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Abstract

The hadronic sector is a part of the Standard Model (SM) of particle physics that is not yet fully
understood. Specifically, the energy dependence of the coupling of hadrons to photons, described by
form factors, is an active field of research. We investigate two processes where form factors play a crucial
role. In the first project, we calculate decay widths and branching ratios of rare semileptonic decays of
the η and η′ mesons into π0/η and two leptons. These decays proceed via a two-photon intermediate
state, which couples to the hadrons via transition form factors (TFFs). Different parameterisations of
these TFFs are implemented and their effect on the results is discussed. Thus, we obtain a prediction
for the SM contribution with some control over these systematic effects, which can be tested against
future experimental results in order to investigate the possibility of beyond-the-SM (BSM) effects. In
the second project, we construct a framework to dynamically generate doubly-virtual TFFs of the a1

and a2 mesons, for which not much experimental data exists, from a ρπ intermediate state. For this,
we describe the ρπ → γ∗γ∗ system in a gauge-invariant way and, making use of unitarity, reconstruct it
from left-hand cuts, taking care to remove kinematic singularities. We connect this system to the TFFs
via the imaginary part of a loop diagram, reconstructing the real part dispersively; the convergence of
said loop diagram limits our framework. These TFFs are relevant for a precise determination of the
hadronic light-by-light contribution to the anomalous magnetic moment of the muon.
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Chapter 1

Introduction

I know it’s hard to find
But somewhere along the line
It gets easier

Kalandra, It Gets Easier [1]

The hadronic sector is one of the most interesting, but also most challenging regimes of modern
particle physics. In such an abstract field as particle physics, it is one of the more natural regimes
to think about since nucleons in atomic nuclei and pions as the force-carriers between them seem
relatively close to life. But if researchers have known about atomic nuclei since 1911 [2] and about
nucleons since the 1930s [3–6], with pions as carriers of the nuclear force predicted in 1934 [7] and
experimentally found in 1947 [8, 9], how is this still a field with open questions?

As simple as a problem with only a handful of involved particles may sound, the hadronic sector is
still not fully understood. The reason is that although we know an underlying fundamental quantum
field theory, Quantum Chromodynamics (QCD), it is not applicable for perturbative calculations due to
the fact that its Landau pole, where the coupling constant diverges, lies right in the hadronic regime;
the rich structure of states in this regime cannot be described on the level of quarks, which are confined
into mesons and baryons. For hadronic calculations, QCD can only be used in lattice computations in
a finite volume. In the last years, with increased computational power and improved algorithms, the
field has produced competitive results. Alternatively, one can construct another perturbative theory
with different degrees of freedom and a different parameter that converges and additionally utilise the
most fundamental concepts of particle interactions, unitarity, analyticity, and symmetries.

Before going into details about the theoretical background for this work in the remainder of the
introductory chapter, let us have a look at some open questions in the field. In particle physics in
general, one wants to learn more about the most fundamental building blocks of nature, their dynamics,
and how they play together such that we observe the Universe as we do. As we have already obtained
more than a century worth of experimental results and have a theory, the Standard Model (SM) of
particle physics, that describes most observations rather accurately, the quest is to learn what is beyond
the SM and how to describe and integrate such phenomena as matter–antimatter asymmetry, neutrino
oscillations, gravity, and Dark Matter.

Eventually, we want to find a suitable extension of the theory we are using so far, but in order
to do so, we first need to identify more situations where it does not agree with observations. For
this, experimentalists and theoreticians need to work closely together. There are different approaches:
predicting and measuring at higher energies than before, either by building stronger accelerators for
collider experiments or by detecting cosmic radiation; examples are the experiments at the LHC [10]
and plans for possible future colliders at even higher energies [11].

Or one can focus on collecting more statistics and improving detectors and all other instrumentation,
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including Monte-Carlo (MC) generators, in order to minimise systematic errors for a higher precision
of results. On the theory side, this strategy includes taking into account higher-order effects. With
this strategy, observables are predicted and measured in regimes that have already been researched
in order to confirm or disprove conformity between experiment and theory at a higher precision.
Examples include the anomalous magnetic moment of the muon, where it is still to be determined
whether experiments [12–14] and SM prediction [15, 16] agree, and tests of discrete symmetries [17].

In order to understand and interpret results from experiments both at the high-energy and at the
precision frontier and to compare them to existing theories, one needs a theoretical description of these
processes as inclusive, accurate, and precise as possible. Since any quarks will be confined to hadrons
at lower energies, for almost any given experiment, this requires a sufficient understanding of hadron
dynamics, both for signal and for background processes.

From a theoretical point of view, the description of hadron dynamics is interesting as it is in general
not clear what it the best way to approach a problem since there is not yet one theory that predicts
all phenomena observed so far. Effective field theories are valid only in a specific energy regime; going
beyond it, one needs to extend the theory or use a different one. A good example is Chiral Perturbation
Theory (ChPT), which, for SU(2) symmetry, is only valid at the scale of pion masses or in situations
where coupling to states with strangeness can be neglected, whereas it can describe the η meson and
kaons when extended to SU(3). The η′ meson, however, cannot be described in any of these, as its
mass does not vanish in the chiral limit; one needs to extend the theory to large-Nc ChPT in order
to obtain meaningful results. And while higher-spin resonances such as the vector mesons ρ, ω, and φ,
axial-vector and tensor mesons can be introduced into ChPT as resonances [18–21], Resonance ChPT
(RChPT) does not yield an appropriate dynamical description of said higher resonance states. S-
matrix theory, on the other hand, is built from general principles, namely analyticity and unitarity of
the scattering (S) matrix, which are associated with causality and probability conservation in physical
amplitudes, complemented by crossing symmetry. These conditions should hold in all energy regimes;
but as S-matrix theory needs input, e.g., on scattering phases, its use is also limited to processes
with enough experimental data or other constraints. Since all of these methods have their specific
advantages and limitations, in practice, it is often useful to combine them. This allows also for a
better understanding of nature, since each ansatz highlights different properties of a phenomenon.

One very important notion in hadron physics are form factors (FFs), which parameterise the
coupling of hadrons to gauge bosons. The term comes from the notion of a Fourier-transformed charge
distribution of a particle that is not point-like, such that its elastic coupling to an electromagnetic
current depends on this distribution. Generalising this term, one refers to many energy-dependent
couplings of hadrons to gauge bosons as FFs, independent of the reference frame; if the process is
inelastic, this is called a transition form factor (TFF). A FF parameterises any underlying dynamics of
the coupling, which can be challenging to describe theoretically and to access experimentally. Having
as accurate and precise a description as possible of FFs is imperative for any practical prediction at
the precision frontier.

If a decay process is rare, there is typically a reason for it; often, a symmetry forbids it at tree
level such that is is suppressed in terms of the perturbative expansion. In this case, it is necessary to
calculate loop corrections. This is well-defined for photons running in the loop; one integrates over
their virtualities, where it is important to take into account FFs depending on these virtualities. This
is the case in the first project presented here, see Ch. 2, where we calculate the SM contribution to the
decays η → π0`+`− and η′ → [π0/η]`+`−, where `+`− are either electrons or muons. These decays are
forbidden as tree-level processes with a one-photon exchange due to C and CP symmetry, but allowed
via a two-photon exchange. Any BSM physics violating C and CP could potentially contribute at tree
level, therefore, such contributions might be observable with future high-precision experiments.

Another example for the significance of form factors is the anomalous magnetic moment of the muon,
which receives hadronic contributions via vacuum polarisation (HVP) and light-by-light scattering
(HLbL), both being loop processes. Also in this case, we have to describe virtual photons coupling
to mesons, and since both theory and experiment have proceeded to great precision, higher resonance
states, including the axial-vector state a1 and the tensor state a2, have garnered interest. At the same
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time, these states are experimentally hard to access and theoretically difficult to describe since they
are slightly beyond the scale of the lightest mesons, the Goldstone bosons, and can at the same time
not solely be understood as resonances in a system of two Goldstone bosons, as is the case for the
ρ or the f2 meson. Describing TFFs of the a1 and a2 is the goal of the second project in this thesis;
see Ch. 3.

Before that, we give a brief introduction to the most important theoretical tools of the trade in the
following sections, starting with quantum field theory and the SM in Sec. 1.1, followed by ChPT and
its generalisations in Sec. 1.2, and dispersion theory in Sec. 1.3.

1.1 Quantum field theory and the Standard Model

One way to approach the calculation of an observable in particle physics is the perturbative method, and
the framework for this is quantum field theory (QFT). The first QFT was developed in order to describe
the interaction of electrons and photons and would eventually become Quantum Electrodynamics
(QED), the beginnings lying in the 1920s [22].

A QFT consists of operators O acting on states |ψ〉 ∈ H of a Hilbert space, a vector space over
R or C with a scalar product, fulfilling conjugate symmetry 〈ψ2|ψ1〉 =

(
〈ψ1|ψ2〉

)∗
and sesquilinearity,

which is complete with regard to the metric induced by the scalar product. For a variable number of
particles, one generalises H to a Fock space, the completion of the tensor product or exterior algebra
of H for bosons or fermions, respectively. Symmetries are at the very basis of the construction of any
QFT. First of all, the symmetries of relativistic space-time are encompassed in the Poincaré group
R(1,3) o O(1, 3). The group action of the latter on the set of states {|ψ〉} gives rise to orbits, subsets
consisting of images of an element |ψ〉 under the group action. Physical observables are related to
matrix elements 〈ψ2|O|ψ1〉. Unitarity or antiunitarity of operators U ensures Poincaré invariance of
matrix elements 〈ψ2|U†U |ψ1〉 = 〈ψ2|ψ1〉 [23, 24].

Particles can be embedded into quantised fields that are irreducible unitary representations of the
Poincaré group, i.e., orbits under a Poincaré transformation, where irreducibility means that there
is no subset transforming only amongst itself [25]. A field is here a mapping from a manifold, in
this case the space-time, to the respective representation, and quantisation of a field means that it
cannot take any value, but only discrete ones, which can be constructed with the help of creation and
annihilation operators similar to the quantum mechanical harmonic oscillator. A given representation
can be described by quantum numbers such as spin, intrinsic parity, charge, or behaviour under charge
conjugation [26, 27]. The spin of a particle determines the number of degrees of freedom of the field
as well as its statistics. Fermions, half-integer particles, obey the Fermi–Dirac statistics, where the
Pauli exclusion principle holds, whereas bosons with integer spin behave according to the Bose–
Einstein statistics.

Three discrete symmetries are of special interest, the combination of which has to be conserved by
a large class of QFTs, namely parity P, charge parity C, and time reversal T. Parity and time reversal
transform a space-time point as

(t, ~x)
P−→ (t,−~x), (t, ~x)

T−→ (−t, ~x), (1.1)

whereas charge parity transforms particles into antiparticles and vice versa. A particle can be a positive
or a negative eigenstate of P , which defines its intrinsic parity. This, together with spin, discriminates
bosonic fields into (pseudo)scalars, (axial)vectors, and higher tensor fields. The CPT theorem states
that the combination of time reversal, parity, and charge parity has to be conserved [28–32] if the QFT
has suitably defined fields and operators, invariant under Poincaré transformations and fulfilling
weak local commutativity as defined in Ref. [32]. However, P, C, and T do not need to be conserved
separately, and indeed, the conservation of C and CP would be in contradiction with the observed
asymmetry of matter and antimatter in the Universe [33].

In the Standard Model (SM) of particle physics, interactions between matter particles are mediated
via gauge bosons. Matter particles, namely quarks and leptons, are fermions with spin 1/2. Three
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generations of quarks and fermions exist: (u, d), (c, s), and (t, b) for the quarks and (e, νe), (µ, νµ), and
(τ, ντ ) for the leptons. For each matter particle, there exists an antimatter particle with equal mass
and opposite charge. Each interaction can be associated with a gauge group, where the gauge boson
emerges from the local gauge freedom.

The gauge group of the electromagnetic interaction is U(1)em, and as it has one generator, there
is one gauge boson, the photon, which has no rest mass and therefore two physical polarisations.
Since it is embedded into a vector field, one needs to fix a gauge for any calculation [25], which is
often done implicitly. If a photon is virtual, i.e., not confined to its mass shell p2 = M2 = 0, the
unphysical longitudinal polarisation is present and only the time-like polarisation is not propagated,
but whenever the photon is measured, only the two transversal polarisations can contribute.#1 All
electrically charged particles take part in QED. U(1)em is an abelian group and therefore, the photon
does not interact with itself at tree level; photons scatter on photons only via non-photon intermediate
states. QED preserves all discrete symmetries and is the best-understood and -tested QFT.

All left-handed matter and right-handed antimatter particles take part in the weak interaction,
whose force-carriers are the W± and Z bosons, which have masses of MW± = 80.3692(133) GeV and
MZ = 91.1880(20) GeV, respectively [34]. The weak interaction and the electromagnetic interaction
emerge via spontaneous symmetry breaking (SSB) from the electroweak interaction, whose gauge group
is SU(2)L ×U(1)Y , as is stated in the Glashow–Salam–Weinberg theory [35–37]. This product of
groups comes with 3 + 1 massless generators (W 0,W 1,W 2)µ and Bµ. After SSB, only the photon, a
linear combination Aµ = sin θWW

3
µ +cos θWBµ with the Weinberg angle θW, stays massless, whereas

Zµ = cos θWW
3
µ−sin θWBµ and W±µ = 1/

√
2
(
W 1
µ∓ iW 2

µ

)
obtain a mass via the Higgs mechanism [38,

39]. At energies significantly below these masses, the respective particles can be integrated out, which
gives rise to the effective 4-Fermi theory [40] and its extension, the V −A theory [41, 42], which was
already known before electroweak theory, its UV completion.

As it couples only to left-handed particles and right-handed antiparticles, the weak interaction
violates P and C symmetry; this was first experimentally shown by Wu [43]. If neutrinos are massless,
as they are taken to be in the SM, this means that only left-handed neutrinos and right-handed
antineutrinos can be observed; this is also what was found experimentally [44]. We know, however,
from neutrino oscillations [45] that two out of the three neutrino generations must have a rest mass, as
the oscillations come from a discrepancy between mass and flavour eigenstates, which can only occur
if mass eigenstates are distinct. The transition between these different eigenstate bases is described
by the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix [46, 47]. In the quark sector, the
weak interaction is the only part of the SM that allows for flavour violation. The respective transition
probabilities are collected in the Cabibbo–Kobayashi–Maskawa (CKM) matrix [48, 49], which can
be interpreted as the transition matrix between flavour eigenstates and weak eigenstates of the quarks,
similar to the neutrino case.

The strong interaction is associated with the SU(3)colour gauge group, which gives rise to 8 mass-
less gauge bosons, the gluons. A theory involving quarks was first proposed by Ne’eman and Gell-
Mann [50–52], and later, the additional gauge symmetry was discovered. Quarks are colour charged
and therefore take part in the strong interaction; also the gluons themselves are colour charged, since
the gauge group is non-abelian. Such a theory is referred to as a Yang–Mills theory [53]. This differ-
ence to, e.g., QED results in a different behaviour of the running coupling αs compared to αQED ≡ α.
The latter grows with increasing energy, such that QED becomes strongly coupled at high energies,
culminating in the Landau pole of QED. For QCD, the Landau pole is located at low energies and
the theory is strongly coupled there and weakly coupled at high energies. At low energies, quarks and
gluons are confined to colour-neutral hadrons; with a large coupling constant, perturbative calcula-
tions are not possible. In the high-energy regime, where quarks are asymptotically free, calculations
in the strong sector can be done with perturbative Quantum Chromodynamics (pQCD). However,
measurements of particles in detectors happen at relatively low energies. Quarks and gluons hadronise

#1With some inconsistency, the three physical polarisations of a massive vector boson are often referred to as “transver-
sal”; this includes then also the longitudinal polarisation, but excludes the time-like one. We will follow this inconsistency
in this work.
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into mesons and baryons and maybe states involving higher numbers of quarks or gluons, and any of
these but the ones with the lowest masses decay before detection into the lightest hadrons and then
via the electroweak interaction into leptons and photons. Any information about higher states in the
hadronic spectrum is obtained via spectral analysis of detector data.

The weak interaction is the only part of the SM that violates the presented discrete symmetries,
as the strong interaction conserves them, up to a possible extension via the θ term [54], which is
constrained by neutron electric dipole moments [55–57].

At energies relevant for processes involving light hadrons, one can either do a direct numerical
simulation on the basis of QCD in a discretised space-time and finite volume, which is done in Lattice
QCD, or one can construct a new, effective QFT from the degrees of freedom that are relevant in this
energy regime, making use of additional symmetries. This is done in ChPT and variants thereof, which
we will discuss in the following section, Sec. 1.2. Alternatively or additionally, one can resort to the
very basics of the theory, analyticity and unitarity, as is done in dispersion theory (DT); see Sec. 1.3.

1.2 Chiral Perturbation Theory and relatives

An effective field theory (EFT) is not the most fundamental theory possible; the idea is rather to work
with the degrees of freedom relevant in the regime of interest and parameterise physics from other
scales. We are specifically interested in physics of the strong interactions at energies up to and around
1 GeV, i.e., in the hadronic regime, where pQCD is not applicable and hadrons are the relevant degrees
of freedom.

The lightest hadrons are the pions, forming a triplet {π+, π0, π−}, where π± have identical masses
Mπ± = 139.57039(17) MeV and π0 is slightly lighter, Mπ0 = 134.9768(5) MeV [34]. This triplet
together with the proton and the neutron in the baryonic sector gives a hint that there is a symmetry
at play, which has different representations just as spin and is therefore called isospin [6]. In the
quark model, it is interpreted as a symmetry between u and d quarks, and is associated with an
SU(2) symmetry group. Its natural extension is flavour symmetry, which takes into account more
quark flavours; in the regime of light hadrons, these are the three lightest quarks u, d, and s, and the
associated symmetry group is SU(3).

Apart from isospin symmetry, one can observe a few other peculiarities about pions: why are they
much lighter than all the other hadrons, the next ones being the kaons K±,0 and the η around 500 MeV
and after that the ρ and ω around 780 MeV, followed by a plethora of hadronic states?

Historically, current algebra was used to describe interactions of light hadrons. Various concepts,
e.g., vector-meson dominance (VMD), the notion that photons couple to hadrons dominantly via vector
mesons, which can be understood through the matching quantum numbers [58, 59], and relations were
found, such as consistency conditions, low-energy theorems, and sum rules [60–62]. Some processes
are suppressed or forbidden due to a conspiracy of different quantum numbers; for this work, the
Landau–Yang theorem is of special significance, which forbids the decay of spin-1 particles into two
real photons [63, 64]. The systematic treatment of chiral symmetry enabled major progress in the
field [65, 66].

The above observations about the lightest hadrons are used to construct the framework of Chiral
Perturbation Theory (ChPT), an effective field theory with systematic power counting, which was done
by Gasser and Leutwyler on the basis of the chiral symmetry that holds in QCD for vanishing
light quark masses [67–73]. Initially, this was developed for SU(2) symmetry, i.e., for two light quarks,
and later extended to SU(3).

We will briefly review the main steps of the derivation for the SU(3) case, confining ourselves to
mesons since baryons are not in the focus of this work and mostly following Refs. [74, 75], which are
recommended for looking up any details left out here.#2

#2A pedagogical version of the first part of this summary was presented in a seminar at the International Conference
of Physics Students in Tbilisi 2024 [76].
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Starting from the QCD Lagrangian for light quarks,

LQCD =
∑

f∈{u,d,s}
q̄f
(
i /D − M

)
qf −

1

4
Gµν,aG

µν,a, (1.2)

where /D is the covariant derivative, M = diag (mu,md,ms) the quark mass matrix, and Gµν,a the gluon
field with colour index a, one can decompose the quark fields q into left- and right-handed components
qL/R via projectors PL/R := (1∓ γ5)/2. Since

q̄Γq = (q̄R + q̄L)Γ(qL + qR) =

{
q̄RΓqR + q̄LΓqL, Γ ∈ {γµ, γµγ5},
q̄RΓqL + q̄LΓqR, Γ ∈ {1, γ5, i[γµ, γν ]/2}, (1.3)

the term with the covariant derivative decouples into q̄L /DqL + q̄R /DqR, while the mass term mixes the
two components,

q̄Mq = q̄RMqL + q̄LM
†qR. (1.4)

One can infer that LQCD would be invariant under separate unitary chiral transformations UL/R ∈
U(3)L/R if the mass term vanished. We refer to this hypothetical situation as the chiral limit; there,
U(3)L × U(3)R is a global continuous symmetry of the Lagrangian. In reality, this symmetry is only
approximate, and since the mass of the strange quark is significantly larger than the masses of u and
d, ChPT with three flavours receives larger corrections than ChPT with only u and d. We can write
an element of U(3)L/R as

UL/R = exp
(
− i

8∑

a=1

θL/Ra

λa
2

)
exp

(
− iθ

L/R
0

)
, (1.5)

where λa are the Gell-Mann matrices and {θL/R0 , θ
L/R
a } are 9 parameters. Accordingly, U(3) has

9 generators and the unitary decomposition Eq. (1.5) shows that the whole symmetry group can be
decomposed into

U(3)L ×U(3)R ∼= SU(3)L × SU(3)R ×U(1)L ×U(1)R. (1.6)

The Noether currents associated with the respective transformations of the fields q 7→ q + θ
R/L
0/a δq

can be calculated via jµ = ∂L/
(
∂(∂µq)

)
δq to be

Lµ0 = q̄Lγ
µqL, Lµa = q̄Lγ

µλa
2
qL,

Rµ0 = q̄Rγ
µqR, Rµa = q̄Rγ

µλa
2
qR. (1.7)

Vector and axial-vector current are related to these left- and right-handed currents via

V = L+R, V µ0 = q̄γµq, V µa = q̄γµ
λa
2
q,

A = L−R, Aµ0 = q̄γµγ5q, Aµa = q̄γµγ5λa
2
q. (1.8)

According to Noether’s theorem [77], these currents are conserved if they correspond to continuous

symmetries. An explicit calculation using the free Dirac equation /∂q = −iMq and q̄ ~/∂ = iq̄M yields

∂µV
µ
0 = 0, ∂µV

µ
a = iq̄

[
M,
λa
2

]
q,

∂µA
µ
0 = 2iq̄γ5Mq + quantum corrections, ∂µA

µ
a = iq̄

{
M,
λa
2

}
q. (1.9)
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While V µ0 is always conserved and V µa and Aµa are conserved in the chiral limit, Aµ is conserved only
on a classical level, but not in a quantum theory, where corrections enter from triangle diagrams. This
fact is referred to as the axial or Adler–Bell–Jackiw anomaly [78, 79]. The conclusion is that
the associated symmetry must also be broken, such that the symmetry group of LQCD reduces to
SU(3)L × SU(3)R × U(1)V . An element UV ∈ U(1)V transforms both left- and right-handed fields in
the same way; this symmetry is associated with baryon number conservation. As a global symmetry,
the baryon number B is not conserved due to anomalies in the electroweak sector, such that only
B − L, the combination of baryon and lepton number, is conserved [80–82].

The axial symmetry breaking occurs on the level of the Lagrangian; for the vacuum, there is an
additional subtlety at play. We can calculate the conserved charges associated with V µa and Aµa as

QV,a =

∫
d3xV 0

a (~x, t), QA,a =

∫
d3xA0

a(~x, t). (1.10)

These conserved charges associated with the group generators can either annihilate the vacuum, then
we say that the respective symmetries are realised in Wigner–Weyl mode; this mode would imply
in the present case that every hadron has a parity partner since there are two copies of SU(3). Or a
charge does not annihilate the vacuum, Q|0〉 6= |0〉, which is referred to as the Nambu–Goldstone
mode [83–85]. Since parity doubling is not observed in the hadronic spectrum, the conclusion is that the
Nambu–Goldstone mode must be realised for one set of symmetry generators. The Vafa–Witten
theorem states that the global vector symmetry is unbroken [86], which implies that the axial-vector
symmetry must be broken for the vacuum; this is referred to as SSB. According to the Goldstone
theorem [87], for every broken generator a massless boson emerges as a consequence of SSB. The
symmetry group of the vacuum is now reduced to SU(3)V × U(1)V , whereas LQCD is invariant under
the larger group SU(3)L × SU(3)R ×U(1)V , and a set of 8 massless pseudoscalar Goldstone bosons
has emerged.

Let G = SU(3)L × SU(3)R = {(L,R)|L ∈ SU(3)L, R ∈ SU(3)R} denote the symmetry group of
LQCD. For building an effective Lagrangian, we need to establish building blocks with well-defined
transformation properties under G and write down all possible invariant terms we can form with
those, following Weinberg’s principle that “if one writes down the most general possible Lagrangian,
including all terms consistent with assumed symmetry principles, and then calculates matrix elements
with this Lagrangian to any given order of perturbation theory, the result will simply be the most
general possible S-matrix consistent with analyticity, perturbative unitarity, cluster decomposition
and the assumed symmetry principle” [88].

Let H = {(V, V )|V ∈ SU(3)V } ≤ G denote the subgroup that leaves the vacuum invariant and W
the vector space of Goldstone boson fields Φ = (φa)8

a=1. One can construct a mapping ϕ : G×W →
W that respects the group structure, which gives rise to an isomorphic mapping for the quotient group
G/H ×W → W . Implicitly, we introduced a space-time dependence for the fields and for the group
elements, which is possible since the symmetry is actually local. This determines a group action and
therewith the transformation properties of Φ under G, such that the Goldstone boson fields are
logical degrees of freedom for the theory. One can write down a unitary matrix

U = exp

(
i

F

8∑

a=1

φaλa

)
(1.11)

collecting the Goldstone fields and transforming as U 7→ LUR†, U† 7→ RU†L†.
These symmetries hold for massless quarks, but for small quark masses, not everything is lost. One

can reintroduce the quark mass matrix M as a spurious field transforming under G as M 7→ LMR†. With
this transformation property, the QCD mass term Eq. (1.4) is invariant. If we now use the same quark
mass matrix in the effective Lagrangian, we ensure that the symmetry breaking due to finite quark
masses happens in the same way as in QCD; in the effective theory, however, it has to be taken into
account perturbatively. This yields a mass term for the previously massless Goldstone bosons; since
we do not observe massless pseudoscalars, this fits experimental observations, and we can identify the
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lightest pseudoscalar mesons, the pions π±,0, the kaons K±,0, K̄0, and the η, with the Goldstone
bosons. With the Gell-Mann matrices λa, the identification is

U = exp

(
iλa
F
φa

)
= exp





√
2i

F




π0
√

2
+ η√

6
π+ K+

π− − π0
√

2
+ η√

6
K0

K− K̄0 −2η√
6







, (1.12)

where the charged physical pions relate to the φi via π± = (φ1 ± iφ2)/
√

2.
The physical Goldstone bosons form a flavour octet under G, and the pions, for which one can

write down ChPT with SU(2), form an isospin triplet, being isovectors, whereas the kaons have I = 1/2
and the η is an isoscalar. Isospin is conserved under the strong interaction up to quark-mass corrections
and for isovectors, one can define an additional quantum number, the so-called G-parity, as [89]

G = C exp(iπI2), (1.13)

where I2 is the second component of the isospin I. The charge-neutral φ3 mixes in principle with the
charge-neutral φ8 from the flavour octet according to

(
π0

η

)
=

(
cos θ8 − sin θ8

sin θ8 cos θ8

)(
φ3

φ8

)
, (1.14)

but since this is an isospin-breaking effect, θ8 = 0 as in Eq. (1.12) is an approximation sufficient for
some applications.

