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Vorwort

Seit mehr als zwanzig Jahren gehort die geodéatische Radiointerferometrie, auch kurz
VLBl genannt (von Very Long Baseline Interferometry) zu den tragenden Be-
obachtungsverfahren der geodétischen Forschung, da sie die direkte Verbindung
zwischen dem himmelsfesten, quasi-inertialen Referenzsystem der Himmelskorper
am Rand des uns bekannten Universums und dem erdfesten Referenzsystem der
Beobachtungsstationen herstellt. Die "Zielmarken" sind hier quasi-stellare Objekte
(Quasare) oder andere Radiostrahlung emittierende Galaxien, die fur die Beobachter
auf der Erde als punktformig erscheinen und die mit Radioteleskopen beobachtet
werden.

Wahrend die Referenzsysteme die geodatische Saule der Geometrie reprasentieren,
verbindet die VLBI diese Referenzsysteme Uber die hypothesenfreie Bestimmung der
Erdrotation, die die zweite Saule der Geodasie darstellt. Auch wenn die dritte Saule
der Geodaésie, die Bestimmung des Schwerefeldes der Erde, nicht durch die VLBI/
abgedeckt wird, so stellt sich das Verfahren doch als fundamental fur die Erd-
systemforschung dar, da das Rotationsverhalten der Erde in all seinen Komponenten
nur durch die VLBI bestimmt werden kann.

Die VLBI bendtigt fur die Durchfiihrung der Messungen einen detaillierten Beobach-
tungsplan, in dem die Abfolge der Beobachtungen der einzelnen Radioteleskope
festgelegt werden muss, wobei sowohl Beobachtungen aller Teleskope des Netzwerkes
zu einem einzelnen Quasar als auch Beobachtungen von Subnetzen notwendig sind.
Die Geometrie der Beobachtungen und damit der Beobachtungsplan legen die Stabi-
litat der Kleinste-Quadrate-Lésung fest. Zur Charakterisierung der geometrischen
Eigenschaften eines Ensembles von Beobachtungen wurden bisher in der Hauptsache
Kovarianzinformationen herangezogen, die es jeweils nur erlaubte, die Gesamtheit
aller Beobachtungen zu betrachten und zu interpretieren.

Die vorliegende Dissertation von Herrn Vennebusch stellt insofern eine bemerkens-
werte Neuerung dar, als dass nun mit Hilfe der Cluster-Analyse die Bedeutung ein-
zelner Gruppen von Beobachtungen differenziert interpretiert werden kann. Herr
Vennebusch hat dazu mit der Singularwertzerlegung eine geeignete Schnittstelle
zwischen der Losung eines groBeren Gleichungssystems und der Cluster-Analyse
gefunden. Damit hat er einen entscheidenden Schritt zur Identifikation von (Gruppen
von) Hebelbeobachtungen ermdéglicht, den es im nachsten Schritt in die Software zur
Erstellung von Beobachtungsplanen einzubinden gilt.

Bonn, im April 2008
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Zusammenfassung

Es ist bekannt, dass Hebelpunkt-Beobachtungen die Schitzung von Parametern stark beeinflussen. Bisher
wurden Redundanzanteile von Beobachtungen verwendet, um einzelne Hebelpunkt-Beobachtungen von
einzelnen redundanten (bzw. weniger wichtigen) Beobachtungen zu unterscheiden. In dieser Arbeit wird
ein objektives Verfahren zur Aufdeckung von Gruppen von wichtigen und weniger wichtigen (und somit
redundanten) Beobachtungen entwickelt. Aufserdem wird bestimmt, welche Parameter hauptsachlich von
diesen Beobachtungsgruppen beeinflusst werden.

Der hier vorgeschlagene Ansatz basiert auf geometrischen Aspekten der Ausgleichungsrechnung und verwen-
det die Singuldrwertzerlegung der Designmatrix eines Ausgleichungsproblems und Cluster Analyse-Verfahren
zur Regressionsanalyse.

Obwohl der hier vorgeschlagene Ansatz auf beliebige geodatische Ausgleichungsprobleme angewendet werden
kann, werden in dieser Arbeit nur Anwendungen bezogen auf die geoditische Langbasis-Interferometrie
(VLBI) gezeigt. Allgemein ist der hier vorgeschlagene Ansatz dazu geeignet, (Gruppen von) Beobachtungen
aufzudecken, die die geschitzten Parameter signifikant beeinflussen oder nur vernachldssigbaren Einfluss
haben (und somit auf diese Beobachtungen am ehesten verzichtet werden kann).

In dieser Arbeit wird zunéichst der theoretische Hintergrund der geometrischen Aspekte der Ausgleichungs-
rechnung zusammengefasst. Dann wird die Singuldrwertzerlegung der Designmatrix des zugehdrigen Aus-
gleichungsproblems verwendet, um Kenngrofen fiir den Einfluss und die Ahnlichkeit von Beobachtungen zu
bestimmen. Gruppen von Beobachtungen mit &hnlichem Informationsgehalt werden anschliefend mit Hilfe
von Cluster Analyse-Algorithmen gebildet. Nach einer kurzen Wiederholung der Grundlagen der geodétis-
chen Langbasis-Interferometrie wird der vorgeschlagene Ansatz sowohl auf fiktive als auch auf reale Ein-
Basislinien-Sessionen angewendet. Damit werden die Tauglichkeit und die Fahigkeiten des hier entwickelten
Regressionsdiagnose-Werkzeuges unter Beweis gestellt.

Summary

It is well known that high-leverage observations significantly affect the estimation of parameters. So far,
mainly redundancy numbers have been used for the detection of single high-leverage observations or of single
redundant observations. In this thesis an objective method for the detection of groups of important and less
important (and thus redundant) observations is developed. In addition, the parameters which are mainly
affected by these groups of observations are identified.

The method proposed in this thesis is based on geometric aspects of adjustment theory and uses the sin-
gular value decomposition of the design matrix of an adjustment problem and cluster analysis methods for
regression diagnostics.

Although the proposed method can be applied to any geodetic adjustment problem, in this thesis only
applications to geodetic very long baseline interferometry (VLBI) are shown. In general, the method is well
suited for the detection of (groups of) observations that significantly affect the estimated parameters or that
are of negligible impact (and are thus candidates for observations that can be omitted).

In this thesis, at first the theoretical background of the geometrical aspects of geodetic adjustment theory
is summarized. Then the singular value decomposition of the design matrix of an adjustment problem is
used for the computation of measures of the impact and similarity of observations. Groups of observations
with a similar information content are then identified by statistical cluster analysis algorithms. After a short
review of geodetic very long baseline interferometry the proposed method is applied to artificial and real
single-baseline sessions in order to show the capabilities of the regression diagnostics tool developed in this
thesis.
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0. Introduction

Since the 1970ies Very Long Baseline Interferometry (VLBI) has been used to determine station coordinates
on earth as well as parameters of earth rotation with very high precision. With an accuracy of 2 — 3-107°
VLBI belongs to the most precise measurement techniques in geodesy.

VLBI observations consist of the differences of arrival times of signals of extragalactic radio sources received at
two radio telescopes. In contrast to the Global Positioning System (GPS) in VLBI the analyst can define the
type of observations by manually selecting the two observing sites and the radio sources both radio telescopes
point at. Depending on the duration of an observation session and the size of the observing network, many
thousands of observations and hundreds of unknown parameters accumulate (Ma 1990). The adjustment of
VLBI observations and the determination of the target parameters is a typical least-squares problem as it
occurs in many scientific and engineering tasks.

It is well-known that the VLBI technique is very sensitive to variations in the choice of observations as
well as to small variations in the observed time delay. Also, the choice of the functional model (i.e., of
the unknown parameters) and the choice of constraints strongly affect the estimated parameters. This has
also been recognized by the International VLBI Service for Astrometry and Geodesy (IVS) and has been
summarized in the IVS-WG3 Report on Data Analysis (ScHuH, H. ET AL. 2006):

Robustness and reliability of VLBI solutions are key elements of the quality of VLBI results.
Therefore, improved analysis strategies together with observation scheduling will have to be
developed which reduce the influence of single observations on the results.

In addition, many authors recognized the sensitivity of their results to small variations in both the network
geometry and the observation geometry (see e.g. FISCHER 2006). In statistical terminology this problem
can be summarized as weak quality of the design of a (VLBI-)experiment (FORSTNER 1987). In order to
overcome this problem, methods need to be developed to identify observations with a similar content of infor-
mation and to separate important (groups of) observations from less important (groups of) observations. The
‘importance’ of observations is closely related to the redundancy of observations. Since important observa-
tions (or observations with a low redundancy) significantly affect the estimated parameters, the detection of
influencial observations (or influencial observation groups) is of great benefit for the improvement of both the
precision and reliability of (VLBI) results. In addition, the omission of less important observations obviously
bears economical advantages.

Investigations of the sensitivity of VLBI solution parameters (such as e.g. baseline components or earth
orientation parameters) have been performed in the 1970ies and 1980ies by e.g. MA 1978, LUNDQVIST
1984 or BROUWER 1985. These authors analysed the partial derivatives of the VLBI observation equation
with respect to the most common parameters or investigated the variations in the covariance matrix of the
unknown parameters after including or omitting individual observations (DERMANIS and GRAFAREND 1981).
Optimal observation geometries for the determination of polar motion have been derived by NOTHNAGEL
1991. Software for optimal observation schedules has been developed by e.g. STEUFMEHL 1994 and attempts
for an improvement of the stochastic model of VLBI have been performed by TESMER 2004.

In this thesis a method is presented which serves as a regression diagnostics tool' by taking into account the
geometry (of both the network and the observations) of a VLBI session by investigating the entire design
matrix of the associated adjustment problem by using existing algebraic and statistical tools. The objective
of this thesis is the development of an analysis tool for an automatic and objective separation of important
and less important (groups of) observations and for the determination of the impact of these observations
(or observation groups) on each parameter involved. In contrast to methods for the generation of observation

!In geodesy, the term ’regression’ is commonly used for the determination of the parameters of a regression line or a regression
polynomial. Here (as well as in geophysical literature or in statistical literature), the term ’regression’ is used in a more general
context, describing the procedure of parameter estimation in linear models (cf. BELSLEY et al. 1980).
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schedules (as developed by e.g. STEUFMEHL 1994) this method can be used for the analysis of existing
observation schedules and for the detection of important and thus influential observation groups. It is well-
known that influential (or high-leverage) observations significantly affect the estimated parameters and thus
should be controlled (or supported) by appropriate (independent) observations. On the other hand, redundant
observations only have negligible influence on the estimates and are thus candidates for observations that
can be omitted.

Since the regression diagnostics tools is directly applied to the design matrix of the associated adjust-
ment problem, the computation of normal equations (and thus the magnification of numerical sensitivity) is
avoided. Hence, the proposed method is quite insensitive to round-off errors and loss-of-digits problems.

Although the proposed method is not limited to the analysis of VLBI observations, in this thesis only
applications for geodetic VLBI are shown.

In addition to the presentation of the theoretical background of the regression diagnostics tool, a user-friendly
software package for the analysis of several kinds of adjustment problems and especially for the analysis of
VLBI observation schedules has been implemented and tested for its practical use.

In order to solve the tasks described above, mainly two methods will be used: On the one hand an algebraic
tool, called singular value decomposition, is used to provide geometrical insight into the system of linear
equations associated with the adjustment problem to be solved. The geometrical aspects of adjustment
theory (or the ’vector space approach’) offer a different perspective of least-squares methods than the calculus
approaches (as used in e.g. KocH 1999 or NIEMEIER 2002). The geometrical approach (as described in e.g.
MEissL 1982 or TEUNISSEN 1985) additionally provides a ’geometrical insight’ into geodetic adjustment
problems.

On the other hand a statistical tool, called cluster analysis, is being used for the detection of groups of
observations with a similar content of information. Although cluster analysis is usually applied to attributes
of real physical objects, it can also be used for the generation of observation groups. Chapters 1 to 3 of this
thesis deal with both the singular value decomposition and cluster analysis methods.

The general structure of this thesis is as follows:

e Chapter 1 repeats and summarizes the algebraic background necessary for the understanding of geo-
metrical interpretations of systems of linear equations. Therefore, vector spaces and projections onto
subspaces are used to derive the method of least-squares and to understand the use of the singular
value decomposition for algebraic problems (see e.g. MEYER 2000 or LAYy 2003).

e Chapter 2 describes the relations between the geometrical 'vector space approach’ and the calculus
approach of estimating parameters of linear models (also known as Gauss-Markov model). Again,
emphasis is put on geometrical aspects such as angles between vectors or subspaces in order to derive
regression diagnostics tools that can be interpreted geometrically.

e Chapter 3 provides the basics of cluster analysis methods, i.e., statistical methods for the detection of
similarities of objects and thus for the detection of groups of observations/information with a similar
impact. These methods will be of relevance for the practical investigations performed in chapter 5.

e Chapter 4 gives a short overview of the VLBI principle and describes the basic methods for the deter-
mination of the most common parameters usually estimated from VLBI observations.

e Chapter 5 shows applications of the methods developed in the previous chapters for the analysis of
measurements with plane and spatial interferometers. In this chapter, examples for practical applica-
tions of the VLBI observation schedule analysis software developed by the author of this thesis are
shown. The main intention of this chapter is to show the capabilities of the regression diagnostics tool
and to compare its results with existing strategies of schedule generation.

e Chapter 6 summarizes the capabilities of the regression diagnostics tool developed in the first chapters
and provides an outlook to further possible applications.

Each chapter of this thesis can be read separately. Thus, especially chapter 2 contains some aspects which
have already been treated in chapter 1.



1. Fundamental Linear Algebra

1.1 Introduction

Since geodetic adjustment theory consists of both linear algebra and statistical methods, some fundamental
basics about linear algebra have to be reviewed in order to solve the tasks described in the introduction. Linear
algebra provides the theoretical background for understanding the nature of systems of linear equations and
offers methods to solve over-determined and inconsistent systems of linear equations.

The analysis and the geometrical interpretation of such over-determined systems of linear equations is the
main content of this chapter and will lead to the concepts of vector spaces and projections onto subspaces.
Furthermore, the fundamental concept of least-squares solutions of over-determined systems of linear equa-
tions and their geometrical interpretation are derived. These methods are closely related to the singular value
decomposition (SVD) of the coefficient matrix of the linear system. The singular value decomposition will
be of main importance for the analysis of geodetic adjustment problems in general and for the analysis of
VLBI observation schedules as described in the following chapters in particular.

Most of the issues described in this chapter are of fundamental nature, and can be found in a variety of
literature. Here only the concepts will be described, more details can be found e.g. in LAY 2003, MEYER
2000 or STRANG 2003.

1.2 Systems of linear equations

In many scientific research areas large systems of (linear) equations have to be solved or analyzed in order to
get a deeper understanding of the corresponding adjustment problem. Any kind of such a system of linear
equations (or a linear system) as

01171 + @12T2 + -+ - + G14%y = Y1
G211 + G22T2 + -+ A2uTy = Y2 (1.1)

An1T1 + QpaZa + - + Apy Ty = Yn
can be expressed in matrix notation as
Ax =y, (1.2)

with A being a n x u coefficient matrix, y being a n X 1 vector of known constants (also known as ’right-
hand-side of the system’) and x being a v X 1 vector of unknown constants. Depending on the entries of y
the system is either called homogenous (for y = 0) or inhomogeneous (for y # 0). Arranging the coefficient
matrix A and the right-hand side of the system y in a common matrix yields the augmented matrix [A | y]
of the system.

A linear system (1.1) has either
e 1o solution,
e exactly one solution, or
e infinitely many solutions.

If a system has no solution it is called inconsistent; or consistent if it has at least one solution. In addition,
there are three possible classes of linear systems (valid for linear systems of full rank):
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e uniquely determined systems (u = n),
e under-determined systems (u > n) and

e over-determined systems (u < n),

with each of them either being consistent or inconsistent. In addition, the rank of the linear system has to
be taken into account (see below).

The determination of the solution set(s) of a linear system is aided by visualisation tools called row picture
and column picture: The row picture is generated by visualising the rows of the augmented matrix (i.e.,
each equation) as n (hyper-)planes in R". If these hyperplanes have one common point of intersection the
linear system has only one (unique) solution. Parallel hyperplanes indicate no solution while coinciding
hyperplanes or intersection lines indicate infinitely many solutions. Figure 1.1 (a) shows an example for a
consistent 2 x 2 linear system.

g

11

a) vy b.) T

7] / K |

Figure 1.1: Row picture and column picture of a 2 x 2 linear system

For the column picture, equation (1.2) is interpreted columnwise, i.e., by visualising each column of the
augmented matrix (STRANG 2003). The solution of the system (if any) is formed by determining the weights
of that linear combination of the columns of A that yields the right hand side y of the system. Figure 1.1 (b)
shows the column picture for the same 2 x 2 linear system as depicted in figure 1.1 (a).

The row picture can be used to explain the important term of the condition of a linear system: A linear
system (and thus its solution) might be more or less sensitive to small perturbations caused by e.g. roundoff
errors or loss-of-digits. Graphically this is displayed in figure 1.2 which shows the effect of small changes of
the coefficient matrix or the right hand side of the system on the solution of a 2 x 2 linear system. Depending
on the ’geometry’ of the linear system (i.e., the intersection angle of the hyperplanes) the solution might
change significantly. This sensitivity is inherent to the problem to be solved and cannot be overcome by
any numerical 'tricks’ (MEYER 2000). Thus a system is named ill-conditioned when even small changes
produce relatively large changes in the solution. Otherwise, the system is said to be well-conditioned. The
condition of a linear system is described by the condition number which -in the ideal case- is close to
one and thus indicates (almost) orthogonal hyperplanes (for the computation of the condition number see
section 1.6.4.1 on page 26).

As described in many fundamental books about Linear Algebra (see e.g. LAy 2003, STRANG 2003 or
MEYER 2000) solutions of linear systems are easily determined by applying Gaussian elimination to the
augmented matrix of the system. Using elementary row operations the system [A | y] is transformed into
a (row equivalent) triangular form [E | ¢] by eliminating all elements below the pivotal element (=for-
ward step). After triangularisating the coefficient matrix the solution is computed by back-substitution
(= backward step) until each unknown has been determined.
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Perturbed solution

Original solution

> >

Figure 1.2: Ill-conditioned 2 x 2 linear system (MEYER 2000)

In the ideal case performing Gaussian Elimination on the coefficient matrix yields a complete triangular
form, i.e., there never occurs a row of the form

(00 -+ 0 | «),witha#0. (1.3)

However, in many situations « # 0, indicating an equation like
0x1 4+ 022 + - - - 4+ 0x), = «, (14)

occurs and thus the back substitution process can not be completed. Equations as (1.4) with « # 0 indicate
an inconsistent system of linear equations which can not be solved exactly. Otherwise the system is said
to be consistent and the system has (at least) one solution.

1.2.1 Solutions of linear systems
The general solution x of a linear system Ax =y is composed by the sum of

1. the solution of the corresponding homogeneous system and

2. a particular solution of the non-homogeneous system.

Thus, at first, the homogeneous system Ax = 0 has to be solved:

(1.) The trivial solution (i.e., x1 = z2 = - -+ = x,, = 0) is always a solution of a homogeneous system. Thus,
all solutions different from the trivial solution have to be determined by applying the Gaussian algorithm to
the system [A | 0] yielding the system [E | 0] with E having the general form:

@*******
-_6__0_‘:L®*****
00 0i(x) * * * =«
E: ————————————
00 00 0 0i()*
00 00O0O0TO0 D0
00 00O0O 0O 0O

In many cases E (also known as row echelon form) is not of purely triangular form but rather of a ’stair-
step’ type of triangular form (MEYER 2000) caused by linear dependencies of some columns of the coefficient
matrix A. Although the entries of E are not unique the shape of E is unique. The first non-zero entries in
each row (circled elements) denote pivot elements and thus indicate independent column vectors (—basic
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columns). The respective variables are also known as basic variables. Non-basic columns can be expressed
as linear combinations of basic columns and thus reveal free variables whose values have to be chosen.
Whenever a system is consistent, the solution set can be described explicitly by solving the reduced system
for the basic variables in terms of the free variables. Thus, in the case of a purely triangular matrix E no free
variables exist. On the other hand, if at least one free variable exists there is an infinite number of solutions.
Consequently, the trivial solution is the only solution if and only if there are no free variables.

In general, the basic variables can be expressed in terms of the free variables. All solutions of the homogeneous
system can be described by successively setting one free variable to one and the remaining free variables to
zero. For each case a particular solution h; is obtained. The general solution x of the homogeneous system
Ax = 0 is generated by all possible linear combinations of the particular solutions h;, i.e.; by

x=zphi +xr,ha 4+ +2p,  hy (1.5)

with zf ,2y,,...,2y,_, denoting the free variables and the n x 1 vectors hy, ha, ..., h,y_; representing par-
ticular solutions of the system. As the free variables x ¢, range over all possible values, the general solution
generates all possible solutions. Thus, for each non-basic column of E (i.e., for each free variable) one par-
ticular solution h; exists (see e.g. MEYER 2000).

(2.) In order to solve the (non-homogeneous) system Ax = y, equation (1.5) has to be extended by a
particular solution p generated by setting the free variables to xy, = x5, =--- =5, =0.

The general solution of a non-homogeneous system is given by:
X:p+$f1h1+{Ef2h2+"'+117j'n7rhn7r. (].6)

Thus, the general solution of the associated homogeneous system is a part of the general solution of the
original non-homogeneous system.

1.2.2 Rank of a matrix

The most basic definition of the rank r of a matrix A is given by the number of pivot elements of a
matrix A. Thus, if A is of dimension n X u the rank r can never exceed min(n,u). Furthermore, r equals
the number of basic columns in A and thus equals the number of non-zero rows in E. Other rank definitions
can be found in algebraic literature.

1.3 Vector spaces

Considering linear systems as linear combinations of the columns of the coefficient matrix A (with x being
the weights of that particular linear combination which generates the right hand side y of the system via
Ax =7y) led to the column picture introduced above. A generalisation of the column picture from R? or R3
to R™ leads to the theory of vector spaces which provides a very elegant way of investigating linear systems.
A general vector space definition is given in table 1.1.

1.3.1 Subspaces and sums of subspaces

Subsets of a vector space V which fulfil the closure properties (A1) and (M1) of table 1.1 are said to be
subspaces of V. Thus, every vector through the origin as well as linear combinations of such vectors form a
subspace. The zero vector is called the trivial subspace. In addition, an entire vector space is a subspace
of its own.

Two subspaces might be 'added’ to generate another subspace. Formally,

X+Y={x+y|xeX and y eV}, (1.7)

with X and Y denoting subspaces of V. Then the sum (also denoted as X @ ) is again a subspace of V.



1.3. Vector spaces

13

Vector Space Definition

A set V is called vector space over F when the vector addition and scalar multiplication operations
satisfy the following properties:

(A1) x+y € Vforall x,y € V. This is called the closure property for vector addition.

(A2) (x+y)+z=x+(y+2) forevery x,y,z € V.

(A3) x+y=1y+xforevery x,y € V.

(A4) There is an element 0 € V such that x + 0 = x for every x € V.

(A5) For each x € V, there is an element (—x) € V such that x4+ (—x) = 0.

(M1) ax eV forall « € F and x € V. This is the closure property for scalar multiplication.
(M2) (af)x = a(px) for all a, 8 € F and every x € V.

(M3) a(x+y)=ax+ ay for every o € F and all x,y € V.

(M4) (a+ B)x =ax+ (x for all o, 5 € F and every x € V.

(M5) 1x = x for every x € V.

F denotes a field of scalars. Since in the following investigations and analyses only real vector spaces R™
are of interest, F is the field R of real numbers.

Table 1.1: Vector space definition (MEYER 2000)

1.3.2 Spanning sets

All possible linear combinations of a set of vectors S = {v1,va,...,v,} from a vector space V are called
span(S), i.e.,
span(S) = {a1vi + agvo + -+ a,v, | ay € F}. (1.8)

Thus, the subspace V = span(S) generated by forming all linear combinations of vectors from § is called the
space spanned by span(S). Then span(S) is called the spanning set for V. Thus, V might be spanned by
many different spanning sets. Furthermore, span(S) might contain redundant vectors which do not contribute
to the generation of V.

1.3.3 Bases of vector spaces
1.3.3.1 Linear independence, bases and dimension

Any set of vectors is said to be linearly independent if only the trivial solution ¢y = as =---=a, =0
is a solution of the homogeneous equation

a1vi + agvo + -+ apv, = 0. (1.9)



14

1. Fundamental Linear Algebra

Any linear independent spanning set for a vector space V is called a basis for V. As shown in e.g. MEYER
2000 a vector space might be generated by many different bases. Unlike spanning sets, bases do not contain
redundant vectors. According to MEYER 2000 a linearly independent spanning set for a vector space V is
called a basis for V. If V denotes a subspace of R and B = {b;,bs,...,b,} CV, then

e BB is a basis for V,

e 3 is a minimal spanning set for V and

e 3 is a maximal linearly independent subset of V.

The number of vectors in any basis for V is called dimension (dim) of a vector space V. It should not
be confused with the number of components contained in the individual vectors of V!

1.3.3.2 Coordinates

An important reason for specifying a basis B for a vector space V is to generate a ’coordinate system’ for V:

If B={by,...,b,} is a basis for a vector space V, then each vector x in V can be expressed uniquely by a
set of scalars ¢y, ..., c, such that
X=cb;+ - +c¢,b,. (1.10)
The scalars (or weights) ¢i, .. ., ¢, are the coordinates of x relative to the basis B, or the B-coordinates
of x. For the standard basis, i.e., for basis vectors eq,...,e, with
1 0 0
0 1 0
er=| .|, e=1| .|, ..., e.=1| .|, (1.11)
0 0 1

the coordinates of a vector x are just the components of x.

1.3.4 The four subspaces of a matrix
1.3.4.1 Column space and row space

As introduced in section 1.3 all possible linear combinations of certain vectors form a vector space. This
means that applying Ax to any n x u Matrix A with an u X 1-vector x generates a subspace of R" (also
known as range R(A) of A). Since every matrix-vector product Ax is a linear combination of the columns
of A, Ax is the space spanned by the columns of A. This space is called column space of A and formally
reads

R(A)={Ax|x€R"} CR" =col A. (1.12)

Likewise, the space spanned by the rows of A (i.e., R(A’) or the space spanned by the columns of A’) is
called row space of A:

R(A")={A'y |y € R"} CR" =row A. (1.13)
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1.3.4.2 Left and right nullspaces

In addition to the row and the column space of a matrix A a matrix possesses two other vector spaces: The
set, of all possible solutions of the homogeneous system Ax =0, i.e.,

N(A) = {x | Ax = 0} C R" (1.14)

for any n x u matrix A, forms the right nullspace (or kernel) of A. The set of vector spaces associated
with any matrix A is completed by the left-hand nullspace N(A’) of A, i.e., by

N(A')={y|A'y =0} CR™ (1.15)

Figure 1.3 summarizes the four vector spaces of a matrix (STRANG 2003).

column space
(all Ax)

row space
(al A'y)

left-hand
nullspace
(A'y=0)

Null space
(Ax=0)

N(A")
N(A) Dimension n-r
Dimension u-r

Figure 1.3: The four subspaces of an n x u matrix A (little squares indicate orthogonality of subspaces)

1.3.4.3 Dimensions of subspaces

In the general case of an n x uw matrix A of rank r the columns of A do not form a basis if there are
dependencies between some of the columns. However, the basic columns form an independent set and thus
form a basis for R(A). Thus, the dimension of the column space equals dim R(A) = r = rank(A). As shown
by e.g. MEYER 2000 both the dimensions of the column space and the row space equal r. Consequently, the
dimensions of the nullspace and the left nullspace equals © — r and n — r, respectively. Table 1.2 summarizes
the four vector spaces of a general n x u matrix of rank r.

