Ind(C)* C Ind(C) is precisely the
full sub-co-category of j*(1)-modules, and — ® 7%(1) ~ j*(—).

(¢) If F:C — D is any symmetric monoidal functor of presentable symmetric monoidal
oo-categories, then F(5%(1)) is obtained by killing the idempotent pro-algebra F(A).

Proof sketch. We can construct an inverse of X ® AY — Hom (A4, X) as follows: Fix some
i € I, choose j — i such that A; — A; is trace-class and let 1 — A; ®AJv be the corresponding
classifier. Then consider the composition

Hom(A;, X) — Home(4;, X) @ A @ A — X ® 4] .

In the first map, we tensor Hom,(A4;, X) with the classifier above. In the second map we use
the evaluation Home(A;, X) ® A; — X. It’s straightforward but a little tedious to check that

X ® A — Home(4;, X) — X Q@ A
Home (4;, X) — X ® A} — Homc(A;, X)

agree with the transition maps in the ind-objects X ® AY and Hom, (A4, X), respectively; we’ll
omit the argument.

Proving that these maps assemble into an inverse map X ® AV — Hom,(A, X) requires a
non-trivial argument, since we’re working in an oo-category, but there’s an easier way to show
that X®AY — Hom, (A4, X) is an equivalence: Equivalences are detected by g Hompyqc)(Z, —),
where Z ranges through all compact objects of Ind(C); now any morphism from a compact
object factors through X ® A or Hom,(A;, X) for some i € I, and so the observations above
will be enough.

To show (a), plug in X ~ AY: We obtain AY ® AV ~ Homy(A, AY) ~ (A® A)Y. This
proves idempotence as a coalgebra, because (A® A)Y ~ AV follows by dualising A ~ A® A. If
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J — 1 is large enough so that A; — A; is trace-class, then the dual transition map AY — A;-/ is
again trace-class by Lemma 5.11(b). This shows (a).

For (b), since we’ve shown that AY is an idempotent coalgebra in Ind(C), it follows that
7*(1) is an idempotent algebra. Also AV is a nuclear object in Ind(C), since every map Z — A
from a compact object factors through a trace-class morphism and is therefore trace-class itself.
Since 1 is nuclear too, it follows that j*(1) is nuclear. X ® 5*(1) ~ 5*(X) follows immediately
from the above equivalence X ® AY ~ Hom,(A, X). Since the inclusion Ind(C)* — Ind(C) is
lax monoidal by Lemma 10.7, it factors through a functor

Ind(C)* — Mod;« (1) (Ind(C)) .

Since j*(1) is idempotent, Mod «(q)(Ind(C)) C Ind(C) is the full sub-co-category spanned by
the objects of the form X ® j*(1). Hence we also get an inclusion Ind(C)* C Mod j« (g (Ind(C)).
On the other hand, every object of the form X ® j*(1) ~ j*(X) is contained in Ind(C)4. This
finishes the proof of (b).

To show (c), we only need “colim,; F(A}) ~ “colim}_; F(A;)". If Aj — A; is trace-class,
Lemma 5.11(c) provides a map F(4;)Y — F (A;/) in the reverse direction. By a formal argument

as above, this is enough to show the desired equivalence. O

§10.2. Generalities on refined localising invariants

Throughout this subsection and the next, we fix the following notation: Let Plrg“t denote the
oo-category of presentable stable co-categories and colimit-preserving functors. For a regular
cardinal x, we also denote by Prgt’ﬁ - Prgt the non-full sub-oco-category spanned by the x-
compactly generated presentable stable co-categories and those colimit-preserving functors that
also preserve k-compact objects (equivalently, the right adjoint preserves k-filtered colimits).
We equip these co-categories with the Lurie tensor product and we let Cautgtu‘a‘1 C PrSIft denote
the non-full sub-oco-category spanned by the dualisable objects and those functors whose right
adjoint still preserves all colimits.

We also let £ € CAlg(Prl}) be a rigid presentable stable symmetric monoidal oco-category in

the sense of 1.33. We denote
Prt .= Modg(Prk) and Prlg’fi = Modg(Prgt’H) ,

the latter assuming that € is k-compactly generated. If &€ ~ Mod(Sp) is the oco-category
of modules over some Eq,-ring spectrum k, we’ll usually abbreviate these as Pry and Prk o>
respectively.

10.10. Localising motives over £. — We define the co-category of dualisable £-modules
as the module oco-category Catgual = Modg(Catgt‘Jal).(m'3) Following Efimov [Efi25, Defini-
tion 1.20], we let the oco-category Mot}goc of localising motives over £ be the recipient of the
universal localising invariant on dualisable £-modules.

In the case where £ ~ Mody(Sp) is the co-category of modules over some E.,-ring spectrum k,
we’ll write MotlkOC instead; this agrees with the oco-category of localising motives over k defined

by Blumberg-Gepner-Tabuada [BGT16].

(103 Catdu®! can be defined without assuming that & is rigid, but usually it won’t agree with Modg (Catdua!).
See [Efi25, §1.3].
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10.11. Refined localising invariants (Efimov-Scholze). — A deep theorem of Efimov
[Efi-Rig] states that Mot is rigid itself. This has the following curious consequence, as
first observed by Efimov and Scholze: Suppose T is a localising invariant over £, that is, a
colimit-preserving functor

T: Motg® — D

into a presentable stable co-category D. If T' can be equipped with a symmetric monoidal
structure, then Efimov’s rigidity result implies that there’s a unique symmetric monoidal

factorisation

Motg® —X— D

\ I
~
N
N
ref "~
T ~

Drig

This factorisation 77 : Motlg)C — D'8 is the refinement of T defined by Efimov-Scholze.
Here D*® denotes the rigidification of D in the sense of [Ram24, Construction 4.75]; see
also [Efi25, Proposition 1.23]. We recall from these references that D& can be described as
the full sub-co-category of Ind(D)“OA) generated under colimits by ind-objects of the form
“colim;’EQ x;, where all transition maps z; — x; for rational numbers 7 < j are trace-class. If
D is locally rigid and its tensor unit is wj-compact, then it suffices to consider Z>g-indexed

ind-objects instead of Q-indexed ones. In other words, in this case
DM& =, NucInd(D)
is an equivalence. See [Efi25, Theorem 4.2] for a proof.

10.12. Lemma. — Let M(_): Q — Mot be a diagram such that M; — M; is trace-class
for all rational numbers i < j. Then

Tref <colim MZ> ~ “colim” T'(M;) .
i€eQ 1€Q
If D is locally rigid and its tensor unit is wi-compact, then the same is true for Zsg-indexed
diagrams with trace-class transition maps.

Proof. This is almost tautological: Since Mot® is rigid, (Mot2°)"& — Mot?¢ is an equivalence.

Since the ind-object “colim;’e(@ M; is a preimage of M under this equivalence, the first claim
follows. The second claim is completely analogous, since the additional assumptions imply

D"8 ~ NucInd(D), as we've seen in 10.11. O
10.13. Why computing T"*f is hard. — In general, we're faced with at least two difficult
problems:

(1) For an arbitrary motive M € MOt}cf‘)C, it can be very hard to decompose M into pieces for
which resolutions as in Lemma 10.12 exist.

(1) Even if such resolutions can be found, computing T'(M;) (and the transition maps between
them) can still be a very hard problem.

(10-9The set-theoretic difficulties here can be fixed as in Remark 5.14.
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In §10.3, we’ll explain how to solve problem (!) in many cases of interest, which will include
THH™(Q), THH™ (L{S,)/S(,)) and THH™ (S[z]). The entirety of §§11-12 below will then
be spent on problem (!!) for THH"!(Q), and we will only be able to obtain an answer after
base change to ku.

But before we dive into the difficult calculations, let us discuss another easy case. To this
end, recall from [Efi25, Definition 1.48] that a dualisable £&-module category X is called smooth
if the coevaluation Sp — XV ®¢ X preserves compact objects, and proper if the evaluation
X ® XY — &€ preserves compact objects. Here XV denotes the dual of X as an £-module.

10.14. Lemma. — Let X be a dualisable £-module.

(a) X is smooth and proper in the sense above if and only if X is dualisable in Catgual.(10‘5)

(b) If this is the case, then T™(X) ~ T(X).

Proof sketch. Assume first that X is smooth and proper. We'll only explain why the coevaluation
and the evaluation over £, i.e. £ — XV ®¢ X and X ®c XV — &, are functors in Catfglual; the
triangle identities are then straightforward to verify. Since Sp — XV ®g¢ X is strongly continuous
by smoothness, the same will be true for the composition

5—>5®(XV®5X)—>XV®5X

by [Efi25, Proposition 1.12(ii)]. So the coevaluation is a functor in Catg“al. Moreover, we have

XV ~ Hom@"! (X, £) by [Efi25, Proposition 3.4(iii)]. Since & was assumed symmetric monoidal,
Catd'a! admits an internal Hom, which necessarily lifts Hom&"!. Hence we get an evaluation
X ®s XY — £ in € as well.

Now assume that X is dualisable in Catgual. Then £ — XV ®¢ X is strongly continuous,
hence it sends the tensor unit (which is compact as £ is rigid) to a compact object. Then the
same must be true for Sp — XV ®¢ X, proving smoothness. For properness, we already know
that X®g XY — & is strongly continuous, so it remains to show the same for Y@XV — XY@ X'V.
To this end, write

XRe X ~(XRXY)Rege €

and use that £ ® £ — £ is strongly continuous by rigidity. This finishes the proof of (a).
Part (b) is an immediate consequence of this and Lemma 10.12, applied to the constant X-
valued diagram, which has trace-class transition maps since the identity on any dualisable
object is trace-class. O

10.15. Corollary. — Let & — & be a strongly continuous symmetric monoidal functor into
another rigid symmetric monoidal presentable stable co-category. If X is smooth and proper as

an E-module, then the forgetful functor Ca‘cf‘l(“"j‘1 — Catgual preserves trace-class morphisms.

Proof. By Lemma 10.14(a) and the general fact that XV ~ X (see [GR17, 1.9.2.1] or [Efi25,
Proposition 1.3]), we see that X is a self-dual E-algebra in Catg“al. The assertion then

becomes purely abstract nonsense: For X-modules M and N, the diagram

Hom$™ (M, X) @y N —— Hom%P* (M, X) @x (X @ N) —— Homi" (M, E) @ N

| J |

Hom %™ (M, N) Hom %™ (M, X ®s N) = Hom{" (M, N)

(10-5 Note that being dualisable in Catg"* is much stronger than being a dualisable £-module.
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commutes, where the horizontal arrows in the left square are given by the unit N' — X ®¢ N of
the “wrong way” adjunction between the forgetful functor and X ®¢ —: Catgual — Catgfual. O

§10.3. A recipe for computation

We continue to fix the notation from §10.2 as well as a symmetric monoidal localising invariant
T: Mot¥® — D.

From now on, we’ll additionally assume that D is locally rigid and its tensor unit is wi-compact,
so that D'® ~ NucInd(D) by [Efi25, Theorem 4.2].

Our goal in this subsection is to explain a method to compute certain values of the refinement
Tr*f. This method is a more or less straightforward abstract reformulation of the method that
Efimov uses in his computations (see e.g. [Efi24, Talk 6]).

10.16. Motives of interest. — Let £ — X be a strongly continuous symmetric monoidal
functor into another rigid symmetric monoidal presentable stable co-category. Assume that X
is smooth and proper as an £-module. We wish to compute 7% (/) for localisations U C X
that arise as in 10.1. That is, there is some object Vp € X with a left-unital multiplication such
that U is the full sub-oo-category spanned by those X € X for which Homy (Vp, X) ~ 0. Let
us additionally assume that the following is satisfied:

(V') There exists a tower of Ei-algebras in X,
Vb — Vl — Vv2 o,

such that each V, is dualisable in X and contained in the thick tensor ideal (that is, the
smallest full sub-oo-category closed under finite limits and colimits, retracts, and — ® X
for all X € X) generated by V. Moreover, we assume that for all r > 0, the induced map
Vic1 ®V, — V. ® V,. factors through the multiplication

Vi1 @V, L5V

as a map of Vyy1-Ve-bimodules.

The main example to keep in mind is the following: Suppose we're given maps v;: Z; — 1y for
i =0,1,...,n, where each Z; is dualisable in X. Then we can define V,. as the iterated cofibre

Vo= 1x/(vg"", ..., 057")

for some entry-wise increasing sequence of (n + 1)-tuples o, = (a1, ..., ) and equip the
tower {V;},>0 with Burklund-style E;-structures. We’ll discuss in §10.4 why this satisfies (V')
and how this allows us to recover many examples of interest, such as THH"(Q), THH™ (S[z]),
and THHref(LILS(p)/ S(p)) (note that the last example doesn’t quite fit this situation, which will
cause us some pain).

10.17. Theorem. — Let £ be rigid and let T': MotlgOC — D be a localising invariant such that
D is locally rigid and its tensor unit is wi-compact. Let X and U be as in 10.16.

(a) The pro-object “lim;., T(RMody, (X)) is idempotent over T(X) and its transition maps
are trace-class.
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(b) T N (U) is obtained from T(X) by killing this idempotent pro-algebra. In particular, T™ (1)
sits inside the following cofibre sequence in D8 ~ NucInd(D):

“colim” T (RMody, (X)) — T(X) — T™(U).

r>0

We start the proof of Theorem 10.17 with a few easy observations about the “closed
complement” of U in X.

10.18. Lemma. — Let X and U be as in 10.16.

(a) The inclusion U — X admits a left adjoint j*: X — U, which can be canonically equipped
with a symmetric monoidal structure.

(b) If V C X denotes the kernel of j*, then V is a tensor ideal and closed under colimits,
finite limits, and retracts in X. If S runs through a set of generators of X, then Vo ® S
forms a set of generators of V.

(¢) Forallr >0, the Ei-algebra V, is a compact object of X, and every left- or right-module
over V, is contained in V.

Proof. Part (a) follows immediately from 10.1. Since j* is symmetric monoidal and preserves
all colimits, its kernel V must be a tensor ideal and closed under colimits, finite limits, and
retracts. Now let V' € V' be an object such that

0 ~ Homx (Vp ® S, V) ~ Homy (S, Homy (Vp, V))

for all S. Since S runs through a set of generators of X, this implies Homy(Vp, V) ~ 0. Hence
also V € U and so V ~ j*(V) ~ 0. This finishes the proof of (b).

To show (c), observe that any X € X is dualisable if and only if it is compact (because in a
rigid presentable symmetric monoidal co-category idx : X — X is trace-class if and only if it is
compact; see [Ram24, Corollary 4.52] or [Efi25, Proposition 1.7]). Hence V; is compact for all
r > 0. To show that any left- or right-V,.-module is contained in V, it suffices to show the same
for induced modules (i.e. those of the form V, ® X), since every module is a colimit of induced
ones. By the thick tensor ideal condition in 10.16(V'), we can furthermore reduce to objects of
the form Vo ® X. Now if U € U, then

Homy (Vo ® X,U) ~ Homy (X, Homy(Vy,U)) ~ 0,
proving j*(Vo ® X) ~ 0, as desired. O
10.19. Lemma. — For every r > 0, the base change functor

- ®v,,, Vr: RMody, ., (X) — RMody, (X)

is a trace-class morphism in Cat@®, hence also in Catdual,

Proof. The additional assertion will follow immediately from Corollary 10.15 once we’ve shown
the rest. Writing RMody, (X') ~ RMody, (Ind(X*))®mq(xw) X, we may reduce to the case where
X is compactly generated, as — ®nq(xw) X preserves trace-class morphisms by Lemma 5.11(b).
In the compactly generated case, we’ll even show that — ®y, ,, V; is trace-class in PrI;Y’w.
Recall from [L-HA, Remark 4.8.4.8] that RMody,,, (X) is dualisable in Pr% with dual
LMody,,, (X). Therefore, the base change functor is always trace-class in PrIj(. The witnessing
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functor X — LMody, ., (¥) ®x RMody, (X) ~ LMody, , gyer(X) is the classifier of V; as a left

module over V,411 ® V,°P, or equivalently, a V,4;-V — r-bimodule. If we work in Prljz’w instead,
then RMody,_, (X) will no longer be dualisable, but we can still form the predual

Homyp,1, (RMody,,, (X), X) ~ Ind(Funy. (RMody, ., (X)¥, X)) ~ Ind(LMody,_, (X)),

where we've used [L-HA, Theorem 4.8.4.1] and the fact that V,4; € X* by Lemma 10.18(¢).
Using [L-HA, Theorem 4.8.4.6], we still have a functor

X — Ind(LMody,,, (X*)) ®x RMody, (X) ~ RMody, (Ind(LMody,_, (X*)))

in Pr%y that classifies V; has a right V,-module in Ind(LMody, ,, (X)). For the desired trace-class
property to hold, this functor needs to be contained in PrI;aw. That is, we need V,. to be a
compact object in RMody;, (Ind(LMody,,, (X“))).

To this end, recall our assumption 10.16(V") that V, 41 ® V, — V. ® V. factors through the
multiplication V.11 ® V,, — V,. as a map of V,.;1-V,.-bimodules. Consequently, V,. is a retract of
V; ® V. in RMody, (Ind(LMody,_, (X“))). This is enough to show compactness. Indeed, the
object V, € Ind(LMody;,, (X*)) is compact!*% and so the induced right-V;-module V; ® V;
must be compact. ]

10.20. Remark. — As a consequence of the proof of Lemma 10.19 and Lemma 5.11(b), we
see that the functors

Ind LMody, (X*) ®mq(a=) X — Ind LMody, ,, (X*) ®maae) X -

induced by the forgetful functors LMody, (X*) — LMody,,, (X*) are also trace-class in Cat3'*!,
hence in Catgual by Corollary 10.15.

The reader familiar with some of Efimov’s computations of refined invariants will have already
seen Ind LMody, (X*) ®q(xw) X, albeit in disguise: For example, it is the abstract analogue

of DY, (Q[x]/2") in Efimov’s computation of HC™™H(Q[2*!]/Q[z]) (see e.g. [Efi24, Talk 6]).
Also note that the forgetful functors LMody, (X¥*) — X* will land in V by Lemma 10.18(c)
and so we get functors

Ind LMody, (X*) ®md(xw) X — V.

for all » > 0. These are compatible with the functors above.

10.21. Lemma. — With notation as above, the functors from Remark 10.20 induce an
equivalence of X -linear presentable co-categories

col>im(1nd LMody, (X*) ®ma(a=) X) — V.

r=0

dual

tdel or equivalently, in Cat@™® or Prl.

Here the colimit on the left-hand side is taken in Ca
Proof. We’ll prove this under the assumption that X is compactly generated; to reduce to
this special case, apply Lemma 10.22 below for Ind(X%) — X. Since X is rigid, compact
objects are closed under tensor products, since they coincide with the dualisable objects.
By Lemma 10.18(b), this implies that V is again compactly generated. By construction,

(10-5 By contrast, V; is usually not compact in LMody, ., (X).
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Ind LMody, (X*) — X preserves compact objects, hence the same is true if we restrict the

codomain to V. Using that Prgt,w — PrL preserves all colimits, we deduce that

L: colim Ind LMody, (X¥*) — V

r=0

is a functor in Pr&hw. In particular, whether L is fully faithful can be checked on compact
objects. So let M and N be compact.
Writing colim,>o Ind(LMody;, (¥*)) ~ Ind(colim,>o LMody, (X)), we may assume that M
and N are Vy.-modules for some r. We must then show that
colim Homy, (M, N) — Homy (M, N).

s>r

is an equivalence. To this end, let us rewrite this map as

C(;9)1>11{I1 Homv7, ((‘/r ®Vs V;) ®Vr ]\47 N) — Homv7, ((W ® ‘/,,,) ®V,» ]\4'7 N) .

For all s > r, consider V, ® V. as a right-V;;1-module via the right action on the first tensor
factor and as a left-Vsy1-module via the left action on the second tensor factor. In total,
we’ve produced a right-(Viy1 ® Xg‘fl)—module structure on V. ® V.. Since V. ® V, is already
a right-(Vs ® V2P)-module via the same construction, the identity on V; ® V;. factors through
V. ®V;) ®Vs+1®Vs°f1 Vs® VPP, By Assumption 10.16(V), V11 ® Vg1 — Vs ® V; factors through
V41 as a map of Vi11-Viy1-bimodules, or equivalently, as a map of left-V;11 ® Vs(fl—modules.
This shows that the identity on V, ® V,. factors through

(VT ® VT) ®\/5+1®Vsof1 s+1 >V ®Vs+1 Vi

This factorisation works as V,-V,-bimodules, since we haven’t touched the “outer” V,-V,-
bimodule structure anywhere and have only worked with the “inner” bimodule structures. Thus,
the colimit diagram above can be intertwined with the constant Homy, ((V, ® V;) ®y, M, N)-
valued diagram, which proves that we get the desired equivalence.

Hence L is fully faithful. Once we know this, essential surjectivity follows immediately from
Lemma 10.18(b), so we win. O

10.22. Lemma. — Let X — X' be a symmetric monoidal colimit-preserving functor into
another rigid presentable stable symmetric monoidal oo-category X'. Let Vj denote the image
of Vo, let U := (X")Vo C X’ and let V' be the kernel of the left adjoint X' — U’ of the inclusion.
Then the induced functor

Ver X —V

s an equivalence of co-categories.

Proof. It’s enough to show this in the case where X is compactly generated, since the general
case will follow by considering Ind(X*) — X — X’. By Lemma 10.18(b), V is a tensor
ideal and so the inclusion V — & is X-linear. Note that its right adjoint is again X-linear.
Indeed, the right adjoint is given by fib(X — j*(X)) for all X € X, so we must show that
JF(X)®Y — j*(X ®Y) is an equivalence for all Y € X'. Since we assume X" to be compactly
generated, it suffices to show this in the case Y € X*, as both sides commute with filtered
colimits. But then Y is dualisable as X is rigid. Since U’ is stable under tensoring with
dualisable objects, we obtain j*(X)®Y ~ j*(j*(X)®Y) ~ j*(X ®Y) from 10.1, as desired.
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It follows that V @y X — X’ is fully faithful, since we can now just base change the fact
that the unit is an equivalence. Its essential image is clearly contained in V', and it’s clear from
Lemma 10.18(b) that V, ®x X’ — V' is essentially surjective. O

Proof of Theorem 10.17. By Lemma 10.19 and Lemma 5.11(b) applied to the symmetric
monoidal functor T: Cat3® ~ Mody (Catdul) — Modr(xy (D), the transition maps of the
pro-object “lim;’. o T(RMody, (X)) are trace-class morphisms in Mody(x)(D). To prove (a), it
will thus be enough to check that the dual ind-object is an idempotent coalgebra.

