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Kurzfassung 

Der Agrarsektor steht vor der doppelten Herausforderung, Ernährungssicherheit zu 

gewährleisten und gleichzeitig die Umwelt zu schützen. Bevölkerungswachstum, Klimawandel 

und Umweltbelastungen verschärfen diese Herausforderung. Ein vielversprechender 

Lösungsansatz ist der Wandel hin zur nachhaltigen Intensivierung – das bedeutet: gesteigerte 

Produktion bei verminderten Umweltauswirkungen. Intelligente Agrartechnologien (Smart 

Farming Technologies, SFT), insbesondere solche auf Basis künstlicher Intelligenz (KI), bieten 

großes Potenzial zur Unterstützung dieses Wandels durch autonome Datenerfassung sowie zeit- 

und standortgenaue Bewirtschaftung. Allerdings verwenden Landwirt*innen SFT bislang nur 

in begrenztem Ausmaß und die Gründe dafür sind noch nicht vollständig geklärt. Politisch 

verfolgt die EU-Agrarpolitik das Ziel, die Digitalisierung und nachhaltige Praktiken durch 

Anreize zu fördern, wurde aber vielfach als ineffizient kritisiert. SFT könnten hier durch 

ergebnisorientierte Ansätze unterstützen – jedoch fehlt es an Forschung zur Integration ihrer 

Potenziale in der Politikgestaltung.  

Die vorliegende Dissertation adressiert diese Wissenslücken durch empirische Studien zur 

Interaktion von Landwirt*innen, SFT und Agrarpolitik in Europa. Ziel ist es zu verstehen, 

welche Faktoren das Verhalten von Landwirt*innen beeinflussen, wie SFT die 

Politikgestaltung verändern könnten und welche politischen Maßnahmen ergriffen werden 

müssten, um das Potenzial digitaler Technologien für eine nachhaltige Intensivierung zu 

nutzen. Kapitel 2 analysiert, wie sogenannte „Peer-Effekte“ – insbesondere verbaler Austausch 

und Wahrnehmung von Feldern anderer Landwirt*innen – die 

Technologienutzungsentscheidung beeinflussen. Basierend auf Umfragedaten von 313 

Landwirt*innen in Deutschland und einem innovativen, räumlich-expliziten 

Erhebungsinstrument zeigt eine Double-Selection-LASSO-Analyse, dass beide Peer-

Mechanismen positiv mit der Nutzungsentscheidung zusammenhängen und sich gegenseitig 

verstärken. Die Wahrscheinlichkeit der Technologienutzung ist am höchsten für 

Landwirt*innen, die viele Felder in räumlicher Nähe wahrnehmen, auf denen die neue 

Technologie genutzt wird und die mit vielen anderen Nutzer*innen sprechen. In Kapitel 3 wird 

die Zahlungsbereitschaft von 250 Landwirt*innen für KI-basierte Entscheidungshilfen anhand 

eines Online-Experiments untersucht. Die Ergebnisse eines bayesianischen Modells zeigen eine 

klare „Algorithmus-Aversion“: Landwirt*innen bevorzugen menschliche Empfehlungen 

gegenüber KI, selbst bei überlegener Leistung der KI. Das Kapitel führt das Konzept der KI-

Angst als zentralen Erklärungsfaktor für zukünftige Verhaltensmodelle ein. Kapitel 4 verlagert 

den Fokus auf die Politikgestaltung: Mit Hilfe eines Simulationsmodells wird untersucht, wie 

intelligente Unkrautroboter die Ausgestaltung von Zahlungen für Ökosystemleistungen 

beeinflussen können. Die Fähigkeiten der Roboter (selektive Bekämpfung und autonome 

Datenerfassung) erhöhen die Effizienz sowohl aktions- als auch ergebnisbasierter 

Politikansätze. Dies verschiebt die bisherigen Grenzen der Politikdesignoptionen.  

Diese Arbeit leistet aus theoretischer, empirischer und methodischer Perspektive einen Beitrag 

zum Verständnis des Technologieverhaltens von Landwirt*innen und zur Rolle von SFT in der 

Agrarpolitik. Sie zeigt auf, wie SFT effizient zur Politikgestaltung genutzt werden können. 

Soziale Lernprozess können helfen, der KI-Skepsis von Landwirt*innen entgegenzutreten. Eine 

erfolgreiche Technologie-Einführung erfordert jedoch Unterstützung: Entscheidungsträger in 

Politik, Beratung und Technologieentwicklung sollten gemeinsam die Potentiale 

kommunizieren, wahrgenommene Hürden abbauen und die Fähigkeiten von SFT zur 

Unterstützung nachhaltiger Intensivierung gezielt einsetzen.  



 

 

  



Abstract 

The agricultural sector faces a dual challenge: ensuring food security while simultaneously 

protecting the environment. Population growth, climate change, and environmental degradation 

exacerbate this challenge. A promising pathway to address it is a shift towards sustainable 

intensification—that is, achieving higher productivity while reducing negative environmental 

impact. Smart farming technologies (SFT), particularly those based on artificial intelligence 

(AI), offer substantial potential to support this transition by enabling autonomous monitoring 

and site- and time-specific management. Nevertheless, the adoption of these technologies by 

farmers remains limited, and substantial knowledge gaps persist regarding farmers’ behavior 

towards SFT. At the policy level, the European Union’s Common Agricultural Policy aims to 

promote digitalization and sustainable practices through financial incentives, but such programs 

have often been criticized as inefficient and ecologically ineffective. SFT could support more 

results-oriented policy instruments; however, research is lacking on how their capabilities could 

concretely influence policy design. 

This dissertation addresses these research gaps through empirical studies that examine the 

interaction between farmers, SFT, and agricultural policy in Europe. The aim is to deepen the 

understanding of the factors that influence farmer behavior, how SFT may reshape policy-

making, and how optimal policies can leverage the potential of SFT to support sustainable 

intensification in the agricultural sector. Chapter 2 analyzes how “peer effects”—specifically 

verbal exchange and field observation among farmers—influence farmers’ technology adoption 

decisions. Using survey data from 313 sugar beet farmers in Germany and a novel, spatially 

explicit survey tool, we employ a double-selection LASSO approach. The results show that 

both forms of peer effects significantly affect adoption and mutually reinforce one another. The 

likelihood of adoption is highest for farmers that observe many fields in close spatial proximity 

and verbally exchange with many adopters. Chapter 3 investigates farmers’ preference for AI-

based decision-support tools. Based on an online survey and an embedded economic 

experiment involving 250 German farmers, the chapter uses a novel Bayesian probabilistic 

programming approach to quantify the willingness to pay. The findings reveal clear “algorithm 

aversion”: farmers prefer recommendations from human advisors over those generated by AI—

even when the AI outperforms the human. The chapter introduces the concept of AI anxiety as 

a key behavioral factor and proposes its integration in future technology adoption models. 

Chapter 4 shifts the focus to agricultural policy by examining how smart weeding robots could 

affect the design of payments for ecosystem services. Using a simulation model, we explore 

how the robots’ capabilities—selective weeding and autonomous monitoring—could enhance 

the efficiency of both action-based and results-based payments. We find that improved 

monitoring supports the efficiency of results-based schemes, while selective weeding can 

improve action-based approaches. Overall, the efficiency of both payment types increases 

compared to when no robot is used, which shifts the frontier of current policy design options.  

In sum, this dissertation contributes theoretically, empirically, and methodologically to a better 

understanding of farmers’ behavior towards SFT and identifies how SFT could change 

agricultural policy design. The findings of this dissertation show that using SFT for sustainable 

intensification has the potential to make agricultural policies more effective. However, 

technology introduction alone is not sufficient—appropriate guidance is essential to ensure 

proper use. Social learning can help to address farmers’ algorithm aversion. Policy makers, 

advisory services and technology developers should work together to facilitate large-scale 

adoption by clearly communicating benefits and reducing (perceived) efforts for farmers.
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Introduction 

1.1 Background and Problem Statement 

Every day, nearly 9 million farmers in the European Union (EU) decide 

which crops to grow, how much plant protection to apply, or whether to 

invest in a new technology. Although farmers constitute only 4% of the EU 

population, their decisions shape roughly 40% of the EU’s land area 

(Eurostat, 2025a, 2025b). This remarkable influence comes with dual 

responsibilities: ensuring food safety while protecting the environment 

(FAO, 2024). Hence understanding farmers’ decision-making is paramount 

to address the multiple pressures affecting the agri-food sector: Global food 

demand is increasing while climate change and external shocks threaten 

agricultural production and the resilience of the agri-food system (Borrelli 

et al., 2020; Gouel & Guimbard, 2019; Ortiz-Bobea et al., 2021). At the same 

time, agricultural production contributes to habitat loss (Kehoe et al., 2017; 

Pendrill et al., 2022), nutrient cycle disruption (Tang et al., 2021), and 

substantial global greenhouse gas emissions (Tubiello et al., 2022), thus 

leading to a transgression of several planetary boundaries (Campbell et al., 

2017; IPCC, 2022; Richardson et al., 2023). Addressing these challenges 

calls for a shift towards resilient and increasing food production while 

reducing environmental damage. This approach, known as sustainable 

intensification, holds great potential (Caiado et al., 2017; Lindblom et al., 

2017; Weltin & Hüttel, 2023); but hinges on farmers’ adjusting their farm-

level decisions accordingly.  

Digitalization of the agri-food sector – often termed the 4th agricultural 

revolution – is seen as key to reaching sustainable intensification (Finger, 
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2023; Khanna, 2025; Walter et al., 2017). Smart farming technologies 

(SFTs) leverage advanced information and communication tools to process 

vast amounts of unstructured data (Finger, 2023; Klerkx & Rose, 2020; 

David Christian Rose & Chilvers, 2018; Storm, Seidel, et al., 2024; Wolfert 

et al., 2017), by increasingly relying on artificial intelligence (AI) (Khanna 

et al., 2024). This enables SFTs to learn from the outcomes of previous tasks 

and allows to enhance resource use efficiency, substitute harmful inputs and 

enables a redesign of the agri-food system (Finger, Benni, et al., 2019; 

Finger, 2023; Khanna et al., 2024; Storm, Seidel, et al., 2024; Wolfert et al., 

2017). This is mainly possible through two novel abilities: Continuous and 

autonomous monitoring, as well as site- and time-specific treatments. Site- 

and time specific treatments of e.g. crops can be enabled by combining data 

from various sources in real time at fine spatial resolution. Based on these 

two abilities, SFTs can provide precise predictions and recommendations for 

farmers leading to more sustainable, resilient and efficient farming (Finger, 

2023; Khanna et al., 2024). Yet, for SFTs to unfold their full potential, 

farmers need to adopt and use the technology in the intended way. 

However, gaps remain in fully understanding the adoption process of SFT. 

As suggested by the induced innovation hypothesis, farmers adopt new 

technologies when they perceive benefits (Acemoglu, 2002; Hicks & 

Simiand, 1932). For example, farmers who perceive positive environmental 

benefits from pesticide-free weeding tend to adopt this type of production 

(Finger & Möhring, 2022). However, technologies are often not fully 

understood by farmers in advance, hence adoption1 decisions are shaped by 

uncertainty and the (in)availability of information. Information – acquired 

through learning-by-doing or by learning from others (social learning) – 

plays a crucial role in whether and how farmers assess the suitability, 

profitability and, ultimately, the benefits of a given technology (Chavas & 

Nauges, 2020). The importance of knowledge and (social) learning as 

prerequisite for technology adoption and diffusion is acknowledged in 

several theories (e.g. Rogers, 2003) and an extensive body of literature has 

studied this topic empirically over the past decades (Albizua et al., 2021; 
 

1
 While the term “adoption” can be defined in various ways, in this chapter we use this word for all 

types of adoption including full, partial, temporal, binary, continuous, and opportunistic adoption by 

farmers (Pannell, 2008). 
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Bandiera & Rasul, 2006; Besley & Case, 1993; Blasch et al., 2020; Conley 

& Udry, 2010; Foster & Rosenzweig, 1995, 2010; McCann et al., 2015; 

Mekonnen et al., 2022; Noy & Jabbour, 2020; Sampson & Perry, 2019; 

Skaalsveen et al., 2020; Šūmane et al., 2018). Yet the technology adoption 

process is characterized by much heterogeneity: if and to what extent a 

technology is perceived as beneficial depends on the individuum, the 

technology attributes and the external production conditions (Feder et al., 

1985; Pannell & Claassen, 2020; Schulz & Börner, 2022). Similarly, if and 

to what extent information is obtained either through learning-by-doing or 

social learning depends on various factors. These range from the individuum 

and the external production conditions over the social network to whether 

the characteristics that determine the outcome of a new technology are easily 

observable (Chavas & Nauges, 2020; McCann et al., 2015; Rogers, 2003; 

Tjernström, 2017). This complex combination of personal characteristics, 

behavioral factors, technology attributes and external conditions complicate 

a systematic comprehension of the full technology adoption process 

(Feisthauer et al., 2024; Shang et al., 2021; Streletskaya et al., 2020).  

To date, no study has examined the role of observability and AI as specific 

technology attributes that can affect the adoption and usage of new 

technology. Shang et al. (2021) highlight that observability of a technology 

could serve as an information source and driver of social learning in farmers’ 

technology adoption decisions, but that much uncertainty persists regarding 

this technology attribute. Further, despite the growing relevance of AI in 

agricultural management and its potential to enhance efficiency, AI as a 

technology attribute has received limited attention in research on farmers’ 

decision-making (Mahmud et al., 2022). Empirical evidence on farmers’ 

perceptions and acceptance of AI in agriculture remains scarce (see De la 

Peña & Granados, 2024; and Orn et al., 2020 for two examples). Currently, 

there is little knowledge on how farmers perceive the potential benefits of 

AI and how individual personality traits shape their responses to it. These 

gaps hinder a comprehensive understanding of farmers’ behavior toward 

SFT and limit the development of effective strategies to support the adoption 

of AI-based technologies. 
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Overall, as pointed out by Finger (2023), this lack of understanding leads to 

a mismatch between the potential of novel technologies and farmers’ actual 

adoption: On the one hand, those technologies with the highest potential to 

reduce resource usage might not be the most profitable to farmers and are 

therefore not adopted. On the other hand, farmers might not use even 

profitable technologies: first, because farmers’ adoption decisions are not 

only driven by profit-maximization (Streletskaya et al., 2020) and second, 

because farmers might not know about the potential benefits of the 

technology (Chavas & Nauges, 2020).  

Consequently, upscaling technology adoption and promoting a development 

towards sustainable intensification require the development and 

implementation of policy measures. Digitalization and environmental 

sustainability are central to the EU’s Common Agricultural Policy (CAP)  

(European Commission, 2020b), reinforced by approaches such as the Farm 

to Fork Strategy and the Biodiversity Strategy (European Commission, 

2020a, 2021a). Currently, voluntary payments for ecosystem services (PES) 

have become key instruments to support the transition by compensating 

farmers for providing public goods beyond regulatory requirements 

(Wuepper et al., 2024; Wunder et al., 2020). Yet, the CAP and PES have 

long been criticized as inefficient and costly (Mennig, 2024). Farmers 

receive public money for specific actions, but the environmental, public 

outcomes remain limited or absent (Brown et al., 2021; M. Meyer et al., 

2025; Pe’er et al., 2017). Further, recent protests reflect farmers’ reluctance 

to participate in such schemes (Finger et al., 2019), likely due to the 

intangible, uncertain, and hard-to-measure benefits at the farm level (Pannell 

& Claassen, 2020). One promising approach to address these challenges is 

to shift from action-based (ABS) to results-based schemes (RBS)2, which 

reward farmers for achieving defined outcomes rather than performing 

prescribed actions. This may increase efficiency and improve acceptance, as 

farmers retain flexibility in how to reach the targets (Burton & Schwarz, 

2013). However, RBS face two major barriers: the lack of reliable indicators 

 
2  Various terms are used in this context, including “outcome-oriented,” “outcome-based,” and 

“output-oriented” (Schilizzi et al., 2011), “payment-by-results” (Schroeder et al., 2013), “result-

oriented” (Burton & Schwarz, 2013), and “results-based” (Herzon et al., 2018; Russi et al., 2016). We 

use the term “results-based schemes” and RBS throughout. 
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to measure success, and farmers’ fear of losing payments if results are not 

met despite effort (Chaplin et al., 2021). Recent research suggests that 

digitalization can help overcome these barriers (Ehlers et al., 2022, 2021; 

Finger, 2023; OECD, 2019; Walter et al., 2017). Here, most research focuses 

on SFTs' monitoring functions, for example the use of acoustic sensors 

(Markova-Nenova et al., 2023), drones (Basavegowda et al., 2025), and 

digital fencing  (Wätzold et al., 2024) to facilitate the implementation of 

RBS. But little attention is paid to SFTs’ potential for time- and site-specific 

interventions, that help reduce trade-offs between production and 

environmental goals, e.g. between crop yield and weed biodiversity 

(Zingsheim & Döring, 2024). This paucity impedes a clear understanding of 

how SFTs might imply changes in agricultural policy design.  

So far, two main research gaps evolve: First, farmers’ behavior towards 

SFTs is not fully understood and second, evidence is lacking on how SFTs 

might change agricultural policy design. In consequence, it remains unclear 

what optimal – i.e. effective and behaviorally aligned – policies should look 

like, that leverage SFTs’ potential for sustainable intensification while 

avoiding unintended consequences (Daum, 2021). Ultimately, this 

knowledge gap can impose costs on farmers, taxpayers, and the environment 

(Finger, Benni, et al., 2019). To fill this third gap, we aim to identify what 

optimal policy design should look like in the era of SFT.  

Figure 1.1: Overview of the topical background and resulting research 

questions, own illustration 
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In summary, to understand how the agricultural sector can develop towards 

sustainable intensification in the era of smart farming, three key perspectives 

need to be considered, as illustrated in Figure 1.1: i) farmers as decision- 

makers at the farm level, ii) SFTs and their novel attributes, and iii) 

agricultural policy. As outlined above, these perspectives are interlinked, yet 

little is known about how they interact: First, farmers' behavior towards 

SFTs is not fully understood. Second, the impact of SFTs on the design of 

policy instruments requires further investigation. Third, in consequence, 

there is insufficient knowledge on how policy instruments should be 

designed to leverage the potential of SFTs to effectively guide farmers’ 

adoption and use of SFTs in support of sustainable intensification. This 

thesis contributes to closing these research gaps. 

1.2 Aim and Research Questions 

The aim of this thesis is to deepen the understanding of the interaction 

between farmers, SFTs and agricultural policy design, to inform decision-

makers on how to leverage the potential of SFTs to support sustainable 

intensification of the agricultural sector. To this end, this thesis seeks to 

answer the following research questions (RQ) by using empirical methods 

and quantitative data: 

RQ 1: What shapes farmers’ behavior towards SFTs? 

RQ 2: What are the implications of SFTs for agricultural policy 

design? 

RQ 3: What should optimal policy design look like to leverage the 

potential of SFTs for sustainable intensification? 

Figure 1.2 illustrates the structure of this thesis. The chapters vary regarding 

the stage of the focal technology, the data used and the methodology. 

Chapters 2 and 3 contribute to answering the first research question by 

focusing on behavioral factors explaining farmers technology adoption 

decisions. In Chapter 2, we rely on data from an online survey with German 

sugar beet farmers that we analyze using machine learning. In Chapter 3, the 

data stems from an online experiment and we apply a novel Bayesian 

probabilistic programming approach for the analysis. Chapter 4 addresses 
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Research Question 2 by employing a simulation model based on secondary 

data to study the effect of SFT on PES efficiency. While Chapter 2 focuses 

on the current adoption status of an existing technology (mechanical 

weeding), Chapters 3 and 4 look at technologies that are not yet widely used, 

namely AI-based decision support tools (AI-DST), and smart weeding 

robots. Together, the synthesis of all three Chapters allows to answer the 

third research question by deriving recommendations for various decision-

makers.  

Figure 1.2: Structure of the thesis, own illustration 

To enable transparency and replicability of all studies, we follow the 

principles of open science and findable, accessible, interoperable, and 

reusable (FAIR) data procedures (Storm, Heckelei, et al., 2024). We share 

code and (where possible) data. The two surveys for Chapters 2 and 3 were 

pre-registered on the Open Science Framework (OSF) and we obtained 

ethical clearance before data collection.  

In all three chapters we focus on crop production in Europe, which is 

characterized by high intensity (Gianessi & Williams, 2011). Natural and 

climatic conditions as well as the use of various inputs like fertilizer and 

pesticides have provided Europe with the highest crop yields worldwide, 

thereby contributing to global food security and safety (FAO, 2025a; 

Gianessi & Williams, 2011; Oerke, 2006). Germany, the country Chapters 2 
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and 3 focus on, is among the ten countries with the highest yields worldwide 

in wheat, barley and sugar beets (FAO, 2025a). At the same time, it has the 

third highest use of pesticides (in tons applied) within the EU (FAO, 2025b), 

which comes with unintended negative consequences for human health 

(Hossain et al., 2017) and the environment, especially biodiversity (Fritsch 

et al., 2024; Geiger et al., 2010).  

The remainder of this introductory chapter is structured as follows: Section 

1.3, presents the contributions of each chapter to answer the research 

questions and to reach the overall research aim, by providing more detailed 

insights into the different methods used and the results obtained. Section 1.4. 

answers the third research question by synthesizing the findings of the three 

chapters to derive policy recommendations. Section 1.5 concludes with a 

reflection on limitations and an outline of future research avenues. 

1.3  Contributions 

In the following, detailed information on each chapter is provided by 

presenting the concrete research gap, the theoretical, methodological and 

empirical contributions and how the chapter addresses the research 

questions. 

1.3.1 Field observation and verbal exchange as different peer effects in 

farmers’ technology adoption decisions3 

Peer influence plays a key role in farmers' decisions to adopt new 

technologies (Shang et al., 2021). While previous research has explored 

different types of peer effects, such as verbal communication (Albizua et al., 

2021) and field observation (Mekonnen et al., 2022), the mechanisms behind 

these effects are not well understood (Bramoullé et al., 2020). To date, no 

study has clearly differentiated between peer effects based on verbal 

exchange versus those arising from field observation. We aim to fill this gap 

by answering the following research questions: 

 

3
 This chapter is published as Massfeller, A., and Storm, H. (2024). “Field observation and verbal 

exchange as different peer effects in farmers’ technology adoption decisions.” Agricultural 

Economics 55 (5), 739-757. https://doi.org/10.1111/agec.12847 

https://doi.org/10.1111/agec.12847
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1. How do (verbal) information exchange and field observation relate 

to adoption of technology? 

2. Do the two types complement each other in explaining the 

technology adoption decision? 

3. How do the two types relate to each other within the relevant socio-

spatial network? 

Understanding these underlying mechanisms is crucial for improving 

advisory services and policy interventions (Bartkowski & Bartke, 2018; 

Bramoullé et al., 2020). The study focuses on the adoption of mechanical 

weeding among 313 sugar beet farmers in Germany, using survey data from 

early 2022. Sugar beet farming in Germany heavily depends on herbicides 

(Nause et al., 2021). With growing environmental concerns, alternative 

methods like mechanical weeding are becoming more important as a 

potential solution (BLE, 2018; Warnecke-Busch et al., 2020). We design a 

novel custom-built survey tool that enables us to gather spatially explicit 

data: participants are asked to identify their fields and the fields of other 

farmers where mechanical weeding has been observed on an interactive 

map. Additionally, farmers indicate whether they used mechanical weeding 

techniques and how many other adopters they know. 

The study is embedded in Rogers’ Theory of Diffusion of Innovation 

(Rogers, 2003), which explicitly considers the observability of a new 

technology as an important attribute explaining the adoption decision. From 

an econometric point of view, identifying peer effects is challenging, as 

individual behaviors may be influenced by various factors stemming from 

endogenous, exogenous, and correlated effects – a challenge known as 

reflection problem (Manski, 1993). We are interested in the endogenous 

effects, that is, the correlation between the farmer’s peers’ and their own 

adoption decision through field observation and/or knowing adopters. To 

mitigate biases from correlated effects and, to a lesser extent, exogenous 

effects, we include farm- and county-level control variables in our analysis. 

This includes the distance to demonstration farms or the affiliations of 

farmers with specific sugar factories, as well as county-level farm 

demographics.  
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To handle the large number of control variables in combination with the 

relatively small sample size of 313, we employ a Least Absolute Shrinkage 

and Selection Operator (LASSO) (Finch & Hernandez Finch, 2016) with a 

double-selection approach (Belloni & Chernozhukov, 2014; Belloni et al., 

2014). LASSO is a state-of-the-art machine learning approach that allows to 

avoid high variance in parameter estimates (Storm et al., 2019). This method 

helps to identify the most relevant explanatory variables that should be 

included in the model and thereby improves model accuracy. The double-

selection approach allows to address the danger of omitted variable bias 

caused by control variables that are correlated with both the outcome (i.e. 

adoption) and the variables of interest (i.e. observing fields and knowing 

adopters). Assuming no unobserved confounders, this approach ensures that 

relevant controls are included even if their effects are indirectly captured by 

our variables of interest.  

Our findings suggest that both verbal exchange and field observation are 

positively related to technology adoption, whereby verbal exchange seems 

to play a slightly more pronounced role. Both verbal information exchange 

and field observation play a key role in facilitating adoption, consistent with 

previous research (Mekonnen et al., 2022; Sampson & Perry, 2019). While 

highly correlated, the two peer effects complement each other in explaining 

adoption decisions. In a socio-spatial network with many known adopters 

and many observed fields in close spatial distance, the likelihood of adoption 

is highest and verbal exchange and field observation reinforce one another. 

This study offers a foundation for future research into the causal 

relationships behind peer effects and introduces a new survey tool for 

capturing spatially explicit data on farmers' fields. Our findings suggest that 

advisory services should focus on establishing personal contact between 

adopters and non-adopters. Given the complementary relationship, field 

observation possibilities should always be accompanied by the option to 

verbally exchange. To enhance the resource efficiency of policy measures 

and extension services, SFTs, like weeding robots, could be offered on a trial 

basis to selected farmers in nearby regions. 
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1.3.2 Are Farmers Algorithm-Averse? The Case of Decision Support Tools 

in Crop Management4 

Chapter 3 focuses on a technology that is not yet broadly adopted but 

currently under development and promising: Decision Support Tools (DST) 

based on Artificial Intelligence (AI). AI plays an increasingly important role 

in farmers’ daily life and AI-based DSTs have been developed by both 

public and private actors, to increase productivity, improve resource use 

efficiency, and support adaptation to climate change (Yousaf et al., 2023). 

However, their success hinges on farmers’ willingness to adopt. Research 

shows that most farmers rely more on advisory services and peer 

communication than on digital tools (Giulivi et al., 2023; Helps et al., 2024; 

Kiraly et al., 2023; Lázaro et al., 2021; Skaalsveen et al., 2020). This 

resistance to algorithmic recommendations – even when clearly superior to 

human advice – is known as algorithm aversion (Dietvorst et al., 2015). 

Economically, algorithm aversion can be understood as a deviation from 

rational behavior: individuals reject the AI-DST despite its potential for 

more efficient management. Understanding this behavioral deviation is 

crucial, as these tools offer a path toward resource-efficient farming and 

reduced environmental impacts while maintaining high yields. However, the 

phenomenon remains understudied in agricultural decision-making 

(Mahmud et al., 2022). Therefore, the third chapter addresses the research 

question:  

What role does algorithm aversion play in farmers’ intention to use 

AI-DST? 

To answer this question, we conduct an online survey with 250 German 

arable farmers in autumn 2024 to elicit both farmers’ intention to use AI-

DSTs and their Willingness-To-Pay (WTP) for different types of advice (AI 

vs. human). Within the survey, we employ an economic experiment to elicit 

farmers’ algorithm aversion. We test whether and to what extent farmers 

prefer a human advisor over an AI-based DST, whereby we give different 

 

4
 This chapter is currently under review at the American Journal of Agricultural Economics as 

Massfeller, A., Hermann, D., Leyens, A., Storm, H. (2025). “Are Farmers Algorithm-Averse? The 

Case of Decision Support Tools in Crop Management”. 
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information on the performance of both options (both perform equal, or one 

better than the other). We further measure farmers’ latent AI-anxiety on a 7-

point Likert-Scale following Wang and Wang (2022).  

To design the survey and analyze the data, we employ a Bayesian 

probabilistic programming (PP) workflow based on Storm et al.(2024) and 

following Gelman et al. (2020) and McElreath (2018). This approach offers 

several advantages, including improved transparency through a theoretically 

motivated data-generating process (DGP), iterative pretesting with synthetic 

data, and validation of code, inference, and visualization as part of the pre-

registration. Statistically, it provides clear benefits in expressing and 

interpreting parameter uncertainty compared to frequentist methods (Storm, 

Heckelei, et al., 2024). To our knowledge, this represents one of the first full 

applications of the Bayesian workflow in experimental studies in this field 

(cf. Leyens et al., 2024; Stranieri et al., 2022; Varacca, 2024). 

Our findings show that most farmers prefer human advisors even when the 

AI tool performs better. That is, algorithm aversion plays a dominant role in 

farmers’ intention to use and their WTP for AI-DST. We calculate a 

performance premium, i.e., how much better the AI-DST needs to perform 

to be equally preferred as human advice. For most farmers in our sample, 

the AI-DST must outperform the human advisor by 11% to 30%. Similarly, 

an AI-DST with the same performance as a human would need to be 21% to 

56% cheaper for most farmers to be perceived similarly valuable. 

Methodologically, we propose the developed PP workflow for future 

experimental studies. 

Chapter 3 helps reaching the overall aim of this dissertation by exploring 

farmers’ behavior towards novel, AI-based SFTs. Building on our findings 

that many farmers may display algorithm aversion, we propose 

incorporating AI-anxiety as a novel dispositional factor in behavioral 

research on farmers’ adoption of AI technologies and thereby extending 

frameworks on behavioral factors such as that of Déssart et al. (2019). 

Further, our results underscore the need for technology developers to 

account for algorithm aversion when designing AI-based decision support 

tools. In particular, the significance of the performance premium highlights 

the importance of transparently communicating the value and reliability of 
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AI tools to end-users. Given farmers’ strong preference for human advice, 

agricultural advisory services must carefully assess which services are best 

suited for AI and where human expertise remains indispensable. 

1.3.3 Action- or results-based payments for ecosystem services in the era of 

smart weeding robots?5 

Payments for ecosystem services (PES) are commonly used to mitigate the 

negative impacts of agriculture on biodiversity  (Wunder et al., 2020, 2008). 

PES schemes can be either action-based (ABS), where farmers are rewarded 

for specific actions, or results-based (RBS), where farmers receive payments 

based on predefined biodiversity indicators. To date, most existing RBS 

focus on biodiversity in grasslands or wildlife conservation. Only few 

examples are found in arable farming (Elmiger et al., 2023; Hagemann et 

al., 2025), but engagement towards environmental protection is needed in 

these intensive systems. Research suggests that digitalization and new 

technologies will help to overcome current limitations of RBS (Besson et 

al., 2022; Ehlers et al., 2021; Finger, 2023), including the need for 

measurable and low-cost indicators, and a reduction of the financial risks for 

farmers if targets are not met (Burton & Schwarz, 2013; Zabel & Roe, 2009). 

However, these assumptions have only been scarcely explored empirically. 

Further, to date most research in this area focuses on SFTs’ monitoring 

capacity (cf. Basavegowda et al., 2025; Markova-Nenova et al., 2023; 

Wätzold et al., 2024), while other novel abilities like time- and site-specific 

treatments are neglected.  

Therefore, in Chapter 4, we examine how the availability of smart weeding 

robots could influence PES in the case of biodiversity conservation in crop 

production. Specifically, we focus on the robot’s abilities to autonomously 

monitor plants and selectively remove weeds using non-chemical methods 

or variable-rate herbicides. We focus on weeding robots as they have the 

potential to reduce the trade-off between crop production and environmental 

 

5
 This chapter is published as Massfeller, A., Zingsheim, M., Ahmadi, A., Martinsson, E., Storm, H. 

(2025). Action- or results-based payments for ecosystem services in the era of smart weeding robots? 

Biological Conservation 302, 110998. https://doi.org/10.1016/j.biocon.2025.110998 

 

https://doi.org/10.1016/j.biocon.2025.110998


14   Chapter 1

 

 

degradation, i.e. to enhance biodiversity conservation while maintaining 

high yields (Bawden et al., 2017; Fennimore & Cutulle, 2019; Slaughter et 

al., 2008; Storm, Seidel, et al., 2024; Zingsheim & Döring, 2024). 

Concretely, we aim to answer the following research questions: 

1. How do weeding robots affect optimal PES scheme designs? 

2. What challenges and options might arise for future scheme designs 

once weeding robots are used? 

To this end, we apply a simulation model based on Gibbons et al. (2011) in 

which we illustrate how weeding robots’ abilities to selectively remove 

weeds and to monitor plants could affect PES design and efficiency. Taking 

an interdisciplinary perspective combining insights from tech-development, 

agro-ecology and agricultural economics, we first diagnose changes in weed 

management arising through the availability of weeding robots. Second, we 

identify the relevant parameters in the model to reflect these identified 

changes and extend the set-up of the model where necessary. As a third step, 

we define plausible directions and ranges of how each parameter might be 

affected by weeding robots based on empirical evidence where possible. 

Fourth, we use those ranges to simulate and compare the relative 

preferability of RBS and ABS when weeding robots are available.  

We find that the efficiency, that is biodiversity gain per agency costs, of 

ABS and RBS may be improved by the abilities of smart weeding robots. 

Reliable monitoring can reduce costs for RBS and mitigate the risk for 

farmers that results are achieved but not detected. At the same time, the 

robot’s ability to selectively remove weeds allows for more biodiversity-

sensitive actions. That means the actions executed by a robot come with a 

clear benefit for biodiversity. This contrasts previous actions farmers carried 

out as part of ABS which not necessarily lead to the desired biodiversity 

gain. As a result, the relative efficiency of ABS compared to RBS increases. 

Overall, with increasing weeding sensitivity and monitoring capacity, the 

difference in efficiency between ABS and RBS vanishes. In both cases, we 

observe the status quo of biodiversity before scheme participation to play an 

important role for scheme efficiency. 



Introduction 15

 

  

Chapter 4 contributes to the overall research aim of this thesis by providing 

insights on how a smart weeding robot as a novel SFT might induce changes 

in agricultural policy design. Specifically, we identify how the abilities of 

smart weeding robots could help to increase the efficiency of PES. This 

enables us to inform decision-makers on how to leverage the potential of 

SFTs to support a development towards sustainable intensification. Given 

the importance of robot’s ability to perform biodiversity-sensitive actions, 

we conclude that technology developers need to design robots that are not 

only reliably removing weeds, but that can i) identify various individual 

plants in various growth stages and ii) distinguish between crops and non-

crops and iii) execute weeding based on different rationales like 

competitiveness of the weed. Further, this study identifies a crucial need for 

clearly defined biodiversity indicators from agro-ecologists and 

interdisciplinary efforts. 

1.4  Conclusion and Recommendations 

The aim of this thesis is to deepen the understanding of the interaction 

between farmers, SFTs and agricultural policy design, to inform decision-

makers on how to leverage the potential of SFTs to support sustainable 

intensification of the agricultural sector. To this end, the three chapters of 

this thesis provide both theoretical, empirical and methodological 

contributions. The following section synthesizes the main findings of this 

thesis guided by the main research questions. By deriving recommendations 

for various stakeholders from this synthesis, Research Question 3 is 

answered.  

1.4.1 Research Question 1: What shapes farmers’ behavior towards SFTs? 

Based on the findings from Chapters 2 and 3, we identify that social as well 

as personality factors play a crucial role in farmers’ behavior towards SFTs. 

Further, we find that these factors are closely linked to the attributes of 

technology, namely observability and AI. We thereby fill important research 

gaps in understanding farmers’ behavior towards SFTs in general and their 

information acquisition specifically. By applying a LASSO machine 
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learning approach in Chapter 2, we demonstrate a clear link between the 

observability of a technology and social interactions as conceptually 

hypothesized by Shang et al. (2021). Observation of a technology seems to 

deliver information that differs from those obtained through verbal 

exchange. Yet a combination of verbal and visual information gathering 

comes with the highest likelihood of adoption, emphasizing the 

complementary nature of these two information sources. Based on the 

probabilistic programming workflow as detailed in Chapter 3, we can show 

that most farmers in our sample exhibit algorithm aversion. That means, 

most farmers prefer the human, even if it performs worse than the AI. In 

order to choose the AI-DST, it would have to be considerably cheaper than 

a human advisor while offering the same level of performance. We identify 

the underlying latent belief to be AI-anxiety. 

Synthesizing these two results by drawing on the framework by Shang et al. 

(2021), a clear picture emerges: The source of information about a 

technology and about its potential costs and benefits is essential to induce a 

reduction of the perceived complexity 6  and thereby support adoption. 

Information from peers (verbally and visually) and from human advisors 

seem to be deemed as relevant for the decision-making process of farmers, 

but they perceive information from AI decision support rather skeptically. 

