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Vorwort 
 
Seit mehr als zwanzig Jahren gehört die geodätische Radiointerferometrie, auch kurz 
VLBI genannt (von Very Long Baseline Interferometry) zu den tragenden Be-
obachtungsverfahren der geodätischen Forschung, da sie die direkte Verbindung 
zwischen dem himmelsfesten, quasi-inertialen Referenzsystem der Himmelskörper  
am Rand des uns bekannten Universums und dem erdfesten Referenzsystem der 
Beobachtungsstationen herstellt. Die "Zielmarken" sind hier quasi-stellare Objekte 
(Quasare) oder andere Radiostrahlung emittierende Galaxien, die für die Beobachter 
auf der Erde als punktförmig erscheinen und die mit Radioteleskopen beobachtet 
werden.  
 
Während die Referenzsysteme die geodätische Säule der Geometrie repräsentieren, 
verbindet die VLBI diese Referenzsysteme über die hypothesenfreie Bestimmung der 
Erdrotation, die die zweite Säule der Geodäsie darstellt. Auch wenn die dritte Säule 
der Geodäsie, die Bestimmung des Schwerefeldes der Erde, nicht durch die VLBI 
abgedeckt wird, so stellt sich das Verfahren doch als fundamental für die Erd-
systemforschung dar, da das Rotationsverhalten der Erde in all seinen Komponenten 
nur durch die VLBI bestimmt werden kann. 
 
Die VLBI benötigt für die Durchführung der Messungen einen detaillierten Beobach-
tungsplan, in dem die Abfolge der Beobachtungen der einzelnen Radioteleskope 
festgelegt werden muss, wobei sowohl Beobachtungen aller Teleskope des Netzwerkes 
zu einem einzelnen Quasar als auch Beobachtungen von Subnetzen notwendig sind. 
Die Geometrie der Beobachtungen und damit der Beobachtungsplan legen die Stabi-
lität der Kleinste-Quadrate-Lösung fest. Zur Charakterisierung der geometrischen 
Eigenschaften eines Ensembles von Beobachtungen wurden bisher in der Hauptsache 
Kovarianzinformationen herangezogen, die es jeweils nur erlaubte, die Gesamtheit 
aller Beobachtungen zu betrachten und zu interpretieren. 
 
Die vorliegende Dissertation von Herrn Vennebusch stellt insofern eine bemerkens-
werte Neuerung dar, als dass nun mit Hilfe der Cluster-Analyse die Bedeutung ein-
zelner Gruppen von Beobachtungen differenziert interpretiert werden kann. Herr 
Vennebusch hat dazu mit der Singulärwertzerlegung eine geeignete Schnittstelle 
zwischen der Lösung eines größeren Gleichungssystems und der  Cluster-Analyse 
gefunden. Damit hat er einen entscheidenden Schritt zur Identifikation von (Gruppen 
von) Hebelbeobachtungen ermöglicht, den es im nächsten Schritt in die Software zur 
Erstellung von Beobachtungsplänen einzubinden gilt. 
 
 
 
 Bonn, im April 2008 

 
 
 
 





ZusammenfassungEs ist bekannt, dass Hebelpunkt-Beobahtungen die Shätzung von Parametern stark beein�ussen. Bisherwurden Redundanzanteile von Beobahtungen verwendet, um einzelne Hebelpunkt-Beobahtungen voneinzelnen redundanten (bzw. weniger wihtigen) Beobahtungen zu untersheiden. In dieser Arbeit wirdein objektives Verfahren zur Aufdekung von Gruppen von wihtigen und weniger wihtigen (und somitredundanten) Beobahtungen entwikelt. Auÿerdem wird bestimmt, welhe Parameter hauptsählih vondiesen Beobahtungsgruppen beein�usst werden.Der hier vorgeshlagene Ansatz basiert auf geometrishen Aspekten der Ausgleihungsrehnung und verwen-det die Singulärwertzerlegung der Designmatrix eines Ausgleihungsproblems und Cluster Analyse-Verfahrenzur Regressionsanalyse.Obwohl der hier vorgeshlagene Ansatz auf beliebige geodätishe Ausgleihungsprobleme angewendet werdenkann, werden in dieser Arbeit nur Anwendungen bezogen auf die geodätishe Langbasis-Interferometrie(VLBI) gezeigt. Allgemein ist der hier vorgeshlagene Ansatz dazu geeignet, (Gruppen von) Beobahtungenaufzudeken, die die geshätzten Parameter signi�kant beein�ussen oder nur vernahlässigbaren Ein�usshaben (und somit auf diese Beobahtungen am ehesten verzihtet werden kann).In dieser Arbeit wird zunähst der theoretishe Hintergrund der geometrishen Aspekte der Ausgleihungs-rehnung zusammengefasst. Dann wird die Singulärwertzerlegung der Designmatrix des zugehörigen Aus-gleihungsproblems verwendet, um Kenngröÿen für den Ein�uss und die Ähnlihkeit von Beobahtungen zubestimmen. Gruppen von Beobahtungen mit ähnlihem Informationsgehalt werden anshlieÿend mit Hilfevon Cluster Analyse-Algorithmen gebildet. Nah einer kurzen Wiederholung der Grundlagen der geodätis-hen Langbasis-Interferometrie wird der vorgeshlagene Ansatz sowohl auf �ktive als auh auf reale Ein-Basislinien-Sessionen angewendet. Damit werden die Tauglihkeit und die Fähigkeiten des hier entwikeltenRegressionsdiagnose-Werkzeuges unter Beweis gestellt.
SummaryIt is well known that high-leverage observations signi�antly a�et the estimation of parameters. So far,mainly redundany numbers have been used for the detetion of single high-leverage observations or of singleredundant observations. In this thesis an objetive method for the detetion of groups of important and lessimportant (and thus redundant) observations is developed. In addition, the parameters whih are mainlya�eted by these groups of observations are identi�ed.The method proposed in this thesis is based on geometri aspets of adjustment theory and uses the sin-gular value deomposition of the design matrix of an adjustment problem and luster analysis methods forregression diagnostis.Although the proposed method an be applied to any geodeti adjustment problem, in this thesis onlyappliations to geodeti very long baseline interferometry (VLBI) are shown. In general, the method is wellsuited for the detetion of (groups of) observations that signi�antly a�et the estimated parameters or thatare of negligible impat (and are thus andidates for observations that an be omitted).In this thesis, at �rst the theoretial bakground of the geometrial aspets of geodeti adjustment theoryis summarized. Then the singular value deomposition of the design matrix of an adjustment problem isused for the omputation of measures of the impat and similarity of observations. Groups of observationswith a similar information ontent are then identi�ed by statistial luster analysis algorithms. After a shortreview of geodeti very long baseline interferometry the proposed method is applied to arti�ial and realsingle-baseline sessions in order to show the apabilities of the regression diagnostis tool developed in thisthesis.
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70. IntrodutionSine the 1970ies Very Long Baseline Interferometry (VLBI) has been used to determine station oordinateson earth as well as parameters of earth rotation with very high preision. With an auray of 2 − 3 · 10−9VLBI belongs to the most preise measurement tehniques in geodesy.VLBI observations onsist of the di�erenes of arrival times of signals of extragalati radio soures reeived attwo radio telesopes. In ontrast to the Global Positioning System (GPS) in VLBI the analyst an de�ne thetype of observations by manually seleting the two observing sites and the radio soures both radio telesopespoint at. Depending on the duration of an observation session and the size of the observing network, manythousands of observations and hundreds of unknown parameters aumulate (Ma 1990). The adjustment ofVLBI observations and the determination of the target parameters is a typial least-squares problem as itours in many sienti� and engineering tasks.It is well-known that the VLBI tehnique is very sensitive to variations in the hoie of observations aswell as to small variations in the observed time delay. Also, the hoie of the funtional model (i.e., ofthe unknown parameters) and the hoie of onstraints strongly a�et the estimated parameters. This hasalso been reognized by the International VLBI Servie for Astrometry and Geodesy (IVS) and has beensummarized in the IVS-WG3 Report on Data Analysis (Shuh, H. et al. 2006):Robustness and reliability of VLBI solutions are key elements of the quality of VLBI results.Therefore, improved analysis strategies together with observation sheduling will have to bedeveloped whih redue the in�uene of single observations on the results.In addition, many authors reognized the sensitivity of their results to small variations in both the networkgeometry and the observation geometry (see e.g. Fisher 2006). In statistial terminology this probleman be summarized as weak quality of the design of a (VLBI-)experiment (Förstner 1987). In order tooverome this problem, methods need to be developed to identify observations with a similar ontent of infor-mation and to separate important (groups of) observations from less important (groups of) observations. The'importane' of observations is losely related to the redundany of observations. Sine important observa-tions (or observations with a low redundany) signi�antly a�et the estimated parameters, the detetion ofin�uenial observations (or in�uenial observation groups) is of great bene�t for the improvement of both thepreision and reliability of (VLBI) results. In addition, the omission of less important observations obviouslybears eonomial advantages.Investigations of the sensitivity of VLBI solution parameters (suh as e.g. baseline omponents or earthorientation parameters) have been performed in the 1970ies and 1980ies by e.g. Ma 1978, Lundqvist1984 or Brouwer 1985. These authors analysed the partial derivatives of the VLBI observation equationwith respet to the most ommon parameters or investigated the variations in the ovariane matrix of theunknown parameters after inluding or omitting individual observations (Dermanis and Grafarend 1981).Optimal observation geometries for the determination of polar motion have been derived by Nothnagel1991. Software for optimal observation shedules has been developed by e.g. Steufmehl 1994 and attemptsfor an improvement of the stohasti model of VLBI have been performed by Tesmer 2004.In this thesis a method is presented whih serves as a regression diagnostis tool1 by taking into aount thegeometry (of both the network and the observations) of a VLBI session by investigating the entire designmatrix of the assoiated adjustment problem by using existing algebrai and statistial tools. The objetiveof this thesis is the development of an analysis tool for an automati and objetive separation of importantand less important (groups of) observations and for the determination of the impat of these observations(or observation groups) on eah parameter involved. In ontrast to methods for the generation of observation1In geodesy, the term 'regression' is ommonly used for the determination of the parameters of a regression line or a regressionpolynomial. Here (as well as in geophysial literature or in statistial literature), the term 'regression' is used in a more generalontext, desribing the proedure of parameter estimation in linear models (f. Belsley et al. 1980).



8 0. Introdutionshedules (as developed by e.g. Steufmehl 1994) this method an be used for the analysis of existingobservation shedules and for the detetion of important and thus in�uential observation groups. It is well-known that in�uential (or high-leverage) observations signi�antly a�et the estimated parameters and thusshould be ontrolled (or supported) by appropriate (independent) observations. On the other hand, redundantobservations only have negligible in�uene on the estimates and are thus andidates for observations thatan be omitted.Sine the regression diagnostis tools is diretly applied to the design matrix of the assoiated adjust-ment problem, the omputation of normal equations (and thus the magni�ation of numerial sensitivity) isavoided. Hene, the proposed method is quite insensitive to round-o� errors and loss-of-digits problems.Although the proposed method is not limited to the analysis of VLBI observations, in this thesis onlyappliations for geodeti VLBI are shown.In addition to the presentation of the theoretial bakground of the regression diagnostis tool, a user-friendlysoftware pakage for the analysis of several kinds of adjustment problems and espeially for the analysis ofVLBI observation shedules has been implemented and tested for its pratial use.In order to solve the tasks desribed above, mainly two methods will be used: On the one hand an algebraitool, alled singular value deomposition, is used to provide geometrial insight into the system of linearequations assoiated with the adjustment problem to be solved. The geometrial aspets of adjustmenttheory (or the 'vetor spae approah') o�er a di�erent perspetive of least-squares methods than the alulusapproahes (as used in e.g. Koh 1999 or Niemeier 2002). The geometrial approah (as desribed in e.g.Meissl 1982 or Teunissen 1985) additionally provides a 'geometrial insight' into geodeti adjustmentproblems.On the other hand a statistial tool, alled luster analysis, is being used for the detetion of groups ofobservations with a similar ontent of information. Although luster analysis is usually applied to attributesof real physial objets, it an also be used for the generation of observation groups. Chapters 1 to 3 of thisthesis deal with both the singular value deomposition and luster analysis methods.The general struture of this thesis is as follows:
• Chapter 1 repeats and summarizes the algebrai bakground neessary for the understanding of geo-metrial interpretations of systems of linear equations. Therefore, vetor spaes and projetions ontosubspaes are used to derive the method of least-squares and to understand the use of the singularvalue deomposition for algebrai problems (see e.g. Meyer 2000 or Lay 2003).
• Chapter 2 desribes the relations between the geometrial 'vetor spae approah' and the alulusapproah of estimating parameters of linear models (also known as Gauss-Markov model). Again,emphasis is put on geometrial aspets suh as angles between vetors or subspaes in order to deriveregression diagnostis tools that an be interpreted geometrially.
• Chapter 3 provides the basis of luster analysis methods, i.e., statistial methods for the detetion ofsimilarities of objets and thus for the detetion of groups of observations/information with a similarimpat. These methods will be of relevane for the pratial investigations performed in hapter 5.
• Chapter 4 gives a short overview of the VLBI priniple and desribes the basi methods for the deter-mination of the most ommon parameters usually estimated from VLBI observations.
• Chapter 5 shows appliations of the methods developed in the previous hapters for the analysis ofmeasurements with plane and spatial interferometers. In this hapter, examples for pratial applia-tions of the VLBI observation shedule analysis software developed by the author of this thesis areshown. The main intention of this hapter is to show the apabilities of the regression diagnostis tooland to ompare its results with existing strategies of shedule generation.
• Chapter 6 summarizes the apabilities of the regression diagnostis tool developed in the �rst haptersand provides an outlook to further possible appliations.Eah hapter of this thesis an be read separately. Thus, espeially hapter 2 ontains some aspets whihhave already been treated in hapter 1.



91. Fundamental Linear Algebra1.1 IntrodutionSine geodeti adjustment theory onsists of both linear algebra and statistial methods, some fundamentalbasis about linear algebra have to be reviewed in order to solve the tasks desribed in the introdution. Linearalgebra provides the theoretial bakground for understanding the nature of systems of linear equations ando�ers methods to solve over-determined and inonsistent systems of linear equations.The analysis and the geometrial interpretation of suh over-determined systems of linear equations is themain ontent of this hapter and will lead to the onepts of vetor spaes and projetions onto subspaes.Furthermore, the fundamental onept of least-squares solutions of over-determined systems of linear equa-tions and their geometrial interpretation are derived. These methods are losely related to the singular valuedeomposition (SVD) of the oe�ient matrix of the linear system. The singular value deomposition willbe of main importane for the analysis of geodeti adjustment problems in general and for the analysis ofVLBI observation shedules as desribed in the following hapters in partiular.Most of the issues desribed in this hapter are of fundamental nature, and an be found in a variety ofliterature. Here only the onepts will be desribed, more details an be found e.g. in Lay 2003, Meyer2000 or Strang 2003.1.2 Systems of linear equationsIn many sienti� researh areas large systems of (linear) equations have to be solved or analyzed in order toget a deeper understanding of the orresponding adjustment problem. Any kind of suh a system of linearequations (or a linear system) as
a11x1 + a12x2 + · · · + a1uxu = y1
a21x1 + a22x2 + · · · + a2uxu = y2. . . . . . . . . . . . . . . .
an1x1 + an2x2 + · · · + anuxu = yn

(1.1)an be expressed in matrix notation as
Ax = y, (1.2)with A being a n × u oe�ient matrix, y being a n × 1 vetor of known onstants (also known as 'right-hand-side of the system') and x being a u × 1 vetor of unknown onstants. Depending on the entries of ythe system is either alled homogenous (for y = 0) or inhomogeneous (for y 6= 0). Arranging the oe�ientmatrix A and the right-hand side of the system y in a ommon matrix yields the augmented matrix [A | y]of the system.A linear system (1.1) has either

• no solution,
• exatly one solution, or
• in�nitely many solutions.If a system has no solution it is alled inonsistent; or onsistent if it has at least one solution. In addition,there are three possible lasses of linear systems (valid for linear systems of full rank):



10 1. Fundamental Linear Algebra
• uniquely determined systems (u = n),
• under-determined systems (u > n) and
• over-determined systems (u < n),with eah of them either being onsistent or inonsistent. In addition, the rank of the linear system has tobe taken into aount (see below).The determination of the solution set(s) of a linear system is aided by visualisation tools alled row pitureand olumn piture: The row piture is generated by visualising the rows of the augmented matrix (i.e.,eah equation) as n (hyper-)planes in Ru. If these hyperplanes have one ommon point of intersetion thelinear system has only one (unique) solution. Parallel hyperplanes indiate no solution while oinidinghyperplanes or intersetion lines indiate in�nitely many solutions. Figure 1.1 (a) shows an example for aonsistent 2 × 2 linear system.
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Figure 1.1: Row piture and olumn piture of a 2 × 2 linear systemFor the olumn piture, equation (1.2) is interpreted olumnwise, i.e., by visualising eah olumn of theaugmented matrix (Strang 2003). The solution of the system (if any) is formed by determining the weightsof that linear ombination of the olumns of A that yields the right hand side y of the system. Figure 1.1 (b)shows the olumn piture for the same 2 × 2 linear system as depited in �gure 1.1 (a).The row piture an be used to explain the important term of the ondition of a linear system: A linearsystem (and thus its solution) might be more or less sensitive to small perturbations aused by e.g. roundo�errors or loss-of-digits. Graphially this is displayed in �gure 1.2 whih shows the e�et of small hanges ofthe oe�ient matrix or the right hand side of the system on the solution of a 2×2 linear system. Dependingon the 'geometry' of the linear system (i.e., the intersetion angle of the hyperplanes) the solution mighthange signi�antly. This sensitivity is inherent to the problem to be solved and annot be overome byany numerial 'triks' (Meyer 2000). Thus a system is named ill-onditioned when even small hangesprodue relatively large hanges in the solution. Otherwise, the system is said to be well-onditioned. Theondition of a linear system is desribed by the ondition number whih -in the ideal ase- is lose toone and thus indiates (almost) orthogonal hyperplanes (for the omputation of the ondition number seesetion 1.6.4.1 on page 26).As desribed in many fundamental books about Linear Algebra (see e.g. Lay 2003, Strang 2003 orMeyer 2000) solutions of linear systems are easily determined by applying Gaussian elimination to theaugmented matrix of the system. Using elementary row operations the system [A | y] is transformed intoa (row equivalent) triangular form [E | c] by eliminating all elements below the pivotal element (=for-ward step). After triangularisating the oe�ient matrix the solution is omputed by bak-substitution(= bakward step) until eah unknown has been determined.
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L L’

Original solution

Perturbed solution  

Figure 1.2: Ill-onditioned 2 × 2 linear system (Meyer 2000)In the ideal ase performing Gaussian Elimination on the oe�ient matrix yields a omplete triangularform, i.e., there never ours a row of the form
(

0 0 · · · 0 α
)
, with α 6= 0. (1.3)However, in many situations α 6= 0, indiating an equation like

0x1 + 0x2 + · · · + 0xn = α, (1.4)ours and thus the bak substitution proess an not be ompleted. Equations as (1.4) with α 6= 0 indiatean inonsistent system of linear equations whih an not be solved exatly. Otherwise the system is saidto be onsistent and the system has (at least) one solution.1.2.1 Solutions of linear systemsThe general solution x of a linear system Ax = y is omposed by the sum of1. the solution of the orresponding homogeneous system and2. a partiular solution of the non-homogeneous system.Thus, at �rst, the homogeneous system Ax = 0 has to be solved:(1.) The trivial solution (i.e., x1 = x2 = · · · = xn = 0) is always a solution of a homogeneous system. Thus,all solutions di�erent from the trivial solution have to be determined by applying the Gaussian algorithm tothe system [A | 0] yielding the system [E | 0] with E having the general form:
E =











*k∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 *k∗ ∗ ∗ ∗ ∗
0 0 0 *k∗ ∗ ∗ ∗
0 0 0 0 0 0 *k∗
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0









In many ases E (also known as row ehelon form) is not of purely triangular form but rather of a 'stair-step' type of triangular form (Meyer 2000) aused by linear dependenies of some olumns of the oe�ientmatrix A. Although the entries of E are not unique the shape of E is unique. The �rst non-zero entries ineah row (irled elements) denote pivot elements and thus indiate independent olumn vetors (=basi



12 1. Fundamental Linear Algebraolumns). The respetive variables are also known as basi variables. Non-basi olumns an be expressedas linear ombinations of basi olumns and thus reveal free variables whose values have to be hosen.Whenever a system is onsistent, the solution set an be desribed expliitly by solving the redued systemfor the basi variables in terms of the free variables. Thus, in the ase of a purely triangular matrix E no freevariables exist. On the other hand, if at least one free variable exists there is an in�nite number of solutions.Consequently, the trivial solution is the only solution if and only if there are no free variables.In general, the basi variables an be expressed in terms of the free variables. All solutions of the homogeneoussystem an be desribed by suessively setting one free variable to one and the remaining free variables tozero. For eah ase a partiular solution hi is obtained. The general solution x of the homogeneous system
Ax = 0 is generated by all possible linear ombinations of the partiular solutions hi, i.e., by

x = xf1
h1 + xf2

h2 + · · · + xfn−r
hn−r (1.5)with xf1

, xf2
, . . . , xfn−r

denoting the free variables and the n× 1 vetors h1,h2, . . . ,hn−r representing par-tiular solutions of the system. As the free variables xfi
range over all possible values, the general solutiongenerates all possible solutions. Thus, for eah non-basi olumn of E (i.e., for eah free variable) one par-tiular solution hi exists (see e.g. Meyer 2000).(2.) In order to solve the (non-homogeneous) system Ax = y, equation (1.5) has to be extended by apartiular solution p generated by setting the free variables to xf1

= xf2
= · · · = xfn

= 0.The general solution of a non-homogeneous system is given by:
x = p + xf1

h1 + xf2
h2 + · · · + xfn−r

hn−r. (1.6)Thus, the general solution of the assoiated homogeneous system is a part of the general solution of theoriginal non-homogeneous system.1.2.2 Rank of a matrixThe most basi de�nition of the rank r of a matrix A is given by the number of pivot elements of amatrix A. Thus, if A is of dimension n × u the rank r an never exeed min(n, u). Furthermore, r equalsthe number of basi olumns in A and thus equals the number of non-zero rows in E. Other rank de�nitionsan be found in algebrai literature.1.3 Vetor spaesConsidering linear systems as linear ombinations of the olumns of the oe�ient matrix A (with x beingthe weights of that partiular linear ombination whih generates the right hand side y of the system via
Ax = y) led to the olumn piture introdued above. A generalisation of the olumn piture from R2 or R3to Rn leads to the theory of vetor spaes whih provides a very elegant way of investigating linear systems.A general vetor spae de�nition is given in table 1.1.1.3.1 Subspaes and sums of subspaesSubsets of a vetor spae V whih ful�l the losure properties (A1) and (M1) of table 1.1 are said to besubspaes of V . Thus, every vetor through the origin as well as linear ombinations of suh vetors form asubspae. The zero vetor is alled the trivial subspae. In addition, an entire vetor spae is a subspaeof its own.Two subspaes might be 'added' to generate another subspae. Formally,

X + Y = {x + y | x ∈ X and y ∈ Y}, (1.7)with X and Y denoting subspaes of V . Then the sum (also denoted as X ⊕ Y) is again a subspae of V .



1.3. Vetor spaes 13
Vetor Spae De�nitionA set V is alled vetor spae over F when the vetor addition and salar multipliation operationssatisfy the following properties:(A1) x + y ∈ V for all x,y ∈ V . This is alled the losure property for vetor addition.(A2) (x + y) + z = x + (y + z) for every x,y, z ∈ V .(A3) x + y = y + x for every x,y ∈ V .(A4) There is an element 0 ∈ V suh that x + 0 = x for every x ∈ V .(A5) For eah x ∈ V , there is an element (−x) ∈ V suh that x + (−x) = 0.(M1) αx ∈ V for all α ∈ F and x ∈ V . This is the losure property for salar multipliation.(M2) (αβ)x = α(βx) for all α, β ∈ F and every x ∈ V .(M3) α(x + y) = αx + αy for every α ∈ F and all x,y ∈ V .(M4) (α+ β)x = αx + βx for all α, β ∈ F and every x ∈ V .(M5) 1x = x for every x ∈ V .

F denotes a �eld of salars. Sine in the following investigations and analyses only real vetor spaes Rnare of interest, F is the �eld R of real numbers.Table 1.1: Vetor spae de�nition (Meyer 2000)1.3.2 Spanning setsAll possible linear ombinations of a set of vetors S = {v1,v2, . . . ,vr} from a vetor spae V are alled
span(S), i.e.,

span(S) = {α1v1 + α2v2 + · · · + αrvr | αi ∈ F}. (1.8)Thus, the subspae V = span(S) generated by forming all linear ombinations of vetors from S is alled thespae spanned by span(S). Then span(S) is alled the spanning set for V . Thus, V might be spanned bymany di�erent spanning sets. Furthermore, span(S) might ontain redundant vetors whih do not ontributeto the generation of V .1.3.3 Bases of vetor spaes1.3.3.1 Linear independene, bases and dimensionAny set of vetors is said to be linearly independent if only the trivial solution α1 = α2 = · · · = αn = 0is a solution of the homogeneous equation
α1v1 + α2v2 + · · · + αnvn = 0. (1.9)



14 1. Fundamental Linear AlgebraAny linear independent spanning set for a vetor spae V is alled a basis for V . As shown in e.g. Meyer2000 a vetor spae might be generated by many di�erent bases. Unlike spanning sets, bases do not ontainredundant vetors. Aording to Meyer 2000 a linearly independent spanning set for a vetor spae V isalled a basis for V . If V denotes a subspae of Rm and B = {b1,b2, . . . ,bn} ⊆ V , then
• B is a basis for V ,
• B is a minimal spanning set for V and
• B is a maximal linearly independent subset of V .The number of vetors in any basis for V is alled dimension (dim) of a vetor spae V . It should notbe onfused with the number of omponents ontained in the individual vetors of V !1.3.3.2 CoordinatesAn important reason for speifying a basis B for a vetor spae V is to generate a 'oordinate system' for V :If B = {b1, . . . ,bn} is a basis for a vetor spae V , then eah vetor x in V an be expressed uniquely by aset of salars c1, . . . , cn suh that

x = c1b1 + · · · + cnbn. (1.10)The salars (or weights) c1, . . . , cn are the oordinates of x relative to the basis B, or the B-oordinatesof x. For the standard basis, i.e., for basis vetors e1, . . . , en with
e1 =








1
0...
0







, e2 =








0
1...
0







, . . . , en =








0
0...
1







, (1.11)the oordinates of a vetor x are just the omponents of x.1.3.4 The four subspaes of a matrix1.3.4.1 Column spae and row spaeAs introdued in setion 1.3 all possible linear ombinations of ertain vetors form a vetor spae. Thismeans that applying Ax to any n × u Matrix A with an u × 1-vetor x generates a subspae of Rn (alsoknown as range R(A) of A). Sine every matrix-vetor produt Ax is a linear ombination of the olumnsof A, Ax is the spae spanned by the olumns of A. This spae is alled olumn spae of A and formallyreads

R(A) = {Ax | x ∈ Ru} ⊆ Rn = ol A. (1.12)Likewise, the spae spanned by the rows of A (i.e., R(A′) or the spae spanned by the olumns of A′) isalled row spae of A:
R(A′) = {A′y | y ∈ Rn} ⊆ Ru = row A. (1.13)



1.3. Vetor spaes 151.3.4.2 Left and right nullspaesIn addition to the row and the olumn spae of a matrix A a matrix possesses two other vetor spaes: Theset of all possible solutions of the homogeneous system Ax = 0, i.e.,
N(A) = {x | Ax = 0} ⊆ Ru (1.14)for any n× u matrix A, forms the right nullspae (or kernel) of A. The set of vetor spaes assoiatedwith any matrix A is ompleted by the left-hand nullspae N(A′) of A, i.e., by
N(A′) = {y | A′y = 0} ⊆ Rm. (1.15)Figure 1.3 summarizes the four vetor spaes of a matrix (Strang 2003).

row space

dim r

R
u

Null space
(Ax = 0)

dim r

Dimension n−r
Dimension u−r
N(A)

R(A)

(all Ax)

Rn

N(A’)
(A’ y = 0)
nullspace
left−hand

column space

R(A’)

(all A’ y)

Figure 1.3: The four subspaes of an n× u matrix A (little squares indiate orthogonality of subspaes)1.3.4.3 Dimensions of subspaesIn the general ase of an n × u matrix A of rank r the olumns of A do not form a basis if there aredependenies between some of the olumns. However, the basi olumns form an independent set and thusform a basis for R(A). Thus, the dimension of the olumn spae equals dim R(A) = r = rank(A). As shownby e.g. Meyer 2000 both the dimensions of the olumn spae and the row spae equal r. Consequently, thedimensions of the nullspae and the left nullspae equals u− r and n− r, respetively. Table 1.2 summarizesthe four vetor spaes of a general n× u matrix of rank r.Subspae: Dimension:Range or olumn spae R(A) = {Ax} ⊆ Rn dim R(A) = rRow spae R(A′) = {A′y} ⊆ Ru dim R(A′) = rNullspae N(A) = {x | Ax = 0} ⊆ Ru dim N(A) = u− rLeft nullspae N(A′) = {y | A′y = 0} ⊆ Rn dim N(A′) = n− rTable 1.2: Summary of the four subspaes of an n× u matrix A



16 1. Fundamental Linear Algebra1.4 Linear transformationsAny linear transformation T from one (�nite-dimensional) vetor spae to another (�nite-dimensional) ve-tor spae (as e.g. rotations, projetions or re�etions as well as the identity transformation and the zerotransformation) an be expressed in matrix form. In general every n×u matrix A ats as a (linear) mappingfrom Ru to Rn (an example is shown in �gure 1.4). Therefore, a proper basis has to be hosen in either vetorspae. Then A is alled the oordinate matrix of the linear transformation (Meyer 2000). One ofthe main aspets of Linear Algebra is to analyse speial properties of suh transformations (see e.g. Lay2003 or Strang 2003).
Multiplication with A

(3, −9)

(18, 6)

x 3

x2x1

x2

x1

Figure 1.4: Transformation from R3 into R2 (maps a sphere onto an ellipse)1.4.1 Change of basisDue to the base dependeny of the matrix representation of suh transformations some properties mightnot be visible when using the initial (standard) basis. The solution of a problem (whih might be initiallydesribed using a basis B) is generally solved easier after hanging to a new basis C. Thus a hange ofbasis might reveal speial properties of a linear transformation so that the problem beomes more luid(Dermanis and Rummel 2000). The new basis might onsist of orthogonal basis vetors and might yielda diagonal struture of the oe�ient matrix, whih is obviously easy to solve.1.4.1.1 Matrix-vetor produt as a hange of basis operationWith B = {b1, . . . ,bn} and C = {c1, . . . , cn} being two bases of a vetor spae V the n × n hange-of-oordinate matrix PC←B whih transforms a vetor from B to C via
[x]
C

= PC←B [x]
B

(1.16)is omputed by arraging the C-oordinates of the vetors in the basis B as
PC←B = [ [b1]C [b2]C · · · [bn]

C
] . (1.17)Formula (1.16) an be generalised to the dimension n×u. In any ase the oordinate vetors of the old basishave to be expressed in terms of the new basis to ompute PC←B via equation (1.17) (Lay 2003).