We can take derivatives of U transforming as ∂µU 7→ L∂µUR
†, ∂µU† 7→ R∂µU

†L† and build the
ChPT Lagrangian order by order according to the number of derivatives corresponding to momenta
pµ as L = L(0) + L(2) + L(4) + ... ; a term of odd order in pµ would not be Lorentz invariant. This
ordering scheme is particularly useful since ChPT is applied in the regime of low energies and momenta,
such that terms ∼ p2n are suppressed compared to terms ∼ p2n−2. L(0) can only be proportional to
UU† = 1, such that L(2) is the leading term, given by

L(2) =
F 2

4
〈∂µU∂µU† + 2B(MU† + M†U)〉, (1.15)

where 〈...〉 denotes the trace in flavour space. Note that U itself can be expanded, yielding coefficients
in 1/F . Relations between the masses of quarks and squared masses of Goldstone bosons arise from
expanding U to second order in the Goldstone boson fields [67, 68, 90].

The constant F is not fixed from within ChPT, but can be determined by noting that the axial
current is given by Aµa = −F∂µφa +O(φ3) and the matrix element accordingly yields

〈0|Aµa |φb(p)〉 = ipµδabF. (1.16)

Therefore, we can identify F with the pion decay constant Fπ, which is measured in weak decays,
mostly π+ → µ+νµ. Similarly, all low-energy constants (LECs) in ChPT have to be determined either
from experiment or from other theoretical input.

Local symmetry parameters are related to gauge symmetries, and hence, there are chiral Ward
identities, which can be seen via invariance under variation of external fields S, P, V µ, and Aµ. In the
QCD Lagrangian, these external fields can be included via [18, 75]

Lext
QCD = q̄γµ

(
V µ + γ5Aµ

)
q − q̄(S − iγ5P )q. (1.17)

In order to keep these chiral Ward identities intact for the effective Lagrangian, one has to include the
external fields into LChPT in such a way that the chiral transformation properties are the same [69].
For V µ and Aµ, this is done via promoting the derivative ∂µ to a covariant derivative Dµ

DµU = ∂µU − i[Vµ, U ]− i{Aµ, U}. (1.18)
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S and P are included via terms

2B
[
(S + iP )U† + (S + iP )†U

]
. (1.19)

The external currents can be identified with physical currents of matching quantum number. The
mass matrix, e.g., can be included as part of S, and the electromagnetic current as part of Vµ, which
generates the coupling of Goldstone bosons to real photons via

Dµ = ∂µ + ieAγµ[Q,U ], (1.20)

where Q = diag (2/3,−1/3,−1/3) is the matrix of quark charges and against all convention, we denote
the photon field by Aγµ in order to avoid confusion with the axial-vector current Aµ. Coupling to
virtual photons receives corrections dependent the virtualities, which can be calculated including loop
diagrams and higher-order LECs, which also capture the effects from higher resonances.

The terms discussed so far do not produce any term like π0 → γγ with an odd number of Gold-
stone bosons. Such a term must be of odd intrinsic parity and therefore contain the Levi-Civita
tensor; since QCD admits odd intrinsic parity, ChPT should do so, as well. One can derive suitable
Lagrangian terms from an action first written down by Wess and Zumino [91, 92], which yields terms
at almost all orders in the chiral expansion, the lowest-order one being

LWZW 3 −
e2

32π2F
π0εµναβFµνFαβ , (1.21)

where Fµν denotes the electromagnetic field strength tensor, which enters via integration by parts in
the action with external fields. From the Lagrangian term in Eq. (1.21), the decay width of π0 → γγ
can be calculated, which is associated with the axial anomaly. Witten found that the number of
colours Nc shows up in the WZW action; it was argued in Refs. [82, 93, 94], however, that Nc cannot
be obtained from Γπ0γγ due to subtle cancellation effects related to the violation of baryon number
and the quark charges depending on Nc, which gives rise to the Goldstone–Wilczek term [95].

The term in Eq. (1.21) is already part of the next order of the Lagrangian L(4), which consists
of terms built from the same building blocks as L(2). With increasing order, the number of possible
terms rises, and each term comes with an LEC, which needs to be determined from external input.
When calculating a process in ChPT to O(p4), one has to take into account both the new terms from
L(4) and loops from L(2). Since this pattern continues at every order, ChPT is a non-renormalisable
theory, meaning that there are infinitely many loops that need to be renormalised. At the same time,
there are infinitely many coupling constants, the LECs, which can be used to renormalise the theory
order by order, i.e., at a given order 2n, one can renormalise all loops coming from Lagrangian terms
up to and including O(p2n−2) using the LECs at O(p2n), which act as counter-terms. It is important
to note that the LECs can upset the ordering scheme of ChPT if they are not all of the same order of
magnitude, levering out the suppression due to powers of momenta. Therefore, if one actually wants
to know how important higher-order corrections are, one has to do the calculation at the next order,
for which one needs information about the corresponding LECs.

ChPT includes so far 8 Goldstone bosons identified with the lightest mesons; but experimen-
tally, there is also the η′ with the same quantum numbers as the η and a higher mass Mη′ =
957.78(6) MeV [34], which looks suspiciously similar. One can include it into ChPT via an additional
symmetry, under which the axial current Aµ0 is conserved. The idea is to order terms according to their
power of 1/Nc, which is then combined with the ChPT counting scheme; it is therefore called large-Nc
ChPT [96–98]. Since 1/Nc = 1/3, the resulting perturbation theory has rather large corrections, but
it allows to understand the presence and the properties of the η′ as an additional Goldstone boson
arising from the now spontaneously broken U(1)A symmetry. This symmetry has one generator and
the emerging Goldstone boson is a singlet state. It can be included into the ChPT Lagrangian by
adding a term φ0λ0 to the sum

∑
a φaλa in U with λ0 = 13/

√
3. This singlet state η1 mixes with the
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octet state η8 to yield the physical states η and η′ via

(
η′

η

)
=

(
cos θ1 sin θ1

− sin θ1 cos θ1

)(
η1

η8

)
. (1.22)

Assuming ideal mixing, i.e., θ1 = arcsin(−1/3), the unitary matrix can be extended to

exp

{
i

F

(
8∑

a=1

φaλa +
1√
3
η013

)}
= exp





√
2i

F




π0
√

2
+
√

2η+η′√
6

π+ K+

π− − π0
√

2
+
√

2η+η′√
6

K0

K− K̄0 −
√

2η+2η′√
6







.

(1.23)

Large-Nc ChPT also provides a framework to include resonances of higher mass and spin, in
principle similar to the source terms in Eq. (1.18). One can define suitable building blocks transforming
under G similarly to their equivalents in a QCD Lagrangian with external currents. Writing down
again all possible terms at a given order and systematically expanding yields all relevant terms at that
order compatible with the respective symmetries [18–21, 99]. Such a Lagrangian describes how the
dynamical degrees of freedom of ChPT, the pseudo-Goldstone bosons, couple to higher resonances,
but the latter are not dynamical fields in this theory in the sense that their dynamical behaviour
cannot be described appropriately in this way. One can include mass and kinetic terms by choosing a
representation that allows for propagation of the relevant degrees of freedom of the field. For a vector
or axial-vector field, three degrees of freedom need to be propagated, which can be realised either
in a vector representation V µ/Aµ where the field strength tensor is written as V µν = ∂µV ν − ∂νV µ
and similar for Aµν , or in an antisymmetric tensor representation Ṽ µν/Ãµν , where the additional
degrees of freedom are removed by suitable conditions [18, 19, 100]. It was demonstrated that the two
representations are equivalent, and also that the power counting for these (axial-) vector field terms
is ambiguous. Such a representation allows to propagate a resonance field assuming it is stable. One
intrinsic difficulty with these resonance states is that they are only well-defined as autonomous fields
in a narrow-width or -resonance approximation (NWA), where they have to be on their mass shell;
but at the same time, they are typically so short-lived that they have a non-negligible width compared
to their mass, which should be taken into account in a hadronic calculation. One can include a finite
width in the propagator of a resonance field; the easiest way to do so is via a Breit–Wigner function,
which, however, breaks unitarity; see Sec. 1.3.

One would like to match LECs and masses of the resonances to QCD in the same limit of Nc →∞
at the level of correlators [21]. In practice, one does not know QCD in this limit and can only
work on the basis of assumptions, especially a truncation of the hadronic spectrum after the lowest
states. It is, however, possible to match large-Nc ChPT to ChPT in order to learn how resonances
relate to LECs in ChPT, e.g., whether a LEC in ChPT, which is related to loops at lower orders in
the expansion, is saturated by resonances [101, 102]. Since vector (and axial-vector) mesons play a
dominant role in this whenever quantum numbers allow it, this makes a connection to the empirical
concept of VMD [18]. Large-Nc ChPT is built to produce all (strong) physics at tree level; instead of
hadronic loops, higher resonances are introduced. This in combination with the truncations necessarily
constrains the applicability of the theory. One can to some extent match hadronic processes at higher
energies to pQCD by including effective poles as replacements for the states neglected by the truncation,
via sum rules, and making use of an operator-product expansion (OPE) [103–111] and constrain the
asymptotic behaviour from a light-cone expansion [112–115].

It is also possible to write down chiral theories for heavy mesons and baryons by introducing
an additional expansion parameter 1/M2

H into the series, the heavy mass scale [116–121]. One can
utilise additional symmetries such as heavy-spin symmetry, relating heavy spin-0 and spin-1 states,
and heavy-flavour symmetry, relating hadrons with b and c quark content.
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1.3 Analytic S-matrix and dispersion theory

Another approach to understand the hadronic sector is dispersion theory, which has its roots in S-
matrix theory. Originating in the 1960s before the development of QCD [122–124], S-matrix theory
provides a non-perturbative approach to hadronic processes. It builds entirely on the idea that a
physical scattering process should respect causality and conserve probability. The first constraint
translates mathematically to analyticity, the second one to unitarity of the respective amplitude. The
additional idea of crossing symmetry relates processes with the same particles involved, but different
initial and final states, to one another, and together with analyticity fosters the idea of an S-matrix
that is defined on the whole complex plane. Unitarity implies bounds on the asymptotic behaviour
of M [125], originating from the optical theorem [126, 127]. It is easier to understand the connection
between causality and analyticity on a classical or non-relativistic level [128], but we will focus here
on the consequences for relativistic processes and refer the reader to more detailed literature on the
subject [128–131].

Any scattering process with initial state |i〉 and final state |f〉 can be described as

〈f |S|i〉. (1.24)

The term scattering process refers typically to a 2 → 2 process, and we can discuss 1 → 2 and 1 → 3
processes as special cases. It does not make sense to discuss processes with more than two incoming
particles due to the principle of cluster decomposition [132], the notion that interactions between
particles are approximately local and particles before and after the interaction behave asymptotically
as non-interacting. Processes with more outgoing particles, on the other hand, become increasingly
complicated, and one has to hope that they factorise [133]. The canonical labelling for 2→ 2 scattering
is A(p1) +B(p2)→ C(q1) +D(q2), which gives rise to the definition of the Mandelstam variables

s = (p1 + p2)2 = (q1 + q2)2, t = (p1 − q1)2 = (p2 − q2)2, u = (p1 − q2)2 = (p2 − q1)2. (1.25)

The relation

s+ t+ u = m2
A +m2

B +m2
C +m2

D (1.26)

follows from energy-momentum conservation. Crossing symmetry relates the scattering process A +
B → C +D to the decay process A→ B̄ + C +D with p2 7→ −p2. The S-matrix maps the Hilbert
space H onto itself, S : H → H, and its symmetry properties are captured by the fact that it commutes
with the respective symmetry operators. Per its Poincaré invariance, S is unitary, SS† = 1, and can
only depend on Lorentz-invariant quantities, typically s, t, and u.

Observable quantities are related to (differential or integrated) cross sections (d)σ that are propor-
tional to the differential probability dP of scattering from this particular initial into this particular
final state. The differential probability relates to the scattering matrix via

dP =
|〈f |S|i〉|2
〈f |f〉〈i|i〉dΠ, (1.27)

where dΠ is the differential phase space. The S-matrix can be separated into a non-interactive part,
which is simply the identity matrix, and an interaction part denoted by the transfer matrix T ,

S = 1 + iT . (1.28)

Energy and momentum conservation are manifest when T is written as

〈f |T |i〉 = (2π)4δ(4)(Σpi − Σpf )M, (1.29)

where M is called the matrix element.
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Figure 1.1: Poles and branch
cuts with branch points in the
complex plane. The light green
circle on the real line denotes a
bound state, the purple circle a
resonance, the dark green wiggly
line a right-hand cut, and the or-
ange line a left-hand cut. The
resonance lies on a non-physical
sheet, separated from the physi-
cal sheet by a branch cut.

Due to causality, S can be analytically continued in the whole complex plane and is complex
differentiable with the exception of poles and branch cuts, i.e., it is a meromorphic function; see
Fig. 1.1. Branch cuts emerge from complex square root and logarithm functions, which are multi-
valued, i.e., their domain extends to more than one Riemann sheet. Different Riemann sheets are
connected smoothly with the exception of the branch point where the branch cut opens. As an
example, consider the different branches of a square root and a logarithm in Fig. 1.2: the square
root has two Riemann sheets, which are smoothly connected across the branch cut, which is situated
at (−∞, 0], i.e., it is a left-hand cut (LHC). A right-hand cut (RHC) emerges from

√−z. If one
starts at some point in C\0 and circumnavigates the origin twice, one arrives at the same point. The
logarithm, on the other hand, has infinitely many Riemann sheets; if one starts at some point in
C\0 and circumnavigates the origin in one direction, one will never return to the original point, but
for every round, the imaginary part increases by 2π. Therefore, it is important to define on which
Riemann sheet these functions are to be evaluated in a calculation. Measurements of any physical
observable always happen for real values of the Mandelstam variables s, t, and u, the input variable
of the S-matrix. The input variables are also restricted by energy and momentum conservation. The
Riemann sheet that is smoothly connected to the upper part of the branch cut is called the physical
sheet, all other sheets are called unphysical.

We recapitulate some central results from complex analysis and point out their significance for
the context of this work, refraining from stating the most general versions of the theorems and from
reproducing any proofs, which can be found in the abundant literature on the subject.

Analyticity, i.e., the fact that one can expand f on a disc around z0 in a convergent power series

f(z) =

∞∑

n=0

cn(z − z0)n (1.30)

with a positive radius of convergence, is equivalent with the function being holomorphic in z0. This
is a powerful constraint since complex differentiability of a function f : C → C, z = x + iy 7→ f(z) =
u(x, y) + iv(x, y) is a significantly stronger property than real differentiability. It implies that the
Cauchy–Riemann differential equations hold,

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (1.31)

With this and Stoke’s theorem, one can prove Cauchy’s theorem, which states that if a function
f(z) is holomorphic on a simply connected open set U , then its contour integral along any closed curve
C ∈ U vanishes,

∫

C

dzf(z) = 0. (1.32)
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Figure 1.2: Examples for branch cuts: the functions
√
s on the first (a) and second (b) sheet, and

log(s) on the first (c) and second (d) sheet in the complex s-plane, where branch cuts open in the
imaginary part at the branch point sthr = 0. For each function, the first diagram depicts the real part,
the second one the imaginary part, and the third one the absolute.



14 Introduction

From this, Cauchy’s integral formula follows,

f(z) =
1

2πi

∫

C

dζ
f(ζ)

ζ − z , (1.33)

where C ⊂ U is the counterclockwise oriented boundary of a disc D = {z ∈ C : |z − z0| ≤ r} ⊂ U for
some radius r > 0 and centre z0 ∈ U with z ∈ D, and f(z) is holomorphic on the open simply-connected
set U ⊆ C. This is the fundamental case of a simple pole; the residue theorem deals with the more
general situation of finitely many singularities at positions zi ∈ U, i ∈ N with residues Res (f, zi) and a
closed rectifiable curve C ⊂ U\{zi, i ∈ N}. One needs to track how many times C winds around each
singularity zi counterclockwise and denotes the number by I(C, zi). f(z) is taken to be holomorphic
on U\{zi, i ∈ N} or meromorphic on U , which is still a simply-connected open subset of C. Then the
contour integral along C is given by

∫

C

dz f(z) = 2πi

N∑

i=1

I(C, zi)Res (f, zi). (1.34)

The identity theorem states that any two functions analytic on an open and connected domain
D ⊆ C which agree on a subset A ⊆ D with an accumulation point in D agree on D. This implies
that if a function is known on a suitable subset of C, e.g., an open subset of the real line, its analytic
continuation to the whole complex plane is unique. Actually, it is not even necessary to know the full
function, it is enough to know its discontinuity discf : as mentioned earlier, complex square roots and
logarithms give rise to branch cuts, and a discontinuity is defined as the difference between values of
the function on either side of the branch cut,

discf(z) := f(z + iε)− f(z − iε), (1.35)

compare Fig. 1.2. If f(z) is holomorphic outside of a right-hand branch cut, it can be reconstructed
at any point z via Cauchy’s theorem by deforming the integration path C,

f(z) =
1

2πi

∫

C

dζ
f(ζ)

ζ − z =
1

2πi

∫

C1

dζ
f(ζ)

ζ − z +
1

2πi

∫

C2

dζ
f(ζ)

ζ − z

=
1

2πi

∫ ∞

zthr

dζ
f(ζ + iε)− f(ζ − iε)

ζ − z =
1

2πi

∫ ∞

zthr

dζ
discf(ζ)

ζ − z , (1.36)

where C1 is the arc from R+iε to R− iε as depicted in (a) in Fig. 1.3 and C2 is the path from R− iε to
the branch point zthr − iε, around zthr to zthr + iε without crossing the branch cut, and from zthr + iε
to R + iε. If f(z) falls fast enough, i.e., faster than 1/z, the integral along C1 vanishes in the limit
R → ∞; the small arc around zthr in C2 vanishes for ε → 0, such that we are left with an integral
along either side the branch cut, which can be written as an integral from the branch point to ∞ over
discf(ζ)/(ζ − z). If f(z) does not decrease fast enough, one needs to artificially force it to do so and
introduce a subtraction, i.e., for z0 < zthr, where f(z) is holomorphic, write

g(z) =
f(z)− f(z0)

z − z0
=

1

2πi

∫ ∞

zthr

dζ
disc g(ζ)

(ζ − z) =
1

2πi

∫ ∞

zthr

dζ
discf(ζ)

(ζ − z0)(ζ − z)

⇒ f(z) = f(z0) +
z − z0

2πi

∫ ∞

zthr

dζ
discf(ζ)

(ζ − z0)(ζ − z) . (1.37)

This procedure can be repeated until the integrand decreases sufficiently fast for large arguments. For
each such subtraction, one obtains a subtraction constant f(z0) that needs to be fixed by additional
input, e.g., an experimental value for the amplitude at z0 or a theory constraint.

If there is, additionally to a RHC, also a LHC involved, and maybe also poles corresponding to one-
particle intermediate states, one has to integrate around those in a similar manner, see (b) in Fig. 1.3;
for isolated poles, one just picks up the residue.
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(a) (b)

Figure 1.3: Deformation of the integration path around z to a radius R, avoiding a RHC (a), or around
a RHC, a LHC, and a pole on the real axis (b).

If f(z) fulfils the Schwarz reflection principle, f(z∗) =
(
f(z)

)∗
, which holds if f(z) is holomorphic

on an open subset U of the upper (or lower) half plane and only takes real values on the real line, then
the discontinuity can be written as

discf(z) = f(z + iε)−
(
f(z + iε)

)∗
= 2i Im f(z), (1.38)

and the integral in Eq. (1.36) becomes

f(z) =
1

π

∫ ∞

zthr

dζ
Im f(ζ)

ζ − z . (1.39)

Expressing f(z) = Re f(z) + i Im f(z), we can obtain the real and imaginary part of the integral via
the Sokhotski–Plemelj theorem [134], which implies for integrations along the real line

lim
ε→0

∫ b

a

dx

x± iε
= −
∫

dx

x
∓ iπ, (1.40)

where −
∫

denotes the Cauchy principal value integral. With this,

f(z) =
1

π
−
∫ ∞

zthr

dζ
Im f(ζ)

ζ − z + i Im f(z), Re f(z) =
1

π
−
∫ ∞

zthr

dζ
Im f(ζ)

ζ − z (1.41)

for the non-subtracted version; from the sign of iε, we see that we need to approach the real line from
below with the integrand. An integral as in Eq. (1.39) is called a dispersion integral ; the name goes
back to the Kramers–Kronig relations between absorption and refraction of light in a medium [126,
135]. When implementing a dispersion integral in practice, it is sometimes preferable to write

f(z) = f(z0) +
z − z0

π

∫ ∞

zthr

dζ
Im
[
f(ζ)− f(z)

]

(ζ − z0)(ζ − z) +
(z − z0)Im f(z)

π

∫ ∞

zthr

dζ
1

(ζ − z0)(ζ − z) , (1.42)
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where the integrand in the first integral is non-singular at ζ = z and the latter integral can be solved
analytically to be

∫ ∞

zthr

dζ
1

(ζ − z0)(ζ − z) =
1

z − z0
log
(zthr − z0

zthr − z
)

=
1

z − z0

[
log
(∣∣∣zthr − z0

zthr − z
∣∣∣
)

+ i arg
(zthr − z0

zthr − z
)]

=
1

z − z0

[
log
(∣∣∣zthr − z0

zthr − z
∣∣∣
)

+ iπθ(z − zthr)
]
. (1.43)

Here, we need either a subtracted dispersion integral as above or an integrand that falls faster than
1/z2 and therefore can be written as z · f(z)/z, otherwise, the second integral will diverge.

The imaginary part of a process 〈f |i〉 is connected to the amplitudes 〈f |n〉 and 〈i|n〉 for any possible
intermediate state |n〉 via a generalisation of the optical theorem [126, 127], which is a consequence of
unitarity,

1 = S†S = (1− iT †)(1 + iT ) = 1− i(T † − T ) + T †T
⇒ i(T † − T ) = T †T
⇒ i〈f |(T † − T )|i〉 = i (2π)4δ(4)(Σpi − Σpf )

[
M∗(f → i)−M(i→ f)

]

= 〈f |T †T |i〉 =
∑

n

1

Sn

∫ ( Nn∏

j=1

d̃kj

)
〈f |T †|n〉 〈n|T |i〉

=
∑

n

1

Sn

∫ ( Nn∏

i=1

d̃kj

)
(2π)4δ(4)(Σpf − Σkj)M∗(f → n) (2π)4δ(4)(Σpi − Σkj)M(i→ n). (1.44)

Here, Sn is the symmetry factor of an intermediate state n, {kj}Nnj=1 are its momenta, and the (Nn-
particle) phase space is given by

Nn∏

j=1

d̃kj =

Nn∏

j=1

d3kj
(2π)32k0

j

. (1.45)

Let us consider a concrete example, the two-point correlation function of a real scalar field φ(x)
with mass M [25, 131, 136], and express it in terms of the spectral function or spectral density ρ(s),
which carries all information about the process,

〈0|φ(x)φ(y)|0〉 =
∑

n

∫ Nn∏

j=1

d̃kj〈0|φ(x)|n〉 〈n|φ(y)|0〉 =
∑

n

∫ Nn∏

j=1

d̃kje
−i(Σjkj)(x−y)|〈0|φ(x)|n〉|2

=

∫
d4p

(2π)4
e−ip(x−y)

∑

n

∫ Nn∏

j=1

d̃kj(2π)4δ(4)
(
p− (Σjkj)

)
|〈0|φ(x)|n〉|2

=:

∫
d4p

(2π)4
e−ip(x−y)2πθ(p0)ρ(p2), (1.46)

where we introduced a complete set of states in the first line and a δ function in the second, and
defined ρ(p2) in the last line. The time-ordered correlator is then given by

〈0|T{φ(x)φ(y)}|0〉 = 〈0|φ(x)φ(y)|0〉θ(x0 − y0) + 〈0|φ(y)φ(x)|0〉θ(y0 − x0)

= i

∫
d4p

(2π)4
eip(x−y)

∫ ∞

0

ds
ρ(s)

p2 − s+ iε
. (1.47)

This is similar to the derivation of the Feynman propagator via the advanced and retarded propa-
gator [25]. Indeed, the lowest intermediate state is given by |n〉 = |φ〉, which yields the Feynman
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= + + . . .

Figure 1.4: The lowest-order contributions to the two-point function of φ, which is denoted by a double
line; single lines denote η.

disc

[ ]
= + + . . .

Figure 1.5: The discontinuity of the two-point function of φ can be obtained from the sum over its
cuts.

propagator as the lowest-order result, i.e., ρ(p2) = δ(p2 −M2) + . . . . The Källén–Lehmann repre-
sentation [137, 138] of the two-point function in momentum space is given by

∫
dx dy ei(px+p′y)〈0|T{φ(x)φ(y)}|0〉 = i(2π)4δ(4)(p+ p′)

∫ ∞

0

ds
ρ(s)

p2 − s+ iε
=: i(2π)4δ(4)(p+ p′)D(p2).