How information is processed seems to be associated with farmers' 

personality traits: A high AI-Anxiety correlates negatively with expectations 

concerning the complexity and also the performance of AI-based 

technology. As the perceived costs and benefits of a technology are an 

important adoption determinant (Déssart et al., 2019), we conclude that 

improvements in outcomes through SFT use need to be clearly demonstrated 

to make them attractive to farmers. The key to promoting the uptake of SFTs 

is to make the benefits easily recognizable, either by enabling the 

observation of results or by clearly communicating the benefits (e.g. the 

performance difference to human advice) to farmers.  

 

6
 Depending on the theoretical framework, this technology attribute might also be considered as a 

latent construct termed “effort expectancy” in the unified theory of acceptance and use of technology 

(UTAUT) (Venkatesh et al. 2003) or “ease of use” in the technology acceptance model (TAM) (Davis 

1985). 
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1.4.2 Research Question 2: What are the implications of SFTs for 

agricultural policy design? 

The novel abilities of SFTs open up for new policy designs, as revealed in 

Chapter 4. In contrast to previous literature, we find that not only the 

monitoring ability has the potential to induce changes in policy schemes 

design. But the technology attribute that mainly influences scheme design 

appears to be the ability to perform site- and time-specific tasks based on 

different rationales which enables more biodiversity-sensitive actions 

compared to broadband treatments. It allows for efficiency improvements of 

both ABS and RBS and triggers the need to rethink agricultural policy 

design. The line between executed actions, that farmers are paid for on the 

one and obtained pre-defined results, that are rewarded on the other hand, 

vanishes: Setting a weeding robot to executing a certain weeding strategy – 

for example to remove only those weeds that are highly competitive for the 

crop – could be either rewarded by ensuring that the defined strategy was 

executed (ABS) or by monitoring the occurrence of indicator weeds on the 

field (RBS). 

1.4.3 Research Question 3: What should optimal policy design look like to 

leverage the full potential of SFTs for sustainable intensification? 

Our findings and the answers to Research Question 1 and 2 emphasize the 

duality of the relationship between SFTs and agricultural policy. On the one 

hand, we show that SFTs have the potential to improve the efficiency of 

policy measures through monitoring, and time- and site-specific treatments. 

This might ease for example the implementation of RBS that require precise 

monitoring. On the other hand, we find that farmers seem to be reluctant to 

use AI-based SFTs despite their great potential for efficiency improvements, 

which prompts the need for policy measures. Results from two discrete 

choice experiments in Norway (Hillesund et al., 2025) 7  and Spain 

(Villanueva et al., 2024) underline this dilemma: farmers prefer the 

 

7
 In this working paper, we analyzed Norwegian farmers’ acceptance of collective results-based 

schemes using a discrete choice experiment. Anna Massfeller co-authored this working paper during 

her doctoral studies. 
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monitoring within an RBS to be done by a human rather than by a digital 

tool. Hence simply offering SFTs to farmers might not be enough to make 

them accept it. This observation calls for a clear need for policy measures 

that support farmers’ adoption of SFTs.  

However, technology adoption is only the first step. Once adopted, farmers 

also need to use the technology in the intended way. In Chapter 4 we build 

on the findings of Zingsheim and Döring (2024). They show that smart 

weeding robots – as an example of SFT – can contribute to sustainable 

intensification by substituting harmful inputs, such as chemical plant 

protection, with selective (mechanical) weeding. Selective weed removal 

also allows for a reduction in the trade-off between biodiversity and yield. 

However, these benefits will only materialize if farmers use the robots as 

intended, that means for targeted, selective weed removal. If not used 

selectively but instead operated like “traditional” tractor mounted machinery 

that treat the whole field homogeneously, future weeding robots will most 

probably remove weeds as efficiently and reliably as conventional, chemical 

approaches (Ahmadi et al., 2022). Consequently, the biodiversity on the 

field will be similarly low as under herbicide spraying. The same holds for 

the case of AI-DST: Our findings on algorithm aversion show, that the well-

known “implementation problem” together with the issue of farmers owning 

tools but not using them (in the intended way) (McCown, 2002) seems to 

persist. Hence simply supporting farmers financially for adopting SFTs will 

not be enough, but guidance on how to use it is needed. Having these 

findings in mind, we derive our first policy recommendation: 

Recommendation 1: Simply offering SFTs to farmers is not enough, 

decision-makers should develop measures that not only support but also 

guide farmers’ use of SFTs such that the technologies’ full potential to 

support a development towards sustainable intensification can be leveraged. 

Having identified the need for effective policies, the question arises of how 

optimal policy measures could look like. The optimal choice of the tool 

depends on the relation between private and public benefit of the respective 

management practice (Pannell, 2008). Our findings from Chapter 3 show, 

farmers are reluctant to use AI-DST although they come with private and 

public benefits. This suggests the existence of learning costs, that is the cost 
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of obtaining and analyzing information about the new technology, or the 

presence or absence of social networks that support learning (Pannell, 2008). 

The findings of this thesis provide clear insights on how social networks and 

information acquisition can reduce these learning costs and thereby trigger 

adoption of SFT. In Chapter 3 we find, that farmers would prefer an AI-DST 

only if it performs considerably better than a human. Hence information 

about the performance of SFT should be clearly communicated to the 

farmers to make them easily recognize the benefits. Alexander et al. (2018) 

found that social norms are even more effective in triggering AI adoption 

than providing information on the performance of the tool, accordingly 

combining information on benefits with a social aspect could prove efficient. 

As revealed in Chapter 2, to induce social learning, facilitating verbal and 

visual exchange among farmers to allow for low-threshold information 

acquisition is a promising mechanism. An important player in reducing 

learning costs and promoting the transformative capacity of the agricultural 

sector are extension services (Finger, 2023; Khanna, 2025). Based on the 

findings of this thesis we suggest that extension services should disseminate 

information about SFTs to reduce the expected effort and to raise awareness 

about potential benefits. Social learning could be supported through 

demonstration farms and organized farmer events that combine visual and 

verbal exchange. Here, other farmers can visit, exchange about potential 

costs and benefits and observe the technology in use and its outcomes. From 

Chapter 3, we learn that farmers are skeptical towards advice from AI 

despite its potential. Therefore AI-based tools may complement traditional 

extension services where deemed sufficiently efficient, but should be used 

with care. Consequently, we derive recommendation 2: 

Recommendation 2: To promote the uptake of SFTs, decision-makers need 

to make benefits easily recognizable, for example by enabling social 

learning through the observation of and exchange about results. 

For some SFT, there might be positive public benefits but negative private 

ones (i.e. costs). This is for example the case for smart weeding robots in 

conventional farming. Currently the private costs outweigh the private 

benefits for most conventional farmers, but public benefits in terms of a 

reduction of environmental degradation are assumed to be large (Shang et 
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al., 2023). In such cases, reduced learning costs and extension might not be 

enough, but positive incentives are needed (Pannell, 2008). PES, action- or 

results-based, are one type of positive incentives where farmers are rewarded 

for providing public goods beyond regulatory standards. As we learned from 

Chapter 4, autonomous weeding robots might allow for efficiency increases 

in the design of PES for biodiversity conservation in arable farming. A major 

finding of this thesis is that, contrary to recent literature, not only RBS but 

also ABS can gain in efficiency when SFTs are available. In consequence, 

the difference in efficiency and also in design between ABS and RBS 

vanishes. The efficiency increase for ABS can be mainly traced back to the 

SFTs’ ability to conduct time- and site-specific treatments that allow to 

decrease the trade-off between crop production and environmental 

degradation. Similarly, the efficiency increase for RBS stems from the 

improved monitoring and detection abilities. We therefore derive: 

Recommendation 3: Decision-makers should leverage SFTs’ abilities to 

improve the efficiency of PES with a focus on the potential from time- and 

site-specific treatment for ABS and from monitoring for RBS.  

To more concretely answer the question of what optimal policy should look 

like in the era of smart farming, we first turn to ABS. By defining time- and 

site-specific actions that farmers are rewarded for, the environmental 

outcome could be ensured while the risk for the farmer would be kept at a 

minimal level. One concrete idea might be a weeding strategy (e.g. “Remove 

all weeds but species X, Y and Z”) that a smart robot performs via software 

settings downloaded from the authorities. By letting the robot execute this 

strategy, the farmer receives a payment that compensates for potential costs. 

This approach touches on recent developments in research and the private 

sector towards so called “green insurances”. Here, farmers receive a 

payment contingent on following recommendations from modern decision 

support tools (Lefebvre et al., 2025) or are compensated if crop health is not 

optimal although the recommendations have been followed (BASF, 2024). 

First evidence shows that this approach is accepted by farmers, easily 

traceable and allows for efficient food production while benefitting the 

environment (Lefebvre et al., 2025).  
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Concerning the design of RBS, the findings of this thesis suggest that SFT 

can help to monitor and identify plant and animal species autonomously and 

continuously and thereby reduce the risk of biodiversity benefits being 

present but not detected by human monitoring. Further, given the monitoring 

ability and the identified importance of the status quo of biodiversity before 

scheme participation, SFTs can unlock opportunities for novel payment 

mechanisms. Future RBS could reward farmers based on change, capacity, 

or proportionally to other farmers in the area (McDonald et al., 2018). That 

means, farmers are not paid for the absolute occurrence of indicator species 

on their fields, but rather for the relative occurrence compared to the status 

before scheme participation, or based on in how far the capacity of the field 

was reached based on modelled results (Bartkowski et al., 2021; Simpson et 

al., 2023). These approaches would not only reduce the (perceived) risk for 

the farmers of not reaching the predefined target (Burton & Schwarz, 2013), 

but they are dynamic and would allow the farmers as well as the authorities 

to adapt to the changing field and production conditions arising e.g. from 

climate change. In line with our second recommendation on social learning, 

evidence from Malawi suggests that offering a results-based scheme for 

specific farmers can induce social learning about this approach (e.g. when 

extension is costly) (BenYishay & Mobarak, 2019). For both, ABS and RBS, 

information on the desired outcome e.g. in terms of density, distribution and 

species selection of weeds is needed to either develop multidimensional 

indicators for RBS or to define concrete treatment strategies for ABS e.g. 

which weeds to remove and why.  

Besides, a rather general conclusion that follows from the findings of this 

thesis concerns measures beyond the single farm level, as many ecosystem 

services like biodiversity abundance depend heavily on the composition and 

configuration of the whole landscape (Batáry et al., 2020; Tscharntke et al., 

2012). Therefore, engagement among several farmers within a region is 

required. In Chapter 2 we identify the importance of peer effects, as verbal 

exchange and field observation mutually reinforce each other. In Chapter 4 

we show how RBS might become an important element of the CAP toolbox 

given the abilities of SFTs. Combined, these findings call for policy 

measures that combine the RBS character with a collective feature that 
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allows farmers to interact through agglomeration schemes or collective 

bonus schemes, as e.g. implemented in Switzerland (Huber et al., 2021; 

Sander et al., 2024). Besides other advantages, investment costs could be 

reduced through shared ownership structures. A recent study with 

Norwegian farmers found that combining RBS with a collective aspect 

might be promising, especially for rather small groups of 3 to 6 farmers 

(Hillesund et al., 2025). Novel SFTs might support the implementation of 

such collective results-based measures by easing communication among 

stakeholders and facilitating planning and monitoring (Geppert et al., 2023, 

2024; Reichenspurner & Matzdorf, 2025), which might also reduce the 

bureaucratic burden, one main barrier to adoption of RBS (Massfeller et al., 

2022)8. We therefore derive recommendation 4: 

Recommendation 4: To design efficient policies, decision-makers should 

closely collaborate with agro-ecologists and leverage SFTs’ potential to 

benefit combinations of action- and results-based measures at the farm and 

landscape-level. 

Lastly, technological development is needed where private costs are clearly 

higher than public benefits (Pannell, 2008). That means technologies that 

are promising from an environmental perspective need to become attractive 

to farmers by providing clear private benefits. As revealed in Chapter 3 of 

this thesis, wether a technology is perceived as attractive depends strongly 

on the expected effort to use the technology and its expected performance. 

We therefore suggest that technology developers should try to reduce the 

complexity of SFTs and make it easy to use for farmers. Further, one specific 

challenge for the case of biodiversity conservation resulting from the second 

recommendation is that public as well as private benefits are often hard to 

predict, to measure and hence to perceive (Kidd et al., 2019; Kleijn et al., 

2019). SFTs might help to overcome this issue not only through improved 

monitoring but also by allowing for a clear communication of biodiversity 

metrics. These could also be used as direct feedback on the potential and 

obtained ecological and economic implications of a specific management to 

 

8
 In this article, German farmers’ acceptance of a hybrid results-based scheme for arable farming is 

investigated using a split treatment experimental design to test the effect of a social nudge. Anna 

Massfeller co-authored this paper during the beginning of her doctoral studies, however, it is not 

included as a main chapter in this thesis. 
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the farmers. Such “green nudges” have been proven efficient in other 

contexts (cf. Peth et al., 2018) but could so far not be implemented for 

biodiversity conservation due to the difficulty of measuring benefits. 

Coming back to the social aspect in farmers’ technology adoption decision, 

farmers or authorities could use the measured biodiversity metrics to signal 

environmental engagement to other farmers or the public, e.g. via signs in 

the field, as social signaling is a major determinant in farmers’ decision-

making (Déssart et al., 2019). We therefore propose the development of 

user-friendly interfaces that allow for transparent communication of 

potential and achieved ecological and economic benefits. Given the findings 

on the importance of site- and time-specific treatments in Chapter 4, we 

further claim that technology developers should consider reduction of trade-

offs between crop production and environmental degradation. For example, 

a weeding robot should not only be able to remove weeds efficiently, but 

also selectively based on different rationales. Consequently, 

recommendation 5 follows:  

Recommendation 5: Technology developers should leverage the potential of 

SFTs to reduce trade-offs and to make private and public ecological and 

economic benefits easily recognizable through user-friendly interfaces, 

thereby contributing to sustainable intensification. 

1.5 Limitations and Outlook 

The following section reflects on two general limitations of this dissertation 

at a synthesized level, to then derive future research avenues. More details 

on each study’s specific constraints are provided in the respective chapters.  

1.5.1 Limitations 

A general limitation of studies based on primary data is the size and the 

composition of the sample. For both studies (in Chapter 2 and Chapter 3), 

we work together with the market research company “agri experts” (agri 

experts – Deutscher Landwirtschaftsverlag GmbH, 2023), that rely on a 

large pool of farmers and publish advertisements for their surveys in print 

and online magazines and websites that belong to their publishing house. 
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While many farmers all over Germany are reached, a certain self-selection 

bias might occur. This concerns for example the age of the population, as 

younger farmers might be more prone to participate in online surveys (Zahl-

Thanem et al., 2021). We carefully check the representativeness of 

observable characteristics and account for this potential bias by including 

them as a control variable in our models. Further, concerning limitations in 

statistical meaningfulness due to small sample sizes, as part of good 

scientific practice, we conducted an a-priori power analysis for the study in 

Chapter 2 to transparently determine the detectable effect size. In Chapter 3 

we use Bayesian probabilistic programming, which allows inference on 

model parameters even with small sample sizes, due to the explicit 

formulation of prior knowledge. 

In consequence, our results from the observational study in Chapter 2 show 

high external validity while the experimental setting in Chapter 3 ensures 

high internal validity in light of the assumptions made. But evidence on how 

contextual framing affects external validity and farmers’ comprehension in 

experiments is mixed (Rommel et al., 2017, 2019). Therefore, to further 

validate our findings, the questions we highlight through our studies need to 

be investigated in future research. Hereby, our innovative approaches and 

the results can serve as basis for these future research endeavors, for example 

by using the survey tool we designed to capture peer effects on an interactive 

map by a larger sample or by following the probabilistic programming 

workflow for experimental studies. 

A second general limitation of this thesis concerns the restricted choice of 

SFTs as we focus only on two technologies, smart weeding robots and AI-

DST. Other technologies with different characteristics might lead to 

different findings and resulting implications and recommendations 

(Martinsson & Storm, 2025). Therefore, future research could investigate 

other SFTs by relying on our procedures. For example, the simulation study 

in Chapter 4 could be modified to reflect the use of a drone for monitoring 

biodiversity abundance. Similarly, the survey tool we developed in Chapter 

2 to capture peer effects via an interactive map could be employed to study 

the roel of peer effects in the adoption of other SFTs that are broadly in use 

like automatic milking systems (Vik et al., 2019). The experiment in Chapter 
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3 could be adapted to study if farmers’ algorithm aversion differs for other 

AI-based tools supporting for example coordination of collective policy 

schemes (see first examples by Geppert et al., 2024; Reichenspurner & 

Matzdorf, 2025). 

1.5.2 Future research avenues 

Besides the research needs resulting from the general limitations, we derive 

two concrete future research avenues arising from the findings of this thesis.  

First, we suggest that future research should develop and test a (at first 

hypothetical) “robot-based PES”, in which farmers are rewarded for using a 

weeding robot in a specified way. Different payment structures could be 

tested: On the one hand, farmers might receive results-based payments for 

some multi-dimensional biodiversity indicator. This indicator can be based 

on the absolute abundance, on the change obtained, or the capacity reached 

of these pre-defined indicators. On the other hand, farmers could receive 

action-based payments that depend on a certain weeding strategy the robot 

is set to. Here, one specific idea for a weeding strategy would be to rely on 

weed removal based on crop row, an approach that has been proven efficient 

in improving the trade-off between yield and biodiversity (Zingsheim & 

Döring, 2024) and was hypothetically accepted by farmers in form of a 

hybrid scheme (combination of action- and results-based elements) 

(Massfeller et al., 2022). Such research should be carried out in close 

collaboration with agro-ecologists that clearly identify multi-dimensional 

indicators (e.g. which weed species at what density and distribution) and 

technology developers that ensure weeding robots are able to execute the 

required weeding strategies. 

Second, another research avenue evolves from the synthesis of all three 

chapters: the value of information and farmers’ information processing. 

Throughout this thesis we identify the importance of information about 

benefits of a technology for its adoption. As shown in Chapter 2 and Chapter 

3, farmers rely on information from peers and (human and digital) advisory 

services in order to optimize their crop management decisions. In Chapter 4 

we have discussed how SFTs can provide information that might guide 
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farmers’ use in a certain way e.g. when information on biodiversity at field 

level is given in form of a green nudge. In light of the increasing amount of 

data that can be collected by novel SFTs and then communicated to farmers, 

it is important to understand how farmers process such information and 

which they deem as relevant for their decisions to adopt sustainable farming 

practices, technologies or policy measures. This valuation of information is 

known as epistemic vigilance (Bielik & Krell, 2025; Sperber et al., 2010)). 

However, to date, little is known about farmers’ epistemic vigilance. With 

this thesis, we gain first insights into farmers’ epistemic vigilance, focusing 

on the source (Peers in Chapter 2, AI vs. human in Chapter 3) and the 

characteristics of the receiver (AI-Anxiety as inherent individual belief in 

Chapter 3), but future research should further investigate this topic.  
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Field observation and verbal 

exchange as different peer effects 

in farmers’ technology adoption 

decisions* 

Abstract. Farmers’ adoption of novel technologies is influenced by other 
farmers’ behavior, a phenomenon known as peer effects. Although such 
effects have been studied intensively, the literature does not clearly 
distinguish between those that result 1) from verbal exchanges with other 
farmers and 2) from field observations, including the application of 
technology, its outcomes, and field conditions. We extend existing 
theoretical concepts and hypothesize that verbal information exchanges and 
field observations are two types of peer effects. Using data from an online 
survey of German sugar beet farmers’ application of mechanical weeding 
from early 2022, we find that the likelihood of adopting mechanical weeding 
increases across all model specifications by around 26%–28% if at least one 
adopter is known and by approximately 30%–32% if at least one field is 
observed. The two types of peer effects complement and reinforce each other 
in explaining adoption decisions. The effects increase with the number of 
adopters known and fields observed but decrease with larger distances to the 
observed fields. The findings can support designing extension services and 
future peer effects research that should consider the distinction between peer 
effects arising from verbal exchanges and field observations. 

Keywords: Social Network, Peer Effects, Observability, Spatial 

Information Diffusion, Technology Adoption, Farm Survey, 

LASSO Double Selection 

 
* This chapter is published as MASSFELLER, A., AND H. STORM. 2024. “Field observation and verbal 

exchange as different peer effects in farmers’ technology adoption decisions.” Agricultural 

Economics 55 (5), 739-757. https://doi.org/10.1111/agec.12847. Only minor edits have been made for 

the purpose of this dissertation.   
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2.1 Introduction 

Peer behavior is an essential driver of farmers’ technology adoption 

decisions (Shang et al., 2021). Exchange with peers could increase farmers’ 

intention to adopt novel sustainable farming practices (Sampson & Perry, 

2019), to reduce pesticide usage (Bakker et al., 2021), and can reinforce the 

effectiveness of advisory services (Genius, Koundouri, Nauges, & 

Tzouvelekas, 2014). The rich body of literature on the role of peers considers 

various ways to define “peer effects” covering purely verbal exchange with 

adopters (Albizua, Bennett, Pascual, & Larocque, 2020) and field 

observation (Mekonnen et al., 2022). However, existing studies do not 

consider to what extent these types of peer effects differ. Deeper knowledge 

of the mechanism that underlies peer effects is important for improving 

advisory services and policy measures, but missing (Bartkowski & Bartke, 

2018; Bramoullé et al., 2020; Brown et al., 2018; Pe’er et al., 2020). So far, 

the variety of definitions in the current literature makes it difficult to 

understand the mechanism underlying peer effects: is it through verbal 

exchange, field observation, or a mix of both?  

The research objective of this paper is to disentangle (verbal) information 

exchange with adopters from observing fields on which a (new) technology 

is or was used as two distinct types of peer effects. We are interested in the 

correlation between the two potential types of peer effects, verbal exchange 

and field observation, and farmers’ technology adoption decisions. Further, 

we aim to understand how the two types relate to each other. Ideally, we 

would be able to identify causal effect of verbal exchange and field 

observations on adoption. However, as outlined in detail below, doing so is 

conceptually challenging. Nevertheless, studying the correlation between 

the two types of peer effects (verbal exchange and field observation) and 

their relation to adoption allows to derive information on their relative 

importance and difference. To reach our objectives, we structure our 

analysis along the following research questions: 

1. How do (verbal) information exchange and field observation relate 

to adoption of technology? 
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2. Do the two types complement each other in explaining the 

technology adoption decision? 

3. How do the two types relate to each other within the relevant socio-

spatial network†? 

We focus on farmers’ decision to use mechanical weeding using data from 

an online survey with sugar beet farmers from early 2022. The German sugar 

beet production sector is characterized by well-organized advisory structures 

that deliver information through sugar beet factories, sugar beet associations, 

and sugar producers to farmers. Current German sugar beet farming depends 

mainly on herbicides for effective weed control. Herbicide usage is among 

the main drivers of biodiversity loss in agricultural areas in the European 

Union (EU) (Gill & Garg, 2014; Petit et al., 2015). The regulatory approval 

of available active ingredients for herbicide applications is likely to become 

more limited due to environmental concerns, leading to the need for 

alternative measures, such as mechanical weeding (EU, 2012; Warnecke-

Busch et al., 2020). Novel technologies, such as weeding robots, allow 

farmers to reduce herbicide usage while maintaining high yields, thereby 

decreasing agricultural production's negative impacts on biodiversity 

(Finger, Swinton, et al., 2019). Mechanical weeding has clear ecological 

benefits, including increased biodiversity abundance compared to chemical 

weeding, but it can also have adverse effects, such as soil erosion (Liebman 

et al., 2016; Thiel, Mergenthaler, & Haberlah-Korr, 2021; Ulber, Klimek, 

Steinmann, Isselstein, & Groth, 2011; Vasileiadis et al., 2017).  

The relations between individual’s outcomes and those of their peers, known 

as “peer effects” (Bramoullé, Djebbari, & Fortin, 2009), have received 

intensive study in the domain of farmers’ technology adoption decisions in 

different geographical and cultural contexts. Bandiera and Rasul (2006) 

distinguish between social networks based on self-reported individuals 

versus those based on ex-ante set geographical and cultural proximity. The 

former are defined as peer effects, either based on purely verbal information 

exchange (Albizua et al., 2020), take into account whether the adopters are 

 

† We define the term “socio-spatial network” as the composition of the number of adopters known, 

the number of fields observed and the distance to the fields observed.  
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known (Bandiera & Rasul, 2006; Blasch et al., 2020), or focus on the 

awareness of other farmers and their fields (Conley & Udry, 2001, 2010; 

Conley et al., 2003; Mekonnen et al., 2022) to approach field observation. 

The latter presumes a (more or less clearly defined) mix of verbal and visual 

information, implicating field observation through spatial proximity. Some 

empirical studies refer to a certain radius (Di Falco et al., 2020; Kolady et 

al., 2021; Krishnan & Patnam, 2014; Läpple et al., 2017; Sampson & Perry, 

2019) and others to administrative districts, such as villages (Besley & Case, 

1993; Foster & Rosenzweig, 1995; Munshi, 2004). However, insight into 

the mechanism underlying peer effects is limited (Bramoullé et al., 2020), 

and statistical evidence for the role of farmer-to-farmer interaction in 

farmers' technology adoption decisions is scarce (Shang et al., 2021). So far 

as we know, no previous research has explicitly investigated the differences 

between verbal exchange and field observation as two distinct types of peer 

effects. We intend to derive a first indication of the importance of and 

difference between the two types of peer effects that can serve as the basis 

for future research in this direction.  

We find that verbal exchange and field observation both positively relate to 

the adoption decision, whereby verbal information exchange seems to be 

relatively slightly more important than field observation in predicting 

adoption. Hence, personally knowing adopters and verbally exchange 

information regarding mechanical weeding might play an important role for 

the adoption decision, besides observing mechanical weeding on other 

farmers’ fields. Despite the high correlation between the two types of peer 

effects, we are able to estimate separate effects indicating complementarity 

in explaining the adoption decision. We show that in a relevant socio-spatial 

network, which is large in terms of number of known adopters and number 

of fields observed but is small in terms of spatial radius, verbal exchange, 

and field observation reinforce each other.  

With this study, we improve the understanding of the mechanism underlying 

peer effects by being the first to clearly differentiate between (verbal) 

information exchange and field observation as distinct types of peer effects. 

Our empirical investigation contributes to examining the extent to which the 

two types relate to the adoption decision and how far they complement and 
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reinforce each other. Based on our findings, future research can further 

explore the mechanism and causal relationships behind these two types of 

peer effects. Additionally, we present a novel survey tool that allows to 

capture spatially explicit data on farmers’ own fields and the fields they 

observe, which might also help answer other research questions. Lastly, our 

findings allow us to derive implications for designing advisory services and 

policies aiming at reduced herbicide usage or technology adoption. We 

derive that combining opportunities for verbal exchange with the option to 

observe a technology and its results in use might prove most efficient in 

steering farmers’ behavior in a desired direction. While we focus on 

mechanical weeding, our research can also show how other novel 

technologies are diffused, such as mechanical weeding robots. 

The remainder of our paper is structured as follows. We first derive our 

hypotheses based on existing literature on peer effects in section 2. In section 

3, we describe in detail the development of our survey and explain the 

methods used, including our empirical strategy of how to deal with Manski’s 

reflection problem (Manski, 1993) in peer effects. We then present and 

discuss our findings in section 4 and conclude with implications for future 

research and policy design in section 5.  

2.2 Peer effects in technology adoption and derivation of 

hypotheses 

In his theory of diffusion of innovations, Rogers (2003) describes the 

necessary knowledge of an innovation as created through different sources 

of information at different stages in the adoption process. Peers are a critical 

source of information, as they provide relevant, readily available, and low-

cost information (McBride & Daberkow, 2003; Noy & Jabbour, 2020; 

Prokopy et al., 2019; Šūmane et al., 2018) and thereby shape farmers’ 

decision making (Foster & Rosenzweig, 1995; Skaalsveen et al., 2020; 

Villamayor-Tomas et al., 2021). The relevance of this information could 

differ depending on who is considered important, such as family members, 

friends, or other successful farmers (Bessette, Zwickle, et al., 2019; Genius 

et al., 2014; Mekonnen et al., 2022), if the other is well known (Manson, 
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Jordan, Nelson, & Brummel, 2016) or has deep roots in the community (Noy 

& Jabbour, 2020). 

2.2.1 Verbal exchange with adopters 

Face-to-face interactions with peers are among farmers’ most important 

sources of information (Skaalsveen et al., 2020). Talking to peers can 

happen with intent but could also be prone to some bias, either in terms of 

whom one chooses to speak with (Krishnan & Patnam, 2014) or in terms of 

the interpretation that the speaker or listener might add (Mekonnen et al., 

2022). Through verbal exchange, information about unobservable 

characteristics of a technology, like costs, expected herbicide reductions, 

time and labor requirements, or necessary skills, can be obtained (Albizua et 

al., 2020; Jabbour, Gallandt, Zwickle, Wilson, & Doohan, 2014). Studies of 

peer effects based on verbal exchange often include the frequency of 

communication (Conley et al., 2003; Tran-Nam & Tiet, 2022), account for 

the number of adopters known and the distance to them (Krishnan & Patnam, 

2014; Sampson & Perry, 2019), or differentiate between different types of 

peers talked to (Albizua et al., 2020; Mekonnen et al., 2022). We assume 

that for verbal exchange, peers can be neighbors in close spatial proximity, 

as well as other farmers who were met at fairs and on field days and whose 

opinions are important but who are not nearby.  

2.2.2 Observation of adopters’ fields 

Rogers (2003) describes observability as an important characteristic of an 

innovation. We broaden this definition by explicitly referring to the 

possibility of observing a technology in use, not only its results. Fields could 

be observed rather unconsciously, as a farmer might observe a field when 

passing but without actively thinking of it (McCann et al., 2015) or as a 

conscious action known as “road-side farming” (Burton, 2004), describing 

the process of farmers checking out “symbols of good farming” on 

neighboring farms and fields. In the case of weed management, these 

symbols can be easily observed, e.g., in terms of tidy, weed-free fields or 

high yields (Lavoie & Wardropper, 2021). There is empirical evidence that 
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the likelihood of adoption varies depending on whether the technology in 

use (Blasch et al., 2020), and especially its results can be observed easily 

(Llewellyn, 2007; McCann et al., 2015). Moreover, local information has 

been found to be of major importance, as farmers close by might face the 

same production conditions (Arbuckle et al., 2013; Llewellyn, 2007; Noy & 

Jabbour, 2020; Šūmane et al., 2018). Mekonnen et al. (2022) found that 

spatial proximity and knowledge of peers’ decisions on the use of 

agricultural inputs and their outcomes, combined with awareness of their 

plots, explain information diffusion through peers. However, little statistical 

evidence on the importance of observability as a relevant attribute of 

technologies for the adoption and diffusion of digital farming technologies 

has been published (Shang et al., 2021). We assume that observing the fields 

where mechanical weeding is performed could be positively correlated with 

adoption as a technology in use, but in particular, its long-term effects over 

a full production period can be observed under the same local conditions. 

2.2.3 Endogeneity and reverse causality in peer effects 

We depict our theoretical assumptions in Figure 2.1. As shown by the arrows 

in both directions, we emphasize the possibility of reverse causality. While 

most peer effects research focuses on the causal effect of peers’ adoption 

behavior on the adoption decision of the individual farmer, the direction of 

the effect can also be reverse: Farmers might first adopt a technology and 

then broaden their social network and engage in information exchange. 

Examples of such behavior include access to chat groups upon the adoption 

of a certain app or software (Wims & Byrne, 2015), access to machinery 

rings upon the adoption of a certain machinery, or access to groups that 

exchange the experience with a certain farming practice (Chaudhuri, Roy, 

McDonald, & Emendack, 2021). Further, there is evidence that (early) 

adopters of technology tend to communicate about it to gain social 

recognition (Shikuku, Pieters, Bulte, & Läderach, 2019), which shows that 

information dissemination behavior might change after technology 

adoption. 

Another obstacle in identifying peer effects is endogeneity in the network 

formation process (Bramoullé et al., 2020).  Individuals might actively 
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choose their own peer group, leading to selection bias (Blasch et al., 2020; 

Krishnan & Patnam, 2014; Skaalsveen et al., 2020). Individuals tend to be 

more willing to connect with others who are similar, a phenomenon known 

as homophily (McPherson, Smith-Lovin, & Cook, 2001). In our case, 

farmers who are most interested in mechanical weeding could actively 

search for information themselves by joining networking events or by 

engaging a lot with like-minded farmers before and after the adoption.  

Lastly, the relationship between verbal exchange and field observation 

might also be prone to endogeneity, as observing a field might induce talking 

to the respective farmer and the other way around. While it is difficult to 

control for reverse causality and endogeneity, we are merely interested in 

the correlation and do not aim for causal inference. We aim to investigate in 

how far adoption is associated with peers’ adoption and how the two types 

of peer effects relate to each other, irrespective of the causal direction.  

2.2.4 Hypotheses 

Against this background, we formulate our hypotheses, as also depicted in 

Figure 2.1.  

Hypothesis 1a: Knowing at least one other farmer doing mechanical 

weeding is positively related to having adopted mechanical 

weeding. 

Hypothesis 1b: Observing at least one field where mechanical weeding is 

done is positively related to having adopted mechanical 

weeding. 

Hypothesis 2: Verbal information exchange and field observation as two 

types of peer effects complement each other in explaining the 

adoption decision. 

Hypothesis 3: Verbal information exchange and field observation reinforce 

each other, such that the correlation with adoption is higher 

for an increasing number of adopters known, for an increasing 

number of fields observed, and for a decreasing distance to 

these fields. 
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Figure 2.1: Types of peer effects 

Source: own presentation 

2.3 Method and data 

2.3.1 Survey design and implementation 

To answer our research questions, we conducted an online survey among 

German sugar beet farmers in early 2022. We designed and implemented a 

custom-built survey tool, allowing us to obtain explicit spatial data. In this 

survey, farmers were asked to specify whether, which, and since when they 

used mechanical weeding techniques. The participants indicated how many 

other farmers whom they knew used mechanical weeding and were then 

asked to show on an interactive map where they were growing sugar beets 

and to indicate fields of other farmers where mechanical weeding is done 

(whether in sugar beet or other crops). As an alternative for those who did 

not wish to use the map to provide the precise geolocation of fields, 

participants were asked to give their postal code and select via a single-

choice question how many fields they knew of where mechanical weeding 

is done. For those who did not use mechanical weeding, we asked for the 

reason for this. All of the participants were asked about their intention to use 

new weeding technologies in upcoming years. For the map shown in the 

survey, we used freely available geo-data on field shapes for certain federal 

states of Germany, as well as remote sensing data from Copernicus for the 

remaining federal states (for more information, see the original survey in the 

Appendix). Using this, participants could select their own or others’ fields, 
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either by clicking on the fields or by setting a marker (tractor symbol) 

(Figure 2.2). 

 

Figure 2.2: Novel custom-build survey tool 

Note: Orange areas indicate own fields, and blue areas indicate other farmers’ fields where 

mechanical weeding was observed (example) 

2.3.2 Preregistration & sampling strategy 

We pre-registered this study using the Open Science Framework (OSF) 

platform on February 10, 2022, the day we began the data collection 

(Massfeller & Storm, 2022). In this preregistration, we described our study 

plan, including research questions and hypotheses, study design and 

sampling strategy, and the variables and models used for the analysis (more 

information on the preregistration, including how and why we deviated from 

it, can be found in the Appendix). We relied on a convenience sample, as we 

published advertisements off- and online, as well as cooperated with the 

advisory network of the German sugar beet industry, the Institute for sugar 

beet research (IFZ), and a market research company. In the preregistration, 

we present an a priori power analysis and describe how we would deal with 

https://osf.io/registries?view_only=
https://osf.io/registries?view_only=
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a potentially biased sample. The code used for the analysis can be found on 

the author’s GitHub page‡.  

2.3.3 Empirical approach 

Reflection problem and potential biases 

The identification of peer effects is challenging, as an individual’s and peers’ 

behavior may correlate for several reasons (Di Falco et al., 2020; Krishnan 

& Patnam, 2014; Manski, 1993). Manski (1993) differentiates between three 

possible effects: 

a) endogenous effects, wherein the propensity of an individual to 

behave in some way varies with the behavior of the group; 

additionally, the behavior of the group could be impacted by the 

behavior of the individual, 

b) exogenous (contextual) effects, wherein the propensity of an 

individual to behave in some way varies with the exogenous 

characteristics of the group; and 

c) correlated effects, in which individuals in a given group tend to 

behave similarly because they have similar individual characteristics 

or face similar institutional environments.  

While we are interested in the endogenous effects, i.e., the correlation 

between the peers’ and the own adoption decision through field observation 

and/or knowing adopters, we assume that to address our research question, 

the differentiation between social (that is endogenous and exogenous 

effects) and correlated effects is the main necessary and sufficient point. The 

main challenge is to prevent bias from correlated effects. In the following, 

we describe how not controlling for correlated and (to a lesser extent) 

exogenous effects would lead to an overestimation of social effects and how 

we try to limit such distortion. 

