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Abstract

Robots are increasingly moving from industrial applications into everyday human en-
vironments such as healthcare, households, and public spaces. In these interactive
and personal contexts, successful human-robot interaction (HRI) critically depends on
robots” abilities to interpret, reflect, and adapt to individual human preferences. Yet
traditional robot navigation methods, though reliable in structured environments, gen-
erally fail to capture and reflect nuanced user preferences, resulting in suboptimal user
experience, reduced trust, and limited acceptance.

To address these shortcomings, this thesis presents a comprehensive approach to-
ward personalized, learning-based robot navigation. It specifically focuses on four crit-
ical aspects: (1) efficient and intuitive collection of human preferences, (2) balancing
user preference reflection with robot navigation goals, (3) deriving expressive sensor
representations suitable for dynamic environments, and (4) ensuring adaptability and
transparency in HRI once deployed on a robot.

First, user preferences are captured using intuitive interfaces and efficient learn-
ing frameworks. We introduce a virtual reality (VR) demonstration interface, enabling
users to sketch robot navigation trajectories with high intuitiveness. The VR interface is
complemented with a hybrid reinforcement learning (RL) and behavioral cloning (BC)
framework that requires only few demonstrations. We confirm through a user study that
the personalized controller outperforms non-aligned baseline approaches, with users
reporting that their preferences were better reflected. Besides demonstration-based ap-
proaches, we also optimize the preference collection through RL from human feedback
(RLHF). We introduce the novel query generation approach “EnQuery” based on pol-
icy ensembles, maximizing the information gain in low-query regimes, while providing
trajectory options with common start and goal reference points. EnQuery subsequently
drives a user study that compares immersive VR and conventional 2D video interfaces
for preference collection. Here, we find effects of the interface modality on user experi-
ence, preference consistency, and policy alignment.

Second, the thesis develops and validates learning architectures that balance the
trade-off between user preference reflection and robot task completion. The proposed
hybrid RL+BC learning framework internalizes user preferences while preserving goal-
directed performance. To quantify the quality of preference reflection in navigation tra-
jectories, we introduce a new metric that is based on the Fréchet Distance.

Third, we address the challenge of sensor representation for robust navigation in
dynamic, human-populated environments. A depth vision-based perception pipeline
employing a variational autoencoder and motion prediction compresses sensor obser-
vations into latent states, capturing both scene details and the user for effective person-
alized policy learning. In parallel, a spatiotemporal attention mechanism paired with
a novel 2D lidar state representation improves obstacle avoidance and foresight in dy-

iii



namic human environments over state-of-the-art baselines.

Fourth, the thesis advances the adaptability and transparency of learning-based
robot navigation policies. To accommodate adaptability to evolving user preferences, a
multi-objective RL framework facilitates principled post-deployment tuning of demon-
stration reflection and other navigation objectives. For improved transparency between
robot and user, an explainable artificial intelligence (Al) interface in VR is developed, vi-
sually grounding navigation policy attribution scores semantically in scene context. The
approach communicates internal decision-making of black-box neural network policies
in an intuitive manner and thereby improves non-expert users’ objective and subjective
understanding of robot behavior.

These contributions are validated through extensive simulation studies, user ex-
periments, and real-robot deployments. The findings demonstrate that preference-
reflecting, learning-based navigation is achievable, robust, and perceived as superior
to classical approaches by users. The insights regarding interface modality, interaction
sample efficiency, sensor abstraction, and explainability inform the design of future
user-centric robotic systems. In summary, this thesis establishes principled methods
for navigation preference collection, learning, and behavior explanation, advancing the
state-of-the-art towards seamless, preference-aware HRI in daily life.

iv
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1 Introduction

The field of robotics is developing rapidly, expanding from primarily human-free indus-
trial automation settings into human-centric domains such as public spaces, healthcare,
and households. Our society will increasingly rely on robots not only due to societal
workforce demand through population aging [1], but also because of the robots” eco-
nomic and comfort benefits in assisting with daily tasks [2]. So, with the foreseeable
emergence of robots as everyday helpers in human-shared household environments and
healthcare roles, which represent intimate and interactive contexts, the robots” success
and acceptance depend critically on their ability to engage appropriately and intuitively
with human users [3].

Human-robot interaction (HRI) has become a critical research area for ensuring the
robot’s practical utility and societal acceptance. As opposed to classical robotics that
optimizes for accuracy and efficiency, HRI requires robots to interpret and respond dy-
namically to human social norms, expectations, and individual preferences [4]. Human-
aware navigation represents a core sub-field of HRI, as spatial behavior is a very salient
aspect of mobile robots through which humans assess a robot’s social competence. For
HRI and the general acceptance among users, the robot’s ability to address people’s
preferences will become an increasingly important success criterion [4], [5], [6], [7].

To understand how robots might achieve such preference-reflecting behavior, we can
take inspiration from natural human interactions. The seamless coexistence between
people interacting and sharing space with one another relies on the human ability to
account for the preferences of others. Given a specific (joint) task or goal, humans align
their actions accordingly, aiming to achieve optimal coexistence with those involved [8],
[9]. To do so, they draw on past experiences and knowledge of others’ preferences and
mannerisms, which allows them to adapt their behavior based on context, situation, and
necessity [10]. For instance, a person’s comfort distance with someone may be smaller
when jointly cleaning a kitchen as part of a team effort, but larger when encountering
the same person while relaxing in a living room.

Transferring the insights from human-human interactions to HRI, a fundamental
challenge in achieving comfortable interaction is the alignment of robot navigation
strategies with subjective human preferences [11], [12]. These subjective preferences
may manifest in individual social norms, personal space preferences or proxemics [13],
and context- and scene-related behavior expectations towards the robot. Yet, user pref-
erences might be influenced by personality traits [14], cultural background, past ex-
periences, attitudes, and current intentions [4]. Even if the robot completes its task
technically correct, failure to adapt to user preferences may result in discomfort [15],
disruption [16], reduced trust among users [17]. Therefore, a one-fits-all approach is
potentially too short-sighted and navigation behavior that works well for one person
might be inappropriate or uncomfortable for another. For instance, while one person
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may prefer the robot to take the shortest path and pass directly in front of them, an-
other one may expect it to move aside, finding a close frontal passage uncomfortable or
intrusive.

At the same time, users generally wish to have a certain degree of control over the
technology they interact with [12]. Especially in HRI scenarios with repeated interac-
tions, adaptation to the user is a key factor for long-term acceptance [14], [18]. Tradi-
tional robot navigation algorithms, while capable of obstacle avoidance and path opti-
mization, fail to adequately reflect user-specific preferences, leading to potentially sub-
optimal user experiences [19], [20]. It is therefore essential to design navigation sys-
tems that capture, learn, and integrate human preferences. Advancing from traditional
navigation approaches to preference-reflecting policies, navigation becomes a complex
multi-objective optimization problem, where social appropriateness, preference reflec-
tion, efficiency, and safety must be jointly balanced. As an illustration, a robot may need
to decide whether to take a longer, less efficient trajectory to avoid annoying a seated
person in its vicinity and to respect their preference for minimal distraction, despite a
shorter path being available.

In repeated interactions, humans construct mental models of others, allowing them
to anticipate behaviors and adapt accordingly. These models are formed through a com-
bination of verbal and non-verbal communication, observational learning, and context-
sensitive inference [21]. Humans can recognize subtle feedback signals and dynami-
cally adjust their behaviors to accommodate or anticipate others” needs. For a robot,
however, interpreting subtle feedback signals from users is an inherently challenging
task [22], [23], as it requires not only refined multimodal perception capabilities, but
also profound emotional intelligence [7].

While we can take inspiration from human interpersonal interactions for robotic sys-
tems, they must rely on interaction modalities that are both informative and techni-
cally practical. Building accurate internal representations of user preferences becomes
more straightforward when leveraging explicit modalities, such as direct human feed-
back [24], [25], [26], [27], demonstrations [15], [24], [25], [27], [28], and verbal instruc-
tions [29], [30].

This thesis addresses the challenge of how robotic systems can capture, interpret, and
adapt to user preferences in the context of navigation tasks carried out in the immediate
vicinity of the user. Addressing this challenge requires consideration of several aspects:
First, the design of interfaces through which users can express their preferences, includ-
ing mechanisms that maximize the associated information gain. Second, the creation
of data-efficient learning methods that integrate preference information while preserv-
ing the robot’s task-specific objectives. Third, the derivation of information-dense sen-
sor representations that capture the dynamic robot environment with obstacles and the
user. Fourth, investigating how to improve HRI further by policies that remain adapt-
able to changing user preferences, and enhancing the users’ perception and understand-
ing of the robot behavior for improved HRI.



1.1 Towarps PErsoNALIZED RoBoT NAVIGATION

1.1 Towards Personalized Robot Navigation

Learning-based robot navigation is the central topic addressed in all the publications
included in this thesis. But why are learning-based navigation and personalization so
tightly connected? To approach this question, this section highlights the evolution and
recent developments in robot navigation that enable the personalization of robot behav-

ior to human preferences.

1.1.1 Traditional Approaches

Traditional non-learning-based robot navigation typically involves global path plan-
ning, paired with local obstacle avoidance to account for unknown and dynamic obsta-
cles. The global path planning module has the task of providing high-level navigation
cues or waypoints to a desired goal using a map of the environment. For occupancy
grid maps [31], established planning algorithms include A* [32] and Rapidly-exploring
Random Trees (RRT) [33], [34]. To follow these planned paths reliably, the robot must
accurately estimate its position relative to the map, typically achieved via Monte Carlo
Localization (MCL) [35].

The local obstacle avoidance relies on high-level guidance from the global planner
and generates collision-free trajectories in the robot’s immediate vicinity. Established
methods include the Dynamic Window Approach (DWA) [36] or potential field meth-
ods [37], [38]. This navigation skill is crucial in human-populated or cluttered environ-
ments, where unknown static (e.g., non-fixed objects, clutter) or dynamic (e.g., walk-
ing humans, navigating robots) obstacles require real-time sensing and rapid decision-
making to ensure safe and effective navigation.

The approaches presented in this thesis are not traditional but learning-based, yet use
methods such as A* for high-level guidance to local learning-based obstacle avoidance
(Chapter 4), Adaptive MCL for localization (Chapter 4), or DWA as a non-personalized
obstacle avoidance baseline (Chapter 2).

1.1.2 Human-Aware and Social Robot Navigation

While the traditional methods offer reliable performance in static or moderately dy-
namic settings, they are often inadequate for navigation in human-populated environ-
ments where social context and motion prediction are critical [39], [40]. In such scenar-
ios, pedestrians represent dynamic agents with individual goals, preferences, and social
norms, which challenge the assumptions of traditional obstacle avoidance frameworks,
because they treat all obstacles as non-interactive. This has led to the development of
social navigation approaches that explicitly incorporate models of human behavior, typ-
ically by integrating pedestrian trajectory prediction, proxemics, or interaction-aware
planning into the robot’s control loop. Methods such as social force models [41], social
cost maps [42], (reciprocal) velocity obstacles [43], [44], [45] with human-aware con-
straints, and optimization-based planners such as elastic band [46], [47] have been pro-
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posed to ensure safe and socially acceptable navigation in shared spaces. Another so-
cial navigation paradigm is learning to reduce the influence on nearby humans through
the robot [48]. These approaches typically rely on explicit pose and kinematics data of
pedestrians, but accurately estimating this from the robot’s sensors is a challenge on its
own.

Human-aware navigation is central to this thesis, with most works focusing on per-
sonalized navigation by designing policies that interact with and adapt to a single,
preference-expressing user. Additionally, Chapter 2 employs a social cost approach as
a baseline.

1.1.3 Advent of Reinforcement Learning Policies

While classical methods offer robust performance in structured environments, they of-
ten struggle to capture the nuanced and context-dependent behaviors required for safe
and socially compliant navigation in human-populated spaces [39]. To address these
limitations, recent research has increasingly focused on reinforcement learning-based
(RL) navigation controllers [49], [50], which allow robots to learn navigation behaviors
directly from experience via reward signals and demonstration [51], [52], [63]. Deep
learning and scalable computation have made RL practical, with stable algorithms and
simulators enabling efficient, reproducible training [54], [55]. The policies of RL are
typically implemented as deep neural networks (hence the term deep RL, short DRL),
which support flexible, generalizable behaviors across diverse scenarios [54]. By di-
rectly coupling sensory observations with policy learning, these controllers operate in
an end-to-end manner [56], eliminating the need for hand-crafted intermediate repre-
sentations. This is particularly advantageous in partially observable, dynamic environ-
ments, where conventional rule-based systems lack the adaptability to handle uncer-
tainty and interactive agents. The aforementioned characteristics of DRL offer great
potential for human-aware navigation, as they enable robots to learn context-sensitive
behaviors in an end-to-end manner. Leveraging this capacity, all approaches presented
throughout this thesis integrate DRL policies.

1.1.4 Learning Human Preferences

While traditional RL methods typically rely on low-dimensional, hand-crafted state rep-
resentations and discrete action spaces, they struggle to capture the complexity and
variability of human preferences. In contrast, the capacity of RL policies and neural net-
works in general makes them ideal candidates to learn and interpret nuanced human
preferences [24], [57], [58]. Rather than relying on hand-tuned cost functions, methods
such as inverse reinforcement learning (IRL) [59], RL from human feedback (RLHF) [60],
and RL combined with behavioral cloning (BC) [61] enable implicit preference learning.

In short, IRL infers reward structures from expert demonstrations, capturing latent
intent behind observed behavior. IRL requires high-quality demonstrations and can suf-
fer from ambiguity in inferred rewards but provides a generalizable and interpretable



1.2 OVERARCHING RESEARCH QUESTIONS

RQ1: Preference Collection RQ2: Preference vs. Task

i &
>>>>>ﬂ s\»@‘\

RQ3: Sensor Representations RQ4: Adaptability & Transparency

Figure 1.1: Visual summary of the four overarching research questions (RQs) addressed
throughout this thesis. RQ1 focuses on the efficient collection of human preferences
via intuitive interfaces. RQ2 investigates the balance between adherence to user pref-
erences and task efficiency in robot navigation. RQ3 addresses the design of com-
pact and expressive sensor state representations for RL-based navigation in dynamic
environments. RQ4 examines adaptability to changing user preferences and user-
transparent explanations to enhance long-term usability and user understanding in
HRI. See Section 1.2 and Table 1.1 for details and chapter-wise mapping.

reward model. In contrast, RLHF leverages comparative feedback to align policy be-
havior with subjective human judgments. It avoids the need for demonstrations but
relies on noisy and potentially inconsistent human feedback. Lastly, RL+BC enhances
the learning process by supporting initial exploration with demonstrated trajectories
while maintaining generalization to unseen states through reinforcement. Its effective-
ness depends on demonstration coverage and careful tuning between exploration and
imitation.

All three methods allow robot policies to internalize preferences directly from data,
making them adaptable to individual users and contexts. In other words, preferences
are not just modeled but actively integrated into the learning process.

In this thesis, all three preference learning techniques are addressed. Chapters 2
and 3 utilize RL+BC, Chapters 7 and 6 deal with RLHF for personalization of robot
navigation behavior, and Chapter 5 leverages IRL.

1.2 Overarching Research Questions

To better understand the research challenges addressed in this thesis, four publication-
overarching research questions (RQs) are discussed in the subsequent sections, see Fig-
ure 1.1. In short, they cover 1) efficient and intuitive collection of human preferences,
2) balancing user preference reflection with robot navigation goals, 3) deriving expres-
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sive sensor representations suitable for dynamic environments, and 4) ensuring user-
centric adaptability and transparency in HRI. The linkage of each individual publica-
tion to these RQs is briefly outlined, also compare Table 1.1. Since not all publications
address each question equally, only the relevant ones are referenced accordingly. Note
that additionally, the final summary of key contributions will in Section 1.3 will refer to
the RQs sorted by publications.
RQ1 RQ2 RQ3 RQ4
Efficient Task/

Preference Preference
Collection Balancing

Sensor Adaptability
Representations & Transparency

Chapter 2 v v

Chapter 3 v v v

Chapter 4 v

Chapter 5 v v
Chapter 6 v

Chapter 7 v

Chapter 8 v
Chapter 9 v v v

Table 1.1: Mapping of thesis chapters to the overarching research questions.

1.2.1 RQ1: Efficient Human Preference Collection

A key requirement for personalized navigation is the efficient collection of human pref-
erences via some sort of interface between the robot’s control system and the user. In
robotics, humans express preferences by demonstrating how a specific task should be
performed, by providing feedback on the robot’s actions, and lastly, by verbal explana-
tion. This thesis directly tackles demonstration and feedback, while verbal preference
expression is discussed as an outlook in context of the recent advent of large language
models (LLMs) in Chapter 9.

While collecting preferences on real robots is feasible [15], it poses challenges such
as limited repeatability, high time and resource costs, and reduced experimental con-
trol. A promising solution is computer-based interfaces that provide a high degree of
experimental control over the collection process at larger repetition numbers [62] also
in conjunction with high fidelity robotic simulators [63], [64].

However, perspective gaps between preference expression and how the final robot
behavior is perceived and evaluated by the user, especially in demonstration or feed-
back tasks, can reduce preference accuracy [65], [66]. For example, a user might tele-
operate the robot using a game controller while watching a robot-centric video stream.
Although the controller may feel intuitive, the video stream shows a viewpoint differ-
ent from the user’s own, and depth perception is limited. This mismatch may impair
the user’s understanding of the scene, potentially leading to demonstrations that do not
accurately reflect their preferences.

Immersive virtual reality (VR) technology can overcome the gap between the demon-
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stration and evaluation perspective between robot and user. Chapters 2 and 3 employ
VR to collect user preferences via demonstration. Specifically, non-expert users draw
desired robot trajectories onto the floor of a VR scene by pointing with a handheld con-
troller. Chapter 7 compares user preferences collected via feedback in immersive VR
with those from a 2D video interface.

Another challenge of the preference collection process is optimizing the information
gain through each interaction with the user [52], [67], thereby reducing the number of in-
teractions required and therefore user fatigue. To maximize the utility of demonstration-
based preferences [52], Chapters 2 and 3 apply data augmentation to improve learning
from only a few demonstrations. Chapter 6, on the other hand, introduces a querying
approach for RLHF, addressing the open challenge of optimal query generation [12],
[67], [68].

RQ1 summarizes to how preference collection interfaces can be designed to maxi-

mize intuitiveness, efficiency, and information gain.

1.2.2 RQ2: Preference Reflection vs. Task Efficiency: A Balancing Act

When personalizing the robot’s behavior for a given task, a balance between task exe-
cution and personalization is required [69], a balancing act between multiple, possibly
conflicting objectives. Ultimately, the robot is expected to fulfill its original task, or in
terms of navigation, reach its original goal while reflecting preferences.

For example, a user might prefer longer paths, such as having the robot follow walls
closely. While the policy can learn this from demonstrations, it must also generalize to
unseen scenarios. How can we design a navigation system that fulfills the task while
respecting preferences wherever possible?

To tackle this problem, Chapters 2 and 3 employ a hybrid RL+BC framework, along
with a specifically designed reward system to balance general task execution with per-
sonalized behavior. To also quantify the quality of preference reflection, Chapter 3 intro-
duces a novel metric that helps in evaluating the balance between preference adherence
and goal-directed navigation.

While the aforementioned approaches strike a one-shot balance at personalization,
Chapter 5 tackles the balancing act of personalization explicitly as a multiobjective learn-
ing problem. This approach allows us to fluently interpolate a single policy between
goal pursuit and demonstration reflection.

RQ2 summarizes as how to design and evaluate robot policies that balance task com-
pletion with adherence to individual user preferences, especially when these objectives

are in conflict.
1.2.3 RQ3: Sensor Representations for RL-Based Navigation in Dynamic Environ-
ments

For RL-based robot navigation systems, effective sensor data representations are crucial,
especially in dynamic environments [70]. While vision sensors such as depth cameras
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offer rich spatial information, they also pose challenges for RL due to high dimension-
ality and occlusions. Depth-based navigation must compress complex visuals into a
compact, expressive representation that captures scene dynamics and supports prefer—
ence anchoring. Otherwise, performance degrades, especially near moving humans.

To address this challenge, Chapter 3 presents a perception pipeline employing a vari-
ational autoencoder coupled with a motion predictor for dynamic navigation scenarios,
such that depth images are effectively compressed into latent representations conducive
to learning personalized navigation policies. For non-personalized, foresighted navi-
gation among humans, Chapter 4 leverages a spatiotemporal attention mechanism on
2D lidar sensor data.

RQ3 summarizes how to design and evaluate compact yet expressive sensor state
representations that enable RL-based navigation to robustly handle dynamic obstacles.

1.2.4 RQ4: Adaptability and Transparency in Robot Decision-Making

The final research question concerns the interaction between a (personalized) naviga-
tion policy and the user once the policy is deployed. What measures improve HRI at
this stage? Firstly, user preferences can be dynamic and change over time [14], [71], or
demonstrations provided in one context may not be applicable to all situations. Per-
sonalized policies thus require some form of adaptability after deployment. Chapter 5
addresses this with a multi-objective RL (MORL) approach, which enables post-training
policy adaptation.

Second, transparency is essential for HRI, as users were found to have a clear interest
in robots capable of explaining their navigational decisions [72]. However, the black-box
nature of end-to-end neural policies [73] can hinder user understanding, impair users’
mental model formation, and reduce user trust. To address this challenge, explainability
methods can enhance transparency of policy behavior for users. For non-expert users,
those explanations need to be communicated in a user-friendly and cognitively accessi-
ble manner. Chapter 8 introduces a VR interface that augments the robot’s perception
and reasoning by conveying explainability attribution scores and lidar sensor percep-
tion to non-expert users.

RQ4 summarizes as how to enable adaptability to changing user preferences and
user-digestible behavior explanations for the robot policies to improve long-term us-
ability and user understanding in HRI.

1.3 Key Contributions

Chapter 2 introduces a novel intuitive VR demonstration interface combined with a
RL framework, enabling non-expert users to intuitively specify personalized navigation
preferences through limited demonstration data. In a user study, the resulting person-
alized navigation controller demonstrates superior comfort and alignment with subjec-
tive user preferences, significantly outperforming traditional navigation methods, and
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seamlessly transfers from simulation to real robotic platforms. (RQ1, RQ2)

Chapter 3 proposes a personalized depth vision-based robot navigation method
learned from VR demonstrations in dynamic environments. The approach leverages
a perception pipeline consisting of a variational autoencoder (VAE) and a motion pre-
diction module to compress depth observations into latent state representations for a
personalized DRL policy. A new metric based on the Fréchet Distance quantitatively
evaluates the degree of user preference reflection, complemented by extensive qualita-
tive and quantitative analyses validating the method’s capability to capture and gener-
alize user-specific navigation behaviors effectively from depth vision. (RQ1, RQ2, RQ3)

Chapter 4 develops a lightweight, lidar-based robot navigation controller enhanced
by a novel spatiotemporal attention mechanism. The introduced lidar state representa-
tion, temporal accumulation group descriptor (TAGD), reveals dynamic obstacles over
static ones, and improves DRL-based local obstacle avoidance without explicit obstacle
tracking. The spatiotemporal attention mechanism selectively processes sensory data,
significantly enhancing navigation robustness and foresight in dynamic pedestrian-rich
environments. (RQ3)

Chapter 5 presents a demonstration-enhanced MORL framework enabling robot
navigation policies to adapt dynamically to changing user preferences post-training
without additional retraining. Demonstrations are incorporated as a tunable objective,
facilitating continuous policy refinement in response to evolving preferences. The ap-
proach is rigorously validated through simulation experiments, which demonstrates
adaptability, robustness, and generalization, and leads to successful real-world deploy-
ment. (RQ2, RQ4)

Chapter 6 introduces EnQuery, a novel query-generation method employing en-
sembles of policies to generate behaviorally diverse navigation trajectory queries for
RLHF. Through a regularization term ensuring diversity, EnQuery enhances prefer-
ence alignment efficiency, achieving superior alignment performance even with min-
imal user queries compared to state-of-the-art baselines. Additionally, a novel visual-
ization scheme comprehensively captures learned navigation behaviors across the scene
from a top-down perspective. (RQ1)

Chapter 7 systematically evaluates the influence of VR and conventional 2D inter-
faces on the collection of human navigation preferences for robot policy alignment.
Through the dataset collection and analysis of over 2,000 preference queries from a
user study, the chapter identifies significant interface modality-driven differences in
user experience, preference consistency, and resulting navigation policy effectiveness.
This comparative analysis underscores critical trade-offs between interface immersion,
perception fidelity, and reliability of captured user preferences, guiding future interface
selection decisions in preference-based robot learning. (RQ1)

Chapter 8 presents an immersive virtual reality interface integrating semantic ex-
plainable AI (XAI) projections with lidar visualizations to enhance transparency and
trust in robot navigation. By grounding abstract neural network attribution scores se-
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mantically within scene contexts, the interface significantly improves non-expert users’
objective understanding and subjective predictability of robot behaviors, as empirically
confirmed by a detailed user study. This novel integration of semantic XAI and sen-
sor visualization effectively bridges the gap between abstract policy explanations and
human interpretability, advancing user-centric explainability in HRI. (RQ4)

Chapter 9 provides a structured overview of the current advancements in the field of
robotics through foundation models, specifically the possibilities of large (vision) lan-
guage model interfaces and policies for personalization.

Finally, Chapter 10 reflects on the findings of Chapter 2 to 8 and contextualizes them
against the background of recent advancements in foundation models and other devel-
opments relevant to robot personalization.

1.4 Publications

Parts of this thesis have been published in international journals and conference pro-
ceedings, and the list below provides a chapter overview of the individual publications.
The chapters represent slightly revised versions of the published papers. Where appro-
priate, citations and contextual discussions were updated to reflect recently published
literature, including works that have appeared after the original publication dates.

¢ Chapter 2
[74] J. de Heuvel, N. Corral, L. Bruckschen, and M. Bennewitz, “Learning Per-
sonalized Human-Aware Robot Navigation Using Virtual Reality Demonstrations
from a User Study,” in Proceedings of the IEEE International Conference on Human &
Robot Interactive Communication (RO-MAN), 2022.

¢ Chapter 3
[75] J. de Heuvel, N. Corral, B. Kreis, J. Conradi, A. Driemel, and M. Bennewitz,
“Learning Depth Vision-Based Personalized Robot Navigation From Dynamic
Demonstrations in Virtual Reality,” in Proceedings of the IEEE /RS] International Con-
ference on Intelligent Robots and Systems (IROS), 2023.

¢ Chapter 4
[76] J. de Heuvel, X. Zeng, W. Shi, T. Sethuraman, and M. Bennewitz, “Spatiotem-
poral Attention Enhances Lidar-Based Robot Navigation in Dynamic Environ-
ments,” in IEEE Research and Automation Letters, 2024.

¢ Chapter 5
[77] J. de Heuvel, T. Sethuraman, and M. Bennewitz, “Demonstration-Enhanced
Adaptable Multi-Objective Robot Navigation,” in Proceedings of the IEEE /RS] Inter-
national Conference on Intelligent Robots and Systems (IROS), 2025.

¢ Chapter 6
[78] J. de Heuvel, F. Seiler, and M. Bennewitz, “EnQuery: Ensemble Policies for
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Diverse Query-Generation in Preference Alignment of Robot Navigation,” in Pro-
ceedings of the IEEE International Conference on Human & Robot Interactive Communi-
cation (RO-MAN), 2024.

¢ Chapter 7
[79] J. de Heuvel, D. Marta, S. Holk, I. Leite, and M. Bennewitz, “The Impact of
VR and 2D Interfaces on Human Feedback in Preference-Based Robot Learning,”
in Proceedings of the IEEE /RS] International Conference on Intelligent Robots and Sys-
tems (IROS), 2025.

¢ Chapter 8
[80] J. de Heuvel, S. Miiller, M. Wessels, A. Akhtar, C. Bauckhage, and M.
Bennewitz, “Immersive Explainability: Visualizing Robot Navigation Decisions
through XAI Semantic Scene Projections in Virtual Reality,” in Proceedings of the
IEEE International Conference on Human & Robot Interactive Communication (RO-
MAN), 2025.

Supplemental material is available for selected publications. A comprehensive list
can be found in the supplemental material section of the thesis appendix.

Publications Not Covered By This Thesis

The following publications were (co-)authored during the period of employment as a
research associate. However, they are not included within the scope of this thesis.

¢ J. de Heuvel, W. Shi, X. Zeng, and M. Bennewitz, “Subgoal-Driven Navigation in
Dynamic Environments Using Attention-Based Deep Reinforcement Learning,”
in Proceedings of the IEEE /RS] International Conference on Advanced Robotics (ICAR),
2023.

¢ M. Dawood, N. Dengler, J. de Heuvel, and M. Bennewitz, “Handling Sparse Re-
wards in Reinforcement Learning Using Model Predictive Control,” in Proceedings
of the IEEE International Conference on Robotics & Automation (ICRA), 2023.

¢ B. Kreis, R. Menon, B. K. Adinarayan, J. de Heuvel, and M. Bennewitz, “Reactive
Correction of Object Placement Errors for Robotic Arrangement Tasks,” in Proceed-
ings of the International Conference on Intelligent Autonomous Systems (IAS), 2023.

e B. Kreis, N. Dengler, J. de Heuvel, R. Menon, H. D. Perur, and M. Ben-
newitz, “Compact Multi-Object Placement Using Adjacency-Aware Reinforce-
ment Learning,” in Proceedings of the IEEE-RAS International Conference on Hu-
manoid Robots (Humanoids), 2024.

¢ 5. Agrawal, M. Wessels, J. de Heuvel, J. Kraus, and M. Bennewitz, “Sound Matters:
Auditory Detectability of Mobile Robots,” in Proceedings of the IEEE International
Conference on Human & Robot Interactive Communication (RO-MAN), 2024.
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¢ E. Schlachhoff, N. Dengler, L. Van Holland, P. Stotko, J. de Heuvel, R. Klein, and

M. Bennewitz, “RHINO-VR Experience: Teaching Mobile Robotics Concepts in an
Interactive Museum Exhibit,” in Proceedings of the IEEE International Conference on
Human & Robot Interactive Communication (RO-MAN), 2024.

H. Surmann, J. de Heuvel, and M. Bennewitz, “Multi-Objective Reinforcement
Learning for Adaptable Personalized Autonomous Driving,” in Proceedings of the
12th European Conference on Mobile Robots (ECMR), 2025.

M. Wessels, J. de Heuvel, L. Miiller, A. L. Maier, M. Bennewitz, and J. Kraus,
“Auditory Localization and Assessment of Consequential Robot Sounds: A Multi-
Method Study in Virtual Reality,” in Proceedings of the IEEE International Conference
on Human & Robot Interactive Communication (RO-MAN), 2025.

1.5 Collaborations

This thesis includes work conducted in collaboration with other researchers and insti-

tutions. The following outlines the contributions and responsibilities of all parties in-

volved.
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Chapter 2: The broad idea of a VR-based interface originated the DFG proposal
for the Research Unit 2535 “Anticipating Human Behavior”, co-authored by Lilli
Bruckschen. I extended this idea into a demonstration platform for personalized
robot navigation, developed the learning architecture, and led the project execu-
tion. Nathan B. Corral supported with data collection.

Chapter 3: I conceived the project, executed all core work, and wrote the paper.
The “Deviation-Aware Fréchet Distance” metric was co-developed with Jacobus
Conradi. Benedikt Kreis supported the literature review. Nathan B. Corral as-
sisted with the iGibson setup.

Chapter 4: As a student assistant under my supervision, Xiangyu Zeng concep-
tualized the TAGD lidar representation and conducted initial experiments. The
PyBullet-based simulation framework was a joint development by her and Weix-
ian Shi within the scope of their master’s theses, both of which I supervised. I
conducted all subsequent evaluations and real-world experiments and authored
the manuscript.

Chapter 6: The EnQuery approach is the result of a master’s thesis project by Flo-
rian Seiler under my supervision. Wejointly refined the evaluation for publication;
I finally authored the publication.

Chapter 5: I conceived and implemented the demonstration-infused MORL ap-
proach for adaptable preference modeling. Tharun Sethuraman assisted with real-

world experiments.
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¢ Chapter 7: This collaboration involved the Humanoid Robots Lab (Bonn) and the
Division of Robotics, Perception and Learning (KTH). I initiated the idea of com-
paring interface modalities and led the user study design and execution. Together
with Daniel S. Marta and Simon Holk, the project idea was refined. Prof. Iolanda
Leite facilitated the pilot study at KTH. Tharun Sethuraman supported the inter-
face implementation. Simon Holk and Daniel S. Marta contributed reward model
code and RLHF-related sections.

¢ Chapter 8: This work was a collaboration between three research groups. I devel-
oped the VR interface concept for scene-semantic XAI projections and coordinated
the project. Sebastian Miiller refined the XAI method and contributed to related
work and methodology section. Marlene Wessels assisted with the user study and
statistical analysis. Aftab Akhtar implemented the Unity interface and supported
data collection.
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2 Learning Personalized Human-Aware Robot Navi-
gation Using Virtual Reality Demonstrations from
a User Study

Abstract

For the most comfortable, human-aware robot navigation, subjective user pref-
erences need to be taken into account. These preferences need to be collected in
an efficient and user-intuitive manner, to subsequently shape the navigation policy
of the robot. This chapter presents a novel reinforcement learning framework to
train a personalized navigation controller along with a virtual reality demonstra-
tion interface. Using the immersive interface, users can draw robot trajectories on
the floor using a handheld controller, enabling spatially grounded demonstration
without requiring expert knowledge. The conducted user study provides evidence
that our personalized approach significantly outperforms classical approaches with
more comfortable human-robot experiences. We achieve these results using only a
few demonstration trajectories from non-expert users, who predominantly appreci-
ate the intuitive demonstration setup. As we show in the experiments, the learned
controller generalizes well to states not covered in the demonstration data, while
still reflecting user preferences during navigation. Finally, we transfer the naviga-
tion controller without loss of performance to a real robot.

2.1 Introduction

Robot personalization to specific user preferences will become a key factor for comfort-
able and satisfying human-robot interactions, as robots find their way into our every-
day lives. Hence, the number one goal should be a naturally collaborative experience
between users and the robot. Harmonic human-robot interactions build trust and sat-
isfaction with the user [4], whereas negative interaction experiences can quickly lead to
frustration [81]. As users might have personal preferences about specific aspects of the
robot’s behavior that define the personal gold standard of interaction, falling short of
preference reflection could lead to such negative interaction experiences.

Where mobile household robots navigate in the vicinity of a human, basic obstacle
avoidance approaches fail to capture individual user preferences. While collision avoid-
ance is undoubtedly crucial during navigation, the navigation policy should further-
more be human-aware and take into account user preferences regarding proxemics [81]
and privacy, compare Figure 2.1 (bottom). Subjective preferences may vary depending

on the environment and social context, e.g., navigation preferences could reflect in the

This chapter is a revised and updated version of the peer-reviewed publication [74]. Refer to Section 1.4
for details.
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robot’s approaching behavior, or always driving in front or behind the human. In addi-
tion, following a certain speed profile and maintaining a certain distance from humans
and other obstacles in the environment might play a role. The resulting navigation ob-
jective for the robot is to reach the navigation goal, not necessarily by only following the
shortest path, but also by taking personal robot navigation preferences into account.

Recent advances in learning socially aware navigation behavior from human demon-
strations have been made with inverse reinforcement learning, where the parameters
of a proxemics-encoding reward function were inferred [15]. Influenced by the initial
shaping of the reward function [82], such approaches lack the ability for navigation
style personalization beyond the scope of the reward function. For smooth navigation,
reinforcement learning (RL) based continuous control has led to promising results on
mobile robots [56], [83]. Furthermore, off-policy RL methods can be complemented
with demonstration data to greatly improve learning speed on a given task, even out-
performing the resourcefulness of the original demonstrations [53]. However, RL robot
navigation policies learn the most efficient trajectories to the goal. These trajectories do
not necessarily reflect the original demonstration behavior, which contains user pref-
erences. To more precisely imitate behavior from demonstrations, behavioral cloning
(BC) can be used [84]. However, the final policy is limited by the quality and amount of
demonstration data [52]. The dataset would need to cover most of the state space to gen-
eralize fluently in unseen environments. This poses a problem, as human demonstrators
can only provide limited amounts of demonstration data due to their finite patience [85].
With regard to our overarching RQ1 (cf. Chapter 1.2.1) the question crystallizes, how do
we efficiently record personal preferences and teach them to the robot, without being
limited by the quality and quantity of demonstrations.