To see this, write RMody, (X) ~ RMody, (Ind(X*)) ®q(xw) X. We've seen in the proof of
Lemma 10.19 that the predual of RMody, (Ind(X*)) in Pr%nd()(“’), is Ind LMody, (X“). Now
consider the diagram of symmetric monoidal functors

w

— ®rnd(xw) X
Prls ey — o Catd™™ —— Mody(Moti®) —— Mody(x)(D)

| T

dual 1

In general, none of them preserves preduals, but once we pass to “colim;., this isn’t a
problem anymore by Lemma 5.11(¢). Thus, it will be enough to check that the image of
“colim,’, ; Ind LMody, (X*) is idempotent in Ind(Motﬁz(Xw)).

For ease of notation, let us now replace X by Ind(X“), thereby assuming that X" is
compactly generated. Since “colim,Ind LMody, (X*) has trace-class transition maps and
NucInd(Mot$¢) ~ Mot'® by Efimov’s rigidity theorem, it will be enough to show that
colim, > Ind LMody, (X*) ~ V is idempotent in Mot's°. We claim that V is already idem-
potent in Cat‘;i(“al. To see this, just observe that the same argument as in Lemma 10.21 also
proves that

cgl>i(1;n Ind LMody, gy, (X¥) — V

is an equivalence of co-categories. This finishes the proof of (a).

Let us now show (b). In the following, we’ll use several times (and in a somewhat confusing
way) that Nuc Ind(Mody(Mot2¢)) ~ Modx (Mot¢) by Efimov’s rigidity theorem.

The proof of (a) shows that “lim;,, RMody, (&) is idempotent in Pro(Mod x (Mot°)),
its dual ind-object has nuclear transition map, and the dual ind-object is sent to VV under
Nuc Ind(Modx (Mot¢)) ~ Mody(Mot¢). Since V — X — U becomes a cofibre sequence in
Mot x (Mot2¢), it follows that the preimage of i under Nuc Ind(Mod x (Mot2€)) ~ Mod x (Mot°)
is obtained from A’ by killing the pro-idempotent “lim,’,, RMody; (X). This is necessarily also
true as Eo-X-algebras, since the Eo-structure will be idempotent over X by Lemma 10.9(b) and
thus unique. Since any symmetric monoidal functor preserves killing idempotent pro-algebras
with trace-class transition maps by Lemma 10.9(c), the statement of (b) follows. O

§10.4. Burklund’s E;-structures and square-zero extensions

In this subsection we show that tensor products of two Burklund-style [E{-structures on quotients
are often trivial square zero algebras. We then use this technical result to make Theorem 10.17
applicable in many cases of interest.

For the abstract setup, let C be a presentable stable Eo-monoidal co-category and v: Z — 1
be a morphism in C such that 1/v admits a right-unital multiplication. Fix ag > 3, so that
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1/v* admits a preferred Eg-algebra structure by [Bur22, Theorem 1.5]. The same theorem
shows that 1/v® admits a preferred Ej-algebra structure for all & > 2. Via base change, we get
an E;-structure on 1/v*° ® 1/v* in the Ej-monoidal stable oco-category LMody /ya0 (C).

10.23. Proposition. — With notation and assumptions as above, suppose additionally that
C is rigid, T is dualisable in C, and o > ag + 3.

(a) If we equip 1 /v @ X(T®/v™0) with the trivial square-zero E1-structure over 1/v®, then
the equivalence of left 1/v* -modules

1/v%° ® 1/v® ~ 1 /v @ X(T®* /v™)

lifts canonically to an equivalence of Ei-algebras in LMody /a0 (C). Under this iden-
tification, the multiplication 1/v*° ® 1/v® — 1/v* becomes the augmentation map
1/v% @ L(Z® /v20) — 1 /v,

(b) Foralla' > a > ag+3, the map 1/v* @ 1/v™ — 1/v™ ® 1/v* agrees with the map
of trivial square-zero extensions induced by v® ~°: I®O‘,/v°‘0 — I® /[y as maps of
E1-algebras in LMod /ya (C).

10.24. Remark. — The bound a > ag + 3 doesn’t seem optimal and the author suspects
that Proposition 10.23 might already be true for a > «q. It also seems reasonable that the
result should be true for any compatible Eq-structures on 1/v*° and 1/v%, but we don’t know
how to show this.

10.25. Remark. — Since the bounds ag > 3 and a > ag + 3 ensure that the E;-algebra
structures on 1/v*° and 1/v® refine to Eq-algebra structures, the multplication map in Propo-
sition 10.23(a) is canonically a map of Ej-algebras. The identification with the augmentation
1/v% @ X(Z%%/v*) — 1 /v also holds as Ej-algebra maps (as we’ll see in the proof).

Proof of Proposition 10.23. Recall [Bur22, Constructions 4.7 and 4.8]: Let C:= Def(C, Q) be
the deformation of C that Burklund uses. The specific construction is irrelevant for the purpose of
this proof; the reader only needs to know that Cisa presentable stable [Eo-monoidal co-category
and comes with Ey-monoidal functors v: C — € (which is non-exact) and (=)™=!: € — C
(which preserves colimits and is therefore exact) such that v(—)"=! ~ ide. Let furthermore
T := v(1) denote the tensor unit of C and let Z := ¥ ~1»(XZ). Even though v is non-exact,
v(1) — v(1/v) — v(EI) is still a cofibre sequence in C and so v(v): v(Z) — 1 factors through
a map

10.7) 1t will thus be enough to show

Then ¥ is a deformation of v in the sense that 77=" ~ v.(
the assertions with v replaced by v': 7 1.

Burklund constructs E;-structures on 1 /0% for o > 2 using the obstruction theory from
[Bur22, Proposition 2.4] in C. The reason to replace C and v by their deformations C and 7 is
that for the deformed versions all obstructions vanish (because the obstruction group vanishes),
and the witnessing nullhomotopies are unique (because the next homotopy group also vanishes).

The base-changed E;-structure on 1 /00 ®1 /0% is then obtained via Burklund’s obstruction

theory in the E;-monoidal'%®) presentable stable co-category LMody /590 (5) The main step to

(107 Note that ¥ is usually not the trivial deformation v(v), as the canonical map v(Z) — T is usually not an
equivalence. This is crucial to make Burklund’s construction work.

(10-8) Burklund’s paper assumes an Ez-monoidal structure, but for the purpose of [Bur22, §2] only an E;-monoidal
structure is necessary.
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prove both (a) and (b) is to show that in this case too all obstructions vanish and the witnessing
nullhomotopies are unique. More precisely, we’ll show that for all £ > 2 and all o/ > o > ag + 3,

. ~n N ~na) ~ .
mi Hom g, ) (z 3(R2(T/p00)® )& o0 @11/#) ~0 forie{0,1}.
To show this, we use that 1 JUY Q —: C— LModyj /3o (CN) is left adjoint to the forgetful functor,
that i/5a0~® 1/5% ~ 1/5% @ % (Z®/520) as left-1 /50 -modules, and that Z is still dualisable,
with dual ZV ~ Xv(X~1ZV). The left-hand side above can then be rewritten as follows:

i Homé(z%*?’i@’k, 1/5%0 @ (78 /a%))
= Homg(E%_?’f@alk, i/ﬁa0> @D m; Homg(E%_Qf@a,k ® (ZV)®, i/ﬁo‘())
= m Homa(z*a’k“k*%()(), i /aao) D Hom(;(Z’a/k*a“k’QV(Y), 1 /aao) ,
where X ~ (RZ)®¥F and Y ~ (27)®F®(~17V)®, According to [Bur22, Lemma 4.8] (which
is applicable thanks to our rigidity assumption on C), both summands on the right-hand side

vanish for i € {0,1} as soon as o'k — a — 2k + 1 > «. Under our assumptions o/ > a > ag + 3
and k > 2, we can estimate

dk—a—-2k+1>(ap+3)(k—1)—2k+1=(k—1Dag+k—2> g,

as desired. This shows that indeed all obstructions vanish (because the obstruction group g
vanishes) and the witnessing nullhomotopies are unique (because 7 also vanishes).

Now (b) as well as the first part of () immediately follow. Indeed, in the case o/ = a, the
vanishing result above combined with [Bur22, Remark 2.5] shows that the E;-structure on
1 /00 Q1 /0% is unique, so it has to be the trivial square zero structure. For general o/ > «, the
same argument shows that the E;-map 1/7% ® 1/ — 1/7% @ 1/3* is unique, proving (b).
To show the second part of (a), observe that, with notation as above, we must also have

u Homg(E*a/ka*SV(X), i/'ﬁ%) =0 forie{0,1}.
This precisely ensures that 1/7% @ 1/5* — 1/ is unique as well, and so it has to be the
augmentation map. O
10.26. Corollary. — IfZ is dualisable, « > oo + 3, and o/ > o + ag, then
1/v*° @1/v™ — 1/v™ @ 1/v"
factors through the tensor unit 1/v*® as a map of Ei-algebras in LMody /ya0 (C).

Proof. By Proposition 10.23(b), it’s enough to check that v® ~®: Z®' /y0 — T® /4,00 ig zero
in LMod, /a0 (C) for o > « + ap. This reduces to v : Z® /p® — 1 /v being zero in
LMody jyao (C). Since 1/v*° ® —: C — LMody jya0 (C) is left adjoint to the forgetful functor,
this is equivalent to v : Z® — 1 /y® being zero in C, which is true by construction. O

Thanks to Corollary 10.26, it is now easy to construct examples where Assumption 10.16(V)
is satisfied and thus Theorem 10.17 is applicable.
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10.27. Example. — Let m be a positive integer that is either coprime to 2 or divisible
by 4. Then S/m admits a right-unital multiplication and so Burklund’s construction applied to
m: S — S provides a tower of E;-algebras

S/7n2 <—S/m3 <—S/m4 —

Up to passing to an appropriate subtower, this satisfies Assumption 10.16(V). Indeed, dualis-
ability and the thick tensor ideal condition are clear and the factorisation condition follows
from Corollary 10.26 above.

Thus, for any Ee-ring spectrum k, Theorem 10.17 shows that THH™ (k[1/m]/k) is obtained
from THH(k/k) ~ k by killing the idempotent pro-algebra “lim},., THH((k ® S/m®)/k). In
particular, there’s a cofibre sequence

« BNV v f 1
cgg{n THH((k®S/m*)/k)" — k — THH"' (k[ L]/k) .
in Nuc Ind(Mody,(Sp)B5"). Since THH'™ (—/k) commutes with filtered colimits, this also allows
us to compute THH* (k ® Q/k) ~ colim,,ey THH* (k[1/m]/k).

10.28. Example. — If k is any E-ring spectrum, we can compute THH™! (k[z]/k) as
follows: Let ]P’,lC denote the flat projective line over k, which is smooth and proper over k. We
can construct a tower of E;-algebras

ka7 /z™t — k[z7)/272? — k[z71] /273 — ---

either by hand (construct k[z~!] as a graded E,.-k-algebra with 27! in graded degree —1,
then truncate the grading) or by applying Burklund’s construction to (’)]p}v (—-1) — (’)[Pllc (this
will only give the tower from the second step onwards, but this is no problem). In either case,
Assumption 10.16(V") will be satisfied and so Theorem 10.17 provides a cofibre sequence

“colim” THH ((k[z™]/=~*)/k)" — THH(P}/k) — THH™ (k[z]/k)

a1

in Nuc Ind(Mod,(Sp)B5").

As a final example, let us explain how Theorem 10.17 applies to THHref(LflS(p) /S(p)), where
L/ denotes telescopic localisation to chromatic height < n. First we need a technical lemma:

10.29. Lemma. — Let m > 2 andn > 0. Let V' — V be a map of E,,11-algebras whose
underlying spectra are of type n. Let v: SNV — V be a vy-self map of V and v': SNV — V!
a vp-self map of V'.

(a) Up to replacing v' by a suitable power, the induced map v' Qv+ V': SNV = V can be
chosen to be a power of v.

(b)  Suppose v is the fourth power of another v,-self map of V', so that V/v admits a right-
unital multiplication in LMody (Sp(y)). Furthermore, assume that v is as in (a) and V' /v'
admits a right-unital multiplication in LMody(Sp). Then the canonical left-V -module
map

VW @y Vo— Vo™t

can be upgraded to an E,,-algebra map in LMody (Sp), where we equip V/v™ ! and

V! Jo"™ L with Burklund’s By, -structures in LMody (Sp) and LMody(Sp), respectively.
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Proof sketch. Part (a) follows immediately from asymptotic uniqueness of v,-self maps (see
[L-Ch, Lemma 27.10] for example).

To show (b), let us denote V/v'™*! := V' /'™ @y V for short. First note that the claim
is not completely automatic, since the E,,-structures on V/v™+! and V/v"™*! are constructed
via different deformation categories. More precisely, let Q and Q' be the classes of morphisms
in LMody (Sp)“ that become split epimorphisms upon — ®y V/v or — ®y V/v', respectively.
Then the E,,-structure on V/v™* is constructed via Def(LMody (Sp); Q), whereas for V/v'm*+1
we use Def(LMody (Sp); Q).

Our assumptions on v and v' imply that V/v" — V/v can be turned into an E;-map in
LMody (Sp). This need not be compatible with the Ej-structures on V/v™*! or V/o'™*+1 but it
is enough to ensure Q' C Q, because any morphism that becomes split after — @y V/v" will also
become split after (— ®y V/v') @y V/v >~ — ®y V/v. Sheafification then induces a strongly
continuous E,,+1-monoidal functor Def(LMody (Sp); Q') — Def(LMody (Sp); Q) which fits into
a commutative diagram

Def (LMody (Sp); Q') —— Def (LMody (Sp); Q)

”/T /

LMOdv(Sp)

where v and v/ denote the respective Yoneda embeddings.

Let us now denote deformations in Def(LMody (Sp); Q) by (=) as in the proof of Propo-
sition 10.23. Via the functor above and [Bur22, Proposition 2.4], we can write V /o™*!
as an iterated pushout of E,,-algebras in Def(LMody (Sp); Q). This yields a sequence of
obstructions to constructing an [E,,-algebra map ‘7/6””“ — ‘7/6””1. Since the functor
Def(LMody (Sp); Q") — Def(LMody (Sp); Q) intertwines v/ and v, the obstructions are still of

the form that automatically vanishes. O
10.30. Example. — For all m > 2 and n > 0 let us construct a tower of E,,-algebras
V(n)o «— V(n)1 — V(n)s — - -

of the form V (n), >~ S/(p®°,v;"", ..., vn""), such that Assumption 10.16(1) is satisfied. Note
that the dualisability condition in 10.16(V") is trivial and the thick tensor ideal condition is
automatic by the thick subcategory theorem (see [L-Ch, Theorem 26.8] for example). So we
only have to construct the tower and verify the factorisation condition.

We use induction on n. Suppose we’ve already constructed a tower of E,,;;-algebras
(V(n — 1);)r>0 with the desired properties. We’ll write V, := V(n — 1), for brevity. Using
Lemma 10.29 for V,41 — V;., we can inductively construct v,-self maps v, ,: YNr V. — Vi such
that each of them is the fourth power of another v,-self map and the quotients

Vr = V;“/vgzzgm—i_l)

fit into a tower of E,,-algebras. Note that this would already work with V,./ v:{fjl; the extra
factor in the exponent will only be used for the factorisation condition.

As in the proof of Lemma 10.21, consider the right-V, 41 ®V,°P-module structure on V1@V,
given by its “inner” bimodule structure. Since V11 ® V. — V. ® V,. factors through V,. by the
inductive hypothesis, we see that V,,1 ® V, — V, ® V,. factors through

(VrJrl ®Vr) ®VT+1®VTOP Vi~ (Vr+1 @V’,.+1 V;“) v, Vr
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as a map of V,,1-V,-bimodules. If we now consider the composition V,;2 @V, — V, @V,
we see that it factors through

r+2 m — r—+1 m N
V;“/vfz,r—&-(l . v, Vi — V;‘/Ufz,r—i-(l ) v, V.

This, in turn, factors through V. as a map of Ej-algebras in RMody, (Sp). Indeed, this follows
from Corollary 10.26 via base change along V,./ UTZLET;L Vo, / vz:,gmﬂ) ~ V,. So we get the
desired factorisation for V, o ® V, — V, ® V.. Thus, if we put V(n), := Va,, we get a tower
of the desired form.

With these disgusting technicalities out of the way, we can finally apply Theorem 10.17: We
deduce that THHref(LgS(p) /S(p)) is obtained from S, by killing an idempotent pro-algebra of

the form “lim;,, THH(S/(p*"°, vi™", ..., on"™)). In particular, we get a cofibre sequence
« CEAC}) r r, ra)) VY ref
colim” THH(S/(p” 0Tt L ugrm)) T — S, — THH™ (LIS, /Se))

N

in Nuc Ind(Spl(?D*)ql )
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§11. Refined THH and TC™ over ku

We’ve seen in Example 10.27 that to compute THH™ (Q), one essentially has to compute an
ind-object of the form “colim},., THH(S/ p*)¥ for all primes p. This seems currently out of
reach. However, after base change to ku, we can get some control over THH((ku ® S/p®)/ku)
thanks to the results from Part II, and so THH™! (ku ® Q/ku) is approachable.

In this section we study TC™" (ku ® Q/ku) and TC™" (KU ® Q/KU), which contain the
same information as THH™ (ku ® Q/ku) and THH™ (KU ® Q/KU) by Lemma 11.2 below. In
§11.1, we compute the homotopy groups

Af = TCT™ (ku®@Q/ku) and Agy = m TC™" (KU ®@ Q/KU)

in terms of certain ¢-Hodge filtrations ﬁl;,Hdg q-dR(z/pa)/z, and the associated ¢g-Hodge com-
plexes ¢-Hdgz, /o) /Z, that we get from the chosen E;-structures on S/p®. In §11.2 we’ll explain
how to describe these objects explicitly. These explicit descriptions will then be used in §12 to
finish the proof of Theorems 1.40 and 1.41.

11.1. Convention — Throughout §§11-12, all (¢-)de Rham complexes and ¢-Hodge com-
plexes relative to a p-complete ring will be implicitly p-completed.

§11.1. g-Hodge filtrations and TC™"*f(ku ® Q/ku)

We begin by showing that for complex orientable ring spectra k, THH™ (k ® Q/k) with its
S'-action contains the same information as TC™ ™ (k ® Q/k).

11.2. Lemma. — Let k be a complex orientable Ex-ring spectrum, equipped with trivial
Sl-action, and let t € W_Q(khsl) be any complex orientation. Then taking S*-fixed points
defines a symmetric monoidal equivalence

(—)hS1 : 1\/Iod/z€(Sp)B“g1 = Mod, .51 (Sp);',

where Mods! (Sp); denotes oco-category of t-complete EMS' module spectra, which we equip
with the t-completed tensor product — ®k:h51 —.

Proof. By construction (—)hS " s lax symmetric monoidal. To see that it is strictly symmetric
monoidal, we must check whether M h @khsl NhS' (M @, N )hs1 is an equivalence. As
both sides are t-complete, this can be checked modulo ¢, where it follows from [HRW22,
Lemma 2.2.10] for example.

By definition, (—)hslz Sple — Sp has a left adjoint, given by the symmetric monoidal
functor const: Sp — Sp©° 1, which sends a spectrum X to itself equipped with the trivial
Sl-action. By general nonsense about how symmetric monoidal adjunctions pass to module
categories, we see that (—)hSI: Modk(Sp)le ~ Modk(Sszl) — Mod, 51 (Sp) admits a left
adjoint L, which is given as the composition

®khsl k

L: Mod, 51 (Sp) <% Mod, 61 (Sp") —5— Mody, (SpPS') ~ Mody,(Sp)®*" .

In particular, on underlying k-modules, L is simply given by (—)/t. Since (—)/t is conservative
on t-complete k"' -modules, it follows that L: Mod, 51 (Sp);* — Mody,(Sp)BS" must be con-
)

servative too. Furthermore, the counit ¢: L((— = id is an equivalence, as follows from
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[HRW22, Lemma 2.2.10] again. Thus (—)"5" must be fully faithful. We conclude using the
standard fact that an adjunction in which the right adjoint is fully faithful and the left adjoint
is conservative must be a pair of inverse equivalences. O

We'll now set out to compute m, TC™' (ku ® Q/ku) and 7, TC™™ (KU ® Q/KU).

11.3. Outline of the computation. — For convenience, let’s call a positive integer m high-
powered if its prime factorisation m = Hp p“? has the following property: For all primes p > 2
either oy, = 0 or oy, > 2 and for p = 2 either ap = 0 or ay is even and > 4. We let N‘ denote
the set of high-powered positive integers, partially ordered by divisibility.

Since S/4 and S/p admit right-unital multiplications, we can use Burklund’s general con-
struction [Bur22, Theorem 1.5]"'V) to construct E;-structures on

S/m ~ HS/paP

for every high-powered m. These assemble into a functor S/—: N — Algg (Sp). In the
following we’ll write ku/m = ku® S/m and KU/m := KU ® S/m, where it is understood that
the E;-structure is always base changed from the one on S/m above. By Example 10.27 and
Lemma 11.2, we get a cofibre sequence

“C(zll\\l;léa)l” TC™ ((ku/m)/ku)v — k" — TC™™ (ku ® Q/ku)

me op

(where now (—)V = Hom, 1 (—, ku”® 1) denotes the dual in ku™ 1-modules) and a similar one

for KU. To compute the pro-object on the left, we’ll proceed in three steps:

(a) We compute 7, TC™ ((ku/m)/ku) and my TC™ ((KU/m)/KU) using Theorem 7.27. This
will be the content of Corollary 11.7.

(b) We compute 7, TC™((ku/m)/ku)" and 7, TC™((KU/m)/KU)V, essentially showing that
in this case taking duals commutes with 7, in a derived way. This will be achieved in
Corollary 11.11.

(¢) We show that pro-idempotence and the transition maps being trace-class passes to
homotopy groups in this case. This will be the content of Corollaries 11.13 and 11.14.

This leads to a preliminary description of the homotopy rings m, TC ™" (ku ® Q/ku) and
7 TCT(KU ® Q/KU) in Theorem 11.15.
We begin with step (a).

