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Chapter 1

Introduction

As computer hardware becomes more complicated and intricate, so become mathemat-
ical problems and algorithms used for their design. Modern computer chips contain
billions of transistors and the wire length is measured in kilometers. This just gives
a glimpse into the scope of very large scale integrated (VLSI) chip design, the field of
optimizing processor chips used inside supercomputers.

The tasks of chip design range from designing the logical structure and placing
components to routing and timing optimization. However, it is not feasible to merely
approach these one after the other. Their objectives are heavily intertwined. During
most of the physical design flow, the main objectives are placement density, routing
congestion, timing and power consumption.

This thesis contains two main topics, port assignment and global buffering, which
we examine from a mathematical and a practical point of view.

Port assignment designs the interface between large chip components. It decides
where the routing of one component should connect to the routing of a neighboring
one. For a general problem formulation allowing multiply instantiated components,
we examine the conditions for feasible solutions to exist and present an algorithm to
compute such.

In global buffering, we insert many small components (so-called cells) along the
wiring in order to reduce signal delays. Due to the physical properties of wiring and
cells, this improves signal delay from roughly quadratic down to almost linear in the wire
length [Bar+06]. We need to compute Steiner trees minimizing a combination of net
length and path length. For this, we present an algorithm approximating an objective
function that occurs when buffering a single net.

We cover the tools BonnPangea and BonnRouteBuffer. These tools compute
practical solutions for port assignment and global buffering.

Main contributions

We present an approximation algorithm for the uniform cost-distance Steiner tree prob-
lem (Section 3.3, already published in [FHS23]). This problem arises in the Lagrangian
relaxation of global buffering. We achieve an approximation factor of <2.05, which
improves upon the previously best factor of 2.39 in [KH20]. Given an exact oracle for
the Steiner minimum tree problem, our approximation is tight with respect to the lower
bound CSMT (T∪{r})+D(T, r, w). This is because the lower bound can deviate from the

optimum value by a factor of 1 + 1√
2
, while we can compute a

(
1 + 1√

2

)
-approximation

using the Steiner tree oracle. All previous analyses compare their results against this
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lower bound.
We devise the first mathematical problem formulation of the standard pangea prob-

lem (Sections 4.1 and 4.3). Here, the goal is to compute a port assignment allowing
for short paths, little wiring congestion and short total net length. We also present
the first description of BonnPangea, the tool used to solve this problem in practice
(Section 4.4). We then extend the problem definition to the case of pangea replay. In
pangea replay, a partial port assignment is given in the input. It needs to be extended
by the computed result. We describe the adapted algorithm to solve this problem as
well (Section 4.5).

In Section 4.6, we present a major new contribution called Pangea ReUse. Here,
we compute a port assignment in the presence of multiply instantiated components,
an important practical application. The port assignment on equivalent components
must coincide. The problem becomes much more difficult compared to traditional port
assignment. We formalize the pangea reuse problem and develop two algorithms: A
practical algorithm is described in Sections 4.6.2 to 4.6.7. This algorithm was also
implemented and integrated into the existing pangea tool as part of this thesis. It works
under certain restrictions which are mostly fulfilled in practice. A second algorithm is
presented in Section 4.6.9. We can prove that this algorithm solves the pangea reuse
problem correctly on instances that are substantially less restricted.

For BonnRouteBuffer, we develop a more accurate propagation of slew limits
during the dynamic program and a more accurate propagation of slews through the
computed repeater tree. We show that these improvements, together with many minor
fixes, lead to more efficient global buffering solutions that also contain significantly fewer
electrical violations.

This thesis is organized as follows. Chapter 2 introduces general notions of chip
design, focusing on routing and timing optimization. Chapter 3 covers algorithms used
for timing-constrained global routing. Chapter 4 gives details on pangea. There we
present the three different modes of BonnPangea, including Pangea ReUse. Finally,
Chapter 5 addresses BonnRouteBuffer and showcases how the author of this thesis
was able to improve on many aspects of it compared to its previous state (see [Rot17],
[Dab21] and [Dab+23]).
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Chapter 2

Preliminaries

2.1 Basic notions of chip design

This section introduces the most important notions used throughout the entire thesis.
A cell or gate is a small physical component made up of a few connected transistors
representing a simple logical function such as AND, NOT or even the identity func-
tion. These functions also create more complex logical functions by composition. Cells
represent the building blocks of the chip. To connect wiring to them, cells each have
several pins. For our purposes, we only ever consider the input pins (e.g. one for a
NOT -function, two or more for an AND-function and so on) and the output pin. In
addition to the cells’ pins, a chip also has primary input and output pins, which are
placed on the chip itself. They have a coordinate lying inside the chip area, which is a
rectangle given in R2.

To state which pins need to be connected to which, we use the notion of a net. A
net is a set of pins containing exactly one source which is either an output pin of a cell
or a primary input. The rest of the net’s pins are called sinks. They are either input
pins of cells or primary outputs. The set of all nets forms the netlist.

When routing a net, the task is to compute wiring connecting all of the net’s pins.
Wiring can be placed on multiple routing layers. On each such layer, wire segments
may either go only horizontally or only vertically (in the preferred direction), and such
horizontal and vertical layers alternate. Wires on adjacent layers can be connected by
inserting a via in between the layers.

In (global) routing, each layer is cut into tiles forming a grid. The tiles are connected
according to their layer’s preferred direction. Together with edges representing vias, this
forms the global routing graph, a 3-dimensional grid graph. Pin positions are projected
to the tile-centers of the respective surrounding tiles and each net gets connected via a
global route, a Steiner tree in that grid graph connecting tile-centers to tile-centers. An
example global routing graph and a route are depicted in Figure 2.1.

In some applications, blockages will play a role. A blockage is a rectangular shape
on either the placement layer or a routing layer. No gates may be placed on a blockage
on the placement layer, while no routing (including vias) may be placed intersecting
a routing blockage. These blockages can be either user-specified or stem from already
placed components not allowed to be changed.
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Figure 2.1: A global routing graph with three routing layers (left) and a global route for
a three terminal net (right). Global routing tiles are depicted by the gray grid. Horizontal,
vertical and via routing edges are red, blue and green, respectively. Pins are orange rectangles.

2.2 Embedded routing

The core of this thesis is to use a very flexible approach to global routing to be able to
tune the computed routes towards certain specific goals.

As the routing task itself is so vast, even when only considering feasibility, it usually
gets split into global routing and detailed routing. Global routing places wiring on a
rough tile grid and only connects tile-centers to tile-centers (see previous section). It bal-
ances density constraints with other objectives. This way, not too much wiring is placed
in the same area, the total wire length does not get too large, and single connections
are not routed with a too large detour. In contrast, detailed routing places the wires on
their exact positions and connects directly to the pin shapes. Additionally, it considers
further design rules such as minimum distance constraints between unconnected wire
segments. To do this in a feasible running time, detailed routing uses the already com-
puted global routes and follows their structure as closely as possible. Because detailed
routing considers each net to be routed one after the other, it also relies on the global
routing to have made the decisions which nets should be routed through which areas.

The two most natural objectives in global routing are wire length and congestion.
Wire length is the sum of the lengths of all wire segments. This is also called net length.
Congestion measures how dense the wiring is. For this, we will use the notion of the
wACE4 metric [Wei+14], which is a weighted sum of the routing densities in the 5%
densest wiring areas. Depending on the problem at hand, global routing must satisfy
other constraints as well. This can include timing constraints, i.e. making sure paths
to critical sinks are as straight as possible and route on higher layers, which typically
induce less wire delay. Or it can include further structural constraints which we will see
in Chapter 4.

Combining a high level view to compute the overall structure of a route with a
detailed view for the exact tiles that a single route segment should be placed on is a
rather hard problem. These two are separated into individual steps: Topology generation
and embedding. First, we compute a 2-dimensional Steiner tree connecting the source to
the sinks. Here, we consider length according to the ℓ1-metric. We can incorporate many
further objectives such as regarding blockages or signal delay. Second, we embed this
topology into the global routing graph using a variant of Dijkstra’s algorithm [Dij59].
Here, we also decide the wire type on each used global routing edge.

The basis of the used routing engine was already developed in [Hel+18] and extended
for the use of BonnRouteBuffer by [Dab+23]. Further adaptations, in particular for
the use case of pangea, were implemented by the author of this thesis.
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2.3 Applications

2.3.1 Pangea

Before the earth’s continents emerged the way they look today, there was a single large
continent called pangea surrounded by the superocean panthalassa. During the early
Jurassic era, this continent broke apart into the sections we know today1.

Analogous to this process, the pangea flow is used to break apart one large chip into
smaller components called continents. The goal of this division is to be able to optimize
each continent separately instead of having to deal with one very large instance all at
once. This drastically speeds up every computational step and allows to exert much
more effort in individual optimizations. To make this possible, the pangea flow makes
sure the fully optimized continents properly fit together in the final result. This means
that for every net with pins inside multiple continents, there has to be an agreement
on where the wiring of that net should cross the continent borders. Having fixed these
positions, we know the final continents will be compatible, no matter how their interior
components and routing will end up looking like.

The decision which areas should make up continents is left to the user. To achieve
the aforementioned benefits, it makes sense to choose continents such that their interde-
pendence is rather low. Further, it is advantageous to choose continents of roughly the
same size, which will make the optimization of the individual continents more efficient
when done in parallel.

A commitment that a net should cross a continent border at a specified position is
called a port. In addition to its location, every port comes with a predecessor (the net’s
source or another port) and a set of successors (net sinks or other ports), determining
how the net will split into individual nets inside each continent. The ports of a net
together with its pins form an arborescence rooted at the source with the set of leaves
equal to the set of net sinks. This arborescence is called the port graph.

To compute port graphs for all nets, the pangea flow routes all relevant nets and
then creates ports at each intersection of a route with a continent border. Of course,
having to route or otherwise optimize the entire chip at once is exactly what pangea
aims to avoid. To make this task feasible anyway, a number of simplifications are made.
The two most important ones are ignoring all nets contained in single continents and
using a very large tile size which leads to a comparably small global routing graph (see
Section 2.4 for more details). With these simplifications, it is possible to compute a
global routing in acceptable time, because both the number of routing tasks and the
scope of each task are reduced.

The computed global routes now go from tile-center to tile-center. Placing ports in
this state would make no sense, as many ports would end up lying on top of each other.
However, to ensure the computed ports can be routed to, they must not overlap at all.
As detailed routing would take much too long and is not necessary here to spread out the
wiring, track assignment is used instead. One can think of routing tracks as the routing
edges in detailed routing. They represent positions where wire segments may be placed
next to each other without violating distance requirements. In track assignment, all
wire segments crossing a continent border are assigned to such a routing track, ensuring
the resulting ports are overlap-free.

For pangea, the key aspect in this flow is the topology generation, the first step in
computing a single route. To minimize unwanted effects of fixing certain points of a
route beforehand, the number of ports should be kept low. Furthermore, port positions
must not enforce large detours in source-to-sink connections of nets. But they need to
simultaneously allow for an overall short net length and low congestion. So topology

1https://www.britannica.com/place/Pangea
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generation has to make sure that

a) both net length and source-to-sink paths are short and

b) routes do not switch between continents back and forth too often.

This is achieved by using a hierarchical approach: First, compute how the continents
should be connected to each other. Then, how the topology within each continent should
be constructed.

The new mode Pangea ReUse, giving rise to a completely revised flow, was de-
veloped as part of this thesis together with Stephan Held and Max Mundt (also see
[Mun23]). Before, every continent was designed separately using the port positions
computed by the pangea flow. However, there are chips on which a certain large com-
ponent occurs multiple times, e.g. when having many processor cores of the same kind.
In these cases, it is preferable to only consider one instance of this continent in the later
optimization flow. Otherwise, very similar work has to be carried out multiple times.
This would lead to a waste of both human and computational resources. On the other
hand, several continents which are exactly identical with regards to placement, nets and
port configurations can be optimized as one instance. The finished continent will then
simply be instantiated multiple times on the final chip.

The key here is to get the port positions to be identical across all equivalent con-
tinents. Simply taking the computed result from one of the individual continents is
not feasible because of two reasons: To begin with, the ports of a continent must be
compatible with those of adjacent continents. Secondly, blindly using the port positions
of one of the equivalent continents for the other ones can introduce large source-to-sink
detours as well as degrade congestion and net length. Pangea ReUse solves these
issues by taking each instance of the equivalent continents into account.

A further extension of Pangea ReUse enables even continents that are not 100%
equal to be considered equivalent. Tiny differences arise for example when nets need to
route through one continent but not through an equivalent one, or when some pin is
connected to something outside the continent, but an equivalent pin is not.

2.3.2 BonnRouteBuffer

Timing optimization is one of the largest tasks in chip design. Without taking into
consideration how long a signal takes from one pin to another, chips cannot be opti-
mized well. In fact, optimizing congestion and wire length will in many cases actively
worsen signal delays. This means that a trade-off is needed. One way to improve delay
characteristics of a route is to insert repeaters subdividing the wire segments. Repeaters
are gates implementing either the inversion function (inverters) or the identity function
(buffers). Whenever inverters are used, an even number of them has to be inserted
into each source-to-sink path in order to retain the logical function. The reason that
repeaters can decrease signal delay is that a gate shields off the capacitance behind it.
Without repeaters, signal delay will depend roughly quadratically on the wire length
(see Section 2.5). Thus, breaking up a long wire segment and dividing it into several
shorter ones can improve timing. In fact, when done optimally, one can achieve a delay
that depends only approximately linearly on the wire length [Bar+06].

BonnRouteBuffer (see [Rot17], [Dab21] and [Dab+23]) is a powerful tool for
inserting repeaters to speed up the signals. In doing so, many constraints and side-
objectives are considered: Repeaters can only be placed in such a way that they do
not overlap each other or other gates, and a too high placement density will hinder
accessing the pins in routing. Furthermore, there are placement blockages forbidding
any repeater from being placed in a given area. Additionally, certain thresholds have
to be observed giving bounds on capacitance values and signal slews (see Section 2.5
for more explanation). In addition to timing itself, BonnRouteBuffer takes power
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consumption into account as a side-objective. Lastly, net length and wire congestion
are considered.

BonnRouteBuffer is integrated into the global routing framework described in
Section 2.4, meaning that it will route all nets as well as insert repeaters into them.
Every time after a net is routed, repeaters are inserted along the route.

When computing routes in the first step, the objectives must already incorporate
the fact that repeaters will be inserted as a second step. Therefore, we use a timing
model that approximates an optimal repeater placement. This means signal delay is
modeled as being linear in the length of a wire. The factors used depend on the exact
wire characteristics such as width and layer and are all computed beforehand. However,
many nets have more than one sink, hence trees are needed instead of simple paths.
A path with many bifurcations will have more signal delay than the very same path
without any bifurcations. This is due to the added downstream capacitance given by
the paths that are branching off. Hence, it can be beneficial to also keep the number of
bifurcations on critical paths in check. Routes going through areas with high placement
density or even placement blockages will impede the possibility to insert repeaters. That
means such areas have to be considered as well.

Most of these issues need to be addressed by the overall structure of a route, i.e.
already in topology generation. When the bifurcation count is considered, it needs to
be done in this step as it will remain fixed later on. Whether the route can afford to
go over a large placement blockage (where no repeaters can be placed) also needs to be
decided in this step. Depending on the main focus of optimization, there are different
options for how to compute a good topology. We will discuss these in Section 3.2.

BonnRouteBuffer is integrated into a more extensive timing optimization flow
called wire synthesis. In addition to inserting repeaters, other delay improving tech-
niques are used there: In the process of gate sizing, a specific variant (size) for each gate
is chosen. Most logic gates exist in multiple different sizes. Apart from in their footprint,
these gates differ in certain delay characteristics as well as in their power consumption.
So the task of gate sizing is to improve timing while also keeping the power consumption
as low as possible. See for example [Dab+18a] and [Dab+18b]. There are also more
local improvement strategies that focus on improving the worst path. The refine placer
moves gates on the worst path in such a way that the wire length and thus also the
signal delay on that path are reduced ([Boc+15], [Lüd23]).

Prior to the work on this thesis, BonnRouteBuffer was in the state of a pro-
totype. It contained inexact computations and heuristics and was not fine-tuned well.
Among other improvements, the slew propagation in both the timing analysis inside
BonnRouteBuffer as well as the dynamic program computing the actual buffering
(the “heart” of BonnRouteBuffer) were rewritten to be more exact and thereby al-
low for a less pessimistic view of slew limits. Additionally, several bugs were fixed in
the process of improving its results.

2.4 Global routing framework

Global routing is the task of computing the rough position of wire segments connecting
given positions on a chip. Instead of considering exact wire locations, each layer of
the chip area is cut into rectangles called tiles. Connecting adjacent tiles leads to a 3-
dimensional grid graph. Since layers only allow for either horizontal or vertical routing
in an alternating manner, edges in opposing directions are removed. The resulting graph
is called the global routing graph. An example global routing graph with few tiles and
three layers was already seen in Figure 2.1.

A pin is an input or output of a cell. Since cells are already placed inside the chip area
when routing is conducted, pins are associated with a position on the chip. While the
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actual pin shapes are collections of axis-parallel rectangles, for our purposes it suffices
to consider a pin position to be a single point on a given layer. The information how to
connect these pins is given by the netlist. The netlist consists of many nets, which in
turn consist of one pin acting as the source and one or more pins representing the sinks
of the net. Sources are outputs of cells and sinks are inputs.

Connecting a net with wire makes sure a signal can travel from a cell’s output to
the corresponding next cells’ inputs. We connect a net by computing a global route. A
global route is a Steiner tree inside the global routing graph, where the terminals are
the tiles corresponding to the net’s pins. Further, we associate a wire type with each
edge of the route giving details on the wire width, resistance and capacitance. These
properties will be needed for the timing analysis, see Section 2.5.

A global route only states through which tiles the final wiring should go, but does
not specify the exact routing tracks. This simplification is necessary in order to be able
to handle all nets simultaneously. To make sure that it will be possible to compute exact
and overlap-free wire positions later on, certain constraints have to be considered. In
particular, every global routing edge has a capacity, stating how many wires may pass
through it.

The goal in global routing is, first and foremost, to find routes for all nets such that
the capacity constraints are not violated. Under this constraint, the objective in the
simple global routing problem is to minimize net length, i.e. the total summed length of
all computed routes. A formal definition of this problem is as follows.

The simple Global Routing Problem

Instance: A global routing graph G = (V,E) with edge capacities c : E → N and a
netlist N = (Ni ⊂ V )i.

Task: For every net Ni, compute a Steiner tree Ri in G, such that for each global
routing edge e ∈ E, we have ∑

i

1E(Ri)(e) ≤ c(e).

Under all such solutions, minimize

net length :=
∑
i

∑
e∈E(Ri)

length(e).

2.4.1 Resource sharing algorithm

As already computing a single minimum-length Steiner tree is NP-hard [Kar72], there is
no hope of solving the simple global routing problem exactly in polynomial time. Instead,
we will consider a framework that allows us to approximate an optimum solution as well
as add further constraints to the problem. For this, we will have a look at the resource
sharing algorithm by [MRV11]. The idea is that we have resources R which we want
to distribute between customers C. Each customer has some freedom in regards to its
needed resources. Feasible resource allocations for the individual customers are given
by closed convex sets BC ⊂ RR for each C ∈ C. A feasible resource allocation for all
customers b : C → RR assigns to each customer C a resource allocation b(C) ∈ BC such
that

∑
C∈C b(C)r ≤ 1 for each r ∈ R, i.e. such that the total resource usage does not

exceed 1 for any resource.
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In our case, the global routing edges make up the resources. The customers are given
by the nets. Further, for a customer/net C, BC is the convex hull of incidence vectors of
all Steiner trees for C, where each entry is divided by the capacity of the corresponding
edge:

BC := convex-hull

({((
χF
)
r

c(r)

)
r∈R

: F Steiner tree for C

})
When defined like this, a total usage of 1 is equivalent to an edge being used to its full
capacity, but not beyond. Hence, there is a one-to-one correspondence between feasible
resource allocations for all customers and convex combinations of Steiner trees for each
net, such that the edge capacities are observed.

To minimize net length, an additional resource representing the net length budget
can be added. A good capacity for this resource can be chosen using binary search.

The resource sharing algorithm by [MRV11] maintains prices for the resources and re-
peatedly calls an oracle (see Section 3.1) to compute minimum-cost resource allocations
for the individual customers with regard to these prices. Resource prices are updated
multiplicatively in a way such that much demanded resources become more expensive
over time. This is done over many phases and in the end, a convex combination con-
taining all computed solutions is returned for every customer. Given that the oracle
computes a σ-approximate minimum-cost resource allocation for individual customers,
this yields an approximation factor arbitrarily close to σ.

After using the resource sharing algorithm, we end up with a fractional solution. To
compute an integral solution, the first step is randomized rounding. After outliers are
removed, for each net one of the previously computed Steiner trees is chosen at random.
The probabilities are proportional to the factors appearing in the convex combination.
This is done separately for each net. Using a result from [RT87], this results in a solution
that does not violate many resource capacities.

The remaining violations are fixed by a ripup-and-reroute procedure recomputing
solutions for individual nets.

2.4.2 Arrival time customers

The model so far can compute routes for all nets while minimizing net length and keeping
the wiring congestion feasible. However, there is no mechanism controlling the time a
signal needs from its start to its endpoint. But this is a crucial characteristic of a route
and especially needed in BonnRouteBuffer.

The approach used throughout this thesis was introduced by [Hel+18]. In addition
to the routing resources for the global routing edges and the net length budget, there are
timing resources: We add one timing resource for every sink in each net. This resource
represents the delay budget that a signal has to traverse the net to the given sink.
With only these resources, the timing of different nets is still separate. To overcome
this problem, arrival time customers are used as additional customers. One arrival
time customer is added for each gate. The set of feasible solutions for an arrival time
customer is a time interval inside which the signal can arrive at the associated gate.
The earlier the chosen solution lies inside this interval, the more usage it takes from the
timing resources going into the gate. Vice versa, a late solution takes more usage from
the timing resources leaving the gate. As shown in [Hel+18], the existence of feasible
arrival times at the gates ensures that overall timing constraints are met.

2.4.3 Incorporating further constraints

In BonnRouteBuffer, placement and power constraints are considered next to rout-
ing congestion and timing. Both can be incorporated into the global routing framework
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natively.

For placement, it is important that the footprints of all gates fit into the area where
they were placed. To model area locally as opposed to only making sure all gates can
be placed somewhere on the chip, the chip area is cut into placement bins. Often times,
these are the same as the global routing tiles. Each placement bin is associated with a
separate placement resource. Its capacity depends on the size of the bin and overlapping
placement blockages. Whenever a repeater is placed during BonnRouteBuffer, the
solution has to pay a cost according to the size of the repeater relative to the surrounding
placement bin.

Incorporating the consideration of power requires some assumptions to be made.
When a power budget is given, it is possible to add a single resource representing power
with that capacity. Every route then consumes of this resource exactly the route’s power
consumption divided by the power budget. In the end, feasibility for the power resource
translates directly to the power budget being observed. However, no set budget for power
consumption is given. Rather, the solution should have a reasonable power consumption
while satisfying the other constraints. In practice, this is achieved by estimating a power
budget and adjusting it in every phase of the resource sharing algorithm.

2.5 Timing

This section will introduce notions regarding signals and their delay properties. For this,
we will assume routes to be directed away from the source.

A signal is a voltage change from 0 to Vdd (the chip’s operating voltage) or vice
versa. A voltage change from 0 to Vdd is called a rise signal, a change from Vdd to 0 is
called a fall signal. When a signal arrives at the source of a net, it will be transmitted
to the sink of said net after a short delay. Similarly, a signal can go from an input to an
output of a gate. The arrival time of a signal at some position is the point in time when
the voltage crosses the 50% Vdd threshold at that position. The arrival time at a pin p
is denoted as at(p). The delay from pin p1 to pin p2 is the difference in arrival times
at these points: delay(p1, p2) = at(p2)− at(p1). We speak of wire delay if the pins are
on the same wire path, and of gate delay for the time a signal takes to go from a gate’s
input to the output.

For primary input pins, the arrival times are given in the input. Given delay functions
(e.g. by a timing model on fixed routes), we can then compute the arrival times of all
pins.

Required arrival times state the latest point in time at which a signal should arrive.
The required arrival time of a pin p is denoted by rat(p). Required arrival times for
primary outputs are given in the input. Required arrival times on the other pins can
then be computed given the delay functions of a timing model.

For any given pin p, we define the slack to measure how much later the signal is
allowed to arrive at p compared to the current arrival time: slack(p) := rat(p)− at(p).
If the slack is non-negative at all pins, every signal arrives in time.

A further important property of a signal is its slew, which is the time the voltage
is inside the [10% Vdd, 90% Vdd] interval. Both arrival time and slew are marked on
an example signal slope in Figure 2.2. In general, a steeper, i.e. smaller, slew leads to
faster signals. Once the slew of a signal crosses a given threshold, the slew limit, there
is a slew violation. The value of the slew violation is given by slew − slew limit.

Each wire segment further has capacitance and resistance values. Gate inputs and
primary outputs also have a capacitance value. The downstream capacitance of any
point in a route is the sum over all the capacitances of wire segments and pins that can
be reached from the point through wiring (see Section 2.5.1). As for slew values, the
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Figure 2.2: An example slope of a rise signal. The arrival time is marked at the 50% Vdd

threshold. The signal slew is marked as the interval between the 10% and 90% voltage thresh-
olds.

downstream capacitance also must not exceed a certain threshold called the load limit.
Otherwise, a load violation occurs, where again the value of the violation is given by
downstream capacitance− load limit.

2.5.1 Elmore delay model

A simple yet quite precise model to describe signal delays is the Elmore delay model
introduced in [Elm48]. This delay model, also called the RC-delay model, models a
wiring tree with gates by resistors and capacitors.

We will use the following notation to formally define the Elmore delay. Fix a wiring
tree Y rooted at its source r. For a vertex v ∈ V (Y ), let Yv denote the sub-tree of Y
rooted at v. Further, let downcap(v) be the downstream capacitance of v, which we
define recursively by

downcap(v) =

{
cap(v) if v is a sink,∑

w∈Γ+(v) cap(v, w) + downcap(w) else,

where cap(v, w) denotes the wire capacitance of the (v, w)-segment.
For an edge (v, w) in Y , we can now define the RC-value of the edge by

RCY (v, w) := res(v, w) ·
(

cap(v, w)

2
+ downcap(w)

)
.

We naturally extend this by

RCY (v, w) :=
∑

(p,q)∈E(P[v,w])

RCY (p, q),

where P[v,w] denotes the unique path in Y from a node v to some w in Yv. The wire
delay between nodes v and w according to the Elmore model becomes

wire-delayY (v, w) := ln2 · RCY (v, w).

For the slew degradation, we will use Bakoglu’s metric [Bak90]

slew-degY (v, w) := ln9 · RCY (v, w),
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and define the out-slew at w, given an in-slew at v, as in [Kas+04]:

out-slewY (v, w, in-slew) :=

√
in-slew2 + (slew-degY (v, w))

2
.

For a gate g, we will assume a resistance res(g) to be given. Then the delay through g
is defined by

gate-delay(g) := res(g) · downcap(g).

2.5.2 Linear delay model

An even simpler delay model is the linear delay model. Here, we assume the signal delay
to increase linearly in the wire length, while gate delays are being neglected. The signal
speed can vary depending on layer and wire type.

Using a linear delay model is justified for estimating delay in unbuffered scenarios,
as proper buffering will lead to near-linear delays. As done in [Bar+06], factors describ-
ing the delay per length can be estimated by buffering very long wire segments and
calculating the average delay per length.

For the purpose of this thesis, we will say that linear timing data is a function

lin-delay : Layers×WireTypes→ R+

mapping a layer and wire type to R+, which we will interpret as the delay per length of
the wire type on the given layer.
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Chapter 3

Algorithms for
timing-constrained
global routing

3.1 Global routing oracle

As outlined in Section 2.4.1, the resource sharing algorithm makes use of an oracle for
computing minimum-cost routes for the considered nets. Put formally, when considering
routing and timing resources, the oracle needs to solve the following problem.

Routing Problem inside Resource Sharing

Instance: The global routing graph G = (V,E), a net N with specified source r and
sinks T , congestion prices c : E → R+ and delay weights w : T → R+.

Task: Compute a Steiner tree Y for the net N minimizing∑
e∈E(Y )

c(e) +
∑
t∈T

w(t) · delayY (r, t),

where delayY (r, t) denotes the delay through Y from the net source r to the sink t.

The exact definition of delayY (r,−) depends on the timing model used. The simplest
version to think of would be to set delayY (r,−) ≡ distY (r,−). Details on timing models
are given in Section 2.5.

As already seen in Section 2.2, the oracle considered in this thesis to compute an
approximately minimum-cost route for each net consists of two main steps. First, a
Steiner tree for the given net is computed in (R2, ℓ1). This Steiner tree is called the
topology. Afterwards, the tree is embedded into the global routing graph by successive
Dijkstra searches. This is based on [Hel+18].

3.1.1 Topology generation

During topology generation, a Steiner tree is computed in (R2, ℓ1) for the given net.
Different possibilities for both optimization objectives and respective algorithms how to
compute this Steiner tree are presented in Section 3.2.
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Algorithm 1: Topology embedding algorithm [Hel+18]

Input: Global routing graph G = (V,E), source r ∈ V , sinks T ⊂ V , binary
arborescence Y with a mapping p : V (Y )→ V such that p(root(Y )) = r
and the leaves of Y are bijectively mapped to T .

Output: An arborescence Y ′ in G with root r and leaves T .
1 labels(v) := {(p(v), 0)} if v is a leaf and labels(v) := ∅ else for all v ∈ V (Y )
2 foreach v ∈ V (Y ) in reverse topological order do
3 targets := the set of all vertices with the same x and y coordinates as p(v)
4 heap := empty-heap
5 foreach c ∈ Γ+(v) do
6 insert all elements of labels(c) into the heap

7 while not all targets are permanently labeled do
8 propagate the minimum-cost label in heap

9
labels(v) := { (p(x), cost(l1) + cost(l2)) | l1, l2 permanent labels at x ∈ V

from paths starting at both children of v }
10 back-track the minimum-cost label in labels(r) to create Y ′

11 return Y ′

For the subsequent embedding, it is necessary that the topology fulfills these struc-
tural constraints:

• Every vertex has out-degree at most 2 and

• the leaves are exactly the sinks.

Any tree can be transformed into one fulfilling these constraints in linear time without
changing the total net length. This is done by adding vertices on top of existing vertices
and edges of length 0.

3.1.2 Embedding

After the computation of a 2-dimensional Steiner tree, each edge needs to be embedded
into the global routing graph. The embedding needs to decide the exact global routing
edges to use and which wire type to use on which edge. Additionally, the final Steiner
point locations are decided during the embedding.

The rough outline of the algorithm can be seen in Algorithm 1. In Line 1, we initialize
labels of cost 0 for all sinks. Then, we traverse the nodes of Y in reverse topological
order. For each v ∈ V (Y ), we do the following. We initialize the targets to be all
global routing nodes at the same x and y coordinates as p(v) (Line 3). In particular,
the targets can lie on different layers. We also initialize an empty heap and insert the
elements of labels(c) for each child c of v into the heap (Lines 4-6). We then propagate
the minimum-cost label in the heap along all adjacent edges as long as not all targets
are permanently labeled (Lines 7 and 8). Finally, we merge permanent labels coming
from different children of v to create labels(v) by setting

labels(v) := { (p(x), cost(l1) + cost(l2)) | l1, l2 permanent labels at x ∈ V

from paths starting at both children of v } .

When we have reached the source, we retrieve the final result via back-tracking from
the minimum-cost label in labels(r) (Lines 10 and 11).
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Figure 3.1: Example net with a blockage-unaware topology (left) and a blockage-aware topol-
ogy (right). The gray shape represents a blockage. When embedding the left tree, the edge
going to s2 will have to be routed around that blockage. The blockage-aware topology prevents
this issue.

The crucial parts are traversing the topology in reverse topological order and starting
from all found permanent labels in the next Dijkstra searches to not fix final Steiner
point positions too early. During labeling, the global routing graph is considered to have
parallel edges between adjacent vertices wherever a choice between multiple wire types
arises. The cost function used during the Dijkstra searches depends on the current use
case. Resource prices for net length and routing congestion are always considered. In
BonnRouteBuffer, additionally the prices for timing, power and placement are taken
into account.

3.2 Topology algorithms

Many different options arise for computing a “good” topology in global routing. In
this section, we will first consider Steiner tree algorithms dealing with several kinds
of blockages. After that, we will present Steiner tree algorithms that can consider
additional input from arrival time customers or delay prices.

3.2.1 Reachaware topologies

When only routing congestion and net length play a role, the routing problem itself
reduces to a Steiner-minimum-tree (SMT) problem. Hence also the topology can be
computed using an SMT approximation algorithm.

However, there are further circumstances that are reasonable to consider: When
there is a blockage covering all routing layers in a given area, it is beneficial for the
topology generation to already take this into account. Otherwise, the embedding might
have to route large detours that could have been easily avoided by changing the structure
of the Steiner tree. An example for such a situation is shown in Figure 3.1.

Moreover, there are situations in which not all layers, but all layers of a given di-
rection are blocked for routing. This translates to orientation-restricted blockages in
topology generation, i.e. blockages that forbid either horizontal or vertical segments
through them.

Lastly, there can be placement blockages. Then, routing is allowed, but no repeaters
may be inserted there. Connected components of wiring on a placement blockage need
to be driven by a single repeater. This leads to an upper bound of capacitance of
connected wiring inside the blockage. The upper bound is given by the capacitance
limits of the strongest repeater. As capacitance is linear in the wire length, this is
modeled by restricting the length of a connected component inside such a blockage.

These considerations give rise to the Reachaware Steiner Tree Problem:
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Reachaware Steiner Tree Problem

Instance: Sets Rl,Rh,Rv ⊂ R2 that are the union of finitely many axis-parallel rect-
angles, a finite set of terminals T ⊂ R2 and L ∈ R+.

Task: Compute a shortest reachaware Steiner tree for T , i.e. a rectilinear tree Y satis-
fying that

1. every edge in E(Y ) ∩Ro
h is horizontal,

2. every edge in E(Y ) ∩Ro
v is vertical and

3. every connected component of E(Y ) ∩ (Rl ∪Rh ∪Rv)o has total length ≤ L.

[Bih15], extending upon [HS14], gives a polynomial-time 2-approximation algorithm
for the case where no terminals lie inside (Rl ∪ Rh ∪ Rv)o. This algorithm works by
constructing a visibility graph and computing a terminal spanning tree in there. In
addition to the terminals, the visibility graph contains certain vertices on the border of
the given restriction sets.

Under co-supervision of the author of this thesis, an adaptation of this algorithm
was developed and implemented computing reachaware shortest-path trees in [Rei23].
In this version of the problem, one of the terminals T is the designated root r and the
resulting tree must contain (reachaware) shortest paths from r to all other terminals.
This is important for practical application as short paths are necessary for fast signals.

Similarly to [Rao+92], sink pairs are chosen iteratively and a common parent is
inserted. A sink pair is a pair of vertices in the current branching that do not have an
incoming edge. A parent of a sink pair is a node lying on shortest paths from the root
to both sinks, and among all these, one that is furthest from the root. The sink pair of
each iteration is chosen such that the common parent vertex has maximum distance to
the root.