(1.48)

Using the Sokhotski–Plemelj theorem, one can relate the spectral function to the imaginary part
of D(p2),

ρ(p2) = − 1

π
ImD(p2). (1.49)

We already know that δ(p2 −M2) contributes to the imaginary part, yielding an isolated pole.
For a second intermediate state in the sum in Eq. (1.46), assume there is another scalar particle

η with mass m in the model, such that M > 2m, and an interaction term Lint 3 λ
2φη

2. Then the
next contribution to the two-point function is given by an η loop; see Fig. 1.4. After evaluating the
diagram, one finds for the imaginary part

ImMloop(p2) = − λ2

32π

√
1− 4m2

p2
θ(p2 − 4m2), (1.50)

which yields a branch cut starting at p2 = 4m2 =: sthr from the square root. We have identified
contributions to the imaginary part from the one-particle intermediate state φ and the two-particle
intermediate state 2η with support where the respective intermediate states can go on-shell.

In order to include contributions from all intermediate states, one considers the sum over all possible
one-particle irreducible (1PI) contributions, which is given by the self-energy of φ denoted by Π(p2).
Taking care of renormalisation implicitly and making use of the geometric series, one can express the
two-point function as

D(p2) =
1

p2 −M2 −Π(p2) + iε
, ImD(p2) =

Im
[
Π(p2)

]

|p2 −M2 −Π(p2)|2 . (1.51)

The real part of D(p2) can be calculated from the imaginary part dispersively,

ReD(p2) =
1

π
−
∫ ∞

sthr

ds
ImD(s)

s− p2
. (1.52)

For other theories and more complicated correlators, ρ(s) will similarly exhibit poles at the squared
masses of one-particle intermediate states and branch cuts from higher intermediate states; the pro-
cedure to determine the correlator is similar. Systematically, one can obtain the imaginary part or,
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disc

[ ]
= + +

Figure 1.6: The discontinuity of a three-point function can be obtained from the sum over cuts in
three different kinematic variables.

more generally, the discontinuity by cutting a diagram in all possible ways, each time replacing the
propagators of particles whose lines were cut by delta functions −2πi δ(p2 −M2) in order to retain
the on-shell contribution. Summing over these expressions yields the discontinuity since it captures all
ways in which an intermediate state can go on-shell. The procedure to obtain the discontinuity from
the sum over all cuts is known as Cutkosky or cutting rules [139], where the latter term refers both
to the cuts in the diagrams and to the resulting branch cuts.

The first two diagrams in the previously discussed example of the scalar two-point function admit
only one cut each; see Fig. 1.5. Higher-order intermediate states with more loops will admit more
cuts, but all in the same variable. For a three-point function, one can cut in three different kinematic
variables, as depicted in Fig. 1.6. In that case, the imaginary part and the discontinuity are in general
not equivalent since a function depending on several variables can approach the real axis in several
ways; e.g., letM(s, t) depend on two kinematic variables and consider its imaginary part, which is not
equal to the discontinuity in s (or t),

2i ImM(s, t) = [M(s+ iε, t+ iε)−M(s− iε, t− iε)]

6= [M(s+ iε, t+ iε)−M(s− iε, t+ iε)] = discsM(s, t). (1.53)

Differences occur if there is not only a cut in s, but also one in t, such that the two limits t + iε and
t− iε differ by disctM. The discontinuity arising from a cut in t also shows up if one projects to s via
a partial-wave analysis (PWA). Due to the projection, a pole or a cut in t manifests itself as a branch
cut in s; one refers to such a cut as a LHC since it occurs on the negative real axis in the s plane (but
on the positive real axis in the t plane).

A correlation function can exhibit resonant behaviour, which is associated with a short-lived one-
particle intermediate state. For example, a two-particle initial state can produce a one-particle res-
onance, which subsequently decays back to the two-particle state. This is associated with a pole in
the corresponding correlation function, which, however, does not lie on the real axis as in the case
before, where φ could also occur as an asymptotic state. In contrast, a resonance state cannot ex-
ist asymptotically and corresponds to a pole in the complex plane away from the real axis; due to
analyticity, it can only lie on unphysical sheets [128]. The square root of the complex pole position
sR corresponds to the mass mR = Re

√
sR and the width ΓR = 2Im

√
sR of the resonance state, the

residue of a correlation function at sR is associated with the coupling strength of the initial state to
the resonance. While the non-resonant part of a two-particle intermediate state is described by square
roots and logarithms, the resonant part has a finite peak shape, depending on the position of the
resonance pole with respect to the real axis, where physical measurements take place, and to other
structures such as branch cuts. Examples of resonances occuring in the context of hadron physics
include the ρ(770) as a vector isovector resonance in the two-pion system, whereas the f0(500) is a
scalar isoscalar two-pion resonance. While these resonances are rather broad, the vector isoscalar res-
onances ω(782) and φ(1020) are much narrower, coupling mainly, but not exclusively, to 3π and KK̄,
respectively. If a resonance couples to more than one system, one needs a coupled-channel formalism
for an accurate description, such as for the f0(980), which has an ss̄ component and therefore couples
to ππ and KK̄ [140, 141].

For a narrow resonance located not too too close to other singularities, one can parameterise its
peak on the real axis with a Breit–Wigner (BW) function [142]

DBW(s) =
1

s−m2
BW + imBWΓBW

, (1.54)
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with parameters mBW and ΓBW that are similar to the pole parameters described above. This de-
scription of a resonance peak is, however, not unitary for more than one resonance, and for resonance
poles far in the complex plane, the line shape can deviate significantly from a BW shape; examples
for this are the scalar resonances f0(500) and f0(980) [34]. In the latter situation, BW parameters do
not yield an accurate description of the resonance. When several resonances with the same quantum
numbers couple to the same channel and the respective BW functions would overlap, a more refined
treatment such as the K-matrix formalism should be used [143]. More details on resonances can be
found in the review on the topic in Ref. [34].

One can improve a Breit–Wigner description by including an energy-dependent width Γ(s) with
support above the lowest production threshold of the resonance. With this, a dispersively improved
BW propagator can be constructed similar to a full spectral function [144],

Dimpr
BW (p2) = − 1

π

∫ ∞

sthr

ds
Im [DBW(s)]

p2 − s+ iε
, Im [DBW(s)] =

−√sΓ(s)

(s−m2
BW)2 + sΓ(s)2

. (1.55)
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Chapter 2

Semileptonic η(′) decays in the
Standard Model

Like memories in cold decay
Transmissions echoing away
Far from the world of you and I
Where oceans bleed into the sky

Linkin Park, The Catalyst [145]

2.1 Prologue

The content of this chapter is based on the publication

• H. Schäfer, M. Zanke, Y. Korte, and B. Kubis, Semileptonic decays η(′) → π0`+`− and
η′ → η`+`− in the standard model, Phys. Rev. D 108, 074025 (2023) [arXiv:2307.10357 [hep-
ph]].

It was presented in the following talks:

• The semileptonic decays η(′) → π0`+`− and η′ → η`+`− in the standard model , Precision tests
of fundamental physics with light mesons, Trento 2023.

• Semileptonic η(′) decays in the standard model , The 11th International Workshop on Chiral
Dynamics, Bochum 2024.

The second one entails the proceeding

• H. Schäfer, M. Zanke, Y. Korte, and B. Kubis, Semileptonic η(′) decays in the Standard
Model, Proceedings of The 11th International Workshop on Chiral Dynamics — PoS(CD2024),
2025, 479, 035.

Tests of discrete symmetries are part of the endeavour to understand limitations of the SM in order
to eventually extend it. The violation of C and CP is one of the conditions necessary for a matter–
antimatter asymmetry in the Universe [33]. The SM does not provide enough CP violation to match
the observations as electromagnetic interactions preserve CP, weak interactions violate it only via the
CKM phase [49], and strong interactions conserve it; one can introduce the θ-term [54], which provides
a mechanism for P and CP violation, but the corresponding parameter is heavily constrained by upper

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.074025
https://arxiv.org/abs/2307.10357
https://arxiv.org/abs/2307.10357
https://indico.ectstar.eu/event/168/contributions/3734/
https://www.indico.tp2.ruhr-uni-bochum.de/event/2/contributions/30/
https://pos.sissa.it/479/035
https://pos.sissa.it/479/035
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limits on an electric dipole moment of the neutron [17, 56, 57, 146–148]. Decays of η(′) mesons provide
a good opportunity to search for BSM sources of C and CP violation since these light pseudoscalars
are C and P eigenstates. The semileptonic decays η(′) → π0`+`− and η′ → η`+`−, for ` ∈ {e, µ}, are
forbidden in the SM as tree-level processes and therefore rare, such that a potential BSM contribution
at tree-level might be observable against the SM background. Current experimental results yield
only upper limits for these decays [149–151]; however, the upcoming REDTOP experiment [152] is
expected to produce unprecedented numbers of η(′) mesons, yielding results of such high precision that a
comparison to SM predictions might be feasible. This requires a prediction of the SM contributions with
uncertainty estimates including both uncertainties from phenomenological input and an assessment of
systematic effects from the model.

The leading SM contribution includes a C-preserving two-photon intermediate state. The pho-
tons couple to πη primarily via a vector-meson exchange in the t- and u-channel, such that vector–
pseudoscalar–photon (V Pγ) couplings are to be determined. The coupling constants were calculated
phenomenologically by Marvin Zanke and the author of this thesis, and relative signs were fixed by
symmetry considerations in discussions with Bastian Kubis. Due to the virtual nature of the photons
in the loop diagram, it is important to take into account their virtualities via the introduction of V Pγ
form factors; this also ensures that the loop calculation converges. In the spirit of vector-meson dom-
inance (VMD), these are modelled as either monopole or dipole form factors, where the latter effect
the expected high-energy behaviour. Previous calculations based on VMD did not take these photon
virtualities into account, thus missing a systematic effect. Another systematic effect that was not con-
sired previously for these decays is scalar s-channel rescattering. Yannis Korte had already worked
out and implemented a framework for such contributions in ηπ0 → γγ processes in collaboration with
Bastian Kubis. This effect and its interplay with the VMD contribution in the context of semileptonic
decays was discussed between Bastian Kubis, Yannis Korte, Marvin Zanke, and the author of this
thesis; the numerical implementation was done by Yannis Korte and this thesis’ author.

The groundwork of the project was presented in the master’s thesis of the author of this thesis [153],
where the general framework was investigated and first results for form factors with constant decay
widths were obtained, which improved previous theoretical calculations [154]. Since then, the calcula-
tion has been significantly refined by the inclusion of energy-dependent widths both for the exchanged
vector meson and in the form factors. The dispersive improvement of vector-meson propagators with
spectral functions according to the procedure outlined in Ref. [144] was proposed by Marvin Zanke
and Bastian Kubis. The details of several form factor parameterisations were worked out by Marvin
Zanke, Bastian Kubis, and the author of this thesis in order to estimate systematic effects.

Since the combination of the loop integrals and the integration over the three-particle phase space
is a numerical highly non-trivial task—especially when complemented by additional integrals from
spectral functions—the numerical evaluation was set up and carried out independently by Marvin
Zanke and the author of this thesis in order to provide cross-checks. Hereby, the author of this thesis
focused on the implementation of the monopole form factors with constant and with energy-dependent
widths, which were cross-checked by Marvin Zanke. The latter implemented dipole form factors with
constant and energy-dependent widths and compared them to cross-checks provided by this thesis’
author.

In the course of this, a comparison between two libraries for the evaluation of Passarino–Veltman
master integrals, which are needed to calculate the loop integral, was carried out since LoopTools [155]
proved to be numerically instable in specific settings with dispersive parameters. These numerical
instabilities were investigated by Marvin Zanke and the author of this thesis and discussed with
Bastian Kubis. Marvin Zanke presents and discusses more details on this in Ref. [156]. For the
Fortran library Collier [157–160], an interface to C++ was developed by Marvin Zanke and the
author of this thesis, with helpful input concerning Fortran from Andreas Nogga and insightful
communication with Ansgar Denner regarding Collier. In order to carry out the numerical evaluation
at the required precision, it had to be performed partly on the computer cluster of the institute with
kind help of Bernard Metsch and partly on the university’s HPC cluster bonna with support from
the High Performance Computing and Analytics Lab at Bonn University.
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With the framework implemented as described, (differential) decay widths, normalised decay widths,
and branching ratios for the semileptonic decays and corresponding photonic decays were calculated.
Uncertainties were estimated for these observables, and the calculation was done for the various form
factor parameterisations described above, including a variant with constant couplings as a benchmark
and for comparison with previous theoretical calculations. For this, a similar pattern of cross-checks
was adopted; Marvin Zanke focused on calculating observables with different variants of monopole
form factors and this thesis’ author cross-checked them, while the latter calculated observables with
different variants of dipole form factors, which were subsequently cross-checked by Marvin Zanke.
The calculation of scalar rescattering contributions to the observables was carried out by the author
of this thesis in collaboration with Yannis Korte. The text of this article was written collaboratively
by all four authors, where the main part was done by Marvin Zanke and the author of this thesis;
the plots of the differential decay widths were produced by Marvin Zanke.

2.2 Introduction

Within the Standard Model (SM) of particle physics, the strong and electromagnetic interactions
conserve the symmetries parity (P), charge conjugation (C), and time reversal (T) separately. For this
reason, the decays η(′) → π0`+`− and η′ → η`+`− can—mediated via the strong and electromagnetic
force—only proceed via a C-even two-photon mechanism due to C(η(′)) = C(π0) = +1; i.e., they
appear as one-loop processes at lowest order.#1 As a result, the SM contribution to those decays is
strongly suppressed, rendering them well-suited candidates for searches for physics beyond the SM
(BSM). In fact, BSM contributions to the discussed decays, either mediated via a C-odd one-photon
exchange [161–164] or due to other BSM mechanisms such as new light scalars [17] and unconventional
sources of CP violation [165], are themselves subject to ongoing analyses.

Historically, calculations of η → π0`+`− were based on different models for the η → π0γ∗γ∗ vertex
function, as the conversion γ∗γ∗ → `+`− depends solely on quantum electrodynamics (QED) and is,
hence, in principle straightforward. This is not unlike the rare dilepton decays of the lightest flavour-
neutral pseudoscalars, P → `+`−, P = π0, η, η′, similarly loop-induced and completely calculable
once the corresponding transition form factors P → γ∗γ∗ are known; see Refs. [166–168] for recent
work and references therein. For these decays, a reasonable behaviour of the transition form factors
for large photon virtualities is not only a requirement for a precision calculation, but a necessity
to regularise the otherwise ultraviolet-divergent loop integral. This was similarly realised in early
theoretical work on η → π0`+`− in the late 1960s, which was based on the simplest possible, point-like
effective operator for η → π0γγ [169, 170]: the loop was rendered finite either with an ad-hoc form
factor [169] or reconstructed dispersively from the unambiguously calculable imaginary part, using
a finite energy cutoff [170]. As the effective operator only contained S-wave interactions in either
case—leading to helicity suppression of the resulting dilepton mechanism—these calculations only
determined a subdominant contribution, underestimating in particular the η → π0e+e− rate by orders
of magnitude.

On the other hand, a first vector-meson-dominance (VMD) model calculation [171], which based
the η → π0γγ amplitude on ρ and ω exchange, ρ ≡ ρ0(770), ω ≡ ω(782), required no such further
regularisation: the additional vector-meson propagators, singularities in the crossed channels providing
so-called left-hand cuts, dampen the high-energy behaviour sufficiently such that the loop integral is
convergent; see Fig. 2.1. The coupling constants for the V → Pγ transitions, V = ρ, ω, P = η, π0,
largely unknown at the time, had to be estimated in a quark model. In this way, realistic rates
B(η → π0e+e−)/B(η → π0γγ) ≈ 10−5 were obtained. In the 1990s, the two decays η → π0e+e− and
η → π0µ+µ− were reconsidered by calculating unitarity bounds [172, 173]. These are based on the
observation that the amplitude η → π0γγ (with real photons) model-independently determines the
imaginary part of the dilepton amplitudes, thus providing a lower limit to the corresponding rates.
The diphoton decays were calculated in VMD, supplemented with scalar a0(980) exchange [172], or

#1Contributions from the weak interactions are also required to vanish at tree level.
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Branching ratio Ancillary information Reference

η → π0e+e− 9.9× 10−9 VMD model [171]

η → π0e+e− 8.4+4.6
−3.8 × 10−10 Unitarity bounds, VMD model [172]

η → π0e+e− 9.2(1.5)× 10−10 Quark-box model, mq = 330 MeV [173]

η → π0µ+µ−
3.8+2.3
−1.5 × 10−10 Unitarity bounds, VMD model

[172]
6.9+4.6
−3.8 × 10−10 As above, supplemented by a0

η → π0µ+µ− 3.3(5)× 10−9 Quark-box model, mq = 330 MeV [173]

η → π0e+e− < 7.5× 10−6 3× 107 η events WASA-at-COSY [151]

η → π0µ+µ− < 5× 10−6 2× 107 η events Dzhelyadin et al. [149]

η′ → π0e+e− < 1.4× 10−3 1.3× 106 η′ events CLEO [150]

η′ → π0µ+µ− < 6× 10−5 107 η′ events Dzhelyadin et al. [149]

η′ → ηe+e− < 2.4× 10−3 1.3× 106 η′ events CLEO [150]

η′ → ηµ+µ− < 1.5× 10−5 107 η′ events Dzhelyadin et al. [149]

Table 2.1: Historical theoretical results on the branching ratios for η → π0`+`− and experimental
upper limits for the different decay channels η(′) → [π0/η]`+`−, the latter all at 90% confidence level.
Note that, for reasons of consistency with the experimental upper limits, we converted the theoretical
results from decay widths to branching ratios by using an up-to-date central value [174] for the η
width; see also Table 2.13.

based on a constituent-quark-box model [173]. The numerical results of these older calculations are
collected in Table 2.1.

Today, we understand the mechanism for η → π0γγ (and the related η′ decays) much better, while
precision calculations are still a challenge. Chiral perturbation theory [70] allows us to understand this
reaction in terms of a systematic expansion at low momenta: the dominant contribution originates
from a set of next-to-next-to-leading-order counterterms [101, 102], whose size can phenomenologically
be estimated in terms of vector-meson exchanges. The resulting predictions agree with the data [175–
177] rather well [178], and rescattering corrections in the scalar channel [179, 180] are moderate in
size [181]. Similarly, vector-meson exchanges dominate the decays η′ → π0γγ and η′ → ηγγ [182],
with only minor S-wave corrections to the γγ spectra.

The most recent theoretical work on the decays η(′) → π0`+`− and η′ → η`+`− [154] employs this
modern knowledge to a large extent. It once more models the two-photon amplitudes with a VMD
ansatz, superseding Ref. [171] by retaining all lepton mass effects and Ref. [172] by calculating the real
parts of the amplitudes explicitly; the current phenomenological information on vector–pseudoscalar–
photon couplings is used therein. Perhaps surprisingly, what has still not been implemented is the
dependence on the photon virtualities, i.e., the vector-to-pseudoscalar transition form factors [183, 184].
These have garnered significant interest in the last few years, both phenomenologically [185–188] and,
in particular for the ρ→ π transition form factor, on the lattice [189–192]. Furthermore, the behaviour
of these form factors for asymptotically large momentum transfers is known [113, 114, 193–195]. This is
the major novelty of this article and the main advance compared to Ref. [154]: by providing a realistic
model for η(′) → π0γ∗γ∗ and η′ → ηγ∗γ∗, including the dependence on the photon virtualities, we are
able to give a more reliable prediction for the rates of the corresponding dilepton decays in the SM.
Furthermore, by lifting the (somewhat artificial) dependence of the loop regularisation on the left-hand
cuts, we can, for the first time, also test the effect of S-wave rescattering contributions. Varying the
form-factor models allows us to assess the remaining theoretical uncertainties of our predictions.

Experimentally, the decay η → π0e+e− has been searched for since the 1960s [196–198], motivated
by the search for possible C violation in the strong and electromagnetic interactions. To date, only
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Figure 2.1: The t- (a) and u-channel (b) diagrams that contribute to η(′) → [π0/η]`+`− under the
assumption that the underlying two-photon amplitudes are dominated by the exchange of the vector
mesons V = ρ, ω, φ.

upper limits have been established for all decays studied in this article, the most rigorous ones being
collected in Table 2.1.#2 The most stringent upper limits, those for η → π0e+e− from WASA-at-
COSY [151] and for η → π0µ+µ− from Lepton-G [149], are still more than three orders of magnitude
above the theoretical SM branching ratios; for the η′ decays, this margin is even larger. There is, even
so, the prospect of improved experimental results by the REDTOP collaboration [152, 199], which
plans to search for rare decays with an unprecedented number of η and η′ events.

This article is structured as follows. In Sec. 2.3, we construct the amplitudes for the decays
η(′) → π0`+`− and η′ → η`+`− as well as the corresponding two-photon analogs, with the latter
serving as normalisation channels. For the semileptonic decays, a set of form factors that incorporate
the non-perturbative physics of the process is introduced and their normalisations are determined
from phenomenological input. These form factors are then parameterised in Sec. 2.4 by means of
two distinct VMD models, including the construction of dispersively improved variants. In Sec. 2.5,
we discuss the calculation of observables—branching ratios as well as differential distributions—via a
Passarino–Veltman (PV) decomposition. Scalar rescattering contributions are analysed in Sec. 2.6.
Our numerical results are discussed in Sec. 2.7, and we summarise our findings in Sec. 2.8. Further
details are provided in the appendices.

2.3 Amplitudes

The construction of the C-even decay amplitudes for

η(′)(P )→ π0(p0)`+(p+)`−(p−),

η′(P )→ η(p0)`+(p+)`−(p−), (2.1)

where ` = e, µ, is based on the assumption that the underlying η(′) → π0γ∗γ∗ and η′ → ηγ∗γ∗

amplitudes are dominated by the exchange of the vector mesons V = ρ, ω, φ, φ ≡ φ(1020); see Fig. 2.1.
For our analysis, we define the Mandelstam variables s = (p+ + p−)2, t = (p− + p0)2, and u =
(p+ + p0)2, which describe the invariant mass squares of the lepton pair and the lepton–pseudoscalar
subsystems, respectively; they fulfill the relation Σ = s+ t+ u = M2

η(′)
+M2

π0/η + 2m2
` . The relevant

vector-to-pseudoscalar transition form factors FV P (q2) are defined according to

〈P (p)|jµ(0)|V (pV )〉 = e εµναβε
ν(pV )pαqβFV P (q2), (2.2)

#2Note that those upper limits were obtained assuming a flat Dalitz-plot distribution, which our results indicate to
be an insufficient assumption; see the discussion in Sec. 2.7.1 below.
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Γ/ keV [174] |FV P (0)|/GeV−1

ρ→ π0γ 69(12) 0.73(6)

ω → π0γ 725(26) 2.33(4)

φ→ π0γ 5.61(21) 0.1355(26)

ρ→ ηγ 44.2(3.1) 1.58(6)

ω → ηγ 3.91(35) 0.449(20)

φ→ ηγ 55.3(1.1) 0.691(7)

η′ → ργ 55.5(1.9) 1.299(23)

η′ → ωγ 4.74(20) 0.401(9)

φ→ η′γ 0.264(9) 0.712(12)

Table 2.2: The normalisations |FV P (0)| at the real-photon point obtained from Eq. (2.3) and phe-
nomenological input determined from Ref. [174]; see also Table 2.13.

where jµ = e(2ūγµu − d̄γµd − s̄γµs)/3 denotes the electromagnetic current, and q = pV − p. The
normalisations |FV P (0)| at the real-photon point can be derived from phenomenological input in a
straightforward manner,

Γ(V → Pγ) =
α(M2

V −M2
P )3

24M3
V

|FV P (0)|2,

Γ(P → V γ) =
α(M2

P −M2
V )3

8M3
P

|FV P (0)|2, (2.3)

where α = e2/(4π) is the fine-structure constant, leading to Table 2.2 with input from Ref. [174].
Using Eq. (2.2) and summing over the t- and u-channel diagrams shown in Fig. 2.1 as well as

V = ρ, ω, φ, we find the amplitude M≡M(η(′) → [π0/η]`+`−) to be

M = i
α2

π2

∑

V

∫
d4k gββ̃εµναβεµ̃ν̃α̃β̃P

αkµ
(
P α̃kµ̃ − P α̃lµ̃ + kα̃lµ̃

)
PBW
V

(
(P − k)2

)
Pγ(k2)Pγ

(
(l − k)2

)

×FV η(′)(k2)FV [π0/η]

(
(l − k)2

)
ūs

[
γν̃

/k − /p+
+m`

(k − p+)2 −m2
`

γν + γν
/p− − /k +m`

(p− − k)2 −m2
`

γν̃
]
vr,

(2.4)

with ūs ≡ ūs(p−) and vr ≡ vr(p+). Here, we defined l = p+ + p− and the [Breit–Wigner (BW)]
propagators

PBW
V (q2) =

1

q2 −M2
V + iMV ΓV

, Pγ(q2) =
1

q2 + iε
, (2.5)

where MV is the mass of the respective vector meson and ΓV its width. Due to their narrowness, a
constant-width approximation is well justified for the ω and φ, whereas the broad ρ meson necessitates
an energy-dependent width to avoid sizable unphysical imaginary parts below threshold. We will
implement such a parameterisation for the ρ in Sec. 2.4.3, where we will use a dispersively improved
BW propagator. Our final results will be quoted for both a variant with constant widths for all vector
mesons (CW) and a variant that instead employs an energy-dependent width for the ρ (VW).

