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Kurzfassung

Der Agrarsektor steht vor der doppelten Herausforderung, Erndhrungssicherheit zu
gewadhrleisten und gleichzeitig die Umwelt zu schiitzen. Bevolkerungswachstum, Klimawandel
und Umweltbelastungen verscharfen diese Herausforderung. Ein vielversprechender
Losungsansatz ist der Wandel hin zur nachhaltigen Intensivierung — das bedeutet: gesteigerte
Produktion bei verminderten Umweltauswirkungen. Intelligente Agrartechnologien (Smart
Farming Technologies, SFT), insbesondere solche auf Basis kinstlicher Intelligenz (KI), bieten
grofRes Potenzial zur Unterstltzung dieses Wandels durch autonome Datenerfassung sowie zeit-
und standortgenaue Bewirtschaftung. Allerdings verwenden Landwirt*innen SFT bislang nur
in begrenztem AusmaR und die Griinde daftir sind noch nicht vollstandig geklart. Politisch
verfolgt die EU-Agrarpolitik das Ziel, die Digitalisierung und nachhaltige Praktiken durch
Anreize zu fordern, wurde aber vielfach als ineffizient kritisiert. SFT konnten hier durch
ergebnisorientierte Ansatze unterstiitzen — jedoch fehlt es an Forschung zur Integration ihrer
Potenziale in der Politikgestaltung.

Die vorliegende Dissertation adressiert diese Wissenslicken durch empirische Studien zur
Interaktion von Landwirt*innen, SFT und Agrarpolitik in Europa. Ziel ist es zu verstehen,
welche Faktoren das Verhalten von Landwirt*innen beeinflussen, wie SFT die
Politikgestaltung veradndern konnten und welche politischen MaRnahmen ergriffen werden
mussten, um das Potenzial digitaler Technologien fir eine nachhaltige Intensivierung zu
nutzen. Kapitel 2 analysiert, wie sogenannte ,,Peer-Effekte* — insbesondere verbaler Austausch
und Wahrnehmung von Feldern anderer Landwirt*innen - die
Technologienutzungsentscheidung beeinflussen. Basierend auf Umfragedaten von 313
Landwirt*innen  in  Deutschland und einem innovativen,  raumlich-expliziten
Erhebungsinstrument zeigt eine Double-Selection-LASSO-Analyse, dass beide Peer-
Mechanismen positiv mit der Nutzungsentscheidung zusammenhéangen und sich gegenseitig
verstarken. Die Wahrscheinlichkeit der Technologienutzung ist am hochsten flr
Landwirt*innen, die viele Felder in rdumlicher N&he wahrnehmen, auf denen die neue
Technologie genutzt wird und die mit vielen anderen Nutzer*innen sprechen. In Kapitel 3 wird
die Zahlungsbereitschaft von 250 Landwirt*innen fir Kl-basierte Entscheidungshilfen anhand
eines Online-Experiments untersucht. Die Ergebnisse eines bayesianischen Modells zeigen eine
klare ,,Algorithmus-Aversion*“: Landwirt*innen bevorzugen menschliche Empfehlungen
gegenuber KI, selbst bei Gberlegener Leistung der KI. Das Kapitel fihrt das Konzept der K-
Angst als zentralen Erklarungsfaktor fur zukinftige Verhaltensmodelle ein. Kapitel 4 verlagert
den Fokus auf die Politikgestaltung: Mit Hilfe eines Simulationsmodells wird untersucht, wie
intelligente  Unkrautroboter die Ausgestaltung von Zahlungen fir Okosystemleistungen
beeinflussen konnen. Die F&higkeiten der Roboter (selektive Bek&mpfung und autonome
Datenerfassung) erhohen die Effizienz sowohl aktions- als auch ergebnisbasierter
Politikanséatze. Dies verschiebt die bisherigen Grenzen der Politikdesignoptionen.

Diese Arbeit leistet aus theoretischer, empirischer und methodischer Perspektive einen Beitrag
zum Verstandnis des Technologieverhaltens von Landwirt*innen und zur Rolle von SFT in der
Agrarpolitik. Sie zeigt auf, wie SFT effizient zur Politikgestaltung genutzt werden kdnnen.
Soziale Lernprozess konnen helfen, der KI-Skepsis von Landwirt*innen entgegenzutreten. Eine
erfolgreiche Technologie-Einfuihrung erfordert jedoch Unterstiitzung: Entscheidungstréger in
Politik, Beratung und Technologieentwicklung sollten gemeinsam die Potentiale
kommunizieren, wahrgenommene Hurden abbauen und die Fahigkeiten von SFT zur
Unterstitzung nachhaltiger Intensivierung gezielt einsetzen.






Abstract

The agricultural sector faces a dual challenge: ensuring food security while simultaneously
protecting the environment. Population growth, climate change, and environmental degradation
exacerbate this challenge. A promising pathway to address it is a shift towards sustainable
intensification—that is, achieving higher productivity while reducing negative environmental
impact. Smart farming technologies (SFT), particularly those based on artificial intelligence
(Al), offer substantial potential to support this transition by enabling autonomous monitoring
and site- and time-specific management. Nevertheless, the adoption of these technologies by
farmers remains limited, and substantial knowledge gaps persist regarding farmers’ behavior
towards SFT. At the policy level, the European Union’s Common Agricultural Policy aims to
promote digitalization and sustainable practices through financial incentives, but such programs
have often been criticized as inefficient and ecologically ineffective. SFT could support more
results-oriented policy instruments; however, research is lacking on how their capabilities could
concretely influence policy design.

This dissertation addresses these research gaps through empirical studies that examine the
interaction between farmers, SFT, and agricultural policy in Europe. The aim is to deepen the
understanding of the factors that influence farmer behavior, how SFT may reshape policy-
making, and how optimal policies can leverage the potential of SFT to support sustainable
intensification in the agricultural sector. Chapter 2 analyzes how “peer effects”—specifically
verbal exchange and field observation among farmers—influence farmers’ technology adoption
decisions. Using survey data from 313 sugar beet farmers in Germany and a novel, spatially
explicit survey tool, we employ a double-selection LASSO approach. The results show that
both forms of peer effects significantly affect adoption and mutually reinforce one another. The
likelihood of adoption is highest for farmers that observe many fields in close spatial proximity
and verbally exchange with many adopters. Chapter 3 investigates farmers’ preference for Al-
based decision-support tools. Based on an online survey and an embedded economic
experiment involving 250 German farmers, the chapter uses a novel Bayesian probabilistic
programming approach to quantify the willingness to pay. The findings reveal clear “algorithm
aversion”: farmers prefer recommendations from human advisors over those generated by AI—
even when the Al outperforms the human. The chapter introduces the concept of Al anxiety as
a key behavioral factor and proposes its integration in future technology adoption models.
Chapter 4 shifts the focus to agricultural policy by examining how smart weeding robots could
affect the design of payments for ecosystem services. Using a simulation model, we explore
how the robots’ capabilities—selective weeding and autonomous monitoring—could enhance
the efficiency of both action-based and results-based payments. We find that improved
monitoring supports the efficiency of results-based schemes, while selective weeding can
improve action-based approaches. Overall, the efficiency of both payment types increases
compared to when no robot is used, which shifts the frontier of current policy design options.

In sum, this dissertation contributes theoretically, empirically, and methodologically to a better
understanding of farmers’ behavior towards SFT and identifies how SFT could change
agricultural policy design. The findings of this dissertation show that using SFT for sustainable
intensification has the potential to make agricultural policies more effective. However,
technology introduction alone is not sufficient—appropriate guidance is essential to ensure
proper use. Social learning can help to address farmers’ algorithm aversion. Policy makers,
advisory services and technology developers should work together to facilitate large-scale
adoption by clearly communicating benefits and reducing (perceived) efforts for farmers.
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Chapter 1
Introduction

1.1 Background and Problem Statement

Every day, nearly 9 million farmers in the European Union (EU) decide
which crops to grow, how much plant protection to apply, or whether to
invest in a new technology. Although farmers constitute only 4% of the EU
population, their decisions shape roughly 40% of the EU’s land area
(Eurostat, 2025a, 2025b). This remarkable influence comes with dual
responsibilities: ensuring food safety while protecting the environment
(FAO, 2024). Hence understanding farmers’ decision-making is paramount
to address the multiple pressures affecting the agri-food sector: Global food
demand is increasing while climate change and external shocks threaten
agricultural production and the resilience of the agri-food system (Borrelli
etal., 2020; Gouel & Guimbard, 2019; Ortiz-Bobea et al., 2021). At the same
time, agricultural production contributes to habitat loss (Kehoe et al., 2017,
Pendrill et al., 2022), nutrient cycle disruption (Tang et al., 2021), and
substantial global greenhouse gas emissions (Tubiello et al., 2022), thus
leading to a transgression of several planetary boundaries (Campbell et al.,
2017; IPCC, 2022; Richardson et al., 2023). Addressing these challenges
calls for a shift towards resilient and increasing food production while
reducing environmental damage. This approach, known as sustainable
intensification, holds great potential (Caiado et al., 2017; Lindblom et al.,
2017; Weltin & Huttel, 2023); but hinges on farmers’ adjusting their farm-
level decisions accordingly.

Digitalization of the agri-food sector — often termed the 4th agricultural
revolution — is seen as key to reaching sustainable intensification (Finger,
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2023; Khanna, 2025; Walter et al., 2017). Smart farming technologies
(SFTs) leverage advanced information and communication tools to process
vast amounts of unstructured data (Finger, 2023; Klerkx & Rose, 2020;
David Christian Rose & Chilvers, 2018; Storm, Seidel, et al., 2024; Wolfert
et al., 2017), by increasingly relying on artificial intelligence (Al) (Khanna
etal., 2024). This enables SFTs to learn from the outcomes of previous tasks
and allows to enhance resource use efficiency, substitute harmful inputs and
enables a redesign of the agri-food system (Finger, Benni, et al., 2019;
Finger, 2023; Khanna et al., 2024; Storm, Seidel, et al., 2024; Wolfert et al.,
2017). This is mainly possible through two novel abilities: Continuous and
autonomous monitoring, as well as site- and time-specific treatments. Site-
and time specific treatments of e.g. crops can be enabled by combining data
from various sources in real time at fine spatial resolution. Based on these
two abilities, SFTs can provide precise predictions and recommendations for
farmers leading to more sustainable, resilient and efficient farming (Finger,
2023; Khanna et al., 2024). Yet, for SFTs to unfold their full potential,
farmers need to adopt and use the technology in the intended way.

However, gaps remain in fully understanding the adoption process of SFT.
As suggested by the induced innovation hypothesis, farmers adopt new
technologies when they perceive benefits (Acemoglu, 2002; Hicks &
Simiand, 1932). For example, farmers who perceive positive environmental
benefits from pesticide-free weeding tend to adopt this type of production
(Finger & Mohring, 2022). However, technologies are often not fully
understood by farmers in advance, hence adoption® decisions are shaped by
uncertainty and the (in)availability of information. Information — acquired
through learning-by-doing or by learning from others (social learning) —
plays a crucial role in whether and how farmers assess the suitability,
profitability and, ultimately, the benefits of a given technology (Chavas &
Nauges, 2020). The importance of knowledge and (social) learning as
prerequisite for technology adoption and diffusion is acknowledged in
several theories (e.g. Rogers, 2003) and an extensive body of literature has
studied this topic empirically over the past decades (Albizua et al., 2021;

! While the term “adoption” can be defined in various ways, in this chapter we use this word for all
types of adoption including full, partial, temporal, binary, continuous, and opportunistic adoption by
farmers (Pannell, 2008).
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Bandiera & Rasul, 2006; Besley & Case, 1993; Blasch et al., 2020; Conley
& Udry, 2010; Foster & Rosenzweig, 1995, 2010; McCann et al., 2015;
Mekonnen et al., 2022; Noy & Jabbour, 2020; Sampson & Perry, 2019;
Skaalsveen et al., 2020; Simane et al., 2018). Yet the technology adoption
process is characterized by much heterogeneity: if and to what extent a
technology is perceived as beneficial depends on the individuum, the
technology attributes and the external production conditions (Feder et al.,
1985; Pannell & Claassen, 2020; Schulz & Bdrner, 2022). Similarly, if and
to what extent information is obtained either through learning-by-doing or
social learning depends on various factors. These range from the individuum
and the external production conditions over the social network to whether
the characteristics that determine the outcome of a new technology are easily
observable (Chavas & Nauges, 2020; McCann et al., 2015; Rogers, 2003;
Tjernstrém, 2017). This complex combination of personal characteristics,
behavioral factors, technology attributes and external conditions complicate
a systematic comprehension of the full technology adoption process
(Feisthauer et al., 2024; Shang et al., 2021, Streletskaya et al., 2020).

To date, no study has examined the role of observability and Al as specific
technology attributes that can affect the adoption and usage of new
technology. Shang et al. (2021) highlight that observability of a technology
could serve as an information source and driver of social learning in farmers’
technology adoption decisions, but that much uncertainty persists regarding
this technology attribute. Further, despite the growing relevance of Al in
agricultural management and its potential to enhance efficiency, Al as a
technology attribute has received limited attention in research on farmers’
decision-making (Mahmud et al., 2022). Empirical evidence on farmers’
perceptions and acceptance of Al in agriculture remains scarce (see De la
Pefia & Granados, 2024; and Orn et al., 2020 for two examples). Currently,
there is little knowledge on how farmers perceive the potential benefits of
Al and how individual personality traits shape their responses to it. These
gaps hinder a comprehensive understanding of farmers’ behavior toward
SFT and limit the development of effective strategies to support the adoption
of Al-based technologies.
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Overall, as pointed out by Finger (2023), this lack of understanding leads to
a mismatch between the potential of novel technologies and farmers’ actual
adoption: On the one hand, those technologies with the highest potential to
reduce resource usage might not be the most profitable to farmers and are
therefore not adopted. On the other hand, farmers might not use even
profitable technologies: first, because farmers’ adoption decisions are not
only driven by profit-maximization (Streletskaya et al., 2020) and second,
because farmers might not know about the potential benefits of the
technology (Chavas & Nauges, 2020).

Consequently, upscaling technology adoption and promoting a development
towards sustainable intensification require the development and
implementation of policy measures. Digitalization and environmental
sustainability are central to the EU’s Common Agricultural Policy (CAP)
(European Commission, 2020b), reinforced by approaches such as the Farm
to Fork Strategy and the Biodiversity Strategy (European Commission,
2020a, 2021a). Currently, voluntary payments for ecosystem services (PES)
have become key instruments to support the transition by compensating
farmers for providing public goods beyond regulatory requirements
(Wuepper et al., 2024; Wunder et al., 2020). Yet, the CAP and PES have
long been criticized as inefficient and costly (Mennig, 2024). Farmers
receive public money for specific actions, but the environmental, public
outcomes remain limited or absent (Brown et al., 2021; M. Meyer et al.,
2025; Pe’er et al., 2017). Further, recent protests reflect farmers’ reluctance
to participate in such schemes (Finger et al., 2019), likely due to the
intangible, uncertain, and hard-to-measure benefits at the farm level (Pannell
& Claassen, 2020). One promising approach to address these challenges is
to shift from action-based (ABS) to results-based schemes (RBS)?, which
reward farmers for achieving defined outcomes rather than performing
prescribed actions. This may increase efficiency and improve acceptance, as
farmers retain flexibility in how to reach the targets (Burton & Schwarz,
2013). However, RBS face two major barriers: the lack of reliable indicators

2 Various terms are used in this context, including “outcome-oriented,” “outcome-based,” and
“output-oriented” (Schilizzi et al., 2011), “payment-by-results” (Schroeder et al., 2013), “result-
oriented” (Burton & Schwarz, 2013), and “results-based” (Herzon et al., 2018; Russi et al., 2016). We
use the term “results-based schemes” and RBS throughout.
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to measure success, and farmers’ fear of losing payments if results are not
met despite effort (Chaplin et al., 2021). Recent research suggests that
digitalization can help overcome these barriers (Ehlers et al., 2022, 2021,
Finger, 2023; OECD, 2019; Walter et al., 2017). Here, most research focuses
on SFTs' monitoring functions, for example the use of acoustic sensors
(Markova-Nenova et al., 2023), drones (Basavegowda et al., 2025), and
digital fencing (Watzold et al., 2024) to facilitate the implementation of
RBS. But little attention is paid to SFTs’ potential for time- and site-specific
interventions, that help reduce trade-offs between production and
environmental goals, e.g. between crop yield and weed biodiversity
(Zingsheim & Doring, 2024). This paucity impedes a clear understanding of
how SFTs might imply changes in agricultural policy design.

So far, two main research gaps evolve: First, farmers’ behavior towards
SFTs is not fully understood and second, evidence is lacking on how SFTs
might change agricultural policy design. In consequence, it remains unclear
what optimal — i.e. effective and behaviorally aligned — policies should look
like, that leverage SFTs’ potential for sustainable intensification while
avoiding unintended consequences (Daum, 2021). Ultimately, this
knowledge gap can impose costs on farmers, taxpayers, and the environment
(Finger, Benni, et al., 2019). To fill this third gap, we aim to identify what
optimal policy design should look like in the era of SFT.
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of SFT for policy design?

Sustainable Intensification
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RQ3: What should optimal policy
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Figure 1.1: Overview of the topical background and resulting research
questions, own illustration
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In summary, to understand how the agricultural sector can develop towards
sustainable intensification in the era of smart farming, three key perspectives
need to be considered, as illustrated in Figure 1.1: i) farmers as decision-
makers at the farm level, ii) SFTs and their novel attributes, and iii)
agricultural policy. As outlined above, these perspectives are interlinked, yet
little is known about how they interact: First, farmers' behavior towards
SFTs is not fully understood. Second, the impact of SFTs on the design of
policy instruments requires further investigation. Third, in consequence,
there is insufficient knowledge on how policy instruments should be
designed to leverage the potential of SFTs to effectively guide farmers’
adoption and use of SFTs in support of sustainable intensification. This
thesis contributes to closing these research gaps.

1.2 Aim and Research Questions

The aim of this thesis is to deepen the understanding of the interaction
between farmers, SFTs and agricultural policy design, to inform decision-
makers on how to leverage the potential of SFTs to support sustainable
intensification of the agricultural sector. To this end, this thesis seeks to
answer the following research questions (RQ) by using empirical methods
and guantitative data:

RQ 1: What shapes farmers’ behavior towards SFTs?

RQ 2: What are the implications of SFTs for agricultural policy
design?

RQ 3: What should optimal policy design look like to leverage the
potential of SFTs for sustainable intensification?

Figure 1.2 illustrates the structure of this thesis. The chapters vary regarding
the stage of the focal technology, the data used and the methodology.
Chapters 2 and 3 contribute to answering the first research question by
focusing on behavioral factors explaining farmers technology adoption
decisions. In Chapter 2, we rely on data from an online survey with German
sugar beet farmers that we analyze using machine learning. In Chapter 3, the
data stems from an online experiment and we apply a novel Bayesian
probabilistic programming approach for the analysis. Chapter 4 addresses
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Research Question 2 by employing a simulation model based on secondary
data to study the effect of SFT on PES efficiency. While Chapter 2 focuses
on the current adoption status of an existing technology (mechanical
weeding), Chapters 3 and 4 look at technologies that are not yet widely used,
namely Al-based decision support tools (AI-DST), and smart weeding
robots. Together, the synthesis of all three Chapters allows to answer the
third research question by deriving recommendations for various decision-
makers.

E To deepen the understanding of the interaction between farmers, SFT and agricultural policy, to
< inform effective policies that leverage the potential of SFT to support sustainable intensification
. . RQ 2: What are the implications of
- What shane: o5’ behaviour towards SFT? : )
5 RQ 1: What shapes farmers " behaviour towards SFT' SET for agricultural poliey desien?
ak RQ 3. What should optimal policy design look like to leverage the potential of SFT for sustainable intensification?
Chapter 2 Chapter 3 Chapter 4
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© § Distinguishing between verbal Quantifying the role of algorithm Exploring how optimal PES design
= exchange and field observation as aversion in farmers’ intention to use for biodiversity conservation
distinct peer effects in technology Al-based decision support tools in changes if smart weeding robots are
adoption crop management available for crop production
P
E C %" Status quo of technology adoption Future technology adoption
= g Primary data collection . .
R — Y - Simulation model
= ‘ Observational ‘ ‘ Experimental ‘ based on secondary data
== Machine learning Probabilistic programming Y

Figure 1.2: Structure of the thesis, own illustration

To enable transparency and replicability of all studies, we follow the
principles of open science and findable, accessible, interoperable, and
reusable (FAIR) data procedures (Storm, Heckelei, et al., 2024). We share
code and (where possible) data. The two surveys for Chapters 2 and 3 were
pre-registered on the Open Science Framework (OSF) and we obtained
ethical clearance before data collection.

In all three chapters we focus on crop production in Europe, which is
characterized by high intensity (Gianessi & Williams, 2011). Natural and
climatic conditions as well as the use of various inputs like fertilizer and
pesticides have provided Europe with the highest crop yields worldwide,
thereby contributing to global food security and safety (FAO, 2025a;
Gianessi & Williams, 2011; Oerke, 2006). Germany, the country Chapters 2
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and 3 focus on, is among the ten countries with the highest yields worldwide
in wheat, barley and sugar beets (FAO, 2025a). At the same time, it has the
third highest use of pesticides (in tons applied) within the EU (FAO, 2025b),
which comes with unintended negative consequences for human health
(Hossain et al., 2017) and the environment, especially biodiversity (Fritsch
et al., 2024; Geiger et al., 2010).

The remainder of this introductory chapter is structured as follows: Section
1.3, presents the contributions of each chapter to answer the research
questions and to reach the overall research aim, by providing more detailed
insights into the different methods used and the results obtained. Section 1.4.
answers the third research question by synthesizing the findings of the three
chapters to derive policy recommendations. Section 1.5 concludes with a
reflection on limitations and an outline of future research avenues.

1.3 Contributions

In the following, detailed information on each chapter is provided by
presenting the concrete research gap, the theoretical, methodological and
empirical contributions and how the chapter addresses the research
questions.

1.3.1 Field observation and verbal exchange as different peer effects in
farmers’ technology adoption decisions®

Peer influence plays a key role in farmers' decisions to adopt new
technologies (Shang et al., 2021). While previous research has explored
different types of peer effects, such as verbal communication (Albizua et al.,
2021) and field observation (Mekonnen et al., 2022), the mechanisms behind
these effects are not well understood (Bramoullé et al., 2020). To date, no
study has clearly differentiated between peer effects based on verbal
exchange versus those arising from field observation. We aim to fill this gap
by answering the following research questions:

3 This chapter is published as Massfeller, A., and Storm, H. (2024). “Field observation and verbal
exchange as different peer effects in farmers’ technology adoption decisions.” Agricultural
Economics 55 (5), 739-757. https://doi.org/10.1111/agec.12847
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1. How do (verbal) information exchange and field observation relate
to adoption of technology?

2. Do the two types complement each other in explaining the
technology adoption decision?

3. How do the two types relate to each other within the relevant socio-
spatial network?

Understanding these underlying mechanisms is crucial for improving
advisory services and policy interventions (Bartkowski & Bartke, 2018;
Bramoullé et al., 2020). The study focuses on the adoption of mechanical
weeding among 313 sugar beet farmers in Germany, using survey data from
early 2022. Sugar beet farming in Germany heavily depends on herbicides
(Nause et al., 2021). With growing environmental concerns, alternative
methods like mechanical weeding are becoming more important as a
potential solution (BLE, 2018; Warnecke-Busch et al., 2020). We design a
novel custom-built survey tool that enables us to gather spatially explicit
data: participants are asked to identify their fields and the fields of other
farmers where mechanical weeding has been observed on an interactive
map. Additionally, farmers indicate whether they used mechanical weeding
techniques and how many other adopters they know.

The study is embedded in Rogers’ Theory of Diffusion of Innovation
(Rogers, 2003), which explicitly considers the observability of a new
technology as an important attribute explaining the adoption decision. From
an econometric point of view, identifying peer effects is challenging, as
individual behaviors may be influenced by various factors stemming from
endogenous, exogenous, and correlated effects — a challenge known as
reflection problem (Manski, 1993). We are interested in the endogenous
effects, that is, the correlation between the farmer’s peers’ and their own
adoption decision through field observation and/or knowing adopters. To
mitigate biases from correlated effects and, to a lesser extent, exogenous
effects, we include farm- and county-level control variables in our analysis.
This includes the distance to demonstration farms or the affiliations of
farmers with specific sugar factories, as well as county-level farm
demographics.
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To handle the large number of control variables in combination with the
relatively small sample size of 313, we employ a Least Absolute Shrinkage
and Selection Operator (LASSO) (Finch & Hernandez Finch, 2016) with a
double-selection approach (Belloni & Chernozhukov, 2014; Belloni et al.,
2014). LASSO is a state-of-the-art machine learning approach that allows to
avoid high variance in parameter estimates (Storm et al., 2019). This method
helps to identify the most relevant explanatory variables that should be
included in the model and thereby improves model accuracy. The double-
selection approach allows to address the danger of omitted variable bias
caused by control variables that are correlated with both the outcome (i.e.
adoption) and the variables of interest (i.e. observing fields and knowing
adopters). Assuming no unobserved confounders, this approach ensures that
relevant controls are included even if their effects are indirectly captured by
our variables of interest.

Our findings suggest that both verbal exchange and field observation are
positively related to technology adoption, whereby verbal exchange seems
to play a slightly more pronounced role. Both verbal information exchange
and field observation play a key role in facilitating adoption, consistent with
previous research (Mekonnen et al., 2022; Sampson & Perry, 2019). While
highly correlated, the two peer effects complement each other in explaining
adoption decisions. In a socio-spatial network with many known adopters
and many observed fields in close spatial distance, the likelihood of adoption
is highest and verbal exchange and field observation reinforce one another.
This study offers a foundation for future research into the causal
relationships behind peer effects and introduces a new survey tool for
capturing spatially explicit data on farmers' fields. Our findings suggest that
advisory services should focus on establishing personal contact between
adopters and non-adopters. Given the complementary relationship, field
observation possibilities should always be accompanied by the option to
verbally exchange. To enhance the resource efficiency of policy measures
and extension services, SFTs, like weeding robots, could be offered on a trial
basis to selected farmers in nearby regions.
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1.3.2 Are Farmers Algorithm-Averse? The Case of Decision Support Tools
in Crop Management*

Chapter 3 focuses on a technology that is not yet broadly adopted but
currently under development and promising: Decision Support Tools (DST)
based on Artificial Intelligence (Al). Al plays an increasingly important role
in farmers’ daily life and Al-based DSTs have been developed by both
public and private actors, to increase productivity, improve resource use
efficiency, and support adaptation to climate change (Yousaf et al., 2023).
However, their success hinges on farmers’ willingness to adopt. Research
shows that most farmers rely more on advisory services and peer
communication than on digital tools (Giulivi et al., 2023; Helps et al., 2024;
Kiraly et al., 2023; Lazaro et al., 2021; Skaalsveen et al., 2020). This
resistance to algorithmic recommendations — even when clearly superior to
human advice — is known as algorithm aversion (Dietvorst et al., 2015).
Economically, algorithm aversion can be understood as a deviation from
rational behavior: individuals reject the AI-DST despite its potential for
more efficient management. Understanding this behavioral deviation is
crucial, as these tools offer a path toward resource-efficient farming and
reduced environmental impacts while maintaining high yields. However, the
phenomenon remains understudied in agricultural decision-making
(Mahmud et al., 2022). Therefore, the third chapter addresses the research
question:

What role does algorithm aversion play in farmers’ intention to use
AI-DST?

To answer this question, we conduct an online survey with 250 German
arable farmers in autumn 2024 to elicit both farmers’ intention to use Al-
DSTs and their Willingness-To-Pay (WTP) for different types of advice (Al
vs. human). Within the survey, we employ an economic experiment to elicit
farmers’ algorithm aversion. We test whether and to what extent farmers
prefer a human advisor over an Al-based DST, whereby we give different

* This chapter is currently under review at the American Journal of Agricultural Economics as
Massfeller, A., Hermann, D., Leyens, A., Storm, H. (2025). “Are Farmers Algorithm-Averse? The
Case of Decision Support Tools in Crop Management”.
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information on the performance of both options (both perform equal, or one
better than the other). We further measure farmers’ latent Al-anxiety on a 7-
point Likert-Scale following Wang and Wang (2022).

To design the survey and analyze the data, we employ a Bayesian
probabilistic programming (PP) workflow based on Storm et al.(2024) and
following Gelman et al. (2020) and McElreath (2018). This approach offers
several advantages, including improved transparency through a theoretically
motivated data-generating process (DGP), iterative pretesting with synthetic
data, and validation of code, inference, and visualization as part of the pre-
registration. Statistically, it provides clear benefits in expressing and
interpreting parameter uncertainty compared to frequentist methods (Storm,
Heckelei, et al., 2024). To our knowledge, this represents one of the first full
applications of the Bayesian workflow in experimental studies in this field
(cf. Leyens et al., 2024; Stranieri et al., 2022; Varacca, 2024).

Our findings show that most farmers prefer human advisors even when the
Al tool performs better. That is, algorithm aversion plays a dominant role in
farmers’ intention to use and their WTP for AI-DST. We calculate a
performance premium, i.e., how much better the AI-DST needs to perform
to be equally preferred as human advice. For most farmers in our sample,
the AI-DST must outperform the human advisor by 11% to 30%. Similarly,
an AI-DST with the same performance as a human would need to be 21% to
56% cheaper for most farmers to be perceived similarly valuable.
Methodologically, we propose the developed PP workflow for future
experimental studies.

Chapter 3 helps reaching the overall aim of this dissertation by exploring
farmers’ behavior towards novel, Al-based SFTs. Building on our findings
that many farmers may display algorithm aversion, we propose
incorporating Al-anxiety as a novel dispositional factor in behavioral
research on farmers’ adoption of Al technologies and thereby extending
frameworks on behavioral factors such as that of Déssart et al. (2019).
Further, our results underscore the need for technology developers to
account for algorithm aversion when designing Al-based decision support
tools. In particular, the significance of the performance premium highlights
the importance of transparently communicating the value and reliability of
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Al tools to end-users. Given farmers’ strong preference for human advice,
agricultural advisory services must carefully assess which services are best
suited for Al and where human expertise remains indispensable.

1.3.3 Action- or results-based payments for ecosystem services in the era of
smart weeding robots?°

Payments for ecosystem services (PES) are commonly used to mitigate the
negative impacts of agriculture on biodiversity (Wunder et al., 2020, 2008).
PES schemes can be either action-based (ABS), where farmers are rewarded
for specific actions, or results-based (RBS), where farmers receive payments
based on predefined biodiversity indicators. To date, most existing RBS
focus on biodiversity in grasslands or wildlife conservation. Only few
examples are found in arable farming (Elmiger et al., 2023; Hagemann et
al., 2025), but engagement towards environmental protection is needed in
these intensive systems. Research suggests that digitalization and new
technologies will help to overcome current limitations of RBS (Besson et
al., 2022; Ehlers et al., 2021; Finger, 2023), including the need for
measurable and low-cost indicators, and a reduction of the financial risks for
farmers if targets are not met (Burton & Schwarz, 2013; Zabel & Roe, 2009).
However, these assumptions have only been scarcely explored empirically.
Further, to date most research in this area focuses on SFTs’ monitoring
capacity (cf. Basavegowda et al., 2025; Markova-Nenova et al., 2023;
Watzold et al., 2024), while other novel abilities like time- and site-specific
treatments are neglected.

Therefore, in Chapter 4, we examine how the availability of smart weeding
robots could influence PES in the case of biodiversity conservation in crop
production. Specifically, we focus on the robot’s abilities to autonomously
monitor plants and selectively remove weeds using non-chemical methods
or variable-rate herbicides. We focus on weeding robots as they have the
potential to reduce the trade-off between crop production and environmental

5 This chapter is published as Massfeller, A., Zingsheim, M., Ahmadi, A., Martinsson, E., Storm, H.
(2025). Action- or results-based payments for ecosystem services in the era of smart weeding robots?
Biological Conservation 302, 110998. https://doi.org/10.1016/j.biocon.2025.110998
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degradation, i.e. to enhance biodiversity conservation while maintaining
high yields (Bawden et al., 2017; Fennimore & Cutulle, 2019; Slaughter et
al., 2008; Storm, Seidel, et al.,, 2024; Zingsheim & Doring, 2024).
Concretely, we aim to answer the following research questions:

1. How do weeding robots affect optimal PES scheme designs?

2. What challenges and options might arise for future scheme designs
once weeding robots are used?

To this end, we apply a simulation model based on Gibbons et al. (2011) in
which we illustrate how weeding robots’ abilities to selectively remove
weeds and to monitor plants could affect PES design and efficiency. Taking
an interdisciplinary perspective combining insights from tech-development,
agro-ecology and agricultural economics, we first diagnose changes in weed
management arising through the availability of weeding robots. Second, we
identify the relevant parameters in the model to reflect these identified
changes and extend the set-up of the model where necessary. As a third step,
we define plausible directions and ranges of how each parameter might be
affected by weeding robots based on empirical evidence where possible.
Fourth, we use those ranges to simulate and compare the relative
preferability of RBS and ABS when weeding robots are available.

We find that the efficiency, that is biodiversity gain per agency costs, of
ABS and RBS may be improved by the abilities of smart weeding robots.
Reliable monitoring can reduce costs for RBS and mitigate the risk for
farmers that results are achieved but not detected. At the same time, the
robot’s ability to selectively remove weeds allows for more biodiversity-
sensitive actions. That means the actions executed by a robot come with a
clear benefit for biodiversity. This contrasts previous actions farmers carried
out as part of ABS which not necessarily lead to the desired biodiversity
gain. As a result, the relative efficiency of ABS compared to RBS increases.
Overall, with increasing weeding sensitivity and monitoring capacity, the
difference in efficiency between ABS and RBS vanishes. In both cases, we
observe the status quo of biodiversity before scheme participation to play an
important role for scheme efficiency.
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Chapter 4 contributes to the overall research aim of this thesis by providing
insights on how a smart weeding robot as a novel SFT might induce changes
in agricultural policy design. Specifically, we identify how the abilities of
smart weeding robots could help to increase the efficiency of PES. This
enables us to inform decision-makers on how to leverage the potential of
SFTs to support a development towards sustainable intensification. Given
the importance of robot’s ability to perform biodiversity-sensitive actions,
we conclude that technology developers need to design robots that are not
only reliably removing weeds, but that can i) identify various individual
plants in various growth stages and ii) distinguish between crops and non-
crops and iii) execute weeding based on different rationales like
competitiveness of the weed. Further, this study identifies a crucial need for
clearly defined biodiversity indicators from agro-ecologists and
interdisciplinary efforts.

