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Summary

The fundamental question of how the brain encodes, processes, and retrieves stored informa

tion remains a central, unresolved challenge in neuroscientific research. This question holds 

great importance for a number of reasons, from the purest philosophical and scientific charm, 

to the plethora of technological applications its answer could bring. Maybe one of the most 

noteworthy of such applications concerns the medical field, where knowledge about behaviour 

and neuronal functioning in toto, represents the prime scientific instrument towards treat

ment. Understanding on a mechanistic, molecular level the specific role a certain biochemical 

factor plays, is the first step towards understanding how to control this factor and ultimately, 

how to correct for its malfunction.

Synaptic plasticity is regarded as one of the central mechanisms responsible for neuronal 

information encoding and, consequently, the emergence of anything that can be considered 

repeatable and investigable behaviour. The degree to which a presynaptic neuron can excite its 

postsynaptic partner upon spike arrival determines the synapse’s “strength”. Synaptic strength 

is governed by an elaborate interplay of biochemical components, and it exhibits a wide 

range of dynamical changes both across different spines and over time — a possible signature 

of memory formation. One of the most significant neuroscientific breakthroughs of the past 

century was the recognition that alterations in the strength of a synapse are not predetermined 

but instead depend critically on the activity patterns of the neurons it connects.

To understand the causes and implications of this mechanism, a number of experimental 

and theoretical studies have been conducted in the last decades. This body of work encom

passes a variety of approaches, from normative principles proposing information-theoretic 

optimality frameworks, to ad-hoc mechanistic models focusing on specific plasticity features, 

to increasingly sophisticated descriptive experiments. This research has provided remarkable 

insights into the phenomenon, slowly but steadily leading to more robust connections between 

theoretical principles and observations. Nevertheless, despite these advances, the precise 

mechanisms underlying synaptic plasticity remain poorly understood and continue to repre

sent one of the field’s most challenging questions.

A particularly challenging aspect concerns how exactly the spatio-temporal dynamics of 

synaptic plasticity emerge from the thousands of molecular components that regulate it. 

Resolving this mechanistic puzzle is essential, as it would ultimately pave the way to a consis

tent theory bridging the microscopic, causally sound, biochemical level to the macroscopic 
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(potentially optimal?) emergent level, providing a crucial key to understand the “rules” gov

erning behaviour, pathology, and, potentially, treatment. This work addresses this formidable 

question by harnessing the capabilities of dynamical modeling and optimization techniques, 

proposing and examining various mathematical frameworks that enable not only a precise 

description of recent experimental observations but also allow for novel interpretations of 

previous, apparently contradictory findings.

This thesis is organized as follows:

Chapter 1 provides a comprehensive overview of synaptic plasticity. Following a brief historical 

introduction — necessary for understanding our current position within the neuroscientific 

landscape — I will introduce the concept of synaptic plasticity, focusing on its strong compat

ibility with a biological basis of memory formation and learning. Subsequently, I will present 

the primary biochemical factors driving synaptic plasticity, with brief discussions of their 

individual functions and mutual interactions. Finally, I will conclude the chapter with the 

specific scientific questions that this thesis aims to answer.

In Chapter 2, I introduce my first original contribution, which consists of a stochastic descrip

tive model of synaptic size statistics. Building upon experimental observations, a model 

describing synaptic fluctuations is constructed from fundamental principles and developed 

incrementally in close adherence with the existing literature. After validation, the model is 

then utilized to identify possible “governing principles” of synaptic fluctuations, such as the 

tendency for large spines to shrink and small spines to grow. The focus then shifts to examining 

how synaptic stimulation affects the synaptic ensemble dynamics, utilizing an appropriately 

extended version of the baseline model. Lastly, the model is used to put forward possible 

optimality principles driving synaptic response to potentiation, focusing, in particular, on the 

effects of synaptic simulation on the synaptic population size entropy.

In Chapter 3, I present my second and main original contribution, consisting of another 

modeling endavour formulated within a different mathematical framework: reaction-diffusion 

dynamics. Starting from the data kindly provided by our experimental collaborators (T.E. 

Chater, Y. Goda), a reaction-diffusion model is introduced, describing synaptic dynamics in 

relation to two main molecular processes: protein diffusion and phosphorylation. The result

ing equations, which permit a remarkably intuitive closed-form solution, are subsequently 

fitted to the experimental data using a novel optimization toolkit (PyPesto), in close collabo

ration with the Hasenauer Group for data-driven inference (specifically E. Raimundez and D. 

Pathirana). Synaptic plasticity is then analyzed through the statistical and biochemical lens, 
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yielding surprising insights into how initial synaptic statistics, and in particular their log-

normal distribution, emerge and influence the outcome of a plasticity experiment. The model’s 

adherence to the underlying biochemistry also enables the formulation of a novel interpreta

tion of FK506′s bidirectional effects on synaptic potentiation, an observation reported across 

multiple experimental studies but not yet fully explained.

The thesis concludes with Chapter 4, which presents a comprehensive summary of results 

alongside the primary research directions that could extend these findings in future investi

gations, subdivided into broadly two main categories. From a theoretical standpoint, possible 

generalizations of the proposed models are considered, leading, among other options, to a 

“combined model” able to reconcile in a joint fashion the spontaneous, fast ensemble fluctu

ations with the synapse-specific, slower plasticity dynamics induced by the stimulus. From 

a methodological standpoint, alternative optimization choices are considered, focusing in 

particular on Bayesian hierarchical optimization - one of the most natural frameworks for a 

wide class of biological problems. A final remark ends the thesis, examining the possible appli

cations of this work in terms of basic science and, crucially, clinical and therapeutic research.
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1. Introduction

1.1. The experimental foundations of neuroscience

“How the brain works” has been one of the central questions for humanity over millennia. 

The answer to this question, representing not only a scientific endeavor but also a medical 

and, maybe even more significantly, a religious one, has been dramatically shaped by shifts 

in philosophical thought, technological innovation, and technical discovery. Ancient civiliza

tions such as the Egyptians recognized the brain’s existence, as well as its central connection to 

some of the symptoms arising from head trauma (e.g., aphasia and seizure, 17th century BC). 

The connection between brain and higher-order behavioral functions, however, was hypothe

sized only around the 5th century BC, with Alcmaeon of Croton and Hippocrates of Kos being 

among the first to propose that the brain was involved in vision, sensation, and intelligence, 

giving rise to the understanding that separated humans from animals. Remarkably, during 

the Hellenistic period, Herophilus and Erasistratus of Alexandria (among others) engaged in 

studies that involved dissecting human bodies, providing evidence for the primacy of the brain. 

They affirmed the distinction between the cerebrum and the cerebellum, and identified the 

ventricles and the dura mater. Their works are now mostly lost, and some of their discoveries 

had to be rediscovered a millennium after their death.

In the following centuries, one of the main drivers of neuroscientific research was Islamic 

medicine, led by brilliant pioneers such as Ibn Sina (latinized Avicenna). With striking moder

nity, “mental health” became, for the first time, a subject of study, seeding neuroanatomical 

investigation (e.g., the cerebellar vermis and the caudate nucleus) and most strikingly, struc

tural hypotheses about the connection between brain and behaviour (mental deficits as a result 

of frontal lobe alterations). In the European continent, this remarkable push towards discovery 

arrived with the Scientific Revolution, as a direct consequence of the methodological advances 

(generally referred to as the “Scientific Method”) pioneered by, among others, G. Galilei and F. 

Bacon. The role of electricity in nerves was first observed in dissected frogs by Luigi Galvani, 

Lucia Galeazzi Galvani, and Giovanni Aldini in the second half of the 18th century. In the same 

period, dissection studies were able for the first time to link a specific nervous region to a 

specific behavioural function, identifying the medulla oblongata as the respiratory center, as 

well as characterizing the effects of different encephalic and medullary lesions on motoricity, 

sensibility, and behavior. Other pioneering observations were conducted in the next century, 

with an increasingly quantitative characterization of medical manifestations. This is the case 
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1. Introduction

for the role of the frontal lobe in behavior (the case of Phineas Gage studied by J. Harlow in 

1848), as well as the speech-related functions of the Broca and Wernicke’s motor and temporal 

regions (P. Broca 1861, and C. Wernicke 1875). Ultimately, in 1909, K. Brodmann published a 

full cytoarchitectural characterization of the human brain, defining the 52 Brodmann areas 

still used in clinical and theoretical neuroscience to this day.

This characterization, representing the first instance of its kind, was one of the pinnacles of 

the technical revolution that involved microscopy, the prime instrument guiding histological 

research and that, with the introduction of controlled electrical lighting (in particular the 

Köhler lighting) was for the first time able to achieve resolution compatible with the theoretical 

limits of light microscopy. This technical advancement could be considered the prime instru

mental factor allowing neuroscientific research to move from a macroscopic, behavioral and 

correlational level to a microscopic, structural one.

The refinement of the microscope and the development of staining procedures (C. Golgi, S. 

Ramón y Cajal) led to the formation of the neuron doctrine, the hypothesis that the functional 

unit of the brain is the neuron. Golgi and Ramón y Cajal shared the Nobel Prize in Physiology 

or Medicine in 1906 for their extensive observations, descriptions, and categorizations of 

neurons throughout the brain. The hallmark of the 20th century, however, can be considered 

the exponential development of novel technological solutions. The invention of the electroen

cephalogram (EEG) by Hans Berger in 1929 enabled scientists to measure the brain’s electrical 

activity in real time. The development of imaging technologies, such as magnetic resonance 

imaging (MRI) and positron emission tomography (PET), revolutionized the ability to study the 

living brain’s structure and function. The groundbreaking introduction of electron microscopy 

(attributed among others to the work of Reinhold Rüdenberg, and, independently, Max Knoll 

and Ernst Ruska, 1931) allowed for the first time the description and characterization of 

subcellular structures, while immunostaining (first described by A. Coons in 1941) allowed 

researchers to specifically label (i.e., “color”) these structures with unprecedented molecular 

precision. A number of techniques sprouted from these methods, leveraging the fundamental 

biological and, especially, biochemical discoveries of the same century, and combining them 

into the methodological state of the art that can be observed today, where observation of the 

specimen can be coupled with direct, pinpoint modification (optogenetics [1], CRISPR-Cas9 

[2], among others).
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1.1. The experimental foundations of neuroscience

1.2. Synaptic plasticity: a possible implementation of memory and learning

The initial interest in synaptic plasticity emerged from a fundamental constraint in neuro

science: the apparent stability of the number of total neurons throughout adult life. In 1894, 

the Spanish neuroanatomist Santiago Ramón y Cajal confronted this puzzle and proposed a 

revolutionary hypothesis. Given that the number of neurons in the brain remained relatively 

constant after development, Cajal reasoned that memories must be formed through the 

strengthening of existing neuronal connections rather than through the generation of new 

neurons. This insight laid the groundwork for what would become one of the most influential 

concepts in neuroscience.

Cajal’s farsighted hypothesis gained substantial theoretical support fifty years later when 

Donald O. Hebb formalized this learning mechanism in his seminal work “The Organization of 

Behavior” [3]. Hebb’s postulate provided a clear mechanistic framework for synaptic modifi

cation: “When an axon of cell A is near enough to excite a cell B and repeatedly or persistently 

takes part in firing it, some growth process or metabolic change takes place in one or both 

cells such that A’s efficiency, as one of the cells firing B, is increased.” This principle, now 

known as Hebb’s rule, suggested that activities that are causally related should be reinforced 

through synaptic strengthening. The implications of Hebb’s postulate extended far beyond 

simple pairwise connections. In recurrent neural networks, where neurons are extensively 

interconnected, the consistent application of Hebbian learning could theoretically lead to the 

emergence of stable cell assemblies. These assemblies would represent coherent patterns of 

neural activity that could persist over time, potentially serving as the neural substrate for 

memories and learned behaviors.

Despite the elegance of the Hebbian framework, experimental validation proved extraordinar

ily challenging. The difficulties were multiple, and intrinsic to the nature of neural systems. 

First, the experimental resolution required to confirm synaptic strengthening between specific 

neurons demanded technological capabilities that were not available in the early-mid-20th 

century. Second, the timescales over which neuronal connections needed to remain stable to 

support long-term memory were extremely long, often corresponding to the entire lifespan of 

an organism. Third, with trillions of neurons in complex brains, identifying the specific con

nections responsible for particular memories seemed an insurmountable task. Beyond these 

practical obstacles lay deeper theoretical issues concerning the very nature of synaptic con

nections and information processing in spiking neurons. The spiking nature of neural activity 

— which likely first emerged during the Ediacaran period in association with the evolution of 
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1. Introduction

predatory behavior — presents itself computational and theoretical challenges. Unlike systems 

with continuous responses, neurons generate discrete “spikes,” creating instantaneous and 

transitory changes in intracellular voltage with specific spectral properties. This discontinuous 

nature of neural signaling made it difficult to develop a rigorous definition of what “strength

ening” a connection between two neurons means.

The technological advances achieved in the second half of the 20th century finally made it 

possible to design experiments capable of observing signs of synaptic plasticity in simpler 

organisms. A crucial breakthrough came from the studies of E. Kandel on Aplysia californica, 

a giant sea slug that later became a model organism for learning and memory. Researchers 

demonstrated that as the animal learned to withdraw its gills in response to noxious stimuli, 

the strength of the synapses involved in this defensive behavior became stronger [4]. Synaptic 

strength was operationally defined as the slope of the induced post-synaptic action potential, 

providing a quantifiable measure of connection efficacy. Conversely, as the Aplysia became 

desensitized to innocuous stimuli through repeated exposure, those same synapses became 

weaker.

A pivotal moment in the field came in 1973 when Terje Lømo and Timothy Bliss published 

groundbreaking research revealing long-lasting changes in synaptic transmission [5,6]. Their 

study showed that high-frequency electrical stimulation — termed tetanic bursting — of the 

perforant path in the hippocampus of anesthetized rabbits led to sustained enhancement 

in synaptic strength, as measured by recordings of field potentials. In the same issue of 

The Journal of Physiology, Bliss and Tony Gardner - Medwin reported analogous findings 

from recordings in freely behaving, chronically implanted rabbits, demonstrating that this 

phenomenon was not an artifact of anesthesia. These seminal papers outlined a form of 

synaptic potentiation that was both activity-dependent and remarkably persistent, lasting up 

to three days after the plasticity-inducing stimulation protocol. The phenomenon was initially 

termed “long-lasting potentiation,” but Douglas and Goddard soon coined the now-famous 

appellation “long-term potentiation” (LTP), which became the standard terminology for this 

fundamental form of synaptic plasticity [7].

In subsequent years, researchers not only further characterized LTP but also its counterpart: 

(long term) synaptic depression, or LTD. In various experimental contexts, they observed that 

dendritic spines could undergo depression both homosynaptically (at the stimulated spine 

itself) and heterosynaptically (at synapses in the neighborhood of the stimulated one). This 

led to the development of a general descriptive framework that broadly characterized poten
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1.2. Synaptic plasticity: a possible implementation of memory and learning

tiation as the synaptic response to strong input — such as when a neuron represents the next 

encoding step downstream from an active neuron — and depression as the response to weak 

input or, in the heterosynaptic case, to the echo of input received from a neighboring active 

synapse. The apparent property of heterosynaptic depression to conserve some form of “total” 

synaptic weight, or “mass”, sparked investigations into “homeostatic plasticity”. This concept 

proposed that a general activity invariance principle might prompt neurons to preserve their 

global activity levels by coupling homosynaptic potentiation with heterosynaptic depression, 

potentially maintaining the network stability while allowing for selective strengthening of 

specific connections.

The confirmation of synaptic plasticity as a strong biological correlate of behavioral learning 

provided a candidate mechanism for understanding how memories are stored in neural net

works. However, this framing revealed the inherent complexity of the question itself, as the 

very definition of “memory” required careful consideration. If memory is operationally defined 

as an organism’s ability to consistently reproduce an investigable behavior, then the “how” of 

memory storage becomes closely intertwined with the “what” a memory is. From a reductionist 

perspective, a neuronal system can be conceptualized as a deterministic recurrent network—

essentially a graph—with at most a certain degree of uncertainty (noise) in the activity of its 

nodes. Under this framework, a specific configuration of synaptic weights uniquely defines the 

average activity landscape and, consequently, the observed behavior in response to particular 

inputs. This raises a fundamental question: what is the fundamental difference between a 

“random” weight configuration from one that encodes a specific memory?

The condition of behavioral reproducibility provides one answer to this question. A weight 

configuration pertaining to an encoded memory must reliably produce the same output given 

the same input. Formally, this requirement can be understood as the necessity for the weight 

configuration to support attractors in the network’s configuration space. If these attractors 

— rather than specific solutions — can be mapped to recognizable behaviors, they could be 

experimentally interpreted as memories. This minimal, arguably Occamian definition has 

generated an impressive corpus of work in recent decades, in line with the computational 

revolution of the 21st century. Researchers have demonstrated how attractor network dynamics 

in various settings can be recognized in neuronal recordings, laying a potential foundation for 

a theoretical understanding of biological learning and information processing.

The extreme simplification that provides the generality and power of the attractor network 

approach also constitutes its main limitation. After understanding the mathematical structure 
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that the biological brain hypothetically implements, researchers are confronted with another 

“how”: how does the unfathomably complex network of biological and biochemical events 

taking place in each neuron — unfolding over multiple spatial and temporal scales — lead 

to mean behavior compatible with abstract network dynamics? If synaptic weights represent 

the “how” at the network level, then the molecular factors and their interactions driving 

synaptic plasticity constitute the “how” at the level immediately below. This multi-scale 

nature of neural function — from molecules to networks to behavior — constitutes one of the 

most significant challenges in contemporary neuroscience, requiring integration across vastly 

different levels of biological organization to achieve a complete understanding of memory 

formation and storage.

1.3. Molecular basis of synaptic plasticity

To understand the molecular basis of synaptic plasticity, it is good to begin with the definition 

of synaptic strength: the slope of the excitatory post-synaptic potential (EPSP) measured at the 

time of pre-synaptic spike arrival. Changing synaptic strength, or equivalently the weight of 

the synapse, involves modifying the amount of ionic current that enters the post-synaptic side 

of the neuronal synapse following neurotransmitter release from the pre-synaptic terminal 

upon arrival of an action potential.

In the following discussion, I will specifically focus on excitatory synapses, where the released 

neurotransmitter induces the influx of cationic current, thereby increasing and exciting 

the post-synaptic potential. These synapses are predominantly glutamatergic, meaning that 

glutamate serves as the primary neurotransmitter released from the presynaptic terminal. 

Once glutamate is released into the synaptic cleft, it rapidly diffuses and binds to glutamate 

receptors, a family of receptors located on the postsynaptic cellular membrane. In particular, 

two elements of this family, each possessing distinct kinetic properties, play a remarkably 

important role as plasticity drivers.

AMPA (𝛼-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors (AMPARs) repre

sent ionotropic receptors responsible for fast excitatory synaptic transmission in the central 

nervous system. These receptors form tetrameric complexes composed of various combina

tions of four subunits—GluA1, GluA2, GluA3, and GluA4—which collectively influence their 

ion selectivity and kinetic properties. When glutamate binds to AMPARs, they rapidly open to 
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permit the entry of sodium (Na+) ions, and in certain configurations calcium (Ca2+) ions, into 

the postsynaptic neuron, resulting in fast signal transmission.

NMDA (N-methyl-D-aspartate) receptors (NMDARs) constitute another class of ionotropic 

glutamate receptors, playing a crucial role in excitatory neurotransmission within the central 

nervous system. Structurally, these receptors are large macromolecular complexes formed 

from various combinations of three types of subunits: GluN1, GluN2 (A-D), and GluN3 (A-

B). The precise subunit composition determines the receptor’s kinetic properties and impact 

on synaptic plasticity. NMDA receptors are distinguished from AMPARs by their unique 

activation requirements: both glutamate and either glycine or D-serine must bind for the 

channel to open. Additionally, their ion channel is blocked by magnesium ions at resting 

membrane potential, with this block only relieved through sufficient depolarization. This dual 

requirement makes NMDARs effective “coincidence detectors,” as they require simultaneous 

presynaptic glutamate release and postsynaptic depolarization for activation. Once opened, 

NMDA receptors conduct calcium (Ca2+), sodium (Na+), and potassium (K+) ions. The high 

permeability to Ca2+ is particularly significant, as calcium influx through NMDARs triggers 

intracellular signaling cascades that ultimately mediate synaptic plasticity, both potentiating 

and depressing.

The opening of these channels allows cationic current influx, generating an EPSP that, if 

capable of traversing the dendrite and reaching the soma, can induce action potential gener

ation in the post-synaptic neuron, effectively relaying the input to downstream portions of 

the neuronal circuit. The temporal profile of the synaptic EPSP depends on the quantity of 

(glutamatergic) receptors present in the post-synaptic terminal, more specifically in the post-

synaptic density (PSD). To modify synaptic weight, therefore, one primary mechanism involves 

changing the number of glutamatergic receptors, particularly AMPA receptors, exposed on 

the membrane. While the relationship between receptor number and synaptic strength is 

not entirely bijective — additional factors, for example, include the exposed AMPAR subunit 

composition or their fraction included in PSD nanodomains — this relationship holds true to 

a reasonable degree of approximation.

Understanding how synaptic weight changes, and therefore how synaptic plasticity operates, 

requires comprehension of the processes that drive receptor integration and removal from 

the post-synaptic membrane. As is common in biological systems, the answer to this question 

is complex, involving hundreds of processes that shape the final outcome across multiple 

timescales. However, two processes can be considered the main drivers of synaptic change.
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Protein synthesis is the first of these processes, producing new receptor copies from mRNAs. 

This can occur either in the neuronal cell body, with receptors subsequently migrating to 

spines of interest through diffusion within the dendritic volume or along its surface, or locally 

within the spines themselves. Increasing the pool of receptors available for exocytosis and 

exposure on the synaptic surface translates to an increase in effectively exposed receptors, as 

their number depends on the dynamic equilibrium between the exocytosis and endocytosis 

rates. This relationship implies that when a general increase in receptor resources occurs 

throughout the entire neuron, and these resources can diffuse and enter all available spines 

in an unbiased manner, an overall increase in synaptic weight is observed—a process some

times referred to as multiplicative potentiation. Conversely, if the total amount of resources 

decreases, a proportional decrease in synaptic strength should be observed throughout the 

entire neuron. Importantly, protein translation is not a rapid process and is classically associ

ated with synaptic changes unfolding over hours, primarily linked to long-term and structural 

plasticity.

Protein phosphorylation, and its inverse, dephosphorylation, represent the second major 

mechanism of synaptic weight change. Within dendritic spines, a rich molecular network 

regulates the phosphorylation of various plasticity-related factors, particularly glutamatergic 

receptors and protein translation mediators. Unlike protein translation, phosphorylation acts 

on much shorter timescales, typically minutes, with increased phosphorylation generally 

associated with synaptic potentiation promotion through mechanisms such as increased 

externalization of AMPA receptors or enhanced polymerization of the scaffolding protein beta-

actin, leading to increased synaptic size. Conversely, dephosphorylation is associated with 

synaptic depression.

