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Introduction

This dissertation explores strategic interactions in economic models that involve bar-
gaining, auctions, and payment systems, using a game-theoretic approach. Each
chapter focuses on a different context where asymmetric information, strategic be-
havior, and equilibrium dynamics play a crucial role in shaping outcomes.

Chapter 1 investigates the role of second-order beliefs in a reputational bargain-
ing model involving two agents, A and B. Both agents can be either irrational (re-
fusing to concede and sticking to their initial offer) or rational. B can take one of
two rational forms: omniscient, who is certain of A’s rationality, or ignorant, who is
uncertain. In typical reputational bargaining, agents make an offer at the beginning
and adhere to it throughout the negotiation. However, we allow B to propose a ’fair’
50-50 split of the surplus, which reveals B’s rationality and could serve as a potential
signal for the omniscient type. Using a hybrid discrete-continuous time framework
proposed by Abreu and Pearce (2007), we examine how reputation effects can arise
even when one agent (omniscient) is fully aware of the other’s true nature and de-
cides whether to reveal or withhold this information. Our analysis reveals multiple
equilibria, including scenarios where no fair offers are made, as rational players
strategically avoid disclosing their rationality to preserve their advantage. If B’s ir-
rational demand exceeds a fair division of the surplus, this scenario is the unique
equilibrium. Conversely, when the demand is less than 50%, an equilibrium with a
fair offer can occur. Every equilibrium of this type is characterized by a period t in
which the fair deal is offered with positive probability exclusively at t.

In Chapter 2 we analyze a model of competing sealed-bid first-price and second-
price auctions where bidders have unit demand and can bid on multiple auctions si-
multaneously. We show that there is no symmetric pure equilibrium with strategies
that are increasing in the lowest type, unlike in standard auction games. However,
for a two-player game a symmetric mixed-strategy equilibrium exists, and bidders
place bids on all available auctions with probability one. This holds true for any
mixed equilibrium and for any number of bidders. We then solve the case of two
auctions and two bidders. Analyzing the case of binary type space, we are able
to identify mixed strategy equilibria and analyze the consequences of discrete bid
spaces.
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Chapter 3 investigates the acceptance and usage of card payments, as well as the
transactions’ demand for cash through a game-theoretic model. Buyers can search
for shops that accept cards, creating competition among merchants: even though
card payments are costly because of fees, sellers might be willing to accept them
to attract more customers. The economy features no-acceptance and full-acceptance
equilibria, as well as imperfect acceptance ones that resemble the prevailing situation
in most countries. After studying the existence, uniqueness, and stability properties
of our equilibria, we analyze how the equilibrium responds to changes in search
frictions, consumers’ tastes, and the opportunity cost of holding cash. We bring the
model to the data by solving an augmented version of the problem which features
a dynamic cash management problem for buyers, and we calibrate it using data
from ECB payment diaries. We use our calibrated model to compare the partial
and general equilibrium implications of a policy that makes card payments cheaper
for buyers, showing that when taking into account the optimal response by sellers,
such policies may generate unintended consequences and lower card usage in equi-
librium.

References

Abreu, D., and D. Pearce. 2007. “Bargaining, Reputation, and Equilibrium Selec-
tion in Repeated Games with Contracts.” Econometrica 75: 653–710. [1]
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Chapter 1

Reputational Bargaining with an
Omniscient Type

1.1 Introduction

When two agents negotiate over the division of some surplus, they may each attempt
to convince the other that they are a tough party to bargain with, refusing to accept
anything less than their demands. In other words, they try to build a reputation
for being firm. As noted by Milgrom and Roberts (1982), for reputation effects to
emerge, it is not necessary for one agent to be uncertain about the nature of their
opponent. In fact, it is enough for the opponent to believe that they are building a
reputation.

Consider two agents, A (she) and B (he), negotiating over a surplus. Suppose
that B is certain, based on information gathered prior to the negotiation, that A
is not as tough as she appears. If A is unsure about the information B possesses or
what he actually believes, she may still attempt to build a reputation by delaying the
agreement. Moreover, would B attempt to convince A that he is omniscient, even if
doing so would expose his rationality?

In this first chapter, we not only study the reputation effects that arise from
second-order beliefs, but also examine the incentives for a player, who is certain
of the other’s rationality, to reveal his information. We analyze a bargaining game
in a hybrid discrete-continuous time framework, as proposed in Abreu and Pearce
(2007). In this model, two agents, A and B, make initial demands and stick to them
until one concedes to the other. Both players can either be irrational (or stubborn)1
or perfectly rational. An irrational player holds firm to their demand and never con-
cedes, while a rational player can concede at any point. While A is described by just
these two types, B has a more complex structure. In fact, if B is rational, his type
is further determined by the information he possesses. The first type, called the ig-

1. We will also refer to this type as the behavioral type.
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norant type, holds a nondegenerate prior belief about A’s true nature, meaning he
is uncertain whether A is perfectly rational. The second type, the omniscient type,
knows that A is rational. Importantly, A does not know whether B is irrational, ratio-
nal ignorant, or rational omniscient. At the beginning of the game, agents A and B
can offer to the other a behavioral contract such that their demands are incompati-
ble. Both can concede to the other at any point in time, yet, at any discrete period,
we allow B to propose a fair 50-50 split of the surplus. Such an offer would expose
B’s rationality, but it could also signal to the rational type of A that B is omniscient
and prepared to engage in a war of attrition to prove he has information about her
rationality. In our model, we assume that once A believes with certainty that B is
omniscient, she immediately concedes to the fair offer. This assumption allows us
to avoid the complexities of a war of attrition between two fully rational agents
negotiating over the surplus.

To analyze this game, we first examine the continuation game in which B has
already revealed his rationality. This helps us understand the consequences of offer-
ing a fair deal during the bargaining process. We refer to this continuation game as
the one behavioral type model, as only A can be irrational in this scenario. We find
that there are two classes of equilibria. In the first, there is a continuum of degener-
ate equilibria (all outcome-equivalent), where B concedes immediately, regardless
of his rational type. We interpret this as B’s belief (confirmed in equilibrium) that A’s
rational type is so stubborn that any informational advantage is irrelevant, leading A
to never concede. In the second class, there is a unique nondegenerate equilibrium
where the omniscient type of B does not concede. Here, A attempts to convince B
that she is a tough negotiator who will not back down, while B tries to convince A
that he knows she is only pretending to be tough—that is, that he is omniscient.

Once we have understood the consequences of the fair offer, we return to the
original game (referred to as the two behavioral types model). First, we find that an
equilibrium without any fair offers is always possible, regardless of the parameters.
This equilibrium can be sustained by having the agents play the degenerate equilib-
rium from the one behavioral type game. In this case, the omniscient type prefers
not to reveal his rationality, as doing so would put him at a disadvantage, with A
never conceding. Naturally, this discourages the ignorant type from proposing a fair
deal as well. Moreover, when B’s irrational demand exceeds the fair offer (i.e., more
than 50%), this is the unique equilibrium. In this scenario, the omniscient type is
unwilling to reveal his information if it means proposing a deal that leaves him with
less than the irrational demand. We demonstrate that this outcome holds even when
the war of attrition following the fair offer is shorter. On the other hand, when B’s
irrational offer is less than 50%, an equilibrium with a fair contract becomes pos-
sible. We prove that, in equilibrium, there is exactly one period in which this offer
can be made with positive probability. During this period, the omniscient type pro-
poses the fair contract with probability 1, while the ignorant type mixes between
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proposing the fair contract and sticking with the irrational demand. An example of
an equilibrium for certain parameter values is provided at the end.

The rest of the paper is organized as follows. Section 1.2 presents the literature
review. Sections 1.3 and 1.4 analyze the models with one and two behavioral types,
respectively, where the main results of the paper and an equilibrium example are
presented. Finally, Section 1.5 concludes. In the Appendix, we provide a brief sum-
mary of the key results from Abreu and Gul (2000), which we use in subsequent
sections, a discussion of equilibrium consistency, and a model of the informational
structure based on the Appendix of Milgrom and Roberts (1982) to illustrate the
derivation of the type structure we employ. At the end of the Appendix, we include
the proofs.

1.2 Literature review

The work on reputation started with Kreps and Wilson (1982) and Milgrom and
Roberts (1982). Both papers analyze a model where an incumbent threatens poten-
tial entrants to start a price war so that new firms are discouraged from entering
the market. Even if a price war is not immediately convenient to the incumbent, it
is shown that building a reputation for being aggressive has long-term advantages.
These concepts are then developed in the bargaining framework by Abreu and Gul
(2000) (AG in the following sections). The authors study a model where two agents
can assume at the beginning of the bargaining process one out of many different ’un-
fair’ postures, that is, an infinite path of high demands. This model predicts that the
game ends before some fixed time (and therefore the negotiation does not proceed
forever) and that some party concedes to the unfair demand of the other. Many
papers on reputational bargaining then followed. For example, Abreu and Pearce
(2007) builds a similar model where players in each period can also take some
action that affects the utility. Moreover, they allow behavioral non-stationary strate-
gies. More recently, in Fanning (2016), the author explains how ’deadline effects’
can be caused by reputational effects when the deadline is stochastic.

This work is closely related to two recent contributions. The first one is Wolitzky
(2012). In this study, the author explores the effect of reputational bargaining when
the agents know that the other is rational but may be committed to a certain behav-
ioral posture with some small probability. The solution concept used in that work is
minmax. In contrast, our work employs the classic sequential equilibrium solution.

The second paper is Zhao (2023). In this study, the author considers a model
where the rational agent may have either an optimistic or pessimistic view regarding
the other’s rationality. An optimistic (rational) agent assigns a high probability to
the other’s rationality, while a pessimistic agent assigns a small probability to the
same event. The game in that paper follows the structure of a classic war of attrition.
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In our model, we allow the agent who may possess full information to signal their
level of information, deviating from the model presented in Zhao (2023).

This paper also contributes to the literature on war of attrition with more than
two actions. Two recent examples are Leeuwen, Offerman, and Ven (2020) and
Hörner and Sahuguet (2011). The first paper study a war of attrition where the
players have the possibility to fight. The players are uncertain about the strength
of their opponent and the fight resolves the conflicts. This differs from our model
as the additional action starts a new war of attrition. The second paper analyzes a
war of attrition with alternate moves, and players make arbitrary payments. Their
opponent can either match the payment or concede.

A recent contribution to this literature and the literature on reputational bar-
gaining is Ekmekci and Zhang (2024), where the agents have the opportunity to
end the conflict through an external resolution whose outcome depends on on the
strength of their claims.

1.3 The one behavioral type model

We first analyze a game in which player B is commonly known to be rational. There-
fore, A knows B is rational, B knows that A knows B is rational and so on. B can
only offer the contract

�

1/2, 1/2
�

, that we will call ’fair’ throughout the paper. Conse-
quently, in this game, B can only be either ignorant (lacking knowledge of A’s type)
or omniscient (knowing that A is rational).

This game features two distinct classes of equilibria. In the first class, there is a
continuum of equilibria where B concedes immediately, even if he is omniscient. In
this scenario, A is perceived as too stubborn even when rational, and thus, B’s knowl-
edge of her rationality does not help him achieve a higher payoff. In the second class,
there is a unique equilibrium characterized by a war of attrition between A and B.
Here, A attempts to convince B that she is a behavioral type (without knowing if
this is possible, as she is uncertain whether B is ignorant), while B tries to convince
A that he is omniscient and therefore knows she is pretending to be irrational.

To simplify the analysis and avoid detailing the complexities of a war of attrition
that occurs after A is convinced that B is omniscient, we assume that as soon as A is
certain of B’s omniscience, she accepts the fair deal of

�

1/2, 1/2
�

.
This simplified game is then used to address the larger game where B can also

be irrational and has the choice to either imitate the behavioral type or reveal his
rationality by offering

�

1/2, 1/2
�

, thereby attempting to convince A that he possesses
information about her rationality. By using backward induction, we solve this game
to understand the consequences of offering (or not offering) a fair contract in the
middle of the standard war of attrition and determine whether B will ever choose
to reveal his rationality.
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1.3.1 The bargaining game

The bargaining protocol is defined in continuous time, on the interval [0,+∞).
The agents have to split a surplus of 1. If they never reach an agreement, both get
a payoff of 0. At t= 0, A and B make the offers (a, 1− a) and (1− b, b) respectively,
where the first element of the vector is the quantity of the surplus for player A and
the second element is the quantity for player B. If the offers are compatible, i.e.,
a+ b< 1, the game ends, and an even randomization decides the contract to be im-
plemented. When a+ b= 1, this share of the split is enforced. If a+ b> 1, instead,
the game continues. Payoffs are then exponentially discounted according to the rate
δ, which is symmetric across the agents. The behavioral type θA

b is restricted to the
offer (γ, 1− γ) where γ > 1/2, which is what we call the ’unfair’ offer. On the other
hand, since B is known to be rational, we restrict his strategy to either offering a ’fair’
contract (1/2, 1/2) or a split which is compatible with A’s unfair offer. Without loss of
generality, we can restrict the action space of B to {(1/2, 1/2), (γ, 1− γ)}. This struc-
ture resembles a classic war of attrition, where ’waiting’ corresponds to (1/2, 1/2) for
player B and (γ, 1− γ) for player A and ’conceding’ corresponds to (γ, 1− γ) for
B and (1/2, 1/2) for A. Whenever a player waits at some t and the other concedes,
the game ends and each one gets the split assigned. Therefore, what determines
the outcome of the game is the time t at which a player switches from waiting to
conceding.

Player A can have type θA ∈ {θA
r ,θA

b }, where θA
r is referred to as the rational

type, while θA
b is the behavioral type. The latter one can only offer the unfair con-

tract (γ, 1− γ) and never concedes to worse contract. Player B, on the other hand,
can have type θB ∈ {θB

i ,θB
o }. We refer to the first one as the ignorant type and to the

second one as the omniscient type. Throughout the game, the agents have beliefs
about the type of the other player. Let µB

i (τ) be the probability that type θB
i assigns

to the event θA = θA
b , which is a function of the period that the game has reached.

Observe µB
i (0)= z. In the same fashion, let µA

r be the probability that θA
r assigns to

the event θB = θB
i . Therefore, µA

r (0)= q. These beliefs are updated through Bayes
rule. Then, consider also the following assumption.

Assumption 1. Whenever µA
r (τ)= 0, θA

r accepts the fair contract (1/2, 1/2) at τ.

This assumption makes sure that whenever we reach a complete information
game (i.e., A’s rationality becomes common knowledge), the players do not start
a new war of attrition. In fact, we aim to capture the types’ behavior before full
rationality is revealed. Observe that θA

r may believe with probability 1 that θB = θB
o

even when θB = θB
i . In this case, we do not have a complete information game, yet

we want to ignore all the strategic interactions that happen after θA
r is sure of the

other’s type. Whenever θA
r puts probability 1 to θB = θB

o , she gives up the behavioral
posture and accepts B’s fair split. This can be interpreted as a new continuation
game in which there is common knowledge of rationality and both players have an
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expected payoff of (1/2, 1/2) from the bargain they are going to start. Even if θB = θB
i ,

as soon as A quits the irrational behavior, θB
i knows that A is rational.

Now, we provide the formal definition of strategy. In the spirit of Laraki, Solan,
and Vieille (2005), we define strategies in the following way. Let ∆(R+) be the set
of probability measure over R+, the positive extended real numbers. We topologize
it with the the topology of weak convergence.

Definition 1.1. A strategy is a function σ : R+ −→∆(R+), that satisfies the follow-
ing properties.

(i) Properness: σt assigns probability 1 to [t,+∞)∪ {+∞};
(ii) Conditioning requirement: For all t ∈ [0,τ) and borel set B ⊆ [τ,+∞)∪

{+∞}, we have
σt(B) = (1 − σt([t,τ)))στ(B).

The first property guarantees thatσt is a concession strategy of the continuation
game t. The second property says that the measure’s distribution must be computed
through Bayes rule when possible. Therefore, σt represent the plan of action that a
type of player B wants to play in continuation game t.

We define the utilities of A and B for their rational types. Each utility function
depends on the (potentially mixed) strategy of the other player and the time t at
which the player decides to concede. We assume that when both concede at the
same time, the contract implemented is randomized. Denote with σA

r , σB
i , and σB

o
the strategies of type θA

r , θB
i , and θB

o respectively. Then, consider continuation game
τ. When player A with type θA

r , concedes at t≥ τ, has continuation utility2

uA
r ((σB

i ,σB
o ), t|τ) = µA

r (τ) ·
�∫ t

0

γe−δxdσB
i,τ(x) +

�

σB
i,τ(t)

1
2

�

γ + 1/2
�

+ σB
i,τ((t,+∞])

1
2

�

e−δt

�

+

(1 − µA
r (τ)) ·

�∫ t

0

γe−δxdσB
o,τ(x) +

�

σB
o,τ(t)

1
2

�

γ + 1/2
�

+ σB
o,τ((t,+∞])

1
2

�

e−δt

�

,

That is, with probability µA
r (τ) player B is of type θB

i and therefore is playing ac-
cording to σB

i . If θB
i stops before t, then θA

r receives γ. If θB
i stops exactly at t, then a

random contract is enforced. Finally, if θB
i decided to stop after t, the rational type

θA
r receives a fair split of 1/2. With probability 1−µA

r (τ) player B is omniscient and
therefore plays the strategy σB

o .

2. Throughout the paper, we assume
∫ t

0

f(x)dF(x) = lim
τ↑t

∫ τ

0

f(x)dF(x).

That is, the integral does not include the mass point at t. This holds in case F is a CDF or a
measure.
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Player B with type θB
i concedes at time t≥ τ gets utility

uB
i (σA

r , t|τ) =

(1 − µB
i (τ)) ·

�∫ t

0

1
2

e−δxdσA
r,τ(x) +

�

σA
r,τ(t)

1
2

�

3/2 − γ
�

+ σA
r,τ((t,+∞])(1 − γ)

�

e−δt

�

+

µB
i (τ) · (1 − γ)e−δt,

Observe that with probability µA
i (τ), the other player is behavioral and therefore

will never concede. Hence θB
i receives the share 1− γ at the time he decided to

stop.
Finally, when type θB

o concedes at time t he gets utility

uB
o(σA

r , t|τ) =

∫ t

0

1
2

e−δxdσA
r,τ(x) +

�

σA
r,τ(t)

1
2

�

3/2 − γ
�

+ σA
r,τ((t,+∞])(1 − γ)

�

e−δt.

In what follows, we use the solution concept of sequential equilibrium. For com-
pleteness, we list the properties of a sequential equilibrium of this game.

Definition 1.2. A sequential equilibrium of the bargaining game is a vector of strate-
gies

�

σB
i ,σB

o ,σA
r

�

and beliefs (µB
i ,µA

r ) such that

(1) σB
i maximizes θB

i ’s expected utility in any continuation game t ∈ [0,+∞) given
beliefs µB

i and σA
r ;

(2) σB
o maximizes θB

o ’s expected utility in any continuation game t ∈ [0,+∞) given
σA

r ;
(3) σA

r maximizes θA
r ’s expected utility in any continuation game t ∈ [0,+∞) given

beliefs µA
r and σB

i and σB
o ;

(4)
�

(σB
i ,σB

o ,σA
r ), (µB

i ,µA
r )
�

is a consistent assessment.

The discussion and definition of consistent assessment is in the Appendix. The
next Proposition is key for finding the equilibria of the game. It provides the relation
between the incentives of the ignorant and the omniscient types, showing how the
informational advantage of θB

o over θB
i manifests. Then, the next Corollary states

an important property of the equilibrium.

Proposition 1.3. Suppose θA
r plays the strategy σA

r . Consider continuation game τ
and let t ∈ [τ,∞) and t̂> t. Then

(i) θB
i weakly prefers concession at t̂⇒ θB

o strictly prefers concession at t̂.

(ii) θB
o weakly prefers concession at t⇒ θB

i strictly prefers concession at t.

Corollary 1.4. In any sequential equilibrium, θB
o plays a pure strategy in every con-

tinuation game.
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Proof. Suppose otherwise, i.e., θB
o plays a mixed strategy in the continuation game

t≥ 0. Then, by the indifference of θB
o and Proposition 1.3, the type θB

i strictly
prefers to concede in the support of θB

o ’s strategy. Then, whenever θA
r observes wait-

ing at any time of the support, he updates his beliefs and assigns probability 1 to the
event θB = θB

o and concedes immediately. Then, at the minimum time in the sup-
port, θB

i can wait, and in case θA = θA
r , he gets his best payoff 1

2 ; in case θA = θA
b ,

he immediately observes waiting and can concede. Therefore θB
i has a profitable

deviation, a contradiction. Therefore θB
o plays a pure strategy in every continuation

game t≥ 0.

1.3.2 Degenerate equilibria

The game exhibits a continuum of degenerate equilibria, wherein player B readily
concedes. In the subsequent analysis, we aim to characterize this collection. Initially,
we establish a specific degenerate equilibrium and subsequently demonstrate the
process of generating additional equilibria from it. Finally, we establish that the
equilibria we characterize are the only degenerate ones, ruling out the existence of
any others.

The equilibrium candidate is the following:

• θB
i and θB

o concede with probability 1 at any t≥ 0;
• θA

r chooses the strategy σA
r such that σA

r,τ([a, b])= 0 for all [a, b] ⊆ [τ,+∞)3.

Consequently, every type of player B always concedes. Conversely, the behavior
of θA

r resembles that of the irrational type θA
b . Our task is to identify consistent be-

liefs that can support these strategies as sequentially rational choices. Consider θA
r

first. Observe σA
r,τ(0)= 0 is optimal given B’s strategy as long as µA

r (τ)> 0. There-
fore, suppose we reached time τ > 0. Let θA

r ’s beliefs µA
r be such that µA

r (τ)> 0.
That is, upon reaching time τ, the type θA

r does not assign probability 1 to the om-
niscient type. Then, θA

r knows that B concedes with probability 1 at τ. Hence, at τ,
θA

r is indifferent among all distributions FA
r such that

σA
r,τ(τ) = 0. (1.1)

This condition is necessary and sufficient for the sequential rationality of FA
r .

Therefore, the strategy proposed is sequentially rational together with µA
r . We show

in the appendix that these strategies can be sustained by consistent beliefs.
Now consider player B. By Proposition 1.3, it is sufficient to show that θB

o weakly
prefers to concede at every t≥ 0. In fact, if this is the case, then θB

i strictly prefers
to adopt the same strategy. Suppose we are in continuation game τ. Since θA

r never
concedes in this continuation game (σr,τ([τ,+∞))= 0), θB

o is indifferent among

3. Therefore, the probability measure σA
r,0 assigns probability 1 to {+∞}
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all those strategies σB
o such that σB

o,τ(τ)= 1. In fact, for any deviation, θA
r would

still not assign probability 1 to the event θB = θB
o , and would still consider the equi-

librium strategies where B immediately concedes. Since θB
o optimally concedes, so

does θB
i by Proposition 1.3. Therefore, the candidate equilibrium is a degenerate

sequential equilibrium.
Note, however, that there is a continuum of degenerate equilibria. In fact, θA

r is
indifferent among all the strategies σA

r such that σA
r,τ(τ)= 0. Hence, any strategy

σA
r with no jumps and σA

r,0(0)= 0 is still optimal for θA
r . Therefore, any strategy

σA
r that makes θB

o weakly better off by conceding immediately (in any continuation
game) can still be part of a degenerate equilibrium. In fact, in this case, by Proposi-
tion 1.3, θB

i is strictly better off by conceding immediately.
Now we are going to characterize the entire set of degenerate equilibria. Con-

sider the following condition

∀τ ≥ 0, ∀t0 > τ,
∫ t0

τ

1
2

e−δxdσA
r,τ(x) +

�

σA
r,τ(t

0)
�

3/2 − γ
�

+ σA
r,τ([t

0,+∞])(1 − γ)
�

e−δt0

≤ (1 − γ)e−δτ. (1.2)

This condition states that for every continuation game t≥ 0, the type θB
o weakly

prefers to concede immediately than to wait any time after t. Note that the payoff
is conditioned on the event that we have reached continuation game t. Observe that
when this condition is satisfied, θB

o concedes immediately with probability 1 in any
continuation game. Define the set:

DE := {σA
r |∀τ ≥ 0 σA

r,τ(τ) = 0 ∧ (1.2)}.

Let σ̂B
i and σ̂B

o be such that σ̂B
i,τ(τ)= σ̂B

o,τ(τ)= 1 for all τ≥ 0. Then, we get
the following result.

Proposition 1.5. The set of all strategies sustainable as degenerate equilibria of the
bargaining game is

{(σB
i ,σB

o ,σA
r )|σB

i = σ̂
B
i ∧ σ

B
o = σ̂

B
o ∧ σ

A
r ∈ DE}.

1.3.3 Nondegenerate equilibrium

In a nondegenerate equilibrium, no player concedes with a probability of 1 at time
t= 0. We will demonstrate the existence of a unique nondegenerate equilibrium. In
this equilibrium, players randomize over a finite support interval [0, T0]. However,
as stated in Corollary 1.4, the omniscient type cannot play a mixed strategy equi-
librium. Hence, the ignorant type engages in mixing. According to Proposition 1.3,
the omniscient type does not concede within the interval [0, T0], thereby exhibiting
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behavior akin to an irrational type. This allows us to analyze the game in a man-
ner similar to the standard AG model, where each player has only one behavioral
contract available. Unlike the standard model, the strategy of the omniscient type
is endogenous in our context. Since player B is limited to being either rational or ir-
rational in the standard version, the strategy of the irrational player is exogenously
determined. In contrast, Proposition 1.3 informs us that θB

o adopts the same strat-
egy, but this choice arises from a strategic decision. We define only strategies σ0,
and derive the equilibrium with their equivalent cdf. Conditional distribution are
derived through Bayes rule until the last period of possible concession.

First, define FA(t)= (1−µB
i (t)) · FA

r (t) and FB(t)= µA
r (t)FB

i (t), where FA
r and

FB
i are CDFs representing σA

r,0 and σB
i,0 respectively. The conditional measures

σA
r,τ and σB

i,τ can be represented by FA
r /(1− FA

r (τ)) and FB
i /(1− FB

i (τ)). Clearly,
σB

o,τ([τ,+∞))= 0 for each τ. Then, let

λA =
(1 − γ)δ

1/2 − (1 − γ)
and λB =

1/2δ
1/2 − (1 − γ)

.

Define TA = − log(z)/λA and TB = − log(1− q)/λB. As in AG, we have T0 =
min{TA, TB}. Then, we have that

FA(t) = 1 − cAe−λ
At and FB(t) = 1 − cBe−λ

Bt,

where ci = e−λ
i(Ti−T0). Observe that if Ti = T0, then player i never concedes at

t= 0.
By Proposition 1 in AG⁴, (FB/q, FB

o , FA/(1− z)), where FB
o (t)= 0 for all t ∈ [0, T0],

constitutes the unique nondegenerate equilibrium. Conditional distributions for τ ∈
[0, T0] are computed through Bayes’ rule.

Now that we have characterized the entire set of equilibria in this game (later
referred to as the game after the signal, or GAS), we are ready to apply these find-
ings to the larger game where B can also be an irrational type. This allows us to
study the incentives for θB

i and θB
o to reveal their rationality and initiate a new war

of attrition. As we will see, whenever A and B are expected to play a degenerate
equilibrium, θB

o lacks the incentive to offer the fair contract. In this case, he under-
stands that doing so would weaken his position, as A would anticipate an immediate
concession (or an early one in case B deviates). Furthermore, when B’s behavioral
demand is high, he is disincentivized to reveal his rationality, as he stands to gain a
better deal by continuing to pretend to be irrational.

4. A summary of Abreu and Gul (2000) Proposition 1 can be found in the appendix.
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1.4 The two behavioral types model

In this section, we enlarge B’s type space to include a behavioral type θB
b , having

then two behavioral types, one for each player. We therefore distinguish between
γA and γB, the behavioral demand of players A and B respectively. The type θB

b has
all the features of θA

b . Therefore, throughout the game he offers a split of the sur-
plus corresponding to (1− γB,γB), where γA + γB > 1, and does not accept anything
less. Whenever player A offers (x, 1− x) with 1− x ≥ γB, θB

b accepts immediately. A’s
types remain unchanged, while B’s new type space is ΘB

1 := {θB
b ,θB

o ,θB
i }, where θB

o
and θB

i are as described in the previous sections. We let qb, qo, qi be the prior prob-
abilities of B being irrational, omniscient and ignorant, respectively. A is irrational
with probability z ∈ (0, 1) as before. Now, define Q := {(qo, qi, z) ∈ (0,1)3|qo + qi ∈
(0,1)}. This space of initial beliefs will be helpful when we characterize the equilib-
rium set. Clearly, qb = 1− qo − qi.

In this new version of the model, the ignorant type θB
i decides whether to im-

itate the behavioral type θB
b or try to signal the information he possesses by pre-

tending to know that his opponent is rational. Type θB
o has the same dilemma, with

the difference that he actually knows about A’s rationality. Hence, contrary to the
classic war of attrition we want to give one of the players, B, the possibility of using
more than two actions (wait and concede). Therefore, suppose that B has offered
(1− γB,γB) at the beginning of the bargaining procedure. In this continuation game,
B can either reject A’s offer (waiting), accept A’s offer (concede) or offer the fair
contract (1/2, 1/2). The last action reveals B’s rationality, putting him in a difficult
position. Yet, at the same time, it signals A that B is ready to start a new war of
attrition with his rationality exposed, which can be taken by A as a sign of strength
(omniscient type).

In order to model these choices, we follow Abreu and Pearce (2007) and Abreu,
Pearce, and Stacchetti (2015). They formulate a new hybrid model with both dis-
crete and continuous time features. As they explain, this allows for easier calcula-
tions in the war of attrition, avoiding openness problems when a new offer is made
and there is no "first" time to accept it. Therefore, we allow the players to concede at
any period, while B can change his offers only at integer times. For every t ∈ N, we
split the date into three subdates, (t,−1), (t, 0) and (t,+1). At (t,−1), A has her last
opportunity to accept the pending offer of her opponent. B can also accept 1− γA

at this dates. At (t, 0), B can offer the fair contract (1/2, 1/2) in case he has not done
it before. Finally, at (t,+1) A and B can accept the standing offer of their opponent.
There is no discounting among subdates of the same period. A and B can concede
at any t ∈ R++\N as well. Date t= 0 is split into (0, 0) and (0,+1). At (0,0) the
players choose an initial contract. For simplicity and without loss of generality A is
restricted to (γA, 1− γA) while B can offer (1− γB,γB) and (1/2, 1/2) only. At (0,+1)
both can accept their opponent’s contract. If we extend any non-integer number to
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two dimensions, writing (t,+1) for t ∈ R++\N, we can put a complete order on our
periods. We put the lexicographic order, where (t, k)≥ (t0, k0) in one of these two
cases: t> t0 OR t= t0 and k≥ k0. Hence, the end of a period and the beginning of a
new period are separated. This implies that a player can condition his or her choice
of the action at the beginning of a period on the events happened at a previous
period.

We denote the continuation game at (n, 0), n ∈ N0 after the fair contract has
been offered as the game after the signal (GAS).

Time
0 t 1

(0, 0) (0,+1) (1,−1) (1, 0) (1,+1)
A and B offer

behavioral
contracts

First time A

and B can
accept their
rival’s offer

Last time A

and B can
accept their
rival’s offer

B can offer
the fair

contract (1/2, 1/2)

First time A

and B can
accept the new
standing offers

A and B can accept their
rival’s behavioral offer

Figure 1.1. Timeline representation

In Figure 1.1, we illustrate a game scenario unfolding over the time interval
from (0,0) to (1,+1). In this depiction, players A and B commence by proposing
their behavioral contracts. Subsequently, at (0,+1), they are presented with their
initial opportunity to accept the behavioral contracts proposed by their respective
opponents. Throughout any point in time t ∈ (0, 1), they retain the option to accept
these standing offers. This opportunity persists until period (0,−1), marking the
final chance to accept before B can alter his offer. Following this, B can present
the fair contract at (1,0). Should B choose to do so, A can accept this new offer
at (1,+1). At this date, B also has the option to accept (γA, 1− γA). If B has not
proposed the fair contract by (1, 0), the players can start their concession again
from (1,+1).

We turn to the description of the mixed strategies. First, note that a pure strategy
for player B in this game can be one of three things:

(1) The offer of the behavioral contract at (0,0) and a concession time (t, k);
(2) The offer of the behavioral contract at (0, 0), a time n ∈ N for the fair offer con-

tract and a concession time (t, k)> (n, 0);
(3) The offer of the fair contract at (0,0) and a concession time (t, k)⁵.

5. Player B can decide to never concede. In this case, t= +∞ and the choice of k would have
no meaning.
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In the first case, B decides to not offer the fair contract, while in the second and
third case he offers (1/2, 1/2) before conceding to A’s behavioral demand. This is a
heuristic description of available pure strategies. In fact, the players have to specify
an action for any possible continuation game ⁶. For this reason, we turn directly
to the description of mixed strategies as done in the previous section. In order to
introduce the modeling of mixed strategies, we make use of the following notation.
Let n ∈ N and t ∈ (n− 1, n). Then, concession in the interval [t, n]means concession
from t up until (n,−1). On the other hand, when t ∈ (n, n+ 1), concession in [n, t]
means concession from (n,+1) to t. Finally, concession in [n− 1, n] is from (n−
1,+1) to (n,−1).

We require A and B to play strategies σA and σB described in Definition 1.1
after B offers the fair contract. Therefore, suppose B changes offer from (1− γB,γB)
to (1/2, 1/2) at (τ∗, 0), τ∗ ∈ N, henceforth revealing his rationality. Then, A and B
play strategies σA and σB that satisfy Definition 1.1 with the difference that their
domain and codomain are now [τ∗,+∞) and ∆([τ∗,+∞)). Condition (i) is left
unchanged while (ii) becomes:
• Conditioning requirement: For all t ∈ [τ∗,τ) and Borel set B ⊆ [τ,+∞)∪
{+∞}, we have

σt(B) = (1 − σt([t,τ)))στ(B).

Therefore, for each n ∈ N0, A and B need to specify strategies σA[n], σB[n] that
satisfy the new version of Definition 1.1.

Player B at the beginning of the game chooses whether to offer (1/2, 1/2) at some
point or concede to A’s demand first. Suppose B concedes first. Then, he selects
(t0, k) such that t0 ∈ R+ and k ∈ {−1,+1} such that k= +1 for t0 ∈ R+\N. If B of-
fers (1/2, 1/2) first, instead, he chooses t1 ∈ N0 and offers the fair contract at (t1, 0).
Hence, we define a function YB : N0→ [0,1] that assigns to each n ∈ N0 the proba-
bility that B offers (1/2, 1/2) at (n, 0). We denote with YB

i (n) and YB
o (n) the probabili-

ties assigned by θB
i and θB

o respectively. Finally, we let XB = (XB
n )n∈N0

be a sequence
of measures, such that XB

n : B([n, n+ 1])→ [0, 1] and
+∞
∑

n=0

XB
n ([n, n + 1]) +

+∞
∑

n=0

YB(n) ≤ 1 − qb. (1.3)

Each XB
n describes the concession of B to A’s demand in the interval [n, n+ 1],

hence from (n,+1) to (n+ 1,−1) ⁷. The sigma-algebra B imposed on each interval

6. Note, however, that as long as the fair contract is not offered, there are no unexpected events
for θA

r . In fact, any continuation game with standing offer (1− γB,γB) has positive probability of being
reached, since B can be behavioral. This is different from the model with one behavioral type as B is
commonly known as rational. For example, in its degenerate equilibrium, B waiting at t= 0 is an
unexpected event, and strategies that describe the actions after this event must be specified.

7. The probability of concession in a set Sn ∪ Sm (both measurable sets) where Sn ⊆ [n, n+ 1],
Sm ⊆ [m, m+ 1] with n ̸=m can be calculated by XB

n (Sn)+ XB
m(Sm).
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is the Borel sigma-algebra derived from the relative Euclidean topology. We write XB
i

and XB
o to distinguish the strategies used by θB

i and θB
o respectively. XA is similarly

defined.
Summarizing, B’s strategy includes:

• A sequence of measures XB = (XB
n )n∈N0

;
• A function YB : N0→ [0,1] ;
• A sequence (σB[n])n∈N0

such that ∀n ∈ N0 the modified version of Definition
1.1 is satisfied,

and (1.3) holds. A’s strategy, on the other hand, includes

• A sequence of measures XA = (XA
n )n∈N0

;
• A sequence (σA[n])n∈N0

such that ∀n ∈ N0 the modified version of Definition
1.1 is satisfied,

and
+∞
∑

n=0

XA
n ([n, n + 1]) ≤ 1 − z.