Examples of correlated effects are similar natural production conditions (soil 

quality, topography, etc.) as they could favor or disfavor mechanical 

 

‡ AnnaMassfeller/SugarbeetSurveyAnalysis (github.com) 

https://github.com/AnnaMassfeller/SugarbeetSurveyAnalysis


Field observation and verbal exchange as different peer effects  55

 

  

weeding, shared advisory services that communicate a certain attitude 

toward different weed management decisions, contractors that offer a 

specific type of machinery, or demonstration farms that support certain 

farming practices. Further, social norms, such as environmental concerns 

among the wider community, could lead to correlated effects if farmers’ 

behavior differs in response to these concerns. These effects can lead to a 

correlation between an individual’s and peers’ adoption. Not controlling for 

these correlated effects risks overestimating peer effects.  

A possible example of exogenous effects based on peers’ characteristics 

could be the peers’ experience with the technology or access to machines, 

e.g., depending on the structure of the peers’ farms and its specialization, 

machinery might still be available but not in use, making it free for 

borrowing. Here, even if neighbors (currently) do not use the technology, 

they can impact adoption by lending the relevant technology. As we are 

merely interested in the correlation between verbal exchange and field 

observation as two types of peer effects and adoption, to provide a first 

indication of their relative importance and difference, the main challenge is 

to reduce bias from potentially correlated effects and to isolate the social 

(endogenous and exogenous) effects. 

In our model, information on other adopters (KnowAdopters) is used to 

approximate the possibility of (verbal) information exchange with adopters. 

Similarly, the knowledge of mechanically weeded fields from others 

(ObserveFields) provides information on the awareness of other fields (see 

formulation of relevant questions for KnowAdopters and ObserveFields in 

the original survey in the Appendix). Both variables are coded in our model 

as binary variables with 1 if other adopters are known / fields are observed, 

respectively, and 0 if not. We denote farmer i’s indication to adopt 

mechanical weeding by Adopt, modelled as a binary decision, taking 1 if 

mechanical weeding is applied and 0 if not. We include a vector of control 

variables Control containing farmers’ characteristics such as age (1 if > 45 

years), farm size (1 if > 50 ha), and, to approach environmental attitude, 

previous participation in AES (1 if yes) as binary dummy variables. 

Additionally, to account for the possible correlated effects, we include 1) the 

minimal distance to demonstration farms (also squared) as a continuous 
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variable. This reflects the minimal distance of the farm i to a farm belonging 

to the network of demonstration farms for organic agriculture that are found 

all over Germany.§ We include affiliation with one of the 19 German sugar 

factories as a dummy variable in Control. Thereby, we can account for 

regional differences as well as for the effect of farm advisors. To do this, we 

calculate the distance for each farm i to each of the German sugar factories 

and assume that farm i delivers to the closest factory. There are 19 sugar 

factories in Germany, belonging to four sugar producers. We aggregated the 

factories into 13 groups to avoid very small dummy groups (Figure 2.8 in 

the Appendix). We proxy potential exogenous effects by including farm-

demographic data at the county level, such as average farm size per county 

(DESTATIS, 2022a). As it was found that larger farms tend to be more likely 

to adopt novel technologies (Shang et al., 2021), we assume that farm size 

is a good approximation for peers’ experience with technology or access to 

machinery. We further include a large number of soil- and topography-

related variables at the county level that allow controlling for possible 

exogenous and correlated effects, as noted above. All variables included in 

the model are presented in Table 2.1.  

Table 2.1: List of variables in the model specifications 

 Name Label Values Mean 

Dependent 

variable 
Adopt 

Adoption mechanical 

weeding binary 
'0' '1'  

As in pre-

registration** 

ObserveFields observing fields binary '0' '1'  

KnowAdopters 
knowing adopters 

binary 
'0' '1'  

MinDist_demo 
minimal distance to 

demonstration farm 
Num: 0.44 to 70.76  21.25 

Farmsize 
farm size in ha over 50 

binary 
  

AES 
participation in AES 

binary 
'0' '1'  

Age 
farmer age over 45 

binary 
'0' '1'  

FactoryLocation_a

gg 

sugar factory location 

aggregated, dummy 

19 locations as in Figure 2.8 in the 

Appendix, aggregated to 13 

 
§ More information and a map can be found here: https://www.oekolandbau.de/bio-im-alltag/bio-

erleben/demonstrationsbetriebe-oekologischer-landbau/ 

** This deviates from the preregistration as described in the Appendix. 

https://www.oekolandbau.de/bio-im-alltag/bio-erleben/demonstrationsbetriebe-oekologischer-landbau/
https://www.oekolandbau.de/bio-im-alltag/bio-erleben/demonstrationsbetriebe-oekologischer-landbau/
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Instrumental 

variables†† 

ShareOrgFarms 

Share of organic farms 

in all farms at county 

level 

Num: 0 to 0.32  0.06 

ShareOrgArea 
Share of organic area in 

UAA at county level 
Num: 0 to 0.36  0.05 

 

Additional 

variables in 

Control 

 

Farm_organic farm organic binary '0' '1'  

Mainly_crop 
farm specialized in 

arable farming binary 
'0' '1'  

MeanFarmSize 
mean farm size at 

county level in ha 
Num: 18.20–336.5  59.87 

Populationdensity 
habitants per sq.km at 

county level 
Num: 36–3077  237.62 

FarmDens 
farms per sq.km at 

county level 
Num: 0.16–1.99  1.07 

AreaDens 
UAA per total county 

area in ha 
Num: 0.14–0.71  0.51 

ShareSmallFarms 

share of small farms (< 

10ha) in all farms at 

county level 

Num: 0.06–0.53  0.22 

ShareSmallArea 

share of area of farms 

with <10 ha in total 

UAA 

Num: 273.08–23355.4  1041.8 

Elevation_in_m_m

ean 

mean elevation at 

county or field level‡‡ 
Num: 12–533.4  252.98 

Sand_content_perc

ent_mean 

mean sand content in 

soil at county or field 

level, in % 

Num: 0.54–82.06  28.68 

Clay_content_perc

ent_mean 

mean clay content in 

soil at county or field 

level, in % 

Num: 5.44–35.61  20.95 

Slope_in_degrees_

mean 

mean slope at county or 

field level, in % 
Num: 0.11–13.54  2.6 

ShareArableUAA 
share of arable area in 

total UAA in ha 
Num: 31.76–100.6  80.53 

ShareArableInTota

lArea 

share of arable area in 

total county area in ha 
Num: 8.14–67.6  41.74 

Alternative to 

“factory 

location” 

Association_agg 
producer associations 

aggregated, dummy 

10 associations as in Figure 2.8 in 

the Appendix 

 

†† Part of Control 

‡‡ If the geo-coordinates of the fields are available, soil-related variables are included at field level, 

for all others, the county mean is taken 
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LASSO double selection  

Due to the large number of control variables in a quite small sample, there 

is a certain danger that parameter estimates exhibit very high variance and 

hence could not be trusted. Therefore, we need to reduce dimensionality 

through variable selection (Labovitz, 1965). Instead of selecting variables 

based on literature or experience, we follow the state-of-the-art (Storm et al., 

2019) and opted for the Least Absolute Shrinkage and Selection Operator 

(LASSO) (Finch & Hernandez Finch, 2016) and apply a double selection 

approach based on Belloni et al. (2014)§§. Initially developed for prediction 

purposes, the machine learning tool allows one to consider many 

explanatory variables in different functional forms and then use the data to 

identify the ones with the most explanatory power.  

However, as we’re interested in the correlation between our variables of 

interest, KnowAdopters and ObserveFields, and the adoption decision, we 

need to apply the double selection procedure (Alexandre Belloni et al., 

2014), to avoid the variables being dropped if they’re highly correlated to 

the variables of interest. For example, variables included to capture 

exogenous effects, e.g., farm-demographic structures, might also be 

correlated with our variables of interest, KnowAdopters and ObserveFields. 

In a classical LASSO application, these variables would not be selected, as 

their explanatory contributions are indirectly captured in KnowAdopters and 

ObserveFields. In other words, we need to account for the relationship 

between our variables of interest and the other control variables. Not 

selecting those variables explaining our variables of interest might lead to 

omitted variable bias, and the effect of those variables will be incorrectly 

attributed to the variables of interest. The same could happen the other way 

around when only variables are selected with a large effect on our variables 

of interest but a small effect on the outcome. 

Therefore, we follow Belloni et al. (2014) and apply a double-selection 

procedure. The idea is to select variables that are relevant for both the key 

 

§§  We tried two other empirical approaches, a simple model that we also preregistered and an 

instrumental variable approach. However, both approaches exhibit limitations as explained in the 

Appendix and therefore we decided for the LASSO double selection procedure.  
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variables of interest and the outcome. The union of these sets of selected 

variables is then regressed on the outcome. The LASSO double selection 

still relies on the assumption that we have no unobserved confounders (i.e., 

that all relevant variables are captured in our vector of control variables 

Control). We note that this is a strong assumption and come back to it in the 

limitations.  

We are interested in estimating 𝛽1 and 𝛽2 as depicted in the following base 

LASSO model (LMbase): 

 𝐴𝑑𝑜𝑝𝑡𝑖 =  𝛽0 + 𝛽1𝐾𝑛𝑜𝑤𝐴𝑑𝑜𝑝𝑡𝑒𝑟𝑠𝑖 + 𝛽2𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝐹𝑖𝑒𝑙𝑑𝑠𝑖

+ 𝜹𝒊𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐴𝑑𝑜𝑝𝑡 + 𝜁𝑖 
(1) 

where E [𝜁𝑖 | 𝐼𝑛𝑓𝑜𝑖, 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝐹𝑖𝑒𝑙𝑑𝑠𝑖, 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐴𝑑𝑜𝑝𝑡,𝑖, 𝑟𝐴𝑑𝑜𝑝𝑡,𝑖] = 0, 𝜹𝒊 is a p-

dimensional vector unknown coefficients for the p controls where p ≫ n is 

allowed but not met in our case, and the parameters of interest are 𝛽1 and 

𝛽2, with the effect of KnowAdopters and ObserveFields on Adopt. 

In the first step of the double-selection procedure, we run three LASSO 

models for Adopt (LM1), KnowAdopters (LM2), and ObserveFields (LM3) as 

dependent variable, respectively, each time regressed on a vector of control 

variables ControlExogenousAdopt, ControlExogenousKnowAdopters, and 

ControlExogenousObserveFields, always excluding the particular dependent 

variable. We use the R package glmnet which allows us to use LASSO for 

binary response variables via maximum likelihood estimation (Friedman, 

Hastie, & Tibshirani, 2010; Simon, Friedman, Hastie, & Tibshirani, 2011). 

LM1: 𝐴𝑑𝑜𝑝𝑡𝑖 =  𝜹𝒊𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐸𝑥𝑜𝑔𝑒𝑛𝑜𝑢𝑠𝐴𝑑𝑜𝑝𝑡,𝑖 + 𝑟𝐴𝑑𝑜𝑝𝑡,𝑖 +  𝜍𝑖 (2) 

LM2: 𝐼𝑛𝑓𝑜𝑖    =  𝜹𝒊𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐸𝑥𝑜𝑔𝑒𝑛𝑜𝑢𝑠𝐾𝑛𝑜𝑤𝐴𝑑𝑜𝑝𝑡𝑒𝑟𝑠,𝑖

+ 𝑟𝐾𝑛𝑜𝑤𝐴𝑑𝑜𝑝𝑡𝑒𝑟𝑠,𝑖 +  𝑣𝑖 
(3) 

LM3: 𝐹𝑖𝑒𝑙𝑑𝑖   =  𝜹𝒊𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐸𝑥𝑜𝑔𝑒𝑛𝑜𝑢𝑠𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝐹𝑖𝑒𝑙𝑑𝑠,𝑖

+ 𝑟𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝐹𝑖𝑒𝑙𝑑𝑠,𝑖 +  𝑢𝑖 
(4) 

with E[𝜍𝑖 |  𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐸𝑥𝑜𝑔𝑒𝑛𝑜𝑢𝑠𝐴𝑑𝑜𝑝𝑡,𝑖, 𝑟𝐴𝑑𝑜𝑝𝑡,𝑖] = 0 , 

E[𝑣𝑖 |𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐸𝑥𝑜𝑔𝑒𝑛𝑜𝑢𝑠𝐾𝑛𝑜𝑤𝐴𝑑𝑜𝑝𝑡𝑒𝑟𝑠,𝑖, 𝑟𝐾𝑛𝑜𝑤𝐴𝑑𝑜𝑝𝑡𝑒𝑟𝑠,𝑖] = 0 and 

E[𝑢𝑖 |𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐸𝑥𝑜𝑔𝑒𝑛𝑜𝑢𝑠𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝐹𝑖𝑒𝑙𝑑𝑠,𝑖,𝑟𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝐹𝑖𝑒𝑙𝑑𝑠,𝑖] = 0. 



60   Chapter 2

 

 

We identify the variables that have been chosen in this first step for the three 

different models (see Table 2.4 in the Appendix). We focus on the variables 

chosen for the case where the misclassification error is lowest, i.e., 

Lambda.min.  

In the second step, we use maximum likelihood to regress Adopt on the union 

of all variables selected for LM1, LM2, and LM3 named 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝐿𝑀1 , 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝐿𝑀2, and 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝐿𝑀3, respectively, leading to the following final 

LASSO double-selection model LMfinal: 

 𝐴𝑑𝑜𝑝𝑡𝑖 = 

𝜹𝒊(𝛽1𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐿𝑀1 + 𝛽2𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐿𝑀2 +  𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐿𝑀3)

+ (𝛽1𝑟𝐾𝑛𝑜𝑤𝐴𝑑𝑜𝑝𝑡𝑒𝑟𝑠,𝑖 + 𝛽2𝑟𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝐹𝑖𝑒𝑙𝑑𝑠,𝑖  

+  𝑟𝐴𝑑𝑜𝑝𝑡,𝑖) + ( 𝛽1𝑣𝑖 + 𝛽2𝑢𝑖  +  𝜍𝑖) 

=  𝜹𝒊𝜋 + 𝑟𝑐𝑖 + 𝜂𝑖  

(5) 

where E[ 𝜂𝑖   | 𝜹𝒊, 𝑟𝑐𝑖 ] = 0 and 𝑟𝑐𝑖is a composite approximation error. 

Do the two types complement each other in explaining the adoption 

decision? 

To identify whether the two types complement each other in terms of 

explaining the adoption decision (H2), we look at the explanatory 

contribution of the variables we use to construct (verbal) information 

exchange and field observation. This is done to identify how the percentage 

of correct predictions of the adoption decision (prediction accuracy) varies 

in relation to whether the variables for only one or both types of peer effects 

are included. If the inclusion of variables for both types of peer effects 

increases prediction accuracy, we can conclude that different aspects can be 

explained by their means, indicating complementarity. For this, we compare 

predication accuracy between different models in which the dependent 

variable is always the adoption decision and a vector of control variables is 

included as in the simple pre-registered model (see Appendix for details on 

this model).  As explanatory variables, the different models include our 

different constructs measuring field observation a) binary as ObserveFields 

or b) as number of fields observed (NrFields), with the levels “no fields 

observed” (reference category), “1–5 fields observed,” “6–10 fields 
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observed,” and “>10 fields observed,” or c) as distance to fields observed 

(FieldDist***), with the levels “no fields observed” (reference category), 

“fields in 0–5 km distance observed,” “fields in 6–10 km distance observed,” 

“fields in 11–30 km distance observed,” and “fields in >30 km distance 

observed.” Similarly, knowing adopters are measured a) as a binary with 

KnowAdopters or b) as number of adopters known (NrAdopters), with the 

levels “no adopters known” (reference category), “1–5 adopters known,” 

“6–10 adopters known,” and “>10 adopters known.” Each variable is 

depicted once alone and then also in combination with each other, together 

with the vector of control variables Control. We compare the results to a 

model that includes only an intercept (naïve model) and one that includes 

only the control variables, leading to 14 models overall that we compare (see 

Table 2.3 in section 4.3).  

How do the two types relate to each other within the relevant socio-spatial 

network? 

To determine whether the two types reinforced each other, we examined the 

predicted likelihood of adoption, given the interaction of NrFields, 

FieldDist, and NrAdopters. From H3, we expect the likelihood of adoption 

to be highest where many adopters are known and many fields are observed 

in close spatial proximity. We also intend to derive the relevant size 

(NrAdopters, NrFields) and structure (FieldDist) of the network. We take 

our simple preregistration model (see Appendix for details) and replace the 

binary variables KnowAdopters and ObserveFields with interaction terms of 

the different variables measuring field observation and knowing adopters 

leading to the following three probit interaction models IM1, IM2, and IM3: 

 

*** We calculated this variable (if not selected directly via single choice question) by taking the mean 

of the distances between the centroid of the own fields (if chosen via map) or the centroid of the postal 

code region (if own fields were not chosen via map but only the postal code was given) and the other 

farmers’ fields. 
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Pr(𝐴𝑑𝑜𝑝𝑡𝑖=1|𝑁𝑟𝐴𝑑𝑜𝑝𝑡𝑒𝑟𝑠_𝑎𝑔𝑔𝑖, 𝑁𝑟𝐹𝑖𝑒𝑙𝑑𝑠𝑖, 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖, 𝛽, 𝜸) = 

Φ(𝛽0 + 𝛽1𝑁𝑟𝐴𝑑𝑜𝑝𝑡𝑒𝑟𝑠_𝑎𝑔𝑔𝑖 + 𝛽2𝑁𝑟𝐹𝑖𝑒𝑙𝑑𝑠𝑖 + 𝛽3𝑁𝑟𝐴𝑑𝑜𝑝𝑡𝑒𝑟𝑠_𝑎𝑔𝑔𝑖

∗ 𝑁𝑟𝐹𝑖𝑒𝑙𝑑𝑠𝑖 +  𝜸𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖 + 𝜀𝑖) 

(6) 

Pr(𝐴𝑑𝑜𝑝𝑡𝑖=1|𝑁𝑟𝐴𝑑𝑜𝑝𝑡𝑒𝑟𝑠_𝑎𝑔𝑔𝑖, 𝐹𝑖𝑒𝑙𝑑𝐷𝑖𝑠𝑡_𝑎𝑔𝑔𝑖, 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖, 𝛽, 𝜸)= 

𝛷(𝛽0 + 𝛽1𝑁𝑟𝐴𝑑𝑜𝑝𝑡𝑒𝑟𝑠_𝑎𝑔𝑔𝑖 + 𝛽2𝐹𝑖𝑒𝑙𝑑𝐷𝑖𝑠𝑡_𝑎𝑔𝑔𝑖

+  𝛽3𝑁𝑟𝐴𝑑𝑜𝑝𝑡𝑒𝑟𝑠_𝑎𝑔𝑔𝑖 ∗ 𝐹𝑖𝑒𝑙𝑑𝐷𝑖𝑠𝑡_𝑎𝑔𝑔𝑖

+  𝜸𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖 + 𝜀𝑖) 

(7) 

Pr(𝐴𝑑𝑜𝑝𝑡𝑖=1|𝑁𝑟𝐹𝑖𝑒𝑙𝑑𝑠𝑖, 𝐹𝑖𝑒𝑙𝑑𝐷𝑖𝑠𝑡_𝑎𝑔𝑔𝑖, 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖, 𝛽, 𝜸)= 

Φ(𝛽0 + 𝛽1𝑁𝑟𝐹𝑖𝑒𝑙𝑑𝑠𝑖 + 𝛽2𝐹𝑖𝑒𝑙𝑑𝐷𝑖𝑠𝑡_𝑎𝑔𝑔𝑖 + 𝛽3𝑁𝑟𝐹𝑖𝑒𝑙𝑑𝑠

∗ 𝐹𝑖𝑒𝑙𝑑𝐷𝑖𝑠𝑡_𝑎𝑔𝑔𝑖 + 𝜸𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖 + 𝜀𝑖) 

(8) 

where Φ denotes the normal cumulative distribution function, β symbols 

denote scalars, and γ is a vector of coefficients to be estimated. We estimate 

the models in (7), (8), and (9) using maximum likelihood. NrFields enters 

as described in section 3.3.3. To avoid having too many empty and small 

groups resulting from the interaction terms, we aggregate two levels of the 

variable FieldDist, leading to FieldDist_agg, with the following levels: “no 

fields observed” (reference category), “fields in 0–5 km distance observed,” 

“fields in 6–10 km distance observed,” and “fields in >10 km distance 

observed,” as well as also two levels of NrAdopters, leading to 

NrAdopters_agg with the following levels: levels “no adopters known” 

(reference category), “1–5 adopters known” and “>5 adopters known.”  

2.4 Results and discussion 

2.4.1 Descriptive statistics 

Our original sample consisted of 313 farmers. After data cleaning, the 

sample size was reduced to 294 observations that were usable for the 

analysis.††† Following the power analysis reported in the preregistration, we 

 
†††Due to an error at the beginning of the data collection, spatial data were missing for 18 farms. As 

there was only one farmer delivering to the sugar factory Cosun Beet Company, we excluded this 

observation from the analysis to avoid distortion.   
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achieved a power of 0.93. ‡‡‡  The farmers in our sample are mainly 

specialized in crop production (74%). Compared to the German farming 

census from 2020 (see Table 2.2), the participants in our sample were 

slightly younger than the German average, a common observation in online 

surveys (Zahl-Thanem et al., 2021). The farm sizes are within the range of 

the German average for farms that specialize in crop production. Histograms 

for the distribution of age and farm size in the sample can be found in the 

Appendix, Figures A 2.2 and A 2.3. The small share of organic farms in our 

sample reflects the small market for organic sugar beets in Germany 

(Eurostat, 2021). Of 294 farmers, 39% (114) reported using mechanical 

weeding in their sugar beets, 82% (242) knew other adopters, and 85% (251) 

observed other farmers’ fields.  

Table 2.2: Sample statistics and comparison with German farm census data 

from 2020 

 

Whole sample 

(n = 294) 

Farming 

census in 

Germanya 

Variable Modeb / Mean Mode 

Age (in years) 35–44  55–64 

Farm size (in ha) 50–99  50–99c  

Share of organic farms 5% 2.5%d 

Number of adopters known 1–5 / 

Number of fields observed 1–5 / 

Distance to fields observed 0–5 / 

Minimal distance to demonstration 

farms (in km) 21.25 / 

Mean distance to fields observed (in 

km) 7.31 / 

Mean distance between own fields (in 

km, n = 232) 3.73  
a Bundesministerium für Ernährung und Landwirtschaft (2021) 
b We asked for all demographic variables in categories to not force participants to reveal too concrete 

information 
c Farms with mainly crop production (DESTATIS, 2022a) 
d Share of organic farms growing sugar beets in all farms growing sugar beets (DESTATIS, 2022b) 

The majority of farmers has a rather small and close network, which is in 

line with earlier findings (Blasch et al., 2020; Conley & Udry, 2010): mostly 

1–5 adopters are known, and 1–5 fields are observed at a distance of 0–5 km 

 
‡‡‡  On the chi-squared test for the contingency tables on Adopt, and KnowAdopters, and  

ObserveFields, respectively, assuming an effect size w of 0.22 as in Di Falco et al. (2020) and an 

alpha of 0.05. 
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(mean: 7.31 km), with a distance between the own fields of 0–1 km (see 

respective histograms in Appendix Figure 2.21). We find a slight difference 

between those who selected their own and other farmers’ fields via the map 

tool and those using the single-choice question (more on that in the 

Appendix). Concerning the spatial coverage, our sample well reflects the 

pattern of the sugar beet farm structure within Germany (see Figure 2.3).  

 

 

 

Sampled farms (yellow = non-adopters, blue = 

adopters, white = no observations, green = 

share of adopters per county, the darker the 

more) 

Main sugar beet regions (the higher the share 

of sugar beet in arable utilized agricultural 

area per county, the darker the region). 

Figure 2.3: Spatial coverage (left) and sugar beet regions in Germany (right) 

Most farmers use traditional machinery they own. While previously, the beet 

hoe was the main tool, machinery has become slightly more diverse in recent 

years, and also camera/GPS-steered and autonomous machinery is used (see 

Figure 2.13 in the Appendix). Modern and autonomous machinery is more 

frequently shared with neighboring farms or used via a machinery ring or 

contractor service (see Figure 2.14 in the Appendix). The three main reasons 
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that non-adopters gave for not using mechanical weeding are perceived time 

constraints, perceived low reliability of the technique to efficiently remove 

all weeds, and high investment costs (see Figure 2.15 in Appendix). Time 

constraints could relate to the time to actually do the mechanical weeding 

(on a tractor), but for future technologies, such as robots, supervision time 

could play a role (Lowenberg-DeBoer, Behrendt, et al., 2021). Hearing of 

bad experiences from peers or not knowing who to turn to for information 

on mechanical weeding are among the least important barriers.  

2.4.2 How do (verbal) information exchange and field observation relate to 

adoption? 

The results from the final LASSO model LMfinal support our initial 

Hypothesis 1a: knowing at least one adopter is associated with a 26% 

statistically significant higher likelihood of adoption, and Hypothesis 1b: 

observing at least one field where mechanical weeding is associated with a 

32% statistically significant higher likelihood of adoption, all else being 

equal (Figure 2.4). The marginal effects of both variables of interest remain 

robust in magnitude and significance through all different specifications that 

underpin trust in our results (see the sensitivity analysis in the Appendix, 

Figures A 2.8 and A 2.9). We conducted a similar analysis for the intention 

to adopt, indicating the same direction of effects (see Appendix, Figures A 

2.10 and A 2.11).  
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Figure 2.4: Marginal effects for Knowing Adopters and Observing Fields on 

Adoption of the final LASSO model 

Note: Dependent variable = Adoption, Observations: 294; 0.95 confidence intervals are displayed, 

and partial effects for the average observation are given with standardized standard errors. 

Our results on a positive correlation between verbal exchange and field 

observation and farmers’ adoption decisions are in line with similar studies 

(Mekonnen et al., 2022; Sampson & Perry, 2019). Assuming that a causal 

relationship underlies the positive correlations between verbal exchange and 

field observation and farmers’ technology adoption decisions, we explain 

our results by two phenomena: social learning and social pressure. Prior 

studies highlight the significance of information scarcity and perceived 

complexity as key obstacles to adopting new farming technologies (Bakker 

et al., 2021; Foster & Rosenzweig, 1995; Vecchio et al., 2020). Rogers 

(2003) underscores the pivotal role of perceived complexity in innovation 

adoption. Social learning, defined as the process of individuals learning from 

their neighbors' experiences with new technology Rogers (2003), serves as 

a means to mitigate (perceived) complexity by acquiring relevant 

information from peers. In our case, social learning could occur as 

mechanical weeding exhibits a certain complexity in implementation and 

outcome that might hinder adoption, as costs (e.g., labor time) and 

effectiveness under different local conditions are difficult to predict 

(Bessette, Wilson, et al., 2019; Bessette, Zwickle, et al., 2019; Fishkis et al., 

2020; Gage & Schwartz-Lazaro, 2019). Information that reduces the 
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perceived complexity of a technology can either be obtained through verbal 

exchange (Skaalsveen et al., 2020) but also by observing the technology in 

use and its results (McCann et al., 2015; Skaalsveen et al., 2020). Kolady et 

al. (2021) trace the effect of observing fields in a certain radius on farmers’ 

adoption decisions back to the reduction in learning costs and the possibility 

of deriving information on feasibility in the given local setting. We assume 

that both types of peer effects transmit different information that both reduce 

the perceived complexity of mechanical weeding and thereby positively 

relate to the adoption decision.  

We propose social pressure as a second mechanism explaining the positive 

correlation. Rogers (2003) emphasizes social system norms as a precursor 

to adoption. Déssart et al. (2019), drawing on Cialdini, Reno, and Kallgren 

(1990), distinguish between descriptive (what other people actually do) and 

injunctive (what people ought to do) norms and signaling motives (to convey 

some information about oneself to another party), with evidence suggesting 

their influence on farmers' technology adoption decisions (Déssart et al., 

2019; Shang et al., 2021; Streletskaya et al., 2020; Tandogan & Gedikoglu, 

2020). Pagliacci et al. (2020) and Gatto et al. (2019) underscore the role of 

nearby farmers' behavior in inducing social pressure. 

For mechanical weeding, we conjecture that descriptive norms may drive 

adoption if farmers perceive it as the new "norm," influenced by interactions 

with many adopters or field observations as individuals have a strong wish 

to conform with this norm if they find themselves in the minority (Asch, 

1956).  Recent evidence supports the importance of descriptive norms in 

farmers adopting organic farming (Tran-Nam and Tiet, 2022). Additionally, 

we suggest that injunctive norms could also trigger adoption but usually 

require verbal exchange. Empirical evidence has indicated that injunctive 

norms play an important role in explaining farmers’ adoption decisions 

(Defrancesco et al., 2007; Kuhfuss et al., 2016; Massfeller et al., 2022; Tran-

Nam & Tiet, 2022). 

Field observations may play a crucial role in signaling motives, allowing 

farmers to convey their commitment to fellow farmers and the public. The 

field's condition serves as a symbol of "good farming" (Burton, 2004). This 
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signaling can involve demonstrating environmental stewardship with 

weedy, likely biodiversity-rich fields, aligning with findings that 

environmentally conscious farmers prioritize societal opinions (Defrancesco 

et al., 2007; Läpple & Kelley, 2013). Alternatively, farmers may seek to 

showcase "success" with weed-free, high-yielding fields. Notably, weed 

management practices may affect neighboring fields through spillover 

(herbicides or weed seeds), creating social pressure for farmers to align their 

practices with those of nearby farmers (Davis & Carter, 2014; Lavoie & 

Wardropper, 2021; Macé, Morlon, Munier-Jolain, & Quéré, 2007).  

However, as we cannot account for the causal relationship, the reason for 

the positive relationship between peer effects and adoption could also be 

based on knowing adopters and observing fields as a consequence of the 

adoption, as farmers might join networking groups to exchange and to visit 

each other’s fields after they have adopted, as further discussed in section 

4.3. Further, selection bias in terms of individuals actively choosing their 

own peer group, preferably consisting of similar individuals (McPherson et 

al., 2001) could explain the positive relationship between peer behavior and 

own adoption, as found in similar studies (Blasch et al., 2020; Krishnan & 

Patnam, 2014; Skaalsveen et al., 2020).  

2.4.3 How do the two types of peer effects relate to each other? 

To identify the contribution of individual, distinct variables to explaining the 

adoption decision, we explore in how far the percentage of correct 

predictions changes with or without the variable under consideration (see 

respective coefficient plots in Appendix Figure 2.20). Table 2.3 depicts 

prediction accuracy (i.e., share of correct predictions) of different model 

specifications (column 2) and the difference to the model with the highest 

prediction accuracy in increasing order (column 3). With our best model, we 

can correctly predict the adoption decision for 77.21% of our sampled 

farmers compared to 61.22% using a naïve model.  
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Table 2.3: Prediction accuracy of different models 

Model Prediction 

accuracy (in %) 

Difference from 

the “best” model 

(in percentage 

points) 

a) Naïve 61.22 15.99 

b) Only Controls 68.03 9.18 

and   

c) NrFields 69.39 7.82 

d) ObserveFields 71.43 5.78 

e) FieldDist and NrFields 71.77 5.44 

f) FieldDist 72.45 4.76 

g) KnowAdopters 73.81 3.40 

h) NrAdopters and NrFields  73.81 3.40 

i) KnowAdopters and ObserveFields 

(Pr1) 

74.15 3.06 

j) KnowAdopters and NrFields 74.49 2.72 

k) NrAdopters 74.83 2.38 

l) NrAdopters and ObserveFields  76.19 1.02 

m) KnowAdopters and FieldDist 77.21 0.00 

n) NrAdopters and FieldDist  77.21 0.00 

Our results support our complementarity hypothesis (H2): the variables that 

we use to construct the two types of peer effects contribute to different 

extents to explaining the adoption decision. We find that the variables used 

to depict knowing adopters (KnowAdopters and NrAdopters, models g and 

k) exhibit a greater explanatory contribution than those related to field 

observation (ObserveFields, NrFields, FieldDist, models c–f), which could 

indicate that the former process is more important than the latter. NrFields 

seems to contribute least to an explanation of the adoption decision. A model 

with only control variables (model b) would predict 68.03% of the choices 

correctly, which represents a bit more than half of the gain of the full model 

over the naïve model. If a combination of the different variables describing 

field observation (ObserveFields, NrFields, FieldDist) and knowing 

adopters (KnowAdopters, NrAdopters) is included (Models h,i,j,l,m,n), the 

prediction accuracy is highest where FieldDist is combined with either 

KnowAdopters (Model m) or NrAdopters (Model n) and slightly lower 

where NrAdopters is combined with ObserveFields (Model l). It seems that 

once the distance to fields observed is included, the exact number of adopters 

known (Model n) does not help explain the adoption decision further; it is 

enough to include if adopters are known or not (Model m). The combination 
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of a variable that describes field observation and one that describes knowing 

adopters exhibits higher prediction accuracy (Models h,i,j,l,m,n) compared 

to a model where only the two field variables are included (model e), 

underpinning the complementarity hypothesis. We explain the finding on 

complementarity by the different information that might be delivered. While 

through verbal information exchange, information on unobservable 

characteristics can be obtained (e.g. costs), field observation allows to get 

information on the feasibility of the farming practice under the same 

production conditions over a full production period. 

We further find that of the farmers in the sample, 75% observe fields and 

know adopters, and the adoption share is highest in this group. The lowest 

share of adopters appears among those neither observing fields nor knowing 

adopters (8% of the sample) (see Figure 2.22 in the Appendix). Then, 7% 

know adopters but do not observe fields, and 10% observe fields but do not 

know adopters. This indicates that knowing other farmers and observing 

fields is highly correlated. Exposure to both types is positively related to a 

higher likelihood of adoption. Being exposed to only one or none of these 

types is very rare and comes with a low likelihood of adoption. 

To explore the (combined) effects of knowing adopters and observing fields 

and to derive the relevant size and structure of the network, Figures 2.5, 2.6, 

and 2.7 present heatmaps of the predicted likelihood of adoption (group size 

and share of adopters) of the three interaction models (see coefficient plots 

in Appendix, Figure 2.23) and all possible combinations of the interaction 

terms, such that the darker the color, the higher the predicted likelihood. 

We find that the highest predicted likelihood of adoption is exhibited by 

those who  

1. know many adopters and observe many fields: 90% (Figure 2.5) 

2. know many adopters close by: 77% (Figure 2.6) 

3. observe many fields close by: 89% and 88% (Figure 2.7)  
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Figure 2.5. Predicted likelihood of adoption (in %) dependent on the 

interaction between the number of adopters known and 

number of the fields observed (group size and share of adopters 

in parentheses) 

Note: Own presentation based on own data 

These results support our Hypothesis 3, such that the predicted likelihood of 

adoption correlates positively with the number of adopters known and 

number of fields observed in close spatial proximity. The two types of peer 

effects seem to mutually reinforce each other: having a large network among 

adopters known and many fields observed that are close in terms of spatial 

radius comes along with a high predicted likelihood of adoption. 

Manson et al. (2016) found very similar results for the effect of distance to 

other farms on the adoption of multifunctional agriculture. Distances below 

8 km have a strong impact on the adoption decision, which supports our 

assumption that local information from farmers and fields facing the same 

local settings is relevant, likely especially to reduce perceived complexity. 

This is also reinforced by our finding that the predicted likelihood of 

adoption increases with the proximity with which a sampled farm is located 

to a demonstration farm (Appendix Figure 2.27) which was also found in 

previous research (Wang, Lu, & Capareda, 2020). Our results indicate that 

knowing many (> 5) adopters comes along with a high predicted likelihood 
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of adoption, especially if many (>10) fields are observed, which is in line 

with Blasch et al. (2020), Genius et al. (2014), and Bandiera and Rasul 

(2006), who found the same effect for the likelihood of different types of 

technology adoption. We presume that descriptive norms might explain 

these patterns: Knowing many adopters of mechanical weeding and 

observing many fields where it is being used induce the feeling that most 

farmers are weeding mechanically, leading to a wish to conform with this 

(perceived) majority (Asch, 1956). If many (>5) adopters are known (and 

similarly if many (>10) fields are observed), the predicted likelihood is 

highest if the fields are observed close by (0–5 km). This strong effect of 

knowing many adopters close by on the adoption decision has also been seen 

in similar studies (Genius et al., 2014; Sampson & Perry, 2019).  

 

 

Figure 2.6: Predicted likelihood of adoption (in %) dependent on the 

interaction between the number of adopters known and 

distance to fields observed (group size and share of adopters in 

parentheses) 

Note: Own presentation based on own data 
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Figure 2.7: Predicted likelihood of adoption (in %) dependent on the 

interaction between the number of fields observed and distance 

to fields observed (group size and share of adopters in 

parentheses) 

Note: Own presentation based on own data, Figure 2.7 based on subsample of “observers” 

While we cannot tell from our data whether the fields observed belong to 

known adopters, we find a high correlation between the variables we used 

to construct NrAdopters_agg, NrFields, and FieldDist_agg, respectively 

(chi-squared tests p < 1% for all, see Figures A 2.16–A 2.18 in Appendix). 

Knowing many (>5) adopters entails observing many (>10) fields further 

away (>10 km). Unlike the revealed importance of local information from 

fields nearby, we also see a quite high predicted likelihood for adoption if 

fields further away are observed, combined with many adopters known 

(61%) or many fields observed (66%).  