Subspace: Dimension:

Range or column space R(A) = {Ax} CR"” dim R(A)=r

Row space R(A’) ={A'y} CR® dim R(A’) =
Nullspace NA)={x|Ax=0}CR* dim NA)=u—r
Left nullspace NA)={y|A'ly=0}CR* dim NA)=n-—r

Table 1.2: Summary of the four subspaces of an n x v matrix A
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1.4 Linear transformations

Any linear transformation T from one (finite-dimensional) vector space to another (finite-dimensional) vec-
tor space (as e.g. rotations, projections or reflections as well as the identity transformation and the zero
transformation) can be expressed in matrix form. In general every n X u matriz A acts as a (linear) mapping
from R* to R™ (an example is shown in figure 1.4). Therefore, a proper basis has to be chosen in either vector
space. Then A is called the coordinate matrix of the linear transformation (MEYER 2000). One of
the main aspects of Linear Algebra is to analyse special properties of such transformations (see e.g. LAY
2003 or STRANG 2003).

X3

Multiplication with A

Figure 1.4: Transformation from R? into R? (maps a sphere onto an ellipse)

1.4.1 Change of basis

Due to the base dependency of the matrix representation of such transformations some properties might
not be visible when using the initial (standard) basis. The solution of a problem (which might be initially
described using a basis B) is generally solved easier after changing to a new basis C. Thus a change of
basis might reveal special properties of a linear transformation so that the problem becomes more lucid
(DErRMANIS and RuMMEL 2000). The new basis might consist of orthogonal basis vectors and might yield
a diagonal structure of the coefficient matrix, which is obviously easy to solve.

1.4.1.1 Matrix-vector product as a change of basis operation

With B = {by,...,b,} and C = {c1,...,c,} being two bases of a vector space V the n x n change-of-
coordinate matrix Pc. 5 which transforms a vector from B to C via

x]e = Peen [%] (1.16)
is computed by arraging the C-coordinates of the vectors in the basis B as

Peep=[ b1 [b2e -+ [bnlc ] (1.17)

Formula (1.16) can be generalised to the dimension n x u. In any case the coordinate vectors of the old basis
have to be expressed in terms of the new basis to compute Pcp via equation (1.17) (LAY 2003).
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1.4.1.2 Change of basis for coordinate matrices

Due to a change of the underlying basis from basis B to B’ the change of the coordinate matrix A of a linear
transformation on V is computed by (MEYER 2000):

[Al; =P 1 [A]z P, with P =[I]y. (1.18)
Equivalently,
[Alz =Q'[AzQ, with Q=[Izz=P", (1.19)

being the change of basis matrix from B’ to B. A proof can be taken from MEYER 2000.

In general, applying left-multiplication of a coordinate matrix A with a change-of-basis matrix P is effectively
a sequential application of matrix-vector multiplications and thus results in a change-of-basis operation for
every column of A. Therefore, left-multiplication with a change-of-basis matrix introduces a new basis to the
column space of A. On the other hand, right multiplication of a coordinate matrix with a change-of-basis
matrix (which is different from the one mentioned above) results in a change-of-basis operation for the row
space of A.

1.4.2 Eigenvalues and Eigenvectors

The application of a linear transformation T on a vector u (via u’ = Au) usually results in a change of
the direction of u. On the other hand, there might be vectors which keep their direction (probably with a
change of sign) after a linear transformation. A two-dimensional example is shown in figure 1.5. Vectors (or
vector spaces) which do not change their direction after applying a linear transformation are called invariant
subspaces and are important since they are used to simplify coordinate matrix representations of T.

Figure 1.5: Effects of multiplication by A

Invariant subspaces are identified by determining eigenvectors and eigenvalues of the coordinate matrix A.
According to LAY 2003 an eigenvector of an n x n matrix A is a non-zero vector x such that Ax = Ax for
some scalar A. A scalar A is called eigenvalue of A if there is a non-trival solution x of Ax = Ax; such an x
is called an eigenvector corresponding to A. All possible linear combinations of the eigenvectors are called
eigenspace.

Thus, Ax = Ax shows that under a transformation by A the eigenvectors experience only changes in
magnitude or sign. The orientation of Ax in R" is the same as that of x. The eigenvalue A indicates the
amount of ’stretch’ or ’shrink’ to which the eigenvector x is subjected when transformed by A.

Eigenvalues and eigenvectors can be used to factorize an n X n-matrix A into

A =PDP! (1.20)
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with P being a matrix containing n eigenvectors of A and D being a diagonal matrix containing n eigenvalues
of A on its main diagonal. A is said to be diagonalizable if such a factorization exists, i.e., only if A has
n linearly independent eigenvectors. In other words, A is diagonalizable if there are enough eigenvectors
to form a basis of R”. Such a basis is called eigenvector basis. In this case, the B-matrix of the linear
transformation 7T is diagonal. Diagonalising A is effectively finding a diagonal matrix representation of the
linear transformation x — Ax.

Rearranging equation (1.20) to P"'AP = D shows that A is diagonalized by applying the change-of-
basis operators P (and P~!) to A and thus by changing to a new basis for R". Equation (1.20) is also
known as spectral decomposition or eigenvalue decomposition (EVD) and is of great importance for statistical
applications and regression problems.

Multiple eigenvalues / non-diagonalizable matrices

Problems may occur when A does not possess n distinct eigenvalues. As shown in LAY 2003 or MEYER
2000 a matrix is only diagonalizable if and only if it possesses a complete set of eigenvectors and thus only
if it possesses n distinct eigenvalues. Matrices that fail to possess complete sets of eigenvectors are called
deficient.

In the case of several identical eigenvalues \; (called algebraic multiplicity of the eigenvalue A;) the number of
associated eigenvectors (called geometrical multiplicity of A;) can be smaller than the algebraic multiplicity.
Geometrically, this means that no unique basis vector for the eigenspace can be found.

1.5 Orthogonality and Least-squares

Orthogonality of vectors or vector spaces and projections onto vector spaces provide a very elegant and
geometrically comprehensible way of deriving methods for solving over-determined linear systems in a least-
squares sense without using the usual calculus approach (as described e.g. in KocH 1999). Both the geometric
‘vector space approach’ and the calculus approach lead to the well-known normal equation approach. In
addition, the vector space approach provides further methods and analysis tools to get deeper insight into
the adjustment problem.

1.5.1 Inner products, norms and metric of a vector space

The inner product, dot product or scalar product of two vectors u and v is defined as (TREFETHEN
1997)

uv=u-v=_[u ux - Uy . = ULV + UgVg + - -+ + Up U, (1.21)

Un
Furthermore it is used to compute the angle § between two vectors in R™ via

u v
cosf = ——. (1.22)
([l - [[v]]
Thus, any two vectors in R™ are orthogonal if their inner product equals zero. Any vector space that is
equipped with an inner product is called an inner-product space.

In formula (1.22) the norm operator ||-| has been used. As described in e.g. VANICEK and KRAKI-
WSKY 1986 the (general) norm operator is used to measure distances p(a,b) between any two elements a, b
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of a vector space. For any vector space, the way of formulating this distance, or metric, can be chosen in
many ways. The most common norm (or length) of a vector u -also known as Euclidean norm or 2-Norm-
is defined as

lull = Vol u = \fu? +ud 4 a2, (1.23)

The general properties and the different types of norms can be found e.g. in MEYER 2000. A vector space
in which a metric has been defined is called a metric space.

1.5.1.1 Orthogonal complements

If a vector u is orthogonal to every vector in a subspace W of R™, then u is said to be orthogonal to W. The
set of all vectors u that are orthogonal to W is called the orthogonal complement of W and is denoted
by W+ (STRANG 2003). Thus, the nullspace N(A) of a matrix A is an orthogonal complement of the row
space of A while the nullspace of A’ is an orthogonal complement of the column space of A, formally:

(Row A)X =Nul A and (Col A)* = Nul A".

The orthogonality of the four subspaces of a matrix A is visualised (by little squares) in figure 1.3 on page 15.

1.5.1.2 Orthogonal projections

Orthogonal sets (e.g., orthogonal bases) are in particular helpful in simplifying calculations. This becomes
obvious when considering the problem of projecting vectors onto certain orthogonal subspaces. An example
is the decomposition of a vector y (in R™) into the sum of two vectors, i.e., y = ¥ + z with § being a
multiple of a nonzero vector u and z being orthogonal to u (both in R™). As shown on the left of figure 1.6
(for the R2-case) the decomposition is given by orthogonally projecting y onto u and z, respectively. As
derived in e.g. LAY 2003 y and z are computed as follows:

y= &u is the orthogonal projection of y onto u and
u-u
y-u .
z =y — ——u is the component of y orthogonal to u. (1.24)
u-u
z=y-y y
Z=Yy- y y \
|
! |
! I
l I
! I
1 Ce
[ . 0 ¥ = proj
0 - . W y =proj,, ¥y
y=au u

Figure 1.6: Decomposition into orthogonal complements, left: R?, right: R™



1. Fundamental Linear Algebra

For R™ orthogonal projections can be generalised to the Orthogonal Decomposition Theorem (LAY 2003):

Orthogonal Decomposition Theorem

Let W be a subspace of R™. Then each y in R™ can be written uniquely in the form

y=y+z
where ¥ is in W and z is in W, In fact, if {ui,...,u,} is any orthogonal basis of W, then
. ‘u ‘u
PO 4L SR 4.3 (1.25)
u; - up, - up
andz=y—y¥

Each term in (1.25) is an orthogonal projection of y onto a one-dimensional subspace spanned by
one of the u-vectors in the basis for W. The orthogonal projection § of y onto W is the sum of the
projections of y onto one-dimensional subspaces which are orthogonal to each other (as shown on the
right-hand side of figure 1.6 on the preceding page). This principle is of fundamental importance for the
derivation of the least-squares algorithm in the next section.

1.5.1.3 Properties of orthogonal projectors

Some properties of (orthogonal) projection matrices will be relevant in the following chapters. Hence, a brief
summary is given below (CAsPARY and WICHMANN 1994, and MEYER 2000). For any projection matrix P
holds:

e P is idempotent, i.e., P2 =P,

e Px =x, i.e., further projection does not alter the previous projection result,

e since P is idempotent, the eigenvalues of P are either 0 or 1 and

e the trace and the rank of P are identical, i.e., tr(P) = rk(P).
For orthogonal projection matrices also
e P=P=P°

applies.

1.5.2 Least-squares problems

For an over-determined system of linear equations Ax = y the observation vector y almost certainly lies
outside the column space R(A) of the coefficient matrix A, i.e., the system is almost certainly inconsistent.
Nevertheless, the system can be solved (at least approximately) by finding a vector inside R(A) and with
minimal distance to y. Following the so-called Closest Point Theorem (MEYER 2000) such a vector is given
by the orthogonal projection § of y onto the column space R(A) of the coefficient matrix A. Thus, ¥ is
an approximation of y which minimizes the distance || y — Ax || (usually measured by using the 2-norm).
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Consequently, the general least-squares problem is to find an x that leads to the smallest length of the
vector v =y — Ax (also known as residuals). The vector X, which fulfils the (consistent) system

Ax =1y, (1.26)
with § being the projection of y onto col(A), is called the least-squares solution of Ax =y (see figure 1.7).

Thus, the elements of X denote the coordinates of ¥ with respect to the basis formed by the columns of the
coefficient matrix A. As long as there is no rank deficiency, i.e., as long as there are no free variables X is a
unique vector®.

Col A AX

Figure 1.7: Least-squares principle

1.5.2.1 Least-squares solutions based on normal equations

As shown by e.g. STRANG 2003 the vector space based least-squares approach also leads to the well-known
normal equations: Since y — § =y — AX is orthogonal to the column space of A, the following equation
holds:

Aly-A%) =0
Ay —A’Ax=0
A'Ax=A'y (1.27)

Formula (1.27) yields a consistent (!) but probably rank-deficient system of linear equations for a compact
least-squares solution of the original linear system Ax = y. As many authors (GRAMLICH and WERNER
2000, LawsoN and HANSON 1995, or KALMAN 1996) show, especially for ill-conditioned systems the solution
of the normal equations becomes very sensitive to round-off errors and loss-of-digits since any errors in the
entries of A are squared in the entries of A’A. Thus, the computation of the normal equations A’A should
be avoided. Alternative approaches for the solution of over-determined systems of linear equations in a
least-squares sense are based on numerically more stable algorithms such as e.g. the QR-decomposition or
the singular value decomposition of the coefficient matrix A. These methods are based on (vector length
preserving) orthogonal transformations such as Householder transformations or Givens rotations (see e.g.
GRAMLICH and WERNER 2000).

Accounting for different accuracies of the elements on the right-hand side of Ax = y leads to the weighted
least-squares principle. Applications of the least-squares principle in adjustment theory or linear regression
will be further discussed in chapter 2.

I Here, correlations between parameters can be recognized by inspecting the angles between the column vectors of A: If there
exists an (almost) linear dependency of the column vectors, no separation between the individual coordinate axes is possible
and thus the coordinates of § can not be well separated.
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1.6 Singular Value Decomposition

One of the main aspects of linear algebra is the factorisation of linear systems, i.e., the decomposition of
matrices into matrices with special properties. For example, the results of the Gauss algorithm can also be
obtained by LU decomposition of the coefficient matrix or a linear system can be solved by performing a QR
decomposition of its coefficient matrix (see e.g. STRANG 2003, GRAMLICH and WERNER 2000).

According to LAy 2003 singular value decomposition is 'one of the most useful matrix decompositions
in applied linear algebra’. As described by STEWART 1993 the singular value decomposition has been
developed by E. Beltrami and C. Jordan in 1873. Due to its outstanding relevance in linear algebra a variety
of derivations can be found in the literature (e.g. BLANK, S.J. et al. 1989 or STEWART 1993). A complete
definition of the singular value decomposition reads (MEYER 2000):

Singular Value Decomposition

For each A € R" of rank r, there are orthogonal matrices U, x,, Vux, and a diagonal ma-
trix S, x, — diag(o1,09,...,0,) such that

S 0

a-v(g o

) V' withoy >09>--- >0, >0. (1.28)
nXxXu

The o;’s are called the nonzero singular values of A. When r» < p = min{n,u}, A is said to
have p — r additional zero singular values. The factorisation in (1.28) is called a singular value
decomposition of A, and the columns in U and V are called left-hand and right-hand singular
vectors for A, respectively.

1.6.1 Geometrical derivation of the Singular Value Decomposition

Contrary to more mathematical derivations (as given above) here a geometrical approach is used, as presented
by TREFETHEN 1997. At first, the so-called reduced Singular Value Decomposition is derived.

1.6.1.1 Reduced Singular Value Decomposition

As described in chapter 1.4 every n xu matrix A acts as a linear mapping from R* to R™. Thus, every matrix A
maps a unit sphere S in R" into a hyperellipse AS in R™. An example can be found in figure 1.4 on page 16.
The hyperellipse in R” can be obtained by stretching a unit sphere in R™ by some factors o1, ..., o, (some of
which might be zero) in orthogonal directions expressed by unit vectors uy, ..., u, € R™. The vectors o;u; are
called principal semiaxes of the hyperellipse. As indicated on the right hand side of figure 1.8, these factors
are the singular values o1,...,0, of A and indicate the lengths of the w semiaxes of the hyperellipse AS.
Usually these values are sorted in decreasing order, i.e., 01 > 02 > -+ > g, > 0.

The w unit vectors u; of the principal semiaxes of AS are defined to be the left singular vectors of A,
numbered to correspond with the singular values.

Furthermore, u right singular vectors v; of unit length are defined and correspond to the preimages of the
principal semiaxes of AS. These vectors are displayed on the left hand side of figure 1.8. Mathematically,
the action of a matrix A on the right singular vectors v; is

Av;=oju; for 1<j<u, (1.29)
which can also be expressed in matrix notation as

AV = US. (1.30)
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Here, Sis a u x u diagonal matrix with the positive real singular values ¢; on its main diagonal, U is an
n X u matrix with orthonormal columns and V is an u X u matrix with orthonormal columns. Since V is
orthonormal, V=! = V', and thus equation (1.30) can be written as

A =TSV (1.31)

Factorisation (1.31) is also known as reduced singular value decomposition of A and is the basis for the more
standard ’full’ singular value decomposition of A described below.

A
-7 RN
(0]
2 o,u,
V’ Y S U
i PN 2 7 X PN
2
Vl 0_1
V1 o0, U

N—

V

Figure 1.8: Linear mapping by A and singular value decomposition of A (STRANG 2003)

1.6.1.2 Full Singular Value Decomposition

For an overdetermined system (i.e., n > u) the columns of U are just u orthonormal vectors in R™ which do
not form a complete basis for R™. Thus, n — u additional vectors have to be found to generate a complete
basis and to extend U to an orthonormal n x n matrix U. The additional vectors can be constructed e.g.
by using the Gram-Schmidt approach to make the columns of U form a complete (orthogonal) basis for R™
(STRANG 2003, or MEISSL 1982).

In addition, S has to be modified in such a way that the n — u columns of U are multiplied by zero so that
the product (1.30) remains unchanged. The new n x u matrix S consists of S extended by n — u rows of
Zeros.

Since V remains unchanged, the full Singular Value Decomposition of A now reads:
A=TUSV/, (1.32)

with U being an orthonormal n X n matrix containing the left singular vectors of A, S being an n x u diagonal
matrix with the singular values of A on its main diagonal and V an u X u orthonormal matrix containing
the right singular vectors of A. Graphically this factorisation can be visualised as shown in figure 1.9.

Singular Value Decomposition is neither limited to matrices with full rank nor to matrices containing more
rows than columns (i.e., over-determined linear systems). Instead, any arbitrary n x v matrix of rank r can
be factorised using formula (1.31) or (1.32) with S containing r nonnegative diagonal entries o;.

The singular vectors u; and v; correspond to the eigenvectors of AA’ and A’ A, respectively. The eigenvalues
of AA’ and of A’A are the same and are the squared singular values of A. The eigenvalue decomposition
(or diagonalisation) of AA’ and A’A is always possible since AA’ and A’A are symmetric matrices. For
the same reason, the singular vectors u; and v; form a complete, orthogonal basis (see e.g. STRANG 2003).
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7777777

| |
A U S V'
nxu nxn nxu uxu

Figure 1.9: Graphical visualisation of the Singular Value Decomposition (SVD) of an n x u matrix A (for
n > u, dashed lines indicate the differences between reduced and full SVD)

1.6.1.3 Geometrical analogies of the singular value decomposition

As shown in figure 1.8 on the preceding page the components of the factorisation of A into U, S and V also
decompose the mapping represented by A (STRANG 2003 and TREFETHEN 1997):

e V does not change the form of the unit sphere but introduces a new basis for R* (also known as domain
space of the mapping),

e S stretches the unit sphere into a hyperellipse and finally

e U rotates or reflects the hyperellipse without changing its shape (within the so-called range space of
the mapping).

A and S represent the same mapping with respect to different bases: A describes the mapping with respect
to the standard bases of R™ and R*, S with respect to the bases formed by the left and right singular vectors.
Thus, singular values reveal some information about the geometry of linear transformations since they show
how much distortion can occur under a transformation by a matrix A (MEYER 2000). On the other hand,
the singular value decomposition shows that any rectangular matrix can be diagonalised if appropriate bases
for the domain and range space are chosen.

1.6.2 Canonical form and least-squares solutions
1.6.2.1 New Bases for the four fundamental subspaces of a matrix

For an arbitrary matrix A the full singular value decomposition determines new bases for the four funda-
mental subspaces. For the special case of an over-determined linear system (with n > u and rank r < u)

e the first r left singular vectors uy, ..., u, form an orthonormal basis for the column space of A (Col A)
and
e the remaining n —r left singular vectors u,,1, ..., u, form an orthonormal basis for the nullspace of A’

(Nul A’ = (Col A)1).

e An orthonormal basis for the row space of A is given by the first r right singular vectors vq,...,v,
and

e an orthonormal basis for the nullspace of A (Nul A) is formed by the remaining (if any) w — r right
singular vectors v,y1,...,Vy.

As shown in e.g. MEYER 2000 or LAy 2003 the singular vectors u; and v; are not unique (while the singular
values o; are unique). The relations between the four bases are shown in figure 1.10 (LAY 2003).
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Multiplication by A

Col A =Row A’

Figure 1.10: New bases for the four fundamental subspaces of a matrix A generated by singular value
decomposition of A (Singular values are unique, singular vectors are not unique!).

1.6.2.2 Canonical form

The computation of new bases for the fundamental subspaces of A actually transforms A into its diagonal
form S. This corresponds to changing the associated linear system Ax = y from the standard basis to
new orthonormal bases using change-of-basis operations (see section 1.4.1). The linear system is said to be
transformed into its ’canonical form’ which significantly simplifies the corresponding least-squares problem
(STRANG and BORRE 1997):

The change-of-basis is performed by expanding y € R™ in the basis of left singular vectors of A (columns
of U) and by expanding x € R" in the basis of right singular vectors of A (columns of V). The coordinate
vectors for these expansions are

y=Uy, and x=V'x (1.33)
Using A = USV’, the relation Ax = y can be expressed in terms of y and X:
y=Ax < Uy=UAx=UUSV'x < y=S8x. (1.34)

Applications and interpretations of the canonical form of Ax = y can be found in STRANG and BORRE
1997 and will be treated in more detail within the context of techniques for parameter estimation in linear
models in chapter 2.

1.6.2.3 Pseudoinverse

Arranging the left singular vectors and right singular vectors of an n X w matrix A (with n > w and
rank A =) as

Uu=[U, U,_,], with U,=][u;...u,] and

V=[V, Vu.], with V,.=[vi...v,]
the pseudoinverse (or Moore-Penrose inverse) of A can be computed by

T

1
AT =V,8,7'U = — v

729
: 4
i=1

(1.35)
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which in the case of a square matrix with full rank (i.e., n = u = r) equals the common matrix inverse A~!
(STRANG 2003). Thus, the pseudoinverse of A can be computed after singular value decomposition of A by
simply inverting its singular values. Geometrically A" depicts the inverse mapping of A, i.e., AT maps from
R™ to R“. Details about different kind of matrix inverses can be found in e.g. CASPARY and WICHMANN
1994.

1.6.2.4 Least-squares solution by singular value decomposition

Using the pseudoinverse, the overdetermined linear system Ax =y can be solved in a least-squares sense by

x=A%ty=V,S 'Uy. (1.36)
Left-multiplication by A yields
Ax = (U,S,V))(V.S;'Uyy)
= U,S,S;'Uly (since V, is orthonormal and so V.V, = 1,.)
= U,Uy.

Here, U, Uy is the orthogonal projection § of y onto the column space of A. Thus X is a least-squares
solution of Ax =y (LAY 2003). In general, using the pseudoinverse for the solution of a linear system yields

a solution of minimal norm (MEYER 2000).

1.6.3 Computational aspects

For the computation of the singular value decomposition of a matrix A as in equations (1.31) or (1.32)
sophisticated and highly-optimised algorithms and implementations exist (GoLuB 1965, or GOLUB and
REINscH 1970). These algorithms are variants of algorithms used for the computation of eigenvalues and
are given in e.g. GOLUB and KAHAN 1965, or PRESS et al. 1986. Other computation methods are described
in TREFETHEN 1997. Implementations of fast and efficient algorithms with minimum memory requirements
can be found in numerical libraries such as LAPACK or the GNU Scientific Library (GSL).

1.6.4 Applications of the Singular Value Decomposition

Singular value decomposition is used in a variety of sciences such as e.g. statistics, image processing or data
compression. The application of singular value decomposition within parameter estimation techniques will
be treated in more detail in chapter 2. Below a few general applications of the singular value decomposition
are given.

1.6.4.1 Condition number of a linear system

Based on the singular value decomposition of a matrix A a new definition of the (2-norm) condition of a
matrix (or for the associated linear system) can be given: The degree of distortion of the unit sphere under
a transformation by A is measured by k = o1 /0y, i.e., the ratio of the largest singular value to the smallest
singular value (MEYER 2000). A matrix is singular if its condition number is infinite (i.e., if there exists at
least one zero singular value), and it is ill-conditioned if its condition number is very large (indicated by at
least one very small singular value) (cf. section 1.2).

1.6.4.2 Rank determination

Singular Value Decomposition also serves as a robust tool for rank determination since the number of non-
zero singular values equals the rank of a matrix A (e.g., LAwsoN and HANsON 1995, or LAy 2003). Roundoff
errors often lead to wrong rank determination results so that in practice very small singular value are assumed
to be zero and the remaining non-zero singular values are used for the determination of the effective rank of
a matrix A (GRAMLICH and WERNER 2000, or TREFETHEN 1997).



1.6. Singular Value Decomposition

27

1.6.4.3 Lower rank approximations

Based on the singular value decomposition of a matrix A this matrix can be expressed as an outer product
expansion:

A = Zoiuivg. (137)
=1

Equation (1.37) represents A as a sum of rank-one matrices (as does formula (1.35) for the pseudo-inverse).
As shown by e.g. TREFETHEN 1997 or KALMAN 1996 equation (1.37) can be used to approximate any kind
of (data) matrix by a sum of less than u ’slices’, i.e., by a certain number of rank-one matrices computed
by o;u;v;. Applications of lower-rank approximations in statistics and for data compression in image
processing can be found in e.g. LAY 2003.

The close relationship between singular value decomposition, principal component analysis (PCA)
and the reduction of the dimension of multivariate data can be found in e.g. LAY 2003, or JACKSON 2003.
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2. Parameter Estimation
in Linear Models

2.1 Introduction

Parameter estimation in linear models (or adjustment theory or inverse theory) plays a central role in many
scientific areas in order to condense or summarize data by fitting it to a mathematical function that depends
on adjustable parameters which describe physical phenomena. Since VLBI data analysis is also based on
these methods, parameter estimation techniques are of main importance for the development of regression
diagnostics tools for improving the design of an experiment (DEHLERT 2000).

In the following chapter the relation (and equivalence) of commonly used calculus approaches (i.e., best
linear unbiased estimators (BLUEs), etc.) and vector space based geometrical approaches are given. As will
be shown, the non-geometric approaches bear some disadvantages. This has already been recognized by
DERMANIS 1977, who mentions:

Usually adjustment algorithms are derived from variational principles, as solutions to the problem
of minimizing a quadratic form. Such an approach solves the problem but has little to offer to
the understanding of its mathematical context and its relation to other techniques.

Thus, many authors only use the geometric or vector space approach to develop parameter estimation
techniques. In the following chapter, geometrical concepts will be used to supply the calculus approach.
These concepts will be used to provide geometrical interpretations of e.g. adjusted observations or residuals
and the elements of projection operators will be used for the visualisation of redundancy numbers or ’impact
factors’. The latter will be used in chapter 3 to develop methods for finding groups of observations and to
separate important (groups of) observations from less important (groups of) observations.

2.2 Modeling of data

Modeling of data is used to describe measurement results (observations) by a convenient class of functions,
such as appropriate linear combinations of polynomials or other so-called basis functions. Based on expe-
riences and assumptions the mathematical formulation of the relation between observations and unknowns
has often to be guessed and its correctness has to be verified by real observations. Adjustment theory tries
to fit the observations to those functions and determines the coefficients of the (assumed) model (CASPARY
and WICHMANN 1994).

A model is an image of the reality, expressed in mathematical terms, in a way, which involves a certain degree
of abstraction and simplification. In general, a model consists of (DERMANIS and RuMMEL 2000)

e a set of observable objects (observations),
e a set of objects to be determined (unknowns) and
e a mathematical relation f, forming a connection between unknowns and observations.
On the one hand a model should be an appropriate (linear or linearised) description of the behaviour of a

system, while, on the other hand, for practical reasons it should not be too complex. The degree of complexity
of a model also depends on the particular purpose of the measurement?.

'When using original observations the mathematical model has to be formulated in a very general way. The more reductions
are applied to the original observations, the less general the mathematical model needs to be formulated. The final form of the
mathematical model also depends on the purpose of the experiment.
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In order to assess the agreement between the data and the model a so-called 'merit function’ has to be
chosen. Conventionally small values of the merit function indicate close agreement between the data and
the model. The parameters of the model are then determined while minimizing the merit function, yielding
best-fit parameters (PRESS et al. 1986).

