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Abstract

This thesis consists of three parts. The first part is concerned with complete exper-
iment analysis. This is a theoretical topic within the field of Baryon spectroscopy
and deals with the question of how many and which polarization observables
have to be measured in order to un-ambiguously determine the underlying phys-
ical parameters of the hadronic reaction under consideration. The theorem of
Moravcsik, which is based on graph theory and combinatorial methods, is applied
to multiple reactions including two-pseudoscalar meson photoproduction, which
is fully described by eight complex spin-amplitudes. This yields complete sets of
observables, which are further reduced via numerical methods to contain only
the minimal, required number of observables. The approach is appealing because
the whole process can be automated, parallelized and is applicable to reactions
with an arbitrary number of complex spin-amplitudes. The studies resulted in two
papers, Ref. [Wunderlich et al., 2020] and Ref. [Kroenert et al., 2021], published
in the journal Physical Review C.

The second part of this thesis falls likewise into the domain of Baryon spec-
troscopy. The application of truncated partial-wave analysis on 𝜂-photoproduction
data (𝜎0, Σ, T , E, F and G ) near the production threshold (E lab

𝛾 from 750 MeV to
1250 MeV) is studied. The results of the analysis are model-independent estimates
of the electromagnetic multipole parameters and predictions for not yet measured
polarization observables. For the first time, truncated partial-wave analysis and
Bayesian inference are combined, resulting in parameter distributions instead
of point estimates and accurate error estimates for the model parameters and
predictions. The application of Bayesian inference is of interest, because it is a
complementary analysis approach to the Frequentist method and the interpretation
of the results differ. Furthermore, through the usage of Hamiltonian Monte Carlo,
which is a special method of Markov chain Monte Carlo, the structure of arising
solutions, i.e. the so-called ambiguities, can be studied. The results were published
in Physical Review C [Kroenert et al., 2024].

The third part of this thesis falls into the domain of Neutrino mass analysis.
It is connected to the second part of the thesis in the sense that the knowledge ob-
tained about Bayesian inference is applied to a different analysis. Hence, Bayesian
inference is used to analyze the first five measurement campaigns of the Karl-
sruhe Tritium Neutrino experiment, i.e. KNM1, KNM2, KNM3-SAP, KNM3-NAP,
KNM4-NOM, KNM4-OPT and KNM5. The analysis are performed on Asimov
data as well as for the measured data. Two approaches are taken, on the one hand
each of the campaigns is analyzed on an individual basis. On the other hand, a
so-called chained analysis of the campaigns is performed via multiple Bayesian
knowledge updates. In this method, certain marginal parameter distributions of a
former fit are used as prior information for the next fit. In addition, a sensitivity
analysis is performed using different priors for the squared neutrino mass. However,
in order to not delay the publication of this thesis, only the results on Asimov data
are shown within this thesis. A paper containing the results on measurement data
and further analyses is to be published in the near future.
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Chapter 1

Introduction

Physics strives for the understanding of the universe. This ranges from small-
scale processes, such as quark interactions and hadron formation, to large-scale
phenomena, such as the formation of neutron stars and even galaxy clusters.
These processes and related phenomena are the result of four fundamental forces:
gravity, weak-, electromagnetic-, and strong interaction, in combination with ele-
mentary particles. Elementary particles are the fundamental building blocks of all
matter and have specific characteristics so-called quantum numbers such as elec-
tric charge, spin and parity. From today’s perspective, particles are excitations of
specific quantum fields, behaving like waves that propagate through space and time.

The four fundamental forces allow elementary particles to interact with each
other and more interestingly to form bound systems. This results in the formation
of new, stable and non-stable particles. One prominent example is the proton which
was discovered by Ernest Rutherford in 1919 [Rutherford, 2010]. Another one is
the neutron, which was discovered by James Chadwick in 1932 [Chadwick, 1932]
(awarded a Nobel Prize in Physics in 1935). These two particles, together with
electrons, are the building blocks of all stable baryonic matter in the observable
universe.

Protons and neutrons themselves consist of elementary particles known as quarks.
In 1964, Murray Gell-Mann [Gell-Mann, 1964] and George Zweig [Zweig, 1964]
independently proposed quarks as the building blocks of protons and neutrons.
This fundamental theory was experimentally verified in 1969 at the Stanford Lin-
ear Accelerator Center [Bloom et al., 1969, Breidenbach et al., 1969] using deep
inelastic scattering. This achievement was awarded with a Nobel Prize for Richard
Taylor, Jerome Friedman, and Henry Kendall in the year 1990.

Today a plethora of such bound states are experimentally verified, each with
its distinct characteristics, and even more are predicted. The study of these com-
posite systems of elementary particles allows to improve our understanding of the
fundamental forces which shape the world around us.

Apart from bound systems of particles, other fundamental particles are of in-
terest as well. For example the neutrino, which was predicted by Wolfgang Pauli in
1930 [Pauli, 1978] to explain the continuous 𝛽 -energy spectrum as was first mea-
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Figure 1.1: The position of this thesis in the context of particle physics is visualized.
The main building blocks of this thesis are highlighted via a frame around their
node.

sured by James Chadwick in 1914 [Chadwick, 1914]. The experimental verification
of the neutrino was published in 1956 by Clyde Cowan and Frederick Reines et al.,
see Ref. [Cowan Jr et al., 1956], for which the Nobel Prize in Physics was awarded
to Reines in 1995. The neutrino is of special interest, as it was first assumed to
be massless and later confirmed to have a non-zero mass. However, in addition
this mass is several orders of magnitude smaller than that of other fermions in
the Standard Model of particle physics which might hint to physics beyond the
Standard Model.

This thesis deals with bound states of quarks in the context of Baryon spectroscopy
as well as with neutrino physics in the context of direct neutrino mass analysis.
This includes in total three projects within these two different fields of physics. It
therefore seems appropriate to visualize the position of this thesis within the larger
context of particle physics and stress the connection between the two physical
fields. The information is visible in Fig. 1.1.

This thesis is structured as follows: In Chapter 1, Section 1.1 the foundation
for Baryon spectroscopy and the neutrino mass analysis is laid out by discussing
the Standard Model of particle physics. Chapter 2 gives a general introduction
to Bayesian inference, as this statistical method was heavily used in two of the
three projects. In Part I of this thesis, the focus is on ambiguity analyses in Baryon
spectroscopy, for which Chapter 3 gives a general introduction. Afterward, the
published papers on complete experiment analysis and truncated partial wave
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analysis are discussed in Chapters 4 and 5, respectively. In Part II of this thesis,
the focus is on the neutrino mass analysis with KATRIN. Therefore, Chapter 6
gives a general introduction into the KATRIN experiment before in Chapter 7 the
neutrino mass analysis with Bayesian inference is discussed. Finally, the thesis is
summarized in Chapter 8.

1.1 The Standard Model of particle physics

The Standard Model (SM) of particle physics is a theoretical framework to describe
and predict the phenomena within the subatomic world. It is formulated via quan-
tum field theory (QFT) and enables the unification of the weak-, electromagnetic-
and strong interaction within one framework. The gauge symmetry of the SM is
written as [Thomson, 2013]:

SU(3)C × SU(2)L × U(1)Y, (1.1)

where SU(3)C corresponds to the local gauge group of the strong interaction, and
SU(2)L × U(1)Y to the local gauge group of the electroweak interaction, which is a
unification of the weak and electromagnetic interaction as proposed by Sheldon
Lee Glashow, Abdus Salam and Steven Weinberg, who were awarded the Nobel
Prize in Physics in 1979 [Coleman, 1979].

Gravity is usually disregarded in particle physics due to its relatively small strength
in comparison to the other three interactions, i.e. it has no significant effects on
the subatomic scale which can be observed [Halzen and Martin, 2008]. However,
in order to describe all physical phenomena within one theoretical model, different
approaches for a possible unification of gravity and the QFT of the SM are currently
under investigation, in a research field called quantum gravity [Kiefer, 2012].

The Standard Model includes twelve fermionic, i.e. spin-1/2, particles consist-
ing of six leptons and six quarks. These particles are all fundamental in the sense
that they do not consist of further building blocks, just matter/energy. An overview
is given in Table 1.1. In the original version of the SM the neutrinos are massless.
However, later experiments, like Super-Kamiokande [Hosaka et al., 2006] and the
Sudbury Neutrino Observatory [Ahmad et al., 2001] indicate massive neutrinos.
Therefore, the present neutrino mass limits are shown in the table as well. This
topic will be discussed in detail in Chapter 6.

The equations of motion for relativistic fermions within quantum mechanics are
described by the Dirac equation. However, for each positive energy solution one
with negative energy has to exist due to mathematical reasons. These are inter-
preted as particles and antiparticles, respectively. The existence of a corresponding
antiparticle for each of the twelve particles in Table 1.1 has been experimentally
verified. Antiparticles do possess the identical mass and spin and take part in
the same interactions as their counterpart, but have opposite charge quantum
numbers, such as electric- and color charge as well as the weak isospin.

This is of particular importance, as the quantum numbers of a particle define
the types of possible interactions it can participate in. For example, all twelve
fermionic particles of the SM (and the corresponding antiparticles) can interact
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Table 1.1: This table lists several quantum numbers for the twelve fundamental
fermions of the Standard Model of particle physics, i.e. six leptons and six quarks.
The corresponding antiparticles are absent from the table. The specific values are
taken from the Review of Particle Physics [Navas et al., 2024].

Name Symbol
Mass in Electric Color Weak
(MeV / c2) charge charge isospin

Leptons

Electron e − ∼ 0.511 -1 no −1/2
Muon 𝜇− ∼ 105.658 -1 no −1/2
Tau 𝜏− ∼ 1776.93 -1 no −1/2
Electron neutrino 𝜈e < 0.8 × 10−6 0 no +1/2
Muon neutrino 𝜈𝜇 < 0.19 0 no +1/2
Tau neutrino 𝜈𝜏 < 18.2 0 no +1/2

Quarks

Up u ∼ 2.16 +2/3 r,g,b +1/2
Down d ∼ 4.70 −1/3 r,g,b −1/2
Strange s ∼ 93.5 −1/3 r,g,b −1/2
Charm c ∼ 1.27 × 103 +2/3 r,g,b +1/2
Bottom b ∼ 4.18 × 103 −1/3 r,g,b −1/2
Top t ∼ 172.57 × 103 +2/3 r,g,b +1/2

through the weak interaction, due to their non-zero weak isospin quantum number.
On the other hand, out of the twelve fundamental fermions only quarks participate
in the strong interaction, as they carrying a non-zero color charge. Similar, only
the fermions with a non-zero electric charge quantum number interact via the
electromagnetic interaction, see Table 1.1.

However, not every interaction between particles is possible. Certain conservation
laws must be fulfilled, i.e. the value of a certain quantity before the interaction
has to be the same after the interaction. Furthermore, certain conservation laws
differ for the different types of interactions, an overview is given in Table 1.2. In
general, any operator that commutes with the Hamiltonian under consideration
corresponds to a conserved quantity, arising from underlying symmetries.

The interactions between fundamental particles are mediated via the exchange of
so-called gauge bosons. Each type of interaction has its own gauge boson(s), which
are listed in Table 1.3. The table includes two more entries, one for the Higgs boson
and one for the hypothetical exchange particle of gravity, also known as the graviton.

The elementary fermionic particles/antiparticles, as well as the gauge bosons,
acquire their masses via a coupling to the Higgs field 𝜙 mediated by the Higgs
boson. The theoretical description is given by the Brout-Englert-Higgs (BEH)
mechanism [Englert and Brout, 1964, Higgs, 1964]. In the simplest possible case,
the Higgs field is a weak isospin douplet of two complex scalar fields 𝜙+ and 𝜙0
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Table 1.2: Conserved quantities within the different types of interactions. A
conserved quantity is indicated with the symbol ✓ and otherwise with the symbol
×. The energy, momentum, angular momentum, electric charge, color charge,
lepton number, baryon number, and CPT are conserved in all three interactions,
and therefore not explicitly listed in the table. The listing includes: the charge
parity C, the parity P, time reversal T, the combination of charge parity and
parity CP, the isospin I and in general the flavor quantum numbers fqn (charm,
strangeness, third component of isospin, etc.). Information taken from [Povh et al.,
1995].

Interaction C P T CP I fqn

Strong ✓ ✓ ✓ ✓ ✓ ✓
Electromagnetic ✓ ✓ ✓ ✓ × ✓
Weak × × × × × ×

Table 1.3: This table includes the force-carrier particles, i.e. the gauge bosons of the
Standard Model of particle physics. These gauge bosons mediate the interactions
between elementary particles and thus are of fundamental importance. In addition,
the Higgs boson and the hypothetical force carrier of gravity is shown. The specific
values are taken from the Review of Particle Physics [Navas et al., 2024].

Interaction Name Symbol
Mass in

Spin
Electric Color

(GeV / c2) charge charge

Gauge bosons

Electromagnetic Photon 𝛾 < 10−27 1 0 no
Strong Gluon g 0 1 0 r,g,b
Weak W±-Bosons W ± ∼ 80.369 1 ±1 no
Weak Z-Boson Z 0 ∼ 91.188 1 0 no

Gravity Graviton G < 1.76 × 10−32 2 0 no

⧸ Higgs boson H ∼ 125.20 0 0 no

[Workman et al., 2022, Thomson, 2013] forming the SM Higgs potential:

𝜙 :=
(
𝜙+

𝜙0

)
, V (𝜙) := 𝜇2𝜙†𝜙 + 𝜆

(
𝜙†𝜙

)2
. (1.2)

If 𝜇2 < 0 then the vacuum expectation value v of the neutral, complex scalar field
𝜙0 of the Higgs field is non-zero:

⟨0|𝜙|0⟩ = 1
√

2

(
0
v

)
, with v2 =

−𝜇2

𝜆
. (1.3)

This results in an infinite set of degenerate minima for the Higgs potential, thus
breaking the symmetry of the Lagrangian - a phenomenon known as spontaneous
symmetry breaking. The Higgs mechanism is embedded in the SU (2)L ×U (1)Y
gauge symmetry of the electroweak interaction such that the aforementioned
spontaneous symmetry breaking is generating the masses of theW ± and Z bosons.
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TheW and Z boson masses are proportional to v and the gauge couplings gW
and g ′ of SU (2)L and U (1)Y , respectively, whereas the mass of the photon is zero:

mW =
1
2
gW v , mZ =

1
2
v
√︃
g 2
W + g ′2, m𝛾 = 0. (1.4)

In contrast, the elementary fermions gain mass m f via a Yukawa coupling g f to
the Higgs field:

m f =
1
√

2
g f v . (1.5)

Thus, the masses of the gauge bosons and the elementary fermions only depend
on four quantities (v , gW , g ′ and g f ), i.e. the vacuum expectation value of the
Higgs field, the gauge coupling of SU(2)L as well as U(1)Y and the strength of the
Yukawa coupling.

Furthermore, the spontaneous symmetry breaking leads to an excitation of the
Higgs field 𝜙 in the form of a scalar boson called Higgs boson H . This particle was
first proposed by Peter Higgs in 1964 [Higgs, 1964]. Its mass is given by [Thomson,
2013]:

m2
H = 2𝜆v2. (1.6)

The existence of this Higgs boson, and thereby the experimental verification of the
BEH mechanism, was achieved in 2012 at the Large Hadron Collider at CERN
[ATLAS-Collaboration et al., 2012, CMS-Collaboration et al., 2012]. Example
processes for the production and decay of a Higgs boson are shown in Fig. 1.2 and
Fig. 1.3, respectively. The current value for its mass was measured to be [Navas
et al., 2024]:

mH = (125.20 ± 0.11) GeV. (1.7)

Furthermore, from the measured values of mW and gW [Thomson, 2013]:

g 2
W =

8m2
WGF√

2
, (1.8)
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with the Fermi coupling constant [Navas et al., 2024]:

GF = (1.166 378 8 ± 0.000 000 6) × 10−5 GeV−2, (1.9)

the vacuum expectation value of the Higgs field can be calculated to be about
[Thomson, 2013, Navas et al., 2024]:

v ≈ 246 GeV. (1.10)

All elementary particles/antiparticles couple to the Higgs field, via the Higgs bo-
son and thereby acquire their mass. However, the neutrino masses are several
magnitudes smaller than those of the other elementary particles, and it is not clear
whether the neutrino masses are generated via a coupling to the Higgs field or
some other kind of mechanism, like the seesaw mechanism [Thomson, 2013].

François Englert and Peter Higgs were awarded the Nobel Prize in Physics 2013
for their contribution to the BEH mechanism.

1.1.1 Bound states of quarks

To the present day, there is no experimental evidence for freely propagating quarks
[Navas et al., 2024]. Rather, quarks are observed only indirectly, as parts of a bound
system of multiple quarks. Within the SM, this observation is explained via the
so-called color confinement and is assumed to originate from the self interaction
of the gluons [Thomson, 2013]. The concept of color confinement states that freely
propagating particles have to be color-neutral objects. To discuss this topic in more
detail and its influence on the theoretically allowed bound states of quarks, it is
convenient to introduce the color hyperchargeY c and the third component of the
color isospin I c

3 defined as follows:

Y c :=
𝜆8√

3
and I c3 :=

𝜆3

2
, (1.11)

where 𝜆3 and 𝜆8 are the diagonal and thus commuting Gell-Mann matrices. The
set of all eight Gell-Mann matrices are the generators of the SU (3)C symmetry
group [Thomson, 2013]. The color charge of quarks can have three possible states
(r, g, b), while the antiquarks have the corresponding anti-color charges (r̄, ḡ, b̄),
see Table 1.1. This can be visualized in theY c-I c

3 plane, see Fig. 1.4.

Following the assumption of color confinement, bound states of quarks, also
called hadronic states, can exist as freely propagating states if and only if they are
color-neutral states. Hence, the color quantum numbers of such a state must be
I c3 =Y c = 0. In addition, the application of one of the six color ladder operators
(a definition in terms of Gell-Mann matrices can be found in Ref. [Halzen and
Martin, 2008, Thomson, 2013]) onto the hadron color wavefunction must result
in a value of zero. In other words, any freely propagating hadronic state has to
be a color-singlet state [Thomson, 2013]. For example, considering all possible
combinations of a color and an anticolor state, one gets eight colored states, a
so-called colored octet, and one color neutral state, a so-called color-neutral singlet
state, which can be written in short: 3 ⊗ 3̄ = 8 ⊕ 1. Combining three colored states,
i.e. 3 ⊗ 3 ⊗ 3 = 10 ⊕ 8 ⊕ 8 ⊕ 1, gives also one color-neutral state. Such considera-
tions can also be made for other combinations of quarks and/or antiquarks. The



8 CHAPTER 1. INTRODUCTION

<latexit sha1_base64="Wyw9kArnsuH1mRyr9QBsWHxYaIo=">AAANZXic7VZdj+M0FM0sX8t0CzuAeOEBiylSZydpk3Y+Fo0GjRYkQOJhQcx+qOmOHMdprUmcYLtMS9Qfur+Av8F1kpakaXeodgU84IfIub73+Nj35CheEjKpbPvlzp233n7n3ffuvr/buNf84MP7ex89kfFEEHpJ4jAWzzwsacg4vVRMhfRZIiiOvJA+9a6/0etPf6NCspj/omYJHUZ4xFnACFYQutrbfekmoyDCaiypijARsSsJBrRRgImKRdqb77oeHTGeKnb9e8KImgg630UwvkTfCnyDphbC3EczC0+pzBZcH+ID6+shalvOgyqgaR8gy0LtNfGz1WLbrJXnxbZZi58VlH7EHg03cVqzrWV3jg4Qj32K0tYPL8hVvzU/K1fohPp2i4rnL8giv7gO3QmJPKpuKOUoiRlX5VvxsRxTHw7XqiI+aDvdnul0+wet/Iy1deuvhLM3AgjX29sCztoSb0UeipHr4iKCGCRKxsiddt2polOFGEcp4FtuIDBJnTnIzkRO97D0nmuu1Bh3ikhkOonK6eSvVvaumzPAnIxjcc5jocZDaFW+1bK7SxKzrjsrkej09ThacOnN0z5wsTsnepyWKPXrlGBzEwCBSM7JKgfKpCiWsBCwMDy/GTNFM36zMr/i9nL9ICCLEizgDkMKMcn017u4TUDJWidulQFhAgAGAvtsIs97iRpWpN5qr9Tq0lqof6g/mdbiExDLC13wGAlQ/m0K2paK9Xe4jGpcvHBC11FZavV2Ivr7XyVT1Oa7erCrS7lfdUh3LBNMaOrYUfS/h/5DHpqpxHqVSZUStrC9V0La5jY2uiXcv+KiqG6j8MexjY0u/dIq+SWQWbjrYcld/2M2irliG6y0ooU34WAay6pYWMv1sEhdfQaw1nmr5mia3kaHfR1+W9MbbaK32XRfw3Mrllum4eU0ag58dX/f7tjZQPWJU0z2jWI8vtrbka4fk0lEuSIhlnLg2EAtLQQDJj6RFDz9Go/oAKYcR1QO0+wnvLKY4kjKWeTVgvo/ewVGBQ+HKePJRFFOqgXJeCYZkdWgPmEe0bOQeQKLWRox7kc4MUcCJ2Np/jqJFa0WDkgcJVidOx04+TCDsQI64xHmkOfTACw3O0la6H+e/vzdI7AMx0Q9+wgezldrEjMlFqlO/6GJINM5XZepRbHAPNZ4x8eQaus2OatNqU+e9DrOSefkp6P9i0dFw+4anxlfGG3DMU6NC+N747FxaZDGRSNoxI3k3h/NZvOT5qd56p2douZjozKan/8JYFUlfA==</latexit>

Ic
3

Y c

� 1
2 + 1

2

� 2
3

+ 1
3

rg

b

Ic
3

Y c

� 1
2 + 1

2

� 1
3

+ 2
3

r̄ ḡ
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Figure 1.4: Shown are the three possible color states for quarks (r, g, b) as well
as for antiquarks (r̄, ḡ, b̄). The definition of the color hypercharge Y c and the
third component of the color isospin I c3 can be found in Eq. (1.11). Redrawn from
[Thomson, 2013].

theoretically allowed combinations resulting in a color-neutral singlet state are
[Gell-Mann, 1964, Thomson, 2013]:

Mesons:
��q q̄ 〉 , (1.12)

Baryons:
��qqq 〉 , ��q̄ q̄ q̄ 〉 , (1.13)

Exotics:
��qq q̄ q̄ 〉 , ��qqqq q̄ 〉 , ��g g 〉 , ��g g g 〉 ,etc. (1.14)

Bound states consisting of a quark-antiquark pair are called mesons while bound
states made up of three quarks are called baryons. The existence of baryons and
mesons are experimentally well established, see for example the ’Summary Tables’
from the Review of Particle Physics [Navas et al., 2024].

However, it should be noted that the internal structure of a color neutral bound
state is more complex than just consisting of multiple quarks. As an example, the
proton consists of three quarks |uud⟩, so-called valence quarks, which are directly
responsible for the quantum numbers of the proton. The valence quarks can
interact with each other by the exchange of virtual gluons which can then produce
virtual quark-antiquark pairs [Thomson, 2013]. Because this happens quite often, a
’sea’ of virtual quarks and antiquarks emerges, which are called sea quarks for short.
These sea quarks together with the gluons contribute majorly to the momentum
and the mass of the bound state. For the proton, nearly 50% of the momentum is
carried by the virtual gluons [Thomson, 2013], as can be experimentally verified
by measuring parton distribution functions via deep inelastic scattering.

In analogy to the color multiplets shown in Fig. 1.4, there is a compact visu-
alization for the meson and baryon states. This time, the plane is spanned by the
hyperchargeY , defined as the sum of the baryon- (B) and strangeness (S ) quantum
numbers, and the third component of the strong isospin (I3). As an example, the
meson and baryon states formed from the three lightest quarks (u,d,s) are shown
in Fig. 1.5 and Fig. 1.6, respectively. In general, bound states with components of
(u,d,s,c,b)-quarks can be formed, whereas states with t-quarks are very unlikely as
the mean lifetime of a top-quark, i.e. 𝜏 ∼ 0.5 × 10−24 s, is believed to be too short
to form a bound state [Navas et al., 2024].



1.1. THE STANDARD MODEL OF PARTICLE PHYSICS 9

<latexit sha1_base64="TK3bZ1k/gY760pn2Q4Gnq5IILQk="></latexit>

JP = 0�

I3

Y

�1 � 1
2

1
2

1

�1

1

⇡+(ud̄)

K+(us̄)K0(ds̄)

⇡�(ūd)
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In addition, the SM allows for more types of bound states with more than three
quarks and/or antiquarks (tetraquark:

��qq q̄ q̄ 〉, pentaquark:
��qqqq q̄ 〉) or states

solely consisting of gluons (glueballs). Such exotic states are of particular research
interest, as their existence could further confirm the SM or their non-existence
could provide hints for physics beyond the SM. An important step in establishing
the existence of exotic quark-states was the discovery of three tetraquark states
X (4274), X (4500) and X (4700) [Aaij et al., 2017] and two pentaquark states
Pc (4380)+ and Pc (4450)+ [Aaij et al., 2015] by the LHCb collaboration.



Chapter 2

Bayesian inference

This chapter is structured as follows: It starts with a general introduction and
motivation of Bayesian inference in Section 2.1 before moving on to the mathemat-
ical definition and an illustration of Bayes’ theorem in Section 2.2. Afterward, in
Section 2.3 the concept of a marginal distribution is explained and intuition for it is
developed. In Section 2.4 the need for efficient and reliable numerical integration
methods is discussed in order to calculate the marginal parameter distributions.
Associated with this, the Markov chain Monte Carlo convergence diagnostics are
discussed in detail in Section 2.5. In Section 2.6 posterior predictive checks re
discussed, which are a form of model assessment in the Bayesian context.

2.1 Introduction

Bayesian inference (BI) is an approach to estimate the parameters of a statistical
model on the basis of data. In addition to the data points, the model parameters
themselves have an underlying probability distribution. This is a key difference to
the well known method of maximum likelihood estimation (MLE) and is expressed
in the presence of an additional term alongside the likelihood distribution, the
so-called prior distribution. The likelihood distribution together with the prior
distribution and a normalization factor define the posterior density, which holds
all information about the problem at hand.

From the posterior density one can estimate the most likely model parameters. For
example, equivalent to the MLE approach by calculating the parameter values that
maximize the posterior via differentiation techniques, which is called maximum a
posteriori estimation (MAP). This would result in point estimates which could be
paired with additional error estimates, for example via the Hesse matrix or Monte
Carlo methods.

However, in BI one is interested in the marginal distributions of the parame-
ters. These are derived by integrating the posterior density. Hence, the results are
given as distributions themselves, error estimates included.

Furthermore, BI offers an interpretation distinct from MLE with respect to the
most likely parameter values. In MLE, the most likely parameter values are those

11
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which maximize the likelihood distribution. Whereas, the marginal distribution
for a specific parameter includes all of its possible values, in consideration of the
possible values for all other parameters.

2.2 Bayes’ theorem

Suppose one has measured some data y and would like to extract further infor-
mation from this data by employing a suitable model with parameters Θ. Bayes’
theorem allows for this in a unique way by treating data and parameters as proba-
bility distributions. The theorem itself reads [Bayes, 1763, Gelman et al., 2013]:

p(Θ | y) :=
p(y | Θ) p(Θ)∫
p(y | Θ) p(Θ) dΘ

. (2.1)

The equation consists of three major quantities: On the left-hand side, the posterior
density p(Θ | y) represents the probability for the model parameters given the
observed data points. From this expression the most likely model parameters
are calculated, as it contains all the knowledge about the model and the data.
On the right-hand side of the equation, the likelihood distribution, denoted by
p(y | Θ), represents the probability for the observed data points given the model
parameters. This component is identical between MLE and BI. Furthermore, the
prior distribution p(Θ) represents the probability of the model parameters, before
the actual data are taken into account. This is especially convenient for constraining
the physical allowed regions of parameters or the modeling of their systematic
uncertainties. The denominator in Eq. (2.1) plays the role of a normalization
factor, such that the posterior is indeed a probability distribution. However, for
estimating the model parameters, the normalization factor can be disregarded, as
it is constant for fixed y :

p(Θ | y) ∝ p(y | Θ) p(Θ). (2.2)

The interplay between likelihood distribution and prior distribution in forming the
posterior is illustrated in Fig. 2.1. In general, the form of the posterior depends on
the choice of the prior. Hence, the prior distribution is a powerful tool and has
to be handled with care. In this thesis, conservative prior distributions are used,
so that the likelihood distribution with the data points bring in by far the most
amount of information into the statistical model. By doing this, one ensures that
the final results are not dependent on the prior.

2.3 Marginal parameter distributions

In BI the most likely parameter values of a model, given the data, are extracted
from the posterior by integrating over all but the parameter of interest. The result
is called a marginal distribution. For an illustrative example consider a posterior
density only dependent on two parameters 𝜃1 and 𝜃2:

p(Θ1,Θ2 | y). (2.3)
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Figure 2.1: Illustration of a posterior distribution, emphasizing the combination of
likelihood- and prior distribution. For this example, the posterior only depends on
one parameter Θ.

The marginal parameter distributions of Eq. (2.3) for Θ1 and Θ2 are defined as:

p(Θ1 | y) =
∫

p(Θ1,Θ2 | y) dΘ2 , (2.4)

p(Θ2 | y) =
∫

p(Θ1,Θ2 | y) dΘ1 . (2.5)

From these distributions, one can extract the characteristics of interest, such as:
mean, median, quantile values and credible intervals, as well as the correlation
between the parameters. Examples for marginal parameter distributions are shown
in Fig. 2.2. The figure depicts the building up of marginal distributions with an
increasing number of sampling points used to perform the integration.

2.4 Markov chain Monte Carlo

As explained in Section 2.3, the goal of BI is the calculation of marginal parameter
distributions. In academic scenarios the integration can be done analytically, but
for complex, higher-dimensional problems this becomes unfeasible. Instead, one
has to rely on numerical integration.

For multivariate integrals with only a few number of variables Gaussian quadrature
can be applied via a grid technique. However, for high-dimensional posteriors,
as encountered within this thesis, Gaussian quadrature becomes rather quickly
inefficient in terms of computation time.

Instead, stochastic methods are used to approximate the multidimensional in-
tegrals. This is a valid approach, because of the existence of a Monte Carlo central
limit theorem [Geyer, 2005] and a Markov chain Monte Carlo (MCMC) central
limit theorem, discussed in detail in Section 2.5.1, respectively. The term Markov
chain denotes a sequence of random elements X1, . . . ,XN when the conditional
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Figure 2.2: Illustration how the marginal parameter distributions are generated
via the Markov chain Monte Carlo method. The posterior is assumed to have two
parameters Θ1 and Θ2. The corresponding marginal parameter distributions are
shown on the top and right side of each subplot. The subplots A, B and C show
the first [102,103,105] sampling points, respectively.

distribution of Xk only depends on Xk−1 [Geyer, 2011]. However, the simplest
stochastic method is ordinary Monte Carlo [Geyer, 2011]. The general procedure
is to evaluate the posterior distribution at random parameter values and thus calcu-
lating the marginal parameter distributions automatically. With increasing number
of samples, the marginal distributions build up and become more pronounced. An
example for different stages of such a stochastic process is shown in Fig. 2.2 for
[102,103,105] sampling points.

The efficiency of this approach depends on the mechanism to select parame-
ter values at which the posterior should be evaluated. Advanced methods use some
form of guidance within the posterior distribution in combination with MCMC.
This increases performance while retaining the stochastic properties of a central
limit theorem. Within this thesis, the Hamiltonian Monte Carlo algorithm is used,
which is a special MCMC method. In order to provide guidance for the MCMC
chain, Hamiltonian dynamics is employed to propose new sampling points. In this
way, the structure of the posterior distribution is taken into account via gradient
information. This gives an advantage in performance in contrast to the random-
walk Metropolis methods [Neal, 2011], especially for higher dimensional problems.

In general, the HamiltonianH (q ,p) depends on the n-dimensional position and mo-
mentum vectors of the particles, q and p, respectively. The Hamiltonian equations
of motion are a set of differential equations, given by [Neal, 2011]:

dqi
dt

=
𝜕H (qi ,pi )

𝜕pi
,

dpi
dt

= −
𝜕H (qi ,pi )

𝜕qi
, (2.6)

for all i from 1 to n. The parameters Θ of the model take the role of the position
vector q , while for the momentum vector p, additional nuisance parameters 𝜙 are
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Figure 2.3: Illustration of the start and quick adaptation of a MCMC chain. Shown
are the first 103 sampling points, the color of the very first sampling point, at a
value of Θ ≈ 3.041, is red. The order of sampling points is indicated via arrows.
The black vertical line corresponds to the initial value of the MCMC chain.

introduced. This transforms the posterior distribution to [Gelman et al., 2013]:

p(Θ | y) ↦−→ p(Θ, 𝜙 | y) = p(Θ | y) p(𝜙), (2.7)

where typically p(𝜙) is modeled as a multivariate standard normal distribution
[Gelman et al., 2013]. The Hamiltonian H (Θ, 𝜙) is defined as the negative log
posterior density:

H (Θ, 𝜙) := − log
(
p(Θ, 𝜙 | y)

)
= − log

(
p(Θ | y)

)
− log

(
p(𝜙)

)
. (2.8)

In analogy to Hamiltonian dynamics, the term − log
(
p(𝜙)

)
is called the kinetic

energy and − log
(
p(Θ | y)

)
the potential energy. To propose a new sampling point

for MCMC, the Hamiltonian equations of motion Eq. (2.6) are solved via the
Leapfrog method [Geyer, 2011], resulting in the proposals (Θ′, 𝜙′). This new
sampling point is accepted with probability [Neal, 2011]:

min(1,exp[−H (Θ′, 𝜙′) +H (Θ, 𝜙)]). (2.9)

As an example for the quick adaption of an MCMC chain, guided via HMC from
low to high probability mass regions, is shown in Fig. 2.3.

2.5 Markov chain Monte Carlo convergence diag-
nostics

MCMC is inherently a stochastic method. As such, the question arises how many
sampling points are necessary for a trustworthy result. To start off with, this is a
non-trivial task and much more complex than for MLE or MAP.

Assuming a single MCMC chain, the marginal distributions start to be reliable, as
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soon as the number of samples N is high enough so that the MCMC central limit
theorem holds, at which point the MCMC chain is said to have converged. To
improve the monitoring of convergence, multiple MCMC chains should be started
[Gelman et al., 2013] with different starting points in the parameter space. The
idea is to check if all chains, at some point in time, have seen the same parameter
space, i.e. the same regions of the posterior.

Multiple MCMC convergence diagnostics do exist, from simple trace plots, to more
advanced methods, like the MCMC standard error (MCMCSE) or the potential
scale reduction statistic R̂, which shall be discussed in the following. It is good
practice to look at different methods to monitor the overall convergence of the
sampling.

2.5.1 Markov chain Monte Carlo standard error

As the MCMCSE convergence diagnostic is closely related to the MCMC central
limit theorem, the theorem shall be first derived and discussed. In order to develop
an intuition for the MCMCSE, it is helpful to establish a link with the well-known
Monte Carlo standard error (MCSE) [Geyer, 2011] of a sample S .

For this purpose, supposing one is interested in the expectation value of a real-
valued function g , which depends on a random variable X :

𝜇 := 𝔼[g (X )] . (2.10)

Supposing furthermore, that g (X ) is of such a form that Eq. (2.10) can not be
computed analytically. Instead, the function g (X ) can be approximated by drawing
samples S = g (X1), . . . , g (XN ), from which the quantity of interest can be calculated.
For instance, one can estimate the expectation and variance of g (X ) via:

𝜇̂ := 𝔼̂[g (X )] = 1
N

N∑︁
i=1

g (Xi ), (2.11)

𝜎̂2 := V̂ar(g (X )) = 1
N

N∑︁
i=1

(
g (Xi ) − 𝜇̂

)2
. (2.12)

Naturally one is interested in the variance of the estimated expectation value which
is given by Bienaymé’s identity [Geyer, 2005]:

Var( 𝜇̂) = 1
N 2

N∑︁
i=1

N∑︁
j=1

Cov(g (Xi ), g (X j )). (2.13)

In general, the MCSE of the mean is defined as [Geyer, 2011]:

MCSEmean :=
√︁

Var( 𝜇̂). (2.14)

The specific form of Eq. (2.14) shall be derived for the case of independent- and
dependent identically distributed samples, respectively.
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Classic central limit theorem

In the classical Central limit theorem, the samples in S are assumed to be in-
dependent and identically distributed [Geyer, 2011]. Thus, Eq. (2.13) simplifies
to:

Var( 𝜇̂) = 1
N 2

N∑︁
i=1

Var(g (Xi )) =
Var(g (X ))

N
. (2.15)

Since the sampling points are identically distributed the equality Var(g (Xi )) =

Var(g (X )) holds and the MCSE of the mean, as defined in Eq. (2.14), can be
estimated by using Eqs. (2.12) and (2.15), to be:

�MCSEmean :=
𝜎̂
√
N

. (2.16)

Finally, the Central limit theorem reads (as N → ∞) [Geyer, 2005]:

𝜇̂ ∼ N
(
𝜇, �MCSEmean

)
. (2.17)

The estimated expectation value 𝜇̂ is Gaussian distributed around the ’true’ ex-
pectation value 𝜇 of g (X ) and the variance of this distribution shrinks with the
number of samples with

√
N .

MCMC central limit theorem

The sampling points generated via a MCMC approach are assumed to be identically
distributed but are not independent of each other since a sampling point depends
on the previous sampling point. Thus, the variance of 𝜇̂, i.e. Eq. (2.13), involves
non-zero covariance terms [Geyer, 2005]:

Var( 𝜇̂)MCMC =
1
N 2

©­«
N∑︁
i=1

Var(g (Xi )) + 2
N −1∑︁
i=1

N∑︁
j=i+1

Cov(g (Xi ), g (X j ))ª®¬ . (2.18)

If the Markov chain is a stationary stochastic process, i.e. the marginal distribution
of Xi is independent of i [Geyer, 2011] as well as the Cov(g (Xi ), g (Xi+t )) (for fixed
t) [Geyer, 2005], it follows [Geyer, 2005]:

Var( 𝜇̂)MCMC =
1
N 2

(
N · Var(g (Xi )) + 2

N −1∑︁
t=1

(N − t )Cov(g (Xi ), g (Xi+t ))
)
. (2.19)

For a better understanding of the important parts of this expression, the variables
𝜏t , the autocorrelation 𝜌t at lag t and the effective sample size (ESS) are defined
as:

ESS :=
N
𝜏t
, (2.20)

𝜏t := 1 + 2
N −1∑︁
t=1

(1 − t
N

)𝜌t , (2.21)

𝜌t := Corr(g (Xi ), g (Xi+t )). (2.22)
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The steps between the two sampling points within a chain is called lag and denoted
with t . With this definition Eq. (2.19) takes the form:

Var( 𝜇̂)MCMC =
Var(g (Xi ))

ESS
. (2.23)

As the sampling points are assumed to be identically distributed, i.e. Var(g (Xi )) =
Var(g (X )), the MCMCSE of the mean can be estimated, by using Eqs. (2.12)
and (2.23), to be: �MCMCSEmean :=

𝜎̂√︁
ÊSS

. (2.24)

The estimation of ESS is discussed in Section 2.5.2. In accordance with Eq. (2.17),
the MCMC Central limit theorem reads [Geyer, 2005]:

𝜇̂ ∼ N
(
𝜇, �MCMCSEmean

)
. (2.25)

The central point within the derivation above, is that the expectation value of
g (X ), i.e. Eq. (2.11), is written as a sum of random variables. Despite the fact that
quantile estimates are not defined via a sum of random variables, an equivalent
expression can be derived for the MCMCSE of a quantile [Vehtari et al., 2021].
Thus, after a performed Bayesian inference, one could check the relative MCMCSE
error for the quantiles of interest and judge from this if more sampling points
would be appropriate to achieve a better accuracy.

2.5.2 Effective sample size

When using MCMC methods to draw samples from a target distribution, the
resulting samples within one chain are correlated. The effective sample size takes
this into account by weighting the number of draws N with the correlation of the
samples. In the case of predominantly positive correlations, ESS < N while for
predominantly negative correlations ESS can become larger than N .

The MCMC central limit theorem, i.e. Eq. (2.25), is valid for the asymptotic
case where the number of sampling points N goes to infinity. This influences the
effective sample size, or more precisely the formula of 𝜏t in Eq. (2.21):

lim
N→∞

𝜏t = lim
N→∞

(
1 + 2

N −1∑︁
t=1

(1 − t
N

)𝜌t

)
= 1 + 2

∞∑︁
t=1

𝜌t . (2.26)

In the last step, it was assumed that
∑∞
t=1 |𝜌t | < ∞, i.e. the Cesáro sum of 𝜌t

is equal to the ordinary sum [Geyer, 2005]. As an infinite number of sampling
points is not achievable, the infinite sum in Eq. (2.26) should be truncated at some
appropriate value T , also because the amount of noise increases with large lags
[Geyer, 2011]. A suitable truncation order can be found for example by using an
initial sequence method [Geyer, 1992].

If multiple MCMC chains M are used to optimize the convergence diagnostics,
the effective sample size can be defined as [Vehtari et al., 2021]:

ESS := NM

(
1 + 2

T∑︁
t=1

𝜌t

)−1

. (2.27)
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Figure 2.4: Example for the autocorrelation at lag t for a chain after the burn-in
period has finished. The autocorrelation at t = 0 is defined to be 𝜌0 = 1. To focus
on the rapid decrease of the autocorrelation the shown lags start from t = 1.

Hereby, 𝜌t stands for the estimated autocorrelation for multiple chains. In the
case of M independent MCMC chains (sampling the same target distribution) the
autocorrelation for a single model parameter can be estimated as [Vehtari et al.,
2021]:

𝜌t := 1 −
(
W − 1

M

M∑︁
m=1

s 2
m 𝜌t ,m

)
, (2.28)

with the autocorrelation 𝜌t ,m at lag t of chain m, which can be calculated by
Eq. (2.22) and the term s 2

m defined in Section 2.5.3, Eq. (2.32). A typical example
for the autocorrelation 𝜌t after the MCMC chains have reached convergence, is
shown in Fig. 2.4. Hence, the correlations rapidly decrease with increasing lag and
settles around a value of zero.

2.5.3 Potential scale reduction statistic

The potential scale reduction statistic R̂ monitors the MCMC convergence via the
between- and within-chain variances and is defined as [Vehtari et al., 2021]:

R̂ :=

√︄
v̂ar +

W
, (2.29)

with the marginal posterior variance:

v̂ar + :=
N − 1
N

W + 1
N
B . (2.30)

The symbol N denotes the samples per chain, M is the number of chains,W the
within-chain variance and B stands for the between-chain variance. The latter two
are defined as:

W :=
1
M

M∑︁
m=1

s 2
m , B :=

N
M − 1

M∑︁
m=1

(
𝜃 (.m ) − 𝜃 (..)

)2
, (2.31)
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with the new symbols defined as:

s 2
m :=

1
N − 1

N∑︁
n=1

(
𝜃 (nm ) − 𝜃 (.m )

)2
, (2.32)

𝜃 (.m ) :=
1
N

N∑︁
n=1

𝜃 (nm ) , 𝜃 (..) :=
1
M

M∑︁
m=1

𝜃 (.m ) . (2.33)

The notation 𝜃 (nm ) refers to the n-th sample from the m-th chain, while 𝜃 (.m )

represents the mean value of the m-th chain. Finally, 𝜃 (..) denotes the mean value
of all samples combined from all chains.

The most important property of Eq. (2.29) is its behavior when the number
of samples N approaches infinity, i.e. the limit in which the MCMC central limit
theorem holds:

R̂ → 1, for N → ∞. (2.34)

Thus, after a performed Bayesian analysis one calculates R̂ and checks how close
it is to a value of one. As a rule of thump, one should achieve a R̂ -value smaller
than the empirical value of 1.01 as suggested in Ref. [Vehtari et al., 2021].

2.6 Posterior predictive check

In general, a posterior predictive check [Gelman et al., 2013] is useful for de-
termining flaws within the Bayesian analysis, such as problematic data points,
programming errors, systematic effects or the inadequacy of the employed model.

The central component is the probability distribution of reproduced data points
y rep given the used data y , which is called the posterior predictive distribution
[Gelman et al., 2013, Watanabe, 2010]:

p (y rep | y) := 𝔼Θ

[
p
(
y rep | Θ

) ]
,

=

∫
p (y rep | Θ)p (Θ | y) dΘ , (2.35)

where 𝔼Θ [. . .] denotes the expectation value over the parameter-vector Θ. Hence,
this allows to compare each data point yi directly with its corresponding replicated
marginal distribution p (y rep

i | y). Both should look similar under a reasonable
model [Gelman et al., 2013]. Irregularities, such as outliers or statistically weak
data points, can be detected. An example for a posterior predictive check can be
seen in Fig. 2.5. The figure shows the original data points in direct comparison
to the corresponding posterior predictive distributions. No systematic effects are
visible in the figure and one would conclude that the model is able to describe the
original data.
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Figure 2.5: An illustration of a posterior predictive check. The original data points
(orange) are compared to the posterior predictive distribution in (black).
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Ambiguity analyses in Baryon
spectroscopy
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Chapter 3

Baryon spectroscopy

This chapter is meant as an introduction to Baryon spectroscopy and the relevant
concepts necessary for the discussion of the papers in Chapters 4 and 5, which
deal with ambiguity analyses. The chapter starts with a general introduction and
motivation for Baryon spectroscopy in Section 3.1 laying the focus on Baryon states.
This is followed by Section 3.2 in which methods for the prediction of Baryon states
and the complexity of this endeavor are discussed. The measurement observables in
Baryon spectroscopy, used to validate or falsify the theory predictions, are discussed
in Section 3.3. A tightly connected, theoretical topic is complete experiment
analyses which is outlined in Section 3.4. Finally, in Section 3.5 the connection
of polarization observables and Baryon resonances is made via the introduction
of partial wave analysis, a method used to extract information about Baryon
resonances from the experimental available polarization data.

3.1 Introduction

Baryon spectroscopy (BS) is a field within particle physics, which studies the strong
interaction and in particular the formation of bound states of more than two
quarks, as introduced in Section 1.1.1. The majority of these bound states are
so-called resonance states, which posses distinct masses and quantum numbers,
and are treated as distinct particles. Their typical mean lifetime is in the order of
10−24 s, as they predominantly decay via the strong interaction. Thus, this kind
of particles can not be directly detected with state-of-the-art detectors. Instead,
particle colliders are used to produce resonances for example through formation
experiments [Navas et al., 2024]:

I1 I2 → [R] → F1 . . . Fn, (3.1)

with two particles in the initial state and at least two in the final state. A resonance
R can emerge in an intermediate step of the reaction. If and which resonance can
be formed depends on the available energy within the reaction and the conserved
quantities for the type of interaction, see also Table 1.2. Considering for example
a photon I1 = 𝛾 are impinging on a proton target I2 = p. The photon interacts
electromagnetically with the quarks within the proton and transfers (part of) its
energy. Due to the supplied energy, it is energetically favorable for the quarks and
their bound system to change to a new bound state R, also called excited state.