1.4. Linear transformations 171.4.1.2 Change of basis for oordinate matriesDue to a hange of the underlying basis from basis B to B′ the hange of the oordinate matrix A of a lineartransformation on V is omputed by (Meyer 2000):
[A]
B

= P−1 [A]
B′ P, with P = [I]

BB′ . (1.18)Equivalently,
[A]
B′ = Q−1 [A]

B
Q, with Q = [I]

B′B
= P−1, (1.19)being the hange of basis matrix from B′ to B. A proof an be taken from Meyer 2000.In general, applying left-multipliation of a oordinate matrix A with a hange-of-basis matrix P is e�etivelya sequential appliation of matrix-vetor multipliations and thus results in a hange-of-basis operation forevery olumn of A. Therefore, left-multipliation with a hange-of-basis matrix introdues a new basis to theolumn spae of A. On the other hand, right multipliation of a oordinate matrix with a hange-of-basismatrix (whih is di�erent from the one mentioned above) results in a hange-of-basis operation for the rowspae of A.1.4.2 Eigenvalues and EigenvetorsThe appliation of a linear transformation T on a vetor u (via u′ = Au) usually results in a hange ofthe diretion of u. On the other hand, there might be vetors whih keep their diretion (probably with ahange of sign) after a linear transformation. A two-dimensional example is shown in �gure 1.5. Vetors (orvetor spaes) whih do not hange their diretion after applying a linear transformation are alled invariantsubspaes and are important sine they are used to simplify oordinate matrix representations of T.

Au

u
v

Av
x 2

x 1

Figure 1.5: E�ets of multipliation by AInvariant subspaes are identi�ed by determining eigenvetors and eigenvalues of the oordinate matrix A.Aording to Lay 2003 an eigenvetor of an n×n matrix A is a non-zero vetor x suh that Ax = λx forsome salar λ. A salar λ is alled eigenvalue of A if there is a non-trival solution x of Ax = λx; suh an xis alled an eigenvetor orresponding to λ. All possible linear ombinations of the eigenvetors are alledeigenspae.Thus, Ax = λx shows that under a transformation by A the eigenvetors experiene only hanges inmagnitude or sign. The orientation of Ax in Rn is the same as that of x. The eigenvalue λ indiates theamount of 'streth' or 'shrink' to whih the eigenvetor x is subjeted when transformed by A.Eigenvalues and eigenvetors an be used to fatorize an n× n-matrix A into
A = PDP−1 (1.20)



18 1. Fundamental Linear Algebrawith P being a matrix ontaining n eigenvetors of A and D being a diagonal matrix ontaining n eigenvaluesof A on its main diagonal. A is said to be diagonalizable if suh a fatorization exists, i.e., only if A has
n linearly independent eigenvetors. In other words, A is diagonalizable if there are enough eigenvetorsto form a basis of Rn. Suh a basis is alled eigenvetor basis. In this ase, the B-matrix of the lineartransformation T is diagonal. Diagonalising A is e�etively �nding a diagonal matrix representation of thelinear transformation x 7→ Ax.Rearranging equation (1.20) to P−1AP = D shows that A is diagonalized by applying the hange-of-basis operators P (and P−1) to A and thus by hanging to a new basis for Rn. Equation (1.20) is alsoknown as spetral deomposition or eigenvalue deomposition (EVD) and is of great importane for statistialappliations and regression problems.Multiple eigenvalues / non-diagonalizable matriesProblems may our when A does not possess n distint eigenvalues. As shown in Lay 2003 or Meyer2000 a matrix is only diagonalizable if and only if it possesses a omplete set of eigenvetors and thus onlyif it possesses n distint eigenvalues. Matries that fail to possess omplete sets of eigenvetors are alledde�ient.In the ase of several idential eigenvalues λi (alled algebrai multipliity of the eigenvalue λi) the number ofassoiated eigenvetors (alled geometrial multipliity of λi) an be smaller than the algebrai multipliity.Geometrially, this means that no unique basis vetor for the eigenspae an be found.1.5 Orthogonality and Least-squaresOrthogonality of vetors or vetor spaes and projetions onto vetor spaes provide a very elegant andgeometrially omprehensible way of deriving methods for solving over-determined linear systems in a least-squares sense without using the usual alulus approah (as desribed e.g. inKoh 1999). Both the geometri'vetor spae approah' and the alulus approah lead to the well-known normal equation approah. Inaddition, the vetor spae approah provides further methods and analysis tools to get deeper insight intothe adjustment problem.1.5.1 Inner produts, norms and metri of a vetor spaeThe inner produt, dot produt or salar produt of two vetors u and v is de�ned as (Trefethen1997)

u′v = u ·v = [u1 u2 · · · un]








v1
v2...
vn








= u1v1 + u2v2 + · · · + unvn. (1.21)Furthermore it is used to ompute the angle θ between two vetors in Rn via
cos θ =

u′ ·v
‖u‖ · ‖v‖ . (1.22)Thus, any two vetors in Rn are orthogonal if their inner produt equals zero. Any vetor spae that isequipped with an inner produt is alled an inner-produt spae.In formula (1.22) the norm operator ‖ · ‖ has been used. As desribed in e.g. Vaniek and Kraki-wsky 1986 the (general) norm operator is used to measure distanes ρ(a, b) between any two elements a, b



1.5. Orthogonality and Least-squares 19of a vetor spae. For any vetor spae, the way of formulating this distane, or metri, an be hosen inmany ways. The most ommon norm (or length) of a vetor u -also known as Eulidean norm or 2-Norm-is de�ned as
‖u‖ =

√
u′ ·u =

√

u2
1 + u2

2 + · · · + u2
n. (1.23)The general properties and the di�erent types of norms an be found e.g. in Meyer 2000. A vetor spaein whih a metri has been de�ned is alled a metri spae.1.5.1.1 Orthogonal omplementsIf a vetor u is orthogonal to every vetor in a subspae W of Rn, then u is said to be orthogonal to W . Theset of all vetors u that are orthogonal to W is alled the orthogonal omplement of W and is denotedby W⊥ (Strang 2003). Thus, the nullspae N(A) of a matrix A is an orthogonal omplement of the rowspae of A while the nullspae of A′ is an orthogonal omplement of the olumn spae of A, formally:(Row A)⊥ = Nul A and (Col A)⊥ = Nul A′.The orthogonality of the four subspaes of a matrix A is visualised (by little squares) in �gure 1.3 on page 15.1.5.1.2 Orthogonal projetionsOrthogonal sets (e.g., orthogonal bases) are in partiular helpful in simplifying alulations. This beomesobvious when onsidering the problem of projeting vetors onto ertain orthogonal subspaes. An exampleis the deomposition of a vetor y (in Rn) into the sum of two vetors, i.e., y = ŷ + z with ŷ being amultiple of a nonzero vetor u and z being orthogonal to u (both in Rn). As shown on the left of �gure 1.6(for the R2-ase) the deomposition is given by orthogonally projeting y onto u and z, respetively. Asderived in e.g. Lay 2003 ŷ and z are omputed as follows:

ŷ =
y ·u
u ·uu is the orthogonal projetion of y onto u and

z = y − y ·u
u ·uu is the omponent of y orthogonal to u. (1.24)

y

0 uy =    uα

z = y − y

W

z = y − y

y = proj    y

y

0
WFigure 1.6: Deomposition into orthogonal omplements, left: R2, right: Rn



20 1. Fundamental Linear AlgebraFor Rn orthogonal projetions an be generalised to the Orthogonal Deomposition Theorem (Lay 2003):Orthogonal Deomposition TheoremLet W be a subspae of Rn. Then eah y in Rn an be written uniquely in the form
y = ŷ + zwhere ŷ is in W and z is in W⊥. In fat, if {u1, . . . ,up} is any orthogonal basis of W , then
ŷ =

y ·u1

u1 ·u1

u1 + · · · + y ·up

up ·up

up (1.25)and z = y − ŷ.Eah term in (1.25) is an orthogonal projetion of y onto a one-dimensional subspae spanned byone of the u-vetors in the basis for W . The orthogonal projetion ŷ of y onto W is the sum of theprojetions of y onto one-dimensional subspaes whih are orthogonal to eah other (as shown on theright-hand side of �gure 1.6 on the preeding page). This priniple is of fundamental importane for thederivation of the least-squares algorithm in the next setion.1.5.1.3 Properties of orthogonal projetorsSome properties of (orthogonal) projetion matries will be relevant in the following hapters. Hene, a briefsummary is given below (Caspary and Wihmann 1994, and Meyer 2000). For any projetion matrix Pholds:
• P is idempotent, i.e., P2 = P,
• Px = x, i.e., further projetion does not alter the previous projetion result,
• sine P is idempotent, the eigenvalues of P are either 0 or 1 and
• the trae and the rank of P are idential, i.e., tr(P) = rk(P).For orthogonal projetion matries also
• P′ = P = P

2applies.1.5.2 Least-squares problemsFor an over-determined system of linear equations Ax = y the observation vetor y almost ertainly liesoutside the olumn spae R(A) of the oe�ient matrix A, i.e., the system is almost ertainly inonsistent.Nevertheless, the system an be solved (at least approximately) by �nding a vetor inside R(A) and withminimal distane to y. Following the so-alled Closest Point Theorem (Meyer 2000) suh a vetor is givenby the orthogonal projetion ŷ of y onto the olumn spae R(A) of the oe�ient matrix A. Thus, ŷ isan approximation of y whih minimizes the distane ‖ y − Ax ‖ (usually measured by using the 2-norm).



1.5. Orthogonality and Least-squares 21Consequently, the general least-squares problem is to �nd an x that leads to the smallest length of thevetor v = y − Ax (also known as residuals). The vetor x̂, whih ful�ls the (onsistent) system
Ax̂ = ŷ, (1.26)with ŷ being the projetion of y onto col(A), is alled the least-squares solution of Ax = y (see �gure 1.7).Thus, the elements of x̂ denote the oordinates of ŷ with respet to the basis formed by the olumns of theoe�ient matrix A. As long as there is no rank de�ieny, i.e., as long as there are no free variables x̂ is aunique vetor1.

Col A

y

Ax
Ax

0 AxFigure 1.7: Least-squares priniple1.5.2.1 Least-squares solutions based on normal equationsAs shown by e.g. Strang 2003 the vetor spae based least-squares approah also leads to the well-knownnormal equations: Sine y − ŷ = y − Ax̂ is orthogonal to the olumn spae of A, the following equationholds:
A′(y − Ax̂) = 0

A′y − A′Ax̂ = 0

A′Ax̂ = A′y (1.27)Formula (1.27) yields a onsistent (!) but probably rank-de�ient system of linear equations for a ompatleast-squares solution of the original linear system Ax = y. As many authors (Gramlih and Werner2000, Lawson and Hanson 1995, orKalman 1996) show, espeially for ill-onditioned systems the solutionof the normal equations beomes very sensitive to round-o� errors and loss-of-digits sine any errors in theentries of A are squared in the entries of A′A. Thus, the omputation of the normal equations A′A shouldbe avoided. Alternative approahes for the solution of over-determined systems of linear equations in aleast-squares sense are based on numerially more stable algorithms suh as e.g. the QR-deomposition orthe singular value deomposition of the oe�ient matrix A. These methods are based on (vetor lengthpreserving) orthogonal transformations suh as Householder transformations or Givens rotations (see e.g.Gramlih and Werner 2000).Aounting for di�erent auraies of the elements on the right-hand side of Ax = y leads to the weightedleast-squares priniple. Appliations of the least-squares priniple in adjustment theory or linear regressionwill be further disussed in hapter 2.1Here, orrelations between parameters an be reognized by inspeting the angles between the olumn vetors of A: If thereexists an (almost) linear dependeny of the olumn vetors, no separation between the individual oordinate axes is possibleand thus the oordinates of ŷ an not be well separated.



22 1. Fundamental Linear Algebra1.6 Singular Value DeompositionOne of the main aspets of linear algebra is the fatorisation of linear systems, i.e., the deomposition ofmatries into matries with speial properties. For example, the results of the Gauss algorithm an also beobtained by LU deomposition of the oe�ient matrix or a linear system an be solved by performing a QRdeomposition of its oe�ient matrix (see e.g. Strang 2003, Gramlih and Werner 2000).Aording to Lay 2003 singular value deomposition is 'one of the most useful matrix deompositionsin applied linear algebra'. As desribed by Stewart 1993 the singular value deomposition has beendeveloped by E. Beltrami and C. Jordan in 1873. Due to its outstanding relevane in linear algebra a varietyof derivations an be found in the literature (e.g. Blank, S.J. et al. 1989 or Stewart 1993). A ompletede�nition of the singular value deomposition reads (Meyer 2000):Singular Value DeompositionFor eah A ∈ Ru of rank r, there are orthogonal matries Un×n, Vu×u and a diagonal ma-trix Sr×r = diag(σ1, σ2, . . . , σr) suh that
A = U

(
S 0

0 0

)

n×u

V′ with σ1 ≥ σ2 ≥ · · · ≥ σr > 0. (1.28)The σi's are alled the nonzero singular values of A. When r < p = min{n, u}, A is said tohave p − r additional zero singular values. The fatorisation in (1.28) is alled a singular valuedeomposition of A, and the olumns in U and V are alled left-hand and right-hand singularvetors for A, respetively.1.6.1 Geometrial derivation of the Singular Value DeompositionContrary to more mathematial derivations (as given above) here a geometrial approah is used, as presentedby Trefethen 1997. At �rst, the so-alled redued Singular Value Deomposition is derived.1.6.1.1 Redued Singular Value DeompositionAs desribed in hapter 1.4 every n×umatrixA ats as a linear mapping from Ru to Rn. Thus, every matrixAmaps a unit sphere S in Ru into a hyperellipse AS in Rn. An example an be found in �gure 1.4 on page 16.The hyperellipse in Rn an be obtained by strething a unit sphere in Rn by some fators σ1, . . . , σn (some ofwhih might be zero) in orthogonal diretions expressed by unit vetors u1, . . . ,un ∈ Rn. The vetors σiui arealled prinipal semiaxes of the hyperellipse. As indiated on the right hand side of �gure 1.8, these fatorsare the singular values σ1, . . . , σn of A and indiate the lengths of the u semiaxes of the hyperellipse AS.Usually these values are sorted in dereasing order, i.e., σ1 ≥ σ2 ≥ · · · ≥ σn > 0.The u unit vetors ui of the prinipal semiaxes of AS are de�ned to be the left singular vetors of A,numbered to orrespond with the singular values.Furthermore, u right singular vetors vi of unit length are de�ned and orrespond to the preimages of theprinipal semiaxes of AS. These vetors are displayed on the left hand side of �gure 1.8. Mathematially,the ation of a matrix A on the right singular vetors vi is
Avj = σjuj for 1 ≤ j ≤ u, (1.29)whih an also be expressed in matrix notation as
AV = ÛŜ. (1.30)



1.6. Singular Value Deomposition 23Here, Ŝ is a u × u diagonal matrix with the positive real singular values σj on its main diagonal, Û is an
n × u matrix with orthonormal olumns and V is an u × u matrix with orthonormal olumns. Sine V isorthonormal, V−1 = V′, and thus equation (1.30) an be written as

A = ÛŜV′. (1.31)Fatorisation (1.31) is also known as redued singular value deomposition of A and is the basis for the morestandard 'full' singular value deomposition of A desribed below.
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Figure 1.8: Linear mapping by A and singular value deomposition of A (Strang 2003)1.6.1.2 Full Singular Value DeompositionFor an overdetermined system (i.e., n > u) the olumns of Û are just u orthonormal vetors in Rn whih donot form a omplete basis for Rn. Thus, n − u additional vetors have to be found to generate a ompletebasis and to extend Û to an orthonormal n × n matrix U. The additional vetors an be onstruted e.g.by using the Gram-Shmidt approah to make the olumns of U form a omplete (orthogonal) basis for Rn(Strang 2003, or Meissl 1982).In addition, Ŝ has to be modi�ed in suh a way that the n− u olumns of U are multiplied by zero so thatthe produt (1.30) remains unhanged. The new n × u matrix S onsists of Ŝ extended by n − u rows ofzeros.Sine V remains unhanged, the full Singular Value Deomposition of A now reads:
A = USV′, (1.32)with U being an orthonormal n×n matrix ontaining the left singular vetors of A, S being an n×u diagonalmatrix with the singular values of A on its main diagonal and V an u × u orthonormal matrix ontainingthe right singular vetors of A. Graphially this fatorisation an be visualised as shown in �gure 1.9.Singular Value Deomposition is neither limited to matries with full rank nor to matries ontaining morerows than olumns (i.e., over-determined linear systems). Instead, any arbitrary n× u matrix of rank r anbe fatorised using formula (1.31) or (1.32) with S ontaining r nonnegative diagonal entries σi.The singular vetors ui and vi orrespond to the eigenvetors of AA′ and A′A, respetively. The eigenvaluesof AA′ and of A′A are the same and are the squared singular values of A. The eigenvalue deomposition(or diagonalisation) of AA′ and A′A is always possible sine AA′ and A′A are symmetri matries. Forthe same reason, the singular vetors ui and vi form a omplete, orthogonal basis (see e.g. Strang 2003).
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n   ux n   nx n   ux u   ux

=

A U S V’Figure 1.9: Graphial visualisation of the Singular Value Deomposition (SVD) of an n × u matrix A (for
n > u, dashed lines indiate the di�erenes between redued and full SVD)1.6.1.3 Geometrial analogies of the singular value deompositionAs shown in �gure 1.8 on the preeding page the omponents of the fatorisation of A into U, S and V alsodeompose the mapping represented by A (Strang 2003 and Trefethen 1997):

• V does not hange the form of the unit sphere but introdues a new basis for Ru (also known as domainspae of the mapping),
• S strethes the unit sphere into a hyperellipse and �nally
• U rotates or re�ets the hyperellipse without hanging its shape (within the so-alled range spae ofthe mapping).

A and S represent the same mapping with respet to di�erent bases: A desribes the mapping with respetto the standard bases of Rn and Ru, S with respet to the bases formed by the left and right singular vetors.Thus, singular values reveal some information about the geometry of linear transformations sine they showhow muh distortion an our under a transformation by a matrix A (Meyer 2000). On the other hand,the singular value deomposition shows that any retangular matrix an be diagonalised if appropriate basesfor the domain and range spae are hosen.1.6.2 Canonial form and least-squares solutions1.6.2.1 New Bases for the four fundamental subspaes of a matrixFor an arbitrary matrix A the full singular value deomposition determines new bases for the four funda-mental subspaes. For the speial ase of an over-determined linear system (with n > u and rank r < u)
• the �rst r left singular vetors u1, . . . ,ur form an orthonormal basis for the olumn spae of A (Col A)and
• the remaining n−r left singular vetors ur+1, . . . ,un form an orthonormal basis for the nullspae of A′(Nul A′ = (Col A)⊥).
• An orthonormal basis for the row spae of A is given by the �rst r right singular vetors v1, . . . ,vrand
• an orthonormal basis for the nullspae of A (Nul A) is formed by the remaining (if any) u − r rightsingular vetors vr+1, . . . ,vu.As shown in e.g.Meyer 2000 or Lay 2003 the singular vetors ui and vi are not unique (while the singularvalues σi are unique). The relations between the four bases are shown in �gure 1.10 (Lay 2003).
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Figure 1.10: New bases for the four fundamental subspaes of a matrix A generated by singular valuedeomposition of A (Singular values are unique, singular vetors are not unique!).1.6.2.2 Canonial formThe omputation of new bases for the fundamental subspaes of A atually transforms A into its diagonalform S. This orresponds to hanging the assoiated linear system Ax = y from the standard basis tonew orthonormal bases using hange-of-basis operations (see setion 1.4.1). The linear system is said to betransformed into its 'anonial form' whih signi�antly simpli�es the orresponding least-squares problem(Strang and Borre 1997):The hange-of-basis is performed by expanding y ∈ Rn in the basis of left singular vetors of A (olumnsof U) and by expanding x ∈ Ru in the basis of right singular vetors of A (olumns of V). The oordinatevetors for these expansions are
ȳ = U′ y, and x̄ = V′ x. (1.33)Using A = USV′, the relation Ax = y an be expressed in terms of ȳ and x̄:
y = Ax ⇐⇒ U′y = U′Ax = U′USV′x ⇐⇒ ȳ = Sx̄. (1.34)Appliations and interpretations of the anonial form of Ax = y an be found in Strang and Borre1997 and will be treated in more detail within the ontext of tehniques for parameter estimation in linearmodels in hapter 2.1.6.2.3 PseudoinverseArranging the left singular vetors and right singular vetors of an n × u matrix A (with n > u andrank A = r) as
U = [Ur Un−r] , with Ur = [u1 . . .ur] and
V = [Vr Vu−r] , with Vr = [v1 . . .vr ]the pseudoinverse (or Moore-Penrose inverse) of A an be omputed by
A+ = VrSr

−1U′r =
r∑

i=1

1

σi

·vi ·u′i, (1.35)



26 1. Fundamental Linear Algebrawhih in the ase of a square matrix with full rank (i.e., n = u = r) equals the ommon matrix inverse A−1(Strang 2003). Thus, the pseudoinverse of A an be omputed after singular value deomposition of A bysimply inverting its singular values. Geometrially A+ depits the inverse mapping of A, i.e., A+ maps fromRn to Ru. Details about di�erent kind of matrix inverses an be found in e.g. Caspary and Wihmann1994.1.6.2.4 Least-squares solution by singular value deompositionUsing the pseudoinverse, the overdetermined linear system Ax = y an be solved in a least-squares sense by
x̂ = A+y = VrS

−1
r U′ry. (1.36)Left-multipliation by A yields

Ax̂ = (UrSrV
′

r)(VrS
−1
r U′ry)

= UrSrS
−1
r U′ry (sine Vr is orthonormal and so V′rVr = Ir)

= UrU
′

ry.Here, UrU
′
ry is the orthogonal projetion ŷ of y onto the olumn spae of A. Thus x̂ is a least-squaressolution of Ax = y (Lay 2003). In general, using the pseudoinverse for the solution of a linear system yieldsa solution of minimal norm (Meyer 2000).1.6.3 Computational aspetsFor the omputation of the singular value deomposition of a matrix A as in equations (1.31) or (1.32)sophistiated and highly-optimised algorithms and implementations exist (Golub 1965, or Golub andReinsh 1970). These algorithms are variants of algorithms used for the omputation of eigenvalues andare given in e.g. Golub and Kahan 1965, or Press et al. 1986. Other omputation methods are desribedin Trefethen 1997. Implementations of fast and e�ient algorithms with minimum memory requirementsan be found in numerial libraries suh as LAPACK or the GNU Sienti� Library (GSL).1.6.4 Appliations of the Singular Value DeompositionSingular value deomposition is used in a variety of sienes suh as e.g. statistis, image proessing or dataompression. The appliation of singular value deomposition within parameter estimation tehniques willbe treated in more detail in hapter 2. Below a few general appliations of the singular value deompositionare given.1.6.4.1 Condition number of a linear systemBased on the singular value deomposition of a matrix A a new de�nition of the (2-norm) ondition of amatrix (or for the assoiated linear system) an be given: The degree of distortion of the unit sphere undera transformation by A is measured by κ = σ1/σu, i.e., the ratio of the largest singular value to the smallestsingular value (Meyer 2000). A matrix is singular if its ondition number is in�nite (i.e., if there exists atleast one zero singular value), and it is ill-onditioned if its ondition number is very large (indiated by atleast one very small singular value) (f. setion 1.2).1.6.4.2 Rank determinationSingular Value Deomposition also serves as a robust tool for rank determination sine the number of non-zero singular values equals the rank of a matrix A (e.g., Lawson and Hanson 1995, or Lay 2003). Roundo�errors often lead to wrong rank determination results so that in pratie very small singular value are assumedto be zero and the remaining non-zero singular values are used for the determination of the e�etive rank ofa matrix A (Gramlih and Werner 2000, or Trefethen 1997).



1.6. Singular Value Deomposition 271.6.4.3 Lower rank approximationsBased on the singular value deomposition of a matrix A this matrix an be expressed as an outer produtexpansion:
A =

u∑

i=1

σiuiv
′

i. (1.37)Equation (1.37) represents A as a sum of rank-one matries (as does formula (1.35) for the pseudo-inverse).As shown by e.g. Trefethen 1997 or Kalman 1996 equation (1.37) an be used to approximate any kindof (data) matrix by a sum of less than u 'slies', i.e., by a ertain number of rank-one matries omputedby σiuiv
′
i. Appliations of lower-rank approximations in statistis and for data ompression in imageproessing an be found in e.g. Lay 2003.The lose relationship between singular value deomposition, prinipal omponent analysis (PCA)and the redution of the dimension of multivariate data an be found in e.g. Lay 2003, or Jakson 2003.



28 2. Parameter Estimationin Linear Models2.1 IntrodutionParameter estimation in linear models (or adjustment theory or inverse theory) plays a entral role in manysienti� areas in order to ondense or summarize data by �tting it to a mathematial funtion that dependson adjustable parameters whih desribe physial phenomena. Sine VLBI data analysis is also based onthese methods, parameter estimation tehniques are of main importane for the development of regressiondiagnostis tools for improving the design of an experiment (Dehlert 2000).In the following hapter the relation (and equivalene) of ommonly used alulus approahes (i.e., bestlinear unbiased estimators (BLUEs), et.) and vetor spae based geometrial approahes are given. As willbe shown, the non-geometri approahes bear some disadvantages. This has already been reognized byDermanis 1977, who mentions:Usually adjustment algorithms are derived from variational priniples, as solutions to the problemof minimizing a quadrati form. Suh an approah solves the problem but has little to o�er tothe understanding of its mathematial ontext and its relation to other tehniques.Thus, many authors only use the geometri or vetor spae approah to develop parameter estimationtehniques. In the following hapter, geometrial onepts will be used to supply the alulus approah.These onepts will be used to provide geometrial interpretations of e.g. adjusted observations or residualsand the elements of projetion operators will be used for the visualisation of redundany numbers or 'impatfators'. The latter will be used in hapter 3 to develop methods for �nding groups of observations and toseparate important (groups of) observations from less important (groups of) observations.2.2 Modeling of dataModeling of data is used to desribe measurement results (observations) by a onvenient lass of funtions,suh as appropriate linear ombinations of polynomials or other so-alled basis funtions. Based on expe-rienes and assumptions the mathematial formulation of the relation between observations and unknownshas often to be guessed and its orretness has to be veri�ed by real observations. Adjustment theory triesto �t the observations to those funtions and determines the oe�ients of the (assumed) model (Casparyand Wihmann 1994).A model is an image of the reality, expressed in mathematial terms, in a way, whih involves a ertain degreeof abstration and simpli�ation. In general, a model onsists of (Dermanis and Rummel 2000)
• a set of observable objets (observations),
• a set of objets to be determined (unknowns) and
• a mathematial relation f , forming a onnetion between unknowns and observations.On the one hand a model should be an appropriate (linear or linearised) desription of the behaviour of asystem, while, on the other hand, for pratial reasons it should not be too omplex. The degree of omplexityof a model also depends on the partiular purpose of the measurement1.1When using original observations the mathematial model has to be formulated in a very general way. The more redutionsare applied to the original observations, the less general the mathematial model needs to be formulated. The �nal form of themathematial model also depends on the purpose of the experiment.