Beliefs are expressed as follows: the belief of B’s ignorant type θB
i at period

(t, k) is denoted by µB
i ((t, k);θA

b ) and represents the probability that θB
i assigns to

the event θA = θA
b . Beliefs also depend on the history up to period (t, k), but we

omit this from the notation for simplicity. When necessary, we specify the history
preceding (t, k). The same applies to θA

r ’s beliefs. Clearly, in the game after the
signal beliefs coincide with the beliefs of the one behavioral type model. Therefore,
for each n we have

σA[n] = (1 − µB
i ((n, 0);θA

b ))σA
r [n],

and
σB[n] = µA

r ((n, 0);θB
i )σB

i [n] + µ
A
r ((n, 0);θB

o )σB
o [n],

where σB
i [n], σB

o [n], σA
r [n] are the strategies used by types θB

i , θB
o and θA

r re-
spectively and beliefs are computed considering the fair offer happening at (n, 0).

Before we give the definition of equilibrium, we provide a brief description of
the utilities. Utilities are written at time 0, the beginning of the bargaining game.
Consider θB

i and suppose he chooses to offer the fair contract at t1, before conceding
to A’s contract, and concedes at t2 in the game after the signal. His utility is then

UB
i ((XA, (σA[n])n∈N0

), t1, t2) =
t1−1
∑

n=0

∫ n+1

n
γBe−δtdXA

n (t)

+

�

1 −
t1−1
∑

n=0

XA
n ([n, n + 1])

�

uB
i (σA

r [t1], t2|t1)e−δt1 .
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The term in the first line refers to the event in which A concedes to (1− γB,γB)
before t1. In the second term, 1−

∑t1−1
n=0 XA

n ([n, n+ 1]) is the probability that A does
not concede before the behavioral demand at t1. Then, this probability is multiplied
by uB

i (σA
r [t1], t2|t1)e−δt1 , the expected utility of θB

i in the GAS. The omniscient type
knows that A is rational, therefore if he follows the previous example of strategies,
he gets

UB
o ((XA, (σA[n])n∈N0

), t1, t2) =
1

1 − z

t1−1
∑

n=0

∫ n+1

n
γBe−δtdXA

n (t)

+

�

1 −
1

1 − z

t1−1
∑

n=0

XA
n ([n, n + 1])

�

uB
o(σA

r [t1], t2|t1)e−δt1 .

Finally, suppose θA
r chooses (t0,+1) such that t0 ∈ (n∗, n∗ + 1) for some n∗ ∈ N0 and

concession (tn
2)n∗

n=0. Each tn
2 represents θA

r ’s concession in case B offers (1/2, 1/2) at n.
Let ΣB = (XB, YB, (σB[n])n∈N0

). Her utility is then,

UA
r (ΣB, (t0,+1), (tn

2)n∗
n=0) =

n∗−1
∑

n=0

∫ n+1

n
γAe−δtdXB

n (t) +

∫ t0

n∗
γAe−δtdXB

n∗(t)

+
n∗
∑

n=0

YB(n)uA
r ((σB

i [n],σ
B
o [n]), tn

2|n)

+

�

1 −
n∗−1
∑

n=0

XB
n ([n, n + 1]) − XB

n∗([n
∗, t0]) −

n∗
∑

n=0

YB(n)

�

(1 − γB)e−δt0

The first line captures the events in which B concedes to A’s demand before offering
the fair contract. The second line includes the probability that B offers (1/2, 1/2)
before A concedes. In the third line we have the probability that B neither offers the
fair contract nor concedes to A before t0. In this event θA

r ’s profit is 1− γB.

Remark. We can express the utility of θB
i in relation to the utility of θB

o . Consider the
previous case as an example, that is, θB

i is offering the fair contract at t1 and conceding
in the GAS at t2. Observe that at t1, beliefs are not anymore z and 1− z. Since A has
not conceded in case the players arrive to time t1, θB

i believes A is irrational with proba-
bility z/

�

1−
∑t1−1

n=0 XA
n ([n, n+ 1])

�

. For ease of notation, let
∑t1−1

n=0 XA
n ([n, n+ 1])= X.

We have

uB
i (·) =

�

1 −
z

1 − X

�

uB
o(·) +

z
1 − X

e−δt2+δt1(1 − γA).

We discounted by e+δt1 the term e−δt2(1− γA) because the GAS is shifted from t= 0
to t= t1. Hence,

uB
i (·)e−δt1 =

�

1 −
z

1 − X

�

uB
o(·)e−δt1 +

z
1 − X

e−δt2(1 − γA).
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Finally,

UB
i ((XA, (σA[n])n∈N0

), t1, t2) =
t1−1
∑

n=0

∫ n+1

n
γBe−δtdXA

n (t) + (1 − X) uB
i (·)e−δt1

= (1 − z)

�

1
1 − z

t1−1
∑

n=0

∫ n+1

n
γBe−δtdXA

n (t)

�

+ (1 − X)
��

1 −
z

1 − X

�

uB
o(·)e−δt1 +

z
1 − X

e−δt2(1 − γA)
�

= (1 − z)

�

1
1 − z

t1−1
∑

n=0

∫ n+1

n
γBe−δtdXA

n (t)

�

+ (1 − z)
�

1 −
X

1 − z

�

uB
o(·)e−δt1 + ze−δt2(1 − γA)

= (1 − z)

�

1
1 − z

t1−1
∑

n=0

∫ n+1

n
γBe−δtdXA

n (t) +
�

1 −
X

1 − z

�

uB
o(·)e−δt1

�

+ ze−δt2(1 − γA)

= (1 − z)UB
o ((XA, (σA[n])n∈N0

), t1, t2) + ze−δt2(1 − γA).

Therefore, with probability 1− z, θB
i has θB

o ’s payoff, with probability z he will get
1− γA at time t= t2. This resembles the GAS payoff of the previous section.

We need a last step before the equilibrium definition. We now solve a game
where the last possible chance of sending the signal has not been taken, and there-
fore the players continue a standard reputational bargaining with behavioral offers.

Game with No Signal Suppose τ∗ ∈ N0 is the last period where B can of-
fer (1/2, 1/2), and assume that instead he offers again (1− γB,γB). We are left
with an AG game where the first period is shifted from 0 to τ∗. Therefore, the
solution is unique and can be recovered from the AG results. We also know
from the previous section that θB

o mimics θB
b and therefore θB

i is the only
type of B that concedes. Hence, let TA

N = − log(µB
i ((τ∗, 0;θA

b )))/λA
N +τ

∗, TB
N =

− log(µA
r ((τ∗, 0);θB

o ,θB
b ))/λB

N +τ
∗, where

λA
N =

(1 − γA)δ
γA + γB − 1

and λB
N =

(1 − γB)δ
γA + γB − 1

.

Thus, B’s concession distribution from τ∗, (XB
n )n≥τ∗ can be represented by

the cdf FB
N(t)= 1− cBe−λ

B
N(t−τ∗). A’s concession is instead distributed according to

FA
N(t)= 1− cAe−λ

A
N(t−τ∗), where ci = e−λ

i
N(Ti

N−T0
N) and T0

N =min{TA
N, TB

N}. We refer this
continuation game as game with no signal (GNS).

We are ready to provide the equilibrium definition. Observe that we exploit Def-
inition 1.2 to specify the sequential rationality imposed on the equilibrium at t ∈ N0

after (1/2, 1/2) has been offered.
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Definition 1.6. Let q ∈Q. A sequential equilibrium given q of the full bargaining
game is a vector of strategies (ΣB

i ,ΣB
o ,ΣA

r ), where ΣB
s = (XB

s , YB
s , (σB

s [n])n∈N0
), s ∈

{i, o}, and ΣA
r = (XA

r , (σA
r [n])n∈N0

), beliefs (µB
i ,µA

r ), such that

(1) ΣB
i maximizes θB

i ’s expected utility in any continuation game (t, k) given beliefs
µB

i and ΣA
r ;

(2) ΣB
o maximizes θB

o ’s expected utility in any continuation game (t, k) given ΣA
r ;

(3) ΣA
r maximizes θA

r ’s expected utility in any continuation game (t, k) given beliefs
µA

r and ΣB
i and ΣB

o ;
(4) For each n ∈ N0, (σB

i [n],σ
B
o [n],σ

A
r [n]) is GAS degenerate or nondegenerate

equilibrium;
(5) A and B play the unique equilibrium in GNS;
(6) ((ΣB

i ,ΣB
o ,ΣA

r ), (µB
i ,µA

r )) is a consistent assessment.

We also make another assumption on the equilibrium behavior of B. This as-
sumption states that in case any B’s type decides to offer (1/2, 1/2) at (n, 0), implying
µA

r ((n, 0);θB
i )= 1, then we force this type to concede at (n,−1). These two actions

are equivalent. In fact, when µA
r ((n, 0);θB

i )= 1, B optimally concedes at (n,+1).
Since there is no discounting between (n,−1) and (n,+1), we get the equivalence.

Assumption 2. In any equilibrium, there exists no n ∈ N0 such that (1/2, 1/2) offered
at (n, 0)⇒ µA

r ((n, 0);θB
i )= 1.

Assumption 3. Suppose ∃n ∈ N0 such that XB
n ([n, n+ 1])> 0 or YB(n)> 0. Then,

there is strictly positive probability that continuation game (n, 0) is reached.

In the next Proposition, we show that B can offer the fair contract only for a
limited amount periods in any sequential equilibrium. For this, we use the following
notation. Let T0

S(n) be the time at which the game is certain to end before it, with
a probability of 1, provided that A and B play the strategy profile (σA[n],σB[n]) in
the GAS. In the next results, we define T0

N(n) in the same way for the GNS.

Proposition 1.7. In any sequential equilibrium, both holds:

(1) supp(YB
i )= supp(YB

o );
(2) |supp(YB)|< +∞.

This Proposition tells us that either there is no event in which (1/2, 1/2) is offered,
or there exists a last time τ0 where the fair contract can be offered. Therefore for
all τ > τ0, YB(τ)= 0.

1.4.1 Equilibrium with no signal

We now find an equilibrium in the game where the fair contract is not offered. Con-
sequently, the opportunity for B to signal their rationality is never utilized. This
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outcome must be optimal in equilibrium, therefore we explore one way to achieve
this through the use of degenerate equilibria. As anticipated, when A and B play
a degenerate equilibrium, θB

o does not offer the fair contract, and thus θB
i refrains

from it as well. We show that in this case, the equilibrium is unique and possesses
the properties of the AG solution. The only difference is that θB

o does not concede to
A ’s irrational demands due to its maximization problem, making θB

o ’s behavior en-
dogenous, unlike θB

b . In the next section, we demonstrate that an equilibrium with
no signal is the unique possible equilibrium when B’s behavioral demand is high.

Lemma 1.8. Let n ∈ N0. In equilibrium, if (σA[n],σB[n]) represents the degenerate
equilibrium of GAS, then YB(n)= 0 whenever µA

r ((n, 0);θB
o )< 1.

Proof. Clear since θB
o obtains a higher payoff by waiting instead of offering (1/2, 1/2)

at n. Hence, YB
o (n)= 0. From Proposition 1.7, YB

i (n)= 0 and so YB(n)= 0.

Therefore, if we let A and B play the degenerate equilibrium for each n ∈ N0,
then

∑+∞
n=0 YB(n)= 0. We show that this can be part of an equilibrium⁸. First, con-

sider the following result.

Lemma 1.9. Suppose YB(n)= 0 for each n ∈ N0, and take t̂, t ∈ R+ such that t̂> t
Then,

(i) θB
i weakly prefers concession at t̂⇒ θB

o strictly prefers concession at t̂.
(ii) θB

o weakly prefers concession at t⇒ θB
i strictly prefers concession at t.

Proof. Apply the same steps of the proof of Proposition 1.3, substituting γ with γA

and 1
2 with γB and 1− γB.

This implies that, under the assumption that YB(n)= 0 for each n ∈ N0, in equi-
librium, θB

o never concedes as long as θA
r has not conceded first. To see this, suppose

θA
r does not concede at time t with probability 1, but assume, for the sake of contra-

diction, that θB
o concedes at t. According to the previous Lemma, θB

i strictly prefers
to concede no later than t with probability 1.

Now, let τ∗ = sup{
⋃+∞

n=0 supp(XB
n,o)}. Note that θA

r concedes with probability 1
no later than τ∗. For any ϵ > 0, there exists some t0 ∈ [τ−ϵ,τ∗] such that t0 is in the
support of θB

o ’s concession strategy. However, if θB
o does not concede by τ∗, then θA

r
will accept B’s behavioral demand.

Conceding at t0 gives θB
o a payoff of (1− γA)e−δt0 , whereas waiting to concede

after τ∗ yields a payoff of at least γBe−δτ
∗ . Since by assumption γB > 1− γA, there ex-

ists an ϵ > 0 such that waiting is strictly better than conceding at t0. Thus, t0 cannot

8. Note however that in case θA
r updates her beliefs to µA

r ((n, 0);θ B
o )= 1 after the fair con-

tract is offered at (n, 0), then by Assumption 1 θA
r concedes immediately. Note, however, that if

µA
r ((n, 0);θ B

o )= 1 in equilibrium and this is optimal for θ B
o , then it is optimal for θ B

i too, and so
YB

i (n)> 0, implying µA
r ((n, 0);θ B

o )< 1, a contradiction. Therefore, in equilibrium, µA
r ((n, 0);θ B

o )< 1.
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be in the support of θB
o ’s equilibrium strategy, leading to a contradiction. Therefore,

θB
o does not concede as long as θA

r has not done so.
As in the previous section, we have that θB

o assumes the posture of the behavioral
types, who never concede in the war of attrition. Therefore, we can recover the
equilibrium from AG. The types θB

i and θA
r randomize over some support [0, T0],

with rates
λA =

(1 − γA)δ
γA + γB − 1

and λB =
(1 − γB)δ
γA + γB − 1

.

The final period T0 is computed as min{TA, TB}, where

TA = −
log(z)
λA

and TB = −
log(qo + qb)

λB
.

Clearly, if Tk > Tj, for k ̸= j, player k concedes with positive probability at (0,+1)
to compensate for his or her reputation reaching 1 later than the opponent. In this
equilibrium, it is necessary that after the unexpected event of the fair contract offer
at (n, 0), θA

r does not update beliefs with µA
r ((n, 0);θB

o )= 1. In fact, in this case A
would immediately concede and for some parameters θB

o prefers this deviation. If,
for example, θA

r assumes that θB
o and θB

i made the mistake with the same probabil-
ity, beliefs are not degenerate and θB

o does not want to deviate. Therefore, in the
game with two behavioral types, there always exists an equilibrium where the fair
contract is not used. The intuition is that the fair contract is perceived by A and B
as a signal for weakness, and therefore it is not used. In fact, in case it is offered,
both B’s types prefer to concede immediately, as A would be too stubborn in that
continuation game. This behavior and beliefs resemble second-order optimism in
Friedenberg (2019). In this paper, the author shows that under the assumptions of
rationality and common strong belief of rationality, two agents who bargain over
a surplus can delay their agreement because any Pareto improved and earlier offer
from one agent may make the other player too optimistic, letting her believe she
can obtain even more from a longer negotiation.

1.4.2 Signaling equilibrium

Now we turn to the analysis of equilibria that feature signaling, that is, equilibria
where player B offer the fair contract with positive probability. As anticipated, these
equilibria not always exist, and their existence depend on the parameter γB.

For the next proposition, let FA
S (·;τ∗) be the cdf representing A’s concession strat-

egy after B has offered the fair contract at (τ∗, 0). Then, we denote with YB
s (τ∗|τ∗)

the probability that type θB
s , s ∈ {i, o}, offers the fair contract at (τ∗, 0) conditioning

on the event the game arrives at (τ∗, 0). We get the following result.

Lemma 1.10. Let τ∗ =max supp(YB). Then, for τ∗ > 0, YB
i (τ∗|τ∗) ∈ (0, 1) and

YB
o (τ∗|τ∗) ∈ (0,1].
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Hence, if τ∗ is the last period where the fair contract is offered with positive
probability, at τ∗, 0), θB

i mixes between the offer (1/2, 1/2) and the offer (1− γB,γB).
This implies he has to be indifferent between the two.
Theorem 1.11. In any equilibrium we have

∑+∞
n=0 YB(n)= 0 for all q ∈Q whenever

γB > 1/2.

Therefore, in any equilibrium where γB > 1/2, the omniscient player B opts to
conceal their information. This choice arises because if B reveals information by
offering the fair contract, player A might still suspect that B is bluffing. At this point,
the best outcome he can achieve is the split (1/2, 1/2). Conversely, by continuing to
offer the behavioral contract, θB

o can secure γB. Consequently, the omniscient type
θB

o cannot prevent the ignorant type θB
i from also offering the fair contract with

positive probability, making it difficult for A to distinguish between the two.
As established in Lemma 1.9, in equilibrium, θB

o does not concede until θA
r has

done so. Thus, the omniscient type behaves like a behavioral type, leading to a
unique equilibrium, as described in the preceding section. The AG model applies,
with the distinction that the probability of B behaving like an irrational type is qo +
qb.

Having resolved the case where γB > 1/2, we now focus on the scenario where
γB < 1/2 for the remainder of the paper. Here, the dynamics differ significantly. A
fair contract offer not only signals the potential possession of information but also
allows B to secure a better deal if A concedes. However, this advantage comes at a
cost: B’s reputation for being omniscient grows more slowly than the reputation for
being behavioral (or omniscient) in the war of attrition before the fair contract was
offered.

As stated in the previous proof, concession distributions in the GAS and GNS
can be represented by CDFs. Therefore, let τ∗1 be the last period for the fair contract
offer. For player m ∈ A, B, denote the concession distribution in the GAS by Fm

S (·;τ∗1)
and the concession distribution in the GNS by Fm

N (·;τ∗1).
Lemma 1.12. Let τ∗1,τ∗0 ∈ N be such that τ∗1 is the last period and τ∗0 is the second
to last period in which B offers (1/2, 1/2) with positive probability. Then, A does not
concede with positive probability to either contract at (τ∗1,+1). Moreover, in the event
B does not offer (1/2, 1/2) at τ∗0, A and B concede over (τ∗0,τ∗1) with rates λA

N and λB
N,

respectively. If τ∗0 cannot be defined, set τ∗0 = 0.

Lemma 1.13. Let τ∗0 ∈ N be the second to last period in which B offers (1/2, 1/2) with
positive probability. Then, A does not concede with positive probability to either con-
tract at (τ∗0,+1).

We proceed by establishing a theorem crucial for grasping the dynamics of
signaling equilibria. This theorem states that B can only manifest his rationality
through signaling in a single period t ∈ N0. Consequently, if B foregoes the oppor-
tunity to propose the fair contract at t, his offer remains unchanged throughout the



1.4 The two behavioral types model | 23

game. To gain insight into why this holds true in any signaling equilibrium, consider
the following scenario. Suppose B is randomizing his fair contract offer between τ∗0
and τ∗1. Then θB

o is indifferent, and the same holds for θB
i . Recall that in equilibrium,

θB
i can optimally choose θB

o ’s posture, so he can concede in the last period T0
S(·) in

the GAS. Hence, by our previous remark, we know that θB
i ’s utility is the utility of θB

o
with probability 1− z, while with probability z he gets the worst possible outcome,
that is 1− γA on the very last period T0

S(·). Therefore, since with probability 1− z
he is indifferent between τ∗0 and τ∗1 (by θB

o ’s indifference), we know that θB
i must

be indifferent even in the event that A is irrational, which happens with probability
z. Since this worst case scenario depends only on T0

S(·), indifference necessitates
T0

S(τ∗0)= T0
S(τ∗1). Hence, even if B postpones offering the fair contract until τ∗1, the

GAS still concludes at T0
S(τ∗0). From Lemma 1.12 and Lemma 1.13, we know that

A does not concede to the fair contract with positive probability at (τ∗0,+1) and
(τ∗1,+1), implying that T0

S(·) depends on A’s reputation and concession rate at both
τ∗0 and τ∗1. However, to maintain uniform deadlines, it must be that if B refrains
from proposing the fair contract at τ∗0, A’s reputation grows at a rate of λA

S from τ∗0
to τ∗1. This guarantees that even in the absence of the fair contract at τ∗0, A’s repu-
tation progresses as it actually happened, ensuring that when the players reach τ∗1,
the absence of (1/2, 1/2) at τ∗0 is inconsequential due to A’s reputation evolving at
rate λA

S , thereby maintaining identical deadlines T0
S(τ∗0) and T0

S(τ∗1). Nonetheless,
as hinted by Lemma 1.12, if B refrains from offering (1/2, 1/2) at τ∗0, A’s reputation
progresses at a rate of λA

N. Given that λA
N ̸= λ

A
S , randomization between τ∗0 and τ∗1

is untenable.

Theorem 1.14. In any signaling sequential equilibrium, |supp(YB)|= 1.

Now, we know that in any separating sequential equilibrium, the fair contract
can be offered, with positive probability, on a single period τ∗ only. By Lemma 1.12
we also know that θA

r does not concede at (τ∗,+1), no matter the contract offered
by B at (τ∗, 0). Therefore, in the GAS at (τ∗, 0) we have

T0
S(τ∗) = TA

S (τ∗) = −
µB

i ((τ∗, 0);θA
b )

λA
S

+ τ∗

and
T0

N(τ∗) = TA
N(τ∗) = −

µB
i ((τ∗, 0);θA

b )

λA
N

+ τ∗.

Since
λA

N =
(1 − γA)δ
γA + γB − 1

>
(1 − γA)δ
γA + 1/2 − 1

= λA
S ,

we get
T0

S(τ∗) > T0
N(τ∗) ∀τ∗.

From this, the next Corollary follows.
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Corollary 1.15. In any separating sequential equilibrium, YB
o (τ∗)= 1.

Proof. Recall YB
i (τ∗|τ∗) ∈ (0,1) by Lemma 1.10, and so YB

i (τ∗) ∈ (0, 1). That is, θB
i

offers the fair contract at (τ∗, 0) with a probability strictly less than 1. Moreover,
from Theorem 1.14, YB

i (n)= 0 ∀n ̸= τ∗. Hence, θB
i is indifferent between offering

(1/2, 1/2) at (τ∗, 0) and conceding at T0
S(τ∗) or concession to A’s behavioral demand

at T0
N(τ∗). That is, in equilibrium,

UB
i (ΣA, (τ∗, T0

S(τ∗))) = UB
i (ΣA, T0

N(τ∗)).

Therefore,

(1 − z)UB
o (ΣA, (τ∗, T0

S(τ∗))) + z(1 − γA)e−δT0
S (τ∗)

=

(1 − z)UB
o (ΣA, T0

N(τ∗)) + z(1 − γA)e−δT0
N(τ∗)

Since T0
S(τ∗)> T0

N(τ∗), z(1− γA)e−δT0
N(τ∗) > z(1− γA)e−δT0

S (τ∗), and so

UB
o (ΣA, (τ∗, T0

S(τ∗))) > UB
o (ΣA, T0

N(τ∗)).

Since T0
N(τ∗) is θB

o ’s optimal action in the GNS, θB
o strictly prefers to offer the

fair contract at τ∗, and so YB
o (τ∗|τ∗)= 1. Now, since τ∗o of Lemma 1.12 is equal to

0, we have that B concedes at rate λB
N from 0 to τ∗. Yet, since concession from θB

i
is necessary in equilibrium (Proposition 1.3 can be applied to the GNS as well), we
have that θB

i is indifferent in any concession in the interval [0,τ∗]. Therefore, θB
o

strictly prefers to wait until (τ∗, 0) at least. Hence,

τ∗−1
∑

n=0

XB
n,o([n, n + 1]) = 0,

and so YB
o (τ∗)= 1.

We summarize now the properties of any separating equilibrium we have found.
For γB > 1/2, there exists a unique equilibrium in which the fair contract is never
offered. For γB < 1/2, instead, we get the following.

(1) ∃!τ∗ ∈ N0 such that YB(τ∗)> 0. For all n ̸= τ∗, YB(n)= 0;
(2) YB

i (τ∗|τ∗) ∈ (0,1) and YB
o (τ∗)= 1;

(3) A and B concede with rates λA
N and λB

N respectively in the interval [0,τ∗];
(4) At (τ∗,+1) player A does not concede with positive probability, no matter B’s

standing offer.
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Note that these condition are necessary for any separating equilibrium, there-
fore we need to make sure that they do not create a contradiction. In particular,
we need to check the payoff indifference conditions for the rational types. Hence,
we show how to make sure that all four condition holds in equilibrium so that no
rational type has profitable deviations.

(1) For the first condition, we need that both θB
i and θB

o are not willing to
offer the fair contract at n< τ∗. This is trivial when τ∗ = 0, so suppose
τ∗ > 0 and take n ∈ N0 such that n< τ∗. From Definition 1.6.4, we have
that (σB

i [n],σ
B
o [n],σ

A
r [n]) is a GAS degenerate or nondegenerate equilibrium.

Hence, we can assume that for all n< τ∗, (σB
i [n],σ

B
o [n],σ

A
r [n]) is a GAS degen-

erate equilibrium. In this case, any offer of the fair contract before τ∗ implies a
payoff of (1− γA)e−δn for θB

i and θB
o . Clearly, θB

i is indifferent between the devi-
ation and the equilibrium strategy, and therefore θB

o strictly prefers to not offer
it at (n, 0). Hence, YB(n)= 0 can be part of the equilibrium. For what regards
its consistency, it is enough that any deviation at n is sustained by A’s beliefs
that put equal probability of mistake by θB

i and θB
o (clearly, these are not the

unique beliefs that can sustain it).
(2) By the previous point 4., we have that A does not concede at (τ∗,+1), no matter

the contract. By Lemma 1.8, we have that (σB
i [τ
∗],σB

o [τ
∗],σA

r [τ
∗]) is the GAS

nondegenerate equilibrium. Hence, θB
i ’s payoff in case of fair contract offer is

(1− γA)e−δτ
∗ . In case the fair contract is not offered, A and B play the unique

GNS equilibrium, and since A does not concede at (τ∗,+1), we get that θB
i ’s

expected payoff of offering (1− γB,γB) is (1− γA)e−δτ
∗ . Therefore, θB

i is indif-
ferent and we can have YB

i (τ∗|τ∗) ∈ (0, 1). In the proof of Corollary 1.15 we
have shown that θB

i ’s indifference at (τ∗, 0) implies θB
o strictly prefers to offer

the fair contract at (τ∗, 0). Therefore, we have YB
i (τ∗|τ∗)= 1, and since θB

o does
not concede in [0,τ∗] (proof of Corollary 1.15) we get YB

o (τ∗)= 1.
(3) Clear from Lemma 1.12.
(4) Clear from Lemma 1.12.

We need one last condition for the signaling equilibrium. We have that (τ∗,−1) is
in θA

r concession support, and we know that at (τ∗, 0) θA
r ’s jump, depending on

the contract offer. This may cause a jump in θA
r ’s payoff. Moreover, the contract of-

fered from B may change, and this is another source of jump in θA
r ’s expected utility.

Therefore, in order for θA
r to be indifferent between concession at (τ∗,−1) and any

period after τ∗, we need to calibrate B’s concessions at (τ∗,+1) and the probability
of fair contract offer YB(τ∗). So, for ease of notation let U

A
r the equilibrium utility

of θA
r of concession after (τ∗,+1), and UA

r the equilibrium utility of concession at
(τ∗,−1). We have
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U
A
r =

τ∗−1
∑

n=0

∫ n+1

n
γAe−δtdXB

n (t)

+ YB(τ∗)[FB
S(τ∗;τ∗)γA + (1 − FB

S(τ∗;τ∗))1/2]e−δτ
∗

+

�

1 −
τ∗−1
∑

n=0

XB
n ([n, n + 1]) − YB(τ∗)

�

[FB
N(τ∗;τ∗)γA + (1 − FB

N(τ∗;τ∗))(1 − γB)]e−δτ
∗
,

and

UA
r =

τ∗−1
∑

n=0

∫ n+1

n
γAe−δtdXB

n (t) +

�

1 −
τ∗−1
∑

n=0

XB
n ([n, n + 1])

�

(1 − γB)e−δτ
∗
.

Hence, U
A
r = UA

r implies

YB(τ∗)[FB
S(τ∗;τ∗)γA + (1 − FB

S(τ∗;τ∗))1/2]e−δτ
∗

+

�

1 −
τ∗−1
∑

n=0

XB
n ([n, n + 1]) − YB(τ∗)

�

[FB
N(τ∗;τ∗)γA + (1 − FB

N(τ∗;τ∗))(1 − γB)]e−δτ
∗

=
�

1 −
τ∗−1
∑

n=0

XB
n ([n, n + 1])

�

(1 − γB)e−δτ
∗
.

This equation can be rewritten as

YB(τ∗)

1 −
∑τ∗−1

n=0 XB
n ([n, n + 1])

[FB
S(τ∗;τ∗)γA + (1 − FB

S(τ∗;τ∗))1/2]

+

�

1 −
YB(τ∗)

1 −
∑τ∗−1

n=0 XB
n ([n, n + 1])

�

[FB
N(τ∗;τ∗)γA + (1 − FB

N(τ∗;τ∗))(1 − γB)]

=

(1 − γB),

and so,

YB(τ∗|τ∗)FB
S(τ∗;τ∗)γA + (1 − FB

S(τ∗;τ∗))1/2]

+
�

1 − YB(τ∗|τ∗)
�

[FB
N(τ∗;τ∗)γA + (1 − FB

N(τ∗;τ∗))(1 − γB)]

=

(1 − γB).

Note that this is the indifference condition of θA
r at continuation game (τ∗,−1)

for immediate concession and any concession afterwards. Therefore, YB(τ∗|τ∗),
FB

S(τ∗;τ∗) and FB
N(τ∗;τ∗) must satisfy this equation. Note that FB

S(τ∗;τ∗) and
FB

N(τ∗;τ∗) depends on θA
r ’s beliefs, and these beliefs depend on YB(τ∗;τ∗). There-

fore, in order to conclude, we give an example of a separating equilibrium, showing
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the relation among these variables. The probabilities of concession at (0,0) are go-
ing to be fundamental as the allow for beliefs manipulation. Moreover, recall that in
equilibrium T0

S(τ)= TA
S (τ∗) and T0

N(τ∗)= TA
N(τ∗), which add two additional con-

straint on the equilibrium, that is, TA
S (τ∗)≤ TB

S (τ∗) and TA
N(τ∗)≤ TB

N(τ∗). These
constraint are dependent on beliefs as well and so they are dependent also on the
probabilities of concession at (0,0). The following Proposition and remark are use-
ful for the computation of YB(τ∗|τ∗) and θA

r ’s indifference condition at (τ∗,−1).

Proposition 1.16. We have

YB(τ∗|τ∗) = µA
r ((τ∗,−1);θB

o ) + µA
r ((τ∗,−1);θB

i )YB
i (τ∗|τ∗).

Remark. Let x = YB
i (τ∗|τ∗), µA

r ((τ∗,−1);θB
i )= Qi and µA

r ((τ∗,−1);θB
o )= Qo for

ease of notation. Then, when (1/2, 1/2) is offered, θA
r ’s belief is:

µA
r ((τ∗, 0);θB

o ) =
Qo

Qo + Qix
,

while if (1− γB,γB) is offered, her belief is:

µA
r ((τ∗, 0);θB

b ) =
Qb

Qb + Qi(1 − x)
.

Moreover, note

FB
S(τ∗;τ∗) = 1 − e−λ

B
S(TB

S−TA
S )

= 1 − e
−λB

S

�

− log
�

Qo
Qo+Qix

�

1
λB

S
+log(µB

i ((τ∗,0);θA
b )) 1

λA
S

�

= 1 −
Qo

Qo + Qix
µB

i ((τ∗, 0);θA
b )−

1/2
1−γA .

In the same fashion, we can prove

FB
N(τ∗|τ∗) = 1 −

Qb

Qb + Qb(1 − x)
µB

i ((τ∗, 0);θA
b )−

1−γB
1−γA .

Let Z = µB
i ((τ∗, 0);θA

b ). θA
r ’s indifference condition is

(Qo + Qix)
��

1 −
Qo

Qo + Qix
Z−

1/2
1−γA

�

γA +
Qo

Qo + Qix
Z−

1/2
1−γA

1
2

�

+ (

Qb+Qi
︷ ︸︸ ︷

1 − Qi − Qix)
��

1 −
Qb

Qb + Qi(1 − x)
Z−

1−γB
1−γA

�

γA +
Qb

Qb + Qi(1 − x)
Z−

1−γB
1−γA (1 − γB)

�

=

(1 − γB)
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The LHS of this equation can be rewritten as:

�

Qo + Qix − QoZ−
1/2

1−γA

�

γA + QoZ−
1/2

1−γA
1
2
+
�

Qb + Qi(1 − x) − QbZ−
1−γB
1−γA

�

γA + QbZ−
1−γB
1−γA (1 − γB)

=
�

Qo − QoZ−
1/2

1−γA

�

γA + QoZ−
1/2

1−γA
1
2
+
�

Qb + Qi − QbZ−
1−γB
1−γA

�

γA + QbZ−
1−γB
1−γA (1 − γB)

Hence, the indifference condition is independent from x, i.e., YB
i (τ∗|τ∗), as Qo and

Qi are beliefs computed at (τ∗,−1). The only role that YB
i (τ∗|τ∗) plays is in making

sure that the constraints TA
S (τ∗)≤ TB

S (τ∗) and TA
N(τ∗)≤ TB

N(τ∗) are satisfied. This
generates a continuum of separating equilibria.

Consistency
We have not specified how consistency is obtained so far. Clearly, consistency

in the GAS is taken from the results in the section of the model with one behav-
ioral type. Instead, the consistency before the fair contract is not offered is obtained
through Bayes’ rule as long as there are no surprise events. Note that the only sur-
prise event in which the war of attrition does not end is an unexpected offer of the
fair contract, for some n ̸= τ∗. For simplicity, consider n< τ∗. In this case, as previ-
ously described, we can just assume that A believes that the mistake was made with
equal probability by θB

i and θB
o . Here, as the probability of mistake goes to zero,

beliefs are

µA
r ((n, 0);θB

i ) =
µA

r ((n,−1);θB
i )

µA
r ((n,−1);θB

i ) + µA
r ((n,−1);θB

o )

and

µA
r ((n, 0);θB

o ) =
µA

r ((n,−1);θB
o )

µA
r ((n,−1);θB

i ) + µA
r ((n,−1);θB

o )
.

Both are strictly less than 1. Then, we can easily sustain the equilibrium by
letting A and B to play the nondegenerate GAS equilibrium.

Example 1.17. Consider the following set of parameters.

Table 1.1. Example table with parameters and values

Parameter Value
γA 0.8
γB 0.4
δ 1
qo 0.2e

−3

qb 0.1e
−3

z 0.2
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Clearly, we have qi = 1− qo − qb. Note that γA + γB > 1, so that behavioral de-
mands are incompatible. We let τ∗ = 1. That is, in equilibrium, B offers the fair
contract with positive probability only at period 1. The concessions rate are the fol-
lowing:

λA
S =

(1 − γA)δ
γA + 1/2 − 1

=
2
3

λB
S =

1/2δ
γA + 1/2 − 1

=
5
3

λA
N =

(1 − γA)δ
γA + γB − 1

= 1 λB
N =

(1 − γB)δ
γA + γB − 1

= 3

By Lemma 1.12, we know that A and B concede with rates λA
N and λB

N respec-
tively. Therefore, we have

Qo + Qb = µ
A
r ((τ∗,−1);θB

b ,θB
o ) = (0.3e−3)eλ

B
N = 0.3.