For the eventual computations, it will turn out useful to apply the Dirac equation and make the
replacements

ūsγ
ν̃(/k − /p+

+m`)γ
νvr = ūs(γ

ν̃/kγν − 2pν+γ
ν̃)vr,

ūsγ
ν(/p− − /k +m`)γ

ν̃vr = ūs(2p
ν
−γ

ν̃ − γν/kγν̃)vr (2.6)
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Figure 2.2: The two diagrams contributing to the two-photon decay η(′) → [π0/η]γγ, which are related
via q1 ↔ q2.

in Eq. (2.4).
The branching ratios of the semileptonic decays are commonly normalised to the two-photon analogs

η(′)(P )→ π0(p0)γ(q1)γ(q2),

η′(P )→ η(p0)γ(q1)γ(q2); (2.7)

see also Fig. 2.2. For these decays, we define the Mandelstam variables#3

s = (q1 + q2)2, tγ = (q2 + p0)2, uγ = (q1 + p0)2, (2.8)

which fulfill Σγ = s+ tγ + uγ = M2
η(′)

+M2
π0/η, and denote the corresponding helicity amplitudes by

Hλλ′ ,

〈γ(q1, λ)γ(q2, λ
′)|S |η(′)(P )[π0/η](p0)〉

= i(4πα)(2π)4δ(4)(P + p0 − q1 − q2) ei(λ−λ′)ϕHλλ′ . (2.9)

Here, λ(′) are the helicities of the photons and we factored out the dependence on the electric charge
(4πα) and the azimuthal angle ϕ for convenience. Using Eq. (2.2) and the normalisation of the form
factors, |CV Pγ | = |FV P (0)|, as will be introduced in Sec. 2.4, we express the VMD helicity amplitudes
as

Hλλ′ = εα1

λ
∗(q1)εα2

λ′
∗(q2)

∑

V

CV η(′)γCV [π0/η]γ

[
PBW
V (tγ)Ht

α1α2
+ PBW

V (uγ)Hu
α1α2

]
, (2.10)

where ε∗λ(qi) denote the polarisation vectors of the outgoing photons and

Ht
α1α2

= gµ1µ2εµ1ν1α1β1
εµ2ν2α2β2

pν1V q
β1

1 pν20 q
β2

2 ,

Hu
α1α2

= gµ1µ2εµ1ν1α1β1
εµ2ν2α2β2

pν10 q
β1

1 p̃ν2V q
β2

2 , (2.11)

with pV = q2 + p0 and p̃V = q1 + p0 the momenta of the intermediate vector mesons.

#3Note that the Mandelstam variable s = (P − p0)2 is identical in the semileptonic and the diphoton case.
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η(′)

π0/η

V

V1

V2

Figure 2.3: The modeling of the two-photon decay mechanism in the VMD framework via two vector
mesons V1 and V2. Constraints on (V1, V2) in dependence of the initial and final state as well as V are
given in Table 2.3.

2.4 Form factors

In order to parameterise the form factors FV P (q2), we use the VMD framework. As a consequence, the
photon couplings at the V Pγ∗ vertices of the diagrams in Fig. 2.1 are mediated via two intermediate
vector mesons V1 and V2; see Fig. 2.3. We will construct two distinct such models: a monopole
(MP) parameterisation with Vi = ρ, ω, φ and a dipole (DP) ansatz with Vi = ρ(′), ω(′), φ(′), ρ′ ≡
ρ0(1450), ω′ ≡ ω(1420), and φ′ ≡ φ(1680), that ensures the expected high-energy behaviour of the
form factors [113, 114, 193–195]. For reference, we also include a model calculation with constant form
factors, i.e., a point-like (PL) interaction, which closely resembles the parameterisation of Ref. [154].

The conservation of isospin—and thus G parity combined with C—imposes constraints on V1 and
V2 in dependence on the initial and final states as well as the t- or u-channel vector meson V . However,
some of the couplings, namely η(′)ωφ(′), η(′)φω(′), π0ρφ(′), and π0φρ(′), are, although isospin-allowed,
vanishing under the assumption of U(3) flavour symmetry and ideally mixed vector-meson multiplets;
see Appendix 2.9.1. Since the contribution of V = φ would otherwise vanish entirely for η(′) → π0`+`−,
we nonetheless include the Okubo–Zweig–Iizuka-suppressed (OZI-suppressed) [200–202] couplings
π0φρ(′) in our calculations; the remaining vector mesons Vi are collected in Table 2.3.

2.4.1 Monopole model

The MP model only takes the lowest-lying vector mesons ρ, ω, and φ into account, so that the form
factors are parameterised according to

FV P (q2) = CV PγM
2
ViP

BW
Vi (q2), (2.12)

with the assignments of Vi ∈ {ρ, ω, φ} according to Table 2.3. Here, we assume |CV Pγ | = |FV P (0)| at
the real-photon point, see Table 2.2, which determines the coupling constants CV Pγ up to an overall
phase. This assumption omits corrections due to the constant, non-zero widths in the BW propagators,
which are negligible for V = ω, φ but potentially significant for V = ρ.#4 Since the energy-dependent
width of the ρ meson will be chosen to have the proper threshold behaviour, these complications only
exist for the variant CW but not for VW. All coupling constants are assumed to be real in the following.
In order to fix the relative signs between them, we resort to U(3) flavour symmetry and analyses of
e+e− → 3π and e+e− → πγ [203–205]; see Appendix 2.9.1. Without loss of generality, we adopt a
positive sign for the coupling Cρηγ and establish the consistent sign convention collected in Table 2.4.

2.4.2 Dipole model

Given that the asymptotic behaviour of the vector-to-pseudoscalar transition form factors is expected
to be FV P (q2) ∝ q−4 [113, 114, 193–195], we can additionally include the next-higher multiplet of

#4Note that PBW
V (0) ' −1/M2

V , so that FV P (0) = −CV Pγ , which, however, corresponds to an unobservable overall
phase.
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V π0γ V η(′)γ

V ρ ω φ ρ ω φ

Vi ω(′) ρ(′) ρ(′) ρ(′) ω(′) φ(′)

Table 2.3: The constraints on the vector mesons Vi of Fig. 2.3 in dependence of V derived from isospin
conservation and U(3) flavour symmetry with ideally mixed vector-meson multiplets. We include the
OZI-suppressed couplings φπ0ρ(′); see text and Appendix 2.9.1 for more information.

vector mesons, ρ′, ω′, and φ′, to achieve this property by tuning a free parameter εV .#5 For the DP
model, we thus make the ansatz

F̃V P (q2) = CV Pγ
[
(1− εVi)M2

ViP
BW
Vi (q2) + εViM

2
V ′i
PBW
V ′i

(q2)
]
, (2.13)

where we assume the excited vector states to couple according to the exact same symmetry restrictions
as the ground-state multiplet; cf. Table 2.3. Here, PBW

V ′ (q2) is defined as in Eq. (2.5), with MV ′ and
ΓV ′ the mass and width of the respective excited vector meson. Due to the large widths of the excited
vector mesons, a constant-width approximation leads to a rather poor description of these mesons,
however. We will therefore, analogously to the ρ, construct dispersively improved BW propagators
for ρ′, ω′, and φ′ based on energy-dependent widths in Sec. 2.4.3, leading to replacements of the kind
PBW
V ′ (q2) → P disp

V ′ (q2). Similarly to the MP, our final results for the DP will be quoted for both the
variant CW with constant widths for all vector mesons and the variant VW, i.e., using constant widths
for the ω and φ but energy-dependent ones for ρ(′), ω′, and φ′. The form factors in Eq. (2.13) are

assumed to be normalised such that F̃V P (0) = −CV Pγ , which, as for the MP, holds up to potential
corrections due to the constant widths in the propagators. In order to achieve the desired high-energy
behaviour, the free parameter needs to be chosen as εV = M2

V /(M
2
V −M2

V ′).

2.4.3 Spectral representation

While the variant CW has its own raison d’être as a simple approximate description, the large widths of
the mesons ρ(′), ω′, and φ′ actually require an energy-dependent parameterisation to avoid significant
unphysical imaginary parts below threshold.#6 In this section, we construct these energy-dependent
widths; to ensure the correct analytic properties when inserting the form factors into the amplitude,
Eq. (2.4), we will furthermore introduce dispersively improved variants [217] of the form factors that
contain a ρ(′)-, ω′-, or φ′-meson propagator, which lay the foundation for the variant VW in both the
MP and DP model.

For the ρ meson, we will use the energy-dependent width [144]

Γρ(q
2) = θ(q2 − 4M2

π±)
γρ→π+π−(q2)

γρ→π+π−(M2
ρ )
f(q2)Γρ,

γρ→π+π−(q2) =
(q2 − 4M2

π±)3/2

q2
, (2.14)

where the so-called barrier factor [218, 219]

f(q2) =

√
q2

Mρ

M2
ρ − 4M2

π± + 4p2
R

q2 − 4M2
π± + 4p2

R

, (2.15)

#5Data both on e+e− → ωπ0 [206] and e+e− → ρ0η [207–209] suggest that the required cancellation indeed largely
occurs between the contributions of the two lowest vector states, ρ and ρ′ in those cases.
#6In principle, such unphysical imaginary parts could be avoided for the ρ exchange by reconstructing the latter in

terms of dispersion relations for γ(∗)π → ππ [192, 210, 211] and η(′) → ππγ(∗) [209, 212–214]; cf. also Refs. [215, 216].
We here refrain from further refining the amplitude in such a way.
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Cρπ0γ Cωπ0γ Cφπ0γ

+ + −

Cρηγ Cωηγ Cφηγ

+ + −

Cρη′γ Cωη′γ Cφη′γ

+ + +

Table 2.4: The signs sgn[CV Pγ ] of the couplings constants defined in Eq. (2.12). Here, we fixed the
global sign of Cρηγ to be positive; see Appendix 2.9.1 for details.

pR = 202.4 MeV, has been introduced to ensure convergence of the superconvergence relations evalu-
ated in Eq. (2.24) below. We calculate the dispersive ρ propagator via

P disp
V (q2) = − 1

π

∫ ∞

sthr

dx
Im [PBW

V (x)]

q2 − x+ iε
,

Im [PBW
V (x)] =

−√xΓV (x)

(x−M2
V )2 + xΓV (x)2

, (2.16)

where sthr = 4M2
π± is the threshold for ρ → π+π−. The spectral representations of the form factors

FV P (q2) for V P ∈ {ρη(′), ωπ0, φπ0} are thus given by

F̂V P (q2) =
CV Pγ
Nρ

M2
ρP

disp
ρ (q2), (2.17)

where the normalisation constant

Nρ = −M2
ρP

disp
ρ (0) ≈ 0.898 (2.18)

is introduced in order to retain F̂V P (0) = −CV Pγ , i.e., to ensure that the coupling constants have
the same meaning in the original and the dispersively improved VMD parameterisation. For reasons
of consistency, we also replace the ρ propagator in the left-hand cuts, PBW

ρ (q2) in Eq. (2.4), by a
dispersively improved variant, i.e.,

PBW
ρ (q2)→ 1

NLHC
ρ

P disp
ρ (q2), (2.19)

where the normalisation constant

NLHC
ρ = iMρΓρP

disp
ρ (M2

ρ ) ≈ 1 (2.20)

is introduced in order to retain PBW
ρ (M2

ρ ) = 1/(iMρΓρ), in line with the VMD assumption.#7 With

these conventions, we will drop the distinction between FV P (q2) and F̂V P (q2) in the following, and it
will always be clear from context which representation is used.

For the dipole variant, the widths of the excited vector mesons ρ′, ω′, φ′ are modeled using the
dominant quasi-two-particle thresholds. We condense the decays ρ′ → ωπ, ω′ → ρπ, and φ′ → K∗K̄,
K∗ ≡ K∗(892), in the notation V ′ → V P , such that

ΓV ′(q
2) = θ

(
q2 − (MV +MP )2

) γV ′→V P (q2)

γV ′→V P (M2
V ′)

ΓV ′ ,

γV ′→V P (q2) =
λ(q2,M2

V ,M
2
P )3/2

(q2)3/2
, (2.21)

#7We ignore the fact that the ρ pole in the complex plane does not exactly agree with the Breit–Wigner parameters.
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ερ (−0.47)−0.07
+0.06 Ñρ 0.99+0.04

−0.03

εω (−0.43)−0.25
+0.16 Ñω 1.10+0.17

−0.10

εφ (−0.42)−0.08
+0.06 Ñφ 1.03+0.05

−0.04

Table 2.5: The values of the parameter εV derived from the superconvergence relations, Eq. (2.25), and
the normalisation constants of Eq. (2.23). Here, tiny imaginary parts in the normalisation constants
have been neglected. The uncertainties refer to the variations of Γρ′ , Γω′ , and Γφ′ , see Table 2.13, and
are omitted in the subsequent analysis.

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz is the Källén function. Here, we disregard any
distinction between the various charge channels and use the neutral masses for numerical evaluation.
The dispersive ρ′, ω′, and φ′ propagators and spectral functions are defined similarly to Eq. (2.16),
with sthr = (MV +MP )2 for the thresholds. In analogy to Eq. (2.13), the dipole form factors read

F̃V P (q2) =
CV Pγ

ÑVi

[
(1− εVi)M2

ViPVi(q
2) + εViM

2
V ′i
PV ′i (q2)

]
, (2.22)

where the simplifying assumption of constant widths for ω and φ propagators is always implicitly
understood, with PV ′i (q2) ∈ {PBW

V ′i
(q2), P disp

V ′i
(q2)}. Here, we introduced the normalisation constants

ÑV = −
[
(1− εV )M2

V PV (0) + εVM
2
V ′PV ′(0)

]
, (2.23)

which, once more, ensure F̃V P (0) = −CV Pγ . The parameters εV have to be tuned differently in the
dispersively improved variant, namely via the superconvergence relations

0 = (1− εV )M2
V P

0
V + εVM

2
V ′P

0
V ′ , (2.24)

P 0
V =





1 , V = ω, φ,

− 1

π

∫ ∞

sthr

dx Im [PBW
V (x)] , V = ρ(′), ω′, φ′,

such that the terms of O(1/q2) in the form factors cancel. We collect the numerical results for

εV =
M2
V P

0
V

M2
V P

0
V −M2

V ′P
0
V ′

(2.25)

and ÑV in Table 2.5, where we include the uncertainties due to the large errors on ΓV ′ ; in the following,
their effect is, however, assumed to be insignificant and thus discarded.

2.5 Observables

The phenomenological analysis in this article will be performed in terms of doubly- and singly-
differential decay widths as well as integrated branching ratios. We define ν = t − u for the Man-
delstam variables t and u, in terms of which the twofold differential decay width dΓ ≡ dΓ(η(′) →
[π0/η]`+`−) is given by [174]

dΓ =
1

(2π)3

1

64M3
η(′)

|M|2dsdν. (2.26)

Here, |M|2 is the spin-summed square of the amplitude, Eq. (2.4), and the integration region is
bounded by the available phase space

s ∈ [4m2
` , (Mη(′) −Mπ0/η)2],

ν ∈ [−νmax, νmax], νmax = σ(s)
√
λ(s), (2.27)
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Cρ/GeV−2 Cω/GeV−2 Cφ/GeV−2

η → π0`+`− 1.16(11) 1.05(5) 0.0936(20)

η′ → π0`+`− 0.95(8) 0.937(26) −0.0965(25)

η′ → η`+`− 2.05(8) 0.180(9) −0.492(10)

Table 2.6: Numerical values of the coupling constants defined in Eq. (2.30) for the different processes.

with

σ(s) =

√
1− 4m2

`

s
, λ(s) ≡ λ(s,M2

η(′) ,M
2
π0/η). (2.28)

The singly-differential decay width dΓ/ds follows from an integration of Eq. (2.26) over ν and the
branching ratio

B(η(′) → [π0/η]`+`−) =
Γ

Γη(′)
(2.29)

is obtained after performing the full three-body phase-space integration, i.e., by also integrating over
s.

In order to calculate |M|2, we perform a PV decomposition of Eq. (2.4) with FeynCalc [220–222]
after inserting explicit expressions for the form factors. For both the MP and DP model and in both
variants CW and VW, this results in an expression of the generic form

M = 16π2α2
[
Muv

QEDMuv
H +Mu0v

QEDMu0v
H

]
,

Muv
QED = m` ūsvr, Mu0v

QED = ūs/p0
vr, (2.30)

Mu(0)v
H =

∑

V

CVMu(0)v
V , CV = CV η(′)γCV [π0/η]γ ,

where the quantities Mu(0)v
V account for the different vector-meson contributions in the result of

the PV decomposition, cf. the sum in Eq. (2.4); they amount to cumbersome expressions containing
PV functions.#8 The numerical values of the process-specific coupling constants CV are provided in
Table 2.6. Upon squaring and spin-summing, the above amplitude leads to

|M|2 = 256π4α4
[
C2
ρ |Mρ,ρ|2 + C2

ω |Mω,ω|2 + C2
φ |Mφ,φ|2

+ CρCω |Mρ,ω|2 + CρCφ |Mρ,φ|2 + CωCφ |Mω,φ|2
]
, (2.31)

where we defined

|MV,V |2 = |Muv

QED|2|Muv
V |2 + |Mu0v

QED|2|Mu0v
V |2 + 2Muv,u0v

QED Re
[
Muv

V Mu0v
V
∗]
,

|MV1,V2
|2 = 2 |Muv

QED|2Re
[
Muv

V1
Muv

V2

∗]+ 2 |Mu0v

QED|2Re
[
Mu0v

V1
Mu0v

V2

∗]

+ 2Muv,u0v

QED Re
[
Muv

V1
Mu0v

V2

∗
+Mu0v

V1
Muv

V2

∗] (2.32)

for V1 6= V2, with

|Muv

QED|2 = 2m2
`(s− 4m2

`), |Mu0v

QED|2 =
1

2

[
λ(s)− ν2

]
, Muv,u0v

QED = −2m2
`ν. (2.33)

Similarly to the semileptonic decays, the branching ratio of the two-photon analogs is defined by

B(η(′) → [π0/η]γγ) =
Γγ

Γη(′)
, (2.34)

#8These expressions are attached as supplemental materials to the published article [223].
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where Γγ ≡ Γ(η(′) → [π0/η]γγ) and

dΓγ =
1

(2π)3

(4πα)2

64M3
η(′)

|H|2dsdνγ , (2.35)

with the phase space bounded by

s ∈ [0, (Mη(′) −Mπ0/η)2], νγ ∈ [−νmax
γ , νmax

γ ], νmax
γ =

√
λ(s). (2.36)

Due to the indistinguishability of the two photons in the final state, an additional factor of 1/2 has to
be taken into account upon integration. From Eq. (2.10), one finds the polarisation-summed amplitude
squared

|H|2 =
1

8

[∑

V

C2
V

(∣∣PV (tγ)
∣∣2|Ht,t|2 +

∣∣PV (uγ)
∣∣2|Hu,u|2 + 2Re

[
PV (tγ)P ∗V (uγ)

]
|Ht,u|2

)

+
∑

{V1,V2}
2CV1CV2

(
Re
[
PV1(tγ)P ∗V2

(tγ)
]
|Ht,t|2

+ Re
[
PV1(uγ)P ∗V2

(uγ)
]
|Hu,u|2 + Re

[
PV1(tγ)P ∗V2

(uγ) + PV1(uγ)P ∗V2
(tγ)

]
|Ht,u|2

)]
, (2.37)

where the second sum extends over {V1, V2} = {ρ, ω}, {ρ, φ}, {ω, φ} and we introduced

|Ht,t|2 = gα1α̃1gα2α̃2Ht
α1α2

Ht
α̃1α̃2

,

|Hu,u|2 = gα1α̃1gα2α̃2Hu
α1α2

Hu
α̃1α̃2

,

|Ht,u|2 = gα1α̃2gα2α̃1Ht
α1α2

Hu
α̃1α̃2

. (2.38)

As in Eq. (2.22), the propagators PV (x) are to be understood as BW propagators for all V in the CW
approximation and BW propagators for V = ω, φ but dispersively improved variants for V = ρ in the
variant VW. Inserting the kinematics of the process, these expressions simplify to

|Ht,t|2 = |H0|2 + t2γ(s2 + u2
γ),

|Hu,u|2 = |H0|2 + u2
γ(s2 + t2γ),

|Ht,u|2 = |H0|2 + tγuγ(s2 + tγuγ), (2.39)

where we defined

|H0|2 = M4
π0/η

(
s2 + t2γ + u2

γ + 2stγ + 2suγ + 4tγuγ
)

− 2M2
π0/ηΣγtγuγ − 2M6

π0/ηΣγ +M8
π0/η. (2.40)

Finally, we consider the normalised semileptonic branching ratios

B̂(η(′) → [π0/η]`+`−) =
B(η(′) → [π0/η]`+`−)

B(η(′) → [π0/η]γγ)
, (2.41)

which are particularly useful from the theoretical point of view, since they reduce the effect of the
uncertainties from the coupling constants.

We perform the phase-space integrations of the differential decay widths, Eq. (2.26) and Eq. (2.35),
numerically with the Cuhre and Vegas algorithm from the Cuba library [224]. For the numerical

evaluation of the PV functions contained in the quantitiesMu(0)v
V , see Eq. (2.30), we use Collier [157–

160].#9 The integration is carried out following the decomposition of Eqs. (2.31) and (2.37),

Γ(γ) = C2
ρΓ(γ)

ρ,ρ + C2
ωΓ(γ)

ω,ω + C2
φΓ

(γ)
φ,φ

+ CρCωΓ(γ)
ρ,ω + CρCφΓ

(γ)
ρ,φ + CωCφΓ

(γ)
ω,φ. (2.42)

#9A C++ interface to the native Fortran library Collier written for this purpose, including an executable demo file, is
attached as supplemental material to the published article [223].
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Numerical results for the auxiliary quantities Γ
(γ)
V1,V2

are listed in Appendix 2.9.2.#10

2.6 Scalar rescattering contributions

While there are good reasons to assume that the VMD model captures the most significant contri-
butions to the semileptonic η(′) decays, we will assess scalar rescattering contributions explicitly by
calculating them for the η → π0`+`− channels. For the η′ channels, the vector mesons have sufficient
energy to go quasi on-shell, so that an even stronger dominance of the VMD mechanism is expected.

2.6.1 Isolating the S-wave in the hadronic sub-amplitude

With the decay η → π0`+`− being driven by the two-photon intermediate state, as discussed in Ch. 1,
the hadronic sub-process we consider is again η → π0γγ. The corresponding sub-amplitude Hλλ′ ,
defined in Eq. (2.9), can be expressed in terms of the tensor amplitude Hµν according to

ei(λ−λ′)ϕHλλ′ = ε∗µλ (q1)ε∗νλ′ (q2)Hµν . (2.43)

In the following, we choose

εµ±(q1) =
1√
2

(0,∓1,−i, 0),

εµ±(q2) =
1√
2

(0,∓1, i, 0) (2.44)

as the explicit form for the polarisation vectors. In the context of the hadronic process η → π0γγ, we
use the Mandelstam variables s, tγ , and uγ as defined in Eq. (2.8). For on-shell photons, the tensor
amplitude Hµν can be written in terms of two independent tensor structures Tµν1/2 [181],

Tµν1 =
1

2
s gµν − qµ2 qν1 ,

Tµν2 = 2s∆µ∆ν + 4(q1∆)(q2∆)gµν

− 4(q2∆)∆µqν1 − 4(q1∆)qµ2 ∆ν , (2.45)

with ∆µ = (P + p0)µ, which manifestly fulfill the necessary Ward identities. The expansion of the
tensor amplitude in this basis involves two scalar amplitudes A and B and reads

Hµν = A(s, tγ)Tµν1 +B(s, tγ)Tµν2 . (2.46)

Contracting the tensor amplitude (2.46) with the polarisation vectors gives an expression for the
helicity amplitudes in terms of the scalar amplitudes,

H++(s, tγ) = −s
2
A(s, tγ)− s

[
2(M2

η +M2
π0)− s

]
B(s, tγ),

H+−(s, tγ) =
[
(tγ − uγ)2 − λπ0η(s)

]
B(s, tγ). (2.47)

Here and in the following, we use the abbreviation

λP1P2
(s) ≡ λ(s,M2

P1
,M2

P2
). (2.48)

#10Using LoopTools [155] for the evaluation of the PV functions, we observed severe numerical instabilities for some
integrations in the variant VW. These issues were most extreme in ΓV1,V2 with at least one Vi = φ for the decays

η(′) → π0e+e− but also notably problematic in Γω,ω for η′ → π0e+e−. They can be traced back to problems with
the evaluation in certain regions of the phase space and might be related to vanishing Gram determinants in the PV
reduction procedure, but their exact origin remains obscure to us, in particular because a decomposition into coefficient
functions does not improve this behaviour and the evaluation with Collier using scalar functions does not suffer from
such instabilities.
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η/K

π0/K̄

γ

γ

η/K

π0/K̄

Figure 2.4: The two intermediate states π0η/KK̄ contributing to the two-photon amplitudes. The
dispersive representation of those amplitudes is constructed in Ref. [181].

To isolate the S-wave, we will neglect D- and higher partial waves, including the whole H+− contri-
bution, since its partial-wave expansion starts with D-waves. Consequently, we are required to set the
scalar amplitude B to zero, which leads to the S-wave contributing only through the tensor structure
Tµν1 . Furthermore, setting B to zero allows us to use the S-wave amplitude hL=0

++ to fix the scalar
amplitude A via Eq. (2.47),

A0(s) = −2

s
h0

++(s). (2.49)

Note that the (++) helicity amplitude has a soft-photon zero at s = 0, such that A0(s) has no
singularity at that point despite the factor 1/s.

2.6.2 Rescattering effects in the hadronic sub-process

In Ref. [181], the rescattering effects in η → π0γγ are described by means of a coupled-channel analysis,
taking into account π0η and KK̄ intermediate states; cf. Fig. 2.4. Using the Omnès matrix Ω(s) for
the π0η/(KK̄)I=1 system constructed therein, one can write a dispersive representation for the S-wave
amplitudes,

(
h0

++(s)

k0
1,++(s)

)
= Ω(s)

{(
a

b

)
s+

s2

π

(∑

V

sV∫

−∞

dz
Ω−1(z)

z2(z − s) Im

(
h0,V

++(z)

k0,V
++ (z)

)

−
∞∫

sπη

dz
Im
(
Ω−1(z)

)

z2(z − s)

(
0

k0,Born
1,++ (z)

))}
, (2.50)

with sπη = (Mη +Mπ0)2 the threshold for the π0η intermediate state and

sV = − 1

M2
V

(
M2
V −M2

η

)(
M2
V −M2

π0

)
(2.51)

the onset of the left-hand cut. Here, we include the VMD contributions from the ρ, ω, and φ mesons
for the π0η channel (h0,V

++) and the K∗ for the KK̄ channel (k0,V
++ ) in the zero-width approximation.