In order to solve the aforementioned challenges, this chapter proposes a novel navi-
gation learning approach together with an immersive virtual reality (VR) interface to in-
tuitively demonstrate robot navigation preferences by drawing trajectories onto the floor
with a handheld controller, see Figure 2.1. Importantly, the interface does not require
expert-level knowledge of robotics, facilitating personalized navigation for a wide range
of users. Our demonstration process is time-efficient, as only few demonstrations are
required. The demonstrations are leveraged to successfully train a personalized human-
aware navigation controller, by combining deep reinforcement learning and behavioral
cloning. We show that our navigation policy closely reflects user preferences from only
a few demonstrations. But at the same time, it generalizes to unseen states. In an ex-
tensive user study, we evaluate the personalized navigation behavior against classical
navigation approaches both in VR and on a real robot.

The threefold main contributions of our study are:

* A VR demonstration interface for teaching navigation preferences to robots intu-
itively.

* Learning a user-personalized, context-based navigation policy based on the com-
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Figure 2.1: Top: We propose a virtual reality (VR) interface to intuitively demonstrate robot nav-
igation preferences by drawing trajectories on the floor with a handheld controller.
Bottom: User study survey results on the importance of personalized navigation be-
havior. Participants strongly expressed their preference for personalization of robot
navigation behavior, even at a possible cost of longer trajectories.

bination of RL and BC.

* An interactive user study recording user-specific navigation preferences, evaluat-
ing both the presented interface and learned personalized navigation policies.

2.2 Related Work

Extensive research has been done on both human-aware navigation [40] and on robot
personalization [4], [86], but only a few works can be found at the intersection of both
disciplines. Wilde et al. align robot path planning in a known environment to user pref-
erences, by letting users rank different path candidates. While their approach operates
in the global path planning domain, our work will focus on local human-aware naviga-
tion.

Various studies adapt human-aware navigation behavior either by learning or in-
ferring cost-maps [15], [87], [88]. These cost-maps usually encode proxemics or envi-
ronmental characteristics. To improve navigation in human-robot interaction based on
context, Bruckschen et al. [89] leveraged previously observed human-object interactions
to predict human navigation goals, which in turn enables foresighted robot navigation
and assistance. Other studies aimed to distinguish between different environment types
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as context in order to automatically adjust the robot’s navigation behavior [90], [91]. In
our work, we consider different environment scenarios as context.

Posture and gait can serve as informative non-verbal cues for robot navigation, as
the following works show. Luber et al. [92] studied the angle of approach between two
individuals to improve human-aware navigation. Also, head orientation and gaze can
represent predictors for social navigation [23]. Recently, Narayanan et al. [93] leveraged
the human gait posture as social cues for foresighted robot navigation by predicting the
human’s navigation intent and emotion. To build upon the aforementioned findings,
we as well take the human orientation into account.

To learn personal navigation preferences in a human-robot collaboration scenario
from demonstrations, Kollmitz et al. [15] learned the parameters of a navigation re-
ward function from physical human-robot interaction via inverse reinforcement learn-
ing. More specifically, the navigation reward function was learned from a user pushing
the robot away to a desired distance. A limitation of this approach is the state space
represented by a 2D grid map of the environment, making the approach unsuitable
for larger and unknown environments. To overcome this limitation, our state space is
robot-centric and continuous, focusing on the vicinity to the human and obstacles.

Xiao et al. [90] proposed using teleoperation demonstrations to learn context-based
parameters of a conventional planner. Here, the reproduction of demonstration trajec-
tories during navigation is limited by the capabilities of the conventional planner. To
ensure a more distinct preference reproduction including certain trajectory profiles, we
chose a deep learning-based controller.

To efficiently train a deep learning-based navigation controller for robot navigation
via reinforcement learning, Pfeiffer et al. [83] utilized demonstration navigation data
gathered from an expert planner algorithm. The demonstration data was used to pre-
train the agent via imitation learning, followed by the reinforcement learning. In our
work, we use a similar architecture for continuous control learning, but in contrast, we
focus on human demonstrations of robot trajectories.

Virtual reality environments have been successfully deployed to simulate human-
robot interactions [87], [94], offering a tool for realistic demonstration and evaluation.
As a result, we chose to develop a VR interface that interactively records the user-
demonstrated trajectories of a robot. These demonstrated trajectories provide the data
required to learn user-specific robot navigation preferences. The VR interface enables
a first-person experience of the navigating robot during demonstration, ensuring a re-
alistic perception of proxemic aspects. In these regards, a clear benefit over, e.g., real
world robot teleoperation is the easy separation of the demonstration and re-evaluation
experience in simulation, enabling interactive replay of scenarios.

Since the publication of our original study, related approaches in the areas of virtual
and augmented reality (VR/AR) and robot personalization have been presented. Im-
mersive interfaces have recently been adopted for data collection pipelines in robotics.
For instance, Moletta et al. collected user demonstrations of cloth folding to learn
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garment-specific folding plans for a robot [95], and Zhang et al. used VR for the demon-
stration of socially acceptable navigation behavior to an autonomous agent [96]. VR
and AR have also been employed for learning user preferences in navigation tasks.
Nakaoka et al. leveraged VR to align a social force navigation model to user prefer-
ences [97], and Nigro et al. used augmented reality (AR) to collect proxemic preferences
of elderly people for an approaching mobile robot[98]. In parallel, other works have in-
troduced personalized robot navigation approaches interacting with users through nat-
ural language interfaces powered by large language models [99], [100], [101]. Finally,
Wang et al. optimize the amount of preference data required for preference-reflecting
navigation [102], a challenge also tackled in our work. Their learning framework is also
hybrid, fusing explorations and human demonstrations obtained through a keyboard
interface in a common buffer. While their demonstrations are reward-labeled through
another feedback loop, we directly run them through a behavioral cloning loss. While
differing in implementation, these contributions underline both the applicability of im-
mersive technologies for safe and user-friendly data collection, and the alignment of
robot behavior to individual user preferences as an emerging research trend.

2.3 Problem Definition and Assumptions

In this work, we consider a differential wheeled robot that has a local navigation goal
and navigates in the vicinity of a single human. Our goal is to create a personalized
robot navigation controller that adapts to user preferences by learning from demon-
strations of robot trajectories that include a velocity profile. Hereby, we focus on local
human avoidance taking into account user-specific preference. Both human and robot
are interacting in the same room, which serves as context for the navigation behavior.
We assume that the positions and orientations of the human, the robot, and all obstacles
are known. All parameters above can play a role for the robot navigation preferences of
the user and need to be reflected in the robot-centric state space.

2.4 Reinforcement Learning from Demonstrations

We adapted a twin-delayed deep deterministic policy gradient (TD3) architecture con-
sisting of an actor and two critic networks [103]. TD3 was chosen for two reasons: i) It
has a continuous action space allowing smooth robot control and ii) it is off-policy, thus
is a perfect candidate for use with demonstration data. The actor network outputs two
continuous robot control commands, i.e., forward and angular velocity. We introduce
two modifications to classic TD3, similar to Nair ef al. [104]: i) a behavioral cloning loss
on the actor network and ii) a separate buffer to integrate demonstration data. The in-
troduction of the behavioral cloning loss makes our approach a hybrid of reinforcement
and imitation learning. Figure 2.2 depicts a schematic overview of our approach.
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Figure 2.2: Schematic representation of the proposed architecture. a) Demonstration trajectories
are drawn by the user and fed into the demonstration buffer. b) A TD3 reinforcement
learning architecture with an additional behavioral cloning (BC) loss on the actor
trains a personalized navigation policy for human-robot interaction with continuous
control. The learned policy is then evaluated in VR and subsequently transferred to
a real robot. ¢) The robot-centric state space captures the vicinity and orientation of
the human and the obstacles as well as the goal direction.

24.1 Twin-Delayed Deep Deterministic Policy Gradient

Reinforcement learning describes the optimization of transitions from state s; — s;41
following a Markov Decision Process that result in a reward r; = r(s¢, at), by tak-
ing an action a; = my(s;) at time step ¢ with respect to a policy 74 [105]. The tuples
(st,at, e, Se41) are referred to as state-action pairs. The optimization objective is to max-
imize the cumulative return R = ZT (i=t)r, of the y-discounted rewards, onward
from ¢t. With TD3, we optimize the expected return

ye = 1+ min Qor (se41,mg (s0+1) + €0,) 5 (2.1)

while using the minimum of two critics (Qg, , Qg,) to prevent value overestimation. 0;
denotes the (network) parameters of critic ¢ and ¢ those of the actor. The clipped Gaus-
sian policy noise ¢, stabilizes the Q-value estimation over similar state-action pairs and
is controlled by the standard deviation o,
To ensure sufficient exploration, we add Gaussian noise from a process N with stan-
dard deviation o, to the actions drawn from the actor, so that a; = m4(s) + N (0, 0¢,).
To update the critic §;, TD3 optimizes the loss

b
=1 D (05— Qi (55, 0506)° 22)
J

over all state-action pairs j in the batch of size b. The actor network parameters ¢, are
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updated using the policy gradient:

1 b
vqﬁ‘] = g Z anmin(sv ale)’s:s]~,a:7r(s)v¢7r(8‘¢)’8j (23)
J

For further details on the learning algorithm, please refer to [103] and [106].

The actor and critic networks share a feed-forward three-layered perceptron archi-
tecture with 256 neurons each. We normalize both the input (observation space for actor
and critic) and output (action space for actor) of the networks, respectively.

2.4.2 Replay and Demonstration Buffer

In addition to TD3'’s standard experience replay buffer of size Br, we introduce a sec-
ond replay buffer to solely hold demonstration data, called the demonstration buffer.
As the demonstration data is collected before training begins, its main difference to the
experience buffer is that it is not updated during training and thus holds the demon-
stration data for the entire training duration. Its size Bp is equivalent to the number of
demonstration state-action pairs.

We uniformly sample both from the experience replay buffer and the demonstration
buffer with batch size by = bp = 64. As both batches are merged, the actor and critic
networks are optimized both with the demonstration and the latest experience data at
every training step.

2.4.3 Behavioral Cloning

Similar to [104], we introduce a behavioral cloning loss Lpc on the actor network as an
auxiliary learning task:

bp
Lpc =Y |Im(sil¢) — ail? (2.4)
i=1
Only the batch fraction originating from the demonstration replay buffer is processed
on the behavioral cloning loss. The resulting gradient of the actor network is

V¢Jiotal = ARLV ¢ — Asc Vo LpC. (2.5)

Leveling both gradients against each other using Agc /gy, is important to achieve a balance
where the navigation policy reproduces demonstration-like behavior around known
states (in demonstration data), but also learns to handle unknown states correctly.

2.4.4 State Space

A visualization of our robot-centric state space is shown in Figure 2.2c. The state space
is kept as minimalist as possible to ensure a fast and reliable training performance. The
functionality of our approach is proven for a single human in the vicinity of the robot.
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Figure 2.3: a) The demonstrated robot navigation preference trajectories of two participants, A
and B, are shown for different human position-orientation pairs (color-coded). Note
the wall-following preference of user B, whereas user A prefers a smooth curve nav-
igation style. b) The personalized controller successfully learned to reflect the indi-
vidual user preferences. Note that when no specific side preference is given, as in the
demonstrations in the corridor, the controller reproduces trajectories mainly on one
side. We evaluated our approach against c) the social cost model and d) the Dynamic
Window Approach. A quantitative comparison of the different approaches in both
environments reveals e) a higher relative path length (normalized by linear distance)
and f) a higher preferred minimum distance. g) The increased path area for our con-
troller (between the learned trajectory and linear distance) also points to a general
preference for earlier deviation from the shortest path in favor of more comfortable
trajectories.

The state vector contains the person’s distance dy to the robot’s position and relative
angle Aay to its orientation, facilitating human awareness. Furthermore, the relative
angle to the navigation goal A« is provided. To increase awareness for the human'’s
field of view, the person’s body orientation relative to the orientation of the robot Ay gy
is included. It indicates whether a person faces the robot or not. To deal with obstacles,
we include the closest distance dp, and relative angle Aap, from the robot’s pose to all

environment obstacles O;.

2.4.5 Reward

The reward function is designed to avoid collisions and ensure goal-oriented navigation
behavior. We aim to teach user-specific navigation preferences not by complex reward
shaping, but only via demonstration data. Consequently, we keep the reward as sparse
as possible, besides basic collision penalties and goal rewards. More specifically, the
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reward function is defined as

T = Teollision 1 T'goal T Ttimeout- (2.6)

We introduce a scaling factor for the reward crew = 5 that is used throughout the re-
ward definition below. When the robot collides with the human or an obstacle during

navigation, we penalize with

—cCrew if collision
Tcollision = (2.7)
else.

The goal-reaching reward is provided to the agent if the robot is located closer than a
certain distance to the goal position:

+crew if goal reached in demonstration data
Tgoal = { 0 if goal reached during training (2.8)

0 else

Note that we give a detailed explanation on the goal-reaching reward in Section 2.5.5. Fi-
nally, the timeout reward encourages the agent to avoid inefficient actions by penalizing
behavior where the goal is not reached by the agent after a certain number of steps Nep:

(2.9

) -9~ if episode timeout (n > Nep)
Ttimeout =
0 else

All three conditions above (goal reached, collision, timeout) are end criteria for an
episode.

2.5 Demonstration and Training Environment

We propose a novel VR demonstration setup where the user teaches the robot personal
navigation preferences in a virtual reality environment, see Figure 2.2a. The user can
see the robot and its navigation goal (green cone). Intuitively, the person uses the hand-
held controller emitting a beam of light to draw preferred trajectories onto the floor in
VR. The trigger on the backside of the controller allows the user to dynamically select
the robot speed along the drawn trajectory. The robot executes the demonstrated tra-
jectory right away for reevaluation, allowing the user to either keep or redo it. After
the demonstrations have been collected, the training process begins. Finally, the per-
sonalized navigation controller is evaluated in VR, before being transferred to the real
robot. For the user study conducted, we chose a corridor and a room environment, see
Figure 2.4.
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Robot Human Goal

©

Figure 2.4: Top-view of both demonstration environment configurations: corridor (left) and
room (right) of the VR interface for the user study. The human needs to be avoided
by the robot, which is navigating to the goal.

2.5.1 Simulator and Robot

Our robotic platform is the Kobuki TurtleBot 2. As a VR and physics simulator we use
PyBullet [107], the VR system is an HTC Vive Pro Eye.

A key challenge in using demonstrations for reinforcement learning is bridging the
gap between the agent’s and the demonstrator’s state space. To do so, we analytically
calculate action commands along a demonstration trajectory, so that the robot follows
the trajectory by executing successive actions calculated at the control frequency f. The
kinematics of a differential wheeled robot are

K
V= 5 (up + uyp)
w0 =" (uy — ), (2.10)

where K is the wheel radius, L the distance between both wheels, and v the forward
velocity. The rotation speeds of the left and right wheel are «; and u,. By integrating v
and w over time ¢, we find a relation for the finite distance Ad = vAt traveled forward
and the change in robot orientation Aa = wAt within a certain time period At:

v Ad

— = — 2.11

w Ao ( )
The time period At is determined by our chosen control frequency f = &; = 5Hz of
the robot. Now, given a desired forward velocity v, one can analytically calculate the
matching angular control command w to follow a discrete segment (Ad, Aa) along a
trajectory.

2.5.2 Collecting and Processing Demonstration Trajectories

We use the following steps to process raw demonstration trajectories into state-action
pairs contained in the demonstration buffer:

1. In VR, a user draws a trajectory using the handheld controller. The analogue trig-
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ger on the controller backside allows us to control the robot speed linearly in the
range from vmin = 0.1 m/s to vmax = 0.25m/s at the drawing location.

2. The drawn trajectory is interpolated and smoothed with a 2D spline, parameter-
ized by k € [0,1]. Also, the speed information is spline-interpolated.

3. The robot is supposed to follow the demonstrated trajectory. Based on the speed
along the spline v(k), we consecutively extract the locations on the spline at which
the robot receives a new control command, using Ad = v(k)At.

4. Inserting v(k) for all control command locations into Equation (2.11), the corre-
sponding angular velocities w are calculated.

5. The robot is placed and oriented according to the trajectory’s starting point.

6. Successively, the control command tuples a; = (v, w;) are executed and the robot
follows the trajectory.

7. Before and after the execution of each action a;, we record the corresponding states
s¢, S¢+1 and the reward 74 1.

8. Finally, all state-action-reward pairs (s, at, ¢, S¢+1) are stored in the demonstra-
tion buffer.

Each demonstration trajectory is checked against possible collisions with the environ-

ment.

2.5.3 Data Augmentation

We use data augmentation to increase the data output from a single demonstration tra-
jectory. More specifically, the robot’s initial placement is shifted linearly by %fg within
the distance Ad = v(ko)At along the spline Naug = 15 times, where kg refers to the tra-
jectory spline start. The result is a slightly shifted execution of the trajectory, while the
original characteristic of the trajectory is preserved (max(Ad) = 5cm < environment
scale). Steps 5) to 8) are repeated for each data augmentation.

2.5.4 Successful Demonstrations

Reinforcement learning with demonstrations works best when demonstrations are suc-
cessful, i.e., lead to the goal state. Thus, we end each demonstration trajectory with the
goal state and thus a positive reward. Even if the goal position is not at the exact end of
the trajectory, the goal is retroactively moved to the end of the demonstration trajectory.

2.5.5 Value of Demonstration Data

To boost the value of demonstration-like behavior for the critics during learning, we
exclusively provide the goal-reaching reward on the demonstration part of the batch,
see Equation (2.8). The motivation behind this is that the agent should navigate on states
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a) Speed Profile b) Random Robot Start c) Random Goal d) Changed Human Pose
User A User A =—=—r—r—r User A User A ===z

N
D

Figure 2.5: a) User A demonstrated a distinct speed profile (top) when facing the robot start
position in the room environment. It was successfully adapted by the learned con-
troller (bottom). Furthermore, we tested the ability for generalization of the learned
controller threefold by showcasing state configurations not covered by the demon-
stration data: b) When the robot starts at a random position in the environment, its
navigation behavior still reflects the characteristics of the trajectory from the user
demonstrations (cf. Figure 2.3a). ¢) Even when its goal is randomly placed in the
room, the robot exhibits the distinct user preferences. d) The user’s position and
orientation were altered to non-demonstration configurations. When the human is
obstructing the robot’s path while facing the wall, the robot traverses on a straight
path behind the human. In all other cases, a distinct distance is kept to the human, as
demonstrated by both users. This clearly shows how the navigation agent improved

beyond the limits of the demonstration data provided. For a legend, please refer to
Figure 2.3.
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s¢ that are as similar as possible to the states of the demonstrated trajectories, ideally
recovering to those whenever useful. To maximize return, however, the agent generally
tries to navigate towards the goal with as few state transitions as possible (due to the
discount value ), possibly disregarding demonstrated user preferences. The resulting
behavior corresponds to shortest-path trajectories with maximum speed while barely
avoiding the human, promising a faster and higher return R. The demonstration state
value boost counteracts this unwanted effect, since the agent is encouraged to follow
state transitions from the demonstration data due to their always higher return.

2.5.6 Training

We initialize the robot, human, and goal position either around the position from the
demonstration configuration with probability peny or randomly in the environment to
explore the entire state space with probability (1 — peny). Training starts with pre-
initialization of the experience buffer by executing 5 x 10* randomly sampled actions.
Subsequently, we train for 800 epochs. Each epoch consists of 5000 environment interac-
tions, while the actor and critic networks are updated every 5 interactions. Each epoch
ends with 10 evaluation episodes. An episode denotes the trajectory roll-out from ini-
tial robot placement until one of the end criteria is satisfied. We train for each user and
environment individually to learn context-sensitive controllers.
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An overview of all relevant and experimentally obtained training parameters can be
found in Table 2.1. We found it beneficial for the training performance to adjust the
balancing factors to Arr, = Agc = 0.5 X 10! at epoch 350, and reduce the actors learning
rate to [, = 1 x 107> at epoch 650.

2.6 Experimental Evaluation

This section highlights the results of our user study and provides a qualitative and quan-
titative analysis of the learned personalized navigation controller.

2.6.1 User Study

We conducted a user study with 24 non-expert participants (13 male, 11 female) to i)
record individual navigation preferences (demonstration data), ii) evaluate the naviga-
tion behavior learned by our personalized controller, and iii) evaluate the presented VR
demonstration interface. Participants attended two appointments, the first being the
demonstration session and the second being the evaluation session. In the user study
section, the values in brackets refer to the mean survey-scores (1-5) and their standard
deviation.

2.6.1.1 Demonstration Session

During the demonstration session, trajectories in both environments (corridor and
room) were recorded, see Figure 2.3a. Each environment featured four position-
orientation pairs (color-coded) for the participant. For each pair, between three and
five trajectories were recorded. The total time investment was about 20 min. Af-
ter the recording session, the participants were asked about their experience with
the VR demonstration interface. The survey questions and results are shown in Fig-
ure 2.6a). Participants predominantly experienced comfortable interactions with the
simulated robot (4.6 = 0.1) and found drawing trajectories with our interface very intu-
itive (4.5 & 0.1). Also, no participants disliked our demonstration environments while

Table 2.1: Notations and training settings.

Notation Value Description

Penv 0.25 Placement probability: room vs. start position
Nep 300 Maximum number of steps per episode

Bg 1x 105  Experience replay buffer size

l 1 x 107* Learning rate of actor

le 8 x 10*  Learning rate of critic

y 0.99 Discount factor

Oc, 0.2 Std. deviation of exploration noise €,

Tey 0.05 Std. deviation of target policy noise €y

ARL 10/3 Weighting factor of RL gradient on actor

ABC 20/3 Weighting factor of BC loss gradient on actor
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the majority liked it very much (4.6 = 0.1).

2.6.1.2 Evaluation Session

During the second session, our personalized navigation approach was evaluated against
two approaches in virtual reality: The Dynamic Window Approach (DWA) [36] using
the ROS move_base package [108] in combination with a 2D lidar sensor, and a social cost
model (S5C) based on the configuration of [42]. Each navigation approach was shown in
VR (order: SC -+ DWA — Ours) in both environments for all four position-orientation
pairs (cf. Figure 2.3b-d), followed by an evaluation survey (cf. Figure 2.6b). Potential
ordering effects cannot be completely ruled out. Participants were unaware of presented
approach types. Pairwise Bonferroni-corrected Wilcoxon signed-rank tests indicated
that our personalized approached significantly outperformed both the SC and DWA
navigation on all three measures comfort (Q1), unpleasant closeness (Q2) and preference
(Q3) (see Table 2.2). No significant differences were measured between SC and DWA.

2.6.1.3 Real Robot Evaluation

Our personalized controller was demonstrated on the real robot (room environment) to
investigate the participants transition experience from the simulated to the real robot.
The real robot evaluation was also complemented by a survey, see Figure 2.6¢). Asin VR,
the navigation of the real robot was predominantly experienced comfortable (4.5 £ 0.1)
and participants saw their preferences mostly reflected (4.3 £ 0.1). Furthermore, the
transition from the simulated robot experience in VR to the real robot was mostly expe-
rienced as very natural (4.5 = 0.1).

2.6.2 Qualitative Navigation Analysis

Figure 2.3a shows demonstration data from two participants in both environments. In
the room environment, the preference of participant A is a smooth curve around their
position, while the robot drives in their field of view when approaching from either
side. Interestingly, participant B’s preference is a wall-following robot that navigates at
a higher distance from the human compared to participant A.

Figure 2.3b shows trajectories of the learned navigation behavior. The learned policy
clearly reflects the characteristics of the demonstration trajectories. Furthermore, the
robot adjusts its navigation trajectory according to the human orientation. For user A,

Table 2.2: Wilcoxon signed-rank tests on mean scores of all approaches

Question Ours - SC Ours - DWA SC - DWA
Q1: comfort z=—4.17* z = —4.01* z=—1.81
Q2: closeness z = —4.29* z = —4.2* z=—3.61
Q3: preference z = —4.01* z = —4.06* z=-1.97

Note that statistical significance was always p < 0.001, as marked with *. All other
comparisons did not reach statistical significance.
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Figure 2.6: User study survey results of both the demonstration and evaluation session. a) The
demonstration interface was predominantly appreciated and experienced as intuitive
by the participants. b) Evaluation: In virtual reality, both the Dynamic Window Ap-
proach and the social cost model were outperformed by our personalized controller
in various aspects. ¢) On the real robot, our novel personalized controller was per-
ceived predominantly positively as well. The positions of the plot bars are aligned to
the neutral score (3) to indicate overall rating.
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it learned to traverse in the user’s field of view, compare yellow orientation and trajec-
tories. In participant B’s demonstration, trajectories from a single position-orientation
pair traverse both in front and behind the participant. Here, no specific side preference
is given, and the controller reproduces trajectories mainly on one side.

Besides trajectory shape, users demonstrated speed profiles along the demonstration
trajectories. As an example, Figure 2.5a depicts how user A demonstrated a distinct
speed profile when directly facing the robot start position in the room environment.
After the robot slowly approached and passed by, it was allowed to accelerate. As can
be seen, the behavior is picked up by the controller during training.

2.6.3 Quantitative Navigation Analysis

Figure 2.3e-g compare quantitative properties of all three evaluation approaches and
demonstrations from all 24 study participants. The personalized navigation trajectories
are on average longer than those by DWA or SC, while maintaining a higher minimal
distance from the human. Interestingly, the mean preferred minimum human distance
gathered from the user demonstrations is similar in both environments, averaged at
dy = 1.1 £0.2m. The path area is calculated between the trajectory and linear distance
from start to goal. A higher path area reveals earlier deviation from the linear path
in favor of personalization, as it is the case for our personalized controller, compare
Figure 2.3g. This clearly indicates that users prefer personalized navigation trajectories
over shortest path navigation. Furthermore, the large standard deviation of the path
area indicates a high trajectory shape variability among the participants.

2.6.4 Generalization

Finally, we tested the ability for generalization of the learned navigation policy, see Fig-
ure 2.5b-d. First, the robot started at random positions in the environment not covered
by the demonstrations. As can be seen, the controller still reflects the user preferences in
the driving style (cf. Figure 2.5b and Figure 2.3a) by either approaching demonstration-
like states or reproducing demonstration-like navigation patterns at slightly different
positions in the environment. When appropriate, the robot drives straight to the goal.
Second, we tested random goal positions in the environment (cf. Figure 2.5c). Inter-
estingly, only after driving in accordance with preferences, the robot turns towards the
goal when in direct vicinity. Finally, we tested altered human positions (cf. Figure 2.5d).
Human position-orientation pairs not covered in the demonstration data encourage the
controller to still keep a preference-like distance.

As demonstrated with these results, our framework can successfully learn a person-
alized navigation controller that improves beyond the limits of a few demonstration
trajectories.
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2.7 Conclusion

To summarize, we presented both a learning framework and an intuitive virtual real-
ity interface to teach navigation preferences to a mobile robot. From a few demonstra-
tion trajectories, our context-based navigation controller successfully learns to reflect
user preferences, generalizes successfully to non-demonstrated states, and furthermore
transfers smoothly to a real robot. The conducted user study provides evidence that
our personalized approach significantly surpasses standard navigation approaches in
terms of perceived comfort. Furthermore, the study verifies the demand for personal-
ized robot navigation among the participants. Also, our findings prove the suitability
of the applied methodologies, and represent a first important step towards personal-
ized robot navigation, made possible by our intuitive interface and comprehensive user
study. Regarding the overarching research questions of this thesis, the development
and validation of the VR interface for intuitive and efficient preference demonstration
directly address RQ1 (Section 1.2.1), and the RL+BC learning framework balancing user
preferences and goal-directed behavior directly addresses RQ2, compare Section 1.2.2.
As a next logical step, we will transfer the framework to more complex and diverse en-
vironments.

While the approach presented in this chapter assumed static human poses and
known obstacle positions in the minimalistic scenarios, the following Chapter 3 ex-
plicitly addresses preference-reflecting navigation in more complex household environ-
ments and interactions with dynamically moving users. Thus, we advance both our VR-
based demonstration interface, and our hybrid learning framework: The challenge on
the VR interface side is how to pair the floor-drawn demonstration trajectories for the
robot with the motion patterns of a walking user. On the side of the learning frame-
work, the demonstrations need to be anchored both around the dynamic user and in
the complex indoor environment, requiring a suitable perception pipeline for the DRL

policy.
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3 Learning Depth Vision-Based Personalized Robot
Navigation From Dynamic Demonstrations in Vir-

tual Reality

Abstract

In this chapter, we present a learning framework complemented by a perception
pipeline to train a depth vision-based, personalized navigation controller from user
demonstrations. Our virtual reality interface enables the demonstration of robot
navigation trajectories under motion of the user for dynamic interaction scenarios.
The novel perception pipeline employs a variational autoencoder in combination
with a motion predictor. It compresses the perceived depth images to a latent state
representation to enable efficient reasoning of the learning agent about the robot’s
dynamic environment. In a detailed analysis and ablation study, we evaluate dif-
ferent configurations of the perception pipeline. To further quantify the naviga-
tion controller’s quality of personalization, we develop and apply a novel metric to
measure preference reflection based on the Fréchet distance. We discuss the robot’s
navigation performance in various virtual scenes and demonstrate the first person-
alized robot navigation controller that solely relies on depth images.

3.1 Introduction

Where humans share the same environment with a mobile robot, the robot’s naviga-
tion behavior significantly influences the comfort of interaction [109]. As we learned
in the preceding chapter, especially the personalization of robot navigation behavior in
the direct vicinity of the user is a core factor for user comfort. We furthermore found
that basic obstacle avoidance approaches are insufficient to address individual prefer-
ences regarding proxemics, trajectory shape, or area of navigation in a given environ-
ment, while being a key component to successful navigation without question. Instead,
a robot’s navigation policy should be aware of humans [40] and reflect the users” per-
sonal preferences.

In Chapter 2, we demonstrated that pairing a virtual reality (VR) interface with a re-
inforcement learning (RL) framework enables the demonstration and training of highly
customizable navigation behaviors. The resulting navigation controller outperformed
non-personalized controllers in terms of perceived comfort and interaction experience.
However, a key assumption in the previous work is an always-present, static human of
known pose in a predefined environment with pose-encoded obstacles, which results in
a low-dimensional, information-dense state space, a clear benefit for the learning pro-

cess. To overcome these assumptions and advance the approach to navigate in more

This chapter is a revised and updated version of the peer-reviewed publication [75]. Refer to Section 1.4
for details.
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Figure 3.1: Our virtual reality (VR) interface allows the demonstration of robot navigation pref-
erences by drawing trajectories intuitively onto the floor. By applying a learning-
based framework, we achieve personalized navigation using a depth vision-based
perception pipeline.

complex dynamic indoor environments, employing a depth vision camera to sense both
human and obstacles is a possible solution [110]. However, depth vision cameras come
at the cost of high-dimensional, complex, and redundant output. Learning from such
high-dimensional data on dynamic scenes is a challenging task [111]. The question crys-
tallizes, how do we capture and teach preferences of moving users in realistic environ-
ments, while relying on state-of-the art sensor modalities?

To solve the challenges above, we first advance the VR demonstration interface for
demonstrations with users in motion, and second, introduce a depth vision-based per-
ception pipeline that is both lightweight, human-aware and, most importantly, provides
the robot with a low-dimensional representation of the dynamic scene. This perception
pipeline i) perceives both the human and obstacles, ii) compresses the perceived depth
information, and iii) enables efficient reasoning about the robot’s dynamic environment
for the learning framework. Our new system is able to learn personalized navigation
preferences from a VR interface and learning framework for dynamic scenes in which
both robot and human move.

In summary, the main contributions of our work are:

* Learning a preference-reflecting navigation controller that relies solely on depth

vision.

* A VR demonstration framework to record navigation preferences for a dynamic
human-robot scenario.

¢ The introduction and application of a novel metric to quantify the quality of nav-
igation preference reflection.

* An extensive qualitative and quantitative analysis of different perception config-
urations for personalized navigation.
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Figure 3.2: Schematic representation of our architecture. a) Demonstration trajectories are
drawn by the user in VR on the floor using the handheld controller. Subsequently, the
trajectories are fed into the demonstration buffer. b) Our TD3 reinforcement learning
architecture with an additional behavioral cloning (BC) loss on the actor trains a per-
sonalized navigation policy that outputs linear and angular velocities. ¢) The robot-
centric state space relies on a depth vision perception pipeline, capturing the vicinity
of the human and the obstacles in the environment, as well as the relative goal po-
sition. A variational autoencoder (VAE) compresses the raw images to a latent state
representation, while a predictor (LSTM) provides subsequent state predictions.

3.2 Related Work

Adjusting or learning the navigation behavior of a robot based on feedback or demon-
stration has been the focus of various studies [15], [69], [112]. Especially, deep learning-
based approaches shine by their ability to learn from subtle and implicit features in their
environment [83], [113], [114]. This is an ideal motivation to use a deep RL architecture
for our personalized navigation controller.

Fusing the potential of user demonstrations with a learning architecture led to
promising results in the field of robotic manipulation tasks [104]. Therefore, this is a
key concept for our learning architecture and has successfully been applied to the per-
sonalize robot navigation in the previous chapter.

Vision-based sensor modalities for navigation appeal due to their cost-efficiency. For
human-aware navigation, the detection and explicit localization of pedestrians enabled
socially conforming navigation controllers [110], [115]. Other works learn navigation
directly through monocular RGB vision [116].

Recent advances in the field of depth vision-based navigation in combination with
RL have been made by Hoeller et al. [117], who study a state representation of depth im-
ages to efficiently learn navigation in dynamic environments. They employ a variational
autoencoder to compress the high-dimensional depth image into a feature-rich repre-
sentation for the agent. Our proposed perception pipeline is built upon their successful
architecture.

Furthermore, a navigating agent benefits from dynamic scene understanding. Pre-
dicting the movement of surrounding pedestrians and obstacles with Long Short-Term
Memory (LSTM) models has led to promising results [117], [118], [119]. Therefore, we
will integrate an LSTM architecture into our perception pipeline.
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Figure 3.3: Schematic representation of the perception pipeline. a) The vision sensor’s depth
frames are encoded using a VAE to a latent space of dimensionality 32. In paral-
lel, we check for human presence in the sensor’s field of view (FOV), in which case
we provide the human position relative to the robot. The merged latent state S-
VAE provides our first state representation for learning. b) After the last five states
ISVAE . are merged with the robot control commands a; 4.4}, the LSTM predicts

{t—4,....t}
both the next latent and the next human pose I7;"*/}.

tion (di !, Aatr') is merged with the previous latent [, and human pose (dY;, Aaly)
to the state S-LSTM. Both state versions S-VAE and S-LSTM are used separately for
training. c¢) Visualization of the trained VAE and LSTM model with ground truth
depth data before encoding (left in box) and the decoder’s reconstruction (right in
box). The LSTM predicts the next latent and human pose, where the latent recon-
struction is shown (orange box).

Only the human pose predic-

Since the publication of our original study, related advancements have been pre-
sented in literature. For instance, the combination of depth vision-based perception
and LSTMs has been applied to navigation in crowded environments [120]. While their
approach the emphasizes sim-to-real transfer of the policy, our focus lies in learning
user preferences, their spatial anchoring in the indoor environment, and their explicit
reflection in the navigation behavior. Regarding robot perception based on depth vision,
Xu et al. have presented a principled framework for detecting and tracking dynamic ob-
stacles from depth images [121]. While our work assumes that the human position can
be obtained from the robots front-facing camera, thus treating it as given, their approach
could serve as a suitable component for enabling a future sim-to-real transfer of the pol-
icy developed in this chapter.

In the previous chapter we presented one of the first approaches at the intersection of
navigation and robot personalization, we now enhance the system by allowing the user
to demonstrate navigation trajectories under dynamic motions and using only depth

vision as controller input.

3.3 Our Approach

In this work, we consider a robot navigating in the same room as a single human user.
The user has personal preferences about the way the robot circumnavigates them while
pursuing a local goal in the same room. Such preferences could lie in the approaching
behavior or the robot’s trajectory. We assume the robot to be provided a local goal from
a global planner. The local goal could be a door on the opposite side of the current

36



3.3 OUR APPROACH

room to be traversed, or a location of interest in the same room. Using such sparse local
goals several meters apart, we provide the controller with the spatial and temporal free-
dom to navigate towards the goal in a user-preferred, personalized manner. The human
shares the navigation space with the robot, whether being dynamic by walking through
the room, or resting static. To achieve preference-aligned and collision-free navigation
behavior, the robot relies only on a depth vision camera to sense the distance from the
human as well as obstacles. We formulate personalized navigation as a learning task in
which the robot learns a personalized controller outputting linear and angular velocity
from VR demonstrations of the user.