Note that this implies Qb = µA
r ((1,−1);θB

b )= 0.1 and Qo = µA
r ((1,−1);θB

o )=
0.2. Now, let Z∗ be the value that satisfies the previous indifference condition. We
can derive FA(0; 0), i.e., the probability of concession from A at time (0,0) that
makes her reputation jump from z to Z∗e−λ

A
N . Note that given the parameters given

and Qo = 0.2, Qb = 0.1 we have Z∗ ≈ 0.7, which gives Z∗e−λ
A
N ≈ 0.26. Hence, we

compute θA
r ’s probability of concession at (0,+1) that allows this shift in θB

i ’s beliefs.
Denote y the probability of θA

r ’s concession at (0,+1).

Z∗e−1 =
z

z + (1 − z)(1 − y)
⇒ y =

1
4

(5 − e/Z∗) ≈ 0.28.

Therefore, for a reputation jump from z= 0.2 to Z∗e−1 ≈ 0.26 type θA
r needs to

concede with approximate probability of 0.28. Concession at (0,+1) from A implies
no concession from B at the same date. Finally, we need to check that the constraints
TA

S (τ∗)≤ TB
S (τ∗) and TA

N(τ∗)≤ TB
N(τ∗) are satisfied. Therefore,

TA
S (1) = −

log(Z∗)
2/3

+ 1 ≈ 1.52

TB
S (1) = − log

�

Qo

Qo + Qix

�

3
5
+ 1 = − log

�

2
2 + 7x

�

3
5
+ 1

TA
N(1) = −

− log(Z∗)
1

+ 1 ≈ 1.34

TB
N(1) = − log

�

Qb

Qb + Qi(1 − x)

�

1
3
+ 1 = − log

�

1
8 − 7x

�

1
3
+ 1.

From these, we get

x = YB
i (1|1) ∈

�

2(Z∗)−5/2 − 2
7

,
8 − (Z∗)−3

7

�

≈ (0.06, 0.73).

Figure 1.2 describes the unfolding of the equilibrium graphically.
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(1/2,1/
2)

(1,+1)

(1 −
γ
B , γ

B )

(1,+1)

GAS nondeg.

equilibrium

GNS
equilibrium

0 1

(0, 0) (0,+1) (1, 0)
A and B offer

behavioral
contracts

θ
A

r
concedes

with prob. y.
Her reputation

jumps from
0.2 to Z

∗
e
−1

θ
B

i
offers the fair

contract with
prob. Y

B

i
(1|1);

θ
B

o
offers the

fair contract
with prob. 1

A concedes with rate λ
A

N
= 1

B concedes with rate λ
B

N
= 3

B concedes with
prob. F

B

S
(1; 1)

B concedes with
prob. F

B

N
(1; 1)

Figure 1.2. Example of a Signaling Equilibrium

1.5 Conclusion

In conclusion, this paper explores the role of reputation in bargaining scenarios
where an agent may be aware of the other’s rationality. Hence, we examined how
reputation effects can arise not only from direct uncertainty about an opponent’s
type, but also from second-order beliefs, where one agent attempts to appear tough
despite the opponent’s awareness of their true nature. The other main ingredient
of the model is the possibility of the informed type to signal his knowledge by a
fair split 50-50 of the surplus. By analyzing a bargaining game with both discrete
and continuous time dynamics, we focused on the strategic choices player B, and
his respective types—rational, ignorant, or omniscient.

In the one behavioral type model, our results highlight two main classes of equi-
libria. In one, B concedes immediately regardless of his type, due to the belief that
A is so stubborn that any informational advantage is useless. In the other, the omni-
scient type of B does not concede, leading to a situation where both agents engage
in signaling games to convince the other of their toughness or knowledge.

We then linked this analysis to the original two-behavioral-type model, demon-
strating that an equilibrium without fair offers is always possible, especially when
B’s irrational demand exceeds the fair offer. However, when B’s irrational offer is
less than 50%, an equilibrium with a fair contract becomes viable, with a specific
period in which this contract can be proposed.
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Appendix 1.A AG Proposition 1 summary

We present here a summary of AG results of Proposition 1. In their initial model,
there are two players A and B, and each of them is one of two possible types: rational
and behavioral. Player i is irrational with probability zi, and demand a fixed amount
γi, where γA + γB > 1. Each player is allowed to concede to the other’s demand,
or wait. Therefore, since each player has only one rational type, strategies can be
described by the cdf Fi.

Players discount payoffs exponentially at the rate of δi. Utility functions ui are
written in the same way of θB

i ’s utility in the model with one behavioral type. Then,
this result follows:

(1) Let τi = inf{t≥ 0|Fi(t)= limt0→∞ Fi(t
0)}. Then τA = τB;

(2) If limt0→t− Fi(t
0) ̸= Fi(t), then limt0→t− Fj(t

0)= Fj(t), for j ̸= i;
(3) If Fi is continuous at t, then ui is continuous at (concession at) t;
(4) There is no t1, t2 ∈ R+ such that 0≤ t1 < t2 ≤ τi such that FA and FB are constant

over (t1, t2);
(5) Fi is strictly increasing over (0,τi);
(6) Fi is continuous for t> 0.

From these properties, AG proves that both players concede at constant rate that
makes the opponent indifferent, for every t> 0, between immediate concession and
waiting. In order to calculate this rate, denote it first by λi for player i. Then, in
order to make j indifferent, the cost and the benefit of waiting must be the same.
The cost of not conceding at t, instead of some t+ dt, is δj(1− γi)dt, that is, the
lost of the interest of i’s offer, 1− γi. The benefit of waiting until t+ dt is instead
the probability that i concedes in the interval (t, t+ dt) times the gain j gets from
i’s acceptance. Therefore, the benefit is λi(γj − (1− γi))dt. Hence, the rate λi of
concession that makes j indifferent is

λi =
δj(1 − γi)

γi + γj − 1
.

Hence, we have that Fi(t)= 1− (1− Fi(0))e−λit. From the previous results, we
have that τA = τB. For this to happen, we need that both players reach reputation⁹
1 at the same time, at some period T0. Since in general λi ̸= λj, one of the player
concedes with positive probability at time t= 0 in order to boost her reputation and
make sure she reaches reputation 1 at the same time of her opponent. Note that i’s
reputation reaches 1 at Ti if

Ti = −
log(zi)
λi

.

9. The other player must believe with probability 1 that she is irrational.
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Therefore, let T0 =min{TA, TB}. In case T0 = Tj, then i has to concede at time zero
with strictly positive probability Fi(0). We have

Fi(0) = 1 − e−λi(Ti−T0).

Appendix 1.B Consistency in the model with one behavioral type

First, we define the definition of convergence of sequence of strategies.

Definition 1.18. A sequence of strategies (σk)k∈N is said to converge to the strategy
σ if and only if

∀t ∈ R, σk
t

w
→ σt.

Definition 1.19. Let σσσ and µµµ be the vectors collecting the strategies and beliefs
of all the players. We say that (σσσ,µµµ) is a consistent assessment if and only if there
exists a sequence of completely mixed strategies (σσσk)k∈N converging to σσσ and a
sequence of beliefs (µµµk)k∈N converging to µµµ in Euclidean space with the property
that for each k, µµµk is derived from σσσk using Bayes’ rule.

When we write completely mixed, we mean that στ assigns positive probability
to each (a, b) ⊆ [τ,+∞). Therefore, a sequence (σk)k∈N converges to some strat-
egy σ if and only if every continuation game measure of the sequence weakly con-
verges to the limit continuation game measure.
Recall that weakly convergence is necessary and sufficient for convergence in distri-
bution. Hence, let Fk and F be the cdf associated with σk

t and σt respectively. We
have that

σk
t

w
→ σt ⇔ Fk(x) → F(x), x continuity point of F.

Therefore, even though the definition are described using measures σ(t), we
prove the statements using their respective cdf F(·|t), i.e., conditional distributions.
Moreover, we use F(·) to denote F(·|0). Observe there is no ambiguity as we can
always derive a cdf from a measure and vice versa. Conditional utilities are derived
using continuation game beliefs µ(·|τ) and conditional distribution F(·|τ).

In section 1.3.2, we proposed the following candidate equilibrium:

• FB
i (t|τ)= FB

o (t|τ)=

(

1 if t≥ τ

0 otherwise
• FA

r (t)= 0 for all t≥ 0.

We already showed sequential rationality for all the types. Now we prove consis-
tency of FB

i and FB
o (as FA

r can be trivially be proven to be consistent since µB
i is

always updated through Bayes’ rule).
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We now prove consistency. That is, there exists a sequence of completely mixed
strategy such that it converges to the equilibrium assessment and beliefs are always
derived from Bayes’ rule in the sequence. We start with FA

r and beliefs µB
i . Observe

that in equilibrium, we must have µB
i (t)= z for each t, as the rational type never

concedes. Consider a sequence of completely mixed strategies σA
r,k, that assigns

probability 1/k over the interval [0,+∞) and 1− 1/k to {+∞}. When θB
i observe

waiting at time t, he updates beliefs µB
i,k(t)=

(1−z)(1−FA
r,k(t))

(1−z)(1−FA
r,k(t))+z

, where FA
r,k is the cdf

that describes how σA
r,k distributes the mass 1/k over [0,+∞). Since FA

r,k(t)→ 0
for each t≥ 0, we have that µB

i,k→ µ
B
i . Hence, FA

r and µB
i satisfy the consistency

requirement.
Now consider FB

i , FB
o and µA

r . In order to sustain the equilibrium, we set µA
r (t)=

q for each t≥ 0. Observe that these beliefs allow FA
r to satisfy the sequential ratio-

nality requirement. Consider the sequence of completely mixed strategies σB
i,k, σB

o,k

such that σB
i,k = σ

B
o,k for all k, and both have cdf Fk(t)= 1− e−kt. Then, the condi-

tional distribution upon reaching continuation game τ is

Fk(t|τ) =
F(t) − F(τ)

1 − F(τ)

=
(1 − e−kt) − (1 − e−kτ)

1 − (1 − e−kτ)

= 1 − e−k(t−τ).

Then, for each continuity point t> τ, we have that Fk(t|τ)→ 1= FB
i (t|τ)=

FB
o (t|τ), as k→ +∞. Therefore, this strategy converges to the candidate equilib-

rium strategy. Moreover, since θB
i and θB

o use the same strategy for each k, θA
r have

constant beliefs in every continuation game τ, that is, µA
r (τ)= Pr(θB = θB

i |τ)=
q for each τ≥ 0. Hence, ((σB

i,k,σB
o,k),µA

r,k))→ ((σB
i ,σB

o ),µA
r ) where µA

r,k(τ)=
q for each k and τ and (σB

i ,σB
o ) is the candidate strategy for B. Thus,

FB
i (·|τ), FB

o and µA
r satisfy the consistency requirement for each τ. Therefore,

�

(FB
i (·|τ), FB

o (·|τ), FA
r ), (µB

i ,µA
r )
�

τ≥0 is a consistent assessment and therefore it is a
sequential equilibrium.

Appendix 1.C The information structure

We propose an information structure that could generate the type space introduced
in the model with one behavioral type. From this, we can easily construct a larger in-
formation structure capable of generating the model with two behavioral types. We
do this in the spirit of Milgrom and Roberts (1982), who propose in their appendix
an information structure that could induce reputation effects even when one of the
agents knows the other is rational. As they emphasize, the key factor is that the
agent attempting to build a reputation is unaware that the other knows about her
rationality.
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We start by constructing an Aumann model of incomplete information and then
we derive the corresponding Harsanyi type space. 1⁰ There are two players, A and
B, who bargain over some surplus. There is a set of states of nature S = {s1, s2}. In
s1, A is irrational (or behavioral), while in s2 is rational. B is known to be rational
by both players and this constitutes common knowledge. We then construct a set
of states of the world Ω := {a, b, c}. The function that associates each state of the
world to the states of nature is s : Ω −→S , such that

s(a) = s1

s(b) = s(c) = s2.

Hence, in the first state of the world, A is irrational, while in the other two states,
he is rational. The players’ information sets are the following:

FA := {{a}, {b, c}}

FB := {{a, b}, {c}}.

Observe that A can only distinguish the set of states in which he is rational or not,
while B can either have complete information (in ω= c) or be completely ignorant
(state ω ∈ {a, b}).

In this framework, A’s rationality cannot be common knowledge in any of the
states. In fact, in state ω= b player B cannot distinguish the rational type from
the behavioral type. In state ω= c, B knows that player A is rational but the latter
does not possess this information. As noted in Appendix B of Milgrom and Roberts
(1982), reputation effects can emerge even when both players are rational and
know that the other is rational. What is key, is the absence of its common knowl-
edge. In this model, common knowledge of rationality fails because player A never
knows whether B possesses information about the true state of nature. This miss-
ing link will generate reputation strategies from the rational player A. From this
information structure, we can derive the usual Harsanyi types. Consider player A.
Associate to the first partition element, {a}, the type θA

b , which corresponds to his
behavioral type. Then, associate with his second element, {b, c}, the type θA

r , the
rational type. Apply the same process to player B. We obtain θB

i , the ignorant type,
corresponding to the partition element {a, b}, and θB

o , the omniscient type, for {c}.
Note that Harsanyi players’ types are not independent. In fact, when θB = θB

o , B as-
signs probability 1 to the event (hence, knows) θA = θA

r . Therefore, with this type
structure, we get the following joint mass distribution of types:

• p(θA
b ,θB

i )= Pr(ω= a)= pa;
• p(θA

b ,θB
o )= 0;

10. For a reference, see Maschler, Solan, and Zamir (2013), Chapter 9.
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• p(θA
r ,θB

i )= Pr(ω= b)= pb;
• p(θA

r ,θB
o )= Pr(ω= c)= pc.

Therefore, for example, when B is of type θB
i , he has the following beliefs:

z := Pr(θA
b |θ

B
i ) =

pa

pa + pb
Pr(θA

r |θ
B
i ) =

pb

pa + pb
= 1 − z.

Note we defined with z the probability that A is irrational when B is ignorant. We
also define q := Pr(θB

i |θ
A
r ).

Appendix 1.D Proofs

Proof of Proposition 1.3

Proof. We only consider the case of indifference between concession at t and t0. The
case of strict preference easily follows.

(i) By assumption,

(1 − µB
i (τ)) ·

�∫ t

0

1
2

e−δxdσA
r,τ(x) +

�

σA
r,τ(t)

1
2

�

3/2 − γ
�

+ σA
r,τ((t,+∞])(1 − γ)

�

e−δt

�

+

µB
i (τ) · (1 − γ)e−δt

=

(1 − µB
i (τ)) ·

�

∫ t̂

0

1
2

e−δxdσA
r,τ(x) +

�

σA
r,τ(̂t)

1
2

�

3/2 − γ
�

+ σA
r,τ((̂t,+∞])(1 − γ)

�

e−δt̂

�

+

µB
i (τ) · (1 − γ)e−δt̂.

Observe that µB
i (τ)(1− γ)e−δt > µB

i (τ)(1− γ)e−δt̂, hence
∫ t̂

0

1
2

e−δxdσA
r,τ(x) +

�

σA
r,τ(̂t)

1
2

�

3/2 − γ
�

+ σA
r,τ((̂t,+∞])(1 − γ)

�

e−δt̂ (1.D.1)

>

∫ t

0

1
2

e−δxdσA
r,τ(x) +

�

σA
r,τ(t)

1
2

�

3/2 − γ
�

+ σA
r,τ((t,+∞])(1 − γ)

�

e−δt,

(1.D.2)
where (1.D.1) and (1.D.2) are θB

o ’s payoffs when he concedes at t0 and t respec-
tively. Therefore, θB

o prefers to concede at t0.
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(ii) Following the same lines, we assume
∫ t̂

0

1
2

e−δxdσA
r,τ(x) +

�

σA
r,τ(̂t)

1
2

�

3/2 − γ
�

+ σA
r,τ((̂t,+∞])(1 − γ)

�

e−δt̂

=

∫ t

0

1
2

e−δxdσA
r,τ(x) +

�

σA
r,τ(t)

1
2

�

3/2 − γ
�

+ σA
r,τ((t,+∞])(1 − γ)

�

e−δt.

Then,

(1 − µB
i (τ)) ·

�∫ t

0

1
2

e−δxdσA
r,τ(x) +

�

σA
r,τ(t)

1
2

�

3/2 − γ
�

+ σA
r,τ((t,+∞])(1 − γ)

�

e−δt

�

+

µB
i (τ) · (1 − γ)e−δt

>

(1 − µB
i (τ)) ·

�

∫ t̂

0

1
2

e−δxdσA
r,τ(x) +

�

σA
r,τ(̂t)

1
2

�

3/2 − γ
�

+ σA
r,τ((̂t,+∞])(1 − γ)

�

e−δt̂

�

+

µB
i (τ) · (1 − γ)e−δt̂.

Therefore θB
i strictly prefers to concede at t.

Proof of Proposition 1.5

Proof. First, we show that whenever FA
r ̸∈ DE, then no vector (FB

i , FB
o , FA

r ) can be sus-
tained as a degenerate sequential equilibrium. Consider the first condition of the
set DE, and suppose otherwise, i.e., FA

r (0)> 0. Then, B (each type) has an incen-
tive to wait an ϵ > 0 at t= 0, and hence FB

i (0)= FB
o (0)= 0. Since we assume the

equilibrium is degenerate, it must be that FA
r (0)= 1. Yet, if θA

r wait an ϵ > 0, then
θB

i assigns probability 1 to the event θA = θA
b and concedes immediately. Hence, θA

r
strictly prefers to concede at t= ϵ than at t= 0, a contradiction. Hence FA

r (0)= 0.
Now consider the second condition, that is, FA

r does not admits a jump at some t. On
the contrary, suppose there exists t> 0 such that∆(FA

r (t))> 0. Therefore θA
r and so

A concedes with positive probability at time t. But then, each type of B does not con-
cede in the interval [t− ϵ, t] for some ϵ > 0. Hence, FB

i and FB
o are constant over the

interval [t− ϵ, t]. In this case, θA
r either prefers to concede at t− ϵ or strictly after

t. This implies that FA
r is constant too on the interval [t− ϵ, t+σ] for some σ > 0.



Appendix 1.D Proofs | 37

But this is a contradiction, as∆(FA
r (t))> 0. Thus, in any degenerate equilibrium, FA

r
does not admit jumps.

Consider then DE final condition (1.2). Suppose it is violated for some t≥ 0,
some t0 > t such that t0 = t+ ϵ. Observe that in any equilibrium, the set of opti-
mal ϵ is such that there exists ϵ0 where t+ ϵ0 = tA

r,max, where tA
r,max = inf{t|FA

r (t)=
limτ→+∞ FA

r (τ)}. In fact, suppose otherwise, i.e., in a sequential equilibrium the
type θB

o wants to concede at t+ ϵ < tA
r,max after they reached continuation game t,

and they strictly prefer this choice to concession at tA
r,max. By Proposition 1.3, θB

i
concedes no later than t+ ϵ. Therefore, θA

r knows that B concedes before t+ ϵ
with probability 1. Then there exists σ > 0 such that θA

r waits in the interval
[t+ ϵ −σ, t+ ϵ]. But if this is the case, θB

o either concedes before t+ ϵ −σ or strictly
after t+ ϵ, a contradiction. We can conclude that when the players reach continua-
tion game t, θB

o ’s strategy support includes tA
r,max. Let t∗ be the infimum of the set of t

such that θB
o can optimally concede at tA

r,max when players reach continuation game t.
Suppose first t∗ > 0. At t∗, either θB

o is indifferent between concession at t∗ and con-
cession at tA

r,max or he strictly prefers to concede at tA
r,max. Suppose he is indifferent.

Then, by Proposition 1.3 type θB
i strictly prefers immediate concession. By continu-

ity, there exists σ > 0 such that θB
i strictly prefers to concede at τ ∈ [t∗ +σ, tA

r,max)
than at tA

r,max. Again, by continuity and definition of t∗, θB
o strictly prefers to conces-

sion at tA
r,max than concession at τ in the continuation game starting at t∗ +σ. Hence,

at τ, B is playing a separating strategy. Then θB
i can profitably deviate imitating θB

o
at τ, a contradiction.

Now suppose t∗ = 0. θB
o cannot be indifferent between concession at t∗ and tA

r,max
by the same argument. Yet, if θB

o strictly prefers to concede at tA
r,max, then FB

o (0)=
0, and then they are not playing a degenerate sequential equilibrium. Hence, in a
degenerate equilibrium, condition (1.2) is satisfied.

Since in any degenerate equilibrium FA
r ∈ DE, we have that θB

o weakly prefers
to concede at every t. Therefore, by Proposition 1.3, θB

i strictly concedes in every
continuation game, hence FB

i = F̂B
i . Now we show that when θB

o is indifferent, we
cannot have an equilibrium in which he does not concede immediately with proba-
bility 1. Recall by Corollary 1.4 that θB

o cannot play a mixed strategy in any sequen-
tial equilibrium. Therefore, suppose that θB

o plays FB
o (t)= 0 for some continuation

game t> 0. Then, since by the previous argument FB
i (t)= F̂B

i (t)= 1, B is playing a
separating strategy. But then θB

i has the incentive to imitate θB
o , so that in the event

θA = θA
r he gets the best contract. Moreover, in the event θA = θA

b he observes wait-
ing and can then concede. Hence, θB

i has a profitable deviation. Therefore, in any
degenerate equilibrium FB

o = F̂B
o .

Proof of Proposition 1.7

Proof. First, we claim that supp(YB
i )= supp(YB

o ). By contradiction, we have two
cases:
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(1) ∃ni ∈ supp(YB
i ) such that YB

o (ni)= 0;
(2) ∃no ∈ supp(YB

o ) such that YB
i (no)= 0.

The first case can be easily excluded. Since YB
o (ni)= 0, we have

〈(1/2, 1/2) offered at (ni, 0)〉 ⇒ µA
r ((ni, 0);θB

i ) = 1,

which contradicts Assumption 2. Therefore, consider case 2., and check continua-
tion game (no,−1). First, we claim that µA

r ((no,−1);θB
i )> 0, that is, θB

i does not
concede with probability 1 before (no,−1). In order to prove it, note that by Assump-
tion 3, since YB(no)> 0, it must be the case that

⋃+∞
n=no

XA
n ([n, n+ 1])> 0. There-

fore, in case θB
i concedes with probability 1 no later than some t< no, we have

that µB
i ((t, k);θA

r )> 0. But then, if θB
i deviates by waiting at (t, k), θA

r has beliefs
µA

r ((t, k);θB
i )= 0. Now, observe that YB(n)= 0 for n> no since the fair contract is

accepted at (no,+1) by Assumption 1. Hence, if (1/2, 1/2) is not offered at (no, 0),
θA

r accepts (1− γB,γB) at (no,+1) (since no rational types in the following war of
attrition believes she is irrational with positive probability). Hence, we must have
1/2≥ γB since θB

o offers the fair contract with positive probability. But then, θA
r is

better off by accepting (1− γB,γB) at (t, k), as she is certain, in that continuation
game, that she cannot get more than 1− γB. This is a contradiction, and so θB

i does
not concede before (no,−1) with probability 1.

Since YB
o (no)> 0, we can assume that θB

o has not offered (1/2, 1/2) yet. Then,

µA
r ((no,−1);θB

o ) ∈ (0,1).

When (1/2, 1/2) is offered at (no, 0), we have µA
r ((no, 0),θB

o )= 1. By Assumption 1 θA
r

immediately concedes. Hence, the action that offers (1/2, 1/2) at (no, 0) and concedes
to (γA, 1− γA) at no + ϵ is not a profitable deviation for θB

i for any ϵ > 0, since
YB

i (no)= 0. This implies that θB
i can obtain at least the same payoff through his

strategy. Note that in the event θA = θA
b , the former action is strictly dominant for

some ϵ > 0 to any other strategy that does not offer (1/2, 1/2). But then, θB
i ’s action

dominates the other in the event θA = θA
r . Yet, any strategy s that provides θB

i a
payoff of ũ in the event A is rational, can be replicated by θB

o . Hence, θB
o can obtain

ũ with probability 1. Since YB
o (no)> 0, s cannot provide a strictly higher payoff ũ to

θB
o than offering (1/2, 1/2). But this is a contradiction, since ũ is strictly higher than

the utility of the fair contract offer at (no, 0) in the event θA = θA
r . Therefore, we

can conclude supp(YB
i )= supp(YB

o ).
Now, suppose |supp(YB)|= +∞. Take t0 ∈ supp(YB

i ). Then t0 ∈ supp(YB
o ). There

exists a sequence (tn)n∈N such that tn > t0 and tn ∈ supp(YB) for each n ∈ N, and
moreover tn→ +∞. Since θB

o is indifferent between t0 and any tn, and θB
o does not

concede in GAS, we have

UB
o (ΣA, t0, T0

S(t0)) = UB
o (ΣA, tn, T0

S(tn)). (1.D.3)
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Now, since θB
i is indifferent, and waiting until T0

S(·) is optimal in any GAS, we have
UB

i (ΣA, t0, T0
S(t0)) = UB

i (ΣA, tn, T0
S(tn)),

which implies
(1 − z)UB

o (ΣA, t0, T0
S(t0)) + ze−δTB

S (t0)(1 − γA) = (1 − z)UB
o (ΣA, tn, T0

S(tn)) + ze−δTB
S (tn)(1 − γA).

By equation (1.D.3), we get ze−δT0
S (t0)(1− γA)= ze−δT0

S (tn)(1− γA), and so
T0

S(t0)= T0
S(tn). Yet, since tn ≤ T0

S(tn) for each n, and tn→ +∞, T0
S(tn)→ +∞.

Therefore, ∃n0 ∈ N such that T0
S(t0)< T0

S(tn0). Hence, indifference of θB
o implies θB

i
strictly prefers (t0, 0) over (tn0 , 0), a contradiction since n0 ∈ supp(YB

i ) by definition.
Therefore, |supp(YB)|< +∞.

Proof of Lemma 1.10

Proof. First, suppose YB
i (τ∗|τ∗)= 0. Then YB

i (τ∗)= 0. By Proposition 1.7, YB
o (τ∗)=

0, and so τ∗ ̸∈ supp(YB), a contradiction. Therefore, YB
i (τ∗|τ∗)> 0.

Now assume YB
i (τ∗|τ∗)= 1. We compare this action with a deviation in which θB

i
offers the behavioral contract at (τ∗, 0) and concedes to τ∗ + ϵ for some arbitrary
ϵ > 0 in case A does not accept the contract at (τ∗,+1). In case YB

o (τ∗|τ∗)= 1,
then the behavioral offer at (τ∗, 0) implies beliefs µA

r ((τ∗, 0);θB
b )= 1, while in case

YB
o (τ∗|τ∗)< 1, beliefs are µA

r ((τ∗, 0);θB
o ,θB

b )= 1. Since YB
o (n)= 0 for all n> τ∗, τA

r
accepts the behavioral contract at (τ∗,+1) since θB

o does not concede in that con-
tinuation game. Therefore, θB

i can concede at any τ∗ + ϵ, ϵ > 0 in case A does not
concede at (τ∗,+1), since in this event A is behavioral. Since ϵ is arbitrary, we ob-
tain that θB

i ’s payoff from this deviation is
µB

i ((τ∗,−1);θA
b )(1 − γA)e−δτ

∗
+ (1 − µB

i ((τ∗,−1);θA
b ))γBe−δτ

∗
.

The payoff of the ignorant type in case of no deviation is
1
2

FA
S (τ∗;τ∗)e−δτ

∗
+ (1 − γA)(1 − FA

S (τ∗;τ∗))e−δτ
∗
.

In equilibrium, we must have
1
2

FA
S (τ∗;τ∗) + (1 − γA)(1 − FA

S (τ∗;τ∗)) ≥ µB
i ((τ∗, 0);θA

b )(1 − γA) + (1 − µB
i ((τ∗, 0);θA

b ))γB.

Clearly, FA
S (τ∗;τ∗)< 1−µB

i ((τ∗, 0);θA
b ). Therefore, if γB > 1/2, θB

i has a prof-
itable deviation. Hence, assume γB < 1/2. Then, at (τ∗,−1), θA

r is certain to receive
the fair offer contract on the next period (τ∗, 0) in case B is rational. Otherwise,
she receives again the behavioral offer. Since 1− γB > 1/2 by assumption and θB

b ,
θB

o do not accept her behavioral offer (γA, 1− γA) at (τ∗,+1), θA
r is better off by

accepting (1− γB,γB) at (τ∗,−1) than waiting (τ∗, 0). But then, (τ∗, 0) cannot
be reached with positive probability, a contradiction to Assumption 3. Therefore,
YB

i (τ∗|τ∗)< 1.
The proof of YB

o (τ∗|τ∗)> 0 is clear by the same argument that proves YB
i (τ∗|τ∗)>

0.
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Proof of Theorem 1.11

Proof. Let τ∗ be the last period at which B offers the fair contract. We can analyze
the game as such B can offer the fair contract at τ0 = 0 only. In fact, the two continu-
ation games are equivalent, except for the discount factor and beliefs. In the second
continuation game A and B are splitting a surplus of 1 instead of e−δτ

∗ . Hence, we
consider the second continuation game only as it is strategically equivalent to the
first one.

We proceed by contradiction, therefore, suppose that one of B’s rational type
send the signal with positive probability. Then, we can only have an equilibrium
where θB

i mixes and θB
o offers (1/2, 1/2) with positive probability at τ∗ = 0, by

Lemma 1.10.
Since (0, 0) is the last period for the fair contract offer, the concession distribu-

tions following either (1/2, 1/2) or (1− γB,γB) can be represented by CDFs. There-
fore, call Fm

S the concession cdf for player m ∈ {A, B} in the GAS, and denote with
Fm

N the concession cdf for player m ∈ {A, B} in the GNS. From AG Proposition 1, we
know these two functions are exponential distributions and hence differentiable.
Denote their densities with fm

S and fm
N .

First, suppose TA
S ≤ TB

S . Then, θB
i ’s payoff in the continuation equilibrium af-

ter he offered (1/2, 1/2) is 1− γA. In the continuation equilibrium after (1− γB,γB)
his expected utility is FA

N(0)γB + (1− FA
N(0))(1− γA). Hence, in order to make θB

i
indifferent between (1/2, 1/2) and (1− γB,γB), we need FA

N(0)= 0, and therefore
TA

N ≤ TB
N. Now, consider the type θB

o . His expected payoff after the offer (1/2, 1/2) is
∫ TA

S
0

1/2e−δt fA
S (t)
1−z dt. The offer (1− γB,γB) provides, instead,

∫ TA
N

0 γBe−δt fA
N(t)
1−z dt. Since

in the candidate equilibrium θB
o offers (1/2, 1/2) with positive probability, we must

have
∫ TA

S

0

1/2e−δt fA
S (t)

1 − z
dt ≥

∫ TA
N

0

γBe−δt fA
N(t)

1 − z
dt.

⇔

(1 − γA)(1 − e−(δ+λA
S)TA

S ) ≥ (1 − γA)(1 − e−(δ+λA
N)TA

N )

and so, we require
δ + λA

N

δ + λA
S

≤
TA

S

TA
N

=
λA

N

λA
S

.

This inequality is satisfied if and only if λA
S ≤ λ

A
N, but this is true if and only if γB ≤

1/2, a contradiction. Hence, we consider the case TA
S > TB

S .
Type θB

i ’s payoff of offering (1/2, 1/2) is FA
S (0)1/2+ (1− FA

S (0))(1− γA), with
FA

S (0)> 0. As stated above, the payoff from (1− γB,γB) is FA
N(0)γB + (1−

FA
N(0))(1− γA), so FN(0)> 0 which implies TB

N < TA
N. Therefore, T0

S = TB
S and T0

N =
TB

N. Assume first that T0
S < T0

N, i.e., TB
S < TB

N.
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Recall that waiting until the end of the continuation game is always optimal
for θB

i in a nondegenerate equilibrium, independently from the contract offered at
τ= 0. Therefore, θB

i indifference can be rewritten as

(1 − z)





FA
S (0)

1 − z
1
2
+

∫ TB
S

0

1
2

e−δt fA
S (t)

1 − z
dt



 + ze−δTB
S (1 − γA)

=

(1 − z)





FA
N(0)

1 − z
γB +

∫ TB
N

0

γBe−δt fA
N(t)

1 − z
dt



 + ze−δTB
N (1 − γA).

Since TB
S < TB

N, we have ze−δTB
S (1− γA)> ze−δTB

N (1− γA), therefore

FA
S (0)

1 − z
1
2
+

∫ TB
S

0

1
2

e−δt fA
S (t)

1 − z
dt <

FA
N(0)

1 − z
γB +

∫ TB
N

0

γBe−δt fA
N(t)

1 − z
dt,

and so θB
o does not offer (1/2, 1/2) in equilibrium, a contradiction.

Next, assume TB
S ≥ TB

N. Type θB
i ’s payoff indifference in equilibrium is

FA
S (0)

1
2
+ (1 − FA

S (0))(1 − γA) = FA
N(0)γB + (1 − FA

N(0))(1 − γA).

Since γB > 1/2, we need FA
S (0)> FA

N(0), hence cA
S < cA

N, which implies

e−λ
A
S(TA

S−TB
S ) < e−λ

A
N(TA

N−TB
N) ⇒ λA

S(TA
S − TB

S ) > λA
N(TA

N − TB
N)

⇒ − log(z) − λA
STB

S > − log(z) − λA
NTB

N

⇒ λA
STB

S < λ
A
NTB

N.

Since γB > 1/2, λA
S > λ

A
N, and so TB

S < TB
N, contradiction.

Therefore, in any equilibrium, for each vector of parameters q, we have YB(n)=
0 for each n.

Proof of Lemma 1.12

Proof. Assume first that A concedes with a positive probability at (τ∗1,+1) follow-
ing the offer (1/2, 1/2). It’s important to note that since τ∗1 marks the final oppor-
tunity for the fair contract to be offered, A concedes with a non-zero probability
even if B doesn’t propose the fair deal (otherwise θB

i would strictly prefer to offer
the fair contract over the behavioral). Consequently, there exists a time t< τ∗1 at
which the rational player B strictly prefers proposing (1/2, 1/2) over conceding at
any time within the interval (t,τ∗1]. This observation implies that A refrains from
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conceding during this interval as well11. Let t0 be the last time before B prefers
to wait, i.e., t0 := sup{

⋃τ∗1−1
n=τ∗0

supp(XB
n )}. Given that A’s strategy includes conceding

to both (1/2, 1/2) and (1− γB,γB), her expected payoff at the continuation game t0

is [1/2YB(τ∗1|τ
∗
1)+ (1− γB)(1− YB(τ∗1|τ

∗
1))]e−δτ

∗
1 . However, conceding at t0 yields

(1− γB)e−δt0 , which is evidently strictly higher, leading to a contradiction.
Now, let’s assume that A doesn’t concede with a positive probability at τ∗1 for

(1/2, 1/2). Consequently, A also refrains from conceding for (1− γB,γB). Suppose
there exists t0 < τ∗1 such that A and B do not concede in (t0,τ∗1]. Since A does not con-
cede at (τ∗1,+1), θB

i ’s payoff in the continuation game t0 is (1− γA)e−δτ
∗
1 . Yet, con-

cession at t0 provides (1− γA)e−δt0 , a contradiction. Hence, there exists t ∈ (τ∗0,τ∗1)
such that A and B concede with positive density in [t,τ∗1]. Observe that if there
exists an interval (t1, t2) ⊆ [τ∗0, t) with no concessions, then θA

r and θB
i strictly pre-

fer concession at t1 over any τ > t2, again leading to a contradiction. Therefore, A
and B concede with everywhere positive probability in [τ∗0,τ∗1]. In fact, consider the
following. Define the function X∗A : [τ∗0,τ∗1]→ [0, 1] where:

X0
A =

τ∗0−1
∑

n=0

XA
n ([n, n + 1]),

for m ∈ [τ∗0,τ∗1], m ∈ N,

X∗A(t) = X0
A +

m−1
∑

n=τ∗0

XA
n ([n, n + 1]) + XA

m+1({m}),

and for t ∈ (m, m+ 1),

X∗A(t) = X0
A +

m−1
∑

n=τ∗0

XA
n ([n, n + 1]) + XA

m+1([m, t])

Observe that X∗A is weakly increasing in [τ∗0,τ∗1]. This function represents the cumu-
lative distribution of concession of player A in the interval [τ∗0,τ∗1], with no distinc-
tion between (t,+1) and (t,−1) for t ∈ N. In fact, since YB(t)= 0, we can treat the
two subdates as the same date. We define X∗B in the same manner. Type θB

i ’s utility
of concession at t ∈ [τ∗0,τ∗1] can be written as

UB
i ((XA, (σA[n])n∈N0

), t) =
τ∗0−1
∑

n=0

∫ n+1

n
γBe−δzdXA

n (z) +

∫ t

τ∗0

γBe−δzdX∗A(z)

+ (1 − X∗A(t))(1 − γA)e−δt.