This algorithm yields a 2-approximation on instances where the following holds:

a) T ⊂ R2 \ (Rl ∪Rh ∪Rv)o,

b) all terminals and blockages lie in the first quadrant,

c) blockages are disjoint rectangles,

d) Rl = ∅ and Rh = Rv.

Here, the last constraint makes sure that area is either not blocked at all or completely
blocked.

The algorithm by [Rei23] can be improved further in the following way. In practice,
the topology is not required to contain strictly shortest paths. Instead, a small detour
(relative or absolute) is often allowed. This is sensible in our use-case, as the subsequent
embedding will not adhere exactly to the Steiner point positions in any case. Simply
changing the definition of a parent to also allow small detours will not lead to good
solutions, though. Instead, the choice of the sink pair and the parent location have to
be separated. As previously, the sink pair for which a parent is added is chosen such
that the parent location (with the previous definition) is furthest from the root. But
instead of placing the parent node at that location, it can be moved to minimize net
length instead of maximizing its distance to the root, under the restriction that the
detour does not become too large. To be exact, the parent location p is chosen so that
it minimizes

d(r, p) + d(p, s1) + d(p, s2)

20



under all feasible locations for a fixed sink pair s1, s2.

Note that this choice coincides with maximizing the distance between parent and
root if no detour is allowed:

Proposition 3.1. Given a graph G = (V,E) with edge lengths d : E → R+, a root r ∈ V
and two sinks s1, s2 ∈ V , define P ⊆ V to be all nodes lying on a shortest r-s1-path and
a shortest r-s2-path. Then

argmin
p∈P

(d(r, p) + d(p, s1) + d(p, s2)) = argmax
p∈P

d(r, p).

Proof. By the definition of P , we know d(p, si) = d(r, si)−d(r, p) for i = 1, 2 and p ∈ P .
Hence

argmin
p∈P

(d(r, p) + d(p, s1) + d(p, s2))

= argmin
p∈P

(d(r, p) + (d(r, s1)− d(r, p)) + (d(r, s2)− d(r, p)))

= argmin
p∈P

(d(r, s1) + d(r, s2)− d(r, p))

= argmax
p∈P

d(r, p)

as claimed.

Further, the running time of the implementation by [Rei23] can be improved sig-
nificantly. Instead of computing the parent location of all sink pairs in advance (and
maintaining this set when parent nodes are added as terminals), it suffices to compute
which parent to consider next. This can be done efficiently by traversing the nodes in
descending order of distance to the root, so that we can stop as soon as the considered
nodes are closer to the root than the currently best found parent.

3.2.2 Timing-aware topologies

When timing is considered explicitly, two main options are interesting in the context of
this thesis. One possibility is to use a bi-criteria algorithm such as described in [KRY95]
or [HR13]. Such an algorithm approximately minimizes total tree length under the
restriction that source-to-sink distances are bounded.

Instead of considering bounds, delay weights can be given on the sinks. Then, it is
the objective to minimize a weighted sum of net length and source-to-sink distances.
The resulting problem is called the cost-distance Steiner tree problem, which was first
introduced in [MMP08]. This version more closely resembles the task given in the global
routing oracle, as delay weights are given by the timing prices.

Other important algorithms for industrial application can be found in [Bar+06],
[CTY17], [Alp+95] and [Alp+18].

Bi-criteria

A simple version of the topology problem with delay bounds can be defined as follows.
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Shallow-light Steiner Tree Problem

Instance: A metric space (M,d) (usually (R2, ℓ1)), a root r ∈ M and finitely many
terminals T ⊂M together with delay bounds rat : T → R+.

Task: Compute a Steiner tree Y rooted at r with leaves T satisfying∑
e∈P[r,t]

d(e) ≤ rat(t) ∀t ∈ T,

where P[r,t] is the (unique) r-t-path in Y , such that Y minimizes d(Y ).

Here, we implicitly assume an embedding p : V (Y ) → M that maps r and the
terminals to themselves. We write d(e) = d(p(v), p(w)) for an edge e = {v, w}.

[KRY95] consider the case that M = {r} ∪ T . For a given ε > 0, they compute a
solution tree of length at most (1 + 2

ε ) ·MST , such that every r-t-path has length at
most (1+ε) ·dist(M,d)(r, t). Here, MST denotes the length of a minimum spanning tree.

An extension of this problem is considered in [HR13], where additionally to the root-
to-terminal distance, bifurcation delays are taken into account. When requiring that
the tree is binary and assuming a bifurcation delay of b > 0, the feasibility constraint
becomes

delayY (t) :=
∑

e∈P[r,t]

d(e) + b · bifY (t) ≤ rat(t) ∀t ∈ T,

where bifY (t) denotes the number of bifurcations on the r-t-path in Y . [HR13] show
how to compute a Steiner tree Y of length at most(

1 +
2

ε

)
length(Y0) +

4b · |T |
ε

,

where Y0 is an initial (short) Steiner tree, such that

min
t∈T

rat(t)− delayY (t) ≤ −2b− ε ·max
t∈T

rat(t).

For well chosen distance/delay bounds, very good topologies can be found in practice
with this approach. A feasible choice for the distance bounds is to use the already
computed interval bounds of the arrival time customers at the net’s sinks. These interval
bounds can be multiplied by a factor depending on the timing criticality of the net.
The bifurcation delay can be used to simulate the fact that side-branches add to the
downstream capacitance and hence increase the actual delay after buffering.

While this approach does perform well in practice, it cannot distinguish between the
timing criticalities of individual sinks of the same net due to the choice of delay bounds.
Either the entire net is considered critical and all paths are kept short, or all source-to-
sink paths are allowed to contain more detour. Additionally, the resource prices for sink
delay are not considered at all in this formulation. One way to include information about
individual timing criticalities would be to replace the interval bounds of the arrival time
customers by the actual chosen arrival times, i.e. set rat(t) = at(t)− at(r), where at(t)
and at(r) are the current (fractional) solutions of the respective arrival time customers.
However, this would be highly heuristic and might lead to negative delay budgets. To
eliminate these problems, the delay prices given by the resource sharing algorithm have
to be employed directly.
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Cost-distance

When considering delay weights and equating delay and distance, the arising problem
is exactly the uniform cost-distance Steiner tree problem (see [MMP08] and [KH20]):

Uniform cost-distance Steiner tree problem

Instance: A graph G = (V,E), a source r ∈ V and sinks T ⊆ V , edge costs c : E → R+

and delay weights w : T → R+.

Task: Compute a Steiner tree Y for {r} ∪ T minimizing∑
e∈E(Y )

c(e) +
∑
t∈T

w(t) · dist(Y,c)(r, t),

where dist(Y,c)(r, t) denotes the length of the unique r-t-path in Y with respect to c.

This problem can be solved up to a factor of 2.05 within O(Λ + |T |) time, where Λ
denotes the time for computing an approximate shortest Steiner tree, see Section 3.3.

In practice, edge cost as in the first summand and edge delay as in the second
summand of the objective function need not coincide. An alternative router solving the
non-uniform cost-distance Steiner tree problem, where these two can be unrelated, is
presented in Section 3.4. When they only differ by a constant factor, the ratio can be
incorporated into the delay weights to remain with the original uniform problem.

Balancing edge costs and delays this way is difficult to do well in practice. When
topologies are computed using the uniform cost-distance algorithm from Section 3.3 in
BonnRouteBuffer, the edge costs are taken to be the average edge cost of a previously
embedded solution, while edge delays are given by the linear timing data.

3.3 Tighter approximation for the uniform cost-distance
Steiner tree problem

This section is joint work with Stephan Held and Yannik Spitzley. The results are already
published in [FHS23]. They improve upon preliminary results in [HS22]. We jointly
developed the cutting criterion (Algorithm 3). The author of this thesis contributed in
simplifying the analysis compared to [HS22] and the tightness proof. The latter was not
yet a part of [HS22].

3.3.1 Main theorems

Theorem 3.2. The Uniform cost-distance Steiner tree problem can be ap-
proximated in polynomial time with an approximation factor of

β +
β√

β2 + 1 + β − 1
,

where β ≥ 1 is the approximation guarantee for the minimum-length Steiner tree prob-
lem.

With the best known approximation factor for the minimum Steiner tree problem
β = ln(4) + ϵ [Byr+13; TZ22], this results in an approximation factor <2.05 and for
β = 1 this gives the factor 1 + 1√

2
< 1.71, clearly improving upon the previously best
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factors 2.39 and 2.0 in [KH20]. The polynomial-time approximation scheme by [Aro98]
allows choosing β arbitrarily close to one in the Euclidean and the Manhattan planes.
However, general metric spaces do not allow β ≤ 96

95 unless P = NP [CC08].
Assuming an ideal Steiner tree approximation factor of β = 1, our new approximation

factor is tight with respect to the lower bound CSMT (T ∪ {r}) + D(T, r, w), where
CSMT (T ∪{r}) is the connection cost of a minimum-length Steiner tree for T ∪ {r}, i.e.
a Steiner tree Y for T ∪{r} minimizing

∑
e∈E(Y ) c(e), and D(T, r, w) :=

∑
t∈T w(t)c(r, t)

is the sum of weighted root-sink distances.

Theorem 3.3.

sup
T,r,w

OPT(T, r, w)

CSMT (T ∪ {r}) + D(T, r, w)
= 1 +

1√
2
,

where OPT(T, r, w) denotes the optimum solution value for an instance (T, r, w)
of the Uniform cost-distance Steiner tree problem. Theorem 3.3 is proven in
[FHS23]. The part of proof that does not need Theorem 3.2 was already contained in
[Foo20] and is therefore not a part of this thesis.

3.3.2 The (1 + β)-approximation algorithm

For shorter formulas, we will use the following notation in the remainder of Section 3.3.
Let A be an arborescence. By Av we denote the sub-arborescence rooted at v. Fur-
thermore, TA := V (A) ∩ T is the set of terminals in A, WA := w(TA) is the sum of
delay weights in A, CA := c(E(A)) is the connection cost of A and DA := DTA

:=∑
t∈TA

w(t)c(r, t) the minimum possible delay cost for connecting the sinks in TA (inde-
pendent of the structure of A).

Recall that β ≥ 1 is the approximation guarantee for the minimum-length Steiner
tree problem. The algorithm in [KH20] is described in Algorithm 2. After orienting
its edges, we can consider any solution A as an r-arborescence. We use arborescences
instead of trees to simplify the algorithmic notation.

Essential steps for a 1 + β approximation

We quickly recap the essential steps in the analysis of [KH20], which we will use in our
analysis. The cost to connect an arborescence A′ ∈ A to the root r can be estimated as
follows:

Lemma 3.4 ([KH20], Lemma 1). Let A′ ∈ A with corresponding terminal set T ′. By
the choice of the port t ∈ T ′, the r-arborescence (A′ + {r, t}) has a total cost at most

CA′ +
∑

e=(x,y)∈E(A′)

2WA′
y
(WA′ −WA′

y
)

WA′
c(e) +

(
1 +

1

WA′

)
DT ′ (3.1)

≤
(

1 +
WA′

2

)
CA′ +

(
1 +

1

WA′

)
DT ′ (3.2)

≤ (1 + µ)CA′ +

(
1 +

1

µ

)
DT ′ . (3.3)

For a proof sketch, see the appendix in [FHS23]. We use the bounds (3.1) and (3.2)
that were not stated explicitly in [KH20], Lemma 1. While the bounds (3.1) and (3.2)
hold for any (sub-)arborescence A′, (3.3) depends on the specific way how A′ ∈ A was
cut off during Step 2 of Algorithm 2.

A similar cost bound can be shown easily for the arborescence Ar containing the
root r after Step 2. Summing up the resulting cost bounds and choosing µ = 1

β , [KH20]

obtain the approximation factor (1 + β).
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Algorithm 2: (1 + β)-approximation algorithm by [KH20] using a parameter
µ > 0.

Step 1 (initial arborescence):
First, compute a β-approximate minimum cost Steiner r-arborescence A0 for
T ∪ {r} with outdegree 0 at all sinks in T and outdegree 2 at all Steiner
vertices in V (A0) \ (T ∪ {r}).

Step 2 (split into branching):
Traverse A0 bottom-up. For each traversed edge (x, y) ∈ E(A0), if W(A0)y > µ,
remove the edge (x, y) creating a new arborescence (A0)y in the branching.

Let A denote the set of all arborescences that were cut off from A0 this way.

Step 3 (reconnect arborescences):
Reconnect each sub-arborescence A′ that was cut off in Step 2 as follows: Select
a vertex t ∈ T ′ := TA′ that minimizes the cost for serving the sinks in T ′

through the r-arborescence A′ + (r, t), i.e. select a vertex t ∈ T ′ as a port for
T ′ that minimizes

c(r, t) + CA′ +
∑
t′∈T ′

w(t′) · (c(r, t) + c(E(A′
[t,t′]))).

Let t1, . . . , t|A| ∈ T be the set of selected port vertices. Return the union of the
final branching and the port connections A0 + {(r, ti) : i ∈ {1, . . . , |A|} }.

3.3.3 Improving the approximation ratio

Algorithm 2 suffers from the following weakness indicated in Figure 3.2. Assume that
after splitting we are given a sub-arborescence A′ ∈ A with a high delay weight WA′ , a
high connection cost CA′ , but a low minimum possible delay cost DA′ , e.g. as shown in
Figure 3.2b. Then Algorithm 2 would retain the high delay cost. Instead, it would be
better to split the arborescence further to achieve a lower delay cost as in Figure 3.2c.

In this section, we propose a refined splitting criterion that provides a better approxi-
mation ratio. Instead of using a fixed threshold µ, we allow to split off sub-arborescences
earlier if their expected reconnection cost (3.1) is sufficiently cheap. The precise criterion
is specified in (3.4) (inside Algorithm 3). Observe that (3.4) provides cheaper solutions
than (3.3), as one occurrence of µ is replaced by µ

2 .

Then we show in Lemma 3.8 that every sub-arborescence of the remaining root
component has delay weight at most µ. This allows us to prove a similar improved cost
bound for the root component in Lemma 3.9.

Finally, we simply combine all sub-arborescences and choose µ to prove Theorem 3.2.

Improving the splitting routine

Algorithm 3 shows our improved splitting step, which cuts off a sub-arborescence if we
can reconnect it cheaply, i.e. if (3.4) holds. With Lemma 3.4 we immediately get the
following result for the cut-off sub-arborescences:
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1

(a) Minimum-length Steiner
tree

r

1

0

0

0

0

1

(b) Cost: 6 + (1 + 6) = 13

r

1

0

0

0

0

1

(c) Cost: 6 + (1 + 1) = 8

Figure 3.2: Weakness of Algorithm 2: (M, c) is induced by a complete graph with seven
vertices and unit weights. Delay weights are indicated by the blue node labels and µ = 1.
Algorithm 2 might start with the minimum-length Steiner tree on the left. Then the algorithm
will cut the edge incident to r and reconnect the sub-arborescence resulting possibly in the
solution in the middle. On the right the result from our improved algorithm is shown.

Algorithm 3: Modifying Step 2 of Algorithm 2

Step 2 (split into branching):
Traverse A0 bottom-up. For each traversed edge (v, z) ∈ E(A0) consider
Az := (A0)z: If WAz

> 0 and

∑
e=(p,q)∈E(Az)

2W(Az)q (WAz −W(Az)q )

WAz

c(e) +
DAz

WAz

≤ µ

2
(CAz + c(v, z)) +

DAz

µ
,

(3.4)
remove (v, z) creating a new arborescence Az.

Lemma 3.5. Let A′ ∈ A be an arborescence that was cut off in Algorithm 3 and let eA′

be the incoming edge in the root of the arborescence A′ which was deleted during this
step. Then the corresponding terminals in TA′ can be connected to the root r with total
cost at most (

1 +
µ

2

)
(CA′ + c(eA′)) +

(
1 +

1

µ

)
DA′ .

After the original Step 2 of Algorithm 2, it is clear that for all edges (r, x) ∈ δ+A0
(r)

of the root component the total delay weight W(A0)x is at most µ. We show that this
also holds after the modified Step 2 in Algorithm 3. However, the analysis is more
complicated and uses the following two functions.

Definition 3.6. Let µ > 0 and Xµ := {(a, b, c) ∈ (µ, 2µ)× (0, µ)2 : c ≤ a− b < µ}. We
define the functions f, g : Xµ → R as

f(a, b, c) :=
2(a− c)c

a
− µ

2
+

(
1

a
− 1

µ

)
· 1

1
a−b −

1
µ

·
(
µ

2
− 2((a− b)− c)c

a− b

)
g(a, b, c) :=

2(a− c)c

a
− µ

2
+

(
1

a
− 1

µ

)
· 1

1
a−b −

1
µ

· µ
2
.

Lemma 3.7. For all (a, b, c) ∈ Xµ, f(a, b, c) ≤ 0 and g(a, b, c) ≤ 0.
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x y

e x
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y

Ax Ay

Figure 3.3: Setting in the proof of Lemma 3.8 if z is a Steiner vertex (Case 2).

A proof of Lemma 3.7 based on algebraic transformations can be found in the ap-
pendix of [FHS23].

Lemma 3.8. After cutting off sub-arborescences with Algorithm 3, every child x ∈
Γ+
Ar

(r) of r in the remaining root component Ar := (A0)r satisfies W(Ar)x ≤ µ.

Proof. Assume the opposite would be true. Let z be a vertex in Ar − r such that the
weight of the sub-arborescence Az := (Ar)z exceeds µ and the weight of every child
arborescence (Az)x is at most µ for all edges (z, x) ∈ δ+Az

(z). We distinguish two cases:

Case 1: z is a terminal: Then z is also a leaf and the left-hand side of (3.4) simplifies
to

1

WAz

DAz
≤ 1

µ
DAz

since Az does not contain any edges. But then Az would have been cut-off in Step 2, a
contradiction.

Case 2: z is a Steiner vertex: Then z has two outgoing edges ex := (z, x), ey :=
(z, y) ∈ δ+Az

(z) as shown in Figure 3.3. A single outgoing edge would contradict the
choice of z. With Ax := (Az)x or Ay := (Az)y this implies 0 < WAx

,WAy
≤ µ.

If WAx
= µ, Lemma 3.4, (3.2) shows that Ax satisfied the bound (3.4) when it was

considered in Step 2 and would have been cut off. Analogously, WAy
̸= µ. Thus,

WAx ,WAy < µ. Since (3.4) does not hold for Ax, we get (by transforming its negation)

(
1

WAx

− 1

µ

)
︸ ︷︷ ︸

>0

DAx
>

∑
e=(u,v)∈E(Ax)

(
µ

2
−

2(WAx −W(Ax)v )W(Ax)v

WAx

)
c(e) +

µ

2
c(ex).

Combining this with the analogue inequality for Ay and using DAz
= DAx

+ DAy
, we
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get(
1

WAz

− 1

µ

)
︸ ︷︷ ︸

<0

DAz

<

(
1

WAz

− 1

µ

)( ∑
e=(u,v)∈E(Ax)

1
1

WAx
− 1

µ

(
µ

2
−

2(WAx
−W(Ax)v )W(Ax)v

WAx

)
c(e)

+
µ
2

1
WAx

− 1
µ

c(ex)

+
∑

e=(u,v)∈E(Ay)

1
1

WAy
− 1

µ

(
µ

2
−

2(WAy −W(Ay)v )W(Ay)v

WAy

)
c(e)

+
µ
2

1
WAy

− 1
µ

c(ey)

)
.

This inequality together with∑
e=(u,v)∈E(Az)

(
2(WAz −W(Az)v )W(Az)v

WAz

− µ

2

)
c(e)

=
∑

e=(u,v)∈E(Ax)

(
2(WAz

−W(Az)v )W(Az)v

WAz

− µ

2

)
c(e)

+

(
2(WAz

−W(Az)x)W(Az)x

WAz

− µ

2

)
c(ex)

+
∑

e=(u,v)∈E(Ay)

(
2(WAz

−W(Az)v )W(Az)v

WAz

− µ

2

)
c(e)

+

(
2(WAz

−W(Az)y )W(Az)y

WAz

− µ

2

)
c(ey)

yields∑
e=(u,v)∈E(Az)

(
2(WAz

−W(Az)v )W(Az)v

WAz

− µ

2

)
c(e) +

(
1

WAz

− 1

µ

)
DAz

<
∑

e=(u,v)∈E(Ax)

f(WAz
,WAy

,W(Az)v )c(e) +
∑

e=(u,v)∈E(Ay)

f(WAz
,WAx

,W(Az)v )c(e)

+ g(WAz
,WAy

,W(Az)v )c(ex) + g(WAz
,WAx

,W(Az)v )c(ey).

By Lemma 3.7 and 0 < WAx
,WAy

< µ, the last term is non-positive. Therefore Az

satisfied the bound (3.4) when it was considered in Step 2 and would have been cut off,
a contradiction.

In [KH20] the final root arborescence Ar, which was not cut off in Step 2 of Algo-
rithm 2, was kept unaltered. Using Lemma 3.8, we show how to connect it in a better
way.

Lemma 3.9. Let Ar be the sub-arborescence of A0 rooted at r after the modified Step
2 of Algorithm 2. The terminal set TAr

can be connected to the root r with total cost at
most (

1 +
µ

2

)
CAr +

(
1 +

1

µ

)
DAr .
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Proof. Let (r, x) ∈ δ+Ar
(r) be arbitrary and Ax the arborescence of Ar − r rooted at x.

We show that the terminal set TAx
can be connected to the root r with total cost at

most (
1 +

µ

2

)
(CAx

+ c(r, x)) +

(
1 +

1

µ

)
DAx

.

Adding this cost for all edges in δ+Ar
(r), we obtain the claim. We distinguish between

two cases:
Case 1:

WAx(CAx + c(r, x)) ≤ µ

2
(CAx + c(r, x)) +

1

µ
DAx .

By keeping the arborescence Ax connected through (r, x), the connection cost is CAx
+

c(r, x). In particular, for each terminal t ∈ TAx
, the r-t-path in Ax + (r, x) has a length

of at most CAx + c(r, x). We therefore obtain a total cost of at most

(1 + WAx
)(CAx

+ c(r, x)) ≤
(

1 +
µ

2

)
(CAx

+ c(r, x)) +
1

µ
DAx

.

Case 2:

WAx(CAx + c(r, x)) >
µ

2
(CAx + c(r, x)) +

1

µ
DAx . (3.5)

Therefore we have WAx > 0 and obtain from (3.5) an upper bound on the minimum
possible delay cost of Ax

DAx
<
(
WAx

− µ

2

)
µ(CAx

+ c(r, x)). (3.6)

We remove the edge (r, x) and connect the arborescence Ax to the root r. By Lemma 3.8,
WAx

≤ µ. As in Lemma 3.4 we obtain total cost of at most(
1 +

WAx

2

)
CAx +

(
1 +

1

WAx

)
DAx

=

(
1 +

WAx

2

)
CAx

+

(
1 +

1

µ

)
DAx

+
µ−WAx

µWAx︸ ︷︷ ︸
≥0

DAx

(3.6)

≤
(

1 +
WAx

2

)
CAx

+

(
1 +

1

µ

)
DAx

+
µ−WAx

µWAx

(
WAx

− µ

2

)
µ(CAx

+ c(r, x))

≤
(

1− WAx

2
+

3

2
µ− µ2

2WAx

)
(CAx

+ c(r, x)) +

(
1 +

1

µ

)
DAx

.

With the following estimation we obtain the claimed bound

−WAx

2
+

3

2
µ− µ2

2WAx

=
µ

2
− 1

2

(√
WAx

− µ√
WAx

)2

≤ µ

2
.

Theorem 3.10. Algorithm 3 and the reconnect in Step 3 as well as of the root component
can be implemented to run in time O(|T |).

Proof. A naive implementation would immediately result in a quadratic running time.
We can achieve a linear running time by computing all relevant information incremen-
tally in constant time per node during the bottom-up traversal. Details can be found
in [FHS23].
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Proving Theorem 3.2

We start by analyzing the combination of all sub-arborescences.

Theorem 3.11. Given an instance (T, r, w) of the Uniform cost-distance Steiner
tree problem, we can compute in O(Λ + |T |) time a Steiner tree with objective value
at most (

1 +
µ

2

)
C +

(
1 +

1

µ

)
D, (3.7)

where C is the cost of a β-approximate minimum-length Steiner tree and D := D(T, r, w).
Here, Λ is the running time for computing a β-approximate minimum Steiner tree for
T ∪ {r}.

Proof. We run Algorithm 2 with two modifications:

1. The cut-off routine (Step 2) is modified according to Algorithm 3.

2. The arborescence Ar containing the root r after Step 2 is reconnected to the root
r according to Lemma 3.9.

The total cost of the computed solution is upper bounded by the sum of the cost
bounds for these r-arborescences, which is (3.7). For the running time analysis, we
consider the individual steps of the algorithm:

In Step 1, a β-approximate minimum Steiner tree for T ∪ {r} is computed in time
O(Λ) and transformed into the arborescence A0 obeying the degree constraints in lin-
ear time as in [KH20]. The linear running time of Step 2 and Step 3 follows from
Theorem 3.10.

Finally, we choose the threshold µ based on the quantities C and D to prove Theo-
rem 3.2:

Proof. (of Theorem 3.2) We make the following modification of the algorithm in Theo-
rem 3.11:

If C = c(E(A0)) = 0, each r-t-path, t ∈ T , has length 0 in A0. So this is already an
optimal solution and we just return A0.

Otherwise, set µ :=
√

2D
C and the algorithm from Theorem 3.11 provides us with a

solution with total cost at most

C + D +
√

2
√
CD ≤ βCSMT (T ∪ {r}) + D +

√
2
√
βCSMT (T ∪ {r}) ·D.

We divide this by the lower bound CSMT (T ∪{r}) +D. Now, the approximation factor
is at most the maximum of the function h : R>0 × R≥0 → R given by

h(x, y) :=
βx + y +

√
2
√
βxy

x + y
.

By our assertion, CSMT (T ∪ {r}) ≥ C
β > 0. In the appendix of [FHS23] we prove for

x + y > 0 using algebraic reformulations

h(x, y) ≤ β +
β√

β2 + 1 + β − 1
,

proving the claimed approximation ratio.

Using Theorem 3.2 we obtain the approximation factors shown in Table 3.1 (rounded
to five decimal digits) for some interesting values of β.
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Parameter β 1 ln(4) + ϵ 3
2 2

Algorithm 2 [KH20] 2.00000 2.38630 2.50000 3.00000
Theorem 3.2 1.70711 2.04782 2.15139 2.61804

Table 3.1: Comparison of approximation factors for the Uniform cost-distance Steiner
tree problem with different approximation factors β for the minimum-length Steiner tree
problem.

r v1 u1 v2 u2 v3 u3

1/3 1/3 1/3 ≈ 0.37 1/3 ≈ 0.87

Figure 3.4: Example of the instance demonstrating the tightness of the analysis for k = 3.

Tightness of the analysis

We present a family of instances where our algorithm returns solutions that are asymp-
totically a factor 1+ 1√

2
above the optimum, even when starting with a minimum-length

Steiner tree. For k ∈ N, we are given a root r and 2k terminals T = {ui, vi | 1 ≤ i ≤ k}
that are placed on a single line in the order r < v1 < u1 < · · · < vk < uk as shown in
Figure 3.4 for k = 3.

We specify the distances between adjacent terminals. Let u0 := r. The distances are
c(ui−1, vi) := 1

k for 1 ≤ i ≤ k, c(v1, u1) = 1
k , and

c(vi, ui) :=
i−
√

2√
2k

+
1√
2

i−1∑
j=1

c(vj , uj) for 2 ≤ i ≤ k. (3.8)

Vertex weights are w(v1) = 2, w(vi) = 1√
2

for 2 ≤ i ≤ k, and w(ui) = 0 for 1 ≤ i ≤ k.

Observe that the length of a minimum Steiner tree is

CSMT =

k∑
i=1

(c(ui−1, vi) + c(vi, ui)) = c(u0, v1) + c(v1, u1) +

k∑
i=2

(c(ui−1, vi) + c(vi, ui))

(3.9)

=
2

k
+

k∑
i=2

1

k
+

i−
√

2√
2k

+
1√
2

i−1∑
j=1

c(vj , uj)

 (3.10)

=
2

k
+

k∑
i=2

1√
2
·

 i

k
+

i−1∑
j=1

c(vj , uj)

 (3.11)

= w(v1) · c(u0, v1) +

k∑
i=2

w(vi) ·

c(u0, v1) +

i−1∑
j=1

(c(uj , vj+1) + c(vj , uj))


(3.12)

= D(T, r, w). (3.13)

In this tree, which is actually a path, every terminal has the minimum possible
distance from r. Thus, it is an optimum solution of the uniform cost-distance Steiner
tree problem with value 2 · CSMT .
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According to the proof of Theorem 3.2, the algorithm chooses µ =
√

2D(T,r,w)
CSMT

=
√

2.

Thus, edges entering some ui (i ∈ [k]) will never be deleted, as w(ui) = 0. Now
inductively, for each edge entering a vertex vi (i = 2, . . . , k) in bottom-up order, the left

and right side of the deletion criterion (3.4) are both identical to i
k +

∑i−1
j=1 c(vj , uj).

Thus the edge (ui−1, vi) will be deleted. To see this, observe that the first summand of
the left side is zero as w(ui) = 0, and its second summand reduces to the length of the
r-vi path. The right side is

µ

2

(
CAvi

+ c(ui−1, vi)
)

+
DAvi

µ

=
1√
2

(c(vi, ui) + c(ui−1, vi)) +
1√
2
· 1√

2

c(ui−1, vi) +

i−1∑
j=1

(c(uj−1, vj) + c(vj , uj))


=

1√
2

 i−
√

2√
2k

+
1√
2

i−1∑
j=1

c(vj , uj) +
1

k
+

i

k
√

2
+

1√
2

i−1∑
j=1

c(vj , uj)


=

i

k
+

i−1∑
j=1

c(vj , uj).

In a similar computation we see that the deletion criterion also holds for the case i = 1,
which can be omitted as the component is reconnected with the deleted edge {u0, v1} and
therefore not changing the result. Thus, the algorithm will remove all edges {ui−1, vi}
(i ∈ {1, . . . , k}). The cost of the resulting solution is the sum of CSMT , D(T, r, w)
(= CSMT ) and the additional connection cost for replacing the edges (ui−1, vi) by r-vi-
paths:

2 · CSMT +

k∑
i=2

i−1∑
j=1

(c(uj−1, vj) + c(vj , uj)).

The deviation factor from the optimum solution is

2 · CSMT +

k∑
i=2

i−1∑
j=1

(c(uj−1, vj) + c(vj , uj))

2 · CSMT

= 1 +
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2
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(c(uj−1, vj) + c(vj , uj))


k→∞−−−−→ 1 +
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2
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where we substituted CSMT by (3.11) in the first equation and used

k∑
i=2

i−1∑
j=1

(c(uj−1, vj) + c(vj , uj)) ≥
k∑

i=2

i− 1

k
=

1

k

k−1∑
i=1

i =
k − 1

2

k→∞−→ ∞.
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3.4 Cost-distance router

The more general version of the cost-distance problem discussed in the previous section
can be defined as follows, as first seen in [MMP08].

General cost-distance problem

Instance: A graph G = (V,E), a source r ∈ V and sinks T ⊆ V , edge costs c : E → R+,
edge lengths d : E → R+ and delay weights w : T → R+.

Task: Compute a Steiner tree Y for {r} ∪ T minimizing∑
e∈E(Y )

c(e) +
∑
t∈T

w(t) · dist(Y,d)(r, t),

where dist(Y,d)(r, t) denotes the length of the unique r-t-path in Y with respect to d.

[MMP08] give an efficient O(log |T |)-algorithm for this problem. Note that there is
no approximation better than Ω(log log |T |) (unless NP ⊂ DTIME(|T |O log log log |T |)), as
shown by [Chu+08].

This problem can be used to model the entire routing oracle problem instead of
just the topology computation. For that, define the edge costs to contain costs for net
length, routing congestion and potentially estimated power and placement costs. The
edge lengths are again given by the delay according to the linear timing data.

Under the author’s co-supervision, a version of the approximation algorithm by
[MMP08], together with many practical improvements, was implemented by the au-
thors of [Hei21] and [Per23]. In the remainder of this section, we sketch out the original
approximation algorithm as well as present the implemented improvements to make it
fast and good enough to be used in practice.

3.4.1 Iterative matching algorithm

The algorithm in [MMP08] iteratively computes a cheap matching on the (remaining)
sinks and connects matched vertices. After a logarithmic number of iterations, all sinks
are connected.

The following distance functions depending on delay weights w′ : T → R+ are used:
For a terminal u ∈ T , define

M (w′)
ru (e) := M (w′)

ur (e) := c(e) + w′(u)d(e) ∀e ∈ E,

and for two terminals u, v ∈ T , define

M (w′)
uv (e) := c(e) +

2w′(u)w′(v)

w′(u) + w′(v)
d(e) ∀e ∈ E.

The structure of the algorithm is described in Algorithm 4. We start by setting the set
of active terminals to S := {r} ∪ T and initialize w′ := w and E′ := ∅ (Line 1). We
then iterate until only one active terminal remains (which will be r). In every iteration,
we compute a a cheap matching on S (Line 3). The cost of an edge {u, v} between

terminals is given by their distance according to M
(w′)
uv . For every matching edge {u, v},

we add the edges of a M
(w′)
uv -cheapest path to E′ (Line 5). For an edge matching r to

some terminal t, we remove t from S. For edges matching two sinks u, v, we choose one
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Algorithm 4: Iterative matching algorithm [MMP08]

Input: (G = (V,E), r, T, c, d, w) as in the general cost-distance problem.
Output: A Steiner tree Y for {r} ∪ T .

1 S := {r} ∪ T , w′ := w, E′ := ∅
2 while |S| > 1 do
3 Compute a cheap matching M on S with respect to costs dist

(G,M
(w′)
uv )

(u, v)

for a matching edge {u, v}
4 foreach {u, v} ∈M do
5 Add edges of a shortest u-v-path according to the costs to E′

6 if r ∈ {u, v} then
7 Remove the sink matched to r from S

8 else

9 Choose u as center with probability w′(u)
w′(u)+w′(v) , otherwise choose v

as center
10 w′(center) := w′(u) + w′(v)
11 S := S \ {non-center}

12 return a d-shortest-path tree from r to T contained in E′

of them at random to be the center (Line 9). The probability is proportional to w′(u)
respective w′(v). We shift the weight according to w′ onto the center and remove the
other sink from S (Lines 10 and 11).

To achieve the approximation guarantee of O(log |T |) in the claimed run-time, a
constant fraction of S has to be matched in Line 3 with cost at most a constant factor
higher than a min-cost perfect matching. Here, we will assume a greedy matching of half
of the nodes. This then has cost at most half the cost of a min-cost perfect matching.

3.4.2 Practical improvements

A naive implementation of the pseudo-code presented in Algorithm 4 would have signif-

icant drawbacks. In particular, computing the terms M
(w′)
uv (e) for all remaining u, v ∈ S

and all e ∈ E in every iteration would waste much running time. The implementation

in the BonnTools as described in [Per23] uses a modified definition of M
(w′)
uv (we will

present the modification with γ set to 1 for simplicity):

M ′(w′)
uv (e) :=

{
c(e) + w′(x)d(e) if {u, v} = {r, x},
c(e) + min{w′(u), w′(v)}d(e) else.