25
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Figure 3.1: Shown is the experimental data for the total cross-section 𝜎, as a
function of the center-of-mass energyW , for the reaction 𝛾p → 𝜋0p. In addition,
the contributing N - and Δ-resonances are shown as independent Breit-Wigner
distributions for partial waves with angular momenta of ℓ = 0 (dashed), ℓ = 1
(solid) and ℓ = 2 (dotted) up to energies of 1930 MeV. Note: the height of
the distributions do not indicate their significance. The figure is redrawn from
[CBELSA/TAPS et al., 2017], with updated resonance parameters from the Review
of Particle Physics [Navas et al., 2024].

The significance of resonance states and their importance for the understand-
ing of the strong force, can for example be seen in the total cross-section 𝜎 of a
certain reaction. Figure 3.1 shows the experimental data for the total cross-section
of 𝜋0 photoproduction (𝛾p → 𝜋0p) in which multiple bumps are visible. The reso-
nances which could emerge in the reaction (N - and Δ-resonances) are indicated as
Breit-Wigner distributions. Due to reasons of visualization, only the corresponding
partial wave angular momenta ofℓ = 0,1,2 are taken into account. The appearance
of the bumps within the total cross-section is attributed to the constructive and
destructive interference of the relevant resonance states within the energy range,
and thus the enhanced or suppressed production of 𝜋0p in the final state of the
reaction. As the coupling strength, and thus the branching ratios, of resonances
are different for different initial- and final states [Navas et al., 2024], multiple
reactions have to be analyzed to complete the knowledge about the plethora of
Baryon resonance states. This comprises not only different single meson- but also
multi meson final states. Multi meson final states are of particular importance in
photoproduction for the study of higher mass resonance states. This is specifically
visible in the contributions to the total cross-section for photoproduction off the
proton [Thiel et al., 2022]. For center-of-mass energies W < 1400 MeV single
meson final states contribute predominantly, whereas forW > 1400 MeV multi
meson final states contribute the vast majority, see Fig. 1 in Ref. [Thiel et al., 2022].

Another motivation to study the excitation spectrum of baryons is that signif-
icantly more states have been predicted than experimentally verified, which is
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Figure 3.2: Comparison of the nucleon excitation spectrum for experimentally
observed- and by a relativized quark model [Capstick, 1992, Capstick and Roberts,
1998] predicted states. (Left) In the first column one can see the spectral notation
for certain resonance states. The second column shows the experimentally observed
states. The certainty with which these states exist are indicated by the line style
(four-star: solid line, three-star: solid line, two-star: dashed line and one-star:
dotted line). See the Review of Particle Physics star-rating in Ref. [Navas et al.,
2024] for further explanations. The entries of the first and second column are
connected via orange lines, indicating the assignment of states. The third column
lists the predicted states, some of which are assigned to states in column two. These
assignments should be considered tentative. Not assigned states are indicated with
dashed lines. (Right) Like the left part but reversed. Original image is from the
Review of Particle Physics [Navas et al., 2024] and slightly adapted for this thesis.

also known as the ’missing-resonance’ problem [Navas et al., 2024]. Figure 3.2
illustrates the assignment of experimentally observed N - and Δ baryon resonances
to predicted states by a relativized quark model [Capstick, 1992, Capstick and
Roberts, 1998]. Especially the dashed lines in the columns labeled with QM are of
interest, as these are theoretically predicted states which have not been assigned
to an experimentally observed state yet. Furthermore, experimentally a cluster-
ing of N -resonances at ∼1700 MeV and ∼1900 MeV is observable, the same for
Δ-resonances at an energy of ∼1950 MeV, which is not reflected by the theoretical
model [Navas et al., 2024].

3.2 Predicted baryon states

To begin with, the prediction of baryon resonances is a non-trivial task. As gluons
carry a color charge, see Table 1.3, self-interaction Feynman diagrams play a
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Figure 3.3: The coupling constant of the strong interaction 𝛼s (Q 2) is shown as a
function of the momentum transfer Q . The abbreviations indicate next-to-leading
order (NLO), next-to-next-to-leading order (NNLO) and so on. The image is taken
from the Review of Particle Physics [Navas et al., 2024].

crucial role in contrast to quantum electrodynamics or the weak interaction. These
self-interaction terms lead to the well known phenomena of the running coupling
constant 𝛼s of the strong interaction, which is experimentally well established as
can be seen in Fig. 3.3. Hence, the coupling constant of the strong interaction
is dependent on the energy scale at which the experiment is performed. This
functional behavior in terms of the momentum transfer Q can be written as
[Thomson, 2013, Halzen and Martin, 2008]:

𝛼s (Q 2) :=
𝛼s (𝜇2)

1 + (11Nc−2Nf )
12𝜋 𝛼s (𝜇2) log

(
Q 2

𝜇2

) , (3.2)

with a chosen reference momentum 𝜇, Nc colors and Nf quark flavors. The de-
pendence of 𝛼s on Q has direct implications for the study of baryon states, as the
relevant energy regime is in the order of Q ∼ 1 GeV and thus 𝛼s ∼ 1 [Thomson,
2013]. Therefore, it is not possible to apply perturbation theory to solve the La-
grangian of QCD for the prediction of baryon states.

Alternative approaches to perturbation theory has to be used. One example
is lattice QCD (LQCD), which was first introduced by Kenneth G. Wilson [Wilson,
1974]. The idea hereby is to solve the Lagrangian equations on a multidimensional
grid, with a finite spacing between grid points (nodes) denoted with a. To avoid
that the discretization of the problem becomes apparent in the final results, the
lattice spacing a should be much smaller than the spatial dimension R of the
object under consideration [Aitchison and Hey, 2012]. In addition, to avoid "fi-
nite size effects" [Aitchison and Hey, 2012] R should be much smaller than the
hypercube side length L = aN with N ∈ ℕ, such that the object of interest fits
into the hypercube. By convention, the quark fields q (x) at a space-time point
x are restricted to be on the nodes, whereas gauge fields are restricted to be on
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the edges, connecting the nodes [Navas et al., 2024]. An illustrative example for
a two-dimensional grid is given in Fig. 3.4. The Feynman integrals appearing
in this approach are calculated via MCMC methods and no perturbation theory
is required [Navas et al., 2024]. In the limit of a → 0, which is equivalent to
"tuning the bare gauge coupling to zero according to the renormalization group"
[Navas et al., 2024], the theory goes from a discretized- to a continuous space. An
appealing factor is that LQCD preserves gauge invariance naturally in contrast to
perturbation calculations [Navas et al., 2024]. However, it should be mentioned
that particle states within a finite volume, such as in LQCD, do not decay, they only
mix [Navas et al., 2024]. Hence, the prediction of resonance states form LQCD
have to be taken with care. Nevertheless, an example for the prediction of nucleon
resonances for multiple spin-parity configurations is shown in Fig. 3.5.

Another approach is via constituent quark models. Hereby the baryon is com-
posed of three valence quarks which are in a static potential from the gluon gauge
fields [Gross et al., 2023]. There are multiple methods to model the short-range
interaction of the valence quarks, which range from "one-gluon exchange models",
"pseudoscalar-meson exchange models, "instanton-induced interactions" and "the
Dyson–Schwinger Bethe–Salpeter approach" [Gross et al., 2023] and therefore no
pertubative methods are required. As an example, the prediction of nucleon reso-
nances from a relativized quark model, as presented in Ref. [Capstick and Roberts,
1998], is shown in Fig. 3.2. Interestingly, the problem of missing resonances for
quark models, as discussed in Section 3.1, also persists for LQCD [Thiel et al.,
2022].
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Figure 3.4: Illustration of a two-dimensional slice of the 𝜇−𝜈-plane of the space-time
grid, with a finite spacing of a between nodes. As an example, the bilinear product
q̄ (x)U𝜈 (x)q (x +a𝜈), with the unit vector 𝜈 in 𝜈-direction, connecting the quark and
anti-quark fields are shown. In addition, the so-called plaquette product, which
appears in the gauge action [Navas et al., 2024], is illustrated in the middle of the
figure. The figure itself is redrawn and slightly adapted from [Navas et al., 2024].
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Figure 3.5: Lattice QCD predictions from Ref. [Edwards et al., 2011] for the excita-
tion spectrum of the nucleon for different J P configurations, using an unphysical
pion mass of m𝜋 = 396 MeV. The mass m of the states is given in terms of the
calculated Ω mass mΩ.
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Table 3.1: The 16 polarization observables for pseudoscalar meson photoproduction
are grouped according to the polarization needed for their measurement (linearly
polarized beam Bl , circularly polarized beam B⊙, target polarization T , recoil
polarization R). The same notation for the observables as is in Ref. [Sandorfi
et al., 2011] is used.

Category Subcategory Observable

⧸ ⧸ 𝜎0

B Bl Σ

T ⧸ T
R ⧸ P

BT BlT G,H,P
BT B⊙T E,F
BR BlR T,Ox′ ,Oz′

BR B⊙R Cx′ ,Cz′

TR ⧸ Σ,Lx′ ,Lz′ ,Tx′ ,Tz′

3.3 Observables

The interplay between theory and experiment is an essential ingredient to in-
crease our knowledge in physics. To prove or disprove predictions from theory,
observables have to be measured from which directly or via further analyses, the
predictions, such as baryon states, can be investigated. In BS, the measurable
quantities of interest are so-called polarization observables.

The number of measurable polarization observables No is determined by the
type of reaction. More precisely, by the number of complex spin amplitudes Na
required for a full mathematical description of the process at hand. These complex
spin amplitudes can be understood in the following way: In general, each particle
physics reaction can be fully described by the knowledge of the corresponding
matrix elements Tfi := ⟨i|T |f⟩, with the initial- and final state |i⟩ and |f⟩. Thus, a
parametrization for T is required which can be experimentally determined. In
BS one is typically dealing with reactions involving particles with a nonzero spin,
for which T can be parameterized in a model-independent way via so-called spin
amplitudes.

The relation between the number of complex spin amplitudes and the number
of polarization observables is No := N 2

a . For example in the case of pseudoscalar
meson photoproduction 𝛾N → 𝜙B , with a beam of photons 𝛾, a target nucleon
N , a pseudoscalar meson 𝜙 and a recoil baryon B , four complex spin amplitudes
are needed to describe the reaction and thus 16 observables are measurable. The
observables are measurable by using different polarization configurations for the
photon beam, the nucleon and the recoil baryon. The required polarization states
for each observable are collected in Table 3.1. A more complex reaction is the
case of two-pseudoscalar-meson photoproduction 𝛾N → 𝜙1𝜙2B , with two pseu-
doscalar mesons 𝜙i, where eight complex spin amplitudes are required, and thus
64 polarization observables are measurable. The required spin configurations are
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Table 3.2: The 64 polarization observables for two-pseudoscalar-meson photopro-
duction are grouped according to the polarization needed for their measurement
(linearly polarized beam Bl , circularly polarized beam B⊙, target polarization T ,
recoil polarization R). The notation for the observables is the one used in Ref.
[Roberts and Oed, 2005]. The figure is taken from [Kroenert et al., 2021].

Category Subcategory Observable

⧸ ⧸ I0

B Bl Is, Ic

B B⊙ I⊙

T ⧸ Px,Py,Pz
R ⧸ Px′ ,Py′ ,Pz′

BT BlT Ps
x,P

s
y,P

s
z,P

c
x,P

c
y,P

c
z

BT B⊙T P⊙
x ,P

⊙
y ,P

⊙
z

BR BlR Ps
x′ ,P

s
y′ ,P

s
z′ ,P

c
x′ ,P

c
y′ ,P

c
z′

BR B⊙R P⊙
x′ ,P

⊙
y′ ,P

⊙
z′

TR ⧸ Oxx′ ,Oxy′ ,Oxz′ ,Oyx′ ,Oyy′ ,Oyz′ ,Ozx′ ,Ozy′ ,Ozz′

BTR BlTR Os
xx′ ,Os

xy′ ,Os
xz′ ,Os

yx′ ,Os
yy′ ,Os

yz′ ,Os
zx′ ,Os

zy′ ,Os
zz′

BTR BlTR Oc
xx′ ,Oc

xy′ ,Oc
xz′ ,Oc

yx′ ,Oc
yy′ ,Oc

yz′ ,Oc
zx′ ,Oc

zy′ ,Oc
zz′

BTR B⊙TR O⊙
xx′ ,O

⊙
xy′ ,O

⊙
xz′ ,O

⊙
yx′ ,O

⊙
yy′ ,O

⊙
yz′ ,O

⊙
zx ′ ,O

⊙
zy′ ,O

⊙
zz′

collected in Table 3.2. More details on the topic of required polarization states for
both reactions can be found in Ref. [Sandorfi et al., 2011] and Ref. [Roberts and
Oed, 2005], respectively.

Over the last decades multiple Baryon spectroscopy experiments were conducted
to measure polarization observables. This includes but is not limited to: MAMI
[Walcher, 1990] located in Mainz, Germany, GRAAL [Bartalini et al., 2005] lo-
cated in Grenoble, France, BGOOD [Alef et al., 2020] located in Bonn, Germany,
CBELSA/TAPS [Gottschall et al., 2021] located in Bonn, Germany, CLAS [Mecking
et al., 2003] located in Newport News, USA, LEPS2 [Muramatsu et al., 2022]
located at Harima Science Park City, Japan and many more. This international
effort culminated in a large database of polarization observables. An extensive
listing of measurements can be found in Ref. [Thiel et al., 2022], see Tables 7-11
for pseudoscalar meson photoproduction, Table 11 for vector meson photopro-
duction, Tables 12-13 for strangeness photoproduction and Tables 14-15 for two
pseudoscalar meson photoproduction.

The general, mathematical definition for the polarization observables O𝛼 of a
reaction described by N complex spin amplitudes ti is given by [Chiang and
Tabakin, 1997]:

O𝛼 :=
N∑︁

i,j=1

t ∗i Γ
𝛼
ij tj, (3.3)

with 𝛼 ∈ [1, . . . ,N 2] and Hermitian Γ-matrices unique for each observable. The
explicit definition for the Γ-matrices for pseudoscalar meson photoproduction
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Figure 3.6: The figure shows five fit results for a hypothetical parameter p1 in terms
of some goodness of fit (GOF) measure. The orange points, which have the same
GOF, would correspond to a severe ambiguity. The dark points are non-severe
ambiguities, as their GOF tends to be smaller and can be distinguished from one
another.

can be found in [Chiang and Tabakin, 1997] and for two-pseudoscalar-meson
photoproduction in Ref. [Kroenert et al., 2021].

3.4 Complete experiment analysis

The large database of polarization observables, as introduced in Section 3.3 was
brought together by an enormous effort of the Baryon spectroscopy community
and is a great achievement. Having said that, a large database is not enough
when it comes to the extraction of information about resonance states or transition
matrix elements Tfi, as it is crucial how many and which polarization observables
have been measured for a certain reaction. This can directly be concluded from
the mathematical definition of polarization observables in Eq. (3.3), in which the
bilinear product allows for transformations of the complex spin amplitudes ti which
leave the observable invariant. Taking this observation further, there might exist
transformations which leave every observable in a set {O𝛼1 , . . . ,O𝛼 j }, with j < N 2,
invariant. In such a situation multiple ti exist which are capable of producing the
set of observables, which is referred to as an ambiguity [Chiang and Tabakin, 1997].

Complete experiment analysis (CEA) deals with the question of how many and in
particular which of the O𝛼 need to be measured in order to determine the complex
spin amplitudes ti of a certain reaction uniquely, i.e. without ambiguities, and is
thus an integral part of Baryon spectroscopy. In this context, a set of observables
which does not produce any ambiguities is called a complete set of observables.

Because of the significance of CEA for BS it is a long and actively studied field
of research. A CEA has been performed for multiple different processes: for
example pion nucleon scattering (Na = 2) [Anisovich et al., 2013, Wunderlich
et al., 2020], pseudoscalar meson photoproduction (Na = 4) [Chiang and Tabakin,
1997, Nakayama, 2019], pseudoscalar meson electroproduction (Na = 6) [Wunder-
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lich et al., 2020, Wunderlich, 2021] and the photoproduction of two pseudoscalar
mesons (Na = 8) [Arenhövel and Fix, 2014, Kroenert et al., 2021]. It is worth men-
tioning, that the complexity of a CEA increases exponentially with the number of
scattering amplitudes Na necessary to fully describe the reaction at hand, because
the number of observables No = N 2

a scales quadratically with it.

However, the result of a CEA is always derived under the assumption of ob-
servables without uncertainties. Which means, even when using a mathematical
complete set of observables, as soon as real data are used to determine the complex
spin amplitudes ti, more or less severe ambiguities might occur. In practice, this
translates to multiple solutions from a regression analysis which can not be easily
distinguished in terms of some measure for the goodness of the fit (GOF). The
problem is illustrated in Fig. 3.6. The orange points constitute a severe ambiguity,
as the GOF can not be distinguished. The darker points are ambiguities as well,
but less of a problem, because their GOF is smaller and can be distinguished from
one another. It is assumed that the ’true’ physical solution has the best GOF while
ambiguities have an equal or worse GOF.

3.5 Partial wave analysis

The method of partial wave analysis (PWA) is an important tool in BS to extract in-
formation about resonance states, such as its mass, decay width, coupling strength
and branching ratios, from experimental data.

In theoretical terms, resonance states have the property "that they appear as
poles of the S -matrix in the complex plane on unphysical sheets,..." [Navas et al.,
2024], where the S -matrix is a unitary operator (S †S = 𝟙) connecting two asymp-
totic states, i.e. an initial state |i ⟩ to a final state

��f 〉. The S -matrix is typically
defined as:

S := 𝟙 + 2iT , (3.4)

with the symbol 𝟙 denoting the case in which no interaction has taken place and
T representing the interaction matrix. The scattering amplitudes, which are the
matrix elements of T [Thiel et al., 2022], are of main interest, as these are the
connections to the properties of resonances which emerged in the interaction. For
reactions of the form 2 → 2 the so-called K-matrix approach is well suited, as it
guarantees that T is unitary [Navas et al., 2024]. The relations of the T − and K−
matrix are as follows [Thiel et al., 2022]:

T = (𝟙 − iK )−1K , (3.5)

and therefore

S =
𝟙 + iK
𝟙 − iK . (3.6)

An illustrative example for the imaginary part of a typical scattering amplitude is
shown in Fig. 3.7, where both poles correspond to a resonance state. The mass mR
and decay width ΓR of a resonance can be extracted via its pole position sR and
the relation [Navas et al., 2024]:

√
sR = mR − i ΓR

2
. (3.7)
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Figure 3.7: Shown is the second Riemann sheet for a typical scattering amplitude.
More precisely the imaginary part of a scattering amplitude A of the interaction
matrix is shown as a function of the complex Mandelstam variable s . The two
poles correspond to two resonance states. The original image is from Ref. [Navas
et al., 2024] and was modified for this thesis.

Hence, in order to extract information about emerging resonances from data, the
scattering amplitudes of the interaction matrix have to be modeled, and the model
parameters has to be tuned by experimental data.

3.5.1 PWA models: BnGa, JuBo, MAID

For the modeling of the scattering amplitudes Ai of the interaction T -matrix mul-
tiple approaches exist. This includes but is not limited to: the Bonn-Gatchina
(BnGa) model [Anisovich et al., 2016], the Jülich-Bonn ( JuBo) model [Rönchen
et al., 2022] and the Mainz unitary isobar model (MAID) [Tiator et al., 2018].

The BnGa model uses "a dispersion-relation approach based on the N/D technique"
[Anisovich et al., 2016] with the K-matrix approach and allows fitting data sets from
different reactions at the same time via a coupled-channel approach [Anisovich
et al., 2016]. The JuBo model is a dynamically coupled-channel model based on
an effective Lagrangian and uses parametrizations for the scattering amplitudes
which obeys the Lippmann-Schwinger equations [Rönchen et al., 2022]. The MAID
model split the resonance and background contributions within the T -matrix.
For the resonance part, it is assumed that the resonances can be described by a
Breit-Wigner form [Tiator, 2018]. The background part is defined by a background
potential involving Born terms and pion-nucleon elastic scattering amplitudes
[Tiator, 2018].

A common feature of BnGa, JuBo and MAID is an energy-dependent parametriza-
tion of the scattering amplitudes. Furthermore, BnGa and JuBo are both capable
of sophisticated couple-channel analysis, where MAID is in general not a coupled-
channel approach [Thiel et al., 2022]. As the same resonance can show up in
different reactions, the coupled-channel approach has the advantage that more
data can be used to tune the parameters of the respective resonance. However,
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the models also differ in the experimental data sets used to tune their respective
model parameters. As such one should keep in mind, that a direct comparison
between the models is rather complex.

3.5.2 Truncated partial-wave analysis

The ansatz of truncated partial-wave analysis (TPWA) is a model independent
approach. The matrix elements of the transition matrix T are not parameterized
in an energy-dependent way, but rather directly fitted for each energy of interest.
Because a TPWA is performed for the reaction of single pseudoscalar meson
photoproduction in Chapter 5 of this thesis, a more in depth introduction to the
fundamentally involved quantities seems to be appropriate. A short remark, in
principle a TPWA can also be performed for example for two-pseudoscalar-meson
photoproduction. The theoretical groundwork is already laid out in Ref. [Fix and
Arenhövel, 2013], but because of the lack of experimental data, which would form
a complete set of observables, no TPWA was performed so far.

For pseudoscalar meson photoproduction the transition matrix T can be for-
mulated as [Chew et al., 1957]:

T :=
i ®𝜎 · ®𝜖F1��®𝜖 �� +

®𝜎 · ®q ®𝜎 ·
(
®k × ®𝜖

)
F2 + i ®𝜎 · ®k ®q · ®𝜖F3��®𝜖 ����®q �����®k ��� +

i ®𝜎 · ®q ®q · ®𝜖F4��®𝜖 ����®q ����®q �� , (3.8)

with the photon polarization ®𝜖 , the three momentum of the meson ®q and photon
®k . The symbol ®𝜎 denotes a vector formed from the three Pauli spin-matrices
(𝜎1,𝜎2,𝜎3). The four functions F1, . . . ,F4 are the so-called CGLN-amplitudes,
named after the authors of the paper in Ref. [Chew et al., 1957] and depend on the
energyW and the scattering angle 𝜃 in the center of mass system. The definition
of the CGLN-amplitudes is given by four functions [Chew et al., 1957]:

F1 (W, 𝜃) :=
∞∑︁
l=0

{
[lMl+ (W ) + El+ (W )] P ′

l+1 (cos 𝜃)

+ [(l + 1)Ml− (W ) + El− (W )] P ′

l−1 (cos 𝜃)
}
, (3.9)

F2 (W, 𝜃) :=
∞∑︁
l=1

[(l + 1)Ml+ (W ) + lMl− (W )] P ′

l (cos 𝜃), (3.10)

F3 (W, 𝜃) :=
∞∑︁
l=1

{
[El+ (W ) −Ml+ (W )] P ′′

l+1 (cos 𝜃)

+ [El− (W ) +Ml− (W )] P ′′

l−1 (cos 𝜃)
}
, (3.11)

and the fourth component:

F4 (W, 𝜃) :=
∞∑︁
l=2

[Ml+ (W ) − El+ (W ) −Ml− (W ) − El− (W )] P ′′

l (cos 𝜃). (3.12)

The symbol l denotes the angular momentum of the two particle final state, Pl de-
notes the Legendre Polynomials with their derivative P

′

l (cos 𝜃) := d
d cos 𝜃 Pl (cos 𝜃).
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The quantities Ml± and El± are complex functions of the energyW and are called
magnetic and electric multipoles, respectively. The multipoles correspond to tran-
sitions to a final state with angular momentum l and total angular momentum
l ± 1/2, initiated by magnetic or electric radiation, respectively [Chew et al., 1957].

Hence, each quantity in Eq. (3.8) is known from the experimental setup except for
the multipole parameters which can be estimated via a regression analysis in order
to fully, numerically describe the transition matrix T for a reaction. However, as it
is not possible to estimate an infinite number of model parameters in a regression
analysis, a TPWA assumes that the infinite sums in Eqs. (3.9) to (3.12) can be
approximated by finite sums, up to a maximal angular momentum lmax. This
assumption is valid, since multipoles coming from higher angular momenta l get
more and more suppressed:

lim
l→∞

El± = 0, (3.13)

lim
l→∞

Ml± = 0, (3.14)

see Eqs. (3.12) to (3.15) in Ref. [Ball, 1961]. However, an appropriate truncation
order also depends on the energyW of the reaction, as the multipoles also depend
on the energy. That said, higher angular momenta can still couple to lower angular
momenta and thus might have a non-negligible influence. Thus, an appropriate
maximum angular momentum has to be determined in each analysis by comparing
some goodness of fit criterion.

In the formalism of a TPWA, the 16 polarization observable O𝛼 of single me-
son photoproduction, with the index 𝛼 running from one to 16, can be expressed
as [Wunderlich et al., 2017]:

Ô𝛼 (W, 𝜃) := 𝜎0 (W, 𝜃)O𝛼 (W, 𝜃) :=

��®q �����®k ���
2lmax+𝛽𝛼+𝛾𝛼∑︁

j=𝛽𝛼

(almax )𝛼j (W )P 𝛽𝛼
j (cos 𝜃) (3.15)

with the unpolarized differential cross-section 𝜎0, the three momenta for the initial
state photon ®k and the final state meson ®q , the maximal angular momentum taken
into account lmax, the expansion coefficients 𝛽𝛼 and 𝛾𝛼 , the so-called Legendre
coefficients (almax )𝛼j and the associated Legendre polynomials P 𝛽𝛼

j . The values of
the expansion coefficients are listed in Table 3 of Ref. [Wunderlich et al., 2017]
while the Legendre coefficients themselves are defined as:

(almax )𝛼j (W ) := M† (W )C𝛼
j M(W ). (3.16)

The vector M(W ) contains all participating complex multipoles up to Elmax± and
Mlmax±. The Hermitian 4lmax × 4lmax matrices C𝛼

j together with the multipole vec-
tors form a bilinear product, which is a remnant from the mathematical definition
of the polarization observables Eq. (3.3). The C 𝛼

j -matrices are of special interest
as a coupling between multipoles, and thus partial-waves themselves, can directly
be read of from the nonzero matrix elements. An example is shown in Table 3.3,
in which two couplings between partial waves can be seen, i.e. ⟨lmax = 0|lmax = 1⟩
and ⟨lmax = 1|lmax = 2⟩. This can also be used to determine the dominant partial
wave contributions from experimental polarization observable data, as was demon-
strated in Ref. [Wunderlich et al., 2017]. The calculation of the C 𝛼

j -matrices is
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Table 3.3: Shown are the matrix elements of the Hermitian matrix C𝜎0
1 for a

truncation order of lmax = 2. The contribution of different partial waves, as well as
the corresponding multipoles, are indicated.

lmax = 0 lmax = 1 lmax = 2
E0+ E1+ M1+ M1− E2+ E2− M2+ M2−

lmax = 0 E0+ 0 3 1 -1 0 0 0 0
E1+ 3 0 0 0 72/5 -3/5 9/5 -9/5

lmax = 1 M1+ 1 0 0 0 0 1 27/5 3/5
M1− -1 0 0 0 0 -1 0 3

lmax = 2

E2+ 0 72/5 0 0 0 0 0 0
E2− 0 -3/5 1 -1 0 0 0 0
M2+ 0 9/5 27/5 0 0 0 0 0
M2− 0 -9/5 3/5 3 0 0 0 0

quite involved and shall not be discussed here. However, the formula can be found
in the Appendix, Eq. (.52), of Ref. [Yannick Wunderlich, 2019], albeit an overall
factor of 1/2 is missing in the formula.

The application of a TPWA to real data in single pseudoscalar meson photo-
production, with the goal of extracting the complex multipole parameters from
which predictions of not yet measured observables are deduced, is discussed in
Chapter 5.



Chapter 4

Minimal complete sets for
two-pseudoscalar-meson
photoproduction

This chapter is based on the paper:

Philipp Kroenert, Yannick Wunderlich, Farah Afzal, and Annika Thiel,
’Minimal complete sets for two-pseudoscalar-meson photoproduction’,

Phys. Rev. C 103, 014607 (2021),

which can be found in Ref. [Kroenert et al., 2021] and is included for convenience
in Appendix A.1. Additionally, this chapter is partly based on the paper:

Yannick Wunderlich, Philipp Kroenert, Farah Afzal, and Annika Thiel,
Moravcsik’s theorem on complete sets of polarization observables

reexamined,
Phys. Rev. C 102, 034605 (2020),

which can be found in Ref. [Wunderlich et al., 2020].

4.1 Introduction

The first project of this thesis deals with the so-called complete experiment analysis
(CEA) within the field of Baryon spectroscopy (BS). CEA is of particular impor-
tance for experimentalists in the field of BS, as it serves as an additional guideline
on which future measurements should be pursued in order to push our understand-
ing of the strong interaction. The overall goal of CEA is to identify how many
and which polarization observables need to be measured in order to unambigu-
ously determine the transition matrix T of the reaction under consideration, as
explained in Section 3.4. A set of observables which allows for this unambiguous
determination is called a complete set of observables.

The reactions which are discussed in this chapter are pion-nucleon scattering

39
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(Na = 2, No = 4), pseudoscalar meson photoproduction (Na = 4, No = 16), pseu-
doscalar meson electroproduction (Na = 6, No = 36) and finally two-pseudoscalar-
meson photoproduction (Na = 8, No = 64).

As already explained, the complexity to perform a CEA increases exponentially
with the number of spin amplitudes Na. Hence, for pion-nucleon scattering it
is rather easy to show, via a single equation, that indeed all four polarization
observables are needed to get an unambiguous result for the transition matrix
[Anisovich et al., 2013]. Already for pseudoscalar meson photoproduction the
situation is more complex. In total eight carefully selected polarization observables
have to be measured for a complete set, as can be seen in Ref. [Chiang and
Tabakin, 1997]. The calculations are quite involved but still can be performed
analytically as was done in Ref. [Nakayama, 2019]. For the reaction of pseudoscalar
meson electroproduction as well as for two-pseudoscalar-meson photoproduction,
no comprehensive list of complete sets of polarization observables was available in
the literature. Nevertheless, pioneering work on the CEA for these reactions exist,
see Ref. [Tiator et al., 2017] and Ref. [Arenhövel and Fix, 2014].

In this thesis a graph theoretical approach to CEA via Moravcsik’s theorem
[Moravcsik, 1985] is chosen, to yield listings of complete sets of polarization
observables for the before mentioned reactions. The simplicity of this analytic
approach, its applicability regardless of the number of complex spin amplitudes Na
in combination with its scalability (parallelization) makes it very appealing, espe-
cially for reactions which are described by more than four complex spin amplitudes.

The theorem reads as follows: Each of the complex spin amplitudes ti of the
reaction is represented as a node of a graph. The edge between two nodes ti and
tj can either be the real- or imaginary part of the product tit ∗j :

Re(tit ∗j ) = |ti | |tj | cos
(
𝜙ij

)
, (4.1)

Im(tit ∗j ) = |ti | |tj | sin
(
𝜙ij

)
, (4.2)

with the definition of the relative phase 𝜙ij = 𝜙i − 𝜙j. An example for such a
graph is shown in Fig. 4.1. A graph corresponds to a complete set of polarization
observables if it fulfills two requirements with a detailed proof of the statements
given in Appendix A of Ref. [Wunderlich et al., 2020]. First, it has to be a connected
graph, which translates to fulfilling the ’consistency relation’ [Nakayama, 2019] of
the relative phases:

𝜙12 + 𝜙23 + · · · + 𝜙N 1 = 0. (4.3)

Second, the graph must have an odd number of edges which correspond to Im(tit ∗j )
to resolve all discrete ambiguities. The reason for the second requirement can be
seen as follows: The sine and cosine introduce a phase ambiguity, i.e. ’sine-type’-
and ’cosine-type’ ambiguities, respectively:

sin
(
𝜙ij

)
= sin

(
𝜋 − 𝜙ij

)
, (4.4)

cos
(
𝜙ij

)
= cos

(
−𝜙ij

)
. (4.5)

First considering the case where all edges of the graph correspond to Re(tit ∗j ). In
such a scenario, the possible forms of Eq. (4.3) are:

±𝜙12 ± 𝜙23 ± · · · ± 𝜙N 1 = 0. (4.6)
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Figure 4.1: Example for a complete graph within Moravcsik’s theorem [Moravcsik,
1985]. The nodes represent the eight complex spin amplitudes, necessary to fully
describe the reaction of two-pseudoscalar-meson photoproduction. A solid line
between node (i) and (j) corresponds to the real part of their bilinear product
Re(tit ∗j ), which is proportional to cos

(
𝜙ij

)
. In contrast, a dashed line corresponds

to the imaginary part Im(tit ∗j ) which is proportional to sin
(
𝜙i j

)
. The relative phase

between the complex amplitude (i) and (j) is denoted with 𝜙ij.

If a unique solution exists, for which no discrete ambiguities for the ti remain, it
would be linearly independent of the remaining 2N −1 possible solutions [Nakayama,
2019, Wunderlich et al., 2020]. Possible linear transformations are the multiplication
with (-1) or the addition or subtraction of multiples of 2𝜋 [Wunderlich et al., 2020].
For the example in Eq. (4.6) none of the possible equations is linearly independent.
Hence, a graph with all nodes corresponding to Re(tit ∗j ) can not remove all discrete
ambiguities. Now considering the introduction of n sine-type ambiguities:

±𝜙12 ± 𝜙23 +
n∑︁
i

{
𝜙i,i+1

𝜋 − 𝜙i,i+1

}
± · · · ± 𝜙N 1 = 0. (4.7)

If n is an odd number, no equation can be transformed into another equation,
because there is always one independent equation, due to a summand of 𝜋. How-
ever, for the case of n being an even number, none of the possible equations is
linearly independent. Thus, any odd number of sine-type ambiguities guarantees
the resolution of all discrete ambiguities.

For completeness, the statements above are a modified version of Moravcsik’s
theorem as presented in Ref. [Moravcsik, 1985]. In particular, for a complete set
of observables an odd number of sine-type ambiguities suffices and one does not
need in addition an odd number of cosine-type ambiguities.

It follows a brief explanation on how to apply Moravcsik’s theorem to extract
complete set of observables. The following discussion is focused on graphs where
all nodes are connected in a closed chain, and each node has exactly two edges. An
example for such a graph is shown in Fig. 4.1. These type of graphs are also called
cycle graphs and are "the most economical" [Moravcsik, 1985] ones to consider, as
they have the lowest number of edges required for a complete set of observables.

The starting point is to construct all possible graph topologies given Na spin
amplitudes. For the trivial case of Na = 2 there is only one graph topology. For
Na ≥ 4 the number of unique graph topologies is proportional to Na and given by
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Figure 4.2: Three out of 2520 unique cycle graph topologies with eight nodes are
shown. The nodes represent the eight complex spin amplitudes necessary to fully
describe the reaction of two-pseudoscalar-meson photoproduction.

[Wunderlich et al., 2020]:

(Na − 1)!
2

. (4.8)

The factor Na − 1 comes from the constraint of considering only cyclic graphs,
hence only Na − 1 edges can be freely chosen. This results for Na = 4 in 3, for
Na = 6 in 60 and for Na = 8 in 2520 unique graph topologies. Figure 4.2 shows
three exemplary graph topologies for Na = 8.

In the next step, all possible combinations for an odd number of edges, cor-
responding to Im(tit ∗j ), for each of the graph topologies have to be identified. The
total number of suitable edge configurations is proportional to Na and can be
calculated by [Kroenert et al., 2021]:

Na∑︁
k=1

(
Na
k

)
for all odd k ≤ Na. (4.9)

Which amounts for Na = 2 to 2, Na = 4 to 8, Na = 6 to 32 and Na = 8 to 128
possible edge configurations. An example for an edge configuration for Na = 8 is
shown in Fig. 4.1.

In the last step, the connection between the product tit ∗j of two spin amplitudes
to the polarization observables is used to extract a complete set of observables.
Therefor, Eq. (3.3) can be rearranged to the following form [Wunderlich et al.,
2020] and is here shown for the case of N = 8:

tit ∗j =
1
8

64∑︁
𝛼=1

Γ𝛼
ij O𝛼 . (4.10)

The Γ-matrices are used to mathematically define the polarization observables
O𝛼 in terms of Pauli matrices. For N = 8, a complete list with the mathematical
definition of the 64 polarization observables with relations to the notation of Roberts
and Oed [Roberts and Oed, 2005] can be found in Table I in Ref. [Kroenert et al.,
2021]. The same reference collects in Table II the definitions of the corresponding
Γ-matrices. Equipped with these tools, the polarization observables required to
pin down the respective sine or cosine values can be worked out. For the example
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shown in Fig. 4.1 the following relations hold:

sin(𝜙23) ↶ {OIV
s1 ,O

IV
s2 ,O

IV
s3 ,O

IV
s4 }, (4.11)

sin(𝜙56) ↶ {OIII
s1 ,O

III
s2 ,O

III
s3 ,O

III
s4 }, (4.12)

sin(𝜙78) ↶ {OIII
s1 ,O

III
s2 ,O

III
s3 ,O

III
s4 }, (4.13)

cos(𝜙12) ↶ {OIII
c1 ,O

III
c2 ,O

III
c3 ,O

III
c4 }, (4.14)

cos(𝜙15) ↶ {OV
c1,O

V
c2,O

V
c3,O

V
c4}, (4.15)

cos(𝜙34) ↶ {OIII
c1 ,O

III
c2 ,O

III
c3 ,O

III
c4 }, (4.16)

cos(𝜙48) ↶ {OV
c1,O

V
c2,O

V
c3,O

V
c4}, (4.17)

cos(𝜙67) ↶ {OIV
c1 ,O

IV
c2 ,O

IV
c3 ,O

IV
c4 }, (4.18)

which results in the complete set of polarization observables:

{OI
1,O

I
2,O

I
3,O

I
4,O

I
5,O

I
6,O

I
7,O

I
8,O

IV
s1 ,O

IV
s2 ,O

IV
s3 ,O

IV
s4 ,O

IV
c1 ,O

IV
c2 ,O

IV
c3 ,O

IV
c4 ,

OIII
s1 ,O

III
s2 ,O

III
s3 ,O

III
s4 ,O

III
c1 ,O

III
c2 ,O

III
c3 ,O

III
c4 ,O

V
c1,O

V
c2,O

V
c3,O

V
c4}. (4.19)

Two important things can be read of from Eq. (4.19). On the one hand, all eight
group I observables are in the set, despite not being required by the sine or cosine
values. The reason is, that in Moravcsik’s theorem it is assumed that the absolute
value of all amplitudes ti are known, as is evident from Eqs. (4.1) and (4.2). The
requirement can be realized by including all polarization observables expressed as
sum of amplitude squares into a complete set. For two-pseudoscalar-meson photo-
production this would correspond to the eight observables of group OI in Table 1 in
Ref. [Kroenert et al., 2021], while for single pseudoscalar meson photoproduction
it corresponds to the four type S observables as shown in Table 2 in Ref. [Kroenert
et al., 2024]. However, one should keep in mind that the mathematical form of the
polarization observables depends on the employed parametrization of the spin
amplitudes ti in Eq. (3.3) and thus the observables defined only by amplitude
squares change with a different parametrization. On the other hand, the set has a
length of 28, which is larger than the empirically, minimal number of 2Na = 16,
which is discussed further in Section 4.2.

To proof the correctness of Moravcsik’s theorem, the well-known CEA results
for Na = 2 and Na = 4 spin amplitudes were reproduced. Indeed, for Na = 2
the well-known statement that all four polarization observables are needed for a
complete set of observables was replicated [Wunderlich et al., 2020]. For Na = 4,
the situation is more complex. In total 12 non-redundant sets, each containing
10 polarization observables, were found. These sets are slightly over-complete
compared to [Chiang and Tabakin, 1997], in the sense that the minimal number of
polarization observables to form a complete set is eight for Na = 4. It turns out,
that the complete sets found in Ref. [Chiang and Tabakin, 1997] are subsets of the
12 slightly over-complete sets found by Moravcsik’s theorem. From the 12 slightly
over-complete sets of 10 polarization observables, all complete sets containing
exactly 8 polarization observables could be extracted via a numerical algorithm,
for details see the Appendix in Ref. [Kroenert et al., 2021].

In a second step, Moravcsik’s theorem was applied onto pseudoscalar meson
electroproduction (Na = 6). In total 776 slightly over-complete sets were found.
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This includes complete sets with 13 up to 18 polarization observables. All Moravcsik
complete sets with in total 13 or 14 polarization observables are collected in Ap-
pendix D in Ref. [Wunderlich et al., 2020], which is the first comprehensive listing
of complete sets for pseudoscalar meson electroproduction.

Finally, Moravcsik’s theorem was applied to two-pseudoscalar-meson photoproduc-
tion (Na = 8), which lead to the publication in Ref. [Kroenert et al., 2021], and is
included in Appendix A.1.

4.2 Summary

Moravcsik’s graph theoretical approach to CEA was first applied to pion-nucleon
scattering and pseudoscalar meson photoproduction in order to reproduce the
well known results for these reactions, as stated in Ref. [Anisovich et al., 2013]
and Ref. [Chiang and Tabakin, 1997]. Afterward, the procedure was applied to
pseudoscalar meson electroproduction, which yielded for the first time a compre-
hensive list of complete sets for this reaction, which are listed in Appendix D of
Ref. [Wunderlich et al., 2020]. The conduction of a CEA by means of Moravcsik’s
theorem for pion-nucleon scattering, pseudoscalar meson photoproduction and
electroproduction resulted in the publication of Ref. [Wunderlich et al., 2020]
in Physical Review C. My contribution to this paper was the development of a
computer program suitable to extract complete sets of polarization observables via
Moravcsik’s theorem. With this program I calculated the results of pion-nucleon
scattering (Na = 3) (mathematical example), pseudoscalar meson photoproduction
(Na = 4) and pseudoscalar meson electroproduction (Na = 6), where Na denotes
the number of complex spin amplitudes to describe the reaction. In addition, I
developed the code which was used to generate the figures in the paper.

It was observed that Moravcsik’s theorem yielded slightly over-complete sets for
pseudoscalar meson photoproduction and electroproduction. This means that
the number of polarization observables in each complete set is larger than the
empirically, minimal required number of 2Na. Nevertheless, complete sets with the
minimal length can be extracted as subsets from the slightly over-complete sets,
by means of a numerical algorithm as outlined in the Appendix of Ref. [Kroenert
et al., 2021].

Finally, I applied Moravcsik’s theorem onto two-pseudoscalar-meson photoproduc-
tion (Na = 8). In general, the polarization observables for two-pseudoscalar-meson
photoproduction can be grouped into eight so-called shape classes. The shape-
classes are distinguished by the position of the nonzero matrix elements of the
respective Γ-matrices, see Table II in Ref. [Kroenert et al., 2021]. For an easier
calculation of the 64 Γ-matrices, I worked out their definition in terms of the
well-known Pauli matrices.

In total 5964 slightly over-complete sets were found, which includes complete
sets with 24 up to 40 polarization observables. There are 392 non-redundant sets
with a length of 24 which were used as a starting point to determine subsets with a
minimal number of polarization observables still forming a complete set. Thus,
the possible number of to be analyzed subsets, with the minimal length of 16 (as
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the eight observables of the first shape class are always a member of a complete
set), are:

392 ·
(
16
8

)
= 5 045 040. (4.20)

Till the publication of the paper, 4185 complete sets with a minimal length have
been found. Each of the 4185 minimal complete sets contain polarization observ-
ables from exactly four different shape classes.

In addition, an example for the algebraic derivation of complete sets for Na = 8 by
reference to the phase-fixing approach developed by Nakyama [Nakayama, 2019]
is shown. The important steps of the method are outlined within the paper and a
detailed calculation can be found in the supplement material of Ref. [Kroenert
et al., 2021]. The resulting minimal complete sets are listed in Table VII of Ref.
[Kroenert et al., 2021]. The derivation of these results, the writing of paragraph
"B. Algebraic phase-fixing method" and the corresponding supplement material
was contributed to the paper by Dr. Yannick Wunderlich.

One focus of the paper laid on the experimental verification of the identified
complete sets, i.e. the measurement of a complete set in the near future. This
means in particular, that a complete set should have a minimal number of triple
polarization observables, as yet the first have to be measured. Therefore, the
4185 complete sets were filtered and indeed 69 complete sets with only one triple
polarization observable were found and are shown in Table V of Ref. [Kroenert
et al., 2021]. The only remaining triple polarization observable is O⊙

yy′ and belongs
to shape class I, in which all Γ-matrices are diagonal matrices. To further assist
experimentalists in planning future experiments, I composed a detailed list of
previous measurements in the field of two-pseudoscalar-meson photoproduction.
This encompasses in total 55 measurements from eight different reactions, listed
in Table IV in Ref. [Kroenert et al., 2021]. With the knowledge from this extended
list of measurements, the most promising reaction is 𝛾p → 𝜋0𝜋0p in combination
with the complete set:

I⊙ ,Py,Py′ ,O⊙
yy′ ,Oyy′ ,P⊙

y′ ,P
⊙
y ,I0,Px,Pz,Px′ ,Ps

x,P
⊙
x ,P

c
z,P

⊙
z ,P

⊙
x′ . (4.21)

From these sixteen polarization observables, already eight have been measured,
and the remaining eight observables could be measured within three more experi-
ments [Kroenert et al., 2021].

As an outlook, the outlined approach can be optimized by moving the com-
putations on a computer cluster, to utilize the parallelization capability of the
problem. Thus, all the 5 045 040 possible subsets for Na = 8 could be tested for
completeness. In addition, one could think of removing the last remaining triple
polarization observable O⊙

yy′ in the minimal complete sets, by studying alternative
ways to ensure the knowledge of all absolute spin amplitude values without relying
solely on polarisation observables defined by diagonal Γ-matrices.
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Chapter 5

Truncated partial-wave
analysis utilizing Bayesian
inference

This chapter is based on the paper:

Philipp Kroenert, Yannick Wunderlich, Farah Afzal, and Annika Thiel,
"Truncated Partial-Wave Analysis for 𝜂-photoproduction observables via

Bayesian Statistics", Phys. Rev. C 109, 045206 (2024).

The paper can be found in Ref. [Kroenert et al., 2024] and is included for conve-
nience in Appendix A.2.