Using the polarisation vectors (2.44) and the coupling constants CV defined in Eq. (2.30), the VMD
amplitude for the π0η channel for photons with polarisation (++) as well as the corresponding S-wave
amplitude are given by

HV
++(s, tγ) =

CV
4

stγ
M2
V − tγ − iε

+ (tγ ↔ uγ),

h0,V
++(s) =

CV
2

(
sM2

V

λ
1/2
π0η(s)

log

[
XV (s) + 1

XV (s)− 1

]
− s
)
,

XV (s) =
2M2

V − (M2
η +M2

π0) + s

λ
1/2
π0η(s)

. (2.52)
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iH̃µν

η

π0

ℓ−

ℓ+

V1

V2

Figure 2.5: The triangle loop contributing to π0η → `+`−, which contains the tensor amplitude H̃µν

that captures the rescattering effects in π0η → γγ, with the photon virtualities modeled via vector-
meson propagators. This process is related to the corresponding η decay via crossing symmetry.

The logarithm in Eq. (2.52) induces the left-hand cut starting from sV . The VMD contribution to the
KK̄ channel, KV

++, can be treated in complete analogy. In the KK̄ channel, the QED Born term
projected onto isospin I = 1 is included in addition,

KBorn
1,++(s, tγ) =

√
2 sM2

K

(tγ −M2
K)(uγ −M2

K)
,

k0,Born
1,++ (s) =

2
√

2M2
K

s σK(s)
log

[
1 + σK(s)

1− σK(s)

]
, (2.53)

with σK(s) ≡
√

1− 4M2
K/s. In Eq. (2.50), the soft-photon zero is already taken care of; the remaining

subtraction constants a and b are determined in accordance with Ref. [181], where an Adler zero at
sA = M2

η is implemented to fix one of these and the other one is fit to experimental data.
Subtracting the VMD contributions (2.52) from the complete S-wave amplitude h0

++ (2.50) allows
us to isolate the rescattering effects in Eq. (2.49),

A0
resc(s) = −2

s

(
h0

++(s)−
∑

V=ρ,ω,φ

h0,V
++(s)

)
. (2.54)

With this, we can now construct the S-wave tensor amplitude containing only the rescattering contri-
butions,

H̃µν = A0
resc(s)Tµν1 . (2.55)

2.6.3 Loop calculation

In order to calculate the contribution of S-wave rescattering effects to the decay η → π0`+`−, we
retain the tensor amplitude (2.55) for the η → π0γγ vertex. This reduces the loop from a box to a
triangle topology; see Fig. 2.5. We denote the tensor QED sub-amplitude for γγ → `+`− by Lµν . At
tree level, the construction is straightforward, and after simplifying with Eq. (2.6), one finds

Lµν = −ūs
2pµ− − γµ /q1

(p− − q1)2 −m2
` + iε

γνvr. (2.56)

Note that we do not have to concern ourselves with calculating the S-wave projection of the QED
sub-amplitude γ∗γ∗ → `+`−, since the loop integration will take care of the projection automatically.
Furthermore, to avoid double counting, we do not include the crossed channel, which is described by
the same amplitude due to the symmetry of the triangle loop.

When taking into account the photon virtualities, the gauge-invariant tensor structure Tµν1 , in
particular, acquires additional terms [225–227],

Tµν1 (q2
1 , q

2
2) =

1

2

(
s− q2

1 − q2
2

)
gµν − qµ2 qν1 . (2.57)
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The impact of the photon virtualities is then further modeled by including factors M2
V P

BW
V (q2) for

both photons, resulting in a hadronic tensor amplitude for off-shell photons on the basis of the on-shell
one,

H̃µν(q2
1 , q

2
2) = M2

V1
PBW
V1

(q2
1)M2

V2
PBW
V2

(q2
2)

×A0
resc(s)Tµν1 (q2

1 , q
2
2). (2.58)

This is a naive generalisation to virtual photons that corresponds to a scalar-resonance approximation.
It avoids the known complications, e.g., from the modified partial-wave projections of the VMD am-
plitudes; see Refs. [228, 229] for a more rigorous treatment. We deem this approximation sufficient in
the context of the semileptonic decays. The prescription in Eq. (2.58) is consistent with the monopole
model for the form factors constructed in Sec. 2.4.

The rescattering contribution to the η → π0`+`− amplitude is then given by

iM̃(s) =
(α
π

)2
∫

d4q1
H̃µν(q2

1 , q
2
2)

q2
1 + iε

Lµν
q2
2 + iε

, (2.59)

with q2 = p+ + p− − q1.
Understanding the S-wave amplitude as an enhancement due to the a0(980) resonance with IG(JPC) =

1−(0++), only the combination of ρ and ω is allowed for the vector mesons V1 and V2. With that, the
S-wave rescattering contribution is given by

M̃(s) = −i
(α
π

)2

M2
ρM

2
ωA

0
resc(s) (2.60)

×
∫

d4q1 P
BW
ρ (q2

1)PBW
ω (q2

2)
Tµν1 (q2

1 , q
2
2)Lµν

(q2
1 + iε)(q2

2 + iε)
.

Note that with Tµν1 ∝ O(q2
1), the integral is convergent only due to the dependence on the photon

virtualities introduced in Eq. (2.58). This is a consequence of the reduction from a box to a triangle
loop. Contracting the tensor structures and performing a PV decomposition allows us to separate a
factor of m`s/(M

2
ρM

2
ω) with only the ūsvr spinor structure from Eq. (2.30) contributing,

M̃(s) = i (4πα)2sA0
resc(s)M̃uv

H (s)Muv
QED. (2.61)

Here, M̃uv
H (s) contains the remaining PV master integrals.

2.7 Results and discussion

We present the results for the semileptonic decays in the form of branching ratios as well as singly- and
doubly-differential decay widths. The branching ratios are particularly apt to demonstrate the effects
of the different form-factor models. Furthermore, we examine the contribution of scalar rescattering
effects to the branching ratios and normalise these to the corresponding two-photon analogs. For all
of our results, the quoted uncertainties stem from the experimental uncertainties that enter via the
coupling constants and amount to ∼ 10%. The uncertainties from the numerical integration, on the
other hand, are at least one order of magnitude smaller and therefore omitted.

2.7.1 Differential decay widths

The doubly- and singly-differential distributions of the semileptonic decays exhibit distinct character-
istics, with the most prominent differences being observable between the decays with electrons and
muons in the final state; see Figs. 2.6–2.8. While the majority of the doubly-differential distribu-
tion for the electron channels is contained in a small fraction close to the threshold in the invariant
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lepton mass, the decays with muons in the final state display a spread-out distribution that covers
large parts of the available phase space. For the electron final state, in particular, it is important to
take account of the region close to the threshold in the invariant lepton mass both when integrating
over the phase space and when performing a measurement, as significant parts of the decay width are
readily missed otherwise. Furthermore, the logarithmic scale shows that the distributions possess a
minimum for ν = 0, where ν ∝ cos θs, with θs the s-channel scattering angle. With only even partial
waves contributing to the decays, this feature can be attributed to the dominance of D-waves over
the helicity-suppressed S-waves—which do not show such an angular distribution—whereas for the
muon channels, this suppression is less pronounced. Beyond the difference in the final-state leptons,
the principal visible differentiations concern the size of the phase space, which is significantly larger
for η′ → π0`+`− than for η → π0`+`− and η′ → η`+`−.

For all decay channels, the obtained Dalitz plots do not follow a flat distribution, which was
assumed for the experimental analysis of η → π0e+e− in Ref. [151]. This assumption is justified for
a potential C-violating contribution [164] but inaccurate for the standard-model result; we therefore
propose a reevaluation of the experimental data and a reassessment of the reported upper limit.

The singly-differential distributions for the electron channels explicitly resolve a strongly peaked
structure for invariant lepton masses close to the threshold and a subsequent rapid decrease. For muons
in the final state, the singly-differential distribution is much different, with a broad peak that is situated
more centrally in the phase space. This behaviour is in correspondence with the observation that for
m` ≈ 0, the threshold in s approximately collapses to the threshold of the two-photon intermediate
state, s = 0, where the two-photon cut induces a behaviour ∝ log(s) [171]. Hence, for the electron final
state, this logarithmic divergence manifests itself as a peak close to the threshold in s, regularised by
a phase-space factor and forced to zero at s = 4m2

` , see Eq. (2.27), whereas the muon channels have a
much higher threshold, far from the logarithmic divergence.

2.7.2 Branching ratios in the different models

The sensitivity of the semileptonic decays to the different form-factor parameterisations, i.e., a point-
like, monopole, or dipole interaction, each with constant or energy-dependent widths, can be probed
by comparing the results for the branching ratios collected in Table 2.7.

Our results for the decays η → π0`+`− obtained with constant form factors and widths are com-
patible with the results of Ref. [154], which similarly assumed a point-like interaction. Instead of
determining the coupling constants purely from phenomenology, the authors modeled these using a
symmetry-driven quark model, which results in only slightly different numerical values. For the η′ de-
cays, on the other hand, we find significant disagreement, which might be due to numerical difficulties
when calculating the box diagrams in a non-automated way via Feynman parameters.

Implementing non-trivial form factors leads to a significant decrease of the branching ratio for all
decays, with the muon channels being subject to a larger reduction than the electron channels and
the η′ decays to less reduction than the η decays. More specifically, the decrease amounts to ∼ 35%
for η → π0e+e− and ∼ 50% for η → π0µ+µ−. For η′ → π0`+`−, the branching ratios are reduced by
∼ 20% for electrons and ∼ 35% for muons in the final state. Regarding η′ → η`+`−, the branching
ratios decrease by ∼ 10% for electrons and ∼ 25% for muons in the final state. This gives strong
indication that the photon virtualities cannot be neglected in the analysed processes, since constant
form factors are likely to overestimate the decay widths.

The dipole form factors, which feature the expected high-energy behaviour ∼ 1/q4, further assess
the sensitivity on the precise parameterisation of the form factors. Compared to the variation observed
between constant form factors and the monopole parameterisation, their effect is, however, negligible,
leading to a further decrease for η → π0`+`−, η′ → π0µ+µ−, and η′ → ηµ+µ− and a slight increase
for η′ → π0e+e− and η′ → ηe+e−, both at most at the level of 5%.

Using spectral representations to implement energy-dependent widths for the broad vector mesons,
i.e., ρ(′), ω′, and φ′, leads to a decrease in the branching ratio of less than 4% for all decays with
constant form factors and an increase of not more than 8% both in the monopole and dipole models,
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Branching ratio/10−9

PL MP DP Ref. [154]

η → π0e+e−
CW 2.10(23) 1.35(15) 1.33(15)

2.0(2)
VW 2.06(22) 1.40(15) 1.36(15)

η → π0µ+µ−
CW 1.37(15) 0.70(8) 0.66(7)

1.1(2)
VW 1.32(14) 0.71(8) 0.67(7)

η′ → π0e+e−
CW 3.82(33) 3.08(27) 3.14(27)

4.5(6)
VW 3.81(33) 3.30(28) 3.30(28)

η′ → π0µ+µ−
CW 2.57(23) 1.69(15) 1.68(15)

1.7(3)
VW 2.53(23) 1.81(16) 1.81(16)

η′ → ηe+e−
CW 0.53(4) 0.48(4) 0.49(4)

0.4(2)
VW 0.51(4) 0.50(4) 0.50(4)

η′ → ηµ+µ−
CW 0.287(26) 0.213(18) 0.207(18)

0.15(5)
VW 0.280(25) 0.225(20) 0.240(21)

Table 2.7: The branching ratios of the semileptonic decays, Eq. (2.29), resulting for the models PL, MP,
and DP in both variants CW and VW. The uncertainty is entirely due to the dominant experimental
uncertainty of |FV P (0)|; see Table 2.2. For reference, we also give the corresponding results from
Ref. [154], where we added the quoted uncertainties in quadrature.
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Figure 2.6: Dalitz plots for the MP model in the variant CW, normalised to the maximum value
within the available phase space of the respective channel, dΓ̂/dsdν = [dΓ/dsdν]/[max dΓ/dsdν].
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Figure 2.7: Logarithmic Dalitz plots for the electron channels with the MP model in the variant CW,
normalised to the respective maximum value within the available phase space; see Fig. 2.6.
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Figure 2.8: Singly-differential decay widths in the Mandelstam variable s, obtained with the MP
model in the variant CW. Here, the inlays amplify the behaviour close to the lower threshold of the
phase space, where the distribution shows a strong peak for the channels with electrons in the final
state. The uncertainty is entirely due to the dominant phenomenological uncertainty of |FV P (0)|; see
Table 2.2.
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Branching ratio

VMD rescattering mixed

η → π0e+e− 1.36(15)× 10−9 2.5× 10−13 4.6× 10−13

η → π0µ+µ− 0.67(7)× 10−9 2.8× 10−11 −2.6× 10−11

Table 2.8: The scalar rescattering contributions to the branching ratios of η → π0`+`−, Eq. (2.62),
separated into the pure rescattering and mixed term, as well as the corresponding VMD contributions
from Table 2.7 for comparison.

with the exception of η′ → ηµ+µ−, where the increase even reaches ∼ 15%.

All these variations are small compared to the difference between the results in the PL model and
any other model and mostly even small compared to the phenomenological uncertainties. We thus
infer the semileptonic decays to be rather insensitive to the precise parameterisation of the photon
virtualities in the form factors. Therefore, we restricted our discussion of the Dalitz and singly-
differential plots in Sec. 2.7.1 to the monopole model, as finer details would not be discernible.

2.7.3 Scalar rescattering contributions

We have calculated the S-wave rescattering contributions exemplarily for the η → π0`+`− decay
channels. Adding these to the VMD amplitude leads to two additional terms on the level of the squared
amplitude in the branching ratio: one pure rescattering term and one term mixing rescattering and
VMD effects,

|M+ M̃|2 = |M|2 + |M̃|2 + 2Re
(
MM̃∗

)
. (2.62)

The two contributions to the branching ratios can be found in Table 2.8. For η → π0e+e−, both the
rescattering and the mixed contribution are of O(10−4) compared to the VMD result. This seems
plausible, given that a spin flip is necessary to couple a scalar resonance to two leptons, resulting in
an amplitude proportional to m`. For η → π0µ+µ−, the rescattering and mixed contributions are at
the level of 5% in comparison to the VMD contributions, still notably below the uncertainties of the
latter. In addition, the two contributions have opposite signs, such that they largely cancel, leading
to a suppression of O(10−3). In light of the negligible contributions of the rescattering effects, we
consider it unnecessary to calculate errors on them. Apart from the impact of the uncertainties on the
coupling constants CV within the dispersive integral in Eq. (2.50), such a calculation would also have
to take into account the uncertainties from fixing the subtraction constants as estimated in Ref. [181].

A similar order of magnitude is expected for the respective corrections to the other decay channels
η′ → [π0/η]`+`−, an explicit demonstration of which is, however, beyond the scope of this article.

2.7.4 Photonic decays and normalised branching ratios

The primary motivation for calculating the branching ratios for the two-photon decays η(′) → [π0/η]γγ
within our VMD framework is the normalisation (2.41) of the corresponding semileptonic decays. Nu-
merical results for these are collected in Table 2.9 and Table 2.10, respectively. Currently, however,
there is also thriving interest in resolving a discrepancy arising from an updated experimental mea-
surement of the η → π0γγ decay [230]. The effect of implementing dispersively improved ρ propagators
amounts to less than 2% and is therefore insignificant, as the phenomenological uncertainties range
between (6–11)%.

Our branching ratios with constant widths are in agreement with the VMD results of Ref. [182];
supplementing those with a linear-σ-model scalar contribution and chiral loops, the authors quote
B(η → π0γγ) = 1.35(8)× 10−4, B(η′ → π0γγ) = 2.91(21)× 10−3, and B(η′ → ηγγ) = 1.17(8)× 10−4
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Branching ratio/10−4

CW VW

η → π0γγ 1.21(13) 1.18(13)

η′ → π0γγ 27.8(1.7) 28.1(1.8)

η′ → ηγγ 1.10(8) 1.10(8)

Table 2.9: The branching ratios of the two-photon decays, Eq. (2.34), in both variants CW and VW.
The uncertainty is entirely due to the dominant experimental uncertainty of |FV P (0)|; see Table 2.2.

Normalised branching ratio/10−6

PL MP DP

η → π0e+e−
CW 17.422(28) 11.197(11) 11.032(9)

VW 17.510(20) 11.855(7) 11.531(4)

η → π0µ+µ−
CW 11.371(20) 5.781(7) 5.450(6)

VW 11.197(25) 6.020(10) 5.647(5)

η′ → π0e+e−
CW 1.37(7) 1.11(6) 1.13(6)

VW 1.36(7) 1.17(6) 1.18(6)

η′ → π0µ+µ−
CW 0.92(5) 0.610(35) 0.603(35)

VW 0.90(5) 0.64(4) 0.65(4)

η′ → ηe+e−
CW 4.77(7) 4.38(6) 4.41(6)

VW 4.65(7) 4.56(7) 4.56(7)

η′ → ηµ+µ−
CW 2.60(6) 1.93(4) 1.88(4)

VW 2.54(5) 2.05(4) 2.18(4)

Table 2.10: The same as Table 2.7 but for the normalised branching ratios of the semileptonic decays,
Eq. (2.41). Due to partial cancellations in this ratio, the quoted uncertainties are given with the caveat
that they are likely to underestimate the genuine uncertainty; see main text.

based on empirical couplings. These results are slightly larger than the plain VMD numbers but still
compatible within uncertainties, indicating that the effects of these model extensions are insignificant
at the current level of precision [182].

The dispersive analysis of η → π0γγ [181] referenced in Sec. 2.6 also includes the a2 ≡ a2(1320)
tensor resonance as well as isospin-breaking π+π− contributions, with the result B(η → π0γγ) =
1.81+0.46

−0.33 × 10−4 showing a ∼ 50% discrepancy with the VMD model. This deviation can be traced
back largely to the a2 contribution, suggesting that the impact of this resonance might be relevant for
η → π0γγ, specifically at very low diphoton invariant masses.

In light of this finding, it is important to note that we have not included any tensor-meson effects
for η → π0`+`− in Sec. 2.6. For electrons in the final state, the lower threshold in s is close to the
two-photon threshold, so that an effect of similar size as in the photonic case is within the bounds of
possibility; the higher threshold for muons, on the other hand, is expected to exclude the region where
the a2 resonance is most relevant. For the η′ decays, the exchanged vector mesons can go quasi on-
shell, so that the VMD mechanism is even more likely to dominate the effect of the tensor resonance.
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Figure 2.9: Dalitz plots for the two-photon decays in the variant CW (top), normalised to
the maximum value within the available phase space of the respective channel, dΓ̂γ/dsdνγ =
[dΓγ/dsdνγ ]/[max dΓγ/dsdνγ ], and singly-differential decay widths in the Mandelstam variable s,
obtained in the variant CW (bottom).

While our results for the two-photon decays of the η′ meson are compatible with the experimental
results from BESIII, B(η′ → π0γγ) = 3.20(24)×10−3 [231] and B(η′ → ηγγ) = 8.3(3.4)×10−5 [232],#11

the experimental situation for η → π0γγ is presently inconclusive. For this decay, the PDG average
B(η → π0γγ) = 2.55(22) × 10−4 [174]—the main input being B(η → π0γγ) = 2.52(23) × 10−4 from
the A2 experiment at MAMI [177]—is in agreement with the theoretical calculation performed in
Ref. [181] but in severe tension with the preliminary result from the KLOE-2 collaboration, B(η →
π0γγ) = 0.99(26) × 10−4 [230], which corroborates the older KLOE measurement B(η → π0γγ) =
0.84(30)× 10−4 [233] and is consistent with the VMD-only result.

The results for the normalised branching ratio can be found in Table 2.10, and the discussion of
the differences between the distinct form-factor parameterisations is analogous to Sec. 2.7.2. Due to
partial cancellations in this ratio, the quoted uncertainties are reduced drastically, however with the
caveat that they are likely to underestimate the genuine uncertainty, lest some neglected systematic
effect beyond the error estimates of the couplings potentially becomes dominant here. At the same
time, potential corrections to the semileptonic branching ratios that are not included in the plain
VMD model, e.g., the a2 resonance, are assumed to partially cancel as well because they emerge in
the hadronic part of the amplitudes that is shared with the photonic decays.

The doubly- and singly-differential decay widths for the two-photon decays are displayed in Fig. 2.9.

#11Here and in the following, we combine statistical and systematic uncertainties of experimental branching ratios in
quadrature for simplicity.



46 Semileptonic η(′) decays in the Standard Model

While the η decay does not show much structure in either plot—being dominated by a D-wave at low
and an S-wave at high diphoton invariant masses—the η′ decays are dominated by vector-meson
resonances that can go quasi on-shell. The ω resonance is clearly visible as two narrow bands in
the Dalitz plots and as a peak in the singly-differential distributions, whereas the ρ is disguised in
comparison due to its much larger width. The angular dependence perceivable as a less saturated band
in the Dalitz plots and as a dip in the singly-differential distributions can be attributed to the fact
that the ω → [π0/η]γ decay must be in a P -wave due to parity.

2.8 Summary

We have reanalysed the standard-model contribution to the semileptonic decays η(′) → π0`+`− and
η′ → η`+`−, where ` = e, µ. Since C parity is conserved in the strong and electromagnetic interactions,
these processes are mediated via a two-photon mechanism and therefore loop-induced. This two-photon
mechanism is known to be dominated by vector exchanges; as a major improvement compared to the
existing literature, we have, for the first time, implemented a realistic dependence of the hadronic
sub-process on the photon virtualities via vector-to-pseudoscalar transition form factors. To assess the
sensitivity to the chosen parameterisations, we compared three different schemes: constant couplings
(as a reference point), monopole form factors, and dipole form factors. The last of those three are
motivated by having the correct asymptotic behaviour at high virtualities. In addition, dispersively
improved variants of all form factors have been probed. Non-trivial form factors turn out to be
important in order not to overestimate the branching ratios. We thereby improve previous theoretical
results for the semileptonic η(′) decays. On the other hand, the observables are mostly insensitive
to the details of the parameterisation at the level of uncertainty induced by the phenomenological
coupling constants.

All predicted branching ratios are, as expected, well below the current experimental upper limits.
For the latter, we however recommend a reanalysis, given the far-from-flat Dalitz-plot distributions
of the standard-model contributions. With improved experimental sensitivities in the future, our
theoretical branching ratios of these rare η(′) decays can hopefully be compared to experiment and
thus help cast a light on possible symmetry violations and physics beyond the standard model in the
light-meson sector.
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2.9 Appendix

2.9.1 U(3) flavour symmetry

For the U(3) parameterisations of the pseudoscalar and vector-meson multiplets, we write

ΦP =




π0 +
√

2 η+η′√
3

0 0

0 −π0 +
√

2 η+η′√
3

0

0 0 −
√

2 η+2η′√
3


 ,

ΦV
(′)

µ =



ρ0
µ

(′)
+ ω

(′)
µ 0 0

0 −ρ0
µ

(′)
+ ω

(′)
µ 0

0 0 −
√

2φ
(′)
µ


 , (2.63)

where we only retain flavour-neutral states. Here, mixing effects between the (physical) mesons are
taken into account via the pattern

(
η′

η

)
=

(
cos θP sin θP

− sin θP cos θP

)(
η1

η8

)
,

(
ω(′)

φ(′)

)
=

(
cos θV (′) sin θV (′)

− sin θV (′) cos θV (′)

)(
ω

(′)
1

ω
(′)
8

)
, (2.64)

with η1, η8 and ω
(′)
1 , ω

(′)
8 denoting the isoscalar singlet and octet states of the pseudoscalar and

vector-meson multiplets, respectively. In the above, the mixing angles are assumed to be given by
θP = arcsin(−1/3) for the pseudoscalar nonet (canonical mixing) and θV (′) = arcsin(1/

√
3) for the

vector mesons (ideal mixing). We furthermore introduce the charge matrix according to

Q =
1

3
diag [2,−1,−1]. (2.65)

Using Eq. (2.63), we calculate Tr [ΦPΦVµ ΦV
(′)

ν ] to find the allowed couplings η(′)ρρ(′), η(′)ωω(′),

η(′)φφ(′), π0ρω(′), and π0ωρ(′). To derive the relative signs between the corresponding coupling con-
stants CV Pγ introduced in Sec. 2.4.1, we calculate Tr [ΦPΦVµQ] and take the appropriate ratios of
coefficients that emerge in Eq. (2.4). For our analysis, we furthermore included the OZI-suppressed
coupling Cφπ0γ , whose sign thus cannot be determined from U(3) symmetry. Instead, we resort to
analyses of e+e− → 3π and e+e− → πγ [203–205], which suggest that the product of the φγ and φπγ
couplings carries a relative sign as compared to the product of the ωγ and ωπγ couplings. Hence,
calculating Tr [ΦVµQ] indicates a relative sign between Cφπ0γ and Cωπ0γ . Fixing the sign of Cρηγ to be
positive, the sign convention of Table 2.4 follows.

2.9.2 Intermediate results

The numerical values of the auxiliary quantities Γ
(γ)
V1,V2

defined in Eq. (2.42), for a point-like interaction
(PL), monopole form factors (MP), and dipole form factors (DP), are collected in Table 2.11 and
Table 2.12.