A general parameter estimation procedure consists of the following steps:

e Estimation of parameters,
e Determination of formal errors of estimated parameters and

e Statistical goodness-of-fit test.

2.2.1 Mathematical Models

In general, an adjustment problem consists of two, equally important components: the functional and the
stochastic model. Both of them are summarized by the general term mathematical model (see figure 2.1,
Leick 1990).

In general, measurements do not fit the mathematical model even if the mathematical model is correct.

Furthermore, the model is not set up for the observed values but for (functions of) the observations, e.g. for
the expectations E(y) or for their variances Xy, cf. FORSTNER 1987.

calibrations observations

N\

functional

stochastic

model model

least—
squares
algorithm

redundancy
numbers

reliability

(co)variance-
propagation

parameters

controlled
observations

Figure 2.1: Elements of least-squares adjustment
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Functional models

The functional model is the linear (or linearised) and simplified mathematical formulation of existing physical
reality (LEICK 1990). It expresses the relations between observations and (unknown) parameters. In the most
general case the mathematical formulation is an implicit non-linear function as

f(ivy) =0, (2.1)

which is also known as mixed adjustment model or (together with a stochastic model) as Gauss-Helmert
model (cf. Kocn 1999). Here, the variables denote:

= vector of n adjusted observations
= vector of u adjusted parameters
= r non-linear mathematical functions.

R

In many cases, equation (2.1) can be simplified if the observations can be expressed explicitly in
terms of the unknown parameters, i.e., if

y=r&). (2.2)

This model is also known as observation equation model or (together with a stochastic model) as Gauss-
Markov model. Model (2.2) is of particular importance in geodetic adjustment problems since its parameters
can be determined by standard algorithms and without special computational requirements. Since most of
the VLBI data analysis software packages are based on model (2.2), it will be of main importance for the
investigations carried out in chapter 5.

For the sake of completeness a third model has to be mentioned which does not contain any parameters at
all:

f@)=0. (2.3)

Model (2.3) is also known as condition equation model and has been of importance before fast computers
have been available (see e.g. Kocn 1999).

Observation Equation Model

Usually model (2.2) has to be linearised by applying Taylor’s theorem, i.e.,

filwr, .. xy) = filwr, + Ax1, .. Ty + Axmy,)
= filxigy- - s Tuy) + g;‘vfi 3 Axy +--+ % . Az, + O(Az?) (2.4)
leading to the linear system
Y1 = anlAzy + a12Axg + -+ a1, Ay
Yo = a21Ax1 + a0 Axg + -+ + a9 Axy, (2.5)

Yn = A1 AT1 + anaAxe + - - + anu Ay

with a;; being the partial derivative of the ith observation equation with respect to the jth parameter. The
linear system (2.5) can be expressed in matrix notation as

y = Ax, (2.6)
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with the n X u design matrix A and the u x 1-vector of unknowns x

ail ... Qly Az
A= T = , (2.7)

apl .. GQny Az,
which consists of the corrections Az; to the apriori values z;,, i.e.,

x=|Azy, ..., Az, | (2.8)

Finally, the n x 1-’observation’ vector y (also known as ’observed minus computed’-vector) is computed by

y = | yl_fl(xloa sy xuo)v"'v yn_fn(zlo;--w xuo) |/' (29)

Stochastic models

In model (2.2) the design matrix A and the parameter vector x are assumed to be deterministic. The
stochastic nature of the remaining components of a (general) mathematical model is comprised by the
stochastic model (CASPARY and WICHMANN 1994) which consists of a variance-covariance matrix

Syy =05 Pyy (2.10)

of the observations y with an unknown factor o2. The factor o2 is also known as variance of unit weight and
can be estimated within the adjustment process. The inverse of the weight matrix Py, is commonly referred
to as cofactor matriz Qyy (KOCH 1999).

Considering a stochastic model (i.e., Pyy # I) leads to the weighted least-squares approach which can also be
interpreted geometrically: From a geometrical point of view the inclusion of the weight matrix P generalises
the standard inner product from x’ I y (and thus the euclidean norm) to x’ Pyy y and thus defines a new
metric for R” (CASPARY and WICHMANN 1994, or ApDAM 1982). As a result, the associated orthogonal
projections become obligue and lead to some extended formulations for least-squares estimators (see e.g.
TEUNISSEN 2003).

Since in the following investigations only the design of the experiment (i.e., the observation geometry) is of
interest, no stochastic models will be included and thus Py, = I. However, even in the case of Py, # I
the same algorithms and procedures can be used after homogenisation of the design matrix A and of the
observation vector y (see e.g. KocH 1999) by using the Cholesky factorisation Py, = GG’ of Py and

A=G'Ay=Gly. (2.11)

2.3 Parameter estimation techniques

2.3.1 Forward and inverse problems

In geology or geophysics the problem of determining parameters from a linear model after performing obser-
vations is derived by introducing the terms forward problem’ and ’'inverse problem’. A ’forward problem’ is
defined to be a process of predicting the results of measurements on the basis of some general principle or
model and a set of specific conditions relevant to the problem. On the other hand, ’inverse theory’ is a set of
mathematical techniques for reducing data to obtain useful information about the physical world on the basis
of inferences drawn from observations (MENKE 1984). Inverse theory is used to provide information about
the unknown parameters of a model, it does not provide the model itself. Thus, the physical model has to
be specified beforehand. Schematically, the terms ‘forward problem’ and ‘inverse problem’ can be described
as follows:
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Forward problem:

model parameter — model — prediction of data
Inverse problem:

data — model — estimates of model parameters

‘Inverse theory’ is commonly used in geophysical or geological literature and forms the basis for some of the
terms used below. In this context, ’inverse theory’ and ’adjustment theory’ might be used synonymously.

2.3.2 Linear Unbiased Estimators (LUEs and BLUEs)

The objective of inverse theory (and thus of parameter estimation in linear models) is to determine the
unknown parameters of a linear model or at least to estimate linear combinations of those parameters, that
can be estimated (KSHIRSAGAR 1983). The most common methods for parameter estimation are either
based on probabilistic notions (such as probability functions, expectation values, unbiased estimators, etc.
for the Maximum likelihood (ML) method or the Best Linear Unbiased Estimators (BLUE) approach) or on
geometric notions such as the weighted least squares estimation principle as described in chapter 1.

This section reviews the necessary basics of Best Linear Unbiased Estimators and shows the relations (and
equivalence) of the probabilistic and the geometric approach.

2.3.2.1 Properties of Estimators

Instead of deriving the least-squares principle and thus the solution of the model (2.2) by using vector
spaces, most authors of standard geodetic literature (see e.g. Kocn 1999 or NIEMEIER 2002) make use of
the conditions of linearity, unbiasedness and optimality.

As described in e.g. TEUNISSEN 2003, MEISSL 1982, or Koch 1999, the assumption of a linear relationship
between observations y and unknown parameters x can also be expressed in terms of the expectation of y
via:

y+te=ax or E(y)=ax (2.12)

Since the estimator X of the unknown parameters x should be a linear function of the observations y, X must
be of the form:

x=1ly L-property (2.13)
Another condition requires X to be an unbiased estimator of x (STRANG 2003), i.e.,
E(x) =x for every x. U-property  (2.14)

Finally, the class of all possible estimators X that satisfy properties (2.13) and (2.14) should be restricted to
those having minimum variance, i.e.,

o2 minimal in the class of LU-estimators. B-property (2.15)
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2.3.2.2 Derivation of Estimators

In order to derive best linear unbiased estimators for the model (2.12) consider the associated linear system
(containing n observations and u unknowns):

Ax = E(y), (2.16)
with y being decomposed into the adjusted (or true) observations ¥ and the observation errors e:

Ely)=9y+e. (2.17)
Assuming that the expectation of the observation errors € equals zero, i.e.,

E(e)=0 (2.18)
implies that

E(y)=% and E(y)=Ax. (2.19)

2.3.2.3 Linear Unbiased Estimators (LUEs) of estimable functions

Generalisation of the estimation of individual parameters leads to the concept of estimability of a linear
function ¢ on the column space R(A) of the design matrix A of a linear system. Since any vector in R(A) can
be represented by its coordinates x = (x1,...,x,) (full rank assumed) with respect to the bases represented
by the columns of A, the function ¢ can be expressed as a linear function of the unknown parameters:

0 =@'x = QX1 + PaXa + - + PuXy. (2.20)

As a special case, equation (2.20) contains the estimation of the individual parameters x;. Thus, any compo-
nent x; of the parameter vector x may be viewed as a function on R(A). Examples for estimable functions
can be found in MEISST. 1982 or KSHIRSAGAR 1983.

Furthermore, any component y; of the adjusted observations § may be viewed as a function on R(A), since
Ui = G171+ + ATy (2.21)
and so ¢ is represented by
o = (ai, . ain), (2.22)
i.e., by the i-th row of the design matrix A (MEISSL 1982).

Since the parameters x are unknown, the functional p(z) = ¢’x is unknown and has to be determined by a
linear function of the observations y. As derived in e.g. MEISSL 1982, a linear unbiased estimate (LUE) ¢
for the functional ¢ is derived by finding the coefficients §; of the linear function:

B1
@ =B1y1 + Boya + - + Buiyn or ¢p=py with B= : ) (2.23)
Bn

which is the 1 x n representation of a linear function defined on R™. The expectation of ¢ reads
E(p)=E(By) =B'E(y) =8y = 8'Ax, (2.24)

which is a linear function of the unknown parameters.
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A definition of the estimability of a linear function is based on the requirement that a linear func-
tion of the unknown parameters is said to be estimable if there exists at least one linear function of the
observations By, such that E(3'y) equals ¢'x (KSHIRSAGAR 1983), i.e.,

EBy)=¢'x or BAx=¢'x, (2.25)
which is equivalent to
B'A=¢. (2.26)

Equation (2.26) shows that a necessary and sufficient condition for a linear function ¢’x for the model (2.12)
to be estimable is that ¢’ is a linear combination of the row vectors of A. Thus, only if the row vectors of A
generate a complete basis for the row space of A every parameter can be estimated separately. Otherwise
only linear combinations of parameters can be estimated. In other words: The row space of A indicates all
possible estimable parameters or linear combinations of estimable parameters (!).

2.3.2.4 Best Linear Unbiased Estimators (BLUESs) of estimable functions

The definition of estimability only guarantees the existence of at least one unbiased estimate of an estimable
function. Neither does it provide a method of obtaining an explicit formula for an estimator nor does it give
a 'best’ estimate (as stated in condition (2.15)) (SEARLE 1982).

According to KSHIRSAGAR 1983 the definition of a best linear unbiased estimator (BLUE) reads:

Definition of a BLUE

A linear function b’y of the observations y in the model Ax = y + € is said to be the Best
Linear Unbiased Estimate (BLUE) of a function ¢'x, if it is unbiased for ¢’x and its variance is the
smallest among all linear estimates of ¢’x.

2.3.3 Gauss-Markov model

A method of obtaining the best linear unbiased estimate of any estimable function ¢’x of the unknown
parameters x is provided by the following fundamental definition (KocH 1999):

Gauss-Markov Model

Let A be an n X u matrix of given coefficients, x a w x 1 vector of unknown, fixed parame-
ters, y an n x 1 random vector of observations and Xy, = U2P;)} the n X n covariance matrix of y,
where the weight matrix Py, of the observations y is known and the positive factor o2 is unknown.
Let A have full column rank, i.e., rank A = u, and let the weight matrix Py, be positive definite.
Then

Ax = E(y) with Xyy =0°Qyy =Py (2.27)

is said to be a Gauss-Markov model with full rank. F(y) denotes the expectation of y.

Equation (2.27) can also be formulated in terms of the real observations. Since y almost certainly
lies outside the column space of A equation (2.27) can also be formulated as a consistent system by adding
a n X 1 random vector e of errors. Equation (2.27) then reads

Ax=y+e with E(e)=0 and Xee =3y, = O'QP;;. (2.28)
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Solution of the Gauss-Markov model

The best linear unbiased estimator X of the unknown parameters x in model (2.27) and its covariance
matrix Xz is given by (see KocnH 1999)

%= (A'PA)'A'Py and i =0*(A'PA)! (2.29)
and thus agrees with the weighted least squares solution of a linear system as derived in chapter 1.

A proof can be found in any literature about linear models, such as KocH 1999, KSHIRSAGAR 1983 or
TOUTENBURG 2003. An algebraic proof can be found in MEYER 2000. General derivations of the variances
of best estimators can be found in MEISSL 1982.

2.4 Geometric aspects of parameter estimation

As explained in chapter 1, the least-squares solution of a linear system can be interpreted geometrically. The
column space R(A) of the design matrix A is defined by all possible linear combinations of the columns of A.
For a general n x u-matrix A of rank r the column space is an r-dimensional subspace of R™. Figure 2.2 gives
an example for a 3 x 2-system of full rank. As mentioned above, only the unweighted case (i.e., Py, = 1I)
will be considered. For weighted least-squares estimation the projections will become oblique and thus more
complex (interpretations for this case can be found in e.g. TEUNISSEN 2003).

a;

Figure 2.2: Least-squares geometry (example for a 3 x 2-linear system)

From the geometry of figure 2.2 it seems intuitively appealing to estimate x as X, such that AX is as close as
possible to the observation vector y. § = AX are the 'adjusted observations’ and X denotes the coordinates
of ¥ with respect to the basis formed by the columns of A. § is computed by orthogonally projecting the
observations y onto the column space of A. On the other hand, projecting y onto R(A)*, i.e., the orthogonal
complement of the column space R(A), yields the residual vector & (see fig. 2.3 on the next page). Thus, &
is orthogonal to the ’plane’ spanned by the columns of A, i.e.,

Ay — A%) =0, (2.30)
which is equivalent to the well-known normal equations

A'Ax=A'y (2.31)
and thus

%= (A’A)" Ay, (2.32)
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which agrees with equation (2.29) (for P =1I).
Using the projection operator onto the column space R(A):

H=AAA)A’ (2.33)
and the projection operator onto the orthogonal complement R(A)* of R(A)

H=T1-AA'A) A/, (2.34)
the vector ¥ of adjusted observations and the residual vector & can also be computed via

y=Hy=A% and é=—-(I-H)y=-H'y (2.35)
to decompose the observation vector y into the orthogonal complements

y=9y+é=Hy+ (I-H)y. (2.36)

Figure 2.3 gives an illustration of the decomposition of y into orthogonal complements (ADAM 1982).

R(A)

Figure 2.3: Decomposition of the observation vector y (in R™) into orthogonal complements

2.4.1 Data and model space
Orthogonal decompositions of R and R"

The concepts derived above can be further generalised by using the four fundamental vector spaces of a
matrix to provide a comprehensive geometric explanation of parameter estimation in linear models and to
show applications of the singular value decomposition for ’regression diagnostics’. The following derivations
are based on SNIEDER and TRAMPERT 2000.

The geometric aspects of a general parameter estimation problem can be visualised as shown in figure 2.4 on
the facing page which includes both the decomposition of the observation vector y into orthogonal comple-
ments (in R™) and the orthogonal decomposition of the parameter vector x (in R*). Again, the observation
vector y is decomposed into a component ¥ belonging to the column space R(A) of the design matrix A
(denoted by U, in fig. 2.4) and a component & = y — Ax which belongs to the orthogonal complement R(A)~+
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of the column space of the design matrix (denoted by Uyp). In addition, the parameter vector x is decomposed
into a component x,. belonging to a subspace of R* (denoted by V,.) and a component xg = x — X, belonging
to the orthogonal complement of V. (denoted as V).

As shown in fig. 2.4 the design matrix A serves as a (linear) mapping from R* to R"; its pseudo-inverse A
(see section 1.6.2.3 on page 25) thus maps from R™ to R.

Figure 2.4: Geometrical interpretation of parameter estimation in linear models (left: Data space and data
null space, right: model space and model null space, the design matrix acts as a mapping between R* and R™)
(SNIEDER and TRAMPERT 2000)

Eigenvalue decomposition of square linear systems (EVD)

Figure 2.4 might be best understood by first considering the eigenvalues \; and eigenvectors v; of a symmetric
u X u linear system Ax =y of full rank. Assuming that the eigenvectors form an orthonormal set, a vector x
can be projected on these eigenvectors and can thus be expressed as

X = Z v (Vi-x). (2.37)
i=1
The product Ax can now be written as:
Ax = Z \ivi (Vi-x) =y. (2.38)
i=1

After expressing the vector y with respect to the same eigenvector basis as
u
y=> vi(vi-y), (2.39)
i=1

equation (2.38) yields the following expansion for the solution vector x:

u

1
X = Z )\_iVi (vi-y). (2.40)
i=1

Equation (2.40) shows that small eigenvalues (e.g. caused by a bad condition or even rank deficiencies of the
linear system) lead to unreasonable contributions to the solution and (depending on the current application)
should be omitted (SCHWARZ 1997).
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Singular value decomposition of rectangular systems

For a rectangular linear system of rank r the dimensions of the observation vector y (in R™) and the solution
vector x (in R*) differ. Thus, for the derivation of rectangular bases for R™ and R* the singular value
decomposition (cf. section 1.6.1.2 on page 23)

A=U-S-V (2.41)

of the design matrix A has to be used. Instead of using one common basis, a new basis for R™ (consisting
of n left-singular vectors u;) and a new basis for R* (consisting of u right-singular vectors v;) is used. The
relation between the two bases reads

AVl' = o;u;, (242)
with o; being the u singular values of A. The product Ax can now be written as:
T
Ax = Z o (v x) =y, (2.43)
i=1
with r being the rank of the linear system and thus being the number of non-zero singular values o;.

As described in chapter 1 the left singular vectors u; and the right singular vectors v; can be arranged to
form the following matrices U, S and V. The matrix U

uy U2 N Uy Upr41 e Un

U= S : : : ; (2.44)

U, Uo

contains the left singular vectors u; corresponding to the order of the singular values o;, which are (usually)
arranged in descending order, i.e., 01 > 02 > --- > 0, > 0, in a matrix S:

o 0 ... 0 0 ... 0
0 oy ... 0.0 ... 0

S=| 0 0 ... 0o 0 ... 0 |. (2.45)
0 0 0 0 0
0 0 ... 00 ...0

The right singular vectors v; form the columns of the matrix V:

vy U2 ... Up VUr41 . Uy
V= . . . . . : (2'46)

Ve Vo

Equation (2.43) shows that the singular vectors u; and v; for i > r do not contribute when A acts on a
vector. Thus, the matrix A can be constructed from U,, S, and V, alone. According to (SNIEDER and
TRAMPERT 2000) "Uy and V| are dark spots of the space not illuminated by the operator A’.

The subspace formed by the left singular vectors u; of U, corresponds to the column space R(A) of A (as
introduced in chapter 1) and is called data space. The subspace formed by the right singular vectors v; of V.
corresponds to the row space R(A’) of A and is called model space.
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Linear Algebra Parameter Estimation
in Linear Models
(Chapter 1) (Chapter 2)
U, ={uy,...,u,} basis for column space R(A) basis for data space
Uy = {W41,...,u,} | basis for orthogonal complement R(A)* | basis for data-null-space

of column space R(A)

V,={vi,...,v,-} basis for row space R(A’) basis for model space
Vo ={Vi41,...,V4} | basis for orthogonal complement R(A’) | basis for model-null-space
of row space R(A’) (= null space of A)

Table 2.1: Relations between terms used in Linear Algebra (chapter 1) and Parameter Estimation (chapter 2)

Since the adjusted observations Ax are orthogonal to Uy, i.e., UjAx = 0, any component of the observation
vector y that lies in Uy cannot be explained by the (current) functional model. These components thus
correspond to errors in the data or to errors in the functional model expressed by the operator A. Therefore,
Uy is called the data-null-space of A.

On the other hand, limiting the summation in equation (2.43) to non-zero singular values restricts the
estimated parameter vector x to the subspace V,. (model space). In other words: As shown in section 2.3.2.3
on page 33, the row space contains estimable (functions of the) unknown parameters and so the model
parameters do not contain any components of the subspace V( (which is also called model-null-space).
This is a geometrical visualisation of the general solution of a linear system, i.e., x is decomposed into the
particular solution x, of the inhomogeneous system (and thus a component of V,.) and a solution x — x,. of
the corresponding homogeneous system which is a component of the model null-space V. Since Vj is the
null space of A and so AV = 0, any parameter of the model that lies within V does not affect the data.
According to SNIEDER and TRAMPERT 2000 ’the data have no bearing on the components of the model
vector that lie in Vi’ .

The data space and the data-null-space thus span R™, while the model space and the model-null-space
span R*. Table 2.1 shows the equivalence of the algebraic terms used in chapter 1 with the terms used for
parameter estimation in linear models within this chapter.

Restricting the solution vector to V, and expanding x in the basis formed by V, and expanding y
in the basis formed by U, yields the general least-squares solution of an over-determined linear system as

T 1 ,
X = —v; (u}- 2.47
R=3 v (u-y) (2.47)
or in matrix notation
% =V,S U, y. (2.48)
—_——
A+

V,.S,1U’, denotes the pseudo-inverse of A (SNIEDER and TRAMPERT 2000).

2.4.2 Resolution in parameter estimation

The geometrical concept of projections onto the model space and the data space can be used to derive
indicators of how precisely the model parameters can be determined from the data and how well neighbouring
data can be independently predicted, or resolved (SCALES et al. 2001).
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Model resolution matrix

The model resolution matriz (MRM) indicates to what extent the model parameters can be independently
retrieved from the estimation process (MENKE 1984). From ¥ = ATy, Ax = y and the singular value
decomposition of A follows

b33
\

Aty

ATAx

V.S U, U,S, V/, x

= V,V',x, (2.49)

MRM

with V,.V’,. being a u X u projection matrix onto the model space (SCALES et al. 2001). Only in the case
of full rank the model resolution matrix equals the identity matrix and every parameter can be determined
independently. Otherwise some parameters can only be estimated as linear combinations of remaining pa-
rameters. The more non-zero terms appear in the rows of the model resolution matrix, the more broadly
averaged the inferences of the model parameters are.

The advantage of the model resolution matrix is that it can be computed even in the case of exactly dependent
parameters (i.e., in the rank deficient case) and thus, if the computation of the correlation matrix fails (see
e.g. KocH 1999). In statistical terms, the model resolution matrix is used for the detection of so-called
multicollinearity, i.e., linear dependencies of the columns of the design matrix A and thus for the detection
of correlations between the estimated parameters (see e.g. BELSLEY et al. 1980, or TOUTENBURG 2003).

Data resolution matrix

In a similar way a data resolution matriz (DRM) H can be computed (see eq. 2.33). This matrix indicates
how well the adjusted (or predicted) observations match the data or how well the data is predicted by the
estimated model parameters (MENKE 1984).

The adjusted observations can be derived by
¥y = Ax
AATy
U,S, V', V.S Uy
= U,U,y, (2.50)
~——
DRM

with
H=U,U, (2.51)

being an n X n projection operator onto the data space of A. Other definitions are solely based on the design
matrix A (see also eq. 2.33):

H = AAA)'A, (2.52)
or (if the metric of the data space is also included by considering E;;):

H = AA'SZA)'A'S ). (2.53)

The general definition of H (eq. 2.53, see also e.g. FORSTNER 1987) thus also takes into account the stochastic
model of the observations by including the covariance matrix Xy, of the observations y and thus accounts
for the metric of the vector spaces involved. Since the following investigations do not contain any metric



2.4. Geometric aspects of parameter estimation

41

aspects, Xy equals the identity matrix (see page 31). As shown by e.g. TOUTENBURG 2003, this yields a
symmetric data resolution matrix.

Since equation (2.52) contains the computation and inversion of normal equations A’A, it bears some nu-
merical problems. Using the singular value decomposition of A, numerically more stable derivations of the
data resolution matrix are given below.

The Data Resolution Matrix H is also known as "Hat-Matrix’ or 'prediction matrix’ and serves as a regression
diagnostics tool in many sciences such as statistics (TOUTENBURG 2003, COOK and WEISBERG 1982) or
geophysics (PARKER 1994). According to (HOAGLIN and WELSCH 1978) ’a look at the hat matrix can reveal
sensitive points in the design, i.e., points at which the value of y; has a large impact on the fit’ and is thus
used to identify ’high-leverage points’. The general data resolution matrix (see eq. 2.53) depends both on
the geometry (i.e., the design) of the experiment and the covariance matrix of the observations. It does not
depend on the individual observations. Since the data resolution matrix is a projection matrix it has the
following properties (FORSTNER 1987):

e symmetry (only if 3, =1),
e idempotence (i.e., H> = H),
e eigenvalues are either 1 or 0 and

e the trace of H equals the rank of H, i.e., tr(H) = rk(H) = u.

As shown in TouTENBURG 2003 or COOK and WEISBERG 1982, the range of the elements of the data
resolution matrix (for 3, =I) is:

Based on the representation

Gi = hiiyi + Y _ hijy; (2.55)

Jj=1

some authors (e.g. COOK and WEISBERG 1982) show that h;; is the amount of leverage or influence exerted
on ¢; by y;. A large main diagonal element with h;; ~ 1 thus indicates that ¢, is almost completely determined
by y; alone. Thus, observations y; with large values h;; can exert an undue effect on the least squares results
(DopGE and JURECKOVA 2000). A small element (h;; ~ 0) also leads to a small impact of the remaining
observations, i.e., if a diagonal element h;; equals zero the corresponding row of H is 0, which indicates that
the ith observation does not affect the fit (for a proof, see TOUTENBURG 2003, or DODGE and JURECKOVA
2000). For a linear regression (with x; indicating the x-component of an observation y;), a main diagonal
element h;; can also be computed by

1 (J,'l - ,’f)2
hii=—4+ —=—————, (2.56)
Toon Y (w - 7)?
which shows that h;; mostly depends on the ’distance’ |z; — Z| of an observation x; to the centre of mass Z
of all observations. Therefore, some authors call the data resolution matrix a ’distance measure matrix’
(BELSLEY et al. 1980).

Another interpretation of the data resolution matrix is based on the fact that the covariance matrix 3¢y of
the adjusted observations § equals gy = . Qyy = 02 - H = 0?- AX43A’. The cofactor matrix Qg of the
adjusted observations will be of relevance in the next section. In addition, the covariance matrix X+ of the
residuals v equals vy = 02 - (I— H) (TOUTENBURG 2003) and thus controls the variations in the residuals
(Cook and WEISBERG 1982). Due to this fact, the data resolution matrix (or the hat matrix) is extensively
used for residual analyses in statistical applications (SaviLLE and WooD 1997, TOUTENBURG 2003).
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2.4.3 Impact factors and impact co-factors

Since the elements of the data resolution matrix indicate how much weight each observation has on the
adjusted observations, the main-diagonal elements of H are called impact factors hy; (or h;), i.e.,

impact factors = h = diag(H), (2.57)
while the off-diagonal elements of H are referred to as impact co-factors h;;.
A close relation between impact factors and partial redundancies exists, since (for P = I)

Yoo =1-H, (2.58)
which is used for the computation of redundancy numbers r; (LEICK 1990, ACKERMANN 1981):

ri =1—hyi = (I—-H). (2.59)

The redundancy numbers r; indicate the percentage of how much a gross error is shown in the residuals of the
least squares fit (FORSTNER 1987). High leverage points (or observations with a small partial redundancy) are
thus weakly controlled and complicate the detection of blunders (N1EMEIER 2002). As in geodetic networks,
weakly controlled observations (or observations with a large impact factor) significantly affect the accuracy of
the estimated parameters but degrade the reliability of the entire adjustment. Recent examples for geodetic
applications such as redundancy analysis in plane networks can be found in e.g. EVEN-TZUR 2006.

Since the average size of a diagonal element h;; of the data resolution matrix is u/n, some authors (see
e.g. HoaGLIN and WELSCH 1978) recommend to mark observations as ’high-leverage points’ if their impact
factors exceed twice the average size, i.e., if h;; > 2 . For the generation of experiments which are insensitive
to outliers, Cook and WEISBERG 1982 recommend experiment designs yielding small impact factors (i.e.,
high redundancies) of approximately the same size.