In light of these results, we conjecture that endogeneity between the two 

variables of interest, field observation, and verbal exchange, could be an 

issue. We cannot rule out that farmers talk to each other more often if their 

fields are close or that they are more aware of many (close) fields with 

mechanical weeding if many adopters (= potential respective landowners) 

are known to them—both observations were made by Mekonnen et al. 

(2022). In addition, the causal relationship remains unclear; it might simply 
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be that farmers observe a new technology on the field and then approach the 

farmer to talk about it or that farmers come to know many adopters at a 

networking event, and after having had a verbal exchange, they visit each 

other’s fields, even further away. Further, throughout our study we rely on 

the assumption, that the two types of peer effects are based on the same (or 

highly overlapping) relevant peer group. Nevertheless, both analyses on the 

relation between verbal exchange and field observation (Table 2.3 and 

Figures 2.5, 2.6 and 2.7) indicate slightly higher importance of verbal 

exchange compared to field observation when it comes to the adoption 

decision. We have to keep in mind, that the results rely on the strong 

assumption of having no unobserved confounders. However, assuming that 

such confounders would relate to both types of peer effects to a similar 

extent, we can still make a statement on the relative importance of verbal 

exchange and field observation.  

2.5 Conclusion 

The theoretical and empirical understanding of peer effects is a crucial factor 

for steering farmers adoption behavior of novel, sustainable farming 

technologies in a desired direction. With this study, we contribute to improve 

this understanding. First, we add to existing theory by differentiating 

between two types of peer effects, knowing adopters and observing fields. 

Second, we empirically investigated the roles and relations of these two 

different types using a novel survey tool developed for this purpose. We 

have shown that the LASSO double-selection procedure is helpful in terms 

of including a large number of variables that allow for control for correlated 

(and to a lesser extent) exogenous effects, even with a relatively small 

sample size. Using country-level variables to control for correlated or 

exogenous effects implicitly assumes that the peer network consists only of 

peers from the same county. This assumption can indeed be questioned; 

however, as data on additional characteristics is only available at the country 

level, this is the best possible approach given the available data. 

We find that first, the two variables that we used to approximate verbal 

information exchange through knowing adopters and field observation both 

exhibit a positive and statistically significant correlation with adoption. 
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Second, despite the high correlation between the two variables we used to 

construct our types of peer effects, it remains possible to estimate the 

correlation of both with adoption indicating a complementary relationship. 

Third, verbal information exchange seems to be slightly more important in 

explaining the adoption decision. Finally, the two variables mutually 

reinforce each other, indicating the importance of a large but spatially close 

network. The complementary contribution to explaining the adoption 

decision and the mutual reinforcement of the effects constitute viable 

findings, even in light of potential endogeneity, reverse causality, and 

selection bias. Our results provide a clear indication of the importance of 

differentiating between verbal information exchange and field observation 

and emphasize the relevance of the local production conditions.  

Therefore, we advise that future research on farm-level peer effects should 

distinguish between those arising from verbal exchange and those arising 

from field observation. Further, the research could test the theoretical 

assumption of peer effects arising through either social learning and/or 

social pressure and how the relevance of these two phenomena differs 

depending on the type of peer effect. In addition, the study of the temporal 

order of adoption within a certain socio-spatial network could help to 

identify the causal relationship behind the types of peer effects. We did not 

account for the relevance of certain peers or groups or if they differ between 

the two types of peer effects. If our assumption of the two types of peer 

effects being based on the same (or highly overlapping) relevant peer group 

is violated, it could impact the relative comparison. Future research could 

identify the relevant peer groups for each type of peer effect. For example, 

one could examine whether conventional farmers observe organic fields to 

understand the usage of mechanical weeding technologies or whether 

organically farming peers (or their fields) are relevant for either social 

learning or social pressure, as they might be the first to use novel weeding 

devices (Shang et al., 2023). 

Our results have important policy implications concerning farmers’ adoption 

decisions of new technologies. Based on the finding that verbal exchange 

seems to be slightly more important for predicting the adoption decision, we 

derive that advisory services should focus on establishing personal contact 
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between adopters and non-adopters. Given the complementary relationship, 

field observation possibilities should always be accompanied by the option 

to verbally exchange, e.g., through field days. Following Reichardt et al. 

(2009; 2009) and Wang et al. (2020), we suggest that training courses on 

novel technologies in vocational and technical schools should be combined 

with practical demonstrations of the new machinery. Policy measures could 

promote shared ownership of novel technologies, as they seem less likely to 

be owned alone (Figure 2.14). This would initiate a (verbal) exchange 

between like-minded farmers, probably accompanied by joint field 

observations. In addition, policy measures and extension services could be 

designed more resource-efficiently by offering a technology to certain 

farmers in a nearby region for experimental purposes, which would allow 

the necessary field observation and could be accompanied by the possibility 

of (organized) verbal exchange with (preferably many) adopters. 
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2.7 Appendix 

2.7.1 A. Survey 

While the original survey was conducted in German, we show the English version 

in the following: 

Weed control in sugar beet – today and tomorrow 

“What we lacked when using the new technology is another farmer from 

the region with experience” 

Sugar beet production is increasingly affected by losses of active ingredients in 

plant protection products. Farmers need alternatives. Here it is often helpful to look 

at what colleagues in the region are doing. 

We at the University of Bonn conduct a short (maximum 10 minutes) online survey 

on weed control in sugar beet. The aim of the survey is a better understanding of 

the role of the exchange between colleagues as a source of information for decisions 

about new farming practices. 

As a farmer, you have the opportunity to provide anonymous information online on 

how to combat weeds. We are not only interested in farmers who already have 

experience with mechanical weed control. It is equally valuable for us to know why 

farmers do not use these techniques or whether they plan to use them in the future! 

As soon as the first survey results are available, you can see on a map where farmers 

have already taken part in the survey and compare which weed control techniques 

are used where in Germany. 

As a giveaway there are three vouchers worth €50 for Engelbert Strauss for every 

100 participants. 

1. Intro 

Welcome to our survey for weed control in sugar beet! 

It takes maximum 10 minutes to complete the survey. 

All results are analyzed anonymously. If you wish, we will send you a summary of 

the results. 

If you want to be informed about the results you can enter your e-mail address after 

the survey. 

When you need help press the ?-symbol and you will receive more information. 

The male form chosen in the survey always refers to female, diverse and male 

persons. 

If you have any questions, please contact: [the author]. 

To open the survey, please accept our data security statement. 

→ Display privacy policy 
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→ Start the survey 

2. Survey 

Question 1: Do you use mechanical weed control in your sugar beet? This 

also includes chemically-mechanically combined weed control such as a hoe band 

sprayer. In this case, the hand hoe does NOT count as a mechanical weed control. 

 (Need help? → You must answer the question in order to proceed) 

    • Yes 

    • No 

If question 1 = „Yes“: 

Question 2: Since when do you use the following techniques? [Table with 

drop-down selection for devices] or add other techniques that are not in the list: 

Comment field: _____ 

 (Need help? Please select a machine. Then fill in the appropriate columns in 

the table. You can add or remove machines that are not part of the list.) 

Additional information to the column “Additional equipment”: Does the 

machine have any special equipment? Have you replaced the device with a new one 

in the past? Is the device autonomous? Did you add something by yourself? Then 

please use the comment field. 

Tool since: Extra equipment/ 

investment/ comment   

Whose machine do you 

use? 

Possible devices:   

    • Harrow 

    • Hoe harrow 

    • barrow harrow 

    • Rotor harrow 

    • Coulter hoe 

    • Seperating hoe 

    • Rolleing hoe 

    • Finger hoe 

    • Combination hoe-

band    sprayer 

    • Heaping device 

    • Hoe brush 

    • Rotary hoe 

    • Other: ________ 

a) With camera since 

b) With GPS since 

c) New investment 

d) Autonomous driving   

e) Comment 

f) not stated 

   • Own machine 

   • Share with neighbors 

   • Machine ring 

   • Contractors 

   • Other 

 

Question 3: How many farmers who use mechanically or chemically-

mechanically combined weed control (not only in sugar beet!) do you know? 



90   Chapter 2

 

 

This includes not only farmers who are spoken to on a daily basis, but also 

farmers with whom you can talk over via phone or at trade fairs, at working group 

meetings, through farming associations and during field visits. 

 (Need help? → This does not only mean sugar beet. In this case, the hand hoe 

does NOT count as a mechanical weed control) 

    • 0 

    • 1-5 

    • 6-10 

    • more than 10 

Question 4: In which fields did you grow sugar beet in the last harvest year 

(2021)? Please click on the appropriate fields or set the marker. 

To make it easier for you to choose, we show the field shapes and marked 

those yellow where we know that there have been cultivated sugar beets fields in 

the last three marketing years (2019-2021). You can also mark unshaped areas 

(mainly in Hamburg and Saarland) with the help of a small tractor symbol. 

We have taken the data from the Invekos database in the form of so-called 

shape-files for North Rhine-Westphalia, Lower Saxony and Brandenburg. These 

data are freely available within the Data License Germany, as specified in the EU 

INSPIRE Directive. The data for the other federal states is based on remote sensing 

data (automatically detected field shapes from own calculations based on satellite 

images taken by Copernicus). 

Differences between the shapes of the fields and your actual fields are possible. 

In this case, simply select the most suitable plot (s). The shape only becomes visible 

when you zoom in on the map. Information about the fields is of great importance 

for our analysis, but if you prefer not to click on areas, you can skip this question 

and alternatively enter your postcode in the next step. 

(Need help? → Please mark the appropriate location on the map. You can 

move the map by holding down the left mouse button. For our evaluation, it is 

useful to have an indication as precise as possible. You can search for places in the 

search field in the upper right corner.) 
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If question 4 is skipped: 

Question 4: Please enter your postcode 

__________ [numeric input, 5-digit number] 

(Need help? → This information is stored anonymously and it is not possible 

to draw conclusions about individual farms. All data will be aggregated and 

summarized on the map as at the beginning.) 

In both cases, it continues as follows:          

Question 5: Do you know fields (e.g. through passing by) on which 

mechanical or chemical-mechanical combined weed control was applied in the last 

harvest year (2021)? This does not only include sugar beet fields! 

In our analysis, we evaluate the data with regard to the distances between our 

own fields and other fields. No evaluation of individual farms or fields is carried 

out. For us, it is interesting how the fields of other farmers, on which you have seen 

mechanical weed control, are geographically distributed, but not to which farm they 

belong. 

If you don’t want to mark the fields or can ‘t exactly state where the areas are, 

you can skip this question and enter an approximate number and distance in the 

next step. 

(Need help? → Move the map by holding down the left mouse pointer.)                   

If question 5 is skipped: 

Question 5: 
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a) How many fields do you know where weeds are removed mechanically or 

chemically-mechanically combined? 

    • 0 

    • 1-5 

    • 6 – 10 

    • 11-15 

    • more than 15 

b) How far away are these fields located? 

    • 0 – 5 km 

    • 6 – 10 km 

    • 11 – 15 km 

    • 16 – 20 km 

    • 21 – 30 km 

    • more than 30 km 

    • I don’t know any fields 

 (Need help? → Please specify where and how many fields you are aware off 

while driving by.) 

Almost done! You have successfully completed the first part of the survey and 

your previous answers have been saved. Now we continue with the second part. 

In both cases, the second part continues as follows: 

Question 6: Can you imagine using mechanical weed control in the future? 

Evaluate the following techniques with regard to the 5 statements. Select the 

statement (s) that best fit(s) your current planning. 

Conventional machines for 

mechanical (e.g. harrow, 

hoe) or chemically-

mechanical combined (e.g. 

hoe-band sprayer) weed 

control (without 

GPS/camera control) 

GPS-guided/camera-

controlled  machines for 

mechanical/chemical-

mechanical combined 

weed control (non-

autonomous) 

GPS/camera-controlled 

autonomous machines for 

mechanically/chemically-

mechanically combined 

weed control (e.g. robots) 

o I am not planning anything 

 

o I think about getting more 

information and follow 

current discussions and 

literature 

 

o I am actively seeking for 

offers and I want to take part 

o I am not planning anything 

 

o I think about gaining more 

information and follow 

current discussions and 

literature 

 

o I am actively seeking for 

offers and I want to take part 

 I am not planning anything 

 

o I think about gaining more 

information and follow 

current discussions and 

literature 

 

o I am actively seeking for 

offers and I want to take part 
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Conventional machines for 

mechanical (e.g. harrow, 

hoe) or chemically-

mechanical combined (e.g. 

hoe-band sprayer) weed 

control (without 

GPS/camera control) 

GPS-guided/camera-

controlled  machines for 

mechanical/chemical-

mechanical combined 

weed control (non-

autonomous) 

GPS/camera-controlled 

autonomous machines for 

mechanically/chemically-

mechanically combined 

weed control (e.g. robots) 

in a consultation within the 

next 5 years 

 

o I plan to use this technique 

within the next 5 years  

(own investment, 

contractors, ...) 

 

o I am already using this 

technique 

in an consultation within the 

next 5 years 

 

o I plan to use this technique 

within the next 5 years  

(own procurement, 

contractors, ...) 

 

o I am already using this 

technique 

in an consultation within the 

next 5 years 

 

o I plan to use this technique 

within the next 5 years  

(own procurement, 

contractors, ...) 

 

o I am already using this 

technique 

Question 7: 

a) How old are you? 

    • 15 -24        

    • 25-34       

    • 35 -44        

    • 45-54      

    • 55-64     

    • 65 and more    

    • no information 

 (b) What is the size of your farm (in ha)? 

    • less than 5       

    • 5-9     

    • 10-19        

    • 20-49       

    • 50-99        

    • 100 -199        

    • 200 – 499        

    • 500 -999          

    • 1000 and more         

    • no information 



94   Chapter 2

 

 

c) How do you manage your farm? 

    • Conventional 

    • whole farm organic 

    • Crop production organic 

    • other parts organic 

    • no information 

d) What is your farm specialization? 

    • Primarily crop production 

    • Primarily livestock farming 

    • Primarily special crops 

    • Mixed farm 

    • no information 

    • Others/comment 

e) Are you taking part in an agri-environmental climate measure (voluntary 

measure from the 2nd pillar of the CAP) during the current funding period (2021-

2027)? 

    • Yes 

    • No 

    • no information 

(Need help? → This data is used to record the representation of our survey and 

like the entire survey it is collected anonymously. The farm size refers to the total 

agricultural area (ownership and lease)) 

Question 8: Do you have any questions or comments? Feel free to write down 

your opinion: 

 (Need help? → Share your thoughts on this survey and on mechanical weed 

control.) 

 

____________________________________ [Free text] 

3. The end 

Thank you for taking the time to participate in the survey. 

Now you have the opportunity to take part in our lottery. We will randomly 

give away three vouchers for Engelbert-Strauss with a value of € 50 among 100 

participants each. Please enter your e-mail address below. This is stored separately 

from your data and it is not possible to connect it to your answers. If you wish to 

receive a summary of the results we will send you the summarized results as soon 

as the data is analyzed. 
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Would you like to receive the summary of the results by e-mail? 

    • Yes 

    • No 

Would you like to take part in the lottery? 

    • Yes 

    • No 

If one of the previous questions is answered with „Yes“ you can see the 

following information: 

Please enter your name and e-mail address here. This data is stored separately 

and there is no connection to your answers in the survey. 

E-mail address: ___________ [free text] 

We will never share your e-mail with third parties. 

If you have any questions, please contact: [the author] 

If question 1 = „No“: 

Question 2: Why do you not use mechanical weed control? Select all reasons 

that fit for you. You also have the option to enter further reasons or explanations 

by using the comment field.  (multiple choice) 

    • Excessive running costs 

    • Excessive investment costs 

    • Too much time required 

    • Low reliability in weed control 

    • High risk of damaging the crop 

    • Not possible on my farm (e.g. due to soil conditions, field sizes,..) 

    • I don’t know if the technology works for me 

    • I don’t trust the application/operation 

    • My colleagues in the region have had bad experiences and told me about 

them 

    • I don’t know any colleagues in my region who could give meadvices 

    • I want to wait until the technology is more mature 

    • There is no reason for me to change cultivation 

free comment field: _______ 

 (Need help? → Please give us some background information about your 

decision.) 
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2.7.2 B. Information on the pre-registration, where and why we deviated 

from it 

We described two different ways how our two variables of interest, (verbal) 

information exchange through knowing other adopters (KnowAdopters) and, 

possibility to make field observation (ObserveFields) can enter the models: 

a) as binary or b) as dummy with multiple categories. To answer research 

question 1, we opted for a), to answer research question 2 and 3 we choose 

version b). Unless otherwise specified, we follow the pre-registration. One 

main deviation from the pre-registration concerns the inclusion of the 

distance to other farmers’ fields as explanatory variable. We exclude this 

variable from our main model (PR1), because it is not straightforward to deal 

with observations that do not observe any neighboring fields. However, in 

later models used to answer research question 2 and 3 we include distance 

to other farmers’ fields as dummy variable setting “non-observers” as 

reference category. As described in the pre-registration we exclude variables 

from the vector of control variables that show little variation among 

participants namely the two variables Farm_organic (1 if the farm is 

organic, 0 if not) and 2) Farm_specialization (0 if primarily crop production, 

1 if primarily livestock farming, 2 if primarily special crops, 3 if mixed farm 

and 4 if no information). The LASSO double selection procedure, described 

in the method section, is not part of the pre-registration but it is added as an 

alternative approach to identify the causal relationship behind our first 

research question. This alternative approach is added because the 

instrumental variable suffers empirically from a weak instrument leading to 

large uncertainty in the estimated effects. We changed the order and 

numbering of our hypotheses to ease the comprehensibility of our process 

and avoid causal language, the formulation of the research questions and 

hypotheses therefore also changed slightly. We extended the formulation of 

research question 3, the respective hypothesis and the respective analysis by 

looking at the effect of the interaction terms.  

2.7.3 C. Structure of the German sugar beet sector 

As an alternative to the variable describing belonging to the sugar beet 

factors (Factory_agg) we also included dummy variables for the ten German 



Field observation and verbal exchange as different peer effects  97

 

  

advisory associations (Figure 2.8) a sugar beet farmer belongs 

(Association_agg) to as the German sugar beet production sector is well 

organized through the advisory associations and farmers receive relevant 

local information from them. Still there is a high regional overlap between 

the associations and the factories which is why we used the two versions as 

alternatives for each other and as a sensitivity check. 

 

 

 

Figure 2.8: Map of sugar beet factories and sugar beet associations 

Note: Aggregation of Factory locations: Appeldorn + Euskirchen + Jülich =“West“, Klein 

Wanzleben + Könnern + Zeitz = „SachsenAnhalt“, Lage + Nordstemmen = „LageNordst“ 

Source: Data collected from websites of the sugar beet associations and and sugar beet fabrics based 

on WVZ/ VdZ (2021) 
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2.7.4.   D. First step of the LASSO double selection procedure 

Table 2.4: Variables selected in the first step of the LASSO double selection 

procedure 

 

Variable 

Frequency variable was chosen for the 

dependent variable 

Adoption 

(LM1) 

KnowAdopte

rs (LM2) 

 

ObserveField

s (LM3) 

As in pre-

registratio

n§§§ 

 

MinDist_demo 49 8 0 

sq.MinDist_demo 0 0 0 

Farmsize 0 0 2 

AES 8 45 2 

Age 18 45 2 

FactoryLocation_agg 13 0 2 

Instrument

al 

variables 

ShareOrgFarms 0 0 0 

ShareOrgArea 0 19 0 

Additional 

variables 

in 

ControlLa

sso 

 

Farm_organic 50 2 0 

Mainly_crop 0 4 0 

MeanFarmSize2 0 0 0 

Populationdensity 0 0 0 

FarmDens 0 45 0 

AreaDens 1 0 2 

ShareSmallFarms 6 45 2 

ShareSmallArea 3 0 2 

Elevation_in_m_mean 0 0 2 

Sand_content_percent_m

ean 0 45 2 

Clay_content_percent_m

ean 50 12 0 

Slope_in_degrees_mean 50 0 0 

sq.Elevation_in_m_mean 1 0 1 

sq.Sand_content_percent

_mean 0 0 0 

sq.Clay_content_percent

_mean 0 45 0 

sq.Slope_in_degrees_me

an 0 0 0 

ShareArableUAA 50 0 0 

ShareArableInTotalArea 50 0 0 

 

§§§ We excluded variables from the pre-registration model as described in the Appendix. 
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As it can be seen in Table 2.4, the variable describing if the farm is organic 

or not was selected in all models for Adoption as dependent variable which 

is something that we expected as being an organic farmer requires 

mechanical weed control. We included the instrumental variables 

ShareOrgFarm and ShareOrgArea in the vector of controls (ControlLasso) 

for the first step of the LASSO double selection procedure to verify our 

initial assumptions on these variables. Especially the exclusion restriction 

for ShareOrgArea is partially supported as this variable is never selected for 

Adoption but 19 times for KnowAdopters. 

2.7.4 D. Pre-registration-model 

In our first approach, we isolate social effects by including variables in our 

model that allow control of correlated effects. We call this the “original 

preregistration model” (PR1). Information on other adopters 

(KnowAdopters) is used to approximate the possibility of (verbal) 

information exchange with adopters. Similarly, the knowledge of 

mechanically weeded fields from others (ObserveFields) provides 

information on the awareness of other fields (see formulation of relevant 

questions for KnowAdopters and ObserveFields in the original survey in the 

Appendix). Both variables are coded in our model PR1 as binary variables 

with 1 if other adopters are known / fields are observed, respectively, and 0 

if not. In addition, we include a vector of control variables Control 

containing farmers’ characteristics such as age (1 if > 45 years), farm size (1 

if > 50 ha) and, to approach environmental attitude, previous participation 

in AES (1 if yes) as binary dummy variables (0 if not for all). Additionally, 

to account for the possible correlated effects, we include 1) the minimal 

distance to demonstration farms (also squared) as a continuous variable. This 

reflects the minimal distance of the farm i to a farm belonging to the network 

of demonstration farms for organic agriculture that are found all over 

Germany. ****  We include affiliation with one of the 19 German sugar 

factories as a dummy variable in Control. Thereby we can account for 

regional differences as well as for the effect of farm advisors. To do this, we 

 
**** More information and a map can be found here: https://www.oekolandbau.de/bio-im-alltag/bio-

erleben/demonstrationsbetriebe-oekologischer-landbau/ 

https://www.oekolandbau.de/bio-im-alltag/bio-erleben/demonstrationsbetriebe-oekologischer-landbau/
https://www.oekolandbau.de/bio-im-alltag/bio-erleben/demonstrationsbetriebe-oekologischer-landbau/
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calculate the distance for each farm i to each of the German sugar factories 

and assume that farm i delivers to the closest factory. There are 19 sugar 

factories in Germany, belonging to four sugar producers. We aggregated the 

factories into 13 groups to avoid very small dummy groups (Figure 2.8). All 

variables included in the model are presented in Table 2.1. We denote farmer 

i’s indication to adopt mechanical weeding by Adopt, modeled as a binary 

decision, taking 1 if mechanical weeding is applied and 0 if not. We follow 

a probit specification, and a farmer’s probability to adopt mechanical 

weeding is modeled in model PR1, as follows:  

Pr(𝐴𝑑𝑜𝑝𝑡𝑖=1|𝐾𝑛𝑜𝑤𝐴𝑑𝑜𝑝𝑡𝑒𝑟𝑠𝑖 , 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝐹𝑖𝑒𝑙𝑑𝑠𝑖 , 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖 , 𝛽, 𝜸) 

= Φ(𝛽0 + 𝛽1𝐾𝑛𝑜𝑤𝐴𝑑𝑜𝑝𝑡𝑒𝑟𝑠𝑖 + 𝛽2𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝐹𝑖𝑒𝑙𝑑𝑠𝑖 + 𝜸𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖 + 𝜀𝑖) (1) 

where Φ denotes the normal cumulative distribution function, the β symbols 

denote scalars, and γ is a vector of coefficients to be estimated. We estimate 

the model in (1) using maximum likelihood. As we only include a few 

control variables, based on prior knowledge and evidence from the literature, 

there is a certain risk of omitted variable bias (OVB). We depict the results 

of PR1 in Figure 2.9. 

 

Figure 2.9: Coefficient plot for PR1 results in comparison with LASSO model 

results 

Note: Dependent variable = Adoption, Observations: 294, Displaying confidence interval of 0.95, 

partial effects for the average observation with robust and standardized standard errors 
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2.7.5 E. Instrumental variable approach 

Identification strategy 2: Instrumental variables 

To overcome the limitations of the simple model PR1, we would ideally use 

an IV approach that would allow us to isolate the part of the variance in a 

farmer’s adoption decision that can be explained by peers’ behavior. In the 

preregistration, we proposed that organic farming (share of adopters and 

share of organic area) could serve as a suitable instrument. Organic farmers 

must do mechanical weeding, independent of environmental conditions or 

of other farmers. Other famers’ behavior influences a farmer’s adoption 

decision only by means of the fact, that they are adopters and that their 

behavior can be observed or verbally communicated. However, we found 

that the instrument relevance condition was not sufficiently met: the two IVs 

are too weakly correlated with the variables of interest KnowAdopters and 

ObserveFields. For this reason, the results do not allow meaningful 

conclusions to be drawn. More details on the IV approach can be found in 

the Appendix.  

We attempt to disentangle endogenous from exogenous and correlated 

effects by exploring an instrumental strategy using the share of organic 

farms in the county and share of organic area in the county as instruments 

similar to Di Falco et al. (2020). Such instrumental variables have to fulfil 

two requirements (Angrist, Imbens and Rubin 1996; Heckman 1997): they 

have to be highly correlated with the endogenous variables (instrument 

relevance condition) but uncorrelated with the error term 𝑖 (instrument 

exogeneity condition). 

We hypothesize that the share of organic farmers (ShareFarmOrg) in a 

county could serve as instrumental variable for the potentially endogenous 

variable of knowing other farmers (KnowAdopters). Similarly, the share of 

the organic area (ShareFieldOrg) in a county can serve as instrumental 

variable for the potentially endogenous variable of observing others’ fields 

(ObserveFields). For the share of organic farmers and organic area we take 

German county level data from 2016 (Statistische Ämter des Bundes und 

der Länder, Deutschland, 2021). 
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We apply a modified multiple-stage-least-squares approach based on 

Angrist and Pischke (2009),  as “ordinary” 2-Stage-Least-square (2SLS) 

approaches are less suitable for nonlinear models, like dummy endogenous 

variables. Therefore Angrist and Pischke (2009) suggest to include another 

step by using the non-linear fitted values again as instruments, leading to 

three stages (“3SLS”). Given that we include KnowAdopters and 

ObserveFields as dummy variables, we can apply this approach to our case 

leading to the following model called “IV” (more information on the “3SLS 

approach” in the pre-registration).  

Pr(𝐴𝑑𝑜𝑝𝑡𝑖=1|𝐾𝑛𝑜𝑤𝐴𝑑𝑜𝑝𝑡𝑒𝑟𝑠𝑖
̂̂ , 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝐹𝑖𝑒𝑙𝑑𝑠𝑖

̂̂ , 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖 , 𝛽, 𝜸) 

= Φ(𝛽0 + 𝛽1𝐾𝑛𝑜𝑤𝐴𝑑𝑜𝑝𝑡𝑒𝑟𝑠𝑖
̂̂ + 𝛽2𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝐹𝑖𝑒𝑙𝑑𝑠𝑖

̂̂ + 𝜸𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖 + 𝜀𝑖)  

  (A1) 

wherein 𝐾𝑛𝑜𝑤𝐴𝑑𝑜𝑝𝑡𝑒𝑟𝑠𝑖
̂̂  and 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝐹𝑖𝑒𝑙𝑑𝑠𝑖̂̂  denote the fitted values arising from 

the three-stage-least squares approach, Φ denotes the normal cumulative 

distribution function and the the β's denote scalars and γ a vector of 

coefficients to be estimated. We estimated the model in (3) using maximum 

likelihood.  

We assume that the instrument relevance condition holds as those farmers 

who farm organically do mechanical weeding anyway (i.e. ShareFarmOrg 

and KnowAdopters are correlated) and that on organic areas mechanical 

weeding is done anyway, too (i.e. ShareFieldOrgi and ObserveFields are 

correlated). The instrument exogeneity condition says that the errors should 

be uncorrelated with the instruments. That should be the case once we 

account for the number of neighbors known and number of fields aware of 

(KnowAdopters and ObserveFields). 

Results IV approach 

Figure 2.10 shows marginal effects for KnowAdopters and ObserveFields of 

our original pre-reg model as well as the marginal effects for the 

instrumental variable model (IV). We tested for the suitability of the IV by 

checking for the instrument relevance and instrument exogeneity condition. 

Concerning the instrument relevance condition, we found via t.test that, 

there is no significant correlation between the endogenous variable 
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ObserveFields and the instrumental variables ShareFarmOrg and 

ShareFieldOrg (p-values: 0.7288 and 0.9696, respectively).  

Note: Dependent variable = Adoption, Observations: 294, Displaying confidence interval of 0.95, 

partial effects for the average observation with robust and standardized standard errors 

The relation between KnowingAdopters and the two instrumental variables 

ShareFarmOrg and ShareFieldOrg is not significant either (p-values: 

0.7288and 00.861, respectively). We found a very small negative correlation 

between both instruments and the error term (both around -0.02), indicating 

support for the instrument exogeneity condition. Lastly, we could not detect 

a statistically significant correlation between our outcome variable Adopt 

and the instruments (both p-values > 0.1). We applied the “3SLS” approach 

as explained in the pre-registration (see Massfeller & Storm, 2022).  

Figure 2.10: Marginal effects for the pre-registration model (PR1) and the IV-

Model. 

In comparison to the results of the pre-registration model, the results of the 

3SLS-model show different effects for both variables of interest. 

KnowingAdopters_IV remains positive and becomes larger, 

ObserveFields_IV turns negative. However, both effects come along with 

large standard errors. This indicates that the correlation between the 

instrumental variables and the endogenous variable is too weak to serve as 

instrument that allows to derive clear conclusions.  
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2.7.6 F. Descriptive results & sample characteristics 

 

Figure 2.11: Histogram of age distribution of the sample 

Source: own survey data 

 

Figure 2.12: Histogram of farm size distribution of the sample 

Source: own survey data 
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Figure 2.13: Usage of weeding machines over time 

Source: own survey data 

 

Figure 2.14: Ownership status of used machinery 

Source: own survey data 
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Figure 2.15: Reasons for non-adoption 

Source: own survey data 

2.7.7 H. Results of the sensitivity analysis for the second step of the LASSO 

double selection procedure 

In the second step of the double selection procedure we then ran 50 probit 

models, one for each combination of nfolds and seeds with the respective 

control variables selected in the first step. To specify our model, we try 

different combinations of five random number seeds and ten different folds 

in the cross-validation [10,20,30,40,50,60,70,80,90,100] for each of the 

three models LM1, LM2 and LM3, to make sure that results do not differ 

depending on in how many parts the data is split for the train and test 

purposes. 

Figure 2.16 shows the marginal effects for the ten different versions of folds 

as mean over all seeds. It can be seen that the marginal effects do not differ 

remarkably among the different models meaning that the number of folds 

has no effect on the results. Although different variables have been selected 

in the different models (see Table 2.4), marginal effects remain robust (see 

Figure 2.16) meaning that the choice and combination of control variables 

selected does not influence the magnitude and significance of our variables 

of interest KnowAdopters and ObserveFields. 
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Figure 2.16: Marginal effects for different number of folds in the second step 

of the LASSO double selection procedure 

Note: Dependent variable = Adoption, Observations: 294, Displaying confidence interval of 0.95, 

partial effects for the average observation with robust and standardized standard errors. 

We averaged the estimates for KnowAdopters and ObserveFields over all 50 

specifications leading to an average marginal effect of 0.2550 for 

KnowAdopters and 0.3213 for ObserveFields.  

In a third step we then compared the double selection model to other model 

variations (see Table 2.5). We exchanged the variable of 

FactoryLocation_agg with the one of Association_agg. While 

FactoryLocation_agg refers to the concrete location of the sugar factories in 

Germany, Association_agg reflects which county belongs to which sugar 

beet associations (see Figure 2.8). We could not detect any difference in the 

model outcomes. Additionally, we compared both specifications to  “Full 

models”, where all control variables are included without LASSO double 

selection.   

Table 2.5: Comparison of different model specifications 

Model specification 

FullModel_Association Probit model with all variables from ControlLasso 

including Association_agg as explanatory variables 

FullModel_FactoryLocation Probit model with all variables from ControlLasso 

including FactoryLocation_agg as explanatory 

variables 
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DoublseSelection_Association Nfolds= 50, double selection including 

Association_agg as explanatory variable in 

ControlExogenous 

DoubleSelection_FactoryLocation Nfolds= 50, double selection including 

FactoryLocation_agg as explanatory variable in 

ControlExogenous 

Pre-registration (PR1) Original model as specified in the pre-registration 

 

 

Figure 2.17: Comparison of marginal effects for different model specifications 

as described in Table 2.5 

Note: Dependent variable = Adoption, Observations: 294, Displaying confidence interval of 0.95, 

partial effects for the average observation with robust and standardized standard errors. 

It can be seen that the marginal effects for KnowAdopters and ObserveFields 

remain positive and within the same magnitude for all models. Knowing at 

least one other adopter increases the likelihood of adoption by around 25-27 

% and observing at least one field by around 31-33 % ceteris paribus, all 

effects are statistically significant at the 1 % level.  These results support the 

findings from the different LASSO models, that the mean marginal effect 

for KnowAdopters lies at around 26 % and for ObserveFields at around 32 

%.  

2.7.8 I. Intention to use mechanical weeding technologies in the future 

As an extension of the above shown model we run an ordered probit model 

with the same explanatory variables as above but with Intention to adopt as 

dependent variable in Model PR2: 
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Pr(𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝐴𝑑𝑜𝑝𝑡𝑡𝑖=j|𝐾𝑛𝑜𝑤𝐴𝑑𝑜𝑝𝑡𝑒𝑟𝑠𝑡𝑖 , 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝐹𝑖𝑒𝑙𝑑𝑠𝑡𝑖 , 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑡𝑖 , 𝛽, 𝜸) 

= Φ(𝛽0 + 𝛽1𝐾𝑛𝑜𝑤𝐴𝑑𝑜𝑝𝑡𝑒𝑟𝑠𝑡𝑖 + 𝛽2𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝐹𝑖𝑒𝑙𝑑𝑠𝑡𝑖 + 𝜸𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑡𝑖 + 𝜀𝑡𝑖)  

  (A2) 

wherein Φ denotes the normal cumulative distribution function, the β's 

denote scalars and γ a vector of coefficients to be estimated. The intention 

to adopt IntentionAdopt can take five different levels j with j = 0 if no 

intention, 1 if low intention, 2 if middle intention, 3 if high intention, and 4 

if technique is already adopted††††. We ran three models on intention, one 

for each type of technology t being t =1 for traditional mechanical weeding 

i.e. tractor-mounted machinery, t = 2 for modern mechanical weeding i.e. 

tractor-mounted but camera- or GPS-steered machinery and t = 3 for 

autonomous weeding devices. 

Results 

 

Figure 2.18: Intention to use different types of mechanical weeding in the 

future 

Source: own presentation based on survey data 

 
††††Original survey text: „0 = I am not planning anything; 1 = I think about getting more information 

and follow current discussions and literature; 2 = I am actively seeking for offers and I want to take 

part in a consultation within the next 5 years; 3 = I plan to use this technique within the next 5 years 

(own investment, contractors, ...); 4 = I am already using this technique” 
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Figure 2.19 shows the marginal effects for KnowAdopters and 

ObserveFields for the three ordered logit models on intention for the three 

types of mechanical weeding: traditional, modern and autonomous.  

 

Figure 2.19: Marginal effects for KnowAdopters and ObserveFields on the 

Intention to use different types of mechanical weeding 

techniques in the future 

Note: Dependent variable = Intention levels (no, low, middle, high, adoption), Observations: 294. 

The likelihood of having “no intention” to use mechanical weeding in the 

future decreases for all three types of technology if at least one adopter is 

known and if at least one field is observed, ceteris paribus. The marginal 

effects turn positive for the other levels of intention in most cases meaning 

that knowing at least one adopter or observing at least one field increases the 

likelihood of having some (low, middle, high, adoption) intention to use a 

certain mechanical weeding technology in the future. This goes along with 

findings from Bessette et al. (2019) who found that seeking for information 

on ecological weed management is driven by other farmers behavior through 

social norms, hence seeing mechanically weeded fields or talking to farmers 

might trigger the search for information which we define as (low or middle) 

intention. Though the results have to be interpreted with care as statistical 

significance is only present in some cases and the economic effect is small. 
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The marginal effects are quite similar for KnowAdopters and ObserveFields, 

especially for traditional and modern technologies. For autonomous 

weeding devices KnowAdopters has a larger effect on the likelihood to have 

a low level of intention than ObserveFields which might be due to the rare 

possibilities to actually observe a weeding robot and its effects in use.  