With respect to this cost function, shortest paths between sinks in S only depend on
the smaller delay weight instead of on both weights. This has the advantage of reducing
the number of necessary Dijkstra searches. In the original algorithm, O(|S|2) Dijkstra
calls are performed in each iteration. Using this cost function, computingO(|S|) shortest
path trees per iteration suffices: For each u ∈ S, compute a shortest path tree using
the cost function M ′

u(e) := c(e) + w′(u)d(e). Then, for each pair u, v ∈ S, the shortest
path found starting at the vertex with lower delay weight between u and v is a shortest

path with respect to the modified costs M
′(w′)
uv . [Per23] proved that the modified cost

function still leads to an O(log |T |)-approximation.
As we compute a greedy matching of half of the nodes in S, we make use of a further

speed-up: Observe that it suffices to know the cheap matching edges that will eventually
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be used, instead of computing the cost for all O(|S|2) pairs of nodes in S. To exploit this,
the Dijkstra searches from the nodes in S are started simultaneously. In every step, the
Dijkstra search with the cheapest label is continued. As soon as one path between not
yet matched nodes is found, the corresponding Dijkstra searches can be stopped. More
details on this algorithm and further practical improvements can be found in [Per23].
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Chapter 4

Pangea

This chapter covers BonnPangea, a tool to compute a port assignment. A port as-
signment is an interface between separate units on a chip. Given a fixed port assign-
ment, placement and routing inside the units are independent of each other. Splitting
a chip this way has the advantage of having significantly smaller units in the design
flow, leading to faster optimization cycles. During the computation of a port assign-
ment, BonnPangea can already take objectives such as congestion and timing of the
separated units into account. It has been used in the design of 2 generations of IBM
microprocessors.

In the following sections, we define the setting and problem formulation of pangea
and cover previous approaches how to compute port assignments (Sections 4.1 and 4.2).
Then we have a closer look into the mathematical side of an occurring sub-problem,
namely pangea topology generation (Section 4.3). Afterwards, we cover the standard
pangea flow consisting of global routing, track assignment and port cutting (Section 4.4).
Then we come to the replay scenario, which is a mode where some or almost all of the
interface is already given and needs to be completed (Section 4.5). This need arises
for instance when the design is changed slightly, but most of the previously computed
interface should be kept the same so as not to introduce instability in the flow. Finally,
the biggest part of this chapter covers in detail a completely new mode in BonnPangea
called Pangea ReUse, providing the feature of using specified units several times on
the chip. To make this possible, it has to be ensured that the interfaces of equivalent
units are the exact same. This new mode requires many adaptations to the flow as well
as new algorithms, both of which are covered in Section 4.6.

4.1 Preliminaries and problem formulation

We use the following fundamental definitions. A visualization of these can be found in
Figure 4.1.

Definition 4.1. A continent is a connected union of finitely many axis-parallel closed
rectangles inside the chip area. A finite set of disjoint continents is called a world. For
a given world C, panthalassa refers to the parts of the chip area not belonging to any
continent:

panthalassa := chip-area \
⋃
C∈C

C

We sometimes also call panthalassa a continent, even though it does not fit the
definition. For this chapter, we fix a given world C, and assume the global routing grid
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Figure 4.1: Pangea world containing three continents (dashed rectangles) with an example
route (solid lines, left) and its corresponding port graph (arrows, right). The red circle repre-
sents the net source, black squares are sinks, green squares are ports.

is aligned with the continent borders, i.e. that every global routing tile is contained
completely inside a continent.

To specify continent interfaces properly, we need the following notions.

Definition 4.2. A port p consists of

• a location loc(p) ∈
⋃

C∈C ∂C and a routing layer layer(p),

• a wire type wt(p), and

• a signal direction signal-dir(p) ∈ {north, south,west, east}.

We further require that loc(p) is not on a corner point of a continent and that

signal-dir(p) ∈ {north, south}
⇐⇒

loc(p) lies on a horizontal segment of ∂continent(p),

where continent(p) refers to the (unique) C ∈ C with loc(p) ∈ ∂C.
A port p is called a subway source if the signal direction enters the corresponding

continent, i.e. if one of the following holds

• signal-dir(p) = north and loc(p) is on a southern segment of ∂continent(p).

• signal-dir(p) = south and loc(p) is on a northern segment of ∂continent(p).

• signal-dir(p) = west and loc(p) is on an eastern segment of ∂continent(p).

• signal-dir(p) = east and loc(p) is on a western segment of ∂continent(p).

Otherwise, p is a subway sink.

Remark. We defined continents as 2-dimensional objects. In practice, they are allowed
to have a ceiling that is lower than the chip’s ceiling. In this case, ports can be placed
on a continent ceiling and have signal direction up or down. However, this type of port
does not play a role in this thesis and hence was neglected in the definition.

Definition 4.3. A port graph A for a given net N with root r and sinks T is an
arborescence rooted at r with leaves T such that the following holds:

• All inner vertices of A are ports. These are denoted by ports(A).

• If r lies inside a continent C, all out-going edges of r go to sinks that are also
contained in C or to subway sinks of C.

38



• If r lies inside panthalassa, all out-going edges of r go to sinks that are also
contained in panthalassa or to subway sources.

• Edges starting at a subway source of a continent C go to sinks inside C or subway
sinks of C.

• Edges starting at a subway sink of a continent C go to subway sources of continents
distinct from C or to sinks inside panthalassa.

Using these definitions, we can formulate the Pangea port assignment problem:

Pangea port assignment problem

Instance: A world C and a netlist N .

Task: For every net N ∈ N , compute a port graph pgN that contains at most one
subway source within each continent C ∈ C, such that for any two ports p ∈ V (pgN ), p′ ∈
V (pgN ′) of nets N,N ′ ∈ N , their locations fulfill the spacing requirements of their
respective wire types.

While this problem definition captures what it means for a set of port graphs to be
feasible, it does not contain any optimization objectives. To measure properties of the
port assignment we need to consider how it restricts the routing space.

Definition 4.4. Let Y be a global route (see Section 2.4) for a net N and let A be a port
graph for N . We write Ecross(Y ) ⊆ E(Y ) for the set of edges of Y that cross a continent
border. We say that Y implements A if there is a bijection b : ports(A) → Ecross(Y )
such that

• every port p lies on the border between the global routing tiles connected by the
edge b(p),

• for every edge (u, v) in A, the b(u)-b(v)-path in Y contains no edges crossing a
continent border (except potentially b(u) and b(v)), where we use the notation
b(t) = t for terminals t ∈ N ,

• the signal direction of every port p represents the arc direction of the associated
b(p) and

• we have wt(p) = wire-type(b(p)) for every port p ∈ ports(A).

A closer depiction of how a port graph and implementing route may look like is given
in Figure 4.2.

As with our definition, routes are always tile-center to tile-center, they do not ex-
actly follow port positions. To capture the exact continent crossing positions, we need
additional information.

Definition 4.5. A track-assigned route is a global route Y together with a function
t : Ecross(Y )→ R.

For a track-assigned route Y and port graph A for the same net, we say that Y
implements A if Y implements A as a global route and

• for every port p ∈ ports(A) with signal-dir(p) ∈ {north, south}, we have loc(p)x =
centerx(b(p)) + t(b(p)), and
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Figure 4.2: A port graph and an implementing route. The gray grid denotes the global
routing tiles, the dashed red line represents a continent border. The route graph is shown in
black, ports and port graph edges are shown in green.

• for every port p ∈ ports(A) with signal-dir(p) ∈ {west, east}, we have loc(p)y =
centery(b(p)) + t(b(p)).

Here, we used centerx(e) to denote the horizontal center point of the tile column of a
vertical edge e. Analogously, centery(e) to denote the vertical center point of the tile
row of a horizontal edge e.

Note that while a global route might implement several port graphs differing slightly
in port positions, a track-assigned route can only implement a unique port graph. With
these definitions, we can consider the congestion and timing properties of a given port
assignment.

Pangea routing problem

Instance: A global routing graph G = (V,E) with edge capacities c : E → N and a
netlist N = (Ni ⊂ V )i as in the simple global routing problem, linear timing data for
all layers and wire types, as well as a world C.

Task: Compute a solution (pgN )N∈N for the Pangea port assignment problem
given by C and N as well as a global route RN for every net N ∈ N implementing pgN
such that the linear-delay timing requirements are met. Further, for each global routing
edge e ∈ E, we require ∑

N∈N
1E(RN )(e) ≤ c(e).

Under these constraints, the solution should minimize

net length :=
∑
N∈N

∑
e∈E(RN )

length(e).

In this definition we assumed full timing data to be given. However, due to the fact
that the Pangea flow is used on very early stages of the design, timing properties of
macros are likely to change significantly later on. Therefore, timing properties known
at this stage are not reliable.

This is why, at this stage, it is often not worthwhile to spend the extra amount
of running time needed to take timing into account explicitly. Instead, we require the
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routes to contain shortest paths up to a factor of 1 + ε from the source to each sink for
a fixed ε > 0.

In practice, each net additionally comes with a layer assignment, specifying the lowest
layer that ports may be placed on. As higher layers allow for faster signal transmission,
this also, implicitly, incorporates information about timing criticality.

4.2 Related work

Early publications consider the problem of pin assignment, where given pins on the
border of a unit need to be assigned to connection points outside the unit.

A simple version of this is considered in [Kor72]. The author proposes a purely
geometrical algorithm based on mapping points on two concentric circles. Units are
considered one by one and routing is not considered explicitly.

[Con91] later combined the pure pin assignment problem with global routing. They
first compute a coarse global routing and then obtain the final assignment via a linear
time legalization. The author argues that the quality of a pin assignment heavily depends
on the used global routing algorithm later on, and that it is difficult to even assess the
quality without routing. [Con91] also considers all units simultaneously, eliminating the
dependence on a given ordering of the units. However, routing is only allowed in the
channels between units, rather than through the units themselves. In particular, all pins
need to be specified in advance, in contrast to being determined on the fly as needed.
The algorithm was extended in [KWY96].

Another interesting work is [XTW01]. Here, pin assignment and routing are done
simultaneously. Given that there are only two-terminal nets from one source block to
the other blocks, the authors can compute a solution minimizing net length and via
count in polynomial time.

Further works considering pin assignment with routing include [Hon+92], [Che+99]
and [PK09]. Also see [Sch09] for an overview over pin assignment in the context of
floorplanning.

What all these publications have in common is that the units are positioned with
routing space in between. Additionally, only routing between units is considered, while
internal routing is neglected. But the connections of internal components to their as-
signed pins also depend on the computed pin assignment.

[PK09] does push some routing into the units themselves to improve congestion, but
it still reserves routing space (the top channel) for inter-unit connections only.

In contrast, BonnPangea gives the entire routing space to the units, which then go
up to the chip ceiling. They are also close enough together that no significant routing
is done in between. This provides a lot of flexibility and reduces area consumption.

No publications on optimizing a port assignment with a similar problem formulation
are known to the author.

4.3 Pangea topologies in theory

In this section we explore the main difference of the pangea router to traditional global
routing: pangea topology generation. We formulate the strict pangea topology problem
and investigate the number of created ports and the cost in wire length of allowing only
one entering port per continent. In practice, the problem corresponds to the first step
of the global routing oracle, see Section 3.1.1.

We fix some notation for this section. As we are not in the context of global routing
but only consider trees in (R2, ℓ1), we use slightly modified definitions: Fix a root r ∈ R2

and a terminal set T ⊆ R2. Let C be a set of axis-parallel closed rectangles that are
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Figure 4.3: An example instance of the Strict Pangea Topology Problem with two
optimal solutions (dotted paths). The upper path only induces two continent crossings, while
the lower path can induce arbitrarily many depending on the number of gray continents.

disjoint. We call C the set of continents. We call a Steiner tree A on {r} ∪ T together
with an embedding p : V (A) \ ({r} ∪ T ) → R2 such that all edges are axis-parallel a
topology, and implicitly assume A to be an r-arborescence. Further, we identify a Steiner
node v with its embedding p(v).

Now let us define the notion of a continent crossing in a topology (A, p): We identify
an edge (v, w) ∈ E(A) with the straight segment in R2 between p(v) and p(w), and
say that a (continent) border crossing is a point (x, y) ∈ R2 together with an edge
and a continent C such that (x, y) is contained in the intersection of the edge and ∂C.
Moreover, we say that an edge (v, w) enters C ∈ C if it contains a segment [a, b] such
that one of the following holds:

a) a /∈ C and b ∈ C in case ℓ1(a, v) ≤ ℓ1(a,w), or

b) a ∈ C and b /∈ C in case ℓ1(a, v) > ℓ1(a,w).

An edge (v, w) leaves C if (w, v) enters C. Note that edges may be involved in more
than one border crossing. In particular, a single edge can enter and leave the same
continent (at different points).

The Strict Pangea Topology Problem is the task of computing a shortest
topology under all shortest-path topologies that enter each continent at most once. This
formulation most closely follows the original definition of the Pangea routing problem
when not allowing detours. While it is very natural to allow only one entry per continent
when trying to keep the number of continent crossings low, it does not guarantee a
minimum port count. In fact, the number of ports can be arbitrarily high compared to
the minimum, even for two-terminal nets. An example for this can be seen in Figure 4.3.

While this constraint does not guarantee minimum port count, it can still increase
the length of an optimum solution drastically. The maximum length increase depends
on the number of continents. Let Ik denote the set of all instances of the Strict
Pangea Topology Problem with exactly k continents. Then we can say the following
about the length of optimum solutions with vs. without the constraint of entering each
continent at most once:

Theorem 4.6. For an instance I of the Strict Pangea Topology Problem, let
OPT1(I) denote the length of an optimum solution. Let OPT∞(I) be the length of a
shortest shortest-path topology (that is allowed to enter each continent many times).
Then for k ∈ N,

sup
I∈Ik

OPT1(I)

OPT∞(I)
= k + 1.

Proof. We first show that there is a sequence of instances (Ii)i∈N ⊆ Ik such that

supi∈N
OPT1(Ii)
OPT∞(Ii)

= k + 1 for any k, and then prove that the ratio cannot get larger.

So fix k ∈ N and define Ii ∈ Ik for i ∈ N as follows (an instance for k = 3 is depicted
in Figure 4.4a):
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The terminal set consists of

Tpanthalassa := {(−i, 0), (i, 0)}
and Tcontinents := {(−i, j), (i, j) | j = 1, . . . , k}.

The root r lies at (0, 0). Finally C contains the bounding boxes of (−i − 1
3 , j −

1
3 ) and

(i + 1
3 , j + 1

3 ) for each j = 1, . . . , k.
The unique optimum solution to the Strict Pangea Topology Problem on this

instance (as shown in Figure 4.4b) has length OPT1(Ii) = 2i(k+1)+k, while a shortest
shortest-path tree (as in Figure 4.4c) has length OPT∞(Ii) = 2i + 2k. But

lim
i→∞

OPT1(Ii)

OPT∞(Ii)
= lim

i→∞

2i(k + 1) + k

2i + 2k
= k + 1

as claimed.
Now consider any instance I ∈ Ik with a shortest-path tree A0 of length OPT∞(I).

Let C′ ⊆ C denote all continents that A0 enters. We construct a solution to the Strict
Pangea Topology Problem of length at most (k+1)OPT∞(I). An example instance
together with a shortest-path tree A0 is shown in Figure 4.5a. The edge sets defined
below for this instance are indicated in Figure 4.5b.

Let B0 be the branching arising from A0 by deleting everything inside each conti-
nent, i.e. subdivide edges at border crossings and then delete vertices in the interior of
continents and their adjacent edges.

For a continent C ∈ C′, let AC be the graph arising from taking A0, projecting all
vertices into C and preserving the edges.

Finally, construct a shortest-path tree D from the root to all points (Cr)C∈C′ , where
Cr arises from projecting the root into a continent C. We make sure that D enters every
continent at most once with the following construction: As long as a segment of D enters
a continent C at some position p ̸= Cr, we remove the incoming segment of p and add
a shortest path from Cr to p. This preserves the shortest-path property, because every
point in C can be reached by a shortest path from r by going through Cr.

Now take any shortest-path tree A′ inside B0 ∪
⋃

C∈C′ AC ∪D connecting the root
to all sinks. Such a tree is depicted in Figure 4.5c. First note that there exist shortest-
paths inside A′ to all sinks: For sinks inside a continent C ∈ C′, D makes sure the
continent can be reached via a shortest path, and AC connects to the sink itself. For a
sink in panthalassa, it either gets connected to the root directly by edges of B0. This
is a shortest path as A0 contains only shortest paths. Or it gets connected by a path
ending with leaving a continent followed by some edges of B0. Both the path up to and
through the last continent and the path in B0 are shortest paths.

It is clear that A′ enters every continent at most once, as B0 and
⋃

C∈C′ AC contain
no border crossings at all. Write |E| for the total length of an arborescence or edge set E.
What is left to show is that |A′| ≤ (k + 1)|A0|. For that, observe that |B0| ≤ |A0|. Now
consider a continent C ∈ C′. Surely, |AC | ≤ |A0|. But because A0 contains a path from
the root into C which gets removed by the projection, we know |AC |+dist(r, C) ≤ |A0|.
Now using that |D| ≤

∑
C∈C′ dist(r, C), we get

|A′| ≤ |B0|+
∑
C∈C′

|AC |+ |D|

≤ |A0|+
∑
C∈C′

|AC |+
∑
C∈C′

dist(r, C)

≤ (|C′|+ 1)|A0| ≤ (k + 1)|A0| = (k + 1)OPT∞(I).
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(a) An instance as defined in the proof of Theorem 4.6
for the Strict Pangea Topology Problem.

(b) The optimum solution to the instance in
Figure 4.4a.

(c) A shortest shortest-path tree for the in-
stance in Figure 4.4a.

Figure 4.4: The instances used in the proof of Theorem 4.6 together with two Steiner trees.
The red point represents the source, the black squares are sinks. The dashed rectangles denote
continents.

(a) The instance together with A0.

(b) Edge sets defined in the proof of Theo-
rem 4.6. B0 edges are shown in orange. Blue
edges belong to AC for a continent C ∈ C.
Blue circles indicate the projection of the root
into every continent. Edges in D are depicted
in green.

(c) The resulting tree from the edge sets
shown in Figure 4.5b.

Figure 4.5: An instance of the Strict Pangea Topology Problem with a shortest-path
tree and the resulting construction as defined in the proof of Theorem 4.6.
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Figure 4.6: The instance used to prove a version of Theorem 4.6 where topologies are allowed
to enter each continent up to E times, shown for E = 3 and k = 3.

So in the worst case, restricting the topology to enter every continent at most once
can increase the net length by a factor of |C| + 1. Seeing that the shortest shortest-
path tree seen in Figure 4.4c enters every continent twice, is seems natural to ask what
happens if we bound the number of continent entries by a constant E > 1. However,
for any fixed E > 1, Theorem 4.6 holds analogously when only restricting topologies to
enter every continent at most E times. An instance for the example of E = 3 is depicted
in Figure 4.6.

4.4 Standard pangea flow

The basic approach used in BonnPangea is rather straight-forward. Ports define the
positions where future wiring must cross the continent borders. So we estimate (using
global routing) where the wiring will be and then place ports on the intersections of the
estimated wire with continent borders.

Because global routing creates overlapping wires, a partial track assignment is per-
formed afterwards. The track assignment is restricted to regions around continent bor-
ders. It takes global routes going from tile-center to tile-center (and hence overlap) and
assigns them to individual routing tracks. The tracks obey all spacing constraints.

After track assignment, all routes are traversed in a depth-first-search. We store
information on where the routes cross continent borders and how these points are inter-
connected. This process is called port cutting.

The pangea flow can either be done in an explicitly timing-aware mode or in a
shortest-path mode. In timing-aware mode, the routing uses a linear delay model to
make sure that ports allow for fast enough signals. Otherwise, the routing uses algo-
rithms computing almost-shortest source-to-sink paths.

In a more elaborate flow of alternatingly performing port assignment and conti-
nent optimization, the timing-aware BonnPangea mode might outperform the almost-
shortest-path version. When using pangea to design ports in very early design stages,
the shortest-path mode is more efficient.

4.4.1 Continent border blockages

For port cutting, the wire segments crossing continent borders need to be straight: No
vias (or jogs) are allowed near continent borders. This is achieved by creating border
blockages: Along each horizontal border segment, blockages of fixed height are created
on all layers with horizontal routing direction. Analogously, blockages of fixed width
are created along vertical border segments on vertical routing layers. An example for
this is shown in Figure 4.7. Both the global routing and track assignment respect these
blockages. This creates straight wire segments.
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Figure 4.7: Partial world with three continents and border blockages shown as gray overlay
on a horizontal routing layer (left) and a vertical routing layer (right).

Figure 4.8: The three steps of computing a topology in pangea: clustering, hierarchy compu-
tation and tree computation. Yellow rectangles show the sink clustering, orange arrows indicate
the cluster hierarchy. The last image shows the final topology.

In practice, neighboring continents are usually close enough together such that these
border blockages overlap. This has the effect that no wiring along such continent gaps
is allowed, and that connected subway ports across a gap have to be aligned perfectly.

4.4.2 Global routing

Global routing is the basis and largest part of BonnPangea. The global routing frame-
work described in Section 2.4 is used, with small adjustments to the framework itself
and the embedding as well as a specialized topology generation algorithm in the routing
oracle.

We must align the global routing graph to the continent borders in the sense that all
tiles must either lie completely inside or completely outside each continent. Otherwise,
there are edges of the global routing graph corresponding to a set of tracks partially inside
and partially outside a continent. This would make the subsequent track assignment
much more difficult. When all global routing tiles either lie completely inside or outside
a continent (or clearly define a continent border crossing), most of the work is already
done after global routing. Then, track assignment is merely needed to spread the wires
apart.

The following speed-ups make it feasible to compute global routings on large pangea
instances: Firstly, all nets completely contained inside single continents are ignored.
This does impact the congestion estimates as a significant amount of wiring cannot be
seen. But it reduces the scope of the routing task greatly. Secondly, due to the large
chip area, global routing is done with a very coarse tile size. This keeps the size of the
global routing graph manageable. The coarse tile size does not impact solution quality
too much, because the detailed wire positions are computed in track assignment later
on. However, a too large tile size increases the running time of track assignment. In
practice, we use tile sizes of 400 to 1000 tracks.

Topology generation

To achieve the requirements from Section 4.1 (short paths, entering every continent
at most once, short total length), BonnPangea uses its own topology generation al-
gorithm. Topology generation is done using a hierarchical shortest-path tree. The
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Algorithm 5: Pangea topology generation

Input: A net N = {r} ∪ T ⊂ R2 and a world C.
Output: A Steiner tree Y rooted at r with leaves T whose Steiner points are

positions in R2.
1 W := compute-continent-clusters(T, C)
2 c : W → R2 := compute-cluster-roots(W, r)
3 Y top := compute-shortest-path-tree(r, c(W ))
4 wtop := ∅
5 foreach cluster w ∈W in decreasing order of ℓ1(r, c(w)) do
6 add c(w) to find-parent-cluster(w,W, c, Y top, C) or to wtop

7 foreach cluster w ∈W in reverse topological order do
8 Yw := compute-shortest-path-tree(c(w), w)

9 Ywtop := compute-shortest-path-tree(r, wtop)
10 return the union of the trees (Yw)w∈W and Ywtop

algorithm is presented in Algorithm 5 and the main steps are illustrated in Figure 4.8.
Here, we restrict ourselves to the timing-unaware mode.

Consider Algorithm 5. First, the sinks of a net are clustered according to the con-
taining continents (Line 1). Special care is taken for the sinks in panthalassa due to its
highly non-convex shape (see below). Note that the other continents may in principle
also be highly non-convex as they are only required to consist of connected rectangles.
But in practice, their shapes are at least very close to a single rectangle. After clus-
tering, we estimate virtual roots for all clusters and compute a top-level tree on the
net source and the virtual roots as sinks (Lines 2 and 3). We use the top-level tree to
compute parent clusters for each cluster (Lines 5 and 6, also see Algorithm 6). These
parent-relations make up the cluster hierarchy. Finally, the topology is computed with
approximate shortest-path trees according to this hierarchy (Lines 7-10).

Within the compute-continent-clusters procedure, sinks inside normal continents
are clustered together. This makes sense when the continent shapes are convex or nearly
convex. In this case, the Steiner tree for the resulting cluster is (mostly) contained in
the continent as well. However, panthalassa is far from being convex because it contains
the gaps between the other continents. Thus, putting all panthalassa sinks into a single
cluster could lead to unnecessarily long nets and more border crossings than needed:

When sinks are surrounding a continent, a Steiner tree connecting them has most
of its length inside the continent. Whenever that continent has its own sinks and with
that its own Steiner tree, the net length inside the continent could roughly double. An
indicator for this to happen is whenever the bounding boxes of clusters overlap with
each other or with other continents.

Therefore, it is better to split the panthalassa sinks into multiple clusters, so that each
cluster gets its own region and hence the bounding boxes are disjoint. To achieve this,
we use a simple greedy clustering algorithm: The sinks in panthalassa are considered
one-by-one and put into the first already existing panthalassa cluster whose bounding
box does not intersect a continent when extended by the new sink. If no such cluster
exists, a new one is created.

compute-cluster-roots computes c : W → R2 by projecting the source into the
cluster bounding boxes. I.e. it sets

c(w) := argmin
c∈bb(w)

distℓ1(r, c),

where bb(w) denotes the axis-parallel bounding box of the sinks contained in w. This
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Algorithm 6: find-parent-cluster

Input: Finite clusters W ⊂ 2R
2

and w ∈W , cluster roots c : W → R2, an
arborescence Y top in R2 with root r and leaves c(W ) and a world C.

Output: Either some w′ ∈W \ {w} or none.
1 v := w

2 while δ−Y top(v) ̸= ∅ do
3 v := predecessor of v in Y top

4 if ∃w′ ∈W in same continent as v and w′ is a feasible parent cluster for w
then

5 return w′

6 if ∃w′ ∈W such that v ∈ boundingbox(w′) and w′ is a feasible parent
cluster for w then

7 return w′

8 return none

way, the cluster root is furthest away from r while still allowing for shortest paths from
r to each sink in w.

After the clustering, a shortest-path tree from r to the cluster roots c(W ) is computed
in compute-shortest-path-tree. This is done by either the bi-criteria algorithm (see
Section 3.2.2) or the reachaware shortest-path algorithm (see Section 3.2.1). In both
cases, relative detour can be restricted or completely forbidden.

The tree Y top is used to compute a hierarchy on the clusters by iteratively finding a
parent cluster. We consider the clusters in an order of descending distance to the source,
measured from the estimated cluster root locations. find-parent-cluster tries to find
a parent instance by traversing Y top from the cluster to the root. The algorithm is
described in Algorithm 6. We always consider a candidate v ∈ V (Y top). v is initialized
to be w and we go up the tree by updating v to its predecessor in every iteration (Lines 1-
3). For every candidate v, we check whether there is a cluster in the same continent as v
or one whose bounding box contains v. If the cluster also is a feasible parent, we return
it (Lines 4-7). Here, a cluster w′ being a feasible parent for w denotes that the cluster
hierarchy stays acyclic when introducing this relation and that a shortest r-c(w′)-c(w)
path is not much longer than a direct r-c(w) connection. When we reach the root of
Y top without finding a parent, the algorithm returns none (Line 8).

Whenever find-parent-cluster returns none, the point c(w) is added to wtop in
Algorithm 5.

In Lines 7 and 8 of Algorithm 5, the cluster hierarchy is then traversed bottom-up,
computing a shortest-path tree for each considered cluster. Finally, a tree is computed
connecting the roots of all clusters on the top most hierarchy level to the net source
(Line 9 of Algorithm 5).

In this algorithm, the cluster roots are placed into the same continent as the sinks of a
cluster (assuming the continents are convex). Therefore, we satisfy the requirement that
all sinks inside a continent must be connected to the same subway source. This subway
source results from the border crossing of the topology edge going into the cluster root.
Additionally, each cluster tree and the top-level tree are approximate shortest-path trees
and the cluster hierarchy does not deviate from the top-level tree in a way that creates
further detours. Therefore, the resulting tree also is an approximate shortest-path tree.

When looking closely at the final topology in Figure 4.8, we can see that a shorter
Steiner tree still obeying shortest paths could be found by changing the cluster hierarchy.
The bottom right sink in panthalassa is closer to the estimated cluster root in the red
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Figure 4.9: Cluster hierarchy (left) and resulting topology (right) after post-optimization.

Figure 4.10: Computing a topology using the simpler two-level approach: Compute a tree
for each cluster separately, then connect the cluster roots via a single top-level tree.

continent than the one in the green continent. Therefore the sink got connected to
the cluster in the red continent. However, it is cheaper to connect the panthalassa
sink to the cluster in the green continent: The green continent has a sink which also
lies on a shortest path and is closer to the panthalassa sink. We post-optimize the
cluster hierarchy to also consider sink positions. In the example, this leads to a new
hierarchy and shorter resulting topology as depicted in Figure 4.9. In practice, such a
post-optimization is used in between Lines 6 and 7 of Algorithm 5.

Alternative ways to compute a hierarchical topology

Instead of computing the cluster hierarchy, a simpler two-level approach could be used
to compute the topology: Start by computing shortest-path trees for each cluster sepa-
rately. Then connect them directly via a top-level tree from r to the cluster roots.

The results of this approach for the same instance as in Figure 4.8 are depicted in
Figure 4.10. However, using the cluster hierarchy leads to shorter trees for some nets
because redundant edges can be avoided. This is because in the two-level approach, the
top-level tree ignores the previously computed trees. With shorter length, our approach
also leads to fewer ports.

A better option than the current implementation would be to compute the cluster
hierarchy based on the cluster bounding boxes instead of based on the cluster roots. This
approach can already incorporate considerations as described for the post-optimization
into the hierarchy computation. For the instance considered in Figure 4.8, the resulting
hierarchy would already look like the one depicted in Figure 4.9. However, with this
approach we would leave the realm of simple ℓ1-metrics and no algorithm using this is
implemented so far.

Embedding

Embedding the topology is done as described in Section 3.1.2. We have to make sure
that paths neither introduce additional detours nor cross too many continent borders.
We achieve this by adjusting the cost function in path search. The embedding algorithm
itself remains the same.
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Figure 4.11: A small chip region showing the gap between two continents before (left) and
after (right) track assignment. The red and green areas depict the continents. The blue area
represents the border region in which the wires are assigned. Orange lines depict power rails.
Turquoise lines are wires. In the left picture, all wires of the current layer lie in the tile-center.
The wire segments near the right border are on higher layers and were already assigned to
tracks. After track assignment, all wire segments are spread.

Undesired edges get an additional high penalty cost to discourage Dijkstra’s algo-
rithm from using them. Firstly, it is forbidden to cross a continent border against target
direction. This means edges entering or leaving a continent in a direction opposite to
the target of the current Dijkstra search get penalized. Secondly, whenever both si-
multaneously embedded sibling paths lie completely inside a continent, all edges leaving
that continent are forbidden. These penalty costs ensure that detours crossing continent
borders are prevented, while still enabling the embedding to route through the neces-
sary continents in a cost effective way (instead of a hard restriction to use the minimum
number of ports possible).

Further options include adding a small penalty cost to all edges crossing a continent
border. This encourages the router to choose paths with fewer continent crossings in
total. But it also increases wire congestion significantly, because congestion hot-spots
cannot be circumvented as flexibly. To explore this option further, more fine-tuning and
tests would be necessary.

4.4.3 Track assignment

Global routing places all wires such that they go from tile-center to tile-center. If we
created ports according to the wire positions in this state, all ports inside one tile would
be in the same position instead of being spread along the border. To make the global
wires overlap-free, they are assigned to routing tracks.

This is the process of track assignment as proposed in [Bat+02]. The implementation
of track assignment in the BonnTools is described in [Dur24]. It is a dynamic program
and was originally implemented by Prof. Dr. Vera Traub.

As only wire segments crossing a continent border are of interest for port positions,
wiring outside of an area around the continent borders is left unchanged.

The assignment itself works as follows. The routing layers are traversed top to
bottom. On each layer, all wire segments intersecting at least one relevant area are
collected. These segments are then assigned to tracks corridor by corridor via a dynamic
program. Inside of a routing corridor, the dynamic program moves a sweepline along
the wires. It stops at all positions where a wire segment starts or ends and propagates
partial solutions. The best solution found at the end is implemented.

A visualization of wire segments before and after track assignment can be found in
Figure 4.11.
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4.4.4 Port cutting

The final step in BonnPangea is to extract the port locations from the global wires.
After track assignment, wire segments crossing continent borders are overlap-free and
satisfy spacing constraints. So the port positions can be computed by taking the center
of a wire segment on a continent border. To make sure the correct connection data is
preserved, routes are traversed by a depth-first-search. By keeping track of the last seen
port up-stream, a port graph can be computed in linear time in the size of the route
graph.

4.5 Pangea replay

During the design process, port assignment is called repeatedly on slightly changing
versions of a design. For stability reasons, it is desirable that the resulting port locations
are as similar as possible between such runs. To achieve results as close to the original
version as possible, BonnPangea offers the replay mode.

As additional input, port graphs for a subset of nets are given. The objective is to
solve the Pangea routing problem such that the input port graphs coincide with
the computed port graphs of the respective nets. It is also allowed to have partial port
graphs in the input. A partial port graph is a sub-graph of a port graph. In this case,
the computed port graphs must contain the given partial port graphs for the respective
nets. A formal definition of the problem is as follows.

Pangea replay problem

Instance: A global routing graph G = (V,E) with edge capacities c : E → N, a netlist
N = (Ni ⊂ V )i and a world C as in the Pangea routing problem, as well as (partial)
port graphs (PN )N∈N for a subset of nets N ⊆ N .

Task: Compute a solution (Ri, Ai)i to the Pangea routing problem (see Section 4.1)
also satisfying that for all Ni ∈ N , we have PNi

⊆ Ai and minimizing

net length :=
∑
i

∑
e∈E(Ri)

length(e).

As the (partial) port graphs might stem from an earlier version of a design, they might
be associated with slightly modified nets. Whenever a net changed from the previous
run producing the port graph to the current run, its port graph must be aligned to
the new version of the net before starting the replay flow. For terminals that are only
shifted by a small distance, this often requires no changes to the structure of the port
graph. But care has to be taken for sinks that were moved to another continent or were
newly added to the net.

Roughly, this adaptation consists of three steps. Edges that have become illegal are
removed from the port graph, new edges are added to connect new sinks, and ports that
have become obsolete by these changes are removed. Note that these adaptations might
convert a previously complete port graph into a partial one, as no new ports may be
created.

We see another important application of the replay mode, in particular with partial
port graphs, in Section 4.6.
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Algorithm 7: Pangea topology generation with replay

Input: A net N = {r} ∪ T ⊂ R2, a world C and a (partial) port graph P for
the net N .

Output: A Steiner tree Y rooted at r with leaves T whose Steiner points are
positioned in R2 implementing P .