Since the data resolution matrix contains information given by the design matrix, leverage reflects only the
potential effect of an observation on the regression. The determination of the actual effect of an observation
on the regression results must also take the observations into account. Thus, many outlier detection methods
are based on the residuals and the impact factors (or redundancies) of the observations (EEG 1986 or
TOUTENBURG 2003).

Increase of uncertainty

FORSTNER 1992 shows the relationship of impact factors and the maximum effect of the rejection of an
observation y; onto the result X. Based on the projection operator onto the column space of the design
matrix A (i.e., the data resolution matrix H) and based on the application of sequential least-squares,
sensitivity analysis for outliers can be performed. The empirical sensitivity of the results with respect to an
outlier in y; mainly depends on the influence factor

2.60
e (2.60)

which is thus only a function of the impact factor h;.

As also shown in FORSTNER 1992 the influence factor u; also measures the relative increase of uncertainty
if the ith observation is omitted from the estimation process. The increase of uncertainty can be determined
both for a group of observations and for the case where only a subset of parameters is analysed.



2.4. Geometric aspects of parameter estimation

43

2.4.4 Geometrical interpretations of impact factors and impact co-factors

A geometrical interpretation and thus a graphical representation of impact factors and impact co-factors will
be of importance in the next chapter and can be obtained by analysing the expression

hij = e'i H €y, (2.61)

which extracts the element h;; of the ith row and the jth column of the data resolution matrix using vectors e;
and e; of the natural basis of R”. In general, impact co-factors h;; (and as a special case impact factors h;;)
are obtained by the following steps:

1. At first, the projection He; has to be performed. Since the length of a projected vector y onto a
vector a equals ||y|| cos 1 (see figure 2.5) and since in this case y = e;, the length of the projection
simplifies to cos ;.

y
o
= a
%ﬁy
Iyl cos ¢,

Figure 2.5: Projection of vectors

2. In a second step, the projected vector (of length cospi) resulting from step 1 is projected onto e;
(which, in the case of impact factors hy;, is a back-projection onto the same natural basis vector used
in step 1). Due to the definition of the inner (or scalar) product, the length of the projection of He;
onto e; can be expressed by using the cosine of the angle ps between the projected vector from step 1
(which is contained in the column space of A) and e;. The length of the vector resulting from this
projection is thus cos ¢; - cos @a.

This leads to the general interpretation of impact co-factors h;; as the product of the cosines of the angles ¢;
and ¢; between the ith and jth vector of the natural basis and their respective projections onto the column
space of A, i.e.,

hij = cos; - cos ;. (2.62)

As a special case, eq. (2.62) contains an interpretation for the impact factors h;; as

hii = cos®g;. (2.63)

Due to the close relationship of projections and the cosine of the angle ¢ between the two vectors involved, the
impact factors h;; are thus proportional to cos?(p. Since the angle between a spatial vector and its projection
is always smaller than 90°, an almost linear descending relation between the angle and the corresponding
impact factor exists (see figure 2.6).

For a 2 x 1-design matrix, figure 2.7 shows that h;; equals the squared cosine of the angle ¢; between the e;-
vector and its projection H e; onto the column space of A. Furthermore, figure 2.7 shows a visualisation of
impact co-factors h;; and the close relation of impact factors h;; and redundancy numbers r;.

In a similar way, figure 2.8 gives a visualisation of impact factors and impact co-factors of 3 x 2-systems of
linear equations. The first case occurs when three equally spaced observations are used for the computation
of a regression line. In the second case, the third observation depicts a high-leverage observation due to its
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Relation of the angle between a natural basis vector and its projection
and the impact factor
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Figure 2.6: Relation of the angle between the ith vector of the natural basis and its projection and the
importance factor of the ith observation

large distance from the remaining two observations (i.e., x = 7). This can also be recognized (in figure 2.8)
by the small angle between e; and Hes and thus the length of €'3sHesz = 0.99 ~ 1.

A similar derivation for the interpretation of redundancy numbers is given by EEG 1986. Geometrically the
respective angles in equations (2.63) and (2.62) have to be replaced by its 90°-complements since for the
derivation of redundancy numbers the angles between the unit vectors of the natural basis and its projections
onto the orthogonal complement of the column space of A have to be used. Therefore, the data resolution
matrix H in equation (2.61) has to be replaced by its complementary operator I — H.

Impact co-factors as similarity measures

In the next chapter, co-factors h;; will be used for the detection of groups of observations. Therefore, it is
necessary to emphasize that only the relation of the (complementary) angles o1, ..., p, is of importance for
the size of h;;. As shown in figure 2.7 on the next page, for the two-dimensional case, both angles ¢; and @2
add to 90°. In general:

e identical angles ¢1,...,p, lead to impact co-factors of 0.5 (case 1). As shown in chapter 2.4.2 on
page 39 and as visualised in figure 2.7 (as projections) the absolute values of h;; can never exceed 0.5.

e large differences in ¢1,...,¢, (e.g. one of them being small and the other one automatically being
large) yield small impact co-factors h;;.

Since the data resolution matrix corresponds to the (standardised) cofactor matrix Qg of the adjusted ob-
servations, the impact co-factors (or the off-diagonal elements of Qg ) show correlations of the observations.
In terms of the ’observation geometry’ (such as e.g. z-values of observations when determining a regression
line or the orientation of both the baseline and the radio source two VLBI-telescopes are pointing at simul-
taneously), small impact co-factors h;; indicate a significantly distinct information content of the respective
observations. On the other hand, large impact co-factors h;; (i.e., ||hi;|| &~ 0.5) show that the respective
observations have been performed under similar ’geometric’ conditions.
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Case 1: Case 2:
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Figure 2.7: Graphical visualisation of impact factors hg;, impact co-factors h;; and redundancies r; for 2 x 1-
systems of linear equations. Dotted line — first projection (onto the column space), dashed line — second
projection (onto the vectors of the natural basis).
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Case 1: Case 2:
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Figure 2.8: Graphical visualisation of impact factors h;; and impact co-factors h;; for 3 x 2-systems of linear
equations. Dotted line — first projection (onto the column space), dashed line — second projection (onto the
vectors of the natural basis).
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3.1 Introduction

In order to detect groups of (VLBI-)observations the impact factors and impact co-factors as derived in the
previous chapter can be used. The objective of this chapter is to apply objective grouping methods for an
automatic detection of jointly influential groups of observations. Since the off-diagonal elements of the data
resolution matrix can be interpreted as similarity measures, statistical methods for grouping similar objects
can also be used in adjustment theory. A well-known method for the identification of groups of similar objects
(or of observations with a similar information content) is the cluster analysis-approach as described in e.g.
HoAGLIN and WELSCH 1978, or GRAY and LING 1984. These methods have been developed for statistical
analyses since the 1980ies (see e.g. BELSLEY et al. 1980, or ROMESBURG 2004) or pattern recognition (see
e.g. DuDA et al. 2000).

In the following chapter the principles of cluster analysis methods are explained and interpretation guidelines
for cluster analysis results are given. These methods will be applied to plane and spatial interferometers in
chapter 5.

3.2 Cluster Analysis

One of the most common approaches for estimating similarities (or dissimilarities) between objects is given by
cluster analysis methods. Based on measurable attributes, objects (such as persons, animals, pieces of land or
patterns in digital photographs) can be objectively classified in groups (ROMESBURG 2004). However, cluster
analysis can only reveal candidates for influential subsets (GRAY and LING 1984). Detailed descriptions and
computational aspects can be found in e.g. ROMESBURG 2004, DUDA et al. 2000 or BELSLEY et al. 1980.
Here, only practical aspects are given. The examples given below are taken from ROMESBURG 2004.

Practical cluster analysis

In general, cluster analysis consists of the six steps listed in table 3.1. Some of these steps, however, cannot
be transferred directly or are of no relevance for regression diagnostics.

In general cluster analysis the first two steps consist of the generation and an optional standardisation of a
data matrix. The data matrix consists of a collection of attributes of objects. Figure 3.1 shows an example of
five objects whose two attributes are displayed on the x- and y-axis. In a second step so-called resemblance

General Cluster Analysis Cluster Analysis for Regression Diagnostics

1. | Obtaining the data matrix Setting up of design matrix

2. | Standardizing of the data matrix (optional) -

3. | Computation of resemblance matrix Computation of data resolution matrix
4. | Execute the clustering method Execute the clustering method

5. | Rearrange the data and resemblance matrices | -

6. | Compute the cophenetic correlation matrix -

Table 3.1: Terminology of general cluster analysis steps and for cluster analysis as used for regression diag-
nostics
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coefficients are computed to measure the degree of similarity between each pair of objects. The resemblance
coefficients are always either dissimilarity coefficients or similarity coefficients:

e The smaller the dissimilarity coefficient, the more similar two objects are. The larger this coefficient, the
more distinct two objects are. Dissimilarity coefficients are also known as Fuclidean distance coefficients
and can be visualised geometrically (see below).

e On the other hand, large similarity coefficients indicate that two objects are very similar. A graphical
representation is difficult.

In order to introduce the basic concepts of cluster analysis methods, most authors use the graphical represen-
tation of dissimilarity coefficients. The concept, however, can also be used to understand the use of similarity
coefficients (as used in the investigations below). As shown in ROMESBURG 2004, 'the difference between a
similarity coefficient and a dissimilarity coefficient is merely a difference in which direction the scale runs’.

Resemblance coefficients can be obtained in different ways (see e.g. DUDA et al. 2000). In the most simple
case they can be interpreted as the euclidean ’distance’ between each pair of objects (displayed as dashed
lines in figure 3.1). Thus, small coefficients indicate a high similarity between two objects. Resemblance
coefficients are arranged into a symmetric matrix of dimension number of objects x number of objects.
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Figure 3.1: Cluster Analysis example: Graphical representation of two attributes of five objects

Geometrically, cluster analysis consists of a step-by-step forming of sets (clusters) of one or more objects of
similar properties. At first, each object is regarded as an individual cluster. After the last step all objects
are merged into one common cluster. Figure 3.2 on the next page gives an impression of the four clustering
steps for the example given in figure 3.1.

From a computational point of view, cluster analysis consists of an iterative computation of ’distances’
between each newly formed cluster. The ’distance’ to a cluster with more than one object is computed by the
(unweighted) average 'distance’ to each of its objects. This clustering method is also known as 'unweighted
pair-group method using arithmetic averages (UPGMA)’ (ROMESBURG 2004). Other methods are described
in DUDA et al. 2000 or RIPLEY 1996. The basic steps of a general cluster analysis algorithm are shown in
figure 3.3.
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Figure 3.2: Cluster Analysis example: Clustering steps
Algorithm: Basic agglomerative hierarchical clustering algorithm
1. Compute similarity matrix, if necessary.
2. repeat
3. Merge the closest two clusters.
4. Update the similarity matrix to reflect the similarity between the new cluster
and the previous clusters.
5. until Only one cluster remains.
Figure 3.3: Basic cluster analysis algorithm
Dendrograms

The results of a clustering process can be used to generate a map of sorts, called tree or dendrogram, to
show the degrees of similarity between all pairs of objects. The x-axis shows the objects; the y-axis shows
the similarity coefficient at which the previous clusters had been merged into a new cluster. The dendrogram
for the example can be found in figure 3.4.

In order to actually classify all objects into clusters the dendrogram needs to be subdivided by ’cutting’ at
a reasonable similarity level. This step depicts the only subjective (and thus analyst-dependent) part of a
cluster analysis procedure. A reasonable position for a ’tree cut’ is given by a large ’gap’ in the dendrogram
indicating the clustering of two previously significantly distinct clusters. Thus, instead of a software based
decision a visual inspection of the dendrogram is highly recommended.
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Figure 3.4: Cluster Analysis example: Dendrogram

Influential subsets and counter-acting observations

As explained in HoAGLIN and WELSCH 1978 or GRAY and LING 1984 the generalisation of high-leverage
observations is a group of high-leverage observations or influential subsets of observations. According to GRAY
and LING 1984 ’interest is focused on the effects of jointly influential cases (i.e. observations), particularly
those subsets whose individual cases interact to produce a high influence that is not accounted for by the
main effects of their single cases (observations)’. Figure 3.5 on the next page gives a graphical visualisation
of jointly influential subsets for a regression line.

In this thesis, a further distinction of jointly influential subsets is used:

o Jointly influential (or reinforcing) observations are those observations which affect the regression results
in a similar way. Numerically these observations are indicated by large positive impact co-factors h;;.
Geometrically, these observations are performed under similar conditions. For a regression line (see
figure 3.5), influential observations have similar z values, which are significantly distinct from the

center of mass of the remaining observations.

e Counter-acting observations are those observations which have been performed under similar but op-
posite conditions. Numerically, this is shown by large negative impact co-factors h;;. Geometrically,
(for the regression line in figure 3.5) both observations are located on opposite sites, but with similar
distances to the center of mass of the remaining observations.

Practical examples for both types of observations will be given in chapter 5.
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Figure 3.5: Configurations of jointly influential and counter-acting observations. Case A: large positive h;;,
case B: large negative h;;, case C: submatrix of H corresponding to {%,j,k,!,m} contains several large
positive and negative elements (GRAY and LING 1984).

3.3 Cluster analysis for parameter estimation problems

Due to the fact that the impact factors and impact co-factors of the observations can be interpreted geomet-
rically using cosines of the angles between vectors of the natural basis and their projections onto the column
space of the design matrix A they can be regarded as similarity measures. In contrast to most statistical
cluster analysis applications (which perform clustering steps by grouping observations or objects with small-
est distance, i.e., using dissimilarity coefficients), here observations with large similarity coefficients (impact
co-factors) are clustered.

Hence, the main idea of using cluster analysis for parameter estimation problems is to replace the resemblance
matrix by the data resolution matrix and to interpret off-diagonal elements of the data resolution matrix
(impact co-factors) as similarity coefficients (GRAY and LING 1984) (see table 3.1). Based on this approach,
candidates for influential subsets of observations can be found.

Parameter reduction

In order to determine the impact of each cluster of observations on the estimated parameters the concept
of projections onto subspaces of the data space is used (see e.g. TEUNISSEN 2003). This approach is also
known as reduction of parameters by estimating only a subset of the original parameters without changing
the original functional model. The original linear system Ax =y is partitioned into

X1 | _| Y
X2 ye |’
with x; being a wuj-vector containing parameters of interest and xo being the wus-vector describing the

parameters to be reduced. As shown in e.g. TEUNISSEN 2003 the design matrix A; of the reduced system
can be computed using the orthogonal projector

(A1 Ay { (3.1)

P‘,J;‘2 =1- AQ(AIQAQ)_lAlg (32)

and

A, =P3 A, (3.3)

As for the original system Ax =y, a data resolution matrix H for the reduced system can be derived by

H— A (ALA,) A (3.4)
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In contrast to the data resolution matrix H for the original system, the data resolution matrix H for the
reduced system indicates the impact of the observations only on the remaining parameters x; .

Due to the computation and inversion of normal equation matrices in equations (3.2) and (3.4) the derivation
of H should rather be based on the singular value decomposition of the design matrix of the partitioned
system (3.1): With the singular value decomposition of Ay = U3SoVy the projector Piz can be computed
via

Py, =1-U,, U, (3.5)

with Uy, indicating the first us columns of Us. Since H is the projector onto the subspace formed by the
columns of A; = Pj;qu it can also be derived by using the singular value decomposition of A; = U;S;V:

H=0, U, (3.6)

with I_Jlul consisting of the first u; columns of Uj.

Determination of cluster impact on parameter subsets

For the determination of the impact of a cluster of observations on single (or groups of) parameters, equa-
tion (3.3) is used to project onto one-dimensional (or multi-dimensional) subspaces of the data space (by
effectively reducing u — v parameters and leaving v parameters of the original functional model). Although
in the following investigations v = 1, this concept can also be used for groups of parameters (i.e., for
2<v<n-—-1).

After performing the cluster analysis of the data resolution matrix H of the original system and after the
determination of observation clusters by cutting the dendrogram at a reasonable height, the original system
is gradually reduced (i.e., v = 1). Using the data resolution matrix H of the reduced system, for each cluster
the impact factors h;; for those observations which belong to the current cluster are averaged by summing
up the impact factors h;; cluster-wise and dividing the sum by the number of elements (observations) in
the respective cluster. This yields an ’average cluster impact factor hcjuster ; Of cluster i on the parameter
(group) x;1’ which is independent of the size (number of members) of the current cluster. Figure 3.6 provides
a graphical visualisation of these steps.

3.4 Interpretation of Cluster Analysis results

The size (i.e., the number of observations in a cluster) and the ’average cluster impact factor hetuster i
of cluster ¢ on the parameter (group) x;’ can be used to interpret the results of a cluster analysis and to
formulate recommendations whether the cluster size should be enlarged or reduced. As shown in e.g. HOAGLIN
and WELSCH 1978 the average impact of a single observation is u/n. Similarly, a group of observations (or a
cluster) can be considered as of 'medium’ (or average) importance if its average cluster impact factor hetuster i
is close to u/n (e.g. £ 50% of h). In the same way, further classifications can be performed by comparing
the average cluster impact factor hcjuster ; with u/n.

The cluster size can be expressed as percentage of the number of observations neiyster in the current cluster
with respect to the total number of observations n. Table 3.2 shows an interpretation scheme which contains
the cluster size as the first criterion (upper row) and the impact factor relative to the mean impact factor (i.e.,
u/n) as the second criterion (left column).
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1. Cluster Analysis (generation of observation groups):

DRM for all parameters: Dendrogram: Observations per cluster:
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Figure 3.6: Flowchart for determination of cluster impact hciuster i Of cluster ¢ on parameter subset x;

Cluster Size - Large Medium Small o =1
Cluster impact factor St 99% — 66% 65% — 33% 320 — 106  Cluster

Very important (h > 200% 1 )
Important (h > 150% lﬁ)
Medium (50% %< h < 150% %)
Low importance (h < 50% %)

Unimportant (h < 1% %)

Table 3.2: Rules for interpretation of Cluster Analysis results: ++ indicates that cluster size must be sig-
nificantly enlarged (i.e., that observations should be controlled by appropriate (independent) observations),
— — — and —— denote significant decrease, + and — indicate only minor changes and for O the cluster size
is appropriate.
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As shown in the first row of table 3.2 the size of a very important cluster can be slightly reduced if it contains
a large number of observations. On the other hand, a small but very important cluster should be enlarged,
i.e., that the small number of observations in this cluster should be controlled by appropriate (independent)
observations. If all observations have been clustered into one cluster (ncjyster = 1), no reasonable conclusion
can be drawn (see first column). On the other hand, if the dendrogram cut has been performed before the first
clustering step, every cluster contains only one observation (ngjuster = 1). The last column thus represents
a solely interpretation of the impact factors of each observation (with the first case indicating an extreme
high-leverage observation which should be controlled/supported by several independent observations).

In general, a cluster with a large impact factor and with only a small number of members should be signifi-
cantly enlarged (*++’) while the size of a large cluster with a low impact factor must be significantly reduced
(’—="). The symbols ("+’) and ('—’) indicate recommendations for only minor size variations. Some cases
(e.g. all observations clustered into one cluster or each observation is a single cluster) need special treatment.
The percentage values in table 3.2 have been derived from experience and thus only indicate interpretation
guidelines. The actual decision for size variations depends on the purpose of the experiment and also depends
on the costs for performing other observations.

3.5 Regression diagnostics tool-flowchart

The singular value decomposition of the design matrix of an adjustment problem (and hence the data
resolution matrix derived from the singular value decomposition) and cluster analysis methods form the two
main components of the regression diagnostics tool developed in this thesis. As mentioned in the introduction,
in geodetic literature the term 'regression’ is often used for the determination of the parameters of adjusting
straight lines or other polynomials. Here, however, the term ’regression’ describes the general procedure of
parameter estimation in linear models (see also e.g. COOK and WEISBERG 1982, or DODGE and JURECKOVA
2000).

Based on the interpretation guidelines described above, the general procedure of a singular value
decomposition- and cluster analysis-based regression diagnostics tool can be formulated. As shown in fig-
ure 3.7 on the facing page the general procedure starts with the definition of the adjustment problem to be
solved. This also contains a reasonable parametrisation of the functional model relating observations and
unknown parameters. After performing suitable measurements, the design matrix A can be set up and can
be decomposed by singular value decomposition.

Since the results of the entire procedure should only be interpreted in case of a full rank adjustment problem,
the singular values o; (or the condition number) have to be used for the detection of rank deficiencies or a
weak condition. Optionally, the correlations and thus the separability of the parameters should be analysed
by using the correlation matrix (COR) or the model resolution matrix (MRM). If there is an (almost) rank
deficiency it is recommended to re-formulate the adjustment problem before proceeding with the regression
diagnostics procedure.

If all parameters can be estimated (separately), the data resolution matrix H can be computed. At first,
its main diagonal elements (i.e., the impact factors h;;) should be checked for the existence of high-leverage
observations. Depending on the purpose of the adjustment and depending on the consequences of high-
leverage observations, appropriate steps might be necessary (such as elimination of observations or addition
of new observations).

The next step consists of the analysis of the impact co-factors h;; and the generation of groups of observations
by cluster analysis of the data resolution matrix H. After cutting the dendrogram at a reasonable height the
‘average cluster impact factors hojyster i can be computed.

For each parameter (usually starting with the most important parameter) the impact of each cluster can be
assessed using the interpretation guidelines listed in table 3.2 on the previous page. Depending on the need
of performing changes of the observation structure, the entire process needs to be repeated (starting from
the generation of the design matrix A). Otherwise the procedure is completed.
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Regression diagnostics tool — flowchart

Figure 3.7: Regression diagnostics flowchart
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4. Geodetic Very Long Baseline
Interferometry

4.1 Introduction

The principle of Very Long Baseline Interferometry (VLBI) has been developed in the 1970ies and was at
first mainly used for the investigation of astronomical and astrophysical phenomena (see e.g. COHEN and
SHAFFER 1971). This principle is based on a classical interferometer in the visible spectrum which has been
invented as early as 1890 by Michelson (MICHELSON 1890). While the two receiving devices of a classical
radio interferometer are connected, this is not the case for a long baseline interferometer. Here, the distances
between the receivers can be up to 12.000 km (see figure 4.1). At both stations, the signals of an extra-galactic
radio source are received and provided with time marks generated by highly precise atomic clocks (usually
hydrogen-masers) before they are stored digitally on tapes or discs (CAMPBELL 2004).
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Figure 4.1: Single-baseline-interferometer Figure 4.2: VLBI network with five stations
(CAMPBELL 2004) (CAMPBELL 2004)

The data is sent to specially designed computers (correlators) and brought to coherency. Within the correla-
tion process the difference 7 of the arrival times of the signal at both stations is determined and represents
the primary geodetic observable. It is often simply called ’delay’ and can nowadays be determined with an
accuracy of approximately 20-30 picoseconds (= 6-10 [mm]) (see e.g. SOVERS et al. 1998).

Soon after the first use for astronomical purposes the geodetic use of the VLBI-principle was recognized
(e.g. SHAPIRO 1974, Ma 1978, or CAMPBELL and WITTE 1978). In addition, besides the baseline vector
other parameters such as e.g. the rotation of the earth (i.e., polar motion x,,y, and AUT1 as well as nuta-
tion di), de), atmospheric behaviour, tidal effects, etc. can be determined and are included in the functional
model.

By performing common observations of the same radio source by different stations, global observation net-
works can be formed. These networks can be used to connect regional geodetic reference systems (and can
therefore be used for the generation of global reference systems) as well as for a more precise determination
of earth orientation parameters (compared to observations on single baselines) (see figure 4.2).
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Compared to other space geodetic techniques (such as GPS, SLR/LLR or DORIS) VLBI has the advantage
of having a direct connection to the quasi-inertial system of the radio sources which enables analysts to
determine earth orientation parameters with a long time stability and free of any hypothesis. Hence VLBI
is the only technique (except for optical astronomical techniques) which connects the sky-fixed reference
system (CRF) directly to the earth-fixed system (TRF) via the earth orientation parameters (EOP).

The basic principle of VLBI has been described by many authors. For more details see e.g. CAMPBELL 1979,
SCHUH 1987, NOTHNAGEL 1991, or TAKAHASHI ET AL. 2000.

4.2 Basic models in VLBI data analysis

4.2.1 The functional model of VLBI

The geometrical time delay of a non-rotating plane or spatial radio interferometer whose two stations are
connected by the baseline vector b = ro — ry (with r; being the geocentric vectors of the observation sites,
respectively) can be mathematically described by the scalar product

1
Tgeom:TQ_le_E'b'kv (41)

where ¢ denotes the velocity of the radio signal (i.e., the velocity of light), k denotes a unit vector in the

direction of the radio source and 71 and 75 denote the arrival times of the radio signal at the two stations
respectively (see e.g. NOTHNAGEL 1991).

Further generalisation of model (4.1) leads to a spatial, kinematic interferometer. Since the baseline vector b
is defined in an earth-fixed reference system while the vector k in direction of the radio source is defined in
a sky-bound reference system, one of these reference systems has to be transformed into the other one. For a
better physical interpretation, the three rotations necessary for this transformation are usually decomposed
into five individual rotations which are represented by four rotation matrices W, S, N and P. These ma-
trices correspond to polar motion (wobble, z, and y,), earth rotation (spin, dUT1), nutation (di, de) and
precession (z,£4,04) respectively (see e.g. ROBERTSON 1975, MA 1978, NOTHNAGEL 1991, or SEEBER
2003). Equation (4.1) thus becomes:

1

Tgeom = —E-b-R-k
- —l-b-W-S-N-P~k (4.2)
C

The matrices W, S, N and P are usually expressed by means of Eulerian rotation angles around the respective
rotation axes. A more detailed description can be found in e.g. NOTHNAGEL 1991, or SOVERS et al. 1998.
NOTHNAGEL 1991 also lists the coordinate systems associated with the different rotations.

Since equation (4.2) only describes the geometrical delay, a more sophisticated model has to be used to model
real VLBI observations which are affected by various effects on their way through interstellar space, the Solar
System, and the Earth’s atmosphere. Therefore further terms accounting for e.g. the changing behaviour of
station clocks, the delay caused by atmospheric influences, tidal or loading effects, etc. have to be added.
Hence the basic geometrical has to be extended to

1
Tobs — ——-b-W-S-N-P-k
C

+ Tj—abb. + Te—abb. + TRel. + TTid. + TLoad. (4.3)
+ Tron. + Tinstr. + TAtmy, + TClock + TAtm.,
+ ...
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where the following terms are used:

Tj—abb. annual abberation because of the motion of the earth around
the solar system barycenter
Ti—app. diurnal abberation because of the rotation of the earth
Trel. relativistic effects
Triq. deformation of the earth because of tides and
because of changes of the angular momentum due to ocean tides
TLoad. deformation of the earth because of loading effects
e.g. due to ocean tides and atmospheric pressure changes
TIon. 1Onospheric correction
TInstr. instrumental corrections
Tatm, atmospheric refraction (hydrostatic part)
TAtm,  atmospheric refraction (wet part)
Teloek  relative clock offset and clock rate (and additional terms)

A more explicit formulation of model (4.3) reads:

1 TA—2TpB cosd - cos h(t)
Tobs = ——-| ya—vyn ‘Rzp, yp, dUT1,dp, de, 2,€4,04) - | cosd- sinh(t)
¢ ZA — ZB sin 0
+ Tj—abb. + Tt—abb. + TRel. + TTid. + TLoad. (4.4)

+ Tron. + Tinstr. + TAtmy, + TClock + TAtm.,
+ ...

with ;, yi, 2; being the geocentric coordinates of the particular station, R being the rotation matrix between
the celestial and the terrestrial reference system (and thus dependent on polar motion z,y,, earth rota-
tion AUT1, nutation di, de and precession z,£4,0 4) and h(t) and § being the hour angle and declination
of the observed radio source.