1.4 Conclusion and Recommendations

The aim of this thesis is to deepen the understanding of the interaction
between farmers, SFTs and agricultural policy design, to inform decision-
makers on how to leverage the potential of SFTs to support sustainable
intensification of the agricultural sector. To this end, the three chapters of
this thesis provide both theoretical, empirical and methodological
contributions. The following section synthesizes the main findings of this
thesis guided by the main research questions. By deriving recommendations
for various stakeholders from this synthesis, Research Question 3 is
answered.

1.4.1 Research Question 1: What shapes farmers’ behavior towards SFTs?

Based on the findings from Chapters 2 and 3, we identify that social as well
as personality factors play a crucial role in farmers’ behavior towards SFTs.
Further, we find that these factors are closely linked to the attributes of
technology, namely observability and Al. We thereby fill important research
gaps in understanding farmers’ behavior towards SFTs in general and their
information acquisition specifically. By applying a LASSO machine
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learning approach in Chapter 2, we demonstrate a clear link between the
observability of a technology and social interactions as conceptually
hypothesized by Shang et al. (2021). Observation of a technology seems to
deliver information that differs from those obtained through verbal
exchange. Yet a combination of verbal and visual information gathering
comes with the highest likelihood of adoption, emphasizing the
complementary nature of these two information sources. Based on the
probabilistic programming workflow as detailed in Chapter 3, we can show
that most farmers in our sample exhibit algorithm aversion. That means,
most farmers prefer the human, even if it performs worse than the Al. In
order to choose the Al-DST, it would have to be considerably cheaper than
a human advisor while offering the same level of performance. We identify
the underlying latent belief to be Al-anxiety.

Synthesizing these two results by drawing on the framework by Shang et al.
(2021), a clear picture emerges: The source of information about a
technology and about its potential costs and benefits is essential to induce a
reduction of the perceived complexity ® and thereby support adoption.
Information from peers (verbally and visually) and from human advisors
seem to be deemed as relevant for the decision-making process of farmers,
but they perceive information from Al decision support rather skeptically.
How information is processed seems to be associated with farmers'
personality traits: A high Al-Anxiety correlates negatively with expectations
concerning the complexity and also the performance of Al-based
technology. As the perceived costs and benefits of a technology are an
important adoption determinant (Déssart et al., 2019), we conclude that
improvements in outcomes through SFT use need to be clearly demonstrated
to make them attractive to farmers. The key to promoting the uptake of SFTs
is to make the benefits easily recognizable, either by enabling the
observation of results or by clearly communicating the benefits (e.g. the
performance difference to human advice) to farmers.

6 Depending on the theoretical framework, this technology attribute might also be considered as a
latent construct termed “effort expectancy” in the unified theory of acceptance and use of technology
(UTAUT) (Venkatesh et al. 2003) or “ease of use” in the technology acceptance model (TAM) (Davis
1985).
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1.4.2 Research Question 2: What are the implications of SFTs for
agricultural policy design?

The novel abilities of SFTs open up for new policy designs, as revealed in
Chapter 4. In contrast to previous literature, we find that not only the
monitoring ability has the potential to induce changes in policy schemes
design. But the technology attribute that mainly influences scheme design
appears to be the ability to perform site- and time-specific tasks based on
different rationales which enables more biodiversity-sensitive actions
compared to broadband treatments. It allows for efficiency improvements of
both ABS and RBS and triggers the need to rethink agricultural policy
design. The line between executed actions, that farmers are paid for on the
one and obtained pre-defined results, that are rewarded on the other hand,
vanishes: Setting a weeding robot to executing a certain weeding strategy —
for example to remove only those weeds that are highly competitive for the
crop — could be either rewarded by ensuring that the defined strategy was
executed (ABS) or by monitoring the occurrence of indicator weeds on the
field (RBS).

1.4.3 Research Question 3: What should optimal policy design look like to
leverage the full potential of SFTs for sustainable intensification?

Our findings and the answers to Research Question 1 and 2 emphasize the
duality of the relationship between SFTs and agricultural policy. On the one
hand, we show that SFTs have the potential to improve the efficiency of
policy measures through monitoring, and time- and site-specific treatments.
This might ease for example the implementation of RBS that require precise
monitoring. On the other hand, we find that farmers seem to be reluctant to
use Al-based SFTs despite their great potential for efficiency improvements,
which prompts the need for policy measures. Results from two discrete
choice experiments in Norway (Hillesund et al., 2025) " and Spain
(Villanueva et al., 2024) underline this dilemma: farmers prefer the

" In this working paper, we analyzed Norwegian farmers’ acceptance of collective results-based
schemes using a discrete choice experiment. Anna Massfeller co-authored this working paper during
her doctoral studies.
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monitoring within an RBS to be done by a human rather than by a digital
tool. Hence simply offering SFTs to farmers might not be enough to make
them accept it. This observation calls for a clear need for policy measures
that support farmers’ adoption of SFTs.

However, technology adoption is only the first step. Once adopted, farmers
also need to use the technology in the intended way. In Chapter 4 we build
on the findings of Zingsheim and Déring (2024). They show that smart
weeding robots — as an example of SFT — can contribute to sustainable
intensification by substituting harmful inputs, such as chemical plant
protection, with selective (mechanical) weeding. Selective weed removal
also allows for a reduction in the trade-off between biodiversity and yield.
However, these benefits will only materialize if farmers use the robots as
intended, that means for targeted, selective weed removal. If not used
selectively but instead operated like “traditional” tractor mounted machinery
that treat the whole field homogeneously, future weeding robots will most
probably remove weeds as efficiently and reliably as conventional, chemical
approaches (Ahmadi et al., 2022). Consequently, the biodiversity on the
field will be similarly low as under herbicide spraying. The same holds for
the case of AI-DST: Our findings on algorithm aversion show, that the well-
known “implementation problem” together with the issue of farmers owning
tools but not using them (in the intended way) (McCown, 2002) seems to
persist. Hence simply supporting farmers financially for adopting SFTs will
not be enough, but guidance on how to use it is needed. Having these
findings in mind, we derive our first policy recommendation:

Recommendation 1: Simply offering SFTs to farmers is not enough,
decision-makers should develop measures that not only support but also
guide farmers’ use of SFTs such that the technologies’ full potential to
support a development towards sustainable intensification can be leveraged.

Having identified the need for effective policies, the question arises of how
optimal policy measures could look like. The optimal choice of the tool
depends on the relation between private and public benefit of the respective
management practice (Pannell, 2008). Our findings from Chapter 3 show,
farmers are reluctant to use AI-DST although they come with private and
public benefits. This suggests the existence of learning costs, that is the cost



Introduction 19

of obtaining and analyzing information about the new technology, or the
presence or absence of social networks that support learning (Pannell, 2008).
The findings of this thesis provide clear insights on how social networks and
information acquisition can reduce these learning costs and thereby trigger
adoption of SFT. In Chapter 3 we find, that farmers would prefer an AI-DST
only if it performs considerably better than a human. Hence information
about the performance of SFT should be clearly communicated to the
farmers to make them easily recognize the benefits. Alexander et al. (2018)
found that social norms are even more effective in triggering Al adoption
than providing information on the performance of the tool, accordingly
combining information on benefits with a social aspect could prove efficient.
As revealed in Chapter 2, to induce social learning, facilitating verbal and
visual exchange among farmers to allow for low-threshold information
acquisition is a promising mechanism. An important player in reducing
learning costs and promoting the transformative capacity of the agricultural
sector are extension services (Finger, 2023; Khanna, 2025). Based on the
findings of this thesis we suggest that extension services should disseminate
information about SFTSs to reduce the expected effort and to raise awareness
about potential benefits. Social learning could be supported through
demonstration farms and organized farmer events that combine visual and
verbal exchange. Here, other farmers can visit, exchange about potential
costs and benefits and observe the technology in use and its outcomes. From
Chapter 3, we learn that farmers are skeptical towards advice from Al
despite its potential. Therefore Al-based tools may complement traditional
extension services where deemed sufficiently efficient, but should be used
with care. Consequently, we derive recommendation 2:

Recommendation 2: To promote the uptake of SFTs, decision-makers need
to make benefits easily recognizable, for example by enabling social
learning through the observation of and exchange about results.

For some SFT, there might be positive public benefits but negative private
ones (i.e. costs). This is for example the case for smart weeding robots in
conventional farming. Currently the private costs outweigh the private
benefits for most conventional farmers, but public benefits in terms of a
reduction of environmental degradation are assumed to be large (Shang et
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al., 2023). In such cases, reduced learning costs and extension might not be
enough, but positive incentives are needed (Pannell, 2008). PES, action- or
results-based, are one type of positive incentives where farmers are rewarded
for providing public goods beyond regulatory standards. As we learned from
Chapter 4, autonomous weeding robots might allow for efficiency increases
in the design of PES for biodiversity conservation in arable farming. A major
finding of this thesis is that, contrary to recent literature, not only RBS but
also ABS can gain in efficiency when SFTs are available. In consequence,
the difference in efficiency and also in design between ABS and RBS
vanishes. The efficiency increase for ABS can be mainly traced back to the
SFTs’ ability to conduct time- and site-specific treatments that allow to
decrease the trade-off between crop production and environmental
degradation. Similarly, the efficiency increase for RBS stems from the
improved monitoring and detection abilities. We therefore derive:

Recommendation 3: Decision-makers should leverage SFTs’ abilities to
improve the efficiency of PES with a focus on the potential from time- and
site-specific treatment for ABS and from monitoring for RBS.

To more concretely answer the question of what optimal policy should look
like in the era of smart farming, we first turn to ABS. By defining time- and
site-specific actions that farmers are rewarded for, the environmental
outcome could be ensured while the risk for the farmer would be kept at a
minimal level. One concrete idea might be a weeding strategy (e.g. “Remove
all weeds but species X, Y and Z”) that a smart robot performs via software
settings downloaded from the authorities. By letting the robot execute this
strategy, the farmer receives a payment that compensates for potential costs.
This approach touches on recent developments in research and the private
sector towards so called “green insurances”. Here, farmers receive a
payment contingent on following recommendations from modern decision
support tools (Lefebvre et al., 2025) or are compensated if crop health is not
optimal although the recommendations have been followed (BASF, 2024).
First evidence shows that this approach is accepted by farmers, easily
traceable and allows for efficient food production while benefitting the
environment (Lefebvre et al., 2025).
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Concerning the design of RBS, the findings of this thesis suggest that SFT
can help to monitor and identify plant and animal species autonomously and
continuously and thereby reduce the risk of biodiversity benefits being
present but not detected by human monitoring. Further, given the monitoring
ability and the identified importance of the status quo of biodiversity before
scheme participation, SFTs can unlock opportunities for novel payment
mechanisms. Future RBS could reward farmers based on change, capacity,
or proportionally to other farmers in the area (McDonald et al., 2018). That
means, farmers are not paid for the absolute occurrence of indicator species
on their fields, but rather for the relative occurrence compared to the status
before scheme participation, or based on in how far the capacity of the field
was reached based on modelled results (Bartkowski et al., 2021; Simpson et
al., 2023). These approaches would not only reduce the (perceived) risk for
the farmers of not reaching the predefined target (Burton & Schwarz, 2013),
but they are dynamic and would allow the farmers as well as the authorities
to adapt to the changing field and production conditions arising e.g. from
climate change. In line with our second recommendation on social learning,
evidence from Malawi suggests that offering a results-based scheme for
specific farmers can induce social learning about this approach (e.g. when
extension is costly) (BenYishay & Mobarak, 2019). For both, ABS and RBS,
information on the desired outcome e.g. in terms of density, distribution and
species selection of weeds is needed to either develop multidimensional
indicators for RBS or to define concrete treatment strategies for ABS e.g.
which weeds to remove and why.

Besides, a rather general conclusion that follows from the findings of this
thesis concerns measures beyond the single farm level, as many ecosystem
services like biodiversity abundance depend heavily on the composition and
configuration of the whole landscape (Batary et al., 2020; Tscharntke et al.,
2012). Therefore, engagement among several farmers within a region is
required. In Chapter 2 we identify the importance of peer effects, as verbal
exchange and field observation mutually reinforce each other. In Chapter 4
we show how RBS might become an important element of the CAP toolbox
given the abilities of SFTs. Combined, these findings call for policy
measures that combine the RBS character with a collective feature that
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allows farmers to interact through agglomeration schemes or collective
bonus schemes, as e.g. implemented in Switzerland (Huber et al., 2021;
Sander et al., 2024). Besides other advantages, investment costs could be
reduced through shared ownership structures. A recent study with
Norwegian farmers found that combining RBS with a collective aspect
might be promising, especially for rather small groups of 3 to 6 farmers
(Hillesund et al., 2025). Novel SFTs might support the implementation of
such collective results-based measures by easing communication among
stakeholders and facilitating planning and monitoring (Geppert et al., 2023,
2024; Reichenspurner & Matzdorf, 2025), which might also reduce the
bureaucratic burden, one main barrier to adoption of RBS (Massfeller et al.,
2022)8. We therefore derive recommendation 4:

Recommendation 4: To design efficient policies, decision-makers should
closely collaborate with agro-ecologists and leverage SFTs’ potential to
benefit combinations of action- and results-based measures at the farm and
landscape-level.

Lastly, technological development is needed where private costs are clearly
higher than public benefits (Pannell, 2008). That means technologies that
are promising from an environmental perspective need to become attractive
to farmers by providing clear private benefits. As revealed in Chapter 3 of
this thesis, wether a technology is perceived as attractive depends strongly
on the expected effort to use the technology and its expected performance.
We therefore suggest that technology developers should try to reduce the
complexity of SFTs and make it easy to use for farmers. Further, one specific
challenge for the case of biodiversity conservation resulting from the second
recommendation is that public as well as private benefits are often hard to
predict, to measure and hence to perceive (Kidd et al., 2019; Kleijn et al.,
2019). SFTs might help to overcome this issue not only through improved
monitoring but also by allowing for a clear communication of biodiversity
metrics. These could also be used as direct feedback on the potential and
obtained ecological and economic implications of a specific management to

8 In this article, German farmers’ acceptance of a hybrid results-based scheme for arable farming is
investigated using a split treatment experimental design to test the effect of a social nudge. Anna
Massfeller co-authored this paper during the beginning of her doctoral studies, however, it is not
included as a main chapter in this thesis.
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the farmers. Such “green nudges” have been proven efficient in other
contexts (cf. Peth et al., 2018) but could so far not be implemented for
biodiversity conservation due to the difficulty of measuring benefits.
Coming back to the social aspect in farmers’ technology adoption decision,
farmers or authorities could use the measured biodiversity metrics to signal
environmental engagement to other farmers or the public, e.g. via signs in
the field, as social signaling is a major determinant in farmers’ decision-
making (Déssart et al., 2019). We therefore propose the development of
user-friendly interfaces that allow for transparent communication of
potential and achieved ecological and economic benefits. Given the findings
on the importance of site- and time-specific treatments in Chapter 4, we
further claim that technology developers should consider reduction of trade-
offs between crop production and environmental degradation. For example,
a weeding robot should not only be able to remove weeds efficiently, but
also selectively based on different rationales. Consequently,
recommendation 5 follows:

Recommendation 5: Technology developers should leverage the potential of
SFTs to reduce trade-offs and to make private and public ecological and
economic benefits easily recognizable through user-friendly interfaces,
thereby contributing to sustainable intensification.

1.5 Limitations and Outlook

The following section reflects on two general limitations of this dissertation
at a synthesized level, to then derive future research avenues. More details
on each study’s specific constraints are provided in the respective chapters.

1.5.1 Limitations

A general limitation of studies based on primary data is the size and the
composition of the sample. For both studies (in Chapter 2 and Chapter 3),
we work together with the market research company “agri experts” (agri
experts — Deutscher Landwirtschaftsverlag GmbH, 2023), that rely on a
large pool of farmers and publish advertisements for their surveys in print
and online magazines and websites that belong to their publishing house.
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While many farmers all over Germany are reached, a certain self-selection
bias might occur. This concerns for example the age of the population, as
younger farmers might be more prone to participate in online surveys (Zahl-
Thanem et al., 2021). We carefully check the representativeness of
observable characteristics and account for this potential bias by including
them as a control variable in our models. Further, concerning limitations in
statistical meaningfulness due to small sample sizes, as part of good
scientific practice, we conducted an a-priori power analysis for the study in
Chapter 2 to transparently determine the detectable effect size. In Chapter 3
we use Bayesian probabilistic programming, which allows inference on
model parameters even with small sample sizes, due to the explicit
formulation of prior knowledge.

In consequence, our results from the observational study in Chapter 2 show
high external validity while the experimental setting in Chapter 3 ensures
high internal validity in light of the assumptions made. But evidence on how
contextual framing affects external validity and farmers’ comprehension in
experiments is mixed (Rommel et al., 2017, 2019). Therefore, to further
validate our findings, the questions we highlight through our studies need to
be investigated in future research. Hereby, our innovative approaches and
the results can serve as basis for these future research endeavors, for example
by using the survey tool we designed to capture peer effects on an interactive
map by a larger sample or by following the probabilistic programming
workflow for experimental studies.

A second general limitation of this thesis concerns the restricted choice of
SFTs as we focus only on two technologies, smart weeding robots and Al-
DST. Other technologies with different characteristics might lead to
different findings and resulting implications and recommendations
(Martinsson & Storm, 2025). Therefore, future research could investigate
other SFTs by relying on our procedures. For example, the simulation study
in Chapter 4 could be modified to reflect the use of a drone for monitoring
biodiversity abundance. Similarly, the survey tool we developed in Chapter
2 to capture peer effects via an interactive map could be employed to study
the roel of peer effects in the adoption of other SFTs that are broadly in use
like automatic milking systems (Vik et al., 2019). The experiment in Chapter
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3 could be adapted to study if farmers’ algorithm aversion differs for other
Al-based tools supporting for example coordination of collective policy
schemes (see first examples by Geppert et al., 2024; Reichenspurner &
Matzdorf, 2025).

1.5.2 Future research avenues

Besides the research needs resulting from the general limitations, we derive
two concrete future research avenues arising from the findings of this thesis.

First, we suggest that future research should develop and test a (at first
hypothetical) “robot-based PES”, in which farmers are rewarded for using a
weeding robot in a specified way. Different payment structures could be
tested: On the one hand, farmers might receive results-based payments for
some multi-dimensional biodiversity indicator. This indicator can be based
on the absolute abundance, on the change obtained, or the capacity reached
of these pre-defined indicators. On the other hand, farmers could receive
action-based payments that depend on a certain weeding strategy the robot
is set to. Here, one specific idea for a weeding strategy would be to rely on
weed removal based on crop row, an approach that has been proven efficient
in improving the trade-off between yield and biodiversity (Zingsheim &
Ddoring, 2024) and was hypothetically accepted by farmers in form of a
hybrid scheme (combination of action- and results-based elements)
(Massfeller et al., 2022). Such research should be carried out in close
collaboration with agro-ecologists that clearly identify multi-dimensional
indicators (e.g. which weed species at what density and distribution) and
technology developers that ensure weeding robots are able to execute the
required weeding strategies.

Second, another research avenue evolves from the synthesis of all three
chapters: the value of information and farmers’ information processing.
Throughout this thesis we identify the importance of information about
benefits of a technology for its adoption. As shown in Chapter 2 and Chapter
3, farmers rely on information from peers and (human and digital) advisory
services in order to optimize their crop management decisions. In Chapter 4
we have discussed how SFTs can provide information that might guide
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farmers’ use in a certain way e.g. when information on biodiversity at field
level is given in form of a green nudge. In light of the increasing amount of
data that can be collected by novel SFTs and then communicated to farmers,
it is important to understand how farmers process such information and
which they deem as relevant for their decisions to adopt sustainable farming
practices, technologies or policy measures. This valuation of information is
known as epistemic vigilance (Bielik & Krell, 2025; Sperber et al., 2010)).
However, to date, little is known about farmers’ epistemic vigilance. With
this thesis, we gain first insights into farmers’ epistemic vigilance, focusing
on the source (Peers in Chapter 2, Al vs. human in Chapter 3) and the
characteristics of the receiver (Al-Anxiety as inherent individual belief in
Chapter 3), but future research should further investigate this topic.
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Chapter 2

Field observation and verbal
exchange as different peer effects
in farmers’ technology adoption
decisions”

Abstract. Farmers’ adoption of novel technologies is influenced by other
farmers’ behavior, a phenomenon known as peer effects. Although such
effects have been studied intensively, the literature does not clearly
distinguish between those that result 1) from verbal exchanges with other
farmers and 2) from field observations, including the application of
technology, its outcomes, and field conditions. We extend existing
theoretical concepts and hypothesize that verbal information exchanges and
field observations are two types of peer effects. Using data from an online
survey of German sugar beet farmers’ application of mechanical weeding
from early 2022, we find that the likelihood of adopting mechanical weeding
increases across all model specifications by around 26%-28% if at least one
adopter is known and by approximately 30%-32% if at least one field is
observed. The two types of peer effects complement and reinforce each other
in explaining adoption decisions. The effects increase with the number of
adopters known and fields observed but decrease with larger distances to the
observed fields. The findings can support designing extension services and
future peer effects research that should consider the distinction between peer
effects arising from verbal exchanges and field observations.

Keywords:  Social Network, Peer Effects, Observability, Spatial
Information Diffusion, Technology Adoption, Farm Survey,
LASSO Double Selection

* This chapter is published as MASSFELLER, A., AND H. STORM. 2024. “Field observation and verbal
exchange as different peer effects in farmers’ technology adoption decisions.” Agricultural
Economics 55 (5), 739-757. https://doi.org/10.1111/agec.12847. Only minor edits have been made for
the purpose of this dissertation.
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2.1 Introduction

Peer behavior is an essential driver of farmers’ technology adoption
decisions (Shang et al., 2021). Exchange with peers could increase farmers’
intention to adopt novel sustainable farming practices (Sampson & Perry,
2019), to reduce pesticide usage (Bakker et al., 2021), and can reinforce the
effectiveness of advisory services (Genius, Koundouri, Nauges, &
Tzouvelekas, 2014). The rich body of literature on the role of peers considers
various ways to define “peer effects” covering purely verbal exchange with
adopters (Albizua, Bennett, Pascual, & Larocque, 2020) and field
observation (Mekonnen et al., 2022). However, existing studies do not
consider to what extent these types of peer effects differ. Deeper knowledge
of the mechanism that underlies peer effects is important for improving
advisory services and policy measures, but missing (Bartkowski & Bartke,
2018; Bramoullé et al., 2020; Brown et al., 2018; Pe’er et al., 2020). So far,
the variety of definitions in the current literature makes it difficult to
understand the mechanism underlying peer effects: is it through verbal
exchange, field observation, or a mix of both?

The research objective of this paper is to disentangle (verbal) information
exchange with adopters from observing fields on which a (new) technology
is or was used as two distinct types of peer effects. We are interested in the
correlation between the two potential types of peer effects, verbal exchange
and field observation, and farmers’ technology adoption decisions. Further,
we aim to understand how the two types relate to each other. Ideally, we
would be able to identify causal effect of verbal exchange and field
observations on adoption. However, as outlined in detail below, doing so is
conceptually challenging. Nevertheless, studying the correlation between
the two types of peer effects (verbal exchange and field observation) and
their relation to adoption allows to derive information on their relative
importance and difference. To reach our objectives, we structure our
analysis along the following research questions:

1. How do (verbal) information exchange and field observation relate
to adoption of technology?
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2. Do the two types complement each other in explaining the
technology adoption decision?

3. How do the two types relate to each other within the relevant socio-
spatial network’?

We focus on farmers’ decision to use mechanical weeding using data from
an online survey with sugar beet farmers from early 2022. The German sugar
beet production sector is characterized by well-organized advisory structures
that deliver information through sugar beet factories, sugar beet associations,
and sugar producers to farmers. Current German sugar beet farming depends
mainly on herbicides for effective weed control. Herbicide usage is among
the main drivers of biodiversity loss in agricultural areas in the European
Union (EU) (Gill & Garg, 2014; Petit et al., 2015). The regulatory approval
of available active ingredients for herbicide applications is likely to become
more limited due to environmental concerns, leading to the need for
alternative measures, such as mechanical weeding (EU, 2012; Warnecke-
Busch et al., 2020). Novel technologies, such as weeding robots, allow
farmers to reduce herbicide usage while maintaining high yields, thereby
decreasing agricultural production's negative impacts on biodiversity
(Finger, Swinton, et al., 2019). Mechanical weeding has clear ecological
benefits, including increased biodiversity abundance compared to chemical
weeding, but it can also have adverse effects, such as soil erosion (Liebman
et al., 2016; Thiel, Mergenthaler, & Haberlah-Korr, 2021; Ulber, Klimek,
Steinmann, Isselstein, & Groth, 2011; Vasileiadis et al., 2017).

The relations between individual’s outcomes and those of their peers, known
as “peer effects” (Bramoullé, Djebbari, & Fortin, 2009), have received
intensive study in the domain of farmers’ technology adoption decisions in
different geographical and cultural contexts. Bandiera and Rasul (2006)
distinguish between social networks based on self-reported individuals
versus those based on ex-ante set geographical and cultural proximity. The
former are defined as peer effects, either based on purely verbal information
exchange (Albizua et al., 2020), take into account whether the adopters are

" We define the term “socio-spatial network” as the composition of the number of adopters known,

the number of fields observed and the distance to the fields observed.
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known (Bandiera & Rasul, 2006; Blasch et al., 2020), or focus on the
awareness of other farmers and their fields (Conley & Udry, 2001, 2010;
Conley et al., 2003; Mekonnen et al., 2022) to approach field observation.
The latter presumes a (more or less clearly defined) mix of verbal and visual
information, implicating field observation through spatial proximity. Some
empirical studies refer to a certain radius (Di Falco et al., 2020; Kolady et
al., 2021; Krishnan & Patnam, 2014; Lépple et al., 2017; Sampson & Perry,
2019) and others to administrative districts, such as villages (Besley & Case,
1993; Foster & Rosenzweig, 1995; Munshi, 2004). However, insight into
the mechanism underlying peer effects is limited (Bramoullé et al., 2020),
and statistical evidence for the role of farmer-to-farmer interaction in
farmers' technology adoption decisions is scarce (Shang et al., 2021). So far
as we know, no previous research has explicitly investigated the differences
between verbal exchange and field observation as two distinct types of peer
effects. We intend to derive a first indication of the importance of and
difference between the two types of peer effects that can serve as the basis
for future research in this direction.

We find that verbal exchange and field observation both positively relate to
the adoption decision, whereby verbal information exchange seems to be
relatively slightly more important than field observation in predicting
adoption. Hence, personally knowing adopters and verbally exchange
information regarding mechanical weeding might play an important role for
the adoption decision, besides observing mechanical weeding on other
farmers’ fields. Despite the high correlation between the two types of peer
effects, we are able to estimate separate effects indicating complementarity
in explaining the adoption decision. We show that in a relevant socio-spatial
network, which is large in terms of number of known adopters and number
of fields observed but is small in terms of spatial radius, verbal exchange,
and field observation reinforce each other.

With this study, we improve the understanding of the mechanism underlying
peer effects by being the first to clearly differentiate between (verbal)
information exchange and field observation as distinct types of peer effects.
Our empirical investigation contributes to examining the extent to which the
two types relate to the adoption decision and how far they complement and
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reinforce each other. Based on our findings, future research can further
explore the mechanism and causal relationships behind these two types of
peer effects. Additionally, we present a novel survey tool that allows to
capture spatially explicit data on farmers” own fields and the fields they
observe, which might also help answer other research questions. Lastly, our
findings allow us to derive implications for designing advisory services and
policies aiming at reduced herbicide usage or technology adoption. We
derive that combining opportunities for verbal exchange with the option to
observe a technology and its results in use might prove most efficient in
steering farmers’ behavior in a desired direction. While we focus on
mechanical weeding, our research can also show how other novel
technologies are diffused, such as mechanical weeding robots.

The remainder of our paper is structured as follows. We first derive our
hypotheses based on existing literature on peer effects in section 2. In section
3, we describe in detail the development of our survey and explain the
methods used, including our empirical strategy of how to deal with Manski’s
reflection problem (Manski, 1993) in peer effects. We then present and
discuss our findings in section 4 and conclude with implications for future
research and policy design in section 5.

2.2 Peer effects in technology adoption and derivation of
hypotheses

In his theory of diffusion of innovations, Rogers (2003) describes the
necessary knowledge of an innovation as created through different sources
of information at different stages in the adoption process. Peers are a critical
source of information, as they provide relevant, readily available, and low-
cost information (McBride & Daberkow, 2003; Noy & Jabbour, 2020;
Prokopy et al., 2019; Siimane et al., 2018) and thereby shape farmers’
decision making (Foster & Rosenzweig, 1995; Skaalsveen et al., 2020;
Villamayor-Tomas et al., 2021). The relevance of this information could
differ depending on who is considered important, such as family members,
friends, or other successful farmers (Bessette, Zwickle, et al., 2019; Genius
et al., 2014; Mekonnen et al., 2022), if the other is well known (Manson,
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Jordan, Nelson, & Brummel, 2016) or has deep roots in the community (Noy
& Jabbour, 2020).

2.2.1 Verbal exchange with adopters

Face-to-face interactions with peers are among farmers’ most important
sources of information (Skaalsveen et al., 2020). Talking to peers can
happen with intent but could also be prone to some bias, either in terms of
whom one chooses to speak with (Krishnan & Patnam, 2014) or in terms of
the interpretation that the speaker or listener might add (Mekonnen et al.,
2022). Through verbal exchange, information about unobservable
characteristics of a technology, like costs, expected herbicide reductions,
time and labor requirements, or necessary skills, can be obtained (Albizua et
al., 2020; Jabbour, Gallandt, Zwickle, Wilson, & Doohan, 2014). Studies of
peer effects based on verbal exchange often include the frequency of
communication (Conley et al., 2003; Tran-Nam & Tiet, 2022), account for
the number of adopters known and the distance to them (Krishnan & Patnam,
2014; Sampson & Perry, 2019), or differentiate between different types of
peers talked to (Albizua et al., 2020; Mekonnen et al., 2022). We assume
that for verbal exchange, peers can be neighbors in close spatial proximity,
as well as other farmers who were met at fairs and on field days and whose
opinions are important but who are not nearby.

2.2.2 Observation of adopters’ fields

Rogers (2003) describes observability as an important characteristic of an
innovation. We broaden this definition by explicitly referring to the
possibility of observing a technology in use, not only its results. Fields could
be observed rather unconsciously, as a farmer might observe a field when
passing but without actively thinking of it (McCann et al., 2015) or as a
conscious action known as “road-side farming” (Burton, 2004), describing
the process of farmers checking out “symbols of good farming” on
neighboring farms and fields. In the case of weed management, these
symbols can be easily observed, e.g., in terms of tidy, weed-free fields or
high yields (Lavoie & Wardropper, 2021). There is empirical evidence that
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the likelihood of adoption varies depending on whether the technology in
use (Blasch et al., 2020), and especially its results can be observed easily
(Llewellyn, 2007; McCann et al., 2015). Moreover, local information has
been found to be of major importance, as farmers close by might face the
same production conditions (Arbuckle et al., 2013; Llewellyn, 2007; Noy &
Jabbour, 2020; Stimane et al., 2018). Mekonnen et al. (2022) found that
spatial proximity and knowledge of peers’ decisions on the use of
agricultural inputs and their outcomes, combined with awareness of their
plots, explain information diffusion through peers. However, little statistical
evidence on the importance of observability as a relevant attribute of
technologies for the adoption and diffusion of digital farming technologies
has been published (Shang et al., 2021). We assume that observing the fields
where mechanical weeding is performed could be positively correlated with
adoption as a technology in use, but in particular, its long-term effects over
a full production period can be observed under the same local conditions.

2.2.3 Endogeneity and reverse causality in peer effects

We depict our theoretical assumptions in Figure 2.1. As shown by the arrows
in both directions, we emphasize the possibility of reverse causality. While
most peer effects research focuses on the causal effect of peers’ adoption
behavior on the adoption decision of the individual farmer, the direction of
the effect can also be reverse: Farmers might first adopt a technology and
then broaden their social network and engage in information exchange.
Examples of such behavior include access to chat groups upon the adoption
of a certain app or software (Wims & Byrne, 2015), access to machinery
rings upon the adoption of a certain machinery, or access to groups that
exchange the experience with a certain farming practice (Chaudhuri, Roy,
McDonald, & Emendack, 2021). Further, there is evidence that (early)
adopters of technology tend to communicate about it to gain social
recognition (Shikuku, Pieters, Bulte, & L&derach, 2019), which shows that
information dissemination behavior might change after technology
adoption.

Another obstacle in identifying peer effects is endogeneity in the network
formation process (Bramoullé et al., 2020). Individuals might actively
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choose their own peer group, leading to selection bias (Blasch et al., 2020;
Krishnan & Patnam, 2014; Skaalsveen et al., 2020). Individuals tend to be
more willing to connect with others who are similar, a phenomenon known
as homophily (McPherson, Smith-Lovin, & Cook, 2001). In our case,
farmers who are most interested in mechanical weeding could actively
search for information themselves by joining networking events or by
engaging a lot with like-minded farmers before and after the adoption.

Lastly, the relationship between verbal exchange and field observation
might also be prone to endogeneity, as observing a field might induce talking
to the respective farmer and the other way around. While it is difficult to
control for reverse causality and endogeneity, we are merely interested in
the correlation and do not aim for causal inference. We aim to investigate in
how far adoption is associated with peers’ adoption and how the two types
of peer effects relate to each other, irrespective of the causal direction.

2.2.4 Hypotheses

Against this background, we formulate our hypotheses, as also depicted in
Figure 2.1.

Hypothesis 1a: Knowing at least one other farmer doing mechanical
weeding is positively related to having adopted mechanical
weeding.

Hypothesis 1b: Observing at least one field where mechanical weeding is
done is positively related to having adopted mechanical
weeding.

Hypothesis 2: Verbal information exchange and field observation as two
types of peer effects complement each other in explaining the
adoption decision.