5.1 Introduction

The first project of this thesis was the theoretical prediction of complete sets of
polarization observables via a complete experiment analysis (CEA), which can be
found in Chapter 4. However, as discussed in Section 3.4, the results of a CEA
are only valid in the case of experimental data points without any uncertainty,
which means for the analysis of real data one might still encounter ambiguities.
Therefore, the second project of this thesis follows a complementary approach and
studies the emergence of such ambiguities within a truncated partial-wave analysis
(TPWA) on real data. In case of a TPWA mainly so-called accidental ambiguities
arise, see Sec III.A in Ref. [Kroenert et al., 2024]. This special type of ambiguity
can not be circumvented entirely and emerges from a limited numerical precision
or the immanent uncertainty in experimental data. However, these accidental
ambiguities often produce just minor ambiguities, i.e. those which can be clearly
distinguished from the ’true’ physical solution.

In general, a TPWA uses polarization data to estimate the parameters with which
the matrix elements of the transition operator are modeled. In this analysis, these
are the so-called multipole parameters. Compared to a full partial-wave analysis
(PWA), a TPWA is less sophisticated, i.e. it is not a coupled channel approach
and performs the fit at single energies. Having said that, the TPWA approach is
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more straight forward and the most appealing point, it is a model independent ap-
proach, in comparison to a full PWA. For more details on this topic see Section 3.5.2.

The selection of an appropriate data set for the analysis depends on several
aspects. On the one hand, the chosen data sets must form a mathematical com-
plete set for a TPWA. On the other hand, one of the final results of the analysis
is intended to be the evolution of the multipole parameters as a function of the
energy. Thus, the experimental data should cover as large an energy range as
possible. Considering the latest available data on polarization observables for
pseudoscalar meson photoproduction, see Section 5 in [Thiel et al., 2022], the
reaction 𝛾p → 𝜂p, also known as 𝜂-photoproduction, was chosen. The polariza-
tion observables 𝜎0, Σ, T , E, F and G form a complete set, see Appendix A
in Ref. [Kroenert et al., 2024] (the derivation is a contribution to the paper by
Dr. Yannick Wunderlich), and experimental data are available for the energies
750 MeV, 850 MeV, 950 MeV, 1050 MeV, 1150 MeV and 1250 MeV (laboratory
frame) which is right above the production threshold of E lab ≈ 708 MeV, or equiv-
alentlyW = m𝜂 + mp ≈ 1486 MeV in the center of mass frame. The reaction of
𝜂-photoproduction is very well suited to study N ∗ resonances as these are the only
allowed resonances in the intermediate state, because of the isospin conservation
in the strong interaction.

Previous work on the application of a TPWA to meson photoproduction using real
data do exist. Hereby the classical approach of Frequentist statistics was used for
the analysis of emerging ambiguities and the estimation of multipole parameters.
See for example, Ref. [Sandorfi et al., 2011], where the authors analyzed the reac-
tion 𝛾p → K +Λ, i.e. strangeness photoproduction. As the data situation at the time
did not allow for the use of a complete set of observables, many ambiguities were
present in the result. Another example can be found in Ref. [Yannick Wunderlich,
2019], in which experimental data of the reaction 𝛾p → 𝜋0p were analyzed. In this
reference, the classical approach was used as well, but first attempts were made to
use the bootstrap method [Efron, 1992] for estimating the errors of the regression
parameters.

In this thesis the more advanced method of Bayesian inference is combined for
the first time with TPWA. Therefore, the results of the analyses, i.e. the model
parameters as well as the reproduced- and predicted data are given as distributions
which are accompanied by excellent error estimates. This is in contrast to the
Frequentist approach, where one gets point estimates for the model parameters
and has to take further steps to get accurate error estimates. An additional im-
provement of Bayesian inference is its ability to reveal the structure of ambiguities
and their connection in parameter space. For example, in cases where multiple
ambiguities, i.e. posterior modes, are traversed within one MCMC chain, they
tend to have comparable log posterior densities, i.e. contribute with a comparable
probability mass to the posterior, which is typically a sign of a severe ambiguity.
This phenomenon is shown in Fig. 5.1, where the contributions of the two peaks
on the left side of the distribution can not be distinguished, the same is true for
the two peaks on the right side of the distribution.

The multimodal posterior in a TPWA, arising from the presence of ambigui-
ties, makes the situation for monitoring the MCMC convergence diagnostics rather
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Figure 5.1: Illustration of connected ambiguities. The upper part of the figure shows
the histogram of the marginal distribution of parameter Θ with four visible modes.
Each mode represents one ambiguity. The lower part shows the corresponding
log posterior density (LPD) as a two-dimensional histogram. The highest LPD of
the two left modes can not be distinguished, and thus it is not clear which mode
contributes more probability mass to the posterior, which is the definition of a
severe ambiguity. The same is true for the two right modes.

complex. At first, it was not clear whether a chain has not converged yet or indeed
traversed multiple relevant modes. Such a scenario is illustrated in Fig. 5.2, where
the evolution of one MCMC chain is shown, exploring two distinct regions in
parameter space. Furthermore, in situations where not all MCMC chains have
traversed the same modes, but rather get stuck in isolated modes, a way has to be
figured out how to still be able to monitor the global convergence and achieve the
anticipated MCMC diagnostics. Thus, the procedure for the MCMC convergence
diagnostics, see Section 2.5, had to be adapted compared to the normal approach.

5.2 Summary

Truncated partial-wave analyses were performed, utilizing for the first time the
statistical method of Bayesian inference, for 𝜂-photoproduction and the energies
750 MeV, 850 MeV, 950 MeV, 1050 MeV, 1150 MeV and 1250 MeV (lab frame),
which are just above the production threshold. Hereby, the experimental values
of the six polarization observables 𝜎0, Σ, T , E, F and G were used to study the
result of multiple truncation orders lmax. In order to accomplish this, for each
energy a posterior distribution was implemented, considering statistical and sys-
tematic uncertainties as well as correlations between the used data sets. The priors
were chosen conservatively: uniform priors for the multipole parameters with
bounds defined by the physically allowed regions of the parameters and Gaussian
priors centered around a value of one for the scaling parameters, which model
the systematic uncertainties. In this way, the priors are uninformative compared
to the likelihood distribution but at the same time include prior physical knowledge.

First, the implemented posteriors were tested on generated data, from the Eta-
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Figure 5.2: Illustration of convergence problematic with a multimodal posterior
distribution. The emergence of two distinct clusters is visible, i.e. two modes in
the marginal parameter distribution of Θ. The complexity lies in the assessment
of whether the chain has not converged yet or the marginal distribution is indeed
multimodal. Shown are the first 104 sampling points, where the color of the very
first sampling point is red. The order of sampling points is indicated via arrows.
The black vertical line corresponds to the initial value of the MCMC chain.

MAID2018 [Tiator et al., 2018] solution, were the results of the multipoles are
known a priori and can be compared to the results of the Bayesian analysis. An
example for the energy of E lab

𝛾 = 750 MeV and a truncation order of lmax = 2 is
shown in Fig. 5.3 . The upper part of the figure depicts the solutions found for the
parameter Re(E0+) via a Monte Carlo maximum a posteriori (MAP) estimation
normalized by the number of degrees of freedom. The errors were estimated via
the inverted Hesse matrix. The lower part of the figure shows the solutions, i.e.
the marginal distributions of Re(E0+), found with Bayesian inference. Hereby the
MAP values were used as starting points for the MCMC sampling. In total five
solutions, i.e. ambiguities, are visible within Fig. 5.3. The ’best’ solution according
to 𝜒2/ndf is at a value of Re(E0+) = 19.884622 am. The corresponding marginal
distribution (orange color) has its median value at Re(E0+) = 19.83915 am. Hence,
to generate the data in the first place, a value of Re(E0+) = 19.8846 am from
EtaMAID2018 was used. Thus, the maximum likelihood estimation as well as the
marginal distribution were able to recover the truth of the generated data with
sufficient precision, indicating the correct working of the implemented methods.

After this sanity check, the analysis was applied to the experimentally measured
data. The MCMC sampling was performed for the truncation orders lmax = 1
and lmax = 2 for all energies. In addition, the truncation order of lmax = 3 was
investigated for the energy of 1250 MeV. A considerable increase in accidental
ambiguities could be observed, where in total 43 posterior modes were identified.
This amount of ambiguities makes the securing of adequate MCMC convergence
diagnostics rather complex and computationally extremely demanding. Thus, the
analysis of lmax > 2 is postponed for future research.
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Figure 5.3: Shown is the result for Re(E0+) using a Bayesian inference with generated
data for an energy of E lab

𝛾 = 750 MeV and a truncation order of lmax = 2. The
upper part of the figure shows the results from a maximum likelihood estimation,
where the errors are estimated via the Hesse matrix. The lower part of the figure
depicts the marginal distributions, where the respective [15.9, 50, 84]-% quantiles
are shown as dashed lines.

The electromagnetic multipole parameters were estimated as distributions and
the results were compared with the MAP solutions. It was observed that MAP
results with rather high 𝜒2/ndf values are not present in the marginal parameters
distributions, most likely because they are too far from the ’typical set’, i.e. the
region which contributes most to the expectation value of the posterior.

In a second step, reproduced data distributions were calculated from the esti-
mated electromagnetic multipole parameters as an additional check for the models.
The distributions were analyzed for systematic effects from which an appropriate
maximal angular momentum of lmax = 2 was concluded, able to describe the used
experimental data. At the same time, no higher angular momentum contributions
were visible within the data. Closely related to this phenomenon is the impact of
emerging N ∗ resonances onto the reproduced data distributions, coming from cou-
plings to angular momenta ℓ > 1. It was concluded that most likely a contribution
of the resonances N (1675)5/2− and/or N (1700)3/2− are visible within the used
polarization observables.

In a next step, predicted data distributions are calculated from the estimated elec-
tromagnetic multipole parameters at a truncation order of lmax = 2. This includes
predictions for the remaining ten polarization observables of 𝜂-photoproduction
which were not included in the analysis, i.e. H , P , and the not yet measured
observables Ox′ , Oz′ , Cx′ , Cz′ , Lx′ , Lz′ , Tx′ and Tz′ . On the basis of the functional
behavior of the predicted distributions over the cos(𝜃)-range, a list of observables
was identified for each analyzed energy, which could resolve the remaining acci-
dental ambiguities. Specifically, the polarization observable Cz′ seems promising
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Figure 5.4: Predicted data distribution for the polarization observable C′
z for an

energy of E lab
𝛾 = 950 MeV. Different solutions, i.e. ambiguities, are indicated via

different colors. In addition, the solution of the partial partial-wave analysis models
MAID [Tiator et al., 2018], BnGa [Anisovich et al., 2016] and JuBo [Rönchen et al.,
2022] are shown for comparison.

to reduce the number of ambiguities at all six energy bins. An example is shown in
Fig. 5.4, where measurement data favoring one of the three main functional behav-
iors would indeed help to rule out the others. Within the paper, the color coding
for different ambiguities at a certain energy is kept consistent for the multipole-,
reproduced- and predicted plots. Hence, the influence of a certain ambiguity onto
the results can be studied.

Additionally, the model independent results of the TPWA, i.e. the evolution
of the estimated multipole parameter distributions as a function of energy, as
well as the predicted data distributions, are compared with the model-dependent
partial-wave analysis results and predictions of BnGa [Anisovich et al., 2016], JuBo
[Rönchen et al., 2022] and MAID [Tiator et al., 2018]. One example of each
is shown in Fig. 5.5. Where Fig. 5.5a, the overall agreement between truncated
partial-wave analysis and the partial-wave models can be seen, and Fig. 5.5b shows
that different ambiguities sometimes predict a different functional behavior of
the data distributions (see also Fig. 5.4). In general, the results for the multipole
parameters of the approaches are consistent, except for Im(E2+) where none of
the approaches coincide.

Summarizing, for the first time truncated partial-wave analysis were combined with
Bayesian inference. The utilization of MCMC sampling made it possible to study
the connection between ambiguities in a new way and yields a clear indication of
severe ambiguities, i.e. when multiple MCMC chains sample consistently multiple
marginal modes together.
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(a) Shown is the evolution of the multipole parameter Re(M1−) over the energy range of
E lab
𝛾 = [750,1250] MeV.
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(b) Shown are the predicted data distribution of the polarization observable H for an energy
of E lab

𝛾 = 1250 MeV.

Figure 5.5: Examples for (a) the evolution of a multipole parameter with regard to
the energy and (b) the predicted data distributions for the polarization observable
H. Different solutions, i.e. ambiguities, are indicated via different colors (for
(a) on a per-energy basis). In addition, the solution of the partial partial-wave
analysis models MAID [Tiator et al., 2018], BnGa [Anisovich et al., 2016] and JuBo
[Rönchen et al., 2022] are shown for comparison.



54 CHAPTER 5. TPWA UTILIZING BAYESIAN INFERENCE



Part II

Neutrino mass analysis
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Chapter 6

Neutrino mass analysis with
KATRIN

The main focus of this chapter is the explanation of the measurement of the
absolute mass of electron anti-neutrinos with the KArlsruhe TRItium Neutrino
(KATRIN) experiment. The chapter starts with a general introduction into the
topic and a motivation for massive neutrinos in Section 6.1 by discussing the
mathematical framework and the experimental evidence of neutrino oscillations.
Afterward, the measurement approach of the KATRIN experiment is discussed in
6.2, followed by the experimental setup with its major components in Section 6.3.
In Section 6.4 the KATRIN model is discussed, i.e. the expected count rate of
𝛽 -electrons from tritium decay. Section 6.5 deals with the systematic effects in the
KATRIN experiment, before the mathematical form of the KATRIN likelihood is
discussed in Section 6.6. Finally, the collected measurement data of the first five
KATRIN campaigns are presented in Section 6.7.

6.1 Introduction

In the classical Standard Model of particle physics all three generations of neutrinos
are massless. The very first step onto the conclusion of massive neutrinos, and
an extension of the Standard Model, was a paper published by R. Davis, Jr. et
al. in the year 1968, see Ref. [Davis et al., 1968], on the experimental detection
of electron neutrinos 𝜈e originating from the sun. The experiment was located at
the Homestake gold mine at Lead, South Dakota, and used the inverse 𝛽 -decay
𝜈e + 37

17CL → 37
18Ar + e − . To infer the amount of electron neutrinos coming from

the sun, the produced argon atoms were chemically extracted, and their decay
was closely observed [Navas et al., 2024]. The measured production rate was
0.478 ± 0.03 (statistical) ± 0.029 (systematic) counts per day with an expected
rate in the range of 1.2 to 1.7 counts per day [Navas et al., 2024]. This massive
discrepancy between expected and observed rate is known as the solar neutrino
problem.

This was further investigated by the Super-Kamiokande collaboration by studying
atmospheric neutrinos to see if the problem persists for this type of neutrino
source. Their detection medium was a 50 kt water-Cherenkov detector situated
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in the Kamioka mine in Japan [Fukuda et al., 1998] and was utilized to study
neutrino interactions with nuclei N via the reaction 𝜈 + N → l + X . Because the
final state leptons l are relativistic, they produce Cherenkov radiation, which is
then detected by a fraction of the in total 11 146 photomultiplier tubes. A flux ratio,
defined by the measured number of muon n𝜇 and electron ne like events and the
corresponding theoretical expectations in the form of Monte Carlo data were found
to be R := (n𝜇/ne )data/(n𝜇/ne )MC = 0.63 ± 0.03 (statistical) ± 0.05 (systematic)
[Fukuda et al., 1998]. In addition, the zenith angle 𝜃z distribution for muon like
events revealed a deficit of upward going, i.e. −1 < cos(𝜃z ) < −0.2, events [Fukuda
et al., 1998, Navas et al., 2024].

A few years later, the results from the Sudbury Neutrino Observatory (SNO)
located in Canada were published. As in the case of Super-Kamiokande a water-
Cherenkov detector was used, likewise situated in an old mine. By studying
charged- and neutral current reactions, as well as elastic scattering, the electron-
neutrino flux 𝜙e , originating from the sun, together with the combined flux of
muon- and tau-neutrinos 𝜙𝜇𝜏 were accessible. The combined flux was measured
to be 𝜙𝜇𝜏 = 3.41+0.45

−0.45 (statistical)+0.48
−0.45 (systematic) × 106 cm−2s−1, which is 5.3𝜎

above the expected value of zero [Ahmad et al., 2002] and thus provides strong
evidence for physics beyond the Standard Model.

6.1.1 Neutrino oscillation

To explain the strong discrepancies between the Standard Model predictions
and the experimentally measured count rates of neutrinos, the framework of
neutrino oscillations was developed. Within this theory, a neutrino with flavor 𝛼
can transition to flavor 𝛽 with a non-zero probability, where 𝛼, 𝛽 ∈ (e , 𝜇,𝜏). The
mixing or oscillation between neutrino flavors can be described by the unitary
Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix [Thomson, 2013]:

UPMNS =
©­«
Ue1 Ue2 Ue3
U𝜇1 U𝜇2 U𝜇3
U𝜏1 U𝜏2 U𝜏3

ª®¬ . (6.1)

The matrix connects the neutrino states participating in the weak interaction, also
called flavor-eigenstates (𝜈e , 𝜈𝜇, 𝜈𝜏), with so-called mass eigenstates (𝜈1, 𝜈2, 𝜈3):

©­«
𝜈e
𝜈𝜇
𝜈𝜏

ª®¬ = UPMNS
©­«
𝜈1
𝜈2
𝜈3

ª®¬ . (6.2)

The following formalism is the same for Majorana and Dirac neutrinos. Solely
the free parameters of the PMNS matrix changes slightly, which can be seen by
decomposing the matrix according to the oscillation parameters. In the case of
Majorana neutrinos, there are six oscillation parameters, i.e. three mixing angles
and three phases [Navas et al., 2024]:

U Majorana
PMNS := ©­«

1 0 0
0 c23 s23
0 −s23 c23

ª®¬ ©­«
c13 0 s13e −i𝛿

0 1 0
−s13e i𝛿 0 c13

ª®¬ ©­«
c12 s12 0
−s12 c12 0

0 0 1

ª®¬ ©­«
e i𝜂1 0 0
0 e i𝜂2 0
0 0 1

ª®¬ .
(6.3)
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In the case of Dirac neutrinos, there are four oscillation parameters, i.e. three
mixing angles and one phase [Navas et al., 2024]:

U Dirac
PMNS := ©­«

1 0 0
0 c23 s23
0 −s23 c23

ª®¬ ©­«
c13 0 s13e −i𝛿

0 1 0
−s13e i𝛿 0 c13

ª®¬ ©­«
c12 s12 0
−s12 c12 0

0 0 1

ª®¬ . (6.4)

The shorthand notation si j := sin
(
𝜃i j

)
, ci j := cos

(
𝜃i j

)
was used. The three mixing

angles are denoted with 𝜃ij, the Majorana phases with 𝜂1,𝜂2 and the Dirac phase
with 𝛿.

Equation (6.2) involves the weak eigenstates |𝜈𝛼⟩ and the mass eigenstates |𝜈k ⟩.
Hence, each weak eigenstate is a superposition of three mass eigenstates. A freely
propagating neutrino state at coordinates (x ,t ) is described in quantum theory by
wave packets as [Akhmedov and Smirnov, 2009]:

|𝜈𝛼 (x ,t )⟩ :=
3∑︁

k=1

U ∗
𝛼kΨk (x ,t ) |𝜈k⟩ , with 𝛼 ∈ {e , 𝜇,𝜏}, (6.5)

with the wave packet:

Ψk (x ,t ) :=
1

(2𝜋)3/2

∫
dp f S

k (p − pk)e i px−iEkt . (6.6)

The function f S
k (p − pk) describes the momentum distribution for a neutrino

produced in the source S, with mean momentum pk. The probability for a flavor
transition from state 𝛼 to 𝛽 after the neutrino has traveled the distance L is given
by the absolute square of the amplitude [Akhmedov and Smirnov, 2009]:

P𝜈𝛼→𝜈𝛽 (L) :=
∫ ∞

−∞
dt

��A𝛼𝛽 (L,t )
��2, (6.7)

=
∑︁
k,j

U ∗
𝛼kU𝛽kU𝛼jU ∗

𝛽 jIkj (L), (6.8)

where

Ikj (L) :=
∫ ∞

−∞
dt Gk (L − vg,kt )G ∗

j (L − vg,jt )e −iΔ𝜙kj (L,t ) . (6.9)

The symbols vg,k depict the group velocity of the particular wave packet of the
respective neutrino mass eigenstate, andGk is the shape factor of the k−th neutrino
mass eigenstate. The phase difference between the k-th and j-th mass eigenstate is
given by:

Δ𝜙kj (L,t ) := (Ek − Ej)t − (pk − pj)L. (6.10)

Under the assumption of relativistic neutrinos and performing a Taylor expansion
of the momenta, one gets [Akhmedov and Smirnov, 2009]:

Δ𝜙kj (L,t ) =
(m2

k −m
2
j )

2p
L − 1

vg
(L − vgt ) (Ek − Ej), (6.11)

with the masses mk and m j , average group velocity vg and average momentum p of
the two mass eigenstates. In general,

��L − vgt
�� is smaller or equal to the length of the
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Figure 6.1: Schematic illustration of the three flavor neutrino oscillation in terms
of the combination, propagation and recombination of neutrino mass eigenstates
𝜈k . The dashed lines indicate the relative content of the neutrino flavor eigenstates.
Adapted from [Smirnov, 2017].

wave packet, else the shape factors G i would suppress the oscillation [Akhmedov
and Smirnov, 2009]. In the case, that the neutrino oscillation length is much larger
than the effective length of the wave packets, the second tern in Eq. (6.11) becomes
negligible [Akhmedov and Smirnov, 2009] and the oscillation probability Eq. (6.8)
takes the well known form:

P𝜈𝛼→𝜈𝛽 (L) =
∑︁
k,j

U ∗
𝛼kU𝛽kU𝛼jU ∗

𝛽 je
−i

m2
k−m

2
j

2p L
. (6.12)

Thus, the probability for a transition of flavor state 𝛼 into flavor state 𝛽 detected
at length L depends on L itself, the elements of the PMNS matrix, the average
momentum of the mass eigenstates and most importantly the difference of the
squared masses of the mass eigenstates. This implies that at least two mass eigen-
states have to have a nonzero mass for the oscillation effect to occur. A schematic
illustration of neutrino oscillation, in terms of the combination, propagation and
recombination of mass eigenstates is shown in Fig. 6.1.

6.1.2 Experimental verification of massive neutrinos

Multiple experiments are dedicated to neutrino oscillations and the measurement
of the oscillation parameters in Eq. (6.12). The experiments can be grouped by
the type of neutrino source and are sensitive to different oscillation parameters.
The following list shows a selection: Solar neutrinos (Gallex, SNO, Borexino,
SAGE), atmospheric neutrinos (IceCube, Super-Kamiokande), reactor neutrinos
(KamLAND, Double-Chooz, Daya-Bay, Reno), accelerator neutrinos (MINOS,
T2K, NOvA). The NuFIT collaboration [Esteban et al., 2024a] performed a global
analysis, including data from more than a dozen experiments, to determine the
oscillation parameters. A list of the included experiments and data points can
be found in Ref. [Esteban et al., 2024b]. Among other results, the 3𝜎 confidence
levels for the absolute values of the PMNS matrix were calculated and are shown
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Table 6.1: The 3𝜎 confidence levels for the absolute values of the PMNS matrix.
The shown results are with and without taking the Super-Kamiokande atmospheric
(SK-atm) 𝜒2 data [Wester et al., 2024, Super-Kamiokande-Collaboration, 2023]
into account. The image is taken from [Esteban et al., 2020, Esteban et al., 2024a].

NuFIT 5.3 (2024)

|U |w/o SK-atm
3σ =

0.801 → 0.842 0.518 → 0.580 0.142 → 0.155

0.236 → 0.507 0.458 → 0.691 0.630 → 0.779

0.264 → 0.527 0.471 → 0.700 0.610 → 0.762



|U |with SK-atm
3σ =

0.801 → 0.842 0.518 → 0.580 0.143 → 0.155

0.244 → 0.500 0.498 → 0.690 0.634 → 0.770

0.276 → 0.521 0.473 → 0.672 0.621 → 0.759


in Table 6.1. In addition, Fig. 6.2 shows a two-dimensional projection of the
allowed regions for the oscillation parameters, i.e. the three mixing angles, the
Dirac phase and the three squared, eigenstate mass differences. The shown results
were obtained under the assumption of a unitary PMNS matrix [Esteban et al.,
2020, Esteban et al., 2024a].

In the year 2025, the Nobel Prize in Physics were awarded to Takaaki Kajita
(Super-Kamiokande) and Arthur B. McDonald (SNO) for the discovery of neutrino
oscillation. The validation of neutrino oscillations has far-reaching implications,
as the mathematical framework behind it implies a non-vanishing squared mass
difference (Δm2

ij) between neutrinos.

However, via neutrino oscillation experiments only the mass differences of the
mass eigenstates are measurable but not the absolute mass scale, which is of special
interest for cosmology. Massive neutrinos contribute to the total energy density of
the universe with a contribution proportional to the sum of neutrino masses m𝜈

[Navas et al., 2024]:

Ω0
𝜈h

2 =

∑
m𝜈

93.12 eV
, (6.13)

with the energy density of neutrinos today Ω0
𝜈 and the Hubble constant h. In

addition, massive neutrinos, in the form of hot dark matter, had an impact on the
evolution of large-scale structures in the present universe [Giunti and Kim, 2007].
Thus, a tighter absolute mass scale would also put tighter limits on the percentage
of dark matter contributed by neutrinos.

Accordingly, an experiment to pin down the neutrino mass is favorable. From
cosmological data the sum of neutrino masses can be constrained to be

∑
m𝜈 <

0.072 eV (95% CI) [Adame et al., 2025]. However, this limit is rather model depen-
dent and encompasses the sum of neutrinos. Another approach is the search for
neutrinoless double-𝛽 -decay. This ansatz assumes that neutrinos are their own anti
particles, so-called Majorana particles. An upper bound on the half-life of such a
decay, which depends on the effective Majorana mass mee of 𝜈e [Navas et al., 2024]:

1
T1/2

∝ m2
ee, (6.14)
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Figure 6.2: Two dimensional projections of the oscillation parameters: The three
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2
31 and Δm2
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j . The contour

plots show the 1𝜎, 2𝜎, 3𝜎, 90%, and 99% confidence levels. The colored areas
(black contour lines) correspond to taking (not taking) the Super-Kamiokande
atmospheric 𝜒2 data [Wester et al., 2024, Super-Kamiokande-Collaboration, 2023]
into account. The image is taken from [Esteban et al., 2020, Esteban et al., 2024a].
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can experimentally be determined, from which limits about mee can be drawn.
These are typically in the order of mee < 180 meV [Navas et al., 2024].

All in all, the results indicate a strong favor for massive neutrinos. However,
because neutrino oscillation experiments measure the difference m2

i −m2
j , the ab-

solute neutrino mass scale is inaccessible. In the following sections, the KATRIN
experiment is outlined, which pursues the goal to measure the mass directly with
an unprecedented precision.

6.2 Measurement approach

The Karlsruhe Tritium Neutrino experiment was designed and build to measure
the effective mass of electron anti-neutrinos, defined as:

m𝜈 :=
√︄∑︁

i

|Uei |2m2
i , (6.15)

with a sensitivity of 200 meV at 90% confidence level (CL) [KATRIN et al., 2022].
The symbol Uei indicates PMNS matrix elements involving electron neutrino con-
tributions and mi indicates the mass of a neutrino mass eigenstate, as introduced
in Eqs. (6.1) and (6.11), respectively.

KATRIN uses the 𝛽 -decay of molecular tritium into a helium-3-tritium molecule,
an electron and an electron anti-neutrino to perform a direct measurement of m𝜈

via the kinematics of the electron in the final state:

T2 → 3HeT+ + e− + 𝜈e. (6.16)

An illustration of the kinetic energy distribution of the electron with respect to the
value of m2

𝜈 is shown in Fig. 6.3. It is evident that a non-zero value of m2
𝜈 shifts the

endpoint to lower values compared to the absolute endpoint E0, i.e. the case of
m2

𝜈 = 0 eV2. This shift is of particular significance, as it influences the shape of the
distribution within the endpoint region. Hence, based on the endpoint and the
resulting shape of the distribution within the endpoint region, the neutrino mass
can be deduced. KATRIN uses the decay of tritium, because the 𝛽 -spectrum of this
decay is theoretically very well understood [Kraus et al., 2005], which minimizes
systematic effects of the model prediction. Furthermore, the endpoint of tritium is
rather low, which is favorable as the above-mentioned shape distortion is larger
the smaller the absolute endpoint is.

Hence, the main goal is to detect electrons with energies close to the absolute
endpoint energy. The experimental setup to accomplish this endeavor is outlined
in the following section.

6.3 Experimental setup

The KATRIN experiment is designed to measure the count rate of 𝛽 -electrons above
a certain energy. An in depth explanation of the complete KATRIN experiment is
beyond the scope of this thesis, but can be found in [Aker et al., 2021b]. In the
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Figure 6.3: A schematic visualization of the 𝛽 -electron energy spectrum near the
chosen absolute endpoint of E0 = 18 574 eV. The differential decay rate R𝛽 as a
function of the kinetic energy of the electron is shown. The difference between
a zero (gray line) and a non-zero (orange line) electron anti-neutrino mass is
indicated.
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Figure 6.4: Illustration of the KATRIN experiment with its main components.
Figure provided by Jaroslav Storek.

following, the main components shall be discussed briefly, which are visible in
Fig. 6.4, which shows the experimental setup of the KATRIN experiment.

Tritium source The windowless gaseous tritium source (WGTS) consists of a
10 m tube with a diameter of 90 mm [Kleesiek et al., 2019]. The molecular tritium
is provided by the Tritium Laboratory Karlsruhe and is continuously circulating
within the WGTS (about 40 g per day [KATRIN et al., 2024a]). This allows the
WGTS to provide up to 1011 𝛽 -electrons per second [Kleesiek et al., 2019]. To
reduce the collision probability of electrons with tritium molecules, the WGTS is
cooled to 30 K [KATRIN et al., 2022].

Transport and pumping This section guides the 𝛽 -electrons from the Tritium
source to the spectrometer section via magnetic fields. And more importantly, it
reduces the tritium flow rate by 14 orders of magnitude [KATRIN et al., 2022]
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qUret BmaxBsrc

AP

Electron momentum relative to the magnetic field (no retarding potential)

Figure 6.5: A schematic illustration of the Magnetic Adiabatic Collimation with
Electrostatic (MAC-E) filter principle within the KATRIN main spectrometer. The
magnetic field lines, which guide the 𝛽 -electrons are shown as blue lines. The
electric field, which is adjustable via the retarding voltage Uret is indicated as teal
lines. Electrons propagating from the left to right side of the spectrometer are
drawn as solid orange lines, wheres electrons traveling in the opposite direction
are indicated width a dashed orange line. The analyzing plane (AP) is indicated
via a vertical dashed line. The positions of the maximal magnetic field within the
beamline Bmax and the magnetic field within the source Bsrc, i.e. the WGTS, are
indicated. In addition, the 𝛽 -electron momentum vector are indicated with red
arrows. The figure is an adapted version of the one presented in Ref. [Lokhov
et al., 2022].

via differential- and cryogenic pumping systems. This reduces the probability
for collisions drastically and prevents the tritium gas from entering the main
spectrometer.

Spectrometer section The spectrometer section consists of the pre- and the
main spectrometer. Both work after the Magnetic Adiabatic Collimation with
Electrostatic (MAC-E) filtering principle [KATRIN et al., 2025b]. A schematic
illustration of the MAC-E filter as used in the main spectrometer is shown in
Fig. 6.5. The MAC-E filter acts as a high-pass energy-filter which lets only electrons
above a certain energy pass through. The working principle is as follows: The
𝛽 -electrons enter the spectrometer on the left side of Fig. 6.5. Their kinetic energy
consist of two components, perpendicular and parallel to the orientation of the
spectrometer, i.e. Ekin = E⊥ + E ∥ . A so-called retarding voltage Uret is applied
to the spectrometer, creating an electric potential qUret, where q is the electron
charge. The potential and its direction is indicated with teal lines and arrow heads.
Electrons run against this potential and are reflected if Ekin < qUret. However, for
an optimal filtering of energies, E⊥ must be transformed into E ∥ while keeping Ekin
constant. This is done adiabatically via the magnetic field within the spectrometer,
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which guides the electrons. The process is indicated via the red arrows on the
bottom of Fig. 6.5, which depict the momentum vector of the 𝛽 -electrons. At
the so-called analyzing-plane (AP) (indicated in Fig. 6.5 with a gray, dashed line)
E⊥ reaches its minimum (E⊥ ≪ E ∥) and the momenta become aligned with the
magnetic field lines [Aker et al., 2021b]. At this point, the absolute magnetic field
within the spectrometer reaches its minimum and the retarding potential qUret its
maximum. Electrons with an energy E ∥ ≥ qUret can pass through and become
accelerated again by the same amount as they were decelerated before the AP.
The retarding voltage Uret is adjustable in order to scan the region close to the
endpoint E0, which enables the measurement of the integrated 𝛽 -spectrum.

The pre-spectrometer has a fixed energy threshold of 10.5 keV [KATRIN et al.,
2025b] to filter out the majority of the low-energy electrons. Hence, these low
energy electrons are not of interest for the neutrino mass measurement and could
produce ionization events in the main spectrometer, thus increasing the overall
background [Otten and Weinheimer, 2008]. The main spectrometer is the center-
piece of the experiment and is concerned with the energy filtering in the endpoint
region of the 𝛽 -energy spectrum. Therefore, the energy resolution of the main
spectrometer is of upmost importance. Its mathematical form is given by [Kleesiek
et al., 2019]:

ΔE = Ekin
Bana

Bmax

𝛾 + 1
2

, (6.17)

where Bana is the magnetic field at the AP, i.e. the minimal magnetic field, Bmax
the maximal magnetic field and 𝛾 the relativistic gamma factor of the electron.
Choosing the magnetic fields such that Bmax/Bana ≈ 20 000 an energy resolution of
ΔE ≲ 1 eV close to the absolute endpoint E0 is achieved for the main spectrometer
[Otten and Weinheimer, 2008].

Segmented detector The 𝛽 -electrons with enough energy to pass through the
main spectrometer, are finally detected at the segmented focal plane detector. A
schematic figure of the detector is shown in Fig. 6.6. It consists of a 148-pixel
silicon-PIN-diode array, with a detection efficiency of about 95% [KATRIN et al.,
2025b]. Each pixel covers an are of 44 mm2 and has a typical energy resolution of
about (1.85 ± 0.13) keV (at full width at half maximum) [Aker et al., 2021b]. Thus
one is able to reject counts coming from low energy background events. In addition,
the focal plane detector is surrounded by two layers: First, by a muon tagging
system based on multiple plastic scintillators. Second, by a two shell system. The
outer shell is 3 cm thick and consists of lead to reduce the 𝛾-background. The
inner shell is 1.27 cm thick and is made of oxygen-free, high-conductivity copper to
block X-rays coming from the surrounding lead shielding [Amsbaugh et al., 2015].

Rear section The rear section is equipped with multiple devices dedicated to
monitor several parts of the whole experiment. For example the gas composition in
the WGTS is monitored via Laser Raman Spectroscopy, as impurities in the form of
deuterium and hydrogen can be present [Aker et al., 2021b], or the column density
in the WGTS, as the energy of the 𝛽 -electrons leaving the WGTS is influenced by
the elastic scattering with the gas molecules [Aker et al., 2021b]. In addition, an
electron gun is used for testing the KATRIN setup by producing precise electron
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Figure 6.6: The focal plane detector of the KATRIN experiment. The detector
consists of 148-pixel silicon-PIN-diodes, indicated as the drawn boxes. The shown
figure is an adapted version of the one shown in Ref. [KATRIN et al., 2024a].

energies and is also suitable to monitor the stability of the column density [Aker
et al., 2021b].

6.4 The KATRIN model

The final goal is to derive at a formula for the count rate of 𝛽 -electrons, coming
from molecular tritium decay, as a function of the retarding energy qUret. The
starting point is to consider the probability for a tritium molecule in state |i ⟩ to
decay into some state

��f 〉. According to Fermis’s golden rule, the total transition
rate from initial state |i ⟩ to all possible discrete and continuum final states

��f 〉 is
given by [Otten and Weinheimer, 2008]:

Γ := 2𝜋
∑︁∫ ��M f i

��2 df . (6.18)

From this equation, the theoretical predicted differential 𝛽 -electron energy spectrum
can be derived, see Ref. [Otten and Weinheimer, 2008], and is given by [KATRIN
et al., 2024a]:

R𝛽 (E;E0,m2
𝜈) :=

dΓ
dE

=
G 2

F |Vud |2

2𝜋3
|Mnucl |2F (Z = 2,E) (E +me)pe

×
∑︁

f

PfG (E ,E0 −Vf)𝜖 f

√︃
𝜖2

f −m
2
𝜈Θ(𝜖 f −m𝜈). (6.19)
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The symbols appearing in the formula are: The Fermi coupling constant GF, the
Cabibbo–Kobayashi–Maskawa (CKM) matrix element Vud for coupling between u-
and d-quarks, the energy-independent nuclear-transition-matrix element Mnucl of
the super-allowed transition, the relativistic Fermi function F (Z = 2,E) describing
the Coulomb interaction of the 𝛽 -decay electron and the daughter nucleus with
Z = 2. Further symbols are the kinetic energy of the 𝛽 -decay electron E, the
momentum of the 𝛽 -decay electron pe, the mass of the electron me, the maximal
kinetic energy of the 𝛽 -decay electron E0 under the assumption of massless neu-
trinos m2

𝜈 = 0 eV2, the transition probability Pf to state f, the excitation energy Vf
of state f, the radiative correction factor G (E ,E0 −Vf) (i.e. higher-order quantum-
electrodynamics contributions), the maximal neutrino energy 𝜖 f = E0 − E −Vf
and the Heaviside function Θ(. . . ) to ensure energy conservation [KATRIN et al.,
2024a].

The integral count rate of 𝛽 -electrons expected at a certain retarding energy
qUret is calculated by multiplying the differential decay rate with the experimental
response function fcalc and integrating over the relevant energies [KATRIN et al.,
2024a]:

R𝛽,int (qUret;E0,m2
𝜈) = NT

∫ E0

qUret

R𝛽 (E;E0,m2
𝜈) fcalc (E ,qUret) dE , (6.20)

with the signal normalization NT. The experimental response function is defined
as [KATRIN et al., 2024a]:

fcalc (E ,qUret) =
∫ E−qUret

𝜖=0

∫ 𝜃max

𝜃=0
T (E − 𝜖 , 𝜃,qUret) sin(𝜃)

∑︁
s

Ps (E) fs (𝜖 ) d𝜃 d𝜖 ,

(6.21)
which describes the probability for an emitted 𝛽 -electron with energy E to over-
come the retarding potential and reach the focal plane detector. The symbol 𝜃
denotes the starting angle between the electron momentum and the magnetic field

in the source, with its maximal value 𝜃max = arcsin
(√︁
Bsrc/Bmax

)
with the magnetic

field in the source Bsrc and the maximal magnetic field in the beamline Bmax. The
transmission condition of the spectrometer T also depends on Bsrc, Bmax as well
as the magnetic field at the analyzing-plane Bana. In general, the 𝛽 -electrons can
scatter in the WGTS s-times. The probability for this to happen and to lose overall
the energy 𝜖 during these scatterings is denoted with Ps (E) and fs (𝜖 ), respectively.

Finally, the model for the predicted count rate of 𝛽 -electrons from molecular
tritium decay as a function of the retarding energy qUret is given by [KATRIN
et al., 2024a]:

R (qUret;AS,Rbg,E0,m2
𝜈) = AS ×R𝛽,int (qUret;E0,m2

𝜈) +Rbg (qUret;Rbg). (6.22)

This model has four free parameters: the signal normalization AS, the overall
background rate Rbg, the maximal kinematic energy of electrons E0 within the
molecular tritium decay spectrum, under the assumption of massless neutrinos,
and the squared effective electron anti-neutrino mass m2

𝜈 . All background related
contributions to the count rate are encompassed in the term [KATRIN et al.,
2024a]:

Rbg (qUret;Rbg) = Rbg +Rspec,det (qUret) +RRW (qUret), (6.23)
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which includes Rbg which is a free model parameter and independent of the
retarding energy, systematic contributions from the spectrometer and the focal
plane detector Rspec,det as well as contributions originating from tritium deposited
on the rear-wall RRW.

6.5 KATRIN systematic effects

Within this section, the systematic effects of the KATRIN experiment are discussed,
this includes their place in the KATRIN model and their treatment in the first five
KATRIN Neutrino Mass (KNM) measurement campaigns, i.e. in chronological
order KNM1, KNM2, KNM3-SAP, KNM3-NAP, KNM4-NOM, KNM4-OPT and
KNM5. The numerical values for the individual systematic uncertainties were
determined by calibration measurements or simulations, for more details see Ref.
[KATRIN et al., 2024a]. All systematic uncertainties are published in Ref. [KATRIN
et al., 2025c]. This includes also correlations between systematic parameters
between different KATRIN campaigns. However, as these are not relevant for the
analyses performed in this thesis, they will not be discussed further. In general,
the sources of systematic effects can be organized into four groups:

Background A major source for background events is the main spectrometer,
which comes from Rydberg electrons (originating from 𝛼-decays in the spectrome-
ter walls), which have a volume-dependent background rate [Lokhov et al., 2022].
Hence, if the Rydberg electrons are created to the right of the AP they get accel-
erated towards the focal plane detector, thus increasing the background rate. To
minimize this effect, the effective volume of the downstream flux tube within the
main spectrometer (the volume to the right of the analyzing plane) was reduced
by a different layout of the magnetic fields [Lokhov et al., 2022], thus shifting the
analyzing-plane further downstream. Because of this shift, the new layout is also
called shifted-analyzing-plane (SAP) configuration, and was first used in the KNM3-
SAP campaign. The SAP configuration reduced the overall background by a factor
of two, to typical values of O(0.12 cps) [Lokhov et al., 2022, KATRIN et al., 2025b].
The evolution of the flux tube volume and the impact on the analyzing-plane are
shown in Fig. 6.7. In the original KATRIN design, the flux tube was spanning a
large volume of the main spectrometer (blue, dotted line) [Karl, 2022]. Already
in the chronological first two campaigns KNM1 and KNM2, as well as in KNM3-
NAP, a decreased volume was used to reduce the before-mentioned background.
This is called the nominal-AP (NAP) configuration and is indicated as a orange,
dashed line in Fig. 6.7. The other campaigns are all operated with the SAP setting
(green, solid line). In addition, the NAP and the SAP are indicated as a vertical
gray, dashed line and a curved, green, dashed line, respectively. Regarding the
background of the count rate, two systematic effects are taken into account. On
the one hand, a possible dependence of the rate on the retarding energy qUret is
taken into account via the parameter Rbg,energy,which is used to calculate Rspec,det
in Eq. (6.23), and is modeled as one parameter per campaign. On the other hand,
due to the high voltages on the spectrometers a Penning trap between the pre- and
main spectrometer emerges [KATRIN et al., 2024a]. Positive ions created from the
Penning trap can find their way to the main spectrometer, producing low-energetic
background electrons [KATRIN et al., 2024a]. The higher the number of stored
electrons within the trap, the higher the number of background electrons [Karl,



70 CHAPTER 6. NEUTRINO MASS ANALYSIS WITH KATRIN

-15 -10 -5 0 5 10 15
z [m]

-4

-2

0

2

4
r (

m
) AP SAP

Downstream

Figure 6.7: Depicted is the main spectrometer of the KATRIN experiment. The
overall gray line is the outer shell of the spectrometer. The blue, dotted line
corresponds to the flux tube used within the first commissioning run of KATRIN
[Lokhov et al., 2022]. The blue, dashed line corresponds to the NAP-setup used
in KNM1, KNM2 and KNM3-SAP. The green, solid line is the flux tube in the
SAP-setup, as used in KNM3-SAP, KNM4-NOM, KNM4-OPT and KNM5. The
corresponding analyzing-planes are indicated with a dashed, gray or green line,
respectively. The figure is an adapted version of the one used in [Lokhov et al.,
2022].

2022]. Hence, the Penning trap is emptied between scan steps [KATRIN et al.,
2024a], and thus it can only emerge within the duration of a scan step. This
time dependence is modeled via the parameter Rbg,time, which is simply added to
Eq. (6.23), with one parameter per campaign. After the campaign KNM4-NOM,
with the NOMinal (NOM) setup for the pre-spectrometer, the setup was OPTi-
mized (OPT) such that the time span for each scan step is now identical, and the
pre-spectrometer voltage is lowered [KATRIN et al., 2024a] to remove the Penning
trap. Hence, the parameter Rbg,time is not present in the models for KNM4-OPT
and KNM5.

Rear-wall Tritium, originating from the WGTS, can reach the rear-wall and
accumulate there, increasing the overall KATRIN background count rate. This
contribution is represented with the term RRW in Eq. (6.23) and is modeled
with three parameters: 1) the real-wall signal amplitude ARW, 2) the rear-wall
endpoint E0,RW and 3) the final-state distribution (FSD) shape parameter FSDRW,
which effectively modifies the ratio of the ground and electronic excited final-state
probabilities. In the KATRIN model, the rear-wall amplitude ARW is modeled
as one parameter per so-called detector patch. The concept of a detector patch
will be explained in detail in Section 6.6. The parameters E0,RW and FSDRW are
modeled on a per campaign basis. Hence, the systematic effects of the rear-wall
were discovered prior to the KNM3-SAP campaign, such that these parameters are
not present in KNM1 and KNM2. However, the amount of accumulated tritium
should be small enough to neglect this effect for KNM1 and KNM2.
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Tritium source The WGTS is the source of multiple systematic effects. First, the
probability to scatter s-times Ps (E) in Eq. (6.21) depends on the gas density 𝜌, the
total length d of the WGTS and the cross-section for inelastic scattering of electrons.
More precisely, the product of these quantities 𝜌d𝜎 [Aker et al., 2021a], which is
modeled as one parameter per campaign. Second, longitudinal inhomogeneities in
the electric potential in the WGTS can lead to different starting potentials for the
𝛽 -electrons (for example at the front and the back of the WGTS). The 𝛽 -electrons
travel longer distances when starting their journey at the back of the WGTS, which
lead to two effects: 1) on average the electrons have a different starting energy and
2) the electrons have a higher probability for multiple inelastic scattering. Hence,
this leads to different starting energies for non-scattered and multi-scattered 𝛽 -
electrons on average, which has an impact on the spectrum [KATRIN et al., 2024a].
This energy shift Δ𝜖 (eV) between non-scattered and multi-scattered 𝛽 -electrons is
taken into account by replacing fs (𝜖 ) → fs (𝜖 − Δ𝜖 ) in Eq. (6.21) [KATRIN et al.,
2024a], and is modeled as one parameter per campaign. Furthermore, the WGTS
is the source of multiple effects which broaden the 𝛽 -electron spectrum. On the
one hand, there is the thermal motion of the tritium molecules within the WGTS
which creates a Doppler broadening [KATRIN et al., 2024a]. On the other hand,
there are spacial and temporal variations of the source potential which also create a
broadening effect [KATRIN et al., 2024a]. These broadening effects are all summed
up and enter the KATRIN model via the parameter 𝜎2

broad in the calculation of
the transition probability P f in Eq. (6.19) [Karl, 2022], which is modeled as one
parameter per detector patch. In addition, the 𝛽 -electrons loose energy within the
tritium source, because of inelastic scattering off tritium molecules. This energy
loss is modeled via three Normal distributions [Aker et al., 2021c], which is why
one has in total nine model parameters, three for the amplitudes ®Eloss,amp, three
for the expectation values ®Eloss,exp and three for the standard deviations ®Eloss,std.
The parameters turn up in the definition of fs (𝜖 ) in Eq. (6.21).