2.7.9 J. Results alongside research question 2 

 

Figure 2.20: Marginal effects of models examined for prediction accuracy 

depending on variables included 

Note: Dependent variable = Adoption, Observations: 294, Displaying confidence interval of 0.95, 

partial effects for the average observation with robust and standardized standard errors, models 

including only one variable are depicted in grey (c,d,f,g,k), those including two variables are black 

(h,i,j,l,m,n) and the model including the two field variables (e) is shown in light grey 

2.7.10 K. Selection of fields 

We found that the distance to other farmers’ fields differs significantly 

between those who selected the fields vie the map compared to those who 

selected via single choice (based on a Fisher’s exact test). Those who 

selected via map choose fields in closer distance, which might indicate that 

finding fields on the map, especially further away was difficult and time 

consuming. We found the same for the number of fields selected: those who 



112   Chapter 2

 

 

selected via the map selected significantly less fields than those who selected 

via multiple choice (Fisher’s exact test). This delivers insights into the value 

of our novel map tool. Results must be interpreted with regard to this 

potential bias meaning that the “true” radius of own fields and fields 

observed might be slightly larger. 

2.7.11 L. Results alongside research question 3 

 

Figure 2.21: Size and structure of the network - descriptively 

Note: For OwnFieldDist n= 232, subsample of those who selected own fields via map 
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Figure 2.22: Share of adoption by field observation and knowing adopters 

Source: own presentation based on own data 

 

 

Figure 2.23: Marginal effects of the Interaction- Models 

Note: Dependent variable = Adoption, Observations: 294, Displaying confidence interval of 0.95, 

partial effects for the average observation with robust and standardized standard errors. 
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Figure 2.24: Correlation between NrAdopters and FieldDist 

Source: own presentation based on survey data 

 

 

Figure 2.25: Correlation between NrAdopters and NrFields 

Source: own presentation based on survey data 
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Figure 2.26: Correlation between NrFields and FieldDist 

Source: own presentation based on survey data 

2.7.12 M. Demonstration farm findings 

To assess the effect of the minimal distance to demonstration farms 

(MinDist_demo), we explored how this variable relates to the predicted 

probability of adoption in the pre-registration model PR1 (lower part of 

Figure 2.27). Most farms have a demonstration farm in less than 20 km 

radius (see histogram in upper part of Figure 2.27). The relation between 

minimal distance to demonstration farms and the predicted likelihood of 

adoption is convex and approaching zero, indicating that likelihood of 

adoption decreases with increasing minimal distance to demonstration 

farms. The effect of demonstration farms on adoption is rather local as it 

largest for farms close by (<10 km) and decreases at a high rate until the 

distance approaches 20 km. This result again supports our findings on the 

relevance of local information and is in line with previous studies on that 

topic (Arbuckle, 2017; Llewellyn, 2007; Mekonnen et al., 2022) and goes 

along with findings from Läpple et al. (2016) who identified spatial 

knowledge spillovers from research, education and advisory services 

influencing innovation in the agricultural sector. We assume that having a 

demonstration farm in the close neighborhood offers the possibility to 1) talk 
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to adopters of mechanical weeding and 2) observe their fields and 

technologies in use. Hence again, both mechanisms behind peer effects seem 

to work here. Especially the effect of social learning among peers through 

demonstration farms has been proven in a French case study (Deperrois, 

Fadhuile, & Subervie, n.d. forthcoming; Lapierre, Sauquet, & Subervie, 

2019). Besides a reduction of the perceived complexity through social 

learning, social norms could come into play at an additional level: 

demonstration farms might be more often visited by other farmers as well as 

by consumers and farmers might feel more social pressure to farm 

environmentally friendly or to show their engagement for the environment 

(Kuhfuss et al., 2016; Mzoughi, 2011; e.g. Willock et al., 2008). 

 

Figure 2.27: The probability that an ‘average’ farm adopts mechanical 

weeding for varying distance to demonstration farms 

Note: All other variables are held constant at their means. 
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Are Farmers Algorithm-Averse? 

The Case of Decision Support 

Tools in Crop Management* 

Abstract. The advancement of artificial intelligence (AI) technologies has 
the potential to improve farming efficiency globally, with decision support 
tools (DSTs) representing a particularly promising application. However, 
evidence from medical and financial domains reveals a user reluctance to 
accept AI-based recommendations, even when they outperform human 
alternatives. This is a phenomenon known as “algorithm aversion” (AA). 
This study is the first to examine this phenomenon in an agricultural setting. 
Drawing on survey data from a representative sample of 250 German 
farmers, we assessed farmers’ intention to use and their willingness-to-pay 
for DSTs for wheat fungicide application either based on AI or a human 
advisor. We implemented a novel Bayesian probabilistic programming 
workflow tailored to experimental studies, enabling a joint analysis that 
integrates an extended version of the unified theory of acceptance and use 
of technology with an economic experiment. Our results indicate that AA 
plays an important role in farmers’ decision-making. For most farmers, an 
AI-based DST must outperform a human advisor by 11–30% to be 
considered equally valuable. Similarly, an AI-based DST with equivalent 
performance must be 21–56% less expensive than the human advisor to be 
preferred. These findings signify the importance of examining AA as a 
cognitive bias that may hinder the adoption of promising AI technologies in 
agriculture. 

Keywords: Farmer Decision-Making, Algorithm Aversion, Decision 

Support Systems, Experiment, Bayesian Probabilistic 

Programming   

 
*  This chapter is to date under review at the American Journal of Agricultural Economics as 

MASSFELLER, A., HERMANN, D., LEYENS, A., STORM, H. (2025). “Are Farmers Algorithm-Averse? The 

Case of Decision Support Tools in Crop Management”. Only minor edits have been made for the 

purpose of this dissertation.  
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3.1 Introduction 

Artificial intelligence (AI) †  is a central component of the ongoing 4th 

Agricultural Revolution, which is marked by the increasing integration of 

information and communication technology into farming systems (Khanna 

et al., 2024; Walter et al., 2017). Unlike earlier information systems, AI 

technologies can learn from vast amounts of complex, high-resolution data 

using machine-learning algorithms, thereby improving predictive accuracy 

over time (Jarrahi et al., 2022). This adaptive learning capability allows AI 

tools to generate more accurate recommendations and reduce uncertainty in 

crop management (Khanna et al., 2024). 

A key application of AI in agriculture is the use of decision support tools 

(DSTs), which assist farmers in making optimal decisions under conditions 

of complexity and uncertainty (Rose et al., 2016; Shtienberg, 2013). In 

recent years, public advisory bodies and private firms have introduced AI-

based DSTs designed to enhance productivity, optimize resource use, and 

support climate adaptation strategies in farming (Yousaf et al., 2023). These 

tools offer advanced capabilities for data acquisition and predictive analytics 

by incorporating real-time information, allowing for more precise 

recommendations than traditional, non-AI-based DSTs (Gautron et al., 

2022; Khanna et al., 2024; Lázaro et al., 2021; Storm et al., 2024). However, 

realizing the full potential of AI-DSTs depends on farmers’ willingness to 

adopt them. Despite the promise of improved input efficiency (Lázaro et al., 

2021; Helps et al., 2024; Giulivi et al., 2023; Lazaro et al., 2023), prior 

studies have indicated that farmers tend to rely more on peer networks and 

advisory services than on digital tools (Skaalsveen et al., 2020; Kiraly et al., 

2023). 

This reluctance towards (potentially superior) recommendations from 

algorithmic decision support is known as “algorithm aversion” (AA), a 

 

† We refer to Artificial Intelligence (AI) as one type of an algorithm and follow the definition by the 

EU of AI as “ a machine-based system that is designed to operate with varying levels of autonomy 

and that may exhibit adaptiveness after deployment, and that, for explicit or implicit objectives, infers, 

from the input it receives, how to generate outputs such as predictions, content, recommendations, or 

decisions that can influence physical or virtual environments” (European Commission 2024b). 
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cognitive bias in which individuals favor human advice over algorithmic 

input, even when the latter performs demonstrably better‡ (Dietvorst et al., 

2015). Although AA has been widely studied in fields of medicine (Longoni 

et al., 2019) and finance (Cohen et al., 2021), it has not yet been explored in 

the context of agricultural decision-making (e.g., Mahmud et al., 2022). 

From an economic standpoint, AA represents a deviation from rational 

behavior in which individuals forgo algorithmic recommendations in favor 

of potentially worse human advice. Given the ongoing development of AI-

DSTs in agriculture (Gautron et al., 2022; Yousaf et al., 2023) and their 

potential for improving efficient resource usage to decrease environmental 

degradation while allowing for high yields, there is a crucial need for 

understanding such behavioral deviations to foster effective technology 

adoption. 

Accordingly, this study seeks to answer the following research question: 

“What role does AA play in farmers’ intention to use AI-based DSTs?” To 

answer this, we conducted a pre-registered, ethically approved online survey 

of 250 German arable farmers in the autumn of 2024. The survey elicited 

their intention to use AI-DSTs and their willingness-to-pay (WTP) for AI- 

versus human-based advisory services. For survey design and statistical 

analysis, we employed a Bayesian probabilistic programming (PP) 

workflow (Storm et al., 2024; Gelman et al., 2020; McElreath, 2018), which 

we propose as an adaptable framework for experimental studies. 

Our findings suggest that AA plays an important role in both farmers’ 

intention to use and their WTP for AI-DSTs. Most farmers in our sample 

preferred human advisors, even when those advisors performed worse than 

AI-DSTs. We calculated the performance premium (i.e., the additional level 

of performance required for an AI-DST to be valued equally to a human 

advisor) and found that for 90% of the posterior samples, AI-DST needed to 

perform 11–30% better. Similarly, we derived a price premium, showing 

that, to be preferred, an equally performing AI-DST would need to cost 21–

 

‡   Throughout this study, we follow Dietvorst et al. (2015) and define the algorithm as “any evidence-

based forecasting formula or rule.” Thus, the term includes statistical models, decision rules, and all 

other mechanical procedures that can be used for forecasting.” 
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56% less than its human counterpart. These results also indicate that some 

share of the posterior samples would prefer a human advisor over an AI-

DST even if the performance of the human advisor is 30% lower and if it is 

more than 56% more expensive, respectively. 

This study contributes to the literature empirically and methodologically. 

Empirically, we are the first to both examine and quantify the role of AA in 

farmers’ decision-making through an experimental study. Although AA and 

its counterpart, algorithm appreciation, have been explored in health, 

finance, psychology, information technology, and business (Mahmud et al., 

2022), it has not been studied within the context of agriculture. Moreover, 

field experiments and surveys addressing this phenomenon are rare 

(Mahmud et al., 2022). 

To date, AA as a phenomenon explaining deviations from rational behavior 

has not been considered in the literature on farmers’ decision-making, 

especially regarding digital technology adoption and DST use. Although 

numerous studies have explored factors related to farmers’ DST usage 

decisions (Shtienberg, 2013; Rojo-Gimeno et al., 2019; Kerebel et al., 2013; 

Bessette et al., 2019; Rose et al., 2016; Rose et al., 2018), gaps remain in 

fully understanding farmer behavior. While behavioral factors underlying 

deviations from rational decision-making have been identified and classified 

(Déssart et al., 2019), few studies have examined cognitive biases specific 

to AI use. Whereas broader human–AI interactions have been reviewed 

(e.g., Kaplan et al., 2023), little attention has been given to how farmers, as 

a unique subgroup, relate to AI technologies (e.g., Orn et al., 2020; De la 

Peña and Granados, 2024). As a theoretical extension, we integrate AA into 

the unified theory of acceptance and use of technology (UTAUT; Venkatesh 

et al., 2003). Although UTAUT has been applied to farmers’ technology 

adoption (Otter and Deutsch 2023; von Veltheim et al., 2022; Giua et al., 

2022; Michels et al., 2020), its adaptation to include AI-specific factors has 

thus far been limited to the context of business managers (Cao et al., 2021). 

In our study, AA is operationalized as the effect of AI-anxiety (AIA) on 

behavioral intention (BI). 

Methodologically, we demonstrate how a Bayesian PP workflow (Storm et 

al., 2024; Gelman et al., 2020; McElreath, 2018) can be adapted for use in 



Are farmers algorithm-averse?  121

 

  

experimental and survey-based research in agricultural economics. This 

approach enhances transparency by grounding the analysis in a clearly 

defined, theoretically motivated data-generating process (DGP), which 

enables the pretesting of survey instruments and experimental design using 

synthetic data before real data collection begins. It also supports validation 

of code implementation, model inference, and result visualization, all of 

which are documented in the pre-registration. This enhances the theoretical 

basis for the analysis, minimizes implementation errors, and increases 

transparency. 

In terms of benefits in the statistical analysis, the Bayesian approach allows 

for a unified analysis of UTAUT survey and WTP experiment data by 

treating AIA as a common latent driver of AA. Additionally, Bayesian 

methods offer distinct advantages in expressing and interpreting (parameter) 

uncertainty, compared with frequentist approaches (Storm et al., 2024). To 

our knowledge, this is one of the first applications of the full Bayesian 

workflow across all stages of an experimental study in this domain (see e.g., 

Stranieri et al., 2022; Leyens et al., 2024; for an application adopting 

Bayesian approaches in parts of the experimental settings and Varacca, 2024 

for the proposal of a Bayesian estimation in causal mediation analysis). 

The remainder of the paper is structured accordingly. In Section 2, we 

present the Bayesian PP workflow for experimental studies, which includes 

defining the quantity of interest, deriving the statistical (causal) model, and 

constructing the DGP, which combines the statistical model and the 

experimental design. We also test our assumptions using synthetic data 

before applying the model to real survey data. Section 3 presents the 

empirical results, followed by discussion and conclusions in Section 4. 

 

3.2 Bayesian PP Workflow for Experimental Studies 

We adapted and extended the PP workflow developed by Storm et al. (2024) 

to the context of an experimental study, as illustrated in Fig. 3.1.  
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Although the general structure of the workflow remains consistent, its 

primary innovation lies in the development of the DGP (Step 3), which 

requires three iterative sub-steps: variable operationalization, statistical 

model formulation, and experimental framework design. These steps are 

repeatedly refined to ensure internal consistency and empirical robustness. 

Together, Steps 1–3 formalize our variable of interest, 𝐴𝐴. 

Figure 3.1: Bayesian probabilistic programming workflow for experimental 

studies 

3.2.1 Quantity to Estimate and Topical Background 

We conceptualize AA as the effect of AI-anxiety (AIA) on decision 

outcomes based on willingness-to-pay (WTP) and behavioral intention (BI). 

AIA refers to the discomfort or fear individuals may experience due to 

perceived loss of control over AI technologies, often stemming from 

misunderstandings about technological capabilities, uncertainty around 

machine autonomy, and limited awareness of the broader sociotechnical 

context (Johnson & Verdicchio, 2017). Given the increasing integration of 

AI into everyday (and agricultural) life, we argue that AIA should be 

incorporated as a behavioral factor in studies of farmers’ decision-making. 

We focus specifically on farmers’ input-use decisions in crop production, 

which link economic behaviors to agronomic outcomes involving resources 
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such as seeds, water, fertilizers, and pesticides. These decisions are 

inherently complex and involve evaluating trade-offs, such as the potential 

yield loss due to pests versus the costs of treatment under uncertainty and 

risk from factors like weather, disease pressure, market fluctuations, and for 

human health (Rosburg & Menapace, 2018; Chatzimichael, 2022; Maertens 

et al., 2021). Historically, farmers have relied on extension services, 

personal experience, and peer networks to guide such decisions (Läpple & 

Barham, 2019; Krishnan & Patnam, 2014). However, digitalization has 

increased the relevance of DSTs as a source of decision-making support in 

agriculture (Walter et al., 2017; Finger et al., 2019). 

Compared with human advisors, (AI-based) DSTs offer two major 

advantages. First, they are highly scalable and more cost-efficient (Spielman 

et al., 2021; Van Campenhout et al., 2021). Second, they can integrate vast, 

unstructured real-time data from in-field sensors or drones with machine-

learning algorithms, enabling enhanced precision and adaptive learning 

based on historical outcomes (Gautron et al., 2022; Khanna et al., 2024; 

Storm et al., 2024). 

Despite these benefits, many farmers exhibit resistance even to non-AI-

DSTs and often deviate from optimal input-use recommendations (Möhring 

et al., 2020; Skevas et al., 2014; Gars et al., 2025; Oyinbo et al., 2022). This 

behavior cannot be explained by economic factors alone; instead, a range of 

behavioral factors (e.g., personal beliefs, risk preferences or peer pressure) 

play important roles (Oyinbo et al., 2022; Giulivi et al., 2023; Gars et al., 

2025; Van Campenhout et al., 2021; Spielman et al., 2021). However, 

behavioral factors specific to AI-DST adoption in agriculture remain 

underexplored. To address this gap, we introduce 𝐴𝐼𝐴  as an additional 

dispositional factor within the framework proposed by Déssart et al. (2019), 

which classifies cognitive, social, and dispositional factors on sustainable 

farming practice adoption. As defined by Malle (2011), a dispositional factor 

reflects an individual’s general tendency to act in a certain way. In this study, 

we assess the influence of AIA on farmers’ (hypothetical) use decisions for 

AI-DSTs, both in terms of stated intention and WTP, capturing this 

relationship as AA. 
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Our specific application involves AI-DSTs that provide recommendations 

for fungicide application in wheat production. Efficient fungicide use is 

essential to balancing agricultural productivity with environmental 

protection. On the one hand, fungicides help preventing yield losses and 

maintain crop quality, thereby contributing to global food security and safety 

(Figueroa et al., 2018; Oerke, 2006; Schneider et al., 2023). On the other 

hand, their use can pose risks to human health and ecosystems, including 

biodiversity loss (Fritsch et al., 2024; Geiger et al., 2010; McMahon et al., 

2012; Hossain et al., 2017). Enhancing the efficiency and effectiveness of 

fungicide applications is therefore a critical global challenge and is explicitly 

addressed in international (CBD, 2025), regional (European Commission, 

2020), and national (USDA, 2025; USDA NIFA, 2025) policy frameworks. 

In both the EU and the US, farmers are encouraged to adhere to integrated 

pest management guidelines, which recommend pesticide applications only 

when infestation thresholds are met (European Commission, 2024a; Smith 

& Van den Bosch, 1967; 7 US Code § 136r-1, 2018; USDA, 2025). 

3.2.2 Scientific (Causal) Model 

Having defined our quantity to estimate based on the topical background, 

AA, we proceed to the second step of the PP workflow: specifying the 

scientific (causal) model. This model is visually represented using a directed 

acyclic graph (DAG), shown in Fig. 3.2. DAGs are a powerful tool for causal 

inference, increasingly used in both general economics (Imbens, 2020; Pearl 

& Mackenzie, 2018; Huntington-Klein, 2021) and agricultural economics 

(Henningsen et al., 2024). They allow researchers to formalize assumptions 

about both observed and latent relationships among variables (Angrist & 

Pischke, 2009; McElreath, 2018). 

At the center of our DAG is the latent construct, 𝐴𝐼𝐴, which is posited to 

influence both 𝐵𝐼 (upper portion of the graph) and 𝑊𝑇𝑃 for different types 

of decision support (DS; lower portion). This dual influence constitutes 𝐴𝐴 

(indicated by red arrows). Following Kaplan et al. (2023), who identified 

ability- and trait-based predictors of AI trust, and Mahmud et al. (2022), who 

emphasized the role of personal factors in AA, we hypothesize that AIA, 

like social influence (SI), performance expectancy (PE), and effort 
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expectancy (EE), is shaped by farmers’ personal and farm-level 

characteristics. Building on Venkatesh (2000; 2003), we further assume that 

AIA influences both PE and EE. These belief constructs, in turn, affect the 

farmer’s BI to use AI-DSTs.§ 

Figure 3.2: Directed acyclic graph of the scientific model 

In the experimental component (lower part of the DAG), we infer 

preferences for advisory options based on the difference in WTP for human 

advice versus AI-based DST recommendations. This difference is denoted 

as ∆𝑊𝑇𝑃 and is modeled as a function of the difference in past performance 

between two advisors, ∆𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 and 𝐴𝐼𝐴. The influence of 𝐴𝐼𝐴 on 

∆𝑊𝑇𝑃 represents 𝐴𝐴. Conceptually, 𝐴𝐼𝐴 introduces a bias or “penalty” that 

distorts the translation of ∆𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 into ∆𝑊𝑇𝑃. 

Notably, the Bayesian PP framework enables simultaneous estimation of 

both the latent 𝐴𝐼𝐴 variable and its effects on 𝐵𝐼 and ∆𝑊𝑇𝑃, as depicted in 

 

§   Note that we deviate from the traditional UTAUT set up by considering the personal characteristics 

(age, experience) as antecedents of AI-Anxiety rather than mediators. Furthermore, we do not include 

facilitating conditions as they only relate to the actual use behavior that we do not measure. We do 

not ask for Voluntariness of use as it is given for all participants and we do not include gender as AI-

Anxiety has not been found to vary by gender (Mahmud et al. 2022) and other studies using the 

UTAUT for German farmers’ technology adoption decisions either do not find a significant effect of 

gender (Rübcke von Veltheim, Theuvsen and Heise 2022). 
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the DAG (red arrows). This unified approach enhances consistency between 

the attitudinal and experimental components of the study. 

3.2.3 Data-Generating Process 

Variable Operationalization 

To measure the dispositional factor of AIA, we use the validated AIA scale 

developed by Wang and Wang (2022), which incorporates 16 statements that 

capture each individual’s level of AIA. These are reflected in the 𝐴𝐼𝐴1–

𝐴𝐼𝐴16 boxes in Fig. 3.2 and are measured on a 7-point Likert scale (1 = 

“Totally disagree,” 4 = “Indifferent,” 7 = “Totally agree”). For the full list 

of statements, see the complete survey in Appendix A. 

The selection of personal characteristics and latent constructs (i.e., SI, PE, 

and EE) and the corresponding statements (white boxes in Fig. 3.2) are 

measured on the same 7-point Likert scale and formulated based on the 

original UTAUT items from Venkatesh et al. (2003), prior studies applying 

UTAUT to similar technology adoption decisions among German farmers 

(Otter & Deutsch, 2023; Von Veltheim et al., 2022; Giua et al., 2022; 

Michels et al., 2020), and  a study on DST adoption in pesticide management 

(Akaka et al., 2024). For more detail on the selected variables and related 

hypotheses, see our pre-registration.** 

In the experimental component, we measured ∆𝑊𝑇𝑃  as the difference 

between each farmer’s WTP (euro) for AI-DST versus human DS. Thus, 

∆𝑊𝑇𝑃 is positive if the AI-DST is preferred, negative if the human advisor 

is preferred, and zero if both are valued equally. 

The  ∆𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒  variable is explicitly manipulated by providing 

participants with information about the historical performance of each 

advisory option. Performance is expressed as the percentage of correct past 

recommendations, where a “correct recommendation” is one that improves 

economic outcomes relative to a status quo with no advisory input. We then 

calculate ∆𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒  as the difference between the performance 

probability of the AI-DST and that of the human DS. As a result, 

 

** https://osf.io/hkwn4/?view_only=8b49f507a39a40e881483d194a6bb445 

https://osf.io/hkwn4/?view_only=8b49f507a39a40e881483d194a6bb445
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∆𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 >  0 when the AI-DST outperforms the human advisor, 

∆𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 <  0  when the human performs better, and 

∆𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =  0 when both perform equally well.  

Statistical Model 

Having operationalized our variables, we next formulate the statistical 

model underlying the DGP, following the DAG depicted in Fig. 3.2. 

Formation of Latent Constructs 

We begin by defining a vector of personal and farm-level characteristics x 

for each individual i: 

 𝒙𝒊 = [𝐴𝑔𝑒𝑖, 𝐷𝑆𝑇𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑖 , 𝑅𝑖𝑠𝑘𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠𝑖,  

𝐴𝑑𝑣𝑖𝑠𝑜𝑟𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑖 , 𝐹𝑎𝑟𝑚𝑠𝑖𝑧𝑒𝑖, 𝑇𝑒𝑐ℎ𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝑖] 

(1) 

For each latent construct, 𝐶 , we define the mean, 𝜇𝑖,C , for ∀ 𝑪 =

{ 𝐴𝐼𝐴, 𝑃𝐸, 𝐸𝐸, 𝑆𝐼} in accordance with the relationships specified in the DAG 

(Fig. 3.2). We assume simple linear relationships between constructs and 

personal characteristics, 𝒙𝒊, as follows:  

 𝜇𝑖,𝐴𝐼𝐴 =  𝛼𝑖,𝐴𝐼𝐴 + 𝜷′𝑖,𝐴𝐼𝐴 ∗  𝒙𝒊 (2) 

 𝜇𝑖,𝑆𝐼 =  𝜷′𝑖,𝑆𝐼 ∗  𝒙𝒊 (3) 

 𝜇𝑖,𝐶 =  𝜷′
𝑖,𝑐

∗  𝒙𝒊  + 𝜃𝐴𝐼𝐴𝑖         ∀ 𝑪 = { 𝑃𝐸, 𝐸𝐸}′ (4) 

Formation of Likert-Scale Statements 

Each individual, 𝑖, evaluates a set of 𝑛 statements, 𝑆𝑇𝑖,𝑛 per latent construct 

using a 7-point Likert scale (see Fig. 3.2 and Appendix A). To accurately 

capture the latent constructs, we emphasize the need for Bayesian modeling 

of Likert-scale responses, following item response theory (Andrich, 2016; 

Andersen, 1997) and the rating scale model (Andrich, 2005; 2016), as 

implemented in prior works by Fox (2010), Stranieri (2022), and Varacca 

(2024). 

A key modeling challenge with ordered categorical variables is that the 

differences between response values on a Likert scale are not necessarily 
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equal. For example, moving from “Disagree” (2) to “Rather disagree” (3) 

may require less subjective change than moving from “Agree” (6) to 

“Strongly agree” (7) (Bürkner & Vuorre, 2019; Liddell & Kruschke, 2018). 

The goal is to map the underlying linear latent variable onto the categorical 

scale appropriately (McElreath, 2018). 

Following McElreath (2018), we use a cumulative link function via an 

ordered logistic distribution. This requires estimating cut points 𝑘𝑆𝑇 , 

representing the thresholds at which respondents switch from one response 

value to the next. These cut points are part of the DGP and are estimated 

during the inference stage, enabling nuanced interpretation of each statement 

without assuming uniform thresholds across statements and constructs. This 

improves the flexibility and validity of the measurement model. We specify 

prior distributions for the cut points in the subsequent section of this paper.  

 𝑃𝑟(𝑆𝑇𝑖,𝑛 = 𝑘𝑆𝑇𝑛
) = 𝑃𝑟(𝑆𝑇𝑖,𝑛 ≤ 𝑘𝑆𝑇𝑛

) − 𝑃𝑟 (𝑆𝑇𝑖,𝑛 ≤ 𝑘𝑆𝑇𝑛
− 1) (5) 

 𝑆𝑇𝑖,𝑛~𝑂𝑟𝑑𝑒𝑟𝑒𝑑𝐿𝑜𝑔𝑖𝑡(𝜇𝑖,C, 𝜿𝑘) (6) 

UTAUT 

To estimate the 𝑈𝑇𝐴𝑈𝑇 outcome variable, we modeled the mean latent BI 

as μ𝐵𝐼𝑖
, a linear function of the latent constructs’ mean, μ𝑖,𝐶, and associated 

coefficients 𝜸′𝑖 , in accordance with the DAG. These behavioral intention 

statements are modeled using the same ordered logistic approach described 

above. 

 𝜇𝑖,𝐵𝐼 =  ∑ 𝛾′𝑖,𝑐 ∗ 𝜇𝑖,c

𝑐∈𝐶

 (7) 

As shown in Fig. 3.3 and captured by Eq. (7), AA manifests when, all else 

being equal, an AI-anxious individual (yellow line) exhibits a lower BI than 

an AI-neutral individual (blue line), given the same level of PE. In other 

words, the “translation” from PE into BI, both measured at an ordinal scale, 

would be distorted by AIA. Statistically spoken, AA materializes as a 
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negative value for γ𝑖,𝐴𝐼𝐴, representing a downward shift in the BI line for 

individuals with high AIA. 

Figure 3.3: Statistical model of UTAUT with PE, EE and SI at their means. 

Experiment 

We next constructed the statistical model for the experiment based on the 

DAG (Fig. 3.2). The observed outcome, ∆𝑊𝑇𝑃, is assumed to follow a 

normal distribution as a function of a linear combination of the performance 

difference, ∆𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒, and 𝜇𝑖,𝐴𝐼𝐴: 

 ∆𝑊𝑇𝑃𝑖~ 𝑁( 𝛽𝑖,∆𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 ∗ ∆𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 +  𝛽𝑖,𝐴𝐴

∗ 𝜇𝑖,𝐴𝐼𝐴, 𝜎𝑊𝑇𝑃 ) 
(8) 

∆𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 is defined as the difference in performance between the AI-

DST and the human advisor. This is expressed as the proportion of correct 

past recommendations, with values of 0.85, 0.90, and 0.95 used for both 

advice types. As a result, there are five possible values for ∆𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒: 

  ∆𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = [∆1, ∆2, ∆3, ∆4, ∆5] (9) 

 and ∆𝑖~ 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒𝑈𝑛𝑖𝑓𝑜𝑟𝑚({−0.1, −0.05,0,0.05,0.1}) 

𝑓𝑜𝑟 𝑖 = 1,2,3,4,5. 
(10) 
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Figure 3.4 illustrates the model described by Eq. (8), where ∆𝑊𝑇𝑃 (y-axis) 

is plotted against ∆𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 (x-axis). We assume that if the AI-DST 

and human advisor perform equally well (i.e., ∆𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =  0), an 

AI-neutral person (blue line) would be indifferent between the two, implying 

∆𝑊𝑇𝑃 =  0 , ceteris paribus. When the human advisor performs better, 

∆𝑊𝑇𝑃 becomes negative, reflecting a preference for the human. 

Conversely, a better-performing AI-DST yields a positive ∆𝑊𝑇𝑃 . This 

relationship is captured by a positive coefficient β𝑖,Δ𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒. 

Figure 3.4: Graphical depiction of the statistical model for the experiment, 

ceteris paribus 

In contrast, a person with higher AIA (yellow line) may prefer the human 

advisor even if both options perform equally or the AI performs better. This 

aversion is represented as a downward shift in the line, indicating a negative 

coefficient β𝑖,𝐴𝐴 . In this context, AIA acts as a penalty that distorts the 

translation from ∆𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 to ∆𝑊𝑇𝑃. 

To capture relative ∆𝑊𝑇𝑃, we normalize all WTP values by defining a base 

WTP for a human advisor with 90% performance. All other WTPs are 

expressed relative to this reference value. 

In summary, our hypothesis is that AA plays an important role in farmers’ 

decision-making. This is supported if 𝛾𝐴𝐼𝐴 < 0 or 𝛽𝐴𝐴 < 0. Either condition 

would imply that 𝐴𝐼𝐴  negatively affects 𝐵𝐼  or ∆𝑊𝑇𝑃 . Graphically, this 
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would be reflected as a downward shift of the lines for AI-anxious 

individuals compared with AI-neutral individuals, as shown in Figs. 3.3 and 

3.4. 

Choice of Priors 

To complete the DGP, we defined priors for all model parameters. Following 

Varacca (2024), we used weakly informative priors, assuming zero-centered 

normal distributions as the variables are standardized. Prior predictive 

checks were conducted to determine parameter scales and ensure valid 

response distributions. 

For the Likert-scale cut points, 𝜿𝑘, we used a standard deviation of 0.3 to 

ensure that all response categories are selected at least once. The final value 

for σ𝑊𝑇𝑃 ensures that the range of ∆𝑊𝑇𝑃 (relative measure) is constrained 

between –1 and 1: 

 𝛼𝑖,𝐴𝐼𝐴 ~ 𝑁(0,1), (11) 

 𝜷′𝒊,𝑪 ~ 𝑁(0,0.5), (12) 

 𝜸′𝒊,𝑪~ 𝑁(0,0.5), (13) 

 𝜿𝑘 ~ 𝑁(0, 0.3), (14) 

 𝛽𝑖,𝐴𝐴~𝑁(0,0.5), (15) 

 𝛽𝑖,∆𝑃 ~ 𝑁(0,0.5), (16) 

 𝜎𝑊𝑇𝑃 =  0.2. (17) 

Experimental Design and Sampling 

With variable operationalization and the statistical model established, we 

next describe the experimental design. Note that the DGP development 

process is iterative; adjustments were made throughout (see Fig. 3.1). We 

adapted the experimental component from a study in the medical domain by 

Longoni et al. (2019), tailoring it to agricultural decision-making. 

Participants first read a brief introduction on fungicide use, which reminded 

them of the integrated weed management principle and outlined the two 

advisory options. Importantly, all variables other than the decision agent 
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(AI-DST or human advisor), including data inputs, delivery format, and 

timing, were held constant. 

We defined “correct past recommendations” as the probability of achieving 

better economic outcomes than the status quo (i.e., without advisory input).†† 

Each participant encountered three decision scenarios involving actual WTP 

choices (Fig. 3.5), each presenting different values for past performance, 

while keeping costs fixed.  

From nine possible pairings (3 AI performance levels × 3 human 

performance levels), each respondent was randomly assigned three. Human 

performance values were drawn without replacement to ensure each level 

was shown once, and AI values were drawn with replacement. The slider for 

WTP began at 0 euro with an upper limit of 150 euro, reflecting market rates 

for public advisory services (Landwirtschaftskammer, 2024) and 

commercial DSTs (BASF, 2024).  

The final survey launch and data collection were conducted online in 

cooperation with a market research company. In autumn 2024, we collected 

quantitative primary data from 250 German arable farmers. We selected 

Germany as the focal region because it is one of the largest wheat-exporting 

nations in Europe (FAO, 2024), where fungicides accounted for 24% of 

pesticide sales (by weight) in 2022 (Eurostat, 2024). As a result, German 

wheat yields are among the highest globally (Oerke, 2006; Gianessi & 

Williams, 2011). 

 

††   In the survey, this read as follows (translated from German): “We will [also] show you how 

successful the recommendations have been in the past. This means you will see how often the 

recommended strategy led to reduced yield losses when the recommendation was followed exactly. 

Example: In the past, advice X recommended the correct fungicide strategy 90% of the time. This 

means that in 9 out of 10 cases, advice X recommended a fungicide strategy that led to an 

improvement in the economic result compared to the status quo (your previous management), i.e., 

without this additional advice.” 
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Figure 3.5: WTP choice design 

Before the survey was launched, we obtained ethical clearance, pretested the 

questionnaire with experts and farmers, and pre-registered the study on the 

Open Science Framework. ‡‡  Participants were required to accept data 

protection terms, provide informed consent, and meet the eligibility criteria 

of being engaged in arable farming. Respondents were informed that 

participation was voluntary and that they could opt into a lottery at the end. 

Approximately 2% of participants were randomly selected to receive either 

a voucher or a non-cash prize. 

To establish a common understanding of AI-DSTs, the questionnaire began 

with a short, neutral informational text defining DSTs and AI-based tools. 

The order of the two survey components (i.e., UTAUT-based statements and 

the experiment) was randomized across participants. At the end of the 

 

‡‡ https://osf.io/hkwn4/?view_only=8b49f507a39a40e881483d194a6bb445 

https://osf.io/hkwn4/?view_only=8b49f507a39a40e881483d194a6bb445
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questionnaire, we collected data on personal and farm characteristics. The 

full survey, including the experiment, instructions, and a schematic of the 

process, is provided in Appendix A. 

3.2.4 Creation of Synthetic Data and Model Testing 

The conceptualization of AA and the DGP specification in Section 2.3 

enabled us to conduct model testing, corresponding to Steps 4 and 5 in the 

PP workflow (Fig. 3.1). Specifically, we first generated synthetic data based 

on the DGP and then tested whether our Bayesian statistical model could 

recover the deliberately defined values of 𝐴𝐴 and our prior assumptions. 

This approach allows us to verify model functionality and simulate farmer 

responses to the survey, enabling pretesting of both the survey design and 

analytical pipeline. 

Concretely, we created two synthetic datasets. In the first, AA was present 

(i.e., γ𝐴𝐼𝐴 < 0 and β𝐴𝐴 < 0). In the second, AA was absent (i.e., γ𝐴𝐼𝐴 ≥ 0 

and β𝐴𝐴 ≥ 0). We then compared prior and posterior predictions of the 

coefficients of interest to evaluate whether the model could recover the 

parameters used to generate the synthetic data and how results would differ 

under competing hypotheses. In addition to testing inference capacity, this 

comparison supports the development of routines for illustrating the final 

results.  