We now describe the properties of X∗A and X∗B. We follow AG Proposition 1, in partic-
ular the points (b)− (f).

11. See Abreu and Gul (2000), Proposition 1
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(i) If X∗A jumps at t ∈ (τ∗0,τ∗1], X∗B does not jump at t.
In fact, B can just wait an instant after t. If t= τ∗1, B can wait until (τ∗1,+1).

(ii) If X∗A is continuous at t ∈ (τ∗0,τ∗1), then UB
i is continuous at t. If X∗B is continuous

at t ∈ (τ∗0,τ∗1) then UA
r is continuous at t.

These properties stem directly from definitions.
(iii) There is no interval (t0, t00) with τ0 ≤ t0 < t00 ≤ τ∗1 such that X∗A and X∗B are both

constant in (t0, t00).
First we claim that A does not concede at (τ∗1,−1) with positive probabil-
ity, i.e., limτ→τ∗1 X∗A(τ)= X∗A(τ∗1). If A concedes at (τ∗1,−1) with positive prob-
ability, ∃ϵ > 0 such that B does not concede in [τ∗1 − ϵ,τ∗1] and prefers in-
stead concession at (τ∗1,+1). If this is the case, A’s concession at τ∗1 − ϵ pro-
vides (1− γB)e−δ(τ∗1−ϵ) (in the continuation game τ∗1 − ϵ), while concession at
(τ∗1,−1) gives A (1− γB)e−δτ

∗
1 (in the same continuation game) since B does not

concede in [τ∗1 − ϵ,τ∗1], a contradiction.
Now assume there is a time interval (t0, t00), as described in the statement. Let
t∗ be the supremum of t00 for which ∃t ∈ [τ∗0,τ∗1) such that (t0, t∗) has the prop-
erty stated above. We first argue that t∗ < τ∗1. Assume otherwise, i.e., t∗ = τ∗1.
Then by assumption A does not concede in (t0,τ∗1] (since A does not concede
at (τ∗1,−1) too). Moreover, A does not concede with positive probability to the
fair contract at (τ∗1,+1). Therefore, at continuation game t ∈ (t0,τ∗1), θB

i ’s util-
ity of immediate concession is (1− γA)e−δt, while the offer of the fair contract
at (τ∗1, 0) provides him with (1− γA)e−δτ

∗
1 (in continuation game t). Hence con-

cession at t is a profitable deviation, a contradiction. Therefore t∗ < τ∗1. The re-
maining part of the proof follows AG Proposition 1 closely, and we include it for
completeness.

Fix t ∈ (t0, t∗). Observe that for both players (in particular for types θB
i and

θA
r ) ∃ϵt > 0 such that concession at t is strictly better than any concession in

(t∗ − ϵt, t∗). Furthermore, by (i) and (ii) there exists one type between θB
i and

θA
r for which their utility is continuous at t∗. Hence, since t∗ < τ∗1, ∃η > 0 such

that concession at t∗ is still strictly better than concession in (t∗, t∗ +η) for this
type. But then X∗K is constant in (t∗, t∗ +η), where K is the player whose type
has continuous utility at t∗. Yet, if X∗K is constant in (t∗, t∗ +η), by optimality X∗j
is constant in (t∗, t∗ +η) too for j ̸= k, a contradiction to the definition of t∗.

(iv) For t0 < t00 < τ∗1, X∗K(t0)< X∗K(t00), K ∈ {A, B}.
If X∗K is constant in (t0, t00), by optimality X∗J is constant in (t0, t00), but this con-
tradicts (iii).

(v) X∗K is continuous in (τ∗0,τ∗1).
A jump at t ∈ (τ∗0,τ∗1) implies the opponent waits in some (t− ϵ, t), a contradic-
tion to (iv).

Since X∗A and X∗B are strictly increasing, A and B randomize over the entire interval
(τ∗0,τ∗1). Clearly, θB

o strictly prefers to wait and hence does not concede in (τ∗0,τ∗1).
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Therefore, UA
r and UB

i are constant through (τ∗0,τ∗1) and so these utilities are differ-
entiable. From θB

i ’s utility, we get

γBe−δtx∗A(t) − δ(1 − X∗A(t))(1 − γA)e−δt − x∗A(t)(1 − γA)e−δt = 0,

where x∗A is the derivative of X∗A. Hence, for all t ∈ (τ∗0,τ∗1) we get

x∗A(t)

1 − X∗A(t)
=

(1 − γA)δ
γA + γB − 1

= λA
N.

Note that x∗A(t)/(1− X∗A(t)) represents A’s rate of concession at t. Then, we get that
A concedes with a constant rate of λA

N in the interval [τ∗0,τ∗1]. Through the same
calculations, we conclude that B must concede with a constant rate of λB

N in the
same interval. Note that in order to find the concession rates in [τ∗0,τ∗1] we never
used the fact that a fair contract could be offered at (τ∗0, 0) with positive probability.
Therefore, in case that is not true, we can have τ∗0 = 0.

Proof of Lemma 1.13

Proof. Suppose first that A concedes with positive probability x0 to (1/2, 1/2) at τ∗0.
Then, there exists t< τ∗0 such that B does not concede in the interval (t,τ∗0). This
implies that neither A concedes in the same interval. Now, if B does not concede
in the continuation game τ∗0 after offering again (1− γB,γB), then A concedes to
(1− γB,γB) no later than t. In fact, concession at t provides a payoff of (1− γB)e−δt,
while any other action that moves at τ∗0 or after gives [1/2YB(τ∗0|τ

∗
0)+ (1− γB)(1−

YB(τ∗0|τ
∗
0))]e−δτ

∗
0 , which is strictly lower than the previous one. Therefore, when

x0 > 0, it must be that B concedes with positive probability at τ∗0 after offering again
(1− γB,γB). Now, since θB

i and θB
o randomize the offer of the fair contract between

τ∗0 and τ∗1, we have that it is optimal for θB
i to offer (1− γB,γB) at τ∗0. Moreover,

he is conceding with positive probability to (γA, 1− γA) in that event. Hence, θB
i ’s

indifference condition implies

(1 − γA)e−δτ
∗
0 = [1/2x0 + (1 − x0)(1 − γA)]e−δτ

∗
0 .

Yet, this equation cannot be true for x0 > 0. Therefore, we have to assume x0 =
0. Suppose again that A is conceding to (1− γB,γB) at τ∗0 with positive probability.
Then, θB

i ’s payoff from offering (1− γB,γB) is strictly greater than the payoff from
the offer of the fair contract, and so θB

i does not offer (1/2, 1/2) at τ∗0, a contradiction.
Therefore, A cannot concede with positive probability to either contract at τ∗0.

Proof of Theorem 1.14
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Proof. By contradiction, assume |supp(YB)| ≥ 2. From Proposition 1.7 we know
|supp(YB)|< +∞. Therefore, ∃τ∗0,τ∗1 ∈ N0 such that τ∗0 < τ∗1 and

τ∗1−1
∑

n=τ∗0+1

YB(n) +
∞
∑

n=τ∗1+1

YB(n) = 0,

so that τ∗0 and τ∗1 are as described in Lemma 1.12 and Lemma 1.13. From Propo-
sition 1.7 we know that supp(YB

i )= supp(YB
o ), so that both θB

o and θB
i randomize

between τ∗0 and τ∗1 (and possibly, between not offering the fair contract at all). Now,
since θB

o randomizes, we need

UB
o (ΣA,τ∗0, T0

S(τ∗0)) = UB
o (ΣA,τ∗1, T0

S(τ∗1))

in equilibrium. Recall that θB
o waits until the end of GAS T0

S(·) in equilibrium. Since
T0

S(·) is in θB
i ’s support as well, and θB

i randomizes between τ∗0 and τ∗1, we need

UB
i (ΣA,τ∗0, T0

S(τ∗0)) = UB
i (ΣA,τ∗1, T0

S(τ∗1)).

Therefore, we have

(1 − z)UB
o (ΣA,τ∗0, T0

S(τ∗0)) + z(1 − γA)e−δT0
S (τ∗0) = (1 − z)UB

o (ΣA,τ∗1, T0
S(τ∗1)) + z(1 − γA)e−δT0

S (τ∗1).

By θB
o ’s indifference, we get

T0
S(τ∗0) = T0

S(τ∗1).

From Lemma 1.12 and Lemma 1.13 we know that A does not concede with posi-
tive probability at (τ∗0,+1) and (τ∗1,+1) to the fair contract. Therefore, T0

S(τ∗0) and
T0

S(τ∗1) depend on λA
S , µB

i ((τ∗0, 0);θA
b ) and µB

i ((τ∗1, 0);θA
b ). Since the GAS which

starts at n ∈ N has the same concession rates of a game started at 0, with the differ-
ence that the share of the pie shrinks (with no impact on the concession probability),
we have that

T0
S(τ∗0) = −

log(µB
i ((τ∗0, 0);θA

b ))

λA
S

+ τ∗0

and
T0

S(τ∗1) = −
log(µB

i ((τ∗1, 0);θA
b ))

λA
S

+ τ∗1.

Hence, the GAS at τ∗0 is equivalent to a game started at 0 shifted by τ∗0 periods. The
same holds for τ∗1. We have

−
log(µB

i ((τ∗0, 0);θA
b ))

λA
S

+ τ∗0 = −
log(µB

i ((τ∗1, 0);θA
b ))

λA
S

+ τ∗1,

which implies

µB
i ((τ∗0, 0);θA

b )e−τ
∗
0λ

A
S = µB

i ((τ∗1, 0);θA
b )e−τ

∗
1λ

A
S ,
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and so
µB

i ((τ∗1, 0);θA
b ) = µB

i ((τ∗0, 0);θA
b )eλ

A
S(τ∗1−τ

∗
0).

Yet, by Lemma 1.12, we know that A concedes at rate λA
N in the time interval

[τ∗0,τ∗1]. Therefore, A’s reputation grows at rate λA
N. Hence, in equilibrium, we get

µB
i ((τ∗1, 0);θA

b ) = µB
i ((τ∗0, 0);θA

b )eλ
A
N(τ∗1−τ

∗
0).

Since γB < 1/2, λA
N ̸= λ

A
S , and so A’s reputation grows at a rate that, given θB

o ’s in-
difference, does not make θB

i indifferent between τ∗0 and τ∗1. This is a contradiction
since τ∗0,τ∗1 ∈ supp(YB

i ).

Proof of Proposition 1.16

Proof. First, note
YB(τ∗) = qo + qiY

B
i (τ∗),

as YB
o (τ∗)= 1. Therefore,

YB(τ∗|τ∗) =
YB(τ∗)
1 − X

=
qo

1 − X
+

qiY
B
i (τ∗)

1 − X
,

where X =
∑τ∗−1

n=0 XB
n ([n, n+ 1]). Observe that qo/(1− X)= µA

r ((τ∗,−1);θB
o ). There-

fore, we are left to prove that µA
r ((τ∗,−1);θB

i )YB
i (τ∗|τ∗)= qiY

B
i (τ∗)/(1− X). Note

that

µA
r ((τ∗,−1);θB

i ) = 1 − (µA
r ((τ∗,−1);θB

b ) + µA
r ((τ∗,−1);θB

o )) = 1 −
qb + qo

1 − X
.

Hence,

µA
r ((τ∗,−1);θB

i )YB
i (τ∗|τ∗) = µA

r ((τ∗,−1);θB
i )

YB
i (τ∗)

1 − 1
qi

X

= qiµ
A
r ((τ∗,−1);θB

i )
YB

i (τ∗)

qi − X

= qi

�

1 −
qb + qo

1 − X

� YB
i (τ∗)

1 − (qb + qo) − X

= qi

�

1 − X − (qb + qo)
1 − X

� YB
i (τ∗)

1 − (qb + qo) − X

= qi
YB

i (τ∗)

1 − X
.



References | 47

References

Abreu, D., and F. Gul. 2000. “Bargaining and reputation.” Econometrica 68:
85–117. [5, 12, 42]

Abreu, D., and D. Pearce. 2007. “Bargaining, Reputation, and Equilibrium Selec-
tion in Repeated Games with Contracts.” Econometrica 75: 653–710. [3, 5, 13]

Abreu, D., D. Pearce, and E. Stacchetti. 2015. “One sided uncertainty and delay in
reputational bargaining.” Theoretical Economics 10: 719–73. [13]

Ekmekci, M., and H. Zhang. 2024. “Reputational Bargaining with External Resolu-
tion Opportunities.” Review of Economic Studies, 1–30. [6]

Fanning, J. 2016. “Reputational Bargaining and Deadlines.” Econometrica 84:
1131–79. [5]

Friedenberg, A. 2019. “Bargaining under strategic uncertainty: the role of second-
order optimism.” Econometrica 87: 1835–65. [21]

Hörner, J., and N. Sahuguet. 2011. “A war of attrition with endogenous effort lev-
els.” Economic Theory 47: 1–27. [6]

Kreps, D. M., and R. Wilson. 1982. “Reputation and imperfect information.” Jour-

nal of Economic Theory 27: 280–312. [5]

Laraki, Rida, Eilon Solan, and Nicolas Vieille. 2005. “Continuous-time games of
timing” [in en]. Journal of Economic Theory 120 (2): 206–38. Accessed July 14,
2023. https://doi.org/10.1016/j.jet.2004.02.001. [8]

Leeuwen, B. von, T. Offerman, and J. van de Ven. 2020. “Fight or flight: endoge-
nous timing in conflicts.” Review of Economics and Statistics 104: 217–31. [6]

Maschler, M., E. Solan, and S. Zamir. 2013. Game Theory. Cambridge University
Press. [34]

Milgrom, P., and J. Roberts. 1982. “Predation, reputation, and entry deterrence.”
Journal of Economic Theory 27: 280–312. [3, 5, 33, 34]

Wolitzky, A. 2012. “Reputational bargaining with minimal knowledge of rational-
ity.” Econometrica 80: 2047–87. [5]

Zhao, Z. 2023. “Bargaining with heterogeneous beliefs.”
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4318267. [5, 6]

https://doi.org/10.1016/j.jet.2004.02.001


.



.

Chapter 2

Simultaneous Bidding in Sealed-Bid
Auctions

2.1 Introduction

In this second chapter, we study the bidding behavior in a model of competing and
simultaneous sealed-bid auctions. We make use of second-price auctions and first-
price auctions. Buyers are symmetric, have unit demand, and can participate and
bid on all the auctions with no entry costs. The structure of the game is as follows.
Several sellers hold simultaneous auctions and sell homogeneous goods (one each)
to a group of buyers. Each buyer perceives the goods as perfect substitutes: they are
interested in acquiring just one unit. The game has incomplete information, where
valuations are independent and ex-ante symmetric. After the buyers have decided
on their bids, the auctions are solved. This framework raises the following trade-off:
bidding on multiple auctions increases the probability of winning at least one object,
but concurrently it increases the sum of the expected prices, as the bidder may win
more than one object, which is undesired. Yet, winning two goods is better than
zero if the prices paid are low.

Recall that agents bid their type in the classic equilibrium of a second-price auc-
tion. Here, if bidders find it optimal to bid on multiple auctions, they reduce their
bids to offset the higher sum of expected prices and hence would not reveal their
type. Solving these games is not trivial: Cai and Dimitriou (2014) show that these
games are at least PP-hard1. Tipically, we aim to identify symmetric and pure equi-
libria. The first part of Theorem 2.1 shows that no such equilibrium exists for a large
class of ’regular’ strategies. The regularity condition we impose that bidders, on at
least an auction, use a bidding function that is increasing from the lowest type to
any arbitrary higher type. Theorem 2.1 also states that in any pure equilibrium of

1. A PP-hard problem can be solved by probabilistic polynomial time. NP problems are included
in this class.
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a game with excess demand (the number of auctions is lower than the number of
buyers), at least one bidder will place bids in more than one auction. Consequently,
the assumption that bidders can participate in only a single auction is not without
loss of generality, even when bidders have unit demand.

We believe that symmetric behavior is a plausible property of the equilibrium
of a symmetric auction game, even if its existence is not trivial. Theorem 2.3 shows
that a symmetric equilibrium exists in the two-player case if we allow for mixed
strategies. This existence result relies on Reny (1999). The author shows that un-
der some technical conditions of the strategy space (compactness and Hausdorff)
and payoffs (better-reply security), any discontinuous symmetric game possesses
a symmetric mixed strategy equilibrium. By showing that the game satisfies these
properties, we prove existence. Furthermore, it turns out that in any of these equi-
libria all the bidders bid on all the auctions with probability 1. We are not able
to prove existence in general. In fact, better-reply security relies on the fact that
for each ϵ > 0 the players can always play strategies that avoid ties and lose no
more than ϵ expected utility. When the game has more than two players, we cannot
guarantees this. Therefore, the game may not have enough continuity to get the ex-
istence result. In Appendix 2.B we provide an example that shows why ties cannot
be easily excluded as in standard auction games.

In Appendix 2.A, we propose a brief analysis of non-trivial, pure asymmetric
equilibria with increasing strategies2. We provide some examples and find their re-
spective equilibria. As anticipated in the discussion of Theorem 2.1, in equilibrium
some of the players bid on multiple auctions.

Building upon Szentes (2007), we characterize symmetric mixed-strategy equi-
libria in a game with two auctions and two bidders. We consider two kinds of binary
type space. In the first one, the low type has a valuation of 0 for the object. This type
does not participate in any auctions. Therefore, the only incomplete information for
a bidder with high type is whether the other player wants to participate. Then, we
consider the case where the low type has a strictly positive valuation, so that both
types want to bid positive amounts and so the high type faces stronger competition.
Solving a particular functional equation, we find a closed-form expression of a sym-
metric mixed strategy equilibrium in both cases. In the case of lowest type has zero
valuation for the objects, the high types randomize their bid over two decreasing
lines. These lines are cut in half by the 45-degree line, and one line is strictly above
the other. Moreover, the distribution of bids is the same for both auctions. On the
other hand, when the lowest type has positive valuation for the goods, we find a

2. An increasing strategy can be defined in multiple ways in the concurrent auctions setting. As
we try to be as general as possible, we posit a prerequisite condition, stipulating that the strategy must
exhibit strict monotonicity from the lowest type to a higher type in at least one auction. This definition
accommodates functions with diminishing segments as well. The crucial element is the presence of at
least one auction where the function strictly increase from the lowest to a higher type.
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continuum of equilibria where each type randomizes over a decreasing line, and
the support of the low type is strictly below the support of the high type.

We also study the case of discrete bids, showing how richer bid spaces are re-
sponsible for higher probabilities of positive bids on all the auctions.

The rest of the paper is organized as follows. In section 2, we present the lit-
erature review. In section 3 we describe the model and set the basics of the game.
Section 4 discusses equilibrium existence for a general number of auctions and bid-
ders. Here the main two theorems are presented. In section 5, we find symmetric
equilibria in the specific case of two auctions and two bidders and discuss the conse-
quences of discrete bids. Finally, we present the conclusions at the end of the paper.

2.2 Literature Review

Many works on competing auctions assume that buyers (who desire to acquire just
one unit of the good) can participate in one auction only and allow them to ran-
domize their participation decision (McAfee (1993), Peters and Severinov (1997),
Delnoij and De Jaegher (2020)). Peters and Severinov (2006) consider instead si-
multaneous English auctions in which bidders can bid on multiple auctions. When
there are no bidding cost and no fixed ending time for the auctions, the authors find
that the strategy that bids on the auction with the lowest standing bid is a Bayesian
equilibrium. Anwar, McMillan, and Zheng (2006) perform an empirical analysis us-
ing evidence from eBay. They find that bidders bid across multiple auctions; their
strategy is coherent with what is suggested by Peters and Severinov (2006). We
follow this approach in a framework of sealed-bid auctions. Gerding et al. (2008b)
have also addressed this problem by categorizing bidders into two groups: local and
global. A local bidder is a bidder who can bid on one auction only, while a global
bidder can bid on multiple auctions at the same time3. In their model, there is only
one global bidder, and the mechanism is a second-price auction. They study the
behavior of the global bidder and prove that no matter the number of local bidders
and available auctions, she wants to place a bid on all the auctions. We can interpret
this result in the following way: in a model with only global bidders, there exists no
equilibrium in which all want to bid on one auction only. Our work diverts from this
path, considering games with global bidders only. At the end of their paper, Gerding
et al. (2008b) analyze the game with three global bidders and no local bidders. They
approach the problem with numerical simulation. Their algorithm oscillates among
two states and hence it does not converge. In Appendix 2.A, we solve this specific

3. The authors provide many reasons why a bidder should be local. For example, she may have
bounded rationality, and therefore be unable to compute the optimal strategy when considering mul-
tiple bids. The bidder may also have a budget constraint: Gerding et al. (2008a) prove in their paper
that a bidder may prefer to concentrate her resources on one auction when budget-constrained. Alter-
natively, the bidder may be unaware of the other auctions (unlikely in the case of online auctions).
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game analytically, and we find a (non-trivial) equilibrium when the distribution of
types is uniform, the same distribution the authors assume in their example.

Our paper also builds on the work of Szentes (2007), who analyzed the sce-
nario of two auctions and two symmetric bidders. Szentes examined both perfect
complements and perfect substitutes goods, assuming that bidders have only one
type, which implies complete information. The auction mechanism studied was a
first-price auction. However, in a separate paper, Szentes (2005) provided methods
to convert first-price auction equilibria into second-price auction equilibria. We ex-
tend Szentes’ results by introducing an additional bidder type into the model, thus
incorporating incomplete information.

2.3 The Model

We consider an auction game G, in which K ≥ 2 independent sealed-bid auctions
selling the same good are held simultaneously. In this game, N bidders can partici-
pate in any number of auctions. The mechanism can either be a first-price auction,
G= GFPA, or a second-price auction, G= GSPA. When not specified, G can be either of
them. Bidders are assumed ex-ante symmetric and with unit demand. In the game’s
first stage, Nature specifies a type for each bidder from the set Θ ⊆ [0, 1] according
to some distribution F (assumed to be atomless when types are continuous). Types
are independent across players. Once they know their type θ ∈ Θ, each bidder se-
lects a bid for each auction from the bid space B . Since there are K simultaneous
sealed-bid auctions, the action space is A =BK. We assume that 0 ∈B and con-
sider a bid of 0 on auction j equivalent to the decision of not participating in that
auction.

Since goods are homogeneous and bidders have unit demand, the object of inter-
est is the probability of winning at least one good. We denote it with Q. Q is a func-
tion of the player’s vector of bids b ∈A and of the other players’ strategies. A pure
strategy in this game is a function β = (β1, . . . ,βK) where, for all k, βk : Θ −→B
is a measurable function. Each βk assigns to each type θ a bid βk(θ) on auction k.
Therefore, for each θ ∈ Θ, β(θ) gives the vector of bids of the player.

Preferences are assumed to be linear. Hence, the interim expected payoff of bid-
der i when her type is θi, she bids βi(θ)= (β1

i (θi), . . . ,βK
i (θi)) and each j ̸= i uses

strategy βj is

ui(θi,βi,β−i) = θiQi(βi(θi),β−i) −
K
∑

k=1

E[Pk|βk
i (θ),βk

−i],

where E[Pk|βk
i (θ),βk

−i] denotes the expected price of auction k paid by i given
i’s bid and strategies βk

−i. Clearly, the expected price depends on the format FPA or
SPA. We compute the expected payoff of a mixed strategy in the obvious way.
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Figure 2.1. Bidding function k with θk = 0

It is important to note that while the expected gain θiQi is influenced by the
strategies used in all the auctions, each expected price is independent of the bidding
strategies on the other auctions.

2.4 Equilibrium Existence

In this section, we let Θ =B = [0, 1]. In symmetric auction games we usually
search for symmetric equilibria. We investigate the nature of pure strategy equi-
libria first. A symmetric pure strategy equilibrium in this game is a strategy β∗ such
that ∀i ∈ {1, . . . , N}, ∀θi ∈ Θ, β∗(θi) maximizes ui(θi,βi,β

∗
−i). We know that, in any

symmetric equilibrium, βk(θ)≤ θ for each θ and auction format. Now, for each
auction k, define

θ k := inf{θ ∈ [0, 1] : ∃θ̃ < θ s.t βk(θ̃) ≥ βk(θ)}.

Note that when θ k > 0, the bidding function βk is strictly increasing in the in-
terval [0,θ k]. In fact, consider θ < θ 0 < θ k. Then, by definition of θ k we have that
βk(θ)< βk(θ 0). Moreover, observe βk is allowed to have decreasing parts in the
interval [θ k, 1]. An example of a bidding function βk with θ k = 0 and βk(θ)≤ θ is
when it exhibits infinite oscillations (decreasing branch followed by an increasing
branch) as θ gets close to 0. Figure 2.4 depicts an example of a bidding function of
this kind. Clearly, θ k is a function of βk and of β in general. When the set where
we take the infimum is empty, let θ k = +∞. In the next Theorem, we show that
the existence of an auction k with θ k > 0 is enough to exclude the possibility of a
symmetric pure equilibrium. Moreover, we show that whenever there are more buy-
ers than sellers (so that there is excess of demand), there cannot be an equilibrium
where the bidders split and bid on a single auction each. Therefore, if they coordi-
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nate and enter one auction only, they have an incentive to deviate and bid across
multiple auctions.

Theorem 2.1. Consider strategy β and suppose there exists k ∈ {1, . . . , K} such that
θ k > 0. Then, β cannot be a symmetric pure strategy equilibrium. Moreover, whenever
N > K there are no equilibria in pure strategies where all the bidders bid on one auction
only.

Before the proof, we want to report Gerding et al. (2008b) result about
participation on multiple auctions, adapting it to the current setting.

Theorem (Gerding et al. (2008b)) let G= GSPA. Suppose that ∀i ∈ {1, . . . , N − 1}
there exists k ∈ {1, . . . , K} such that for all θi ∈ [0,1], βk

i (θi)= θi and for j ̸= k,
β

j
i (θi)= 0. Then, βN is optimal for player N only if βk

N(θN)> 0 for all θN > 0, and
for all k ∈ {1, . . . , K}.

We are now ready to prove Theorem 2.1.

Proof. First, observe ∀θ 0 ∈ (0, 1] we cannot have more than one auction k where βk

is strictly increasing in [0,θ 0]. If there are two or more, these auctions have perfectly
correlated allocations, and in this case, a profitable deviation is to bid on only one
of these auctions. In fact, not that if k and m are two auctions such that βk and βm

are strictly increasing in [0,θ 0], then for θi ∈ (0,θ 0],

Qi(β
1
i (θi), . . . ,βk

i (θi), . . . ,βm
i (θi), . . . ,βK(θi),β−i) = Qi(β

1
i (θi), . . . ,βk

i (θi), . . . , 0, . . . ,βK(θi),β−i).

Therefore, bidding 0 on auction m leaves the expected allocation unchanged
and reduces the expected price of auction m to 0.

Hence, suppose there exists a unique k ∈ {1, . . . , K} such that θ k > 0. Take θ 0 ≤
θ k. Now, consider auction m ̸= k. Let

θ ∗ := inf{θ ∈ [0,θ 0] : ∃θ̃ < θ s.t βm(θ̃) > βm(θ)}.

The set on which we take the infimum, can either be empty or non-empty. As-
sume it is empty first. Then, ∀θ ∈ [0,θ 0], and ∀θ̂ ∈ (θ ,θ 0], βm(θ̂)≥ βm(θ). Hence,
βm is weakly increasing in [0,θ 0]. First, we exclude βm(θ)= 0 for all θ ∈ [0,δ) for
any δ < θ 0. If so, take θ < δ, and observe that βk(θ)= 0 and βm(θ)> 0 is a prof-
itable deviation (when G= GFPA, we consider small βm(θ)). Therefore, βm(θ)> 0
for all θ ∈ (0,δ] for some δ > 0. But then, since βm is weakly increasing and pos-
itive for positive types, winning auction m implies winning auction k. Therefore,
βm(θ)= 0 is a profitable deviation for these types, a contradiction.

Now, assume {θ ∈ [0,θ 0] : ∃θ̃ < θ s.t βm(θ̃)> βm(θ)} is non-empty. We have
two different cases, θ ∗ = 0 and θ ∗ > 0. Suppose first θm = 0. We first claim that
there exists θ ∈ [0,θ 0] such that βm(θ)≥ βm(θ̃) for all θ̃ < θ . Suppose not. Then,
for all θ ∈ (0,θ 0] there exits θ < θ such that βm(θ)< βm(θ). Now, construct a se-
quence of types in the following way.
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(1) Let θ1 ∈ (0,θ 0]. Then take θ2 < θ1 be such that βm(θ2)> βm(θ1).
(2) Let θn ∈ (0,θn−1) be such that βm(θn)> βm(θn−1).
(3) Let θn→ 0. Observe this is possible by assumption.

Now, take n∗ such that θn∗ < β
m(θ1). Such n∗ exists since θn→ 0. Observe that

by construction we have βm(θn∗)> β
m(θ1)> θn∗ , a contradiction. Therefore, there

exits θ ∈ (0,θ 0] such that for all θ̃ < θ , βm(θ)≥ βm(θ̃). But then, type θ wins
auction m only if she wins auction k. Hence, θ has a profitable deviation by bidding
on k.

Hence, let θ ∗ > 0. Observe that when this is the case, then βm is weakly in-
creasing in [0,θ ∗] (it cannot be strictly increasing by assumption). By the previous
argument, these types win auction m only if they win auction k, so they have a
profitable deviation.

The second result for G= GSPA stems from Gerding et al. (2008b) in the follow-
ing way. By contradiction, suppose that in equilibrium all the bidders i ∈ {1, . . . , N −
1} bid on one auction only. Then, player N has the incentive to bid on all the auc-
tions. Hence, in a pure equilibrium, at least one bidder bids on multiple auctions.

For G= GFPA consider the following. Suppose each bidder place her bid on a sin-
gle auction. Clearly, there exists i ∈ {1, . . . , N} such that Qi < 1, as N > K. Moreover,
in a FPA, we have that in equilibrium βk

j (θj)≤ θj for all bidders j and auction k. Now,
suppose i bids on auction m, and consider a deviation that bids the same amount on
auction m and ϵ > 0 on auction k. Then, since the auctions are independent, the new
probability of winning at least one object is Q0

i = Qm
i +Qk

i −Qm
i Qk

i (we suppressed
the arguments for readability). Note that Qk

i ≥ Fn(ϵ), where n is the number of bid-
ders on auction k. Moreover, note that the expected price on auction k is Qk

i ϵ. Hence,
the new expected utility increases by the amount

θiQ
k
i (1 − Qm

i ) − Qk
i ϵ = Qk

i (θi(1 − Qm
i ) − ϵ). (2.1)

Since Qk
i > 0 for ϵ > 0 and Qi = Qm

i < 1 by assumption, ∃ϵ > 0 such that (2.1)
is strictly positive. Therefore, i can deviate and this is a contradiction.

This Theorem tells us that we cannot have any symmetric pure strategy equi-
librium unless for each auction k we have θ k = 0. This excludes any equilibrium
for which βk is increasing in an interval [0,θ 0] for any θ 0 and any auction k. An
example of a strategy β with θ k = 0 for each k, is a function such that for all k,
βk has infinite oscillation as θ gets close to 0 (Figure 2.4). Our conjecture is, in
case an equilibrium like this exists, that oscillations work as a coordination device.
Clearly, βk ̸= βm (on sets with positive measure) for each pair of auctions k and m,
otherwise these auctions are perfectly correlated in terms of allocation and bidders
prefer to bid on a single auction. Hence, each auction will have a different strategy.
Now, to have an intuition of our conjecture, suppose there are only two auctions.
We think that every type will bid ’high’ on an auction and bid ’low’ on the other one.
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High and low are calibrated to minimize the probability of winning both auctions
under the constraint of monotonic allocation (a higher type has higher probability
of winning at least one object, i.e., a higher Q). This attempt of coordination could
generate oscillations. Another example of θ k = 0 is a function βk that is weakly in-
creasing from 0 to some θ and exhibits constant values in intervals that become
progressively smaller as θ approaches zero. As shown in the Appendix for the proof
of Theorem 2.3, we cannot exclude the possibility of ties in equilibrium for a general
number of bidders. In fact, we believe that ties allow the players to hedge against
the risk of winning too many objects.

Another natural candidate for the equilibrium is the case in which the bidders
can coordinate their entry to reduce competition. For example, if there are N =
4 bidders and K = 2 auctions, naive intuition may expect the participation of two
bidders in the first auction and the two other bidders in the second auction. Our
second statement says that whenever N > K, this kind of coordination fails. In fact,
when agents split and participate on one auction only, independent types imply that
the allocation on one auction is independent from the allocation on another auction.
As Gerding et al. (2008b) suggests, since Q< 1, bidders always "demand" for more
probability of winning. As they can also control their expected price through their
bid they always have incentive to bid on multiple auctions. This may not be achieved
if auctions are highly correlated. An intuition of this result is also provided by the
next example.

Example 2.2. Let G= GSPA. Suppose there are N = 2n+ 1 bidders, where n ∈ N and
K = 2. They independently draw their type from the uniform distribution over [0,1].
There are 2n local bidders and one global bidder. n local bidders bid on auction 1,
and the other n bid on auction 2. Local bidders play either β(θ)= (θ , 0) or β(θ)=
(0,θ) depending on the auction in which they participate. Suppose the global bidder
places a bid of θ (her true type) on the first auction. Her interim utility is then

u(θ , (θ , 0),β−i) = θ
n+1 −

n
n + 1

θn+1.

Now, consider placing a bid b ∈ R+ on auction 2 as well. Then

u(θ , (θ , b),β−i) = θ(θn + bn − θnbn) −
n

n + 1
θn+1 −

n
n + 1

bn+1.

Therefore, the expected gain is

u(θ , (θ , b),β−i) − u(θ , (θ , 0),β−i)

= θ(θn + bn − θnbn) −
n

n + 1
θn+1 −

n
n + 1

bn+1 −
�

θn+1 −
n

n + 1
θn+1

�

= θbn − θn+1bn −
n

n + 1
bn+1

= bn
�

θ − θn+1 −
n

n + 1
b
�

.
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Observe that the sign of the last expression depends on

θ(1 − θn) −
n

n + 1
b Ò 0. (2.2)

Choose b ∈
�

0, n+1
n θ(1− θn)

�

. Expression (2.2) becomes strictly positive, and
then the agent gains from bidding b.

Theorem 2.1 highlights two fundamental incentives within the game. First,
when auctions are highly correlated, bidders tend to bid on fewer auctions. Con-
versely, when the auctions are independent and each bidder initially bids on a single
auction, they wish to deviate by bidding on all of them. Therefore, any equilibrium
lies between these two extremes: the auctions will be neither entirely independent
nor perfectly correlated.

It is not trivial to obtain symmetric behavior in this game. The following result
states symmetric behavior is possible in equilibrium with mixed strategies when
N = 2. Proving the existence of such solutions can be problematic. Auctions present
discontinuity in the payoffs. Therefore, we cannot apply classical results in fixed
point theory. Reny (1999) provided Nash equilibrium existence results for a large
class of discontinuous games. His main Theorem gives sufficient conditions for the
existence of pure strategy equilibria that generalizes the mixed strategy equilib-
rium existence in the previous literature (e.g., Nash (1950), Glicksberg (1952)).
Moreover, he provides additional conditions which are sufficient for the existence
of symmetric equilibria. Proving that G possesses all the sufficient conditions re-
quires many technical steps. Thus, we leave the proof of the following Theorem in
the Appendix.

Theorem 2.3. Let N = 2. The game G possesses a symmetric equilibrium in mixed
strategies.