Hypothesis 3: Verbal information exchange and field observation reinforce
each other, such that the correlation with adoption is higher
for an increasing number of adopters known, for an increasing
number of fields observed, and for a decreasing distance to
these fields.
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Peer effects
| Verbal exchange i‘

H2 & H3 HI :
v Adoption

| Field observation !‘

Own

Figure 2.1: Types of peer effects

Source: own presentation

2.3 Method and data

2.3.1 Survey design and implementation

To answer our research questions, we conducted an online survey among
German sugar beet farmers in early 2022. We designed and implemented a
custom-built survey tool, allowing us to obtain explicit spatial data. In this
survey, farmers were asked to specify whether, which, and since when they
used mechanical weeding techniques. The participants indicated how many
other farmers whom they knew used mechanical weeding and were then
asked to show on an interactive map where they were growing sugar beets
and to indicate fields of other farmers where mechanical weeding is done
(whether in sugar beet or other crops). As an alternative for those who did
not wish to use the map to provide the precise geolocation of fields,
participants were asked to give their postal code and select via a single-
choice question how many fields they knew of where mechanical weeding
is done. For those who did not use mechanical weeding, we asked for the
reason for this. All of the participants were asked about their intention to use
new weeding technologies in upcoming years. For the map shown in the
survey, we used freely available geo-data on field shapes for certain federal
states of Germany, as well as remote sensing data from Copernicus for the
remaining federal states (for more information, see the original survey in the
Appendix). Using this, participants could select their own or others’ fields,
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either by clicking on the fields or by setting a marker (tractor symbol)
(Figure 2.2).

Figure 2.2: Novel custom-build survey tool

Note: Orange areas indicate own fields, and blue areas indicate other farmers’ fields where
mechanical weeding was observed (example)

2.3.2 Preregistration & sampling strategy

We pre-registered this study using the Open Science Framework (OSF)
platform on February 10, 2022, the day we began the data collection
(Massfeller & Storm, 2022). In this preregistration, we described our study
plan, including research questions and hypotheses, study design and
sampling strategy, and the variables and models used for the analysis (more
information on the preregistration, including how and why we deviated from
it, can be found in the Appendix). We relied on a convenience sample, as we
published advertisements off- and online, as well as cooperated with the
advisory network of the German sugar beet industry, the Institute for sugar
beet research (IFZ), and a market research company. In the preregistration,
we present an a priori power analysis and describe how we would deal with
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a potentially biased sample. The code used for the analysis can be found on
the author’s GitHub page’.

2.3.3 Empirical approach

Reflection problem and potential biases

The identification of peer effects is challenging, as an individual’s and peers’
behavior may correlate for several reasons (Di Falco et al., 2020; Krishnan
& Patnam, 2014; Manski, 1993). Manski (1993) differentiates between three
possible effects:

a) endogenous effects, wherein the propensity of an individual to
behave in some way varies with the behavior of the group;
additionally, the behavior of the group could be impacted by the
behavior of the individual,

b) exogenous (contextual) effects, wherein the propensity of an
individual to behave in some way varies with the exogenous
characteristics of the group; and

c) correlated effects, in which individuals in a given group tend to
behave similarly because they have similar individual characteristics
or face similar institutional environments.

While we are interested in the endogenous effects, i.e., the correlation
between the peers’ and the own adoption decision through field observation
and/or knowing adopters, we assume that to address our research question,
the differentiation between social (that is endogenous and exogenous
effects) and correlated effects is the main necessary and sufficient point. The
main challenge is to prevent bias from correlated effects. In the following,
we describe how not controlling for correlated and (to a lesser extent)
exogenous effects would lead to an overestimation of social effects and how
we try to limit such distortion.

Examples of correlated effects are similar natural production conditions (soil
quality, topography, etc.) as they could favor or disfavor mechanical

7 AnnaMassfeller/SugarbeetSurveyAnalysis (github.com)
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weeding, shared advisory services that communicate a certain attitude
toward different weed management decisions, contractors that offer a
specific type of machinery, or demonstration farms that support certain
farming practices. Further, social norms, such as environmental concerns
among the wider community, could lead to correlated effects if farmers’
behavior differs in response to these concerns. These effects can lead to a
correlation between an individual’s and peers’ adoption. Not controlling for
these correlated effects risks overestimating peer effects.

A possible example of exogenous effects based on peers’ characteristics
could be the peers’ experience with the technology or access to machines,
e.g., depending on the structure of the peers’ farms and its specialization,
machinery might still be available but not in use, making it free for
borrowing. Here, even if neighbors (currently) do not use the technology,
they can impact adoption by lending the relevant technology. As we are
merely interested in the correlation between verbal exchange and field
observation as two types of peer effects and adoption, to provide a first
indication of their relative importance and difference, the main challenge is
to reduce bias from potentially correlated effects and to isolate the social
(endogenous and exogenous) effects.

In our model, information on other adopters (KnowAdopters) is used to
approximate the possibility of (verbal) information exchange with adopters.
Similarly, the knowledge of mechanically weeded fields from others
(ObserveFields) provides information on the awareness of other fields (see
formulation of relevant questions for KnowAdopters and ObserveFields in
the original survey in the Appendix). Both variables are coded in our model
as binary variables with 1 if other adopters are known / fields are observed,
respectively, and 0 if not. We denote farmer i’s indication to adopt
mechanical weeding by Adopt, modelled as a binary decision, taking 1 if
mechanical weeding is applied and O if not. We include a vector of control
variables Control containing farmers’ characteristics such as age (1 if > 45
years), farm size (1 if > 50 ha), and, to approach environmental attitude,
previous participation in AES (1 if yes) as binary dummy variables.
Additionally, to account for the possible correlated effects, we include 1) the
minimal distance to demonstration farms (also squared) as a continuous
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variable. This reflects the minimal distance of the farm i to a farm belonging
to the network of demonstration farms for organic agriculture that are found
all over Germany. We include affiliation with one of the 19 German sugar
factories as a dummy variable in Control. Thereby, we can account for
regional differences as well as for the effect of farm advisors. To do this, we
calculate the distance for each farm i to each of the German sugar factories
and assume that farm i delivers to the closest factory. There are 19 sugar
factories in Germany, belonging to four sugar producers. We aggregated the
factories into 13 groups to avoid very small dummy groups (Figure 2.8 in
the Appendix). We proxy potential exogenous effects by including farm-
demographic data at the county level, such as average farm size per county
(DESTATIS, 2022a). As it was found that larger farms tend to be more likely
to adopt novel technologies (Shang et al., 2021), we assume that farm size
is a good approximation for peers’ experience with technology or access to
machinery. We further include a large number of soil- and topography-
related variables at the county level that allow controlling for possible
exogenous and correlated effects, as noted above. All variables included in
the model are presented in Table 2.1.

Table 2.1: List of variables in the model specifications

Name Label Values Mean
Depgndent Adopt Adop_tlon r_nechanlcal 01
variable weeding binary
ObserveFields observing fields binary  '0"'1'
KnowAdopters knowing adopters 0

binary

MinDist demo ~ Minimal distance to Num: 0.44 to 70.76 21.25
- demonstration farm
farm size in ha over 50

Asinpre- Farmsize binary

registration™
participation in AES

AES binary

0
farmer age over 45

binary 01

Age

FactoryLocation_a sugar factory location 19 locations as in Figure 2.8 in the
gg aggregated, dummy Appendix, aggregated to 13

§ More information and a map can be found here: https://www.oekolandbau.de/bio-im-alltag/bio-
erleben/demonstrationsbetriebe-oekologischer-landbau/

** This deviates from the preregistration as described in the Appendix.
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Share of organic farms
ShareOrgFarms in all farms at county Num: 0 to 0.32 0.06
Instrumental level
variables’” Share of ) )
are of organic area in .
ShareOrgArea UAA at county level Num: 0 to 0.36 0.05
Farm_organic farm organic binary ‘01
. farm specialized in -
Mainly_crop arable farming binary 01
. mean farm size at .
MeanFarmSize county level in ha Num: 18.20-336.5 59.87
. - habitants per sg.km at .
Populationdensity county level Num: 36-3077 237.62
FarmDens farms per sq.km at Num: 0.16-1.99 1.07
county level
AreaDens UAA per total county ;- 0,14 0.71 0.51
area in ha
share of small farms (<
ShareSmallFarms ~ 10ha) in all farms at Num: 0.06-0.53 0.22
county level
Additional share of area of farms
variables in - ghareSmallArea  with <10 ha in total Num: 273.08-23355.4  1041.8
Control UAA
Elevation_in_m_m mean elevation at .
- - - - 7 Num: 12-533.4 252.98
ean county or field level#
sand content perc Mean sand content in
= P soil at county or field Num: 0.54-82.06 28.68
ent_mean .
- level, in %
Clav content perc M€an clay content in
v P soil at county or field Num: 5.44-35.61 20.95
ent_mean .
— level, in %
Slope_in_degrees_ mean slope_at county or Num: 0.11-13.54 26
mean field level, in %
share of arable area in )
ShareArableUAA total UAA in ha Num: 31.76-100.6 80.53
ShareArableInTota share of arable area in Num: 8.14-67.6 4174

IArea

total county area in ha

Alternative to
“factory
location”

Association_agg

producer associations
aggregated, dummy

10 associations as in Figure 2.8 in
the Appendix

7 Part of Control

# 1f the geo-coordinates of the fields are available, soil-related variables are included at field level,

for all others, the county mean is taken
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LASSO double selection

Due to the large number of control variables in a quite small sample, there
is a certain danger that parameter estimates exhibit very high variance and
hence could not be trusted. Therefore, we need to reduce dimensionality
through variable selection (Labovitz, 1965). Instead of selecting variables
based on literature or experience, we follow the state-of-the-art (Storm et al.,
2019) and opted for the Least Absolute Shrinkage and Selection Operator
(LASSO) (Finch & Hernandez Finch, 2016) and apply a double selection
approach based on Belloni et al. (2014)%8. Initially developed for prediction
purposes, the machine learning tool allows one to consider many
explanatory variables in different functional forms and then use the data to
identify the ones with the most explanatory power.

However, as we’re interested in the correlation between our variables of
interest, KnowAdopters and ObserveFields, and the adoption decision, we
need to apply the double selection procedure (Alexandre Belloni et al.,
2014), to avoid the variables being dropped if they’re highly correlated to
the variables of interest. For example, variables included to capture
exogenous effects, e.g., farm-demographic structures, might also be
correlated with our variables of interest, KnowAdopters and ObserveFields.
In a classical LASSO application, these variables would not be selected, as
their explanatory contributions are indirectly captured in KnowAdopters and
ObserveFields. In other words, we need to account for the relationship
between our variables of interest and the other control variables. Not
selecting those variables explaining our variables of interest might lead to
omitted variable bias, and the effect of those variables will be incorrectly
attributed to the variables of interest. The same could happen the other way
around when only variables are selected with a large effect on our variables
of interest but a small effect on the outcome.

Therefore, we follow Belloni et al. (2014) and apply a double-selection
procedure. The idea is to select variables that are relevant for both the key

88 We tried two other empirical approaches, a simple model that we also preregistered and an
instrumental variable approach. However, both approaches exhibit limitations as explained in the

Appendix and therefore we decided for the LASSO double selection procedure.
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variables of interest and the outcome. The union of these sets of selected
variables is then regressed on the outcome. The LASSO double selection
still relies on the assumption that we have no unobserved confounders (i.e.,
that all relevant variables are captured in our vector of control variables
Control). We note that this is a strong assumption and come back to it in the
limitations.

We are interested in estimating 3, and £, as depicted in the following base
LASSO model (LMpase):

Adopt; = By + f1KnowAdopters; + [,0bserveFields;
+ 8;Controlygope + G

1)

where E [| Info;, ObserveFields;, Controlygopt,ir Tagopt,i] = 0, 6; is ap-
dimensional vector unknown coefficients for the p controls where p > n is
allowed but not met in our case, and the parameters of interest are 8, and
B, with the effect of KnowAdopters and ObserveFields on Adopt.

In the first step of the double-selection procedure, we run three LASSO
models for Adopt (LM31), KnowAdopters (LM>), and ObserveFields (LMs) as
dependent variable, respectively, each time regressed on a vector of control
variables  ControlExogenousadopt,  ControlExogenousknowaAdopters, — and
ControlExogenousobserverieldss, always excluding the particular dependent
variable. We use the R package glmnet which allows us to use LASSO for
binary response variables via maximum likelihood estimation (Friedman,
Hastie, & Tibshirani, 2010; Simon, Friedman, Hastie, & Tibshirani, 2011).

LM1:  Adopt; = 6;ControlExogenous gopti + Tagopti + Si (2)

LM2:  Info; = &;ControlExogenousgpowadopters,i 3)

+ TI(nowAdopters,i + Vi

LM3:  Field; = &;ControlExogenousopserverields,i 4)

+ rObserveFields,i + u;

with E[¢;| ControlExogenousagopt,ir Tadgopt,il =0,
E[vi|ControlExogenouSKnowAdopters,i’ TKnowAdopters,i] =0 and
E[ui|ContTOIExogen0u50bserveFields,iarObserveFields,i] =0.
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We identify the variables that have been chosen in this first step for the three
different models (see Table 2.4 in the Appendix). We focus on the variables
chosen for the case where the misclassification error is lowest, i.e.,
Lambda.min.

In the second step, we use maximum likelihood to regress Adopt on the union
of all variables selected for LMi, LMy, and LMz named Controls;y ,
Controls; ., and Controls; s, respectively, leading to the following final
LASSO double-selection model LMftina:

Adopt; =

6,(B.Control;y, + B,Control;, + Control;ys)

+ (.BHKnowAdopters,i + ﬁZrObserveFields,i (5)
+ Tagopti) + (Brvi + Paui + ;)

= 6w+ 1 + 1

where E[ n; | 8;, 7; ] = 0 and r;is a composite approximation error.

Do the two types complement each other in explaining the adoption
decision?

To identify whether the two types complement each other in terms of
explaining the adoption decision (H2), we look at the explanatory
contribution of the variables we use to construct (verbal) information
exchange and field observation. This is done to identify how the percentage
of correct predictions of the adoption decision (prediction accuracy) varies
in relation to whether the variables for only one or both types of peer effects
are included. If the inclusion of variables for both types of peer effects
increases prediction accuracy, we can conclude that different aspects can be
explained by their means, indicating complementarity. For this, we compare
predication accuracy between different models in which the dependent
variable is always the adoption decision and a vector of control variables is
included as in the simple pre-registered model (see Appendix for details on
this model). As explanatory variables, the different models include our
different constructs measuring field observation a) binary as ObserveFields
or b) as number of fields observed (NrFields), with the levels “no fields
observed” (reference category), “1-5 fields observed,” “6-10 fields
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observed,” and “>10 fields observed,” or c¢) as distance to fields observed
(FieldDist***), with the levels “no fields observed” (reference category),
“fields in 0—5 km distance observed,” “fields in 610 km distance observed,”
“fields in 11-30 km distance observed,” and “fields in >30 km distance
observed.” Similarly, knowing adopters are measured a) as a binary with
KnowAdopters or b) as number of adopters known (NrAdopters), with the
levels “no adopters known” (reference category), “1-5 adopters known,”
“6—10 adopters known,” and “>10 adopters known.” Each variable is
depicted once alone and then also in combination with each other, together
with the vector of control variables Control. We compare the results to a
model that includes only an intercept (naive model) and one that includes
only the control variables, leading to 14 models overall that we compare (see
Table 2.3 in section 4.3).

How do the two types relate to each other within the relevant socio-spatial
network?

To determine whether the two types reinforced each other, we examined the
predicted likelihood of adoption, given the interaction of NrFields,
FieldDist, and NrAdopters. From H3, we expect the likelihood of adoption
to be highest where many adopters are known and many fields are observed
in close spatial proximity. We also intend to derive the relevant size
(NrAdopters, NrFields) and structure (FieldDist) of the network. We take
our simple preregistration model (see Appendix for details) and replace the
binary variables KnowAdopters and ObserveFields with interaction terms of
the different variables measuring field observation and knowing adopters
leading to the following three probit interaction models IM31, IM2, and IMs:

*kk

We calculated this variable (if not selected directly via single choice question) by taking the mean
of the distances between the centroid of the own fields (if chosen via map) or the centroid of the postal
code region (if own fields were not chosen via map but only the postal code was given) and the other

farmers’ fields.
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Pr(Adopt;=1|NrAdopters_agg;, NrFields;, Control;, B,y) =

D(fy + By NrAdopters_agg; + B, NrFields; + f3NrAdopters_agg; (6)
* NrFields; + yControl; + ¢;)

Pr(Adopt;=1|NrAdopters_agg;, FieldDist_agg;, Control;, B,y)=

@ (B + ByNrAdopters_agg; + [, FieldDist_agg; )
+ B3NrAdopters_agg; * FieldDist_agg;
+ yControl; + ¢;)

Pr(Adopt;=1|NrFields;, FieldDist_agg; Control;, B, y)=

®(B, + ByNrFields; + B,FieldDist_agg; + B3sNrFields (8)
* FieldDist_agg; + yControl; + &;)

where ® denotes the normal cumulative distribution function, f symbols
denote scalars, and vy is a vector of coefficients to be estimated. We estimate
the models in (7), (8), and (9) using maximum likelihood. NrFields enters
as described in section 3.3.3. To avoid having too many empty and small
groups resulting from the interaction terms, we aggregate two levels of the
variable FieldDist, leading to FieldDist_agg, with the following levels: “no
fields observed” (reference category), “fields in 05 km distance observed,”
“fields in 610 km distance observed,” and “fields in >10 km distance
observed,” as well as also two levels of NrAdopters, leading to
NrAdopters_agg with the following levels: levels “no adopters known”
(reference category), “1-5 adopters known” and “>5 adopters known.”

2.4 Results and discussion

2.4.1 Descriptive statistics

Our original sample consisted of 313 farmers. After data cleaning, the
sample size was reduced to 294 observations that were usable for the
analysis.”"" Following the power analysis reported in the preregistration, we

*’Due to an error at the beginning of the data collection, spatial data were missing for 18 farms. As
there was only one farmer delivering to the sugar factory Cosun Beet Company, we excluded this
observation from the analysis to avoid distortion.
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achieved a power of 0.93. %! The farmers in our sample are mainly
specialized in crop production (74%). Compared to the German farming
census from 2020 (see Table 2.2), the participants in our sample were
slightly younger than the German average, a common observation in online
surveys (Zahl-Thanem et al., 2021). The farm sizes are within the range of
the German average for farms that specialize in crop production. Histograms
for the distribution of age and farm size in the sample can be found in the
Appendix, Figures A 2.2 and A 2.3. The small share of organic farms in our
sample reflects the small market for organic sugar beets in Germany
(Eurostat, 2021). Of 294 farmers, 39% (114) reported using mechanical
weeding in their sugar beets, 82% (242) knew other adopters, and 85% (251)
observed other farmers’ fields.

Table 2.2: Sample statistics and comparison with German farm census data

from 2020
Farming
Whole sample census in
(n = 294) Germany?
Variable Mode®/ Mean Mode
Age (in years) 35-44 55-64
Farm size (in ha) 50-99 50-99¢
Share of organic farms 5% 2.5%
Number of adopters known 1-5 /
Number of fields observed 1-5 /
Distance to fields observed 0-5 /
Minimal distance to demonstration
farms (in km) 21.25 /
Mean distance to fields observed (in
km) 7.31 /
Mean distance between own fields (in
km, n =232) 3.73

@ Bundesministerium fiir Erndhrung und Landwirtschaft (2021)

b\We asked for all demographic variables in categories to not force participants to reveal too concrete
information

¢ Farms with mainly crop production (DESTATIS, 2022a)

d Share of organic farms growing sugar beets in all farms growing sugar beets (DESTATIS, 2022hb)

The majority of farmers has a rather small and close network, which is in
line with earlier findings (Blasch et al., 2020; Conley & Udry, 2010): mostly
1-5 adopters are known, and 1-5 fields are observed at a distance of 0-5 km

A

## 0n the chi-squared test for the contingency tables on Adopt, and KnowAdopters, and
ObserveFields, respectively, assuming an effect size w of 0.22 as in Di Falco et al. (2020) and an
alpha of 0.05.
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(mean: 7.31 km), with a distance between the own fields of 0-1 km (see
respective histograms in Appendix Figure 2.21). We find a slight difference
between those who selected their own and other farmers’ fields via the map
tool and those using the single-choice question (more on that in the
Appendix). Concerning the spatial coverage, our sample well reflects the
pattern of the sugar beet farm structure within Germany (see Figure 2.3).

Sampled farms (yellow = non-adopters, blue =  Main sugar beet regions (the higher the share

adopters, white = no observations, green = of sugar beet in arable utilized agricultural
share of adopters per county, the darker the area per county, the darker the region).
more)

Figure 2.3: Spatial coverage (left) and sugar beet regions in Germany (right)

Most farmers use traditional machinery they own. While previously, the beet
hoe was the main tool, machinery has become slightly more diverse in recent
years, and also camera/GPS-steered and autonomous machinery is used (see
Figure 2.13 in the Appendix). Modern and autonomous machinery is more
frequently shared with neighboring farms or used via a machinery ring or
contractor service (see Figure 2.14 in the Appendix). The three main reasons
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that non-adopters gave for not using mechanical weeding are perceived time
constraints, perceived low reliability of the technique to efficiently remove
all weeds, and high investment costs (see Figure 2.15 in Appendix). Time
constraints could relate to the time to actually do the mechanical weeding
(on a tractor), but for future technologies, such as robots, supervision time
could play a role (Lowenberg-DeBoer, Behrendt, et al., 2021). Hearing of
bad experiences from peers or not knowing who to turn to for information
on mechanical weeding are among the least important barriers.

2.4.2 How do (verbal) information exchange and field observation relate to
adoption?

The results from the final LASSO model LMryinai Support our initial
Hypothesis 1a: knowing at least one adopter is associated with a 26%
statistically significant higher likelihood of adoption, and Hypothesis 1b:
observing at least one field where mechanical weeding is associated with a
32% statistically significant higher likelihood of adoption, all else being
equal (Figure 2.4). The marginal effects of both variables of interest remain
robust in magnitude and significance through all different specifications that
underpin trust in our results (see the sensitivity analysis in the Appendix,
Figures A 2.8 and A 2.9). We conducted a similar analysis for the intention
to adopt, indicating the same direction of effects (see Appendix, Figures A
2.10 and A 2.11).



66 Chapter 2

Knowing adopters

Obsemving fields

0.0 0.1 0.2 0.3 0.4
Estimate

Figure 2.4: Marginal effects for Knowing Adopters and Observing Fields on
Adoption of the final LASSO model

Note: Dependent variable = Adoption, Observations: 294; 0.95 confidence intervals are displayed,
and partial effects for the average observation are given with standardized standard errors.

Our results on a positive correlation between verbal exchange and field
observation and farmers’ adoption decisions are in line with similar studies
(Mekonnen et al., 2022; Sampson & Perry, 2019). Assuming that a causal
relationship underlies the positive correlations between verbal exchange and
field observation and farmers’ technology adoption decisions, we explain
our results by two phenomena: social learning and social pressure. Prior
studies highlight the significance of information scarcity and perceived
complexity as key obstacles to adopting new farming technologies (Bakker
et al., 2021; Foster & Rosenzweig, 1995; Vecchio et al., 2020). Rogers
(2003) underscores the pivotal role of perceived complexity in innovation
adoption. Social learning, defined as the process of individuals learning from
their neighbors' experiences with new technology Rogers (2003), serves as
a means to mitigate (perceived) complexity by acquiring relevant
information from peers. In our case, social learning could occur as
mechanical weeding exhibits a certain complexity in implementation and
outcome that might hinder adoption, as costs (e.g., labor time) and
effectiveness under different local conditions are difficult to predict
(Bessette, Wilson, et al., 2019; Bessette, Zwickle, et al., 2019; Fishkis et al.,
2020; Gage & Schwartz-Lazaro, 2019). Information that reduces the
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perceived complexity of a technology can either be obtained through verbal
exchange (Skaalsveen et al., 2020) but also by observing the technology in
use and its results (McCann et al., 2015; Skaalsveen et al., 2020). Kolady et
al. (2021) trace the effect of observing fields in a certain radius on farmers’
adoption decisions back to the reduction in learning costs and the possibility
of deriving information on feasibility in the given local setting. We assume
that both types of peer effects transmit different information that both reduce
the perceived complexity of mechanical weeding and thereby positively
relate to the adoption decision.

We propose social pressure as a second mechanism explaining the positive
correlation. Rogers (2003) emphasizes social system norms as a precursor
to adoption. Déssart et al. (2019), drawing on Cialdini, Reno, and Kallgren
(1990), distinguish between descriptive (what other people actually do) and
injunctive (what people ought to do) norms and signaling motives (to convey
some information about oneself to another party), with evidence suggesting
their influence on farmers' technology adoption decisions (Déssart et al.,
2019; Shang et al., 2021; Streletskaya et al., 2020; Tandogan & Gedikoglu,
2020). Pagliacci et al. (2020) and Gatto et al. (2019) underscore the role of
nearby farmers' behavior in inducing social pressure.

For mechanical weeding, we conjecture that descriptive norms may drive
adoption if farmers perceive it as the new "norm," influenced by interactions
with many adopters or field observations as individuals have a strong wish
to conform with this norm if they find themselves in the minority (Asch,
1956). Recent evidence supports the importance of descriptive norms in
farmers adopting organic farming (Tran-Nam and Tiet, 2022). Additionally,
we suggest that injunctive norms could also trigger adoption but usually
require verbal exchange. Empirical evidence has indicated that injunctive
norms play an important role in explaining farmers’ adoption decisions
(Defrancesco et al., 2007; Kuhfuss et al., 2016; Massfeller et al., 2022; Tran-
Nam & Tiet, 2022).

Field observations may play a crucial role in signaling motives, allowing
farmers to convey their commitment to fellow farmers and the public. The
field's condition serves as a symbol of “good farming” (Burton, 2004). This



68 Chapter 2

signaling can involve demonstrating environmental stewardship with
weedy, likely biodiversity-rich fields, aligning with findings that
environmentally conscious farmers prioritize societal opinions (Defrancesco
et al., 2007; Lapple & Kelley, 2013). Alternatively, farmers may seek to
showcase "success” with weed-free, high-yielding fields. Notably, weed
management practices may affect neighboring fields through spillover
(herbicides or weed seeds), creating social pressure for farmers to align their
practices with those of nearby farmers (Davis & Carter, 2014; Lavoie &
Wardropper, 2021; Macé, Morlon, Munier-Jolain, & Quéré, 2007).

However, as we cannot account for the causal relationship, the reason for
the positive relationship between peer effects and adoption could also be
based on knowing adopters and observing fields as a consequence of the
adoption, as farmers might join networking groups to exchange and to visit
cach other’s fields after they have adopted, as further discussed in section
4.3. Further, selection bias in terms of individuals actively choosing their
own peer group, preferably consisting of similar individuals (McPherson et
al., 2001) could explain the positive relationship between peer behavior and
own adoption, as found in similar studies (Blasch et al., 2020; Krishnan &
Patnam, 2014; Skaalsveen et al., 2020).

2.4.3 How do the two types of peer effects relate to each other?

To identify the contribution of individual, distinct variables to explaining the
adoption decision, we explore in how far the percentage of correct
predictions changes with or without the variable under consideration (see
respective coefficient plots in Appendix Figure 2.20). Table 2.3 depicts
prediction accuracy (i.e., share of correct predictions) of different model
specifications (column 2) and the difference to the model with the highest
prediction accuracy in increasing order (column 3). With our best model, we
can correctly predict the adoption decision for 77.21% of our sampled
farmers compared to 61.22% using a naive model.
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Table 2.3: Prediction accuracy of different models

Model Prediction Difference from
accuracy (in %) the “best” model
(in percentage

points)
a) Naive 61.22 15.99
b) Only Controls 68.03 9.18
and
¢) NrFields 69.39 7.82
d) ObserveFields 71.43 5.78
e) FieldDist and NrFields 71.77 5.44
f)  FieldDist 72.45 4.76
g) KnowAdopters 73.81 3.40
h) NrAdopters and NrFields 73.81 3.40
i) KnowAdopters and ObserveFields 74.15 3.06
(Pr1)
)  KnowAdopters and NrFields 74.49 2.72
k) NrAdopters 74.83 2.38
) NrAdopters and ObserveFields 76.19 1.02
m) KnowAdopters and FieldDist 77.21 0.00
n) NrAdopters and FieldDist 77.21 0.00

Our results support our complementarity hypothesis (H2): the variables that
we use to construct the two types of peer effects contribute to different
extents to explaining the adoption decision. We find that the variables used
to depict knowing adopters (KnowAdopters and NrAdopters, models g and
k) exhibit a greater explanatory contribution than those related to field
observation (ObserveFields, NrFields, FieldDist, models c—f), which could
indicate that the former process is more important than the latter. NrFields
seems to contribute least to an explanation of the adoption decision. A model
with only control variables (model b) would predict 68.03% of the choices
correctly, which represents a bit more than half of the gain of the full model
over the naive model. If a combination of the different variables describing
field observation (ObserveFields, NrFields, FieldDist) and knowing
adopters (KnowAdopters, NrAdopters) is included (Models h,i,j,I,m,n), the
prediction accuracy is highest where FieldDist is combined with either
KnowAdopters (Model m) or NrAdopters (Model n) and slightly lower
where NrAdopters is combined with ObserveFields (Model I). It seems that
once the distance to fields observed is included, the exact number of adopters
known (Model n) does not help explain the adoption decision further; it is
enough to include if adopters are known or not (Model m). The combination
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of a variable that describes field observation and one that describes knowing
adopters exhibits higher prediction accuracy (Models h,i,j,I,m,n) compared
to a model where only the two field variables are included (model e),
underpinning the complementarity hypothesis. We explain the finding on
complementarity by the different information that might be delivered. While
through verbal information exchange, information on unobservable
characteristics can be obtained (e.g. costs), field observation allows to get
information on the feasibility of the farming practice under the same
production conditions over a full production period.

We further find that of the farmers in the sample, 75% observe fields and
know adopters, and the adoption share is highest in this group. The lowest
share of adopters appears among those neither observing fields nor knowing
adopters (8% of the sample) (see Figure 2.22 in the Appendix). Then, 7%
know adopters but do not observe fields, and 10% observe fields but do not
know adopters. This indicates that knowing other farmers and observing
fields is highly correlated. Exposure to both types is positively related to a
higher likelihood of adoption. Being exposed to only one or none of these
types is very rare and comes with a low likelihood of adoption.

To explore the (combined) effects of knowing adopters and observing fields
and to derive the relevant size and structure of the network, Figures 2.5, 2.6,
and 2.7 present heatmaps of the predicted likelihood of adoption (group size
and share of adopters) of the three interaction models (see coefficient plots
in Appendix, Figure 2.23) and all possible combinations of the interaction
terms, such that the darker the color, the higher the predicted likelihood.

We find that the highest predicted likelihood of adoption is exhibited by
those who

1. know many adopters and observe many fields: 90% (Figure 2.5)
2. know many adopters close by: 77% (Figure 2.6)
3. observe many fields close by: 89% and 88% (Figure 2.7)
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Figure 2.5. Predicted likelihood of adoption (in %) dependent on the
interaction between the number of adopters known and
number of the fields observed (group size and share of adopters
in parentheses)

Note: Own presentation based on own data

These results support our Hypothesis 3, such that the predicted likelihood of
adoption correlates positively with the number of adopters known and
number of fields observed in close spatial proximity. The two types of peer
effects seem to mutually reinforce each other: having a large network among
adopters known and many fields observed that are close in terms of spatial
radius comes along with a high predicted likelihood of adoption.

Manson et al. (2016) found very similar results for the effect of distance to
other farms on the adoption of multifunctional agriculture. Distances below
8 km have a strong impact on the adoption decision, which supports our
assumption that local information from farmers and fields facing the same
local settings is relevant, likely especially to reduce perceived complexity.
This is also reinforced by our finding that the predicted likelihood of
adoption increases with the proximity with which a sampled farm is located
to a demonstration farm (Appendix Figure 2.27) which was also found in
previous research (Wang, Lu, & Capareda, 2020). Our results indicate that
knowing many (> 5) adopters comes along with a high predicted likelihood



72 Chapter 2

of adoption, especially if many (>10) fields are observed, which is in line
with Blasch et al. (2020), Genius et al. (2014), and Bandiera and Rasul
(2006), who found the same effect for the likelihood of different types of
technology adoption. We presume that descriptive norms might explain
these patterns: Knowing many adopters of mechanical weeding and
observing many fields where it is being used induce the feeling that most
farmers are weeding mechanically, leading to a wish to conform with this
(perceived) majority (Asch, 1956). If many (>5) adopters are known (and
similarly if many (>10) fields are observed), the predicted likelihood is
highest if the fields are observed close by (0-5 km). This strong effect of
knowing many adopters close by on the adoption decision has also been seen
in similar studies (Genius et al., 2014; Sampson & Perry, 2019).

=10km q
(3.0%)

6-10km q
(4,0%)

FieldDist_agg

34
0-5km
(19,21%)
) 8 23 0
noFields -
(26,4%) (16.12%) (1,0%)
noAdopters 1-5Adopters >5Adopters

NrAdopters_agg

Figure 2.6: Predicted likelihood of adoption (in %) dependent on the
interaction between the number of adopters known and
distance to fields observed (group size and share of adopters in
parentheses)

Note: Own presentation based on own data
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(109.40%)
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Figure 2.7: Predicted likelihood of adoption (in %) dependent on the
interaction between the number of fields observed and distance
to fields observed (group size and share of adopters in
parentheses)

Note: Own presentation based on own data, Figure 2.7 based on subsample of “observers”

While we cannot tell from our data whether the fields observed belong to
known adopters, we find a high correlation between the variables we used
to construct NrAdopters_agg, NrFields, and FieldDist_agg, respectively
(chi-squared tests p < 1% for all, see Figures A 2.16-A 2.18 in Appendix).
Knowing many (>5) adopters entails observing many (>10) fields further
away (>10 km). Unlike the revealed importance of local information from
fields nearby, we also see a quite high predicted likelihood for adoption if
fields further away are observed, combined with many adopters known
(61%) or many fields observed (66%).

In light of these results, we conjecture that endogeneity between the two
variables of interest, field observation, and verbal exchange, could be an
issue. We cannot rule out that farmers talk to each other more often if their
fields are close or that they are more aware of many (close) fields with
mechanical weeding if many adopters (= potential respective landowners)
are known to them—both observations were made by Mekonnen et al.
(2022). In addition, the causal relationship remains unclear; it might simply
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be that farmers observe a new technology on the field and then approach the
farmer to talk about it or that farmers come to know many adopters at a
networking event, and after having had a verbal exchange, they visit each
other’s fields, even further away. Further, throughout our study we rely on
the assumption, that the two types of peer effects are based on the same (or
highly overlapping) relevant peer group. Nevertheless, both analyses on the
relation between verbal exchange and field observation (Table 2.3 and
Figures 2.5, 2.6 and 2.7) indicate slightly higher importance of verbal
exchange compared to field observation when it comes to the adoption
decision. We have to keep in mind, that the results rely on the strong
assumption of having no unobserved confounders. However, assuming that
such confounders would relate to both types of peer effects to a similar
extent, we can still make a statement on the relative importance of verbal
exchange and field observation.