The phosphorylation biochemical network implemented in each spine consists of dozens of 

different molecular types, each modulated by hundreds of targeting proteins. However, two 

enzymes have been extensively studied and are traditionally considered the central drivers 

of this process, potentially representing the core of the bow-tie architecture regulating fast 

synaptic plasticity.

Calcium/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional serine/thre

onine kinase highly concentrated in excitatory synapses throughout the brain. CaMKII is 

uniquely positioned to regulate structural and functional adaptations at synapses. Upon 

synaptic activity, calcium influx through NMDA receptors activates CaMKII via binding to 

calmodulin, followed by autophosphorylation that can sustain CaMKII activity even after 
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calcium levels diminish. CaMKII directly modulates synaptic machinery by phosphorylating 

key targets such as AMPA receptor subunits and scaffolding proteins, promoting enhanced 

AMPA receptor conductance and increased insertion into the postsynaptic membrane. This 

process strengthens synaptic connections and transforms silent synapses into active ones. 

Interestingly, it has been reported that CaMKII is also involved in long-term depression (LTD), 

mediating activity-dependent synaptic weakening in cerebellar Purkinje cells by altering its 

substrate specificity in response to different signaling conditions. Different CaMKII isoforms 

(α, β, δ, γ) and their subunit composition further contribute to the precision and diversity 

of synaptic plasticity modulation. Notably, the α and β isoforms have distinct affinities for 

calmodulin and actin, allowing fine regulation of synaptic strength and spine morphology.

Calcineurin (CaN), also known as protein phosphatase 2B, is a calcium/calmodulin-dependent 

serine/threonine phosphatase that acts as a negative regulator, counteracting kinase activity 

to modulate synaptic efficacy by dephosphorylating synaptic proteins such as glutamate 

receptors and ion channels. Under normal conditions, active calcineurin reduces synaptic 

strength by promoting removal of AMPA receptors. Calcineurin is implicated in both Hebbian 

plasticity mechanisms, such as long-term depression (LTD), and in the modulation of ion 

channel phosphorylation states that govern synaptic transmission and neuronal excitability. 

Moreover, calcineurin acts as a critical Ca2+-sensor, linking postsynaptic calcium dynamics to 

pathways such as retinoic acid-dependent signaling that further mediate synaptic homeostatic 

regulation.

These two enzymes act in opposing ways: CaMKII promotes synaptic potentiation while 

calcineurin hinders it and promotes depression. To understand how synaptic activity links to 

synaptic change, it is necessary to comprehend how synaptic activity connects to these two 

molecular players. Following release into the synaptic cleft, glutamate binds to both AMPA 

and NMDA receptors. AMPA receptors are primarily permeable to sodium ions, whose influx 

induces EPSP formation. NMDA receptors, however, are primarily permeable to calcium ions, 

whose influx impacts post-synaptic potential but is mainly responsible for initiating the 

calcium cascade.

One principal branch of this cascade begins with the second messenger calmodulin (CAL

cium-MODulated proteIN, CaM), a multifunctional intermediate calcium-binding messenger 

protein. After binding calcium, CaM undergoes activation through conformational change 

and proceeds to activate downstream effector molecules, including CaN and CaMKII. This 

activation occurs through reversible, non-covalent binding and, most importantly, with active 
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competition between these two enzymes for CaM. The final phosphorylation/dephosphoryla

tion regime depends on the amount of available calmodulin as well as the different binding 

affinities. It is strongly suspected that the higher affinity of calcineurin for CaM, coupled 

with the higher synaptic abundance of CaMKII, leads to the frequency-dependent plasticity 

phenomenon. Indeed, experimental observations have revealed that low-frequency activation 

of the post-synaptic terminal, with consequently lesser calcium influx and CaM activation, 

leads to synaptic depression, while high activity frequency produces the opposite effect. This 

result can be explained, at least approximately, by an ordered activation of CaN and CaMKII, 

where calcineurin activates first at low CaM concentrations, while CaMKII activates later but 

in higher amounts, shifting plasticity toward potentiation.

Understanding how this elementary principle relates to the plethora of other plasticity drivers, 

as well as to the ability of all these molecular players to diffuse outside stimulated spines into 

neighboring dendritic and synaptic regions, represents a significant challenge. The complex 

interplay between these mechanisms across multiple spatial and temporal scales continues 

to be an active area of investigation, requiring sophisticated experimental and theoretical 

approaches to fully elucidate the molecular basis of synaptic plasticity and its role in learning 

and memory formation.

1.4. Research goal

Learning and memory formation depend fundamentally on synaptic plasticity. At the biolog

ical level, synaptic plasticity emerges from complex molecular dynamics that operate across 

multiple spatial and temporal scales. While contemporary experimental approaches provide 

unprecedented insights into the remarkable intricacy of molecular factors within neuronal 

dendrites and axons, our theoretical understanding of the complete activity landscape of these 

factors, as well as their relation to synaptic stimulation, remains incomplete.

Techniques that can capture the spatial and temporal dynamics of molecular movement are 

typically limited to examining only a small number of molecules simultaneously. Conversely, 

high-throughput approaches like omics technologies, while capable of analyzing thousands of 

molecular species, provide merely static snapshots of neuronal states at discrete time points, 

lacking the temporal resolution necessary to understand dynamic processes. The investigator 

is, therefore, constrained to trade off the breadth of the observed species for the spatio-

temporal precision of their observations, accepting in both cases to work with only a partially 
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observable ground truth. This lack of observability is particularly critical within neuronal 

compartments like dendrites, where the behavior of numerous molecular species becomes 

interconnected across spatial scales spanning from tens to hundreds of microns. When an 

individual molecular component responds to stimulation, it frequently initiates elaborate 

downstream signaling networks that produce a multitude of effects throughout the neuron. 

Moreover, molecular responses to identical stimuli exhibit significant context dependency, 

influenced by both the neuron’s present state and its previous activation history.

Experimental neuroscience faces an additional major obstacle in disentangling the relative 

contributions of diverse mechanisms that govern protein dynamics. Although researchers 

can examine specific processes such as local protein synthesis with considerable precision, 

separating and quantifying the influences of concurrent mechanisms, including diffusion, 

degradation, active transport, and vesicular trafficking events such as endocytosis and exocy

tosis, remains a formidable challenge. These interconnected and overlapping processes work 

together to regulate synaptic plasticity, making it difficult to attribute observed changes to 

particular underlying mechanisms.

The role of a consistent theory is exactly to address these challenges. Numerous models of 

synaptic plasticity have been developed across a multitude of spatial and temporal scales, 

shedding light and reuniting disparate, apparently contradictory experimental observations 

under a single common theoretical framework. In this work, we follow this approach, proposing 

two mathematical models expressed in two different (although compatible) mathematical 

languages. Both these works address, from different perspectives, three very open questions 

concerning synaptic plasticity and, more in general, synaptic dynamics:

1. what are the statistical properties of a synaptic ensemble, and what are these statistical 

properties driven by;

2. how do these basal statistical properties drive the synaptic response to a stimulus, some

times even switching the response from potentiation to depression;

3. what are the spatio-temporal dynamics of a synapto-dendritic system as a whole, and how 

can these predict homo- and heterosynaptic plasticity in a joint, multi-spine plasticity 

framework.
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1.5. Contribution statement

Research is a fundamentally collective endeavor, and this is particularly evident in computa

tional neuroscience, where discoveries emerge through constant interaction between scien

tists from diverse fields, each contributing their unique perspective to the question under 

consideration. Like an architectural endeavor, the final result does not have a single true author 

but represents the collective achievement of individuals who, by sharing their respective 

expertise, enable the construction of knowledge that hopefully will belong openly to everyone.

This principle applies equally to the present thesis. Although I have carried out the theoretical 

and computational work presented here, I have never worked in isolation. To better clarify 

my specific contribution to each project while rightfully acknowledging the efforts of my col

leagues, I provided detailed attribution statements in gray boxes at the beginning of Chapters 

2 and 3, clearly delineating the role each collaborator has played in the piece of work being 

reported.
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2. Stochastic modeling of synaptic fluctuations

This chapter is adapted from the published work (star indicates shared first authorship):

M.F. Eggl*, T.E. Chater*, J. Petkovic*, Y. Goda, & T. Tchumatchenko, (2023). Linking sponta­

neous and stimulated spine dynamics. Communications biology, 6(1), 930. https://doi.org/

10.1038/s42003-023-05303-1.

The authors’ contributions are as follows: M.F.E. and J.P. analyzed the dataset and devel

oped the model; T.C. conducted the experiments; M.F.E., J.P., T.C., Y.G., and T.T. prepared 

the manuscript; M.F.E. and T.T. conceived the study. Y.G. and T.T. supervised the project.

Specifically, my contributions include the data analysis of the spontaneous synaptic dy

namics, the design and validation of the proposed models on experimental and simulated 

synaptic data, the analysis of the synaptic change autocorrelation function, as well as the 

final framing and interpretation of the obtained results.

2.1. State of the art and open challenges

Learning and memory are believed to depend on modifications in synaptic strength, involving 

the enhancement and weakening of particular synaptic connections [8–13]. Multiple inves

tigations have examined the molecular mechanisms underlying synaptic plasticity across 

minutes [14] as well as over periods spanning hours to days [6,15,16]. Although synaptic plas

ticity typically targets particular synaptic locations, synapses can also demonstrate dynamic 

behavior without directed plasticity, making it difficult to distinguish spontaneous changes 

from activity-induced modifications [17]. Synapses experience substantial size variations 

across hours and days, likely resulting from spontaneous molecular dynamics at synaptic sites 

[18–24].

Although individual synapses may undergo considerable fluctuations across time, average 

characteristics of the population demonstrate remarkable temporal stability [19,21,25–30]. 

Numerous experimentally observed synaptic size distributions display asymmetry and possess 

an extended right tail, which has been proposed to relate to optimality regarding information 

storage capacity, neuronal firing patterns, and long-range information transmission [31,32]. 

Although these distributions are typically assumed to result from the combined effects of spine 

shrinkage and growth [29,33], the relationship between activity-independent and activity-
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dependent elements remains incompletely understood [30]. Furthermore, modeling studies 

frequently rely on one key assumption: synapses maintain their characteristics indefinitely 

unless actively stimulated to change. This assumption is critical since otherwise, spontaneous 

changes would result in alterations to network function or the loss of newly learned abilities. 

Nevertheless, the reality that synaptic modifications are governed by inherently noisy molec

ular processes (such as lateral diffusion, active trafficking, endocytosis, and exocytosis [23,34]) 

suggests that spontaneous changes are unavoidable. Therefore, investigating how fundamen

tal properties of synapse populations are preserved (including probability of release, total 

receptor conductance, size, morphology, ultrastructure, and composition) across extended 

timescales represents another essential component of memory research.

This ability of synapses to maintain their characteristics is termed synaptic tenacity in the sci

entific literature [17,35]. Models connecting these observations to individual spine dynamics 

through different methodologies have been developed [18,21,28,36,37]. In the present chapter, 

we introduce a model capable of reproducing both LTP-induced spine modifications and activ

ity-independent spine fluctuations using a unified framework. It is proposed that LTP affects 

smaller spines more significantly due to their greater capacity for growth [38], whereas larger 

spines may represent stable long-term memory storage [39,40]. In the activity-independent 

context, research has demonstrated that larger spines exhibit greater variability [18,21,30]. 

Our model, drawing inspiration from the Kesten process and multiplicative dynamics from 

prior research, enabled us to replicate experimental findings related to spontaneous spine 

fluctuations while accounting for their log-normal characteristics. We were also able to apply 

our model to describe post-LTP spine behavior and document a notable increase in entropy 

(representing a measure of dendritic information storage capacity). Our findings regarding 

spontaneous spine fluctuations align with previously documented phenomena, including large 

spine variance, stable population distributions, and oscillatory spine behavior resulting from 

negative correlations between timesteps [18,19,37], and can clarify how LTP signals influence 

spontaneous spine distributions.

We propose that a fundamental process generating spontaneous spine distributions (activity-

independent spine plasticity) is altered by plasticity induction, allowing both spontaneous and 

induced spine distributions to be characterized using the same model under different model 

conditions. Consequently, before examining stimulation effects, we sought to identify the 

model mechanisms required to capture activity-independent, spontaneous spine fluctuations.
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2.2. Preliminary experimental observations

We started by turning our attention to the dataset kindly shared by our experimental collabora

tors, who conducted confocal imaging of spines on apical oblique dendrites of GFP-expressing 

CA1 pyramidal neurons in cultured hippocampal organotypic slices. In one experimental 

setup, quasi-simultaneous potentiation of a subset of spines was performed through glutamate 

uncaging, in order to induce structural LTP (sLTP). In a separate independent experimental set, 

the caged glutamate molecule was excluded from the bath, preventing spines from undergoing 

sLTP following laser illumination. This sham stimulation dataset served as our activity-

independent group. For both conditions, across 55 minutes (15 minutes pre- and 40 minutes 

post-stimulation), spine sizes are recorded at eight time points (at −15, −10, −5, 2, 10, 20, 

30, 40 minutes, where negative values indicate pre-stimulation) to examine spine dynamics. 

This dataset includes three baseline measurements, followed by glutamate uncaging or sham-

uncaging, then five additional time points. This approach enabled us to directly observe LTP 

induction effects on spine populations and incorporate how newly potentiated synapses and 

their unstimulated neighbors develop within a unified model.

Figure 2.1:  Example image from the utilized experimental dataset. a a GFP-expressing CA1 neuron 

whose spine dynamics we analyze and model. b spontaneous dynamics at the single spine level. The 

spine (marked by a white rectangle in a) exhibits both growth and shrinkage in the observed time frame.

We assessed synaptic strength at each time point by measuring spine head size [38,41,42] since 

numerous synaptic parameters correlate with head volume [43,44]. We present an example 

image, including semi-automatically generated ROIs used for spine head size measurement 

in Figure 2.1. We have marked a synapse with a white rectangle in and illustrated its varying 

sizes at different time points (Figure 2.1 b) to highlight the variable dynamics spines experi

ence. These recordings are conducted in an imaging solution containing tetrodotoxin (TTX), 

picrotoxin, and with nominally 0 𝑚𝑀 Mg2+. Under these conditions, without neuronal spiking 

and experimentally imposed stimulations, spines continuously fluctuate spontaneously in size 

across time.
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Despite this variability, the spine size distribution (Figure 2.2 a) remains remarkably stable 

over time. Its shape is right-skewed and displays an extended right tail, consistent with findings 

reported previously across various experimental studies [21,30]. Importantly, we observed 

that the spine population mean is also remarkably stable, contrasting with individual spine 

dynamics (see inset of Figure 2.2 a). We note that spine size change distributions (Figure 2.2 

c) demonstrate Gaussian behavior with no significant differences between time points (Kol

mogorov-Smirnov (KS) test not significant except for the change from +10 minutes to +20 

minutes, which is indicated by an ∗).

Figure 2.2:  Temporal stability of synaptic population statistics. a The spine sizes follow a tempo

rally stable right-skewed distribution with a long tail. Each gray line refers to a different snapshot 

distribution, which shows significant overlap. Inset: Temporal evolution of 3 randomly selected spines 

(gray) and population mean (red). b The collection of all spine changes across all time points follows a 

zero mean Gaussian distribution and a standard deviation 𝜎 ≈ 0.07 𝜇𝑚2. c Collective distributions of the 

spine size changes from time point to time point follow a Gaussian distribution. The black lines denote 

the corresponding Gaussian fits. The ∗ denotes the single distribution that is significantly different (p < 

0.05 when tested with KS-test).

We can also combine all these changes into a single distribution and calculate the sample 

mean, 𝜇, and sample standard deviation, 𝜎. The resulting distribution and sample statistics 

are shown in Figure 2.2 b. Spine size changes are consistently negatively correlated between 

adjacent time steps (see darker red colors in Figure 2.3 a). This effect occurs on the scale of 

tens of minutes in our data, which is considerably shorter than the day-long spine correlations 

(which also have smaller values) documented by previous studies [18,36]. We note that this 

correlation also continues throughout our experiments, provided the timesteps directly follow 

each other, e.g., computing the correlation of timestep 4 - timestep 2 and timestep 6 - timestep 

4.. Finally, spines of different sizes display distinct spine change distributions (Figure 2.3 c, 
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KS-test performed between samples yielded 𝑝 values all under 0.05), which are all well-char

acterized by log-normal distributions (black lines).

Figure 2.3:  Temporal features of synaptic fluctuation process. a Spine sizes display correlations 

across time, whereby the neighboring time points are negatively correlated (negative off-diagonal 

values). b Correlation of two time points. c Evaluating spine size changes as a function of the spine size 

across time points shows that small spines exhibit a narrow distribution of changes, while larger spines 

show larger variability. Black lines represent the corresponding log-normal fits of the data.

These experimentally observed findings in our data lead us to the following question: given 

individual spine dynamics (oscillatory, small vs large), how is the steady size distribution 

maintained? We address this question by introducing an abstract stochastic model that 

incorporates the minimum number of parameters to preserve tractability while capturing the 

following key characteristics of our experimental data:

1. the temporal spine dynamics must remain stable around the distribution observed in the 

dataset (Figure 2.2 a). As a result, the distribution mean must remain stable through time 

(Figure 2.2 a, inset);

2. if we begin with another distribution, e.g., a uniform or delta distribution, the model should 

return to the original stable distribution. This assumption does not emerge directly from 

the observed data but rather from the fact that, as neurons develop and change, the initial 

spines could start small and still reach the distribution of (Figure 2.2 a), which is stable over 

the timescales we consider (approximately 10 minutes). Therefore, to maintain biological 

realism, we will incorporate this feature;

3. the global dynamics of spine changes and their distribution from one time point to the next 

should follow a Gaussian distribution, (Figure 2.2 c);

4. time points directly following each other should be negatively correlated with one another 

(Figure 2.3 b), suggesting an oscillatory dynamic component.
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2.3. Designing the model

Before proceeding with the modeling, we introduce some helpful notation. Throughout this 

manuscript, we used the absolute change in spine areas, which is defined as follows:

Δ𝑉𝑖 = 𝑉𝑖 − 𝑉𝑖−1 (2.1)

To compare distributions against each other, the populations were taken (in the case where 

these samples were very large, randomly subsampled), and a Kolmogorov–Smirnov test was 

performed. Single asterisks indicate 𝑝 < 0.05. Fits of probability distribution functions were 

performed using SciPy. Correlations report the Pearson linear correlation coefficients. Unless 

reported otherwise, error bars in line plots refer to the standard error and in box-and-whisker 

plots refer to the inter-quartile range.

2.3.1. Bounded Wiener, and Ornstein-Uhlenbeck processes

We begin by examining the Gaussian distribution of the experimentally observed spine 

changes in Figure  2.2. Therefore, a purely Gaussian model (Wiener process) for the spine 

changes appears as a natural initial choice. This model has the form:

Δ𝑉𝑖+1 = 𝜂𝑖 (2.2)

where 𝜂𝑖 ∼ 𝒩︀(𝜇, 𝜎) and Δ𝑉𝑖 is the size change between time points 𝑖 and 𝑖 − 1. While this 

model is straightforward and captures the experimentally observed statistics of spine changes, 

it displays an inherent incompatibility with other experimental results. Since a Gaussian distri

bution is naturally unbounded, this model allows infinitely large (negative and positive) spine 

size values. Historically, the absence of bounds in a Gaussian distribution has been addressed 

through the introduction of bounding walls 𝑊𝑙, 𝑊𝑟 (e.g., in [18]): at each time step, the value 

𝑉𝑖+1 is reset to be within the range [𝑊𝑙, 𝑊𝑟], where 𝑊𝑙 < 𝑊𝑟. This can be accomplished, for 

example, by using either a bounce-back mechanism (i.e., a change in the opposite direction) 

or imposing no change, i.e., 𝑉𝑖+1 = 𝑉𝑖. To examine whether the introduction of walls can allow 

us to proceed with the Gaussian model, we implemented two walls (𝑊𝑙 and 𝑊𝑟) which we set 

to equal the fifth percentile and the largest experimentally observed spine size, respectively.
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Figure 2.4:  Statistical properties of the bounded Brownian process (2.2) a Synaptic size probability 

distribution. Starting from the (experimentally observed) initial condition (red), the system evolves 

(gray lines), arriving at the last simulated state (blue). b The ensemble mean of the process (blue) 

does not reach stationarity, in disagreement with the experimental observation (red). c Correlation of 

subsequent size changes, considerably smaller than the experimental observation.

The model simulations resulting from (2.2) are shown in Figure 2.4, where the dashed lines 

represent the walls. Despite good agreement with the collective spine distribution, three 

conceptual issues eliminate this model:

1. the left wall enforces an accumulation of smaller sizes that leads to the desired asymmetry, 

but also results in a complete drop-off in spines smaller than this size (Figure 2.4 a);

2. spines are free to grow until they reach the right wall value, causing an overall increase 

in the population mean and a biologically implausible growth at the right tail of the size 

distribution (Figure 2.4 a,b).

3. the negative correlation between subsequent size changes is lost due to the memory-less 

additive Gaussian noise (Figure 2.4 c).

Therefore, we will modify our model further to include a negative temporal correlation and 

achieve a biologically plausible spine size distribution. To this end, we will replace the purely 

diffusive process with an Ornstein-Uhlenbeck process. This approach was previously also used 

in [21] to model activity-independent plasticity in a framework with multiplicative noise. Here 

we will be applying it in an additive manner:

Δ𝑉𝑖+1 = −𝜃(𝑉𝑖 − 𝜇) + 𝜂𝑖 (2.3)

where 𝜃, 𝜇 are the drift terms and 𝜂𝑖 is as above. We observe that this process, characterized 

by the deterministic drift toward the long-term average 𝜇, can reproduce the experimental 

mean-reverting behavior shown in Figure 2.3 if 𝜃 is large enough. However, if we choose 𝜃 to 

be too large, all the spine sizes will eventually stabilize in a narrow neighborhood of 𝜇, which 

is inconsistent with the experimental observation that even after hours and days, there was 
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a stable and diverse set of different spine sizes [18,23]. Adopting a set of different values of 

constant 𝜇 for the different spines while maintaining a high value of 𝜃 allows the recovery of 

this phenomenon, but inevitably locks the spines into their stable size and prevents them from 

changing from one size to the other.

2.3.2. Negative momentum and non-Markovianity

To avoid these pitfalls, we introduce a drift 𝜇 that is (i) unique to each spine and (ii) time-

dependent. Thus we avoid both the global stable size as well as the local stable size. The 

simplest implementation of this principle is the introduction of a “negative-momentum” term, 

obtained by setting 𝜇 = 𝑉𝑖−1:

Δ𝑉𝑖+1 = −𝜃 (𝑉𝑖 − 𝑉𝑖−1) + 𝜂𝑖 (2.4)

This non-Markovian process contains a bounce-back mechanism that induces the spines that 

have grown in the previous step to have a higher probability of shrinking in the next one. 