2.9.3 Constants and parameters

We collect the masses and widths used throughout the calculations in Table 2.13.
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Γρ,ρ/MeV5 Γω,ω/MeV5 Γφ,φ/MeV5 Γρ,ω/MeV5 Γρ,φ/MeV5 Γω,φ/MeV5

η → π0e+e−

PL
CW 0.5302

0.5684 0.1864
1.077 0.6041

0.6485
VW 0.4992 1.065 0.6060

MP
CW 0.3463 0.3627 0.1093 0.6914 0.3707 0.3966

VW 0.3422 0.3814 0.1151 0.7226 0.3945 0.4174

DP
CW 0.3419 0.3573 0.1033 0.6814 0.3615 0.3835

VW 0.3285 0.3630 0.09942 0.7160 0.3869 0.3903

η → π0µ+µ−

PL
CW 0.3440

0.3686 0.1383
0.7022 0.4222

0.4498
VW 0.3123 0.6785 0.4136

MP
CW 0.1772 0.1870 0.06392 0.3569 0.2029 0.2173

VW 0.1697 0.1972 0.06742 0.3657 0.2123 0.2293

DP
CW 0.1674 0.1764 0.05756 0.3366 0.1888 0.2009

VW 0.1603 0.1802 0.06073 0.3473 0.1916 0.2102

η′ → π0e+e−

PL
CW 154.6

283.5 57.20
405.1 125.7

183.3
VW 152.8 406.5 138.9

MP
CW 125.8 227.7 37.08 323.0 82.41 126.6

VW 133.7 241.9 39.93 349.2 103.0 135.4

DP
CW 128.1 232.0 35.95 328.3 84.42 128.8

VW 131.5 253.1 38.66 340.9 101.0 134.6

η′ → π0µ+µ−

PL
CW 121.2

169.8 55.13
284.5 131.0

168.1
VW 116.9 281.7 139.1

MP
CW 80.02 111.0 30.42 185.6 70.21 94.91

VW 83.84 119.3 32.79 199.8 84.77 101.9

DP
CW 79.10 109.8 28.68 183.4 68.78 92.80

VW 80.95 121.1 29.78 201.0 82.23 97.28

η′ → ηe+e−

PL
CW 19.68

50.07 6.701
60.79 8.303

14.86
VW 19.47 60.64 10.11

MP
CW 16.44

48.33 5.100
48.56 −1.684

10.79
VW 18.50 57.98 6.724

DP
CW 16.54 51.24 4.902 47.02 −2.518 12.45

VW 18.37 46.79 4.827 57.81 6.109 10.82

η′ → ηµ+µ−

PL
CW 12.45

20.56 4.847
31.57 10.52

15.70
VW 12.38 31.86 11.66

MP
CW 8.240

16.03 3.170
19.66 2.342

9.959
VW 9.471 24.59 6.988

DP
CW 7.980 16.28 2.944 18.15 1.682 10.13

VW 10.05 15.35 2.937 23.61 6.266 9.555

Table 2.11: Numerical results for the auxiliary quantities defined in Eq. (2.42) for the models PL, MP,
and DP in both variants CW and VW, rounded to four significant digits.
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Γγρ,ρ/MeV5 Γγω,ω/MeV5 Γγφ,φ/MeV5 Γγρ,ω/MeV5 Γγρ,φ/MeV5 Γγω,φ/MeV5

η → π0γγ
CW 3.154× 104

3.193× 104 8.719× 103 6.175× 104 3.218× 104

3.335× 104

VW 2.921× 104 6.108× 104 3.189× 104

η′ → π0γγ
CW 3.088× 107

4.586× 108 4.286× 106 1.097× 108 1.115× 107

1.884× 107

VW 3.341× 107 1.130× 108 1.386× 107

η′ → ηγγ
CW 3.203× 106

6.537× 107 4.473× 105 1.425× 107 2.031× 105

7.406× 105

VW 3.280× 106 1.411× 107 5.056× 105

Table 2.12: Numerical results for the auxiliary quantities defined in Eq. (2.42) in both variants CW
and VW, rounded to four significant digits.

Variable Value [174]

π0 Mπ0 134.9768(5) MeV

π± Mπ± 139.57039(18) MeV

K0 MK 497.611(13) MeV

η
Mη 547.862(17) MeV

Γη 1.31(5) keV

η′(958)
Mη′ 957.78(6) MeV

Γη′ 188(6) keV

ρ0(770)
Mρ 775.26(23) MeV

Γρ 147.4(8) MeV

ω(782)
Mω 782.66(13) MeV

Γω 8.68(13) MeV

K∗0(892) MK∗ 895.55(20) MeV

φ(1020)
Mφ 1019.461(16) MeV

Γφ 4.249(13) MeV

ρ0(1450)
Mρ′ 1465(25) MeV

Γρ′ 400(60) MeV

ω(1420)
Mω′ 1410(60) MeV

Γω′ 290(190) MeV

φ(1680)
Mφ′ 1680(20) MeV

Γφ′ 150(50) MeV

Table 2.13: The masses and widths needed for the calculations in this article, with the values taken
from Ref. [174].



50 Semileptonic η(′) decays in the Standard Model



Chapter 3

Axial-vector and tensor meson
transition form factors

Der Tümpel ist trüb und es tanzen die
Teilchen im Licht.

Dota Kehr, Licht [234]

3.1 Prologue

The results of this chapter are not yet published, but have been presented in a talk,

• H. Schäfer in collaboration with P. Sánchez-Puertas, E. Lymperiadou, and B. Kubis,
Axial-vector and tensor meson transition form factors, 8th Plenary workshop of the Muon g− 2
Theory Initiative, Orsay 2025.

Transition form factors (TFFs) of hadrons, depending on the photon virtualities, reflect the fact
that hadrons are not fundamental, point-like particles. They are, inter alia, of special interest in
processes where photon loops occur, such as in the anomalous magnetic moment of the muon, (g−2)µ.
There, the dominant uncertainty comes from hadronic effects in photon loops. Resonance states,
which are not stable under the strong interaction, have garnered interest in this context as they
contribute to (g − 2)µ in the intermediate regime between the region where the pseudo-Goldstone
bosons dominate and the high-energy region where perturbative quantum chromodynamics (pQCD)
is applicable, interfering with both. At the same time, it is not straightforward to describe hadronic
resonances since, on the one hand, pQCD is not applicable in this regime, and on the other hand,
pure chiral perturbation theory (ChPT) breaks down at this scale. It was developed to describe the
dynamics of light pseudo-Goldstone bosons [67–73] and extended to include the effect of resonance
states such as vector, axial-vector, and tensor mesons on the pseudo-Goldstone boson dynamics [18–
21], but the actual resonance properties of these states are not sufficiently represented in resonance
ChPT (RChPT). Additionally, the power-counting scheme in RChPT is ambiguous due to the fact
that the respective states can be embedded in different representations, such as the vector or the
antisymmetric tensor representation [18, 19, 100].

Dispersion theory is a useful framework for many form factor calculations. One needs, however,
input such as scattering phases or transition amplitudes in order to make predictions. The TFFs of
the isovector C-even axial-vector and tensor states a1 and a2 have not been described precisely since
there is not much experimental data to work with. In this project, we present the first steps towards a

https://indico.ijclab.in2p3.fr/event/11652/contributions/39090/attachments/26237/38812/HannahSchaefer_SlidesOrsay.pdf
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parameterisation that takes into account the dynamical generation of these states in a 3π ≡ ρπ system
on the basis of unitarity, crossing symmetry, and analyticity. This introduces inevitably a model
dependence, which is hard to avoid given the scarcity of experimental data and the lack of theoretical
insight. For axial-vector mesons, the decay into two real photons is forbidden by the Landau–Yang
theorem [63, 64]. The total decay width of the a1 has a rather large uncertainty, especially since
a determination using a Breit–Wigner fit and another one using a complex pole description are
incompatible [34]. Still, it is clear that it is not a narrow resonance and that its main decay channel
is 3π. Tensor mesons are not restricted by the Landau–Yang theorem. The a2 decays mainly into
ρπ with a branching ratio of 70.1(2.7)%, the next-important decay channels are πη, ωππ, and KK̄;
for these (and even more) channels, experimental decay rates are available. Extracting information on
the coupling to (virtual) photons from this involves the introduction of a dynamical model.

To this end, the ρπ → γ∗γ∗ system is investigated and a decomposition into gauge-invariant tensor
structures and scalar functions is performed following the Bardeen–Tung–Tarrach (BTT) pro-
cedure [225, 226]. This ansatz was suggested by Bastian Kubis and Pablo Sánchez-Puertas and
performed by the latter and the author of this thesis independently in order to cross-check the result.
Since a description free of kinematic zeros and singularities is necessary for the subsequent dispersive
treatment, poles introduced in the BTT procedure have to be removed. Additionally, redundancies as-
sociated with kinematic zeros are taken into account and a minimal generating set of tensor structures
is constructed. This was done, again, by Pablo Sánchez-Puertas and the author of this thesis inde-
pendently. Since it proved to be more involved than initially assumed, discussions between these two
and Bastian Kubis were essential to the progress, as well as additional discussions with Gio Chan-
turia, Simon Mutke, and Maximilian Zillinger. Additional constraints necessary for removing
kinematic singularities and zeros were identified by Pablo Sánchez-Puertas and this thesis’ author.

For the scalar functions of the ρπ → γ∗γ∗ system, the lowest-lying intermediate states in the
crossed channels t and u are considered, namely one-particle ρ and π states, and the scalar func-
tions reconstructed dispersively from these. This model was suggested by Bastian Kubis and Pablo
Sánchez-Puertas and calculated by the latter, Eirini Lymperiadou, and the author of this thesis.
Pablo Sánchez-Puertas and the author of this thesis constructed a mapping in order to relate this
input to the gauge-invariant description free of kinematic zeros and singularities. The author of this
thesis formalised this procedure to some extent.

In order to connect the ρπ → γ∗γ∗ system to the a1 and a2 TFFs, ρπ are coupled to a1/2. It
is not possible to calculate the TFFs naively from the resulting loop as the preceding construction
implies on-shell ρ and π states. Therefore, a dispersive reconstruction utilising only the unambiguous
imaginary part of the loop is performed, which was suggested by Bastian Kubis and discussed and
developed by the latter, Pablo Sánchez-Puertas, and the author of this thesis. This was accom-
plished by computing the associated loop diagram via a Passarino–Veltman decomposition, which
was implemented by Eirini Lymperiadou, Pablo Sánchez-Puertas, and this thesis’ author, an eval-
uation of the corresponding master integrals, which was done by the latter and cross-checked by Pablo
Sánchez-Puertas, and an implementation of the dispersion integral. The last step was done by the
author of this thesis with the help of Gio Chanturia.

A projection to the a1 and a2 TFFs of the results obtained this way was constructed by Pablo
Sánchez-Puertas, Eirini Lymperiadou, and the author of this thesis. The couplings of a1/2 to ρπ
have been calculated phenomenologically by Pablo Sánchez-Puertas and the author of this thesis.
Results for different configurations of this model have been calculated by the author of this thesis and
discussed by the latter, Pablo Sánchez-Puertas, and Bastian Kubis. Plots of the results have been
prepared by the author of this thesis.

Since the divergence of the loop integrals limits the extraction of the a1 TFFs to a simplified model
and prohibits it entirely for the a2, discussions between Pablo Sánchez-Puertas, Bastian Kubis,
Eirini Lymperiadou, and Martin Hoferichter have resulted in ideas to improve the framework,
which are to be implemented in the future.
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Figure 3.1: Hadronic contributions to aµ: (a) HVP and (b) HLbL.

3.2 Introduction

From an outside view, it may seem that the question of the anomalous magnetic moment of the muon
(g−2)µ = 2aµ is settled. The long-standing discrepancy between the experimental value and the theory
prediction has vanished with the current experimental world average aexp

µ = 116592071.5(14.5)×10−11,
including the latest results from BNL E821 [12] and Fermilab E989 [13, 14], and the latest White Paper
(WP25) of the Theory Initiative [16], which quotes aWP25

µ = 116592033(62)×10−11[108, 109, 111, 227,

235–290].#1 The previous White Paper (WP20) [15, 107, 204, 235, 242, 243, 263, 265–268, 270, 285,
286, 291–297] had a value of aWP20

µ = 116591810(43), which was in tension with the experimental
result. In the following paragraphs, we follow the argumentation in WP25 [16].

The Standard Model (SM) prediction receives its main contribution from quantum electrodynam-
ics (QED), aQED

µ = 116584718.8(2) × 10−11 [235–241], an electroweak correction aEW
µ = 154.4(4) ×

10−11 [242–245], and then hadronic contributions, namely from hadronic vacuum polarisation (HVP)
and hadronic light-by-light scattering (HLbL); see Fig. 3.1. While historically the HLbL contribution,
which is of higher order in the perturbative expansion, was less understood and model-dependent,
presently, the HVP contribution is the concerning part. aHVP

µ was estimated from experimental data
on e+e− → hadrons in WP20 and already then showed a discrepancy to the result from lattice QCD.
While more independent lattice results for the leading-order HVP contribution are available now with
higher precision than before [246–262], the community agreed that at the time of WP25, no data-
driven leading-order HVP result can be quoted due to the large discrepancies between the different
experimental results entering this calculation. The leading-order HVP result from the lattice, on the
other hand, is systematically larger than the previous data-driven result and shifts aWP25

µ such that
it is compatible with the experimental result. While this seems like a step back and one might loose
hope to find new physics in this regime, the current situation is a physics puzzle in itself that is worth
solving: why do the different experimental results for e+e− → hadrons disagree? Why do most of
them disagree with the lattice results? How can the community address such questions that require
meticulous error estimation and comparisons between experiment, theory, and lattice?

On the other hand, in the sector of the once-problematic HLbL, significant progress has been made
in the last years. There are also lattice results [286–290], and on the phenomenological side [108, 109,
111, 227, 244, 266–284], the picture is much clearer now. A dispersive framework has been set up in
order to systematically include hadronic intermediate states in a manner consistent with analyticity
and unitarity. For this, one needs a generating set of tensor structures and scalar functions for the

#1The theory predictions for the anomalous magnetic moment of the muon in WP25 and WP20 are based on input
from the references cited here.
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γ∗γ∗γ∗γ system, which generates the full HLbL tensor

Πµνλσ(q1, q2, q3) = −i

∫
d4xd4y d4z e−i(q1·x+q2·y+q3·z)〈0|T{jµem(x)jνem(y)jλem(z)jσem(0)}|0〉, (3.1)

with jµem := q̄Qγµq the electromagnetic (EM) currents, defined in pure QCD for the lightest quarks
q = (u, d, s)T , and the charge matrix Q = diag (2/3,−1/3,−1/3). In Ref. [227], a decomposition into

54 tensor structures Tµνλσi and scalar functions Πi ,

Πµνλσ(q1, q2, q3) =

54∑

i=1

Tµνλσi Πi, (3.2)

was constructed such that the tensor structures are gauge-invariant and the scalar functions free of
kinematic singularities. However, this decomposition is redundant, as there are only 41 independent
helicity amplitudes, which matches the number of independent tensor structures. The reason to work
with this generating set instead of a basis is that there seems to be no way to construct such a basis
valid in all kinematic limits. We encounter a similar problem in this work and will explain the details
in the next section. For the evaluation of aHLbL

µ , one takes the limit q4 → 0 (since the fourth photon is
always soft) and applies Dirac-space projection operator techniques [298] to find the so-called master
formula

aHLbL
µ =

α3

432π2

∫ ∞

0

dΣ Σ3

∫ 1

0

dr r
√

1− r2

∫ 2π

0

dφ

12∑

i=1

Ti(Σ, r, φ)Π̄i(Q
2
1, Q

2
2, Q

2
3) (3.3)

with Euclidean photon virtualities Q2
i = −q2

i , which can be expressed in terms of the integration
variables Σ, r, and φ. The Π̄i emerge as unambiguous linear combinations of the Πi in the limit
q4 → 0. One can reconstruct the real parts of these scalar functions from their imaginary parts, which
via unitarity are related to all possible intermediate states. The choice of a suitable framework to
describe these intermediate states depends on the scale of the Q2

i and how they relate to each other.
Higher virtualities correspond to shorter distances, therefore one refers to contributions in this regime
as short-distance constraints (SDCs). For three large virtualities Q2

1 ≈ Q2
2 ≈ Q2

3 � ΛQCD, one can
calculate quark loops in an operator product expansion (OPE) framework [108, 109, 270]. In the
so-called mixed or Melnikov–Vainshtein region where w.l.o.g. Q2

1 ≈ Q2
2 � Q2

3 [296], the axial
current dominates, and higher-order corrections can be estimated again in OPE [110, 111]. Additional
corrections come from gluonic contributions.

For low virtualities, a dispersive treatment takes into account discrete hadronic states up to some
point and is then matched to the SDCs. This can be done in different frameworks. One version, which
is in use in WP25, works in four-point kinematics, where the tensor structures Tµνλσi are written
in terms of q1, q2, q3, q4 := q1 + q2 + q3, and dispersion relations for Πi are derived for fixed photon
virtualities in the limit q2

4 = 0; the limit q4 → 0 is taken afterwards [227, 267]. In this approach,
the scalar functions Πi exhibit kinematic singularities in q2

i , which vanish in the end due to a set of
sum rules; these connect different hadronic intermediate states, which themselves still contain spurious
kinematic singularities. In Ref. [278], an optimised basis has been constructed, where these kinematic
singularities only occur for intermediate states with spin ≥ 2, i.e., tensor states.

On the other hand, one can take the limit q4 → 0 early on before setting up the dispersion
relations, thus working in three-point kinematics. This ansatz is followed in Ref. [299], and it yields
scalar functions manifestly free of kinematic singularities, but one has to take into account additional
cuts and intermediate states for the dispersive reconstruction, which complicates the calculation and
requires input for additional sub-processes [300]. In the end, these two frameworks, complemented by
SDCs, have to yield equivalent results; on the level of intermediate states, however, they can differ,
since contributions get shuffled between them, as was shown for the simpler case of the hadronic V V A
correlator [244].
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Figure 3.2: Contribution of a resonance R to HLbL, where TFFs of R occur.

The leading contributions in the hadronic regime are given by light pseudoscalar π, η(′) pole terms,
followed by the pion box. Next in order are S-wave ππ/(KK̄)I=0 rescattering effects and pole con-
tributions from scalar, axial-vector, and tensor mesons. In four-point kinematics, these higher pole
contributions are estimated via a narrow-resonance (or narrow-width) approximation (NWA) [278, 282,
301]. For this, doubly-virtual transition form factors (TFFs) of the corresponding states are needed as
input; see Fig. 3.2. The NWA takes into account only the residues and not the full generation of these
intermediate states. One side effect of this is that imaginary parts of the TFFs are difficult to treat
in the framework. For compatibility, the TFFs are ideally also described in the NWA, such that their
imaginary parts vanish. Alternatively, one could adapt the HLbL dispersive framework such that it
includes more intermediate states and imaginary parts can cancel between them. This, however, is a
challenging task.

In this work, we focus on isovector axial-vector and tensor-meson intermediate states. The lightest
axial-vector mesons are organised in a triplet of two isoscalar states f1(1285) ≡ f1 and f1(1420) ≡ f ′1
and one isovector state a1(1260) ≡ a1. Similarly, the lowest-lying tensor states are f2(1270) ≡ f2,
f2(1525) ≡ f ′2, and a2(1320) ≡ a2. Masses and widths used in this work are collected in the appendix
in Table 3.2.

In the current evaluation of aHLbL
µ , tensor intermediate states are affected by the spurious kinematic

singularities, which eventuates in the fact that one can include either FT1 and FT2 or FT1 and FT3 . Ideally,
one finds a good reason for a hierarchy between one of these pairs of TFFs and the rest. Currently
there exists a simple quark model [282, 301, 302]

FT1 (q2
1 , q

2
2) = FT1 (0, 0)×

( ΛT
ΛT − q2

1 − q2
2

)2

, FT2−5 ≡ 0, (3.4)

where the scale is set to ΛT = Mρ. The effect of tensor-meson contributions on aµ has also been
estimated in holographic QCD (hQCD) [284], where only FT1 and FT3 are non-zero. In hQCD, there is
also a prediction for the axial-vector TFFs [276], and SDCs are implemented in the same framework.
Experimentally, for the f2, the f ′2, and the a2, mass and width as well as branching fractions for the
main decay channels ππ, KK̄, and 3π, respectively, as well as a few subleading channels are known.

In the axial-vector sector, the f1 is the state about which most is know as several decay and
production channels have been measured. A fit to all available data on the basis of a vector-meson
dominance (VMD) model was performed in Refs. [144, 277]. Since there is no such data available for
the a1 and the f ′1, their contributions are estimated in analogy to the f1 via U(3) symmetry. Making
use of several constraints, the F a12 TFF was estimated in Ref. [244], finding a good agreement with the
U(3) estimate. One major constraint for axial vectors is that their decay to real photons is forbidden
by the Landau–Yang theorem [63, 64].

In this work, we want to relate the a1 and a2 TFFs to the well-known pion vector form factor FVπ ,
the ρπ TFF FV P , and the ρ FFs Gi, i ∈ {1, 2, 3}, making use of the knowledge that the main decay
channel is 3π ≡ ρπ. For this, we study the ρπ → γ∗γ∗ amplitude in Sec. 3.3 and Sec. 3.4 and then
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Figure 3.3: The process V P → γ∗γ∗ with definitions of momenta and helicities.

relate it to a1/2 → γ∗γ∗ and the TFFs F
a1/2
i in Sec. 3.5. The numerical evaluation is described in

Sec. 3.6 and results are discussed in Sec. 3.7. We conclude in Sec. 3.8.

3.3 V P → γ∗γ∗ basis

We want to construct a gauge-invariant tensor basis free of kinematic zeros and singularities for the
subprocess ρπ → γ∗γ∗; see Fig. 3.3. Since the following considerations are valid for any vector meson
V and pseudoscalar P , we construct this in a more general notation and switch back to ρπ when we
use physical input. We start with the most general set of tensor structures and employ the Bardeen–
Tung–Tarrach (BTT) procedure [225, 226]. In this section, we treat the vector and the pseudoscalar
particle as asymptotic states, i.e., in a NWA. The amplitude is defined as

〈γ∗(q1, λ1)γ∗(q2, λ2)|V (p)P (pP )〉

= −e2(2π)4δ(q1 + q2 − p− pP )ε∗µ(q1, λ1)ε∗ν(q2, λ2)

∫
d4z e−iq1z〈0|T{jµem(z)jνem(0)}|V (p)P (pP )〉

= ie2(2π)4δ(q1 + q2 − p− pP )ε∗µ(q1, λ1)ε∗ν(q2, λ2)ελVα (p, λV )Mµνα(q1, q2, p), (3.5)

with the matrix element

i

∫
d4ze−iq1z〈0|T{jµem(z)jνem(0)}|V (p)P (pP )〉 = ελVα (p, λV )Mµνα(q1, q2, p). (3.6)

We made use of the Lehmann–Symanzik–Zimmermann (LSZ) reduction formula [303] and the equa-
tions of motion for photons,

∂µF
µν(x) = ejνem(x), (3.7)

in order to switch back and forth between writing photons as external particles and as currents,

〈out|γ(q, λ), in〉 =− ieεµ(q, λ)

∫
d4e−iq·x〈out|jµem(x)|in〉,

〈γ(q, λ), out|in〉 =− ieε∗µ(q, λ)

∫
d4eiq·x〈out|jµem(x)|in〉. (3.8)

3.3.1 Gauge invariance and cancellation of poles

The Bardeen–Tung–Tarrach (BTT) procedure [225, 226] addresses the problem that an amplitude
with external photons is not gauge-invariant when written down naively, i.e., unphysical degrees of
freedom are not removed. If we do not have any further information about an amplitude but its
external particles and the symmetries that it has to fulfil, we can decompose it into a sum over all
possible Lorentz tensor structures Ti with generic scalar coefficient functions,

M =
∑

i

FiTi. (3.9)
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The scalar functions Fi depend on all available Lorentz scalars, and a priori, we do not have any
information about their behaviour. The goal is then to extract from a set of all possible tensor
structures the gauge-invariant linear combinations, to find a generating set for those, and to remove
any kinematic zeros and singularities from the tensor structures, such that the corresponding scalar
functions are free of kinematic singularities and zeros and singularities.

For a minimal decomposition, it would be ideal to construct a basis, which manifestly avoids any
double counting. This is not always compatible with the other conditions, as we will see. The procedure
has been used and explained, e.g., in Refs. [227, 304, 305], some investigations concerning symmetries
between the kinematic variables are collected in Ref. [306]. We do not only explain the steps necessary
to construct a basis of tensor structures and the reasons why we extend this basis to a generating
set, but describe in addition the mathematical procedure of transforming simultaneously the scalar
functions Fi. In order to do so, we alternate between the concrete example of the process V P → γ∗γ∗

and more general considerations which outline how this can be done for other processes.

The initial set of all possible tensor structures is constructed by writing down all possible combina-
tions of independent momenta qi and the metric tensor g with respect to all free Lorentz indices of the
process. The free indices correspond to the external polarisation vectors viaM = εα1 . . . εαnMα1...αn ,
where αi is the (multi-)index of the polarisation vector εi. Depending on the parity of the process, one
needs to include a Levi-Civita tensor εµναβ#2 in order to accommodate the correct behaviour under
parity transformations, such as for V P → γ∗γ∗. Therefore, the construction for the latter process
starts from

Mµνα ∼Mµναβγδεεβγδε. (3.10)

The tensor structures ofMµναβγδε are now built from {q1, q2, p}{µ,ν,α,β,γ,δ,ε} and gµν with all possible
index variations, where we only take into account combinations that are not related via relative minus
signs. We find a total number of 60 resulting´ structures T in,µνα

i , which are listed in Sec. 3.9.1.

From a linear algebra perspective,#3 the tensor structures Ti of a process with N external particles
of given spin and intrinsic parity form a vector space over the field C. Note that there is no canonical
scalar product defined on this vector space, which complicates the procedure of constructing a basis
significantly. The dimension of the vector space depends only on the number of external particles
and their spin and parity, and it can be assessed by counting helicity amplitudes Hλ1...λN , where
λn, n ∈ {1, . . . , N} are the helicity eigenvalues. The number of helicity amplitudes is determined from
all possible combinations λ1 . . . λN , where those that violate helicity conservation are removed. For 3
external particles, this implies λ1 = λ2 − λ3, but for more than three particles, there is more freedom
and no such relation holds. Lastly, one identifies amplitudes that are identical up to a sign due to
parity.