In this section we have seen that pure, regular strategies and symmetric behav-
ior cannot be achieved at the same time. Therefore in the next section we analyze
the game G focusing on symmetric strategies. As proved in the previous theorem,
we can obtain such an equilibrium when N = 2 allowing the bidders to use mixed
strategies. The reason why we cannot extend the proof to any N ≥ 2 is related to the
fact that we cannot grant that the bidders do not strictly prefer ties in equilibrium.
This blocks us from generating enough continuity in the game to use Reny (1999)
results. We discuss this in Appendix 2.B. The analysis of (asymmetric) pure strat-
egy equilibria is left in the Appendix 2.A, where we find the equilibria in several
different examples and show their properties.
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2.5 Symmetric Equilibria

2.5.1 Discrete bids

We start the section with a simple example of a game with discrete bids, two players,
two auctions and two types. This game allows us to show the role of discrete bids
on the equilibrium. Let G= GSPA, Θ = {0,1}, N = 2 and B = {0,1/2, 1}, and set
Pr(θ = 0)= 1/2. We denote with σ(θ) the probability distribution over bids when
the player’s type is θ . For example,σ(1)= [0.5(x, y), 0.5(y, x)]means that type θ =
1 plays (x, y) (i.e., bids x on auction 1 and y on auction 2) and (y, x) with probability
of 0.5 each.

Proposition 2.4. The game GSPA has only two symmetric mixed equilibria σ1, σ2,
where

σ1(θ) =

(

[1(0,0)] if θ = 0

[1/6(1,0), 1/6(0,1), 2/3(1/2, 1/2)] if θ = 1.

and

σ2(θ) =

(

[1(0,0)] if θ = 0

[1/2(1, 1/2), 1/2(1/2,1)] if θ = 1.

In the first equilibrium, bidders have a positive probability of bidding on one
auction only (recall 0 bids are equivalent to non-participation). It is natural to ask
whether this kind of equilibrium exists because of the low cardinality of the action
space. In the next Proposition we show that this is indeed the case. The probability
of bidding on one auction decreases as the action space becomes richer. Therefore,
consider the sequence of games Gn similar to the previous one, where the type space
is Θ = {0,1} and the bid space is Bn = {0= x0, x1, . . . , xn, xn+1 = 1} such that the
points in the set are equidistant. We get the following proposition.

Proposition 2.5. Consider the sequence of games GSPA
n and let pn be the probability

that a player bids on one auction only in a symmetric mixed equilibrium of GSPA
n . Then,

pn→ 0 as n→∞.

Proof. We drop the subscript n for readability. Suppose both bidders play the action
(1,0) with probability p by both players in a symmetric equilibrium. Next, consider
player i and the deviation (1, x1). We check the net gain of player i of moving mass
p from (1,0) to (1, x1). This deviation benefits i in the event in which the other
bidder plays (1, 0) and she loses the tie. The benefit is 1, and the probability that
this event happens is 1

4p (0.5 for θ = 1 of the other player and 0.5 for losing the tie).
Therefore the benefit is at least 1

4p. Next, observe that playing (1, x1) over (1, 0) can
be detrimental to i in the case in which she is already winning auction 1. Yet, if the
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other player plays (1, 0), i does not pay any additional price. Hence, the maximum
loss is 1

2(1− p)x1. Thus, a necessary condition for the optimality of (1,0) is

1
4

p ≤ x1
1
2

(1 − p) ⇔ p ≤
x1

1/2 + x1
.

Then, as x1→ 0, we must have that p→ 0.

Therefore, a richer type space induces the players to bid more frequently on all
the auctions. In what follows, we prove that this fact holds in the limit too, where
the bid space is the continuum [0, 1]. Moreover, it holds for any number of auctions
and bidders.

Consider again G ∈ {GFPA, GSPA}, Θ =B = [0,1].

Proposition 2.6. In any symmetric mixed strategy equilibrium of G, the players bid
on all the available auctions with probability 1.

This Proposition is true for all N ≥ 2. Yet, as previously discussed, we cannot
prove the existence of a symmetric mixed strategy equilibrium when the number of
players is more than 2. The intuition of the previous Proposition is pretty straight-
forward: by symmetry, if one bidder puts positive probability on the strategy that
bids on, say, auction 1 only, then everyone assigns the same probability to the same
action. Hence, there is a strictly positive probability that another auction, for exam-
ple, auction 2, will be left with no participants. Therefore, the strategy that bids
the same amount on auction 1 and a small amount on auction 2 makes the player
strictly better off, as the amount on the second auction can be arbitrarily small⁴. We
start with the following Lemma, which is the core of the proof.

Lemma 2.7. Suppose N = 2, K = 2, and types are uniformly distributed over [0, 1].
Let b> 0. Then, in any symmetric mixed strategy equilibrium players do not put posi-
tive probability on the strategies (b, 0) and (0, b).

Proof. Suppose otherwise, that is, both players put q1 > 0 on (β1(θ), 0), or q2 > 0
on (0,β2(θ)), or both. Without loss of generality, we assume both. Consider bidder
i ∈ {1, 2}. We claim ∃ϵ > 0 such that (β1(θi),ϵ) (where θi is i’s type) is a profitable
deviation against (β1(θi), 0). To do so, we compare the interim payoff provided by
(β1(θi),ϵ) and (β1(θi), 0) in all the relevant events. We use interim payoffs as all
the statements in the following steps hold for all θ > 0.

With probability q1 > 0 bidder j ̸= i plays (β1(θj), 0). In equilibrium, β1(θ 0)>
β1(θ 00) for θ 0 > θ 00 (this is trivially true when the player decides to bid on a sin-
gle auction). In this event, the action (β1(θi),ϵ) makes i win at least one object.

4. The intuition is similar to the result in war of attrition in continuous time where at most one
bidder can concede with positive probability. In fact, if both do, one of the player can wait an ϵ at time
0 and get a strictly higher payoff. See Abreu and Gul (2000), Hendricks, Weiss, and Wilson (1988).
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Moreover, the expected prices of (β1(θi), 0) and (β1(θi),ϵ) are the same if we con-
dition on j playing (β1(θj), 0) in GSPA, and are arbitrarily close in GFPA. Therefore,
(β1(θi),ϵ) increases payoff by θi(1− θi) with probability q1.

Consider next j playing (0,β2(θj)). This event happens with a probability of
q2 > 0. Here, both (β1(θi), 0) and (β1(θi),ϵ) grant i the object. Yet, the second bid
increases the expected price of auction 2 by a maximum of ϵ.

Finally, with probability q3 bidder j is playing some bid (β 0,β 00). Then, (θi, 0)
and (θi,ϵ) provide the same probability of winning and expected price on auction
1. Winning auction 2 may be correlated with the event of winning auction 1. We
consider the worst-case scenario, in which bidding on auction 2 does not increase
the probability of winning at least one object. Therefore, (β1(θi),ϵ) increases the
expected price on auction 2 by no more than ϵ. In the worst-case scenario the dif-
ference in the payoff is at least

q1θi(1 − θi) + q2(−ϵ) + q3(−ϵ).

Hence, ∃ϵ > 0 such that (β1(θi),ϵ) is strictly better than (β1(θi), 0) (note that
if ϵ > 0 is a profitable deviation for θi, then it is a profitable deviation for all θ̃i >

θi).

Now, we are able to prove the Proposition.

Proof. Whenever q1 > 0, there is a strictly positive probability that the other player
is giving up auction 2. Hence, the bidder can just put a small amount in that auc-
tion and win the object for free. We can extend this result to any number of bid-
ders. In fact, suppose there are n+ 1 ∈ N bidders. Consider again q1 > 0 and q2 > 0.
There is still qn

1 probability of increasing the payoff by θi(1− θi)
n. Since in the other

cases the expected costs can be controlled by the player via ϵ > 0, (β1(θi),ϵ) is
still a profitable deviation against (β1(θi), 0). Again, the same holds for q2 > 0. Fi-
nally, we can allow for any number of auctions. By the same reasoning as the last
part, strategies of the kind (0, . . . ,βk(θi), . . . , 0) are dominated. When bidders put
a positive probability on a strategy that bids on multiple auctions but not all of
them, we can still apply the same logic. In fact, suppose the equilibrium strategy
puts probability q> 0 on (β1(θi),β

2(θi), . . . , 0, . . . ,βK(θi)). Hence, there is a prob-
ability qn that one auction has no bidders. Therefore, there exists ϵ > 0 such that
(β1(θi),β

2(θi), . . . ,ϵ, . . . ,βK(θi)) dominates the strategy in the support.
Note that the uniform distribution does not play a role. Hence, we can substitute

it with any atomless distribution.

2.5.2 Continuous bids

We have described the property that holds in any symmetric mixed equilibrium,
and so we now describe and analyze a particular case. We find symmetric mixed
strategy equilibria of a game G in which K = 2 and N = 2. Theorem 2.3 proved
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that this game always have a symmetric mixed strategy equilibrium for this number
of bidders, and the Theorem could be easily extended to the discrete types case.
This problem was previously considered by Szentes (2007) with type space Θ = {1}.
Therefore, he assumes complete information in his model. We extend his results.
First, we consider the case Θ = {0, 1} andB = [0,1]. We assume G= GFPA to find a
closed form solution, as this ensures an easier payoff structure. Then, we transform
the equilibrium into an equilibrium of the second-price auction game GSPA through
a modified version of a technique provided in Szentes (2005). We leave the details
in the Appendix. Finally, we modify the type space to Θ = {a, 1}, a> 0. In this case,
the competition for the high type is tighter as the low type is interested in the object.
On both cases, Pr(θ = 1)= 1/2.

Since the game has perfect recall, we can describe strategies in behavioral form,
as in Proposition 2.4. Therefore, a symmetric equilibrium is a set of strategies such
that each type randomizes over the square [0,1]× [0, 1] and no profitable devia-
tions are possible. Szentes (2007) proves that, in any symmetric mixed equilibrium
with atomless strategies, agents randomize over two decreasing lines that lie in the
space A = [0, 1]× [0, 1]. The reason the support includes decreasing lines only is
intuitive: whenever a bidder increases the bid on one auction, say, auction 1, the
marginal value of the object sold in auction 2 will decrease, making it optimal to
place a lower bid on this auction. We now consider the type space Θ = {0, 1} as in
the previous example and seek an explicit solution to the game. With incomplete in-
formation and Θ = {0,1}, randomization can occur along a single decreasing line.
However, following Szentes’ approach, we aim to find an equilibrium with a two-
line support, as this equilibrium resembles the one found in the case of Θ = {a, 1}.
Before delving into the technical analysis, we provide an intuitive example to illus-
trate why the support must consist of either one or two decreasing lines.

So, take two points P2 and P1 in [0, 1]2 such that P2 >> P1. These corresponds
to two different vectors of bids. We assume that P2 has higher bids on auction 1
and auction 2, as in Figure 2.2. Now consider alternative bids D1 and D2 as in the
picture. Now compare the randomization 1

2P1 +
1
2P2 against 1

2D1 +
1
2D2. Note that

both provide the same payoff if we condition on the event in which the other bid-
der plays outside of the red square. Instead, in case the opponent plays inside the
square, P1 wins no object while P2 wins both; D1 and D2 win exactly one object
each. Therefore, in order for P1 and P2 to be in the equilibrium support, the players
cannot put positive mass inside the square, otherwise 1

2D1 +
1
2D2 is a deviation.

This exclude bidimensional supports, increasing lines or more than two decreas-
ing lines, as in Figure 2.3.

Therefore, we are left with the possibility of two or one decreasing line. We
proceed with the former. Let g1 and g2 be two decreasing functions. The union of
their graphs is going to be the support of the equilibrium strategy of the high type
as, clearly, σ(0)= [1(0, 0)]. The distribution of this strategy is determined by two
other functions that we call G1 and G2. Finally, these four functions are related in
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Figure 2.2. P1 and P2 against D1 and D2
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Figure 2.3. Examples of supports that cannot emerge in equilibrium

the following way:

G1(g1(x)) =
1
2
− G1(x)

G2(g2(x)) =
1
2
− G2(x),

where G1(x)= x
1−x (1+G2(x)) and G2(0)= 0, G2(1/4)= 1/2. Then, we have the fol-

lowing.
Lemma 2.8. The curves g1 and g2 are both symmetric with respect to the objects,
strictly decreasing and for all x ∈ (0, 1/4), and g1(x)> g2(x) when G2(x)> x

1−2x .

Therefore, the support is symmetric to the auctions, as the curves g1 and g2 are
cut in half by the 45-degree line. Now, consider the following two functions:

F1({(y, g1(y))|x ∈ [0, x]}) =G1(x)

F2({(y, g2(y))|x ∈ [0, x]}) =G2(x).
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Both F1 and F2 are not defined over the entire Borel σ-algebra of Graph(g1) and
Graph(g2), but they can be extended in the obvious way. Assume also that these
extensions take value of zero on the square [0,1]× [0, 1] except on their respective
graphs. Call these extensions µ1 and µ2. Therefore, for example,

µ1({(x, g1(x))|x ∈ [a, b]}) = F1({(x, g1(x))|x ∈ [0, b]}) − F1({(x, g1(x))|x ∈ [0, a]}).

The same goes for µ2. Observe then that µ1 and µ2 are measures over [0,1]×
[0, 1]⁵.

Proposition 2.9. Let G2(x)> x
1−2x . Then

(1) µ1 and µ2 induce the probability measure σ(1)= µ1 +µ2 over the union of the
graphs of g1 and g2;

(2) The points {(x, y)|x ∈ [0, 1/4], y ∈ [g2(x), g1(x)]} provide the same payoff against
σ, where σ(0)= [1(0,0)];

(3) σ is a symmetric mixed strategy equilibrium.

Proof. (1) Trivially, µ1 and µ2 are measures and therefore σ is a measure. Next,
observe

σ(Graph(g1)
⋃

Graph(g2)) = µ1(Graph(g1)) + µ2(Graph(g2)) = G1(1/4) + G2(1/4) =
1
2
+

1
2
= 1.

Hence, σ is a probability measure over the graphs of g1 and g2.
(2) Next, let x ∈ [0, 1/4] and y ∈ [g2(x), g1(x)] and consider player I with θI = 1. The

probability of winning at least one object is then
1
2
· 1

︸︷︷︸

θII=0

+
1
2
[(1 − G1(1/4))
︸ ︷︷ ︸

II plays on g2

+ G1(x) + G1(y)
︸ ︷︷ ︸

II plays on g1

]

︸ ︷︷ ︸

θII=1

and the expected payment is
�

1
2
+

1
2

(G1(x) + G2(x))
�

︸ ︷︷ ︸

Win auction 1

x +
�

1
2
+

1
2

(G1(y) + G2(y))
�

︸ ︷︷ ︸

Win auction 2

y

that can be rewritten as
1
2

x(G1(x) + G2(x)) +
1
2

y(G1(y) + G2(y)) +
1
2

(x + y).

Now, observe that for x ∈ [0, 1/4]

G1(x) =
x

1 − x
(1 + G2(x)) ⇒ G1(x) = x + x(G1(x) + G2(x)).

5. The extension on [0, 1]× [0,1]works in the following way: for all A ⊆ [0,1]× [0,1], µi(A)=
µi(A∩Graph(gi)), for i ∈ {1, 2}.
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Therefore, the expected payment is
1
2

(G1(x) − x) +
1
2

(G1(y) − y) +
1
2

(x + y) =
1
2

(G1(x) + G1(y)).

Finally, the expected payoff is
1
2
+

1
2

(1 − G1(1/4)) +
1
2

(G1(x) + G2(y)) −
1
2

(G1(x) + G2(y)) =
1
2
+

1
2

(1 − G1(1/4)),

and then it is independent of (x, y) as long as x ∈ [0, 1/4] and y ∈
[g2(x), g1(x)].

(3) We are left to show that σ is an equilibrium, that is, there are no profitable de-
viations outside the set {(x, y)|x ∈ [0, 1/4], y ∈ [g2(x), g1(x)]} against σ. Observe
we only have to check deviations such that x, y ≤ 1

4 .
Obviously σ(0)= [1(0,0)] is optimal. For θ = 1, let x ∈ [0, 1/4] and y >

g1(x). Observe this action provides the same probability of winning as g1(x)
(i.e., 1) but has a strictly higher expected price. Hence, it cannot be optimal.
Next, consider y < g2(x). The probability of winning one object at least is now

1
2
+

1
2

(G1(x) + G2(x) + G1(y) + G2(y))

and together with the expected price we have a payoff of
1
2
+

1
2

(G2(x) + G2(y)).

Recall that G1(1/4)+G2(1/4)= 1, and so we can rewrite the previous expres-
sion as

1
2
+

1
2

(1 − G1(1/4)) −
1
2

(G2(1/4) − G2(x) − G2(y)),

and since G2(1/4)−G2(x)−G2(y)> 0, it is not profitable to deviate to y <
g2(x).

Therefore, any G2 that satisfies the condition in the previous Proposition gives
us an equilibrium. In the following picture, we show an example of the support
of this equilibrium and the corresponding transformation into the support of GSPA

equilibrium.
The case just showed presents a particular kind of incomplete information. A

player who is interested in acquiring the object (θ = 1) is uncertain about whether
the other player desire or not the object. Therefore, the information she is missing
is about the participation decision of the other agent. It is interesting to ask what
kind of symmetric equilibrium emerges when the low type is bounded away from
zero. Or, equivalently, when both types are interested in winning the object. It turns
out that this time, the support of each type can be just one decreasing line. There-
fore, let Θ = {a, 1}, where a> 0. The auctions are first-price as before. Let g1 and
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Figure 2.4. Mixed equilibria support

ga be defined on [0, a/2] and [0, b] (b< a/2), respectively. The graph of the first
function is the support of the equilibrium strategy of θ = 1 while the second one
is the support of the equilibrium strategy of θ = a. These functions are implicitly
defined by

G1(g1(x)) = 1 − G1(x)

Ga(ga(x)) = 1 − Ga(x),

where Ga(0)= 0, Ga(b)= 1, Ga strictly increasing over [0, b], and

G1(x) =

(

x
a−x Ga(x) x ∈ [0, b]

x
a−x x ∈ (b, a/2].

The distributions on the curves in the equilibrium are

F1({(y, g1(y))|y ∈ [0, x)}) =G1(x)

Fa({(y, ga(y))|y ∈ [0, x)}) =Ga(x).

We extend these functions to µ1 and µa in the same fashion as before. Observe µ1

and µa are probability measures. This equilibrium looks different to the case a= 0.
Here every type randomizes over one decreasing line. In fact, θ = a plays over the
graph of ga while θ = 1 plays over the graph of g1.

Lemma 2.10. The curves g1 and ga are both symmetric with respect to the objects,
strictly decreasing in their domain and g1 > ga in the domain of ga.

The proof of this Lemma follows the same lines of Lemma 2.8, hence it is
skipped.



66 | 2 Simultaneous Bidding in Sealed-Bid Auctions

Proposition 2.11. The strategy above generates a symmetric mixed strategy equilib-
rium.

Proof. We first show that both θ = 1 and θ = a are indifferent in their support, and
then we prove there is no profitable deviation for the players. Then, consider θ = 1.
Let (x, g1(x)) be the action she plays. Given that the other player plays (µa,µ1), the
payoff is

1
2
[1 − G1(x)x − G1(g1(x))g1(x)] +

1
2
[1 − Ga(x)x − Ga(g1(x))g1(x)]

=
1
2
[2 − (G1(x) + Ga(x))x − (G1(g1(x)) + Ga(g1(x)))g1(x))].

Observe that for all x ∈ [0, a/2], we have

(G1(x) + Ga(x))x = aG1(x)

(G1(g1(x)) + Ga(g1(x)))g1(x) = (1 − G1(x))a.

Therefore, the payoff reduces to 1− a/2. Hence, θ = 1 is indifferent in the graph of
g1.

Next, let θ = a. We show a stronger statement for this type, that is, she is indif-
ferent on the entire set

A = {(x, y)|ga(x) ≤ y ≤ g1(x)}

Therefore, suppose θ = a plays (x, y) ∈ A. Observe that her payoff is

1
2

a[1 + G1(x) + G1(y)] −
1
2
[(Ga(x) + G1(x))x + (Ga(y) + G1(y))y]

=
1
2

a +
1
2

(aG1(x) + aG1(y)) −
1
2

(aG1(x) + aG1(y))

=
1
2

a

Hence, θ = a is indifferent on the entire set A, which includes the graph of ga.
Now, we check optimality. Consider again θ = 1. Clearly, (x, y) where y > g1(x)

is not optimal as in the case a= 0. Then, let the agent bid (x, y), ga(x)< y < g1(x).
The expected payoff is then

1
2
[G1(x) + G1(y) + 1 − (G1(x) + Ga(x))x − (G1(y) + Ga(y))y]

=
1
2
[G1(x) + G1(y) + 1 − aG1(x) − aGa(y)]

=
1
2
[(1 − a)(G1(x) + G1(y)) + 1]

<1 −
a
2

,
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where the last inequality follows from G1(x)+G1(y)< 1. Hence, (x, y) cannot be a
profitable deviation. Assume y < ga(x). The expected profit is then

1
2
[(1 − a)(G1(x) + G1(y)) + (Ga(x) + Ga(y))] < 1 −

a
2

.

We conclude that θ = 1 is in equilibrium. We are left to show that θ = a does not
want to deviate to any (x, y) with y < ga(x). If the low type is playing a bid below
ga, her payoff is

1
2

a(Ga(x) + Ga(y) + G1(x) + G1(y)) −
1
2

(Ga(x)x + Ga(y)y + G1(x)x + G1(y)y)

=
1
2

a(Ga(x) + Ga(y) + G1(x) + G1(y)) −
1
2

(aG1(x) + aG1(y))

=
1
2

a(Ga(x) + Ga(y)) <
1
2

a,

where the last inequality follows from Ga(x)+Ga(y)< 1. Hence, type θ = a is in
equilibrium. Therefore, the suggested strategies form an equilibrium.

As the proof shows, the high type strictly prefers to play in its support than in
any other portion of the action space. The low type, instead, is indifferent among
all the points between the curves ga and g1. Therefore, the low type is characterized
by the same payoff condition as in Szentes (2007), where the agent had complete
information.

2.6 Conclusion

In this paper, we have analyzed the bidding behavior of unit-demand buyers who
have the opportunity to place bids on multiple sealed-bid auctions. Our analysis
reveals several key insights about the strategic behavior of bidders in such environ-
ments.

Firstly, we demonstrated that restricting bidders to participate in only one auc-
tion is not without loss of generality. In fact, bidders have a strong incentive to place
bids on multiple auctions simultaneously. This multi-auction bidding behavior arises
due to the strategic trade-offs faced by bidders. While bidding on multiple auctions
raises the sum of expected prices, it also increases the likelihood of winning at least
one item. However, the correlation among auctions plays a critical role in shaping
these incentives. When auctions are highly correlated, the incentive for bidders to
participate in all auctions diminishes. Specifically, if one auction is nearly a perfect
copy of another, the incentive to bid on both auctions is significantly reduced. Yet,
independent auctions, i.e., bidders participate in only one auction, creates incen-
tives to bid on all of them. This leads to the conclusion that in any pure equilibrium,
at least one bidder will place bids across multiple auctions.
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Secondly, we explored the existence of symmetric equilibria with ’standard’
strategies. These strategies include at least one bidding function that is increasing
from the lowest type to any arbitrarily higher type. We found that such equilibria
are unattainable in our setting. When bidders adopt regular strategies, some auc-
tions become highly correlated, which incentivizes bidders to focus their efforts on
a single auction, effectively abandoning the others. To reintroduce symmetry, we
must consider mixed strategies. We prove equilibrium existence in the case of two
bidders. Moreover, our analysis shows that if we aim to achieve symmetric equilibria
through mixed strategies, we should expect all bidders to participate in all auctions
with probability one.

Lastly, we provided a detailed characterization of the equilibria in the specific
case of two bidders facing two sealed-bid auctions and incomplete information,
therefore extending previous literature. As we considered binary type spaces for
closed form solutions, future research could extend our model further by investigat-
ing equilibria with continuous types, which would offer a better understanding of
bidder behavior. Additionally, examining the role of reserve prices in such auctions
could provide valuable insights into how sellers can influence bidding strategies and
auction outcomes.
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Appendix 2.A Asymmetric pure equilibria

In this section we find explicit solutions to the case of K = 2 and N = 3. We start
with the case of binary types. We consider discrete and continuous type spaces and
show that we get similar equilibria. Assume there are K = 2 sealed-bid second-price
auctions and N = 3 ex-ante symmetric bidders.

Binary types
Let Θ = {0, 1}. Types are equally likely, and then Pr(θ = 0)= Pr(θ = 1)= 1

2 .
The bid space is B = [0, 1]. Finally, label the players with I, II, and III. Ties are
broken evenly and randomly. Then, the following set of strategies constitutes an
equilibrium of the game G:

(1) βI(θ)= (θ , 0)

(2) βII(θ)= (0,θ)

(3) βIII(θ)=

(

(0,0) if θ = 0
�

1/2, 1/2
�

if θ = 1

Observe the following. The third bidder would be in equilibrium with any strategy
that has βIII(1)= (ϵ,ϵ) where ϵ ∈ (0,1). He can only win when the other bidders
have a type equal to 0. Hence, whenever he wins one or two objects, he gets them
for free. One may think that the previous equilibrium is because with a probability
of 1/2 bidders I or II will not bid on the auction, leaving to III the possibility of
winning the object for free. This is not entirely true. Consider the following case.
Let Θ = {2/5,1} and Pr(θ = 2/5)= 1/2. Then,

(1) βI(θ)= (θ , 0)

(2) βII(θ)= (0,θ)

(3) βIII(θ)=

(

(0, 0) if θ = 2/5
�

1/2, 1/2
�

if θ = 1

is an equilibrium of G. Even if the minimum bid from I and II is pretty high, III
prefers to bid on both when his type is 1. Moreover, when III has a valuation of 2/5
for the object, he does not participate in any of the auctions, as winning leaves him
indifferent.

It turns out that there are conditions on the type space and type distribution
under which an equilibrium of this kind always exists. We fix the upper bound of Θ
to 1 as this has no qualitative impact on the following result.

Proposition 2.12. Consider the game G where K = 2, N = 3 andB = [0,1]. Let Θ =
{a, 1} and Pr(θ = a)= Pa. Then, for any ϵ ∈ (a, 1), whenever 1− a≥ Pa, there exists
an equilibrium (βI,βII,βIII) where
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(1) βI(θ)= (θ , 0)

(2) βII(θ)= (0,θ)

(3) βIII(θ)=

(

(0,0) if θ = a

(ϵ,ϵ) if θ = 1
.

Proof. Consider player III first. Observe that the unique deviation to consider
is to play either (1,0) or (0,1), as all the other alternatives are either equiva-
lent/dominated by (ϵ,ϵ) or dominated by (1,0) and (0, 1). Suppose θIII = 1 (op-
timality for θIII = a is trivial). Then,

uIII(1, (1, 0),βI,βII) = 1
�

Pa + (1 − Pa)
1
2

�

−
�

Pa · a + (1 − Pa)
1
2
· 1
�

= Pa(1 − a).

Now compute the expected payoff of (ϵ,ϵ). First, we find the probability of win-
ning at least one object and then the expected prices. We can write QIII as 1 minus
the probability of losing all the objects. Observe that the last event happens with a
probability of (1− Pa)2. Therefore,

QIII((ϵ,ϵ),βI,βII) = 1 − (1 − Pa)2.

By symmetry of βI and βII, the expected prices of auction 1 and 2 are the same given
βIII(1)= (ϵ,ϵ), and are equal to Pa · a+ (1− Pa) · 0= Pa · a. Therefore, we have

uIII(1, (ϵ,ϵ),βI,βII) = 1(1 − (1 − Pa)2) − 2Pa · a.

The action (ϵ,ϵ) is weakly better than (1,0) or (0, 1) whenever

1 − (1 − Pa)2 − 2Pa · a ≥ Pa(1 − a) ⇔ 1 − a ≥ Pa.

Therefore, whenever the last weak inequality is satisfied, player III is in equilib-
rium with βIII.

Now consider player I. There are four possible scenarios:

(i) θII = a, θIII = a

(ii) θII = a, θIII = 1

(iii) θII = 1, θIII = a

(iv) θII = 1, θIII = 1

Suppose θI = a. In (i), the player cannot do better than playing (a, 0). In (ii),
he cannot obtain more than a payoff of 0, and (a, 0) achieves it. Case (iii) is the
same as (i). Finally, in case (iv), he cannot gain more than 0 as in (ii). Therefore,
βI(a)= (a, 0) is optimal.

Next, suppose θI = 1. In case (i), (1, 0) is trivially optimal. In (ii), the minimum
price is ϵ on both auctions. As 1> ϵ, (1,0) is optimal. In case (iii) it is strictly better
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to play on auction 1 and (1,0) is the optimal bid. In (iv), (1, 0) is again trivially
optimal.

Since I and II are symmetric and play symmetric roles in the equilibrium, II’s op-
timality follows from I’s optimality. Therefore, (βI,βII,βIII) is an equilibrium under
1− a≥ Pa.

The statement tells us that for a= 0, any distribution of types sustains such
an equilibrium. Observe that if a increases, the expected price of the third player
(with θIII = 1) increases as well. To convince the third player to bid on both, the
probability of a needs to decrease so that the low type becomes less relevant. When
this happens, competition is high, and the event of winning both objects is unlikely.
Therefore, θIII = 1 can accept the risk and keep bidding on all the available auctions.

On the other hand, when Pa increases, it becomes easier for θIII to win an object.
Then the incentives of bidding on both are lower. A low a reduces the expected
prices, and winning all the goods is not too costly. Player III can then bid on both.

Continuum of types

Let Θ = [0,1]. The following is an equilibrium of the game G:

(1) βI(θ)= (θ , 0)

(2) βII(θ)= (0,θ)

(3) βIII(θ)=
�

θ
1+θ , θ

1+θ

�

Proof. Consider agent III. Her utility is

uIII(θ , (b1, b2), (βI,βII)) = θ(b1 + b2 − b1b2) −
b2

1

2
−

b2
2

2
.

This function is concave and hence FOC will be sufficient. The point that satisfies
the FOC is

βIII(θ) =
�

θ

1 + θ
,
θ

1 + θ

�

.

For what regards players I and II, consider the following. Suppose I bids βI =
(x1, x2). Then, observe that x1 ≥ x2 is not optimal in case I wants to bid on both auc-
tions. In fact, note that I faces θIII/(1+ θIII) on auction 1 and θIII/(1+ θIII) and θII

on auction 2. Hence, when x1 ≥ x2, winning auction 2 immediately implies winning
auction 1. Winning both is never desired. Hence, x2 = 0 would be an improvement.
Therefore, we are going to assume that x2 > x1. This condition is not optimal too.
To see this, suppose we start from x2 = x1. We study what happens when we go in
the direction x2 + ϵ compared to the direction x1 + ϵ. Observe that ∀ϵ > 0, we in-
crease the probability of winning in auction 1 more than in auction 2 as in auction
1 agent I faces only III and in auction 2 she faces II and III (and III bids the same
amount on 1 and 2). Moreover, the increase in the expected price in the second
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auction is at least as high as in the first one, as in 1 player I faces θIII/(1+ θIII) and
in the second one, she faces θIII/(1+ θIII) and θII. Hence, going in the direction of
x2 + ϵ is not optimal. Since neither x1 ≥ x2 nor x2 > x1 is optimal, bidding on both
auctions is never optimal. Of course, it is better to bid (θI, 0) than (0,θI), as the first
auction features a higher probability of winning and a lower expected price. Note
that II would apply the same reasoning. Hence the suggested equilibrium is indeed
an equilibrium.

In this equilibrium, the third bidder bids on both auctions with the same amount.
The strategy in each auction is concave with respect to the type. The reason why is
the following. Consider for example type θ = 1. This type bids (1/2, 1/1), and there-
fore the sum of her bids is equal to her type. If we consider type θ = 1/2, then we
observe the bid (1/3, 1/3). In this case, the sum of her bids are strictly higher her true
valuation. As we approach type 0, we see that the sum of the bids gets closer and
closer to 2θ , that is, the bidder is placing a bid of almost her type on both auctions.
Clearly, this is due to the fact that as the type increases, the probability of winning
both auctions increases as well if the bidder place her type for both objects. To offset
this undesired event, the bidder decreases the sum of the bids with respect to her
type.

Four bidders
There are K = 2 auctions with N = 4 ex-ante symmetric bidders. The type space is
Θ = {0,1} and P0 =

1
2 . Then,

(1) βI(θ)= (θ , 0)

(2) βII(θ)= (0,θ)

(3) βIII(θ)=

(

(0,0) if θ = 0
�

3/4, 1/2
�

if θ = 1

(4) βIV(θ)=

(

(0,0) if θ = 0
�

1/2,3/4
�

if θ = 1

is an equilibrium. This equilibrium is similar to the previous ones, but two bid-
ders are bidding on both auctions this time. Moreover, these bidders do not bid
symmetrically in the two auctions. The first one bids more aggressively on the first
auction, while the second one does the opposite. Bidding symmetrically for them is
not an equilibrium. If they do so, each of them could unilaterally deviate by increas-
ing the bid in the first auction by some small ϵ > 0 and decrease the amount in the
second one by the same ϵ > 0. This deviation would allow the player, with the same
price, to win one object every time he would have tied. Furthermore, they would re-
duce the probability of winning and paying for both goods. Hence they can be in
equilibrium (given I and II behavior) only once they coordinate. Then, not only do
bidders coordinate on who should bid where, but also on the amount they bid.
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Appendix 2.B Equilibrium existence with N = 2

A mixed strategy is a distribution over the product of measurable functions from Θ
toB . A game, in what follows, is a vector G= (Xi, ui)

N
i=1 where Xi is the strategy set

of each player i and ui is her utility function.
The following definitions and results are fundamental for the proof of the exis-

tence of a symmetric mixed equilibrium.

Definition 2.13. Player i can secure a payoff of α ∈ R at x ∈ X if there exists xi ∈ Xi

such that ∃U ⊆ X−i (open) with x−i ∈ U such that

∀x0

−i ∈ U ui(xi, x0

−i) ≥ α.

Therefore, when the game is at x ∈ X, i can secure a payoff α if i has a strategy
that grants him that payoff even when the other players deviate slightly from x−i.
Next, let u(x)= (u1(x), . . . , uN(x)) be the vector payoff function which, for each x ∈
X, gives the utility of all players.

Definition 2.14. A game G= (Xi, ui)
N
i=1 is better-reply secure if whenever (x∗, u∗) is

in the closure of the graph of its vector payoff function and x∗ is not an equilibrium,
some player i can secure a payoff strictly above u∗i at x∗.

Hence, a game is better-reply secure when i can secure a payoff strictly above
u∗i whenever x∗ is not an equilibrium. Reny (1999) observes that any continuous
game is better-reply secure. Any better reply will provide (at least) one agent with
a payoff that is strictly above the payoff of a non-equilibrium and its neighborhood.

Now, let G be a quasi-concave game whenever Xi is convex for each player i, and,
for each i, for each x−i ∈ X−i, ui(·, x−i) is quasi-concave on Xi. The following is Reny
(1999)’s main theorem.

Theorem 2.15. (Reny 1999, Theorem 3.1) If G= (Xi, ui)
N
i=1 is compact, quasi-

concave, and better-reply secure, it possesses a pure strategy Nash equilibrium.

The proof of the theorem makes the role of better-reply security in the existence
of the equilibrium clearer. Better reply security creates a link between continuous
and discontinuous games. When the game possesses this property, it is possible to
characterize the set of Nash equilibrium in terms of a particular function ui instead
of ui, which is lower-semicontinuous. Then ui is approachable from below by con-
tinuous functions, and this reduces the existence problem to establishing whether
there are strategies that are robust against a finite set of deviations. In the final part
of the proof, we show that such strategies do indeed exist.

In any case, what we are interested in is not the set of pure strategy equilib-
ria. As previously shown, if we require symmetry in the equilibrium, we need to
abandon increasing strategies. The following definitions will guide us through the
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existence result of a mixed strategy equilibrium first and the existence of a symmet-
ric mixed strategy equilibrium next.