Importantly, this effect vanishes at longer timescales. We implement this model by setting 

𝜃 to achieve the experimentally observed correlation. The results of the simulations can 

overcome two of the three issues illustrated above: the population mean remains stable over 

time (Figure 2.5 a, inset), and the oscillatory behavior reappears in agreement with the exper

imental observations (Figure 2.5 b). However, the additive Gaussian term is still responsible for 

improper tail-flattening and, ultimately, for improper symmetrization of the spine size distri

bution. This fact and the observation that the different spine sizes exhibit different variation 

profiles (see Figure 2.3 c) demonstrate that more complicated noise-generating models are 

required to reproduce activity-independent plasticity.

Figure 2.5:  Statistical properties of the negative-momentum model 

(2.4). Panels are presented as in Figure 2.4.
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To comprehend the required noise profile driving spine size modifications, we begin with a 

more detailed examination of the experimental data. The overall distribution of spine size 

changes across time appears to be Gaussian (Figure 2.2 b), which may suggest a model based 

on Gaussian dynamics. However, when we tested such a model, we found that there were 

fundamental issues that did not align with the experimental results.

In fact, we observe that the overall profile of the spine size population is a skewed, log-normal-

like profile (Figure 2.2 a). Additionally, when we examine the changes in spines with different 

initial values separately, the distribution of changes also displays a skewed profile (Figure 2.3 

c). Furthermore, we observe that these distributions differ from one another, indicating that 

spines belonging to different size intervals behave in a fundamentally different manner. Thus, 

we introduce a model with a noise profile, 𝜂𝑖, which is sampled from a set of log-normal 

distributions such that

Δ𝑉𝑖+1 = 𝜂𝑖, 𝜂𝑖 ∼ Lognorm(𝜇𝑙𝑜𝑔(𝑉𝑖), 𝜎𝑙𝑜𝑔(𝑉𝑖), 𝛿) (2.5)

where 𝜇𝑙𝑜𝑔 and 𝜎𝑙𝑜𝑔 are parameters that depend on the spine size 𝑉𝑖 and determine the shape of 

the log-normal sampling distribution, and 𝛿 is a location parameter (see Appendix A for more 

details). To establish the dependence of 𝜇𝑙𝑜𝑔 and 𝜎𝑙𝑜𝑔 on the size of the spine 𝑉𝑖 we assume, 

following observations seen in [18,21,30], that there exist two linear functions 𝑓𝜇 and 𝑓𝜎 that 

map spine sizes onto the corresponding log-normal change parameters. However, rather than 

identifying the linear functions that are optimal for all spines which (i) becomes computation

ally expensive, (ii) can lead to overfitting, or (iii) leads to difficulty inferring the underlying 

distribution due to insufficient data, we simplify the above model by binning spines in equal-

size bins and then evaluating the sample means and standard deviations of those bins. This 

provides exactly the linear functions 𝑓𝜇 and 𝑓𝜎 which allow us to estimate the sample means 

and deviations for all spine sizes (identified by the pedix ·𝑠), i.e.,

𝜇𝑠(𝑉 ) = 𝑓𝜇(𝑉 ), 𝜎𝑠(𝑉 ) = 𝑓𝜎(𝑉 ) (2.6)

These values can be used to estimate the parameters of the underlying normal distribution, 

which can then be transformed into the parameters to define the log-normal distribution (𝜇𝑙𝑜𝑔 

and 𝜎𝑙𝑜𝑔) using equations (2.39), generating our noise profile. We note that previous work 

(including that of [30]) found linear relations between the spine size squared and the variance 

and mean. We observed that such fits were equally effective as the fits presented here and 

led to similar results. The fits for 𝑓𝜇 and 𝑓𝜎 (Figure 2.6 a) result in the following interesting 

outcomes: (i) small spines have a positive mean change and have smaller standard deviation, 
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so they tend to grow but are less variable and (ii) large spines have a negative mean change 

and larger standard deviation, so they tend to shrink and are more variable.

After optimization, we can simulate the synaptic size process (2.5) (which we refer to as Best fit 

LN Mode), and examine the properties of arising size dynamics (Figure 2.6 b,c). The generated 

results do not recreate the desired experimental characteristics, i.e., the mean of the simulated 

distributions (inset of the same figure) decreases, and the negative correlation is too small 

(compare Figure 2.6 c and Figure 2.3 a).

Figure  2.6:  Parameter optimization and dynamics obtained with model (2.5) a Fit to data of 

the size dependent parameters 𝜇𝑙𝑜𝑔(𝑉 ) and 𝜎𝑙𝑜𝑔. b Deriving ensemble simulation does not result in a 

stable distribution compatible with the experimental observations. In the inset, the simulated mean is 

shown, which decreases significantly. c Correlation obtained from one example step of the best-fit log-

normal simulations. The value of the correlation is 𝑟 ≈ 0.1, drastically smaller than what was observed 

experimentally.

2.3.3. The LN-OU Model

We observe, however, one critical fact: by slightly modifying the “best” linear fits of the means 

and standard deviations (raising the mean and lowering the standard deviation, Figure 2.7 a), 

we obtain an alternative parametrization (Alt fit LN Model) which allows for the emergence a 

spine size distribution in excellent agreement with the distribution which was experimentally 

observed (Figure 2.7 b). Still, however, the correlation between subsequent size changes is still 

significantly underestimated (Figure 2.7 c).

We can alleviate this discrepancy by implementing the negative momentum term (cfr. (2.4)) 

together with the altered parametrization. Despite the excellent agreement with the experi

mental results, we found it necessary to use the manually tuned fits for obtaining the mean 

and the standard deviation. As such, when implementing the Alt. Fit LN model, we were not 

using the optimal fits shown in Figure 2.6. We assume that the discrepancy in using the optimal 

fits is not due to any noise arising from the experimental setup, but, instead, because we are 
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missing a crucial aspect that the “altered” fits are accounting for. These observations lead us 

to introduce two key modifications in model (2.5):

1. to recover the negative correlation between subsequent size changes, we introduce the 

negative momentum term;

2. by observing that the manual changes applied to the fits are equal across all spine bins 

(Figure 2.7 a), we propose that an additional global drift term can recover the experimentally 

reported dynamics of the spine while allowing the differential analysis of spine dynamics 

in different size groups. Therefore, we also add a global Ornstein-Uhlenbeck (OU) drift term 

(referred to as drift below).

Figure 2.7:  Effect of parameter alteration on model’s (2.5) dynamics. a Altered linear fits are used 

to achieve modeling goals. b Deriving ensemble probability distribution, achieving stability compati

ble with experimental observations. c The obtained correlation between subsequent size changes is, 

however, still smaller than required.

The parameters of our final model, referred to as the Lognormal-Ornstein-Uhlenbeck model, 

or LN-OU model

Δ𝑉𝑖+1 = Lognorm(𝜇𝑙𝑜𝑔(𝑉𝑖), 𝜎𝑙𝑜𝑔(𝑉𝑖), 𝛿)⏟
Long-term stochasticity

− 𝜃 (𝑉𝑖 − 𝜇̃)⏟
Drift

− 𝜃 (𝑉𝑖 − 𝑉𝑖−1)⏟
Negative

momentum

(2.7)

are fitted to achieve the best match to the experimental data. The resulting simulation is 

illustrated in Figure 2.8 and demonstrates that we correctly reproduced all the experimental 

data we started out with in Figure 2.2. Both the size distribution and the collective size change 

distributions are captured accurately and maintain a correct degree of negative correlation 

between subsequent size changes.
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Figure 2.8:  Synaptic dynamics obtained with model (2.7). a Synaptic size distribution emerging 

from the best linear fits (Figure 2.6 a). Stability is reached compatibly with the experimental observa

tions. b Simulated activity-independent synaptic changes, distributed compatibly with Figure 2.2 b. c 

Substantial negative correlation between subsequent size variations, compatible with the experimental 

observations.

2.4. The impact of long-term potentiation on synaptic distributions

In previous analyses, all spines along the imaged dendritic branch were grouped into a 

single set, since no unambiguous criterion existed to distinguish them. However, since we 

intentionally induced plasticity through glutamate uncaging at specific spine groups, we can 

now establish two separate spine categories: those that received stimulation (homosynaptic, 

i.e., synaptic targets that have been specifically selected for LTP) and those that remained 

unstimulated (heterosynaptic, i.e., spines located on the same dendritic segment that are not 

directly stimulated). We stress that the heterosynaptic spines, which did not receive laser 

targeting for glutamate uncaging despite being on the same dendritic branch as homosynaptic 

spines, differ from the spines in the previous sham stimulation experiments, which received 

laser targeting but lacked glutamate and therefore did not undergo potentiation. We limit our 

definition of heterosynaptic spines to those within 4 𝜇𝑚 of stimulation sites and consider them 

as one separate group. Finally, to ensure adequate numbers of homosynaptic spines, we focus 

on the experimental protocol where plasticity induction was carried out on 15 distinct spines 

on the same dendritic branch. Prior to applying the previously established LN-OU model to this 

dataset, we must examine how stimulation affects the activity-independent spine dynamics.
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Figure 2.9:  Synaptic size dynamics arising from the LTP experiment. a-b Homo- and heterosynaptic 

spine size distribution at different time points, with red and blue referring to pre- and post-stimulation, 

respectively. c Homosynaptic change distributions at each timepoint (red before, teal at, and blue after 

LTP induction). On the right, the corresponding mean and standard error are shown. Significant differ

ence in change distribution is present only at the stimulation timepoint. d As in the previous panel, but 

relative to heterosynaptic spines. This time no statistical difference is found between size variations.

Starting with the homosynaptic spine distribution (Figure  2.9 a), we observe that the pre- 

(red) and post-stimulation (blue) stationary distributions differ significantly. This difference 

is also evident in the time point means (Figure  2.9 a, top inset). This indicates that spine 

dynamics before and after stimulation can be characterized as activity-independent plasticity 

around their respective stable distributions, but the stimulation event acts instantaneously (at 

our temporal resolution) to shift the spine size distribution. To further quantify this distrib

utional change, we measured the information content or “uncertainty” within the spine size 

distributions [45]. Here, we employ Shannon entropy, which, given a random variable 𝑋 with 

probability mass function 𝑝(𝑥) is defined by

ℋ︀(𝑋) ≜ 𝔼[− log 𝑝(𝑥)] = − ∑
𝑥∈𝒳︀

𝑝(𝑥) log 𝑝(𝑥) (2.8)

In our application, 𝒳︀ represents the complete set of possible (discretized) sizes, and 𝑝(𝑥) is 

the probability of these sizes. We compute the information capacity of spine size distributions 

before and after stimulation. The lower inset in Figure 2.9 a demonstrates a significant increase 

in the neuron’s potential information-storage capacity following stimulation. Conversely, 
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Figure 2.9 b reveals that heterosynaptic spine (with distance from stimulation < 4 𝜇𝑚) size 

distributions and sample means show no significant shift during stimulation. While entropy 

does increase, this change is not significant. The time-to-time changes in both homosynaptic 

and heterosynaptic spines (Figure 2.9 c and d) resemble those of activity-independent plas

ticity (Gaussian distributions). In Figure 2.9 c, we observe that the stimulation protocol (shown 

in teal) produces a significant shift in the change distribution location, but no significant 

alteration in shape. In contrast, heterosynaptic spines show no significant differences in shape 

or location compared to other time points (Figure 2.9 d). Additionally, when examining the 

average changes at each time point (vertical black lines in the 3D plots), we find that the stim

ulation time point for homosynaptic spines is significantly elevated above other time points. 

This elevation confirms the “shift” event observed in Figure 2.9 a. We also note no significant 

differences among all other time points. Since we assume that pre-stimulation time points 

resemble activity-independent plasticity (i.e., no prior knowledge of impending stimulation 

exists), we can assume that post-stimulation spine change distributions are also governed 

by activity-independent plasticity. Heterosynaptic spines do not show such elevation, so we 

assume these spines predominantly undergo activity-independent plasticity.

We subsequently categorized the spine population by size into bins of 0.15 𝜇𝑚2, shown in 

Figure 2.10. Since we assume all non-stimulation time points represent activity-independent 

plasticity, we combine these and plot spine size changes in the left figures. The right figures 

display only the immediate post-stimulation time point. We note that all are approximated by 

log-normal distributions (black fits) (Figure 2.10 b and d). We can also compare distributions 

for each bin. The inset 𝑝 values represent KS-test results between the two datasets. Significant 

differences occurred for homosynaptic spines only below 0.5 𝜇𝑚2, and for heterosynaptic 

spines, only below 0.35 𝜇𝑚2. This finding aligns with results from [38], suggesting that small 

spines are proportionally more influenced by glutamate uncaging events and play more 

important roles in new memory acquisition. Conversely, larger spines remain more stable and 

do not change significantly from baseline activity-independent plasticity.
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2.4. The impact of long-term potentiation on synaptic distributions

Figure 2.10:  Synaptic variations, spontaneous and stimulated, relative to each size bin (bucket). 

a Homosynaptic spines, considering the non-stimulated timesteps (left) and the stimulated timestep 

(right). Black lines show a log-normal fit to the data. b Log-normal fit comparison between non-stimu

lated and stimulated timepoints, for each of the four size buckets. Red refers to the non-stimulated time 

point, and the teal to the stimulated ones. The p-value in the figure refers to a KS test performed on the 

data in panel a. c and d Same as in a and b, for heterosynaptic spines.

Finally, we observe that the stimulated spine change distribution becomes narrower for small 

(< 0.35 𝜇𝑚2) heterosynaptic spines (Figure 2.10 d, teal vs red). This narrowing appears right-

skewed, suggesting that reduced activity-independent fluctuations could be preferentially 

linked to small spine shrinkage. Unlike stimulated small spines that experience growth, neigh

boring small spines encounter stimulation only peripherally. In this scenario, growth-inducing 

components may not reach levels sufficient for actual growth while remaining present at levels 

that could still oppose (or compete with) activity-independent shrinkage.

2.5. Extending the LN-OU model to stimulated spines

When applying our model to the stimulation scenario, we must establish the new linear 

dependencies on spine size and lognormal statistics that emerge. Initially, we examine the 

sample means and standard deviations for homo- (Figure 2.11 a) and heterosynaptic spines 

39



2. Stochastic modeling of synaptic fluctuations

(Figure  2.11 b), excluding the stimulation snapshot. The resulting behaviour shows good 

agreement with previous fits (shown in gray), validating our observation that the pre-stimu

lation baseline model remains applicable.

Figure  2.11:  Fits for the linear functions 𝜇𝑙𝑜𝑔 and 𝜎𝑙𝑜𝑔 in model (2.7) on dataset with 15 

stimulations. Subsets of homo- and heterosynaptic spines were split according to size, and linear fits 

were carried out for the sample mean and standard deviation of the spine variations. a-c of the non-

stimulation snapshot of the homosynaptic spine and all snapshots of the heterosynaptic spines show 

good agreement with the activity-independent plasticity fits (gray). d Stimulation snapshot of the 

homosynaptic spine shows a substantial difference in the fit for smaller spines.

Subsequently, we examine the stimulation snapshot and find that the model fits for 

heterosynaptic spines in Figure 2.11 c show only minimal deviation in the smallest spines 

from the activity-independent baseline. Thus, for simplicity, we assume that heterosynaptic 

spines experience activity-independent baseline dynamics across all time points. In contrast, 

homosynaptic spines (Figure 2.11 d) exhibit different behavior. The standard deviation shows 

an upward tilt, indicating that the resulting log-normal distribution has enhanced its standard 

deviation and spines became more variable during stimulation. This increase is intuitive for 

several reasons: as spines undergo rapid enlargement through the potentiation protocol, their 

variance also increases because (i) they have expanded beyond the typical size range of activ

ity-independent plasticity and (ii) they now represent large spines, which have been shown to 

display greater variance than small spines.

This standard deviation increase occurs only in medium-sized bins, not in small or large spines. 

This pattern may be explained by the fact that medium spines, capable of growing to large 

spine dimensions, now display the characteristics typical of large spines, including enhanced 

variance. Moreover, in the present study, medium-sized spines were preferentially selected for 

stimulation, since prior studies have demonstrated that this population shows the greatest 

lability regarding potentiation (for instance, [38]). Lastly, the mean spine change shows a clear 

linear trend, where smaller spines exhibit larger mean increments relative to the activity-

independent plasticity fit.
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To identify which model parameters require modification to replicate the stimulation 

time point for homosynaptic spines (Figure  2.11 a), we modify each component (long-

term stochasticity and drift) of the log-normal model separately. We also assume that the 

negative momentum term represents an inherent feature of activity-independent plasticity, 

functioning as a stabilization mechanism that counteracts previous stochastic changes. Since 

stimulation constitutes directed activity, negative momentum would impede post-stimulation 

spine growth by promoting shrinkage and suggest that prior stochastic activity-independent 

plasticity directly influences subsequent activity-dependent changes. Therefore, we choose to 

disable this term in the model during stimulation to prevent this scenario. Nevertheless, future 

investigations could incorporate this or a generalized negative momentum term and examine 

its influence on the resulting synaptic size distribution.

Initially, we modified the long-term stochasticity component by implementing the linear fits 

for the stimulation time point (Figure 2.12 a). While the rapid component of stimulation is 

reproduced, maintaining constant drift causes a gradual return to the original distribution. 

This differs from our experimental observations with 15 stimulated spines (Figure  2.9 a). 

However, we do observe decay back to baseline in a separate case involving only seven stimu

lated spines (not shown).

Figure 2.12:  Fits for the linear functions 𝜇𝑙𝑜𝑔 and 𝜎𝑙𝑜𝑔 in model (2.7) on dataset with 15 stimu

lations. Subsets of homo- and heterosynaptic spines were split according to size, and linear fits were 

carried out for the sample mean and standard deviation of the spine activity. a-c of the non-stimulation 

snapshot of the homosynaptic spine and all snapshots of the heterosynaptic spines show good agree

ment with the activity-independent plasticity fits (gray). d Stimulation snapshot of the homosynaptic 

spine shows a difference in the fit for smaller spines.

This suggests that sustained LTP response correlates with increased drift and indicates that 

the long-term stochasticity component replicates immediate potentiation while drift produces 

the sustained effect. Additional support for this interpretation appears in Figure 2.12 b, where 

only the drift term is modified at all post-stimulation points, using linear fits from activity-

independent plasticity. The changes in mean and distribution occur more slowly without 
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instantaneous potentiation. Previously, long-term stochasticity and drift components oper

ated on comparable time scales. During stimulation, we observe that long-term stochasticity 

produces instantaneous structural changes in spines over our considered timescale, while drift 

toward the new steady state occurs subsequently over longer time scales. Finally, we modify 

both components by adjusting linear fits at post-stimulation time points and the drift parame

ter 𝜇 following stimulation. Figure 2.12 c shows that we reproduce distinct stable distributions 

before and after stimulation on appropriate timescales (cfr. Figure 2.12 a). Therefore, the LN-

OU model successfully reproduces experimental results for both plasticity types.

To generate the distributional jump observed in the data (Figure  2.9), we employed the 

complete linear fits (Figure 2.11 d) for the long-term stochasticity. Additionally, given that 

small spines show the greatest stimulation response, we investigated the effect of modifying 

only the smallest spine parameters in the model (Figure 2.12 d). We therefore increased only 

the sample mean of spines with initial area < 0.35 𝜇𝑚2 during stimulation and treated the 

stochastic component of all other spines as undergoing activity-independent plasticity. Drift 

parameters were applied as described above, since they influence all spines equally. In essence, 

we modified the slow component for all spines but altered the fast potentiating component 

only for the smallest spines. This modification reproduces experimental results with no dis

cernible difference from using complete linear fits (compare Figure 2.12 c and d).

We additionally computed the Shannon entropy of simulated distributions [45–47]. In all 

cases, we substantially enhance the information encoding capacity of synaptic weight distrib

utions following stimulation. However, modifying only long-term stochasticity (representing 

the short-term stimulation effect) produces a smaller entropy increase that could potentially 

decay to pre-stimulation levels after the observed period. Other model modifications emulat

ing the stimulation event show considerably higher entropy values (similar to experimental 

observations). Notably, entropy values show no significant difference between fully altered 

and small spine models. We conclude that models aiming to reproduce spine size population 

dynamics can concentrate on the smallest spines to streamline the simulation process while 

maintaining good results, at least over the time scales examined in this study.

2.6. Summary and remarks

In this study, we examined experimentally recorded population dynamics of both stimulated 

and unstimulated spines on the same dendrite. Drawing inspiration from previous work 
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[18,21,30], we have developed a model framework that incorporates the dynamics for sponta

neous and plasticity-driven spine changes observed in our data. Specifically, we identified a 

stable right-skewed distribution of spine sizes where the dynamics of small and large spines 

appear to follow distinct computational rules.

We constructed a model that operates at the synaptic population level and can be described 

by a single stochastic differential equation, avoiding detailed molecular principles such as 

those described in [36,48], following the traditional approach of previous abstract models 

[18,21,28]. Through this high-level perspective, we gained an understanding of activity-inde

pendent plasticity and incorporated multiple time scales. Previous studies (e.g., [18,21,30,48]) 

have provided a comprehensive set of stochastic modeling approaches to describe specific 

individual effects present in spine dynamics. Consistent with previous literature, we applied 

the ergodic hypothesis for our modeling. However, given the 55-minute recording window in 

our dataset, we could not directly test ergodicity or demonstrate that each spine explores the 

complete phase space.

Our model includes both fast and slow mechanisms that have implications for neuronal 

synaptic stability. The rapid spine changes that are anti-correlated with previous size changes 

may prevent a winner-take-all system by distinguishing between small and large spines. 

Ensuring that large spines shrink on average guarantees bounded spine size and aligns with 

the long tail of the spine size distribution. Moreover, in our analysis, we found that small 

spines preferentially exhibited positive size changes (Figure 2.12 d), and therefore they could 

serve as sites of information acquisition during plasticity induction. Conversely, large spines 

did not significantly alter their dynamics following stimulation, suggesting that large spines 

could help preserve the stability of previous states. In the absence of direct plasticity signals, 

we found that large spines were more variable and, on average, susceptible to shrinkage. 

Large spines, with their complex structural organization, require greater numbers of proteins, 

membrane traffic, and actin filaments for maintenance, resulting in higher energy costs. This 

would justify favoring size reduction for large spines in accordance with an energy-efficient 

(homeostatic) system that preferentially degrades large spines (older memories that became 

obsolete) to optimize storage and energy in the brain. We note that our results do not explain 

how a small subset of spines (e.g., large spines representing selected memories) can be 

preserved over timescales of days or months.

Our model builds upon and extends several modeling studies that address the differences 

in small and large spine dynamics. An early study by [18] separated small and large spines 
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into different categories based on manual group assignment to model activity-independent 

plasticity. Our work proposes a plausible mechanism for activity-independent plasticity that 

avoids such rigid categorization. Another study by [21] demonstrated that temporal changes in 

spine size could be approximated by a model incorporating two timescales using multiplicative 

dynamics and Ornstein-Uhlenbeck processes, consistent with the fast and slow components 

of our model. A different model by [28,30] employed the Kesten process to describe synaptic 

remodeling dynamics. In [48], the authors developed a molecular model that explained how 

size fluctuations and distributional shapes can emerge from stochastic assimilation and 

removal of synaptic molecules at synaptic sites. Finally, [36,37] used actin dynamics to model 

rapid, spontaneous shape fluctuations of dendritic spines, predicting that these polymeriza

tion dynamics self-organize into a critical state that generates negative correlations in spine 

dynamics on short time scales.