2.5 Conclusion

The theoretical and empirical understanding of peer effects is a crucial factor
for steering farmers adoption behavior of novel, sustainable farming
technologies in a desired direction. With this study, we contribute to improve
this understanding. First, we add to existing theory by differentiating
between two types of peer effects, knowing adopters and observing fields.
Second, we empirically investigated the roles and relations of these two
different types using a novel survey tool developed for this purpose. We
have shown that the LASSO double-selection procedure is helpful in terms
of including a large number of variables that allow for control for correlated
(and to a lesser extent) exogenous effects, even with a relatively small
sample size. Using country-level variables to control for correlated or
exogenous effects implicitly assumes that the peer network consists only of
peers from the same county. This assumption can indeed be questioned;
however, as data on additional characteristics is only available at the country
level, this is the best possible approach given the available data.

We find that first, the two variables that we used to approximate verbal
information exchange through knowing adopters and field observation both
exhibit a positive and statistically significant correlation with adoption.
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Second, despite the high correlation between the two variables we used to
construct our types of peer effects, it remains possible to estimate the
correlation of both with adoption indicating a complementary relationship.
Third, verbal information exchange seems to be slightly more important in
explaining the adoption decision. Finally, the two variables mutually
reinforce each other, indicating the importance of a large but spatially close
network. The complementary contribution to explaining the adoption
decision and the mutual reinforcement of the effects constitute viable
findings, even in light of potential endogeneity, reverse causality, and
selection bias. Our results provide a clear indication of the importance of
differentiating between verbal information exchange and field observation
and emphasize the relevance of the local production conditions.

Therefore, we advise that future research on farm-level peer effects should
distinguish between those arising from verbal exchange and those arising
from field observation. Further, the research could test the theoretical
assumption of peer effects arising through either social learning and/or
social pressure and how the relevance of these two phenomena differs
depending on the type of peer effect. In addition, the study of the temporal
order of adoption within a certain socio-spatial network could help to
identify the causal relationship behind the types of peer effects. We did not
account for the relevance of certain peers or groups or if they differ between
the two types of peer effects. If our assumption of the two types of peer
effects being based on the same (or highly overlapping) relevant peer group
is violated, it could impact the relative comparison. Future research could
identify the relevant peer groups for each type of peer effect. For example,
one could examine whether conventional farmers observe organic fields to
understand the usage of mechanical weeding technologies or whether
organically farming peers (or their fields) are relevant for either social
learning or social pressure, as they might be the first to use novel weeding
devices (Shang et al., 2023).

Our results have important policy implications concerning farmers’ adoption
decisions of new technologies. Based on the finding that verbal exchange
seems to be slightly more important for predicting the adoption decision, we
derive that advisory services should focus on establishing personal contact
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between adopters and non-adopters. Given the complementary relationship,
field observation possibilities should always be accompanied by the option
to verbally exchange, e.g., through field days. Following Reichardt et al.
(2009; 2009) and Wang et al. (2020), we suggest that training courses on
novel technologies in vocational and technical schools should be combined
with practical demonstrations of the new machinery. Policy measures could
promote shared ownership of novel technologies, as they seem less likely to
be owned alone (Figure 2.14). This would initiate a (verbal) exchange
between like-minded farmers, probably accompanied by joint field
observations. In addition, policy measures and extension services could be
designed more resource-efficiently by offering a technology to certain
farmers in a nearby region for experimental purposes, which would allow
the necessary field observation and could be accompanied by the possibility
of (organized) verbal exchange with (preferably many) adopters.
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2.7 Appendix

2.7.1 A. Survey
While the original survey was conducted in German, we show the English version
in the following:

Weed control in sugar beet — today and tomorrow

“What we lacked when using the new technology is another farmer from
the region with experience”

Sugar beet production is increasingly affected by losses of active ingredients in
plant protection products. Farmers need alternatives. Here it is often helpful to look
at what colleagues in the region are doing.

We at the University of Bonn conduct a short (maximum 10 minutes) online survey
on weed control in sugar beet. The aim of the survey is a better understanding of
the role of the exchange between colleagues as a source of information for decisions
about new farming practices.

As a farmer, you have the opportunity to provide anonymous information online on
how to combat weeds. We are not only interested in farmers who already have
experience with mechanical weed control. It is equally valuable for us to know why
farmers do not use these techniques or whether they plan to use them in the future!

As soon as the first survey results are available, you can see on a map where farmers
have already taken part in the survey and compare which weed control techniques
are used where in Germany.

As a giveaway there are three vouchers worth €50 for Engelbert Strauss for every
100 participants.

1. Intro
Welcome to our survey for weed control in sugar beet!
It takes maximum 10 minutes to complete the survey.

All results are analyzed anonymously. If you wish, we will send you a summary of
the results.

If you want to be informed about the results you can enter your e-mail address after
the survey.

When you need help press the ?-symbol and you will receive more information.

The male form chosen in the survey always refers to female, diverse and male
persons.

If you have any questions, please contact: [the author].
To open the survey, please accept our data security statement.

-> Display privacy policy
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-> Start the survey

2. Survey

Question 1: Do you use mechanical weed control in your sugar beet? This
also includes chemically-mechanically combined weed control such as a hoe band
sprayer. In this case, the hand hoe does NOT count as a mechanical weed control.

(Need help? — You must answer the question in order to proceed)
*Yes
* No

If question 1 = ,, Yes*:

Question 2: Since when do you use the following techniques? [Table with
drop-down selection for devices] or add other techniques that are not in the list:

Comment field:

(Need help? Please select a machine. Then fill in the appropriate columns in
the table. You can add or remove machines that are not part of the list.)

Additional information to the column “Additional equipment”: Does the
machine have any special equipment? Have you replaced the device with a new one
in the past? Is the device autonomous? Did you add something by yourself? Then
please use the comment field.

Tool since: Extra equipment/ Whose machine do you
investment/ comment  use?
Possible devices: a) With camera since * Own machine
* Harrow b) With GPS since * Share with neighbors
* Hoe harrow c) New investment * Machine ring
* barrow harrow d) Autonomous driving * Contractors
* Rotor harrow e) Comment * Other
* Coulter hoe f) not stated
* Seperating hoe
* Rolleing hoe

* Finger hoe

* Combination hoe-
band sprayer

* Heaping device

* Hoe brush

* Rotary hoe

* Other:

Question 3: How many farmers who use mechanically or chemically-
mechanically combined weed control (not only in sugar beet!) do you know?
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This includes not only farmers who are spoken to on a daily basis, but also
farmers with whom you can talk over via phone or at trade fairs, at working group
meetings, through farming associations and during field visits.

(Need help? — This does not only mean sugar beet. In this case, the hand hoe
does NOT count as a mechanical weed control)

*0

*1-5

* 6-10

» more than 10

Question 4: In which fields did you grow sugar beet in the last harvest year
(2021)? Please click on the appropriate fields or set the marker.

To make it easier for you to choose, we show the field shapes and marked
those yellow where we know that there have been cultivated sugar beets fields in
the last three marketing years (2019-2021). You can also mark unshaped areas
(mainly in Hamburg and Saarland) with the help of a small tractor symbol.

We have taken the data from the Invekos database in the form of so-called
shape-files for North Rhine-Westphalia, Lower Saxony and Brandenburg. These
data are freely available within the Data License Germany, as specified in the EU
INSPIRE Directive. The data for the other federal states is based on remote sensing
data (automatically detected field shapes from own calculations based on satellite
images taken by Copernicus).

Differences between the shapes of the fields and your actual fields are possible.
In this case, simply select the most suitable plot (s). The shape only becomes visible
when you zoom in on the map. Information about the fields is of great importance
for our analysis, but if you prefer not to click on areas, you can skip this question
and alternatively enter your postcode in the next step.

(Need help? — Please mark the appropriate location on the map. You can
move the map by holding down the left mouse button. For our evaluation, it is
useful to have an indication as precise as possible. You can search for places in the
search field in the upper right corner.)
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If question 4 is skipped:

Question 4: Please enter your postcode
[numeric input, 5-digit number]

(Need help? — This information is stored anonymously and it is not possible
to draw conclusions about individual farms. All data will be aggregated and
summarized on the map as at the beginning.)

In both cases, it continues as follows:

Question 5: Do you know fields (e.g. through passing by) on which
mechanical or chemical-mechanical combined weed control was applied in the last
harvest year (2021)? This does not only include sugar beet fields!

In our analysis, we evaluate the data with regard to the distances between our
own fields and other fields. No evaluation of individual farms or fields is carried
out. For us, it is interesting how the fields of other farmers, on which you have seen
mechanical weed control, are geographically distributed, but not to which farm they
belong.

If you don’t want to mark the fields or can ‘t exactly state where the areas are,
you can skip this question and enter an approximate number and distance in the
next step.

(Need help? — Move the map by holding down the left mouse pointer.)
If question 5 is skipped:
Question 5:
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a) How many fields do you know where weeds are removed mechanically or
chemically-mechanically combined?

*0
*1-5
*+6-10
*11-15

* more than 15

b) How far away are these fields located?

*0-5km
*6—10 km
*11-15km

* 16 — 20 km
*21-30km

* more than 30 km

* [ don’t know any fields

(Need help? — Please specify where and how many fields you are aware off

while driving by.)

Almost done! You have successfully completed the first part of the survey and
your previous answers have been saved. Now we continue with the second part.

In both cases, the second part continues as follows:

Question 6: Can you imagine using mechanical weed control in the future?

Evaluate the following techniques with regard to the 5 statements. Select the
statement (s) that best fit(s) your current planning.

Conventional machines for
mechanical (e.g. harrow,
hoe) or chemically-
mechanical combined (e.g.
hoe-band sprayer) weed
control (without
GPS/camera control)

GPS-guided/camera-
controlled machines for
mechanical/chemical-
mechanical combined
weed control (non-
autonomous)

GPS/camera-controlled
autonomous machines for
mechanically/chemically-
mechanically ~ combined
weed control (e.g. robots)

I am not planning anything

| think about getting more

information and follow
current  discussions and
literature

I am actively seeking for
offers and | want to take part

I am not planning anything

I think about gaining more

information and follow
current  discussions and
literature

I am actively seeking for
offers and | want to take part

I am not planning anything

I think about gaining more

information and follow
current  discussions and
literature

I am actively seeking for
offers and | want to take part
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Conventional machines for
mechanical (e.g. harrow,
hoe) or chemically-
mechanical combined (e.g.
hoe-band sprayer) weed
control (without
GPS/camera control)

GPS-guided/camera-
controlled machines for
mechanical/chemical-

mechanical combined
weed control (non-
autonomous)

GPS/camera-controlled
autonomous machines for
mechanically/chemically-
mechanically  combined
weed control (e.g. robots)

in a consultation within the
next 5 years

| plan to use this technique
within the next 5 years
(own investment,
contractors, ...)

I am already using this
technique

in an consultation within the
next 5 years

I plan to use this technique
within the next 5 years
(own procurement,
contractors, ...)

I am already using this
technique

in an consultation within the
next 5 years

I plan to use this technique
within the next 5 years
(own procurement,
contractors, ...)

I am already using this
technique

Question 7:
a) How old are you?
*15-24
*25-34
«35-44
« 45-54
* 55-64
* 65 and more

* no information

(b) What is the size of your farm (in ha)?

* less than 5
*5-9

* 10-19

*20-49

* 50-99

100 -199
*200—499

* 500 -999

* 1000 and more

* no information
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¢) How do you manage your farm?
* Conventional
» whole farm organic
* Crop production organic
* other parts organic
* no information
d) What is your farm specialization?
* Primarily crop production
* Primarily livestock farming
* Primarily special crops
* Mixed farm
* no information
* Others/comment

e) Are you taking part in an agri-environmental climate measure (voluntary
measure from the 2nd pillar of the CAP) during the current funding period (2021-
2027)?

*Yes
* No
* no information

(Need help? — This data is used to record the representation of our survey and
like the entire survey it is collected anonymously. The farm size refers to the total
agricultural area (ownership and lease))

Question 8: Do you have any questions or comments? Feel free to write down
your opinion:

(Need help? — Share your thoughts on this survey and on mechanical weed
control.)

[Free text]

3. Theend
Thank you for taking the time to participate in the survey.

Now you have the opportunity to take part in our lottery. We will randomly
give away three vouchers for Engelbert-Strauss with a value of € 50 among 100
participants each. Please enter your e-mail address below. This is stored separately
from your data and it is not possible to connect it to your answers. If you wish to
receive a summary of the results we will send you the summarized results as soon
as the data is analyzed.
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Would you like to receive the summary of the results by e-mail?
*Yes
* No
Would you like to take part in the lottery?
*Yes
* No

If one of the previous questions is answered with , Yes“ you can see the
following information:

Please enter your name and e-mail address here. This data is stored separately
and there is no connection to your answers in the survey.

E-mail address: [free text]

We will never share your e-mail with third parties.

If you have any questions, please contact: [the author]
If question 1 = ,,No*“:

Question 2: Why do you not use mechanical weed control? Select all reasons
that fit for you. You also have the option to enter further reasons or explanations
by using the comment field. (multiple choice)

* Excessive running costs

* Excessive investment costs

* Too much time required

* Low reliability in weed control

* High risk of damaging the crop

* Not possible on my farm (e.g. due to soil conditions, field sizes,..)
* [ don’t know if the technology works for me

* [ don’t trust the application/operation

* My colleagues in the region have had bad experiences and told me about
them

* [ don’t know any colleagues in my region who could give meadvices
* [ want to wait until the technology is more mature
* There is no reason for me to change cultivation

free comment field:

(Need help? — Please give us some background information about your
decision.)



96 Chapter 2

2.7.2 B. Information on the pre-registration, where and why we deviated
from it

We described two different ways how our two variables of interest, (verbal)
information exchange through knowing other adopters (KnowAdopters) and,
possibility to make field observation (ObserveFields) can enter the models:
a) as binary or b) as dummy with multiple categories. To answer research
question 1, we opted for a), to answer research question 2 and 3 we choose
version b). Unless otherwise specified, we follow the pre-registration. One
main deviation from the pre-registration concerns the inclusion of the
distance to other farmers’ fields as explanatory variable. We exclude this
variable from our main model (PR1), because it is not straightforward to deal
with observations that do not observe any neighboring fields. However, in
later models used to answer research question 2 and 3 we include distance
to other farmers’ fields as dummy variable setting “non-observers” as
reference category. As described in the pre-registration we exclude variables
from the vector of control variables that show little variation among
participants namely the two variables Farm_organic (1 if the farm is
organic, 0 if not) and 2) Farm_specialization (0 if primarily crop production,
1 if primarily livestock farming, 2 if primarily special crops, 3 if mixed farm
and 4 if no information). The LASSO double selection procedure, described
in the method section, is not part of the pre-registration but it is added as an
alternative approach to identify the causal relationship behind our first
research question. This alternative approach is added because the
instrumental variable suffers empirically from a weak instrument leading to
large uncertainty in the estimated effects. We changed the order and
numbering of our hypotheses to ease the comprehensibility of our process
and avoid causal language, the formulation of the research questions and
hypotheses therefore also changed slightly. We extended the formulation of
research question 3, the respective hypothesis and the respective analysis by
looking at the effect of the interaction terms.

2.7.3 C. Structure of the German sugar beet sector

As an alternative to the variable describing belonging to the sugar beet
factors (Factory_agg) we also included dummy variables for the ten German
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advisory associations (Figure 2.8) a sugar beet farmer belongs
(Association_agg) to as the German sugar beet production sector is well
organized through the advisory associations and farmers receive relevant
local information from them. Still there is a high regional overlap between
the associations and the factories which is why we used the two versions as
alternatives for each other and as a sensitivity check.

Klein Wanzleben . Anklamer Anbauerverband fur Zuckerraben
GistrowSH
Schladen .
. HessPfizKassel
Bl viedersachsentitiesad
B o
B ==

. R ser- und Aktiona -Nord

. Verband Baden-Wirttembergischer Zuckerrubenanbaue
. Verband bayerischer Zuckerrabenanbauer
Ochsenfurt . Verband Frankischer Zuckerribenbauer (ARGE)

. Weser

Figure 2.8: Map of sugar beet factories and sugar beet associations

Note: Aggregation of Factory locations: Appeldorn + Euskirchen + Jiilich =“West*, Klein
Wanzleben + Kénnern + Zeitz = ,,SachsenAnhalt*, Lage + Nordstemmen = ,, LageNordst

Source: Data collected from websites of the sugar beet associations and and sugar beet fabrics based
on WVZ/ VdZ (2021)
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2.7.4.

Chapter 2

D. First step of the LASSO double selection procedure

Table 2.4: Variables selected in the first step of the LASSO double selection

procedure
Frequency variable was chosen for the
dependent variable
Adoption KnowAdopte ObserveField
Variable (LM1) rs (LM2) s (LM3)
MinDist_demo 49 8 0
Asinpre- $d-MinDist_demo 0 0 0
registratio  Farmsize 0 0 2
N AES 8 45 2
Age 18 45 2
FactoryLocation agg 13 0 2
Instrulment ShareOrgFarms 0 0 0
a
variables  ShareOrgArea 0 19 0
Farm_organic 50 2 0
Mainly_crop 0 4 0
MeanFarmSize2 0 0 0
Populationdensity 0 0 0
FarmDens 0 45 0
AreaDens 1 0 2
ShareSmallFarms 6 45 2
ShareSmallArea 3 0 2
Additional - Elevation_in_m_mean 0 0 2
variables  Sand_content_percent_m
n ean 0 45 2
ControlLa  Clay_content_percent_m
SSO ean 50 12 0
Slope_in_degrees_mean 50 0 0
sg.Elevation_in_m_mean 1 0 1
sg.Sand_content_percent
_mean 0 0 0
sq.Clay_content_percent
_mean 0 45 0
sg.Slope_in_degrees_me
an 0 0 0
ShareArableUAA 50 0 0
ShareArableInTotal Area 50 0 0

888 We excluded variables from the pre-registration model as described in the Appendix.
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As it can be seen in Table 2.4, the variable describing if the farm is organic
or not was selected in all models for Adoption as dependent variable which
IS something that we expected as being an organic farmer requires
mechanical weed control. We included the instrumental variables
ShareOrgFarm and ShareOrgArea in the vector of controls (ControlLasso)
for the first step of the LASSO double selection procedure to verify our
initial assumptions on these variables. Especially the exclusion restriction
for ShareOrgArea is partially supported as this variable is never selected for
Adoption but 19 times for KnowAdopters.

2.7.4 D. Pre-registration-model

In our first approach, we isolate social effects by including variables in our
model that allow control of correlated effects. We call this the “original
preregistration model” (PR1). Information on other adopters
(KnowAdopters) is used to approximate the possibility of (verbal)
information exchange with adopters. Similarly, the knowledge of
mechanically weeded fields from others (ObserveFields) provides
information on the awareness of other fields (see formulation of relevant
questions for KnowAdopters and ObserveFields in the original survey in the
Appendix). Both variables are coded in our model PR1 as binary variables
with 1 if other adopters are known / fields are observed, respectively, and 0
if not. In addition, we include a vector of control variables Control
containing farmers’ characteristics such as age (1 if > 45 years), farm size (1
if > 50 ha) and, to approach environmental attitude, previous participation
in AES (1 if yes) as binary dummy variables (O if not for all). Additionally,
to account for the possible correlated effects, we include 1) the minimal
distance to demonstration farms (also squared) as a continuous variable. This
reflects the minimal distance of the farm i to a farm belonging to the network
of demonstration farms for organic agriculture that are found all over
Germany. = We include affiliation with one of the 19 German sugar
factories as a dummy variable in Control. Thereby we can account for
regional differences as well as for the effect of farm advisors. To do this, we

Kk

More information and a map can be found here: https://www.oekolandbau.de/bio-im-alltag/bio-
erleben/demonstrationshetriebe-oekologischer-landbau/



https://www.oekolandbau.de/bio-im-alltag/bio-erleben/demonstrationsbetriebe-oekologischer-landbau/
https://www.oekolandbau.de/bio-im-alltag/bio-erleben/demonstrationsbetriebe-oekologischer-landbau/
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calculate the distance for each farm i to each of the German sugar factories
and assume that farm i delivers to the closest factory. There are 19 sugar
factories in Germany, belonging to four sugar producers. We aggregated the
factories into 13 groups to avoid very small dummy groups (Figure 2.8). All
variables included in the model are presented in Table 2.1. We denote farmer
I’s indication to adopt mechanical weeding by Adopt, modeled as a binary
decision, taking 1 if mechanical weeding is applied and O if not. We follow
a probit specification, and a farmer’s probability to adopt mechanical
weeding is modeled in model PR1, as follows:

Pr(Adopt;=1|KnowAdopters;, ObserveFields;, Control;, 8,V¥)
= ®(B, + BiKnowAdopters; + B,0bserveFields; + yControl; + ¢;) @

where @ denotes the normal cumulative distribution function, the  symbols
denote scalars, and vy is a vector of coefficients to be estimated. We estimate
the model in (1) using maximum likelihood. As we only include a few
control variables, based on prior knowledge and evidence from the literature,
there is a certain risk of omitted variable bias (OVB). We depict the results
of PR1 in Figure 2.9.

Knowing adopters

0

Model
Pre-registration model

=~ LASSO model

Observing fields

[m]

0.0 0.1 02 03 0.4
Estimate

Figure 2.9: Coefficient plot for PR1 results in comparison with LASSO model
results

Note: Dependent variable = Adoption, Observations: 294, Displaying confidence interval of 0.95,
partial effects for the average observation with robust and standardized standard errors
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2.7.5 E. Instrumental variable approach

Identification strategy 2: Instrumental variables

To overcome the limitations of the simple model PR1, we would ideally use
an IV approach that would allow us to isolate the part of the variance in a
farmer’s adoption decision that can be explained by peers’ behavior. In the
preregistration, we proposed that organic farming (share of adopters and
share of organic area) could serve as a suitable instrument. Organic farmers
must do mechanical weeding, independent of environmental conditions or
of other farmers. Other famers’ behavior influences a farmer’s adoption
decision only by means of the fact, that they are adopters and that their
behavior can be observed or verbally communicated. However, we found
that the instrument relevance condition was not sufficiently met: the two IVs
are too weakly correlated with the variables of interest KnowAdopters and
ObserveFields. For this reason, the results do not allow meaningful
conclusions to be drawn. More details on the IV approach can be found in
the Appendix.

We attempt to disentangle endogenous from exogenous and correlated
effects by exploring an instrumental strategy using the share of organic
farms in the county and share of organic area in the county as instruments
similar to Di Falco et al. (2020). Such instrumental variables have to fulfil
two requirements (Angrist, Imbens and Rubin 1996; Heckman 1997): they
have to be highly correlated with the endogenous variables (instrument
relevance condition) but uncorrelated with the error term v; (instrument
exogeneity condition).

We hypothesize that the share of organic farmers (ShareFarmOrg) in a
county could serve as instrumental variable for the potentially endogenous
variable of knowing other farmers (KnowAdopters). Similarly, the share of
the organic area (ShareFieldOrg) in a county can serve as instrumental
variable for the potentially endogenous variable of observing others’ fields
(ObserveFields). For the share of organic farmers and organic area we take
German county level data from 2016 (Statistische Amter des Bundes und
der L&nder, Deutschland, 2021).
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We apply a modified multiple-stage-least-squares approach based on
Angrist and Pischke (2009), as “ordinary” 2-Stage-Least-square (2SLS)
approaches are less suitable for nonlinear models, like dummy endogenous
variables. Therefore Angrist and Pischke (2009) suggest to include another
step by using the non-linear fitted values again as instruments, leading to
three stages (“3SLS”). Given that we include KnowAdopters and
ObserveFields as dummy variables, we can apply this approach to our case
leading to the following model called “IV” (more information on the “3SLS
approach” in the pre-registration).

Pr(Adopt;=1|KnowAdopters,, Obserﬁlelds“ Control;, B,¥)

= d(f, + f1KnowAdopters, + BZObse?zveFleldsl + yControl; + ¢;)
(A1)

wherein KnowAdopters, and observeFields, denote the fitted values arising from
the three-stage-least squares approach, @ denotes the normal cumulative
distribution function and the the B's denote scalars and y a vector of
coefficients to be estimated. We estimated the model in (3) using maximum
likelihood.

We assume that the instrument relevance condition holds as those farmers
who farm organically do mechanical weeding anyway (i.e. ShareFarmOrg
and KnowAdopters are correlated) and that on organic areas mechanical
weeding is done anyway, too (i.e. ShareFieldOrgi and ObserveFields are
correlated). The instrument exogeneity condition says that the errors should
be uncorrelated with the instruments. That should be the case once we
account for the number of neighbors known and number of fields aware of
(KnowAdopters and ObserveFields).

Results 1V approach

Figure 2.10 shows marginal effects for KnowAdopters and ObserveFields of
our original pre-reg model as well as the marginal effects for the
instrumental variable model (1V). We tested for the suitability of the IV by
checking for the instrument relevance and instrument exogeneity condition.
Concerning the instrument relevance condition, we found via t.test that,
there is no significant correlation between the endogenous variable
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ObserveFields and the instrumental variables ShareFarmOrg and
ShareFieldOrg (p-values: 0.7288 and 0.9696, respectively).

Note: Dependent variable = Adoption, Observations: 294, Displaying confidence interval of 0.95,
partial effects for the average observation with robust and standardized standard errors

The relation between KnowingAdopters and the two instrumental variables
ShareFarmOrg and ShareFieldOrg is not significant either (p-values:
0.7288and 00.861, respectively). We found a very small negative correlation
between both instruments and the error term (both around -0.02), indicating
support for the instrument exogeneity condition. Lastly, we could not detect
a statistically significant correlation between our outcome variable Adopt
and the instruments (both p-values > 0.1). We applied the “3SLS” approach
as explained in the pre-registration (see Massfeller & Storm, 2022).

knowing other farmers (info) | =

Info_IV =knowing other farmers i

observing fields (field) ‘

Field_IV = observing fields it

Estimate

Model -O- Pre-Registration model =1 3SLS-IV madel

Figure 2.10: Marginal effects for the pre-registration model (PR1) and the V-
Model.

In comparison to the results of the pre-registration model, the results of the
3SLS-model show different effects for both variables of interest.
KnowingAdopters IV~ remains  positive and  becomes larger,
ObserveFields_IV turns negative. However, both effects come along with
large standard errors. This indicates that the correlation between the
instrumental variables and the endogenous variable is too weak to serve as
instrument that allows to derive clear conclusions.



104 Chapter 2

2.7.6 F. Descriptive results & sample characteristics
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Figure 2.11: Histogram of age distribution of the sample
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Figure 2.12: Histogram of farm size distribution of the sample

Source: own survey data
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Figure 2.13: Usage of weeding machines over time

Source: own survey data
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Figure 2.14: Ownership status of used machinery

Source: own survey data
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125
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Figure 2.15: Reasons for non-adoption

Source: own survey data

2.7.7 H. Results of the sensitivity analysis for the second step of the LASSO
double selection procedure

In the second step of the double selection procedure we then ran 50 probit
models, one for each combination of nfolds and seeds with the respective
control variables selected in the first step. To specify our model, we try
different combinations of five random number seeds and ten different folds
in the cross-validation [10,20,30,40,50,60,70,80,90,100] for each of the
three models LM1, LM2 and LM3, to make sure that results do not differ
depending on in how many parts the data is split for the train and test
purposes.

Figure 2.16 shows the marginal effects for the ten different versions of folds
as mean over all seeds. It can be seen that the marginal effects do not differ
remarkably among the different models meaning that the number of folds
has no effect on the results. Although different variables have been selected
in the different models (see Table 2.4), marginal effects remain robust (see
Figure 2.16) meaning that the choice and combination of control variables
selected does not influence the magnitude and significance of our variables
of interest KnowAdopters and ObserveFields.
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knowing other farmers (info)

oy

observing fields (fields)

—leb[

0.0 0.1 02 03 04
Estimate

O 10 < 30 SF 50 @ 70 4 9
Nr. of folds
O 20 4% 4 W 60 & 80 — 100

Figure 2.16: Marginal effects for different number of folds in the second step
of the LASSO double selection procedure

Note: Dependent variable = Adoption, Observations: 294, Displaying confidence interval of 0.95,
partial effects for the average observation with robust and standardized standard errors.

We averaged the estimates for KnowAdopters and ObserveFields over all 50
specifications leading to an average marginal effect of 0.2550 for
KnowAdopters and 0.3213 for ObserveFields.

In a third step we then compared the double selection model to other model
variations (see Table 2.5). We exchanged the variable of
FactoryLocation_agg with the one of Association_agg. While
FactoryLocation_agg refers to the concrete location of the sugar factories in
Germany, Association_agg reflects which county belongs to which sugar
beet associations (see Figure 2.8). We could not detect any difference in the
model outcomes. Additionally, we compared both specifications to “Full
models”, where all control variables are included without LASSO double
selection.

Table 2.5: Comparison of different model specifications

Model specification

FullModel_Association Probit model with all variables from ControlLasso
including Association_agg as explanatory variables

FullModel_FactoryLocation Probit model with all variables from ControlLasso
including FactoryLocation_agg as explanatory
variables
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DoublseSelection_Association Nfolds= 50, double selection including
Association_agg as explanatory variable in
ControlExogenous

DoubleSelection_FactoryLocation Nfolds= 50, double selection including
FactoryLocation_agg as explanatory variable in
ControlExogenous

Pre-registration (PR1) Original model as specified in the pre-registration

knowing other farmers (info)

observing fields (fields)

0.0 0.1 02 03 04
Estimate

O~ Pre-Registration model & FullModel_Association FullModel_Factory location
Model
FAS LASSQ_Association LASSQ_ Factory location

Figure 2.17: Comparison of marginal effects for different model specifications
as described in Table 2.5

Note: Dependent variable = Adoption, Observations: 294, Displaying confidence interval of 0.95,
partial effects for the average observation with robust and standardized standard errors.

It can be seen that the marginal effects for KnowAdopters and ObserveFields
remain positive and within the same magnitude for all models. Knowing at
least one other adopter increases the likelihood of adoption by around 25-27
% and observing at least one field by around 31-33 % ceteris paribus, all
effects are statistically significant at the 1 % level. These results support the
findings from the different LASSO models, that the mean marginal effect
for KnowAdopters lies at around 26 % and for ObserveFields at around 32
%.

2.7.8 1. Intention to use mechanical weeding technologies in the future

As an extension of the above shown model we run an ordered probit model
with the same explanatory variables as above but with Intention to adopt as
dependent variable in Model PR2:
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Pr(IntentionAdopt.;=j|KnowAdopters,;, ObserveFields,;, Control;, 8,V)

= d(fy + f1KnowAdopters;; + f,0bserveFields;; + yControl,; + &)
(A2)

wherein @ denotes the normal cumulative distribution function, the B's
denote scalars and y a vector of coefficients to be estimated. The intention
to adopt IntentionAdopt can take five different levels j with j = 0 if no
intention, 1 if low intention, 2 if middle intention, 3 if high intention, and 4
if technique is already adopted’’”. We ran three models on intention, one
for each type of technology t being t =1 for traditional mechanical weeding
I.e. tractor-mounted machinery, t = 2 for modern mechanical weeding i.e.
tractor-mounted but camera- or GPS-steered machinery and t = 3 for
autonomous weeding devices.
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no intention = | don't plan anything in that direction,

low = | plan to get informed and to follow current discussions about the topic,

middle = | actively plan to get offers and to make use of advisory services within the next 5 years,
high = | pan to use this technology within the next 5 years (own investment, via contractor, ...)

Figure 2.18: Intention to use different types of mechanical weeding in the
future

Source: own presentation based on survey data

*Original survey text: ,,0 = I am not planning anything; 1 = | think about getting more information
and follow current discussions and literature; 2 = | am actively seeking for offers and | want to take
part in a consultation within the next 5 years; 3 = | plan to use this technique within the next 5 years
(own investment, contractors, ...); 4 = | am already using this technique”
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Figure 2.19 shows the marginal effects for KnowAdopters and
ObserveFields for the three ordered logit models on intention for the three
types of mechanical weeding: traditional, modern and autonomous.
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Figure 2.19: Marginal effects for KnowAdopters and ObserveFields on the
Intention to use different types of mechanical weeding
techniques in the future

Note: Dependent variable = Intention levels (no, low, middle, high, adoption), Observations: 294.

The likelihood of having “no intention” to use mechanical weeding in the
future decreases for all three types of technology if at least one adopter is
known and if at least one field is observed, ceteris paribus. The marginal
effects turn positive for the other levels of intention in most cases meaning
that knowing at least one adopter or observing at least one field increases the
likelihood of having some (low, middle, high, adoption) intention to use a
certain mechanical weeding technology in the future. This goes along with
findings from Bessette et al. (2019) who found that seeking for information
on ecological weed management is driven by other farmers behavior through
social norms, hence seeing mechanically weeded fields or talking to farmers
might trigger the search for information which we define as (low or middle)
intention. Though the results have to be interpreted with care as statistical
significance is only present in some cases and the economic effect is small.
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The marginal effects are quite similar for KnowAdopters and ObserveFields,
especially for traditional and modern technologies. For autonomous
weeding devices KnowAdopters has a larger effect on the likelihood to have
a low level of intention than ObserveFields which might be due to the rare
possibilities to actually observe a weeding robot and its effects in use.

2.7.9 J. Results alongside research question 2

Observing fields (binary) $ Model
Knowing Adopters (binary) £ o ) NrFields
1-5 adopters known % -  d) ObserveFields
6-10 adopters known 5 % &) FieldDist&NrFields
>10 adopters known % —£— ) FieldDist
1-5 fields observed ——— ~ g) KnowAdopters
: - —=— ) NrAdopters&NrField
6-10 fields observed } - ) NrAdopters&NiFields
H —4— i) KnowAdopters&ObserveFields
. H —_
>11 fields observed . e ———
| —b— ) KnowAdopters&NrFields
observed fields in 0-5km | $ —~— k) NiAdopters
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Figure 2.20: Marginal effects of models examined for prediction accuracy
depending on variables included

Note: Dependent variable = Adoption, Observations: 294, Displaying confidence interval of 0.95,
partial effects for the average observation with robust and standardized standard errors, models
including only one variable are depicted in grey (c,d,f,g,k), those including two variables are black
(h,i,j,I,m,n) and the model including the two field variables (e) is shown in light grey

2.7.10 K. Selection of fields

We found that the distance to other farmers’ fields differs significantly
between those who selected the fields vie the map compared to those who
selected via single choice (based on a Fisher’s exact test). Those who
selected via map choose fields in closer distance, which might indicate that
finding fields on the map, especially further away was difficult and time
consuming. We found the same for the number of fields selected: those who



112 Chapter 2

selected via the map selected significantly less fields than those who selected
via multiple choice (Fisher’s exact test). This delivers insights into the value
of our novel map tool. Results must be interpreted with regard to this
potential bias meaning that the “true” radius of own fields and fields
observed might be slightly larger.