11.4. Reduction to the p-torsion free case. — Decomposing m = [[,p®? into prime
powers, we have

TC™ ((ku/m)/ku) ~ [[TC™ ((ku/p**)/ku),

so we may reduce to the case where m = p® is a high-powered prime power. Let us re-
mark that TC™ ((ku/p®)/ku) is automatically p-complete. Indeed, it is (/3,t)-complete and
TC™ ((ku/p*)/ku)/(B,t) ~ HH((Z/p™)/7Z) is p*-torsion, hence p-complete.

(1LDWe could also use [Bur22, Theorem 3.2] to get another tower of E;-algebras S/8 «— S/16 «— S/32 «— - ...
This one is potentially different from ours (as different deformation categories are used in the construction). It
will become apparent in 11.4 why we made that choice.
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To compute TC™ ((ku/p®)/ku), we lift to a p-torsion free case. Let Zp{x}s be the free
p-complete perfect d-ring on a generator x and let Sz (), be its unique lift to a p-complete
connective Eo-ring spectrum (see Example 9.2). By [Bur22, Theorem 1.5], we get a tower of
Eq-algebras in Sz, (4, -modules

SZP{w}oo/xQ A SZp{w}w/x?) — SZP{J"}OO/IA A

for p > 2; the case p = 2 needs powers of z2 instead. The map of perfect 6-rings Z,{x}oo — Z;
sending x — p lifts uniquely to an E-map Sz, (,},. — Sp. If we base change the tower above
along this map, we get the tower of Ej-algebras (S/p®) from 11.3. Indeed, this follows from the
uniqueness statement in [Bur22, Theorem 1.5].(11-?)

Now put kuy, (1. = (ku® Sz, (53..)p- Then THH(—/kug, 5. ), ~ THH(—/ku); holds by
the same argument as in [BMS19, Proposition 11.7] and so we get a base change equivalence

/\ ~
(TC_ ((kuZP{x}w/xa)/ku) ®kuz, (200 kuz/;)(p ) — TC™ ((ku/po‘)/ku) '

11.5. A g-Hodge filtration for Z/m. — We can apply Theorem 7.18 to Zp{z}o/x® with
its spherical Ei-lift Sy (5. /2 to obtain a g-Hodge filtration fil} 4, ¢-dR(z, (2}e0 /o) /2,, Which
doesn’t depend on the choice of spherical lift (only its existence). We then construct a filtration
on ¢-dRz/pe)/z, as the base change

A

— L
fil; g 0-dAR (/)2 = (8] si0g AR 2 ) 122, ®Fy ). L) I
For a general high-powered positive integer m € N* with prime factorisation m = 1, p*r, we
put

17 1105 -AR z/m) /2 = | [l 11ag ¢-ARzp00) 12,
p

and denote its completion by ﬁl;—Hdg q—(ﬁ\%(z /m),z- We regard these filtrations as filtered modules
over (q—1)*Z[q— 1], which we identify with Z[S][t] as in 7.26. We can also form the associated
g-Hodge complex ¢-Hdg z/,,) /7 as in 3.5.

11.6. Lemma. — As the notation suggests, ﬁl;_Hdg q-dR(z/m)/z s indeed a q-Hodge filtration
in the sense of Definition 3.2. Moreover, ¢-dR z/mm)/7 and q-Hdg )z are static (g—1)-torsion
free rings and the q-Hodge filtration is a descending filtration by ideals.

Proof. For any prime p, ¢-dR z/per)/z vanishes after (—)[1/p]f\q_1), as (Z/p*)[1/p] = 0, and
thus it also vanishes after (—);[1/p](,_;), as any module over the trivial ring is trivial. It
follows that ¢-dR(z/pep)/z is already p-complete and thus agrees with ¢-dRz/p00)/z,-

With this observation, Definition 3.2(a) is straightforward to verify. Definition 3.2(b)
follows via base change from Z,{x}o,/x“?. Definition 3.2(c) and (c,) are vacuous, since the
rationalisations vanish. Therefore, ﬁlg,Hdg q-dRz/m)/z is indeed a g-Hodge filtration in the
sense of Definition 3.2.

To verify that filj_yq, ¢-dR z/m)/z 13 degree-wise static and (g — 1)-torsion free, just observe
that its reduction modulo (¢ — 1) is filjjq, dR(z/m)/z, Which is degree-wise static. Via base
change from Z,{x}oo /27 it’s then clear that fil} 4, ¢-dR (z/y),/7z must be a descending filtration
by ideals. By construction, this implies that g-Hdg(z ),z is a static and (g — 1)-torsion free
ring, as claimed. O

(11-2) Byrklund only shows that the objects in the tower are unique and therefore satisfy base change. But the
same argument shows that the transition maps too are unique, so they satisfy base change as well.
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The upshot of 11.4-11.6 is the following.

11.7. Corollary. — Let m € Nf be a high-powered positive integer. Then the spectra
TC™ ((ku/m)/ku) and TC™((KU/m)/KU) are concentrated in even degrees and we have

7. TC™ ((ku/m) /ku) = A% 134, ¢-AR (2/m) 2
2. TC™ ((KU/m) /KU) = ¢-Hdg(zm) /2[5 -

Proof. 1t’s enough to check evenness modulo ¢, so we may pass from TC™ to THH. Since
THH((ku/m)/ku) is connective, we may further pass to THH((ku/m)/ku)/5 ~ HH((Z/m)/Z),
which is indeed even. This shows evenness for THH((ku/m)/ku) and then the same follows for
THH((ku/m)/ku)[1/5] ~ THH((KU/m)/KU).
By decomposing m into prime factors as in 11.4 and using the base change equivalence, we
get a map .
fil} Hag AR (z/m)/z — 72x TC™ ((ku/m) /ku) .

Whether this is an equivalence can be checked modulo 8, where we recover the well-known fact
that the even homotopy groups of TC™ ((ku/m)/ku)/8 ~ HC™ ((Z/m)/Z) are the completed
Hodge filtration ﬁl*Hdg dR(z/m)/z- The claim that the even homotopy groups of

TC™ ((KU/m)/KU) ~ TC™ ((ku/m)/ku)[ 4]}

are given by ¢-Hdgz /) /2 [B8%!] follows formally. d

This finishes step (a) of our plan in 11.3. Before we move onwards to step (b), let us make
two remarks.

11.8. Remark. — Let m = [[, p® be an integer such that for all primes p > 2 either a;, =0
or ap = 3 and for p = 2 either ap = 0 or a2 is even and > 6. Then the E;-structure on S/m can
be upgraded to an Es-structure. We can thus apply Theorem 7.27 to obtain another g-Hodge
filtration on ¢-dR(z/,,)/z. This necessarily agrees with the one from 11.5.

Indeed, this can be reduced to a similar claim for Z,{z} /2“7, noting that the E{-structure
on Sz, (z}e /xr also admits an Eq-upgrade, compatible with the one on S/p®». The assertion
then follows by observing that the solid even filtration on the already even E;-ring spectrum
TCq ((kuz, (s}, /2°7)/ku) necessarily agrees with the double-speed Whitehead filtration 7>o,.

11.9. Remark. — We don’t know if ﬁl;—Hdg q-dRz/m)/z is canonical: The results from §4.2
don’t apply, as Z/m is not torsion free. However, in the case where m = p® is a prime power,
we have the following weak form of canonicity:

(¥) Let A — Zjp be any map from a p-completely perfectly covered §-ring and R — Z/p™ be an
A-algebra map, where R is as in Theorem 4.22(a). Then the induced map

¢-dRp/a — ¢-dRz/pe)/z,

is compatible with q-Hodge filtrations. Moreover, the q-Hodge filtration on q-dR z/pe);z,
is the smallest multiplicative filtration with this property.
To prove this, let R = B/J be a perfect-regular presentation as in Theorem 4.22(a), where J is
generated by a regular sequence of higher powers (21", ...,2%"). Using ¢-dR g /a4 ~ ¢-dRg/p and
the base change assertion from Lemma 4.27 applied to Z,{z1,...,z,} — B, we can reduce to
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the case A = Z,{z1,..., 2.}, R =Zp{x1,..., 2, }/(2], ..., 2%"); note that we still get a J-ring
map Zp{zi,...,x,} — Z, by lifting the images of the z; in Z/p® arbitrarily. By symmetric
monoidality (Lemma 4.33(b)), we can further reduce to the case r = 1.

In this case suppose Zy{r1} — Z, sends z; — ap”, where (a,p) = 1. In order to have a
map Zp{z1}/x{* — Z/p*, we must have oy N > «. Then the map Zy{z1} — Z,{z} sending
x1 — az’ induces a map Zp{z1}/x{" — Zy{x}/z and so the desired compatibility of g-Hodge
filtrations follows from functoriality of Construction 4.21. The minimality claim is clear since
fil} nag ¢-dR(z/pe)/z, 18 base changed from fil} g, ¢-dR(z, ()00 /a) /7, -

We'll now commence step 11.3(b). We start with a general fact (which is usually formulated
as a spectral sequence).

11.10. Lemma. — Let k be an even [&1-ring spectrum and let M, N be even left-k-modules.
Then the mapping spectrum Homy (M, N) admits a complete exhaustive descending filtration
with graded pieces

gr* Hom (M, N) ~ 5** RHom,,_ ) (m2x(M), w24 (N)) .

Here ¥2*: Gr(Sp) — Gr(Sp) is the “double shearing” functor and RHom_, () denotes the
derived internal Hom in graded oy (k)-modules.

Proof. In the usual adjunction colim: Fil(Sp) = Sp :const, the left adjoint is symmetric
monoidal and the right adjoint is lax symmetric monoidal. Furthermore, colim 7>, (k) ~ k.
It follows formally that colim: LMod,_, )(Fil(Sp)) = LMody(Sp) :const is an adjunction as
well and so Homy, (M, N) ~ Hom,_, (x)(T>2+(M), const N). Hence we may define the desired
filration via

fil" HOII]]c (M, N) = H0m7>2*(k) (7'22*(M), T>2(%4n) (N)) .

This filtration is clearly complete since we may pull 0 = limy, o0 T>2(x4n) (V) out of the Hom. To
show that the filtration is exhaustive, we need to check that const N ~ colimy,—, oo T>9(n) (V)
can similarly be pulled out of the Hom. To this end, recall that Fil(Sp) can be equipped with
the double Postnikov t-structure in which objects in the image of 7>2,(—) are connective and
connective objects are closed under tensor products (see [Rak21, Construction 3.3.6] for example
and double everything). Then Mod,_,, )(Fil(Sp)) inherits a t-structure in which 722, (M) is
connective and the cofibres of 79(,4y)(IN) — const N get more and more coconnective as
n — —oo. This shows that the colimit can be pulled out.

It remains to determine the associated graded. By construction, the n'" graded piece is
given by gr" Homy (M, N) ~ Hom,_, (x)(7>2+(M), 22(*+”)7r2(*+n) (N)). To simplify this further,
let Sqr and Sy denote the tensor units in graded and filtered spectra, respectively. By abuse
of notation, we identify Sgy with its underlying graded spectrum. As remarked in 1.48, we
have Fil(Sp) ~ Mods,, (Gr(Sp)); this identifies passing to the associated graded with the base
change functor — ®s,,, Sqr. Since the Sgj-module structure on 22(*+”)7r2(*+n) (N) already
factors through Sgy — Sqr, we obtain

H0m7-22*(k) (7'22*(M), E2(*4%)7'&'2(*—1—71) (N)) ~ HomZQ*wQ*(k) (22*71'2* (M), E2(*4%)71—2(*‘"”) (N))
~ 2271 HomM*(k) (WQ*(M>, T2 (N)(—TL)) .

The first step is the usual base change equivalence for 7o, (k) — To2.(k) ®spy Sar =~ X2 mo4(k),
the second step uses that the shearing functor ¥2*: Gr(Sp) — Gr(Sp) is an E;-monoidal
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equivalence (even Eq-monoidal, see [DHL+23, Proposition 3.10], but we don’t need that). Now
the right-hand side is precisely the n'® graded piece of RHom,,_ ) (m2+(M), m24(N)) and so
we're done. O

We'll apply this now in the case k ~ ku™", so that mox (k) = Z[5][t]. We also let miZ[ﬁ][[t]]
denote the graded Z[S][t]-module H_; RHomgyg for all i > 0.

11.11. Corollary. — Let m € Nf be a high-powered positive integer. Then the spectra
TC™ ((ku/m)/ku)" and TC~((KU/m)/KU)V are concentrated in odd degrees and we have

T (2s11) TC™ ((ku/m) /ku) " = = Exty4)1 (ﬁlq Hdg 4~ AR (z2/m) 2+ 2B ][[t]])
T (o) TC™((KU/m)/KU) " = Extly, y (q-Hdg(z)my 2 ZIg — 1) [51].

Proof. According to Corollary 11.7 and Lemma 11.10, the spectrum TC™ ((ku/m)/ku)" admits a
complete exhaustive filtration with associated graded 22*(ﬁlq Hdg 4~ dR(Z /m) /Z) where now the
dual is taken in graded Z[5][t]-modules. It’ll be enough to show that this dual is concentrated
in homological degree —1 (which precisely accounts for the m%[[ g—1][p+1]-terms). Since Z[B][¢]
is (B, t)-complete as a graded object, the same is true for any dual in graded Z[5][t]-modules,
and so it’ll be enough that

RHomza1 (ﬁlq Hdg ¢-ARzm) 2, Z[ 8 ][[ﬂ])/ (8,t) ~ RHomy, (gl“i'fldg &E(Z/m)/272>

is concentraded in homological degree —1. Since 8Tidg (ﬂ\{(z /myjz =2 "N Lzmyz ~ Z/m,
the n'® graded piece of the right-hand side is precisely RHomgz(Z/m,Z), which is indeed
concentrated in homological degree —1. This finishes the proof for TC™ ((ku/m)/ku)".

The proof for TC™ ((KU/m)/KU)Y is analogous, except that we need a different argument to
show that the dual (¢-Hdg(zy,),z)" in Z[g—1]-modules is concentrated in homological degree —1.
By (¢ —1)-completeness, it'll be enough to check the same for RHomz (¢-Hdg z/m)/z/ (¢ — 1), Z).
By 3.8 we see that ¢-Hdg(z,/,,,)/z/(¢—1) admits an exhaustive ascending filtration with associated
graded given by grijq, dR(z/my/z- It follows that RHomgz(q-Hdgz/mmy/z/(q — 1),Z) admits
a descending filtration with associated graded R@Z(grﬁdg dR(z/m)/z,Z). This is indeed
concentrated in homological degree —1 as we’ve seen above, so we're done. O

This finishes step (b) in our plan from 11.3. We continue with step (¢). Note that neither
pro-idempotence of “lim), .+ TC™ ((ku/m)/ku) nor the fact that its transition maps become
eventually trace-class are automatically preserved under passing to homotopy groups. The
problem is that m(—)—or really passing to the associated graded of the Whitehead filtration
Ts»—1S not a symmetric monoidal functor.

As we'll see, in our situation, passing to the associated graded of the double-speed Whitehead
filtration 79, behaves as if it were symmetric monoidal, which fixes all issues. Our starting
point is the following general fact, which is quite similar to Lemma 11.10 (and is also usually
formulated as a spectral sequence).

11.12. Lemma. — Let k be an even E-ring spectrum, let t € mo.(k) be a homogeneous
element, and let M, N be even k-modules. Then the t-completed tensor product M ®;, N admits
a complete exhaustive descending filtration with graded pieces

gr* (M &), N) ~ x2* (@*(M) &, i @*(N)) .
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Proof. The filtered spectrum 7>9,(M) ®y_,, (r) T>2«(N) defines a filtration on M ®;, N. This
filtration is exhaustive, since colim: Fil(Sp) — Sp is symmetric monoidal, and complete, since
7225 (M) ®r_,, (k) T>2+(N) is a connective object in the double Postnikov ¢-structure (see the
proof of Lemma 11.10).

Now consider the t-adically completed tensor product 7so,(M) ®T>2*(k) T>2+(N), where t
in the filtration degree corresponding to its homotopical degree. This now defines a filtration
on M ®; N, which is clearly still complete. It is also still exhaustive. Indeed, for all n,
the cofibre of (722,(M) ®r,, k) T>2+(N))—n — M ® N is (2n + 1)-coconnective. Upon ¢-
adic completion, the coconnectivity can go down by at most 1, and so we see that the
cofibre of (Ts94(M) ®T>2*(k) T524(N))_pn — M ® N will still be 2n-coconnective. This ensures
exhaustiveness.

Passing to the associated graded is symmetric and commutes with ¢-adic completion (in
the filtered and graded setting, respectively). Moreover, the double shearing functor ¥2* is
E;-monoidal (even Eg, but we won’t need that). Hence

(k) ~ denotes the graded t-completed derived tensor product over mwo. (k).

gr*(M ®k N) >~ 22*7['2*(M) ®22*7r2*(k) 22*71’2*(N) ~ 22* (Wg*(M) ®7I;2*(k) WQ*(N)> . ]

11.13. Corollary. — “lim)), -+ ﬁl;_Hdg qf(ﬁ\{(z/m)/z and “lim}, s ¢-Hdg (7,1, /7 are idempo-
tent pro-algebras, respectively, in the derived oo-categories of t-complete graded Z[B][t]-modules
and of (q — 1)-complete Z[q — 1]-modules.

Proof.AThroughout the/\proof, ® will denote a t-completed tensor product. We also put
fil* ¢-dRyy, = filj_yqq c;];dR(Z/m)/Z and A := “lim), .+ fil* ¢-dR,,, for short.

Since each fil* ¢-dR,, is a graded Z[S][t]-algebra, we get a unit map Z[S][t] — A and a
multiplication A @Ii[ﬁ] [] A — A such that the composition

A= Z[B)[t] &g A — Ay A — A

is the identity. For the other composition, let m1, mo € N* and consider the ¢-completed tensor
product

TC™ ((ku/my ®xu ku/mg)/ku) ~ TC™ ((ku/mq)/ku) @kuhsl TC™ ((ku/ms)/ku) .

By Lemma 11.12, this has a complete exhaustive filtration with graded pieces given by
»2*(fil* q—&l\%ml ®Ii[ﬁ][[t]] fil* q—(Il\{mQ). Observe that this graded completed tensor product is
concentrated in homological degrees [0, 1]. Indeed, this can be checked modulo (/,¢). Then
fil* q—(ﬁ\{mi/(ﬁ, t) ~ grijag AR(z/m,)/z, 18 given by Z/m; in every graded degree for i = 1,2, and
Z/m1 ®% Z/ms is indeed concentrated in homological degrees [0, 1]. It follows that the filtration
on TC™ ((ku/p™ ®xy ku/p™?)/ku) must be the double speed Whitehad filtration 7>2,.

By Corollary 10.26, TC™ ((ku/m? Q ku/m)/ku) — TC™ ((ku/m? ®y, ku/m)/ku) factors
through the even spectrum TC™((ku/m)/ku). By passing to the associated graded of the
double speed Whitehead filtration, we see that

fil* g-dR, 3 @m i fil* g-dR,, — fil* g-dR, 2 @;w] 1 il ¢-dR

factors through fil* ¢-dR,,. This finishes the proof that A = “limy, ens il praq q—&f{(z /m)/z 18 an
idempotent pro-algebra.

184



§11.1. ¢-HODGE FILTRATIONS AND TC™ " (ku ® Q/ku)

The argument for “lim}, ¢ g-Hdg(z,,,) /7 is analogous, except that we work with KU instead
of ku, and to show that ¢-Hdgz/,,,),z ®IZJ[[q71]] q-Hdg(7,/m,)/z is concentrated in homological
degrees [0, 1], we need a slightly different argument: First, we can reduce modulo (¢ — 1).
The conjugate filtration from 3.8 gives an ascending filtration on ¢-Hdgz/y,,)/z/(q — 1) for
i = 1,2, whose graded pieces are copies of Z/m;. Moreover, ¢-Hdgm,,)/z/(¢ — 1) is an
Z/m-algebra, since g-Hdg /., /z contains an element of the form m;/(¢—1). Thus, abstractly,
q-Hdgz/m,y/z/(@ — 1) =~ @yZ/m;. So we're done since Z/my ®% Z/my is concentrated in
homological degrees [0, 1]. O

11.14. Corollary. — “lim}, ¢ filf_yq, q—d/f\{(z/m)/z and “limp, cn¢ g-Hdg(z, /) /7 are equivalent
to pro-objects with trace-class transition maps.

Proof. Throughout the proof, ® will denote a t-completed tensor product. Using Corollary 10.26
and unravelling the proof of Lemma 10.19, we find that that for every high-powered m,
TC™ ((ku/m3)/ku) — TC™ ((ku/m)/ku) is trace-class in t-complete kuS"-modules. Hence it
must be induced by a map

n: kuS" — TC_((ku/m )/ku) st TC™ ((ku/m)/ku)

By Lemma 11.12 (applied to the shift ¥ TC™((ku/m?)/ku)¥ to get an even spectrum, then we
shift back aftervvg{ds), the right-hand side has a complete exhaustive filtration with graded
pieces (il j1qq ¢-dR (z/m3)/2)" ®IZ[,B] ] fil} nag ¢-dR(z/m)/z- As in the proof of Corollary 11.13,
one easily checks that this graded completed tensor product is concentrated in homological
degrees [—1,0]. It follows that the filtration must be given by 7>9,—1(—). Thus, by considering
T>2+—1(n) and then passing to associated gradeds, we obtain a morphism

ZIBY[t] — (81 15 4-0Rzyms)/2) * Opape Al11ag ¢-Rz/m) 2 -

which witnesses that the morphism fil} 4, q—(ﬁ\{(z ym3)/z, — il mdg q—(ﬁ\{(z/m) sz is indeed
trace-class, as desired.

The argument for ¢-Hdgz/m3)/z — ¢-Hdgz m)/z being trace-class is analogous, except
that we use KU instead of ku. Moreover, we need a different argument to show that
(q-Hdg(z/ms) /Z) ®Z[[q ke Hdg(Z/m)/Z is concentrated in homological degrees [—1,0]: First,
we can reduce modulo (¢ — 1). As we’ve seen in the proof of Corollary 11.13, on underlying
abelian groups we get an equivalence ¢-Hdg(z/m)/z/(q¢ — 1) ~ @yZ/m. An analogous con-
clusion holds for ¢-Hdgz/,,3)/7/(¢ — 1). Thus, the tensor product modulo (¢ — 1) becomes
S INZ/m? ®% @y Z/m, which is clearly concentrated in homological degrees [—1,0]. O

This finishes step 11.3(c) and we arrive at the result of our computation.