Let M the set of probability measure over (X, B), where B is the Borel σ-algebra
over X, where X is equipped with its weak⋆-topology. With a slight abuse of notation,
call ui(µ)=

∫

X uidµ for µ ∈M for each i ∈ {1, . . . , N}. Then, let G= (Mi, ui)
N
i=1 be

the mixed extension of G.

Theorem 2.16. (Reny (1999), Corollary 5.2) Suppose that G= (Xi, ui)
N
i=1 is a com-

pact and Hausdorff game. Then G possesses a mixed strategy Nash Equilibrium if its
mixed extension G is better-reply secure.

Before showing that our game G is better-reply secure, let us see what are the
sufficient conditions for a symmetric equilibrium.

Definition 2.17. A game G= (Xi, ui)
N
i=1 is quasi-symmetric if

(1) ∀i, j ∈ {1, . . . , N} Xi = Xj;
(2) ∀x, y ∈ X u1(x, y, . . . , y)= u2(y, x, y, . . . , y)= · · ·= uN(y, . . . , y, x)

Here, ui(y, . . . , y, x, y, . . . , y) denotes the function ui evaluated at the strategy in
which player i chooses x while any other player j ̸= i chooses strategy y.
Now, call v(x)= ui(x, . . . , x) the diagonal payoff function. Consider the following
two definitions.

Definition 2.18. Player i can secure a payoff of α ∈ R along the diagonal at
(x, . . . , x) ∈ XN, if there exists x ∈ X such that ui(x

0, . . . , x, . . . , x0)≥ α for all x0 in
some open neighborhood of x ∈ X.

Definition 2.19. The game G= (Xi, ui)
N
i=1 is diagonally better-reply secure if when-

ever (x∗, u∗) ∈ X ×R is in the closure of the graph of its diagonal payoff function and
(x∗, . . . , x∗) is not an equilibrium, some player i can secure a payoff strictly above u∗

along the diagonal at (x∗, . . . , x∗)

As Reny (1999) points out, diagonal better-reply security is strictly weaker than
better-reply security when N ≥ 3. Hence, showing better-reply security implies that
the game is diagonally better-reply secure when the game is quasi-symmetric. The
next theorem, along the lines of the preceding ones, tells us that diagonal better-
reply security is sufficient for the existence of a symmetric mixed strategy equilib-
rium.

Theorem 2.20. (Reny (1999), Corollary 5.3) Suppose that G= (Xi, ui)
N
i=1 is a quasi-

symmetric, compact, Hausdorff game. Then G possesses a symmetric mixed strategy
Nash Equilibrium if its mixed extension, G, is better reply secure along the diagonal.

Now that all the definitions and results have been introduced, let us summarize
what we need to prove to show the existence of a mixed symmetric equilibrium:



Appendix 2.B Equilibrium existence with N = 2 | 75

A. Xi has to be compact for each i;
B. Xi has to be Hausdorff for each i;
C. G has to be quasi-symmetric;
D. G has to be better-reply secure.

While point B. and C. will be trivial, point A. and D. requires a bit of work.

A. Xi is compact.

In a single auction, each player would have to choose a strategy beforehand, which
consists of a measurable function from the interval [0, 1] to the interval [0,1].
Here, instead, the bidder has to choose K strategies of the kind x : [0,1] −→ [0,1].
For analytical purposes, these functions have to be measurable. Hence, Xi is the
product of K spaces, in particular, K copies of the set of measurable functions
x : [0, 1] −→ [0, 1]. We will consider one of these spaces at the time.

Consider the space L∞
λ

([0,1]), that is, the space of all (equivalence classes of)
measurable functions with domain [0,1] which are λ-essentially bounded, where
λ is the Lebesgue measure. Observe that the set of all measurable functions x :
[0,1] −→ [0,1], say X̃i, is strictly contained in L∞

λ
([0, 1]). Moreover, if we consider

L∞
λ

([0, 1]) as a normed vector space (equipped with the supremum norm || · ||∞),
we have that

X̃i ⊆ B∞ := {f ∈ L∞λ ([0,1]) : ||f ||∞ ≤ 1},

that is, X̃i is contained in the unit ball of the space.
Now, let us topologize L∞

λ
([0, 1]) with its weak⋆-topology. By the Banach-

Alaoglu’s Theorem, B∞ is weakly⋆-compact. Therefore, to prove that X̃i is weakly⋆-
compact, we need to show that it is weakly⋆-closed. We can use sequences instead
of nets to characterize the closedness of X̃i.
Proposition 2.21. X̃i is a weakly⋆-closed subset of B∞.

Proof. Observe that ∀x ∈ X̃, ||x||∞ ≤ 1 λ-a.e.
Now, take a sequence xn ∈ X̃i such that xn

⋆
* x (that is, xn weakly⋆ converges to

x). By the Riesz Representation Theorem, we have that

xn
⋆
* x ⇔

∫

[0,1]
xngdλ →

∫

[0,1]
xgdλ ∀g ∈ L1

λ([0, 1]). (2.B.1)

Claim 1: x ≤ 1 λ-a.e.
Suppose not, i.e., ∃A ∈ B such that λ(A)> 0 and x(a)> 1 ∀a ∈ A. Then, consider
the function g= 1A, i.e., the index function of A. Since A is a measurable set, g is a
measurable function. Moreover,

∫

[0,1]
gdλ =

∫

[0,1]
1Adλ =

∫

A
1dλ = λ(A) ≤ λ([0,1]) < ∞.
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Hence, g is λ-integrable and therefore g ∈ L1
λ
([0, 1]). Moreover, observe

∫

[0,1]
xgdλ =

∫

[0,1]
x1Adλ =

∫

A
xdλ >

∫

A
1dλ = λ(A),

where the inequality sign comes from the monotonicity of the integral. Therefore,
by equation (2.B.1), we have that

∃N ∈ N such that ∀n ≥ N,

∫

[0,1]
xngdλ > λ(A).

But
∫

[0,1]
xngdλ =

∫

[0,1]
xn1Adλ =

∫

A
xndλ ≤

∫

A
1dλ = λ(A),

a contradiction. Therefore, x ≤ 1 λ-a.e.

Claim 2: x ≥ 0 λ-a.e.
The proof follows the same lines of the previous claim. Suppose x < 0 on a set
A ∈ B such that λ(A)> 0. Consider again g= 1A ∈ L1

λ
([0, 1]). Then,

∫

[0,1]
xgdλ =

∫

[0,1]
x1Adλ =

∫

A
xdλ < 0 =

∫

A
0dλ.

As before, since
∫

xngdλ→
∫

xgdλ in the euclidean topology over R, ∃N ∈ N such
that ∀n≥ N

∫

[0,1]
xngdλ < 0,

but again
∫

[0,1]
xngdλ =

∫

[0,1]
xn1Adλ =

∫

A
xndλ ≥ 0 =

∫

A
0dλ,

a contradiction. Hence, x ≥ 0 λ-a.e.
Therefore, x ∈ X̃i. This implies that X̃i is weakly⋆-closed and therefore weakly⋆-

compact.

Now, equip Xi with the product topology (recall Xi is the product of K copies of
X̃i). By the Tychonoff Theorem, Xi is compact if and only if every component of the
product is compact. Since this is indeed the case, Xi is compact.

B. Xi is Hausdorff.

Observe that the weak⋆-topology over X̃i is metrizable, as B∞ is metrizable.
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Hence, X̃i is Hausdorff. Since the product of Hausdorff spaces is Hausdorff (Alipran-
tis and Border (2006)), Xi is a Hausdorff space.

C. G is quasi-symmetric.

Since Xi = Xj ∀i ̸= j, and the bidders are endowed with the same utility func-
tion, the game is trivially quasi-symmetric.

D. G is better-reply secure.

Reny proves in his paper that the pay-your-bid auction is a better-reply se-
cure game. We are going to follow the same lines. The only difference is that he
only deals with strictly increasing strategies, which is not our case, unfortunately.
In any case, we can fix it by allowing players to play strategies that, given the
others’ strategies, do not permit ties with strictly positive probability. It causes no
loss of generality, as the following Lemma states.

Lemma 2.22. Let N = 2. For G ∈ {GFPA, GSPA}, bidders can always use a pure strategy
that induces ties with zero probability and lose an arbitrarily small utility.

Proof. Let (β1
i (θi),β

2
i (θi), . . . ,βK

i (θi)) be i’s bid in the game G when his type is θi.
Without loss of generality, assume that it induces a tie on auction 1 with strictly
positive probability. By assumption, this is true for a set of positive measure A ⊆
[0,1]. Therefore, θi ∈ A. Define Pr(k ̸= 1|tie 1) as the probability of winning any
auction k ∈ {2, . . . , K} given that i ties on auction 1 using the bid β1

i (θi). Then, in
the event of the tie, i’s utility is

ui(θi, (β1
i (θi), . . . ,βK

i (θi)),β−i|tie 1) =

(θi − 1/2β1
i (θi))Pr(k ̸= 1|tie 1) + 1/2(θi − β1

i (θi))(1 − Pr(k ̸= 1|tie 1)) −
K
∑

k=2

E[Pk|βk
i (θi),β

k
−i, tie 1].

Consider a small ϵ > 0 and bid β1
i (θi)+ ϵ on auction 1 such that it does not induce

ties with positive probabilities. Clearly, such ϵ exists. Then, the strategy (β1
i (θi)+

ϵ,β2
i (θi), . . . ,βK

i (θi)) provides a conditional utility of

ui(θi, (β
1
i (θi) + ϵ, . . . ,βK

i (θi)),β−i|tie 1) =

(θi − β1
i (θi) − cFPAϵ)Pr(k ̸= 1|tie 1) + θi − β1

i (θi) − cFPAϵ)(1 − Pr(k ̸= 1|tie 1))

−
K
∑

k=2

E[Pk|βk
i (θi),β

k
−i, tie 1],

where

cFPA =

(

1 if G = GFPA

0 if G = GSPA.
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Then, we have

ui(θi, (β
1
i (θi) + ϵ, . . . ,βK

i (θi)),β−i|tie 1) − ui(θi, (β1
i (θi), . . . ,βK

i (θi)),β−i|tie 1) =

− (1/2β1
i (θi) + cFPAϵ)Pr(k ̸= 1|tie 1) + 1/2(θi − β1

i (θi))(1 − Pr(k ̸= 1|tie 1))

− cFPAϵ(1 − Pr(k ̸= 1|tie 1)).

If this difference is strictly positive, then i strictly prefers β1
i (θi)+ ϵ over β1

i (θi). In
fact, in the event of tie he can get a strictly higher utility, while in the event of no
ties he can have an arbitrarily small loss, controlled through ϵ. As ϵ diminishes, the
utility gain in the first event does not decreases over a certain constant amount,
while the maximum loss in the second event converges to zero. Therefore, assume
otherwise that ∀ϵ > 0, the difference is strictly negative. Therefore, we have

−(1/2β1
i (θi))Pr(k ̸= 1|tie 1) + 1/2(θi − β1

i (θi))(1 − Pr(k ̸= 1|tie 1)) ≤ 0.

For the final step, consider the bid β1
i (θi)− ϵ on auction 1, for some small ϵ.

Again, an ϵ that produces no ties exists. The conditional payoff is then

ui(θi, (β1
i (θi) − ϵ, . . . ,βK

i (θi)),β−i|tie 1)) = θiPr(k ̸= 1|tie 1) −
K
∑

k=2

E[Pk|βk
i (θi),β

k
−i, tie 1].

Hence, the difference is

ui(θi, (β
1
i (θi) − ϵ, . . . ,βK

i (θi)),β−i|tie 1) − ui(θi, (β1
i (θi), . . . ,βK

i (θi)),β−i|tie 1) =

1/2β1
i (θi)Pr(k ̸= 1|tie 1) −

1
2

(θi − β1
i (θi))(1 − Pr(k ̸= 1|tie 1)) ≥ 0.

Since as before on the event of no ties the loss can be made arbitrarily small, we
obtain that i can avoid ties (through β1

i (θi)+ ϵ or β1
i (θi)− ϵ) and lose an arbitrarily

small utility. As this can be applied to any auction k ∈ {1, . . . , K}, where ties happen
with positive probability, we get the desired result.

Before moving into the proof, we need another technical detail. Recall that each
X̃i equipped with the relative weak*-topology of the unit ball is metrizable. This im-
plies that Xi with the product topology is metrizable (Theorem 3.36, Aliprantis and
Border (2006)). Hence, since Xi is compact and metrizable, the set of probability
measures over Xi is compact and metrizable (Theorem 15.11, Aliprantis and Bor-
der (2006)). This means that the topological properties of our new set of strategies,
Mi, can be expressed in terms of sequences without loss of generality. Now, let us
show that our game is better-reply secure. The proof follows the same lines as the
example in Reny (1999). We include this proof for completeness.

Let m∗ ∈Mi and suppose it is not an equilibrium and does not imply ties with
strictly positive probability. Moreover, suppose that (m∗, u∗) is an element of the clo-
sure of the graph of the mixed extensions vector (ex-ante) payoff function. Now, con-
sider a sequence mn that converges to m∗. By definition, lim u(mn)= u∗. Since m∗
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is not an equilibrium, ∃i ∈ {1, . . . , N} that has a profitable deviation. Observe that,
by definition of the supremum, ∀m−i ∈M−i ∀ϵ > 0 i can use a pure strategy xϵi that
provides a payoff within ϵ of her supremum and, by the previous argument, does not
imply any tie (Lemma 2.22). If there are no ties, ui is continuous at (xϵi , m∗−i). Now,
since xϵi is a profitable deviation, ui(x

ϵ
i , m∗−i)> ui(m∗i , m∗−i)= ui(m

∗). By continuity,
there exists a neighborhood of m∗−i such that ui(xϵi , m0

−i)> ui(m
∗
i , m∗−i) for each m0

−i
in the neighborhood. Since there are no ties by assumption, ui is also continuous at
m∗, which implies u(m∗)= u(lim mn)= lim u(mn)= u∗. Hence, ui(x

ϵ
i , m0

−i)> u∗i in
the neighborhood, that is, i can secure a payoff strictly above u∗i at m∗.

Now suppose that ties happen with strictly positive probability at m∗. Then,
the function is not continuous at m∗ and then u∗ = lim u(mn) ̸= u(lim mn)= u(m∗).
Moreover, one of the bidders loses with a probability strictly higher than zero
for an infinite amount of times along the sequence mn. This bidder can strictly
increase her payoff with xϵi for sufficiently small ϵ as it does not produce ties.
Hence, ui(x

ϵ
i , mn
−i) is bounded away from ui(mn) for large n. Hence, ui(x

ϵ
i )> u∗i in

the limit and by continuity of ui at m∗−i, there exists a neighborhood of m∗−i where
ui(xϵi , m∗−i)> u∗i . Then, again, i can secure a payoff strictly higher than u∗i at m∗.
Therefore, G is better-reply secure.

G with more than two players We discuss here why we cannot obtain the same
existence result when N > 2. It pins down to the proof of Lemma 2.22. In order
to show why the Lemma does not apply with more than two players, consider an
N-player game GSPA and suppose that all of the i’s opponent play the same strategy,
so that the event "tie" does not convey different information based on the identity
of the players who tied. Call the probability of tying with ℓ ∈ {1, . . . , N − 1} players
Tie(ℓ). As before, we assume without loss of generality that on auction 1 player i
can tie with positive probability using (β1

i (θi), . . . ,βK
i (θi)). The conditional utility

is

ui(θi, (β1
i (θi), . . . ,βK

i (θi)),β−i|tie 1) =
N
∑

ℓ=2

[(θi − 1/ℓβ1
i (θi))Pr(k ̸= 1|tie 1,ℓ) + 1/ℓ(θi − β1

i (θi))(1 − Pr(k ̸= 1|tie 1,ℓ))]Tie(ℓ)

−
K
∑

k=2

E[Pk|βk
i (θi),β

k
−i, tie 1].

Now, consider the bid β1
i (θi)+ ϵ, where ϵ is chosen to not induce ties, as before. We

have
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ui(θi, (β1
i (θi) + ϵ, . . . ,βK

i (θi)),β−i|tie 1) =
N
∑

ℓ=2

[(θi − β1
i (θi))Pr(k ̸= 1|tie 1,ℓ) + (θi − β1

i (θi))(1 − Pr(k ̸= 1|tie 1,ℓ))]Tie(ℓ)

−
K
∑

k=2

E[Pk|βk
i (θi),β

k
−i, tie 1].

Therefore, the difference is

ui(θi, (β1
i (θi) + ϵ, . . . ,βK

i (θi)),β−i|tie 1) − ui(θi, (β
1
i (θi), . . . ,βK

i (θi)),β−i|tie 1) =
N
∑

ℓ=2

[
1 − ℓ
ℓ
β1

i (θi)Pr(k ̸= 1|tie 1,ℓ) +
ℓ − 1
ℓ

(θi − β1
i (θi))(1 − Pr(k ̸= 1|tie 1,ℓ))]Tie(ℓ) =

N
∑

ℓ=2

1 − ℓ
ℓ
[β1

i (θi) − θi(1 − Pr(k ̸= 1|tie 1,ℓ))]Tie(ℓ).

As in the previous Lemma, now we consider the bid β1
i (θi)− ϵ. After some compu-

tations, we get

ui(θi, (β
1
i (θi) − ϵ, . . . ,βK

i (θi)),β−i|tie 1) − ui(θi, (β1
i (θi), . . . ,βK

i (θi)),β−i|tie 1) =
N
∑

ℓ=2

1
ℓ
[β1

i (θi) − θi(1 − Pr(k ̸= 1|tie 1,ℓ))]Tie(ℓ).

Let β1
i (θi)− θi(1− Pr(k ̸= 1|tie 1,ℓ))= aℓ. We have

ui(θi, (β1
i (θi) + ϵ, . . . ,βK

i (θi)),β−i|tie 1) − ui(θi, (β
1
i (θi), . . . ,βK

i (θi)),β−i|tie 1) =
∑

ℓ=2

1 − ℓ
ℓ

aℓTie(ℓ),

and

ui(θi, (β1
i (θi) − ϵ, . . . ,βK

i (θi)),β−i|tie 1) − ui(θi, (β
1
i (θi), . . . ,βK

i (θi)),β−i|tie 1) =
∑

ℓ=2

1
ℓ

aℓTie(ℓ).

Therefore, we can have, in principle, a set of strategies that allows for

∑

ℓ=2

1 − ℓ
ℓ

aℓTie(ℓ) < 0 and
∑

ℓ=2

1
ℓ

aℓTie(ℓ) < 0,

that is, a bid that induces ties with positive probability is strictly better than any
bid that reduces this probability to zero. This fact blocks Lemma 2.22 and so the
game cannot have, in principle, enough continuity so that better-reply security goes
through.
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Appendix 2.C Symmetric mixed strategy equilibrium

Lemma 2.23. Suppose one player is playing σ(0)= [1(0,0)] and σ(1) is atomless.
Then, the set of best-replies of the other player is an anti-lattice⁶ when her type is
θ = 1.

Proof. Suppose the other player is playing σ(0)= [1(0,0)] and that σ(1) is an
atomless distribution represented by the cdf F. Take (x1, y1)> (x2, y2) best re-
sponses against σ and consider type θ = 1. Suppose this type plays the strategy
σ̂ = [0.5(x1, y2), 0.5(x2, y1)]. The expected gain for this type is then

0.5
�

1
2

(Fx(x1) + Fy(y2) − F(x1, y2)) +
1
2

�

+ 0.5
�

1
2

(Fx(x2) + Fy(y1) − F(x2, y1)) +
1
2

�

.

The expected gain of playing σ̃ = [0.5(x1, y1), 0.5(x2, y2)] is instead

0.5
�

1
2

(Fx(x1) + Fy(y1) − F(x1, y1)) +
1
2

�

+ 0.5
�

1
2

(Fx(x2) + Fy(y2) − F(x2, y2)) +
1
2

�

.

Observe the expected prices of σ̂ and σ̃ are exactly the same and therefore they
do not count in the difference. Thus, the difference in terms of expected payoffs in
terms of the two strategies is

1
4
[F(x1, y1) + F(x2, y2) − F(x1, y2) − F(x2, y1)].

Since F is a cdf, this difference is positive and by the assumption of optimality of
(x1, y1) and (x2, y2), we must have that it is exactly zero, i.e., F puts mass of 0 on the
square. Then, we have that (x1, y2) and (x2, y1) are also best replies, and therefore
the best-response set is an anti-lattice.

The proof, as noted in Szentes (2007), suggests that the support cannot be any
two-dimensional set, the union of any number of increasing lines or the union of
more than two decreasing lines. In his paper, it is also noted that only one decreas-
ing line cannot constitute the entire support. While we can have a support with one
decreasing line here, we analyzed the two-line case.

Proof of Lemma 2.8
Symmetry with respect of the object is equivalent to proving that gi(gi(x))= x, i=
1,2. Then,

Gi(gi(gi(x))) =
1
2
− Gi(gi(x)) =

1
2
−
�

1
2
− Gi(x)

�

= Gi(x).

6. A set X ⊆ R2 is an anti-lattice if whenever a∧ b, a∨ b ∈ X then a, b ∈ X.
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Since both G1 and G2 are strictly increasing, it must be that gi(gi(x))= x.
In order to prove that the two curves are strictly decreasing, consider x > y. We have

Gi(gi(x)) =
1
2
− Gi(x) <

1
2
− Gi(y) = Gi(gi(y)).

Since Gi is strictly increasing, g1(x)< g2(y). Finally, we prove g1 > g2. First, observe
that

G2(x) > G1(x) ⇔ G2(x) >
x

1 − 2x
.

Suppose so. Then,

G1(g1(x)) =
1
2
− G1(x) >

1
2
− G2(x) = G2(g2(x)),

and since G2 > G1, it must be that g1(x)> g2(x).

Appendix 2.D Equilibrium Transformation

Szentes (2005) provides a method to transform FPA equilibria into SPA equilibria in
frameworks like the current one. The intuition is simple: we assume that both equi-
libria (FPA and SPA) have equal expected costs; from this equivalence, we derive
the optimal bidding function for the SPA format. We change the strategy descrip-
tion to make the transformation easier. Therefore, a strategy is now a vector (F, p)
where F is a probability measure and p is a function p : Supp(F) −→ [0,1]2. F will
describe the randomization process; p transforms the outcomes of the randomiza-
tion into bids. Observe that this kind of description is without loss of generality. For
example, in the previous equilibrium, F = σ and p= id (the identity function). In
the SPA case, we fix F and find the function q such that (F, q) is an equilibrium strat-
egy of SPA. Of course, when θ = 0, the action (0, 0) is still optimal, hence we focus
on θ = 1. Once we have found q, we need to check whether it is strictly increasing.
If so, (F, q) has the same payoffs of (F, id) in the FPA case, so it is an equilibrium. If
a profitable deviation exists in (F, q), then we would be able to recover a profitable
deviation in (F, id), which would lead to a contradiction.

Since the equation to compute q is slightly different than in Szentes (2005), we
write its derivation explicitly. So, let σi be the marginal distribution of the distribu-
tion of σ over the bids on auction i, i= 1, 2. Then, bidding x on auction i has an
expected payoff of 1

2x+ 1
2σi(x)x. If we use (σ, q) on the SPA format, we would get

1
20+ 1

2

∫ x
0 qi(y)dσi(y). Therefore, the cost equivalence condition requires

∫ x

0

qi(y)dσi(y) = x(1 + σi(x)).
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We assume that σi has a density fi, and so we have
∫ x

0

qi(y)dσi(y) = x(1 + σi(x))

⇒
∫ x

0

qi(y)fi(y)dy − x = xσi(x)

⇒
∫ x

0

(qi(y)fi(y) − 1)dy = xσi(x)

⇒
∫ x

0

�

qi(y) −
1

fi(y)

�

fi(y)dy = xσi(x).

Denote zi(y)= qi(y)− 1
fi(y) , so that

∫ x

0

zi(y)fi(y)dy = xσi(x)

⇒
∫ x

0

zi(y)dσi(y) = xσi(x)

⇒zi(x) =
d(xσi(x))/dx

dσi(x)/dx
.

Observe that in our case σi(x)= G1(x)+G2(x) for i= 1,2. Let G2(x)= 2x (which
satisfies all the assumptions imposed on G2(x)). Then, we have

zi(x) = 2x − x2 ⇒ qi(x) =
4x − 2x2 + 1

3
,

and since qi is strictly increasing between [0,1], we get the equivalence of payoffs.
Therefore σ(0)= [1(0, 0)] together with (σ(1), q), where q= (q1, q2), constitutes
a symmetric mixed strategy equilibrium for the SPA game.
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Chapter 3

Payment Choices and Cash Demand in
an Equilibrium Model of Card
Acceptance
Joint with Elia Moracci

3.1 Introduction

The advent of electronic payment systems has revolutionized the way transac-
tions are conducted, prompting shifts in consumer behavior and merchant prac-
tices. While card payments offer advantages appreciated by some consumers (conve-
nience, speed, and enhanced security), other people might be reluctant to use them
because of privacy concerns. Moreover, imperfect acceptance of cards by merchants
remains a critical obstacle to widespread usage. For these and other reasons, cash
is still a prevalent medium of exchange in many economies, albeit with varying de-
grees across different areas. As 3.2 shows, cash usage is still widespread around Eu-
rope, as in all regions in the sample people hold on average largely positive amounts
of cash. Moreover, the Figure illustrates that the amount of cash people carry with
them is higher when card acceptance rates are low. This is consistent with studies
relating lower card acceptance rates to increased cash usage (Arango, Huynh, and
Sabetti (2015), Bagnall et al. (2016)): people need to carry enough cash if they
frequently encounter merchants who only accept physical money in exchange for
goods and services.. Huynh, Schmidt-Dengler, and Stix (2014) have highlighted the
reciprocal nature of this relationship: if people carry less cash with them, merchants
find it optimal to accept card payments. Therefore, the relationship plotted in 3.2
cannot be interpreted causally, as the scattered points represent different outcomes
of the interaction between sellers and buyers. In this paper, we aim to rationalize
how these different equilibria emerge by constructing an equilibrium model that
accounts for the feedback effects between card acceptance rates and cash holdings.
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The figure shows average cash holdings reported by households (as a fraction of daily expen-
diture) and cashless acceptance rates, grouped by region at the NUTS-2 level and for different
years. Each dot is a region×year combination. Average cash holdings are measured as the mean
level of cash balances during the day, which is derived from payment diaries; cashless accep-
tance rates are computed using the share of shops visited by each respondent in which it was
possible to carry out the transaction using cards.
Source: Own calculations based on the Survey on the Use of Cash by Households (2016) and on
the Study on the Payment Attitudes of Consumers in the Euro Area (2019, 2023).

Figure 3.1. Card acceptance rates and cash holdings across European regions

Our research is particularly relevant in the present environment, characterized by
the co-existence of cash and cheap, secure cashless alternatives: understanding the
factors that drive merchants’ decisions to accept card payments and the impact of
these choices on buyers’ cash management and payment behavior is essential for ap-
propriately targeting policies aimed at fostering card usage, which has been found
to deter tax evasion (Immordino and Russo (2017), Giammatteo, Iezzi, and Zizza
(2022)) and criminal activities (Rogoff (2017)).

In this chapter, we study the acceptance and usage of cashless payment methods
and interaction with the transactions demand for cash in a model of the payments
market that features strategic interaction among merchants and equilibrium link-
ages between buyers and sellers. We model an economy where buyers and sellers
are randomly matched to exchange goods and services of different values. Buyers
have the option to use cash or cards to settle purchases, and they decide how much
cash to hold. Cash and cards differ in several aspects: cash is costly to store (in
terms of time spent handling it and due to the risk of theft), and can be used only
if the size of the transaction is small enough; cards, instead, can be used to settle
purchases of any value, but they might require the payment of a fixed cost, and they
are not universally accepted. Sellers decide whether to accept cash payments only
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or to allow their customers to use cards: the key trade-off is that each transaction
generates less profits for sellers when settled using cards, but the total number of
transactions increases when accepting. Indeed, we allow buyers to search for shops
that accept cards, inducing competition among sellers in their payment method ac-
ceptance choices; however, we assume that with some probability agents are captive
(forced to purchase in a certain shop), introducing a source of imperfect competi-
tion/market power in the model. We also allow for heterogeneity on the buyers’
side, by assuming that a fraction of them prefer to pay using cards, while the others
use cash whenever they have the chance. Since buyers’ decisions on how much cash
to hold depend on the overall card acceptance rate and, at the same time, sellers’
acceptance policies are optimally targeted in response to their customers’ money
balances, the model features equilibrium interactions between the two sides of the
market.

We start by highlighting the main tradeoffs faced by sellers in a simple
model with two merchants, showing that the degree of strategic complementar-
ity/substitutability in acceptance choices (which is related to the extent of search
frictions) is a key driver of equilibrium outcomes. For equilibria with imperfect ac-
ceptance (some sellers accept cards, others don’t) to arise, search frictions should
be small enough, to foster competition among sellers. In fact, when search frictions
are too high, sellers do not face any competition, and since they are symmetric they
adopt the same strategy (either accepting or not card payments). We then move to a
model with N sellers, where we micro-found the cash holding decision of buyers and
we include buyer heterogeneity. The presence of agents who prefer cards (which
seems empirically relevant from survey data on payments) generates a mechanism
that discourages sellers’ acceptance. When a store starts to accept cards, indeed,
two things happen: on one hand, it benefits from the fact that its customers can now
purchase goods that have a price higher than their cash balances; however, this gain
is counterbalanced by the fact that their customers that prefer cards will stop using
cash even for small purchases. We show equilibrium existence for our model econ-
omy, and we derive a uniqueness result for the game with a large enough number of
sellers N exploiting its nonatomic limit with N→ +∞. Then, we perform compar-
ative statics exercises to evaluate how equilibria are shifted by parameter changes,
showing that (i) higher competition between shops leads to higher equilibrium card
acceptance and lower cash balances, (ii) a larger share of agents who prefer to pay
using cards reduces equilibrium card acceptance (perhaps surprisingly), and (iii)
a rise in the opportunity cost of holding cash shifts the economy towards higher
acceptance.

Finally, we present an extended version of the model that we can bring to the
data, featuring a dynamic cash management problem for buyers and optimal search
behavior, which we can bring to the data. We discipline our model using data drawn
from ECB payment diaries and surveys of companies, that provide information on
the size and frequency of purchases, average cash holdings, the number of cash
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withdrawals per year, the card share of expenditure, as well as card acceptance rates
at points of sale. We then use our calibrated model to perform a simple exercise,
studying the effects of a subsidy to card usage resembling the cashback policy rolled
out by the Italian government in fall 2020, and comparing the response that one
would obtain with a partial equilibrium model that abstract from sellers’ choices
with that given by our model with strategic interaction among sellers. Our results
show that neglecting the impact that policy changes have on sellers’ incentives to
accept or reject card payments may lead to choosing policies that ultimately have
unintended effects: when sellers adjust their acceptance choices in response to the
card subsidy, the overall acceptance rate falls, and the increase in card usage in
shops that keep accepting cards is more than compensated by a fall in the overall
use of electronic payments, as a result of tighter supply-side constraints.

3.2 Related literature

In this paper, we contribute to two strands of the literature. First, we contribute to
the literature that jointly studies the adoption, usage, and acceptance of payment
methods through equilibrium models of the payments market: a recent example is
the work by Huynh, Nicholls, and Shcherbakov (2022), who use detailed data on
buyers and merchants to estimate a structural model of the Canadian payments mar-
ket. While their model also features an equilibrium relationship between merchants
and buyers, we also allow for strategic interactions between different sellers, that
take into account economy-wide acceptance probabilities before deciding whether
to accept or not. Second, we contribute to the literature that theoretically studies
the transactions demand for cash (Alvarez and Lippi (2009), Alvarez and Lippi
(2013)): in particular, our work is particularly related to studies of cash manage-
ment and payment choices by households when cashless alternatives are available
(Alvarez and Lippi (2017)). Recent empirical papers by Huynh, Schmidt-Dengler,
and Stix (2014), Arango, Huynh, and Sabetti (2015), Bagnall et al. (2016) showed
that imperfect acceptance of cashless payments creates a precautionary motive to
hold cash. Our work builds on this literature and allows for imperfect cashless ac-
ceptance in a model of cash demand, by also featuring feedback effects between
these two aggregates. Not only imperfect acceptance drives up cash usage, but the
opposite channel is also relevant: if individuals always have enough cash to carry
out transactions, merchants have little incentive to accept cards.

We are not the first to jointly model the interaction between merchants and
buyers in a payments market while simultaneously studying cash holding choices:
in a closely related paper, Masters and Rodríguez-Reyes (2005) employ a setup sim-
ilar to ours to rationalize observed differences in the intensity of card usage across
countries. We extend their framework to allow for competition among merchants
in their payment method acceptance decisions, by allowing for buyer search à la
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Burdett and Judd (1983): as buyers might visit multiple shops, merchants have an
incentive to accept their preferred payment methods in order not to lose sales. This
helps us to rationalize equilibria with imperfect acceptance without resorting to
heterogeneity in the population of sellers as done by Masters and Rodríguez-Reyes
(2005).

Finally, our paper also speaks to the IO literature on payment systems that stud-
ies the determinants of acceptance (Rochet and Tirole (2002), Rochet and Tirole
(2014), Li, McAndrews, and Wang (2019)), by explicitly modeling the choice prob-
lem faced by buyers that need to decide how much cash to hold.
The chapter is organized as follows. In 3.3 we introduce a simple acceptance game
between two sellers, to illustrate the fundamental strategic trade-offs involved in
card acceptance decisions. In ?? we introduce our theoretical model with buyers
and sellers: after presenting the decision problems faced by both types of agents,
we derive the properties of optimal choices and we define our equilibrium concept;
then, we provide results on the existence of equilibrium and on the uniqueness of
imperfect acceptance equilibria, and we present some comparative statics. In 3.5
we present a quantitative extensios of our framework which enable us to take the
model to the data, calibrating its parameters. In 3.6 we perform a counterfactual
exercise, simulating the introduction of a subsidy to card usage, and we compare its
partial and general equilibrium effects. 3.7 concludes.

3.3 A simple acceptance game

In this Section, we present a simple card acceptance game between two sellers (N =
2), ignoring almost entirely from the buyers’ cash-holding problem, to explain the
sellers’ main trade-offs they face when choosing whether to accept cards or not.

There are two identical sellers and two buyers endowed with a debit card. Each
seller decides on whether to accept or reject cards as a payment method in her
shop. Cash is always accepted. The buyers observe the sellers’ choices and decide
the amount of cash they want to hold. Then, buyers need to purchase a good whose
price is drawn from a distribution with cdf F and nonnegative support. Let u denote
the profit merchants obtain when selling a good1. If the purchase is carried out by
card, the profit shrinks to u− t as the merchant needs to pay fees/taxes. Buyers ob-
serve the acceptance choices of both shops and then decide how much cash m to
hold. If both shops accept cards, they hold m= 0; if one shop accepts cards and the
other doesn’t, they hold m0 > 0; finally, if nobody accepts cards, they hold a level
m00 >m0 of cash balances2 such that F(m00)= 1, i.e., such that they can finance any

1. For simplicity purposes, we assume that u is independent of the value of the good/service
sold.

2. At this stage, we don’t explicitly model money demand by buyers as we want to focus on the
fundamental determinants of interaction between sellers. We will include optimal cash demand in
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purchase. With probability α each buyer only visits a random seller among the two
(we sometimes refer to the buyer as captive in such situations), while with probabil-
ity 1−α they can choose in which shop to carry out the purchase, after observing
the size of the transaction. When the buyers face a transaction with price smaller
than the level of cash balances (with probability F(m)), they will use cash3; there-
fore, if given a choice among the two shops, they will pick a random one. When the
transaction price is larger than the level of cash balances (with probability 1− F(m))
they need to use their payment card; therefore, they visit a shop that accepts the
card when having the option to do so.