1 W := compute-clusters-replay(T, C, P )
2 c : W → R2 := compute-cluster-roots-replay(W, r, P )
3 Y top := compute-shortest-path-tree(r, c(W ))
4 wtop := ∅
5 foreach cluster w ∈W in decreasing order of ℓ1(r, c(w)) do
6 add c(w) to find-parent-cluster-replay(w,W, c, Y top, C, P ) or to wtop

7 foreach cluster w ∈W in reverse topological order do
8 Yw := compute-shortest-path-tree(c(w), w)

9 Ywtop := compute-shortest-path-tree(r, wtop)
10 return the union of the trees (Yw)w∈W and Ywtop

Topology generation

We define the notion of a topology Y of a net N implementing a (partial) port graph P
for N as follows: For every port in P , there is a Steiner point at the same position in Y
(hence we can write V (P ) ⊆ V (Y )). For every arc (a, b) ∈ E(P ), there is an a-b-path
in Y that does not cross any continent border.

To compute a topology implementing a given (partial) port graph, Algorithm 5 is
modified slightly: Consider Algorithm 7. In Line 1, compute-clusters-replay creates
one cluster for each port in P containing the sinks connected directly to that port.
Unconnected sinks inside some continent are added to a cluster in that continent if one
exists, otherwise they form a new cluster. Unconnected sinks inside panthalassa are
clustered using the same greedy approach as in the standard flow.

In Line 2, compute-cluster-roots-replay sets the root of clusters induced by a
port to the port position and sets

c(w) := argmin
c∈bb(w)

distℓ1(r, c)

as before for newly created clusters w.
The rest of the algorithm is the same as in Algorithm 5, except for the sub-routine

to find a parent cluster. find-parent-cluster-replay (in Line 6) checks whether a
cluster w was induced by a port p. In this case, if p has a parent port in P , the cluster
induced by that parent port is returned. If p is connected to r in P , none is returned
to indicate that c(w) should be added to wtop. Otherwise, the find-parent-cluster

routine of Algorithm 6 is used.
Assuming that the port graph contains only one subway source into each continent,

this procedure makes sure the final topology obeys the fact that all sinks inside a con-
tinent are connected to the same subway source. However, for continents with multiple
subway sources in the input port graph, this is not guaranteed. In general, matching
the input port graph takes precedence over other constraints such as few ports or short
paths.

Embedding

When embedding the topology, computed paths must cross continent borders at the
correct locations. In order for track assignment to be able to assign a wire to the exact
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Figure 4.12: Example replay scenario in which the output cannot use only one entering port
into the green continent and allow for shortest paths at the same time when replaying the
given port. The input port graph is depicted on the left. It is a shortest path and has the
minimum number of ports. Solutions following this input data (i.e. keeping existing ports at
their location) must either introduce a large detour to the new sink (middle) or add a second
port into the green continent (right).

location of the port in the input data, the route must go through the global routing
edge corresponding to the predefined port.

We ensure this with an adjustment to the cost function: Whenever a path has an
enforced port that is a subway source into a continent, all global routing edges going
into that continent except for the one corresponding to the port get a high penalty cost.
Analogously, for paths with a subway sink leaving a continent, all other edges leaving
the continent are penalized. For high enough penalty prices, this makes the embedding
go through the correct edge if at all possible. The penalty prices used here are the same
as for completely blocked edges, i.e. edges with capacity zero.

Track assignment

Before the normal track assignment algorithm, all nets are checked for predefined ports.
Whenever a wire segment traverses a global routing edge containing a port for the given
net, its position is fixed to the port’s position in advance. All remaining wires are
assigned afterwards, where the pre-assigned wires constitute blockages. This way, all
wire segments that were correctly routed in the embedding step are guaranteed to be
assigned to the track corresponding to the port location.

4.5.1 Trading off replaying ports with other pangea objectives

In general, no restrictions regarding short net length, short paths or number of ports
are imposed on the replay port graphs taken as input. This means that all these criteria
might be violated in solutions following the given port graphs. Since the replay mode
is used to re-create solutions previously computed by the standard pangea mode, this
does not pose problems for nets that do not change in between runs. However, even a
port graph that was originally computed fulfilling all criteria might become a hindrance
as soon as a single new sink is added to its net.

Consider the simple example in Figure 4.12. First, the depicted net only has one
sink in the green continent. In the second pass, a new sink is added also in the green
continent further to the left. The original net has only a single sink and the ports are
placed in a way that allows for a shortest path and thus also a short net. However, the
resulting port graph prevents solutions for the altered net that have only one entering
port and short paths to both sinks. When retaining the given port, the new route has
to connect the added sink to it as well, producing a significant detour, or add a second
port entering the green continent.

Since it is not possible to place ports in a way that all potential future replay compu-
tations lead to good solutions, a mechanism to decide which replay port positions should
be discarded could greatly improve upon the existing replay mode. Here, discarding a
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port means removing it and its adjacent arcs from the port graph before computing the
topology. For accurate decisions, it has to be rated how important the port count, short
paths and replaying the old ports are relative to each other in a given situation. This in
itself is already a difficult problem. The importance of individual short paths to certain
sinks can be estimated using the timing criticalities of the sinks. But the number of
(entering) ports as well as the value of replaying ports cannot be quantified easily.

When keeping the requirement of only allowing one entering port per continent (as in
the standard pangea mode), port count does not need to be taken into consideration. In
the example of Figure 4.12, we would not be allowed to use the solution on the right. So
this case reduces to the question of re-using the port position and accepting the detour
(center solution), or discarding it and creating a port further left to achieve shortest
paths. One possibility to approach this is to define a fixed cost for discarding/moving a
predefined port and delegate the decision to the resource sharing oracle. Two versions
of this proposal are sketched in the following section.

4.5.2 Replaying ports as resource

When replaying ports should be strongly encouraged, but not mandatory in all situa-
tions, it seems natural to introduce a penalty cost for discarding a port position. The
route computation is conducted in the oracle of the resource sharing framework. So the
best way to introduce an additional cost is to model replaying ports as an additional
resource. A simple way to do this is as follows.

Denote by P the total number of specified ports in the set of port graphs given as
input. Let a ∈ (0, 1] be a parameter given by the input. It shall denote what portion of
the predefined ports may be discarded/moved. In the resource sharing framework, we
add an additional resource replay. The usage of that resource by a route Y is

usgreplay(Y ) :=
n

a · P
,

where n counts the number of predefined ports the route does not follow. The penalty
cost of discarding a port now naturally arises as resource cost of the replay resource.
The parameter a controls how high that penalty is while still allowing for exponential
growth similar to the other resource sharing costs.

This way, the number of not-replayed ports can be kept in check. However, there
is no distinction between just moving a port to a neighboring global routing tile and
placing it at an opposite end of the continent. To accommodate the difference, usage
of the replay resource can be defined proportional to the total (quadratic) movement
of the predefined ports. When interpreting the replay resource as total (quadratic)
movement, it is harder to define a sensible capacity value. One solution would be to
estimate a reasonable amount of port movement for the first resource sharing phase and
then adjust the capacity according to a fixed usage rate given as parameter. For usage
parameter a, previous relative total resource usage usgprev of the replay resource and
total (quadratic) movement m of a route Y , usage in the next phase would be defined
by

usgreplay(Y ) :=
m · a

usgprev
.

To properly estimate port movement, we can compute a matching between the pre-
defined ports and those used in the computed route. We define the bipartite graph
G = (A∪B,E) as follows. A is the set of all predefined ports, B is the set of all border
crossings of the route Y plus dummy nodes ba for all a ∈ A. E contains edges between
all pairs a ∈ A, b ∈ B that represent border crossings of the same continent and the same
type (entering a continent/subway source or leaving a continent/subway sink). For each
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a ∈ A, E also contains the edge {a, ba}. Further we define edge weights w : E → R+

to capture the distance (measured on the continent boundary) between the predefined
port position and the final border crossing. Edges of type {a, ba} are assigned a weight
of half the perimeter of the continent of a, i.e. the maximum distance possible on the
continent boundary.

Now we compute a minimum-weight matching M in G that covers A. Such a match-
ing always exists by using the edges {a, ba}. An edge {a, ba} ∈ M represents the fact
that the port a was completely discarded. Edges {a, b} ∈M where b is a border crossing
of Y denote that the port a was moved to the position of b. Now the total (quadratic)
movement can be computed by iterating over all edges in M .

A further aspect to take into account in addition to port movement is the enforced
detour on the source-to-sink paths. One possibility is to forbid moving ports enforcing
a too large detour completely. Otherwise, costs of such ports can be increased by
incorporating weights into the considered (quadratic) movement values.

Note that in this description, we neglected the fact that the computed routes are
tile-center to tile-center, while the predefined ports are given as exact positions. After
computing the route, it is still open where inside its tile the final port will lie. To include
this, the distances used for the edge weights are the distances between the given port
and the tile containing the route’s border crossing, instead of the tile’s center. This
way, using the correct tile does not induce positive edge weight no matter where the
predefined port is placed within the tile. Moving a port to a neighboring tile is cheaper
on the side where the predefined port’s track lies.

In order to use the presented approaches to achieve an optimal trade-off between
replaying many ports and preventing large detours on critical paths, it is necessary
to consider costs for path lengths in the route computation instead of using a hard
restriction on the detour as is mostly done in practice. This can be done by considering
timing and using the arrival time customers as presented in Section 2.4.2.

4.6 Pangea reuse

In the setting described in Sections 4.4 and 4.5, it was always assumed that each unit
(continent) will be designed individually in later optimization steps. However, there
are designs with several instantiations of the same unit, for example when there are
multiple equivalent cores on a processor chip. When using the standard pangea flow,
each unit would be assigned potentially different port positions. So essentially equivalent
continents would still need to be designed individually later on.

However, if we can make sure such equivalent continents are always assigned equiv-
alent port positions, i.e. if the computed interfaces are the same, then the unit needs to
be designed only once. This saves both computational and human resources.

Since the best positions for ports depend not only on the interior of a continent,
but also on the relative positions of terminals outside, reducing the solution space this
way comes with some drawbacks. Overall quality regarding short paths, net length and
routing congestion can decrease. Additionally, it can become necessary to put extra
wiring into a unit that is only needed for some of its instantiations but not all. Then
these wire segments are dead, unconnected wire in the other instantiations.

The problem arising from this setting is tackled by the Pangea ReUse mode that
was developed together with Max Mundt [Mun23] who wrote his master’s thesis on this
topic under the author’s co-supervision during the work on this thesis.

The core of this problem is very similar to the one from [LCT22]. However, Pangea
ReUse contains many more features needed for practical application.
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4.6.1 Setting and problem formulation

We need to introduce the following notions in order to define the Pangea ReUse
problem properly.

Definition 4.7. An equivalence function pair is a pair (fC , fG) of functions

fC : C → C

and fG :
⋃
C∈C

gates(C)→
⋃
C∈C

gates(C),

such that fC ◦ fC = fC and fG ◦ fG = fG. We further require for a gate g ∈ gates(C)
for some C ∈ C that we have fG(g) ∈ gates(fC(C)), and that f−1

G (g) is either empty
or contains exactly one gate out of each gates(C ′) for all C ′ ∈ C with fC(C ′) = fC(C)
(then f−1

G (g) is a non-trivial gate equivalence class).

Given an equivalence function pair (fC , fG), the function fC maps every continent
to the representative of its equivalence class. fG maps every gate to the equivalent gate
in that representative equivalent continent.

The continent equivalence classes are now given by the non-empty sets of the form
f−1
C (C) for C ∈ C, and the gate equivalence classes by the non-empty sets of the form
f−1
G (g) for g ∈

⋃
C∈C gates(C). We call a continent C a reuse continent if its equivalence

class has cardinality greater 1.

We denote the continent equivalence classes by C1, . . . , Ck. Then C consists of non-
reuse continents together with the union of all equivalence classes Ci:

C = {C ∈ C | ∄ C ′ ∈ C \ {C} : fC(C ′) = fC(C)} ∪
k⋃

i=1

Ci

To capture the geometrical aspect of equivalence, we need the following definitions.

Definition 4.8. Let (x0, y0) ∈ R.

A mirror function at (x0, y0) is a function mx : R2 → R2 that is either the identity
on R2 or maps every point to the point mirrored along the x-axis through (x0, y0).

A rotating function at (x0, y0) is a function rot : R2 → R2 that is either the identity
on R2 or maps every point to the point arising from rotating around the origin (x0, y0)
by 180 degrees.

A shifting function is a function s : R2 → R2 that can be written as s(x, y) =
(x + δx, y + δy) for some (δx, δy) ∈ R2.

A translating function at (x0, y0) is a function t : R2 → R2 that can be written as
t = s ◦ rot ◦mx, such that s is a shifting function, rot is a rotating function at (x0, y0)
and mx is a mirror function at (x0, y0).

Observe that mirroring along the y-axis can be achieved by concatenating rotation
with mirroring along the x-axis.

Definition 4.9. Given an equivalence function pair (fC , fG), feasible translation data
is a set T = (tC)C∈C such that the following is satisfied.

For every C ∈ C, tC is a translating function at a corner point of C, say oC , and
we have tC(C) = fC(C) and tC(oC) = ofC(C). Moreover, for every C ∈ C and every
g ∈ gates(C), we have tC(g) = fG(g), where we interpret g to denote the shape of the
gate.
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Problem definition

The interfaces of equivalent continents should be equivalent themselves. This concept is
captured by the following notion. We use the notation Γ+

G(v) and Γ−
G(v) to denote the

children, respective predecessor sets of a node v in a graph G.

Definition 4.10. Fix an equivalence function pair (fC , fG) and feasible translation
data T = (tC)C∈C . Let (pgN )N∈N be a solution to the Pangea port assignment
problem. We call this port assignment reuse-aware if the following holds for every net
N (where we identify nodes in a port graph with their position):

a) For every subway source p ∈ V (pgN ) in a reuse continent C, tC(p) is a subway
source p′ in some port graph pgN ′ and

Γ+
pgN′ (p

′) = {tC(c) | c ∈ Γ+
pgN (p)}.

b) For every subway sink p ∈ V (pgN ) in a reuse continent C, tC(p) is a subway sink
p′ in some port graph pgN ′ and

Γ−
pgN′ (p

′) = {tC(c) | c ∈ Γ−
pgN (p)}.

We similarly call a routing reuse-aware if it implements reuse-aware port graphs.

We can now define the pangea reuse problem.

Pangea ReUse routing problem

Instance: A global routing graph G = (V,E) with edge capacities c : E → N, a netlist
N = (Ni ⊂ V )i, a world C and a constant ε > 0 as in the Pangea routing problem
(without timing data), as well as an equivalence function pair (fC , fG) and feasible
translation data T .

Task: Compute a reuse-aware solution (pgN )N∈N with respect to (fC , fG) and T for
the Pangea port assignment problem given by C and N . Also compute a global
route RN implementing pgN for every net N ∈ N such that the source-to-sink paths in
every pgN are ℓ1-shortest up to a factor of 1 + ε. Further, for each global routing edge
e ∈ E, we require ∑

N∈N
1E(RN )(e) ≤ c(e).

Under these constraints, the solution should minimize

net length :=
∑
N∈N

∑
e∈E(RN )

length(e).

4.6.2 Reuse flow

Pangea ReUse starts with running a first pangea pass modified in such a way that
equivalent continents already receive similar port positions. This is achieved by

a) computing intervals for equivalent ports beforehand and
b) copying blockages so that they are equivalent along equivalent borders.

To make sure the interfaces are exactly same, Pangea ReUse uses a simple leader-
follower construct. For every continent equivalence class, one leader continent is chosen
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Figure 4.13: Example net that would lead to a long detour when blindly using the leader’s
port position for the follower continent. The blue and red continents are equivalent. The red
continent is the leader. The net source is red, the sinks are black. The gray shape denotes a
blockage. The left picture shows how a first routing might look like. The right route is the
outcome of forcing the leader port position from the first route to be used in the follower, as
well.

Figure 4.14: Port intervals (green shapes) preventing detours induced by the leader-follower
approach for the example of Figure 4.13. As long as the ports are placed within the depicted
intervals in the first pangea pass, copying the leader port position over to the follower does not
enforce a large detour from the source to the sink.

by the user. After the first pass, the port configurations of the leader continents are
copied onto their respective followers. Here, we keep the relative position of each port
within the continent. To make sure the changed ports on the follower continents fit
together with ports on the other continents, the entire pangea flow is run again. In
this second pass the equivalent port positions of the reuse continents are given as replay
input (see Section 4.5).

We now cover every step in more detail (Sections 4.6.3-4.6.7) and then proceed to
discuss the limitations of this approach (Section 4.6.8) as well as extensions to deal with
difficult continent layouts (Sections 4.6.9 and 4.6.10).

4.6.3 Port intervals

When a port configuration computed solely for the leader is copied exactly as is to the
follower continents, this can produce large detours. See Figure 4.13 for an example.
Note that this very example can be used to prove that (absolute) detours can in fact
become arbitrarily long. To see this, simply scale the entire instance in x-direction.

To combat this problem, intervals for port positions are computed as a first step.
The port intervals consider all equivalent continents instead of just the leader. For the
example of Figure 4.13, good intervals are depicted in Figure 4.14.

In this section, we assume that the equivalent continents themselves are only shifted,
but not rotated or mirrored. We do this so that the essential computations become
clearer. The assumption can easily be dropped with some additional geometrical con-
siderations.
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We now define the Simple port interval problem. We call an axis parallel
rectangle in R2 a continent. For a continent C of width W and height H and a point
p ∈ ∂([0,W ] × [0, H]), we write C + p ∈ ∂C for the component-wise sum of the lower
left corner of C and p. Further, rC denotes the projection of a point r into C. For two
points a, b ∈ ∂C, we write dist∂C(a, b) for the ℓ1-length of a shortest path from a to b
that does not go through the interior of C. Using this, we can define the Simple port
interval problem.

Simple port interval problem

Instance: Disjoint continents C of the same height H and width W , a root r ∈ R2 \⋃
C∈C C and sinks T = (tC)C∈C ⊂ R2 so that tC ∈ C for all C and each sink lies inside

the interior of its continent in the same relative position.

Task: Compute all points p ∈ ∂([0,W ]× [0, H]) minimizing

max
C∈C

detour(r, p, tC , C),

where

detour(r, p, tC , C) := ℓ1(r, rC) + dist∂C(rC , C + p) + ℓ1(C + p, tC)− ℓ1(r, tC).

Observe that detour(r, p, tC , C) represents the absolute detour of a path from r to
tC when entering C at C + p. When the instance is clear from the context, we simply
write detour(p).

To solve the Simple port interval problem, we consider piecewise linear func-
tions dC : [0, 2W + 2H) → R+ representing the detour introduced by a point on the
boundary of one particular continent. It is sufficient to take the pointwise maximum
over |C| such functions and compute the minimum and its preimage of the resulting
function. To simplify the notation, we define p : [0, 2W + 2H) → ∂([0,W ] × [0, H]) as
follows, visualized in Figure 4.15.

p(a) :=


(a, 0) if a < W

(W,a−W ) if a ∈ [W,W + H)

(2W + H − a,H) if a ∈ [W + H, 2W + H)

(0, 2W + 2H − a) if a ∈ [2W + H, 2W + 2H).

Observe that p is well-defined and bijective. Further, for a, b ∈ ∂([0,W ] × [0, H]) it
satisfies

dist∂C(a, b) = min{|p−1(a)− p−1(b)|, 2W + 2H − |p−1(a)− p−1(b)|}.

For C ∈ C, we can now define dC : [0, 2W + 2H)→ R+ by

dC(a) := detour(r, p(a), tC , C).

We know that dC is piecewise linear, because all summands in the definition of detour(−)
are. Furthermore, the number of breakpoints is bounded from above by the number of
Hanan grid points lying on ∂C, where the Hanan grid is induced by the corners of C as
well as r and tC . This is at most 8.

Using the above definitions, we can formulate an algorithm for the Simple port in-
terval problem. Consider Algorithm 8. We construct the functions (dC)C∈C (Line 1).
We then compute the point-wise maximum of these and call the result dmax (Line 2).
Finally, we compute all points minimizing dmax and return their image under p (Line 3).
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(0,0) (W,0)

(W,H)(0,H)

0 W W + H 2W + H

Figure 4.15: Visualization of the function p : [0, 2W + 2H) → ∂([0,W ]× [0, H]).

Algorithm 8: Port interval computation

Input: C, H,W, r and (tC)C∈C as in the Simple port interval problem.
Output: A subset I ⊆ [0,W ]× [0, H].

1 Construct the functions dC : [0, 2W + 2H)→ R+ for all C ∈ C
2 dmax : [0, 2W + 2H)→ R+ ← point-wise maximum of the dC
3 return p(argmin dmax)

Theorem 4.11. Algorithm 8 solves the Simple port interval problem in O(k log k)
time, where k is the number of continents.

Proof. We first show that the algorithm works correctly. For C ∈ C, we have dC =
detour(r,−, tC , C) ◦ p. Therefore

p (argmin dmax) = p

(
argmin max

C∈C
dC

)
= p

(
argmin max

C∈C
(detour(r,−, tC , C) ◦ p)

)
= argmin max

C∈C
detour(r,−, tC , C)

as required by the bijectivity of p.
Note that Line 2 of Algorithm 8 dominates the running time. We use the algorithm

from [Bla+24] to compute the point-wise maximum of the dC (Theorem 7 in [Bla+24]).
This takesO(k log k) time, because there are k functions, and each has at most a constant
number of breakpoints.

In this version of the problem, we assumed that the net has exactly one sink inside
each equivalent continent and that the root lies outside. This can also be extended to
deal with multiple sinks inside each continent.

For equivalent sources inside reused continents, there is the possibility of using multi-
ple port intervals instead of only one. This can reduce the maximum detour significantly.
The rest of this section explores one version of this problem.

We use the notion of a border interval, which is a set I ⊂ ∂([0,W ] × [0, H]) of
the form p([a, b]) or p([a, 2W + 2H)) ∪ p([0, b]). For a border interval I = p([a, b]), we
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Figure 4.16: A solution of cardinality 4 to the Multiple Ports Interval Problem. The
red circle represents the position of the root inside each continent (black rectangle). The colored
squares represent the points of the four border intervals. Striped areas indicate which sinks
can be routed to from the source with a shortest path when going through the border interval
of the same color.

write size(I) = b − a, and for a border interval I = p([a, 2H)) ∪ p([0, b]), we write
size(I) = 2H − a + b.

Multiple port intervals problem

Instance: Disjoint continents C of the same height H and width W , roots (rC)C∈C ⊂ R2

so that rC ∈ C for all C and each root lies inside the interior of its continent in the
same relative position, sinks (tC)C∈C ⊂ R2 \

⋃
C∈C C, a maximum detour value D ∈ R+

and a maximum interval size L ∈ R+.

Task: Compute a set I of border intervals with size at most L of minimum cardinality,
such that for all C ∈ C

detour(rC , I, tC , C) ≤ D,

where, for xC being the projection of tC onto C,

detour(rC , I, tC , C) := min
I∈I

min
p∈I

ℓ1(rC , C + p) + dist∂C(C + p, xC) + ℓ1(xC , tC)

− ℓ1(rC , tC).

We first observe that

I = {{((xC)x − Cx, (xC)y − Cy)} | C ∈ C}

is a solution of cardinality at most |C|, where Cx and Cy denote the x- and y-coordinates
of the lower left corner of C. This is because C+p = xC for p = ((xC)x−Cx, (xC)y−Cy)
and singleton border intervals have size 0. Further, for C ∈ C, we have

detour(rC , I, tC , C) ≤ ℓ1(rC , xC) + dist∂C(xC , xC) + ℓ1(xC , tC)− ℓ1(rC , tC) = 0.

So it suffices to compute, for given k ∈ N, a feasible set of k border intervals, if it exists.
Further, there always exists a solution I with |I| ≤ 4: As border intervals, we use

the projections of the root position onto ∂([0,W ]× [0, H]) in all four axis-parallel direc-
tions. Remember that the roots lie in the same relative position inside each continent.
Figure 4.16 depicts this solution as well as the areas served by each border interval.

Using these observations, we can now solve the Multiple port intervals prob-
lem for the special case L = 0. To simplify notation, we shift each continent and the
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Algorithm 9: Computing multiple port intervals

Input: W,H, r, T and D as in the Simplified multiple port intervals
problem.

1 Let P be the solution of the corresponding Simple port interval problem
2 if detour of the points in P at most D then
3 return {p} for any p ∈ P

4 p1, p2, d := find-best-pair(W,H, r, T ) (Algorithm 10)
5 if d ≤ D then
6 return {p1, p2}
7 p1, p2, p3, d := find-best-triple(W,H, r, T ) (Algorithm 11)
8 if d ≤ D then
9 return {p1, p2, p3}

10 return {n, e, s,w}

corresponding terminals such that the lower left corner of the continent becomes (0, 0).
Further, we directly consider the projections of sinks onto the continent border instead
of the sinks themselves, because the detour does not depend on the exact sink position.
We end up with the following problem.

Simplified multiple port intervals problem

Instance: Continent size W > 0, H > 0, a root position r ∈ (0,W ) × (0, H), a finite
set of sinks T ⊂ ∂([0,W ]× [0, H]) and a maximum detour value D ∈ R+.

Task: Compute a minimum cardinality set I ⊂ ∂([0,W ] × [0, H]) such that, for all
t ∈ T ,

min
p∈I

ℓ1(r, p) + dist∂C(p, t)− ℓ1(r, t) ≤ D.

In the formulation of the following algorithms, we use the points n, e, s and w to
denote the north, east, south and west projection points of r onto ∂([0,W ] × [0, H]),
respectively.

The structure of the algorithm is presented in Algorithm 9. We try to find sets with
an increasing number of points, such that the detour is at most D for all sinks: For
k ∈ {1, 2, 3}, the algorithm checks if a solution of that size achieves a detour of at most
D (Lines 1 and 2, Lines 4 and 5, and Lines 7 and 8). If so, the solution is returned
(Lines 3, 6 and 9). Otherwise, we know that {n, e, s,w} is an optimum solution, because
it always achieves a detour of 0. So we return {n, e, s,w} (Line 10).

Algorithms 10 and 11 compute the best solution using two and three port interval
points, respectively. Here, best means lowest maximum detour.

In Algorithm 10, we order the sinks along the continent border. Let q = |T |. We then
try every start point i = 1, . . . , q and end point j = i, . . . , q and define T1 := {ti, . . . , tj}
and T2 := T \T1 (Lines 2-4). We now solve the Simple port interval problem inde-
pendently for T1 and T2 and store the result together with the corresponding maximum
detour value (Lines 5 and 6). Finally, we return the best found solution (Line 7).

In Algorithm 11, we do the analogous but with indices i = 1, . . . , q−1, j = i, . . . , q−1
and k = j, . . . , q and the sink partition T1 := {ti, . . . , tj}, T2 := {tj+1, . . . , tk} and
T3 := T \ (T1 ∪ T2).

To see that these algorithms are correct, we use the following observation.
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Algorithm 10: find-best-pair

Input: W > 0, H > 0, r ∈ (0,W )× (0, H), and a finite set
T ⊂ ∂([0,W ]× [0, H]).

Output: a pair of points in R2 and a detour value d ∈ R+.
1 Order T = {t1, . . . , tq} as they appear going around the continent border
2 foreach i = 1, . . . , q do
3 foreach j = i, . . . , q do
4 Let T1 := {ti, . . . , tj}, T2 := T \ T1

5 Solve the Simple Port Interval Problem for the sink sets T1 and T2

separately
6 Store solution pair (p1, p2) with maximum detour value d

7 return stored triple (p1, p2, d) with minimum d

Algorithm 11: find-best-triple

Input: W > 0, H > 0, r ∈ (0,W )× (0, H), and a finite set
T ⊂ ∂([0,W ]× [0, H]).

Output: three points in R2 and a detour value d ∈ R+.
1 Order T = {t1, . . . , tq} as they appear going around the continent border
2 foreach i = 1, . . . , q − 1 do
3 foreach j = i, . . . , q − 1 do
4 foreach k = j, . . . , q do
5 Let T1 := {ti, . . . , tj}, T2 := {tj+1, . . . , tk}, T3 := T \ (T1 ∪ T2)
6 Solve the Simple Port Interval Problem for the sink sets T1, T2

and T3 separately
7 Store solution triple (p1, p2, p3) together with maximum detour value

d

8 return stored tuple (p1, p2, p3, d) with minimum d

Proposition 4.12. Let W,H, r, T and D be given as in the Simplified multiple port
intervals problem. Let I = {p1, p2} ⊂ ∂([0,W ] × [0, H]) be a feasible solution, i.e.
with detour value at most D.

Consider an ordering of sinks T = {t1, . . . , tq} going around the continent border.
Then there are indices 1 ≤ i ≤ j ≤ q such that, for the sets T1 := {ti, . . . , tj} and
T2 := T \ T1, we have

∀t ∈ T1 : ℓ1(r, p1) + dist∂C(p1, t)− ℓ1(r, t) ≤ D, (4.1)

∀t ∈ T2 : ℓ1(r, p2) + dist∂C(p2, t)− ℓ1(r, t) ≤ D. (4.2)

The analogous statement holds for three instead of two points.

Proof. Consider the following function representing the detour when going through the
fixed point p1.

f : ∂([0,W ]× [0, H])→ R,

f(t) = ℓ1(r, p1) + dist∂C(p1, t)− ℓ1(r, t).

Then the set {t ∈ ∂([0,W ]× [0, H]) | f(t) ≤ D} is connected.
So we can define T1 := {t ∈ T | f1(t) ≤ D} and choose i and j accordingly. Since

the solution {p1, p2} is feasible, we know that (4.2) holds for all t ∈ T \ T1. But
T \ T1 = T2.
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Figure 4.17: The steps to compute port intervals in practice. The sinks are projected into
one direction (south in this example). The resulting interval is depicted in orange. Afterwards,
the port intervals (green shapes) are obtained by building an interval around the center.

Algorithm 12: Port interval computation in practice

Input: A continent C, sinks T ⊂ C, a direction
D ∈ {north, south, west, east} and a constant W > 0.

Output: An interval I ⊂ ∂C.
1 B ← bounding-box of T
2 I ′ ← projection of B onto the D side of ∂C
3 c← center of I ′

4 return I ← W
2 -ball around c inside I ′

Computing port intervals in practice

While it is not possible to guarantee short source-to-sink paths with only one ingoing
port in the reuse scenario, the instances occurring in practice allow for simple, straight
forward solutions. It is often the case that a fixed continent border edge contains the
best port interval. This happens for example when several CPU cores are arranged side
by side next to a backbone.

In this case, one direction out of north, south, west and east can be chosen per
(non-trivial) continent equivalence class by the user, representing the relevant border
edge. Now, for a set of sinks T inside one continent, their bounding box is computed
and projected onto the continent boundary in that direction. The center of the resulting
interval then is the point minimizing absolute detour (across all root placements).

To give global routing more flexibility in avoiding congestion, the computed point
is extended to an interval of fixed width along the continent border. This setting is
depicted in Figure 4.17 and the computation can be seen in Algorithm 12.

Port customers

Another approach to computing port intervals is to incorporate the issue into the re-
source sharing framework (see Section 2.4.1). We now briefly sketch an idea how that
might be done which was developed together with Max Mundt. It is presented in [Mun23]
in more detail. In this section, we consider the case of a net with its source outside of
the reuse continents and a single sink inside each reuse continent of an equivalence class.
For sets of sinks or equivalent sources inside the reuse continents, the approach can be
applied analogously.

For a set of equivalent sinks (tC)C∈C , we do the following: We add a customer
p, called the port customer. The solution of the port customer determines where the
associated port interval lies. As possible choices for the port intervals, we divide the
border of each reuse continent (equivalently) into segments of fixed size. Call the set
of all border segments (over the equivalent continents) S. Then the allowed solutions
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b0 b1 b2 b3 b4 b5 r0 r1 r2 r3 r4 r5

(a) An example route of a net with two equiv-
alent sinks. The segments are marked on the
two equivalent continents (blue and red) and
the southern segments are labeled.

1

0
b0 b1 b2 b3 b4 b5 r0 r1 r2 r3 r4 r5

(b) Resource usage associated with the solu-
tion on the left. The port customer blocks all
segments but b4 and r4 (gray blocks) and the
net uses exactly these two resources by cross-
ing the continent borders in the associated seg-
ments (blue block for the blue crossing, red
block for the red crossing).

Figure 4.18: Packing in the presence of port customers.

for p are the equivalence classes of segments in S. Further, we introduce one segment
resource rS per segment S ∈ S. A solution of the port customer uses up all of these
resources except for the equivalent segments in the solution, i.e. for an equivalence class
S̄ of segments, we have

usgrS (S̄) =

{
0 if S ∈ S̄

1 else.

A route Y for a net in question uses up the segment resource associated with the position
where the route crosses the reuse continent borders:

usgrS (Y ) =

{
1 if Y goes through S

0 else.

Note that the route is allowed to enter each reuse continent at most once. This way, an
integral packing observing resource capacities has all equivalent continent crossings of
this net within the same segment as portrayed in Figure 4.18.

A slightly different way to define segment resources and their usages is as follows.
Instead of introducing a resource for each segment for each copy of the continent, we
only add one resource rS̄ for each segment equivalence class S̄. The port customer uses
up all segment resources except for one:

usgrS̄ (S̄′) =

{
0 if S̄′ = S̄

1 else.

Assuming there are k equivalent continents, a route Y uses 1
k of the capacity of the

resource belonging to the segment where the border is crossed:

usgrS̄ (Y ) =

{
1
k if Y goes through some S ∈ S̄

0 else.

For the same scenario as in Figure 4.18a, the associated segments and packing with
regard to this definition are depicted in Figure 4.19.

The second approach has the advantage of adding significantly fewer resources. In
terms of the integral packing, both methods are identical: The only feasible integral
solution is for all paths to cross equivalent segments, namely the segments not blocked
by the port customer. However, the second approach has a drawback that comes to
light when considering what happens during the resource sharing algorithm discussed
in Section 2.4.1:
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s0 s1 s2 s3 s4 s5 s0 s1 s2 s3 s4 s5

(a) An example route of a net with two equiv-
alent sinks. The segments are marked on the
two equivalent continents (blue and red) and
the southern segments are labeled.

1

0
s0 s1 s2 s3 s4 s5

(b) Resource usage associated with the solu-
tion on the left. The port customer blocks all
segments but s4 (gray blocks) and the net uses
exactly this resource by crossing through the
associated segment in both reuse continents
(red and blue blocks).

Figure 4.19: Packing in the presence of port customers. The segment resources exist only
once as opposed to once per copy of the reused continent.

Assume there is a separate net for each reuse continent. The nets have their sources
outside of the reuse continents and one sink inside one of the reuse continents each.
Assume the net customers are solved first and the port customers afterwards. Since
resource prices rise whenever a resource is being used, one net being routed through a
segment s would lead to the price of s increasing. Thus, the subsequent routes would
avoid routing through the same segment. This effect leads to a slow convergence in the
resource sharing algorithm.

4.6.4 Blockages on the continent border

The essence of the reuse flow in BonnPangea is the leader-follower approach. Port
positions of one of the reuse continents (the leader) are copied over to the others (the
followers). For the port positions of the leader continent to be feasible when copied over
to the followers, they must not be placed on a routing blockage. A route might, legally,
go from a source outside to a sink inside the leader continent. The location where that
route crosses the border of the leader continent determines the port position not only
for the leader, but also the follower continents. Hence it has to obey blockages not only
inside or close to the leader, but also those placed near the followers.