Furthermore, a crucial aspect of our study is the examination of both stimulation and activity-

independent plasticity within a single experimental paradigm and single mathematical model. 

Previous imaging studies have either restricted glutamate-uncaging to individual spines 

[38,49] or small spine clusters [50,51] and did not monitor population-level changes in synaptic 

sizes. Others monitored multiple spines while applying global chemicals to induce plasticity 

(e.g., [52]). Here, we could validate one of the findings of [38] that small spines are the primary 

targets for growth and, therefore, may be the substrates for new memory acquisition and, con

sequently, that large spines are likely to be the reservoirs for long-term memories [39,40,53]. 

Model justifications for distinct dynamics in small and large spines have been discussed in [54], 

which proposed a mechanism based on clusters of interacting receptors in the synaptic mem

brane, in [55], who considered a reaction-diffusion model of calcium dynamics, and in [56], 

which showed that discrete, stochastic reactions and macroscopic reactions could be exploited 

for size-dependent regulation. Remarkably, we observed that the distribution of spine sizes 

differed post compared to pre-stimulation. In contrast, we found that the changes in spine size, 

when viewed as a population across all time points (longer than 2 minutes away from plasticity 

induction), were indistinguishable from activity-independent, spontaneous changes.

Therefore, our model provides a unified stochastic framework that helps understand spine 

plasticity operating spontaneously after stimulation. Finally, we examined the entropy and 

information content of the synaptic populations. Entropy is a measure of disorder in a system 

and can be assessed by observing the diversity of synaptic sizes in a neural network. Higher 

entropy implies a more disordered system that allows for more diverse information encoding 
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capabilities. Following LTP stimulation, we observed an increase in the range of synaptic sizes 

and, thus, a larger set of possible states consistent with higher entropy. This higher entropy 

could facilitate learning by enabling the network to differentially encode a wider range of 

inputs. Secondly, entropy can also reflect the stability and robustness of synaptic connections. 

A higher entropy, reflected by a more diverse distribution of synaptic strengths, could make 

a network less sensitive to changes in individual synapses. This increased ability to buffer 

against noise or disruptions, such as the loss or weakening of specific synapses, helps promote 

the overall robustness of the network.

Our study provides not only a unified framework for understanding spontaneous versus evoked 

dynamics across spines but also helps establish a coherent view of various features related to 

spontaneous spine dynamics that align with prior reports obtained in different experimental 

preparations. Since spontaneous spine dynamics is often studied across both in vivo and in 

vitro preparations, slices, hippocampal or organotypic cultures, and across different brain 

regions, confirming or differentiating these reports within a common model framework is 

an ongoing challenge. While our experiments are conducted in slices, (e.g., [30]) has utilized 

primary culture models to image spines over hours to days while monitoring fluorescently-

tagged PSD components. Similarly, [18] worked in hippocampal slices and employed different 

blockers to silence neuronal activity while observing several spine dynamics features compat

ible with our model and data. Other studies, such as [21], imaged dendritic spines in vivo 

in the auditory cortex, measuring populations of spines over days to weeks. During imaging 

sessions, the mice were lightly anesthetized, but activity at these synapses evolved sponta

neously between sessions, leading to synaptic strength changes. Remarkably, despite these 

differences in experimental preparations, many reported features align with our experimental 

data, including the right-skewed spine distributions and size-dependent statistics consistent 

with our model.

In conclusion, this study established a connection between activity-independent spontaneous 

spine dynamics and directed synaptic plasticity. Within this modeling framework, we were able 

to unite new and previously reported synaptic features such as stable distribution of spine 

sizes, [18,21,28], higher variability of larger spines vs. small spines [18,19,21,30], the oscillatory 

behavior of the spines [18,36], and incorporate plasticity-induced dynamics into the same 

model. This framework can open avenues for interpreting specific experimentally reported 

synaptic changes relative to spontaneous activity and help constrain plasticity models oper

ating at the circuit level.
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tic plasticity

This chapter is adapted from the following article, which is currently under review at 

Nature Communications:

J. Petkovic, M.F. Eggl, D. Pathirana, J.P. Hasenauer, S.O. Rizzoli, & T. Tchumatchenko, 

Push-and-pull protein dynamics leads to log-normal synapse1 distributions and probabilistic 

multi-spine plasticity. Preprint link: https://doi.org/10.64898/2026.01.29.702571

The authors’ contributions are as follows: J.P. and T.T. designed the study; S.O.R. provided 

the experimental data and contributed data analysis ideas; J.P. and M.F.E. analyzed the 

data; J.P. designed the model in collaboration with M.F.E., and optimized the parame

trization under the supervision of D.P and J.P.H.; J.P.-M.F.E. and D.P. prepared the paper. 

All the authors contributed to editing and reviewing the paper.

Specifically, my contributions include the analysis of the experimental data, the model 

design, the mathematical derivation of the closed form approximation, its identifiability 

analysis and subsequent optimization, as well as the conception and validation of the final 

results.

3.1. State of the art and open challenges

Synaptic plasticity is a highly complex phenomenon, driven by hundreds of molecular factors 

whose dynamics occur on a wide variety of timescales [57–60]. These dynamics, moreover, 

arise from different physical processes, from molecular diffusion and transport [61], to 

phospho-dephosphorylation [57,58,62], to protein translation [63,64], to calcium and voltage-

dependent signalling [65,66]. Recent technical and experimental advances have been able to 

shed light on the interplay of these different factors, collecting exceptionally rich datasets 

that describe synaptic features and dynamics at high spatial and temporal resolutions [67–71]. 

The complexity of these datasets was accompanied by the development of more elaborated 

computational models [68,72–75], able to navigate the vast observational landscape in a 

principled fashion, and to provide experimentally testable hypotheses.
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3.1. State of the art and open challenges

Figure 3.1:  Overview of the multi-spine plasticity phenomenon. In a synaptic plasticity experiment, 

a subset of spines is stimulated, according to the same stimulation protocol. The outcome of synaptic 

changes, however, is not uniquely defined, but rather depends on a multitude of additional, confounding 

factors, including initial synaptic sizes, the synaptic arrangement across along the dendrite, the specific 

times of observation, and the synaptic content of different protein species.

Introducing model complexity, however, leads to a reduction in the model’s tractability, 

imposing a choice between the detail of the mathematical description and the possibility to 

meaningfully interpret the prediction it provides. To tackle this issue, modelers have resorted 

to different strategies, constraining their description to the dynamics of a specific set of 

molecules [64,73,75], recurring to different levels of mechanistic abstraction [68,74,76], or 

exploring general optimality principles from a normative perspective [77,78]. Many of these 

models, however, still do not allow for a closed form solution, hindering the optimization of the 

model’s parameters and, ultimately, the interpretation of the model’s predictions. Crucially, 

the lack of a closed-form solution also complicates a clear statistical framing of these predic

tions, constraining the models to address only the average properties of plasticity response. 

This is in stark contrast with the recent theories regarding basal synaptic properties, where a 

substantial corpus of work [71,79–82] has been able to study the distributional properties of 

various synaptic metrics and, in particular, the log-normal compatible distribution followed 

by spine sizes and their weights. Despite strong experimental hints [83–85], whether and, 

especially, how these distribution impacts the synaptic response to stimulus is still an open 

question.

In this chapter, we will see how this question can be explored focusing on short-term changes 

in excitatory spine size following glutamate uncaging, examining the behaviour of a minimal 
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set of equations describing these dynamics through two fundamental processes: diffusion and 

phosphorylation. Despite its essential nature, this framework is able to capture several hall

marks of synaptic plasticity, aligning with established functional principles such as synaptic 

competition, cooperation, or the protein "tug-of-war" theory. Importantly, the model’s analyt

ical tractability and its direct connection from the underlying biochemical processes, allow 

it to account for synaptic variability while offering a direct link between a spine’s size and 

its response to induction, paving the way towards a more unified understanding of synaptic 

function.

3.2. The optimality of the multi-spine plasticity profile

This section is adapted from the following published work:

Petkovic, J., & Fioresi, R. (2024). Spontaneous emergence of robustness to light variation in 

CNNs with a precortically inspired module. Neural Computation, 36(9), 1832-1853. https://

doi.org/10.1162/neco_a_01691

The authors’ contributions are as follows: J.P. and R.F. designed the study, designed the 

modeling framework, and proved the deriving theorems; J.P. implemented the model and 

conducted the experiments; J.P. and R.F. interpreted the results and prepared the paper.

Specifically, my contributions include the translation of the existing fiber bundle frame

work to the biology of the first stages of the low visual pathway, the proofs regarding the 

smoothness of the different visual activation fields, and their lifts, as well as the PyTorch 

code for the proposed RetiLeNet CNN model.

Synaptic plasticity has been experimentally studied throughout a number of different cerebral 

regions, experimental conditions, and, importantly, stimulation regimes. Focusing on the 

response of the stimulated spine, two different behaviours can be identified, characterized 

by either an increase or a reduction in synaptic size. Historically, this has led to the splitting 

of the stimulation protocols into the two reciprocally excluding categories: potentiating and 

depressing. However, once the spines located in the neighbourhood of the stimulated one (the 

heterosynaptic spines) are considered, a much more intriguing behaviour emerges. Not only 

does the stimulus effect spread to this neighbourhood, inducing heterosynaptic plasticity, 

but the change it induces in heterosynaptic spines can also mimic or antagonize the change 

induced at the stimulus location. In total, four different plasticity profiles appear [86], going 
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3.2. The optimality of the multi-spine plasticity profile

from a fully potentiating to a fully depressing one, and passing through two “center-surround” 

scenarios where the homo and heterosynaptic changes have different signs. A crucial modeling 

question becomes, therefore, finding a molecular mechanism that is able to jointly support 

these four different scenarios.

The existence of the two center-surround plasticity profiles is particularly important for this 

question. Structurally, it suggests that a single mechanism could underlie these different 

observations, with the four plasticity profiles corresponding to four different degrees of 

a continuous, cumulative, multi-spine potentiation spectrum. Functionally, moreover, these 

profiles follow a spatial motif that has been observed across multiple regions of the brain, 

and, in particular, in relation to the low portion of the visual pathway, in the form of center-

surround receptive fields. Many theories have been put forward relating this specific spatial 

arrangement to a decoding optimality principle, e.g., showing that Gaussian Laplacian (or, 

almost equally, sums of Gaussians) minimizes the uncertainty when inferring the position 

and the orientation of a border in a perceived image. In [87], we have also shown that center-

surround filter arrangements are learned in the first layers of an extended LeNet 5 CNN model 

(which we called RetiLeNet), rendering the model invariant, for example, to contrast and 

brightness variation. This shape was learned via gradient descent, without external constraints 

being imposed on the learning process. Importantly, while this shape was clearly emerging in 

the first layers of RetiLeNet, it was not universally present, with deeper convolutional layers 

showing different arrangements.

Taken together, these observations confirm that if a single biochemical mechanism underlies 

multi-spine plasticity, it needs to possess the right amount of flexibility. If neural computations 

follow optimal encoding principles, center-surround organizations have to be able to emerge, 

for example, from the reiterated, additive action of a center-surround plasticity rule (the 

“Mexican hat” shape described in, e.g., [86] and [88]). For neural computations occurring in a 

different brain region, however, the optimal synaptic configuration could be different, and the 

same rule, possibly parametrized by different, region-specific stimulation features, has to be 

able to allow for its stabilization. In the next section, we will see how these structural insights 

can be implemented in a rigorous model, leading, ultimately, to recover a number of apparently 

contradicting results observed throughout the experimental literature.
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3.3. Designing the model

After being exposed to a stimulus, spines can show different plasticity responses, potentiating, 

depressing, or exhibiting no change in their size [89] (Figure 3.1). These responses are dictated 

by a variety of factors, related to the stimulus (e.g., its intensity, duration, the number of 

stimulated spines [70,83]), to the spine in consideration (e.g., its distance from the stimulus 

or its basal size [69,85,90]), and by the dendritic system as a whole [68,91]. Importantly, these 

responses show a large degree of stochastic variability, with a significant inverse correlation 

between the synaptic tendency to potentiate and its initial size or weight [83,84,92]. A 

suitable model for multi-spine plasticity, therefore, needs to implement three main functional 

components: the features of the stimulus applied to one (or more) spines, the spatiotemporal 

relationship between the spines and the stimulus, and some information regarding basal 

synaptic conditions. These three factors can be naturally brought together in a reaction-

diffusion framework.

Let’s start by considering the synaptodendritic system and, in particular, the protein dynamics 

that take place throughout its domain (Figure 3.2). Several different molecular processes have 

been shown to underpin synaptic plasticity, giving rise to spine size dynamics that occur on a 

range of different spatial and temporal scales [88,93–95]. Among these, the phospho-dephos

phorylation process has been classically associated with synaptic plasticity occurring on the 

minute-to-hour timescale [96–100], and has been successfully used by previous works to gain 

computational insight on various types of synaptic plasticity [75,101,102].

Consider, therefore, an abstract unphosphorylated synaptic protein resource, referred to as 

𝑈 . This resource is able to diffuse throughout the dendrite (dendritic fraction 𝑈𝑑) and fill the 

dendritic spines, indexed 𝑖 (synaptic fraction 𝑈 (𝑖)
𝑠 ). Within the dendritic spine, two general 

families of active catalysts are present: kinases (referred to as 𝐾(𝑖)) and phosphatases (referred 

to as 𝑁 (𝑖)). These two families regulate the conversion of the synaptic resource 𝑈 (𝑖)
𝑠  into its 

phosphorylated counterpart, denominated 𝑃 (𝑖), integrating it into the synaptic structure and 

leading to the experimentally observed change in synaptic size [62,103].
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3.3. Designing the model

Figure 3.2:  Model overview detailing the molecular dynamics affecting plas

ticity. A freely diffusive synaptic resource is able to permeate the spines, where 

it gets converted to its phosphorylated counterpart, inducing synaptic strength

ening and enlargement. The opposite process is also admitted, leading to synaptic 

depression and increase of the shared unphosphorylated pool.

Following the established reaction-diffusion formalism (e.g. [104]), we now give a rigorous 

definition of the above-introduced elements. We define the dendrite as the set 𝐷 = [0, 𝐿] ⊂

ℝ with length 𝐿, with 𝑛 spines located at positions 𝑥𝑖 ∈ 𝐷, 𝑖 = 1, ..., 𝑛. We also consider time 

as the real valued domain 𝑇 = [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥] ⊂ ℝ. On these domains, we define five different 

molecular families as functions of time and space. We have

• the dendritic unphosphorylated resource, defined as positive function 𝑈𝑑 : 𝐷 × 𝑇 → ℝ;

• the synaptic unphosphorylated resource, defined as 𝑛 positive functions, 𝑈 (𝑖)
𝑠 : 𝑇 → ℝ+, each 

describing the temporal evolution of the resource in the spine located at position 𝑥𝑖. Notice 

that 𝑈𝑑 and 𝑈𝑠 represent the same molecular species (unphosphorylated resource) but 

describe its behaviour in different spatial compartments (dendrite and spines);

• the remaining synaptic quantities, i.e. activated kinases, activated phosphatases, and phos­

phorylated synaptic resource are defined in line with 𝑈𝑠, giving raise, respectively, to the three 

function families 𝐾(𝑖), 𝑁 (𝑖), and 𝑃 (𝑖).

We assume the functions defined above present a sufficient degree of smoothness to undergo 

usual differentiation, as they represent classical, well-behaved physical quantities. Consider

ing a first-order approximation of the Michaelis-Menten catalytic kinetics, the final reaction-

diffusion process can be written as
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{





𝑑𝑃 (𝑖)

𝑑𝑡 (𝑡) = 𝑘𝐾 𝐾(𝑖)(𝑡) 𝑈 (𝑖)
𝑠 (𝑡) − 𝑘𝑁 𝑁 (𝑖)(𝑡) 𝑃 (𝑖)(𝑡)

𝑑𝑈(𝑖)
𝑠

𝑑𝑡 (𝑡) = 𝑘𝑖𝑛 𝑈𝑑(𝑡, 𝑥𝑖) − 𝑘𝑜𝑢𝑡 𝑈 (𝑖)
𝑠 (𝑡) − 𝑑𝑃 (𝑖)

𝑑𝑡 (𝑡)

𝜕𝑡𝑈𝑑
𝜕𝑡 (𝑥, 𝑡) = 𝐷𝑈

𝜕2𝑈𝑑
𝜕𝑥2 (𝑥, 𝑡) − ∑𝑛

𝑖=1 𝛿(𝑥 − 𝑥𝑖)[𝑘𝑖𝑛 𝑈𝑑(𝑥, 𝑡) + 𝑘𝑜𝑢𝑡 𝑈 (𝑖)
𝑠 (𝑡)]

(3.1)

where

• 𝑘𝐾  and 𝑘𝑁  are the 𝑘𝑐𝑎𝑡/𝑘𝑀  constant ratios for kinases and phosphatases respectively;

• 𝑘𝑖𝑛 and 𝑘𝑜𝑢𝑡 are the exchange constants between spine and dendrite;

• 𝐷𝑈  is the diffusion coefficient for the unphosphorylated resource.

The boundary conditions for the partial differential portion of this system will be discussed in 

the next section. In order to be able to use this model to describe synaptic changes induced by 

spine stimulation, it is now necessary to introduce the dynamics of the activated catalysts 𝐾(𝑖) 

and 𝑁 (𝑖). These, evolving in time, drive the observed changes in synaptic size. In accordance 

with the established literature [57,58,61,68,75], we assume that (i) immediately after induc

tion, the quota of activated catalysts spikes to a new higher amount, (ii) that it then decays 

exponentially with time to its basal value, and (iii) that the catalyst activation effect depends 

on the distance from stimulation in a Gaussian-shaped fashion (Figure 3.2.e). The equations 

describing such dynamics are

{







𝐾(𝑖)(𝑡) = 𝐾(𝑖)
𝑏 + Θ(𝑡 − 𝑡𝑠)𝑒

−𝑡−𝑡𝑠
𝜏𝐾 ∑𝑥𝑠

𝐾𝑠𝑒
−(𝑥𝑖−𝑥𝑠

𝜎𝐾
)

2

𝑁 (𝑖)(𝑡) = 𝑁 (𝑖)
𝑏 + Θ(𝑡 − 𝑡𝑠)𝑒

−𝑡−𝑡𝑠
𝜏𝑁 ∑𝑥𝑠

𝑁𝑠𝑒
−(𝑥𝑖−𝑥𝑠

𝜎𝑁
)

2
(3.2)

where 𝑡𝑠 and 𝑥𝑠 are the time and synaptic locations of plasticity induction, Θ is the Heaviside 

theta function, 𝜏𝐾  and 𝜏𝑁  are the active catalyst decay timescales, 𝐾(𝑖)
𝑏  and 𝑁 (𝑖)

𝑏  are the basal 

values for 𝐾 and 𝑁  at each spine 𝑖, 𝐾𝑠 and 𝑁𝑠 are the homosynaptically induced catalyst 

amounts, and 𝜎𝐾  and 𝜎𝑁  are the spatial induction decay scales (Figure 3.3).

52



3.3. Designing the model

Figure 3.3:  Sketched spatio-temporal dynamics of activated catalyst. At each spine, starting from 

a spine-specific basal value, kinases and phosphatases are increased by the stimulation in a distance-

dependent fashion. Their dynamics then exponentially decay to the initial value with constants 𝜏𝐾  and 

𝜏𝑁 .

For a synaptodendritic system composed of 𝑛 spines, this model, in its full form, is composed 

of one partial differential equation and 4 𝑛 ordinary differential equations, counting 9 + 2 𝑛 

total parameters. This represents a considerable issue, especially since, in order to validate the 

model on experimental data, it is necessary to find its optimal parametrization.

3.3.1. Quasi-steady-state approximation and closed form solution

In order to obtain a treatable closed form for the model, we start by noticing that there are 

two different processes that are taking place simultaneously in the system. One is the pure 

diffusion of 𝑈𝑑, happening along spine-free regions of the dendritic shaft (𝑥 ≠ 𝑥𝑖), while the 

other is a combination of diffusion of 𝑈𝑑, its exchange with the synapse and its phosphor-

dephosphorylation into and from 𝑃 (𝑖), happening at 𝑥 = 𝑥𝑖. Since the unbiased influx and 

outflux of protein resources into the dendrite can be considered extremely low during the 

time span of the studied phenomenon [63], and since the degradation timescale of dendritic 

proteins occurs on the timescale of days [63,64], we adopt no-flux boundary conditions for 𝑈𝑑:

𝜕𝑥𝑈𝑑(0, 𝑡) = 𝜕𝑥𝑈𝑑(𝐿, 𝑡) = 0 (3.3)

These boundary conditions allow for the conservation of the total protein resources in time. 

Indeed, if we define the total resource quantity as the sum of phosphorylated and dephospho

rylated families

Π(𝑡) = ∫
𝐷

𝑈𝑑(𝑡, 𝑥) 𝑑𝑥 + ∑
𝑛

𝑖=1
[𝑈 (𝑖)

𝑠 (𝑡) + 𝑃 (𝑖)(𝑡)] (3.4)
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we can see that it does not vary in time

𝑑
𝑑𝑡

Π(𝑡) = 𝑑
𝑑𝑡

{∫
𝐷

𝑈𝑑(𝑡, 𝑥) 𝑑𝑥 + ∑
𝑛

𝑖=1
[𝑈 (𝑖)

𝑠 (𝑡) + 𝑃 (𝑖)(𝑡)]}

= ∫
𝐷

𝜕𝑈𝑑
𝜕𝑡

(𝑡, 𝑥) 𝑑𝑥 + ∑
𝑛

𝑖=1
[𝑑𝑈 (𝑖)

𝑠
𝑑𝑡

(𝑡) + 𝑑𝑃 (𝑖)

𝑑𝑡
(𝑡)]

= ∫
𝐷\{𝑥=𝑥𝑖}

𝜕𝑈𝑑
𝜕𝑡

(𝑥, 𝑡) 𝑑𝑥

= [𝜕𝑥𝑈𝑑(𝑥, 𝑡)]𝐿0 = 0

(3.5)

where the last step is justified by the finite cardinality of the possible discontinuity points {𝑥 =

𝑥𝑖}. This is an important property that will allow us later to obtain a closed-form expression 

for 𝑃 (𝑖)(𝑡).

