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Vorwort 
 
Seit mehr als zwanzig Jahren gehört die geodätische Radiointerferometrie, auch kurz 
VLBI genannt (von Very Long Baseline Interferometry) zu den tragenden Be-
obachtungsverfahren der geodätischen Forschung, da sie die direkte Verbindung 
zwischen dem himmelsfesten, quasi-inertialen Referenzsystem der Himmelskörper  
am Rand des uns bekannten Universums und dem erdfesten Referenzsystem der 
Beobachtungsstationen herstellt. Die "Zielmarken" sind hier quasi-stellare Objekte 
(Quasare) oder andere Radiostrahlung emittierende Galaxien, die für die Beobachter 
auf der Erde als punktförmig erscheinen und die mit Radioteleskopen beobachtet 
werden.  
 
Während die Referenzsysteme die geodätische Säule der Geometrie repräsentieren, 
verbindet die VLBI diese Referenzsysteme über die hypothesenfreie Bestimmung der 
Erdrotation, die die zweite Säule der Geodäsie darstellt. Auch wenn die dritte Säule 
der Geodäsie, die Bestimmung des Schwerefeldes der Erde, nicht durch die VLBI 
abgedeckt wird, so stellt sich das Verfahren doch als fundamental für die Erd-
systemforschung dar, da das Rotationsverhalten der Erde in all seinen Komponenten 
nur durch die VLBI bestimmt werden kann. 
 
Die VLBI benötigt für die Durchführung der Messungen einen detaillierten Beobach-
tungsplan, in dem die Abfolge der Beobachtungen der einzelnen Radioteleskope 
festgelegt werden muss, wobei sowohl Beobachtungen aller Teleskope des Netzwerkes 
zu einem einzelnen Quasar als auch Beobachtungen von Subnetzen notwendig sind. 
Die Geometrie der Beobachtungen und damit der Beobachtungsplan legen die Stabi-
lität der Kleinste-Quadrate-Lösung fest. Zur Charakterisierung der geometrischen 
Eigenschaften eines Ensembles von Beobachtungen wurden bisher in der Hauptsache 
Kovarianzinformationen herangezogen, die es jeweils nur erlaubte, die Gesamtheit 
aller Beobachtungen zu betrachten und zu interpretieren. 
 
Die vorliegende Dissertation von Herrn Vennebusch stellt insofern eine bemerkens-
werte Neuerung dar, als dass nun mit Hilfe der Cluster-Analyse die Bedeutung ein-
zelner Gruppen von Beobachtungen differenziert interpretiert werden kann. Herr 
Vennebusch hat dazu mit der Singulärwertzerlegung eine geeignete Schnittstelle 
zwischen der Lösung eines größeren Gleichungssystems und der  Cluster-Analyse 
gefunden. Damit hat er einen entscheidenden Schritt zur Identifikation von (Gruppen 
von) Hebelbeobachtungen ermöglicht, den es im nächsten Schritt in die Software zur 
Erstellung von Beobachtungsplänen einzubinden gilt. 
 
 
 
 Bonn, im April 2008 

 
 
 
 





ZusammenfassungEs ist bekannt, dass Hebelpunkt-Beoba
htungen die S
hätzung von Parametern stark beein�ussen. Bisherwurden Redundanzanteile von Beoba
htungen verwendet, um einzelne Hebelpunkt-Beoba
htungen voneinzelnen redundanten (bzw. weniger wi
htigen) Beoba
htungen zu unters
heiden. In dieser Arbeit wirdein objektives Verfahren zur Aufde
kung von Gruppen von wi
htigen und weniger wi
htigen (und somitredundanten) Beoba
htungen entwi
kelt. Auÿerdem wird bestimmt, wel
he Parameter hauptsä
hli
h vondiesen Beoba
htungsgruppen beein�usst werden.Der hier vorges
hlagene Ansatz basiert auf geometris
hen Aspekten der Ausglei
hungsre
hnung und verwen-det die Singulärwertzerlegung der Designmatrix eines Ausglei
hungsproblems und Cluster Analyse-Verfahrenzur Regressionsanalyse.Obwohl der hier vorges
hlagene Ansatz auf beliebige geodätis
he Ausglei
hungsprobleme angewendet werdenkann, werden in dieser Arbeit nur Anwendungen bezogen auf die geodätis
he Langbasis-Interferometrie(VLBI) gezeigt. Allgemein ist der hier vorges
hlagene Ansatz dazu geeignet, (Gruppen von) Beoba
htungenaufzude
ken, die die ges
hätzten Parameter signi�kant beein�ussen oder nur verna
hlässigbaren Ein�usshaben (und somit auf diese Beoba
htungen am ehesten verzi
htet werden kann).In dieser Arbeit wird zunä
hst der theoretis
he Hintergrund der geometris
hen Aspekte der Ausglei
hungs-re
hnung zusammengefasst. Dann wird die Singulärwertzerlegung der Designmatrix des zugehörigen Aus-glei
hungsproblems verwendet, um Kenngröÿen für den Ein�uss und die Ähnli
hkeit von Beoba
htungen zubestimmen. Gruppen von Beoba
htungen mit ähnli
hem Informationsgehalt werden ans
hlieÿend mit Hilfevon Cluster Analyse-Algorithmen gebildet. Na
h einer kurzen Wiederholung der Grundlagen der geodätis-
hen Langbasis-Interferometrie wird der vorges
hlagene Ansatz sowohl auf �ktive als au
h auf reale Ein-Basislinien-Sessionen angewendet. Damit werden die Taugli
hkeit und die Fähigkeiten des hier entwi
keltenRegressionsdiagnose-Werkzeuges unter Beweis gestellt.
SummaryIt is well known that high-leverage observations signi�
antly a�e
t the estimation of parameters. So far,mainly redundan
y numbers have been used for the dete
tion of single high-leverage observations or of singleredundant observations. In this thesis an obje
tive method for the dete
tion of groups of important and lessimportant (and thus redundant) observations is developed. In addition, the parameters whi
h are mainlya�e
ted by these groups of observations are identi�ed.The method proposed in this thesis is based on geometri
 aspe
ts of adjustment theory and uses the sin-gular value de
omposition of the design matrix of an adjustment problem and 
luster analysis methods forregression diagnosti
s.Although the proposed method 
an be applied to any geodeti
 adjustment problem, in this thesis onlyappli
ations to geodeti
 very long baseline interferometry (VLBI) are shown. In general, the method is wellsuited for the dete
tion of (groups of) observations that signi�
antly a�e
t the estimated parameters or thatare of negligible impa
t (and are thus 
andidates for observations that 
an be omitted).In this thesis, at �rst the theoreti
al ba
kground of the geometri
al aspe
ts of geodeti
 adjustment theoryis summarized. Then the singular value de
omposition of the design matrix of an adjustment problem isused for the 
omputation of measures of the impa
t and similarity of observations. Groups of observationswith a similar information 
ontent are then identi�ed by statisti
al 
luster analysis algorithms. After a shortreview of geodeti
 very long baseline interferometry the proposed method is applied to arti�
ial and realsingle-baseline sessions in order to show the 
apabilities of the regression diagnosti
s tool developed in thisthesis.
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70. Introdu
tionSin
e the 1970ies Very Long Baseline Interferometry (VLBI) has been used to determine station 
oordinateson earth as well as parameters of earth rotation with very high pre
ision. With an a

ura
y of 2 − 3 · 10−9VLBI belongs to the most pre
ise measurement te
hniques in geodesy.VLBI observations 
onsist of the di�eren
es of arrival times of signals of extragala
ti
 radio sour
es re
eived attwo radio teles
opes. In 
ontrast to the Global Positioning System (GPS) in VLBI the analyst 
an de�ne thetype of observations by manually sele
ting the two observing sites and the radio sour
es both radio teles
opespoint at. Depending on the duration of an observation session and the size of the observing network, manythousands of observations and hundreds of unknown parameters a

umulate (Ma 1990). The adjustment ofVLBI observations and the determination of the target parameters is a typi
al least-squares problem as ito

urs in many s
ienti�
 and engineering tasks.It is well-known that the VLBI te
hnique is very sensitive to variations in the 
hoi
e of observations aswell as to small variations in the observed time delay. Also, the 
hoi
e of the fun
tional model (i.e., ofthe unknown parameters) and the 
hoi
e of 
onstraints strongly a�e
t the estimated parameters. This hasalso been re
ognized by the International VLBI Servi
e for Astrometry and Geodesy (IVS) and has beensummarized in the IVS-WG3 Report on Data Analysis (S
huh, H. et al. 2006):Robustness and reliability of VLBI solutions are key elements of the quality of VLBI results.Therefore, improved analysis strategies together with observation s
heduling will have to bedeveloped whi
h redu
e the in�uen
e of single observations on the results.In addition, many authors re
ognized the sensitivity of their results to small variations in both the networkgeometry and the observation geometry (see e.g. Fis
her 2006). In statisti
al terminology this problem
an be summarized as weak quality of the design of a (VLBI-)experiment (Förstner 1987). In order toover
ome this problem, methods need to be developed to identify observations with a similar 
ontent of infor-mation and to separate important (groups of) observations from less important (groups of) observations. The'importan
e' of observations is 
losely related to the redundan
y of observations. Sin
e important observa-tions (or observations with a low redundan
y) signi�
antly a�e
t the estimated parameters, the dete
tion ofin�uen
ial observations (or in�uen
ial observation groups) is of great bene�t for the improvement of both thepre
ision and reliability of (VLBI) results. In addition, the omission of less important observations obviouslybears e
onomi
al advantages.Investigations of the sensitivity of VLBI solution parameters (su
h as e.g. baseline 
omponents or earthorientation parameters) have been performed in the 1970ies and 1980ies by e.g. Ma 1978, Lundqvist1984 or Brouwer 1985. These authors analysed the partial derivatives of the VLBI observation equationwith respe
t to the most 
ommon parameters or investigated the variations in the 
ovarian
e matrix of theunknown parameters after in
luding or omitting individual observations (Dermanis and Grafarend 1981).Optimal observation geometries for the determination of polar motion have been derived by Nothnagel1991. Software for optimal observation s
hedules has been developed by e.g. Steufmehl 1994 and attemptsfor an improvement of the sto
hasti
 model of VLBI have been performed by Tesmer 2004.In this thesis a method is presented whi
h serves as a regression diagnosti
s tool1 by taking into a

ount thegeometry (of both the network and the observations) of a VLBI session by investigating the entire designmatrix of the asso
iated adjustment problem by using existing algebrai
 and statisti
al tools. The obje
tiveof this thesis is the development of an analysis tool for an automati
 and obje
tive separation of importantand less important (groups of) observations and for the determination of the impa
t of these observations(or observation groups) on ea
h parameter involved. In 
ontrast to methods for the generation of observation1In geodesy, the term 'regression' is 
ommonly used for the determination of the parameters of a regression line or a regressionpolynomial. Here (as well as in geophysi
al literature or in statisti
al literature), the term 'regression' is used in a more general
ontext, des
ribing the pro
edure of parameter estimation in linear models (
f. Belsley et al. 1980).
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tions
hedules (as developed by e.g. Steufmehl 1994) this method 
an be used for the analysis of existingobservation s
hedules and for the dete
tion of important and thus in�uential observation groups. It is well-known that in�uential (or high-leverage) observations signi�
antly a�e
t the estimated parameters and thusshould be 
ontrolled (or supported) by appropriate (independent) observations. On the other hand, redundantobservations only have negligible in�uen
e on the estimates and are thus 
andidates for observations that
an be omitted.Sin
e the regression diagnosti
s tools is dire
tly applied to the design matrix of the asso
iated adjust-ment problem, the 
omputation of normal equations (and thus the magni�
ation of numeri
al sensitivity) isavoided. Hen
e, the proposed method is quite insensitive to round-o� errors and loss-of-digits problems.Although the proposed method is not limited to the analysis of VLBI observations, in this thesis onlyappli
ations for geodeti
 VLBI are shown.In addition to the presentation of the theoreti
al ba
kground of the regression diagnosti
s tool, a user-friendlysoftware pa
kage for the analysis of several kinds of adjustment problems and espe
ially for the analysis ofVLBI observation s
hedules has been implemented and tested for its pra
ti
al use.In order to solve the tasks des
ribed above, mainly two methods will be used: On the one hand an algebrai
tool, 
alled singular value de
omposition, is used to provide geometri
al insight into the system of linearequations asso
iated with the adjustment problem to be solved. The geometri
al aspe
ts of adjustmenttheory (or the 've
tor spa
e approa
h') o�er a di�erent perspe
tive of least-squares methods than the 
al
ulusapproa
hes (as used in e.g. Ko
h 1999 or Niemeier 2002). The geometri
al approa
h (as des
ribed in e.g.Meissl 1982 or Teunissen 1985) additionally provides a 'geometri
al insight' into geodeti
 adjustmentproblems.On the other hand a statisti
al tool, 
alled 
luster analysis, is being used for the dete
tion of groups ofobservations with a similar 
ontent of information. Although 
luster analysis is usually applied to attributesof real physi
al obje
ts, it 
an also be used for the generation of observation groups. Chapters 1 to 3 of thisthesis deal with both the singular value de
omposition and 
luster analysis methods.The general stru
ture of this thesis is as follows:
• Chapter 1 repeats and summarizes the algebrai
 ba
kground ne
essary for the understanding of geo-metri
al interpretations of systems of linear equations. Therefore, ve
tor spa
es and proje
tions ontosubspa
es are used to derive the method of least-squares and to understand the use of the singularvalue de
omposition for algebrai
 problems (see e.g. Meyer 2000 or Lay 2003).
• Chapter 2 des
ribes the relations between the geometri
al 've
tor spa
e approa
h' and the 
al
ulusapproa
h of estimating parameters of linear models (also known as Gauss-Markov model). Again,emphasis is put on geometri
al aspe
ts su
h as angles between ve
tors or subspa
es in order to deriveregression diagnosti
s tools that 
an be interpreted geometri
ally.
• Chapter 3 provides the basi
s of 
luster analysis methods, i.e., statisti
al methods for the dete
tion ofsimilarities of obje
ts and thus for the dete
tion of groups of observations/information with a similarimpa
t. These methods will be of relevan
e for the pra
ti
al investigations performed in 
hapter 5.
• Chapter 4 gives a short overview of the VLBI prin
iple and des
ribes the basi
 methods for the deter-mination of the most 
ommon parameters usually estimated from VLBI observations.
• Chapter 5 shows appli
ations of the methods developed in the previous 
hapters for the analysis ofmeasurements with plane and spatial interferometers. In this 
hapter, examples for pra
ti
al appli
a-tions of the VLBI observation s
hedule analysis software developed by the author of this thesis areshown. The main intention of this 
hapter is to show the 
apabilities of the regression diagnosti
s tooland to 
ompare its results with existing strategies of s
hedule generation.
• Chapter 6 summarizes the 
apabilities of the regression diagnosti
s tool developed in the �rst 
haptersand provides an outlook to further possible appli
ations.Ea
h 
hapter of this thesis 
an be read separately. Thus, espe
ially 
hapter 2 
ontains some aspe
ts whi
hhave already been treated in 
hapter 1.



91. Fundamental Linear Algebra1.1 Introdu
tionSin
e geodeti
 adjustment theory 
onsists of both linear algebra and statisti
al methods, some fundamentalbasi
s about linear algebra have to be reviewed in order to solve the tasks des
ribed in the introdu
tion. Linearalgebra provides the theoreti
al ba
kground for understanding the nature of systems of linear equations ando�ers methods to solve over-determined and in
onsistent systems of linear equations.The analysis and the geometri
al interpretation of su
h over-determined systems of linear equations is themain 
ontent of this 
hapter and will lead to the 
on
epts of ve
tor spa
es and proje
tions onto subspa
es.Furthermore, the fundamental 
on
ept of least-squares solutions of over-determined systems of linear equa-tions and their geometri
al interpretation are derived. These methods are 
losely related to the singular valuede
omposition (SVD) of the 
oe�
ient matrix of the linear system. The singular value de
omposition willbe of main importan
e for the analysis of geodeti
 adjustment problems in general and for the analysis ofVLBI observation s
hedules as des
ribed in the following 
hapters in parti
ular.Most of the issues des
ribed in this 
hapter are of fundamental nature, and 
an be found in a variety ofliterature. Here only the 
on
epts will be des
ribed, more details 
an be found e.g. in Lay 2003, Meyer2000 or Strang 2003.1.2 Systems of linear equationsIn many s
ienti�
 resear
h areas large systems of (linear) equations have to be solved or analyzed in order toget a deeper understanding of the 
orresponding adjustment problem. Any kind of su
h a system of linearequations (or a linear system) as
a11x1 + a12x2 + · · · + a1uxu = y1
a21x1 + a22x2 + · · · + a2uxu = y2. . . . . . . . . . . . . . . .
an1x1 + an2x2 + · · · + anuxu = yn

(1.1)
an be expressed in matrix notation as
Ax = y, (1.2)with A being a n × u 
oe�
ient matrix, y being a n × 1 ve
tor of known 
onstants (also known as 'right-hand-side of the system') and x being a u × 1 ve
tor of unknown 
onstants. Depending on the entries of ythe system is either 
alled homogenous (for y = 0) or inhomogeneous (for y 6= 0). Arranging the 
oe�
ientmatrix A and the right-hand side of the system y in a 
ommon matrix yields the augmented matrix [A | y]of the system.A linear system (1.1) has either

• no solution,
• exa
tly one solution, or
• in�nitely many solutions.If a system has no solution it is 
alled in
onsistent; or 
onsistent if it has at least one solution. In addition,there are three possible 
lasses of linear systems (valid for linear systems of full rank):
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• uniquely determined systems (u = n),
• under-determined systems (u > n) and
• over-determined systems (u < n),with ea
h of them either being 
onsistent or in
onsistent. In addition, the rank of the linear system has tobe taken into a

ount (see below).The determination of the solution set(s) of a linear system is aided by visualisation tools 
alled row pi
tureand 
olumn pi
ture: The row pi
ture is generated by visualising the rows of the augmented matrix (i.e.,ea
h equation) as n (hyper-)planes in Ru. If these hyperplanes have one 
ommon point of interse
tion thelinear system has only one (unique) solution. Parallel hyperplanes indi
ate no solution while 
oin
idinghyperplanes or interse
tion lines indi
ate in�nitely many solutions. Figure 1.1 (a) shows an example for a
onsistent 2 × 2 linear system.

2
−2

3
1

3
1

2
−2

9
3

11
1

3
1

y 3x + 2y = 11

x − 2y = 1

2 3 x1

1

b.)

y = 1
x = 3

a.)

11
1

1

= 3

Figure 1.1: Row pi
ture and 
olumn pi
ture of a 2 × 2 linear systemFor the 
olumn pi
ture, equation (1.2) is interpreted 
olumnwise, i.e., by visualising ea
h 
olumn of theaugmented matrix (Strang 2003). The solution of the system (if any) is formed by determining the weightsof that linear 
ombination of the 
olumns of A that yields the right hand side y of the system. Figure 1.1 (b)shows the 
olumn pi
ture for the same 2 × 2 linear system as depi
ted in �gure 1.1 (a).The row pi
ture 
an be used to explain the important term of the 
ondition of a linear system: A linearsystem (and thus its solution) might be more or less sensitive to small perturbations 
aused by e.g. roundo�errors or loss-of-digits. Graphi
ally this is displayed in �gure 1.2 whi
h shows the e�e
t of small 
hanges ofthe 
oe�
ient matrix or the right hand side of the system on the solution of a 2×2 linear system. Dependingon the 'geometry' of the linear system (i.e., the interse
tion angle of the hyperplanes) the solution might
hange signi�
antly. This sensitivity is inherent to the problem to be solved and 
annot be over
ome byany numeri
al 'tri
ks' (Meyer 2000). Thus a system is named ill-
onditioned when even small 
hangesprodu
e relatively large 
hanges in the solution. Otherwise, the system is said to be well-
onditioned. The
ondition of a linear system is des
ribed by the 
ondition number whi
h -in the ideal 
ase- is 
lose toone and thus indi
ates (almost) orthogonal hyperplanes (for the 
omputation of the 
ondition number seese
tion 1.6.4.1 on page 26).As des
ribed in many fundamental books about Linear Algebra (see e.g. Lay 2003, Strang 2003 orMeyer 2000) solutions of linear systems are easily determined by applying Gaussian elimination to theaugmented matrix of the system. Using elementary row operations the system [A | y] is transformed intoa (row equivalent) triangular form [E | c] by eliminating all elements below the pivotal element (=for-ward step). After triangularisating the 
oe�
ient matrix the solution is 
omputed by ba
k-substitution(= ba
kward step) until ea
h unknown has been determined.
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L L’

Original solution

Perturbed solution  

Figure 1.2: Ill-
onditioned 2 × 2 linear system (Meyer 2000)In the ideal 
ase performing Gaussian Elimination on the 
oe�
ient matrix yields a 
omplete triangularform, i.e., there never o

urs a row of the form
(

0 0 · · · 0 α
)
, with α 6= 0. (1.3)However, in many situations α 6= 0, indi
ating an equation like

0x1 + 0x2 + · · · + 0xn = α, (1.4)o

urs and thus the ba
k substitution pro
ess 
an not be 
ompleted. Equations as (1.4) with α 6= 0 indi
atean in
onsistent system of linear equations whi
h 
an not be solved exa
tly. Otherwise the system is saidto be 
onsistent and the system has (at least) one solution.1.2.1 Solutions of linear systemsThe general solution x of a linear system Ax = y is 
omposed by the sum of1. the solution of the 
orresponding homogeneous system and2. a parti
ular solution of the non-homogeneous system.Thus, at �rst, the homogeneous system Ax = 0 has to be solved:(1.) The trivial solution (i.e., x1 = x2 = · · · = xn = 0) is always a solution of a homogeneous system. Thus,all solutions di�erent from the trivial solution have to be determined by applying the Gaussian algorithm tothe system [A | 0] yielding the system [E | 0] with E having the general form:
E =











*k∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 *k∗ ∗ ∗ ∗ ∗
0 0 0 *k∗ ∗ ∗ ∗
0 0 0 0 0 0 *k∗
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0









In many 
ases E (also known as row e
helon form) is not of purely triangular form but rather of a 'stair-step' type of triangular form (Meyer 2000) 
aused by linear dependen
ies of some 
olumns of the 
oe�
ientmatrix A. Although the entries of E are not unique the shape of E is unique. The �rst non-zero entries inea
h row (
ir
led elements) denote pivot elements and thus indi
ate independent 
olumn ve
tors (=basi
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olumns). The respe
tive variables are also known as basi
 variables. Non-basi
 
olumns 
an be expressedas linear 
ombinations of basi
 
olumns and thus reveal free variables whose values have to be 
hosen.Whenever a system is 
onsistent, the solution set 
an be des
ribed expli
itly by solving the redu
ed systemfor the basi
 variables in terms of the free variables. Thus, in the 
ase of a purely triangular matrix E no freevariables exist. On the other hand, if at least one free variable exists there is an in�nite number of solutions.Consequently, the trivial solution is the only solution if and only if there are no free variables.In general, the basi
 variables 
an be expressed in terms of the free variables. All solutions of the homogeneoussystem 
an be des
ribed by su

essively setting one free variable to one and the remaining free variables tozero. For ea
h 
ase a parti
ular solution hi is obtained. The general solution x of the homogeneous system
Ax = 0 is generated by all possible linear 
ombinations of the parti
ular solutions hi, i.e., by

x = xf1
h1 + xf2

h2 + · · · + xfn−r
hn−r (1.5)with xf1

, xf2
, . . . , xfn−r

denoting the free variables and the n× 1 ve
tors h1,h2, . . . ,hn−r representing par-ti
ular solutions of the system. As the free variables xfi
range over all possible values, the general solutiongenerates all possible solutions. Thus, for ea
h non-basi
 
olumn of E (i.e., for ea
h free variable) one par-ti
ular solution hi exists (see e.g. Meyer 2000).(2.) In order to solve the (non-homogeneous) system Ax = y, equation (1.5) has to be extended by aparti
ular solution p generated by setting the free variables to xf1

= xf2
= · · · = xfn

= 0.The general solution of a non-homogeneous system is given by:
x = p + xf1

h1 + xf2
h2 + · · · + xfn−r

hn−r. (1.6)Thus, the general solution of the asso
iated homogeneous system is a part of the general solution of theoriginal non-homogeneous system.1.2.2 Rank of a matrixThe most basi
 de�nition of the rank r of a matrix A is given by the number of pivot elements of amatrix A. Thus, if A is of dimension n × u the rank r 
an never ex
eed min(n, u). Furthermore, r equalsthe number of basi
 
olumns in A and thus equals the number of non-zero rows in E. Other rank de�nitions
an be found in algebrai
 literature.1.3 Ve
tor spa
esConsidering linear systems as linear 
ombinations of the 
olumns of the 
oe�
ient matrix A (with x beingthe weights of that parti
ular linear 
ombination whi
h generates the right hand side y of the system via
Ax = y) led to the 
olumn pi
ture introdu
ed above. A generalisation of the 
olumn pi
ture from R2 or R3to Rn leads to the theory of ve
tor spa
es whi
h provides a very elegant way of investigating linear systems.A general ve
tor spa
e de�nition is given in table 1.1.1.3.1 Subspa
es and sums of subspa
esSubsets of a ve
tor spa
e V whi
h ful�l the 
losure properties (A1) and (M1) of table 1.1 are said to besubspa
es of V . Thus, every ve
tor through the origin as well as linear 
ombinations of su
h ve
tors form asubspa
e. The zero ve
tor is 
alled the trivial subspa
e. In addition, an entire ve
tor spa
e is a subspa
eof its own.Two subspa
es might be 'added' to generate another subspa
e. Formally,

X + Y = {x + y | x ∈ X and y ∈ Y}, (1.7)with X and Y denoting subspa
es of V . Then the sum (also denoted as X ⊕ Y) is again a subspa
e of V .
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Ve
tor Spa
e De�nitionA set V is 
alled ve
tor spa
e over F when the ve
tor addition and s
alar multipli
ation operationssatisfy the following properties:(A1) x + y ∈ V for all x,y ∈ V . This is 
alled the 
losure property for ve
tor addition.(A2) (x + y) + z = x + (y + z) for every x,y, z ∈ V .(A3) x + y = y + x for every x,y ∈ V .(A4) There is an element 0 ∈ V su
h that x + 0 = x for every x ∈ V .(A5) For ea
h x ∈ V , there is an element (−x) ∈ V su
h that x + (−x) = 0.(M1) αx ∈ V for all α ∈ F and x ∈ V . This is the 
losure property for s
alar multipli
ation.(M2) (αβ)x = α(βx) for all α, β ∈ F and every x ∈ V .(M3) α(x + y) = αx + αy for every α ∈ F and all x,y ∈ V .(M4) (α+ β)x = αx + βx for all α, β ∈ F and every x ∈ V .(M5) 1x = x for every x ∈ V .

F denotes a �eld of s
alars. Sin
e in the following investigations and analyses only real ve
tor spa
es Rnare of interest, F is the �eld R of real numbers.Table 1.1: Ve
tor spa
e de�nition (Meyer 2000)1.3.2 Spanning setsAll possible linear 
ombinations of a set of ve
tors S = {v1,v2, . . . ,vr} from a ve
tor spa
e V are 
alled
span(S), i.e.,

span(S) = {α1v1 + α2v2 + · · · + αrvr | αi ∈ F}. (1.8)Thus, the subspa
e V = span(S) generated by forming all linear 
ombinations of ve
tors from S is 
alled thespa
e spanned by span(S). Then span(S) is 
alled the spanning set for V . Thus, V might be spanned bymany di�erent spanning sets. Furthermore, span(S) might 
ontain redundant ve
tors whi
h do not 
ontributeto the generation of V .1.3.3 Bases of ve
tor spa
es1.3.3.1 Linear independen
e, bases and dimensionAny set of ve
tors is said to be linearly independent if only the trivial solution α1 = α2 = · · · = αn = 0is a solution of the homogeneous equation
α1v1 + α2v2 + · · · + αnvn = 0. (1.9)



14 1. Fundamental Linear AlgebraAny linear independent spanning set for a ve
tor spa
e V is 
alled a basis for V . As shown in e.g. Meyer2000 a ve
tor spa
e might be generated by many di�erent bases. Unlike spanning sets, bases do not 
ontainredundant ve
tors. A

ording to Meyer 2000 a linearly independent spanning set for a ve
tor spa
e V is
alled a basis for V . If V denotes a subspa
e of Rm and B = {b1,b2, . . . ,bn} ⊆ V , then
• B is a basis for V ,
• B is a minimal spanning set for V and
• B is a maximal linearly independent subset of V .The number of ve
tors in any basis for V is 
alled dimension (dim) of a ve
tor spa
e V . It should notbe 
onfused with the number of 
omponents 
ontained in the individual ve
tors of V !1.3.3.2 CoordinatesAn important reason for spe
ifying a basis B for a ve
tor spa
e V is to generate a '
oordinate system' for V :If B = {b1, . . . ,bn} is a basis for a ve
tor spa
e V , then ea
h ve
tor x in V 
an be expressed uniquely by aset of s
alars c1, . . . , cn su
h that

x = c1b1 + · · · + cnbn. (1.10)The s
alars (or weights) c1, . . . , cn are the 
oordinates of x relative to the basis B, or the B-
oordinatesof x. For the standard basis, i.e., for basis ve
tors e1, . . . , en with
e1 =








1
0...
0







, e2 =








0
1...
0







, . . . , en =








0
0...
1







, (1.11)the 
oordinates of a ve
tor x are just the 
omponents of x.1.3.4 The four subspa
es of a matrix1.3.4.1 Column spa
e and row spa
eAs introdu
ed in se
tion 1.3 all possible linear 
ombinations of 
ertain ve
tors form a ve
tor spa
e. Thismeans that applying Ax to any n × u Matrix A with an u × 1-ve
tor x generates a subspa
e of Rn (alsoknown as range R(A) of A). Sin
e every matrix-ve
tor produ
t Ax is a linear 
ombination of the 
olumnsof A, Ax is the spa
e spanned by the 
olumns of A. This spa
e is 
alled 
olumn spa
e of A and formallyreads

R(A) = {Ax | x ∈ Ru} ⊆ Rn = 
ol A. (1.12)Likewise, the spa
e spanned by the rows of A (i.e., R(A′) or the spa
e spanned by the 
olumns of A′) is
alled row spa
e of A:
R(A′) = {A′y | y ∈ Rn} ⊆ Ru = row A. (1.13)
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tor spa
es 151.3.4.2 Left and right nullspa
esIn addition to the row and the 
olumn spa
e of a matrix A a matrix possesses two other ve
tor spa
es: Theset of all possible solutions of the homogeneous system Ax = 0, i.e.,
N(A) = {x | Ax = 0} ⊆ Ru (1.14)for any n× u matrix A, forms the right nullspa
e (or kernel) of A. The set of ve
tor spa
es asso
iatedwith any matrix A is 
ompleted by the left-hand nullspa
e N(A′) of A, i.e., by
N(A′) = {y | A′y = 0} ⊆ Rm. (1.15)Figure 1.3 summarizes the four ve
tor spa
es of a matrix (Strang 2003).

row space

dim r

R
u

Null space
(Ax = 0)

dim r

Dimension n−r
Dimension u−r
N(A)

R(A)

(all Ax)

Rn

N(A’)
(A’ y = 0)
nullspace
left−hand

column space

R(A’)

(all A’ y)

Figure 1.3: The four subspa
es of an n× u matrix A (little squares indi
ate orthogonality of subspa
es)1.3.4.3 Dimensions of subspa
esIn the general 
ase of an n × u matrix A of rank r the 
olumns of A do not form a basis if there aredependen
ies between some of the 
olumns. However, the basi
 
olumns form an independent set and thusform a basis for R(A). Thus, the dimension of the 
olumn spa
e equals dim R(A) = r = rank(A). As shownby e.g. Meyer 2000 both the dimensions of the 
olumn spa
e and the row spa
e equal r. Consequently, thedimensions of the nullspa
e and the left nullspa
e equals u− r and n− r, respe
tively. Table 1.2 summarizesthe four ve
tor spa
es of a general n× u matrix of rank r.Subspa
e: Dimension:Range or 
olumn spa
e R(A) = {Ax} ⊆ Rn dim R(A) = rRow spa
e R(A′) = {A′y} ⊆ Ru dim R(A′) = rNullspa
e N(A) = {x | Ax = 0} ⊆ Ru dim N(A) = u− rLeft nullspa
e N(A′) = {y | A′y = 0} ⊆ Rn dim N(A′) = n− rTable 1.2: Summary of the four subspa
es of an n× u matrix A



16 1. Fundamental Linear Algebra1.4 Linear transformationsAny linear transformation T from one (�nite-dimensional) ve
tor spa
e to another (�nite-dimensional) ve
-tor spa
e (as e.g. rotations, proje
tions or re�e
tions as well as the identity transformation and the zerotransformation) 
an be expressed in matrix form. In general every n×u matrix A a
ts as a (linear) mappingfrom Ru to Rn (an example is shown in �gure 1.4). Therefore, a proper basis has to be 
hosen in either ve
torspa
e. Then A is 
alled the 
oordinate matrix of the linear transformation (Meyer 2000). One ofthe main aspe
ts of Linear Algebra is to analyse spe
ial properties of su
h transformations (see e.g. Lay2003 or Strang 2003).
Multiplication with A

(3, −9)

(18, 6)

x 3

x2x1

x2

x1

Figure 1.4: Transformation from R3 into R2 (maps a sphere onto an ellipse)1.4.1 Change of basisDue to the base dependen
y of the matrix representation of su
h transformations some properties mightnot be visible when using the initial (standard) basis. The solution of a problem (whi
h might be initiallydes
ribed using a basis B) is generally solved easier after 
hanging to a new basis C. Thus a 
hange ofbasis might reveal spe
ial properties of a linear transformation so that the problem be
omes more lu
id(Dermanis and Rummel 2000). The new basis might 
onsist of orthogonal basis ve
tors and might yielda diagonal stru
ture of the 
oe�
ient matrix, whi
h is obviously easy to solve.1.4.1.1 Matrix-ve
tor produ
t as a 
hange of basis operationWith B = {b1, . . . ,bn} and C = {c1, . . . , cn} being two bases of a ve
tor spa
e V the n × n 
hange-of-
oordinate matrix PC←B whi
h transforms a ve
tor from B to C via
[x]
C

= PC←B [x]
B

(1.16)is 
omputed by arraging the C-
oordinates of the ve
tors in the basis B as
PC←B = [ [b1]C [b2]C · · · [bn]

C
] . (1.17)Formula (1.16) 
an be generalised to the dimension n×u. In any 
ase the 
oordinate ve
tors of the old basishave to be expressed in terms of the new basis to 
ompute PC←B via equation (1.17) (Lay 2003).