2.7.11 L. Results alongside research question 3
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Figure 2.21: Size and structure of the network - descriptively

Note: For OwnFieldDist n= 232, subsample of those who selected own fields via map



Field observation and verbal exchange as different peer effects 113

noFieldsObserved | ‘ FieldsObserved |
200 1
o Adoption
5
No
8 1001
. Yes
501
0.
& & & &
& & & &
R A R R
o & o o
< <& < <
¥ ¥ ¥ ¥
& ¥ & ¥
< <

Figure 2.22: Share of adoption by field observation and knowing adopters

Source: own presentation based on own data
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Figure 2.23: Marginal effects of the Interaction- Models

Note: Dependent variable = Adoption, Observations: 294, Displaying confidence interval of 0.95,
partial effects for the average observation with robust and standardized standard errors.
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Source: own presentation based on survey data
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Source: own presentation based on survey data

2.7.12 M. Demonstration farm findings

To assess the effect of the minimal distance to demonstration farms
(MinDist_demo), we explored how this variable relates to the predicted
probability of adoption in the pre-registration model PR1 (lower part of
Figure 2.27). Most farms have a demonstration farm in less than 20 km
radius (see histogram in upper part of Figure 2.27). The relation between
minimal distance to demonstration farms and the predicted likelihood of
adoption is convex and approaching zero, indicating that likelihood of
adoption decreases with increasing minimal distance to demonstration
farms. The effect of demonstration farms on adoption is rather local as it
largest for farms close by (<10 km) and decreases at a high rate until the
distance approaches 20 km. This result again supports our findings on the
relevance of local information and is in line with previous studies on that
topic (Arbuckle, 2017; Llewellyn, 2007; Mekonnen et al., 2022) and goes
along with findings from Ldpple et al. (2016) who identified spatial
knowledge spillovers from research, education and advisory services
influencing innovation in the agricultural sector. We assume that having a
demonstration farm in the close neighborhood offers the possibility to 1) talk
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to adopters of mechanical weeding and 2) observe their fields and
technologies in use. Hence again, both mechanisms behind peer effects seem
to work here. Especially the effect of social learning among peers through
demonstration farms has been proven in a French case study (Deperrois,
Fadhuile, & Subervie, n.d. forthcoming; Lapierre, Sauquet, & Subervie,
2019). Besides a reduction of the perceived complexity through social
learning, social norms could come into play at an additional level:
demonstration farms might be more often visited by other farmers as well as
by consumers and farmers might feel more social pressure to farm
environmentally friendly or to show their engagement for the environment
(Kuhfuss et al., 2016; Mzoughi, 2011; e.g. Willock et al., 2008).
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60% 1

40% A

Probability

20% 1
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0 10 20 30 40 50
Minimal distance to demonstration farm [km]

Figure 2.27: The probability that an ‘average’ farm adopts mechanical
weeding for varying distance to demonstration farms

Note: All other variables are held constant at their means.



Chapter 3

Are Farmers Algorithm-Averse?
The Case of Decision Support
Tools in Crop Management”

Abstract. The advancement of artificial intelligence (Al) technologies has
the potential to improve farming efficiency globally, with decision support
tools (DSTs) representing a particularly promising application. However,
evidence from medical and financial domains reveals a user reluctance to
accept Al-based recommendations, even when they outperform human
alternatives. This is a phenomenon known as “algorithm aversion” (AA).
This study is the first to examine this phenomenon in an agricultural setting.
Drawing on survey data from a representative sample of 250 German
farmers, we assessed farmers’ intention to use and their willingness-to-pay
for DSTs for wheat fungicide application either based on Al or a human
advisor. We implemented a novel Bayesian probabilistic programming
workflow tailored to experimental studies, enabling a joint analysis that
integrates an extended version of the unified theory of acceptance and use
of technology with an economic experiment. Our results indicate that AA
plays an important role in farmers’ decision-making. For most farmers, an
Al-based DST must outperform a human advisor by 11-30% to be
considered equally valuable. Similarly, an Al-based DST with equivalent
performance must be 21-56% less expensive than the human advisor to be
preferred. These findings signify the importance of examining AA as a
cognitive bias that may hinder the adoption of promising Al technologies in
agriculture.

Keywords:  Farmer Decision-Making, Algorithm Aversion, Decision
Support Systems, Experiment, Bayesian Probabilistic
Programming

* This chapter is to date under review at the American Journal of Agricultural Economics as
MASSFELLER, A., HERMANN, D., LEYENS, A., STORM, H. (2025). “Are Farmers Algorithm-Averse? The
Case of Decision Support Tools in Crop Management”. Only minor edits have been made for the
purpose of this dissertation.
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3.1 Introduction

Artificial intelligence (Al)7 is a central component of the ongoing 4th
Agricultural Revolution, which is marked by the increasing integration of
information and communication technology into farming systems (Khanna
et al., 2024; Walter et al., 2017). Unlike earlier information systems, Al
technologies can learn from vast amounts of complex, high-resolution data
using machine-learning algorithms, thereby improving predictive accuracy
over time (Jarrahi et al., 2022). This adaptive learning capability allows Al
tools to generate more accurate recommendations and reduce uncertainty in
crop management (Khanna et al., 2024).

A key application of Al in agriculture is the use of decision support tools
(DSTs), which assist farmers in making optimal decisions under conditions
of complexity and uncertainty (Rose et al., 2016; Shtienberg, 2013). In
recent years, public advisory bodies and private firms have introduced Al-
based DSTs designed to enhance productivity, optimize resource use, and
support climate adaptation strategies in farming (Yousaf et al., 2023). These
tools offer advanced capabilities for data acquisition and predictive analytics
by incorporating real-time information, allowing for more precise
recommendations than traditional, non-Al-based DSTs (Gautron et al.,
2022; Khanna et al., 2024; Lazaro et al., 2021; Storm et al., 2024). However,
realizing the full potential of AI-DSTs depends on farmers’ willingness to
adopt them. Despite the promise of improved input efficiency (Lazaro et al.,
2021; Helps et al., 2024; Giulivi et al., 2023; Lazaro et al., 2023), prior
studies have indicated that farmers tend to rely more on peer networks and
advisory services than on digital tools (Skaalsveen et al., 2020; Kiraly et al.,
2023).

This reluctance towards (potentially superior) recommendations from
algorithmic decision support is known as “algorithm aversion” (AA), a

" We refer to Artificial Intelligence (Al) as one type of an algorithm and follow the definition by the
EU of Al as “ a machine-based system that is designed to operate with varying levels of autonomy
and that may exhibit adaptiveness after deployment, and that, for explicit or implicit objectives, infers,
from the input it receives, how to generate outputs such as predictions, content, recommendations, or

decisions that can influence physical or virtual environments” (European Commission 2024b).
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cognitive bias in which individuals favor human advice over algorithmic
input, even when the latter performs demonstrably better? (Dietvorst et al.,
2015). Although AA has been widely studied in fields of medicine (Longoni
et al., 2019) and finance (Cohen et al., 2021), it has not yet been explored in
the context of agricultural decision-making (e.g., Mahmud et al., 2022).
From an economic standpoint, AA represents a deviation from rational
behavior in which individuals forgo algorithmic recommendations in favor
of potentially worse human advice. Given the ongoing development of Al-
DSTs in agriculture (Gautron et al., 2022; Yousaf et al., 2023) and their
potential for improving efficient resource usage to decrease environmental
degradation while allowing for high vyields, there is a crucial need for
understanding such behavioral deviations to foster effective technology
adoption.

Accordingly, this study seeks to answer the following research question:
“What role does AA play in farmers’ intention to use Al-based DSTs?” To
answer this, we conducted a pre-registered, ethically approved online survey
of 250 German arable farmers in the autumn of 2024. The survey elicited
their intention to use AI-DSTs and their willingness-to-pay (WTP) for Al-
versus human-based advisory services. For survey design and statistical
analysis, we employed a Bayesian probabilistic programming (PP)
workflow (Storm et al., 2024; Gelman et al., 2020; McElreath, 2018), which
we propose as an adaptable framework for experimental studies.

Our findings suggest that AA plays an important role in both farmers’
intention to use and their WTP for AI-DSTs. Most farmers in our sample
preferred human advisors, even when those advisors performed worse than
AIl-DSTs. We calculated the performance premium (i.e., the additional level
of performance required for an AI-DST to be valued equally to a human
advisor) and found that for 90% of the posterior samples, AlI-DST needed to
perform 11-30% better. Similarly, we derived a price premium, showing
that, to be preferred, an equally performing AI-DST would need to cost 21—

7 Throughout this study, we follow Dietvorst et al. (2015) and define the algorithm as “any evidence-
based forecasting formula or rule.” Thus, the term includes statistical models, decision rules, and all

other mechanical procedures that can be used for forecasting.”
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56% less than its human counterpart. These results also indicate that some
share of the posterior samples would prefer a human advisor over an Al-
DST even if the performance of the human advisor is 30% lower and if it is
more than 56% more expensive, respectively.

This study contributes to the literature empirically and methodologically.
Empirically, we are the first to both examine and quantify the role of AA in
farmers’ decision-making through an experimental study. Although AA and
its counterpart, algorithm appreciation, have been explored in health,
finance, psychology, information technology, and business (Mahmud et al.,
2022), it has not been studied within the context of agriculture. Moreover,
field experiments and surveys addressing this phenomenon are rare
(Mahmud et al., 2022).

To date, AA as a phenomenon explaining deviations from rational behavior
has not been considered in the literature on farmers’ decision-making,
especially regarding digital technology adoption and DST use. Although
numerous studies have explored factors related to farmers’ DST usage
decisions (Shtienberg, 2013; Rojo-Gimeno et al., 2019; Kerebel et al., 2013;
Bessette et al., 2019; Rose et al., 2016; Rose et al., 2018), gaps remain in
fully understanding farmer behavior. While behavioral factors underlying
deviations from rational decision-making have been identified and classified
(Déssart et al., 2019), few studies have examined cognitive biases specific
to Al use. Whereas broader human—Al interactions have been reviewed
(e.g., Kaplan et al., 2023), little attention has been given to how farmers, as
a unique subgroup, relate to Al technologies (e.g., Orn et al., 2020; De la
Pefia and Granados, 2024). As a theoretical extension, we integrate AA into
the unified theory of acceptance and use of technology (UTAUT; Venkatesh
et al., 2003). Although UTAUT has been applied to farmers’ technology
adoption (Otter and Deutsch 2023; von Veltheim et al., 2022; Giua et al.,
2022; Michels et al., 2020), its adaptation to include Al-specific factors has
thus far been limited to the context of business managers (Cao et al., 2021).
In our study, AA is operationalized as the effect of Al-anxiety (AlA) on
behavioral intention (BI).

Methodologically, we demonstrate how a Bayesian PP workflow (Storm et
al., 2024; Gelman et al., 2020; McElreath, 2018) can be adapted for use in
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experimental and survey-based research in agricultural economics. This
approach enhances transparency by grounding the analysis in a clearly
defined, theoretically motivated data-generating process (DGP), which
enables the pretesting of survey instruments and experimental design using
synthetic data before real data collection begins. It also supports validation
of code implementation, model inference, and result visualization, all of
which are documented in the pre-registration. This enhances the theoretical
basis for the analysis, minimizes implementation errors, and increases
transparency.

In terms of benefits in the statistical analysis, the Bayesian approach allows
for a unified analysis of UTAUT survey and WTP experiment data by
treating AIA as a common latent driver of AA. Additionally, Bayesian
methods offer distinct advantages in expressing and interpreting (parameter)
uncertainty, compared with frequentist approaches (Storm et al., 2024). To
our knowledge, this is one of the first applications of the full Bayesian
workflow across all stages of an experimental study in this domain (see e.g.,
Stranieri et al., 2022; Leyens et al., 2024; for an application adopting
Bayesian approaches in parts of the experimental settings and Varacca, 2024
for the proposal of a Bayesian estimation in causal mediation analysis).

The remainder of the paper is structured accordingly. In Section 2, we
present the Bayesian PP workflow for experimental studies, which includes
defining the quantity of interest, deriving the statistical (causal) model, and
constructing the DGP, which combines the statistical model and the
experimental design. We also test our assumptions using synthetic data
before applying the model to real survey data. Section 3 presents the
empirical results, followed by discussion and conclusions in Section 4.

3.2 Bayesian PP Workflow for Experimental Studies

We adapted and extended the PP workflow developed by Storm et al. (2024)
to the context of an experimental study, as illustrated in Fig. 3.1.
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Although the general structure of the workflow remains consistent, its
primary innovation lies in the development of the DGP (Step 3), which
requires three iterative sub-steps: variable operationalization, statistical
model formulation, and experimental framework design. These steps are
repeatedly refined to ensure internal consistency and empirical robustness.
Together, Steps 1-3 formalize our variable of interest, AA.

1
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[ 4. Creation of synthetic data given DGP & values for AA

5. Use of synthetic data to test if DGP can recover values

[ 6. Pre-Registration & Survey launching

[ 7. Analysis of real data: run statistical model & derive AA

Figure 3.1: Bayesian probabilistic programming workflow for experimental
studies

3.2.1 Quantity to Estimate and Topical Background

We conceptualize AA as the effect of Al-anxiety (AIA) on decision
outcomes based on willingness-to-pay (WTP) and behavioral intention (BI).
AlA refers to the discomfort or fear individuals may experience due to
perceived loss of control over Al technologies, often stemming from
misunderstandings about technological capabilities, uncertainty around
machine autonomy, and limited awareness of the broader sociotechnical
context (Johnson & Verdicchio, 2017). Given the increasing integration of
Al into everyday (and agricultural) life, we argue that AIA should be
incorporated as a behavioral factor in studies of farmers’ decision-making.

We focus specifically on farmers’ input-use decisions in crop production,
which link economic behaviors to agronomic outcomes involving resources



Are farmers algorithm-averse? 123

such as seeds, water, fertilizers, and pesticides. These decisions are
inherently complex and involve evaluating trade-offs, such as the potential
yield loss due to pests versus the costs of treatment under uncertainty and
risk from factors like weather, disease pressure, market fluctuations, and for
human health (Rosburg & Menapace, 2018; Chatzimichael, 2022; Maertens
et al.,, 2021). Historically, farmers have relied on extension services,
personal experience, and peer networks to guide such decisions (Lapple &
Barham, 2019; Krishnan & Patnam, 2014). However, digitalization has
increased the relevance of DSTs as a source of decision-making support in
agriculture (Walter et al., 2017; Finger et al., 2019).

Compared with human advisors, (Al-based) DSTs offer two major
advantages. First, they are highly scalable and more cost-efficient (Spielman
et al., 2021; Van Campenhout et al., 2021). Second, they can integrate vast,
unstructured real-time data from in-field sensors or drones with machine-
learning algorithms, enabling enhanced precision and adaptive learning
based on historical outcomes (Gautron et al., 2022; Khanna et al., 2024;
Storm et al., 2024).

Despite these benefits, many farmers exhibit resistance even to non-Al-
DSTs and often deviate from optimal input-use recommendations (Méhring
et al., 2020; Skevas et al., 2014; Gars et al., 2025; Oyinbo et al., 2022). This
behavior cannot be explained by economic factors alone; instead, a range of
behavioral factors (e.g., personal beliefs, risk preferences or peer pressure)
play important roles (Oyinbo et al., 2022; Giulivi et al., 2023; Gars et al.,
2025; Van Campenhout et al., 2021; Spielman et al., 2021). However,
behavioral factors specific to AI-DST adoption in agriculture remain
underexplored. To address this gap, we introduce AIA as an additional
dispositional factor within the framework proposed by Déssart et al. (2019),
which classifies cognitive, social, and dispositional factors on sustainable
farming practice adoption. As defined by Malle (2011), a dispositional factor
reflects an individual’s general tendency to act in a certain way. In this study,
we assess the influence of AIA on farmers’ (hypothetical) use decisions for
AIl-DSTs, both in terms of stated intention and WTP, capturing this
relationship as AA.
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Our specific application involves AI-DSTs that provide recommendations
for fungicide application in wheat production. Efficient fungicide use is
essential to balancing agricultural productivity with environmental
protection. On the one hand, fungicides help preventing yield losses and
maintain crop quality, thereby contributing to global food security and safety
(Figueroa et al., 2018; Oerke, 2006; Schneider et al., 2023). On the other
hand, their use can pose risks to human health and ecosystems, including
biodiversity loss (Fritsch et al., 2024; Geiger et al., 2010; McMahon et al.,
2012; Hossain et al., 2017). Enhancing the efficiency and effectiveness of
fungicide applications is therefore a critical global challenge and is explicitly
addressed in international (CBD, 2025), regional (European Commission,
2020), and national (USDA, 2025; USDA NIFA, 2025) policy frameworks.
In both the EU and the US, farmers are encouraged to adhere to integrated
pest management guidelines, which recommend pesticide applications only
when infestation thresholds are met (European Commission, 2024a; Smith
& Van den Bosch, 1967; 7 US Code § 136r-1, 2018; USDA, 2025).

3.2.2 Scientific (Causal) Model

Having defined our quantity to estimate based on the topical background,
AA, we proceed to the second step of the PP workflow: specifying the
scientific (causal) model. This model is visually represented using a directed
acyclic graph (DAG), shown in Fig. 3.2. DAGs are a powerful tool for causal
inference, increasingly used in both general economics (Imbens, 2020; Pearl
& Mackenzie, 2018; Huntington-Klein, 2021) and agricultural economics
(Henningsen et al., 2024). They allow researchers to formalize assumptions
about both observed and latent relationships among variables (Angrist &
Pischke, 2009; McElreath, 2018).

At the center of our DAG is the latent construct, AIA, which is posited to
influence both BI (upper portion of the graph) and WTP for different types
of decision support (DS; lower portion). This dual influence constitutes AA
(indicated by red arrows). Following Kaplan et al. (2023), who identified
ability- and trait-based predictors of Al trust, and Mahmud et al. (2022), who
emphasized the role of personal factors in AA, we hypothesize that AIA,
like social influence (SI), performance expectancy (PE), and effort
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expectancy (EE), is shaped by farmers’ personal and farm-level
characteristics. Building on Venkatesh (2000; 2003), we further assume that
AlA influences both PE and EE. These belief constructs, in turn, affect the
farmer’s BI to use AI-DSTs.8

Figure 3.2: Directed acyclic graph of the scientific model

In the experimental component (lower part of the DAG), we infer
preferences for advisory options based on the difference in WTP for human
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advice versus Al-based DST recommendations. This difference is denoted
as AWTP and is modeled as a function of the difference in past performance
between two advisors, APerformance and AIA. The influence of AIA on
AWTP represents AA. Conceptually, AIA introduces a bias or “penalty” that
distorts the translation of APer formance into AWTP.

Notably, the Bayesian PP framework enables simultaneous estimation of
both the latent AIA variable and its effects on BI and AWTP, as depicted in

§ Note that we deviate from the traditional UTAUT set up by considering the personal characteristics
(age, experience) as antecedents of Al-Anxiety rather than mediators. Furthermore, we do not include
facilitating conditions as they only relate to the actual use behavior that we do not measure. We do
not ask for Voluntariness of use as it is given for all participants and we do not include gender as Al-
Anxiety has not been found to vary by gender (Mahmud et al. 2022) and other studies using the
UTAUT for German farmers’ technology adoption decisions either do not find a significant effect of

gender (Ribcke von Veltheim, Theuvsen and Heise 2022).
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the DAG (red arrows). This unified approach enhances consistency between
the attitudinal and experimental components of the study.

3.2.3 Data-Generating Process

Variable Operationalization

To measure the dispositional factor of AIA, we use the validated AlA scale
developed by Wang and Wang (2022), which incorporates 16 statements that
capture each individual’s level of AIA. These are reflected in the AIA;—
Al A, boxes in Fig. 3.2 and are measured on a 7-point Likert scale (1 =
“Totally disagree,” 4 = “Indifferent,” 7 = “Totally agree”). For the full list
of statements, see the complete survey in Appendix A.

The selection of personal characteristics and latent constructs (i.e., Sl, PE,
and EE) and the corresponding statements (white boxes in Fig. 3.2) are
measured on the same 7-point Likert scale and formulated based on the
original UTAUT items from Venkatesh et al. (2003), prior studies applying
UTAUT to similar technology adoption decisions among German farmers
(Otter & Deutsch, 2023; Von Veltheim et al., 2022; Giua et al., 2022;
Michels et al., 2020), and a study on DST adoption in pesticide management
(Akaka et al., 2024). For more detail on the selected variables and related
hypotheses, see our pre-registration.”™

In the experimental component, we measured AWTP as the difference
between each farmer’s WTP (euro) for AI-DST versus human DS. Thus,
AWTP is positive if the AI-DST is preferred, negative if the human advisor
is preferred, and zero if both are valued equally.

The APerformance variable is explicitly manipulated by providing
participants with information about the historical performance of each
advisory option. Performance is expressed as the percentage of correct past
recommendations, where a “correct recommendation” is one that improves
economic outcomes relative to a status quo with no advisory input. We then
calculate APerformance as the difference between the performance
probability of the AI-DST and that of the human DS. As a result,

** https://osf.io/hkwn4/?view_only=8b49f507a39a40e881483d194a6bb445
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APerformance > 0 when the AI-DST outperforms the human advisor,
APerformance < 0 when the human performs better, and
APerformance = 0 when both perform equally well.

Statistical Model

Having operationalized our variables, we next formulate the statistical
model underlying the DGP, following the DAG depicted in Fig. 3.2.

Formation of Latent Constructs

We begin by defining a vector of personal and farm-level characteristics x
for each individual i:
x; = [Age;, DSTExperience;, RiskPreferences;, )
AdvisorExperience;, Farmsize;, TechEngagement;]
For each latent construct, C, we define the mean, u;c, for vC =
{ AIA, PE, EE, ST} in accordance with the relationships specified in the DAG

(Fig. 3.2). We assume simple linear relationships between constructs and
personal characteristics, x;, as follows:

Hiata = Qiaa+ B'iara* X 2
Hisr = ﬁ'i,sz * Xj (3)
wiec=PB. *x; +0AIA; VC={PEEE} (4)

Formation of Likert-Scale Statements

Each individual, i, evaluates a set of n statements, ST;,, per latent construct
using a 7-point Likert scale (see Fig. 3.2 and Appendix A). To accurately
capture the latent constructs, we emphasize the need for Bayesian modeling
of Likert-scale responses, following item response theory (Andrich, 2016;
Andersen, 1997) and the rating scale model (Andrich, 2005; 2016), as
implemented in prior works by Fox (2010), Stranieri (2022), and Varacca
(2024).

A key modeling challenge with ordered categorical variables is that the
differences between response values on a Likert scale are not necessarily
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equal. For example, moving from “Disagree” (2) to “Rather disagree” (3)
may require less subjective change than moving from “Agree” (6) to
“Strongly agree” (7) (Biirkner & Vuorre, 2019; Liddell & Kruschke, 2018).
The goal is to map the underlying linear latent variable onto the categorical
scale appropriately (McElreath, 2018).

Following McElreath (2018), we use a cumulative link function via an
ordered logistic distribution. This requires estimating cut points kgy ,
representing the thresholds at which respondents switch from one response
value to the next. These cut points are part of the DGP and are estimated
during the inference stage, enabling nuanced interpretation of each statement
without assuming uniform thresholds across statements and constructs. This
improves the flexibility and validity of the measurement model. We specify
prior distributions for the cut points in the subsequent section of this paper.

PT(STi,n = kSTn) = PT(STi,n < kSTn) — Pr (STi,n < kSTn - 1) (5)

ST; n~OrderedLogit(u; c, K) (6)
UTAUT

To estimate the UTAUT outcome variable, we modeled the mean latent Bl
as ugy,, a linear function of the latent constructs” mean, y; ¢, and associated
coefficients y';, in accordance with the DAG. These behavioral intention
statements are modeled using the same ordered logistic approach described
above.
Uipr = Z Y’i,c * Ujc (7)
cec

As shown in Fig. 3.3 and captured by Eq. (7), AA manifests when, all else
being equal, an Al-anxious individual (yellow line) exhibits a lower Bl than
an Al-neutral individual (blue line), given the same level of PE. In other

words, the “translation” from PE into Bl, both measured at an ordinal scale,
would be distorted by AIA. Statistically spoken, AA materializes as a
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negative value for y; 4;4, representing a downward shift in the Bl line for
individuals with high AlA.

Figure 3.3: Statistical model of UTAUT with PE, EE and SI at their means.
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We next constructed the statistical model for the experiment based on the
DAG (Fig. 3.2). The observed outcome, AWTP, is assumed to follow a
normal distribution as a function of a linear combination of the performance
difference, APerformance, and p; 4;4:

AWTPi~ N( .Bi,APerformance * APerformance + .[))i,AA (8)
* Wi, A14» OWTP )

APerformance is defined as the difference in performance between the Al-

DST and the human advisor. This is expressed as the proportion of correct

past recommendations, with values of 0.85, 0.90, and 0.95 used for both

advice types. As a result, there are five possible values for APer formance:

APerformance = [Aq,A,, Az, Ay, Ag] 9)

and A;~ DiscreteUniform({—0.1,—0.05,0,0.05,0.1})
(10)
fori=1,273,4,5.
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Figure 3.4 illustrates the model described by Eqg. (8), where AWTP (y-axis)
is plotted against APerformance (x-axis). We assume that if the AI-DST
and human advisor perform equally well (i.e., APerformance = 0), an
Al-neutral person (blue line) would be indifferent between the two, implying
AWTP = 0, ceteris paribus. When the human advisor performs better,
AWTP becomes negative, reflecting a preference for the human.
Conversely, a better-performing AI-DST vyields a positive AWTP. This
relationship is captured by a positive coefficient B; aperformance-

Bwre
(WTPpsr “WTPpyman)
oSt " DST is better &

DST is preferred

Neutral Algorlt.hm
Aversion
0 Bt B e e mae i aa e
same WTP for both .

Human is better BUT
0 DST is preferred

1
1
1
1
WTP for DST higher .
1
1
1
1
1

<0 .,,//
WTP for Human higher |~

DST is better BUT
Human is preferred

Human is better &
Human is preferred

0
- i A>O APerformance
Moetier orma DST is better (Performancepg; — Performanceyyman)
better performance

for both

Figure 3.4: Graphical depiction of the statistical model for the experiment,
ceteris paribus

In contrast, a person with higher AIA (yellow line) may prefer the human
advisor even if both options perform equally or the Al performs better. This
aversion is represented as a downward shift in the line, indicating a negative
coefficient B; 44. In this context, AIA acts as a penalty that distorts the
translation from APerformance to AWTP.

To capture relative AWTP, we normalize all WTP values by defining a base
WTP for a human advisor with 90% performance. All other WTPs are
expressed relative to this reference value.

In summary, our hypothesis is that AA plays an important role in farmers’
decision-making. This is supported if y4;4 < 0 or S44 < 0. Either condition
would imply that AIA negatively affects BI or AWTP. Graphically, this
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would be reflected as a downward shift of the lines for Al-anxious
individuals compared with Al-neutral individuals, as shown in Figs. 3.3 and
3.4.

Choice of Priors

To complete the DGP, we defined priors for all model parameters. Following
Varacca (2024), we used weakly informative priors, assuming zero-centered
normal distributions as the variables are standardized. Prior predictive
checks were conducted to determine parameter scales and ensure valid
response distributions.

For the Likert-scale cut points, K, we used a standard deviation of 0.3 to
ensure that all response categories are selected at least once. The final value
for oy, rp ensures that the range of AWTP (relative measure) is constrained
between —1 and 1:

@i ara ~ N(0,1), (11)
B'ic ~N(0,0.5), (12)
Y'ic~ N(0,0.5), (13)
Kk, ~ N(0,0.3), (14)
Bi,aa~N(0,0.5), (15)
Biap ~ N(0,0.5), (16)
owrp = 0.2. a7

Experimental Design and Sampling

With variable operationalization and the statistical model established, we
next describe the experimental design. Note that the DGP development
process is iterative; adjustments were made throughout (see Fig. 3.1). We
adapted the experimental component from a study in the medical domain by
Longoni et al. (2019), tailoring it to agricultural decision-making.
Participants first read a brief introduction on fungicide use, which reminded
them of the integrated weed management principle and outlined the two
advisory options. Importantly, all variables other than the decision agent



132 Chapter 3

(AI-DST or human advisor), including data inputs, delivery format, and
timing, were held constant.

We defined “correct past recommendations” as the probability of achieving
better economic outcomes than the status quo (i.e., without advisory input).””
Each participant encountered three decision scenarios involving actual WTP
choices (Fig. 3.5), each presenting different values for past performance,
while keeping costs fixed.

From nine possible pairings (3 Al performance levels x 3 human
performance levels), each respondent was randomly assigned three. Human
performance values were drawn without replacement to ensure each level
was shown once, and Al values were drawn with replacement. The slider for
WTP began at 0 euro with an upper limit of 150 euro, reflecting market rates
for public advisory services (Landwirtschaftskammer, 2024) and
commercial DSTs (BASF, 2024).

The final survey launch and data collection were conducted online in
cooperation with a market research company. In autumn 2024, we collected
quantitative primary data from 250 German arable farmers. We selected
Germany as the focal region because it is one of the largest wheat-exporting
nations in Europe (FAO, 2024), where fungicides accounted for 24% of
pesticide sales (by weight) in 2022 (Eurostat, 2024). As a result, German
wheat yields are among the highest globally (Oerke, 2006; Gianessi &
Williams, 2011).

7 In the survey, this read as follows (translated from German): “We will [also] show you how

successful the recommendations have been in the past. This means you will see how often the
recommended strategy led to reduced yield losses when the recommendation was followed exactly.
Example: In the past, advice X recommended the correct fungicide strategy 90% of the time. This
means that in 9 out of 10 cases, advice X recommended a fungicide strategy that led to an
improvement in the economic result compared to the status quo (your previous management), i.e.,

without this additional advice.”
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Human Advisor Al-based Decision
Support Tool

O, [@

D

90 % 85%

Correct past
recommendations

How much would you be willing to pay for the human advisor's recommendation in €/ha?

Please move the slider to the appropriate value (€). The amount (€) applies per hectare
for which you would like a recommendation.

Required: Enter avalue between 0and 150,

150

How much would you be willing to pay for the recommendation of the Al-based decision
supporttool in €/ha?

Please move the slider to the appropriate value (€). The amount (£€) applies per hectare for
which you would like a recommendation.

Required: Enter avalue between 0and 150,

Figure 3.5: WTP choice design

Before the survey was launched, we obtained ethical clearance, pretested the
questionnaire with experts and farmers, and pre-registered the study on the
Open Science Framework.? Participants were required to accept data
protection terms, provide informed consent, and meet the eligibility criteria
of being engaged in arable farming. Respondents were informed that
participation was voluntary and that they could opt into a lottery at the end.
Approximately 2% of participants were randomly selected to receive either
a voucher or a non-cash prize.

To establish a common understanding of Al-DSTs, the questionnaire began
with a short, neutral informational text defining DSTs and Al-based tools.
The order of the two survey components (i.e., UTAUT-based statements and
the experiment) was randomized across participants. At the end of the

# https://osf.io/hkwn4/?view_only=8b49f507a39240e881483d194a6bb445
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questionnaire, we collected data on personal and farm characteristics. The
full survey, including the experiment, instructions, and a schematic of the
process, is provided in Appendix A.

3.2.4 Creation of Synthetic Data and Model Testing

The conceptualization of AA and the DGP specification in Section 2.3
enabled us to conduct model testing, corresponding to Steps 4 and 5 in the
PP workflow (Fig. 3.1). Specifically, we first generated synthetic data based
on the DGP and then tested whether our Bayesian statistical model could
recover the deliberately defined values of AA and our prior assumptions.
This approach allows us to verify model functionality and simulate farmer
responses to the survey, enabling pretesting of both the survey design and
analytical pipeline.

Concretely, we created two synthetic datasets. In the first, AA was present
(i.e., Ya14a < 0and By4 < 0). In the second, AA was absent (i.e., ya4 =0
and B44 = 0). We then compared prior and posterior predictions of the
coefficients of interest to evaluate whether the model could recover the
parameters used to generate the synthetic data and how results would differ
under competing hypotheses. In addition to testing inference capacity, this
comparison supports the development of routines for illustrating the final
results.

Table 3.1 presents the prior predictive distributions (top row) and posterior
predictive distributions (bottom row). The left column corresponds to the
dataset without AA, and the right column to the dataset with AA. To the left
of each plot is a color scale representing latent AIA: negative values (green)
indicate “negative AIA” or “algorithm appreciation,” whereas positive
values (yellow) indicate “positive AIA” or “high algorithm aversion”.



Are farmers algorithm-averse? 135

Table 3.1: Comparison of the prior and posterior predictive distributions
using the two synthetic datasets

Synthetic Data without Synthetic Data with
Algorithm Aversion Algorithm Aversion
a -

Delta WTP
|

o
A-AnXiety
Delta WTP

Al-Anxiety

Posterior

By comparing prior and posterior distributions, we assessed the model’s
ability to reproduce the intended relationships. As expected, when AA was
absent (left column), there was no variation in AWTP across AIA levels. In
contrast, when AA was present (right column), higher AIA levels (yellow)
were associated with downward shifts in AWTP. This confirms that, as
constructed, even when the AI-DST outperforms the human advisor
(APerformance > 0), AlA respondents prefer the human (AWTP < 0).

To further evaluate whether our inference process can recover the “true”
coefficients used to generate the data (y,;4 and B44), We plotted the
posterior distributions of these parameters for both datasets. Table 3.2 shows
the posterior distributions for y4;4 (top row) and 34, (bottom row). The left
column contains results for the dataset without AA, whereas the right
column shows results for the dataset with AA.



136 Chapter 3

Table 3.2: Comparison of prior, posterior, and set values for the coefficients
of interest using the two datasets

Synthetic Data without Synthetic Data with
Algorithm Aversion Algorithm Aversion
Yaia
-15 -10 -05 00 05 10 15 20 -15 -10 -05 00 05 10 15 20
= posterior —— posterior
ﬁAA — prior — prior
mean=0.0057 mean#-0.55
94% HDI 94%|HDI
-0.0035(0.016 -0.58||-0.51
-15 -10 -05 00 05 10 15 -15 -10 -05 00 05 10 15

In each plot, the set values (i.e., 0 when A A is absent, and —0.5 when present)
are marked in orange. Prior distributions are shown as green lines, and
posterior distributions as blue lines. As the plots indicate, posterior estimates
differ meaningfully from their priors and converge toward the values used
to generate the synthetic data, confirming model functionality.