Table 3.1 presents the prior predictive distributions (top row) and posterior 

predictive distributions (bottom row). The left column corresponds to the 

dataset without AA, and the right column to the dataset with AA. To the left 

of each plot is a color scale representing latent 𝐴𝐼𝐴: negative values (green) 

indicate “negative AIA” or “algorithm appreciation,” whereas positive 

values (yellow) indicate “positive AIA” or “high algorithm aversion”. 
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Table 3.1: Comparison of the prior and posterior predictive distributions 

using the two synthetic datasets 

 Synthetic Data without 

Algorithm Aversion 

Synthetic Data with 

Algorithm Aversion 

P
ri

o
r 

  

P
o
st

er
io

r 

  

By comparing prior and posterior distributions, we assessed the model’s 

ability to reproduce the intended relationships. As expected, when AA was 

absent (left column), there was no variation in ∆𝑊𝑇𝑃 across 𝐴𝐼𝐴 levels. In 

contrast, when AA was present (right column), higher 𝐴𝐼𝐴 levels (yellow) 

were associated with downward shifts in ∆𝑊𝑇𝑃 . This confirms that, as 

constructed, even when the AI-DST outperforms the human advisor 

(∆𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 >  0), AIA respondents prefer the human (∆𝑊𝑇𝑃 <  0). 

To further evaluate whether our inference process can recover the “true” 

coefficients used to generate the data ( γ𝐴𝐼𝐴  and β𝐴𝐴 ), we plotted the 

posterior distributions of these parameters for both datasets. Table 3.2 shows 

the posterior distributions for γ𝐴𝐼𝐴 (top row) and β𝐴𝐴 (bottom row). The left 

column contains results for the dataset without AA, whereas the right 

column shows results for the dataset with AA. 
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Table 3.2: Comparison of prior, posterior, and set values for the coefficients 

of interest using the two datasets 

 Synthetic Data without 

Algorithm Aversion 

Synthetic Data with 

Algorithm Aversion 

𝛾𝐴𝐼𝐴 

  

𝛽𝐴𝐴 

  

In each plot, the set values (i.e., 0 when AA is absent, and −0.5 when present) 

are marked in orange. Prior distributions are shown as green lines, and 

posterior distributions as blue lines. As the plots indicate, posterior estimates 

differ meaningfully from their priors and converge toward the values used 

to generate the synthetic data, confirming model functionality. 

This stage of testing also led us to reflect on the experimental setup (e.g., 

how we elicited WTP values and randomized past correct 

recommendations). The full procedure described in Section 2.4, including 

code for data generation, simulation, and visualization, is documented in the 

pre-registration and available in the associated code repository.  

As noted in the code repository,§§ inferencing was conducted using a no-U-

turn (NUTS) sampler Markov chain Monte Carlo (MCMC) approach with 

two chains. We generated 1,000 posterior samples per chain, following a 

1,000-sample warm-up. The full workflow was implemented in Python 
 

§§ https://anonymous.4open.science/r/AlgorithmAversion_Public-5487/README.md 

https://anonymous.4open.science/r/AlgorithmAversion_Public-5487/README.md
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(v3.12.4; Van Rossum & Drake, 2009) using NumPyro (v0.15.2; Phan et al., 

2019; Bingham et al., 2019), and JAX (v0.4.31; Bradbury et al., 2018). 

Model performance was evaluated through inspection of trace plots for 

selected parameters, which confirmed successful convergence across both 

synthetic datasets (see Appendix B). 

3.2.5 Analysis of Real Data and Descriptive Statistics  

In the final step of the PP workflow, we analyzed the empirical data collected 

from the survey and experiment, using the same model specifications as 

defined and tested in the DGP. Importantly, the model was allowed to learn 

from the data and to update prior distributions accordingly. A summary table 

for the MCMC sampling procedure is provided in Appendix C. 

As shown in Table 3.3, the 250 participating German arable farmers were, 

on average, slightly AI-anxious to AI-neutral. The median 𝐴𝐼𝐴 score was 4 

and the mean is 4.39 on a 7-point Likert scale. Participants reported an 

average WTP of 16 euro for advice from an AI-DST and 26 euro for advice 

from a human advisor. Notably, the maximum possible WTP of 150 euro 

was reached for the human advisor, but not for the AI-DST. The stated 

intention to adopt AI-DSTs was generally reserved, with a median of 4 on 

the same Likert scale. Respondents also reported moderate levels of risk 

tolerance—neither extremely risk-averse nor risk-seeking.*** 

Regarding representativeness, the sample aligned well with the German 

farming population in terms of age and production system. However, farms 

in the sample tended to be somewhat larger than the national average, likely 

due to the study’s focus on crop producers. Unobserved variables may also 

 

***    We measured risk preferences using a self-assessment on an 11-point Likert-scale ranging from 

0 (“Not at all willing to take risks”) to 10 (“Very willing to take risks”) based on the study by Dohmen 

et al. (2011) (see Appendix A for formulation of the respective question in the survey). While we are 

aware that self-assessment of risk preferences using the Dohmen-scale can be biased upwards 

compared to lottery-based assessment (Sauter, Hermann and Mußhoff 2018), we opted for this 

approach to reduce survey length and complexity. 
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influence sample representativity, and these limitations should be considered 

when interpreting results. 

Table 3.3: Descriptive sample statistics and comparison to the German 

average 

 

 

Variable Median / 

Frequency 

Mean Standard 

Deviation 

Min Max German 

Average a 

Farm and farmer 
characteristics 

      

Age (in years)  55–64  49 12.22 21 76 55–64 

Farm Size (in ha)       
< 5 0%     6% 

5–9  1%     18% 

10–19 7%     20% 
20–49   21%     23% 

50–99  28%     17% 

100–199  26%     10% 
200–499   10%     4% 

500–999 2%     1% 
1000 and more 4%     1% 

Production system       

conventional 94%     89% 
fully or partially 

organic 

6%     11% 

Risk Preference  
(1= risk averse, 10 = 

risk loving) 

5 5.39 1.97 1 10  

DST Experience  
(1 = very bad, 7 = 

excellent) 

5 4.44 1.69 1 7  

Advisor Experience  
(1 = very bad, 7 = 

excellent) 

5 5.18 1.63 1 7  

       
UTAUT-Constructs b, c       

Technology 

Engagement 

4 4.50 1.01 2 7  

Performance 

Expectancy  

5 4.58 1.30 1 7  

Effort expectancy 5 4.89 1.29 1 7  

Social Influence 4 3.63 1.20 1 7  

Behavioral Intention 4 3.90 1.48 1 7  

AI-anxiety 4 4.39 1.15 1 7  
       

Willingness-To-Pay 

(in €) 

      

WTP for DST 10 16.31 20.16 0 115  

WTP for the human 

advisor 

17 25.52 25.15 0 150   

a DESTATIS (2025) 
b “1 = totally disagree, 4 = indifferent, 7 = totally agree” (see survey in Appendix A) 
c Constructs based on the mean from several statements (see survey in Appendix A) 
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3.3 Results: Role of AA in Farmers’ Decision Making 

We estimated latent AIA for each individual across all posterior samples,††† 

using the model specified in Section 2.3; the distribution is shown in Fig. 

3.6. The vast majority of farmers exhibit positive latent AIA, meaning they 

can be classified as “AI-anxious” (i.e., 𝐿𝑎𝑡𝑒𝑛𝑡 𝐴𝐼𝐴 >  0). 

Figure 3.6: Distribution of latent AI-anxiety for all individuals across all 

posterior samples 

To test our hypothesis that AA plays a role in farmers’ decisions, we 

examine the effects of AIA on both BI and WTP. The coefficients of interest, 

γ𝐴𝐼𝐴 and β𝐴𝐴, were clearly negative. The mean of γ𝐴𝐼𝐴 was –0.56 with a 

90% highest posterior density interval (HPDI) of [–1.03; 0.00], whereas the 

mean of β𝐴𝐴  was –0.35 with a 90%-HPDI of [–0.40; –0.31]. The HPDI 

represents the narrowest interval containing the specified probability mass, 

such that any value outside the interval is less probable than any value within 

 

†††   This resulted in 241 * 2,000 observations. We excluded nine observations for the analysis where 

the base WTP of Human with 90% correct past performance is 0 (as it is not possible to divide by 

zero). Of those, seven were excluded as the farmers exhibited a WTP of 0 for all options. Further two 

observations are excluded as the WTPs are not logical: farmers have a WTP of 0 for a human with 

90% past correct performance and WTPs > 0 for Human advice with 85% and 95% past correct 

performance. 
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it (Gelman et al., 2013; McElreath, 2018). A coefficient plot comparing prior 

and posterior distributions is provided in Appendix D. These results support 

our hypothesis that AA plays a role in farmers’ intentions to adopt AI-DSTs. 

Figure 3.7 shows the relationship between PE and BI (left panel, UTAUT 

model) and between ∆𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 and ∆𝑊𝑇𝑃 (right panel, experiment), 

across varying levels of latent AIA for each individual across all posterior 

samples. In both panels, higher levels of AIA (depicted in yellowish lines) 

are associated with downward shifts relative to AI-neutral individuals. To 

illustrate BI as a function of PE, we held other predictors (i.e., EE and SI) at 

their mean values. As shown in the left panel of Fig. 3.7, the baseline 

intention to adopt an AI-DST was relatively low, ceteris paribus. However, 

as PE increased, so did BI, indicating a positive relationship. The black line 

denotes an AI-neutral individual (𝐿𝑎𝑡𝑒𝑛𝑡 𝐴𝐼𝐴 =  0). Compared with this 

baseline, individuals with higher AIA exhibit lower BI at the same level of 

PE, as reflected in the downward shift of the yellowish lines and the negative 

value of γ𝐴𝐼𝐴 = −0.56. 

 

Figure 3.7: Average behavioral intention (left) and WTP (right) by given 

performance (expectancy) and latent AI-anxiety levels for all 

individuals across all posterior samples 

The right panel of Fig. 3.7 shows ∆𝑊𝑇𝑃 as a function of ∆𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒. 

Positive ∆𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 values indicate that the AI-DST outperforms the 

human advisor, whereas negative values favor the human. Similarly, 

positive ∆𝑊𝑇𝑃 values reflect a preference for the AI-DST, and negative 

values indicate a preference for the human. Again, the black line represents 
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an AI-neutral individual ( 𝐿𝑎𝑡𝑒𝑛𝑡 𝐴𝐼𝐴 =  0 ). As expected, AI-neutral 

individuals prefer the advisor that performs better (i.e., human if 

∆𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 <  0 and AI-DST if ∆𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 >  0). 

In contrast, individuals with high 𝐴𝐼𝐴 (yellowish lines) show consistently 

lower ∆𝑊𝑇𝑃 for the AI-DST, even when it performs equally well or better. 

This is captured in the negative coefficient, β𝐴𝐴 = −0.35, confirming that 

with increasing 𝐴𝐼𝐴 , ∆𝑊𝑇𝑃  decreases. Thus, even when the AI-DST is 

superior, AI-anxious individuals remain willing to pay more for human 

advice, often placing them in the lower right quadrant of the plot. 

Based on these findings, we computed the performance premium (i.e., the 

level by which the AI-DST must outperform the human advisor for a farmer 

to be equally willing to pay for both). This was done by solving the following 

equation, derived from Eq. (8), for each level of AIA to yield a distribution 

of performance premiums (see Fig. 3.8): 

 

 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑃𝑟𝑒𝑚𝑖𝑢𝑚 =  
−𝛽𝐴𝐴∗𝐿𝑎𝑡𝑒𝑛𝑡𝐴𝐼𝐴𝑛𝑥𝑖𝑒𝑡𝑦𝑖

𝛽𝐷𝑒𝑙𝑡𝑎𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒
   (18) 

We found that, on average, the AI-DST would need to perform ~19% better 

than a human advisor to achieve equivalent WTP from farmers (mean = 

0.195, median = 0.194). Beyond the average, it is instructive to consider the 

full distribution of the performance premium. For 90% of the posterior 

samples, the performance premium lies between 11% and 30% (90%- HPDI 

[0.110; 0.295]). This also implies that a small share of the posterior samples 

would prefer a human advisor over an AI-DST even if the performance of 

the human advisor is 30% lower. Another perspective on these results is the 

price premium (i.e., how much cheaper an AI-DST must be to be preferred 

over a human advisor when both perform equally). Assuming equal 

performance, we found that the AI-DST must be, on average, 37% less 

expensive. The 90% HPDI for this premium ranges [–0.56, –0.21], 

indicating that, for 90% of the posterior samples, the AI-DST must be 

between 21% and 56% cheaper than the human alternative. 
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In summary, both the overall BI to adopt AI-DSTs and the stated WTP for 

such tools were low across our sample. Even AI-neutral individuals 

appeared somewhat skeptical. However, the data clearly showed that AI-

anxious individuals expressed significantly lower adoption intentions and 

WTP at given levels of (expected) performance. These results support our 

research hypothesis and affirm the role of AA in farmers’ decision-making. 

Figure 3.8: Distribution of performance premium 

3.4 Discussion and Conclusion 

3.4.1 Comparing AA in the Agricultural Domain with Other Contexts  

When comparing our results to those of Longoni et al. (2019) in the medical 

domain, several similarities emerge. In their study, participants preferred 

human healthcare providers over AI-driven ones, even when the AI 

performed better; they were willing to pay more for human providers. 

Similarly, our findings revealed a clear price premium: on average, 

participants were willing to pay 37% less for AI-based advice, mirroring 

Longoni et al.’s (2019) result from Study 2, where WTP dropped by 37% 

when switching from human to AI support. 
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However, our observed performance premium (11–30%) diverged notably 

from Longoni et al.’s (2019) findings. In their Study 3 (Table 3), a mere 1% 

increase in accuracy was sufficient to overcome the utility gap between 

human and AI healthcare providers. By contrast, farmers in our sample 

required a much greater performance premium before expressing equal 

preference for AI. This discrepancy may stem from differences in 

experimental setup, cultural context, or decision-making environment—all 

of which have been shown to influence the magnitude of AA (Mahmud et 

al. 2022). 

While Longoni et al.’s (2019) study is set in the medical context considering 

personal health risks, we focus on risks in agricultural decision making, 

where monetary aspects and external factors play a more pronounced role 

(Rosburg and Menapace 2018). Concretely, in the Longoni et al. (2019) – 

study, the 1%-point increase refers to the improvement of a medical 

diagnose, in our study it’s about a 1%-point increase in the economic result. 

Studies on AA in the financial decision-making context found that risky 

environments lead people to reject even high performing algorithms and to 

overestimate mistakes made by the algorithm (Dietvorst and Bharti 2020; 

Zhang, Pentina and Fan 2021). As pesticide use is complex and the optimal 

application depends on many external factors like natural production 

conditions, weather and climate, infestation pressures and prices (Rosburg 

and Menapace 2018), this risk and uncertainty might foster AA among 

farmers in our sample compared to the sample of Longoni et al. (2019) and 

might explain the larger performance premium.   

Our findings also align with psychological studies indicating that people lose 

trust in algorithmic forecasters more rapidly than in human ones, especially 

when performance imperfections are revealed (Dietvorst et al., 2015). This 

effect causes users to underestimate algorithmic accuracy and to avoid using 

algorithmic DS, even when it performs well (Dietvorst & Bharti 2020). 

Although we did not directly examine erroneous recommendations, our 

presentation of past correct recommendations implicitly conveys 

information about past errors. Future studies could explore whether the 

relationship between ∆𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒  and ∆𝑊𝑇𝑃  is truly linear, as 

assumed here, or if it follows a nonlinear trajectory (e.g., disproportionately 
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penalizing the AI-DST when its performance is slightly worse than that of 

the human advisor). 

Regarding the UTAUT-based component of the model, our results are 

consistent with previous applications of this framework in agriculture, which 

also show a positive association between PE and BI (Otter & Deutsch, 2023; 

Von Veltheim et al., 2022; Giua et al., 2022; Michels et al., 2020). However, 

when comparing our findings to those of Cao et al. (2021), who extended 

UTAUT with AI-related constructs to measure UK business managers’ 

intentions to use AI, the contrast is striking. While our German farmer 

sample reported a mean BI of 3.9, UK business managers reported a much 

higher mean of 5.14, both measured on a 7-point Likert scale. This 

difference suggests that German farmers may be more skeptical toward AI-

based tools than decision-makers in other business sectors or regions. 

3.4.2 Reflecting on the PP Workflow 

The PP workflow adapted for the experimental setting (Fig. 3.1) offers 

several advantages. First, by defining a concrete DGP, we were required to 

explicitly and formally operationalize the concept of AA. Having a complete 

DGP also allowed us to create synthetic data to test this formalization. As 

depicted in Fig. 3.1, the development of the statistical model, experimental 

design, and variable operationalization occurred through an iterative loop. 

By using synthetic data, we could test various conceptual and experimental 

setups. This iterative workflow enabled us, for instance, to simulate different 

randomization strategies for past recommendation performance (with and 

without replacement) and to evaluate alternative functional forms between 

AIA and outcome variables. In both cases, we formulated and visualized a 

statistical model based on the scientific framework, adjusted the 

experimental design, generated synthetic data from the DGP, tested 

inference procedures, and assessed the results visually. 

Second, this workflow helps identify and correct flaws in experimental 

design that might otherwise only become apparent after data collection. 

Because we can test both the survey and analysis pipeline in advance using 

synthetic data, we improve efficiency—saving time and resources—and 

enhance scientific rigor. This aligns with broader discussions on improving 
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research practices (Ferraro & Shukla, 2023; Heckelei et al., 2023; Finger et 

al., 2023; 2024), including efforts toward pre-registration, registered reports 

(Arpinon & Lefebvre, 2024), and reproducibility through code sharing. By 

applying the PP workflow, we could pre-register the complete analysis 

pipeline, including code for data processing and results visualization, prior 

to collecting real data. 

Third, from an empirical standpoint, the PP workflow enables the joint 

estimation of the key coefficients from both the WTP experiment and the 

UTAUT component. In both cases, AIA was treated as a shared latent driver 

of AA. A core strength of Bayesian inference is the ability to update prior 

beliefs with observed data. In our model, prior distributions for the 

parameters of interest were informed by the structure of the unified model 

and updated using the combined experimental and survey data. This joint 

estimation strategy improves precision and credibility of posterior results 

relative to methods that treat attitudinal and behavioral data separately. 

One common critique of Bayesian approaches concerns the perceived 

subjectivity in the choice of priors. Generally, following McElreath (2018), 

we consider the prior specification as another part of the model assumptions. 

To motivate the chosen prior specification, we base it on: (i) using weakly 

informative priors, (ii) grounding our choices in prior literature, (iii) 

conducting prior predictive checks, and (iv) transparently documenting our 

choices and the rationale behind them. Besides the prior assumptions, it is 

also important to highlight that both the DAG and the DGP are based on a 

number of additional assumptions and represent just one of many plausible 

ways to construct the model. While the iterative development of DAG and 

DGP involves reflecting on and refining alternative structures, it is 

practically infeasible to test all possible configurations. However, this 

challenge is not unique to probabilistic programming, as any modeling 

approach is necessarily based on a specific set of assumptions. 

3.4.3 Potential Reasons for AA and Future Research Needs 

AA can be interpreted as a deviation from rational choice behavior. To 

understand and address this phenomenon, we integrate findings from AA 
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literature in other domains with evidence on farmers’ decision-making to 

identify future research directions. 

A major barrier to adopting DSTs, particularly AI-based ones, is the lack of 

transparency (Rose et al., 2016; Kerebel et al., 2013; Akaka et al., 2024). 

The “black-box” nature of AI systems can limit user trust and understanding 

(Chander et al., 2018; Önkal et al., 2009). Additional concerns include the 

perception that AI may ignore local production conditions or fail to remain 

updated with evolving regulations (Rose et al., 2016). These concerns mirror 

the “uniqueness neglect” found in healthcare settings (Longoni et al., 2019) 

and are consistent with findings on the importance of localized learning in 

agricultural extension (Maertens et al., 2021; Oyinbo et al., 2022). Future 

research should explore how to enhance transparency, tailor 

recommendations to local contexts, clarify regulatory compliance, and 

address liability, potentially through pairing AI-DSTs with novel insurance 

mechanisms (Lefebvre et al., 2025). 

However, increasing transparency can also raise system complexity, 

potentially exacerbating AA (You et al., 2022). Farmers thus face an 

“adopter’s dilemma”: balancing better recommendations against more 

complicated decision-making processes (McRoberts et al., 2011). 

Identifying the specific types of information farmers find most relevant may 

help mitigate this tension (Rojo-Gimeno et al., 2019; Helps et al., 2024; 

Sperber et al., 2010). Furthermore, research shows that the framing of AI 

recommendations (e.g., emphasizing gains vs. losses) can shape trust 

(Mahmud et al., 2022), and that the delivery mode (e.g., video or SMS) 

affects how farmers respond (Van Campenhout et al., 2021; Giulivi et al., 

2023). 

Like findings in healthcare and business, AA tends to rise with perceived 

task risk (Longoni et al., 2019; Filiz et al., 2023). In agriculture, risk framing 

might influence decision-making (Bougherara et al., 2024), and novel 

insurance schemes could support DST adoption (Lefebvre et al., 2025). 

Future work should investigate how AA varies across decision types (e.g., 

tactical vs. strategic) and time horizons. 
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More broadly, studies consistently find that farmers are cautious toward new 

technologies (Rose et al., 2016; Heidrich, 2020; McCown, 2002; Rojo-

Gimeno et al., 2019; Akaka et al., 2024). In our sample, most farmers 

reported low technological interest, which aligns with evidence linking low 

tech engagement to reduced DST adoption (Von Veltheim et al., 2022). In 

other domains, AA has been shown to vary with user experience (Mahmud 

et al., 2022), which might be also the case for farmers. For instance, 

McFadden et al. (2022) found that digital soil mapping adoption declines 

with farmer age, whereas Gars et al. (2025) found that farmers with less 

confidence in their own fertilizer beliefs are more responsive to 

recommendations and exhibit higher WTP for new soil testing tools. Prior 

research suggests that customizability of algorithms can increase adoption 

(Logg et al., 2019; Önkal et al., 2009; Dietvorst et al., 2018). Future studies 

should examine how to incorporate farmer expertise into AI-DST outputs to 

boost acceptance (Hochman & Carberry, 2011). 

Human advisors remain influential in agricultural decision-making 

(Skaalsveen et al., 2020; Kuehne et al. 2020). In our study, most farmers 

rated their advisors highly, and AIA increased with advisor satisfaction 

(βAdvisorExperienceAIA
 in Table 3.4). This suggests that farmers may fear AI-

DSTs could replace, rather than complement, trusted relationships (Rose et 

al., 2016; McCown, 2002), as has been observed in healthcare (Longoni et 

al., 2019). Future research should evaluate hybrid systems where human 

advisors interpret AI outputs before presenting them to farmers (Rojo-

Gimeno et al., 2019), which may also serve as training opportunities for 

farmers. Notably, digital experience was associated with lower AIA in our 

sample ( βDSTExperienceAIA
 in Table 3.4), underscoring the importance of 

digital literacy—particularly for older farmers, who often report lower 

digital confidence (Von Veltheim et al., 2022). 

Lastly, peer opinions may also shape AA. In our study, most farmers 

believed that their peers did not support AI-DST use for fungicide 

application. This belief was associated with lower adoption intention (βSIBI
 

in Table 3.4). Farmers may fear that using AI-DSTs could damage their 

reputation for competence. Experimental studies confirm that users of 

algorithms are sometimes perceived as less capable (Diab et al., 2011; 
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Eastwood et al., 2012). Because farmers seek not only profit but also social 

validation (Weersink & Fulton, 2020), peer norms and recognition may 

significantly influence technology adoption. Future research should explore 

how social norms, such as peer effects can facilitate broader AI-DST use. 

For example, Alexander et al. (2018) showed that social proof is more 

persuasive in promoting algorithm adoption than presenting a specific 

accuracy level.  

3.4.4 Concluding Remarks 

AI-based DSTs hold considerable promise for improving productivity and 

resource use efficiency in agriculture. However, adoption remains a 

prerequisite for realizing this potential. In various domains, individuals show 

reluctance towards AI-based recommendations, known as algorithm 

aversion (Dietvorst et al. 2015). This study is the first to investigate and 

quantify AA in the agricultural context. We conducted an online survey of 

German arable farmers using a combination of UTAUT-based attitudinal 

measures and a controlled experiment to examine and quantify AA, that is 

the effect of AI-Anxiety on adoption intention and WTP, respectively. We 

also introduced and discussed a novel PP workflow to complement survey 

design, model testing, and inference transparency. 

Our results confirmed that AA plays an important role in both stated BI and 

economic preference (WTP). As AIA increases, both adoption intention and 

WTP decline, validating our hypothesis. Based on our model and 

experimental setup, we estimated that an AI-DST must perform between 

11% and 30% better than a human advisor, or cost between 21% and 56% 

less, to be considered equally valuable by most farmers. 

AA could impose costs not only on individual farmers but also on broader 

society, especially if algorithms consistently outperform human 

recommendations (Dietvorst et al., 2015). Given the increasing potential of 

AI-based DST for efficiency improvements in agricultural production, 

future research should extend this framework to other adoption decisions 

and explore the causes of AA to develop effective interventions, including 

financial support mechanisms. 
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We recommend incorporating AIA as a dispositional factor in future 

behavioral research on farmers’ attitude towards AI, for example within the 

framework proposed by Déssart et al. (2019). Although our study relies on 

hypothetical scenarios, which may inflate WTP estimates (Veettil et al., 

2024), we used established methods including a cheap talk script to mitigate 

such effects. As AI-DSTs become more widespread, future research should 

focus on revealed preferences in real-world settings. 

Finally, technology developers should design AI-DSTs with AA in mind. 

Given the importance of performance perceptions and performance 

premiums, tools must communicate value clearly and transparently. 

Farmers’ risk perceptions also matter. Insurance schemes that compensate 

for yield loss when DST guidance is followed (Lefebvre et al., 2025; BASF, 

2024) may provide a promising complement. AI should not aim to replace 

human advisors but to support and enhance human expertise (Evans et al., 

2017; Hochman & Carberry, 2011; Rose et al., 2016). Given the strong 

preference for human input, advisory services should carefully assess which 

tasks can be delegated to AI and which are best retained by humans or 

pursued collaboratively. 
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3.6 Appendix 

3.6.1 A. Survey 

 

Figure 3.9: Schematic Process of the survey 

Decision Support Tools in Crop Management 

In this study, we want to investigate the extent to which digital decision 

support tools are used in arable farming. 

Many decisions have to be made in everyday agricultural work. Apps for 

detecting and treating weeds, recommending fungicide treatments or digital 

field maps can help to optimize decisions. 

To do this, these programs evaluate large amounts of data in order to provide 

up-to-date recommendations adapted to the location. In the future, these 

techniques will increasingly use artificial intelligence (AI) to make optimal 

predictions and recommendations based on the available data.  
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In the following, we use the term “AI-based decision support” for any type 

of technology that evaluates mathematical correlations without human 

intervention and formulates recommendations based on this.  

The study takes about 18 minutes. At the end, you can decide whether you 

would like to take part in a lottery and receive the results of the study as a 

thank you for your participation. 

We are giving away a total of four non-cash prizes among all participants: 

 [list of prizes in kind] 

To get started, please agree to the data protection guidelines.  

Thank you for participating in the study. 

o I agree. 

o I do not agree. (→ Screenout) 

Branches of operation/ Screenout:  

Which branches of business belong to the company? 

(multiple answers possible) 

o Arable farming / market crops → Continue in the questionnaire 

o Forage production → Screenout 

o Special crops (e.g. fruit and vegetables) → Screenout 

o Permanent crop area (e.g. hops) → Screenout 

o Animal production / processing → Screenout 

o Renewable energies → Screenout 

o Forestry → Screenout 

o Aquaculture → Screenout 

o Secondary production (e.g. farm store) → Screenout 

o Other, namely: ___ → Screenout 

 

 [From here on randomized: order of statements, experiment and ranking] 

Part 1: Evaluation of statements 
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In the following, we will show you several statements on the topic of 

decision support for fungicide strategy planning. Please rate the extent to 

which you agree with the statements.  

You can use the scale to grade your statement from 1 “strongly disagree” to 

7 “strongly agree”. 

[Part 1.1: Fungicide treatment] 

• I would find the use of AI-based decision support for fungicide 

applications useful in my day-to-day work. [PE 1] 

• I think that the use of an AI-based decision aid for fungicide 

applications would reduce my workload. [ PE 2] 

• I think that using an AI-based decision aid for fungicide 

applications would reduce my crop protection costs. [PE 3] 

• I think that AI-based decision support for fungicide applications 

would help to make crop protection more environmentally friendly. [PE 4] 

• I think that using an AI-based decision aid for fungicide 

applications would be easy for me to learn. [EE 1] 

• After learning to use an AI-based decision aid for fungicide 

applications, it would be easy and understandable for me to use. [EE 2] 

• I think that an AI-based decision aid for fungicide applications 

would be an easy-to-use aid for me. [EE 3] 

• My work colleagues think that I should use an AI-based decision 

aid for fungicide applications. [SI 1] 

• Farmer friends think it makes sense to use an AI-based decision 

aid for fungicide applications. [SI 2] 

• I specifically intend to use AI-based decision support for fungicide 

applications in the near future. [BI 1] 

• I plan to use AI-based decision support for fungicide applications 

in the medium term. [BI 2] 

• I suspect that I will use AI-based decision support for fungicide 

applications in the long term. [BI 3] 

• I plan to use non-AI-based digital decision aids in the future. 

[Part 1.2: Artificial intelligence] 

In the following, we will show you several statements on the topic of AI 

techniques (artificial intelligence). These relate to areas both within and 

outside agriculture.  
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Examples of AI technologies include chatbots such as ChatGPT, voice 

assistants such as Siri or Alexa, automatic facial recognition for unlocking 

cell phones, parking aids in cars and suggestions on YouTube based on 

previously watched videos. 

Please rate the extent to which you agree with the statement. You can use 

the scale to grade your statement from 1 “Strongly disagree” to 7 “Strongly 

agree”. 

• I am afraid that AI technologies could make society dependent. 

[AIA 1] 

• I am afraid that AI technologies could make society lazier. [AIA 2] 

• I am afraid that AI technologies could replace humans. [AIA 3] 

• I am afraid that the widespread use of AI technologies could take 

jobs away from people. [AIA 4] 

• I find human-like AI technologies (e.g. human-like robots) strange. 

[AIA 5] 

• I don’t know why, but human-like AI technologies (e.g. human-

like robots) scare me. [AIA 6] 

• I am afraid that if I start using AI techniques, I will lose some of 

my ability to think. [AIA 7] 

• I am afraid that AI techniques could be misused for harmful 

purposes. [AIA 8] 

• I am afraid of various problems that could be associated with AI 

techniques. [AIA 9] 

• I am afraid that AI technologies will get out of control and nothing 

will work anymore. [AIA 10] 

• I am afraid that AI techniques could lead to the autonomy of robots. 

[AIA 10] 

• Learning all the special functions that come with an AI technique 

makes me nervous. [AIA 12] 

• Learning how to use AI techniques makes me anxious. [AIA 13] 

• Learning how to interact with AI techniques makes me anxious. 

[AIA 14] 

• Taking a course on the development of AI techniques worries me. 

[AIA 15] 

• Not being able to keep up with advances related to AI techniques 

worries me. [AIA 16] 

Part 2: Advisory services 
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Below you will find information on two advisory options for fungicide 

applications. Please put yourself in the situation described below and read 

through the information on fungal infestation in wheat and possible 

recommendations for measures and fungicide treatments: 

 

Imagine you are planning your fungicide treatment in wheat. Furthermore, 

imagine that you want to proceed according to the damage threshold 

principle in the situation described. In order to decide whether treatment is 

necessary and economically viable, you can seek advice to help you reduce 

yield losses. 

For the optimal fungicide recommendation (time of application, dose, active 

ingredient), you can use a human advisor or an AI-based decision aid.  

Both use the same data (e.g. field and farm-specific information, regional 

infection pressure, weather forecasts and available photos of the field) and 

deliver the recommendation by email within 24 hours. 

The human advisor evaluates the data based on their experience, while the 

AI is based on an algorithm that has been trained with historical data. This 
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means that past fungicide recommendations and their results are included in 

the analysis. 

Please consider how much you would be willing to pay for the respective 

advisory service. We would like to take this opportunity to point out once 

again that this is a purely scientific survey and your information will not be 

used to determine a price for the advisory services. 

We will also show you how successful the recommendations have been in 

the past. This means you will see how often the recommended strategy led 

to reduced yield losses when the recommendation was followed exactly.  

Example: In the past, advice X has recommended the correct fungicide 

strategy 90% of the time. This means that in 9 out of 10 cases, advice X 

recommended a fungicide strategy that led to an improvement in the 

economic result compared to the status quo (your previous management), 

i.e. without this additional advice. 

[Randomized from now on: Each participant must state their WTP three 

times for two different counseling options. The performance of the respective 

options varies so that either human advisor = AI-DST, human advisor > AI-

DST or human advisor < AI-DST, in % [85,90,95], making 3x3=9 options 

from which three are randomly selected, ensuring that each of the three 

options is displayed once for the human advisor, in random order (draw 

without putting back), randomized for the AI-DST (version 1: draw with 

putting back, version 2: draw without putting back)]. 

 

You now have the choice between the following advisory services: 
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 Human advisor  AI-based Decision 

Support Tool 

 

Correct past 

recommendation  

[85,90,95] % [85,90,95] % 

 

How much would you 

be prepared to pay for a 

recommendation in 

€/ha? 

Please move the slider 

to the appropriate 

value. 

The amount applies per 

hectare for which you 

would like a 

recommendation. 

0 €                        150 € 0 €                       150 € 

Part 3: Ranking 

Please rank the following advice options so that the best option for you is at 

the top and your least favorite option is at the bottom. 

A. Advice on crop rotation planning from human advisor 

B. Advice on fungicide strategies in wheat from human advisor 

C. Advice on crop rotation planning by AI decision aid 

D. Advice on fungicide strategies in wheat by AI decision aid 

E. Advice on crop rotation planning from human advisor who 

analyzes results from AI decision aid and includes them in the advice 

F. Advice on fungicide strategies in wheat from human advisor who 

analyzes result from AI decision aid and includes it in the advice 

[same for everyone from now on] 
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Part 4: Questions on personal and operational characteristics 

Technological engagement  

To what extent do you agree with the following statements. You can use the 

scale to grade your statement from 1 “Do not agree at all” to 7 “Completely 

agree”. 

• I am always interested in using the latest technology. [TE 1 

“Technological Interest”] 

• I find it difficult to deal with new technology - as a rule, I simply 

don’t know how to do it. [TE 2 “Technological Competence Belief”, reverse 

coding] 

• When I deal with new technological developments, I have control 

over everything that happens. [TE 3”Technological Control belief”] 

      

Which of the following digital technologies do you use? [multiple choice] 

o Apps for agriculture, namely: ___ 

o Digital bookkeeping  

o Digital fertilizer planning  

o Digital field index 

o GPS steering systems 

o Smartphone 

o Section Control 

o Machine-controlled site-specific fertilization 

o Other, namely: ___  

Experience 

How would you rate your previous experience (in the last 5 years) with 

human farm advice? 

o Excellent 

o Very good 

o Good 

o Neither 

o Poor 

o Very bad 

o Insufficient 

o I have not made use of any human advice 
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How would you rate your previous experience (in the last 5 years) with 

digital decision aids (e.g.: field index, herd management, pest app)? 

o Excellent 

o Very good 

o Good 

o Neither 

o Poor 

o Very bad 

o Insufficient 

o I have not used any digital decision aids 

Climate change 

How would you rate the impact on your business in the following areas? 

 Not 

concerned 

Slightly 

concerned 

Concerned Very 

Concerned 

More heavy 

rainfall events 

    

Longer periods of 

heat 

    

Reduced annual 

precipitation 

    

More extreme 

weather events 

(hail, storms, 

etc.) 

    

Increased soil 

erosion 

    

Increased 

flooding 

    

Increased 

waterlogging 

    

Increased pest 

pressure 

    

Risk attitude 

How would you rate yourself personally? 

Are you generally a risk-taking person or do you try to avoid risks? 
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You can use the scale to grade your statement from 0 “Not at all willing to 

take risks” to 10 “Very willing to take risks”. You can use the values in 

between to grade your assessment. 0 - Not at all willing to take risks 

o 0 - Not at all willing to take risks 

o 1 

o 2 

o 3 

o 4 

o 5  

o 6 

o 7 

o 8 

o 9 

o 10 - Very willing to take risks 

Age  

How old are you?  [Dropdown with numbers from 18 to 99, incl. “no 

answer”] 

Farm size 

How large is your farm (in ha)? 

The farm size refers to the total agricultural area (owned and leased)). 

o under 5       

o 5-9     

o 10-19        

o 20-49       

o 50-99        

o 100 -199        

o 200 - 499        

o 500 -999          

o 1000 and more         

o not specified 

Type of production 

How do you manage your farm? 



Are farmers algorithm-averse?  173

 

  

By “organic” we mean all farms that farm according to EU organic 

regulations or within the framework of farming associations (Bioland, 

Naturland, Demeter). 

o Conventional 

o Entire farm organic 

o Organic arable farming 

o Other areas organic 

o not specified 

Questions and comments 

Thank you for taking part in the survey! 

Do you have any questions or comments? There’s space for them here:  

____________________________________ [free text] 

Lottery & Results 

Would you like to take part in the competition? 

o Yes → Forwarding to the competition 

o No → Screen out 

Would you like to receive the results of the survey? 

