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Summary

The fundamental question of how the brain encodes, processes, and retrieves stored informa-
tion remains a central, unresolved challenge in neuroscientific research. This question holds
great importance for a number of reasons, from the purest philosophical and scientific charm,
to the plethora of technological applications its answer could bring. Maybe one of the most
noteworthy of such applications concerns the medical field, where knowledge about behaviour
and neuronal functioning in toto, represents the prime scientific instrument towards treat-
ment. Understanding on a mechanistic, molecular level the specific role a certain biochemical
factor plays, is the first step towards understanding how to control this factor and ultimately,

how to correct for its malfunction.

Synaptic plasticity is regarded as one of the central mechanisms responsible for neuronal
information encoding and, consequently, the emergence of anything that can be considered
repeatable and investigable behaviour. The degree to which a presynaptic neuron can excite its
postsynaptic partner upon spike arrival determines the synapse’s “strength”. Synaptic strength
is governed by an elaborate interplay of biochemical components, and it exhibits a wide
range of dynamical changes both across different spines and over time — a possible signature
of memory formation. One of the most significant neuroscientific breakthroughs of the past
century was the recognition that alterations in the strength of a synapse are not predetermined

but instead depend critically on the activity patterns of the neurons it connects.

To understand the causes and implications of this mechanism, a number of experimental
and theoretical studies have been conducted in the last decades. This body of work encom-
passes a variety of approaches, from normative principles proposing information-theoretic
optimality frameworks, to ad-hoc mechanistic models focusing on specific plasticity features,
to increasingly sophisticated descriptive experiments. This research has provided remarkable
insights into the phenomenon, slowly but steadily leading to more robust connections between
theoretical principles and observations. Nevertheless, despite these advances, the precise
mechanisms underlying synaptic plasticity remain poorly understood and continue to repre-

sent one of the field’s most challenging questions.

A particularly challenging aspect concerns how exactly the spatio-temporal dynamics of
synaptic plasticity emerge from the thousands of molecular components that regulate it.
Resolving this mechanistic puzzle is essential, as it would ultimately pave the way to a consis-

tent theory bridging the microscopic, causally sound, biochemical level to the macroscopic



(potentially optimal?) emergent level, providing a crucial key to understand the “rules” gov-
erning behaviour, pathology, and, potentially, treatment. This work addresses this formidable
question by harnessing the capabilities of dynamical modeling and optimization techniques,
proposing and examining various mathematical frameworks that enable not only a precise
description of recent experimental observations but also allow for novel interpretations of

previous, apparently contradictory findings.
This thesis is organized as follows:

Chapter 1 provides a comprehensive overview of synaptic plasticity. Following a brief historical
introduction — necessary for understanding our current position within the neuroscientific
landscape — I will introduce the concept of synaptic plasticity, focusing on its strong compat-
ibility with a biological basis of memory formation and learning. Subsequently, I will present
the primary biochemical factors driving synaptic plasticity, with brief discussions of their
individual functions and mutual interactions. Finally, I will conclude the chapter with the

specific scientific questions that this thesis aims to answer.

In Chapter 2, I introduce my first original contribution, which consists of a stochastic descrip-
tive model of synaptic size statistics. Building upon experimental observations, a model
describing synaptic fluctuations is constructed from fundamental principles and developed
incrementally in close adherence with the existing literature. After validation, the model is
then utilized to identify possible “governing principles” of synaptic fluctuations, such as the
tendency for large spines to shrink and small spines to grow. The focus then shifts to examining
how synaptic stimulation affects the synaptic ensemble dynamics, utilizing an appropriately
extended version of the baseline model. Lastly, the model is used to put forward possible
optimality principles driving synaptic response to potentiation, focusing, in particular, on the

effects of synaptic simulation on the synaptic population size entropy.

In Chapter 3, I present my second and main original contribution, consisting of another
modeling endavour formulated within a different mathematical framework: reaction-diffusion
dynamics. Starting from the data kindly provided by our experimental collaborators (T.E.
Chater, Y. Goda), a reaction-diffusion model is introduced, describing synaptic dynamics in
relation to two main molecular processes: protein diffusion and phosphorylation. The result-
ing equations, which permit a remarkably intuitive closed-form solution, are subsequently
fitted to the experimental data using a novel optimization toolkit (PyPesto), in close collabo-
ration with the Hasenauer Group for data-driven inference (specifically E. Raimundez and D.

Pathirana). Synaptic plasticity is then analyzed through the statistical and biochemical lens,



yielding surprising insights into how initial synaptic statistics, and in particular their log-
normal distribution, emerge and influence the outcome of a plasticity experiment. The model’s
adherence to the underlying biochemistry also enables the formulation of a novel interpreta-
tion of FK506’s bidirectional effects on synaptic potentiation, an observation reported across

multiple experimental studies but not yet fully explained.

The thesis concludes with Chapter 4, which presents a comprehensive summary of results
alongside the primary research directions that could extend these findings in future investi-
gations, subdivided into broadly two main categories. From a theoretical standpoint, possible
generalizations of the proposed models are considered, leading, among other options, to a
“combined model” able to reconcile in a joint fashion the spontaneous, fast ensemble fluctu-
ations with the synapse-specific, slower plasticity dynamics induced by the stimulus. From
a methodological standpoint, alternative optimization choices are considered, focusing in
particular on Bayesian hierarchical optimization - one of the most natural frameworks for a
wide class of biological problems. A final remark ends the thesis, examining the possible appli-

cations of this work in terms of basic science and, crucially, clinical and therapeutic research.
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1. Introduction

1.1. The experimental foundations of neuroscience

“How the brain works” has been one of the central questions for humanity over millennia.
The answer to this question, representing not only a scientific endeavor but also a medical
and, maybe even more significantly, a religious one, has been dramatically shaped by shifts
in philosophical thought, technological innovation, and technical discovery. Ancient civiliza-
tions such as the Egyptians recognized the brain’s existence, as well as its central connection to
some of the symptoms arising from head trauma (e.g., aphasia and seizure, 17th century BC).
The connection between brain and higher-order behavioral functions, however, was hypothe-
sized only around the 5th century BC, with Alcmaeon of Croton and Hippocrates of Kos being
among the first to propose that the brain was involved in vision, sensation, and intelligence,
giving rise to the understanding that separated humans from animals. Remarkably, during
the Hellenistic period, Herophilus and Erasistratus of Alexandria (among others) engaged in
studies that involved dissecting human bodies, providing evidence for the primacy of the brain.
They affirmed the distinction between the cerebrum and the cerebellum, and identified the
ventricles and the dura mater. Their works are now mostly lost, and some of their discoveries

had to be rediscovered a millennium after their death.

In the following centuries, one of the main drivers of neuroscientific research was Islamic
medicine, led by brilliant pioneers such as Ibn Sina (latinized Avicenna). With striking moder-
nity, “mental health” became, for the first time, a subject of study, seeding neuroanatomical
investigation (e.g., the cerebellar vermis and the caudate nucleus) and most strikingly, struc-
tural hypotheses about the connection between brain and behaviour (mental deficits as a result
of frontal lobe alterations). In the European continent, this remarkable push towards discovery
arrived with the Scientific Revolution, as a direct consequence of the methodological advances
(generally referred to as the “Scientific Method”) pioneered by, among others, G. Galilei and F.
Bacon. The role of electricity in nerves was first observed in dissected frogs by Luigi Galvani,
Lucia Galeazzi Galvani, and Giovanni Aldini in the second half of the 18th century. In the same
period, dissection studies were able for the first time to link a specific nervous region to a
specific behavioural function, identifying the medulla oblongata as the respiratory center, as
well as characterizing the effects of different encephalic and medullary lesions on motoricity,
sensibility, and behavior. Other pioneering observations were conducted in the next century,

with an increasingly quantitative characterization of medical manifestations. This is the case
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1. Introduction

for the role of the frontal lobe in behavior (the case of Phineas Gage studied by J. Harlow in
1848), as well as the speech-related functions of the Broca and Wernicke’s motor and temporal
regions (P. Broca 1861, and C. Wernicke 1875). Ultimately, in 1909, K. Brodmann published a
full cytoarchitectural characterization of the human brain, defining the 52 Brodmann areas

still used in clinical and theoretical neuroscience to this day.

This characterization, representing the first instance of its kind, was one of the pinnacles of
the technical revolution that involved microscopy, the prime instrument guiding histological
research and that, with the introduction of controlled electrical lighting (in particular the
Kohler lighting) was for the first time able to achieve resolution compatible with the theoretical
limits of light microscopy. This technical advancement could be considered the prime instru-
mental factor allowing neuroscientific research to move from a macroscopic, behavioral and

correlational level to a microscopic, structural one.

The refinement of the microscope and the development of staining procedures (C. Golgi, S.
Ramoén y Cajal) led to the formation of the neuron doctrine, the hypothesis that the functional
unit of the brain is the neuron. Golgi and Ramén y Cajal shared the Nobel Prize in Physiology
or Medicine in 1906 for their extensive observations, descriptions, and categorizations of
neurons throughout the brain. The hallmark of the 20th century, however, can be considered
the exponential development of novel technological solutions. The invention of the electroen-
cephalogram (EEG) by Hans Berger in 1929 enabled scientists to measure the brain’s electrical
activity in real time. The development of imaging technologies, such as magnetic resonance
imaging (MRI) and positron emission tomography (PET), revolutionized the ability to study the
living brain’s structure and function. The groundbreaking introduction of electron microscopy
(attributed among others to the work of Reinhold Riidenberg, and, independently, Max Knoll
and Ernst Ruska, 1931) allowed for the first time the description and characterization of
subcellular structures, while immunostaining (first described by A. Coons in 1941) allowed
researchers to specifically label (i.e., “color”) these structures with unprecedented molecular
precision. A number of techniques sprouted from these methods, leveraging the fundamental
biological and, especially, biochemical discoveries of the same century, and combining them
into the methodological state of the art that can be observed today, where observation of the
specimen can be coupled with direct, pinpoint modification (optogenetics [1], CRISPR-Cas9

[2], among others).
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1.1. The experimental foundations of neuroscience

1.2. Synaptic plasticity: a possible implementation of memory and learning

The initial interest in synaptic plasticity emerged from a fundamental constraint in neuro-
science: the apparent stability of the number of total neurons throughout adult life. In 1894,
the Spanish neuroanatomist Santiago Ramon y Cajal confronted this puzzle and proposed a
revolutionary hypothesis. Given that the number of neurons in the brain remained relatively
constant after development, Cajal reasoned that memories must be formed through the
strengthening of existing neuronal connections rather than through the generation of new
neurons. This insight laid the groundwork for what would become one of the most influential

concepts in neuroscience.

Cajal’s farsighted hypothesis gained substantial theoretical support fifty years later when
Donald O. Hebb formalized this learning mechanism in his seminal work “The Organization of
Behavior” [3]. Hebb’s postulate provided a clear mechanistic framework for synaptic modifi-
cation: “When an axon of cell A is near enough to excite a cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic change takes place in one or both
cells such that A’s efficiency, as one of the cells firing B, is increased.” This principle, now
known as Hebb’s rule, suggested that activities that are causally related should be reinforced
through synaptic strengthening. The implications of Hebb’s postulate extended far beyond
simple pairwise connections. In recurrent neural networks, where neurons are extensively
interconnected, the consistent application of Hebbian learning could theoretically lead to the
emergence of stable cell assemblies. These assemblies would represent coherent patterns of
neural activity that could persist over time, potentially serving as the neural substrate for

memories and learned behaviors.

Despite the elegance of the Hebbian framework, experimental validation proved extraordinar-
ily challenging. The difficulties were multiple, and intrinsic to the nature of neural systems.
First, the experimental resolution required to confirm synaptic strengthening between specific
neurons demanded technological capabilities that were not available in the early-mid-20th
century. Second, the timescales over which neuronal connections needed to remain stable to
support long-term memory were extremely long, often corresponding to the entire lifespan of
an organism. Third, with trillions of neurons in complex brains, identifying the specific con-
nections responsible for particular memories seemed an insurmountable task. Beyond these
practical obstacles lay deeper theoretical issues concerning the very nature of synaptic con-
nections and information processing in spiking neurons. The spiking nature of neural activity

— which likely first emerged during the Ediacaran period in association with the evolution of
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1. Introduction

predatory behavior — presents itself computational and theoretical challenges. Unlike systems
with continuous responses, neurons generate discrete “spikes,” creating instantaneous and
transitory changes in intracellular voltage with specific spectral properties. This discontinuous
nature of neural signaling made it difficult to develop a rigorous definition of what “strength-

ening” a connection between two neurons means.

The technological advances achieved in the second half of the 20th century finally made it
possible to design experiments capable of observing signs of synaptic plasticity in simpler
organisms. A crucial breakthrough came from the studies of E. Kandel on Aplysia californica,
a giant sea slug that later became a model organism for learning and memory. Researchers
demonstrated that as the animal learned to withdraw its gills in response to noxious stimuli,
the strength of the synapses involved in this defensive behavior became stronger [4]. Synaptic
strength was operationally defined as the slope of the induced post-synaptic action potential,
providing a quantifiable measure of connection efficacy. Conversely, as the Aplysia became
desensitized to innocuous stimuli through repeated exposure, those same synapses became

weaker.

A pivotal moment in the field came in 1973 when Terje Lgmo and Timothy Bliss published
groundbreaking research revealing long-lasting changes in synaptic transmission [5,6]. Their
study showed that high-frequency electrical stimulation — termed tetanic bursting — of the
perforant path in the hippocampus of anesthetized rabbits led to sustained enhancement
in synaptic strength, as measured by recordings of field potentials. In the same issue of
The Journal of Physiology, Bliss and Tony Gardner - Medwin reported analogous findings
from recordings in freely behaving, chronically implanted rabbits, demonstrating that this
phenomenon was not an artifact of anesthesia. These seminal papers outlined a form of
synaptic potentiation that was both activity-dependent and remarkably persistent, lasting up
to three days after the plasticity-inducing stimulation protocol. The phenomenon was initially
termed “long-lasting potentiation,” but Douglas and Goddard soon coined the now-famous
appellation “long-term potentiation” (LTP), which became the standard terminology for this

fundamental form of synaptic plasticity [7].

In subsequent years, researchers not only further characterized LTP but also its counterpart:
(long term) synaptic depression, or LTD. In various experimental contexts, they observed that
dendritic spines could undergo depression both homosynaptically (at the stimulated spine
itself) and heterosynaptically (at synapses in the neighborhood of the stimulated one). This

led to the development of a general descriptive framework that broadly characterized poten-
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1.2. Synaptic plasticity: a possible implementation of memory and learning

tiation as the synaptic response to strong input — such as when a neuron represents the next
encoding step downstream from an active neuron — and depression as the response to weak
input or, in the heterosynaptic case, to the echo of input received from a neighboring active
synapse. The apparent property of heterosynaptic depression to conserve some form of “total”
synaptic weight, or “mass”, sparked investigations into “homeostatic plasticity”. This concept
proposed that a general activity invariance principle might prompt neurons to preserve their
global activity levels by coupling homosynaptic potentiation with heterosynaptic depression,
potentially maintaining the network stability while allowing for selective strengthening of

specific connections.

The confirmation of synaptic plasticity as a strong biological correlate of behavioral learning
provided a candidate mechanism for understanding how memories are stored in neural net-
works. However, this framing revealed the inherent complexity of the question itself, as the
very definition of “memory” required careful consideration. If memory is operationally defined
as an organism’s ability to consistently reproduce an investigable behavior, then the “how” of
memory storage becomes closely intertwined with the “what” a memory is. From a reductionist
perspective, a neuronal system can be conceptualized as a deterministic recurrent network—
essentially a graph—with at most a certain degree of uncertainty (noise) in the activity of its
nodes. Under this framework, a specific configuration of synaptic weights uniquely defines the
average activity landscape and, consequently, the observed behavior in response to particular
inputs. This raises a fundamental question: what is the fundamental difference between a

“random” weight configuration from one that encodes a specific memory?

The condition of behavioral reproducibility provides one answer to this question. A weight
configuration pertaining to an encoded memory must reliably produce the same output given
the same input. Formally, this requirement can be understood as the necessity for the weight
configuration to support attractors in the network’s configuration space. If these attractors
— rather than specific solutions — can be mapped to recognizable behaviors, they could be
experimentally interpreted as memories. This minimal, arguably Occamian definition has
generated an impressive corpus of work in recent decades, in line with the computational
revolution of the 21st century. Researchers have demonstrated how attractor network dynamics
in various settings can be recognized in neuronal recordings, laying a potential foundation for

a theoretical understanding of biological learning and information processing.

The extreme simplification that provides the generality and power of the attractor network

approach also constitutes its main limitation. After understanding the mathematical structure
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1. Introduction

that the biological brain hypothetically implements, researchers are confronted with another
“how”: how does the unfathomably complex network of biological and biochemical events
taking place in each neuron — unfolding over multiple spatial and temporal scales — lead
to mean behavior compatible with abstract network dynamics? If synaptic weights represent
the “how” at the network level, then the molecular factors and their interactions driving
synaptic plasticity constitute the “how” at the level immediately below. This multi-scale
nature of neural function — from molecules to networks to behavior — constitutes one of the
most significant challenges in contemporary neuroscience, requiring integration across vastly
different levels of biological organization to achieve a complete understanding of memory

formation and storage.

1.3. Molecular basis of synaptic plasticity

To understand the molecular basis of synaptic plasticity, it is good to begin with the definition
of synaptic strength: the slope of the excitatory post-synaptic potential (EPSP) measured at the
time of pre-synaptic spike arrival. Changing synaptic strength, or equivalently the weight of
the synapse, involves modifying the amount of ionic current that enters the post-synaptic side
of the neuronal synapse following neurotransmitter release from the pre-synaptic terminal

upon arrival of an action potential.

In the following discussion, I will specifically focus on excitatory synapses, where the released
neurotransmitter induces the influx of cationic current, thereby increasing and exciting
the post-synaptic potential. These synapses are predominantly glutamatergic, meaning that
glutamate serves as the primary neurotransmitter released from the presynaptic terminal.
Once glutamate is released into the synaptic cleft, it rapidly diffuses and binds to glutamate
receptors, a family of receptors located on the postsynaptic cellular membrane. In particular,
two elements of this family, each possessing distinct kinetic properties, play a remarkably

important role as plasticity drivers.

AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors (AMPARs) repre-
sent ionotropic receptors responsible for fast excitatory synaptic transmission in the central
nervous system. These receptors form tetrameric complexes composed of various combina-
tions of four subunits—GluAl, GluA2, GluA3, and GluA4—which collectively influence their

ion selectivity and kinetic properties. When glutamate binds to AMPARS, they rapidly open to
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1.3. Molecular basis of synaptic plasticity

permit the entry of sodium (Na*) ions, and in certain configurations calcium (Ca2*) ions, into

the postsynaptic neuron, resulting in fast signal transmission.

NMDA (N-methyl-D-aspartate) receptors (NMDARs) constitute another class of ionotropic
glutamate receptors, playing a crucial role in excitatory neurotransmission within the central
nervous system. Structurally, these receptors are large macromolecular complexes formed
from various combinations of three types of subunits: GluN1, GluN2 (A-D), and GluN3 (A-
B). The precise subunit composition determines the receptor’s kinetic properties and impact
on synaptic plasticity. NMDA receptors are distinguished from AMPARs by their unique
activation requirements: both glutamate and either glycine or D-serine must bind for the
channel to open. Additionally, their ion channel is blocked by magnesium ions at resting
membrane potential, with this block only relieved through sufficient depolarization. This dual
requirement makes NMDARs effective “coincidence detectors,” as they require simultaneous
presynaptic glutamate release and postsynaptic depolarization for activation. Once opened,
NMDA receptors conduct calcium (Ca?*), sodium (Na*), and potassium (K*) ions. The high
permeability to Ca?* is particularly significant, as calcium influx through NMDARSs triggers
intracellular signaling cascades that ultimately mediate synaptic plasticity, both potentiating

and depressing.