This stage of testing also led us to reflect on the experimental setup (e.g.,
how we elicited WTP wvalues and randomized past correct
recommendations). The full procedure described in Section 2.4, including
code for data generation, simulation, and visualization, is documented in the
pre-registration and available in the associated code repository.

As noted in the code repository, 3 inferencing was conducted using a no-U-
turn (NUTS) sampler Markov chain Monte Carlo (MCMC) approach with
two chains. We generated 1,000 posterior samples per chain, following a
1,000-sample warm-up. The full workflow was implemented in Python

88 https://anonymous.4open.science/r/AlgorithmAversion_Public-5487/README.md
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(v3.12.4; Van Rossum & Drake, 2009) using NumPyro (v0.15.2; Phan et al.,
2019; Bingham et al., 2019), and JAX (v0.4.31; Bradbury et al., 2018).
Model performance was evaluated through inspection of trace plots for
selected parameters, which confirmed successful convergence across both
synthetic datasets (see Appendix B).

3.2.5 Analysis of Real Data and Descriptive Statistics

In the final step of the PP workflow, we analyzed the empirical data collected
from the survey and experiment, using the same model specifications as
defined and tested in the DGP. Importantly, the model was allowed to learn
from the data and to update prior distributions accordingly. A summary table
for the MCMC sampling procedure is provided in Appendix C.

As shown in Table 3.3, the 250 participating German arable farmers were,
on average, slightly Al-anxious to Al-neutral. The median AIA score was 4
and the mean is 4.39 on a 7-point Likert scale. Participants reported an
average WTP of 16 euro for advice from an Al-DST and 26 euro for advice
from a human advisor. Notably, the maximum possible WTP of 150 euro
was reached for the human advisor, but not for the AI-DST. The stated
intention to adopt AI-DSTs was generally reserved, with a median of 4 on
the same Likert scale. Respondents also reported moderate levels of risk
tolerance—neither extremely risk-averse nor risk-seeking.”™”

Regarding representativeness, the sample aligned well with the German
farming population in terms of age and production system. However, farms
in the sample tended to be somewhat larger than the national average, likely
due to the study’s focus on crop producers. Unobserved variables may also

ke

We measured risk preferences using a self-assessment on an 11-point Likert-scale ranging from
0 (“Not at all willing to take risks”) to 10 (“Very willing to take risks”) based on the study by Dohmen
et al. (2011) (see Appendix A for formulation of the respective question in the survey). While we are
aware that self-assessment of risk preferences using the Dohmen-scale can be biased upwards
compared to lottery-based assessment (Sauter, Hermann and MuBhoff 2018), we opted for this

approach to reduce survey length and complexity.
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influence sample representativity, and these limitations should be considered
when interpreting results.

Table 3.3: Descriptive sample statistics and comparison to the German

average

Variable Median / Mean Standard Min Max German
Frequency Deviation Average ®

Farm and  farmer
characteristics
Age (in years) 55-64 49 12.22 21 76 55-64
Farm Size (in ha)
<5 0% 6%
5-9 1% 18%
10-19 7% 20%
20-49 21% 23%
50-99 28% 17%
100-199 26% 10%
200-499 10% 4%
500-999 2% 1%
1000 and more 4% 1%
Production system
conventional 94% 89%
fully or partially 6% 11%
organic
Risk Preference 5 5.39 1.97 1 10
(1= risk averse, 10 =
risk loving)
DST Experience 5 4.44 1.69 1 7
(1 = very bad, 7 =
excellent)
Advisor Experience 5 5.18 1.63 1 7
(1 = very bad, 7 =
excellent)
UTAUT-Constructs >°
Technology 4 4.50 1.01 2 7
Engagement
Performance 5 4.58 1.30 1 7
Expectancy
Effort expectancy 5 4.89 1.29 1 7
Social Influence 4 3.63 1.20 1 7
Behavioral Intention 4 3.90 1.48 1 7
Al-anxiety 4 4.39 1.15 1 7
Willingness-To-Pay
(in €)
WTP for DST 10 16.31 20.16 0 115
WTP for the human 17 25.52 25.15 0 150

advisor

2 DESTATIS (2025)

b ] = totally disagree, 4 = indifferent, 7 = totally agree” (see survey in Appendix A)

¢ Constructs based on the mean from several statements (see survey in Appendix A)
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3.3 Results: Role of AA in Farmers’ Decision Making

We estimated latent AIA for each individual across all posterior samples,”’”
using the model specified in Section 2.3; the distribution is shown in Fig.
3.6. The vast majority of farmers exhibit positive latent AIA, meaning they
can be classified as “Al-anxious” (i.e., Latent AIA > 0).

1.4 4

Latent Al Anxiety

Figure 3.6: Distribution of latent Al-anxiety for all individuals across all
posterior samples

To test our hypothesis that AA plays a role in farmers’ decisions, we
examine the effects of AIA on both Bl and WTP. The coefficients of interest,
Yara and B 44, Were clearly negative. The mean of y4;4 was —0.56 with a
90% highest posterior density interval (HPDI) of [-1.03; 0.00], whereas the
mean of B44 was —0.35 with a 90%-HPDI of [-0.40; —0.31]. The HPDI
represents the narrowest interval containing the specified probability mass,
such that any value outside the interval is less probable than any value within

777 This resulted in 241 * 2,000 observations. We excluded nine observations for the analysis where
the base WTP of Human with 90% correct past performance is 0 (as it is not possible to divide by
zero). Of those, seven were excluded as the farmers exhibited a WTP of 0 for all options. Further two
observations are excluded as the WTPs are not logical: farmers have a WTP of 0 for a human with
90% past correct performance and WTPs > 0 for Human advice with 85% and 95% past correct

performance.



140 Chapter 3

it (Gelman etal., 2013; McElreath, 2018). A coefficient plot comparing prior
and posterior distributions is provided in Appendix D. These results support
our hypothesis that AA plays a role in farmers’ intentions to adopt AI-DSTs.

Figure 3.7 shows the relationship between PE and BI (left panel, UTAUT
model) and between APerformance and AWTP (right panel, experiment),
across varying levels of latent AIA for each individual across all posterior
samples. In both panels, higher levels of AIA (depicted in yellowish lines)
are associated with downward shifts relative to Al-neutral individuals. To
illustrate Bl as a function of PE, we held other predictors (i.e., EE and SI) at
their mean values. As shown in the left panel of Fig. 3.7, the baseline
intention to adopt an AI-DST was relatively low, ceteris paribus. However,
as PE increased, so did Bl, indicating a positive relationship. The black line
denotes an Al-neutral individual (Latent AIA = 0). Compared with this
baseline, individuals with higher AIA exhibit lower Bl at the same level of
PE, as reflected in the downward shift of the yellowish lines and the negative
value of y,;4 = —0.56.
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Figure 3.7: Average behavioral intention (left) and WTP (right) by given
performance (expectancy) and latent Al-anxiety levels for all
individuals across all posterior samples

The right panel of Fig. 3.7 shows AWTP as a function of APer formance.
Positive APerformance values indicate that the AI-DST outperforms the
human advisor, whereas negative values favor the human. Similarly,
positive AWTP values reflect a preference for the AI-DST, and negative
values indicate a preference for the human. Again, the black line represents
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an Al-neutral individual (Latent AIA = 0). As expected, Al-neutral
individuals prefer the advisor that performs better (i.e., human if
APerformance < 0and Al-DST if APerformance > 0).

In contrast, individuals with high AIA (yellowish lines) show consistently
lower AWTP for the AI-DST, even when it performs equally well or better.
This is captured in the negative coefficient, §,4 = —0.35, confirming that
with increasing AIA, AWTP decreases. Thus, even when the AI-DST is
superior, Al-anxious individuals remain willing to pay more for human
advice, often placing them in the lower right quadrant of the plot.

Based on these findings, we computed the performance premium (i.e., the
level by which the AI-DST must outperform the human advisor for a farmer
to be equally willing to pay for both). This was done by solving the following
equation, derived from Eqg. (8), for each level of AlA to yield a distribution
of performance premiums (see Fig. 3.8):

—Baa*LatentAlAnxiety; (18)

Per formancePremium =

BDeltaPerformance

We found that, on average, the AI-DST would need to perform ~19% better
than a human advisor to achieve equivalent WTP from farmers (mean =
0.195, median = 0.194). Beyond the average, it is instructive to consider the
full distribution of the performance premium. For 90% of the posterior
samples, the performance premium lies between 11% and 30% (90%- HPDI
[0.110; 0.295]). This also implies that a small share of the posterior samples
would prefer a human advisor over an Al-DST even if the performance of
the human advisor is 30% lower. Another perspective on these results is the
price premium (i.e., how much cheaper an Al-DST must be to be preferred
over a human advisor when both perform equally). Assuming equal
performance, we found that the AI-DST must be, on average, 37% less
expensive. The 90% HPDI for this premium ranges [-0.56, —0.21],
indicating that, for 90% of the posterior samples, the AI-DST must be
between 21% and 56% cheaper than the human alternative.
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In summary, both the overall Bl to adopt AI-DSTs and the stated WTP for
such tools were low across our sample. Even Al-neutral individuals
appeared somewhat skeptical. However, the data clearly showed that Al-
anxious individuals expressed significantly lower adoption intentions and
WTP at given levels of (expected) performance. These results support our
research hypothesis and affirm the role of AA in farmers’ decision-making.
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Figure 3.8: Distribution of performance premium

3.4 Discussion and Conclusion

3.4.1 Comparing AA in the Agricultural Domain with Other Contexts

When comparing our results to those of Longoni et al. (2019) in the medical
domain, several similarities emerge. In their study, participants preferred
human healthcare providers over Al-driven ones, even when the Al
performed better; they were willing to pay more for human providers.
Similarly, our findings revealed a clear price premium: on average,
participants were willing to pay 37% less for Al-based advice, mirroring
Longoni et al.’s (2019) result from Study 2, where WTP dropped by 37%
when switching from human to Al support.
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However, our observed performance premium (11-30%) diverged notably
from Longoni et al.’s (2019) findings. In their Study 3 (Table 3), a mere 1%
increase in accuracy was sufficient to overcome the utility gap between
human and Al healthcare providers. By contrast, farmers in our sample
required a much greater performance premium before expressing equal
preference for Al. This discrepancy may stem from differences in
experimental setup, cultural context, or decision-making environment—all
of which have been shown to influence the magnitude of AA (Mahmud et
al. 2022).

While Longoni et al.’s (2019) study is set in the medical context considering
personal health risks, we focus on risks in agricultural decision making,
where monetary aspects and external factors play a more pronounced role
(Rosburg and Menapace 2018). Concretely, in the Longoni et al. (2019) —
study, the 1%-point increase refers to the improvement of a medical
diagnose, in our study it’s about a 1%-point increase in the economic result.
Studies on AA in the financial decision-making context found that risky
environments lead people to reject even high performing algorithms and to
overestimate mistakes made by the algorithm (Dietvorst and Bharti 2020;
Zhang, Pentina and Fan 2021). As pesticide use is complex and the optimal
application depends on many external factors like natural production
conditions, weather and climate, infestation pressures and prices (Rosburg
and Menapace 2018), this risk and uncertainty might foster AA among
farmers in our sample compared to the sample of Longoni et al. (2019) and
might explain the larger performance premium.

Our findings also align with psychological studies indicating that people lose
trust in algorithmic forecasters more rapidly than in human ones, especially
when performance imperfections are revealed (Dietvorst et al., 2015). This
effect causes users to underestimate algorithmic accuracy and to avoid using
algorithmic DS, even when it performs well (Dietvorst & Bharti 2020).
Although we did not directly examine erroneous recommendations, our
presentation of past correct recommendations implicitly conveys
information about past errors. Future studies could explore whether the
relationship between APerformance and AWTP is truly linear, as
assumed here, or if it follows a nonlinear trajectory (e.g., disproportionately
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penalizing the AI-DST when its performance is slightly worse than that of
the human advisor).

Regarding the UTAUT-based component of the model, our results are
consistent with previous applications of this framework in agriculture, which
also show a positive association between PE and Bl (Otter & Deutsch, 2023,;
Von Veltheim et al., 2022; Giua et al., 2022; Michels et al., 2020). However,
when comparing our findings to those of Cao et al. (2021), who extended
UTAUT with Al-related constructs to measure UK business managers’
intentions to use Al, the contrast is striking. While our German farmer
sample reported a mean Bl of 3.9, UK business managers reported a much
higher mean of 5.14, both measured on a 7-point Likert scale. This
difference suggests that German farmers may be more skeptical toward Al-
based tools than decision-makers in other business sectors or regions.

3.4.2 Reflecting on the PP Workflow

The PP workflow adapted for the experimental setting (Fig. 3.1) offers
several advantages. First, by defining a concrete DGP, we were required to
explicitly and formally operationalize the concept of AA. Having a complete
DGP also allowed us to create synthetic data to test this formalization. As
depicted in Fig. 3.1, the development of the statistical model, experimental
design, and variable operationalization occurred through an iterative loop.
By using synthetic data, we could test various conceptual and experimental
setups. This iterative workflow enabled us, for instance, to simulate different
randomization strategies for past recommendation performance (with and
without replacement) and to evaluate alternative functional forms between
AIlA and outcome variables. In both cases, we formulated and visualized a
statistical model based on the scientific framework, adjusted the
experimental design, generated synthetic data from the DGP, tested
inference procedures, and assessed the results visually.

Second, this workflow helps identify and correct flaws in experimental
design that might otherwise only become apparent after data collection.
Because we can test both the survey and analysis pipeline in advance using
synthetic data, we improve efficiency—saving time and resources—and
enhance scientific rigor. This aligns with broader discussions on improving
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research practices (Ferraro & Shukla, 2023; Heckelei et al., 2023; Finger et
al., 2023; 2024), including efforts toward pre-registration, registered reports
(Arpinon & Lefebvre, 2024), and reproducibility through code sharing. By
applying the PP workflow, we could pre-register the complete analysis
pipeline, including code for data processing and results visualization, prior
to collecting real data.

Third, from an empirical standpoint, the PP workflow enables the joint
estimation of the key coefficients from both the WTP experiment and the
UTAUT component. In both cases, AIA was treated as a shared latent driver
of AA. A core strength of Bayesian inference is the ability to update prior
beliefs with observed data. In our model, prior distributions for the
parameters of interest were informed by the structure of the unified model
and updated using the combined experimental and survey data. This joint
estimation strategy improves precision and credibility of posterior results
relative to methods that treat attitudinal and behavioral data separately.

One common critique of Bayesian approaches concerns the perceived
subjectivity in the choice of priors. Generally, following McElreath (2018),
we consider the prior specification as another part of the model assumptions.
To motivate the chosen prior specification, we base it on: (i) using weakly
informative priors, (ii) grounding our choices in prior literature, (iii)
conducting prior predictive checks, and (iv) transparently documenting our
choices and the rationale behind them. Besides the prior assumptions, it is
also important to highlight that both the DAG and the DGP are based on a
number of additional assumptions and represent just one of many plausible
ways to construct the model. While the iterative development of DAG and
DGP involves reflecting on and refining alternative structures, it is
practically infeasible to test all possible configurations. However, this
challenge is not unique to probabilistic programming, as any modeling
approach is necessarily based on a specific set of assumptions.

3.4.3 Potential Reasons for AA and Future Research Needs

AA can be interpreted as a deviation from rational choice behavior. To
understand and address this phenomenon, we integrate findings from AA
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literature in other domains with evidence on farmers’ decision-making to
identify future research directions.

A major barrier to adopting DSTs, particularly Al-based ones, is the lack of
transparency (Rose et al., 2016; Kerebel et al., 2013; Akaka et al., 2024).
The “black-box’ nature of Al systems can limit user trust and understanding
(Chander et al., 2018; Onkal et al., 2009). Additional concerns include the
perception that Al may ignore local production conditions or fail to remain
updated with evolving regulations (Rose et al., 2016). These concerns mirror
the “uniqueness neglect” found in healthcare settings (Longoni et al., 2019)
and are consistent with findings on the importance of localized learning in
agricultural extension (Maertens et al., 2021; Oyinbo et al., 2022). Future
research should explore how to enhance transparency, tailor
recommendations to local contexts, clarify regulatory compliance, and
address liability, potentially through pairing AI-DSTs with novel insurance
mechanisms (Lefebvre et al., 2025).

However, increasing transparency can also raise system complexity,
potentially exacerbating AA (You et al., 2022). Farmers thus face an
“adopter’s dilemma”: balancing better recommendations against more
complicated decision-making processes (McRoberts et al., 2011).
Identifying the specific types of information farmers find most relevant may
help mitigate this tension (Rojo-Gimeno et al., 2019; Helps et al., 2024;
Sperber et al., 2010). Furthermore, research shows that the framing of Al
recommendations (e.g., emphasizing gains vs. losses) can shape trust
(Mahmud et al., 2022), and that the delivery mode (e.g., video or SMS)
affects how farmers respond (Van Campenhout et al., 2021; Giulivi et al.,
2023).

Like findings in healthcare and business, AA tends to rise with perceived
task risk (Longoni et al., 2019; Filiz et al., 2023). In agriculture, risk framing
might influence decision-making (Bougherara et al., 2024), and novel
insurance schemes could support DST adoption (Lefebvre et al., 2025).
Future work should investigate how AA varies across decision types (e.g.,
tactical vs. strategic) and time horizons.
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More broadly, studies consistently find that farmers are cautious toward new
technologies (Rose et al., 2016; Heidrich, 2020; McCown, 2002; Rojo-
Gimeno et al., 2019; Akaka et al., 2024). In our sample, most farmers
reported low technological interest, which aligns with evidence linking low
tech engagement to reduced DST adoption (Von Veltheim et al., 2022). In
other domains, AA has been shown to vary with user experience (Mahmud
et al., 2022), which might be also the case for farmers. For instance,
McFadden et al. (2022) found that digital soil mapping adoption declines
with farmer age, whereas Gars et al. (2025) found that farmers with less
confidence in their own fertilizer beliefs are more responsive to
recommendations and exhibit higher WTP for new soil testing tools. Prior
research suggests that customizability of algorithms can increase adoption
(Logg et al., 2019; Onkal et al., 2009; Dietvorst et al., 2018). Future studies
should examine how to incorporate farmer expertise into AI-DST outputs to
boost acceptance (Hochman & Carberry, 2011).

Human advisors remain influential in agricultural decision-making
(Skaalsveen et al., 2020; Kuehne et al. 2020). In our study, most farmers
rated their advisors highly, and AIA increased with advisor satisfaction
(B AdvisorExperience in Table 3.4). This suggests that farmers may fear Al-
DSTs could replace, rather than complement, trusted relationships (Rose et
al., 2016; McCown, 2002), as has been observed in healthcare (Longoni et
al., 2019). Future research should evaluate hybrid systems where human
advisors interpret Al outputs before presenting them to farmers (Rojo-
Gimeno et al., 2019), which may also serve as training opportunities for
farmers. Notably, digital experience was associated with lower AlA in our
sample (BDSTExperienceAlA in Table 3.4), underscoring the importance of
digital literacy—particularly for older farmers, who often report lower
digital confidence (Von Veltheim et al., 2022).

Lastly, peer opinions may also shape AA. In our study, most farmers
believed that their peers did not support AI-DST use for fungicide
application. This belief was associated with lower adoption intention (Bgy,,
in Table 3.4). Farmers may fear that using AlI-DSTs could damage their
reputation for competence. Experimental studies confirm that users of
algorithms are sometimes perceived as less capable (Diab et al., 2011;
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Eastwood et al., 2012). Because farmers seek not only profit but also social
validation (Weersink & Fulton, 2020), peer norms and recognition may
significantly influence technology adoption. Future research should explore
how social norms, such as peer effects can facilitate broader AI-DST use.
For example, Alexander et al. (2018) showed that social proof is more
persuasive in promoting algorithm adoption than presenting a specific
accuracy level.

3.4.4 Concluding Remarks

Al-based DSTs hold considerable promise for improving productivity and
resource use efficiency in agriculture. However, adoption remains a
prerequisite for realizing this potential. In various domains, individuals show
reluctance towards Al-based recommendations, known as algorithm
aversion (Dietvorst et al. 2015). This study is the first to investigate and
quantify AA in the agricultural context. We conducted an online survey of
German arable farmers using a combination of UTAUT-based attitudinal
measures and a controlled experiment to examine and quantify AA, that is
the effect of Al-Anxiety on adoption intention and WTP, respectively. We
also introduced and discussed a novel PP workflow to complement survey
design, model testing, and inference transparency.

Our results confirmed that AA plays an important role in both stated Bl and
economic preference (WTP). As AlA increases, both adoption intention and
WTP decline, validating our hypothesis. Based on our model and
experimental setup, we estimated that an AI-DST must perform between
11% and 30% better than a human advisor, or cost between 21% and 56%
less, to be considered equally valuable by most farmers.

AA could impose costs not only on individual farmers but also on broader
society, especially if algorithms consistently outperform human
recommendations (Dietvorst et al., 2015). Given the increasing potential of
Al-based DST for efficiency improvements in agricultural production,
future research should extend this framework to other adoption decisions
and explore the causes of AA to develop effective interventions, including
financial support mechanisms.
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We recommend incorporating AIA as a dispositional factor in future
behavioral research on farmers’ attitude towards Al, for example within the
framework proposed by Déssart et al. (2019). Although our study relies on
hypothetical scenarios, which may inflate WTP estimates (Veettil et al.,
2024), we used established methods including a cheap talk script to mitigate
such effects. As AI-DSTs become more widespread, future research should
focus on revealed preferences in real-world settings.

Finally, technology developers should design AI-DSTs with AA in mind.
Given the importance of performance perceptions and performance
premiums, tools must communicate value clearly and transparently.
Farmers’ risk perceptions also matter. Insurance schemes that compensate
for yield loss when DST guidance is followed (Lefebvre et al., 2025; BASF,
2024) may provide a promising complement. Al should not aim to replace
human advisors but to support and enhance human expertise (Evans et al.,
2017; Hochman & Carberry, 2011; Rose et al., 2016). Given the strong
preference for human input, advisory services should carefully assess which
tasks can be delegated to Al and which are best retained by humans or
pursued collaboratively.
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3.6 Appendix

3.6.1 A. Survey

Intro, Data Agreement, Screening questions
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Demographic questions

Lottery (voluntarily)

Figure 3.9: Schematic Process of the survey
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In this study, we want to investigate the extent to which digital decision

support tools are used in arable farming.

Many decisions have to be made in everyday agricultural work. Apps for
detecting and treating weeds, recommending fungicide treatments or digital

field maps can help to optimize decisions.

To do this, these programs evaluate large amounts of data in order to provide
up-to-date recommendations adapted to the location. In the future, these
techniques will increasingly use artificial intelligence (Al) to make optimal

predictions and recommendations based on the available data.
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In the following, we use the term “Al-based decision support” for any type
of technology that evaluates mathematical correlations without human
intervention and formulates recommendations based on this.

The study takes about 18 minutes. At the end, you can decide whether you
would like to take part in a lottery and receive the results of the study as a
thank you for your participation.

We are giving away a total of four non-cash prizes among all participants:
[list of prizes in kind]

To get started, please agree to the data protection guidelines.

Thank you for participating in the study.

o |agree.
o | do not agree. (= Screenout)

Branches of operation/ Screenout:
Which branches of business belong to the company?
(multiple answers possible)

Arable farming / market crops = Continue in the questionnaire
Forage production - Screenout

Special crops (e.g. fruit and vegetables) - Screenout
Permanent crop area (e.g. hops) = Screenout

Animal production / processing = Screenout

Renewable energies = Screenout

Forestry - Screenout

Aguaculture - Screenout

Secondary production (e.g. farm store) > Screenout

Other, namely: - Screenout

O O O O O O O O O O

[From here on randomized: order of statements, experiment and ranking]

Part 1: Evaluation of statements
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In the following, we will show you several statements on the topic of
decision support for fungicide strategy planning. Please rate the extent to
which you agree with the statements.

You can use the scale to grade your statement from 1 “strongly disagree” to
7 “strongly agree”.

[Part 1.1: Fungicide treatment]

. I would find the use of Al-based decision support for fungicide
applications useful in my day-to-day work. [PE 1]

o I think that the use of an Al-based decision aid for fungicide
applications would reduce my workload. [ PE 2]

o | think that using an Al-based decision aid for fungicide
applications would reduce my crop protection costs. [PE 3]

. I think that Al-based decision support for fungicide applications
would help to make crop protection more environmentally friendly. [PE 4]
o | think that using an Al-based decision aid for fungicide
applications would be easy for me to learn. [EE 1]

. After learning to use an Al-based decision aid for fungicide
applications, it would be easy and understandable for me to use. [EE 2]

o | think that an Al-based decision aid for fungicide applications
would be an easy-to-use aid for me. [EE 3]

. My work colleagues think that | should use an Al-based decision
aid for fungicide applications. [SI 1]

o Farmer friends think it makes sense to use an Al-based decision
aid for fungicide applications. [SI 2]

o I specifically intend to use Al-based decision support for fungicide
applications in the near future. [BI 1]

o I plan to use Al-based decision support for fungicide applications
in the medium term. [BI 2]

o I suspect that I will use Al-based decision support for fungicide
applications in the long term. [BI 3]

o I plan to use non-Al-based digital decision aids in the future.

[Part 1.2: Artificial intelligence]

In the following, we will show you several statements on the topic of Al
techniques (artificial intelligence). These relate to areas both within and
outside agriculture.
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Examples of Al technologies include chatbots such as ChatGPT, voice
assistants such as Siri or Alexa, automatic facial recognition for unlocking
cell phones, parking aids in cars and suggestions on YouTube based on
previously watched videos.

Please rate the extent to which you agree with the statement. You can use
the scale to grade your statement from 1 “Strongly disagree” to 7 “Strongly
agree”.

o I am afraid that Al technologies could make society dependent.
[AIA 1]

. I am afraid that Al technologies could make society lazier. [AIA 2]
. I am afraid that Al technologies could replace humans. [AIA 3]

. I am afraid that the widespread use of Al technologies could take
jobs away from people. [AIA 4]

o I find human-like Al technologies (e.g. human-like robots) strange.
[AIA 5]

. I don’t know why, but human-like Al technologies (e.g. human-
like robots) scare me. [AIA 6]

. I am afraid that if | start using Al techniques, | will lose some of
my ability to think. [AIA 7]

o I am afraid that Al techniques could be misused for harmful
purposes. [AIA 8]

. I am afraid of various problems that could be associated with Al
techniques. [AIA 9]

o I am afraid that Al technologies will get out of control and nothing
will work anymore. [AIA 10]

. | am afraid that Al techniques could lead to the autonomy of robots.
[AIA 10]

o Learning all the special functions that come with an Al technique
makes me nervous. [AIA 12]

o Learning how to use Al techniques makes me anxious. [AlA 13]

o Learning how to interact with Al techniques makes me anxious.
[AIA 14]

o Taking a course on the development of Al techniques worries me.
[AIA 15]

o Not being able to keep up with advances related to Al techniques

worries me. [AIA 16]

Part 2: Advisory services
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Below you will find information on two advisory options for fungicide
applications. Please put yourself in the situation described below and read
through the information on fungal infestation in wheat and possible
recommendations for measures and fungicide treatments:

Info box: Fungal infestation & fungicide treatments in wheat

Fungal infestations in wheat, caused by pathogens such as Fusarium. rust fungi and

Septoria, can result in considerable losses in yield and quality.

The targeted use of fungicides plays a cenfral role in disease control. Regular field
inspections and consideration of weather conditions help with early detection and

effective control.

Fungicide treatment only makes economic sense once the damage threshold has been
exceeded. These control thresholds vary depending on the pathogen. Whether a damage
threshold is exceeded often depends on site-specific factors, regional infestation

pressure and weather conditions.

Wheat (Source: Own pictures) Wheat (Source: Own pictures)

Imagine you are planning your fungicide treatment in wheat. Furthermore,
imagine that you want to proceed according to the damage threshold
principle in the situation described. In order to decide whether treatment is
necessary and economically viable, you can seek advice to help you reduce
yield losses.

For the optimal fungicide recommendation (time of application, dose, active
ingredient), you can use a human advisor or an Al-based decision aid.

Both use the same data (e.g. field and farm-specific information, regional
infection pressure, weather forecasts and available photos of the field) and
deliver the recommendation by email within 24 hours.

The human advisor evaluates the data based on their experience, while the
Al is based on an algorithm that has been trained with historical data. This
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means that past fungicide recommendations and their results are included in
the analysis.

Please consider how much you would be willing to pay for the respective
advisory service. We would like to take this opportunity to point out once
again that this is a purely scientific survey and your information will not be
used to determine a price for the advisory services.

We will also show you how successful the recommendations have been in
the past. This means you will see how often the recommended strategy led
to reduced yield losses when the recommendation was followed exactly.

Example: In the past, advice X has recommended the correct fungicide
strategy 90% of the time. This means that in 9 out of 10 cases, advice X
recommended a fungicide strategy that led to an improvement in the
economic result compared to the status quo (your previous management),
i.e. without this additional advice.

[Randomized from now on: Each participant must state their WTP three
times for two different counseling options. The performance of the respective
options varies so that either human advisor = AlI-DST, human advisor > Al-
DST or human advisor < Al-DST, in % [85,90,95], making 3x3=9 options
from which three are randomly selected, ensuring that each of the three
options is displayed once for the human advisor, in random order (draw
without putting back), randomized for the Al-DST (version 1: draw with
putting back, version 2: draw without putting back)].

You now have the choice between the following advisory services:
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be prepared to pay for a
recommendation in
€/ha?

Please move the slider
to the appropriate
value.

The amount applies per
hectare for which you
would like a
recommendation.

Human advisor Al-based Decision
Support Tool
Q
s =
Correct past | [85,90,95] % [85,90,95] %
recommendation
How much would you | 0 € [ 150€|0€ () 150 €

Part 3: Ranking

Please rank the following advice options so that the best option for you is at
the top and your least favorite option is at the bottom.

moowp

Advice on crop rotation planning from human advisor

Advice on fungicide strategies in wheat from human advisor
Advice on crop rotation planning by Al decision aid

Advice on fungicide strategies in wheat by Al decision aid
Advice on crop rotation planning from human advisor who

analyzes results from Al decision aid and includes them in the advice
F. Advice on fungicide strategies in wheat from human advisor who
analyzes result from Al decision aid and includes it in the advice

[same for everyone from now on]
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Part 4: Questions on personal and operational characteristics
Technological engagement
To what extent do you agree with the following statements. You can use the

scale to grade your statement from 1 “Do not agree at all” to 7 “Completely
agree”.

o I am always interested in using the latest technology. [TE 1
“Technological Interest”]
. | find it difficult to deal with new technology - as a rule, I simply

don’t know how to do it. /TE 2 “Technological Competence Belief”, reverse
coding]

o When | deal with new technological developments, | have control
over everything that happens. /TE 3 "Technological Control belief”’]

Which of the following digital technologies do you use? [multiple choice]

Apps for agriculture, namely:

Digital bookkeeping

Digital fertilizer planning

Digital field index

GPS steering systems

Smartphone

Section Control

Machine-controlled site-specific fertilization
Other, namely:

O O O O O O O O O

Experience

How would you rate your previous experience (in the last 5 years) with
human farm advice?

Excellent

Very good

Good

Neither

Poor

Very bad

Insufficient

I have not made use of any human advice

0O O O O O O OO0
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How would you rate your previous experience (in the last 5 years) with
digital decision aids (e.g.: field index, herd management, pest app)?

Excellent

Good
Neither
Poor
Very bad

O O O O O O O O

Climate change

Very good

Insufficient
I have not used any digital decision aids

How would you rate the impact on your business in the following areas?

Not
concerned

Slightly
concerned

Concerned

Very
Concerned

More heavy
rainfall events

Longer periods of
heat

Reduced annual
precipitation

More extreme
weather  events
(hail, storms,
etc.)

Increased soil
erosion

Increased
flooding

Increased
waterlogging

Increased  pest
pressure

Risk attitude

How would you rate yourself personally?

Are you generally a risk-taking person or do you try to avoid risks?
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You can use the scale to grade your statement from 0 “Not at all willing to
take risks” to 10 “Very willing to take risks”. You can use the values in
between to grade your assessment. 0 - Not at all willing to take risks

- Not at all willing to take risks

0
1
2
3
4
5
6
7
8
9
1

O O O O O O O O o0 0 Oo

0 - Very willing to take risks
Age

How old are you? [Dropdown with numbers from 18 to 99, incl. “no
answer”’]

Farm size
How large is your farm (in ha)?
The farm size refers to the total agricultural area (owned and leased)).

under 5

5-9

10-19

20-49

50-99

100 -199

200 - 499

500 -999

1000 and more
not specified

0O O O O O O O O o0 O

Type of production

How do you manage your farm?
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By “organic” we mean all farms that farm according to EU organic
regulations or within the framework of farming associations (Bioland,
Naturland, Demeter).

Conventional

Entire farm organic
Organic arable farming
Other areas organic
not specified

o O O O O

Questions and comments
Thank you for taking part in the survey!
Do you have any questions or comments? There’s space for them here:

[free text]

Lottery & Results

Would you like to take part in the competition?

0 Yes = Forwarding to the competition

0 No - Screen out

Would you like to receive the results of the survey?