Then enter your e-mail address on the following page. This will be stored 

separately from your answers in the survey so that the survey remains 

anonymous. 
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3.6.2 B. Trace Plots 

Figure 3.10: Trace plots for selected variables where Algorithm does not exist 

(left) and exists (right) 

 

3.6.3 C. Summary of the MCMC 

Table 3.4: Summary table for the MCMC 

  mean std median 5.0% 95.0% n_eff r_hat 

alpha_idvConst_AIA 1.05 0.08 1.05 0.92 1.17 1434.68 1.00 

beta_AA -0.35 0.03 -0.35 -0.40 -0.31 1378.02 1.00 

beta_AIA_BI -0.56 0.31 -0.54 -1.03 0.00 457.09 1.00 

beta_AIA_EE 1.03 0.28 1.04 0.57 1.48 1947.33 1.00 

beta_AIA_PE 0.67 0.25 0.67 0.28 1.09 1512.73 1.00 

beta_AdvisorExperie

nce_AIA 0.18 0.02 0.18 0.15 0.21 2339.68 1.00 

beta_AdvisorExperie

nce_EE -0.48 0.09 -0.48 -0.63 -0.34 1859.15 1.00 

beta_AdvisorExperie

nce_PE -0.36 0.08 -0.36 -0.48 -0.24 1917.69 1.00 

beta_AdvisorExperie

nce_SI -0.10 0.09 -0.09 -0.26 0.04 410.10 1.00 

beta_Age_AIA 0.00 0.02 0.00 -0.02 0.03 5199.85 1.00 
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  mean std median 5.0% 95.0% n_eff r_hat 

beta_Age_EE -0.22 0.08 -0.22 -0.34 -0.09 1743.74 1.00 

beta_Age_PE -0.05 0.07 -0.05 -0.15 0.06 2030.23 1.00 

beta_Age_SI -0.06 0.11 -0.03 -0.25 0.10 276.59 1.00 

beta_DSTExperience

_AIA -0.09 0.02 -0.09 -0.12 -0.06 3829.49 1.00 

beta_DSTExperience

_EE 0.41 0.08 0.40 0.27 0.53 3405.99 1.00 

beta_DSTExperience

_PE 0.18 0.07 0.19 0.07 0.29 2917.10 1.00 

beta_DSTExperience

_SI 0.15 0.08 0.15 0.02 0.27 1147.18 1.00 

beta_EE_BI 0.26 0.40 0.19 -0.34 0.96 348.75 1.00 

beta_Farmsize_AIA -0.14 0.02 -0.14 -0.17 -0.10 2377.46 1.00 

beta_Farmsize_EE 0.15 0.08 0.15 0.01 0.29 1435.33 1.00 

beta_Farmsize_PE 0.09 0.07 0.09 -0.01 0.22 2295.89 1.00 

beta_Farmsize_SI 0.14 0.10 0.15 -0.04 0.28 330.76 1.00 

beta_PE_BI 0.36 0.48 0.38 -0.44 1.12 1141.14 1.00 

beta_RiskPref_AIA -0.08 0.02 -0.08 -0.11 -0.05 4246.51 1.00 

beta_RiskPref_EE 0.13 0.08 0.13 0.00 0.26 2407.49 1.00 

beta_RiskPref_PE 0.14 0.07 0.14 0.03 0.24 2984.72 1.00 

beta_RiskPref_SI 0.05 0.08 0.06 -0.09 0.19 576.38 1.00 

beta_SI_BI 0.58 0.71 0.80 -0.73 1.51 208.81 1.00 

beta_TechEngageme

nt_AIA -0.07 0.02 -0.07 -0.10 -0.03 2476.05 1.00 

beta_TechEngageme

nt_EE 0.68 0.08 0.68 0.54 0.82 3581.95 1.00 

beta_TechEngageme

nt_PE 0.46 0.07 0.46 0.36 0.57 3008.50 1.00 

beta_TechEngageme

nt_SI 0.23 0.08 0.23 0.08 0.35 2405.52 1.00 

beta_deltaTrue 1.91 0.13 1.90 1.71 2.14 6314.59 1.00 
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  mean std median 5.0% 95.0% n_eff r_hat 

cutpoints_AIA_1[0] -0.10 0.21 -0.10 -0.45 0.25 4197.70 1.00 

cutpoints_AIA_1[1] 1.05 0.20 1.05 0.74 1.39 3718.37 1.00 

cutpoints_AIA_1[2] 1.78 0.18 1.78 1.47 2.06 3242.49 1.00 

cutpoints_AIA_1[3] 2.77 0.15 2.77 2.54 3.03 2314.02 1.00 

cutpoints_AIA_1[4] 4.03 0.15 4.03 3.78 4.26 2114.71 1.00 

cutpoints_AIA_1[5] 5.36 0.19 5.36 5.04 5.66 2817.79 1.00 

cutpoints_AIA_10[0] -0.02 0.21 -0.02 -0.35 0.31 3957.75 1.00 

cutpoints_AIA_10[1] 0.91 0.19 0.92 0.62 1.25 4305.76 1.00 

cutpoints_AIA_10[2] 1.97 0.16 1.97 1.70 2.22 3353.34 1.00 

cutpoints_AIA_10[3] 2.94 0.14 2.95 2.69 3.17 2591.47 1.00 

cutpoints_AIA_10[4] 4.00 0.14 4.00 3.76 4.24 2208.37 1.00 

cutpoints_AIA_10[5] 5.17 0.18 5.17 4.89 5.45 2943.71 1.00 

cutpoints_AIA_11[0] 0.28 0.21 0.28 -0.05 0.65 3475.47 1.00 

cutpoints_AIA_11[1] 1.63 0.18 1.63 1.33 1.92 3570.03 1.00 

cutpoints_AIA_11[2] 2.43 0.16 2.43 2.16 2.69 2761.55 1.00 

cutpoints_AIA_11[3] 3.34 0.15 3.34 3.10 3.58 2161.06 1.00 

cutpoints_AIA_11[4] 4.49 0.16 4.50 4.22 4.74 1964.65 1.00 

cutpoints_AIA_11[5] 5.68 0.21 5.68 5.33 6.01 2723.51 1.00 

cutpoints_AIA_12[0] 0.42 0.20 0.41 0.08 0.75 3572.94 1.00 

cutpoints_AIA_12[1] 1.85 0.17 1.85 1.55 2.10 2845.88 1.00 

cutpoints_AIA_12[2] 2.79 0.15 2.79 2.55 3.04 2112.38 1.00 

cutpoints_AIA_12[3] 4.18 0.16 4.18 3.92 4.44 1913.46 1.00 

cutpoints_AIA_12[4] 5.23 0.19 5.23 4.93 5.56 2242.33 1.00 

cutpoints_AIA_12[5] 6.50 0.28 6.50 6.01 6.92 3267.70 1.00 

cutpoints_AIA_13[0] 0.84 0.20 0.84 0.53 1.15 3025.39 1.00 

cutpoints_AIA_13[1] 2.29 0.16 2.29 2.03 2.55 2211.03 1.00 

cutpoints_AIA_13[2] 3.11 0.15 3.11 2.86 3.35 1798.37 1.00 

cutpoints_AIA_13[3] 4.44 0.17 4.44 4.15 4.69 2029.04 1.00 

cutpoints_AIA_13[4] 5.49 0.20 5.48 5.14 5.80 2289.74 1.00 

cutpoints_AIA_13[5] 6.84 0.31 6.83 6.32 7.33 3330.80 1.00 

cutpoints_AIA_14[0] 0.80 0.19 0.80 0.48 1.10 3175.57 1.00 
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  mean std median 5.0% 95.0% n_eff r_hat 

cutpoints_AIA_14[1] 2.19 0.16 2.19 1.93 2.46 2404.71 1.00 

cutpoints_AIA_14[2] 3.16 0.15 3.15 2.90 3.38 1782.92 1.00 

cutpoints_AIA_14[3] 4.56 0.16 4.56 4.28 4.82 1766.79 1.00 

cutpoints_AIA_14[4] 5.60 0.21 5.60 5.26 5.95 2519.95 1.00 

cutpoints_AIA_14[5] 6.88 0.32 6.87 6.40 7.39 3435.48 1.00 

cutpoints_AIA_15[0] 1.10 0.18 1.11 0.81 1.40 2810.62 1.00 

cutpoints_AIA_15[1] 2.68 0.15 2.67 2.43 2.91 2100.05 1.00 

cutpoints_AIA_15[2] 3.63 0.15 3.63 3.39 3.87 1697.02 1.00 

cutpoints_AIA_15[3] 5.00 0.18 5.00 4.69 5.27 1822.44 1.00 

cutpoints_AIA_15[4] 6.16 0.24 6.15 5.79 6.59 2164.38 1.00 

cutpoints_AIA_15[5] 7.34 0.38 7.33 6.73 7.94 2706.00 1.00 

cutpoints_AIA_16[0] 0.89 0.19 0.91 0.56 1.19 3201.35 1.00 

cutpoints_AIA_16[1] 2.51 0.15 2.51 2.29 2.79 2584.48 1.00 

cutpoints_AIA_16[2] 3.41 0.15 3.41 3.17 3.67 2195.90 1.00 

cutpoints_AIA_16[3] 4.77 0.17 4.77 4.50 5.05 2341.43 1.00 

cutpoints_AIA_16[4] 5.98 0.24 5.97 5.59 6.37 3704.59 1.00 

cutpoints_AIA_16[5] 6.93 0.32 6.92 6.42 7.46 3484.29 1.00 

cutpoints_AIA_2[0] -0.22 0.22 -0.21 -0.55 0.16 4187.35 1.00 

cutpoints_AIA_2[1] 0.74 0.20 0.74 0.45 1.09 3410.58 1.00 

cutpoints_AIA_2[2] 1.56 0.18 1.56 1.25 1.84 2850.39 1.00 

cutpoints_AIA_2[3] 2.57 0.15 2.57 2.32 2.82 2202.19 1.00 

cutpoints_AIA_2[4] 3.60 0.14 3.60 3.35 3.82 1873.71 1.00 

cutpoints_AIA_2[5] 5.05 0.18 5.04 4.78 5.37 2245.59 1.00 

cutpoints_AIA_3[0] 0.45 0.20 0.45 0.12 0.76 3620.28 1.00 

cutpoints_AIA_3[1] 1.61 0.17 1.61 1.34 1.87 2980.82 1.00 

cutpoints_AIA_3[2] 2.60 0.15 2.60 2.35 2.83 2057.14 1.00 

cutpoints_AIA_3[3] 3.41 0.14 3.41 3.16 3.64 1900.16 1.00 

cutpoints_AIA_3[4] 4.47 0.16 4.47 4.21 4.73 1916.76 1.00 

cutpoints_AIA_3[5] 5.87 0.23 5.86 5.51 6.26 2940.33 1.00 

cutpoints_AIA_4[0] 0.06 0.23 0.06 -0.30 0.45 3221.32 1.00 

cutpoints_AIA_4[1] 1.02 0.20 1.02 0.71 1.37 3048.31 1.00 
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  mean std median 5.0% 95.0% n_eff r_hat 

cutpoints_AIA_4[2] 2.24 0.16 2.24 2.00 2.51 2382.84 1.00 

cutpoints_AIA_4[3] 3.06 0.14 3.06 2.83 3.30 2071.05 1.00 

cutpoints_AIA_4[4] 4.27 0.15 4.27 4.00 4.51 2006.45 1.00 

cutpoints_AIA_4[5] 5.48 0.19 5.48 5.19 5.82 2604.17 1.00 

cutpoints_AIA_5[0] 0.05 0.21 0.06 -0.29 0.39 2856.32 1.00 

cutpoints_AIA_5[1] 1.22 0.19 1.23 0.94 1.55 3560.45 1.00 

cutpoints_AIA_5[2] 2.20 0.16 2.20 1.93 2.45 2380.55 1.00 

cutpoints_AIA_5[3] 3.17 0.15 3.17 2.92 3.43 2052.54 1.00 

cutpoints_AIA_5[4] 4.06 0.16 4.05 3.81 4.32 2071.59 1.00 

cutpoints_AIA_5[5] 5.30 0.19 5.30 4.99 5.61 2534.60 1.00 

cutpoints_AIA_6[0] 0.49 0.21 0.50 0.17 0.84 2964.71 1.00 

cutpoints_AIA_6[1] 1.88 0.17 1.88 1.62 2.18 3375.44 1.00 

cutpoints_AIA_6[2] 2.74 0.15 2.74 2.47 2.98 2443.74 1.00 

cutpoints_AIA_6[3] 4.07 0.15 4.07 3.81 4.31 2001.45 1.00 

cutpoints_AIA_6[4] 4.87 0.17 4.87 4.60 5.14 2277.12 1.00 

cutpoints_AIA_6[5] 5.93 0.23 5.91 5.60 6.33 2811.25 1.00 

cutpoints_AIA_7[0] 0.64 0.20 0.64 0.31 0.95 3110.41 1.00 

cutpoints_AIA_7[1] 1.91 0.17 1.91 1.65 2.19 2141.65 1.00 

cutpoints_AIA_7[2] 2.78 0.15 2.78 2.54 3.04 1949.00 1.00 

cutpoints_AIA_7[3] 3.60 0.15 3.60 3.37 3.85 1797.57 1.00 

cutpoints_AIA_7[4] 4.90 0.18 4.89 4.62 5.20 1944.09 1.00 

cutpoints_AIA_7[5] 5.93 0.23 5.92 5.53 6.29 2962.07 1.00 

cutpoints_AIA_8[0] -0.47 0.22 -0.46 -0.84 -0.13 4205.79 1.00 

cutpoints_AIA_8[1] 0.25 0.21 0.26 -0.09 0.61 4545.21 1.00 

cutpoints_AIA_8[2] 0.84 0.20 0.85 0.51 1.15 4001.68 1.00 

cutpoints_AIA_8[3] 1.73 0.18 1.73 1.43 2.00 3673.16 1.00 

cutpoints_AIA_8[4] 3.16 0.14 3.16 2.93 3.39 2008.14 1.00 

cutpoints_AIA_8[5] 4.39 0.15 4.39 4.16 4.65 2199.03 1.00 

cutpoints_AIA_9[0] -0.15 0.23 -0.16 -0.53 0.22 3705.05 1.00 

cutpoints_AIA_9[1] 0.73 0.22 0.74 0.38 1.09 3882.62 1.00 

cutpoints_AIA_9[2] 1.69 0.18 1.70 1.40 1.99 3187.72 1.00 



Are farmers algorithm-averse?  179

 

  

  mean std median 5.0% 95.0% n_eff r_hat 

cutpoints_AIA_9[3] 2.97 0.15 2.97 2.74 3.21 2221.63 1.00 

cutpoints_AIA_9[4] 4.13 0.15 4.13 3.89 4.38 2182.35 1.00 

cutpoints_AIA_9[5] 5.81 0.22 5.80 5.45 6.16 3100.86 1.00 

cutpoints_BI_1[0] 0.40 0.30 0.40 -0.12 0.87 2834.33 1.00 

cutpoints_BI_1[1] 1.47 0.29 1.47 1.00 1.95 2673.92 1.00 

cutpoints_BI_1[2] 2.34 0.29 2.34 1.91 2.86 2565.89 1.00 

cutpoints_BI_1[3] 3.73 0.32 3.73 3.21 4.24 2693.75 1.00 

cutpoints_BI_1[4] 5.17 0.37 5.16 4.57 5.77 3034.55 1.00 

cutpoints_BI_1[5] 6.21 0.45 6.19 5.48 6.93 3423.52 1.00 

cutpoints_BI_2[0] 0.13 0.30 0.13 -0.35 0.62 2579.01 1.00 

cutpoints_BI_2[1] 1.03 0.29 1.03 0.57 1.53 2396.98 1.00 

cutpoints_BI_2[2] 2.06 0.29 2.05 1.59 2.53 2482.78 1.00 

cutpoints_BI_2[3] 3.12 0.31 3.12 2.62 3.62 2611.09 1.00 

cutpoints_BI_2[4] 4.64 0.34 4.63 4.07 5.18 2909.49 1.00 

cutpoints_BI_2[5] 6.38 0.47 6.36 5.62 7.14 3629.65 1.00 

cutpoints_BI_3[0] -0.57 0.31 -0.56 -1.07 -0.06 2526.40 1.00 

cutpoints_BI_3[1] 0.54 0.30 0.53 0.04 1.03 2552.93 1.00 

cutpoints_BI_3[2] 1.11 0.30 1.10 0.63 1.59 2445.19 1.00 

cutpoints_BI_3[3] 2.01 0.30 2.00 1.52 2.51 2260.96 1.00 

cutpoints_BI_3[4] 3.51 0.31 3.50 2.99 4.00 2505.52 1.00 

cutpoints_BI_3[5] 4.93 0.36 4.92 4.31 5.48 2912.26 1.00 

cutpoints_EE_1[0] -0.37 0.34 -0.37 -0.91 0.21 2965.86 1.00 

cutpoints_EE_1[1] 0.49 0.33 0.48 -0.04 1.04 2279.89 1.00 

cutpoints_EE_1[2] 1.89 0.32 1.89 1.33 2.40 2113.16 1.00 

cutpoints_EE_1[3] 3.02 0.32 3.02 2.49 3.53 1921.13 1.00 

cutpoints_EE_1[4] 4.34 0.32 4.34 3.80 4.84 1871.56 1.00 

cutpoints_EE_1[5] 6.17 0.38 6.16 5.54 6.80 2344.30 1.00 

cutpoints_EE_2[0] -0.50 0.36 -0.50 -1.15 0.04 3099.77 1.00 

cutpoints_EE_2[1] 0.45 0.35 0.46 -0.12 1.02 2563.76 1.00 

cutpoints_EE_2[2] 1.62 0.33 1.63 1.10 2.16 2180.34 1.00 

cutpoints_EE_2[3] 2.60 0.32 2.61 2.06 3.12 2062.71 1.00 
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  mean std median 5.0% 95.0% n_eff r_hat 

cutpoints_EE_2[4] 4.07 0.31 4.07 3.59 4.62 1991.87 1.00 

cutpoints_EE_2[5] 6.30 0.38 6.29 5.71 6.96 2378.25 1.00 

cutpoints_EE_3[0] -0.32 0.35 -0.32 -0.91 0.21 2632.65 1.00 

cutpoints_EE_3[1] 1.07 0.32 1.08 0.54 1.60 2137.41 1.00 

cutpoints_EE_3[2] 1.92 0.32 1.92 1.40 2.46 2050.89 1.00 

cutpoints_EE_3[3] 2.85 0.32 2.85 2.33 3.39 2085.23 1.00 

cutpoints_EE_3[4] 4.34 0.32 4.34 3.77 4.84 2030.20 1.00 

cutpoints_EE_3[5] 6.32 0.38 6.31 5.65 6.90 2321.03 1.00 

cutpoints_PE_1[0] -0.20 0.33 -0.19 -0.77 0.32 2760.10 1.00 

cutpoints_PE_1[1] 0.99 0.30 1.00 0.46 1.45 2008.26 1.00 

cutpoints_PE_1[2] 1.82 0.29 1.82 1.27 2.24 1857.30 1.00 

cutpoints_PE_1[3] 2.57 0.29 2.57 2.11 3.06 1709.08 1.00 

cutpoints_PE_1[4] 3.66 0.29 3.66 3.16 4.10 1674.79 1.00 

cutpoints_PE_1[5] 5.49 0.34 5.49 4.94 6.07 2201.94 1.00 

cutpoints_PE_2[0] -0.02 0.31 -0.03 -0.54 0.48 2363.03 1.00 

cutpoints_PE_2[1] 0.94 0.29 0.94 0.46 1.40 1902.79 1.00 

cutpoints_PE_2[2] 1.80 0.28 1.80 1.34 2.25 1660.00 1.00 

cutpoints_PE_2[3] 2.82 0.28 2.82 2.37 3.29 1711.94 1.00 

cutpoints_PE_2[4] 4.22 0.29 4.21 3.74 4.69 1623.56 1.00 

cutpoints_PE_2[5] 5.93 0.35 5.93 5.32 6.49 1963.26 1.00 

cutpoints_PE_3[0] -0.29 0.35 -0.29 -0.82 0.32 2173.34 1.00 

cutpoints_PE_3[1] 0.65 0.31 0.64 0.15 1.18 2037.05 1.00 

cutpoints_PE_3[2] 1.95 0.30 1.96 1.50 2.48 1606.86 1.00 

cutpoints_PE_3[3] 3.33 0.29 3.33 2.88 3.82 1553.95 1.00 

cutpoints_PE_3[4] 4.47 0.30 4.47 3.98 4.94 1630.72 1.00 

cutpoints_PE_3[5] 6.09 0.37 6.07 5.49 6.66 2070.15 1.00 

cutpoints_PE_4[0] -0.27 0.33 -0.26 -0.80 0.28 2290.19 1.00 

cutpoints_PE_4[1] 0.76 0.31 0.77 0.27 1.27 2131.91 1.00 

cutpoints_PE_4[2] 1.74 0.29 1.73 1.25 2.19 1705.74 1.00 

cutpoints_PE_4[3] 2.87 0.28 2.87 2.41 3.32 1580.47 1.00 

cutpoints_PE_4[4] 4.08 0.29 4.08 3.59 4.55 1628.99 1.00 
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  mean std median 5.0% 95.0% n_eff r_hat 

cutpoints_PE_4[5] 5.91 0.36 5.91 5.27 6.46 2128.63 1.00 

cutpoints_SI_1[0] 0.14 0.20 0.15 -0.18 0.46 3094.81 1.00 

cutpoints_SI_1[1] 1.05 0.16 1.06 0.78 1.30 3731.31 1.00 

cutpoints_SI_1[2] 1.89 0.13 1.89 1.67 2.09 2559.03 1.00 

cutpoints_SI_1[3] 4.40 0.18 4.40 4.09 4.67 2991.33 1.00 

cutpoints_SI_1[4] 5.63 0.29 5.61 5.15 6.10 3981.21 1.00 

cutpoints_SI_1[5] 7.02 0.52 6.98 6.16 7.84 4379.46 1.00 

cutpoints_SI_2[0] -0.09 0.22 -0.08 -0.44 0.25 3705.02 1.00 

cutpoints_SI_2[1] 0.77 0.19 0.78 0.48 1.08 3402.49 1.00 

cutpoints_SI_2[2] 1.69 0.14 1.69 1.44 1.90 2669.56 1.00 

cutpoints_SI_2[3] 3.83 0.16 3.82 3.58 4.09 2333.33 1.00 

cutpoints_SI_2[4] 5.06 0.23 5.06 4.68 5.44 3503.27 1.00 

cutpoints_SI_2[5] 6.49 0.40 6.47 5.85 7.16 3278.42 1.00 

        

3.6.4 D. Prior and Posterior Coefficient plots 

 

Figure 3.11: Prior and posterior distribution of coefficients of interest. Black 

bar indicating HPDI. 

Figure 3.11 shows the prior and posterior distribution of our two coefficients 

of interest, 𝛽𝐴𝐴 (right) and 𝛾𝐴𝐼𝐴(𝑙𝑒𝑓𝑡). As it can be seen, the model updated 

the distributional assumptions based on the survey data.  
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Action- or results-based payments 

for ecosystem services in the era of 

smart weeding robots?* 

Abstract. Payments for ecosystem services (PES) are commonly used to 
reduce negative impacts on biodiversity by intensive agricultural production. 
Whether action- or results-based, the efficiency of PES schemes in terms of 
conservation benefit per costs, hinges on cost-effective monitoring, actions 
farmers are rewarded for, appropriate biodiversity indicators and, farmers’ 
acceptance. Despite expectations that novel technologies, such as weeding 
robots, will reduce monitoring costs, the potential impact of their widespread 
use on optimal PES design for biodiversity conservation in arable farming 
remains unexplored. Our study investigates 1) the influence of weeding 
robots on optimal scheme design and 2) the challenges and options that arise 
for future PES scheme design. To this end, we use a simulation model to 
systematically compare how the availability of weeding robots changes the 
preferability of action-based versus results-based payments under various 
production and management conditions. This study sheds light on the 
transformative potential of weeding robots in optimizing PES for 
biodiversity conservation. The results indicate that the difference in 
efficiency between action- and results-based schemes vanishes if robots can 
perform biodiversity-sensitive actions. Further, we find that it is even more 
important for the future design of PES to be able to define multidimensional 
biodiversity goals - a major challenge calling for interdisciplinary research. 

Keywords:  Payments for Ecosystem Services, Weeding Robot, Payment 

by Result, Biodiversity Conservation, Crop Production 

 
* This chapter is published as MASSFELLER, A., ZINGSHEIM, M., AHMADI, A., MARTINSSON, E., STORM, 

H., 2025. Action- or results-based payments for ecosystem services in the era of smart weeding 

robots? Biological Conservation 302, 110998. https://doi.org/10.1016/j.biocon.2025.110998. Only 

minor edits have been made for the purpose of this dissertation.  
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4.1 Introduction 

Payments for ecosystem services (PES) are a widely used tool to reduce the 

negative impacts of agricultural production on biodiversity (Wunder et al., 

2008). PES for biodiversity conservation can be organized as either action-

based schemes (ABS), in which farmers are rewarded for executing a certain 

action, or as results-based schemes (RBS), in which farmers receive money 

in return for the provision of predefined biodiversity indicators. The 

efficiency of such PES schemes, defined as the conservation benefits per 

cost of the agency (Ansell et al., 2016),  hinges on several factors. Cost-

effective monitoring, defined as the value of the indicator vs. effort to 

monitor it (Lindenmayer et al., 2012)), is only one of several factors 

determining the efficiency of a PES scheme. Also, the actions that farmers 

are rewarded for, appropriate biodiversity indicators, and, farmers’ 

acceptance are crucial to the efficiency of such schemes. Research suggests 

that digitalization will change how agricultural policy instruments are 

designed (Ehlers et al., 2021) and that the monitoring abilities of novel 

technologies, e.g. through acoustic monitoring or digital fencing (Biffi et al., 

2024; Wätzold et al., 2024) will induce a shift towards results-based schemes 

(Besson et al., 2022; Finger, 2023). However, these assumptions are largely 

conceptual and have not been fully investigated. Moreover, other 

characteristics of technologies might induce changes, even in unintended 

directions. However, these consequences remain to be sufficiently studied 

(Basso and Antle, 2020). 

Therefore, in this study, we explore how optimal PES design for biodiversity 

conservation changes if smart weeding robots are available for crop 

production. With smart weeding robots we mean novel autonomous 

selective weeding robots† (hereafter, weeding robots). Weeding robots have 

the potential to decrease negative impacts on biodiversity while allowing for 

high yields by selectively removing weeds with non-chemical tools or 

 

† As the term ‘robot’ has not been clearly defined (Merfield, 2016; Moreno et al., 2024), here, we 

define a weeding robot as ‘a mobile, autonomous, decision making, mechatronic device that 

accomplishes weeding under human supervision, but without direct human labor, adopting the 

definition of Lowenberg-DeBoer et al. (2020). 
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variable-rate application of herbicides (Bawden et al., 2017; Fennimore & 

Cutulle, 2019; Slaughter et al., 2008; Storm, Seidel, et al., 2024; Zhang et 

al., 2022). We aim to achieve our objective by answering the following 

research questions:  

1) How do weeding robots affect optimal PES scheme designs? 

2) What challenges and options might arise for future scheme designs once 

weeding robots are used? 

Previous studies of optimal PES designs range from theoretical works 

focusing on information asymmetry between landowners and conservation 

buyers, risk and payment mechanisms (Derissen & Quaas, 2013; Ferraro, 

2008; McDonald et al., 2018; White & Hanley, 2016; Zabel & Roe, 2009) 

to reviews of PES effectiveness in different contexts (Börner et al., 2017; 

Wunder et al., 2008) to empirical studies investigating farmers’ stated and 

revealed preferences for various PES designs (Canessa et al., 2023; 

Massfeller et al., 2022; Rasch et al., 2021). Gibbons et al. (2011) developed 

a simulation model to investigate the conditions under which ABS and RBS 

are more efficient by considering the characteristics of the management, the 

targeted biodiversity, and the landscape.  

Most schemes in developed countries pay farmers for actions, e.g., within 

the common agricultural policy (CAP) of the EU (European Commission, 

2021b; Gibbons et al., 2011). However, an increased focus on RBS has been 

observed in recent years (BMEL, 2023; European Commission, 2023; Pe’er 

et al., 2022). One driver for this development is the critique of ABS as 

inefficient, as they do not deliver the anticipated results and are costly to the 

taxpayer (Batáry et al., 2015; Brown et al., 2021; Pe’er et al., 2020). RBS 

form one attempt to minimize such inefficiencies, as the payment is tied to 

the occurrence of predefined results. While in both cases, farmers facing low 

costs for joining the scheme are incentivized to participate and some might 

be overpaid, under RBS, as opposed to ABS, biodiversity service provision 

is ensured. By providing farmers with greater flexibility in determining the 

measures they implement to achieve the predefined objective, social and 

cultural capital is enhanced, which could promote acceptance (Burton & 

Schwarz, 2013). However, the financial risk that farmers face if the 
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predefined targets are not reached despite efforts, and the need to define 

measurable indicators that can be monitored at low cost has impeded the 

broad-scale implementation of RBS (Burton & Schwarz, 2013; Zabel & 

Roe, 2009).  

Evidence from Europe (Elmiger et al., 2023; Hagemann et al., 2025), the US 

(Baylis et al., 2008) and Australia (Connor et al., 2008) indicates that most 

implemented RBS primarily focus on biodiversity in grassland and 

extensification or wildlife conservation. In contrast, only a few European 

RBS target biodiversity conservation in arable farming (Hagemann et al., 

2025). Examples include “RBPS for biodiversity on arable and upland 

grassland systems in England” in the UK (Chaplin et al., 2021), “Protecting 

farmland pollinators” in Ireland (RBPN, 2019) or “Proof of Ecological 

Performance (PEP) and Biodiversity payments” in Switzerland (RBPN, 

2019). In Germany, only one scheme in arable farming is implemented, 

targeting harrier nests (LANUV, 2023), and one focusing on weed 

occurrence was hypothetically tested (Massfeller et al., 2022). However, 

engagement in biodiversity conservation is especially needed in intensive 

crop production areas (Scheper et al., 2023; Stein-Bachinger et al., 2022). 

To fill the two research gaps of 1) the missing evidence for the effects of 

novel technology on PES efficiency and 2) the lack of efficient PES targeting 

biodiversity in intensive arable farming, we adopt Gibbons et al.’s (2011) 

simulation model and apply it on the case of a PES for biodiversity 

conservation in arable farming with weeding robots. We use this model to 

simulate how weed management conditions will likely change, considering 

not only improved monitoring capabilities but also the weeding robots’ 

ability to selectively remove weeds and changes in cost structures. We first 

derive the PES design parameters that are likely to be influenced by weeding 

robots and model the effects on the optimal scheme design for the efficiency 

of both ABS and RBS scheme types. Based on the results of the simulation 

we discuss the arising challenges and options for future scheme design and 

identify research needs. Throughout the study, we assume a risk-neutral 

farmer. As risk is an important feature of PES (Bolton and Dewatripont, 

2004) and European farmers have been found to be rather risk averse (Garcia 

et al., 2024), this is an important aspect we come back to in the discussion. 
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This study sheds light on the transformative potential of weeding robots for 

optimizing PES schemes for biodiversity conservation in arable farming. We 

focus on the provision of food and shelter for insects through weeds as 

targeted biodiversity service, measured through the occurrence of certain 

weeds (in a certain distribution or density). Contrarily to “traditional” 

weeding with tractor-mounted machinery where the action is defined at the 

field level (e.g. to weed mechanically or to spray herbicides), weeding robots 

will be able to remove weeds selectively based on different rationales like 

weed species, weed density, or the competitiveness between weeds and 

crops as tested by Zingsheim and Döring (2024). Due to this selective 

weeding ability, novel management actions can be defined such that the 

desired biodiversity reacts sensitively and in the desired direction. Our 

findings indicate that the difference in efficiency, i.e. biodiversity benefit 

over agency cost, between ABS and RBS vanishes if robots can perform 

biodiversity-sensitive actions. We define biodiversity-sensitive actions 

through the robot’s ability to selectively remove weeds at the individual 

plant level.   

Hence, while robots’ monitoring capability could reduce monitoring costs 

and thereby benefit RBS’ efficiency, we find that the execution of sensitive 

actions through selective weeding might be an even more important feature 

of weeding robots for the relative efficiency of PES. Additionally, based on 

our results we discuss that it is more important for future PES designs to 

define multidimensional biodiversity goals. Our findings have implications 

for future policy design and the development of novel technologies and 

indicate interdisciplinary research needs. Future empirical studies on 

optimal PES design using weeding robots may draw on our insights.  

We proceed by taking an interdisciplinary perspective on how weeding 

robots change weed management, incorporating expertise from ecology 

research and technology development (Section 2). Section 2 serves to 

provide the background information on which we build our modelling 

assumptions and discussion in the following sections. In Section 3, we 

present the model and explain our application to weeding robot use. After 

analyzing the simulation results in Section 3, we discuss policy 

recommendations, options and challenges for future PES design in Section 



Action- or results-based schemes?  187

 

  

4. We conclude in Section 5 by providing implications for future 

interdisciplinary research.  

4.2 Changes in weed management when weeding robots are 

available 

Because crops and weeds compete for resources (Guglielmini et al., 2017; 

Oerke, 2006; Thompson et al., 2019; Zimdahl, 2007), farmers typically face 

a trade-off between yield gain (i.e. the gain in yield compared to no weeding) 

and weed biodiversity when removing weeds (Campiglia et al., 2018). On 

the one hand, the use of herbicides at the field level tends to reduce weeds 

that serve as food and habitat for insects and other animals (Beckmann et al., 

2019; Geiger et al., 2010; Hole et al., 2005; S. Meyer et al., 2013). On the 

other hand, weeds cause the highest yield losses of all pests (Oerke, 2006), 

endangering the production of food and feed for a growing world population 

(Savary et al., 2019; Schneider et al., 2023).  

Currently, farmers are generally able to decide between conventional 

herbicide-based weed management (Bawden et al., 2017), mechanical 

weeding (Ahmadi et al., 2021; BMEL, 2023) and integrated weed 

management (IWM) approaches (Kunz, 2017). In the EU, farmers are 

legally required to consider the guidelines of IWM (European Commission, 

2024). An intensive use of conventional herbicide-based weed management 

usually generates higher yields as more weeds are removed, but it typically 

leads to lower weed biodiversity (Campiglia et al., 2018; Gerhards et al., 

2020; Kunz et al., 2018; Pannacci and Tei, 2014). With mechanical weeding, 

which is primarily used in organic farming or IWM, fewer weeds are usually 

removed, leading to higher weed biodiversity but lower yields (Batáry et al., 

2017; Tscharntke et al., 2021). However, the weed-biodiversity-yield gain 

relationship is highly context-dependent (Colbach et al. 2020) and is largely 

governed by farming intensity (Berquer et al., 2023). Importantly, in each of 

the three approaches, the level of the remaining weeds is to a large part a 

random outcome, resulting primarily from the varying efficiency of each 

working step.  
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Weeding robots are currently used by EU farmers mainly in herbicide-

intensive row crops, such as sugar beets (Duckett et al., 2018). Future 

weeding robots might allow purposeful decisions with respect to the level of 

weeds in the field, thereby reducing the trade-off between yield and 

biodiversity. We follow Merfield (2023) and categorise different levels of 

weeding robots: Weeding robots that remove every plant that is not a crop 

by ‘remembering’ where they had sown, and weeding robots that can 

differentiate between crop and non-crop plants  (e.g. Walter et al. (2018)) 

are referred to as level 2 and 3, respectively. So-called ‘level 4 weeding 

robots’ have two essential abilities that differentiate them from previous 

levels: 1) removing ability: they can remove weeds efficiently and 

selectively using various techniques (laser, mechanical and chemical) 

(Ahmadi et al., 2022), drawing on different types of input information, such 

as the number of weed species, historical yield or soil properties (Zingsheim 

& Döring, 2024) and 2) monitoring ability: they can identify and monitor 

different plant and weed species. While most of the robots that are market-

ready and currently in use are in level 2 or 3, within this study, we assume 

the availability of ‘level 4 weeding robots’, which are currently in the 

prototype stage (Ahmadi et al., 2022; Li et al., 2019).  

The main challenge for implementing biodiversity-aware weeding with 

vision-based systems is the accurate distinction between crops and beneficial 

and harmful weeds, under various conditions. This sophistication must be 

complemented by specially designed, robust hardware. It needs to ensure 

that the system can make quick and accurate decisions and execute precise 

actions, such as targeted weeding, without damaging the crops or the soil. 

Such a system also needs to be economical and user-friendly, as these are 

key factors for adoption by farmers (Rose et al., 2018). Against this 

background, we identify three major changes in weed management when 

“level 4 robots” are used instead of ‘traditional’ weeding done by tractor-

mounted machinery. 