We now notice that multiple timescales are involved in the process. The phosphor-dephos

phorylation of 𝑈𝑠 and 𝑃 , as well as the diffusion of 𝑈𝑑, can be considered fast compared to the 

deactivation times of the activated catalysts 𝐾 and 𝑁  [57,105,106]. Conversely, the timescale 

at which the amount of activated catalysts decays corresponds to the timescale at which the 

experiment used in this work was conducted (tenths of minutes, [57]) and can be considered 

the leading timescale. We can, therefore, conduct a quasi-steady-state approximation of the 

initial equations, obtaining

{







𝑃 (𝑖)(𝑡) = 𝑘𝐾 𝐾(𝑖)(𝑡)

𝑘𝑁 𝑁(𝑖)(𝑡) 𝑈 (𝑖)
𝑠

𝑈 (𝑖)
𝑠 (𝑡) = 𝑘𝑖𝑛

𝑘𝑜𝑢𝑡
𝑈𝑑(𝑡)

𝜕2𝑈𝑑
𝜕𝑥2 (𝑥, 𝑡) = 0

(3.6)

The equation for 𝑈𝑑(𝑥, 𝑡) has become a one-dimensional Laplace equation which, considering 

the no-flux boundary conditions and the continuity of 𝑈𝑑 itself, has constant solution in space, 

for a given time:

𝑈𝑑(𝑥, 𝑡) = 𝑈𝑑(𝑡) (3.7)

Therefore, the amount of unphosphorylated dendritic resource at a given time will be equal to

∫
𝐷

𝑈𝑑(𝑡)𝑑𝑥 = 𝐿 𝑈𝑑(𝑡) (3.8)
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The exchange dynamics of unphosphorylated resources between spines and dendrite depend 

only on the geometric features of the spine neck. Since these can only favour or hinder 

molecular passage symmetrically, we can set 𝑘𝑖𝑛 = 𝑘𝑜𝑢𝑡, and therefore 𝑈 (𝑖)
𝑠 (𝑡) = 𝑈𝑑(𝑡).

We can now set about finding the closed form for 𝑃 (𝑖)(𝑡) following a procedure similar to 

the one exposed in [107]. We start by recalling the definition of the total resources (3.4), and 

noticing that we can explicitly separate it into its dendritic and synaptic component

Π = ∫
𝐷

𝑈𝑑(𝑡, 𝑥) 𝑑𝑥 + ∑
𝑛

𝑖=1
[𝑈 (𝑖)

𝑠 (𝑡) + 𝑃 (𝑖)(𝑡)] (3.9)

By substituting (3.6) and (3.8) we obtain

Π = 𝐿 𝑈𝑑(𝑡) + 𝑛 𝑈𝑑(𝑡) + ∑
𝑛

𝑖=1

𝑘𝐾
𝑘𝑁

𝐾(𝑖)(𝑡)
𝑁 (𝑖)(𝑡)

𝑈𝑑

= (𝐿 + 𝑛 + 𝑘𝐾
𝑘𝑁

∑
𝑛

𝑖=1

𝐾(𝑖)(𝑡)
𝑁 (𝑖)(𝑡)

)𝑈𝑑(𝑡)

(3.10)

which yields an expression of 𝑈𝑑 in function of the total synaptic catalysts 𝐾(𝑖) and 𝑁 (𝑖):

𝑈𝑑(𝑡) = Π
𝐿 + 𝑛 + ∑𝑛

𝑖=1
𝑘𝐾
𝑘𝑁

𝐾(𝑖)(𝑡)
𝑁(𝑖)(𝑡)

(3.11)

This expression can be now substituted into the equation (3.6) for 𝑃 (𝑖), obtaining

𝑃 (𝑖)(𝑡) = Π
𝐾(𝑖)(𝑡)
𝑁(𝑖)(𝑡)

𝑘𝑁
𝑘𝐾

(𝐿 + 𝑛) + ∑𝑗
𝐾(𝑗)(𝑡)
𝑁(𝑗)(𝑡)

(3.12)

As a final step, we define the linear spine density 𝜆 = 𝑛/𝐿 and the subsequent “geometric” 

constant Ω = 𝑘𝑁
𝑘𝐾

(1 + 𝜆)𝐿, and split the sum over 𝑗, obtaining

𝑃 (𝑖)(𝑡) = Π
𝐾(𝑖)(𝑡)
𝑁(𝑖)(𝑡)

Ω + 𝐾(𝑖)(𝑡)
𝑁(𝑖)(𝑡) + ∑𝑗≠𝑖

𝐾(𝑗)(𝑡)
𝑁(𝑗)(𝑡)

(3.13)

It is important to remark that the obtained equation is a quasi-steady-state solution to the 

general system (3.1). This implies that the predicted synaptic trajectories will be sufficiently 

accurate only after the quick processes have had time to relax. For a dendritic stretch of 

roughly 𝐿 = 70 𝜇𝑚, this time is approximately 𝐿/2𝐷𝑢 ∼ 2 𝑚𝑖𝑛. This fact, together with our 

focus on dynamics happening on the timescale of roughly one hour, allow us to consider a 

plasticity-inducing protocol lasting one minute as a “single stimulation” at 𝑡 = 𝑡𝑠. An example 
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representation of the model’s (3.13) dynamics in its validity regime is shown Figure 3.4, where 

plasticity induction is carried out on the central spine of a small dendritic stretch. We can 

see that both homosynaptic potentiation and heterosynaptic depression emerge in a Mexican-

hat-like fashion [69,89], due to the non-linear interplay between basal synaptic catalyst 

distributions and the deterministic distance-dependent induction provided by the stimulus. 

Ultimately, progressing with time, the induced changes vanish, and the system returns to its 

basal configuration.

In every spine, a dynamical equilibrium is present between the synaptic 𝑃 (𝑖) and 𝑈 (𝑖), and this 

equilibrium is strictly dependent on the ratio of synaptic kinases 𝐾(𝑖) and phosphatases 𝑁 (𝑖). 

This gives rise to important structural consequences, which can be immediately recognized 

in the (3.13). First, different basal contents of activated kinases and phosphatases directly 

translate to different spine sizes. Second, changes of the amounts of synaptic kinases and 

phosphatases induce a local change of synaptic size, while a change in the total amount of 

resources Π translates to a global, multiplicative change of all synaptic sizes. Thirdly, since 

(3.13) is a homographic function of the ratio 𝐾(𝑖)
𝑏 /𝑁 (𝑖)

𝑏  for every spine, synaptic sizes are 

prevented from undergoing runaway dynamics, as 𝑃 (𝑖) can at most reach the value of Π, when 

the ratio 𝐾(𝑖)/𝑁 (𝑖) tends to infinity. From a biochemical standpoint, this corresponds to a 

scenario where all the available resources have been segregated in the 𝑖-th spine, depriving 

the rest of the system.

In order to utilize this model, it is necessary to find the optimal value for its parameters 

via model optimization. To this end, we follow the procedure described in Section 3.4, using 

the synaptic size dynamics studied in [68]. This choice derives from the widely observed 

correlation between a spine’s volume, its (phosphorylated) protein content and, ultimately, 

its weight [67,108,109]. Since the model admits the closed form (3.13) an explicit likelihood 

can be computed and minimized, thus avoiding the necessity of numerical integration and 

computationally expensive sampling techniques.

56



3.3. Designing the model

Figure  3.4:  Plasticity dynamics simulated in 

space and time. The ratio 𝑃 (𝑖)(𝑡)/𝑃 (𝑖)
base is plotted for 

each spine at different time snapshots. According 

to our model, this value resembles the evolution of 

synaptic sizes (cfr. next sections).

3.4. Optimization

3.4.1. Structural identifiability

The model (3.13) describes the evolution of each spine on a dendrite subject to a specific 

plasticity induction protocol. Consider now a scenario where 𝑚 = 1, ..., 𝑀  different induction 

protocols have been carried out on different neurons. Each of these scenarios entails different 

stimulation locations and different dendrites, with different geometric features, different 

quantities of available resources and different basal initial conditions. For each condition, our 

model yields

𝑃 (𝑖)
𝑚 (𝑡) = Π𝑚

𝛼(𝑖)
𝑚 (𝑡)

Ω𝑚 + ∑𝑛𝑚
𝑗=1 𝛼(𝑗)

𝑚 (𝑡)
, 𝑚 = 1, ..., 𝑀 (3.14)

where, assuming that the stimulation protocol happens at 𝑡 = 0
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3. Modeling the impact of protein distributions on multi-spine synaptic plasticity

𝛼(𝑖)
𝑚 (𝑡) =

𝐾(𝑖)
𝑏,𝑚 + Θ(𝑡) 𝐾𝑠 𝑒− 𝑡

𝜏𝐾 ∑𝑥∈𝒳︀𝑚
𝑒

−(𝑥𝑖− 𝑥2

𝜎2
𝐾

)

𝑁 (𝑖)
𝑏,𝑚 + Θ(𝑡) 𝑁𝑠 𝑒− 𝑡

𝜏𝑁 ∑𝑥∈𝒳︀𝑚
𝑒

−(𝑥𝑖− 𝑥2
𝜎2

𝑁
)

(3.15)

The number of observed spines for each protocol (𝑛𝑚) and the locations of the stimulations 

(𝒳︀ = {𝑥1, ..., 𝑥1}) are available a priori from the experimental procedure. The other parameters 

used in the equations, however, are not known and need to be recovered via data fitting. In 

particular, we observe that two families of parameters have to be inferred (Table 3.1):

1. global parameters, driving the plasticity dynamics independently of the specific experimen

tal realization. These are 𝜏𝐾 , 𝜏𝑁 , 𝜎𝐾 , and 𝜎𝑁 ;

2. specific parameters, which depend on a specific experimental setup. These are the spine 

initial conditions (𝐾(𝑖)
𝑏,𝑚, 𝑁 (𝑖)

𝑏,𝑚), the available resources Π𝑚, and the dendritic geometric 

factor Ω𝑚. This parameter category is indexed by the protocol index 𝑚.

Global parameters Number

Timescales 𝜏𝑁 , 𝜏𝐾 2

Length scales 𝜎𝐾 , 𝜎𝑁 2

Stimulus contribution 𝐾𝑠, 𝑁𝑠 2

Specific parameters Number

Total resources Π𝑚 𝑀

Dendritic geometric factor Ω𝑚 𝑀

Initial kinases per spine 𝐾(𝑖)
𝑏,𝑚 ∑𝑀

𝑚=1 𝑛𝑚

Initial phosphatase per spine 𝑁 (𝑖)
𝑏,𝑚 ∑𝑀

𝑚=1 𝑛𝑚

Table 3.1:  Model parameters necessary for the simultaneous optimiza

tion of 𝑀  protocols with 𝑛𝑚 spines each. The specific parameters are 

indexed by the protocol index 𝑚, and describe quantities that can differ 

between experiments, like the total available resources in the dendrite, the 

geometry of the dendrite and the synaptic catalyst distributions at stimulus 

time.

The total number of parameters that have to be inferred when fitting data arising from 𝑀  

experimental protocols amounts to 6 + 2 𝑀 + 2 ∑𝑚 𝑛𝑚. It is not possible, however, to fit all 

these parameters together as the proposed model is not structurally identifiable due to the 

rescaling invariance for 𝑃 (𝑖)
𝑚  and 𝛼(𝑖)

𝑚  in (3.14) and (3.15):
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𝑃 (𝑖)
𝑚 (Π𝑚, 𝛼(1)

𝑚 (𝑡), ..., 𝛼(𝑛𝑚)
𝑚 (𝑡), Ω𝑚) = 𝑃 (𝑖)

𝑚 (Π𝑚, 𝑠 𝛼(1)
𝑚 (𝑡), ..., 𝑠 𝛼(𝑛𝑚)

𝑚 (𝑡), 𝑠 Ω𝑚), 𝑠 ∈ ℝ

𝛼(𝑖)(𝑡; 𝐾(𝑖)
𝑏,𝑚, 𝐾𝑠, 𝑁

(𝑖)
𝑏,𝑚, 𝑁𝑠) = 𝛼(𝑖)(𝑡; 𝑠 𝐾(𝑖)

𝑏,𝑚, 𝑠 𝐾𝑠, 𝑠 𝑁 (𝑖)
𝑏,𝑚, 𝑠 𝑁𝑠), 𝑠 ∈ ℝ

(3.16)

In other words, the full optimization problem is underdetermined. This can be solved by 

introducing two additional constraints, one for each of the two degrees of freedom. Defining, 

for clarity, the “fractionary index” symbols for the catalysts

𝐾(𝑖)
𝑏,𝑚/𝑀 =

𝐾(𝑖)
𝑏,𝑚

Ω𝑀𝑁 (𝑛𝑀)
𝑏,𝑀

, 𝑁 (𝑖)
𝑏,𝑚/𝑀 =

𝑁 (𝑖)
𝑏,𝑚

𝑁 (𝑛𝑀)
𝑏,𝑀

, 𝐾𝑠/𝑀 = 𝐾𝑠

Ω𝑀 𝑁 (𝑛𝑀)
𝑏,𝑀

, 𝑁𝑠/𝑀 = 𝑁𝑠

𝑁 (𝑛𝑀)
𝑏,𝑀

(3.17)

and for the dendritic parameter

Ω𝑚/𝑀 = Ω𝑚
Ω𝑀

(3.18)

we can rewrite the problem equations (3.14)

{





𝑃 (𝑖)

𝑚 (𝑡) = Π𝑚
𝛼(𝑖)

𝑚(𝑡)
Ω𝑚/𝑀+ ∑𝑛𝑚

𝑗=1 𝛼(𝑗)
𝑚 (𝑡)

, 𝑚 = 1, …, 𝑀 − 1

𝑃 (𝑖)
𝑀 (𝑡) = Π𝑀

𝛼(𝑖)
𝑀(𝑡)

1+ ∑𝑛𝑀
𝑗=1 𝛼(𝑗)

𝑀(𝑡)
, 𝑚 = 𝑀

(3.19)

with

𝛼(𝑖)
𝑚 (𝑡) =

𝐾(𝑖)
𝑏,𝑚/𝑀 + 𝐾𝑠/𝑀 𝑒− 𝑡

𝜏𝐾 ∑𝑥‾∈𝒳︀𝑚
𝑒

−
(𝑥𝑖−𝑥‾)

2

𝜎2
𝐾

𝑁 (𝑖)
𝑏,𝑚/𝑀 + 𝑁𝑠/𝑀 𝑒− 𝑡

𝜏𝑁 ∑𝑥‾∈𝒳︀𝑚
𝑒

−
(𝑥𝑖−𝑥‾)

2

𝜎2
𝑁

, 𝑚 = 1, ..., 𝑀 − 1

𝛼(𝑖)
𝑀 (𝑡) =

𝐾(𝑖)
𝑏,𝑚/𝑀 + 𝐾𝑠/𝑀 𝑒− 𝑡

𝜏𝐾 ∑𝑥‾∈𝒳︀𝑚
𝑒

−
(𝑥𝑖−𝑥‾)

2

𝜎2
𝐾

1 + 𝑁𝑠/𝑀 𝑒− 𝑡
𝜏𝑁 ∑𝑥‾∈𝒳︀𝑚

𝑒
−

(𝑥𝑖−𝑥‾)
2

𝜎2
𝑁

, 𝑚 = 𝑀

(3.20)

In this fashion, we set Ω𝑀  and 𝑁 (𝑛𝑀)
𝑏,𝑀  to 1 and introduce the two necessary constraints to render 

the optimization problem well posed. We can then proceed to identify a biologically plausible 

value range for the remainder of the parameters (Table 3.2) and carry out the inference for 

(3.19). As a final step, in accordance with the previous literature [67], we select a reasonable 

value for the two constraints Ω𝑀  and 𝑁 (𝑛𝑀)
𝑏,𝑀 , and recover in respect to that the optimal values 

for the full optimization problem (3.14).
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3. Modeling the impact of protein distributions on multi-spine synaptic plasticity

Parameter Unit BVs Notes

𝐾(𝑖)
𝑏,𝑚/𝑀 - 0.002 − 0.12 Supposing 4% of CaM is active basally, and equally split between 

𝐾 and 𝑁  [57,66,67]

𝐾𝑠/𝑀 - 0.07 − 3.71 Assuming that CaM is the limiting activation factor [57,66,67,101]

𝑁 (𝑖)
𝑏,𝑚/𝑀 - 0.28 − 3.5 Using the same argument as in 𝐾(𝑖)

𝑏,𝑚/𝑀  [57,66,67]

𝑁𝑠/𝑀 - 0.07 − 3.71 Assuming that calcineurin is the limiting factor [57,66,67]

𝜏𝐾 min 0 − 100 Covering bulk, local and reciprocal kinase-effector activation 
timescales [57]

𝜏𝑁 min 0 − 100 Range as in 𝜏𝐾

𝜎𝐾 𝜇𝑚 0 − 100 Wide parameter range

𝜎𝑁 𝜇𝑚 0 − 100 Wide parameter range

Ω𝑚/𝑀 - 0.3 − 3.33 Observations in [67] and general dendritic statistics

Table 3.2: Parameter boundary values (BVs) used in the optimization

3.4.2. Definition and pre-processing of the target values

The equations (3.14) describe, for every protocol 𝑚 = 1, ..., 𝑀 , the dynamics of the 𝑛𝑚 spines 

located on one dendrite. Since in our experimental data [68] each protocol is reproduced 

multiple times on different cells, we have to build a dataset containing one statistically repre

sentative dendrite for each protocol. For a given experimental protocol 𝑚, uniquely defined by 

the stimulus 𝒳︀𝑚, we proceed as follows (a graphical summary is shown in S 4.1):

1. image preprocessing: utilizing in-house developed software [110], we segment the images, 

extracting for each spine belonging to every cell the “raw integrated density” values (a 

proxy for synaptic sizes), as well as the relative temporal and spatial coordinates. We then 

conduct statistical analysis (baseline correction) on the obtained values to verify that the 

initial conditions are not significantly different between different cells as well as between 

stimulated and non-stimulated spines;

2. distance assignment: for each cell, we assign to each synapse its distance value from 

the nearest stimulation. Importantly, if the spine is located between two stimulations, we 

assign it a negative distance value. We assign a distance value of 0 to the stimulated spines;

3. average spine density: for the model (3.14) to reproduce the studied dynamics, we have to 

consider the correct number of spines located on the dendrite. We infer this parameter by 
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3.4. Optimization

estimating the mean inter-spine distance across all the cells used for each protocol. Details 

and benchmarking of the estimation procedure are reported in Appendix B;

4. binning: for each protocol 𝑚, we generate a statistically representative dendrite with 

spines located regularly at the inferred inter-spine distance, and size values equal to the 

luminosity average across different cells of the corresponding spatial bin. To avoid overlap

ping, we choose a bin width equal to the inferred inter-spine distance.

In this fashion, we obtain a dataset consisting of 6 raw integrated density fields, one for each 

protocol, effectively describing the synaptic size evolution before and after plasticity induc

tion. We use 4 of these datasets for model optimization (1, 3, 5, and 7 clustered stimulation 

protocols under control conditions), and leave out one (7 distributed stimulation protocols 

under control conditions and 7 clustered stimulation protocols under FK506 2 𝜇𝑀  condition) 

for model validation.

One final factor that needs to be considered before proceeding with the optimization, is that 

the datasets obtained with this procedure contain a reduced amount of spines (Fig. S  4.1). 

This would lead, during the fitting, to an underestimation of the factor ∑𝑗 𝛼(𝑗)(𝑡), in the 

denominator of (3.14). To correctly account for all the spines in the experimental dataset, we 

introduce a differential weighting of the spines depending on their type (stimulated, inside of 

the stimulation cluster and outside of the stimulation cluster), and compute the sum as

∑
𝑛𝑚

𝑗=1
𝛼(𝑗) ≃ |𝒳︀𝑚| 𝛼(0) + 2 ∑

𝑗∈ inside
𝛼(𝑗) + (2 − |𝒳︀𝑚|) ∑

𝑗∈ outside
𝛼(𝑗) (3.21)

where |𝒳︀𝑚| is the cardinality of 𝒳︀𝑚, i.e. the number of stimulations for the protocol 𝑚.

3.4.3. Likelihood maximization

To perform parameter estimation, we used the maximum likelihood estimate (MLE) approach. 

The optimization problem is given by

𝜃𝑀𝐿𝐸 = arg min𝜃 − log ℒ︀(𝒟︀|𝜃) (3.22)

where ℒ︀ is the probability of observing measurements 𝑦 ∈ 𝒟︀ given some system parameterized 

by 𝜃, which contains the unknown parameters given in Table Table  3.2. We minimize the 

negative logarithm of ℒ︀ for numerical efficiency.

The likelihood requires an observation model 𝐡 : ℝ𝑛𝑥 → ℝ𝑛𝑦  that maps the model space to the 

data space. The spine measurements are noisy, hence the observables 𝐲 = 𝐡(𝑥(𝑡, 𝜃), 𝜃) are re
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3. Modeling the impact of protein distributions on multi-spine synaptic plasticity

lated to data by a noise model 𝑦(𝑡𝑖, 𝑦𝑖) = 𝑦𝑡𝑖,𝑦𝑖
+ 𝜖𝑡𝑖,𝑦𝑖

, where 𝑡𝑖 ∈ {1, ⋯, 𝑛𝑡} and 𝑦𝑖 ∈ {1, ⋯, 𝑛𝑦} 

index the time points observables, respectively, and 𝜖𝑡𝑖,𝑦𝑖
 is the measurement-specific noise.

Assuming i.i.d. Student’s t-distributed noise 𝜖𝑡𝑖,𝑦𝑖
 with standard deviations 𝜎𝑡𝑖,𝑦𝑖

 computed 

from the standard error of the mean in the data and with 𝑑 degrees of freedom, and ignoring 

constants that do not affect the location of optima in the parameter estimation problem, the 

negative log-likelihood is given by

𝒥︀(𝜃) = − log ℒ︀(𝒟︀ | 𝜃) = ∑
𝑡𝑖,𝑦𝑖

𝑑𝑖 + 1
2

log
{



1 + 1
𝑑𝑖

(𝑦 − 𝑦(𝜃)
𝜎𝑡𝑖,𝑦𝑖

)
2

}



(3.23)

We used 𝑑𝑖 equal to the number of data points available for each spatial bin 𝑥𝑖. The model 

and 𝒥︀ were implemented in PyTorch [111], and the Python Parameter Estimation Toolbox 

(pyPESTO) was used with the Fides optimizer to perform parameter estimation [112,113]. We 

log-transformed parameters for efficiency, and bounds are given in Table 3.2. We used multi-

start, gradient-based optimization, with 1200 starts and with gradients computed in PyTorch.

3.4.4. Goodness of fit

We start investigating the quality of the optimization by looking at the final convergence 

values of each of the runs (Figure 3.5). As shown in the waterfall plot (Figure 3.5.a), there are 

two wide local minima (LM1 and LM2) in the parameter space, with 437 and 656 converging 

runs, respectively. The minima show almost identical final criterion values (𝑓𝑣𝑎𝑙1 = 108.88, 

𝑓𝑣𝑎𝑙2 = 108.96), as well as very similar inferred values for the parameters. Interestingly, the 

only substantial difference seems to reside in the estimates for the decay constants 𝜏𝐾  and 𝜏𝑁 , 

with LM2 converging on significantly higher values.
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3.4. Optimization

Figure 3.5:  Model optimization summary. a Cascade plot concerning the 1200 optimization runs. 