The opening of these channels allows cationic current influx, generating an EPSP that, if
capable of traversing the dendrite and reaching the soma, can induce action potential gener-
ation in the post-synaptic neuron, effectively relaying the input to downstream portions of
the neuronal circuit. The temporal profile of the synaptic EPSP depends on the quantity of
(glutamatergic) receptors present in the post-synaptic terminal, more specifically in the post-
synaptic density (PSD). To modify synaptic weight, therefore, one primary mechanism involves
changing the number of glutamatergic receptors, particularly AMPA receptors, exposed on
the membrane. While the relationship between receptor number and synaptic strength is
not entirely bijective — additional factors, for example, include the exposed AMPAR subunit
composition or their fraction included in PSD nanodomains — this relationship holds true to

a reasonable degree of approximation.

Understanding how synaptic weight changes, and therefore how synaptic plasticity operates,
requires comprehension of the processes that drive receptor integration and removal from
the post-synaptic membrane. As is common in biological systems, the answer to this question
is complex, involving hundreds of processes that shape the final outcome across multiple

timescales. However, two processes can be considered the main drivers of synaptic change.
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1. Introduction

Protein synthesis is the first of these processes, producing new receptor copies from mRNAs.
This can occur either in the neuronal cell body, with receptors subsequently migrating to
spines of interest through diffusion within the dendritic volume or along its surface, or locally
within the spines themselves. Increasing the pool of receptors available for exocytosis and
exposure on the synaptic surface translates to an increase in effectively exposed receptors, as
their number depends on the dynamic equilibrium between the exocytosis and endocytosis
rates. This relationship implies that when a general increase in receptor resources occurs
throughout the entire neuron, and these resources can diffuse and enter all available spines
in an unbiased manner, an overall increase in synaptic weight is observed—a process some-
times referred to as multiplicative potentiation. Conversely, if the total amount of resources
decreases, a proportional decrease in synaptic strength should be observed throughout the
entire neuron. Importantly, protein translation is not a rapid process and is classically associ-
ated with synaptic changes unfolding over hours, primarily linked to long-term and structural

plasticity.

Protein phosphorylation, and its inverse, dephosphorylation, represent the second major
mechanism of synaptic weight change. Within dendritic spines, a rich molecular network
regulates the phosphorylation of various plasticity-related factors, particularly glutamatergic
receptors and protein translation mediators. Unlike protein translation, phosphorylation acts
on much shorter timescales, typically minutes, with increased phosphorylation generally
associated with synaptic potentiation promotion through mechanisms such as increased
externalization of AMPA receptors or enhanced polymerization of the scaffolding protein beta-
actin, leading to increased synaptic size. Conversely, dephosphorylation is associated with

synaptic depression.

The phosphorylation biochemical network implemented in each spine consists of dozens of
different molecular types, each modulated by hundreds of targeting proteins. However, two
enzymes have been extensively studied and are traditionally considered the central drivers
of this process, potentially representing the core of the bow-tie architecture regulating fast

synaptic plasticity.

Calcium/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional serine/thre-
onine kinase highly concentrated in excitatory synapses throughout the brain. CaMKII is
uniquely positioned to regulate structural and functional adaptations at synapses. Upon
synaptic activity, calcium influx through NMDA receptors activates CaMKII via binding to

calmodulin, followed by autophosphorylation that can sustain CaMKII activity even after

20



1.3. Molecular basis of synaptic plasticity

calcium levels diminish. CaMKII directly modulates synaptic machinery by phosphorylating
key targets such as AMPA receptor subunits and scaffolding proteins, promoting enhanced
AMPA receptor conductance and increased insertion into the postsynaptic membrane. This
process strengthens synaptic connections and transforms silent synapses into active ones.
Interestingly, it has been reported that CaMKII is also involved in long-term depression (LTD),
mediating activity-dependent synaptic weakening in cerebellar Purkinje cells by altering its
substrate specificity in response to different signaling conditions. Different CaMKII isoforms
(o, B, 8, y) and their subunit composition further contribute to the precision and diversity
of synaptic plasticity modulation. Notably, the o and B isoforms have distinct affinities for

calmodulin and actin, allowing fine regulation of synaptic strength and spine morphology.

Calcineurin (CaN), also known as protein phosphatase 2B, is a calcium/calmodulin-dependent
serine/threonine phosphatase that acts as a negative regulator, counteracting kinase activity
to modulate synaptic efficacy by dephosphorylating synaptic proteins such as glutamate
receptors and ion channels. Under normal conditions, active calcineurin reduces synaptic
strength by promoting removal of AMPA receptors. Calcineurin is implicated in both Hebbian
plasticity mechanisms, such as long-term depression (LTD), and in the modulation of ion
channel phosphorylation states that govern synaptic transmission and neuronal excitability.
Moreover, calcineurin acts as a critical Ca2*-sensor, linking postsynaptic calcium dynamics to
pathways such as retinoic acid-dependent signaling that further mediate synaptic homeostatic

regulation.

These two enzymes act in opposing ways: CaMKII promotes synaptic potentiation while
calcineurin hinders it and promotes depression. To understand how synaptic activity links to
synaptic change, it is necessary to comprehend how synaptic activity connects to these two
molecular players. Following release into the synaptic cleft, glutamate binds to both AMPA
and NMDA receptors. AMPA receptors are primarily permeable to sodium ions, whose influx
induces EPSP formation. NMDA receptors, however, are primarily permeable to calcium ions,
whose influx impacts post-synaptic potential but is mainly responsible for initiating the

calcium cascade.

One principal branch of this cascade begins with the second messenger calmodulin (CAL-
cium-MODulated proteIN, CaM), a multifunctional intermediate calcium-binding messenger
protein. After binding calcium, CaM undergoes activation through conformational change
and proceeds to activate downstream effector molecules, including CaN and CaMKII. This

activation occurs through reversible, non-covalent binding and, most importantly, with active
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competition between these two enzymes for CaM. The final phosphorylation/dephosphoryla-
tion regime depends on the amount of available calmodulin as well as the different binding
affinities. It is strongly suspected that the higher affinity of calcineurin for CaM, coupled
with the higher synaptic abundance of CaMKII, leads to the frequency-dependent plasticity
phenomenon. Indeed, experimental observations have revealed that low-frequency activation
of the post-synaptic terminal, with consequently lesser calcium influx and CaM activation,
leads to synaptic depression, while high activity frequency produces the opposite effect. This
result can be explained, at least approximately, by an ordered activation of CaN and CaMKII,
where calcineurin activates first at low CaM concentrations, while CaMKII activates later but

in higher amounts, shifting plasticity toward potentiation.

Understanding how this elementary principle relates to the plethora of other plasticity drivers,
as well as to the ability of all these molecular players to diffuse outside stimulated spines into
neighboring dendritic and synaptic regions, represents a significant challenge. The complex
interplay between these mechanisms across multiple spatial and temporal scales continues
to be an active area of investigation, requiring sophisticated experimental and theoretical
approaches to fully elucidate the molecular basis of synaptic plasticity and its role in learning

and memory formation.

1.4. Research goal

Learning and memory formation depend fundamentally on synaptic plasticity. At the biolog-
ical level, synaptic plasticity emerges from complex molecular dynamics that operate across
multiple spatial and temporal scales. While contemporary experimental approaches provide
unprecedented insights into the remarkable intricacy of molecular factors within neuronal
dendrites and axons, our theoretical understanding of the complete activity landscape of these

factors, as well as their relation to synaptic stimulation, remains incomplete.

Techniques that can capture the spatial and temporal dynamics of molecular movement are
typically limited to examining only a small number of molecules simultaneously. Conversely,
high-throughput approaches like omics technologies, while capable of analyzing thousands of
molecular species, provide merely static snapshots of neuronal states at discrete time points,
lacking the temporal resolution necessary to understand dynamic processes. The investigator
is, therefore, constrained to trade off the breadth of the observed species for the spatio-

temporal precision of their observations, accepting in both cases to work with only a partially
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1.4. Research goal

observable ground truth. This lack of observability is particularly critical within neuronal
compartments like dendrites, where the behavior of numerous molecular species becomes
interconnected across spatial scales spanning from tens to hundreds of microns. When an
individual molecular component responds to stimulation, it frequently initiates elaborate
downstream signaling networks that produce a multitude of effects throughout the neuron.
Moreover, molecular responses to identical stimuli exhibit significant context dependency,

influenced by both the neuron’s present state and its previous activation history.

Experimental neuroscience faces an additional major obstacle in disentangling the relative
contributions of diverse mechanisms that govern protein dynamics. Although researchers
can examine specific processes such as local protein synthesis with considerable precision,
separating and quantifying the influences of concurrent mechanisms, including diffusion,
degradation, active transport, and vesicular trafficking events such as endocytosis and exocy-
tosis, remains a formidable challenge. These interconnected and overlapping processes work
together to regulate synaptic plasticity, making it difficult to attribute observed changes to

particular underlying mechanisms.

The role of a consistent theory is exactly to address these challenges. Numerous models of

synaptic plasticity have been developed across a multitude of spatial and temporal scales,

shedding light and reuniting disparate, apparently contradictory experimental observations

under a single common theoretical framework. In this work, we follow this approach, proposing

two mathematical models expressed in two different (although compatible) mathematical

languages. Both these works address, from different perspectives, three very open questions

concerning synaptic plasticity and, more in general, synaptic dynamics:

1. what are the statistical properties of a synaptic ensemble, and what are these statistical
properties driven by;

2. how do these basal statistical properties drive the synaptic response to a stimulus, some-
times even switching the response from potentiation to depression;

3. what are the spatio-temporal dynamics of a synapto-dendritic system as a whole, and how
can these predict homo- and heterosynaptic plasticity in a joint, multi-spine plasticity

framework.
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1.5. Contribution statement

Research is a fundamentally collective endeavor, and this is particularly evident in computa-
tional neuroscience, where discoveries emerge through constant interaction between scien-
tists from diverse fields, each contributing their unique perspective to the question under
consideration. Like an architectural endeavor, the final result does not have a single true author
but represents the collective achievement of individuals who, by sharing their respective

expertise, enable the construction of knowledge that hopefully will belong openly to everyone.

This principle applies equally to the present thesis. Although I have carried out the theoretical
and computational work presented here, I have never worked in isolation. To better clarify
my specific contribution to each project while rightfully acknowledging the efforts of my col-
leagues, I provided detailed attribution statements in gray boxes at the beginning of Chapters
2 and 3, clearly delineating the role each collaborator has played in the piece of work being

reported.
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2. Stochastic modeling of synaptic fluctuations

This chapter is adapted from the published work (star indicates shared first authorship):

M.F. Eggl* T.E. Chater*, J. Petkovic* Y. Goda, & T. Tchumatchenko, (2023). Linking sponta-
neous and stimulated spine dynamics. Communications biology, 6(1), 930. https://doi.org/

10.1038/s42003-023-05303-1.

The authors’ contributions are as follows: M.F.E. and ].P. analyzed the dataset and devel-
oped the model; T.C. conducted the experiments; M.F.E.,].P., T.C., Y.G., and T.T. prepared

the manuscript; M.F.E. and T.T. conceived the study. Y.G. and T.T. supervised the project.

Specifically, my contributions include the data analysis of the spontaneous synaptic dy-
namics, the design and validation of the proposed models on experimental and simulated

synaptic data, the analysis of the synaptic change autocorrelation function, as well as the

final framing and interpretation of the obtained results.

2.1. State of the art and open challenges

Learning and memory are believed to depend on modifications in synaptic strength, involving
the enhancement and weakening of particular synaptic connections [8-13]. Multiple inves-
tigations have examined the molecular mechanisms underlying synaptic plasticity across
minutes [14] as well as over periods spanning hours to days [6,15,16]. Although synaptic plas-
ticity typically targets particular synaptic locations, synapses can also demonstrate dynamic
behavior without directed plasticity, making it difficult to distinguish spontaneous changes
from activity-induced modifications [17]. Synapses experience substantial size variations
across hours and days, likely resulting from spontaneous molecular dynamics at synaptic sites

[18-24].

Although individual synapses may undergo considerable fluctuations across time, average
characteristics of the population demonstrate remarkable temporal stability [19,21,25-30].
Numerous experimentally observed synaptic size distributions display asymmetry and possess
an extended right tail, which has been proposed to relate to optimality regarding information
storage capacity, neuronal firing patterns, and long-range information transmission [31,32].
Although these distributions are typically assumed to result from the combined effects of spine

shrinkage and growth [29,33], the relationship between activity-independent and activity-
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dependent elements remains incompletely understood [30]. Furthermore, modeling studies
frequently rely on one key assumption: synapses maintain their characteristics indefinitely
unless actively stimulated to change. This assumption is critical since otherwise, spontaneous
changes would result in alterations to network function or the loss of newly learned abilities.
Nevertheless, the reality that synaptic modifications are governed by inherently noisy molec-
ular processes (such as lateral diffusion, active trafficking, endocytosis, and exocytosis [23,34])
suggests that spontaneous changes are unavoidable. Therefore, investigating how fundamen-
tal properties of synapse populations are preserved (including probability of release, total
receptor conductance, size, morphology, ultrastructure, and composition) across extended

timescales represents another essential component of memory research.

This ability of synapses to maintain their characteristics is termed synaptic tenacity in the sci-
entific literature [17,35]. Models connecting these observations to individual spine dynamics
through different methodologies have been developed [18,21,28,36,37]. In the present chapter,
we introduce a model capable of reproducing both LTP-induced spine modifications and activ-
ity-independent spine fluctuations using a unified framework. It is proposed that LTP affects
smaller spines more significantly due to their greater capacity for growth [38], whereas larger
spines may represent stable long-term memory storage [39,40]. In the activity-independent
context, research has demonstrated that larger spines exhibit greater variability [18,21,30].
Our model, drawing inspiration from the Kesten process and multiplicative dynamics from
prior research, enabled us to replicate experimental findings related to spontaneous spine
fluctuations while accounting for their log-normal characteristics. We were also able to apply
our model to describe post-LTP spine behavior and document a notable increase in entropy
(representing a measure of dendritic information storage capacity). Our findings regarding
spontaneous spine fluctuations align with previously documented phenomena, including large
spine variance, stable population distributions, and oscillatory spine behavior resulting from
negative correlations between timesteps [18,19,37], and can clarify how LTP signals influence

spontaneous spine distributions.

We propose that a fundamental process generating spontaneous spine distributions (activity-
independent spine plasticity) is altered by plasticity induction, allowing both spontaneous and
induced spine distributions to be characterized using the same model under different model
conditions. Consequently, before examining stimulation effects, we sought to identify the

model mechanisms required to capture activity-independent, spontaneous spine fluctuations.
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2.2. Preliminary experimental observations

We started by turning our attention to the dataset kindly shared by our experimental collabora-
tors, who conducted confocal imaging of spines on apical oblique dendrites of GFP-expressing
CA1 pyramidal neurons in cultured hippocampal organotypic slices. In one experimental
setup, quasi-simultaneous potentiation of a subset of spines was performed through glutamate
uncaging, in order to induce structural LTP (sLTP). In a separate independent experimental set,
the caged glutamate molecule was excluded from the bath, preventing spines from undergoing
SsLTP following laser illumination. This sham stimulation dataset served as our activity-
independent group. For both conditions, across 55 minutes (15 minutes pre- and 40 minutes
post-stimulation), spine sizes are recorded at eight time points (at -15, -10, -5, 2, 10, 20,
30, 40 minutes, where negative values indicate pre-stimulation) to examine spine dynamics.
This dataset includes three baseline measurements, followed by glutamate uncaging or sham-
uncaging, then five additional time points. This approach enabled us to directly observe LTP
induction effects on spine populations and incorporate how newly potentiated synapses and

their unstimulated neighbors develop within a unified model.

b
Growth Shrinkage
.“ — —

Figure 2.1: Example image from the utilized experimental dataset. a a GFP-expressing CA1 neuron

whose spine dynamics we analyze and model. b spontaneous dynamics at the single spine level. The

spine (marked by a white rectangle in a) exhibits both growth and shrinkage in the observed time frame.

We assessed synaptic strength at each time point by measuring spine head size [38,41,42] since
numerous synaptic parameters correlate with head volume [43,44]. We present an example
image, including semi-automatically generated ROIs used for spine head size measurement
in Figure 2.1. We have marked a synapse with a white rectangle in and illustrated its varying
sizes at different time points (Figure 2.1 b) to highlight the variable dynamics spines experi-
ence. These recordings are conducted in an imaging solution containing tetrodotoxin (TTX),
picrotoxin, and with nominally 0 mM Mg?*. Under these conditions, without neuronal spiking
and experimentally imposed stimulations, spines continuously fluctuate spontaneously in size

across time.
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2. Stochastic modeling of synaptic fluctuations

Despite this variability, the spine size distribution (Figure 2.2 a) remains remarkably stable
over time. Its shape is right-skewed and displays an extended right tail, consistent with findings
reported previously across various experimental studies [21,30]. Importantly, we observed
that the spine population mean is also remarkably stable, contrasting with individual spine
dynamics (see inset of Figure 2.2 a). We note that spine size change distributions (Figure 2.2
¢) demonstrate Gaussian behavior with no significant differences between time points (Kol-
mogorov-Smirnov (KS) test not significant except for the change from +10 minutes to +20

minutes, which is indicated by an x).

a b
3 e.g. Spines _
--4-- Pop. mean Mean: -0.000744
STD: 0.0738
= s
: :
~ Timepoints
0.5 1.0 1.5 —0.50 —0.25 0.00 ().259 0.50

Spine size (pm?) Spine size change (pm?)

Figure 2.2: Temporal stability of synaptic population statistics. a The spine sizes follow a tempo-
rally stable right-skewed distribution with a long tail. Each gray line refers to a different snapshot
distribution, which shows significant overlap. Inset: Temporal evolution of 3 randomly selected spines
(gray) and population mean (red). b The collection of all spine changes across all time points follows a
zero mean Gaussian distribution and a standard deviation o ~ 0.07 um?. ¢ Collective distributions of the
spine size changes from time point to time point follow a Gaussian distribution. The black lines denote
the corresponding Gaussian fits. The « denotes the single distribution that is significantly different (p <
0.05 when tested with KS-test).

We can also combine all these changes into a single distribution and calculate the sample
mean, u, and sample standard deviation, o. The resulting distribution and sample statistics
are shown in Figure 2.2 b. Spine size changes are consistently negatively correlated between
adjacent time steps (see darker red colors in Figure 2.3 a). This effect occurs on the scale of
tens of minutes in our data, which is considerably shorter than the day-long spine correlations
(which also have smaller values) documented by previous studies [18,36]. We note that this
correlation also continues throughout our experiments, provided the timesteps directly follow
each other, e.g., computing the correlation of timestep 4 - timestep 2 and timestep 6 - timestep

4.. Finally, spines of different sizes display distinct spine change distributions (Figure 2.3 c,
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2.2. Preliminary experimental observations

KS-test performed between samples yielded p values all under 0.05), which are all well-char-

acterized by log-normal distributions (black lines).
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Figure 2.3: Temporal features of synaptic fluctuation process. a Spine sizes display correlations
across time, whereby the neighboring time points are negatively correlated (negative off-diagonal
values). b Correlation of two time points. ¢ Evaluating spine size changes as a function of the spine size
across time points shows that small spines exhibit a narrow distribution of changes, while larger spines

show larger variability. Black lines represent the corresponding log-normal fits of the data.