Then enter your e-mail address on the following page. This will be stored

separately from your answers in the survey so that the survey remains
anonymous.
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3.6.2 B. Trace Plots

Trace Plot from synthetic data where H1 is not true for selected variables Trace Plot from syntehtic data where H1 is true for selected variables
beta_AIA_BI beta_AIA_BI beta AIA Bl beta_AIA BI
—0.5 0.0 0 250 500 750 -1.00 -0.75 -0.50 -0.25 ' 0 200 400 ®00 800
beta_AA beta_AA beta AA beta AA
—-0.01 0.00 001 002 0 250 500 750 —0.550-0.525-0.500-0.475 0 200 400 ®00 800
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/\ 0.75 __|
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alpha_idvConst_AIA alpha_idvConst_AIA alpha_idvConst_AIA alpha_idvConst_AIA

Figure 3.10: Trace plots for selected variables where Algorithm does not exist
(left) and exists (right)

3.6.3 C. Summary of the MCMC

Table 3.4: Summary table for the MCMC

mean std median 5.0% 95.0% n_eff r_hat

alpha_idvConst_AIA 1.05 0.08 1.05 0.92 1.17 1434.68 1.00
beta_ AA -0.35 0.03 -0.35 -0.40 -0.31 1378.02 1.00
beta_AIA_BI -0.56 0.31 -0.54 -1.03 0.00 457.09 1.00
beta_ AIA_EE 1.03 0.28 1.04 0.57 1.48 1947.33 1.00
beta_AIA_PE 0.67 0.25 0.67 0.28 1.09 1512.73 1.00
beta_AdvisorExperie

nce_AlA 0.18 0.02 0.18 0.15 0.21 2339.68 1.00
beta_AdvisorExperie

nce_EE -0.48 0.09 -0.48 -0.63 -0.34 1859.15 1.00
beta_AdvisorExperie

nce_PE -0.36 0.08 -0.36 -0.48 -0.24 1917.69 1.00
beta_AdvisorExperie

nce_SI -0.10 0.09 -0.09 -0.26 0.04 410.10 1.00

beta_Age_AIA 0.00 0.02 0.00 -0.02 0.03 5199.85 1.00
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mean std median 5.0% 95.0% n_eff r_hat

beta_Age_EE -0.22 0.08 -0.22 -0.34 -0.09 1743.74 1.00
beta_Age_PE -0.05 0.07 -0.05 -0.15 0.06 2030.23 1.00
beta_Age_SI -0.06 0.11 -0.03 -0.25 0.10 276.59 1.00
beta_ DSTExperience

_AIA -0.09 0.02 -0.09 -0.12 -0.06 3829.49 1.00
beta_ DSTExperience

_EE 041 0.08 0.40 0.27 0.53 3405.99 1.00
beta_DSTExperience

_PE 0.18 0.07 0.19 0.07 0.29 2917.10 1.00
beta_ DSTExperience

_SI 0.15 0.08 0.15 0.02 0.27 1147.18 1.00
beta_EE_BI 0.26 0.40 0.19 -0.34 0.96 348.75 1.00
beta_Farmsize_AIA -0.14 0.02 -0.14 -0.17 -0.10 2377.46 1.00
beta_Farmsize_EE  0.15 0.08 0.15 0.01 0.29 1435.33 1.00
beta_Farmsize_PE  0.09 0.07 0.09 -0.01 0.22 2295.89 1.00
beta_Farmsize_SI  0.14 0.10 0.15 -0.04 0.28 330.76 1.00
beta_PE_BI 0.36 0.48 0.38 -0.44 112 1141.14 1.00
beta_RiskPref_AIA -0.08 0.02 -0.08 -0.11 -0.05 4246.51 1.00
beta_RiskPref EE  0.13 0.08 0.13 0.00 0.26 2407.49 1.00
beta_RiskPref PE ~ 0.14 0.07 0.14 0.03 0.24 2984.72 1.00
beta_RiskPref_SI  0.05 0.08 0.06 -0.09 0.19 576.38 1.00
beta_SI_BI 0.58 0.71 0.80 -0.73 151 208.81 1.00
beta_TechEngageme

nt_AlA -0.07 0.02 -0.07 -0.10 -0.03 2476.05 1.00
beta_TechEngageme

nt_EE 0.68 0.08 0.68 0.54 0.82 3581.95 1.00
beta_TechEngageme

nt_PE 0.46 0.07 0.46 0.36 0.57 3008.50 1.00
beta_TechEngageme

nt_SI 0.23 0.08 0.23 0.08 0.35 2405.52 1.00
beta_deltaTrue 191 0.13 1.90 171 2.14 6314.59 1.00
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mean std median 5.0% 95.0% n_eff r_hat
cutpoints_AIA_1[0] -0.10 0.21 -0.10 -0.45 0.25 4197.70 1.00
cutpoints_AIA_1[1] 1.05 0.20 1.05 0.74 1.39 371837  1.00
cutpoints_AIA_1[2] 1.78 0.18 1.78 1.47 2.06 324249  1.00
cutpoints_AIA_1[3] 2.77 0.15 2.77 2.54 3.03 2314.02 1.00
cutpoints_AIA_1[4] 4.03 0.15 4.03 3.78 4.26 211471 1.00
cutpoints_AIA_1[5] 5.36 0.19 5.36 5.04 5.66 2817.79 1.00
cutpoints_AlA_10[0] -0.02 0.21 -0.02 -0.35 0.31 3957.75 1.00
cutpoints_AIA_10[1] 0.91 0.19 0.92 0.62 1.25 430576  1.00
cutpoints_AIA_10[2] 1.97 0.16 1.97 1.70 2.22 335334  1.00
cutpoints_AIA_10[3] 2.94 0.14 2.95 2.69 3.17 2591.47 1.00
cutpoints_AIA_10[4] 4.00 0.14 4.00 3.76 4.24 220837  1.00
cutpoints_AIA_10[5] 5.17 0.18 5.17 4.89 5.45 294371  1.00
cutpoints_AlA_11[0] 0.28 0.21 0.28 -0.05 0.65 3475.47 1.00
cutpoints_AIA_111] 1.63 0.18 1.63 1.33 1.92 3570.03 1.00
cutpoints_AIA_11[2] 2.43 0.16 2.43 2.16 2.69 276155  1.00
cutpoints_AlA_11[3] 3.34 0.15 3.34 3.10 3.58 2161.06 1.00
cutpoints_AIA_11[4] 4.49 0.16 450 422 474 1964.65  1.00
cutpoints_AIA_11[5] 5.68 0.21 5.68 5.33 6.01 272351 1.00
cutpoints_AIA_12[0] 0.42 0.20 0.41 0.08 0.75 3572.94 1.00
cutpoints_AIA_12[1] 1.85 0.17 1.85 1.55 2.10 2845.88  1.00
cutpoints_AIA_12[2] 2.79 0.15 2.79 2.55 3.04 211238 1.00
cutpoints_AIA_12[3] 4.18 0.16 4.18 3.92 4.44 1913.46 1.00
cutpoints_AIA_12[4] 5.23 0.19 5.23 493 5.56 224233 1.00
cutpoints_AlA_12[5] 6.50 0.28 6.50 6.01 6.92 3267.70 1.00
cutpoints_AIA_13[0] 0.84 0.20 0.84 0.53 1.15 3025.39 1.00
cutpoints_AIA_13[1] 2.29 0.16 2.29 2.03 2.55 221103  1.00
cutpoints_AIA_13[2] 3.11 0.15 311 2.86 3.35 1798.37 1.00
cutpoints_AIA_13[3] 4.44 0.17 4.44 415 4.69 2029.04  1.00
cutpoints_AIA_13[4] 5.49 0.20 5.48 5.14 5.80 2289.74  1.00
cutpoints_AlA_13[5] 6.84 0.31 6.83 6.32 7.33 3330.80 1.00
cutpoints_AIA_14[0] 0.80 0.19 0.80 0.48 1.10 317557  1.00
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mean std median 5.0% 95.0% n_eff r_hat
cutpoints_AIA_14[1] 2.19 0.16 2.19 1.93 2.46 2404.71 1.00
cutpoints_AIA_14[2] 3.16 0.15 3.15 2.90 3.38 1782.92  1.00
cutpoints_AIA_14[3] 4.56 0.16 456 4.28 482 1766.79  1.00
cutpoints_AlA_14[4] 5.60 0.21 5.60 5.26 5.95 2519.95 1.00
cutpoints_AlA_14[5] 6.88 0.32 6.87 6.40 7.39 3435.48 1.00
cutpoints_AIA_15[0] 1.10 0.18 111 0.81 1.40 2810.62  1.00
cutpoints_AlA_15[1] 2.68 0.15 2.67 243 291 2100.05 1.00
cutpoints_AIA_15[2] 3.63 0.15 3.63 3.39 3.87 1697.02 1.00
cutpoints_AIA_15[3] 5.00 0.18 5.00 4.69 5.27 182244  1.00
cutpoints_AIA_15[4] 6.16 0.24 6.15 5.79 6.59 216438  1.00
cutpoints_AlA_15[5] 7.34 0.38 7.33 6.73 7.94 2706.00 1.00
cutpoints_AIA_16[0] 0.89 0.19 0.91 0.56 1.19 3201.35 1.00
cutpoints_AIA_16[1] 2.51 0.15 2.51 2.29 2.79 2584.48  1.00
cutpoints_AIA_16[2] 3.41 0.15 3.41 3.17 3.67 219590  1.00
cutpoints_AIA_16[3] 4.77 0.17 477 450 5.05 234143  1.00
cutpoints_AIA_16[4] 5.98 0.24 5.97 5.59 6.37 370459  1.00
cutpoints_AIA_16[5] 6.93 0.32 6.92 6.42 7.46 348429  1.00
cutpoints_AIA_2[0] -0.22 0.22 -0.21 -0.55 0.16 418735  1.00
cutpoints_AIA_2[1] 0.74 0.20 0.74 0.45 1.09 3410.58 1.00
cutpoints_AIA _2[2] 1.56 0.18 1.56 1.25 1.84 2850.39  1.00
cutpoints_AIA_2[3] 257 0.15 2.57 2.32 2.82 220219  1.00
cutpoints_AIA_2[4] 3.60 0.14 3.60 3.35 3.82 1873.71 1.00
cutpoints_AIA_2[5] 5.05 0.18 5.04 478 5.37 224559  1.00
cutpoints_AIA_3[0] 0.45 0.20 0.45 0.12 0.76 3620.28 1.00
cutpoints_AIA_3[1] 1.61 0.17 1.61 1.34 1.87 2980.82 1.00
cutpoints_AIA _3[2] 2.60 0.15 2.60 2.35 2.83 2057.14  1.00
cutpoints_AIA_3[3] 3.41 0.14 341 3.16 3.64 1900.16 1.00
cutpoints_AIA_3[4] 4.47 0.16 4.47 421 473 1916.76  1.00
cutpoints_AIA_3[5] 5.87 0.23 5.86 5.51 6.26 2940.33 1.00
cutpoints_AIA_4[0] 0.06 0.23 0.06 -0.30 0.45 3221.32 1.00

cutpoints_AIA_4[1] 1.02 0.20 1.02 071 1.37 304831  1.00
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mean std median 5.0% 95.0% n_eff r_hat
cutpoints_AIA_4[2] 2.24 0.16 2.24 2.00 251 2382.84 1.00
cutpoints_AIA_4[3] 3.06 0.14 3.06 2.83 3.30 2071.05  1.00
cutpoints_AIA_4[4] 4.27 0.15 4.27 4.00 451 200645  1.00
cutpoints_AIA_4[5] 5.48 0.19 5.48 5.19 5.82 2604.17 1.00
cutpoints_AIA_5[0] 0.05 0.21 0.06 -0.29 0.39 2856.32 1.00
cutpoints_AIA_5[1] 1.22 0.19 1.23 0.94 1.55 3560.45 1.00
cutpoints_AIA_5[2] 2.20 0.16 2.20 1.93 2.45 2380.55 1.00
cutpoints_AIA 5[3] 3.17 0.15 3.17 2.92 343 205254  1.00
cutpoints_AIA_5[4] 4.06 0.16 4.05 3.81 432 207159  1.00
cutpoints_AIA_5[5] 5.30 0.19 5.30 4.99 5.61 2534.60 1.00
cutpoints_AIA_6[0] 0.49 0.21 0.50 0.17 0.84 296471  1.00
cutpoints_AIA _6[1] 1.88 0.17 1.88 1.62 2.18 337544  1.00
cutpoints_AIA_6[2] 2.74 0.15 2.74 2.47 2.98 244374  1.00
cutpoints_AIA_6[3] 4.07 0.15 4.07 3.81 431 200145  1.00
cutpoints_AIA_6[4] 4.87 0.17 487 4.60 5.14 227712 1.00
cutpoints_AIA_6[5] 5.93 0.23 591 5.60 6.33 2811.25 1.00
cutpoints_AIA_7[0] 0.64 0.20 0.64 0.31 0.95 311041  1.00
cutpoints_AIA_7[1] 1.91 0.17 1.91 1.65 2.19 214165  1.00
cutpoints_AIA_7[2] 2.78 0.15 2.78 2.54 3.04 1949.00 1.00
cutpoints_AIA_7[3] 3.60 0.15 3.60 3.37 3.85 1797.57 1.00
cutpoints_AIA_7[4] 4.90 0.18 4.89 462 5.20 194409  1.00
cutpoints_AIA_7[5] 5.93 0.23 5.92 5.53 6.29 2962.07 1.00
cutpoints_AIA_8[0] -0.47 0.22 -0.46 -0.84 -0.13 420579  1.00
cutpoints_AIA_8[1] 0.25 0.21 0.26 -0.09 0.61 454521  1.00
cutpoints_AlA_8[2] 0.84 0.20 0.85 0.51 1.15 4001.68 1.00
cutpoints_AIA _8[3] 1.73 0.18 1.73 1.43 2.00 3673.16  1.00
cutpoints_AIA_8[4] 3.16 0.14 3.16 2.93 3.39 2008.14 1.00
cutpoints_AIA_8[5] 4.39 0.15 4.39 4.16 4.65 2199.03 1.00
cutpoints_AIA_9[0] -0.15 0.23 -0.16 -0.53 0.22 3705.05 1.00
cutpoints_AIA_9[1] 0.73 0.22 0.74 0.38 1.09 3882.62 1.00
cutpoints_AIA_9[2] 1.69 0.18 1.70 1.40 1.99 3187.72  1.00
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mean std median 5.0% 95.0% n_eff r_hat
cutpoints_AIA_9[3] 2.97 0.15 297 274 321 222163 1.00
cutpoints_AIA_9[4] 4.13 0.15 413 3.89 4.38 218235  1.00
cutpoints_AIA_9[5] 5.81 0.22 5.80 5.45 6.16 3100.86  1.00
cutpoints_BI_1[0] ~ 0.40 0.30 0.40 -0.12 0.87 283433  1.00
cutpoints_BI_1[1]  1.47 0.29 1.47 1.00 195 267392 1.00
cutpoints_BI_1[2] 2.34 0.29 2.34 191 2.86 2565.89  1.00
cutpoints_BI_1[3]  3.73 0.32 373 321 4.24 2693.75  1.00
cutpoints_BI_1[4]  5.17 0.37 5.16 457 5.77 303455  1.00
cutpoints_BI_1[5] ~ 6.21 0.45 6.19 5.48 6.93 342352 1.00
cutpoints_BI_2[0]  0.13 0.30 0.13 -0.35 0.62 257901 1.00
cutpoints_BI_2[1]  1.03 0.29 1.03 057 153 2396.98  1.00
cutpoints_BI_2[2]  2.06 0.29 2.05 159 253 248278 1.00
cutpoints_BI_2[3]  3.12 031 3.12 2.62 3.62 261109  1.00
cutpoints_BI_2[4]  4.64 0.34 4.63 4,07 5.18 2909.49  1.00
cutpoints_BI_2[5]  6.38 047 6.36 5.62 7.14 3629.65  1.00
cutpoints_BI_3[0]  -0.57 031 -0.56 -1.07 -0.06 252640  1.00
cutpoints_BI_3[1]  0.54 0.30 053 0.04 1.03 255293 1.00
cutpoints_BI_3[2] 111 0.30 1.10 0.63 159 244519 1.00
cutpoints_BI_3[3]  2.01 0.30 2.00 152 251 2260.96  1.00
cutpoints_BI_3[4] 351 031 350 2.99 4.00 250552 1.00
cutpoints_BI_3[5]  4.93 0.36 4.92 431 5.48 291226 1.00
cutpoints_EE_1[0]  -0.37 0.34 -0.37 -0.91 021 2965.86  1.00
cutpoints_EE_1[1]  0.49 0.33 0.48 -0.04 1.04 2279.89  1.00
cutpoints_EE_1[2]  1.89 0.32 1.89 1.33 2.40 211316  1.00
cutpoints_EE_1[3]  3.02 0.32 3.02 2.49 353 192113 1.00
cutpoints_EE_1[4] 4.34 0.32 4.34 3.80 4.84 187156  1.00
cutpoints_EE_1[5]  6.17 0.38 6.16 554 6.80 234430  1.00
cutpoints_EE_2[0]  -0.50 0.36 -0.50 -1.15 0.04 3099.77  1.00
cutpoints_EE_2[1]  0.45 0.35 0.46 -0.12 1.02 2563.76  1.00
cutpoints_EE_2[2]  1.62 0.33 1.63 1.10 2.16 2180.34  1.00
cutpoints_EE_2[3]  2.60 0.32 261 2.06 3.12 206271 1.00
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mean std median 5.0% 95.0% n_eff r_hat
cutpoints_EE_2[4] 4.07 0.31 4.07 3.59 4.62 1991.87 1.00
cutpoints_EE_2[5]  6.30 0.38 6.29 5.71 6.96 237825  1.00
cutpoints_EE_3[0] -0.32 0.35 -0.32 -0.91 0.21 263265  1.00
cutpoints_EE_3[1] 1.07 0.32 1.08 0.54 1.60 2137.41 1.00
cutpoints_EE_3[2] 1.92 0.32 1.92 1.40 2.46 2050.89  1.00
cutpoints_EE_3[3] 2.85 0.32 2.85 2.33 3.39 2085.23 1.00
cutpoints_EE_3[4] 4.34 0.32 4.34 3.77 4.84 2030.20 1.00
cutpoints_EE_3[5] 6.32 0.38 6.31 5.65 6.90 2321.03 1.00
cutpoints_PE_1[0]  -0.20 0.33 -0.19 -0.77 0.32 2760.10  1.00
cutpoints_PE_1[1]  0.99 0.30 1.00 0.46 1.45 2008.26 1.00
cutpoints_PE_1[2]  1.82 0.29 1.82 1.27 2.24 1857.30  1.00
cutpoints_PE_1[3] 257 0.29 2.57 2.11 3.06 1709.08  1.00
cutpoints_PE_1[4] 3.66 0.29 3.66 3.16 4.10 1674.79 1.00
cutpoints_PE_1[5]  5.49 0.34 5.49 494 6.07 2201.94  1.00
cutpoints_PE_2[0] -0.02 0.31 -0.03 -0.54 0.48 2363.03 1.00
cutpoints_PE_2[1] 0.94 0.29 0.94 0.46 1.40 1902.79 1.00
cutpoints_PE_2[2]  1.80 0.28 1.80 1.34 2.25 1660.00  1.00
cutpoints_PE_2[3] 2.82 0.28 2.82 2.37 3.29 171194  1.00
cutpoints_PE_2[4] 4.22 0.29 421 3.74 4.69 1623.56 1.00
cutpoints_PE_2[5] 5.93 0.35 5.93 5.32 6.49 1963.26 1.00
cutpoints_PE_3[0] -0.29 0.35 -0.29 -0.82 0.32 217334  1.00
cutpoints_PE_3[1] 0.65 0.31 0.64 0.15 1.18 2037.05 1.00
cutpoints_PE_3[2] 1.95 0.30 1.96 1.50 248 1606.86 1.00
cutpoints_PE_3[3] 3.33 0.29 3.33 2.88 3.82 1553.95 1.00
cutpoints_PE_3[4] 4.47 0.30 4.47 3.98 4.94 1630.72 1.00
cutpoints_PE_3[5] 6.09 0.37 6.07 5.49 6.66 2070.15 1.00
cutpoints_PE_4[0] -0.27 0.33 -0.26 -0.80 0.28 2290.19 1.00
cutpoints_PE_4[1] 0.76 0.31 0.77 0.27 1.27 2131.91 1.00
cutpoints_PE_4[2] 1.74 0.29 1.73 1.25 2.19 1705.74  1.00
cutpoints_PE_4[3] 2.87 0.28 2.87 241 3.32 1580.47 1.00
cutpoints_PE_4[4]  4.08 0.29 4.08 3.59 455 1628.99  1.00
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mean std median 5.0% 95.0% n_eff r_hat
cutpoints_PE_4[5] 5.91 0.36 591 5.27 6.46 2128.63 1.00
cutpoints_SI_1[0]  0.14 0.20 0.15 -0.18 0.46 309481  1.00
cutpoints_SI_1[1]  1.05 0.16 1.06 0.78 1.30 373131 1.00
cutpoints_SI_1[2]  1.89 0.13 1.89 1.67 2.09 2559.03 1.00
cutpoints_SI_1[3]  4.40 0.18 4.40 4.09 467 2991.33  1.00
cutpoints_SI_1[4]  5.63 0.29 5.61 5.15 6.10 3981.21 1.00
cutpoints_SI_1[5]  7.02 0.52 6.98 6.16 7.84 4379.46 1.00
cutpoints_SI_2[0]  -0.09 0.22 -0.08 -0.44 0.25 3705.02 1.00
cutpoints_SI_2[1]  0.77 0.19 0.78 0.48 1.08 3402.49  1.00
cutpoints_SI_2[2]  1.69 0.14 1.69 144 1.90 2669.56 1.00
cutpoints_SI_2[3]  3.83 0.16 3.82 3.58 4.09 2333.33 1.00
cutpoints_SI_2[4]  5.06 0.23 5.06 4.68 5.44 3503.27 1.00
cutpoints_SI_2[5]  6.49 0.40 6.47 5.85 7.16 3278.42 1.00

3.6.4 D. Prior and Posterior Coefficient plots
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Figure 3.11: Prior and posterior distribution of coefficients of interest. Black
bar indicating HPDI.

Figure 3.11 shows the prior and posterior distribution of our two coefficients
of interest, B, (right) and y4;4(left). As it can be seen, the model updated
the distributional assumptions based on the survey data.



Chapter 4

Action- or results-based payments
for ecosystem services in the era of
smart weeding robots?”

Abstract. Payments for ecosystem services (PES) are commonly used to
reduce negative impacts on biodiversity by intensive agricultural production.
Whether action- or results-based, the efficiency of PES schemes in terms of
conservation benefit per costs, hinges on cost-effective monitoring, actions
farmers are rewarded for, appropriate biodiversity indicators and, farmers’
acceptance. Despite expectations that novel technologies, such as weeding
robots, will reduce monitoring costs, the potential impact of their widespread
use on optimal PES design for biodiversity conservation in arable farming
remains unexplored. Our study investigates 1) the influence of weeding
robots on optimal scheme design and 2) the challenges and options that arise
for future PES scheme design. To this end, we use a simulation model to
systematically compare how the availability of weeding robots changes the
preferability of action-based versus results-based payments under various
production and management conditions. This study sheds light on the
transformative potential of weeding robots in optimizing PES for
biodiversity conservation. The results indicate that the difference in
efficiency between action- and results-based schemes vanishes if robots can
perform biodiversity-sensitive actions. Further, we find that it is even more
important for the future design of PES to be able to define multidimensional
biodiversity goals - a major challenge calling for interdisciplinary research.

Keywords: Payments for Ecosystem Services, Weeding Robot, Payment
by Result, Biodiversity Conservation, Crop Production

* This chapter is published as MASSFELLER, A., ZINGSHEIM, M., AHMADI, A., MARTINSSON, E., STORM,
H., 2025. Action- or results-based payments for ecosystem services in the era of smart weeding
robots? Biological Conservation 302, 110998. https://doi.org/10.1016/j.biocon.2025.110998. Only
minor edits have been made for the purpose of this dissertation.

182



https://doi.org/10.1016/j.biocon.2025.110998

Action- or results-based schemes? 183

4.1 Introduction

Payments for ecosystem services (PES) are a widely used tool to reduce the
negative impacts of agricultural production on biodiversity (Wunder et al.,
2008). PES for biodiversity conservation can be organized as either action-
based schemes (ABS), in which farmers are rewarded for executing a certain
action, or as results-based schemes (RBS), in which farmers receive money
in return for the provision of predefined biodiversity indicators. The
efficiency of such PES schemes, defined as the conservation benefits per
cost of the agency (Ansell et al., 2016), hinges on several factors. Cost-
effective monitoring, defined as the value of the indicator vs. effort to
monitor it (Lindenmayer et al., 2012)), is only one of several factors
determining the efficiency of a PES scheme. Also, the actions that farmers
are rewarded for, appropriate biodiversity indicators, and, farmers’
acceptance are crucial to the efficiency of such schemes. Research suggests
that digitalization will change how agricultural policy instruments are
designed (Ehlers et al., 2021) and that the monitoring abilities of novel
technologies, e.g. through acoustic monitoring or digital fencing (Biffi et al.,
2024; Watzold et al., 2024) will induce a shift towards results-based schemes
(Besson et al., 2022; Finger, 2023). However, these assumptions are largely
conceptual and have not been fully investigated. Moreover, other
characteristics of technologies might induce changes, even in unintended
directions. However, these consequences remain to be sufficiently studied
(Basso and Antle, 2020).

Therefore, in this study, we explore how optimal PES design for biodiversity
conservation changes if smart weeding robots are available for crop
production. With smart weeding robots we mean novel autonomous
selective weeding robots’ (hereafter, weeding robots). Weeding robots have
the potential to decrease negative impacts on biodiversity while allowing for
high yields by selectively removing weeds with non-chemical tools or

7 As the term ‘robot’ has not been clearly defined (Merfield, 2016; Moreno et al., 2024), here, we
define a weeding robot as ‘a mobile, autonomous, decision making, mechatronic device that
accomplishes weeding under human supervision, but without direct human labor, adopting the

definition of Lowenberg-DeBoer et al. (2020).
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variable-rate application of herbicides (Bawden et al., 2017; Fennimore &
Cutulle, 2019; Slaughter et al., 2008; Storm, Seidel, et al., 2024; Zhang et
al., 2022). We aim to achieve our objective by answering the following
research questions:

1) How do weeding robots affect optimal PES scheme designs?

2) What challenges and options might arise for future scheme designs once
weeding robots are used?

Previous studies of optimal PES designs range from theoretical works
focusing on information asymmetry between landowners and conservation
buyers, risk and payment mechanisms (Derissen & Quaas, 2013; Ferraro,
2008; McDonald et al., 2018; White & Hanley, 2016; Zabel & Roe, 2009)
to reviews of PES effectiveness in different contexts (Borner et al., 2017;
Wunder et al., 2008) to empirical studies investigating farmers’ stated and
revealed preferences for various PES designs (Canessa et al., 2023;
Massfeller et al., 2022; Rasch et al., 2021). Gibbons et al. (2011) developed
a simulation model to investigate the conditions under which ABS and RBS
are more efficient by considering the characteristics of the management, the
targeted biodiversity, and the landscape.

Most schemes in developed countries pay farmers for actions, e.g., within
the common agricultural policy (CAP) of the EU (European Commission,
2021b; Gibbons et al., 2011). However, an increased focus on RBS has been
observed in recent years (BMEL, 2023; European Commission, 2023; Pe’er
et al., 2022). One driver for this development is the critique of ABS as
inefficient, as they do not deliver the anticipated results and are costly to the
taxpayer (Batary et al., 2015; Brown et al., 2021; Pe’er et al., 2020). RBS
form one attempt to minimize such inefficiencies, as the payment is tied to
the occurrence of predefined results. While in both cases, farmers facing low
costs for joining the scheme are incentivized to participate and some might
be overpaid, under RBS, as opposed to ABS, biodiversity service provision
is ensured. By providing farmers with greater flexibility in determining the
measures they implement to achieve the predefined objective, social and
cultural capital is enhanced, which could promote acceptance (Burton &
Schwarz, 2013). However, the financial risk that farmers face if the
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predefined targets are not reached despite efforts, and the need to define
measurable indicators that can be monitored at low cost has impeded the
broad-scale implementation of RBS (Burton & Schwarz, 2013; Zabel &
Roe, 2009).

Evidence from Europe (EImiger et al., 2023; Hagemann et al., 2025), the US
(Baylis et al., 2008) and Australia (Connor et al., 2008) indicates that most
implemented RBS primarily focus on biodiversity in grassland and
extensification or wildlife conservation. In contrast, only a few European
RBS target biodiversity conservation in arable farming (Hagemann et al.,
2025). Examples include “RBPS for biodiversity on arable and upland
grassland systems in England” in the UK (Chaplin et al., 2021), “Protecting
farmland pollinators” in Ireland (RBPN, 2019) or “Proof of Ecological
Performance (PEP) and Biodiversity payments” in Switzerland (RBPN,
2019). In Germany, only one scheme in arable farming is implemented,
targeting harrier nests (LANUV, 2023), and one focusing on weed
occurrence was hypothetically tested (Massfeller et al., 2022). However,
engagement in biodiversity conservation is especially needed in intensive
crop production areas (Scheper et al., 2023; Stein-Bachinger et al., 2022).

To fill the two research gaps of 1) the missing evidence for the effects of
novel technology on PES efficiency and 2) the lack of efficient PES targeting
biodiversity in intensive arable farming, we adopt Gibbons et al.’s (2011)
simulation model and apply it on the case of a PES for biodiversity
conservation in arable farming with weeding robots. We use this model to
simulate how weed management conditions will likely change, considering
not only improved monitoring capabilities but also the weeding robots’
ability to selectively remove weeds and changes in cost structures. We first
derive the PES design parameters that are likely to be influenced by weeding
robots and model the effects on the optimal scheme design for the efficiency
of both ABS and RBS scheme types. Based on the results of the simulation
we discuss the arising challenges and options for future scheme design and
identify research needs. Throughout the study, we assume a risk-neutral
farmer. As risk is an important feature of PES (Bolton and Dewatripont,
2004) and European farmers have been found to be rather risk averse (Garcia
et al., 2024), this is an important aspect we come back to in the discussion.
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This study sheds light on the transformative potential of weeding robots for
optimizing PES schemes for biodiversity conservation in arable farming. We
focus on the provision of food and shelter for insects through weeds as
targeted biodiversity service, measured through the occurrence of certain
weeds (in a certain distribution or density). Contrarily to “traditional”
weeding with tractor-mounted machinery where the action is defined at the
field level (e.g. to weed mechanically or to spray herbicides), weeding robots
will be able to remove weeds selectively based on different rationales like
weed species, weed density, or the competitiveness between weeds and
crops as tested by Zingsheim and Doring (2024). Due to this selective
weeding ability, novel management actions can be defined such that the
desired biodiversity reacts sensitively and in the desired direction. Our
findings indicate that the difference in efficiency, i.e. biodiversity benefit
over agency cost, between ABS and RBS vanishes if robots can perform
biodiversity-sensitive actions. We define biodiversity-sensitive actions
through the robot’s ability to selectively remove weeds at the individual
plant level.

Hence, while robots’ monitoring capability could reduce monitoring costs
and thereby benefit RBS’ efficiency, we find that the execution of sensitive
actions through selective weeding might be an even more important feature
of weeding robots for the relative efficiency of PES. Additionally, based on
our results we discuss that it is more important for future PES designs to
define multidimensional biodiversity goals. Our findings have implications
for future policy design and the development of novel technologies and
indicate interdisciplinary research needs. Future empirical studies on
optimal PES design using weeding robots may draw on our insights.

We proceed by taking an interdisciplinary perspective on how weeding
robots change weed management, incorporating expertise from ecology
research and technology development (Section 2). Section 2 serves to
provide the background information on which we build our modelling
assumptions and discussion in the following sections. In Section 3, we
present the model and explain our application to weeding robot use. After
analyzing the simulation results in Section 3, we discuss policy
recommendations, options and challenges for future PES design in Section
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4. We conclude in Section 5 by providing implications for future
interdisciplinary research.

4.2 Changes in weed management when weeding robots are
available

Because crops and weeds compete for resources (Guglielmini et al., 2017;
Oerke, 2006; Thompson et al., 2019; Zimdahl, 2007), farmers typically face
a trade-off between yield gain (i.e. the gain in yield compared to no weeding)
and weed biodiversity when removing weeds (Campiglia et al., 2018). On
the one hand, the use of herbicides at the field level tends to reduce weeds
that serve as food and habitat for insects and other animals (Beckmann et al.,
2019; Geiger et al., 2010; Hole et al., 2005; S. Meyer et al., 2013). On the
other hand, weeds cause the highest yield losses of all pests (Oerke, 2006),
endangering the production of food and feed for a growing world population
(Savary et al., 2019; Schneider et al., 2023).

Currently, farmers are generally able to decide between conventional
herbicide-based weed management (Bawden et al., 2017), mechanical
weeding (Ahmadi et al., 2021; BMEL, 2023) and integrated weed
management (IWM) approaches (Kunz, 2017). In the EU, farmers are
legally required to consider the guidelines of IWM (European Commission,
2024). An intensive use of conventional herbicide-based weed management
usually generates higher yields as more weeds are removed, but it typically
leads to lower weed biodiversity (Campiglia et al., 2018; Gerhards et al.,
2020; Kunz et al., 2018; Pannacci and Tei, 2014). With mechanical weeding,
which is primarily used in organic farming or IWM, fewer weeds are usually
removed, leading to higher weed biodiversity but lower yields (Batary et al.,
2017; Tscharntke et al., 2021). However, the weed-biodiversity-yield gain
relationship is highly context-dependent (Colbach et al. 2020) and is largely
governed by farming intensity (Berquer et al., 2023). Importantly, in each of
the three approaches, the level of the remaining weeds is to a large part a
random outcome, resulting primarily from the varying efficiency of each
working step.
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Weeding robots are currently used by EU farmers mainly in herbicide-
intensive row crops, such as sugar beets (Duckett et al., 2018). Future
weeding robots might allow purposeful decisions with respect to the level of
weeds in the field, thereby reducing the trade-off between yield and
biodiversity. We follow Merfield (2023) and categorise different levels of
weeding robots: Weeding robots that remove every plant that is not a crop
by ‘remembering’ where they had sown, and weeding robots that can
differentiate between crop and non-crop plants (e.g. Walter et al. (2018))
are referred to as level 2 and 3, respectively. So-called ‘level 4 weeding
robots’ have two essential abilities that differentiate them from previous
levels: 1) removing ability: they can remove weeds efficiently and
selectively using various techniques (laser, mechanical and chemical)
(Ahmadi et al., 2022), drawing on different types of input information, such
as the number of weed species, historical yield or soil properties (Zingsheim
& Doring, 2024) and 2) monitoring ability: they can identify and monitor
different plant and weed species. While most of the robots that are market-
ready and currently in use are in level 2 or 3, within this study, we assume
the availability of ‘level 4 weeding robots’, which are currently in the
prototype stage (Ahmadi et al., 2022; Li et al., 2019).

The main challenge for implementing biodiversity-aware weeding with
vision-based systems is the accurate distinction between crops and beneficial
and harmful weeds, under various conditions. This sophistication must be
complemented by specially designed, robust hardware. It needs to ensure
that the system can make quick and accurate decisions and execute precise
actions, such as targeted weeding, without damaging the crops or the soil.
Such a system also needs to be economical and user-friendly, as these are
key factors for adoption by farmers (Rose et al., 2018). Against this
background, we identify three major changes in weed management when
“level 4 robots” are used instead of ‘traditional’ weeding done by tractor-
mounted machinery.