An example scenario is depicted in Figure 4.20. The routing of the left net shown
in Figure 4.20a would lead to the marked port placement for the right net. This is
infeasible as there is a blockage surrounding the port position. Instead, as indicated in
Figure 4.20b, the part of the blockage that is inside or close to the follower continent
must also be taken into account inside the leader. Then, a route can be found using
the non-blocked areas according to both equivalent continents. This can be done using
simple geometric operations.

In practice, all blockages touching a continent inside a non-trivial equivalence class
are copied into all equivalent continents, instead of just copying from the followers to
the leader. This has the additional benefit of aligning the two routing passes as much
as possible.

4.6.5 First routing pass

After computing port intervals and dealing with blockages on continent borders, a
first routing pass is performed. The port intervals and additional blockages from Sec-
tions 4.6.3 and 4.6.4 are observed. Regarding everything else, the first routing pass is
conducted as described in Section 4.4.

66

fig:reuse_blockages_scenario
fig:reuse_blockages_routeA
fig:reuse_blockages_copied
sec:reuse_port_intervals
sec:reuse_blockages
sec:pangea_flow
fig:reuse_blockages_scenario
fig:reuse_blockages_routeA
fig:reuse_blockages_copied
sec:reuse_port_intervals
sec:reuse_blockages
sec:pangea_flow


(a) The route of the left net in itself is legal.
But copying the port position over into the red
continent leads to a violation as can be seen by
the marked port inside the blockage.

(b) The part of the blockage inside and close
to the red continent was transferred into the
blue continent, the striped area. This way, the
route of the left net is still legal when copied
over to the right net.

Figure 4.20: A reuse scenario in which it is necessary to consider not only the blockages
directly near the continent where the route is placed, but also the blockages near equivalent
continents. The blue and red continents are equivalent, the blue continent is the leader.

Algorithm 13: Applying continent equivalence

1 Delete port graph parts outside of reuse continents
2 Copy feed-throughs into equivalent continents
3 Align subway sinks driven by equivalent net sources
4 Align subway sources driving equivalent net sinks
5 Align subway sinks driven by equivalent subway sources

Due to the leader-follower approach, only port locations on the leader continent of
each non-trivial equivalence class will remain in the end. Hence, it is an option to only
consider nets crossing the boundary of such a leader continent in the first routing pass.
While this would speed up the flow (even drastically depending on the distribution of
nets), it could also have a negative impact on routing congestion.

Fixing all leader port locations in this first routing pass can lead to violations later
on. Such scenarios and how to avoid them are discussed in Section 4.6.8.

4.6.6 Applying continent equivalence

After the first routing pass, the leader port locations need to be translated and copied
over to the follower continents. This is done according to the continents’ translating
functions (see Definitions 4.8 and 4.9). All the computation is done on the port graphs
produced from the first routing pass.

For most nets, this is rather straight forward. However, care has to be taken in
situations where ports of a follower continent need to be combined with those of the
leader, instead of simply replaced. The general algorithm is described in Algorithm 13.
See Figure 4.21 for a visualization.

First, all ports and adjacent edges in the port graphs that are outside of a reuse
continent are deleted. These port positions are computed again from scratch in the
second routing pass.

Then, feed-throughs through reuse continents are collected and copied into the equiv-
alent continents. Here, a feed-through is a connected component (after Step 1) of a port
graph that does not contain a net source or net sinks. To copy such a component
into an equivalent continent, the continent transformations are applied to all relevant
port positions. As the super-set of all feed-throughs in an equivalence class might not
be overlap-free in general, it needs to be legalized. This can be done using track as-
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(a) Initial port graphs from first routing pass. (b) Everything outside reuse continents is deleted.

(c) Feed-throughs are copied into equivalent reuse
continents.

(d) Subway sinks connected to equivalent net
sources are aligned.

(e) Subway sources driving equivalent net sinks
are aligned.

(f) Subway sinks connected to equivalent subway
sources are aligned.

Figure 4.21: Rough steps of Algorithm 13. The blue continents are equivalent, the top one
being the leader. New/changed edges compared to the previous step are shown in green.
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Figure 4.22: Reuse situation in which adopting the leader’s port for the follower continent
would lead to a large detour. The blue and red continents and the shown sources are equivalent,
the blue continent is the leader. In cases where leader and follower ports are on different sides
of the continent, it might be better to introduce additional ports.

signment, but was not implemented so far as it was not needed in practice. More on
optimizing feed-throughs is discussed in Section 4.6.10.

Aligning subway sinks driven by equivalent net sources

Now, the connected components containing a net source are considered. Assume we have
an equivalence class of net sources {r0, . . . , rk}, where r0 lies inside the leader continent.
The connected components of the port graphs containing these sources are star-shaped
with the net sources as center and out-going edges to net sinks inside and subway sinks
leaving the respective reuse continent. In this scenario, the subway sinks need to be
equated.

In most cases, it is a good solution to simply delete the subway sinks of the follower
continents and adopt the subway sinks of the leader continent. However, this could force
large detours on paths starting at a follower’s source. In particular, this happens if the
leader continent has no port inside one of the precomputed port intervals. An example
for this is depicted in Figure 4.22. Here, two port intervals were computed due to the
fact that the reuse continents can be routed to from the west or east side. However, the
leader’s net only needs the east port interval as it has no sink on the west side. To avoid
these kinds of situations, additionally one follower port is used on each side on which
the leader does not have a port (if such a follower port exists). To minimize net length,
this port is chosen so that it minimizes its distance to the source.

As a variant, we can also enforce that each out-going port interval is routed to
by every continent. This is done by adding the port intervals as dummy sinks to the
associated nets. We need this later in Section 4.6.9, Algorithm 14.

Aligning subway sources driving equivalent net sinks

For equating connected components that contain net sinks but no net source, two steps
are necessary: The subway sources need to be aligned. This induces an equivalence
relation on them, enabling us to also align the subsequent subway sinks.

Note that a connected component of a port graph without a net source is also star-
shaped, with a subway source as its center and out-going edges to net sinks and subway
sinks. Here, we assume that the netlist is equivalence compliant, i.e. that two sinks inside
a reuse continent are in the same net if and only if the equivalent sinks inside equivalent
continents are in the same net. We revisit this definition in Section 4.6.8. Further, we
assume that the first routing pass fulfills the requirement that there is only one port
entering each continent that is connected to net sinks inside that continent. This makes
aligning the port graphs much simpler.
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For a deeper consideration on possible issues if this is not the case, have a look into
Section 4.6.8, specifically the examples in Figure 4.23 and Figure 4.24. So assuming the
connected component at hand is nice in the above sense, there is a connected port graph
component with an equivalent set of sinks for every equivalent continent. We mark the
subway sources of these connected components as equivalent and align the follower’s
subway sources with the leader. This can lead to large detours similarly to aligning
subway sinks. To see this, consider the example of Figure 4.22, but switch the roles of
source and sink. However, it is not feasible to introduce additional subway sources, as
this would create a multi-source net requiring significant changes to the logic.

Aligning subway sinks driven by equivalent subway sources

The last step is to align subway sinks whose predecessors are equivalent. This is done
the same way as aligning subway sinks driven by equivalent net sources. Potentially,
new subway sinks can be added to the leader in this case, as well.

4.6.7 Second routing pass

After applying the continent equivalence to the connected components of the port
graphs, a second routing pass is done. This routing pass gets the partial port graphs
adjusted as in Section 4.6.6 as replay input.

For simple instances, this is all that needs to be done and the result of the second
routing pass is legal and reuse-aware. However, many scenarios are possible in which
this routing has no feasible solution obeying the replay input. These are explored in the
following section.

4.6.8 Difficult and reuse incompatible input

In Pangea ReUse, there are some implicit requirements to the input. When the
continent layout or the netlist are not nice in some sense, it is not possible to fulfill all
Pangea ReUse constraints, even when neglecting wiring congestion. However, it is not
trivial to formulate necessary and sufficient conditions for an instance to be feasible.

This section compiles different examples of possible input to Pangea ReUse that
lead to problems. In doing so, we develop criteria for the netlist and continent placements
indicating the input is or is not reuse compatible. Such criteria can especially be useful
as a first check when trying to discern whether a specific design is eligible for using
the reuse mode of BonnPangea, or which changes need to be done to the netlist or
continent layout to make it eligible.

In this section, all figures abide by the following conventions.

• Continents are equivalent if and only if they have the same color.

• Equivalent continents are not rotated/mirrored unless indicated by the orientation
of a gray F-shape.

• Sources are depicted by red circles.

• Sinks are depicted by black squares.

• Ports are depicted by darkgreen squares.

• A net is depicted by dashed black lines from the source to each sink.

• Routes are represented by solid black lines.
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(a) Example for equivalent sources connected to
non-equivalent sinks.

(b) Solution for the netlist in Figure 4.23a. Two
nets leave a continent and then route back into it.

(c) Example netlist forcing reuse-aware routes to
enter a continent at least twice.

(d) Solution for the netlist shown in Figure 4.23c.
The right route enters the right red continent twice.

Figure 4.23: Examples of non-equivalent net connectivities and reuse-aware routings.

Bad continent border alignment

So that global routing and track assignment can work together cleanly with regards to
equivalent port positions, it is necessary that the tiling of the global routing graph is
identical within equivalent continents. This means that translating the area of a tile
inside a continent using the translation data must exactly give the area of another tile
inside the equivalent continent.

For a general continent placement, this is not easy to achieve, as proven in [Mun23].
However, practical instances mostly have equivalent continents aligned such that at least
one coordinate of a reuse continent is shared with an equivalent continent.

Different connectivities inside equivalent continents

So far, we assumed that the netlist induces equivalent constraints inside equivalent
continents. In practice, this condition might be partially violated. We now study netlists
which are problematic in this regard.

Figure 4.23a depicts an example in which equivalent sources must be connected
to non-equivalent sinks inside their own continent. At first glance, this already looks
infeasible. But there is a feasible solution (i.e. a reuse-aware routing), as shown in
Figure 4.23b. However, this solution (and every other) has large detours. In fact, it
is not possible to route the internal nets of the red continents within their respective
continent and remain reuse-aware.

As long as there is enough space outside of the reuse continents, every netlist can be
routed in a reuse-aware way by connecting the sources directly to subway sinks and the
sinks directly to subway sources. However, in addition to producing large detours, this
can violate the constraint of entering every continent only once. The instance shown in
Figure 4.23c is an example for this: While it can be routed, as depicted in Figure 4.23d,
there is no solution with only one ingoing port into the right-hand red continent, even
though the continent contains only one net.

Remark. Usually, the pangea flow ignores nets completely contained inside individual
continents. For simplicity, this detail is neglected in the examples of this section. To
make sure all nets cross a continent boundary, we could add an additional sink inside
the blue continent to every net in the examples of Figure 4.23.

71

fig:reuse_different_connectivity_insideA
fig:reuse_different_connectivity_insideC
fig:reuse_different_connectivity_insideA
fig:reuse_different_connectivity_insideB
fig:reuse_different_connectivity_insideC
fig:reuse_different_connectivity_insideD
fig:reuse_different_connectivity_inside
fig:reuse_different_connectivity_insideA
fig:reuse_different_connectivity_insideC
fig:reuse_different_connectivity_insideA
fig:reuse_different_connectivity_insideB
fig:reuse_different_connectivity_insideC
fig:reuse_different_connectivity_insideD
fig:reuse_different_connectivity_inside


(a) Example netlist that is not equivalence com-
pliant, but only weakly equivalence compliant.

(b) Reuse-aware routing for the netlist shown in
Figure 4.24a. All nets enter every continent at
most once.

Figure 4.24: Example of a netlist that is not equivalence compliant yet still allows for a
reuse-aware solution entering every continent at most once.

One possibility to avoid such input is to require the netlist to be identical within
equivalent continents.

Definition 4.13. Consider a netlist N and an equivalence relation on its pins ∼p

induced by the continent equivalence. Within each continent C, define an equivalence
relation ∼C on the sinks inside C by

s1 ∼C s2 ⇐⇒ ∃N ∈ N s1, s2 ∈ N .

We say that the netlist N is equivalence compliant if whenever we have equivalent
continents C and C ′ and sinks s1, s2 ∈ C, s′1, s

′
2 ∈ C ′ with s1 ∼p s′1, s2 ∼p s′2, we have

s1 ∼C s2 ⇐⇒ s′1 ∼C′ s′2.

For equivalence compliant netlists, it can never happen that a solution is forced to
enter a continent twice due to the reuse constraints (again assuming there is enough rout-
ing space outside of the reuse continents). However, being equivalence non-compliant
does not imply that all solutions enter a continent twice. An example for this can be
found in Figure 4.24.

Note that the reason there is a feasible solution for that instance is that the left sink
within each reuse continent is connected directly to the root within the same continent.
To formalize this, we need the following definition.

Definition 4.14. Call a sink s inside of a reuse continent an inner sink, if the root r
of s is inside the same continent as s, and for each equivalent sink s′ of s, the root of s′

is the pin equivalent to r inside the continent of s′.

Observe that whenever s is an inner sink, all sinks equivalent to s are also inner sinks.
For reuse-aware routings entering each continent at most once to exist, it is sufficient to
require equivalence compliance on sinks that are not inner.

Definition 4.15. Take N ,∼p and ∼C for each reuse continent C as in the definition
of equivalence compliance.

We say that the netlist N is weakly equivalence compliant if whenever we have
equivalent continents C and C ′ and sinks s1, s2 ∈ C, s′1, s

′
2 ∈ C ′ with s1 ∼p s′1, s2 ∼p s′2

and none of these sinks are inner sinks, we have

s1 ∼C s2 ⇐⇒ s′1 ∼C′ s′2.

Being weakly equivalence compliant now exactly characterizes a netlist allowing for
a routing that enters every continent at most once:
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Figure 4.25: Example world and netlist in which opposing ports of equivalent ports are not
equivalent. This instance has a feasible solution, but only by using two distinct subway sinks
inside each blue continent.

Theorem 4.16. Consider a netlist N . Assume the reuse continents are spread far
enough apart to allow for arbitrary routing connections in between. Then there exists
a reuse-aware routing entering every continent at most once if and only if N is weakly
equivalence compliant.

Proof. First assume there is such a routing. Take equivalent continents C and C ′ and
non-inner sinks s1, s2 ∈ C, s′1, s

′
2 ∈ C ′ with s1 ∼p s′1, s2 ∼p s′2. Observe that since the

sinks are not inner sinks, none of them are directly connected to a root within their
continent: Otherwise this would have to be true for all equivalent sinks, contradicting
the fact that they are not inner sinks by the reuse-awareness of the routing. Now if
s1 and s2 are inside the same net N , there is a single subway source connected to s1
and s2, whose equivalent subway source in C ′ witnesses s′1 ∼C′ s′2. This means that
s1 ∼C s2 ⇒ s′1 ∼C′ s′2. The analogous works for the other direction.

Now assume N is weakly equivalence compliant. Connect all inner sinks to the
respective roots within their continents. By the definition of inner sinks, this produces
a reuse-aware routing. For the rest, construct a single subway source pN,C for each net
N and each continent C in which N has sinks. Connect pN,C to all sinks of N inside
C. By weak equivalence compliance of the netlist, this construction is the same within
every equivalent continent. So the routing remains reuse-aware. This routing can be
extended without adding additional subway sources. Hence in the end, there is at most
one subway source entering each continent per net.

Shifted equivalent continents

In practice, neighboring continents are usually close enough together that no routing
is allowed along the gap in-between, see Section 4.4.1. As a result, ports connected
across this gap have to align perfectly. When there are multiple non-trivial continent
equivalence classes, this is cause for more difficulty.

It can happen that multiple subway sinks are needed even for two-terminal nets,
i.e. for nets with only a single sink. A simple example showcasing this can be found
in Figure 4.25. The upper continents are close enough to the lower continents so that
no horizontal routing is allowed in between. However, the right red continent is shifted
relative to the blue one, compared to the red and blue continents on the left. In the
routing shown on the right picture, two equivalent subway sources into the red continents
are depicted. They each align to a blue subway sink, but not to equivalent ones.

This is why, while such instances can have feasible solutions, it is much harder to
find them algorithmically. Further, the need for two subway sinks per blue continent
can lead to a significant increase in congestion and thus might lead to non-routability.
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Figure 4.26: Example where neighboring continents are equivalent. The left picture shows
the result of the first routing. The right picture shows the result of copying the leader port to
the follower. It also shows the necessary subway sinks opposite of the subway sources. One of
these subway sources (highlighted in orange) needs to be created inside the leader continent
(right blue).

Alignment function

To formalize the additional constraints posed by neighboring continents, we consider an
alignment function as additional input:

fopp :
⋃
C∈C

∂C →
⋃
C∈C

∂C ∪ {□}

fopp must satisfy fopp(fopp(a)) = a for all a ∈
⋃

C∈C ∂C with fopp(a) ̸= □. We interpret
fopp(a) = □ as meaning that there is no continent border opposite of the point a.
fopp(a) = b ∈

⋃
C∈C ∂C denotes that the point a lies opposite of the point b. This

implies the following.

a) A subway sink at position a has at most one child in a port graph. If the child is
a subway source, it must lie at position b.

b) If a subway source at position a has a predecessor subway sink, this sink must lie
at position b.

We call a pair of subway sink and subway source at positions a, b opposite ports if
fopp(a) = b and fopp(b) = a.

Equivalent neighboring continents

When equivalent continents are neighboring each other, copying port positions from the
leader to a follower can necessitate new ports in the leader continent.

An example is shown in Figure 4.26: When the leader’s subway source is copied to
the follower continent, we need to create the opposing port marked in orange. Otherwise,
the shown sink in the follower continent cannot be routed to at all. But this position
might already be occupied by another port.

This problem can be avoided by placing full blockages (on all layers) in between
equivalent continents. See Figure 4.27 for an example. But note that this can, by the
copying of blockages on equivalent continent borders (see Section 4.6.4), lead to drastic
restrictions of the routing space.

Equivalence compliance with respect to opposite ports

In the presence of constraints given by an alignment function, we need to extend the
notion of equivalence compliance of the netlist. Otherwise, there are instances without
feasible solution.
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Figure 4.27: Same instance as in Figure 4.26, but with additional blockages to prevent ports
between equivalent continents. The blockage between the right blue and the red continent
arises from the blockage copying covered in Section 4.6.4. The left picture shows the netlist,
the right picture shows a feasible solution.

r1

t1

r2

t2

r1

t1

r2

t2

Figure 4.28: Example in which the alignment constraints of opposing ports make the instance
infeasible. The example instance is shown on the left. No horizontal routing is allowed in
between the red and blue continents due to the border blockages. A partial solution is indicated
on the right: Two connected opposing subway ports are needed to route the net from r1 to
t1. Consider the equivalent subway ports on the right. If they are also connected (indicated in
orange), r2 is connected to t2. Otherwise, nothing can route to t2 at all. Both cases are not
feasible.

One example for this can be seen in Figure 4.28: Consider the leftmost net going
from r1 to t1. Although r1 and t1 are not in the same continent, every reuse-aware
routing connecting them also connects the equivalent pins r2 and t2 in the right red and
blue continents, or leaves t2 unconnected.

Nice instances

To summarize the conditions discussed above, we define when an instance is nice. An
instance being nice implies that

a) equivalent continents are not shifted relative to neighboring equivalent continents
(as in Figure 4.25),

b) equivalent continents at not neighboring according to fopp, and

c) scenarios as in Figure 4.28 are forbidden.

Definition 4.17. An instance of the Pangea ReUse routing problem (Section 4.6.1)
is a nice instance if the following holds.

a) Let a, b be geometrically equivalent border positions. Assume fopp(a) = a′ ̸= □
and fopp(b) = b′ ̸= □, and a′, b′ are inside the same non-trivial continent equivalent
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C1 C ′
1

C2 C ′
2

p1 p′1

p2 p′2

net net

equivalent

equivalent

Figure 4.29: Visualization of the third constraint in Definition 4.17. C1 has equivalent border
positions to C2 and C′

1 has equivalent border positions to C′
2. Therefore, the net from p1 to p2

implies the existence of a net from p′1 to p′2.

Figure 4.30: Example continent placement and netlist (left). A feasible routing is shown on
the right. The continent rows are close enough together that no horizontal routing is allowed
in between. Observe that there is no solution with only one subway sink per continent, even
though this is a nice instance.

class. Then the positions a′, b′ are in distinct continents and also geometrically
equivalent.

b) For equivalent continents C1 and C2, there are no border positions a ∈ ∂C1 and
b ∈ ∂C2 with fopp(a) = b.

c) For pairs of equivalent continents C1, C
′
1 and C2, C

′
2 such that C1 has opposite

border positions to C2 and C ′
1 has opposite border positions to C ′

2, we have the
following (see also Figure 4.29). A net with a pin p1 in C1 and another pin p2 in
C2 implies the existence of a net containing the equivalent pin to p1 in C ′

1 and the
equivalent pin to p2 in C ′

2.

Consider the world and netlist shown on the left in Figure 4.30. This is a nice instance
as defined above. A feasible reuse routing is depicted on the right in Figure 4.30. But
this solution cannot be found by the algorithms considered so far. A visualization of
what goes wrong with the simple leader-follower approach can be found in Figure 4.31:
In the first routing pass, connected ports are opposing correctly. But after copying port
positions from leader to follower, the resulting ports do not align. So no feasible replay
routing exists.

Observe that no choice of leader continents leads to such a routing being computed
in the 2-pass routing flow: By symmetry, we can assume without loss of generality that
the left blue continent is the blue leader. If the left red continent is the red leader, the
port positions between the blue and red continents of the left-most two nets are copied
over to the middle and right nets. However, the port positions of the green continents
depend on those computed for the green leader and do not necessarily match up with
the blue and red ones. On the other hand, when the right red continent is chosen as
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Figure 4.31: An example where the pure leader-follower approach with two routing passes
does not suffice when considering alignment of opposite ports. The left picture shows the first
routing. The right picture shows the result of copying leader ports and their connections over
to the respective follower continents. Non-opposite ports needing to be connected are marked
with a red arrow. Correctly opposing ports are connected with a green arrow.

the red leader, the port positions of the red leader are copied onto the red follower on
the left. They, in turn, do not necessarily match up with the port positions in the blue
leader on the left. This poses a problem even in the scenario where multiple outgoing
ports are allowed on the same side of a continent.

The following section presents an improvement upon the 2-pass routing. The re-
sulting algorithm can solve such instances taking the alignment of opposing ports into
account.

Remark. Consider the case where the top and bottom continent rows are touching in
vertical direction in the instance of Figure 4.30. Then ports of the same x-coordinate on
the abutted continent borders are connected automatically. In this case, the depicted
netlist does not allow for any reuse routing at all:

The sinks in the green continents must be connected via equivalent subway sources.
The position of this subway source forces the subway sinks of the corresponding nets
in the right red and blue continents to be at the very same location. Now consider the
equivalent subway sinks in the equivalent left red and blue continents. They have the
same x-coordinate, hence they, and their routing, connect the two left-most net sources.
This is not allowed. Examples like this are one reason why non-abutting continents
might be advantageous in practice.

4.6.9 Alignment of opposite ports

As discussed in the previous section, opposite ports of neighboring continents have to
align perfectly. In the standard pangea mode, the routing makes sure of this automati-
cally. However, in the reuse flow, port positions are not only given directly by routing
segments, but also by port positions of leader continents. Hence we need to consider port
alignment explicitly. A visualization of what can happen otherwise was already shown
in Figure 4.31. This section presents a multi-pass algorithm computing a reuse-aware
routing that obeys given alignment constraints.

To find such a routing solution, we need to handle subway sources and subway
sinks differently. This is because we might need to create multiple subway sinks (see
Figure 4.30), while having multiple subway sources is infeasible.

We use the concept of a port reservation, which contains the same information as
a subway source and is associated with a net. We say that a routing respects a given
port reservation p associated with a net N if no wire belonging to a different net than
N entering the continent of p is placed overlapping p (respecting spacing as if p were
a subway source). This implies that no subway source of a different net created from
the routing will be in conflict with the subway source induced by the port reservation.
Wiring of the associated net is allowed to overlap, as well as all wiring leaving the
continent.
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Figure 4.32: Example scenario of a blocked subway source. The left picture shows the netlist.
The right picture shows possible port positions creating a conflict. The subway sink in the blue
continent prevents all routing to the subway source in the red continent.

Algorithm 14: Refined reuse flow

Input: An instance of the Pangea ReUse routing problem and an
alignment function fopp.

1 run a routing pass, store resulting port graphs in R
2 Rreuse ← empty set of port graphs
3 Q← empty set of port reservations
4 while R not reuse-aware do
5 pick continent equivalence class C for which R is not reuse-aware and that

was not chosen before

6 align ports in C according to leader (Algorithm 13) and add result to Rreuse

7 foreach added subway source p in Line 6 with fopp(π(p)) ̸= □ do
8 add subway sink p′ at fopp(π(p)) and edge (p′, p) to Rreuse

9 if port graph has subway/net source s in continent of p′ then
10 add edge (s, p′) to Rreuse

11 copy new subway sink p′ to equivalent continents (Algorithm 15)

12 foreach added subway sink p in Line 6, 8 or 11 with fopp(π(p)) ̸= □ do
13 if there is no subway port in Rreuse at fopp(π(p)) then
14 add port reservation p′ at fopp(π(p)) to Q
15 copy port reservation p′ to equivalent continents (Algorithm 16)

16 run a replay routing pass w.r.t. Rreuse respecting Q, store resulting port
graphs in R

We say that a routing respects a set of port reservations if it respects all port reserva-
tions in that set. Similarly, we say that a set of ports respects a set of port reservations
if there is no subway source of a different net at the same position as a port reservation
(or illegal due to spacing constraints).

These port reservations make sure that the access to a subway source is not blocked
by a subway sink of a different net. This would lead to problems as it would prevent
any routing going to the subway source. And since sinks can only be connected to one
subway source, a configuration like this (also shown in Figure 4.32) would directly lead
to a conflict.

Note that the replay mode of Section 4.5 can easily be adapted to compute routings
respecting a given set of port reservations by modifying the track assignment: When
adding a high penalty cost to forbidden tracks, wires are assigned to a different track.

Additionally, it is beneficial to count port reservations as routing usage during re-
source sharing. Otherwise, the congestion estimates are too optimistic and track assign-
ment might not find a feasible solution.
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Algorithm 15: Copying subway sinks to equivalent continents

Input: A subway sink p in continent C with associated net N and Rreuse.
1 t← a terminal of N in C
2 foreach C ′ ̸= C equivalent to C do
3 π′ ← translation of π(p) from C to C ′

4 t′ ← equivalent terminal to t in C ′

5 add a subway sink p′ at π′ to port graph G of the net of t′ in Rreuse

6 if G has subway/net source s in C ′ then
7 add edge (s, p′) to G in Rreuse

Algorithm 16: Copying port reservations to equivalent continents

Input: A port reservation p in continent C with associated net N and Q.
1 t← a terminal of N in C
2 foreach C ′ ̸= C equivalent to C do
3 π′ ← translation of π(p) from C to C ′

4 t′ ← equivalent terminal to t in C ′

5 add port reservation at π′ associated with the net of t′ to Q

A refined reuse flow

The algorithm considered in this section aims to solve instances with complex inter-
continent dependencies given by continent equivalence and an alignment function fopp.
In the investigation of this algorithm, we assume for simplicity that no feed-throughs
(see also Section 4.6.10) occur, i.e. that routes only enter continents in which they
connect to terminals. This can be achieved by inserting buffers sub-dividing nets with
feed-throughs in an initial (non-reuse) routing pass. Further, we assume that there are
no terminals in between continents whose ports are opposite of each other according to
fopp. Such pins can be temporarily moved into one of the adjacent continents. Also, we
use the notation π(p) to denote the position of a subway port or port reservation p.

Consider Algorithm 14. We start with a first routing pass (Line 1), including the
computation of port intervals and equivalent continent border blockages (Sections 4.6.3
and 4.6.4). Here, we make sure that all out-going port intervals are used, i.e. a subway
sink is created inside every port interval during port cutting. This means that routes
may contain antennas ending in a subway sink. The resulting port graphs of this routing
pass are stored in the set R. We also initialize empty sets Rreuse and Q (Lines 2 and
3). These later store port graphs and port reservations.

Starting from Line 4, we iterate the following until the port graphs in R are reuse-
aware. A continent equivalence class C for which R is not yet reuse-aware is chosen
that was not considered before (Line 5). The ports in C are aligned according to the
leader continent and the result is added to Rreuse (Line 6). This is done as described in
Algorithm 13.

Afterwards, the following alterations are done to the port graphs in Rreuse: In
Lines 7-11, we consider each subway source p with fopp(π(p)) ̸= □ added in the previous
execution of Line 6. The induced opposing subway sink p′ is added at fopp(π(p)) and
connected via the edge (p′, p). If the port graph of p contains a source (net source or
subway source) s in the same continent as p′, also the edge (s, p′) is added. The newly
added subway sinks and edges are translated to the equivalent continents and also added
to Rreuse, see Algorithm 15 (next sub-section).

In Lines 12-15, we consider each subway sink p with fopp(π(p)) ̸= □ that we added

79

sec:reusing_feed_throughs
algo:reuse_flow_refined
sec:reuse_port_intervals
sec:reuse_blockages
algo:apply_equivalence
algo:copy_subway_sink
sec:reusing_feed_throughs
algo:reuse_flow_refined
sec:reuse_port_intervals
sec:reuse_blockages
algo:apply_equivalence
algo:copy_subway_sink


in one of the previous steps of this iteration. If there is no subway port already at
fopp(π(p)), we add a port reservation p′ at fopp(π(p)) to Q and translate it to the
equivalent continents (Algorithm 16, next sub-section). The translated port reservations
are also added to Q. Note that we may add overlapping port reservations here.

Finally, a replay routing with respect to Rreuse and respecting Q is computed and the
resulting port graphs are again stored in R (Line 16). If R is not reuse-aware, we repeat
the process starting again from Line 5. The final routing pass, leading to reuse-aware
port graphs, yields the desired result.

The difference in dealing with subway sinks and subway sources comes from the fact
that actual induced ports are only added in “reverse” direction, i.e. only induced subway
sinks are added to existing subway sources. Induced subway sources of existing subway
sinks are added only as port reservations.

Copying ports and sinks to equivalent continents

In Algorithm 15, a given subway sink p in a continent C and belonging to net N is
copied to equivalent continents. In Line 1, we fix an arbitrary terminal t of N inside
C. Here, we use the assumption that no feed-throughs occur, i.e. that the net N does
indeed have a terminal inside C. Then, we consider each equivalent continent C ′ to C.
We translate π(p) into the equivalent continents of C and call this π′ (Line 3). We take
the terminal equivalent to t in C ′ and call this t′ (Line 4). Now we add a subway sink at
π′ to the port graph in Rreuse belonging to the net of t′ (Line 5). Finally, we potentially
add an incoming edge to the new subway sink (Lines 6 and 7).

Algorithm 16 does the same thing in copying port reservations to equivalent conti-
nents. Only here, no edge can be added.

The algorithm on an example instance

It is worthwhile to explore this algorithm on a more complex example instance. Have a
look at Figure 4.33.

a) The given world contains three pairs of equivalent continents, arranged in three
columns as depicted. The bottom row is mirrored on the x-axis compared to
the top row. Each continent contains two sources and two sinks, each contained
in a net together with a sink/source of the other continent in the same column.
The nets are indicated by the dashed lines. Ports between the upper and lower
continent of a column must align.

b) After the first routing pass, the routing is not reuse-aware. Every net contains
exactly one subway sink and one subway source.

c) The blue equivalence class is chosen in the first iteration. The top left blue con-
tinent is the blue leader. The port graph parts of the blue leader are copied into
the blue follower.

d) Subway sinks opposite of the blue subway sources are created in the red and green
continents. They are connected to their respective subway sinks and net sources.
The subway sinks and their adjacent edges in the red and green continents are
then copied into the equivalent red and green continent.

e) Port reservations (orange) in the red and green continents are added to Q for every
subway sink in a blue continent. This is done equivalently on both red and green
continents. Dashed orange lines connect port reservations to the ports/terminals
they belong to. The new red and green subway sinks in the center column do not
lead to new port reservations, because there already are ports opposite of them.
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a) Given world and netlist: b) First routing pass:

c) Equate blue by leader: d) Add induced red&green subway sinks and edges:

e) Add red&green port reservations: f) Second routing pass:

g) Equate green by leader: h) Add induced blue&red subway sinks and edges:

i) No additional port reservations needed: j) Third routing pass:

Figure 4.33: Algorithm 14 conducted on an example instance. Most pictures show the port
graphs stored in Rreuse (dotted lines for existing edges, green lines for newly added edges) and
the port reservations in Q (orange, dashed orange lines indicate the associated net). Picture
a) shows the netlist, dashed lines represent nets. Pictures b), f) and j) show the results of the
routing passes (solid lines).

81

algo:reuse_flow_refined
algo:reuse_flow_refined


f) The second routing is done replaying the port graphs and respecting the port
reservations depicted in e). The nets in the center column now each contain two
subway sinks.

g) In the second iteration, the green continents are chosen. Ports are aligned accord-
ing to the green leader (lower left green continent).

h) Subway sinks opposite of green subway sources are created in the red and blue
continents. They are connected to their respective net sources and green subway
sources. The new subway sinks and edges are copied to the equivalent red and
blue continents.

i) No port reservations are added, because all newly created subway sinks are already
opposite of a subway port or port reservation.

j) After the third routing pass, the port graphs are reuse-aware. The red continent
does not need to be aligned explicitly in this case.

Correctness of Algorithm 14

We now prove that on nice instances (see Definition 4.17), Algorithm 14 computes reuse-
aware solutions obeying the restrictions given by an alignment function. We neglect the
wire types of individual ports. This is because, by the nature of the algorithm, we
can already identify subway sinks or subway sources when they have identical positions
(including the layer) and belong to the same net.

We start with some observations.

Proposition 4.18. Rreuse and Q are reuse-aware at the start of Lines 12 and 16 in
every iteration.

Proof. Rreuse only contains ports aligned in Line 6, which are reuse-aware, and subway
sinks added in the first for-loop, which are made reuse-aware by Line 11. Q only contains
port reservations which are made reuse-aware by Line 15.

Proposition 4.19. At the end of every while-loop-iteration, the following holds.

1. For every subway source p in Rreuse with fopp(π(p)) ̸= □, there is a subway sink
p′ in Rreuse at fopp(π(p)) and an edge (p′, p).

2. For every subway sink p in Rreuse with fopp(π(p)) ̸= □, there is either

a) a subway source p′ in Rreuse at fopp(π(p)) and an edge (p, p′), or

b) a subway sink in Rreuse at fopp(π(p)), or

c) a port reservation in Q at fopp(π(p)).

Proof. 1. Let p be a subway source in Rreuse with fopp(π(p)) ̸= □. p was added to
Rreuse in Line 6 of some iteration i. In that iteration, p is considered in the first
for-loop, and a subway sink p′ at fopp(π(p)) with an edge (p′, p) is added to Rreuse

in Line 8. We never remove ports or edges from Rreuse.

2. Let p be a subway sink in Rreuse with fopp(π(p)) ̸= □. p is considered in the second
for-loop of the while-loop-iteration in which it was added to Rreuse. If there is
no subway port or port reservation at fopp(π(p)) at that point, a port reservation
is created and never removed. If there is a subway source at fopp(π(p)), p was
created in Line 8 and is hence connected to the subway source at fopp(π(p)).
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We can now show that Line 6 does not create conflicts.