These experimentally observed findings in our data lead us to the following question: given
individual spine dynamics (oscillatory, small vs large), how is the steady size distribution
maintained? We address this question by introducing an abstract stochastic model that
incorporates the minimum number of parameters to preserve tractability while capturing the
following key characteristics of our experimental data:

1. the temporal spine dynamics must remain stable around the distribution observed in the
dataset (Figure 2.2 a). As a result, the distribution mean must remain stable through time
(Figure 2.2 a, inset);

2. if we begin with another distribution, e.g., a uniform or delta distribution, the model should
return to the original stable distribution. This assumption does not emerge directly from
the observed data but rather from the fact that, as neurons develop and change, the initial
spines could start small and still reach the distribution of (Figure 2.2 a), which is stable over
the timescales we consider (approximately 10 minutes). Therefore, to maintain biological
realism, we will incorporate this feature;

3. the global dynamics of spine changes and their distribution from one time point to the next
should follow a Gaussian distribution, (Figure 2.2 c);

4. time points directly following each other should be negatively correlated with one another

(Figure 2.3 b), suggesting an oscillatory dynamic component.
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2. Stochastic modeling of synaptic fluctuations

2.3. Designing the model

Before proceeding with the modeling, we introduce some helpful notation. Throughout this

manuscript, we used the absolute change in spine areas, which is defined as follows:

AV, =V, -V, (2.1)

)

To compare distributions against each other, the populations were taken (in the case where
these samples were very large, randomly subsampled), and a Kolmogorov-Smirnov test was
performed. Single asterisks indicate p < 0.05. Fits of probability distribution functions were
performed using SciPy. Correlations report the Pearson linear correlation coefficients. Unless
reported otherwise, error bars in line plots refer to the standard error and in box-and-whisker

plots refer to the inter-quartile range.

2.3.1. Bounded Wiener, and Ornstein-Uhlenbeck processes

We begin by examining the Gaussian distribution of the experimentally observed spine
changes in Figure 2.2. Therefore, a purely Gaussian model (Wiener process) for the spine

changes appears as a natural initial choice. This model has the form:
AV, = (2.2)

where 1, ~ N (u,0) and AV is the size change between time points ¢ and i — 1. While this
model is straightforward and captures the experimentally observed statistics of spine changes,
it displays an inherent incompatibility with other experimental results. Since a Gaussian distri-
bution is naturally unbounded, this model allows infinitely large (negative and positive) spine
size values. Historically, the absence of bounds in a Gaussian distribution has been addressed
through the introduction of bounding walls W;, W, (e.g., in [18]): at each time step, the value
V.1 is reset to be within the range [}, W], where W, < W,. This can be accomplished, for
example, by using either a bounce-back mechanism (i.e., a change in the opposite direction)
or imposing no change, i.e., V;,; = V;. To examine whether the introduction of walls can allow
us to proceed with the Gaussian model, we implemented two walls (W, and W,.) which we set

to equal the fifth percentile and the largest experimentally observed spine size, respectively.
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Figure 2.4: Statistical properties of the bounded Brownian process (2.2) a Synaptic size probability
distribution. Starting from the (experimentally observed) initial condition (red), the system evolves
(gray lines), arriving at the last simulated state (blue). b The ensemble mean of the process (blue)
does not reach stationarity, in disagreement with the experimental observation (red). ¢ Correlation of

subsequent size changes, considerably smaller than the experimental observation.

The model simulations resulting from (2.2) are shown in Figure 2.4, where the dashed lines
represent the walls. Despite good agreement with the collective spine distribution, three

conceptual issues eliminate this model:

1. the left wall enforces an accumulation of smaller sizes that leads to the desired asymmetry,
but also results in a complete drop-off in spines smaller than this size (Figure 2.4 a);

2. spines are free to grow until they reach the right wall value, causing an overall increase
in the population mean and a biologically implausible growth at the right tail of the size
distribution (Figure 2.4 a,b).

3. the negative correlation between subsequent size changes is lost due to the memory-less

additive Gaussian noise (Figure 2.4 c).

Therefore, we will modify our model further to include a negative temporal correlation and
achieve a biologically plausible spine size distribution. To this end, we will replace the purely
diffusive process with an Ornstein-Uhlenbeck process. This approach was previously also used
in [21] to model activity-independent plasticity in a framework with multiplicative noise. Here

we will be applying it in an additive manner:
AV =—0(V,—p) +m,; (2.3)

where 6, 1 are the drift terms and 7, is as above. We observe that this process, characterized
by the deterministic drift toward the long-term average u, can reproduce the experimental
mean-reverting behavior shown in Figure 2.3 if 4 is large enough. However, if we choose 6 to
be too large, all the spine sizes will eventually stabilize in a narrow neighborhood of u, which

is inconsistent with the experimental observation that even after hours and days, there was
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2. Stochastic modeling of synaptic fluctuations

a stable and diverse set of different spine sizes [18,23]. Adopting a set of different values of
constant p for the different spines while maintaining a high value of 6 allows the recovery of
this phenomenon, but inevitably locks the spines into their stable size and prevents them from

changing from one size to the other.

2.3.2. Negative momentum and non-Markovianity

To avoid these pitfalls, we introduce a drift x that is (i) unique to each spine and (ii) time-
dependent. Thus we avoid both the global stable size as well as the local stable size. The
simplest implementation of this principle is the introduction of a “negative-momentum” term,

obtained by setting u = V,_;:
AV =—0(V,—V_) +mn, (2.4)

This non-Markovian process contains a bounce-back mechanism that induces the spines that
have grown in the previous step to have a higher probability of shrinking in the next one.
Importantly, this effect vanishes at longer timescales. We implement this model by setting
f to achieve the experimentally observed correlation. The results of the simulations can
overcome two of the three issues illustrated above: the population mean remains stable over
time (Figure 2.5 a, inset), and the oscillatory behavior reappears in agreement with the exper-
imental observations (Figure 2.5 b). However, the additive Gaussian term is still responsible for
improper tail-flattening and, ultimately, for improper symmetrization of the spine size distri-
bution. This fact and the observation that the different spine sizes exhibit different variation
profiles (see Figure 2.3 c¢) demonstrate that more complicated noise-generating models are

required to reproduce activity-independent plasticity.
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Figure 2.5: Statistical properties of the negative-momentum model

(2.4). Panels are presented as in Figure 2.4.
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To comprehend the required noise profile driving spine size modifications, we begin with a
more detailed examination of the experimental data. The overall distribution of spine size
changes across time appears to be Gaussian (Figure 2.2 b), which may suggest a model based
on Gaussian dynamics. However, when we tested such a model, we found that there were

fundamental issues that did not align with the experimental results.

In fact, we observe that the overall profile of the spine size population is a skewed, log-normal-
like profile (Figure 2.2 a). Additionally, when we examine the changes in spines with different
initial values separately, the distribution of changes also displays a skewed profile (Figure 2.3
). Furthermore, we observe that these distributions differ from one another, indicating that
spines belonging to different size intervals behave in a fundamentally different manner. Thus,
we introduce a model with a noise profile, 7,, which is sampled from a set of log-normal

distributions such that
A‘/1,T+1 =M T~ Lognorm(ulog(%)a Ulog(‘/;)’ 8) (25>

where p,,,, and o,,,, are parameters that depend on the spine size V; and determine the shape of
the log-normal sampling distribution, and 4 is a location parameter (see Appendix A for more
details). To establish the dependence of y,,,, and o,,, on the size of the spine V; we assume,
following observations seen in [18,21,30], that there exist two linear functions f,, and f, that
map spine sizes onto the corresponding log-normal change parameters. However, rather than
identifying the linear functions that are optimal for all spines which (i) becomes computation-
ally expensive, (ii) can lead to overfitting, or (iii) leads to difficulty inferring the underlying
distribution due to insufficient data, we simplify the above model by binning spines in equal-
size bins and then evaluating the sample means and standard deviations of those bins. This
provides exactly the linear functions f, and f, which allow us to estimate the sample means

and deviations for all spine sizes (identified by the pedix -,), i.e.,
ps(V) = f,(V),  o,(V)=f,(V) (2.6)

These values can be used to estimate the parameters of the underlying normal distribution,
which can then be transformed into the parameters to define the log-normal distribution (,,,,
and o,,,) using equations (2.39), generating our noise profile. We note that previous work
(including that of [30]) found linear relations between the spine size squared and the variance
and mean. We observed that such fits were equally effective as the fits presented here and
led to similar results. The fits for f, and f, (Figure 2.6 a) result in the following interesting

outcomes: (i) small spines have a positive mean change and have smaller standard deviation,
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2. Stochastic modeling of synaptic fluctuations

so they tend to grow but are less variable and (ii) large spines have a negative mean change

and larger standard deviation, so they tend to shrink and are more variable.

After optimization, we can simulate the synaptic size process (2.5) (which we refer to as Best fit
LN Mode), and examine the properties of arising size dynamics (Figure 2.6 b,c). The generated
results do not recreate the desired experimental characteristics, i.e., the mean of the simulated
distributions (inset of the same figure) decreases, and the negative correlation is too small

(compare Figure 2.6 c and Figure 2.3 a).

a o2 } b . c
Lo C\m“%c:j_‘,— — Exp. data ‘ o ..
0.1 Fit of St“i'__,-l” —— E.g. evolution §._ . AvgeCorrelation: -0.118
’ L,_—t’ . —— Model pred. — 0.25
: = 0.60 &0.5 K
00 . Z 5055 © Z 2 000 °*
: - a F0.50 =g o e
Fit oy % =045 g E :
—0.1 leay, ch, 00T TE TS = 4%—0‘2:)
gy { 4 Timepoints o ° -,
- - =2 —04 =02 0.0 0.2
0.25 0.50 0.75 0.0 0.5 1.0 5 1.5 n 5
Spine size (um=) Spine size (um?) Spine size change (um?)
at timepoint ¢ + 1

Figure 2.6: Parameter optimization and dynamics obtained with model (2.5) a Fit to data of
the size dependent parameters 1,,,(V') and o,,,. b Deriving ensemble simulation does not result in a
stable distribution compatible with the experimental observations. In the inset, the simulated mean is
shown, which decreases significantly. ¢ Correlation obtained from one example step of the best-fit log-
normal simulations. The value of the correlation is r ~ 0.1, drastically smaller than what was observed

experimentally.

2.3.3. The LN-OU Model

We observe, however, one critical fact: by slightly modifying the “best” linear fits of the means
and standard deviations (raising the mean and lowering the standard deviation, Figure 2.7 a),
we obtain an alternative parametrization (Alt fit LN Model) which allows for the emergence a
spine size distribution in excellent agreement with the distribution which was experimentally
observed (Figure 2.7 b). Still, however, the correlation between subsequent size changes is still

significantly underestimated (Figure 2.7 c).

We can alleviate this discrepancy by implementing the negative momentum term (cft. (2.4))
together with the altered parametrization. Despite the excellent agreement with the experi-
mental results, we found it necessary to use the manually tuned fits for obtaining the mean
and the standard deviation. As such, when implementing the Alt. Fit LN model, we were not
using the optimal fits shown in Figure 2.6. We assume that the discrepancy in using the optimal

fits is not due to any noise arising from the experimental setup, but, instead, because we are
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2.3. Designing the model

missing a crucial aspect that the “altered” fits are accounting for. These observations lead us

to introduce two key modifications in model (2.5):

1. to recover the negative correlation between subsequent size changes, we introduce the
negative momentum term;

2. by observing that the manual changes applied to the fits are equal across all spine bins
(Figure 2.7 a), we propose that an additional global drift term can recover the experimentally
reported dynamics of the spine while allowing the differential analysis of spine dynamics
in different size groups. Therefore, we also add a global Ornstein-Uhlenbeck (OU) drift term

(referred to as drift below).
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Figure 2.7: Effect of parameter alteration on model’s (2.5) dynamics. a Altered linear fits are used
to achieve modeling goals. b Deriving ensemble probability distribution, achieving stability compati-
ble with experimental observations. ¢ The obtained correlation between subsequent size changes is,

however, still smaller than required.

The parameters of our final model, referred to as the Lognormal-Ornstein-Uhlenbeck model,

or LN-OU model

AVzt+1 = Lognorm(:u’log(vi)a Ulog( i)’ 8) - é ( i ﬂ) —0 (V; - ‘/i—l) (27>
Long-term stochasticity Drift Negative
momentum

are fitted to achieve the best match to the experimental data. The resulting simulation is
illustrated in Figure 2.8 and demonstrates that we correctly reproduced all the experimental
data we started out with in Figure 2.2. Both the size distribution and the collective size change
distributions are captured accurately and maintain a correct degree of negative correlation

between subsequent size changes.
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Figure 2.8: Synaptic dynamics obtained with model (2.7). a Synaptic size distribution emerging
from the best linear fits (Figure 2.6 a). Stability is reached compatibly with the experimental observa-
tions. b Simulated activity-independent synaptic changes, distributed compatibly with Figure 2.2 b. ¢
Substantial negative correlation between subsequent size variations, compatible with the experimental

observations.

2.4. The impact of long-term potentiation on synaptic distributions

In previous analyses, all spines along the imaged dendritic branch were grouped into a
single set, since no unambiguous criterion existed to distinguish them. However, since we
intentionally induced plasticity through glutamate uncaging at specific spine groups, we can
now establish two separate spine categories: those that received stimulation (homosynaptic,
i.e., synaptic targets that have been specifically selected for LTP) and those that remained
unstimulated (heterosynaptic, i.e., spines located on the same dendritic segment that are not
directly stimulated). We stress that the heterosynaptic spines, which did not receive laser
targeting for glutamate uncaging despite being on the same dendritic branch as homosynaptic
spines, differ from the spines in the previous sham stimulation experiments, which received
laser targeting but lacked glutamate and therefore did not undergo potentiation. We limit our
definition of heterosynaptic spines to those within 4 um of stimulation sites and consider them
as one separate group. Finally, to ensure adequate numbers of homosynaptic spines, we focus
on the experimental protocol where plasticity induction was carried out on 15 distinct spines
on the same dendritic branch. Prior to applying the previously established LN-OU model to this

dataset, we must examine how stimulation affects the activity-independent spine dynamics.
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Figure 2.9: Synaptic size dynamics arising from the LTP experiment. a-b Homo- and heterosynaptic
spine size distribution at different time points, with red and blue referring to pre- and post-stimulation,
respectively. c Homosynaptic change distributions at each timepoint (red before, teal at, and blue after
LTP induction). On the right, the corresponding mean and standard error are shown. Significant differ-
ence in change distribution is present only at the stimulation timepoint. d As in the previous panel, but

relative to heterosynaptic spines. This time no statistical difference is found between size variations.

Starting with the homosynaptic spine distribution (Figure 2.9 a), we observe that the pre-
(red) and post-stimulation (blue) stationary distributions differ significantly. This difference
is also evident in the time point means (Figure 2.9 a, top inset). This indicates that spine
dynamics before and after stimulation can be characterized as activity-independent plasticity
around their respective stable distributions, but the stimulation event acts instantaneously (at
our temporal resolution) to shift the spine size distribution. To further quantify this distrib-
utional change, we measured the information content or “uncertainty” within the spine size
distributions [45]. Here, we employ Shannon entropy, which, given a random variable X with
probability mass function p(z) is defined by

H(X) £ E[-logp(z)] = — > _ p(z)logp(x (2.8)
zeXl

In our application, X represents the complete set of possible (discretized) sizes, and p(z) is
the probability of these sizes. We compute the information capacity of spine size distributions
before and after stimulation. The lower inset in Figure 2.9 a demonstrates a significant increase

in the neuron’s potential information-storage capacity following stimulation. Conversely,
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Figure 2.9 b reveals that heterosynaptic spine (with distance from stimulation < 4 um) size
distributions and sample means show no significant shift during stimulation. While entropy
does increase, this change is not significant. The time-to-time changes in both homosynaptic
and heterosynaptic spines (Figure 2.9 ¢ and d) resemble those of activity-independent plas-
ticity (Gaussian distributions). In Figure 2.9 c, we observe that the stimulation protocol (shown
in teal) produces a significant shift in the change distribution location, but no significant
alteration in shape. In contrast, heterosynaptic spines show no significant differences in shape
or location compared to other time points (Figure 2.9 d). Additionally, when examining the
average changes at each time point (vertical black lines in the 3D plots), we find that the stim-
ulation time point for homosynaptic spines is significantly elevated above other time points.
This elevation confirms the “shift” event observed in Figure 2.9 a. We also note no significant
differences among all other time points. Since we assume that pre-stimulation time points
resemble activity-independent plasticity (i.e., no prior knowledge of impending stimulation
exists), we can assume that post-stimulation spine change distributions are also governed
by activity-independent plasticity. Heterosynaptic spines do not show such elevation, so we

assume these spines predominantly undergo activity-independent plasticity.

We subsequently categorized the spine population by size into bins of 0.15 ym?, shown in
Figure 2.10. Since we assume all non-stimulation time points represent activity-independent
plasticity, we combine these and plot spine size changes in the left figures. The right figures
display only the immediate post-stimulation time point. We note that all are approximated by
log-normal distributions (black fits) (Figure 2.10 b and d). We can also compare distributions
for each bin. The inset p values represent KS-test results between the two datasets. Significant
differences occurred for homosynaptic spines only below 0.5 um?, and for heterosynaptic
spines, only below 0.35 um?. This finding aligns with results from [38], suggesting that small
spines are proportionally more influenced by glutamate uncaging events and play more
important roles in new memory acquisition. Conversely, larger spines remain more stable and

do not change significantly from baseline activity-independent plasticity.
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Figure 2.10: Synaptic variations, spontaneous and stimulated, relative to each size bin (bucket).
a Homosynaptic spines, considering the non-stimulated timesteps (left) and the stimulated timestep
(right). Black lines show a log-normal fit to the data. b Log-normal fit comparison between non-stimu-
lated and stimulated timepoints, for each of the four size buckets. Red refers to the non-stimulated time
point, and the teal to the stimulated ones. The p-value in the figure refers to a KS test performed on the

data in panel a. ¢ and d Same as in a and b, for heterosynaptic spines.

Finally, we observe that the stimulated spine change distribution becomes narrower for small
(< 0.35 um?) heterosynaptic spines (Figure 2.10 d, teal vs red). This narrowing appears right-
skewed, suggesting that reduced activity-independent fluctuations could be preferentially
linked to small spine shrinkage. Unlike stimulated small spines that experience growth, neigh-
boring small spines encounter stimulation only peripherally. In this scenario, growth-inducing
components may not reach levels sufficient for actual growth while remaining present at levels

that could still oppose (or compete with) activity-independent shrinkage.

2.5. Extending the LN-OU model to stimulated spines

When applying our model to the stimulation scenario, we must establish the new linear
dependencies on spine size and lognormal statistics that emerge. Initially, we examine the

sample means and standard deviations for homo- (Figure 2.11 a) and heterosynaptic spines
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(Figure 2.11 b), excluding the stimulation snapshot. The resulting behaviour shows good
agreement with previous fits (shown in gray), validating our observation that the pre-stimu-

lation baseline model remains applicable.
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Figure 2.11: Fits for the linear functions y,,, and o,,, in model (2.7) on dataset with 15
stimulations. Subsets of homo- and heterosynaptic spines were split according to size, and linear fits
were carried out for the sample mean and standard deviation of the spine variations. a-c of the non-
stimulation snapshot of the homosynaptic spine and all snapshots of the heterosynaptic spines show
good agreement with the activity-independent plasticity fits (gray). d Stimulation snapshot of the

homosynaptic spine shows a substantial difference in the fit for smaller spines.