11.15. Theorem. — TC™ " (ku®Q/ku) and TC " (KU®Q/KU) are concentrated in even
degrees. Furthermore, their even homotopy groups are given as follows:

(a) s TCT ™ (ku®Q/ku) = A¥,, where A}, is obtained by killing the idempotent pro-graded
Z[B][t]-algebra “limy, ens fil7 yaq ¢-dR(z/m)/z- In particular, there’s a short exact sequence

0 — Z[B[t] — Ay — %‘%ggﬁp Extz 1511 (ﬁlq g AR (z/m) /2, Z[B ][[ﬂ])

and Af, is an idempotent nuclear graded Z[[5][t]-algebra.
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(b) T TCT™ (KU ® Q/KU) = Axu[S+'], where Axy is obtained by killing the idempotent
pro-Z[q — 1]-algebra “lim)), . q—Hdg(Z/m)/Z. In particular, there’s a short exact sequence

« ST 1
0— Zg—1] — Axy — mfie(%gg)p Extze—1] <q—Hdg(Z/m)/z, Zlq — 1]]) — 0,

and Axu is an idempotent nuclear Z]q — 1]-algebra.

Proof. We use the cofibre sequence of 11.3. To compute TC™ " (ku ® Q/ku), we must study
the cofibres of TC™ ((ku/m)/ku)" — ku"S" for high-powered integers m € N¥. Put

fil* g-dR;, = cofib (Z[ﬁ] [t] — A 1140 -AR z/m) /Z) ;

TGC,,, == cofib (kuhS1 — TC™ ((ku/m)/ku)) .

Since ku"" and TC™ ((ku/m)/ku) are even spectra, the sequence of double speed Whitehead
filtrations 722*(kuhsl) — 752, TC™((ku/m)/ku) — 7592, TC,, is still a cofibre sequence in
filtered spectra. Applying the construction from the proof of Lemma 11.10, we get complete
exhaustive filtrations on the duals of ku"s", T C~ ((ku/m)/ku), and TC,, in such a way that
they fit into a cofibre sequence fil*(TC,)Y — fl* TC™((ku/m)/ku)¥ — fil*(ku"S")V. After
passing to associated gradeds, we get a cofibre sequence of graded ¥2*Z[3][t]-modules

gr*(TC,,)Y — S (fil} g ¢-dRz/myz)" — EZZ[B1[",

where ¥2*: Gr(Sp) — Gr(Sp) denotes the “double shearing” functor. It’s clear from the
construction that the morphism on the right must really be given by 2*(—)Y applied to
the unit map Z[B][t] — I} 114 ¢-dR(z/myyz- It follows that gr(TC,,)" ~ N2 (fl* ¢-dR)".
Observe that (fil* ¢-dR¥,)Y sits in homological degree —1. Indeed, this can be checked modulo
(B,t). Then fil* ¢-dR,,,/(8,t) ~ cofib(Z — g1f14g AR (z/m)/z) 18 given by ¥Z in graded degree 0
and Z/m in every other graded degree, so it’s straightforward to see that its graded dual over
7 sits indeed in homological degree —1.

Thus, fil*(TC,,)Y must be the double speed Whitehead filtration, (TC;,)" is concentrated in
odd degrees, and 2.1 ((TC,,)V) = H_; (fil*(¢-dR,,)") as a graded Z[3][t]-modules. Combining
this with Corollary 11.11, we see that the long exact homotopy sequence of the rotated cofibre
sequence (ku™" )Y — $(TC,)Y — £ TC™((ku/m)/ku)" breaks up into a short exact sequence
of graded Z[S][t]-modules of the following form:

0 — Z[B][t] — H_1 (" (¢-dRym)") — Extyyg g (ﬁlz}Hdg ¢-dR z/m) /2 Z[ 6] M) — 0.

Since TC™™ (ku®Q/ku) ~ “colimy, ¢ (n#)or ¥(TC,,) by the cofibre sequence from 11.3, it follows
at once that TC™" (ku ® Q/ku) is concentrated in even degrees and that Aj, fits into the
desired short exact sequence. Furthermore, it’s clear from our considerations above that

(A5 fag ¢-dR(z/myz)" ~ 57! Extyag (ﬁlngdg ¢-dR (z/m) /2 ZLB] [[ﬂ]) — Z[B][t] ,

induced by the short exact sequence, is given by dualising the canonical unit morphism
Z[B][t] — fily pag -dR(z/m)/z- Then the underlying graded ind-Z[B][t]-module of Af, must

really be given by killing the pro-idempotent “lim, - ﬁl;_Hdg q—(ﬁ\{(z /m),z- ldempotence and
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nuclearity of Aj, follow from Lemma 10.9(b) and Corollary 11.14. Since idempotents admit
a unique E,-algebra structure, it follows that the desired description of A} also holds as a
nuclear ind-Z[S][t]-algebra. This finishes the proof of (a).

The proof of (b) is analogous; the only difference is that we need a different argument why
cofib(Z[q—1] — ¢-Hdg(z/n)/z)" is concentrated in homological degree —1. This can be checked
modulo (g —1). We've seen in the proof of Corollary 11.13 that ¢-Hdg(z ) /2/(¢ — 1) is a Z/m-
algebra and, abstractly, ¢-Hdgz/m)/z/(¢ —1) ~ @y Z/m. We can choose this decomposition in
such a way that one of those summands corresponds to the unit Z/m — ¢-Hdgz/p/2/(q — 1).
It follows that

\Y%
cofib(Z — ¢-Hdggmy jz/(a — 1)) ~ <ZZ@ ) Z/m> ~s'zox [ z/m
N~ {1} N~ {1}

is indeed concentrated in homological degree —1 and we’re done. O

§11.2. Explicit g-Hodge filtrations

In this subsection, we’ll give an explicit description of the ¢-Hodge filtration ﬁl;_Hdg q-dRz/m),z-
This will be used in §12 to prove Theorems 1.40 and 1.41, but it also leads to an elementary
proof of Theorem 4.22(a), which also covers the remaining cases for p = 2.

By construction, it will be enough to describe the g-Hodge filtration in the case where m = p“
is a prime power. In this case, the filtration is obtained via base change from ¢-dR z, (4., /z2)/z, -
Using ¢-dR(z, (2} j22) /2, = €-AR(Z, (2} o0 /22)/Z, {2} @0d Lemma 4.27, we can further reduce
the problem to describing the filtration from Construction 4.21 on the derived ¢-de Rham

complex
6(z%) }
[Pla (p,a—1) .
Let us denote this ring by ¢-D, for short and let Dy = dR(z,(2}/22)/2,{z}- Then Dy is the
p-completed PD-envelope of (z%) C Z,{x} and ¢-Da/(q — 1) =~ Dq. The filtration fil} yq, ¢-Da
from Construction 4.21 is then given as the (1-categorical) preimage of the (z%, ¢ — 1)-adic
filtration on Do[1/plaqegla — 11-

q-dR(z, (2} /22) 2,1} = Lp{z}a — U]{

11.16. Lifts of divided powers. — Let v(—) := (—)?/p denote the divided power operation
and let 7(”)(—) denote its n-fold iteration. To get an explicit description of the filtration
fil} Hag ¢-Da, we must find elements ’Nyén) (z%) € ﬁlngdg g-D,, for all n > 0 such that the

following two conditions hold:
(a) We have 'ﬁén)(xa) =™ (2% mod (¢ —1).
(b) The image of 'Nyén) (%) in Da[l/p]ﬁdg[[q — 1] is contained in the ideal (z,q — 1)P".

Indeed, if fil} 4, ¢-Da/(q — 1) = filjjgy Do (Which we know for p > 2 as well as for p = 2 in the
case where « is even and > 4; in the remaining cases we wish to show it), then such elements
must exist. Conversely, if such elements exist, then fil} y4, ¢-Da/(q — 1) — filfjg, Do must be
surjective, thus an isomorphism by Lemma 4.26, and so ﬁl;,Hdg q-D, must be generated as
a (p,q — 1)-complete filtered g-D,-algebra by (¢ — 1) in filtration degree 1 and the elements

?én)(:na) in filtration degree p" for all n > 0.
In Example 4.24, we’ve got a first taste why describing such f“y(g”) (x) is not an easy task.
The following technical lemma due to Samuel Meyer shows existence of these lifts along with
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some structural information about them, and we’ll even see an explicit recursive construction
in the proof. Moreover, all of this works for all & > 2 without any restrictions in the case p = 2.

11.17. Lemma (Meyer). — For all primes p, there is a sequence (I'y,)n>0 of polynomials in
Zp{x}[q] with the following properties:

n—1

= 27" mod (¢ — 1)~ and T, € (2P, (¢ — 1)P~1)P
((¢'(x), @ (q))p,q)pl( yp=hyp foralll <i<n-—1.
(¢ ( ) pn(2))-

(q)pn ' ~q-Dy, for all o > 2

I,

F c n 1—14
T, e

d) (Tn)”

In particular, for all a > 2, (T',)® is contained in the ideal (z,q — 1)P", and

~(n) (o) . (Fn)a
7 ==
@ () i1 Ppi ()P

is a lift of the n-fold iterated divided power ™ (z®) and contained in the (p™)" step of the
q-Hodge filtration on q-D,.

€ ﬁlq Hdg Do

Proof. We’ll do a proof by induction. For the base case of the induction, n = 0, let I'g := x.
All of the statements are trivial in this case.
For the induction step, we first want to construct the element I',,. For this, let P,,Q, be

some polynomials in Z[q] such that p = P,(¢)(¢ — 1)®VP""" + Q. (q ) (q) Note that such
polynomials always exist, since ®,n (1) = p and ®pn(q) = (¢ — 1)P~YP""" mod p, so

By (g) — (¢ — 1)@=
P

is a unit modulo (¢ — 1)@ V""" Now define

Ty = (Tne1)? + Pa(@) (g — D" 500 1) = ¢(Tn1) — Qul@)@pr (¢)3(Tr).

Statement (a) follows trivially. For (b) and (c), by Lemma 11.18 below it’s enough to check
that p - I',, is contained in these ideals. We have

p-Tu=p Tac1)? + Pu(q)(qg — )PP ($(Ty1) — (Tper)?)
=p- ¢(ln-1) — Qn(Q)(I)p" (q) (Qb(anl) - (anl)p)-

Now (I'y,—1)P and ¢(I',—1) are contained in each one of the ideals from (b). Indeed, for (I',,—1)P,
this follows from statements (b) and (c¢) of the induction hypothesis, and for ¢(I',—1) this
follows similarly from (a) and (b). Therefore, the first of the two equations above shows that
p-I'y is contained in each of the ideals from (b). Similarly, using statement (c¢) of the induction
hypothesis, we get ¢(I';,—1) € (¢"(z), Ppn(g)) and so the second of the equations above shows
that p - T',, is contained in this ideal as well. This finishes the induction step for (b) and (c).

It remains to show statement (d). By [BS19, Lemma 16.10], ¢-D,, is (p,q — 1)-completely
flat over Zy[q — 1] and thus flat on the nose over Z[q|. Therefore

[1%, @ a-Da = ()@@ gD
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To show that (I';)* € @, (q)pnii -q-D,, for 1 <i < n—1, by the already proven statement (b),

it’s enough to show the same for any element in the ideal ((¢*(z), D,i(q))P, Py (q)P—l)ap"‘l""
So consider a monomial of the form

(& (2)7 @, (q)F) @i (@)1,

where j + k= p and £ +m = ap”~17%. By construction, ¢(z)® becomes divisible by ®,(g) in
¢-Dq and so ¢'(2)* € ®,i(q) - ¢-Da. Hence ¢'(x)7* is divisible by @, (q) Li¢/e] Tt will therefore
be enough to show

y .
VaJ +kl+(p—1)m=p" .

This is straightforward: For ¢ = 0, the inequality follows from a(p—1) > p as « > 2. In general,
if we replace (7, k) by (7 —1,k+ 1), the left-hand side changes by at least £ — |{/a] —1; for £ > 1
and a > 2 this term is always nonnegative. Therefore we may assume j = p, k = 0, and we must
show |pl/a + (p—1)m > p"~% If p =2 and a = 2, this becomes the equality £ 4+ m = 2"~
and so the inequality is sharp in this case. If p > 3 or @ > 3, we have (p — 1) — [p/a] =1 >0
and so by the same argument as before we may assume £ = ap™ =% m = 0. The the desired
inequality follows from a(p — 1) > p again.

A similar but easier argument shows that every element in (¢"(z), ®p»(q))“ becomes divisible
by ®,n(¢) in g-D, and we have an inclusion of ideals (2?, (¢ — 1)1’*1)0‘1”71_1 C (z%,¢—1)P" in
Zp{z}[q). This finishes the proof of (d) and shows (I';)® € (z%,¢ — 1)?". Hence f7§") (x) is
really contained in the (p™)™ step of the ¢g-Hodge filtration and it lifts v (z®) by (a). O

11.18. Lemma. — If J C Zy{x}[q] is any of the ideals in Lemma 11.17(b) or (c), then
Zp{x}[q]/J is p-torsion free.

Proof. Consider the map v;: Zp{x}[q] — Zp{z}[q] given by the i-fold iterated Frobenius
¢": Zp{x} — Zyp{a} and q — @,i(q). If we replace ¢'(z) and ®,:(g) in the definition of J by =
and g, respectively, we obtain an ideal Jy C Zy{z}[¢] such that

Zp{x}/J = Lpixt/Jo @z, (wyq) v Loiz}a] -

Now ¢ is flat by [BS19, Lemma 2.11] and ¢ ®,i(q) is finite free, as the polynomial @, (q) is
monic. So 1; is flat and it suffices to show that Z,{x}[q]/Jy is p-torsion free. But Z,{z}[q] is a

free module over Z, with basis given by monomials in z,(z), 6%(x),... and ¢. By construction,
Jo is a free submodule on a subset of that basis. It follows that Zy{x}[q]/Jo is free over Z,,
hence p-torsion free. O

Finally, as a simple corollary of Lemma 11.17, we get an elementary proof of Theorem 4.22(a).

Proof of Theorem 4.22(a). We already know from Lemma 4.26 that

(fil} 1ag ¢-dRp/a) /(g — 1) — filfigg dRgya

is degree-wise injective, so it suffices to show surjectivity. It’ll be enough to show that for
each of the generators of J = (z{*,...,2%") and all n > 0, the n-fold iterated divided power
V(”)(mf‘i) admits a lift which lies in the (p™)*™® step of the ¢-Hodge filtration. Thus, it’s enough
to treat the case A = Z,{z} and R = Z,{x}/x“ for all @ > 2. In this case the desired lifts have

been constructed in Lemma 11.17. O
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§12. Algebras of overconvergent functions

In this section we prove Theorems 1.40 and 1.41. In §§12.1-12.2 we’ll review Clausen’s and
Scholze’s approach to adic spaces via solid analytic rings [CS24, Lecture 10] and study algebras
of overconvergent functions as well as gradings in this setup. In §12.3, we’ll then combine this
with our explicit computation of the g-Hodge filtration on ¢-dRz/pe)/z, from §11.2 to finish
the proof of Theorems 1.40 and 1.41.

§12.1. Adic spaces as analytic stacks

In the following, we’ll use the formalism of analytic stacks from [CS24]. Recall the notion of
solid condensed spectra from 5.1. We let D(Zq) ~ Modz(Spg) denote the derived oco-category
of solid abelian groups. Let also Nully := Null ® Z ~ cofib(Z[{occ}] — Z[N U {oo}]) denote
the free condensed abelian group on a nullsequence and let ¢: Nully — Nullz denote the shift
endomorphism.

12.1. Huber pairs a la Clausen—Scholze. — Recall that to any Huber pair (R, RT) one
can associate an analytic ring (R, R")a in the sense of [CS24, Lecture 1] as follows: First
consider R as a condensed ring via its given topology. For f € R(x) and M € Modg(D(Za))
we say that M is f-solid if

1 — fo*: RHomy (Nullz, M) — RHomy(Nullz, M)

is an equivalence. The inclusion of the full sub-oo-category of f-solid R-modules admits a left
adjoint (—)f®, called f-solidification. The underlying animated condensed ring of (R, RT)g is
then defined as
(R,RT)2:= colim RA™-/m
{f1, fr}CRT

where the colimit is taken over all finite subsets of R*, and D((R, R")a) C Modr(D(Za)) is
the full sub-co-category of solid condensed R-modules that are f-solid for all f € R C R(x).
In the following, we’ll always work with Huber pairs for which (R, RT)j is just R itself.

The classical notion of affinoid open subsets fits naturally into this formalism. Suppose
we're given fi,..., fr € R(*) generating an open ideal as well as another element g € R(x),
so that U := {z € Spa(R,R") | |filz:---,|frlz < 9|z # 0} defines a rational open subset. We
can define an analytic ring O(Uy) as follows: The underlying animated condensed ring is the
solidification

O(U) = R[%] (fl/g).v"'»(fr/g).

and we let D(Ua) = D(O(Ua)) € Modpgy1/4(D((R, R")a)) be the full sub-co-category spanned
by those R[1/g]-modules in D((R, R")a) that are also (f;/g)-solid for i = 1,...,r. If O(U)
is static and quasi-separated, it agrees with the Huber ring from the classical theory of adic
spaces. In practice, this will almost always be the case.

12.2. Adic spaces a la Clausen—Scholze. — Clausen and Scholze associate to any Tate(!21)

adic space X an analytic stack Xg — AnSpecZg. If X = Spa(R, R") is Tate affinoid, we
simply put Xg := AnSpec(R, R")a. If U C Spa(R, R") is an open subset of a Tate affinoid

12Dy avoid confusion with analytic stacks, we’ll call an adic space Tate rather than analytic if, locally, there
exists a topologically nilpotent unit. The restriction to Tate adic spaces makes sure that open immersions go to
open immersions (see Lemma 12.3 below); analytic stacks can be associated to any adic space.
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adic space, choose a cover V' = [[;c; V; — U by rational open subsets and form the Cech nerve
Ve = é.(V — X). Every V,, is a disjoint union of affinoid adic spaces, hence V,, 4 is already
defined. Then we can put Ug := colimp,jcacr Vi,u. Finally, if X is an arbitrary Tate adic space,
choose a cover W :=[];c; W; — X by affinoids and form the Cech nerve W, := é.(W — X).
Each W, is a disjoint union of open subsets of Tate affinoid adic spaces, so W, u is already
defined, and we put Xg := colimp,jeaor Win, -

It can be shown that these constructions are well-defined and independent of the choices
involved. We’ll omit the verification, but let us at least mention the crucial input.

12.3. Lemma. — Let (R, RT) be a Huber pair and let Xq := AnSpec(R, R™)q be the associated
affine analytic stack.

(a) IfU,U" C Spa(R, R") are rational open subsets, then
AnSpec O(Un) X anspec(r, R+)a AnSpec O(Ug) =~ AnSpec O((UNU")a) -

(b) If R is Tate and U C Spa(R, R") is a rational open subset, then j: Ug — Xa is an open
immersion of affine analytic stacks in the sense of [CS2/, Lecture 16]. That is, j* admits
a fully faithful left adjoint j) satisfying the projection formula.
(¢) If R is Tate and [[}-,U; — Spa(R,R") is a cover by rational open subsets, then
i1 Ui m — Xa is a!-cover of affine analytic stacks.

12.4. Remark. — The Tate condition in Lemma 12.3(b) and (c) is crucial and it is the
reason why we restrict to the Tate case when we describe adic spaces in terms of analytic
stacks. Without this assumption, (b) will be wrong. For example, if R is a discrete ring, any
Zariski-open also determines a rational open of Spa(R, R), but in this case j* almost never
preserves limits, so it can’t have a left adjoint 7.

Proof sketch of Lemma 12.3. Suppose U and U’ are given by |fi|,...,|fr| < |g| # 0 and
If1l, -y |2l < 1¢'| # 0, respectively. Using the description of pushouts from [CS24, Lecture 11],
it’s clear that O(Ua) ®(LR7R+)_ O(U)) is the solidification of R[1/(gg’)] at the elements f;/g and
fi/g fori=1,...,r, j=1,...,s. But that’s precisely O((U N U’)a), proving (a).

For (b), assume U is given by |fi],...,|fr] < |g| # 0. Since R is assumed to be Tate,
the open ideal generated by fi,..., f, must be all of R. Hence g will aready be invertible in
R[Ty,...,T.]/(¢T; — fi | i =1,...,7) and this quotient is automatically a derived quotient as
well. It follows that the functor j*: D(Xa) — D(Ua) can also be written as

(T, ..., T, ™D /(g Ty — fi | i=1,...,7).

By [CS24, Lecture 7], the functor (—)[T]™ of adjoining a variable and then solidifiying it can
be explicitly described as RHomy (Z((T~1))/Z[T],—) and so j*(—) ~ RHomp(Q, —), where

Q= (@12 ) /2T S8 R) (T~ Ji i = 1),
=1

It follows immediately that j* admits a left adjoint ji(—) ~ Q@ ®%R Rt)a It remains to check
the projection formula

J1(M) ®I(R,R+). N ~j(M ®](5(U.) 7*(N)) .
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By the same argument as above, @ is already an R[1/g]-module and the functor j* is insensitive
to inverting g. Therefore, it’s enough to check the projection formula in the case where N
is an R[1/g]-module. When restricting to R[1/g]-modules, j* is just given by successively
killing the idempotent algebras Z((T; 1)) ®IZFTL-],T1-»—> filg R[1/g] for i =1,...,r. Now for killing
an idempotent it’s completely formal to see that the left adjoint indeed satisfies the projection
formula. This finishes the proof of (b).

To show (c), since we already know that each j;: U; » — Xa is an open immersion, we can
use the criterion from [CS24, Lecture 18] to verify that [}, U; w — Xa is indeed a !-cover.
That is, if A; := cofib(j; 1 O(U;) — R), we need to show A; ®(LR7R+)_ i ®I(4R7R+)_ A, ~ 0. Using
[Hub94, Lemma 2.6] and an inductive argument as in [CS19, Lemma 10.3], this can be reduced
to the special case where n =2 and Uy = {x € X | 1 < |f|.}, U2 ={z € X | |f|. < 1} for some
f € R. This is now a straightforward calculation. O

12.5. Remark. — Let U C X be an open inclusion of Tate adic spaces and let j: Ug — Xa
be the corresponding map of analytic stacks. In the following, if its clear that we’re working
in D(Xg), we often abuse notation and write Oy instead of j, Oy, for the pushforward of the
structure sheaf of Ug. We also use — ®I5X. Oy, to denote the functor j.j*: D(Xa) — D(Xa).