Two (almost equivalent) local minima are found (LM1 and LM2) with convergence basins covering the 

majority of the available parameter space. b Absolute residual (R) probability density (upper graph) and 

cumulative distribution functions (lower graph) for the best optimization run; 83% of the residuals fall, 

in absolute value, under the root mean squared error (RM SE = 1034.51). c Same analysis concerning 

relative residuals (RR). Importantly, a value smaller than 10% is achieved for the relative root mean 

squared error (RRM SE = 9.72%), a hallmark of good model convergence.

Following standard practice, we pick the best run converging to the best local minimum 

as providing the best estimate for the model parameters. The resulting fits to data, shown 

in S 4.2, display remarkable qualitative accuracy, correctly reproducing both homosynaptic 

potentiation at 𝑥(𝑖) = 0.00 𝜇𝑚 and heterosynaptic depression, when present. Quantitatively, 

the model achieves a 9.72% relative root mean squared error (RRMSE), with narrow and sym

metric residual and relative residual distributions (Figure 3.5). Remarkably, the same metrics 

were achieved using values for 𝜏𝐾  and 𝜏𝑁  deriving from the best run of LM2. Given their 

better compatibility with the investigated timescales, we used these values in our subsequent 

simulations.

As a final step in the optimization evaluation, we estimate the posterior distributions of the 

inferred parameters. Due to the number of parameters involved, we carry out a full Markov 

chain Monte Carlo sampling only for the six global parameters (S  4.3, adaptive parallel 

tempered sampling [114]). For the remaining parameters corresponding to the rescaled basal 

values 𝐾(𝑖)
𝑏,𝑚/𝑀  and 𝑁 (𝑖)

𝑏,𝑚/𝑀 , we inspect the convergence values of the 437 runs belonging to 

LM1, and verify that indeed, with very few exceptions, they follow a well behaved distribution 

(S 4.4).
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3.5. Inferred and observed log-normality of synaptic features

In the previous section, we carried out the parameter optimization for the model (3.19), and 

with the aid of the experimental literature, we were able to fully determine the specific param

etrization of the problem (3.13). In order to be able to utilize the general model for synaptic 

plasticity simulation, it is first necessary to find a suitable statistical description for the 

spine-specific parameters, as these correspond to stochastic quantities of which each neuron 

represents just one specific instantiation. We posit that the variability of these components 

plays a crucial role both in synaptic size distribution and in the outcome of the plasticity 

experiment, as it inevitably impacts the strength with which a spine is able to compete for 

resources.

To this end, we start by analyzing the distributions of the inferred values for 𝐾(𝑖)
𝑏  and 𝑁 (𝑖)

𝑏 , both 

independently and in a joint fashion. Log-normal patterns have been observed in relation to a 

number of synaptic metrics [115], suggesting that log-normality can arise from a fundamental 

process driving the general dynamics taking place inside the neuron. Importantly, [71,81] also 

show that log-normality can be uncoupled from neuronal activity, arguing that its emergence 

could be driven not to optimal information encoding but caused mechanistically by a different 

process.

Figure 3.6:  Joint and marginal lognormality of inferred synaptic catalytic distribution. a,b The 

inferred optimal values of synaptic 𝐾(𝑖)
𝑏  (𝑁 = 59) and 𝑁 (𝑖)

𝑏  (𝑁 = 58) each follow a log-normal compatible 

distribution. k The logarithms of the inferred synaptic catalyst amounts show a strong, significant linear 

correlation. d Graphical representation of the bivariate log-normal describing the distribution of the 

estimates of 𝐾(𝑖)
𝑏  and 𝑁 (𝑖)

𝑏 .

Given that 𝐾(𝑖)
𝑏  and 𝑁 (𝑖)

𝐵  represent the synaptic amount of molecular species undergoing 

a plethora of dynamical diffusive and transport processes, a natural probability density 

that could describe their synaptic distribution is the log-normal distribution. We test this 

hypothesis and find that, indeed, the inferred basal catalytic values do not show statistically 

significant difference from log-normal distributions (Figure 3.6 a,b). Moreover, the respective 

joint distribution shows a substantial degree of correlation (Figure 3.6 c), with a highly signif
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icant Pearson 𝑟 value of 0.84. These two findings (log-normality and correlation between 𝐾(𝑖)
𝑏  

and 𝑁 (𝑖)
𝑏 ), together with the absence of evident pathological features (visual evaluation) allow 

us to assume that the overall distribution of these two catalyst families can be modeled as 

a bivariate log-normal distribution. From our model’s perspective, each spine can therefore 

identified with a pair of values sampled from this bivariate distribution.

In order to validate the reliability of the log-normal function for describing synaptic molec

ular distributions, we turn our attention to the experimental data presented in [67], where 

confocal and super-resolution microscopy is conducted on several synaptic targets in cultured 

hippocampal neurons. Encouragingly, we find that a number of different plasticity-related 

proteins show a log-normal compatible distribution across spines, together with a high corre

lation with the scaffolding protein Homer1 (S 4.5). These features are also displayed by two 

critical synaptic catalysts, i.e. Ca2+/calmodulin-dependent protein kinase II (CaMKII) and 

Calcineurin (CaN) (Figure 3.7), which can be considered a major counterpart of the model’s 

kinase and phosphatase families.

Figure 3.7: Experimentally observed catalyst statistical features. a,b Ca2+/calmodulin-dependent 

protein kinase II (CaMKII, 𝑁 = 110) and Calcineurin (CaN, 𝑁 = 133) distribution across spines. Both 

result compatible with a log-normal distribution. c,d Correlation between synaptic Homer1 and synap

tic CaMKII/CaN signals respectively.

Importantly, in accordance with [116], the correlation observed between CaMKII/CaN and 

Homer1 allows us to derive theoretical bounds for the Pearson correlation between CaMKII and 

CaN. These bounds, evaluating to [0.05, 0.92], result compatible with the correlation inferred 

for the values of 𝐾(𝑖)
𝑏  and 𝑁 (𝑖)

𝑏 .

So far, we have observed that our optimization routine has identified the log-normality of 

the distribution of basal amounts of synaptic catalysts and phosphatases. Recurring to exper

imental data [67], we have confirmed that this distribution is indeed retrievable for a number 

of plasticity-related proteins, including, in particular, major catalyst families (CaMKII and 

Calcineurin). To provide a definitive corroboration for our choice of distribution, we now ask 

ourselves if log-normality (which, so far, was just not excluded, but never confirmed as a “true 

65



3. Modeling the impact of protein distributions on multi-spine synaptic plasticity

distribution”) can be mechanistically explained with a fundamental mechanism underpinning 

the dynamics of a wide family of synaptic proteins.

3.6. Log-normality emergence from molecular dynamics

To investigate how log-normality can emerge from a fundamental dynamic process, we resort 

to the stochastic simulation of a linear dendrite where an abstract molecule is able to diffuse 

throughout the dendritic shaft, exiting and entering the dendritic spines. Under general 

conditions, we find that the resulting synaptic distribution of this diffusive resource is undis

tinguishable from a log-normal distribution. Consider a one-dimensional dendrite of length 𝐿 

with spines located at positions 𝑥 = 𝑥𝑖, 𝑖 = 1, ..., 𝑁 . Consider now an abstract molecular family 

able to diffuse throughout the dendrite, entering and exiting the dendritic spines. Let now 

𝑚𝑑(𝑥, 𝑡) be the number of molecules at time 𝑡 in the dendritic section [𝑥, 𝑥 + 𝑑𝑥], and let 𝑚(𝑖)
𝑠 (𝑡) 

be this number in the spine connected to the dendrite at 𝑥𝑖. We can write this system as

{


𝑑𝑚(𝑖)

𝑠
𝑑𝑡 (𝑡) = 𝑘(𝑖)

𝑖𝑛𝑚𝑑(𝑥𝑖, 𝑡) − 𝑘(𝑖)
𝑜𝑢𝑡𝑚(𝑖)

𝑠 (𝑡)

𝜕𝑚𝑑
𝜕𝑡 (𝑥, 𝑡) = 𝐷𝑚

𝜕2𝑚𝑑
𝜕𝑥2 (𝑥, 𝑡) − ∑𝑁

𝑖=1 𝛿(𝑥 − 𝑥𝑖)
𝑑𝑚(𝑖)

𝑠
𝑑𝑡 (𝑡)

(3.24)

where 𝐷𝑚 is the diffusion constant of the considered molecule and 𝑘(𝑖)
𝑖𝑛  and 𝑘(𝑖)

𝑜𝑢𝑡 are the 

spine-dendrite exchange rate constants pertaining to the 𝑖-th spine, depending on a number 

of synaptic and neck features (e.g., width, shape, synaptic crowding and confinement). We 

associate to this system the no flux boundary conditions 𝜕𝑥𝑚𝑑(0, 𝑡) = 𝜕𝑥𝑚𝑑(𝐿, 𝑡) = 0, as we 

assume that the influx rate in and outside of the dendrite is low enough compared to the 

diffusion constant 𝐷𝑚. Under these conditions, the system admits the steady-state solution

{




𝑚(𝑖)
𝑠 = 𝑘(𝑖)

𝑖𝑛

𝑘(𝑖)
𝑜𝑢𝑡

𝑚𝑑

𝑚𝑑(𝑥𝑖) = 𝑚𝑑

(3.25)

with a constant value of 𝑚𝑑 throughout the dendrite, and 𝑚(𝑖)
𝑠  proportional to this value 

through the ratio of the exchange constants at the 𝑖-th spine. The solution of our original 

problem is hereby represented by the histogram of the values 𝑚(𝑖)
𝑠 , corresponding to the distri

bution density of the ratio 𝑘(𝑖)
𝑖𝑛/𝑘(𝑖)

𝑜𝑢𝑡. A crucial step of this derivation is, therefore, the choice of 

the probability distribution from which the exchange constants are sampled. We examine, in 

the next paragraphs, the effect of different plausible choices of this distribution.
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3.6. Log-normality emergence from molecular dynamics

Log-normal distribution A number of different synaptic and neck features have been found 

to follow a log-normal distribution, so this could represent a first reasonable choice for the 

statistics of 𝑘(𝑖)
𝑖𝑛  and 𝑘(𝑖)

𝑜𝑢𝑡. From such a scenario, however, it trivially follows that 𝑚(𝑖)
𝑠  would 

also follow a log-normal distribution, as the ratio of two log-normally distributed variables is 

also described by a log-normal distribution. This fact highlights the stability of log-normality 

in systems with multiplicative noise (as ours), but does not provide insight into how log-

normality emerges in the first place from a less generous, possibly additive, noise. We choose, 

therefore, to move on to more general distribution choice, focusing in particular on two 

symmetric families.

Normal distribution This distribution represents an appealing choice, due to its ability to 

naturally emerge in distributions subject to general additive noise. The ratio of normal vari

ables, however, does not have a universally defined, well-behaved distribution and strongly 

depends on the parameters driving the dividend and the divisor. There is, however, one 

physical constraint that leads to interesting properties. By definition, 𝑘(𝑖)
𝑖𝑛  and 𝑘(𝑖)

𝑜𝑢𝑡 have to be 

positive quantities, as they describe positively defined flux rates, into and from the spines. To 

respect this condition, their distributions will have to have positive means and small enough 

variances to render the probability of a negative sample negligible. In other words, they have 

to have a small enough coefficient of variation (CV). Under these conditions, it can be shown 

that the ratio of two Gaussian variables can be well approximated by a log-normal distribution, 

with the quality of the approximation decreasing with the magnitude of the coefficients of 

variation. This approximation, known in the statistical literature as delta method, is valid in 

general for every function of a narrowly distributed normal random variable. In our case, the 

derivation starts by considering the variable 𝑍 = log 𝑋/𝑌 , and approximating it via the Taylor 

expansion up to the second order

log(𝑋
𝑌

) ≈ log(𝜇𝑋
𝜇𝑌

) + 𝑋 − 𝜇𝑋
𝜇𝑋

+ 𝑌 − 𝜇𝑌
𝜇𝑌

− 1
2
[(𝑋 − 𝜇𝑋

𝜇𝑋
)

2

+ (𝑌 − 𝜇𝑌
𝜇𝑌

)
2

] (3.26)

Remembering that (𝑋 − 𝜇𝑋)/𝜇𝑋 and (𝑌 − 𝜇𝑌 )/𝜇𝑌  follow independent normal distributions 

with mean 0 and variances 𝐶𝑉 2
𝑋  and 𝐶𝑉 2

𝑌  respectively, we can find the first central momenta 

of 𝑍 up to the leading order
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𝔼[𝑍] ≈ log(𝜇𝑋
𝜇𝑌

)

𝔼[(𝑍 − 𝔼[𝑍])2] ≈ 𝐶𝑉 2
𝑋 + 𝐶𝑉 2

𝑌

𝔼[(𝑍 − 𝔼[𝑍])3] ≈ 𝐶𝑉 3
𝑋 + 𝐶𝑉 3

𝑌

…

(3.27)

the general formula for the 𝑛-th moment being

𝔼[(𝑍 − 𝔼[𝑍])𝑛] ≈ 𝔼
[
(𝑋̃ − 𝑋̃2

2
+ 𝑌 − 𝑌 2

2
)

𝑛

]


= ∑
𝑛

𝑘=0
(𝑛

𝑘
){∑

𝑘

𝑗=0
(𝑘

𝑗
)(−1

2
)

𝑗
𝔼[𝑋𝑘+𝑗] ∑

𝑛−𝑘

𝑙=0
(𝑛 − 𝑘

𝑙
)(−1

2
)

𝑙
𝔼[𝑌 𝑛−𝑘+𝑙]}

(3.28)

and allowing to show that in general the 𝑛-th moment is of the order 𝒪︀(max {𝐶𝑉𝑋, 𝐶𝑉𝑌 }𝑛). 

For small values of 𝐶𝑉𝑋 and 𝐶𝑉𝑌  the distribution 𝑍 will, therefore, be well approximated by 

a normal distribution, and the ratio 𝑋/𝑌  will consequently be compatible with a log-normal 

distribution - independently of the mean for 𝑘(𝑖)
𝑖𝑛  and 𝑘(𝑖)

𝑜𝑢𝑡. To give a quantitative evaluation of 

this compatibility, we resort to computational sampling. For every pair of coefficients of vari

ation 𝐶𝑉𝑖𝑛 and 𝐶𝑉𝑜𝑢𝑡 taken in the range [0.01, 0.22], we extract 𝑛𝑠𝑝𝑖𝑛𝑒𝑠 = 1000 “synaptic” values 

of 𝑘𝑖𝑛 ∼ 𝒩︀(0.5, 0.5 𝐶𝑉𝑖𝑛) and 𝑘𝑜𝑢𝑡 ∼ 𝒩︀(0.2, 0.2 𝐶𝑉𝑜𝑢𝑡), arbitrarily picking the mean values as 

they do not impact the approximation. We then test the resulting log-ratio log 𝑘𝑖𝑛/𝑘𝑜𝑢𝑡 for 

normality using the Anderson-Darling test, rejecting compatibility for 𝑝 < 0.05. We repeat this 

procedure 𝑛 = 1000 times and report the final ratio of log-normal compatible samples for each 

value of 𝐶𝑉𝑖𝑛 and 𝐶𝑉𝑜𝑢𝑡 (Figure 3.8).
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3.6. Log-normality emergence from molecular dynamics

Figure 3.8:  Log-normal compatibility of ratio distribution generated by normally distributed 𝑘𝑖𝑛 

and 𝑘𝑜𝑢𝑡. For each pair of coefficients of variation of 𝑘𝑖𝑛 and 𝑘𝑜𝑢𝑡 (referred to as 𝐶𝑉𝑖𝑛 and 𝐶𝑉𝑜𝑢𝑡) we 

sample 𝑛 = 1000 ratios 𝑘𝑖𝑛/𝑘𝑜𝑢𝑡 and compute the log-normal compatible fraction by testing the log-

ratio log 𝑘(𝑖)
𝑖𝑛/𝑘(𝑖)

𝑜𝑢𝑡 for normality with the Anderson-Darling test (panel b). As a significance threshold, 

we choose 𝑝 = 0.05. To give better intuition of the results, we also plot for realizations of different 𝐶𝑉  

values (panels a,c,d,e). The while squares in panel b represent instances where sampling of 𝑘𝑖𝑛 and 𝑘𝑜𝑢𝑡 
produced values smaller than zero, automatically falsifying log-normal compatibility due to ratios not 

being positive.

As expected, in this range of coefficients of variation, the log-normal compatible fraction 

results remarkably high (Figure 3.8 b,d,c). We do notice, however, that if the two CVs differ 

by more than 5%, this compatibility drops considerably, with log-ratio distributions acquiring 

pronounced left or right tails (Figure 3.8.a,e). One final source of non compatibility emerges 

when the values of the variation coefficients increase beyond ∼ 0.15: the sampled 𝑘𝑖𝑛 and 𝑘𝑜𝑢𝑡 

start including negative values, rendering the ratio distribution structurally incompatible with 

a log-normal distribution (which by definition has positive support). This leads to conclude 

that, to model a scenario where the exchange rates are driven by high coefficients of variation, 

the Gaussian distribution is not a valid modeling choice. To complete our analysis, we there

fore switch to another symmetric distribution, the Beta distributions, which is known to be a 

reasonable approximation of the Gaussian distribution for low CVs, but can also behave as a 

high CV probability density while maintaining symmetry and a positive, compact support.

Beta distribution In order to understand how the (log-)ratio behaves when 𝑘𝑖𝑛 and 𝑘𝑜𝑢𝑡 show 

a higher coefficient of variation, we model their probability density as a Beta distribution

Beta(𝑥; 𝛼, 𝛽) = 𝑥𝛼−1(1 − 𝑥)𝛽−1

B (𝛼, 𝛽)
, 𝑥 ∈ [0, 1] (3.29)
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where B(𝛼, 𝛽) is the beta function

B(𝛼, 𝛽) = ∫
1

0
𝑥𝛼−1(1 − 𝑥)𝛽−1 𝑑𝑥 (3.30)

This distribution, due to the compactness of its support, can take arbitrary variation coeffi

cient values, while giving raise to positive and symmetrically distributed values. Using the 

same procedure illustrated in the previous paragraph, we explore log-normal compatibility of 

the ratio distribution 𝑘𝑖𝑛/𝑘𝑜𝑢𝑡 extending it to a broader range of CV values, confirming that 

compatibility is reliably retrievable until roughly 𝐶𝑉 ∼ 0.35, and decays quickly thereafter due 

to an increase in the log-ratio kurtosis (Figure 3.9, in particular panel c). As before, a high 

degree of log-normal compatibility is found only when 𝐶𝑉𝑖𝑛 and 𝐶𝑉𝑜𝑢𝑡 take similar values, 

with the log-ratio exhibiting left or right skewness otherwise (Figure 3.9.a,d).

Figure 3.9:  Log-normal compatibility of ratio distribution generated by Beta distributed 𝑘𝑖𝑛 and 

𝑘𝑜𝑢𝑡. The same procedure as in Figure 3.8 is carried out. Notice that due to the compact support of the 

Beta distribution, we are able to explore a wider range of coefficients of variation, finding a considerable 

degree of log-normal compatibility even in the case of 𝐶𝑉 > 30%.

Stochastic simulation To confirm the theoretical predictions derived so far, we simulate the 

system (3.24) as a discrete-time Markov chain. In this framework, the dendrite is subdivided 

into a finite number of small volumes (of the same size), with or without a connection to 

a spine. At every time step, each compartment (dendritic volume, synapse) will be able to 

exchange the resource 𝑚 with its neighbours, following the transition equations

{

Δ𝑚(𝑖)

𝑠 (𝑡 + 1) = 𝜖(𝑖)
𝑖𝑛𝑚𝑑(𝑥𝑖, 𝑡) − 𝜖(𝑖)

𝑜𝑢𝑡𝑚(𝑖)
𝑠 (𝑡)

Δ𝑚𝑑(𝑥𝑗, 𝑡 + 1) = 𝜖𝐷[𝑚𝑑(𝑥𝑗+1, 𝑡) + 𝑚𝑑(𝑥𝑗−1, 𝑡) − 2𝑚𝑑(𝑥𝑗, 𝑡)] − 𝛿𝑖𝑗Δ𝑚(𝑖)
𝑠 (𝑡 + 1)

(3.31)

70



3.6. Log-normality emergence from molecular dynamics

where the different 𝜖 represent the different transition probabilities deriving from the respec

tive rate constants. The associated Markov transition matrix is

[






 ⋮

Δ𝑚𝑑(𝑥𝑖−1)
Δ𝑚𝑑(𝑥𝑖)
Δ𝑚(𝑖)

𝑠
Δ𝑚𝑑(𝑥𝑗+1)

⋮ ]








=

[






⋱

…
…
…
…

𝜖𝐷

0
0
0

−2𝜖𝐷

𝜖𝐷

0
0

𝜖𝐷

−2𝜖𝐷 − 𝜖(𝑖)
𝑖𝑛

𝜖𝑖𝑛
𝜖𝐷

0
𝜖(𝑖)
𝑜𝑢𝑡

−𝜖(𝑖)
𝑜𝑢𝑡
0

0
𝜖𝐷

0
−2𝜖𝐷

0
0
0
𝜖𝐷

…
…
…
…
⋱]









[






 ⋮

𝑚𝑑(𝑥𝑖−1)
𝑚𝑑(𝑥𝑖)
𝑚(𝑖)

𝑠
𝑚𝑑(𝑥𝑗+1)

⋮ ]








(3.32)

In the simulation, the exchange step is implemented as a multinomial sampling for each 

compartment, with the number of partitions equal to the number of possible transitions. By 

repeating the same CV sampling procedure carried out for Figure 3.8 and Figure 3.9, we confirm 

that indeed 𝑚(𝑖)
𝑠  shows a synaptic distribution compatible with a log-normal density under the 

hypothesized conditions on the exchange rate coefficients of variation (Figure 3.10 a,b).

Figure 3.10:  Log-normal compatibility of stochastically generated synaptic molecular distribu

tions. The same procedure as in Figure 3.8 and Figure 3.9 is carried out. As hypothesized, stochasticity 

does not impact the equilibrium synaptic molecular distributions, which follow the theoretically pre

dicted degree of log-normal compatibility.

Moreover, the simulated process is able to show two additional hallmarks which have been 

experimentally observed in relation to synaptic size dynamics [117,118], i.e. the proportion

ality between the average synaptic molecular content and its average absolute change, as well 

as the anticorrelation between changes in synaptic molecular amounts between subsequent 

observation timesteps (Figure 3.10 c,d).

Having corroborated the inferred log-normality of the basal parameters of (3.13) both through 

experimental observation and mechanistic theory and simulation, we accept it as a reliable 
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distribution for the model’s catalytic distribution. Methodologically, this allows us to complete 

the implementation of our model, structuring our next stimulations as follows:

1. first, we define a dendrite with a given number of spines, and for each of the spine we 

draw a value for 𝐾(𝑖)
𝑏  and 𝑁 (𝑖)

𝑏  from the general bivariate log-normal catalytic distribution 

(Figure 3.6 d);

2. second, we define which spines will be selected for plasticity induction, and consider the 

following computations, taking them as reference;

3. third, using the model (3.13) we compute for each spine position 𝑥𝑖 and time 𝑡 the value of 

the synaptic size 𝑃 (𝑖)(𝑡).