3.3.1 Learning Architecture

The learning approach presented in this section is a hybrid of reinforcement learning
and behavior cloning.

RL refers to the optimization of environment interactions, leading from state s; —
st+1 that obey a Markov Decision Process [105]. The interacting agent receives a reward
re = 7(s¢, ar) for taking an action a; = my(s;) at time step ¢ with respect to a policy .
The tuples (s¢, at, ¢, s¢41) are referred to as state-action pairs. The optimization goal is
to maximize the overall return R = ZiT:t 4=, of the y-discounted rewards, onward
from time step ¢.

Figure 3.2 depicts a schematic overview of our approach. We employ an off-policy
twin-delayed deep deterministic policy gradient (TD3) reinforcement learning architec-
ture [103]. In short, two critic networks learn to estimate the value of the state-action
distribution, the actor network learns a policy 7(s;) = a; ideally leading to the highest
expected return R. All three networks are standard multi-layer perceptrons (MLP) and
share the same architecture. For policy updates, batches of training data by are sam-
pled from the experience buffer. TD3’s continuous action space ensures smooth robot
control, as the actor network outputs linear and angular velocities as control commands.

An additional modification to the standard TD3 is a behavioral cloning loss
Lpc = ngl ||7s(si) — ai||* on the actor network provided with demonstration data in
batches bp [104] from a separate static buffer containing navigation preferences col-
lected in VR, see Figure 3.2a-b. The extended and Apc/rr-balanced loss on the actor
is Vg Jiotal = ARLV 4 — Apc V¢ Lpc with the actor’s original policy gradient V4.J.

By continuously sampling data from both buffers and applying the BC loss through-
out the training, a navigation policy is learned that exhibits demonstration-like behavior
whenever the navigation scenario allows. At the same time, the policy generalizes to un-
known states not covered by the demonstration data.

3.3.2 Representation Learning

This section provides implementation and training details on our perception pipeline
depicted in Figure 3.3.
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3.3.2.1 Variational Autoencoder

Reinforcement learning on raw high-dimensional vision data is unfeasible. Ideally, a
dimensionality-reduced state representation is used [117]. Thus, we compress the depth
data to a latent representation [ using a $-variational autoencoder (VAE) with six ReLU-
activated convolutional layers, see Figure 3.3a. The dimensionality reduction is a factor
of 320 from a 128 x 80 pixel depth image to a latent space of dimensionality 32. To make
the model robust against sensor noise that a depth camera would exhibit, we apply a
5 % dropout noise to the depth frames during VAE training. The VAE learns to filter the
noise, as the VAE’s reconstruction loss is computed between the decoded and the noise-
free depth frame. A visualization of the VAE’s performance is depicted in Figure 3.3c.

3.3.2.2 Predictor

Originating from single depth frames, the latent space alone fails to capture dynamic
scene information such as motion or human movement. To leverage dynamic scene
information such as the human motion for the navigation controller, a predictor is in-
troduced, see Figure 3.3b. The predictor receives the last five human poses, control
commands, and latent frames (d%;, Aat;, a;, li)ie{t—a,. 1} as input. We predict the next
human pose (d5}*, Aa’f') and the latent of the next time-step I;11. The model consists
of two LSTM layers with 64 units each, followed two linearly activated MLPs which out-
put both mean ;41 and variance 0,41 as in the VAE, from which the latent prediction
li41 is sampled. The human pose prediction is performed by a two-layer MLP from
the LSTM-layer’s output. A visualization of the predictor’s performance is depicted in
Figure 3.3c.

3.3.2.3 Training Data

To train the autoencoder and predictor, we generated an extensive dataset of depth
frames in the iGibson simulator [122]. Here, we used the scene setup described in Sec-
tion 3.4.3 with a static or dynamic human. The robot’s navigation policy for the dataset
generation was a simple obstacle avoidance controller trained with TD3 RL. Further-
more, the dataset contains ground-truth data about the human pose and the human'’s
presence in the RGB-D camera’s field of view (FOV).

3.3.3 State and Action Space

Our robot-centric state space consists of three main parts, compare Figure 3.2c: 1)
The relative goal position (dg, Aag), 2) the human position (dy, Aay) and presence
kg € {0,1} in the robot’s FOV, and 3) the latent representation of the depth data. The
human state corresponds to the current time step ¢ for VAE-only configurations, and
to a t + 1 prediction concatenated with the ¢-human state for the VAE+LSTM. Thus,
the human is both implicitly encoded as an obstacle in the latent-encoded depth image,

but also explicitly. All positions are given in robot-centric polar coordinates. When no
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human is observed in the FOV, then d}; = —1 m and Aaj; = 0 rad. The actor’s action
space is composed of forward and angular velocity (v,w), which are used as control
commands.

3.3.4 Reward

We aim to teach user-specific navigation preferences not by complex reward shaping,
but only via demonstration data. Consequently, we keep the reward as sparse as possi-
ble besides basic collision penalties and goal rewards

T = Teollision T T'goal T Ttimeout- (3.1)

The scaling factor crewy = 10 is used throughout the reward definition below. Upon
collision with either an obstacle or a human, we penalize with rjision = — %crew. When
the robot reaches the goal location, a positive reward is provided:

+crew if goal reached in demonstration data
Tgoal = | +“5*  if goal reached during training (3.2)

0 else

Note the explicitly higher reward of the demonstration data to boost the value of
demonstration-like behavior for the critics during learning. This is further comple-

mented by an additional + ¢ on each demonstration state reward. In short, a higher
value of demonstration-like behavior encourages user-preference-like navigation when-
ever possible, while preventing the agent from taking more efficient, shorter trajectories
to achieve the faster and higher return R.

To overcome navigation behavior that does not lead to the goal on the long run, upon
timeout when n > N, we penalize with rmeout = —“5*. In all other cases the reward
is zero. An episode denotes the trajectory roll-out from initial robot placement until
one of the termination criteria is satisfied. All three reward criteria are also episode

termination criteria.

3.4 Demonstration and Training Environment

We first introduce the advances on the VR interface, in which a human user teaches
personal navigation preferences to a robot, now under dynamic motion. Subsequently,
the learning environment and navigation task are presented.

3.4.1 Simulator and Robot

To teach and train our navigation controller in a more realistic environment with RL,
we use the iGibson simulator [122] that provides a set of interactive indoor scenes and
a VR interface that we used for immersive demonstration. iGibson renders the robot’s
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Figure 3.4: The robot’s learned navigation behavior (blue lines) for scenes, where preferences
were demonstrated (rows 1-4) and perception as well as learning configurations
(columns A-D) are depicted. For all scenes, one demonstrated navigation preference
is shown (orange). The human (red) is either static (red circle) or moving through
the scene (red arrow). The goal (blue star) and start location (black dot) are either
taken from the demonstration trajectory or sampled equivalently in the room across
all configurations. Whenever the human is in the RGB-D camera’s FOV, the robot
trajectory is shaded in red. In short, the VAE-HA approach (A) exhibits navigation
behavior which is the closest to the demonstrated preferences. As the human detec-
tion is turned off on the VAE-HU (B) and no human pose is provided to the controller,
the robot performs less pronounced avoidance (B1 vs. Al). In contrast, the VAE-ND
controller trained without any demonstration data (C) rather reflects a shortest path
driving behavior. In the most challenging scene (3) LSTM-HP (D) and VAE-ND (C)
fail, where the VAE-HA approach (A3) shines.

vision sensors, which serve as input to our perception pipeline during training. Its un-
derlying physics engine is PyBullet [107]. We focus on the differential-wheeled robot
Kobuki TurtleBot 2. Generally, our approach is applicable to other robots with simi-
lar control modalities. The TurtleBot’s control limits lie at v € [0,0.5] m/s forward and
w € [—m, +r|rad/s angular. Inspired by the Intel RealSense D455 depth camera, the
robot features a forward facing depth-camera with a 87° horizontal FOV. The sensing
range is limited to 6 m, which is equivalent to a temporal foresight of 12 s at the Turtle-
Bot’s maximum forward velocity. As there is no sensor facing backward to sense rear
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obstacles, the TurtleBot is not allowed to drive backward.

3.4.2 Collecting and Processing Demonstration Trajectories

As an extension of the VR demonstration interface compared to Chapter 2, the demon-
strating user can now move and teach dynamic situations. To demonstrate, the user
firstly familiarizes themselves with the environment in VR. Subsequently, he/she
demonstrates a trajectory for the robot by drawing it onto the floor using the beam-
emitting handheld controller, see Figure 3.1. There is no preset goal for the robot in the
demonstration scene, so the user can demonstrate preferences in any direction. The goal
location will automatically be set to the end of the demonstration trajectory. As the robot
executes the trajectory from analytically computed action commands, the evolution of
the human position and orientation is recorded from the wireless head-mounted dis-
play’s location. So to complement the demonstration with his/her movement, the user
can walk freely in the scene while the robot navigates. Just like the robot’s trajectory, the
human trajectory is also converted into a spline representation to be replayed during
training and when the state-action pairs for the demonstration buffer are subsequently
recorded. In alast step, the user can step aside and observe the moving robot and human
3D mesh from a third-person perspective. The demonstrations are double-checked for
any collisions that would result in negative rewards upon replay to the demonstration
buffer to ensure their quality for the learning process.

The conducted user study in the previous chapter has shown great acceptance of the
VR interface and perceived navigation comfort of the learned controller. In this work, we
focus on the development and evaluation of a depth vision-based perception pipeline.
For this study, we recorded dynamic and static navigation scenarios by ourselves. The
dataset contains nine scene configurations, with around three demonstration trajectories

each.

3.4.3 Navigation Task and Training

We train our navigation controller on a set of interactive iGibson scenes and demonstra-
tion scenarios. Start and goal locations of the robot are randomly sampled in the same
room, while ensuring a goal distance dg between 1.5 m < d < 6 m, equivalent to the
depth sensing range.

To simulate the human in the scene, four different behavior modes are sampled: 1)
Human walks in the opposite direction from the robot’s goal to its start on an A* path,
thus encountering the robot. 2) Random human start and goal locations. 3) The human
is static. 4) No human in scene. 5) The human moves according to recorded demon-
strations. For modes 1+2, the human speed is sampled from a standard distribution
N(p=05m/s,0 =0.3m/s).

Lastly, we randomize over a set of iGibson scenes during training and change scenes
every 50 episodes.

Before training begins, the experience buffer is initialized with 5 x 10% samples by
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executing randomly sampled actions. An overview of all relevant and experimentally
obtained training parameters can be found in Table 3.1.

3.5 Experimental Evaluation

This section highlights the performance of our learned preference-reflecting navigation
controller under different configurations. A qualitative analysis in Section 3.5.2 show-
cases and discusses the navigation behavior on a set of selected scenes. This is followed
by a quantitative analysis targeting the robustness with success metrics in Section 3.5.3.
Lastly in Section 3.5.4, we introduce a customized Fréchet similarity metric to quantify
the quality of preference-reflecting navigation behavior with respect to the demonstra-

tions.!

3.5.1 Perception Pipeline Configurations

We first evaluate different perception pipeline and learning configurations against each
other, compare Figure 3.4.A-D and Figure 3.7.A-C. Their key differences lie in the state
space as input to the RL policy.

The standard human-aware VAE-HA (Figure 3.4A) state space configuration S-VAE
contains the current latent depth encoding, goal position, the human presence binary
and human position: syAFHA = (1, dg, Aag, ki, dby, Aaky).

The human-unaware VAE-HU (Figure 3.4B) is the same controller as the VAE-HA,
but the human detection in the robot’s field of view is disabled during evaluation.

The no-demonstration VAE-ND controller does not rely on the learning architecture
as shown in Figure 3.2. It has neither a demonstration buffer, nor a behavioral cloning
loss, making it a standard TD3 architecture. Therefore, it has learned its navigation
behavior without user demonstrations.

1A video of the demonstration procedure and navigation performance is linked in the supplemental
material section in the appendix.

Table 3.1: Notations and training settings.

Notation Value Description

B 3 Weighting factor of the VAE’s KL-divergence
Nep 150 Maximum number of steps per episode

Bg 2 x 10°  Experience replay buffer size

be/D 64 Batch size of experience/demo data

l, 1 x107* Learning rate of actor

le 8 x 107* Learning rate of critic

ol 0.99 Discount factor

O, 0.2 Std. deviation of exploration noise €,

Ocq 0.05 Std. deviation of target policy noise €g

ARL 30/4 Weighting factor of RL gradient on actor

ABC 10/4 Weighting factor of BC loss gradient on actor
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The human-prediction LSTM-HP (Figure 3.4D) state space configuration S-LSTM
is similar to S-VAE, except for the additional prediction of the next human position:
SESTMAHP. — (GVAEHA | gitl Aqlt1). Therefore, S-LSTM provides dynamic scene infor-
mation by predicting the human movement.

Our ablation study introduces two more configurations, see Section 3.5.5: VAE-FOV-
120 implements a widened FOV at 120° over the standard 87°, as it can be found on
wide-angle depth cameras such as the Microsoft Azure Kinect. VAE-NG discards the

goal distance d from the state space.

3.5.2 Qualitative Navigation Analysis

Figure 3.4 shows the learned navigation behavior of our controller and highlights re-
sulting differences between the perception pipeline configurations introduced above.

In Figure 3.4.1, the human is static and located at the couch. The robot’s start loca-
tion is randomized, while keeping the goal at the end of the demonstration trajectory.
As the robot traverses the living room, it shall navigate on the opposite side of the room
close to the dining table and along the cupboard. With VAE-HA, the robot learned to
navigate closely to the demonstrated preference. It exhibits a similar, smooth, S-shaped
curve while passing by the couch. Interestingly, only little difference in the robot’s over-
all trajectory shape can be observed between VAE-HA and VAE-HU (Figure 3.4.A1+B1).
Here, a few trajectories traverse closer to the human (red dot). So even though the hu-
man is not explicitly observed in the state space of VAE-HU, its overall approaching
behavior to the human still reflects demonstration patterns. A possible explanation is
the agent’s anchoring of behavior to the overall scene layout, rather than the human
position. Note that the robot trajectories are shaded in red in Figure 3.4, whenever the
human is observed in the FOV.

Located at the desk in Figure 3.4.2, the static human prefers the robot to take a wide
turn as it leaves the corner next to the desk. In this scenario, the navigation behavior
among all configurations except VAE-ND is mostly reflecting the wide turn, where VAE-
ND cuts short on the wide turn as expected.

In Figure 3.4.3, the moving human encounters the robot with an opposite direction
of travel at the living room’s suite. As a preference, the robot should take a wide turn of
avoidance around the armchair to make space for the approaching human. Among all
controllers but VAE-HA, the navigation of the situation is challenging, leading to colli-
sions around the armchair’s corner. While LSTM-HP fails to exhibit the demonstrated
behavior in this scenario, VAE-HA and -HU display successful preference-like behavior
in most cases.

As the human walks out of the room in Figure 3.4.4, the robot enters. Upon detection
of the approaching human, the robot shall take a left turn and make room for the human
to pass. Afterward, the robot can continue traversing the living room to its goal. In this
scenario, the effect of demonstration trajectories strikes: The VAE-ND controller without
access to demonstrations mostly exhibits direct goal-oriented, straight-path navigation.
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Figure 3.5: The performance of the different controllers has been averaged over all demonstra-
tion scenarios and other scenes. For each combination of scene, human behavior
mode, and demonstration preference (if available), 50 trajectories were generated.
“Random behavior” refers to behavior modes 1-4, while “demo behavior” refers to
mode 5, both evaluated with controller VAE-HA. The success rates are shown in the
plotted bars.

Interestingly, the same applies for the LSTM-HP controller, while it exhibits superior
collision avoidance towards the approaching human over VAE-HA, though with some
reduction in preference reflection.

Qualitatively speaking, the VAE-HA configuration results in the best-performing
personalized robot navigation controller. Interestingly, the LSTM-HP configuration
does not seem to provide a significant improvement compared to VAE-HA in most cases,
but presumably at the cost of weaker preference reflection, compare Section 3.5.4.

3.5.3 Quantitative Analysis: Robustness

Figure 3.5 shows the performance of our different controller setups and human behav-
ior modes (see Section 3.4.3) in terms of success rate, collision rate, and timeout rate.
We determine the demonstration-aware VAE architectures (VAE-HA, -HU, -NG) most
capable of avoiding collisions with scene objects and the dynamic user. Both the VAE-
ND without demonstration access and the LSTM-HP controller perform worse than the
demonstration-based VAE architectures. Regarding different human behavior sampling
modes (Section 3.4.3), as expected, the demonstration-related mode 5 performs best. We
can also conclude from VAE-FOV-120 that increasing the RGB-D camera’s field of view,
e.g., for better perception of pedestrians approaching from the side, does not lead to
better collision avoidance. Generally, we observe more collisions than timeout events.
This could be a consequence of the agent being encouraged to drive by the behavioral

cloning loss from demonstration data.

3.5.4 Quantitative Analysis: Preference Reflection

To quantify how closely the individual controllers reproduce the demonstrated pref-
erences, we use the Fréchet distance between the navigation and demonstration trajec-
tories. The Fréchet distance F'(A, B) measures the similarity of two trajectories A and
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Figure 3.6: Visualization of our deviation-aware Fréchet metric f(A, B, t*). a) The robot follows
the demonstrated path up to the deviation point ¢t*. Only up to this point we can
reasonably compute a similarity between both trajectories. b) The deviation point ¢*
is determined by the sudden increase in the Fréchet distance between demonstration
and t-partially considered navigation trajectory via a cost function. ¢) With regard
to all scenarios and trajectories in Figure 3.4, the distribution of ¢* is shown. d) Con-
sequently, the deviation-aware Fréchet metric f(A, B,t*) is computed, pointing to-
wards the best and worst preference reflecting controller, VAE-HA (A) and LSTM-HP
(D), respectively.

B [123], by calculating the minimum value of the maximum distance between points on
two curves or ordered points as (A, B) = inf, g maxyc[o ) | A(a(t)) — B(B(t))||- The or-
der of points is taken into account with all possible reparameterizations « and 3 of the
curves, respectively. We leverage the Fréchet distance not only to compute the similarity,
but also to estimate and quantify the point along the robot trajectory, where the robot
significantly starts to deviate from the preference trajectory, as described below. An ex-
ample of this procedure is shown in Figure 3.6a and 3.6b on a given set of trajectories.
Firstly, the Fréchet distance is computed as a function of the considered fraction ¢ € [0, 1]
of the partial robot navigation trajectory A[0, ¢] as

f(A,B,t) = inf F(A[0,t], B[0,t]). (3.3)

t'e[0,1]
Secondly, a trade-off cost Cy(t) between f(A,B,t) and t is computed as Cy(t) =
cos(¢)F(A, B,t) + sin(p)t, where ¢ = 37. Thirdly, we define the deviation point ¢*
on trajectory A, where min,c(g 1) Cy(t). In other words, we estimate the point along the
robot trajectory ¢*, when f(A, B,t) starts to continuously increase as the robot leaves
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the demonstrated path to pursue a goal aside the preference path. Finally, we can de-
termine how closely the robot navigated along the demonstration trajectory up to the
deviation point t*, by evaluating f(A, B,t*). We call f(A, B,t*) the deviation-aware
Fréchet distance. In Figure 3.6a+b the deviation point is marked in both plots.

By applying our metric, we solve the problem of either non-matching start or goal
point between navigation and demonstration trajectory for a classical Fréchet analysis.
For those cases, it would be pointless to quantify the similarity of both full-length trajec-
tories with the plain Fréchet distance, as the deviation either at the end (same start) or at
the beginning (same goal) would overshadow any measurable similarity. Our deviation-
aware Fréchet metric f(A, B, t*) calculates the Fréchet distance in an isolated manner on
trajectory segments, among which similarity can be expected. When the end points are
close instead of the start points such as in Figure 3.4.1, the metric is applied on the re-
versed trajectories A and B.

We apply our deviation-point Fréchet metric to all navigation scenarios in Figure 3.4.
On the one hand, we evaluated the deviation point t* in Figure 3.6c and the correspond-
ing deviation-aware Fréchet distance f(A, B,t*) in Figure 3.6d. We find the majority of
navigation scenarios in Figure 3.4.1-3 to fully follow the demonstration trajectory, which
manifests in a deviation point t* close to 100 %. This is especially true for Figure 3.4.3,
where the start and goal of navigation and demonstration overlap. For the dynamic
room entrance (Figure 3.4.4), the robot’s deviations from the demonstration path in fa-
vor for aside or further in the room positioned goals reflect in a lower distribution of
t*, see Figure 3.6c.4A-D. However, no obvious difference in t* can be observed when
comparing the controller configurations, see Figure 3.6c.A-D. Interestingly, a clear dif-
ference in the deviation-aware Fréchet distance for the controller configurations can be
found, see Figure 3.6d. Over all four navigation scenarios, controller VAE-HA (A in Fig-
ure 3.6d and Figure 3.4) exhibits the smallest deviation-aware Fréchet distance between
preference and the resulting navigation. As expected, the worst preference reflection
can be assigned to the plain TD3 architecture without demonstration access VAE-ND
(C in Figure 3.6d and Figure 3.4).

3.5.5 Ablation Study

Finally, we perform an ablation study to investigate the effects of an increased camera
field of view (Figure 3.7.B) and the removal of the goal distance from the state space (Fig-
ure 3.7.C). In the given scenarios, VAE-FOV-120 rather deteriorates the collision avoid-
ance capabilities. This is in line with the obtained overall performance results, see Fig-
ure 3.5. Removing the goal distance (VAE-NG) interestingly does not deteriorate the
performance, but also results in robust and preference-reflecting navigation.

Demonstrating the ability for generalization, in Figure 3.7.D we showcase a scenario
where humans follow an A* path in the opposite direction from the robot (compare
behavior mode 1 in Section 3.4.3). In most cases, the robot intuitively gives way to the
approaching human.
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Figure 3.7: 1) In our ablation study, we investigate (B) the effect of increased camera field of
view with VAE-FOV-120, (C) the removal of the goal distance from the state space
(VAE-NG) in comparison to the original approach (A). 2) To learn about relevant
environment features for the agent, the human (F), the furniture (G), or both (H) was
removed from the scene, compared to the original setup (E). For a legend, please refer
to Figure 3.4.

To learn which features of the environment the agent uses for navigation and pref-
erence reproduction, we removed either the human, furniture, or both from the scene,
see Figure 3.7 E-H. Interestingly, as no human approaches from behind the armchair
(Figure 3.7), the robot navigates closer to the chair with a similar trajectory shape. As
all furniture is removed from the scene (Figure 3.7.G), the robot either exhibits prefer-
ence navigation or a shorter path on the other side of the approaching human. With
everything removed (Figure 3.7.H), the small deviation around the human collapses to
a shortest path on most trajectories. Here, the deciding factor might be the initial ori-
entation. But also when neither human nor furniture is part of the scene, the robot is
able to reflect preferences. We attribute this behavior to the walls and room layout that
are still observable for the robot, or the learned guidance by relative goal position in the

state space.

3.6 Conclusion

To summarize, we presented a learning approach to personalized navigation based on
depth vision. As demonstrated with our results, we successfully learned a personalized
navigation controller that reflects user preferences from a few VR demonstrations in dy-
namic human-robot navigation scenarios. These dynamic demonstrations are a contri-
bution of this work and directly contribute to this thesis” RQ1 on preference collection
interfaces, compare Section 1.2.1. For the perception pipeline, various configurations
have been tested and the extensive analysis points towards a pure VAE perception ar-
chitecture for the best results, contributing insights to the overarching RQ3 on effective
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sensor representations in dynamic environments, as motivated in Section 1.2.3. Interest-
ingly, including the motion predictor did not significantly improve the navigation per-
formance or preference reflection. Alongside the analysis, we have also developed and
successfully applied a new metric that allows us to quantify the quality of preference
reflection during navigation. As it measures the personalization quality of trajectories
but also when the robot deviates from demonstrated behavior, its development directly
contributes to RQ2 on preference task-balancing, compare Section 1.2.2. In conclusion,
our research has demonstrated the feasibility of personalized robot navigation utilizing
depth vision sensors and presents a promising avenue for further development, espe-
cially for preference anchoring in feature-rich environments.

A central assumption of the approaches presented in this and the previous chapter
is that the user located in the robot’s immediate vicinity is the same individual whose
preferences are to be reflected. An interesting direction for future work involves ex-
tending these approaches to scenarios with multiple users, each potentially exhibiting
distinct preferences and interacting with the robot simultaneously. This extension, how-
ever, would require the robot to reliably identify and distinguish between individuals, a
challenge that lies beyond the scope of this thesis. Moreover, as the number of people in
the robot’s environment increases, the problem naturally shifts from single-user person-
alization towards a broader social navigation challenge. In these settings, the question
can be raised of how much perceptual richness is truly required for reliable, socially
aware behavior. Building on these findings, the next chapter investigates how sensor
representations can be optimized for foresighted navigation in dynamic environments,
shifting from depth vision modalities to 2D lidar-based perception. In particular, we
explore robustness learning-based navigation in dynamic human environments with a
lidar-based perception pipeline that eliminates the need for explicit pedestrian tracking.
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4 Spatiotemporal Attention Enhances Lidar-Based

Robot Navigation in Dynamic Environments

Abstract

Foresighted robot navigation in dynamic indoor environments with cost-
efficient hardware necessitates the use of a lightweight yet dependable controller.
So, inferring the scene dynamics from sensor readings without explicit object track-
ing is a pivotal aspect of foresighted navigation among pedestrians. In this chapter,
we introduce a spatiotemporal attention pipeline for enhanced navigation based on
2D lidar sensor readings. This pipeline is complemented by a novel lidar-state rep-
resentation that emphasizes dynamic obstacles over static ones. Subsequently, the
attention mechanism enables selective scene perception across both space and time,
resulting in improved overall navigation performance within dynamic scenarios.
We thoroughly evaluated the approach across different scenarios and simulators,
finding excellent generalization to unseen environments. The results demonstrate
outstanding performance compared to state-of-the-art methods, thereby enabling
the seamless deployment of the learned controller on a real robot.

4.1 Introduction

As demonstrated in the previous chapters on the application of behavior personaliza-
tion, DRL-based robot controllers have the potential to learn nuanced human-aware
navigation, also in dynamic environments. While our previous works (Chapter 2 to 3)
focus on user-centric navigation around one individual, this chapter transitions into the
domain of human-shared dynamic spaces. In these social navigation settings that in-
volve more than one human, a key performance requirement for learning-based con-
trollers is usually an information-dense representation of the dynamic scene, e.g., with
explicitly tracked pedestrians [124]. However, when transitioning away from training
and evaluation simulation frameworks to the real robot, complex fusion from multi-
ple sensors and hardware-heavy post-processing steps are required to achieve such
information-dense dynamics representations [125], [126], [127]. Here, also feature-rich
but costly 3D lidar sensors are appealing [128], [129]. On the other side of the spectrum,
many studies focus on learning-based navigation among dynamic obstacles of known
position to avoid sensor-based pedestrian tracking [114], [130]. These approaches suffer
from a reality gap that hinders generalization to the real world [131], [132]. Following
the demand for improved reactive local planners, as recently emphasized by Xiao et
al. [49], the need for sensor-based lightweight but reliable perception and navigation
pipelines emerges that redundantizes explicit obstacle tracking. This necessity for per-

This chapter is a revised and updated version of the peer-reviewed publication [76]. Refer to Section 1.4
for details.
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Figure 4.1: Our pipeline for learning a robot navigation controller based on lidar. Two attention
mechanisms reason about the importance of individual lidar sectors with respect to
known and unknown dynamic obstacles. Our Temporal Accumulation Group De-
scriptors (TAGD) reveal moving obstacles from subsequent lidar scans affected by
robot self-motion.

formant sensor representations in dynamic environments ties directly to RQ3 of this
thesis.

A possible solution is the use of 2D lidar sensors that provide accurate obstacle in-
formation within the moving plane of mobile robots [56]. They operate independently
of lighting conditions, enabling both day and night operation. But without data such
as colors or contours, explicitly tracking object instances like pedestrians only by their
leg profiles from 2D lidar readings is a hard task [133], [134]. Furthermore, the robot’s
self-movement makes static objects appear dynamic between lidar scans.

While most current methods leverage convolutional neural networks (CNNs) to
process and extract features from lidar data [70], [135], a recent appealing idea to
tackle these sensor-implicit obstacle representations is selective attention on a collision-
relevant subsectors of the lidar data [136]. Especially when a temporal observation se-
quence provides dynamic scene information, selective attention on moving obstacles
can be beneficial.

To address this, we introduce a novel feature extraction technique tailored for
2D point clouds, incorporating both spatial and temporal attention across the sensor
readings. This approach distills critical navigational information, offering a more robust
solution for learning-based navigation in dynamic indoor environments. We demon-
strate better than state-of-the-art generalization to unseen navigation scenarios and en-
able a smooth sim-to-real transfer of the learned policy, as we will be able to demonstrate
in the experiments.

In summary, the main contributions of our work are:

* A deep reinforcement learning-based (DRL) navigation controller that learns dy-
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Figure 4.2: Schematic of the TAGD generation process. The ICP alignment of two subsequent
lidar scans (1) in 2D Cartesian coordinates reduces the effect of robot self-motion
(2). This allows better differentiation between dynamic obstacles and static obsta-
cles. The aligned scan is grouped and clustered around ray-cast centers (3). From
the clustered points (4), the position difference of the centroid from both time steps
reveals a moving obstacle (5).

namic obstacle avoidance implicitly from 2D lidar readings only.

* A spatiotemporal attention module that infers the relative importance of different
observation sectors with respect to proximity and obstacle motion trends.

* A novel 2D lidar observation representation highlighting dynamic obstacles over
the robot’s self-motion called temporal accumulation group descriptor (TAGD).

4.2 Related Work

Where mobile robot navigation decomposes into global path planning and local ob-
stacle avoidance, the latter can be tackled with traditional and learning-based ap-
proaches. While traditional approaches such as the popular dynamic window approach
(DWA) [36], [137] have been advanced with motion prediction [138], they come with the
difficulties to avoid C-shaped or dynamic obstacles, or the necessity for re-tuning in dif-
ferent environments [90].

4.2.1 Learning-based navigation

Deep learning-based methods [139] appeal with decent generalization performance and
less tedious fine-tuning as compared to hard-coded controllers.

Especially reinforcement learning-based (RL) methods have successfully been ap-
plied to motion planning [56], [140], [141], [142], as further demonstrated by Chap-
ter 2 and Chapter 3. These works, however, do not embed dynamic scene understand-
ing, thus limiting the agent’s capability around walking pedestrians. Methods like
SARL [114] or MP-RGL [130] capture interactions between robot and humans with excel-
lent results, but rely on the known velocity of humans. Others infer or forecast human
behavior by predicting their long-term goals, or by predicting their future motion and
activities [143], [144], often by employing 3D lidar or RGB(-D) cameras [70], [116], [145],
[146], [147]. Recently, learning mapless navigation from 2D lidar has shown promising
results [70], [135], [148]. The challenge arises with our aim to learn time-series motion
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trends for scene-dynamics aware navigation from 2D lidar readings in an end-to-end

manner.

4.2.2 Point Cloud Feature Extraction

For the feature extraction in a deep RL navigation task, the spatial nature of lidar point
cloud data suggests convolutional neural networks (CNN) as natural fit [70], [135]. Here,
reducing the input dimensionality into a sparse encoding is a pivotal step. Taking into
account the temporal dimension for scene dynamics understanding, individual lidar
scans may be CNN-processed separately, followed by a multilayer perceptron (MLP)
for joint extraction [70]. With PointNet [149], a high-performing network architecture
for 3D point cloud registration has been proposed that was recently put to test in a short-
horizon RL-based robotic manipulation task [150]. For obstacle pose and dynamics es-
timation, using a point cloud segmentation approach represents a viable avenue [129].
Looking at the non-learning-based domain, obstacle tracking from point cloud data has
been presented before [151], [152]. With the advent of transformer models, the self-
attention operator’s invariance to cardinality and permutation of input data has proven
to be a useful property for point cloud inference [153]. Building on this foundation,
our work leverages attention-based 2D lidar feature extraction. This approach enhances
deep RL-based local-obstacle avoidance, while integrating high-level guidance from a
conventional path planner.

4.2.3 Recent Works

Since the publication of our original study, several works have leveraged attention mech-
anisms and transformer architectures for learning-based robotic tasks, as outlined be-
low. Similar to our approach, Kazemi et al. employ both spatial and temporal attention
modules to improve autonomous marine navigation in flow-affected waterways [154].
A graph attention module encodes obstacles and other state information, while a trans-
former block models the temporal evolution of the agent’s environment, resulting in
improved navigation performance. Although their work addresses a different appli-
cation domain, their learning architecture is closely related to ours, as both follow an
end-to-end reinforcement learning paradigm. For mobile robot navigation in dynamic
environments, Zhang et al. propose a gated attention mechanism in a similar 2D lidar-
based end-to-end RL policy [155]. While their method directly processes raw lidar in-
put, our approach first applies the TAGD representation to expose dynamic obstacles
more effectively before passing the data to the policy. An attention mechanism com-
parable to our implementation has also been applied in a recent learning-based robot
manipulation task [156]. These recent developments highlight the growing potential of
attention-based architectures in learning-based robot control.
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4.3 Problem Statement and Assumptions

In this work, we consider a differential-wheeled robot pursuing a global goal in a clut-
tered and dynamic indoor environment, compare Figure 4.3a). A map of the empty
environment is available for global path planning via A*. Static or dynamic pedestri-
ans, however, are unknown obstacles to the robot. Also, the pedestrians at different
speeds move rigorously without avoiding the robot in their motion, in contrast to other
social navigation studies [135]. Therefore, smart and foresighted local collision avoid-
ance is entirely up to the robot. The controlling agent has access to subsequent 2D lidar
readings and upcoming path waypoints as observations, which it maps to linear and
angular velocity commands. We formulate the task as in a learning-based manner and
apply off-policy DRL. In summary, the proposed controller should be able to achieve
two tasks: 1) Pursue the global goal through guidance of the computed path and 2)
effectively avoid dynamic obstacles on a local scale.

4.4 Our Approach

This section explains our novel temporal accumulation group descriptor for lidar read-
ings and subsequently the learning framework.

44.1 Temporal Accumulation Group Descriptor (TAGD)

It is inherently difficult to capture motion trends of moving obstacles from consecutive
2D lidar readings when the robot is in motion. To reveal moving obstacles over static
ones without explicit obstacle tracking, we introduce our novel TAGD. We assume li-
dar scans to be recorded at a constant frequency of 1/At with a range of dmax. Our
approach is described in Algorithm 1 with a visualization of all major steps is shown in
Figure 4.2. We start with the min-pooled 2D lidar points B;_1, B; with N points each.
To eliminate the impact of robot rotation and translation, ICP [157] aligns B;—; to B;
in the transformed point set B, ; (Figure 4.2.1). For static obstacles, the points now
match up while their positions misalign for dynamic obstacles (Figure 4.2.2). For spatial
clustering and subsequent temporal matching, clustering group centers g’ are formed
along N, uniformly cast rays by determining the robot-closest point within an angular
threshold Oyyesh (Figure 4.2.3). For temporal matching and dimensionality reduction,
the points in B;_; and B; are assigned to clustering groups G;_; and G;. This assignment
is based on the Euclidean distance to their clustering center g’, within a fixed threshold
dihresh = 0.25m (Figure 4.2.4). Note that diesh 1S a static parameter and chosen with a
safety margin based on the relation between maximum expected obstacle speed and the
inference time step as dinresh > VmaxAt. The 2D centroids ¢’ of each group G;_; and G}
counteract sensor noise and finally represent a single TAGD (ct, c!_,) (Figure 4.2.5).