The way of parametrisation usually depends on the target parameters to be investigated and depends on
the number of stations participating as well as on the duration of the session. As described in chapter 2
also in VLBI data analysis different mathematical models (possibly with different kinds of parametrisations)
may describe the observations equally well. Although official recommendations exist (McCARTY and PETIT
2003), the choice of a particular model and the choice of a particular parametrisation is quite arbitrary and
may vary from analyst to analyst. In particular the following physical models are subject to these arbitrary
choices.

Physical models
Clock behaviour and piecewise linear modelling

One of the largest constituents of the signal delays is caused by the differences in the behaviour of the station
frequency standards. After choosing an arbitrary clock as the reference clock for the entire observing network
the remaining clocks show both a constant difference (— clock offset) and a linear (— clock trend) or an even
higher rate of change relative to the reference clock. Thus, an appropriate clock with a presumedly high
frequency stability should be chosen as the reference standard for the entire network.

From an algebraic point of view it is of no consequence to the least-squares solution which station clock
is chosen as the reference one (SCHUH 1987). Since the clock parameters (offset, trend, etc.) also ’absorb’
physical effects with a similar signature (as e.g. instrumental effects and relativistic effects of higher order)
special attention should be paid to this type of parameter.
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In order to describe the clock behaviour in a mathematical way, usually a simple polynomial approach is
chosen, as e.g.

Tctoek = CLo+ CLy -t 4+ CLy- (t —t9)* + ... (4.5)

In practical VLBI data analysis usually up to three parameters (offset C' Ly, trend C'L; and squared term C'Ls)
are used. In addition to a simple polynomial further so-called piece-wise linear parameters are used to account
for higher variations of the frequency standards. For piece-wise linear modelling a linear behaviour of the
effect to be modelled is assumed for certain intervals. One of the different kinds of parametrisation is based
on determining new clock rates for each interval by estimating ATciockrate; (S€€ €.g. SCHUH 1987, or TESMER
2004):

A7-Clock (tz) = ATClockoffseiE + ATClockraiEel (tl - tO) + ATClockraiEeg (t2 - tl) +- +A7-Clockraten (tz - tnfl) (46)

In order to avoid numerical problems (as e.g. rank deficiencies) and to stabilize the parameter estimation
process, constraints (or pseudo-observations) have to be included in intervals with only a small number of
observations. Usually this type of pseudo-observations constrains the particular rate segment to zero and
allows for a certain variation by assigning an appropriate formal error.

Piece-wise linear modelling is also used when describing other effects such as e.g. atmospheric behaviour,
atmosphere gradients or sub-daily earth rotation variations.

Atmospheric refraction and atmospheric mapping functions

On their way to the radio telescopes, radio signals have to pass the atmosphere, i.e., the electrically charged
part (ionosphere) and the electrically neutral part (troposphere) of the atmospheric layers up to a height of
approximately 50 kilometres (HOFMANN-WELLENHOF, B. et al. 2003). Depending on the state of these layers
the signals are distorted. The impact of the ionosphere can be eliminated almost completely by performing
dual frequency measurements. The signal path delay caused by the atmosphere (as well as the ionospheric
delay) is called refraction and can change between approximately 2.3 m in zenith direction (approx. 8 ns)
and almost 25 m at elevations of 5° (NOTHNAGEL 2000).

Since the tropospheric signal path delay depends on the path length of the signals through the atmosphere
it therefore also depends on the elevation e of the radio source observed. These elevation dependencies are
usually expressed as so-called mapping functions which describe the relations of the signal path delay in
zenith direction ("zenith delay’) 6pf,, and the signal path delay in source direction dp;,p(€). The most simple
form of such a mapping function reads:

1
mtrp(e) = m (47)

Hence the signal path delay in source direction is

5/)“”1’(6) = mtTP(e) ’ 5/)1(5)7‘;)' (48)

Due to the fact that water vapor only occurs up to heights of approximately 15 km (while the entire
atmosphere reaches heights of more than 50 km) it has been found appropriate to use different mapping
functions for the hydrostatic and the wet part of the atmosphere. Hence the total atmospheric signal path
delay in source direction can be modelled as:

5pt7‘17(€) = mtprd(e) : 5p1(€)7‘p,d + Mirp,w (6) : 5p1(€)7‘p,w' (49)

The simple mapping function my,p(€) = has been found to be inaccurate for highly precise applica-

L
in(e)

tions (even at elevation angles of 20°). During the last decades more precise mapping functions have been
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developed (as e.g. CfA-, MTT-, Neill- or the Vienna Mapping functions) some of them taking into account
the atmospheric situation above the observation site or making use of numerical weather models. Details
about mapping functions can be found in e.g. NOTHNAGEL 2000, or BOEHM 2004.

As for the modelling of clock behaviour also piecewise linear modelling approaches are used to describe the
atmospheric behaviour. Depending on the analyst the interval length for piecewise linear modelling of the
atmosphere is usually set to values between 2 hours and 20 minutes.

4.2.2 Partial derivatives and design matrix

For the adjustment of VLBI observations by using the Gauss-Markoff-model (see chapter 2) the partial
derivatives of the particular functional model chosen by the analyst with respect to the unknown parameters
have to be computed and arranged in the design matrix. In general, the design matrix contains many more
parameters than discussed in the following paragraph (see e.g. NOTHNAGEL 1991).

The dimension of the design matrix equals (number of observed delays + number of constraints) x (number
of unknowns). When choosing the order of unknowns as station coordinates, clock coefficients, atmosphere
coefficients the structure of the design matrix may be as follows (example for a 3-station network):

Stationsy; Clocksy, Atmosphereg
Stationsy; Clocksy, Atmosphereg

A = | Stationsy, Clocksy, Atmospherey (4.10)
Stationsy; Clocksy, Atmosphereg

with
67’1' 57’»; 67’1' 67’1' 67’1' 57’»;
0Tq 0Ya 0za dxp Syp dzp 0 0 0
6T; Tj 6Tj 0 0 0 o7y 6Tj o7y
O 0Ya 0za ST, dYe e
0 0 0 %m b O dme STk STk
oxy, OYp 0z oz, 0Ye dzc
Stations = | 4. 6 én  Sm  dm 7 0 0 0
0Tq 0Ya ' EN dxp Syp dzp
OTm Tm OTm 0 0 0 OTm OTm OTm
ST 0Ya 0za ST, dYe e
0 0 0 %= a OTa 0w T T
dxp Syp dzp 0T dYe EER
5Ti 57’1’ 57’1’ 5Ti 5Ti 5Ti O 0 O
6CLO, 6CL1, 6CL2, SCLOy 6CL1, SCL2y,
6Tj 67']' 6Tj O O O 57']' 6Tj 57']'
6CLO, 6CL1, 6CL2, SCLO. 6CL1,. 6CL2.
0 0 0 0Tk 0Tk 0Tk 0Tk 0Tk 0Tk
SC L0y SCL1, SCL2y, SCLO. 6CL1,. SCL2.
Clocks — ] ] (%] ] ] ] O 0 O
6CLO, 6CL1, 6CL2, SCLOy 6CL1, SCL2,
OTm OTm OTm 0 0 0 OTm OTm OTm
6CLO, 6CL1, 6CL2, 6CLO. 6CL1. SCL2.
0 0 0 0Tn 0Tn 0Tn 0Tn 0Tn 0Tn
SCLOy 6CL1, SCL2y, SCLO. 6CL1,. SCL2.
OTi OTi 0
0AT, 0ATy
o7y 0 6T;
0AT, SAT,
0 5Tk (STk
5 J?Tb SAT,
— TL T
Atmosphere parameters SAT.  FAR 0
OTm 0 OTm
0AT, SAT,
0 0Tn 0Tn
0ATy 0AT,
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Some of the partial derivatives of the observation equation (4.3) with respect to the unknown parameters
read (NOTHNAGEL 1991):

%}bs _ % - cos(h(t)) - cos(d) (4.11)
%T;E’S _ % - sin(h(t)) - cos(5) (4.12)
%Tgbs = % - sin(4) (4.13)
0ot 2 con(h(t)) - cos(d) (4.14)
b
‘987;*’5 S sin(h(t)) - cos(d) (4.15)
b C
%TZ)S = —% - sin(d) (4.16)
OTobs
e Lbo -1 (4.17)
a 0o0s
sora. = !t (4.18)
OTobs
8CLb2 = (t=t0)" (4.19)
OTobs
acz?ob =1 (4.20)
OTobs
ac£1b =—(t—t) (42)
OTobs
i = a
OTobs 1
8A7b” = - -m(e) (4.23)
OTobs 1
8A7b”b = -m(e) (4.24)
87'obs 1 .
T =T (by - sin(8) — b - cos() - cos(h(t))) (4.25)
p0
67—01)8 1 .
3 = ——(by-sin(6) — b, - cos(8) - cos(h(t))) - (t — to) (4.26)
Tpl C
OTobs 1 , .
By =5 (by - sin(8) — b. - cos(d) - sin(h(t))) (4.27)
Ypo c
87'obs 1 . :
Frrar (by - sin(8) — b - cos(d) - sin(h(t))) - (t — to) (4.28)
p
OTobs _ _ 1 ) cos(8) - (b - sin(h(6)) — b h(t 4.29
OAUT1, ¢ - co8(8) - (bg - sin(h(t)) — by - cos(h(t))) (4.29)
Oobs _ _ 1.0 cos(s) - (b - sin(h(t)) — b h(t))) - (t—t 4.30
AUTL — ¢ - c08(0) - (bs - sin(h(t)) — by - cos(h(t))) - (t — to) (4.30)
% 1 cos(8) - (by - sin(h(t)) — by - cos(h(t))) (4.31)
a c
87—0;,5 1

2%~ o (sin(8) - (—by - cos(h(t)) — by - sin(h(t))) + b. - cos(d)) (4.32)
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h(t)  Greenwich hour angle of the radio source

) declination of the radio source

c velocity of light
t —tyo time passed since the beginning of the session

€ elevation of the radio telescope

Q conversion factor from universal time to sidereal time (= 1)
m(e)  atmospheric mapping function.

4.2.2.1 Sensitivity of observation equations / partial derivatives

Due to the relative nature of the VLBI technique the observations (i.e., arrival time differences) are not
sensitive to some parameters such as absolute geocentric station coordinates or the origin of right ascension
(SOVERS et al. 1998). This information must be supplied by other techniques.

The information content of VLBI observables heavily depends on the configuration of the experiment. Thus,
the observation schedule (i.e., station location, source position and the actual orientation of the source with
respect to the baseline) plays a crucial role in determining the types and precision of parameters that can
be estimated. Due to the fact that only the scalar product of baseline vector and vector in source direction
is observed, some observation geometries impose limitations on the estimability (and separability) of certain
parameters (so-called critical (baseline) configuration, cf. SOVERS et al. 1998, or TAKAHASHI 1994).

In order to assess the parameters that can be estimated the partial derivatives of the observation equation of
a functional model with respect to its parameters have to be analysed. In geodetic adjustment computations
this is in particular used for the analysis of error propagation. On the other hand these investigations also
show the sensitivity of an observation concerning a certain parameter (see e.g. NIEMEIER 2002, WALTER
1973, or LUNDQVIST 1984).

In the case of VLBI, investigations of the magnitudes and the variations of the partial derivatives of equa-
tion (4.3) with respect to the parameters to be determined have been performed very early by e.g. WALTER
1973, DERMANIS and MUELLER 1978, or MA 1978. WALTER 1973 describes in detail that 'the chances to
separate the various effects are widened if the partial derivatives differ in amplitude and phase’. Conversely,
this means that similarities of partial derivatives indicate a low separability (or a high correlation) between
the parameters involved. Algebraically this is shown by at least two similar columns of the design matrix
leading to numerical problems due to (an almost) rank deficiency of the design matrix.

Partial derivatives with respect to earth orientation parameters

Investigations of the magnitudes and the variations of the partial derivatives O7ops/0xp0 (€q. 4.25), OTobs/OYpo
(eq. 4.27) and O7ops/OAUT 1y (eq. 4.29) show the sensitivities of VLBI observations with respect to the
observation geometry (i.e., concerning baseline orientation and source position relative to the observing
baseline).

The partial derivative OTops/0xpo (€q. 4.25) shows that observations on baselines parallel to the y-axis (i.e.,
b, = b, = 0, with b; indicating the respective baseline component) are not capable for the determination
of the zp-component (which is a rotation around the y-axis), while observations on baselines parallel to the
x-axis (i.e., by = b, = 0) are not suitable for the determination of the y,-component of polar motion (which
is a rotation around the x-axis), see eq. 4.27. Additionally, equations 4.25 and 4.27 show the capability of
baselines with a long north-south-extension (i.e., with large b,-components) for the determination of polar
motion. The O7yps/OAUT 1o-partial derivative (eq. 4.29) reveals the importance of observations on baselines
with a large east-west-extension for the determination of earth rotation (i.e., for AUT'1y). This agrees with
the fact that in general VLBI observations are not sensitive to an effect which is perpendicular to the
orientation of that baseline (see MORITZ 1987, or FISCHER 2006).
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Concerning the source position the three partial derivatives show that especially radio sources with low
(absolute) declinations are necessary for the determination and separation of 0, ypo and AUT'1y. Tabular 4.1
gives an overview of criteria for optimal EOP determination depending on baseline orientation and source
position (BROUWER 1985).

Baseline parallel Baseline parallel

to Equatorial plane to rotation axis

Equatorial | Polar | Equatorial | Polar
sources sources sources sources
ZTp, Yp NO YES YES NO
AUT1 YES NO NO NO

Table 4.1: Parameter estimability as a function of baseline orientation and source position (BROUWER 1985)

Partial derivatives with respect to height, clock and atmosphere parameters

The analysis of the partial derivatives of equation (4.3) with respect to the topocentric station height, clock
offset and atmosphere offset (see equations 4.17 to 4.24) leads to a very common problem in space geodetic
positioning: the separability of vertical station motion, clock offset and atmospheric variations. Due to the
similarities of the partial derivatives at high elevation angles the separability of the three effects decreases
with higher elevations (see also VENNEBUSCH 2002).

Figure 4.3 shows the impact of variations in station height, clock offset and atmospheric behaviour on the
observations (for the case of GPS-observations, but it can be used for VLBI as well). Since a physical effect
can only be determined from observations which are affected by the particular effect, this also reveals the
kind of observations necessary for the determination and separation of the three effects: Observations with
low elevations are especially needed for the separation of station height and atmospheric behaviour. Solely
observations in zenith direction are not suitable for the separation of the three effects (see ROTHACHER
2003). NoTHNAGEL 1991 demonstrated empirically that observations to sources located in those parts of
the common visible area of the celestial sphere that both stations can point at with very low elevations
(so-called ’elevation cusps’, for an example see sources S5 and S6 in figure 5.7 on page 81) are of particular
importance for the determination of clock offsets.

Unfortunately, using observations with low elevations (which are necessary for the separability of the three
effects), errors in the atmospheric models propagate into the remaining parameters and degrade the entire
solution (BoEHM 2004).

Z z
ASpc.k(O)
3palz) 3pi(0) /Opy(z)
~ L 7
\ z
\ /
\
3p,(z) = cos(z)-3p,(0) ; 3p,(0)=8h 3pa(Z) = 3pa(0) = c-dty 3p,(z) = Mf(2)-3p,,(0) ~ 1/cos(z)-5p,,(0)

Figure 4.3: Impact of station height variations, clock offset and tropospheric delay on (GPS-)observations
(ROTHACHER 2003)
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4.2.2.2 Other partial derivatives

The similarities of the partial derivatives (4.29) and (4.31) show the lack of capability for the separation
of AUT1 and right ascension « of a radio source. Since these equations are equal (except for the factor Q ~ 1
and the sign) no separation is possible between variations in right ascension of a radio source and variations
in earth rotation. A similar effect occurs in GPS with the ascending node and AUT1 (ROTHACHER 2003).

Another example for critical (baseline) configurations and thus for inseparable parameters is given by base-
lines parallel to the equatorial plane observing sources with different right ascensions but identical declina-
tions. With this configuration no separation between the Az-component of the baseline and the clock offset
between both stations is possible since variations in one of these parameters have the same impact on the
observables (BROUWER 1985). This will be of importance in chapter 5 (case 6).

4.3 Parameter estimation in VLBI data analysis

The determination of parameters in equation 4.3 on page 57 is a typical adjustment problem and is often
performed by least-squares estimation methods. Thus, the apriori model is refined by estimating model
parameter corrections which best fit the data.

For the estimation of parameters from VLBI observations various different approaches exist, such as e.g.

e classical least-squares based on the solution of normal equations,
e Kalman filter and square root information filter approaches (e.g. ANDERSEN 2000) or

e collocation approaches (e.g. TrTov 2002).

For the investigations in the next chapter, the design matrix as used for the computation of the nor-
mal equations is being used. In practice, the dimension of the design matrix of a typical VLBI session is
about 2000 x 200. For the common adjustment of several sessions (so-called global solution) these dimensions
increase drastically.

4.4 Estimability limitations

Due to the limitations imposed by only observing the scalar product of the baseline and signal propaga-
tion vectors, unambiguous separation of parameters is only possible with sufficient spatially and temporally
distributed observations, i.e., by avoiding observations performed only in critical (baseline) configurations.
In practice, VLBI observation schedules are mostly generated by optimizing ’sky coverage’, i.e., by observ-
ing sources in as many different positions in the commonly visible part of the celestial sphere as possible
(STEUFMEHL 1994).

In addition to the limitations of the information content of VLBI observations due to the observing geometry,
the separation of physical parameters is further complicated by linear combinations of a subset of parameters
which may produce identical variations in the observables similar to other (linear combinations of) parameters
of the model (so-called degeneracies). All such potential degeneracies must be identified and accounted for
in the parameter estimation procedures (SOVERS et al. 1998).

Both critical (baseline) configurations and separation problems will be of importance in the next chapter.
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5.1 Introduction

The theoretical background derived in chapters 1 to 4 can now be used to investigate the design of in-
terferometers, i.e., to analyse the type of parameters that can be estimated after measuring arrival time
differences of signals emitted by extra-terrestrial radio sources and to analyse which parameters are affected
by certain groups of observations. These methods can be used to achieve a deeper understanding of the
impact of single (or groups of) observations on the adjustment process and can thus be used to optimise
the observation schedule by neglecting observations (or observation groups) with small impact factors or by
supporting/controlling observations with high impact factors by appropriate (independent) observations.

The main intention of this chapter is to show the suitability of the regression diagnostics tool developed in the
previous chapters by testing its agreement with existing VLBI knowledge (such as e.g. found by the analysis
of the functional model of VLBI in chapter 4). In some cases, however, new knowledge can be obtained which
can only be found by investigating the entire observation schedule (and not just the partial derivatives of
single observations). At first, the regression tool based on singular value decomposition and cluster analysis
will be applied to a plane, static interferometer (or 2D-interferometer). In a second step, the investigations
will be generalised and applied to spatial, rotating interferometers (i.e., to 3D-interferometer and thus to the
VLBI principle).

5.2 VLBI observation schedule analysis software ¢tSVD

The author of this thesis developed ¢tSVD, a software package mainly designed for singular value
decomposition-based analyses of VLBI observation schedules. The software is written in object-oriented
C++ and uses the graphical user interface (GUI)-library Qt* which enables platform independent software
development with user-friendly and mask-oriented dialogs. For matrix computations the GNU Scientific
Library (GSL) has been used. For screenshots of ¢qtSVD, see figures 5.2 and 5.3.

gtSVD can also be used for investigations of other adjustment problems such as polynomial regression, plane
interferometers or arbitrary design matrices (in MATLAB format). The software performs:
e visualisation of design matrices (for an example, see figure 5.2)
e singular value decomposition of design matrices
e computation of data resolution matrices, model resolution matrices, cofactor and correlation matrices
e cluster analysis of data resolution matrices
e visualisation of cluster analysis dendrograms

e computation of the ’average cluster impact factor hotuster ¢ Of cluster ¢ on the parameter (group) x;’
For the analysis of VLBI observation schedules ¢tSVD also

e reads observation schedules from NGS-files (i.e., ASCII files containing the VLBI observations of indi-
vidual sessions),

lavailable at http://www.trolltech.com
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e generates the design matrix after choosing an appropriate parametrisation (the computation of the
design matrix is based on the VLBI data analysis software OCCAM (see T1TOV et al. 2004)),

e provides a three-dimensional visualisation of the network and the observation geometry with user-
defined viewport settings (for an example, see figure 5.3).

The following investigations have been carried out with ¢tSVD, as well as the generation of all plots and
tables.

5.3 Plane static interferometer

As shown in figure 5.1 the most simple interferometer consists of a single fixed baseline surrounded by fixed
‘radio sources’ considered to emit plane waves of radio signals. Due to the close relation to visible parts of
the sky of a spatial interferometer (with a maximum of only one half of the celestial sphere being visible from
both stations of the baseline) here only a half-circle is considered. The baseline is considered to be parallel to
the x-axis of a plane, cartesian coordinate system where the origin agrees with the mid point of the baseline.
At both ends of the baseline, signal receivers equipped with atomic clocks are assumed.
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Figure 5.1: Plane static interferometer

Functional model

Observations 7; may be obtained by measuring the difference of the arrival times of a 'radio signal’ at both
ends of the baseline. Estimable parameters are:

e the Az component of the baseline,

e the Ay component of the baseline and

e the clock offset C'Lj of one clock with respect to the other clock.

The functional model of a plane, static interferometer thus reads:

T:b~k+CLO: |: ﬁz:| . |: Z; :| +CLO:AI~k1+Ay'k2+OL0 (51)

with b being the unit vector of the baseline and k being a unit vector in source direction. Note that the
source vector k contains the coordinates of the unit vector into the direction of the respective source.
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Figure 5.3: Screenshot of ¢tSVD (VLBI session visualisation module)
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5.3.1 Investigation of parameter estimability

In the following sections the estimability of three parameter types (and combinations thereof) in the plane
interferometer shown in fig. 5.1 are investigated. The three parameters Az baseline component, Ay baseline
component and clock offset C'Lj at station B can be combined in the following way:

1. Az baseline component only (corresponds to estimating a change of the length of the baseline),

2. Ay baseline component only (corresponds to estimating a change of the height of one station),

3. clock offset C'Ly at station B only (corresponds to estimating the radius of a circle around station B),

4. Az and Ay baseline component,

5. Az baseline component and clock offset C'Lg at station B,

6. Ay baseline component and clock offset C'Lg at station B and

7. Az and Ay baseline component and clock offset C'Lg at station B.
For each of the seven cases an identical set of 19 ’observations’ is obtained by simulating measurements of
the arrival time differences of the signals from each source. Each source is observed only once in a counter-

clockwise sense, starting at source 1 (see fig. 5.1). Since only the design of the experiment is of interest, no
observation vector is present. Thus, for the following investigations only the design matrix A is used.

Figure 5.4 shows the components S, V, U of the singular value decomposition of the design matrix A as
well as the data resolution matrix (DRM) and the model resolution matrix (MRM), the impact factors of
the observations, the cluster analysis of the data resolution matrix and the correlation matrix COR. of the
estimated parameters for each of the seven investigated cases (see tabular 5.1).

Element Description

General S Singular values, indicating presence of rank deficiencies

Model space (Parameters) \% Right singular vectors, indicating the amount of impact on the
adjusted parameters

MRM | Model resolution matrix, indicates relations of parameters in case
of a rank deficiency

COR Correlation matrix, indicating correlations between parameters

Data space (Observations) U Left singular vectors, indicating impact of observations on
parameters (or linear combination thereof)
hii Impact factors, indicating the importance of individual observations

DRM | Data resolution matrix, main-diagonal elements h;; indicating

impact factors of observations, off-diagonal elements h;; indicating

impact co-factors and thus a jointly influential or counteracting

effect of observations

Dendro- | Result of cluster analysis of the data resolution matrix, indicating
gram influential subsets of observations

Table 5.1: Singular value decomposition- and Cluster Analysis-based analysis elements
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Interpretation guidelines

For a correct interpretation of the elements listed in table 5.1 and displayed in figures 5.4, 5.8, 5.9 and 5.16,
eq. 2.47 on page 39 should be reviewed. This formula describes the least-squares solution of a linear system
Ax =y by using the singular value decomposition of A:

1
Z— =V,8,'U,y. (5.2)
g;

Eq. 5.2 shows that very small singular values o; (or singular values which even equal zero) lead to unreasonable
contributions to the least squares solution, caused by (near) rank deficiencies.

After verifying the absence of rank deficiencies (i.e., then » = u), each of the r summands of eq. 5.2 needs
to be related to a certain parameter by identifying the largest element(s) of each right singular vector v;
(for i =1,...,r). As shown below, only in very few cases a single element of a v;-vector is significantly larger
than the remaining elements. In many cases, however, several elements are of similar size and thus show that
the corresponding summand affects more than just one parameter.

In any case, for each summand the corresponding left singular vector u; shows the impact each observation
has on the parameters identified by analysing the corresponding right singular vector v;. This can even be
performed without a real observation vector.

Since the singular values o; are usually sorted in ascending order, the right singular vector vy of the first
summand (which is computed with the largest singular value, o1) reveals those parameters (or a linear
combination thereof) which is best determined. On the other hand, the last summand (which is computed
with the smallest singular value, o,.) displays those parameters (or parameter linear combinations) which are
worst determined.

Information content of plane static interferometer observations

For the following investigations, the information content of individual observations performed in a plane static
interferometer will be important. Figure 5.5 shows three observation geometries with very low elevations,
medium elevations and very high elevations, respectively.

The Az component of this baseline can be interpreted as a variation of the baseline length. The Ay component
might be regarded as a height variation of station B. The circle around station B displays the offset C'Ly of
the clock at station B with respect to the reference clock at station A. More detailed explanations will be
given below.

constellation 1 constellation 2 constellation 3

\°.'\.L DR |
A A X \ B¢Ay///

Figure 5.5: Information content of plane static interferometer observations. The Ax component displays a
variation of the baseline length. The Ay component visualises a height variation of station B and the circle
around station B displays the clock offset C'Lg of station B with respect to the reference clock at station A.
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Case 1: Estimation of Ax baseline component only

e General / Singular values:
As mentioned above, every singular value decomposition-based analysis of an adjustment problem
should start with the investigation of the singular values ¢;, indicating a potential rank deficiency of
the design matrix. Here, the only singular value is o7 = 3.16 > 0 and thus no rank deficiency is present.

e Model space / Right singular vectors (Matrix V):
Since in this case only one parameter is estimated the V-matrix equals a 1 x 1-identity matrix and
thus does not provide any useful information.

e Model space / Model resolution matrix (MRM):
Since the model resolution matrix MRM is computed by the right singular vectors it also does not
provide any useful information for this case.

e Model space / Correlation matrix (COR):
Similar to the two items above, the correlation matrix does not give any useful information for this
particular case.

e Data space / Left singular vectors (Matrix U):
The U-matrix (i.e., the left singular vector of the design matrix) already indicates a significant differ-
ence in the impact of the individual observations. Considering the absolute values of the elements of
the left singular vector, a decreasing impact of observations 1 to 9 can be seen. On the other hand, ob-
servations 11 to 19 show an increasing impact. Observation 10 is of negligible impact for the estimation
of the Az baseline component.

e Data space / Impact factors:
The main-diagonal elements of the Data Resolution Matrix indicate the overall impact of each observa-
tion on the parameters to be estimated. As already seen in the left singular vector, for the determination
of the Az baseline component, the first and the last observations mainly affect the estimation process.
Observation 10 could have been omitted completely since it does not provide any information.

e Data space / Data resolution matrix (DRM):

A jointly influential or a counter-acting effect of observations (see section 3.2 on page 50) can be
detected by row-wise investigating the Data Resolution Matrix (red — jointly influential effect, blue —
counter-acting effect): A jointly influential effect and thus a common degree of information can be seen
for observations 1 to 9 and observations 11 to 19, respectively. For observations 1 to 9 a decreasing
significant counter-acting effect to observations 11 to 19 can be seen (and vice versa), since observations
to sources with an angular difference of approximately 180° 'pull’ the baseline component into opposite
directions.