Electromagnetic fields In total three magnetic fields are subject to systematic
effects: 1) the magnetic field within the tritium source Bsrc (T), which is modeled
as one parameter per campaign, 2) the magnetic field within the analyzing plane
Bana (T), which is modeled as one parameter per detector patch, 3) the maximal
magnetic field in the beamline Bmax (T), which is modeled as one parameter per
campaign. The fields Bsrc, Bana and Bmax are used within the KATRIN model to
calculate the transmission function T in Eq. (6.21) [KATRIN et al., 2024a]. In
addition, the fields Bsrc and Bmax are used to calculate the maximal acceptance
angle 𝜃max in Eq. (6.21) [KATRIN et al., 2024a]. Furthermore, there is a broadening
effect through inhomogeneities of the electric potential and the magnetic field
within the analyzing-plane. Hence, a certain area in the analyzing-plane is mapped
onto a certain pixel of the focal plane detector. Small variations within this area of
the AP could smear the transmission function T (see Eq. (6.21)), which depends
on the energy of the 𝛽 -electrons and the magnetic fields, and cause a broadening
in the 𝛽 -spectrum [KATRIN et al., 2024b].

6.6 Definition of likelihood distribution

As mentioned in Section 6.4, the KATRIN experiment measures count rates of
𝛽 -electrons at certain retarding energies qUret. This is accomplished by counting
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Figure 6.8: The segmentation of the focal plane detector into patches as used for
the statistical model of the KATRIN SAP campaigns. The 22 white pixels are
not included for the analysis. The remaining pixels are grouped into 14 patches
(with 9 pixels each), indicated via color coding. Figure taken from [KATRIN et al.,
2024a].

the electrons impinging onto the focal plane detector for a certain time span ti,
where the specific measurement time depends on the retarding energy. The mea-
surements at different qUret are statistically independent, and thus the likelihood
is a product of Poisson distributions [Karl et al., 2022], with the expected count
rate given by Eq. (6.22).

As discussed in Section 6.3, the focal plane detector consists of 148 pixel detectors.
For the NAP campaigns KNM1, KNM2 and KNM3-NAP the detector is treated
as a single, so-called patch. Due to systematic effects, as discussed in Section 6.5,
the SAP setup was used for the campaigns KNM3-SAP, KNM4-NOM, KNM4-OPT
and KNM5. In comparison to the NAP setup, this introduced inhomogeneities
of the electric potential and the magnetic field within the shifted-analyzing-plane
(see green, dashed line in Fig. 6.7) [Lokhov et al., 2022]. Thus, the detector can
not be treated as one large patch, like for the NAP campaigns, but rather have
to be grouped into multiple patches. Pixels corresponding to approximately the
same electric potential and magnetic field in the SAP are grouped into one patch.
However, some pixels are excluded from the analysis (31 pixels each in KNM1 and
KNM2 and 22 pixels each in KNM3 to KNM5). The reasons are a reduced flux of
𝛽 -electrons due to structural components or an increased intrinsic noise [KATRIN
et al., 2024a]. Hence, for the NAP campaigns one has 117 active pixels, while for
the SAP campaigns the detector was grouped into 14 patches with 9 pixels each,
i.e. in total 126 pixels. As an example, the distribution of the patches, and active
pixels, for the SAP campaigns are shown in Fig. 6.8. In general, the pixels are
statistically independent of each other [Lokhov et al., 2022] which is why the count
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rate of pixels in the same patch can be summed up. However, different patches
correspond to different electrical potentials and magnetic fields which has to be
taken into account. Hence, each patch has an individual model, and because the
detector patches are statistically independent, a product over those likelihoods can
be built. Furthermore, because certain parameters such as the column density can
vary drastically between campaigns [KATRIN et al., 2025b], there is one statistical
model per campaign. Thus, the statistical likelihood function for a single KATRIN
campaign is written as [Karl et al., 2022]:

L(𝜃) :=
∏
patch

∏
i

e −R (qUret,i;𝜃 )ti (R (qUret,i; 𝜃)ti)Ni

Ni!
, (6.24)

where 𝜃 := (AS,Rbg,E0,m2
𝜈) represents the free model parameters, Ni are the mea-

sured electron counts at retarding energy qUret,i within the time span ti and R is
the expected count rate as given by Eq. (6.22).

Systematic uncertainties are taken into account by the well established pull-
term method [KATRIN et al., 2025b]. For experimentally determined values in
Eq . (6.22), such as Bana, a systematic parameter 𝜃Bana

syst is introduced. It is assumed
that the systematic parameter is normally distributed around the experimental
measured value 𝜃exp with the systematic uncertainty 𝜎syst:

𝜃
Bana
syst ∼ N(𝜃Bana

exp ,𝜎
Bana
syst ). (6.25)

The procedure is similar for other measured quantities, as for example Bsrc or
the column density times the cross-section 𝜌d𝜎. The full pull-term, modeling all
systematic uncertainties and possible correlations has the form [KATRIN et al.,
2025b]: (

®𝜃syst − ®𝜃exp

)T
Σ−1

cov

(
®𝜃syst − ®𝜃exp

)
, (6.26)

and is multiplied with the likelihood in Eq. (6.24). All systematic parameters of
KATRIN, together with their origin, are discussed in Section 6.5.

6.6.1 Model parameters

The model for the expected count rate of 𝛽 -electrons, as introduced in Eq. (6.22),
has four free model parameters. First and foremost, the squared effective electron
anti-neutrino mass m2

𝜈 (eV2), as defined in Eq. (6.15), which is modeled via one
parameter throughout all measurement campaigns. Second, the effective endpoint
energy E0 (eV) of the 𝛽 -electrons (under the assumption of massless neutrinos).
Third, the overall signal normalization AS and fourth, the absolute background rate
Rbg of the expected count rate R (qUret). As already mentioned, in the nominal-
analyzing-plane (NAP) setup, the same statistical model can be used for all pixels
[KATRIN et al., 2024a]. However, in shifted-analyzing-plane (SAP) setup the
retarding energy and the magnetic field are not constant throughout the SAP.
Hence, the electrons detected in different patches have experienced different fields
and electric potentials [KATRIN et al., 2024a]. This has implications on the
statistical model. Because the background E0 can absorb a possible offset of the
retarding energy [Karl, 2022], and the patch-dependency of the background- and
count rate, the parameters E0, Rbg and AS are modeled on a patch-wise basis, i.e.
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there is an independent parameter for each of the 14 patches of the focal plane
detector. In addition, there are multiple parameters to take systematic uncertainties
into account, as introduced in Section 6.5. An overview over all model parameters,
together with a short explanation and their appearance in the different KATRIN
campaigns is presented in Table 6.2. The overall number of parameters varies
between the single KATRIN measurement campaigns, from a minimum of 21 to
a maximum of 102, mainly attributable to whether the NAP- or the SAP setup is
used. In addition, certain systematic parameters only appear in certain campaigns.
In the case of KNM1 and KNM2, the source of systematic effects from the rear
wall were unknown and only included in later campaigns. Another case is the
time dependent background due to the formation of a Penning trap between the
pre- and main spectrometer. This systematic uncertainty is present in campaigns
KNM1 to KNM4-NOM and was fully mitigated for the campaigns KNM4-OPT
and KNM5.

6.7 KATRIN collected data

With the setup described in Section 6.3 data taking started in the year 2019 and is
still ongoing to this date. The 𝛽 -electron count rate at certain retarding energies
qUret are measured in order to get the integral 𝛽 -electron spectrum, such that
it can be compared to its theoretical prediction, see Eq. (6.22). The integrated
spectrum is scanned through measurements at different retarding energies in the
range of E0 − 300 eV ≤ qUret ≤ E0 + 135 eV, with typically 40 different qUret set
points [KATRIN et al., 2025b]. Each such 𝛽 -scan has a duration of 3 h to 3.5 h
and one KATRIN campaign consist of several hundreds of these scans. Only the
data in the range rA = E0 − 40 eV is used for the neutrino mass analysis up to now,
but with the option to enlarge this analysis window in the future. The data points
below rA are used for calibrations and monitoring the experiment, while the data
above E0 give constraints on the overall background rate [KATRIN et al., 2025b].

The KATRIN experiment collected within the first five measurement campaigns,
i.e. KNM1, KNM2, KNM3-SAP and KNM3-NAP, KNM4-NOM and KNM4-OPT as
well as KNM5, a total amount of ∼ 3.6 × 107 electrons within the analysis window
(qUret > E0 − 40 eV) [KATRIN et al., 2025b]. The measured data points are pub-
lished in Ref. [KATRIN et al., 2025a], and are plotted in Fig. 6.9. In addition, an
illustration of the accumulated statistics over the first five measurement campaigns
is shown in Fig. 6.10.
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Table 6.2: KATRIN model parameters and their number in each of the first five KATRIN measurement campaigns.

Parameter Unit Description Multiplicity

KNM1 KNM2 KNM3-NAP KNM3-SAP KNM4-NOM KNM4-OPT KNM5

Free model parameters

m2
𝜈 eV2 Effective electron anti-neutrino mass squared 1 1 1 1 1 1 1

E0 eV Electron endpoint energy for m2
𝜈 = 0 1 1 1 14 14 14 14

AS 1 Signal normalization 1 1 1 14 14 14 14
Rbg cps Absolute background rate 1 1 1 14 14 14 14

Systematic parameters: rear wall

E0,RW eV Rear-wall endpoint / / 1 1 1 1 1
FSDRW 1 Ratio of ground and excited-state probabilities / / 1 1 1 1 1
ARW 1 Signal amplitude rear-wall / / 1 14 14 14 14

Systematic parameters: tritium source

𝜌d𝜎 1 Column density times cross-section 1 1 1 1 1 1 1
Δ𝜖 eV Energy loss shift 1 1 1 1 1 1 1
𝜎2

broad eV2 Broadening of (differential) spectrum 1 1 1 14 14 14 14
Eloss,amp 1 Amplitudes of the three Gaussian’s 3 3 3 3 3 3 3
Eloss,exp 1 Expectations of the three Gaussian’s 3 3 3 3 3 3 3
Eloss,std 1 Standard deviations of the three Gaussian’s 3 3 3 3 3 3 3

Systematic parameters: magnetic fields

Bsrc T Magnetic field inside the tritium source 1 1 1 1 1 1 1
Bmax T Maximal magnetic field inside the beamline 1 1 1 1 1 1 1
Bana T Magnetic field at the analyzing plane 1 1 1 14 14 14 14

Systematic parameters: background

Rbg,energy cps eV−1 Energy dependence of background rate 1 1 1 1 1 1 1
Rbg,time cps s−2 Aggregating background rate 1 1 1 1 1 / /
Total number of parameters 21 21 24 102 102 101 101
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Figure 6.9: Shown are the measured data points of the first five KATRIN measure-
ment campaigns. The graphic is grouped into NAP and SAP campaigns. The color
code in part (b) corresponds to the different patches of the focal plane detector in
the SAP configuration.
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Figure 6.10: Cumulative amount of electrons collected within the analysis window
(qUret > E0 − 40 eV) for the first five measurement campaigns. Image is taken from
Ref. [KATRIN et al., 2024a].
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Chapter 7

Neutrino mass analysis
utilizing Bayesian inference

This chapter focuses on the application of Bayesian inference to extract neutrino
mass bounds from the first five KATRIN measurement campaigns, i.e. KNM1,
KNM2, KNM3-SAP, KNM3-NAP, KNM4-NOM, KNM4-OPT and KNM5. It starts
with an introduction in Section 7.1, where the general ansatz for the analysis,
the used software and the performed studies are outlined. This is followed by
Section 7.2 in which explicitly the employed approach for monitoring the MCMC
convergence for all performed fits and the anticipated, stringent convergence goals
are addressed. Afterward, the results of applying Bayesian inference onto the
individual campaigns are discussed in Section 7.3. To complement the individual
analyses, the results of a combined analysis, in form of Bayesian knowledge up-
dates, are discussed in Section 7.4. The chapter is concluded with a summary in
Section 7.5.

7.1 Introduction

Within this chapter, the neutrino mass analysis shall be performed for the first five
measurement campaigns of KATRIN utilizing the statistical method of Bayesian
inference. This encompasses the analysis of the individual campaigns as well as
a combined analysis in form of Bayesian knowledge updates. The analyses were
all carried out as part of the KATRIN Netrium team, which is characterized by
employing a neural network to evaluate the KATRIN likelihood, as defined in
Section 6.6. The general description and validation of the following neural network
approach, to be applied on KATRIN campaigns, can be found in [Karl et al., 2022].
In general, the neural network consists of an input layer, where the input nodes
correspond to the KATRIN model parameters of the respective campaign (see
Table 6.2), followed by two hidden layers, each with 128 nodes, and ends with an
output layer. The nodes of the output layer corresponds to the predicted rate of
𝛽 -electrons at certain retarding energies qUret at which the data were taken for the
specific KATRIN campaign. Each layer of the neural network is fully connected to
its predecessor. The activation function of the output layer is the softplus-function

79
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Figure 7.1: Schematic illustration of the neural network used by Netrium to evaluate
the KATRIN likelihood. The inputs are numerical values of the model parameters
of a specific KATRIN campaign. The two hidden layers consist of 128 nodes each
(not entirely represented in the figure). The output of the neural network are the
count rates at different retarding energies. Adjacent layers are fully connected.
The graphic is redrawn and slightly modified from Ref. [Karl et al., 2022].

where the hidden layers use the mish-function:

softplus(x) = ln
(
1 + expx

)
, (7.1)

mish(x) = x tanh
(
softplus(x)

)
. (7.2)

A schematic illustration for such a neural network is shown in Fig. 7.1. As de-
scribed in Section 6.3, the campaigns KNM1, KNM2 and KNM3-NAP used the
NAP setup, where the detector is combined to one pixel. Thus, one neural network
is trained for each of the NAP campaigns. By contrast, the campaigns KNM3-SAP,
KNM4-NOM, KNM4-OPT and KNM5 used the SAP setup, where the detector is
modeled as consisting of 14 independent patches (see Fig. 6.8). Here, one neural
network is trained per patch. In any case, a neural network is tested for its accuracy
and validated by comparison to the analytic model [Karl et al., 2022].

Results achieved by the Netrium team can be compared with the results of the
KaFit team, which uses the analytic computation of the KATRIN model. Thus,
the Netrium team provides an additional sanity check for the KaFit results. And
because the neural network approach speeds up the calculations by a factor of
O(103) [Karl et al., 2022], more studies can be carried out and formerly numerically
challenging approaches, such as Bayesian inference, can now be studied efficiently.

The results based on the first five measurement campaigns of KATRIN, using the
Frequentist approach, were recently published in Science [KATRIN et al., 2025b].
In a next step, the KATRIN data shall be analyzed using Bayesian inference, which
is a complementary analysis approach. Hence, the results do not only bare a
different interpretation compared to the Frequentist approach (see Section 2.1),
but also come in the form of distributions, accurate error estimates included.
A detailed introduction to this topic is given in Chapter 2. The analyses were



7.1. INTRODUCTION 81

encoded with the programming language Julia [Bezanson et al., 2017] and the high
performance software "Bayesian Analysis Toolkit" (BAT) via the Julia package
BAT.jl [Schulz et al., 2021] in combination with Optim.jl [Mogensen et al., 2018]
and AdvancedHMC.jl [Xu et al., 2020]. Images were created using CairoMakie.jl
[Danisch and Krumbiegel, 2021].

The general approach of the performed analyses is a cross-check approach between
the two fitting teams, i.e. KaFit and Netrium. First each team implemented inde-
pendently the scripts for the individual campaigns using their respective software
and methods, i.e. different MCMC algorithms and convergence diagnostics were
used. In detail, Netrium uses a neural network approach for the likelihood evalua-
tion, Hamiltonian Monte Carlo (HMC) as MCMC algorithm and the convergence
of the MCMC chains are monitored during the sampling via the Gelman-Rubin
method [Schulz et al., 2021, Gelman and Rubin, 1992] and post sampling via the
R̂ and MCMCSE diagnostics. KaFit analytically evaluates the likelihood, uses the
Goodman and Weare method [Goodman and Weare, 2010] as MCMC algorithm
and an autocorrelation analysis to monitor the convergence diagnostics. The
different methods employed by both teams strengthens the cross-check.

As a first test, the analysis for each campaign was performed on an Asimov
data set. These are generated data from the analytic KATRIN model for the
respective campaign with m2

𝜈 = 0 eV2 while mimicking the structure of the real
data. For each campaign, the impact of different priors for m2

𝜈 onto the marginal
distribution of m2

𝜈 were studied for:

1. A flat prior m2
𝜈 ∼ U(−10,10),

2. A flat, positive prior m2
𝜈 ∼ U(0,3),

hereinafter referred to as (Flat) and (Flat, positive), respectively. The flat prior
was chosen to complement the flat, positive prior, because the typical KATRIN
Frequentist fit allows for the unphysical values m2

𝜈 < 0 eV2 [Karl, 2022] as well. In
this way, one can for example compare the best fit values from the Frequentist
approach with the marginal modes of the Bayesian approach. To complement the
analyses of different priors, the impact of including systematic effects are studied
by:

1. Considering only statistical uncertainties,

2. Considering statistical and systematic uncertainties,

hereinafter referred to as (Stat. only) and (Total), respectively. This makes in total
four separate analyses for each campaign.

The results from KaFit and Netrium were compared for each campaign via the
quantiles of the marginal distribution of m2

𝜈 . In case systematic structures or larger
discrepancies between the numerical values were observed, further investigations
were performed. Once these were resolved, the results were presented to the KA-
TRIN collaboration. On approval by the collaboration, the fitting teams continued
the analysis of the individual campaigns on real data. The results were again
presented to the collaboration for approval. Once approved, the fitting teams
moved on to the combined analysis of the first five KATRIN campaigns where the
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cross-check procedure was repeated.

During the writing of this thesis, a paper is in preparation covering the Bayesian
analysis results on real data from the Netrium and KaFit teams. This includes in
total three different approaches to determine m2

𝜈 using all available data of the
first five measurement campaigns. The analyses presented in the following are
performed on Asimov data sets as well as on real data. However, in order to not
delay the publication of this thesis, only the approved results for the analyses of
the Asimov data sets are presented.

7.2 Monitoring MCMC convergence diagnostics

To achieve reliable results in Bayesian inference, the monitoring of the MCMC
convergence via multiple diagnostics is crucial (see Section 2.5). The following
configuration is used to monitor the MCMC convergence for the fit of the individual
campaigns as well as the chained analysis. For each fit, ten independent MCMC
chains are started to explore the parameter space. During the sampling, BAT.jl
manages the burn-in phase automatically by using the Gelman-Rubin diagnostics
for MCMC convergence. Once the burn-in phase is completed, each chain gener-
ates 105 sampling points. After the sampling, the MCMC convergence is checked
once more by the R̂ and MCMCSE diagnostics [Vehtari et al., 2021]. Hereby, R̂
is computed twice for each parameter, once focusing more on the bulk- or tail of
the distribution. MCMCSE is likewise computed for each parameter, focusing on
the 90 %-quantile, as the neutrino mass bound is typically given as a 90 % upper
confidence level and should be as accurate as possible. The goal is to achieve a R̂
-value smaller than the recommended, empirical value of 1.01 as suggested in Ref.
[Vehtari et al., 2021] and a relative MCMCSE below 1 % for the 90 %-quantile, for
each parameter of each fit.

A typical example for MCMC convergence diagnostics are shown in Fig. 7.2.
It can be observed that parameters with a more narrow prior tend to have also a
smaller relative MCMCSE. This is plausible, as the same amount of samples in a
narrower range give a smaller sampling error compared to a broader range.

7.3 Individual campaigns

7.3.1 Introduction

The aim of Section 7.3 is to perform a neutrino mass analysis, utilizing Bayesian
inference, for each of the first five KATRIN measurement campaigns individually.
This has first and foremost the purpose of validating the implemented Bayesian
analysis for each single campaign, before moving to more advanced approaches
such as a simultaneous fit or a chained analysis via Bayesian knowledge updates.
As already mentioned, only the results on Asimov data are shown within this thesis,
but the analyses were performed on real data as well.

The presentation of the final results will mainly focus on the marginal distri-
bution of m2

𝜈 and a representative selection of other parameters and correlation
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Figure 7.2: Example for a typical R̂ and relative MCMCSE diagnostic for multiple
quantiles based on a fit of KNM1. A flat, positive prior m2

𝜈 ∼ U(0,3) was used
while taking statistical and systematic uncertainties into account.
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plots. This is necessary, as the total number of parameters for all studied scenarios,
for the first five KATRIN campaigns, is in the order of 4 × 472 (see Table 6.2).

7.3.2 MCMC convergence diagnostics

To validate the MCMC sampling, several MCMC convergence diagnostics are
monitored during and after the sampling, as outlined in Section 7.2. In order to
endow the statement with greater significance, the largest values from all parameters
of a campaign are reported for R̂ and the relative MCMCSE of the 90 %-quantile.
The summaries of convergence diagnostics for the different fits are shown in
Table B.1. From the tables it can be concluded, that for all parameters, fits and
campaigns, the sampling error of the 90 %-quantile is below 0.56 % and the value
for R̂ is smaller than 1.00008. Thus, the anticipated goals of convergence are
successfully reached for all fits.

7.3.3 Results

As a representative example, the results for the individual analysis of KNM5 are
shown in Fig. 7.3. The results for the individual analysis of KNM1, KNM2 KNM3-
SAP, KNM3-NAP, KNM4-NOM and KNM4-OPT can be found in Appendix B,
Figs. B.7 to B.12. For each campaign the results for (Flat) and (Flat, positive) are
shown. In each case, the results for (Stat. only) and (Total) can be compared in
form of an overlay plot consisting of two step-histograms. For a more in depth
comparison, the qs = [5 %, 15.9 %, 50 %, 68.3 %, 84.1 %, 90 %, 95 %] quantile values
are shown in a table beneath the corresponding overlay plot.

Summary of fits The analysis of the Netrium results for all campaigns, and
all performed fits (Flat + Stat. only), (Flat + Total), (Flat, positive + Stat. only)
and (Flat, positive + Total), show the expected behavior: 1) The distributions
for (Total) are slightly broader than those of (Stat. only), because more model
parameters and correlations were taken into account. 2) The results of m2

𝜈 for
(Flat) show a broader left side of the distribution, which was also observed in
previous works, see Ref. [Karl, 2022]. 3) The comparison between the priors,
on basis of the 90%-quantile, shows considerably larger values for (Flat, positive)
than for (Flat), for all campaigns. This behavior emerges from the two distinct
parameter spaces created by the distinct priors. As already stated in Section 7.1,
the unphysical prior (Flat) was chosen to be able to compare the maximum a
posteriori (MAP) estimate with the Frequentist best fit. For the final bounds on
the neutrino mass, the physical prior (Flat, positive) should be used. Finally, the
impact of the campaigns onto the overall broadening of the marginal distribution
of m2

𝜈 is illustrated in Appendix B, Fig. B.13. The marginal distribution of m2
𝜈 is the

broadest for KNM1, followed by KNM3-SAP and KNM3-NAP, which are on the
same level, then by KNM2, KNM4-OPT, KNM4-NOM and KNM5. The ordering
is the same for (Flat) and (Flat, positive) as well as the Frequentist analysis, and is
compatible with the amount of statistics contributed by the single campaigns.

Correlation between parameters In general, the parameters of a statistical
model acquire some more or less strong correlation during a regression analysis.
In Fig. 7.4 a typical correlation plot for the free KATRIN model parameters (m2

𝜈 ,
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(b) Results for a flat prior: m2
𝜈 ∼ U(−10,10).

Figure 7.3: The results for the KATRIN campaign KNM5 are shown. Displayed
are the marginal distributions of m2

𝜈 and the corresponding quantile values for
different priors on m2

𝜈 as well as for (Stat. only) and (Total) fits can be compared.
The nominal value and the MAP estimates are shown as vertical lines. Numbers
are rounded to four digits.
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Figure 7.4: Typical example for a correlation plot of the four free model parameters.
The shown results were achieved using a flat prior m2

𝜈 ∼ U(−10,10) and taking
statistical and systematic uncertainties into account. Asimov data were used.

E0, As, Rbg) are shown. Typically, the correlation between m2
𝜈 and E0 is stronger

than for the other parameters. This was to be expected since the two parameters
have a directer influence on each other, which can be seen in Eq. (6.19).

Comparison Netrium and KaFit To further validate the Netrium results, a
cross-check with KaFit is performed for each individual campaign, for (Flat +
Total) and (Flat, positive + Total). Hereby, one is looking at the difference of
both teams in terms of the qs quantile values of the marginal distributions of
m2

𝜈 . For the comparison, the following versions of the code were used: Netrium
[Schwemmer and Kroenert, 2025] and KaFit [Xu, 2025]. The sampling errors of
the qs are typically in the order of O(10−3eV2) or even below for both fitting teams.
The results are displayed in Table 7.1. The quantile values typically differ only
O(10−3eV2) or below, for both priors. Nevertheless, there are three values for
(Flat) and one value for (Flat, positive) which are at ∼ 1 × 10−2 eV2. However,
when taking the sampling error into account the difference is compatible within
O(10−3eV2). Overall, this is an excellent agreement between Netrium and KaFit
considering the anticipated sensitivity of 200 meV for m𝜈 at 90 % CL.

Maximum a posteriori estimate To check for a correct implementation of the
posterior, a MAP estimation was performed for each analysis. For all campaigns
and fits, the maximal difference between the nominal value m2

𝜈 = 0 eV2 and the
MAP are O(10−3 eV2) for (Flat) and O(10−15 eV2) for (Flat, positive). Hence,
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Table 7.1: The quantiles of m2
𝜈 , for the individual analysis of KNM1-5 Asimov data,

are compared between Netrium and KaFit via their difference (Netrium-KaFit).
The comparison is made for fits with a flat- and flat, positive prior on m2

𝜈 . The
values are rounded to four digits.

(a) For a flat prior, m2
𝜈 ∼ U(−10,10).

Campaign
Quantile differences of m2

𝜈

5% 15.9% 50% 68.3% 84.1% 90% 95%

KNM1 0.0110 0.0086 -0.0011 -0.0025 -0.0058 -0.0051 -0.0067
KNM2 -0.0020 0.0012 0.0038 0.0049 0.0043 0.0044 0.0058
KNM3-SAP -0.0039 0.0057 0.0039 0.0053 0.0054 0.0076 0.0104
KNM3-NAP -0.0071 -0.0048 -0.0065 -0.0055 -0.0067 -0.0056 -0.0035
KNM4-NOM 0.0146 0.0040 -0.0001 -0.0010 -0.0020 -0.0011 0.0005
KNM4-OPT 0.0041 -0.0047 -0.0058 -0.0034 -0.0024 -0.0000 0.0016
KNM5 0.0091 0.0062 0.0054 0.0054 0.0056 0.0059 0.0063

(b) For a flat, positive prior, m2
𝜈 ∼ U(0,3).

Campaign
Quantile differences of m2

𝜈

5% 15.9% 50% 68.3% 84.1% 90% 95%

KNM1 -0.0004 0.0001 -0.0007 -0.0032 -0.0071 -0.0081 -0.0118
KNM2 0.0006 0.0015 0.0033 0.0044 0.0052 0.0064 0.0072
KNM3-SAP -0.0001 0.0000 -0.0022 -0.0031 -0.0035 -0.0037 -0.0041
KNM3-NAP 0.0001 -0.0005 -0.0008 -0.0011 -0.0018 -0.0012 -0.0039
KNM4-NOM -0.0006 -0.0012 -0.0030 -0.0034 -0.0048 -0.0048 -0.0053
KNM4-OPT -0.0007 -0.0015 -0.0038 -0.0041 -0.0059 -0.0063 -0.0076
KNM5 0.0002 0.0008 0.0022 0.0026 0.0020 0.0024 0.0036

these differences are small enough for the anticipated m2
𝜈 sensitivity of 200 meV at

90% CL. Likewise, for the Frequentist analyses with Netrium, using a flat prior on
m2

𝜈 , the maximal difference between the maximum likelihood estimation (MLE)
and the nominal value, are O(10−3 eV2). For a flat, positive prior no comparison
is available.

Most probable value In addition to the MAP, also the most probable value
(MPV), i.e. the mode of the marginal distribution, of m2

𝜈 should be located
at the nominal value. However, there is an inherent problem with the MPV
estimation. As the MPV can not be expressed as a quantile value, it does not
have an associated sampling error, which makes it hard to judge the result. To
approximate the marginal distribution, independent of its actual shape, a non-
parametric estimation, such as kernel density estimation (KDE), could be used.
However, the thereby estimated MPV depends strongly on the used kernel and the
bandwidth of the kernel function. For this reason a numerical comparison seems
not to be appropriated. Nevertheless, graphically the MPV value seems indeed
to be located at the nominal value for all campaigns using (Flat, positive). The
same applies to all campaigns using (Flat), except for KNM3-SAP. In Appendix B,
Fig. B.9 it is visible that the MPV is slightly shifted to the left from the nominal
value. This shift is visible in Netrium and KaFit. A potential explanation for this
phenomenon could be that this is an inherent feature of Bayesian inference itself.
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Figure 7.5: Comparison of the marginal distribution of m2
𝜈 for KNM3-SAP and

KNM3-SAP with the statistics increased by a factor of 20.

In case the statistics would be too low, the prior distributions can have a larger
impact during the marginalization which can lead to a difference between the
MAP and the MPV. This possible origin is supported by the observation, that
the shift disappears when increasing the statistics of KNM3-SAP, which is shown
in Fig. 7.5. The comparison shows, that the KNM3-SAP campaign using more
statistics can retrieve much better the nominal value than the ’normal’ amount
of statistics present in KNM3-SAP. Hence, this hints to a domination of the prior
distribution over the likelihood distribution, which could arise from too stringent
priors. However, this phenomenon is still under investigation at the moment and
will be likely resolved and explained in the upcoming paper.

Posterior predictive checks An additional sanity check was performed in the
form of posterior predictive checks, as introduced in Section 2.6. First, the repro-
duced data distributions (RDD) from the MAP estimation is analyzed for KNM1-5
individually for (Total) with (Flat) and (Flat, positive). Hereby, the parameter point
estimates from MAP are used as input for the KATRIN model. The model itself
returns a Poisson distribution for each retarding energy at which the original data
points were measured. From each such predicted Poisson distribution 106 samples
are drawn, which form the RDDs. In order to access how well the reproduced data
distributions cover the original data points, their normalized counts are compared.
Hence, to be able to compare the whole energy spectrum at once, despite the
counts differ by orders of magnitude, the predicted values are divided by the value
of the original data point. The results are shown in Figs. 7.6 and 7.7. For the
purpose of visualization and because the patches show similar results, only the
result of patch one is shown for each SAP-campaign, respectively. The RDD are



7.3. INDIVIDUAL CAMPAIGNS 89

Retarding energy (eV)
18540 18560 18580 18600 18620

N
or

m
al

iz
ed

 c
ou

n
ts

0.99

1.00

1.01

(a) KNM1.

Retarding energy (eV)
18550 18600 18650 18700

N
or

m
al

iz
ed

 c
ou

n
ts

0.99

1.00

1.01

(b) KNM2.

Retarding energy (eV)
18550 18600 18650 18700

N
or

m
al

iz
ed

 c
ou

n
ts

0.9

1.0

1.1

(c) KNM3-SAP.

Retarding energy (eV)
18550 18600 18650 18700

N
or

m
al

iz
ed

 c
ou

n
ts

0.98

0.99

1.00

1.01

1.02

(d) KNM3-NAP.

Retarding energy (eV)
18550 18575 18600 18625

N
or

m
al

iz
ed

 c
ou

nt
s

0.95

1.00

1.05

(e) KNM4-NOM.

Retarding energy (eV)
18550 18575 18600 18625

N
or

m
al

iz
ed

 c
ou

nt
s

0.90

0.95

1.00

1.05

1.10

(f) KNM4-OPT.

Retarding energy (eV)
18550 18575 18600 18625

N
or

m
al

iz
ed

 c
ou

nt
s

0.95

1.00

1.05

(g) KNM5.

Figure 7.6: Posterior predictive check with MAP estimates for the individual
KATRIN campaigns using a flat prior m2

𝜈 ∼ U(−10,10). The gray dots represent
the reproduced data distributions, with red dots indicating the mean values. The
original data points and their errors are drawn in orange. To compare all energies
at once, despite the counts differing by orders of magnitude, the values at each
energy were normalized by dividing by the original data point.
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Figure 7.7: Posterior predictive check with MAP estimates for the individual
KATRIN campaigns using a flat, positive prior m2

𝜈 ∼ U(0,3). The gray dots
represent the reproduced data distributions, with red dots indicating the mean
values. The original data points and their errors are drawn in orange. To compare
all energies at once, despite the counts differing by orders of magnitude, the values
at each energy were normalized by dividing by the original data point.
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illustrated by gray dots, corresponding to 100 quantiles values of the distribution,
which are equidistantly distributed in probability from 1 % up to 99 %. The mean
value of each distribution is indicated with a red point. The original data points
together with their uncertainties are plotted in orange.

For (Flat), as well as (Flat, positive), the RDD cover the original data points
very well and no systematic effects can be seen. The maximal deviation of the
mean values of the RDD to a value of one, for all energies and patches, are for
(Flat) 0.02 % with typical values O(0.001 %) and for (Flat, positive) 0.018 % with
typical values O(0.001 %). In addition, the corresponding standardized residuals
were calculated and are shown in Appendix B, Figs. B.1 and B.2. The standardized
residual for an energy-bin is defined as:

r :=
y rep − yorig

std(y rep) , (7.3)

where y rep is the reproduced data distribution and yorig the original data point.
Under the assumption that the differences are normally distributed, r should follow
a standard Normal distribution, which is illustrated as an orange curve. The
standardized residual for each energy-bin is plotted as a gray curve. An excellent
agreement can be observed for (Flat), as well as (Flat, positive), for all energy
and patches. This validates once more the encoded models for the individual
campaigns KNM1-5.

Second, the reproduced data distributions gained from the posterior samples
are analyzed for KNM1-5 individually for (Flat) and (Flat, positive). In contrast to
the MAP case, here exactly one sample is drawn from the predicted distribution
of the model. This ensures that the resulting RDD consist of 106 samples, just
like in the MAP case. The results for the normalized counts are displayed in
Appendix B, Figs. B.3 and B.4, and the corresponding standardized residuals in
Figs. B.5 and B.6. The maximal deviation of the mean values of the RDD to a
value of one considering all campaigns, energies and patches, are for (Flat) 0.114 %
with typical values in O(0.01 %) and for (Flat, positive) 0.317 % with typical values
O(0.01 %). In comparison to the MAP case, the maximal deviation became worse
by one order of magnitude. The origin of this increase is an emerging systematic
effect present in all campaigns, which was indeed not present in the MAP case.
This phenomenon is evident in the normalized counts plots by the functional
behavior of the red dots, and in the standardized residual plots as a shift of the
gray distributions in comparison to the standard Normal distribution. In the case
of (Flat), the systematic effect is barely visible for most of the campaigns, where for
(Flat, positive) the effect is more pronounced. One possible explanation would be
that the mean values of the RDD are misleading, however it was checked that the
RDD indeed have a Gaussian shape and their mode can be approximated by the
mean value. Furthermore, the same phenomenon is visible with the same intensity
for (Stat. only) fits. These observations all hint to the conclusion, that the origin
of the systematic effect is likely due to Bayesian inference itself and the integration
over the priors of the free model parameters. As a further test, the analysis was
performed for KNM3-SAP (Total + Flat) with 20 times increased statistics. This
should resolve the systematic effect, if it originates from too stringent prior distri-
butions. The corresponding normalized count plot is shown in Fig. 7.8. Indeed,
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Figure 7.8: Posterior predictive check with posterior samples for KNM3-SAP with
the statistics increased by a factor of 20 and using a flat prior m2

𝜈 ∼ U(−10,10).
The gray dots represent the reproduced data distributions, with red dots indicating
the mean values. The original data points and their error are drawn in orange. To
compare all energies at once, despite the counts differing by orders of magnitude,
the values at each energy were normalized by dividing by the original data point.

the systematic effect has been reduced compared to classical KNM3-SAP. This is
also reflected in the maximal deviation 0.018 % with typical values O(0.001 %), for
all energies and patches. Compared to the deviations when using KNM3-SAP with
the ’normal’ amount of statistics, this is a reduction by one order of magnitude.
Summarizing, first studies on the origin of the systematic phenomenon were made,
but the exact origin is still under investigation by Netrium and KaFit, and will be
discussed in the upcoming paper.

7.3.4 Summary of individual analyses

The analysis of the first five KATRIN campaigns on Asimov data confirmed a
correct and effective implementation of the individual models, as shown by the
MAP results. The MAP value for m2

𝜈 retrieved the ground truth of the Asimov
data within the anticipated sensitivity O(10−3 eV2). Furthermore, the reproduced
data distributions show an excellent agreement to the original data points and no
sign of systematic effects is visible. In a next step, posterior samples were drawn
utilizing a MCMC approach. The MCMC convergence diagnostics indicate an
overall convergence of the MCMC chains, and the anticipated accuracy for the 90 %
confidence level could be achieved for each parameter. The marginal parameter
distributions of m2

𝜈 showed the expected behavior for fits taking only statistical
uncertainties or statistical and systematic uncertainties into account, peaking at
the nominal value of zero. The correlation plots behaved also as expected. To
strengthen the results gained by Bayesian inference, a comparison between the
two independent fitter teams Netrium and KaFit was performed. Despite KaFit
and Netrium differ in the method to calculate the likelihood function, the used
MCMC sampling algorithm, and the monitoring of the convergence diagnostics,



7.4. CHAINED ANALYSIS 93

the comparison of the quantiles for the marginal distribution of m2
𝜈 showed a very

good agreement with differences O(10−3 eV2). However, two issues remain under
investigation by Netrium and KaFit, where first studies has already been performed.
On the one hand, the marginal parameter distribution of m2

𝜈 for KNM3-SAP shows
a slight discrepancy between the peak of the distribution and the nominal value,
when using a flat prior for m2

𝜈 . On the other hand, the reproduced data distributions
generated from posterior samples show a small systematic effect. Further studies
will be performed to resolve the issues, so that their origins can be explained in
the upcoming paper. Despite these ongoing investigations, it seems reasonable to
move on to Bayesian knowledge updates, a more complex analysis for which the
individual analysis of the KATRIN campaigns will serve as the basis.

7.4 Chained analysis

7.4.1 Introduction

Apart from fitting each KATRIN campaign on an individual basis, a combined
approach is needed in order to take advantage of the full accumulated statistics of
KATRIN, as illustrated in Fig. 6.10. The first approach which comes to mind is
fitting the KNM1-5 data in a simultaneous fit. This was already performed with
the Frequentist approach [KATRIN et al., 2025b] and can be done with Bayesian
inference as well, which is, among other things, pursued in the doctor thesis of
Alessandro Schwemmer.

However, there is a complementary analysis approach unique to Bayesian in-
ference, the Bayesian knowledge update. The general idea is to forward certain
information gained in one fit as prior information to a subsequent fit. In this thesis,
this approach is employed to perform a chained analysis of the first five KATRIN
campaigns. Hereby, the forwarded information are the marginal distributions of
the forwarded model parameters and their correlations with each other.

The only model parameters which can be forwarded are those which appear
identically in all fits of the chained analysis. Hence, their appearance in the sta-
tistical models is identical, and their prior distributions are independent of the
campaign. For the analysis of the KNM1-5 campaigns in total 12 parameters fulfill
these requirements, see Sections 6.5 and 6.6, and can be forwarded:

m2
𝜈 , Bsrc, Bmax, ®Eloss,amp, ®Eloss,exp, ®Eloss,std. (7.4)

In the simplest case only a single parameter, namely m2
𝜈 , is forwarded between

fits. An illustration of the procedure is shown in Fig. 7.9. In a more advanced
approach, all 12 parameters together with their initial correlation (as is the case
for the Eloss-parameters) or their acquired correlation during a regression can be
forwarded from fit to fit.

However, the Bayesian knowledge update approach does not allow taking partially
correlated fit parameters between different campaigns into account, as for exam-
ple the correlation of the column density × inelastic cross section 𝜌d𝜎 between
KATRIN campaigns [KATRIN et al., 2024a]. The reason behind this limitation is
that the model parameter describing 𝜌d𝜎 in KNM1 is not present in the Netrium
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Figure 7.9: Schematic illustration of a sequential analysis based on the marginal
distribution of m2

𝜈 . The knowledge gained from the first fit step is incorporated as
prior information for the subsequent fit step.

model of KNM2, and thus no correlation between these distinct parameters can be
established. That said, this allows to study the impact of these correlations onto
the final neutrino mass result, by comparison of the simultaneous with the chained
analysis.

In Section 7.4, the influence of: 1) the ordering of the analyzed campaigns onto
the final m2

𝜈 result, 2) forwarding a different amount of model parameters, 3) using
different priors for m2

𝜈 in the first step of the chain and 4) using (Stat. only) or
(Total) are investigated. As previously mentioned, only the results on Asimov data
are shown within this thesis, but the analyses were performed on real data as well.

7.4.2 Order of Bayesian knowledge updates

A chained analysis involves a sequence of Bayesian knowledge updates. In the
following, the impact of the ordering of the sequence onto the final, marginal
distribution of a parameter 𝜅 shall be mathematically investigated.

Suppose a simple example where the sequence consists of two steps. In the
first step, one has the data set y1 and model parameters 𝜃1, which are unique for
this measurement campaign. In addition, one has the forwarded parameters 𝜅

which are identical to each campaign. It is assumed that 𝜅 and 𝜃i do not have an
intrinsic correlation. As the normalization of the posteriors are not relevant for
the following derivation, they are omitted for the benefit of readability. Thus, one
starts with the posterior distribution:

p(𝜅, 𝜃1 | y1) ∼ p(y1 | 𝜅, 𝜃1) p(𝜃1) p(𝜅)init, (7.5)

from which the marginal distribution of 𝜅:

p(𝜅 | y1) =
∫
𝜃1

p(𝜅, 𝜃1 | y1) d𝜃1 , (7.6)

is used as prior for 𝜅 in the second step of the sequence:

p(𝜅, 𝜃2 | y1,y2) ∼ p(y2 | 𝜅, 𝜃2) p(𝜃2) p(𝜅 | y1). (7.7)
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Now suppose, without the loss of generality, a sequential analysis with a reversed
order of analyzed measurement campaigns. This time the posterior of the first
step takes the form:

p(𝜅, 𝜃2 | y2) ∼ p(y2 | 𝜅, 𝜃2) p(𝜃2) p(𝜅)init, (7.8)

from which the marginal distribution of 𝜅:

p(𝜅 | y2) =
∫
𝜃2

p(𝜅, 𝜃2 | y2) d𝜃2 , (7.9)

is used as prior for 𝜅 in the second step of the sequence:

p(𝜅, 𝜃1 | y2,y1) ∼ p(y1 | 𝜅, 𝜃1) p(𝜃1) p(𝜅 | y2). (7.10)

Compared shall be the marginal distributions of 𝜅 at the end of the sequences:

p(𝜅 | y1,y2) ∼ p(𝜅)init

∫
𝜃2

p(y2 | 𝜅, 𝜃2) p(𝜃2) d𝜃2

∫
𝜃1

p(y1 | 𝜅, 𝜃1) p(𝜃1) d𝜃1 , (7.11)

p(𝜅 | y2,y1) ∼ p(𝜅)init

∫
𝜃1

p(y1 | 𝜅, 𝜃1) p(𝜃1) d𝜃1

∫
𝜃2

p(y2 | 𝜅, 𝜃2) p(𝜃2) d𝜃2 , (7.12)

which are indeed identical, because the integrals are interchangeable. More gen-
erally, the ordering of the sequence does not matter, as long as the same data
y ∈ {y1, . . . ,yi, . . . ,yn} and parameters 𝜃 ∈ {𝜃1, . . . , 𝜃i, . . . , 𝜃n} are sampled through-
out the sequences and the initial priors p(𝜅)init are identical. Summarizing, the
marginal distributions of the forwarded parameters and their correlations, obtained
in the last fit of the chain, are independent of the ordering in which the campaigns
were analyzed. This statement will be further studied in Section 7.4.5.

7.4.3 Bayesian knowledge update with BAT

The Bayesian knowledge update makes it necessary to encode the information
gained from a previous fit step somehow in the statistical model of the next fit step,
which is a complex task. For the MCMC sampling the software BAT.jl [Schulz et al.,
2021] is used to efficiently draw samples from the posterior. Part of this efficiency
comes from the automatic choice of a parameter space suitable for the chosen
MCMC algorithm [Schulz et al., 2021]. For this procedure the prior distributions
have to be transformed from one variable space to another. In order to calculate
automatically such a transformation, a proper prior in BAT must be defined from
one of the distributions available in Distributions.jl [Besançon et al., 2021]. This
restriction becomes relevant when passing on the information of one fit step to the
next one.

Considering the case where all 12 parameters together with their correlations
are forwarded between fits. The marginal parameter distributions after a fit are
correlated with each other and must not necessarily follow a Gaussian distribution,
but rather show skewness or other non-Gaussian behavior. Because currently no
multivariate skew normal distribution is implemented in Distributions.jl and to
be independent of non-Gaussian behavior at all, a different approach was taken.
The goal is to transform the non-Gaussian multivariate, correlated distribution
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Figure 7.10: Schematic illustration for the transformation of the forwarded param-
eters between the three relevant parameter spaces. The involved transformation
functions fi together with their back transformations f −1

i are shown.

of the 12 parameters to a multivariate standard normal distribution, which can
be encoded as a proper prior in BAT. To do so, three parameter spaces (space-0,
space-1 and space-2) are introduced. The transformation between the three spaces
is illustrated in Fig. 7.10 and shall be explained in the following.