Subsequently, we examine the stimulation snapshot and find that the model fits for
heterosynaptic spines in Figure 2.11 ¢ show only minimal deviation in the smallest spines
from the activity-independent baseline. Thus, for simplicity, we assume that heterosynaptic
spines experience activity-independent baseline dynamics across all time points. In contrast,
homosynaptic spines (Figure 2.11 d) exhibit different behavior. The standard deviation shows
an upward tilt, indicating that the resulting log-normal distribution has enhanced its standard
deviation and spines became more variable during stimulation. This increase is intuitive for
several reasons: as spines undergo rapid enlargement through the potentiation protocol, their
variance also increases because (i) they have expanded beyond the typical size range of activ-
ity-independent plasticity and (ii) they now represent large spines, which have been shown to

display greater variance than small spines.

This standard deviation increase occurs only in medium-sized bins, not in small or large spines.
This pattern may be explained by the fact that medium spines, capable of growing to large
spine dimensions, now display the characteristics typical of large spines, including enhanced
variance. Moreover, in the present study, medium-sized spines were preferentially selected for
stimulation, since prior studies have demonstrated that this population shows the greatest
lability regarding potentiation (for instance, [38]). Lastly, the mean spine change shows a clear
linear trend, where smaller spines exhibit larger mean increments relative to the activity-

independent plasticity fit.

40
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To identify which model parameters require modification to replicate the stimulation
time point for homosynaptic spines (Figure 2.11 a), we modify each component (long-
term stochasticity and drift) of the log-normal model separately. We also assume that the
negative momentum term represents an inherent feature of activity-independent plasticity,
functioning as a stabilization mechanism that counteracts previous stochastic changes. Since
stimulation constitutes directed activity, negative momentum would impede post-stimulation
spine growth by promoting shrinkage and suggest that prior stochastic activity-independent
plasticity directly influences subsequent activity-dependent changes. Therefore, we choose to
disable this term in the model during stimulation to prevent this scenario. Nevertheless, future
investigations could incorporate this or a generalized negative momentum term and examine

its influence on the resulting synaptic size distribution.

Initially, we modified the long-term stochasticity component by implementing the linear fits
for the stimulation time point (Figure 2.12 a). While the rapid component of stimulation is
reproduced, maintaining constant drift causes a gradual return to the original distribution.
This differs from our experimental observations with 15 stimulated spines (Figure 2.9 a).
However, we do observe decay back to baseline in a separate case involving only seven stimu-

lated spines (not shown).
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Figure 2.12: Fits for the linear functions y,,, and o0,,, in model (2.7) on dataset with 15 stimu-
lations. Subsets of homo- and heterosynaptic spines were split according to size, and linear fits were
carried out for the sample mean and standard deviation of the spine activity. a-c of the non-stimulation
snapshot of the homosynaptic spine and all snapshots of the heterosynaptic spines show good agree-
ment with the activity-independent plasticity fits (gray). d Stimulation snapshot of the homosynaptic

spine shows a difference in the fit for smaller spines.

This suggests that sustained LTP response correlates with increased drift and indicates that
the long-term stochasticity component replicates immediate potentiation while drift produces
the sustained effect. Additional support for this interpretation appears in Figure 2.12 b, where
only the drift term is modified at all post-stimulation points, using linear fits from activity-

independent plasticity. The changes in mean and distribution occur more slowly without
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instantaneous potentiation. Previously, long-term stochasticity and drift components oper-
ated on comparable time scales. During stimulation, we observe that long-term stochasticity
produces instantaneous structural changes in spines over our considered timescale, while drift
toward the new steady state occurs subsequently over longer time scales. Finally, we modify
both components by adjusting linear fits at post-stimulation time points and the drift parame-
ter u following stimulation. Figure 2.12 ¢ shows that we reproduce distinct stable distributions
before and after stimulation on appropriate timescales (cfr. Figure 2.12 a). Therefore, the LN-

OU model successfully reproduces experimental results for both plasticity types.

To generate the distributional jump observed in the data (Figure 2.9), we employed the
complete linear fits (Figure 2.11 d) for the long-term stochasticity. Additionally, given that
small spines show the greatest stimulation response, we investigated the effect of modifying
only the smallest spine parameters in the model (Figure 2.12 d). We therefore increased only
the sample mean of spines with initial area < 0.35 ym? during stimulation and treated the
stochastic component of all other spines as undergoing activity-independent plasticity. Drift
parameters were applied as described above, since they influence all spines equally. In essence,
we modified the slow component for all spines but altered the fast potentiating component
only for the smallest spines. This modification reproduces experimental results with no dis-

cernible difference from using complete linear fits (compare Figure 2.12 c and d).

We additionally computed the Shannon entropy of simulated distributions [45-47]. In all
cases, we substantially enhance the information encoding capacity of synaptic weight distrib-
utions following stimulation. However, modifying only long-term stochasticity (representing
the short-term stimulation effect) produces a smaller entropy increase that could potentially
decay to pre-stimulation levels after the observed period. Other model modifications emulat-
ing the stimulation event show considerably higher entropy values (similar to experimental
observations). Notably, entropy values show no significant difference between fully altered
and small spine models. We conclude that models aiming to reproduce spine size population
dynamics can concentrate on the smallest spines to streamline the simulation process while

maintaining good results, at least over the time scales examined in this study.

2.6. Summary and remarks

In this study, we examined experimentally recorded population dynamics of both stimulated

and unstimulated spines on the same dendrite. Drawing inspiration from previous work
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[18,21,30], we have developed a model framework that incorporates the dynamics for sponta-
neous and plasticity-driven spine changes observed in our data. Specifically, we identified a
stable right-skewed distribution of spine sizes where the dynamics of small and large spines

appear to follow distinct computational rules.

We constructed a model that operates at the synaptic population level and can be described
by a single stochastic differential equation, avoiding detailed molecular principles such as
those described in [36,48], following the traditional approach of previous abstract models
[18,21,28]. Through this high-level perspective, we gained an understanding of activity-inde-
pendent plasticity and incorporated multiple time scales. Previous studies (e.g.,[18,21,30,48])
have provided a comprehensive set of stochastic modeling approaches to describe specific
individual effects present in spine dynamics. Consistent with previous literature, we applied
the ergodic hypothesis for our modeling. However, given the 55-minute recording window in
our dataset, we could not directly test ergodicity or demonstrate that each spine explores the

complete phase space.

Our model includes both fast and slow mechanisms that have implications for neuronal
synaptic stability. The rapid spine changes that are anti-correlated with previous size changes
may prevent a winner-take-all system by distinguishing between small and large spines.
Ensuring that large spines shrink on average guarantees bounded spine size and aligns with
the long tail of the spine size distribution. Moreover, in our analysis, we found that small
spines preferentially exhibited positive size changes (Figure 2.12 d), and therefore they could
serve as sites of information acquisition during plasticity induction. Conversely, large spines
did not significantly alter their dynamics following stimulation, suggesting that large spines
could help preserve the stability of previous states. In the absence of direct plasticity signals,
we found that large spines were more variable and, on average, susceptible to shrinkage.
Large spines, with their complex structural organization, require greater numbers of proteins,
membrane traffic, and actin filaments for maintenance, resulting in higher energy costs. This
would justify favoring size reduction for large spines in accordance with an energy-efficient
(homeostatic) system that preferentially degrades large spines (older memories that became
obsolete) to optimize storage and energy in the brain. We note that our results do not explain
how a small subset of spines (e.g., large spines representing selected memories) can be

preserved over timescales of days or months.

Our model builds upon and extends several modeling studies that address the differences

in small and large spine dynamics. An early study by [18] separated small and large spines
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into different categories based on manual group assignment to model activity-independent
plasticity. Our work proposes a plausible mechanism for activity-independent plasticity that
avoids such rigid categorization. Another study by [21] demonstrated that temporal changes in
spine size could be approximated by a model incorporating two timescales using multiplicative
dynamics and Ornstein-Uhlenbeck processes, consistent with the fast and slow components
of our model. A different model by [28,30] employed the Kesten process to describe synaptic
remodeling dynamics. In [48], the authors developed a molecular model that explained how
size fluctuations and distributional shapes can emerge from stochastic assimilation and
removal of synaptic molecules at synaptic sites. Finally, [36,37] used actin dynamics to model
rapid, spontaneous shape fluctuations of dendritic spines, predicting that these polymeriza-
tion dynamics self-organize into a critical state that generates negative correlations in spine

dynamics on short time scales.

Furthermore, a crucial aspect of our study is the examination of both stimulation and activity-
independent plasticity within a single experimental paradigm and single mathematical model.
Previous imaging studies have either restricted glutamate-uncaging to individual spines
[38,49] or small spine clusters [50,51] and did not monitor population-level changes in synaptic
sizes. Others monitored multiple spines while applying global chemicals to induce plasticity
(e.g.,[52]). Here, we could validate one of the findings of [38] that small spines are the primary
targets for growth and, therefore, may be the substrates for new memory acquisition and, con-
sequently, that large spines are likely to be the reservoirs for long-term memories [39,40,53].
Model justifications for distinct dynamics in small and large spines have been discussed in [54],
which proposed a mechanism based on clusters of interacting receptors in the synaptic mem-
brane, in [55], who considered a reaction-diffusion model of calcium dynamics, and in [56],
which showed that discrete, stochastic reactions and macroscopic reactions could be exploited
for size-dependent regulation. Remarkably, we observed that the distribution of spine sizes
differed post compared to pre-stimulation. In contrast, we found that the changes in spine size,
when viewed as a population across all time points (longer than 2 minutes away from plasticity

induction), were indistinguishable from activity-independent, spontaneous changes.

Therefore, our model provides a unified stochastic framework that helps understand spine
plasticity operating spontaneously after stimulation. Finally, we examined the entropy and
information content of the synaptic populations. Entropy is a measure of disorder in a system
and can be assessed by observing the diversity of synaptic sizes in a neural network. Higher

entropy implies a more disordered system that allows for more diverse information encoding
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capabilities. Following LTP stimulation, we observed an increase in the range of synaptic sizes
and, thus, a larger set of possible states consistent with higher entropy. This higher entropy
could facilitate learning by enabling the network to differentially encode a wider range of
inputs. Secondly, entropy can also reflect the stability and robustness of synaptic connections.
A higher entropy, reflected by a more diverse distribution of synaptic strengths, could make
a network less sensitive to changes in individual synapses. This increased ability to buffer
against noise or disruptions, such as the loss or weakening of specific synapses, helps promote

the overall robustness of the network.

Our study provides not only a unified framework for understanding spontaneous versus evoked
dynamics across spines but also helps establish a coherent view of various features related to
spontaneous spine dynamics that align with prior reports obtained in different experimental
preparations. Since spontaneous spine dynamics is often studied across both in vivo and in
vitro preparations, slices, hippocampal or organotypic cultures, and across different brain
regions, confirming or differentiating these reports within a common model framework is
an ongoing challenge. While our experiments are conducted in slices, (e.g., [30]) has utilized
primary culture models to image spines over hours to days while monitoring fluorescently-
tagged PSD components. Similarly, [18] worked in hippocampal slices and employed different
blockers to silence neuronal activity while observing several spine dynamics features compat-
ible with our model and data. Other studies, such as [21], imaged dendritic spines in vivo
in the auditory cortex, measuring populations of spines over days to weeks. During imaging
sessions, the mice were lightly anesthetized, but activity at these synapses evolved sponta-
neously between sessions, leading to synaptic strength changes. Remarkably, despite these
differences in experimental preparations, many reported features align with our experimental
data, including the right-skewed spine distributions and size-dependent statistics consistent

with our model.

In conclusion, this study established a connection between activity-independent spontaneous
spine dynamics and directed synaptic plasticity. Within this modeling framework, we were able
to unite new and previously reported synaptic features such as stable distribution of spine
sizes, [18,21,28], higher variability of larger spines vs. small spines [18,19,21,30], the oscillatory
behavior of the spines [18,36], and incorporate plasticity-induced dynamics into the same
model. This framework can open avenues for interpreting specific experimentally reported
synaptic changes relative to spontaneous activity and help constrain plasticity models oper-

ating at the circuit level.
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tic plasticity

This chapter is adapted from the following article, which is currently under review at

Nature Communications:

J. Petkovic, M.F. Eggl, D. Pathirana, J.P. Hasenauer, S.O. Rizzoli, & T. Tchumatchenko,
Push-and-pull protein dynamics leads to log-normal synapsel distributions and probabilistic

multi-spine plasticity. Preprint link: https://doi.org/10.64898/2026.01.29.702571

The authors’ contributions are as follows: ].P. and T.T. designed the study; S.O.R. provided
the experimental data and contributed data analysis ideas; J.P. and M.F.E. analyzed the
data; J.P. designed the model in collaboration with M.F.E., and optimized the parame-
trization under the supervision of D.P and J.P.H.; ].P.-M.F.E. and D.P. prepared the paper.

All the authors contributed to editing and reviewing the paper.

Specifically, my contributions include the analysis of the experimental data, the model
design, the mathematical derivation of the closed form approximation, its identifiability
analysis and subsequent optimization, as well as the conception and validation of the final

results.

3.1. State of the art and open challenges

Synaptic plasticity is a highly complex phenomenon, driven by hundreds of molecular factors
whose dynamics occur on a wide variety of timescales [57-60]. These dynamics, moreover,
arise from different physical processes, from molecular diffusion and transport [61], to
phospho-dephosphorylation [57,58,62], to protein translation [63,64], to calcium and voltage-
dependent signalling [65,66]. Recent technical and experimental advances have been able to
shed light on the interplay of these different factors, collecting exceptionally rich datasets
that describe synaptic features and dynamics at high spatial and temporal resolutions [67-71].
The complexity of these datasets was accompanied by the development of more elaborated
computational models [68,72-75], able to navigate the vast observational landscape in a

principled fashion, and to provide experimentally testable hypotheses.
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Figure 3.1: Overview of the multi-spine plasticity phenomenon. In a synaptic plasticity experiment,
a subset of spines is stimulated, according to the same stimulation protocol. The outcome of synaptic
changes, however, is not uniquely defined, but rather depends on a multitude of additional, confounding
factors, including initial synaptic sizes, the synaptic arrangement across along the dendrite, the specific

times of observation, and the synaptic content of different protein species.

Introducing model complexity, however, leads to a reduction in the model’s tractability,
imposing a choice between the detail of the mathematical description and the possibility to
meaningfully interpret the prediction it provides. To tackle this issue, modelers have resorted
to different strategies, constraining their description to the dynamics of a specific set of
molecules [64,73,75], recurring to different levels of mechanistic abstraction [68,74,76], or
exploring general optimality principles from a normative perspective [77,78]. Many of these
models, however, still do not allow for a closed form solution, hindering the optimization of the
model’s parameters and, ultimately, the interpretation of the model’s predictions. Crucially,
the lack of a closed-form solution also complicates a clear statistical framing of these predic-
tions, constraining the models to address only the average properties of plasticity response.
This is in stark contrast with the recent theories regarding basal synaptic properties, where a
substantial corpus of work [71,79-82] has been able to study the distributional properties of
various synaptic metrics and, in particular, the log-normal compatible distribution followed
by spine sizes and their weights. Despite strong experimental hints [83-85], whether and,
especially, how these distribution impacts the synaptic response to stimulus is still an open

question.

In this chapter, we will see how this question can be explored focusing on short-term changes

in excitatory spine size following glutamate uncaging, examining the behaviour of a minimal
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set of equations describing these dynamics through two fundamental processes: diffusion and
phosphorylation. Despite its essential nature, this framework is able to capture several hall-
marks of synaptic plasticity, aligning with established functional principles such as synaptic
competition, cooperation, or the protein "tug-of-war" theory. Importantly, the model’s analyt-
ical tractability and its direct connection from the underlying biochemical processes, allow
it to account for synaptic variability while offering a direct link between a spine’s size and
its response to induction, paving the way towards a more unified understanding of synaptic

function.

3.2. The optimality of the multi-spine plasticity profile

( )

This section is adapted from the following published work:

Petkovic, ]., & Fioresi, R. (2024). Spontaneous emergence of robustness to light variation in
CNNs s with a precortically inspired module. Neural Computation, 36(9), 1832-1853. https://
doi.org/10.1162/neco_a 01691

The authors’ contributions are as follows: J.P. and R.F. designed the study, designed the
modeling framework, and proved the deriving theorems; ]J.P. implemented the model and

conducted the experiments; J.P. and R.F. interpreted the results and prepared the paper.

Specifically, my contributions include the translation of the existing fiber bundle frame-
work to the biology of the first stages of the low visual pathway, the proofs regarding the
smoothness of the different visual activation fields, and their lifts, as well as the PyTorch

code for the proposed RetiL.eNet CNN model.

. J/

Synaptic plasticity has been experimentally studied throughout a number of different cerebral
regions, experimental conditions, and, importantly, stimulation regimes. Focusing on the
response of the stimulated spine, two different behaviours can be identified, characterized
by either an increase or a reduction in synaptic size. Historically, this has led to the splitting
of the stimulation protocols into the two reciprocally excluding categories: potentiating and
depressing. However, once the spines located in the neighbourhood of the stimulated one (the
heterosynaptic spines) are considered, a much more intriguing behaviour emerges. Not only
does the stimulus effect spread to this neighbourhood, inducing heterosynaptic plasticity,
but the change it induces in heterosynaptic spines can also mimic or antagonize the change

induced at the stimulus location. In total, four different plasticity profiles appear [86], going
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from a fully potentiating to a fully depressing one, and passing through two “center-surround”
scenarios where the homo and heterosynaptic changes have different signs. A crucial modeling
question becomes, therefore, finding a molecular mechanism that is able to jointly support

these four different scenarios.

The existence of the two center-surround plasticity profiles is particularly important for this
question. Structurally, it suggests that a single mechanism could underlie these different
observations, with the four plasticity profiles corresponding to four different degrees of
a continuous, cumulative, multi-spine potentiation spectrum. Functionally, moreover, these
profiles follow a spatial motif that has been observed across multiple regions of the brain,
and, in particular, in relation to the low portion of the visual pathway, in the form of center-
surround receptive fields. Many theories have been put forward relating this specific spatial
arrangement to a decoding optimality principle, e.g., showing that Gaussian Laplacian (or,
almost equally, sums of Gaussians) minimizes the uncertainty when inferring the position
and the orientation of a border in a perceived image. In [87], we have also shown that center-
surround filter arrangements are learned in the first layers of an extended LeNet 5 CNN model
(which we called RetilLeNet), rendering the model invariant, for example, to contrast and
brightness variation. This shape was learned via gradient descent, without external constraints
being imposed on the learning process. Importantly, while this shape was clearly emerging in
the first layers of RetiLeNet, it was not universally present, with deeper convolutional layers

showing different arrangements.

Taken together, these observations confirm that if a single biochemical mechanism underlies
multi-spine plasticity, it needs to possess the right amount of flexibility. If neural computations
follow optimal encoding principles, center-surround organizations have to be able to emerge,
for example, from the reiterated, additive action of a center-surround plasticity rule (the
“Mexican hat” shape described in, e.g., [86] and [88]). For neural computations occurring in a
different brain region, however, the optimal synaptic configuration could be different, and the
same rule, possibly parametrized by different, region-specific stimulation features, has to be
able to allow for its stabilization. In the next section, we will see how these structural insights
can be implemented in a rigorous model, leading, ultimately, to recover a number of apparently

contradicting results observed throughout the experimental literature.
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3. Modeling the impact of protein distributions on multi-spine synaptic plasticity

3.3. Designing the model

After being exposed to a stimulus, spines can show different plasticity responses, potentiating,
depressing, or exhibiting no change in their size [89] (Figure 3.1). These responses are dictated
by a variety of factors, related to the stimulus (e.g., its intensity, duration, the number of
stimulated spines [70,83]), to the spine in consideration (e.g., its distance from the stimulus
or its basal size [69,85,90]), and by the dendritic system as a whole [68,91]. Importantly, these
responses show a large degree of stochastic variability, with a significant inverse correlation
between the synaptic tendency to potentiate and its initial size or weight [83,84,92]. A
suitable model for multi-spine plasticity, therefore, needs to implement three main functional
components: the features of the stimulus applied to one (or more) spines, the spatiotemporal
relationship between the spines and the stimulus, and some information regarding basal
synaptic conditions. These three factors can be naturally brought together in a reaction-

diffusion framework.