A TAGD represents the center of data points across two consecutive lidar scans close
to the nearest obstacle within an angular zone, such that even small obstacles hit by only
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a single ray are successfully represented by a TAGD. Note that it is possible for a single
dynamic obstacle to be represented in more than one TAGD, depending on the posi-
tions of clustering centroids, e.g., see TAGDs 26 and 27 in Figure 4.2.4). However, such
double representations did not hinder the performance in the context of the learned
controller. With regard to real-world pedestrians and their leg motion pattern, the in-
fluence of faster-than-body moving single legs on the TAGD displacement and there-
fore body speed estimation cannot be entirely ruled out. However, the group centroid
calculation within diresh SUpports averaging out the effects of sensor noise or displace-
ment and speed of individual legs, even though leg walking patterns are not explicitly
considered or simulated in this work. It is worth noticing that a consistent inference
timing between the lidar scans is key to correctly represent a given obstacle velocity
with TAGDs, also with regards to a sim-to-real transfer. Here, this is directly based on
the reinforcement learning control time step At = 0.2s. We have not used odometry or
IMU data for enhanced ICP alignment, but solely rely on the observed static obstacles
in the scene. While posing a limitation, this is a defensible assumption for indoor envi-
ronments. However, we will evaluate the reliance and performance dependency of the
navigating RL agent on correct ICP alignment in two ways, 1) without static obstacles
in open space among dynamic obstacles, and 2) with ICP alignment artificially turned
off. In summary, TAGDs reveal obstacle motion and will therefore be used as input to
the temporal attention module of our pipeline.

Algorithm 1 Temporal Accumulation Group Descriptors

Require: Lidar readings B;_1, By, dihresh; @max; Ne

et/hresh A 7T/ N

Bt—l — ICP(Bt_l, Bt)

Initialize TAGD list C; = {}

fori=0to N. do
Oref < 2mi/N,
T+ {b = (Tu 0) € Bt‘ ‘9 - eref‘ < ethresh}
Tmin < min(r,G)ET(ra dmax)
8i < (Tminv eref)
g}g — {b €/Bt |dl.iSt(b, gz) /S dthresh}
gv%fl A {b € Btfl ‘ diSt(b 7gi) S dthresh} )
TAGD (c}, c}_;) + (centroid(G;), centroid(G;_;))
Ct + CeU{(c},ci_y)}

4.4.2 Deep Reinforcement Learning for Navigation

We choose a deep deterministic policy gradient (DDPG) architecture consisting of an
actor and a critic, modeled by neural networks [158]. DDPG features a continuous action
space, allowing for smooth robot control. The actor network outputs linear and angular
velocities for the robot. The RL framework is based on the Markov Decision Process:
An agent in state s; at time step ¢ decides upon an action a; based on a policy 7 (s;) =
a; [105]. Upon reaching the next state s;1, it receives a reward r;. The optimization
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Figure 4.3: Illustration of our architecture. a) The indoor environment provides lidar readings to
the deep reinforcement learning agent that drives a differential-wheeled robot via lin-
ear and angular velocity commands. b) From subsequent lidar readings, the TAGDs
are computed. Merged with the five upcoming waypoints of the global path and the
raw lidar readings as observations, they are c) processed by the agent in a separate
spatial and temporal stream. Both streams feature an attention block to weigh the
importance of d) individual lidar sectors (spatial) or e) the TAGDs (temporal), with
respect to the upcoming waypoints. After feature extraction, both streams are con-
catenated for further processing in the final output network of the actor-critic agent.

objective is the maximization of the y-discounted cumulative return R = ST Aty
where v = 0.98. As DDPG is an off-policy RL algorithm, the state-action pairs are stored
in an experience replay buffer of length Ngp = 2,000,000 and sampled in batches for
policy updates.

4.4.3 State and Action Space

The state space defines the observations we provide to the agent. As can be seen in
Figure 4.3b, the agent has access to 2D lidar sensor data, the lidar-derived TAGDs, and
upcoming waypoints for global guidance. The N = 180 ray min-pooled lidar scan B; is
represented as a set of robot-centric Cartesian 2D points. Focusing on local obstacles,
the lidar scanning range is limited to dmax = 3.5m. To sense dynamic obstacles, we pro-
vide the TAGDs C; = {(ci,ci_;)|0 < i < N.} as described earlier, where the number of
TAGD’s N, = 30 is equal to the number of spatial sectors N, = 30. The value N, = 30
was heuristically chosen so that the clustering groups would jointly provide a cohe-
sive circular coverage mid-range of the lidar distance around d = 2.5m, and the TAGD
clustering circles defined by the radius dipesh start to overlap (N. ~ 27d/(2dinresh))-
From the robot nearest waypoint p¢ on path P, we sample N; = 5 waypoints spaced
at Ap’ = 0.3m towards the goal. These are converted to robot-centric Cartesian coordi-
nates and input to the agent as P/ ={pilc<i<c+ Ny}

The continuous action space of the agent consists of linear and angular velocities
(v, w), with a range of v € [0, 1.0jm/s and w € [—m, w|rad/s. The robot is not allowed to
drive backwards to foster foresighted navigation.
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444 Reward

The navigating agent’s overall objective is to navigate collision-free along a given path
among unknown dynamic obstacles. The reward r; is therefore a weighted sum:

isi uide rox
7 = cyrollision 4 g, pBUYE gy P (4.1)

a1 =10, az = 0.2 and a3 = 3 are the experimentally determined weighting factors.

To encourage collision-free navigation, we penalize with 7" = _1 upon collision
of the robot with any obstacles.

A natural guidance along the global path is beneficial as it encourages the agent to
drive towards the goal. From the current closest waypoint p¢ on the path to the robot,
we interpolate 0.6m forward along the path to obtain the guidance point p?. The dis-
tance between p? and the robot’s position p” are penalized with r8%d¢ = —||p9 — pT|].
By design and due to the update at every time step, p? cannot be reached, thus pro-
viding a continuous penalty that increases when the robot deviates from the path and
encourages the robot to drive back to the path in a forward-leading manner.

The concept of rP™* aligns with the sparse collision reward, but does not termi-
nate the episode for easier learning. Instead it alerts the agent in vicinity to ob-
stacles about a higher risk of collisions, or in other words encourages the agent to
keep clear of obstacles. When the minimum distance d between robot and any lidar-
scanned obstacle falls below dprox = 0.5m, a linearly growing penalty is computed as
TPT = —1 X |dprox — min(d, dprox)|, €lse rP** = 0.

4.4.5 Network Architecture

As shown in Figure 4.3c, our agent’s architecture is constructed around two data
streams. The individual streams extract spatial and temporal features via an attention
mechanism, respectively. Note that both the down-sampled lidar input of the spatial,
and the TAGD input of the temporal steam contain partially redundant information due
to their origin in the raw distance readings.

4.4.5.1 Temporal and Spatial Data Stream

With the individual TAGDs and the possibly attention-relevant, therefore re-
dundantly represented upcoming waypoints, we construct N. individual vectors
Utermp = {[ci_;, cl, P/110 <i < N}, tobe passed on to the temporal attention module as
Viemp = Attiemp(Utemp), see Figure 4.3e. In the spatial data stream, the lidar scan B; of
N rays at time step ¢ is split into N angular sectors S = {b/ € By|iN, < j < (i + 1)N;}
with N/N, rays each. Again, each sector-vector is concatenated with next path segment
forming N, individual vectors Ugp.: = {[S, Plj0 <i< Ny}, jointly passed on to the
spatial attention module as yspat = Attspat(Uspar). After both data streams have been
processed by their attention modules, respectively, they are concatenated and jointly
processed by an output module O(-) for joint feature extraction o = O(yiemp, Yspat)-
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Two separate modules of this pipeline form the actor and critic.

4.4.5.2 Attention module

Both temporal and spatial attention modules Att(-) share a similar network architecture,
but no parameters. A visualization of our lightweight attention module can be found
in Figure 4.3d-e. It is constructed with an embedding, a score and a feature network,
inspired by Chen et al. [114] and [136]. The embedding module E(-) encodes the input
vectors individually along the attention dimension to e; = E(u;). The embedding e; is
fed into the score module S(-) that outputs the attention scores s; = S(e;). All atten-
tion scores are Softmax-normalized to obtain the final importance weight. In parallel
the embedding is also fed into the feature module F'(-) that generates the feature repre-
sentations as f; = F(e;). Finally, the feature vectors are scaled by their importance in a
weighted sum.

y = Att(U) = Y, Softmax(s;) - f; (4.2)
= >, Softmax(S(e;)) - F'(e;) (4.3)

Note that the due to the lightweight implementation of our attention scheme, the di-
mensionality along the attention axis reduces from NV, or IV, vectors to one in the output.
In other words, the individually embedded lidar sectors or TAGDs do not attend to each
other, but the attention scales their impact in the weighted sum, respectively. This form
of attention is also referred to as location-based attention [159], [160]. All networks de-
scribed above are constructed as ReLU-activated multi-layer perceptrons (MLP)?.

4.4.6 Indoor Training Environments

To train our navigation agent, we use the PyBullet [107] physics engine. We use the
minimalistic but well-randomizing indoor environments from de Heuvel et al. [136] fea-
turing dynamic cuboid obstacles that represent pedestrians, with three different types
of scenarios, see Figure 4.4: Corridors, intersections, and offices. The randomization of
wall density and placement provides varying levels of scene complexity. The corridor
environment is long and narrow with a length between [6m, 8m| and a width between
[2.0m, 2.5m]. The robot encounters pedestrians moving in opposite directions. The inter-
section environment is cross-shaped featuring hallway widths between 2.0m and 2.5m,
and includes corners that create blind spots for sudden pedestrian appearances. The of-
fice environment features a fixed outer size with randomized interconnected rooms and
introduces doorway encounters where the robot waits for pedestrian clearance before
proceeding. Our room types cover typical encounters suggested for social navigation
tasks [109], as found also in other related studies [70], [135]. While our rectangular en-

2Layer sizes (hidden nodes): embedding: 256 x 128 x 64, score: 60 x 50 x 1, feature: 80 x 50 x 30,
output: 128 x 64 x 64 x {1, 2} (critic/actor)
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a) Corridor  b) Intersection c) Office

Figure 4.4: The PyBullet-based environments from [136] are used for training. a) In the corridor
and b) intersection environments, the wall distances are randomized (blue). ¢) In the
office environment, the outer walls are fixed with randomized inner wall placement
for diverse room setups.

vironments generate variety through architectural randomization, other works achieve
variety through larger but static, non-rectilinear scenes [146]. The robot’s start and goal
locations are sampled in the corners or dead ends of the scenes, respectively.

4.4.6.1 Obstacle simulation

Dynamic and static pedestrians represented by cuboids move back and forth through
the environments along A* paths with randomized quantity (Ngy, € [1, Ng}‘fr‘lx],
Nitat € [1,2]), speed (Vped € [0.5,1.0]m/s), start, and goal position. Note that the
pedestrian speed can exceed the robot’s maximum velocity. The maximum dynamic
obstacle number Ng}‘,;x € {2,4,8} follows a curriculum scheme (three levels) and is
increased over the course of training, whenever the evaluation success rate exceeds
70%. For the purpose of increasing the obstacle encounter likelihood with the robot,
start and goal locations of the first pedestrian are sampled around the robot path.
All other pedestrians will cross the robot path eventually. Note that the A*-following
pedestrians do not take into account each other or the robot position, but rigorously
move forward. Collision avoidance is therefore entirely up to the robot, similar to [70],
[146] This can lead to highly challenging navigation encounters, especially for larger
obstacle numbers. This is in contrast to other studies [135], [161] that simulate the
pedestrians motion based on Optimal Reciprocal Collision Avoidance (ORCA), where
the pedestrians avoid each other. Notably, also the robot is actively avoided by the
pedestrians, easing the collision-free navigation task for the RL agent. Other works
have employed the social force model for crowd navigation [162]. Though our more
basal dynamic obstacle simulation leads to occasional pedestrian mesh overlaps and
occasionally non-passable situations, our selection of an only path-based model is
justified by our study’s primary focus on feature extraction for RL-driven dynamic
obstacle avoidance, rather than on crowd navigation.
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4.4.7 Robot Model

We employ a differential-wheeled robot, more precisely, the Kobuki TurtleBot 2. The
TurtleBot performs angular turns with a speed difference between both wheels. A
Slamtec RPlidar A3 2D lidar sensor is mounted on top of the TurtleBot, emitting 1,440
beams. In simulation, we add sensor noise to the distance readings with an amplitude
of 2.5cm.

4.5 Experiments

In the following we present the training and evaluation details, followed by an abla-
tion and baseline study. After evaluating the domain shift to the iGibson simulator, the
section is rounded up by the real-robot deployment.

4.5.1 Training Setup

An episode denotes one navigation run of the robot from start until one of the termina-
tion criteria is reached: Collision with other obstacles, timeout after Tiimeout = 150 = 30s
steps, or goal-reaching upon vicinity of 0.2m to the global goal. To foster generalization
abilities, for each episode a randomly generated environment is set up, as described in
Section 4.4.6. The inference and control time step of the agent is set to At = 0.2s, which
also represents the time difference between subsequent lidar scans for the temporal pro-
cessing. The learning rates for both actor and critic is 1 x 10~%. All agents presented are
trained for 300,000 episodes and evaluated regularly. The best performing model check-
point of the highest curriculum level is selected for all approaches.

4.5.2 Quantitative Performance

We evaluated our trained models with respect to success rate, collision rate, timeout
rate, and navigation time over 1,000 episodes. For comparability, the 1,000 episodes
were set up identically among all approaches. The flagship approach presented in this
study is denoted with OUR. Generally, with challenging environment complexity due
to increased obstacle velocities (Figure 4.5a), or increased number of dynamic obstacles
(Figure 4.5b), the success rate stagnates.

4.5.2.1 Ablation Study

We did an ablation study with respect to OUR approach described above to evaluate
the contribution of each module to the results, see Table 4.1a and Figure 4.5.

A1 NO-SPATIAL: As OUR, but removing the spatial attention stream, leaving only
TAGD and waypoint processing.

A2 NO-TEMPORAL: As OUR, but with no temporal stream or TAGD input, leaving
only the spatial single time step attention stream and waypoint processing.
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Figure 4.5: Performance overview for all approaches averaged over 1,000 episodes with identical
scene setups in all three PyBullet environments for a) increasing obstacle speeds, with
two dynamic and one static pedestrian, and b) increasing numbers of obstacles, with
a fixed pedestrian speed 0.6m/s.
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Figure 4.6: Exemplary visualization of the a) spatial (blue) and b) temporal attention (red) for
a given navigation scene. The attention scores were color-mapped onto the lidar
beam sectors for the spatial and on the beams pointing towards the TAGDs for the
temporal attention, respectively. Increased spatial attention towards the forward-
facing lidar sectors, as well as increased temporal attention towards the oncoming
dynamic obstacle can be observed.

A3 NO-TAGD: As OUR, but without TAGD preprocessing. The network structure

implements the spatial attention stream twice with separate network parameters, each

processing one of the consecutive lidar scans, respectively.
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As can be seen from Table 4.1a and Figure 4.5, with all ablations the performance de-
teriorates. The joint contribution of spatial and temporal attention emerges with A2 NO-
TEMPORAL having a lower success rate compared to OUR, as it relies only on single-
time step spatial information.

4.5.3 Baselines

To identify the contribution of our feature extraction approach, we compared it against
two baseline architectures. All baselines leverage 2D lidar (360°) for learning-based mo-
bile robot navigation and were trained in the same environment and training parameters
as our approach. The baseline-related modifications lie in the state space content and
processing network architectures.

4.5.3.1 Liangetal.-B1

A highly related state-of-the-art approach has been presented in [70]. Similarly to ours,
it is an end-to-end obstacle avoidance algorithm originally trained with Proximal Policy
Optimization. The authors use 2D lidar and a depth camera to perceive the environ-
ment, while the controller outputs velocity commands. From both perception modal-
ities, we solely implement the lidar-related preprocessing and network architecture to
replace our attention blocks, which is a 1D CNN taking in three consecutive scans. Pre-
cisely, this module is composed of two 1D CNN layers followed by a fully connected
MLP. In contrast to our approach with 2D Cartesian point lidar representation, single-
value lidar distance readings are used. The state space still contains five upcoming way-
points, which in contrast to OUR are processed by a separate MLP. Without convergence
and therefore not included, we have also tested a closer-to-the-original implementation
(512 lidar rays, no waypoints, only goal position).

a) Ablation SRT CR| TR] Nav. time|
OUR 86.2 13.8 0.0 17.7 s
Al: NO-SPATIAL 747 253 0.0 18.1s
A2: NO-TEMPORAL 80.5 195 0.0 179 s
A3: NO-TAGD 85.0 15.0 0.0 178 s
b) Baseline
B1: Liang et al. [70] 784 216 0.0 18.9s

B2: Pérez-D.etal. [135] 774 226 0.0 18.6 s
B3: Pérez-D.etal [135] 799 201 0.0 184 s
c¢) Generalization

iGibson [163] 792 186 2.2 19.0s

Table 4.1: Performance rates in [%] with respect to success (SR), collision (CR), and timeout
(TR) and average navigation time for successful episodes of a) ablation and b) baseline study
averaged over 1,000 episodes, with 2 dynamic pedestrians (0.6m/s) and 1 static pedestrian. The
¢) generalization evaluation reveals slightly decreased performance for the post-training domain
shift to the iGibson simulator on similar navigation tasks in more complex environments.
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Figure 4.7: Results of the generalization study using the iGibson simulator over eight scenes with
125 episodes each. a) OUR controller demonstrates the best generalization capabil-
ities in the sim-to-sim transfer of all approaches. b) Breakdown into the different
scenes shows a scene dependency of the controller performance for OUR controller.
¢) Collision object category analysis within iGibson: The most-collided-with objects
are the walls.

4.5.3.2 Pérez-D’Arpino et al. - B2/3

In the end-to-end lidar navigation approach of [135], no temporal information but only
the current lidar reading is processed. Similar to Liang et al. [70], the authors employ
a lidar-processing 1D CNN but with three layers followed by a fully connected layer.
Furthermore, N = 128 single-value lidar distance readings are used. Additionally, the
global goal position and next upcoming waypoints of the A* path (Ap? = 1.0m) are part
of state space. In B2, we employ their state space and replace our attention block with
their lidar-processing CNN and waypoint-processing MLP modules. A sub-version (B3)
uses only their CNN architecture but our original state space with regards to waypoints
and lidar resolution.

4.5.3.3 de Heuvel et al.

In initial tests, we compared against [136], outputting collision-free subgoals instead
of velocity commands from single-time step lidar data with similar spatial attention.
Direct comparisons with our current method are not viable due to later changes in the
training settings. Despite this, the comparison showed a 5.3% performance boost by
incorporating TAGDs and temporal attention, motivating our current work.

As can be seen in Table 4.1b) and Figure 4.5, for our setup, the CNN-related baselines
B1-B3 struggle more with an increased number of obstacles. In almost all cases, our
approach outperforms all baselines in terms of success rate.

4.5.4 Qualitative Attention Analysis

Figure 4.6 visualizes the learned spatial (a) and temporal (b) attention for a given navi-
gation scenario. Here, two dynamic obstacles approach the robot from opposite direc-
tions, the robot has just entered the room. The spatial attention highlights the forward
lidar sectors in the desired direction of navigation. The robot navigates along a wall
that locates on its left-hand side, and we can observe an increased attention on the cor-
responding lidar sectors. Intuitive to the human eye, the temporal attention focuses the
TAGDs of the oncoming dynamic obstacles. Similar to the spatial attention, a slightly
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increased temporal attention can be observed in forward direction of the robot. In di-
rect comparison to the temporal stream, the spatial stream exhibits a less sharp attention

distribution in this scenario.

4.5.5 Robustness

Verifying the robustness of our approach with respect to ICP accuracy against its de-
pendence on static obstacles for correct alignment, an open space evaluation of the same
evaluation environments but without walls reveals an absolute performance decrease
of 3.6%. When disabling ICP alignment entirely and feeding non-aligned lidar scans
into the TAGD pipeline, the absolute performance drops by 4.8%. In both cases, the
performance is still superior to the NO-TEMPORAL ablation, demonstrating decent ro-
bustness of the TAGD-based approach against ICP failure in these edge cases. Note that
the obstacle parameters of Table 4.1 were used.

4.5.6 Generalization Performance

To investigate the generalization ability of our approach, we evaluated the PyBullet-
trained agents in the iGibson simulator [163] in a sim-to-sim transfer, see Figure 4.1.
The sensor settings and overall navigation objective remain similar, but two major dif-
ferences strike: 1) The indoor scenarios are of high fidelity with diverse furniture objects
and a more complex room architecture. 2) The pedestrians are represented with real
3D meshes instead of cuboids and have a more refined motion simulation. Precisely,
we adapt the navigation task from the 2021 iGibson Social Navigation Challenge [164]
that features eight scenes and Optimal Reciprocal Collision Avoidance (ORCA) among
pedestrians. The key settings to mention as taken over from the original challenge are
the maximum pedestrian speed of 0.5m/s, an inverse scene area-related population of
8 m? per pedestrian, and a goal sample distance between 1.0 and 10.0m.

As seen in Figure 4.7a), OUR controller exhibits the best generalization performance
among all approaches. The slightly lower success rates in Figure 4.7a and Table 4.1c
point towards a simulator gap and increased difficulty within the scenes.  Also, the
individual scenes seem to be of varying difficulty to the robot, compare Figure 4.7b).
To further differentiate the challenges the robot faces in the iGibson scenes, the top ten
collided-with object categories have been recorded, see Figure 4.7c). As the majority of
collision events involve walls, the possibly higher degree of confined spaces within the
iGibson scene could play a role. Furthermore, tables and chairs are among the most fre-
quent collision causes. These objects are usually thin-legged, providing a challenge for
lidar detection at low angular resolutions. In summary, the attention-based architecture
surpasses the tested CNN feature extractors in unseen environments.

4.5.7 Real-World Experiment

Using the Robot Operating System (ROS) [108], we transferred the trained controller to a
real Kobuki TurtleBot 2, as described in Section 4.4.7. In our experiment, the Gmapping
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package [165], a Simultaneous Localization and Mapping algorithm, was used to build
an occupancy grid map of real scenarios upfront for path planning. During navigation,
Adaptive Monte Carlo Localization [35] estimated the robot’s pose in the pre-mapped
environment based on the lidar reading and robot odometry.

We tested our learning-based spatiotemporal approach qualitatively in various real-
world scenarios, including corridors, intersections, and offices.? In a corridor, the two
participants overtake the robot from behind or approach it rigorously from the front,
see Figure 4.1. The robot smoothly gives room to the pedestrians and avoids collision.
At an intersection, pedestrians appear from the blind spots behind a corner. In another
test, the pedestrian blocks the doorway to see whether the robot would stop upon fac-
ing the impassable situation. All navigation situations are successfully handled by our
spatiotemporal controller.

4.6 Conclusions

We proposed a novel and lightweight approach for robot navigation in dynamic in-
door environments. Our learning-based approach featuring spatiotemporal attention
demonstrates the capacity to highlight collision-relevant features from the sensor data,
making the most of the sparse 2D lidar readings. Meanwhile, the introduced temporal
accumulation group descriptors (TAGD) help to counteract the robot’s self-movement
over subsequent lidar readings and therefore support the differentiation between static
and dynamic obstacles without explicit object tracking. Our policy directly outputs
linear and angular velocity, leading to smooth robot navigation, and outperforms sev-
eral state-of-the-art approaches in terms of collision rate for different pedestrian speeds
and numbers of obstacles. We validate the sim-to-sim generalization capabilities in the
iGibson simulator, finding excellent and better than state-of-the-art performance to un-
seen, more complex indoor environments with different pedestrian dynamics. Lastly,
we achieve an effortless sim-to-real transfer into dynamic real-world indoor environ-
ments.

In conclusion, the findings of this chapter directly contribute to RQ3 on sensor repre-
sentations in dynamic environments, outlined in Section 1.2.3. In the big picture of this
thesis, this chapter also introduced the 2D lidar sensor for DRL-based robot controllers.
In the subsequent chapters, we will consistently follow up on the 2D lidar sensor for ob-
stacle sensing, while transitioning back to the challenge of personalizing human-aware
navigation policies. With regard to the policy’s behavior, the approaches of this and
the previous chapters converge to a specific behavior profile during training, originally
informed by reward design, reward weighting, or demonstration data. The trained pol-
icy may show satisfying performance or decent preference reflection, however, it cannot
adapt to evolving user preferences post-training. Hence, the next chapter places a par-

*A video of the real-world experiment is linked in the supplemental material section of the thesis ap-
pendix.
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ticular focus on policy adaptability to changing user preferences at a post-deployment
stage.
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5 Demonstration-Enhanced  Adaptable  Multi-
Objective Robot Navigation

Abstract

Preference-aligned robot navigation in human environments is typically
achieved through learning-based approaches, utilizing user feedback or demon-
strations for personalization. However, personal preferences are subject to change
and might even be context-dependent. Yet traditional reinforcement learning (RL)
approaches with static reward functions often fall short in adapting to evolving
user preferences, inevitably reflecting demonstrations once training is completed.
This constraint also applies to the approaches presented in Chapter 2 and 4. This
chapter introduces a structured framework that combines demonstration-based
learning with multi-objective reinforcement learning (MORL). To ensure real-world
applicability, our approach allows for dynamic adaptation of the robot navigation
policy to changing user preferences without retraining. It fluently modulates the
amount of demonstration data reflection and other preference-related objectives.
Through rigorous evaluations, including a baseline comparison and sim-to-real
transfer on two robots, we demonstrate our framework’s capability to adapt to user
preferences accurately while achieving high navigational performance in terms of
collision avoidance and goal pursuit.

5.1 Introduction

The previous chapter is an example of how mobile robot navigation has significantly
advanced with deep reinforcement learning (RL), enabling end-to-end policies that tra-
verse complex environments with foresighted and nuanced behaviors. In scenarios in-
volving human-robot interaction, however, it becomes crucial to align these policies with
user preferences [166], e.g., on approaching behavior, proxemics, and navigational effi-
ciency, to achieve acceptance [39].

However, traditional RL-based navigation methods typically optimize for static and
pre-configured objectives in their reward scheme such as path efficiency or obstacle
avoidance [135], neglecting user preferences and their variability over time. This has
also been the case for the DRL-based approaches of Chapter 2 to 4. As a result, these
methods lack mechanisms to adapt to shifting user preferences dynamically and require
retraining to accommodate behavior changes, highlighting a significant gap in the cur-
rent methodology.

A common strategy for addressing user preferences is learning from demonstrations.
To preference-align RL-based navigation around the human, Chapter 2 to 3 have em-
ployed an additional behavior cloning loss driven by demonstration data. However,

This chapter is a revised and updated version of the peer-reviewed publication [77]. Refer to Section 1.4
for details.
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Figure 5.1: Our framework integrates demonstration-based learning into multi-objective rein-
forcement learning, enabling robots to adapt navigation policies to users’ changing
preferences even after training. a) The navigation style can fluently shift between
demonstration-induced, distance keeping, and efficiency objectives. b) We modu-
late the MORL reward vector r; with a ¢) varying preference A, while providing X as
input to the agent. d) The resulting human-centered policy can generate a spectrum
of trajectories, here sketched for the objectives of demonstration-reflection (red, here:
wall-following) and path efficiency (yellow).

these approaches do not provide principled ways to dynamically trade off demonstrated
behaviors against core navigation objectives such as efficiency and collision avoidance.
This can lead to overly conservative or inconsistent behavior, reducing usability in real-
world applications. It becomes essential to devise mechanisms that can modulate the
influence of demonstrations by user preferences, even after training.

To overcome these challenges, we propose a novel framework that integrates
demonstration-based learning (LfD) via inverse reinforcement learning (IRL) into multi-
objective reinforcement learning (MORL) to achieve flexible and preference-aware robot
navigation (see Figure 5.1). This combination extends MORL'’s on-the-fly policy adap-
tation capabilities [167] by modulating the influence of demonstrations and other objec-
tives without retraining.

Specifically, our combined approach of LfD, IRL, and MORL provides a structured
way to incorporate user demonstrations as one of multiple competing objectives, en-
abling situationally adaptable trade-offs between demonstration adherence and navi-
gational core objectives. Focusing on the robotic application, our experimental results
demonstrate robust performance and accurate preference reflection for both a static and
moving user. Finally, a comprehensive sim-to-real transfer on two different robotic plat-
forms further validates the feasibility and robustness of our method in human-centered
navigation tasks.

In summary, the main contributions of our work are:

¢ A multi-objective reinforcement learning human-aware robot navigation frame-

work that enables policy adaptation to preferences post-training.
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¢ The structured incorporation of demonstration data as a tuneable objective.

¢ Comparative navigation experiments in simulation validating demonstration
modulation, behavior adaptation, robustness and generalization, concluded by a
real-world transfer and evaluation on two different robots.

5.2 Related Work

The concept of user-aware personalized navigation is gaining momentum, emphasiz-
ing robots that adapt their strategies based on individual user preferences. Users can
express preferences through ranking trajectory queries [168], [169] or providing demon-
strations [30], [170], as demonstrated in Chapter 2 and 3. Both feedback types can distill
a preference-aligned navigation policy. While trajectory ranking can be used to extract
user preferences [69], this work establishes a demonstration-infused policy that aligns
on-the-fly without retraining through multi-objective reinforcement learning (MORL).

The concept of optimizing for multiple objectives has already been applied in tradi-
tional non-RL navigation approaches [171], [172], [173]. Traditional methods, however,
are limited by their inability to integrate preference-conveying demonstration data. In
the context of RL, MORL extends standard RL by enabling the simultaneous optimiza-
tion of multiple objectives. MORL frameworks exist for discrete [174] and continuous
action spaces [175], [176], while the latter are particularly interesting for robotic tasks.
So far, MORL has been applied to autonomous driving [177] and robotic tasks such as
manipulation [178], navigation [69], [179], [180], [181], and path planning [182].

Ballou et al. [183] used meta reinforcement learning to adjust robot navigation among
humans, efficiently fine-tuning policies for changes in the reward function, such as goal
pursuit or distance keeping. However, their adaptation to shifting objectives is not in-
stantaneous but rather requires an adaptation training phase. In contrast, our MORL
policy adapts to preference weight changes in the preference space immediately.

Cheng et al. [179] proposed a MORL-based navigation policy that adapts to dynamic
preferences over multiple navigation objectives in human environments, utilizing deep
Q-networks for preference-weighted action selection. Similar to our approach, their
method processes 2D lidar data as input. However, unlike our approach, they employ a
discrete action space with acceleration commands, whereas we utilize MORL-enabled
TD3 actor-critic architecture with a continuous action space of linear and angular veloc-
ity control for smooth motions.

Cheng et al. [180] presented an approach to learn navigation in human-populated en-
vironments with a multi-objective reward vector formulation. Compared to our study,
they are not accounting for different preferences, as their approach optimizes a fixed set
of objectives without mechanisms to adjust trade-offs dynamically. Choi et al. [168] pro-
posed to use multi-agent training with parameterized rewards and action commands
for adaptable robot navigation. Parameterized rewards can be used with standard RL
policies, potentially at the cost of weaker multi-objective optimization. In contrast, our
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agent estimates Q-values for different objectives separately while incorporating tunable
demonstrations alongside other navigation objectives.

Hwang et al. [30] proposed a vision-based MORL framework for adapting robot nav-
igation with discrete actions to human preferences through demonstrations, trajectory
comparisons, and language instructions. However, their use of demonstrations is lim-
ited to estimating corresponding best-representing preference weights based on given
objectives, possibly losing nuanced behavior traits in the demonstration data, whereas
our approach directly integrates demonstration data to shape navigation behavior.

5.3 Owur Approach

5.3.1 Problem Statement

We consider a wheeled robot navigating in the vicinity of a human and unknown obsta-
cles, pursuing a local goal while avoiding collisions. The robot is controlled via contin-
uous velocity commands. The human has certain preferences about the navigation style
of the robot that may change depending on navigational context, such as task or time
constraints, and which should be considered by the robot while navigating to the goal.
These navigation preferences can be expressed both in the form of a preference vector
and demonstrations. We assume the robot is provided a robot-centric goal location and
can reliably estimate the human position, obstacles are perceived by the robot through
2D lidar. The navigation policy processes sensor data and goal information along with
a preference vector containing user preferences, allowing for on-the-fly behavior adap-
tation within a single policy. Our approach explicitly focuses on single-human inter-
action, personalizing robot behavior based on individual user preferences rather than

group dynamics.

5.3.2 Multi-Objective Reinforcement Learning

Multi-objective reinforcement learning (MORL) enhances traditional RL by integrating
multiple, often conflicting, objectives [167]. In MORL, the agent is trained to learn
policies that strike a balance among these diverse objectives, as opposed to a one-
dimensional reward function. The MORL problem is formulated within the framework
of a Markov Decision Process (MDP), defined by the tuple (S,.A,P,R,v). Here, S is
the state space, A is the action space, P : S x A x § — [0,1] is the state transition
probability, and ~ is the discount factor [105]. A distinctive feature of MORL is the
multi-dimensional reward function R : S x A — R", which outputs a vector of rewards
r; for n different objectives.

A single policy optimally adheres to a given combination of preferences, represented
by the convex preference weight vector A € R™. The policy 7 (s) optimizes a scalarized
reward function Ry (s, a) = X' (s, a), itemizing the different objectives.

We employ the preference-driven (PD-)MORL TD3 implementation of Basaklar et
al. [175], precisely MO-TD3-HER, which can learn a single-network policy that covers
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the entire preference space.* PD-MORL achieves this by four major modifications to
TD3’s standard actor-critic-structure with respect to the policy loss and preference-space
exploration: i) A preference interpolator I(X) = A, projects the original preference vec-
tors A into a normalized solution space, thereby improving the aligning of preferences
with multi-objective value solutions Q. ii) The framework is complemented by an an-
gle loss g(Ap, Q), designed to minimize the directional angle between the interpolated
preference vectors A, and the multi-objective vector Q, thus improving preference re-
flection. The actor network is updated by maximizing the term A”Q, where X is the
original convex preference vector and Q is the critic network’s output, while simulta-
neously minimizing the directional angle term. iii) To efficiently learn across the entire
preference space in PD-MORL-TD3, a hindsight experience replay mechanism [184] en-
hances the preference vector diversity during training. iv) The training process involves
running a number of C), environments in parallel for N time steps, each tailored to ex-
plore a distinct segment of the preference-vector space.

While Basaklar et al. originally evaluated PD MO-TD3-HER on gym bench-
marks [176], we extend it to a three-objective robotic navigation task. The focus
of our study is on task-related behavior adaptability, robustness, generalization,
and real-world deployment performance. To the best of our knowledge, our study
represents the first application of the PD-MORL framework to real-world robot tasks,
where sensor-induced noise and partial observability introduce additional challenges.

5.3.2.1 State and Action Space

The state space includes the local goal, human position, and obstacles detected by a
lidar sensor. The agent receives the relative 2D goal location p, and human position p),
in polar coordinates. The 360° lidar scan, with a range of 4 m, is min-pooled from 720
to Niigar = 30 rays. These are combined in the state vector as s; = (py, pj,, £:), where
Ly = dﬂo < @ < Nidar-

The robot is controlled with linear and angular velocity commands a; = (v, w), where
v € [0,0.5] m/s and w € [—m, 7] rad/s. The perception-action loop runs at 5 Hz.

5.3.2.2 Networks

The networks of actor, critic, behavior cloning policy, and reward model (see below) are
fully connected multi-layer perceptron (MLP) networks with an identical architecture
consisting of 4 layers with 256 neurons each. The uniform architecture is a heuristic
choice, validated in preliminary experiments.

5.3.3 Incorporating Demonstrations

As one of our main contributions, we distill nuanced navigation from demonstration

trajectories 7 into a reward model that natively integrates into MORL as one of the objec-

*The code of our approach is linked in the supplemental material section of the thesis appendix.
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Figure 5.2: Exploration of D-REX-related demonstration parameters averaged over 20 trajectory
rollouts, measured against the optimal demonstration behavior reward. a) The ex-
ecution of the e-greedy noise-injected behavior cloning (BC) policy trained with a
demonstration augmentation factor of Np = 1,000 reveals a degradation of nav-
igation performance measured by the normalized core reward ¢y With growing
strength of the injected noise. b) The demonstration augmentation factor Np indi-
cates how many times the optimal human-centric demonstration trajectory (see Sec-
tion 5.3.4.3) was rolled out with randomized obstacle placement to form the training
dataset, showing increased performance with higher Np.

tives and guides the learning agent to demonstration-like behavior. Through this novel
design choice, the influence of demonstrations can be modulated by A post-training.