1.4. Linear transformations 171.4.1.2 Change of basis for 
oordinate matri
esDue to a 
hange of the underlying basis from basis B to B′ the 
hange of the 
oordinate matrix A of a lineartransformation on V is 
omputed by (Meyer 2000):
[A]
B

= P−1 [A]
B′ P, with P = [I]

BB′ . (1.18)Equivalently,
[A]
B′ = Q−1 [A]

B
Q, with Q = [I]

B′B
= P−1, (1.19)being the 
hange of basis matrix from B′ to B. A proof 
an be taken from Meyer 2000.In general, applying left-multipli
ation of a 
oordinate matrix A with a 
hange-of-basis matrix P is e�e
tivelya sequential appli
ation of matrix-ve
tor multipli
ations and thus results in a 
hange-of-basis operation forevery 
olumn of A. Therefore, left-multipli
ation with a 
hange-of-basis matrix introdu
es a new basis to the
olumn spa
e of A. On the other hand, right multipli
ation of a 
oordinate matrix with a 
hange-of-basismatrix (whi
h is di�erent from the one mentioned above) results in a 
hange-of-basis operation for the rowspa
e of A.1.4.2 Eigenvalues and Eigenve
torsThe appli
ation of a linear transformation T on a ve
tor u (via u′ = Au) usually results in a 
hange ofthe dire
tion of u. On the other hand, there might be ve
tors whi
h keep their dire
tion (probably with a
hange of sign) after a linear transformation. A two-dimensional example is shown in �gure 1.5. Ve
tors (orve
tor spa
es) whi
h do not 
hange their dire
tion after applying a linear transformation are 
alled invariantsubspa
es and are important sin
e they are used to simplify 
oordinate matrix representations of T.

Au

u
v

Av
x 2

x 1

Figure 1.5: E�e
ts of multipli
ation by AInvariant subspa
es are identi�ed by determining eigenve
tors and eigenvalues of the 
oordinate matrix A.A

ording to Lay 2003 an eigenve
tor of an n×n matrix A is a non-zero ve
tor x su
h that Ax = λx forsome s
alar λ. A s
alar λ is 
alled eigenvalue of A if there is a non-trival solution x of Ax = λx; su
h an xis 
alled an eigenve
tor 
orresponding to λ. All possible linear 
ombinations of the eigenve
tors are 
alledeigenspa
e.Thus, Ax = λx shows that under a transformation by A the eigenve
tors experien
e only 
hanges inmagnitude or sign. The orientation of Ax in Rn is the same as that of x. The eigenvalue λ indi
ates theamount of 'stret
h' or 'shrink' to whi
h the eigenve
tor x is subje
ted when transformed by A.Eigenvalues and eigenve
tors 
an be used to fa
torize an n× n-matrix A into
A = PDP−1 (1.20)
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ontaining n eigenve
tors of A and D being a diagonal matrix 
ontaining n eigenvaluesof A on its main diagonal. A is said to be diagonalizable if su
h a fa
torization exists, i.e., only if A has
n linearly independent eigenve
tors. In other words, A is diagonalizable if there are enough eigenve
torsto form a basis of Rn. Su
h a basis is 
alled eigenve
tor basis. In this 
ase, the B-matrix of the lineartransformation T is diagonal. Diagonalising A is e�e
tively �nding a diagonal matrix representation of thelinear transformation x 7→ Ax.Rearranging equation (1.20) to P−1AP = D shows that A is diagonalized by applying the 
hange-of-basis operators P (and P−1) to A and thus by 
hanging to a new basis for Rn. Equation (1.20) is alsoknown as spe
tral de
omposition or eigenvalue de
omposition (EVD) and is of great importan
e for statisti
alappli
ations and regression problems.Multiple eigenvalues / non-diagonalizable matri
esProblems may o

ur when A does not possess n distin
t eigenvalues. As shown in Lay 2003 or Meyer2000 a matrix is only diagonalizable if and only if it possesses a 
omplete set of eigenve
tors and thus onlyif it possesses n distin
t eigenvalues. Matri
es that fail to possess 
omplete sets of eigenve
tors are 
alledde�
ient.In the 
ase of several identi
al eigenvalues λi (
alled algebrai
 multipli
ity of the eigenvalue λi) the number ofasso
iated eigenve
tors (
alled geometri
al multipli
ity of λi) 
an be smaller than the algebrai
 multipli
ity.Geometri
ally, this means that no unique basis ve
tor for the eigenspa
e 
an be found.1.5 Orthogonality and Least-squaresOrthogonality of ve
tors or ve
tor spa
es and proje
tions onto ve
tor spa
es provide a very elegant andgeometri
ally 
omprehensible way of deriving methods for solving over-determined linear systems in a least-squares sense without using the usual 
al
ulus approa
h (as des
ribed e.g. inKo
h 1999). Both the geometri
've
tor spa
e approa
h' and the 
al
ulus approa
h lead to the well-known normal equation approa
h. Inaddition, the ve
tor spa
e approa
h provides further methods and analysis tools to get deeper insight intothe adjustment problem.1.5.1 Inner produ
ts, norms and metri
 of a ve
tor spa
eThe inner produ
t, dot produ
t or s
alar produ
t of two ve
tors u and v is de�ned as (Trefethen1997)

u′v = u ·v = [u1 u2 · · · un]








v1
v2...
vn








= u1v1 + u2v2 + · · · + unvn. (1.21)Furthermore it is used to 
ompute the angle θ between two ve
tors in Rn via
cos θ =

u′ ·v
‖u‖ · ‖v‖ . (1.22)Thus, any two ve
tors in Rn are orthogonal if their inner produ
t equals zero. Any ve
tor spa
e that isequipped with an inner produ
t is 
alled an inner-produ
t spa
e.In formula (1.22) the norm operator ‖ · ‖ has been used. As des
ribed in e.g. Vani
ek and Kraki-wsky 1986 the (general) norm operator is used to measure distan
es ρ(a, b) between any two elements a, b
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tor spa
e. For any ve
tor spa
e, the way of formulating this distan
e, or metri
, 
an be 
hosen inmany ways. The most 
ommon norm (or length) of a ve
tor u -also known as Eu
lidean norm or 2-Norm-is de�ned as
‖u‖ =

√
u′ ·u =

√

u2
1 + u2

2 + · · · + u2
n. (1.23)The general properties and the di�erent types of norms 
an be found e.g. in Meyer 2000. A ve
tor spa
ein whi
h a metri
 has been de�ned is 
alled a metri
 spa
e.1.5.1.1 Orthogonal 
omplementsIf a ve
tor u is orthogonal to every ve
tor in a subspa
e W of Rn, then u is said to be orthogonal to W . Theset of all ve
tors u that are orthogonal to W is 
alled the orthogonal 
omplement of W and is denotedby W⊥ (Strang 2003). Thus, the nullspa
e N(A) of a matrix A is an orthogonal 
omplement of the rowspa
e of A while the nullspa
e of A′ is an orthogonal 
omplement of the 
olumn spa
e of A, formally:(Row A)⊥ = Nul A and (Col A)⊥ = Nul A′.The orthogonality of the four subspa
es of a matrix A is visualised (by little squares) in �gure 1.3 on page 15.1.5.1.2 Orthogonal proje
tionsOrthogonal sets (e.g., orthogonal bases) are in parti
ular helpful in simplifying 
al
ulations. This be
omesobvious when 
onsidering the problem of proje
ting ve
tors onto 
ertain orthogonal subspa
es. An exampleis the de
omposition of a ve
tor y (in Rn) into the sum of two ve
tors, i.e., y = ŷ + z with ŷ being amultiple of a nonzero ve
tor u and z being orthogonal to u (both in Rn). As shown on the left of �gure 1.6(for the R2-
ase) the de
omposition is given by orthogonally proje
ting y onto u and z, respe
tively. Asderived in e.g. Lay 2003 ŷ and z are 
omputed as follows:

ŷ =
y ·u
u ·uu is the orthogonal proje
tion of y onto u and

z = y − y ·u
u ·uu is the 
omponent of y orthogonal to u. (1.24)

y

0 uy =    uα

z = y − y

W

z = y − y

y = proj    y

y

0
WFigure 1.6: De
omposition into orthogonal 
omplements, left: R2, right: Rn



20 1. Fundamental Linear AlgebraFor Rn orthogonal proje
tions 
an be generalised to the Orthogonal De
omposition Theorem (Lay 2003):Orthogonal De
omposition TheoremLet W be a subspa
e of Rn. Then ea
h y in Rn 
an be written uniquely in the form
y = ŷ + zwhere ŷ is in W and z is in W⊥. In fa
t, if {u1, . . . ,up} is any orthogonal basis of W , then
ŷ =

y ·u1

u1 ·u1

u1 + · · · + y ·up

up ·up

up (1.25)and z = y − ŷ.Ea
h term in (1.25) is an orthogonal proje
tion of y onto a one-dimensional subspa
e spanned byone of the u-ve
tors in the basis for W . The orthogonal proje
tion ŷ of y onto W is the sum of theproje
tions of y onto one-dimensional subspa
es whi
h are orthogonal to ea
h other (as shown on theright-hand side of �gure 1.6 on the pre
eding page). This prin
iple is of fundamental importan
e for thederivation of the least-squares algorithm in the next se
tion.1.5.1.3 Properties of orthogonal proje
torsSome properties of (orthogonal) proje
tion matri
es will be relevant in the following 
hapters. Hen
e, a briefsummary is given below (Caspary and Wi
hmann 1994, and Meyer 2000). For any proje
tion matrix Pholds:
• P is idempotent, i.e., P2 = P,
• Px = x, i.e., further proje
tion does not alter the previous proje
tion result,
• sin
e P is idempotent, the eigenvalues of P are either 0 or 1 and
• the tra
e and the rank of P are identi
al, i.e., tr(P) = rk(P).For orthogonal proje
tion matri
es also
• P′ = P = P

2applies.1.5.2 Least-squares problemsFor an over-determined system of linear equations Ax = y the observation ve
tor y almost 
ertainly liesoutside the 
olumn spa
e R(A) of the 
oe�
ient matrix A, i.e., the system is almost 
ertainly in
onsistent.Nevertheless, the system 
an be solved (at least approximately) by �nding a ve
tor inside R(A) and withminimal distan
e to y. Following the so-
alled Closest Point Theorem (Meyer 2000) su
h a ve
tor is givenby the orthogonal proje
tion ŷ of y onto the 
olumn spa
e R(A) of the 
oe�
ient matrix A. Thus, ŷ isan approximation of y whi
h minimizes the distan
e ‖ y − Ax ‖ (usually measured by using the 2-norm).



1.5. Orthogonality and Least-squares 21Consequently, the general least-squares problem is to �nd an x that leads to the smallest length of theve
tor v = y − Ax (also known as residuals). The ve
tor x̂, whi
h ful�ls the (
onsistent) system
Ax̂ = ŷ, (1.26)with ŷ being the proje
tion of y onto col(A), is 
alled the least-squares solution of Ax = y (see �gure 1.7).Thus, the elements of x̂ denote the 
oordinates of ŷ with respe
t to the basis formed by the 
olumns of the
oe�
ient matrix A. As long as there is no rank de�
ien
y, i.e., as long as there are no free variables x̂ is aunique ve
tor1.

Col A

y

Ax
Ax

0 AxFigure 1.7: Least-squares prin
iple1.5.2.1 Least-squares solutions based on normal equationsAs shown by e.g. Strang 2003 the ve
tor spa
e based least-squares approa
h also leads to the well-knownnormal equations: Sin
e y − ŷ = y − Ax̂ is orthogonal to the 
olumn spa
e of A, the following equationholds:
A′(y − Ax̂) = 0

A′y − A′Ax̂ = 0

A′Ax̂ = A′y (1.27)Formula (1.27) yields a 
onsistent (!) but probably rank-de�
ient system of linear equations for a 
ompa
tleast-squares solution of the original linear system Ax = y. As many authors (Gramli
h and Werner2000, Lawson and Hanson 1995, orKalman 1996) show, espe
ially for ill-
onditioned systems the solutionof the normal equations be
omes very sensitive to round-o� errors and loss-of-digits sin
e any errors in theentries of A are squared in the entries of A′A. Thus, the 
omputation of the normal equations A′A shouldbe avoided. Alternative approa
hes for the solution of over-determined systems of linear equations in aleast-squares sense are based on numeri
ally more stable algorithms su
h as e.g. the QR-de
omposition orthe singular value de
omposition of the 
oe�
ient matrix A. These methods are based on (ve
tor lengthpreserving) orthogonal transformations su
h as Householder transformations or Givens rotations (see e.g.Gramli
h and Werner 2000).A

ounting for di�erent a

ura
ies of the elements on the right-hand side of Ax = y leads to the weightedleast-squares prin
iple. Appli
ations of the least-squares prin
iple in adjustment theory or linear regressionwill be further dis
ussed in 
hapter 2.1Here, 
orrelations between parameters 
an be re
ognized by inspe
ting the angles between the 
olumn ve
tors of A: If thereexists an (almost) linear dependen
y of the 
olumn ve
tors, no separation between the individual 
oordinate axes is possibleand thus the 
oordinates of ŷ 
an not be well separated.



22 1. Fundamental Linear Algebra1.6 Singular Value De
ompositionOne of the main aspe
ts of linear algebra is the fa
torisation of linear systems, i.e., the de
omposition ofmatri
es into matri
es with spe
ial properties. For example, the results of the Gauss algorithm 
an also beobtained by LU de
omposition of the 
oe�
ient matrix or a linear system 
an be solved by performing a QRde
omposition of its 
oe�
ient matrix (see e.g. Strang 2003, Gramli
h and Werner 2000).A

ording to Lay 2003 singular value de
omposition is 'one of the most useful matrix de
ompositionsin applied linear algebra'. As des
ribed by Stewart 1993 the singular value de
omposition has beendeveloped by E. Beltrami and C. Jordan in 1873. Due to its outstanding relevan
e in linear algebra a varietyof derivations 
an be found in the literature (e.g. Blank, S.J. et al. 1989 or Stewart 1993). A 
ompletede�nition of the singular value de
omposition reads (Meyer 2000):Singular Value De
ompositionFor ea
h A ∈ Ru of rank r, there are orthogonal matri
es Un×n, Vu×u and a diagonal ma-trix Sr×r = diag(σ1, σ2, . . . , σr) su
h that
A = U

(
S 0

0 0

)

n×u

V′ with σ1 ≥ σ2 ≥ · · · ≥ σr > 0. (1.28)The σi's are 
alled the nonzero singular values of A. When r < p = min{n, u}, A is said tohave p − r additional zero singular values. The fa
torisation in (1.28) is 
alled a singular valuede
omposition of A, and the 
olumns in U and V are 
alled left-hand and right-hand singularve
tors for A, respe
tively.1.6.1 Geometri
al derivation of the Singular Value De
ompositionContrary to more mathemati
al derivations (as given above) here a geometri
al approa
h is used, as presentedby Trefethen 1997. At �rst, the so-
alled redu
ed Singular Value De
omposition is derived.1.6.1.1 Redu
ed Singular Value De
ompositionAs des
ribed in 
hapter 1.4 every n×umatrixA a
ts as a linear mapping from Ru to Rn. Thus, every matrixAmaps a unit sphere S in Ru into a hyperellipse AS in Rn. An example 
an be found in �gure 1.4 on page 16.The hyperellipse in Rn 
an be obtained by stret
hing a unit sphere in Rn by some fa
tors σ1, . . . , σn (some ofwhi
h might be zero) in orthogonal dire
tions expressed by unit ve
tors u1, . . . ,un ∈ Rn. The ve
tors σiui are
alled prin
ipal semiaxes of the hyperellipse. As indi
ated on the right hand side of �gure 1.8, these fa
torsare the singular values σ1, . . . , σn of A and indi
ate the lengths of the u semiaxes of the hyperellipse AS.Usually these values are sorted in de
reasing order, i.e., σ1 ≥ σ2 ≥ · · · ≥ σn > 0.The u unit ve
tors ui of the prin
ipal semiaxes of AS are de�ned to be the left singular ve
tors of A,numbered to 
orrespond with the singular values.Furthermore, u right singular ve
tors vi of unit length are de�ned and 
orrespond to the preimages of theprin
ipal semiaxes of AS. These ve
tors are displayed on the left hand side of �gure 1.8. Mathemati
ally,the a
tion of a matrix A on the right singular ve
tors vi is
Avj = σjuj for 1 ≤ j ≤ u, (1.29)whi
h 
an also be expressed in matrix notation as
AV = ÛŜ. (1.30)



1.6. Singular Value De
omposition 23Here, Ŝ is a u × u diagonal matrix with the positive real singular values σj on its main diagonal, Û is an
n × u matrix with orthonormal 
olumns and V is an u × u matrix with orthonormal 
olumns. Sin
e V isorthonormal, V−1 = V′, and thus equation (1.30) 
an be written as

A = ÛŜV′. (1.31)Fa
torisation (1.31) is also known as redu
ed singular value de
omposition of A and is the basis for the morestandard 'full' singular value de
omposition of A des
ribed below.
σ2

σ1 σ1 u1

σ u
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Figure 1.8: Linear mapping by A and singular value de
omposition of A (Strang 2003)1.6.1.2 Full Singular Value De
ompositionFor an overdetermined system (i.e., n > u) the 
olumns of Û are just u orthonormal ve
tors in Rn whi
h donot form a 
omplete basis for Rn. Thus, n − u additional ve
tors have to be found to generate a 
ompletebasis and to extend Û to an orthonormal n × n matrix U. The additional ve
tors 
an be 
onstru
ted e.g.by using the Gram-S
hmidt approa
h to make the 
olumns of U form a 
omplete (orthogonal) basis for Rn(Strang 2003, or Meissl 1982).In addition, Ŝ has to be modi�ed in su
h a way that the n− u 
olumns of U are multiplied by zero so thatthe produ
t (1.30) remains un
hanged. The new n × u matrix S 
onsists of Ŝ extended by n − u rows ofzeros.Sin
e V remains un
hanged, the full Singular Value De
omposition of A now reads:
A = USV′, (1.32)with U being an orthonormal n×n matrix 
ontaining the left singular ve
tors of A, S being an n×u diagonalmatrix with the singular values of A on its main diagonal and V an u × u orthonormal matrix 
ontainingthe right singular ve
tors of A. Graphi
ally this fa
torisation 
an be visualised as shown in �gure 1.9.Singular Value De
omposition is neither limited to matri
es with full rank nor to matri
es 
ontaining morerows than 
olumns (i.e., over-determined linear systems). Instead, any arbitrary n× u matrix of rank r 
anbe fa
torised using formula (1.31) or (1.32) with S 
ontaining r nonnegative diagonal entries σi.The singular ve
tors ui and vi 
orrespond to the eigenve
tors of AA′ and A′A, respe
tively. The eigenvaluesof AA′ and of A′A are the same and are the squared singular values of A. The eigenvalue de
omposition(or diagonalisation) of AA′ and A′A is always possible sin
e AA′ and A′A are symmetri
 matri
es. Forthe same reason, the singular ve
tors ui and vi form a 
omplete, orthogonal basis (see e.g. Strang 2003).
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n   ux n   nx n   ux u   ux

=

A U S V’Figure 1.9: Graphi
al visualisation of the Singular Value De
omposition (SVD) of an n × u matrix A (for
n > u, dashed lines indi
ate the di�eren
es between redu
ed and full SVD)1.6.1.3 Geometri
al analogies of the singular value de
ompositionAs shown in �gure 1.8 on the pre
eding page the 
omponents of the fa
torisation of A into U, S and V alsode
ompose the mapping represented by A (Strang 2003 and Trefethen 1997):

• V does not 
hange the form of the unit sphere but introdu
es a new basis for Ru (also known as domainspa
e of the mapping),
• S stret
hes the unit sphere into a hyperellipse and �nally
• U rotates or re�e
ts the hyperellipse without 
hanging its shape (within the so-
alled range spa
e ofthe mapping).

A and S represent the same mapping with respe
t to di�erent bases: A des
ribes the mapping with respe
tto the standard bases of Rn and Ru, S with respe
t to the bases formed by the left and right singular ve
tors.Thus, singular values reveal some information about the geometry of linear transformations sin
e they showhow mu
h distortion 
an o

ur under a transformation by a matrix A (Meyer 2000). On the other hand,the singular value de
omposition shows that any re
tangular matrix 
an be diagonalised if appropriate basesfor the domain and range spa
e are 
hosen.1.6.2 Canoni
al form and least-squares solutions1.6.2.1 New Bases for the four fundamental subspa
es of a matrixFor an arbitrary matrix A the full singular value de
omposition determines new bases for the four funda-mental subspa
es. For the spe
ial 
ase of an over-determined linear system (with n > u and rank r < u)
• the �rst r left singular ve
tors u1, . . . ,ur form an orthonormal basis for the 
olumn spa
e of A (Col A)and
• the remaining n−r left singular ve
tors ur+1, . . . ,un form an orthonormal basis for the nullspa
e of A′(Nul A′ = (Col A)⊥).
• An orthonormal basis for the row spa
e of A is given by the �rst r right singular ve
tors v1, . . . ,vrand
• an orthonormal basis for the nullspa
e of A (Nul A) is formed by the remaining (if any) u − r rightsingular ve
tors vr+1, . . . ,vu.As shown in e.g.Meyer 2000 or Lay 2003 the singular ve
tors ui and vi are not unique (while the singularvalues σi are unique). The relations between the four bases are shown in �gure 1.10 (Lay 2003).
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Figure 1.10: New bases for the four fundamental subspa
es of a matrix A generated by singular valuede
omposition of A (Singular values are unique, singular ve
tors are not unique!).1.6.2.2 Canoni
al formThe 
omputation of new bases for the fundamental subspa
es of A a
tually transforms A into its diagonalform S. This 
orresponds to 
hanging the asso
iated linear system Ax = y from the standard basis tonew orthonormal bases using 
hange-of-basis operations (see se
tion 1.4.1). The linear system is said to betransformed into its '
anoni
al form' whi
h signi�
antly simpli�es the 
orresponding least-squares problem(Strang and Borre 1997):The 
hange-of-basis is performed by expanding y ∈ Rn in the basis of left singular ve
tors of A (
olumnsof U) and by expanding x ∈ Ru in the basis of right singular ve
tors of A (
olumns of V). The 
oordinateve
tors for these expansions are
ȳ = U′ y, and x̄ = V′ x. (1.33)Using A = USV′, the relation Ax = y 
an be expressed in terms of ȳ and x̄:
y = Ax ⇐⇒ U′y = U′Ax = U′USV′x ⇐⇒ ȳ = Sx̄. (1.34)Appli
ations and interpretations of the 
anoni
al form of Ax = y 
an be found in Strang and Borre1997 and will be treated in more detail within the 
ontext of te
hniques for parameter estimation in linearmodels in 
hapter 2.1.6.2.3 PseudoinverseArranging the left singular ve
tors and right singular ve
tors of an n × u matrix A (with n > u andrank A = r) as
U = [Ur Un−r] , with Ur = [u1 . . .ur] and
V = [Vr Vu−r] , with Vr = [v1 . . .vr ]the pseudoinverse (or Moore-Penrose inverse) of A 
an be 
omputed by
A+ = VrSr

−1U′r =
r∑

i=1

1

σi

·vi ·u′i, (1.35)
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h in the 
ase of a square matrix with full rank (i.e., n = u = r) equals the 
ommon matrix inverse A−1(Strang 2003). Thus, the pseudoinverse of A 
an be 
omputed after singular value de
omposition of A bysimply inverting its singular values. Geometri
ally A+ depi
ts the inverse mapping of A, i.e., A+ maps fromRn to Ru. Details about di�erent kind of matrix inverses 
an be found in e.g. Caspary and Wi
hmann1994.1.6.2.4 Least-squares solution by singular value de
ompositionUsing the pseudoinverse, the overdetermined linear system Ax = y 
an be solved in a least-squares sense by
x̂ = A+y = VrS

−1
r U′ry. (1.36)Left-multipli
ation by A yields

Ax̂ = (UrSrV
′

r)(VrS
−1
r U′ry)

= UrSrS
−1
r U′ry (sin
e Vr is orthonormal and so V′rVr = Ir)

= UrU
′

ry.Here, UrU
′
ry is the orthogonal proje
tion ŷ of y onto the 
olumn spa
e of A. Thus x̂ is a least-squaressolution of Ax = y (Lay 2003). In general, using the pseudoinverse for the solution of a linear system yieldsa solution of minimal norm (Meyer 2000).1.6.3 Computational aspe
tsFor the 
omputation of the singular value de
omposition of a matrix A as in equations (1.31) or (1.32)sophisti
ated and highly-optimised algorithms and implementations exist (Golub 1965, or Golub andReins
h 1970). These algorithms are variants of algorithms used for the 
omputation of eigenvalues andare given in e.g. Golub and Kahan 1965, or Press et al. 1986. Other 
omputation methods are des
ribedin Trefethen 1997. Implementations of fast and e�
ient algorithms with minimum memory requirements
an be found in numeri
al libraries su
h as LAPACK or the GNU S
ienti�
 Library (GSL).1.6.4 Appli
ations of the Singular Value De
ompositionSingular value de
omposition is used in a variety of s
ien
es su
h as e.g. statisti
s, image pro
essing or data
ompression. The appli
ation of singular value de
omposition within parameter estimation te
hniques willbe treated in more detail in 
hapter 2. Below a few general appli
ations of the singular value de
ompositionare given.1.6.4.1 Condition number of a linear systemBased on the singular value de
omposition of a matrix A a new de�nition of the (2-norm) 
ondition of amatrix (or for the asso
iated linear system) 
an be given: The degree of distortion of the unit sphere undera transformation by A is measured by κ = σ1/σu, i.e., the ratio of the largest singular value to the smallestsingular value (Meyer 2000). A matrix is singular if its 
ondition number is in�nite (i.e., if there exists atleast one zero singular value), and it is ill-
onditioned if its 
ondition number is very large (indi
ated by atleast one very small singular value) (
f. se
tion 1.2).1.6.4.2 Rank determinationSingular Value De
omposition also serves as a robust tool for rank determination sin
e the number of non-zero singular values equals the rank of a matrix A (e.g., Lawson and Hanson 1995, or Lay 2003). Roundo�errors often lead to wrong rank determination results so that in pra
ti
e very small singular value are assumedto be zero and the remaining non-zero singular values are used for the determination of the e�e
tive rank ofa matrix A (Gramli
h and Werner 2000, or Trefethen 1997).



1.6. Singular Value De
omposition 271.6.4.3 Lower rank approximationsBased on the singular value de
omposition of a matrix A this matrix 
an be expressed as an outer produ
texpansion:
A =

u∑

i=1

σiuiv
′

i. (1.37)Equation (1.37) represents A as a sum of rank-one matri
es (as does formula (1.35) for the pseudo-inverse).As shown by e.g. Trefethen 1997 or Kalman 1996 equation (1.37) 
an be used to approximate any kindof (data) matrix by a sum of less than u 'sli
es', i.e., by a 
ertain number of rank-one matri
es 
omputedby σiuiv
′
i. Appli
ations of lower-rank approximations in statisti
s and for data 
ompression in imagepro
essing 
an be found in e.g. Lay 2003.The 
lose relationship between singular value de
omposition, prin
ipal 
omponent analysis (PCA)and the redu
tion of the dimension of multivariate data 
an be found in e.g. Lay 2003, or Ja
kson 2003.



28 2. Parameter Estimationin Linear Models2.1 Introdu
tionParameter estimation in linear models (or adjustment theory or inverse theory) plays a 
entral role in manys
ienti�
 areas in order to 
ondense or summarize data by �tting it to a mathemati
al fun
tion that dependson adjustable parameters whi
h des
ribe physi
al phenomena. Sin
e VLBI data analysis is also based onthese methods, parameter estimation te
hniques are of main importan
e for the development of regressiondiagnosti
s tools for improving the design of an experiment (Dehlert 2000).In the following 
hapter the relation (and equivalen
e) of 
ommonly used 
al
ulus approa
hes (i.e., bestlinear unbiased estimators (BLUEs), et
.) and ve
tor spa
e based geometri
al approa
hes are given. As willbe shown, the non-geometri
 approa
hes bear some disadvantages. This has already been re
ognized byDermanis 1977, who mentions:Usually adjustment algorithms are derived from variational prin
iples, as solutions to the problemof minimizing a quadrati
 form. Su
h an approa
h solves the problem but has little to o�er tothe understanding of its mathemati
al 
ontext and its relation to other te
hniques.Thus, many authors only use the geometri
 or ve
tor spa
e approa
h to develop parameter estimationte
hniques. In the following 
hapter, geometri
al 
on
epts will be used to supply the 
al
ulus approa
h.These 
on
epts will be used to provide geometri
al interpretations of e.g. adjusted observations or residualsand the elements of proje
tion operators will be used for the visualisation of redundan
y numbers or 'impa
tfa
tors'. The latter will be used in 
hapter 3 to develop methods for �nding groups of observations and toseparate important (groups of) observations from less important (groups of) observations.2.2 Modeling of dataModeling of data is used to des
ribe measurement results (observations) by a 
onvenient 
lass of fun
tions,su
h as appropriate linear 
ombinations of polynomials or other so-
alled basis fun
tions. Based on expe-rien
es and assumptions the mathemati
al formulation of the relation between observations and unknownshas often to be guessed and its 
orre
tness has to be veri�ed by real observations. Adjustment theory triesto �t the observations to those fun
tions and determines the 
oe�
ients of the (assumed) model (Casparyand Wi
hmann 1994).A model is an image of the reality, expressed in mathemati
al terms, in a way, whi
h involves a 
ertain degreeof abstra
tion and simpli�
ation. In general, a model 
onsists of (Dermanis and Rummel 2000)
• a set of observable obje
ts (observations),
• a set of obje
ts to be determined (unknowns) and
• a mathemati
al relation f , forming a 
onne
tion between unknowns and observations.On the one hand a model should be an appropriate (linear or linearised) des
ription of the behaviour of asystem, while, on the other hand, for pra
ti
al reasons it should not be too 
omplex. The degree of 
omplexityof a model also depends on the parti
ular purpose of the measurement1.1When using original observations the mathemati
al model has to be formulated in a very general way. The more redu
tionsare applied to the original observations, the less general the mathemati
al model needs to be formulated. The �nal form of themathemati
al model also depends on the purpose of the experiment.