Therefore, in this model the buyers’ actions are exogenously given (they are
not in the next sessions) and we investigate the sellers’ game only. In 3.1 we dis-
play the payoffs of each seller i ∈ {1,2} given his action Φi ∈ {c, cd} and the ac-
tion of the other seller Φ−i ∈ {c, cd}, where cd denotes acceptance (it is possible
to use cash and debit cards) and c denotes rejection (it is possible to use cash
only). From now on, we denote i’s profits when strategies played are (Φi,Φ−i) by
ΠΦi(Φ−i). Let’s look at all four possible pairs of pure strategies from the perspec-
tive of i. If both i and −i accept the card, they will attract one buyer each in ex-
pectation and, in case they make a sale, pay the fee t for sure (as buyers don’t
carry cash with them and F(0)= 0), getting an expected profit of Πcd(cd)= u− t.
If seller i decides to reject card transactions while his opponent is accepting, she
will get an expected payoff Πc(cd)= F(m0)u, as she will only be visited by one
buyer in expectation, which will complete the transaction only if it’s small. If the
seller decides to be the unique shop that accepts, she will get an expected pay-
off Πcd(c)= F(m0)u+

�

1− F(m0)
�

(u− t) (2−α): if the purchase is small, she will
share it with his non-accepting competitor and get one client in expectation; if it is
large, she will capture one extra client with probability 1−α, totaling 2−α clients.
Finally, when nobody accepts the card, the expected payoff is Πc(c)= u.

Two things are worth noticing about the above payoffs. First, we have that
Πc(c)>Πc(cd): since money demand is higher when nobody accepts (recall the
buyers observe the sellers’ choices), each seller will benefit from the non-acceptance
of her competitor, as she will be able to secure more transactions. Second, notice
that Πcd(c)>Πc(cd): when only one shop is accepting cards, it is better to be the
owner of the shop who accepts rather than the owner of the shop that does not.
Properties of the game. We assume that there are no dominant strategies, which
would make the game uninteresting as there would be no relevant strategic interac-
tion. Hence, either (i) Πcd(cd)≥Πc(cd)∧Πc(c)≥Πcd(c) or (ii) Πcd(cd)≤Πc(cd)∧

the next Sections. The fact that cash demand is decreasing in the level of acceptance is easily derived
from the optimizing behavior of buyers.

3. The fact that cash is always used when the agent has enough can be motivated through the
existence of a preference for cash. We explicitly consider preferences and we model payment method
choices in the next Sections.
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Table 3.1. Payoffs of seller i in the acceptance game

Φi

Φ−i

cd c

cd u − t F(m0)u +
�

1 − F(m0)
�

(u − t) (2 − α)

c F(m0)u u

Πc(c)≤Πcd(c) holds. If (i) holds, it is optimal to accept the card when the opponent
does so and to reject the card in the opposite case. In this case, the game features
strategic complementarity in acceptance decisions ⁴, as

Πcd(cd) ≥ Πc(cd) ∧Πc(c) ≥ Πcd(c) =⇒ Πcd(cd) −Πc(cd) ≥ 0 ≥ Πcd(c) −Πc(c).

If (ii) holds, it is optimal to accept the card when the opponent does not accept
and to reject the card in case he does so. In this case, the game features strategic
substitutability in acceptance decisions. We now study the conditions on parameters
determining which class the acceptance game belongs to. Acceptance decisions are
strategic substitutes if

α ≤ α(t) = 1 −
t

u − t
. (3.1)

t ≥ (1 − F(m0))u, (3.2)

while they are strategic complements if α≥ α(t)= 1− t
u−t and t≤ (1− F(m0))u. It

is worth exploring the above conditions further. First, notice that the condition for
strategic substitutes/complements involves α, the extent of search frictions. Strate-
gic substitutes require search frictions to be small enough, to foster competition
among buyers in their acceptance decisions. When search frictions are too large,
there is no incentive to accept when other shops do not since buyers are captive,
and cannot be captured through card acceptance. Notice that α0(t)< 0, i.e., since
the margin on large transactions is decreasing in t, a higher value of t requires even
smaller levels of α to induce strategic substitutability.
Equilibria of the game.We now characterize the equilibria of the acceptance game.
As a solution concept, we use pure-strategy Nash equilibrium. Let φ∗ denote the
card acceptance rate in the economy.

4. Notice that in our context acceptance decisions are strategic complements if Πcd(cd)−
Πc(cd)≥Πcd(c)−Πc(c), while they are strategic substitutes if Πcd(cd)−Πc(cd)≤Πcd(c)−Πc(c).
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As described in the main text, let ϕ−i
=
∑

N

j ̸=i
Φj/N. Sellers optimally respond to their competi-

tors’ acceptance choices. Buyers observe the cashless acceptance rate and hold an amount m
∗

accordingly. In equilibrium, i) each seller has no incentive to deviate given the actions of the
other N − 1 sellers and given money demand m

∗ by buyers, and ii) money demand is optimal
given the aggregate acceptance rate ϕ∗. Let j ∈ {c, cd} denote buyers’ types, defined according to
their payment preferences.

Figure 3.2. Timing and structure of the model

Proposition 3.1. If acceptance decisions are strategic complements, the game features
only two Nash equilibria, φ∗ = 1 (full acceptance) and φ∗ = 0 (no acceptance). If ac-
ceptance decisions are strategic substitutes, the game features two imperfect acceptance
equilibria with φ∗ = 1/2.

Proof. Trivial.

This simple example illustrates that imperfect acceptance equilibria can arise
only in the presence of strategic substitutability, a result that we will obtain again
under a more general setting in the next Section.

3.4 Theoretical model

In this Section, we outline, solve, and describe the properties of a model that builds
upon the simple example presented above in two respects: first, we allow for many
identical sellers; second, we explicitly analyze the cash-holding problem of hetero-
geneous buyers.

3.4.1 The model

There are N identical sellers and a continuum of buyers with measure N. Sellers
make simultaneous acceptance decisions. Let n be the number of sellers who de-
cide to accept and let φ = n/N denote the cashless acceptance rate. Buyers need
to purchase a good or service from sellers. Both sellers and buyers derive utility
u from completing a single transaction. The price of the purchase is drawn from
the distribution F, whose properties we already described. We also assume that F is
twice differentiable, with density denoted by f . With probability α, buyers can shop
in a unique store, randomly selected. With probability 1−α, they can freely choose
which one of the N stores to visit. A fraction 1−ω of buyers prefer using cash when
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paying, whereas the remaining ω exhibit a preference for card payments. Complet-
ing a purchase using the least preferred payment method entails a utility cost κ
for both types. Buyers observe the acceptance decisions of sellers and decide how
much cash to hold. Carrying m units of cash entails an opportunity cost Rm. Both
types of agents fail to get utility u when they don’t complete the transaction, which
happens when cash balances are smaller than the value of the transaction and it is
impossible to use cards. We make some simplifying assumptions on the parameters
of the model, which simplify our analysis.

Assumption 4. We make the following four assumptions on parameters.

0 < R < κ < u, (A1.a)
0 < t < u, (A1.b)
f 0(s) < 0, for all s ∈ [0,+∞), (A2)

f(0) > max
§

R
κ

,
R

u − κ

ª

. (A3)

0 ≤ α < 1 (A4)

Assumption (A1.a) clarifies that R is small relative to κ (one is a variable cost
proportional to m, the other one is fixed), and that κ is smaller than u (even though
people dislike to pay with cards, they still prefer it to lose the purchase). Assump-
tion (A1.b) makes sure that fees paid by merchants when receiving a card payment
are small enough that the net benefit of receiving a card payment is still positive.
Assumption (A2) specifies that small purchase sizes are more likely than large ones,
which has been shown empirically (Boeschoten (1992)). Assumption (A3) says that
small payments should be sufficiently likely. From a practical point of view, (A2)
and (A3) can be seen as regularity conditions on the buyer’s cash holding problem
which ensure interior solutions. In particular, f(0)> R/κ makes sure that agents
who prefer cash always bring some with them, even under full acceptance of cards,
while f(0)> R/(u− κ) makes sure that agents who prefer cards bring some cash
with them when no one accepts cards. Finally, (A4) makes sure that there exists
some competition among sellers.

3.4.1.1 Buyer’s problem

We start by analyzing the cash-holding decision of buyers. Let n be the number of
sellers that accept cards. Each buyer observes the share of sellersφ = n/N accepting
cards and solves a cost minimization problem. Buyers who prefer to use cash for
transactions face a different problem than those who enjoy more paying by card.
Buyers who favor using cards utilize them whenever they can do so, whereas those
who prefer cash resort to using cards only when their cash balances are lower than
the transaction amount. First, we describe the cash-holding problem for the 1−ω
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buyers who prefer paying with cash. When a fraction φ > 0 of sellers are accepting
cards, these buyers solve the problem

min
m

vc(m,φ) = min
m

Rm + α (1 − F(m))
�

φκ + (1 − φ)u
�

+ (1 − α) (1 − F(m))κ,
(3.3)

When no sellers are accepting cards, i.e., when φ = 0, they instead solve the prob-
lem

min
m

vc(m, 0) = min
m

Rm + (1 − F(m)) u. (3.4)

Let’s now consider the ω buyers that prefer using cashless methods to settle trans-
actions. When a fraction φ > 0 of sellers are accepting cards, these buyers solve the
problem

min
m

vd(m,φ) = min
m

Rm + α(1 − φ) (F(m)κ + (1 − F(m)) u) , (3.5)

When no sellers are accepting cards, i.e., when φ = 0, they instead solve the prob-
lem

min
m

vd(m, 0) = min
m

Rm + F(m)κ + (1 − F(m)) u. (3.6)

The following Proposition characterizes buyers’ optimal choices.

Proposition 3.2. Let φ be the share of merchants accepting cards. Optimal cash hold-
ings of agents who prefer cash are given by

m∗c (φ) = argmin
m

vc(m,φ) =











f−1
�

R
u−(u−κ)(αφ+(1−α))

�

φ > 0

f−1
�

R/u
�

φ = 0

(3.7)

Optimal cash holdings of agents who prefer cards are given by

m∗d(φ) = arg min
m

vd(m,φ) =











f−1
�

R
α(1−φ)(u−κ)

�

φ > 0,

f−1(R/(u − κ)) φ = 0.

(3.8)

Proof. See 3.A.1.

Some observations are in order. First, notice that, as f−1 is a decreasing func-
tion, for any cashless acceptance rate φ, type-c buyers (who prefer to use cash for
payments) hold higher cash balances than their type-d counterparts. Second, both
types increase the amount of cash held as φ decreases, as the precautionary value
of holding cash gets higher. Moreover, money demand functions are discontinuous
at φ = 0 as under full rejection of cards they will find no store that allows them
to pay cashless even when they are free to shop wherever they prefer. Third, when
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φ = 1, m∗c (φ)= f−1
�

R/κ
�

> 0, therefore agents who prefer to pay in cash always
bring some cash with them. This does not apply to agents who prefer to pay using
cards, which could decide to hold zero

In what follows, we often assume that the distribution of transaction sizes fol-
lows an exponential with parameter λ, i.e., that f(s)= λe−λs. Notice that under this
specification, the inverse pdf f−1 is given by f−1(s)= − 1

λ ln
� s
λ

�

, and that (A3) be-
comes λ >max{R/κ, R/(u−κ)}. From Proposition 3.2, we get that money demand
functions are

m∗c (φ) =











− 1
λ ln

�

R
λu−λ(u−κ)(αφ+(1−α))

�

φ > 0,

− 1
λ ln

� R
λu

�

φ = 0,

(3.9)

and

m∗d(φ) =



























0 φ ≥ φ̂,

− 1
λ ln

�

R
λα(1−φ)(u−κ)

�

φ ∈ (0, φ̂),

− 1
λ ln

� R
λ(u−κ)

�

φ = 0,

(3.10)

where φ̂ = 1− R
λα(u−κ) is the threshold level of card acceptance above which agents

who prefer cards decide to hold no cash balances at all. Also notice that the ex-
ponential distribution has the desirable property that, when optimal cash balances
take the form m∗ = − 1

λ ln
� x
λ

�

, where x is one of the objects defined above, the prob-
ability that the purchase size is smaller than cash balances is given by

F(m∗) = 1 − e−λm∗ = 1 − e−λ
�

− 1
λ ln( x

λ)
�

= 1 −
x
λ

.

3.4.1.2 Seller’s problem

Consider sellers indexed by i ∈ {1, ...,N}. Let Φi ∈ {0, 1} denote the acceptance de-
cision of each seller, with Φi = 1 meaning that seller i accepts cashless payments in
her shop. The utility of seller i depends both on her decision and on the actions
chosen by the other sellers through the average cashless acceptance rate. Denote by
n−i =

∑

j̸=iΦj the number of competitors of i that accept cards, and let φ−i = n−i/N
be the cashless acceptance rate if i were not to accept cards.

The expected profit for i if she rejects card payments when the cashless accep-
tance rate is φ−i > 0 is given by

Πc
i (φ−i) = (1 −ω)

�

αF(m∗c (φ−i))u + (1 − α)F(m∗c (φ−i))u
�

+ω
�

αF(m∗d(φ−i))u
�

=

= (1 −ω)F(m∗c (φ−i))u +ωαF(m∗d(φ−i))u.

(3.11)
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When φ−i = 0, rejecting card payments guarantees i the expected profit

Πc
i (0) = (1 −ω)

�

αF(m∗c (0))u + (1 − α)F(m∗c (0))u
�

+

+ω
�

αF(m∗d(0))u + (1 − α)F(m∗d(0))u
�

= (1 −ω)F(m∗c (0))u +ωF(m∗d(0))u.

(3.12)

Notice that the last expression is different from the case in which φ−i > 0 as when
nobody accepts the seller might still be able to attract agents who prefer cashless
payments even if they can search for their preferred shop, as they would visit a
random shop if no stores accept cards.

On the other hand, for any given level of acceptance φ−i, accepting card pay-
ments yields to seller i the following expected profits⁵

Πcd
i (φ−i) = (1 −ω)

�

α

�

F
�

m∗c

�

φ−i +
1
N

��

u +
�

1 − F
�

m∗c

�

φ−i +
1
N

���

(u − t)
�

+ (1 − α)
�

F
�

m∗c

�

φ−i +
1
N

��

u +
N

φ−iN + 1

�

1 − F
�

m∗c

�

φ−i +
1
N

���

(u − t)
�

�

+ω
�

α(u − t) + (1 − α)
N

φ−iN + 1
(u − t)

�

=

= (1 −ω) F
�

m∗c

�

φ−i +
1
N

��

u

+ (1 −ω)
�

1 − F
�

m∗c

�

φ−i +
1
N

���

(u − t)
�

α + (1 − α)
N

φ−iN + 1

�

+ω(u − t)
�

α + (1 − α)
N

φ−iN + 1

�

(3.13)

The optimal choice of seller i is given by

Φ∗i (φ−i) = arg max
Φi

�

1 − Φi

�

Πc
i (φ−i) + ΦiΠ

cd
i (φ−i). (3.14)

A few observations are in order. First, notice that by deciding to accept cards, each
store influences the overall card acceptance rate in the economy, increasing it by
a factor of 1/N. Second, recall that in expectation each seller is matched with a
continuum of buyers with measure one. A share α these buyers are captive, i.e.,
they cannot visit other shops, while the remaining 1−α buyers can shop wherever
they like. When accepting cards, no customers matched with the store will choose
to search for another one, as there is no gain from doing so. Moreover, the store that
accepts cards can attract buyers matched with other stores, in two situations. First,
it attracts non-captive buyers who prefer to pay with cash but don’t have enough.

5. Notice that differently from Πc
i , we can write Πcd

i with just one expression because for φ−i =
0, there is still one seller who accepts card payments in the market, which is seller i.
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Notice that there are N(1−α)(1−ω)
�

1− F
�

m∗c
�

φ−i +
1
N

���

purchases of this kind
in the economy every period. The share of such purchases accruing to each of the
accepting stores is

�

1 +

�

1 −
�

φ−i + 1/N
��

N
�

φ−i + 1/N
�

N

�

︸ ︷︷ ︸

N
φ−iN+1

(1 − α)(1 −ω)
�

1 − F
�

m∗c

�

φ−i +
1
N

���

,

where
�

1−
�

φ−i + 1/N
��

N is the number of stores that do not accept cards, and
�

φ−i + 1/N
�

N is the number of accepting stores. The accepting stores get their
random share of the total number of purchases, plus their share of the number
of purchases from buyers matched with non-accepting stores that look for a shop
that accepts. Second, it attracts non-captive buyers who prefer to pay with their
cards. There are N(1−α)ω purchases of this kind in the economy every period.
As before, the share of such purchases accruing to each of the accepting stores is

N
φ−iN+1(1−α)ω.

3.4.2 Equilibrium

We use pure Nash equilibrium as a solution concept. We define an equilibrium as
a combination of card acceptance and cash holding decisions such that i) given
the prevailling acceptance rate, buyers’ cash holding choices are optimal, and ii)
no seller has an incentive to deviate from their current acceptance policy. A more
formal definition of equilibrium in this game follows.

Definition 3.3. An equilibrium is a tuple of acceptance rate and average cash bal-
ances (φ∗, m∗) such that

(1) average cash balances are given by m∗ = (1−ω)m∗c +ωm∗d, where m∗t =m∗t (φ∗)
for all t ∈ {c, d};

(2) sellers’ acceptance policies are a best response, i.e, for all i ∈ {1, . . . , N}, Φi =
Φ∗i (φ−i). Hence, φ∗N = n∗ =

∑N
i=1Φi

�

φ∗−i

�

.

We only focus on pure strategy Nash equilibria⁶, and for simplicity we simply
refer to equilibria through the acceptance rate (ignoring the equilibrium level of
money demand), i.e, we denote an equilibrium by φ∗. A key object in our analysis
of equilibria of the game is the function

6. Notice that the presence of N sellers allows for φ∗ ̸∈ {0, 1
2 , 1} without relying on mixed strate-

gies.
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∆i

�

φ−i

�

= Πcd
i (φ−i) −Πc

i (φ−i)

= (1 −ω)
�

F
�

m∗c

�

φ−i +
1
N

��

− F
�

m∗c
�

φ−i

��

�

u

+ (1 −ω)
�

1 − F
�

m∗c

�

φ−i +
1
N

���

(u − t)
�

α + (1 − α)
N

φ−iN + 1

�

+ω(u − t)
�

α + (1 − α)
N

φ−iN + 1

�

−ωαF(m∗d(φ−i))u

(3.15)

which yields the net benefit of accepting cards relative to accepting cash only
as a function of the share of opponents who accept cards. We have that φ∗ ∈
{1/N, 2/N, ..., (N − 1)/N} is an equilibrium card acceptance rate if the conditions

Πcd
i

�

φ∗ −
1
N

�

≥ Πc
i

�

φ∗ −
1
N

�

=⇒ ∆i

�

φ∗ −
1
N

�

≥ 0, (3.16)

Πcd
i

�

φ∗
�

< Πc
i

�

φ∗
�

, =⇒ ∆i

�

φ∗
�

< 0, (3.17)

are both satisfied. These conditions make sure that i) it is optimal to accept cards if
φ−i = φ∗ − 1/N, which makes sure that at least a fraction φ∗ of merchants accept,
and ii) it is not optimal to accept cards if φ−i = φ∗, which makes sure that at most a
fraction φ∗ of merchants accept. We label equilibria characterized by φ∗ ∈ (0, 1) as
imperfect acceptance equilibria (IAE). In 3.3 we display the function ∆i(φ−i) graphi-
cally for a reasonable parametrization of the model, for illustrative purposes. From
the graph, it is possible to spot the unique imperfect acceptance equilibrium of the
model for the chosen parameter vector, which we label as φ∗l . The condition for a
pure cash equilibrium φ∗ = 0 is instead

Πcd
i (0) < Πc

i (0), =⇒ ∆i(0) < 0, (3.18)

while a full acceptance equilibrium φ∗ = 1 exists if

Πcd
i

�

N − 1
N

�

≥ Πc
i

�

N − 1
N

�

, =⇒ ∆i

�

N − 1
N

�

≥ 0. (3.19)

Notice that in the example depicted in 3.3, full acceptance is an equilibrium out-
come, as ∆i

�N−1
N

�

> 0, while a pure cash equilibrium does not exist. Also notice
that, in continuity with the result of 3.3, the presence of strategic substitutability
is essential in order to generate imperfect acceptance equilibria. At the equilibrium
φ∗l , acceptance choices are indeed strategic substitutes, as an increase in the num-
ber of accepting shops makes acceptances less attractive than non-acceptance for
everybody. Notice from the shape of the function ∆i(φ−i) in 3.3 that our games
features either complementarity or substitutability depending on the level of φ−i

itself, keeping other parameters constant. The reason is that the acceptance game
has features of both coordination and congestion games. For levels of φ smaller
than eφ, congestion effects dominate and the benefit of accepting cards is reduced
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The above Figure displays the function ∆i(ϕ−i
) for any ϕ−i

∈ {0, 1/N, 2/N, ..., (N − 1)/N}. The orange
line marks the imperfect acceptance equilibrium ϕ

∗
l
. Notice that ϕ∗ = 1 is also an equilibrium of

the model. Baseline parametrization with N = 60 sellers. F is an exponential distribution with
parameter λ = 2. Other parameters are u = 1, κ = 0.03, R = 0.025, t = 0.5, α = 0.8, ω = 0.3.

Figure 3.3. The function ∆i(ϕ−i)

by other people entering the market. For higher levels of φ, coordination effects
start to dominate: as buyers start carrying much less cash when φ goes up, the
value of accepting relative to non-accepting rises again as buyers are only able to
complete very small purchases in shops that don’t accept cards.

We now analyze the existence and uniqueness of equilibria in our model, start-
ing from an existence result.

Proposition 3.4. In the acceptance game with N sellers, at least one equilibrium
(φ∗, m∗) exists.

Proof. To rule out full acceptance and no acceptance equilibria, (3.18) and (3.19)
must hold simultaneously. The function ∆i(φi) must be positive for φ−i = 0 and
negative for φ−i = (N − 1)/N. But if that is the case, we must have that for at least
one φ∗ ∈ {0,1/N, 2/N, ..., (N − 1)/N}, it must be that both (3.16) and (3.17) hold,
and that an imperfect acceptance equilibrium exists.

The above result makes sure that the model has at least one equilibrium. If φ∗ =
0 and φ∗ = 1 are not equilibria, there has to be an IAE φ∗ ∈ {1/N, 2/N, ..., (N −
1)/N}. We now discuss uniqueness. We start by analyzing a nonatomic version of
the game in which the number of sellers N→ +∞, to eliminate each seller’s impact
on buyers’ money demand. Let∆(φ)= limN→+∞∆

N
i (φ), where we write∆N

i (φ) to
underscore the dependence of the net benefit of accepting cards on the number of
sellers in the finite-player version of the game. It is given by
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∆(φ) = lim
N→+∞

∆N
i (φ) =

= (1 −ω)[F(m∗c (φ)) − F(m∗c (φ))]u + (1 −ω)(1 − F(m∗c (φ)))(u − t)
�

α +
1 − α
φ

�

+ω((u − t)
�

α +
1 − α
φ

�

− αF(m∗d(φ))u)

= (1 −ω)(1 − F(m∗c (φ)))(u − t)
�

α +
1 − α)
φ

�

+ω((u − t)
�

α +
1 − α
φ

�

− αF(m∗d(φ))u).

(3.20)
In the nonatomic version of the game, imperfect acceptance equilibria are
given by φ∗ ∈ (0, 1) for which ∆(φ)= 0. Moreover, φ∗ = 0 is an equilibrium if
limφ→0∆(φ)= 0 and φ∗ = 1 is an equilibrium if ∆(1)≥ 0. Notice that the func-
tion ∆(φ) is not defined for φ = 0 as Πcd(φ) diverges when φ→ 0. In the next
Lemma, we study the properties of the function ∆(φ)= limN→+∞∆

N
i (φ) to inves-

tigate how many equilibria does the nonatomic acceptance game have. As obtaining
results for a generic distribution of transactions F is hard, we focus on the exponen-
tial distribution.
Lemma 3.5. Let transaction sizes be exponentially distributed. For generic parame-
ters, the nonatomic acceptance game has at most three equilibria: the full acceptance
equilibrium φ∗ = 1, and either zero or two imperfect acceptance equilibria, a low-
acceptance one (φ∗l ) and a high-acceptance one (φ∗h), with φ

∗
l < φ

∗
h. Only the low

acceptance equilibrium and the full acceptance one are stable⁷.

Proof. See 3.A.2

Given that ∆N
i (φ) converges pointwise to ∆(φ) for φ ∈ (0,1), we obtain the

following result on the number of equilibria finite-player acceptance games with
enough sellers.
Proposition 3.6. Let transaction sizes be exponentially distributed. Generically, there
exists N0 sufficiently large such that for all N > N0 the acceptance game with N sellers
has at most two equilibria: the full acceptance equilibrium φ∗ = 1 and either zero or
one imperfect acceptance equilibria φ∗l ∈ {1/N, 2/N, ..., (N − 1)/N}.

Proof. Suppose ∆(φ)= 0 has no solutions. Then ∃N0 ∈ N such that for all N >
N0, ∆N

i (φ−i)> 0 for all φ−i ∈ {0,1/N, 2/N, . . . , (N − 1)/N}. In this case, no φ∗ ∈
{0, 1/N, 2/N, . . . , (N − 1)/N} is an equilibrium. Now suppose ∆(φ)= 0 has two so-
lutions. Then ∃N0 ∈ N such that for all N > N0, ∃!φ∗l ∈ {0, 1/N, 2/N, . . . , 1} that sat-
isfies conditions (3.16)-(3.17). In this case, φ∗l is the unique IAE of the game.

7. We say an equilibrium is stable if, for a small perturbation (a share ε > 0 of sellers deviate
from equilibrium play), the economy converges back to equilibrium under best-response dynamics.
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In the left Panel, we display how the function ∆i(ϕ−i
) changes as α rises, for three different values

of α. In the right Panel, we display equilibrium acceptance rates ϕ∗ for all values of α ∈ [0, 1).
Baseline parametrization with N = 60 sellers. F is an exponential distribution with parameter
λ = 2. Other parameters are u = 1, κ = 0.03, R = 0.025, t = 0.5, ω = 0.3.

Figure 3.4. Comparative statics: search frictions α

The intuition for the above result is the following: since ∆N
i (φ) approaches

∆(φ) for large enough N, when ∆(φ)= 0 has two solutions there exist a φ∗l ∈
{1/N, 2/N, ..., (N − 1)/N} for which∆i

�

φ∗l − 1/N
�

≥ 0 and∆i

�

φ∗l

�

< 0, as well as a
φ∗h ∈ {1/N, 2/N, ..., (N − 1)/N} for which∆i

�

φ∗h − 1/N
�

< 0 and∆i

�

φ∗h

�

≥ 0. How-
ever, only the low acceptance one is an IAE of the N-player game. For the nonatomic
game, both φ∗l and φ∗h are equilibria, even though the only the low acceptance
one is stable. In other words, imposing a stability requirement to equilibria of the
nonatomic game leaves us with the same equilibria of the N-player acceptance game
with large enough N.

3.4.3 Comparative statics

We now analyze properties of equilibria and in particular we focus on describing
how do they change as a function of model parameters.
Search frictions α. We start by analyzing the effect of α on equilibria. Recall that
α is the probability that each buyer can visit one seller only. It can be interpreted
as the degree of search frictions in this economy, i.e., the likelihood that buyers are
constrained in their search and they can only visit one shop. When α→ 0, search
frictions vanish and the buyers can potentially visit all the shops in the economy.

Proposition 3.7. There exists N0 ∈ N sufficiently large such that for all N > N0 and
for any φ−i, ∂∆i(φ−i)/∂ α < 0. Let (m∗,φ∗) be an imperfect acceptance equilibrium.
Then, ∂ φ∗/∂ α≤ 0 and ∂m∗/∂ α≥ 0.

Proof. See 3.A.3.

The above Proposition states that when N is large enough, an increase in α
reduces the relative value of accepting cards with respect to the no-acceptance al-
ternative, independently of the share of accepting merchants in the economy. When
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In the left Panel, we display �∆i(ϕ−i
)/�ω. In the right Panel, we how ∆i(ϕ−i

) and the associated im-
perfect acceptance equilibrium change for an increase inω from 0.2 to 0.3. Baseline parametriza-
tion with N = 60 sellers. F is an exponential distribution with parameter λ = 2. Other parameters
are u = 1, κ = 0.03, R = 0.025, t = 0.5, α = 0.8.

Figure 3.5. Comparative statics: payment preferences ω

α rises, indeed, consumers are able to search for their preferred shop less often,
and merchants’ incentives to start accepting to increase their client base become
less relevant. In 3.4 we show how the function ∆i(φ−i) changes as search frictions
α increase, as well as how the set of equilibrium acceptance rates is affected by α.
Notice that imperfect acceptance equilibria only arise when the extent of search fric-
tions, which generate strategic substitutability, is large enough. When an imperfect
acceptance equilibrium φ∗ ∈ (0,1) exists, it is decreasing in α. For a range of val-
ues of α, we have multiple equilibria: both full acceptance (φ∗ = 1) and imperfect
acceptance can arise in equilibrium.
Payment preferences ω. In the model, a fraction ω of agents prefer to use their
cards to settle purchases when they have the option to do so. We now investigate
how equilibria are affected by the share of agents preferring cards as a payment
method.

Proposition 3.8. Let (m∗,φ∗) be an imperfect acceptance equilibrium. Then, there ex-
ists N0 ∈ N sufficiently large such that for all N > N0, ∂∆i(φ

∗)/∂ω≤ 0, and therefore
∂ φ∗/∂ω≤ 0, while ∂m∗/∂ω is of ambiguous sign.

Proof. It is possible to show that

∂∆i(φ−i)
∂ω

=
∆i

�

φ−i

�

ω

−
1
ω

�

1 − F
�

m∗c

�

φ−i +
1
N

���

(u − t)
�

α + (1 − α)
N

φ−iN + 1

�

−
1
ω

�

F
�

m∗c

�

φ−i +
1
N

��

− F
�

m∗c
�

φ−i

��

�

︸ ︷︷ ︸

≈0 when N→+∞

u,

(3.21)
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i.e., that ∂∆i

�

φ−i

�

/∂ω≥ 0 =⇒ ∆i(φ−i)> 0. Since ∆i(φ
∗)< 0, we get

that ∂∆i

�

φ∗
�

/∂ω < 0, and the conclusion ∂ φ∗/∂ω≤ 0 follows. Since
m∗ =ωm∗d(φ∗(ω))+ (1−ω)m∗c (φ∗(ω)), one can show that the effect on m∗(φ∗)
is ambiguous. See 3.A.4 for the complete proof.

The interpretation of 3.8 is as follows. As we show in detail in 3.A.4, an increase
in ω generates two effects, which have opposite implications for the convenience of
accepting card payments. On one hand, they increase the store’s potential to attract
clients, as agents who prefer to use cashless payments always search for a shop that
accepts, independently on the size of the transaction they face, differently from buy-
ers who prefer to pay in cash. On the other hand, shops receive only u− t (instead
of u) when selling to agents who prefer to pay using cards, even if they have enough
cash with them. In other words, a higher ω is associated with a larger client base
for shops who accept (which makes acceptance more attractive), but with smaller
utility derived from each transaction (which has the opposite effect). Depending on
which of the two effects dominates, ∆ might grow or shrink as ω rises. We prove
that the latter effect dominates at the equilibrium acceptance rate φ∗, and that the
former only dominates for φ−i < φ

∗. This is also shown graphically in 3.5. In the
left panel, we display the derivative ∂∆i/∂ω for all values of φ−i. The graph shows
that the derivative gets negative for levels of φ−i slightly below the equilibrium one.
The values of φ−i for which an increase inωmakes acceptance relatively more prof-
itable are those at which acceptance is so profitable that more people start accepting.
When few sellers accept, an increase in ω enhances the potential client base which
can be obtained through acceptance much more than when a large number of sell-
ers accept. In the right panel of the Figure, we show how ∆i changes in response to
a 100% increase in ω, and how the equilibrium acceptance rate falls. We also show
that the effect on average cash balances is ambiguous since i) both types of agents
hold more cash as ω increases, in response to lower acceptance, but ii) agents who
prefer paying with cards, who hold less cash than agents of the other type, are now
a larger share of the population of buyers.
Opportunity costs R. We now analyze how the opportunity cost of holding cash
influences equilibria. Recall that R only affects sellers’ profits through optimal cash
demand bu buyers.

Proposition 3.9. Let (m∗,φ∗) be an imperfect acceptance equilibrium. Then, for large
enough N, ∂∆i(φ

∗)/∂ R≥ 0, and therefore ∂ φ∗/∂ R≥ 0, while ∂m∗/∂ R≤ 0.

Proof. See 3.A.5.

An increase in opportunity costs of holding cash reduces the level of cash bal-
ances for any card acceptance rate φ, and for both types of agents. Therefore, with
higher probability agents won’t have enough money to settle transactions in cash.
The above Proposition states that when N is large enough, the value of accepting
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cards relative to cash increases since (i) the profits from acceptance Πcd go up as
more transactions with agents who prefer cash are completed, and (ii) the profits
from non-acceptance Πc fall as fewer transactions with captive buyers that prefer
cards are completed.

3.5 A quantitative extension

In this Section, we present an augmented version of our framework which enables
us to bring the model to the data. We start by summarizing the main differences
between the framework outlined below and the theoretical model we studied in ??.
In the model outlined previously, agents faced a simple static money demand prob-
lem, which however had several limitations, namely (i) the absence of a dynamic
component in payment method choices, and (ii) the absence of model implications
on the frequency and size of withdrawals. In this Section, we model buyers’ behav-
ior by adapting the dynamic cash management problem with a means of payment
choice by Lippi and Moracci (2024) to our framework with heterogeneity among
buyers and search across shops. We slightly modify the search protocol as well: in
the model of ??, we assumed out of simplicity that non-captive agents searched for
shops that accepted cards if and only if (i) the purchase was too large to be settled
using cash, or (ii) they were of type d, i.e., they preferred card payments. In what
follows, instead, we freely allow agents of both types to choose whether to search
for shops that accept cards (by paying a cost) or to visit a random store, depending
on the level of cash on hand they have. The problem faced by sellers is similar to
the one described above, even though they don’t face anymore a deterministic level
of cash balances, but a stationary distribution of cash holdings in the population of
consumers.

3.5.1 The model

We now describe formally the problems faced by buyers and sellers in the extended
model.

3.5.1.1 Buyer’s problem

We now formally present the buyer’s problem, describe optimal decision rules, and
characterize moments implied by the solution.
Setup. Time is continuous and the exponential discount factor is ρ. Buyers need
to finance an expenditure stream given by a compound Poisson process with ar-
rival rate λ and size distribution F, with F(0)= 0. Buyers differ in their preferred
payment method: a share 1−ω of agents are of type c and they face a fixed cost
κc > 0 when paying by card, whileω agents of type d face a fixed cost κd > 0 when
using cash. Buyers take the share of merchants who accept cards φ as given, and
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they obtain utility u whenever they purchase something. Let m denote the level of
cash balances. Holding m units of cash entails an instantaneous opportunity cost
Rm, with R> 0, and agents need to pay b> 0 to withdraw cash from ATMs. When
φ > 0, the value of the problem for agents of type c inside the range of inaction is
given by

(ρ + λ)vc(m) = Rm + λ [αevc(m) + (1 − α)min {vc(m) + η(1 − φ),evc(m)}]
(3.22)

where η(1−φ) is the fixed cost of searching for a shop that accepts cards. Notice
that the cost of searching is zero when all shops accept (φ = 1) and it is maximized
and equal to η when no shops accept. When the card acceptance rate is φ = 0,
clearly agents will never search. The value of searching is given by

vc(m) = (1 − F(m))
�

vc(m) + κc

�

+

∫ m

0

min{vc(m − s), vc(m) + κ}dF(s), (3.23)

and the value of not searching is given by

evc(m) = (1 − F(m))
�

vc(m) + φκ + (1 − φ)u
�

+ φ

∫ m

0

min{vc(m − s), vc(m) + κ}dF(s)

+ (1 − φ)

∫ m

0

vc(m − s)dF(s).