Let’s start by considering the synaptodendritic system and, in particular, the protein dynamics
that take place throughout its domain (Figure 3.2). Several different molecular processes have
been shown to underpin synaptic plasticity, giving rise to spine size dynamics that occur on a
range of different spatial and temporal scales [88,93-95]. Among these, the phospho-dephos-
phorylation process has been classically associated with synaptic plasticity occurring on the
minute-to-hour timescale [96-100], and has been successfully used by previous works to gain

computational insight on various types of synaptic plasticity [75,101,102].

Consider, therefore, an abstract unphosphorylated synaptic protein resource, referred to as
U. This resource is able to diffuse throughout the dendrite (dendritic fraction U,) and fill the
dendritic spines, indexed i (synaptic fraction U(?). Within the dendritic spine, two general
families of active catalysts are present: kinases (referred to as K(9)) and phosphatases (referred
to as N?). These two families regulate the conversion of the synaptic resource U(” into its
phosphorylated counterpart, denominated P, integrating it into the synaptic structure and

leading to the experimentally observed change in synaptic size [62,103].
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Phosphorylated protein, P

Kinase, |( Phosphatase, N

g j ND( K@
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Unphosphorylated
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4/ protein (dendrite), Uy Ud v
Dendritic shaft diffusion

Figure 3.2: Model overview detailing the molecular dynamics affecting plas-
ticity. A freely diffusive synaptic resource is able to permeate the spines, where
it gets converted to its phosphorylated counterpart, inducing synaptic strength-
ening and enlargement. The opposite process is also admitted, leading to synaptic

depression and increase of the shared unphosphorylated pool.

Following the established reaction-diffusion formalism (e.g. [104]), we now give a rigorous
definition of the above-introduced elements. We define the dendrite as the set D = [0, L] C
R with length L, with n spines located at positions z, € D,i = 1, ..., n. We also consider time
as the real valued domain T' = [t,,,;,,; tmae] C R. On these domains, we define five different

min? “max

molecular families as functions of time and space. We have
« the dendritic unphosphorylated resource, defined as positive function U, : D x T — R;

« the synaptic unphosphorylated resource, defined as n positive functions, U!" : T'— R*, each
describing the temporal evolution of the resource in the spine located at position z;. Notice
that U, and U, represent the same molecular species (unphosphorylated resource) but

describe its behaviour in different spatial compartments (dendrite and spines);

» the remaining synaptic quantities, i.e. activated kinases, activated phosphatases, and phos-
phorylated synaptic resource are defined in line with U,, giving raise, respectively, to the three

function families K", N and P(®

We assume the functions defined above present a sufficient degree of smoothness to undergo
usual differentiation, as they represent classical, well-behaved physical quantities. Consider-
ing a first-order approximation of the Michaelis-Menten catalytic kinetics, the final reaction-

diffusion process can be written as
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;

B2 (t) = ke KO (8) U (t) — kyy NO(2) PO (2)

WL (t) = gy Uyt 3,) — ki U () — 422 (1) (3.1)

out ~'s dt

208 (z,t) = Dy Gt (2,1) — 57, 63 — 2,) [k Ul 1) + K UL (1)]

\

where

* kg and ky are the k_,,/k,, constant ratios for kinases and phosphatases respectively;
* k,;, and k,,,, are the exchange constants between spine and dendrite;

» Dy is the diffusion coefficient for the unphosphorylated resource.

The boundary conditions for the partial differential portion of this system will be discussed in
the next section. In order to be able to use this model to describe synaptic changes induced by
spine stimulation, it is now necessary to introduce the dynamics of the activated catalysts K (%)
and N, These, evolving in time, drive the observed changes in synaptic size. In accordance
with the established literature [57,58,61,68,75], we assume that (i) immediately after induc-
tion, the quota of activated catalysts spikes to a new higher amount, (ii) that it then decays
exponentially with time to its basal value, and (iii) that the catalyst activation effect depends
on the distance from stimulation in a Gaussian-shaped fashion (Figure 3.2.e). The equations

describing such dynamics are
Ko@) = K + 0t —t,)e % ¥, Ke (5c)
NO@E) = N + 0@ —t)e ¥, Ne ()

where ¢, and z, are the time and synaptic locations of plasticity induction, © is the Heaviside
theta function, 7, and 7, are the active catalyst decay timescales, K, éi) and Nbi) are the basal
values for K and N at each spine i, K, and N, are the homosynaptically induced catalyst

amounts, and o and o, are the spatial induction decay scales (Figure 3.3).
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Figure 3.3: Sketched spatio-temporal dynamics of activated catalyst. At each spine, starting from
a spine-specific basal value, kinases and phosphatases are increased by the stimulation in a distance-

dependent fashion. Their dynamics then exponentially decay to the initial value with constants 7, and

TN'

For a synaptodendritic system composed of n spines, this model, in its full form, is composed
of one partial differential equation and 4n ordinary differential equations, counting 9 + 2n
total parameters. This represents a considerable issue, especially since, in order to validate the

model on experimental data, it is necessary to find its optimal parametrization.

3.3.1. Quasi-steady-state approximation and closed form solution

In order to obtain a treatable closed form for the model, we start by noticing that there are
two different processes that are taking place simultaneously in the system. One is the pure
diffusion of U,, happening along spine-free regions of the dendritic shaft (x # z;), while the
other is a combination of diffusion of Uy, its exchange with the synapse and its phosphor-
dephosphorylation into and from P, happening at z = z;. Since the unbiased influx and
outflux of protein resources into the dendrite can be considered extremely low during the
time span of the studied phenomenon [63], and since the degradation timescale of dendritic

proteins occurs on the timescale of days [63,64], we adopt no-flux boundary conditions for Uj:
8,U,(0,) = ,U,(L,t) = 0 (3.3)

These boundary conditions allow for the conservation of the total protein resources in time.
Indeed, if we define the total resource quantity as the sum of phosphorylated and dephospho-

rylated families

I(t) = / U,(t,z) dz + zn: [U9 ) + PO ()] (3.4)
D

i=1
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we can see that it does not vary in time

{ Udtxdx—i—Z[ +P()()]}

=1

dul dP®
a W+

ouU,
:54?7( ey

:/ %(m,t) dz
D\{z=z,}
= [asz(xat)]g =0

where the last step is justified by the finite cardinality of the possible discontinuity points {z =
z;}. This is an important property that will allow us later to obtain a closed-form expression

for PO)(t).

We now notice that multiple timescales are involved in the process. The phosphor-dephos-
phorylation of U, and P, as well as the diffusion of U,, can be considered fast compared to the
deactivation times of the activated catalysts K and N [57,105,106]. Conversely, the timescale
at which the amount of activated catalysts decays corresponds to the timescale at which the
experiment used in this work was conducted (tenths of minutes, [57]) and can be considered
the leading timescale. We can, therefore, conduct a quasi-steady-state approximation of the

initial equations, obtaining

kny NO(t) s
QUD () = 222 Uy(1) (3.6)
|Gt (a,t) =0

The equation for U, (z, t) has become a one-dimensional Laplace equation which, considering
the no-flux boundary conditions and the continuity of U, itself, has constant solution in space,

for a given time:
Ua(z,t) = Uy(t) (3.7)

Therefore, the amount of unphosphorylated dendritic resource at a given time will be equal to

/ U,(t)dz = LU, (t) (3.8)
D
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3.3. Designing the model

The exchange dynamics of unphosphorylated resources between spines and dendrite depend
only on the geometric features of the spine neck. Since these can only favour or hinder
molecular passage symmetrically, we can set k;,, = k,,,, and therefore U(" (t) = U, (t).

out?

We can now set about finding the closed form for P (t) following a procedure similar to
the one exposed in [107]. We start by recalling the definition of the total resources (3.4), and

noticing that we can explicitly separate it into its dendritic and synaptic component
/ U,(t,x d:v+Z[U(’ (t) + PO(1)] (3.9)
D
By substituting (3.6) and (3.8) we obtain

kyp KO t
= LU(t) +nU() Zk;N(z )

_ A K“)(t) _
- (L-Fn-*—ﬁ;]v(i)(t))[]d(t)

(3.10)

which yields an expression of U, in function of the total synaptic catalysts K) and N¥):

— II

U,(t) = — (3.11)
*(t)
L+n+3" T NO(D)
This expression can be now substituted into the equation (3.6) for P, obtaining
K“:)(t)
PO(f) =11 GIO— (3.12)

k KO (¢
F(L+n)+ Y Yoy

As a final step, we define the linear spine density A = n/L and the subsequent “geometric”

constant ) = ],:—N(l + A)L, and split the sum over j, obtaining
K

K(i)(t)
NO)(t)

K@) (¢ KO (¢
+ N(—)Et; T Zj;/:i NT)Et;

PO(t) =TI

(3.13)

It is important to remark that the obtained equation is a quasi-steady-state solution to the
general system (3.1). This implies that the predicted synaptic trajectories will be sufficiently
accurate only after the quick processes have had time to relax. For a dendritic stretch of
roughly L = 70 um, this time is approximately L/2D, ~ 2min. This fact, together with our
focus on dynamics happening on the timescale of roughly one hour, allow us to consider a

plasticity-inducing protocol lasting one minute as a “single stimulation” at ¢ = ¢,. An example
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representation of the model’s (3.13) dynamics in its validity regime is shown Figure 3.4, where
plasticity induction is carried out on the central spine of a small dendritic stretch. We can
see that both homosynaptic potentiation and heterosynaptic depression emerge in a Mexican-
hat-like fashion [69,89], due to the non-linear interplay between basal synaptic catalyst
distributions and the deterministic distance-dependent induction provided by the stimulus.
Ultimately, progressing with time, the induced changes vanish, and the system returns to its

basal configuration.

In every spine, a dynamical equilibrium is present between the synaptic P**) and U¥, and this
equilibrium is strictly dependent on the ratio of synaptic kinases K¥ and phosphatases N9,
This gives rise to important structural consequences, which can be immediately recognized
in the (3.13). First, different basal contents of activated kinases and phosphatases directly
translate to different spine sizes. Second, changes of the amounts of synaptic kinases and
phosphatases induce a local change of synaptic size, while a change in the total amount of
resources II translates to a global, multiplicative change of all synaptic sizes. Thirdly, since
(3.13) is a homographic function of the ratio Ké“ /Nb(i) for every spine, synaptic sizes are
prevented from undergoing runaway dynamics, as P(Y) can at most reach the value of IT, when
the ratio K(¥/N(® tends to infinity. From a biochemical standpoint, this corresponds to a
scenario where all the available resources have been segregated in the i-th spine, depriving

the rest of the system.

In order to utilize this model, it is necessary to find the optimal value for its parameters
via model optimization. To this end, we follow the procedure described in Section 3.4, using
the synaptic size dynamics studied in [68]. This choice derives from the widely observed
correlation between a spine’s volume, its (phosphorylated) protein content and, ultimately,
its weight [67,108,109]. Since the model admits the closed form (3.13) an explicit likelihood
can be computed and minimized, thus avoiding the necessity of numerical integration and

computationally expensive sampling techniques.
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Figure 3.4: Plasticity dynamics simulated in
space and time. The ratio P (¢)/R"”) is plotted for
each spine at different time snapshots. According
to our model, this value resembles the evolution of

synaptic sizes (cfr. next sections).

3.4. Optimization

3.4.1. Structural identifiability

The model (3.13) describes the evolution of each spine on a dendrite subject to a specific
plasticity induction protocol. Consider now a scenario where m = 1, ..., M different induction
protocols have been carried out on different neurons. Each of these scenarios entails different
stimulation locations and different dendrites, with different geometric features, different
quantities of available resources and different basal initial conditions. For each condition, our

model yields

) (9) (¢
PO(t) =11, O‘mn< ) 1M (3.14)
Q, + 377 o) ()

where, assuming that the stimulation protocol happens at ¢t = 0
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=2
Ké?n +0O()K,e ®), . ¢ ' "%<>
(t) = > (3.15)

Nb(f,)n + O(t) N, e TN e e U &

The number of observed spines for each protocol (n,,) and the locations of the stimulations
(¥ ={=,,...,7,}) are available a priori from the experimental procedure. The other parameters
used in the equations, however, are not known and need to be recovered via data fitting. In

particular, we observe that two families of parameters have to be inferred (Table 3.1):

1. global parameters, driving the plasticity dynamics independently of the specific experimen-

tal realization. These are 7, 7y, 0, and oy;

2. specific parameters, which depend on a specific experimental setup. These are the spine
initial conditions (Kéfﬂn, Nb(?n), the available resources II,,, and the dendritic geometric

factor ©,,,. This parameter category is indexed by the protocol index m.

Global parameters Number
Timescales TNy TK 2
Length scales OK>ON 2
Stimulus contribution K, N, 2
Specific parameters Number
Total resources I, M
Dendritic geometric factor Q,, M
Initial kinases per spine Kéfn 21 Mm
Initial phosphatase per spine Nb(l,)n Zf: L Tm

Table 3.1: Model parameters necessary for the simultaneous optimiza-
tion of M protocols with n,,, spines each. The specific parameters are
indexed by the protocol index m, and describe quantities that can differ
between experiments, like the total available resources in the dendrite, the
geometry of the dendrite and the synaptic catalyst distributions at stimulus

time.

The total number of parameters that have to be inferred when fitting data arising from M
experimental protocols amounts to 6 +2 M + 2 Zm n,,. It is not possible, however, to fit all
these parameters together as the proposed model is not structurally identifiable due to the

rescaling invariance for P{¥) and o!? in (3.14) and (3.15):
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B (W, @) (), oy @l (8), Q) = B (T 8 05 (1), oy s @77 (), 82, ), s €R
| | | | (3.16)
a(’L) (t, KIE?) Ksa N(l) N ) — a(%) (t, SKIE,Z) SKS, SN(Z>

m) bmr+'s m) b,m>

sNS>, seR

In other words, the full optimization problem is underdetermined. This can be solved by
introducing two additional constraints, one for each of the two degrees of freedom. Defining,

for clarity, the “fractionary index” symbols for the catalysts

(2) (4)
. K ‘ N K N
('L) b,m (@) bm s s
L — ) = L Ky =——2 N,y =—2{3.17)
T T A )

and for the dendritic parameter

Q

we can rewrite the problem equations (3.14)
() (1) — a)(t) _ _
PO#) =11, e M 1,..,M—1
. (3.19)
PO(t) =T, — g
M M sl
with
K + K e K > e_<z:;< :
. b,m s/M T
Oés:"g(t): el / s ( 7)2 ) m:]-? 7M_]-
sz,lv)n/M + Ns/M e~ Zx’exm e W
(3.20)

(9 e S
(4) ) Kb,m/M + Ks/M e 'K foexm € K

) (e )’
1+ Nype ™3 -p € N

In this fashion, we set 2, and Nb(ﬁ\%)

to 1 and introduce the two necessary constraints to render
the optimization problem well posed. We can then proceed to identify a biologically plausible
value range for the remainder of the parameters (Table 3.2) and carry out the inference for
(3.19). As a final step, in accordance with the previous literature [67], we select a reasonable
value for the two constraints ,, and Nb(ﬁ\%), and recover in respect to that the optimal values

for the full optimization problem (3.14).
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Parameter Unit BVs Notes
K é’fn Y - 0.002—0.12 Supposing 4% of CaM is active basally, and equally split between
K and N [57,66,67]
K m - 0.07—3.71 Assuming that CaM is the limiting activation factor [57,66,67,101]
Nb(i)n/M - 0.28 — 3.5  Using the same argument as in Kéi)n/M [57,66,67]
N/ - 0.07 —3.71 Assuming that calcineurin is the limiting factor [57,66,67]
Tx min 0 —100 Covering bulk, local and reciprocal kinase-effector activation

timescales [57]

™~ min 0— 100 Range as in 7
oK um 0—100 Wide parameter range
oN um 0— 100 Wide parameter range
Qo m - 0.3 —3.33  Observations in [67] and general dendritic statistics

Table 3.2: Parameter boundary values (BVs) used in the optimization

3.4.2. Definition and pre-processing of the target values

The equations (3.14) describe, for every protocol m = 1, ..., M, the dynamics of the n,, spines
located on one dendrite. Since in our experimental data [68] each protocol is reproduced
multiple times on different cells, we have to build a dataset containing one statistically repre-
sentative dendrite for each protocol. For a given experimental protocol m, uniquely defined by

the stimulus X,,,, we proceed as follows (a graphical summary is shown in S 4.1):

1. image preprocessing: utilizing in-house developed software [110], we segment the images,
extracting for each spine belonging to every cell the “raw integrated density” values (a
proxy for synaptic sizes), as well as the relative temporal and spatial coordinates. We then
conduct statistical analysis (baseline correction) on the obtained values to verify that the
initial conditions are not significantly different between different cells as well as between

stimulated and non-stimulated spines;

2. distance assignment: for each cell, we assign to each synapse its distance value from
the nearest stimulation. Importantly, if the spine is located between two stimulations, we

assign it a negative distance value. We assign a distance value of 0 to the stimulated spines;

3. average spine density: for the model (3.14) to reproduce the studied dynamics, we have to

consider the correct number of spines located on the dendrite. We infer this parameter by
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estimating the mean inter-spine distance across all the cells used for each protocol. Details

and benchmarking of the estimation procedure are reported in Appendix B;

4. binning: for each protocol m, we generate a statistically representative dendrite with
spines located regularly at the inferred inter-spine distance, and size values equal to the
luminosity average across different cells of the corresponding spatial bin. To avoid overlap-

ping, we choose a bin width equal to the inferred inter-spine distance.

In this fashion, we obtain a dataset consisting of 6 raw integrated density fields, one for each
protocol, effectively describing the synaptic size evolution before and after plasticity induc-
tion. We use 4 of these datasets for model optimization (1, 3,5, and 7 clustered stimulation
protocols under control conditions), and leave out one (7 distributed stimulation protocols
under control conditions and 7 clustered stimulation protocols under FK506 2 uM condition)

for model validation.

One final factor that needs to be considered before proceeding with the optimization, is that
the datasets obtained with this procedure contain a reduced amount of spines (Fig. S 4.1).
This would lead, during the fitting, to an underestimation of the factor Zj a9 (t), in the
denominator of (3.14). To correctly account for all the spines in the experimental dataset, we
introduce a differential weighting of the spines depending on their type (stimulated, inside of

the stimulation cluster and outside of the stimulation cluster), and compute the sum as

a2 X, [0 +2 Y oD+ 2-|X,) D aU (3.21)

J=1 J€ inside J€ outside

where | X, | is the cardinality of X, ,, i.e. the number of stimulations for the protocol m.

3.4.3. Likelihood maximization

To perform parameter estimation, we used the maximum likelihood estimate (MLE) approach.

The optimization problem is given by
0y g = argming — log £(D|0) (3.22)
where £ is the probability of observing measurementsy € 2 given some system parameterized

by 6, which contains the unknown parameters given in Table Table 3.2. We minimize the

negative logarithm of £ for numerical efficiency.