This leads to, e.g., 3 helicity states for A→ γ∗γ∗ and 5 amplitudes for T → γ∗γ∗. For real photons,
this reduces to 2 amplitudes for T → γγ and 1 for A → γγ; the latter one, however, has to vanish
since the decay of a spin-1 particle into two photons is forbidden by the Landau–Yang theorem [63,
64]. It is demonstrated in Ref. [308] that this happens. For V P → γ∗γ∗, the helicity amplitudes are
defined as

ε∗µ(q1, λ1)ε∗ν(q2, λ2)εα(p, λV )Mµνα(q1, q2, p) = ei(λ1−λ2)ϕHλ1λ2;λV . (3.11)

In the centre-of-momentum system (CMS) of the two photons, momentum vectors are given by

q1 = (E1, 0, 0, |~q|), q2 = (E2, 0, 0,−|~q|),
p = (EV , |~p| sin θ cosϕ, |~p| sin θ sinϕ, |~p| cos θ),

pP = (EP ,−|~p| sin θ cosϕ,−|~p| sin θ sinϕ,−|~p| cos θ), (3.12)

#2We adopt the convention ε0123 = 1.
#3We will use some linear algebra terminology and concepts in the following without explicit definitions and refer the

reader to any textbook on the topic, e.g., Ref. [307].
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where the energies and magnitudes of three-momenta in terms of the Mandelstam variable s =
(p+ pP )2 = (q1 + q2)2 are

E1 =
√
q2
1 + |~q|2 =

s+ q2
1 − q2

2

2
√
s

, E2 =
√
q2
2 + |~q|2 =

s− q2
1 + q2

2

2
√
s

, |~q| = λ1/2(s, q2
1 , q

2
2)

2
√
s

,

EV =
√
p2 + |~p|2 =

s+ p2 − p2
P

2
√
s

, EP =
√
p2
P + |~p|2 =

s− p2 + p2
P

2
√
s

, |~p| = λ1/2(s, p2, p2
P )

2
√
s

.

(3.13)

Here, λ(a, b, c) := a2 + b2 + c2 − 2ab − 2ac − 2bc denotes the Källén function. A set of polarisation
vectors that fulfil ε∗r(q) · εs(q) = −δrs and εr(q) · q = 0 for r, s ∈ {±, 0} and q ∈ {q1, q2, p} is given by

ε±(q1) = ∓ 1√
2

(
0, 1,±i, 0

)
, ε0(q1) =

1

ξ1

(
|~q|, 0, 0, E1

)
,

ε±(q2) = ∓ 1√
2

(
0, 1,∓i, 0

)
, ε0(q2) =

1

ξ2

(
− |~q|, 0, 0, E2

)
,

ε+(p) =
1√
2

(
0,− cos θ cosϕ+ i sinϕ,− cos θ sinϕ− i cosϕ, sin θ

)
,

ε−(p) =
1√
2

(
0, cos θ cosϕ+ i sinϕ, cos θ sinϕ− i cosϕ,− sin θ

)
,

ε0(p) =
1

ξV

(
|~p|, EV sin θ cosϕ,EV sin θ sinϕ,EV cos θ

)
,

(3.14)

where the polarisation vectors of the vector meson εr(p), r ∈ {±, 0}, have been obtained by rotating
the polarisation vectors of the photon εr(q1) accordingly. The longitudinal polarisation vectors ε0 are
normalised to 1 for ξ1/2/V =

√
q2
1/q

2
2/p

2.

These polarisation vectors are mapped as ε± 7→ −ε∓ and ε0 7→ ε0 under a parity transformation
followed by a rotation around the y-axis [309]. Combinatorically, there are 27 different amplitudes;
from the parity considerations, we see that H00;0 vanishes and 13 out of the remaining amplitudes are
independent,

H++;+ = H−−;−, H++;− = H−−;+, H++;0 = −H−−;0, H+−;+ = H−+;−,

H+−;− = H−+;+, H+−;0 = −H−+;0, H+0;+ = −H−0;−, H+0;− = −H−0;+,

H+0;0 = H−0;0, H0+;+ = −H0−;−, H0+;− = −H0−;+, H0+;0 = H0−;0,

H00;+ = H00;−, H00;0 = −H00;0 ≡ 0. (3.15)

In the on-shell case, there are 12 helicity amplitudes, of which 6 are independent, matching the number
of structures for the on-shell amplitude V P → γγ in Ref. [310].

Constructing gauge-invariant tensor structures is done by contracting the initial structures T in,µνα
i

with a projector

Iµνi = gµν −
qµj q

ν
i

qi · qj
(3.16)

for every external photon γ(qi, λi), where qj is another Lorentz vector in the process. Such a
projector fulfils the following properties for an amplitude M = εµ(qi, λi)Mµ: any gauge-invariant
tensor structure Tµ ∈ Mµ it gets contracted with stays intact as the second part vanishes due to
qiµT

µ = 0, and any unphysical structure Mµ 3 Tµ ∼ qµi projects to zero because the two parts of the
sum cancel.
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A gauge projection maps the set of Lorentz structures onto a subspace of lower dimension, which
contains only gauge-invariant structures T proj

i .#4 The mapping can be put in terms of a non-invertible
matrix Mproj, which manifestly expresses the projected structures as linear combinations of the original
ones. The corresponding coefficients can contain poles in qi · qj , the maximal pole order is given by
the number of projectors. In the case of V P → γ∗γ∗, the gauge projection together with the condition
that the vector meson has only 3 propagating degrees of freedom, removing the scalar time-like degree
of freedom,#5 reduces the set of 60 initial structures to a smaller set of 36 gauge-invariant structures
with poles up to second order. Here, the explicit contraction is performed as

[
gρµ − qρ2q

µ
1

q1 · q2

] [
gνσ − qν2 q

σ
1

q1 · q2

]
T in,µνα
i , (3.17)

and subsequently, the indices are renamed again via ρ, σ 7→ µ, ν.
Cancelling the poles is done order by order. For each order, we form all possible linear combinations

of the projected structures with non-singular coefficients that cancel a pole and collect the respective
coefficients in an invertible matrix. All poles of a given order that cannot be cancelled this way need
to be removed via multiplication of the respective structure by qi · qj ; the number of cases where this
is necessary can be determined from Mproj. Multiplying all structures with poles by the respective
pole positions would introduce zeros in the tensor structures. We note that the matrix collecting the
multiplications by qi · qj is singular in the limit qi · qj → 0.

Furthermore, we can examine how the tensor structures behave under symmetries such as Bose
symmetry; sometimes it is useful to build (anti-)symmetric combinations. For the V P → γ∗γ∗ system,
we symmetrise with respect to (q1, µ)↔ (q2, ν), which corresponds to crossing of the two photons.

3.3.2 Linear relations and construction of a basis

The generating set of gauge-invariant pole-free symmetrised tensor structures we have obtained so far
is still not necessarily minimal since there might be linear dependencies. In order to find a minimal
set, we need to remove some structures by exploiting those linear relations. It is easiest to write down
such a linear relation in terms of the initial tensor structures,

∑

i

aiT
in
i = 0, (3.18)

since the identification of the T in
i is simple and does not require any projection techniques. As we want

to use this relation in order to reduce the set of pole-free gauge-invariant structures to a basis, we are
actually interested in ∑

i

ãiT
pl.-fr.
i = 0, (3.19)

where the coefficients ãi of the pole-free gauge-invariant structures T pl.-fr.
i differ in general from the

coefficients ai. Hence, we need to project and transform the ai accordingly. In order to do so, we
employ the framework of dual vector spaces and dual mappings. Linear relations can be seen as linear
forms on the vector space of tensor structures. The space of linear forms on a vector space V is called
the dual space V ∗. For a basis B = {bi} of V , we can define a dual basis B∗ = {b∗i } of V ∗ with

#4Massive vector particles do not have such a gauge symmetry, but in any physical amplitude, time-like degrees of
freedom do not contribute. In terms of polarisation vectors, this means that εµ(qi)q

µ
i has to vanish, and the condition

for the amplitude is again that terms Tµ ∼ qµi do not contribute. One can construct a similar projector as in the photon
case and contract it with the corresponding free index; we found, however, that it is equivalent and easier to check this
condition after the rest of the steps are done via contraction with the usual vector spin sum gµν − (qµi q

ν
i )/q2i , which is

not possible for photons, where 1/q2i can become singular.
#5We demand that ε(p, λρ)αT

µνα
i = 0 if Tµναi ∼ pα, and as we will contract with the vector meson polarisation later

on, we can ignore the respective structures. The tensor basis where this condition is not implemented can be obtained
from our basis Eq. (3.23) by contracting with gτα − pτpα/p2.
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b∗i (bj) = δij . The dual basis depends by construction on the choice of B. With this, a linear relation
can be written as

ϕ =
∑

i

ϕib
∗
i ∈ V ∗, ϕ(bj) =

∑

i

ϕib
∗
i (bj) =

∑

i

ϕiδij =: aj , (3.20)

from which we see that the coefficients depend on the basis B. Note that the linear form in Eq. (3.20)
is not defined on the whole vector space, but only at very specific points, namely where it maps to
0 ∈ C.

Let f : V → W denote a mapping between two vector spaces V and W , and ϕ : W → C a linear
form, ϕ ∈ W ∗. Then, the dual mapping of f is defined by f∗ : W ∗ → V ∗, ϕ 7→ f∗(ϕ) := ϕ ◦ f . This
implies in the case of an invertible mapping f that a mapping f∗ of such a linear form is performed using
the transposed matrix with respect to the dual basis of V ∗ and the inverse of the transposed matrix
with respect to the basis of V [307], which is also what we have to do in order to find the coefficients
ãi. In the case of non-invertible mappings such as the gauge projection, one has to construct the dual
mapping in a more pedestrian way, making use of the fact that Im f∗ = (Kerf)0 and Kerf∗ = (Im f)0,
where U0 := {ϕ ∈ V ∗ : ϕ(u) = 0 ∀u ∈ U} ⊂ V ∗ denotes the annihilator of a subspace U ⊂ V . For
the gauge projection, it is enough to take the transpose of the matrix that reduces the dimension of
the vector space according to the BTT projection,

M red
ij = δij ×

{
0 , if structure Ti is projected to 0

1 , else .
(3.21)

Here, Kerf consists of the structures that get projected to 0 ∈ V , and its annihilator (Kerf)0 are the
linear forms that send such structures to 0 ∈ C, which are therefore in the image of f∗. A similar
situation occurs when multiplying some structures by qi · qj in order to remove remaining poles. Since
such a multiplication is a singular operation in the kinematic limit qi · qj → 0, one needs to find the
appropriate dual operation to this, which is the identity mapping for qi ·qj 6= 0 and similar to Eq. (3.21)
in the limit qi · qj → 0.

Such linear relations can come from constraints regarding the degrees of freedom of the physical
fields involved; e.g., in the case of a tensor-meson field parameterised by two polarisation indices, any
physical amplitude has to be symmetric under the exchange of these indices, a condition which can be
expressed in terms of linear equations of the T in

i .#6 In case of P -odd structures, as with V P → γ∗γ∗,
a set of linear equations arises due to the four dimensions of space-time via the so-called Schouten
identity,

εµνρσgλτ = ετνρσgλµ + εµτρσgλν + εµντσgλρ + εµνρτgλσ. (3.22)

For V P → γ∗γ∗, all possible combinations of free indices, while the remaining indices are contracted
with available momenta and the metric tensor, yield 39 equations relating the initial structures to each
other. Of these, 32 are independent; they are collected in App. 3.9.2. In terms of the gauge-invariant
pole-free (and symmetrised) tensor structures, we find 30 linear relations, 23 of which are independent.
We obtain the coefficients for these new relations via dual mappings as explained above. The relations
can be used to find a minimal set of (linear combinations of) structures that generates the full set of

projected tensor structures. This procedure is, of course, ambiguous; we choose a basis {T b,µνα
i }13

i=1

of structures with the lowest mass dimension possible, given by

T b,µνα
1 = εανq1q2qµ2 + εαµq1q2qν1 + εαµνq1(q1 · q2) + εαµνq2(q1 · q2),

T b,µνα
2 = −εανq1q2qµ2 + εαµq1q2qν1 + εαµνq1(q1 · q2)− εαµνq2(q1 · q2),

T b,µνα
3 = εαpq1q2gµν − εανpq1qµ2 + εαµpq2qν1 + εαµνp(q1 · q2),

#6In the tensor representation of a tensor meson, there are initially 16 degrees of freedom. The symmetry condition
brings this down to 10, tracelessness is one further condition, and the 4 conditions from space-like polarisations leaves
us then with 5 degrees of freedom, which matches the number of helicity states.
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T b,µνα
4 = εµνq1q2(q1 + q2)α,

T b,µνα
5 = εµνq1q2(q1 − q2)α,

T b,µνα
6 = ενpq1q2qα2 q

µ
2 + εµpq1q2qα1 q

ν
1 − εµνpq1qα1 (q1 · q2)− εµνpq2qα2 (q1 · q2),

T b,µνα
7 = −ενpq1q2qα2 qµ2 + εµpq1q2qα1 q

ν
1 − εµνpq1qα1 (q1 · q2) + εµνpq2qα2 (q1 · q2),

T b,µνα
8 = −εανq1q2pµ − εαµq1q2pν − εαµνq2(p · q1)− εαµνq1(p · q2),

T b,µνα
9 = −εανpq2qµ2 q2

1 + εανpq2qµ1 (q1 · q2) + εαµpq1qν2 (q1 · q2)− εαµpq1qν1 q2
2 ,

T b,µνα
10 = −εανpq2qµ2 (p · q1)− εαµpq1qν1 (p · q2) + εανpq2pµ(q1 · q2) + εαµpq1pν(q1 · q2),

T b,µνα
11 = εανpq2qµ2 q

2
1 − εανpq2qµ1 (q1 · q2) + εαµpq1qν2 (q1 · q2)− εαµpq1qν1 q2

2 ,

T b,µνα
12 = εανpq2qµ2 (p · q1)− εαµpq1qν1 (p · q2)− εανpq2pµ(q1 · q2) + εαµpq1pν(q1 · q2),

T b,µνα
13 = εαpq1q2gµν

(
(q1 · q2)− qµ2 qν1

)
. (3.23)

Throughout this text, we will use the notation εαpq1q2 := εαβγδpβ(q1)γ(q2)δ and similar. Out of

these structures, T b,µνα
2 , T b,µνα

4 , T b,µνα
7 , T b,µνα

9 , and T b,µνα
10 are symmetric under photon crossing

(q1, µ) ↔ (q2, ν), and T b,µνα
1 , T b,µνα

3 , T b,µνα
5 , T b,µνα

6 , T b,µνα
8 , T b,µνα

11 , T b,µνα
12 , and T b,µνα

13 are an-

tisymmetric. The structures T b,µνα
1 , T b,µνα

2 , T b,µνα
3 , T b,µνα

4 , T b,µνα
5 , and T b,µνα

8 have mass dimension
3, the others dimension 5. All corresponding scalar functions need to be of such dimension that
Mµνα =

∑13
i=1 Fb

i T
b,µνα
i has mass dimension 1.

3.3.3 Degeneracies and Tarrach structures

It has been shown by Tarrach [226] and demonstrated, e.g., in Refs. [227, 305] that it is not always
possible to construct a basis of tensor structures such that the corresponding scalar functions are free
of kinematic zeros and singularities. We will describe this issue and how to deal with it in the following.

Let us look at a simple example for illustration purposes: take the 2-dimensional vector space
V = R2 over the field R and consider the basis {v1 = (1, q1 ·q2), v2 = (−1, q1 ·q2)}. As long as q1 ·q2 6= 0,
we can express every vector w ∈ V as w = c1v1 + c2v2; in particular, w = (0, 1) = (v1 + v2)/(2q1 · q2),
which we can also write as 2(q1 ·q2)w = v1 +v2. If we consider now the limit q1 ·q2 → 0, then w = (0, 1)
does not have regular coefficients in this basis {v1, v2} anymore, and it seems that we cannot represent
w. But this is because the underlying field R has changed to R/(q1 · q2 ∼ 0), where R/(q1 · q2 ∼ 0) is
the quotient set of R under the canonical surjection of the equivalence relation q1 · q2 ∼ 0. Therefore,
the notion of “linear independence” has changed, and we need to find another basis. If we take w as
a new basis vector and drop, e.g., v2, this new basis is valid in the specific kinematic limit.

The equivalent situation is in the case of the vector space V of tensor structures with a basis
{T b

i }Ni=1 the existence of j relations

N∑

i=1

cijT
b
i = (q1 · q2)TN+j , (3.24)

where the coefficients cij are unique and at least one of them 6= 0 for a given relation j; i.e., we exclude
the trivial case TN+j = 0 ∈ V . When looking at the basis in Eq. (3.23), one gets an idea how this
happens since q1 · q2 occurs in some of the basis structures, but it is not easy to tell if and how exactly
such relations arise for a given vector space and basis. In the limit q1 · q2, two problems occur: first,
the basis structures T b

i are not linearly independent anymore, and second, there are tensor structures
TN+j that cannot be represented in terms of the basis vectors. As in the simple example, the reason
is that the underlying field of the vector space has changed according to C→ C/(q1 · q2 ∼ 0). In this
kinematic limit, the previously constructed basis {T b

i }Ni=1 is not a basis for the full vector space V
anymore, but generates only a subspace V ′ ⊂ V .
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In order to find the coefficients cij of the relations in Eq. (3.24) for the basis structures, one considers
the following system of equations,

lim
(q1·q2)→0

Mpole
mk M

proj
kj T in

j = 0, (3.25)

where Mproj denotes the matrix collecting the coefficients of the gauge projections and Mpole collects
the manipulations necessary to remove poles; the T in

j are in this case symbolic. For V P → γ∗γ∗, there
are two non-trivial solutions to this system of equations, which read, translated to the basis structures,

(p · q1)
(
T b,µνα

9 − T b,µνα
11

)
− q2

1

(
T b,µνα

10 − T b,µνα
12

)
= 2(q1 · q2)εανpq2

(
qµ1 (p · q1)− pµq2

1

)

=: 2(q1 · q2)T b,µνα
14 ,

(p · q2)
(
T b,µνα

9 + T b,µνα
11

)
− q2

2

(
T b,µνα

10 + T b,µνα
12

)
= 2(q1 · q2)εαµpq1

(
qν2 (p · q2)− pνq2

2

)

=: 2(q1 · q2)T b,µνα
15 . (3.26)

As nothing is special about q1 · q2 compared to other kinematic variables such as p · qi, the same
situation can occur for any kinematic variable. Depending on the process, some variables might have
a specific physical meaning; in our case, q2

1 and q2
2 are the photon virtualities and the limit q2

1/2 → 0

corresponds to the real-photon limit (where the axial-vector TFFs have to vanish).
The simple example we considered above suggests that we could drop two structures of the original

basis and include T b,µνα
14 and T b,µνα

15 instead. However, this would unfortunately not solve our problem:
it is clear from Eq. (3.26) that we would just shift the problem to different kinematic invariants, namely
q2
1 and q2

2 or p · q1 and p · q2. While in some situations, singularities in other kinematic variables might
not hurt anymore [305] and in other situations, additional symmetries makes it possible to absorb
singularities into structures [227], we do not see such a solution in this case.

Instead, we need to extend the original basis by adding T b,µνα
14 and T b,µνα

15 , such that we work

with a generating set of 15 structures, {T b,µνα
i }15

i=1, which is not minimal, but generates the full vector
space in any kinematic limit. This situation is similar to the one of the HLbL tensor in Ref. [227].

The extended generating set is not unique since one can always choose linear combinations of the
structures. One alternative generating set is given in Sec. 3.9.3.

3.3.4 Projection of the scalar functions Fi
Since the matrix element for V P → γ∗γ∗ is written asMµνα =

∑
i FiT

µνα
i and we have found a basis

for q1 ·q2 6= 0 as well as an extended generating set that also works at q1 ·q2 = 0, we now need to apply
the respective mappings to the scalar functions Fi. We can make use of the dual space framework
again by noting that for a basis {T b,µνα

i }13
i=1, the expression

ϕ : V → C, Tµναi 7→ ε∗µ(q1, λ1)ε∗ν(q2, λ2)εα(p, λV )

13∑

j=1

FjTµναj δji ∈ C, (3.27)

denotes a linear form; δji is included explicitly to show that ϕ is a linear mapping as in Eq. (3.20).
This linear form should be independent of the basis, or more precisely, the physical result should be
independent, which is the reason for the contraction of the free Lorentz indices. We have already
explained how mappings work in the dual space; the only step that is missing here is the last one,
where the linear relations obtained from the Schouten identity are used in order to reduce the set
of gauge-invariant pole-free symmetrised structures to a basis (or the extended set {T b,µνα

i }15
i=1). This

mapping is not invertible, and in contrast to the gauge projection, where it was enough to track what
is mapped to 0, we now need to encode in the dual mapping how each structure is built from the basis,
i.e., revert what we did with the Schouten identities. We construct this dual mapping as a matrix
M revS and can thus obtain the scalar functions corresponding to {T b,µνα

i } via the concatenated dual
mapping, which reads in terms of the matrices

Fb
i = (M revS)Tin

(
(M symm)−1

)T
nm

(
(Mpole)−1

)T
mk

(M red)TkjF in
j . (3.28)
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Figure 3.4: Left-hand unitarity cut for V P → γ∗γ∗ with a V/P one-particle intermediate state.

3.4 Unitarity and dispersion relations for V P → γ∗γ∗

Now that we know how to promote the scalar functions Fi in the V P → γ∗γ∗ amplitude to a gauge-
invariant basis or generating set, we can set up a model for them. For a complete unitary and
crossing-symmetric amplitude, one needs to consider right- and left-hand cuts (RHCs and LHCs), i.e.,
rescattering in the s-, t-, and u-channel. We consider here unitarity cuts only in the crossed channels
t and u, i.e., LHCs only.

3.4.1 Left-hand cuts

The lowest-lying intermediate states in the t- and u-channel are single-particle P and V states; see
Fig. 3.4. These are assumed to dominate the respective amplitude. We denote the corresponding
discontinuities by discPt/u and discVt/u, with t = (p − q1)2 and u = (p − q2)2; they are given for a
pseudoscalar intermediate state P (k) by

discPt
(
− i〈γ∗(q1, λ1)γ∗(q2, λ2)|V (p, λV )P (pP )〉

)

= e2(2π)4δ(4)(p+ pP − q1 − q2)ε∗µ(q1, λ1)ε∗ν(q2, λ2)εα(p, λV ) discPt Mµνα

=

∫
d̃k 〈P (k)|P (−pP )γ∗(q2, λ2)〉∗ 〈P (k)|V (p, λV )γ∗(−q1, λ1)〉,

discPu
(
− i〈γ∗(q1, λ1)γ∗(q2, λ2)|V (p, λV )P (pP )〉

)

= e2(2π)4δ(4)(p+ pP − q1 − q2)ε∗µ(q1, λ1)ε∗ν(q2, λ2)εα(p, λV ) discPuMµνα

=

∫
d̃k 〈P (k)|P (−pP )γ∗(q1, λ1)〉∗ 〈P (k)|V (p, λV )γ∗(−q2, λ2)〉, (3.29)

with d̃k = d3k/
(
(2π)32k0

)
and disct f(t; s, q2

1 , q
2
2) := f(t+ iε; s, q2

1 , q
2
2)− f(t− iε; s, q2

1 , q
2
2), and similar

for u. For a vector-meson intermediate state V (k, λLH), the discontinuities from a t/u cut read

discVt
(
− i〈γ∗(q1, λ1)γ∗(q2, λ2)|V (p, λV )P (pP )〉

)

= e2(2π)4δ(4)(p+ pP − q1 − q2)ε∗µ(q1, λ1)ε∗ν(q2, λ2)εα(p, λV ) discVt Mµνα

=

∫
d̃` 〈V (k, λLH)|P (−pP )γ∗(q2, λ2)〉∗ 〈V (k, λLH)|V (p, λV )γ∗(−q1, λ1)〉,

discVu
(
− i〈γ∗(q1, λ1)γ∗(q2, λ2)|V (p, λV )P (pP )〉

)

= e2(2π)4δ(4)(p+ pP − q1 − q2)ε∗µ(q1, λ1)ε∗ν(q2, λ2)εα(p, λV ) discVuMµνα

=

∫
d̃k 〈V (k, λLH)|P (−pP )γ∗(q1, λ1)〉∗ 〈V (k, λLH)|V (p, λV )γ∗(−q2, λ2)〉. (3.30)

As the a1/2 meson decays primarily into ρπ, we consider V P = ρπ in the following, and also restrict
ourselves to π and ρ intermediate states for the moment. The respective amplitudes are given in terms
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of the following form factors,

〈π+(p+)π−(p−)|jµem|0〉 = q̄µFVπ (q2),

〈ρ+(p+, λ+)ρ−(p−, λ−)|jµem|0〉 = −ε∗α(p+, λ+)ε∗β(p−, λ−)×

×
[
gαβ q̄µG1(q2) + (qαgµβ − qβgµα)G2(q2)− q̄µ q

αqβ

2M2
ρ

G3(q2)
]
,

〈π+(pP )ρ−(p, λV )|jµem|0〉 = εα(p, λV )εµαpP pFρπ(q2), (3.31)

where p+ +p− = q = pP +p and q̄ = p+−p−. The pion vector form factor is normalised to FVπ (0) = 1
and the normalisation of Fρπ is determined from

Γ(ρ→ πγ) =
α(M2

ρ −M2
π)3

24M3
ρ

|Fρπ(0)|2, (3.32)

where α = e2/(4π) is the fine-structure constant. With Γρ = 149.1(8) MeV and Bρ→πγ = (4.5± 0.5)×
10−4 [34], this leads to |Fρπ(0)| = 0.73(4) GeV−1. From a BTT decomposition of V1 → V2γ for two
different vector mesons V1 and V2, one obtains 4 tensor structures and can introduce TFFs in analogy
to the ρ form factors for later use,

〈V +
1 (p+, λ+)V −2 (p−, λ−)|jµem|0〉 = −ε∗α(p+, λ+)ε∗β(p−, λ−)×

×
[
gαβ
(
q̄µq2 − qµ∆12

)
H1(q2) + (qαgµβ − qβgµα)H2(q2)

−
(

2q̄µqαqβ − (gµαqβ + gµβqα)∆12

)
H3(q2)−

(
2qµqαqβ − (gµαqβ + gµβqα)q2

)
H4(q2)

]
,

(3.33)

with ∆12 = M2
V1
−M2

V2
. Note that there exists an additional FF H4 for a tensor structure vanishing

in the case of V1 = V2. The TFF FV π for a vector meson V is defined in the same way as for the ρ.
H1,2,3,4 and FV π are assumed to be normalised and behave asymptotically similar to the respective
form factors of the ρ.