First, “level 4 robots” will be able to selectively remove weeds based on
species, density, distribution, or other criteria. Thereby they will enable
accounting for naturally non-uniform weed distributions across the field
(Borgy et al., 2012) and for varying competitiveness across weed species
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(Marshall et al., 2003). Because weeds can be detected and removed
selectively and in a site-specific way where they occur, similar to the
threshold procedure in IWM (YYoung, 2018), the level of biodiversity in the
field can be deliberately set. This can reduce the trade-off between yield and
biodiversity as shown by Zingsheim and Doéring (2024). They tested
different weeding strategies that robots could execute based on different
rationales such as weed density, competitiveness between weed and crop or
by strip-wise weed removal. They found that biodiversity in terms of alpha-
or gamma-diversity increases by up to 80% while maintaining yield effects.
For example, if only very crop-damaging weeds are removed while others
can remain, high yield can still be obtained, while also more biodiversity can
remain on the field. Thereby, the probability increases that the desired
biodiversity service, for example in terms of weeds serving as food and
shelter for insects, occurs on the plot.

Second, the robots’ monitoring ability will allow to identify and monitor
crops and weeds more reliably compared to humans (Ahmadi et al., 2021;
Bawden et al., 2017; Pandey et al., 2021; Wu et al., 2020; Zhang et al., 2022).
A common performance metric to evaluate object detection of autonomous
devices is the mean average precision (mAP) which is close to 90% in
recently developed detection algorithms and steadily increasing (Weyler et
al., 2024). Given this improved detection performance, not only biodiversity
and crops but also (non-)compliance with a certain action (in the ABS case)
could be detected, e.g. robots could detect whether chemical plant protection
was used or if a certain seed row distance was maintained (Ahmadi et al.,
2021; BMEL, 2023). If the conservation buyer (“the agency”) has access to
the data collected from participants in the scheme, and if we assume that this
data remains untampered by the farmers, we can conclude that: 1) the
detectability of biodiversity indicators as well as of non-compliance with the
scheme will increase and 2) agency employees will no longer need to visit
the farm to monitor compliance or biodiversity service occurrence, thereby
decreasing the costs for the agency.

As a third effect, the availability of weeding robots could alter the
distribution of costs associated with weeding. This might be due to changes
in investment costs, labor and supervision time, efficiency, and resource
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usage but it is very complex, especially when taking weed-yield dynamics
into account (Lowenberg-DeBoer, 2019; Lowenberg-DeBoer, Franklin, et
al., 2021; Shang et al., 2023; Yu et al., 2024).

4.3 Material and Methods

Text In this study, we use and extend the theoretical model provided by
Gibbons et al. (2011) to evaluate the ways in which the availability of
weeding robots affects preference for RBS or ABS. The model is useful for
answering our research questions considering the influence of the properties
of weed management on the provision of biodiversity and scheme efficiency.
Considering how weeding robots may impact changes in weed management,
we can elicit how the availability of level-4 robots might change the relative
preferability of ABS and RBS. The process-based model we consider is
based on Gibbons et al.’s work (2011) and derived from theory and expert
knowledge. Thereby it allows to study novel, not yet existing, technologies
and policy schemes that cannot yet be examined empirically: to date, only a
few weeding robots are actually adopted by farmers, and there are only a
few implemented results-based schemes in arable farming. Hence, data on
this topic are scarce.

To describe our model, we follow the ODD (Overview, Design concepts,
Details) protocol for describing individual- and agent-based models (Grimm
et al., 2006), as updated by Grimm et al. (2020 a; 2020 b). We provide the
ODD summary in Section 3.1. For a detailed overview of the model,
including all relevant equations, all parameters and how we extended the
original model by Gibbons et al. (2011), see the full ODD protocol and
especially Table 2 in the supplementary material.

Based on the diagnosed changes in weed management arising through the
availability of weeding robots in Section 2, in the following, we first present
the overall set-up of the model and second identify the relevant parameters
in the model to reflect the identified changes from Section 2. As a third step,
we define plausible directions and ranges of how each parameter might be
affected by weeding robots and, fourth, use those ranges to simulate and
compare the relative preferability of RBS and ABS when weeding robots are
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available. In Table 4.1 we present the outcome of steps 1-3. As there are
only a few results-based schemes in arable farming (yet), the availability of
empirical information is very limited. However, whenever possible we base
our assumptions for step 3) on empirical evidence.

4.3.1 The model

The simulation model initially developed by Gibbons et al. (2011) is
designed to evaluate Payments for Ecosystem Services (PES) aimed at
biodiversity conservation. The overall purpose of the model is to illustrate
how the properties of the targeted biodiversity service, of the management
action, and the initial distribution of the biodiversity service in the landscape
influence the provision of the targeted biodiversity service. The model offers
a comparative theoretical framework to contrast two PES types: action-
based schemes (ABS), where farmers are paid for specific management
actions, and results-based schemes (RBS), which reward observed
biodiversity outcomes.

The purpose of our study is to evaluate the effect of robotic weeding
availability on scheme efficiency (conservation benefit per agency cost).
Therefore, we extend the model by considering additional properties such as
the agency’s monitoring costs, the farmers’ costs of executing a certain
management action, as well as properties of the technology. In contrast to
the original model, we consider the plot level to avoid too strong
assumptions on technology use on the landscape level. Concerning the
temporal resolution, the model depicts one point in time (one production
period) on one plot. It is set up in R programming language. Model
initialization does not involve empirical data. The whole model construction
relies on theoretical assumptions and expert knowledge.

To consider our model realistic enough for its purpose, we use patterns of
biodiversity service provision and scheme efficiency (see Figures 4.2, 4.3,
and 4.4a-c in Section 4). The model includes five main entities: (1) the
targeted biodiversity service, (2) management actions, (3) the plot, (4)
human actors, specifically the farmer and the agency, and (5) the technology
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(weeding robot). The state variables characterizing these entities are
provided in Table 1 in the ODD protocol.

The targeted biodiversity service represents the goal of the PES, constructed
as a binary outcome indicating the presence or absence of a specific service.
In the present study, we focus on the provision of food and habitat for insects
through weeds as targeted biodiversity service. The biodiversity service is
assumed to occur if a specific desired biodiversity can be found on the plot.
This can be the presence of certain (indicator) weeds or reaching pre-defined
thresholds of species abundance, density, and distribution.

Figure 4.1 provides an overview of the model processes. The main idea is,
that the probability that the desired biodiversity and thereby the biodiversity
service occurs increases through management actions defined within PES.
Management actions can vary based on the PES type, with farmers either
following prescribed actions (ABS) or choosing actions to optimize
biodiversity outcomes (RBS). Each plot has an initial probability of
biodiversity service occurrence before PES intervention, and each
management action comes with a certain sensitivity describing how the
desired biodiversity reacts to the action (for more details on this parameter,
see Section 7.1. in the ODD protocol including a concrete example).
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Figure 4.1: Simplified Model Process
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In the model, the farmer seeks to maximize income through scheme
participation, while the agency aims to achieve the highest biodiversity gain
at the lowest cost. In ABS, the agency specifies actions and the farmer is
compensated for executing them at the required level. The farmer could also
voluntarily go beyond the minimum standards without receiving additional
payment. Examples of existing plot-level ABS in Germany in arable farming
that aim at biodiversity conservation are the prohibition of using chemical
plant protection products or an increase in the seed distance
(Landwirtschaftskammer, 2022).

In RBS, however, farmers have more flexibility in what actions to take, as
payments are based on the achieved biodiversity outcome. For example,
compared to the aforementioned ABS of no chemical application, farmers
could decide to restrict chemical application to only certain areas within a
plot (lower level) or could additionally adjust practices like seed distance to
impact the biodiversity outcome positively (higher level).

Two key decision-making dynamics drive the model: 1) Farmers decide to
join PES schemes based on whether they expect to gain income from it,
factoring in management costs, payments, and potential penalties for non-
compliance. The payment is defined as a multiple of the management costs.”
The agency, meanwhile, optimizes its budget by balancing expenses on
payments and monitoring costs that strongly depend on how easily desired
biodiversity and compliance can be detected.

The model’s outputs—gain in probability of biodiversity occurrence
(“biodiversity gain”) and associated costs—provide insights into scheme
efficiency. Scheme efficiency is quantified as the biodiversity gain per unit
of agency expenditure, and used to compare ABS and RBS. Note that the
model does not consider the complexity of ecological and agricultural
processes of weed-yield dynamics, as this is not within the scope of our
study, but was, for example, done by Yu et al. (2024).

7 For our analysis, we fix the payment at a certain level in order to reduce the dimensions considered
in the analysis. We conduct a sensitivity analysis considering a range of values for the payment as

described in the Appendix A.
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4.3.2 Linking changes in weed management to model parameters

Based on the model description in Section 3.1 and the diagnosed impacts of
weeding robots on the conditions of weed management in Section 2, we
identified the model parameters that are relevant to reflecting these
conditions. We summarize the parameters that we assume to be impacted by
robots in Table 4.1. Additionally, the table summarizes the considered
parameter ranges and the empirical basis for these ranges. In the following
subsections, we go through each of the identified changes and discuss the
derived parameter ranges in detail.

Removing ability

To reflect the robot’s selective weed removal ability in the model, we turn
to parameter a, the sensitivity of the biodiversity to the action. In the model,
the parameter describes how the desired biodiversity reacts to the
management action and is considered as a property of the management
action.

It is based on the assumption that biodiversity service provision, as a result

of an action, is to some degree random and out of the control of the farmer
or the agency. Smart weeding robots with selective weed removal abilities
allow to deliberately set the level of biodiversity service provision which
reflects an increase in the sensitivity of biodiversity to action. For an
illustrative explanation of this parameter by means of existing schemes in
Germany, please see Section 7.1 in the ODD protocol.

Based on the empirical evidence on the robots’ removing abilities as
described in Section 2, and following the original model, we assume a range
of values from zero to 10, whereby high values reflect the use of robotic
weeding.

Monitoring ability

In order to reflect the monitoring ability of novel weeding robots in the
model, we consider three parameters: 1) detectability of biodiversity and of
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non-compliance, 2) agency monitoring costs, and 3) probability of farms
being visited for non-compliance monitoring.

Given the empirical evidence on weeding robots’ object detection
performance in Section 2, we assume that through weeding robots, the
detectability will increase which is captured in the model parameters dc,
detectability of non-compliance with ABS rules and db, detectability of
biodiversity. Similar to the original model, we assume a range of values for
this parameter from zero to one, where high values reflect the use of robotic
weeding.

Additionally, we assume that the availability of weeding robots will reduce
the agency’s monitoring costs (per hour). The model is set up such that the
agency aims for a probability of detection of either biodiversity for RBS or
non-compliance for ABS of 95%. The time needed to reach this value and
the resulting costs depend strongly on how easily non-compliance and
desired biodiversity can be detected and how costly it is to monitor for 1h.
Following Schattker et al. (2023), who evaluated the cost difference between
human and drone-based monitoring for RBS, we conjecture a decrease in
the pure monitoring costs. To reflect this change in the model, we consider
a range of values for this parameter from zero to double the amount as in the
original model.

Lastly, we assume that through the robot’s monitoring ability the probability
of farms (needed to) being visited for non-compliance monitoring by the
agency changes. While in the original model set-up farms participating in an
ABS need to be visited by agency employees in order to monitor their
compliance with the scheme rules, we assume that under robotic weeding,
this can be done by the robot. Therefore, we assume a range of values for
this parameter whereby a value of “1” would reflect the case of robotic
weeding as every farm’s scheme compliance will be monitored but no longer
through agency visits but by the robot.

Management costs

In order to reflect changes in the management costs associated with robotic
weeding, we assume a broad range of values for parameter CL, the cost of
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setting the action to a certain level. However, the change can be in both
directions and depends on various factors outside the model scope, such as
production conditions, weed-yield dynamics, and farm characteristics
(Shang et al. 2023; Yu et al. 2024). Therefore, we assume a range of values
for this parameter spanning from zero to double the amount as assumed by
Gibbons et al. (2011).

Table 4.1: Parameters reflecting assumptions on changes through weeding

robots

Changes Model Assume  Assumed Empirical

through parameters to dvalue  direction foundation

robot reflect change ranges through

(Sect. 2) (Sect. 3.2) robot

Selective Sensitivity of 1/3-10 increase Biodiversity gain and

weed biodiversity to by 1/3 trade-off-reduction

removal action (a) through weeding
strategies at plant
level of up to 80%.
(Zingsheim &
Ddring, 2024)

Monitoring  Detectability of 0.1-1by increase Improved monitoring

biodiversity (db) 0.1
and of non-
compliance (dc)

abilities, e.g. mean
average precision
(mAP) as
performance metric
for object detection
close to 90%
(Salazar-Gomez et
al., 2021; Weyler et
al., 2024)

Cost of agency 220by 2 decrease Difference in pure

monitoring monitoring costs of

(monetary UAV vs. human of

unit/time unit) ~1000€ per ha used

(Cn) as proxy (Schottker
et al., 2023)

Only relevant to
ABS

Probability of 0.1-1by increase® Improved monitoring
an agency 0.2 abilities, e.g. mean
visiting a average precision
farmer for (mAP) as

non- performance metric
compliance for object detection

close to 90%
(Salazar-Gomez et

§If Py = 1, this parameter becomes redundant as there is no longer a difference in monitoring costs

between ABS and RBS.
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monitoring al., 2021; Weyler et
(Pv) al., 2024)
Manageme  Cost to farmer of 25-200 not clear, in-  Costs of robotic
nt costs setting the level by 25 or decrease weed management
of actionto L depend on site-
(monetary unit) production and
(Cv weed-dynamic
specific

characteristics
(Lowenberg-DeBoer,
Franklin, et al., 2021;
Lowenberg-DeBoer
et al., 2020; Shang et
al., 2023; Yu et al.,
2024)

4.4 Results and Discussion

4.4.1 Biodiversity occurrence and gain

Under ABS, farmers have to carry out the action at a predefined level,
modelled as L = 1. In contrast under RBS, the farmer can flexibly decide on
the optimal level that maximizes income. As shown in Figure 4.2, the
probability that biodiversity occurs given scheme participation (red = low,
purple = high) varies under ABS. It depends on the sensitivity of biodiversity
to the action, a (different columns) and the probability that biodiversity
already occurs in the field, Po (x-axis), while the level of action, L (y-axis)
always remains at 1. Under RBS, the farmer can adjust the level of action, L
and thereby balance low levels of the sensitivity of the action, a, and the low
probability that biodiversity already occurs on the field, Po, to maximize the
probability that biodiversity occurs.

For both scheme types, the maximum probability of biodiversity occurrence
of 1 is reached if the sensitivity is high (right column of Figure 4.2). In this
scenario, RBS farmers perform the action at the minimal level needed to
produce biodiversity, which is close to 0, given that the sensitivity is high.
In reality, this action could, for example, be the use of a weeding robot that
removes weeds based on the given indicators of the RBS (weed species,
density and distribution), ensuring that the desired biodiversity occurs. The
probability that biodiversity is already occurrent before scheme participation
(x-axis) plays a more pronounced role if sensitivity is lower (left and middle
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columns of Figure 4.2). Due to the diminishing marginal returns to action,
for RBS farmers, it might be profitable to execute the action at a level <1,
given that Py is high, to reduce costs. The probability that biodiversity occurs
might therefore be lower for RBS than ABS if the initial probability of
biodiversity occurrence is high, as ABS farmers execute the actionat L =1

anyway.
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Figure 4.2: Probability that biodiversity service occurs given scheme
participation by level of action (y-axis), three different levels of
sensitivity of action (columns) and probability that the
biodiversity service occurs before scheme participation (x-axis)
for both scheme types.

Note: The probability that biodiversity service occurs given scheme participation, P, is depicted on
a color scale, whereby purple indicates high levels for P (i.e. where PL is close to 1) and red indicates
low levels (i.e. P. is close to 0).

The resulting gain in biodiversity (G) is defined as the difference between
the probability of biodiversity occurrence before and after scheme
participation (PL — Po). It is therefore higher for RBS if the initial probability
is low, slightly higher for ABS if the initial probability is high and similar
for both scheme types with increasing sensitivity (Figure 4.3). For RBS, the
full potential of biodiversity gain is exploited once the sensitivity to action
is greater than 1.333. Recall that, by definition, the initial probability of
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biodiversity occurrence on the plot (Po) and biodiversity gain (G) always
sums up to 1, which implies that G is bounded, G < 1-Po. In the case of ABS,
farmers cannot balance the level of action and the sensitivity of the action.
Hence, the biodiversity gain strongly depends on the initial biodiversity at
the plot level, especially where sensitivity is low. With increasing sensitivity
and increasing probability that biodiversity is already present before scheme
participation, the difference in biodiversity gain between ABS and RBS
vanishes (lower part of Figure 4.3), as both types of schemes exploit the full
potential to increase the probability with which biodiversity occurs.
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Figure 4.3: Biodiversity gain per scheme type (first row ABS, second row RBS)
and difference between types (third row) by probability of
biodiversity service occurring before scheme participation (x-
axis) and level of sensitivity to action (y-axis).

Note: The gain in biodiversity, G, is depicted on a color scale, whereby purple indicates high levels
(i.e. Gis close to 1) red low levels (i.e. G is close to 0). When comparing ABS and RBS (third row),
blue areas show where ABS are preferable (biodiversity gain is higher), red areas show where RBS
are preferable and yellow areas show that the difference is (close to) 0. We added a grey arrow that
indicates the direction of the effect when a weeding robot is used (see also the direction of effect in
column 4 of Table 4.1).

From Figures 4.2 and 4.3, we conclude that ABS can produce higher
biodiversity gains with increasing sensitivity to action. This is because,
contrary to RBS, farmers cannot adjust the level of executing the action and
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balance out low sensitivity levels with higher action levels. Overall, this
leads to an increase in and approximation of the biodiversity gains for both
scheme types.

4.4.2 Difference in efficiency between ABS and RBS

To determine which scheme is preferable under various conditions, we now
look at the difference in efficiency, that is, the biodiversity gain per agency
expenditure. The gain in biodiversity depends on the sensitivity, the level of
the action, and the initial probability for biodiversity occurrence (Figures 4.2
and 4.3). In contrast, the expenditures are composed of two parts: first, the
payment to the farmer (DL and Dp) and second, the costs for monitoring
depending on the detectability, d and the resulting time, t, needed to detect
either biodiversity or non-compliance at a sufficiently high rate (i.e. 0.95).
For ABS, the payment is the same, independent of the gain in biodiversity.
For RBS, the agency pays the farmer according to the probability that the
benefit actually occurs. For an overview of expenditures by scheme type for
selected parameter values, see Figure 4.10 and A 4.5 in the Appendix. As
the two parameters a and d describe the characteristics of the weeding robot,
while C., Cn and Py refer to management and scheme conditions, we
maintain three different levels for each of the former while varying those of
the latter.

In Figure 4.4, we assume that the agency monitoring costs per time unit, Cp,
vary between 2 and 20 monetary units. As noted above, the level of Cy
mainly plays a role in efficiency, where monitoring makes up a large
proportion of the agency expenditures (i.e., when detectability is low (left
column)). Assuming that a weeding robot is available, we might end up in
the lower-right corner, where the efficiency of both scheme types is similar,
independent of the levels of Cy and Po.
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Figure 4.4: Relative differences in efficiency by sensitivity to action a (rows),
detectability d (columns), probability of biodiversity service
occurring on patch before scheme participation Po (x-axis) and
agency monitoring costs Cy, (y-axis).

Note: Blue areas show where ABS are preferable (efficiency is higher), red areas where RBS are
preferable and yellow areas where the difference is (close to) 0. Grey arrows indicate the direction
of the effect when a weeding robot is used (see also the direction of effect in column 4 of Table 4.1).

Next, we consider a range of values for the probability of farm visits Py
(Figure 4.5). An increasing probability of farms being visited for measuring
non-compliance means that the difference in agency expenditures for
monitoring between ABS and RBS is reduced. At a probability of 1, all
farms participating in ABS are visited, which is the same extent as that of
farms participating in RBS. We assume that, if a weeding robot does the
monitoring, farms no longer need to be visited (which we reflect by
assuming a low level of agency monitoring costs per time unit, Cp).
Compliance would be monitored by the robot for all ABS-participating
farmers (i.e. Py = 1). Hence, there is no longer a difference between ABS
and RBS with respect to monitoring costs. As expected, RBS gain in
efficiency if ABS farms are visited with a higher probability, especially
where detectability is low. In reality, the probabilities of farm visits < 0.5
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might increase non-compliance and are thus unrealistic; however, for
completeness, we depict them here.
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Figure 4.5: Relative difference in efficiency by sensitivity to action a (rows),
detectability d (columns), probability of biodiversity service
occurring on patch before scheme participation Py (x-axis) and
probability of farm visits for monitoring non-compliance Py (y-
axis).

Note: Blue areas show where ABS are preferable (efficiency is higher), red areas where RBS are
preferable and yellow areas show where the difference is (close to) 0. Grey arrows indicate the
direction of the effect when a weeding robot is used (see also the direction of effect in column 4 of
Table 4.1).

Finally, we turn to the cost of executing the action at a certain level, C.
(Figure 4.6). By construction, payments are proportional to the action costs
and this parameter varies the proportion of agency expenditures that are
spent on payments. With increasing action costs, differences in efficiency
become smaller. This is because, for both scheme types, the costs rise to the
same extent, meaning that with higher action costs, the proportion of the
agency budget spent on payments increases and efficiency decreases. For
low levels of action costs, the proportion of expenditures for monitoring
drives the resulting efficiency, which explains why the difference in
efficiency is more pronounced if detectability is high.
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Figure 4.6: Relative difference in efficiency by sensitivity to action a (rows),
detectability d (columns), probability of biodiversity service
occurring on patch before scheme participation Py (x-axis) and
costs of setting the action Cy (y-axis).

Note: Blue areas show where ABS are preferable (efficiency is higher), red areas where RBS are
preferable and yellow areas show that the difference is (close to) 0. Grey arrows indicate the direction
of the effect when a weeding robot is used (see also the direction of effect in column 4 of Table 4.1).

With increasing sensitivity to action, the difference in efficiency between
ABS and RBS vanishes

We observe in all three panels of Figure 4.4, 4.5, and 4.6 that with increasing
sensitivity, the difference in efficiency vanishes, independent of the other
parameters that are considered. This is mainly the result of the full
exploitation of biodiversity gains once the sensitivity is > 1.3 (Figures 4.2
and 4.3). Furthermore, the proportion of the agency budget spent on
payments is high for both scheme types; for ABS, the payment is the same
in any case, while in RBS, farmers are rewarded for delivering the full
potential of the biodiversity benefit at a low level, hence lowering costs (see
Figure 4.2, right column).
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This finding challenges the current narrative of weeding robots as increasing
the preferability of RBS due to their monitoring abilities (Besson et al.,
2022; Finger, 2023). Our results show that ABS can also gain in efficiency,
given the assumption that the weeding robots’ removal abilities allow them
to execute actions to which biodiversity is more sensitive, which calls for a
discussion of the criticism of ABS as inefficient (Pe’er et al., 2020).

To translate this rather theoretical finding into concrete conservation efforts,
we consider the results of Zingsheim and Déring (2024), who provide an
idea of how such actions in terms of weeding strategies executed by a
weeding robot could look. They explore the effects of different weeding
strategies on several biodiversity parameters and yield. The authors find that
the increase in biodiversity is the highest and the trade-off between yield and
biodiversity is minimized, when weeding is based on (i) the number of
species per area, (ii) thresholds for weed quantity (weed cover per species),
and (iif) competitiveness of the weed with the crop based on Hunt et al.
(2004)™.

As an implication for future policy design, we conclude that not only the
difference in efficiency between ABS and RBS vanishes, but also the
difference in the overall design decreases. Given the weeding robot’s
removing and monitoring ability, future ABS could be set up such that
farmers need to apply a certain weeding strategy on a plot (e.g., only weed
every second row or only remove the most competitive weeds). Farmers
could, ideally, simply download the software settings from the authorities to
set up a certain strategy to comply with an ABS. Similarly, farmers could
opt for these strategies as part of RBS and decide individually which weeds
to remove or keep to reach the predefined target at the lowest cost. However,
due to a lack of research, it remains difficult to foresee how specific these

™ We hereby refer to information requirements for different weeding scenarios executed by weeding
robots tested by Zingsheim and Ddring (2024). Within the CSR strategy as developed by Hunt at al.
(2004), weeds are categorized as strong (C-coordinate of 1) or weak (C-coordinate of 0) competitors.
The underlying assumption is, that weeds which have a less competitive relation with crops can
remain on the field, while the more competitive ones needs to be removed. In the resulting tested

scenario “(9) Threshold “, uncompetitive weed species with a C-coordinate of 0 were left untreated.
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findings might be for particular weed communities or at different spatial
scales.

PES efficiency depends on the appropriately defined biodiversity indicators

The second pattern that occurs across the panels of Figure 4.4, 4.5 and 4.6 is
the mediating role for the detectability of non-compliance (for ABS) and
biodiversity (RBS), d, if sensitivity is <1. As the proportion of agency budget
spent on monitoring depends strongly on detectability and the time needed
to reach a detectability of 95%, costs are lower, and hence efficiency is
higher, if detectability is high (right column).

However, while from a technical perspective, future weeding robots might
be able to increase the detectability of biodiversity, the effect on scheme
efficiency strongly depends on the actual biodiversity indicators chosen,
which in turn depends on the scheme’s goal, such as conservation of rare
species vs. ecological resilience vs. biological pest control (Duelli and
Obrist, 2003).

Within our model, we construct the indicator to be binary either in terms of
whether species are present or not or in terms of whether a threshold on
species abundance, distribution, and/or density is met or not. However, in
reality, more complex indicator structures will be needed, taking also into
account the biodiversity value of certain species, such as orchids in grassland
as high-value species.

For either scheme type, it is crucial to define, from an ecological/biodiversity
viewpoint, the appropriate actions (i.e., weeding strategies) and the
appropriate results (i.e., biodiversity indicators) that could be considered
within PES.

For RBS, it will no longer be enough to only define indicator species, but
multidimensional indicators will be needed to prevent robots from
outsmarting current RBS designs. If only a certain threshold for the number
of species is given to receive a payment, robots might remove all but one
individual of each indicator species. Thereby, the requirement is fulfilled at
a very minimal level but an undesired outcome of a very low density of very
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homogeneously distributed weeds with only one individual per species is
produced. Therefore, multidimensional composite indicators should also
contain information on the desired density and distribution of weeds, as
tested by Chaplin et al. (2021) and Sumrada et al. (2022), where a minimum
weed density for the indicator species must be reached (for every x sections
of a field) to receive the payment. However, while weeding robots might
allow the inclusion of more sophisticated indicators, the actual choice of
indicator species, their desired density, and their distribution would remain
a major challenge for biodiversity research (Ruas et al., 2021; Zabel & Roe,
2009), and comes along with the problem of making biodiversity measurable
in monetary terms (Bartkowski et al., 2015; Farnsworth et al., 2015).

For ABS, actions must be defined such that robots can easily monitor
compliance. One example could be the strip wise removal of weeds in crops.
Zingsheim and Ddoring (2024) show that this procedure can increase the
gamma diversity of weeds at the field level. Hence, farmers could be
rewarded for leaving certain strips or rows un-weeded, similar to a
hypothetical (hybrid) scheme tested by Massfeller et al. (2022), an action
that could be easily detected by the robot (Ahmadi et al., 2021).

Hence, because robots make it easier to monitor specific aspects of
biodiversity and enable the definition of more precise actions, the actual
choice and monetary valuation of indicators become more important.
Defining these indicators and biodiversity aims clearly remains a task for
future biodiversity research.

4.4.3 Options arising from data on biodiversity status and gain

Weeding robots might also open new options for designing novel policy
schemes. Particularly, the possibility for the agency to have access to reliable
data on biodiversity that existed on a plot before farmers joined a scheme,
as well as data on the actual gains in biodiversity achieved through
participation in the scheme (obtained via a robot) offer new possibilities.

First, we suppose that the status quo for biodiversity could be taken better
into account for payments within RBS. Similar to Gibbons et al. (2011), we
observe the importance of the probability of the biodiversity service being
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present before scheme participation for scheme efficiency. Data on
biodiversity status and gain could be used to pay farmers in relation to
capacity or proportional to the actual change (McDonald et al., 2018; D.
Wang et al., 2023; Zabel & Roe, 2009). Such novel, probably more efficient,
payment approaches could be combined with payments based on modelled
results, as suggested by Bartkowski et al. (2021).

Second, such novel payment mechanisms could reduce farmers’ (perceived)
risk of not reaching the target, which currently constitutes a major barrier to
adoption of RBS (Burton & Schwarz, 2013). This is because farmers would
receive money for the (proportional) change considering the status quo and
the capacity, or based on modelled results and no longer for either reaching
or not reaching a pre-defined target that is the same for all farmers regardless
of natural conditions. In particular, in view of increasing environmental risk
through extreme weather events (Birthisel et al., 2021), novel payment
structures must be further studied. We additionally expect that the risk of the
biodiversity indicators not being detected, even when present, decreases
through the increased detection ability of the weeding robot.

A third option concerns farmers’ perceptions of biodiversity and scheme
effects. Biodiversity conservation differs from other pro-environmental
behaviors because measuring and perceiving biodiversity is difficult (Kidd
et al., 2019; Kleijn et al., 2019). Furthermore, the environmental effects of
weed management are hard to predict (Wilson et al., 2009). It has been noted
that farmers who perceive positive environmental benefits from pesticide-
free weeding tend to adopt this type of production (M6hring and Finger,
2022). Hence, it might prove relevant if weeding robots could communicate
the measured biodiversity levels directly to the farmer. Therefore, not only
might the perceived complexity of weed management effects decrease, but
scheme acceptance could also increase (Moss, 2019; Wilson et al., 2009;
Zwickle et al., 2014). In addition, these measured results could be
communicated to the public or to other farmers as a form of signalling
environmental engagement. This might be particularly relevant as social
norms have been found to drive farmers’ weed management decisions
(Bakker et al., 2021; Burton & Wilson, 2006; Dentzman & Jussaume, 2017;
Mohring et al., 2020).
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4.4.4 Recommendations for technology development

From our findings, we derive recommendations for further technology
development. We conclude that, besides focusing on weed removal
efficiency (Merfield, 2023), technology development should also focus on
the robots’ other abilities that have been identified as crucial for scheme
efficiency: 1) the reliable differentiation between various plant species
(crops and weeds) in various growth stages and conditions, 2) the detection
of compliance with ABS rules and 3) the ability to execute biodiversity-
sensitive actions that allow selective removal of weeds, which should be
closely linked to research on multidimensional indicators. Ideally, in the
future, farmers would be able to simply download potential weeding
strategies as ABS, directly from the agency to the robot.

Finally, throughout our study, we assume that in the future, data will be
easily transferrable from robots to the agency (and back). This would allow
for a decrease in transaction and monitoring costs and opens up possibilities
to use the obtained data. However, the feasibility needs to be examined from
a technical as well as a behavioral/data-protection perspective. For instance,
farmers seem to be rather skeptical towards a 100% monitoring rate through
novel technologies (Villanueva et al., 2024).

4.5 Conclusion

We find that the usage of weeding robots affects the optimal design for a
payment for ecosystem services aiming at biodiversity conservation in
arable farming in two ways. First, RBS gain efficiency through the weeding
robots’ monitoring ability. Second, ABS gain efficiency through weeding
robots’ ability to execute plant-individual actions to which the biodiversity
might react more sensitively. We find these two effects to jointly eliminate
the differences in efficiency between the two scheme types if detectability
is high and biodiversity-sensitive actions can be performed. Thus, our results
challenge the common belief that novel robots are mainly beneficial for RBS
schemes. The monitoring ability of weeding robots has been conceptually
considered in the literature, but we are the first to consider the potential
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effects of the weeding robot’s selective removal ability on optimal PES
design as well.

The main challenge for future policy design relates to the increased need for
a clear definition of the desired biodiversity for both types of schemes. For
ABS, appropriate actions with a high sensitivity need to be defined, whereas,
for RBS, clear multi-dimensional indicators are necessary. The development
of these actions and indicators needs to be supported by ecological research
and carried out in close cooperation with technological development.
However, defining these targets is challenging, and closing this research gap
is a requirement for effective policymaking.

Our study assumes risk-neutral farmers and agencies. Future research could
study how optimal robot-based PES designs would change under different
risk preferences. Further, future research could investigate the options for
novel payment schemes based on the obtained data on biodiversity. This
might allow the inclusion of landscape considerations if payments depend
on other farmers’ performance in the same area (McDonald et al., 2018).
Further, we do not include any social interactions in the model, although
they influence farmers’ decision-making. Future applications could build
upon this study and include social aspects, especially with regard to schemes
targeted at landscape scale, such as collaboration schemes (Schaub et al.,
2023; Villamayor-Tomas et al., 2021).

Finally, we conclude that, by contrast to current narratives, the availability
of weeding robots will not necessarily benefit only RBS efficiency. Given
the option for more sensitive actions carried out by weeding robots, ABS
can also remain a valuable instrument in the policy scheme toolbox.
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4.7 Appendix

4.7.1 A. Sensitivity Analysis of parameter x

We conduct a sensitivity analysis for the parameter x, that describes the
multiple of the costs paid to the farmer as payment by the agency. For a
detailed examination of the optimal level of x see also Figure S3 in the
supplementary material in Gibbons et al. (2011).

While we assume a fixed level for x of 10 for the analysis in the main paper,
we here explore how for different levels of x the probability of biodiversity
service occurrence (Figure 4.7), the gain in biodiversity (Figure 4.8) and the
difference in efficiency between scheme types (Figure 4.9) vary.

As can be seen in Figure 4.7, the probability of biodiversity service
occurring under scheme participation remains the same for ABS for different
levels of x as farmers do not change their level of action. Contrarily, for
RBS, the level of x makes a difference in the probability of biodiversity
service provision, as for higher levels of x, farmers are willing to increase
their levels of action while for lower levels of x, they decrease it. For low
levels of sensitivity to action, a, (left column), ABS can increase the
probability of biodiversity service occurrence more as farmers execute the
action still at level 1. With increasing levels of sensitivity to action (middle
and right column) and increasing payment (lower rows), RBS exhibit higher
probabilities of biodiversity service occurrence. The same phenomenon can
be observed in Figure 4.8. Here also, the role of the initial biodiversity
service occurrence on the plot is emphasized.

In Figure 4.9, we compare the difference in efficiency given different levels
of x and selected levels of Ch, Pv, and CL. The pattern remains the same as
in Figures A 4.1 and A 4.2, but at different intensities depending on the level
of the other variables influences scheme efficiency.

We conclude that given restricted agency budgets and, hence, rather low
payments, the sensitivity of the action has to be carefully considered when
deciding on whether to offer farmers ABS or RBS. Overall, RBS might
prove more efficient, but for low payments and low sensitivity, farmers
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might execute actions at very low levels, thereby not leading to the desired
increase in biodiversity service occurrence.
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Note that on the y-axis we depict two parameters: Pv and Ch. For each selected value of Pv (0.2, 0.4,
0.6, 0.8, 1) three different values for Ch are assumed (2,10,20)