2.2. Modeling of data 29In order to assess the agreement between the data and the model a so-alled 'merit funtion' has to behosen. Conventionally small values of the merit funtion indiate lose agreement between the data andthe model. The parameters of the model are then determined while minimizing the merit funtion, yieldingbest-�t parameters (Press et al. 1986).A general parameter estimation proedure onsists of the following steps:
• Estimation of parameters,
• Determination of formal errors of estimated parameters and
• Statistial goodness-of-�t test.2.2.1 Mathematial ModelsIn general, an adjustment problem onsists of two, equally important omponents: the funtional and thestohasti model. Both of them are summarized by the general term mathematial model (see �gure 2.1,Leik 1990).In general, measurements do not �t the mathematial model even if the mathematial model is orret.Furthermore, the model is not set up for the observed values but for (funtions of) the observations, e.g. forthe expetations E(y) or for their varianes Σyy, f. Förstner 1987.
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Figure 2.1: Elements of least-squares adjustment



30 2. Parameter Estimation in Linear ModelsFuntional modelsThe funtional model is the linear (or linearised) and simpli�ed mathematial formulation of existing physialreality (Leik 1990). It expresses the relations between observations and (unknown) parameters. In the mostgeneral ase the mathematial formulation is an impliit non-linear funtion as
f(x̂, ŷ) = 0, (2.1)whih is also known as mixed adjustment model or (together with a stohasti model) as Gauss-Helmertmodel (f. Koh 1999). Here, the variables denote:

ŷ = vetor of n adjusted observations
x̂ = vetor of u adjusted parameters
f = r non-linear mathematial funtions.In many ases, equation (2.1) an be simpli�ed if the observations an be expressed expliitly interms of the unknown parameters, i.e., if

ŷ = f(x̂). (2.2)This model is also known as observation equation model or (together with a stohasti model) as Gauss-Markov model. Model (2.2) is of partiular importane in geodeti adjustment problems sine its parametersan be determined by standard algorithms and without speial omputational requirements. Sine most ofthe VLBI data analysis software pakages are based on model (2.2), it will be of main importane for theinvestigations arried out in hapter 5.For the sake of ompleteness a third model has to be mentioned whih does not ontain any parameters atall:
f(ŷ) = 0. (2.3)Model (2.3) is also known as ondition equation model and has been of importane before fast omputershave been available (see e.g. Koh 1999).Observation Equation ModelUsually model (2.2) has to be linearised by applying Taylor's theorem, i.e.,

fi(x1, . . . , xu) = fi(x10
+ ∆x1, . . . , xu0

+ ∆xu)

= fi(x10
, . . . , xu0

) +
∂fi

∂x1

∣
∣
∣
∣
x0

∆x1 + · · · + ∂fi

∂xu

∣
∣
∣
∣
x0

∆xu +O(∆x2) (2.4)leading to the linear system
y1 = a11∆x1 + a12∆x2 + · · · + a1u∆xu

y2 = a21∆x1 + a22∆x2 + · · · + a2u∆xu. . . . . . . . . . . . . . . . . . .
yn = an1∆x1 + an2∆x2 + · · · + anu∆xu

(2.5)with aij being the partial derivative of the ith observation equation with respet to the jth parameter. Thelinear system (2.5) an be expressed in matrix notation as
y = Ax, (2.6)



2.3. Parameter estimation tehniques 31with the n× u design matrix A and the u× 1-vetor of unknowns x

A =






a11 . . . a1u... ...
an1 . . . anu




 x =






∆x1...
∆xu




 , (2.7)whih onsists of the orretions ∆xi to the apriori values xi0 , i.e.,

x = | ∆x1, . . . , ∆xu |′ . (2.8)Finally, the n× 1-'observation' vetor y (also known as 'observed minus omputed'-vetor) is omputed by
y = | y1 − f1(x10

, . . . , xu0
), . . . , yn − fn(x10

, . . . , xu0
) |′ . (2.9)Stohasti modelsIn model (2.2) the design matrix A and the parameter vetor x are assumed to be deterministi. Thestohasti nature of the remaining omponents of a (general) mathematial model is omprised by thestohasti model (Caspary and Wihmann 1994) whih onsists of a variane-ovariane matrix

Σyy = σ2
0 P−1

yy (2.10)of the observations y with an unknown fator σ2. The fator σ2 is also known as variane of unit weight andan be estimated within the adjustment proess. The inverse of the weight matrix Pyy is ommonly referredto as ofator matrix Qyy (Koh 1999).Considering a stohasti model (i.e., Pyy 6= I) leads to the weighted least-squares approah whih an also beinterpreted geometrially: From a geometrial point of view the inlusion of the weight matrix P generalisesthe standard inner produt from x′ I y (and thus the eulidean norm) to x′ Pyy y and thus de�nes a newmetri for Rn (Caspary and Wihmann 1994, or Ádám 1982). As a result, the assoiated orthogonalprojetions beome oblique and lead to some extended formulations for least-squares estimators (see e.g.Teunissen 2003).Sine in the following investigations only the design of the experiment (i.e., the observation geometry) is ofinterest, no stohasti models will be inluded and thus Pyy = I. However, even in the ase of Pyy 6= Ithe same algorithms and proedures an be used after homogenisation of the design matrix A and of theobservation vetor y (see e.g. Koh 1999) by using the Cholesky fatorisation Pyy = GG′ of Pyy and
Ā = G′A, ȳ = G′y. (2.11)2.3 Parameter estimation tehniques2.3.1 Forward and inverse problemsIn geology or geophysis the problem of determining parameters from a linear model after performing obser-vations is derived by introduing the terms 'forward problem' and 'inverse problem'. A 'forward problem' isde�ned to be a proess of prediting the results of measurements on the basis of some general priniple ormodel and a set of spei� onditions relevant to the problem. On the other hand, 'inverse theory' is a set ofmathematial tehniques for reduing data to obtain useful information about the physial world on the basisof inferenes drawn from observations (Menke 1984). Inverse theory is used to provide information aboutthe unknown parameters of a model, it does not provide the model itself. Thus, the physial model has tobe spei�ed beforehand. Shematially, the terms 'forward problem' and 'inverse problem' an be desribedas follows:



32 2. Parameter Estimation in Linear ModelsForward problem: model parameter −→ model −→ predition of dataInverse problem: data −→ model −→ estimates of model parameters'Inverse theory' is ommonly used in geophysial or geologial literature and forms the basis for some of theterms used below. In this ontext, 'inverse theory' and 'adjustment theory' might be used synonymously.2.3.2 Linear Unbiased Estimators (LUEs and BLUEs)The objetive of inverse theory (and thus of parameter estimation in linear models) is to determine theunknown parameters of a linear model or at least to estimate linear ombinations of those parameters, thatan be estimated (Kshirsagar 1983). The most ommon methods for parameter estimation are eitherbased on probabilisti notions (suh as probability funtions, expetation values, unbiased estimators, et.for the Maximum likelihood (ML) method or the Best Linear Unbiased Estimators (BLUE) approah) or ongeometri notions suh as the weighted least squares estimation priniple as desribed in hapter 1.This setion reviews the neessary basis of Best Linear Unbiased Estimators and shows the relations (andequivalene) of the probabilisti and the geometri approah.2.3.2.1 Properties of EstimatorsInstead of deriving the least-squares priniple and thus the solution of the model (2.2) by using vetorspaes, most authors of standard geodeti literature (see e.g. Koh 1999 or Niemeier 2002) make use ofthe onditions of linearity, unbiasedness and optimality.As desribed in e.g. Teunissen 2003, Meissl 1982, or Koh 1999, the assumption of a linear relationshipbetween observations y and unknown parameters x an also be expressed in terms of the expetation of yvia:
y + ǫ = ax or E(y) = ax. (2.12)Sine the estimator x̂ of the unknown parameters x should be a linear funtion of the observations y, x̂ mustbe of the form:
x̂ = ly L-property (2.13)Another ondition requires x̂ to be an unbiased estimator of x (Strang 2003), i.e.,
E(x̂) = x for every x. U-property (2.14)Finally, the lass of all possible estimators x̂ that satisfy properties (2.13) and (2.14) should be restrited tothose having minimum variane, i.e.,
σ2
x̂ minimal in the lass of LU-estimators. B-property (2.15)



2.3. Parameter estimation tehniques 332.3.2.2 Derivation of EstimatorsIn order to derive best linear unbiased estimators for the model (2.12) onsider the assoiated linear system(ontaining n observations and u unknowns):
Ax = E(y), (2.16)with y being deomposed into the adjusted (or true) observations ŷ and the observation errors ǫ:
E(y) = ŷ + ǫ. (2.17)Assuming that the expetation of the observation errors ǫ equals zero, i.e.,
E(ǫ) = 0 (2.18)implies that
E(y) = ŷ and E(y) = Ax. (2.19)2.3.2.3 Linear Unbiased Estimators (LUEs) of estimable funtionsGeneralisation of the estimation of individual parameters leads to the onept of estimability of a linearfuntion ϕ on the olumn spae R(A) of the design matrix A of a linear system. Sine any vetor in R(A) anbe represented by its oordinates x = (x1, . . . , xu) (full rank assumed) with respet to the bases representedby the olumns of A, the funtion ϕ an be expressed as a linear funtion of the unknown parameters:
ϕ = ϕ′x = ϕ1x1 + ϕ2x2 + · · · + ϕuxu. (2.20)As a speial ase, equation (2.20) ontains the estimation of the individual parameters xi. Thus, any ompo-nent xi of the parameter vetor x may be viewed as a funtion on R(A). Examples for estimable funtionsan be found in Meissl 1982 or Kshirsagar 1983.Furthermore, any omponent ŷi of the adjusted observations ŷ may be viewed as a funtion on R(A), sine
ŷi = ai1x1 + · · · + aiuxu (2.21)and so ϕ is represented by
ϕ′ = (ai1, . . . , aiu), (2.22)i.e., by the i-th row of the design matrix A (Meissl 1982).Sine the parameters x are unknown, the funtional ϕ(x) = ϕ′x is unknown and has to be determined by alinear funtion of the observations y. As derived in e.g. Meissl 1982, a linear unbiased estimate (LUE) ϕ̂for the funtional ϕ is derived by �nding the oe�ients βi of the linear funtion:
ϕ̂ = β1y1 + β2y2 + · · · + βnyn or ϕ̂ = β′ y with β =






β1...
βn




 , (2.23)whih is the 1 × n representation of a linear funtion de�ned on Rn. The expetation of ϕ̂ reads

E(ϕ̂) = E(β′y) = β′E(y) = β′ŷ = β′Ax, (2.24)whih is a linear funtion of the unknown parameters.



34 2. Parameter Estimation in Linear ModelsA de�nition of the estimability of a linear funtion is based on the requirement that a linear fun-tion of the unknown parameters is said to be estimable if there exists at least one linear funtion of theobservations β′y, suh that E(β′y) equals ϕ′x (Kshirsagar 1983), i.e.,
E(β′y) = ϕ′x or β′Ax = ϕ′x, (2.25)whih is equivalent to
β′A = ϕ′. (2.26)Equation (2.26) shows that a neessary and su�ient ondition for a linear funtion ϕ′x for the model (2.12)to be estimable is that ϕ′ is a linear ombination of the row vetors of A. Thus, only if the row vetors of Agenerate a omplete basis for the row spae of A every parameter an be estimated separately. Otherwiseonly linear ombinations of parameters an be estimated. In other words: The row spae of A indiates allpossible estimable parameters or linear ombinations of estimable parameters (!).2.3.2.4 Best Linear Unbiased Estimators (BLUEs) of estimable funtionsThe de�nition of estimability only guarantees the existene of at least one unbiased estimate of an estimablefuntion. Neither does it provide a method of obtaining an expliit formula for an estimator nor does it givea 'best' estimate (as stated in ondition (2.15)) (Searle 1982).Aording to Kshirsagar 1983 the de�nition of a best linear unbiased estimator (BLUE) reads:De�nition of a BLUEA linear funtion b′y of the observations y in the model Ax = y + ǫ is said to be the BestLinear Unbiased Estimate (BLUE) of a funtion ϕ′x, if it is unbiased for ϕ′x and its variane is thesmallest among all linear estimates of ϕ′x.2.3.3 Gauss-Markov modelA method of obtaining the best linear unbiased estimate of any estimable funtion ϕ′x of the unknownparameters x is provided by the following fundamental de�nition (Koh 1999):Gauss-Markov ModelLet A be an n × u matrix of given oe�ients, x a u × 1 vetor of unknown, �xed parame-ters, y an n× 1 random vetor of observations and Σyy = σ2P−1

yy the n × n ovariane matrix of y,where the weight matrix Pyy of the observations y is known and the positive fator σ2 is unknown.Let A have full olumn rank, i.e., rank A = u, and let the weight matrix Pyy be positive de�nite.Then
Ax = E(y) with Σyy = σ2Qyy = σ2P−1

yy (2.27)is said to be a Gauss-Markov model with full rank. E(y) denotes the expetation of y.Equation (2.27) an also be formulated in terms of the real observations. Sine y almost ertainlylies outside the olumn spae of A equation (2.27) an also be formulated as a onsistent system by addinga n× 1 random vetor e of errors. Equation (2.27) then reads
Ax = y + e with E(e) = 0 and Σee = Σyy = σ2P−1

yy . (2.28)



2.4. Geometri aspets of parameter estimation 35Solution of the Gauss-Markov modelThe best linear unbiased estimator x̂ of the unknown parameters x in model (2.27) and its ovarianematrix Σx̂x̂ is given by (see Koh 1999)
x̂ = (A′PA)−1A′Py and Σx̂x̂ = σ2(A′PA)−1 (2.29)and thus agrees with the weighted least squares solution of a linear system as derived in hapter 1.A proof an be found in any literature about linear models, suh as Koh 1999, Kshirsagar 1983 orToutenburg 2003. An algebrai proof an be found in Meyer 2000. General derivations of the varianesof best estimators an be found in Meissl 1982.2.4 Geometri aspets of parameter estimationAs explained in hapter 1, the least-squares solution of a linear system an be interpreted geometrially. Theolumn spae R(A) of the design matrix A is de�ned by all possible linear ombinations of the olumns of A.For a general n×u-matrix A of rank r the olumn spae is an r-dimensional subspae of Rn. Figure 2.2 givesan example for a 3 × 2-system of full rank. As mentioned above, only the unweighted ase (i.e., Pyy = I)will be onsidered. For weighted least-squares estimation the projetions will beome oblique and thus moreomplex (interpretations for this ase an be found in e.g. Teunissen 2003).

a1

e

Ax

R(A)

a2
y

0

Figure 2.2: Least-squares geometry (example for a 3 × 2-linear system)From the geometry of �gure 2.2 it seems intuitively appealing to estimate x as x̂, suh that Ax̂ is as lose aspossible to the observation vetor y. ŷ = Ax̂ are the 'adjusted observations' and x̂ denotes the oordinatesof ŷ with respet to the basis formed by the olumns of A. ŷ is omputed by orthogonally projeting theobservations y onto the olumn spae of A. On the other hand, projeting y onto R(A)⊥, i.e., the orthogonalomplement of the olumn spae R(A), yields the residual vetor ê (see �g. 2.3 on the next page). Thus, êis orthogonal to the 'plane' spanned by the olumns of A, i.e.,
A′(y − Ax̂) = 0, (2.30)whih is equivalent to the well-known normal equations
A′Ax̂ = A′y (2.31)and thus
x̂ = (A′A)−1A′y, (2.32)



36 2. Parameter Estimation in Linear Modelswhih agrees with equation (2.29) (for P = I).Using the projetion operator onto the olumn spae R(A):
H = A(A′A)−1A′ (2.33)and the projetion operator onto the orthogonal omplement R(A)⊥ of R(A)

H⊥ = I − A(A′A)−1A′, (2.34)the vetor ŷ of adjusted observations and the residual vetor ê an also be omputed via
ŷ = Hy = Ax̂ and ê = −(I − H)y = −H⊥y (2.35)to deompose the observation vetor y into the orthogonal omplements
y = ŷ + ê = Hy + (I − H)y. (2.36)Figure 2.3 gives an illustration of the deomposition of y into orthogonal omplements (Ádám 1982).

y R(A)

R(A)

T

e
a1

au

y

Figure 2.3: Deomposition of the observation vetor y (in Rn) into orthogonal omplements2.4.1 Data and model spaeOrthogonal deompositions of Ru and RnThe onepts derived above an be further generalised by using the four fundamental vetor spaes of amatrix to provide a omprehensive geometri explanation of parameter estimation in linear models and toshow appliations of the singular value deomposition for 'regression diagnostis'. The following derivationsare based on Snieder and Trampert 2000.The geometri aspets of a general parameter estimation problem an be visualised as shown in �gure 2.4 onthe faing page whih inludes both the deomposition of the observation vetor y into orthogonal omple-ments (in Rn) and the orthogonal deomposition of the parameter vetor x (in Ru). Again, the observationvetor y is deomposed into a omponent ŷ belonging to the olumn spae R(A) of the design matrix A(denoted by Ur in �g. 2.4) and a omponent ê = y−Ax whih belongs to the orthogonal omplement R(A)⊥



2.4. Geometri aspets of parameter estimation 37of the olumn spae of the design matrix (denoted by U0). In addition, the parameter vetor x is deomposedinto a omponent xr belonging to a subspae of Ru (denoted by Vr) and a omponent x0 = x−xr belongingto the orthogonal omplement of Vr (denoted as V0).As shown in �g. 2.4 the design matrix A serves as a (linear) mapping from Ru to Rn; its pseudo-inverse A+(see setion 1.6.2.3 on page 25) thus maps from Rn to Ru.
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Figure 2.4: Geometrial interpretation of parameter estimation in linear models (left: Data spae and datanull spae, right: model spae and model null spae, the design matrix ats as a mapping between Ru and Rn)(Snieder and Trampert 2000)Eigenvalue deomposition of square linear systems (EVD)Figure 2.4 might be best understood by �rst onsidering the eigenvalues λi and eigenvetors vi of a symmetri
u×u linear system Ax = y of full rank. Assuming that the eigenvetors form an orthonormal set, a vetor xan be projeted on these eigenvetors and an thus be expressed as

x =

u∑

i=1

vi (v′i ·x) . (2.37)The produt Ax an now be written as:
Ax =

u∑

i=1

λivi (v′i ·x) = y. (2.38)After expressing the vetor y with respet to the same eigenvetor basis as
y =

u∑

i=1

vi (v′i ·y) , (2.39)equation (2.38) yields the following expansion for the solution vetor x:
x =

u∑

i=1

1

λi

vi (v′i ·y) . (2.40)Equation (2.40) shows that small eigenvalues (e.g. aused by a bad ondition or even rank de�ienies of thelinear system) lead to unreasonable ontributions to the solution and (depending on the urrent appliation)should be omitted (Shwarz 1997).



38 2. Parameter Estimation in Linear ModelsSingular value deomposition of retangular systemsFor a retangular linear system of rank r the dimensions of the observation vetor y (in Rn) and the solutionvetor x (in Ru) di�er. Thus, for the derivation of retangular bases for Rn and Ru the singular valuedeomposition (f. setion 1.6.1.2 on page 23)
A = U ·S ·V′ (2.41)of the design matrix A has to be used. Instead of using one ommon basis, a new basis for Rn (onsistingof n left-singular vetors ui) and a new basis for Ru (onsisting of u right-singular vetors vi) is used. Therelation between the two bases reads
Avi = σiui, (2.42)with σi being the u singular values of A. The produt Ax an now be written as:
Ax =

r∑

i=1

σiui (v′i ·x) = y, (2.43)with r being the rank of the linear system and thus being the number of non-zero singular values σi.As desribed in hapter 1 the left singular vetors ui and the right singular vetors vi an be arranged toform the following matries U, S and V. The matrix U

U =











... ... ... ... ...
u1 u2 . . . ur ur+1 . . . un... ... ... ... ...
︸ ︷︷ ︸

Ur

︸ ︷︷ ︸

U0











, (2.44)ontains the left singular vetors ui orresponding to the order of the singular values σi, whih are (usually)arranged in desending order, i.e., σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0, in a matrix S:
S =















σ1 0 . . . 0 0 . . . 0
0 σ2 . . . 0 0 . . . 0... ... . . . ... ... . . . ...
0 0 . . . σr 0 . . . 0
0 0 . . . 0 0 . . . 0... ... . . . ... ... . . . ...
0 0 . . . 0 0 . . . 0















. (2.45)
The right singular vetors vi form the olumns of the matrix V:

V =











... ... ... ... ...
v1 v2 . . . vr vr+1 . . . vu... ... ... ... ...
︸ ︷︷ ︸

Vr

︸ ︷︷ ︸

V0











. (2.46)Equation (2.43) shows that the singular vetors ui and vi for i > r do not ontribute when A ats on avetor. Thus, the matrix A an be onstruted from Ur, Sr and Vr alone. Aording to (Snieder andTrampert 2000) 'U0 and V0 are dark spots of the spae not illuminated by the operator A'.The subspae formed by the left singular vetors ui of Ur orresponds to the olumn spae R(A) of A (asintrodued in hapter 1) and is alled data spae. The subspae formed by the right singular vetors vi of Vrorresponds to the row spae R(A′) of A and is alled model spae.



2.4. Geometri aspets of parameter estimation 39Linear Algebra Parameter Estimationin Linear Models(Chapter 1) (Chapter 2)
Ur = {u1, . . . ,ur} basis for olumn spae R(A) basis for data spae
U0 = {ur+1, . . . ,un} basis for orthogonal omplement R(A)⊥ basis for data-null-spaeof olumn spae R(A)

Vr = {v1, . . . ,vr} basis for row spae R(A′) basis for model spae
V0 = {vr+1, . . . ,vu} basis for orthogonal omplement R(A′)⊥ basis for model-null-spaeof row spae R(A′) (= null spae of A)Table 2.1: Relations between terms used in Linear Algebra (hapter 1) and Parameter Estimation (hapter 2)Sine the adjusted observations Ax are orthogonal to U0, i.e., U′0Ax = 0, any omponent of the observationvetor y that lies in U0 annot be explained by the (urrent) funtional model. These omponents thusorrespond to errors in the data or to errors in the funtional model expressed by the operator A. Therefore,

U0 is alled the data-null-spae of A.On the other hand, limiting the summation in equation (2.43) to non-zero singular values restrits theestimated parameter vetor x to the subspae Vr (model spae). In other words: As shown in setion 2.3.2.3on page 33, the row spae ontains estimable (funtions of the) unknown parameters and so the modelparameters do not ontain any omponents of the subspae V0 (whih is also alled model-null-spae).This is a geometrial visualisation of the general solution of a linear system, i.e., x is deomposed into thepartiular solution xr of the inhomogeneous system (and thus a omponent of Vr) and a solution x− xr ofthe orresponding homogeneous system whih is a omponent of the model null-spae V0. Sine V0 is thenull spae of A and so AV0 = 0, any parameter of the model that lies within V0 does not a�et the data.Aording to Snieder and Trampert 2000 'the data have no bearing on the omponents of the modelvetor that lie in V0'.The data spae and the data-null-spae thus span Rn, while the model spae and the model-null-spaespan Ru. Table 2.1 shows the equivalene of the algebrai terms used in hapter 1 with the terms used forparameter estimation in linear models within this hapter.Restriting the solution vetor to Vr and expanding x in the basis formed by Vr and expanding yin the basis formed by Ur yields the general least-squares solution of an over-determined linear system as
x̂ =

r∑

i=1

1

σi

vi (u′i ·y) (2.47)or in matrix notation
x̂ = VrS

−1
r U′r

︸ ︷︷ ︸

A+

y. (2.48)
VrS

−1
r U′r denotes the pseudo-inverse of A (Snieder and Trampert 2000).2.4.2 Resolution in parameter estimationThe geometrial onept of projetions onto the model spae and the data spae an be used to deriveindiators of how preisely the model parameters an be determined from the data and how well neighbouringdata an be independently predited, or resolved (Sales et al. 2001).



40 2. Parameter Estimation in Linear ModelsModel resolution matrixThe model resolution matrix (MRM) indiates to what extent the model parameters an be independentlyretrieved from the estimation proess (Menke 1984). From x̂ = A+y, Ax = y and the singular valuedeomposition of A follows
x̂ = A+y

= A+Ax

= VrS
−1
r U′rUrSrV

′
rx

= VrV
′
r

︸ ︷︷ ︸

MRM

x, (2.49)with VrV
′
r being a u × u projetion matrix onto the model spae (Sales et al. 2001). Only in the aseof full rank the model resolution matrix equals the identity matrix and every parameter an be determinedindependently. Otherwise some parameters an only be estimated as linear ombinations of remaining pa-rameters. The more non-zero terms appear in the rows of the model resolution matrix, the more broadlyaveraged the inferenes of the model parameters are.The advantage of the model resolution matrix is that it an be omputed even in the ase of exatly dependentparameters (i.e., in the rank de�ient ase) and thus, if the omputation of the orrelation matrix fails (seee.g. Koh 1999). In statistial terms, the model resolution matrix is used for the detetion of so-alledmultiollinearity, i.e., linear dependenies of the olumns of the design matrix A and thus for the detetionof orrelations between the estimated parameters (see e.g. Belsley et al. 1980, or Toutenburg 2003).Data resolution matrixIn a similar way a data resolution matrix (DRM) H an be omputed (see eq. 2.33). This matrix indiateshow well the adjusted (or predited) observations math the data or how well the data is predited by theestimated model parameters (Menke 1984).The adjusted observations an be derived by

ŷ = Ax̂

= AA+y

= UrSrV
′
rVrS

−1
r U′ry

= UrU
′
r

︸ ︷︷ ︸

DRM

y, (2.50)with
H = UrU

′
r (2.51)being an n×n projetion operator onto the data spae of A. Other de�nitions are solely based on the designmatrix A (see also eq. 2.33):

H = A(A′A)−1A′, (2.52)or (if the metri of the data spae is also inluded by onsidering Σ−1
yy):

H = A(A′Σ−1
yyA)−1A′Σ−1

yy . (2.53)The general de�nition of H (eq. 2.53, see also e.g. Förstner 1987) thus also takes into aount the stohastimodel of the observations by inluding the ovariane matrix Σyy of the observations y and thus aountsfor the metri of the vetor spaes involved. Sine the following investigations do not ontain any metri



2.4. Geometri aspets of parameter estimation 41aspets, Σyy equals the identity matrix (see page 31). As shown by e.g. Toutenburg 2003, this yields asymmetri data resolution matrix.Sine equation (2.52) ontains the omputation and inversion of normal equations A′A, it bears some nu-merial problems. Using the singular value deomposition of A, numerially more stable derivations of thedata resolution matrix are given below.The Data Resolution Matrix H is also known as 'Hat-Matrix' or 'predition matrix' and serves as a regressiondiagnostis tool in many sienes suh as statistis (Toutenburg 2003, Cook and Weisberg 1982) orgeophysis (Parker 1994). Aording to (Hoaglin andWelsh 1978) 'a look at the hat matrix an revealsensitive points in the design, i.e., points at whih the value of yi has a large impat on the �t' and is thusused to identify 'high-leverage points'. The general data resolution matrix (see eq. 2.53) depends both onthe geometry (i.e., the design) of the experiment and the ovariane matrix of the observations. It does notdepend on the individual observations. Sine the data resolution matrix is a projetion matrix it has thefollowing properties (Förstner 1987):
• symmetry (only if Σyy = I),
• idempotene (i.e., H2 = H),
• eigenvalues are either 1 or 0 and
• the trae of H equals the rank of H, i.e., tr(H) = rk(H) = u.As shown in Toutenburg 2003 or Cook and Weisberg 1982, the range of the elements of the dataresolution matrix (for Σyy = I) is:

0 ≤ hii ≤ 1 and − 0.5 ≤ hij ≤ 0.5. (2.54)Based on the representation
ŷi = hiiyi +

n∑

j=1

hijyj (2.55)some authors (e.g. Cook and Weisberg 1982) show that hii is the amount of leverage or in�uene exertedon ŷi by yi. A large main diagonal element with hii ≈ 1 thus indiates that ŷi is almost ompletely determinedby yi alone. Thus, observations yi with large values hii an exert an undue e�et on the least squares results(Dodge and Jureková 2000). A small element (hii ≈ 0) also leads to a small impat of the remainingobservations, i.e., if a diagonal element hii equals zero the orresponding row of H is 0, whih indiates thatthe ith observation does not a�et the �t (for a proof, see Toutenburg 2003, or Dodge and Jureková2000). For a linear regression (with xi indiating the x-omponent of an observation yi), a main diagonalelement hii an also be omputed by
hii =

1

n
+

(xi − x̄)2
∑n

t=1
(xt − x̄)2

, (2.56)whih shows that hii mostly depends on the 'distane' |xi − x̄| of an observation xi to the entre of mass x̄of all observations. Therefore, some authors all the data resolution matrix a 'distane measure matrix'(Belsley et al. 1980).Another interpretation of the data resolution matrix is based on the fat that the ovariane matrix Σŷŷ ofthe adjusted observations ŷ equals Σŷŷ = σ2 ·Qŷŷ = σ2 ·H = σ2 ·AΣx̂x̂A
′. The ofator matrix Qŷŷ of theadjusted observations will be of relevane in the next setion. In addition, the ovariane matrix Σvv of theresiduals v equals Σvv = σ2 · (I−H) (Toutenburg 2003) and thus ontrols the variations in the residuals(Cook and Weisberg 1982). Due to this fat, the data resolution matrix (or the hat matrix) is extensivelyused for residual analyses in statistial appliations (Saville and Wood 1997, Toutenburg 2003).