2.2. Modeling of data 29In order to assess the agreement between the data and the model a so-
alled 'merit fun
tion' has to be
hosen. Conventionally small values of the merit fun
tion indi
ate 
lose agreement between the data andthe model. The parameters of the model are then determined while minimizing the merit fun
tion, yieldingbest-�t parameters (Press et al. 1986).A general parameter estimation pro
edure 
onsists of the following steps:
• Estimation of parameters,
• Determination of formal errors of estimated parameters and
• Statisti
al goodness-of-�t test.2.2.1 Mathemati
al ModelsIn general, an adjustment problem 
onsists of two, equally important 
omponents: the fun
tional and thesto
hasti
 model. Both of them are summarized by the general term mathemati
al model (see �gure 2.1,Lei
k 1990).In general, measurements do not �t the mathemati
al model even if the mathemati
al model is 
orre
t.Furthermore, the model is not set up for the observed values but for (fun
tions of) the observations, e.g. forthe expe
tations E(y) or for their varian
es Σyy, 
f. Förstner 1987.
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Figure 2.1: Elements of least-squares adjustment



30 2. Parameter Estimation in Linear ModelsFun
tional modelsThe fun
tional model is the linear (or linearised) and simpli�ed mathemati
al formulation of existing physi
alreality (Lei
k 1990). It expresses the relations between observations and (unknown) parameters. In the mostgeneral 
ase the mathemati
al formulation is an impli
it non-linear fun
tion as
f(x̂, ŷ) = 0, (2.1)whi
h is also known as mixed adjustment model or (together with a sto
hasti
 model) as Gauss-Helmertmodel (
f. Ko
h 1999). Here, the variables denote:

ŷ = ve
tor of n adjusted observations
x̂ = ve
tor of u adjusted parameters
f = r non-linear mathemati
al fun
tions.In many 
ases, equation (2.1) 
an be simpli�ed if the observations 
an be expressed expli
itly interms of the unknown parameters, i.e., if

ŷ = f(x̂). (2.2)This model is also known as observation equation model or (together with a sto
hasti
 model) as Gauss-Markov model. Model (2.2) is of parti
ular importan
e in geodeti
 adjustment problems sin
e its parameters
an be determined by standard algorithms and without spe
ial 
omputational requirements. Sin
e most ofthe VLBI data analysis software pa
kages are based on model (2.2), it will be of main importan
e for theinvestigations 
arried out in 
hapter 5.For the sake of 
ompleteness a third model has to be mentioned whi
h does not 
ontain any parameters atall:
f(ŷ) = 0. (2.3)Model (2.3) is also known as 
ondition equation model and has been of importan
e before fast 
omputershave been available (see e.g. Ko
h 1999).Observation Equation ModelUsually model (2.2) has to be linearised by applying Taylor's theorem, i.e.,

fi(x1, . . . , xu) = fi(x10
+ ∆x1, . . . , xu0

+ ∆xu)

= fi(x10
, . . . , xu0

) +
∂fi

∂x1

∣
∣
∣
∣
x0

∆x1 + · · · + ∂fi

∂xu

∣
∣
∣
∣
x0

∆xu +O(∆x2) (2.4)leading to the linear system
y1 = a11∆x1 + a12∆x2 + · · · + a1u∆xu

y2 = a21∆x1 + a22∆x2 + · · · + a2u∆xu. . . . . . . . . . . . . . . . . . .
yn = an1∆x1 + an2∆x2 + · · · + anu∆xu

(2.5)with aij being the partial derivative of the ith observation equation with respe
t to the jth parameter. Thelinear system (2.5) 
an be expressed in matrix notation as
y = Ax, (2.6)
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hniques 31with the n× u design matrix A and the u× 1-ve
tor of unknowns x

A =






a11 . . . a1u... ...
an1 . . . anu




 x =






∆x1...
∆xu




 , (2.7)whi
h 
onsists of the 
orre
tions ∆xi to the apriori values xi0 , i.e.,

x = | ∆x1, . . . , ∆xu |′ . (2.8)Finally, the n× 1-'observation' ve
tor y (also known as 'observed minus 
omputed'-ve
tor) is 
omputed by
y = | y1 − f1(x10

, . . . , xu0
), . . . , yn − fn(x10

, . . . , xu0
) |′ . (2.9)Sto
hasti
 modelsIn model (2.2) the design matrix A and the parameter ve
tor x are assumed to be deterministi
. Thesto
hasti
 nature of the remaining 
omponents of a (general) mathemati
al model is 
omprised by thesto
hasti
 model (Caspary and Wi
hmann 1994) whi
h 
onsists of a varian
e-
ovarian
e matrix

Σyy = σ2
0 P−1

yy (2.10)of the observations y with an unknown fa
tor σ2. The fa
tor σ2 is also known as varian
e of unit weight and
an be estimated within the adjustment pro
ess. The inverse of the weight matrix Pyy is 
ommonly referredto as 
ofa
tor matrix Qyy (Ko
h 1999).Considering a sto
hasti
 model (i.e., Pyy 6= I) leads to the weighted least-squares approa
h whi
h 
an also beinterpreted geometri
ally: From a geometri
al point of view the in
lusion of the weight matrix P generalisesthe standard inner produ
t from x′ I y (and thus the eu
lidean norm) to x′ Pyy y and thus de�nes a newmetri
 for Rn (Caspary and Wi
hmann 1994, or Ádám 1982). As a result, the asso
iated orthogonalproje
tions be
ome oblique and lead to some extended formulations for least-squares estimators (see e.g.Teunissen 2003).Sin
e in the following investigations only the design of the experiment (i.e., the observation geometry) is ofinterest, no sto
hasti
 models will be in
luded and thus Pyy = I. However, even in the 
ase of Pyy 6= Ithe same algorithms and pro
edures 
an be used after homogenisation of the design matrix A and of theobservation ve
tor y (see e.g. Ko
h 1999) by using the Cholesky fa
torisation Pyy = GG′ of Pyy and
Ā = G′A, ȳ = G′y. (2.11)2.3 Parameter estimation te
hniques2.3.1 Forward and inverse problemsIn geology or geophysi
s the problem of determining parameters from a linear model after performing obser-vations is derived by introdu
ing the terms 'forward problem' and 'inverse problem'. A 'forward problem' isde�ned to be a pro
ess of predi
ting the results of measurements on the basis of some general prin
iple ormodel and a set of spe
i�
 
onditions relevant to the problem. On the other hand, 'inverse theory' is a set ofmathemati
al te
hniques for redu
ing data to obtain useful information about the physi
al world on the basisof inferen
es drawn from observations (Menke 1984). Inverse theory is used to provide information aboutthe unknown parameters of a model, it does not provide the model itself. Thus, the physi
al model has tobe spe
i�ed beforehand. S
hemati
ally, the terms 'forward problem' and 'inverse problem' 
an be des
ribedas follows:



32 2. Parameter Estimation in Linear ModelsForward problem: model parameter −→ model −→ predi
tion of dataInverse problem: data −→ model −→ estimates of model parameters'Inverse theory' is 
ommonly used in geophysi
al or geologi
al literature and forms the basis for some of theterms used below. In this 
ontext, 'inverse theory' and 'adjustment theory' might be used synonymously.2.3.2 Linear Unbiased Estimators (LUEs and BLUEs)The obje
tive of inverse theory (and thus of parameter estimation in linear models) is to determine theunknown parameters of a linear model or at least to estimate linear 
ombinations of those parameters, that
an be estimated (Kshirsagar 1983). The most 
ommon methods for parameter estimation are eitherbased on probabilisti
 notions (su
h as probability fun
tions, expe
tation values, unbiased estimators, et
.for the Maximum likelihood (ML) method or the Best Linear Unbiased Estimators (BLUE) approa
h) or ongeometri
 notions su
h as the weighted least squares estimation prin
iple as des
ribed in 
hapter 1.This se
tion reviews the ne
essary basi
s of Best Linear Unbiased Estimators and shows the relations (andequivalen
e) of the probabilisti
 and the geometri
 approa
h.2.3.2.1 Properties of EstimatorsInstead of deriving the least-squares prin
iple and thus the solution of the model (2.2) by using ve
torspa
es, most authors of standard geodeti
 literature (see e.g. Ko
h 1999 or Niemeier 2002) make use ofthe 
onditions of linearity, unbiasedness and optimality.As des
ribed in e.g. Teunissen 2003, Meissl 1982, or Ko
h 1999, the assumption of a linear relationshipbetween observations y and unknown parameters x 
an also be expressed in terms of the expe
tation of yvia:
y + ǫ = ax or E(y) = ax. (2.12)Sin
e the estimator x̂ of the unknown parameters x should be a linear fun
tion of the observations y, x̂ mustbe of the form:
x̂ = ly L-property (2.13)Another 
ondition requires x̂ to be an unbiased estimator of x (Strang 2003), i.e.,
E(x̂) = x for every x. U-property (2.14)Finally, the 
lass of all possible estimators x̂ that satisfy properties (2.13) and (2.14) should be restri
ted tothose having minimum varian
e, i.e.,
σ2
x̂ minimal in the 
lass of LU-estimators. B-property (2.15)



2.3. Parameter estimation te
hniques 332.3.2.2 Derivation of EstimatorsIn order to derive best linear unbiased estimators for the model (2.12) 
onsider the asso
iated linear system(
ontaining n observations and u unknowns):
Ax = E(y), (2.16)with y being de
omposed into the adjusted (or true) observations ŷ and the observation errors ǫ:
E(y) = ŷ + ǫ. (2.17)Assuming that the expe
tation of the observation errors ǫ equals zero, i.e.,
E(ǫ) = 0 (2.18)implies that
E(y) = ŷ and E(y) = Ax. (2.19)2.3.2.3 Linear Unbiased Estimators (LUEs) of estimable fun
tionsGeneralisation of the estimation of individual parameters leads to the 
on
ept of estimability of a linearfun
tion ϕ on the 
olumn spa
e R(A) of the design matrix A of a linear system. Sin
e any ve
tor in R(A) 
anbe represented by its 
oordinates x = (x1, . . . , xu) (full rank assumed) with respe
t to the bases representedby the 
olumns of A, the fun
tion ϕ 
an be expressed as a linear fun
tion of the unknown parameters:
ϕ = ϕ′x = ϕ1x1 + ϕ2x2 + · · · + ϕuxu. (2.20)As a spe
ial 
ase, equation (2.20) 
ontains the estimation of the individual parameters xi. Thus, any 
ompo-nent xi of the parameter ve
tor x may be viewed as a fun
tion on R(A). Examples for estimable fun
tions
an be found in Meissl 1982 or Kshirsagar 1983.Furthermore, any 
omponent ŷi of the adjusted observations ŷ may be viewed as a fun
tion on R(A), sin
e
ŷi = ai1x1 + · · · + aiuxu (2.21)and so ϕ is represented by
ϕ′ = (ai1, . . . , aiu), (2.22)i.e., by the i-th row of the design matrix A (Meissl 1982).Sin
e the parameters x are unknown, the fun
tional ϕ(x) = ϕ′x is unknown and has to be determined by alinear fun
tion of the observations y. As derived in e.g. Meissl 1982, a linear unbiased estimate (LUE) ϕ̂for the fun
tional ϕ is derived by �nding the 
oe�
ients βi of the linear fun
tion:
ϕ̂ = β1y1 + β2y2 + · · · + βnyn or ϕ̂ = β′ y with β =






β1...
βn




 , (2.23)whi
h is the 1 × n representation of a linear fun
tion de�ned on Rn. The expe
tation of ϕ̂ reads

E(ϕ̂) = E(β′y) = β′E(y) = β′ŷ = β′Ax, (2.24)whi
h is a linear fun
tion of the unknown parameters.



34 2. Parameter Estimation in Linear ModelsA de�nition of the estimability of a linear fun
tion is based on the requirement that a linear fun
-tion of the unknown parameters is said to be estimable if there exists at least one linear fun
tion of theobservations β′y, su
h that E(β′y) equals ϕ′x (Kshirsagar 1983), i.e.,
E(β′y) = ϕ′x or β′Ax = ϕ′x, (2.25)whi
h is equivalent to
β′A = ϕ′. (2.26)Equation (2.26) shows that a ne
essary and su�
ient 
ondition for a linear fun
tion ϕ′x for the model (2.12)to be estimable is that ϕ′ is a linear 
ombination of the row ve
tors of A. Thus, only if the row ve
tors of Agenerate a 
omplete basis for the row spa
e of A every parameter 
an be estimated separately. Otherwiseonly linear 
ombinations of parameters 
an be estimated. In other words: The row spa
e of A indi
ates allpossible estimable parameters or linear 
ombinations of estimable parameters (!).2.3.2.4 Best Linear Unbiased Estimators (BLUEs) of estimable fun
tionsThe de�nition of estimability only guarantees the existen
e of at least one unbiased estimate of an estimablefun
tion. Neither does it provide a method of obtaining an expli
it formula for an estimator nor does it givea 'best' estimate (as stated in 
ondition (2.15)) (Searle 1982).A

ording to Kshirsagar 1983 the de�nition of a best linear unbiased estimator (BLUE) reads:De�nition of a BLUEA linear fun
tion b′y of the observations y in the model Ax = y + ǫ is said to be the BestLinear Unbiased Estimate (BLUE) of a fun
tion ϕ′x, if it is unbiased for ϕ′x and its varian
e is thesmallest among all linear estimates of ϕ′x.2.3.3 Gauss-Markov modelA method of obtaining the best linear unbiased estimate of any estimable fun
tion ϕ′x of the unknownparameters x is provided by the following fundamental de�nition (Ko
h 1999):Gauss-Markov ModelLet A be an n × u matrix of given 
oe�
ients, x a u × 1 ve
tor of unknown, �xed parame-ters, y an n× 1 random ve
tor of observations and Σyy = σ2P−1

yy the n × n 
ovarian
e matrix of y,where the weight matrix Pyy of the observations y is known and the positive fa
tor σ2 is unknown.Let A have full 
olumn rank, i.e., rank A = u, and let the weight matrix Pyy be positive de�nite.Then
Ax = E(y) with Σyy = σ2Qyy = σ2P−1

yy (2.27)is said to be a Gauss-Markov model with full rank. E(y) denotes the expe
tation of y.Equation (2.27) 
an also be formulated in terms of the real observations. Sin
e y almost 
ertainlylies outside the 
olumn spa
e of A equation (2.27) 
an also be formulated as a 
onsistent system by addinga n× 1 random ve
tor e of errors. Equation (2.27) then reads
Ax = y + e with E(e) = 0 and Σee = Σyy = σ2P−1

yy . (2.28)
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 aspe
ts of parameter estimation 35Solution of the Gauss-Markov modelThe best linear unbiased estimator x̂ of the unknown parameters x in model (2.27) and its 
ovarian
ematrix Σx̂x̂ is given by (see Ko
h 1999)
x̂ = (A′PA)−1A′Py and Σx̂x̂ = σ2(A′PA)−1 (2.29)and thus agrees with the weighted least squares solution of a linear system as derived in 
hapter 1.A proof 
an be found in any literature about linear models, su
h as Ko
h 1999, Kshirsagar 1983 orToutenburg 2003. An algebrai
 proof 
an be found in Meyer 2000. General derivations of the varian
esof best estimators 
an be found in Meissl 1982.2.4 Geometri
 aspe
ts of parameter estimationAs explained in 
hapter 1, the least-squares solution of a linear system 
an be interpreted geometri
ally. The
olumn spa
e R(A) of the design matrix A is de�ned by all possible linear 
ombinations of the 
olumns of A.For a general n×u-matrix A of rank r the 
olumn spa
e is an r-dimensional subspa
e of Rn. Figure 2.2 givesan example for a 3 × 2-system of full rank. As mentioned above, only the unweighted 
ase (i.e., Pyy = I)will be 
onsidered. For weighted least-squares estimation the proje
tions will be
ome oblique and thus more
omplex (interpretations for this 
ase 
an be found in e.g. Teunissen 2003).

a1

e

Ax

R(A)

a2
y

0

Figure 2.2: Least-squares geometry (example for a 3 × 2-linear system)From the geometry of �gure 2.2 it seems intuitively appealing to estimate x as x̂, su
h that Ax̂ is as 
lose aspossible to the observation ve
tor y. ŷ = Ax̂ are the 'adjusted observations' and x̂ denotes the 
oordinatesof ŷ with respe
t to the basis formed by the 
olumns of A. ŷ is 
omputed by orthogonally proje
ting theobservations y onto the 
olumn spa
e of A. On the other hand, proje
ting y onto R(A)⊥, i.e., the orthogonal
omplement of the 
olumn spa
e R(A), yields the residual ve
tor ê (see �g. 2.3 on the next page). Thus, êis orthogonal to the 'plane' spanned by the 
olumns of A, i.e.,
A′(y − Ax̂) = 0, (2.30)whi
h is equivalent to the well-known normal equations
A′Ax̂ = A′y (2.31)and thus
x̂ = (A′A)−1A′y, (2.32)



36 2. Parameter Estimation in Linear Modelswhi
h agrees with equation (2.29) (for P = I).Using the proje
tion operator onto the 
olumn spa
e R(A):
H = A(A′A)−1A′ (2.33)and the proje
tion operator onto the orthogonal 
omplement R(A)⊥ of R(A)

H⊥ = I − A(A′A)−1A′, (2.34)the ve
tor ŷ of adjusted observations and the residual ve
tor ê 
an also be 
omputed via
ŷ = Hy = Ax̂ and ê = −(I − H)y = −H⊥y (2.35)to de
ompose the observation ve
tor y into the orthogonal 
omplements
y = ŷ + ê = Hy + (I − H)y. (2.36)Figure 2.3 gives an illustration of the de
omposition of y into orthogonal 
omplements (Ádám 1982).

y R(A)

R(A)

T

e
a1

au

y

Figure 2.3: De
omposition of the observation ve
tor y (in Rn) into orthogonal 
omplements2.4.1 Data and model spa
eOrthogonal de
ompositions of Ru and RnThe 
on
epts derived above 
an be further generalised by using the four fundamental ve
tor spa
es of amatrix to provide a 
omprehensive geometri
 explanation of parameter estimation in linear models and toshow appli
ations of the singular value de
omposition for 'regression diagnosti
s'. The following derivationsare based on Snieder and Trampert 2000.The geometri
 aspe
ts of a general parameter estimation problem 
an be visualised as shown in �gure 2.4 onthe fa
ing page whi
h in
ludes both the de
omposition of the observation ve
tor y into orthogonal 
omple-ments (in Rn) and the orthogonal de
omposition of the parameter ve
tor x (in Ru). Again, the observationve
tor y is de
omposed into a 
omponent ŷ belonging to the 
olumn spa
e R(A) of the design matrix A(denoted by Ur in �g. 2.4) and a 
omponent ê = y−Ax whi
h belongs to the orthogonal 
omplement R(A)⊥
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 aspe
ts of parameter estimation 37of the 
olumn spa
e of the design matrix (denoted by U0). In addition, the parameter ve
tor x is de
omposedinto a 
omponent xr belonging to a subspa
e of Ru (denoted by Vr) and a 
omponent x0 = x−xr belongingto the orthogonal 
omplement of Vr (denoted as V0).As shown in �g. 2.4 the design matrix A serves as a (linear) mapping from Ru to Rn; its pseudo-inverse A+(see se
tion 1.6.2.3 on page 25) thus maps from Rn to Ru.
y

Ax

x

A
n Ru

U
0

U r

R

A+

y−Ax

x r Vr

V0

x−x r

Figure 2.4: Geometri
al interpretation of parameter estimation in linear models (left: Data spa
e and datanull spa
e, right: model spa
e and model null spa
e, the design matrix a
ts as a mapping between Ru and Rn)(Snieder and Trampert 2000)Eigenvalue de
omposition of square linear systems (EVD)Figure 2.4 might be best understood by �rst 
onsidering the eigenvalues λi and eigenve
tors vi of a symmetri

u×u linear system Ax = y of full rank. Assuming that the eigenve
tors form an orthonormal set, a ve
tor x
an be proje
ted on these eigenve
tors and 
an thus be expressed as

x =

u∑

i=1

vi (v′i ·x) . (2.37)The produ
t Ax 
an now be written as:
Ax =

u∑

i=1

λivi (v′i ·x) = y. (2.38)After expressing the ve
tor y with respe
t to the same eigenve
tor basis as
y =

u∑

i=1

vi (v′i ·y) , (2.39)equation (2.38) yields the following expansion for the solution ve
tor x:
x =

u∑

i=1

1

λi

vi (v′i ·y) . (2.40)Equation (2.40) shows that small eigenvalues (e.g. 
aused by a bad 
ondition or even rank de�
ien
ies of thelinear system) lead to unreasonable 
ontributions to the solution and (depending on the 
urrent appli
ation)should be omitted (S
hwarz 1997).



38 2. Parameter Estimation in Linear ModelsSingular value de
omposition of re
tangular systemsFor a re
tangular linear system of rank r the dimensions of the observation ve
tor y (in Rn) and the solutionve
tor x (in Ru) di�er. Thus, for the derivation of re
tangular bases for Rn and Ru the singular valuede
omposition (
f. se
tion 1.6.1.2 on page 23)
A = U ·S ·V′ (2.41)of the design matrix A has to be used. Instead of using one 
ommon basis, a new basis for Rn (
onsistingof n left-singular ve
tors ui) and a new basis for Ru (
onsisting of u right-singular ve
tors vi) is used. Therelation between the two bases reads
Avi = σiui, (2.42)with σi being the u singular values of A. The produ
t Ax 
an now be written as:
Ax =

r∑

i=1

σiui (v′i ·x) = y, (2.43)with r being the rank of the linear system and thus being the number of non-zero singular values σi.As des
ribed in 
hapter 1 the left singular ve
tors ui and the right singular ve
tors vi 
an be arranged toform the following matri
es U, S and V. The matrix U

U =











... ... ... ... ...
u1 u2 . . . ur ur+1 . . . un... ... ... ... ...
︸ ︷︷ ︸

Ur

︸ ︷︷ ︸

U0











, (2.44)
ontains the left singular ve
tors ui 
orresponding to the order of the singular values σi, whi
h are (usually)arranged in des
ending order, i.e., σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0, in a matrix S:
S =















σ1 0 . . . 0 0 . . . 0
0 σ2 . . . 0 0 . . . 0... ... . . . ... ... . . . ...
0 0 . . . σr 0 . . . 0
0 0 . . . 0 0 . . . 0... ... . . . ... ... . . . ...
0 0 . . . 0 0 . . . 0















. (2.45)
The right singular ve
tors vi form the 
olumns of the matrix V:

V =











... ... ... ... ...
v1 v2 . . . vr vr+1 . . . vu... ... ... ... ...
︸ ︷︷ ︸

Vr

︸ ︷︷ ︸

V0











. (2.46)Equation (2.43) shows that the singular ve
tors ui and vi for i > r do not 
ontribute when A a
ts on ave
tor. Thus, the matrix A 
an be 
onstru
ted from Ur, Sr and Vr alone. A

ording to (Snieder andTrampert 2000) 'U0 and V0 are dark spots of the spa
e not illuminated by the operator A'.The subspa
e formed by the left singular ve
tors ui of Ur 
orresponds to the 
olumn spa
e R(A) of A (asintrodu
ed in 
hapter 1) and is 
alled data spa
e. The subspa
e formed by the right singular ve
tors vi of Vr
orresponds to the row spa
e R(A′) of A and is 
alled model spa
e.
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ts of parameter estimation 39Linear Algebra Parameter Estimationin Linear Models(Chapter 1) (Chapter 2)
Ur = {u1, . . . ,ur} basis for 
olumn spa
e R(A) basis for data spa
e
U0 = {ur+1, . . . ,un} basis for orthogonal 
omplement R(A)⊥ basis for data-null-spa
eof 
olumn spa
e R(A)

Vr = {v1, . . . ,vr} basis for row spa
e R(A′) basis for model spa
e
V0 = {vr+1, . . . ,vu} basis for orthogonal 
omplement R(A′)⊥ basis for model-null-spa
eof row spa
e R(A′) (= null spa
e of A)Table 2.1: Relations between terms used in Linear Algebra (
hapter 1) and Parameter Estimation (
hapter 2)Sin
e the adjusted observations Ax are orthogonal to U0, i.e., U′0Ax = 0, any 
omponent of the observationve
tor y that lies in U0 
annot be explained by the (
urrent) fun
tional model. These 
omponents thus
orrespond to errors in the data or to errors in the fun
tional model expressed by the operator A. Therefore,

U0 is 
alled the data-null-spa
e of A.On the other hand, limiting the summation in equation (2.43) to non-zero singular values restri
ts theestimated parameter ve
tor x to the subspa
e Vr (model spa
e). In other words: As shown in se
tion 2.3.2.3on page 33, the row spa
e 
ontains estimable (fun
tions of the) unknown parameters and so the modelparameters do not 
ontain any 
omponents of the subspa
e V0 (whi
h is also 
alled model-null-spa
e).This is a geometri
al visualisation of the general solution of a linear system, i.e., x is de
omposed into theparti
ular solution xr of the inhomogeneous system (and thus a 
omponent of Vr) and a solution x− xr ofthe 
orresponding homogeneous system whi
h is a 
omponent of the model null-spa
e V0. Sin
e V0 is thenull spa
e of A and so AV0 = 0, any parameter of the model that lies within V0 does not a�e
t the data.A

ording to Snieder and Trampert 2000 'the data have no bearing on the 
omponents of the modelve
tor that lie in V0'.The data spa
e and the data-null-spa
e thus span Rn, while the model spa
e and the model-null-spa
espan Ru. Table 2.1 shows the equivalen
e of the algebrai
 terms used in 
hapter 1 with the terms used forparameter estimation in linear models within this 
hapter.Restri
ting the solution ve
tor to Vr and expanding x in the basis formed by Vr and expanding yin the basis formed by Ur yields the general least-squares solution of an over-determined linear system as
x̂ =

r∑

i=1

1

σi

vi (u′i ·y) (2.47)or in matrix notation
x̂ = VrS

−1
r U′r

︸ ︷︷ ︸

A+

y. (2.48)
VrS

−1
r U′r denotes the pseudo-inverse of A (Snieder and Trampert 2000).2.4.2 Resolution in parameter estimationThe geometri
al 
on
ept of proje
tions onto the model spa
e and the data spa
e 
an be used to deriveindi
ators of how pre
isely the model parameters 
an be determined from the data and how well neighbouringdata 
an be independently predi
ted, or resolved (S
ales et al. 2001).



40 2. Parameter Estimation in Linear ModelsModel resolution matrixThe model resolution matrix (MRM) indi
ates to what extent the model parameters 
an be independentlyretrieved from the estimation pro
ess (Menke 1984). From x̂ = A+y, Ax = y and the singular valuede
omposition of A follows
x̂ = A+y

= A+Ax

= VrS
−1
r U′rUrSrV

′
rx

= VrV
′
r

︸ ︷︷ ︸

MRM

x, (2.49)with VrV
′
r being a u × u proje
tion matrix onto the model spa
e (S
ales et al. 2001). Only in the 
aseof full rank the model resolution matrix equals the identity matrix and every parameter 
an be determinedindependently. Otherwise some parameters 
an only be estimated as linear 
ombinations of remaining pa-rameters. The more non-zero terms appear in the rows of the model resolution matrix, the more broadlyaveraged the inferen
es of the model parameters are.The advantage of the model resolution matrix is that it 
an be 
omputed even in the 
ase of exa
tly dependentparameters (i.e., in the rank de�
ient 
ase) and thus, if the 
omputation of the 
orrelation matrix fails (seee.g. Ko
h 1999). In statisti
al terms, the model resolution matrix is used for the dete
tion of so-
alledmulti
ollinearity, i.e., linear dependen
ies of the 
olumns of the design matrix A and thus for the dete
tionof 
orrelations between the estimated parameters (see e.g. Belsley et al. 1980, or Toutenburg 2003).Data resolution matrixIn a similar way a data resolution matrix (DRM) H 
an be 
omputed (see eq. 2.33). This matrix indi
ateshow well the adjusted (or predi
ted) observations mat
h the data or how well the data is predi
ted by theestimated model parameters (Menke 1984).The adjusted observations 
an be derived by

ŷ = Ax̂

= AA+y

= UrSrV
′
rVrS

−1
r U′ry

= UrU
′
r

︸ ︷︷ ︸

DRM

y, (2.50)with
H = UrU

′
r (2.51)being an n×n proje
tion operator onto the data spa
e of A. Other de�nitions are solely based on the designmatrix A (see also eq. 2.33):

H = A(A′A)−1A′, (2.52)or (if the metri
 of the data spa
e is also in
luded by 
onsidering Σ−1
yy):

H = A(A′Σ−1
yyA)−1A′Σ−1

yy . (2.53)The general de�nition of H (eq. 2.53, see also e.g. Förstner 1987) thus also takes into a

ount the sto
hasti
model of the observations by in
luding the 
ovarian
e matrix Σyy of the observations y and thus a

ountsfor the metri
 of the ve
tor spa
es involved. Sin
e the following investigations do not 
ontain any metri
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ts of parameter estimation 41aspe
ts, Σyy equals the identity matrix (see page 31). As shown by e.g. Toutenburg 2003, this yields asymmetri
 data resolution matrix.Sin
e equation (2.52) 
ontains the 
omputation and inversion of normal equations A′A, it bears some nu-meri
al problems. Using the singular value de
omposition of A, numeri
ally more stable derivations of thedata resolution matrix are given below.The Data Resolution Matrix H is also known as 'Hat-Matrix' or 'predi
tion matrix' and serves as a regressiondiagnosti
s tool in many s
ien
es su
h as statisti
s (Toutenburg 2003, Cook and Weisberg 1982) orgeophysi
s (Parker 1994). A

ording to (Hoaglin andWels
h 1978) 'a look at the hat matrix 
an revealsensitive points in the design, i.e., points at whi
h the value of yi has a large impa
t on the �t' and is thusused to identify 'high-leverage points'. The general data resolution matrix (see eq. 2.53) depends both onthe geometry (i.e., the design) of the experiment and the 
ovarian
e matrix of the observations. It does notdepend on the individual observations. Sin
e the data resolution matrix is a proje
tion matrix it has thefollowing properties (Förstner 1987):
• symmetry (only if Σyy = I),
• idempoten
e (i.e., H2 = H),
• eigenvalues are either 1 or 0 and
• the tra
e of H equals the rank of H, i.e., tr(H) = rk(H) = u.As shown in Toutenburg 2003 or Cook and Weisberg 1982, the range of the elements of the dataresolution matrix (for Σyy = I) is:

0 ≤ hii ≤ 1 and − 0.5 ≤ hij ≤ 0.5. (2.54)Based on the representation
ŷi = hiiyi +

n∑

j=1

hijyj (2.55)some authors (e.g. Cook and Weisberg 1982) show that hii is the amount of leverage or in�uen
e exertedon ŷi by yi. A large main diagonal element with hii ≈ 1 thus indi
ates that ŷi is almost 
ompletely determinedby yi alone. Thus, observations yi with large values hii 
an exert an undue e�e
t on the least squares results(Dodge and Jure
ková 2000). A small element (hii ≈ 0) also leads to a small impa
t of the remainingobservations, i.e., if a diagonal element hii equals zero the 
orresponding row of H is 0, whi
h indi
ates thatthe ith observation does not a�e
t the �t (for a proof, see Toutenburg 2003, or Dodge and Jure
ková2000). For a linear regression (with xi indi
ating the x-
omponent of an observation yi), a main diagonalelement hii 
an also be 
omputed by
hii =

1

n
+

(xi − x̄)2
∑n

t=1
(xt − x̄)2

, (2.56)whi
h shows that hii mostly depends on the 'distan
e' |xi − x̄| of an observation xi to the 
entre of mass x̄of all observations. Therefore, some authors 
all the data resolution matrix a 'distan
e measure matrix'(Belsley et al. 1980).Another interpretation of the data resolution matrix is based on the fa
t that the 
ovarian
e matrix Σŷŷ ofthe adjusted observations ŷ equals Σŷŷ = σ2 ·Qŷŷ = σ2 ·H = σ2 ·AΣx̂x̂A
′. The 
ofa
tor matrix Qŷŷ of theadjusted observations will be of relevan
e in the next se
tion. In addition, the 
ovarian
e matrix Σvv of theresiduals v equals Σvv = σ2 · (I−H) (Toutenburg 2003) and thus 
ontrols the variations in the residuals(Cook and Weisberg 1982). Due to this fa
t, the data resolution matrix (or the hat matrix) is extensivelyused for residual analyses in statisti
al appli
ations (Saville and Wood 1997, Toutenburg 2003).
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t fa
tors and impa
t 
o-fa
torsSin
e the elements of the data resolution matrix indi
ate how mu
h weight ea
h observation has on theadjusted observations, the main-diagonal elements of H are 
alled impa
t fa
tors hii (or hi), i.e.,impa
t fa
tors = h = diag(H), (2.57)while the o�-diagonal elements of H are referred to as impa
t 
o-fa
tors hij .A 
lose relation between impa
t fa
tors and partial redundan
ies exists, sin
e (for P = I)
Σv̂v̂ = I − H, (2.58)whi
h is used for the 
omputation of redundan
y numbers ri (Lei
k 1990, A
kermann 1981):
ri = 1 − hii = (I − H)ii. (2.59)The redundan
y numbers ri indi
ate the per
entage of how mu
h a gross error is shown in the residuals of theleast squares �t (Förstner 1987). High leverage points (or observations with a small partial redundan
y) arethus weakly 
ontrolled and 
ompli
ate the dete
tion of blunders (Niemeier 2002). As in geodeti
 networks,weakly 
ontrolled observations (or observations with a large impa
t fa
tor) signi�
antly a�e
t the a

ura
y ofthe estimated parameters but degrade the reliability of the entire adjustment. Re
ent examples for geodeti
appli
ations su
h as redundan
y analysis in plane networks 
an be found in e.g. Even-Tzur 2006.Sin
e the average size of a diagonal element hii of the data resolution matrix is u/n, some authors (seee.g. Hoaglin and Wels
h 1978) re
ommend to mark observations as 'high-leverage points' if their impa
tfa
tors ex
eed twi
e the average size, i.e., if hii > 2 · u

n
. For the generation of experiments whi
h are insensitiveto outliers, Cook and Weisberg 1982 re
ommend experiment designs yielding small impa
t fa
tors (i.e.,high redundan
ies) of approximately the same size.Sin
e the data resolution matrix 
ontains information given by the design matrix, leverage re�e
ts only thepotential e�e
t of an observation on the regression. The determination of the a
tual e�e
t of an observationon the regression results must also take the observations into a

ount. Thus, many outlier dete
tion methodsare based on the residuals and the impa
t fa
tors (or redundan
ies) of the observations (Eeg 1986 orToutenburg 2003).In
rease of un
ertaintyFörstner 1992 shows the relationship of impa
t fa
tors and the maximum e�e
t of the reje
tion of anobservation yi onto the result x̂. Based on the proje
tion operator onto the 
olumn spa
e of the designmatrix A (i.e., the data resolution matrix H) and based on the appli
ation of sequential least-squares,sensitivity analysis for outliers 
an be performed. The empiri
al sensitivity of the results with respe
t to anoutlier in yi mainly depends on the in�uen
e fa
tor

µi =

√

hii

1 − hii

, (2.60)whi
h is thus only a fun
tion of the impa
t fa
tor hii.As also shown in Förstner 1992 the in�uen
e fa
tor µi also measures the relative in
rease of un
ertaintyif the ith observation is omitted from the estimation pro
ess. The in
rease of un
ertainty 
an be determinedboth for a group of observations and for the 
ase where only a subset of parameters is analysed.