First, “level 4 robots” will be able to selectively remove weeds based on 

species, density, distribution, or other criteria. Thereby they will enable 

accounting for naturally non-uniform weed distributions across the field 

(Borgy et al., 2012) and for varying competitiveness across weed species 
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(Marshall et al., 2003). Because weeds can be detected and removed 

selectively and in a site-specific way where they occur, similar to the 

threshold procedure in IWM (Young, 2018), the level of biodiversity in the 

field can be deliberately set. This can reduce the trade-off between yield and 

biodiversity as shown by Zingsheim and Döring (2024). They tested 

different weeding strategies that robots could execute based on different 

rationales such as weed density, competitiveness between weed and crop or 

by strip-wise weed removal. They found that biodiversity in terms of alpha- 

or gamma-diversity increases by up to 80% while maintaining yield effects. 

For example, if only very crop-damaging weeds are removed while others 

can remain, high yield can still be obtained, while also more biodiversity can 

remain on the field. Thereby, the probability increases that the desired 

biodiversity service, for example in terms of weeds serving as food and 

shelter for insects, occurs on the plot.  

Second, the robots’ monitoring ability will allow to identify and monitor 

crops and weeds more reliably compared to humans (Ahmadi et al., 2021; 

Bawden et al., 2017; Pandey et al., 2021; Wu et al., 2020; Zhang et al., 2022). 

A common performance metric to evaluate object detection of autonomous 

devices is the mean average precision (mAP) which is close to 90% in 

recently developed detection algorithms and steadily increasing (Weyler et 

al., 2024). Given this improved detection performance, not only biodiversity 

and crops but also (non-)compliance with a certain action (in the ABS case) 

could be detected, e.g. robots could detect whether chemical plant protection 

was used or if a certain seed row distance was maintained (Ahmadi et al., 

2021; BMEL, 2023). If the conservation buyer (“the agency”) has access to 

the data collected from participants in the scheme, and if we assume that this 

data remains untampered by the farmers, we can conclude that: 1) the 

detectability of biodiversity indicators as well as of non-compliance with the 

scheme will increase and 2) agency employees will no longer need to visit 

the farm to monitor compliance or biodiversity service occurrence, thereby 

decreasing the costs for the agency. 

As a third effect, the availability of weeding robots could alter the 

distribution of costs associated with weeding. This might be due to changes 

in investment costs, labor and supervision time, efficiency, and resource 
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usage but it is very complex, especially when taking weed-yield dynamics 

into account (Lowenberg-DeBoer, 2019; Lowenberg-DeBoer, Franklin, et 

al., 2021; Shang et al., 2023; Yu et al., 2024). 

4.3 Material and Methods 

Text In this study, we use and extend the theoretical model provided by 

Gibbons et al. (2011) to evaluate the ways in which the availability of 

weeding robots affects preference for RBS or ABS. The model is useful for 

answering our research questions considering the influence of the properties 

of weed management on the provision of biodiversity and scheme efficiency. 

Considering how weeding robots may impact changes in weed management, 

we can elicit how the availability of level-4 robots might change the relative 

preferability of ABS and RBS. The process-based model we consider is 

based on Gibbons et al.’s work (2011) and derived from theory and expert 

knowledge. Thereby it allows to study novel, not yet existing, technologies 

and policy schemes that cannot yet be examined empirically: to date, only a 

few weeding robots are actually adopted by farmers, and there are only a 

few implemented results-based schemes in arable farming. Hence, data on 

this topic are scarce. 

To describe our model, we follow the ODD (Overview, Design concepts, 

Details) protocol for describing individual- and agent-based models (Grimm 

et al., 2006), as updated by Grimm et al. (2020 a; 2020 b). We provide the 

ODD summary in Section 3.1. For a detailed overview of the model, 

including all relevant equations, all parameters and how we extended the 

original model by Gibbons et al. (2011), see the full ODD protocol and 

especially Table 2 in the supplementary material.  

Based on the diagnosed changes in weed management arising through the 

availability of weeding robots in Section 2, in the following, we first present 

the overall set-up of the model and second identify the relevant parameters 

in the model to reflect the identified changes from Section 2. As a third step, 

we define plausible directions and ranges of how each parameter might be 

affected by weeding robots and, fourth, use those ranges to simulate and 

compare the relative preferability of RBS and ABS when weeding robots are 
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available. In Table 4.1 we present the outcome of steps 1–3. As there are 

only a few results-based schemes in arable farming (yet), the availability of 

empirical information is very limited. However, whenever possible we base 

our assumptions for step 3) on empirical evidence. 

4.3.1 The model 

The simulation model initially developed by Gibbons et al. (2011) is 

designed to evaluate Payments for Ecosystem Services (PES) aimed at 

biodiversity conservation. The overall purpose of the model is to illustrate 

how the properties of the targeted biodiversity service, of the management 

action, and the initial distribution of the biodiversity service in the landscape 

influence the provision of the targeted biodiversity service. The model offers 

a comparative theoretical framework to contrast two PES types: action-

based schemes (ABS), where farmers are paid for specific management 

actions, and results-based schemes (RBS), which reward observed 

biodiversity outcomes. 

The purpose of our study is to evaluate the effect of robotic weeding 

availability on scheme efficiency (conservation benefit per agency cost). 

Therefore, we extend the model by considering additional properties such as 

the agency’s monitoring costs, the farmers’ costs of executing a certain 

management action, as well as properties of the technology. In contrast to 

the original model, we consider the plot level to avoid too strong 

assumptions on technology use on the landscape level. Concerning the 

temporal resolution, the model depicts one point in time (one production 

period) on one plot. It is set up in R programming language. Model 

initialization does not involve empirical data. The whole model construction 

relies on theoretical assumptions and expert knowledge.  

To consider our model realistic enough for its purpose, we use patterns of 

biodiversity service provision and scheme efficiency (see Figures 4.2, 4.3, 

and 4.4a-c in Section 4). The model includes five main entities: (1) the 

targeted biodiversity service, (2) management actions, (3) the plot, (4) 

human actors, specifically the farmer and the agency, and (5) the technology 
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(weeding robot). The state variables characterizing these entities are 

provided in Table 1 in the ODD protocol. 

The targeted biodiversity service represents the goal of the PES, constructed 

as a binary outcome indicating the presence or absence of a specific service. 

In the present study, we focus on the provision of food and habitat for insects 

through weeds as targeted biodiversity service. The biodiversity service is 

assumed to occur if a specific desired biodiversity can be found on the plot. 

This can be the presence of certain (indicator) weeds or reaching pre-defined 

thresholds of species abundance, density, and distribution.  

Figure 4.1 provides an overview of the model processes. The main idea is, 

that the probability that the desired biodiversity and thereby the biodiversity 

service occurs increases through management actions defined within PES. 

Management actions can vary based on the PES type, with farmers either 

following prescribed actions (ABS) or choosing actions to optimize 

biodiversity outcomes (RBS). Each plot has an initial probability of 

biodiversity service occurrence before PES intervention, and each 

management action comes with a certain sensitivity describing how the 

desired biodiversity reacts to the action (for more details on this parameter, 

see Section 7.1. in the ODD protocol including a concrete example).  

Figure 4.1: Simplified Model Process 
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In the model, the farmer seeks to maximize income through scheme 

participation, while the agency aims to achieve the highest biodiversity gain 

at the lowest cost. In ABS, the agency specifies actions and the farmer is 

compensated for executing them at the required level. The farmer could also 

voluntarily go beyond the minimum standards without receiving additional 

payment. Examples of existing plot-level ABS in Germany in arable farming 

that aim at biodiversity conservation are the prohibition of using chemical 

plant protection products or an increase in the seed distance 

(Landwirtschaftskammer, 2022).  

In RBS, however, farmers have more flexibility in what actions to take, as 

payments are based on the achieved biodiversity outcome. For example, 

compared to the aforementioned ABS of no chemical application, farmers 

could decide to restrict chemical application to only certain areas within a 

plot (lower level) or could additionally adjust practices like seed distance to 

impact the biodiversity outcome positively (higher level). 

Two key decision-making dynamics drive the model: 1) Farmers decide to 

join PES schemes based on whether they expect to gain income from it, 

factoring in management costs, payments, and potential penalties for non-

compliance. The payment is defined as a multiple of the management costs.‡ 

The agency, meanwhile, optimizes its budget by balancing expenses on 

payments and monitoring costs that strongly depend on how easily desired 

biodiversity and compliance can be detected.  

The model’s outputs—gain in probability of biodiversity occurrence 

(“biodiversity gain”) and associated costs—provide insights into scheme 

efficiency. Scheme efficiency is quantified as the biodiversity gain per unit 

of agency expenditure, and used to compare ABS and RBS. Note that the 

model does not consider the complexity of ecological and agricultural 

processes of weed-yield dynamics, as this is not within the scope of our 

study, but was, for example, done by Yu et al. (2024). 

 

‡ For our analysis, we fix the payment at a certain level in order to reduce the dimensions considered 

in the analysis. We conduct a sensitivity analysis considering a range of values for the payment as 

described in the Appendix A. 
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4.3.2 Linking changes in weed management to model parameters  

Based on the model description in Section 3.1 and the diagnosed impacts of 

weeding robots on the conditions of weed management in Section 2, we 

identified the model parameters that are relevant to reflecting these 

conditions. We summarize the parameters that we assume to be impacted by 

robots in Table 4.1. Additionally, the table summarizes the considered 

parameter ranges and the empirical basis for these ranges. In the following 

subsections, we go through each of the identified changes and discuss the 

derived parameter ranges in detail.  

Removing ability 

To reflect the robot’s selective weed removal ability in the model, we turn 

to parameter a, the sensitivity of the biodiversity to the action. In the model, 

the parameter describes how the desired biodiversity reacts to the 

management action and is considered as a property of the management 

action. 

 It is based on the assumption that biodiversity service provision, as a result 

of an action, is to some degree random and out of the control of the farmer 

or the agency. Smart weeding robots with selective weed removal abilities 

allow to deliberately set the level of biodiversity service provision which 

reflects an increase in the sensitivity of biodiversity to action. For an 

illustrative explanation of this parameter by means of existing schemes in 

Germany, please see Section 7.1 in the ODD protocol. 

Based on the empirical evidence on the robots’ removing abilities as 

described in Section 2, and following the original model, we assume a range 

of values from zero to 10, whereby high values reflect the use of robotic 

weeding. 

Monitoring ability  

In order to reflect the monitoring ability of novel weeding robots in the 

model, we consider three parameters: 1) detectability of biodiversity and of 
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non-compliance, 2) agency monitoring costs, and 3) probability of farms 

being visited for non-compliance monitoring. 

Given the empirical evidence on weeding robots’ object detection 

performance in Section 2, we assume that through weeding robots, the 

detectability will increase which is captured in the model parameters dc, 

detectability of non-compliance with ABS rules and db, detectability of 

biodiversity. Similar to the original model, we assume a range of values for 

this parameter from zero to one, where high values reflect the use of robotic 

weeding.  

Additionally, we assume that the availability of weeding robots will reduce 

the agency’s monitoring costs (per hour). The model is set up such that the 

agency aims for a probability of detection of either biodiversity for RBS or 

non-compliance for ABS of 95%. The time needed to reach this value and 

the resulting costs depend strongly on how easily non-compliance and 

desired biodiversity can be detected and how costly it is to monitor for 1h. 

Following Schöttker et al. (2023), who evaluated the cost difference between 

human and drone-based monitoring for RBS, we conjecture a decrease in 

the pure monitoring costs. To reflect this change in the model, we consider 

a range of values for this parameter from zero to double the amount as in the 

original model. 

Lastly, we assume that through the robot’s monitoring ability the probability 

of farms (needed to) being visited for non-compliance monitoring by the 

agency changes. While in the original model set-up farms participating in an 

ABS need to be visited by agency employees in order to monitor their 

compliance with the scheme rules, we assume that under robotic weeding, 

this can be done by the robot. Therefore, we assume a range of values for 

this parameter whereby a value of “1” would reflect the case of robotic 

weeding as every farm’s scheme compliance will be monitored but no longer 

through agency visits but by the robot.  

Management costs 

In order to reflect changes in the management costs associated with robotic 

weeding, we assume a broad range of values for parameter CL, the cost of 
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setting the action to a certain level. However, the change can be in both 

directions and depends on various factors outside the model scope, such as 

production conditions, weed-yield dynamics, and farm characteristics 

(Shang et al. 2023; Yu et al. 2024). Therefore, we assume a range of values 

for this parameter spanning from zero to double the amount as assumed by 

Gibbons et al. (2011). 

Table 4.1: Parameters reflecting assumptions on changes through weeding 

robots 

Changes 

through 

robot 

(Sect. 2) 

Model 

parameters to 

reflect change 

(Sect. 3.2) 

 Assume

d value 

ranges 

Assumed 

direction 

through 

robot 

Empirical 

foundation  

Selective 

weed 

removal 

Sensitivity of 

biodiversity to 

action (a) 

 1/3–10 

by 1/3 

increase Biodiversity gain and 

trade-off-reduction 

through weeding 

strategies at plant 

level of up to 80%. 

(Zingsheim & 

Döring, 2024) 

Monitoring Detectability of 

biodiversity (db) 

and of non-

compliance (dc) 

 0.1–1 by 

0.1 

increase Improved monitoring 

abilities, e.g. mean 

average precision 

(mAP) as 

performance metric 

for object detection 

close to 90% 

(Salazar-Gomez et 

al., 2021; Weyler et 

al., 2024) 

 Cost of agency 

monitoring 

(monetary 

unit/time unit) 

(Ch) 

 220 by 2 decrease Difference in pure 

monitoring costs of 

UAV vs. human of 

~1000€ per ha used 

as proxy (Schöttker 

et al., 2023) 

 Only relevant to 

ABS 

    

 Probability of 

an agency 

visiting a 

farmer for 

non-

compliance 

 0.1–1 by 

0.2 

increase§  

 

Improved monitoring 

abilities, e.g. mean 

average precision 

(mAP) as 

performance metric 

for object detection 

close to 90% 

(Salazar-Gomez et 

 

§ If Pv = 1, this parameter becomes redundant as there is no longer a difference in monitoring costs 

between ABS and RBS. 
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monitoring 

(Pv) 

al., 2021; Weyler et 

al., 2024) 

Manageme

nt costs 

Cost to farmer of 

setting the level 

of action to L 

(monetary unit) 

(CL) 

 25–200 

by 25 

not clear, in- 

or decrease 

Costs of robotic 

weed management 

depend on site- 

production and 

weed-dynamic 

specific 

characteristics 

(Lowenberg-DeBoer, 

Franklin, et al., 2021; 

Lowenberg-DeBoer 

et al., 2020; Shang et 

al., 2023; Yu et al., 

2024) 

4.4  Results and Discussion 

4.4.1 Biodiversity occurrence and gain 

Under ABS, farmers have to carry out the action at a predefined level, 

modelled as L = 1. In contrast under RBS, the farmer can flexibly decide on 

the optimal level that maximizes income. As shown in Figure 4.2, the 

probability that biodiversity occurs given scheme participation (red = low, 

purple = high) varies under ABS. It depends on the sensitivity of biodiversity 

to the action, a (different columns) and the probability that biodiversity 

already occurs in the field, P0 (x-axis), while the level of action, L (y-axis) 

always remains at 1. Under RBS, the farmer can adjust the level of action, L 

and thereby balance low levels of the sensitivity of the action, a, and the low 

probability that biodiversity already occurs on the field, P0, to maximize the 

probability that biodiversity occurs.  

For both scheme types, the maximum probability of biodiversity occurrence 

of 1 is reached if the sensitivity is high (right column of Figure 4.2). In this 

scenario, RBS farmers perform the action at the minimal level needed to 

produce biodiversity, which is close to 0, given that the sensitivity is high. 

In reality, this action could, for example, be the use of a weeding robot that 

removes weeds based on the given indicators of the RBS (weed species, 

density and distribution), ensuring that the desired biodiversity occurs. The 

probability that biodiversity is already occurrent before scheme participation 

(x-axis) plays a more pronounced role if sensitivity is lower (left and middle 
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columns of Figure 4.2). Due to the diminishing marginal returns to action, 

for RBS farmers, it might be profitable to execute the action at a level <1, 

given that P0 is high, to reduce costs. The probability that biodiversity occurs 

might therefore be lower for RBS than ABS if the initial probability of 

biodiversity occurrence is high, as ABS farmers execute the action at L = 1 

anyway.  

Figure 4.2: Probability that biodiversity service occurs given scheme 

participation by level of action (y-axis), three different levels of 

sensitivity of action (columns) and probability that the 

biodiversity service occurs before scheme participation (x-axis) 

for both scheme types.  

Note: The probability that biodiversity service occurs given scheme participation, PL, is depicted on 

a color scale, whereby purple indicates high levels for PL (i.e. where PL is close to 1) and red indicates 

low levels (i.e. PL is close to 0). 

The resulting gain in biodiversity (G) is defined as the difference between 

the probability of biodiversity occurrence before and after scheme 

participation (PL – P0). It is therefore higher for RBS if the initial probability 

is low, slightly higher for ABS if the initial probability is high and similar 

for both scheme types with increasing sensitivity (Figure 4.3). For RBS, the 

full potential of biodiversity gain is exploited once the sensitivity to action 

is greater than 1.333. Recall that, by definition, the initial probability of 
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biodiversity occurrence on the plot (P0) and biodiversity gain (G) always 

sums up to 1, which implies that G is bounded, G < 1-P0. In the case of ABS, 

farmers cannot balance the level of action and the sensitivity of the action. 

Hence, the biodiversity gain strongly depends on the initial biodiversity at 

the plot level, especially where sensitivity is low. With increasing sensitivity 

and increasing probability that biodiversity is already present before scheme 

participation, the difference in biodiversity gain between ABS and RBS 

vanishes (lower part of Figure 4.3), as both types of schemes exploit the full 

potential to increase the probability with which biodiversity occurs.  

Figure 4.3: Biodiversity gain per scheme type (first row ABS, second row RBS) 

and difference between types (third row) by probability of 

biodiversity service occurring before scheme participation (x-

axis) and level of sensitivity to action (y-axis).  

Note: The gain in biodiversity, G, is depicted on a color scale, whereby purple indicates high levels 

(i.e. G is close to 1) red low levels (i.e. G is close to 0). When comparing ABS and RBS (third row), 

blue areas show where ABS are preferable (biodiversity gain is higher), red areas show where RBS 

are preferable and yellow areas show that the difference is (close to) 0. We added a grey arrow that 

indicates the direction of the effect when a weeding robot is used (see also the direction of effect in 

column 4 of Table 4.1). 

From Figures 4.2 and 4.3, we conclude that ABS can produce higher 

biodiversity gains with increasing sensitivity to action. This is because, 

contrary to RBS, farmers cannot adjust the level of executing the action and 
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balance out low sensitivity levels with higher action levels. Overall, this 

leads to an increase in and approximation of the biodiversity gains for both 

scheme types.  

4.4.2 Difference in efficiency between ABS and RBS 

To determine which scheme is preferable under various conditions, we now 

look at the difference in efficiency, that is, the biodiversity gain per agency 

expenditure. The gain in biodiversity depends on the sensitivity, the level of 

the action, and the initial probability for biodiversity occurrence (Figures 4.2 

and 4.3). In contrast, the expenditures are composed of two parts: first, the 

payment to the farmer (DL and DP) and second, the costs for monitoring 

depending on the detectability, d and the resulting time, t, needed to detect 

either biodiversity or non-compliance at a sufficiently high rate (i.e. 0.95). 

For ABS, the payment is the same, independent of the gain in biodiversity. 

For RBS, the agency pays the farmer according to the probability that the 

benefit actually occurs. For an overview of expenditures by scheme type for 

selected parameter values, see Figure 4.10 and A 4.5 in the Appendix. As 

the two parameters a and d describe the characteristics of the weeding robot, 

while CL, Ch and Pv refer to management and scheme conditions, we 

maintain three different levels for each of the former while varying those of 

the latter. 

In Figure 4.4, we assume that the agency monitoring costs per time unit, Ch, 

vary between 2 and 20 monetary units. As noted above, the level of Ch 

mainly plays a role in efficiency, where monitoring makes up a large 

proportion of the agency expenditures (i.e., when detectability is low (left 

column)). Assuming that a weeding robot is available, we might end up in 

the lower-right corner, where the efficiency of both scheme types is similar, 

independent of the levels of Ch and P0.  
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Figure 4.4: Relative differences in efficiency by sensitivity to action a (rows), 

detectability d (columns), probability of biodiversity service 

occurring on patch before scheme participation P0 (x-axis) and 

agency monitoring costs Ch (y-axis).  

Note: Blue areas show where ABS are preferable (efficiency is higher), red areas where RBS are 

preferable and yellow areas where the difference is (close to) 0. Grey arrows indicate the direction 

of the effect when a weeding robot is used (see also the direction of effect in column 4 of Table 4.1). 

Next, we consider a range of values for the probability of farm visits Pv 

(Figure 4.5). An increasing probability of farms being visited for measuring 

non-compliance means that the difference in agency expenditures for 

monitoring between ABS and RBS is reduced. At a probability of 1, all 

farms participating in ABS are visited, which is the same extent as that of 

farms participating in RBS. We assume that, if a weeding robot does the 

monitoring, farms no longer need to be visited (which we reflect by 

assuming a low level of agency monitoring costs per time unit, Ch). 

Compliance would be monitored by the robot for all ABS-participating 

farmers (i.e. Pv = 1). Hence, there is no longer a difference between ABS 

and RBS with respect to monitoring costs. As expected, RBS gain in 

efficiency if ABS farms are visited with a higher probability, especially 

where detectability is low. In reality, the probabilities of farm visits ≤ 0.5 
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might increase non-compliance and are thus unrealistic; however, for 

completeness, we depict them here. 

Figure 4.5: Relative difference in efficiency by sensitivity to action a (rows), 

detectability d (columns), probability of biodiversity service 

occurring on patch before scheme participation P0 (x-axis) and 

probability of farm visits for monitoring non-compliance Pv (y-

axis).  

Note: Blue areas show where ABS are preferable (efficiency is higher), red areas where RBS are 

preferable and yellow areas show where the difference is (close to) 0. Grey arrows indicate the 

direction of the effect when a weeding robot is used (see also the direction of effect in column 4 of 

Table 4.1). 

Finally, we turn to the cost of executing the action at a certain level, CL 

(Figure 4.6). By construction, payments are proportional to the action costs 

and this parameter varies the proportion of agency expenditures that are 

spent on payments. With increasing action costs, differences in efficiency 

become smaller. This is because, for both scheme types, the costs rise to the 

same extent, meaning that with higher action costs, the proportion of the 

agency budget spent on payments increases and efficiency decreases. For 

low levels of action costs, the proportion of expenditures for monitoring 

drives the resulting efficiency, which explains why the difference in 

efficiency is more pronounced if detectability is high.  
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Figure 4.6: Relative difference in efficiency by sensitivity to action a (rows), 

detectability d (columns), probability of biodiversity service 

occurring on patch before scheme participation P0 (x-axis) and 

costs of setting the action CL (y-axis).  

Note: Blue areas show where ABS are preferable (efficiency is higher), red areas where RBS are 

preferable and yellow areas show that the difference is (close to) 0. Grey arrows indicate the direction 

of the effect when a weeding robot is used (see also the direction of effect in column 4 of Table 4.1). 

With increasing sensitivity to action, the difference in efficiency between 

ABS and RBS vanishes  

We observe in all three panels of Figure 4.4, 4.5, and 4.6 that with increasing 

sensitivity, the difference in efficiency vanishes, independent of the other 

parameters that are considered. This is mainly the result of the full 

exploitation of biodiversity gains once the sensitivity is > 1.3̅ (Figures 4.2 

and 4.3). Furthermore, the proportion of the agency budget spent on 

payments is high for both scheme types; for ABS, the payment is the same 

in any case, while in RBS, farmers are rewarded for delivering the full 

potential of the biodiversity benefit at a low level, hence lowering costs (see 

Figure 4.2, right column).  
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This finding challenges the current narrative of weeding robots as increasing 

the preferability of RBS due to their monitoring abilities (Besson et al., 

2022; Finger, 2023). Our results show that ABS can also gain in efficiency, 

given the assumption that the weeding robots’ removal abilities allow them 

to execute actions to which biodiversity is more sensitive, which calls for a 

discussion of the criticism of ABS as inefficient (Pe’er et al., 2020). 

To translate this rather theoretical finding into concrete conservation efforts, 

we consider the results of Zingsheim and Döring (2024), who provide an 

idea of how such actions in terms of weeding strategies executed by a 

weeding robot could look. They explore the effects of different weeding 

strategies on several biodiversity parameters and yield. The authors find that 

the increase in biodiversity is the highest and the trade-off between yield and 

biodiversity is minimized, when weeding is based on (i) the number of 

species per area, (ii) thresholds for weed quantity (weed cover per species), 

and (iii) competitiveness of the weed with the crop based on Hunt et al. 

(2004)**. 

As an implication for future policy design, we conclude that not only the 

difference in efficiency between ABS and RBS vanishes, but also the 

difference in the overall design decreases. Given the weeding robot’s 

removing and monitoring ability, future ABS could be set up such that 

farmers need to apply a certain weeding strategy on a plot (e.g., only weed 

every second row or only remove the most competitive weeds). Farmers 

could, ideally, simply download the software settings from the authorities to 

set up a certain strategy to comply with an ABS. Similarly, farmers could 

opt for these strategies as part of RBS and decide individually which weeds 

to remove or keep to reach the predefined target at the lowest cost. However, 

due to a lack of research, it remains difficult to foresee how specific these 

 

** We hereby refer to information requirements for different weeding scenarios executed by weeding 

robots tested by Zingsheim and Döring (2024). Within the CSR strategy as developed by Hunt at al. 

(2004), weeds are categorized as strong (C-coordinate of 1) or weak (C-coordinate of 0) competitors. 

The underlying assumption is, that weeds which have a less competitive relation with crops can 

remain on the field, while the more competitive ones needs to be removed. In the resulting tested 

scenario “(9) Threshold “, uncompetitive weed species with a C-coordinate of 0 were left untreated. 
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findings might be for particular weed communities or at different spatial 

scales.  

PES efficiency depends on the appropriately defined biodiversity indicators 

The second pattern that occurs across the panels of Figure 4.4, 4.5 and 4.6 is 

the mediating role for the detectability of non-compliance (for ABS) and 

biodiversity (RBS), d, if sensitivity is ≤1. As the proportion of agency budget 

spent on monitoring depends strongly on detectability and the time needed 

to reach a detectability of 95%, costs are lower, and hence efficiency is 

higher, if detectability is high (right column).  

However, while from a technical perspective, future weeding robots might 

be able to increase the detectability of biodiversity, the effect on scheme 

efficiency strongly depends on the actual biodiversity indicators chosen, 

which in turn depends on the scheme’s goal, such as conservation of rare 

species vs. ecological resilience vs. biological pest control (Duelli and 

Obrist, 2003).  

Within our model, we construct the indicator to be binary either in terms of 

whether species are present or not or in terms of whether a threshold on 

species abundance, distribution, and/or density is met or not. However, in 

reality, more complex indicator structures will be needed, taking also into 

account the biodiversity value of certain species, such as orchids in grassland 

as high-value species. 

For either scheme type, it is crucial to define, from an ecological/biodiversity 

viewpoint, the appropriate actions (i.e., weeding strategies) and the 

appropriate results (i.e., biodiversity indicators) that could be considered 

within PES.  

For RBS, it will no longer be enough to only define indicator species, but 

multidimensional indicators will be needed to prevent robots from 

outsmarting current RBS designs. If only a certain threshold for the number 

of species is given to receive a payment, robots might remove all but one 

individual of each indicator species. Thereby, the requirement is fulfilled at 

a very minimal level but an undesired outcome of a very low density of very 
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homogeneously distributed weeds with only one individual per species is 

produced. Therefore, multidimensional composite indicators should also 

contain information on the desired density and distribution of weeds, as 

tested by Chaplin et al. (2021) and Šumrada et al. (2022), where a minimum 

weed density for the indicator species must be reached (for every x sections 

of a field) to receive the payment. However, while weeding robots might 

allow the inclusion of more sophisticated indicators, the actual choice of 

indicator species, their desired density, and their distribution would remain 

a major challenge for biodiversity research (Ruas et al., 2021; Zabel & Roe, 

2009), and comes along with the problem of making biodiversity measurable 

in monetary terms (Bartkowski et al., 2015; Farnsworth et al., 2015).  

For ABS, actions must be defined such that robots can easily monitor 

compliance. One example could be the strip wise removal of weeds in crops. 

Zingsheim and Döring (2024) show that this procedure can increase the 

gamma diversity of weeds at the field level. Hence, farmers could be 

rewarded for leaving certain strips or rows un-weeded, similar to a 

hypothetical (hybrid) scheme tested by Massfeller et al. (2022), an action 

that could be easily detected by the robot (Ahmadi et al., 2021). 

Hence, because robots make it easier to monitor specific aspects of 

biodiversity and enable the definition of more precise actions, the actual 

choice and monetary valuation of indicators become more important. 

Defining these indicators and biodiversity aims clearly remains a task for 

future biodiversity research.  

4.4.3 Options arising from data on biodiversity status and gain 

Weeding robots might also open new options for designing novel policy 

schemes. Particularly, the possibility for the agency to have access to reliable 

data on biodiversity that existed on a plot before farmers joined a scheme, 

as well as data on the actual gains in biodiversity achieved through 

participation in the scheme (obtained via a robot) offer new possibilities. 

First, we suppose that the status quo for biodiversity could be taken better 

into account for payments within RBS. Similar to Gibbons et al. (2011), we 

observe the importance of the probability of the biodiversity service being 
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present before scheme participation for scheme efficiency. Data on 

biodiversity status and gain could be used to pay farmers in relation to 

capacity or proportional to the actual change (McDonald et al., 2018; D. 

Wang et al., 2023; Zabel & Roe, 2009). Such novel, probably more efficient, 

payment approaches could be combined with payments based on modelled 

results, as suggested by Bartkowski et al. (2021).  

Second, such novel payment mechanisms could reduce farmers’ (perceived) 

risk of not reaching the target, which currently constitutes a major barrier to 

adoption of RBS (Burton & Schwarz, 2013). This is because farmers would 

receive money for the (proportional) change considering the status quo and 

the capacity, or based on modelled results and no longer for either reaching 

or not reaching a pre-defined target that is the same for all farmers regardless 

of natural conditions. In particular, in view of increasing environmental risk 

through extreme weather events (Birthisel et al., 2021), novel payment 

structures must be further studied. We additionally expect that the risk of the 

biodiversity indicators not being detected, even when present, decreases 

through the increased detection ability of the weeding robot.  

A third option concerns farmers’ perceptions of biodiversity and scheme 

effects. Biodiversity conservation differs from other pro-environmental 

behaviors because measuring and perceiving biodiversity is difficult (Kidd 

et al., 2019; Kleijn et al., 2019). Furthermore, the environmental effects of 

weed management are hard to predict (Wilson et al., 2009). It has been noted 

that farmers who perceive positive environmental benefits from pesticide-

free weeding tend to adopt this type of production (Möhring and Finger, 

2022). Hence, it might prove relevant if weeding robots could communicate 

the measured biodiversity levels directly to the farmer. Therefore, not only 

might the perceived complexity of weed management effects decrease, but 

scheme acceptance could also increase (Moss, 2019; Wilson et al., 2009; 

Zwickle et al., 2014). In addition, these measured results could be 

communicated to the public or to other farmers as a form of signalling 

environmental engagement. This might be particularly relevant as social 

norms have been found to drive farmers’ weed management decisions 

(Bakker et al., 2021; Burton & Wilson, 2006; Dentzman & Jussaume, 2017; 

Möhring et al., 2020).  
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4.4.4 Recommendations for technology development 

From our findings, we derive recommendations for further technology 

development. We conclude that, besides focusing on weed removal 

efficiency (Merfield, 2023), technology development should also focus on 

the robots’ other abilities that have been identified as crucial for scheme 

efficiency: 1) the reliable differentiation between various plant species 

(crops and weeds) in various growth stages and conditions, 2) the detection 

of compliance with ABS rules and 3) the ability to execute biodiversity-

sensitive actions that allow selective removal of weeds, which should be 

closely linked to research on multidimensional indicators. Ideally, in the 

future, farmers would be able to simply download potential weeding 

strategies as ABS, directly from the agency to the robot.  

Finally, throughout our study, we assume that in the future, data will be 

easily transferrable from robots to the agency (and back). This would allow 

for a decrease in transaction and monitoring costs and opens up possibilities 

to use the obtained data. However, the feasibility needs to be examined from 

a technical as well as a behavioral/data-protection perspective. For instance, 

farmers seem to be rather skeptical towards a 100% monitoring rate through 

novel technologies (Villanueva et al., 2024). 

4.5 Conclusion 

We find that the usage of weeding robots affects the optimal design for a 

payment for ecosystem services aiming at biodiversity conservation in 

arable farming in two ways. First, RBS gain efficiency through the weeding 

robots’ monitoring ability. Second, ABS gain efficiency through weeding 

robots’ ability to execute plant-individual actions to which the biodiversity 

might react more sensitively. We find these two effects to jointly eliminate 

the differences in efficiency between the two scheme types if detectability 

is high and biodiversity-sensitive actions can be performed. Thus, our results 

challenge the common belief that novel robots are mainly beneficial for RBS 

schemes. The monitoring ability of weeding robots has been conceptually 

considered in the literature, but we are the first to consider the potential 



Action- or results-based schemes?  209

 

  

effects of the weeding robot’s selective removal ability on optimal PES 

design as well. 

The main challenge for future policy design relates to the increased need for 

a clear definition of the desired biodiversity for both types of schemes. For 

ABS, appropriate actions with a high sensitivity need to be defined, whereas, 

for RBS, clear multi-dimensional indicators are necessary. The development 

of these actions and indicators needs to be supported by ecological research 

and carried out in close cooperation with technological development. 

However, defining these targets is challenging, and closing this research gap 

is a requirement for effective policymaking.  

Our study assumes risk-neutral farmers and agencies. Future research could 

study how optimal robot-based PES designs would change under different 

risk preferences. Further, future research could investigate the options for 

novel payment schemes based on the obtained data on biodiversity. This 

might allow the inclusion of landscape considerations if payments depend 

on other farmers’ performance in the same area (McDonald et al., 2018). 

Further, we do not include any social interactions in the model, although 

they influence farmers’ decision-making. Future applications could build 

upon this study and include social aspects, especially with regard to schemes 

targeted at landscape scale, such as collaboration schemes (Schaub et al., 

2023; Villamayor-Tomas et al., 2021). 

Finally, we conclude that, by contrast to current narratives, the availability 

of weeding robots will not necessarily benefit only RBS efficiency. Given 

the option for more sensitive actions carried out by weeding robots, ABS 

can also remain a valuable instrument in the policy scheme toolbox. 
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4.7 Appendix 

4.7.1 A. Sensitivity Analysis of parameter x 

We conduct a sensitivity analysis for the parameter x, that describes the 

multiple of the costs paid to the farmer as payment by the agency. For a 

detailed examination of the optimal level of x see also Figure S3 in the 

supplementary material in Gibbons et al. (2011).  

While we assume a fixed level for x of 10 for the analysis in the main paper, 

we here explore how for different levels of x the probability of biodiversity 

service occurrence (Figure 4.7), the gain in biodiversity (Figure 4.8) and the 

difference in efficiency between scheme types (Figure 4.9) vary.  

As can be seen in Figure 4.7, the probability of biodiversity service 

occurring under scheme participation remains the same for ABS for different 

levels of x as farmers do not change their level of action. Contrarily, for 

RBS, the level of x makes a difference in the probability of biodiversity 

service provision, as for higher levels of x, farmers are willing to increase 

their levels of action while for lower levels of x, they decrease it. For low 

levels of sensitivity to action, a, (left column), ABS can increase the 

probability of biodiversity service occurrence more as farmers execute the 

action still at level 1. With increasing levels of sensitivity to action (middle 

and right column) and increasing payment (lower rows), RBS exhibit higher 

probabilities of biodiversity service occurrence. The same phenomenon can 

be observed in Figure 4.8.  Here also, the role of the initial biodiversity 

service occurrence on the plot is emphasized. 

In Figure 4.9, we compare the difference in efficiency given different levels 

of x and selected levels of Ch, Pv, and CL. The pattern remains the same as 

in Figures A 4.1 and A 4.2, but at different intensities depending on the level 

of the other variables influences scheme efficiency. 

We conclude that given restricted agency budgets and, hence, rather low 

payments, the sensitivity of the action has to be carefully considered when 

deciding on whether to offer farmers ABS or RBS. Overall, RBS might 

prove more efficient, but for low payments and low sensitivity, farmers 
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might execute actions at very low levels, thereby not leading to the desired 

increase in biodiversity service occurrence. 

Figure 4.7: Probability of biodiversity occurring under scheme participation 

for different levels of x 
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Figure 4.8: Gain in biodiversity and difference between scheme types for 

different levels of x 
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Figure 4.9: Difference in efficiency for different levels of x, Pv, Ch and CL 
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Figure 4.10: Agency expenditures for both scheme types by selected values for 

all parameters 

 Figure 4.11: Difference in efficiency by parameters related to monitoring costs 

(i.e. Ch, Pv and d).  

Note that on the y-axis we depict two parameters: Pv and Ch. For each selected value of Pv (0.2, 0.4, 

0.6, 0.8, 1) three different values for Ch are assumed (2,10,20) 