42 2. Parameter Estimation in Linear Models2.4.3 Impat fators and impat o-fatorsSine the elements of the data resolution matrix indiate how muh weight eah observation has on theadjusted observations, the main-diagonal elements of H are alled impat fators hii (or hi), i.e.,impat fators = h = diag(H), (2.57)while the o�-diagonal elements of H are referred to as impat o-fators hij .A lose relation between impat fators and partial redundanies exists, sine (for P = I)
Σv̂v̂ = I − H, (2.58)whih is used for the omputation of redundany numbers ri (Leik 1990, Akermann 1981):
ri = 1 − hii = (I − H)ii. (2.59)The redundany numbers ri indiate the perentage of how muh a gross error is shown in the residuals of theleast squares �t (Förstner 1987). High leverage points (or observations with a small partial redundany) arethus weakly ontrolled and ompliate the detetion of blunders (Niemeier 2002). As in geodeti networks,weakly ontrolled observations (or observations with a large impat fator) signi�antly a�et the auray ofthe estimated parameters but degrade the reliability of the entire adjustment. Reent examples for geodetiappliations suh as redundany analysis in plane networks an be found in e.g. Even-Tzur 2006.Sine the average size of a diagonal element hii of the data resolution matrix is u/n, some authors (seee.g. Hoaglin and Welsh 1978) reommend to mark observations as 'high-leverage points' if their impatfators exeed twie the average size, i.e., if hii > 2 · u

n
. For the generation of experiments whih are insensitiveto outliers, Cook and Weisberg 1982 reommend experiment designs yielding small impat fators (i.e.,high redundanies) of approximately the same size.Sine the data resolution matrix ontains information given by the design matrix, leverage re�ets only thepotential e�et of an observation on the regression. The determination of the atual e�et of an observationon the regression results must also take the observations into aount. Thus, many outlier detetion methodsare based on the residuals and the impat fators (or redundanies) of the observations (Eeg 1986 orToutenburg 2003).Inrease of unertaintyFörstner 1992 shows the relationship of impat fators and the maximum e�et of the rejetion of anobservation yi onto the result x̂. Based on the projetion operator onto the olumn spae of the designmatrix A (i.e., the data resolution matrix H) and based on the appliation of sequential least-squares,sensitivity analysis for outliers an be performed. The empirial sensitivity of the results with respet to anoutlier in yi mainly depends on the in�uene fator

µi =

√

hii

1 − hii

, (2.60)whih is thus only a funtion of the impat fator hii.As also shown in Förstner 1992 the in�uene fator µi also measures the relative inrease of unertaintyif the ith observation is omitted from the estimation proess. The inrease of unertainty an be determinedboth for a group of observations and for the ase where only a subset of parameters is analysed.



2.4. Geometri aspets of parameter estimation 432.4.4 Geometrial interpretations of impat fators and impat o-fatorsA geometrial interpretation and thus a graphial representation of impat fators and impat o-fators willbe of importane in the next hapter and an be obtained by analysing the expression
hij = e′i H ej, (2.61)whih extrats the element hij of the ith row and the jth olumn of the data resolution matrix using vetors eiand ej of the natural basis of Rn. In general, impat o-fators hij (and as a speial ase impat fators hii)are obtained by the following steps:1. At �rst, the projetion Hej has to be performed. Sine the length of a projeted vetor y onto avetor a equals ‖y‖ cosϕ1 (see �gure 2.5) and sine in this ase y = ej , the length of the projetionsimpli�es to cosϕ1.

ϕ1

ϕ1
y   cos

y

aFigure 2.5: Projetion of vetors2. In a seond step, the projeted vetor (of length cosϕ1) resulting from step 1 is projeted onto ei(whih, in the ase of impat fators hii, is a bak-projetion onto the same natural basis vetor usedin step 1). Due to the de�nition of the inner (or salar) produt, the length of the projetion of Hejonto ei an be expressed by using the osine of the angle ϕ2 between the projeted vetor from step 1(whih is ontained in the olumn spae of A) and ei. The length of the vetor resulting from thisprojetion is thus cosϕ1 · cosϕ2.This leads to the general interpretation of impat o-fators hij as the produt of the osines of the angles ϕiand ϕj between the ith and jth vetor of the natural basis and their respetive projetions onto the olumnspae of A, i.e.,
hij = cosϕi · cosϕj . (2.62)As a speial ase, eq. (2.62) ontains an interpretation for the impat fators hii as
hii = cos2ϕi. (2.63)Due to the lose relationship of projetions and the osine of the angle ϕ between the two vetors involved, theimpat fators hii are thus proportional to cos2ϕ. Sine the angle between a spatial vetor and its projetionis always smaller than 90o, an almost linear desending relation between the angle and the orrespondingimpat fator exists (see �gure 2.6).For a 2× 1-design matrix, �gure 2.7 shows that hii equals the squared osine of the angle ϕi between the ei-vetor and its projetion H ei onto the olumn spae of A. Furthermore, �gure 2.7 shows a visualisation ofimpat o-fators hij and the lose relation of impat fators hii and redundany numbers ri.In a similar way, �gure 2.8 gives a visualisation of impat fators and impat o-fators of 3 × 2-systems oflinear equations. The �rst ase ours when three equally spaed observations are used for the omputationof a regression line. In the seond ase, the third observation depits a high-leverage observation due to its
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Angle [deg]Figure 2.6: Relation of the angle between the ith vetor of the natural basis and its projetion and theimportane fator of the ith observationlarge distane from the remaining two observations (i.e., x = 7). This an also be reognized (in �gure 2.8)by the small angle between e3 and He3 and thus the length of e′3He3 = 0.99 ≈ 1.A similar derivation for the interpretation of redundany numbers is given by Eeg 1986. Geometrially therespetive angles in equations (2.63) and (2.62) have to be replaed by its 90o-omplements sine for thederivation of redundany numbers the angles between the unit vetors of the natural basis and its projetionsonto the orthogonal omplement of the olumn spae of A have to be used. Therefore, the data resolutionmatrix H in equation (2.61) has to be replaed by its omplementary operator I − H.Impat o-fators as similarity measuresIn the next hapter, o-fators hij will be used for the detetion of groups of observations. Therefore, it isneessary to emphasize that only the relation of the (omplementary) angles ϕ1, . . . , ϕn is of importane forthe size of hij . As shown in �gure 2.7 on the next page, for the two-dimensional ase, both angles ϕ1 and ϕ2add to 90o. In general:
• idential angles ϕ1, . . . , ϕn lead to impat o-fators of 0.5 (ase 1). As shown in hapter 2.4.2 onpage 39 and as visualised in �gure 2.7 (as projetions) the absolute values of hij an never exeed 0.5.
• large di�erenes in ϕ1, . . . , ϕn (e.g. one of them being small and the other one automatially beinglarge) yield small impat o-fators hij .Sine the data resolution matrix orresponds to the (standardised) ofator matrix Qŷŷ of the adjusted ob-servations, the impat o-fators (or the o�-diagonal elements of Qŷŷ) show orrelations of the observations.In terms of the 'observation geometry' (suh as e.g. x-values of observations when determining a regressionline or the orientation of both the baseline and the radio soure two VLBI-telesopes are pointing at simul-taneously), small impat o-fators hij indiate a signi�antly distint information ontent of the respetiveobservations. On the other hand, large impat o-fators hij (i.e., ‖hij‖ ≈ 0.5) show that the respetiveobservations have been performed under similar 'geometri' onditions.
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473. Cluster Analysis3.1 IntrodutionIn order to detet groups of (VLBI-)observations the impat fators and impat o-fators as derived in theprevious hapter an be used. The objetive of this hapter is to apply objetive grouping methods for anautomati detetion of jointly in�uential groups of observations. Sine the o�-diagonal elements of the dataresolution matrix an be interpreted as similarity measures, statistial methods for grouping similar objetsan also be used in adjustment theory. A well-known method for the identi�ation of groups of similar objets(or of observations with a similar information ontent) is the luster analysis-approah as desribed in e.g.Hoaglin and Welsh 1978, or Gray and Ling 1984. These methods have been developed for statistialanalyses sine the 1980ies (see e.g. Belsley et al. 1980, or Romesburg 2004) or pattern reognition (seee.g. Duda et al. 2000).In the following hapter the priniples of luster analysis methods are explained and interpretation guidelinesfor luster analysis results are given. These methods will be applied to plane and spatial interferometers inhapter 5.3.2 Cluster AnalysisOne of the most ommon approahes for estimating similarities (or dissimilarities) between objets is given byluster analysis methods. Based on measurable attributes, objets (suh as persons, animals, piees of land orpatterns in digital photographs) an be objetively lassi�ed in groups (Romesburg 2004). However, lusteranalysis an only reveal andidates for in�uential subsets (Gray and Ling 1984). Detailed desriptions andomputational aspets an be found in e.g. Romesburg 2004, Duda et al. 2000 or Belsley et al. 1980.Here, only pratial aspets are given. The examples given below are taken from Romesburg 2004.Pratial luster analysisIn general, luster analysis onsists of the six steps listed in table 3.1. Some of these steps, however, annotbe transferred diretly or are of no relevane for regression diagnostis.In general luster analysis the �rst two steps onsist of the generation and an optional standardisation of adata matrix. The data matrix onsists of a olletion of attributes of objets. Figure 3.1 shows an example of�ve objets whose two attributes are displayed on the x- and y-axis. In a seond step so-alled resemblaneGeneral Cluster Analysis Cluster Analysis for Regression Diagnostis1. Obtaining the data matrix Setting up of design matrix2. Standardizing of the data matrix (optional) -3. Computation of resemblane matrix Computation of data resolution matrix4. Exeute the lustering method Exeute the lustering method5. Rearrange the data and resemblane matries -6. Compute the opheneti orrelation matrix -Table 3.1: Terminology of general luster analysis steps and for luster analysis as used for regression diag-nostis



48 3. Cluster Analysisoe�ients are omputed to measure the degree of similarity between eah pair of objets. The resemblaneoe�ients are always either dissimilarity oe�ients or similarity oe�ients:
• The smaller the dissimilarity oe�ient, the more similar two objets are. The larger this oe�ient, themore distint two objets are. Dissimilarity oe�ients are also known as Eulidean distane oe�ientsand an be visualised geometrially (see below).
• On the other hand, large similarity oe�ients indiate that two objets are very similar. A graphialrepresentation is di�ult.In order to introdue the basi onepts of luster analysis methods, most authors use the graphial represen-tation of dissimilarity oe�ients. The onept, however, an also be used to understand the use of similarityoe�ients (as used in the investigations below). As shown in Romesburg 2004, 'the di�erene between asimilarity oe�ient and a dissimilarity oe�ient is merely a di�erene in whih diretion the sale runs'.Resemblane oe�ients an be obtained in di�erent ways (see e.g. Duda et al. 2000). In the most simplease they an be interpreted as the eulidean 'distane' between eah pair of objets (displayed as dashedlines in �gure 3.1). Thus, small oe�ients indiate a high similarity between two objets. Resemblaneoe�ients are arranged into a symmetri matrix of dimension number of objects× number of objects.
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Figure 3.1: Cluster Analysis example: Graphial representation of two attributes of �ve objetsGeometrially, luster analysis onsists of a step-by-step forming of sets (lusters) of one or more objets ofsimilar properties. At �rst, eah objet is regarded as an individual luster. After the last step all objetsare merged into one ommon luster. Figure 3.2 on the next page gives an impression of the four lusteringsteps for the example given in �gure 3.1.From a omputational point of view, luster analysis onsists of an iterative omputation of 'distanes'between eah newly formed luster. The 'distane' to a luster with more than one objet is omputed by the(unweighted) average 'distane' to eah of its objets. This lustering method is also known as 'unweightedpair-group method using arithmeti averages (UPGMA)' (Romesburg 2004). Other methods are desribedin Duda et al. 2000 or Ripley 1996. The basi steps of a general luster analysis algorithm are shown in�gure 3.3.
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Figure 3.2: Cluster Analysis example: Clustering steps
Algorithm: Basi agglomerative hierarhial lustering algorithm1. Compute similarity matrix, if neessary.2. repeat3. Merge the losest two lusters.4. Update the similarity matrix to re�et the similarity between the new lusterand the previous lusters.5. until Only one luster remains.Figure 3.3: Basi luster analysis algorithmDendrogramsThe results of a lustering proess an be used to generate a map of sorts, alled tree or dendrogram, toshow the degrees of similarity between all pairs of objets. The x-axis shows the objets; the y-axis showsthe similarity oe�ient at whih the previous lusters had been merged into a new luster. The dendrogramfor the example an be found in �gure 3.4.In order to atually lassify all objets into lusters the dendrogram needs to be subdivided by 'utting' ata reasonable similarity level. This step depits the only subjetive (and thus analyst-dependent) part of aluster analysis proedure. A reasonable position for a 'tree ut' is given by a large 'gap' in the dendrogramindiating the lustering of two previously signi�antly distint lusters. Thus, instead of a software baseddeision a visual inspetion of the dendrogram is highly reommended.
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Figure 3.4: Cluster Analysis example: DendrogramIn�uential subsets and ounter-ating observationsAs explained in Hoaglin and Welsh 1978 or Gray and Ling 1984 the generalisation of high-leverageobservations is a group of high-leverage observations or in�uential subsets of observations. Aording toGrayand Ling 1984 'interest is foused on the e�ets of jointly in�uential ases (i.e. observations), partiularlythose subsets whose individual ases interat to produe a high in�uene that is not aounted for by themain e�ets of their single ases (observations)'. Figure 3.5 on the next page gives a graphial visualisationof jointly in�uential subsets for a regression line.In this thesis, a further distintion of jointly in�uential subsets is used:
• Jointly in�uential (or reinforing) observations are those observations whih a�et the regression resultsin a similar way. Numerially these observations are indiated by large positive impat o-fators hij .Geometrially, these observations are performed under similar onditions. For a regression line (see�gure 3.5), in�uential observations have similar x values, whih are signi�antly distint from theenter of mass of the remaining observations.
• Counter-ating observations are those observations whih have been performed under similar but op-posite onditions. Numerially, this is shown by large negative impat o-fators hij . Geometrially,(for the regression line in �gure 3.5) both observations are loated on opposite sites, but with similardistanes to the enter of mass of the remaining observations.Pratial examples for both types of observations will be given in hapter 5.
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Figure 3.5: Con�gurations of jointly in�uential and ounter-ating observations. Case A: large positive hij ,ase B: large negative hij , ase C: submatrix of H orresponding to {i, j, k, l,m} ontains several largepositive and negative elements (Gray and Ling 1984).3.3 Cluster analysis for parameter estimation problemsDue to the fat that the impat fators and impat o-fators of the observations an be interpreted geomet-rially using osines of the angles between vetors of the natural basis and their projetions onto the olumnspae of the design matrix A they an be regarded as similarity measures. In ontrast to most statistialluster analysis appliations (whih perform lustering steps by grouping observations or objets with small-est distane, i.e., using dissimilarity oe�ients), here observations with large similarity oe�ients (impato-fators) are lustered.Hene, the main idea of using luster analysis for parameter estimation problems is to replae the resemblanematrix by the data resolution matrix and to interpret o�-diagonal elements of the data resolution matrix(impat o-fators) as similarity oe�ients (Gray and Ling 1984) (see table 3.1). Based on this approah,andidates for in�uential subsets of observations an be found.Parameter redutionIn order to determine the impat of eah luster of observations on the estimated parameters the oneptof projetions onto subspaes of the data spae is used (see e.g. Teunissen 2003). This approah is alsoknown as redution of parameters by estimating only a subset of the original parameters without hangingthe original funtional model. The original linear system Ax = y is partitioned into
[A1

... A2]

[
x1

x2

]

=

[
y1

y2

]

, (3.1)with x1 being a u1-vetor ontaining parameters of interest and x2 being the u2-vetor desribing theparameters to be redued. As shown in e.g. Teunissen 2003 the design matrix Ā1 of the redued systeman be omputed using the orthogonal projetor
P⊥A2

= I − A2(A
′
2A2)

−1A′2 (3.2)and
Ā1 = P⊥A2

A1. (3.3)As for the original system Ax = y, a data resolution matrix H̄ for the redued system an be derived by
H̄ = Ā1(Ā′1Ā1)

−1Ā′1. (3.4)



52 3. Cluster AnalysisIn ontrast to the data resolution matrix H for the original system, the data resolution matrix H̄ for theredued system indiates the impat of the observations only on the remaining parameters x1.Due to the omputation and inversion of normal equation matries in equations (3.2) and (3.4) the derivationof H̄ should rather be based on the singular value deomposition of the design matrix of the partitionedsystem (3.1): With the singular value deomposition of A2 = U2S2V2 the projetor P⊥A2
an be omputedvia

P⊥A2
= I− U2u2

U′2u2
(3.5)with U2u2

indiating the �rst u2 olumns of U2. Sine H̄ is the projetor onto the subspae formed by theolumns of Ā1 = P⊥A2
A1 it an also be derived by using the singular value deomposition of Ā1 = Ū1S̄1V̄1:

H̄ = Ū1u1
Ū

′

1u1
(3.6)with Ū1u1

onsisting of the �rst u1 olumns of Ū1.Determination of luster impat on parameter subsetsFor the determination of the impat of a luster of observations on single (or groups of) parameters, equa-tion (3.3) is used to projet onto one-dimensional (or multi-dimensional) subspaes of the data spae (bye�etively reduing u − v parameters and leaving v parameters of the original funtional model). Althoughin the following investigations v = 1, this onept an also be used for groups of parameters (i.e., for
2 ≤ v ≤ n− 1).After performing the luster analysis of the data resolution matrix H of the original system and after thedetermination of observation lusters by utting the dendrogram at a reasonable height, the original systemis gradually redued (i.e., v = 1). Using the data resolution matrix H̄ of the redued system, for eah lusterthe impat fators h̄ii for those observations whih belong to the urrent luster are averaged by summingup the impat fators h̄ii luster-wise and dividing the sum by the number of elements (observations) inthe respetive luster. This yields an 'average luster impat fator h̄Cluster i of luster i on the parameter(group) x1' whih is independent of the size (number of members) of the urrent luster. Figure 3.6 providesa graphial visualisation of these steps.3.4 Interpretation of Cluster Analysis resultsThe size (i.e., the number of observations in a luster) and the 'average luster impat fator h̄Cluster iof luster i on the parameter (group) x1' an be used to interpret the results of a luster analysis and toformulate reommendations whether the luster size should be enlarged or redued. As shown in e.g.Hoaglinand Welsh 1978 the average impat of a single observation is u/n. Similarly, a group of observations (or aluster) an be onsidered as of 'medium' (or average) importane if its average luster impat fator h̄Cluster iis lose to u/n (e.g. ± 50% of h̄). In the same way, further lassi�ations an be performed by omparingthe average luster impat fator h̄Cluster i with u/n.The luster size an be expressed as perentage of the number of observations nCluster in the urrent lusterwith respet to the total number of observations n. Table 3.2 shows an interpretation sheme whih ontainsthe luster size as the �rst riterion (upper row) and the impat fator relative to the mean impat fator (i.e.,
u/n) as the seond riterion (left olumn).
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Table 3.2: Rules for interpretation of Cluster Analysis results: ++ indiates that luster size must be sig-ni�antly enlarged (i.e., that observations should be ontrolled by appropriate (independent) observations),
−−− and −− denote signi�ant derease, + and − indiate only minor hanges and for O the luster sizeis appropriate.



54 3. Cluster AnalysisAs shown in the �rst row of table 3.2 the size of a very important luster an be slightly redued if it ontainsa large number of observations. On the other hand, a small but very important luster should be enlarged,i.e., that the small number of observations in this luster should be ontrolled by appropriate (independent)observations. If all observations have been lustered into one luster (nCluster = n), no reasonable onlusionan be drawn (see �rst olumn). On the other hand, if the dendrogram ut has been performed before the �rstlustering step, every luster ontains only one observation (nCluster = 1). The last olumn thus representsa solely interpretation of the impat fators of eah observation (with the �rst ase indiating an extremehigh-leverage observation whih should be ontrolled/supported by several independent observations).In general, a luster with a large impat fator and with only a small number of members should be signi�-antly enlarged ('++') while the size of a large luster with a low impat fator must be signi�antly redued('−−'). The symbols ('+') and ('−') indiate reommendations for only minor size variations. Some ases(e.g. all observations lustered into one luster or eah observation is a single luster) need speial treatment.The perentage values in table 3.2 have been derived from experiene and thus only indiate interpretationguidelines. The atual deision for size variations depends on the purpose of the experiment and also dependson the osts for performing other observations.3.5 Regression diagnostis tool-�owhartThe singular value deomposition of the design matrix of an adjustment problem (and hene the dataresolution matrix derived from the singular value deomposition) and luster analysis methods form the twomain omponents of the regression diagnostis tool developed in this thesis. As mentioned in the introdution,in geodeti literature the term 'regression' is often used for the determination of the parameters of adjustingstraight lines or other polynomials. Here, however, the term 'regression' desribes the general proedure ofparameter estimation in linear models (see also e.g. Cook and Weisberg 1982, or Dodge and Jureková2000).Based on the interpretation guidelines desribed above, the general proedure of a singular valuedeomposition- and luster analysis-based regression diagnostis tool an be formulated. As shown in �g-ure 3.7 on the faing page the general proedure starts with the de�nition of the adjustment problem to besolved. This also ontains a reasonable parametrisation of the funtional model relating observations andunknown parameters. After performing suitable measurements, the design matrix A an be set up and anbe deomposed by singular value deomposition.Sine the results of the entire proedure should only be interpreted in ase of a full rank adjustment problem,the singular values σi (or the ondition number) have to be used for the detetion of rank de�ienies or aweak ondition. Optionally, the orrelations and thus the separability of the parameters should be analysedby using the orrelation matrix (COR) or the model resolution matrix (MRM). If there is an (almost) rankde�ieny it is reommended to re-formulate the adjustment problem before proeeding with the regressiondiagnostis proedure.If all parameters an be estimated (separately), the data resolution matrix H an be omputed. At �rst,its main diagonal elements (i.e., the impat fators hii) should be heked for the existene of high-leverageobservations. Depending on the purpose of the adjustment and depending on the onsequenes of high-leverage observations, appropriate steps might be neessary (suh as elimination of observations or additionof new observations).The next step onsists of the analysis of the impat o-fators hij and the generation of groups of observationsby luster analysis of the data resolution matrix H. After utting the dendrogram at a reasonable height the'average luster impat fators h̄Cluster i' an be omputed.For eah parameter (usually starting with the most important parameter) the impat of eah luster an beassessed using the interpretation guidelines listed in table 3.2 on the previous page. Depending on the needof performing hanges of the observation struture, the entire proess needs to be repeated (starting fromthe generation of the design matrix A). Otherwise the proedure is ompleted.
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56 4. Geodeti Very Long BaselineInterferometry4.1 IntrodutionThe priniple of Very Long Baseline Interferometry (VLBI) has been developed in the 1970ies and was at�rst mainly used for the investigation of astronomial and astrophysial phenomena (see e.g. Cohen andShaffer 1971). This priniple is based on a lassial interferometer in the visible spetrum whih has beeninvented as early as 1890 by Mihelson (Mihelson 1890). While the two reeiving devies of a lassialradio interferometer are onneted, this is not the ase for a long baseline interferometer. Here, the distanesbetween the reeivers an be up to 12.000 km (see �gure 4.1). At both stations, the signals of an extra-galatiradio soure are reeived and provided with time marks generated by highly preise atomi loks (usuallyhydrogen-masers) before they are stored digitally on tapes or diss (Campbell 2004).

Figure 4.1: Single-baseline-interferometer(Campbell 2004) Figure 4.2: VLBI network with �ve stations(Campbell 2004)The data is sent to speially designed omputers (orrelators) and brought to ohereny. Within the orrela-tion proess the di�erene τ of the arrival times of the signal at both stations is determined and representsthe primary geodeti observable. It is often simply alled 'delay' and an nowadays be determined with anauray of approximately 20-30 pioseonds (= 6-10 [mm℄) (see e.g. Sovers et al. 1998).Soon after the �rst use for astronomial purposes the geodeti use of the VLBI-priniple was reognized(e.g. Shapiro 1974, Ma 1978, or Campbell and Witte 1978). In addition, besides the baseline vetorother parameters suh as e.g. the rotation of the earth (i.e., polar motion xp, yp and ∆UT 1 as well as nuta-tion dψ, dǫ), atmospheri behaviour, tidal e�ets, et. an be determined and are inluded in the funtionalmodel.By performing ommon observations of the same radio soure by di�erent stations, global observation net-works an be formed. These networks an be used to onnet regional geodeti referene systems (and antherefore be used for the generation of global referene systems) as well as for a more preise determinationof earth orientation parameters (ompared to observations on single baselines) (see �gure 4.2).



4.2. Basi models in VLBI data analysis 57Compared to other spae geodeti tehniques (suh as GPS, SLR/LLR or DORIS) VLBI has the advantageof having a diret onnetion to the quasi-inertial system of the radio soures whih enables analysts todetermine earth orientation parameters with a long time stability and free of any hypothesis. Hene VLBIis the only tehnique (exept for optial astronomial tehniques) whih onnets the sky-�xed referenesystem (CRF) diretly to the earth-�xed system (TRF) via the earth orientation parameters (EOP).The basi priniple of VLBI has been desribed by many authors. For more details see e.g. Campbell 1979,Shuh 1987, Nothnagel 1991, or Takahashi et al. 2000.4.2 Basi models in VLBI data analysis4.2.1 The funtional model of VLBIThe geometrial time delay of a non-rotating plane or spatial radio interferometer whose two stations areonneted by the baseline vetor b = r2 − r1 (with ri being the geoentri vetors of the observation sites,respetively) an be mathematially desribed by the salar produt
τgeom = τ2 − τ1 = −1

c
·b ·k, (4.1)where c denotes the veloity of the radio signal (i.e., the veloity of light), k denotes a unit vetor in thediretion of the radio soure and τ1 and τ2 denote the arrival times of the radio signal at the two stationsrespetively (see e.g. Nothnagel 1991).Further generalisation of model (4.1) leads to a spatial, kinemati interferometer. Sine the baseline vetor bis de�ned in an earth-�xed referene system while the vetor k in diretion of the radio soure is de�ned ina sky-bound referene system, one of these referene systems has to be transformed into the other one. For abetter physial interpretation, the three rotations neessary for this transformation are usually deomposedinto �ve individual rotations whih are represented by four rotation matries W,S,N and P. These ma-tries orrespond to polar motion (wobble, xp and yp), earth rotation (spin, dUT 1), nutation (dψ, dǫ) andpreession (z, ξA,ΘA) respetively (see e.g. Robertson 1975, Ma 1978, Nothnagel 1991, or Seeber2003). Equation (4.1) thus beomes:

τgeom = −1

c
·b ·R ·k

= −1

c
·b ·W ·S ·N ·P ·k (4.2)The matriesW,S,N and P are usually expressed by means of Eulerian rotation angles around the respetiverotation axes. A more detailed desription an be found in e.g. Nothnagel 1991, or Sovers et al. 1998.Nothnagel 1991 also lists the oordinate systems assoiated with the di�erent rotations.Sine equation (4.2) only desribes the geometrial delay, a more sophistiated model has to be used to modelreal VLBI observations whih are a�eted by various e�ets on their way through interstellar spae, the SolarSystem, and the Earth's atmosphere. Therefore further terms aounting for e.g. the hanging behaviour ofstation loks, the delay aused by atmospheri in�uenes, tidal or loading e�ets, et. have to be added.Hene the basi geometrial has to be extended to

τobs = −1

c
·b ·W ·S ·N ·P ·k

+ τj−abb. + τt−abb. + τRel. + τTid. + τLoad. (4.3)
+ τIon. + τInstr. + τAtmh

+ τClock + τAtmw

+ . . .