The likelihood requires an observation model h : R*= — R"™v that maps the model space to the

data space. The spine measurements are noisy, hence the observables y = h(z(t,6), 0) are re-
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lated to data by a noise model 3(t;,y;) = v;,,, +¢;. ,.,wheret;, € {1,--,n,}andy, € {1,-,n,}

index the time points observables, respectively, and ¢, , is the measurement-specific noise.

Assuming i.i.d. Student’s t-distributed noise ¢, , with standard deviations o, , computed
from the standard error of the mean in the data and with d degrees of freedom, and ignoring
constants that do not affect the location of optima in the parameter estimation problem, the

negative log-likelihood is given by

J(O)=—log £L(D | 0) = d" ; ! log{l + dl (y—_y(o)> } (3.23)

ti Y, i O-ti "Yi

We used d; equal to the number of data points available for each spatial bin z,. The model
and J were implemented in PyTorch [111], and the Python Parameter Estimation Toolbox
(pyPESTO) was used with the Fides optimizer to perform parameter estimation [112,113]. We
log-transformed parameters for efficiency, and bounds are given in Table 3.2. We used multi-

start, gradient-based optimization, with 1200 starts and with gradients computed in PyTorch.

3.4.4. Goodness of fit

We start investigating the quality of the optimization by looking at the final convergence
values of each of the runs (Figure 3.5). As shown in the waterfall plot (Figure 3.5.a), there are
two wide local minima (LM1 and LM2) in the parameter space, with 437 and 656 converging
runs, respectively. The minima show almost identical final criterion values (fval, = 108.88,
fval, = 108.96), as well as very similar inferred values for the parameters. Interestingly, the
only substantial difference seems to reside in the estimates for the decay constants 7, and 7,

with LM2 converging on significantly higher values.
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Figure 3.5: Model optimization summary. a Cascade plot concerning the 1200 optimization runs.
Two (almost equivalent) local minima are found (LM1 and LM2) with convergence basins covering the
majority of the available parameter space. b Absolute residual (R) probability density (upper graph) and
cumulative distribution functions (lower graph) for the best optimization run; 83% of the residuals fall,
in absolute value, under the root mean squared error (RM SE = 1034.51). ¢ Same analysis concerning
relative residuals (RR). Importantly, a value smaller than 10% is achieved for the relative root mean

squared error (RRM SE = 9.72%), a hallmark of good model convergence.

Following standard practice, we pick the best run converging to the best local minimum
as providing the best estimate for the model parameters. The resulting fits to data, shown
in S 4.2, display remarkable qualitative accuracy, correctly reproducing both homosynaptic
potentiation at z(¥ = 0.00 um and heterosynaptic depression, when present. Quantitatively,
the model achieves a 9.72% relative root mean squared error (RRMSE), with narrow and sym-
metric residual and relative residual distributions (Figure 3.5). Remarkably, the same metrics
were achieved using values for 7, and 7, deriving from the best run of LM2. Given their
better compatibility with the investigated timescales, we used these values in our subsequent

simulations.

As a final step in the optimization evaluation, we estimate the posterior distributions of the
inferred parameters. Due to the number of parameters involved, we carry out a full Markov
chain Monte Carlo sampling only for the six global parameters (S 4.3, adaptive parallel
tempered sampling [114]). For the remaining parameters corresponding to the rescaled basal
values Ké?n /v and le?n /m»> We inspect the convergence values of the 437 runs belonging to
LM1, and verify that indeed, with very few exceptions, they follow a well behaved distribution

(S 4.4).
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3. Modeling the impact of protein distributions on multi-spine synaptic plasticity

3.5. Inferred and observed log-normality of synaptic features

In the previous section, we carried out the parameter optimization for the model (3.19), and
with the aid of the experimental literature, we were able to fully determine the specific param-
etrization of the problem (3.13). In order to be able to utilize the general model for synaptic
plasticity simulation, it is first necessary to find a suitable statistical description for the
spine-specific parameters, as these correspond to stochastic quantities of which each neuron
represents just one specific instantiation. We posit that the variability of these components
plays a crucial role both in synaptic size distribution and in the outcome of the plasticity
experiment, as it inevitably impacts the strength with which a spine is able to compete for

resources.

To this end, we start by analyzing the distributions of the inferred values for K, ,Si) and Nb(i), both
independently and in a joint fashion. Log-normal patterns have been observed in relation to a
number of synaptic metrics [115], suggesting that log-normality can arise from a fundamental
process driving the general dynamics taking place inside the neuron. Importantly, [71,81] also
show that log-normality can be uncoupled from neuronal activity, arguing that its emergence

could be driven not to optimal information encoding but caused mechanistically by a different

process.
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Figure 3.6: Joint and marginal lognormality of inferred synaptic catalytic distribution. a,b The
inferred optimal values of synaptic K ,ﬁi) (N =59)and N,fi) (N = 58) each follow a log-normal compatible
distribution. k The logarithms of the inferred synaptic catalyst amounts show a strong, significant linear
correlation. d Graphical representation of the bivariate log-normal describing the distribution of the

estimates of K,Ei) and N,fi).

Given that K,Ei) and Ng) represent the synaptic amount of molecular species undergoing
a plethora of dynamical diffusive and transport processes, a natural probability density
that could describe their synaptic distribution is the log-normal distribution. We test this
hypothesis and find that, indeed, the inferred basal catalytic values do not show statistically
significant difference from log-normal distributions (Figure 3.6 a,b). Moreover, the respective

joint distribution shows a substantial degree of correlation (Figure 3.6 c), with a highly signif-
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3.5. Inferred and observed log-normality of synaptic features

icant Pearson r value of 0.84. These two findings (log-normality and correlation between K, éi)
and Nb(i)), together with the absence of evident pathological features (visual evaluation) allow
us to assume that the overall distribution of these two catalyst families can be modeled as
a bivariate log-normal distribution. From our model’s perspective, each spine can therefore

identified with a pair of values sampled from this bivariate distribution.

In order to validate the reliability of the log-normal function for describing synaptic molec-
ular distributions, we turn our attention to the experimental data presented in [67], where
confocal and super-resolution microscopy is conducted on several synaptic targets in cultured
hippocampal neurons. Encouragingly, we find that a number of different plasticity-related
proteins show a log-normal compatible distribution across spines, together with a high corre-
lation with the scaffolding protein Homer1 (S 4.5). These features are also displayed by two
critical synaptic catalysts, i.e. Ca2+/calmodulin-dependent protein kinase II (CaMKII) and
Calcineurin (CaN) (Figure 3.7), which can be considered a major counterpart of the model’s

kinase and phosphatase families.
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Figure 3.7: Experimentally observed catalyst statistical features. a,b Ca2+/calmodulin-dependent
protein kinase II (CaMKII, N = 110) and Calcineurin (CaN, N = 133) distribution across spines. Both
result compatible with a log-normal distribution. ¢,d Correlation between synaptic Homer1 and synap-

tic CaMKII/CaN signals respectively.

Importantly, in accordance with [116], the correlation observed between CaMKII/CaN and
Homer1 allows us to derive theoretical bounds for the Pearson correlation between CaMKII and
CaN. These bounds, evaluating to [0.05, 0.92], result compatible with the correlation inferred

for the values of K, éi) and me.

So far, we have observed that our optimization routine has identified the log-normality of
the distribution of basal amounts of synaptic catalysts and phosphatases. Recurring to exper-
imental data [67], we have confirmed that this distribution is indeed retrievable for a number
of plasticity-related proteins, including, in particular, major catalyst families (CaMKII and
Calcineurin). To provide a definitive corroboration for our choice of distribution, we now ask

ourselves if log-normality (which, so far, was just not excluded, but never confirmed as a “true
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3. Modeling the impact of protein distributions on multi-spine synaptic plasticity

distribution”) can be mechanistically explained with a fundamental mechanism underpinning

the dynamics of a wide family of synaptic proteins.

3.6. Log-normality emergence from molecular dynamics

To investigate how log-normality can emerge from a fundamental dynamic process, we resort
to the stochastic simulation of a linear dendrite where an abstract molecule is able to diffuse
throughout the dendritic shaft, exiting and entering the dendritic spines. Under general
conditions, we find that the resulting synaptic distribution of this diffusive resource is undis-
tinguishable from a log-normal distribution. Consider a one-dimensional dendrite of length L
with spines located at positions z = z;,i = 1, ..., N. Consider now an abstract molecular family
able to diffuse throughout the dendrite, entering and exiting the dendritic spines. Let now
my(z,t) be the number of molecules at time ¢ in the dendritic section [z, z + dz], and let m{") ()

be this number in the spine connected to the dendrite at ;. We can write this system as

(1) = kimg (s, 1) — Koml? (1)
5 » N . (3.24)
atd (:E’ t) = Dmani('Tv t) - Zi:l 5(:E - .’El) prs (t)

where D,, is the diffusion constant of the considered molecule and kEQ and kffgt are the
spine-dendrite exchange rate constants pertaining to the i-th spine, depending on a number
of synaptic and neck features (e.g., width, shape, synaptic crowding and confinement). We
associate to this system the no flux boundary conditions 9, m,(0,t) = 9,m4(L,t) = 0, as we
assume that the influx rate in and outside of the dendrite is low enough compared to the

diffusion constant D, . Under these conditions, the system admits the steady-state solution

@) _ ko
M T (3.25)

my(T;) =my

with a constant value of m, throughout the dendrite, and m{" proportional to this value
through the ratio of the exchange constants at the i-th spine. The solution of our original
problem is hereby represented by the histogram of the values m", corresponding to the distri-
bution density of the ratio kEQ / kgﬁzt A crucial step of this derivation is, therefore, the choice of

the probability distribution from which the exchange constants are sampled. We examine, in

the next paragraphs, the effect of different plausible choices of this distribution.
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3.6. Log-normality emergence from molecular dynamics

Log-normal distribution A number of different synaptic and neck features have been found
to follow a log-normal distribution, so this could represent a first reasonable choice for the

statistics of kEQ and k"

out*

From such a scenario, however, it trivially follows that m(® would
also follow a log-normal distribution, as the ratio of two log-normally distributed variables is
also described by a log-normal distribution. This fact highlights the stability of log-normality
in systems with multiplicative noise (as ours), but does not provide insight into how log-
normality emerges in the first place from a less generous, possibly additive, noise. We choose,
therefore, to move on to more general distribution choice, focusing in particular on two

symmetric families.

Normal distribution This distribution represents an appealing choice, due to its ability to
naturally emerge in distributions subject to general additive noise. The ratio of normal vari-
ables, however, does not have a universally defined, well-behaved distribution and strongly
depends on the parameters driving the dividend and the divisor. There is, however, one

@ and %) have to be

mn out

physical constraint that leads to interesting properties. By definition, &
positive quantities, as they describe positively defined flux rates, into and from the spines. To
respect this condition, their distributions will have to have positive means and small enough
variances to render the probability of a negative sample negligible. In other words, they have
to have a small enough coefficient of variation (CV). Under these conditions, it can be shown
that the ratio of two Gaussian variables can be well approximated by a log-normal distribution,
with the quality of the approximation decreasing with the magnitude of the coefficients of
variation. This approximation, known in the statistical literature as delta method, is valid in
general for every function of a narrowly distributed normal random variable. In our case, the
derivation starts by considering the variable Z = log X /Y, and approximating it via the Taylor

expansion up to the second order

X X — Y — V(X —px\? (Y —py)?
log| = | ~ log Ex) 4 EX By (22 4 (=& (3.26)
Y Ky Hx Hy 2 Hx Hy

Remembering that (X — uy)/pux and (Y — py)/py follow independent normal distributions

with mean 0 and variances C'Vi? and CV? respectively, we can find the first central momenta

of Z up to the leading order
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3. Modeling the impact of protein distributions on multi-spine synaptic plasticity

E[Z] ~ log</;—j>

E[(Z - E[Z])*] ~ CV} + CWy? (3.27)

E[(Z — E[Z))%] ~ OV} + CV§

the general formula for the n-th moment being
~ 9 ~ 2 n
E[(Z — E[Z])"] zE[(}Z—XTH?—Y?) }
(3.28)

n k j n—k !
S ()BT () e
and allowing to show that in general the n-th moment is of the order O(max {CVy, CVi }").
For small values of C'Vy, and C'Vi the distribution Z will, therefore, be well approximated by
a normal distribution, and the ratio X /Y will consequently be compatible with a log-normal
distribution - independently of the mean for kiﬁl) and lcffl)tt To give a quantitative evaluation of
this compatibility, we resort to computational sampling. For every pair of coefficients of vari-
ation CV,,, and CV,

out

of k;,, ~ N(0.5,0.5CV,,) and k,,, ~ N(0.2,0.2CV,

out

taken in the range [0.01, 0.22], we extract n = 1000 “synaptic” values

spines
), arbitrarily picking the mean values as
they do not impact the approximation. We then test the resulting log-ratio logk;, /%, for
normality using the Anderson-Darling test, rejecting compatibility for p < 0.05. We repeat this
procedure n = 1000 times and report the final ratio of log-normal compatible samples for each

value of C'V,,, and CV, , (Figure 3.8).
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3.6. Log-normality emergence from molecular dynamics

Log-normal compatible fraction of Gaussian ratios
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Figure 3.8: Log-normal compatibility of ratio distribution generated by normally distributed k,,,
and k,,,,. For each pair of coefficients of variation of k,,, and k,,, (referred to as CV},, and CV,,,) we
sample n = 1000 ratios k,,,/k,,; and compute the log-normal compatible fraction by testing the log-

ratio log kEQ / kY for normality with the Anderson-Darling test (panel b). As a significance threshold,

out

we choose p = 0.05. To give better intuition of the results, we also plot for realizations of different CV
values (panels a,c,d,e). The while squares in panel b represent instances where sampling of k;n and & ut
produced values smaller than zero, automatically falsifying log-normal compatibility due to ratios not

being positive.

As expected, in this range of coefficients of variation, the log-normal compatible fraction
results remarkably high (Figure 3.8 b,d,c). We do notice, however, that if the two CVs differ
by more than 5%, this compatibility drops considerably, with log-ratio distributions acquiring
pronounced left or right tails (Figure 3.8.a,e). One final source of non compatibility emerges
when the values of the variation coefficients increase beyond ~ 0.15: the sampled k,,, and k,,;
start including negative values, rendering the ratio distribution structurally incompatible with
a log-normal distribution (which by definition has positive support). This leads to conclude
that, to model a scenario where the exchange rates are driven by high coefficients of variation,
the Gaussian distribution is not a valid modeling choice. To complete our analysis, we there-
fore switch to another symmetric distribution, the Beta distributions, which is known to be a
reasonable approximation of the Gaussian distribution for low CVs, but can also behave as a

high CV probability density while maintaining symmetry and a positive, compact support.

Beta distribution In order to understand how the (log-)ratio behaves when k,,, and k_,, show
a higher coefficient of variation, we model their probability density as a Beta distribution

2o (1 — )Pt

Beta(z; a, 8) = Bad)

z €[0,1] (3.29)
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3. Modeling the impact of protein distributions on multi-spine synaptic plasticity

where B(a, ) is the beta function

B(a, 8) = /1 22 1(1 — 2)P-1 dg (3.30)
0
This distribution, due to the compactness of its support, can take arbitrary variation coeffi-
cient values, while giving raise to positive and symmetrically distributed values. Using the
same procedure illustrated in the previous paragraph, we explore log-normal compatibility of
the ratio distribution k,,, /k,ut extending it to a broader range of CV values, confirming that
compatibility is reliably retrievable until roughly CV ~ 0.35, and decays quickly thereafter due
to an increase in the log-ratio kurtosis (Figure 3.9, in particular panel c). As before, a high

degree of log-normal compatibility is found only when CV,,, and CV, , take similar values,

out

with the log-ratio exhibiting left or right skewness otherwise (Figure 3.9.a,d).

Log-normal compatible fraction of Beta ratios
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Figure 3.9: Log-normal compatibility of ratio distribution generated by Beta distributed k,,, and

k

Beta distribution, we are able to explore a wider range of coefficients of variation, finding a considerable

The same procedure as in Figure 3.8 is carried out. Notice that due to the compact support of the

out*
degree of log-normal compatibility even in the case of CV > 30%.

Stochastic simulation To confirm the theoretical predictions derived so far, we simulate the
system (3.24) as a discrete-time Markov chain. In this framework, the dendrite is subdivided
into a finite number of small volumes (of the same size), with or without a connection to
a spine. At every time step, each compartment (dendritic volume, synapse) will be able to

exchange the resource m with its neighbours, following the transition equations

AmO (8 +1) = el my(z;,t) — en,mlD (1)

| (3.31)
Amg(z;,t+1) = ep[mg(z;,1,t) + my(z;_1,t) — 2my(z;,t)] — 5ijAm(S’)(t +1)
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3.6. Log-normality emergence from molecular dynamics

where the different € represent the different transition probabilities deriving from the respec-

tive rate constants. The associated Markov transition matrix is

Amgy(z;_y) - €p —2¢p €D 0 0 0 mg(T; ;)
Amy(z;) 0 ep —2ep— 652 egll)tt ep O my(z;) (3.32)
W | = : (0 :
Amg 0 0 € —€D 0 0 M
Amd(xjﬂ) 0 0 €p 0 —2ep €ep ... md(ij)

In the simulation, the exchange step is implemented as a multinomial sampling for each
compartment, with the number of partitions equal to the number of possible transitions. By
repeating the same CV sampling procedure carried out for Figure 3.8 and Figure 3.9, we confirm

that indeed m¥ shows a synaptic distribution compatible with a log-normal density under the

hypothesized conditions on the exchange rate coefficients of variation (Figure 3.10 a,b).
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Figure 3.10: Log-normal compatibility of stochastically generated synaptic molecular distribu-
tions. The same procedure as in Figure 3.8 and Figure 3.9 is carried out. As hypothesized, stochasticity
does not impact the equilibrium synaptic molecular distributions, which follow the theoretically pre-

dicted degree of log-normal compatibility.

Moreover, the simulated process is able to show two additional hallmarks which have been
experimentally observed in relation to synaptic size dynamics [117,118], i.e. the proportion-
ality between the average synaptic molecular content and its average absolute change, as well
as the anticorrelation between changes in synaptic molecular amounts between subsequent

observation timesteps (Figure 3.10 c,d).

Having corroborated the inferred log-normality of the basal parameters of (3.13) both through

experimental observation and mechanistic theory and simulation, we accept it as a reliable
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3. Modeling the impact of protein distributions on multi-spine synaptic plasticity

distribution for the model’s catalytic distribution. Methodologically, this allows us to complete

the implementation of our model, structuring our next stimulations as follows:

1. first, we define a dendrite with a given number of spines, and for each of the spine we
draw a value for K, éi) and Nb(i) from the general bivariate log-normal catalytic distribution
(Figure 3.6 d);

2. second, we define which spines will be selected for plasticity induction, and consider the
following computations, taking them as reference;

3. third, using the model (3.13) we compute for each spine position z; and time ¢ the value of

the synaptic size P (t).

Importantly, since each time we instantiate a dendrite, its spines contain different amounts
of K, ,Ei) and lei), for each experiment we conduct multiple model runs, and evaluate the final
result in terms of summary statistics. We assume that this is equivalent to repeating the same

plasticity experiment in different neurons.