Importantly, since each time we instantiate a dendrite, its spines contain different amounts 

of 𝐾(𝑖)
𝑏  and 𝑁 (𝑖)

𝑏 , for each experiment we conduct multiple model runs, and evaluate the final 

result in terms of summary statistics. We assume that this is equivalent to repeating the same 

plasticity experiment in different neurons.

As a final consequence, we notice that given the log-normality of the marginals 𝐾(𝑖)
𝑏  and 𝑁 (𝑖)

𝑏  

immediately implies the log-normality of the ratio 𝐾(𝑖)
𝑏 /𝑁 (𝑖)

𝑏  and, through (3.13), the widely 

observed log-normality of synaptic sizes (Figure 3.11). In this regard, one starts by observing 

that the quasi-steady state approximation introduced in Section 3.3.1 leads to the interme

diate expression for spine sizes

𝑃 (𝑖)(𝑡) = 𝑘𝐾
𝑘𝑁

𝐾(𝑖)

𝑁 (𝑖) 𝑈𝑑 (3.33)

as 𝑈 (𝑖)
𝑠  has balanced out with the dendritic quota 𝑈𝑑, which itself is constant along the dendrite. 

For a fixed time 𝑡, the probability density of 𝑃 (𝑖) will therefore be equal to the ratio of the 

probability densities of 𝐾(𝑖) and 𝑁 (𝑖). Having found that these two densities are jointly log-

normal, their ratio also follows a log-normal distribution.
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3.6. Log-normality emergence from molecular dynamics

Figure 3.11:  Statistical features of the synaptic plasticity-related proteins. When presented, log-

normality is assessed by testing the logarithms of the data for normality with the Anderson-Darling (AD) 

test. A resulting p-value higher than 0.05 denotes a positive test. a Synaptic steady-state distribution of 

a freely diffusive abstract molecule, showing strong compatibility with a log-normal distribution (𝑁 =
1000). b Quantile-quantile plot (QQ plot) comparing the known theoretical distribution of the diffusive 

molecule (ratio distribution) with a fitted log-normal. From both the visual inspection and the linear 

correlation coefficient, the two distributions are experimentally indistinguishable. c,d Experimentally 

observed (𝑁 = 1105) and model simulated (𝑁 = 1000) distributions of synaptic sizes. Both are compat

ible with a log-normal distribution.

In summary, we set out to find a suitable probability density describing the fitted values of 

𝐾(𝑖)
𝑏  and 𝑁 (𝑖)

𝑏 . We start by exploring the synaptic distribution of a freely diffusing molecule 

under general dynamical conditions, and find that it is statistically undistinguishable from a 

log-normal distribution. We verify that a number of synaptic proteins, and specifically plas

ticity-related catalysts, show a log-normal compatible distribution across spines, and a high 

degree of correlation with the structural protein Homer1. We confirm that the optimal para

meter values inferred for our model’s 𝐾(𝑖)
𝑏  and 𝑁 (𝑖)

𝑏  follow a bivariate log-normal distribution, 

with correlations compatible with the ones observed experimentally. Finally, we show that 

our model, endowed with this bivariate distribution, is able to reproduce the experimentally 

observed log-normal distribution of synaptic sizes, a feature that directly emerges from the 

properties of log-normal distributions and their ratios.

3.7. The effect of inter-stimulus distance on the plasticity profile

After understanding the statistical properties of the molecular factors underpinning our 

model, we move on to understanding its predictive power. In particular, we are interested 

in exploring whether and how the protein variability that we observed for the model’s basal 

conditions can impact the synaptic response to an induction protocol, possibly challenging 

result interpretation in an experimental setting.
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Also, more importantly, we are interested in testing the reliability of the optimized model in 

reproducing synaptic plasticity experiments that were not used for the fitting.

Figure 3.12:  Model validation with plasticity prediction. a The model is able to predict the skewed 

distribution of the post-pre size ratios at the stimulation locations (Kolmogorov-Smirnov 𝑝 = 0.13). b,c 

Model prediction tested on the left-out dataset (seven distributed stimulations). The stimulated spatio-

temporal profile of synaptic sizes shows good accordance with the observed data at all timepoints.

To this end, we start by validating our model to predict outcomes of one of the experiments 

reported in [68]. We focus on one of the datasets that has not been used for model fitting, 

where glutamate uncaging is performed on 7 spines distributed along a dendritic stretch, at an 

average inter-stimulation distance of 16 𝜇𝑚. The simulation predicts very closely the dynamics 

observed in the experiment (Figure 3.12 b,c), with synaptic change being particularly evident 

at 2 minutes after the induction. Three qualitatively different behaviours can be observed at 

different distances from stimulation (Figure 3.12 b): the stimulated, as well as the spines very 

close to the stimulation (∼ 2 𝜇𝑚) undergo potentiation, while spines located at an interme

diate distance (∼ 2 − 4 𝜇𝑚) undergo depression. Finally, spines that are further than 4 𝜇𝑚 do 

not show a significant response to the stimulus. These effects decay in time, with synaptic 

sizes returning to baseline at the final mark of 40 𝑚𝑖𝑛 (Figure 3.12 c). In addition to the average 

spatio-temporal plasticity dynamics, the model is also able to predict plasticity statistics for 

the stimulated spine, correctly reproducing the distribution of post-pre size ratios at 2 minutes 

after the induction (Figure 3.12 a, Kolmogorov-Smirnov test 𝑝 = 0.13). Crucially, we are able to 

see the presence of a small fraction of stimulated spines undergoing depression (Figure 3.12 

a, post-pre ratios smaller than 1). This observation strongly agrees with the hypothesis that 

synaptic-specific protein variability plays a crucial role in determining the outcome of a plas

ticity experiment, allowing for diverse behaviours to emerge in response to a single stimulation 

type.

To further disentangle the role of the induction protocol from the role of synaptic variability, 

we simulate a specific set of plasticity induction experiments (Figure 3.13), with stimulations 
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applied at 2 locations with increasing distances. This allows us to characterize the effect of the 

stimulus geometry on synaptic catalyst activation, ultimately, synaptic change.

Figure 3.13:  Plasticity response profiles when stimulating two spines at different distances (2, 4, 

6 and 8 𝜇𝑚). Each column compares the post-pre spine size ratio with the newly induced catalysts and 

the ratio of newly induced 𝐾 and 𝑁 . (Post-pre size ratio, both experimental and simulated, is shown as 

median and inter-quartile range, given the non-normality of the underlying distributions).

As expected, we find qualitatively distinct behaviours between stimulated and non-stimulated 

spines. The first show distinct potentiation, the amount of which does not depend on the 

distance between the stimuli. This agrees with the fact that the induction protocol the model 

has been fitted with (glutamate uncaging, 60 pulses at 0.5 𝐻𝑧), is considered a potentiation 

protocol, and elicits on average synaptic potentiation. Non-stimulated spines, on the other 

hand, exhibit a much more nuanced behaviour, and strongly depend on the stimulation geom

etry. In particular, the spines located between the two stimulations can undergo potentiation, 

depression or no plasticity change, depending on the distance between the stimuli. This is the 

result of the differential catalyst activation that happens at different distances and strongly 

depends on the inter-stimulus proximity (Figure 3.13 middle rows). Different catalyst activa

tions and, in particular, different resulting ratios 𝐾(𝑖)/𝑁 (𝑖) then lead to different plasticity 

outcomes. When the stimulations are close to each other (Figure 3.13 d), the newly induced 

ratio is high, leading to spine potentiation. Increasing the inter-stimulus distance reduces this 

ratio, leading first to stronger depression (Figure 3.13 e), and then to the absence of plasticity. 

This non-linear relationship response and distance between stimuli becomes clear when, 

together with the ratio, we consider the absolute amounts of newly activated 𝐾(𝑖) and 𝑁 (𝑖). 

When a spine is far from both stimuli, these absolute amounts decay to zero, leaving the spine 

unaltered.
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3. Modeling the impact of protein distributions on multi-spine synaptic plasticity

In summary, our model is able to reproduce plasticity dynamics not only by correctly predicting 

the average synaptic change, but by recovering the statistical distribution of changes observed 

across different experiment trials. This stochasticity is directly linked to the variability of 

synaptic protein distributions and accounts for apparently contradictory observations like 

spines undergoing depression after being exposed to a potentiation protocol. We also show 

how stimuli cooperating together can lead to an increase of both potentiation and depression 

of hetero-synaptic spines, depending on the interplay between their distance and the protein 

activation profile they induce.

3.8. Parameter degeneracy and bidirectional effects of FK506

In the previous section, we have shown that different stimulus configurations can lead to dif

ferent plasticity outcomes depending on the balance between the baseline synaptic catalysts 

and the stimulus activated quota. This prompts us to ask how a change of the baseline protein 

distributions alone can lead to observable changes in synaptic response, and if this link can be 

quantitatively characterized in our framework.

Figure 3.14:  Dose-dependent effect of FK506 (2 𝜇𝑀). Data is presented as mean ± SEM for compat

ibility with the considered experimental work. In each panel, the upper row reports the experimental 

observation, while the lower shows the model simulation. a The addition of FK506 induces a significant 

increase in average basal synaptic size (Kolmogorov-Smirnoff 𝑝 -value < 0.01), as well as an overall 

increment of synaptic potentiation after protocol induction, both temporally (panel b) and spatially 

(panels c and d).

To address these questions, we again focus our attention on experimental observations 

reported in the literature, and, in particular, on the effect of Calcineurin inhibition via FK506. 
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In their work, [68] show that this inhibition leads to an overall increase of uncaging-induced 

potentiation, with higher and more lasting synaptic strengthening occurring both at stimu

lated and hetero-synaptic spines (Figure 3.14 a-d, upper plots). This result follows intuition, 

since a reduced amount of spine phosphatases should lead to an increase in calcium-induced 

protein phosphorylation and, consequently, overall synaptic potentiation. An opposing result, 

however, is presented in [98] (Figure 3.15 a, upper plot). Here, application of FK506 leads to a 

reduction in potentiation in a dose-dependent fashion. The authors explore several possible 

reasons that could explain this counterintuitive effect, considering, among others, qualitative 

differences in calcium signalling elicited by NMDA receptors and voltage-gated calcium 

channels.

We propose a unified interpretation, able to generate these conflicting observations from a 

common dynamical framework. The increase or the reduction in potentiation derives from 

an increase or a reduction of the ratio between basal and activated catalysts in respect to 

the control condition. Two factors drive this change. First, the addition of FK506 impacts the 

basal amounts of active CaMKII and Calcineurin, increasing the first and reducing the second 

[119,120]. Secondly, both FK506 and the difference in the calcium channels driving plasticity 

(NMDARs in [68] and VGCCs in [98]) modulate the stimulus-induced quota of calcineurin, 

due to inhibition and due to a quantitative difference in the emerging calcium dynamics. All 

these effects can be transparently implemented in the model by changing the value of four 

parameters describing the corresponding catalytic features (Table 4.3 in Appendix C).
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Figure 3.15:  Dose-dependent effect of FK506 (10 𝜇𝑀). Data is shown as in Figure 3.14. a Upper panel: 

experimental observations reported [98]. In this case, the addition of FK506 reduces synaptic potenti

ation following plasticity induction. Lower panel: model reproduction after blocking the phosphatase-

associated parameters (Block DEP). b Average maximum potentiation level surfaces (isosurfaces) in 

function of the average basal phosphatases 𝜇𝑁 , average basal kinases 𝜇𝐾 , and the induced phosphatase 

quota 𝑁𝑠. These surfaces identify parameter values that lead to the same average maximum potentia

tion. Three model parameter points, corresponding to the previously used control, Block POT, and Block 

DEP conditions are shown on the respective isosurface.

We start by reproducing the observations in [68], and modify the optimal model parameters to 

account for the effects of the addition FK506, in accordance with the previous literature [119–

121]. This strategy not only solves the technical challenge of fitting de novo a new optimal 

parameter set (unachievable due due to the reduced number of points in the dataset), but also 

corroborates the claim that our model is able to give a transparent link between its parameters 

and their biochemical counterpart. Encouragingly, we find that the blocked model (Block POT) 

correctly reproduces the observed outcomes in [68], with higher and longer lasting potenti

ation both at stimulated and surrounding spines (Figure 3.14, lower panels). We are also able 

to reproduce the slight increase in basal spine sizes observed after the FK506 has been applied 

to the culture (Figure 3.14 a). In agreement with [119], this arises from an increase in average 

basally active kinases 𝜇𝐾  combined with a reduction of basally active phosphatases 𝜇𝑁 . After 

accounting for the difference in applied FK506 (2 𝜇𝑀  in [68], 10 𝜇𝑀  in [98]), we can repeat 

the procedure described above and obtain the results presented in [98]. As before, we are able 

to reproduce the correct plasticity behaviour, this time with the addition of FK506 inducing 

a reduction of potentiation at the stimulated spines (Figure  3.15, lower plot). In fact, our 

model indicates that potentiation change shows a continuous, albeit nonlinear, dependence 
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on three coacting factors (Figure 3.15 b): the average basal phosphatase and kinase content 

𝜇𝑁  and 𝜇𝐾 , directly modulated by FK506, and the stimulus induced quota 𝑁𝑠, determined by 

FK506 and the stimulus features. The emerging average plasticity behaviour, in particular of 

the stimulated spine, is determined by specific values of these parameters, and, importantly, 

we see that there is a whole set of different values leading to no change in comparison to the 

control condition (Figure 3.15 b, grey surface). Moreover, due to the continuity of the change 

in potentiation with respect to the these parameters, very low dosages of FK506 (1 𝜇𝑀) would 

not substantially alter the basal/induced ratios, leading to statistically non-significant effects 

on synaptic plasticity [98].

In summary, our model is able to quantitatively characterize the interplay between the basal 

synaptic protein distributions and the molecular action of a synaptic stimulus, correctly repro

ducing the effect of catalyst inhibitors on synaptic plasticity. Moreover, it is able to provide 

a unified interpretation for the antagonistic effects on synaptic potentiation observed for the 

calcineurin inhibitor FK506, giving a clear interpretation of its dose-dependent effect.

3.9. Variability of synaptic response and effect of basal synaptic size

In the previous sections we show that the outcome of a plasticity experiment is determined 

by a variety of factors and, in particular, by a nuanced interplay between the synaptic protein 

statistics and the activation effect induced by the stimulus. We characterized this interplay 

in relation to different stimulus features and different basal catalytic conditions, obtaining 

a description that provides multiple experimentally testable aspects. As a final step, we ask 

ourselves if our model can provide a clear hypothesis for the widely observed inverse relation

ship between synaptic size and its tendency to potentiate [83].
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Figure  3.16:  The variability of plasticity response across trials The application of a synaptic 

potentiation protocol provides a fixed contribution of active synaptic kinases and phosphatases (upper 

panel). The synaptic response, however, is determined by the sum of this deterministic quota with the 

stochastic basal amount, and varies significantly across experiment repetitions (middle panels). On 

average, however, a well-defined spatial plasticity profile emerges, uniquely determined by the stimulus 

type and the synaptic protein statistics (lower panel).

In previous works, the variability of synaptic plasticity response has been attributed to a num

ber of causes, from biological stochasticity to a degree of methodological and observational 

noise [84,85,122]. In our model, this variability is present as well, with different instances of 

the same experimental protocol leading to different plasticity behaviours (Figure 3.16). For 

example, while the average synaptic response profile shows a Mexican-hat spatial structure, 

single experimental instances can considerably detach from it, even admitting depression at 

the site where the LTP protocol is applied. In the presented framework, this variability can be 

directly attributed to the stochastic nature of synaptic basal conditions. The connection can be 

clearly understood from a phase space representation of these basal conditions (Figure 3.17).

80



3.9. Variability of synaptic response and effect of basal synaptic size

Figure 3.17:  Size dependence of plasticity response: potentiating protocol. 

a For each basal synaptic condition (a pair 𝐾(𝑖)
𝑏  and 𝑁 (𝑖)

𝑏 ), the model allows for 

finding the average synaptic response (𝑃 (𝑖) post-basal ratio) to a given stimulus 

protocol. This response depends on the synaptic catalytic distribution, with a clear 

distinction between potentiating (blue) and depressing (red) regions. Between 

these regions, a set of initial catalytic values lead to no change after stimulus (black 

line). c Several synaptic measures (spine size, EPSP) show an overlapping trend 

between their relative variation (post-pre ratio) and their normalized basal value. 

Our simulations also lead to a very similar behaviour, closely following a power-

law fit to data proposed in [72].

In this representation, a spine is uniquely defined by a pair of values (𝐾(𝑖)
𝑏 , 𝑁 (𝑖)

𝑏 ) corresponding 

to its catalytic content before a protocol is applied. As discussed in Section  3.5, biological 

synapses do not uniformly fill this space but distribute themselves following a bivariate log-

normal distribution (Figure 3.6 d and dashed lines in Figure 3.17 a). For a defined stimulus (a 

specific value for the model’s catalyst activation parameters) our model can predict the average 

(maximal) response for each point of the phase plane (red-blue color code in Figure 3.17 a), 

showing that, at least in theory, the same stimulus can lead to both potentiation and depres

sion. Moreover, it shows that the transition between potentiating and depressing behaviours 

is smooth and, in fact, that they can be separated by a smooth line corresponding to non-

responder initial conditions, i.e. conditions identifying spines that will exhibit no change in 

response to the stimulus. To derive the explicit equation for this line, which represents the 0 

level-set of average synaptic change, we proceed as follows.

We start by considering the solution (3.13) and rewrite it for convenience as

𝑃 (𝑖) = Π
𝐾(𝑖)

𝑁(𝑖)

𝑅(𝑖) + 𝐾(𝑖)

𝑁(𝑖)

(3.34)
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3. Modeling the impact of protein distributions on multi-spine synaptic plasticity

where 𝑅(𝑖) = Ω + ∑𝑖≠𝑗
𝐾(𝑗)

𝑁(𝑗)  represents the heterosynaptic competitive portion of the system. 

As described in the previous sections, each spine starts from some basal catalytic values 𝐾(𝑖)
𝑏  

and 𝑁 (𝑖)
𝑏 , and a stimulus acts by modifying these values by some amount Δ𝐾  and Δ𝑁  depending 

on various factors (e.g., distance from the considered spine, time elapsed from induction). 

Importantly, this action takes place in every spine in the system, so that 𝑅(𝑖) is also modified 

by some amount Δ𝑅. We focus our attention on stimulated spines, i.e. spines where Δ𝐾 = 𝐾𝑠 

and Δ𝑁 = 𝑁𝑠. Indicating with 𝑃 (𝑖)
𝑏  the basal size and with 𝑃 (𝑖)

𝑝𝑜𝑠𝑡 the post-induction size of a 

spine, we are interested in finding the relation between 𝐾(𝑖)
𝑏  and 𝑁 (𝑖)

𝑏  satisfying 𝑃 (𝑖)
𝑏 = 𝑃 (𝑖)

𝑝𝑜𝑠𝑡. 

By applying (3.34) to both sides of the equation, one obtains

𝐾(𝑖)
𝑏

𝑅(𝑖) 𝑁 (𝑖)
𝑏 + 𝐾(𝑖)

𝑏

= 𝐾(𝑖)
𝑏 + 𝐾𝑠

(𝑅(𝑖) + Δ𝑅)(𝑁 (𝑖) + 𝑁𝑠) + 𝐾(𝑖)
𝑏 + 𝐾𝑠

(3.35)

which can then be solved to obtain the final solution

𝐾(𝑖)
𝑏 = 𝑁 (𝑖)

𝑏
𝐾𝑠
𝑁𝑠

[1 + Δ𝑅
𝑅(𝑖) (1 + 𝑁 (𝑖)

𝑏
𝑁𝑠

)]
−1

(3.36)

describing the curve in the 𝐾 and 𝑁  phase plane corresponding to the spines that will 

not change size in response to a stimulus inducing 𝐾𝑠 and 𝑁𝑠 amounts. This expression is 

stochastic, as for a fixed value of 𝐾(𝑖)
𝑏  and 𝑁 (𝑖)

𝑏 , the heterosynaptic factor 𝑅(𝑖), as well as its 

variation, depend on the specific dendritic instance. We resorted to exploring this stochasticity 

by running multiple simulations using our optimal parameter set, and found that the value of 

Δ𝑅/𝑅(𝑖) was extremely small in all cases. This effectively allows us to approximate (3.36) to 

the linear equation 𝐾(𝑖)
𝑏 = 𝐾𝑠

𝑁𝑠
𝑁 (𝑖)

𝑏 , providing a much clearer intuition on the initial conditions 

that characterize a spine showing no change in size in response to a stimulus.

From a practical standpoint, conducting multiple trials of a synaptic plasticity experiment 

consists precisely of fixing the stimulus parameters (the color-code) and sampling the catalytic 

phase space following the bivariate synaptic distribution; the average response (the color 

corresponding to the mean of the bivariate log-normal) is then what defines the protocol as 

potentiating or depressing.

Despite being experimentally inaccessible, the catalytic phase space has a well-defined rela

tion to the observable 𝑃 (𝑖). The considerations illustrated in the previous paragraph can be 

promptly translated to synaptic sizes via (3.13), predicting the existence of an inverse rela

tionship between basal values and the synaptic tendency to potentiate. Moreover, the same 

protocol could induce potentiation in smaller spines and depression in bigger ones, with a 
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family of “intermediate” spines showing no change after induction. In order to validate this 

prediction, we again turn our attention to experimental observations, describing synaptic size 

[68] and synaptic weight evolution [84] after plasticity induction (Figure 3.17 b). After normal

izing the basal values of each dataset (dividing them by their maximum), we see that both 

observations and the simulated variations of 𝑃 (𝑖) show good agreement, and, in particular, we 

see that the simulation closely follows the power-law fit proposed in [72].

So far, we have assumed that the difference between plasticity protocols resides only in the 

value of the parameters driving catalyst dynamics. This would imply that the same model 

can also be used to describe the synaptic response to an LTD protocol, the only difference 

from before being a rotation in the phase space color-code (cfr. panels a in Figure 3.17 and 

Figure 3.18).

Figure  3.18:  Size dependence of plasticity response: depressing protocol. 

The panels are presented as in Figure 3.17, after scaling at roughly half the value 

(𝐾𝑑𝑒𝑝
𝑠 = 0.4 𝐾𝑠). a same as panel Figure  3.17 a. Notice that the majority of the 

spines falls in the red region, allowing the protocol to be considered depressing 

in an experimental setting. b Same as Figure 3.17 b in a depressing setting. The 

simulation does not obey the power-law fit to data, but qualitatively recovers the 

inverse relationship between spine size and potentiation/depression, admitting the 

potentiation of small spines.

After adapting the stimulation parameters to reflect depression induction, we test our predic

tions against experimental data coming from an LTD experiment [85] (Figure 3.18 b). Despite 

showing less adherence to the experimental data, the model is still able to capture the depen

dence of the observed synaptic response on their initial value, with pure depression happening 

only for bigger spines, and potentiation being possible for the smaller ones. We do not see, 

however, a remarkably good compatibility between predictions and data, having to conclude 
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that there could be additional qualitative differences between potentiating and depressing 

protocols that are not accounted for in our framework.