Lemma 4.20. Consider an iteration of the while-loop. Let p be in the result of aligning
ports according to the leader (Line 6). Then p was either already contained in Rreuse

before Line 6, or there was no port in Rreuse at the same position.

Proof. Let P be the result of aligning ports according to the leader.
A subway port p ∈ P in the leader continent comes from the previous routing pass.

But the previous routing pass replays Rreuse, so either there is no subway port at π(p)
in Rreuse, or Rreuse already contains p as claimed.

A subway port p ∈ P in a follower continent comes from an equivalent port pL in
the leader. Assume that there is a subway port p′ in Rreuse at π(p). Using that Rreuse

is reuse-aware, let p′L be the equivalent port to p′ in the leader. By the above, we know
that p′L = pL. Now by equivalence, we have p′ = p.

Lemma 4.21. Whenever a subway port is added to Rreuse, it respects Q.

Proof. Subway sinks always respect port reservations and subway sources are only added
to Rreuse in Line 6. So consider a subway source p added to Rreuse in Line 6. If
p is in a leader continent, it respects Q because the routing respects Q. If p is in a
follower continent, it respects Q because Q is equivalent within equivalent continents
(Proposition 4.18): If p did not respect a port reservation q, then the equivalent port to
p in the leader did not respect the equivalent port to q in the leader.

Next, we show that Line 8 does not create a conflict.

Lemma 4.22. Assuming the instance is nice (Definition 4.17), we have the following.
Consider an iteration of the first for-loop where we consider a subway source p. Before
the execution of Line 8, Rreuse either already contains a subway sink at fopp(π(p))
belonging to the same net as p, or it contains no subway port at fopp(π(p)).

Proof. Let p be a subway source as in Line 7. Assume there already is a port p′ at
fopp(π(p)) ̸= □ in Rreuse before the execution of Line 8. We want to show that p′ is a
subway sink and that p and p′ belong to the same net.

Call the current while-loop iteration i. p′ was not created in Line 6 of iteration i,
because p′ does not belong to a continent in C by Definition 4.17 b). So either p′ was in
Rreuse already at the start of i, or it was added to Rreuse in a previous iteration of the
first for-loop.

Case 1: p′ was in Rreuse already at the start of i:
Assume p′ is a subway source. Then by Proposition 4.19, there was already a subway
sink at π(p) at the start of i. Contradiction to Lemma 4.20, because p is a subway
source. So p′ is a subway sink.

Let j be the while-loop iteration when p′ was added to Rreuse. In j, a port reservation
at π(p) = fopp(π(p′)) associated with the net of p′ was added to Q, or there already was
a subway port at π(p). But there was no subway port at π(p), because there was still no
subway port at π(p) at the beginning of iteration i. This is because p was newly added
in iteration i. So in iteration i there is a port reservation q associated with the net of p′

at π(p).
By Lemma 4.21, p respects q. Because p is a subway source, it must be of the same

net as q, and thus as p′.
Case 2: p′ was added to Rreuse in a previous iteration of the for-loop:

Call the for-loop-iteration in which p′ was added j1. Call the current for-loop-iteration
j2. p′ is a subway sink, because no subway sources are added to Rreuse in the for-loop.
If p′ was added in Line 8 of j1, then j1 also considered a subway source at the position
fopp(π(p′)) = π(p), contradiction. So p′ was added in Line 11 of j1.
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Let p̃′ be the subway sink added to Rreuse in Line 8 of iteration j1. Then p′ is
equivalent to p̃′. Let p̃ be the subway source with fopp(π(p̃)) ̸= □ considered in j1.
Then fopp(π(p̃)) = π(p̃′). This configuration is shown here:

p

p′

p̃

p̃′

As Line 6 only adds ports in one continent equivalence class to Rreuse, p̃ and p are
ports in the same continent equivalence class. Now we can use the fact that we have a
nice instance to see that p̃ and p are equivalent (requirement a) in Definition 4.17).

We can now apply requirement c) in Definition 4.17) to a terminal t̃ connected to p̃
and a terminal t̃′ connected to p̃′. We get that p and p′ are in the same net as claimed.
Here, we used the fact that the instances we consider do not have feed-throughs, i.e.
that terminals exist in every continent relevant for a net.

Similarly, Line 11 does not create a conflict.

Lemma 4.23. Consider an iteration of the first for-loop where we add a subway sink
p′ in Line 8. Assume there already exists a subway port p̃′ with π(p̃′) equivalent to π(p′)
before the execution of Line 11. Then p̃′ is a subway sink and belongs to the net that
Algorithm 15 creates the subway sink at π(p̃′) for.

Proof. Consider an iteration i of the first for-loop. Let p′ be the subway sink from Line 8
of iteration i in some continent C.

Assume p′ did not exist before Line 8. Then it did not exist at the end of the last
while-loop-iteration (no ports are removed). By Proposition 4.18, there is also no port
at an equivalent position to π(p′) in Rreuse. Contradiction to the assumption of the
lemma.

So p′ already existed before the execution of Line 8. p′ was either added to Rreuse

in a previous while-loop-iteration, or it was added in the same while-loop-iteration but
in a previous iteration of the for-loop.

Case 1: p′ was added to Rreuse in a previous while-loop-iteration:
At the end of that while-loop-iteration, Rreuse was reuse-aware by Proposition 4.18.
This means that Rreuse contains equivalent subway sinks to p′. By their equivalence,
they belong to the same nets as considered in Algorithm 15.

Case 2: p′ was added to Rreuse in a previous iteration of the for-loop:
Call the for-loop-iteration in which p′ was added iteration j. As in Case 2 in the proof
of Lemma 4.22, p′ must be a subway sink and was added in Line 11. Iteration j also
added equivalent subway sinks using Algorithm 15. By the definition of Algorithm 15,
they respectively belong to the correct nets.

Finally, Lines 14 and 15 do not create a conflict.

Lemma 4.24. Whenever a port reservation is added to Q (in Lines 14 and 15), all
ports in Rreuse at that time already respect it.

Proof. In Line 14, we only add a port reservation p′ at fopp(π(p)) if there is no subway
port or port reservation at that position before. Hence p′ is respected automatically.

By Proposition 4.18, there is also no subway port at a position that is equivalent to
fopp(π(p)). So the port reservations added by Line 15 are also respected.
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The previous statements together show that, in each routing pass of Line 16, it is
possible to fully replay Rreuse and respect the port reservations in Q. We can finally
state:

Theorem 4.25. Given a nice instance (Definition 4.17) and assuming each routing
pass finds a solution using at most one port per port interval, Algorithm 14 terminates
using at most k + 1 routing passes. Here, k denotes the number of non-trivial continent
equivalence classes. Further, at the end R is reuse-aware for all continent equivalence
classes and obeys the restrictions imposed by fopp.

Proof. Under the above assumptions, we show that Algorithm 14 terminates after at
most k iterations of the while-loop. Together with Line 1, this gives at most k + 1
routing passes.

So let us show that R is reuse-aware after the while-loop was executed for every
non-trivial continent equivalence class. Assume that, at the end of the k-th while-
loop-iteration, R contains a subway port p in some continent C that does not exist
equivalently in an equivalent continent C ′.

Because Rreuse is reuse-aware (Proposition 4.18), we know that p is not contained in
Rreuse. By assumption, we know that p is the only subway port inside its port interval.
But when Algorithm 13 was executed for the equivalence class of C and C ′, equivalent
subway ports inside this port interval and its equivalent intervals were added to Rreuse.
Contradiction.

Considering independent continent equivalent classes simultaneously

Algorithm 14 considers each continent equivalence class separately. This makes the
analysis simpler, but takes more iterations than strictly necessary. Continent equivalence
classes that are independent enough can be dealt with in the same iteration of the while-
loop. So let us investigate what independent means here.

For a continent equivalence class C, let D(C) be a set containing the following con-
tinents:

a) continents in C,

b) continents neighboring a continent in C and

c) continents equivalent to a continent satisfying b).

In a while-loop iteration in Algorithm 14 where a continent equivalence class C is
considered, all ports and port reservations added to Rreuse or Q are contained in a
continent in D(C). No ports or port reservations inside other continents are created.
This leads to the following definition.

Definition 4.26. Continent equivalence classes C1 ̸= C2 are independent if D(C1) and
D(C2) are disjoint.

The following observation justifies this definition.

Proposition 4.27. Consider independent continent equivalence classes C1 ̸= C2. As-
sume that in some while-loop iteration i of Algorithm 14, C1 was picked in Line 5. Let
W denote the routing solution computed directly before that (either in Line 1 or Line 16
of the previous while-loop iteration).

Then the wire segments of W that are inside C2 do not conflict with Rreuse or Q at
the end of iteration i.
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Figure 4.34: Example routing solution with copied feed-throughs (left) versus one reused
feed-through (right). The blue and red continents are equivalent.

Proof. As C1 and C2 are independent and distinct, no ports or port reservations in C2
were created in iteration i. All ports or port reservations already present before iteration
i are respected by the routing.

In Algorithm 14, the operations inside one iteration of the while-loop do not depend
on anything outside of the considered continent equivalence class. Together with the
previous proposition, we can conclude: When considering several pairwise independent
continent equivalence classes in each while-loop iteration, Theorem 4.25 still holds.

4.6.10 Reusing feed-throughs

In general, some nets need to be routed through a reuse continent C without connecting
to a terminal inside C. In these cases, the connected component of the port graph
(or wiring) inside C is called a feed-through. In this section, we consider feed-throughs
with one sink, i.e. a segment going from a subway source to a single subway sink inside
the same continent. However, everything can be extended to deal with multi-fanout
feed-throughs as well.

When multiple equivalent continents contain feed-throughs after the first routing,
Algorithm 13 copies each of them into each equivalent continent. This results in much
dead wiring: Every feed-through is used only in one continent. Its copies are left un-
connected.

However, when feed-throughs of equivalent continents are similar, they can be used
to implement different connections. A simple example of the result of copying feed-
throughs versus reusing them is depicted in Figure 4.34. This section explores how
copying feed-throughs can be avoided while not impacting path lengths too much.

This topic is discussed in a more abstract way in [Mun23]. The author shows that
several formulations of the problem are NP-hard to solve optimally via a reduction
from 3D-matching. Additionally, Mundt gives a polynomial time algorithm for solving
a specific simplified version with two equivalent continents as well as an approximation
algorithm for more continents using submodular function maximization. In contrast,
here we consider how good solutions can be found in practice as part of the existing
Pangea ReUse flow.

Two equivalent continents

If there are only two equivalent continents, we can provide a flexible framework that
models reusing feed-throughs and allows for optimal solutions in polynomial time. This
approach is similar to the algorithm in [Mun23]. Both are based on bipartite matching.
However our new algorithm can solve more general instances compared to the one in
[Mun23].

We consider the following setting. Of all given continents C, only the continents
A,B ∈ C are equivalent. Further, we ran a first routing pass such that port graphs are
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Figure 4.35: Example routing (left) and corresponding bipartite feed-through graph with
minimum-cost perfect matching (right). The continents A and B are equivalent. The colored
vertices correspond to the feed-throughs of the same color. The gray vertices are dummy
vertices. The edge weight is denoted next to the edges. Here we say that the length of the
feed-throughs is l. The distance of the blue and red feed-throughs is d. The matching edges
are shown in purple.

given for all nets. We assume a full routing to be given as it is not clear a priori which
nets need feed-throughs through which continents.

Remark. Multiple pairs of equivalent continents can be considered easily as long as port
positions of one pair do not influence the feasibility of port positions on another pair,
see Definition 4.26.

We now construct a weighted bipartite graph (G = A′ ∪ B′ ∪ D,E, c) as follows.
The structure of G for an example setting is shown in Figure 4.35. For every single-sink
feed-through in A, there is a vertex in A′ and similar for B and B′. Additionally, there
are |A′|+ |B′| (dummy) vertices in D. These represent copying a feed-through instead
of reusing it.

The edge set E is constructed as follows. For any pair of feed-throughs a in A and
b in B, add an edge between the corresponding vertices if and only if it is feasible to
reuse one of them to replace the other. Say it is cheaper to copy a into B and remove b
than the other way around. Then the weight c(e) of this edge is given by

c(e) := added-detour-cost + routing-cost(a)− routing-cost(b),

where added-detour-cost represents the cost of the added detour when using the copy
of a in B instead of the original segment b for the net through B.

A simple estimation for the detour cost is to take the summed up distance between
the start and endpoints of a and b (after transforming them to one continent). This
would represent routing from the previous port position to the new one, traverse the
continent via the copied feed-through and then route back. The situation described here
is depicted in Figure 4.36 with large detour for clarity.

In addition to these edges, connect each vertex in A′ ∪B′ to a distinct vertex in D.
Such an edge e connected to a feed-through f has the cost

c(e) := copying-cost(f).

This can simply be the routing cost associated with the feed-through.
Finally, connect every dummy vertex connected to some vertex in A′ to all dummy

vertices connected to vertices in B′ and vice versa. These edges have cost 0.
Note that this graph is in fact bipartite and allows for a perfect matching by using

the edges between dummy vertices and vertices in A′ ∪ B′. Furthermore, each perfect
matching corresponds to a choice of reusing some feed-throughs and copying the rest,
and of the same cost:

An edge between vertices corresponding to feed-throughs a in A and b in B represents
using one of these feed-throughs for both connections and removing the other one.
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Figure 4.36: Routes representing the upper-bound cost for reusing a feed-through. When
using the copied blue feed-through instead of the green one, the additional cost of the summed
distances of the start and end points is justified by the possibility to route to and from the
copied blue feed-through as shown.

An edge between a feed-through vertex and a dummy vertex represents that the feed-
through in question is copied into the equivalent continent. Lastly, the edges between
dummy vertices make sure we indeed have a perfect matching.

In the constructed graph, we can compute a minimum-cost perfect matching in
polynomial time. The matching can then be translated back into partial port graphs.

Remark. To avoid overlapping ports, modify all ports in the solution to be port intervals
instead. If the intervals are large enough, the router can find feasible positions for
previously overlapping ports.

More than two equivalent continents

When there are more than two continents in one equivalence class, an analogous con-
struction can be done. However, already for three equivalent continents, the problem to
be solved is 3-dimensional matching. In general, for k equivalent continents, we need to
compute vertex clusters of size k. Assuming P̸=NP, this cannot be solved in polynomial
time. Instead, we propose a greedy algorithm described in this section to be used in
practice for these cases.

We use the following metrics to measure the quality of a given clustering of feed-
throughs. First, define a cluster to be a set of feed-throughs in one continent equivalence
class that contains at most one feed-through in each continent. Note that it is allowed
to have a cluster with fewer feed-throughs then the number of continents in the given
equivalence class. For a cluster A, the cluster lead denoted by lead(A) is the feed-
through that is picked to be used for all connections. This can be chosen to be a
feed-through close to the center of all feed-throughs in A, or simply the feed-through
through the leader continent. Further, the cluster value denoted by v(A) is the saved
routing cost when using the copied cluster lead for all connections in the given cluster,
compared to copying all feed-throughs. The cluster value is composed of k times the
routing cost for every non-lead feed-through in the cluster, where k is the number of
equivalent continents, minus the distances of the start and end points of lead(A) to the
other feed-throughs:

v(A) :=
∑

a∈A\{lead(A)}

k · cost(a)

− dist(lead(A)(start), a(start))

− dist(lead(A)(end), a(end)).

Remark. Whenever we speak of a position of a feed-through (or its start/end point),
we mean the relative position within its continent. In particular, the distance between
feed-throughs through different equivalent continents is to be taken after applying the
continent transformations accordingly.

88



As ground set, the algorithm uses all single-sink feed-throughs through one of the
continents in the equivalence class. Clusters are built up greedily. While there are
still un-clustered feed-throughs, pick one with largest cost and call it a. For every
equivalent continent, pick a feed-through whose start and end points are closest to a.
For a continent for which there are no feed-throughs with close enough start and end
points, pick no feed-through. Put the found feed-throughs into a cluster and choose a
cluster lead maximizing the cluster value.

In practice, the criterion of close enough start and end points can be extended to
having the same wire type. Further post-optimizations can be implemented, such as
local optimizations or a chain-opt algorithm.

The final solution is then translated back to partial port graphs. Ports might need
to be extended to port intervals to guarantee feasibility as above.

4.6.11 Pangea reuse in practice

The Pangea ReUse flow was first developed specifically to be used for a large design
containing one continent four times. By aligning the equivalent continents, the total
number could be reduced from 8 down to 5 continents. Compared to manually equating
the four equivalent continents, the Pangea ReUse flow reduces the time needed for
one design cycle from about 2 weeks down to 3-4 days. This is a huge improvement.

Going forward, the reuse mode enables BonnPangea to be used for more designs
by reducing the number of continents.
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Chapter 5

BonnRouteBuffer

Alongside the ongoing development of BonnPangea, the author of this thesis has been
working on improving the practical application of BonnRouteBuffer. Because long
wire segments lead to large signal delays and can cause slew or load violations, it is
necessary to break up such wiring into smaller segments. This is done by buffering, the
process of inserting repeaters (buffers and inverters) on a chip to subdivide nets. As the
name suggests, BonnRouteBuffer does not only do that, but also routes the nets.
This makes sure good repeater positions can be chosen and allows for a much improved
timing analysis compared to placing repeaters only based on pin positions.

In the sections of this chapter, first the workings of the previously existing version of
BonnRouteBuffer are outlined. There we see which alterations to the resource shar-
ing framework doing global routing are necessary (Section 5.1) and give a brief overview
how the net customer oracle performs the actual buffering (Section 5.2). Afterwards,
we highlight some problems in the previous implementation of BonnRouteBuffer
and the improvements done during the work on this thesis (Section 5.3). Finally, we
experimentally compare the new version of BonnRouteBuffer to the old version as
well as to the industrial competition in use by IBM today (Section 5.4).

We close with a discussion of possible future work items proposed by the author
(Section 5.5).

5.1 BonnRouteBuffer in resource sharing

BonnRouteBuffer is implemented using the resource sharing framework and can be
thought of as an extension to global routing as presented in Section 2.4. Within resource
sharing, additional resources are incorporated to account not only for net length and
wiring congestion, but also timing, placement density and power consumption. This is
also outlined in Section 2.4.

Compared to global routing, the two main differences are collecting the nets and the
oracle used for the net customers. In normal global routing, a net starts at the output
of some gate and has the successor gates’ inputs as sinks. During buffering, all repeaters
not fixed in place by the user are skipped in this process, as the buffering inserts new
repeaters from scratch. This means that when collecting the instances, repeaters that
BonnRouteBuffer is allowed to remove are treated the same as a piece of wire.

During this process, sinks with an odd number of inverters on the path from their
source are marked as invert. A buffering solution must also have an odd number of
inverters on the path from the source to these sinks.

The oracle for net customers is similar to the one presented in Section 3.1. First,
a 2-dimensional topology is computed on the source and sink positions. Here, length
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and delay are taken into account. The default algorithm used for this is the bi-criteria
algorithm (without bifurcation delay) from Section 3.2.2. Afterwards, the topology is
embedded into the global routing graph. The embedding takes into account estimations
for power and placement costs of the subsequent buffering. It uses a linear timing model.

After the route is computed, repeaters are inserted along the wiring. This is done
via a dynamic program going bottom-up from the sinks to the source. This algorithm
is presented briefly in the following section.

5.2 Dynamic program for buffering

The core of BonnRouteBuffer is a dynamic program traversing a route in reverse
topological order. This section provides enough information to understand the subse-
quent modifications and improvements to BonnRouteBuffer. More details can be
found in [Rot17], [Dab21] and [Dab+23]. In particular, we will not consider the option
of changing the topology during buffering. This was first described in [Bar+09] and is
also part of the BonnRouteBuffer buffering oracle.

The dynamic program creates labels at each node of the global route. A label
represents a buffering of the sub-tree rooted at that label’s node. Put formally, a label
l consists of the following:

• a node v(l) of the global route,

• a position pos(l) on the incoming edge of v(l),

• a polarity pol(l) ∈ {ident, invert},

• a value rep(l) ∈ repeater-set ∪ {□} representing the repeater to be inserted at
that position (□ indicating no repeater),

• a capacitance value cap(l),

• a slew limit slew-limit(l),

• a predecessor label pred(l) (can be None),

• and costs cost(l)

A simplified account of the label propagation is as follows. For each sink t, a label l
is created with v(l), pos(l), pol(l) and slew-limit(l) being the respective properties of t,
and further rep(l) = □, cap(l) = input-cap(t), pred(l) = None and cost(l) = 0.

Then, the global route is traversed bottom-up. At each node v, we do the following.
If v has two outgoing edges, we first merge labels coming from the two child-trees. For
two labels of the same polarity, this can essentially be done by adding the cost and
capacitance values and taking the minimum of the slew limits. For labels of different
polarities, an additional inverter is inserted into one of the labels beforehand.

Afterwards, or if v has fewer outgoing edges, all (resulting) labels at v are considered.
For a label l , we first try not inserting a repeater and create a label representing this
at the parent of v. The new label has an increased capacitance value and a decreased
slew limit according to the wire properties.

Now for all repeater types, we find the (approximately) earliest position on the edge
(parent(v), v) on which the repeater can be placed without introducing violations. For
this position, a new label is created with this repeater type. The new label will be
associated with parent(v) if this position was violation-free. Otherwise, the new label
will still be associated with v and later considered in this step as well.

After arriving at the root, it is allowed to add a last repeater to every label. Finally,
the best label is chosen. The result can be retrieved by backtracking.
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5.3 Enhancements and fixes

5.3.1 Slew computation

Slew pessimism

The main factor preventing the existing implementation of BonnRouteBuffer from
computing faster repeater trees was a significant pessimism regarding slew limits. When
creating the initial label for the sink of an instance, the slew limit at that sink is mul-
tiplied with a constant less than 1. This way, inaccuracies regarding slew computation
will not immediately lead to slew violations.

In practice, a rather extreme value of 0.7 was used. This meant that the dynamic
program was forced to add more repeaters than necessary to avoid paying a penalty for
slew violations. The additional repeaters led to increased power consumption, higher
area usage and worse timing properties.

Running the same old BonnRouteBuffer version but changing this pessimism
value to 0.9 already improves upon these metrics drastically, see Section 5.4.3. But
naturally, reducing the pessimism leads to more slew violations. A comparison of using
these different pessimism values in the old BonnRouteBuffer implementation can be
found in Section 5.4.3.

Backwards propagation of slew limits

In the label definition of Section 5.2, every label l is associated with a single slew
limit value slew-limit(l). Whenever this label is propagated through a wiring edge (i.e.
without repeater), an inverse slew function is applied to the slew limit. We compute the
slew limit of the new label l′ by

slew-limit(l′) := slew−1 (rcwire, slew-limit(l)) ,

where rcwire denotes the rc-value of the wire segment.
When a label l gets propagated through two consecutive wire segments with rc-values

rc1 and rc2, the resulting label l′ then gets assigned the slew limit value

slew-limit(l′) = slew−1
(
rc2, slew

−1 (rc1, slew-limit(l))
)

.

However, this is not the same as

slew−1 (rc1 + rc2, slew-limit(l)) ,

which would be used if l got propagated through both wire segments at once, and which
is more exact.

When using the delay model defined in Section 2.5.1 ([Bak90] and [Kas+04]), we
have

slew−1(rc, outslew) =
√
outslew2 − ln2 9 · rc2,

so the above terms become

slew−1
(
rc2, slew

−1 (rc1, slew-limit(l))
)

=

√
slew-limit(l)2 − ln2 9 · (rc21 + rc22)

and

slew−1 (rc1 + rc2, slew-limit(l)) =

√
slew-limit(l)2 − ln2 9 · (rc1 + rc2)

2
.

In particular, the total considered slew degradation when propagating in two steps
compared to propagating in one step is smaller by

ln 9

√
(rc1 + rc2)

2 − (rc21 + rc22) = ln 9
√

2 · rc1 · rc2.
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label root

(rc = 10, limit = 25)

(rc = 13, limit = 40)

(rc = 20, limit = 60)

Figure 5.1: An example partial repeater tree associated with a label with
slew-limit-data = {(10, 25), (20, 60), (13, 40)}.

This means that propagating small distances at a time is too optimistic regarding slew
limit degradation.

We want to keep the flexibility of short propagation distances, but improve upon the
accuracy of the propagation. The single slew limit value of a label l is replaced by a set
of rc-value, slew limit pairs denoted by slew-limit-data(l). This slew limit data can be
interpreted as follows. We consider the wiring tree rooted at v(l) with leaves being the
repeaters and net sinks reachable from v(l) according to l. An example for such a tree
is indicated in Figure 5.1. Now for every leaf in this tree, slew-limit-data(l) contains a
pair (rc, limit), where rc is the rc-value of the path from v(l) to the leaf, and limit is
the slew limit at that leaf.

When merging two labels at a node, the union of the slew limit data of both labels
is taken. When a label gets propagated through a wire segment with rc-value rc, the
new slew limit data arises by adding rc to the rc-value of every pair. When a repeater
is added to a label, the slew limit at its output is computed by taking

min{slew−1(rc, limit) | (rc, limit) ∈ slew-limit-data(l)}.

This value is then propagated through the repeater as usual. This results in a singleton
slew limit data of the form {(0, limit)}.

A lower rc-value and higher slew limit at a leaf can never lead to a smaller slew limit
at the root. We define a dominance relation >D on these pairs by

(rc1, limit1) >D (rc2, limit2) ⇐⇒ rc1 ≥ rc2 and limit1 ≤ limit2.

We drop dominated pairs during a merge.
This modification slightly increases the memory consumption as more data is stored

for each label. However, it greatly improves the accuracy of the backwards slew propa-
gation. This leads to fewer and less severe slew violations in the result.

Forwards propagation of slews

When timing through the final repeater tree, an analogous improvement is possible.
Instead of propagating slew (and delay) values through the wiring segment by segment,
entire paths from repeater/root to the next repeater/sink are now considered at once.
This is more accurate for the same reasons as above. Depending on the delay model,
we may have

slew(rc2, slew(rc1, slew0)) ̸= slew(rc1 + rc2, slew0).
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In particular, for the slew computation defined in Section 2.5.1, we have

slew(rc2, slew(rc1, slew0)) =

√
slew2

0 + ln2 9 · (rc21 + rc22)

̸=
√

slew2
0 + ln2 9 · (rc1 + rc2)

2

= slew(rc1 + rc2, slew0).

Slew violations in the final dynamic program step

In the previous version of BonnRouteBuffer, slew violations occurring directly at
the root node were neglected by the dynamic program. This led to further inaccuracies
and especially to the selection of sub-optimal labels. When propagating through the
root gate, we now consider slew violations in the same way as inside the repeater tree
itself.

5.3.2 Speed ups

In addition to improving the quality of results, the new version of BonnRouteBuffer
also contains several speed-ups compared to the previous version. While these changes
can impact the result a bit, they save enough running time to outweigh the drawbacks.

Avoid neighboring repeaters

In the dynamic program as outlined above, labels do not remember where the last
repeater was inserted. For that reason, many labels are created that place repeaters
in adjacent global routing tiles. Because this distance is so small, these labels will not
contribute to a good solution unless such repeaters are needed to avoid slew or load
violations.

Now, when a label l was created by inserting a repeater, we will first only propagate
it further through the next wire segment without another repeater. If this results in a
label without slew or load violations, then we will not propagate l with repeater at all.
Otherwise, we will proceed to insert different repeater kinds as before.

With this, we save the computation time of creating labels with neighboring repeaters
when they are not needed.

Limit recomputations on nets with many sinks

The running time of the dynamic program increases drastically on nets with many sinks.
There are typically only a few such nets. So they do not affect the overall result quality
significantly. Limiting the effort on such nets can have a huge impact on the running
time. But it will not worsen total results notably.

The new version of BonnRouteBuffer limits the oracle calls of nets with at least
200 sinks. They will be recomputed at most in every fourth resource sharing phase. In
other phases, the previously computed solution is used again.

Fewer resource sharing phases

Before, the resource sharing algorithm in the BonnTools was run for 25 phases. Fur-
ther testing showed that for BonnRouteBuffer, we can achieve comparable results
when running only 15 phases. As the resource sharing algorithm contributes a large
amount of the running time, this leads to a significant speed-up. Refer to Section 5.4.4
for further details.
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5.3.3 Other improvements

Consider via-stack capacitance when computing repeater distance

Consider the buffering of a single wire segment without bifurcations. When a label is
extended by inserting a repeater, the placement is usually chosen as a tile-center of a
global routing tile.

However, this can be too coarse with regards to slew or load violations. So when
the next location would create an unattainable slew limit or a too high capacitance,
we instead compute a closer location where a given repeater can be inserted without
violations. This way, an almost continuous choice of position is possible.

In this computation, the capacitance downstream of a new repeater impacts potential
slew or load violations. Previously, only the wire capacitance was considered here.
However, whenever a repeater is inserted, via-stacks are needed. They connect the
routing layer to the input and output pins. The capacitance of the via-stack at the
repeater output is now correctly taken into account together with the wire capacitance.

Remove solutions with load violations before randomized rounding

The resource sharing algorithm results in a fractional solution for every net. To get an
integral solution, BonnRouteBuffer performs randomized rounding.

Before that, we remove outliers from the set of solutions for every net. To pre-
vent unnecessary load violations, solutions containing such are now also removed before
randomized rounding for nets with at least 3 violation-free solutions.
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BonnRouteBuffer

Resource Sharing Algorithm

Randomized Rounding

Ripup-and-reroute

Gate Sizing Legalization LayerOpt

Figure 5.2: Flow surrounding BonnRouteBuffer. These steps were run in the results of
Tables 5.2, 5.4, 5.5, 5.6 and 5.7.

5.4 Experimental results

This section presents experimental results of BonnRouteBuffer. We start by in-
troducing the wire synthesis flow in Section 5.4.1 and the considered metrics and test
instances in Section 5.4.2. In Section 5.4.3, we showcase the importance of slew com-
putations and slew limits. We see that a seemingly small change regarding slew limits
can impact many metrics. This indicates a path of potential improvement and further
development. Section 5.4.4 then compares the previous and new BonnRouteBuffer
versions. Finally, Section 5.4.5 demonstrates how the new BonnRouteBuffer version
compares against the current wire synthesis flow used in industrial practice at IBM.

The tests in Sections 5.4.3 and 5.4.4 were performed on a RedHat Enterprise 8.10
machine with an AMD EPYC 9684X processor. Each run used 32 threads. All results
are archived at the Institute for Discrete Mathematics of the University of Bonn.

5.4.1 Wire synthesis flow

BonnRouteBuffer itself consists of the resource sharing algorithm and the subse-
quent randomized rounding and ripup-and-reroute procedure (see Section 2.4.1). It is
embedded into a wire synthesis flow, see Figure 5.2. After the nets are routed and
buffered, a global gate sizing is performed [Dab+18a]. This gate sizing can adapt the
sizes of repeaters and non-repeater gates alike. Then, the placement is legalized. Re-
call that BonnRouteBuffer only bounds the local placement density, but does not
prevent overlapping repeaters. Finally, the nets are assigned wire types and layers. Op-
timization routines after this flow are mostly not able to work on global wires, so this
step discards the global routing.

The flow indicated in Figure 5.2 was used for the runs shown in Tables 5.2, 5.4, 5.5,
5.6 and 5.7.
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5.4.2 Metrics and instances

The tested instances are specified in Table 5.1. We compare different buffering results
according to the following metrics. The metrics of wACE4, wire length and number of
vias are based on a fractional routing computed afterwards.

Reps : Number of repeaters inserted during buffering.

Wall Time : Total time needed for the entire run. Includes loading the chip
and assessing the final result. Format is HH::MM::SS.

BRB Time : Running time of BonnRouteBuffer: sum of resource sharing
time and the ripup-and-reroute routine. Format is HH::MM::SS.

WSL : Worst slack. Minimum difference between required arrival time
and arrival time on any pin, measured in picoseconds:
WSL = min

pin p
{slack(p)}.

SNSL : Sum of negative slacks, measured in picoseconds:
SNSL =

∑
pin p

min{0, slack(p)}.

wACE4 : Average wiring congestion of the 5, 2, 1 and 0.5% most congested
area [Wei+14].

WL : Total wire length. Considers all routes as going tile-center to tile-
center. Measured in meters.

#Vias : Number of vias.

Power : Total power consumption. Includes both dynamic and leakage
power. Measured in milliwatt.∑

Load Vios : Total load violations. Sum over all capacitances exceeding the
given load limit.

#Load Vios : Number of load violations. Counts the number of times a set load
limit is exceeded.∑

Slew Vios : Total slew violations. Sum over all slews exceeding the given slew
limit.