For the determination of the Az baseline component, the 10th observation does not have any impact
at all (see 10th row of DRM). Nor does the 10th observation affect the remaining observations (see
10th column of DRM). Thus, this observation could have been omitted. Geometrically, this becomes
obvious from figure 5.5 on the preceding page (constellation 3): For observations performed with high
elevations, a small variation in the Az baseline component hardly affects the arrival time difference of
the signal. Hence, these kind of observations are not sensitive to the Az baseline component and are
thus not suited for the determination of the Ax baseline component. On the other hand, constellation 1
in figure 5.5 shows that the first and the last few observations are needed for the Ax baseline component.

This means, that in order to obtain important observations for the determination of the Az baseline
component, sources located in direction of the baseline vector have to be used. Observations to sources
orthogonal to the baseline are of no use for this parameter. Obviously, this depends on the orientation
of the reference system. In general, observations to sources orthogonal to the baseline cannot be used
for the determination of the baseline length.

e Data space / Cluster analysis:
Cluster analysis of the data resolution matrix yields a dendrogram with two branches indicating two
different groups of observations (see figure 5.6 for the enlarged dendrogram). Observations 1 and 2 and
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Cluster Analysis Results - Case 1

Cluster: | N of Mean Members (observations): Lhsupact; o prnEmasin [H;
members: | impact factor: Ax

1 1 0.00 9 0.003

2 1 0.00 10 0.000

3 1 0.00 11 0.003

4 8 0.06 12, 13, 14, 15, 16, 17, 18, 19 0.062

5 8 0.06 8,7.6,5 4,3 1,2 0.062

Table 5.2: Cluster analysis results for case 1 (Estimation of Az baseline component only)
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Figure 5.6: Enlarged dendrogram for case 1 (estimation of Az baseline component)

observations 19 and 18 have been clustered at first. The last single observation which has been clustered
is observation 10, showing again that this observation is least ’similar’ to the remaining observations.

In order to get reasonable clusters, the dendrogram has been cut to form five clusters. Table 5.2 shows
the results of cluster analysis as well as the impact of each cluster on the Az baseline component.

Case 2: Estimation of Ay baseline component only

General / Singular values:
The only singular value is o3 = 3.00 > 0 and thus no rank deficiency is present.

Model space / Right singular vectors (Matrix V): See case 1.
Model space / Model resolution matrix (MRM): See case 1.
Model space / Correlation matrix (COR): See case 1.

Data space / Left singular vectors (Matrix U):

Compared to case 1, the left singular vector (matrix U) has an opposite structure: Here, the first and
the last observations only have a small impact, while the middle observations have a large impact on the
determination of the Ay baseline component. The largest impact is produced by the 10th observation.

Data space / Impact factors:
Consequently, the same effect can be seen in the impact factors.
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Cluster Analysis Results - Case 2

Cluster: Nz, @ Mean Members (observations): LIsSEFaE O [DETEIEO! (e
members: | impact factor: Ay
1 1 0.00 1 0.000
2 1 0.00 2 0.003
3 1 0.00 18 0.003
4 1 0.00 19 0.000
5 15 0.07 17, 3, 4, 16, 5, 15, 6, 14, 13, 7, 8, 12, 0.066
9,10, 11

Table 5.3: Cluster analysis results for case 2 (Estimation of Ay baseline component only)

e Data space / Data resolution matrix (DRM):

The data resolution matrix shows a distinct agglomeration of observations. This indicates that the mid-
dle observations possess a similar information content (decreasing to the first and the last observation,
respectively) and that there are no counter-acting observations present.

The most important observations for the determination of the Ay baseline component have thus to be
performed to sources lying orthogonal to the baseline (see also constellation 3 in figure 5.5 on page 70).
The least important (and thus negligible) observations are performed to sources lying in direction
of the baseline vector. Again, this depends on the orientation of the coordinate system. In general,
observations to sources orthogonal to a baseline can only be used to determine a position variation
orthogonal to the baseline, since these observations are most affected by this effect.

Data space / Cluster analysis:

Cluster analysis of the data resolution matrix shows a sequential clustering of the most similar obser-
vations. Observations 1 and 19 have been clustered at last. Table 5.3 shows the results as well as the
impact on the Ay baseline component.

Case 3: Estimation of the clock offset C'Lj at station B only

General / Singular values:
The only singular value is o7 = 4.36 > 0 and thus no rank deficiency is present.

Model space / Right singular vectors (Matrix V): See case 1.
Model space / Model resolution matrix (MRM): See case 1.
Model space / Correlation matrix (COR): See case 1.

Data space / Left singular vectors (Matrix U):

In this case the U matrix consists of a column vector with identical elements (u; = 0.23). This shows
that each observation has the same impact on the parameter estimation process and thus to the
determination of the clock offset. This is obviously caused by the fact that the design matrix consists
of a vector of constants and is thus independent of the observation geometry.

Data space / Impact factors:
Consequently, the impact factors show the same effect, i.e., each observation is equally important for
the determination of the clock offset.

Data space / Data resolution matrix (DRM):

For this case, every element of the DRM equals 0.053 and thus for the determination of the clock
offset no classification of observations can be performed. Each observation is equally important and no
counter-acting observations are present.
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e Data space / Cluster analysis:
Due to the homogeneous structure of the DRM cluster analysis cannot be performed, i.e., no clusters
can be formed.

Excursus: A similar effect can be seen when investigating the data resolution matrix of a polynomial adjust-
ment with just one parameter (i.e., computation of the arithmetic mean). In this case every observation has
the same impact factor. This is due to the fact that the design matrix consists of a column with a constant
value.

Case 4: Estimation of Ar and Ay baseline component

e General / Singular values:
The singular values o0; = 3.16 and o; = 3.00 show that both parameters can be estimated with
approximately the same accuracy.

e Model space / Right singular vectors (Matrix V):
The V-matrix indicates that both parameters can be determined independently.

e Model space / Model resolution matrix (MRM):
Since no rank deficiency is present the MRM equals an identity matrix.

e Model space / Correlation matrix (COR):
Similarly, the diagonal structure of the model resolution matrix also shows that both parameters can
be determined independently.

e Data space / Left singular vectors (Matrix U):
Since the largest element of the first right singular vector is in the first row (and thus affects the first
parameter), the first singular value and the first left singular vector (see matrix U) are used to analyse
the impact of the observations on the determination of the Az baseline component: As in the first case,
the (absolute) values of the first left singular vector show that the first and the last observations exert
the largest impact on the determination of the Az baseline component.

On the other hand, the second right singular vector affects the second parameter. Thus, the second
singular value and the second left singular vector influence the determination of the Ay baseline com-
ponent: Here, the (absolute) values of the second left singular vector show the same behaviour as in
case 2.

e Data space / Impact factors:
For the determination of both baseline components the middle observations (i.e., observations 8 to 12)
are of slightly higher importance. This is caused by the fact that these observations have to determine
the Ay baseline component alone and do not posses any ‘counter-parts’ on the other side of the baseline
and are thus less controlled.

Numerically, the impact factors of this case (and only of this case!) consist of a superposition of the
two first elementary cases, because DRM¢ggse 4 = DRM@ase 1 + DRM@gse 2.

e Data space / Data resolution matrix (DRM):
Since this data resolution matrix is the sum of the data resolution matrix of case 1 and the data
resolution matrix of case 2, for the first and the last observation (rows 1 and 19) identical patterns as
in case 1 can be seen. For the middle observation (row 10) the pattern is identical to the pattern of
observation 10 in case 2.

For the remaining observations a significant jointly influential effect of neighboring observations can
be seen in the distinct main-diagonal structure. Counter-acting effects mainly occur for observations
to sources with an opposing ’counter part’, i.e., mainly for the first and last few observations. Again,
geometrical interpretations are aided by figure 5.5 on page 70.
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Cluster Analysis Results - Case 4

Cluster: i@, i Mean Members (observations): SUBEES O RS
members: | impact factor: Az | Ay

1 1 0.11 12, 13, 14, 15 0.034 0.073

2 4 0.10 16, 17, 18, 19 0.090 0.011

3 4 0.10 3,4,1,2 0.090 0.011

4 7 0.11 10,11, 8,9, 5, 6, 7 0.020 0.088

Table 5.4: Cluster analysis results for case 4 (Estimation of Az and Ay baseline component)

e Data space / Cluster analysis:

Figure 5.4 and table 5.4 show the results of the cluster analysis. The four clusters show a symmetric
classification of observations 1 to 4 and 16 to 19 in clusters 3 and 2, respectively. These clusters
mostly affect the Az baseline component. Clusters 1 and 4 show a slightly unsymmetric classification
of four and seven observations, respectively. Members of these clusters mainly affect the Ay baseline
component.

This case also reveals the difficulty of choosing an appropriate height for the dendrogram cut. Depending
on the (subjective) user decision, more or less symmetric clusters can be generated. The actual number
of clusters thus depends on the purpose of the experiment and on the problem to be analysed.

Case 5: Estimation of the Az baseline component and the clock offset C'Lj at station B

e General / Singular values:

The two singular values (01 = 4.35 and o9 = 3.16) indicate the absence of rank-deficiencies.

Model space / Right singular vectors (Matrix V):
The V matrix consists of a column-permutated identity matrix and thus every parameter can be
determined separately.

Model space / Model resolution matrix (MRM):
Due to the absence of rank deficiencies the model resolution matrix equals an identity matrix.

Model space / Correlation matrix (COR):
The correlation matrix is an identity matrix and thus indicates that every parameter can be determined
separately.

Data space / Left singular vectors (Matrix U):

Since numerically this case consists of a superposition of cases 1 and 3, the U matrix has a similar
structure as the individual U matrices of cases 1 and 3. As shown in the right singular vectors (matrix V)
the first left singular vector affects the clock parameter. Again, every observation exerts the same impact
on this parameter.

On the other hand, the (absolute values of the) second left singular vector show a similar structure as
the left singular vector of case 1. Due to the second right singular vector, the Az baseline component
is thus mainly affected by the first and the last observations.

Data space / Impact factors:

Similar to case 1, the first and last few observations are of main importance. In contrast to case 1,
however, the middle observations also have a significant impact on the regression results since they are
necessary for the clock offset determination. This is caused by the fact that the data resolution matrix
of this case is the sum of the data resolution matrix of case 1 and the data resolution matrix of case 3.
Thus, the impact factors of this case consist of the impact factors of case 1 shifted by a constant value.
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Cluster Analysis Results - Case 5

. | No. of Mean . ) Impact on parameter:
Cluster: members: | impact factor: Members (observations): Av | CLo
1 1 0.06 9 0.003 0.053
2 1 0.05 10 0.000 0.053
3 1 0.06 11 0.003 0.053
4 8 0.11 12, 13, 14, 15, 16, 17, 18, 19 0.062 0.053
5 8 0.11 8,7,6,54, 31,2 0.062 0.053

Table 5.5: Cluster analysis results for case 5 (Estimation of Az baseline component and the clock offset C'Lg
at station B)

e Data space / Data resolution matrix (DRM):
As for all previous cases with the Ax baseline component being an unknown parameter, the first
and the last observations are concurrent observations. The middle observations show a similar, almost
homogeneous pattern as in case 3. Thus, these observations possess a similar information content and
have no counter-acting observations. Again, this is due to the superposition of the cases 1 and 3.

e Data space / Cluster analysis:
The cluster analysis of the data resolution matrix shows a similar structure as in case 1: Observations
1 to 9 are clustered into the first cluster. Observations 10 to 19 are clustered into the second cluster.
As in case 1, observations 1 and 2 and observations 18 and 19 are clustered at first; observation 10 at
last.

Cutting the dendrogram at a reasonable height to form five clusters yields that the first (cluster 5)
and the last (cluster 4) few observations are both necessary for the determination of the Az baseline
component and the clock offset. The middle observations (clusters 1 to 3) mainly affect the determina-
tion of the clock offset only since these observations are not sensitive to variations in the Az baseline
component (see table 5.5).

Case 6: Estimation of the Ay baseline component and the clock offset CLj at station B

For this case, interpretations are complicated because some matrices are not of diagonal structure. This is
caused by the fact that some observations are conducted close to critical configurations for the determination
of both the Ay baseline component and the clock offset C'Ly (see table 5.6 on page 78). For observations
to sources orthogonal to this baseline, a change in the Ay baseline component and a change in the clock
offset C'Ly have the same effect (see constellation 1 in table 5.6). Furthermore, due to the lack of supporting
diametral observations (i.e., observations to sources below the baseline), both effects cannot be completely
separated (cf. BROUWER 1985). As constellations 2 to 3a/b show, separability is improved (i.e., the correla-
tion coefficient decreases) if observations performed with low elevations are included. The best separability
is given for constellations containing diametral observations (see constellation 3b).

Obviously, this only holds for the current baseline and source geometry. A rotation of the baseline or the entire
celestial sphere yields different results and thus different relations between the parameters to be determined.

e General / Singular values:
Although both singular values (o7 = 5.15 and o9 = 1.23) indicate the absence of rank-deficiencies they
also show that both parameters can only be determined with different accuracies. From the second
right singular vector the first parameter (Ay baseline component) is identified as the parameter which
is determined weaker than the clock offset CLy.
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e Model space / Right singular vectors (Matrix V):
The weak separability of the two effects can also be seen in the V-matrix: Since no distinct diagonal
structure can be seen, only the impact of observations on linear combinations of these parameters can
be investigated.

e Model space / Model resolution matrix (MRM):
As in the previous cases, the model resolution matrix does not reveal any relations between the unknown
parameters, since no rank deficiency is present.

e Model space / Correlation matrix (COR):
The correlation matrix shows a significant correlation of the Ay baseline component and the clock
offset C'Ly of —0.87.

e Data space / Left singular vectors (Matrix U):
Due to the weak separability of the two parameters, the U-matrix cannot be used for clear statements
and must not be over-interpreted. Just a higher general impact of the first, middle and last observa-
tions can be detected. Observations 5 and 15 are of minor impact especially for (1.) the Ay baseline
component and (2.) the clock offset C'Lg.

e Data space / Impact factors:
Due to the structure of the U-matrix the impact factors indicate the highest impact for the first
and last observations as well as for the middle observations. The lowest impact factors are given for
observations with a 45° angle between baseline vector and vector in source direction. An interpretation
is given below.

e Data space / Data resolution matrix (DRM):
The analysis of the data resolution matrix is complicated by the weak separation problem and must not
be over-interpreted. Numerically (and in contrast to the previous cases), this data resolution matrix

and thus the impact factors are not a superposition of the data resolution matrices of any of the three
elementary cases 1 to 3.

e Data space / Cluster analysis:
Cluster analysis classifies the observations into two main groups with the upper cluster containing the
first and the last observations which are of importance for both the Ay baseline component and the
clock offset. The second cluster containing the remaining observations is of major importance for the
Ay baseline component only.

The dendrogram cut displayed in figure 5.4 shows a classification into eight clusters. Again, the first and
the last observations (cluster 7) are of major importance for both parameters (see table 5.7) while the
observations to sources with a 45° angle between baseline vector and vector in source direction (clusters
1-3 and 4-6) have the smallest mean impact factor. The middle observations (cluster 8) mostly affect
the Ay baseline component. Again, these interpretations are complicated by the weak separability of
both parameters.

Since observations to sources orthogonal to this baseline cannot be used for the separation of both parameters,
the remaining observations have to be used instead. Although theoretically the first and the last observations
are not suitable for the solely determination of the Ay baseline component (see case 2), cluster analysis still
detects these observations as useful for the determination of both parameters. This is due to the lack of
suitable alternative observations. In connection with the determination of the clock offset, these observations
are still the most useful ones among all available observations. In any case, the separability of both effects
(parameters) is weak (see table 5.6).

In general (i.e., also for the three-dimensional case), separation of effects is complicated if both effects act in
the same direction. It is further complicated if there are no diametral (supporting) observations available. If
possible, for real experiments a re-parametrisation would be appropriate.
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Case 6 - Separability of Ay and CL

Condition | correlation cofactor matrix
number: | (pay,cr,): | (parameter order: Ay, C'Lg):

Constellation 1

6550.29 —6484.21

- 277.5 -0.99 —6484.21  6419.12
R
: By
A . BV "/
98.14 —17.90
12.9 -0.98 ~17.90 1172
. Ay |
A BV

Constellation 3a

—2.94 0.84

e $AR ; > e { 17.13 —2.94]

Constellation 3b

S 19.94 —2.89
° %o . -(0). . .
. - J 123 Ly —289 050

A ‘\\\ BvAy //,

Table 5.6: Separability of Ay and CLg in case 6. For each constellation, three different observations have
been performed to each of the three sources displayed in the respective diagram. For constellations 1, 2 and
3a, the observation 'triangle’ is only displayed for observations to the second (or middle) source, respectively.
For constellation 3b, the third observation is visualised. Vertical arrows indicate a height change (Ay) of
station B. R indicates the radius of a circle around station B and thus visualises the clock offset C'Lg of the
clock at station B with respect to the reference clock at station A.
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Cluster Analysis Results - Case 6

| No. of Mean . ) Impact on parameter:

Cluster: members: | impact factor: Members (observations): Ay | CLy

1 1 0.06 4 0.005 0.030
2 1 0.05 ) 0.001 0.008
3 1 0.07 6 0.013 0.000
4 1 0.07 14 0.013 0.000
b) 1 0.05 15 0.001 0.008
6 1 0.06 16 0.005 0.030
7 6 0.15 17,3,18,2, 1, 19 0.096 0.143
8 7 0.11 13, 7,12, 8, 11, 9, 10 0.055 0.009

Table 5.7: Cluster analysis results for case 6 (Estimation of Ay baseline component and the clock offset C'Lg
at station B)

Case 7: Estimation of the Az baseline component, Ay baseline component and the clock offset
CLg at station B

The determination of the three parameters Az baseline component, Ay baseline component and the clock
offset C'Ly depicts a superposition of the cases 1 and 6 (not of cases 1, 2 and 3!). Thus, this experiment
design again contains observations which are not suitable for the determination of any parameter (cf. case 6).

General / Singular values:

The three singular values o1 = 5.15,09 = 3.16 and o3 = 1.24 show the absence of rank deficiencies.
Again, however, a significant decline is visible and shows that the parameters cannot be determined
with equal accuracy.

Model space / Right singular vectors (Matrix V):

The V-matrix is not of diagonal structure. Only the first parameter (=Ax baseline component) is not
affected by any other parameter (see first row of V). The remaining parameters (Ay baseline component
and clock offset C'Lg) can only be analysed together, since these parameters are both affected by the
first and the third right singular vector.

Model space / Model resolution matrix (MRM):
Since no rank deficiency is present, the model resolution matrix consists of an identity matrix.

Model space / Correlation matrix (COR):

The correlation matrix shows the same correlation (—0.87) between the Ay baseline component and the
clock offset C'Lg as in case 6. The Az baseline component is not correlated with any other parameter
and can thus be determined separately.

Data space / Left singular vectors (Matrix U):
The first and the third left singular vector agree with the left singular vectors of case 6. The second
singular vector is the same as the left singular vector of case 1.

Data space / Impact factors:

The first and the last observations are of high importance while the middle observations nearly have
the same (medium) impact factors. Numerically, the impact factors are the sum of the impact factors
of cases 1 and 6.

Data space / Data resolution matrix (DRM):

Since this data resolution matrix consists of the sum of the data resolution matrix of case 1 and the
data resolution matrix of case 6 (containing critical configurations) it must not be over-interpreted.
Almost every observation possesses a counter-acting observation and thus complicates the geometric
interpretation.
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Cluster Analysis Results - Case 7

No. of Mean . Impact on parameter:

1 3 M 3
Cluster members: | impact factor: embers (observations) Ax | Ay | CLy
1 5 0.20 5, 4,3, 1,2 0.084 | 0.059 | 0.093
2 5 0.20 15, 16, 17, 18, 19 0.084 | 0.059 | 0.093
3 3 0.11 14, 12, 13 0.026 | 0.033 | 0.004
4 6 0.12 8, 11,9, 10,6, 7 0.014 | 0.052 | 0.009

Table 5.8: Cluster analysis results for case 7 (Estimation of Az baseline component, Ay baseline component
and the clock offset C'Ly at station B)

e Data space / Cluster analysis:
The cluster analysis shown in figure 5.4 shows a classification into three main groups consisting of the
first five observations, the last five observations and the remaining observations, respectively.

For a finer differentiation, the dendrogram has been cut to form four clusters (see table 5.8). The
first and the second cluster consist of the first and the last observations and possess the largest mean
importance for the entire parameter set. In addition the Ay baseline component is affected by the
fourth cluster which mainly consists of the observations to sources orthogonal to the baseline.

As in case 6, the first and the last observations are also necessary for the determination of the Ay base-
line component. Again, this is caused by the additional estimation of the clock offset and the lack of
suitable supporting observations.

5.3.2 Conclusions from plane static interferometer investigations

Based on the analyses performed so far, it could be shown that the regression diagnostics tool based on
singular value decomposition and cluster analysis yields plausible and geometrically comprehensible results.
It is possible to detect groups of observations with different impact on the parameters of interest. Using
the terms of chapter 3: Both jointly influential and counter-acting groups of observations can be identified.
Observation groups with large mean impact factors significantly affect the estimation process and thus should
be controlled by appropriate (independent) observations. On the other hand, observation groups with small
impact factors or which affect parameters of minor interest could be reduced or even neglected.

For some cases, however, the difficulties for performing a proper dendrogram cut became obvious: Sometimes,
the appropriate height for a dendrogram cut does not agree with a large similarity difference. Instead, the
dendrogram cut has to be performed in such a way that an appropriate number of clusters is generated. This
again shows the subjective (and thus ambiguous) part of the regression diagnostics procedure.

Furthermore, the regression diagnostics tool developed in the first chapters can be used to detect degeneracies
or critical (baseline) configurations (such as in case 6). In these cases (such as case 6, where the Ay baseline
component and the clock offset C'Lg at station B could hardly be separated), singular value decomposition
reveals indeterminable parameters (or indeterminable linear combinations thereof). The interpretation of
the singular values will be of even more importance in the following investigations (for the estimation of the
xp-parameter).

The main purpose of the analyses performed so far has been to show the suitability of the regression diag-
nostics tool for simple interferometers. In the following, more complex cases (i.e., both three-dimensional or
spatial and rotating or kinematic interferometers) will be treated.
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5.4 Spatial kinematic interferometer

The generalisation of a plane static interferometer first leads to a spatial static interferometer and then to a
spatial kinematic interferometer. The latter equals the VLBI principle if the rotation axis of the interferometer
coincides with the z-axis of a geocentric, earth-fixed terrestrial coordinate system. An example for a single-
baseline interferometer is shown in figure 5.7.

As described in chapter 4, observations performed in a single-baseline spatial kinematic interferometer (or
within a single-baseline VLBI observation session) can also be used to estimated (at least) the following
parameters:
e Terrestrial reference system:
— site positions xp,yp, zp of stations B (station A has to be kept fixed as a reference station)

e Earth orientation parameters:

— polar motion x,y,
— earth rotation dUT'1

e Auxiliary parameters:

— clock offset C' Ly and clock rate C'L; of one clock with respect to the other clock (reference clock)

— atmospheric zenith path delays AT4 at station A and AT at station B.
and combinations thereof. Depending on the baseline length, baseline orientation and on the observation
geometry some of these parameters may not be estimable.

In order to obtain reasonable results, all parameters have to be transformed to the same unit. For the
following investigations every parameter has been scaled to the unit ‘'meter’ or 'meter/day’ for the clock rate
parameter.

Limits of mutually visible parts of the celestial sphere

Figure 5.7: Spatial interferometer geometry as used for investigations (left: equatorial view, right: polar view),
’Sx’ indicates the source name, numbers indicate the observation number.
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5.4.1 Estimability investigations for basic parameters
Network geometry and observation schedule

For the following investigations of parameter estimability in spatial kinematic interferometers, a fictitious
interferometer as shown in figure 5.7 is used. The two stations form an equatorial baseline with a length of
5000 km, parallel to the y-axis and located on the tip of the x-axis of a geocentric coordinate system. Nine
artificial radio sources are located both at the celestial equator (declination: 0°) and near to the celestial
poles (declination: 85° and —85°). A list of these sources is shown in table 5.92.

As shown in table 5.10 the observation schedule consists of 15 observations with a duration of four minutes
each. The entire observation duration of one hour is divided into three groups of five observations, respectively.
The observations of each group are performed in a similar sequence:

e observation to a polar source with high declination (source 5 (S0300+85)), i.e., close to the horizon of
both stations (source is located in the northern ’elevation cusp’)

e observation to a polar source with low declination (source 6 (S0300-85)), also close to the horizon of
both stations (source is located in the southern ’elevation cusp’)

e observation to an equatorial source with a high right ascension (either source 1 (52230+00),
source 2 (52255+00) or source 3 (S2330+00), depending on hour angle and visibility) and thus close
to the horizon of station B

e observation to an equatorial source with a low right ascension (either source 7 (S0700+00),
source 8 (S0730-+00) or source 9 (S0755+00), depending on hour angle and visibility) and thus close
to the horizon of station A

e observation to an equatorial source (source 4 or S0300+-00) which is close to the zenith of both stations.
This scheme is repeated three times, yielding fifteen observations in total. Due to the rotation of the interfer-

ometer some equatorial sources set or rise during the observation period so that different equatorial sources
close to the horizon of one of the stations have to be observed.

Estimability analysis

In order to understand the complex situations of parameter estimation within real VLBI-observation sessions
(as treated in section 5.4.3 on page 99), some basic parameter sets have to investigated first:
8. Estimation of site positions x5, yg, zp of station B only
9. Estimation of clock offset C'Lg of station B only
10. Estimation of clock rate C'L; of station B only
11. Estimation of atmospheric zenith path delay AT 4 at station A only
12. Estimation of atmospheric zenith path delay AT at station B only
13. Estimation of polar motion y, only
14. Estimation of earth rotation dUT'1 only

As for the plane interferometer investigations, the singular value decomposition-based analysis components
as displayed in figure 5.8 on the facing page will be analysed.

2The second to fifth character of the source name indicate the right ascension (in [hh min]), the sixth character indicates
the sign of the declination and the seventh and eighth character indicate the declination of the source (in degrees).
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Case 8: Site positions zp,yp, zp of station B only

Using the fifteen observations described above, for the determination of the site positions zp,yp,zp of
station B, the singular values show that every component can be determined with nearly the same quality.
According to the model resolution matrix and to the correlation matrix the three parameters can be well
separated.

The left singular vectors (Matrix U) show distinct differences in the impact of each observation onto the three
parameters: The first left singular vector u; shows (together with the first right singular vector vq) that the
six observations to the polar sources (sources 5 (S0300+85) and 6 (S0300-85)) are almost solely responsible
for the determination of zp. According to the second left singular vector us and the second right singular
vector vg, observations to sources with high right ascensions (source 1 to source 3 (52230400, S2255+00,
S2330+400)) and to sources 7 and 8 (S0700+00 and S0730-+00) are of main importance for the yp parameter
(and to a small amount for zp). Observations to sources in zenith direction (source 4 (S0300+00)) are
(together with observations to sources 7 and 8 and for this baseline geometry) mainly necessary for zp (see
third left singular vector ug and third right singular vector vs).

The impact factors and the elements of the data resolution matrix show significant impact of every obser-
vation. The impact factors increase for observations with decreasing availibility of supporting 'counterpart
observations’, i.e., observations to source 4 (S0300-+00) are of main importance since no diametrally opposite
observation is possible. The off-diagonal elements of the data resolution matrix (impact co-factors) also show
a distinct pattern of three groups with five observations each. Row-wise investigation of the data resolution
matrix reflects the supporting character of observations to identical or similar sources.

The cluster analysis of the data resolution matrix also shows the generation of five clusters with each of them
containing three observations. Table 5.11 shows the mean impact factors of each cluster onto each parameter
together with modification recommendations (as listed in table 3.2 on page 53).