Let us point out that — ®I@X_ Ou, is not just the tensor product with Oy in the symmetric

monoidal co-category D(Xg). We can already see the difference if X = Spa(R, Rt) and U C X
is a rational open given by |fi],...,|fr] <|g| # 0: In this case,

— ®%X. OUI ~ (_ ®%X. OU)(fl/g).v"'r(fT/g). .

In particular, even though Oy ®I@X. Ouv. ~ Oy (see Lemma 12.3(a) and Lemma 12.10(b) below),
it’s rarely true that Oy is idempotent in D(Xg).

Thus, there’s a priori no reason to expect that sheaves of overconvergent functions O+
would be idempotent. In the following, we’ll investigate why idempotence is satisfied in the
situation of Theorems 1.40 and 1.41. Let’s start by introducing a notion of open immersions
for analytic stacks that need not be affine.

12.6. Open immersions of analytic stacks. — We call a map of analytic stacks j: U — X
a naive open immersion if j is a l-able monomorphism and j* ~ j'. Since j is a monomorphism,
U xx U ~ U. Combining this with proper base change, we get j*ji ~ idp () and so ji is fully
faithful. Then the right adjoint j, of 7* must be fully faithful as well.

Using the projection formula and j*ji ~ idp), we see that jiOy — Ox exhibits 5Oy as
an idempotent coalgebra in D(X). Then cofib(jiOy — Ox) must be an idempotent algebra. In
this way, we can associate to any naive open immersion an idempotent algebra in D(X), which
we call the complementary idempotent determined by U and denote Ox. . It’s straightforward
to check that the forgetful functor i,: Modp, ,(D(X)) — D(X), which is fully faithful by
idempotence, fits into a recollement

Modoy_, (D(X)) 2~ D(X) —L— D(U)

and so 7.Oy is obtained from Ox by killing the idempotent algebra Ox. . As long as it’s
clear that we’re working in D(X), we often abuse notation and just write Oy instead of j,Ox.
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12.7. Remark. — Every open immersion of affine analytic stacks in the sense of [CS24,
Lecture 16] is also a naive open immersion.

12.8. Remark. — If A € D(X) is an idempotent algebra, we can define an analytic substack
Uy C X by declaring that a map f: Y — X factors through Uy if and only if f*: D(X) — D(Y)
factors through the localisation D(X)/ Moda(D(X)), or equivalently, if and only if f*(A) ~ 0.
However, it’s not true that the constructions U — Ox.y and A — Uy are inverses; it’s not
even clear why D(U4) would coincide with D(X)/ Mod 4 (D(X)).

It’s not obvious what conditions should be put on U and A to make these constructions
mutually inverse (moreover, whatever the condition, it should be satisfied for open immersions
of affine analytic stacks). This explains why we call the notion from 12.6 naive: An honest
open immersion of analytic stacks should be a naive open immersion for which the idempotent
algebra Ox .y meets the putative condition. In the following, we’ll work with the naive notion,
since it is enough for our purposes.

12.9. Lemma. — Let U — U — X be naive open immersions of analytic stacks. Suppose
that U contains the closure of U’ in the sense that there exists another naive open immersion
j:V = X such that U' xx V ~ 0 and Ox.v ®p, Ox-v =~ 0. Then Oy ®p, Oy ~ Oyr.
Moreover, the map Oy — Oy is trace-class in D(X) and factors through Ox. vy .

Proof. The condition U’ x x V ~ () implies that Oy is in the kernel of the pullback functor
j*: D(X) — D(V) and so Oy is an algebra over the idempotent A := Ox.y by 12.6. We
also know that Op is obtained from Ox by killing the idempotent B := Ox.y. Hence
Oy ~ cofib(BY — Ox). Since BY is a B-module, Oy is an A-module, and A ® B ~ 0, we get
BY ®I@X Oy ~ 0, hence indeed Oy ®Ig)x Oyr ~ Oy

Since the double dual BV is still a B-module, the same argument shows O} ®%X Oy ~ Oy
Hence Oy — Oy is trace-class, with classifier given by the unit Ox — Opy:. We've already
seen that Oy is an A-algebra. The condition A ® B ~ 0 also implies RHom x (B, A) ~ 0, since
RHom (B, A) is both an A-module and a B-module. It follows that A is contained in the
image of j.: D(U) — D(X) and hence A is an Op-algebra. This shows that Oy — Oy factors
through A. O

12.10. Lemma. — Let X be a Tate adic space with associated analytic stack Xg — AnSpec Zg,
and let U, U’ C X be open subsets.

(a) The map j: Ua — Xa is a naive open immersion of analytic stacks. Moreover, an arbitary
map f:Y — Xa of analytic stacks factors through Uy if and only if f*(Ox.v) ~ 0.

(b) We have Ug x x, Ug ~ (UNU")a. In particular, Oy ®I(5X- Ouy ~ Oy and vice versa if
U and U’ are exchanged.

(¢) IfU C U, then Ug contains the closure of Ul in the sense of Lemma 12.9.

Proof sketch. Let’s start with (b). In the case where U and U’ are affinoid, Ug X x, UL ~ (UNU’)a
follows essentially by the construction of Xg in 12.2, because we can choose both U and U’ to
be part of an affinoid cover of X (and to prove that said construction is independent of the
choice of cover, we need Lemma 12.3(a)). To show the general case, just cover U and U’ by
affinoid open subsets.

Let’s show (a) next. Let’s first consider the case where X = Spa(R, R™) is affinoid and
U C X is a rational open. We’ve already seen in Lemma 12.3(b) that j: Ug — Xg is a naive
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open immersion. Suppose f: Y — Xg is a map of analytic stacks such that f*(Ox.y) ~ 0. If
Y ~ AnSpec S is affine, then the map of analytic rings (R, R")s — S factors through O(Uy)
if and only if f*: D((R,R")a) — D(S) factors through D(Us). Since f*(Ox.y) ~ 0, this
is satisfied in our case. This proves the claim in the case where Y ~ AnSpec S is affine. In
particular, Ug X x, AnSpec S ~ AnSpec S. For the general case, write Y as a colimit of affines
to see Ug Xx, Y ~ Y. Then f: Y — Xy clearly factors through Us.

Now let U and X be arbitrary. Proving that j: Ug — Xy is a naive open immersion formally
reduces to the special case considered above; we omit the argument. Now let f: Y — X
be a map of analytic stacks such that f*(Ox.y) ~ 0. Whether f factors through Uy can
be checked locally on Xg. By (b), if Spa(R,R") — X is an affinoid open supset, then
Us X x4 AnSpec(R, R")a ~ (UNSpa(R, R"))a, so we can reduce to the case where X is affinoid.
As above, we may also assume that ¥ ~ AnSpec S is affine. Let [[;c; U; — U be a cover by
rational open subsets. Then

Oxu > {n,c.(.).}zi'ir}lg(OX\U” Bxy o, OX\U“I) ’
where the colimit is taken over all finite subsets of I. Since the colimit is filtered and f*(Ox.v)
is detected by the single condition 1 = 0, there exists a finite subset {i1,...,i,} C I such
that already f*(Ox.u;,) Q% -+ ®% f*(Oxwv,,) ~ 0 in D(S). By the criterion from [CS24,
Lecture 18], it follows that []}_; U;; m X x4 AnSpec.S' — AnSpec S is a l-cover. We may therefore
replace S by the constituents of this cover, and for each of them it’s clear that they factor
through Uy. This finishes the proof of (a).

Part (c) is a formal consequence: If V := X \ U’, then Vg — Xg is a naive open immersion
by (a), Usa X xs Va =~ 0 follows from (b), and if A :== Ox. v ®I@X_ Ox v, then it’s formal to
see that Mod 4(D(Xa)) is the kernel of the pullback functor D(Xa) — D(Ua) Xp((wnv)e) P(Va)-
But this functor is an equivalence as U UV = X, and so A ~ 0. O

We can finally show the desired criterion for idempotence.

12.11. Definition. — If X is a Tate adic space and Z C X is a closed subset, the overcon-
vergent neighbourhood of Z is the analytic stack

Z' = lim Uy,
U>Z

where the limit is taken over all open neighbourhoods of Z. If it’s clear that we're working
in D(Xa), we often abuse notation and denote by Qi = colimy>z Op € D(Xa) the sheaf of
overconvergent functions on Z. This is in favorable situations, but not always, the pushforward
of the structure sheaf of ZT; see Theorem 12.12(b) below.

12.12. Theorem. — Let X be a quasi-compact quasi-separated Tate adic space and let Z C X
be a closed subset such that for all points z € Z and all generalisations 2’ ~ z also 2’ € Z.

(a) The ind-object
c[(])ggl Ov € Ind D(Xa)

is idempotent, nuclear, and obtained by killing the pro-idempotent “lim’, o _, Ow, where
the limit is taken over all open subsets W C X such that ZN'W = 0. In particular,

Oyt € D(Xa) is idempotent and nuclear.
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(b)  If for every affinoid open j: Spa(R, R™) — X the pullback j*(O4) € D((R, RT)a) is con-
nective'22) | then pushforward along Z' — Xa induces a symmetric monoidal equivalence
D(Z) ~ Modo_, (D(Xa)). In particular, in this case Oy; is really the pushforward of the
structure sheaf of Z1.

To prove Theorem 12.12, we send a lemma in advance.

12.13. Lemma. — Let X be a spectral space and let Y,Z C X be closed subsets such that
for z € Z and y € Y there never exists a common generalisation z « x ~» y (in particular
ZNY =0). Then there exist open neighbourhoods U 2 Z and V DY such that U NV = ().

Proof. Fix z € Z. By [Stacks, Tag 0906], y € Y there exist open neighbourhoods U, > z and
Vy 3 y such that Uy, NV, = (). By compactness of Y, there exist finitely many yi,...,y, € Y
such that Y C V, :=V,, U---UV,,. Let also U, :== Uy, N---U,,, so that U, NV, = 0. By
compactness of Z, there exist finitely many z1,..., 2y, € Z such that Z C U :=U,, U---UU,,,.
Putting V .=V, N---NV,,_, we have constructed U and V with the required properties. [

Proof of Theorem 12.12. First observe that Lemma 12.13 can be applied to any closed subset
Y C X such that ZNY = (. Indeed, for any common generalisation z « z ~ y, we would
have x € Z, as Z is closed under generalisations, but then y € Z, as Z is also closed under
specialisations.

It follows that in the ind-object “colim;~, Oy we can restrict to open neighbouhoods of
the form U = X ~. W for some open subset W such that ZNW = (). Indeed, for arbitrary U,
apply Lemma 12.13 to Z and X \ U to get an open neighbourhood W O (X ~\ U) such that
ZNW ={. Then (X \ W) C U, as desired.

Let Ow = Ox. (x.Ww) € D(Xa) be the complementary idempotent determined by the open
subset X \\ W. Since each Oy is obtained by killing the idempotent Ox. 7, our observation
implies that “colimf , Oy is obtained by killing the pro-idempotent “limy _, Ow. For all
such W, applying Lemma 12.13 to Z and W provides another open neighbourhood W’ 2> W
such that still ZNW’ = (. By Lemma 12.9 and Lemma 12.10(c), Oy — Oy is trace-class and
factors through Og7. It follows that “lim%mW:@ Ow ~ “lim%mW:@ O and that the condition of
Lemma 10.9 is satisfied, so that “colim},~, Oy is indeed idempotent and nuclear in Ind D(Xa).
Since colim: Ind D(Xy) — D(Xa) preserves idempotents and nuclear objects, it follows that
Oyt € D(Xa) is idempotent and nuclear as well. This finishes the proof of (a).

For (b), note that ZT is clearly compatible with base change and so is O, by (a) and
Lemma 10.9(c). We may therefore assume that X = Spa(R, R™) is affinoid and O,; is
connective. Then Oz; can be turned into an analytic ring using the induced analytic ring
structure from (R, R )a. It follows that a map f: AnSpec S — AnSpec(R, R )q factors through
Oy if and only if S 2£<(Ozf). By Lemma 10.9(b), we have O 4t ®%R,R+). Ow ~ 0 for all
open W such that ZNW = (. Thus S ~ f*(O) implies f*(Ow) ~ 0 for all such W. By
sandwiching open and closed subsets, we get f*(Ox.y) ~ 0 for all open neighbourhoods U O Z.
By Lemma 12.10(a), this implies that f factors through ZT ~ limy>z U.

Conversely, if f factors through Z, then f*(Ox.y) =~ 0 for all U and thus f*(Ow) ~ 0
for all W as above, using the same sandwiching argument. It follows that S is a module

over the nuclear idempotent ind-algebra obtained by killing “lim7, __, f*(Ow) in D(S). By

(12-2) Following discussions with Ben Antieau and Peter Scholze, we believe that connectivity can be replaced by the
much weaker condition that Mod; o ,+)(D(R)) is left-complete, using an adaptation of [MM24, Proposition 2.16].
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Lemma 10.9(c), this is “colimj;, f*(Op). Then S is also a module over the honest colimit
colimy>z f*(Ou) ~ f*(Oyt), proving S ~ f*(Oyt).

In conclusion, this argument shows that ZT ~ AnSpec O is an affine analytic stack and so
D(Z1) ~ Modo , (D((R, R™)g)) follows by construction, as we’ve put the induced analytic ring
structure on Oy;. O

This implies idempotence and nuclearity in the situation of Theorem 1.40.

12.14. Corollary. — Let X :=SpaZyqg— 1]~ {p=0,q9 =1} and let Z C X be the union of
the closed subsets Spa(F, (¢ — 1)), Fylq — 1]) and Spa(Qp({pn), Zy[pn]) for alln > 0.

(a) Z is closed and closed under generalisations.

(b) For m,r,s > 1 such that (p — 1)p™ > s, let Wy, s € X be the rational open subset
determined by |p"| < |¢?" — 1] #0, |(¢ — 1)*| < |p| #0. Then Oy is idempotent, nuclear,
and the colimit of the idempotent nuclear ind-algebra obtained by killing the idempotent
pro-algebra “limy . Ow,, , ..

Proof. Let x € X ~\ Z. Then |p|; # 0, hence |(¢ — 1)®|z < |p|z for s > 0. Choose such an s.

Moreover, |¢g”" — 1|, # 0 holds for all n > 0. Choose n such that (p — 1)p" > s and choose

r > 0 such that [p"|, < |¢?" — 1|z. Then z € Wi r.s. If we can show ZNW,, s =0, both (a)

and (b) will follow. Indeed, this will imply that X \ Z is open and closed under specialisations,

proving (a). Moreover, X \Z =, , ; Wn,r s and so for any open subset W such that ZNW =10

we must have W, . s O W for sufficiently large n, r, and s by quasi-compactness of W. Hence (b)

follows from Theorem 12.12(a). _

To show ZNWp.rs =0, let w € Wy 5. Since (p—1)p" > s, we get [(g—1)P~DP" ", < |pl,
for all i > n and so [®,i(q)|w = |p|w, Where ®,i(¢) denotes the (p')™ cyclotomic polynomial.
Thus 0 < [p""|, < |¢P" — 1|y for i > n. In particular, w ¢ Z. Even better: If U; denotes
the rational open subset determined by |¢?" — 1| < [p" 1| # 0 and V denotes the rational
open subset determined by |p| < |(g — 1)*T!| # 0, then the open set Uisn Us UV contains Z
and doesn’t intersect W, , s, so indeed Z N ans =0. O

§12.2. Graded adic spaces

To deduce idempotence and nuclearity in the situation of Theorem 1.41, let us describe how to
encode gradings in terms of actions of the analytic stack

T := AnSpec Z[u*'],

where Z[u*!]q is obtained from Z[u®'] by solidifying both u and u~'. Equivalently, Z[u*']q is
the analytic ring associated to the discrete Huber pair (Z[u*!], Z[u*!]).

12.15. Graded adic spaces via T-actions. — Classically, the grading on Z[f, t] in which
£ and t receive degree 2 and —2, respectively, is encoded by an action of G,, := Spec Z[uﬂ]
on Spec Z[3,t]. The action map SpecZ[S,t] x G,, — SpecZ[3,t] corresponds to the ring map
A: Z[B,t] — Z[B,t] ®z Z[uF'] given by A(B) == u?B, A(t) == u~>2t.

In our situation, we're forced to work with the adic spectrum X* := Spa Z[$, t] ) instead.

A
(p,t
But in the map A we can’t just replace Z[(, t] by its (p, t)-completion, since the tensor product

Z[ﬁ,t]@) p @z Z[u*] won’t be (p,t)-complete anymore.
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To fix this, consider 7: T — AnSpecZg and let — @7, Z[u*']a denote the pullback
7*: D(Za) — D(T). By [CS24, Lecture 7], the process of adjoining a variable and then
solidifying it preserves limits, and so

Z[ﬁ? t]z\p,t) ®%- Z[’u‘:l:l]l =~ Z[67 tv uil]é\p,t) :

Thus, if we put X} = AnSpec(Z[B,t]{,, . Z[B,t](,, 1 )m, We do get an action XixT — X§
simply by (p,t)-completing the map A above. Here and in the following, all products are taken
in the oco-category AnStky, of analytic stacks over Zg. We let T®: A°? — AnStky, denote the
simplicial analytic stack corresponding to the underlying E;-structure of the E,.-group object
T, and we let X3 x T®*: A°? — AnStky, denote the simplicial analytic stack corresponding to
the T-action on X}. Finally, let
BT := colim T" and XJ/T := colim X x T".
[n]eAcp [n]eAcp
12.16. Lemma. — Let Ox« r € D(BT) denote the pushforward of the structure sheaf of
XE/T. Then pushforward along X%/T — BT induces a symmetric monoidal equivalence of
0o-categories
D(Xa/T) ~ Modoi*/T (D(B']I‘)) .

Proof. The same argument as in 12.15 shows X% x T" ~ AnSpec(Z[B,t,ui!, . .. ,ufl]?pi))..
By definition, D(BT) =~ limp,jea D(T") and D(X§/T) =~ limp,jep D(Xg x T"), where the
cosimplicial limits are taken along the pullback functors. Observe that the pushforward functors
7 D(XE x T") — D(T™) commute with these pullbacks. Indeed, if we would take the limit
along the !-pullbacks, this would follow from proper base change (by passing to right adjoints).
Since Z — Z[u*1!] is smooth of relative dimension 1 and Q%[uil] 7= Z[u*] du is a free module

of rank 1, we get 7' ~ X~ 17* by [CS19, Theorem 11.6], and so commutativity for the *-pullbacks
follows.

Therefore Oz« p € D(BT) is given by the degree-wise pushforwards of the structure sheaves
Oxs pn, that is, by Z[,B,t,ulﬂ, .. ,u#]é\p’t) € D(T™) for all [n] € A. In every degree, the
pushforward induces an equivalence

D(Y: X ’]F’ﬂ) i> MOdZ[ﬁ,t,ulil,...,Uil]/\ (D(Tn)) .

™ A(pt)

Using this observation, D(Xg/T) ~ Modox, I (D(BT)) is completely formal. O

12.17. Graded objects and sheaves on BT. — Let G, 7z, = G,, x AnSpecZa. By
adapting the usual proof, it’s straightforward to show that

D(BGyn,z) ~ GrD(Za)

is the oo-category of graded solid condensed abelian groups. Since we have a map of analytic
stacks ¢: BT — BGy;,, 7., we get a pullback functor ¢*: GrD(Za) — D(BT). In this way, we
can associate to any graded solid condensed Z-module a quasi-coherent sheaf on BT.

We don’t know if ¢* is fully faithful (it probably isn’t), but at least it’s fully faithful when
restricted to the full sub-oco-category GrD(Z) C GrD(Za) spanned by the discrete graded
Z-modules. Indeed, for discrete objects, solidification doesn’t do anything, and so for all [n] € A
the functor D(Gy, z,) — D(T"), given by solidifying u;-tl for i =1,...,n, is fully faithful when
restricted to discrete objects.
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The following lemma takes this one step further and allows us to regard the graded Z,[S3][t]-
modules fil} y4, ¢-dR(z/pe)/z, as sheaves on D(BT) without loss of information.

12.18. Lemma. — Let Zy[[][t] € GrD(Z) denote the graded (p,t)-completion of the discrete
graded ring Z[B,t] and equip Modz, g (Gr D(Z))E\p " with the (p,t)-completed graded tensor
product. Then c¢* induces a fully faithful lax symmetric monoidal functor

Mody, (414 (G D(Z))

A

) — Modog, . (D(BT)),

which is symmetric monoidal when restricted to the full sub-oco-category spanned by those objects

in Modz, [g)[¢ (Gr D(Z))@Lt) that are uniformly bounded below in every graded degree.1%>)

Proof. To construct the desired functor, we compose ¢* with (p,t)-completion to obtain

c* =7 i
Modg, 511 (Gr D(Za)) <= Modes (z, [5)11) (D(BT)) —= Modox, ,, (D(BT)) .

The functor ¢* is symmetric monoidal and (—)(Ap’t) is lax symmetric monoidal. Hence the
composition is lax symmetric monoidal. Moreover, it is symmetric monoidal when restricted to
graded Zp[B][t]-modules that are uniformly bounded below in every graded degree. Indeed, the
image of such objects in Modo, , (D(BT)) = limp,jca D(Xg x T") will be bounded below and
(p, t)-complete in every cosimplicial degree, because the pullback functors along which the limit
is taken preserve bounded below and (p, t)-complete objects (the latter because they preserve
limits; see the argument in 12.15). So we can reduce to the fact that the solid tensor product
in D(X} x T") preserves bounded below (p, t)-complete objects.

Clearly (—)z\ o ¢* factors through Mody, 3)1(Gr D(Za));, ;- By restricting to the full

p;t) (pt)
sub-oo-category Modgz, 1 (Gr D(Z))(Ap 1> we get the desired functor

A
(p:1)
We've already seen that this functor is symmetric monoidal on uniformly bounded below
objects. Fully faithfulness can be checked modulo (p,t), so it’ll be enough to check that
Modp,3](GrD(Z)) — Modx(r,5])(P(BT)) is fully faithful. This follows from the fact that
c¢*: GrD(Z) — D(BT) is fully faithful, as we’ve seen in 12.17. O

Modg, () (Gr D(Z)) ;) — Modog, . (D(BT)).