A reward model is typically derived from pairwise A>B preference queries in a hu-
man feedback process via a ranking loss [69]. However, demonstrations are typically
considered equally important, rendering them unsuitable for a ranking-based reward
model. Addressing the problem of non-existent ranking from demonstration data, we
use a workaround involving artificial rankings. We employ the disturbance-based re-
ward extrapolation (D-REX) approach by Brown et al. [185], which imitates pairwise
A>B preference queries by ranking over noise-injected demonstration trajectories. First,
a behavior cloning (BC) policy 7g¢ is trained from Np demonstration trajectories. Sub-
sequently, the BC policy mpc(-|e) is executed with increasing level of e-greedy policy
noise € € £ = (€1,€2,...,€64) With €1 < €2 < ... < ¢4. In short, low-noise trajectories al-
most perfectly resemble the demonstration trajectory, while they slowly lose their shape
with growing levels of noise. Trajectory rollouts generated with lower noise are auto-
matically ranked superior compared to their higher-noise counterparts. Finally, a rich
preference-ranking dataset

Diank = {11 < 75|78 ~ mBC(|€i), 5 ~ TRC(:|€5), € > €5}

is obtained. From D.,., we train a reward model R(s, a) € [0,1] using the Bradley-
Terry model [186] with its typical implementation as a binary cross entropy loss such
that 37 Ry(s,a) < Yser; Ry(s,a) when 7; < 7.

For our ranking dataset D,,ni, we choose a noise range £ = (0, ...,0.2) and obtain
Np = 1,000 demonstration augmentations with obstacle randomization from a single

demonstration pattern.
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5.3.4 Reward Vector

The reward vector covers traditional navigational objectives, subsequently referred to as
core objectives, and three tuneable distinct style objectives based on quantifiable metrics
and preference demonstrations. In our MORL setup, the core objectives are summed
and occupy the first entry in the reward vector r; which is assigned a static preference
weight of one. Note that this is neglected in further notations of the convex vector A
to focus on the tuneable objectives. For the other objectives occupying entries in the
reward vector, the preference weights are dynamic. The reward vector for our MORL
framework consists of four components as explained below:

(it t t t
Ty = (rcore’ Tdemo> "distance> Tefficiency) (51)
——

static

dynamic objectives

5.3.4.1 Navigational Core Objectives

Independent of preferences, the agent must exhibit goal pursuit and collision avoidance.
Goal-oriented navigation is achieved by a continuous reward Tgoal =125 (d} —dit),
based on the change in distance d; = |p,| from the goal. The total cumulative goal re-
ward R = 3, réoal is non-discounted to remain independent of the number of steps

to the goal, avoiding a bias towards shortest paths and thus the efficiency preference ob-

t

tollision = — 1,000 for contact between

jective. Collision avoidance uses a sparse penalty
onisrt | — gt t
the robot and any obstacle. The core reward function is r¢ore = 7goa1 + "collision-

5.3.4.2 Tuneable Preference Objectives

Our three user-centric style objectives cover demonstration-reflection, efficiency, and
proxemics: To include proxemics, an important comfort factor in human-aware navi-
gation, we define a quadratic distance penalty for positional closeness dj, = |p;,| to the
human within a range diresh = 2 m as

(dh - dthresh)2
dthresh - dmin)

Tdistance — _10( 2 if dp, < dihresh, (5.2)

else zero, with dpmin = 0.3 m.
The second style objective is navigational efficiency, or shortest path navigation, im-

t _
efficiency — —10.
The third and last objective is demonstration-like behavior réemo, as elaborated be-

plemented with a constant time penalty 7,

low. Note that all rewards of the tuneable objectives are defined as penalties with a
uniform range of [-10, 0].

5.3.4.3 Demonstration Acquisition and Reward

Demonstrations can capture nuanced navigation styles that are difficult to express us-
ing analytical reward functions, such as characteristically shaped trajectories when ap-
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Figure 5.3: Trajectory rollouts in simulation for different preference vectors (rows) and different
scenes with a static and a dynamic approaching human (columns). As can be seen,
the navigation policy shifts its behavior according to the set preference. The col-
orbars on the right indicate the interpolated preference space A; for each plot row.
Static scenarios such as (A+B) were covered during training, while a moving human
(C+D) and the corridor environment (E) test for generalization. While shifting Row
1) from shortest driving behavior under the maximum efficiency preference (yellow)
to distance-keeping (blue), the minimum distance from the human increases. At the
same time, the agent has developed a tendency to navigate alongside obstacles when
they are located near the path. Shifting towards the maximum demonstration pref-
erence (Row 2), the trajectory shapes increasingly resemble the demonstration pat-
tern (black). On the shift back to maximum efficiency (Row 3), the demonstration
pattern disappears in favor of shortest trajectories. Comparing the static (A+B) vs.
moving human (C+D), the demonstration preference reflection becomes less distinct
as the agent struggles to follow the static pattern that moves with the now dynamic
human, yet efficiency and distance preferences keep up with a moving human. In
the corridor intersection scene (E), not included during training of the policy, the
agent successfully accounts for the wall, reducing the possible distance-keeping to
the human. The varied angle between human and goal from the robot’s perspective
does not prevent the policy from first approaching the human under the maximum
demonstration preference, before continuing towards the goal.

proaching the user. In this work, we rely on a predefined optimal demonstration pat-
tern, see Figure 5.3.A1 (black line), where the robot circumnavigates the human in a
distinct circular manner. After directly approaching the human, at d;, = 1m, it exe-
cutes a 90° left-hand turn and orbits the human clockwise at a radius d;. Once be-
tween human and goal, it turns left and proceeds directly towards the target. While
not being user demonstrations, the distinct pattern enables a clear performance analy-
sis, as its behavior is by design contradictory to the other two objectives, efficiency and

distance-keeping. Specifically, the trajectories are only partially goal-directed, conflict-

ing réfﬁdemy, and traverse close to the human at d;, = 1 m, contradicting rfﬁstance with
an impact radius of 2m. Anchored solely around the human and the goal position,

we can easily augment the single demonstration trajectory by rolling it out Np times in
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randomized obstacle configurations, recording only collision-free rollouts. The result-
ing dataset is handed to the D-REX pipeline, as elaborated in Section 5.3.3. The final
reward term is 4, = —10 - (Rp(ss, a;) — 1).

5.4 Experimental Evaluation

Our experimental evaluation is conducted to validate the following claims:

¢ CI1: The D-REX-based reward model successfully captures and teaches the demon-
stration patterns to the agent.

¢ (C2: We learn a preference-adaptable, demonstration-modulating, yet reliable nav-
igation policy.

¢ C3: PD-MORL is crucial to successfully learn our robot navigation task.

* C4: Our policy generalizes from simulation to the real world, even on a robot not
used for training.

Our evaluation concludes with a sim-to-real transfer and evaluation on two robots.

5.4.1 Training and Environment

We train using the iGibson simulator [63] with a simulated Kobuki TurtleBot 2. Robot
start and goal positions are randomly sampled, 6 to 12 m apart in open space. A static
human is placed between them, aligning with a staticchuman demonstration pattern.
Three static rectangular obstacles are randomly placed, avoiding occupied positions.
The robot must navigate to the goal while avoiding both the human and obstacles, which
may conflict with the human distance-keeping objective. An episode terminates upon
successfully reaching the goal, robot collision, or a timeout after 300 steps. Training is
conducted for 600k steps across C}, = 3 environments, using v = 1.0, and the final model
is used for evaluation. For the evaluation of generalization to dynamic environments
only, not training, we simulate a moving human approaching the robot with an opposite
start goal configuration.

5.4.2 Qualitative Navigation Analysis

Figure 5.3 shows navigation strategies of our MORL agent in static (A+B+E) and dy-
namic human (C+D) scenarios in simulation, under varying preference weights and
obstacle configurations. Three subplot rows interpolate convex preferences between
pairwise combinations of two objectives, with the third objective fixed at zero. In Row
1, preferences interpolate between distance and efficiency, parameterized by i € [0, 1],
with the vector A;(p) = (0, 4,1 — p). The other rows follow similar pairwise combi-
nations. The resulting set of \;(u) is A; = {(ﬁ, 1— %,0) | p= ﬁ',z’ =0,.. .,N} with
N = 10, forming the test set A = Ay U Ay U A3 with a total of 33 preference vectors, see
Section 5.4.3.
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The plots depict the robot’s trajectories from an initial point (black dot) to a goal (blue
star), considering static obstacles and a human (red circle & arrow), with the optimal
demonstration trajectory (black line) included.

Starting with the static human in Figure 5.3A+B, the shift from efficiency to distance-
keeping (Figure 5.3.1) shows increasing human distance along the path, with the robot
eventually passing closely without collision, reducing path length due to the efficiency
penalty Téfficiency' Under maximum human distance preference, the robot occasionally
stays close to obstacles before turning towards the goal after passing them.

For the shift from distance-keeping to demonstration-like behavior (Figure 5.3.2), the
minimum distance from the human decreases. Supporting C1, trajectories shape into
the characteristic demonstration pattern of a straight approach, circular circumnaviga-
tion, and a goal-directed turn, yet sharp corners near the human are less pronounced
than in the demonstration.

Finally, shifting preferences from demonstration back to efficiency (Figure 5.3.3),
demonstration-driven trajectories bend around the human, while efficiency-driven ones
head directly to the goal after passing. When obstacles are near the human, collisions
are avoided, though at reduced distance. Under maximum distance preference, human
distance is maintained before and after obstacles, and all trajectories pass the human on
the right, following the demonstration pattern.

To further evaluate the generalization and robustness of our policy, we test it in
a moving human environment and a previously unseen scene. In this dynamic set-
ting, which was not covered during training, a human approaches at 0.5 m/s (Fig-
ure 5.3.C+D), the efficiency and distance-keeping objectives are maintained without col-
lisions. The avoidance maneuvers occur more abruptly than in the static case, bending
sharply away from the human. As expected, the demonstration pattern is less followed,
with the orbiting part shrinking or not completed due to the moving human.

Similarly, we assess generalization and robustness in an unseen corridor intersection
scenario (Figure 5.3.E). The agent successfully accounts for the presence of the wall,
which limits the possible distance it can maintain from the human. Despite the varied
angle between the human and the goal from the robot’s perspective, the policy priori-
tizes initial approach behavior, aligning with the maximum demonstration preference,
before continuing toward the goal. This indicates that the learned policy generalizes to
unseen spatial configurations while adhering to key objectives.

These results provide evidence for C1 and C2, showing the robot’s ability to adjust
its behavior from human-distant to demonstration-driven and efficiency-focused navi-

gation.

5.4.3 Quantitative Analysis

5.4.3.1 Preference Reflection

We conducted a quantitative evaluation of the preference-reflecting agent using mul-
tiple performance and navigation metrics (Figure 5.4). The agent was tested across
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Figure 5.4: Quantitative metrics of OUR agent for different preference configurations (e), tested
for statistical significance for dissimilar means between the maximum preferences,
with *** for p < .001, and ns for not significant. a) The navigation time is smallest for
maximized efficiency preference, as expected. b) The Fréchet distance to the demon-
stration trajectory decreases as the demonstration preference increases. c¢) The mini-
mum distance to any obstacle is measured using the lidar. d) The minimum distance
from the human grows with its preference weight. The preference-independent non-
MORL policy CORE (red dotted line) that only obeys the navigational core reward
term rqre Of collision avoidance and goal pursuit is included in each plot.

100 episodes in random environments, using different interpolated preference weights
A € A (colored fractions in Figure 5.4e; see Section 5.4.2). Statistical significance be-
tween mean values for the maximum preferences was assessed using a Student’s t-test
with Bonferroni-correction.

The agent (OUR) achieved a success rate of 100 % with no timeouts or collisions (Ta-
ble 5.1, first column). As the distance preference increases, both minimum human dis-
tance and navigation time rise (Figure 5.4a+d), indicating longer trajectories to maintain
greater human distance.

To assess how well the demonstration trajectory is reflected (claim C1), we computed
the Fréchet distance [123] between the demonstration and executed trajectories (Fig-
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ure 5.4b). The minimum mean Fréchet distance of 0.41 m occurs when demonstration
preference is maximized. Efficiency and distance-keeping preferences also reduce the
Fréchet distance, as the demonstration path passes close to the human.

Comparing the trends of minimum obstacle distance (min(dpg), Figure 5.4c) and
minimum human distance (min(dy), Figure 5.4d), the agent clearly distinguishes be-
tween humans and static obstacles. As the human distance preference increases, the
robot maintains a larger distance from the human, while staying close to obstacles, ac-
cepting higher collision risk to prioritize proxemic preferences.

Our quantitative analysis supports the findings from the qualitative evaluation, pro-
viding measurable evidence for research claims C1 and C2.

5.4.3.2 Ablation Study

We ablated the architecture with respect to the state space and demonstration reward
model, compare Table 5.1. The state space changes apply to all involved models: D-
REX BC policy, D-REX reward model, actor, and critic. The ablations cover exclusion
of human position (OUR-NH), removal of the action a; as input to the reward model
leaving 7., = ]%g(st) (OUR-RM), and the combination of both (OUR-RM-NH). Note
that the maximum preference vectors in Table 5.1 are Agemo = (1,0,0), Agist = (0,1,0),
Aeff = (0,0, 1), respectively.

Compared to OUR, removing the human position from the state space in OUR-
NH and OUR-RM-NH reduces distance-reflection capabilities. This is expected due
to the correlation between human position and distance preferences in demonstrations.
While OUR-RM performs with a similar collision rate, its preference reflection is slightly
weaker than OUR.

Metric A OUR -NH -RM -RM-NH SAC-PR -PR-y
SRT[%] A 100 96.8 100 79.6 454 545
CR) [%] A 0 27 0 114 53.2 444
TR} [%] A 0 05 0 9.0 1.2 1.1
min(dp)t [m] Agiee 1.18 052 1.16  0.48 1.06 091
Fréchet| [m] Agemo 0.41 0.57 046  0.49 - 1.06
Nav. time] [s] Aeg 173 169 174  19.2 - 20.8

Table 5.1: Quantitative analysis, ablation, and baseline study with respect to the state space and
reward model, bold number highlighting the highest performance. For the ablation identifiers
and preference vectors {Adist, Ademo; Aett }, Please refer to Section 5.4.3.2. For brevity, the iden-
tifiers are shortened after OUR, so that, e.g., -NH corresponds to OUR-NH with the human
pose state excluded. The baselines with parameterized rewards are denoted with SAC-RP and
SAC-PR-y, short -PR-y. The results were averaged over 100 trajectories for single A, and for the
success rate (SR), collision rate (CR), and timeout rate (TR) additionally over all A; € A, precisely
33 x 100 = 3, 300 trajectories. The baseline SAC-PR had no successful trajectories under Agemo
and Agg.
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5.4.4 MORL Baseline

As single-policy MORL approaches with continuous action spaces are scarce due to
the novelty of PD MO-TD3-HER, we implement an equivalent actor-critic-based MORL
baseline with parameterized reward (-PR), analogous to the baselines in [177]. The
learning task characteristics and reward vector remain unchanged, while the four
performance-boosting modifications of PD-MORL drop out, compare Section 5.3.2.

During training, convex preference weights are sampled at the beginning of each
episode. Among actor-critic implementations, TD3 failed to converge on the task,
whereas SAC [187] achieved better results. Performance further improved when ad-
justing the discount factor from v = 1.0 to v = 0.98 in SAC-PR-v (see Table 5.1). Never-
theless, both SAC-PR and SAC-PR-vy average in success below 55 %. Note that SAC-PR
and SAC-PR-vy show weaker preference reflection as compared to OUR, while SAC-PR
failed entirely on the edge-case preferences Agemo = (1,0,0) and Ao = (0,0,1). The
results highlight the superiority of PD-MORL for learning the robot navigation task,
supporting C4.

5.4.4.1 Non-MORL Core Navigation Agent

To contextualize the core navigation objectives, we train and quantitatively evaluate a
preference-independent, non-MORL policy CORE that optimizes only the navigational
core rewards 7core (g0al and collision), compare the red-dotted line in Figure 5.4. Two
metrics stand out: The MORL agent prioritizes obstacles over humans, while the non-
MORL baseline, lacking a human-distance reward, treats both similarly. This results
in comparable minimum values (d;, = 0.64 m, dypst = 0.72 m), contrasting with our
MORL agent. Its higher demonstration Fréchet distance further confirms the absence of

demonstration knowledge.

5.4.5 Real-World Transfer

We evaluated our tuneable policy on a Kobuki TurtleBot 2 using ROS [108] and trans-
ferred the TurtleBot-trained policy to a Toyota Human Support Robot (HSR).? The agent
received ground truth human and goal positions, with the dynamic human localized
via a Vive VR tracker. The HSR’s lidar, mounted in the front of its rotation center, may
cause state space discrepancies for the policy. Due to its 270° coverage, compared to the
TurtleBot’s 360° lidar, the rear distance readings were filled with the maximum range of
4 m. The procedure ensures state consistency under the conservative assumption that
rear obstacles are unlikely to impact navigation, as the robot can only move forward.
Another discrepancy arises in velocity command execution, both in sim-to-real trans-
fer and between robots, due to differences in actuator dynamics and drive mechanisms,
potentially affecting navigation performance. We ran navigation tests on both robots for
the preference vectors A € A with N = 5 (see Section 5.4.2).

>A video of the real-world experiments is linked in the supplemental material section of the thesis ap-
pendix.
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Figure 5.5: Real-world experiment setup (top) and results (bottom) with the policy OUR in a
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sim-to-real transfer with the Kobuki TurtleBot 2 (left) and the Toyota HSR (right).
With a static human as during training (A+B), the navigation behavior in the real
world successfully reflects varying preferences on both robots. While the TurtleBot
exhibits better demonstration reflection, the HSR keeps more distance from the hu-
man under the maximum distance preference. With a dynamic approaching human
(C+D) that was not accounted for during training, the preference reflection decreases.



5.5 CoNCLUSION

The recorded TurtleBot trajectories are shown in Figure 5.5.A and the HSR trajectories
in Figure 5.5.B. Both robots adapt their behavior according to preferences. For the max-
imum distance preference (Figure 5.5.A1), the TurtleBot shows oscillations, presumable
due to slight over-steering, while the HSR drives closer to obstacles and exhibits a wider
oscillatory motion near the goal (Figure 5.5.B1). These differences may result from li-
dar state mismatches (e.g., positional offset) or slower action execution due to inertia.
For maximum demonstration reflection, the TurtleBot’s trajectory aligns better with the
demonstration than the HSR (Figure 5.5.2).

Both robots avoid collisions with dynamically approaching humans (Fig-
ure 5.5.C+D). As in the dynamic simulation experiments (Figure 5.3), avoidance
sharpens for the demonstration objective but fades as the human and robot pass
each other. Under the distance preference, sharper inward steering and subsequent
overshooting behind the human in simulation become more pronounced in the real
world, compare (Figure 5.3.C1+D1). We attribute the sharper inward steering to the
static training environment, which prevented the agent from learning in the presence
of a moving human. Under static conditions, the agent typically maintains a fixed
distance on the human’s side, forming a distance-angle mapping for avoidance. This
mapping is disrupted by the dynamic human, causing the agent to turn inward as the
human passes more quickly. Efficiency-focused behavior transfers flawlessly. Despite
minor sim-to-real differences, all real-world trajectories remained collision-free,
demonstrating robust sim-to-real generalization. In conclusion, the policy transfers
smoothly to real robots, supporting research claim C4.

5.5 Conclusion

In summary, we introduced an innovative framework fusing multi-objective reinforce-
ment learning (MORL) with demonstration-based learning for adaptable, personalized
robot navigation around a user with changing preferences. Our approach successfully
modulates the conflicting objectives of demonstration data reflection, distance keep-
ing, and navigational efficiency without retraining, a direct contribution to the aspect
of adaptability of RQ4, compare Section 1.2.4. To achieve this, we distill demonstration
data into a reward model that shapes the agent’s trajectories during navigation with vari-
able strength. In various qualitative and quantitative experiments, we demonstrated the
adaptability to varying preferences and scenarios. Finally, we successfully deployed the
learned agent on two real robots.

A constraint of our approach is the inability to alter the demonstration data itself
without retraining. So while the amount of demonstration-reflection can be modulated,
instantaneous preference modulation remains constrained within the preference space
defined by the demonstrations and the other chosen objectives. Generally, this presents
an interesting avenue for future research.

The approach presented in this chapter provides a principled way to adapt to chang-
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ing user preferences by accepting a preference vector as input for external control,
in effect, establishing a well-defined data protocol for representing preferences. To
provide an outlook on how these preference vectors might be leveraged by users or
other agents, Hwang et al. [30] proposed an approach that uses large language models
(LLMs) to translate human feedback into preference vectors. Additionally, they employ
optimization-based routines for translating preferences from comparative feedback and
demonstrations. Lee et al. [181] presented a hybrid approach in which a high-level skill
agent adjusts the behavior of a low-level tunable navigation agent based on scene and
task context. These examples illustrate promising future research directions for link-
ing user preferences to context, potentially through an agent dedicated to predicting
context-based preference vectors.

This chapter is the last chapter integrating the preference expression modality of
demonstrations, as the next two chapters focus on the paradigm of learning from human
teedback. Specifically, the next chapter places a focus on efficient user querying in RLHF
settings for improved information gain (cf. RQ1, Chapter 1.2.1). However, the here-
presented configuration of policy state space roughly remains over the next chapters,
i.e., a combination of min-pooled 2D lidar paired with human and goal position.
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6 EnQuery: Ensemble Policies for Diverse Query-
Generation in Preference Alignment of Robot

Navigation

Abstract

To align mobile robot navigation policies with user preferences through rein-
forcement learning from human feedback (RLHF), reliable and behaviorally diverse
user queries are required. However, deterministic policies fail to generate a variety
of navigation trajectory suggestions for a given navigation task. In this chapter,
we introduce EnQuery, a query generation approach using an ensemble of policies
that achieve behavioral diversity through a regularization term. For a given navi-
gation task, EnQuery produces multiple navigation trajectory suggestions, thereby
optimizing the efficiency of preference data collection with fewer queries. Our
methodology demonstrates superior performance in aligning navigation policies
with user preferences in low-query regimes, offering enhanced policy convergence
from sparse preference queries. The evaluation is complemented with a novel ex-
plainability representation, capturing full scene navigation behavior of the mobile
robot in a single plot.

6.1 Introduction

For optimal human-robot interactions, robots should customize to user needs. While
policies demonstrating superior capabilities are developed through learning-based sys-
tems, there arises a need for methods to align these policies with user preferences [57],
[60]. Reinforcement learning from human feedback (RLHF) is a state-of-the-art method,
where user preferences are transferred into a reward model that aligns policies that in-
teract with the human in the field of large language models [188], or robotics [62], [68],
[189], [190], [191]. In the context of mobile robot navigation, humans exhibit diverse
preferences about comfortable robot approaching behavior and proxemics [14], call-
ing for preference-aligned navigation policies [69], [169], like the approaches in Chap-
ters 2 and 3.

A core optimization goal in RLHF is to maximize information gain achieved by
querying the user [60], [192], in accordance with this thesis” RQ1 for efficient preference
collection. Not only does this minimize the effort and fatigue associated with repetitive
queries of the user, but it also enhances the quality of collected preference data. Besides
query diversity [193], a reliable query test result is essential [192]. However, inconsistent
query results due to low reliability undermine their corresponding preference informa-

tion gain. The reliability can, however, be increased when all test variables are kept con-

This chapter is a revised and updated version of the peer-reviewed publication [78]. Refer to Section 1.4
for details.
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Figure 6.1: Our ensemble of RL policies generates a variety of trajectories for a given navigation
task as queries for RL from human feedback. In contrast, deterministic policies are
limited to just one trajectory, and the queries’ variety depends on trajectory segments
from randomized scene configurations. As a result, EnQuery facilitates a higher pref-
erence information gain for low-query numbers.

stant across measurements. So to extract consistent user preferences, it is advisable to
minimize changes in variables associated with a single query. One approach is to keep
the task environment constant while only altering the agent’s behavior. This improves
the reliability and quality of information extracted from the user feedback.

In a typical robotics RLHF setup employing a deterministic policy, a pool of query tra-
jectories is generated using policy rollouts of different environment configurations [57].
Subsequently, the trajectories are subsampled into segments and presented to the user
as pairwise preference queries. However, the diversity of environment task configura-
tions in the query pool and the lack of common reference points in the segments conflict
with the concept of re-test reliability through minimal change in variables, as elaborated
above.

In contrast for the alignment process of large language models (LLM), it has become
a best practice to ask for user ranking between two different outputs for a single input
prompt [194]. This is possible due to the generative and non-deterministic nature of
these LLMs. With deterministic policies however, this approach would result in two
identical outputs, leaving no room for a preference choice of the user.

In this chapter, we therefore present ensemble policies as a possible solution for
query diversity under identical policy input on deterministic policies, see Figure 6.1.
On a given navigation task, we train the ensemble with a regularization term that en-
courages dissimilar outputs of the individual ensemble members.

We apply the proposed method to a human-centric robot navigation task employing
ensemble queries to capture distance-related preferences. We comprehensively test this
approach starting with an analysis of the queries generated by the ensemble. We then
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assess a reward model trained on these queries and finally align a baseline-objective
navigation policy to reflect the collected preferences.
The main contributions of our work are the following;:

* EnQuery, an ensemble approach for query generation enabled by a regularization
term that ensures behavioral ensemble diversity.

* An extensive quantitative and qualitative analysis of the full query-to-alignment
pipeline demonstrating superiority of our method in preference reflection for low-
query numbers, compared to a state-of-the-art baseline approach, ultimately en-
abling more query-efficient feedback processes.

* Anovel visualization scheme for enhanced behavior explainability of mobile robot
navigation policies of mobile robots that captures full scene behavior in a single
plot.

6.2 Related Work

In the domain of robotics, reinforcement learning from human feedback (RLHF)
presents a promising solution to the challenges of defining and optimizing reward sig-
nals that maximize user preferences. By incorporating human judgments, RLHF en-
ables robots to adapt their learning objectives, ensuring behaviors align with human
preferences. This method has shown significant potential in enhancing interaction tasks,
robot manipulation [62], and robot navigation [68], [169]. Here, open challenges are the
optimization of the human feedback process with respect to efficiency, information gain,
and reduction of psychological biases [60].

When it comes to the choice of queries in RLHF, typically a pool of randomly gen-
erated trajectories is used. With the goal of optimal information gain in mind, query
selection algorithms have emerged to surpass the naive approach of random sam-
pling, thereby reducing the required number of interactions for preference acquisition.
Christiano et al. [57] choose queries either via uniform sampling or to maximize the vari-
ance in an ensemble of reward models. Marta et al. [68] maximize the distance in a latent
space representation of the trajectories generated through a variational autoencoder. In
contrast, we do not perform a selection of queries from a random pool based on cer-
tain criteria, but directly generate trajectory queries using the behavior-diverse policy
ensemble for a given environment configuration.

Furthermore, psychological factors influence the preference and preference-
consistency of the human. As such, serial position effects can cause the start and end of
a trajectory to over-proportionally influence the user [60]. We counteract this effect with
the design of our navigation ensemble query approach with the alignment of start and
end, where the trajectories originate from a common starting point and converge again
at the goal location. While our work does not directly investigate the user experience
of the proposed querying approach, it is motivated by the need to tailor query
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generation to specific tasks for more efficient and intuitive human feedback. In line
with this motivation, Dennler et al. [12] present a query selection algorithm designed to
improve user experience during preference feedback in assistive robot tasks. Through
a user study, they show that their method prioritizing user intuitiveness results in
significantly higher satisfaction among users compared to baseline approaches. These
findings underline the importance of aligning query generation strategies with the
specific RLHF task setting in a user-aware manner.

Typically, ensemble strategies are used for measuring uncertainty in learning-based
models [195]. In the scope of reinforcement learning, applications of ensembles aim to
improve the learning process, more specifically by stabilizing Q-learning and balancing
exploration and exploitation [196]. Lee et al. [196] randomize the model weight initial-
ization and bootstrap the data presented to each policy during an update. Sheikh et
al. [197] encourage representation diversity through regularization terms with a similar
goal. The lack of such regularization terms was found to cause alignment of the ensem-
ble members over the course of training, even if the networks are differently initialized.
In our work, we apply a regularization term on the policy outputs in the ensemble of
TD3 agents for maximum behavioral diversity on a given input.

Since the publication of our original study, foundation models have demonstrated
increasing potential in preference-learning tasks. A particularly promising direction in-
volves replacing or augmenting human feedback with foundation models, leveraging
them as synthetic teachers to reduce the reliance on manual annotations. For instance,
Wang et al. [198] synthesize preference labels from vision-language models (VLMs) by
querying them to evaluate image observations in alignment with textual task descrip-
tions. The system learns rewards without human labeling, and shows promising per-
formance on complex robotic tasks such as the manipulation of deformable objects. An-
other study combines synthetic feedback from various large language models (LLMs)
for more consistent and reliable preference labels [199], thereby improving task learning.
Beyond replacing human feedback, LLMs have also been used to increase the informa-
tion gain of individual queries. Holk et al. [191] enrich preference feedback with optional
natural language prompts and highlight state-action pairs of high informational value,
thereby refining the learning signal. While these approaches primarily focus on the
feedback rather than generating queries, they are complementary to our work and illus-
trate the broader trend of incorporating pretrained models to improve sample efficiency

in preference-based reinforcement learning.

6.3 Preliminaries

6.3.1 Problem Definition

We consider a social robot navigation scenario, where the robot pursues a goal in a hu-
man environment among static unknown obstacles. The robot is aware of the location
of a single human in its vicinity and uses 2D lidar data to sense obstacles. A user has
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specific preferences regarding the robot’s navigational behavior, such as proxemics and
path selection, and expresses them through pairwise comparisons of trajectories. We
learn a behavior-diverse policy ensemble, in which each policy’s linear and angular ve-
locity commands take a different trajectory for a given navigation task with start and
goal positions, while avoiding collisions with obstacles and the human. The resulting
trajectory options represent trajectories for A>-B preference comparisons. The naviga-
tion policy is obtained using reinforcement learning, as elaborated below.

6.3.2 Reinforcement Learning of Point Navigation

In reinforcement learning, the objective is to optimize state transitions s; — s;41 of a
Markov Decision Process, leading to a reward r; for executing action a; = m(s;) at time
step t, based on the policy 7 [105]. These sequences (s¢, at, r+, S¢+1) are identified as state-

action pairs. The optimization goal is to maximize the total return R = .7, y(~%

Tty
which represents the sum of 7-discounted rewards from time ¢ onward. We use the
Twin Delayed Deep Deterministic Policy Gradient (TD3) framework for continuous ac-
tion spaces. We employ the TD3 implementation of Stable-Baselines3 [200]. All impor-

tant parameters and notations of our work are listed in Table 6.1.

6.3.2.1 State Space

The state space includes the goal, human position, and obstacles detected by a 2D lidar
sensor. Explicitly providing the human position allows the policy to differentiate it from
obstacles, fostering human-centric navigation. The environment is observed through a
downsampled 360°, 6 m lidar, reduced to Ny, = 30 rays as £; = d}|0 < i < Np,. The local
goal p, and human position p;, are given in robot-centric polar coordinates. The state
vector s; = (P, Py, Lt) is processed by separate 2-layer MLP feature extractors (64 units),
then concatenated and passed to the TD3 actor-critic networks (128 x 400 x 300 x 1, 2).

6.3.2.2 Action Space

The policy outputs velocity control commands of linear and angular velocity
as a; = (v,w) that directly drive the robot within a range of v € [0,0.5] m/s and
w € [—m, +m] rad/s.

6.3.2.3 Reward

For the navigation task, we employ the reward function of basal navigation objectives
such as goal pursuit and collision avoidance as

t__ 1 t t t
T = Tgoal + Tcollision 1 "timeout T Toop- (61)

t

The goal pursuit is encoded in a sparse reward r; .,

| = Cgoal fOr arrival at the goal location

such that dg = [p,| < 0.4m. To encourage collision-free navigation, a sparse penalty
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t
Tcollision

penalizes non-goal-oriented behavior after 500 time steps. The last term rfoop will be

= Ceollision 18 provided upon collision. The sparse penalty 7§ cout = Ctimeout
explained in Section 6.4.1.

6.3.2.4 Training Environment

For training, we use the iGibson simulator [63] that itself relies on the PyBullet physics
engine [107]. In an open space, we first randomly sample a start and goal location for
the robot in a range of 2m to 10 m. A single human is placed between the start and goal
locations. Subsequently, we sample a total of four cubic obstacles at random locations in
the vicinity of the human and robot, avoiding already occupied poses. One episode is
represented by the rollout of one trajectory in a given environment configuration until
one of the following three termination criteria is satisfied: Timeout at more than 500 time
steps or 100 s, or successfully reaching the goal position within a threshold of dg < 0.4m.

6.4 Our Approach

This section introduces EnQuery with respect to the policy ensemble, the querying
methodology, reward model training, and subsequently policy alignment.® Ultimately,
we present a novel behavior explainability visualization.

6.4.1 Ensemble Generation

We extend the standard single-policy reinforcement learning architecture by introduc-
ing a set of Ny policies £ = {m;(s¢,a¢)|i € [Ng]}, called the policy ensemble. During
training, each ensemble policy is interacting with its own environment instance, and
storing the collected experiences into its own replay buffer of size Ng. To achieve be-
havioral diversity across the ensemble, we use a regularization term to penalize similar
outputs. So as a core modification to achieve a diversity of behaviors for a given state
s, we introduce the novel goal-modulated diversity regularization (GMDR) term

Ng

Lovpr = —F - aaist(dg) - Y (ai — aj)?, (6.2)
J=0,j#i

which captures the difference between all pairwise combinations of action outputs
7;(st) = a; of the ensemble members i. Here, the scaling factor & = /| A|? is normalized
by the dimension of the two-dimensional action space A.

A task-specific feature is the goal distance weighting term a;st(dg) = maist - dg + bdist
that linearly decays the diversity loss with decreasing distance to the goal d,. The vari-
ables mgist and bg;st normalize the term for the expectable distance range to the goal.
As a practical motivation, the closer the robot navigates to the goal, the fewer devia-
tions from goal-directed navigation behavior are desired. This helps the convergence of

®The code for EnQuery is linked in the supplemental material section in the appendix.
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policy training from the goal-reaching perspective, while allowing for greater trajectory
diversity when the goal is still far enough away.
In the TD3 architecture, the GMDR is simply added to the loss of the actors as

£gctor = ['actor + EEMDR' (6'3)

We furthermore introduce the reward term Tfoop as a countermeasure for undesired
looping behavior that some policies of the ensemble would adapt as a result of the diver-
sity regularization term, see Equation 6.1. Essentially, the looping penalty checks for the
self-intersection of the current trajectory, which is sparsely penalized with rfoop = Cloop-
Note that the criterion for self-intersection is applicable solely to trajectory segments
that are more than four time steps old. In all other cases, the sparse rewards are zero.
The reward function is identical for all agents in the ensemble, and explicitly not the
source of ensemble diversity.

Before the ensemble policy is trained, a single policy 7rayw is trained without GMDR,
but on the same reward (Equation 6.1) and task. Subsequently, the replay buffer of the
ensemble is initialized with the experiences of the RAW policy, which supports ensem-
ble convergence and training success. Also, all policy members are initialized with the
weights of 7. Finally, the ensemble policies train for 7' = 25k time steps, using the
learning parameters denoted in Table 6.1. Subsequently, the ensemb]e is ready to gen-
erate trajectory suggestions as queries for a single navigation task.

6.4.2 Querying

Our approach adopts pairwise A>B preference comparisons as a feedback
modality. Preferences >~ are expressed over robot navigation trajectories

7 = {(s0,a0),(s1,a1),...,(sT,ar)}, represented by state-action pairs. We indi-

Notation Value Description

% 0.98 RL discount value

T 25e3  Training time steps

Np le6  Replay buffer size

Ny, 30  Pooled lidar ray number

Cgoal 20  Sparse goal reward

Ceollision -1.2 Sparse collision reward
Ctimeout -20.0  Sparse timeout reward

Cloop -2 Sparse looping reward

Ng 4 Ensemble member number

K 0.0625 GMDR scaling factor

Mist 1/8  GMDR distance scaling slope
baist 1/4  GMDR distance scaling intercept
k 20 BL query segment length

A 0.06  Reward weighting factor

Table 6.1: Notations and parameter settings.
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cate 7 = T to indicate preference of trajectory 7 over 7o.