As a final consequence, we notice that given the log-normality of the marginals K, ,Ei) and Nb(i)
immediately implies the log-normality of the ratio K,Ei) / Nb(i) and, through (3.13), the widely
observed log-normality of synaptic sizes (Figure 3.11). In this regard, one starts by observing
that the quasi-steady state approximation introduced in Section 3.3.1 leads to the interme-
diate expression for spine sizes

kp K©

(3.33)

as U") has balanced out with the dendritic quota Uy, which itself is constant along the dendrite.
For a fixed time ¢, the probability density of P} will therefore be equal to the ratio of the
probability densities of K¥ and N*. Having found that these two densities are jointly log-

normal, their ratio also follows a log-normal distribution.
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Figure 3.11: Statistical features of the synaptic plasticity-related proteins. When presented, log-
normality is assessed by testing the logarithms of the data for normality with the Anderson-Darling (AD)
test. A resulting p-value higher than 0.05 denotes a positive test. a Synaptic steady-state distribution of
a freely diffusive abstract molecule, showing strong compatibility with a log-normal distribution (N =
1000). b Quantile-quantile plot (QQ plot) comparing the known theoretical distribution of the diffusive
molecule (ratio distribution) with a fitted log-normal. From both the visual inspection and the linear
correlation coefficient, the two distributions are experimentally indistinguishable. c,d Experimentally
observed (N = 1105) and model simulated (V = 1000) distributions of synaptic sizes. Both are compat-

ible with a log-normal distribution.

In summary, we set out to find a suitable probability density describing the fitted values of
Kéi) and Nb(i). We start by exploring the synaptic distribution of a freely diffusing molecule
under general dynamical conditions, and find that it is statistically undistinguishable from a
log-normal distribution. We verify that a number of synaptic proteins, and specifically plas-
ticity-related catalysts, show a log-normal compatible distribution across spines, and a high
degree of correlation with the structural protein Homer1l. We confirm that the optimal para-
meter values inferred for our model’s K éi) and Nb(i) follow a bivariate log-normal distribution,
with correlations compatible with the ones observed experimentally. Finally, we show that
our model, endowed with this bivariate distribution, is able to reproduce the experimentally
observed log-normal distribution of synaptic sizes, a feature that directly emerges from the

properties of log-normal distributions and their ratios.

3.7. The effect of inter-stimulus distance on the plasticity profile

After understanding the statistical properties of the molecular factors underpinning our
model, we move on to understanding its predictive power. In particular, we are interested
in exploring whether and how the protein variability that we observed for the model’s basal
conditions can impact the synaptic response to an induction protocol, possibly challenging

result interpretation in an experimental setting.
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3. Modeling the impact of protein distributions on multi-spine synaptic plasticity

Also, more importantly, we are interested in testing the reliability of the optimized model in

reproducing synaptic plasticity experiments that were not used for the fitting.
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Figure 3.12: Model validation with plasticity prediction. a The model is able to predict the skewed
distribution of the post-pre size ratios at the stimulation locations (Kolmogorov-Smirnov p = 0.13). b,c
Model prediction tested on the left-out dataset (seven distributed stimulations). The stimulated spatio-

temporal profile of synaptic sizes shows good accordance with the observed data at all timepoints.

To this end, we start by validating our model to predict outcomes of one of the experiments
reported in [68]. We focus on one of the datasets that has not been used for model fitting,
where glutamate uncaging is performed on 7 spines distributed along a dendritic stretch, at an
average inter-stimulation distance of 16 um. The simulation predicts very closely the dynamics
observed in the experiment (Figure 3.12 b,c), with synaptic change being particularly evident
at 2 minutes after the induction. Three qualitatively different behaviours can be observed at
different distances from stimulation (Figure 3.12 b): the stimulated, as well as the spines very
close to the stimulation (~ 2 um) undergo potentiation, while spines located at an interme-
diate distance (~ 2 — 4 um) undergo depression. Finally, spines that are further than 4 um do
not show a significant response to the stimulus. These effects decay in time, with synaptic
sizes returning to baseline at the final mark of 40 min (Figure 3.12 c¢). In addition to the average
spatio-temporal plasticity dynamics, the model is also able to predict plasticity statistics for
the stimulated spine, correctly reproducing the distribution of post-pre size ratios at 2 minutes
after the induction (Figure 3.12 a, Kolmogorov-Smirnov test p = 0.13). Crucially, we are able to
see the presence of a small fraction of stimulated spines undergoing depression (Figure 3.12
a, post-pre ratios smaller than 1). This observation strongly agrees with the hypothesis that
synaptic-specific protein variability plays a crucial role in determining the outcome of a plas-

ticity experiment, allowing for diverse behaviours to emerge in response to a single stimulation
type.

To further disentangle the role of the induction protocol from the role of synaptic variability,

we simulate a specific set of plasticity induction experiments (Figure 3.13), with stimulations
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applied at 2 locations with increasing distances. This allows us to characterize the effect of the

stimulus geometry on synaptic catalyst activation, ultimately, synaptic change.
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Figure 3.13: Plasticity response profiles when stimulating two spines at different distances (2, 4,
6 and 8 um). Each column compares the post-pre spine size ratio with the newly induced catalysts and
the ratio of newly induced K and N. (Post-pre size ratio, both experimental and simulated, is shown as

median and inter-quartile range, given the non-normality of the underlying distributions).

As expected, we find qualitatively distinct behaviours between stimulated and non-stimulated
spines. The first show distinct potentiation, the amount of which does not depend on the
distance between the stimuli. This agrees with the fact that the induction protocol the model
has been fitted with (glutamate uncaging, 60 pulses at 0.5 Hz), is considered a potentiation
protocol, and elicits on average synaptic potentiation. Non-stimulated spines, on the other
hand, exhibit a much more nuanced behaviour, and strongly depend on the stimulation geom-
etry. In particular, the spines located between the two stimulations can undergo potentiation,
depression or no plasticity change, depending on the distance between the stimuli. This is the
result of the differential catalyst activation that happens at different distances and strongly
depends on the inter-stimulus proximity (Figure 3.13 middle rows). Different catalyst activa-
tions and, in particular, different resulting ratios K¥ /N then lead to different plasticity
outcomes. When the stimulations are close to each other (Figure 3.13 d), the newly induced
ratio is high, leading to spine potentiation. Increasing the inter-stimulus distance reduces this
ratio, leading first to stronger depression (Figure 3.13 e), and then to the absence of plasticity.
This non-linear relationship response and distance between stimuli becomes clear when,
together with the ratio, we consider the absolute amounts of newly activated K9 and N,
When a spine is far from both stimuli, these absolute amounts decay to zero, leaving the spine

unaltered.
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3. Modeling the impact of protein distributions on multi-spine synaptic plasticity

In summary, our model is able to reproduce plasticity dynamics not only by correctly predicting
the average synaptic change, but by recovering the statistical distribution of changes observed
across different experiment trials. This stochasticity is directly linked to the variability of
synaptic protein distributions and accounts for apparently contradictory observations like
spines undergoing depression after being exposed to a potentiation protocol. We also show
how stimuli cooperating together can lead to an increase of both potentiation and depression
of hetero-synaptic spines, depending on the interplay between their distance and the protein

activation profile they induce.

3.8. Parameter degeneracy and bidirectional effects of FK506

In the previous section, we have shown that different stimulus configurations can lead to dif-
ferent plasticity outcomes depending on the balance between the baseline synaptic catalysts
and the stimulus activated quota. This prompts us to ask how a change of the baseline protein
distributions alone can lead to observable changes in synaptic response, and if this link can be

quantitatively characterized in our framework.
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Figure 3.14: Dose-dependent effect of FK506 (2 . M). Data is presented as mean + SEM for compat-
ibility with the considered experimental work. In each panel, the upper row reports the experimental
observation, while the lower shows the model simulation. a The addition of FK506 induces a significant
increase in average basal synaptic size (Kolmogorov-Smirnoff p -value < 0.01), as well as an overall
increment of synaptic potentiation after protocol induction, both temporally (panel b) and spatially

(panels c and d).

To address these questions, we again focus our attention on experimental observations

reported in the literature, and, in particular, on the effect of Calcineurin inhibition via FK506.
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3.8. Parameter degeneracy and bidirectional effects of FK506

In their work, [68] show that this inhibition leads to an overall increase of uncaging-induced
potentiation, with higher and more lasting synaptic strengthening occurring both at stimu-
lated and hetero-synaptic spines (Figure 3.14 a-d, upper plots). This result follows intuition,
since a reduced amount of spine phosphatases should lead to an increase in calcium-induced
protein phosphorylation and, consequently, overall synaptic potentiation. An opposing result,
however, is presented in [98] (Figure 3.15 a, upper plot). Here, application of FK506 leads to a
reduction in potentiation in a dose-dependent fashion. The authors explore several possible
reasons that could explain this counterintuitive effect, considering, among others, qualitative
differences in calcium signalling elicited by NMDA receptors and voltage-gated calcium

channels.

We propose a unified interpretation, able to generate these conflicting observations from a
common dynamical framework. The increase or the reduction in potentiation derives from
an increase or a reduction of the ratio between basal and activated catalysts in respect to
the control condition. Two factors drive this change. First, the addition of FK506 impacts the
basal amounts of active CaMKII and Calcineurin, increasing the first and reducing the second
[119,120]. Secondly, both FK506 and the difference in the calcium channels driving plasticity
(NMDARs in [68] and VGCCs in [98]) modulate the stimulus-induced quota of calcineurin,
due to inhibition and due to a quantitative difference in the emerging calcium dynamics. All
these effects can be transparently implemented in the model by changing the value of four

parameters describing the corresponding catalytic features (Table 4.3 in Appendix C).
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3. Modeling the impact of protein distributions on multi-spine synaptic plasticity
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Figure 3.15: Dose-dependent effect of FK506 (10 pM). Data is shown as in Figure 3.14. a Upper panel:
experimental observations reported [98]. In this case, the addition of FK506 reduces synaptic potenti-
ation following plasticity induction. Lower panel: model reproduction after blocking the phosphatase-
associated parameters (Block DEP). b Average maximum potentiation level surfaces (isosurfaces) in
function of the average basal phosphatases p , average basal kinases ., and the induced phosphatase
quota N,. These surfaces identify parameter values that lead to the same average maximum potentia-
tion. Three model parameter points, corresponding to the previously used control, Block POT, and Block

DEP conditions are shown on the respective isosurface.

We start by reproducing the observations in [68], and modify the optimal model parameters to
account for the effects of the addition FK506, in accordance with the previous literature [119-
121]. This strategy not only solves the technical challenge of fitting de novo a new optimal
parameter set (unachievable due due to the reduced number of points in the dataset), but also
corroborates the claim that our model is able to give a transparent link between its parameters
and their biochemical counterpart. Encouragingly, we find that the blocked model (Block POT)
correctly reproduces the observed outcomes in [68], with higher and longer lasting potenti-
ation both at stimulated and surrounding spines (Figure 3.14, lower panels). We are also able
to reproduce the slight increase in basal spine sizes observed after the FK506 has been applied
to the culture (Figure 3.14 a). In agreement with [119], this arises from an increase in average
basally active kinases p; combined with a reduction of basally active phosphatases p . After
accounting for the difference in applied FK506 (2 uM in [68], 10 uM in [98]), we can repeat
the procedure described above and obtain the results presented in [98]. As before, we are able
to reproduce the correct plasticity behaviour, this time with the addition of FK506 inducing
a reduction of potentiation at the stimulated spines (Figure 3.15, lower plot). In fact, our

model indicates that potentiation change shows a continuous, albeit nonlinear, dependence
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3.8. Parameter degeneracy and bidirectional effects of FK506

on three coacting factors (Figure 3.15 b): the average basal phosphatase and kinase content
py and p g, directly modulated by FK506, and the stimulus induced quota N, determined by
FK506 and the stimulus features. The emerging average plasticity behaviour, in particular of
the stimulated spine, is determined by specific values of these parameters, and, importantly,
we see that there is a whole set of different values leading to no change in comparison to the
control condition (Figure 3.15 b, grey surface). Moreover, due to the continuity of the change
in potentiation with respect to the these parameters, very low dosages of FK506 (1 M) would
not substantially alter the basal/induced ratios, leading to statistically non-significant effects

on synaptic plasticity [98].

In summary, our model is able to quantitatively characterize the interplay between the basal
synaptic protein distributions and the molecular action of a synaptic stimulus, correctly repro-
ducing the effect of catalyst inhibitors on synaptic plasticity. Moreover, it is able to provide
a unified interpretation for the antagonistic effects on synaptic potentiation observed for the

calcineurin inhibitor FK506, giving a clear interpretation of its dose-dependent effect.

3.9. Variability of synaptic response and effect of basal synaptic size

In the previous sections we show that the outcome of a plasticity experiment is determined
by a variety of factors and, in particular, by a nuanced interplay between the synaptic protein
statistics and the activation effect induced by the stimulus. We characterized this interplay
in relation to different stimulus features and different basal catalytic conditions, obtaining
a description that provides multiple experimentally testable aspects. As a final step, we ask
ourselves if our model can provide a clear hypothesis for the widely observed inverse relation-

ship between synaptic size and its tendency to potentiate [83].
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Figure 3.16: The variability of plasticity response across trials The application of a synaptic
potentiation protocol provides a fixed contribution of active synaptic kinases and phosphatases (upper
panel). The synaptic response, however, is determined by the sum of this deterministic quota with the
stochastic basal amount, and varies significantly across experiment repetitions (middle panels). On
average, however, a well-defined spatial plasticity profile emerges, uniquely determined by the stimulus

type and the synaptic protein statistics (lower panel).

In previous works, the variability of synaptic plasticity response has been attributed to a num-
ber of causes, from biological stochasticity to a degree of methodological and observational
noise [84,85,122]. In our model, this variability is present as well, with different instances of
the same experimental protocol leading to different plasticity behaviours (Figure 3.16). For
example, while the average synaptic response profile shows a Mexican-hat spatial structure,
single experimental instances can considerably detach from it, even admitting depression at
the site where the LTP protocol is applied. In the presented framework, this variability can be
directly attributed to the stochastic nature of synaptic basal conditions. The connection can be

clearly understood from a phase space representation of these basal conditions (Figure 3.17).
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Figure 3.17: Size dependence of plasticity response: potentiating protocol.
a For each basal synaptic condition (a pair K,Ei) and Nb(i)), the model allows for
finding the average synaptic response (P*) post-basal ratio) to a given stimulus
protocol. This response depends on the synaptic catalytic distribution, with a clear
distinction between potentiating (blue) and depressing (red) regions. Between
these regions, a set of initial catalytic values lead to no change after stimulus (black
line). ¢ Several synaptic measures (spine size, EPSP) show an overlapping trend
between their relative variation (post-pre ratio) and their normalized basal value.
Our simulations also lead to a very similar behaviour, closely following a power-

law fit to data proposed in [72].

In this representation, a spine is uniquely defined by a pair of values (K, @ , Nb(i)) corresponding
to its catalytic content before a protocol is applied. As discussed in Section 3.5, biological
synapses do not uniformly fill this space but distribute themselves following a bivariate log-
normal distribution (Figure 3.6 d and dashed lines in Figure 3.17 a). For a defined stimulus (a
specific value for the model’s catalyst activation parameters) our model can predict the average
(maximal) response for each point of the phase plane (red-blue color code in Figure 3.17 a),
showing that, at least in theory, the same stimulus can lead to both potentiation and depres-
sion. Moreover, it shows that the transition between potentiating and depressing behaviours
is smooth and, in fact, that they can be separated by a smooth line corresponding to non-
responder initial conditions, i.e. conditions identifying spines that will exhibit no change in

response to the stimulus. To derive the explicit equation for this line, which represents the 0

level-set of average synaptic change, we proceed as follows.

We start by considering the solution (3.13) and rewrite it for convenience as

(4)

pi) = — N9 (3.34)
i (1)
RO) + Ko

X
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3. Modeling the impact of protein distributions on multi-spine synaptic plasticity

where R(® = Q + > iy ﬂji represents the heterosynaptic competitive portion of the system.

As described in the previous sections, each spine starts from some basal catalytic values K, éi)
and Nb(i) ,and a stimulus acts by modifying these values by some amount A, and A 5, depending
on various factors (e.g., distance from the considered spine, time elapsed from induction).
Importantly, this action takes place in every spine in the system, so that R is also modified
by some amount A ;. We focus our attention on stimulated spines, i.e. spines where A . = K
and Ay = N,. Indicating with Pbi) the basal size and with P(i)t the post-induction size of a

pos

spine, we are interested in finding the relation between K,Ei) and Nb(i) satisfying Pb(i) = Pp(f;lt.

By applying (3.34) to both sides of the equation, one obtains

K, B K + K,
R() Nb(z‘) +Kl§i) (RO + AR)(N® + N,) +K[§i) +K,

(3.35)

which can then be solved to obtain the final solution

@\ 7!
AR Nb
1+ 70 (1+ ~ )] (3.36)

s

0) (5) K
K" = NY_s
b b N

s

describing the curve in the K and N phase plane corresponding to the spines that will
not change size in response to a stimulus inducing K, and N, amounts. This expression is
stochastic, as for a fixed value of K,Ei) and Nb(i), the heterosynaptic factor R, as well as its
variation, depend on the specific dendritic instance. We resorted to exploring this stochasticity
by running multiple simulations using our optimal parameter set, and found that the value of
AR /R"™ was extremely small in all cases. This effectively allows us to approximate (3.36) to

K

the linear equation K, 15“ =3 b(i) , providing a much clearer intuition on the initial conditions

that characterize a spine showing no change in size in response to a stimulus.

From a practical standpoint, conducting multiple trials of a synaptic plasticity experiment
consists precisely of fixing the stimulus parameters (the color-code) and sampling the catalytic
phase space following the bivariate synaptic distribution; the average response (the color
corresponding to the mean of the bivariate log-normal) is then what defines the protocol as

potentiating or depressing.

Despite being experimentally inaccessible, the catalytic phase space has a well-defined rela-
tion to the observable P¥). The considerations illustrated in the previous paragraph can be
promptly translated to synaptic sizes via (3.13), predicting the existence of an inverse rela-
tionship between basal values and the synaptic tendency to potentiate. Moreover, the same

protocol could induce potentiation in smaller spines and depression in bigger ones, with a
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3.9. Variability of synaptic response and effect of basal synaptic size

family of “intermediate” spines showing no change after induction. In order to validate this
prediction, we again turn our attention to experimental observations, describing synaptic size
[68] and synaptic weight evolution [84] after plasticity induction (Figure 3.17 b). After normal-
izing the basal values of each dataset (dividing them by their maximum), we see that both
observations and the simulated variations of P(Y show good agreement, and, in particular, we

see that the simulation closely follows the power-law fit proposed in [72].

So far, we have assumed that the difference between plasticity protocols resides only in the
value of the parameters driving catalyst dynamics. This would imply that the same model
can also be used to describe the synaptic response to an LTD protocol, the only difference
from before being a rotation in the phase space color-code (cfr. panels a in Figure 3.17 and

Figure 3.18).
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Figure 3.18: Size dependence of plasticity response: depressing protocol.
The panels are presented as in Figure 3.17, after scaling at roughly half the value
(Kder = 0.4 K,). a same as panel Figure 3.17 a. Notice that the majority of the
spines falls in the red region, allowing the protocol to be considered depressing
in an experimental setting. b Same as Figure 3.17 b in a depressing setting. The
simulation does not obey the power-law fit to data, but qualitatively recovers the
inverse relationship between spine size and potentiation/depression, admitting the

potentiation of small spines.

After adapting the stimulation parameters to reflect depression induction, we test our predic-
tions against experimental data coming from an LTD experiment [85] (Figure 3.18 b). Despite
showing less adherence to the experimental data, the model is still able to capture the depen-
dence of the observed synaptic response on their initial value, with pure depression happening
only for bigger spines, and potentiation being possible for the smaller ones. We do not see,

however, a remarkably good compatibility between predictions and data, having to conclude
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3. Modeling the impact of protein distributions on multi-spine synaptic plasticity

that there could be additional qualitative differences between potentiating and depressing

protocols that are not accounted for in our framework.