#Slew Vios : Number of slew violations. Counts the number of times a set slew
limit is exceeded.
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Chip Technology Type #Buffering instances Chip area [mm2] #Routing Layers #Wire types

C1 5nm ASIC 223,026 0.487×0.172 12 1

C2 5nm Processor 193,719 1.275×0.290 16 2

C3 5nm Processor 373,005 0.380×0.627 10 4

C4 5nm Processor 454,330 1.306×0.467 16 2

C5 5nm Processor 530,913 0.645×0.560 16 2

C6 5nm Processor 622,161 0.691×0.736 16 2

C7 5nm ASIC 45,384 0.063×0.160 8 1

C8 5nm ASIC 48,425 0.104×0.160 9 1

C9 5nm Processor 52,809 0.449×0.480 12 5

C10 5nm ASIC 68,742 0.845×0.264 10 2

C11 5nm Processor 75,284 4.800×2.105 16 5

Table 5.1: Basic characteristics of the test instances. #Buffering instances shows number of nets to be buffered. #Wire types counts available configurations
of wire widths and spacings.
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Chip Run BRB Time # Reps WSL SNSL wACE4 GR WL [m] GR Vias Power
∑

Load Vios
∑

Slew Vios

C1 old pess=0.7 00:42:12 34,684 -465.0 -1,868,833 92.21% 1.73m 2,176,053 62,084 0 5,003
old pess=0.8 00:47:38 +13% 34,444 -1% -475.4 -10.4 -1,965,800 -96,967 92.36% 0.15% 1.73m +0.00% 2,184,846 +0.40% 61,959 -0.20% 0 +0 5,459 +9%
old pess=0.9 00:52:36 +25% 34,026 -2% -496.2 -31.2 -1,970,639 -101,806 92.24% 0.03% 1.72m -0.12% 2,171,721 -0.20% 61,951 -0.21% 0 +0 6,658 +33%
old pess=1.0 00:55:39 +32% 33,671 -3% -472.1 -7.1 -2,053,024 -184,191 92.18% -0.03% 1.72m -0.23% 2,171,949 -0.19% 61,838 -0.40% 0 +0 10,232 +105%
old pess=1.1 00:53:29 +27% 34,190 -1% -483.4 -18.4 -1,969,105 -100,272 92.60% 0.39% 1.72m -0.23% 2,162,728 -0.61% 61,838 -0.40% 0 +0 18,372 +267%
old pess=1.2 00:52:49 +25% 34,167 -1% -490.9 -25.9 -1,970,232 -101,399 92.37% 0.16% 1.72m -0.29% 2,151,239 -1.14% 61,909 -0.28% 3 +3 29,347 +487%

C2 old pess=0.7 00:54:50 190,361 -146.1 -483,100 93.25% 6.50m 1,262,371 552 169 57,388
old pess=0.8 00:51:40 -6% 142,851 -25% -126.1 +20.0 -347,149 +135,951 93.13% -0.12% 6.54m +0.61% 1,242,172 -1.60% 515 -6.57% 12 -93% 78,418 +37%
old pess=0.9 00:49:21 -10% 122,144 -36% -82.6 +63.5 -281,396 +201,704 94.95% 1.70% 6.72m +3.34% 1,265,972 +0.29% 502 -9.03% 47 -72% 121,235 +111%
old pess=1.0 00:52:23 -4% 112,796 -41% -106.5 +39.6 -328,182 +154,918 94.85% 1.60% 6.61m +1.61% 1,213,381 -3.88% 498 -9.76% 25 -85% 189,631 +230%
old pess=1.1 00:48:04 -12% 109,997 -42% -104.8 +41.4 -298,623 +184,477 94.45% 1.20% 6.63m +1.92% 1,218,245 -3.50% 494 -10.51% 97 -43% 239,639 +318%
old pess=1.2 00:50:20 -8% 107,641 -43% -106.3 +39.8 -305,233 +177,867 92.91% -0.34% 6.45m -0.85% 1,238,765 -1.87% 493 -10.73% 27 -84% 303,307 +429%

C3 old pess=0.7 00:17:04 122,383 -425.1 -4,161,703 92.17% 4.53m 1,062,385 678 150 11,301
old pess=0.8 00:18:45 +10% 105,888 -13% -426.7 -1.6 -3,927,991 +233,712 92.53% 0.36% 4.51m -0.53% 1,024,900 -3.53% 666 -1.84% 323 +116% 19,898 +76%
old pess=0.9 00:20:29 +20% 97,869 -20% -440.8 -15.7 -3,849,251 +312,452 92.01% -0.16% 4.51m -0.55% 1,014,571 -4.50% 662 -2.31% 80 -47% 32,628 +189%
old pess=1.0 00:19:10 +12% 94,973 -22% -430.9 -5.8 -3,877,425 +284,277 91.87% -0.30% 4.49m -0.99% 1,004,960 -5.41% 660 -2.66% 96 -36% 48,719 +331%
old pess=1.1 00:19:29 +14% 94,149 -23% -411.0 +14.1 -3,768,328 +393,375 92.92% 0.75% 4.47m -1.46% 1,123,894 +5.79% 660 -2.62% 84 -44% 82,261 +628%
old pess=1.2 00:17:04 -0% 93,788 -23% -421.7 +3.5 -3,834,659 +327,044 91.63% -0.54% 4.47m -1.39% 1,006,186 -5.29% 660 -2.74% 85 -43% 118,091 +945%

C4 old pess=0.7 01:53:07 318,694 -408.6 -1,166,069 96.09% 13.45m 2,244,235 610 2,608 394,238
old pess=0.8 01:47:58 -5% 246,260 -23% -407.4 +1.3 -872,897 +293,171 93.67% -2.42% 13.10m -2.57% 2,156,141 -3.93% 572 -6.19% 2,439 -6% 423,783 +7%
old pess=0.9 01:48:28 -4% 207,301 -35% -156.0 +252.6 -715,481 +450,588 94.68% -1.41% 13.11m -2.54% 1,966,815 -12.36% 556 -8.89% 2,624 +1% 501,130 +27%
old pess=1.0 01:52:44 -0% 188,465 -41% -202.9 +205.8 -716,863 +449,206 94.43% -1.66% 13.00m -3.30% 2,011,983 -10.35% 548 -10.22% 3,098 +19% 686,064 +74%
old pess=1.1 01:56:47 +3% 183,183 -43% -195.1 +213.6 -859,045 +307,024 93.80% -2.29% 12.96m -3.63% 1,996,684 -11.03% 547 -10.23% 2,063 -21% 799,604 +103%
old pess=1.2 01:56:53 +3% 178,364 -44% -159.2 +249.4 -661,245 +504,824 97.18% 1.09% 13.11m -2.51% 2,024,132 -9.81% 542 -11.09% 1,874 -28% 915,657 +132%

C5 old pess=0.7 02:09:23 404,584 -151.6 -1,444,427 92.99% 12.45m 2,629,812 1,161 2,348 94,020
old pess=0.8 02:05:01 -3% 297,361 -27% -134.8 +16.8 -815,200 +629,226 92.97% -0.02% 12.34m -0.91% 2,435,946 -7.37% 988 -14.84% 2,875 +22% 161,527 +72%
old pess=0.9 01:59:45 -7% 250,727 -38% -96.2 +55.5 -683,381 +761,046 97.06% 4.07% 12.29m -1.32% 2,332,377 -11.31% 924 -20.38% 2,947 +26% 227,406 +142%
old pess=1.0 02:18:53 +7% 228,608 -43% -100.4 +51.2 -610,531 +833,895 94.82% 1.83% 12.38m -0.54% 2,511,459 -4.50% 900 -22.47% 2,665 +13% 324,113 +245%
old pess=1.1 02:02:57 -5% 221,534 -45% -80.3 +71.3 -530,973 +913,454 97.08% 4.09% 12.61m +1.27% 2,339,125 -11.05% 890 -23.37% 3,340 +42% 418,052 +345%
old pess=1.2 02:08:47 -0% 215,801 -47% -113.4 +38.2 -678,202 +766,225 93.99% 1.00% 12.19m -2.05% 2,252,510 -14.35% 895 -22.93% 3,155 +34% 537,962 +472%

C6 old pess=0.7 03:09:04 392,126 -190.3 -1,746,606 95.92% 14.44m 3,211,093 1,214 819 113,884
old pess=0.8 02:55:00 -7% 300,810 -23% -150.6 +39.7 -1,111,794 +634,812 108.57% 12.65% 14.48m +0.30% 3,343,639 +4.13% 1,136 -6.49% 1,378 +68% 186,945 +64%
old pess=0.9 02:54:24 -8% 254,944 -35% -136.4 +54.0 -1,092,546 +654,059 116.10% 20.18% 14.46m +0.16% 2,937,676 -8.51% 1,096 -9.76% 685 -16% 328,750 +189%
old pess=1.0 02:41:07 -15% 228,034 -42% -113.7 +76.6 -1,096,283 +650,323 121.13% 25.21% 14.46m +0.19% 3,136,850 -2.31% 1,074 -11.58% 979 +20% 449,593 +295%
old pess=1.1 03:00:06 -5% 218,688 -44% -126.1 +64.2 -1,153,566 +593,040 123.52% 27.60% 14.53m +0.64% 3,108,075 -3.21% 1,066 -12.18% 981 +20% 582,913 +412%
old pess=1.2 03:03:30 -3% 212,046 -46% -154.3 +36.0 -1,365,291 +381,314 108.31% 12.39% 14.33m -0.76% 3,041,945 -5.27% 1,063 -12.44% 929 +13% 710,211 +524%

Table 5.2: Comparison of different slew limit factors used in BonnRouteBuffer on a set of large chips.
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Chip Run wACE4

C5 old pess=0.7 94.45%
old pess=0.8 93.88% -0.57%
old pess=0.9 94.02% -0.43%
old pess=1.0 93.75% -0.70%
old pess=1.1 93.44% -1.01%
old pess=1.2 93.63% -0.82%

C6 old pess=0.7 118.30%
old pess=0.8 117.20% -1.10%
old pess=0.9 116.72% -1.58%
old pess=1.0 117.10% -1.20%
old pess=1.1 116.57% -1.73%
old pess=1.2 116.71% -1.59%

Table 5.3: wACE4 values of C5 and C6 directly after BonnRouteBuffer. These are the
runs from Table 5.2.

5.4.3 Different slew pessimism values

The main reason preventing the previous version of BonnRouteBuffer from com-
puting better solutions was a high pessimism regarding slew limits. In fact, all slew
limits were scaled down by a factor of 0.7 during the entire wire synthesis flow in the
BonnTools. While this successfully reduced the number and degree of slew violations
in the final result, it came at the cost of huge quality degradations in many other metrics.

In Tables 5.2 and 5.4, 6 runs are listed for each instance. The runs used pessimism
factors on the slew limits of 0.7, 0.8, 0.9, 1.0, 1.1 and 1.2. Refer to Section 5.4.2 for
an explanation of the shown metrics. Comparisons are always to the base run with a
pessimism factor of 0.7, which was the default.

In Table 5.2, we compare the results on a set of large chips. Most prominently, the
slew violations increase drastically with larger factors. This phenomenon is expected for
the slew limit factor. The results demonstrate why a very pessimistic slew limit factor
is necessary to keep slew violations in a reasonable range.

On the other hand, most metrics improve (in part very significantly) with less pes-
simism on most tested chips. Worst slack, sum of negative slacks, via count and power
consumption all improve quite drastically except for C1 and the worst slack on C3. The
wACE4 values increase or remain similar. Load violations and wire length changes in
different directions depending on the instance.

On C1, the slack stands out from the rest. It worsens, but not significantly. Also, no
other metric improves notably with less pessimism. This shows that on this instance,
lower slews are needed not only due to the slew limits, but also to achieve timing closure.
Note that C1 is the only instance in which the number of inserted repeaters does not
differ notably between runs. This suggests that on C1, only few repeaters were inserted
to fix slew violations. Instead, almost all are needed for faster signals.

In contrast, on the instances C2 to C6, increasing the slew limit factor leads to up
to 47% fewer inserted repeaters and improves timing values. This shows that many
repeaters were needed only to satisfy the artificially low slew limits.

The significantly lower repeater count on runs with less pessimism explains the lower
via count and power consumption. However, increasing the slew pessimism above 0.9
does not yield more changes to the number of repeaters, slack values or power consump-
tion.

On C6, the wACE4 value increases significantly for slew pessimism values other than
0.7. On C5, it also increases. This only happens after layer assignment. See Table 5.3
for the wACE4 values directly after BonnRouteBuffer. C6 is completely congested
in all runs. Increasing the slew limit factor slightly improves congestion in both designs.
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Chip Run BRB Time # Reps WSL SNSL wACE4 GR WL [m] GR Vias Power
∑

Load Vios
∑

Slew Vios

C7 old pess=0.7 00:03:42 6,513 -189.0 -25,399 94.59% 0.41m 413,254 880 259 48,046
old pess=0.8 00:03:36 -3% 5,477 -16% -190.0 -1.0 -36,366 -10,966 93.31% -1.28% 0.40m -3.40% 404,014 -2.24% 867 -1.48% 139 -46% 58,607 +22%
old pess=0.9 00:03:37 -2% 4,997 -23% -275.8 -86.8 -45,566 -20,167 94.04% -0.55% 0.40m -2.43% 406,443 -1.65% 858 -2.53% 153 -41% 60,992 +27%
old pess=1.0 00:03:27 -7% 4,813 -26% -240.2 -51.2 -37,811 -12,411 93.66% -0.93% 0.40m -4.13% 402,123 -2.69% 849 -3.50% 195 -25% 68,731 +43%
old pess=1.1 00:03:30 -6% 4,680 -28% -171.3 +17.7 -33,189 -7,789 93.59% -1.00% 0.39m -4.61% 401,304 -2.89% 851 -3.26% 212 -18% 89,093 +85%
old pess=1.2 00:03:39 -2% 4,667 -28% -198.8 -9.8 -39,948 -14,549 93.30% -1.29% 0.39m -5.83% 400,725 -3.03% 850 -3.38% 207 -20% 100,373 +109%

C8 old pess=0.7 00:06:01 9,650 -38.4 -827 102.91% 0.70m 682,775 3,623 627 30,232
old pess=0.8 00:05:53 -2% 7,560 -22% -52.1 -13.7 -754 +73 104.02% 1.11% 0.70m -0.85% 669,850 -1.89% 3,496 -3.50% 979 +56% 28,785 -5%
old pess=0.9 00:05:56 -1% 6,670 -31% -42.8 -4.4 -611 +216 104.49% 1.58% 0.70m -0.71% 668,673 -2.07% 3,456 -4.60% 1,272 +103% 30,887 +2%
old pess=1.0 00:06:09 +2% 6,358 -34% -36.1 +2.4 -736 +91 105.21% 2.30% 0.70m -0.14% 664,191 -2.72% 3,434 -5.20% 1,493 +138% 36,089 +19%
old pess=1.1 00:05:49 -3% 6,237 -35% -59.9 -21.4 -396 +431 103.37% 0.46% 0.69m -2.13% 659,246 -3.45% 3,417 -5.69% 1,721 +175% 40,494 +34%
old pess=1.2 00:06:04 +1% 6,108 -37% -67.0 -28.5 -1,411 -584 104.11% 1.20% 0.69m -1.99% 658,526 -3.55% 3,423 -5.53% 1,756 +180% 54,247 +79%

C9 old pess=0.7 00:11:01 21,501 -244.4 -419,159 91.83% 2.33m 275,972 163 206 14,677
old pess=0.8 00:10:13 -7% 16,767 -22% -166.1 +78.2 -277,435 +141,723 92.54% 0.71% 2.34m +0.26% 284,316 +3.02% 160 -2.04% 206 -0% 16,863 +15%
old pess=0.9 00:10:48 -2% 14,943 -31% -126.8 +117.6 -180,948 +238,210 92.71% 0.88% 2.34m +0.21% 280,527 +1.65% 159 -2.46% 210 +2% 18,836 +28%
old pess=1.0 00:10:07 -8% 14,109 -34% -162.6 +81.7 -298,396 +120,762 93.26% 1.43% 2.33m +0.00% 277,940 +0.71% 159 -2.71% 209 +2% 23,488 +60%
old pess=1.1 00:10:49 -2% 13,729 -36% -129.4 +114.9 -199,417 +219,742 92.53% 0.70% 2.33m -0.34% 276,726 +0.27% 157 -3.42% 209 +1% 32,201 +119%
old pess=1.2 00:09:54 -10% 13,618 -37% -128.8 +115.6 -204,862 +214,296 92.65% 0.82% 2.34m +0.09% 280,957 +1.81% 159 -2.51% 209 +1% 47,585 +224%

C10 old pess=0.7 00:06:39 27,672 -98.9 -53,860 87.12% 1.04m 629,189 3,600 247 42,079
old pess=0.8 00:06:03 -9% 19,787 -28% -99.4 -0.5 -53,498 +362 87.69% 0.57% 1.03m -0.67% 609,739 -3.09% 3,496 -2.88% 776 +214% 42,795 +2%
old pess=0.9 00:06:00 -10% 15,519 -44% -98.9 +0.0 -54,152 -293 88.84% 1.72% 1.02m -1.83% 603,756 -4.04% 3,437 -4.52% 837 +239% 53,173 +26%
old pess=1.0 00:06:06 -8% 12,877 -53% -99.0 -0.1 -54,328 -468 89.00% 1.88% 1.01m -2.31% 597,493 -5.04% 3,406 -5.39% 831 +237% 63,205 +50%
old pess=1.1 00:05:55 -11% 12,166 -56% -109.4 -10.5 -54,479 -619 88.84% 1.72% 1.01m -2.60% 593,936 -5.60% 3,386 -5.95% 881 +257% 89,972 +114%
old pess=1.2 00:06:11 -7% 11,498 -58% -111.3 -12.4 -54,361 -501 88.95% 1.83% 1.01m -2.79% 589,196 -6.36% 3,376 -6.21% 997 +304% 120,596 +187%

C11 old pess=0.7 02:24:03 105,897 -1051.0 -716,245 95.20% 29.39m 774,038 92 285,380 525,218
old pess=0.8 01:39:58 -31% 87,372 -17% -1045.1 +5.9 -743,572 -27,327 94.93% -0.27% 29.34m -0.16% 722,786 -6.62% 110 +18.92% 223,735 -22% 672,441 +28%
old pess=0.9 01:29:55 -38% 75,524 -29% -1052.0 -1.1 -756,043 -39,798 95.91% 0.71% 29.22m -0.58% 659,859 -14.75% 109 +18.78% 204,960 -28% 689,339 +31%
old pess=1.0 01:29:22 -38% 69,265 -35% -1410.2 -359.2 -843,744 -127,498 98.28% 3.08% 29.30m -0.33% 644,750 -16.70% 88 -3.92% 176,200 -38% 765,606 +46%
old pess=1.1 01:26:10 -40% 65,892 -38% -1042.9 +8.1 -748,826 -32,581 96.18% 0.98% 29.12m -0.94% 618,855 -20.05% 105 +14.25% 180,533 -37% 891,085 +70%
old pess=1.2 01:25:49 -40% 63,607 -40% -1322.8 -271.8 -851,479 -135,233 95.90% 0.70% 29.07m -1.09% 612,190 -20.91% 87 -5.78% 176,772 -38% 1,259,550 +140%

Table 5.4: Comparison of different slew limit factors used in BonnRouteBuffer on a set of small chips.
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In Table 5.4, we compare the same runs on a set of chips with fewer nets. As
BonnRouteBuffer is mainly designed for buffering large instances, these results are
less significant. However, they still show the same phenomenon: On all chips, less
pessimistic slew limits lead to fewer inserted repeaters in buffering. This reduction
reaches 58% for pess=1.2 and 44% on pess=0.9 on C10. Fewer repeaters in turn lead
to a lower via count and power consumption. However, the timing values get worse in
many runs.

On C11, the variation between runs is very large. For pess=1.0 and pess=1.2, the
worst slack is significantly worse than in the other runs, while the power consumption
is significantly better then for pess=0.8, pess=0.9 and pess=1.1. Note also that C11

has significantly more load violations than any other chip.
In both sets of chips, changes in load violations vary from instance to instance:

Increasing the slew limit factor sometimes reduces the load violations significantly (e.g.
C2, C3, C7, C11). Sometimes it increases the load violations by a factor of up to 3 (e.g.
C10).

We can draw two main conclusions from these results. Firstly, it is necessary to
consider the effect of slew on the signal delay explicitly. Currently, the dynamic program
considers only the slew limits in the labels, not the actual slew that attains the used
delay.

Secondly, slew and load violations are not modeled accurately through out the flow.
In fact, the only place where they are considered is the dynamic program, where viola-
tions are assigned a penalty cost. Since violations are not modeled as resources in the
resource sharing framework, they also do not influence the ripup-and-reroute step (see
Section 2.4.1). Consequently, they are not fixed specifically after randomized rounding.
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Chip Run BRB Time # Reps WSL SNSL wACE4 GR WL [m] GR Vias Power
∑

Load Vios
∑

Slew Vios

C1 old pess=0.7 00:42:12 34,684 -465.0 -1,868,833 92.21% 1.73m 2,176,053 62,084 0 5,003
new pess=0.7 00:58:18 +38% 34,603 -0% -451.8 +13.2 -1,631,188 +237,645 92.50% 0.29% 1.74m +0.70% 2,198,914 +1.05% 61,939 -0.23% 0 +0 357 -93%
new pess=0.8 00:59:48 +42% 33,965 -2% -447.2 +17.9 -1,669,791 +199,043 92.45% 0.24% 1.73m +0.52% 2,190,989 +0.69% 61,867 -0.35% 0 +0 642 -87%
new pess=0.9 01:00:46 +44% 33,516 -3% -450.2 +14.8 -1,725,457 +143,376 92.18% -0.03% 1.73m +0.46% 2,179,181 +0.14% 61,862 -0.36% 0 +0 1,500 -70%
new pess=1.0 00:59:54 +42% 33,602 -3% -440.5 +24.5 -1,834,084 +34,749 92.15% -0.06% 1.73m +0.52% 2,180,337 +0.20% 61,921 -0.26% 0 +0 4,433 -11%
new pess=1.1 00:59:03 +40% 33,682 -3% -424.1 +41.0 -1,775,073 +93,760 92.26% 0.05% 1.73m +0.46% 2,177,900 +0.08% 61,822 -0.42% 0 +0 11,926 +138%
new pess=1.2 01:00:20 +43% 33,933 -2% -421.1 +44.0 -1,706,391 +162,442 92.19% -0.02% 1.73m +0.46% 2,156,633 -0.89% 61,856 -0.37% 0 +0 23,014 +360%

C2 old pess=0.7 00:54:50 190,361 -146.1 -483,100 93.25% 6.50m 1,262,371 552 169 57,388
new pess=0.7 01:15:46 +38% 172,837 -9% -161.6 -15.5 -543,898 -60,797 92.88% -0.37% 6.50m -0.09% 1,279,153 +1.33% 553 +0.27% 2 -99% 230,443 +302%
new pess=0.8 01:12:28 +32% 142,463 -25% -133.1 +13.1 -444,674 +38,426 93.38% 0.13% 6.46m -0.71% 1,323,237 +4.82% 528 -4.25% 2 -99% 42,098 -27%
new pess=0.9 01:13:53 +35% 129,120 -32% -129.3 +16.8 -356,152 +126,948 93.11% -0.14% 6.42m -1.32% 1,288,185 +2.04% 515 -6.69% 2 -99% 206,875 +260%
new pess=1.0 01:05:25 +19% 121,578 -36% -124.8 +21.3 -357,669 +125,431 93.91% 0.66% 6.49m -0.20% 1,227,820 -2.74% 507 -8.14% 2 -99% 60,388 +5%
new pess=1.1 01:07:11 +23% 118,812 -38% -110.2 +35.9 -331,192 +151,908 92.96% -0.29% 6.42m -1.37% 1,268,038 +0.45% 502 -9.03% 2 -99% 103,026 +80%
new pess=1.2 01:06:01 +20% 116,388 -39% -160.9 -14.8 -404,941 +78,159 92.87% -0.38% 6.37m -2.03% 1,235,772 -2.11% 503 -8.74% 2 -99% 166,972 +191%

C3 old pess=0.7 00:17:04 122,383 -425.1 -4,161,703 92.17% 4.53m 1,062,385 678 150 11,301
new pess=0.7 00:30:08 +77% 126,805 +4% -438.1 -13.0 -4,422,258 -260,555 92.85% 0.68% 4.55m +0.46% 1,074,845 +1.17% 684 +0.92% 101 -32% 2,009 -82%
new pess=0.8 00:30:05 +76% 114,129 -7% -422.9 +2.2 -4,210,289 -48,586 92.77% 0.60% 4.54m +0.13% 1,048,343 -1.32% 673 -0.76% 98 -35% 4,001 -65%
new pess=0.9 00:30:28 +78% 109,025 -11% -445.5 -20.3 -4,117,295 +44,408 92.70% 0.53% 4.53m +0.04% 1,042,232 -1.90% 671 -1.02% 69 -54% 2,928 -74%
new pess=1.0 00:27:48 +63% 106,514 -13% -451.4 -26.3 -4,242,271 -80,569 92.81% 0.64% 4.52m -0.26% 1,035,135 -2.56% 671 -1.11% 69 -54% 11,897 +5%
new pess=1.1 00:29:14 +71% 105,574 -14% -439.3 -14.2 -4,030,942 +130,761 93.49% 1.32% 4.52m -0.24% 1,033,747 -2.70% 669 -1.36% 88 -41% 39,495 +249%
new pess=1.2 00:27:43 +62% 104,873 -14% -429.5 -4.4 -4,016,715 +144,988 93.51% 1.34% 4.52m -0.24% 1,035,091 -2.57% 671 -0.98% 89 -40% 77,214 +583%

C4 old pess=0.7 01:53:07 318,694 -408.6 -1,166,069 96.09% 13.45m 2,244,235 610 2,608 394,238
new pess=0.7 02:37:24 +39% 278,424 -13% -249.3 +159.3 -1,451,031 -284,962 94.47% -1.62% 13.29m -1.21% 2,338,363 +4.19% 608 -0.35% 827 -68% 359,840 -9%
new pess=0.8 02:38:52 +40% 231,095 -27% -168.0 +240.6 -972,950 +193,119 94.13% -1.96% 13.10m -2.57% 2,223,699 -0.92% 584 -4.25% 708 -73% 263,237 -33%
new pess=0.9 02:31:27 +34% 208,435 -35% -163.9 +244.7 -920,780 +245,289 93.96% -2.13% 13.03m -3.12% 2,164,835 -3.54% 573 -6.08% 1,350 -48% 249,063 -37%
new pess=1.0 02:24:45 +28% 195,332 -39% -142.4 +266.3 -797,365 +368,704 94.41% -1.68% 12.97m -3.53% 2,105,340 -6.19% 561 -7.99% 1,249 -52% 260,770 -34%
new pess=1.1 02:20:12 +24% 189,418 -41% -146.6 +262.0 -769,772 +396,297 94.37% -1.72% 12.95m -3.72% 2,080,448 -7.30% 558 -8.48% 1,469 -44% 367,268 -7%
new pess=1.2 02:18:01 +22% 185,207 -42% -187.8 +220.8 -723,828 +442,240 94.36% -1.73% 12.93m -3.83% 2,073,026 -7.63% 552 -9.44% 1,085 -58% 525,709 +33%

C5 old pess=0.7 02:09:23 404,584 -151.6 -1,444,427 92.99% 12.45m 2,629,812 1,161 2,348 94,020
new pess=0.7 03:39:40 +70% 359,266 -11% -205.6 -54.0 -1,976,550 -532,123 92.79% -0.20% 12.37m -0.60% 2,628,140 -0.06% 1,135 -2.26% 2,144 -9% 99,901 +6%
new pess=0.8 03:33:56 +65% 286,173 -29% -210.1 -58.4 -1,427,425 +17,002 91.97% -1.02% 12.18m -2.14% 2,629,144 -0.03% 1,050 -9.50% 1,102 -53% 74,100 -21%
new pess=0.9 03:25:41 +59% 253,796 -37% -178.9 -27.3 -1,136,545 +307,882 92.27% -0.72% 12.08m -2.97% 2,571,400 -2.22% 1,001 -13.76% 1,609 -31% 70,095 -25%
new pess=1.0 03:07:10 +45% 237,308 -41% -147.4 +4.2 -1,036,849 +407,577 92.17% -0.82% 12.01m -3.55% 2,326,982 -11.52% 973 -16.18% 1,450 -38% 86,621 -8%
new pess=1.1 03:09:34 +47% 232,177 -43% -141.9 +9.7 -953,777 +490,650 92.49% -0.50% 12.02m -3.47% 2,497,929 -5.01% 961 -17.25% 1,074 -54% 168,716 +79%
new pess=1.2 02:53:31 +34% 226,943 -44% -165.2 -13.6 -1,204,173 +240,253 91.91% -1.08% 11.92m -4.23% 2,262,545 -13.97% 974 -16.05% 1,089 -54% 292,973 +212%

C6 old pess=0.7 03:09:04 392,126 -190.3 -1,746,606 95.92% 14.44m 3,211,093 1,214 819 113,884
new pess=0.7 04:52:03 +54% 361,112 -8% -277.9 -87.6 -2,340,932 -594,326 93.57% -2.35% 14.15m -2.01% 3,472,713 +8.15% 1,200 -1.17% 0 -100% 123,627 +9%
new pess=0.8 04:31:36 +44% 297,888 -24% -166.5 +23.8 -1,394,264 +352,342 94.10% -1.82% 14.08m -2.47% 3,342,161 +4.08% 1,144 -5.78% 0 -100% 85,790 -25%
new pess=0.9 04:23:35 +39% 263,050 -33% -169.9 +20.4 -1,296,890 +449,716 93.34% -2.58% 13.72m -4.97% 2,899,174 -9.71% 1,113 -8.38% 0 -100% 93,682 -18%
new pess=1.0 04:17:32 +36% 241,687 -38% -166.5 +23.8 -1,440,502 +306,103 93.72% -2.20% 13.70m -5.08% 3,094,233 -3.64% 1,093 -9.95% 9 -99% 134,916 +18%
new pess=1.1 04:15:07 +35% 233,370 -40% -157.5 +32.9 -1,373,542 +373,064 93.77% -2.15% 13.61m -5.69% 3,017,080 -6.04% 1,084 -10.72% 0 -100% 232,931 +105%
new pess=1.2 04:10:58 +33% 227,381 -42% -178.9 +11.4 -1,415,013 +331,593 94.60% -1.32% 13.74m -4.84% 3,037,738 -5.40% 1,081 -11.01% 40 -95% 368,127 +223%

Table 5.5: Comparison of old vs. new BonnRouteBuffer on a set of large chips.

10
4



5.4.4 Previous vs. improved BonnRouteBuffer

Tables 5.5 and 5.6 show results for the same instances as Tables 5.2 and 5.4. The base
run old_pess=0.7 is the same. The other 6 runs use the same flow, but with the new and
improved BonnRouteBuffer version containing all improvements from Section 5.3.
They use slew limit factors of 0.7, 0.8, 0.9, 1.0, 1.1 and 1.2.

In Table 5.5. we see that all metrics could be improved on most of the instances.
In particular, the load violations are significantly lower, regardless of slew pessimism.
For pess=0.8 and pess=0.9, slew violations also reduce quite significantly (except for
pess=0.9 on C2).

Power consumption consistently improves by up to 17% (see C5). The number of
vias and the total net length also decrease (except for C1 and net length on C2). These
improvements are due to the significantly lower number of inserted repeaters we see on
all chips but C1 and for slew limit factors higher than 0.7. The wACE4 values improve
on C4 to C6 and remain similar on C1 to C3 for slew limit factors of up to 0.9. The sum
of negative slacks is considerably better in most runs (except for pess=0.7). Lastly, the
worst slack improves (except for pess=0.7 and pess=1.2 on C2) on the instances C1,
C2, C4 and C6. On C4, this is a very significant improvement.

The worst slack on C3 and C5 could not be improved, although it does improve on
C5 when only changing the slew pessimism (see Table 5.2). On C5, the sum of negative
slacks could be improved for slew pessimism factors of 0.9 and higher. This suggests
that the timing issues on this chip only concern individual nets. On C1, the worst slack
and sum of negative slacks could be consistently improved, whereas this did not happen
when only increasing the slew limit factor (see Table 5.2).

The running time increases compared to the old version. This is mainly due to the
new slew limit propagation.
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Chip Run BRB Time # Reps WSL SNSL wACE4 GR WL [m] GR Vias Power
∑

Load Vios
∑

Slew Vios

C7 old pess=0.7 00:03:42 6,513 -189.0 -25,399 94.59% 0.41m 413,254 880 259 48,046
new pess=0.7 00:04:24 +19% 6,158 -5% -174.2 +14.8 -27,420 -2,021 93.80% -0.79% 0.40m -1.94% 408,814 -1.07% 864 -1.78% 0 -100% 32,100 -33%
new pess=0.8 00:04:10 +12% 5,427 -17% -140.0 +48.9 -19,576 +5,823 93.31% -1.28% 0.40m -4.13% 404,933 -2.01% 846 -3.89% 0 -100% 33,900 -29%
new pess=0.9 00:04:05 +10% 5,083 -22% -146.2 +42.7 -30,227 -4,828 93.19% -1.40% 0.39m -5.58% 399,659 -3.29% 843 -4.24% 0 -100% 46,179 -4%
new pess=1.0 00:04:07 +11% 4,788 -26% -234.3 -45.4 -54,604 -29,205 93.57% -1.02% 0.39m -4.37% 400,975 -2.97% 843 -4.17% 0 -100% 54,291 +13%
new pess=1.1 00:04:10 +13% 4,755 -27% -134.3 +54.7 -33,544 -8,145 93.39% -1.20% 0.39m -4.61% 401,161 -2.93% 834 -5.22% 0 -100% 61,581 +28%
new pess=1.2 00:04:21 +17% 4,738 -27% -176.1 +12.9 -38,143 -12,744 93.50% -1.09% 0.39m -5.58% 399,202 -3.40% 838 -4.80% 0 -100% 69,668 +45%

C8 old pess=0.7 00:06:01 9,650 -38.4 -827 102.91% 0.70m 682,775 3,623 627 30,232
new pess=0.7 00:06:46 +12% 8,380 -13% -24.3 +14.2 -328 +499 100.24% -2.67% 0.69m -2.70% 660,906 -3.20% 3,439 -5.07% 83 -87% 20,899 -31%
new pess=0.8 00:07:00 +16% 7,107 -26% -34.5 +4.0 -113 +714 105.34% 2.43% 0.71m +1.42% 674,870 -1.16% 3,385 -6.55% 84 -87% 17,969 -41%
new pess=0.9 00:07:46 +29% 6,173 -36% -36.8 +1.7 -852 -25 103.44% 0.53% 0.70m -0.71% 664,642 -2.66% 3,351 -7.49% 0 -100% 27,123 -10%
new pess=1.0 00:08:02 +33% 5,497 -43% -44.1 -5.7 -756 +71 102.56% -0.35% 0.69m -2.27% 654,986 -4.07% 3,350 -7.53% 0 -100% 33,401 +10%
new pess=1.1 00:07:55 +31% 5,660 -41% -51.0 -12.6 -1,550 -723 101.93% -0.98% 0.68m -3.40% 650,009 -4.80% 3,357 -7.33% 0 -100% 48,634 +61%
new pess=1.2 00:07:50 +30% 5,780 -40% -51.9 -13.5 -1,523 -696 101.72% -1.19% 0.68m -3.12% 645,136 -5.51% 3,353 -7.46% 0 -100% 50,641 +68%

C9 old pess=0.7 00:11:01 21,501 -244.4 -419,159 91.83% 2.33m 275,972 163 206 14,677
new pess=0.7 00:15:01 +36% 20,993 -2% -161.4 +82.9 -213,697 +205,462 91.82% -0.01% 2.36m +1.16% 297,718 +7.88% 164 +0.48% 206 -0% 13,005 -11%
new pess=0.8 00:14:49 +34% 16,995 -21% -152.1 +92.2 -161,052 +258,107 93.11% 1.28% 2.40m +2.96% 301,480 +9.24% 162 -0.84% 206 -0% 12,060 -18%
new pess=0.9 00:14:10 +29% 15,014 -30% -141.2 +103.2 -191,187 +227,971 92.04% 0.21% 2.36m +0.94% 281,614 +2.04% 160 -1.85% 206 -0% 12,692 -14%
new pess=1.0 00:14:24 +31% 14,196 -34% -129.0 +115.4 -201,894 +217,264 92.69% 0.86% 2.35m +0.81% 277,362 +0.50% 161 -1.45% 206 -0% 14,823 +1%
new pess=1.1 00:12:30 +13% 13,489 -37% -180.3 +64.1 -277,613 +141,546 92.07% 0.24% 2.36m +0.99% 277,533 +0.57% 159 -2.47% 206 -0% 27,877 +90%
new pess=1.2 00:12:25 +13% 12,979 -40% -217.0 +27.3 -377,546 +41,613 92.18% 0.35% 2.35m +0.64% 274,973 -0.36% 159 -2.22% 206 -0% 51,125 +248%

C10 old pess=0.7 00:06:39 27,672 -98.9 -53,860 87.12% 1.04m 629,189 3,600 247 42,079
new pess=0.7 00:08:20 +25% 24,520 -11% -102.3 -3.4 -53,790 +70 89.03% 1.91% 1.04m +0.58% 650,148 +3.33% 3,588 -0.32% 4 -99% 42,963 +2%
new pess=0.8 00:07:34 +14% 17,600 -36% -99.0 -0.1 -53,624 +236 89.31% 2.19% 1.03m -0.58% 628,830 -0.06% 3,469 -3.63% 190 -23% 44,829 +7%
new pess=0.9 00:07:55 +19% 14,144 -49% -105.1 -6.3 -53,719 +141 89.30% 2.18% 1.03m -0.67% 617,348 -1.88% 3,407 -5.37% 361 +46% 39,095 -7%
new pess=1.0 00:08:16 +24% 12,493 -55% -111.2 -12.3 -54,470 -610 87.54% 0.42% 1.03m -0.67% 615,397 -2.19% 3,397 -5.65% 489 +98% 67,291 +60%
new pess=1.1 00:07:17 +9% 11,860 -57% -111.3 -12.4 -54,695 -835 87.66% 0.54% 1.04m -0.19% 614,440 -2.34% 3,378 -6.16% 512 +108% 99,754 +137%
new pess=1.2 00:08:13 +24% 11,185 -60% -109.6 -10.7 -54,626 -766 87.82% 0.70% 1.03m -0.67% 614,530 -2.33% 3,349 -6.98% 573 +132% 143,175 +240%

C11 old pess=0.7 02:24:03 105,897 -1051.0 -716,245 95.20% 29.39m 774,038 92 285,380 525,218
new pess=0.7 04:43:07 +97% 131,597 +24% -1133.6 -82.6 -791,670 -75,425 95.43% 0.23% 29.74m +1.17% 883,544 +14.15% 118 +27.87% 7,030 -98% 457,184 -13%
new pess=0.8 04:06:42 +71% 117,128 +11% -1157.7 -106.7 -793,072 -76,827 95.30% 0.10% 29.58m +0.64% 827,854 +6.95% 112 +21.30% 5,680 -98% 460,851 -12%
new pess=0.9 03:23:39 +41% 100,797 -5% -1111.5 -60.5 -892,543 -176,298 95.95% 0.75% 29.31m -0.28% 756,688 -2.24% 139 +50.64% 8,324 -97% 546,561 +4%
new pess=1.0 03:19:26 +38% 91,940 -13% -1135.8 -84.8 -793,848 -77,603 95.03% -0.17% 29.29m -0.35% 722,705 -6.63% 101 +9.82% 6,027 -98% 517,380 -1%
new pess=1.1 03:15:28 +36% 87,967 -17% -1386.8 -335.8 -930,118 -213,873 95.30% 0.10% 29.16m -0.81% 706,666 -8.70% 98 +6.44% 8,477 -97% 710,589 +35%
new pess=1.2 03:05:28 +29% 83,814 -21% -1352.8 -301.8 -885,173 -168,928 94.57% -0.63% 29.06m -1.12% 702,120 -9.29% 124 +34.52% 11,563 -96% 851,958 +62%

Table 5.6: Comparison of old vs. new BonnRouteBuffer on a set of small chips.
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For the other set of instances, the picture is less clear as shown in Table 5.6. For
pessimism values of 0.7 to 0.9, we still see a consistent reduction in slew violations
across all chips (except for C10), although this is less pronounced than above. The load
violations could also be reduced significantly. On all chips except for C10, this even
holds regardless of slew pessimism values.