12.19. Lemma. — Let X* C X* be the subset SpaZ[ﬁ,t]@Dt) ~{p=0,p8t =0}. Then X* is
a Tate adic space and its associated analytic stack X} can be written as the following pushout:

AnSpec (Z[ﬁ, t]@,’t) [ﬁ] 2|8, t]@),t)). —— AnSpec (Z[ﬁ, t]&t) [é] , 7|8, t]@,’t)).

J E |

AnSpec (Z[B, t](ApJ) [%],Z[Bv 75](Ap,t)) Xa

Moreover, the T-action on X} restricts to an action on X3, and if Ox« p € D(BT) denotes
the pushforward of the structure sheaf of X2 /T, then pushforward along XZ /T — BT induces a
symmetric monoidal equivalence

D(Xz/T) ~ Modo,., , (D(BT)).

(123)By contrast, the graded solid tensor product on Gr D(Za) does not preserve p-complete objects, not even if
they’re uniformly bounded below, because being p-complete is not preserved under infinite direct sums.
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Proof. By 12.2, X} is glued together from rational open subsets of X*. For example, one can
take Uy = {z € X* | |Bt|+ < |ple # 0} and Uy = {x € X* | |p|» < |Bt|+ # 0} and then

Xa > Ua Uwinty)e Uze-

To show the desired pushout, it’s enough that Y7 o := AnSpec(Z[S, t]f\p 9 [1/p], Z| 3, t]@) t)). and
Y27.. = AnSpec(Z[,@’,t]@),t)[l/(ﬂt)],Z[B,t](Ap,'t)).. form a !-cover after pullback to U; g and Us a.
This is clear, as Y7 a XXx Ui m ~ Uy,a and similarly Y o XXk Usm~Usu.

To see that the T-action on X} restricts to an action on XJ, just observe that p and Bt are
homogeneous elements. The pushout above implies that the pushforward Oy« € D(Zg) of the

structure sheaf of X is given by

- AL AL
Oxx ~ Z[ﬁ,t](p,t)[p] XZ[W](AW)[%] AR AR

the pullback being taken in the derived sense. Now D(Xg x T") ~ Modo, .. (D(T")) holds

for all [n] € A, since the same is true for Y| u, Yo u, and Y] a X xi Yo u. This finally implies

D(Xg/T) ~ Modo . .(D(BT)), as desired. O

We can finally show idempotence and nuclearity in the situation of Theorem 1.41.

12.20. Corollary. — Let Z* C X* be union of the closed subsets {p = 0} and {[p"]xu(t) = 0}
for all n >0, where [p")iu(t) == ((1 + Bt)P" —1)/B denotes the p"-series of the formal group
law of ku.

(a) Z* is closed and closed under generalisations. Moreover, the T-action on X} restricts to
an action on the overconvergent neighbourhood Z*t of Z*.

(b) For m,r,s > 1 such that (p — 1)p" > s, let W, C X* be the rational open subset
determined by |p'| < |[p"a(D)] # 0, (B8] < [p| # 0. Then Ogerjp € D(XE/T) is
idempotent, nuclear, and the colimit of the ind-algebra obtained by killing the idempotent
pro-algebra “limp, . Oy .

n,r,s n

Proof. The proof of Corollary 12.14 can be carried over to show that Z* N W = ) and
X*NZ* =Uprs Wi rs- Hence Z* is closed and closed under generalisations. Moreover, the
T-equivariant open subsets X* \ W  _ are coinitial among all open neighbourhoods of Z*,
because for an arbitrary U D Z*, the complement X* ~\ U is quasi-compact and thus contained
in some Wy, . Since the W', ; are T-equivariant, as they're defined by homogeneous elements,
we see that Z*T acquires a T-action. This finishes the proof of (a).

For part (b), Theorem 12.12 shows that O, is the colimit of the idempotent nuclear
ind-algebra obtained by killing “limy ,. ; Oyx . Since Z 1 % T ~ limgsoz# (U x T), where
the limit is taken over all T-equivariant open neighbourhoods, and since killing pro-idempotents
is compatible with base change in the nuclear case by Lemma 10.9(c), we get that Oy« pn is
similarly given by killing “lim, , Oy pn in D(Xg x T"). Now let A € D(Xg/T) be the
colimit of the ind-algebra given by killing “limy, ,. ¢ OW#‘,T,S sr- Then Lemma 12.9 shows that all
sufficiently large transition maps in this pro-object are trace-class again. Hence A is idempotent,
nuclear, and the base change result from Lemma 10.9(c) shows that the pullbacks of A to

Xa x T™ agree with Oyx i, for all [n] € A. This implies Oyx,1 )7 >~ A, as both of the maps
Ozmiyr — Ozmi/r @0, A — A

become equivalences after pullback to X} x T™ for all [n] € A. O
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§12.3. Proof of Theorems 1.40 and 1.41

In this final subsection, we’ll give a completely explicit description of the homotopy groups of
TC ™ (ku) @ Q/ku))) and TC™™(KU) ® Q/KU)) .

By Example 10.27 and Lemma 11.2, these objects are obtained from (ku;:,\)hs1 and (KUI/,\)hsl,

respectively, by killing the idempotent pro-algebras(124)

“ES%” TC™ ((ku/p®)/ku) and “Li;nz” TC™ ((KU/p*)/KU).

The arguments from §11.1, particularly Corollaries 11.13, 11.14, and the proof of Theorem 11.15,
show that TC™ ™ is concentrated in even degrees in both cases, and the even homotopy groups
are given by

T TCT™ (ku) @ Q/kupy) = Af, ., 72, TCT™ (KU ® Q/KU)) = Agy ,[87'],

where Af,  is obtained by killing the idempotent pro-algebra “limj ., fil} Hag q—(ﬁ\{(z /p%)/Zp
in graded (p,t)-complete Z,[5][t]-modules and Aky,, is obtained by killing the idempotent
pro-algebra “limy, ¢-Hdgz/p0) 7, in (p,q — 1)-complete Z,[q — 1]-modules. Moreover, we
already know that Al”;mp and Ay, are idempotent nuclear ind-objects.

Our goal is to identify Af,  and Aky, with the structure sheaves of the analytic stacks
Z*1)T and ZT, respectively (see Corollaries 12.14 and 12.20). To this end, let us first discuss
how to transport Af’;mp and Aky,, into the solid condensed world.

12.21. Nuclear modules a la Efimov and a la Clausen—Scholze. — Let R be a ring
and I C R a finitely generated homogeneous ideal. Efimov defines an oco-category of nuclear
Rr-modules, which (along many equivalent characterisations) can be described as

Nuc(R;) ~ Nuc Ind(ﬁI(R));

see [Efi25, Corollary 4.4] (also recall that NucInd(—) is set-theoretically ok thanks to Re-
mark 5.14). Let ]?217. = (]sq, ﬁ[). be the analytic ring associated to the Huber pair (EI, ﬁl)
(see 12.1). Then we can also consider the co-category Nuc(D(fi 7.m)) of nuclear R L.—modules.(lz"r’)
Efimov [Efi25, Corollary 7.6] constructs a fully faithful strongly continuous symmetric monoidal
functor

Nuc D(R;.a) — Nuc(Ry),
which is an equivalence on bounded objects.

12.22. Aku,, and Al”;u’p as sheaves on analytic stacks. — Applying Efimov’s result
above for R = Z[q| and I = (p,q — 1), we see that the bounded object Aky , is in the essential
image of Nuc(D(Z,[q — 1]a)). Its preimage can be explicitly described: As usual (compare 5.2),
we can regard each ¢-Hdg(z/pey /7, as a (p, g—1)-complete>0) solid condensed Zp[q—1]-module

(291 the case p = 2, the pro-systems need to be indexed by a even and > 4, but we’ll ignore this since it
makes no difference

(12:51n fact, for any Huber pair (1/%\1, R™) the nuclear objects Nuc(D((I/%\I7 R™)a)) will be independent of the
choice of RT. See [AM24, Example 3.34] for example.

(12:6) Opserve that q-Hdgz/pe /2, 18 automatically p-complete, since it is (¢ — 1)-complete and contains an element
of the form p®/(q — 1) by construction.
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by (p,q — 1)-completing the associated discrete condensed abelian group. The pro-algebra
“lim}- 5 ¢-Hdg(z/pey 2, is still idempotent in ProD(Zp[g — 1]a) and has eventually trace-class
transition maps. Thus, by killing it, we get an idempotent nuclear algebra in Ind D(Zy[q — 1]a)-
Its colimit is the preimage of Ay j.

In a similar way, via Lemma 12.18, we can regard “lim] ., ﬁl;_Hdg q—cﬁ\{(z/pa) /z, s an
idempotent pro-algebra in Modo+ xE /1 (D(BT)). By killing it and taking the colimit of the result
idempotent nuclear ind-algebra, we can regard Af, p as an object in Nuc Modo?.k »(D(BT))

The following lemma shows that Af,  and AKpr are already sheaves on X} /T and Xg,
where we put X* := X* \ {p =0,8t =0} and X = SpaZ,[q — 1] \ {p = 0,q = 1} as before.

12.23. Lemma. — A},  vanishes after (p, 8)-completion and after (p,t)-completion. Aku p

vanishes after (p,q — 1)-completion. In particular, Ai{“um and Axu,p are already contained in
the full sub-oco-categories D(X}/T) ~ Modo 4 (D(BT)) and D(Xa) ~ Modo (D(Za)).

Proof. By Nakayama’s lemma it’s enough to show Ag, /(p,8) ~ 0 and Af, /(p,t) ~ 0. Since
Axu p[BF] is a Af, p-algebra, this will also show Akyp/(p,qg —1) ~ 0. Since A}, /t is
concentrated in nonnegative graded degrees, it is automatically S-complete, so it’s already
enough to show Af, p/(p, B) ~ 0. Now ku — ku/(p, 8) ~ F,, is a map of Eo-ring spectra, and

it’s clear from Example 10.27 and Lemma 11.2 that TC™™!(— ® Q/—) satisfies base change
along Eo-maps. So TC™™ (ku ® Q/ku)/(p, ) ~ TC™"(F, ® Q/F,) ~ 0

It follows that (Af, p) (p.Bt) = ~ (. Using the pullback square from Lemma 12.19, we get

L
Altu,p = Alju,p ®Oy=/-ﬂ~ OX*/T
and so A, p 18 indeed a Oxx p-module. The argument for Aky,, is analogous. O

To finish the proof, we analyse the pro-systems “limy .. ; Ow, , , and “lim7 . Oy 7 from
Corollaries 12.14 and 12.20.

12.24. Lemma. — For every fized a > 2 and all sufficiently large n, r, s, there exist maps

Ows , 1 — filf 110y ARz /pe) /2, b, Oxw/1

a/T
L
Ow,. ... — ¢-Hdg(z/pe)/z, ®7,1g-17a Ox
in D(XZ2/T) and D(Xa), respectively.
Proof. By construction, the g-de Rham complex ¢-dR(z/pe)/z, contains elements of the form
¢ (p(p™)/Pp(q)) = p*/Ppir1(q) for all i > 0, and we have p* € ﬁl;_Hdg q-dR(z/pey/z,- When

we regard filj_yq, q—d/l\%(z /p)/z, @ a graded Zy[B][t]-module, this precisely means that p®
divisible by ¢t. Hence we have elements of the form

(n+1)a o o a
ptr ot oY) ") =
[pn]ku (t) B t q)p(Q) p" (q) S ﬁlq_Hdg q dR(Z/pO‘)/Zp

for all n > 0. Similarly, there exist elements of the form (3t)" /p in fil}_pag q—(ﬁ\%(z /p)/Zp
for sufficiently large N. Indeed, the ring ¢-dR z/pe)/z, is (p, ®p(g))-complete and contains an
element of the form p®/®,(q). Applying the nilpotence criterion from [BCM20, Proposition 2.5],
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we see that ®,(q) is nilpotent in Fil} 4, q—cﬁ\%(z/pa)/zp/p. Then (g — 1)P~! must be nilpotent

as well, and so (¢ — 1) must be divisible by p in fil} nag ¢-dR(z/pe) /2, for N > 0.

In particular, as soon as we invert St in ﬁl;_Hdg q—dR(Z/pa)/Zp/p, we see that p will be
invertible as well, and so

_ . _
filg Hag 4-AR(z/pe) /2, ®bry . Oxcy =~ il 1ag ¢-AR(z/pe) /2, [ 5] -

/T
Moreover, as soon as p is invertible, [p"]ixu(t) will be invertible for all n > 0. Choosing s > N,
we see that filj yq, g-dR z/pe)/z, contains an element of the form (5t)*/p which is topologically
nilpotent, hence automatically solid. Moreover, for (p — 1)p™ > s and r > (n + 1)«, we get an
element of the form p"/[p"]ku(t), which is again topologically nilpotent and thus solid. Thus,
for such n, r, and s, a map OWﬁk,T-,s /T = fil}_nag ¢-dR(z/pe) /2, [1/p] exists. The argument in the
g-Hodge case is analogous. O

12.25. Remark. — As a consequence of Theorem 3.11(b), qudg(Z/pa)/Zp/(qpn —1)is an
algebra over the p-typical Witt vectors Wyn (Z/p®). Since this ring is p®*"-torsion, we already
have elements of the form p®+"/(¢"" — 1) in q-Hdgz/pa)/z, for all n > 0.

12.26. Lemma. — For all fized n, r, s such that (p — 1)p™ > s and all sufficiently large
« > 2, there exist canonical maps

fil} 11ag R (z/p0)/2, ®b . Ox/1 — Ows 1>

a/T
¢-Hdg(z /2, ®F 170 Ox — Ow.
in D(XE/T) and D(Xa), respectively.

Proof. Let q-Do = ¢-dR(z, (2} /22)/2, () S in §11.2 and let ﬁl;_Hdg q—ﬁa denote its completed
g-Hodge filtration. It follows from 11.16 that ﬁl;,Hdg q—lA)a is generated as a (p,t)-complete
graded Z,[S][t]-algebra by lifts of the iterated divided powers (¥ (z%) sitting in filtration

degree 2p?. Thanks to Lemma 11.17, we know that these lifts can be chosen to be of the form
T'a)”
' T, D (q)P""

for Ty € (2P, (¢ — 1)p*1)pd_1. The extra t?" in the denominator accomodates for the fact that
this element must sit in degree 2p%. Note that the denominators all become invertible in
OW;“,T,S /1> but that’s not enough to obtain the desired map: We must send the generators to
solid elements, to ensure that the map extends over the (p,t)-completion.

By construction, (¢ —1)*/p and p"/[p"]xu(t) are solid. In particular, p"/(t®,:i(g)) is solid for
alli=1,...,n. For i >n, we have (p — 1)p'~! > s by assumption. Hence (q — 1)(p_1)pi71/p is
topologically nilpotent in OW&“,T,S s1- 1t follows that @, (¢) = p(1 + w), where w is topologically
nilpotent, and so p"/®,i(q) is solid in Oy g for i > n. Therefore the elements p*"/(t®,i(q))
are solid for all 7 > 1.

By choosing « large enough, we can ensure that for every monomial (g — 1)?=1J in the
ideal (2P, (¢ — 1)P=1)P"™" we have pi > 2rp? or (p — 1)j > sp. Now (I'9)® is a Zp{x}[q]-linear
combination of such terms. It follows that the §-ring map Z,{z} — Z, sending x — p can really
be extended to a map fil}_y4, ¢-Dy — Ows, v of graded solid condensed Z,[S][t]-algebras.
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Via (p,t)-completed base change along Z,{x} — Z, and extension of scalars to Oxs r, this
yields the desired map

il 11ag AR (z/p0) /2, ®by . Ox#/1 — O, 1

/T
The argument in the g-Hodge case is analogous. O

Proof of Theorems 1.40 and 1.41. By Lemma 12.23 and Lemma 10.9(c), we see that Aiu,p is
the colimit of the idempotent nuclear ind-algebra given by killing the pro-idempotent

“liny” 17 1145 0-AR 2/ /2, ®b. , O/

a/T

in D(XJ/T). By Lemmas 12.24 and 12.26, we see that this pro-system is equivalent to

“limy ;. o Oy r, which proves Akup = Ozxiyp. The argument for Aky,, >~ Oy is completely

n,r,s
analogous. O
12.27. Remark. — An obvious adaptation of Theorem 11.15 shows that Aky,, and Altu’p

are connective. Therefore the condition from Theorem 12.12(b) is satisfied and so O+ and
Oyx+.1 7 are really the pushforwards of the respective structure sheaves.
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Appendix A. The g-de Rham complex

Let p be a prime. In [BS19, §16], Bhatt and Scholze construct a functorial (p, ¢ — 1)-complete
g-de Rham complex relative to any ¢-PD pair (D, I). This verifies Scholze’s conjecture [Schl17,
Conjecture 3.1] after p-completion, but leaves open the global case. There are (at least) two
strategies to tackle the global case:

(a) One can glue the global ¢g-de Rham complex from its p-completions and its rationalisation
using an arithmetic fracture square.

(b) Following Kedlaya [Ked21, §29], one can construct the global g-de Rham complex as the
cohomology of a global g-crystalline site.

Strategy (a) is what Bhatt and Scholze originally had in mind, but they never published the
argument. It is essentially straightforward, but not entirely trivial. Since all our global con-
structions proceed similarly by gluing p-completions and rationalisations, it will be worthwhile
to fill in the missing details of strategy (a). Our goal is to show the following theorem.

A.1. Theorem. — Let A be a A-ring that is p-torsion free for all primes p. Then there exists
a functor

q-Q_/q: Smy — CAIg(ﬁ(q_l) (A[[q - 1]]))
from the co-category of smooth A-algebras into the co-category of (¢ — 1)-complete Eo,-algebras
over Alq — 1], satisfying the following properties:
(@) q¢-Q_ya/(q—1) ~Q_,4 agrees with the usual de Rham complex functor.
(b) For all primes p, the p-completion

A .
(00 /a)y = (0IG)/Al1]
agrees with prismatic cohomology relative to the g-de Rham prism (A,[q — 1], [p,). Here
we denote the p-adic Frobenius twist by (—)P) == (— @4 y» A)p.
(¢) (¢-9Q_/4 ®f Q)@—l) ~ (Q_/4 ®7 Q)[q — 1] becomes the trivial q-deformation.
(d)  For every framed smooth A-algebra (S,00), the underlying object of ¢-Qg;4 in the derived
oo-category of Alq — 1] can be represented as
q-Qsja =~ ¢-Qg/a 0
where q‘Qz/A,D denotes the coordinate-dependent q-de Rham complex as in 1.7.

Moreover, if A — A’ is a map of A-rings such that A’ is also p-torsion free for all primes p,
there’s a canonical base change equivalence
L A ~
(q—Q,/A ®A A/) (g—1) — q—Q(,®AA/)/A/ .
Modulo (q — 1) this reduces to the usual base change equivalence of the de Rham complex.

A.2. Remark. — It will be apparent from our proof of Theorem A.1 (and we’ll give a precise
argument in A.13) that the ¢-de Rham complex functor lifts canonically to a functor

A
q_Q—/A : SmA — (DAlgA[[q—lﬂ) (q—l)

into (¢ — 1)-complete objects of the the co-category of derived commutative Alq — 1]-algebras
DAlg 4[4—1 as defined in [Rak21, Definition 4.2.22].
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A.3. Convention. — Throughout §A, to increase readability and avoid excessive use of
completions, all (¢-)de Rham complexes or cotangent complexes relative to a p-complete ring
will be implicitly p-completed.

§A.1. Rationalised g-crystalline cohomology

Fix a prime p. Then (A,[¢ — 1], (¢ — 1)) is a ¢-PD pair as in [BS19, Definition 16.1] and so
we can use g-crystalline cohomology to construct a functorial (p,q — 1)-complete g-de Rham
complex ¢-Q2g,7, for every p-completely smooth ﬁp—algebra S. We let ¢g-dR_ /7, denote its
non-abelian derived functor (or animation), which is now defined for all p-complete animated
/Alp—algebras. Observe that animation leaves the values on p-completely smooth ﬁp—algebras
unchanged, as can be seen modulo (p,q — 1), where it reduces to a well-known fact about
derived de Rham cohomology in characteristic p.

Our first goal is to show that after rationalisation derived g-de Rham cohomology is just a
base change of derived de Rham cohomology relative to /Alp. In coordinates, such an equivalence
was already constructed in [Sch17, Lemma 4.1] (see A.8 for a review), but here we need a
different argument: We want a coordinate-independent equivalence, so we have to work with
the definition of the g-de Rham complex via g-crystalline cohomology.

A.4. Lemma. — For all p-complete animated /Tp—algebms R there is a functorial equivalence

of Eoo-(ﬁp ®z Q)[g — 1]-algebras
(a-dRp/3, ®FQ)(, ) =~ (dARpy3, ®F Q)[g —1].

Proof. By passing to non-abelian derived functors, it’s enough to construct such a functorial
equivalence for p-completely smooth A,-algebras S. In this case, we can identify derived (g-)de
Rham and (g¢-)crystalline cohomology:

¢-dRg/4, ~ Rlg-crys (S/Aplg — 1]) and  dRg/i, ~ RTcrys(S/Ap) .

To construct the desired identification between g-crystalline and crystalline cohomology after
rationalisation, let P — S be a surjection from a p-completely ind-smooth 5—Ap—algebra. Extend
the d-structure on P to Pq—1] via §(¢) = 0. Let J be the kernel of P — S and let D := Dp(J)
be its p-completed PD-envelope. Finally, let ¢-D denote the corresponding ¢-PD-envelope as
defined in [BS19, Lemma 16.10]. It will be enough to construct a functorial equivalence

(-D®2Q);,_,, ~ (D@2 Q)[g—1].

If D° denotes the un-p-completed PD-envelope of J, then P — ¢-D — (¢-D®y, Q)@] 1) uniquely
factors through D° — (¢-D ®z, Q)(Aqfl). The tricky part is to show that this map extends over
the p-completion. Since D° is p-torsion free, its p-completion agrees with D°[t]/(t — p). By
Lemma A.6 below, for every fixed n > 0, every p-power series in D° converges in the p-adic
topology on (¢-D ®z Q)/(q—1)", so we indeed get our desired extension D — (¢-D ®z Q)E\q_l).