2.4. Geometri
 aspe
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al interpretations of impa
t fa
tors and impa
t 
o-fa
torsA geometri
al interpretation and thus a graphi
al representation of impa
t fa
tors and impa
t 
o-fa
tors willbe of importan
e in the next 
hapter and 
an be obtained by analysing the expression
hij = e′i H ej, (2.61)whi
h extra
ts the element hij of the ith row and the jth 
olumn of the data resolution matrix using ve
tors eiand ej of the natural basis of Rn. In general, impa
t 
o-fa
tors hij (and as a spe
ial 
ase impa
t fa
tors hii)are obtained by the following steps:1. At �rst, the proje
tion Hej has to be performed. Sin
e the length of a proje
ted ve
tor y onto ave
tor a equals ‖y‖ cosϕ1 (see �gure 2.5) and sin
e in this 
ase y = ej , the length of the proje
tionsimpli�es to cosϕ1.

ϕ1

ϕ1
y   cos

y

aFigure 2.5: Proje
tion of ve
tors2. In a se
ond step, the proje
ted ve
tor (of length cosϕ1) resulting from step 1 is proje
ted onto ei(whi
h, in the 
ase of impa
t fa
tors hii, is a ba
k-proje
tion onto the same natural basis ve
tor usedin step 1). Due to the de�nition of the inner (or s
alar) produ
t, the length of the proje
tion of Hejonto ei 
an be expressed by using the 
osine of the angle ϕ2 between the proje
ted ve
tor from step 1(whi
h is 
ontained in the 
olumn spa
e of A) and ei. The length of the ve
tor resulting from thisproje
tion is thus cosϕ1 · cosϕ2.This leads to the general interpretation of impa
t 
o-fa
tors hij as the produ
t of the 
osines of the angles ϕiand ϕj between the ith and jth ve
tor of the natural basis and their respe
tive proje
tions onto the 
olumnspa
e of A, i.e.,
hij = cosϕi · cosϕj . (2.62)As a spe
ial 
ase, eq. (2.62) 
ontains an interpretation for the impa
t fa
tors hii as
hii = cos2ϕi. (2.63)Due to the 
lose relationship of proje
tions and the 
osine of the angle ϕ between the two ve
tors involved, theimpa
t fa
tors hii are thus proportional to cos2ϕ. Sin
e the angle between a spatial ve
tor and its proje
tionis always smaller than 90o, an almost linear des
ending relation between the angle and the 
orrespondingimpa
t fa
tor exists (see �gure 2.6).For a 2× 1-design matrix, �gure 2.7 shows that hii equals the squared 
osine of the angle ϕi between the ei-ve
tor and its proje
tion H ei onto the 
olumn spa
e of A. Furthermore, �gure 2.7 shows a visualisation ofimpa
t 
o-fa
tors hij and the 
lose relation of impa
t fa
tors hii and redundan
y numbers ri.In a similar way, �gure 2.8 gives a visualisation of impa
t fa
tors and impa
t 
o-fa
tors of 3 × 2-systems oflinear equations. The �rst 
ase o

urs when three equally spa
ed observations are used for the 
omputationof a regression line. In the se
ond 
ase, the third observation depi
ts a high-leverage observation due to its
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Angle [deg]Figure 2.6: Relation of the angle between the ith ve
tor of the natural basis and its proje
tion and theimportan
e fa
tor of the ith observationlarge distan
e from the remaining two observations (i.e., x = 7). This 
an also be re
ognized (in �gure 2.8)by the small angle between e3 and He3 and thus the length of e′3He3 = 0.99 ≈ 1.A similar derivation for the interpretation of redundan
y numbers is given by Eeg 1986. Geometri
ally therespe
tive angles in equations (2.63) and (2.62) have to be repla
ed by its 90o-
omplements sin
e for thederivation of redundan
y numbers the angles between the unit ve
tors of the natural basis and its proje
tionsonto the orthogonal 
omplement of the 
olumn spa
e of A have to be used. Therefore, the data resolutionmatrix H in equation (2.61) has to be repla
ed by its 
omplementary operator I − H.Impa
t 
o-fa
tors as similarity measuresIn the next 
hapter, 
o-fa
tors hij will be used for the dete
tion of groups of observations. Therefore, it isne
essary to emphasize that only the relation of the (
omplementary) angles ϕ1, . . . , ϕn is of importan
e forthe size of hij . As shown in �gure 2.7 on the next page, for the two-dimensional 
ase, both angles ϕ1 and ϕ2add to 90o. In general:
• identi
al angles ϕ1, . . . , ϕn lead to impa
t 
o-fa
tors of 0.5 (
ase 1). As shown in 
hapter 2.4.2 onpage 39 and as visualised in �gure 2.7 (as proje
tions) the absolute values of hij 
an never ex
eed 0.5.
• large di�eren
es in ϕ1, . . . , ϕn (e.g. one of them being small and the other one automati
ally beinglarge) yield small impa
t 
o-fa
tors hij .Sin
e the data resolution matrix 
orresponds to the (standardised) 
ofa
tor matrix Qŷŷ of the adjusted ob-servations, the impa
t 
o-fa
tors (or the o�-diagonal elements of Qŷŷ) show 
orrelations of the observations.In terms of the 'observation geometry' (su
h as e.g. x-values of observations when determining a regressionline or the orientation of both the baseline and the radio sour
e two VLBI-teles
opes are pointing at simul-taneously), small impa
t 
o-fa
tors hij indi
ate a signi�
antly distin
t information 
ontent of the respe
tiveobservations. On the other hand, large impa
t 
o-fa
tors hij (i.e., ‖hij‖ ≈ 0.5) show that the respe
tiveobservations have been performed under similar 'geometri
' 
onditions.



2.4. Geometri
 aspe
ts of parameter estimation 45
a1

a1

e’ He1

ϕ2 ϕ1

ϕ2

e1

e2

 2e’ He2

2r

1r

e2

e1

2r

1r

1
1

A = 0.5 0.5
0.5 0.5

H = A = 1
2

H = 0.2 0.4
0.4 0.8

e’ He1 1

ϕ1

2r
e2

e1

A = 3
1

H =
0.3 0.1
0.9 0.3

a1

2e’ He2

ϕ2

ϕ1

1e’ He1

a1

ϕ1

ϕ2

e2

e1

1r

A = 1
3

H =
0.3 0.9
0.1 0.3

1r

2r

2e’ He2

1

2 12 ϕ
1

ϕ2e’ He  = h   = cos      cos12 12 ϕ
1

ϕ2e’ He  = h   = cos      cos1

Case 1: Case 2:

2e’ He2

1e’ He1

2 ϕ
1

ϕ2e’ He  = h   = cos      cos1 122 12 ϕ
1

ϕ2e’ He  = h   = cos      cos1

Case 3: Case 4:

Figure 2.7: Graphi
al visualisation of impa
t fa
tors hii, impa
t 
o-fa
tors hij and redundan
ies ri for 2× 1-systems of linear equations. Dotted line = �rst proje
tion (onto the 
olumn spa
e), dashed line = se
ondproje
tion (onto the ve
tors of the natural basis).
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tion (onto the 
olumn spa
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473. Cluster Analysis3.1 Introdu
tionIn order to dete
t groups of (VLBI-)observations the impa
t fa
tors and impa
t 
o-fa
tors as derived in theprevious 
hapter 
an be used. The obje
tive of this 
hapter is to apply obje
tive grouping methods for anautomati
 dete
tion of jointly in�uential groups of observations. Sin
e the o�-diagonal elements of the dataresolution matrix 
an be interpreted as similarity measures, statisti
al methods for grouping similar obje
ts
an also be used in adjustment theory. A well-known method for the identi�
ation of groups of similar obje
ts(or of observations with a similar information 
ontent) is the 
luster analysis-approa
h as des
ribed in e.g.Hoaglin and Wels
h 1978, or Gray and Ling 1984. These methods have been developed for statisti
alanalyses sin
e the 1980ies (see e.g. Belsley et al. 1980, or Romesburg 2004) or pattern re
ognition (seee.g. Duda et al. 2000).In the following 
hapter the prin
iples of 
luster analysis methods are explained and interpretation guidelinesfor 
luster analysis results are given. These methods will be applied to plane and spatial interferometers in
hapter 5.3.2 Cluster AnalysisOne of the most 
ommon approa
hes for estimating similarities (or dissimilarities) between obje
ts is given by
luster analysis methods. Based on measurable attributes, obje
ts (su
h as persons, animals, pie
es of land orpatterns in digital photographs) 
an be obje
tively 
lassi�ed in groups (Romesburg 2004). However, 
lusteranalysis 
an only reveal 
andidates for in�uential subsets (Gray and Ling 1984). Detailed des
riptions and
omputational aspe
ts 
an be found in e.g. Romesburg 2004, Duda et al. 2000 or Belsley et al. 1980.Here, only pra
ti
al aspe
ts are given. The examples given below are taken from Romesburg 2004.Pra
ti
al 
luster analysisIn general, 
luster analysis 
onsists of the six steps listed in table 3.1. Some of these steps, however, 
annotbe transferred dire
tly or are of no relevan
e for regression diagnosti
s.In general 
luster analysis the �rst two steps 
onsist of the generation and an optional standardisation of adata matrix. The data matrix 
onsists of a 
olle
tion of attributes of obje
ts. Figure 3.1 shows an example of�ve obje
ts whose two attributes are displayed on the x- and y-axis. In a se
ond step so-
alled resemblan
eGeneral Cluster Analysis Cluster Analysis for Regression Diagnosti
s1. Obtaining the data matrix Setting up of design matrix2. Standardizing of the data matrix (optional) -3. Computation of resemblan
e matrix Computation of data resolution matrix4. Exe
ute the 
lustering method Exe
ute the 
lustering method5. Rearrange the data and resemblan
e matri
es -6. Compute the 
opheneti
 
orrelation matrix -Table 3.1: Terminology of general 
luster analysis steps and for 
luster analysis as used for regression diag-nosti
s
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oe�
ients are 
omputed to measure the degree of similarity between ea
h pair of obje
ts. The resemblan
e
oe�
ients are always either dissimilarity 
oe�
ients or similarity 
oe�
ients:
• The smaller the dissimilarity 
oe�
ient, the more similar two obje
ts are. The larger this 
oe�
ient, themore distin
t two obje
ts are. Dissimilarity 
oe�
ients are also known as Eu
lidean distan
e 
oe�
ientsand 
an be visualised geometri
ally (see below).
• On the other hand, large similarity 
oe�
ients indi
ate that two obje
ts are very similar. A graphi
alrepresentation is di�
ult.In order to introdu
e the basi
 
on
epts of 
luster analysis methods, most authors use the graphi
al represen-tation of dissimilarity 
oe�
ients. The 
on
ept, however, 
an also be used to understand the use of similarity
oe�
ients (as used in the investigations below). As shown in Romesburg 2004, 'the di�eren
e between asimilarity 
oe�
ient and a dissimilarity 
oe�
ient is merely a di�eren
e in whi
h dire
tion the s
ale runs'.Resemblan
e 
oe�
ients 
an be obtained in di�erent ways (see e.g. Duda et al. 2000). In the most simple
ase they 
an be interpreted as the eu
lidean 'distan
e' between ea
h pair of obje
ts (displayed as dashedlines in �gure 3.1). Thus, small 
oe�
ients indi
ate a high similarity between two obje
ts. Resemblan
e
oe�
ients are arranged into a symmetri
 matrix of dimension number of objects× number of objects.
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Figure 3.1: Cluster Analysis example: Graphi
al representation of two attributes of �ve obje
tsGeometri
ally, 
luster analysis 
onsists of a step-by-step forming of sets (
lusters) of one or more obje
ts ofsimilar properties. At �rst, ea
h obje
t is regarded as an individual 
luster. After the last step all obje
tsare merged into one 
ommon 
luster. Figure 3.2 on the next page gives an impression of the four 
lusteringsteps for the example given in �gure 3.1.From a 
omputational point of view, 
luster analysis 
onsists of an iterative 
omputation of 'distan
es'between ea
h newly formed 
luster. The 'distan
e' to a 
luster with more than one obje
t is 
omputed by the(unweighted) average 'distan
e' to ea
h of its obje
ts. This 
lustering method is also known as 'unweightedpair-group method using arithmeti
 averages (UPGMA)' (Romesburg 2004). Other methods are des
ribedin Duda et al. 2000 or Ripley 1996. The basi
 steps of a general 
luster analysis algorithm are shown in�gure 3.3.
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Figure 3.2: Cluster Analysis example: Clustering steps
Algorithm: Basi
 agglomerative hierar
hi
al 
lustering algorithm1. Compute similarity matrix, if ne
essary.2. repeat3. Merge the 
losest two 
lusters.4. Update the similarity matrix to re�e
t the similarity between the new 
lusterand the previous 
lusters.5. until Only one 
luster remains.Figure 3.3: Basi
 
luster analysis algorithmDendrogramsThe results of a 
lustering pro
ess 
an be used to generate a map of sorts, 
alled tree or dendrogram, toshow the degrees of similarity between all pairs of obje
ts. The x-axis shows the obje
ts; the y-axis showsthe similarity 
oe�
ient at whi
h the previous 
lusters had been merged into a new 
luster. The dendrogramfor the example 
an be found in �gure 3.4.In order to a
tually 
lassify all obje
ts into 
lusters the dendrogram needs to be subdivided by '
utting' ata reasonable similarity level. This step depi
ts the only subje
tive (and thus analyst-dependent) part of a
luster analysis pro
edure. A reasonable position for a 'tree 
ut' is given by a large 'gap' in the dendrogramindi
ating the 
lustering of two previously signi�
antly distin
t 
lusters. Thus, instead of a software basedde
ision a visual inspe
tion of the dendrogram is highly re
ommended.
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Figure 3.4: Cluster Analysis example: DendrogramIn�uential subsets and 
ounter-a
ting observationsAs explained in Hoaglin and Wels
h 1978 or Gray and Ling 1984 the generalisation of high-leverageobservations is a group of high-leverage observations or in�uential subsets of observations. A

ording toGrayand Ling 1984 'interest is fo
used on the e�e
ts of jointly in�uential 
ases (i.e. observations), parti
ularlythose subsets whose individual 
ases intera
t to produ
e a high in�uen
e that is not a

ounted for by themain e�e
ts of their single 
ases (observations)'. Figure 3.5 on the next page gives a graphi
al visualisationof jointly in�uential subsets for a regression line.In this thesis, a further distin
tion of jointly in�uential subsets is used:
• Jointly in�uential (or reinfor
ing) observations are those observations whi
h a�e
t the regression resultsin a similar way. Numeri
ally these observations are indi
ated by large positive impa
t 
o-fa
tors hij .Geometri
ally, these observations are performed under similar 
onditions. For a regression line (see�gure 3.5), in�uential observations have similar x values, whi
h are signi�
antly distin
t from the
enter of mass of the remaining observations.
• Counter-a
ting observations are those observations whi
h have been performed under similar but op-posite 
onditions. Numeri
ally, this is shown by large negative impa
t 
o-fa
tors hij . Geometri
ally,(for the regression line in �gure 3.5) both observations are lo
ated on opposite sites, but with similardistan
es to the 
enter of mass of the remaining observations.Pra
ti
al examples for both types of observations will be given in 
hapter 5.
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Figure 3.5: Con�gurations of jointly in�uential and 
ounter-a
ting observations. Case A: large positive hij ,
ase B: large negative hij , 
ase C: submatrix of H 
orresponding to {i, j, k, l,m} 
ontains several largepositive and negative elements (Gray and Ling 1984).3.3 Cluster analysis for parameter estimation problemsDue to the fa
t that the impa
t fa
tors and impa
t 
o-fa
tors of the observations 
an be interpreted geomet-ri
ally using 
osines of the angles between ve
tors of the natural basis and their proje
tions onto the 
olumnspa
e of the design matrix A they 
an be regarded as similarity measures. In 
ontrast to most statisti
al
luster analysis appli
ations (whi
h perform 
lustering steps by grouping observations or obje
ts with small-est distan
e, i.e., using dissimilarity 
oe�
ients), here observations with large similarity 
oe�
ients (impa
t
o-fa
tors) are 
lustered.Hen
e, the main idea of using 
luster analysis for parameter estimation problems is to repla
e the resemblan
ematrix by the data resolution matrix and to interpret o�-diagonal elements of the data resolution matrix(impa
t 
o-fa
tors) as similarity 
oe�
ients (Gray and Ling 1984) (see table 3.1). Based on this approa
h,
andidates for in�uential subsets of observations 
an be found.Parameter redu
tionIn order to determine the impa
t of ea
h 
luster of observations on the estimated parameters the 
on
eptof proje
tions onto subspa
es of the data spa
e is used (see e.g. Teunissen 2003). This approa
h is alsoknown as redu
tion of parameters by estimating only a subset of the original parameters without 
hangingthe original fun
tional model. The original linear system Ax = y is partitioned into
[A1

... A2]

[
x1

x2

]

=

[
y1

y2

]

, (3.1)with x1 being a u1-ve
tor 
ontaining parameters of interest and x2 being the u2-ve
tor des
ribing theparameters to be redu
ed. As shown in e.g. Teunissen 2003 the design matrix Ā1 of the redu
ed system
an be 
omputed using the orthogonal proje
tor
P⊥A2

= I − A2(A
′
2A2)

−1A′2 (3.2)and
Ā1 = P⊥A2

A1. (3.3)As for the original system Ax = y, a data resolution matrix H̄ for the redu
ed system 
an be derived by
H̄ = Ā1(Ā′1Ā1)

−1Ā′1. (3.4)
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ontrast to the data resolution matrix H for the original system, the data resolution matrix H̄ for theredu
ed system indi
ates the impa
t of the observations only on the remaining parameters x1.Due to the 
omputation and inversion of normal equation matri
es in equations (3.2) and (3.4) the derivationof H̄ should rather be based on the singular value de
omposition of the design matrix of the partitionedsystem (3.1): With the singular value de
omposition of A2 = U2S2V2 the proje
tor P⊥A2

an be 
omputedvia

P⊥A2
= I− U2u2

U′2u2
(3.5)with U2u2

indi
ating the �rst u2 
olumns of U2. Sin
e H̄ is the proje
tor onto the subspa
e formed by the
olumns of Ā1 = P⊥A2
A1 it 
an also be derived by using the singular value de
omposition of Ā1 = Ū1S̄1V̄1:

H̄ = Ū1u1
Ū

′

1u1
(3.6)with Ū1u1


onsisting of the �rst u1 
olumns of Ū1.Determination of 
luster impa
t on parameter subsetsFor the determination of the impa
t of a 
luster of observations on single (or groups of) parameters, equa-tion (3.3) is used to proje
t onto one-dimensional (or multi-dimensional) subspa
es of the data spa
e (bye�e
tively redu
ing u − v parameters and leaving v parameters of the original fun
tional model). Althoughin the following investigations v = 1, this 
on
ept 
an also be used for groups of parameters (i.e., for
2 ≤ v ≤ n− 1).After performing the 
luster analysis of the data resolution matrix H of the original system and after thedetermination of observation 
lusters by 
utting the dendrogram at a reasonable height, the original systemis gradually redu
ed (i.e., v = 1). Using the data resolution matrix H̄ of the redu
ed system, for ea
h 
lusterthe impa
t fa
tors h̄ii for those observations whi
h belong to the 
urrent 
luster are averaged by summingup the impa
t fa
tors h̄ii 
luster-wise and dividing the sum by the number of elements (observations) inthe respe
tive 
luster. This yields an 'average 
luster impa
t fa
tor h̄Cluster i of 
luster i on the parameter(group) x1' whi
h is independent of the size (number of members) of the 
urrent 
luster. Figure 3.6 providesa graphi
al visualisation of these steps.3.4 Interpretation of Cluster Analysis resultsThe size (i.e., the number of observations in a 
luster) and the 'average 
luster impa
t fa
tor h̄Cluster iof 
luster i on the parameter (group) x1' 
an be used to interpret the results of a 
luster analysis and toformulate re
ommendations whether the 
luster size should be enlarged or redu
ed. As shown in e.g.Hoaglinand Wels
h 1978 the average impa
t of a single observation is u/n. Similarly, a group of observations (or a
luster) 
an be 
onsidered as of 'medium' (or average) importan
e if its average 
luster impa
t fa
tor h̄Cluster iis 
lose to u/n (e.g. ± 50% of h̄). In the same way, further 
lassi�
ations 
an be performed by 
omparingthe average 
luster impa
t fa
tor h̄Cluster i with u/n.The 
luster size 
an be expressed as per
entage of the number of observations nCluster in the 
urrent 
lusterwith respe
t to the total number of observations n. Table 3.2 shows an interpretation s
heme whi
h 
ontainsthe 
luster size as the �rst 
riterion (upper row) and the impa
t fa
tor relative to the mean impa
t fa
tor (i.e.,
u/n) as the se
ond 
riterion (left 
olumn).
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Figure 3.6: Flow
hart for determination of 
luster impa
t h̄Cluster i of 
luster i on parameter subset x1

u
nUnimportant (h < 1%   )

u
n

u
n

u
n

Very important (h >  200%    )

Important (h > 150%    )

u
n

Medium (50%   < h < 150%    )

Low importance (h < 50%    )

n = n Large Medium
65% − 33%

Small n = 1

u
n

Cluster Cluster

o

−−

−

o

+

o

++

+

o

−

−

o

+

all

observations

clustered 

into one

cluster Observation

Cluster impact factor

Cluster Size
99% − 66% 32% − 1%

++

negligible

+++−−−

−−−

−−

−

Table 3.2: Rules for interpretation of Cluster Analysis results: ++ indi
ates that 
luster size must be sig-ni�
antly enlarged (i.e., that observations should be 
ontrolled by appropriate (independent) observations),
−−− and −− denote signi�
ant de
rease, + and − indi
ate only minor 
hanges and for O the 
luster sizeis appropriate.



54 3. Cluster AnalysisAs shown in the �rst row of table 3.2 the size of a very important 
luster 
an be slightly redu
ed if it 
ontainsa large number of observations. On the other hand, a small but very important 
luster should be enlarged,i.e., that the small number of observations in this 
luster should be 
ontrolled by appropriate (independent)observations. If all observations have been 
lustered into one 
luster (nCluster = n), no reasonable 
on
lusion
an be drawn (see �rst 
olumn). On the other hand, if the dendrogram 
ut has been performed before the �rst
lustering step, every 
luster 
ontains only one observation (nCluster = 1). The last 
olumn thus representsa solely interpretation of the impa
t fa
tors of ea
h observation (with the �rst 
ase indi
ating an extremehigh-leverage observation whi
h should be 
ontrolled/supported by several independent observations).In general, a 
luster with a large impa
t fa
tor and with only a small number of members should be signi�-
antly enlarged ('++') while the size of a large 
luster with a low impa
t fa
tor must be signi�
antly redu
ed('−−'). The symbols ('+') and ('−') indi
ate re
ommendations for only minor size variations. Some 
ases(e.g. all observations 
lustered into one 
luster or ea
h observation is a single 
luster) need spe
ial treatment.The per
entage values in table 3.2 have been derived from experien
e and thus only indi
ate interpretationguidelines. The a
tual de
ision for size variations depends on the purpose of the experiment and also dependson the 
osts for performing other observations.3.5 Regression diagnosti
s tool-�ow
hartThe singular value de
omposition of the design matrix of an adjustment problem (and hen
e the dataresolution matrix derived from the singular value de
omposition) and 
luster analysis methods form the twomain 
omponents of the regression diagnosti
s tool developed in this thesis. As mentioned in the introdu
tion,in geodeti
 literature the term 'regression' is often used for the determination of the parameters of adjustingstraight lines or other polynomials. Here, however, the term 'regression' des
ribes the general pro
edure ofparameter estimation in linear models (see also e.g. Cook and Weisberg 1982, or Dodge and Jure
ková2000).Based on the interpretation guidelines des
ribed above, the general pro
edure of a singular valuede
omposition- and 
luster analysis-based regression diagnosti
s tool 
an be formulated. As shown in �g-ure 3.7 on the fa
ing page the general pro
edure starts with the de�nition of the adjustment problem to besolved. This also 
ontains a reasonable parametrisation of the fun
tional model relating observations andunknown parameters. After performing suitable measurements, the design matrix A 
an be set up and 
anbe de
omposed by singular value de
omposition.Sin
e the results of the entire pro
edure should only be interpreted in 
ase of a full rank adjustment problem,the singular values σi (or the 
ondition number) have to be used for the dete
tion of rank de�
ien
ies or aweak 
ondition. Optionally, the 
orrelations and thus the separability of the parameters should be analysedby using the 
orrelation matrix (COR) or the model resolution matrix (MRM). If there is an (almost) rankde�
ien
y it is re
ommended to re-formulate the adjustment problem before pro
eeding with the regressiondiagnosti
s pro
edure.If all parameters 
an be estimated (separately), the data resolution matrix H 
an be 
omputed. At �rst,its main diagonal elements (i.e., the impa
t fa
tors hii) should be 
he
ked for the existen
e of high-leverageobservations. Depending on the purpose of the adjustment and depending on the 
onsequen
es of high-leverage observations, appropriate steps might be ne
essary (su
h as elimination of observations or additionof new observations).The next step 
onsists of the analysis of the impa
t 
o-fa
tors hij and the generation of groups of observationsby 
luster analysis of the data resolution matrix H. After 
utting the dendrogram at a reasonable height the'average 
luster impa
t fa
tors h̄Cluster i' 
an be 
omputed.For ea
h parameter (usually starting with the most important parameter) the impa
t of ea
h 
luster 
an beassessed using the interpretation guidelines listed in table 3.2 on the previous page. Depending on the needof performing 
hanges of the observation stru
ture, the entire pro
ess needs to be repeated (starting fromthe generation of the design matrix A). Otherwise the pro
edure is 
ompleted.
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Figure 3.7: Regression diagnosti
s �ow
hart



56 4. Geodeti
 Very Long BaselineInterferometry4.1 Introdu
tionThe prin
iple of Very Long Baseline Interferometry (VLBI) has been developed in the 1970ies and was at�rst mainly used for the investigation of astronomi
al and astrophysi
al phenomena (see e.g. Cohen andShaffer 1971). This prin
iple is based on a 
lassi
al interferometer in the visible spe
trum whi
h has beeninvented as early as 1890 by Mi
helson (Mi
helson 1890). While the two re
eiving devi
es of a 
lassi
alradio interferometer are 
onne
ted, this is not the 
ase for a long baseline interferometer. Here, the distan
esbetween the re
eivers 
an be up to 12.000 km (see �gure 4.1). At both stations, the signals of an extra-gala
ti
radio sour
e are re
eived and provided with time marks generated by highly pre
ise atomi
 
lo
ks (usuallyhydrogen-masers) before they are stored digitally on tapes or dis
s (Campbell 2004).

Figure 4.1: Single-baseline-interferometer(Campbell 2004) Figure 4.2: VLBI network with �ve stations(Campbell 2004)The data is sent to spe
ially designed 
omputers (
orrelators) and brought to 
oheren
y. Within the 
orrela-tion pro
ess the di�eren
e τ of the arrival times of the signal at both stations is determined and representsthe primary geodeti
 observable. It is often simply 
alled 'delay' and 
an nowadays be determined with ana

ura
y of approximately 20-30 pi
ose
onds (= 6-10 [mm℄) (see e.g. Sovers et al. 1998).Soon after the �rst use for astronomi
al purposes the geodeti
 use of the VLBI-prin
iple was re
ognized(e.g. Shapiro 1974, Ma 1978, or Campbell and Witte 1978). In addition, besides the baseline ve
torother parameters su
h as e.g. the rotation of the earth (i.e., polar motion xp, yp and ∆UT 1 as well as nuta-tion dψ, dǫ), atmospheri
 behaviour, tidal e�e
ts, et
. 
an be determined and are in
luded in the fun
tionalmodel.By performing 
ommon observations of the same radio sour
e by di�erent stations, global observation net-works 
an be formed. These networks 
an be used to 
onne
t regional geodeti
 referen
e systems (and 
antherefore be used for the generation of global referen
e systems) as well as for a more pre
ise determinationof earth orientation parameters (
ompared to observations on single baselines) (see �gure 4.2).