Our ensemble of policies £ generates N trajectories for a given environment con-
figuration. From this, we randomly sample a trajectory pair. All self-intersecting and
collision-flawed trajectories are filtered. Since we do not conduct a user study but focus
on the methodology, we simulate human preferences and query an oracle that will al-
ways prefer the trajectory of higher minimum human distance d;, = |p;,|. The resulting
preference dataset is denoted as Dens = {7} = 7i|i € [Ng]} after Ng oracle queries.

6.4.3 Baseline Querying Approach

We adopt the segment-based uniform querying approach of Christiano et al. [57] as
a baseline. They achieve diversity not by an ensemble but via randomization of the
environment, which translates to randomly generated start, goal, human, and obsta-
cle positions for our environment. A pool of trajectories is generated using the non-
ensemble deterministic policy 7raw, from which we uniformly sample trajectory seg-
ments o with a length of k = 20 ~ 4s. The preference is subsequently expressed over
trajectory segments as o1 >~ o2, where o = {(so,ao), (s1,a1), ..., (Sg—1,ax—1)} denotes a
segment sampled from a trajectory 7. The resulting preference dataset is denoted with
Dyeg = {01 = o3i € [Ng]}-

6.4.4 Reward Model

To align the navigation policy, we first train a reward model R(s,a) from the pairwise
preference dataset D based on the Bradley-Terry model [186], where

. 1
Pln -] = 1+ exp (R(12) — R(m1))

(6.4)

denotes the probability of a human preferring segment 7; > 75 with the cumulative

return R(7;) = > (5 0)er, R(s,a). On that basis, a neural network is trained using a cross-
entropy loss such that 3, .., R(s,a) < X(sa)er, Bi(s,a) whenT; < 7;. The reward
model shares the network architecture with the critic and is trained for 10 epochs using
a learning rate of 1 x 1074, after which the best-performing epoch model is chosen. The
output of the reward model is normalized to a distribution mean of zero with standard

deviation one.

6.4.5 Policy Alignment

Preference alignment of the navigation policy starts with a converged policy 7w, as
introduced above. We take inspiration from the work of Cabi et al. [62], who recycle
already collected data by updating the existing data buffer with the current reward
model. So with data efficiency in mind, we solely rely on the existing replay buffer
data for alignment. In other words, it is not necessary during alignment to further ex-
plore the environment. A subsequent batch-based policy update on the previous but
reward-updated experiences aligns the policy.
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To ensure that the aligned policy still obeys the basal navigation objectives defined
by Equation 6.1, we balance between the preference reward model and the basal task
reward for the updated reward

rf = /\}?i(st,at) + (1= Nry (6.5)

using the weighting factor A = 0.06 determined in preliminary experiments using a
grid search. During alignment of 7w, we sample batches from the reward-updated
replay buffer as usual and perform 10k policy updates each for one alignment epoch.
The models are tested for their navigation success rate after each epoch, where the best-
performing epoch is chosen.

6.4.6 Explainability Navigation Plot

In autonomous robot navigation, the interpretability of reinforcement learning (RL)
policies is essential. Understanding and foreseeing the robot’s actions is key to trust
and acceptance, necessitating the development of tools that explain decision-making
and ensure it meets human standards.

Recent explainability efforts for RL navigation policies target the reasoning pipeline
and resulting behavior [201], [202]. Other works project the learned Q-values into the
scene [203]. Yet, we found no visualization to give a complete picture of the behavior
across the entire navigation scenario, an important tool to study the quality of naviga-
tional preference alignment.

We introduce a novel behavior explanation and visualization method for the naviga-
tion policy in a static environment, see Figure 6.5. Based on the concept of a flow fields,
it extracts and condenses the preferred navigation direction at all locations at once into
a comprehensive bird’s-eye-view plot. Firstly, we discretize the environment into a 2D
grid of 0.25m resolution and place the robot at the center of each traversable cell ori-
ented towards the goal. While keeping the forward velocity at zero, we solely execute
the angular velocity command. The robot turns and settles like a compass needle into a
certain direction. Whenever the settling results in an oscillation around one direction,
we take the mean of the oscillation range. Subsequently, the obtained directional driv-
ing preference is recorded together with the magnitude of the corresponding forward
velocity. We obtain a matrix of 2D velocity vectors as in a flow field that are visualized
using a stream plot. The stream plot sketches the driving behavior across the entire
scene at once.

In a second step, we reactivate the forward velocity and roll the trajectories out from
each grid cell. Subsequently, the number of traversals through each grid cell is counted
to create a heat map, which is visualized behind the stream plot. This completes the
picture especially at locations of ending streamlines, whenever the streamline density is
too high. For plotting, we use the python library matplotlib [204]. Note that the plotting
scheme assumes that the robot is the only entity moving within the scene.
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Figure 6.2: a) Diversity of actions over the ensemble and b) success rate on the navigation task
as a function of the total training time steps 7" and the weighting factor x of the reg-
ularization term. The action diversity grows with the weight « of the regularization
term, while the success rate decreases rapidly for « > 0.07.

6.5 Experimental Evaluation

Our experiments investigate the ensemble diversity and success rate with respect to the
regularization term Equation 6.2 in qualitative and quantitative measures, the query
and reward learning process in comparison to a well-established baseline approach, and
finally the preference alignment of the resulting navigation policy.

6.5.1 Ensemble

6.5.1.1 Quantitative

The query ensemble is based on a set of Ng = 4 policies that obey the GMDR. First, we
evaluate the influence of the k-scaled GMDR on the learning behavior and diversity of
the ensemble. In dependence of the total training time steps and the GMDR's scaling
factor x, the raw action diversity Z;VZEO’ i@ — a;)? is computed for 1,000 randomly
sampled states from the replay buffer, see Figure 6.2a. Also, the success rate averaged
over 100 trajectories and all ensemble policies is visualized, see Figure 6.2b. Generally,
an increasing action diversity can be observed with a growing scale of the regularization
term, while the success rate decreases rapidly for ~ > 0.07. Furthermore, the diversity
grows with increasing training time steps, without an obvious decrease of the success
rate.

Based on the grid search, we settled for an optimal configuration of x = 0.0625 and
T = 25k training time steps. Here, the ensemble achieves a success rate of 91 % at an
action diversity average of x = 0.7. To put this in contrast, the non-ensemble agent 7oy
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* Goal ® Start — o T2
EZA Obstacle @® Human ™ T3

Figure 6.3: Trajectories of the ensemble policies 7; for a given obstacle configuration and ran-
domized start position. Each plot a) and b) shows three individual start positions.
Distinct diversity of the trajectory pathways can be observed.

achieves a success rate of 94 %.

In preliminary experiments we have also experimented with a regularization penalty
that was not goal distance-scaled and a4t = 1, resulting in lower success rates for sim-
ilar action diversity. For optimizing our task setup, we found the goal modulation ben-
eficial.

6.5.1.2 Qualitative

We visualize the trajectories of all ensemble policies 7; in Figure 6.3 for a given environ-
ment configuration of eight obstacles. The trajectory shapes vary due to the enforced
output diversity, as expected. The diversity spans from avoiding obstacles on the other
side (compare ), to keeping different distances from the human in the vicinity of the
robot. If straight-line navigation to the goal is possible, one policy usually takes the
shortest route while the others meander in curvier and longer trajectories.

6.5.2 Reward Model

We analyze the information gain for our ensemble query method (EnQ) against the
baseline (BL) of segment-based uniform sampling by Christiano et al. [57]. Our mea-
sure for the information gain is the prediction accuracy of the reward model on a test
dataset in dependence of the number of queries Ng. Specifically, we query the oracle
that prefers trajectories with higher human distance for a total of Ng times to generate
a preference dataset using both our ensemble queries (Dens) and the segment baseline
(Dseg)- The accuracies are tested on test similar-sized splits of both the ensemble and
segment datasets, respectively, providing both a normal and a cross validation. As can
be seen in Figure 6.4, we outperform the segment-based baseline approach for lower
query numbers. For higher query numbers Ny > 18, the baseline achieves a higher test
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Figure 6.4: Reward model test accuracy for our EnQ approach and the baseline of segment-based
uniform sampling [57] for different numbers of queries on their native dataset (e.g.,
EnQ on Deps) and in cross validation (e.g., EnQ on Dss) The process of querying,
reward model training, and testing has been repeated ten times, for which mean and
standard deviation are shown. We outperform the baseline with a higher test accu-
racy and thus information gain for low-query numbers, enabling a faster learning
curve in time-critical learning scenarios.

Cell Traversals [#]

Figure 6.5: Driving behavior for a given scene visualized by our novel explainability navigation
plot, compare Section 6.4.6 for a) the raw policy 7raw, b) the preference-aligned pol-
icy EnQ for Ng = 15 queries, and ¢) for Ny = 60 queries. The trajectory flow can
be derived from any start position in the given scene to the goal (blue star), while
circumnavigating the human (red dot). Regions of interest (ROI) are indicated in or-
ange. Under the raw policy, mostly goal-directed and collision-avoiding navigation
behavior can be observed. For the aligned policies, a pronounced shift away from
the human at the cost of longer trajectories appears, e.g., on the far side of the top
right obstacle (ROI 2). At the same time, in terms of traversal the area around the
human is thinned out (ROI 1), as indicated by the underlying traversal map. EnQ-60
traverses closer to the human in the direct vicinity (ROI 3).
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Figure 6.6: Driving behavior for a given scene visualized by our novel explainability navigation
plot, compare Section 6.4.6 for the baseline segmentation-based approach with a)
Ng = 15and b) Ng = 60 queries. Compared to EnQ (see Figure 6.5), the developed
outer traversal corridor on the right falls closer to the human (ROI 4). Furthermore
on BL-60, the corridor directly above the human (ROI 5) is traversed more often as
compared to EnQ-60, indicating less distance-keeping from the human.

accuracy. Notably, the segment-based reward model does not generalize well to the en-
semble data, while the ensemble-based reward model generalized well to the segment
dataset Dseg. We can conclude that EnQ provides an advantage in information gain
feedback processes that need to be query efficient.

6.5.3 Policy Alignment

The following experiments target the final navigation performance of the preference-
aligned policy maiigned that should keep a high distance from the human. The aligned
policies will be denoted as EnQ for our ensemble-based approach EnQuery and BL for
the baseline. Those model names are complemented by the number of queries Ng used
to align the model. We chose Ng = 15 as a low-query and Ng = 60 as a high query
number, where the EnQ reward model outperforms the BL in the low-query, and vice

*  Goal ® Human
| EZZ Obstacle Raw Policy
® Start — Aligned

Figure 6.7: Trajectories of the raw and aligned policies 7raw and maigned for a given obstacle con-
figuration and randomized start position. While the raw policy exhibits mostly goal-
directed navigation behavior, m.jigneq reflects the preference of maximum human dis-
tance keeping on a majority of the trajectories.
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versa for the high query regime, compare Section 6.5.2.

6.5.3.1 Quantitative

The ablation study presented in Table 6.2 quantitatively evaluates the performance of
different configurations of a navigation system across several metrics: success rate (SR),
collision rate (CR), timeout rate (TR), and minimum human distance (min(d})) as our
metrics. The results were averaged over 10 aligned policies with different query sam-
ples and 100 trajectory rollouts with identical scene setups. For the preference metric
min(dy ), we test for statistical significance of EnQ-15 exhibiting a higher min(d},) as com-
pared to the other configurations using a student’s t-test, as denoted in the last column
of Table 6.2. We compare the aligned models against the RAW policy 7raw, specifically
in terms of distance from the human in alignment. The ensemble-query aligned model
with only 15 queries denoted as EnQ-15 significantly outperforms all other configura-
tions in terms of the highest minimum human distance. EnQ-60 exhibits a higher suc-
cess rate compared to EnQ-15, but at the cost of weaker distance keeping. The baseline
policy BL improves with respect to min(dy,) as the number of queries increases from
15 to 60. In this regime, our approach EnQ-15 achieves the lowest collision rate at the
cost of more timeouts as compared to BL-15. Logically, timeouts become more likely
as the robot drives longer, more human-distant trajectories. BL-15 exhibits the highest
success rate, but at a lower preference metric compared to EnQ-15. To conclude, our ap-
proach outperforms the baseline with respect to the preference metric for the low-query
regimes, reflecting the results of the improved reward model below Ng = 18 queries,

see Figure 6.4.

min(dy) [m] SRf CR|L TRL[%] p

EnQ-15 3.2 89.8 34 6.8 -

EnQ-60 21 924 39 3.7 *
BL-15 2.5 939 3.7 24 o
BL-60 27 86.8 3.6 9.6 ok
RAW 1.2 94 6 0 ok

Table 6.2: Quantitative analysis of the performance and minimum human distance min(dy,) av-
eraged over 10 alignment runs and 100 trajectory rollouts with identical scene setups. EnQ-15
denotes the ensemble-query aligned model with Ng = 15, EnQ-60 with Ny = 60 queries. Anal-
ogously, BL-15 and BL-60 denote the segment-based baseline querying approach with uniform
sampling [57]. RAW denotes the non-aligned initial policy, averaged over 100 trajectory rollouts.
SR, CR, and TR denote the success, collision, and timeout rate, respectively. Statistical signifi-
cance of min(dp,) for dissimilar distribution means against EnQ-15 is denoted in the last column
p, where * for p < 0.05, ** for p < 0.01, *** for p < 0.001. EnQ-15 as our flagship approach
exhibits the best alignment in terms of the preference metric, while running into more timeouts
due to possibly longer trajectories.
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6.5.3.2 Qualitative

We compare the aligned policy EnQ-15 against 7w (RAW) and EnQ-60 qualitatively
for a given navigation scenarios, see Figure 6.5 with indicated regions of interest (ROI).
With regard to the baseline reward, both policies exhibit obstacle-avoidance and goal
pursuit behavior. For the aligned policy, however, the driving patterns bend away from
the human, as compared to goal-directed driving directions with 7. With respect to
the human this manifests, e.g., in an accumulation of trajectories on the far side around
the top-right obstacle (ROI 2), allowing for more distance from the human. Directly
around the human, a thinning of robot’s passages can be observed (ROI 1), with less
trajectories approaching from the top-left of the plot alongside the human. Furthermore,
anoticeable outward bend of trajectories around the human (ROI 1) arises for the aligned
agent. Subtle but noticeable, EnQ-60 traverses closer to the human in the direct vicinity
(ROI 3).

Comparing against the baseline approach BL-15 and BL-60 in Figure 6.6, two findings
strike. The developed outer traversal corridor around the top-right obstacle falls closer
to the human (ROI 4) as compared to EnQ. Furthermore on BL-60, the corridor directly
above the human (ROI 5) is traversed more often as compared to EnQ-60 and BL-15,
indicating less distance-keeping from the human.

A direct comparison of trajectories between m,jigned and mraw is visualized in Fig-
ure 6.7. Here, a similar picture manifests with the aligned trajectories traversing at a

higher human distance, as compared to the goal-directed trajectories of the raw policy.

6.6 Conclusion

This chapter introduces EnQuery, a novel ensemble-based query method for diverse
behavior suggestions in reinforcement learning from human feedback (RLHF) with de-
terministic policies. We apply EnQuery to the field of robot navigation where the robot
operates in the vicinity of humans who have specific preferences regarding the robot’s
navigation style. Using our output diversity regularization during training, the ensem-
ble generates diverse trajectories that can be used to query preferences for any given nav-
igation task. Importantly, generated queries maintain consistent reference points, such
as the start and goal positions and use the same environment setup which improves
the retest reliability and thus the information extracted from the preference pairs. The
experiments show a superior information gain for low-query numbers compared to a
widely used baseline querying approach. We then successfully demonstrate the data-
efficient preference alignment of a navigation policy by recycling the collected experi-
ence data. Finally, our novel method for visualizing navigation policy behavior compre-
hensively illustrates the alignment result. As a core contribution to RQ1, EnQuery aligns
with our broader vision of developing more intuitive, efficient, and human-centric ap-
proaches to customize robotic navigation behaviors. Beyond its algorithmic contribu-
tion, EnQuery also offers a practical tool to support scalable user studies by generating
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meaningful preference queries with common spatial reference points in a behaviorally
diverse manner.

While this chapter presented the development and evaluation of EnQuery from a
technical perspective, the next chapter adopts a more user-centered focus. Here, En-
Query serves as the query generation backend in a user study designed to investigate an
underexplored factor of the impact of interface modality on user preference expression
in RHLF setups. Specifically, we examine how immersive VR compared to conventional
2D video interfaces influences the consistency and quality of collected preferences, and
in turn, the effectiveness of the resulting preference-aligned navigation policies.
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7 The Impact of VR and 2D Interfaces on Human

Feedback in Preference-Based Robot Learning

Abstract

Aligning robot navigation with human preferences is essential for ensuring com-
fortable and predictable robot movement in shared spaces, facilitating seamless
human-robot coexistence. While preference-based learning methods, such as rein-
forcement learning from human feedback (RLHF), enable this alignment, the choice
of the preference collection interface may influence the process. Traditional 2D in-
terfaces provide structured views but lack spatial depth, whereas immersive VR
offers richer perception, potentially affecting preference articulation. This chapter
systematically examines how the interface modality impacts human preference col-
lection and navigation policy alignment. We introduce a novel dataset of 2,325 hu-
man preference queries collected through both VR and 2D interfaces, revealing sig-
nificant differences in user experience, preference consistency, and policy outcomes.
Our findings highlight the trade-offs between immersion, perception, and prefer-
ence reliability, emphasizing the importance of interface selection in preference-
based robot learning.

7.1 Introduction

In the previous chapter, we introduced a method for efficient query generation in
human-centric robot navigation, designed to enhance the efficiency of preference col-
lection in reinforcement learning from human feedback (RLHF) settings. This di-
rectly supports our overarching objective of aligning robot behavior with human pref-
erences in shared environments (cf. Chapter 1.2), thereby improving user comfort,
personalization, and the overall quality of human-robot interaction. Recent advances
in preference-based learning, including reinforcement learning from human feedback
(RLHF) [205], demonstrate the potential of human-in-the-loop methods to shape robot
behavior in alignment with user expectations. In fact, preferences have been leveraged
in robot learning across various settings, including multi-task learning [206], collabora-
tive tasks [207], language-based tasks [191], [208], and social navigation [102].

A key challenge in preference-based robot learning is the method of preference elic-
itation. Various interfaces have been explored to facilitate this process, with conven-
tional 2D visualizations such as first-person and bird’s-eye-view videos being widely
employed. While these 2D interfaces provide accessible and structured representations
of navigation scenarios, they lack the depth and spatial context necessary for nuanced
human judgment, particularly in complex 3D environments. More immersive alterna-

This chapter is a revised and updated version of the peer-reviewed publication [79]. Refer to Section 1.4
for details.
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Data Collection Preference Dataset

2325 navigation queries:
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* 3 interface modalities
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Figure 7.1: Left: Our study collects preferences via Virtual Reality (VR) and 2D interfaces (top-
down and first-person views), enabling a systematic comparison of interface modal-
ities for eliciting human preferences on robot navigation. Top-right: The preference
dataset consists of 2,325 navigation queries from 31 participants. Bottom-right: Us-
ing Reinforcement Learning from Human Feedback (RLHF) with our dataset, we
refine a standard navigation policy (blue) into preference-aligned policies (orange),
enhancing human-centric navigation.
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tives, such as virtual reality (VR), offer a richer perceptual experience, potentially im-
proving preference collection by providing a more realistic sense of robot motion and
environmental context [209], [210].

Despite the potential advantages of VR, systematic comparisons between immersive
and traditional 2D video-based interfaces for preference collection remain sparse. Pre-
vious studies have primarily focused on individual interface performance or user en-
gagement without thoroughly investigating how the chosen interface modality affects
preference data quality and the subsequent alignment of robot navigation policies. In
line with this thesis” RQ1 a critical question arises: Do user preferences for robot behav-
ior differ between immersive VR and traditional 2D interfaces, and if so, how do these
differences influence preference-aligned navigation policies?

In this chapter, we introduce a novel user preference dataset for robot navigation,
collected through both VR and 2D interfaces. Our study systematically evaluates the
impact of interface modality on the user experience and preference collection process.
We compare preferences elicited using a VR interface against those obtained via first-
person and bird’s-eye/top-down view video interfaces. Finally, we derive preference-
aligned navigation policies from the collected preference data, taking into account the
interface modality used for collection. Our primary contributions are:

¢ The collection of a dataset capturing user preferences on robot navigation across
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VR and 2D interfaces.

* A quantitative and qualitative evaluation of how the different interface modalities
influence the collection of user preferences.

¢ The derivation and analysis of three preference-aligned navigation policies from
modality-specific user preferences.

7.2 Related Work

7.2.1 Preference Learning in Robotics

Integrating human preferences into robotic systems has gained significant attention
in recent years, particularly in human-robot interaction and autonomous navigation.
Preference-based reinforcement learning (PbRL) [24], [57], [58], [188] is a key approach
that enables robots to align their behaviors with human expectations by iteratively re-
fining a policy [211] through preference feedback rather than explicit reward functions.
Wang et al. [212] proposed a preference-based action representation learning (PbARL)
approach that efficiently fine-tunes pre-trained policies to human preferences, allowing
for effective personalization in robot behavior without requiring extensive retraining.
Similarly, Palan et al. [25] introduced a hybrid learning framework that combines ex-
pert demonstrations with preference queries to improve the efficiency of reward func-
tion learning, mitigating the limitations of inverse reinforcement learning and standard
PbRL methods. The effectiveness of learning is also contingent on the quality of queries
presented to humans. To enhance query informativeness, various PbRL active learning
techniques have been developed, leveraging policy ensembles (cf. Chapter 6) or unsu-
pervised learning [68], [189].

Beyond reinforcement learning, Bacchin et al. [19] introduced a people-aware naviga-
tion system for telepresence robots that fuses remote operator commands with a proba-
bilistic model of human-robot interaction. Their system dynamically adjusts the robot’s
behavior based on inferred social signals, demonstrating how preference-aware navi-
gation can enhance both user satisfaction and social compatibility. In another study,
Zhou et al. [16] explored how human preferences can guide the improvement of inappro-
priate robot behaviors. Their findings highlight the importance of capturing nuanced
human feedback to refine robot motion strategies for social navigation.

Recent works have also examined the role of virtual environments in preference
learning. In Chapter 3 we presented a VR-based demonstration interface for learning
personalized robot navigation policies, emphasizing the benefits of VR in capturing hu-
man motion preferences for dynamic environments. This approach highlights the utility

of immersive settings in enabling intuitive and expressive demonstrations by users.
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7.2.2 Interfaces in HRI

The design of effective query interfaces for human-in-the-loop preference learning plays
a crucial role in shaping the quality and reliability of collected preference data. Tradi-
tional preference elicitation methods often rely on 2D graphical user interfaces (GUISs),
such as first-person and bird’s-eye view perspectives, which have been widely used
for interactive reinforcement learning [213] and human-robot collaboration [69], [214].
However, recent advancements in immersive technologies, including VR and mixed
reality, have introduced novel interaction paradigms that promise more natural and
context-rich preference acquisition [209].

Wonsick and Padir [65] classify VR interfaces for robot control into five areas: visu-
alization, control, interaction, usability, and infrastructure. Their comparison of VR and
traditional keyboard-mouse-monitor setups (KBM) for humanoid teleoperation shows
that VR enhances engagement, intuitive control, and spatial awareness while reducing
cognitive load, whereas KBM benefits from widely available hardware.

LeMasurier et al. [215] further investigated the trade-offs between 2D and VR inter-
faces for human-in-the-loop robot planning in navigation and manipulation tasks. Their
study finds that while KBM interfaces yield higher task performance, VR interfaces
lead to fewer collisions, making them preferable for high-risk scenarios where safety
is paramount.

Wozniak et al. [66] explored the effectiveness of VR interfaces for correcting robot
perception errors, comparing them with traditional screen-based interfaces. Their study
found the VR interface to be more immersive and enjoyable for the users, who preferred
it over the screen-based alternative.

These studies underscore the growing relevance of immersive interfaces for robotics.
Our study therefore investigates the differences between VR and 2D KBM interfaces for

user preference acquisition.

7.3 Method

We subsequently provide an overview of the navigation task of the robot, the interface,
and the user study setup for data collection.

7.3.1 Problem Statement

This work investigates how different user interfaces influence the user preference collec-
tion for learning-based robot behavior adaptation. We focus on a query interface where
users provide pairwise comparisons of pre-recorded robot navigation trajectories, a key
component of preference-based reinforcement learning (PbRL). We analyze the impact
of interface modalities (VR vs. 2D GUI) and scene perspective on user experience and
preference expression. As an application scenario, we consider a human-aware robot
navigation task in which a robot navigates to a goal in an environment with static ob-
stacles and a nearby human. The human may have specific preferences regarding the
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robot’s navigation behavior.

7.3.2 Learning Robot Navigation

In line with our target methodology, PbRL, the navigation task is solved via reinforce-
ment learning, where an agent learns to navigate the robot to the goal using velocity
commands. As a simulation environment, iGibson [63] with its PyBullet physics engine
is used to simulate a Kobuki TurtleBot 2i. The navigation scene resembles an open space
with position-randomized small and large box obstacles and a static human. Start, goal
and human position are sampled in close proximity to each other. The core navigation
reward

t__ .t t t t t t
r= Tgoal + Ttime + Tcollision + "timeout T Tloop + rjerk (7'1)

. o
contains a sparse goal reward of T goal =
" t

Ttime = —0.001, sparse collision (7 jision

+20, a continuous time penalty of
= —20) and timeout penalties (rfeout = —1.0),
a sparse penalty upon self-intersection of the trajectory rfoop = -2 and a jerk
penalty r].terk = —wjerk||j*[|*/ max-<¢ [|5*|?, with j* = (a' — 2a'~" + a'~2) f?, the weight
Wierk = 0.0005, the action o at time ¢ and f the control frequency of 5 Hz. Here, the term
sparse indicates that the reward term only take the stated value when their condition
is fulfilled and are zero otherwise, respectively. Episodes end upon reaching the goal,

a collision, or a timeout.

7.3.3 Query Generation

To generate queries of a navigating robot for user evaluation, we use EnQuery (cf. Chap-
ter 6), an ensemble-based query generation method designed to improve the efficiency
and reliability of user preference collection in PbRL. EnQuery is particularly suited for
applications where behavior diversity is required under consistent environmental con-
ditions, such as in a given navigation scenario.

Following Chapter 6, we employ an ensemble £ = 7;(s¢, a¢) | ¢ € [Ng| of Ng = 4 poli-
cies, referred to as the policy ensemble of TD3 [103] reinforcement learning (RL) policies.
These policies are trained with a regularization term that promotes behavioral diversity
among ensemble members. Thus, we obtain two distinct 2D trajectories connecting the
same start and goal. This approach ensures that all generated trajectory options are
grounded in a common reference frame, which aims to improve retest reliability by re-
ducing variations in extraneous environmental factors.

Once trained, the ensemble £ is used to generate diverse trajectory options for the
randomized scene configuration, by sampling two individual ensemble policies and
rolling them out in the sampled navigation scenario. To ensure meaningful queries,
trajectories that result in collisions or self-intersections are filtered out. We generate a
dataset Dy of N = 500 queries, from which we sample subsets for the participants to
rate in the user study, either in VR or as 2D video playback.
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7.3.4 Query Interfaces

To collect user preferences, we employ three types of query interfaces: an immersive
virtual reality (VR) setup and two 2D video-based KBM interfaces on a desktop com-
puter. Both interfaces show the same navigation environment but differ in perspective
and immersion. The VR interface provides an interactive and immersive experience,
whereas the 2D video KBM interface offers a more conventional, screen-based alterna-
tive. Within the 2D interface, we present two distinct perspectives: Top-down (2D-TD),
as in [69], also known as a bird’s-eye view, and first-person view (2D-FPV), which more
closely resembles a VR perspective. For a given query, the human position is defined,
serving additionally as the observer position in VR and 2D-FPV.

7.3.4.1 Virtual Reality

The VR interface is based on PyBullet VR [107], ensuring native compatibility with the
EnQuery training environments. We connect an HTC Vive Pro Eye setup as VR hard-
ware. A transparent blue cylinder indicates the static human observer position on the
floor. Additionally, a floating dialogue in front of the user conveys instructions and an-
nounces the upcoming trajectory with labels (A or B) for 2s. For preference selection,
participants interact with a floating selection menu by pointing and clicking on one of
two labeled boxes, A or B.

7.3.4.2 2D Video

In contrast, the 2D video KBM interface is implemented using the open-source library
Pygame [216] on a desktop computer. The full-screen interface contains a video frame
with clickable buttons positioned to the side for starting queries and selecting prefer-
ences. To maintain consistency in visualization, all query videos are recorded from two
perspectives (2D-TD and 2D-FPV) at a resolution of 720 x 404 pixels.

Each video begins with a 2 s trajectory label (A or B), ensuring clear differentiation
between the two options. While the 2D-FPV video is recorded with a 60° vertical field
of view that tracks the robot from the perspective of the human, the 2D-TD perspec-
tive is set to capture the entire navigation path. Additionally, in 2D-TD, the human is
represented by a neutral wooden mannequin 3D model.

7.3.4.3 Trial

The robot is initialized at the query-specific start position for both trajectory options.
Once the participant initiates the trial by clicking a button, the pre-recorded trajectory
or video plays, and the robot navigates through the scene. The start and goal positions
are not visualized. Each query consists of two trajectories presented sequentially. To
prevent bias or premature selection, the preference selection menu is disabled until both
trajectories have been displayed. Then, the user can select their preferred trajectory.
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Queries cannot be repeated, and the user must make a selection before proceeding to
the next query.

7.3.5 User Study

We conducted a user study to compile a dataset of participants’ navigation preferences
and assess user experience across three preference interfaces (VR, 2D-TD, 2D-FPV).”
Data collection was divided into three distinct stages: S1: Collecting preferences
through navigation queries for each interface modality, S2: Post-interface interaction
questionnaires assessing user experience, and S3: A final ranking survey comparing
the three interfaces. Before testing, all participants received detailed study information,
provided written consent, and completed a demographic questionnaire. The study was
structured into three blocks in randomized order, each corresponding to one of the inter-
faces as an experimental condition. Each block presented the same 25 preference queries
in random order (S1), initially sampled for each participant from the query dataset Dg,.
By presenting identical queries across different interfaces, we could later investigate the
impact of the interface modality on participants’ navigation preferences. After each
interface block, participants completed a questionnaire (S2) regarding their experience
with the interface and the queries, as shownin 7.1, questions Q1-Q10. Upon completion
of all three blocks, the final ranking survey (S3), based on the Technology Acceptance
Model (TAM) [217], asked participants to rank the interfaces by perceived usefulness,
intention to use, and ease of use, as shown in 7.1, Questions R1-R3. All collected data
was anonymized using a coding table for participant IDs. Each session lasted approxi-
mately one hour.

7.3.6 Participants

A total of 32 individuals (10 women, 22 men) participated in the study in exchange for a
EUR 15 monetary compensation. All participants reported having corrected-to-normal
vision. One participant was removed due to technical issues during data collection,
leaving N = 31 participants (10 women, 21 men). The mean age of the sample was 24.6
years (SD = 3.7). Participants rated their experience with AR/VR on a 7-point Likert
scale, with a mean rating of 3.1 (SD = 1.5). Participants also rated their experience with
robotics on the same scale, yielding a mean score of 3.6 (SD = 2.0). The study adhered
to the principles outlined in the Helsinki Declaration.

7.4 Experimental Evaluation

We propose the following hypotheses that we aim to evaluate with our study: (H1) The
user experience differs between the interface modalities. (H2) The user preferences for
robot navigation differ between the interface modalities. (H3) A preference discrepancy

"The dataset is publicly available and linked in the supplemental material in the appendix.
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between interfaces reflects in the navigation behavior of interface-specific preference-
aligned policies.

7.4.1 Interface Questionnaire

Targeting the users’ interface experience and the expression of preferences, we analyze
the 10-item questionnaire (Likert scale, score 1-7) of S2, see Figure 7.2. We used a Fried-
man test to statistically evaluate whether the interface modality (VR, 2D-TD, 2D-FPV)
had a significant impact on the ratings (H1), in each of the 10 questions. Note that we
chose a non-parametric alternative to the repeated-measures ANOVA to account for the
ordinal scale level of the responses (7-point Likert scale). We followed up with three
pairwise Wilcoxon signed-rank comparisons with Bonferroni correction when the Fried-
man test revealed a significant impact of the interface modality. Supporting H1, statis-
tically significant differences in favor of the VR interface were found for the ease of ex-
pressing preferences compared to 2D-FPV (Q1), participants” confidence in evaluation
compared to both 2D interfaces (Q2), the naturalness of providing preferences (Q5), a
clearer spatial understanding compared to 2D-FPV (Q6). We included Q8 from a vali-
dated presence scale [218], confirming higher immersion levels in VR compared to both
2D interfaces. Participants reported that the VR interface was significantly more fun to
use and less boring (Q9, Q10, System Usability Scale [219]) compared to the 2D inter-
faces, which further supports H1. No significant effects were observed for the remaining
questions.

7.4.2 Interface Ranking

After the three preference query blocks, participants ranked the interfaces (S3) based
on the TAM (see Figure 7.3 and Table 7.1). The forced-choice ranking did not allow
ties. A chi-square test assessed deviations from equal choice distributions across VR,
2D-TD, and 2D-FPV. Significant effects were further examined using pairwise z-tests
with Bonferroni correction.

For Usefulness, rankings were not evenly distributed (p < .001), with VR being more
often preferred over both alternatives, and 2D-TD preferred more often over 2D-FPV.
VR was ranked first by 81.2 %, while 2D-FPV was consistently last.

For Ease of Use, no significant differences were found, with rankings evenly dis-
tributed across interfaces.

For Intention to Use, VR was preferred more often (p < .001), significantly outrank-
ing both alternatives, while 2D-TD was preferred more often over 2D-FPV. Notably,
90.6 % ranked VR first, and 2D-FPV received no first-choice votes.

Overall, VR was significantly more often preferred for usefulness and intention to
use, aligning with [66], likely due to enhanced perception of robot behavior. Increased
fun (Q9, Figure 7.2) may explain why the majority of participants expressed their inten-
tion to use VR. No interface stood out for ease of use, possibly because the preference
task itself was similar to operate between interfaces. Across all criteria, 2D-FPV was the
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Figure 7.2: Survey results (52) comparing user experiences across three interface conditions: vir-
tual reality (VR), 2D top-down (2D-TD), and 2D first-person view (2D-FPV). Partic-
ipants rated their experience across multiple aspects after each block. Ratings were
provided on a Likert scale (1-7), bars indicate score means, standard errors are indi-
cated. Asterisks denote significance levels (* p < .05, ** p < .01, *** p < .001).
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Figure 7.3: User rankings (S3) of three modalities, namely Virtual Reality (VR), 2D Top-Down
(2D-TD), and 2D First-Person View (2D-FPV), based on perceived usefulness, ease
of use, and intention to use. Each bar represents the percentage of participants who
assigned first, second, and third ranks to each modality. VR is predominantly ranked
highest in usefulness and intention to use.

least often preferred.

7.4.3 Dataset Overview

The dataset contains 2,325 user preference queries for robot navigation, collected across
three interface modalities: VR, 2D-TD, and 2D-FPV. The dataset’s structure follows the
data collection design: Participant — interface modality — query — preference label.

In more detail, each query stores both trajectories and the scene configuration (e.g.,
for replay in VR), the 2D videos, and RL episodes (state, action, next state, reward) for
both trajectories, where states s, = (lidar, goal, human) capture lidar data, robot-centric
goal and human position, while actions a; = (v,w) represent velocity commands. Pref-
erences are stored as A/B labels. In addition to the state-action pairs, we provide the
robot trajectory as a 2D path, the static human pose, and the obstacle poses in world
coordinates.

As we later show, our dataset enables the distillation of preference models, e.g., for
the preference alignment of RL robot navigation policies.

Ranking Instruction (Options: 1st, 2nd, 3rd)

R1 Order the three interfaces for their usefulness for rating the robot behavior.

R2 Order the three interfaces for their ease of use.

R3  Order the three interfaces based on your intention to use.