58 4. Geodeti Very Long Baseline Interferometrywhere the following terms are used:
τj−abb. annual abberation beause of the motion of the earth aroundthe solar system baryenter
τt−abb. diurnal abberation beause of the rotation of the earth
τRel. relativisti e�ets
τTid. deformation of the earth beause of tides andbeause of hanges of the angular momentum due to oean tides
τLoad. deformation of the earth beause of loading e�etse.g. due to oean tides and atmospheri pressure hanges
τIon. ionospheri orretion
τInstr. instrumental orretions
τAtmh

atmospheri refration (hydrostati part)
τAtmw

atmospheri refration (wet part)
τClock relative lok o�set and lok rate (and additional terms)A more expliit formulation of model (4.3) reads:

τobs = −1

c
·





xA − xB

yA − yB

zA − zB



 ·R(xp, yp, dUT 1, dψ, dǫ, z, ξA,ΘA) ·





cos δ · cosh(t)
cos δ · sinh(t)

sin δ





+ τj−abb. + τt−abb. + τRel. + τTid. + τLoad. (4.4)
+ τIon. + τInstr. + τAtmh

+ τClock + τAtmw

+ . . .with xi, yi, zi being the geoentri oordinates of the partiular station, R being the rotation matrix betweenthe elestial and the terrestrial referene system (and thus dependent on polar motion xp, yp, earth rota-tion ∆UT 1, nutation dψ, dǫ and preession z, ξA,ΘA) and h(t) and δ being the hour angle and delinationof the observed radio soure.The way of parametrisation usually depends on the target parameters to be investigated and depends onthe number of stations partiipating as well as on the duration of the session. As desribed in hapter 2also in VLBI data analysis di�erent mathematial models (possibly with di�erent kinds of parametrisations)may desribe the observations equally well. Although o�ial reommendations exist (MCarty and Petit2003), the hoie of a partiular model and the hoie of a partiular parametrisation is quite arbitrary andmay vary from analyst to analyst. In partiular the following physial models are subjet to these arbitraryhoies.Physial modelsClok behaviour and pieewise linear modellingOne of the largest onstituents of the signal delays is aused by the di�erenes in the behaviour of the stationfrequeny standards. After hoosing an arbitrary lok as the referene lok for the entire observing networkthe remaining loks show both a onstant di�erene (= lok o�set) and a linear (= lok trend) or an evenhigher rate of hange relative to the referene lok. Thus, an appropriate lok with a presumedly highfrequeny stability should be hosen as the referene standard for the entire network.From an algebrai point of view it is of no onsequene to the least-squares solution whih station lokis hosen as the referene one (Shuh 1987). Sine the lok parameters (o�set, trend, et.) also 'absorb'physial e�ets with a similar signature (as e.g. instrumental e�ets and relativisti e�ets of higher order)speial attention should be paid to this type of parameter.



4.2. Basi models in VLBI data analysis 59In order to desribe the lok behaviour in a mathematial way, usually a simple polynomial approah ishosen, as e.g.
τClock = CL0 + CL1 · t+ CL2 · (t− t0)

2 + . . . . (4.5)In pratial VLBI data analysis usually up to three parameters (o�set CL0, trend CL1 and squared term CL2)are used. In addition to a simple polynomial further so-alled piee-wise linear parameters are used to aountfor higher variations of the frequeny standards. For piee-wise linear modelling a linear behaviour of thee�et to be modelled is assumed for ertain intervals. One of the di�erent kinds of parametrisation is basedon determining new lok rates for eah interval by estimating ∆τClockratei
(see e.g. Shuh 1987, or Tesmer2004):

∆τClock(ti) = ∆τClockoffset+∆τClockrate1
(t1−t0)+∆τClockrate2

(t2−t1)+· · ·+∆τClockraten
(ti−tn−1) (4.6)In order to avoid numerial problems (as e.g. rank de�ienies) and to stabilize the parameter estimationproess, onstraints (or pseudo-observations) have to be inluded in intervals with only a small number ofobservations. Usually this type of pseudo-observations onstrains the partiular rate segment to zero andallows for a ertain variation by assigning an appropriate formal error.Piee-wise linear modelling is also used when desribing other e�ets suh as e.g. atmospheri behaviour,atmosphere gradients or sub-daily earth rotation variations.Atmospheri refration and atmospheri mapping funtionsOn their way to the radio telesopes, radio signals have to pass the atmosphere, i.e., the eletrially hargedpart (ionosphere) and the eletrially neutral part (troposphere) of the atmospheri layers up to a height ofapproximately 50 kilometres (Hofmann-Wellenhof, B. et al. 2003). Depending on the state of these layersthe signals are distorted. The impat of the ionosphere an be eliminated almost ompletely by performingdual frequeny measurements. The signal path delay aused by the atmosphere (as well as the ionospheridelay) is alled refration and an hange between approximately 2.3 m in zenith diretion (approx. 8 ns)and almost 25 m at elevations of 5o (Nothnagel 2000).Sine the tropospheri signal path delay depends on the path length of the signals through the atmosphereit therefore also depends on the elevation ǫ of the radio soure observed. These elevation dependenies areusually expressed as so-alled mapping funtions whih desribe the relations of the signal path delay inzenith diretion ('zenith delay') δρ0

trp and the signal path delay in soure diretion δρtrp(ǫ). The most simpleform of suh a mapping funtion reads:
mtrp(ǫ) =

1

sin(ǫ)
. (4.7)Hene the signal path delay in soure diretion is

δρtrp(ǫ) = mtrp(ǫ) · δρ0
trp. (4.8)Due to the fat that water vapor only ours up to heights of approximately 15 km (while the entireatmosphere reahes heights of more than 50 km) it has been found appropriate to use di�erent mappingfuntions for the hydrostati and the wet part of the atmosphere. Hene the total atmospheri signal pathdelay in soure diretion an be modelled as:

δρtrp(ǫ) = mtrp,d(ǫ) · δρ0
trp,d +mtrp,w(ǫ) · δρ0

trp,w. (4.9)The simple mapping funtion mtrp(ǫ) =
1

sin(ǫ)
has been found to be inaurate for highly preise applia-tions (even at elevation angles of 20o). During the last deades more preise mapping funtions have been



60 4. Geodeti Very Long Baseline Interferometrydeveloped (as e.g. CfA-, MTT-, Neill- or the Vienna Mapping funtions) some of them taking into aountthe atmospheri situation above the observation site or making use of numerial weather models. Detailsabout mapping funtions an be found in e.g. Nothnagel 2000, or Boehm 2004.As for the modelling of lok behaviour also pieewise linear modelling approahes are used to desribe theatmospheri behaviour. Depending on the analyst the interval length for pieewise linear modelling of theatmosphere is usually set to values between 2 hours and 20 minutes.4.2.2 Partial derivatives and design matrixFor the adjustment of VLBI observations by using the Gauss-Marko�-model (see hapter 2) the partialderivatives of the partiular funtional model hosen by the analyst with respet to the unknown parametershave to be omputed and arranged in the design matrix. In general, the design matrix ontains many moreparameters than disussed in the following paragraph (see e.g. Nothnagel 1991).The dimension of the design matrix equals (number of observed delays + number of onstraints) × (numberof unknowns). When hoosing the order of unknowns as station oordinates, lok oe�ients, atmosphereoe�ients the struture of the design matrix may be as follows (example for a 3-station network):
A =
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4.2. Basi models in VLBI data analysis 61Some of the partial derivatives of the observation equation (4.3) with respet to the unknown parametersread (Nothnagel 1991):
∂τobs
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62 4. Geodeti Very Long Baseline Interferometrywith
h(t) Greenwih hour angle of the radio soure
δ delination of the radio soure
c veloity of light

t− t0 time passed sine the beginning of the session
ǫ elevation of the radio telesope
Ω onversion fator from universal time to sidereal time (≈ 1)

m(ǫ) atmospheri mapping funtion.4.2.2.1 Sensitivity of observation equations / partial derivativesDue to the relative nature of the VLBI tehnique the observations (i.e., arrival time di�erenes) are notsensitive to some parameters suh as absolute geoentri station oordinates or the origin of right asension(Sovers et al. 1998). This information must be supplied by other tehniques.The information ontent of VLBI observables heavily depends on the on�guration of the experiment. Thus,the observation shedule (i.e., station loation, soure position and the atual orientation of the soure withrespet to the baseline) plays a ruial role in determining the types and preision of parameters that anbe estimated. Due to the fat that only the salar produt of baseline vetor and vetor in soure diretionis observed, some observation geometries impose limitations on the estimability (and separability) of ertainparameters (so-alled ritial (baseline) on�guration, f. Sovers et al. 1998, or Takahashi 1994).In order to assess the parameters that an be estimated the partial derivatives of the observation equation ofa funtional model with respet to its parameters have to be analysed. In geodeti adjustment omputationsthis is in partiular used for the analysis of error propagation. On the other hand these investigations alsoshow the sensitivity of an observation onerning a ertain parameter (see e.g. Niemeier 2002, Walter1973, or Lundqvist 1984).In the ase of VLBI, investigations of the magnitudes and the variations of the partial derivatives of equa-tion (4.3) with respet to the parameters to be determined have been performed very early by e.g. Walter1973, Dermanis and Mueller 1978, or Ma 1978. Walter 1973 desribes in detail that 'the hanes toseparate the various e�ets are widened if the partial derivatives di�er in amplitude and phase'. Conversely,this means that similarities of partial derivatives indiate a low separability (or a high orrelation) betweenthe parameters involved. Algebraially this is shown by at least two similar olumns of the design matrixleading to numerial problems due to (an almost) rank de�ieny of the design matrix.Partial derivatives with respet to earth orientation parametersInvestigations of the magnitudes and the variations of the partial derivatives ∂τobs/∂xp0 (eq. 4.25), ∂τobs/∂yp0(eq. 4.27) and ∂τobs/∂∆UT 10 (eq. 4.29) show the sensitivities of VLBI observations with respet to theobservation geometry (i.e., onerning baseline orientation and soure position relative to the observingbaseline).The partial derivative ∂τobs/∂xp0 (eq. 4.25) shows that observations on baselines parallel to the y-axis (i.e.,
bx = bz = 0, with bi indiating the respetive baseline omponent) are not apable for the determinationof the xp-omponent (whih is a rotation around the y-axis), while observations on baselines parallel to thex-axis (i.e., by = bz = 0) are not suitable for the determination of the yp-omponent of polar motion (whihis a rotation around the x-axis), see eq. 4.27. Additionally, equations 4.25 and 4.27 show the apability ofbaselines with a long north-south-extension (i.e., with large bz-omponents) for the determination of polarmotion. The ∂τobs/∂∆UT 10-partial derivative (eq. 4.29) reveals the importane of observations on baselineswith a large east-west-extension for the determination of earth rotation (i.e., for ∆UT 10). This agrees withthe fat that in general VLBI observations are not sensitive to an e�et whih is perpendiular to theorientation of that baseline (see Moritz 1987, or Fisher 2006).



4.2. Basi models in VLBI data analysis 63Conerning the soure position the three partial derivatives show that espeially radio soures with low(absolute) delinations are neessary for the determination and separation of xp0, yp0 and ∆UT 10. Tabular 4.1gives an overview of riteria for optimal EOP determination depending on baseline orientation and soureposition (Brouwer 1985). Baseline parallel Baseline parallelto Equatorial plane to rotation axisEquatorial Polar Equatorial Polarsoures soures soures soures
xp, yp NO YES YES NO
∆UT 1 YES NO NO NOTable 4.1: Parameter estimability as a funtion of baseline orientation and soure position (Brouwer 1985)Partial derivatives with respet to height, lok and atmosphere parametersThe analysis of the partial derivatives of equation (4.3) with respet to the topoentri station height, loko�set and atmosphere o�set (see equations 4.17 to 4.24) leads to a very ommon problem in spae geodetipositioning: the separability of vertial station motion, lok o�set and atmospheri variations. Due to thesimilarities of the partial derivatives at high elevation angles the separability of the three e�ets dereaseswith higher elevations (see also Vennebush 2002).Figure 4.3 shows the impat of variations in station height, lok o�set and atmospheri behaviour on theobservations (for the ase of GPS-observations, but it an be used for VLBI as well). Sine a physial e�etan only be determined from observations whih are a�eted by the partiular e�et, this also reveals thekind of observations neessary for the determination and separation of the three e�ets: Observations withlow elevations are espeially needed for the separation of station height and atmospheri behaviour. Solelyobservations in zenith diretion are not suitable for the separation of the three e�ets (see Rothaher2003). Nothnagel 1991 demonstrated empirially that observations to soures loated in those parts ofthe ommon visible area of the elestial sphere that both stations an point at with very low elevations(so-alled 'elevation usps', for an example see soures S5 and S6 in �gure 5.7 on page 81) are of partiularimportane for the determination of lok o�sets.Unfortunately, using observations with low elevations (whih are neessary for the separability of the threee�ets), errors in the atmospheri models propagate into the remaining parameters and degrade the entiresolution (Boehm 2004).

Figure 4.3: Impat of station height variations, lok o�set and tropospheri delay on (GPS-)observations(Rothaher 2003)



64 4. Geodeti Very Long Baseline Interferometry4.2.2.2 Other partial derivativesThe similarities of the partial derivatives (4.29) and (4.31) show the lak of apability for the separationof ∆UT 1 and right asension α of a radio soure. Sine these equations are equal (exept for the fator Ω ≈ 1and the sign) no separation is possible between variations in right asension of a radio soure and variationsin earth rotation. A similar e�et ours in GPS with the asending node and ∆UT 1 (Rothaher 2003).Another example for ritial (baseline) on�gurations and thus for inseparable parameters is given by base-lines parallel to the equatorial plane observing soures with di�erent right asensions but idential delina-tions. With this on�guration no separation between the ∆z-omponent of the baseline and the lok o�setbetween both stations is possible sine variations in one of these parameters have the same impat on theobservables (Brouwer 1985). This will be of importane in hapter 5 (ase 6).4.3 Parameter estimation in VLBI data analysisThe determination of parameters in equation 4.3 on page 57 is a typial adjustment problem and is oftenperformed by least-squares estimation methods. Thus, the apriori model is re�ned by estimating modelparameter orretions whih best �t the data.For the estimation of parameters from VLBI observations various di�erent approahes exist, suh as e.g.
• lassial least-squares based on the solution of normal equations,
• Kalman �lter and square root information �lter approahes (e.g. Andersen 2000) or
• olloation approahes (e.g. Titov 2002).For the investigations in the next hapter, the design matrix as used for the omputation of the nor-mal equations is being used. In pratie, the dimension of the design matrix of a typial VLBI session isabout 2000×200. For the ommon adjustment of several sessions (so-alled global solution) these dimensionsinrease drastially.4.4 Estimability limitationsDue to the limitations imposed by only observing the salar produt of the baseline and signal propaga-tion vetors, unambiguous separation of parameters is only possible with su�ient spatially and temporallydistributed observations, i.e., by avoiding observations performed only in ritial (baseline) on�gurations.In pratie, VLBI observation shedules are mostly generated by optimizing 'sky overage', i.e., by observ-ing soures in as many di�erent positions in the ommonly visible part of the elestial sphere as possible(Steufmehl 1994).In addition to the limitations of the information ontent of VLBI observations due to the observing geometry,the separation of physial parameters is further ompliated by linear ombinations of a subset of parameterswhih may produe idential variations in the observables similar to other (linear ombinations of) parametersof the model (so-alled degeneraies). All suh potential degeneraies must be identi�ed and aounted forin the parameter estimation proedures (Sovers et al. 1998).Both ritial (baseline) on�gurations and separation problems will be of importane in the next hapter.



655. Design analyses of plane andspatial interferometers5.1 IntrodutionThe theoretial bakground derived in hapters 1 to 4 an now be used to investigate the design of in-terferometers, i.e., to analyse the type of parameters that an be estimated after measuring arrival timedi�erenes of signals emitted by extra-terrestrial radio soures and to analyse whih parameters are a�etedby ertain groups of observations. These methods an be used to ahieve a deeper understanding of theimpat of single (or groups of) observations on the adjustment proess and an thus be used to optimisethe observation shedule by negleting observations (or observation groups) with small impat fators or bysupporting/ontrolling observations with high impat fators by appropriate (independent) observations.The main intention of this hapter is to show the suitability of the regression diagnostis tool developed in theprevious hapters by testing its agreement with existing VLBI knowledge (suh as e.g. found by the analysisof the funtional model of VLBI in hapter 4). In some ases, however, new knowledge an be obtained whihan only be found by investigating the entire observation shedule (and not just the partial derivatives ofsingle observations). At �rst, the regression tool based on singular value deomposition and luster analysiswill be applied to a plane, stati interferometer (or 2D-interferometer). In a seond step, the investigationswill be generalised and applied to spatial, rotating interferometers (i.e., to 3D-interferometer and thus to theVLBI priniple).5.2 VLBI observation shedule analysis software qtSVDThe author of this thesis developed qtSVD, a software pakage mainly designed for singular valuedeomposition-based analyses of VLBI observation shedules. The software is written in objet-orientedC++ and uses the graphial user interfae (GUI)-library Qt1 whih enables platform independent softwaredevelopment with user-friendly and mask-oriented dialogs. For matrix omputations the GNU Sienti�Library (GSL) has been used. For sreenshots of qtSVD, see �gures 5.2 and 5.3.qtSVD an also be used for investigations of other adjustment problems suh as polynomial regression, planeinterferometers or arbitrary design matries (in MATLAB format). The software performs:
• visualisation of design matries (for an example, see �gure 5.2)
• singular value deomposition of design matries
• omputation of data resolution matries, model resolution matries, ofator and orrelation matries
• luster analysis of data resolution matries
• visualisation of luster analysis dendrograms
• omputation of the 'average luster impat fator h̄Cluster i of luster i on the parameter (group) x1'For the analysis of VLBI observation shedules qtSVD also
• reads observation shedules from NGS-�les (i.e., ASCII �les ontaining the VLBI observations of indi-vidual sessions),1available at http://www.trollteh.om



66 5. Design analyses of plane and spatial interferometers
• generates the design matrix after hoosing an appropriate parametrisation (the omputation of thedesign matrix is based on the VLBI data analysis software OCCAM (see Titov et al. 2004)),
• provides a three-dimensional visualisation of the network and the observation geometry with user-de�ned viewport settings (for an example, see �gure 5.3).The following investigations have been arried out with qtSVD, as well as the generation of all plots andtables.5.3 Plane stati interferometerAs shown in �gure 5.1 the most simple interferometer onsists of a single �xed baseline surrounded by �xed'radio soures' onsidered to emit plane waves of radio signals. Due to the lose relation to visible parts ofthe sky of a spatial interferometer (with a maximum of only one half of the elestial sphere being visible fromboth stations of the baseline) here only a half-irle is onsidered. The baseline is onsidered to be parallel tothe x-axis of a plane, artesian oordinate system where the origin agrees with the mid point of the baseline.At both ends of the baseline, signal reeivers equipped with atomi loks are assumed.
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A BFigure 5.1: Plane stati interferometerFuntional modelObservations τi may be obtained by measuring the di�erene of the arrival times of a 'radio signal' at bothends of the baseline. Estimable parameters are:
• the ∆x omponent of the baseline,
• the ∆y omponent of the baseline and
• the lok o�set CL0 of one lok with respet to the other lok.The funtional model of a plane, stati interferometer thus reads:
τ = b ·k + CL0 =

[
∆x
∆y

]

·
[
k1

k2

]

+ CL0 = ∆x · k1 + ∆y · k2 + CL0 (5.1)with b being the unit vetor of the baseline and k being a unit vetor in soure diretion. Note that thesoure vetor k ontains the oordinates of the unit vetor into the diretion of the respetive soure.



5.3. Plane stati interferometer 67

Figure 5.2: Sreenshot of qtSVD (Matrix visualisation and luster analysis modules)

Figure 5.3: Sreenshot of qtSVD (VLBI session visualisation module)



68 5. Design analyses of plane and spatial interferometers5.3.1 Investigation of parameter estimabilityIn the following setions the estimability of three parameter types (and ombinations thereof) in the planeinterferometer shown in �g. 5.1 are investigated. The three parameters ∆x baseline omponent, ∆y baselineomponent and lok o�set CL0 at station B an be ombined in the following way:1. ∆x baseline omponent only (orresponds to estimating a hange of the length of the baseline),2. ∆y baseline omponent only (orresponds to estimating a hange of the height of one station),3. lok o�set CL0 at station B only (orresponds to estimating the radius of a irle around station B),4. ∆x and ∆y baseline omponent,5. ∆x baseline omponent and lok o�set CL0 at station B,6. ∆y baseline omponent and lok o�set CL0 at station B and7. ∆x and ∆y baseline omponent and lok o�set CL0 at station B.For eah of the seven ases an idential set of 19 'observations' is obtained by simulating measurements ofthe arrival time di�erenes of the signals from eah soure. Eah soure is observed only one in a ounter-lokwise sense, starting at soure 1 (see �g. 5.1). Sine only the design of the experiment is of interest, noobservation vetor is present. Thus, for the following investigations only the design matrix A is used.Figure 5.4 shows the omponents S,V,U of the singular value deomposition of the design matrix A aswell as the data resolution matrix (DRM) and the model resolution matrix (MRM), the impat fators ofthe observations, the luster analysis of the data resolution matrix and the orrelation matrix COR of theestimated parameters for eah of the seven investigated ases (see tabular 5.1).Element DesriptionGeneral S Singular values, indiating presene of rank de�ieniesModel spae (Parameters) V Right singular vetors, indiating the amount of impat on theadjusted parameters
MRM Model resolution matrix, indiates relations of parameters in aseof a rank de�ieny
COR Correlation matrix, indiating orrelations between parametersData spae (Observations) U Left singular vetors, indiating impat of observations onparameters (or linear ombination thereof)
hii Impat fators, indiating the importane of individual observations

DRM Data resolution matrix, main-diagonal elements hii indiatingimpat fators of observations, o�-diagonal elements hij indiatingimpat o-fators and thus a jointly in�uential or ounteratinge�et of observationsDendro- Result of luster analysis of the data resolution matrix, indiatinggram in�uential subsets of observationsTable 5.1: Singular value deomposition- and Cluster Analysis-based analysis elements



5.3.Planestatiinterferometer
69

+1.0

0.0

−1.0

+1.0

0.0

−1.0

+1.0

0.0

−1.0

+1.0

0.0

−1.0

Impact
factors

X∆ Y∆ X,   Y, CL∆ ∆ 0

0 00 . 0 3 6 2 01 20 . 0 6 1 64 80 . 0 4 80 . 0 1 20 . 0 2 4 800 . 1 2 1 2 2 01 60 . 0 2 4 400 . 0 9 60 . 0 7 20 . 0 4 8 1 20 2 01 60 . 1 60 . 0 9 6 80 . 1 2 80 . 0 3 2 00 . 0 6 4 4 0 . 10 . 0 50 . 2 1 60 . 1 5 8 1 20 0 40 . 2 5 2 0 0 1 60 . 0 70 . 3 5 1 20 . 2 8 40 . 1 400 . 2 1 2 08000 . 0 80 . 0 4 1 60 . 1 4 1 28 2 00 . 0 20 . 0 6 00 . 0 4 8 1 60 4 2 00 . 0 7 20 . 1 2 1 280 . 0 9 60 . 0 2 4
0.0 −0.11 0.0 +0.11 −0.05 0.0 +0.05 −0.1 0.0 +0.1 −0.05 0.0 +0.15 −0.06 +0.220.0 −0.08 0.0 +0.32

V

MRM

COR

U

DRM

S
1 2 3

1

2

3

4

5

6

1 2 3

1

2

3

4

5

6

1 2 3

1

2

3

4

5

6

1 2 3

1

2

3

4

5

6

1 2 3

1

2

3

4

5

6

1 2 3

1

2

3

4

5

6

Dendro−
gram

1 2 3 4 5
X, CL

6
Y, CL

7
∆ ∆ ∆ 0CL0 X,   Y∆ 0

1 2 3

1

2

3

4

5

6

−0.1 +0.1

19

10

1

19

10

1

19

10

1

19

10

1

19

10

1

19

10

1

19

10

1

1

10

19

1

10

19

1

10

19

1

10

19

1

10

19

1

10

19

1

10

19

Figure5.4:Analysisomponentsofaplaneinterferometer.Redlinesinimpatfatordiagramsindiatea
reommendedthresholdfor'high-leverageobservations'at

2·
un (with

u=numberofunknowns,
n=number

ofobservations).



70 5. Design analyses of plane and spatial interferometersInterpretation guidelinesFor a orret interpretation of the elements listed in table 5.1 and displayed in �gures 5.4, 5.8, 5.9 and 5.16,eq. 2.47 on page 39 should be reviewed. This formula desribes the least-squares solution of a linear system
Ax = y by using the singular value deomposition of A:

x̂ =

r∑

i=1

1

σi

vi (u′i ·y) = VrS
−1
r U′ry. (5.2)Eq. 5.2 shows that very small singular values σi (or singular values whih even equal zero) lead to unreasonableontributions to the least squares solution, aused by (near) rank de�ienies.After verifying the absene of rank de�ienies (i.e., then r = u), eah of the r summands of eq. 5.2 needsto be related to a ertain parameter by identifying the largest element(s) of eah right singular vetor vi(for i = 1, . . . , r). As shown below, only in very few ases a single element of a vi-vetor is signi�antly largerthan the remaining elements. In many ases, however, several elements are of similar size and thus show thatthe orresponding summand a�ets more than just one parameter.In any ase, for eah summand the orresponding left singular vetor ui shows the impat eah observationhas on the parameters identi�ed by analysing the orresponding right singular vetor vi. This an even beperformed without a real observation vetor.Sine the singular values σi are usually sorted in asending order, the right singular vetor v1 of the �rstsummand (whih is omputed with the largest singular value, σ1) reveals those parameters (or a linearombination thereof) whih is best determined. On the other hand, the last summand (whih is omputedwith the smallest singular value, σr) displays those parameters (or parameter linear ombinations) whih areworst determined.Information ontent of plane stati interferometer observationsFor the following investigations, the information ontent of individual observations performed in a plane statiinterferometer will be important. Figure 5.5 shows three observation geometries with very low elevations,medium elevations and very high elevations, respetively.The ∆x omponent of this baseline an be interpreted as a variation of the baseline length. The ∆y omponentmight be regarded as a height variation of station B. The irle around station B displays the o�set CL0 ofthe lok at station B with respet to the referene lok at station A. More detailed explanations will begiven below.
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B B BFigure 5.5: Information ontent of plane stati interferometer observations. The ∆x omponent displays avariation of the baseline length. The ∆y omponent visualises a height variation of station B and the irlearound station B displays the lok o�set CL0 of station B with respet to the referene lok at station A.