The very first step in a sequence of Bayesian knowledge updates is to define
the initial prior for the forwarded parameters, which was called p(𝜅)init in Sec-
tion 7.4.2. The variate space in which the 12 forwarded parameters take their
physical form p0, as given in Appendix B, Eqs. (B.1) to (B.4), are called space-0
or user space. In the first step of the chain p0 is not directly used, but rather a
transformation f1 (from space-0 to space-1) is calculated, such that p1 := f1 (p0)
follows a multivariate standard normal distribution. This transformation is done
by BAT with methods described in [Schulz et al., 2021]. The prior p1 can be
easily encoded in BAT and is used as actual prior in the code for the first step of
the sequence. The back transformation f −1

1 is calculated as well, as one needs
to transform each input coming from p1 back to space-0 before evaluating the
likelihood distribution. After the MCMC sampling, the marginal distributions
for the forwarded parameters are returned in space-1. These form a multivariate
correlated distribution (from here on called D) which does not necessarily follow a
multivariate normal distribution, despite being close to it. Once again, to define a
proper prior in BAT for the next step of the chain an additional transformation is
necessary. The transformation f2 (from space-1 to space-2) is calculated, such that
the resulting prior p2 = f2 (D) follows a multivariate standard normal distribution,
which can be encoded as a proper prior in BAT. Finally, the back transformation
f −1
1 ◦ f −1

2 is applied to each input coming from p2 before evaluating the likelihood
distribution. In this way, the likelihood is fully defined in space-0 when it is handed
over to BAT.

The transformation f2 is performed in a two-step process via an affine- and a
spline transformation. First, the multivariate distribution D is transformed to a
standardized and uncorrelated multivariate distribution via the transformation
[Kessy et al., 2018]:

Y = L−1
X (X − E[X ]). (7.13)

The symbol X denotes the random variable of D and LX is the lower triangular
matrix of a Cholesky decomposition of the covariance matrix of X . The symbol
Y represents the new random variable with the desired properties of 𝔼[Y ] = 0
and Cov(Y ) = 𝟙. In a second step, any remaining skewness in Y is removed by
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Figure 7.11: Illustration of a quadratic spline interpolation from a skewed distribu-
tion to a standard normal distribution. The upper left part of the figure shows a
standardized skewed distribution, which shall be transformed to a standard normal
distribution, shown in the lower right part of the figure. The spline x- and y-knots
are shown as orange vertical and horizontal lines, respectively. The lower left part
of the figure shows the spline knots as orange points together with the resulting
interpolation function as gray line.

performing a quadratic spline interpolation on each marginal distribution of Y
individually. The most robust fits were achieved by choosing the spline y-knots as
equidistant quantile values of the anticipated standard normal distribution, from
a probability of p = 1 × 10−6 to p = 1 − 1 × 10−6. The matching quantiles of the
marginal distributions are related via a cumulative distribution function. A typical
spline interpolation is illustrated in Fig. 7.11, where the spline knots placement
and the resulting interpolation curve are visible. An example how the forwarded
parameters look before and after the transformation from space-1 to space-2 can
be seen in Appendix B, Fig. B.14.

For the case in which only information about m2
𝜈 is forwarded between fits, the

approximating of the marginal distribution was first handled by an unbinned
maximum likelihood estimation. This worked well for Asimov data, but was not
flexible enough for the analysis of real data. To be consistent, for real- as well as
Asimov data the (affine + spline) transformation approach was utilized.

7.4.4 MCMC convergence diagnostics

To validate the MCMC sampling, several MCMC convergence diagnostics are mon-
itored during and after the sampling, as outlined in Section 7.2. The convergence
diagnostics are monitored for each fit of the sequential analysis and all fits have to
show overall convergence. Reported are the largest values from all parameters of a
campaign for R̂ and the relative MCMCSE of the 90 %-quantile. The summaries of



98 CHAPTER 7. NEUTRINO MASS ANALYSIS UTILIZING BAYESIAN . . .

Table 7.2: Maximal deviation of the mean values of the RDD to a value of one, for
all energies and patches. The results are for fits taking statistical and systematic
uncertainties into account.

(a) Chained analyses

Forwarded parameters Initial prior Permutation Maximal deviation Typical deviation

m2
𝜈 only Flat KNM1-5 0.024 % O(0.001 %)

m2
𝜈 only Flat KNM5-1 0.006 % O(0.001 %)

m2
𝜈 only Flat, positive KNM1-5 0.082 % O(0.010 %)

m2
𝜈 only Flat, positive KNM5-1 0.025 % O(0.010 %)

m2
𝜈 and others Flat KNM1-5 0.026 % O(0.001 %)

m2
𝜈 and others Flat KNM5-1 0.006 % O(0.001 %)

m2
𝜈 and others Flat, positive KNM1-5 0.078 % O(0.010 %)

m2
𝜈 and others Flat, positive KNM5-1 0.025 % O(0.001 %)

(b) Individual campaigns

Campaign Prior Maximal deviation Typical deviation

KNM1 Flat 0.028 % O(0.010 %)
KNM5 Flat 0.022 % O(0.001 %)
KNM1 Flat, positive 0.166 % O(0.010 %)
KNM5 Flat, positive 0.119 % O(0.010 %)

convergence diagnostics for all performed fits are shown in Appendix B, Tables B.3
to B.5. From the tables it can be concluded, for all parameters of all performed fits,
that the sampling error of the 90 %-quantile is below 0.55 % and the value for R̂ is
smaller than 1.000183. Thus, the anticipated goals of convergence, i.e. R̂ < 1.01
and MCMCSE < 1 %, are successfully reached.

7.4.5 Results

The results for the chained analysis, when forwarding all 12 possible parameters
(m2

𝜈 , Bmax, Bsrc, ®Eloss,amp, ®Eloss,exp and ®Eloss,std), hereinafter called (m2
𝜈 and others),

are shown in Fig. 7.12. The results forwarding only m2
𝜈 , hereinafter called (m2

𝜈

only), can be found in Appendix B, Figs. B.15 and B.16. The results of the chained
analyses are discussed in the following.

Posterior predictive checks As in the case of the individual analyses in Sec-
tion 7.3, the posterior predictive checks (PPC) are also performed for the chained
approach to validate the MCMC results. Hereby, the PPC are calculated from the
posterior samples and original data points of the final chain step. The correspond-
ing normalized count plots are shown in Fig. 7.13. The figure encompasses the
results of (m2

𝜈 and others), (m2
𝜈 only), each for the two permutations KNM1-5 and

KNM5-1 and each for the cases (Total + Flat) and (Total + Flat, positive). The
corresponding maximal and typical deviations from a value of one can be found
in Table 7.2a. Comparing the campaign KNM1 with the permutation KNM5-1,
and KNM5 with the permutation KNM1-5, the initial observation to be made is
that typically the systematic effects are significantly mitigated within the chained
analysis compared to the analysis of the individual KATRIN campaigns. The max-
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(a) Results for an initial flat prior: m2
𝜈 ∼ U(−10,10).
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𝜈 in eV2

5% 15.9% 50% 68.3% 84.1% 90% 95%

KNM1-5 0.0069 0.0224 0.0763 0.1135 0.1603 0.1873 0.2233
KNM5-1 0.0070 0.0223 0.0753 0.1118 0.1580 0.1851 0.2213

(b) Results for an initial flat, positive prior: m2
𝜈 ∼ U(−0,3).

Figure 7.12: Results of the chained analysis forwarding m2
𝜈 , Bmax, Bsrc, Eloss and

their correlations between campaigns. The sequences KNM1 → KNM2 → KNM3-
NAP → KNM3-SAP → KNM4-NOM → KNM4-OPT → KNM5 and its reversed
order are compared. In addition, the results for (a) an initial flat prior m2

𝜈 ∼
U(−10,10) and (b) an initial flat, positive prior m2

𝜈 ∼ U(0,3) are shown.
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(a) Forwarding only m2
𝜈 with initial flat prior m2

𝜈 ∼ U(−10,10).
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(b) Forwarding only m2
𝜈 with initial flat, positive prior m2

𝜈 ∼ U(0,3).
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(c) Forwarding m2
𝜈 and others with initial flat prior m2

𝜈 ∼ U(−10,10).
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(d) Forwarding m2
𝜈 and others with initial flat prior m2

𝜈 ∼ U(0,3).

Figure 7.13: Posterior predictive checks for the chained analysis using (Total). The
results are shown for different amounts of forwarded parameters and different
initial priors for m2

𝜈 . Furthermore, the figures on the left-hand side correspond to a
permutation of KNM1-5 while the figures on the right-hand side correspond to a
permutation of KNM5-1.
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Table 7.3: Compared are the final results for the chain permutations KNM1-5
and KNM5-1. For that purpose, the maximal difference of the quantiles qs =

[5 %, 15.9 %, 50 %, 68.3 %, 84.1 %, 90 %, 95 %] of the final marginal distribution
of m2

𝜈 are shown. The numbers in the column labeled "Sampling error", refer to
the maximal sampling error of the quantiles and are true for both permutations
KNM1-5 and KNM5-1.

Forwarded parameters Initial prior Type Quantile difference Sampling error

m2
𝜈 only Flat, positive Stat. only O(≤ 10−4eV2) O(≤ 10−4eV2)

m2
𝜈 only Flat, positive Total O(≤ 10−4eV2) O(≤ 10−4eV2)

m2
𝜈 only Flat Stat. only O(≤ 10−3eV2) O(10−4eV2)

m2
𝜈 only Flat Total O(≤ 10−3eV2) O(10−4eV2)

m2
𝜈 and others Flat, positive Total O(≤ 10−3eV2) O(≤ 10−4eV2)

m2
𝜈 and others Flat Total O(≤ 10−3eV2) O(10−4eV2)

imal deviations are smaller by one order of magnitude compared to their single
campaign counterparts (see also Table 7.2b). Hence, the much less pronounced
systematic effects and the considerably reduced maximal deviations come from
the fact that the chained analysis uses the combined statistical strength of the first
five KATRIN campaigns in contrast to the statistics of a single campaign. In other
words, the likelihood distribution contributes much more probability mass to the
posterior than the prior distributions. The behavior of the systematic effects under
increased statistics was also studied for the individual fit KNM3-SAP, and yielded
the same conclusion, see Section 7.3.3 and Fig. 7.8.

However, interestingly, the chained analyses of (KNM1-5 + Flat) for both (m2
𝜈

and others) and (m2
𝜈 only), show very much comparable maximal deviations with

their single campaign counterparts. The reason is most likely that KNM5 has
the highest statistics of the first five measurement campaigns. It appears that the
likelihood distribution has enough probability mass, that even a sharper prior of
m2

𝜈 (due to the chained analysis) does not mitigate the already low systematic
effects any further.

First tests using fluctuated Asimov data, i.e. the nominal value of m2
𝜈 is dif-

ferent from zero, showed no systematic effects for the chained analysis. This will
presumably also be the case for the individual campaign analyses with fluctuated
Asimov data.

Influence of different permutations The results of the chained analyses are dis-
cussed in respect of whether different permutations give different or identical results.
For this purpose, the quantiles qs = [5 %, 15.9 %, 50 %, 68.3 %, 84.1 %, 90 %, 95 %]
of m2

𝜈 , as obtained from the last fit of a chain, are compared for the two chain
permutations KNM1-5 and KNM5-1 for all performed analyses. The comparison
of the permutations is summarized in Table 7.3. The table shows an excellent
agreement, i.e. the differences are minimal as they are in the order of the antici-
pated sensitivity O(10−3eV2) or below. These results validate the mathematical
result in Section 7.4.2, namely that the permutation of the chain has no impact on
the final marginal distribution of a parameter.
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Summary of fits All fits of (m2
𝜈 only) and (m2

𝜈 and others) using (Flat, positive)
behave as expected. The nominal value is recovered by the peak of the distribution,
and in the event that the fits were made for (Total) and (Stat. only), the quantiles
for (Total) are slightly greater than those of (Stat. only). Fits using (Flat) show the
same behavior as already visible in the individual campaigns, see Section 7.3.3. The
mode of the marginal distribution is slightly shifted to the left of the nominal value.
The observed shift is identical for both permutations and is in the same order as
for the individual analysis of KNM3-SAP, as visible in Appendix B, Fig. B.9. Hence,
this effect is likely caused during the chained analysis KNM3-SAP is analyzed, and
is not considerably mitigated by the other fits. Interestingly, this shift is not present
in the simultaneous fit approach. This is likely because all available data are fitted
at once, thus there is in total enough statistics to prevent this phenomenon, as
was already discussed in Section 7.3.3, and shown in Fig. 7.5. For the fit (m2

𝜈 only)
with (Flat) and (Stat. only) no shift is observed, which was also the case for the
individual campaigns with (Stat. only).

The comparison between distinct priors for m2
𝜈 , as used in the first step of the chain,

shows that for (Flat, positive) the nominal value was more robustly retrieved than
for (Flat), because of the explained phenomenon with KNM3-SAP. The 90% quan-
tiles for (Flat, positive) are always greater than that for (Flat). This phenomenon
is grounded in the two distinct parameter spaces created by the distinct priors. As
already stated in Section 7.1, the unphysical prior (Flat) was chosen to be able
to compare the MAP with the Frequentist best fit. For the final bounds on the
neutrino mass, the physical prior (Flat, positive) should be used.

Finally, the evolution of the marginal distribution of m2
𝜈 during a chained analysis

is shown in Fig. 7.14. One can see the shrinking uncertainty, i.e. the width of the
distribution, with increasing statistics for both cases (Flat) and (Flat, positive). In
Fig. 7.14a, it can be seen that KNM1 as first step contributes the least amount
of statistics, while with the subsequent steps the width of the distribution rapidly
shrinks down. The reversed ordering of the chain is depicted in Fig. 7.14b. Here,
the shrinking effect is more subtle as the chain begins with KNM5, the strongest
of the five campaigns.

7.4.6 Summary of chained analyses

The successful implementation of a chained analysis via Bayesian knowledge up-
dates for the first five KATRIN measurement campaigns was demonstrated on
Asimov data. As for the individual analyses, an excellent Markov chain Monte
Carlo convergence diagnostic was achieved in all performed analyses. Two cases
are studied, one in which only the marginal distribution of m2

𝜈 is forwarded be-
tween chain steps, and one in which all 12 possible parameters together with
their correlations are forwarded. Furthermore, the influence of the ordering of
campaigns within a chained analysis onto the final result were studied. The derived
mathematical result was confirmed by the analyses, in that the marginal parameter
distributions are invariant under chain permutations. For fits taking statistical and
systematic uncertainties into account, while using a flat prior for m2

𝜈 , the same
shift from the nominal value is observable as was for the individual analysis of
KNM3-SAP. The systematic effects which already showed up in the individual
analysis are also present in the chained analysis. That said, due to using the full
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Figure 7.14: The evolution of the marginal distribution of m2
𝜈 over a chained

analysis is shown. Different choices for the initial prior of m2
𝜈 are shown. In both

cases (m2
𝜈 and others + Total) were used.
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statistical power of the first five KATRIN campaigns, the effects are much less
pronounced.
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7.5 Summary of Bayesian analyses of the first five
KATRIN campaigns

In this chapter, the successful application of Bayesian inference on the first five
KATRIN measurement campaigns, utilizing a neural network, was demonstrated.
All shown results were gained using Asimov data and had excellent Markov chain
Monte Carlo convergence diagnostics. First the analysis results of the individual
KATRIN campaigns were discussed. The maximum a posteriori estimations vali-
dated the implemented scripts, as they were able to retrieve the ground truth of
the Asimov data within the anticipated sensitivity O(10−3 eV2) for m2

𝜈 . To further
validate the results, a comparison of the two KATRIN analysis teams Netrium and
KaFit was performed using multiple quantiles of the marginal distributions of m2

𝜈 .
The agreement of both teams was excellent, with differences O(10−3 eV2). This
is especially a strong comparison as the methods of both teams differ in several
regards: in the evaluation of the likelihood function, the utilized Markov chain
Monte Carlo algorithm used for sampling and the monitoring of the Markov chain
Monte Carlo convergence diagnostics. Overall, the marginal parameter distribu-
tions of m2

𝜈 showed the expected behavior for taking only statistical uncertainties
and taking statistical and systematic uncertainties into account. In a next step,
to take advantage of the full statistics of the first five measurement campaigns, a
chained analysis via Bayesian knowledge updates was studied. Hereby, the impact
of forwarding only information about m2

𝜈 from chain step to chain step, or informa-
tion about all 12 suitable parameters and their correlations, were investigated. In
addition, it was shown mathematically and validated via the achieved results, that
the order in which the campaigns appear in the chained analysis does not have an
impact onto the final marginal parameter distributions.

However, two phenomena are still under investigation by Netrium and KaFit.
On the one hand, the reproduced data distributions calculated from posterior
samples showed a small systematic effect, which was not observed when maximum
a posteriori estimates were used for the calculation. This effect was also present
in the chained analysis, but much less pronounced due to the increased statistics.
On the other hand, for the campaign KNM3-SAP using a flat prior on m2

𝜈 , the
marginal mode of m2

𝜈 is slightly shifted to more negative values in comparison to
the nominal value. The same shift was observed in the chained analysis, when in
the first chain step a flat prior on m2

𝜈 was used. About the origin of the phenomena
was reasoned. However, this is an ongoing study by both Netrium and KaFit and
will be thoroughly investigated in future studies, and explained in the upcoming
paper.

The analyses were also performed on the real, measured data. However, not
to postpone the publication of this thesis it was decided to only show the results
on Asimov data.
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Chapter 8

Summary and conclusion

This thesis consists of three projects, which all lead, or in case of the KATRIN
analysis, will lead to the publication of a paper. In the first project, theoretical
ambiguity analyses were performed within the field of Baryon spectroscopy. Hereby,
the theorem of Moravcsik was utilized, which is an automatable and scalable ap-
proach to obtain complete sets of polarization observables for reactions described
by, in principle, an arbitrary number Na of complex spin amplitudes. In order to
validate the theorem, it was applied to pion-nucleon scattering (Na = 2) and pseu-
doscalar meson photoproduction (Na = 4) and a comparison with the well known
results for these reactions were made. Afterward, the theorem was applied to
pseudoscalar meson electroproduction (Na = 6), yielding the first lists of complete
sets of observables for this reaction. Finally, the reaction of two-pseudoscalar-
meson photoproduction (Na = 8) was studied. The concluding result was a list
with 69 complete sets of polarization observables, each containing only one triple
polarization observable, as these are the hardest observables to measure. In fact,
no polarization observable of this type has yet been measured.

In the second project, the topic of ambiguity analysis was approached in a com-
plementary manner by performing a truncated partial-wave analysis on measure-
ment data from pseudoscalar meson photoproduction. This includes data of
𝜂-photoproduction for the polarization observables 𝜎0, Σ, T , E, F and G , which
form a complete set within the framework of truncated partial-wave analysis. Mul-
tiple energies and truncation orders were studied, resulting in the estimation of
the complex electromagnetic multipole parameters, which are used to model the
reaction in the first place, and predictions for all not yet measured polarization
observables of 𝜂-photoproduction. The analyses were performed, for the first time,
utilizing Bayesian inference. As a consequence, parameter estimations, predicted
data, etc. are distributions. Furthermore, via the usage of Markov chain Monte
Carlo simulation, with the Hamiltonian Monte Carlo sampling algorithm, the
connection of ambiguities within the parameters space could be studied in an
unprecedented way. The approach revealed that severe ambiguities tend to be
sampled together, showing up as one, connected multimodal marginal distribution.
However, the greatest source of complexity in the analyses arose in monitoring
the Markov chain Monte Carlo convergence, attributable to the highly multimodal
posteriors. To achieve reliable results, an adaptation of the typical convergence
workflow was developed.

107



108 CHAPTER 8. SUMMARY AND CONCLUSION

In the third project, the knowledge gained about Bayesian inference was applied to
the neutrino mass analysis with KATRIN. Hereby, the first five KATRIN measure-
ment campaigns were analyzed with Bayesian inference. At first, the analyses were
performed for each campaign individually, studying different priors for m2

𝜈 and the
influence of taking only statistical uncertainties or taking statistical and systematic
uncertainties into account. Once the results were approved by the collaboration, it
was moved on to a combined analysis in the form of a chained analysis, realized
with Bayesian knowledge updates. Thus, making use of the full statistics of the
campaigns to further reduce the effective mass limit of the electron antineutrino.
The influence on the ordering of the Bayesian knowledge updates were studied,
as well as the utilization of different priors for m2

𝜈 in the very first step of a chain.
The KATRIN policy does not allow to publish a thesis containing neutrino mass
results from measurement data prior to the corresponding paper. In order to not
postpone the publication of this thesis, only the results based on Asimov data are
shown, even though the analyses were also performed on the measured data.
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Minimal complete sets for two-pseudoscalar-meson photoproduction

Philipp Kroenert ,* Yannick Wunderlich , Farah Afzal , and Annika Thiel
Helmholtz Institut für Strahlen- und Kernphysik, Universität Bonn, Germany

(Received 14 September 2020; accepted 16 December 2020; published 11 January 2021)

For photoproduction reactions with final states consisting of two pseudoscalar mesons and a spin-1/2 baryon,
eight complex amplitudes need to be determined uniquely. A modified version of Moravcsik’s theorem is
employed for these reactions, resulting in slightly overcomplete sets of polarization observables that are able
to determine the amplitudes uniquely. Further steps were taken to reduce the found sets to minimal complete
sets. As a final result, multiple minimal complete sets without any remaining ambiguities are presented for the
first time. These sets consist of 2N = 16 observables, containing only one triple polarization observable.

DOI: 10.1103/PhysRevC.103.014607

I. INTRODUCTION

The interrelation between experiment and theory is what
drives science. In the field of hadron spectroscopy these are
the measurement of cross sections or polarization observables
and its counterpart Quantum Chromodynamics. The latter
describes the transition of the initial to the final state via
a transition matrix T . This matrix comprises the employed
model predictions to describe a certain process. Via so-called
formation experiments (i.e., γ p → ππ p) it is possible to
study the emergence of resonant states [such as �(1232),
N (1440)1/2+, N (1520)3/2−, etc. [1]].

These states can be analyzed via partial-wave analysis
(i.e., BnGa [1], MAID [2]), determining the matrix elements
of T and comparing it to the model prediction. However,
because polarization observables depend on bilinear products
of the complex amplitudes [3–5], mathematical ambiguities
arise [6]. Nevertheless, it is still possible to determine unique
solutions by employing a complete experiment analysis [7].

Such a complete experiment analysis was performed an-
alytically by Chiang and Tabakin in 1997 [6] for single
pseudoscalar meson photoproduction. A detailed proof com-
prising all the relevant cases was published recently by
Nakayama [8]. It should be noted that these complete ex-
periments are an idealization for data with no uncertainty
[9]. Although the process of single pseudoscalar meson
photoproduction can be fully described by only four com-
plex amplitudes [10], the calculations are nontrivial and
cumbersome [8] and, furthermore, quite involved ambiguity-
structures can arise.

Within this paper, the determination of complete sets of
observables is studied for the reaction of two pseudoscalar
meson photoproduction. The process can be described by
N = 8 complex amplitudes and thus allows for 64 mea-
surable polarization observables [5], which are four times
as many observables as in the case of single pseudoscalar

*Corresponding author: kroenert@hiskp.uni-bonn.de

meson photoproduction [6]. This results in an exponential in-
crease of complexity, for what reason the algebraic techniques
presented in Ref. [8] are no longer appropriate, although pos-
sible (see Sec. VII B). New methods should be employed, in
order to allow for an easier access to the problem of complete
sets for reactions with N > 4.

There is an already existing work on this subject by Aren-
hövel and Fix [11] from 2014. On the one hand, they used
the inverse function theorem to derive complete sets of 16
observables. The downside of this method is that the resulting
sets might locally be free of ambiguities, but not globally. On
the other hand, they used a graph theoretical approach, where
a complex amplitude is represented as a node and the bilinear
product as a connection between certain nodes. This method
yields complete sets with 25 observables. It was then shown
how to further reduce such a set to 15 observables. Although
they found sets without triple polarization observables, there
still remain quadratic ambiguities.

To overcome these difficulties arising from the remaining
discrete mathematical ambiguities, Moravcsik’s theorem [12]
is employed within this paper. This theorem allows for the ex-
traction of complete sets of observables for an arbitrary num-
ber of amplitudes. Furthermore, due to its graph-theoretical
foundation, the whole algorithm can be automated [13].

The paper is structured in the following way: The starting
point is a short recap of Moravcsik’s theorem and its modi-
fication in Sec. II. Section III introduces the 64 polarization
observables for two pseudoscalar meson photoproduction.
Within Sec. IV the actual application of Moravcsik’s theo-
rem is described and illustrated with an example. Section V
elaborates on the difficulties of the experimental determina-
tion of the polarization observables and gives an extensive
overview of already-performed measurements in two pseu-
doscalar meson photoproduction. The entire analysis results
in 5964 unique, but slightly overcomplete sets of observables.
Their characteristics are discussed in Sec. VI. Section VII
describes how to transform the slightly overcomplete sets into
minimal ones (i.e., into sets containing 2N = 16 observables).
Based on these sets as well as the already-performed measure-

2469-9985/2021/103(1)/014607(13) 014607-1 ©2021 American Physical Society
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FIG. 1. Illustration of a cycle graph with eight nodes (enumer-
ated points) and edges (solid and dashed lines). Each node represents
one complex amplitude, whereas each edge connecting two nodes
represents either the real (solid) or imaginary (dashed) part of the
bilinear product of those nodes. The respective correlation to the
relative phase φi j is indicated.

ments the most promising minimal complete set is presented
in Sec. VIII. The results are summarized in Sec. IX.

II. MORAVCSIK’S THEOREM

The main points of Moravcsik’s paper [12] shall be re-
capped in a concise form. The basic assumption of the
theorem is that the moduli of the N complex amplitudes ti
are known, together with the real and imaginary parts of the
bilinear products tit∗

j . Furthermore, each complex amplitude
ti is treated as a node of a graph whereas an edge is the real
or imaginary part of the bilinear amplitude product tit∗

j con-
necting both nodes. An illustration is shown in Fig. 1. Such a
graph is said to correspond to a complete set of observables if
it fulfills the following two requirements:

(1) it is a connected graph;
(2) it has an odd number of edges which corresponds to

an imaginary part of a particular bilinear product, i.e.,
∝Im(tit∗

j ).

The first condition is related to the “consistency relation”
of the relative phases:

φ12 + φ23 + · · · + φN1 = 0, (1)

which implies a summation of relative phases between all
neighboring amplitudes ti [8]. Equation (1) has to hold in
every case, whether the considered set is fully complete or not.
The second condition is responsible for resolving the discrete
ambiguities since it holds

Im(tit
∗
j ) = |ti||t j | sin (φi j ), (2)

and that sine itself produces an ambiguity due to its periodic-
ity:

φi j → (φi j, π − φi j ). (3)

It turns out that any odd number of such “sine-type” ambigui-
ties resolves the discrete ambiguities, due to the summand π .

The generalization to any odd number is the actual modifica-
tion to Moravcsik’s theorem. A proof of the original version
of the theorem can be found in Ref. [12] and a quite detailed
proof of the modified version of the theorem is given in
Ref. [13].

The following analysis focuses on cycle graphs, i.e., con-
nected graphs where each node has degree two. As explained
in Ref. [12], “from the point of view of eliminating discrete
ambiguities” these graph types are “the most economical”
ones. Thus, only the minimal number of N bilinear products is
needed in order to eliminate all discrete ambiguities, one for
each edge.

III. POLARIZATION OBSERVABLES

The derivation of the 64 polarization observables of two
pseudoscalar meson photoproduction was first published by
Roberts and Oed [5]. The observables were defined in a
“helicity and hybrid helicity-transversity basis” [5]. For the
latter, the photon spin is still quantized along its direction of
motion. For the sake of comparability, the hybrid basis shall
be adopted in this paper. However, in order to work out the
connection between the real (imaginary) part of the bilinear
products and the relative phases φi j , it is advantageous to
rename the amplitudes:

b+
1 → t1, b+

2 → t2, b+
3 → t3, b+

4 → t4, (4)

b−
1 → t5, b−

2 → t6, b−
3 → t7, b−

4 → t8. (5)

Within Ref. [5], the observables are ordered according to the
polarization of the photon beam, which is required to measure
the respective observable. This ordering scheme is advanta-
geous from an experimental point of view; unfortunately, it
is inappropriate when studying ambiguities. Therefore, the
observables are regrouped according to their mathematical
structure, which yields eight groups. While the first group con-
sists of observables solely described by the squared moduli of
the amplitudes ti, any other group comprises equal amounts
of observables containing only cos or sin terms. The resulting
expressions for the observables are listed in Table I.

For the purpose of an easier calculation, 64 � matrices are
introduced, which can be solely described by the identity ma-
trix, as well as the three Pauli matrices (listed in Table II). This
allows us to calculate the respective observable by the bilinear
form 〈t |�|t〉 with |t〉 := (t1, t2, t3, t4, t5, t6, t7, t8), similar as in
Ref. [6]. As expected, the � matrices for each group share
the same matrix structure. Naturally, they form an orthogonal
basis and are Hermitian and unitary. Indeed, the matrices
fulfill the same properties as presented in Ref. [6] (with an
adapted prefactor in the orthogonality relation).

IV. APPROACH

The results of Sec. II imply the following steps: One
constructs all unique graph topologies with N nodes using
combinatorial methods. A few examples of possible graphs
are shown in Fig. 2. The number of unique topologies is solely
determined by the number of nodes (or edges), i.e., for N � 3
it is N!/(2N ) [13].
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TABLE I. Definitions of the 64 polarization observables for two pseudoscalar meson photoproduction in hybrid helicity-transversity form.
Here, φi j denotes the relative phase between the complex amplitudes ti and t j . The notation used in the original paper of Roberts and Oed [5] is
also shown. The observables are classified into eight groups according to their underlying mathematical structure. The vector |t〉 has the form
(t1, t2, t3, t4, t5, t6, t7, t8) and the shape of the � matrices is outlined in Table II.

Observable Definition in terms of polar coordinates / 2 Bilinear form Roberts, Oed

OI
1

1
2 (|t1|2 + |t2|2 + |t3|2 + |t4|2 − |t5|2 − |t6|2 − |t7|2 − |t8|2) 〈t |�I

1|t〉 I�

OI
2

1
2 (|t1|2 + |t2|2 − |t3|2 − |t4|2 + |t5|2 + |t6|2 − |t7|2 − |t8|2) 〈t |�I

2|t〉 Py

OI
3

1
2 (|t1|2 − |t2|2 + |t3|2 − |t4|2 + |t5|2 − |t6|2 + |t7|2 − |t8|2) 〈t |�I

3|t〉 Py′

OI
4

1
2 (|t1|2 − |t2|2 − |t3|2 + |t4|2 − |t5|2 + |t6|2 + |t7|2 − |t8|2) 〈t |�I

4|t〉 O�
yy′

OI
5

1
2 (|t1|2 − |t2|2 − |t3|2 + |t4|2 + |t5|2 − |t6|2 − |t7|2 + |t8|2) 〈t |�I

5|t〉 Oyy′

OI
6

1
2 (|t1|2 − |t2|2 + |t3|2 − |t4|2 − |t5|2 + |t6|2 − |t7|2 + |t8|2) 〈t |�I

6|t〉 P�
y′

OI
7

1
2 (|t1|2 + |t2|2 − |t3|2 − |t4|2 − |t5|2 − |t6|2 + |t7|2 + |t8|2) 〈t |�I

7|t〉 P�
y

OI
8

1
2 (|t1|2 + |t2|2 + |t3|2 + |t4|2 + |t5|2 + |t6|2 + |t7|2 + |t8|2) 〈t |�I

8|t〉 I0

OII
c1 |t1||t3| cos(φ13) + |t2||t4| cos(φ24) + |t5||t7| cos(φ57) + |t6||t8| cos(φ68) 〈t |�II

c1|t〉 −Pz

OII
c2 |t1||t3| cos(φ13) + |t2||t4| cos(φ24) − |t5||t7| cos(φ57) − |t6||t8| cos(φ68) 〈t |�II

c2|t〉 −P�
z

OII
c3 |t1||t3| cos(φ13) − |t2||t4| cos(φ24) + |t5||t7| cos(φ57) − |t6||t8| cos(φ68) 〈t |�II

c3|t〉 −Ozy′

OII
c4 |t1||t3| cos(φ13) − |t2||t4| cos(φ24) − |t5||t7| cos(φ57) + |t6||t8| cos(φ68) 〈t |�II

c4|t〉 −O�
zy′

OII
s1 |t1||t3| sin(φ13) + |t2||t4| sin(φ24) + |t5||t7| sin(φ57) + |t6||t8| sin(φ68) 〈t |�II

s1|t〉 −Px

OII
s2 |t1||t3| sin(φ13) + |t2||t4| sin(φ24) − |t5||t7| sin(φ57) − |t6||t8| sin(φ68) 〈t |�II

s2|t〉 −P�
x

OII
s3 |t1||t3| sin(φ13) − |t2||t4| sin(φ24) + |t5||t7| sin(φ57) − |t6||t8| sin(φ68) 〈t |�II

s3|t〉 −Oxy′

OII
s4 |t1||t3| sin(φ13) − |t2||t4| sin(φ24) − |t5||t7| sin(φ57) + |t6||t8| sin(φ68) 〈t |�II

s4|t〉 −O�
xy′

OIII
c1 |t1||t2| cos(φ12) + |t3||t4| cos(φ34) + |t5||t6| cos(φ56) + |t7||t8| cos(φ78) 〈t |�III

c1 |t〉 −Pz′

OIII
c2 |t1||t2| cos(φ12) + |t3||t4| cos(φ34) − |t5||t6| cos(φ56) − |t7||t8| cos(φ78) 〈t |�III

c2 |t〉 −P�
z′

OIII
c3 |t1||t2| cos(φ12) − |t3||t4| cos(φ34) + |t5||t6| cos(φ56) − |t7||t8| cos(φ78) 〈t |�III

c3 |t〉 −Oyz′

OIII
c4 |t1||t2| cos(φ12) − |t3||t4| cos(φ34) − |t5||t6| cos(φ56) + |t7||t8| cos(φ78) 〈t |�III

c4 |t〉 −O�
yz′

OIII
s1 |t1||t2| sin(φ12) + |t3||t4| sin(φ34) + |t5||t6| sin(φ56) + |t7||t8| sin(φ78) 〈t |�III

s1 |t〉 Px′

OIII
s2 |t1||t2| sin(φ12) + |t3||t4| sin(φ34) − |t5||t6| sin(φ56) − |t7||t8| sin(φ78) 〈t |�III

s2 |t〉 P�
x′

OIII
s3 |t1||t2| sin(φ12) − |t3||t4| sin(φ34) + |t5||t6| sin(φ56) − |t7||t8| sin(φ78) 〈t |�III

s3 |t〉 Oyx′

OIII
s4 |t1||t2| sin(φ12) − |t3||t4| sin(φ34) − |t5||t6| sin(φ56) + |t7||t8| sin(φ78) 〈t |�III

s4 |t〉 O�
yx′

OIV
c1 |t1||t4| cos(φ14) + |t2||t3| cos(φ23) + |t5||t8| cos(φ58) + |t6||t7| cos(φ67) 〈t |�IV

c1 |t〉 Ozz′

OIV
c2 |t1||t4| cos(φ14) + |t2||t3| cos(φ23) − |t5||t8| cos(φ58) − |t6||t7| cos(φ67) 〈t |�IV

c2 |t〉 O�
zz′

OIV
c3 |t1||t4| cos(φ14) − |t2||t3| cos(φ23) + |t5||t8| cos(φ58) − |t6||t7| cos(φ67) 〈t |�IV

c3 |t〉 Oxx′

OIV
c4 |t1||t4| cos(φ14) − |t2||t3| cos(φ23) − |t5||t8| cos(φ58) + |t6||t7| cos(φ67) 〈t |�IV

c4 |t〉 O�
xx′

OIV
s1 |t1||t4| sin(φ14) + |t2||t3| sin(φ23) + |t5||t8| sin(φ58) + |t6||t7| sin(φ67) 〈t |�IV

s1 |t〉 Oxz′

OIV
s2 |t1||t4| sin(φ14) + |t2||t3| sin(φ23) − |t5||t8| sin(φ58) − |t6||t7| sin(φ67) 〈t |�IV

s2 |t〉 O�
xz′

OIV
s3 |t1||t4| sin(φ14) − |t2||t3| sin(φ23) + |t5||t8| sin(φ58) − |t6||t7| sin(φ67) 〈t |�IV

s3 |t〉 −Ozx′

OIV
s4 |t1||t4| sin(φ14) − |t2||t3| sin(φ23) − |t5||t8| sin(φ58) + |t6||t7| sin(φ67) 〈t |�IV

s4 |t〉 −O�
zx′

OV
c1 |t1||t5| cos(φ15) + |t2||t6| cos(φ26) + |t3||t7| cos(φ37) + |t4||t8| cos(φ48) 〈t |�V

c1|t〉 −Ic

OV
c2 |t1||t5| cos(φ15) + |t2||t6| cos(φ26) − |t3||t7| cos(φ37) − |t4||t8| cos(φ48) 〈t |�V

c2|t〉 −Pc
y

OV
c3 |t1||t5| cos(φ15) − |t2||t6| cos(φ26) + |t3||t7| cos(φ37) − |t4||t8| cos(φ48) 〈t |�V

c3|t〉 −Pc
y′

OV
c4 |t1||t5| cos(φ15) − |t2||t6| cos(φ26) − |t3||t7| cos(φ37) + |t4||t8| cos(φ48) 〈t |�V

c4|t〉 −Oc
yy′

OV
s1 |t1||t5| sin(φ15) + |t2||t6| sin(φ26) + |t3||t7| sin(φ37) + |t4||t8| sin(φ48) 〈t |�V

s1|t〉 −Is

OV
s2 |t1||t5| sin(φ15) + |t2||t6| sin(φ26) − |t3||t7| sin(φ37) − |t4||t8| sin(φ48) 〈t |�V

s2|t〉 −Ps
y

OV
s3 |t1||t5| sin(φ15) − |t2||t6| sin(φ26) + |t3||t7| sin(φ37) − |t4||t8| sin(φ48) 〈t |�V

s3|t〉 −Ps
y′

OV
s4 |t1||t5| sin(φ15) − |t2||t6| sin(φ26) − |t3||t7| sin(φ37) + |t4||t8| sin(φ48) 〈t |�V

s4|t〉 −Os
yy′

OVI
c1 |t1||t7| cos(φ17) + |t2||t8| cos(φ28) + |t3||t5| cos(φ35) + |t4||t6| cos(φ46) 〈t |�VI

c1 |t〉 Pc
z

OVI
c2 |t1||t7| cos(φ17) + |t2||t8| cos(φ28) − |t3||t5| cos(φ35) − |t4||t6| cos(φ46) 〈t |�VI

c2 |t〉 −Ps
x

OVI
c3 |t1||t7| cos(φ17) − |t2||t8| cos(φ28) + |t3||t5| cos(φ35) − |t4||t6| cos(φ46) 〈t |�VI

c3 |t〉 Oc
zy′

OVI
c4 |t1||t7| cos(φ17) − |t2||t8| cos(φ28) − |t3||t5| cos(φ35) + |t4||t6| cos(φ46) 〈t |�VI

c4 |t〉 −Os
xy′

OVI
s1 |t1||t7| sin(φ17) + |t2||t8| sin(φ28) + |t3||t5| sin(φ35) + |t4||t6| sin(φ46) 〈t |�VI

s1 |t〉 Ps
z

OVI
s2 |t1||t7| sin(φ17) + |t2||t8| sin(φ28) − |t3||t5| sin(φ35) − |t4||t6| sin(φ46) 〈t |�VI

s2 |t〉 Pc
x

OVI
s3 |t1||t7| sin(φ17) − |t2||t8| sin(φ28) + |t3||t5| sin(φ35) − |t4||t6| sin(φ46) 〈t |�VI

s3 |t〉 Os
zy′

OVI
s4 |t1||t7| sin(φ17) − |t2||t8| sin(φ28) − |t3||t5| sin(φ35) + |t4||t6| sin(φ46) 〈t |�VI

s4 |t〉 Oc
xy′

OVII
c1 |t1||t6| cos(φ16) + |t2||t5| cos(φ25) + |t3||t8| cos(φ38) + |t4||t7| cos(φ47) 〈t |�VII

c1 |t〉 Pc
z′

OVII
c2 |t1||t6| cos(φ16) + |t2||t5| cos(φ25) − |t3||t8| cos(φ38) − |t4||t7| cos(φ47) 〈t |�VII

c2 |t〉 Oc
yz′

OVII
c3 |t1||t6| cos(φ16) − |t2||t5| cos(φ25) + |t3||t8| cos(φ38) − |t4||t7| cos(φ47) 〈t |�VII

c3 |t〉 Ps
x′

OVII
c4 |t1||t6| cos(φ16) − |t2||t5| cos(φ25) − |t3||t8| cos(φ38) + |t4||t7| cos(φ47) 〈t |�VII

c4 |t〉 Os
yx′
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TABLE I. (Continued.)

Observable Definition in terms of polar coordinates / 2 Bilinear form Roberts, Oed

OVII
s1 |t1||t6| sin(φ16) + |t2||t5| sin(φ25) + |t3||t8| sin(φ38) + |t4||t7| sin(φ47) 〈t |�VII

s1 |t〉 Ps
z′

OVII
s2 |t1||t6| sin(φ16) + |t2||t5| sin(φ25) − |t3||t8| sin(φ38) − |t4||t7| sin(φ47) 〈t |�VII

s2 |t〉 Os
yz′

OVII
s3 |t1||t6| sin(φ16) − |t2||t5| sin(φ25) + |t3||t8| sin(φ38) − |t4||t7| sin(φ47) 〈t |�VII

s3 |t〉 −Pc
x′

OVII
s4 |t1||t6| sin(φ16) − |t2||t5| sin(φ25) − |t3||t8| sin(φ38) + |t4||t7| sin(φ47) 〈t |�VII

s4 |t〉 −Oc
yx′

OVIII
c1 |t1||t8| cos(φ18) + |t2||t7| cos(φ27) + |t3||t6| cos(φ36) + |t4||t5| cos(φ45) 〈t |�VIII

c1 |t〉 −Oc
zz′

OVIII
c2 |t1||t8| cos(φ18) + |t2||t7| cos(φ27) − |t3||t6| cos(φ36) − |t4||t5| cos(φ45) 〈t |�VIII

c2 |t〉 Os
xz′

OVIII
c3 |t1||t8| cos(φ18) − |t2||t7| cos(φ27) + |t3||t6| cos(φ36) − |t4||t5| cos(φ45) 〈t |�VIII

c3 |t〉 −Os
zx′

OVIII
c4 |t1||t8| cos(φ18) − |t2||t7| cos(φ27) − |t3||t6| cos(φ36) + |t4||t5| cos(φ45) 〈t |�VIII

c4 |t〉 −Oc
xx′

OVIII
s1 |t1||t8| sin(φ18) + |t2||t7| sin(φ27) + |t3||t6| sin(φ36) + |t4||t5| sin(φ45) 〈t |�VIII

s1 |t〉 −Os
zz′

OVIII
s2 |t1||t8| sin(φ18) + |t2||t7| sin(φ27) − |t3||t6| sin(φ36) − |t4||t5| sin(φ45) 〈t |�VIII

s2 |t〉 −Oc
xz′

OVIII
s3 |t1||t8| sin(φ18) − |t2||t7| sin(φ27) + |t3||t6| sin(φ36) − |t4||t5| sin(φ45) 〈t |�VIII

s3 |t〉 Oc
zx′

OVIII
s4 |t1||t8| sin(φ18) − |t2||t7| sin(φ27) − |t3||t6| sin(φ36) + |t4||t5| sin(φ45) 〈t |�VIII

s4 |t〉 −Os
xx′

TABLE II. Definition of the 64 � matrices in terms of the well-known Pauli matrices in combination with the Kronecker product. The gray
shaded cells within the column “Shape-class” correspond to the nonzero matrix entries.

Γ-matrices Definition Shape-class

ΓI
1 σ3 ⊗ I2 ⊗ I2

ΓI
2 I2 ⊗ σ3 ⊗ I2

ΓI
3 I2 ⊗ I2 ⊗ σ3

ΓI
4 σ3 ⊗ σ3 ⊗ σ3

ΓI
5 I2 ⊗ σ3 ⊗ σ3

ΓI
6 σ3 ⊗ I2 ⊗ σ3

ΓI
7 σ3 ⊗ σ3 ⊗ I2

ΓI
8 I2 ⊗ I2 ⊗ I2

ΓII
c1 I2 ⊗ σ1 ⊗ I2

ΓII
c2 σ3 ⊗ σ1 ⊗ I2

ΓII
c3 I2 ⊗ σ1 ⊗ σ3

ΓII
c4 σ3 ⊗ σ1 ⊗ σ3

ΓII
s1 −I2 ⊗ σ2 ⊗ I2

ΓII
s2 −σ3 ⊗ σ2 ⊗ I2

ΓII
s3 −I2 ⊗ σ2 ⊗ σ3

ΓII
s4 −σ3 ⊗ σ2 ⊗ σ3

ΓIII
c1 I2 ⊗ I2 ⊗ σ1

ΓIII
c2 σ3 ⊗ I2 ⊗ σ1

ΓIII
c3 I2 ⊗ σ3 ⊗ σ1

ΓIII
c4 σ3 ⊗ σ3 ⊗ σ1

ΓIII
s1 −I2 ⊗ I2 ⊗ σ2

ΓIII
s2 −σ3 ⊗ I2 ⊗ σ2

ΓIII
s3 −I2 ⊗ σ3 ⊗ σ2

ΓIII
s4 −σ3 ⊗ σ3 ⊗ σ2

ΓIV
c1 I2 ⊗ σ1 ⊗ σ1

ΓIV
c2 σ3 ⊗ σ1 ⊗ σ1

ΓIV
c3 −I2 ⊗ σ2 ⊗ σ2

ΓIV
c4 −σ3 ⊗ σ2 ⊗ σ2

ΓIV
s1 −I2 ⊗ σ2 ⊗ σ1

ΓIV
s2 −σ3 ⊗ σ2 ⊗ σ1

ΓIV
s3 −I2 ⊗ σ1 ⊗ σ2

ΓIV
s4 −σ3 ⊗ σ1 ⊗ σ2

Γ-matrices Definition Shape-class

ΓV
c1 σ1 ⊗ I2 ⊗ I2

ΓV
c2 σ1 ⊗ σ3 ⊗ I2

ΓV
c3 σ1 ⊗ I2 ⊗ σ3

ΓV
c4 σ1 ⊗ σ3 ⊗ σ3

ΓV
s1 −σ2 ⊗ I2 ⊗ I2

ΓV
s2 −σ2 ⊗ σ3 ⊗ I2

ΓV
s3 −σ2 ⊗ I2 ⊗ σ3

ΓV
s4 −σ2 ⊗ σ3 ⊗ σ3

ΓVI
c1 σ1 ⊗ σ1 ⊗ I2

ΓVI
c2 −σ2 ⊗ σ2 ⊗ I2

ΓVI
c3 σ1 ⊗ σ1 ⊗ σ3

ΓVI
c4 −σ2 ⊗ σ2 ⊗ σ3

ΓVI
s1 −σ2 ⊗ σ1 ⊗ I2

ΓVI
s2 −σ1 ⊗ σ2 ⊗ I2

ΓVI
s3 −σ2 ⊗ σ1 ⊗ σ3

ΓVI
s4 −σ1 ⊗ σ2 ⊗ σ3

ΓVII
c1 σ1 ⊗ I2 ⊗ σ1

ΓVII
c2 σ1 ⊗ σ3 ⊗ σ1

ΓVII
c3 −σ2 ⊗ I2 ⊗ σ2

ΓVII
c4 −σ2 ⊗ σ3 ⊗ σ2

ΓVII
s1 −σ2 ⊗ I2 ⊗ σ1

ΓVII
s2 −σ2 ⊗ σ3 ⊗ σ1

ΓVII
s3 −σ1 ⊗ I2 ⊗ σ2

ΓVII
s4 −σ1 ⊗ σ3 ⊗ σ2

ΓVIII
c1 σ1 ⊗ σ1 ⊗ σ1

ΓVIII
c2 −σ2 ⊗ σ2 ⊗ σ1

ΓVIII
c3 −σ2 ⊗ σ1 ⊗ σ2

ΓVIII
c4 −σ1 ⊗ σ2 ⊗ σ2

ΓVIII
s1 −σ2 ⊗ σ1 ⊗ σ1

ΓVIII
s2 −σ1 ⊗ σ2 ⊗ σ1

ΓVIII
s3 −σ1 ⊗ σ1 ⊗ σ2

ΓVIII
s4 σ2 ⊗ σ2 ⊗ σ2
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FIG. 2. Examples of graph topologies. Only three out of 2520
unique cycle graphs with eight nodes are shown.