4.2. Basi
 models in VLBI data analysis 57Compared to other spa
e geodeti
 te
hniques (su
h as GPS, SLR/LLR or DORIS) VLBI has the advantageof having a dire
t 
onne
tion to the quasi-inertial system of the radio sour
es whi
h enables analysts todetermine earth orientation parameters with a long time stability and free of any hypothesis. Hen
e VLBIis the only te
hnique (ex
ept for opti
al astronomi
al te
hniques) whi
h 
onne
ts the sky-�xed referen
esystem (CRF) dire
tly to the earth-�xed system (TRF) via the earth orientation parameters (EOP).The basi
 prin
iple of VLBI has been des
ribed by many authors. For more details see e.g. Campbell 1979,S
huh 1987, Nothnagel 1991, or Takahashi et al. 2000.4.2 Basi
 models in VLBI data analysis4.2.1 The fun
tional model of VLBIThe geometri
al time delay of a non-rotating plane or spatial radio interferometer whose two stations are
onne
ted by the baseline ve
tor b = r2 − r1 (with ri being the geo
entri
 ve
tors of the observation sites,respe
tively) 
an be mathemati
ally des
ribed by the s
alar produ
t
τgeom = τ2 − τ1 = −1

c
·b ·k, (4.1)where c denotes the velo
ity of the radio signal (i.e., the velo
ity of light), k denotes a unit ve
tor in thedire
tion of the radio sour
e and τ1 and τ2 denote the arrival times of the radio signal at the two stationsrespe
tively (see e.g. Nothnagel 1991).Further generalisation of model (4.1) leads to a spatial, kinemati
 interferometer. Sin
e the baseline ve
tor bis de�ned in an earth-�xed referen
e system while the ve
tor k in dire
tion of the radio sour
e is de�ned ina sky-bound referen
e system, one of these referen
e systems has to be transformed into the other one. For abetter physi
al interpretation, the three rotations ne
essary for this transformation are usually de
omposedinto �ve individual rotations whi
h are represented by four rotation matri
es W,S,N and P. These ma-tri
es 
orrespond to polar motion (wobble, xp and yp), earth rotation (spin, dUT 1), nutation (dψ, dǫ) andpre
ession (z, ξA,ΘA) respe
tively (see e.g. Robertson 1975, Ma 1978, Nothnagel 1991, or Seeber2003). Equation (4.1) thus be
omes:

τgeom = −1

c
·b ·R ·k

= −1

c
·b ·W ·S ·N ·P ·k (4.2)The matri
esW,S,N and P are usually expressed by means of Eulerian rotation angles around the respe
tiverotation axes. A more detailed des
ription 
an be found in e.g. Nothnagel 1991, or Sovers et al. 1998.Nothnagel 1991 also lists the 
oordinate systems asso
iated with the di�erent rotations.Sin
e equation (4.2) only des
ribes the geometri
al delay, a more sophisti
ated model has to be used to modelreal VLBI observations whi
h are a�e
ted by various e�e
ts on their way through interstellar spa
e, the SolarSystem, and the Earth's atmosphere. Therefore further terms a

ounting for e.g. the 
hanging behaviour ofstation 
lo
ks, the delay 
aused by atmospheri
 in�uen
es, tidal or loading e�e
ts, et
. have to be added.Hen
e the basi
 geometri
al has to be extended to

τobs = −1

c
·b ·W ·S ·N ·P ·k

+ τj−abb. + τt−abb. + τRel. + τTid. + τLoad. (4.3)
+ τIon. + τInstr. + τAtmh

+ τClock + τAtmw

+ . . .
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 Very Long Baseline Interferometrywhere the following terms are used:
τj−abb. annual abberation be
ause of the motion of the earth aroundthe solar system bary
enter
τt−abb. diurnal abberation be
ause of the rotation of the earth
τRel. relativisti
 e�e
ts
τTid. deformation of the earth be
ause of tides andbe
ause of 
hanges of the angular momentum due to o
ean tides
τLoad. deformation of the earth be
ause of loading e�e
tse.g. due to o
ean tides and atmospheri
 pressure 
hanges
τIon. ionospheri
 
orre
tion
τInstr. instrumental 
orre
tions
τAtmh

atmospheri
 refra
tion (hydrostati
 part)
τAtmw

atmospheri
 refra
tion (wet part)
τClock relative 
lo
k o�set and 
lo
k rate (and additional terms)A more expli
it formulation of model (4.3) reads:

τobs = −1

c
·





xA − xB

yA − yB

zA − zB



 ·R(xp, yp, dUT 1, dψ, dǫ, z, ξA,ΘA) ·





cos δ · cosh(t)
cos δ · sinh(t)

sin δ





+ τj−abb. + τt−abb. + τRel. + τTid. + τLoad. (4.4)
+ τIon. + τInstr. + τAtmh

+ τClock + τAtmw

+ . . .with xi, yi, zi being the geo
entri
 
oordinates of the parti
ular station, R being the rotation matrix betweenthe 
elestial and the terrestrial referen
e system (and thus dependent on polar motion xp, yp, earth rota-tion ∆UT 1, nutation dψ, dǫ and pre
ession z, ξA,ΘA) and h(t) and δ being the hour angle and de
linationof the observed radio sour
e.The way of parametrisation usually depends on the target parameters to be investigated and depends onthe number of stations parti
ipating as well as on the duration of the session. As des
ribed in 
hapter 2also in VLBI data analysis di�erent mathemati
al models (possibly with di�erent kinds of parametrisations)may des
ribe the observations equally well. Although o�
ial re
ommendations exist (M
Carty and Petit2003), the 
hoi
e of a parti
ular model and the 
hoi
e of a parti
ular parametrisation is quite arbitrary andmay vary from analyst to analyst. In parti
ular the following physi
al models are subje
t to these arbitrary
hoi
es.Physi
al modelsClo
k behaviour and pie
ewise linear modellingOne of the largest 
onstituents of the signal delays is 
aused by the di�eren
es in the behaviour of the stationfrequen
y standards. After 
hoosing an arbitrary 
lo
k as the referen
e 
lo
k for the entire observing networkthe remaining 
lo
ks show both a 
onstant di�eren
e (= 
lo
k o�set) and a linear (= 
lo
k trend) or an evenhigher rate of 
hange relative to the referen
e 
lo
k. Thus, an appropriate 
lo
k with a presumedly highfrequen
y stability should be 
hosen as the referen
e standard for the entire network.From an algebrai
 point of view it is of no 
onsequen
e to the least-squares solution whi
h station 
lo
kis 
hosen as the referen
e one (S
huh 1987). Sin
e the 
lo
k parameters (o�set, trend, et
.) also 'absorb'physi
al e�e
ts with a similar signature (as e.g. instrumental e�e
ts and relativisti
 e�e
ts of higher order)spe
ial attention should be paid to this type of parameter.



4.2. Basi
 models in VLBI data analysis 59In order to des
ribe the 
lo
k behaviour in a mathemati
al way, usually a simple polynomial approa
h is
hosen, as e.g.
τClock = CL0 + CL1 · t+ CL2 · (t− t0)

2 + . . . . (4.5)In pra
ti
al VLBI data analysis usually up to three parameters (o�set CL0, trend CL1 and squared term CL2)are used. In addition to a simple polynomial further so-
alled pie
e-wise linear parameters are used to a

ountfor higher variations of the frequen
y standards. For pie
e-wise linear modelling a linear behaviour of thee�e
t to be modelled is assumed for 
ertain intervals. One of the di�erent kinds of parametrisation is basedon determining new 
lo
k rates for ea
h interval by estimating ∆τClockratei
(see e.g. S
huh 1987, or Tesmer2004):

∆τClock(ti) = ∆τClockoffset+∆τClockrate1
(t1−t0)+∆τClockrate2

(t2−t1)+· · ·+∆τClockraten
(ti−tn−1) (4.6)In order to avoid numeri
al problems (as e.g. rank de�
ien
ies) and to stabilize the parameter estimationpro
ess, 
onstraints (or pseudo-observations) have to be in
luded in intervals with only a small number ofobservations. Usually this type of pseudo-observations 
onstrains the parti
ular rate segment to zero andallows for a 
ertain variation by assigning an appropriate formal error.Pie
e-wise linear modelling is also used when des
ribing other e�e
ts su
h as e.g. atmospheri
 behaviour,atmosphere gradients or sub-daily earth rotation variations.Atmospheri
 refra
tion and atmospheri
 mapping fun
tionsOn their way to the radio teles
opes, radio signals have to pass the atmosphere, i.e., the ele
tri
ally 
hargedpart (ionosphere) and the ele
tri
ally neutral part (troposphere) of the atmospheri
 layers up to a height ofapproximately 50 kilometres (Hofmann-Wellenhof, B. et al. 2003). Depending on the state of these layersthe signals are distorted. The impa
t of the ionosphere 
an be eliminated almost 
ompletely by performingdual frequen
y measurements. The signal path delay 
aused by the atmosphere (as well as the ionospheri
delay) is 
alled refra
tion and 
an 
hange between approximately 2.3 m in zenith dire
tion (approx. 8 ns)and almost 25 m at elevations of 5o (Nothnagel 2000).Sin
e the tropospheri
 signal path delay depends on the path length of the signals through the atmosphereit therefore also depends on the elevation ǫ of the radio sour
e observed. These elevation dependen
ies areusually expressed as so-
alled mapping fun
tions whi
h des
ribe the relations of the signal path delay inzenith dire
tion ('zenith delay') δρ0

trp and the signal path delay in sour
e dire
tion δρtrp(ǫ). The most simpleform of su
h a mapping fun
tion reads:
mtrp(ǫ) =

1

sin(ǫ)
. (4.7)Hen
e the signal path delay in sour
e dire
tion is

δρtrp(ǫ) = mtrp(ǫ) · δρ0
trp. (4.8)Due to the fa
t that water vapor only o

urs up to heights of approximately 15 km (while the entireatmosphere rea
hes heights of more than 50 km) it has been found appropriate to use di�erent mappingfun
tions for the hydrostati
 and the wet part of the atmosphere. Hen
e the total atmospheri
 signal pathdelay in sour
e dire
tion 
an be modelled as:

δρtrp(ǫ) = mtrp,d(ǫ) · δρ0
trp,d +mtrp,w(ǫ) · δρ0

trp,w. (4.9)The simple mapping fun
tion mtrp(ǫ) =
1

sin(ǫ)
has been found to be ina

urate for highly pre
ise appli
a-tions (even at elevation angles of 20o). During the last de
ades more pre
ise mapping fun
tions have been
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 Very Long Baseline Interferometrydeveloped (as e.g. CfA-, MTT-, Neill- or the Vienna Mapping fun
tions) some of them taking into a

ountthe atmospheri
 situation above the observation site or making use of numeri
al weather models. Detailsabout mapping fun
tions 
an be found in e.g. Nothnagel 2000, or Boehm 2004.As for the modelling of 
lo
k behaviour also pie
ewise linear modelling approa
hes are used to des
ribe theatmospheri
 behaviour. Depending on the analyst the interval length for pie
ewise linear modelling of theatmosphere is usually set to values between 2 hours and 20 minutes.4.2.2 Partial derivatives and design matrixFor the adjustment of VLBI observations by using the Gauss-Marko�-model (see 
hapter 2) the partialderivatives of the parti
ular fun
tional model 
hosen by the analyst with respe
t to the unknown parametershave to be 
omputed and arranged in the design matrix. In general, the design matrix 
ontains many moreparameters than dis
ussed in the following paragraph (see e.g. Nothnagel 1991).The dimension of the design matrix equals (number of observed delays + number of 
onstraints) × (numberof unknowns). When 
hoosing the order of unknowns as station 
oordinates, 
lo
k 
oe�
ients, atmosphere
oe�
ients the stru
ture of the design matrix may be as follows (example for a 3-station network):
A =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Stationskl Clockskl Atmospherekl

Stationskl Clockskl Atmospherekl

Stationskl Clockskl Atmospherekl

Stationskl Clockskl Atmospherekl

. . . . . . . . .

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(4.10)with Stations =
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Clo
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Atmosphere parameters =

∣
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∣
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∣
∣
∣
∣
∣
∣
∣
∣
∣
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4.2. Basi
 models in VLBI data analysis 61Some of the partial derivatives of the observation equation (4.3) with respe
t to the unknown parametersread (Nothnagel 1991):
∂τobs

∂Xa

=
1

c
· cos(h(t)) · cos(δ) (4.11)

∂τobs

∂Ya

=
1

c
· sin(h(t)) · cos(δ) (4.12)

∂τobs

∂Za

=
1

c
· sin(δ) (4.13)

∂τobs

∂Xb

= −1

c
· cos(h(t)) · cos(δ) (4.14)

∂τobs

∂Yb

= −1

c
· sin(h(t)) · cos(δ) (4.15)

∂τobs

∂Zb

= −1

c
· sin(δ) (4.16)

∂τobs

∂CL0a

= 1 (4.17)
∂τobs

∂CL1a

= t− t0 (4.18)
∂τobs

∂CL2a

= (t− t0)
2 (4.19)

∂τobs

∂CL0b

= −1 (4.20)
∂τobs

∂CL1b

= −(t− t0) (4.21)
∂τobs

∂CL2b

= −(t− t0)
2 (4.22)

∂τobs

∂ATa

=
1

c
·m(ǫ) (4.23)

∂τobs

∂ATb

= −1

c
·m(ǫ) (4.24)

∂τobs

∂xp0

= −1

c
·
(
bx · sin(δ) − bz · cos(δ) · cos(h(t))

) (4.25)
∂τobs

∂xp1

= −1

c
·
(
bx · sin(δ) − bz · cos(δ) · cos(h(t))

)
· (t− t0) (4.26)

∂τobs

∂yp0

= −1

c
·
(
by · sin(δ) − bz · cos(δ) · sin(h(t))

) (4.27)
∂τobs

∂yp1

= −1

c
·
(
by · sin(δ) − bz · cos(δ) · sin(h(t))

)
· (t− t0) (4.28)

∂τobs

∂∆UT 10

=
1

c
·Ω · cos(δ) ·

(
bx · sin(h(t)) − by · cos(h(t))

) (4.29)
∂τobs

∂∆UT 11

=
1

c
·Ω · cos(δ) ·

(
bx · sin(h(t)) − by · cos(h(t))

)
· (t− t0) (4.30)

∂τobs

∂α
= −1

c
· cos(δ) ·

(
bx · sin(h(t)) − by · cos(h(t))

) (4.31)
∂τobs

∂δ
= −1

c
·
(
sin(δ) · (−bx · cos(h(t)) − by · sin(h(t))) + bz · cos(δ)

) (4.32)
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 Very Long Baseline Interferometrywith
h(t) Greenwi
h hour angle of the radio sour
e
δ de
lination of the radio sour
e
c velo
ity of light

t− t0 time passed sin
e the beginning of the session
ǫ elevation of the radio teles
ope
Ω 
onversion fa
tor from universal time to sidereal time (≈ 1)

m(ǫ) atmospheri
 mapping fun
tion.4.2.2.1 Sensitivity of observation equations / partial derivativesDue to the relative nature of the VLBI te
hnique the observations (i.e., arrival time di�eren
es) are notsensitive to some parameters su
h as absolute geo
entri
 station 
oordinates or the origin of right as
ension(Sovers et al. 1998). This information must be supplied by other te
hniques.The information 
ontent of VLBI observables heavily depends on the 
on�guration of the experiment. Thus,the observation s
hedule (i.e., station lo
ation, sour
e position and the a
tual orientation of the sour
e withrespe
t to the baseline) plays a 
ru
ial role in determining the types and pre
ision of parameters that 
anbe estimated. Due to the fa
t that only the s
alar produ
t of baseline ve
tor and ve
tor in sour
e dire
tionis observed, some observation geometries impose limitations on the estimability (and separability) of 
ertainparameters (so-
alled 
riti
al (baseline) 
on�guration, 
f. Sovers et al. 1998, or Takahashi 1994).In order to assess the parameters that 
an be estimated the partial derivatives of the observation equation ofa fun
tional model with respe
t to its parameters have to be analysed. In geodeti
 adjustment 
omputationsthis is in parti
ular used for the analysis of error propagation. On the other hand these investigations alsoshow the sensitivity of an observation 
on
erning a 
ertain parameter (see e.g. Niemeier 2002, Walter1973, or Lundqvist 1984).In the 
ase of VLBI, investigations of the magnitudes and the variations of the partial derivatives of equa-tion (4.3) with respe
t to the parameters to be determined have been performed very early by e.g. Walter1973, Dermanis and Mueller 1978, or Ma 1978. Walter 1973 des
ribes in detail that 'the 
han
es toseparate the various e�e
ts are widened if the partial derivatives di�er in amplitude and phase'. Conversely,this means that similarities of partial derivatives indi
ate a low separability (or a high 
orrelation) betweenthe parameters involved. Algebrai
ally this is shown by at least two similar 
olumns of the design matrixleading to numeri
al problems due to (an almost) rank de�
ien
y of the design matrix.Partial derivatives with respe
t to earth orientation parametersInvestigations of the magnitudes and the variations of the partial derivatives ∂τobs/∂xp0 (eq. 4.25), ∂τobs/∂yp0(eq. 4.27) and ∂τobs/∂∆UT 10 (eq. 4.29) show the sensitivities of VLBI observations with respe
t to theobservation geometry (i.e., 
on
erning baseline orientation and sour
e position relative to the observingbaseline).The partial derivative ∂τobs/∂xp0 (eq. 4.25) shows that observations on baselines parallel to the y-axis (i.e.,
bx = bz = 0, with bi indi
ating the respe
tive baseline 
omponent) are not 
apable for the determinationof the xp-
omponent (whi
h is a rotation around the y-axis), while observations on baselines parallel to thex-axis (i.e., by = bz = 0) are not suitable for the determination of the yp-
omponent of polar motion (whi
his a rotation around the x-axis), see eq. 4.27. Additionally, equations 4.25 and 4.27 show the 
apability ofbaselines with a long north-south-extension (i.e., with large bz-
omponents) for the determination of polarmotion. The ∂τobs/∂∆UT 10-partial derivative (eq. 4.29) reveals the importan
e of observations on baselineswith a large east-west-extension for the determination of earth rotation (i.e., for ∆UT 10). This agrees withthe fa
t that in general VLBI observations are not sensitive to an e�e
t whi
h is perpendi
ular to theorientation of that baseline (see Moritz 1987, or Fis
her 2006).



4.2. Basi
 models in VLBI data analysis 63Con
erning the sour
e position the three partial derivatives show that espe
ially radio sour
es with low(absolute) de
linations are ne
essary for the determination and separation of xp0, yp0 and ∆UT 10. Tabular 4.1gives an overview of 
riteria for optimal EOP determination depending on baseline orientation and sour
eposition (Brouwer 1985). Baseline parallel Baseline parallelto Equatorial plane to rotation axisEquatorial Polar Equatorial Polarsour
es sour
es sour
es sour
es
xp, yp NO YES YES NO
∆UT 1 YES NO NO NOTable 4.1: Parameter estimability as a fun
tion of baseline orientation and sour
e position (Brouwer 1985)Partial derivatives with respe
t to height, 
lo
k and atmosphere parametersThe analysis of the partial derivatives of equation (4.3) with respe
t to the topo
entri
 station height, 
lo
ko�set and atmosphere o�set (see equations 4.17 to 4.24) leads to a very 
ommon problem in spa
e geodeti
positioning: the separability of verti
al station motion, 
lo
k o�set and atmospheri
 variations. Due to thesimilarities of the partial derivatives at high elevation angles the separability of the three e�e
ts de
reaseswith higher elevations (see also Vennebus
h 2002).Figure 4.3 shows the impa
t of variations in station height, 
lo
k o�set and atmospheri
 behaviour on theobservations (for the 
ase of GPS-observations, but it 
an be used for VLBI as well). Sin
e a physi
al e�e
t
an only be determined from observations whi
h are a�e
ted by the parti
ular e�e
t, this also reveals thekind of observations ne
essary for the determination and separation of the three e�e
ts: Observations withlow elevations are espe
ially needed for the separation of station height and atmospheri
 behaviour. Solelyobservations in zenith dire
tion are not suitable for the separation of the three e�e
ts (see Rotha
her2003). Nothnagel 1991 demonstrated empiri
ally that observations to sour
es lo
ated in those parts ofthe 
ommon visible area of the 
elestial sphere that both stations 
an point at with very low elevations(so-
alled 'elevation 
usps', for an example see sour
es S5 and S6 in �gure 5.7 on page 81) are of parti
ularimportan
e for the determination of 
lo
k o�sets.Unfortunately, using observations with low elevations (whi
h are ne
essary for the separability of the threee�e
ts), errors in the atmospheri
 models propagate into the remaining parameters and degrade the entiresolution (Boehm 2004).

Figure 4.3: Impa
t of station height variations, 
lo
k o�set and tropospheri
 delay on (GPS-)observations(Rotha
her 2003)
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 Very Long Baseline Interferometry4.2.2.2 Other partial derivativesThe similarities of the partial derivatives (4.29) and (4.31) show the la
k of 
apability for the separationof ∆UT 1 and right as
ension α of a radio sour
e. Sin
e these equations are equal (ex
ept for the fa
tor Ω ≈ 1and the sign) no separation is possible between variations in right as
ension of a radio sour
e and variationsin earth rotation. A similar e�e
t o

urs in GPS with the as
ending node and ∆UT 1 (Rotha
her 2003).Another example for 
riti
al (baseline) 
on�gurations and thus for inseparable parameters is given by base-lines parallel to the equatorial plane observing sour
es with di�erent right as
ensions but identi
al de
lina-tions. With this 
on�guration no separation between the ∆z-
omponent of the baseline and the 
lo
k o�setbetween both stations is possible sin
e variations in one of these parameters have the same impa
t on theobservables (Brouwer 1985). This will be of importan
e in 
hapter 5 (
ase 6).4.3 Parameter estimation in VLBI data analysisThe determination of parameters in equation 4.3 on page 57 is a typi
al adjustment problem and is oftenperformed by least-squares estimation methods. Thus, the apriori model is re�ned by estimating modelparameter 
orre
tions whi
h best �t the data.For the estimation of parameters from VLBI observations various di�erent approa
hes exist, su
h as e.g.
• 
lassi
al least-squares based on the solution of normal equations,
• Kalman �lter and square root information �lter approa
hes (e.g. Andersen 2000) or
• 
ollo
ation approa
hes (e.g. Titov 2002).For the investigations in the next 
hapter, the design matrix as used for the 
omputation of the nor-mal equations is being used. In pra
ti
e, the dimension of the design matrix of a typi
al VLBI session isabout 2000×200. For the 
ommon adjustment of several sessions (so-
alled global solution) these dimensionsin
rease drasti
ally.4.4 Estimability limitationsDue to the limitations imposed by only observing the s
alar produ
t of the baseline and signal propaga-tion ve
tors, unambiguous separation of parameters is only possible with su�
ient spatially and temporallydistributed observations, i.e., by avoiding observations performed only in 
riti
al (baseline) 
on�gurations.In pra
ti
e, VLBI observation s
hedules are mostly generated by optimizing 'sky 
overage', i.e., by observ-ing sour
es in as many di�erent positions in the 
ommonly visible part of the 
elestial sphere as possible(Steufmehl 1994).In addition to the limitations of the information 
ontent of VLBI observations due to the observing geometry,the separation of physi
al parameters is further 
ompli
ated by linear 
ombinations of a subset of parameterswhi
h may produ
e identi
al variations in the observables similar to other (linear 
ombinations of) parametersof the model (so-
alled degenera
ies). All su
h potential degenera
ies must be identi�ed and a

ounted forin the parameter estimation pro
edures (Sovers et al. 1998).Both 
riti
al (baseline) 
on�gurations and separation problems will be of importan
e in the next 
hapter.



655. Design analyses of plane andspatial interferometers5.1 Introdu
tionThe theoreti
al ba
kground derived in 
hapters 1 to 4 
an now be used to investigate the design of in-terferometers, i.e., to analyse the type of parameters that 
an be estimated after measuring arrival timedi�eren
es of signals emitted by extra-terrestrial radio sour
es and to analyse whi
h parameters are a�e
tedby 
ertain groups of observations. These methods 
an be used to a
hieve a deeper understanding of theimpa
t of single (or groups of) observations on the adjustment pro
ess and 
an thus be used to optimisethe observation s
hedule by negle
ting observations (or observation groups) with small impa
t fa
tors or bysupporting/
ontrolling observations with high impa
t fa
tors by appropriate (independent) observations.The main intention of this 
hapter is to show the suitability of the regression diagnosti
s tool developed in theprevious 
hapters by testing its agreement with existing VLBI knowledge (su
h as e.g. found by the analysisof the fun
tional model of VLBI in 
hapter 4). In some 
ases, however, new knowledge 
an be obtained whi
h
an only be found by investigating the entire observation s
hedule (and not just the partial derivatives ofsingle observations). At �rst, the regression tool based on singular value de
omposition and 
luster analysiswill be applied to a plane, stati
 interferometer (or 2D-interferometer). In a se
ond step, the investigationswill be generalised and applied to spatial, rotating interferometers (i.e., to 3D-interferometer and thus to theVLBI prin
iple).5.2 VLBI observation s
hedule analysis software qtSVDThe author of this thesis developed qtSVD, a software pa
kage mainly designed for singular valuede
omposition-based analyses of VLBI observation s
hedules. The software is written in obje
t-orientedC++ and uses the graphi
al user interfa
e (GUI)-library Qt1 whi
h enables platform independent softwaredevelopment with user-friendly and mask-oriented dialogs. For matrix 
omputations the GNU S
ienti�
Library (GSL) has been used. For s
reenshots of qtSVD, see �gures 5.2 and 5.3.qtSVD 
an also be used for investigations of other adjustment problems su
h as polynomial regression, planeinterferometers or arbitrary design matri
es (in MATLAB format). The software performs:
• visualisation of design matri
es (for an example, see �gure 5.2)
• singular value de
omposition of design matri
es
• 
omputation of data resolution matri
es, model resolution matri
es, 
ofa
tor and 
orrelation matri
es
• 
luster analysis of data resolution matri
es
• visualisation of 
luster analysis dendrograms
• 
omputation of the 'average 
luster impa
t fa
tor h̄Cluster i of 
luster i on the parameter (group) x1'For the analysis of VLBI observation s
hedules qtSVD also
• reads observation s
hedules from NGS-�les (i.e., ASCII �les 
ontaining the VLBI observations of indi-vidual sessions),1available at http://www.trollte
h.
om
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• generates the design matrix after 
hoosing an appropriate parametrisation (the 
omputation of thedesign matrix is based on the VLBI data analysis software OCCAM (see Titov et al. 2004)),
• provides a three-dimensional visualisation of the network and the observation geometry with user-de�ned viewport settings (for an example, see �gure 5.3).The following investigations have been 
arried out with qtSVD, as well as the generation of all plots andtables.5.3 Plane stati
 interferometerAs shown in �gure 5.1 the most simple interferometer 
onsists of a single �xed baseline surrounded by �xed'radio sour
es' 
onsidered to emit plane waves of radio signals. Due to the 
lose relation to visible parts ofthe sky of a spatial interferometer (with a maximum of only one half of the 
elestial sphere being visible fromboth stations of the baseline) here only a half-
ir
le is 
onsidered. The baseline is 
onsidered to be parallel tothe x-axis of a plane, 
artesian 
oordinate system where the origin agrees with the mid point of the baseline.At both ends of the baseline, signal re
eivers equipped with atomi
 
lo
ks are assumed.
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A BFigure 5.1: Plane stati
 interferometerFun
tional modelObservations τi may be obtained by measuring the di�eren
e of the arrival times of a 'radio signal' at bothends of the baseline. Estimable parameters are:
• the ∆x 
omponent of the baseline,
• the ∆y 
omponent of the baseline and
• the 
lo
k o�set CL0 of one 
lo
k with respe
t to the other 
lo
k.The fun
tional model of a plane, stati
 interferometer thus reads:
τ = b ·k + CL0 =

[
∆x
∆y

]

·
[
k1

k2

]

+ CL0 = ∆x · k1 + ∆y · k2 + CL0 (5.1)with b being the unit ve
tor of the baseline and k being a unit ve
tor in sour
e dire
tion. Note that thesour
e ve
tor k 
ontains the 
oordinates of the unit ve
tor into the dire
tion of the respe
tive sour
e.
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Figure 5.2: S
reenshot of qtSVD (Matrix visualisation and 
luster analysis modules)

Figure 5.3: S
reenshot of qtSVD (VLBI session visualisation module)



68 5. Design analyses of plane and spatial interferometers5.3.1 Investigation of parameter estimabilityIn the following se
tions the estimability of three parameter types (and 
ombinations thereof) in the planeinterferometer shown in �g. 5.1 are investigated. The three parameters ∆x baseline 
omponent, ∆y baseline
omponent and 
lo
k o�set CL0 at station B 
an be 
ombined in the following way:1. ∆x baseline 
omponent only (
orresponds to estimating a 
hange of the length of the baseline),2. ∆y baseline 
omponent only (
orresponds to estimating a 
hange of the height of one station),3. 
lo
k o�set CL0 at station B only (
orresponds to estimating the radius of a 
ir
le around station B),4. ∆x and ∆y baseline 
omponent,5. ∆x baseline 
omponent and 
lo
k o�set CL0 at station B,6. ∆y baseline 
omponent and 
lo
k o�set CL0 at station B and7. ∆x and ∆y baseline 
omponent and 
lo
k o�set CL0 at station B.For ea
h of the seven 
ases an identi
al set of 19 'observations' is obtained by simulating measurements ofthe arrival time di�eren
es of the signals from ea
h sour
e. Ea
h sour
e is observed only on
e in a 
ounter-
lo
kwise sense, starting at sour
e 1 (see �g. 5.1). Sin
e only the design of the experiment is of interest, noobservation ve
tor is present. Thus, for the following investigations only the design matrix A is used.Figure 5.4 shows the 
omponents S,V,U of the singular value de
omposition of the design matrix A aswell as the data resolution matrix (DRM) and the model resolution matrix (MRM), the impa
t fa
tors ofthe observations, the 
luster analysis of the data resolution matrix and the 
orrelation matrix COR of theestimated parameters for ea
h of the seven investigated 
ases (see tabular 5.1).Element Des
riptionGeneral S Singular values, indi
ating presen
e of rank de�
ien
iesModel spa
e (Parameters) V Right singular ve
tors, indi
ating the amount of impa
t on theadjusted parameters
MRM Model resolution matrix, indi
ates relations of parameters in 
aseof a rank de�
ien
y
COR Correlation matrix, indi
ating 
orrelations between parametersData spa
e (Observations) U Left singular ve
tors, indi
ating impa
t of observations onparameters (or linear 
ombination thereof)
hii Impa
t fa
tors, indi
ating the importan
e of individual observations

DRM Data resolution matrix, main-diagonal elements hii indi
atingimpa
t fa
tors of observations, o�-diagonal elements hij indi
atingimpa
t 
o-fa
tors and thus a jointly in�uential or 
ountera
tinge�e
t of observationsDendro- Result of 
luster analysis of the data resolution matrix, indi
atinggram in�uential subsets of observationsTable 5.1: Singular value de
omposition- and Cluster Analysis-based analysis elements
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70 5. Design analyses of plane and spatial interferometersInterpretation guidelinesFor a 
orre
t interpretation of the elements listed in table 5.1 and displayed in �gures 5.4, 5.8, 5.9 and 5.16,eq. 2.47 on page 39 should be reviewed. This formula des
ribes the least-squares solution of a linear system
Ax = y by using the singular value de
omposition of A:

x̂ =

r∑

i=1

1

σi

vi (u′i ·y) = VrS
−1
r U′ry. (5.2)Eq. 5.2 shows that very small singular values σi (or singular values whi
h even equal zero) lead to unreasonable
ontributions to the least squares solution, 
aused by (near) rank de�
ien
ies.After verifying the absen
e of rank de�
ien
ies (i.e., then r = u), ea
h of the r summands of eq. 5.2 needsto be related to a 
ertain parameter by identifying the largest element(s) of ea
h right singular ve
tor vi(for i = 1, . . . , r). As shown below, only in very few 
ases a single element of a vi-ve
tor is signi�
antly largerthan the remaining elements. In many 
ases, however, several elements are of similar size and thus show thatthe 
orresponding summand a�e
ts more than just one parameter.In any 
ase, for ea
h summand the 
orresponding left singular ve
tor ui shows the impa
t ea
h observationhas on the parameters identi�ed by analysing the 
orresponding right singular ve
tor vi. This 
an even beperformed without a real observation ve
tor.Sin
e the singular values σi are usually sorted in as
ending order, the right singular ve
tor v1 of the �rstsummand (whi
h is 
omputed with the largest singular value, σ1) reveals those parameters (or a linear
ombination thereof) whi
h is best determined. On the other hand, the last summand (whi
h is 
omputedwith the smallest singular value, σr) displays those parameters (or parameter linear 
ombinations) whi
h areworst determined.Information 
ontent of plane stati
 interferometer observationsFor the following investigations, the information 
ontent of individual observations performed in a plane stati
interferometer will be important. Figure 5.5 shows three observation geometries with very low elevations,medium elevations and very high elevations, respe
tively.The ∆x 
omponent of this baseline 
an be interpreted as a variation of the baseline length. The ∆y 
omponentmight be regarded as a height variation of station B. The 
ir
le around station B displays the o�set CL0 ofthe 
lo
k at station B with respe
t to the referen
e 
lo
k at station A. More detailed explanations will begiven below.