(3.24)

The problem for agents of type d is similar, but they bear the fixed cost κ when
paying with cash. The full problem for agents of type j ∈ {c, d} is given by

vj(m) = min
§

b + v∗j ,
Rm + λαevc(m) + λ(1 − α)min {vc(m) + η(1 − φ),evc(m)}

ρ + λ

ª

,

(3.25)
where b is the cost of adjusting cash balances and

v∗j = vj(m
∗), where m∗j = argmin

m̂
vj(m̂). (3.26)

Optimal policy. We consider a withdrawal policy of the following kind: agents of
type j withdraw as soon as their cash balances fall below a trigger level mj, and when
that happens they withdraw up to the target level m∗j . When they have the option
to search (which happens with probability α) they do it whenever vc(m)−η(1−
φ). Let ℓj(m) denote the search policy function of type-j agents, with ℓj(m)= 1
meaning that agents of type j search for a shop that accepts when they have m units
of cash on hand and ℓj(m)= 0 meaning that they visit a random shop. Finally, let
ℓj(m, s) denote payment choice policies of type-j agents, with pj(m, s)= 1 meaning
that cards are used to settle a purchase of size s when having m units of cash on
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hand and pj(m, s)= 0 meaning that cash is used to pay for such a purchase. Clearly,
pj(m, s)= 1 whenever s>m.
Implied moments. From the set of policy functions {mj, m∗j ,ℓj, pj}j∈{c,d}, given a cer-
tain card acceptance rate φ, it is possible to derive a set of model-implied moments
which summarize features of the behavior of type-j buyers. Of course, given any
statistic Xj, the aggregate counterpart for the whole economy adjusting for hetero-
geneity across buyers is X = (1−ω)Xc +ωXd. In what follows, we adjust the re-
sults of Lippi and Moracci (2024) (Section 3.3) to account for optimal search be-
havior. We start by denoting with φj(m)= φ + (1−α)(1−φ)ℓj(m) the effective
acceptance probability faced by type j consumers when having m units of cash on
hand. We now characterize the steady-state distribution of cash balances for agents
of type j, which we label hj(m). It is easy to show that for any m ∈ [mj, m∗j ) the
steady-state distribution satisfies the functional equation

hj(m) =

∫ m∗j

m
hj(m

0)χj(m
0, m0 −m)dm0 + hj(m

∗
j )χj(m

∗
j , m∗j −m)

∫ m

0

χj(m, s)ds

, (3.27)

where (with a slight abuse of notation) hj(m
∗
j ) denotes a mass point at m=m∗, and

χj(m, s)= f(s)
�

1−φj(m)pj(m, s)
�

for any m0 >m. The mass point hj(m
∗
j ) is pinned

down by hj(m
∗
j )= 1−

∫m∗j
mj

hj(m)dm. Notice that the expression

φj(m)
︸ ︷︷ ︸

Pr(Card possible)

· pj(m, s)
︸ ︷︷ ︸

Choose cards

inside (3.27) represents the probability of paying with cards for payments of size
s when having a level m of cash balances, taking into account the probability of
randomly entering a shop that accepts, plus the probability of being able to search
1−α for such a shop and doing so (if ℓj(m)= 1), times the decision to pay with
cards when having the chance pj(m, s). Equipped with hj(m), it is possible to com-
pute the effective acceptance rate for type j buyers, i.e., the probability that a shop
visited by this type of agent accepts cards, given by

φj =

∫ m∗j

mj

hj(m)φj(m)dm + hj(m
∗
j )φj(m∗j ). (3.28)

Clearly, φj is an upper bound for the true φ, as agents will visit disproportion-
ately shops that accept cards when α < 1 and search is not too expensive. Average
cash balances held by type j buyers are given by Mj =

∫m∗j
mj

mhj(m)dm+ hj(m
∗
j )m∗j ,

and median cash holdings can be computed trivially using the cdfs Hj(m)=
∫m∗j

mj
hj(m)dm+ hj(m

∗
j )1

�

m=m∗j
�

. The average number of withdrawals per unit of
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time is given by nj = 1/tj(m
∗
j ), where tj(m) is the expected time before the next

withdrawal when current cash balances are equal to m, which obeys the functional
equation

tj(m) =

1 + λ

∫ m−mj

0

χj(m, s)tj(m − s)ds

λ
∫m

0 χj(m, s)ds
. (3.29)

Average cash balances at withdrawal Mj are given by

Mj =

∫ m∗j

mj

hw
j (m)





∫m
m−mj

f(s)(m − s)ds
∫m

m−mj
f(s)ds



dm + hj(m
∗
j )







∫m∗j
m∗j −mj

f(s)(m − s)ds

∫m∗j
m∗j −mj

f(s)ds






,

(3.30)
where hw

j (m) denotes the stationary distribution of cash holdings conditional on a
withdrawal taking place immediately after, which is given by

hw
j (m) =

hj(m)
�

∫m
m−mj

χj(m, s)ds
�

∫ m∗j

mj

hj(m
0)

 

∫ m0

m0−mj

χj(m
0, s)ds

!

dm0 + hj(m
∗
j )

 

∫ m∗j

m∗j −mj

χj(m
∗
j , s)ds

! ,

with a mass point at m=m∗j which is pinned down by hw
j (m∗j )= 1−

∫m∗j
mj

hw
j (m)dm.

The average withdrawal size is given by Wj =m∗j −Mj. Finally, we derive model-
implied payment method shares. Let ej denote total expenditures per unit of time
for agents of type j, given by

ej =λ

∫ m∗j

0

sf(s)

 

∫ s

mj

hj(m)φj(m)dm +
�

1 − Hj(s)
�

!

ds + λφj

∫ +∞

m∗j

sf(s)ds,

where the term inside parentheses denotes the proportion of payments of size s
which are completed by the buyer, either because m≥ s (which happens with prob-
ability 1−Hj(s)), or (when m< s) because the consumer visits a store that accepts
cards⁸. The number of completed purchases is given by

λ̂ = λ

 

∫ m∗j

mj

hj(m)
�

φj(m) +
�

1 − φj(m)
�

F(m)
�

dm + hj(m
∗
j )
�

φj(m
∗
j ) +

�

1 − φj(m
∗
j )
�

F(m∗j )
�

!

.

The share of expenditure settled using cards is given by

γj =
λ

�

∫m∗j
mj

hj(m)φj(m)γj(m)dm + hj(m
∗
j )φj(m

∗
j )γj(m

∗)
�

ej
, (3.31)

8. In the above formula, the last integral on the right-hand side does not include m∗j in the sum,
as the event s=m∗j has probability zero.
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where γj(m)=
∫m

0 sf(s)pj(m, s)ds+
∫ +∞

m sf(s)ds is the share of expenditure paid
with cards by type-j agents when having m units of cash available. The share of ex-
penditure settled using cards conditional on having both options available is given
by

eγj =
λ

�

∫m∗j
mj

hj(m)φj(m)eγj(m)dm + hj(m
∗
j )φj(m

∗
j )eγj(m

∗)
�

λ

�

∫m∗j
mj

hj(m)φj(m)
�∫m

0 sf(s)ds
�

dm + hj(m∗j )φj(m
∗
j )
�

∫m∗j
0 sf(s)ds

�

� , (3.32)

where eγj(m)=
∫m

0 sf(s)pj(m, s)ds is the share of expenditure paid with cards by
type-j agents when having m units of cash available if s is smaller or equal than
m.

3.5.1.2 Seller’s problem

We consider the nonatomic version of the game with a continuum of sellers. Sellers
maximize total profits by deciding whether to accept or reject card payments, as be-
fore. Unit profits when receiving a cash payment are u, while they shrink to u− t in
the case of a card transaction. We allow for a fixed cost T in accepting cards, which
is meant to represent the fixed amount that sellers need to pay to be able to accept
card payments, such as the fees associated with installing a POS terminal, the cost
of setting up a contract with the service provider, and so on. The parameter T is
meant to capture all the costs related to acceptance that arise independently from
the share of purchases which are effectively paid for using cards. The main differ-
ence is that now sellers do not face buyers who hold a fixed amount of cash, but
they face a stationary distribution of cash balances in the economy, as well as opti-
mal search choices. When a fraction φ > 0 of sellers accept, the value of accepting
is given by

Πcd(φ) = (1 −ω)α

�

∫ m∗c

mc

hc(m)πcd
c (m)dm + hc(m

∗
c )πcd

c (m∗c )

�

+(1 −ω)(1 − α)

�

∫ m∗c

mc

hc(m) eφc(m)πcd
c (m)dm + hc(m

∗
c ) eφc(m∗c )πcd

c (m∗c )

�

+ωα

�

∫ m∗d

md

hd(m)πcd
d (m)dm + hd(m∗d)πcd

d (m∗d)

�

+ω(1 − α)

�

∫ m∗d

md

hd(m) eφd(m)πcd
d (m)dm + hd(m∗d) eφd(m∗d)πcd

d (m∗d)

�

− T,

(3.33)
where

eφj(m) =
φ + (1 − φ)ℓj(m)

φ
, (3.34)
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and
πcd

j (m) =

∫ m

0

�

u − pj(m, s)t
�

dF(s) + (1 − F(m)) (u − t) (3.35)

is the expected profit for a shop that accepts cards conditional on having a client of
type j with m units of cash balances entering the shop. Notice that

(1−ω)(1−α)

∫ m∗c

mc

hc(m)
�

φ + (1−φ)ℓc(m)
φ

�

dm

is the expected number of type c clients that can search who visit the shop. No-
tice that, when everybody accepts (φ = 1) or nobody searches (ℓc(m)= 0 for all
m), the expected number of clients that can search who visit the shop is one. The
same holds for the expected number of type d searchers who visit the shop. No-
tice that Πcd(φ) is not defined for φ = 0, and limφ→0+Π

cd(φ)= +∞, i.e., sellers
get infinitely high profits from accepting when nobody else does, as they attract a
large mass of searching customers. The value of not accepting cards when a fraction
φ > 0 of sellers accept is given by

Πc(φ) = (1 −ω)α

�

∫ m∗c

mc

hc(m)πc
c(m)dm + hc(m

∗
c )πc

c(m
∗
c )

�

+(1 −ω)(1 − α)

�

∫ m∗c

mc

hc(m)
�

1 − ℓc(m))
�

πc
c(m)dm + hc(m∗c )(1 − ℓc(m∗c )πc

c(m
∗
c )

�

+ωα

�

∫ m∗d

md

hd(m)πc
d(m)dm + hd(m∗d)πc

d(m∗d)

�

+ω(1 − α)

�

∫ m∗d

md

hd(m)
�

1 − ℓd(m)
�

πc
d(m)dm + hd(m∗d)(1 − ℓd(m∗d))πc

d(m∗d)

�

,

(3.36)
where

πc
j (m) = F(m)u, for j ∈ {c, d}. (3.37)

3.5.1.3 Equilibrium

We now define our an equilibrium for our economy.

Definition 3.10. A payments market equilibrium is a tuple of value functions {vc, vd},
policy functions {mc, m∗c ,ℓc, pc, md, m∗d,ℓd, pd}, stationary distributions {hc, hd}, sell-
ers’ profit functions {Πc,Πcd} and a card acceptance rate φ∗ such that:

(1) The value function vj the policy functions {mj, m∗j ,ℓj, pj} solve the cash manage-
ment and payment choice problem of type j households, for j ∈ {c, d}, when
φ = φ∗.

(2) Given the policy functions {mj, m∗j ,ℓj, pj} and the implied stationary distributions
of cash holdings hj for j ∈ {c, d}, ∆(φ∗)=Πcd(φ∗)−Πc(φ

∗)= 0.
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The arguments for equilibrium existence that we used in ?? apply to this version
of the model as well. As before, we cannot guarantee uniqueness, but after solving
the model numerically, for each vector of parameters, we can check the existence of
a unique stable imperfect acceptance equilibrium φ∗l ∈ (0,1), in addition to the full
acceptance equilibrium φ∗ = 1.

3.5.2 Calibration

We now discuss how to calibrate our model and present our preferred calibration of
model parameters.
Calibration strategy. We calibrate the model at the yearly frequency to repro-
duce aggregate statistics for the Euro Area that we derive from the Study on
the Payment Attitudes of Consumers in the Euro Area (SPACE from now on).
The model has a total of twelve scalar and functional parameters, given by
{ρ,ω, F, b, R,κ,λ, u,α,η, t, T}. Some of these parameters can be externally cali-
brated without solving the model. We start by setting ρ to 36.0 to target a monthly
discount rate of .96 which we deem appropriate for cash holding and payment de-
cisions. The parameter ω is set to 60 percent, which is the percentage of SPACE
respondents who reportedly prefer using cards to carry out their purchases⁹ As in
Lippi and Moracci (2024), we assume that F is lognormal and we calibrate its pa-
rameters µs and σ2

s to target a daily expenditure of one and to match the coefficient
of variation of purchase sizes. We calibrate the remaining parameters of the model,
i.e. {R,κ,λ, u,α,η, t, T}, through a two-step minimum distance procedure. We start
by assuming that the data we observe describes an imperfect acceptance equilib-
rium outcome with card acceptance rate φ∗l . Then, we set φ = Òφ (which we ob-
serve from the Survey on the Use of Cash by Companies in the Euro Area (2022)1⁰)
and we compute model implied moments for a large grid of possible parameter vec-
tors for the buyer problem {r,κ,λ, u,α,η}, searching for the parameter vector that
minimizes the distance between six model-implied moments and their empirical
counterparts. After finding the minimizer, we performed a grid search over the vec-
tor of parameters that only enter the seller’s problem, i.e. {t, T}, to find a combina-
tion of the two parameters that make Òφ a stable imperfect acceptance equilibrium,
given the stationary distributions and policy functions implied by the solution of the

9. Since reported payment preferences vary a lot across different regions in SPACE, estimating
the model at the Euro Area level might be an issue, since type-c and type-d buyers identified through
the survey question might differ in a lot more than their payment preferences. A more appropriate
exercise would be to choose a country and estimate the model at that level. Still, we cannot do that as
we observe the acceptance rate reported by companies (hence, the true level Òφ) only for the Euro Area
as an aggregate, through the Companies’ Survey on the Use of Cash, and the associated microdata is
not publicly available. We are currently in touch with the ECB Banknotes Directorate to have access
to this supply-side acceptance data and considerably improve estimation.

10. As a measure of the rate of card acceptance, we took the minimum between the acceptance
rate for credit cards, debit cards and contactless cards.
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buyer’s problem for the best parameter vector found above. To calibrate the param-
eter set {r,κ,λ, u,α,η}, we target moments that we deem informative about each
parameter. In particular, we target the average amount of cash holdings (divided
by expenditure) M/e for both type c and type d buyers, which we identify from the
answer to the survey question on preferences reported above. The level of these two
statistics should be informative about R, the opportunity cost of holding cash. The
difference between Mc/e and Md/e should be informative about κ, since any differ-
ence between the two groups must stem from κ being higher than zero: the largest
is κ in absolute value, the more the two types of individuals are different. As the
other model-implied moments for type d individuals are quite extreme (they never
use cash when they can avoid it, while type c agents often use cards even when
they have enough cash, to postpone withdrawals11), we then use two moments on
type c buyers, the average number of withdrawals per year they perform nc, as well
as the share of purchases they pay with cards when having both options available
eγc. The moment nc is informative about the parameter u: the higher the cost of
losing a purchase, the more frequently agents will withdraw cash to insure against
missed purchase opportunities. For a given level of κ, the moment eγc is instead in-
formative about α: with a higher α, agents know that they will be able to search
less effectively in the future, therefore they might pay using cards more frequently
when they have both options, to save cash for future shopping trips in which cards
might not be accepted. The fifth moment we target is the effective acceptance rate
φ (which we get from the SPACE diary through reported card acceptance in stores
visited), which is the demand-side counterpart of φ, the average acceptance rate.
This moment is informative about η: as search costs fall, agents disproportionately
visit stores that accept cards, and φ becomes much higher than the true card accep-
tance rate φ. The last moment we target is λ̂, the number of completed purchases,
which is informative about the arrival rate of purchase opportunities λ.
Results. In 3.2 we display our calibration for the model and how well the calibrated
model fits the statistics used in estimation. The model successfully replicates some
salient features of the payments market, including patterns of cash management by
households. Our parameter estimates for R,κ, and λ are broadly in line with Lippi
and Moracci (2024), while we estimate a much smaller value for u. The degree of
search frictions is sizeable: to match the data, we need our agents to be unable to
search across shops for 72% of their transactions. Estimated search costs, however,
are low, i.e., about a fifth of the cost of a cash withdrawal. As for the parameters of
the merchant problem, we calibrate a value of t such that the profit obtained from
a card transaction is 36% smaller than that yielded from a cash transaction. Finally,
the fixed cost of accepting cards accruing to each purchase is around 14% of the
profits derived from a cash transaction. We plan to improve our characterization of

11. See Lippi and Moracci (2024) for a more accurate description of payment choices by individ-
uals who prefer using cash.
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Table 3.2. Estimated parameters and model fit

Parameter Calibrated value

Opportunity cost R 0.05
Cost using least pref. payment method κ/b 0.73
Purchase oppurt. per day λ/365 2.02
Utility cost lost purchase u/b 47.74
Search frictions α 0.72
Search cost η(1 − ϕ)/b 0.22
Acceptance fee t/u 0.36
Acceptance fixed cost T/u 0.14

Moment Data Model

Cash balances, Mc/e (prefer card) 1.36 1.24
Cash balances, Md/e (prefer cash) 1.00 1.09
N. cash withdrawals per year, nc (prefer cash) 106.51 106.83
Cashless share of expenditure eγ (both poss.) 0.25 0.26
Effective acceptance rate ϕ 0.84 0.86
N. purchases per day λ̂/365 1.93 1.99
Card acceptance rate ϕ 0.80 0.80
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the magnitude of each parameter of the seller problem by computing, for instance,
the average amount paid in card fees and fixed costs as a proportion of the equilib-
rium profits of accepting sellers.

3.6 An application: a subsidy to card usage

We now use our model to analyze the effects of a small subsidy to card usage given
to all agents in our economy. Such policies have been implemented several times,
with a recent example being the Italian cashback policy rolled out in late 2020, to en-
courage card usage and make the payment system "more efficient, more transparent
and traceable", with the additional goal of "recovering the underground economy,
discouraging payments ’in the black’"12. The policy consisted in a reimbursement
up to EUR 150 every six months for consumers that completed at least a minimum
amount of card payments (50) in that time window, plus multiple EUR 1,500 prizes
for the first 100,000 people that completed the most number of digital payments
in the same six-month window. Within the context of our model, this is equivalent
to shifting the fixed cost κ down for type c agents, and up for type d agents. We
assume that the shift is identical and we parametrize it as follows: the fixed cost of
using cards shrinks to κ− ξ for type c agents, while the fixed cost of using cash in-
creases to κ+ ξ for type d agents. Notice that this exercise is similar to an increase
in ω, for which we performed a comparative statics exercise in the simpler model
of ??.

We compute the partial and general equilibrium effects13 of such a subsidy to
card usage when ξ= 0.1κ (i.e., it is equal to ten percent of the average inconve-
nience of using cards for type c agents), in terms of changes in average cash held
by households, in the share of expenditure settled using cards (both overall and
when cards are available), and in the average acceptance rate. As a benchmark, we
use our baseline parametrization. By partial equilibrium effects, we mean that we
assume that φ is fixed and that only buyers’ choices can change in response to the
increased convenience of electronic payments. Under this assumption, the policy
achieves the proposed effects: it lowers the amount of cash held by households by
approximately 1%, and it raises the share of expenditure paid for using cards by
around 1.5% (3% when focusing on purchases where both options were available).
When allowing for an optimal response by sellers to the policy change, though, the
average card acceptance rate changes, falling by around 2 percentage points. The

12. Quote by the Italian PM Giuseppe Conte, see the article by Il Sole 24 ore here.
13. We abstract from the role of the government in our exercise. In a model with tax evasion

where tax revenues are endogenous and depend positively on the share of expenditure settled using
cards (following the logic of Immordino and Russo (2017), according to which merchants are more
prone to evade taxes when paid in cash), the policy could self-finance itself, but at the same time
could still have the same unintended consequences shown here.

https://www.ilsole24ore.com/art/conte-cashless-obiettivo-pagare-tutti-ma-pagare-meno-ADXKStn?refresh_ce=1
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The above Figure displays the changes in M/e, γ,eγ and in the equilibrium acceptance rate ϕ when
introducing a card subsidy of value ξ, both in a partial equilibrium setting (keeping ϕ fixed and
simply solving again the buyer’s problem), and in a general equilibrium setting in which we allow
sellers to respond optimally by adjusting their acceptance policies, possibly affecting ϕ.

Figure 3.6. Partial and general equilibrium effects of a cashback policy

reason is that sellers’ internalize that now their customers will use cards more often
not only to settle large purchases that they could not pay with cash (as they don’t
have enough), but also to pay for tiny transactions in order to get the rewards re-
lated to the cashback policy. This fall in acceptance more than compensates for the
increased benefit of paying with cards, and households increase their average cash
balances by around 4% relative to the benchmark, as a result of stronger precau-
tionary motives. The card share of expenditure falls by 0.25%, despite an increase
in the intensity of card usage when both options are available by around 2.5% (as a
result of the increased convenience). In short, the general equilibrium effect in this
example dominates the partial equilibrium one, and the card share of expenditure
falls despite agents pay more often with cards when they can, simply because they
have this option less often. This exercise provides a backing for our claim that when
evaluating policy proposals that affect payment and cash management choices of
households (such as cash bans or limits to cash usage), general equilibrium effects
that affect the other side of the payments market (sellers) should be taken into ac-
count.
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3.7 Conclusion

In this paper, we presented an equilibrium model of the payments market in which
buyers and sellers interact to settle purchases. Buyers decide how much cash to hold
and how to pay for goods and services bought (between cash and a non-cash op-
tion such as a payment card), while sellers choose whether to accept payment cards
or not. Agents can search for shops that accept their preferred payment methods,
even though we allow for frictions that make search imperfect and generate market
power for sellers. We showed that our model may feature either strategic comple-
mentarity or substitutability in acceptance decisions, depending on the overall level
of acceptance, and the existence of strategic substitutability is a requirement to ob-
tain imperfect acceptance equilibria such as the ones we observe in the data. We
outlined existence and uniqueness results for the equilibrium of our model economy,
and performed comparative statics exercises showing analytically the equilibrium
responses to changes in the cost of holding cash, in the extent of search frictions,
and in preferences for card versus cash payments. We presented an extended ver-
sion of our model that we can bring to the data, matching aggregate statistics from
2021-22 payment diaries for the Euro Area. Finally, we used our calibrated model
to perform a policy exercise, computing the partial and general equilibrium effects
of a subsidy to card usage, and showing that policies intended to boost card usage
may have unintended effects if one neglects the equilibrium response of sellers. Our
results show that payments acceptance decisions by sellers (and the related strate-
gic interactions) need to be included in models of cash management and payment
choices, if one is interested in computing the equilibrium effects of policy changes
that directly or indirectly affect merchants’ incentives to accept card payments.
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Appendix 3.A Proofs

3.A.1 Proof of 3.2

We start from agents who prefer to pay using cash. When φ > 0, we have that

∂ Vc(m,φ)
∂m

= − R + αφf(m)u − αφf(m)(u − κ) + α(1 − φ)f(m)u + (1 − α)f(m)u − (1 − α)f(m)(u − κ)

= − R + pf(m)u − αφf(m)(u − κ) + (1 − α)f(m)u − (1 − α)f(m)(u − κ) =

= − R + f(m)u − αφf(m)(u − κ) − (1 − α)f(m)(u − κ).

The first-order condition yields

f(m) =
R

u − (u − κ)
�

αφ + (1 − α)
� .

As we assume that f 0(s)< 0 for all s ∈ [0,+∞], this equation either has one solution
(if f(0)> R

u−(u−κ)(αφ+(1−α))) or zero solutions. When the condition does not hold, it
is optimal to hold zero cash. Notice, however, that this cannot happen as we assume
that f(0)> R/κ (see (A2) in Assumption 4), and R

u−(u−κ)(αφ+(1−α)) <
R
κ . When ev-

erybody accepts cards (φ = 1), the solution is given by f(m)= R/κ. When φ = 0,
we similarly get that the solution is given by f(m)= R/u. Notice that the money de-
mand function is discontinuous at φ = 0, as limφ→0+ m∗c (φ)= f−1

� R
u−(u−κ)(1−α)

�

̸=
m∗c (0).

Moving to agents who prefer to pay with cards, when φ > 0, we have that

∂ Vd(m,φ)
∂m

= − R + α(1 − φ)f(m)(u − κ)..

The equation has one solution if f(0)> R
α(1−φ)(u−κ) , while in the opposite case

agents will hold zero cash. This is not ruled out by assumptions as R
α(1−φ)(u−κ) might

be larger than max{R/κ, R/(u− κ)}.

3.A.2 Proof of 3.5

In the nonatomic acceptance game, the function that yields the difference in pay-
offs between accepting and not accepting cards as a function of the average card
acceptance rate φ is

∆(φ) = lim
N→+∞

∆N
i (φ) =

= (1 −ω)[F(m∗c (φ)) − F(m∗c (φ))]u + (1 −ω)(1 − F(m∗c (φ)))(u − t)(α + (1 − α)/φ)

+ω((u − t)(α + (1 − α)/φ) − αF(m∗d(φ))u)

= (1 −ω)(1 − F(m∗c (φ)))(u − t)(α + (1 − α)/φ)

+ω((u − t)(α + (1 − α)/φ) − αF(m∗d(φ))u).
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Now, let the distribution of payment sizes s be exponential, i.e., let F(s)= 1− e−λs.
from (3.9) and (3.10) we get

∆(φ) = (1 −ω)
1
λ

R
αφκ + α(1 − φ)u + (1 − α)κ

(u − t)
�

α +
1 − α
φ

�

+ω(u − t)
�

α +
1 − α
φ

�

−ωαu
�

1 −
1
λ

R
α(1 − φ)(u − κ)

�

for 0< φ ≤ φ̂, where φ̂ = 1− R
λα(u−κ) as defined above and

∆(φ) = (1 −ω)
1
λ

R
αφκ + α(1 − φ)u + (1 − α)κ

(u − t)
�

α +
1 − α
φ

�

+ω(u − t)
�

α +
1 − α
φ

�

for φ > φ̂. Now denote the first branch e∆(φ) and the second branch ∆(φ). We
study these two functions separately, and each in the domain (0,1).
First, observe limφ→0+ e∆(φ)= +∞ and limφ→1− e∆(φ)= +∞. Next, we check
how many solutions the equation e∆(φ)= 0 can have in the interval (0,1). Note
that
e∆(φ) = 0 ⇒ (1 −ω) 1

θ R(u − t)(αφ + (1 − α))(α(1 − φ)(u − κ))

+ω(u − t)(αφ + (1 − α))(α(1 − φ)(u − κ))(αφκ + α(1 − φ)u + (1 − α)κ)

−ωαuφ(αφκ + α(1 − φ)u + (1 − α)κ)(α(1 − φ)(u − κ))

+ωα 1
θ Rφ(αφκ + α(1 − φ)u + (1 − α)κ) = 0,

(3.A.1)
i.e., that any solution to e∆(φ)= 0 is also a solution to the equation on the right,
which is a cubic equation and hence cannot have more than three solutions in the
interval (0,1). Therefore, we conclude that e∆(φ)= 0 has at most three solutions in
the (0, 1). Suppose it has exactly three solutions in (0, 1). Call them φ1 < φ2 < φ3.
Since we are considering generic parameters only, we can assume that each solution
φ∗ ∈ {φ1,φ2,φ3} is such that

(1) either e∆(φ∗ − ϵ)< 0∧ e∆(φ∗ + ϵ)> 0,
(2) or e∆(φ∗ − ϵ)> 0∧ e∆(φ∗ + ϵ)< 0,

for sufficiently small ϵ > 0. Since limφ→0+ e∆(φ)= +∞, we have that for φ1 point
(2) must hold. Then, by continuity, φ2 is such that (1) holds and, finally, φ3 is such
that (2) holds again. Since (2) holds at φ3, there exists φ0 > φ3 such that e∆(φ0)<
0. Yet, since limφ→1− e∆(φ)= +∞ there exists φ00 > φ0 such that e∆(φ00)> 0, and
by continuity ∃φ4 ∈ (φ0,φ00) with e∆(φ4)= 0, a contradiction since {φ1,φ2,φ3} in-
cludes all the solutions to e∆(φ)= 0. We just proved that e∆(φ)= 0 cannot have
three solutions.
We can apply the same logic to e∆(φ)= 0 having only one solution. Therefore, e∆(φ)
can either have two solutions or zero. We analyze both cases individually.
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(i) Suppose the function has two solutions in (0,1). Observe, moreover, that
∆(φ)> 0 for each φ ∈ (0,1). Since ∆ is continuous, we must have e∆(φ̂)> 0.
Hence,∆(φ)= 0 has, in this case, either two solutions (the solutions of e∆(φ)=
0) or zero solutions (when φ̂ < φ1). Notice that the case φ1 < φ̂ < φ2 is ruled
out by the fact that e∆(φ̂)> 0.

(ii) Suppose it has zero solutions. Then e∆(φ)> 0 for all φ ∈ (0, 1). Since∆(φ)> 0
as well, it must be the case that ∆(φ)= 0 has no solutions in the interval.

We conclude that ∆(φ)= 0 has either zero or two solutions in the (0,1) interval.
If it has two solutions, they are both equilibria of the nonatomic acceptance game,
denoted by (φ∗l ,φ∗h). Moreover, given that ∆(1)> 0, we have that φ∗ = 1 is always
an equilibrium of the nonatomic acceptance game.

3.A.3 Proof of 3.7

The derivative of the function ∆i with respect to α is given by

∂∆i(φ−i)
∂ α

= (1 −ω)

�
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�
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−ωF
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u −ωα
∂ F
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��

∂ α
u.

First, notice that given that 1− N
φ−iN+1 ≤ 0, ∂ F(m∗c (φ−i))

∂ α > 0 and ∂ F
�

m∗d(φ−i)
�

∂ α > 0, all
terms except the first one are unambiguously negative. Hence, given that for large
enough N,

�

∂ F
�

m∗c
�

φ−i+
1
N

��

∂ α − ∂ F(m∗c (φ−i))
∂ α

�

≈ 0, we can say that there exists N0 ∈ N

such that, for all N ≥ N0, ∂∆i

�

φ−i

�

/∂ α < 0 for all φ−i. The desired result on φ∗
follows naturally.

3.A.4 Proof of 3.8

For φ−i > 0 we have that
∂∆i(φ−i)
∂ω

= u
�

F(m∗c (φ−i)) − pF(m∗d(φ−i))
�

+ F
�

m∗c

�

φ−i +
1
N

���

(u − t)
�

α + (1 − α)
N

φ−iN + 1

�

− u
�

.

The first term is larger than zero, as individuals who prefer cash hold more of it
than agents who prefer cards, for the same acceptance rate. The second term, how-
ever, is smaller than zero, since u− t< u and given that α/N + (1−α)/(φ−iN + 1)
is smaller than one.
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For α= 0, the expression becomes
∂∆i(φ−i)
∂ω

=u
�

F(m∗c (φ−i)) − F
�

m∗c

�

φ−i +
1
N

���

+ F
�

m∗c

�

φ−i +
1
N

���

(u − t)
�

N
φ−iN + 1

��

.

The first term is positive as money demand decreases inφ and F is a cdf. The second
term is also positive whenever t< u. Hence, ∂∆i(φ−i)/∂ω > 0 when α= 0, for any
value of t< u.

For α= 1, the expression is instead given by
∂∆i(φ−i)
∂ω

=u
�

F(m∗c (φ−i)) − F
�

m∗d
�

φ−i

���

− tF
�

m∗c

�

φ−i +
1
N

��

.

As before, the first term is positive. The second term, however, is now negative. If t
is sufficiently close to u, we have that ∂∆i(φ−i)/∂ω < 0. Hence, ∂∆i(φ−i)/∂ω is
of ambiguous sign. However, notice that

∆i

�

φ−i

�

= (1 −ω)
�

F
�

m∗c

�

φ−i +
1
N

��

− F
�

m∗c
�

φ−i

��

�

u

+ (1 −ω)
�

1 − F
�

m∗c

�

φ−i +
1
N

���

(u − t)
�

α + (1 − α)
N

φ−iN + 1

�

+ω(u − t)
�

α + (1 − α)
N

φ−iN + 1

�

−ωαF(m∗d(φ−i))u

= ω
�

F
�

m∗c
�

φ−i

��

− pF(m∗d(φ−i))
�

u

+ωF
�

m∗c

�

φ−i +
1
N

���

(u − t)
�

α + (1 − α)
N

φ−iN + 1

�

− u
�

+
�

1 − F
�

m∗c

�

φ−i +
1
N

���

(u − t)
�

α + (1 − α)
N

φ−iN + 1

�

+
�

F
�

m∗c

�

φ−i +
1
N

��

− F
�

m∗c
�

φ−i

��

�

u

= ω
∂∆i(φ−i)
∂ω

+
�

1 − F
�

m∗c

�

φ−i +
1
N

���

(u − t)
�

α + (1 − α)
N
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�

+
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F
�

m∗c

�

φ−i +
1
N
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− F
�

m∗c
�

φ−i

��

�
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(3.A.2)
The second term is positive and the third term tends to zero as N→ +∞. There-
fore, there exists N0 ∈ N such that, for all N ≥ N0, ∆i

�

φ−i

�

is positive whenever
∂∆i

�

φ−i

�

/∂ω is positive. We can also rewrite the above as

∂∆i(φ−i)
∂ω

=
∆i

�

φ−i

�
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−
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���
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F
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1
N

��

− F
�
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�
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��

�
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Recall that if φ∗ is an IAE, (3.17) implies that ∆i(φ
∗)< 0. Hence, we obtain that

there exists N0 ∈ N such that, for all N ≥ N0, ∂∆i

�

φ∗
�

/∂ω < 0. To understand how
the equilibrium changes when ω rises, we need to understand what is the new
level φ0 for which (3.16) and (3.17) are satisfied. Notice that for φ∗ (3.17) is
still satisfied, therefore it cannot be that the new imperfect acceptance equilibrium
φ0 ∈ {φ∗ + 1/N, ..., 1}. If there exists φ0 ∈ {0, 1/N, ...φ∗ − 1/N} (with ∆i(φ

0)≥ 0
such that ∆i(φ

0)− ∂∆i(φ
0)

∂ω < 0, that φ0 satisfies both (3.16) and (3.17) and it is
the new equilibrium. We just showed that if φ∗ is an IAE, then ∂ φ∗/∂ω≤ 0. As for
∂m∗/∂ω, observe that

m∗(φ∗(ω)) = ωm∗d(φ∗(ω)) + (1 −ω)m∗c (φ∗(ω)),

where we write φ∗(ω) to make the dependence of the equilibrium acceptance rate
on ω explicit. Therefore,

∂m∗(φ∗(ω))
∂ω

= m∗d(φ∗(ω)) +ω
∂m∗d(φ∗)

∂ φ∗
∂ φ∗

∂ω
−m∗c (φ∗(ω)) + (1 −ω)

∂m∗c (φ∗)

∂ φ∗
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∂ω

=
�

m∗d(φ∗(ω)) −m∗c (φ∗(ω))
�

︸ ︷︷ ︸

<0

+ω
∂m∗d(φ∗)

∂ φ∗
∂ φ∗

∂ω
︸ ︷︷ ︸

>0

+ (1 −ω)
∂m∗c (φ∗)

∂ φ∗
∂ φ∗

∂ω
︸ ︷︷ ︸

>0

.

3.A.5 Proof of 3.9

For φ−i > 0 we have that

∂∆i(φ−i)
∂ R

= (1 −ω)

�

∂ F
�

m∗c
�

φ−i +
1
N

��

∂ R
−
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−ωα
∂ F
�

m∗d
�
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��

∂ R
u,

First, notice that given that ∂ F(m∗c (φ−i))
∂ R < 0 and ∂ F

�

m∗d(φ−i)
�

∂ R < 0, all terms except
the first one are unambiguously positive. Hence, given that for large enough N,
�

∂ F
�

m∗c
�

φ−i+
1
N

��

∂ R − ∂ F(m∗c (φ−i))
∂ R

�

≈ 0, we can say that there exists N0 ∈ N such that, for
all N ≥ N0, ∂∆i

�

φ−i

�

/∂ R> 0 for all φ−i. The desired result on φ∗ follows natu-
rally.
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