Table 7.1: Ranking instructions (S3) for the interfaces upon completion of all three interface
modality blocks.
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Modality Pair =~ Agreement [%] Standard Deviation [%]

VR -2D-TD 69.2 9.6
VR - 2D-FPV 68.6 11.8
2D-TD - 2D-FPV 67.0 14.2

Table 7.2: Mean agreement and standard deviation between different interface modalities, ag-
gregated on a per-participant basis. Note that the block order of interfaces has been randomized
among participants. Preference changes between interfaces occur but not significantly more of-
ten for specific interface combinations.

7.4.4 User Preferences

This section deals with a quantitative analysis of the preference dataset collected in S1
with respect to the effect of the interface modality.

7.4.4.1 Modality Agreement

Querying the same 25 trajectory pairs in all three interface modalities to each partici-
pant allows us to examine whether participants exhibit different preferences between
the interfaces. We compute the interface modality agreement by matching the block-
randomized queries between modalities and checking for preference agreement, see
Table 7.2. The agreement is aggregated on a per-participant basis and subsequently av-
eraged over all participants. With the values of all three combinations averaging around
70 %, we can conclude that preferences do change between interfaces, but not noticeably
more often between specific interface combinations. We conclude that consistency in
the interface is key during dataset collection, as preferences can be inconsistent with an
interface change. As reflected by the standard deviation, we observe considerable varia-
tion in interface agreement among participants. This finding underscores the necessity
for interface consistency when preference data is collected or merged.

7.4.4.2 Disagreement Analysis

We now transition from inter-modality agreement to the cases of disagreement. When
participants preferred trajectory A in one modality but trajectory B for the same AB-
query in a different modality, we term this inter-modality disagreement. For each in-
terface combination of these inter-modality disagreements, we explore the differences
between the two preferred trajectories. Note that we report these differences but refrain
from conducting inferential statistical tests because the characteristics of the two trajecto-
ries in the same query were experimentally controlled. Figure 7.4 shows the differences
in preference for selected trajectory metrics, while the x-axis indicates the interface tran-
sition. Because different participants had their own sampled subset of 25 queries with a
different trajectory profile distribution, we first apply z-score normalization based on all
trajectories (preferred and rejected) shown to a participant. Subsequently, the average
differences were aggregated on a per-participant basis to account for the varying num-
ber of disagreements per participant. We measure changes in the trajectory length (a),
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Figure 7.4: Change in the preferred trajectory with a modality shift in cases of preference dis-
agreement between interfaces for a given participant. Metrics are z-standardized for
all queried trajectories per participant. Bars show mean change, and error bars indi-
cate the standard error of the participant means averaged over their disagreements.
Participants preferred shorter and more straightforward driving trajectories in 2D in-
terfaces compared to VR, with the robot occasionally traversing closer to the human.

time (b), average speed (c), curvature/accumulated angle (AA) (d), minimum distance
from the human (min(dz)) (e), and area under the path (AUP) (f). The sign of the metric
change corresponds to the interface transition A — B. For readability, only one direc-
tion is shown. The reverse transition has the same magnitude with an inverted sign.

In cases where participants exhibited different preferences for the same queriesin VR
and on 2D interfaces, participants preferred shorter and more straightforward driving
trajectories (measured by the area under the path) in 2D compared to VR. Additionally,
the robot may traverse closer to the human, compare (e). Similarly, query disagreements
point to a preference for more straightforward driving styles when transitioning from
the 2D-FPV to the 2D-TD interface, see (f).

7.4.5 Policy Alignment

To examine how preferences collected from different interfaces impact policy align-
ment and navigation behavior, we employ a preference-based reinforcement learning
(PbRL) approach. This method trains reward functions from the collected preference
dataset, enabling the subsequent alignment of human-aware RL navigation policies for
each query interface. Following [57], [58], we learn a parametric reward function 7,
from human preferences. For policy optimization, we implement a PbRL algorithm
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following [57], using TD3 [103] as the base RL algorithm. Splitting up our preference
dataset by interface, we train three individual reward functions modeled as an MLP
with [256, 256, 256] hidden units based on the queries collected from the participants.
The policies for each condition were then trained for 500k time steps by weighting
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Figure 7.5: Navigation behavior comparison between aligned policies myr, mp.rp, and mp-rpv
and a non-aligned baseline counterpart g in four navigation scenarios. The aligned
policies exhibit smoother and more obstacle-aware trajectories than the non-aligned
policy mpr, with myr and mp.rp demonstrating the best balance between efficiency

and safety.
Metric VR 2D-TD 2D-FPV BL
CR [%] 5.8 5.8 4.9 52
SR [%] 942 941 94.9 94.8
TR [%] 0.0 0.1 0.2 0.0
Steps 491 495 55.9 50.0
Path Length [m] 4.9 49 5.4 49
Time [s] 9.6 9.7 11.0 9.8
AA [rad] 3.2 3.1 4.1 2.8
AUP [m?] 2.2 1.8 34 2.1
min(dp,) [m] 133  1.20 1.28 1.25

Speed v [m/s] 051 0.50 0.49 0.51

Table 7.3: Quantitative metrics for our preference-aligned myr, mp.rp, and mp.ppy and a non-
aligned baseline gy, averaged over 1,000 trajectories in randomly sampled scene configurations.
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the original navigation task reward and their respective preference reward model as
7 = Ay + (1= X)reore, with A = 0.2. The value of A was empirically determined through
iterative experimentation to ensure training stability. Note that the preference reward
model ranges from -1 to +1, while the original task reward ranges from a minimum of
-10 to a maximum of +20, with these extrema driven by the sparse terms in the func-
tion. In addition to the trained policies 7yr, mp.rp, and mp-ppy, we also include a non-
aligned baseline policy mpy,, trained on the same task without preference-based rewards,
for comparison.

Figure 7.5 illustrates navigation trajectories of the policies in four distinct scenarios.
The plots illustrate the paths taken by each policy from the start to the goal, navigating
around static obstacles and avoiding the human. All policies successfully navigate the
scenes, while the aligned policies exhibit smoother and more obstacle-aware trajectories
compared to their non-aligned counterpart 7py.. In Scenario d), both 7pr, and mp-ppy are
prone to inefficient routes. mp_rpy shows the same conservative behavior in Scenario c)
as well. Overall, the results indicate that the aligned policies myr and mpp achieve a
superior trade-off between efficiency and safety.

The quantitative results in Table 7.3 confirm that preference-aligned policies improve
human-aware navigation, with mygr achieving the best balance between efficiency and
safety by maintaining the highest human clearance (1.33 m) while ensuring low travel
times. mp.ppy prioritizes safety, exhibiting the lowest collision rate (4.9%) but at the cost
of longer paths (5.4 m) and higher angular accumulation (4.1 rad). mp.rp exhibits the
most straightforward navigation, reflected in the lowest area under path (AUP). These
findings, supported by the qualitative analysis, highlight that myr offers the most bal-
anced navigation performance, while mp.ppy navigates overly conservatively, and gL
is less cautious. Consequently, we find empirical support for H3.

7.5 Conclusion

Our study systematically examined how interface modality affects human preference
collection for robot navigation and the resulting policy alignment. The results confirm
that the choice of interface modality significantly impacts how users express prefer-
ences, perceive the interaction, and ultimately shape robot navigation behavior. The
VR interface provided a more immersive and intuitive experience, leading to greater
confidence and ease in preference expression. This aligns with prior findings on the
benefits of immersive environments for user engagement [220]. However, the study
also revealed that preferences were not entirely consistent between interfaces, with par-
ticipants favoring shorter, more direct paths in 2D interfaces while exhibiting greater
tolerance for curved trajectories with increased human clearance in VR. This suggests
that the visualization and spatial representation of the robot’s movement influence user
preferences, highlighting the importance of maintaining interface consistency during
preference collection. The navigation policies trained on interface-specific preferences
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demonstrated noticeable differences in robot behavior. Directly contributing to the over-
arching thesis RQ1 (Section 1.2.1), these findings highlight the necessity of considering
interface effects in preference-based reinforcement learning, as user preference shifts
due to modality changes can directly impact policy training outcomes. To support fur-
ther research on these effects and the collected user preferences, the preference dataset
is publicly available and linked in the supplemental materials in the appendix.

This chapter is the last to present methodology for preference-reflecting robot navi-
gation. Until this point, we have considered personalization frameworks leveraging VR-
based demonstrations, multi-objective reinforcement learning, and RLHE. Without ex-
ception, all presented approaches in the preceding chapters are human-aware and based
on deep RL-based learning pipelines. However, as robots employing these policies enter
real-world scenarios involving frequent user interactions, the black-box nature of their
neural network reasoning may negatively affect user acceptance if behavior turns out
to be counterintuitive. This issue is reflected in the overarching RQ4 (cf. Section 1.2.4),
and the following chapter investigates techniques for effectively communicating robot
decision-making processes to non-expert users.
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8 Immersive Explainability: Visualizing Robot Nav-
igation Decisions through XAI Semantic Scene

Projections in Virtual Reality

Abstract

End-to-end robot policies like those from the previous chapters achieve high
performance through neural networks trained via reinforcement learning (RL). Yet,
their black-box nature and abstract reasoning pose challenges for human-robot in-
teraction (HRI), because humans may experience difficulty in understanding and
predicting the robot’s navigation decisions, hindering trust development. In this
chapter, we present a virtual reality (VR) interface that visualizes explainable Al
(XAI) outputs and the robot’s lidar perception to support intuitive interpretation of
RL-based navigation behavior. By visually highlighting objects based on their attri-
bution scores, the interface grounds abstract policy explanations in the scene con-
text. This XAl visualization bridges the gap between obscure numerical XAI attri-
bution scores and a human-centric semantic level of explanation. A within-subjects
study with 24 participants evaluated the effectiveness of our interface for four vi-
sualization conditions combining XAI and lidar. Participants ranked scene objects
across navigation scenarios based on their importance to the robot, followed by a
questionnaire assessing subjective understanding and predictability. Results show
that semantic projection of attributions significantly enhances non-expert users’ ob-
jective understanding and subjective awareness of robot behavior. In addition, lidar
visualization further improves perceived predictability, underscoring the value of
integrating XAI and sensor for transparent, trustworthy HRI.

8.1 Introduction

The approaches presented in the preceding chapters rely on high-performance robot
policies driven by deep reinforcement learning (RL), enabling robots to navigate com-
plex and human environments with remarkable autonomy. Increasingly, such ap-
proaches are designed for human-robot interaction (HRI) settings, yet the decision-
making processes behind their policies often remain intransparent to end-users because
they depend on neural networks that are effectively black boxes [221], creating barriers
to user comprehension and trust. This is further compounded by the “perceptual belief
problem” [222] that arises from people’s difficulty in understanding what robots know
about the shared environment, e.g., due to limited familiarity with robotic sensing ca-
pabilities. The lack of understanding impedes robot predictability by the user which
can impact user trust, as illustrated in Figure 8.1.

This chapter is a revised and updated version of the peer-reviewed publication [80]. Refer to Section 1.4
for details.
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Figure 8.1: Our immersive VR explainability interface communicates XAl attributions and sen-
sor perception of an RL robot navigation policy to non-expert users, by grounding
them in the object semantics of the scene. Objects that are important to the policy
are highlighted using a glowing outline. A better perception understanding in com-
bination with the user’s perceived ability to predict the robot can lead to calibrated
trust towards the robot.

Users were found to have a clear interest in robots capable of explaining their nav-
igational decisions [72]. A recent study showed that the effectiveness of XAI methods
across different applications varies significantly [223], underlining the need for more
user-focused evaluations of how XAI explanations are conveyed. This is especially chal-
lenging for the continuous, dynamic decision-making process of a navigating robot. In
line with the HRI-transparency facet of overarching RQ4 (cf. Section 1.2.4), the question
arises as to how non-expert users can effectively and intuitively understand both the
robot’s perceptual capabilities and the explanations generated by XAI methods [224],
[225].

Therefore, we propose an immersive virtual reality (VR) interface that integrates two
key elements for novice users: a clear visualization of a) the robot’s sensor data and b)
the contextual XAI outputs. We visualize the attribution scores of an RL-based policy
by continuously projecting them onto the objects that influence the robot’s decision pro-
cess, visually making them glow based on their inferred importance. Through various
navigation task and obstacle configurations, we allow users to gain insights into how the
robot perceives its environment and is influenced by different obstacles on its way to the
goal. We hypothesize that this approach not only enhances the user comprehension and
predictability of robot behavior, but also improves trust in the robot’s actions.

The primary contributions of our work are threefold:

* A VR interface that communicates robot perception and navigation policy expla-
nations grounded in scene semantics.

* Extensive assessment of this novel visualization to explain robot navigation deci-
sions ina N = 24 user study.

¢ Empirical demonstration of significantly enhanced user understanding and pre-
dictability of the robot, with a potential for enhanced trust calibration.
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Figure 8.2: Architecture of our XAI-VR interface. a) The VR interface visualizes the robot in
a navigation scenario, the object-projected XAI attribution scores, and the 2D lidar
sensor to the user. In our user study, the visualizations (XAI and lidar) represent the
independent variables (IVs), while we measure the users” performance in ranking
the robot-surrounding objects according to their importance to the robot, defined
by the visualized attribution scores. b) Objects are highlighted according to their
importance by a white outline of variable thickness, here depicted in a top-down
schematic. Their importance is assigned by the ray-casts of the 2D lidar sensor, which
project the post-processed attribution scores of the lidar-containing state space into
the scene. Specifically, the state space contains a min-pooled set of lidar readings
and the robot-centric goal position. ¢) The XAI technique Vanilla Gradient generates
gradient-based attributions g for the RL-trained navigation policy. The lidar-related
part of g is post-processed for visualization in VR using Equation 8.2.

8.2 Related Work

8.2.1 General and RL-based XAI

Explainable Artificial Intelligence (XAI) has been a well-established research area for
several years, leading to the development and deployment of numerous methods [226]
across diverse application domains [227]. Core goals of XAl include enhancing trans-
parency, trust, and human understanding of black box behavior [228], with key ques-
tions often centered around what information should be conveyed, to whom, and in
what form [227], [229]. Much of the existing work in XAI has focused on standard su-
pervised learning tasks such as classification and regression [230]. Clearly distinct from
these standard scenarios, Explainable Reinforcement Learning (XRL) has emerged as
a specialized subfield aiming to bring interpretability to sequential decision-making
systems trained as reinforcement-learning agents [221], [231]. While the overarching
goals and evaluation metrics of XRL align closely with those in traditional XA, e.g.,
criteria such as fidelity, comprehensibility, and usefulness [231], [232], the temporal na-
ture of the RL setting and potentially complex environments motivate a clear concep-
tual distinction between XAI and XRL [231]. Milani et al. [231] classify XRL methods
into three categories based on the targeted RL agent component: 1) Feature Importance:
explaining influences on the agent in a given state, 2) Learning Process and Markov De-
cision Process: identifying influential training samples, and 3) Policy-Level: describing
overall policy behavior. We adopt a feature importance approach, using an attribution
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method to obtain heatmaps over sensor readings, which are subsequently processed
to map sensor-level saliency to semantic scene elements for non-expert users. Impor-
tantly, the goal of this work is not to develop a new XAI method, but rather to evaluate
the effectiveness of existing XAI techniques when embedded within an immersive VR
environment. We assess our approach through a dual evaluation strategy combining a
proxy task and a questionnaire, addressing both objective performance-based and sub-
jective user-centered criteria.

8.2.2 Explainability in Robotics and HRI

Although XAI methods are largely developed for technical settings, applying them in
human-centered robotics requires grounding abstract model outputs in ways that sup-
port user comprehension. This is particularly important in HRI, where robotic behavior
should be intuitive for users to understand.

Halilovic et al. argue for tailoring robot explanations to the users’ cognitive capabil-
ities and task context [224], recognizing that overly abstract explanations may hinder
comprehension among users. In another study, they present a real-time, multimodal
explanation system that incorporates robot personality and spatial context to modulate
the explanation strategy [233]. Our interface similarly operates in real time, but focuses
on visually and spatially grounding attributions of RL-based decisions through seman-
tic object highlighting. It therefore addresses the dynamic environmental context.

Das and Chernova introduce a framework that generates semantically grounded ex-
planations for robot failures using scene graphs and pairwise ranking to highlight rel-
evant spatial relations and object attributes [234]. Their method improves the user un-
derstanding of the robot by linking failures to specific semantic elements in the scene.
We adopt this notion of semantic grounding and extend it to navigation, projecting at-
tribution scores onto meaningful objects within an immersive virtual environment.

Wang et al. explore the use of augmented reality to display robot intentions to
users [235]. Their augmented reality interface aids spatial awareness and interpretabil-
ity by projecting the robot’s internal states into the user’s visual field. We adopt a similar
spatial visualization paradigm but in a VR setting, enabling tighter integration of policy
explanations with environmental semantics of the scene.

He et al. combine SHAP-CAM with depth-based RL to highlight influential input re-
gions in drone navigation policies [201]. By overlaying saliency maps on depth images,
they contribute a technically grounded approach to interpreting deep RL policies. While
their visualizations remain on a technical level, our work embeds attribution-based ex-
planations into a user-centric, spatial, and interactive VR interface, thereby enhancing
the interpretability of RL policies through situated and dynamic visualization.

Hald et al. examine the role of robot explanations following task failures, concluding
that while such explanations can guide users toward appropriate trust calibration, they
are insufficient alone to repair trust [225]. Rather than post hoc trust repair, our sys-

tem supports continuous, real-time visual saliency explanations, aiming to proactively
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support the formation of calibrated trust during task execution.

Finally, Edmonds et al. investigate how different explanation modalities affect hu-
man trust in robots, comparing real-time visualizations of internal decision-making to
summary text explanations [236]. They show that comprehensive, real-time visual feed-
back is more effective in fostering trust, even when not aligned with task-optimal model
components. We adopt this insight by using dynamic visualizations of attribution scores
during navigation, embedding them in a VR interface to enhance user understanding
and trust.

Against this background, we hypothesize that the visualization of the XAI outputs

improves
H1 users’ objective understanding of the robotic decision-making process,

H2 users’ subjective ability of perceiving, understanding and predicting the robotic

information, and
H3 calibrated trust towards the robot.

We additionally explore whether this potential benefit is more pronounced when the
visualization of XAl outputis complemented with the visualization of the robot’s sensor.

8.3 Methodology

This section introduces core concepts such as VR interface, robot navigation policy, ex-
plainability method and post-processing, and the user study setup.

8.3.1 Virtual Reality Interface

To visualize a robot navigation task for the user, we develop a VR interface based on
the Unity game engine, optimized for Meta Quest 3 hardware, see Figure 8.2. The VR
scene shows the robot navigating from a start to an end position while avoiding 3D ob-
stacles, e.g., furniture and other objects. The goal location of the robot is visualized as
a green circle on the floor. The user observes the robot navigation task from a fixed po-
sition nearby. Unity handles the simulation of the robot’s top-mounted 2D lidar sensor
through ray-casts. For the perceptual explainability, we visualize the otherwise invisi-
ble lidar rays in VR by rendering their 3D raycasts in real-time. The simulated 360 rays
are displayed within the policy’s detection range of 6 m. When a ray intersects with an
object, its color changes from green to red, providing an immediate visual cue of po-
tential obstacles. Furthermore, 3D objects are highlighted with an outline of dynamic
width to display their importance reflecting the XAI outputs, as further elaborated in
Section 8.3.4.2. The Unity interface exchanges states, actions, and attribution scores with
the RL policy and the attached explainability pipeline on a Python server via a socket
connection. This data is sent to the server at the inference frequency of the policy, which
also triggers updates of the XAl visualizations.
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8.3.2 Navigation Policy

We employ an RL-based robot navigation policy 7 driven by a neural network learned
using the TD3 algorithm [103]. The policy is trained for obstacle avoidance on its way
to a local goal using a 360° 2D lidar sensor in environments with randomized obstacle
and goal positions. The state s = [L, G] consists of 15 entries of min-pooled lidar sensor
data L, down-sampled in sectors from 360 rays, and 2 entries of the robot-centric goal in
polar coordinates G. The policy produces a two-dimensional output dictating linear (v)
and angular (w) velocity commands for the robot as action a; = (v, w). The learning task
is described to the RL agent with a sparse goal reward (+20), sparse collision (—20) and
timeout penalties (—1), jerk (—1le—7-||(a; — 2a;—1 + at_g)f2H2 /Jmax) and time penalties
(—0.001), and an obstacle distance-keeping penalty (—0.001 if dmin < 0.4 m) based on the
distance to the nearest obstacle dmin. The multi-layer perceptron policy contains three
layers with [256, 128, 64] neurons respectively and is trained for 500k time steps using
Stable-Baselines3 [200].

8.3.3 Attribution Scores of the Navigation Policy

Attribution methods quantify the influence of each input dimension with respect to
the model decision for a single input sample. Within this category, several methods
have been proposed [237], [238], [239], [240], which differ not only in their conceptual
underpinnings, but some also require non-trivial choices of hyperparameters that can
influence the outcome significantly [241]. For its conceptual and algorithmic simplicity,
we use the gradient of the policy with respect to an input state s at timestep ¢ as the at-
tribution method [240], a method also known as Vanilla Gradient. We selected Vanilla
Gradient for two practical reasons: it is computationally efficient enough to support
real-time inference, and it requires no hyperparameter tuning, which simplifies imple-
mentation and ensures reproducibility. We emphasize that attribution methods explain
a scalar output, i.e., in the case of our policy network =, the output of a single neu-
ron. Although explanations for both linear and angular velocity of the robot could be
combined, the complexity of their interaction and the necessary communication to users
exceed the scope of this work, which focuses on the VR projection of these explanations.
Therefore, we restrict our analysis to attribution scores for the robot’s linear velocity v.
Further, we solely focus on explanations of the perception-part of the state space, hence
we select the components from the gradient that correspond to the lidar components L
of the input. The goal location G, while essential for task execution, serves as contex-
tual information rather than direct sensory input and is visualized separately in the VR
environment, without additional dynamic highlighting. To summarize, the attribution

g= (67:;:)“% (8.1)

scores g are given by:

Because the scores are derivatives, their interpretation is as follows: Values close to
zero indicate that a feature has no or little influence on the policy output. A high posi-
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Figure 8.3: a) The distribution of raw lidar attribution scores § provided by Vanilla Gradient for
all navigation state-action pairs presented during the user study. b) After postpro-
cessing for visualization (Equation 8.2), the distribution of g* shifts into the range
[0, 1].
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Figure 8.4: Example scenes with post-processed XAl attribution scores g* of the linear velocity
output, indicated as color-coding for their respective min-pooled lidar ray. The robot
(black triangle) is facing to the right, while different obstacles (grey boxes) influence
the navigation policy that should pursue the goal (green dot). Depending on the
scene setup, the obstacle’s influence on the policy varies. Axis ticks denote 1 m dis-
tances.

tive attribution value for a lidar input indicates that increasing the corresponding depth
reading (i.e., perceiving more open space) results in a higher velocity command. Con-
versely, a high negative attribution implies that a decrease in the depth reading causes
the policy to increase velocity. Figure 8.3a (blue) presents a histogram over all values in
all g provided by Vanilla Gradient for all navigation state-action pairs presented during
the user study. Note the logarithmic scaling of the y-axis. The vast majority of lidar
attribution scores are around zero or positive, indicating a learned tendency to reduce
forward speed upon nearing obstacles. The red histogram shows the attribution scores
corresponding to the goal G. We see that scores for the goal are closer to and centered

around zero, indicating that the policy primarily focuses on the lidar input.

8.3.4 Visualizing Attribution Scores

In order to transform the abstract numerical attribution scores into an intuitive visual
representation, we apply two post-processing steps: a) We further simplify the attribu-
tion scores and b) connect them with the scene by associating each with an object to

achieve a semantic mapping.
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8.3.4.1 Simplification of Attribution Scores

While the sign of the attribution scores does have a semantic meaning, as discussed
above, the pure magnitude is of far greater importance. Hence, we work with the abso-
lute value, discarding the sign. Further, the raw values of the attribution scores are less
important for the ranking task than their relative relationship. Hence, we apply a rescal-
ing operation to obtain a mapping to range [0, 1] for each . The full transformation of §
to post-processed g* is given by

o |g] — min(|g])

_ 8.2
9"~ max(|g]) — min(|7)) &2

The effect of this post-processing is shown in Figure 8.3b. The scores now more uni-
formly span the full spectrum, yielding a visually uniform grading. The abrupt peak to
the right implies that in many cases the majority of the attribution mass concentrates on
few lidar rays.

8.3.4.2 Score-to-Object Mapping

In Figure 8.4a and b we can see an abstract visualization of the robot in two different
scenes. The 15 lidar rays are colored according to their corresponding value in g*. In
Figure 8.4a the policy has a strong focus on the goal-occluding obstacle. In Figure 8.4b
where the obstacles are generally closer to the robot, the policy’s focus in the direction of
the goal is less sharp. Overall, the backward-facing lidar rays receive less attribution. To
perform the semantic mapping of our post-processed attribution scores into the scene,
we associate each lidar-hit object in the robot’s vicinity with the score of the hitting lidar
ray in g*. If an object is intersected by multiple rays, as in the illustration, the maximum
value from all candidate rays is used. Finally, object importance is visualized in the VR
environment by outlining affected objects in white, using a world-space line thickness
proportional to their importance.

8.3.5 User Study

The user study is designed to evaluate the impact of different configurations of the VR
interface on human objective and subjective understanding of the robot’s navigation
decisions, as well as their trust in the robot.?

8.3.5.1 Design

We assess the objective understanding of the robot’s navigation decisions in a ranking
task, in which participants are tasked to rank the importance of objects for the robot’s
navigation policy in four blocks. After each ranking block, subjective measures are taken
using a questionnaire. The questionnaire is conducted directly in VR and includes 8

8A video of the interface and user study setup is linked in the supplemental material section of the
thesis appendix.
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Figure 8.5: a) Fully-crossed combinations of two independent variables (IVs): XAl scene projec-
tion and 2D lidar sensor visualization. They sum up to four experimental conditions,
represented by four blocks. Each block was followed by a questionnaire. b) Partici-
pants start each trial pressing the A button on the controller. The robot navigated for
3s, halted, and the XAI and/or lidar visualization remained after another second.
Afterwards, participants ranked the importance of five scene objects for the robot

policy.

questions (7-point Likert scale, labels: “Totally Agree” and “Totally Disagree”), see Sec-
tion 8.4.1.2 and Figure 8.7.

We employ a two-factorial within-subjects design to isolate the effects of two visual-
ization features: XAI (present, absent) and lidar (present, absent). Their fully-crossed
combinations result in four interface configurations, as illustrated in Figure 8.5a. Each
block presents one of these configurations and consists of 12 trials with a unique naviga-
tion scenario. Scenarios are configured by varying five obstacle placements, robot start
and goal locations, and the participant’s observer position. The robot is initialized facing
the goal direction. In total, 48 unique scenarios are randomized across all four blocks.
To mitigate training and ordering effects, the sequence of the blocks is fully counterbal-
anced, resulting in 4! = 24 unique orderings. The study involves 24 participants, each

assigned a different block sequence.

8.3.5.2 Ranking Task

Each trial begins with the presentation of a new robot navigation scenario including
five obstacles, which the participant views from a distinct perspective, see Figure 8.5b.
The number of obstacles is kept constant across trials to ensure a similar difficulty of the
ranking task. Depending on the experimental block, either the XAI or lidar visualiza-
tion was shown. The robot’s goal position is indicated by a green torus, and a real-time
updated line connects the goal and current robot position for a clear navigation con-
text. The robot starts to move when the participant presses a button of the handheld
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controller. After 3s, the movement is paused and marked by a stop sign on the robot.
The final state of the visualizations remains visible for an additional 1 s to allow the par-
ticipant to process the current navigation step, which they are instructed to base their
ranking on.

Participants then rank the importance of each object with respect to the robot’s policy
by pointing and selecting the objects. Rank labels are displayed on top of the objects, or-
dered from most (1) to least (5) important. Participants can revise their ranking decision
by pressing another button.

The collected rankings are later compared to ground-truth object importance de-
rived from scene-projected attribution scores. To measure agreement between the par-
ticipant’s object ranking and the ground-truth importance order, we employ Kendall’s
7 [242], a non-parametric correlation metric. Kendall’s 7 quantifies the similarity be-
tween rankings by evaluating the proportion of concordant and discordant pairs.

8.3.5.3 Procedure

Before the experiment, participants received detailed instructions about the experiment,
provided written consent, and completed a demographic questionnaire. They were in-
formed about the robot’s navigation task, the XAl output visualization and how its lidar
sensor perceives the environment. The experimenter instructed them for the ranking
tasks (S1). Each participant completed two training trials with explanations to become
familiar with the visualizations and ranking task and proceeded with the first experi-
mental block. After they had completed the first ranking block, they answered the ques-
tionnaire measuring the subjective experience of the previously presented interface con-
figuration (52). Upon completion of all ranking blocks and questionnaires, participants
answered a freeform questionnaire targeting their object ranking strategy (S3).

8.3.5.4 Participants

A total of N = 24 individuals (9 women, 15 men) participated in the study in exchange
for a EUR 10 monetary compensation. All participants reported having (corrected-to-)
normal vision. Their mean age was 24.6 years (SD = 3.6 years). Participants rated their
experience with AR/VR on a 7-point Likert scale (1 = No experience at all, 7 = A lot of
experience), with a mean rating of 2.4 (SD = 1.3). Participants also rated their experience
with robotics (M =2.8, SD =1.9), and their experience with artificial intelligence (M = 4.1,
SD =1.8). The study adhered to the principles outlined in the Declaration of Helsinki.

8.4 Experimental Evaluation

This section presents the results of the user study, which evaluates the established hy-
potheses (H1 - H3).
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Figure 8.6: Object ranking performance (S1) of participants for each presented visualization
combination of XAI and lidar conditions as measured by Kendall’s 7. Means and
standard deviations are shown. As can be seen, the XAI visualizations increase
the users’ object ranking performance with respect to their attribution score-derived
ground truth importance.

Predictor dfy df, F D n
XAI 1 23 15.20 < .001 0.40

Lidar 1 23 0.20 .657  0.01
XAI x Lidar 1 23 092 346 0.04

Table 8.1: The results of rmANOVA of the ranking task performance (51) demonstrate a signifi-
cant effect of the semantic XAl visualization.

8.4.1 User Study

The collected data covers the objective visualization-dependent object ranking perfor-
mance (S1) and subjective evaluations of the post-block questionnaire (S2).

8.4.1.1 Ranking

The ranking task (S1) quantitatively assessed users” understanding of the XAl visualiza-
tions. We compute Kendall’s 7 between the participants’ ranking and the ground truth
order of objects for every trial and aggregate the results for each of the four experimental
conditions and each participant, see Figure 8.6.

A repeated-measures (rm)ANOVA confirms a significant effect of the XAI visual-
ization on the participants’ ranking performance of the five scene objects, see Table 8.1.
Participants performed better with (M = 0.52, SD = 0.11) than without XAI (M = 0.42,
SD = 0.12). This benefit is expected as the XAl visualization conveys attribution scores.
Although neither the main effect of the lidar visualization nor its interaction with the
XAl visualization was significant, participants achieved descriptively the best ranking
performance when both XAI and lidar were visible.

Interestingly, even without visualizations, participants achieved a certain ranking
accuracy, possibly by using heuristics, e.g., prioritizing objects that are closer to or in
front of the robot, or those that appeared to influence its navigation.

While edge cases such as ties in the ground truth order due to occluded objects re-
ceiving a zero importance score or subtle importance differences indistinguishable from
outline thickness can impact Kendall’s 7 as the absolute ranking performance, the rele-
vant conclusions are to be drawn from the relative performance differences.
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information was relevant to the robot.
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Q4-SIPA-I: The way in which the collected information
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Q5-SIPA-P: The information needed to change the robot’s
nav1ﬁat10n behavior was deducible.
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Q6-SIPA-P: The navigation behavior of the robot was
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Q7-Trust: This visualization heltps me judge when I should
trust and not trust the robot.
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Q8-Plausibility: The visualized information was plausible.
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Figure 8.7: Participants rated their experience with respect to the SIPA scale for explanations
(Q1-Q6), trust (Q7) and plausibility (Q8) with regards to the visualizations XAI and
lidar (IVs). All questions shared the same labels: Totally disagree (T.D.) and Totally
Agree (T.A.), abbreviated here for visual clarity. Ratings were provided on a Likert

scale (1-7), bars indicate score means, error bars show standard errors.

In conclusion, the participants showed an improved understanding of the object im-

portance to the RL policy with the XAl visualization, finding support for H1.

8.4.1.2 Questionnaire

Targeting the users’ understanding of our explanation visualizations in terms of trans-

parency (T), intelligibility (I), robot predictability (P), and trust (T) towards the robot, we

analyze the 8-item questionnaire (Likert scale, score 1-7) of S2, see Figure 8.7. Reverse-

coded items (Q2, Q4, Q6) served as attention checks.

Items Q1-Q6 represent a short version of the Subjective Information Processing

Awareness (SIPA) scale [243] for user-centered assessment of XAI: Perception (Q1+2),
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Item/Scale Predictor df; df, F p 1,
XAI 1 23 5.39 030 0.19
Q1-6: SIPA Lidar 1 23 443 046 0.16
XAI x Lidar 1 23  6.90 .015 0.23
XAl 1 23 1.62 216 0.07
Q7: Trust Lidar 1 23 1.72 202 0.07
XAl x Lidar 1 23 0.80 380  0.03
XAI 1 23 3.86 062 0.14
Q8: Plaus. Lidar 1 23 22.77 <.001 0.50
XAI x Lidar 1 23 3.26 .084 0.12

Table 8.2: Results of the rmANOVAs for post-block questionnaire (S2), specifically for the short
SIPA scale (Q1-Q6), Q7-Trust and Q8-Plausibility.

intelligibility (Q3+4) and prediction (Q5+6). We invert the reverse-coded items, aggre-
gate the scores of the single SIPA items to a mean score for each experimental condition,
and perform a two-factorial rmANOVA (Table 8.2) to infer the contributions of the XAI
and lidar visualization conditions.

Both XAI and the interaction of XAI and lidar show a statistically significant effect
on the mean SIPA score, with the conditions XAI (M = 5.5, SD = 1.0), XAl+Lidar
(M =5.6, SD = 1.0), and Lidar only (M = 5.5, SD = 1.0) achieving higher SIPA scores
compared to the condition without XAI and lidar (“None”) (M = 4.6, SD = 1.4). This
underlines that any additional visualization of the robot’s information processing (XAI,
lidar or both) improves the participants” impression of being able to perceive, under-
stand and predict the robot’s navigation behavior, supporting H2.

Item Q7 assesses participants’ trust calibration towards the robot and was derived
from the Explanations Satisfaction Scale (ESS) [244]. While the visualizations (XAI,
XAl+lidar, lidar) showed a descriptive improvement over “None,” no significant effects
were found (not supporting H3). The absence of significance may be related to specific
aspects of the study design: First, the use of a single-item metric may not have been
sensitive enough to capture changes of trust calibration in this study. Second, the vi-
sualizations may not have been relevant to trust calibration. Also, from a participant’s
perspective, it may not have been clear what to trust the robot for, as the participants ob-
served the error-free robot navigation from a distance and were not personally involved
in the scenario.

The final item Q8 targets the plausibility of the visualized information and refers to
the explanation concept of coherence [232]. Here, the lidar has a significant effect on the
measured plausibility of visualizations. Both XAI and its interaction with lidar are not
significant. This indicates that the lidar visualization rather than the XAlI visualization
appears more plausible for users, presumably because the lidar rays are directly linked
to the robot’s perception.

We conclude that the semantic XAI projection helped the users to objectively per-
ceive the information leveraged by the navigation policy, and also created the subjective
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impression for users of being able to perceive, understand and predict the robot’s infor-
mation processing, i.e., decision-making in navigation behavior (supporting H2). While
the objective understanding in the ranking task was not significantly affected through
the visualization of the lidar rays, the subjective information processing awareness (per-
ception, understanding, predicting) of the users as well as the perceived plausibility of
the interface improves. Finally, neither the semantic XAl projection nor the lidar visu-
alization changes the user’s impression of enhancing the trust calibration process.