5.3. Plane stati interferometer 71Case 1: Estimation of ∆x baseline omponent only
• General / Singular values:As mentioned above, every singular value deomposition-based analysis of an adjustment problemshould start with the investigation of the singular values σi, indiating a potential rank de�ieny ofthe design matrix. Here, the only singular value is σ1 = 3.16 > 0 and thus no rank de�ieny is present.
• Model spae / Right singular vetors (Matrix V):Sine in this ase only one parameter is estimated the V-matrix equals a 1 × 1-identity matrix andthus does not provide any useful information.
• Model spae / Model resolution matrix (MRM):Sine the model resolution matrix MRM is omputed by the right singular vetors it also does notprovide any useful information for this ase.
• Model spae / Correlation matrix (COR):Similar to the two items above, the orrelation matrix does not give any useful information for thispartiular ase.
• Data spae / Left singular vetors (Matrix U):The U-matrix (i.e., the left singular vetor of the design matrix) already indiates a signi�ant di�er-ene in the impat of the individual observations. Considering the absolute values of the elements ofthe left singular vetor, a dereasing impat of observations 1 to 9 an be seen. On the other hand, ob-servations 11 to 19 show an inreasing impat. Observation 10 is of negligible impat for the estimationof the ∆x baseline omponent.
• Data spae / Impat fators:The main-diagonal elements of the Data Resolution Matrix indiate the overall impat of eah observa-tion on the parameters to be estimated. As already seen in the left singular vetor, for the determinationof the ∆x baseline omponent, the �rst and the last observations mainly a�et the estimation proess.Observation 10 ould have been omitted ompletely sine it does not provide any information.
• Data spae / Data resolution matrix (DRM):A jointly in�uential or a ounter-ating e�et of observations (see setion 3.2 on page 50) an bedeteted by row-wise investigating the Data Resolution Matrix (red = jointly in�uential e�et, blue =ounter-ating e�et): A jointly in�uential e�et and thus a ommon degree of information an be seenfor observations 1 to 9 and observations 11 to 19, respetively. For observations 1 to 9 a dereasingsigni�ant ounter-ating e�et to observations 11 to 19 an be seen (and vie versa), sine observationsto soures with an angular di�erene of approximately 180o 'pull' the baseline omponent into oppositediretions.For the determination of the ∆x baseline omponent, the 10th observation does not have any impatat all (see 10th row of DRM). Nor does the 10th observation a�et the remaining observations (see10th olumn of DRM). Thus, this observation ould have been omitted. Geometrially, this beomesobvious from �gure 5.5 on the preeding page (onstellation 3): For observations performed with highelevations, a small variation in the ∆x baseline omponent hardly a�ets the arrival time di�erene ofthe signal. Hene, these kind of observations are not sensitive to the ∆x baseline omponent and arethus not suited for the determination of the ∆x baseline omponent. On the other hand, onstellation 1in �gure 5.5 shows that the �rst and the last few observations are needed for the ∆x baseline omponent.This means, that in order to obtain important observations for the determination of the ∆x baselineomponent, soures loated in diretion of the baseline vetor have to be used. Observations to souresorthogonal to the baseline are of no use for this parameter. Obviously, this depends on the orientationof the referene system. In general, observations to soures orthogonal to the baseline annot be usedfor the determination of the baseline length.
• Data spae / Cluster analysis:Cluster analysis of the data resolution matrix yields a dendrogram with two branhes indiating twodi�erent groups of observations (see �gure 5.6 for the enlarged dendrogram). Observations 1 and 2 and



72 5. Design analyses of plane and spatial interferometersCluster Analysis Results - Case 1No. of Mean Impat on parameter [-℄:Cluster: members: impat fator: Members (observations):
∆x1 1 0.00 9 0.0032 1 0.00 10 0.0003 1 0.00 11 0.0034 8 0.06 12, 13, 14, 15, 16, 17, 18, 19 0.0625 8 0.06 8, 7, 6, 5, 4, 3, 1, 2 0.062Table 5.2: Cluster analysis results for ase 1 (Estimation of ∆x baseline omponent only)ClusterAnalysisDendogram
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Figure 5.6: Enlarged dendrogram for ase 1 (estimation of ∆x baseline omponent)observations 19 and 18 have been lustered at �rst. The last single observation whih has been lusteredis observation 10, showing again that this observation is least 'similar' to the remaining observations.In order to get reasonable lusters, the dendrogram has been ut to form �ve lusters. Table 5.2 showsthe results of luster analysis as well as the impat of eah luster on the ∆x baseline omponent.Case 2: Estimation of ∆y baseline omponent only
• General / Singular values:The only singular value is σ1 = 3.00 > 0 and thus no rank de�ieny is present.
• Model spae / Right singular vetors (Matrix V): See ase 1.
• Model spae / Model resolution matrix (MRM): See ase 1.
• Model spae / Correlation matrix (COR): See ase 1.
• Data spae / Left singular vetors (Matrix U):Compared to ase 1, the left singular vetor (matrix U) has an opposite struture: Here, the �rst andthe last observations only have a small impat, while the middle observations have a large impat on thedetermination of the ∆y baseline omponent. The largest impat is produed by the 10th observation.
• Data spae / Impat fators:Consequently, the same e�et an be seen in the impat fators.



5.3. Plane stati interferometer 73Cluster Analysis Results - Case 2No. of Mean Impat on parameter:Cluster: members: impat fator: Members (observations):
∆y1 1 0.00 1 0.0002 1 0.00 2 0.0033 1 0.00 18 0.0034 1 0.00 19 0.0005 15 0.07 17, 3, 4, 16, 5, 15, 6, 14, 13, 7, 8, 12, 0.0669, 10, 11Table 5.3: Cluster analysis results for ase 2 (Estimation of ∆y baseline omponent only)

• Data spae / Data resolution matrix (DRM):The data resolution matrix shows a distint agglomeration of observations. This indiates that the mid-dle observations possess a similar information ontent (dereasing to the �rst and the last observation,respetively) and that there are no ounter-ating observations present.The most important observations for the determination of the ∆y baseline omponent have thus to beperformed to soures lying orthogonal to the baseline (see also onstellation 3 in �gure 5.5 on page 70).The least important (and thus negligible) observations are performed to soures lying in diretionof the baseline vetor. Again, this depends on the orientation of the oordinate system. In general,observations to soures orthogonal to a baseline an only be used to determine a position variationorthogonal to the baseline, sine these observations are most a�eted by this e�et.
• Data spae / Cluster analysis:Cluster analysis of the data resolution matrix shows a sequential lustering of the most similar obser-vations. Observations 1 and 19 have been lustered at last. Table 5.3 shows the results as well as theimpat on the ∆y baseline omponent.Case 3: Estimation of the lok o�set CL0 at station B only
• General / Singular values:The only singular value is σ1 = 4.36 > 0 and thus no rank de�ieny is present.
• Model spae / Right singular vetors (Matrix V): See ase 1.
• Model spae / Model resolution matrix (MRM): See ase 1.
• Model spae / Correlation matrix (COR): See ase 1.
• Data spae / Left singular vetors (Matrix U):In this ase the U matrix onsists of a olumn vetor with idential elements (ui = 0.23). This showsthat eah observation has the same impat on the parameter estimation proess and thus to thedetermination of the lok o�set. This is obviously aused by the fat that the design matrix onsistsof a vetor of onstants and is thus independent of the observation geometry.
• Data spae / Impat fators:Consequently, the impat fators show the same e�et, i.e., eah observation is equally important forthe determination of the lok o�set.
• Data spae / Data resolution matrix (DRM):For this ase, every element of the DRM equals 0.053 and thus for the determination of the loko�set no lassi�ation of observations an be performed. Eah observation is equally important and noounter-ating observations are present.
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• Data spae / Cluster analysis:Due to the homogeneous struture of the DRM luster analysis annot be performed, i.e., no lustersan be formed.Exursus: A similar e�et an be seen when investigating the data resolution matrix of a polynomial adjust-ment with just one parameter (i.e., omputation of the arithmeti mean). In this ase every observation hasthe same impat fator. This is due to the fat that the design matrix onsists of a olumn with a onstantvalue.Case 4: Estimation of ∆x and ∆y baseline omponent
• General / Singular values:The singular values σ1 = 3.16 and σ1 = 3.00 show that both parameters an be estimated withapproximately the same auray.
• Model spae / Right singular vetors (Matrix V):The V-matrix indiates that both parameters an be determined independently.
• Model spae / Model resolution matrix (MRM):Sine no rank de�ieny is present the MRM equals an identity matrix.
• Model spae / Correlation matrix (COR):Similarly, the diagonal struture of the model resolution matrix also shows that both parameters anbe determined independently.
• Data spae / Left singular vetors (Matrix U):Sine the largest element of the �rst right singular vetor is in the �rst row (and thus a�ets the �rstparameter), the �rst singular value and the �rst left singular vetor (see matrix U) are used to analysethe impat of the observations on the determination of the ∆x baseline omponent: As in the �rst ase,the (absolute) values of the �rst left singular vetor show that the �rst and the last observations exertthe largest impat on the determination of the ∆x baseline omponent.On the other hand, the seond right singular vetor a�ets the seond parameter. Thus, the seondsingular value and the seond left singular vetor in�uene the determination of the ∆y baseline om-ponent: Here, the (absolute) values of the seond left singular vetor show the same behaviour as inase 2.
• Data spae / Impat fators:For the determination of both baseline omponents the middle observations (i.e., observations 8 to 12)are of slightly higher importane. This is aused by the fat that these observations have to determinethe ∆y baseline omponent alone and do not posses any 'ounter-parts' on the other side of the baselineand are thus less ontrolled.Numerially, the impat fators of this ase (and only of this ase!) onsist of a superposition of thetwo �rst elementary ases, beause DRMCase 4 = DRMCase 1 +DRMCase 2.
• Data spae / Data resolution matrix (DRM):Sine this data resolution matrix is the sum of the data resolution matrix of ase 1 and the dataresolution matrix of ase 2, for the �rst and the last observation (rows 1 and 19) idential patterns asin ase 1 an be seen. For the middle observation (row 10) the pattern is idential to the pattern ofobservation 10 in ase 2.For the remaining observations a signi�ant jointly in�uential e�et of neighboring observations anbe seen in the distint main-diagonal struture. Counter-ating e�ets mainly our for observationsto soures with an opposing 'ounter part', i.e., mainly for the �rst and last few observations. Again,geometrial interpretations are aided by �gure 5.5 on page 70.



5.3. Plane stati interferometer 75Cluster Analysis Results - Case 4No. of Mean Impat on parameter:Cluster: members: impat fator: Members (observations):
∆x ∆y1 4 0.11 12, 13, 14, 15 0.034 0.0732 4 0.10 16, 17, 18, 19 0.090 0.0113 4 0.10 3, 4, 1, 2 0.090 0.0114 7 0.11 10, 11, 8, 9, 5, 6, 7 0.020 0.088Table 5.4: Cluster analysis results for ase 4 (Estimation of ∆x and ∆y baseline omponent)

• Data spae / Cluster analysis:Figure 5.4 and table 5.4 show the results of the luster analysis. The four lusters show a symmetrilassi�ation of observations 1 to 4 and 16 to 19 in lusters 3 and 2, respetively. These lustersmostly a�et the ∆x baseline omponent. Clusters 1 and 4 show a slightly unsymmetri lassi�ationof four and seven observations, respetively. Members of these lusters mainly a�et the ∆y baselineomponent.This ase also reveals the di�ulty of hoosing an appropriate height for the dendrogram ut. Dependingon the (subjetive) user deision, more or less symmetri lusters an be generated. The atual numberof lusters thus depends on the purpose of the experiment and on the problem to be analysed.Case 5: Estimation of the ∆x baseline omponent and the lok o�set CL0 at station B
• General / Singular values:The two singular values (σ1 = 4.35 and σ2 = 3.16) indiate the absene of rank-de�ienies.
• Model spae / Right singular vetors (Matrix V):The V matrix onsists of a olumn-permutated identity matrix and thus every parameter an bedetermined separately.
• Model spae / Model resolution matrix (MRM):Due to the absene of rank de�ienies the model resolution matrix equals an identity matrix.
• Model spae / Correlation matrix (COR):The orrelation matrix is an identity matrix and thus indiates that every parameter an be determinedseparately.
• Data spae / Left singular vetors (Matrix U):Sine numerially this ase onsists of a superposition of ases 1 and 3, the U matrix has a similarstruture as the individualUmatries of ases 1 and 3. As shown in the right singular vetors (matrixV)the �rst left singular vetor a�ets the lok parameter. Again, every observation exerts the same impaton this parameter.On the other hand, the (absolute values of the) seond left singular vetor show a similar struture asthe left singular vetor of ase 1. Due to the seond right singular vetor, the ∆x baseline omponentis thus mainly a�eted by the �rst and the last observations.
• Data spae / Impat fators:Similar to ase 1, the �rst and last few observations are of main importane. In ontrast to ase 1,however, the middle observations also have a signi�ant impat on the regression results sine they areneessary for the lok o�set determination. This is aused by the fat that the data resolution matrixof this ase is the sum of the data resolution matrix of ase 1 and the data resolution matrix of ase 3.Thus, the impat fators of this ase onsist of the impat fators of ase 1 shifted by a onstant value.



76 5. Design analyses of plane and spatial interferometersCluster Analysis Results - Case 5No. of Mean Impat on parameter:Cluster: members: impat fator: Members (observations):
∆x CL01 1 0.06 9 0.003 0.0532 1 0.05 10 0.000 0.0533 1 0.06 11 0.003 0.0534 8 0.11 12, 13, 14, 15, 16, 17, 18, 19 0.062 0.0535 8 0.11 8, 7, 6, 5, 4, 3, 1, 2 0.062 0.053Table 5.5: Cluster analysis results for ase 5 (Estimation of ∆x baseline omponent and the lok o�set CL0at station B)

• Data spae / Data resolution matrix (DRM):As for all previous ases with the ∆x baseline omponent being an unknown parameter, the �rstand the last observations are onurrent observations. The middle observations show a similar, almosthomogeneous pattern as in ase 3. Thus, these observations possess a similar information ontent andhave no ounter-ating observations. Again, this is due to the superposition of the ases 1 and 3.
• Data spae / Cluster analysis:The luster analysis of the data resolution matrix shows a similar struture as in ase 1: Observations1 to 9 are lustered into the �rst luster. Observations 10 to 19 are lustered into the seond luster.As in ase 1, observations 1 and 2 and observations 18 and 19 are lustered at �rst; observation 10 atlast.Cutting the dendrogram at a reasonable height to form �ve lusters yields that the �rst (luster 5)and the last (luster 4) few observations are both neessary for the determination of the ∆x baselineomponent and the lok o�set. The middle observations (lusters 1 to 3) mainly a�et the determina-tion of the lok o�set only sine these observations are not sensitive to variations in the ∆x baselineomponent (see table 5.5).Case 6: Estimation of the ∆y baseline omponent and the lok o�set CL0 at station BFor this ase, interpretations are ompliated beause some matries are not of diagonal struture. This isaused by the fat that some observations are onduted lose to ritial on�gurations for the determinationof both the ∆y baseline omponent and the lok o�set CL0 (see table 5.6 on page 78). For observationsto soures orthogonal to this baseline, a hange in the ∆y baseline omponent and a hange in the loko�set CL0 have the same e�et (see onstellation 1 in table 5.6). Furthermore, due to the lak of supportingdiametral observations (i.e., observations to soures below the baseline), both e�ets annot be ompletelyseparated (f. Brouwer 1985). As onstellations 2 to 3a/b show, separability is improved (i.e., the orrela-tion oe�ient dereases) if observations performed with low elevations are inluded. The best separabilityis given for onstellations ontaining diametral observations (see onstellation 3b).Obviously, this only holds for the urrent baseline and soure geometry. A rotation of the baseline or the entireelestial sphere yields di�erent results and thus di�erent relations between the parameters to be determined.
• General / Singular values:Although both singular values (σ1 = 5.15 and σ2 = 1.23) indiate the absene of rank-de�ienies theyalso show that both parameters an only be determined with di�erent auraies. From the seondright singular vetor the �rst parameter (∆y baseline omponent) is identi�ed as the parameter whihis determined weaker than the lok o�set CL0.
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• Model spae / Right singular vetors (Matrix V):The weak separability of the two e�ets an also be seen in the V-matrix: Sine no distint diagonalstruture an be seen, only the impat of observations on linear ombinations of these parameters anbe investigated.
• Model spae / Model resolution matrix (MRM):As in the previous ases, the model resolution matrix does not reveal any relations between the unknownparameters, sine no rank de�ieny is present.
• Model spae / Correlation matrix (COR):The orrelation matrix shows a signi�ant orrelation of the ∆y baseline omponent and the loko�set CL0 of −0.87.
• Data spae / Left singular vetors (Matrix U):Due to the weak separability of the two parameters, the U-matrix annot be used for lear statementsand must not be over-interpreted. Just a higher general impat of the �rst, middle and last observa-tions an be deteted. Observations 5 and 15 are of minor impat espeially for (1.) the ∆y baselineomponent and (2.) the lok o�set CL0.
• Data spae / Impat fators:Due to the struture of the U-matrix the impat fators indiate the highest impat for the �rstand last observations as well as for the middle observations. The lowest impat fators are given forobservations with a 45◦ angle between baseline vetor and vetor in soure diretion. An interpretationis given below.
• Data spae / Data resolution matrix (DRM):The analysis of the data resolution matrix is ompliated by the weak separation problem and must notbe over-interpreted. Numerially (and in ontrast to the previous ases), this data resolution matrixand thus the impat fators are not a superposition of the data resolution matries of any of the threeelementary ases 1 to 3.
• Data spae / Cluster analysis:Cluster analysis lassi�es the observations into two main groups with the upper luster ontaining the�rst and the last observations whih are of importane for both the ∆y baseline omponent and thelok o�set. The seond luster ontaining the remaining observations is of major importane for the

∆y baseline omponent only.The dendrogram ut displayed in �gure 5.4 shows a lassi�ation into eight lusters. Again, the �rst andthe last observations (luster 7) are of major importane for both parameters (see table 5.7) while theobservations to soures with a 45◦ angle between baseline vetor and vetor in soure diretion (lusters1-3 and 4-6) have the smallest mean impat fator. The middle observations (luster 8) mostly a�etthe ∆y baseline omponent. Again, these interpretations are ompliated by the weak separability ofboth parameters.Sine observations to soures orthogonal to this baseline annot be used for the separation of both parameters,the remaining observations have to be used instead. Although theoretially the �rst and the last observationsare not suitable for the solely determination of the ∆y baseline omponent (see ase 2), luster analysis stilldetets these observations as useful for the determination of both parameters. This is due to the lak ofsuitable alternative observations. In onnetion with the determination of the lok o�set, these observationsare still the most useful ones among all available observations. In any ase, the separability of both e�ets(parameters) is weak (see table 5.6).In general (i.e., also for the three-dimensional ase), separation of e�ets is ompliated if both e�ets at inthe same diretion. It is further ompliated if there are no diametral (supporting) observations available. Ifpossible, for real experiments a re-parametrisation would be appropriate.



78 5. Design analyses of plane and spatial interferometers
Case 6 - Separability of ∆y and CL0Condition orrelation ofator matrixnumber: (ρ∆y,CL0

): (parameter order: ∆y, CL0):Constellation 1
∆ y
R

A B

277.5 -0.99 [
6550.29 −6484.21

−6484.21 6419.12

]

Constellation 2
∆ y
R

A B

12.9 -0.98 [
28.14 −17.90

−17.90 11.72

]

Constellation 3a
∆ y
R

A B
7.4 -0.77 [

17.13 −2.94
−2.94 0.84

]

Constellation 3b
∆ y

A B

R 12.3 -0.57 [
49.94 −2.89
−2.89 0.50

]

Table 5.6: Separability of ∆y and CL0 in ase 6. For eah onstellation, three di�erent observations havebeen performed to eah of the three soures displayed in the respetive diagram. For onstellations 1, 2 and3a, the observation 'triangle' is only displayed for observations to the seond (or middle) soure, respetively.For onstellation 3b, the third observation is visualised. Vertial arrows indiate a height hange (∆y) ofstation B. R indiates the radius of a irle around station B and thus visualises the lok o�set CL0 of thelok at station B with respet to the referene lok at station A.



5.3. Plane stati interferometer 79Cluster Analysis Results - Case 6No. of Mean Impat on parameter:Cluster: members: impat fator: Members (observations):
∆y CL01 1 0.06 4 0.005 0.0302 1 0.05 5 0.001 0.0083 1 0.07 6 0.013 0.0004 1 0.07 14 0.013 0.0005 1 0.05 15 0.001 0.0086 1 0.06 16 0.005 0.0307 6 0.15 17, 3, 18, 2, 1, 19 0.096 0.1438 7 0.11 13, 7, 12, 8, 11, 9, 10 0.055 0.009Table 5.7: Cluster analysis results for ase 6 (Estimation of ∆y baseline omponent and the lok o�set CL0at station B)Case 7: Estimation of the ∆x baseline omponent, ∆y baseline omponent and the lok o�set

CL0 at station BThe determination of the three parameters ∆x baseline omponent, ∆y baseline omponent and the loko�set CL0 depits a superposition of the ases 1 and 6 (not of ases 1, 2 and 3!). Thus, this experimentdesign again ontains observations whih are not suitable for the determination of any parameter (f. ase 6).
• General / Singular values:The three singular values σ1 = 5.15, σ2 = 3.16 and σ3 = 1.24 show the absene of rank de�ienies.Again, however, a signi�ant deline is visible and shows that the parameters annot be determinedwith equal auray.
• Model spae / Right singular vetors (Matrix V):The V-matrix is not of diagonal struture. Only the �rst parameter (=∆x baseline omponent) is nota�eted by any other parameter (see �rst row ofV). The remaining parameters (∆y baseline omponentand lok o�set CL0) an only be analysed together, sine these parameters are both a�eted by the�rst and the third right singular vetor.
• Model spae / Model resolution matrix (MRM):Sine no rank de�ieny is present, the model resolution matrix onsists of an identity matrix.
• Model spae / Correlation matrix (COR):The orrelation matrix shows the same orrelation (−0.87) between the ∆y baseline omponent and thelok o�set CL0 as in ase 6. The ∆x baseline omponent is not orrelated with any other parameterand an thus be determined separately.
• Data spae / Left singular vetors (Matrix U):The �rst and the third left singular vetor agree with the left singular vetors of ase 6. The seondsingular vetor is the same as the left singular vetor of ase 1.
• Data spae / Impat fators:The �rst and the last observations are of high importane while the middle observations nearly havethe same (medium) impat fators. Numerially, the impat fators are the sum of the impat fatorsof ases 1 and 6.
• Data spae / Data resolution matrix (DRM):Sine this data resolution matrix onsists of the sum of the data resolution matrix of ase 1 and thedata resolution matrix of ase 6 (ontaining ritial on�gurations) it must not be over-interpreted.Almost every observation possesses a ounter-ating observation and thus ompliates the geometriinterpretation.



80 5. Design analyses of plane and spatial interferometersCluster Analysis Results - Case 7No. of Mean Impat on parameter:Cluster: members: impat fator: Members (observations):
∆x ∆y CL01 5 0.20 5, 4, 3, 1, 2 0.084 0.059 0.0932 5 0.20 15, 16, 17, 18, 19 0.084 0.059 0.0933 3 0.11 14, 12, 13 0.026 0.033 0.0044 6 0.12 8, 11, 9, 10, 6, 7 0.014 0.052 0.009Table 5.8: Cluster analysis results for ase 7 (Estimation of ∆x baseline omponent, ∆y baseline omponentand the lok o�set CL0 at station B)

• Data spae / Cluster analysis:The luster analysis shown in �gure 5.4 shows a lassi�ation into three main groups onsisting of the�rst �ve observations, the last �ve observations and the remaining observations, respetively.For a �ner di�erentiation, the dendrogram has been ut to form four lusters (see table 5.8). The�rst and the seond luster onsist of the �rst and the last observations and possess the largest meanimportane for the entire parameter set. In addition the ∆y baseline omponent is a�eted by thefourth luster whih mainly onsists of the observations to soures orthogonal to the baseline.As in ase 6, the �rst and the last observations are also neessary for the determination of the ∆y base-line omponent. Again, this is aused by the additional estimation of the lok o�set and the lak ofsuitable supporting observations.5.3.2 Conlusions from plane stati interferometer investigationsBased on the analyses performed so far, it ould be shown that the regression diagnostis tool based onsingular value deomposition and luster analysis yields plausible and geometrially omprehensible results.It is possible to detet groups of observations with di�erent impat on the parameters of interest. Usingthe terms of hapter 3: Both jointly in�uential and ounter-ating groups of observations an be identi�ed.Observation groups with large mean impat fators signi�antly a�et the estimation proess and thus shouldbe ontrolled by appropriate (independent) observations. On the other hand, observation groups with smallimpat fators or whih a�et parameters of minor interest ould be redued or even negleted.For some ases, however, the di�ulties for performing a proper dendrogram ut beame obvious: Sometimes,the appropriate height for a dendrogram ut does not agree with a large similarity di�erene. Instead, thedendrogram ut has to be performed in suh a way that an appropriate number of lusters is generated. Thisagain shows the subjetive (and thus ambiguous) part of the regression diagnostis proedure.Furthermore, the regression diagnostis tool developed in the �rst hapters an be used to detet degeneraiesor ritial (baseline) on�gurations (suh as in ase 6). In these ases (suh as ase 6, where the ∆y baselineomponent and the lok o�set CL0 at station B ould hardly be separated), singular value deompositionreveals indeterminable parameters (or indeterminable linear ombinations thereof). The interpretation ofthe singular values will be of even more importane in the following investigations (for the estimation of the
xp-parameter).The main purpose of the analyses performed so far has been to show the suitability of the regression diag-nostis tool for simple interferometers. In the following, more omplex ases (i.e., both three-dimensional orspatial and rotating or kinemati interferometers) will be treated.



5.4. Spatial kinemati interferometer 815.4 Spatial kinemati interferometerThe generalisation of a plane stati interferometer �rst leads to a spatial stati interferometer and then to aspatial kinemati interferometer. The latter equals the VLBI priniple if the rotation axis of the interferometeroinides with the z-axis of a geoentri, earth-�xed terrestrial oordinate system. An example for a single-baseline interferometer is shown in �gure 5.7.As desribed in hapter 4, observations performed in a single-baseline spatial kinemati interferometer (orwithin a single-baseline VLBI observation session) an also be used to estimated (at least) the followingparameters:
• Terrestrial referene system:� site positions xB , yB, zB of stations B (station A has to be kept �xed as a referene station)
• Earth orientation parameters:� polar motion xp, yp� earth rotation dUT 1

• Auxiliary parameters:� lok o�set CL0 and lok rate CL1 of one lok with respet to the other lok (referene lok)� atmospheri zenith path delays ATA at station A and ATB at station B.and ombinations thereof. Depending on the baseline length, baseline orientation and on the observationgeometry some of these parameters may not be estimable.In order to obtain reasonable results, all parameters have to be transformed to the same unit. For thefollowing investigations every parameter has been saled to the unit 'meter' or 'meter/day' for the lok rateparameter.
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82 5. Design analyses of plane and spatial interferometers5.4.1 Estimability investigations for basi parametersNetwork geometry and observation sheduleFor the following investigations of parameter estimability in spatial kinemati interferometers, a �titiousinterferometer as shown in �gure 5.7 is used. The two stations form an equatorial baseline with a length of5000 km, parallel to the y-axis and loated on the tip of the x-axis of a geoentri oordinate system. Ninearti�ial radio soures are loated both at the elestial equator (delination: 0o) and near to the elestialpoles (delination: 85o and −85o). A list of these soures is shown in table 5.92.As shown in table 5.10 the observation shedule onsists of 15 observations with a duration of four minuteseah. The entire observation duration of one hour is divided into three groups of �ve observations, respetively.The observations of eah group are performed in a similar sequene:
• observation to a polar soure with high delination (soure 5 (S0300+85)), i.e., lose to the horizon ofboth stations (soure is loated in the northern 'elevation usp')
• observation to a polar soure with low delination (soure 6 (S0300-85)), also lose to the horizon ofboth stations (soure is loated in the southern 'elevation usp')
• observation to an equatorial soure with a high right asension (either soure 1 (S2230+00),soure 2 (S2255+00) or soure 3 (S2330+00), depending on hour angle and visibility) and thus loseto the horizon of station B
• observation to an equatorial soure with a low right asension (either soure 7 (S0700+00),soure 8 (S0730+00) or soure 9 (S0755+00), depending on hour angle and visibility) and thus loseto the horizon of station A
• observation to an equatorial soure (soure 4 or S0300+00) whih is lose to the zenith of both stations.This sheme is repeated three times, yielding �fteen observations in total. Due to the rotation of the interfer-ometer some equatorial soures set or rise during the observation period so that di�erent equatorial soureslose to the horizon of one of the stations have to be observed.Estimability analysisIn order to understand the omplex situations of parameter estimation within real VLBI-observation sessions(as treated in setion 5.4.3 on page 99), some basi parameter sets have to investigated �rst:8. Estimation of site positions xB , yB, zB of station B only9. Estimation of lok o�set CL0 of station B only10. Estimation of lok rate CL1 of station B only11. Estimation of atmospheri zenith path delay ATA at station A only12. Estimation of atmospheri zenith path delay ATB at station B only13. Estimation of polar motion yp only14. Estimation of earth rotation dUT 1 onlyAs for the plane interferometer investigations, the singular value deomposition-based analysis omponentsas displayed in �gure 5.8 on the faing page will be analysed.2The seond to �fth harater of the soure name indiate the right asension (in [hh min℄), the sixth harater indiatesthe sign of the delination and the seventh and eighth harater indiate the delination of the soure (in degrees).
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84 5. Design analyses of plane and spatial interferometersCase 8: Site positions xB, yB, zB of station B onlyUsing the �fteen observations desribed above, for the determination of the site positions xB , yB, zB ofstation B, the singular values show that every omponent an be determined with nearly the same quality.Aording to the model resolution matrix and to the orrelation matrix the three parameters an be wellseparated.The left singular vetors (Matrix U) show distint di�erenes in the impat of eah observation onto the threeparameters: The �rst left singular vetor u1 shows (together with the �rst right singular vetor v1) that thesix observations to the polar soures (soures 5 (S0300+85) and 6 (S0300-85)) are almost solely responsiblefor the determination of zB. Aording to the seond left singular vetor u2 and the seond right singularvetor v2, observations to soures with high right asensions (soure 1 to soure 3 (S2230+00, S2255+00,S2330+00)) and to soures 7 and 8 (S0700+00 and S0730+00) are of main importane for the yB parameter(and to a small amount for xB). Observations to soures in zenith diretion (soure 4 (S0300+00)) are(together with observations to soures 7 and 8 and for this baseline geometry) mainly neessary for xB (seethird left singular vetor u3 and third right singular vetor v3).The impat fators and the elements of the data resolution matrix show signi�ant impat of every obser-vation. The impat fators inrease for observations with dereasing availibility of supporting 'ounterpartobservations', i.e., observations to soure 4 (S0300+00) are of main importane sine no diametrally oppositeobservation is possible. The o�-diagonal elements of the data resolution matrix (impat o-fators) also showa distint pattern of three groups with �ve observations eah. Row-wise investigation of the data resolutionmatrix re�ets the supporting harater of observations to idential or similar soures.The luster analysis of the data resolution matrix also shows the generation of �ve lusters with eah of themontaining three observations. Table 5.11 shows the mean impat fators of eah luster onto eah parametertogether with modi�ation reommendations (as listed in table 3.2 on page 53).These results an only partly be generalised to other interferometer geometries: Due to the rotation ofthe interferometer, observations to polar soures are always of main importane for the determination of
z oordinates. Statements about the impat of other soures also depend on the baseline orientation withrespet to the terrestrial referene system. As a rule of thumb, observations to soures in x axis diretion orin y axis diretion also aount for the x or y omponent, respetively.Case 9: Clok o�set CL0 of station B onlyAs for the lok o�set determination in a plane stati interferometer (see page 73) also in a spatial kinematiinterferometer every observation is of equal importane. Thus, all impat fators and impat o-fators areequal and no luster analysis an be performed.As for the plane interferometer this is aused by the fat that the design matrix for this ase onsists of avetor of ones (see partial derivatives ∂τobs

∂CL0a
and ∂τobs

∂CL0b
in equations (4.17) and (4.20) on page 61) and thusresembles the determination of the arithmeti mean for arbitrarily spaed observations.The determination of the lok o�set of the lok at station B with respet to the referene lok at station Aan be interpreted geometrially: As shown in the middle of �gure 4.3 on page 63 the lok o�set an bevisualised as a irle (or sphere) around the station whose lok o�set has to be determined. The radius ofthis irle (or sphere) orresponds to the metri value of the lok o�set (i.e., multiplied by the veloity oflight).