Extending further, we get a map (D ®z Q)[q¢ — 1] — (¢-D ®z Q)(Aq_l) of the desired form.
Whether this is an equivalence can be checked modulo (¢ — 1) by the derived Nakayama lemma.
Then the base change property from [BS19, Lemma 16.10(3)] finishes the proof—up to verifying
convergence for p-power series in D°. O
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To complete the proof of Lemma A.4, we need to prove two technical lemmas about (g-)di-
vided powers. Let’s fix the following notation: According to [BS19, Lemmas 2.15 and 2.17], we
may uniquely extend the d-structure from ¢-D to (¢-D ®z Q)é\q—l)' We still let ¢ and § denote
the extended Frobenius and d-map. Furthermore, we denote by

_® RIC))
’)/(.’17)— P d 'Yq( ) [p]q

— ()

the maps defining a PD-structure and a ¢-PD structure, respectively. Note that v(x) and ~,(z)
make sense for all z € (¢-D ®z Q)f\q_l) since p and [p], are invertible.

A.5. Lemma. — With notation as above, the following is true for the self-maps d and v4 of

(¢-D ®z Q)z\q—l) :

(a) Foralln>1 and all « > 1, the map § sends (¢ —1)" ¢-D into itself, and p~*(q —1)" q-D
into p~ Pt (g — 1) ¢-D.

(b) Foralln > 1 and all o > 1, the map vy, sends (¢ — 1)" ¢-D into (¢ — 1)""1 ¢-D, and
p~*(¢ = 1)" g-D into p~ 1) (g — 1)+ ¢-D.

Proof. Let’s prove (a) first. Let x = p~%*(q — 1)"y for some y € ¢g-D. Since ¢-D is flat over
Zp[q — 1] and thus is p-torsion free, we can compute
p(x) —a? (¢ —1)"¢(y) (¢—1)™y”

As ¢? — 1 is divisible by ¢ — 1, the right-hand side lies in p~®**1(q — 1)" ¢-D. If a@ = 0, then
the right-hand side must also be contained in ¢-D. But ¢-D Np~'(¢—1)"¢-D = (¢ —1)"¢-D
by flatness again. This proves both parts of (a). Now for (b), we first compute

p—1
e Rt i 1 ) R
q =2

Hence 7,(q — 1) is divisible by (¢ — 1)%. In the following, we’ll repeatedly use the relation
Ye(xy) = o(y)yq(x) — 2Pd(y) from [BS19, Remark 16.6] repeatedly. First off, it shows that

V(e =1)"2) = 6((a = )" "2)(a = 1) = (¢ = DPo((g — )" ') .
It follows from (a) that §((¢ — 1)"'2) and ¢((q¢ — 1)"~'z) are divisible by (¢ — 1)"~!. Hence
74((g — 1)"z) is indeed divisible by (¢ — 1)"™!. Moreover, we obtain
Y (P~ a—1)"2) = 6(p~ ") ((a — D)"x) — (¢ = 1)"™aPd(p~).

Now ¢(p~*) = p~* and §(p~®) is contained in p~ P ¢-D, hence 7,(p~*(q—1)"z) is contained
in p_(pa+1)(q — 1)" g-D. This finishes the proof of (b). n

A.6. Lemma. — Let x € J. For every n > 1, there are elements yo, ..., yn € g-D such that
Yo admits q-divided powers in qg-D and

n

V(@) = yo + Y p 20T D (g 1) =Dy,
i=1

holds in ¢-D @z Q, where 4™ =~ o-.. o0~ denotes the n-fold iteration of ~.
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Proof. We use induction on n. For n = 1, we compute

7)) = % =) + PP () 4 6(a))

Note that = admits ¢g-divided powers in ¢-D since we assume z € J. Then v,(x) admits
g-divided powers again by [BS19, Lemma 16.7]. Moreover, writing [p], = pu + (¢ — 1)P7!, we
find that ([p], —p)/p = (u—1) +p~t(g—1)P7L. Then (u — 1)(y4(x) + §(z)) admits g-divided
powers since u = 1 mod (¢ — 1). This settles the case n = 1. We also remark that the above
equation for v(x) remains true without the assumption x € J as long as the expression v,(z)
makes sense.

Now assume 7™ can be written as above. We put z; = p= 20"+ 4241 (g — 1)(p=2+iy, for
short, so that v"(z) = yo + 21 + - - - + 2z5- Recall the relations

B p—l1 2\ o B _p_ll D\ ip—i
fyq(a+b)—Vq(a)+7q(b)+;p(i>ab” | Ba+b) = 6(a) + 8(b) — 3 (.)mp |

i—1 P

The first relation implies that v4(yo + 21 +- - - + 25, is equal to v4(vo) +v4(21) + - - - +v4(2n) plus
a linear combination of terms of the form yg°2{" -+ 2% with 0 < o; < pand g+ -+ - + @, = p.
Now ~,(yo) admits ¢-divided powers again. Moreover, Lemma A.5(b) makes sure that each

vq(zi) is contained in p~2W' TP+ (g — 1)@=+t 0. D It remains to consider monomials

yolzyt - z8m. Put m o= max{i | o; # 0}. If ap = p — 1, then all other a; must vanish except
oy = 1. In this case, the monomial is contained in p—2" '+ +p+1) (g — 1)P=2+m oD If
ap < p—1, we get at least one more factor (¢ — 1) and the monomial y°z7" - - - 23" is contained

in p 20"+t (g — 1)@= 4mtl g D

A similar analysis, using the second of the above relations as well as Lemma A.5(a), shows
that (u—1)d(yo+ 21+ +2,) and p~(g—1)P"18(yo + 21+ - - + 2,) can be decomposed into a
bunch of terms, each of which is either a multiple of (¢ — 1) in ¢g-D, so that it admits g-divided
powers, or contained in p~2®'++r+1) (g — 1)1 ¢-D for some 1 < i < n + 1. We conclude that

1@ = 20" @)) + P2 (3,00 ) + 60 2)) )

can be written in the desired form. O

The following remark is irrelevant for our proof of Theorem A.1, but it is occasionally useful
for technical arguments.

A.7. Remark. — There’s also an analogue of Lemma A.6 with the roles of D and ¢-D
reversed. For every = € J and n > 1, there’s an infinite sequence yg, y1, ..., € D such that yo
admits divided powers and

W (@) = o+ Y p T (g = )0y,

i1

holds in (D ®z Q)¢ — 1]. The proof is very similar to Lemma A.6: We write

vq(z) = <7($) 4 [plg —pé(x))p

[plg
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and [p], = pu+ (¢ — 1)P~!. Then we use induction on n > 1. For the inductive step, we first
check that the operations fy( ), (u—1)8(=) and p~t(qg — 1)P~1§(—) all preserve expressions
of the desired form. Then we observe that u is a unit in Z,[¢ — 1] and so multiplication by
p/[plg = u™t Ym0 p'u" (g — 1)P~ also preserves expressions of the desired form.

A.8. The equivalence on g-de Rham complexes. — Suppose we're given a p-completely
smooth A -algebra S together with a p-completely étale framing [1: A p(Th,....,Tg) = S. In
this case, the g-crystalline cohomology can be computed as a ¢g-de Rham complex

qu—crys (S/Ap[[q - 1]]) = q_QE/A\va

by [BS19, Theorem 16.22]. Similarly, it’s well-known that the crystalline cohomology is given
by the ordinary de Rham complex QF, 3 (recall that according to Convention A.3, all (¢-)de
Rham complexes of the p-complete ring S will implicitly be p-completed). In this case, an
explicit isomorphism of complexes

(9% 4,002Q) () — (Ui, ©2Q)la - 1]

can be constructed as explained in [Sch17, Lemma 4.1]: One first observes that, after rationali-
sation, the partial g-derivatives ¢-0; can be computed in terms of the usual partial derivative

0; via the formula
log(q) log(q)" (n—1)
-0; = +> (@)Y | oy
e (q—l n>2n!(q—1)( )

see [BMS18, Lemma 12.4]. Here log(q) refers to the usual Taylor series for the logarithm around
g = 1. Noticing that the first factor is an invertible automorphism, one can then appeal to
the following general fact: If M is an abelian group together with commuting endomorphisms
g1, ..., 94 and commuting automorphisms hy, ..., hq such that h; commutes with g; for i # j
one always has an isomorphism Kos™ (M, (¢1,...,94)) = Kos*(M, (h1g1,- .., hqgq)) of Koszul
complexes. (A1)

We would like to show that this explicit isomorphism is compatible with the one constructed
in Lemma A.4. To this end, let’s put ourselves in a slightly more general situation: Instead of
a p-completely étale framing L as above, let’s assume we're given a surjection P — S from a
p-completely ind-smooth A -algebra P, which is in turn equipped with a p-completely ind-étale
framing [J: Ay(x; | i € I) — P for some (possible infinite) set I. Then A, (xz; | i € I) carries a
0- A -algebra structure characterised by d(x;) = 0 for all ¢ € I. By [BS19, Lemma 2.18], this
extends uniquely to a 0- 121\ -algebra structure on P. If J denotes the kernel of P — .S, we can
form the usual PD- envelope D :=Dp(J ) and the g-PD-envelope ¢-D as before. Furthermore,

we let Q¥ D/A, and g- QF ¢-DJ A0 denote the usual PD-de Rham complex and the ¢-PD-de Rham
complex from [BS19, Construction 16.20], respectively (both are implicitly p-completed).

A.9. Lemma. — With notation as above, there is again an explicit isomorphism of complexes

~

(q Qq D/ApD®Z Q) (¢—1) - (Q*D/A\p ®Z @)[[q_l]]

Proof. This follows from the same recipe as in A.8, provided we can show that the formula for
g-0; in terms of J; remains true under the identification (¢-D ®z @)é\qfl) = (D®zQ)[q—1]

(A-DWe don’t require h; to commute with g; (and it’s not true in the case at hand).
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from the proof of Lemma A.4. But for every fixed n, the images of the diagonal maps in the
diagram

(P®zQ)[g—1]

— T

(-D®zQ)/(q—1)" (D@zQ)lg—1]/(¢ —1)"

14

are dense for the p-adic topology and for elements of (P ®z Q)[¢ — 1] the formula is clear. [J

A.10. Lemma. — With notation as above, the following diagram commutes:

(RFQ*CTYS (S/A\P[[q - 1]]) ®% Q) 2;_1) (AEA) <chrys (S/A\p) ®% Q) [[q - 1]]

| l:

(q_QZ‘D/A\p»D Qz Q) z\q—l) (Agg) (QE/ZP,D ®z Q) IIq - 1]]

Here the left vertical arrow is the quasi-isomorphism from [BS19, Theorem 16.22] and the right
vertical arrow is the usual quasi-isomorphism between crystalline cohomology and PD-de Rham
complezxes.

Proof. Let P*® be the degreewise p-completed Cech nerve of ﬁp — P and let J* C P* be the
kernel of the augmentation P* — S. Let D® := Dps(J*®); be the PD-envelope and let ¢-D*® be
the corresponding ¢-PD-envelope. Finally, form the cosimplicial complexes

M®* = Qpeji, and  ¢-M*" =g p g 0.

In the proof of [BS19, Theorem 16.22] it’s shown that the totalisation Tot(q-M**) of g-M**
is quasi-isomorphic to the 0" column ¢-M0* = q—Q; DJA,,00 but also to the totalisation of the

0" row Tot(qg-M*?) = Tot(g-D*®). This provides the desired quasi-isomorphism

¢z, 0 = Tot(g-M**) = Tot(g-D®) = RTg erys (S/Alg — 1]) -

In the exact same way, the quasi-isomorphism Q]*j A, = RI¢rys(S/ ﬁp) is constructed using the
cosimplicial complex M** in [Stacks, Tag 07LG]. Applying Lemma A.9 column-wise gives
an isomorphism of cosimplicial complexes (¢-M** ®z Q)&,l) > (M** ®zQ)[g — 1]. On 0O
columns, this is the isomorphism from Lemma A.9, whereas on 0" rows it is the isomorphism
from Lemma A.4. This proves commutativity of the diagram. O

§A.2. The global g-de Rham complex

From now on, we no longer work in a p-complete setting, but we keep Convention A.3.

A.11. Doing §A.1 for all primes at once. — Fix n and put N, := []pc, g2 )
where the product is taken over all primes ¢ < n. Now fix an arbitrary prime p and let P, D,
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and ¢-D be as in §A.1. We've verified that the map P — ¢-D — ¢-D/(q — 1)" ®z Q admits a
unique continuous extension

P ——¢D/(¢g-1)"®zQ

D

But in fact, Lemma A.6 shows that this extension already factors through N, ! ¢-D/(q — 1)",
no matter how our implicit prime p is chosen. This observation allows us to construct canonical
maps dRz, /42, — N, ' ¢-dR /4, /(g —1)" for all animated rings R and all n > 0. Taking the
product over all p and the limit over all n allows us to construct a map

<H ¢-dRR, /3, ®F Q)
p

A

— (H dR7, /3, ®7F @) [q—1].
-1) P

(q

compatible with the one from Lemma A.4. This map is an equivalence as indicated, as one
immediately checks modulo g — 1.

A.12. Construction. — For all smooth A-algebras S, we construct the g-de Rham complex
of S over A as the pullback

a-S2sa 1[e9s,/3,
p

- l

(/4 ®E Qg — 1] —— (H 03,7, ® @) g 1]

Here the right vertical map is the one constructed in A.11 above.

Proof of Theorem A.1. We've constructed ¢-{2g/4 in Construction A.12. Functoriality is clear
since all constituents of the pullback are functorial and so are the arrows between them. Modulo
(g — 1), the pullback reduces to the usual arithmetic fracture square for Qg /4, proving (a). By
construction, (¢-Q2s/4);, ~ ¢-25, /4, and so (b) follows from [BS19, Theorem 16.18]. Part (c)
follows again from the construction.

For (d), suppose S is equipped with an étale framing O: A[x1,...,z4] — S. The same
argument as in A.8 provides an isomorphism (¢-Q5, 4 1 ®z Q)&_l) = (05,4 ®2 Q)[q — 1] The
compatibility check from Lemma A.10 now allows us to identify the pullback square for ¢-{25,4
with the usual arithmetic fracture square for the complex ¢-Q% A completed at (¢ — 1). This
shows ¢-Q0g/4 ~ q—QE/AD, as desired.

For the additional assertion, it’s clear from the construction that a base change morphism

A

(q_Q—/A ®% A,) (g—

1 —_— Q‘Q(—®AA’)/A’

exists and that it reduces modulo (¢ — 1) to the usual base change equivalence for the de Rham
complex. In particular, it must be an equivalence as well. This finishes the proof. O
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A.13. Upgrade to derived commutative AJq — 1]-algebras. — Let us explain how to
lift the ¢-de Rham complex to a functor

q—Q_/A: SmA — (DAlgA[[q—l]])E\q—l)

into the oo-category of (¢ — 1)-complete derived commutative AJq — 1]-algebras. The key
observation is that all limits and colimits in derived commutative Afg — 1]-algebras can be
computed on the level of underlying Eo-A[q — 1]-algebras by [Rak21, Proposition 4.2.27].
Thus, by compatibility with pullbacks, it’ll be enough to lift the three components of the
pullback from Construction A.12 to derived commutative Aq — 1]-algebras. By compatibility
with cosimplicial limits, it'll be enough to construct functorial cosimplicial realisations of g4,
Qgp/;fp’ and q_Qgp/Zp'

For the latter two, the comparison with (¢-)crystalline cohomology easily provides such
realisations. But the same trick works just as well for {2g,4: Let P — S be any surjection from
an ind-smooth-A-algebra (which can be chosen functorially; for example, take P := A[{Ts}ses]),
form the Cech nerve P® of A — P, let J* C P* be the kernel of the augmentation P* — S, and
let D*® := Dps(J®) be its PD-envelope. Then g4 >~ Tot Dpe(J®) holds by a straightforward
adaptation of the proof of [BS19, Theorem 16.22]: Namely, one considers the cosimplicial
complex

M®* = Q*D'/A

and checks that each column M*%* is quasi-isomorphic to M%* (this is the Poincaré lemma)
and that each row M*J for j > 0 is nullhomotopic (e.g. by [Stacks, Tag 07L7] applied to the
cosimplicial ring D*).

In fact, this argument can be used to show something even better: Since the de Rham
complex % /A and its PD-variants QEP.( Jo)/A A€ commutative differential-graded A-algebras,
they define elements in Raksit’s oco-category DG_ DAlg 4 [Rak21, Definition 5.1.10], which gives
another construction of a derived commutative algebra structure on {2g/4. But the argument
above shows that {0g/4 >~ Tot Dps(J*) holds true as derived commutative A-algebras.

A.14. Derived global g-de Rham complexes. — We let ¢g-dR_ /4 denote the animation
of ¢-Q2_ 4. For all animated A-algebras R, we call ¢-dRg/4 the derived q-de Rham complex of
R over A. By construction, it sits inside a pullback square

q_dRR/A H q_dRﬁp/Zp
p

- |

(dRp/a ®7 Q)¢ —1] — (H dR7, /3, ®F @) [q —1]
p

where the right vertical map again comes from A.11. It’s still true that ¢-dR_,4/(¢—1) >~ dR_ /4
and that ¢-dR_ 4 lifts canonically to (¢ — 1)-complete derived commutative A[g — 1]-algebras
(this follows immediately from compatibility with colimits as explained in A.13).

However, in contrast to the p-complete situation, it’s no longer true that the values on
smooth A-algebras remain unchanged under animation (only the values on polynomial algebras
do). In fact, this already fails for the derived de Rham complex in characteristic 0. If g-dR /4
can be equipped with a g-deformation of the Hodge filtration, this problem can be fixed by
considering the g-Hodge-completed derived g-de Rham complex q—&l\% R/A-
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§A.3. The g-de Rham complex via TC™

In [BMS19, §11] and [BS19, §15.2], it is explained how prismatic cohomology relative to a
Breuil-Kisin prism (W(k)[z], E(z)) can be understood in terms of TC™(—/S[z]),. In this
subsection, we’ll show how the p-complete ¢-de Rham complex can be understood in a completely
analogous way.

For this to work, we assume that A satisfies the conditions from 6.1, that is, A is a p-complete
and p-completely covered d-ring with a flat spherical lift S4 which admits the structure of a

p-cyclotomic base. We also put Convention 7.1 into effect again.

A.15. Lemma. — The p-completed colimit-perfection Ao of A admits a unique lift to
a p-complete connective Eoo-ring spectrum Sa,, and A — Ao can be lifted to an Ex-map
Sa4— Sa,..

Proof. Since A is a perfect d-ring, the lift S4_ exists uniquely; it is given by the spherical
Witt vectors Sy, ) from Example [L-Ellyg, 5.2.7].

To construct the map S4 — S4__, first observe that the canonical map Sy — Si‘c” is an
equivalence. Indeed, we can choose a two-term resolution 0 — @;Z, - ®;Z, — A — 0
and lift it to a cofibre sequence @;S, — @S, — Sa of spectra. By the Segal conjecture,
(D; Sy ~ (D, Sp); and likewise for J, so the same will be true for S4. We can then form
the sequential colimit

. bty tC drcy, "
cohm(SA — S, " >~Sy —>) .
P

By our assumptions on A, the Tate-valued Frobenius ¢;c, agrees with ¢ on mp, and so this
colimit is a p-complete connective Eoo-lift of As. By uniqueness, it must agree with S4__, and

so we get our desired map Sq4 — Sa__. O
A.16. Lemma. — There are generators u and v in w2 and 7o of TC™(Zy[(p]/Splq — 11);
such that

7 TCT(Z[G/Splla = 11))) ~ Zplg — 1w, v]/ (v = [ply) -

Proof. This can be shown in the same way as [BMS19, Proposition 11.10], using base change
along S[q — 1] — S[¢*/?™ —1]. O

A.17. Proposition. — Let S be a p-complete p-quasi-lci A[(,]-algebra of bounded p™>-torsion.
Then there is an equivalence of graded Eoo-Zp[q — 1][u, v]/(uv — [plq)-algebras

2_2* ng*{RW—eV,hsl TC™ (S/SA[[Q B 1]])1/7\ = ﬁl}k\/ A‘(Svp/)A[[qfl]] ’

where ng{RW—ev,hSl denotes the associated graded of the p-complete S*-equivariant Hahn—Raksit—

Wilson even filtration and (—)®) (instead of (—)(V)) denotes the Frobenius twist of prismatic
cohomology. Moreover, after inverting u, we get an equivalence of graded Eo-Zp[u™!][q — 1]-
algebras

z STHRW-ev,hS! (TC* (S/Sala —11) [%](Am_l)) = S/Alg-1] [w*'],

where now grijpw oy refers to the p-complete St -equivariant Hahn—Raksit-Wilson even filtration
on THH(S/Sa[q — 1])[1/u]y-
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Proof sketch. First observe that Sy = (S5 ®%[[q—1]] A g™ — 1]); will be static and of
bounded p*>°-torsion, as ¢: A — A is p-completely flat. Moreover, S, will be p-quasi-lci
over Aso[q"/P* — 1], hence over Zy, as the cotangent complex Ly 10 _qj /7, vanishes after
p-completion. Thus Sy is p-quasi-syntomic.

If S is large in the sense that there exists a surjection A(xg/poo | i € I) - S, then
TC™(S/Salq — 1]); will be even. Indeed, evenness can be checked after base change along
Salg — 1] — Sa_[¢"/?™ —1]. By an analogous argument as in [BMS19, Proposition 11.7],

THH(Sa. [¢"7" —1]) — Sa[¢"7" — 1]

is an equivalence after p-completion. This reduces the assertion to TCf(Soo);\ being even,
which is shown in [BMS19, Theorem 7.2].

Via quasi-syntomic descent from the large case, we can now construct a filtration on
TC™(S/Salq — 1]);;. Arguing as in [BMS19, §11.2] and [BS19, §15.2], we find that the
associated graded of this filtration yields the completion of the Nygaard filtration on the
Frobenius-twisted prismatic cohomology relative to the g-de Rham prism (A[g — 1], [p]y). To
see that the filtration agrees with the p-complete S'-equivariant Hahn-Raksit-Wilson even
filtration, we argue as in the proof of [HRW22, Theorem 5.0.3]. Choose a surjection from a
polynomial ring Z[z; | i € I] — S. Both filtrations satisfy descent along the p-completely eff
map THH(S[z; | i € I]) — THH(S[mi/poo | i € I]). By descent, it will then be enough to check
that the filtrations agree when S is large, which is clear by evenness.