In a second step, all possible edge configurations which
yield a complete set of observables are constructed. An exam-
ple is shown in Fig. 1. This is done for each unique topology.
The total number of possible edge configurations can be cal-
culated by

∑N
k=1

(N
k

)
for all odd k � N .

The final step involves the mapping from bilinear forms
to the actual observables. Referring again to the example in
Fig. 1, the overall question is which combinations of ob-
servables can be solely described by these bilinear products
(given that all amplitudes are known)? Considering Table I,
the following relations are evident:

sin (φ12) 	→ {
OIII

s1 ,OIII
s2 ,OIII

s3 ,OIII
s4

}
, (6)

sin (φ34) 	→ {
OIII

s1 ,OIII
s2 ,OIII

s3 ,OIII
s4

}
, (7)

sin (φ56) 	→ {
OIII

s1 ,OIII
s2 ,OIII

s3 ,OIII
s4

}
, (8)

sin (φ78) 	→ {
OIII

s1 ,OIII
s2 ,OIII

s3 ,OIII
s4

}
(9)

sin (φ14) 	→ {
OIV

s1 ,OIV
s2 ,OIV

s3 ,OIV
s4

}
, (10)

sin (φ58) 	→ {
OIV

s1 ,OIV
s2 ,OIV

s3 ,OIV
s4

}
, (11)

sin (φ27) 	→ {
OVIII

s1 ,OVIII
s2 ,OVIII

s3 ,OVIII
s4

}
, (12)

cos (φ36) 	→ {
OVIII

c1 ,OVIII
c2 ,OVIII

c3 ,OVIII
c4

}
. (13)

Thus, the complete set of observables which corresponds to
the graph configuration shown in Fig. 1 is

{
OI

1,OI
2,OI

3,OI
4,OI

5,OI
6,OI

7,OI
8,

OIII
s1 ,OIII

s2 ,OIII
s3 ,OIII

s4 ,OIV
s1 ,OIV

s2 ,OIV
s3 ,OIV

s4 ,

OVIII
s1 ,OVIII

s2 ,OVIII
s3 ,OVIII

s4 ,OVIII
c1 ,OVIII

c2 ,OVIII
c3 ,OVIII

c4

}
. (14)

In general one needs to add the observables which are solely
described by moduli in order to fix the moduli of the complex

TABLE III. The 64 observables are grouped into eight categories
according to the polarization needed to measure these observables
(beam B, target T , and recoil R). The notation used in the origi-
nal paper of Roberts and Oed [5] is used for the observables. The
observable I0 corresponds to the unpolarized cross section.

Category Subcategory Observables

I0

B Bl Is, Ic

B� I�

T Px, Py, Pz

R Px′ , Py′ , Pz′

BT BlT Ps
x, Ps

y, Ps
z, Pc

x, Pc
y, Pc

z

B�T P�
x , P�

y , P�
z

BR BlR Ps
x′ , Ps

y′ , Ps
z′ , Pc

x′ , Pc
y′ , Pc

z′
B�R P�

x′ , P�
y′ , P�

z′
T R Oxx′ ,Oxy′ ,Oxz′ ,Oyx′ ,Oyy′ ,Oyz′ ,Ozx′

Ozy′ ,Ozz′

BT R BlT R Os
xx′ ,Os

xy′ ,Os
xz′ ,Os

yx′ ,Os
yy′ ,Os

yz′ ,Os
zx′

Os
zy′ ,Os

zz′
Oc

xx′ ,Oc
xy′ ,Oc

xz′ ,Oc
yx′ ,Oc

yy′ ,Oc
yz′ ,Oc

zx′
Oc

zy′ ,Oc
zz′

B�T R O�
xx′ ,O�

xy′ ,O�
xz′ ,O�

yx′ ,O�
yy′ ,O�

yz′ ,O�
zx′

O�
zy′ ,O�

zz′

amplitudes ti (see Sec. II). In this case, these are the group I
observables, as shown in Table I. Thus, Eq. (14) accounts for
a total of 24 observables.

The same result can be obtained by using the relation:

t∗
j ti = 1

8

64∑

α=1

�α
i jOα, (15)

where α is an index running through the observables listed in
Table I and the � matrices as listed in Table II. Equation (15)
is derived by using Oα = ∑8

i, j=1 t∗
i �α

i jt j in combination with

the completeness relation of the � matrices
∑64

α=1 �α
ai�

α
jb =

8δabδi j .

V. DATABASE FOR TWO PSEUDOSCALAR MESON
PHOTOPRODUCTION

As already mentioned, 64 observables can be measured
for two pseudoscalar meson photoproduction using the full
three-body kinematics of the reaction. These observables can
be organized into three groups: single, double, and triple
polarization observables, which require either the use of a
polarized beam B, a polarized target T , a recoil polarimeter
R, or a combination of the three. Table III gives an overview
of all the observables of each category. In addition to the
unpolarized cross section I0, there are three observables in
each single polarization observable category (B, T ,R), nine
in each double polarization observable category (BT , BR,
and T R) and 27 observables in the triple polarization observ-
able category (BT R).

The description of the full three-body kinematics requires
five independent variables [14]. In this context, two planes,
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the reaction plane and the decay plane, are often used [14,15].
While the reaction plane is defined by the incoming photon
and one of the outgoing particles, the decay plane is spanned
by the other two outgoing particles. The angle between the
reaction and the decay plane is called φ∗. Integrating over
φ∗ makes it possible to treat the three-body final state as a
two-body final state, resulting in a reduced number of observ-
ables. In this case, the observables correspond to observables
known from single meson photoproduction [7], e.g., category
B reduces to Ic = 	, category T to Py = T , category R to
Py′ = P (this observable can be also measured as a double
polarization observable −Pc

y [5]), and category BT to Ps
x = H ,

Ps
z = G, P�

x = F , and P�
z = E [5].

In the case of single pseudoscalar meson photoproduction,
quite a lot measurements were performed to determine single
and double polarization observables. An extensive overview
over the performed measurements, on the basis of the SAID

database [16], was brought together recently by Ireland,
Pasyuk, and Strakovsky [17].

A similar database does not exist yet for double pseu-
doscalar meson photoproduction. Thus, for the first time,
an extensive overview of measurements of polarization ob-
servables for double pseudoscalar meson photoproduction is
presented in Table IV.

By far the most measurements where performed for the re-
action γ p → pπ0π0 because the reaction has the least amount
of nonresonant background amplitude contributions compared
with other isospin channels [1]. The most common observable
is the unpolarized cross section I0, followed by the beam
asymmetries Is, Ic, and I�. Even a few double polarization
observables in quasi-two-body kinematics were measured,
i.e., E and H . Until now, no triple polarization observables
were extracted, as it is experimentally challenging to measure
the polarization of a recoiling particle [18,19] in addition to a
polarized beam and a polarized target.

However, a few words of caution are in order. One might
get the impression of a huge existing database with plenty of
data. It should be kept in mind that the data entries span more
than half a century, thus including data with lower-performing
experimental setups in comparison with the latest published
polarization observables data. The collection consists mainly
of measurements concerning the unpolarized cross section I0

(roughly 60%). Taken as a whole, the current database is not
sufficient for an experimental verification of a complete exper-
iment analysis. This issue is further discussed in Sec. VIII for
experimentalists. But also for theoreticians using phenomeno-
logical models to fit and interpret the data, it is challenging
and necessary to check the different data sets for consistency
between different experiments and to deal with the systematic
uncertainties of the data.

VI. RESULTS FOR N = 8

For N = 8 one has 2520 unique cycle graphs, each with
128 unique edge configurations, as explained in Sec. IV.
Hence, there exist in total 128 × 2520 = 322 560 edge config-
urations which yield a complete set of observables. However,
the resulting sets are not all linearly independent.

The whole algorithm was implemented in Mathematica
[56], but can just as easily be implemented in other languages
such as JULIA [57]. Filtering out the redundant sets, one is
left with 5964 unique sets of observables. The length of the
sets varies between the topologies as well as between different
edge configurations. To be exact, it varies between a total of
24 and 40 observables.

Without loss of generality, the further analysis focuses on
the 392 distinct sets with 24 observables. A numerical anal-
ysis was performed which showed that these sets are indeed
complete. The applied algorithm is described in Appendix.

Further characteristics of the minimal sets according to
Moravcsik involve the following:

(i) Each set inhibits at least five triple polarization observ-
ables.

(ii) The sets are constructed from four or five different
shape classes.

However, these sets are slightly overcomplete since each
observable depends on more than one bilinear product.
According to current knowledge [11,13], a truly minimal
complete set consists of 2N observables. Thus the task re-
mains to reduce the slightly overcomplete sets by eight
observables while retaining completeness.

VII. REDUCTION TO MINIMAL SETS OF 2N

A. Numerical calculation

The smallest complete sets, which emerge from the modi-
fied version of Moravcsik’s theorem, have a length of 24 (for
N = 8). Eight of these observables cannot be omitted, namely,
the group I observables, as discussed in Sec. IV. From the
remaining 16 observables one constructs all possible subsets
containing eight observables, which amounts to

(16
8

) = 12 870
distinct sets.

In principle this is done for all sets with a length of
24, leading to just over five million minimal, complete set
candidates. This number can be further reduced by ≈0.7%,
by noting that sets containing only one or two distinct ob-
servable groups (apart from group I) do not correspond to
a connected graph and thus do not form a complete set.
There are also a few cases in which three distinct observable
groups (apart from group I) are not able to form a connected
graph, i.e., {II,III,IV}, {II,V,VI}, {II,VII,VIII}, {III,V,VII},
{III,VI,VIII}, {IV,V,VIII}, and {IV,VI,VII}.

However, due to the enormous number of possible candi-
date sets, just a minor excerpt was analyzed for this paper. The
sets of interest are checked for completeness via a numerical
analysis. The employed algorithm is described in Appendix.

So far, 4185 unique truly minimal sets of length 2N = 16
have been found. There are two major differences to the
slightly overcomplete sets with 24 observables. On the one
hand, all sets found are constructed from exactly four different
shape classes. On the other hand, truly minimal complete
sets exist with a minimal number of triple polarization ob-
servables, namely only OI

4 = O�
yy′ from group I. Hence, this

observable has to be included in every set as explained in
Sec. II.
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TABLE IV. A collection of polarization observable measurements for two pseudoscalar meson photoproduction. Hint: We do not
distinguish the datasets according to the kinematical variable and whether is differential or total cross-section data. Further details can be
found in the cited references.

Observable Energy range Elab
γ Facility Reference Year of publication

γ p → pπ 0π 0

I0 309–792 MeV TAPS at MAMI Härter et al. [20] 1997
I0 309–820 MeV TAPS at MAMI Wolf et al. [21] 2000
I0 200–820 MeV TAPS at MAMI Kleber et al. [22] 2000
I0 300–425 MeV TAPS at MAMI Kotulla et al. [23] 2004
I0 309–800 MeV CB/TAPS at MAMI Zehr et al. [24] 2012
I0 309–1400 MeV CB/TAPS at MAMI Kashevarov et al. [25] 2012
I0 432–1374 MeV CB/TAPS at MAMI Dieterle et al. [26] 2015
I0 400–800 MeV DAPHNE at MAMI Braghieri et al. [27] 1995
I0 400–800 MeV DAPHNE at MAMI Ahrens et al. [28] 2005
I0 309–820 MeV TAPS at MAMI, CB at ELSA Sarantsev et al. [29] 2008
I0 400–1300 MeV CB at ELSA Thoma et al. [30] 2008
I0 ≈750–2500 MeV CBELSA/TAPS at ELSA Thiel et al. [31] 2015
I0, 	 600–2500 MeV CB/TAPS at ELSA Sokhoyan et al. [1] 2015
I0, 	 650–1450 MeV GRAAL Assafiri et al. [32] 2003
	 650–1450 MeV CB at ELSA Thoma et al. [30] 2008
I� 560–810 MeV CB/TAPS at MAMI Krambrich et al. [33] 2009
I� ≈600–1400 MeV CB/TAPS at MAMI Oberle et al. [34] 2013
I� 550–820 MeV CB/TAPS at MAMI Zehr et al. [24] 2012
E , σ1/2, σ3/2 ≈431–1455 MeV CB/TAPS at MAMI Dieterle et al. [35] 2020
Px, Py, T, H, P 650–2600 MeV CBELSA/TAPS at ELSA Seifen et al. [14] 2020
Ic, Is 970–1650 MeV CB/TAPS at ELSA Sokhoyan et al. [1] 2015

γ p → pπ+π−

I0 400–800 MeV DAPHNE at MAMI Braghieri et al. [27] 1995
I0 400–800 MeV DAPHNE at MAMI Ahrens et al. [36] 2007
I0 370–940 MeV LNF Carbonara et al. [37] 1976
I0 800–1100 MeV NKS at LNS Hirose et al. [38] 2009
I0 500–4800 MeV CEA Crouch et al. [39] 1964
I0 ≈560–2560 MeV SAPHIR at ELSA Wu et al. [40] 2005
I0 ≈895–1663 MeV CLAS at JLAB Golovatch et al. [41] 2019
I� 575–815 MeV CB/TAPS at MAMI Krambrich et al. [33] 2009
I� 502–2350 MeV CLAS at JLAB Strauch et al. [42] 2005
I� 1100–5400 MeV CLAS at JLAB Badui et al. [43] 2016

γ p → pπ 0η

I0 ≈930–2500 MeV CB/TAPS at ELSA Gutz et al. [15] 2014
I0 ≈1070–2860 MeV CB at ELSA Horn et al. [44] 2008
I0 950–1400 MeV CB/TAPS at MAMI Kashevarov et al. [45] 2009
I0 1000–1150 MeV GeV-γ at LNS Nakabayashi et al. [46] 2006
I0, 	 ≈930–1500 MeV GRAAL Ajaka et al. [47] 2008
	 970–1650 MeV CBELSA/TAPS at ELSA Gutz et al. [48] 2008
	 ≈1070–1550 MeV CB/TAPS at ELSA Gutz et al. [15] 2014
Ic, Is 970–1650 MeV CBELSA/TAPS at ELSA Gutz et al. [49] 2010
Ic, Is ≈1081–1550 MeV CB/TAPS at ELSA Gutz et al. [15] 2014

γ p → nπ+π 0

I0 300–820 MeV TAPS at MAMI Langgärtner et al. [50] 2001
I0 ≈325–800 MeV CB/TAPS at MAMI Zehr et al. [24] 2012
I0 400–800 MeV DAPHNE at MAMI Braghieri et al. [27] 1995
I0 400–800 MeV DAPHNE at MAMI Ahrens et al. [51] 2003
I� 520–820 MeV CB/TAPS at MAMI Krambrich et al. [33] 2009
I� ≈550–820 MeV CB/TAPS at MAMI Zehr et al. [24] 2012

γ n → nπ 0π 0

I� ≈600–1400 MeV CB/TAPS at MAMI Oberle et al. [34] 2013
I0, 	 ≈600–1500 MeV GRAAL Ajaka et al. [52] 2007
I0 ≈430–1371 MeV CB/TAPS at MAMI Dieterle et al. [26] 2015
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TABLE IV. (Continued.)

Observable Energy range Elab
γ Facility Reference Year of publication

γ n → pπ−π 0

I0 ≈370–940 MeV LNF Carbonara et al. [37] 1976
I0 ≈450–800 MeV DAPHNE at MAMI Zabrodin et al. [53] 1997
I0 ≈500–800 MeV DAPHNE at MAMI Zabrodin et al. [54] 1999

γ n → nπ+π−

I0 370–940 MeV LNF Carbonara et al. [37] 1976
γ p → pK+K−

I0 3000–3800 MeV CLAS at JLAB Lombardo et al. [55] 2018
I� 1100–5400 MeV CLAS at JLAB Badui et al. [43] 2016

In total, 69 sets with only one triple polarization observable
have been found. All of them are shown in Table V. Hence,
these are the most promising ones when it comes to the exper-
imental verification of Moravcsik’s theorem.

B. Algebraic phase-fixing method

In the following, the phase-fixing approach first developed
by Nakayama in a treatment of single-meson photoproduction
(i.e., for N = 4 amplitudes) [8] is adapted to two meson pho-
toproduction. Thus it is possible, although tedious, to derive
minimal complete sets of observables with algebraic methods.

Since the full mathematical derivation is quite exten-
sive, all mathematical details are given in the Supplemental
Material [58].

One starts by combining, i.e., adding or subtracting, the
observables within one shape-class in such a way that the
result only depends on two relative phases. By doing this, a
“decoupled” shape-class is formed. See also Table VI.

In that way, one establishes a mathematical similarity with
the shape-classes in single-meson photoproduction [8,13]. For
shape-class II this would be

IIa : OII
s1 + OII

s2,OII
s3 + OII

s4,OII
c1 + OII

c2,OII
c3 + OII

c4, (16)

IIb : OII
s1 − OII

s2,OII
s3 − OII

s4,OII
c1 − OII

c2,OII
c3 − OII

c4. (17)

The algebraic approach shown here works out only in case
the observables are selected from very particular combina-
tions of four decoupled shape-classes.

More precisely, it has to be possible to establish a “consis-
tency relation” [cf. Eq. 1] among the relative phases belonging
to all the involved decoupled shape-classes. A necessary and
sufficient condition for this can be formulated in terms of the
graph constructed from the relative phases (cf. Sec. II): the
latter graph has to be a cycle graph.

There exist 40 possible combinations of four decoupled
shape classes fulfilling these requirements and which have the
following general form:

{Xa, Xb, Y, Z}. (18)

Two examples are shown in Fig. 3, and a complete list can
be found in the Supplemental Material [58]. The following
derivation holds for all combinations of shape-classes of the
form given in Eq. (18).

The following discussion focuses on the example case

{IIa, IIb, VIb, VIIIa}. (19)

For the remaining 39 cases, the derivation proceeds analo-
gously.

For the example case (19), the consistency relation reads
(cf. Table VI)

φ13 + φ24︸ ︷︷ ︸
IIa

+φ57 + φ68︸ ︷︷ ︸
IIb

= φ18 + φ27︸ ︷︷ ︸
VIIIa

−φ35 − φ46︸ ︷︷ ︸
VIb

. (20)

According to Nakayama [8], the “phase-fixing” procedure
starts by picking a particular combination of observables from
the considered combination of shape-classes, i.e., from Eq. 19.
In general, one picks two observables from shape-class Xa,
two from Xb and one observable each from two different
shape-classes selected from the 12 remaining. For the case
at hand, these are two observables from shape-class IIa, two
from IIb, one from VIb, as well as one from VIIIa. For
any selection of observables which has this pattern, one has
to work out the remaining discrete phase-ambiguities which
exist for the associated relative phases. For each combination
of possible discrete ambiguities, the consistency relation (20)
then has to be evaluated. In case the consistency relations of
such a combination are all linearly independent [8,13], the
considered set of observables is complete.

The way forward is analogous to that done in Ref. [8]. A
detailed description on how to determine all possible discrete

1

3

5

72

4

6

8

{IIa,IIb,VIb,VIIIa}

1

2

6

7

3

4

8

5
{Va,Vb,IIIa,IVb}

FIG. 3. Examples are shown for graph topologies which imply
the possibility for a consistency relation (cf. the relative phases listed
in Table VI).
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TABLE V. Truly minimal sets consisting of 2N = 16
observables with the minimal number of triple polarization
observables, i.e., just OI

4 = O�
yy′ . Group I observables

{I�, Py, Py′ ,O�
yy′ ,Oyy′ , P�

y′ , P�
y , I0} are not explicitly shown

because they are common to all complete sets. The notation used is
analogous to that of Roberts and Oed [5].

(1) Pz Px′ Pz′ Ps
x Pc

z P�
z P�

x′ P�
z′

(2) Pz Ps
x Pc

z P�
z P�

x′ P�
z′ Oyx′ Oyz′

(3) Pz Ps
x Pc

z P�
x′ P�

z′ Oyx′ Oyz′ Ozy′

(4) Px′ Pz′ Ps
x Pc

z P�
z P�

x′ P�
z′ Ozy′

(5) Ps
x Pc

z P�
z P�

x′ P�
z′ Oyx′ Oyz′ Ozy′

(6) Px Pz Pz′ Ps
x P�

x Pc
z P�

z P�
z′

(7) Px Pz Pz′ Ps
x Pc

z P�
z′ Oxy′ Ozy′

(8) Px Pz Pz′ Ps
x Pc

z Oxy′ Oyz′ Ozy′

(9) Pz′ Ps
x P�

x Pc
z P�

z P�
z′ Oxy′ Ozy′

(10) Pz′ Ps
x P�

x Pc
z P�

z Oxy′ Oyz′ Ozy′

(11) Ps
x P�

x Pc
z P�

z P�
z′ Oxy′ Oyz′ Ozy′

(12) Pz Pc
x Ps

x Pc
z Ps

z P�
z P�

z′ Oyz′

(13) Pz Pc
x Ps

x Pc
z Ps

z P�
z′ Oyz′ Ozy′

(14) Pc
x Ps

x Pc
z Ps

z P�
z P�

z′ Oyz′ Ozy′

(15) Px Pz Px′ Ps
x P�

x Pc
z P�

z P�
x′

(16) Px Pz Px′ Ps
x Pc

z P�
x′ Oxy′ Ozy′

(17) Px Pz Px′ Ps
x Pc

z Oxy′ Oyx′ Ozy′

(18) Px′ Ps
x P�

x Pc
z P�

z P�
x′ Oxy′ Ozy′

(19) Px′ Ps
x P�

x Pc
z P�

z Oxy′ Oyx′ Ozy′

(20) Ps
x P�

x Pc
z P�

z P�
x′ Oxy′ Oyx′ Ozy′

(21) Pz Px′ Pz′ Pc
x Ps

z P�
z P�

x′ P�
z′

(22) Pz Pc
x Ps

z P�
z P�

x′ P�
z′ Oyx′ Oyz′

(23) Pz Px′ Pz′ Pc
x Ps

z Oyx′ Oyz′ Ozy′

(24) Pz Pc
x Ps

z P�
x′ P�

z′ Oyx′ Oyz′ Ozy′

(25) Px′ Pz′ Pc
x Ps

z P�
z P�

x′ P�
z′ Ozy′

(26) Pc
x Ps

z P�
z P�

x′ P�
z′ Oyx′ Oyz′ Ozy′

(27) Pz Pc
x Ps

x Pc
z Ps

z P�
z P�

x′ Oyx′

(28) Pz Pc
x Ps

x Pc
z Ps

z P�
x′ Oyx′ Ozy′

(29) Pc
x Ps

x Pc
z Ps

z P�
z P�

x′ Oyx′ Ozy′

(30) Px Pz Pz′ Pc
x P�

x Ps
z P�

z P�
z′

(31) Px Pz Pz′ Pc
x Ps

z P�
z′ Oxy′ Ozy′

(32) Px Pz Pz′ Pc
x Ps

z Oxy′ Oyz′ Ozy′

(33) Pz′ Pc
x P�

x Ps
z P�

z P�
z′ Oxy′ Ozy′

(34) Pz′ Pc
x P�

x Ps
z P�

z Oxy′ Oyz′ Ozy′

(35) Pc
x P�

x Ps
z P�

z P�
z′ Oxy′ Oyz′ Ozy′

(36) Px Px′ Pz′ Ps
x P�

x Pc
z P�

x′ P�
z′

(37) Px Ps
x P�

x Pc
z P�

x′ P�
z′ Oyx′ Oyz′

(38) Px Ps
x Pc

z P�
x′ P�

z′ Oxy′ Oyx′ Oyz′

(39) Px′ Pz′ Ps
x P�

x Pc
z P�

x′ P�
z′ Oxy′

(40) Ps
x P�

x Pc
z P�

x′ P�
z′ Oxy′ Oyx′ Oyz′

(41) Px Pz Px′ Pc
x P�

x Ps
z P�

z P�
x′

(42) Px Pz Px′ Pc
x Ps

z P�
x′ Oxy′ Ozy′

(43) Px Pz Px′ Pc
x Ps

z Oxy′ Oyx′ Ozy′

(44) Px′ Pc
x P�

x Ps
z P�

z P�
x′ Oxy′ Ozy′

(45) Px′ Pc
x P�

x Ps
z P�

z Oxy′ Oyx′ Ozy′

(46) Pc
x P�

x Ps
z P�

z P�
x′ Oxy′ Oyx′ Ozy′

TABLE V. (Continued.)

(47) Px Pc
x Ps

x P�
x Pc

z Ps
z P�

z′ Oyz′

(48) Px Pc
x Ps

x Pc
z Ps

z P�
z′ Oxy′ Oyz′

(49) Pc
x Ps

x P�
x Pc

z Ps
z P�

z′ Oxy′ Oyz′

(50) Px Pz P�
x P�

z Pc
x′ Ps

z′ Oxz′ Ozx′

(51) Px Pz Pc
x′ Ps

z′ Oxy′ Oxz′ Ozx′ Ozy′

(52) P�
x P�

z Pc
x′ Ps

z′ Oxy′ Oxz′ Ozx′ Ozy′

(53) I
c

Px P�
x Pc

y Oxx′ Oxz′ Ozx′ Ozz′

(54) I
c

Px P�
x Pc

y′ Oxx′ Oxz′ Ozx′ Ozz′

(55) Px P�
x Pc

y Pc
y′ Oxx′ Oxz′ Ozx′ Ozz′

(56) I
c

Px Pc
y Oxx′ Oxy′ Oxz′ Ozx′ Ozz′

(57) I
c

Px Pc
y′ Oxx′ Oxy′ Oxz′ Ozx′ Ozz′

(58) Px Pc
y Pc

y′ Oxx′ Oxy′ Oxz′ Ozx′ Ozz′

(59) I
c

P�
x Pc

y Oxx′ Oxy′ Oxz′ Ozx′ Ozz′

(60) P�
x Pc

y Pc
y′ Oxx′ Oxy′ Oxz′ Ozx′ Ozz′

(61) I
c

Px P�
x Pc

x′ Ps
x′ Pc

y′ Pc
z′ Ps

z′

(62) Px P�
x Pc

y Pc
x′ Ps

x′ Pc
y′ Pc

z′ Ps
z′

(63) I
c

Px Pc
y Pc

x′ Ps
x′ Pc

z′ Ps
z′ Oxy′

(64) I
c

P�
x Pc

y Pc
x′ Ps

x′ Pc
z′ Ps

z′ Oxy′

(65) I
c

P�
x Pc

x′ Ps
x′ Pc

y′ Pc
z′ Ps

z′ Oxy′

(66) P�
x Pc

y Pc
x′ Ps

x′ Pc
y′ Pc

z′ Ps
z′ Oxy′

(67) I
c

Is Pc
y Ps

y Pc
x′ Ps

z′ Oxz′ Ozx′

(68) I
c

Is Pc
x′ Pc

y′ Ps
y′ Ps

z′ Oxz′ Ozx′

(69) Pc
y Ps

y Pc
x′ Pc

y′ Ps
y′ Ps

z′ Oxz′ Ozx′

ambiguities and determining whether a set of consistency re-
lations is linear independent can be found in the Supplemental
Material [58].

The result for the discussed example can be found in
Table VII. The results shown come only from considering
the left side of Eq. 20. In general, the determination of the
discrete ambiguities of the left side is easier than that of
the right side. So, theoretically, even more combinations are
possible. Unfortunately the discussed example (19) does not
yield minimal complete sets with only one triple polarization
observable. Other combination of shape classes may yield the
desired result where the only triple polarization observable is
contained in the diagonal shape class.

TABLE VI. The 14 decoupled shape-classes IIa, IIb, ..., VIIIa,
VIIIb are listed together with their corresponding pairs of relative
phases.

IIa −→ {φ13, φ24} IIb −→ {φ57, φ68}
IIIa −→ {φ12, φ34} IIIb −→ {φ56, φ78}
IVa −→ {φ14, φ23} IVb −→ {φ58, φ67}
Va −→ {φ15, φ26} Vb −→ {φ37, φ48}
VIa −→ {φ17, φ28} VIb −→ {φ35, φ46}
VIIa −→ {φ16, φ25} VIIb −→ {φ38, φ47}
VIIIa −→ {φ18, φ27} VIIIb −→ {φ36, φ45}
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TABLE VII. Truly minimal complete sets, consisting of 2N =
16 observables, obtained for the example discussed in Sec. VII B.
The group I observables {I�, Py, Py′ ,O�

yy′ ,Oyy′ , P�
y′ , P�

y , I0} are not
explicitly shown because they are common to all complete sets. The
notation used is analogous to that used by Roberts and Oed [5].

Px Pz P�
x P�

z Ps
z Pc

x Os
zz′ Oc

xz′

Px Pz P�
x P�

z Ps
z Pc

x Oc
zx′ Os

xx′

Px Pz P�
x P�

z Ps
z Pc

x Oc
zz′ Os

xz′

Px Pz P�
x P�

z Ps
z Pc

x Os
zx′ Oc

xx′

Px Pz P�
x P�

z Pc
z Ps

x Os
zz′ Oc

xz′

Px Pz P�
x P�

z Pc
z Ps

x Oc
zx′ Os

xx′

Px Pz P�
x P�

z Pc
z Ps

x Oc
zz′ Os

xz′

Px Pz P�
x P�

z Pc
z Ps

x Os
zx′ Oc

xx′

Px Pz P�
x P�

z Os
zy′ Oc

xy′ Os
zz′ Oc

xz′

Px Pz P�
x P�

z Os
zy′ Oc

xy′ Oc
zx′ Os

xx′

Px Pz P�
x P�

z Os
zy′ Oc

xy′ Oc
zz′ Os

xz′

Px Pz P�
x P�

z Os
zy′ Oc

xy′ Os
zx′ Oc

xx′

Px Pz P�
x P�

z Oc
zy′ Os

xy′ Os
zz′ Oc

xz′

Px Pz P�
x P�

z Oc
zy′ Os

xy′ Oc
zx′ Os

xx′

Px Pz P�
x P�

z Oc
zy′ Os

xy′ Oc
zz′ Os

xz′

Px Pz P�
x P�

z Oc
zy′ Os

xy′ Os
zx′ Oc

xx′

Ps
z Pc

x Oxy′ Ozy′ O�
xy′ O�

zy′ Os
zz′ Oc

xz′

Ps
z Pc

x Oxy′ Ozy′ O�
xy′ O�

zy′ Oc
zx′ Os

xx′

Ps
z Pc

x Oxy′ Ozy′ O�
xy′ O�

zy′ Oc
zz′ Os

xz′

Ps
z Pc

x Oxy′ Ozy′ O�
xy′ O�

zy′ Os
zx′ Oc

xx′

Pc
z Ps

x Oxy′ Ozy′ O�
xy′ O�

zy′ Os
zz′ Oc

xz′

Pc
z Ps

x Oxy′ Ozy′ O�
xy′ O�

zy′ Oc
zx′ Os

xx′

Pc
z Ps

x Oxy′ Ozy′ O�
xy′ O�

zy′ Oc
zz′ Os

xz′

Pc
z Ps

x Oxy′ Ozy′ O�
xy′ O�

zy′ Os
zx′ Oc

xx′

Oxy′ Ozy′ O�
xy′ O�

zy′ Os
zy′ Oc

xy′ Os
zz′ Oc

xz′

Oxy′ Ozy′ O�
xy′ O�

zy′ Os
zy′ Oc

xy′ Oc
zx′ Os

xx′

Oxy′ Ozy′ O�
xy′ O�

zy′ Os
zy′ Oc

xy′ Oc
zz′ Os

xz′

Oxy′ Ozy′ O�
xy′ O�

zy′ Os
zy′ Oc

xy′ Os
zx′ Oc

xx′

Oxy′ Ozy′ O�
xy′ O�

zy′ Oc
zy′ Os

xy′ Os
zz′ Oc

xz′

Oxy′ Ozy′ O�
xy′ O�

zy′ Oc
zy′ Os

xy′ Oc
zx′ Os

xx′

Oxy′ Ozy′ O�
xy′ O�

zy′ Oc
zy′ Os

xy′ Oc
zz′ Os

xz′

Oxy′ Ozy′ O�
xy′ O�

zy′ Oc
zy′ Os

xy′ Os
zx′ Oc

xx′

VIII. IMPLICATIONS FOR EXPERIMENTALISTS

The experimental verification of complete sets, in the
framework of single pseudoscalar meson photoproduction,
was studied, for example, by Ireland [9] and Vrancx et al.
[59]. They concluded that, as soon as the data have a finite
measurement uncertainty, it might not be possible to deter-
mine unique solutions for the amplitudes in case one uses a
mathematical, minimal complete set of observables. It is be-
lieved that additional observables could resolve the ambiguity.
Thus it is important to measure more than 16 observables [9].

Observables which are relatively easy to measure rank in
the categories B, T , BT because they do not require a recoil

polarimeter. Even though they form a group of 16 observables,
they do not form a complete set, which was verified numer-
ically in this study. The measurement of some well-chosen
observables from the categories R, BR, T R, and BT R is
essential. Out of the 69 possible complete sets that require the
measurement of only one triple polarization observable and
which are listed in Table V, the sets (6), (12), (15), (27), (30),
(41), and (47) contain the minimal number of recoil polar-
ization observables, e.g., the set (15) contains the following
observables:

{
I�, Py, Py′ ,O�

yy′ ,Oyy′ , P�
y′ , P�

y , I0, Px, Pz, Px′ , Ps
x,

P�
x , Pc

z, P�
z , P�

x′
}
. (21)

Data exist for eight of these observables [I0, I�, Px, Py, Py′ ,
Oyy′ (= −Ic), Ps

x, P�
z ] for the pπ0π0 final state, albeit not hav-

ing a perfect overlap of the energy and angular ranges covered
by the different data sets (see Table IV). The remaining eight
observables could be measured in the future in three different
experiments using a linearly polarized photon beam with a
longitudinally polarized target (Pz, Pc

z), using a circularly po-
larized photon beam and a transversely polarized target (P�

x ,
P�

y ), and by employing a recoil polarimeter in addition to the
latter configuration, the observables Px′ , P�

x′ , P�
y′ , and O�

yy′ can
be obtained as well.

IX. CONCLUSION AND OUTLOOK

Within this paper, the problem of finding complete sets
for two pseudoscalar meson photoproduction was studied.
For this purpose, a slightly modified version of Moravcsik’s
theorem was applied. This method is capable of extracting
complete sets of observables in a totally automated manner.
The automation capability, easy accessibility, as well as the
adaptability for reactions with arbitrary N are the strengths of
Moravcsik’s theorem. However, it turns out that the resulting
sets from Moravcsik are slightly overcomplete since each
observable depends on more than one bilinear product. For
this reason, a numerical- as well as an algebraic method are
discussed in order to reduce these sets to minimal complete
sets containing 2N = 16 observables. The characteristics of
the minimal sets are discussed. Finally, 69 minimal complete
sets containing the minimal number of triple polarization
observables, namely only one, are presented. From these sub-
sets in combination with the extensive overview of already
performed measurements in two pseudoscalar meson pho-
toproduction, the most promising set of observables, which
could be measured in the near future, is presented.

Further studies could be performed on how Moravcsik’s
theorem should be adapted in order to yield directly minimal
complete sets. This would decrease the numerical effort enor-
mously and would make the theorem even more accessible.

014607-10



MINIMAL COMPLETE SETS FOR … PHYSICAL REVIEW C 103, 014607 (2021)

ACKNOWLEDGMENTS

The authors would like to thank Prof. Dr. Thoma for a
fruitful discussion and constructive comments on the paper
and Prof. Dr. Beck for his support.

APPENDIX: ALGORITHM TO CHECK FOR
COMPLETENESS

The following algorithm was designed by Tiator [60] and
was already applied in Ref. [61]. It is used to check if a set of
observables is able to resolve continuous as well as discrete
ambiguities. The starting point is a system of multivariate
homogeneous polynomials f1(�t ), . . . , fn(�t ). The input is a
vector of N complex amplitudes ti. Without loss of general-
ity, the overall phase of the complex amplitudes is fixed by
requiring Re(t1) > 0 and Im(t1) = 0. In a next step an N-
dimensional solution vector �s is formed. It consist of 2N − 1
randomly chosen prime numbers within a certain range. These

serve as values for the real and imaginary parts of ti. Using
prime numbers and increasing the range from which they are
chosen should reduce the chance to land on a singularity in
the solution space, where the “condition of equal magnitudes
of relative phases” [8] is met.

Finally, the polynomial system

f1(�t ) = g1,

... (A1)

fn(�t ) = gn,

is constructed, where gi = fi(�s ) is a scalar quantity. The
function NSolve from Mathematica [56] is employed to solve
the algebraic system for the variables t1, . . . , tN . According
to the Wolfram Mathematica documentation [62,63]: “For
systems of algebraic equations, NSolve computes a numerical
Gröbner basis using an efficient monomial ordering, then uses
eigensystem methods to extract numerical roots.”

The system of polynomials is said to be complete if only
one solution is found which furthermore is equivalent to �s.
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A truncated partial-wave analysis is performed for η photoproduction off the proton using the polarization
observables σ0, �, T , E , F , and G. Through this approach, model-independent estimates of the electromagnetic
multipole parameters are calculated. Based on these estimates, predictions are made for polarization observables
that have not yet been measured. These predictions identify promising future measurements that could resolve
the inherent mathematical ambiguities within the results. Bayesian inference is combined for the first time with
truncated partial-wave analysis, analyzing different truncation orders for six energy bins near the ηp-production
threshold, i.e., E lab

γ ∈ [750, 1250] MeV.
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I. INTRODUCTION

Baryon spectroscopy is an experimental technique to ac-
quire a better understanding of the strong interaction and its
fundamental theoretical description given by quantum chro-
modynamics. Particles (for example, pions, real photons, as
well as electrons [1]) are brought to collision with a nu-
cleon. With a sufficiently high center-of-mass energy, the
nucleon can be excited to a resonant state, which is clas-
sified as a distinct particle with certain intrinsic properties.
Two well-established examples for baryon resonances are
the delta resonance �(1232)3/2+ and the Roper resonance
N (1440)1/2+ [2]. As such resonances are often formed and
decay via the strong interaction, their proper lifetimes are
rather short; for the above examples, on the order of 10−24 s.
A direct detection of resonances with state-of-the-art detectors
is not possible. Instead, the analysis of the final-state parti-
cles angular distributions using partial-wave analysis (PWA),
allows us to draw conclusions about the formation of the
resonance and its inherent properties such as total angular
momentum, mass, decay width, and parity. Up to the present
day, single pseudoscalar meson photoproduction reactions are
the experimentally most studied reactions in terms of baryon
spectroscopy. A comprehensive overview can be found in the
recently published review on light baryon spectroscopy by
Thiel et al. [1]. The experimental data which are used as
input to partial-wave analyses are called polarization observ-
ables. In single pseudoscalar meson photoproduction, there
are sixteen linearly independent measurable quantities. Mul-
tiple facilities worldwide [3–7] have contributed to a large
database. In addition, multiple PWA approaches [8–13] do
exist for describing the data and extracting information about
the resonant states. The results of this paper are compared
with the K-matrix model of Bonn-Gatchina [9], the dynam-
ical coupled-channel approach of Jülich-Bonn [10], and the
unitarized isobar-model of Eta-MAID [11]. However, these
approaches depend on an energy-dependent parametrization
for the complex amplitudes [1], leading to model-dependent
outcomes. For a detailed comparison of these three PWA

approaches, the reader is advised to Refs. [1,14]. Resonant
states can also be predicted in a purely mathematical man-
ner via theory models based on quantum chromodynamics,
such as quark models or lattice quantum chromodynam-
ics; see, for example, Ref. [15]. However, theory models
predicted significantly more states than are experimentally
confirmed, predominantly in the higher-mass region, which
is known as the missing-resonance problem [1]. This un-
solved issue motivates further studies and the exploration of
new approaches within this field of physics. In this paper,
a completely model-independent analysis approach, namely,
truncated partial-wave analysis (TPWA) [16–20], is em-
ployed. This avoids the bias present in other PWA approaches.
In general, PWA as well as TPWA may exhibit mathematical
ambiguities in their results, indicating that various solutions
can effectively describe the same data points. These ambi-
guities arise from the intrinsic mathematical nature of the
problem. As such, it is an essential step in any analysis
using experimental data to check for potential ambiguities
and evaluate their significance in comparison to each other.
Mathematical ambiguities in TPWA were first investigated
by Omelaenko [21]. A detailed treatment of the subject can
be found in Refs. [18–20]. The application of TPWA to ex-
perimental data (π0 photoproduction off the proton for the
first- and second-resonance region) was conducted in detail
by Wunderlich [19] using the maximum likelihood method.
Among other things, the effect of measurement uncertainties
on ambiguities was investigated. This paper is the first to
perform a TPWA using Bayesian inference. Therefore, the
results in this paper are given as distributions, as opposed
to point estimates in previous PWA and TPWA approaches,
allowing the uncertainty of an estimated parameter to be
quantified with an unprecedented level of detail, which is
of particular importance. Through this approach it becomes
possible to study the phase space in more detail and, by
association, the structure of the above-mentioned ambiguities.
It is even possible to discover a certain connectivity between
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different solutions, indicating problematic ambiguities. The
results of this paper comprises the estimation of complex
electromagnetic multipole parameters for various maximal
angular momenta �max. Based on these estimations, for the
first time, model-independent predictions for unmeasured po-
larization observables are computed.

This paper is structured as follows: a concise introduc-
tion to Bayesian statistics is given in Sec. II. An outline
of TPWA, hence the foundation of the employed model, is
provided in Sec. III, followed by a discussion of the math-
ematical ambiguities. The employed datasets are introduced
and discussed in Sec. IV, accompanied by the discussion of
their systematic uncertainties and correlations between the
data points used. Within Sec. V the posterior distribution,
centerpiece of the analyses, is introduced. Finally, the results
of TPWA examined via Bayesian inference are presented in
Sec. VI.

II. BASICS OF BAYESIAN STATISTICS

The fundamental equation of Bayesian statistics is Bayes’
theorem [22,23]:

p(� | y) = p(y | �) p(�)∫
p(y | �) p(�)d�

. (1)

Herein, � denotes the parameters of the model used whereas
y stands for the employed data.

The posterior distribution p(� | y) is in general a multi-
dimensional probability distribution reflecting the probability
of the model given the data. It consists of the likelihood
distribution p(y | �), comprising the data points and model
predictions, and the prior distribution p(�), which inhibits
the current knowledge about the parameters of the model,
before the data are taken into consideration. The denominator
in Eq. (1) plays the role of a normalization factor and can be
neglected within the computations of parameter estimation as
it is constant for fixed y. The definitions for the likelihood
distribution and prior distributions employed in this paper can
be found in Secs. V A and V B.

The overall goal of each analysis is to scan the relevant
regions of the posterior accurately. From this, the parame-
ter distributions can then be extracted, i.e., their marginal
distributions.1 In general, the posterior is nontrivial and the
integrals encountered in the derivation of the marginal dis-
tributions cannot be solved analytically. Instead, one can
employ numerical methods, such as Markov chain Monte
Carlo (MCMC) algorithms, in order to estimate the involved
integrals. For instance, the Metropolis-Hastings [24,25] or the
Hamiltonian Monte Carlo [26,27] algorithm can be used, of
which the latter one is applied in this work. The convergence
of the Markov chains2 can be monitored by convergence

1The marginal distribution of 	1 with respect to the posterior distri-
bution p(	1,	2 | y) is defined as p(	1 | y) = ∫

d	2 p(	1, 	2 | y)
[23].

2“A sequence X1, X2, . . . of random elements of some set is a
Markov chain if the conditional distribution of Xn+1 given X1, . . . , Xn

depends on Xn only” [[28], p. 2].

diagnostics such as the potential-scale-reduction statistic R̂
[29], Monte Carlo standard error [28] (which depends on the
effective sample size [23]), and trace plots [30].

To check the plausibility of the model under consider-
ation, a posterior predictive check can be performed [23].
Herein, replicated data distributions yrep are generated using
the sampled parameter distributions as input for the posterior
distribution, while at the same time treating the data points as
unknown parameters. In contrast with maximum likelihood or
maximum a posteriori estimation, the marginal parameter es-
timates of Bayesian inference are given as distributions. This
allows us to quantify the uncertainty of a parameter with an
unmatched level of detail. In addition, point estimates and the
marginal parameter estimates of Bayesian inference differ in
their underlying interpretation, making the latter an intriguing
additional analysis approach.

III. TRUNCATED PARTIAL-WAVE ANALYSIS

Within this section, the basic equations of TPWA for single
pseudoscalar-meson photoproduction are outlined. For an in-
depth explanation, the reader is advised to Refs. [19,20].

Polarization observables are the measurable quantities of
interest in single pseudoscalar-meson photoproduction. They
are used as experimental input for a TPWA. In total there
are sixteen polarization observables, which can be calcu-
lated by measuring differential cross sections under different
polarization states. Three groups can be distinguished: the un-
polarized differential cross section, three single-polarization
observables, and twelve double-polarization observables [31].
A comprehensive list of the required polarization states for
each observable is given in Table I while a mathematical
definition is given in Table II.