∆ x ∆ x ∆ x∆ y

R R

∆ y

R

∆ yA A A

constellation 3constellation 2constellation 1

B B BFigure 5.5: Information 
ontent of plane stati
 interferometer observations. The ∆x 
omponent displays avariation of the baseline length. The ∆y 
omponent visualises a height variation of station B and the 
ir
learound station B displays the 
lo
k o�set CL0 of station B with respe
t to the referen
e 
lo
k at station A.
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 interferometer 71Case 1: Estimation of ∆x baseline 
omponent only
• General / Singular values:As mentioned above, every singular value de
omposition-based analysis of an adjustment problemshould start with the investigation of the singular values σi, indi
ating a potential rank de�
ien
y ofthe design matrix. Here, the only singular value is σ1 = 3.16 > 0 and thus no rank de�
ien
y is present.
• Model spa
e / Right singular ve
tors (Matrix V):Sin
e in this 
ase only one parameter is estimated the V-matrix equals a 1 × 1-identity matrix andthus does not provide any useful information.
• Model spa
e / Model resolution matrix (MRM):Sin
e the model resolution matrix MRM is 
omputed by the right singular ve
tors it also does notprovide any useful information for this 
ase.
• Model spa
e / Correlation matrix (COR):Similar to the two items above, the 
orrelation matrix does not give any useful information for thisparti
ular 
ase.
• Data spa
e / Left singular ve
tors (Matrix U):The U-matrix (i.e., the left singular ve
tor of the design matrix) already indi
ates a signi�
ant di�er-en
e in the impa
t of the individual observations. Considering the absolute values of the elements ofthe left singular ve
tor, a de
reasing impa
t of observations 1 to 9 
an be seen. On the other hand, ob-servations 11 to 19 show an in
reasing impa
t. Observation 10 is of negligible impa
t for the estimationof the ∆x baseline 
omponent.
• Data spa
e / Impa
t fa
tors:The main-diagonal elements of the Data Resolution Matrix indi
ate the overall impa
t of ea
h observa-tion on the parameters to be estimated. As already seen in the left singular ve
tor, for the determinationof the ∆x baseline 
omponent, the �rst and the last observations mainly a�e
t the estimation pro
ess.Observation 10 
ould have been omitted 
ompletely sin
e it does not provide any information.
• Data spa
e / Data resolution matrix (DRM):A jointly in�uential or a 
ounter-a
ting e�e
t of observations (see se
tion 3.2 on page 50) 
an bedete
ted by row-wise investigating the Data Resolution Matrix (red = jointly in�uential e�e
t, blue =
ounter-a
ting e�e
t): A jointly in�uential e�e
t and thus a 
ommon degree of information 
an be seenfor observations 1 to 9 and observations 11 to 19, respe
tively. For observations 1 to 9 a de
reasingsigni�
ant 
ounter-a
ting e�e
t to observations 11 to 19 
an be seen (and vi
e versa), sin
e observationsto sour
es with an angular di�eren
e of approximately 180o 'pull' the baseline 
omponent into oppositedire
tions.For the determination of the ∆x baseline 
omponent, the 10th observation does not have any impa
tat all (see 10th row of DRM). Nor does the 10th observation a�e
t the remaining observations (see10th 
olumn of DRM). Thus, this observation 
ould have been omitted. Geometri
ally, this be
omesobvious from �gure 5.5 on the pre
eding page (
onstellation 3): For observations performed with highelevations, a small variation in the ∆x baseline 
omponent hardly a�e
ts the arrival time di�eren
e ofthe signal. Hen
e, these kind of observations are not sensitive to the ∆x baseline 
omponent and arethus not suited for the determination of the ∆x baseline 
omponent. On the other hand, 
onstellation 1in �gure 5.5 shows that the �rst and the last few observations are needed for the ∆x baseline 
omponent.This means, that in order to obtain important observations for the determination of the ∆x baseline
omponent, sour
es lo
ated in dire
tion of the baseline ve
tor have to be used. Observations to sour
esorthogonal to the baseline are of no use for this parameter. Obviously, this depends on the orientationof the referen
e system. In general, observations to sour
es orthogonal to the baseline 
annot be usedfor the determination of the baseline length.
• Data spa
e / Cluster analysis:Cluster analysis of the data resolution matrix yields a dendrogram with two bran
hes indi
ating twodi�erent groups of observations (see �gure 5.6 for the enlarged dendrogram). Observations 1 and 2 and



72 5. Design analyses of plane and spatial interferometersCluster Analysis Results - Case 1No. of Mean Impa
t on parameter [-℄:Cluster: members: impa
t fa
tor: Members (observations):
∆x1 1 0.00 9 0.0032 1 0.00 10 0.0003 1 0.00 11 0.0034 8 0.06 12, 13, 14, 15, 16, 17, 18, 19 0.0625 8 0.06 8, 7, 6, 5, 4, 3, 1, 2 0.062Table 5.2: Cluster analysis results for 
ase 1 (Estimation of ∆x baseline 
omponent only)ClusterAnalysisDendogram
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Cluster Analysis Dendrogram

Figure 5.6: Enlarged dendrogram for 
ase 1 (estimation of ∆x baseline 
omponent)observations 19 and 18 have been 
lustered at �rst. The last single observation whi
h has been 
lusteredis observation 10, showing again that this observation is least 'similar' to the remaining observations.In order to get reasonable 
lusters, the dendrogram has been 
ut to form �ve 
lusters. Table 5.2 showsthe results of 
luster analysis as well as the impa
t of ea
h 
luster on the ∆x baseline 
omponent.Case 2: Estimation of ∆y baseline 
omponent only
• General / Singular values:The only singular value is σ1 = 3.00 > 0 and thus no rank de�
ien
y is present.
• Model spa
e / Right singular ve
tors (Matrix V): See 
ase 1.
• Model spa
e / Model resolution matrix (MRM): See 
ase 1.
• Model spa
e / Correlation matrix (COR): See 
ase 1.
• Data spa
e / Left singular ve
tors (Matrix U):Compared to 
ase 1, the left singular ve
tor (matrix U) has an opposite stru
ture: Here, the �rst andthe last observations only have a small impa
t, while the middle observations have a large impa
t on thedetermination of the ∆y baseline 
omponent. The largest impa
t is produ
ed by the 10th observation.
• Data spa
e / Impa
t fa
tors:Consequently, the same e�e
t 
an be seen in the impa
t fa
tors.
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 interferometer 73Cluster Analysis Results - Case 2No. of Mean Impa
t on parameter:Cluster: members: impa
t fa
tor: Members (observations):
∆y1 1 0.00 1 0.0002 1 0.00 2 0.0033 1 0.00 18 0.0034 1 0.00 19 0.0005 15 0.07 17, 3, 4, 16, 5, 15, 6, 14, 13, 7, 8, 12, 0.0669, 10, 11Table 5.3: Cluster analysis results for 
ase 2 (Estimation of ∆y baseline 
omponent only)

• Data spa
e / Data resolution matrix (DRM):The data resolution matrix shows a distin
t agglomeration of observations. This indi
ates that the mid-dle observations possess a similar information 
ontent (de
reasing to the �rst and the last observation,respe
tively) and that there are no 
ounter-a
ting observations present.The most important observations for the determination of the ∆y baseline 
omponent have thus to beperformed to sour
es lying orthogonal to the baseline (see also 
onstellation 3 in �gure 5.5 on page 70).The least important (and thus negligible) observations are performed to sour
es lying in dire
tionof the baseline ve
tor. Again, this depends on the orientation of the 
oordinate system. In general,observations to sour
es orthogonal to a baseline 
an only be used to determine a position variationorthogonal to the baseline, sin
e these observations are most a�e
ted by this e�e
t.
• Data spa
e / Cluster analysis:Cluster analysis of the data resolution matrix shows a sequential 
lustering of the most similar obser-vations. Observations 1 and 19 have been 
lustered at last. Table 5.3 shows the results as well as theimpa
t on the ∆y baseline 
omponent.Case 3: Estimation of the 
lo
k o�set CL0 at station B only
• General / Singular values:The only singular value is σ1 = 4.36 > 0 and thus no rank de�
ien
y is present.
• Model spa
e / Right singular ve
tors (Matrix V): See 
ase 1.
• Model spa
e / Model resolution matrix (MRM): See 
ase 1.
• Model spa
e / Correlation matrix (COR): See 
ase 1.
• Data spa
e / Left singular ve
tors (Matrix U):In this 
ase the U matrix 
onsists of a 
olumn ve
tor with identi
al elements (ui = 0.23). This showsthat ea
h observation has the same impa
t on the parameter estimation pro
ess and thus to thedetermination of the 
lo
k o�set. This is obviously 
aused by the fa
t that the design matrix 
onsistsof a ve
tor of 
onstants and is thus independent of the observation geometry.
• Data spa
e / Impa
t fa
tors:Consequently, the impa
t fa
tors show the same e�e
t, i.e., ea
h observation is equally important forthe determination of the 
lo
k o�set.
• Data spa
e / Data resolution matrix (DRM):For this 
ase, every element of the DRM equals 0.053 and thus for the determination of the 
lo
ko�set no 
lassi�
ation of observations 
an be performed. Ea
h observation is equally important and no
ounter-a
ting observations are present.
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• Data spa
e / Cluster analysis:Due to the homogeneous stru
ture of the DRM 
luster analysis 
annot be performed, i.e., no 
lusters
an be formed.Ex
ursus: A similar e�e
t 
an be seen when investigating the data resolution matrix of a polynomial adjust-ment with just one parameter (i.e., 
omputation of the arithmeti
 mean). In this 
ase every observation hasthe same impa
t fa
tor. This is due to the fa
t that the design matrix 
onsists of a 
olumn with a 
onstantvalue.Case 4: Estimation of ∆x and ∆y baseline 
omponent
• General / Singular values:The singular values σ1 = 3.16 and σ1 = 3.00 show that both parameters 
an be estimated withapproximately the same a

ura
y.
• Model spa
e / Right singular ve
tors (Matrix V):The V-matrix indi
ates that both parameters 
an be determined independently.
• Model spa
e / Model resolution matrix (MRM):Sin
e no rank de�
ien
y is present the MRM equals an identity matrix.
• Model spa
e / Correlation matrix (COR):Similarly, the diagonal stru
ture of the model resolution matrix also shows that both parameters 
anbe determined independently.
• Data spa
e / Left singular ve
tors (Matrix U):Sin
e the largest element of the �rst right singular ve
tor is in the �rst row (and thus a�e
ts the �rstparameter), the �rst singular value and the �rst left singular ve
tor (see matrix U) are used to analysethe impa
t of the observations on the determination of the ∆x baseline 
omponent: As in the �rst 
ase,the (absolute) values of the �rst left singular ve
tor show that the �rst and the last observations exertthe largest impa
t on the determination of the ∆x baseline 
omponent.On the other hand, the se
ond right singular ve
tor a�e
ts the se
ond parameter. Thus, the se
ondsingular value and the se
ond left singular ve
tor in�uen
e the determination of the ∆y baseline 
om-ponent: Here, the (absolute) values of the se
ond left singular ve
tor show the same behaviour as in
ase 2.
• Data spa
e / Impa
t fa
tors:For the determination of both baseline 
omponents the middle observations (i.e., observations 8 to 12)are of slightly higher importan
e. This is 
aused by the fa
t that these observations have to determinethe ∆y baseline 
omponent alone and do not posses any '
ounter-parts' on the other side of the baselineand are thus less 
ontrolled.Numeri
ally, the impa
t fa
tors of this 
ase (and only of this 
ase!) 
onsist of a superposition of thetwo �rst elementary 
ases, be
ause DRMCase 4 = DRMCase 1 +DRMCase 2.
• Data spa
e / Data resolution matrix (DRM):Sin
e this data resolution matrix is the sum of the data resolution matrix of 
ase 1 and the dataresolution matrix of 
ase 2, for the �rst and the last observation (rows 1 and 19) identi
al patterns asin 
ase 1 
an be seen. For the middle observation (row 10) the pattern is identi
al to the pattern ofobservation 10 in 
ase 2.For the remaining observations a signi�
ant jointly in�uential e�e
t of neighboring observations 
anbe seen in the distin
t main-diagonal stru
ture. Counter-a
ting e�e
ts mainly o

ur for observationsto sour
es with an opposing '
ounter part', i.e., mainly for the �rst and last few observations. Again,geometri
al interpretations are aided by �gure 5.5 on page 70.
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 interferometer 75Cluster Analysis Results - Case 4No. of Mean Impa
t on parameter:Cluster: members: impa
t fa
tor: Members (observations):
∆x ∆y1 4 0.11 12, 13, 14, 15 0.034 0.0732 4 0.10 16, 17, 18, 19 0.090 0.0113 4 0.10 3, 4, 1, 2 0.090 0.0114 7 0.11 10, 11, 8, 9, 5, 6, 7 0.020 0.088Table 5.4: Cluster analysis results for 
ase 4 (Estimation of ∆x and ∆y baseline 
omponent)

• Data spa
e / Cluster analysis:Figure 5.4 and table 5.4 show the results of the 
luster analysis. The four 
lusters show a symmetri

lassi�
ation of observations 1 to 4 and 16 to 19 in 
lusters 3 and 2, respe
tively. These 
lustersmostly a�e
t the ∆x baseline 
omponent. Clusters 1 and 4 show a slightly unsymmetri
 
lassi�
ationof four and seven observations, respe
tively. Members of these 
lusters mainly a�e
t the ∆y baseline
omponent.This 
ase also reveals the di�
ulty of 
hoosing an appropriate height for the dendrogram 
ut. Dependingon the (subje
tive) user de
ision, more or less symmetri
 
lusters 
an be generated. The a
tual numberof 
lusters thus depends on the purpose of the experiment and on the problem to be analysed.Case 5: Estimation of the ∆x baseline 
omponent and the 
lo
k o�set CL0 at station B
• General / Singular values:The two singular values (σ1 = 4.35 and σ2 = 3.16) indi
ate the absen
e of rank-de�
ien
ies.
• Model spa
e / Right singular ve
tors (Matrix V):The V matrix 
onsists of a 
olumn-permutated identity matrix and thus every parameter 
an bedetermined separately.
• Model spa
e / Model resolution matrix (MRM):Due to the absen
e of rank de�
ien
ies the model resolution matrix equals an identity matrix.
• Model spa
e / Correlation matrix (COR):The 
orrelation matrix is an identity matrix and thus indi
ates that every parameter 
an be determinedseparately.
• Data spa
e / Left singular ve
tors (Matrix U):Sin
e numeri
ally this 
ase 
onsists of a superposition of 
ases 1 and 3, the U matrix has a similarstru
ture as the individualUmatri
es of 
ases 1 and 3. As shown in the right singular ve
tors (matrixV)the �rst left singular ve
tor a�e
ts the 
lo
k parameter. Again, every observation exerts the same impa
ton this parameter.On the other hand, the (absolute values of the) se
ond left singular ve
tor show a similar stru
ture asthe left singular ve
tor of 
ase 1. Due to the se
ond right singular ve
tor, the ∆x baseline 
omponentis thus mainly a�e
ted by the �rst and the last observations.
• Data spa
e / Impa
t fa
tors:Similar to 
ase 1, the �rst and last few observations are of main importan
e. In 
ontrast to 
ase 1,however, the middle observations also have a signi�
ant impa
t on the regression results sin
e they arene
essary for the 
lo
k o�set determination. This is 
aused by the fa
t that the data resolution matrixof this 
ase is the sum of the data resolution matrix of 
ase 1 and the data resolution matrix of 
ase 3.Thus, the impa
t fa
tors of this 
ase 
onsist of the impa
t fa
tors of 
ase 1 shifted by a 
onstant value.



76 5. Design analyses of plane and spatial interferometersCluster Analysis Results - Case 5No. of Mean Impa
t on parameter:Cluster: members: impa
t fa
tor: Members (observations):
∆x CL01 1 0.06 9 0.003 0.0532 1 0.05 10 0.000 0.0533 1 0.06 11 0.003 0.0534 8 0.11 12, 13, 14, 15, 16, 17, 18, 19 0.062 0.0535 8 0.11 8, 7, 6, 5, 4, 3, 1, 2 0.062 0.053Table 5.5: Cluster analysis results for 
ase 5 (Estimation of ∆x baseline 
omponent and the 
lo
k o�set CL0at station B)

• Data spa
e / Data resolution matrix (DRM):As for all previous 
ases with the ∆x baseline 
omponent being an unknown parameter, the �rstand the last observations are 
on
urrent observations. The middle observations show a similar, almosthomogeneous pattern as in 
ase 3. Thus, these observations possess a similar information 
ontent andhave no 
ounter-a
ting observations. Again, this is due to the superposition of the 
ases 1 and 3.
• Data spa
e / Cluster analysis:The 
luster analysis of the data resolution matrix shows a similar stru
ture as in 
ase 1: Observations1 to 9 are 
lustered into the �rst 
luster. Observations 10 to 19 are 
lustered into the se
ond 
luster.As in 
ase 1, observations 1 and 2 and observations 18 and 19 are 
lustered at �rst; observation 10 atlast.Cutting the dendrogram at a reasonable height to form �ve 
lusters yields that the �rst (
luster 5)and the last (
luster 4) few observations are both ne
essary for the determination of the ∆x baseline
omponent and the 
lo
k o�set. The middle observations (
lusters 1 to 3) mainly a�e
t the determina-tion of the 
lo
k o�set only sin
e these observations are not sensitive to variations in the ∆x baseline
omponent (see table 5.5).Case 6: Estimation of the ∆y baseline 
omponent and the 
lo
k o�set CL0 at station BFor this 
ase, interpretations are 
ompli
ated be
ause some matri
es are not of diagonal stru
ture. This is
aused by the fa
t that some observations are 
ondu
ted 
lose to 
riti
al 
on�gurations for the determinationof both the ∆y baseline 
omponent and the 
lo
k o�set CL0 (see table 5.6 on page 78). For observationsto sour
es orthogonal to this baseline, a 
hange in the ∆y baseline 
omponent and a 
hange in the 
lo
ko�set CL0 have the same e�e
t (see 
onstellation 1 in table 5.6). Furthermore, due to the la
k of supportingdiametral observations (i.e., observations to sour
es below the baseline), both e�e
ts 
annot be 
ompletelyseparated (
f. Brouwer 1985). As 
onstellations 2 to 3a/b show, separability is improved (i.e., the 
orrela-tion 
oe�
ient de
reases) if observations performed with low elevations are in
luded. The best separabilityis given for 
onstellations 
ontaining diametral observations (see 
onstellation 3b).Obviously, this only holds for the 
urrent baseline and sour
e geometry. A rotation of the baseline or the entire
elestial sphere yields di�erent results and thus di�erent relations between the parameters to be determined.
• General / Singular values:Although both singular values (σ1 = 5.15 and σ2 = 1.23) indi
ate the absen
e of rank-de�
ien
ies theyalso show that both parameters 
an only be determined with di�erent a

ura
ies. From the se
ondright singular ve
tor the �rst parameter (∆y baseline 
omponent) is identi�ed as the parameter whi
his determined weaker than the 
lo
k o�set CL0.
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• Model spa
e / Right singular ve
tors (Matrix V):The weak separability of the two e�e
ts 
an also be seen in the V-matrix: Sin
e no distin
t diagonalstru
ture 
an be seen, only the impa
t of observations on linear 
ombinations of these parameters 
anbe investigated.
• Model spa
e / Model resolution matrix (MRM):As in the previous 
ases, the model resolution matrix does not reveal any relations between the unknownparameters, sin
e no rank de�
ien
y is present.
• Model spa
e / Correlation matrix (COR):The 
orrelation matrix shows a signi�
ant 
orrelation of the ∆y baseline 
omponent and the 
lo
ko�set CL0 of −0.87.
• Data spa
e / Left singular ve
tors (Matrix U):Due to the weak separability of the two parameters, the U-matrix 
annot be used for 
lear statementsand must not be over-interpreted. Just a higher general impa
t of the �rst, middle and last observa-tions 
an be dete
ted. Observations 5 and 15 are of minor impa
t espe
ially for (1.) the ∆y baseline
omponent and (2.) the 
lo
k o�set CL0.
• Data spa
e / Impa
t fa
tors:Due to the stru
ture of the U-matrix the impa
t fa
tors indi
ate the highest impa
t for the �rstand last observations as well as for the middle observations. The lowest impa
t fa
tors are given forobservations with a 45◦ angle between baseline ve
tor and ve
tor in sour
e dire
tion. An interpretationis given below.
• Data spa
e / Data resolution matrix (DRM):The analysis of the data resolution matrix is 
ompli
ated by the weak separation problem and must notbe over-interpreted. Numeri
ally (and in 
ontrast to the previous 
ases), this data resolution matrixand thus the impa
t fa
tors are not a superposition of the data resolution matri
es of any of the threeelementary 
ases 1 to 3.
• Data spa
e / Cluster analysis:Cluster analysis 
lassi�es the observations into two main groups with the upper 
luster 
ontaining the�rst and the last observations whi
h are of importan
e for both the ∆y baseline 
omponent and the
lo
k o�set. The se
ond 
luster 
ontaining the remaining observations is of major importan
e for the

∆y baseline 
omponent only.The dendrogram 
ut displayed in �gure 5.4 shows a 
lassi�
ation into eight 
lusters. Again, the �rst andthe last observations (
luster 7) are of major importan
e for both parameters (see table 5.7) while theobservations to sour
es with a 45◦ angle between baseline ve
tor and ve
tor in sour
e dire
tion (
lusters1-3 and 4-6) have the smallest mean impa
t fa
tor. The middle observations (
luster 8) mostly a�e
tthe ∆y baseline 
omponent. Again, these interpretations are 
ompli
ated by the weak separability ofboth parameters.Sin
e observations to sour
es orthogonal to this baseline 
annot be used for the separation of both parameters,the remaining observations have to be used instead. Although theoreti
ally the �rst and the last observationsare not suitable for the solely determination of the ∆y baseline 
omponent (see 
ase 2), 
luster analysis stilldete
ts these observations as useful for the determination of both parameters. This is due to the la
k ofsuitable alternative observations. In 
onne
tion with the determination of the 
lo
k o�set, these observationsare still the most useful ones among all available observations. In any 
ase, the separability of both e�e
ts(parameters) is weak (see table 5.6).In general (i.e., also for the three-dimensional 
ase), separation of e�e
ts is 
ompli
ated if both e�e
ts a
t inthe same dire
tion. It is further 
ompli
ated if there are no diametral (supporting) observations available. Ifpossible, for real experiments a re-parametrisation would be appropriate.
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Case 6 - Separability of ∆y and CL0Condition 
orrelation 
ofa
tor matrixnumber: (ρ∆y,CL0

): (parameter order: ∆y, CL0):Constellation 1
∆ y
R

A B

277.5 -0.99 [
6550.29 −6484.21

−6484.21 6419.12

]

Constellation 2
∆ y
R

A B

12.9 -0.98 [
28.14 −17.90

−17.90 11.72

]

Constellation 3a
∆ y
R

A B
7.4 -0.77 [

17.13 −2.94
−2.94 0.84

]

Constellation 3b
∆ y

A B

R 12.3 -0.57 [
49.94 −2.89
−2.89 0.50

]

Table 5.6: Separability of ∆y and CL0 in 
ase 6. For ea
h 
onstellation, three di�erent observations havebeen performed to ea
h of the three sour
es displayed in the respe
tive diagram. For 
onstellations 1, 2 and3a, the observation 'triangle' is only displayed for observations to the se
ond (or middle) sour
e, respe
tively.For 
onstellation 3b, the third observation is visualised. Verti
al arrows indi
ate a height 
hange (∆y) ofstation B. R indi
ates the radius of a 
ir
le around station B and thus visualises the 
lo
k o�set CL0 of the
lo
k at station B with respe
t to the referen
e 
lo
k at station A.
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 interferometer 79Cluster Analysis Results - Case 6No. of Mean Impa
t on parameter:Cluster: members: impa
t fa
tor: Members (observations):
∆y CL01 1 0.06 4 0.005 0.0302 1 0.05 5 0.001 0.0083 1 0.07 6 0.013 0.0004 1 0.07 14 0.013 0.0005 1 0.05 15 0.001 0.0086 1 0.06 16 0.005 0.0307 6 0.15 17, 3, 18, 2, 1, 19 0.096 0.1438 7 0.11 13, 7, 12, 8, 11, 9, 10 0.055 0.009Table 5.7: Cluster analysis results for 
ase 6 (Estimation of ∆y baseline 
omponent and the 
lo
k o�set CL0at station B)Case 7: Estimation of the ∆x baseline 
omponent, ∆y baseline 
omponent and the 
lo
k o�set

CL0 at station BThe determination of the three parameters ∆x baseline 
omponent, ∆y baseline 
omponent and the 
lo
ko�set CL0 depi
ts a superposition of the 
ases 1 and 6 (not of 
ases 1, 2 and 3!). Thus, this experimentdesign again 
ontains observations whi
h are not suitable for the determination of any parameter (
f. 
ase 6).
• General / Singular values:The three singular values σ1 = 5.15, σ2 = 3.16 and σ3 = 1.24 show the absen
e of rank de�
ien
ies.Again, however, a signi�
ant de
line is visible and shows that the parameters 
annot be determinedwith equal a

ura
y.
• Model spa
e / Right singular ve
tors (Matrix V):The V-matrix is not of diagonal stru
ture. Only the �rst parameter (=∆x baseline 
omponent) is nota�e
ted by any other parameter (see �rst row ofV). The remaining parameters (∆y baseline 
omponentand 
lo
k o�set CL0) 
an only be analysed together, sin
e these parameters are both a�e
ted by the�rst and the third right singular ve
tor.
• Model spa
e / Model resolution matrix (MRM):Sin
e no rank de�
ien
y is present, the model resolution matrix 
onsists of an identity matrix.
• Model spa
e / Correlation matrix (COR):The 
orrelation matrix shows the same 
orrelation (−0.87) between the ∆y baseline 
omponent and the
lo
k o�set CL0 as in 
ase 6. The ∆x baseline 
omponent is not 
orrelated with any other parameterand 
an thus be determined separately.
• Data spa
e / Left singular ve
tors (Matrix U):The �rst and the third left singular ve
tor agree with the left singular ve
tors of 
ase 6. The se
ondsingular ve
tor is the same as the left singular ve
tor of 
ase 1.
• Data spa
e / Impa
t fa
tors:The �rst and the last observations are of high importan
e while the middle observations nearly havethe same (medium) impa
t fa
tors. Numeri
ally, the impa
t fa
tors are the sum of the impa
t fa
torsof 
ases 1 and 6.
• Data spa
e / Data resolution matrix (DRM):Sin
e this data resolution matrix 
onsists of the sum of the data resolution matrix of 
ase 1 and thedata resolution matrix of 
ase 6 (
ontaining 
riti
al 
on�gurations) it must not be over-interpreted.Almost every observation possesses a 
ounter-a
ting observation and thus 
ompli
ates the geometri
interpretation.
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t on parameter:Cluster: members: impa
t fa
tor: Members (observations):
∆x ∆y CL01 5 0.20 5, 4, 3, 1, 2 0.084 0.059 0.0932 5 0.20 15, 16, 17, 18, 19 0.084 0.059 0.0933 3 0.11 14, 12, 13 0.026 0.033 0.0044 6 0.12 8, 11, 9, 10, 6, 7 0.014 0.052 0.009Table 5.8: Cluster analysis results for 
ase 7 (Estimation of ∆x baseline 
omponent, ∆y baseline 
omponentand the 
lo
k o�set CL0 at station B)

• Data spa
e / Cluster analysis:The 
luster analysis shown in �gure 5.4 shows a 
lassi�
ation into three main groups 
onsisting of the�rst �ve observations, the last �ve observations and the remaining observations, respe
tively.For a �ner di�erentiation, the dendrogram has been 
ut to form four 
lusters (see table 5.8). The�rst and the se
ond 
luster 
onsist of the �rst and the last observations and possess the largest meanimportan
e for the entire parameter set. In addition the ∆y baseline 
omponent is a�e
ted by thefourth 
luster whi
h mainly 
onsists of the observations to sour
es orthogonal to the baseline.As in 
ase 6, the �rst and the last observations are also ne
essary for the determination of the ∆y base-line 
omponent. Again, this is 
aused by the additional estimation of the 
lo
k o�set and the la
k ofsuitable supporting observations.5.3.2 Con
lusions from plane stati
 interferometer investigationsBased on the analyses performed so far, it 
ould be shown that the regression diagnosti
s tool based onsingular value de
omposition and 
luster analysis yields plausible and geometri
ally 
omprehensible results.It is possible to dete
t groups of observations with di�erent impa
t on the parameters of interest. Usingthe terms of 
hapter 3: Both jointly in�uential and 
ounter-a
ting groups of observations 
an be identi�ed.Observation groups with large mean impa
t fa
tors signi�
antly a�e
t the estimation pro
ess and thus shouldbe 
ontrolled by appropriate (independent) observations. On the other hand, observation groups with smallimpa
t fa
tors or whi
h a�e
t parameters of minor interest 
ould be redu
ed or even negle
ted.For some 
ases, however, the di�
ulties for performing a proper dendrogram 
ut be
ame obvious: Sometimes,the appropriate height for a dendrogram 
ut does not agree with a large similarity di�eren
e. Instead, thedendrogram 
ut has to be performed in su
h a way that an appropriate number of 
lusters is generated. Thisagain shows the subje
tive (and thus ambiguous) part of the regression diagnosti
s pro
edure.Furthermore, the regression diagnosti
s tool developed in the �rst 
hapters 
an be used to dete
t degenera
iesor 
riti
al (baseline) 
on�gurations (su
h as in 
ase 6). In these 
ases (su
h as 
ase 6, where the ∆y baseline
omponent and the 
lo
k o�set CL0 at station B 
ould hardly be separated), singular value de
ompositionreveals indeterminable parameters (or indeterminable linear 
ombinations thereof). The interpretation ofthe singular values will be of even more importan
e in the following investigations (for the estimation of the
xp-parameter).The main purpose of the analyses performed so far has been to show the suitability of the regression diag-nosti
s tool for simple interferometers. In the following, more 
omplex 
ases (i.e., both three-dimensional orspatial and rotating or kinemati
 interferometers) will be treated.
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 interferometer 815.4 Spatial kinemati
 interferometerThe generalisation of a plane stati
 interferometer �rst leads to a spatial stati
 interferometer and then to aspatial kinemati
 interferometer. The latter equals the VLBI prin
iple if the rotation axis of the interferometer
oin
ides with the z-axis of a geo
entri
, earth-�xed terrestrial 
oordinate system. An example for a single-baseline interferometer is shown in �gure 5.7.As des
ribed in 
hapter 4, observations performed in a single-baseline spatial kinemati
 interferometer (orwithin a single-baseline VLBI observation session) 
an also be used to estimated (at least) the followingparameters:
• Terrestrial referen
e system:� site positions xB , yB, zB of stations B (station A has to be kept �xed as a referen
e station)
• Earth orientation parameters:� polar motion xp, yp� earth rotation dUT 1

• Auxiliary parameters:� 
lo
k o�set CL0 and 
lo
k rate CL1 of one 
lo
k with respe
t to the other 
lo
k (referen
e 
lo
k)� atmospheri
 zenith path delays ATA at station A and ATB at station B.and 
ombinations thereof. Depending on the baseline length, baseline orientation and on the observationgeometry some of these parameters may not be estimable.In order to obtain reasonable results, all parameters have to be transformed to the same unit. For thefollowing investigations every parameter has been s
aled to the unit 'meter' or 'meter/day' for the 
lo
k rateparameter.
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82 5. Design analyses of plane and spatial interferometers5.4.1 Estimability investigations for basi
 parametersNetwork geometry and observation s
heduleFor the following investigations of parameter estimability in spatial kinemati
 interferometers, a �
titiousinterferometer as shown in �gure 5.7 is used. The two stations form an equatorial baseline with a length of5000 km, parallel to the y-axis and lo
ated on the tip of the x-axis of a geo
entri
 
oordinate system. Ninearti�
ial radio sour
es are lo
ated both at the 
elestial equator (de
lination: 0o) and near to the 
elestialpoles (de
lination: 85o and −85o). A list of these sour
es is shown in table 5.92.As shown in table 5.10 the observation s
hedule 
onsists of 15 observations with a duration of four minutesea
h. The entire observation duration of one hour is divided into three groups of �ve observations, respe
tively.The observations of ea
h group are performed in a similar sequen
e:
• observation to a polar sour
e with high de
lination (sour
e 5 (S0300+85)), i.e., 
lose to the horizon ofboth stations (sour
e is lo
ated in the northern 'elevation 
usp')
• observation to a polar sour
e with low de
lination (sour
e 6 (S0300-85)), also 
lose to the horizon ofboth stations (sour
e is lo
ated in the southern 'elevation 
usp')
• observation to an equatorial sour
e with a high right as
ension (either sour
e 1 (S2230+00),sour
e 2 (S2255+00) or sour
e 3 (S2330+00), depending on hour angle and visibility) and thus 
loseto the horizon of station B
• observation to an equatorial sour
e with a low right as
ension (either sour
e 7 (S0700+00),sour
e 8 (S0730+00) or sour
e 9 (S0755+00), depending on hour angle and visibility) and thus 
loseto the horizon of station A
• observation to an equatorial sour
e (sour
e 4 or S0300+00) whi
h is 
lose to the zenith of both stations.This s
heme is repeated three times, yielding �fteen observations in total. Due to the rotation of the interfer-ometer some equatorial sour
es set or rise during the observation period so that di�erent equatorial sour
es
lose to the horizon of one of the stations have to be observed.Estimability analysisIn order to understand the 
omplex situations of parameter estimation within real VLBI-observation sessions(as treated in se
tion 5.4.3 on page 99), some basi
 parameter sets have to investigated �rst:8. Estimation of site positions xB , yB, zB of station B only9. Estimation of 
lo
k o�set CL0 of station B only10. Estimation of 
lo
k rate CL1 of station B only11. Estimation of atmospheri
 zenith path delay ATA at station A only12. Estimation of atmospheri
 zenith path delay ATB at station B only13. Estimation of polar motion yp only14. Estimation of earth rotation dUT 1 onlyAs for the plane interferometer investigations, the singular value de
omposition-based analysis 
omponentsas displayed in �gure 5.8 on the fa
ing page will be analysed.2The se
ond to �fth 
hara
ter of the sour
e name indi
ate the right as
ension (in [hh min℄), the sixth 
hara
ter indi
atesthe sign of the de
lination and the seventh and eighth 
hara
ter indi
ate the de
lination of the sour
e (in degrees).
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84 5. Design analyses of plane and spatial interferometersCase 8: Site positions xB, yB, zB of station B onlyUsing the �fteen observations des
ribed above, for the determination of the site positions xB , yB, zB ofstation B, the singular values show that every 
omponent 
an be determined with nearly the same quality.A

ording to the model resolution matrix and to the 
orrelation matrix the three parameters 
an be wellseparated.The left singular ve
tors (Matrix U) show distin
t di�eren
es in the impa
t of ea
h observation onto the threeparameters: The �rst left singular ve
tor u1 shows (together with the �rst right singular ve
tor v1) that thesix observations to the polar sour
es (sour
es 5 (S0300+85) and 6 (S0300-85)) are almost solely responsiblefor the determination of zB. A

ording to the se
ond left singular ve
tor u2 and the se
ond right singularve
tor v2, observations to sour
es with high right as
ensions (sour
e 1 to sour
e 3 (S2230+00, S2255+00,S2330+00)) and to sour
es 7 and 8 (S0700+00 and S0730+00) are of main importan
e for the yB parameter(and to a small amount for xB). Observations to sour
es in zenith dire
tion (sour
e 4 (S0300+00)) are(together with observations to sour
es 7 and 8 and for this baseline geometry) mainly ne
essary for xB (seethird left singular ve
tor u3 and third right singular ve
tor v3).The impa
t fa
tors and the elements of the data resolution matrix show signi�
ant impa
t of every obser-vation. The impa
t fa
tors in
rease for observations with de
reasing availibility of supporting '
ounterpartobservations', i.e., observations to sour
e 4 (S0300+00) are of main importan
e sin
e no diametrally oppositeobservation is possible. The o�-diagonal elements of the data resolution matrix (impa
t 
o-fa
tors) also showa distin
t pattern of three groups with �ve observations ea
h. Row-wise investigation of the data resolutionmatrix re�e
ts the supporting 
hara
ter of observations to identi
al or similar sour
es.The 
luster analysis of the data resolution matrix also shows the generation of �ve 
lusters with ea
h of them
ontaining three observations. Table 5.11 shows the mean impa
t fa
tors of ea
h 
luster onto ea
h parametertogether with modi�
ation re
ommendations (as listed in table 3.2 on page 53).These results 
an only partly be generalised to other interferometer geometries: Due to the rotation ofthe interferometer, observations to polar sour
es are always of main importan
e for the determination of
z 
oordinates. Statements about the impa
t of other sour
es also depend on the baseline orientation withrespe
t to the terrestrial referen
e system. As a rule of thumb, observations to sour
es in x axis dire
tion orin y axis dire
tion also a

ount for the x or y 
omponent, respe
tively.Case 9: Clo
k o�set CL0 of station B onlyAs for the 
lo
k o�set determination in a plane stati
 interferometer (see page 73) also in a spatial kinemati
interferometer every observation is of equal importan
e. Thus, all impa
t fa
tors and impa
t 
o-fa
tors areequal and no 
luster analysis 
an be performed.As for the plane interferometer this is 
aused by the fa
t that the design matrix for this 
ase 
onsists of ave
tor of ones (see partial derivatives ∂τobs

∂CL0a
and ∂τobs

∂CL0b
in equations (4.17) and (4.20) on page 61) and thusresembles the determination of the arithmeti
 mean for arbitrarily spa
ed observations.The determination of the 
lo
k o�set of the 
lo
k at station B with respe
t to the referen
e 
lo
k at station A
an be interpreted geometri
ally: As shown in the middle of �gure 4.3 on page 63 the 
lo
k o�set 
an bevisualised as a 
ir
le (or sphere) around the station whose 
lo
k o�set has to be determined. The radius ofthis 
ir
le (or sphere) 
orresponds to the metri
 value of the 
lo
k o�set (i.e., multiplied by the velo
ity oflight).