5.4. Spatial kinemati interferometer 85
right asension delinationCode Soure [hh min se℄ [o℄S1 S2230+00 22 30 0.0 0.0S2 S2255+00 22 55 0.0 0.0S3 S2330+00 23 30 0.0 0.0S4 S0300+00 03 00 0.0 0.0S5 S0300+85 03 00 0.0 85.0S6 S0300�85 03 00 0.0 -85.0S7 S0700+00 07 00 0.0 0.0S8 S0730+00 07 30 0.0 0.0S9 S0755+00 07 55 0.0 0.0Table 5.9: Soure list for spatial interferometer investigationsStart of observation Az. A Az. B El. A El. BNo. Soure [yyyy.doy.hh:mm:ss℄ [o℄ [o℄ [o℄ [o℄1 S0300+85 2000.265.02:30:00 2 359 4 52 S0300�85 2000.265.02:34:00 178 181 4 53 S2230+00 2000.265.02:38:00 270 270 49 74 S0700+00 2000.265.02:42:00 90 90 5 475 S0300+00 2000.265.02:46:00 90 270 66 716 S0300+85 2000.265.02:50:00 2 358 5 57 S0300�85 2000.265.02:54:00 178 182 5 58 S2255+00 2000.265.02:58:00 270 270 50 79 S0730+00 2000.265.03:02:00 90 90 1 4410 S0300+00 2000.265.03:06:00 90 270 70 6711 S0300+85 2000.265.03:10:00 2 358 5 512 S0300�85 2000.265.03:14:00 179 182 5 513 S2330+00 2000.265.03:18:00 270 270 54 1214 S0755+00 2000.265.03:22:00 90 90 0.8 4415 S0300+00 2000.265.03:26:00 90 270 76 61Table 5.10: Observation list for spatial interferometer investigationsCluster Analysis Results - Case 8No. of Mean Impat on parameter:Cluster: members: impat fator: Members (observations): X Y Z1 3 0.23 15, 5, 10 0.234 ⇒ o 0.001 ⇒ - 0.000 ⇒ -2 3 0.22 14, 4, 9 0.050 ⇒ o 0.185 ⇒ o 0.000 ⇒ -3 3 0.20 13, 3, 8 0.047 ⇒ o 0.147 ⇒ o 0.000 ⇒ -4 3 0.17 12, 2, 7 0.002 ⇒ - 0.000 ⇒ - 0.167 ⇒ o5 3 0.17 11, 1, 6 0.002 ⇒ - 0.000 ⇒ - 0.167 ⇒ oTable 5.11: Cluster analysis results for ase 8 (Site positions xB , yB, zB of station B only)



86 5. Design analyses of plane and spatial interferometersCase 10: Clok rate CL1 of station B onlyIn a similar way the lok rate CL1 an be interpreted as a linear inrease or derease of the radius of airle (or sphere) around the station whose lok parameter has to be determined.As shown in �gure 5.8 the impat of observations on the lok rate CL1 is orrelated with the time ofthe observation. This is obviously aused by the struture of the partial derivatives ∂τobs

∂CL1a
and ∂τobs

∂CL1b
(seeequations (4.18) or (4.21) on page 61) and resembles the determination of the slope of a regression linethrough equally spaed observations (i.e., without o�set determination).The data resolution matrix for this ase shows the inreasing supporting nature of the observations withinreasing observation duration. Cluster analysis of this data resolution matrix �rst lusters observations nand n− 1, in a seond step observations n, n− 1, n− 2, et. and �nally lusters all observations n, n− 1, n−

2, . . . , 1. For this ase, a dendrogram ut is not reasonable.Case 11: Atmospheri zenith path delay ATA at station A onlyFor the determination of the atmospheri zenith path delay ATA at station A the left singular vetor u1 showsthat some observations are of no relevane (e.g. observations 3, 5, 8, 10, 13 and 15). These observations havenegligible impat fators. Aording to table 5.10 on the previous page these observations are performed withhigh elevations at station A. On the other hand, observations 9 and 14 (to the equatorial soures S0730+00and S0755+00) are performed with very low elevations (0.8o and 1.0o at station A) and thus possess high orvery high impat fators. In partiular, observation 14 has been observed with an elevation of only 0.86 [o℄and thus possesses an extraordinary high impat on ATA. A slight derease in the right asension of soureS0755+00 inreases the elevation of this observation and leads to a distint derease of this observation (notshown here).Even in the ase of a slight derease of the right asension of soure S0755+00 the data resolution looks likethe data resolution matrix shown in �gure 5.10 on the preeding page: Only observations to soures S0700+00,S0730+00 and S0755+00 are of very high importane for ATA. Cluster analysis of the orresponding dataresolution matrix �rst lusters these observations with a large similarity distane to the next lustering step(see bottom of dendrogram). Due to this extraordinary struture of the data resolution matrix and of thedendrogram a dendrogram ut is not reasonable.Case 12: Atmospheri zenith path delay ATB at station B onlyIn a similar way, for the determination of the atmospheri zenith path delay ATB at station B observationsperformed with very low elevations at station B are of main importane. Sine observations 1 and 2, 6 and 7and 11 and 12 possess similar elevations (of ≈ 5[o]) they an all be lassi�ed as 'high leverage observations'for ATB (see red line in the orresponding impat fator diagram in �gure 5.8 on page 83).Contrary to the previous ase, the data resolution matrix learly shows the supporting nature of similarobservations. As indiated by the dendrogram of the luster analysis of this data resolution matrix (also seetable 5.12 on page 88) observations to polar soures (with elevations below ≈ 10 [o]) are lustered �rst.Although one would expet similarities to ase 11, this is not the ase due to the signi�ant di�erenes inthe elevation angles whih are the driving fators of the partial derivatives ∂τobs

∂AT
.Case 13: Polar motion yp onlySine the baseline of this interferometer is parallel to the y-axis of the terrestrial referene system thisinterferometer is insensitive to variations in the xp omponent of the polar motion. This parameter an thusnot be determined (i.e., the design matrix only ontains zeros, the only singular value equals zero and thusindiates that xp annot be determined).



5.4. Spatial kinemati interferometer 87The yp omponent of polar motion, however, an be determined as the singular value (of ≈ 0.08) reveals. Theleft singular vetor u1 and thus the impat fators show that only observations to polar soures are neededfor the determination of yp. The remaining observations (to equatorial soures) ould have been omitted ifonly yp is of interest. The data resolution matrix shows that every observation to the same polar soure atsas a supporting observation with equal impat (red squares in the data resolution matrix). Observations tosouth polar soures ontribute to yp with the same amount (but in opposite diretion) as observations tonorth polar soures (as indiated by blue squares in the data resolution matrix).After utting the dendrogram at a reasonable height only two lusters with more than one observation remain(see table 5.13 on the next page). These lusters onsist of observations 1, 6 and 11 and observations 2, 7and 12, respetively. The former luster ontains the observations to the north polar soure S0300+85, thelatter luster ontains the observations to the south polar soure S0300�85.Case 14: Earth rotation dUT 1 onlyThe last basi parameter to be investigated is dUT 1, i.e., the phase of the rotation of the interferometer. Forthis parameter observations to polar soures are of no relevane. This is also indiated by the omponents ofthe left singular vetor u1 and thus in the impat fators and impat o-fators. In general, only observationsto equatorial soures an be used for the determination of the rotational phase. This agrees with the resultsdesribed in hapter 4. Observations to equatorial soures orthogonal to the baseline (i.e., to soure S0300+00and only for this interferometer geometry) whih an be observed with high elevations only are of partiularimportane and thus exeed the reommended threshold for high-leverage observations (as indiated by thered line in the impat fator diagram of ase 14 in �gure 5.8 on page 83).Again, the data resolution matrix shows the supporting nature of observations to soure S0300+00 and to theremaining equatorial soures. The luster analysis of this data resolution matrix yields a dendrogram whih�rst shows the lustering of the three observations to soure S0300+00 (see the bottom of the dendrogram).With a large similarity distane, the remaining observations (to equatorial soures) are lustered next. Atlast the polar observations are lustered. The results are summarized in table 5.14 on the next page.



88 5. Design analyses of plane and spatial interferometers
Cluster Analysis Results - Case 12No. of Mean Impat on parameter:Cluster: members: impat fator: Members (observations):

ATB1 1 0.08 3 0.079 ⇒ o2 1 0.00 4 0.002 ⇒ -3 1 0.00 5 0.001 ⇒ -4 1 0.06 8 0.055 ⇒ o5 1 0.00 9 0.002 ⇒ -6 1 0.00 10 0.001 ⇒ -7 1 0.02 13 0.025 ⇒ -8 1 0.00 14 0.002 ⇒ -9 1 0.00 15 0.001 ⇒ -10 6 0.14 1, 2, 6, 7, 11, 12 0.139 ⇒ oTable 5.12: Cluster analysis results for ase 12 (Atmospheri zenith path delay ATB at station B only)Cluster Analysis Results - Case 13No. of Mean Impat on parameter:Cluster: members: impat fator: Members (observations):
yp1 1 0.00 3 0.000 ⇒ �2 1 0.00 4 0.000 ⇒ �3 1 0.00 5 0.000 ⇒ �4 1 0.00 8 0.000 ⇒ �5 1 0.00 9 0.000 ⇒ �6 1 0.00 10 0.000 ⇒ �7 1 0.00 13 0.000 ⇒ �8 1 0.00 14 0.000 ⇒ �9 1 0.00 15 0.000 ⇒ �10 3 0.17 1, 6, 11 0.167 ⇒ +11 3 0.17 2, 7, 12 0.167 ⇒ +Table 5.13: Cluster analysis results for ase 13 (Polar motion yp only)Cluster Analysis Results - Case 14No. of Mean Impat on parameter:Cluster: members: impat fator: Members (observations):
dUT 11 1 0.00 1 0.002 ⇒ -2 1 0.00 2 0.002 ⇒ -3 1 0.00 6 0.002 ⇒ -4 1 0.00 7 0.002 ⇒ -5 1 0.00 11 0.002 ⇒ -6 1 0.00 12 0.002 ⇒ -7 9 0.11 14, 9, 4, 3, 8, 13, 15, 5, 10 0.110 ⇒ +Table 5.14: Cluster analysis results for ase 14 (Earth rotation dUT 1 only)



5.4. Spatial kinemati interferometer 895.4.2 Estimability investigations of omposed parameter setsThe funtional models for data analyses of real VLBI sessions always have to inlude more than the individualbasi parameters disussed so far. Besides the main geophysial parameters of interest (suh as site positionsor earth orientation parameters) at least the lok o�sets of all atomi loks with respet to one referenelok have to be inluded. For a single-baseline session the following ases are of interest:15. Estimation of site oordinates xB , yB, zB and lok o�set CL016. Estimation of lok o�set CL0 and earth rotation dUT 117. Estimation of lok o�set CL0, lok rate CL1 and earth rotation dUT 118. Estimation of atmospheri zenith path delay ATA, lok parameters CL0, CL1 and earth rotation dUT 119. Estimation of lok parameters CL0, CL1, atmospheri zenith path delay ATB and earth rotation dUT 120. Estimation of atmospheri zenith path delay ATA, lok parameters CL0, CL1, atmospheri zenithpath delay ATB and earth rotation dUT 1Cases 17 and 20 show the most ommon parametrisations for single-baseline sessions suh as INTENSIVE ses-sions (see e.g. Fisher 2006). The remaining ases are either needed for a deeper insight or sine they areomponents of ases 17 and 20. As for the basi parameters, ases 15 to 20 will be analysed by investigatingthe analysis omponents displayed in �gure 5.9 on the following page.Case 15: Site oordinates xB , yB, zB and lok o�set CL0Using the same observations as in ases 8 to 14, site positions xB , yB, zB of station B and a onstantbias CL0 of the frequeny standard of station B with respet to the lok at station A an be estimated. Asshown by the singular values in �gure 5.9 every parameter an be determined well. The V-matrix, however,already shows that the �rst parameter (xB) and the last parameter (CL0) are together a�eted by the sameobservations: Hene, the observations with large omponents in the �rst left singular vetor u1 and in thelast left singular vetor u4 (mainly observations to soure S0300+00 and to the polar soures) both a�et
xB and CL0.The orrelation matrix also shows a large positive orrelation (of 0.78) between xB and CL0. This an againbe interpreted geometrially: With this network geometry and this baseline orientation no separation betweena variation in xB and a variation in CL0 (when onsidered as the radius of a sphere around station B) ispossible due to the lak of supporting observations for the zenith observations to soure S0300+00. Supportingobservations would be onduted to the diametrally opposite soure S1800+00 whih is not visible duringthis session.The most important observations are onduted to polar soures S0300+85 and S0300-85. As shown intable 5.15 the dendrogram ut reveals that these observations are of main importane for both zB and CL0.This on�rms the results given in Nothnagel 1991 where observations to soures in elevation usps havebeen reognized as important for the lok o�set determination. The data resolution matrix and the lusteranalysis results show the generation of �ve groups with three observations eah. These groups onsist ofobservations to either the same soure or to neighbouring soures whih obviously have the same informationontent.As for ase 8, zenith observations to soure S0300+00 are of main importane for xB and observations tothe remaining equatorial soures are of importane for yB.
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5.4. Spatial kinemati interferometer 91Case 16: Clok o�set CL0 and earth rotation dUT 1A ommon determination of both the rotation of the interferometer (i.e., dUT 1) and the onstant loko�set CL0 is ompliated by the high orrelation of both parameters (orrelation oe�ient ≈ −0.77). Inaddition, the right singular vetors do not allow a lear assignment of observations to only one parameter.Nevertheless, high impat and a similar information ontent of observations to soure S0300+00 and to thepolar soures S0300+85 and S0300-85 is shown in the data resolution matrix. After the dendrogram ut theluster analysis results (see table 5.16 on the next page) show that observations to soure S0300+00 arestill of main importane for dUT 1 and observations to polar soures (and thus observations to soures inelevation usps) are of main importane for the lok o�set CL0.Case 17: Clok o�set CL0, lok rate CL1 and earth rotation dUT 1The separability of the three parameters CL0, CL1 and dUT 1 is also ompliated by high orrelations ofup to −0.63 (between lok o�set CL0 and lok rate CL1). Again, a lear assignment of observations toparameters is di�ult due to the non-diagonal struture of the V-matrix.For this ase and for the following ases, no lear (or regular) pattern in the data resolution matries andthus in the impat fators an be seen. A human interpretation is ompliated and so the strengths of theautomati, luster analysis-based analysis methods beome obvious.Although the dendrogram of the luster analysis of the data resolution matrix of this ase shows the preseneof three main groups, for a better separation six lusters have been formed. Table 5.17 on the following pageshows that for this parametrisation the two observations 8 and 9 to equatorial soures ould have beennegleted. On the other hand, observations 5, 10 and 15 (to soure S0300+00) are still of main importanefor the determination of the rotation of the interferometer (i.e., for dUT 1).For the lok o�set determination observations 1 to 4 are most important. As table 5.10 on page 85 shows,these observations are performed into eah diretion of the elestial sphere and thus 'san' the sky in diame-tral diretions. Geometrially, for the radius determination of a sphere around station B observations intodiametral diretions are needed.For the lok rate determination the same observation onstellation has to be repeated at the end of thesession. As table 5.17 shows, the last observations performed into eah diretion of the elestial sphere areneeded for the determination of radius variations of the sphere around station B.Case 18: Atmospheri zenith path delay ATA, lok parameters CL0, CL1 and dUT 1After inluding the atmospheri zenith path delay ATA at station A a distint di�erene in the singularvalues an be seen. In onnetion with the �rst right singular vetor, this means that ATA an be determinedwith the lowest variane. In addition, the separability of all parameters has been improved sine the absolutevalues of all orrelations are below 0.5.As the right singular vetors v1 and v4 show, only for the atmospheri zenith path delay ATA and for thelok o�set CL0 lear relations between observations and parameters an be found: The elements of the�rst left singular vetor u1 (whih mainly a�et ATA) show a lear orrelation with the elevations of theobservations at station A (see table 5.10 on page 85). The smaller the elevations, the larger the elementsof u1 and thus the larger the impat on ATA.For the lok o�set determination observations 1 to 4 are of main importane. Again, these are observationsin every diretion of the elestial sphere.As in the previous ase, the data resolution matrix and thus the impat fators do not show a lear pattern.Due to its low elevation at station A observation 14 has again a very high impat on ATA (f. ase 11) as wellas observations 5, 10, 13 and 15, whih are of main importane for the determination of dUT 1 (f. ase 14).This an also be seen in the luster analysis results showed in table 5.18 on the next page.



92 5. Design analyses of plane and spatial interferometersCluster Analysis Results - Case 15No. of Mean Impat on parameter:Cluster: members: impat fator: Members: X Y Z CL01 3 0.30 6, 1, 11 0.064 ⇒ o 0.001 ⇒ - 0.167 ⇒ o 0.129 ⇒ o2 3 0.30 2, 7, 12 0.064 ⇒ o 0.001 ⇒ - 0.167 ⇒ o 0.129 ⇒ o3 3 0.27 15, 5, 10 0.202 ⇒ o 0.002 ⇒ - 0.000 ⇒ - 0.035 ⇒ o4 3 0.24 4, 9, 14 0.002 ⇒ - 0.174 ⇒ o 0.000 ⇒ - 0.018 ⇒ o5 3 0.23 13, 3, 8 0.001 ⇒ - 0.155 ⇒ o 0.000 ⇒ - 0.022 ⇒ oTable 5.15: Cluster analysis results for ase 15 (Site oordinates xB , yB, zB and lok o�set CL0)Cluster Analysis Results - Case 16No. of Mean Impat on parameter:Cluster: members: impat fator: Members (observations):
CL0 dUT 11 1 0.07 3 0.018 ⇒ - 0.001 ⇒ -2 1 0.07 4 0.022 ⇒ - 0.000 ⇒ �3 1 0.07 8 0.015 ⇒ - 0.003 ⇒ -4 1 0.07 9 0.029 ⇒ - 0.000 ⇒ �5 1 0.08 13 0.008 ⇒ - 0.009 ⇒ -6 1 0.07 14 0.034 ⇒ - 0.001 ⇒ �7 3 0.27 15, 5, 10 0.035 ⇒ o 0.202 ⇒ ++8 6 0.13 7, 6, 11, 12, 1, 2 0.128 ⇒ o 0.063 ⇒ -Table 5.16: Cluster analysis results for ase 16 (Clok o�set CL0 and earth rotation dUT 1)Cluster Analysis Results - Case 17No. of Mean Impat on parameter:Cluster: members: impat fator: Members:

CL0 CL1 dUT 11 1 0.07 8 0.011 ⇒ - 0.000 ⇒ � 0.003 ⇒ -2 1 0.07 9 0.008 ⇒ - 0.004 ⇒ - 0.001 ⇒ �3 3 0.33 15, 5, 10 0.044 ⇒ o 0.066 ⇒ o 0.194 ⇒ o4 4 0.20 4, 3, 1, 2 0.161 ⇒ o 0.097 ⇒ o 0.017 ⇒ o5 4 0.20 13, 14, 11, 12 0.010 ⇒ o 0.102 ⇒ o 0.059 ⇒ o6 2 0.13 6, 7 0.082 ⇒ o 0.001 ⇒ - 0.056 ⇒ oTable 5.17: Cluster analysis results for ase 17 (Clok o�set CL0, lok rate CL1 and dUT 1)Cluster Analysis Results - Case 18No. of Mean Impat on parameter:Cluster: members: impat: Members:
ATA CL0 CL1 dUT 11 1 0.10 8 0.034 ⇒ - 0.028 ⇒ - 0.003 ⇒ - 0.001 ⇒ �2 2 0.50 9, 14 0.357 ⇒ o 0.080 ⇒ o 0.002 ⇒ - 0.026 ⇒ o3 4 0.20 4, 3, 1, 2 0.006 ⇒ o 0.128 ⇒ o 0.092 ⇒ o 0.012 ⇒ o4 4 0.32 5, 10, 13, 15 0.031 ⇒ o 0.018 ⇒ o 0.092 ⇒ o 0.118 ⇒ o5 4 0.20 6, 7, 11, 12 0.027 ⇒ o 0.057 ⇒ o 0.065 ⇒ o 0.107 ⇒ oTable 5.18: Cluster analysis results for ase 18 (Atmospheri zenith path delay ATA, lok parameters

CL0, CL1 and dUT 1)



5.4. Spatial kinemati interferometer 93Cluster Analysis Results - Case 19No. of Mean Impat on parameter:Cluster: members: impat: Members:
CL0 CL1 ATB dUT 11 1 0.09 8 0.009 ⇒ - 0.000 ⇒ � 0.023 ⇒ - 0.024 ⇒ -2 1 0.16 13 0.006 ⇒ - 0.081 ⇒ - 0.001 ⇒ � 0.001 ⇒ �3 3 0.39 4, 9, 14 0.249 ⇒ o 0.069 ⇒ o 0.251 ⇒ o 0.174 ⇒ o4 3 0.35 5, 10, 15 0.039 ⇒ o 0.068 ⇒ o 0.016 ⇒ o 0.126 ⇒ o5 3 0.23 3, 1, 2 0.022 ⇒ o 0.094 ⇒ o 0.016 ⇒ o 0.023 ⇒ o6 4 0.21 6, 7, 11, 12 0.014 ⇒ o 0.056 ⇒ o 0.032 ⇒ o 0.001 ⇒ -Table 5.19: Cluster analysis results for ase 19 (Clok parameters CL0, CL1, atmospheri zenith path delay

ATB and dUT 1)Case 19: Clok parameters CL0, CL1, atmospheri zenith path delay ATB and dUT 1Compared to ase 18, estimating the atmospheri zenith path delay ATB at station B instead of ATA atstation A yields very di�erent relations between observation groups and a�eted parameters: Although everyparameter an be estimated (i.e., all singular values > 0) the absolute values of the orrelation oe�ientsbetween some parameters are above 0.8. Only the lok rate CL1 an be well separated from the remainingparameters. Espeially high orrelations between lok o�set CL0, ATB and dUT 1 and between ATB and
dUT 1 ompliate the interpretation of the luster analysis results. Thus, some lusters ommonly a�etseveral parameters (see e.g. luster 3 and luster 4 in table 5.19).In addition, none of the impat fators exeeds the 'high-leverage threshold' (of 2 · u

n
). However, as the meanimpat of eah luster in table 5.19 learly show, the most important observations for this parametrisationare those performed to soures S0700+00, S0730+00, S0755+00 and S0300+00.Case 20: Atmospheri zenith path delay ATA, lok parameters CL0, CL1, atmospheri zenithpath delay ATB and dUT 1The parameters ATA, CL0, CL1, ATB and dUT 1 depit the most ommon parametrisation for single-baselineVLBI networks with a large east-west extension. As the singular values and the �rst two right singular vetorsshow, the two atmospheri zenith path delays ATA and ATB are best determined. The parameter with thelowest auray (or highest variane) is again the lok o�set CL0.Again, the separability of the �ve parameters is weak. Exept for the orrelations of the lok rate CL1 withthe remaining parameters all other (absolute values of the) orrelation oe�ients are above 0.8. This alsoompliates the interpretation of the luster analysis results.The two largest elements of the U-matrix belong to observations 4 and 14. Thus, the impat fators forthese observations show the large importane of these observations. This is again aused by the fat thatequatorial soures are needed for most of these parameters and by the low elevation of observation 14.Cluster analysis of the data resolution matrix shows that observation 8 and observations 6, 7, 11 and 12are andidates for negligible observations. Among the most important observations are again observations 4and 14. These observations are mainly responsible for the determination of ATA, CL0, ATB and dUT 1 (seetable 5.20 on the next page).In ontrast to ases 15 and 16 for the lok o�set determination observations to equatorial soures aremainly needed. In this ase, observations to soures in elevation usps are not of high importane for thedetermination of CL0.