In summary, our model shows that the behaviour of a spine undergoing plasticity strictly 

depends on the interplay between its basal protein distributions and the inducing features of 

the stimulus. This interplay translates to a smooth and monotonically decreasing dependence 

of synaptic size variation and synaptic basal size, recovering counterintuitive experimental 

findings like depressing response to potentiating stimuli, or non-responding spines. The 

model also predicts that a hallmark of this dependence can be observed in the synaptic 

response to any stimulus protocol, but further investigation is necessary to understand its 

descriptive power for induced synaptic depression.

3.10. Summary and remarks

In this work, we have presented a minimal model describing multi-spine plasticity occurring at 

the minute-to-hour timescale along a linear dendritic branch. We have derived its governing 

equations from two fundamental biophysical processes, compatible with these spatial and 

temporal scales [57,58,61,62,72]: molecular diffusion and phosphorylation. To the best of our 

knowledge, this is the first study that characterized synaptic plasticity at the single observation 

level, and not only as an average response across trials.

Previous studies have employed a similar approach [68,74,123], with a notable example repre

sented by [107], where the authors demonstrate how the general principle of resource-sharing 

can account for non-linear synaptic properties like multiplicative scaling and runaway dynam

ics prevention. Our model is able to extend this framework with explicit biochemical meaning, 

as well as a clear spatial structure for the underlying dendritic system. This specification is 

essential to understanding how an induction protocol influences the plasticity dynamics of a 

multi-spine system. It enables, for example, a clear distinction between a “passive” depression 

induced by competition for resources [68,107] and the “active” depression, mediated by the 

induction of the phosphatase family 𝑁  in both stimulated and neighbouring spines. This latter 

form, in particular, is directly connected to the Mexican-hat shaped plasticity profile observed 

for single stimulations [69], and derives from the higher activation spread of phosphatases in 

comparison to kinases [119,124]. A strong validation of this hypothesis could come, among 

other possibilities, by investigating the heterosynaptic plasticity induced by two close stimuli 

as a function of their distance from each other (as in Figure 3.13 d-g).
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The specific characteristics of the induction protocol are not, however, the only factors deter

mining plasticity response. In fact, our model strongly indicates that they determine only the 

average behaviour of a much more diversified and variable dynamic landscape [68,72,84,85,98]. 

Guided by our model, we propose the hypothesis that a considerable portion of this variability 

is encoded in the synaptic basal catalytic distributions. A substantial corpus of modeling 

work has characterized the features and the origins of synaptic statistical properties, focusing 

in particular on what appears to be a generalized compatibility of a number of synaptic 

quantities with a log-normal distribution [115]. Several mechanisms have been proposed to 

explain this observation, ranging from the most fundamental multiplicative noise [115], to 

more sophisticated models [82] grounded on general stochastic processes [80,118], or local 

binding mechanisms [79]. Despite providing an accurate characterization of log-normality, 

these models often do not provide an immediate mapping between their driving parameters 

and the biochemical machinery underlying synaptic distributions. Moreover, an assumption on 

which all of these models implicitly rely is that dendritic spines represent a statistical ensemble, 

i.e., they can be considered a different instantiation of the same, stationary random process. By 

taking a different approach, and constraining our model to depend only on elementary mole

cular dynamics, we have showed that log-normal compatibility could emerge spontaneously 

as the result of the elementary diffusive dynamics of synaptic proteins. This hypothesis is 

not only able to directly connect the spine-size log-normality to the underlying catalytic log-

normality, but is also able to avoid the ensemble assumption. Moreover, it is able to provide 

a robust, minimal mechanism for the observations in [71,81], where log-normal compatible 

synaptic distributions are shown to emerge independently of neuronal activity and, therefore, 

possibly not driven by an information encoding optimality principle.

Our models also allows for a translation of the statistical properties of synaptic catalyst to 

the probabilistic description of the synaptic response to plasticity induction. Several experi

mental and theoretical works have observed an inverse relationship between synaptic size (or 

weight) and its tendency to potentiate when stimulated, under a variety of plasticity protocols 

[83,85,98,118]. In some instances, this inverse relationship is not restricted to a specific plas

ticity direction, with the same induction being able to elicit both depression and potentiation, 

depending on the initial synaptic strength [125]. Our model is able to support this observation, 

in strong similarity with the power-law dependence proposed in [72]. Following this, we 

propose that the synaptic response profile is quantitatively related to the calcium-induced 

catalytic dynamics occurring at every spine, and directly linked to the kinase-to-phosphatase 
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ratio before and after stimulation. For small spines, starting from a low 𝐾𝑖
𝑏/𝑁 𝑖

𝑏 , this ratio would 

on average increase, while the opposite would occur for big spines. Lastly, a class of interme

diate spines, the size of which would depend on the stimulation features, would not show a 

change in its catalytic ratio and therefore would appear not to respond to the induction pro

tocol (as reported in, e.g. [125]). This mechanism is consistent with the observations in [100], 

where partial inhibition of Protein Phosphatase 1 (one component of the phosphatase family 

𝑁 ) induces an overall shift towards potentiation, switching the response to a 10 𝐻𝑧 stimulus 

protocol from LTD to LTP. It is important to note that our model, despite being able to predict 

the existence of potentiation in very small spines undergoing LTD-inducing stimulation [85], 

does show a lower quantitative predictive power in this latter case. This discrepancy could 

arise from several reasons, one of the most likely being the difference in biochemical pathways 

leading to potentiation or depression [92], [93]. Despite characterizing two possible general 

depression mechanisms (passive resource subtraction and active heterosynaptic phosphatase 

induction), we have ultimately fitted the model on data obtained under a potentiation protocol. 

The emerging predictions could, therefore, not be optimal for describing dynamics mediated 

by other types of receptors like, for example, metabotropic glutamate receptors [92].

One final question our model allows us to explore is the dependence of synaptic plasticity on 

catalyst perturbation and, in particular, on the differential block of calcineurin. The effect of 

FK506 on synaptic potentiation has been studied under a plethora of experimental conditions 

(see [119,126,127] and references therein) with observations supporting both a facilitating 

and a hindering action. Multiple reasons have been proposed for the contradictory nature of 

these results, focusing strongly on the qualitative differences in the evoked calcium second-

messenger cascade [128,129] under different experimental conditions.

Our model suggests the possibility that these qualitatively different results could emerge 

from a quantitative feature, i.e, a degeneracy in the phospho-dephosphorylation dynamics 

with respect to their driving parameters. This degeneracy corresponds to the invariance of 

the observed synaptic potentiation when a change of initial and stimulus-induced catalyst 

amounts takes place. It has been shown that FK506 impacts both basal activity of CaMKII 

and calcineurin [119,120], as well as the efficacy of the newly activated calcineurin quota in 

response to a plasticity protocol. These three components correspond directly to three model 

parameters (𝜇𝑁 , 𝜇𝐾 , and 𝑁𝑠) and, consequently, to three degrees of freedom. We show that this 

3-dimensional space is foliated by the smooth maximal potentiation isosurfaces an average 

spine can show after stimulation. Different experimental conditions would correspond to dif
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ferent points in this space, mapping to different surfaces and, consequently, different degrees 

of synaptic potentiation. Moreover, the dose-dependent effect of FK506 would correspond to a 

smooth line traversing these isosurfaces. In order to characterize this line, however, a precise 

titration of the impact of FK506 on basal and newly activated CaMKII and CaN is necessary.
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Memory encoding and learning processes are fundamentally dependent on synaptic plasticity 

mechanisms. Elucidating how synaptic weights are regulated could provide crucial insights 

into these cognitive functions while also offering groundbreaking applications. Clinically, 

epilepsy represents a prime therapeutic target, as many epileptic manifestations arising from 

compromised network properties stem directly from disrupted neuronal protein turnover, 

misfolding, and, generally, dynamical alterations.

In this thesis, I have investigated synaptic plasticity from a spine-centric modeling standpoint, 

dissecting how individual synaptic variability leads to the final, average plasticity outcome. 

My first approach characterized spontaneous synaptic dynamics as a stochastic process, inter

preting statistical patterns as manifestations of the stationary distribution within a synaptic 

statistical ensemble. The second approach addressed the phenomenon at a more mechanistic 

level, directly modeling molecular redistribution and phosphorylation through reaction-diffu

sion equations, and carefully dissecting the role of different protein families on the emerging 

plasticity phenomenon. Together, these complementary frameworks have yielded several sig

nificant insights into the nature of synaptic plasticity, and, to the best of my knowledge, they 

were the first work able to describe synaptic plasticity at the single observation level, and not 

only as an average response across trials.

4.1. Log-normal characteristics of Synaptic Fluctuations

Log-normality extends beyond previously observed synaptic structural quantities, such as 

weights and sizes, and includes also changes between discrete time intervals. This finding 

represents a particularly intriguing result, as it reveals a dynamical feature rarely encountered 

in conventional exchange stochastic dynamics. In classical multi-compartment systems, the 

steady-state distribution of quantities of interest typically follows binomial distributions, with 

temporal changes exhibiting symmetry around average values. The log-normal distribution 

deviates significantly from this pattern. Furthermore the covariance structure of synaptic 

processes cannot be attributed solely to noise, as the anticorrelation observed between suc

cessive changes extends to temporally non-adjacent modifications. This observation provides 

a critical validation criterion for models attempting to describe synaptic dynamics through 

stochastic processes.
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4.2. Possible origin of log-normality

While log-normality in synaptic structural quantities has been interpreted through various 

lenses and linked to information-theoretic optimality principles, an alternative mechanistic 

explanation is possible. Rather than being selected in a normative fashion, log-normality may 

emerge as an approximate stationary distribution arising from the diffusive dynamics that 

synaptic structural proteins undergo throughout their lifetime. This hypothesis demonstrates 

remarkable robustness by connecting synaptic protein dynamics to the well-established cen

tral limit theorem scenario, where log-normality emerges from multiplicative processes. In 

the dendrite, multiplicativity arises not from random noise but from the combined effects of 

hundreds of multiplicative reactions that determine the final distribution of proteins across 

spines. Ultimately, since synaptic size can be described as the ratio of these proteins, its 

distribution is necessarily constrained to follow a log-normal-compatible distribution.

4.3. Size-dependent plasticity mechanisms

The anticorrelation between initial synaptic weight or size and a spine’s propensity for poten

tiation has been consistently observed across the literature. Additionally, basal synaptic size 

has been shown to determine the directionality of synaptic plasticity under fixed stimulation 

protocols, with small spines exhibiting potentiation and larger spines showing depression. The 

presented modeling framework successfully reproduces this behavior, directly linking both 

deterministic (power-law) and stochastic profiles to catalytic ratio dynamics. Importantly, this 

approach also predicts the existence of non-responder synapses, interpreting them as spines 

with specific, stimulus-dependent catalytic content whose lack of weight change reflects an 

inherent invariance in the relationship between synaptic weights and protein content rather 

than experimental failure.

4.4. Catalytic degeneracy in potentiation mechanisms

Synaptic size is a function of catalytic content, incorporating both basal and stimulus-induced 

components through four free parameters. Specifying a particular maximum potentiation level 

introduces a single constraint within this four-dimensional parameter space, creating a three-

dimensional hyperplane where diverse synaptic conditions can produce identical maximum 

potentiation levels. The application of FK506 in synaptic potentiation protocols has revealed 

nonlinear effects on the final experimental outcomes, sometimes enhancing and sometimes 
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diminishing maximum potentiation. This complex behavior can be explained through FK506′s 

action within the four-dimensional catalytic space, particularly given its documented effects 

on both calcineurin and CaMKII basal and induced activities. By modifying these components 

in a dose-dependent manner, this formalism naturally accounts for all observed plasticity 

modifications, including the statistically insignificant effects observed at very low FK506 

concentrations.

4.5. Future Directions

This work contributes to the extensive literature of synaptic modeling, representing a focused 

exploration of how two mathematical frameworks can illuminate synaptic dynamics and plas

ticity mechanisms. While not providing definitive answers to the fundamental questions in the 

field, these findings offer reasonable hypotheses upon which future investigations can build.

The most immediate investigation should reconsider the model presented in Chapter 3 in 

its full form, and reperform the optimization without relying on quasi-steady-state approxi

mations. Although this approximation enabled successful parameter fitting and closed-form 

treatment of size-dependent potentiation, it introduces two structural limitations that impede 

the correct interpretation of synaptic plasticity transients. The steady-state assumption for 

resource diffusion necessarily trivializes predicted spatiotemporal dynamics, precluding fasci

nating phenomena such as potentiation/depression waves propagating throughout dendrites. 

Similarly, the steady-state approximation for catalytic dynamics reduces model expressivity 

and prevents accounting for differences in plasticity kinetics, which depend on absolute kinase 

and phosphatase amounts rather than their ratios. These limitations inevitably compromise 

parameter estimation reliability and reduce predictive power. Future work should therefore 

repeat optimization procedures, potentially within a hierarchical Bayesian framework.

Additional investigations could extend the current minute-to-hour timescale model to 

encompass the multi-hour characteristics of structural plasticity. While short-term and 

structural plasticity are traditionally considered distinct phenomena — partially supported 

by their different biochemical processes — all the involved mechanisms belong to a single, 

general reaction network. Depending on stimulation strength, short-term reversible plasticity 

can combine with stable structural changes. A unified, potentially perturbative model could 

be developed and fitted to existing datasets, better describing transient and lasting changes 

across these timescales. Mathematical treatment through matched asymptotic expansions 
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could prove valuable to allow for insightful closed-form expressions and feasible optimization, 

in line with what I presented here. Importantly, when incorporating longer timescales, mass 

conservation constraints become invalid, and closed-form approximations lose reliability. 

Future work must address this critical limitation by developing quasi-steady-state approxi

mations that support transient phenomena like traveling plasticity waves while maintaining 

analytical tractability.

Another potential extension could operate at shorter rather than longer timescales, investi

gating how our deterministic reaction-diffusion model can incorporate meaningful stochastic 

structure (such as the one I introduced in Chapter 2). While theoretically feasible, this repre

sents a non-trivial challenge, as direct approaches using Chapman-Kolmogorov equations 

become intractable due to the overwhelming number of biochemical reactions underlying 

synaptic plasticity. An intriguing possibility could come from recurring to renormalization 

group theory, potentially generating appropriate fluctuation and noise profiles while identi

fying general synaptic quantities relevant from normative optimality perspectives.

These research directions are the natural following steps towards understanding synaptic 

plasticity at the appropriate spatial and temporal scales, and could directly translate to com

prehending the origins of corresponding learning and behavioral phenomena, bridging the gap 

between molecular mechanisms and cognitive function, and, ultimately, understanding how 

to recover the latter from pathology.
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Appendices

Appendix A: Shifted log-normal distribution

In probability theory and statistics, the log-normal distribution is a continuous probability 

distribution of a random variable whose logarithm is normally distributed. That is, if the 

random variable 𝑋 is log-normally distributed, then 𝑌 = ln(𝑋) is normally distributed. The 

log-normal distribution is parameterized by the mean, 𝜇, and standard deviation, 𝜎, of the 

underlying normal distribution. The probability density function of the log-normal distribu

tion is given by

𝑝(𝑥) = 1
𝑥 𝜎

√
2𝜋

exp[−1
2
(log(𝑥) − 𝜇

𝜎
)

2

], 𝑥 ∈ ℝ+ (4.37)

where 𝑥 is the value of the log-normally distributed variable. As we will be modeling data that 

can take negative values (the spines can shrink) and the standard log-normal is only defined for 

positive values, 𝑥 > 0, we also need one additional parameter to characterize our distribution: 

the shift parameter. This parameter shifts the distribution so that 𝑥 > 𝛿, where 𝛿 can be positive 

(shifted to the right) or negative (shifted to the left). The probability distribution is then

𝑝(𝑥) = 1
(𝑥 − 𝛿) 𝜎

√
2𝜋

exp[−1
2
(log(𝑥 − 𝛿) − 𝜇

𝜎
)

2

], 𝑥 ∈ ℝ+ (4.38)

Given access to the entire population of spine size changes, the parameters that define the log-

normal distribution can be found by transforming the sample means and standard deviations 

(𝜇𝑠 and 𝜎𝑠) of the spine size changes as follows:

𝜇𝑙𝑜𝑔 = log

[

 (𝜇𝑥 + 𝛿)

2

√𝜎2
𝑠 + (𝜇𝑠 + 𝛿)

2

]



, 𝜎𝑙𝑜𝑔 =
√



log[(𝜎𝑠
𝜇𝑠

+ 𝛿)
2

+ 1] (4.39)

where we have introduced the positive term 𝛿, which shifts the sample mean towards positive 

values. The choice of 𝛿 is relatively trivial as long as all the values of the dataset are positive 

after the shift. This ensures that 𝜇𝑙𝑜𝑔 is also positive, thus avoiding the log-normal distribution 

transformation accumulating values around 𝑥 = 0.

Once the parameters of the lognormal have been estimated, the model uses the log-normal 

distribution to generate the subsequent time points. This model then takes the form
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Δ𝑉𝑖+1 = 𝜂𝑖, 𝜂𝑖 ∼ Lognormal(𝜇𝑙𝑜𝑔, 𝜎𝑙𝑜𝑔, 𝛿) (4.40)

which mirrors the form of the conventional Wiener process. Here, we include the −𝛿 term to 

be able to map our log-normal back to the original range of values that we observe in the data.

We emphasize here that the change Δ𝑉𝑖+1 for each spine is log-normal but that the population 

change, i.e., the collection of all changes should still be normally distributed (in accordance 

with Figure 2.2 c). By the central limit theorem and the assumption that the activity-indepen

dent plasticity of the spines is independent of each other, we will obtain this Gaussian nature 

as long as we have sufficiently many spines.
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Appendix B: Inter-spine distance estimation

We are interested in estimating the mean inter-synaptic distance (𝑀𝐼𝑆𝐷) from the data 

describing a linear dendritic stretch. As stated in the Methods section, each spine is given 

a distance value corresponding to the distance from the closest stimulation. Moreover, this 

value is negative in case the considered spine lies between different stimulations and positive 

otherwise.

We start by assuming that the linear spine density is homogeneous, i.e. it does not change 

with the absolute position along the dendrite at the considered length scales (10 − 100 𝜇𝑚). 

From the array of distances, we then consider only the positive values, deriving from the 

spines located outside the stimulation cluster; we then sort this array in ascending order. 

This sorted array now contains roughly double the amount of spines located on an average 

dendritic stretch, as we have mapped two different stretches onto one. In order to estimate the 

average inter-spine distance, led by this heuristic, we subsample this array, taking every second 

distance value. As a final step, we compute the differences between consecutive distances and 

use their average value as an estimate of the true inter-spine distance.

We quantify the goodness of this estimator using a Monte-Carlo sampling. We generate 𝑁 =

105 different dendrites with 100 spines each. In accordance with [130], we use a Weibull distri

bution

𝑓(𝑥; 𝑐, 𝑠) = 𝑐
𝑠
(𝑥

𝑠
)

𝑐−1
𝑒−(𝑥/𝑠)𝑐 (4.41)

with fixed scale and shape parameters (𝑠 and 𝑐) to generate random inter-synaptic distances 

for each dendrite. We then carry out our estimation using the procedure described above, and 

evaluate its performance in terms of the mean relative error

𝑀𝑅𝐸 = ⟨𝑀𝐼𝑆𝐷
𝑀𝐼𝑆𝐷

− 1⟩ (4.42)

where 𝑀𝐼𝑆𝐷 is the estimated mean inter-spine distance and 𝑀𝐼𝑆𝐷 is the true theoretical 

value 𝑀𝐼𝑆𝐷 = 𝑠Γ(1 + 1/𝑐). We quantify this metric on a set of different values of 𝑐 and 𝑠, 

focusing on parameter ranges giving rise to mean inter-spine distances between 1 and a few 

microns.

The results, reported in Fig. Figure 4.19, show that the described estimator has a well-behaved, 

bell-shaped distribution, with an average bias of ∼ 3%, confined under a 30% error. We consider 
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this error acceptable since its absolute value (∼ 0.8 𝜇𝑚) is comparable with the spatial resolu

tion of the experimental setup used to collect the data.

Figure 4.19:  Relative error sampling of the inter-spine distance Weibull estimator. The 

sampling is focused on inter-spine distances compatible with hippocampal spine densities. 

Notice that the same average inter-spine distance (MISD) can be obtained with different 

values of the parameters c, s). The vertical bar shows the mean relative error (MRE) of the 

estimator.
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Appendix C: FK506 induced parameter changes

The parameter changes are reported for the two works described in Section  3.8. In [68], a 

concentration of 2 𝜇𝑀  FK506 was used, while in [98] the concentration amounts to 10 𝜇𝑀 .

Work Parameter Factor Notes

[68] Average basally active kinases 𝜇𝐾 1.2 In accordance with [119]

Average basally active phosphatases 𝜇𝑁 0.83 FK506 hindering effect on CaN binding 
to substrate [120]

Stimulus induced phosphatases 𝑁𝑠 0.55 Qualitatively following the reasoning 
for 𝜇𝑁

Phosphatase activation spread 𝜎𝑁 0.91 Posited effect of FK506 on calcineurin 
rate of binding to calcium/calmodulin

[98] Average basally active kinases 𝜇𝐾 1.8 Considering [119] and the higher 
concentration of FK506 used in 
experiment compared to [68]

Average basally active phosphatases 𝜇𝑁 0.53 FK506 hindering effect on CaN binding 
to substrate [120], higher FK506 
concentration compared to [68]

Stimulus induced phosphatases 𝑁𝑠 0.40 Qualitatively following the reasoning 
for 𝜇𝑁
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Supplementary figures

S 4.1:  Graphical representation of the data analysis and pre-processing procedure. In the lower 

panel, an example of the binning procedure is shown: Considering a specific protocol (e.g., 3 stimula

tions), for each neuron, at a fixed time point, each spine gets assigned a distance value from the closest 

stimulus. This value is positive for spines lying outside of the stimulation cluster (blue color code) or 

negative (red color code). Using a bins of size equal to the inferred mean inter-spine (MISD), the spine 

sizes are binned, and the result reported in terms mean and standard error of the mean. Notice that the 

resulting “summary” dendrite contains a reduced number of spines. The procedure is repeated for all 

the considered time points, giving raise to a synaptic size field in function of time and distance from 

the closest stimulus.
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S  4.2:  Fit quality of the optimized model for the experimental data For each plot, the 𝑥 axis 

represents the time in minutes, with data located at −15, −10, −5, 2, 10, 20, 30 and 40 minutes (not drawn 

for graphical improvement).
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S 4.3: Global parameters’ posterior distribution obtained with adaptive parallel tempered MCMC 

sampling.
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S 4.4: Convergence values of synaptic specific parameters across runs converging to the best local 

minimum LM1. Each row shows to the data obtained from the corresponding protocol. The orange 

vertical line represents the stimulus location (0𝜇𝑚 distance).
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S 4.5:  Distribution, log-normal compatibility and correlation with Homer 1 of several synaptic proteins.
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