5.4. Spatial kinemati
 interferometer 85
right as
ension de
linationCode Sour
e [hh min se
℄ [o℄S1 S2230+00 22 30 0.0 0.0S2 S2255+00 22 55 0.0 0.0S3 S2330+00 23 30 0.0 0.0S4 S0300+00 03 00 0.0 0.0S5 S0300+85 03 00 0.0 85.0S6 S0300�85 03 00 0.0 -85.0S7 S0700+00 07 00 0.0 0.0S8 S0730+00 07 30 0.0 0.0S9 S0755+00 07 55 0.0 0.0Table 5.9: Sour
e list for spatial interferometer investigationsStart of observation Az. A Az. B El. A El. BNo. Sour
e [yyyy.doy.hh:mm:ss℄ [o℄ [o℄ [o℄ [o℄1 S0300+85 2000.265.02:30:00 2 359 4 52 S0300�85 2000.265.02:34:00 178 181 4 53 S2230+00 2000.265.02:38:00 270 270 49 74 S0700+00 2000.265.02:42:00 90 90 5 475 S0300+00 2000.265.02:46:00 90 270 66 716 S0300+85 2000.265.02:50:00 2 358 5 57 S0300�85 2000.265.02:54:00 178 182 5 58 S2255+00 2000.265.02:58:00 270 270 50 79 S0730+00 2000.265.03:02:00 90 90 1 4410 S0300+00 2000.265.03:06:00 90 270 70 6711 S0300+85 2000.265.03:10:00 2 358 5 512 S0300�85 2000.265.03:14:00 179 182 5 513 S2330+00 2000.265.03:18:00 270 270 54 1214 S0755+00 2000.265.03:22:00 90 90 0.8 4415 S0300+00 2000.265.03:26:00 90 270 76 61Table 5.10: Observation list for spatial interferometer investigationsCluster Analysis Results - Case 8No. of Mean Impa
t on parameter:Cluster: members: impa
t fa
tor: Members (observations): X Y Z1 3 0.23 15, 5, 10 0.234 ⇒ o 0.001 ⇒ - 0.000 ⇒ -2 3 0.22 14, 4, 9 0.050 ⇒ o 0.185 ⇒ o 0.000 ⇒ -3 3 0.20 13, 3, 8 0.047 ⇒ o 0.147 ⇒ o 0.000 ⇒ -4 3 0.17 12, 2, 7 0.002 ⇒ - 0.000 ⇒ - 0.167 ⇒ o5 3 0.17 11, 1, 6 0.002 ⇒ - 0.000 ⇒ - 0.167 ⇒ oTable 5.11: Cluster analysis results for 
ase 8 (Site positions xB , yB, zB of station B only)
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k rate CL1 of station B onlyIn a similar way the 
lo
k rate CL1 
an be interpreted as a linear in
rease or de
rease of the radius of a
ir
le (or sphere) around the station whose 
lo
k parameter has to be determined.As shown in �gure 5.8 the impa
t of observations on the 
lo
k rate CL1 is 
orrelated with the time ofthe observation. This is obviously 
aused by the stru
ture of the partial derivatives ∂τobs

∂CL1a
and ∂τobs

∂CL1b
(seeequations (4.18) or (4.21) on page 61) and resembles the determination of the slope of a regression linethrough equally spa
ed observations (i.e., without o�set determination).The data resolution matrix for this 
ase shows the in
reasing supporting nature of the observations within
reasing observation duration. Cluster analysis of this data resolution matrix �rst 
lusters observations nand n− 1, in a se
ond step observations n, n− 1, n− 2, et
. and �nally 
lusters all observations n, n− 1, n−

2, . . . , 1. For this 
ase, a dendrogram 
ut is not reasonable.Case 11: Atmospheri
 zenith path delay ATA at station A onlyFor the determination of the atmospheri
 zenith path delay ATA at station A the left singular ve
tor u1 showsthat some observations are of no relevan
e (e.g. observations 3, 5, 8, 10, 13 and 15). These observations havenegligible impa
t fa
tors. A

ording to table 5.10 on the previous page these observations are performed withhigh elevations at station A. On the other hand, observations 9 and 14 (to the equatorial sour
es S0730+00and S0755+00) are performed with very low elevations (0.8o and 1.0o at station A) and thus possess high orvery high impa
t fa
tors. In parti
ular, observation 14 has been observed with an elevation of only 0.86 [o℄and thus possesses an extraordinary high impa
t on ATA. A slight de
rease in the right as
ension of sour
eS0755+00 in
reases the elevation of this observation and leads to a distin
t de
rease of this observation (notshown here).Even in the 
ase of a slight de
rease of the right as
ension of sour
e S0755+00 the data resolution looks likethe data resolution matrix shown in �gure 5.10 on the pre
eding page: Only observations to sour
es S0700+00,S0730+00 and S0755+00 are of very high importan
e for ATA. Cluster analysis of the 
orresponding dataresolution matrix �rst 
lusters these observations with a large similarity distan
e to the next 
lustering step(see bottom of dendrogram). Due to this extraordinary stru
ture of the data resolution matrix and of thedendrogram a dendrogram 
ut is not reasonable.Case 12: Atmospheri
 zenith path delay ATB at station B onlyIn a similar way, for the determination of the atmospheri
 zenith path delay ATB at station B observationsperformed with very low elevations at station B are of main importan
e. Sin
e observations 1 and 2, 6 and 7and 11 and 12 possess similar elevations (of ≈ 5[o]) they 
an all be 
lassi�ed as 'high leverage observations'for ATB (see red line in the 
orresponding impa
t fa
tor diagram in �gure 5.8 on page 83).Contrary to the previous 
ase, the data resolution matrix 
learly shows the supporting nature of similarobservations. As indi
ated by the dendrogram of the 
luster analysis of this data resolution matrix (also seetable 5.12 on page 88) observations to polar sour
es (with elevations below ≈ 10 [o]) are 
lustered �rst.Although one would expe
t similarities to 
ase 11, this is not the 
ase due to the signi�
ant di�eren
es inthe elevation angles whi
h are the driving fa
tors of the partial derivatives ∂τobs

∂AT
.Case 13: Polar motion yp onlySin
e the baseline of this interferometer is parallel to the y-axis of the terrestrial referen
e system thisinterferometer is insensitive to variations in the xp 
omponent of the polar motion. This parameter 
an thusnot be determined (i.e., the design matrix only 
ontains zeros, the only singular value equals zero and thusindi
ates that xp 
annot be determined).
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 interferometer 87The yp 
omponent of polar motion, however, 
an be determined as the singular value (of ≈ 0.08) reveals. Theleft singular ve
tor u1 and thus the impa
t fa
tors show that only observations to polar sour
es are neededfor the determination of yp. The remaining observations (to equatorial sour
es) 
ould have been omitted ifonly yp is of interest. The data resolution matrix shows that every observation to the same polar sour
e a
tsas a supporting observation with equal impa
t (red squares in the data resolution matrix). Observations tosouth polar sour
es 
ontribute to yp with the same amount (but in opposite dire
tion) as observations tonorth polar sour
es (as indi
ated by blue squares in the data resolution matrix).After 
utting the dendrogram at a reasonable height only two 
lusters with more than one observation remain(see table 5.13 on the next page). These 
lusters 
onsist of observations 1, 6 and 11 and observations 2, 7and 12, respe
tively. The former 
luster 
ontains the observations to the north polar sour
e S0300+85, thelatter 
luster 
ontains the observations to the south polar sour
e S0300�85.Case 14: Earth rotation dUT 1 onlyThe last basi
 parameter to be investigated is dUT 1, i.e., the phase of the rotation of the interferometer. Forthis parameter observations to polar sour
es are of no relevan
e. This is also indi
ated by the 
omponents ofthe left singular ve
tor u1 and thus in the impa
t fa
tors and impa
t 
o-fa
tors. In general, only observationsto equatorial sour
es 
an be used for the determination of the rotational phase. This agrees with the resultsdes
ribed in 
hapter 4. Observations to equatorial sour
es orthogonal to the baseline (i.e., to sour
e S0300+00and only for this interferometer geometry) whi
h 
an be observed with high elevations only are of parti
ularimportan
e and thus ex
eed the re
ommended threshold for high-leverage observations (as indi
ated by thered line in the impa
t fa
tor diagram of 
ase 14 in �gure 5.8 on page 83).Again, the data resolution matrix shows the supporting nature of observations to sour
e S0300+00 and to theremaining equatorial sour
es. The 
luster analysis of this data resolution matrix yields a dendrogram whi
h�rst shows the 
lustering of the three observations to sour
e S0300+00 (see the bottom of the dendrogram).With a large similarity distan
e, the remaining observations (to equatorial sour
es) are 
lustered next. Atlast the polar observations are 
lustered. The results are summarized in table 5.14 on the next page.
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Cluster Analysis Results - Case 12No. of Mean Impa
t on parameter:Cluster: members: impa
t fa
tor: Members (observations):

ATB1 1 0.08 3 0.079 ⇒ o2 1 0.00 4 0.002 ⇒ -3 1 0.00 5 0.001 ⇒ -4 1 0.06 8 0.055 ⇒ o5 1 0.00 9 0.002 ⇒ -6 1 0.00 10 0.001 ⇒ -7 1 0.02 13 0.025 ⇒ -8 1 0.00 14 0.002 ⇒ -9 1 0.00 15 0.001 ⇒ -10 6 0.14 1, 2, 6, 7, 11, 12 0.139 ⇒ oTable 5.12: Cluster analysis results for 
ase 12 (Atmospheri
 zenith path delay ATB at station B only)Cluster Analysis Results - Case 13No. of Mean Impa
t on parameter:Cluster: members: impa
t fa
tor: Members (observations):
yp1 1 0.00 3 0.000 ⇒ �2 1 0.00 4 0.000 ⇒ �3 1 0.00 5 0.000 ⇒ �4 1 0.00 8 0.000 ⇒ �5 1 0.00 9 0.000 ⇒ �6 1 0.00 10 0.000 ⇒ �7 1 0.00 13 0.000 ⇒ �8 1 0.00 14 0.000 ⇒ �9 1 0.00 15 0.000 ⇒ �10 3 0.17 1, 6, 11 0.167 ⇒ +11 3 0.17 2, 7, 12 0.167 ⇒ +Table 5.13: Cluster analysis results for 
ase 13 (Polar motion yp only)Cluster Analysis Results - Case 14No. of Mean Impa
t on parameter:Cluster: members: impa
t fa
tor: Members (observations):
dUT 11 1 0.00 1 0.002 ⇒ -2 1 0.00 2 0.002 ⇒ -3 1 0.00 6 0.002 ⇒ -4 1 0.00 7 0.002 ⇒ -5 1 0.00 11 0.002 ⇒ -6 1 0.00 12 0.002 ⇒ -7 9 0.11 14, 9, 4, 3, 8, 13, 15, 5, 10 0.110 ⇒ +Table 5.14: Cluster analysis results for 
ase 14 (Earth rotation dUT 1 only)
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 interferometer 895.4.2 Estimability investigations of 
omposed parameter setsThe fun
tional models for data analyses of real VLBI sessions always have to in
lude more than the individualbasi
 parameters dis
ussed so far. Besides the main geophysi
al parameters of interest (su
h as site positionsor earth orientation parameters) at least the 
lo
k o�sets of all atomi
 
lo
ks with respe
t to one referen
e
lo
k have to be in
luded. For a single-baseline session the following 
ases are of interest:15. Estimation of site 
oordinates xB , yB, zB and 
lo
k o�set CL016. Estimation of 
lo
k o�set CL0 and earth rotation dUT 117. Estimation of 
lo
k o�set CL0, 
lo
k rate CL1 and earth rotation dUT 118. Estimation of atmospheri
 zenith path delay ATA, 
lo
k parameters CL0, CL1 and earth rotation dUT 119. Estimation of 
lo
k parameters CL0, CL1, atmospheri
 zenith path delay ATB and earth rotation dUT 120. Estimation of atmospheri
 zenith path delay ATA, 
lo
k parameters CL0, CL1, atmospheri
 zenithpath delay ATB and earth rotation dUT 1Cases 17 and 20 show the most 
ommon parametrisations for single-baseline sessions su
h as INTENSIVE ses-sions (see e.g. Fis
her 2006). The remaining 
ases are either needed for a deeper insight or sin
e they are
omponents of 
ases 17 and 20. As for the basi
 parameters, 
ases 15 to 20 will be analysed by investigatingthe analysis 
omponents displayed in �gure 5.9 on the following page.Case 15: Site 
oordinates xB , yB, zB and 
lo
k o�set CL0Using the same observations as in 
ases 8 to 14, site positions xB , yB, zB of station B and a 
onstantbias CL0 of the frequen
y standard of station B with respe
t to the 
lo
k at station A 
an be estimated. Asshown by the singular values in �gure 5.9 every parameter 
an be determined well. The V-matrix, however,already shows that the �rst parameter (xB) and the last parameter (CL0) are together a�e
ted by the sameobservations: Hen
e, the observations with large 
omponents in the �rst left singular ve
tor u1 and in thelast left singular ve
tor u4 (mainly observations to sour
e S0300+00 and to the polar sour
es) both a�e
t
xB and CL0.The 
orrelation matrix also shows a large positive 
orrelation (of 0.78) between xB and CL0. This 
an againbe interpreted geometri
ally: With this network geometry and this baseline orientation no separation betweena variation in xB and a variation in CL0 (when 
onsidered as the radius of a sphere around station B) ispossible due to the la
k of supporting observations for the zenith observations to sour
e S0300+00. Supportingobservations would be 
ondu
ted to the diametrally opposite sour
e S1800+00 whi
h is not visible duringthis session.The most important observations are 
ondu
ted to polar sour
es S0300+85 and S0300-85. As shown intable 5.15 the dendrogram 
ut reveals that these observations are of main importan
e for both zB and CL0.This 
on�rms the results given in Nothnagel 1991 where observations to sour
es in elevation 
usps havebeen re
ognized as important for the 
lo
k o�set determination. The data resolution matrix and the 
lusteranalysis results show the generation of �ve groups with three observations ea
h. These groups 
onsist ofobservations to either the same sour
e or to neighbouring sour
es whi
h obviously have the same information
ontent.As for 
ase 8, zenith observations to sour
e S0300+00 are of main importan
e for xB and observations tothe remaining equatorial sour
es are of importan
e for yB.
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 interferometer 91Case 16: Clo
k o�set CL0 and earth rotation dUT 1A 
ommon determination of both the rotation of the interferometer (i.e., dUT 1) and the 
onstant 
lo
ko�set CL0 is 
ompli
ated by the high 
orrelation of both parameters (
orrelation 
oe�
ient ≈ −0.77). Inaddition, the right singular ve
tors do not allow a 
lear assignment of observations to only one parameter.Nevertheless, high impa
t and a similar information 
ontent of observations to sour
e S0300+00 and to thepolar sour
es S0300+85 and S0300-85 is shown in the data resolution matrix. After the dendrogram 
ut the
luster analysis results (see table 5.16 on the next page) show that observations to sour
e S0300+00 arestill of main importan
e for dUT 1 and observations to polar sour
es (and thus observations to sour
es inelevation 
usps) are of main importan
e for the 
lo
k o�set CL0.Case 17: Clo
k o�set CL0, 
lo
k rate CL1 and earth rotation dUT 1The separability of the three parameters CL0, CL1 and dUT 1 is also 
ompli
ated by high 
orrelations ofup to −0.63 (between 
lo
k o�set CL0 and 
lo
k rate CL1). Again, a 
lear assignment of observations toparameters is di�
ult due to the non-diagonal stru
ture of the V-matrix.For this 
ase and for the following 
ases, no 
lear (or regular) pattern in the data resolution matri
es andthus in the impa
t fa
tors 
an be seen. A human interpretation is 
ompli
ated and so the strengths of theautomati
, 
luster analysis-based analysis methods be
ome obvious.Although the dendrogram of the 
luster analysis of the data resolution matrix of this 
ase shows the presen
eof three main groups, for a better separation six 
lusters have been formed. Table 5.17 on the following pageshows that for this parametrisation the two observations 8 and 9 to equatorial sour
es 
ould have beennegle
ted. On the other hand, observations 5, 10 and 15 (to sour
e S0300+00) are still of main importan
efor the determination of the rotation of the interferometer (i.e., for dUT 1).For the 
lo
k o�set determination observations 1 to 4 are most important. As table 5.10 on page 85 shows,these observations are performed into ea
h dire
tion of the 
elestial sphere and thus 's
an' the sky in diame-tral dire
tions. Geometri
ally, for the radius determination of a sphere around station B observations intodiametral dire
tions are needed.For the 
lo
k rate determination the same observation 
onstellation has to be repeated at the end of thesession. As table 5.17 shows, the last observations performed into ea
h dire
tion of the 
elestial sphere areneeded for the determination of radius variations of the sphere around station B.Case 18: Atmospheri
 zenith path delay ATA, 
lo
k parameters CL0, CL1 and dUT 1After in
luding the atmospheri
 zenith path delay ATA at station A a distin
t di�eren
e in the singularvalues 
an be seen. In 
onne
tion with the �rst right singular ve
tor, this means that ATA 
an be determinedwith the lowest varian
e. In addition, the separability of all parameters has been improved sin
e the absolutevalues of all 
orrelations are below 0.5.As the right singular ve
tors v1 and v4 show, only for the atmospheri
 zenith path delay ATA and for the
lo
k o�set CL0 
lear relations between observations and parameters 
an be found: The elements of the�rst left singular ve
tor u1 (whi
h mainly a�e
t ATA) show a 
lear 
orrelation with the elevations of theobservations at station A (see table 5.10 on page 85). The smaller the elevations, the larger the elementsof u1 and thus the larger the impa
t on ATA.For the 
lo
k o�set determination observations 1 to 4 are of main importan
e. Again, these are observationsin every dire
tion of the 
elestial sphere.As in the previous 
ase, the data resolution matrix and thus the impa
t fa
tors do not show a 
lear pattern.Due to its low elevation at station A observation 14 has again a very high impa
t on ATA (
f. 
ase 11) as wellas observations 5, 10, 13 and 15, whi
h are of main importan
e for the determination of dUT 1 (
f. 
ase 14).This 
an also be seen in the 
luster analysis results showed in table 5.18 on the next page.



92 5. Design analyses of plane and spatial interferometersCluster Analysis Results - Case 15No. of Mean Impa
t on parameter:Cluster: members: impa
t fa
tor: Members: X Y Z CL01 3 0.30 6, 1, 11 0.064 ⇒ o 0.001 ⇒ - 0.167 ⇒ o 0.129 ⇒ o2 3 0.30 2, 7, 12 0.064 ⇒ o 0.001 ⇒ - 0.167 ⇒ o 0.129 ⇒ o3 3 0.27 15, 5, 10 0.202 ⇒ o 0.002 ⇒ - 0.000 ⇒ - 0.035 ⇒ o4 3 0.24 4, 9, 14 0.002 ⇒ - 0.174 ⇒ o 0.000 ⇒ - 0.018 ⇒ o5 3 0.23 13, 3, 8 0.001 ⇒ - 0.155 ⇒ o 0.000 ⇒ - 0.022 ⇒ oTable 5.15: Cluster analysis results for 
ase 15 (Site 
oordinates xB , yB, zB and 
lo
k o�set CL0)Cluster Analysis Results - Case 16No. of Mean Impa
t on parameter:Cluster: members: impa
t fa
tor: Members (observations):
CL0 dUT 11 1 0.07 3 0.018 ⇒ - 0.001 ⇒ -2 1 0.07 4 0.022 ⇒ - 0.000 ⇒ �3 1 0.07 8 0.015 ⇒ - 0.003 ⇒ -4 1 0.07 9 0.029 ⇒ - 0.000 ⇒ �5 1 0.08 13 0.008 ⇒ - 0.009 ⇒ -6 1 0.07 14 0.034 ⇒ - 0.001 ⇒ �7 3 0.27 15, 5, 10 0.035 ⇒ o 0.202 ⇒ ++8 6 0.13 7, 6, 11, 12, 1, 2 0.128 ⇒ o 0.063 ⇒ -Table 5.16: Cluster analysis results for 
ase 16 (Clo
k o�set CL0 and earth rotation dUT 1)Cluster Analysis Results - Case 17No. of Mean Impa
t on parameter:Cluster: members: impa
t fa
tor: Members:

CL0 CL1 dUT 11 1 0.07 8 0.011 ⇒ - 0.000 ⇒ � 0.003 ⇒ -2 1 0.07 9 0.008 ⇒ - 0.004 ⇒ - 0.001 ⇒ �3 3 0.33 15, 5, 10 0.044 ⇒ o 0.066 ⇒ o 0.194 ⇒ o4 4 0.20 4, 3, 1, 2 0.161 ⇒ o 0.097 ⇒ o 0.017 ⇒ o5 4 0.20 13, 14, 11, 12 0.010 ⇒ o 0.102 ⇒ o 0.059 ⇒ o6 2 0.13 6, 7 0.082 ⇒ o 0.001 ⇒ - 0.056 ⇒ oTable 5.17: Cluster analysis results for 
ase 17 (Clo
k o�set CL0, 
lo
k rate CL1 and dUT 1)Cluster Analysis Results - Case 18No. of Mean Impa
t on parameter:Cluster: members: impa
t: Members:
ATA CL0 CL1 dUT 11 1 0.10 8 0.034 ⇒ - 0.028 ⇒ - 0.003 ⇒ - 0.001 ⇒ �2 2 0.50 9, 14 0.357 ⇒ o 0.080 ⇒ o 0.002 ⇒ - 0.026 ⇒ o3 4 0.20 4, 3, 1, 2 0.006 ⇒ o 0.128 ⇒ o 0.092 ⇒ o 0.012 ⇒ o4 4 0.32 5, 10, 13, 15 0.031 ⇒ o 0.018 ⇒ o 0.092 ⇒ o 0.118 ⇒ o5 4 0.20 6, 7, 11, 12 0.027 ⇒ o 0.057 ⇒ o 0.065 ⇒ o 0.107 ⇒ oTable 5.18: Cluster analysis results for 
ase 18 (Atmospheri
 zenith path delay ATA, 
lo
k parameters

CL0, CL1 and dUT 1)
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 interferometer 93Cluster Analysis Results - Case 19No. of Mean Impa
t on parameter:Cluster: members: impa
t: Members:
CL0 CL1 ATB dUT 11 1 0.09 8 0.009 ⇒ - 0.000 ⇒ � 0.023 ⇒ - 0.024 ⇒ -2 1 0.16 13 0.006 ⇒ - 0.081 ⇒ - 0.001 ⇒ � 0.001 ⇒ �3 3 0.39 4, 9, 14 0.249 ⇒ o 0.069 ⇒ o 0.251 ⇒ o 0.174 ⇒ o4 3 0.35 5, 10, 15 0.039 ⇒ o 0.068 ⇒ o 0.016 ⇒ o 0.126 ⇒ o5 3 0.23 3, 1, 2 0.022 ⇒ o 0.094 ⇒ o 0.016 ⇒ o 0.023 ⇒ o6 4 0.21 6, 7, 11, 12 0.014 ⇒ o 0.056 ⇒ o 0.032 ⇒ o 0.001 ⇒ -Table 5.19: Cluster analysis results for 
ase 19 (Clo
k parameters CL0, CL1, atmospheri
 zenith path delay

ATB and dUT 1)Case 19: Clo
k parameters CL0, CL1, atmospheri
 zenith path delay ATB and dUT 1Compared to 
ase 18, estimating the atmospheri
 zenith path delay ATB at station B instead of ATA atstation A yields very di�erent relations between observation groups and a�e
ted parameters: Although everyparameter 
an be estimated (i.e., all singular values > 0) the absolute values of the 
orrelation 
oe�
ientsbetween some parameters are above 0.8. Only the 
lo
k rate CL1 
an be well separated from the remainingparameters. Espe
ially high 
orrelations between 
lo
k o�set CL0, ATB and dUT 1 and between ATB and
dUT 1 
ompli
ate the interpretation of the 
luster analysis results. Thus, some 
lusters 
ommonly a�e
tseveral parameters (see e.g. 
luster 3 and 
luster 4 in table 5.19).In addition, none of the impa
t fa
tors ex
eeds the 'high-leverage threshold' (of 2 · u

n
). However, as the meanimpa
t of ea
h 
luster in table 5.19 
learly show, the most important observations for this parametrisationare those performed to sour
es S0700+00, S0730+00, S0755+00 and S0300+00.Case 20: Atmospheri
 zenith path delay ATA, 
lo
k parameters CL0, CL1, atmospheri
 zenithpath delay ATB and dUT 1The parameters ATA, CL0, CL1, ATB and dUT 1 depi
t the most 
ommon parametrisation for single-baselineVLBI networks with a large east-west extension. As the singular values and the �rst two right singular ve
torsshow, the two atmospheri
 zenith path delays ATA and ATB are best determined. The parameter with thelowest a

ura
y (or highest varian
e) is again the 
lo
k o�set CL0.Again, the separability of the �ve parameters is weak. Ex
ept for the 
orrelations of the 
lo
k rate CL1 withthe remaining parameters all other (absolute values of the) 
orrelation 
oe�
ients are above 0.8. This also
ompli
ates the interpretation of the 
luster analysis results.The two largest elements of the U-matrix belong to observations 4 and 14. Thus, the impa
t fa
tors forthese observations show the large importan
e of these observations. This is again 
aused by the fa
t thatequatorial sour
es are needed for most of these parameters and by the low elevation of observation 14.Cluster analysis of the data resolution matrix shows that observation 8 and observations 6, 7, 11 and 12are 
andidates for negligible observations. Among the most important observations are again observations 4and 14. These observations are mainly responsible for the determination of ATA, CL0, ATB and dUT 1 (seetable 5.20 on the next page).In 
ontrast to 
ases 15 and 16 for the 
lo
k o�set determination observations to equatorial sour
es aremainly needed. In this 
ase, observations to sour
es in elevation 
usps are not of high importan
e for thedetermination of CL0.



94 5. Design analyses of plane and spatial interferometersCluster Analysis Results - Case 20No. of Mean Impa
t on parameter:Cl.: mbrs.: impa
t: Members:
ATA CL0 CL1 ATB dUT 11 1 0.10 8 0.012 ⇒ - 0.001 ⇒ � 0.003 ⇒ � 0.000 ⇒ � 0.000 ⇒ �2 1 0.92 14 0.484 ⇒ o 0.103 ⇒ - 0.000 ⇒ � 0.048 ⇒ - 0.082 ⇒ -3 2 0.49 4, 9 0.118 ⇒ o 0.361 ⇒ o 0.015 ⇒ o 0.349 ⇒ o 0.250 ⇒ o4 2 0.35 5, 10 0.021 ⇒ o 0.027 ⇒ o 0.065 ⇒ o 0.026 ⇒ o 0.105 ⇒ o5 2 0.35 13, 15 0.083 ⇒ o 0.046 ⇒ o 0.138 ⇒ o 0.042 ⇒ o 0.059 ⇒ o6 3 0.25 3, 1, 2 0.016 ⇒ o 0.008 ⇒ o 0.110 ⇒ o 0.029 ⇒ o 0.026 ⇒ o7 4 0.21 6, 7, 11, 12 0.003 ⇒ - 0.001 ⇒ - 0.058 ⇒ o 0.008 ⇒ o 0.003 ⇒ -Table 5.20: Cluster analysis results for 
ase 20 (Atmospheri
 zenith path delay ATA, 
lo
k parameters

CL0, CL1, atmospheri
 zenith path delay ATB and dUT 1)5.4.2.1 E�e
t of omitting observations on the 
ofa
tors of the estimated parametersAs shown in se
tion 2.4.3 on page 42, the impa
t fa
tors play a 
ru
ial role in the determination of the in
reaseof un
ertainty and thus on the 
ofa
tors of the estimated parameters. In order to present some pra
ti
alappli
ations, for 
ases 14 and 20 up to �ve observations (both important and less important observations)will be omitted and the 
hanges in the 
ofa
tors of the respe
tive parameters (with respe
t to the 
ofa
torsobtained by using all observations) are analysed.In
rease of un
ertainty for 
ase 14 (estimation of dUT 1 only)As shown in the impa
t fa
tor plot (also see �gure 5.8 on page 83), for the determination of dUT 1, observa-tions 5, 10 and 15 (i.e., observations to the equatorial sour
e S4, whi
h is orthogonal to the 
urrent baseline)and observations 13 and 8 are of main importan
e. On the other hand, observations 1, 2 and 6, 7 and 11, 12(to polar sour
es S5 or S6) 
ould be negle
ted, if only dUT 1 is of interest.Figure 5.10 on the fa
ing page shows the e�e
t of su

essively omitting the �ve most important observationsand the �ve least important observations on the 
ofa
tor of dUT 1. Although negle
ting an observation alwaysleads to an in
rease of the 
orresponding 
ofa
tor, it 
an be seen that negle
ting observations with largeimpa
t fa
tors has a signi�
antly higher impa
t on the 
ofa
tor of dUT 1 than the omission of observationswith low impa
t fa
tors.In
rease of un
ertainty for 
ase 20 (estimation of ATA, CL0, CL1, ATB and dUT 1)Omitting the �ve most important observations and the �ve least important observations of 
ase 20 shows asimilar e�e
t (see �gure 5.12 on page 96): For every parameter, large 
ofa
tor 
hanges 
an be seen if the �rstmost important observations have been negle
ted. Similar to 
ase 14, omitting observations with low impa
tfa
tors only has a small impa
t on the 
ofa
tors of the estimated parameters.For some parameters (su
h as CL1) the e�e
t of negle
ting 33% of the most important observations is almostequal to the e�e
t of negle
ting 33% of the least important observations (see modi�
ation numbers 9 and 10).This also depi
ts the general sensitivity of some parameters to 
hanges in the observation stru
ture.In general, both 
ase 14 and 
ase 20 show that observations with large impa
t fa
tors have to be obtained
arefully sin
e the (purely geometri
) e�e
t of the observations on the 
ofa
tors would be ampli�ed if largeformal errors are present. Thus, for the in
rease of un
ertainty both the geometry of the experiment designand the observational error have to be taken into a

ount (see also Förstner 1992).Obviously, omitting an observation 
hanges the impa
t fa
tors of the remaining observations and thus also
hanges the entire impa
t 
o-fa
tor situation. Figure 5.11 on the fa
ing page shows the e�e
t of omittingobservation 14 (of 
ase 20). Consequently, after omitting observations the regression diagnosti
s tool has tobe applied to the new situation, i.e., to the modi�ed design matrix.
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ts of reordering observations on impa
t fa
torsFor short observation durations (as 
onsidered here), reordering of observations does not signi�
antly 
hangethe impa
t fa
tors. If the basi
 stru
ture of �ve observations of the original observation s
hedule (whi
h isrepeated three times, see table 5.10 on page 85) is 
hanged to
• Sour
e S1 (or S2 or S3, depending on hour angle and visibility),
• Sour
e S7 (or S8 or S9, depending on hour angle and visibility),
• Sour
e S4,
• Sour
e S5,
• Sour
e S6,almost identi
al impa
t fa
tors 
an be seen (for an example see �gure 5.13). This is obviously 
aused bythe fa
t that the topo
entri
 observation geometry (i.e., azimuth and elevation of the radio teles
ope whenpointing at a sour
e) 
hange only slightly. Of 
ourse, this 
hanges, the longer the session duration and thelarger the di�eren
es between the observation times of the ex
hanged observations.