94 5. Design analyses of plane and spatial interferometersCluster Analysis Results - Case 20No. of Mean Impat on parameter:Cl.: mbrs.: impat: Members:
ATA CL0 CL1 ATB dUT 11 1 0.10 8 0.012 ⇒ - 0.001 ⇒ � 0.003 ⇒ � 0.000 ⇒ � 0.000 ⇒ �2 1 0.92 14 0.484 ⇒ o 0.103 ⇒ - 0.000 ⇒ � 0.048 ⇒ - 0.082 ⇒ -3 2 0.49 4, 9 0.118 ⇒ o 0.361 ⇒ o 0.015 ⇒ o 0.349 ⇒ o 0.250 ⇒ o4 2 0.35 5, 10 0.021 ⇒ o 0.027 ⇒ o 0.065 ⇒ o 0.026 ⇒ o 0.105 ⇒ o5 2 0.35 13, 15 0.083 ⇒ o 0.046 ⇒ o 0.138 ⇒ o 0.042 ⇒ o 0.059 ⇒ o6 3 0.25 3, 1, 2 0.016 ⇒ o 0.008 ⇒ o 0.110 ⇒ o 0.029 ⇒ o 0.026 ⇒ o7 4 0.21 6, 7, 11, 12 0.003 ⇒ - 0.001 ⇒ - 0.058 ⇒ o 0.008 ⇒ o 0.003 ⇒ -Table 5.20: Cluster analysis results for ase 20 (Atmospheri zenith path delay ATA, lok parameters

CL0, CL1, atmospheri zenith path delay ATB and dUT 1)5.4.2.1 E�et of omitting observations on the ofators of the estimated parametersAs shown in setion 2.4.3 on page 42, the impat fators play a ruial role in the determination of the inreaseof unertainty and thus on the ofators of the estimated parameters. In order to present some pratialappliations, for ases 14 and 20 up to �ve observations (both important and less important observations)will be omitted and the hanges in the ofators of the respetive parameters (with respet to the ofatorsobtained by using all observations) are analysed.Inrease of unertainty for ase 14 (estimation of dUT 1 only)As shown in the impat fator plot (also see �gure 5.8 on page 83), for the determination of dUT 1, observa-tions 5, 10 and 15 (i.e., observations to the equatorial soure S4, whih is orthogonal to the urrent baseline)and observations 13 and 8 are of main importane. On the other hand, observations 1, 2 and 6, 7 and 11, 12(to polar soures S5 or S6) ould be negleted, if only dUT 1 is of interest.Figure 5.10 on the faing page shows the e�et of suessively omitting the �ve most important observationsand the �ve least important observations on the ofator of dUT 1. Although negleting an observation alwaysleads to an inrease of the orresponding ofator, it an be seen that negleting observations with largeimpat fators has a signi�antly higher impat on the ofator of dUT 1 than the omission of observationswith low impat fators.Inrease of unertainty for ase 20 (estimation of ATA, CL0, CL1, ATB and dUT 1)Omitting the �ve most important observations and the �ve least important observations of ase 20 shows asimilar e�et (see �gure 5.12 on page 96): For every parameter, large ofator hanges an be seen if the �rstmost important observations have been negleted. Similar to ase 14, omitting observations with low impatfators only has a small impat on the ofators of the estimated parameters.For some parameters (suh as CL1) the e�et of negleting 33% of the most important observations is almostequal to the e�et of negleting 33% of the least important observations (see modi�ation numbers 9 and 10).This also depits the general sensitivity of some parameters to hanges in the observation struture.In general, both ase 14 and ase 20 show that observations with large impat fators have to be obtainedarefully sine the (purely geometri) e�et of the observations on the ofators would be ampli�ed if largeformal errors are present. Thus, for the inrease of unertainty both the geometry of the experiment designand the observational error have to be taken into aount (see also Förstner 1992).Obviously, omitting an observation hanges the impat fators of the remaining observations and thus alsohanges the entire impat o-fator situation. Figure 5.11 on the faing page shows the e�et of omittingobservation 14 (of ase 20). Consequently, after omitting observations the regression diagnostis tool has tobe applied to the new situation, i.e., to the modi�ed design matrix.
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5.4. Spatial kinemati interferometer 975.4.2.2 E�ets of reordering observations on impat fatorsFor short observation durations (as onsidered here), reordering of observations does not signi�antly hangethe impat fators. If the basi struture of �ve observations of the original observation shedule (whih isrepeated three times, see table 5.10 on page 85) is hanged to
• Soure S1 (or S2 or S3, depending on hour angle and visibility),
• Soure S7 (or S8 or S9, depending on hour angle and visibility),
• Soure S4,
• Soure S5,
• Soure S6,almost idential impat fators an be seen (for an example see �gure 5.13). This is obviously aused bythe fat that the topoentri observation geometry (i.e., azimuth and elevation of the radio telesope whenpointing at a soure) hange only slightly. Of ourse, this hanges, the longer the session duration and thelarger the di�erenes between the observation times of the exhanged observations.
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0Figure 5.13: Impat fator hanges after reordering of observations (for ase 14)5.4.2.3 Conlusions from spatial kinemati interferometer investigationsThe main intention of the previous setions was to extend the results obtained from the analyses of plane statiinterferometers to spatial kinemati interferometers. As for the plane interferometer, applying the regressiondiagnostis tool to the determination of basi parameters (i.e., site positions x, y, z, lok parameters CL0and CL1, atmospheri zenith path delays ATA and ATB, polar motion xp and yp or earth rotation dUT 1)yields geometrially omprehensible results whih agree with (or supplement) the theoretial onsiderationsin hapter 4:
• For the determination of site positions x, y, z, observations to soures lying approximately in the di-retion of the axis of the oordinate system are needed.
• For the sole determination of the lok o�set (CL0), every observation is of equal importane. For thelok rate (CL1), observations at the end of the observing session are most important.
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• As expeted (see hapter 4), observations performed with low elevations are needed in partiular forthe determination of atmospheri zenith path delays ATA and ATB.
• In agreement with the analysis of the partial derivatives in hapter 4, observations to polar soures aremainly needed for the determination of polar motion xp and yp. Observations to equatorial soures areof no relevane for these parameters.
• On the other hand, for the sole determination of earth rotation dUT 1, observations to equatorialsoures lying orthogonal to the baseline (at the time of the observation) are needed. Observations topolar soures an be omitted. This also agrees with the theoretial onsiderations of hapter 4.For omposed parameter sets (and thus for more omplex and geometrially less omprehensible observationon�gurations), the strengths of the regression diagnostis tool beome even more obvious. In these ases,the sole investigation of partial derivatives does not reveal the overall e�ets of all available observationson the entire parameter set. Here, the regression diagnostis tool based on singular value deompositionand luster analysis provides a more detailed insight into the adjustment problem. For the urrent spatialkinemati interferometer it ould be shown that
• for ertain parametrisations (see e.g. ase 15: x, y, z and CL0 and ase 16: CL0 and dUT 1) groups ofobservations to soures in elevation usps are needed for the determination and separation of the loko�set CL0 (see Nothnagel 1991).
• for the ommon estimation of lok o�set CL0, lok rate CL1 and earth rotation dUT 1 (ase 17)di�erent observations are needed: Here, the group of observations 1 to 4 (i.e., observations into everydiretion of the mutually visible part of the elestial sphere) is responsible for the lok o�set deter-mination. The same observation onstellation is needed at the end of the observing session in orderto determine the lok rate parameter. For dUT 1, still observations to equatorial soures are of mainimportane.
• for more omplex parametrisations and for data resolution matries without an obvious regular pattern,the regression diagnostis tool still reognizes groups of observations. The interpretation, however, isompliated by the unavoidable inrease of omplexity in the relations between the parameters involved.Furthermore, it ould be shown that the impat fators also express the inrease of unertainty, i.e., thee�et of omitting observations on the ofators of the estimated parameters: The higher the impat fator ofan observation i, the higher the e�et of omitting the ith observation on the formal error(s) of the estimatedparameter(s).In summary, it ould be shown that the regression diagnostis tool developed in the �rst hapters yields bothplausible and (geometrially) omprehensible results. In addition to the veri�ation of knowledge based onthe analysis of partial derivatives of single observations (as performed in hapter 4), new �ndings arose frominvestigating the entire design matrix, i.e., by analysing the geometry of the entire observing session.After investigating arti�ial interferometers, the regression diagnostis tool will now be applied to a real,single-baseline observing session.



5.4. Spatial kinemati interferometer 995.4.3 Estimability investigations for a real, single-baseline VLBI sessionAs a �nal appliation example a real single-baseline VLBI session is being investigated. Therefore, an arbitraryINTENSIVE2-session (IVS-ode: K05072, from marh 13, 2005) has been hosen. The two stations involvedare Wettzell (Germany) and Tsukuba (Japan) whih form a baseline with a length of 8445 km. Due to thelong east-west-extension of this baseline, this session type is espeially sensitive for the determination ofearth rotation variations. During the session duration of approximately one hour, 29 observations (to 16soures) have been generated (see table 5.22 on page 102). The observation shedule for this session hasbeen generated at the Geodeti Institute of the University of Bonn using the shedule generation softwareSKED and with the optimisation riterion of maximum sky overage (Fisher 2006). As for all real VLBIsessions, the soures are not distributed homogeneously and thus the observations do not show suh a regularpattern as e.g. in the previous appliation example (see table 5.21 on the following page3). Both the networkgeometry and the soure distribution are shown in �gure 5.14.
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YFigure 5.14: INTENSIVE2-session geometry (left: network geometry (near equatorial view), middle: networkgeometry and soure distribution (near equatorial view), right: network geometry and soure distribution(polar view))As for the �titious interferometer in the previous appliation example, a variety of parameters (and param-eter sets) an be estimated. In the following, these parameter sets will be analysed:21. Estimation of lok o�set CL0 of station Wettzell with respet to station Tsukuba only22. Estimation of lok rate CL1 of station Wettzell with respet to station Tsukuba only23. Estimation of lok o�set CL0 and lok rate CL1 of station Wettzell with respet to station Tsukuba24. Estimation of atmospheri zenith path delay ATWettzell at station Wettzell only25. Estimation of atmospheri zenith path delay ATTsukuba at station Tsukuba only26. Estimation of earth rotation dUT 1 only27. Estimation of atmospheri zenith path delay ATWettzell, lok parameters CL0, CL1, atmospherizenith path delay ATTsukuba and earth rotation dUT 1Sine some of these ases have already been treated in the previous appliation examples, some interpretationsan be kept brief. Case 27 depits the typial parametrisation as used in routine data analysis of single-baseline VLBI sessions for earth rotation determination and thus forms the most important ase. The analysisomponents are shown in �gure 5.16 on page 105.3The �rst four haraters of the soure name indiate the (approximate) right asension (in [hh min℄), the �fth haraterindiates the sign of the delination and the sixth and seventh harater indiate the (approximate) delination of the soure(in degrees).



100 5. Design analyses of plane and spatial interferometersright asension delinationNo. Soure [hh min se℄ [o℄1 0059+581 1 2 45.7 58.242 0106+013 1 8 38.7 1.353 0119+115 1 21 41.5 11.494 0133+476 1 36 58.5 47.515 0229+131 2 31 45.8 13.226 0235+164 2 38 38.9 16.367 0602+673 6 7 52.6 67.208 0804+499 8 8 39.6 49.509 0955+476 9 58 19.6 47.2510 1044+719 10 48 27.6 71.4311 1128+385 11 30 53.2 38.1512 1300+580 13 2 52.4 57.4813 1357+769 13 57 55.3 76.4314 1803+784 18 0 45.6 78.2815 1807+698 18 6 50.6 69.4916 2037+511 20 38 37.0 51.19Table 5.21: Soure list for real interferometer investigationsCase 21: Estimation of lok o�set CL0 of station Wettzell with respet to station TsukubaonlyAs for the lok o�set determination in a plane interferometer and a spatial, kinemati interferometer (ases 3and 9) for the solely determination of the lok o�set CL0 of station Wettzell with respet to station Tsukubaevery observation is of the same importane and no dendrogram an be formed.Case 22: Estimation of lok rate CL1 of station Wettzell with respet to station Tsukuba onlyIn a similar way, for the solely determination of the lok rate CL1 of station Wettzell with respet tothe lok at Tsukuba the time of the observation is of ruial importane for the impat the partiularobservation has on the parameter estimation proess. Again, this resembles the impat of observations onthe determination of the slope of a regression line (without estimating an axis o�set).The data resolution matrix shows the inreasing impat for eah observation as well as the supporting natureof the last observations. Due to this struture, the dendrogram shows a sequential lustering of (at �rst) thelast observations up to the �rst observation, whih is lustered at last (see also ase 10).Case 23: Estimation of lok o�set CL0 and lok rate CL1 of station Wettzell with respet tostation TsukubaThe ommon estimation of the lok o�set CL0 and the lok rate CL1 of one station with respet to areferene lok has not been treated so far. Here, the referene lok is the lok at Tsukuba station.The analysis of these parameters is ompliated by the high orrelation oe�ient (of −0.86). Sine the V-matrix does not show a lear diagonal struture, a unique relation between observations and parameters isdi�ult. The impat fators, however, show a very lear and almost symmetrial inrease of the importanesof the �rst and the last observations, while the middle observations are of mean importane. This exatlyresembles the situation when estimating the two parameters of an adjusting straight line (regression line withthe axis o�set estimated at the epoh of the �rst observation): the �rst observations are of main importane



5.4. Spatial kinemati interferometer 101for both the axis o�set and the slope determination, while the last observations are mainly responsible forthe slope determination. The same results an be seen after utting the dendrogram to form two groups ofobservations (see table 5.23 on the next page): Here, the �rst observations are both responsible for the loko�set and the lok rate. The last observations are almost solely neessary for the lok rate determination.Case 24: Estimation of atmospheri zenith path delay ATWettzell at station Wettzell onlySimilar to the atmospheri zenith path delay determination in the arti�ial interferometer in the previousexample, observations performed with low elevations at Wettzell station are of main importane for theestimation of ATWettzell . As shown in table 5.22 on the following page, observations with large impatfators (suh as observations 2, 4, 13, 14, 18, 20 and 23) are observed with very low elevations (below 11 [o],at Wettzell). These are also observations whih have been lustered at �rst. Due to the absene of distintlusters a dendrogram ut is not reasonable.Case 25: Estimation of atmospheri zenith path delay ATTsukuba at station Tsukuba onlyAs shown in table 5.22 on the next page, in general, observations at Wettzell station have been observedwith lower elevations than at Tsukuba station. Consequently, for the determination of the atmospheri zenithpath delay ATTsukuba at Tsukuba, less important observations are available than for the determination of
ATWettzell in ase 24. But again, a lear relation between the size of the impat fators and the elevationsat Tsukuba an be seen.Also in this ase, the luster analysis of the data resolution matrix shows that observations 2, 16, 8 and 24are grouped at �rst. The remaining observations are lustered in a sequential order without forming di�erentlusters. Therefore, a dendrogram ut is not reasonable.Case 26: Estimation of earth rotation dUT 1 onlyAs mentioned in ase 14 of the arti�ial spatial interferometer, equatorial soures (i.e., soures with lowdelinations) lying almost orthogonal to the baseline are of main importane for the determination of the earthrotation dUT 1. This an also be seen in the impat fators of this ase in �gure 5.16 on page 105: Observationswith large impat fators lose to the threshold for very important observations have been performed tosoures 0106+013 (observation 21), 0119+115 (observations 11, 19 and 27) or 0229+131 (observation 28)whih all possess delinations below 15 [o].The data resolution matrix for this ase shows the presene of several supporting observations mainly in theseond half of the session. The dendrogram of the luster analysis of this matrix shows that the most impor-tant observations (observation 21 to soure 0106+013, observation 27 to soure 0119+115, observation 19to soure 0119+115 and observation 11 also to soure 0119+115) are grouped at �rst. The dendrogram alsoshows the presene of mainly two lusters with 17 and 12 observations, respetively. As shown in table 5.24on page 103 the �rst luster is of main importane for the determination of dUT 1. The �rst luster onsists ofthe above mentioned observations to equatorial or near-equatorial soures. The seond luster only ontainsobservations to soures loated on the northern part of the mutually visible part of the elestial sphere andwhih are andidates for negligible observations (see �gure 5.14 on page 99).Case 27: Estimation of atmospheri zenith path delay ATTsukuba, lok parameters CL0, CL1,atmospheri zenith path delay ATWettzell and earth rotation dUT 1The estimation of the atmospheri zenith path delay ATTsukuba at Tsukuba, the lok parameters CL0 and
CL1 of the lok behaviour at Wettzell, the atmospheri zenith path delay ATWettzell at Wettzell and ofthe earth rotation dUT 1 represents a realisti parametrisation of an INTENSIVE2-session. Sine this ase
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Start of observation Azimuth Azimuth Elevation ElevationNo. Soure [MJD℄ ([min.℄) Tsukuba [o℄ Wettzell [o℄ Tsukuba [o℄ Wettzell [o℄1 0059+581 53442.314 (0.0) 321.3 47.2 51.73 45.112 1128+385 53442.316 (2.8) 49.2 319.3 9.59 10.143 1357+769 53442.317 (4.3) 8.6 340.2 24.97 47.764 0955+476 53442.319 (7.2) 50.5 339.4 29.32 10.285 1044+719 53442.320 (8.6) 22.6 345.7 32.13 34.686 1807+698 53442.321 (10.0) 351.2 338.1 17.51 65.517 0602+673 53442.322 (11.5) 17.8 12.0 55.63 28.358 2037+511 53442.324 (14.4) 326.7 64.3 12.98 83.609 1803+784 53442.325 (15.8) 355.6 349.7 25.32 58.6110 0133+476 53442.327 (18.7) 304.4 57.8 55.68 37.8911 0119+115 53442.328 (20.1) 254.6 91.2 40.18 16.2912 0059+581 53442.329 (21.6) 320.7 48.5 48.80 47.8813 0955+476 53442.331 (24.4) 52.8 342.8 32.13 9.3114 0804+499 53442.332 (25.9) 53.7 1.2 50.62 8.9815 1807+698 53442.334 (28.8) 353.7 335.0 16.99 64.2916 2037+511 53442.335 (30.2) 328.3 51.9 11.17 85.9417 0133+476 53442.337 (33.1) 304.2 59.1 53.27 39.8918 0235+164 53442.338 (34.5) 245.8 75.8 55.00 9.7119 0119+115 53442.339 (36.0) 257.7 94.3 37.02 18.9420 0229+131 53442.341 (38.8) 244.9 80.8 50.96 8.9721 0106+013 53442.342 (40.3) 250.5 104.6 27.34 13.8922 1044+719 53442.344 (43.2) 22.8 348.2 34.76 33.3323 0955+476 53442.345 (44.6) 53.7 345.3 35.40 8.3724 1300+580 53442.346 (46.0) 29.5 326.1 16.38 30.3825 0059+581 53442.348 (48.9) 320.2 50.5 45.32 51.1926 0133+476 53442.349 (50.4) 304.6 61.3 50.21 42.4827 0119+115 53442.351 (53.3) 260.2 97.8 33.78 21.6028 0229+131 53442.352 (54.7) 248.1 83.4 47.94 11.6229 0235+164 53442.353 (56.2) 250.9 80.4 50.92 13.21Table 5.22: Observation list for real interferometer investigations (INTENSIVE2-session K05072, 13-3-2005),MJD = modi�ed julian date, ([min.℄) indiates the minutes passed sine the �rst observation.Cluster Analysis Results - Case 23No. of Mean Impat on parameter:Cluster: members: impat: Members (observations):

CL0 CL11 14 0.07 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 0.062 ⇒ o 0.036 ⇒ o3, 1, 22 15 0.07 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 0.009 ⇒ - 0.033 ⇒ -25, 26, 27, 28, 29Table 5.23: Cluster analysis results for ase 23 (Estimation of lok o�set CL0 and lok rate CL1 of stationWettzell with respet to station Tsukuba)



5.4. Spatial kinemati interferometer 103Cluster Analysis Results - Case 26No. of Mean Impat on parameter:Cluster: members: impat: Members (observations):
dUT 11 17 0.05 6, 16, 8, 1, 12, 25, 10, 17, 26, 18, 20, 29, 0.047 ⇒ o28, 11, 19, 21, 272 12 0.02 9, 7, 15, 3, 22, 5, 14, 23, 24, 13, 2, 4 0.016 ⇒ -Table 5.24: Cluster analysis results for ase 26 (Estimation of earth rotation dUT 1 only)resembles ase 20 of an arti�ial interferometer, many results of this ase are similar to the results of ase 20.The di�erenes in the results are mainly due to the omplexity of this ase (i.e., di�erent baseline orientationand inhomogeneous soure distribution).Also for this real interferometer, the three best determined parameters are the atmospheri zenith pathdelay ATWettzell at Wettzell, the earth rotation parameter dUT 1 and the atmospheri zenith path delay

ATTsukuba at Tsukuba. Again, the weakest determined parameter is the lok o�set CL0 (f. ase 20). As inase 20 a strong orrelation (of 0.75) between the �rst atmosphere parameter (here: ATTsukuba) and the loko�set CL0 exists. The remaining orrelations, however, improved and are muh lower than the orrespondingorrelations in ase 20 (the absolute values of all remaining orrelation oe�ients are below 0.5).In agreement with ase 20, the most important observations are those performed with low elevations (ase.g. observations 2, 16, 23, and 24). The geometry of the three most important observations is shown in�gure 5.15 on the next page. The luster analysis of the data resolution matrix shows that these observationsbelong to the three most important lusters 1 to 3, whih are mainly responsible for dUT 1, ATTsukuba and
ATWettzell (see table 5.25). Due to their large impat onto the estimation proess, these observations shouldbe supplied (or ontrolled) by appropriate (independent) observations.The remaining lusters are of importane for either dUT 1 or the lok o�set CL0. Cluster 4 ontains obser-vations to equatorial soures, luster 5 ontains observations to the middle of the mutually visible part ofthe elestial sphere. As for ase 20, for the determination of the lok o�set CL0, observations to soures inevery part of the elestial sphere are needed.From these results it an be onluded that luster 5 ontains observations whih are andidates for obser-vations that an be omitted, sine this luster mainly a�ets the auxiliary parameter CL0. On the otherhand, observations of luster 1 and luster 2 are important for the main parameter dUT 1 and should thusbe ontrolled by further, independent observations.Cluster Analysis Results - Case 27No. of Mean Impat on parameter:Cl.: mbrs.: impat: Members:

ATTS CL0 CL1 ATWZ dUT 11 4 0.21 4, 14, 13, 23 0.015 0.010 0.024 0.047 0.0522 4 0.20 22, 24, 25, 26 0.015 0.010 0.094 0.051 0.0663 5 0.25 15, 6, 2, 8, 16 0.133 0.037 0.016 0.036 0.0164 8 0.14 27, 28, 29, 19, 11, 21, 18, 20 0.004 0.011 0.023 0.035 0.0445 8 0.12 17, 9, 7, 3, 5, 12, 1, 10 0.024 0.081 0.033 0.018 0.012Table 5.25: Cluster analysis results for ase 27 (Estimation of atmospheri zenith path delay ATTsukuba,lok parameters CL0, CL1, atmospheri zenith path delay ATWettzell and earth rotation dUT 1)



104 5. Design analyses of plane and spatial interferometersE�ets of modi�ations of luster 5 on the ofators of the parametersIn the following, it is investigated how muh a modi�ation of the observations of one luster a�ets theofators of the parameters to be estimated: Sine luster 5 (ontaining observations 17, 9, 7, 3, 5, 12, 1and 10) mainly a�ets the lok o�set CL0 (while the earth rotation parameter dUT 1 is least a�eted), itis assumed that replaing the eight observations of luster 5 with the observations of luster 1 and luster 2results in an inrease of the ofator of CL0 (i.e., a degradation of this parameter's auray) and a dereaseof the ofator of dUT 1 (i.e., an improvement of the auray of this parameter)4.Table 5.26 shows that replaing luster 5 by lusters 1 and 2 indeed mainly inreases the ofator of CL0.This agrees with the inrease of unertainty-investigations of ases 14 and 20 performed on page 94. Theofator of dUT 1, however, is only slightly a�eted (i.e., the auray of dUT 1 is only slightly improved).This again shows that the inrease of unertainty mainly quanti�es the e�et of omitting observations on theofators of the parameters.The modi�ations desribed above only slightly a�et the singular values and the orrelations between theparameters. Thus, a visualisation is not reasonable. Cofator hange
ATTS [m2℄ CL0 [m2℄ CL1 [m2/day2 ℄ ATWZ [m2℄ dUT 1 [m2℄Original observations 288.1 4384.8 449.5 97.4 46.6Cluster 5 replaed 322.3 7690.7 556.4 106.7 45.6Table 5.26: Case 27: E�ets of modi�ations of luster 5 on the ofators of the parameters
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4Obviously, due to the rotation of the earth, after the replaement of the observations of luster 5 with the observations oflusters 1 and 2, luster 5 onsists of similar (but not idential) observations as ontained in lusters 1 and 2.
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106 5. Design analyses of plane and spatial interferometers5.4.3.1 Conlusions from real, single-baseline VLBI session investigationsFor a real VLBI session, interpretations are ompliated by the skew orientation of the baseline (i.e., withrespet to a geoentri, artesian referene system), by the inhomogeneous soure distribution and the irreg-ular observation order. Nevertheless, most of the onlusions whih an be drawn from investigating a real,single-baseline VLBI session resemble those obtained from the investigations of an arti�ial spatial kinematiinterferometer. Espeially for the most realisti parametrisation (ase 27), the need for �rst investigating lessomplex ases beame obvious. Only by onsidering the results of ases 8 to 20, ases 21 to 27 an beunderstood.As mentioned in the previous onlusions, the more omplex the funtional model, the more di�ulties arisedue to the unavoidable inrease of the orrelations between the parameters to be estimated. Nevertheless,it ould be shown that the regression diagnostis tool is also suited for real interferometers with omplexobservation struture. In most ases, groups of observations as well as their impat on the parameters to beestimated ould be deteted. Final onlusions will be given in the next hapter.



1076. Summary, Conlusions & OutlookSummaryThe objetive of this thesis is the development of a regression diagnostis tool, whih an be used to improvethe robustness and reliability of VLBI solutions. Therefore, the regression diagnostis tool must be able todetet the in�uene of single or groups of observations as well as their impat on the estimated parameters.In the language of parameter estimation in linear models: A tool for the detetion of groups of high-leverage(and thus in�uential) observations and their impat on linear ombinations of parameters (and thus on theparameters itself) is needed. Hene, suh a regression diagnostis tool depits an extension of the ommoninvestigations of the partial derivatives of a funtional model with respet to the parameters to be estimated.While investigating partial derivates only provides the sensitivity of single observations on ertain parameters(and thus the impat of single observations on the adjustment proess), the regression diagnostis tool devel-oped in this thesis analyses the entire design or the entire geometry of an experiment by taking into aountthe entire design matrix of an adjustment problem. Although the regression diagnostis tool developed inthis thesis an be applied to any adjustment problem, in this thesis only appliations to geodeti VLBI arepresented.In order to develop the regression diagnostis tool, at �rst some algebrai bakground needs to be summarised.Therefore, hapter 1 provides the basis of eulidean vetor spaes, projetions onto subspaes as well asthe geometri aspets of the least-squares approah. In this ontext, the singular value deomposition of adesign matrix is of fundamental importane sine it provides new bases for the four subspaes of a matrixand is used to ompute a so-alled data resolution matrix. This matrix ontains the so-alled impat fatorsand impat o-fators whih are used in the subsequent hapters for assessing the in�uene of observations.In hapter 2 the lose relationship of the algebrai bakground of hapter 1 (i.e., the so-alled vetor spaeapproah) with geodeti adjustment theory (or the theory of linear models) is presented. Furthermore, thelose relationship of impat fators and redundany numbers is given as well as geometrial interpretationsof impat fators and impat o-fators. Sine impat o-fators represent a ommon information ontent ofobservations, they an be used to detet groups of similar observations. In order to identify groups of similarobservations, so-alled luster analysis methods are applied to the elements of the data resolution matrix.These methods are desribed in hapter 3. Furthermore, this hapter provides methods for measuring theimpat of groups of observations onto individual parameters. The omputation of the data resolution matrixafter performing the singular value deomposition of the assoiated design matrix and the appliation ofluster analysis methods to the elements of the data resolution matrix form the main steps of the regressiondiagnostis tool developed in this thesis.After a short review of the VLBI priniple in hapter 4 the regression diagnostis tool is applied to planeand spatial interferometers. Therefore, hapter 5 desribes the qtSVD software, whih has been developedby the author of this thesis to
• set up the design matrix of a VLBI session,
• perform the singular value deomposition of the design matrix and to ompute the data resolutionmatrix,
• to apply luster analysis algorithms to the data resolution matrix, to visualize the luster analysisdendrogram and to detet groups of similar observations and
• to ompute the impat of eah group of observations on eah parameter to be estimated.In order to show the apabilities of the regression diagnostis tool, it is applied to a plane, stati interferometerand to spatial, kinemati interferometers. The latter ones are divided into an arti�ial spatial interferometerand a real VLBI session.



108 6. Summary, Conlusions & OutlookConlusionsBased on both theoretial onsiderations and pratial appliations it ould be shown that
• the regression diagnostis tool yields plausible and (geometrially) omprehensible results.
• the regression diagnostis tool an be used to detet groups of jointly in�uential and ounter-atingobservations.
• the regression diagnostis tool determines the impat of eah group of observations onto the parametersto be estimated.
• the regression diagnostis tool an be used to detet degeneraies (or ritial (baseline) on�gurations)and thus parameters whih annot be estimated or separated (f. ase 6).
• a tehnial realisation (i.e., a software implementation) of the regression diagnostis is possible and anbe used for several (geodeti) adjustment problems.The main bene�t of the regression diagnostis tool developed in this thesis is thus the ability to detet weakparts of the design of a (VLBI-)experiment. The weak parts (suh as inappropriate observation groups orindeterminable parameters) an then be improved or further investigated by the analyst.The results obtained from applying the regression diagnostis tool to plane and spatial interferometers agreewith (or even extend) existing VLBI analysis strategies. In addition, the regression diagnostis tool providesthe inrease of unertainty due to the omission of observations. It thus shows whih observations should beontrolled (or supplied) by appropriate (independent) observations. In other words: It ould be shown, thatthe regression diagnostis tool developed in this thesis is able to detet weak parts of the design of (not onlyVLBI-) experiments. In general, the strengths of the regression diagnostis tool beome obvious for omplexobservation geometries and thus for experiments with data resolution matries whih do not possess a regularpattern.Di�ulties may arise in the only subjetive part of the regression diagnostis proedure, i.e., the dendrogramut. Depending on the form of the dendrogram a reasonable height for a dendrogram ut might not agreewith a large similarity di�erene. In these ases, the analyst has to make an appropriate deision.OutlookIn future, the regression diagnostis tool developed in this thesis needs to be applied to other single-baselineinterferometers, to larger VLBI networks and for real VLBI session sheduling. In order to extend the pureanalysis funtionality of qtSVD, either the ability for shedule improvement suggestions should be added toqtSVD or the methods developed in this thesis should be implemented in existing VLBI sheduling software,suh as SKED. Furthermore, the regression diagnostis tool should be applied to other geodeti adjustmentproblems suh as geodeti networks or other geodeti spae tehniques.In addition to the appliation of data spae investigations (as performed in this thesis), the regressiondiagnostis tool ould also be used for model spae analyses and ould thus be used to improve the estimabilityand separability of geodeti and geophysial parameters.
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