8.4.1.3 Freeform Feedback

Upon completion of all blocks, we asked participants two freeform questions (S3) to
learn about their mental model (RQ3) and object ranking strategy: FQ1 - What rules do
you think the robot followed when choosing a path? FQ2 - Which strategy did you use
for ranking objects” influence? Participants identified several recurring patterns when
asked about their mental models (FQ1) and object ranking strategies (FQ2). Regarding
robot path selection rules (FQ1), participants frequently stated that the robot prioritized
collision avoidance, selected shorter and direct routes for efficiency, showed differential
treatment to objects based on their distance, and favored smooth trajectories. Almost all
responses built upon the constellation of objects, i.e., the scene context, rather than the
perception and action capabilities of the robot. This underlines the relevance of scene
context for the participants” mental model of explainability and the need to promote
their awareness of the robot’s perception. For the ranking task (FQ2), common strategies
included considering the object’s outline thickness, object size or perceived collision
hazard, proximity to the robot’s intended path, and frequently a combination of these
factors.

8.5 Conclusion

We present a novel VR-based interface that integrates dynamic, scene-grounded XAI
outputs and sensor visualizations to support non-expert users in understanding an RL-
based robot navigation policy. We thereby align numerically obscure robot policy expla-
nations to the users’ cognitive capabilities and task context. Our user study shows that
semantically projecting attribution scores significantly improves non-expert users’ ob-
jective understanding and subjective awareness of the robot’s decision-making, thereby
increasing the perceived predictability of its behavior. Visualizing the robot’s lidar rays
also contributes substantially to users” subjective awareness, indicating that combining
XAl and sensor visualizations is essential for optimizing user experience in VR. Based on
these findings, future research should jointly evaluate objective and subjective metrics
to guide the design of effective explanation tools for human-robot interaction. In this
study, the visual explanation of the robot’s scene understanding was presented indepen-
dently at each time step. An important avenue for future research is the incorporation
of the temporal dimension of robot trajectories into the XAI method—for example, gen-
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erating a unified explanation that captures and visualizes the policy’s reasoning over
the entire trajectory history. Such temporal integration becomes particularly relevant in
environments featuring dynamic obstacles. Moreover, investigating how users transfer
the understanding they acquire to novel navigation scenarios would be valuable. Specif-
ically, this could be examined by quantitatively assessing their prediction performance
regarding obstacle influence and the resulting policy behavior, thereby directly target-
ing a learning effect. Overall, our results highlight the potential of immersive VR ex-
planation interfaces to facilitate more transparent human-robot interaction in complex
environments, with applications in supporting safer collaboration, aiding debugging
and validation, and facilitating training and education.

With the presented findings, this chapter represents a direct contribution to overarch-
ing RQ4, see Section 1.2.4, and contextualizes the presented DRL navigation controllers
of the preceding chapters from an HRI perspective. Furthermore, this chapter is the
final one to present empirical results from conducted research. The next chapter intro-
duces the recent advances in foundation models for robotics, followed by an outlook
and a conclusion chapter (Chapter 10 and 11, respectively).
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9 Foundation Models in Robotics: Toward Personal-

ization

In the previous chapters of this thesis, we developed robust and efficient methods for
capturing, learning, and integrating human preferences into personalized robot nav-
igation policies. Recently, robotics started entering a phase of transformative change
driven by the emergence of Foundation Models (FMs), which introduce new capabili-
ties in generalization, reasoning, and multimodal interaction. These developments open
novel opportunities to further advance personalization, adaptability, and user-centric
explainability in robotic systems. Accordingly, this chapter broadens the perspective
of the thesis by providing an introduction to FMs, discussing their potential benefits,
challenges, state-of-the-art approaches, and promising directions for future research in
navigation, HRI, and personalized robotics. Following this chapter, we will contextual-
ize our works against the advances of FMs in Chapter 10.

9.1 FMs for Embodied Intelligence

FMs refer to large-scale pre-trained neural networks designed to leverage extensive and
diverse internet-scale datasets to establish robust knowledge bases [245], [246]. These
models exhibit strong adaptability and generalization capabilities, enabling their appli-
cation across various tasks and domains [247].

In robotics, FMs recently received outstanding attention as they are promising archi-
tectures to the long-standing goal of achieving general-purpose Al [246]. In that regard,
they have the potential to reduce the dependence on task-specific highly engineered
models and policies. One property makes them specifically appealing: they enable in-
tuitive control over robots through natural language instructions [248], or simply by
showing the robot an image of a task’s goal state [249]. This significantly simplifies the
interaction paradigms between human and robot.

Foundation models in robotics can be categorized into several types: large language
models (LLMs), vision-language models (VLMs), robot foundation models (RFMs), and
embodied multimodal models (EMMs) [245]. LLMs excel in communication, task plan-
ning, and common-sense reasoning, e.g., Llama [250] or the Generative Pre-training
Transformer (GPT) architecture [251]. VLMs enable open-vocabulary visual recog-
nition, semantic scene understanding, and grounding of language inputs into visual
observations, with prominent models such as CLIP [252] and BLIP-2 [253]. RFMs
typically integrate vision, language, and action modalities (hence also called Vision-
Language-Action model, short VLA), enabling direct generation of robot control com-
mands from multimodal inputs. Notable example architectures include RT-1 [254],
RT-2 [247], Octo [255], Open-VLA [248], and GROOT N1 [256] by Nvidia. Extending
the typical VLA modalities, a recent RFM additionally incorporates proprioceptive and
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other sensor data, supporting richer sensorimotor reasoning [257]. Finally, EMMs,
such as PaLM-E [258], Gato [259], and RoboCat [249], are general-purpose architectures
trained across various robot embodiments and sensorimotor modalities, including vi-
sion, language, proprioception, and low-level control. They are specifically designed to
support cross-embodiment policy reuse and zero-shot task transfer.

The adoption of FMs in robotics offers substantial benefits. As mentioned earlier, a
key advantage is the generalizability and adaptability to diverse instructions and un-
seen environments [245], [246], [260]. Pre-trained FMs enable rapid fine-tuning to a
specific task with comparatively little training data, thereby improving data efficiency
as compared to a task-specific policy trained from scratch [245], [261], [262], [263]. For
analogous reasons, FMs are characterized by a high task-versatility given minimal fine-
tuning, allowing robots to tackle diverse challenges from manipulation and naviga-
tion [256], [258] to human-robot interaction [264]. Furthermore, FMs are capable of
rich contextual understanding and advanced reasoning, thereby significantly enhanc-
ing robotic planning, problem-solving and decision-making capabilities [247]. For ex-
ample, a robot can infer that the instruction “prepare for guests” entails both cleaning
and organizing without explicit task decomposition. Due to their exposure to diverse
training data, FMs enhance the error tolerance and robustness in previously unseen
situations [256], [258]. Lastly, their training data-induced native linguistic capabilities
enable natural communication with users and substantially facilitate natural HRI [264].

9.2 Limitations of FMs

Despite their promising potential, the deployment of FMs in robotics currently faces sev-
eral challenges. A primary issue is the embodiment gap, as FMs are typically pre-trained
in non-embodied contexts such as internet-scale text and images datasets, but are sup-
posed to operate in the physical world [246]. For instance, the description of how to
grasp an object in text does not easily translate to a robot physically picking it up. Addi-
tionally, while non-embodied training data such as text, images, and videos are broadly
available online, high-quality domain-specific robot training data is scarce [265]. This is
influenced by the substantial costs and logistical complexities involved in recording and
annotating extensive robotic datasets [254], [265], [266]. Another unresolved challenge
is how to structure an FM’s output such that its predicted actions can be effectively inter-
preted and executed by different robotic embodiments. For instance, slight incongru-
encies in robot geometry, locomotion parameters, joint configurations, or end-effector
designs should not significantly constrain the transferability of a costly trained FM. An-
other challenge lies in the computational complexity of FM inference due to large model
sizes and their transformer-based autoregressive architecture, which makes it difficult
to achieve real-time performance [259], [267]. Yet, real-time inference at high control
frequencies is essential in scenarios where robots must instantly react to dynamic envi-

ronments, such as in a social navigation scenario [268]. Finally, it remains a challenge
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to establish reliable benchmarking frameworks to ensure reproducibility, operational
safety and uncertainty quantification across different robot platforms and research in-
stitutions [246].

Regarding the integration of generic LLMs with robotic architectures, Kim et al. [269]
and Wang et al. [270] point out some notable limitations beyond the aforementioned
general characteristics of FMs in their surveys: LLMs tend to generate inaccurate or
unexpected responses, also called hallucinations [269], potentially leading to misleading
and unexpected user experiences. Furthermore, their emergent capability of in-context
learning (ICL) is not yet consistent or reliable in practice.

Also, the effectiveness of LLMs relies on the wording and quality of prompts, with
some models requiring carefully crafted, lengthy prompts for reliable outputs [270].
When integrating VLMs in robotics, a key limitation can be the inability to fully grasp
spatial relationships between objects and depth information in general [270], as depth
and 3D data are typically not included in their training domain. Given that the safety
of robotic systems is critical for deployment, LLM-based robotic applications therefore
require filtering and correction mechanisms to ensure deployment safety [269].

9.3 FMs for Robot Navigation

This section illustrates how FMs are applied to navigation tasks in the first place, be-
fore we gradually transition to personalization of robot navigation through FMs in Sec-
tion 9.5. Generally, strong visual context-based reasoning makes FMs a natural fit for
navigation tasks in unknown environments.

9.3.1 Vision-and-Language Navigation in Static Environments

For the task of vision-and-language navigation (VLN, also referred to as open-
vocabulary navigation), recent approaches commonly leverage world knowledge of
pre-trained LLMs and VLMs for zero-shot performance on navigation tasks [271],
[272], [273], [274], [275]. While these approaches share a common goal, they employ
different strategies to achieve it.

One strategy involves the direct use of open-vocabulary image classification mod-
els, as exemplified by Gadre et al.’s “CLIP on Wheels” (CoW) [271]. Here, the authors
leverage CLIP’s robust visual-semantic embeddings in combination with a simple explo-
ration policy, enabling agents to recognize goal objects in unknown environments with-
out explicit training. Despite demonstrating promising zero-shot capabilities, CoW’s
effectiveness remains limited, primarily due to shortcomings in exploration strategies
and inconsistent object recognition triggered by CLIP. This suggests that purely reactive
approaches may not sufficiently exploit semantic context for navigation.

To address the limitations inherent in reactive, classification-based methods,
Huang et al. [272] and Long et al. [274] adopt a complementary, planning-oriented
approach. Both methods first construct explicit intermediate representations,
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spatial-semantic maps or landmark-based value maps, which are derived from VLM
and LLM outputs, respectively. Specifically, Huang et al.’s VLMaps projects pixel-level
embeddings from VLM-encoded images onto reconstructed 3D environments enriched
with linguistic annotations. An LLM subsequently utilizes this structured represen-
tation to generate actionable, zero-shot navigation instructions. Long et al. similarly
employ an LLM to decompose high-level instructions into explicit landmark-action
sequences (InstructNav), which are then converted into spatially referenced value
maps that guide navigation. Both approaches highlight a critical paradigm shift from
purely reactive decision-making toward structured semantic reasoning, substantially
outperforming simpler baseline models like CoW in multi-object navigation tasks.
Nevertheless, the dependence of InstructNav on closed-source commercial models
to achieve the highest performance underscores significant concerns regarding
accessibility, transparency, and reproducibility in practical applications.

In contrast to these mapping-centric approaches, Lin et al. [273] and Zhang et al. [275]
emphasize the direct generation of low-level control commands from visual-language
inputs, respectively. Lin et al. propose ADAPT, which significantly deviates from on-the-
fly planning by retrieving suitable navigation actions from a pre-built prompt database.
The strength of ADAPT lies in explicitly aligning actions with language instructions,
thereby equipping agents with robust cross-modal reasoning abilities. Rather than
dynamically synthesizing behaviors, the agent retrieves known, verified actions from
a database. On the other hand, Zhang et al. present NaVid, a notable approach for
continuous-environment navigation that directly generates low-level motor commands
from video-based inputs, leveraging a general-purpose video-based VLM architecture.
Unlike VLMaps and InstructNav, NaVid does not require explicit depth, odometry, or
intermediate map information for a successful real-world deployment. Nonetheless,
NaVid'’s reliance on computationally heavy video models results in significant inference
latency, limiting the approach’s applicability in dynamic environments.

Taken together, these recent approaches to VLN in static environments illustrate two
principal trends. On one hand, structured semantic reasoning via intermediate rep-
resentations (VLMaps, InstructNav) provides robust interpretability and strong task
performance but introduces complexity and possible external dependencies. On the
other, direct, cross-modally aligned action generation (ADAPT, NaVid, CoW) simpli-
fies decision-making pipelines but faces challenges related to generalization, computa-
tional costs, and consistency of zero-shot predictions. As emphasized by Wu et al. [276],
challenges remain across all methodologies, including limited generalization to unseen
environments, inefficiencies in real-time computation, and sim-to-real transfer hurdles.
New evaluation metrics are being refined to better quantify instruction following, but
further research is needed to overcome dataset biases and enable interactive, lifelong
learning in real-world settings.
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9.3.2 Social and Dynamic Navigation

While the aforementioned VLN approaches focused on static environments, founda-
tion models have also been applied to social navigation tasks in dynamic human en-
vironments [101], [268], [277], [278]. These methods emphasize continuous contextual
understanding, adaptation to human behaviors, and lifelong learning to facilitate robust
interactions.

A prominent paradigm in recent literature is the utilization of VLMs for robust se-
mantic understanding in dynamic human environments. For instance, Narasimhan et
al. propose the OLiVia-Nav framework [277], where a VLM continually assesses and
encodes social and environmental contexts to maintain a dynamic database of previ-
ous encounters. Through periodic internal updates of its visual embedding representa-
tions, OLiVia-Nav incrementally improves its own scene understanding. This lifelong
learning approach explicitly targets improved generalization to novel social scenarios,
reflecting the necessity of adaptability in real-world dynamic settings.

A similar emphasis on contextual reasoning is found in the CoNVOI approach by
Sathyamoorthy et al. [268]. Here, a VLM directly interprets context-based instructions to
generate trajectories around obstacles and humans without additional training or fine-
tuning. These semantically appropriate, zero-shot trajectories are then executed by a
dedicated traditional motion planner based on the Dynamic Window Approach.

Other works merge FMs with more traditional established controllers based on opti-
mization or DRL [101], [278]. Song et al. [278] propose the VLM-Social-Nav framework
that integrates real-time scene interpretation with optimization-based planning. Upon
detecting human presence, VLM-Social-Nav assesses the context through RGB input,
generating explicit social navigation commands consistent with a provided contextual
rule set. These commands are subsequently converted into a cost-based representa-
tion. Based on the cost representation, the optimization-based planner simultaneously
considers obstacle avoidance and goal-directed navigation. This hybrid formulation ef-
fectively combines semantic reasoning with classical optimization methods, though the
necessity of rapid inference still poses challenges to real-time applicability in highly dy-
namic scenarios.

A similar hybrid approach is represented by the SRLM framework of Wang et
al. [101]. It integrates LLMs and DRL to enable human-in-the-loop social robot naviga-
tion. Their approach converts natural language feedback into structured reward signals,
subsequently used to fine-tune a DRL policy. Importantly, SRLM dynamically combines
the DRL-derived navigation policy with a separate VLM-based action policy, achieving
both immediate contextual generalization from foundation models and the adaptability
provided by incremental policy updates.

The aforementioned approaches explicitly recognize the limitations of the pure zero-
shot paradigm for navigation in dynamic human environments and pair their VLMs
with reactive, more established motion controllers.

In summary, these approaches highlight a clear shift toward the integration of the
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zero-shot semantic reasoning of FMs into navigation approaches for dynamic human-
centered environments. However, common limitations include a high inference latency

and limited robustness in dynamic or complex settings.

9.4 Enhancing Human-Robot Interaction with FMs

Through their integration of natural language and multimodal reasoning, FMs offer
significant potential to enhance HRI. A recent survey by Shi et al. [279] points out how
LLMs in robotic systems enable more coherent, personalized, and emotionally aware
conversations, especially for vulnerable user groups. Additionally, VLMs promise un-
derstanding of affective and contextual human cues from multimodal data, addressing
one of the central challenges in HRI. This section provides an overview of recent notable
approaches that both integrate LLMs to interact with users [264], [280].

Barmann et al. [280] propose a framework that integrates LLMs into the high-level
control of a humanoid robot for dialog-based task execution and self-correcting behav-
ior. Human feedback is processed via an auxiliary LLM that rewrites interaction tran-
scripts, with these corrected examples stored in memory to improve future interactions
with the user. The system enables robots to incrementally learn from suboptimal hu-
man interactions, thereby improving HRI by aligning robotic responses and actions with
user expectations over time. Limitations the authors point out are the LLMs sensitiv-
ity to user prompt phrasing and the resulting possibility of misleadingly summarized
interactions examples stored in memory.

User expectations also play a central role for Kim et al., who investigate the design re-
quirements for integrating LLMs with robots through a comprehensive user study [264].
It was found that the LLMs” enhancement of the HRI depends on task context, with
higher user acceptance in learning and negotiation tasks, but reported communication
hurdles and increased social pressure in efficiency-focused tasks. Their main finding is
that advanced robot conversation skills raise user expectations for advanced non-verbal
communication skills, underscoring the importance of aligning verbal and embodied
behaviors. Currently, the conversation skills facilitated by LLMs significantly outper-
form the physical capabilities of robots, a significant pitfall in HRL

9.5 Personalizing Robot Behavior via Language Interfaces

This section reviews approaches that utilize LLMs to personalize robot behavior and
interactions based on inferred user preferences [28], [30], [99], [100], [199], [281].
9.5.1 Personalizing Robot Navigation and Manipulation

A major theme shared across several recent works is the integration of iterative and inter-
active user feedback loops into robot behavior personalization. Dai et al.’s ORION [99]
exemplifies this strategy by embedding an LLM into a continuous think-act-ask loop to
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iteratively refine robot navigation based on user inputs. A notable feature is the LLM’s
autonomous decision-making on when and how to query the user for task clarifica-
tion, which allows the system to balance initiative and responsiveness. However, the
work also highlights challenges in balancing task completion with navigation and inter-
action, as well as long-term memory retention. Similarly emphasizing iterative refine-
ment, Han et al.’s LLM-Personalize [28] leverages repeated human preference signals to
incrementally fine-tune long-horizon household task plans. Both approaches demon-
strate improvements in task alignment through interaction-driven refinement.

Complementing iterative personalization, other approaches bridge FM-based se-
mantic reasoning with classical control to enable real-time personalized behavior, con-
ceptually similar to the hybrid non-personalized approaches discussed in one of the
previous sections [101], [278]. Martinez-Baselga et al. [100] employ VLM-generated cost
functions that reflect user instructions to directly modulate a classical Model Predic-
tive Controller (MPC), effectively decoupling high-latency VLM inference from the low-
latency motion controller. In this framework, high-level natural language queries such
as “drive carefully” or “navigate as if you were in a hospital” are automatically trans-
lated into specific MPC navigation parameters for personalization.

Also hybrid by design, Hwang et al.’s modular MORL framework [30] translates nat-
ural language instructions into explicit numerical preference vectors, rapidly guiding
behavior adaptations of vision-based object-goal navigation without necessitating pol-
icy re-training. Their approach is related to our human-aware navigation MORL ap-
proach based on 2D lidar presented in Chapter 5. These vectors are generated from
demonstrations, comparative feedback, and verbal instructions. For demonstrations
and comparative feedback, an optimization routine identifies the most suitable pref-
erence vector, whereas verbal instructions are translated directly into reward weights
via an LLM. While the use of LLMs for generating numerical preference vectors is con-
ceptually attractive, the limited scope of their user study and absence of a systematic
analysis of the LLM preference translation process into preference vectors reduce the
interpretability and generalizability of their results.

Interpretable and user-centric personalization is another critical dimension promi-
nently featured in recent research. Wu et al.’s TidyBot [281] stands out by explicitly
utilizing LLM-generated interpretable rules derived from minimal user interactions to
manage household object rearrangement tasks. These reusable rules generalize user
preferences that originate from a handful of preference examples, outperforming base-
line methods with respect to preference in a N = 40-user study.

9.5.2 Personalizing Language Interaction and Dialogue

In parallel with behavioral personalization, recent works also explicitly address the per-
sonalization of robot dialogue and social interaction [282], [283]. Tang et al.’s [282] pro-
pose an LLM framework that integrates LLMs that enables robots to exhibit dynamic
personalities and adapt to human users on an emotional level. However, their findings
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seem preliminary due to the solely simulation-based validation; thus a study on a real
robot with real users is the logical next step. Concurrently, Li et al.’s LD-Agent [283]
highlights the benefits of maintaining long-term memory and dynamic persona model-
ing, enabling more coherent interactions across repeated encounters. Both approaches
highlight the importance of sustained emotional and contextual personalization, but
also stress the need for validation with real-world robots with a greater focus on user
studies.

9.5.3 Conclusion

Synthesizing findings on personalization, Zhang et al.’s recent survey [284] provides
a valuable overarching perspective, categorizing approaches by granularity (user-,
persona-, global-level) and pointing to methods such as retrieval-augmented genera-
tion (RAG), prompt engineering, fine-tuning, and RLHF. Their survey also identifies
major challenges, including the cold-start problem of user interactions, benchmarking
limitations, and the lack of unified datasets across personalization levels, highlighting
directions where further research is required.

To summarize, the presented approaches underscore the possibilities of FM-driven
robot personalization via user instructions or feedback for navigation, manipulation,
and dialogue interaction. They furthermore demonstrate zero-shot agent personaliza-
tion through world knowledge of FMs while reducing the necessity for extensive prefer-
ence data collection to a handful of natural language interactions. While the highlighted
results for robot personalization are promising, they are still in early stages. Future re-
search is required that involves users, subjective user-centric metrics, and real robotic
systems.

9.6 Explainable Robotics through FMs

Recent efforts at the intersection of HRI and LLMs have explored how natural language
interfaces can enhance the explainability of autonomous systems.

One commonality of all following approaches is to structure multimodal data into
coherent explanations using LLMs or VLMs [285], [286], [287].

Sotomi et al. [285] propose a multimodal explainability module that integrates LLMs,
VLMs, and Grad-CAM heatmaps to enable real-time, human-digestible verbalized and
visual explanations during autonomous robot navigation. In a N = 30-user study, the
authors find significantly improved social acceptance of the robot behavior among users
using their approach. A key bottleneck of their approach is the high latency of explana-
tion generation (~ 20s), also with regard to deployment in dynamic environments.

Wang et al. [286] propose RONAR, an LLM-based system that narrates the perceptual
experiences of a robot to users. The approach conveys robot intent and failure analysis
to users in narrative form, allowing users to better support robots to recover from fail-

ures. Their approach outperforms other state-of-the-art systems ina N = 24-user study,
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effectively improving robot transparency in human interactions.

Liu et al. propose REFLECT [287], a framework that leverages LLMs for failure ex-
planation and self-correction in the robot’s task execution. By distilling multisensory
robot data into the explanation, the approach corrects both planning and execution fail-
ures using progressive LLM prompting. The study does not involve human users, but
demonstrates how formally user-motivated explanations can also improve the perfor-
mance of robotic systems themselves. Limitations of the study lie in the static, simplistic
environments, falling short of operation in complex dynamic scenes.

Generally, behavior explanation increases the user-perceived transparency [73].
When explanations are furthermore personalized, as demonstrated by Verhagen et
al. [288], user trust towards the agent can be increased.

Based on the highlighted works, FMs are highly promising to convey a robot’s com-
plex internal state and perception to users in an intuitive manner. Not only does this
have positive effects on the user, but can also benefit the robot’s performance when FM-
based control is at work, a win-win situation.

9.7 Future Directions and Open Research Questions

To summarize the open challenges of FMs as highlighted by the research above, recur-
ring limitations include high inference latency, sensitivity to prompt phrasing, and the
risk of hallucinations. These issues raise concerns around robustness, reproducibility,
and ultimately safety when deploying FMs in real-world robotic systems. As a result,
there is a clear need for standardized benchmarks to evaluate and ensure the reliable in-
tegration of FMs into robotic applications. Kawaharazuka et al. [289] emphasize in their
survey that as tasks executed through language instructions become more prevalent,
quantitatively evaluating performance becomes increasingly difficult. They further note
that FMs still struggle with the fine-grained motion skills required for robotic behavior
in dynamic environments, motivating hybrid frameworks with established controllers.
Moreover, several sensing modalities, such as depth data, force feedback, and inertial
measurements, remain underexplored in FM-based approaches. On the one hand, col-
lecting high-quality data for these modalities poses a significant challenge, as they are
not as readily available online as the vision and language data typically used to train
FMs. On the other hand, this type of data has a large potential for robotics, particu-
larly in light of the currently observed performance on other training data domains. As
a result, FM-driven robots are still rarely deployed in real household or outdoor en-
vironments, and current evaluations often rely on simplified or toy problem settings.
However, this is likely to change in the coming years as ongoing research continues to
address these challenges. So with regard to FMs for HRI and robot personalization, new
frameworks should be validated in user studies to complement objective performance
metrics with subjective evaluations from the users’ perspective.
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The outlook section begins by building on the preceding discussion on foundation mod-
els and situates the approaches developed in this thesis within that broader context
in Section 10.1. Subsequently, Section 10.2 outlines potential research directions, mo-
tivated both by the limitations of current methods and the opportunities arising from
FM-based systems.

10.1 Comparison with Foundation Model-Based Approaches

So how do the approaches of this thesis compare against the novel FM architectures?

Unlike natural language feedback for FMs, the virtual reality demonstration and
feedback interfaces presented in Chapters 2, 3, and 7 offer direct, spatially grounded
preference expression. While verbalized feedback may be faster and more intuitive for
users to express, it is inherently descriptive and indirect, requiring interpretation by
the agent before behavioral adaptation can occur. For example, instructing a robot to
navigate around a lounge area via language involves specifying trajectory shapes and
obstacle distances, which can introduce ambiguity. In contrast, a demonstration in VR
provides precise spatially grounded motion guidance with minimal room for misinter-
pretation.

When we compare the DRL-based (personalized) navigation controllers (Chap-
ter2, 3,4, and 5) to the vision-language navigation (VLN) approaches above, a few differ-
ences stand out: Most prominently, we focus on local human-aware obstacle avoidance,
while most VLN approaches pursue goal-object navigation tasks in static environments.
Our approaches rely on 2D lidar, enabling accurate obstacle perception for the DRL pol-
icy, which is running with low latency. As the name suggests, VLN approaches mostly
navigate via RGB image perception at high latencies. This gives the RL-driven con-
trollers an advantage in dynamic human environments, e.g., for more reliable collision
avoidance.

The challenge of zero-shot behavior adaptation to changing user preferences is ad-
dressed by our MORL approach in Chapter 5. Specifically, we achieve continuous and
precise behavior control over the policy via a preference vector. In contrast, when re-
lying on linguistic interfaces to convey preferences to a navigation policy, the resulting
behavior alignment may be highly dependent on the FM’s interpretation of the feed-
back, giving the user less control to fine-tune the behavior.

Comparing our immersive XAl interface presented in Chapter 8 against the pre-
sented FM approaches for XAl we are not limited by the latencies of FMs for explana-
tion generation that other studies report. While FMs may be capable of responding to
XAl-related queries by users more generally, a specifically designed XAlI visualization
like ours may be of higher value to users in certain context, also from an educational
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perspective.

Now, the limitations of our approaches in context of FM architectures will be out-
lined. While personalized FMs can generalize user preferences to novel environments
and offer interpretable reasoning for such generalization, our learning frameworks,
specifically, the RL+BL pipelines from Chapters 2 and 3, and the RLHF-based alignment
approach in Chapter 7, distill preferences in a more abstract way. This abstraction during
learning complicates the interpretability of the learned behaviors and limits the trans-
parency of preference alignment. The advantage of generalization of FMs also benefits
the scalability of preferences, as these two properties are tightly connected. For instance,
a small number of interactions with the user are sufficient to internalize their preference
and generalize it to similar scenarios, effectively enabling user modeling from sparse
data. While the behavior adaptation in Chapter 5 is limited to the pre-defined prefer-
ence space via the objectives, FMs likely do not face similar limitations.

10.2 Future Directions

Based on the findings of this thesis, future research should address several directions
to improve personalization and, consequently, the user’s interaction experience with
robots. First, since high-quality user interactions, whether through demonstration, com-
parison, or language, are limited, effective user modeling from sparse verbal and non-
verbal interactions should be further investigated. Second, robots operating in long-
term human interaction settings should efficiently adapt to evolving user preferences,
potentially involving active user querying. Third, future work should explore how the
benefits of our approaches can be integrated with those of FMs for improved personal-
ization. For instance, given the latency limitations of FMs remain, hybrid systems that
combine the reasoning abilities of FMs with the low-latency control of conventional poli-
cies represent a promising direction, similar to [100]. Ultimately, from the end user’s
perspective, a unified system architecture capable of preference learning from different
interaction modalities, handling task instruction, and providing behavior explanation
is desirable. In this context, FMs hold promise as social mediators for intuitive, efficient,
and human-centered robot interaction through personalization.

VR interfaces have proven effective for collecting spatially grounded user preferences
in a safe environment, likely due to their spatial immersion and high visual fidelity. The
next logical step is the advancement to augmented reality (AR) interfaces, as AR tech-
nology becomes available to a growing user base (e.g., Apple Vision Pro [290], Meta
Orion Glasses concept [291]). AR technology can visually overlay robot internal states
such as map representation, explanations, and potentially also preference-related fea-
tures directly onto the user’s household environment, where interaction with the robot
takes place [292]. For instance, demonstration trajectories drawn at the user’s fingertip
into the real robot environment have an advantage, they are spatially grounded within
the correct environment. This further reduces the domain gap between demonstration
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and policy execution. Some works have already leveraged the AR capabilities of non-
wearable devices, such as smartphones and tablets, to collect robot navigation prefer-
ences [98], and to enable data collection in the absence of a physical robot [293].

Generally, AR technology also offers great potential for the efficient creation of better
training datasets for robot policies [294], [295], [296]. For example, a user can wear AR
glasses while naturally performing the task of interest. Simultaneously, the AR glasses
record first-person RGB-D video of the task execution and track the user’s hand move-
ments. For robots equipped with a head-mounted camera and two articulated manipu-
lators capable of mimicking human hand motions, this perspective helps to reduce the
disparity between human and robot viewpoints in training data.

This thesis advances user-driven robot personalization through controlled, spatially
grounded data collection, and real-time deployment. This introduces a level of con-
trol precision not yet achieved by current FM approaches. These contributions provide
a strong basis for future work that integrates foundation models and AR technology,
enabling adaptable yet precise preference-aligned robot control in real-world human

environments.
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11 Conclusion

11.1 Summary

This thesis comprises several approaches that share a common goal: Enabling
preference-reflecting, learning-based human-aware robot navigation. This common
goal is approached from different directions, reflecting different methodological chal-
lenges associated with achieving this goal. Our focus lies on how human preferences
about a navigating robot can be collected, how to distill these preferences into a
preference-reflecting robot policy, how this policy best observes its environment, and
finally how the navigation policy can remain adaptable to evolving user preferences
as well as how transparent decision-making can be ensured to enhance human-robot
interaction. To tackle these challenges, our approaches leverage, combine, and refine
various core methodologies such as virtual reality (VR), reinforcement learning (RL),
behavioral cloning (BC), inverse RL, RL from human feedback (RLHF), and explainable
Al (XAI). Throughout the projects, real-robot deployments demonstrate the robustness
of our work.

11.2 Key Findings by Research Question

11.2.1 RQ1: Efficient Preference Collection

How can human navigation preferences be efficiently collected and encoded into robot
learning systems? This question was addressed through the design and evaluation
of intuitive demonstration and feedback interfaces, with a focus on maximizing user-
friendliness and data efficiency. Chapter 2 introduced an immersive virtual reality (VR)
interface enabling non-expert users to demonstrate personalized navigation trajectories,
paired with a learning framework. Chapter 3 extended this setup to dynamic household
environments, leveraging depth vision for preference anchoring. Chapter 6 proposed
the EnQuery method for query generation in RLHF settings to improve the information
gain with limited interactions. Finally, Chapter 7 systematically compared preference
expression and user experience via VR versus 2D interfaces.

In summary, we found that drawing trajectories in VR in a spatially grounded man-
ner is an intuitive and comfortable way for non-expert users to express their prefer-
ences. When using our hybrid learning framework (RL+BC), few demonstrations suf-
fice to learn a personalized navigation controller that outperforms traditional methods
in perceived comfort, closeness, and preference reflection. The hybrid learning frame-
work also extends into dynamic environments, as quantified by a novel personaliza-
tion metric. When aligning preferences with an RLHF setup, our ensemble approach
EnQuery achieves higher preference reflection in low-query regimes. Regarding the in-
terface used for preference collection, users consistently favored the VR perspective over
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a 2D video interface. Also, there is disagreement between preferences expressed with
different interface modalities, making personalization results sensitive to the interface
choice.

11.2.2 RQ2: Preference vs. Task Balancing

How can navigation policies balance user-specific preferences with task completion ob-
jectives? This question was addressed through the implementation of different learn-
ing frameworks that balance preference reflection and task completion in a quantifiable
manner. Chapter 2 and 3 apply a demonstration-infused hybrid learning framework
(RL+BC) to the problem. Chapter 5 systematically extends a MORL framework to trade
off between preferences and other objectives in an adaptable manner.

In summary, we found that the RL+BC framework successfully internalizes user pref-
erences, does not lose track of the navigation task, and successfully trades off between
personalization and efficiency. It reflects user preferences wherever applicable and gen-
eralizes to other navigation scenarios in a goal-oriented manner. Our novel preference
reflection trajectory metric quantifies personalization, and when the robot deviates from
demonstrated patterns. Finally, the MORL approach to personalization allows for a fine-
grained trade-off between preference reflection and other navigation objectives, param-
eterized through a structured preference vector.

11.2.3 RQ3: Sensor Representations for Navigation

What sensor representations enable robust RL-based navigation in dynamic indoor en-
vironments populated by humans, also for preference reflection? To tackle this prob-
lem within the scope of our RL-based navigation frameworks, Chapter 3 systematically
employs a depth vision-based state representation in multiple variants. Chapter 4 intro-
duces a 2D lidar state representation for dynamic indoor environments with multiple
moving humans.

In summary, compression of the depth vision using a VAE enables preference anchor-
ing for navigation in dynamic indoor environments. Using a lidar sensor, our novel
TAGD state representation with spatiotemporal attention outperforms state-of-the-art
baselines and improves the generalization performance in human-populated dynamic

indoor environments.

11.2.4 RQ4: Adaptability and Transparency

How can personalized navigation policies remain adaptable to changing user prefer-
ences and provide transparent decision-making to users? This question targets the post-
training stage of policy deployment and has been tackled in a two-faceted way: The
MORL approach presented in Chapter 5 utilizes a dynamic preference vector to pro-
vide control over the policy behavior to adapt to changing user preferences. We found
that by systematically integrating demonstrations as one of the MORL objectives, the
approach enables fine-grained tuning of demonstration-reflection itself, an advantage
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over the aforementioned RL+BC framework. Users can effectively fine-tune the navi-
gation controller after deployment. Finally, Chapter 8 communicates policy reasoning
and robot perception to non-expert users through a VR interface. By grounding the XAI
insights visually in the semantics of the scenes, the users’ objective understanding and
subjective awareness of the robot’s decision-making significantly enhances.

11.3 Impact and Broader Implications

We believe that our findings contribute to the evolving field of user-centric robotics and
provide methodological and conceptual impulses for designing socially appropriate,
personalized robot. Our work demonstrates that it is feasible to move beyond static,
rule-based models of human-aware navigation toward data-driven, user-aligned poli-
cies that are responsive to individual preferences. By leveraging user-intuitive demon-
strations, preference-infused learning frameworks, and efficient sensor representations,
this thesis contributes novel strategies to address the challenge of robot personalization.
Our findings show that human-in-the-loop learning can be enjoyable and intuitive, even
for non-expert users. However, the user experience, the expressed preferences, and the
resulting policy alignments were found to vary with the interface modality, indicating
that interface choice and design are critical components of the personalization pipeline.
Finally, for learning-based policies, one of the primary challenges is the lack of trans-
parency in their decision-making processes. We bridge the gap between black-box poli-
cies and user interpretability with an immersive VR environment, enhancing non-expert
users’ understanding of the robot with the goal of meaningful long-term human-robot
interaction. Taken together, this thesis proposes and validates structured frameworks
for learning and deploying personalized robot navigation, moving us closer to seamless
human-robot coexistence in daily life.
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