The theoretical prediction of a profile function3 of a po-
larization observable depends on the energy W as well as the
scattering angle θ in the center-of-mass frame. It can be ex-
pressed as an expansion into the basis of associated Legendre
polynomials Pβα

k [20]:


̌α
theo(W, θ ) = ρ

2�max+βα+γα∑
k=βα

Aα
k (W ) Pβα

k (cos θ ). (2)

Equation (2) includes a kinematic phase-space factor ρ,
angular expansion parameters βα , γα , which are fixed pa-
rameters for each of the sixteen polarization observables of
pseudoscalar-meson photoproduction, and energy-dependent
series coefficients Aα

k :

Aα
k (W ) = M†(W )Cα

k M(W ). (3)

Here, M denotes the complex multipole vector, which con-
tains all participating multipoles involved for the truncation
order �max. A valid choice for the definition of this vector, by

3The profile function 
̌α (W, θ ) of an observable 
α (W, θ ) is de-
fined as 
̌α (W, θ ) := σ0(W, θ )
α (W, θ ), where σ0 is the unpolarized
differential cross section.
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TABLE I. This table collects the polarization configurations
(beam, target, recoil) which allow us to measure the sixteen po-
larization observables of pseudoscalar meson photoproduction. In
the center-of-mass coordinate system, the unprimed coordinates are
chosen as follows: ẑ axis along incident photon beam direction and
ŷ perpendicular to the reaction plane x̂-ẑ. The primed coordinates
is a rotation of the unprimed coordinates such that the final-state
meson momentum points along the ẑ′ axis. The table is redrawn from
Ref. [31]. A mathematical definition of the observables can be found
in Table II.

Beam Direction of target- or recoil-
Observable polarization nucleon polarization

σ0 Unpolarized
� Linear
T Unpolarized y
P Unpolarized y′

H Linear x
P Linear y
G Linear z
F Circular x
E Circular z

Ox′ Linear x′

T Linear y′

Oz′ Linear z′

Cx′ Circular x′

Cz′ Circular z′

Tx′ Unpolarized x, x′

Lx′ Unpolarized z, x′

� Unpolarized y, y′

Tz′ Unpolarized x, z′

Lz′ Unpolarized z, z′

TABLE II. The definition of the sixteen polarization observables
in terms of transversity amplitudes bi are displayed. The table is
adapted from Ref. [33]. The definition of the observables in terms
of the required polarization configurations can be found in Table I.

Observable Transversity representation (ρ) Type


̌1 = σ0
1
2 (|b1|2 + |b2|2 + |b3|2 + |b4|2) S


̌4 = −�̌ 1
2 (|b1|2 + |b2|2 − |b3|2 − |b4|2)


̌10 = −Ť 1
2 (−|b1|2 + |b2|2 + |b3|2 − |b4|2)


̌12 = P̌ 1
2 (−|b1|2 + |b2|2 − |b3|2 + |b4|2)


̌3 = Ǧ Im[−b1b∗
3 − b2b∗

4] BT

̌5 = Ȟ Re[b1b∗

3 − b2b∗
4]


̌9 = −Ě Re[b1b∗
3 + b2b∗

4]


̌11 = F̌ Im[b1b∗
3 − b2b∗

4]


̌14 = Ǒx′ Re[−b1b∗
4 + b2b∗

3] BR

̌7 = −Ǒz′ Im[−b1b∗

4 − b2b∗
3]


̌16 = −Čx′ Im[b1b∗
4 − b2b∗

3]


̌2 = −Čz′ Re[b1b∗
4 + b2b∗

3]


̌6 = −Ťx′ Re[−b1b∗
2 + b3b∗

4] T R

̌13 = −Ťz′ Im[b1b∗

2 − b3b∗
4]


̌8 = Ľx′ Im[−b1b∗
2 − b3b∗

4]


̌15 = Ľz′ Re[−b1b∗
2 − b3b∗

4]

means of electromagnetic multipoles [32], is

M(W ) = [
E0+(W ), E1+(W ), M1+(W ), M1−(W ),

× E2+(W ), E2−(W ), M2+(W ), M2−(W ), . . . ,

× E�max+(W ), E�max−(W ), M�max+(W ), M�max−(W )
]
.

(4)

In addition, Eq. (3) contains a complex 4�max × 4�max matrix
C for each observable α and each summand k. Its general
definition can be found in Ref. [19].4 From these matrices one
can not only read off the contributing partial waves but also
their interferences with each other [20].

Equations (2) to (4) imply the following:

(1) The statistical analysis is performed for a single energy
at a time.

(2) The polarization observable 
α (W, θ ) and the unpo-
larized differential cross section σ0(W, θ ) have to share
the same energy and angular binning.

(3) The observables 
α (W, θ ) used within the TPWA have
to share the same energy binning.

(4) As 
̌α (W, θ ) is an observable, i.e., a real number, the
matrices Cα

k are Hermitian.
(5) The bilinear form of Aα

k gives rise to mathematical am-
biguities, as certain transformations leave this quantity
invariant.

The last point is discussed in more detail in the following.

A. Ambiguities

Ambiguities in PWA or TPWA refer to situations in which
multiple configurations of the model parameters can describe
the data points with similar levels of accuracy. This phe-
nomenon is apparent in the reproduced data distributions in
Figs. 1 and 2 where the different colored distributions, cor-
responding to multiple ambiguities, nearly overlap. In the
following discussion, various types of mathematical ambi-
guities are examined and it is concluded that only so-called
accidental discrete ambiguities can appear in the results of this
paper.

The origin of the immanent mathematical ambiguities lies
in the definition of the polarization observables. For photopro-
duction, they can be written in general as a bilinear product of
the form [33–35]


̌α (W, θ ) = κb†(W, θ ) �α b(W, θ ), (5)

with a numerical prefactor κ , a vector b of length NA, con-
taining the complex spin amplitudes bi, and a matrix �α with
dimensions NA × NA. Certain transformations T of the com-

plex spin amplitudes bi(W, θ )
T−→ b̃i(W, θ ) leave the bilinear

product and thus the observable invariant. Hence, when all
observables in a subset {
̌α1 , . . . , 
̌αn} are invariant under
the same transformation, an ambiguity emerges [19,33], as
the experimental distinction between bi and b̃i is not possible

4An overall factor of 1/2 is missing in the formula for Cα
k in

Ref. [19].
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FIG. 1. Posterior predictive check for the profile functions σ0, Ǧ, �̌, Ě , Ť , and F̌ for truncation order �max = 1 and energy bins E lab
γ =

[750, 850, 950, 1050, 1150, 1250] MeV. The reproduced data distributions for the different solutions are shown together with the original data
with statistical uncertainties as black points. Each solution group is drawn in a different color and each peak of a distribution corresponds
to an accidental ambiguity. In addition, the corresponding values from EtaMAID2018 [48] (dashed line), BnGa-2019 [42] (dotted line), and
JüBo-2022 [47] (dash-dotted line) are shown as well.
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FIG. 2. Posterior predictive check for the profile functions σ0, Ǧ, �̌, Ě , Ť , and F̌ for truncation order �max = 2 and energy bins E lab
γ =

[750, 850, 950, 1050, 1150, 1250] MeV. The reproduced data distributions for the different solutions are shown together with the original data
with statistical uncertainties as black points. Each solution group is drawn in a different color and each peak of a distribution corresponds
to an accidental ambiguity. In addition, the corresponding values from EtaMAID2018 [48] (dashed line), BnGa-2019 [42] (dotted line), and
JüBo-2022 [47] (dash-dotted line) are shown as well.
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any more. Such an ambiguity can be resolved by including a
further observable 
̌αk into the subset, which is not invari-
ant under the specific transformation [19,33]. There exists
one special case of an ambiguity which cannot be resolved
by including any further observables, namely, the simulta-
neous rotation of all transversity amplitudes by the same

(possibly energy- and angle-dependent) phase: bi(W, θ )
T−→

eiφ(W,θ )bi(W, θ ) (see Ref. [33]). However, this continuous
ambiguity can be ignored for the special case of a TPWA,
since the angle-dependent part of the ambiguity is generally
removed by the assumed truncation (see comments made in
Ref. [36]), and the energy-dependent part is fixed by imposing
certain phase conventions for the multipoles. The formalism
for the remaining relevant discrete ambiguities in a TPWA is
outline briefly in the following. For more information about
discrete as well as continuous ambiguities in the case of the
complete experiment analysis, see the paper of Chiang and
Tabakin [33].

As shown by Omelaenko [19,21], in a TPWA (truncated
at some finite �max � 1) the complex spin-amplitudes can be
expressed (up to kinematical prefactors) as a finite product of
irreducible polynomials:

b1(W, θ ) ∝
2�max∏
k=1

(
tan

θ

2
+ βk (W )

)
, (6)

b2(W, θ ) ∝
2�max∏
k=1

(
tan

θ

2
− βk (W )

)
, (7)

b3(W, θ ) ∝
2�max∏
k=1

(
tan

θ

2
+ αk (W )

)
, (8)

b4(W, θ ) ∝
2�max∏
k=1

(
tan

θ

2
− αk (W )

)
, (9)

with the complex roots αk (W ) and βk (W ), which are in
essence equivalent to multipoles. It can be shown [18,21,37]
that the special case where tan(θ/2) = 0 implies a direct
connection between the roots:

2�max∏
i=1

αi(W ) =
2�max∏
j=1

β j (W ). (10)

All transformations T which correspond to a discrete am-
biguity of the four group-S observables {σ0, �̌, Ť , P̌} must
also satisfy Eq. (10), which allows us to rule out a major
part of the maximal possible 42�max [18] discrete ambiguity-
transformations from the beginning. The so-called “double
ambiguity” [18,21], which corresponds to the simultaneous
complex conjugation of all roots automatically preserves the
constraint in Eq. (10).

Unfortunately, there can also occur so-called accidental
ambiguities. These emerge when any discrete ambiguity other
than the double ambiguity of all roots approximately fulfills
Eq. (10) [18]. The accidental ambiguities as well as the double
ambiguity can in principle be resolved by including further
observables into the analysis apart from the four group S
observables. Candidates for observables capable of resolving

the above-mentioned discrete ambiguities would be either F̌ ,
Ǧ or any of the BR- and T R-type observables.

The accidental ambiguities cannot be avoided for analyses
of real data due to their abundance (i.e., 42�max − 2 possible
candidates exist for such ambiguities), and they will show
up as modes within the posterior distribution and thus in the
marginal parameter distributions.

In contrast with the discrete ambiguities described above,
there can also exist so-called continuous ambiguities in
the TPWA (in addition to the above-mentioned simulta-
neous phase-rotation of all transversity amplitudes, which
has been ruled out), which exist on continuously connected
regions within the multipole parameter space [19]. These
ambiguities can occur in case an insufficiently small set of
observables is analyzed, and they manifest as plateau-like
structures (with possibly rounded edges) in the marginalized
posterior-distributions, as opposed to the peak-like structures
(or modes) originating from discrete ambiguities. The set of
six observables analyzed in this work (see Sec. IV) is large
enough to avoid such continuous ambiguities.

For more information about discrete ambiguities in TPWA,
the paper by Omelaenko [21] and especially the subsequent
work [18] is recommended. The proof of the completeness of
the set of six observables analyzed in this work (Sec. IV) in
the idealized case of an “exact” TPWA5 proceeds a little bit
different compared with the work by Omelaenko [21]. The
proof is outlined in some detail in Sec. A.

Summarizing, accidental discrete ambiguities will likely be
present within TPWA performed on real data, resulting in a
multimodal likelihood and posterior distribution.

IV. DISCUSSION OF THE DATABASE USED

A review of the currently available database on polariza-
tion observables for the reaction γ p → ηp can be found in
Ref. [1]. To cover the largest possible energy range and to
resolve discrete mathematical ambiguities, the TPWA is per-
formed using the six polarization observables σ0 [38], � [39],
T [40], E [41], F [40], and G [42]. This choice of observables
indeed resolves the discrete ambiguities of TPWA, as shown
in Sec. A.

An overview of the data is given in Table III and a visual-
ization of the phase-space coverage of the individual datasets
can be found in Sec. B, Fig. 3. The available energies for
the TPWA are determined by the observable with the low-
est statistics [19,31], which in this case is the observable
G. In total six energy bins are available, starting near the
ηp-photoproduction threshold at E lab

γ = 750 MeV up to 1250
MeV, in 100 MeV steps.

As TPWA is a single-energy regression, the energy binning
of each observable has to be shifted to that of G. The proce-
dure is described in Ref. [19]. The advantage of this method is
that no new, i.e., experimentally unobserved, data points have
to be constructed, for example, via interpolation.

5Accidental ambiguities can be disregarded for this rather academic
scenario [19].
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TABLE III. Information on the experimental data, given as dimensionless asymmetries, used for the TPWA of γ p → ηp. Energy and
angular ranges are written as intervals.

Observable Number of data points E lab
γ /MeV cos(θ ) Facility References

σ0 5736 [723, 1571] [−0.958, 0.958] MAMI Kashevarov et al. [38]
T, F 144 [725, 1350] [−0.917, 0.917] MAMI Akondi et al. [40]
� 140 [761, 1472] [−0.946, 0.815] GRAAL Bartalini et al. [39]
E 84 [750, 1350] [−0.917, 0.917] MAMI Afzal et al. [41,43]
G 47 [750, 1250] [−0.889, 0.667] CBELSA/TAPS Müller et al. [42]

However, none of the observables are given as profile func-
tions which are needed for the TPWA, see Eq. (2). Thus,
the angular distribution of σ0 has to be adjusted for each
observable in order to multiply both. This is not an issue, since
the very precise MAMI σ0 dataset [38] covers a large angular
range [−0.958, 0.958] with a small step size ≈0.083 in all
available energies.

The data discussed in Sec. IV not only have statistical
but also systematic uncertainties. The latter ones originate
primarily from the determination of the polarization degree
of the photon beam and the target nucleon, the dilution factor6

as well as the background-subtraction procedure [38–42].
In principle, each data point has its own systematic un-

certainty. However, there is no generally accepted method to
model the systematic uncertainty for each data point sepa-
rately. Instead, the contributions to the systematic uncertainty,
which are constant over the whole angular range, are deter-
mined for each dataset. Then, the same systematic uncertainty
is used for each data point within a dataset.

The contributions split up into the “general systematic un-
certainty” (σ0: 4% [[38], p. 5]), the degree of photon beam
polarization (F: 2% [40], E: 2.7% [41], G: 5% [42]), and the
degree of target polarization (T, F: 4% [40], E: 2.8% [41],
G: 2% [42]). The authors of the polarization observable �

added the statistical- and systematic uncertainty in quadrature
for each data point [39]. Thus, their systematic uncertainty
cannot be modeled separately within this paper.

The individual systematic contributions within a dataset
are combined in a conservative way. A worst-case scenario
approach is employed, based on the formulas used to calculate
the polarization observables, as given in the papers. In com-
parison with the “standard” procedure of adding the different
contributions in quadrature, there are two main advantages:
(1) The functional dependence is taken into account without
the need to make an assumption about the distribution of the
individual contributions. (2) The worst-case scenario covers
the maximal and minimal impact of the systematic uncertain-
ties, and everything in between.

As an illustrative example, suppose an observable A which
depends reciprocally on the degree of polarization of the
photon beam pγ and target pt, each with their own relative
systematic uncertainty �

pγ

sys and �
pt
sys, respectively. Then the

6The dilution factor is the ratio of polarizable free protons to all
nuclei in the used target material.

combined, relative systematic uncertainty of A would be

�A
sys = max

(∣∣1 − (
1 + �

pγ

sys
)−1(

1 + �pt
sys

)−1∣∣,∣∣1 − (
1 − �

pγ

sys
)−1(

1 − �pt
sys

)−1∣∣). (11)

With the input taken from the references, corresponding to
the respective datasets [38–42], the outlined approach results
in �σ0

sys = 4.0%, �G
sys = 7.4%, �E

sys = 5.7%, �T
sys = 4.2%,

�F
sys = 6.3%.
Due to the calculation of the profile functions, the system-

atic uncertainty of both datasets have to be combined as well:

�Ǎ
sys = max

(∣∣1 − (
1 + �A

sys

)(
1 + �σ0

sys

)∣∣,∣∣1 − (
1 − �A

sys

)(
1 − �σ0

sys

)∣∣). (12)

Thus, the relative systematic uncertainties for the profile func-
tions are �σ0

sys = 4.0%, �Ǧ
sys = 11.7%, �Ě

sys = 10.0%, �Ť
sys =

8.3%, �F̌
sys = 10.5%. The incorporation of the systematic un-

certainties into the statistical model is described in more detail
in Sec. V.

Furthermore, the calculation of the profile functions in-
troduces a correlation between the unpolarized differential
cross section and the profile functions, as well as among the
profile functions themselves. Since certain values of σ0(W, θ )
were used to calculate 
̌α (W, θ ), correlations were introduced
between certain data points of both observables. Moreover, the
same value of σ0(W, θ ) might be used to calculate data points
of different profile functions.

The relevance of these correlations can be estimated via the
Pearson correlation coefficient [44], see Eqs. (C4) and (C5) in
Sec. C. The measured values of the polarization observables
are used as expectation values and the corresponding squared
statistical uncertainties as the variances. An example, for a
correlation matrix is shown in Fig. 4. The correlations are
quite small, with absolute values below ≈0.17, but typically
on the order of 10−2 to 10−3. An exception is the significantly
higher correlation between σ0 and σ0 · E , with minimal and
maximal values of ≈0.29 and ≈0.67, respectively. This can be
explained by the similar definition of the coefficients Aα

k (W )
of σ0 and σ0 · E . Both having sensitivity to almost the exact
same interference terms of multipoles, albeit with different
strengths (see Ref. [20]). The magnitude of the correlation
matrix elements as a function of the energy can be seen in
Fig. 5. The corresponding covariance matrix, which is used
to construct the likelihood distribution in Sec. V A, can be
estimated via Eqs. (C2) and (C3) in Sec. C.
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FIG. 3. Energy and angular coverage of the six observables σ0, �, G, E , T , and F [38–42] which were used for the analysis. The energies
used, E lab

γ = [750, 850, 950, 1050, 1150, 1250] MeV, are determined by the observable G.

V. THE POSTERIOR DISTRIBUTION

It is assumed that the utilized profile functions, constructed
from the polarization observables, follow a normal distribu-
tion. The validity of this assumption is extensively discussed
in Sec. D. However, the profile functions are correlated with
the unpolarized differential cross section, as well as among
themselves, see Sec. IV. This dependence is modeled within
the likelihood distribution using a covariance matrix. In favor
of a compact representation, the functional dependencies are
not shown explicitly in the subsequent equations.

A. Likelihood distribution

Combining the results of Secs. IV and D, the conditional
likelihood distribution for each of the analyzed energies can

FIG. 4. Example for a correlation matrix. The correlations be-
tween the data points of the unpolarized differential cross section σ0

and the profile functions used, as well as the correlation between
the profile functions themselves, is shown for E lab

γ = 750 MeV.
Each square represents a certain data point. The color encodes the
correlation strength ranging from −1 (darker colors) to +1 (lighter
colors).

be formulated as an N-dimensional multivariate Gaussian
distribution:

p(y, x | �, κ) = N (μ,�)

= exp
(− 1

2 (y − μ)T�−1(y − μ)
)√

(2π )N |�|
. (13)

Herein, the vectors y, x ∈ RN contain the entirety of the N ∈
N utilized profile function data points and the corresponding
cos(θ ) values at which they were measured, respectively:

y = [yσ0 , yǦ, y�̌, yĚ , yŤ , yF̌ ], (14)

x = [xσ0 , xǦ, x�̌, xĚ , xŤ , xF̌ ]. (15)

The parameters of the model can be divided into two groups.
On the one hand, the real- and imaginary parts of multi-
poles, i.e., Eq. (4), denoted by � ∈ R8�max−1 are used to

FIG. 5. Unique correlation matrix element values as a function
of the laboratory frame energy. The color encodes the correlation
strength ranging from −1 (darker colors) to +1 (lighter colors).
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model the underlying physical process. On the other hand, the
parameters κ ∈ R5 which are used to model the systematic
uncertainties of the involved datasets:

κ = [κσ0 , κ Ǧ, κ Ě , κ Ť , κ F̌ ]. (16)

The multivariate normal distribution in Eq. (13) is constructed
with the model predictions μ ∈ RN for the expectations of y:

μ(�, κ, x)

= [κσ0μσ0 , κ ǦμǦ, 1μ�̌, κ ĚμĚ , κ Ť μŤ , κ F̌ μF̌ ]. (17)

The μα (�, xα ) are the model predictions for the individ-
ual profile functions, i.e., Eq. (2). Hence, in order to model
the systematic uncertainties, one additional parameter per
relevant dataset is introduced and multiplied with the corre-
sponding theoretical prediction for the profile function. Thus,
the model gets additional degrees of freedom to adjust for pos-
sible systematic uncertainties. However, these parameters are
restricted to physical meaningful bounds, further discussed in
Sec. V B. As explained in Sec. IV, the systematic uncertainty
of the polarization observable � cannot be modeled.

Finally, there is the covariance matrix � ∈ RN×N . Its off-
diagonal terms are not identical, and therefore the data pairs
are not exchangeable.7x

B. Prior distribution

The priors for the multipole parameters are chosen as
uniform priors with bounds corresponding to the physically
allowed ranges of the parameters (see Ref. [19]). Thus, the
priors incorporate physical knowledge while being uninfor-
mative compared with the likelihood distribution.

In principle a uniform prior for the systematic parame-
ters would be reasonable. However, in this case the hard
boundaries in the parameter space lead to numerical issues.
Thus, the prior distributions for the scaling parameters κ are
assumed to be normally distributed and centered around the
value one. The standard deviation is chosen such that8 99% of
the distribution are within the range 1 ± �α

sys, which results in
(rounded to five digits):

κσ0 ∼ N (1, 0.01552), (18)

κ Ǧ ∼ N (1, 0.04542), (19)

κ Ě ∼ N (1, 0.03882), (20)

κ Ť ∼ N (1, 0.03222), (21)

κ F̌ ∼ N (1, 0.04076). (22)

7If the joint probability density function p(y, x|�, κ) is invariant
under permutations of the data pairs (y, x)i, then the data pairs are
said to be exchangeable [23,45].

8This can be calculated by solving numerically the following equa-
tion for the standard deviation σ :∫ 1−�α

sys

−∞

exp
(
− 1

2

(
x−1
σ

)2
)

σ
√

2π
dx = 1 − 0.99

2
.

This choice is in accordance with the conservative combina-
tion of the systematic uncertainties, as discussed in Sec. IV.
The treatment of systematic errors within this paper is similar
to that in Refs. [31,46,47].

VI. RESULTS

Bayesian inference was utilized to extract the
electromagnetic multipole parameters, as introduced in
Eq. (4), for the reaction γ p → ηp at energies E lab

γ =
[750, 850, 950, 1050, 1150, 1250] MeV and truncation
orders �max = 1, 2 through truncated partial-wave analysis.
The procedures involved are detailed in Sec. E.

Highly multimodal posterior distributions were encoun-
tered, necessitating an adaptation of the typical MCMC
convergence diagnostic workflow. The adjusted procedure is
detailed in Sec. E 3. By studying the reproduced data dis-
tributions for the various truncation orders, an indication of
N∗ resonances in the energy range from 950 to 1050 MeV
is observed. Finally, utilizing the electromagnetic multipole
parameter estimates, predictions were calculated9 for the po-
larization observables H and P as well as those of group BR
and T R. Hence, this includes eight polarization observables
that are yet to be measured. The distributions of the multipole
parameters, the reproduced and predicted data are presented
alongside the values of EtaMAID2018 [48], BnGa-2019 [42],
and JüBo-2022 [47].

The presentation of the multipole parameter results is quite
detailed and deserves an explanation. The top part shows the
solutions found via Monte Carlo maximum a posteriori esti-
mation and their corresponding χ2/ndf values, together with
the 1σ uncertainty (see Sec. E 1). The middle part shows the
marginal-parameter distributions obtained via Bayesian infer-
ence, as explained in Secs. V and E 2. For a better comparison
of the two approaches for �max = 1, the [0.16, 0.5, 0.84] quan-
tiles of the distributions, corresponding to the median of the
distribution and the 1σ -uncertainty boundaries, are drawn
as dashed lines through all parts of the figure. Whereas,
for �max = 2 a solid vertical line is drawn for each peak of
the multimodal distribution, i.e., the most probable values.
The bottom part of the figure is a contour plot of the log
posterior density distribution and the corresponding marginal-
parameter distribution. The outermost contour line is at 1%
of the maximum altitude, each subsequent line represents an
11% increase. It is assumed that a log posterior distribution
centered around a higher log posterior value, corresponds to
more likely parameter values because this solution contributes
more probability mass to the posterior. Each solution group
is drawn in a different color and each peak of a distribu-
tion corresponds to an accidental ambiguity. The color for a
specific solution group is consistent between the shown fig-
ures (MCMC convergence, multipole, predictive performance
plots, etc.) for a certain energy and truncation order. This

9To get from the profile functions to the dimensionless polarization
observables, the predicted distribution is divided by a certain σ0

value, corresponding to the cos(θ ) value at which the prediction were
calculated.
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FIG. 6. MCMC convergence diagnostics for the truncation order �max = 2. Shown are the potential-scale-reduction statistic R̂ (the gray,
dashed line indicates the value of 1.01) and the Monte Carlo standard error (MCSE) for the median divided by the median in percent (the gray,
dashed line indicates the value of 1%). Each solution group is drawn in a different color.

means one can monitor the behavior of a specific ambiguity,
ranging from the MCMC diagnostic plots in Fig. 6 to the
multipole plots in Figs. 7 and 8, to the reproduced data plots in
Fig. 2, up to the predicted data distribution plots in Fig. 9. The

performed analyses showed, that Bayesian inference gives
more insight into the relevance of ambiguities, due to the
Hamiltonian Monte Carlo algorithm. When multiple chains
sample consistently multiple marginal modes together, this
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FIG. 7. Solutions of the multipole parameters Re(E0+) and Re(M2+) for a truncation order of �max = 2, for the energy bins E lab
γ =

[750, 850, 950, 1050, 1150, 1250] MeV. Each solution group is drawn in a different color and each peak of a distribution corresponds to
an accidental ambiguity. The different parts of the tripartite plots are explained at the beginning of Sec. VI. The natural logarithm was used to
calculate the log posterior density (lpd).
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FIG. 8. Solutions of the multipole parameter Im(M2+) for a truncation order of �max = 2, for the energy bins E lab
γ =

[750, 850, 950, 1050, 1150, 1250] MeV. In addition, solutions of systematic parameters for a truncation order of �max = 2 for the energy
bin E lab

γ = 950 MeV are shown. Each solution group is drawn in a different color and each peak of a distribution corresponds to an accidental
ambiguity. The different parts of the tripartite plots are explained at the beginning of Sec. VI. The natural logarithm was used to calculate the
log posterior density (lpd).
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FIG. 9. Predicted data distributions for the polarization observables Cz′ , H , Tx′ , Oz′ , Lx′ , P, Tz′ , Ox′ , Lz′ , and Cx′ for the energy bins E lab
γ =

[750, 850, 950, 1050, 1150, 1250] MeV, using a truncation order of �max = 2. Each solution group is drawn in a different color and each
peak of a distribution corresponds to an accidental ambiguity. In addition, the corresponding values from EtaMAID2018 [48] (dashed line),
BnGa-2019 [42] (dotted line), and JüBo-2022 [47] (dash-dotted line) are shown as well.

is a sign of a problematic ambiguity, as they tend to have
comparable log posterior densities. As an example, consider
the multipole solution for Re(M2+) at 750 MeV in Fig. 7. This
is an advantage over the maximum likelihood approach.

Within the following discussion of the results a represen-
tative selection of figures is shown. All parameter figures, for
all analyzed energies and truncation orders can be found in the
Supplemental Material [49].
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A. Impact of accidental ambiguities on the results

As discussed in Sec. III A, accidental ambiguities appear
in the results of the marginal multipole parameter distribu-
tions, which subsequently manifest in both the replicated and
predicted data distributions, as well as in the marginal sys-
tematic parameter distributions. The ambiguities are apparent
as differently colored distributions, where each peak of a
distribution corresponds to an accidental ambiguity. See, for
example, 2 and 7 to 9. As expected, all accidental ambiguities
can replicate the original data points. The corresponding re-
produced data distributions are nearly identical, as illustrated
in Fig. 2. The impact of ambiguities on predicted data dis-
tributions and what can be learned from it is discussed in
Sec. VI F.

B. Choice of the truncation order

At first, the regression was conducted using �max = 1. For
each of the six energy bins, the number of warmup and post-
warmup samples was set to 2×104, respectively. In total, Nc =
10 chains are started at each solution, found via the Monte
Carlo maximum a posteriori approach. The corresponding
MCMC convergence diagnostics, displayed in Sec. F, Fig. 10,
support this decision, with R̂ < 1.01 and relative Monte Carlo
standard error within a few percent or less.

For each energy bin above 950 MeV, specifically 1050,
1150, and 1250 MeV, the measured σ0 data are systematically
higher for cos(θ ) > 0 compared with the TPWA predictions.
Furthermore, the TPWA predictions for �̌ do not resemble the
original data points at all, as shown in Fig. 1. It appears that
the statistical model utilized with truncation order �max = 1
cannot adequately replicate data points for all observables. An
elucidation for this phenomenon is provided in Sec. VI C.

To enhance the data description flexibility of the TPWA
model, the truncation order was increased to �max = 2, and
the regression was re-executed. To obtain the desired MCMC
convergence diagnostics for each of the six energy bins, it was
necessary to increase the number of warmup and postwarmup
samples to 5×104, respectively. Nc remains the same as for
�max = 1. The corresponding MCMC convergence diagnos-
tics are displayed in Sec. F, Fig. 6. Special phenomena that
occur are discussed in detail in Sec. F. The TPWA model with
a truncation order of �max = 2 effectively describes the origi-
nal data points as evinced by the data distributions reproduced
in Fig. 2.

In general, it is preferable to set the truncation order �max

as high as possible, because lower partial waves can inter-
fere with higher ones, leading to non-negligible contributions.
However, increasing the truncation order also increases the
number of accidental ambiguities. For example, with �max = 3
and 1250 MeV, 43 posterior modes were identified. This
results in a situation that demands a large number of numeri-
cal computations to achieve the desired MCMC convergence
diagnostics. Additionally, the visual assessment of clustering
becomes challenging due to the large number of required
chains. Furthermore, the statistical quality of the combined
datasets do not permit observations of any F -wave contri-
butions, such as those from the N (1680)5/2+ [2] resonance
at E lab

γ ≈ 1035 MeV. Due to these considerations, this paper

focuses on �max = 2, while truncation orders with �max > 2
are reserved for future research.

C. Indication of N∗ resonances

To summarize, the model with �max = 1 is inadequate in
replicating the original data points for σ0 and �̌ for the en-
ergies above 950 MeV. This phenomenon could be explained
by an emerging resonance in the energy range between 950
and 1050 MeV that couples to an orbital angular momen-
tum � > 1 and predominantly contributes to σ0 and �̌. Since
isospin is a conserved quantity in the strong interaction, the
reaction of η photoproduction serves as an isospin filter,
meaning that for the subsequent discussion, only N∗ reso-
nances require consideration. There are two N∗ resonances
which fulfill the conservation laws, couple to � = 2, and fall
within the required energy range (taking into account the
Breit-Wigner width [2] of the resonances). These resonances
are N (1675)5/2− [2] at E lab

γ ≈ 1026 MeV and N (1700)3/2−

[2] at E lab
γ ≈ 1071 MeV.

There is also a resonance which opens up already at E lab
γ ≈

762 MeV, specifically N (1520)3/2− [2]. However, this reso-
nance has a branching ratio to ηN [2] that is ≈10 times smaller
than those of N (1675)5/2− and N (1700)3/2−. The datasets
employed do not appear to possess the necessary sensitivity
to see a contribution of N (1520)3/2−.

D. Multipole parameters

The solutions for E0+ and M2+ are shown as representative
examples of the multipole parameters in Figs. 7 and 8. The
figures for all multipole parameters are available in the Sup-
plemental Material [49]. Typically, the peaks of the marginal
distributions are in agreement with the first few “best” a
posteriori estimates. However, not every a posteriori solution
has a corresponding peak within the marginal distributions.
This could be due to two potential reasons. On the one hand,
the interpretation of a marginal distribution differs from that
of a maximum a posteriori estimate. On the other hand, the
reason may lie within the Hamiltonian Monte Carlo algorithm
[26,27], where it has been observed that some of the starting
values are not in close proximity to the “typical set”10 [50] but
adjust rapidly. An example is shown in Fig. 11.

Within Fig. 12, the fifteen multipole parameters are
graphed based on the laboratory energy of the photon. The
corresponding values of EtaMAID2018 [48], BnGa-2019
[42], and JüBo-2022 [47] are also shown. For a detailed com-
parison of the various solution clusters and their relevance,
readers are encouraged to refer to the tripartite multipole pa-
rameter figures in Figs. 7 and 8 and the Supplemental Material
in Ref. [49].

10The “typical set” are the regions of the posterior which contribute
the most to its expectation value.
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FIG. 10. MCMC convergence diagnostics for the truncation order �max = 1. Shown are the potential-scale-reduction statistic R̂ (the gray,
dashed line indicates the value of 1.01) and the Monte Carlo standard error (MCSE) for the median divided by the median in percent (the gray,
dashed line indicates the value of 1%). Each solution group is drawn in a different color.

d1. Comparison with MAID, BnGa, and JuBo

In general, the paper’s results align well with the values of
EtaMAID2018, BnGa-2019, and JüBo-2022. However, there
are two noteworthy exceptions.

First, for the multipole parameter Im(E2+), none of the
PWA values align with each other nor with the TPWA results
of this paper. Second, the three PWAs report a value of ≈20
mfm for the multipole parameter Re(E0+) at 750 MeV. This
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FIG. 11. Illustration of the first 1000 sampling points of a chain
with initial value at 3.7 (the blue vertical line). The first sampling
point is drawn in red. The chain converges from its starting point to
a more likely solution, i.e., with higher log posterior density (lpd)
value. The natural logarithm was used to calculate the lpd.

significant value of E0+ close to the ηp-production threshold
results from the dominant N (1535)1/2− resonance, which
couples to the S-wave E0+. The datasets of η photoproduc-
tion (see Sec. IV) utilized in this analysis do not emphasize
such high values. Although the marginal parameter distribu-
tion does indeed have a nonzero probability at ≈19 mfm,
the most likely values are around 8.5 mfm. This unexpected
difference may have multiple causes. On the one hand, both
BnGa-2019 and JüBo-2022 are coupled-channel analyses that
involve a variety of final states simultaneously [14]. On the
other hand, EtaMAID2018, BnGa-2019, and JüBo-2022 use
the πN partial-wave amplitudes from SAID [14] as input,
which includes the N (1535)1/2− resonance [51].

In contrast, the current analysis is not a coupled-channel
analysis nor does it rely on the SAID solutions. The values of
the multipole parameters are exclusively obtained from the η-
photoproduction datasets presented in Sec. IV.

In addition, the TPWA relies on single-energy regression,
which implies that solely the available data points at a partic-
ular energy bin can be utilized in the analysis. As the PWAs
do not follow this restriction, the complete available datasets
can be utilized. This is particular important for the differential
cross section, where the increased data can have a significant
impact on the regression.

Furthermore, although a dominant S-wave E0+ results in a
nearly constant maximal allowed value of one for the observ-
able E for all angles, the inverse conclusion does not always
hold true. For example, the observable E cannot differentiate
between S-wave E0+ and P-wave M1− since both can lead
to these maximum values of E . As shown in our results for
750 MeV (see Fig. 12), the expected strength of E0+ has
migrated to other multipoles, such as M1−.

Improved statistics of the datasets involved in terms of
the angular range or the inclusion of additional observables
in future analyses, may shift the probability mass of the
distribution of Re(E0+) at 750 MeV towards the values of
EtaMAID2018, BnGa-2019, and JüBo-2022.

E. Systematic parameters

The systematic parameters are all around the intended
value of one. Each marginal distribution, for all systematic
parameters and for all analyzed energy bins, is exclusively
unimodal. Examples can be found in Fig. 8 and the Supple-
mental Material [49].

F. Predicted data distributions

Using the estimated multipole parameters, predictions for
polarization observables were calculated which were not uti-
lized in this analysis. These include the observables H , P as
well as all eight observables of the groups BR and T R that
have yet to be measured [1]. The predicted data distributions
are displayed in Fig. 9. The distributions are within the phys-
ical bounds between −1 and 1 and their overall course over
the angular range shows the correct tendency at cos(θ ) = ±1
towards the mathematically expected values [18].

An interesting effect can be observed. The predicted data
distributions for the various ambiguities, show specific func-
tional trajectories over the angular range. In contrast, for the
reproduced data plots, the distributions were almost identical
for different ambiguities. If there were experimental data re-
lated to one of the predicted observables that supports only
one of the specific functional trends throughout the angular
range, it would eliminate any other ambiguity.

According to this criterion, potentially significant polariza-
tion observables have been chosen for upcoming experiments
and are consolidated in Table IV. In particular, the polarization
observable Cz′ seems suitable to reduce the ambiguities at all
six energy bins.

VII. SUMMARY AND OUTLOOK

A TPWA was conducted for η-meson photoproduction off
the proton near the production threshold. Model-independent
estimates of electromagnetic multipole parameters were de-
termined, allowing the first model-independent calculation of
predictions of unmeasured polarization observables. Based on
these results, promising future measurements were identified
with the aim of minimizing remaining ambiguities.

The datasets used in this study demonstrate clear D-wave
contributions above E lab

γ = 950 MeV, but are not sensitive to
F -wave or higher partial-wave contributions.

For the first time, this study combined TPWA with
Bayesian inference. The posterior distributions were highly
multimodal, necessitating adaptations to monitor the MCMC
convergence diagnostics. Despite its simplicity and use
of fewer data, the TPWA approach maintains model-
independence and achieves results consistent with the PWAs
of MAID2018, BnGa-2019, and JüBo-2022.

In general, resonances can be extracted from multipole
parameters. However, for a precise extraction of the res-
onance parameters the current resolution of the combined
datasets is not sufficient. In a subsequent study, the TPWA
approach could be combined with the Laurent + Pietarinen
parametrization for every multipole parameter [52] in order
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FIG. 12. Marginal multipole solutions for the truncation order �max = 2 for the energy bins E lab
γ = [750, 850, 950, 1050, 1150, 1250] MeV.

In addition, the multipole parameter predictions from EtaMAID2018 [48] (dashed line), BnGa-2019 [42], (dotted line) and JüBo-2022 [47]
(dash-dotted line) are shown as well. The relevance of a solution is represented by a transition from sienna (less relevant) to blue (more
relevant) hues. However, for a detailed comparison between the solutions and their relevance to each other, the reader is advised to the tripartite
multipole parameter figures in Figs. 7 and 8 and Ref. [49].

to extract resonance parameters. In addition, the role of the
prior distribution with regard to resolving the mathematical
ambiguities could be investigated.
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TABLE IV. Promising polarization observable candidates to
resolve the ambiguities for truncation order �max = 2. The corre-
sponding predicted data distributions are shown in Fig. 9.

E lab
γ (MeV) Observables

750 Cz′ ,Cx′ , Lx′ , Lz′

850 Cz′ ,Cx′ , Lx′ , Lz′ , Tx′ , Tz′

950 Cz′ ,Cx′ , Lx′ , Lz′ , Tz′

1050 Cz′ ,Cx′ , Lx′ , Oz′ , Tz′

1150 Cz′ , Ox′ , Tx′ , Tz′

1250 Cz′
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APPENDIX A: DISCRETE AMBIGUITIES OF THE
ANALYZED SET OF SIX POLARIZATION OBSERVABLES

Within this Appendix, the discrete partial-wave ambigui-
ties of the six observables {σ0, �̌, Ť , F̌ , Ǧ, Ě} analyzed within
this work (cf. Sec. IV and Table III) are discussed. It is
argued that this specific set is mathematically complete in
a TPWA. As has been demonstrated already in other works
(e.g., Ref. [19]), such mathematical considerations can still
serve as a useful precursor to analyses of real data.

The following discussion is based on the “Omelaenko
formalism” [21]. The basic definitions of the sixteen observ-
ables in pseudoscalar meson photoproduction, expressed in
the transversity basis, are used. The expressions are collected
in Table II.

1. Discrete ambiguities of the group-S observables in truncated
partial-wave analysis

As is well known from Omelaenko’s work, in the case
of a truncated partial-wave analysis with maximum angular
momentum �max, the four transversity amplitudes can be ex-
pressed in terms of linear factorizations:

b1(θ ) = −C a2L
exp

(−i θ
2

)
(1 + t2)L

2L∏
k=1

(t + βk ), (A1)

b2(θ ) = −C a2L
exp

(
i θ

2

)
(1 + t2)L

2L∏
k=1

(t − βk ), (A2)

b3(θ ) = C a2L
exp

(−i θ
2

)
(1 + t2)L

2L∏
k=1

(t + αk ), (A3)

b4(θ ) = C a2L
exp

(
i θ

2

)
(1 + t2)L

2L∏
k=1

(t − αk ), (A4)

where t = tan(θ/2) (with the center-of-mass scattering angle
θ ) and {αk, βk} are the Gersten-Omelaenko roots, which are,
in essence, equivalent to multipoles.

Furthermore, all permissible solutions have to satisfy Ome-
laenko’s constraint, i.e., Eq. (10). The solution theory for the
case where all four group-S observables have been selected,
and thus only ambiguities of the four moduli |b1|, |b2|, |b3|,
|b4| have to be considered, has been worked out at length in

Ref. [19]. This solution theory leads to the known complete
sets of five (e.g., {σ0, �̌, Ť , P̌, F̌ }). In the following section,
the special case where less than four diagonal observables are
selected is considered.

2. Discrete ambiguities of the three group-S
observables {σ0, �, T }

The set of observables used within this work contains only
three simultaneously diagonalized observables (σ0, �̌, Ť , see
Table II). Therefore, one has to investigate which kinds of dis-
crete ambiguities are allowed by this set of three observables,
using the root-formalism described in Appendix A 1. For this
purpose, one can look at the “minimal” linear combinations
of squared moduli:

σ0 − �̌ = 2(|b1|2 + |b2|2), (A5)

σ0 + �̌ = 2(|b3|2 + |b4|2), (A6)

σ0 + Ť = 2(|b1|2 + |b4|2), (A7)

σ0 − Ť = 2(|b2|2 + |b3|2), (A8)

−�̌ + Ť = 2(|b1|2 − |b3|2), (A9)

−�̌ − Ť = 2(|b2|2 − |b4|2). (A10)

Upon reducing the problem to the nonredundant amplitudes
b2 and b4 in the TPWA [by using b4(W, θ ) = b3(W,−θ ) and
b2(W, θ ) = b1(W,−θ ), cf. Eq. (6) to (9)], one obtains

σ0 − �̌ ∝
2�max∏
k=1

(t + α∗
k )(t + αk ) +

2�max∏
k=1

(t − α∗
k )(t − αk ),

(A11)

σ0 + �̌ ∝
2�max∏
k=1

(t + β∗
k )(t + βk ) +

2�max∏
k=1

(t − β∗
k )(t − βk ),

(A12)

σ0 + Ť ∝
2�max∏
k=1

(t + α∗
k )(t + αk ) +

2�max∏
k=1

(t − β∗
k )(t − βk ),

(A13)

σ0 − Ť ∝
2�max∏
k=1

(t − α∗
k )(t − αk ) +

2�max∏
k=1

(t + β∗
k )(t + βk ),

(A14)

−�̌ + Ť ∝
2�max∏
k=1

(t + α∗
k )(t + αk ) −

2�max∏
k=1

(t + β∗
k )(t + βk ),

(A15)

−�̌ − Ť ∝
2�max∏
k=1

(t − α∗
k )(t − αk ) −

2�max∏
k=1

(t − β∗
k )(t − βk ).

(A16)

The problem is now to find out which kinds of discrete am-
biguity transformations, when applied to the roots {αk, βk},
leave the full set of quantities Eqs. (A11) to (A16) invariant,
while also satisfying the multiplicative constraint Eq. (10).
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The first set of transformations which comes to mind is given
by the well-known double ambiguity:

αk → α∗
k and βk → β∗

k ∀ k = 1, . . . , 2�max. (A17)

But other transformations may also be possible in addition,
since the observable P̌ is missing from the full diagonalizable
set {σ0, �̌, Ť , P̌}. Ideas that one would have to test are, for
instance, exchange symmetries

αk → βk and βk → αk ∀ k = 1, . . . , 2�max, (A18)

sign changes

αk → −αk and βk → −βk ∀ k = 1, . . . , 2�max, (A19)

or combinations of both

αk → −α∗
k and βk → −β∗

k ∀ k = 1, . . . , 2�max. (A20)

All of these ideas indeed do not violate the constraint Eq. (10).
In case any such additional symmetry of the quantities
Eqs. (A11) to (A16) were found, the next step would be to test
which of the remaining three observables {F, G, E} resolves
the symmetry. Neither of the proposed symmetries Eqs. (A18)
to (A20) leaves all the six quantities Eqs. (A11) to (A16)
invariant. It remains to be asked whether such additional sym-
metries actually exist. In case they do not exist, the discussion
would be simplified significantly [since F̌ and Ǧ in this case
already resolve the double ambiguity Eq. (A17)]. Due to
information-theoretical reasons, it only seems permissible to
simultaneously use three of the quantities from Eqs. (A11) to
(A16), i.e., to use three new quantities obtained via invertible
and linear transformations from the three diagonal initial ob-
servables {σ0, �̌, Ť }.

As an example, one can select the three quantities given
by Eqs. (A11) to (A13). The full set of discrete ambiguity-
transformations, which, when applied to the roots {αk, βk},
leaves Eqs. (A11) and (A12) invariant while maintaining the
constraint in Eq. (10), is given by the two transformations
in Eqs. (A17) and (A19). Under the exchange symmetry
Eq. (A18), Eqs. (A11) and (A12) are transformed into each
other and thus are not invariant.

Now considering additionally the quantity in Eq. (A13),
one can see that while the transformation Eq. (A17) leaves
this quantity invariant, transformation Eq. (A19) does not.
This only leaves one possible conclusion, namely, that also
for the case of only three diagonal observables {σ0, �̌, Ť }, or
equivalently the three new quantities in Eqs. (A11) and (A13),
the double ambiguity is the only relevant discrete ambiguity
of the problem.11

The argument given above can be repeated for any other
case where a combination of three quantities from the six
definitions Eq. (A11) to (A16) is taken as a starting point.

11This statement is of course only true in case transformations
Eqs. (A17) and (A19) are indeed the only possible discrete ambigui-
ties of the quantities in Eqs. (A11) and (A12) and that no further such
discrete ambiguities exist. This seems plausible when considering
equations Eqs. (A11) and (A12), in combination with the constraint
in Eq. (10).