These results can only partly be generalised to other interferometer geometries: Due to the rotation of
the interferometer, observations to polar sources are always of main importance for the determination of
z coordinates. Statements about the impact of other sources also depend on the baseline orientation with
respect to the terrestrial reference system. As a rule of thumb, observations to sources in x axis direction or
in y axis direction also account for the x or y component, respectively.

Case 9: Clock offset C'Lj of station B only

As for the clock offset determination in a plane static interferometer (see page 73) also in a spatial kinematic
interferometer every observation is of equal importance. Thus, all impact factors and impact co-factors are
equal and no cluster analysis can be performed.

As for the plane interferometer this is caused by the fact that the design matrix for this case consists of a

vector of ones (see partial derivatives aagzbSQ and 8achLb5b in equations (4.17) and (4.20) on page 61) and thus

resembles the determination of the arithmetic mean for arbitrarily spaced observations.

The determination of the clock offset of the clock at station B with respect to the reference clock at station A
can be interpreted geometrically: As shown in the middle of figure 4.3 on page 63 the clock offset can be
visualised as a circle (or sphere) around the station whose clock offset has to be determined. The radius of
this circle (or sphere) corresponds to the metric value of the clock offset (i.e., multiplied by the velocity of
light).
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right ascension = declination

Code Source [hh min sec] U

S1 52230400 22 30 0.0 0.0
S2 S52255+00 22 55 0.0 0.0
S3 S2330+00 23 30 0.0 0.0
S4 S0300+00 03 00 0.0 0.0
S5 S0300+85 03 00 0.0 85.0
S6 S0300-85 03 00 0.0 -85.0
S7 S0700+00 07 00 0.0 0.0
S8 S0730+00 07 30 0.0 0.0
S9 S0755+00 07 55 0.0 0.0

Table 5.9: Source list for spatial interferometer investigations

Start of observation Az. A Az. B EIL. A EL B

[yyyy-doy.hh:mm:ss] [°] [°] [°] [°]

1 S0300+85 2000.265.02:30:00 359 )
2 S0300-85 2000.265.02:34:00 178 181 4 5
3 52230400 2000.265.02:38:00 270 270 49 7
4 S0700-+00 2000.265.02:42:00 90 90 ) 47
) S0300-+00 2000.265.02:46:00 90 270 66 71
6 S0300-+85 2000.265.02:50:00 2 358 ) )
7 S0300 85 2000.265.02:54:00 178 182 b) 5
8 52255-+00 2000.265.02:58:00 270 270 50 7
9 S0730-+00 2000.265.03:02:00 90 90 1 44
10 | S0300+00 2000.265.03:06:00 90 270 70 67
11 | S0300+85 2000.265.03:10:00 2 358 ) )
12 | S0300 85 2000.265.03:14:00 179 182 ) )
13 | S2330+00 2000.265.03:18:00 270 270 54 12
14 | S0755+00 2000.265.03:22:00 90 90 0.8 44
15 | S0300+00 2000.265.03:26:00 90 270 76 61

Table 5.10: Observation list for spatial interferometer investigations

Cluster Analysis Results - Case 8

| No. of Mean . i Impact on parameter:
Cluster: members: | impact factor: Members (observations): X | v | 7
1 3 0.23 15, 5, 10 0.234 =0 | 000l = - | 0.000 = -
2 3 0.22 14,4, 9 0.050 = o | 0.185 = o | 0.000 = -
3 3 0.20 13, 3, 8 0.047 = o | 0.147 = o | 0.000 = -
4 3 0.17 12, 2, 7 0.002 = - | 0.000=- | 0.167 = o
) 3 0.17 11,1, 6 0.002 = - 0.000 = - | 0.167 = o

Table 5.11: Cluster analysis results for case 8 (Site positions x5, yp5, 25 of station B only)
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Case 10: Clock rate C'L; of station B only

In a similar way the clock rate C'L; can be interpreted as a linear increase or decrease of the radius of a
circle (or sphere) around the station whose clock parameter has to be determined.

As shown in figure 5.8 the impact of observations on the clock rate C'L; is correlated with the time of
the observation. This is obviously caused by the structure of the partial derivatives B%szf and aachfb (see
equations (4.18) or (4.21) on page 61) and resembles the determination of the slope of a regression line

through equally spaced observations (i.e., without offset determination).

The data resolution matrix for this case shows the increasing supporting nature of the observations with
increasing observation duration. Cluster analysis of this data resolution matrix first clusters observations n
and n — 1, in a second step observations n,n — 1,n — 2, etc. and finally clusters all observations n,n —1,n —
2,...,1. For this case, a dendrogram cut is not reasonable.

Case 11: Atmospheric zenith path delay AT, at station A only

For the determination of the atmospheric zenith path delay AT'4 at station A the left singular vector u; shows
that some observations are of no relevance (e.g. observations 3, 5, 8, 10, 13 and 15). These observations have
negligible impact factors. According to table 5.10 on the previous page these observations are performed with
high elevations at station A. On the other hand, observations 9 and 14 (to the equatorial sources S0730+00
and S0755+00) are performed with very low elevations (0.8° and 1.0° at station A) and thus possess high or
very high impact factors. In particular, observation 14 has been observed with an elevation of only 0.86 [°]
and thus possesses an extraordinary high impact on AT4. A slight decrease in the right ascension of source
S0755+00 increases the elevation of this observation and leads to a distinct decrease of this observation (not
shown here).

Even in the case of a slight decrease of the right ascension of source S0755+00 the data resolution looks like
the data resolution matrix shown in figure 5.10 on the preceding page: Only observations to sources SO700+00,
S0730400 and S0755+00 are of very high importance for AT4. Cluster analysis of the corresponding data
resolution matrix first clusters these observations with a large similarity distance to the next clustering step
(see bottom of dendrogram). Due to this extraordinary structure of the data resolution matrix and of the
dendrogram a dendrogram cut is not reasonable.

Case 12: Atmospheric zenith path delay ATg at station B only

In a similar way, for the determination of the atmospheric zenith path delay ATp at station B observations
performed with very low elevations at station B are of main importance. Since observations 1 and 2, 6 and 7
and 11 and 12 possess similar elevations (of a2 5[°]) they can all be classified as "high leverage observations’
for ATp (see red line in the corresponding impact factor diagram in figure 5.8 on page 83).

Contrary to the previous case, the data resolution matrix clearly shows the supporting nature of similar
observations. As indicated by the dendrogram of the cluster analysis of this data resolution matrix (also see
table 5.12 on page 88) observations to polar sources (with elevations below a2 10 [°]) are clustered first.

Although one would expect similarities to case 11, this is not the case due to the significant differences in

the elevation angles which are the driving factors of the partial derivatives %T;;gf.

Case 13: Polar motion y, only

Since the baseline of this interferometer is parallel to the y-axis of the terrestrial reference system this
interferometer is insensitive to variations in the =, component of the polar motion. This parameter can thus
not be determined (i.e., the design matrix only contains zeros, the only singular value equals zero and thus
indicates that x, cannot be determined).
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The y, component of polar motion, however, can be determined as the singular value (of ~ 0.08) reveals. The
left singular vector u; and thus the impact factors show that only observations to polar sources are needed
for the determination of y,. The remaining observations (to equatorial sources) could have been omitted if
only y, is of interest. The data resolution matrix shows that every observation to the same polar source acts
as a supporting observation with equal impact (red squares in the data resolution matrix). Observations to
south polar sources contribute to y, with the same amount (but in opposite direction) as observations to
north polar sources (as indicated by blue squares in the data resolution matrix).

After cutting the dendrogram at a reasonable height only two clusters with more than one observation remain
(see table 5.13 on the next page). These clusters consist of observations 1, 6 and 11 and observations 2, 7
and 12, respectively. The former cluster contains the observations to the north polar source S0300+85, the
latter cluster contains the observations to the south polar source S0300-85.

Case 14: Earth rotation dUT1 only

The last basic parameter to be investigated is dUT'1, i.e., the phase of the rotation of the interferometer. For
this parameter observations to polar sources are of no relevance. This is also indicated by the components of
the left singular vector u; and thus in the impact factors and impact co-factors. In general, only observations
to equatorial sources can be used for the determination of the rotational phase. This agrees with the results
described in chapter 4. Observations to equatorial sources orthogonal to the baseline (i.e., to source S0300+00
and ouly for this interferometer geometry) which can be observed with high elevations only are of particular
importance and thus exceed the recommended threshold for high-leverage observations (as indicated by the
red line in the impact factor diagram of case 14 in figure 5.8 on page 83).

Again, the data resolution matrix shows the supporting nature of observations to source S0300+00 and to the
remaining equatorial sources. The cluster analysis of this data resolution matrix yields a dendrogram which
first shows the clustering of the three observations to source S0300+00 (see the bottom of the dendrogram).
With a large similarity distance, the remaining observations (to equatorial sources) are clustered next. At
last the polar observations are clustered. The results are summarized in table 5.14 on the next page.
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Cluster Analysis Results - Case 12

Cluster: Bz ol Mean Members (observations): Urijp s O10 eI e
members: | impact factor: ATp
1 1 0.08 3 0.079 = o
2 1 0.00 4 0.002 = -
3 1 0.00 ) 0.001 = -
4 1 0.06 8 0.055 = o
b) 1 0.00 9 0.002 = -
6 1 0.00 10 0.001 = -
7 1 0.02 13 0.025 = -
8 1 0.00 14 0.002 = -
9 1 0.00 15 0.001 = -
10 6 0.14 1,2,6,7, 11, 12 0.139 = o

Table 5.12: Cluster analysis results for case 12 (Atmospheric zenith path delay AT at station B only)

Cluster Analysis Results - Case 13

Cluster: B, of Mean Members (observations): IR O PENEE
members: | impact factor: Yp

1 1 0.00 3 0.000 =

2 1 0.00 4 0.000 =

3 1 0.00 5 0.000 = —

4 1 0.00 8 0.000 = —

b) 1 0.00 9 0.000 =

6 1 0.00 10 0.000 =

7 1 0.00 13 0.000 =

8 1 0.00 14 0.000 = —

9 1 0.00 15 0.000 = —

10 3 0.17 1,6, 11 0.167 = +

11 3 0.17 2,7, 12 0.167 = +

Table 5.13: Cluster analysis results for case 13 (Polar motion y, only)

Cluster Analysis Results - Case 14

| No. of Mean . ) Impact on parameter:

Cluster: members: | impact factor: Members (observations): JUT1

1 1 0.00 1 0.002 = -

2 1 0.00 2 0.002 = -

3 1 0.00 6 0.002 = -

4 1 0.00 7 0.002 = -

) 1 0.00 11 0.002 = -

6 1 0.00 12 0.002 = -

7 9 0.11 14,9, 4, 3, 8,13, 15, 5, 10 0.110 = +

Table 5.14: Cluster analysis results for case 14 (Earth rotation dUT'1 only)
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5.4.2 Estimability investigations of composed parameter sets

The functional models for data analyses of real VLBI sessions always have to include more than the individual
basic parameters discussed so far. Besides the main geophysical parameters of interest (such as site positions
or earth orientation parameters) at least the clock offsets of all atomic clocks with respect to one reference
clock have to be included. For a single-baseline session the following cases are of interest:

15. Estimation of site coordinates x5, yp, zp and clock offset C'Lg

16. Estimation of clock offset C'Lg and earth rotation dUT'1

17. Estimation of clock offset C'Lg, clock rate C'Ly and earth rotation dUT'1

18. Estimation of atmospheric zenith path delay AT 4, clock parameters C'Lg, C L1 and earth rotation dUT'1
19. Estimation of clock parameters C' Ly, C'Ly, atmospheric zenith path delay AT and earth rotation dUT'1

20. Estimation of atmospheric zenith path delay AT, clock parameters CLg, CLi, atmospheric zenith
path delay ATp and earth rotation dUT'1

Cases 17 and 20 show the most common parametrisations for single-baseline sessions such as INTENSIVE ses-
sions (see e.g. FISCHER 2006). The remaining cases are either needed for a deeper insight or since they are
components of cases 17 and 20. As for the basic parameters, cases 15 to 20 will be analysed by investigating
the analysis components displayed in figure 5.9 on the following page.

Case 15: Site coordinates zp,yp, 25 and clock offset C'L

Using the same observations as in cases 8 to 14, site positions zp,yp,zp of station B and a constant
bias C'Lg of the frequency standard of station B with respect to the clock at station A can be estimated. As
shown by the singular values in figure 5.9 every parameter can be determined well. The V-matrix, however,
already shows that the first parameter (xp) and the last parameter (C'Lg) are together affected by the same
observations: Hence, the observations with large components in the first left singular vector u; and in the
last left singular vector uy (mainly observations to source S0300+-00 and to the polar sources) both affect
xp and CLg.

The correlation matrix also shows a large positive correlation (of 0.78) between xp and C'Lg. This can again
be interpreted geometrically: With this network geometry and this baseline orientation no separation between
a variation in zp and a variation in C'Ly (when considered as the radius of a sphere around station B) is
possible due to the lack of supporting observations for the zenith observations to source S0300+00. Supporting
observations would be conducted to the diametrally opposite source S1800+00 which is not visible during
this session.

The most important observations are conducted to polar sources S0300+85 and S0300-85. As shown in
table 5.15 the dendrogram cut reveals that these observations are of main importance for both zg and CLyg.
This confirms the results given in NOTHNAGEL 1991 where observations to sources in elevation cusps have
been recognized as important for the clock offset determination. The data resolution matrix and the cluster
analysis results show the generation of five groups with three observations each. These groups consist of
observations to either the same source or to neighbouring sources which obviously have the same information
content.

As for case 8, zenith observations to source S0300+00 are of main importance for xp and observations to
the remaining equatorial sources are of importance for yp.
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Case 16: Clock offset C'Ly and earth rotation dUT'1

A common determination of both the rotation of the interferometer (i.e., dUT1) and the constant clock
offset C'Ly is complicated by the high correlation of both parameters (correlation coefficient ~ —0.77). In
addition, the right singular vectors do not allow a clear assignment of observations to only one parameter.
Nevertheless, high impact and a similar information content of observations to source S0300+00 and to the
polar sources S0300+85 and S0300-85 is shown in the data resolution matrix. After the dendrogram cut the
cluster analysis results (see table 5.16 on the next page) show that observations to source S0300+00 are
still of main importance for dUT1 and observations to polar sources (and thus observations to sources in
elevation cusps) are of main importance for the clock offset CLy.

Case 17: Clock offset C'Lg, clock rate C'L; and earth rotation dUT1

The separability of the three parameters C'Ly, C'L; and dUT1 is also complicated by high correlations of
up to —0.63 (between clock offset C'Ly and clock rate CLp). Again, a clear assignment of observations to
parameters is difficult due to the non-diagonal structure of the V-matrix.

For this case and for the following cases, no clear (or regular) pattern in the data resolution matrices and
thus in the impact factors can be seen. A human interpretation is complicated and so the strengths of the
automatic, cluster analysis-based analysis methods become obvious.

Although the dendrogram of the cluster analysis of the data resolution matrix of this case shows the presence
of three main groups, for a better separation six clusters have been formed. Table 5.17 on the following page
shows that for this parametrisation the two observations 8 and 9 to equatorial sources could have been
neglected. On the other hand, observations 5, 10 and 15 (to source S0300+00) are still of main importance
for the determination of the rotation of the interferometer (i.e., for dUT1).

For the clock offset determination observations 1 to 4 are most important. As table 5.10 on page 85 shows,
these observations are performed into each direction of the celestial sphere and thus ’scan’ the sky in diame-
tral directions. Geometrically, for the radius determination of a sphere around station B observations into
diametral directions are needed.

For the clock rate determination the same observation constellation has to be repeated at the end of the
session. As table 5.17 shows, the last observations performed into each direction of the celestial sphere are
needed for the determination of radius variations of the sphere around station B.

Case 18: Atmospheric zenith path delay AT4, clock parameters C'Ly,CL; and dUT1

After including the atmospheric zenith path delay AT at station A a distinct difference in the singular
values can be seen. In connection with the first right singular vector, this means that AT'4 can be determined
with the lowest variance. In addition, the separability of all parameters has been improved since the absolute
values of all correlations are below 0.5.

As the right singular vectors vi and vy show, only for the atmospheric zenith path delay AT4 and for the
clock offset C'Ly clear relations between observations and parameters can be found: The elements of the
first left singular vector u; (which mainly affect AT4) show a clear correlation with the elevations of the
observations at station A (see table 5.10 on page 85). The smaller the elevations, the larger the elements
of u; and thus the larger the impact on AT4.

For the clock offset determination observations 1 to 4 are of main importance. Again, these are observations
in every direction of the celestial sphere.

As in the previous case, the data resolution matrix and thus the impact factors do not show a clear pattern.
Due to its low elevation at station A observation 14 has again a very high impact on AT4 (cf. case 11) as well
as observations 5, 10, 13 and 15, which are of main importance for the determination of dUT'1 (cf. case 14).
This can also be seen in the cluster analysis results showed in table 5.18 on the next page.
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Cluster Analysis Results - Case 15

No. of

Mean

Impact on parameter:

Cluster: members: | impact factor: Members: X | Y | Z | CLg

1 3 0.30 6,1, 11 0.064 = o | 0.001 =- | 0.167 = o0 | 0.129 = o
2 3 0.30 2,7,12 0.064 = o | 0.001 =- | 0.167 = o0 | 0.129 = o
3 3 0.27 15, 5, 10 0.202 = o | 0.002 = - | 0.000 = - | 0.035 = o0
4 3 0.24 4,9 14 0.002=- | 0.174 =0 | 0.000= - | 0.018= o
5 3 0.23 13, 3, 8 0.001 = - | 0.155 =0 | 0.000= - | 0.022 = o

Table 5.15: Cluster analysis results for case 15 (Site coordinates xp,yp5, 25 and clock offset C'Ly)

Cluster Analysis Results - Case 16

| No. of Mean . i Impact on parameter:
Cluster: members: | impact factor: Members (observations): CL, | JUT1
1 1 0.07 3 0.018 = - | 0.001 = -
2 1 0.07 4 0.022 = - | 0.000 = —
3 1 0.07 8 0.015 = - | 0.003 = -
4 1 0.07 9 0.029 = - | 0.000 =
5 1 0.08 13 0.008 = - | 0.009 = -
6 1 0.07 14 0.034 = - | 0.001 = —
7 3 0.27 15, 5, 10 0.035 =0 | 0.202 = ++
8 6 0.13 7,6, 11,12, 1, 2 0.128 = o | 0.063 = -

Table 5.16: Cluster analysis results for case 16 (Clock offset C'Ly and earth rotation dUT'1)

Cluster Analysis Results - Case 17

| No. of Mean ) Impact on parameter:

(Ot members: | impact factor: Members: CLyg | CL, | dUT1
1 1 0.07 8 0.011 = - | 0.000 = 0.003 = -
2 1 0.07 9 0.008 = - | 0.004 =- | 0.001 =

3 3 0.33 15, 5, 10 0.044 = o | 0.066 =0 | 0.194 = o
4 4 0.20 4,3,1,2 0.161 = o | 0.097 =0 | 0.017 = o
5 4 0.20 13, 14, 11, 12 0.010 = o | 0.102 = o | 0.059 = o
6 2 0.13 6, 7 0.082 =0 | 0.001 =- | 0.056 = o

Table 5.17: Cluster analysis results for case 17 (Clock offset C'Lg, clock rate C'Ly and dUT'1)

Cluster Analysis Results - Case 18

No. of Mean Impact on parameter:
luster: Members:

Cluster: | @ embers: | impact: | oo AT, | CL, | c¢CL, | 4UTI1

1 1 0.10 8 0.034 = - | 0.028= - | 0.003 = - | 0.001 =

2 2 0.50 9, 14 0.357 = o | 0.080 = o | 0.002 = - 0.026 = o
3 4 0.20 4,3, 1,2 0.006 =0 | 0.128 =0 | 0.092 = 0 | 0.012= o
4 4 0.32 5, 10, 13, 15 0.031 =0 | 0.018= 0 | 0.092 =0 | 0.118 = o
5 4 0.20 6, 7,11, 12 0.027 =0 | 0.057 =0 | 0.065 =0 | 0.107 = o

Table 5.18: Cluster analysis results for case 18 (Atmospheric zenith path delay ATy, clock parameters

CL(), CLl and dUTl)
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Cluster Analysis Results - Case 19

| No. of Mean ) Impact on parameter:

Ol members: | impact: Members: CLyg | CLy | ATg | dUT1

1 1 0.09 8 0.009 = - | 0.000 = — | 0.023 = - 0.024 = -
2 1 0.16 13 0.006 = - | 0.081 = - | 0.001 = 0.001 =

3 3 0.39 4,9, 14 0.249 = o0 | 0.069 =0 | 0.251 =0 | 0.174 = o
4 3 0.35 5, 10, 15 0.039 =0 | 0.068=0 | 0.016 =0 | 0.126 = o
5 3 0.23 3, 1,2 0.022=0 | 0.094 =0 | 0.016 =0 | 0.023 =0
6 4 0.21 6,7,11,12 | 0.014 =0 | 0.056 =0 | 0.032= 0 | 0.001 = -

Table 5.19: Cluster analysis results for case 19 (Clock parameters C'Lg, C'L1, atmospheric zenith path delay
ATp and dUT1)

Case 19: Clock parameters C'Ly, CL,, atmospheric zenith path delay ATy and dUT'1

Compared to case 18, estimating the atmospheric zenith path delay ATp at station B instead of AT, at
station A yields very different relations between observation groups and affected parameters: Although every
parameter can be estimated (i.e., all singular values > 0) the absolute values of the correlation coefficients
between some parameters are above 0.8. Only the clock rate C'L; can be well separated from the remaining
parameters. Especially high correlations between clock offset C'Ly, ATg and dUT1 and between ATy and
dUT1 complicate the interpretation of the cluster analysis results. Thus, some clusters commonly affect
several parameters (see e.g. cluster 3 and cluster 4 in table 5.19).

In addition, none of the impact factors exceeds the "high-leverage threshold’ (of 2 - E). However, as the mean

impact of each cluster in table 5.19 clearly show, the most important observations for this parametrisation
are those performed to sources S0700400, S0730+00, S07554+00 and S0300-+00.

Case 20: Atmospheric zenith path delay AT, clock parameters C'Ly, CL,, atmospheric zenith
path delay AT and dUT1

The parameters ATy, CLgy,CLy, AT and dUT1 depict the most common parametrisation for single-baseline
VLBI networks with a large east-west extension. As the singular values and the first two right singular vectors
show, the two atmospheric zenith path delays AT 4 and ATp are best determined. The parameter with the
lowest accuracy (or highest variance) is again the clock offset CLy.

Again, the separability of the five parameters is weak. Except for the correlations of the clock rate C L, with
the remaining parameters all other (absolute values of the) correlation coefficients are above 0.8. This also
complicates the interpretation of the cluster analysis results.

The two largest elements of the U-matrix belong to observations 4 and 14. Thus, the impact factors for
these observations show the large importance of these observations. This is again caused by the fact that
equatorial sources are needed for most of these parameters and by the low elevation of observation 14.

Cluster analysis of the data resolution matrix shows that observation 8 and observations 6, 7, 11 and 12
are candidates for negligible observations. Among the most important, observations are again observations 4
and 14. These observations are mainly responsible for the determination of ATy, CLy, AT and dUT1 (see
table 5.20 on the next page).

In contrast to cases 15 and 16 for the clock offset determination observations to equatorial sources are
mainly needed. In this case, observations to sources in elevation cusps are not of high importance for the
determination of CLy.
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Cluster Analysis Results - Case 20

Cl.: No. of | Mean Members: Impact on parameter:
" | mbrs.: | impact: ' ATy | CLgy | CLq | ATg | dUT1

1 1 0.10 8 0.012 = - | 0.001 = — | 0.003 = — | 0.000 = — | 0.000 = —
2 1 0.92 14 0.484 = o | 0.103=- | 0.000 = — | 0.048 = - 0.082 = -
3 2 0.49 4,9 0.118 =0 | 0.361 = o 0.015 = o 0.349 = o | 0.250 = o
4 2 0.35 5, 10 0.021 = o | 0.027 = o 0.065 = o 0.026 = o | 0.105 = o
5 2 0.35 13, 15 0.083 =0 | 0.046 =0 | 0.138=10 | 0.042=0 | 0.059 = o
6 3 0.25 3,1,2 0.016 =0 | 0.008=0 | 0.110=0 | 0.029=0 | 0.026 = o
7 4 0.21 6,7, 11,12 | 0.003 = - 0.001 = - 0.058 = o 0.008 = o 0.003 = -

Table 5.20: Cluster analysis results for case 20 (Atmospheric zenith path delay ATy, clock parameters
CLgy,CLy, atmospheric zenith path delay AT and dUT'1)

5.4.2.1 Effect of omitting observations on the cofactors of the estimated parameters

As shown in section 2.4.3 on page 42, the impact factors play a crucial role in the determination of the increase
of uncertainty and thus on the cofactors of the estimated parameters. In order to present some practical
applications, for cases 14 and 20 up to five observations (both important and less important observations)
will be omitted and the changes in the cofactors of the respective parameters (with respect to the cofactors
obtained by using all observations) are analysed.

Increase of uncertainty for case 14 (estimation of dUT1 only)

As shown in the impact factor plot (also see figure 5.8 on page 83), for the determination of dUT'1, observa-
tions 5, 10 and 15 (i.e., observations to the equatorial source S4, which is orthogonal to the current baseline)
and observations 13 and 8 are of main importance. On the other hand, observations 1, 2 and 6, 7 and 11, 12
(to polar sources S5 or S6) could be neglected, if only dUT'1 is of interest.

Figure 5.10 on the facing page shows the effect of successively omitting the five most important observations
and the five least important observations on the cofactor of dUT'1. Although neglecting an observation always
leads to an increase of the corresponding cofactor, it can be seen that neglecting observations with large
impact factors has a significantly higher impact on the cofactor of dUT'1 than the omission of observations
with low impact factors.

Increase of uncertainty for case 20 (estimation of AT, CLy,CL,, AT and dUT1)

Omitting the five most important observations and the five least important, observations of case 20 shows a
similar effect (see figure 5.12 on page 96): For every parameter, large cofactor changes can be seen if the first
most important observations have been neglected. Similar to case 14, omitting observations with low impact
factors only has a small impact on the cofactors of the estimated parameters.

For some parameters (such as C'Ly) the effect of neglecting 33% of the most important observations is almost
equal to the effect of neglecting 33% of the least important observations (see modification numbers 9 and 10).
This also depicts the general sensitivity of some parameters to changes in the observation structure.

In general, both case 14 and case 20 show that observations with large impact factors have to be obtained
carefully since the (purely geometric) effect of the observations on the cofactors would be amplified if large
formal errors are present. Thus, for the increase of uncertainty both the geometry of the experiment design
and the observational error have to be taken into account (see also FORSTNER 1992).

Obviously, omitting an observation changes the impact factors of the remaining observations and thus also
changes the entire impact co-factor situation. Figure 5.11 on the facing page shows the effect of omitting
observation 14 (of case 20). Consequently, after omitting observations the regression diagnostics tool has to
be applied to the new situation, i.e., to the modified design matrix.
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Increase of uncertainty (case 14)

Impact factors Modification . N
number: Observations omitted:
0.25
1 5
2 1
0.201
3 5,10
4 1,6
0.151
5 5, 10, 15
0.10 6 1,6,11
7 5, 10, 15, 13
0.051 8 1,6,11,12
9 5,10, 15, 13,8
0.00 10 1,6,11,12,7
1 5 10 15

Observation number
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Figure 5.10: Increase of uncertainty after omission of observations: cofactor increase with respect to the
cofactors computed by using all observations (for case 14, logarithmic scale for cofactor plot).