Consider the runs new_pess=0.8 and new_pess=0.9. Here, we could improve both
worst slack and sum of negative slacks quite significantly, except on C11. Recall that C11

is special in the sense that the old BonnRouteBuffer produces an immense amount
of load violations on this instance. Hence all other metrics worsen when fixing these
violations.

In total, the slew limit factors 0.8 and 0.9 give the best results.
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Chip Run BRB Time # Reps WSL SNSL wACE4 GR WL [m] GR Vias Power
∑

Load Vios
∑

Slew Vios

C1 old P=25 00:42:12 34,684 -465.0 -1,868,833 92.21% 1.73m 2,176,053 62,084 0 5,003
new P=20 00:59:00 +40% 33,547 -3% -465.9 -0.8 -1,853,580 +15,253 92.43% 0.22% 1.73m +0.52% 2,181,064 +0.23% 61,899 -0.30% 0 +0 2,170 -57%
new P=15 01:04:20 +52% 33,609 -3% -454.4 +10.7 -1,841,586 +27,248 92.36% 0.15% 1.73m +0.35% 2,177,224 +0.05% 61,939 -0.23% 0 +0 2,203 -56%
new P=10 00:54:46 +30% 33,501 -3% -484.9 -19.9 -2,329,400 -460,567 92.06% -0.15% 1.73m +0.23% 2,179,044 +0.14% 61,989 -0.15% 0 +0 3,211 -36%

C2 old P=25 00:54:50 190,361 -146.1 -483,100 93.25% 6.50m 1,262,371 552 169 57,388
new P=20 00:54:58 +0% 129,391 -32% -102.8 +43.3 -298,215 +184,885 93.72% 0.47% 6.50m -0.05% 1,250,454 -0.94% 514 -6.88% 2 -99% 44,181 -23%
new P=15 00:45:57 -16% 130,010 -32% -113.6 +32.6 -349,833 +133,267 93.82% 0.57% 6.47m -0.60% 1,307,696 +3.59% 515 -6.65% 2 -99% 44,788 -22%
new P=10 00:40:53 -25% 130,393 -32% -155.4 -9.3 -451,479 +31,622 92.74% -0.51% 6.39m -1.77% 1,278,934 +1.31% 522 -5.36% 2 -99% 123,385 +115%

C3 old P=25 00:17:04 122,383 -425.1 -4,161,703 92.17% 4.53m 1,062,385 678 150 11,301
new P=20 00:22:17 +31% 109,300 -11% -438.0 -12.9 -4,198,676 -36,973 93.11% 0.94% 4.53m -0.09% 1,038,140 -2.28% 672 -0.88% 73 -52% 5,475 -52%
new P=15 00:18:35 +9% 109,564 -10% -443.7 -18.6 -4,288,599 -126,896 92.55% 0.38% 4.53m +0.04% 1,044,303 -1.70% 673 -0.75% 69 -54% 6,383 -44%
new P=10 00:13:26 -21% 110,686 -10% -434.9 -9.8 -4,158,811 +2,892 92.39% 0.22% 4.52m -0.22% 1,044,568 -1.68% 671 -0.98% 90 -40% 6,110 -46%

C4 old P=25 01:53:07 318,694 -408.6 -1,166,069 96.09% 13.45m 2,244,235 610 2,608 394,238
new P=20 02:00:59 +7% 208,611 -35% -146.7 +261.9 -885,963 +280,106 94.13% -1.96% 13.04m -3.03% 2,164,558 -3.55% 572 -6.17% 897 -66% 266,538 -32%
new P=15 01:42:16 -10% 208,395 -35% -233.7 +174.9 -1,108,883 +57,185 93.96% -2.13% 13.01m -3.28% 2,159,356 -3.78% 576 -5.63% 1,142 -56% 251,280 -36%
new P=10 01:27:22 -23% 208,110 -35% -171.2 +237.5 -993,595 +172,474 94.00% -2.09% 13.05m -2.95% 2,185,982 -2.60% 578 -5.25% 1,190 -54% 242,516 -38%

C5 old P=25 02:09:23 404,584 -151.6 -1,444,427 92.99% 12.45m 2,629,812 1,161 2,348 94,020
new P=20 02:35:47 +20% 253,372 -37% -236.8 -85.2 -1,307,373 +137,053 92.01% -0.98% 12.06m -3.13% 2,547,073 -3.15% 1,005 -13.45% 1,335 -43% 71,447 -24%
new P=15 02:15:18 +5% 254,161 -37% -195.7 -44.0 -1,384,888 +59,538 92.25% -0.74% 12.08m -2.97% 2,557,632 -2.74% 1,015 -12.52% 1,602 -32% 71,084 -24%
new P=10 01:43:33 -20% 256,348 -37% -236.7 -85.1 -1,275,592 +168,834 92.04% -0.95% 12.07m -3.03% 2,377,716 -9.59% 1,007 -13.21% 1,630 -31% 70,260 -25%

C6 old P=25 03:09:04 392,126 -190.3 -1,746,606 95.92% 14.44m 3,211,093 1,214 819 113,884
new P=20 03:26:42 +9% 263,429 -33% -165.8 +24.5 -1,426,033 +320,573 93.25% -2.67% 13.77m -4.61% 3,153,962 -1.78% 1,114 -8.25% 22 -97% 98,175 -14%
new P=15 02:45:47 -12% 264,581 -33% -178.5 +11.9 -1,501,898 +244,707 93.54% -2.38% 13.82m -4.26% 2,925,707 -8.89% 1,119 -7.83% 26 -97% 98,837 -13%
new P=10 02:18:25 -27% 266,190 -32% -207.4 -17.1 -1,512,656 +233,950 93.62% -2.30% 13.83m -4.23% 2,955,066 -7.97% 1,125 -7.36% 36 -96% 98,833 -13%

C7 old P=25 00:03:42 6,513 -189.0 -25,399 94.59% 0.41m 413,254 880 259 48,046
new P=20 00:03:46 +2% 5,061 -22% -222.2 -33.2 -43,263 -17,863 93.01% -1.58% 0.39m -5.58% 398,191 -3.64% 850 -3.44% 0 -100% 50,489 +5%
new P=15 00:03:37 -2% 5,048 -22% -177.7 +11.2 -35,769 -10,369 93.32% -1.27% 0.40m -3.88% 404,034 -2.23% 848 -3.63% 0 -100% 57,721 +20%
new P=10 00:03:12 -14% 4,968 -24% -245.2 -56.2 -40,630 -15,231 93.23% -1.36% 0.39m -4.37% 396,913 -3.95% 864 -1.82% 7 -97% 74,699 +55%

C8 old P=25 00:06:01 9,650 -38.4 -827 102.91% 0.70m 682,775 3,623 627 30,232
new P=20 00:07:10 +19% 6,496 -33% -43.5 -5.1 -1,064 -237 102.11% -0.80% 0.69m -1.42% 660,148 -3.31% 3,377 -6.80% 50 -92% 24,767 -18%
new P=15 00:06:14 +4% 6,790 -30% -43.6 -5.2 -929 -102 102.06% -0.85% 0.69m -1.42% 659,498 -3.41% 3,379 -6.73% 145 -77% 25,645 -15%
new P=10 00:05:24 -10% 7,177 -26% -65.7 -27.2 -498 +329 99.89% -3.02% 0.68m -3.40% 651,148 -4.63% 3,380 -6.72% 178 -72% 31,652 +5%

C9 old P=25 00:11:01 21,501 -244.4 -419,159 91.83% 2.33m 275,972 163 206 14,677
new P=20 00:12:05 +10% 15,055 -30% -165.8 +78.5 -191,980 +227,179 91.79% -0.04% 2.35m +0.69% 278,459 +0.90% 160 -1.95% 206 -0% 12,803 -13%
new P=15 00:10:43 -3% 15,171 -29% -143.0 +101.4 -160,704 +258,454 92.31% 0.48% 2.36m +0.90% 295,493 +7.07% 160 -1.79% 206 -0% 12,991 -11%
new P=10 00:09:19 -15% 15,957 -26% -130.2 +114.1 -149,538 +269,621 93.05% 1.22% 2.37m +1.67% 293,965 +6.52% 160 -2.16% 206 -0% 14,219 -3%

C10 old P=25 00:06:39 27,672 -98.9 -53,860 87.12% 1.04m 629,189 3,600 247 42,079
new P=20 00:06:25 -3% 14,219 -49% -105.1 -6.3 -53,794 +65 89.24% 2.12% 1.03m -0.87% 620,606 -1.36% 3,404 -5.44% 376 +52% 42,516 +1%
new P=15 00:06:00 -10% 14,291 -48% -105.1 -6.3 -53,711 +149 89.40% 2.28% 1.03m -0.67% 619,446 -1.55% 3,411 -5.26% 434 +76% 45,044 +7%
new P=10 00:04:57 -25% 14,657 -47% -111.2 -12.3 -53,867 -8 89.11% 1.99% 1.03m -0.58% 619,543 -1.53% 3,414 -5.18% 378 +53% 59,487 +41%

C11 old P=25 02:24:03 105,897 -1051.0 -716,245 95.20% 29.39m 774,038 92 285,380 525,218
new P=20 02:33:53 +7% 100,873 -5% -1285.9 -234.9 -865,805 -149,560 95.01% -0.19% 29.32m -0.26% 761,693 -1.59% 139 +51.48% 9,702 -97% 568,703 +8%
new P=15 02:17:28 -5% 100,292 -5% -1203.7 -152.8 -861,148 -144,903 96.14% 0.94% 29.45m +0.20% 771,570 -0.32% 107 +16.51% 8,137 -97% 576,920 +10%
new P=10 01:55:59 -19% 100,926 -5% -1220.0 -169.0 -906,195 -189,950 95.76% 0.56% 29.53m +0.48% 780,783 +0.87% 109 +18.38% 9,509 -97% 557,055 +6%

Table 5.7: Comparison of old vs. new BonnRouteBuffer with different number of resource sharing phases.
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Number of resource sharing phases

As the new BonnRouteBuffer version is slower, it makes sense to explore reducing
the number of resource sharing phases. Table 5.7 contains the results for all instances
with different number of phases. The base run old_P=25 is the same as old_pess=0.7.
It uses a slew pessimism factor of 0.7 and 25 resource sharing phases. The other runs
use the new BonnRouteBuffer version, a slew pessimism factor of 0.9 and 20, 15,
and 10 resource sharing phases each.

Most metrics do not significantly depend on the number of resource sharing phases.
The sum of negative slacks and the sum of slew violations are better when running more
phases. Running fewer phases significantly improves the running time. We propose to
use 15 phases per run.
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table:old_vs_new_faster_all
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Chip Run Wall Time # Reps WSL SNSL wACE4 GR WL [m] GR Vias Power
∑

Load Vios
∑

Slew Vios

C1 old pess=0.7 P=25 01:46:40 34,684 -432.0 -1,421,466 85.20% 1.77m 1,931,662 62,083 12 7,350
new pess=0.8 P=25 02:16:25 +28% 33,965 -2% -403.3 +28.7 -1,217,793 +203,673 85.29% 0.09% 1.77m -0.15% 1,949,988 +0.95% 61,865 -0.35% 21 +73% 2,192 -70%
new pess=0.9 P=25 02:16:27 +28% 33,516 -3% -424.4 +7.6 -1,332,024 +89,442 85.26% 0.06% 1.77m -0.05% 1,941,745 +0.52% 61,861 -0.36% 45 +263% 4,388 -40%
new pess=0.9 P=15 02:20:31 +32% 33,609 -3% -421.9 +10.1 -1,409,016 +12,450 85.26% 0.06% 1.77m -0.24% 1,927,548 -0.21% 61,938 -0.23% 115 +830% 4,239 -42%

C2 old pess=0.7 P=25 02:19:57 190,361 -661.5 -1,564,577 85.78% 6.42m 2,867,839 548 1,012 539,020
new pess=0.8 P=25 02:44:13 +17% 142,463 -25% -550.1 +111.4 -1,361,300 +203,277 84.28% -1.50% 6.31m -1.70% 2,694,249 -6.05% 524 -4.27% 117 -88% 412,119 -24%
new pess=0.9 P=25 02:45:32 +18% 129,120 -32% -587.4 +74.1 -1,505,625 +58,952 83.87% -1.91% 6.29m -2.04% 2,633,605 -8.17% 511 -6.63% 249 -75% 676,789 +26%
new pess=0.9 P=15 02:15:04 -3% 130,010 -32% -485.8 +175.7 -1,369,848 +194,730 83.89% -1.89% 6.29m -2.12% 2,644,813 -7.78% 512 -6.61% 121 -88% 547,954 +2%

C3 old pess=0.7 P=25 01:54:41 122,383 -592.2 -6,303,326 84.94% 4.54m 3,721,313 668 149 141,938
new pess=0.8 P=25 02:39:43 +39% 114,129 -7% -577.2 +15.0 -6,216,134 +87,192 85.03% 0.09% 4.53m -0.18% 3,671,906 -1.33% 664 -0.66% 106 -29% 124,854 -12%
new pess=0.9 P=25 02:41:38 +41% 109,025 -11% -608.4 -16.2 -6,413,216 -109,889 84.75% -0.19% 4.53m -0.26% 3,646,133 -2.02% 662 -0.97% 69 -54% 150,150 +6%
new pess=0.9 P=15 02:21:56 +24% 109,564 -10% -609.2 -17.0 -6,362,312 -58,986 84.95% 0.01% 4.53m -0.18% 3,659,067 -1.67% 664 -0.70% 94 -37% 150,208 +6%

C4 old pess=0.7 P=25 06:00:42 318,694 -1232.8 -3,835,930 87.82% 13.29m 6,246,406 605 3,951 1,582,032
new pess=0.8 P=25 07:42:02 +28% 231,095 -27% -717.7 +515.1 -3,402,229 +433,701 85.15% -2.67% 13.01m -2.10% 5,859,876 -6.19% 579 -4.18% 1,984 -50% 1,522,146 -4%
new pess=0.9 P=25 07:39:40 +27% 208,435 -35% -4757.8 -3,525.0 -3,536,728 +299,202 85.00% -2.82% 12.96m -2.53% 5,759,054 -7.80% 569 -5.97% 2,431 -38% 1,582,021 -0%
new pess=0.9 P=15 06:28:40 +8% 208,395 -35% -1190.9 +42.0 -3,745,672 +90,259 84.97% -2.85% 12.95m -2.55% 5,757,364 -7.83% 571 -5.57% 1,913 -52% 1,656,550 +5%

C5 old pess=0.7 P=25 05:04:09 404,584 -727.9 -3,038,686 86.94% 12.51m 7,660,923 1,156 4,435 653,629
new pess=0.8 P=25 06:55:00 +36% 286,173 -29% -706.2 +21.8 -3,402,508 -363,822 85.03% -1.91% 12.22m -2.28% 7,021,130 -8.35% 1,045 -9.54% 1,618 -64% 753,059 +15%
new pess=0.9 P=25 06:58:48 +38% 253,796 -37% -799.0 -71.0 -3,377,676 -338,991 84.41% -2.53% 12.10m -3.25% 6,838,958 -10.73% 996 -13.81% 2,421 -45% 987,756 +51%
new pess=0.9 P=15 05:48:01 +14% 254,161 -37% -686.5 +41.4 -3,466,070 -427,384 84.36% -2.58% 12.11m -3.17% 6,837,977 -10.74% 1,010 -12.57% 2,116 -52% 1,018,254 +56%

C6 old pess=0.7 P=25 06:38:57 392,126 -1025.1 -4,289,955 85.45% 14.15m 8,660,785 1,198 2,013 1,299,792
new pess=0.8 P=25 08:47:48 +32% 297,888 -24% -1359.6 -334.6 -4,270,095 +19,860 83.95% -1.50% 13.72m -3.00% 8,124,994 -6.19% 1,127 -5.93% 40 -98% 1,352,349 +4%
new pess=0.9 P=25 08:30:26 +28% 263,050 -33% -687.3 +337.8 -4,096,351 +193,605 84.56% -0.89% 13.60m -3.85% 7,997,044 -7.66% 1,098 -8.40% 59 -97% 1,722,307 +33%
new pess=0.9 P=15 06:51:02 +3% 264,581 -33% -1031.4 -6.4 -4,516,968 -227,013 84.56% -0.89% 13.62m -3.76% 7,992,719 -7.71% 1,104 -7.87% 18 -99% 1,882,451 +45%

C7 old pess=0.7 P=25 00:21:05 6,513 -521.1 -343,175 92.74% 0.39m 368,426 880 304 40,917
new pess=0.8 P=25 00:21:15 +1% 5,427 -17% -484.3 +36.7 -413,255 -70,080 92.32% -0.42% 0.38m -2.20% 361,731 -1.82% 846 -3.89% 0 -100% 32,841 -20%
new pess=0.9 P=25 00:21:43 +3% 5,083 -22% -564.6 -43.5 -397,611 -54,436 92.39% -0.35% 0.38m -2.71% 359,438 -2.44% 843 -4.24% 0 -100% 47,301 +16%
new pess=0.9 P=15 00:21:12 +1% 5,048 -22% -657.8 -136.8 -496,795 -153,620 92.44% -0.30% 0.38m -1.81% 359,415 -2.45% 849 -3.63% 0 -100% 63,020 +54%

C8 old pess=0.7 P=25 00:23:16 9,650 -500.0 -121,751 92.46% 0.62m 564,458 3,623 667 47,203
new pess=0.8 P=25 00:25:02 +8% 7,107 -26% -644.7 -144.7 -130,848 -9,096 92.31% -0.15% 0.62m -0.55% 546,816 -3.13% 3,386 -6.55% 86 -87% 61,145 +30%
new pess=0.9 P=25 00:26:36 +14% 6,173 -36% -762.8 -262.8 -143,970 -22,218 92.34% -0.12% 0.62m -1.01% 538,974 -4.51% 3,352 -7.49% 0 -100% 96,753 +105%
new pess=0.9 P=15 00:24:19 +5% 6,790 -30% -681.6 -181.6 -114,720 +7,031 92.35% -0.11% 0.62m -0.50% 544,214 -3.59% 3,379 -6.73% 153 -77% 65,466 +39%

C9 old pess=0.7 P=25 00:36:54 21,501 -449.8 -744,872 81.02% 2.32m 798,340 161 411 169,919
new pess=0.8 P=25 00:42:03 +14% 16,995 -21% -757.5 -307.7 -509,992 +234,879 81.19% 0.17% 2.32m +0.13% 789,427 -1.12% 160 -0.65% 206 -50% 178,120 +5%
new pess=0.9 P=25 00:43:42 +18% 15,014 -30% -408.6 +41.2 -556,801 +188,070 81.02% 0.00% 2.32m +0.11% 778,303 -2.51% 159 -1.74% 263 -36% 200,133 +18%
new pess=0.9 P=15 00:39:42 +8% 15,171 -29% -502.0 -52.2 -529,379 +215,493 79.90% -1.12% 2.31m -0.40% 775,931 -2.81% 158 -1.85% 206 -50% 207,525 +22%

C10 old pess=0.7 P=25 00:28:00 27,672 -133.6 -58,057 75.62% 1.04m 701,497 3,599 245 56,652
new pess=0.8 P=25 00:31:32 +13% 17,600 -36% -122.6 +11.0 -59,471 -1,414 75.36% -0.26% 1.03m -0.46% 649,156 -7.46% 3,469 -3.63% 307 +26% 82,191 +45%
new pess=0.9 P=25 00:31:33 +13% 14,144 -49% -132.1 +1.5 -59,735 -1,678 75.36% -0.26% 1.03m -0.65% 630,056 -10.18% 3,406 -5.37% 525 +114% 90,748 +60%
new pess=0.9 P=15 00:30:01 +7% 14,291 -48% -131.4 +2.2 -59,718 -1,661 75.06% -0.56% 1.03m -0.66% 630,883 -10.07% 3,410 -5.25% 633 +159% 95,679 +69%

C11 old pess=0.7 P=25 05:21:52 105,897 -4301.3 -3,467,227 71.14% 28.38m 1,743,334 90 443,575 13,144,553
new pess=0.8 P=25 07:00:11 +31% 117,128 +11% -31046.3 -26,745.1 -5,834,243 -2,367,016 71.51% 0.37% 28.41m +0.11% 1,859,663 +6.67% 110 +21.90% 18,269 -96% 12,748,473 -3%
new pess=0.9 P=25 06:26:15 +20% 100,797 -5% -4930.6 -629.3 -4,227,912 -760,685 71.88% 0.74% 28.34m -0.13% 1,750,252 +0.40% 138 +53.01% 25,349 -94% 14,738,913 +12%
new pess=0.9 P=15 05:18:42 -1% 100,292 -5% -7078.6 -2,777.4 -4,490,963 -1,023,736 71.76% 0.62% 28.37m -0.03% 1,736,303 -0.40% 107 +18.65% 20,732 -95% 13,191,595 +0%

Table 5.8: Comparison of old vs. new BonnRouteBuffer with subsequent RC-aware global routing.
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Results after RC-aware global routing

Table 5.8 shows results after RC-aware global routing. The base run is the same as in the
other tables. The three runs with the new BonnRouteBuffer version are the same
ones using slew limit factors of 0.8 and 0.9 with 25 resource sharing phases and a slew
limit factor of 0.9 with 15 resource sharing phases. After the wire synthesis flow (refer
to Section 5.4.1), a new global routing was computed. This global routing uses arrival
time customers (see Section 2.4.2) and the Elmore delay model (see Section 2.5.1). Note
that the global routing oracle does not consider slew or load violations. It always uses
the default wire type.

Changes to the worst slack and sum of negative slacks vary from chip to chip. The
worst slack values on C4 in new_pess=0.9_P=25 and on C11 in new_pess=0.8_P=25 and
new_pess=0.9_P=15 are due to enormous slew values of 6 to 32 nanoseconds. These nets
have large fan-outs (e.g. 159 on C11, new_pess=0.8_P=25) and would need a different
wire type.

The wACE4 values, total net length and via count remain similar or improve on
all chips. This also holds for cases in which the metrics were worse before RC-aware
routing, e.g. on C9 in new_pess=0.8 (see Table 5.6).

Power decreases on all chips but C11. This is the same tendency as measured before
RC-aware routing.

Load violations improve on all chips but C1 and C10. On C1, there are very few load
violations in total (12 in new_pess=0.9_P=15 and 4 to 5 in the other runs). So single
nets have a large impact. On C10, load violations already increased before RC-aware
routing for a slew pessimism factor of 0.9.

Slew violations get worse on most chips. This is expected: The new BonnRoute-
Buffer inserts significantly fewer repeaters. With fewer repeaters, the slew-unaware
routing oracle will produce more slew violations. Note that on C1 and C11, where the
number of repeaters stays roughly the same, also the slew violations do not increase.
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table:rc_routing
sec:brb_flow
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table:old_vs_new_small


Chip Run #Nets Wall Time BRB Time WSL SNSL wACE4 WL Power #Load Vios #Slew Vios

C12 ibm 6,573 05:55:58 -59 -4,169 89.28% 865,487 2 0 2
bonn 7,005 02:23:31 -60% 00:05:54 -56 3 -4,745 -576 88.96% -0.32% 884,982 +2.25% 2 +0.81% 0 +0% 1 -50%

C13 ibm 75,563 14:26:16 -146 -18,168 86.65% 18,562,298 10 21 92
bonn 81,988 1d 00:41:26 +71% 06:07:48 -143 3 -19,051 -883 88.09% 1.44% 18,398,825 -0.88% 11 +0.69% 12 -43% 103 +12%

C14 ibm 82,884 12:40:16 -20 -3,946 95.06% 19,590,038 35 12 146
bonn 89,885 17:54:21 +41% 05:29:44 -19 1 -3,302 644 91.10% -3.96% 19,981,661 +2.00% 35 -0.04% 34 +183% 176 +21%

C15 ibm 135,669 21:43:06 -19 -795 90.49% 25,552,151 11 0 463
bonn 146,922 1d 05:38:58 +37% 06:11:48 -11 8 -497 298 88.47% -2.02% 25,432,548 -0.47% 11 +0.98% 0 +0% 474 +2%

C16 ibm 181,097 16:06:43 -0 -4 87.40% 48,113,703 16 3 188
bonn 193,905 1d 18:03:36 +161% 10:06:55 -2 -1 -6 -2 87.34% -0.06% 47,988,284 -0.26% 16 -0.11% 3 +0% 199 +6%

C17 ibm 196,059 1d 08:39:35 -13 -400 96.91% 42,928,285 48 0 160
bonn 197,113 2d 20:21:39 +109% 1d 03:03:22 -10 3 -265 135 95.12% -1.79% 41,594,203 -3.11% 46 -2.70% 0 +0% 146 -9%

C18 ibm 271,370 1d 23:48:43 -27 -3,519 93.62% 67,437,153 119 7 235
bonn 275,860 2d 02:51:12 +6% 04:57:07 -25 2 -3,168 351 92.90% -0.72% 66,948,638 -0.72% 118 -1.24% 10 +43% 244 +4%

C19 ibm 360,557 1d 01:28:09 -1,002 -1,351,775 93.50% 65,720,681 21 3 69
bonn 367,914 1d 13:58:02 +49% 12:07:05 -1,002 1 -1,352,224 -449 101.17% 7.67% 64,833,106 -1.35% 21 +0.67% 0 -100% 62 -10%

Table 5.9: Comparison of the IBM PDS flow with and without BonnRouteBuffer.

11
2



5.4.5 BonnRouteBuffer in the IBM flow

BonnRouteBuffer is intended to run inside the PDS (placement driven synthesis)
flow by IBM. The flow indicated in Figure 5.2 is run twice with 5 and 25 resource sharing
phases each. In between, gate sizing is performed again and the inserted repeaters are
removed. This makes sure the non-repeater gates are sized appropriately when the
second (and main) BonnRouteBuffer pass starts.

Table 5.9 compares results after PDS of using the BonnRouteBuffer flow and the
industry tool in use today. The runs denoted by bonn use the new BonnRouteBuffer
version with a slew limit factor of 0.9.

In most metrics, BonnRouteBuffer performs similar or worse. The total running
time (Wall Time) is much longer on most instances. Note that in this flow, Bonn-
RouteBuffer is run with only 4 threads. Raising the number of threads will signifi-
cantly improve the running time.

The worst slack is better on all chips but C16. The sum of negative slacks is better
on the chips that finish the PDS flow with little negative slack.

The wACE4 value is better on almost all tested chips. On C2, wACE4 is so low in
both runs that the increase does not have significant impact. On C19, the result goes
from almost routable (ibm results) to completely over-congested (bonn results).

On more congested chips, i.e. chips with wACE4 values of 90% and above (except
on C19), BonnRouteBuffer is able to find slightly better solutions with regard to
timing. However, this does not justify the extensive running time.
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5.5 Future work

In the testing of the improved BonnRouteBuffer version, more development oppor-
tunities came to light. As the focus of this thesis lies more on BonnPangea, they are
not yet implemented.

5.5.1 Slew computations

Slew-dependent delay

After a net is routed and buffered by the resource sharing oracle, we propagate delay
and slews through the buffered route. Here, we compute the delay depending on the
propagated in-slew. However, this is the only place where the actual slew value is used
to compute delay.

During the dynamic program of BonnRouteBuffer, delays through repeaters or
wire segments are always computed using the slew target instead of an actual slew value.
This is because the labels only know a slew limit, but no incoming slew value.

One way to address this is to add a slew property to the labels. Then, the dynamic
program would start with many different labels at the net sinks, which differ only in
their slew values. This increases the number of considered labels. Consequently, more
label pruning is required to make this approach fast enough for practical applications.

As a second option, we can adapt parts of the buffered trees after the computation
is complete. For this, we check how much the actual delay and the delay seen during
the dynamic program differ. In sub-trees where this becomes too large, we restart the
dynamic program to compute a better buffering. For this step, we can adapt the slew
value used to compute the delay during the dynamic program.

Propagating slew through non-repeater gates

We need to propagate slews not only through a single buffered route, but also through
the sink gates to the subsequent net source. This introduces a dependency between
solutions for individual net customers. So it is difficult to incorporate this accurately
into the resource sharing framework.

Currently, a default slew is assumed at the input of every non-repeater gate in the
first resource sharing phase. Whenever the oracle routes and buffers a net N , the
input slews at the successor nets are updated. However, this does not account for the
fractional character of the solutions in resource sharing. Additionally, the input slew is
not adapted after randomized rounding. This potentially leads to significant errors, as
almost all nets are assigned solutions from a different phase than the last.

We propose propagating slews through the most recent solutions for all nets every
few phases. In particular, we need to propagate slews through the solutions chosen in
randomized rounding. Then we use the resulting values as input in the buffering of
subsequent nets.

5.5.2 Fixing electrical violations in ripup-and-reroute

Neither slew violations nor load violations are modeled in the resource sharing frame-
work. They are still considered during the oracle calls themselves. But in the ripup-
and-reroute step, the nets to re-buffer are chosen solely depending on their resource
usage. This means that nets with high violations are not visible here. We propose to
additionally re-route and re-buffer nets with high violations in this step.
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5.5.3 Fast buffering of timing-uncritical nets

For nets with low timing criticality, we can save running time by using a faster buffering
routine. Instead of the cost-based algorithm considering all resources explicitly, it is
much faster to only consider slew and load violations during the buffering. For nets
where this results in reasonably buffered routes, we then do not need to perform the
standard buffering algorithm.
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Summary

In this thesis, we presented mathematical and practical progress in BonnPangea for
port assignment and in BonnRouteBuffer for global buffering. Both are used in
chip design. They are part of the BonnTools, developed by the Institute for Discrete
Mathematics at the University of Bonn in collaboration with IBM.

We presented an approximation algorithm for the uniform cost-distance Steiner tree
problem. Our approximation factor of <2.05 improves upon the previously best factor
of 2.39 in [KH20]. Our algorithm is tight with respect to the lower bound CSMT (T ∪
{r}) + D(T, r, w).

We considered the pangea routing problem in theory and practice. Here, the task is to
compute a global routing on a chip partitioned into components (“continents”), such that
the routing interfaces of each component (which are also part of the output) are as simple
as possible. The interfaces should not enforce detours on source-to-sink connections and
allow for routing with small net length and low congestion. BonnPangea is being used
for the design of all IBM microprocessors. We saw that the currently used constraint
of routes being allowed to enter every continent at most once has significant downsides
regarding total net length.

After providing the first written account of the standard pangea flow as well as pangea
replay, we considered the completely new problem of reusing a continent multiple times.
This happens for example when there are several cores on a processor chip. We then
need to compute equivalent interfaces on all instances of the continent. Pangea ReUse
is the first tool in the industry able to deal with this case.

We presented a new collection of algorithms for Pangea ReUse that was devel-
oped and implemented at part of this thesis. For the step of computing port intervals,
which are intervals on continent boundaries through which the routing has to go, we
proposed several problem formulations and showed how to solve some variants optimally
in polynomial time.

Pangea ReUse was a huge success in practice. Compared to the previous workflow,
it saves one week in going from netlist to port creation. Pangea ReUse also enables
the use of BonnPangea on designs that would not have been eligible without it.

Afterwards, we explored necessary conditions for eligible solutions. This led to an
advanced algorithm for Pangea ReUse. We could show that this algorithm is able
to solve much more general instances correctly. The algorithm especially focuses on
aligning the interfaces of neighboring continents. This is necessary to correctly solve
instances with several continent equivalence classes.

We then addressed BonnRouteBuffer. This is a tool for simultaneously rout-
ing and buffering large designs. Doing so, BonnRouteBuffer can optimize routing
congestion, timing properties, power consumption and placement density.

We briefly reviewed the existing algorithms used inside BonnRouteBuffer and
uncovered a major inaccuracy in the slew computations. Then we presented the im-
provements that were devised and implemented as part of this thesis. The computation
of both the backwards propagation of slew limits and the forwards propagation of slews
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were rewritten. The new slew model allowed us to reduce the pessimism in the slew
calculations, leading to improvements in almost all metrics.

Additionally, a number of speed ups were discussed. These concern saving com-
putational resources in situations in which exactness is of less importance. Finally,
enhancements concerning via capacitance and load violations were outlined.

From the experimental results, we could draw several conclusions. Firstly, the in-
accuracy in the slew calculations was a main reason why very sub-optimal buffering
solutions were computed. A refinement of these computations already led to significant
improvements in many metrics. Secondly, both slew and load violations play a major
role for the buffering quality. This is not reflected well in the model. Finally, further
speed-ups of BonnRouteBuffer are necessary to make it suitable to replace industrial
buffering flows.

In the last section, we proposed future improvements to BonnRouteBuffer. The
most prominent ones are global slew propagation and the explicit consideration of slew
and load violations in the resource sharing framework. With respect to running time,
we proposed to spend less time dealing with timing-uncritical nets.
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