In summary, our model shows that the behaviour of a spine undergoing plasticity strictly
depends on the interplay between its basal protein distributions and the inducing features of
the stimulus. This interplay translates to a smooth and monotonically decreasing dependence
of synaptic size variation and synaptic basal size, recovering counterintuitive experimental
findings like depressing response to potentiating stimuli, or non-responding spines. The
model also predicts that a hallmark of this dependence can be observed in the synaptic
response to any stimulus protocol, but further investigation is necessary to understand its

descriptive power for induced synaptic depression.

3.10. Summary and remarks

In this work, we have presented a minimal model describing multi-spine plasticity occurring at
the minute-to-hour timescale along a linear dendritic branch. We have derived its governing
equations from two fundamental biophysical processes, compatible with these spatial and
temporal scales [57,58,61,62,72]: molecular diffusion and phosphorylation. To the best of our
knowledge, this is the first study that characterized synaptic plasticity at the single observation

level, and not only as an average response across trials.

Previous studies have employed a similar approach [68,74,123], with a notable example repre-
sented by [107], where the authors demonstrate how the general principle of resource-sharing
can account for non-linear synaptic properties like multiplicative scaling and runaway dynam-
ics prevention. Our model is able to extend this framework with explicit biochemical meaning,
as well as a clear spatial structure for the underlying dendritic system. This specification is
essential to understanding how an induction protocol influences the plasticity dynamics of a
multi-spine system. It enables, for example, a clear distinction between a “passive” depression
induced by competition for resources [68,107] and the “active” depression, mediated by the
induction of the phosphatase family IV in both stimulated and neighbouring spines. This latter
form, in particular, is directly connected to the Mexican-hat shaped plasticity profile observed
for single stimulations [69], and derives from the higher activation spread of phosphatases in
comparison to kinases [119,124]. A strong validation of this hypothesis could come, among
other possibilities, by investigating the heterosynaptic plasticity induced by two close stimuli

as a function of their distance from each other (as in Figure 3.13 d-g).
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The specific characteristics of the induction protocol are not, however, the only factors deter-
mining plasticity response. In fact, our model strongly indicates that they determine only the
average behaviour of a much more diversified and variable dynamic landscape [68,72,84,85,98].
Guided by our model, we propose the hypothesis that a considerable portion of this variability
is encoded in the synaptic basal catalytic distributions. A substantial corpus of modeling
work has characterized the features and the origins of synaptic statistical properties, focusing
in particular on what appears to be a generalized compatibility of a number of synaptic
quantities with a log-normal distribution [115]. Several mechanisms have been proposed to
explain this observation, ranging from the most fundamental multiplicative noise [115], to
more sophisticated models [82] grounded on general stochastic processes [80,118], or local
binding mechanisms [79]. Despite providing an accurate characterization of log-normality,
these models often do not provide an immediate mapping between their driving parameters
and the biochemical machinery underlying synaptic distributions. Moreover, an assumption on
which all of these models implicitly rely is that dendritic spines represent a statistical ensemble,
i.e., they can be considered a different instantiation of the same, stationary random process. By
taking a different approach, and constraining our model to depend only on elementary mole-
cular dynamics, we have showed that log-normal compatibility could emerge spontaneously
as the result of the elementary diffusive dynamics of synaptic proteins. This hypothesis is
not only able to directly connect the spine-size log-normality to the underlying catalytic log-
normality, but is also able to avoid the ensemble assumption. Moreover, it is able to provide
a robust, minimal mechanism for the observations in [71,81], where log-normal compatible
synaptic distributions are shown to emerge independently of neuronal activity and, therefore,

possibly not driven by an information encoding optimality principle.

Our models also allows for a translation of the statistical properties of synaptic catalyst to
the probabilistic description of the synaptic response to plasticity induction. Several experi-
mental and theoretical works have observed an inverse relationship between synaptic size (or
weight) and its tendency to potentiate when stimulated, under a variety of plasticity protocols
[83,85,98,118]. In some instances, this inverse relationship is not restricted to a specific plas-
ticity direction, with the same induction being able to elicit both depression and potentiation,
depending on the initial synaptic strength [125]. Our model is able to support this observation,
in strong similarity with the power-law dependence proposed in [72]. Following this, we
propose that the synaptic response profile is quantitatively related to the calcium-induced

catalytic dynamics occurring at every spine, and directly linked to the kinase-to-phosphatase
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ratio before and after stimulation. For small spines, starting from a low K} / N/, this ratio would
on average increase, while the opposite would occur for big spines. Lastly, a class of interme-
diate spines, the size of which would depend on the stimulation features, would not show a
change in its catalytic ratio and therefore would appear not to respond to the induction pro-
tocol (as reported in, e.g. [125]). This mechanism is consistent with the observations in [100],
where partial inhibition of Protein Phosphatase 1 (one component of the phosphatase family
N) induces an overall shift towards potentiation, switching the response to a 10 Hz stimulus
protocol from LTD to LTP. It is important to note that our model, despite being able to predict
the existence of potentiation in very small spines undergoing LTD-inducing stimulation [85],
does show a lower quantitative predictive power in this latter case. This discrepancy could
arise from several reasons, one of the most likely being the difference in biochemical pathways
leading to potentiation or depression [92], [93]. Despite characterizing two possible general
depression mechanisms (passive resource subtraction and active heterosynaptic phosphatase
induction), we have ultimately fitted the model on data obtained under a potentiation protocol.
The emerging predictions could, therefore, not be optimal for describing dynamics mediated

by other types of receptors like, for example, metabotropic glutamate receptors [92].

One final question our model allows us to explore is the dependence of synaptic plasticity on
catalyst perturbation and, in particular, on the differential block of calcineurin. The effect of
FK506 on synaptic potentiation has been studied under a plethora of experimental conditions
(see [119,126,127] and references therein) with observations supporting both a facilitating
and a hindering action. Multiple reasons have been proposed for the contradictory nature of
these results, focusing strongly on the qualitative differences in the evoked calcium second-

messenger cascade [128,129] under different experimental conditions.

Our model suggests the possibility that these qualitatively different results could emerge
from a quantitative feature, i.e, a degeneracy in the phospho-dephosphorylation dynamics
with respect to their driving parameters. This degeneracy corresponds to the invariance of
the observed synaptic potentiation when a change of initial and stimulus-induced catalyst
amounts takes place. It has been shown that FK506 impacts both basal activity of CaMKII
and calcineurin [119,120], as well as the efficacy of the newly activated calcineurin quota in
response to a plasticity protocol. These three components correspond directly to three model
parameters (uy, 4, and N,) and, consequently, to three degrees of freedom. We show that this
3-dimensional space is foliated by the smooth maximal potentiation isosurfaces an average

spine can show after stimulation. Different experimental conditions would correspond to dif-
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ferent points in this space, mapping to different surfaces and, consequently, different degrees
of synaptic potentiation. Moreover, the dose-dependent effect of FK506 would correspond to a
smooth line traversing these isosurfaces. In order to characterize this line, however, a precise

titration of the impact of FK506 on basal and newly activated CaMKII and CaN is necessary.
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4. Conclusion

Memory encoding and learning processes are fundamentally dependent on synaptic plasticity
mechanisms. Elucidating how synaptic weights are regulated could provide crucial insights
into these cognitive functions while also offering groundbreaking applications. Clinically,
epilepsy represents a prime therapeutic target, as many epileptic manifestations arising from
compromised network properties stem directly from disrupted neuronal protein turnover,

misfolding, and, generally, dynamical alterations.

In this thesis,  have investigated synaptic plasticity from a spine-centric modeling standpoint,
dissecting how individual synaptic variability leads to the final, average plasticity outcome.
My first approach characterized spontaneous synaptic dynamics as a stochastic process, inter-
preting statistical patterns as manifestations of the stationary distribution within a synaptic
statistical ensemble. The second approach addressed the phenomenon at a more mechanistic
level, directly modeling molecular redistribution and phosphorylation through reaction-diffu-
sion equations, and carefully dissecting the role of different protein families on the emerging
plasticity phenomenon. Together, these complementary frameworks have yielded several sig-
nificant insights into the nature of synaptic plasticity, and, to the best of my knowledge, they
were the first work able to describe synaptic plasticity at the single observation level, and not

only as an average response across trials.

4.1. Log-normal characteristics of Synaptic Fluctuations

Log-normality extends beyond previously observed synaptic structural quantities, such as
weights and sizes, and includes also changes between discrete time intervals. This finding
represents a particularly intriguing result, as it reveals a dynamical feature rarely encountered
in conventional exchange stochastic dynamics. In classical multi-compartment systems, the
steady-state distribution of quantities of interest typically follows binomial distributions, with
temporal changes exhibiting symmetry around average values. The log-normal distribution
deviates significantly from this pattern. Furthermore the covariance structure of synaptic
processes cannot be attributed solely to noise, as the anticorrelation observed between suc-
cessive changes extends to temporally non-adjacent modifications. This observation provides
a critical validation criterion for models attempting to describe synaptic dynamics through

stochastic processes.
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4.2. Possible origin of log-normality

While log-normality in synaptic structural quantities has been interpreted through various
lenses and linked to information-theoretic optimality principles, an alternative mechanistic
explanation is possible. Rather than being selected in a normative fashion, log-normality may
emerge as an approximate stationary distribution arising from the diffusive dynamics that
synaptic structural proteins undergo throughout their lifetime. This hypothesis demonstrates
remarkable robustness by connecting synaptic protein dynamics to the well-established cen-
tral limit theorem scenario, where log-normality emerges from multiplicative processes. In
the dendrite, multiplicativity arises not from random noise but from the combined effects of
hundreds of multiplicative reactions that determine the final distribution of proteins across
spines. Ultimately, since synaptic size can be described as the ratio of these proteins, its

distribution is necessarily constrained to follow a log-normal-compatible distribution.

4.3. Size-dependent plasticity mechanisms

The anticorrelation between initial synaptic weight or size and a spine’s propensity for poten-
tiation has been consistently observed across the literature. Additionally, basal synaptic size
has been shown to determine the directionality of synaptic plasticity under fixed stimulation
protocols, with small spines exhibiting potentiation and larger spines showing depression. The
presented modeling framework successfully reproduces this behavior, directly linking both
deterministic (power-law) and stochastic profiles to catalytic ratio dynamics. Importantly, this
approach also predicts the existence of non-responder synapses, interpreting them as spines
with specific, stimulus-dependent catalytic content whose lack of weight change reflects an
inherent invariance in the relationship between synaptic weights and protein content rather

than experimental failure.

4.4. Catalytic degeneracy in potentiation mechanisms

Synaptic size is a function of catalytic content, incorporating both basal and stimulus-induced
components through four free parameters. Specifying a particular maximum potentiation level
introduces a single constraint within this four-dimensional parameter space, creating a three-
dimensional hyperplane where diverse synaptic conditions can produce identical maximum
potentiation levels. The application of FK506 in synaptic potentiation protocols has revealed

nonlinear effects on the final experimental outcomes, sometimes enhancing and sometimes
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diminishing maximum potentiation. This complex behavior can be explained through FK506’s
action within the four-dimensional catalytic space, particularly given its documented effects
on both calcineurin and CaMKII basal and induced activities. By modifying these components
in a dose-dependent manner, this formalism naturally accounts for all observed plasticity
modifications, including the statistically insignificant effects observed at very low FK506

concentrations.

4.5. Future Directions

This work contributes to the extensive literature of synaptic modeling, representing a focused
exploration of how two mathematical frameworks can illuminate synaptic dynamics and plas-
ticity mechanisms. While not providing definitive answers to the fundamental questions in the

field, these findings offer reasonable hypotheses upon which future investigations can build.

The most immediate investigation should reconsider the model presented in Chapter 3 in
its full form, and reperform the optimization without relying on quasi-steady-state approxi-
mations. Although this approximation enabled successful parameter fitting and closed-form
treatment of size-dependent potentiation, it introduces two structural limitations that impede
the correct interpretation of synaptic plasticity transients. The steady-state assumption for
resource diffusion necessarily trivializes predicted spatiotemporal dynamics, precluding fasci-
nating phenomena such as potentiation/depression waves propagating throughout dendrites.
Similarly, the steady-state approximation for catalytic dynamics reduces model expressivity
and prevents accounting for differences in plasticity kinetics, which depend on absolute kinase
and phosphatase amounts rather than their ratios. These limitations inevitably compromise
parameter estimation reliability and reduce predictive power. Future work should therefore

repeat optimization procedures, potentially within a hierarchical Bayesian framework.

Additional investigations could extend the current minute-to-hour timescale model to
encompass the multi-hour characteristics of structural plasticity. While short-term and
structural plasticity are traditionally considered distinct phenomena — partially supported
by their different biochemical processes — all the involved mechanisms belong to a single,
general reaction network. Depending on stimulation strength, short-term reversible plasticity
can combine with stable structural changes. A unified, potentially perturbative model could
be developed and fitted to existing datasets, better describing transient and lasting changes

across these timescales. Mathematical treatment through matched asymptotic expansions
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could prove valuable to allow for insightful closed-form expressions and feasible optimization,
in line with what I presented here. Importantly, when incorporating longer timescales, mass
conservation constraints become invalid, and closed-form approximations lose reliability.
Future work must address this critical limitation by developing quasi-steady-state approxi-
mations that support transient phenomena like traveling plasticity waves while maintaining

analytical tractability.

Another potential extension could operate at shorter rather than longer timescales, investi-
gating how our deterministic reaction-diffusion model can incorporate meaningful stochastic
structure (such as the one I introduced in Chapter 2). While theoretically feasible, this repre-
sents a non-trivial challenge, as direct approaches using Chapman-Kolmogorov equations
become intractable due to the overwhelming number of biochemical reactions underlying
synaptic plasticity. An intriguing possibility could come from recurring to renormalization
group theory, potentially generating appropriate fluctuation and noise profiles while identi-

fying general synaptic quantities relevant from normative optimality perspectives.

These research directions are the natural following steps towards understanding synaptic
plasticity at the appropriate spatial and temporal scales, and could directly translate to com-
prehending the origins of corresponding learning and behavioral phenomena, bridging the gap
between molecular mechanisms and cognitive function, and, ultimately, understanding how

to recover the latter from pathology.
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Appendices

Appendix A: Shifted log-normal distribution

In probability theory and statistics, the log-normal distribution is a continuous probability
distribution of a random variable whose logarithm is normally distributed. That is, if the
random variable X is log-normally distributed, then Y = In(X) is normally distributed. The
log-normal distribution is parameterized by the mean, p, and standard deviation, o, of the
underlying normal distribution. The probability density function of the log-normal distribu-

tion is given by

R* 4.
— oo 5 , TE (4.37)

p(z) = ! exp [—1 (_log(mg) _ “) i

where z is the value of the log-normally distributed variable. As we will be modeling data that
can take negative values (the spines can shrink) and the standard log-normal is only defined for
positive values, z > 0, we also need one additional parameter to characterize our distribution:
the shift parameter. This parameter shifts the distribution so that z > ¢, where ¢ can be positive

(shifted to the right) or negative (shifted to the left). The probability distribution is then

B 1 1 (log(x —0) —p 2
p(z) = mexp[ (—J ) ] , zeRT (4.38)

Given access to the entire population of spine size changes, the parameters that define the log-
normal distribution can be found by transforming the sample means and standard deviations

(1, and o) of the spine size changes as follows:

A\ 2

) N2

N’log = IOg <,um " ) ~2 |’ Olog = Jlog [(& + 5) + 1] (439)
Voi + (n +9) :

where we have introduced the positive term §, which shifts the sample mean towards positive
values. The choice of § is relatively trivial as long as all the values of the dataset are positive
after the shift. This ensures that 1, is also positive, thus avoiding the log-normal distribution

transformation accumulating values around z = 0.

Once the parameters of the lognormal have been estimated, the model uses the log-normal

distribution to generate the subsequent time points. This model then takes the form
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AV, =m;, n; ~ Lognormal(f,,, 00y, 0) (4.40)

which mirrors the form of the conventional Wiener process. Here, we include the —§ term to

be able to map our log-normal back to the original range of values that we observe in the data.

We emphasize here that the change AV, for each spine is log-normal but that the population
change, i.e., the collection of all changes should still be normally distributed (in accordance
with Figure 2.2 ¢). By the central limit theorem and the assumption that the activity-indepen-
dent plasticity of the spines is independent of each other, we will obtain this Gaussian nature

as long as we have sufficiently many spines.
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Appendix B: Inter-spine distance estimation

We are interested in estimating the mean inter-synaptic distance (MI1SD) from the data
describing a linear dendritic stretch. As stated in the Methods section, each spine is given
a distance value corresponding to the distance from the closest stimulation. Moreover, this
value is negative in case the considered spine lies between different stimulations and positive

otherwise.

We start by assuming that the linear spine density is homogeneous, i.e. it does not change
with the absolute position along the dendrite at the considered length scales (10 — 100 um).
From the array of distances, we then consider only the positive values, deriving from the
spines located outside the stimulation cluster; we then sort this array in ascending order.
This sorted array now contains roughly double the amount of spines located on an average
dendritic stretch, as we have mapped two different stretches onto one. In order to estimate the
average inter-spine distance, led by this heuristic, we subsample this array, taking every second
distance value. As a final step, we compute the differences between consecutive distances and

use their average value as an estimate of the true inter-spine distance.

We quantify the goodness of this estimator using a Monte-Carlo sampling. We generate N =
105 different dendrites with 100 spines each. In accordance with [130], we use a Weibull distri-
bution

c/x c—1
. L ad —(z/s)° 441
fes =(2) (a.41)

with fixed scale and shape parameters (s and c) to generate random inter-synaptic distances
for each dendrite. We then carry out our estimation using the procedure described above, and

evaluate its performance in terms of the mean relative error

MRE = <MISD 1> (4.42)

MISD

where MI1SD is the estimated mean inter-spine distance and M1SD is the true theoretical
value MISD = sI'(1 4+ 1/c). We quantify this metric on a set of different values of ¢ and s,
focusing on parameter ranges giving rise to mean inter-spine distances between 1 and a few

microns.

The results, reported in Fig. Figure 4.19, show that the described estimator has a well-behaved,

bell-shaped distribution, with an average bias of ~ 3%, confined under a 30% error. We consider
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this error acceptable since its absolute value (~ 0.8 um) is comparable with the spatial resolu-

tion of the experimental setup used to collect the data.
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Figure 4.19: Relative error sampling of the inter-spine distance Weibull estimator. The
sampling is focused on inter-spine distances compatible with hippocampal spine densities.
Notice that the same average inter-spine distance (MISD) can be obtained with different

values of the parameters c, s). The vertical bar shows the mean relative error (MRE) of the

estimator.
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Appendix C: FK506 induced parameter changes

The parameter changes are reported for the two works described in Section 3.8. In [68], a

concentration of 2 uM FK506 was used, while in [98] the concentration amounts to 10 uM.

Work Parameter Factor Notes

[68] Average basally active kinases g 1.2 Inaccordance with [119]

Average basally active phosphatases u,  0.83  FK506 hindering effect on CaN binding
to substrate [120]

Stimulus induced phosphatases N, 0.55 Qualitatively following the reasoning
for py
Phosphatase activation spread oy 091 Posited effect of FK506 on calcineurin

rate of binding to calcium/calmodulin

[98] Average basally active kinases 13 1.8 Considering [119] and the higher
concentration of FK506 used in
experiment compared to [68]

Average basally active phosphatases u,  0.53  FK506 hindering effect on CaN binding
to substrate [120], higher FK506
concentration compared to [68]

Stimulus induced phosphatases N, 0.40  Qualitatively following the reasoning
for pp
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