Impact factors (all observations) Impact factors (observation 14 omitted)

1 5 10 15 1 5 10 14

Figure 5.11: Impact factor changes after omission of observation 14 (of case 20)
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Increase of uncertainty (case 20)

Impact factors Modification . . .
p number: Observations omitted:
1.0
1 14
2 8
0.8
3 14,4
4 8,6
0.67
5 14, 4,5
0.41 6 8,6,7
7 14, 4,5, 15
0.2 8 8,6,7,2
9 14, 4,5, 15,9
0.0~ 10 8,6,7,2,3
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Figure 5.12: Increase of uncertainty after omission of observations: cofactor increase with respect to the
cofactors computed by using all observations (for case 20, logarithmic scale for cofactor plots).
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5.4.2.2 Effects of reordering observations on impact factors

For short observation durations (as considered here), reordering of observations does not significantly change
the impact factors. If the basic structure of five observations of the original observation schedule (which is
repeated three times, see table 5.10 on page 85) is changed to

Source S1 (or S2 or S3, depending on hour angle and visibility)

3

Source S7 (or S8 or S9, depending on hour angle and visibility)

Source S4,

Source S5,

Source S6,

almost identical impact factors can be seen (for an example see figure 5.13). This is obviously caused by
the fact that the topocentric observation geometry (i.e., azimuth and elevation of the radio telescope when
pointing at a source) change only slightly. Of course, this changes, the longer the session duration and the
larger the differences between the observation times of the exchanged observations.

Impact factors case 14 (Original order) Impact factors case 14 (Changed order)
0.25 0.25
0.20 - 0.20 -
0.15 A 0.15
0.10 A 0.10 1
0.05 A 0.05 1
0 T 0o -
1 10 15 1 5 10 15

Figure 5.13: Impact factor changes after reordering of observations (for case 14)

5.4.2.3 Conclusions from spatial kinematic interferometer investigations

The main intention of the previous sections was to extend the results obtained from the analyses of plane static
interferometers to spatial kinematic interferometers. As for the plane interferometer, applying the regression
diagnostics tool to the determination of basic parameters (i.e., site positions x,y, z, clock parameters CLg
and C'Lq, atmospheric zenith path delays AT4 and ATg, polar motion z, and y, or earth rotation dUT'1)
yields geometrically comprehensible results which agree with (or supplement) the theoretical considerations
in chapter 4:

e For the determination of site positions x,y, z, observations to sources lying approximately in the di-
rection of the axis of the coordinate system are needed.

e For the sole determination of the clock offset (C'Ly), every observation is of equal importance. For the
clock rate (C'Ly), observations at the end of the observing session are most important.
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the determination of atmospheric zenith path delays AT 4 and ATp.

e As expected (see chapter 4), observations performed with low elevations are needed in particular for

e In agreement with the analysis of the partial derivatives in chapter 4, observations to polar sources are
mainly needed for the determination of polar motion =, and y,. Observations to equatorial sources are
of no relevance for these parameters.

e On the other hand, for the sole determination of earth rotation dUT'1, observations to equatorial
sources lying orthogonal to the baseline (at the time of the observation) are needed. Observations to
polar sources can be omitted. This also agrees with the theoretical considerations of chapter 4.

For composed parameter sets (and thus for more complex and geometrically less comprehensible observation
configurations), the strengths of the regression diagnostics tool become even more obvious. In these cases,
the sole investigation of partial derivatives does not reveal the overall effects of all available observations
on the entire parameter set. Here, the regression diagnostics tool based on singular value decomposition
and cluster analysis provides a more detailed insight into the adjustment problem. For the current spatial
kinematic interferometer it could be shown that

e for certain parametrisations (see e.g. case 15: z,y,z and C'Lg and case 16: C' Ly and dUT'1) groups of
observations to sources in elevation cusps are needed for the determination and separation of the clock
offset CLy (see NOTHNAGEL 1991).

e for the common estimation of clock offset C'Lg, clock rate CL; and earth rotation dUT1 (case 17)
different observations are needed: Here, the group of observations 1 to 4 (i.e., observations into every
direction of the mutually visible part of the celestial sphere) is responsible for the clock offset deter-
mination. The same observation constellation is needed at the end of the observing session in order
to determine the clock rate parameter. For dUT1, still observations to equatorial sources are of main
importance.

e for more complex parametrisations and for data resolution matrices without an obvious regular pattern,
the regression diagnostics tool still recognizes groups of observations. The interpretation, however, is
complicated by the unavoidable increase of complexity in the relations between the parameters involved.

Furthermore, it could be shown that the impact factors also express the increase of uncertainty, i.e., the
effect of omitting observations on the cofactors of the estimated parameters: The higher the impact factor of
an observation 4, the higher the effect of omitting the ith observation on the formal error(s) of the estimated
parameter(s).

In summary, it could be shown that the regression diagnostics tool developed in the first chapters yields both
plausible and (geometrically) comprehensible results. In addition to the verification of knowledge based on
the analysis of partial derivatives of single observations (as performed in chapter 4), new findings arose from
investigating the entire design matrix, i.e., by analysing the geometry of the entire observing session.

After investigating artificial interferometers, the regression diagnostics tool will now be applied to a real,
single-baseline observing session.
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5.4.3 Estimability investigations for a real, single-baseline VLBI session

As a final application example a real single-baseline VLBI session is being investigated. Therefore, an arbitrary
INTENSIVE2-session (IVS-code: K05072, from march 13, 2005) has been chosen. The two stations involved
are Wettzell (Germany) and Tsukuba (Japan) which form a baseline with a length of 8445 km. Due to the
long east-west-extension of this baseline, this session type is especially sensitive for the determination of
earth rotation variations. During the session duration of approximately one hour, 29 observations (to 16
sources) have been generated (see table 5.22 on page 102). The observation schedule for this session has
been generated at the Geodetic Institute of the University of Bonn using the schedule generation software
SKED and with the optimisation criterion of maximum sky coverage (FISCHER 2006). As for all real VLBI
sessions, the sources are not distributed homogeneously and thus the observations do not show such a regular
pattern as e.g. in the previous application example (see table 5.21 on the following page?). Both the network
geometry and the source distribution are shown in figure 5.14.

Wettzell

Tsukuba

Y Wettzell

Figure 5.14: INTENSIVE2-session geometry (left: network geometry (near equatorial view), middle: network
geometry and source distribution (near equatorial view), right: network geometry and source distribution
(polar view))

As for the fictitious interferometer in the previous application example, a variety of parameters (and param-
eter sets) can be estimated. In the following, these parameter sets will be analysed:

21. Estimation of clock offset C'Lg of station Wettzell with respect to station Tsukuba only

22. Estimation of clock rate C'L; of station Wettzell with respect to station Tsukuba only

23. Estimation of clock offset C'Ly and clock rate C'L; of station Wettzell with respect to station Tsukuba
24. Estimation of atmospheric zenith path delay ATw ee-en at station Wettzell only

25. Estimation of atmospheric zenith path delay AT7surupe at station Tsukuba only

26. Estimation of earth rotation dUT'1 only

27. Estimation of atmospheric zenith path delay ATy ettzen, clock parameters CLg, C'Ly, atmospheric
zenith path delay AT7surube and earth rotation dUT'1

Since some of these cases have already been treated in the previous application examples, some interpretations
can be kept brief. Case 27 depicts the typical parametrisation as used in routine data analysis of single-
baseline VLBI sessions for earth rotation determination and thus forms the most important case. The analysis
components are shown in figure 5.16 on page 105.

3The first four characters of the source name indicate the (approximate) right ascension (in [hh min]), the fifth character
indicates the sign of the declination and the sixth and seventh character indicate the (approximate) declination of the source
(in degrees).
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No.

Source

right ascension

[hh min sec]|

declination

1°]

1 00594581 1 2457 58.24
2 0106+-013 1 838.7 1.35
3 01194115 12141.5 11.49
4 0133+476 136 58.5 47.51
) 02294131 231458 13.22
6 0235-+164 2 38 38.9 16.36
7 | 06024673 6 752.6 67.20
8 0804499 8 839.6 49.50
9 09554476 9 58 19.6 47.25
10 | 1044+719 10 48 27.6 71.43
11 | 1128-+385 11 30 53.2 38.15
12 | 1300+580 13 2524 57.48
13 | 1357+769 13 57 55.3 76.43
14 | 1803784 18 045.6 78.28
15 | 1807+698 18 6 50.6 69.49
16 | 2037+511 20 38 37.0 51.19

Table 5.21: Source list for real interferometer investigations

Case 21: Estimation of clock offset C'L of station Wettzell with respect to station Tsukuba
only

As for the clock offset determination in a plane interferometer and a spatial, kinematic interferometer (cases 3
and 9) for the solely determination of the clock offset C'Lg of station Wettzell with respect to station Tsukuba
every observation is of the same importance and no dendrogram can be formed.

Case 22: Estimation of clock rate C'L; of station Wettzell with respect to station Tsukuba only

In a similar way, for the solely determination of the clock rate C'Ly of station Wettzell with respect to
the clock at Tsukuba the time of the observation is of crucial importance for the impact the particular
observation has on the parameter estimation process. Again, this resembles the impact of observations on
the determination of the slope of a regression line (without estimating an axis offset).

The data resolution matrix shows the increasing impact for each observation as well as the supporting nature
of the last observations. Due to this structure, the dendrogram shows a sequential clustering of (at first) the
last observations up to the first observation, which is clustered at last (see also case 10).

Case 23: Estimation of clock offset CLj and clock rate C'L; of station Wettzell with respect to
station Tsukuba

The common estimation of the clock offset C'Lg and the clock rate C'L; of one station with respect to a
reference clock has not been treated so far. Here, the reference clock is the clock at Tsukuba station.

The analysis of these parameters is complicated by the high correlation coefficient (of —0.86). Since the V-
matrix does not show a clear diagonal structure, a unique relation between observations and parameters is
difficult. The impact factors, however, show a very clear and almost symmetrical increase of the importances
of the first and the last observations, while the middle observations are of mean importance. This exactly
resembles the situation when estimating the two parameters of an adjusting straight line (regression line with
the axis offset estimated at the epoch of the first observation): the first observations are of main importance
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for both the axis offset and the slope determination, while the last observations are mainly responsible for
the slope determination. The same results can be seen after cutting the dendrogram to form two groups of
observations (see table 5.23 on the next page): Here, the first observations are both responsible for the clock
offset and the clock rate. The last observations are almost solely necessary for the clock rate determination.

Case 24: Estimation of atmospheric zenith path delay ATy .01 at station Wettzell only

Similar to the atmospheric zenith path delay determination in the artificial interferometer in the previous
example, observations performed with low elevations at Wettzell station are of main importance for the
estimation of ATywettzenr- As shown in table 5.22 on the following page, observations with large impact
factors (such as observations 2, 4, 13, 14, 18, 20 and 23) are observed with very low elevations (below 11 [?],
at Wettzell). These are also observations which have been clustered at first. Due to the absence of distinct
clusters a dendrogram cut is not reasonable.

Case 25: Estimation of atmospheric zenith path delay ATr,,rupe at station Tsukuba only

As shown in table 5.22 on the next page, in general, observations at Wettzell station have been observed
with lower elevations than at Tsukuba station. Consequently, for the determination of the atmospheric zenith
path delay AT7sukube at Tsukuba, less important observations are available than for the determination of
ATWettzen in case 24. But again, a clear relation between the size of the impact factors and the elevations
at Tsukuba can be seen.

Also in this case, the cluster analysis of the data resolution matrix shows that observations 2, 16, 8 and 24
are grouped at first. The remaining observations are clustered in a sequential order without forming different
clusters. Therefore, a dendrogram cut is not reasonable.

Case 26: Estimation of earth rotation dUT1 only

As mentioned in case 14 of the artificial spatial interferometer, equatorial sources (i.e., sources with low
declinations) lying almost orthogonal to the baseline are of main importance for the determination of the earth
rotation dUT'1. This can also be seen in the impact factors of this case in figure 5.16 on page 105: Observations
with large impact factors close to the threshold for very important observations have been performed to
sources 01064013 (observation 21), 01194115 (observations 11, 19 and 27) or 02294131 (observation 28)
which all possess declinations below 15 [°].

The data resolution matrix for this case shows the presence of several supporting observations mainly in the
second half of the session. The dendrogram of the cluster analysis of this matrix shows that the most impor-
tant observations (observation 21 to source 0106+013, observation 27 to source 0119+115, observation 19
to source 01194115 and observation 11 also to source 0119+115) are grouped at first. The dendrogram also
shows the presence of mainly two clusters with 17 and 12 observations, respectively. As shown in table 5.24
on page 103 the first cluster is of main importance for the determination of dUT'1. The first cluster consists of
the above mentioned observations to equatorial or near-equatorial sources. The second cluster only contains
observations to sources located on the northern part of the mutually visible part of the celestial sphere and
which are candidates for negligible observations (see figure 5.14 on page 99).

Case 27: Estimation of atmospheric zenith path delay AT7,rube, clock parameters CLg, CLq,
atmospheric zenith path delay ATy ..y and earth rotation dUT'1

The estimation of the atmospheric zenith path delay AT7sukupe at Tsukuba, the clock parameters C'Ly and
CL, of the clock behaviour at Wettzell, the atmospheric zenith path delay ATy err.enn at Wettzell and of
the earth rotation dUT'1 represents a realistic parametrisation of an INTENSIVE2-session. Since this case
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No. Source

Start of observation

[MJD] ([min.])

Azimuth
Tsukuba [°]

Azimuth
Wettzell [°]

Elevation
Tsukuba [°]

Elevation
Wettzell [°]

1 00594581 53442.314 (0.0) 321.3 47.2 51.73 45.11
2 1128-+385 53442.316 (2.8) 49.2 319.3 9.59 10.14
3 1357+769 53442.317 (4.3) 8.6 340.2 24.97 47.76
4 09554476 53442.319 (7.2) 50.5 339.4 29.32 10.28
) 1044+719 53442.320 (8.6) 22.6 345.7 32.13 34.68
6 1807+698 53442.321 (10.0) 351.2 338.1 17.51 65.51
7 | 0602+673 53442.322 (11.5) 17.8 12.0 55.63 28.35
8 2037+511 53442.324 (14.4) 326.7 64.3 12.98 83.60
9 1803+784 53442.325 (15.8) 355.6 349.7 25.32 58.61
10 | 0133-+476 53442.327 (18.7) 304.4 97.8 95.68 37.89
11 | 0119-+115 53442.328 (20.1) 254.6 91.2 40.18 16.29
12 | 0059-+581 53442.329 (21.6) 320.7 48.5 48.80 47.88
13 | 0955+476 53442.331 (24.4) 52.8 342.8 32.13 9.31
14 | 0804-+499 53442.332 (25.9) 593.7 1.2 50.62 8.98
15 | 1807+698 53442.334 (28.8) 353.7 335.0 16.99 64.29
16 | 2037+511 53442.335 (30.2) 328.3 51.9 11.17 85.94
17 | 0133+476 53442.337 (33.1) 304.2 59.1 53.27 39.89
18 | 0235+164 53442.338 (34.5) 245.8 75.8 55.00 9.71
19 | 0119-+115 53442.339 (36.0) 257.7 94.3 37.02 18.94
20 | 0229+131 53442.341 (38.8) 244.9 80.8 50.96 8.97
21 | 01064013 53442.342 (40.3) 250.5 104.6 27.34 13.89
22 | 1044+719 53442.344 (43.2) 22.8 348.2 34.76 33.33
23 | 0955+476 53442.345 (44.6) 53.7 345.3 35.40 8.37
24 | 1300-+580 53442.346 (46.0) 29.5 326.1 16.38 30.38
25 | 0059+581 53442.348 (48.9) 320.2 50.5 45.32 51.19
26 | 01334476 53442.349 (50.4) 304.6 61.3 50.21 42.48
27 | 0119+115 53442.351 (53.3) 260.2 97.8 33.78 21.60
28 | 0229+131 53442.352 (54.7) 248.1 83.4 47.94 11.62
29 | 0235+164 53442.353 (56.2) 250.9 80.4 50.92 13.21

Table 5.22: Observation list for real interferometer investigations (INTENSIVE2-session K05072, 13-3-2005),
MJD — modified julian date, (Jmin.]) indicates the minutes passed since the first observation.

Cluster Analysis Results - Case 23

No. of Mean . Impact on parameter:
: Memb b t :
Cluster members: | impact: embers (observations) CL, | CL,
1 14 0.07 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 0.062 = o | 0.036 = o
3,1, 2
2 15 0.07 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, | 0.009 = - | 0.033 = -
95, 26, 27, 28, 29

Table 5.23: Cluster analysis results for case 23 (Estimation of clock offset C'Ly and clock rate C'L; of station
Wettzell with respect to station Tsukuba)
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Cluster Analysis Results - Case 26

Cluster: zce).m(;)fers: ﬁi)a;ct: Members (observations): gt ogg;;ameter:
1 17 0.05 6,16, 8, 1, 12, 25, 10, 17, 26, 18, 20, 29, 0.047 = o

28, 11, 19, 21, 27
p 12 0.02 9,7, 15,3, 22,5, 14, 23, 24, 13, 2, 4 0.016 = -

Table 5.24: Cluster analysis results for case 26 (Estimation of earth rotation dUT'1 only)

resembles case 20 of an artificial interferometer, many results of this case are similar to the results of case 20.
The differences in the results are mainly due to the complexity of this case (i.e., different baseline orientation
and inhomogeneous source distribution).

Also for this real interferometer, the three best determined parameters are the atmospheric zenith path
delay ATwes-enn at Wettzell, the earth rotation parameter dUT1 and the atmospheric zenith path delay
ATrsukube at Tsukuba. Again, the weakest determined parameter is the clock offset C'Lg (cf. case 20). As in
case 20 a strong correlation (of 0.75) between the first atmosphere parameter (here: AT sy kupe) and the clock
offset C'Lg exists. The remaining correlations, however, improved and are much lower than the corresponding
correlations in case 20 (the absolute values of all remaining correlation coefficients are below 0.5).

In agreement with case 20, the most important observations are those performed with low elevations (as
e.g. observations 2, 16, 23, and 24). The geometry of the three most important observations is shown in
figure 5.15 on the next page. The cluster analysis of the data resolution matrix shows that these observations
belong to the three most important clusters 1 to 3, which are mainly responsible for dUT'1, AT sykupe and
ATwettzen (see table 5.25). Due to their large impact onto the estimation process, these observations should
be supplied (or controlled) by appropriate (independent) observations.

The remaining clusters are of importance for either dUT'1 or the clock offset C'Lg. Cluster 4 contains obser-
vations to equatorial sources, cluster 5 contains observations to the middle of the mutually visible part of
the celestial sphere. As for case 20, for the determination of the clock offset CLg, observations to sources in
every part of the celestial sphere are needed.

From these results it can be concluded that cluster 5 contains observations which are candidates for obser-
vations that can be omitted, since this cluster mainly affects the auxiliary parameter C'Ly. On the other
hand, observations of cluster 1 and cluster 2 are important for the main parameter dUT1 and should thus
be controlled by further, independent observations.

Cluster Analysis Results - Case 27

Cl: No. of | Mean Members: Impact on parameter:

" | mbrs.: | impact: ' ATrgs | CLg | CLy | ATy z | duT1
1 4 0.21 4,14, 13, 23 0.015 | 0.010 | 0.024 | 0.047 | 0.052
2 4 0.20 22,24, 25, 26 0.015 | 0.010 | 0.094 | 0.051 0.066
3 5 0.25 15, 6, 2, 8, 16 0.133 | 0.037 | 0.016 0.036 0.016
4 8 0.14 27,28, 29, 19, 11, 21, 18,20 | 0.004 | 0.011 | 0.023 0.035 0.044
5 8 0.12 17,9, 7,3, 5,12, 1, 10 0.024 | 0.081 | 0.033 0.018 0.012

Table 5.25: Cluster analysis results for case 27 (Estimation of atmospheric zenith path delay AT7sukuba;
clock parameters C'Lg, C' Ly, atmospheric zenith path delay ATwetr.enr and earth rotation dUT1)
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Effects of modifications of cluster 5 on the cofactors of the parameters

In the following, it is investigated how much a modification of the observations of one cluster affects the
cofactors of the parameters to be estimated: Since cluster 5 (containing observations 17, 9, 7, 3, 5, 12, 1
and 10) mainly affects the clock offset C'Lg (while the earth rotation parameter dUT1 is least affected), it
is assumed that replacing the eight observations of cluster 5 with the observations of cluster 1 and cluster 2
results in an increase of the cofactor of C'Lg (i.e., a degradation of this parameter’s accuracy) and a decrease
of the cofactor of dUT'1 (i.e., an improvement of the accuracy of this parameter)?.

Table 5.26 shows that replacing cluster 5 by clusters 1 and 2 indeed mainly increases the cofactor of C'Ly.
This agrees with the increase of uncertainty-investigations of cases 14 and 20 performed on page 94. The
cofactor of dUT'1, however, is only slightly affected (i.e., the accuracy of dUT'1 is only slightly improved).
This again shows that the increase of uncertainty mainly quantifies the effect of omitting observations on the
cofactors of the parameters.

The modifications described above only slightly affect the singular values and the correlations between the
parameters. Thus, a visualisation is not reasonable.

Cofactor change

ATrs [m?] CLg [m?] CL; [m?/day? | ATywz [m?|  dUT1 [m?|
Original observations 288.1 4384.8 449.5 97.4 46.6
Cluster 5 replaced 322.3 7690.7 556.4 106.7 45.6

Table 5.26: Case 27: Effects of modifications of cluster 5 on the cofactors of the parameters

Observation 2 (to source 1128+385)  Observation 16 (to source 2037+511) Observation 24 (to source 1300+580)

Wettzell

AN

Figure 5.15: Geometry of the three most important observations of INTENSIVE2-session K05072.

4Obviously, due to the rotation of the earth, after the replacement of the observations of cluster 5 with the observations of
clusters 1 and 2, cluster 5 consists of similar (but not identical) observations as contained in clusters 1 and 2.
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5.4.3.1 Conclusions from real, single-baseline VLBI session investigations

For a real VLBI session, interpretations are complicated by the skew orientation of the baseline (i.e., with
respect to a geocentric, cartesian reference system), by the inhomogeneous source distribution and the irreg-
ular observation order. Nevertheless, most of the conclusions which can be drawn from investigating a real,
single-baseline VLBI session resemble those obtained from the investigations of an artificial spatial kinematic
interferometer. Especially for the most realistic parametrisation (case 27), the need for first investigating less
complex cases became obvious. Only by considering the results of cases 8 to 20, cases 21 to 27 can be
understood.

As mentioned in the previous conclusions, the more complex the functional model, the more difficulties arise
due to the unavoidable increase of the correlations between the parameters to be estimated. Nevertheless,
it could be shown that the regression diagnostics tool is also suited for real interferometers with complex
observation structure. In most cases, groups of observations as well as their impact on the parameters to be
estimated could be detected. Final conclusions will be given in the next chapter.
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Summary

The objective of this thesis is the development of a regression diagnostics tool, which can be used to improve
the robustness and reliability of VLBI solutions. Therefore, the regression diagnostics tool must be able to
detect the influence of single or groups of observations as well as their impact on the estimated parameters.
In the language of parameter estimation in linear models: A tool for the detection of groups of high-leverage
(and thus influential) observations and their impact on linear combinations of parameters (and thus on the
parameters itself) is needed. Hence, such a regression diagnostics tool depicts an extension of the common
investigations of the partial derivatives of a functional model with respect to the parameters to be estimated.
While investigating partial derivates only provides the sensitivity of single observations on certain parameters
(and thus the impact of single observations on the adjustment process), the regression diagnostics tool devel-
oped in this thesis analyses the entire design or the entire geometry of an experiment by taking into account
the entire design matrix of an adjustment problem. Although the regression diagnostics tool developed in
this thesis can be applied to any adjustment problem, in this thesis only applications to geodetic VLBI are
presented.

In order to develop the regression diagnostics tool, at first some algebraic background needs to be summarised.
Therefore, chapter 1 provides the basics of euclidean vector spaces, projections onto subspaces as well as
the geometric aspects of the least-squares approach. In this context, the singular value decomposition of a
design matrix is of fundamental importance since it provides new bases for the four subspaces of a matrix
and is used to compute a so-called data resolution matrix. This matrix contains the so-called impact factors
and impact co-factors which are used in the subsequent chapters for assessing the influence of observations.
In chapter 2 the close relationship of the algebraic background of chapter 1 (i.e., the so-called vector space
approach) with geodetic adjustment theory (or the theory of linear models) is presented. Furthermore, the
close relationship of impact factors and redundancy numbers is given as well as geometrical interpretations
of impact factors and impact co-factors. Since impact co-factors represent a common information content of
observations, they can be used to detect groups of similar observations. In order to identify groups of similar
observations, so-called cluster analysis methods are applied to the elements of the data resolution matrix.
These methods are described in chapter 3. Furthermore, this chapter provides methods for measuring the
impact of groups of observations onto individual parameters. The computation of the data resolution matrix
after performing the singular value decomposition of the associated design matrix and the application of
cluster analysis methods to the elements of the data resolution matrix form the main steps of the regression
diagnostics tool developed in this thesis.

After a short review of the VLBI principle in chapter 4 the regression diagnostics tool is applied to plane
and spatial interferometers. Therefore, chapter 5 describes the ¢tSVD software, which has been developed
by the author of this thesis to

e set up the design matrix of a VLBI session,

e perform the singular value decomposition of the design matrix and to compute the data resolution
matrix,

e to apply cluster analysis algorithms to the data resolution matrix, to visualize the cluster analysis
dendrogram and to detect groups of similar observations and

e to compute the impact of each group of observations on each parameter to be estimated.
In order to show the capabilities of the regression diagnostics tool, it is applied to a plane, static interferometer

and to spatial, kinematic interferometers. The latter ones are divided into an artificial spatial interferometer
and a real VLBI session.
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Conclusions

Based on both theoretical considerations and practical applications it could be shown that

e the regression diagnostics tool yields plausible and (geometrically) comprehensible results.

e the regression diagnostics tool can be used to detect groups of jointly influential and counter-acting
observations.

e the regression diagnostics tool determines the impact of each group of observations onto the parameters
to be estimated.

e the regression diagnostics tool can be used to detect degeneracies (or critical (baseline) configurations)
and thus parameters which cannot be estimated or separated (cf. case 6).

e a technical realisation (i.e., a software implementation) of the regression diagnostics is possible and can
be used for several (geodetic) adjustment problems.

The main benefit of the regression diagnostics tool developed in this thesis is thus the ability to detect weak
parts of the design of a (VLBI-)experiment. The weak parts (such as inappropriate observation groups or
indeterminable parameters) can then be improved or further investigated by the analyst.

The results obtained from applying the regression diagnostics tool to plane and spatial interferometers agree
with (or even extend) existing VLBI analysis strategies. In addition, the regression diagnostics tool provides
the increase of uncertainty due to the omission of observations. It thus shows which observations should be
controlled (or supplied) by appropriate (independent) observations. In other words: It could be shown, that
the regression diagnostics tool developed in this thesis is able to detect weak parts of the design of (not only
VLBI-) experiments. In general, the strengths of the regression diagnostics tool become obvious for complex
observation geometries and thus for experiments with data resolution matrices which do not possess a regular
pattern.

Difficulties may arise in the only subjective part of the regression diagnostics procedure, i.e., the dendrogram
cut. Depending on the form of the dendrogram a reasonable height for a dendrogram cut might not agree
with a large similarity difference. In these cases, the analyst has to make an appropriate decision.

Outlook

In future, the regression diagnostics tool developed in this thesis needs to be applied to other single-baseline
interferometers, to larger VLBI networks and for real VLBI session scheduling. In order to extend the pure
analysis functionality of qtSVD, either the ability for schedule improvement suggestions should be added to
gtSVD or the methods developed in this thesis should be implemented in existing VLBI scheduling software,
such as SKED. Furthermore, the regression diagnostics tool should be applied to other geodetic adjustment
problems such as geodetic networks or other geodetic space techniques.

In addition to the application of data space investigations (as performed in this thesis), the regression
diagnostics tool could also be used for model space analyses and could thus be used to improve the estimability
and separability of geodetic and geophysical parameters.
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