After inverting u, the argument is analogous: As in [BMS19, §11.3], we use quasi-syntomic
descent again to construct a filtration

ﬁl*}'BMS—ev <TC? (S/SA IIq - 1]]) [%]E\p,qfl))

and check via descent along THH(S[z; | i € I]) — THH(S[acil/poo | ¢ € I]) that this filtration is
really the Hahn-Raksit-Wilson even filtration. To see grijpw_ev nst =  S/A[g—1] [ut1], observe

that inverting the degree 2 class v amounts to adjoining [p];i fili, for all 4 > 0 in the sense of
3.42; we must then show that the relative Frobenius induces an equivalence

) fily | - ~
b/Alg—1] b?/A[[q—l]][[p]é 120} 7 S/Alg—1] -

(p,g—1)

This is a general fact about the Nygaard filtration on prismatic cohomology; it follows, for
example, from [BS19, Theorem 15.2(2)] via quasi-syntomic descent. See also Lemma 3.44. [

A.18. Frobenii. — The same argument as in [BMS19, Proposition 11.10] shows that the
p-cyclotomic Frobenius

b5 TC (Z,[6,) /Sl — 11), — TP(Z,[¢]/Sla - 1))

inverts the generator u in degree 2. Moreover, the p-cyclotomic Frobenius on THH(—/S4 p[q—1])
is semilinear with respect to the Tate-valued Frobenius ¢ic,: Sa p[q] — Sa p[q], which on g is
given by ¢: A — A and ¢q — ¢P. It follows that the p-cyclotomic Frobenius induces a map

(T (/810 = D) [2] @5 sfa) e, SA[(J])A — TP(S/Sala - 1]), -

(p,q—1)
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On gr%RW_eV, this map agrees with the Nygaard completion (Sp/) Alg—1] Agj/)A[[q_l]], as the proof

of Proposition A.17 shows. The relative Frobenius on prismatic cohomology,

)
G/Ale-11" SjA[g-1] — S/Ale-1]

can then be identified as the composition of gr{ipw ey TP =~ gr¥pw oy TC™ with

grfimw-ev TC™(S/Sala = 1)) — grbmw-er (TC™(S/Sala = 1) [2]7,,_,))

A.19. Recovering g-de Rham cohomology. — Let R be a p-torsion free p-quasi-lci
A-algebra and let R®) := (R®Y 4 A);. Then [BS19, Theorem 16.18] shows

q-dRp/a = Rw)[¢,]/A[g-1] -

Therefore Proposition A.17 and A.18 contain ¢-de Rham cohomology (which is implicitly
p-completed per Convention A.3) as a special case.

A.20. The Adams action. — In [BL22a, §3.8], Bhatt-Lurie describe an action of Z; on
the g-de Rham prism (A[q — 1], [p]y), where u € Z acts by sending q — ¢". Here ¢" denotes

the convergent power series
u
¢ =3 <n> (q—1)".
n=0

By functoriality of prismatic cohomology, the action on the prism induces an action of Z; on
q-dR g/4, which is precisely the action predicted in [Sch17, Conjecture 6.2].
Under the identification

¢-dRp/a = grfipw-e (TCT (RP(G)/Sala — 1)[2](,, 1)) -

this action comes from an action of Z; on S4[g — 1]. Indeed, following [DR25, Notation 3.3.3],
we can write

Salg — 1] ~ lim Safq]/ (¢ — 1) ~ lim Sa[Z/p°]

and then let Z; act on Z/p® via multiplication (this is another way of making precise what
q" is supposed to mean). To see that this induces the same action on (¢-dRp, A);\ as above,
we can use quasi-syntomic descent as in the proof of Proposition A.17 to reduce to an even
situation, where the claim is straightforward to verify.

We call this action the Adams action, since it turns out to agree with the action of Z; on
kuy via Adams operations (see §7.1).
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Appendix B. Habiro-completion

In this appendix we’ll study the Habiro completion functor (—)5; = limmeN(—)(Aqm_l and show
that it behaves for all practical purposes like completion at a finitely generated ideal. We’ll
also study Habiro completion in the setting of solid condensed mathematics.

In the following, we’ll use the notion of killing an idempotent algebra, which is nicely reviewed

in [CS24, Lecture 13].

B.1. Habiro-complete spectra. — Following Manin [Man10, §0.2], let us denote the local-
isation Z[¢*!, {(¢™ — 1) }men] by R and let Sg = S[¢™!, {(¢™ — 1)~ }inen] be its obvious
spherical lift. Then Sg is an idempotent algebra over S[g™'] and we define the co-category of
Habiro-complete spectra
Mods,, (Sp)3 € Modg,+11(Sp)

to be the full sub-co-category obtained by killing the idempotent Sg. That is, Mods,, (Sp)%;
consists of those M € Modgp4+1)(Sp) such that Homgpg+1)(Sg, M) ~ 0.

It’ll be apparent from Lemma B.2 below that the inclusion Mods,, (Sp)3 € Modg(g=1)(Sp)
has a left adjoint (—)4; == limpen(—)) which we call Habiro-completion. When applied to

(gm—1)
the tensor unit, we obtain the spherical Habiro ring

Sy = 722% S[q](Aqm_l) .

Note that ¢ is already a unit in Sz, so it doesn’t matter whether we complete S[q] or S[¢™].
We let — ®SH — denote the Habiro-completed tensor product in Mods,, (Sp),. We also let

~

D(H) € D(Z[q*']) denote the full sub-oco-category of Habiro-complete objects and denote its
completed tensor product by — ®7L{ —.

B.2. Lemma. — For a S[qﬂ]—module spectrum M, the following conditions are equivalent.
(a) M is Habiro-complete.
(b) Homg[qﬂ](SR, M) ~ 0.
(¢) The canonical S[g™]-module morphism
M — T M/(q; q)n = lim Mign_)
is an equivalence. Here (a;q), == (1—a)(1—aq)---(1—aq™ ') denotes the q-Pochhammer
symbol, as usual.

(d) All homotopy groups m,(M), n € Z, are Habiro-complete.

Proof. The proof is analogous to [Stacks, Tag 091P]. Equivalence of (a) and (b) follows
by definition of what it means to kill the idempotent Sg. Condition (b) is equivalent to
M = Homg,+1)(fib(S[¢*'] — Sg), M). Writing

ﬁb(S[qﬂ] — Sr) ~ »t colim(S[qil]/(q; )1 (=g, [¢F1/(q; @)= (UTOR )

we see that this condition is equivalent to M =~ lim,>1 M/(q; q)n, thus (b) < (c). Finally, to
show (a) < (d), consider the Postikov filtration 7>,(M). This allows us to define a descending
filtration on Homgpy+1)(Sg, M) via

fil* Homg,+11(Sg, M) := Homg,21) (Sg, 74 (M)) .
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This filtration is complete, because 0 = limy, oo 7>,(M) can be pulled into Homg,+1)(Sw, —).
To show that the filtration is exhaustive, we need to check that M ~ colim,,_, o 75 (M) can
similarly be pulled into Homg,+1)(Sg, —). This works because Sz is connective, whereas the
cofibres cofib(7>p (M) — M) ~ 7<,—1(M) become more and more coconnective as n — —oo.

Since each 7, (M) is already a Z[¢™']-module, the associated graded of this filtration is
given by

gr" Homgpg21)(Sr, M) ~ Homgpge11(Sr, X", (M) ~ X" RHomgge11 (R, w0 (M) -
Now R has a two-term resolution by free Z[qﬂ]—modules. For example, take

0— Pzl¢"'] — Pzl¢"'] — R —0,

120 120

where the first arrow sends (a;)i>0 — (a; — (¢; q)iai—1)i>0 (with a_; := 0) and the second arrow
sends (a;)iz0 — Y_i>0@i/(q; q)i- It follows that 3" RHomyg+11(R, 7, (M)) is concentrated in
homological degrees [n — 1,n]. Combined with the fact that the filtration is complete and
exaustive(B'l), we obtain short exact sequences

0— EXt%[qil] (R, mn11(M)) — m Homgpge1)(Sr, M) — Homyge1) (R, mp(M)) — 0

for all n € Z. Therefore, Homg +1)(Sg, M) vanishes if and only if RHomg +1)(R, mn(M))
vanishes for all n € Z, which proves that M is Habiro-complete if and only if each 7, (M) is. O

We have the following “derived Nakayama lemma”.

B.3. Lemma. — Let M be a Habiro-complete spectrum. If M/®p,(q) ~ 0 for all m € N,
then M ~ 0. If M is an ordinary Z[qT']-module, the same conclusion is already true if the
quotients are taken in the underived sense.

Proof. By the usual derived Nayama lemma, if M/®,,(¢) ~ 0, then M£m( o =0 hence

M(Aqm_l) ~ 0. By Lemma B.2(c), this implies M ~ 0. Now suppose M is an ordinary Z[¢*']-
module such that the underived quotients M/®,,(q) vanish for all m € N. We argue as in
[Stacks, Tag 09B9]. The assumption implies that multiplication by (g; q), is surjective on M

for all n > 1. It follows that the underived limit of

<M (691 M (g;9)2 M (g:9)3 )

is non-zero. Then the derived limit is non-zero as well, which forces Homgy,+17(Sg, M) # 0, so
M is not Habiro-complete. O

B.4. Corollary. — Let M be a Habiro-complete spectrum and fizn € Z. If mp,(M/®p(q)) =0
for all m € N, then already mp,(M) = 0.

Proof. The underived quotient 7, (M)/®,,(q) is a sub-Z[¢*']-module of 7, (M/®,,(q)), so if
Tn (M /Py, (q)) vanishes, then the underived quotient m,(M)/®,,(q) vanishes as well. If this is
happens for all m € N, Lemma B.3 implies m, (M) = 0, because 7, (M) is Habiro-complete by
Lemma B.2(d). O

(B-D) Alternatively, observe that the spectral sequence associated to the filtered spectrum fil* Homg,+11(Sr, M)
collapses on the E?-page.
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B.5. Remark. — In Lemma B.3 and Corollary B.4, we could equally well replace {®,,(q)}men
by {(¢™ — 1) }men, or {(¢; ¢)n}n>1, or any set of polynomials in which each ®,,(q) occurs as a
factor at least once.

Let us now study Habiro-completeness in the setting of solid condensed mathematics (see
the brief review in 5.1).

B.6. Habiro-complete solid condensed spectra. — We can also define Habiro-complete
objects and Habiro completion inside Modg[qﬂ](Sp.). To every ordinary Habiro-complete
spectrum M, we can associate a Habiro-complete solid condensed spectrum by taking the
condensed Habiro-completion of the associated discrete condensed spectrum M. By abuse of
notation, this Habiro-complete solid condensed spectrum will be denoted M again, and then
“M +— M?” defines a fully faithful functor

Mods,, (Sp)% — Mods,, (Spa) -

B.7. Lemma. — The solidified tensor product — ®§H — preserves bounded below Habiro-
complete objects. In particular, the fully faithful functor Mods,, (Sp)j; — Mods,, (Spe) from B.6
is symmetric monoidal when restricted to bounded below objects.

Proof sketch. The proof is analogous to the proof that the solid tensor product preserves
bounded below p-complete objects (see [CS24, Lecture 6] or [Bos23, Proposition A.3]), but let
us still sketch the argument.

First we claim that Sy is idempotent in Modg[qﬂ](Sp.). Indeed, each stage of the limit
Sy =~ lim,>1 S[¢*']/(¢; q)n is a finite direct sum of copies of S. Limits of this form interact well
with the solid tensor product (as [[yS®" [IxS >~ [Iyxyn S) and we obtain

Sy ®" Sy ~ 1}%1(S[Q1ﬂ]/(qu a1)m @ S[g5 1]/ (go; Q2)n> ~ ggﬁl Sla1, qQ]f\qin_Lqén_l) -
Taking the solidified tensor product over S[qﬂ] instead amounts to identifying ¢; and ¢o, which
implies Sy ®§[qi1] Sy ~ Sy, as desired. A similar argument shows [[yS ®" Sy ~ [[y Sy, so
Mods,, (Spy) is compactly generated by shifts of [Ty Su.

Now let M and N be bounded below and Habiro-complete. We wish to show that M ®§H N
is Habiro-complete again. Using that Habiro-completion is a countable limit and thus commutes
with wi-filtered colimits, we can reduce to the case where M and N are the Habiro-completions
of countable direct sums of the form @,y [];, Sy, where each I, is countable as well. For
ease of notation, let us assume |I,,| = 1 for all n; the argument in the general case is exactly
the same. The Habiro completion of @, _y Sy can be written as

neN

A
(@SH> ~ colim [](q:9)m)Sn,
neN H ﬁ(nﬁ)}:inel\l

where the colimit is taken over all functions f: N — N such that f(n) — oo as n — oo. It

follows that
M ®§,, N ~ ; gng_{lN II (@9 @D e0)Sn-

£(n), g(n)—oo (Mm)ENXN

Observe that (¢;q) t(m) (45 @)g(n) divides (q;q) f(m)+¢(n), because g-binomial coefficients are
polynomials in Z[q]. Moreover, for every h: N x N — N such that h(m,n) — cc as m+n — oo

217


https://youtu.be/KKzt6C9ggWA?list=PLx5f8IelFRgGmu6gmL-Kf_Rl_6Mm7juZO&t=3288
https://arxiv.org/pdf/2306.06100.pdf#theorem.A.3

Appendix B. HABIRO-COMPLETION

there exist f,g: N — N such that f(n),g(n) — oo and h(m,n) > f(m) + g(n) for all m, n. By
the same argument as for p-completions, it follows that the colimit above can be rewritten as

Met, N~ clm  [] (aa) mnSH_<@SH®SH@SH) D
XN-N, meN neN H

h(m n) (m n)GNXN

Finally, let us mention that the arguments in the proofs above are quite robust and also
work for similar notions of completion, such as the following classical case:

B.8. Profinite completion. — The oo-category of profinitely complete spectra Sp”™ C Sp is
obtained by killing the idempotent Q. For a spectrum M, the following are then equivalent:
(a) M is profinitely complete.

(b) Homg,(Q, M) ~ 0.

(c) The canonical map M — limy,eny M/m ~ [, M\p is an equivalence.

(d) All homototopy groups m,(M), n € Z, are profinitely complete.

To show equivalence, one can just copy the arguments from Lemma B.2 and replace each
occurrence of the g-Pochhammer symbol (g¢; q),, by n!.

In the same way, one can also define profinite completeness for solid condensed spectra
and show that the solid tensor product of bounded below profinitely complete solid condensed
spectra will again be profinitely complete.
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Appendix C. Even [E,-cell structures on flat polynomial rings

In this appendix we show the following technical result.

C.1. Lemma. — Let S[z; | i € I] be the flat graded polynomial ring on generators x; in
graded degree 1 and homotopical degree 0. As a graded Eo-ring, S[x; | i € I]| admits a cell
decomposition with all cells in even homotopical degree.

C.2. Remark. — For polynomial rings in one variable this is shown in [ABM23, Proposi-
tion 3.11]. We believe the argument given there can be adapted to several variables as well.
The authors of that paper also remark that an alternative proof of the one-variable case is
given in the second (but not in the final) arXiv version of [HW22]; we’ll follow the proof given
therein.

Proof of Lemma C.1. To avoid issues with double duals of infinite direct sums, we work in
the oo-category of graded solid condensed spectra Gr(Spg). Usual graded spectra embed fully
faithfully as the full sub-co-category of graded discrete solid condensed spectra. We let

D® = Home,(sp,) (Bar(z)(—), S): Algg, (Gr(Spa)) — Algg, (Gr(Spa))

denote the Es-Koszul duality functor.

Let us first compute D = D@)(S[z; | i € I]). A standard computation shows that the
double Bar construction Bar(® (S[z;]) is given by P>0 X2"S(n) as a graded spectrum. Thus,
if I,, := Sym"™ I denotes the n'® symmetric power of I as a set, then

D~@®@ »2n HS(—n)
n=0 I,
If D>_,, denotes the restriction of D to graded degrees > —n, then D is the limit of the tower of

square-zero extensions - -+ — D>_9 — D>_1 — Dxp. For all n > 1, the square-zero extension
D>, — D5 _(,_1) is determined by a pullback diagram

Ds_, S

>

s
Ds_(no1y — S@® T S(—n)
I

After applying the Koszul duality functor, this becomes a pushout diagram

Freeg, <E2"+1 @ S(n)) — ID)(Q) (D>_(n-1))
In

Jﬁk

S D>n

Here we use Homgp, (]}, S,S) ~ @, S; this is the advantage of working in solid condensed
spectra. Taking the colimit, we see that D) (D) has an Eg-cell decomposition with cells in

even homotopical degrees. Once again using that we’re working in the solid condensed world,
we find D) (D) ~ S[z; | i € I] and so we’re done. O
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Appendix D. On the equivariant Snaith theorem

For abelian compact Lie groups, Spitzweck and Ostveer [S10] show a genuine equivariant form
of Snaith’s theorem. However, the equivalence they construct is only one of homotopy ring
spectra. In this short appendix, we explain how to make their equivalence E-algebras. We’ll
restrict to S' for simplicity, but the argument would work for any abelian compact Lie group.

D.1. Construction. — In [Sch18, (2.3.20)] Schwede introduces an orthogonal space P® that
sends an inner product space V' to the infinite projective space P(Symg V). We can construct
a morphism of orthogonal spaces
c: P — Q°kug

using a similar construction as in [Sch18, Construction 6.3.24]: Namely, for any inner product
space V, the required map c(V): P(Sym& Vi) — Map, (SY, kug (V) is adjoint to the tautologi-
cal map P(Sym& V) A SV — kug (V) that sends (L, v) — [L;v] for any line L C Symg V¢ and
any point v € SV.

Schwede equips PC with an ultracommutative monoid structure by sending a pair of lines
(L1 C Symf’é Ve, Ly C Sym(’é We) to L1 ®c Lo C Sym(’E Ve ®c Symf‘é We = Sym(’E(V @ W)c. It’s
clear from the construction that ¢ is multiplicative. Thus, by adjunction, it induces a map of
ultracommutative global ring spectra

Sel [PC] — kug .
Before we continue, let us deduce that the element ¢ € mo(ku® 1) is strict.

D.2. Corollary. — Let g € ﬂo(kusl) be the image of the standard representation of S' under
RU(SY) — ﬂo(kusl). Then q is detected by an Es-algebra map

Sg1lq] — kug
in Spg1. In particular, q is a strict element in (kqu)h(Sl/Cm) for all m.

Proof. By [Sch18, Proposition 4.1.8] (plus a simple argument to get rid of the telescope), the
restriction of Sg [PC] to a genuine S'-equivariant ring spectrum is given by Sgi[P®], where U/
is any complete complex S'-universe, that is, a direct sum of countably many copies of each
irreducible complex S'-representation. Choosing any copy of the standard representation ¢
inside U, we get a C-algebra map C®q¢® ¢*>® - -- — Sym* U, which induces an S'-equivariant
monoid map {1,¢,4>,...} ~P(C) UP(q) UP(¢?) U+ — P(Sym* ) and thus the desired map
of Ex-algebras in Spg1

Sg1[q] — Sg1[P¢] — kug: . O

D.3. The Bott element. — Let I/ be a complete complex S'-universe as in the proof above.
Let £ denote any copy of the trivial representation inside . The inclusion C ®e C Symg U,
where C denotes the unit component of the symmetric algebra, defines a map of genuine S'-
equivariant spectra : Sgi[P(C@®e)] — Sg1[P(Sym¢ U)]. When we restrict to Sg1 >~ Sg1 [P(C)]
in source and target, £ is canonically the identity, and so we can construct the Bott map as the
factorisation

Ssl ®E2S51 —_— 22851

zj 8
N3

S [P(C@e)] — Sgi[P(SymE )]
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Appendix D. ON THE EQUIVARIANT SNAITH THEOREM

It’s clear from the construction that the Eo,-map Sg1[P(Symé U)] — kug, that was constructed
in the proof of Corollary D.2, sends 8 +— (.

We also note that if € is another copy of the trivial representation inside ¢/, then the map
S1[P(e @e")] — Sg1[P(Symé U)] is homotopic to . Indeed, already the inclusions of P(C @ e)
and P(e®¢’) into P(C@e@¢e’) are S'-equivariantly homotopic. It follows that 3 already factors
through the map Sgi[P(U)] — Sg1[P(SymE )] induced by U = SymiU C SymEU. Finally,
recall that Spitzweck and @stveer construct a homotopy ring spectrum structure on Sq:1[P(U)],
so that we can consider the localisation Sgi [P(U)][8].

D.4. Lemma. — The induced map of Es-algebras in Spg:
Sg1 [P(SymEU)][B7'] — KUg

is an equivalence. Moreover, its precomposition with Sgi[P(U)][87!] — Sg1 [P(Sym&E U)][B7]
is the equivalence constructed in [SO10)].

Proof. Since Sgi[P(U)] — Sg1[P(Sym¢ U)] is an equivalence as both U and Sym¢ U are complete
complex S'-universes, it will be enough to show the second statement.

To this end, let Gr® be the orthogonal space from [Sch18, Example 2.3.16] that sends an
inner product space V' to [[;~q Gr¥(Ve), where Grt denotes the Grassmannian of i-dimensional
complex subspaces. Let Gr(f — Gr® be the component where i = 1. Using [Sch18, Propo-
sition 4.1.8] (plus a simple argument to get rid of the telescope), we see that Sq1[P(U)] is
the restriction of the global spectrum Sgl[Grf] to a genuine S'-equivariant spectrum. By
unravelling the proof of Corollary D.2, we immediately see that the diagram

SalGrf] —— SglP]

J J

Sgl[Gr®] kg

commutes, where the bottom map is the adjoint of [Sch18, Construction 6.3.24]. By another
straightforward unravelling, the composition Sg[GrT] — Sg[Gr] — kug restricts to the map
Sq1[P(U)] — kugi constructed in [SO10]. O

D.5. Equivariant Adams operations — Let p,, denote the n*® power map (—)": S* — S,
Writing the monoid operation multiplicatively, we also consider the monoid endomorphism
(—)": P(Sym¢U) — P(Sym¢ U). This is equivariant over p,, and therefore induces an endomor-
phism

Y™ prSei [P(SymEU)| — Sg1[P(SyméU)]

of Ex-algebras in S'-equivariant spectra. Clearly ¥"(q) = ¢". Moreover, 1"(3) = n/ holds
Sl-equivariantly. Indeed, to see this, let Uiy € U be the direct summand consisting of all
copies of the trivial S'-representation. Then the usual non-equivariant argument can be applied
to Sg1[P(Sym¢ Usyiv)]. Inverting 5 and passing to connected covers, we obtain maps

" KUgt — KUgi[2] and ¢": kugi — kugi[1]

of E-algebras in Spgi. Here we also use pikugi ~ kug: and pikugi ~ kugi, since we’ve
modelled ku by an ultracommutative global ring spectrum kug,j, where everything acts trivially.
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