0 16
0.25
6.43.20.05 9.612.80.10

0.150.2
0 160.16.4
0.250.2

12.89.60.050.153.20

Impact factors case 14 (Original order) Impact factors case 14 (Changed order)

0.20

0.25

0.15

0.10

0.05

0
151051 1 5 10 15

0.25

0.20

0.15

0.10
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0Figure 5.13: Impa
t fa
tor 
hanges after reordering of observations (for 
ase 14)5.4.2.3 Con
lusions from spatial kinemati
 interferometer investigationsThe main intention of the previous se
tions was to extend the results obtained from the analyses of plane stati
interferometers to spatial kinemati
 interferometers. As for the plane interferometer, applying the regressiondiagnosti
s tool to the determination of basi
 parameters (i.e., site positions x, y, z, 
lo
k parameters CL0and CL1, atmospheri
 zenith path delays ATA and ATB, polar motion xp and yp or earth rotation dUT 1)yields geometri
ally 
omprehensible results whi
h agree with (or supplement) the theoreti
al 
onsiderationsin 
hapter 4:
• For the determination of site positions x, y, z, observations to sour
es lying approximately in the di-re
tion of the axis of the 
oordinate system are needed.
• For the sole determination of the 
lo
k o�set (CL0), every observation is of equal importan
e. For the
lo
k rate (CL1), observations at the end of the observing session are most important.
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• As expe
ted (see 
hapter 4), observations performed with low elevations are needed in parti
ular forthe determination of atmospheri
 zenith path delays ATA and ATB.
• In agreement with the analysis of the partial derivatives in 
hapter 4, observations to polar sour
es aremainly needed for the determination of polar motion xp and yp. Observations to equatorial sour
es areof no relevan
e for these parameters.
• On the other hand, for the sole determination of earth rotation dUT 1, observations to equatorialsour
es lying orthogonal to the baseline (at the time of the observation) are needed. Observations topolar sour
es 
an be omitted. This also agrees with the theoreti
al 
onsiderations of 
hapter 4.For 
omposed parameter sets (and thus for more 
omplex and geometri
ally less 
omprehensible observation
on�gurations), the strengths of the regression diagnosti
s tool be
ome even more obvious. In these 
ases,the sole investigation of partial derivatives does not reveal the overall e�e
ts of all available observationson the entire parameter set. Here, the regression diagnosti
s tool based on singular value de
ompositionand 
luster analysis provides a more detailed insight into the adjustment problem. For the 
urrent spatialkinemati
 interferometer it 
ould be shown that
• for 
ertain parametrisations (see e.g. 
ase 15: x, y, z and CL0 and 
ase 16: CL0 and dUT 1) groups ofobservations to sour
es in elevation 
usps are needed for the determination and separation of the 
lo
ko�set CL0 (see Nothnagel 1991).
• for the 
ommon estimation of 
lo
k o�set CL0, 
lo
k rate CL1 and earth rotation dUT 1 (
ase 17)di�erent observations are needed: Here, the group of observations 1 to 4 (i.e., observations into everydire
tion of the mutually visible part of the 
elestial sphere) is responsible for the 
lo
k o�set deter-mination. The same observation 
onstellation is needed at the end of the observing session in orderto determine the 
lo
k rate parameter. For dUT 1, still observations to equatorial sour
es are of mainimportan
e.
• for more 
omplex parametrisations and for data resolution matri
es without an obvious regular pattern,the regression diagnosti
s tool still re
ognizes groups of observations. The interpretation, however, is
ompli
ated by the unavoidable in
rease of 
omplexity in the relations between the parameters involved.Furthermore, it 
ould be shown that the impa
t fa
tors also express the in
rease of un
ertainty, i.e., thee�e
t of omitting observations on the 
ofa
tors of the estimated parameters: The higher the impa
t fa
tor ofan observation i, the higher the e�e
t of omitting the ith observation on the formal error(s) of the estimatedparameter(s).In summary, it 
ould be shown that the regression diagnosti
s tool developed in the �rst 
hapters yields bothplausible and (geometri
ally) 
omprehensible results. In addition to the veri�
ation of knowledge based onthe analysis of partial derivatives of single observations (as performed in 
hapter 4), new �ndings arose frominvestigating the entire design matrix, i.e., by analysing the geometry of the entire observing session.After investigating arti�
ial interferometers, the regression diagnosti
s tool will now be applied to a real,single-baseline observing session.
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 interferometer 995.4.3 Estimability investigations for a real, single-baseline VLBI sessionAs a �nal appli
ation example a real single-baseline VLBI session is being investigated. Therefore, an arbitraryINTENSIVE2-session (IVS-
ode: K05072, from mar
h 13, 2005) has been 
hosen. The two stations involvedare Wettzell (Germany) and Tsukuba (Japan) whi
h form a baseline with a length of 8445 km. Due to thelong east-west-extension of this baseline, this session type is espe
ially sensitive for the determination ofearth rotation variations. During the session duration of approximately one hour, 29 observations (to 16sour
es) have been generated (see table 5.22 on page 102). The observation s
hedule for this session hasbeen generated at the Geodeti
 Institute of the University of Bonn using the s
hedule generation softwareSKED and with the optimisation 
riterion of maximum sky 
overage (Fis
her 2006). As for all real VLBIsessions, the sour
es are not distributed homogeneously and thus the observations do not show su
h a regularpattern as e.g. in the previous appli
ation example (see table 5.21 on the following page3). Both the networkgeometry and the sour
e distribution are shown in �gure 5.14.
Tsukuba

Wettzell

X

Y

Z

Wettzell
Tsukuba

Y
X

Z

Wettzell Tsukuba

Z

X

YFigure 5.14: INTENSIVE2-session geometry (left: network geometry (near equatorial view), middle: networkgeometry and sour
e distribution (near equatorial view), right: network geometry and sour
e distribution(polar view))As for the �
titious interferometer in the previous appli
ation example, a variety of parameters (and param-eter sets) 
an be estimated. In the following, these parameter sets will be analysed:21. Estimation of 
lo
k o�set CL0 of station Wettzell with respe
t to station Tsukuba only22. Estimation of 
lo
k rate CL1 of station Wettzell with respe
t to station Tsukuba only23. Estimation of 
lo
k o�set CL0 and 
lo
k rate CL1 of station Wettzell with respe
t to station Tsukuba24. Estimation of atmospheri
 zenith path delay ATWettzell at station Wettzell only25. Estimation of atmospheri
 zenith path delay ATTsukuba at station Tsukuba only26. Estimation of earth rotation dUT 1 only27. Estimation of atmospheri
 zenith path delay ATWettzell, 
lo
k parameters CL0, CL1, atmospheri
zenith path delay ATTsukuba and earth rotation dUT 1Sin
e some of these 
ases have already been treated in the previous appli
ation examples, some interpretations
an be kept brief. Case 27 depi
ts the typi
al parametrisation as used in routine data analysis of single-baseline VLBI sessions for earth rotation determination and thus forms the most important 
ase. The analysis
omponents are shown in �gure 5.16 on page 105.3The �rst four 
hara
ters of the sour
e name indi
ate the (approximate) right as
ension (in [hh min℄), the �fth 
hara
terindi
ates the sign of the de
lination and the sixth and seventh 
hara
ter indi
ate the (approximate) de
lination of the sour
e(in degrees).
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ension de
linationNo. Sour
e [hh min se
℄ [o℄1 0059+581 1 2 45.7 58.242 0106+013 1 8 38.7 1.353 0119+115 1 21 41.5 11.494 0133+476 1 36 58.5 47.515 0229+131 2 31 45.8 13.226 0235+164 2 38 38.9 16.367 0602+673 6 7 52.6 67.208 0804+499 8 8 39.6 49.509 0955+476 9 58 19.6 47.2510 1044+719 10 48 27.6 71.4311 1128+385 11 30 53.2 38.1512 1300+580 13 2 52.4 57.4813 1357+769 13 57 55.3 76.4314 1803+784 18 0 45.6 78.2815 1807+698 18 6 50.6 69.4916 2037+511 20 38 37.0 51.19Table 5.21: Sour
e list for real interferometer investigationsCase 21: Estimation of 
lo
k o�set CL0 of station Wettzell with respe
t to station TsukubaonlyAs for the 
lo
k o�set determination in a plane interferometer and a spatial, kinemati
 interferometer (
ases 3and 9) for the solely determination of the 
lo
k o�set CL0 of station Wettzell with respe
t to station Tsukubaevery observation is of the same importan
e and no dendrogram 
an be formed.Case 22: Estimation of 
lo
k rate CL1 of station Wettzell with respe
t to station Tsukuba onlyIn a similar way, for the solely determination of the 
lo
k rate CL1 of station Wettzell with respe
t tothe 
lo
k at Tsukuba the time of the observation is of 
ru
ial importan
e for the impa
t the parti
ularobservation has on the parameter estimation pro
ess. Again, this resembles the impa
t of observations onthe determination of the slope of a regression line (without estimating an axis o�set).The data resolution matrix shows the in
reasing impa
t for ea
h observation as well as the supporting natureof the last observations. Due to this stru
ture, the dendrogram shows a sequential 
lustering of (at �rst) thelast observations up to the �rst observation, whi
h is 
lustered at last (see also 
ase 10).Case 23: Estimation of 
lo
k o�set CL0 and 
lo
k rate CL1 of station Wettzell with respe
t tostation TsukubaThe 
ommon estimation of the 
lo
k o�set CL0 and the 
lo
k rate CL1 of one station with respe
t to areferen
e 
lo
k has not been treated so far. Here, the referen
e 
lo
k is the 
lo
k at Tsukuba station.The analysis of these parameters is 
ompli
ated by the high 
orrelation 
oe�
ient (of −0.86). Sin
e the V-matrix does not show a 
lear diagonal stru
ture, a unique relation between observations and parameters isdi�
ult. The impa
t fa
tors, however, show a very 
lear and almost symmetri
al in
rease of the importan
esof the �rst and the last observations, while the middle observations are of mean importan
e. This exa
tlyresembles the situation when estimating the two parameters of an adjusting straight line (regression line withthe axis o�set estimated at the epo
h of the �rst observation): the �rst observations are of main importan
e
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 interferometer 101for both the axis o�set and the slope determination, while the last observations are mainly responsible forthe slope determination. The same results 
an be seen after 
utting the dendrogram to form two groups ofobservations (see table 5.23 on the next page): Here, the �rst observations are both responsible for the 
lo
ko�set and the 
lo
k rate. The last observations are almost solely ne
essary for the 
lo
k rate determination.Case 24: Estimation of atmospheri
 zenith path delay ATWettzell at station Wettzell onlySimilar to the atmospheri
 zenith path delay determination in the arti�
ial interferometer in the previousexample, observations performed with low elevations at Wettzell station are of main importan
e for theestimation of ATWettzell . As shown in table 5.22 on the following page, observations with large impa
tfa
tors (su
h as observations 2, 4, 13, 14, 18, 20 and 23) are observed with very low elevations (below 11 [o],at Wettzell). These are also observations whi
h have been 
lustered at �rst. Due to the absen
e of distin
t
lusters a dendrogram 
ut is not reasonable.Case 25: Estimation of atmospheri
 zenith path delay ATTsukuba at station Tsukuba onlyAs shown in table 5.22 on the next page, in general, observations at Wettzell station have been observedwith lower elevations than at Tsukuba station. Consequently, for the determination of the atmospheri
 zenithpath delay ATTsukuba at Tsukuba, less important observations are available than for the determination of
ATWettzell in 
ase 24. But again, a 
lear relation between the size of the impa
t fa
tors and the elevationsat Tsukuba 
an be seen.Also in this 
ase, the 
luster analysis of the data resolution matrix shows that observations 2, 16, 8 and 24are grouped at �rst. The remaining observations are 
lustered in a sequential order without forming di�erent
lusters. Therefore, a dendrogram 
ut is not reasonable.Case 26: Estimation of earth rotation dUT 1 onlyAs mentioned in 
ase 14 of the arti�
ial spatial interferometer, equatorial sour
es (i.e., sour
es with lowde
linations) lying almost orthogonal to the baseline are of main importan
e for the determination of the earthrotation dUT 1. This 
an also be seen in the impa
t fa
tors of this 
ase in �gure 5.16 on page 105: Observationswith large impa
t fa
tors 
lose to the threshold for very important observations have been performed tosour
es 0106+013 (observation 21), 0119+115 (observations 11, 19 and 27) or 0229+131 (observation 28)whi
h all possess de
linations below 15 [o].The data resolution matrix for this 
ase shows the presen
e of several supporting observations mainly in these
ond half of the session. The dendrogram of the 
luster analysis of this matrix shows that the most impor-tant observations (observation 21 to sour
e 0106+013, observation 27 to sour
e 0119+115, observation 19to sour
e 0119+115 and observation 11 also to sour
e 0119+115) are grouped at �rst. The dendrogram alsoshows the presen
e of mainly two 
lusters with 17 and 12 observations, respe
tively. As shown in table 5.24on page 103 the �rst 
luster is of main importan
e for the determination of dUT 1. The �rst 
luster 
onsists ofthe above mentioned observations to equatorial or near-equatorial sour
es. The se
ond 
luster only 
ontainsobservations to sour
es lo
ated on the northern part of the mutually visible part of the 
elestial sphere andwhi
h are 
andidates for negligible observations (see �gure 5.14 on page 99).Case 27: Estimation of atmospheri
 zenith path delay ATTsukuba, 
lo
k parameters CL0, CL1,atmospheri
 zenith path delay ATWettzell and earth rotation dUT 1The estimation of the atmospheri
 zenith path delay ATTsukuba at Tsukuba, the 
lo
k parameters CL0 and
CL1 of the 
lo
k behaviour at Wettzell, the atmospheri
 zenith path delay ATWettzell at Wettzell and ofthe earth rotation dUT 1 represents a realisti
 parametrisation of an INTENSIVE2-session. Sin
e this 
ase
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Start of observation Azimuth Azimuth Elevation ElevationNo. Sour
e [MJD℄ ([min.℄) Tsukuba [o℄ Wettzell [o℄ Tsukuba [o℄ Wettzell [o℄1 0059+581 53442.314 (0.0) 321.3 47.2 51.73 45.112 1128+385 53442.316 (2.8) 49.2 319.3 9.59 10.143 1357+769 53442.317 (4.3) 8.6 340.2 24.97 47.764 0955+476 53442.319 (7.2) 50.5 339.4 29.32 10.285 1044+719 53442.320 (8.6) 22.6 345.7 32.13 34.686 1807+698 53442.321 (10.0) 351.2 338.1 17.51 65.517 0602+673 53442.322 (11.5) 17.8 12.0 55.63 28.358 2037+511 53442.324 (14.4) 326.7 64.3 12.98 83.609 1803+784 53442.325 (15.8) 355.6 349.7 25.32 58.6110 0133+476 53442.327 (18.7) 304.4 57.8 55.68 37.8911 0119+115 53442.328 (20.1) 254.6 91.2 40.18 16.2912 0059+581 53442.329 (21.6) 320.7 48.5 48.80 47.8813 0955+476 53442.331 (24.4) 52.8 342.8 32.13 9.3114 0804+499 53442.332 (25.9) 53.7 1.2 50.62 8.9815 1807+698 53442.334 (28.8) 353.7 335.0 16.99 64.2916 2037+511 53442.335 (30.2) 328.3 51.9 11.17 85.9417 0133+476 53442.337 (33.1) 304.2 59.1 53.27 39.8918 0235+164 53442.338 (34.5) 245.8 75.8 55.00 9.7119 0119+115 53442.339 (36.0) 257.7 94.3 37.02 18.9420 0229+131 53442.341 (38.8) 244.9 80.8 50.96 8.9721 0106+013 53442.342 (40.3) 250.5 104.6 27.34 13.8922 1044+719 53442.344 (43.2) 22.8 348.2 34.76 33.3323 0955+476 53442.345 (44.6) 53.7 345.3 35.40 8.3724 1300+580 53442.346 (46.0) 29.5 326.1 16.38 30.3825 0059+581 53442.348 (48.9) 320.2 50.5 45.32 51.1926 0133+476 53442.349 (50.4) 304.6 61.3 50.21 42.4827 0119+115 53442.351 (53.3) 260.2 97.8 33.78 21.6028 0229+131 53442.352 (54.7) 248.1 83.4 47.94 11.6229 0235+164 53442.353 (56.2) 250.9 80.4 50.92 13.21Table 5.22: Observation list for real interferometer investigations (INTENSIVE2-session K05072, 13-3-2005),MJD = modi�ed julian date, ([min.℄) indi
ates the minutes passed sin
e the �rst observation.Cluster Analysis Results - Case 23No. of Mean Impa
t on parameter:Cluster: members: impa
t: Members (observations):

CL0 CL11 14 0.07 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 0.062 ⇒ o 0.036 ⇒ o3, 1, 22 15 0.07 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 0.009 ⇒ - 0.033 ⇒ -25, 26, 27, 28, 29Table 5.23: Cluster analysis results for 
ase 23 (Estimation of 
lo
k o�set CL0 and 
lo
k rate CL1 of stationWettzell with respe
t to station Tsukuba)
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 interferometer 103Cluster Analysis Results - Case 26No. of Mean Impa
t on parameter:Cluster: members: impa
t: Members (observations):
dUT 11 17 0.05 6, 16, 8, 1, 12, 25, 10, 17, 26, 18, 20, 29, 0.047 ⇒ o28, 11, 19, 21, 272 12 0.02 9, 7, 15, 3, 22, 5, 14, 23, 24, 13, 2, 4 0.016 ⇒ -Table 5.24: Cluster analysis results for 
ase 26 (Estimation of earth rotation dUT 1 only)resembles 
ase 20 of an arti�
ial interferometer, many results of this 
ase are similar to the results of 
ase 20.The di�eren
es in the results are mainly due to the 
omplexity of this 
ase (i.e., di�erent baseline orientationand inhomogeneous sour
e distribution).Also for this real interferometer, the three best determined parameters are the atmospheri
 zenith pathdelay ATWettzell at Wettzell, the earth rotation parameter dUT 1 and the atmospheri
 zenith path delay

ATTsukuba at Tsukuba. Again, the weakest determined parameter is the 
lo
k o�set CL0 (
f. 
ase 20). As in
ase 20 a strong 
orrelation (of 0.75) between the �rst atmosphere parameter (here: ATTsukuba) and the 
lo
ko�set CL0 exists. The remaining 
orrelations, however, improved and are mu
h lower than the 
orresponding
orrelations in 
ase 20 (the absolute values of all remaining 
orrelation 
oe�
ients are below 0.5).In agreement with 
ase 20, the most important observations are those performed with low elevations (ase.g. observations 2, 16, 23, and 24). The geometry of the three most important observations is shown in�gure 5.15 on the next page. The 
luster analysis of the data resolution matrix shows that these observationsbelong to the three most important 
lusters 1 to 3, whi
h are mainly responsible for dUT 1, ATTsukuba and
ATWettzell (see table 5.25). Due to their large impa
t onto the estimation pro
ess, these observations shouldbe supplied (or 
ontrolled) by appropriate (independent) observations.The remaining 
lusters are of importan
e for either dUT 1 or the 
lo
k o�set CL0. Cluster 4 
ontains obser-vations to equatorial sour
es, 
luster 5 
ontains observations to the middle of the mutually visible part ofthe 
elestial sphere. As for 
ase 20, for the determination of the 
lo
k o�set CL0, observations to sour
es inevery part of the 
elestial sphere are needed.From these results it 
an be 
on
luded that 
luster 5 
ontains observations whi
h are 
andidates for obser-vations that 
an be omitted, sin
e this 
luster mainly a�e
ts the auxiliary parameter CL0. On the otherhand, observations of 
luster 1 and 
luster 2 are important for the main parameter dUT 1 and should thusbe 
ontrolled by further, independent observations.Cluster Analysis Results - Case 27No. of Mean Impa
t on parameter:Cl.: mbrs.: impa
t: Members:

ATTS CL0 CL1 ATWZ dUT 11 4 0.21 4, 14, 13, 23 0.015 0.010 0.024 0.047 0.0522 4 0.20 22, 24, 25, 26 0.015 0.010 0.094 0.051 0.0663 5 0.25 15, 6, 2, 8, 16 0.133 0.037 0.016 0.036 0.0164 8 0.14 27, 28, 29, 19, 11, 21, 18, 20 0.004 0.011 0.023 0.035 0.0445 8 0.12 17, 9, 7, 3, 5, 12, 1, 10 0.024 0.081 0.033 0.018 0.012Table 5.25: Cluster analysis results for 
ase 27 (Estimation of atmospheri
 zenith path delay ATTsukuba,
lo
k parameters CL0, CL1, atmospheri
 zenith path delay ATWettzell and earth rotation dUT 1)
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ts of modi�
ations of 
luster 5 on the 
ofa
tors of the parametersIn the following, it is investigated how mu
h a modi�
ation of the observations of one 
luster a�e
ts the
ofa
tors of the parameters to be estimated: Sin
e 
luster 5 (
ontaining observations 17, 9, 7, 3, 5, 12, 1and 10) mainly a�e
ts the 
lo
k o�set CL0 (while the earth rotation parameter dUT 1 is least a�e
ted), itis assumed that repla
ing the eight observations of 
luster 5 with the observations of 
luster 1 and 
luster 2results in an in
rease of the 
ofa
tor of CL0 (i.e., a degradation of this parameter's a

ura
y) and a de
reaseof the 
ofa
tor of dUT 1 (i.e., an improvement of the a

ura
y of this parameter)4.Table 5.26 shows that repla
ing 
luster 5 by 
lusters 1 and 2 indeed mainly in
reases the 
ofa
tor of CL0.This agrees with the in
rease of un
ertainty-investigations of 
ases 14 and 20 performed on page 94. The
ofa
tor of dUT 1, however, is only slightly a�e
ted (i.e., the a

ura
y of dUT 1 is only slightly improved).This again shows that the in
rease of un
ertainty mainly quanti�es the e�e
t of omitting observations on the
ofa
tors of the parameters.The modi�
ations des
ribed above only slightly a�e
t the singular values and the 
orrelations between theparameters. Thus, a visualisation is not reasonable. Cofa
tor 
hange
ATTS [m2℄ CL0 [m2℄ CL1 [m2/day2 ℄ ATWZ [m2℄ dUT 1 [m2℄Original observations 288.1 4384.8 449.5 97.4 46.6Cluster 5 repla
ed 322.3 7690.7 556.4 106.7 45.6Table 5.26: Case 27: E�e
ts of modi�
ations of 
luster 5 on the 
ofa
tors of the parameters
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Figure 5.15: Geometry of the three most important observations of INTENSIVE2-session K05072.
4Obviously, due to the rotation of the earth, after the repla
ement of the observations of 
luster 5 with the observations of
lusters 1 and 2, 
luster 5 
onsists of similar (but not identi
al) observations as 
ontained in 
lusters 1 and 2.
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lusions from real, single-baseline VLBI session investigationsFor a real VLBI session, interpretations are 
ompli
ated by the skew orientation of the baseline (i.e., withrespe
t to a geo
entri
, 
artesian referen
e system), by the inhomogeneous sour
e distribution and the irreg-ular observation order. Nevertheless, most of the 
on
lusions whi
h 
an be drawn from investigating a real,single-baseline VLBI session resemble those obtained from the investigations of an arti�
ial spatial kinemati
interferometer. Espe
ially for the most realisti
 parametrisation (
ase 27), the need for �rst investigating less
omplex 
ases be
ame obvious. Only by 
onsidering the results of 
ases 8 to 20, 
ases 21 to 27 
an beunderstood.As mentioned in the previous 
on
lusions, the more 
omplex the fun
tional model, the more di�
ulties arisedue to the unavoidable in
rease of the 
orrelations between the parameters to be estimated. Nevertheless,it 
ould be shown that the regression diagnosti
s tool is also suited for real interferometers with 
omplexobservation stru
ture. In most 
ases, groups of observations as well as their impa
t on the parameters to beestimated 
ould be dete
ted. Final 
on
lusions will be given in the next 
hapter.



1076. Summary, Con
lusions & OutlookSummaryThe obje
tive of this thesis is the development of a regression diagnosti
s tool, whi
h 
an be used to improvethe robustness and reliability of VLBI solutions. Therefore, the regression diagnosti
s tool must be able todete
t the in�uen
e of single or groups of observations as well as their impa
t on the estimated parameters.In the language of parameter estimation in linear models: A tool for the dete
tion of groups of high-leverage(and thus in�uential) observations and their impa
t on linear 
ombinations of parameters (and thus on theparameters itself) is needed. Hen
e, su
h a regression diagnosti
s tool depi
ts an extension of the 
ommoninvestigations of the partial derivatives of a fun
tional model with respe
t to the parameters to be estimated.While investigating partial derivates only provides the sensitivity of single observations on 
ertain parameters(and thus the impa
t of single observations on the adjustment pro
ess), the regression diagnosti
s tool devel-oped in this thesis analyses the entire design or the entire geometry of an experiment by taking into a

ountthe entire design matrix of an adjustment problem. Although the regression diagnosti
s tool developed inthis thesis 
an be applied to any adjustment problem, in this thesis only appli
ations to geodeti
 VLBI arepresented.In order to develop the regression diagnosti
s tool, at �rst some algebrai
 ba
kground needs to be summarised.Therefore, 
hapter 1 provides the basi
s of eu
lidean ve
tor spa
es, proje
tions onto subspa
es as well asthe geometri
 aspe
ts of the least-squares approa
h. In this 
ontext, the singular value de
omposition of adesign matrix is of fundamental importan
e sin
e it provides new bases for the four subspa
es of a matrixand is used to 
ompute a so-
alled data resolution matrix. This matrix 
ontains the so-
alled impa
t fa
torsand impa
t 
o-fa
tors whi
h are used in the subsequent 
hapters for assessing the in�uen
e of observations.In 
hapter 2 the 
lose relationship of the algebrai
 ba
kground of 
hapter 1 (i.e., the so-
alled ve
tor spa
eapproa
h) with geodeti
 adjustment theory (or the theory of linear models) is presented. Furthermore, the
lose relationship of impa
t fa
tors and redundan
y numbers is given as well as geometri
al interpretationsof impa
t fa
tors and impa
t 
o-fa
tors. Sin
e impa
t 
o-fa
tors represent a 
ommon information 
ontent ofobservations, they 
an be used to dete
t groups of similar observations. In order to identify groups of similarobservations, so-
alled 
luster analysis methods are applied to the elements of the data resolution matrix.These methods are des
ribed in 
hapter 3. Furthermore, this 
hapter provides methods for measuring theimpa
t of groups of observations onto individual parameters. The 
omputation of the data resolution matrixafter performing the singular value de
omposition of the asso
iated design matrix and the appli
ation of
luster analysis methods to the elements of the data resolution matrix form the main steps of the regressiondiagnosti
s tool developed in this thesis.After a short review of the VLBI prin
iple in 
hapter 4 the regression diagnosti
s tool is applied to planeand spatial interferometers. Therefore, 
hapter 5 des
ribes the qtSVD software, whi
h has been developedby the author of this thesis to
• set up the design matrix of a VLBI session,
• perform the singular value de
omposition of the design matrix and to 
ompute the data resolutionmatrix,
• to apply 
luster analysis algorithms to the data resolution matrix, to visualize the 
luster analysisdendrogram and to dete
t groups of similar observations and
• to 
ompute the impa
t of ea
h group of observations on ea
h parameter to be estimated.In order to show the 
apabilities of the regression diagnosti
s tool, it is applied to a plane, stati
 interferometerand to spatial, kinemati
 interferometers. The latter ones are divided into an arti�
ial spatial interferometerand a real VLBI session.



108 6. Summary, Con
lusions & OutlookCon
lusionsBased on both theoreti
al 
onsiderations and pra
ti
al appli
ations it 
ould be shown that
• the regression diagnosti
s tool yields plausible and (geometri
ally) 
omprehensible results.
• the regression diagnosti
s tool 
an be used to dete
t groups of jointly in�uential and 
ounter-a
tingobservations.
• the regression diagnosti
s tool determines the impa
t of ea
h group of observations onto the parametersto be estimated.
• the regression diagnosti
s tool 
an be used to dete
t degenera
ies (or 
riti
al (baseline) 
on�gurations)and thus parameters whi
h 
annot be estimated or separated (
f. 
ase 6).
• a te
hni
al realisation (i.e., a software implementation) of the regression diagnosti
s is possible and 
anbe used for several (geodeti
) adjustment problems.The main bene�t of the regression diagnosti
s tool developed in this thesis is thus the ability to dete
t weakparts of the design of a (VLBI-)experiment. The weak parts (su
h as inappropriate observation groups orindeterminable parameters) 
an then be improved or further investigated by the analyst.The results obtained from applying the regression diagnosti
s tool to plane and spatial interferometers agreewith (or even extend) existing VLBI analysis strategies. In addition, the regression diagnosti
s tool providesthe in
rease of un
ertainty due to the omission of observations. It thus shows whi
h observations should be
ontrolled (or supplied) by appropriate (independent) observations. In other words: It 
ould be shown, thatthe regression diagnosti
s tool developed in this thesis is able to dete
t weak parts of the design of (not onlyVLBI-) experiments. In general, the strengths of the regression diagnosti
s tool be
ome obvious for 
omplexobservation geometries and thus for experiments with data resolution matri
es whi
h do not possess a regularpattern.Di�
ulties may arise in the only subje
tive part of the regression diagnosti
s pro
edure, i.e., the dendrogram
ut. Depending on the form of the dendrogram a reasonable height for a dendrogram 
ut might not agreewith a large similarity di�eren
e. In these 
ases, the analyst has to make an appropriate de
ision.OutlookIn future, the regression diagnosti
s tool developed in this thesis needs to be applied to other single-baselineinterferometers, to larger VLBI networks and for real VLBI session s
heduling. In order to extend the pureanalysis fun
tionality of qtSVD, either the ability for s
hedule improvement suggestions should be added toqtSVD or the methods developed in this thesis should be implemented in existing VLBI s
heduling software,su
h as SKED. Furthermore, the regression diagnosti
s tool should be applied to other geodeti
 adjustmentproblems su
h as geodeti
 networks or other geodeti
 spa
e te
hniques.In addition to the appli
ation of data spa
e investigations (as performed in this thesis), the regressiondiagnosti
s tool 
ould also be used for model spa
e analyses and 
ould thus be used to improve the estimabilityand separability of geodeti
 and geophysi
al parameters.
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