None of the other starting combinations is necessary for a
proof, since this would give a redundant derivation, with the
same outcome.

3. Completeness of the set {σ0, �̌, Ť , F̌, Ǧ, Ě}
It has already been shown in Refs. [18,19] that the ob-

servables F̌ and Ǧ change sign under the double-ambiguity
transformation.

All the arguments made up to this point prove that the
set {σ0, �̌, Ť , F̌ , Ǧ, Ě} is free of discrete ambiguities in the
TPWA. Assuming furthermore that this set of six observables
has no continuous ambiguities, the set is complete.

APPENDIX B: COVERED PHASE SPACE
OF THE DATA USED

The phase-space coverages of the polarization observable
data used are illustrated in Fig. 3. For a detailed description
of the data see Secs. IV and III. The vertical orange lines
correspond to the energy bins of the statistically weakest
polarization observable G and indicate by which amount the
dataset of another observable has to be shifted to match these
energies.

APPENDIX C: ON THE CORRELATION
OF PROFILE FUNCTIONS

The correlation of two random variables X and Y can be
calculated using the Pearson correlation coefficient defined as
[44]

Corr(X,Y ) = Cov(X,Y )√
Var[X ]Var[Y ]

, (C1)

with their respective variances Var and the covariance Cov
between the two random variables. Under the assumption that
the dimensionless observables do not have any correlation
with each other, the covariance of the unpolarized differential
cross-section σ0(W, θ ) (denoted with X ) and a profile function
[denoted Y ′ = XY because σ0(W, θ ) was used to calculate the
profile function] is

Cov(X,Y ′) = E[XXY ] − E[X ]E[XY ]

= (E[X 2] − E[X ]2)E[Y ]

= Var[X ]E[Y ]. (C2)

And similarly for the covariance of one profile function (de-
noted as Y ′ = XY ) to another (denoted Z ′ = XZ):

Cov(Y ′, Z ′) = E[XY XZ] − E[XY ]E[XZ]

= (E[X 2] − E[X ]2)E[Y ]E[Z]

= Var[X ]E[Y ]E[Z]. (C3)

Substituting Eqs. (C2) and (C3), respectively, into Eq. (C1)
the correlation for both cases is

Corr(X,Y ′) =
√

Var[X ]

Var[Y ′]
E[Y ], (C4)

Corr(Y ′, Z ′) = Var[X ]√
Var[Y ′]Var[Z ′]

E[Y ]E[Z]. (C5)
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APPENDIX D: UNDERLYING ASSUMPTIONS

An enormous strength of Bayesian statistics is its clarity
about the underlying assumptions and how these evolve into
the statistical model used. In general one has N data pairs
(y, x)i, where the two components can be distinguished as
follows:

(1) The random variables y = (y1, . . . , yN ) follow a cer-
tain distribution. In this context, these correspond to
the values of the profile functions of the polarization
observables 
̌α (W, θ ).

(2) The explanatory variables [23] x = (x1, . . . , xN ) do
not belong to any probability distribution. In this con-
text, these are the angular values cos(θi ) at which the
yi were measured.

The underlying distribution of y is of upmost importance
because it defines the shape of the likelihood function and, by
association, the structure of the parameter space. It is therefore
essential to examine the distribution from which y origi-
nates and discuss the validity of the assumptions involved.
Hereby, an understanding of the data acquisition as well as
the subsequent analysis, to extract values for the polarization
observables, is mandatory. For this reason, special emphasis
is placed on their discussion within this paper.

The polarization observables used within this analysis orig-
inate from measurements at multiple experimental facilities:
ELSA [5], MAMI [53], and GRAAL [54]. The measured
quantities are count rates, corresponding to differential cross
sections, from which then, one or multiple polarization ob-
servables can be extracted. The two most common methods
are a “binned chi-square fit” and an “unbinned maximum-
likelihood fit” [41]. For the first case, it is common to use an
asymmetry of the form

A ∝ N1 − N2

N1 + N2
, (D1)

where N1, N2 are normalized count rates of reconstructed
γ p → ηp events for different polarization states [39,40]. This
has the advantage that systematic effects, for example, from
the reconstruction efficiency, cancel out.

Certainly, the distribution of this asymmetry is not explic-
itly addressed in any of the analyses concerning polarization
observables which the authors have encountered up to this
point. However, since the distribution of A determines the
structure of the likelihood distribution, it is mandatory to study
its proper form.

The count rates N1, N2 are Poisson-distributed random vari-
ables. If the expectation value, typically denoted as λ, is high
enough, the distribution goes over to a Gaussian distribution.
In the case of the data used here, this should be a good
assumption.

The sum or difference of two independent Gaussian dis-
tributed random variables, as present in Eq. (D1), is again
Gaussian distributed, which can be shown, for example, using
characteristic functions.

However, the ratio of two, eventually correlated, Gaussian
distributions Z = X/Y is far more complicated. A gen-
eral treatment can be found in Ref. [55]. Additionally a

closed-form expression is given in Eq. (G3), of Appendix G 1.
Indeed, there exist Gaussian shapes for the asymmetry A in
certain limits, but there exists also the possibility for a bimodal
distribution [55]. Therefore, the shape of the asymmetry A
has to be checked for the absence of a bimodal structure. To
use χ2 as likelihood function, the distribution should be well
approximated by a Gaussian distribution. These checks can
be performed by inserting the corresponding values for the
expectation values (μx, μy), standard deviations (σx, σy) and
correlation (ρ) into the formula for Z and its transformation,
see Ref. [55], or by using Eq. (G3).

An alternative approach, where the utilization of such an
asymmetry can be circumvented, is the already mentioned
“unbinned maximum-likelihood fit.” Albeit, in contrast with
the first method, the detector acceptance has to be taken into
account [41], which is possible [56]. Within this approach,
the likelihood distribution can be modeled appropriately using
Poisson distributions.

Summarizing, it is advantageous to use the unbinned
maximum-likelihood fit for future analyses in order to extract
values for the polarization observables.

However, the distribution of the extracted polarization ob-
servables not only depends on the shape of the used likelihood
function but also implicitly on the method used to estimate
the parameter uncertainties. Again, the distribution of the pa-
rameters is rarely explicitly discussed within papers such as
the references cited in Table III. The error analysis of MINUIT

uses by default the HESSE approach [57], which assumes
an asymptotic approximation to a Gaussian distribution for
the parameters under consideration. Thus, it is likely that the
parameters were assumed to be Gaussian distributed. Another
indication in the same direction is that all data used within the
present analysis (cf. Table III) do have symmetric statistical
uncertainties [38–42].

The profile functions 
̌α are calculated by a product of
random variables. However, even when these two random
variables are independent and Gaussian distributed, the result
is not always a Gaussian, only when one of the standard
deviations is very small, see Ref. [19] or Appendix G 2. For-
tunately, this is the case for σ0 as it is the observable in pη
photoproduction with an unprecedented accuracy.

APPENDIX E: ANALYSIS STEPS

This section explains in detail the analysis steps in order to
determine the complex multipole parameters using Bayesian
inference.

The posterior, which was in all of the analyses explicitly
multimodal, and the goal to analyze the structure of the math-
ematical ambiguities present a major challenge with respect
to the sampling of the posterior distribution. On the one hand,
posteriors with multiple modes connected by regions of low
posterior density persuade the Markov chains to get stuck
within a certain mode, unable to explore multiple ones [23].
This results in drastically12 failing MCMC convergence diag-

12This behavior was to be expected since R̂ is a measure whether
all chains have converged to the same distribution.
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nostics, such as the potential-scale-reduction statistic R̂. On
the other hand, the number of possible modes increases expo-
nentially with the truncation order �max. An upper limit can be
given by 24�max − 2, as this is the maximal possible number of
accidental ambiguities of the four group-S observables [note
that the bulk of this number is probably not realized as actual
ambiguities due to the multiplicative constraint Eq. (10)] [19].
Capturing consistently all modes of the marginal posterior
distributions via a large number of chains, with randomized
starting values is computationally inefficient. Furthermore,
randomized starting values will lead to traceplots where one
cannot distinguish between chains that have not converged
yet and chains which have explored more than one mode. An
illustrative example is shown in Fig. 11.

These difficulties can be overcome by specifying well
chosen starting values for the MCMC algorithm, explained
in more detail in Appendixes E 2 and E 3. On that account,
certain parts of the typical Bayesian workflow [58] had to be
adapted.

1. Monte Carlo maximum a posteriori estimation

To compare between different solutions, found within the
same analysis, it is important to find all modes of the marginal
posterior distributions, especially the global maximum. As
already mentioned, the number of accidental ambiguities rises
exponentially with the truncation order. Thus, the utilization
of an optimization routine is substantially more efficient13

than a large number of MCMC chains. With this in mind,
a Monte Carlo maximum a posteriori estimation of the pro-
posed posterior is employed as a preparatory step for the
Bayesian inference procedure. The results of the follow-
ing approach are cross-checked via an implementation in
Mathematica [59], using the Levenberg-Marquard algorithm
[60,61], as well as in Julia [62] using the L-BFGS-algorithm
[63–67] via Optim.jl [68].

At first, one needs to fix the overall phase of the multipoles
due to the bilinear product in Eq. (3). Indeed, without such
a constraint the minimization algorithms would have conver-
gence problems because the solutions are no longer located
at isolated points in the parameter space but on continuous
connected regions. Without loss of generality, a valid choice
is Re(E0+) > 0, Im(E0+) = 0 [19]. Second, the minimiza-
tion algorithm is performed for n different starting values.
The starting values are chosen within the physically allowed
parameter space, which solely depends on the total cross
section σtot [19,69]. Fortunately, the unpolarized differential
cross section is the most accurately measured observable in
pη photoproduction [1], thus yielding accurate limits. An ap-
propriate amount of n equidistant points is chosen on each axis
of this (8�max − 1)-dimensional hyper-rectangle, such that the
volume is sufficiently covered. Each of these parameter con-
figurations is then used as starting values for the minimization
algorithm.

Finally, the nonredundant solutions, of the n possible
mode candidates can be extracted via a clustering algorithm.
Hereby, all values of the multipole parameters are rounded

13Integration is far more computation-intensive than differentiation.

to six digits. Then the unique solution vectors can be filtered
out. A rough estimate for the uncertainty of each parameter
solution is calculated via the inverse of the Hesse matrix [70],
i.e., assuming a Gaussian shape of the parameters.

2. Sampling of the posterior

Within this work, the well-established probabilistic pro-
gramming software Stan [71] has been used to encode the
model employed and to run the posterior sampling with the
state-of-the-art Hamiltonian Monte Carlo algorithm [26,27]
in combination with the No-U-Turn sampler [72]. The em-
ployed Stan model can be found in the Supplemental Material
Ref. [49].

For each mode of the posterior distribution, determined
within Sec. E 1, Nc chains are sampled with starting values
for the multipole and systematic parameters equal to the
corresponding (8�max + 4)-dimensional solution vector. This
approach ensures adequate sampling of all marginal posterior
modes and enables again a meaningful convergence diagnos-
tics, further discussed in Appendix E 3. Hence, this is true as
long as the posterior modes are in the vicinity of the “typical
set,”14 which is the case in this paper.

The following tuning parameters of the Hamiltonian Monte
Carlo algorithm and the No-U-Turn sampler are adapted to the
problem at hand. The average Metropolis acceptance proba-
bility δ ∈ [0, 1] is increased from its default value of 0.8 to
δ = 0.99. Thus, preferring a more fine-grained sampling, i.e.,
smaller leapfrog15 steps ε [72], over the additional computa-
tion time. The maximum tree depth, with a default value of
10, is increased to 50, so that the algorithm can explore even
challenging posterior regions without hitting the termination
conditions [71].

3. Monitor Markov chain Monte Carlo convergence

Naturally one is interested in how well the structure of the
posterior was explored by the applied MCMC algorithm. The
goal is to diagnose whether all Markov chains have explored
the same part of the posterior distribution [23], i.e., whether
the obtained distribution is reliable or accrued due to a random
effect. This can be monitored by convergence diagnostics such
as the potential-scale-reduction statistic R̂ [29] and Monte
Carlo standard error [28] (which depends on the effective
sample size [23]). Within this work, the adapted versions of
these diagnostics, as proposed by Vehtari et al. [73], are em-
ployed. In addition, trace plots [30] can be used to monitor the
behavior of chains which explore multiple marginal modes.
For each of these diagnostics, it is essential to use multiple
chains [30,73] for a reliable result.

However, a multimodal posterior provides some pitfalls.
As already mentioned at the beginning of Appendix E, the
Markov chains can get stuck in certain, isolated modes. Thus
not all chains would have seen the same parts of the posterior

14An illustration of the typical set can be found in Ref. [50].
15This refers to one parameter of the leapfrog integrator; see, for

example, Ref. [27].
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FIG. 13. Adapted workflow to monitor MCMC convergence due
to a multimodal posterior.

distribution and the convergence diagnostics would indicate
that the chains have not converged. Therefore, in case a mul-
timodal posterior is studied, where all modes are of interest,
the usual methods are not applicable. An adaptation has to be
made. Under the assumption that all modes of the posterior
were found via Monte Carlo maximum a posteriori estima-
tion, see Appendix E 1, the following strategy is employed:
A schematic representation of the adapted approach can be
found in Fig. 13. Instead of applying the convergence di-
agnostics to all chains at once, the chains are clustered into
groups according to their sampled parameter space and the
convergence diagnostics are then applied onto each group
separately.16 Consequently, the convergence for the whole
posterior is monitored.

The chains can be grouped according to their similarity
as follows: To avoid problems during the clustering process,
coming from high-dimensional data [75], a dimensional re-
duction of the chains is performed. Each chain, consisting of

16A similar approach was used in Ref. [74].

S sampling points, is characterized via a vector of its quantiles,
in this case the [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] quan-
tiles. Subsequently, the corresponding distance matrix [76] of
the quantile vectors is calculated using the Euclidean metric.
The constructed matrix serves as input for the Density-Based
Spatial Clustering of Applications with Noise (DBSCAN)
algorithm [77]. The minimal cluster size should be at least
two, as this is the minimal amount of chains required to
perform the R̂ diagnostic [30]. An appropriate ε neighborhood
for the DBSCAN algorithm can be graphically determined,
for example, by visualizing the Euclidean distances of the
quantile vectors to each other. Afterwards, the correct clus-
tering of chains can be checked visually. Alternatively, the
two-sample Kolmogorov-Smirnov test [78] or the K-Sample
Anderson-Darling test [79] could be employed to compare
two distributions with each other.

The outlined approach still allows us to adjust the number
of chains Nc per group and the sampling points S in order to
gain adequate convergence diagnostics and the desired pre-
cision for the parameter estimates. Within this paper, one is
aiming for R̂ < 1.01 [73] and a relative Monte Carlo standard
error in the region of a few percent.

4. Analysis of generated data

It is crucial to prove the correct implementation and valid-
ity of the used model. An ideal testing scenario would be the a
priori knowledge of the correct outcome of the analysis using
the model under consideration. Therefore the PWA solution
EtaMAID2018 [48] is employed for the electromagnetic mul-
tipoles in Eq. (4) up to the desired truncation order �max. By
these means, pseudodata for the profile functions 
̌α (W, θ )
are generated via Eq. (2) for certain energies and angular
positions for the observables σ0, �, T , E , F , and G. These
data were used as input for the TPWA following the described
steps in Appendixes E 1 to E 3. This analysis yielded again
the EtaMAID2018 multipole solutions, indicating a correct
implementation.

APPENDIX F: CONVERGENCE DIAGNOSTICS

MCMC convergence diagnostics for the truncation orders
�max = 1 and �max = 2 for all analyzed energies are shown in
Figs. 10 and 6. The anticipated values for the potential-scale-
reduction statistic R̂ � 1.01 and the relative Monte Carlo
standard error (MCSE) of the median in the range of a few per-
cent were achieved for both truncation orders. The diagnostics
for 750 MeV are satisfactory, despite their slightly elevated
values, which are the result of the highly multimodal marginal
parameter distribution. However, certain convergence diag-
nostics for �max = 2 suggest that some groups of chains have
not yet converged, indicating a specific phenomenon that
will be discussed below. Hence, the four energies E lab

γ =
[950, 1050, 1150, 1250] MeV look suspicious. In each case
one group of chains show R̂ values way above 1.01 and rel-
ative Monte Carlo standard errors of over 100%. This results
from two modes separated in phase space by a small region of
low probability, so that the Metropolis acceptance probability
[27] for a transition between the two high-probability regions
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is quite small but nonzero. Hence, just a small number of
chains is able to explore both marginal modes at once, which
is the reason for the suspicious convergence diagnostics. For
the case of 1050 MeV, the blue distribution corresponds to a
cluster with just one group member. Hence, it is not possible
to calculate an R̂ value for this cluster. It is important to note
that this behavior cannot be prevented because it is inherently
a random effect. As an example how such a phenomenon man-
ifests within a parameter distribution, see the blue distribution
of Im(M2+) at 1250 MeV in Fig. 8. Despite their convergence
diagnostics, these types of distributions are shown within the
multipole parameter and posterior predictive plots for their
illustrative purposes.

APPENDIX G: PROBABILITY DISTRIBUTIONS
FOR THE QUOTIENT AND PRODUCT OF TWO

GAUSSIAN RANDOM VARIABLES

Assuming the original observables to follow a Gaussian
probability distribution up to a very good approximation, the
result of forming the quotient and/or product is generally
non-Gaussian. This Appendix collects some basic facts about
the quotient and the product distributions and considers some
limiting cases.

1. The quotient distribution: Z := X/Y

Given are two independent, uncorrelated, Gaussian dis-
tributed random variables X and Y :

X ∼ N (μX , σX ), Y ∼ N (μY , σY ), (G1)

together with the integral defining the probability distribution
function of the quotient variable Z := X/Y [80],

PX/Y (u) =
∫ ∞

−∞
dx

∫ ∞

−∞
dyδ

(
x

y
− u

)

×
exp

[− 1
2

( (x−μX )2

σ 2
X

+ (y−μY )2

σ 2
Y

)]
2πσX σY

=
∫ ∞

−∞
dy|y|

exp
[− 1

2

( (uy−μX )2

σ 2
X

+ (y−μY )2

σ 2
Y

)]
2πσX σY

, (G2)

Mathematica yields the following result (for positive values
of σX and σY ):

PX/Y (u) = f1(u) · {
√

2 f2(u) c

+ √
π f3(u) erf( f4(u)) exp[ f4(u)2]}, (G3)

with the declarations

f1(u) :=
exp

[− 1
2

(μ2
X

σ 2
X

+ μ2
Y

σ 2
Y

)]
√

2π f2(u)3
, (G4)

f2(u) :=
√

σ 2
X + σ 2

Y u2, (G5)

f3(u) := μY σ 2
X + μX σ 2

Y u, (G6)

f4(u) := f3(u)√
2 f2(u) c

, (G7)

c := σX σY (G8)

and the error function “erf” [81]. In the following, two limit-
ing cases for Eq. (G3) are analyzed: first, the vanishing of the
expectation values (i.e., μX = μY = 0):

PX/Y (u) = σX σY

π
(
σ 2

X + σ 2
Y u2

) . (G9)

This is a result which is known from earlier publications on
the quotient distribution, for instance [82].

Second, considering also unit standard deviations
(i.e., σX = σY = 1) the result Eq. (G9) further simplifies to

PX/Y (u) = 1

π (1 + u2)
. (G10)

This is the well-known Cauchy distribution.

2. The product distribution: Z := XY

Similar to Eq. (G2) the probability-distribution function
for the product of two independent, uncorrelated Gaussian
distributed random variables can be written [83] as

PXY (u) =
∫ ∞

−∞
dx

∫ ∞

−∞
dyδ(xy − u)

×
exp

[− 1
2

( (x−μX )2

σ 2
X

+ (y−μY )2

σ 2
Y

)]
2πσX σY

. (G11)

By introducing an integral-representation for the δ function

δ(xy − u) =
∫ +∞

−∞

dk

2π
eik(xy−u) =

∫ +∞

−∞

dk

2π
eikxye−iku,

(G12)

one can bring Eq. (G11) into the following form:

PXY (u) =
∫ +∞

−∞

dk

2π
e−ikuFk[μX , σX ; μY , σY ], (G13)

where

Fk[μX , σX ; μY , σY ] =
∫ ∞

−∞
dx

∫ ∞

−∞
dyeikxy

×
exp

[− 1
2

( (x−μX )2

σ 2
X

+ (y−μY )2

σ 2
Y

)]
2πσX σY

.

(G14)

This characteristic function can be solved analytically:

Fk[μX , σX ; μY , σY ]

=
∫ ∞

−∞
dy exp

[
−1

2
ky

(
kσ 2

X y − 2iμX
)]exp

[− (y−μY )2

2σ 2
Y

]
√

2πσY

=
exp

[− k(kμ2
Y σ 2

X +kμ2
X σ 2

Y −2iμX μY )
2+2k2σ 2

X σ 2
Y

]√
1 + k2σ 2

X σ 2
Y

. (G15)
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The final result has the shape of a Fourier integral:

PXY (u) =
∫ +∞

−∞

dk

2π
exp [−iku]

×
exp

[− k(kμ2
Y σ 2

X +kμ2
X σ 2

Y −2iμX μY )
2+2k2σ 2

X σ 2
Y

]√
1 + k2σ 2

X σ 2
Y

. (G16)

In analogy to the quotient distribution, the limiting case μX =
μY = 0 shall be analyzed. The Fourier coefficients become

Fk[0, σX ; 0, σY ] = 1√
1 + k2σ 2

X σ 2
Y

. (G17)

The result for the product distribution can in this case be
written with a modified Bessel function of the second kind
Kn(z):

PXY (u) = K0
( |u|

σX σY

)
πσX σY

. (G18)

This is the analog of Eq. (G9) from the case of the quotient
distribution. For unit standard deviations, Eq. (G18) becomes
simply K0(|u|)/π , which is the analog of Eq. (G10).

For the product distribution, especially one limiting case is
of interest for this paper, namely, where the standard deviation
of one random variable almost vanishes (i.e., σY → 0). The
characteristic function becomes

lim
σY →0

Fk = exp

(
−k

(
kμ2

Y σ 2
X − 2iμX μY

)
2

)
. (G19)

Substituting Eq. (G19) into Eq. (G16) and solving the integral
gives the result:

PXY (u) =
exp

( − (u−μX μY )2

2μ2
Y σ 2

X

)
√

2π |μY ||σX | , (G20)

which is indeed a Gaussian probability distribution function.
This result is used in Appendix D.
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Appendix B

Neutrino mass analysis

B.1 Individual campaigns

B.1.1 MCMC convergence diagnostics

The Markov chain Monte Carlo convergence diagnostics for the individual KATRIN
analyses are shown in Table B.1.

B.1.2 Posterior predictive checks

The following posterior predictive checks correspond to the individual KATRIN
campaigns using (Total). Standardized residuals for the reproduced data distribu-
tions using the MAP estimate are shown in Figs. B.1 and B.2. Normalized counts
using posterior samples are displayed in Figs. B.3 and B.4. The standardized
residuals for posterior samples are displayed in Figs. B.5 and B.6.

B.1.3 Results

The results of the performed analysis on the first five KATRIN campaigns can be
found in Figs. B.7 to B.12. The results for KNM5 are shown in the main text in
Fig. 7.3. In addition, Fig. B.13 compares the individual result within one plot.
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Table B.1: Summary of MCMC convergence diagnostics for the fit of individual
campaigns. The largest values from all parameters of a campaign are reported for
R̂ and the relative MCMCSE for the 90%-quantile. The diagnostics are shown for
different priors of m2

𝜈 when taking only statistical uncertainties or statistical and
systematic uncertainties into account. Asimov data were analyzed.

(a) Flat prior m2
𝜈 ∼ U(−10,10) and considering only statistical uncertainties.

Campaign R̂ MCMCSE for 90%-quantile

KNM1 ≤ 1.000032 ≤ 0.26%
KNM2 ≤ 1.000036 ≤ 0.25%
KNM3-SAP ≤ 1.000028 ≤ 0.23%
KNM3-NAP ≤ 1.000026 ≤ 0.24%
KNM4-NOM ≤ 1.000023 ≤ 0.21%
KNM4-OPT ≤ 1.000022 ≤ 0.20%
KNM5 ≤ 1.000018 ≤ 0.20%

(b) Flat prior m2
𝜈 ∼ U(−10,10) and considering statistical and systematic uncertainties.

Campaign R̂ MCMCSE for 90%-quantile

KNM1 ≤ 1.000047 ≤ 0.16%
KNM2 ≤ 1.000018 ≤ 0.18%
KNM3-SAP ≤ 1.000053 ≤ 0.54%
KNM3-NAP ≤ 1.000023 ≤ 0.19%
KNM4-NOM ≤ 1.000064 ≤ 0.48%
KNM4-OPT ≤ 1.000040 ≤ 0.53%
KNM5 ≤ 1.000079 ≤ 0.26%

(c) Flat, positive prior m2
𝜈 ∼ U(0,3) and considering only statistical uncertainties.

Campaign R̂ MCMCSE for 90%-quantile

KNM1 ≤ 1.000032 ≤ 0.15%
KNM2 ≤ 1.000022 ≤ 0.15%
KNM3-SAP ≤ 1.000021 ≤ 0.13%
KNM3-NAP ≤ 1.000029 ≤ 0.15%
KNM4-NOM ≤ 1.000015 ≤ 0.12%
KNM4-OPT ≤ 1.000021 ≤ 0.11%
KNM5 ≤ 1.000020 ≤ 0.12%

(d) Flat, positive prior m2
𝜈 ∼ U(0,3) and considering statistical and systematic uncertainties.

Campaign R̂ MCMCSE for 90%-quantile

KNM1 ≤ 1.000029 ≤ 0.15%
KNM2 ≤ 1.000028 ≤ 0.16%
KNM3-SAP ≤ 1.000030 ≤ 0.55%
KNM3-NAP ≤ 1.000017 ≤ 0.16%
KNM4-NOM ≤ 1.000051 ≤ 0.48%
KNM4-OPT ≤ 1.000048 ≤ 0.50%
KNM5 ≤ 1.000056 ≤ 0.17%
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Figure B.1: Posterior predictive check with MAP estimates for the individual KA-
TRIN campaigns using a flat prior m2

𝜈 ∼ U(−10,10). Shown are the standardized
residuals for all energies in the form of gray step histograms. The residual distri-
butions should follow a standard Normal distribution, indicated with an orange
curve.
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Figure B.2: Posterior predictive check with MAP estimates for the individual
KATRIN campaigns using a flat, positive prior m2

𝜈 ∼ U(0,3). Shown are the
standardized residuals for all energies in the form of gray step histograms. The
residual distributions should follow a standard Normal distribution, indicated with
an orange curve.
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Figure B.3: Posterior predictive check with posterior samples for the individual
KATRIN campaigns using a flat prior m2

𝜈 ∼ U(−10,10). The gray dots represent
the reproduced data distributions, with red dots indicating the mean values. The
original data points and their errors are drawn in orange. To compare all energies
at once, despite the counts differing by orders of magnitude, the values at each
energy were normalized by dividing by the original data point.
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Figure B.4: Posterior predictive check with posterior samples for the individual
KATRIN campaigns using a flat, positive prior m2

𝜈 ∼ U(0,3). The gray dots
represent the reproduced data distributions, with red dots indicating the mean
values. The original data points and their errors are drawn in orange. To compare
all energies at once, despite the counts differing by orders of magnitude, the values
at each energy were normalized by dividing by the original data point.
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Figure B.5: Posterior predictive check with posterior samples for the individual
KATRIN campaigns using a flat prior m2

𝜈 ∼ U(−10,10). Shown are the standard-
ized residuals for all energies in the form of gray step histograms. The residual
distributions should follow a standard Normal distribution, indicated with an
orange curve.
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Figure B.6: Posterior predictive check with posterior samples for the individual
KATRIN campaigns using a flat, positive prior m2

𝜈 ∼ U(0,3). Shown are the
standardized residuals for all energies in the form of gray step histograms. The
residual distributions should follow a standard Normal distribution, indicated with
an orange curve.
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Total 0.0476 0.1535 0.5199 0.7728 1.0928 1.2792 1.5311
Stat. only 0.0459 0.1481 0.4989 0.7417 1.0474 1.2262 1.4662

(a) Results for a flat, positive prior: m2
𝜈 ∼ U(0,3).
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(b) Results for a flat prior: m2
𝜈 ∼ U(−10,10).

Figure B.7: Results for KNM1 are shown for different priors on m2
𝜈 as well as for

(Stat. only) and (Total) fits. Displayed are the marginal distributions and the
corresponding quantile values. The nominal value and the MAP estimates are
shown as vertical lines. Numbers are rounded to four digits.
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(a) Results for a flat, positive prior: m2
𝜈 ∼ U(0,3).
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(b) Results for a flat prior: m2
𝜈 ∼ U(−10,10).

Figure B.8: Results for KNM2 are shown for different priors on m2
𝜈 as well as for

(Stat. only) and (Total) fits. Displayed are the marginal distributions and the
corresponding quantile values. The nominal value and the MAP estimates are
shown as vertical lines. Numbers are rounded to four digits.
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(a) Results for a flat, positive prior: m2
𝜈 ∼ U(0,3).
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(b) Results for a flat prior: m2
𝜈 ∼ U(−10,10).

Figure B.9: Results for KNM3-SAP are shown for different priors on m2
𝜈 as well

as for (Stat. only) and (Total) fits. Displayed are the marginal distributions and
the corresponding quantile values. The nominal value and the MAP estimates are
shown as vertical lines. Numbers are rounded to four digits.
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(a) Results for a flat, positive prior: m2
𝜈 ∼ U(0,3).
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Figure B.10: Results for KNM3-NAP are shown for different priors on m2
𝜈 as well

as for (Stat. only) and (Total) fits. Displayed are the marginal distributions and
the corresponding quantile values. The nominal value and the MAP estimates are
shown as vertical lines. Numbers are rounded to four digits.
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(a) Results for a flat, positive prior: m2
𝜈 ∼ U(0,3).
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Stat. only -0.4484 -0.2771 -0.0285 0.0825 0.2006 0.2637 0.3450

(b) Results for a flat prior: m2
𝜈 ∼ U(−10,10).

Figure B.11: Results for KNM4-NOM are shown for different priors on m2
𝜈 as well

as for (Stat. only) and (Total) fits. Displayed are the marginal distributions and
the corresponding quantile values. The nominal value and the MAP estimates are
shown as vertical lines. Numbers are rounded to four digits.
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(b) Results for a flat prior: m2
𝜈 ∼ U(−10,10).

Figure B.12: Results for KNM4-OPT are shown for different priors on m2
𝜈 as well

as for (Stat. only) and (Total) fits. Displayed are the marginal distributions and
the corresponding quantile values. The nominal value and the MAP estimates are
shown as vertical lines. Numbers are rounded to four digits.
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(b) Results for a flat prior: m2
𝜈 ∼ U(−10,10).

Figure B.13: The marginal distribution ofm2
𝜈 are shown for KNM1-5. The results are

obtained by using Asimov twins and taking statistical and systematic uncertainties
into account. The results using different priors for m2

𝜈 are compared: (a) flat prior
and (b) flat, positive prior.
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B.2 Chained analysis

B.2.1 Initial priors for forwarded parameters

In the following equations, the initial priors for the 12 forwarded parameters m2
𝜈 ,

Bmax, Bsrc, ®Eloss,amp, ®Eloss,exp and ®Eloss,std are defined which are used in the first step
of a chained analysis. Their form and numerical values are identical for each of
the first five KATRIN campaigns. The priors take the form:

m2
𝜈 ∼ U(0,3) | | U(−10,10), (B.1)

Bmax ∼ N
(
1.000, 1.000 × 10−3

)
, (B.2)

Bsrc ∼ N
(
2.507, 6.000 × 10−3

)
, (B.3)

Eloss ∼ N(𝜇, Σ), (B.4)

with the expectation value 𝜇 (rounded to three significant digits):

𝜇 :=
©­­«
𝜇 ®Eloss,amp

𝜇 ®Eloss,exp

𝜇 ®Eloss,std

ª®®¬ =

©­­­­­­­­­­­­­«

3.280 × 10−2

2.957 × 10−1

7.575 × 10−2

1.192 × 101

1.280 × 101

1.497 × 101

1.836 × 10−1

4.677 × 10−1

9.070 × 10−1

ª®®®®®®®®®®®®®¬
, (B.5)

and the corresponding covariance matrix Σ shown in Table B.2. The values of
all other priors used in the first five KATRIN campaigns can be found in Ref.
[KATRIN et al., 2025c].

B.2.2 Parameter transformations

The result of transforming a multivariate non-Gaussian distribution to a standard
Gaussian multivariate distribution, as is necessary in the chained analysis, is shown
in Fig. B.14.

B.2.3 MCMC convergence diagnostics

The Markov chain Monte Carlo convergence diagnostics of the performed chained
analyses are shown in Tables B.3 to B.5.

B.2.4 Results

The results for the chained-analysis of the first five KATRIN campaigns, forwarding
only information about m2

𝜈 , can be found in Figs. B.15 and B.16. The results when
forwarding all possible 12 parameters, are shown in the main text in Fig. 7.12.
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Table B.2: Covariance matrix Σ for the Eloss-parameters: ®Eloss,amp, ®Eloss,exp and ®Eloss,std (rounded to three significant digits).

©­­­­­­­­­­­­­«

1.169 × 10−4 7.818 × 10−6 −3.608 × 10−6 3.624 × 10−4 1.074 × 10−4 −8.035 × 10−5 1.985 × 10−4 −1.404 × 10−4 2.676 × 10−4

7.818 × 10−6 3.665 × 10−5 3.905 × 10−6 −5.202 × 10−5 1.810 × 10−5 −1.020 × 10−5 −7.794 × 10−7 −4.120 × 10−5 −1.615 × 10−4

−3.608 × 10−6 3.905 × 10−6 1.084 × 10−5 −5.260 × 10−6 1.515 × 10−5 −4.935 × 10−5 −1.472 × 10−5 1.947 × 10−5 −3.323 × 10−4

3.624 × 10−4 −5.202 × 10−5 −5.260 × 10−6 5.552 × 10−3 8.271 × 10−4 −2.712 × 10−4 3.629 × 10−3 −6.384 × 10−4 6.475 × 10−4

1.074 × 10−4 1.810 × 10−5 1.515 × 10−5 8.271 × 10−4 3.602 × 10−4 5.916 × 10−5 6.612 × 10−4 −9.648 × 10−5 −6.902 × 10−4

−8.035 × 10−5 −1.020 × 10−5 −4.935 × 10−5 −2.712 × 10−4 5.916 × 10−5 1.313 × 10−3 −3.782 × 10−4 2.771 × 10−4 −1.797 × 10−4

1.985 × 10−4 −7.794 × 10−7 −1.472 × 10−5 3.629 × 10−3 6.612 × 10−4 −3.782 × 10−4 3.886 × 10−3 −7.143 × 10−4 1.203 × 10−3

−1.404 × 10−4 −4.120 × 10−5 1.947 × 10−5 −6.384 × 10−4 −9.648 × 10−5 2.771 × 10−4 −7.143 × 10−4 3.797 × 10−4 −1.216 × 10−3

2.676 × 10−4 −1.615 × 10−4 −3.323 × 10−4 6.475 × 10−4 −6.902 × 10−4 −1.797 × 10−4 1.203 × 10−3 −1.216 × 10−3 1.306 × 10−2

ª®®®®®®®®®®®®®¬
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(a) Forwarded parameters in space-1. The correlation between parameters are visible and
especially the marginal distribution of m2

𝜈 is skewed and does not follow a standard normal
distribution.
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(b) Forwarded parameters in space-2. The parameters follow a multivariate standard normal
distribution.

Figure B.14: Illustration of a parameter transformation from space-1 to space-
2. For the sake of visualization, only three of the 12 forwarded parameters are
shown, namely m2

𝜈 ,Bsrc and Bmax. The anticipated standard normal distribution is
indicated in the 1-d histograms with orange lines. For the 2-d histograms dashed
black lines are drawn, horizontally and vertically, at a value of zero.
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Table B.3: Summary of MCMC convergence diagnostics for the chained analysis
where only m2

𝜈 are forwarded between campaigns. Reported are the largest values
from all parameters of a campaign for R̂ and the relative MCMCSE for the 90%-
quantile. Asimov data were analyzed and an initial flat prior m2

𝜈 ∼ U(−10,10)
was used in the first step. The diagnostics are shown for two different sequences,
both analyzed taking only statistical uncertainties or statistical and systematic
uncertainties into account.

(a) Permutation 1. Taking only statistical uncertainties into account.

Step Campaign R̂ MCMCSE for 90%-quantile

1 KNM1 ≤ 1.000037 0.27%
2 KNM2 ≤ 1.000033 0.23%
3 KNM3-NAP ≤ 1.000019 0.21%
4 KNM3-SAP ≤ 1.000023 0.17%
5 KNM4-NOM ≤ 1.000017 0.19%
6 KNM4-OPT ≤ 1.000017 0.16%
7 KNM5 ≤ 1.000019 0.17%

(b) Permutation 2. Taking only statistical uncertainties into account.

Step Campaign R̂ MCMCSE for 90%-quantile

1 KNM5 ≤ 1.000041 0.21%
2 KNM4-OPT ≤ 1.000021 0.15%
3 KNM4-NOM ≤ 1.000030 0.18%
4 KNM3-SAP ≤ 1.000017 0.16%
5 KNM3-NAP ≤ 1.000016 0.20%
6 KNM2 ≤ 1.000014 0.19%
7 KNM1 ≤ 1.000023 0.18%

(c) Permutation 1. Taking statistical and systematic uncertainties into account.

Step Campaign R̂ MCMCSE for 90%-quantile

1 KNM1 ≤ 1.000027 0.17%
2 KNM2 ≤ 1.000031 0.18%
3 KNM3-NAP ≤ 1.000018 0.18%
4 KNM3-SAP ≤ 1.000038 0.49%
5 KNM4-NOM ≤ 1.000119 0.48%
6 KNM4-OPT ≤ 1.000032 0.51%
7 KNM5 ≤ 1.000124 0.22%

(d) Permutation 2. Taking statistical and systematic uncertainties into account.

Step Campaign R̂ MCMCSE for 90%-quantile

1 KNM5 ≤ 1.000156 0.27%
2 KNM4-OPT ≤ 1.000058 0.49%
3 KNM4-NOM ≤ 1.000106 0.50%
4 KNM3-SAP ≤ 1.000032 0.53%
5 KNM3-NAP ≤ 1.000023 0.17%
6 KNM2 ≤ 1.000020 0.19%
7 KNM1 ≤ 1.000018 0.18%
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Table B.4: Summary of MCMC convergence diagnostics for the chained analysis
where only m2

𝜈 are forwarded between campaigns. Reported are the largest values
from all parameters of a campaign for R̂ and the relative MCMCSE for the 90%-
quantile. Asimov data were analyzed and an initial flat, positive prior m2

𝜈 ∼ U(0,3)
was used in the first step. The diagnostics are shown for two different sequences,
both analyzed taking only statistical uncertainties or statistical and systematic
uncertainties into account.

(a) Permutation 1. Taking only statistical uncertainties into account.

Step Campaign R̂ MCMCSE for 90%-quantile

1 KNM1 ≤ 1.000019 0.16%
2 KNM2 ≤ 1.000034 0.14%
3 KNM3-NAP ≤ 1.000016 0.12%
4 KNM3-SAP ≤ 1.000023 0.10%
5 KNM4-NOM ≤ 1.000027 0.11%
6 KNM4-OPT ≤ 1.000023 0.10%
7 KNM5 ≤ 1.000023 0.10%

(b) Permutation 2. Taking only statistical uncertainties into account.

Step Campaign R̂ MCMCSE for 90%-quantile

1 KNM5 ≤ 1.000018 0.11%
2 KNM4-OPT ≤ 1.000017 0.10%
3 KNM4-NOM ≤ 1.000015 0.10%
4 KNM3-SAP ≤ 1.000018 0.09%
5 KNM3-NAP ≤ 1.000020 0.11%
6 KNM2 ≤ 1.000013 0.11%
7 KNM1 ≤ 1.000022 0.11%

(c) Permutation 1. Taking statistical and systematic uncertainties into account.

Step Campaign R̂ MCMCSE for 90%-quantile

1 KNM1 ≤ 1.000022 0.15%
2 KNM2 ≤ 1.000023 0.15%
3 KNM3-NAP ≤ 1.000021 0.15%
4 KNM3-SAP ≤ 1.000047 0.52%
5 KNM4-NOM ≤ 1.000067 0.52%
6 KNM4-OPT ≤ 1.000062 0.50%
7 KNM5 ≤ 1.000183 0.15%

(d) Permutation 2. Taking statistical and systematic uncertainties into account.

Step Campaign R̂ MCMCSE for 90%-quantile

1 KNM5 ≤ 1.000094 0.16%
2 KNM4-OPT ≤ 1.000056 0.55%
3 KNM4-NOM ≤ 1.000065 0.46%
4 KNM3-SAP ≤ 1.000032 0.52%
5 KNM3-NAP ≤ 1.000021 0.16%
6 KNM2 ≤ 1.000026 0.15%
7 KNM1 ≤ 1.000018 0.15%
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Table B.5: Summary of MCMC convergence diagnostics for the chained analysis
where m2

𝜈 , Bmax, Bsrc, ®Eloss,amp, ®Eloss,exp, ®Eloss,std and their correlations are forwarded
between campaigns. Reported are the largest values from all parameters of a
campaign for R̂ and the relative MCMCSE. Asimov data were analyzed and
different initial priors on m2

𝜈 was used in the first step. The diagnostics are
shown for two different sequences, both analyzed taking statistical and systematic
uncertainties into account.

(a) Permutation 1. With a flat prior m2
𝜈 ∼ U(−10,10) used in the first step.

Step Campaign R̂ MCMCSE for 90%-quantile

1 KNM1 ≤ 1.000026 0.17%
2 KNM2 ≤ 1.000015 0.17%
3 KNM3-NAP ≤ 1.000017 0.18%
4 KNM3-SAP ≤ 1.000029 0.50%
5 KNM4-NOM ≤ 1.000073 0.50%
6 KNM4-OPT ≤ 1.000091 0.53%
7 KNM5 ≤ 1.000173 0.23%

(b) Permutation 2. With a flat prior m2
𝜈 ∼ U(−10,10) used in the first step.

Step Campaign R̂ MCMCSE for 90%-quantile

1 KNM5 ≤ 1.000170 0.29%
2 KNM4-OPT ≤ 1.000062 0.49%
3 KNM4-NOM ≤ 1.000126 0.47%
4 KNM3-SAP ≤ 1.000031 0.52%
5 KNM3-NAP ≤ 1.000023 0.17%
6 KNM2 ≤ 1.000029 0.19%
7 KNM1 ≤ 1.000031 0.17%

(c) Permutation 1. With a flat, positive prior m2
𝜈 ∼ U(0,3) used in the first step.

Step Campaign R̂ MCMCSE for 90%-quantile

1 KNM1 ≤ 1.000022 0.15%
2 KNM2 ≤ 1.000019 0.16%
3 KNM3-NAP ≤ 1.000025 0.15%
4 KNM3-SAP ≤ 1.000028 0.50%
5 KNM4-NOM ≤ 1.000101 0.47%
6 KNM4-OPT ≤ 1.000029 0.46%
7 KNM5 ≤ 1.000133 0.15%

(d) Permutation 2. With a flat, positive prior m2
𝜈 ∼ U(0,3) used in the first step.

Step Campaign R̂ MCMCSE for 90%-quantile

1 KNM5 ≤ 1.000119 0.16%
2 KNM4-OPT ≤ 1.000067 0.49%
3 KNM4-NOM ≤ 1.000025 0.49%
4 KNM3-SAP ≤ 1.000028 0.51%
5 KNM3-NAP ≤ 1.000022 0.15%
6 KNM2 ≤ 1.000020 0.16%
7 KNM1 ≤ 1.000023 0.16%
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(a) Taking only statistical uncertainties into account.
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KNM5-1 0.0065 0.0208 0.0718 0.1074 0.1525 0.1790 0.2137

(b) Taking statistical and systematic uncertainties into account.

Figure B.15: Results of the chained analysis forwarding only m2
𝜈 between campaigns.

The sequences KNM1 → KNM2 → KNM3-NAP → KNM3-SAP → KNM4-NOM
→ KNM4-OPT → KNM5 and its reversed order are compared for an initial flat,
positive prior m2

𝜈 ∼ U(0,3). In addition, the results are shown for (a) taking only
statistical uncertainties and (b) taking statistical and systematic uncertainties into
account.
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(a) Taking only statistical uncertainties into account.
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(b) Taking statistical and systematic uncertainties into account.

Figure B.16: Results of the chained analysis forwarding only m2
𝜈 between campaigns.

The sequences KNM1 → KNM2 → KNM3-NAP → KNM3-SAP → KNM4-NOM
→ KNM4-OPT → KNM5 and its reversed order are compared for an initial flat
prior m2

𝜈 ∼ U(−10,10). In addition, the results are shown for (a) taking only
statistical uncertainties and (b) taking statistical and systematic uncertainties into
account.
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Appendix C

Further scientific
contributions

C.1 Supervised students

Masterthesis:

• Jakob Krause, "Determination of the beam asymmetry Σ in 𝜂- and 𝜂′-
photoproduction using Bayesian statistics", 2022

• Jean Noël, "Truncated partial-wave analysis of the reaction 𝛾p → 𝜋0p using
Bayesian statistics", 2022

Bachelorthesis:

• Aleksander Wagner, "Truncated partial wave analysis of the reaction 𝛾p →
KΛ", 2023

C.2 Conference contributions

1. CB-Collaboration Meeting, 2023, Talk with the title "Truncated partial-
wave analysis of 𝜂-Photoproduction with Bayesian statistics"

2. MENU, 2023, 16th International conference on meson-nucleon physics and
the structure of the nucleon, Talk with the title "Combination of Bayesian
statistics with truncated partial-wave analysis"

3. Invited Talk Glasgow University, 2023, "Combination of Bayesian statistics
with truncated partial-wave analysis"

4. HADRON, 2021, 19th International conference on hadron spectroscopy
and structure, Talk with the title "Minimal complete sets for two-pseudoscalar-
meson photoproduction"

5. ISNET, 2021, Information and statistics in nuclear experiment and theory,
Talk with the title "Bayesian statistics for partial-wave analysis"
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6. KATRIN collaboration Meeting, 2024, Talk with the title "Bayesian
Analysis of KNM1-5 using Netrium.jl" (multiple speakers)

7. KATRIN collaboration Meeting, 2025, Talk with the title "Bayesian
analysis of KNM1-5, First looks on combined data" (multiple speakers)

8. KATRIN collaboration Meeting, 2025, Talk with the title "Chained
Bayesian Analysis of KNM1-5 with Netrium"
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