With photons as external states, the pion vector form factor reads

〈π+(p+)π−(p−)|γ∗(q, λ)〉 (3.34)

=− ie εµ(q, λ)

∫
d4x e−iqx〈π+(p+)π−(p−)|jµem|0〉 = −ie εµ(q, λ)(2π)4δ(4)(p+ + p− − q)q̄µFVπ (q2),

and the other FFs can be rewritten analogously. The vector FFs G1, G2, G3 relate to the electric,
magnetic, and quadrupole Sachs FFs GC , GM , and GQ as [311]



G1

G2

G3


 =




1 0 − 2
3η

0 1 0

− 1
1+η

1
1+η

3+2η
3+3η






GC

GM

GQ


 , (3.35)

with η = −q2/(4M2
V ). The normalisations of the Sachs FFs for a vector meson are, similar to the case

of spin-1 gauge-bosons [312, 313], given by the charge for the electric FF, by the magnetic moment µ
for the magnetic FF, and by the quadrupole moment Q for GQ(q2),

eGC(0) = e, eGM (0) = 2MV µ, eGQ(0) = M2
VQ. (3.36)

With Eq. (3.35) follows

G1(0) = 1, G2(0) =
2MV µ

e
, G3(0) = −1 +

2MV µ

e
+
M2
VQ

e
. (3.37)
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For the W± gauge bosons, µ = e/MV and Q = −e/M2
V hold at tree level [313], which yields a

normalisation of G2(0) = 2 and G3(0) = 0, where the latter relation is a fundamental result for vector
mesons interacting with an electromagnetic field at tree level [314]. The high-energy behaviour can be
fixed from pQCD to be G1(Q2) ∼ Q−4 ∼ G2(Q2) and G3(Q2) ∼ Q−6 [194, 312, 315].

Inserting this into Eq. (3.29) and Eq. (3.30) yields the following expressions for the pion LHC,

discπtMµνα =

∫
d̃k (2π)4δ(4)(p− q1 − k)FVπ (q2

2)(pπ + k)νFρπ(q2
1)εµαk(−q1)

= 2πδ(t−M2
π)

∫
d4k

(2π)4
θ(k0) (2π)4δ(4)(p− q1 − k)FVπ (q2

2)(pπ + k)νFρπ(q2
1)εµαk(−q1)

= 2πδ(t−M2
π)FVπ (q2

2)Fρπ(q2
1)(2q1 + q2 − 2p)νεµαq1p

= 2πδ(t−M2
π)FVπ (q2

2)Fρπ(q2
1)
[
2T in,µνα

26 − 2T in,µνα
8 − T in,µνα

17

]

=: 2πδ(t−M2
π)ρ̂π;µνα

t (q1, q2, p),

discπuMµνα = 2πδ(u−M2
π)FVπ (q2

1)Fρπ(q2
2)
[
2T in,µνα

24 − 2T in,µνα
15 − T in,µνα

6

]

=: 2πδ(u−M2
π)ρ̂π;µνα

u (q1, q2, p). (3.38)

For the ρ intermediate state, we find

discρtMµνα =

∫
d̃k (2π)4δ(4)(p− q1 − k)Fρπ(q2

2)εντkq2×

×
[
G1(q2

1)gατ (p+ k)µ −G2(q2
1)(qτ1g

αµ − qα1 gτµ)−G3(q2
1)
qτ1 q

α
1

2M2
ρ

(p+ k)µ
]

= 2πδ(t−M2
ρ )Fρπ(q2

2)
[
G1(q2

1)
(
T in,µνα

4 + T in,µνα
6 − 2T in,µνα

22 − 2T in,µνα
24

)

−G2(q2
1)
(
T in,µνα

10 + T in,µνα
12 − T in,µνα

32

)
− G3(q2

1)

2M2
ρ

(
T in,µνα

49 − 2T in,µνα
46

)]

=: 2πδ(t−M2
ρ )ρ̂ρ;µναt (q1, q2, p),

discρuMµνα =

∫
d̃k (2π)4δ(4)(p− q2 − k)Fρπ(q2

1)εµτkq1×

×
[
G1(q2

2)gατ (p+ k)ν −G2(q2
2)(qτ2g

αν − qα2 gτν)−G3(q2
2)
qτ2 q

α
2

2M2
ρ

(p+ k)ν
]

= 2πδ(u−M2
ρ )Fρπ(q2

1)
[
G1(q2

2)
(

2T in,µνα
25 − 2T in,µνα

26 − T in,µνα
16 + T in,µνα

17

)

−G2(q2
2)
(
T in,µνα

19 − T in,µνα
20 + T in,µνα

33

)
− G3(q2

2)

2M2
ρ

(
2T in,µνα

57 − T in,µνα
59

)]

=: 2πδ(u−M2
ρ )ρ̂ρ;µναu (q1, q2, p). (3.39)

Constructing the ρπ → γ∗γ∗ amplitude from its imaginary part, which yields, in the case of one-particle
intermediate states, just the pole residues ρ̂, results in

Mµνα =
1

2πi

∫
dt′

discπtMµνα

t′ − t +
discρtMµνα

t′ − t +
1

2πi

∫
du′

discπuMµνα

u′ − u +
discρtMµνα

u′ − u

= i
[ ρ̂π;µνα

t (q1, q2, p)

t−M2
π

+
ρ̂ρ;µναt (q1, q2, p)

t−M2
ρ

+
ρ̂π;µνα
u (q1, q2, p)

u−M2
π

+
ρ̂ρ;µναu (q1, q2, p)

u−M2
ρ

]

=: i
∑

i

Tµναi (q1, q2, p)Fi(s, q2
1 , q

2
2). (3.40)
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This defines the scalar functions Fi(s, q2
1 , q

2
2) as coefficients of the tensor structures in ρ̂π;µνα

t (q1, q2, p)/(t−
M2
π) and similar for t↔ u and π ↔ ρ. The scalar functions Fi we just constructed meet the require-

ments of the Schwarz reflection principle f(z∗) =
(
f(z)

)∗
. With this, Eq. (3.40) shows that Mµνα

cannot be a Schwarz function since it is defined with a relative factor of i.

3.4.2 Projected scalar functions for the LHCs

With the tensor structures projected to the basis in Eq. (3.23), we use the dual mapping described in
Sec. 3.3.4 in order to obtain for the scalar functions

Fb
1 =

Fρπ(q2
2)

2(M2
ρ − t)

(
G1(q2

1)−G3(q2
1)
)
− Fρπ(q2

1)

2(M2
ρ − u)

(
G1(q2

2)−G3(q2
2)
)
,

Fb
2 =

Fρπ(q2
2)

2(M2
ρ − t)

(
G1(q2

1)−G3(q2
1)
)

+
Fρπ(q2

1)

2(M2
ρ − u)

(
G1(q2

2)−G3(q2
2)
)
,

Fb
3 =− Fρπ(q2

2)G2(q2
1)

M2
ρ − t

+
Fρπ(q2

1)G2(q2
2)

M2
ρ − u

,

Fb
4 =

Fρπ(q2
2)

2(M2
ρ − t)

(
G1(q2

1)−G2(q2
1)− G3(q2

1)q2
1

4M2
ρ

)
+

Fρπ(q2
1)

2(M2
ρ − u)

(
G1(q2

2)−G2(q2
2)− G3(q2

2)q2
2

4M2
ρ

)
,

Fb
5 =

Fρπ(q2
2)

2(M2
ρ − t)

(
G1(q2

1)−G2(q2
1)− G3(q2

1)q2
1

4M2
ρ

)
− Fρπ(q2

1)

2(M2
ρ − u)

(
G1(q2

2)−G2(q2
2)− G3(q2

2)q2
2

4M2
ρ

)
,

Fb
6 =

Fρπ(q2
2)G3(q2

1)

4M2
ρ (M2

ρ − t)
− Fρπ(q2

1)G3(q2
2)

4M2
ρ (M2

ρ − u)
,

Fb
7 =

Fρπ(q2
2)G3(q2

1)

4M2
ρ (M2

ρ − t)
+
Fρπ(q2

1)G3(q2
2)

4M2
ρ (M2

ρ − u)
,

Fb
8 =

Fρπ(q2
2)

M2
ρ − t

(
G1(q2

1)− G2(q2
1)

2
− G3(q2

1)q2
1

4M2
ρ

)
− Fρπ(q2

1)

M2
ρ − u

(
G1(q2

2)− G2(q2
2)

2
− G3(q2

2)q2
2

4M2
ρ

)
,

Fb
9 =

−1

2q1 · q2

[
Fρπ(q2

2)

(
FVπ (q2

1)

M2
π − u

+
G1(q2

1)− G3(q21)q21
2M2

ρ

M2
ρ − t

)
+ Fρπ(q2

1)

(
FVπ (q2

2)

M2
π − t

+
G1(q2

2)− G3(q22)q22
2M2

ρ

M2
ρ − u

)]
,

Fb
10 =

1

q1 · q2

[
Fρπ(q2

2)

(
FVπ (q2

1)

M2
π − u

+
G1(q2

1)− G3(q21)q21
2M2

ρ

M2
ρ − t

)

+ Fρπ(q2
1)

(
FVπ (q2

2)

M2
π − t

+
G1(q2

2)− G3(q22)q22
2M2

ρ

M2
ρ − u

)]
+
Fρπ(q2

2)G3(q2
1)

2M2
ρ (M2

ρ − t)
+
Fρπ(q2

1)G3(g2
2)

2M2
ρ (M2

ρ − u)
,

Fb
11 =

1

2q1 · q2

[
Fρπ(q2

2)

(
FVπ (q2

1)

M2
π − u

+
G1(q2

1)− G3(q21)q21
2M2

ρ

M2
ρ − t

)
− Fρπ(q2

1)

(
FVπ (q2

2)

M2
π − t

+
G1(q2

2)− G3(q22)q22
2M2

ρ

M2
ρ − u

)]
,

Fb
12 =

1

q1 · q2

[
− Fρπ(q2

2)

(
FVπ (q2

1)

M2
π − u

+
G1(q2

1)− G3(q21)q21
2M2

ρ

M2
ρ − t

)

+ Fρπ(q2
1)

(
FVπ (q2

2)

M2
π − t

+
G1(q2

2)− G3(q22)q22
2M2

ρ

M2
ρ − u

)]
+
Fρπ(q2

2)G3(q2
1)

2M2
ρ (M2

ρ − t)
− Fρπ(q2

1)G3(g2
2)

2M2
ρ (M2

ρ − u)
,

Fb
13 =0. (3.41)

Here, we encounter a few intricacies: F1 and F2 are initially given by a number of terms with coefficients
consisting of fractions of the kinematic invariables q1 · q2, p · q1, p · q2, q2

1 , q2
2 , and p2. The simple and
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pole-free version given in Eq. (3.41) can be obtained by making use of on-shell relations for the ρ and
π meson,

p2 = M2
ρ , s+ t+ u = M2

ρ +M2
π + q2

1 + q2
2 . (3.42)

This does not come as a surprise since the BTT procedure is supposed to construct a gauge-invariant
pole-free amplitude for external, asymptotic states. Furthermore, even when using these relations,
F9−12 still exhibit kinematic singularities in q1 · q2 = (s − q2

1 − q2
2)/2 when projected to the 13 basis

structures. This is due to the degeneracies in the kinematic limit q1 · q2 → 0, which we discussed in
Sec. 3.3.3, and to the asymmetry of the diagram, i.e., the fact that the ρ and the π meson couple to
the photon in different ways.

In order to cancel those kinematic singularities, two modifications are necessary: we need to extend
the basis as explained in Sec. 3.3.3 and additionally include another intermediate state in the LHC.
The reason for the latter is that we can see from Eq. (3.41) that the kinematic singularities would
cancel if we had

Fρπ(q2
1)
[
FVπ (q2

2)−G1(q2
2) +

G3(q2)2q2
2

2M2
ρ

]
= 0 (3.43)

and the equivalent with (q1 ↔ q2), together with the on-shell relations in Eq. (3.42). This condition
is in contradiction to the expected high-energy behaviour for the form factors involved. In order to
mend this problem arising from the asymmetry of the system, we can introduce an additional effective
intermediate state R in the LHC, which we think of as a heavier version of the ρ meson. We repeat
the steps of expressing the discontinuities in terms of the initial tensor structures—the result of which
can be found in Sec. 3.9.4—solving the dispersion integrals, and mapping the resulting scalar functions
in accordance with the basis structures. This yields the following additional pieces in the projected
scalar functions, where we leave out H3(q2) and H4(q2) as higher-order effects,

Fb,R
1 =

FRπ(q2
2)

2(M2
R − t)

H1(q2
1)
[
q2
1 + ∆ρR

]
− FRπ(q2

1)

2(M2
R − u)

H1(q2
2)
[
q2
2 + ∆ρR

]
,

Fb,R
2 =

FRπ(q2
2)

2(M2
R − t)

H1(q2
1)
[
q2
1 + ∆ρR

]
+

FRπ(q2
1)

2(M2
R − u)

H1(q2
2)
[
q2
2 + ∆ρR

]
,

Fb,R
3 = −FRπ(q2

2)H2(q2
1)

M2
R − t

+
FRπ(q2

1)H2(q2
2)

M2
R − u

,

Fb,R
4 =

FRπ(q2
2)

2(M2
R − t)

(
H1(q2

1)
[
q2
1 + ∆ρR

]
−H2(q2

1)

)
+

FRπ(q2
1)

2(M2
R − u)

(
H1(q2

2)
[
q2
2 + ∆ρR

]
−H2(q2

2)

)
,

Fb,R
5 =

FRπ(q2
2)

2(M2
R − t)

(
H1(q2

1)
[
q2
1 + ∆ρR

]
−H2(q2

1)

)
− FRπ(q2

1)

2(M2
R − u)

(
H1(q2

2)
[
q2
2 + ∆ρR

]
−H2(q2

2)

)
,

Fb,R
6 = 0,

Fb,R
7 = 0,

Fb,R
8 =

FRπ(q2
2)

M2
R − t

(
H1(q2

1)q2
1 −

H2(q2
1)

2

)
− FRπ(q2

1)

M2
R − u

(
H1(q2

2)q2
2 −

H2(q2
2)

2

)
,

Fb,R
9 = − FRπ(q2

2)H1(q2
1)

2(q1 · q2)(MR − t)
[
q2
1 + ∆ρR

]
− FRπ(q2

1)H1(q2
2)

2(q1 · q2)(M2
ρ − u)

[
q2
2 + ∆ρR

]
,

Fb,R
10 =

FRπ(q2
2)H1(q2

1)q2
1

(q1 · q2)(MR − t)
+
FRπ(q2

1)H1(q2
2)q2

2

(q1 · q2)(M2
ρ − u)

,

Fb,R
11 =

FRπ(q2
2)H1(q2

1)

2(q1 · q2)(MR − t)
[
q2
1 + ∆ρR

]
− FRπ(q2

1)H1(q2
2)

2(q1 · q2)(M2
ρ − u)

[
q2
2 + ∆ρR

]
,
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Fb,R
12 = −FRπ(q2

2)H1(q2
1)q2

1

(q1 · q2)(MR − t)
+
FRπ(q2

1)H1(q2
2)q2

2

(q1 · q2)(M2
ρ − u)

,

Fb,R
13 = 0. (3.44)

If we now impose the condition

Fρπ(q2
2)
[
G1(q2

1)− FVπ (q2
1)
]

+ q2
1FRπ(q2

2)H1(q2
1) = 0 (3.45)

and its equivalent for q2
1 ↔ q2

2 , setting G3(q2
1) and H3,4(q2

1) to 0, and extend our set of tensor structures

from the basis {T b,µνα
i }13

i=1 to the generating set {T b,µνα
i }15

i=1, the kinematic singularities cancel. For
this, the on-shell conditions Eq. (3.42) have to be used again.

Since the set of 15 tensor structures is not a basis, we need to ensure that no double counting occurs
for the scalar functions. The tensor structures T b,µνα

i and scalar functions Fb
i for i ∈ {1, . . . 8, 13} are

not affected by the Tarrach issue and are kept as Fb
i + Fb,R

i from Eq. (3.41) and Eq. (3.44). For

i ∈ {9, 10, 11, 12} (note that Fb
13 + Fb,R

13 vanishes), we demand

12∑

i=9

T b,µνα
i (Fb

i + Fb,R
i ) =

15∑

i=9

T b,µνα
i FbT

i , (3.46)

where FbT
i are the scalar functions for the generating set {T b,µνα

i }15
i=1 related to the Tarrach problem.

Starting on the left-hand side of the equation, one can reassemble the terms in the sum such that the
additional summands T b,µνα

14 FbT
14 + T b,µνα

15 FbT
15 are created, where kinematic prefactors in the tensor

structures Eq. (3.26) are conveniently provided by the scalar functions. The result of this reshuffling
is given by

FbT
9 = − Fρπ(q2

2)G1(q2
1)(

M2
π − u

)(
M2
ρ − t

) +
FRπ(q2

2)H1(q2
1)

M2
π − u

− Fρπ(q2
1)G1(q2

2)(
M2
π − t

)(
M2
ρ − u

) +
FRπ(q2

1)H1(q2
2)

M2
π − t

,

FbT
10 =

2Fρπ(q2
2)G1(q2

1)(
M2
π − u

)(
M2
ρ − t

) +
2Fρπ(q2

1)G1(q2
2)(

M2
π − t

)(
M2
ρ − u

) ,

FbT
11 =

Fρπ(q2
2)G1(q2

1)(
M2
π − u

)(
M2
ρ − t

) − FRπ(q2
2)H1(q2

1)

M2
π − u

− Fρπ(q2
1)G1(q2

2)(
M2
π − t

)(
M2
ρ − u

) +
FRπ(q2

1)H1(q2
2)

M2
π − t

,

FbT
12 = − 2Fρπ(q2

2)G1(q2
1)(

M2
π − u

)(
M2
ρ − t

) +
2Fρπ(q2

1)G1(q2
2)(

M2
π − t

)(
M2
ρ − u

) ,

FbT
13 = 0,

FbT
14 = −2FRπ(q2

2)H1(q2
1)
[ 1

M2
R − t

+
1

M2
π − u

]
= −2FRπ(q2

2)H1(q2
1)

2(q1 · q2)−∆ρR(
M2
R − t

)(
M2
π − u

) ,

FbT
15 = −2FRπ(q2

1)H1(q2
2)
[ 1

M2
R − u

+
1

M2
π − t

]
= −2FRπ(q2

1)H1(q2
2)

2(q1 · q2)−∆ρR(
M2
R − u

)(
M2
π − t

) . (3.47)

Note that the pion vector form factor has vanished from these expressions due to Eq. (3.45). We

collect the unaltered scalar functions {Fb
i + Fb,R

i }8i=1 together with the modified scalar functions in
Eq. (3.47) in the set {FbT

i }15
i=1. For the alternative generating set of tensor structures, the mapped

scalar functions look different; see Sec. 3.9.3. The sums over all tensor structures and scalar functions
are equivalent for both generating sets up to on-shell relations,

15∑

i=1

T b,µνα
i FbT

i

on-shell≡
15∑

i=1

T b2,µνα
i Fb2

i . (3.48)
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The condition in Eq. (3.45) is matched and the correct high-energy behaviour and normalisation
ensured via a suitable choice of H1(q2) and FRπ(q2). Assuming that FRπ(q2) has the same behaviour
as Fρπ(q2) fixes the electric FF of R to

H1(q2) =
1

q2

[
FVπ (q2)−G1(q2)

]
(3.49)

up to normalisation, where the normalisations FRπ(0) and H1(0) scale inversely to each other. In the
simplest VMD model that fulfils the pQCD constraints,

FVπ (q2) =
M2
ρ

M2
ρ − q2

, G1(q2) =
M2
ρM

2
ρ′

(M2
ρ − q2)(M2

ρ′ − q2)
, Fρπ(q2) = Cρπγ

M2
ωM

2
ω′

(M2
ω − q2)(M2

ω′ − q2)
,

(3.50)

this implies

FRπ(q2
1)H1(q2

2) = −Cρπγ
M2
ωM

2
ω′

(M2
ω − q2

1)(M2
ω′ − q2

1)

M2
ρ

(M2
ρ − q2

2)(M2
ρ′ − q2

2)
. (3.51)

Normalisation and asymptotic behaviour of G2(q2) and by analogy of H2(q2) suggest

G2(q2) =
2M2

ρM
2
ρ′

(M2
ρ − q2)(M2

ρ′ − q2)
, H2(q2) =

2M2
ρM

2
ρ′

(M2
ρ − q2)(M2

ρ′ − q2)
. (3.52)

Note that including H2(q2) is not necessary to cancel any kinematic singularities; it is merely included
for consistency reasons.

3.5 From V P → γ∗γ∗ to A/T → γ∗γ∗

With the V P → γ∗γ∗ amplitude written in a gauge-invariant form, together with a concrete recon-
struction of the scalar functions for V P = ρπ from cuts in π/ρ/R intermediate states in the t- and
u-channel, we can now turn to our goal of describing a1 and a2 TFFs. The framework can potentially
also be used for f ′1 with V P = KK̄∗ in the future; since we do not discuss this case here, we will now
write ρπ instead of V P . We will put most attention to the case of the a1 meson. The a2 can be treated
in analogy, and additional details are collected in Ref. [316].

3.5.1 The couplings a1/2 → ρπ

For the coupling of a1(pA, ε
A
β ) to ρ(p, εVα )π(pπ), there are two tensor structures,

gαβ , pβpαA. (3.53)

From the structure 〈[V,A]P 〉 in terms of meson multiplet matrices, which can be found in Sec. 3.9.6,
one can conclude that the two charge channels relate to each other as a1(ρ+π−− ρ−π+), which has to
change sign under hermitian conjugation, such that the vertex rule should include a factor of i; this is
also what one finds from RChPT [21, 317, 318]. The prefactors one finds in RChPT are not unique
and can be absorbed into the coupling, such that we denote the vertex rule as

Mβδ
a1ρπ = iCa1ρπ

(
gβδ(p · pA)− pβpδA

)
, Msimp, βδ

a1ρπ = iCa1ρπg
βδ, (3.54)

where the simplified vertex rule takes into account only the first tensor structure. It is defined here
since it will be used in this work; this corresponds to an incomplete amplitude, but has advantages for
the computation. Taking into account both tensor structure enforces transversality for ρ and a1, as
can be shown by contracting with the propagators in different gauges.
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The coupling strength Ca1ρπ can be extracted from experimental results. Since we will restrict our
calculation to the simplified vertex rule Msimp, βδ

a1ρπ , the coupling constant is calculated using only this
structure. Additionally, we assume that the total decay width Γa1 is saturated by the sum of the two
charge-conjugated decay widths into ρ±π∓, Γa1 = Γa1→ρ+π− + Γa1→ρ−π+ . With this,

dΓa1→ρ+π− =
1

32π2
|Msimp

a1ρπ|2
|~p|
M2
a1

dΩ,

2Γa1→ρ+π− = 2
4π

32π2

1

3

[
3 +

λa1ρπ
4M2

a1M
2
ρ

] √
λa1ρπ

2M3
a1

|Ca1ρπ|2 =

√
λa1ρπ

8πM3
a1

|Ca1ρπ|2
[
1 +

λa1ρπ
12M2

a1M
2
ρ

]
(3.55)

with

|~p| = 1

2Ma1

√
λ(M2

a1 ,M
2
ρ ,M

2
π) =:

√
λa1ρπ

2Ma1

, Eρ =
M2
a1 +M2

ρ −M2
π

2Ma1

. (3.56)

With ΓCompass
a1 = 380(80) MeV [319], which was obtained using a Breit–Wigner fit, and neglecting

the second term in the bracket since it yields a correction of ∼ 4%, this results in

|CCompass
a1ρπ | = 4.4(5) GeV, (3.57)

where the uncertainty estimate comes from evaluating |Ca1ρπ| for the boundary values of Γa1 . Using
the complex T -matrix pole location at (1209 ± 4+12

−9 ) − i(288+45
−10) MeV [320] and again neglecting the

second term in the bracket yields

|Cpole
a1ρπ| = 5.6+4

−2 GeV. (3.58)

There are systematic sources of uncertainty here: on our side neglecting one of the tensor structures,
and on the experimental side, the value obtained from a Breit–Wigner fit is incompatible with the
one using the complex T -matrix pole location. In order to account for this inconclusive situation, the
rather conservative interval Γa1 ∈ (250, 600) MeV, which was quoted by the PDG up to 2024 [34], is
taken to estimate the uncertainty, and the central value is used in this work whenever needed,

|Ca1ρπ| = 4.7(1.0) GeV. (3.59)

Similarly, for the decay of the tensor meson a2(pT , ε
T
βγ) → ρ(p, εVα )π(pπ), the vertex corresponds

in terms of multiplet matrices to 〈T [V, P ]〉 and has a factor of i for similar reasons as the a1. Due to
parity, it includes a Levi-Civita tensor, which gets contracted with two independent momenta. In
order to ensure transversality of the tensor and vector meson, we construct the vertex rule [283, 316,
321]

Mβγα
a2ρπ = iCa2ρπ

4

M2
a2

[
εαβppT

(
pγT (p · pT )− pγM2

a2

)
+ εαγppT

(
pβT (p · pT )− pβM2

a2

)]
. (3.60)

In this case, it is not possible to construct a simplified vertex rule without momentum dependence due
to the Levi-Civita tensor. The corresponding coupling constant is extracted from the experimental
decay width Γa2 = 107(5) MeV and the branching ratio Γa2→3π/Γa2 = 70.1(2.7)% [34], which does not
distinguish different charge channels, such that

Γa2→ρπ =
4π

32π2

1

5
|Ca2ρπ|2

16

M4
a2

sTβγβ′γ′
[
εαβppT

(
pγT (p · pT )− pγM2

T

)
+ εαγppT

(
pβT (p · pT )− pβM2

T

)]

×
(
gαα′ −

pαpα′

M2
ρ

)[
εα′β

′ppT
(
pγ
′

T (p · pT )− pγ′M2
T

)
+ εα

′γ′ppT
(
pβ
′

T (p · pT )− pβ′M2
T

)]

=
λ

5/2
a2ρπ

20πM5
a2

|Ca2ρπ|2 (3.61)
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with

|~p| =
√
λa2ρπ

2Ma1

, Eρ =
M2
a2 +M2

ρ −M2
π

2Ma2

(3.62)

and the polarisation sum of the tensor meson [308]

sTβγβ′γ′ :=
∑

λT

ελTβγ (pT )
(
ελTβ′γ′(pT )

)∗
=

1

2
(sβγ′sβ′γ + sββ′sγγ′)−

1

3
sβγsβ′γ′ . (3.63)

With this, we find

|Ca2ρπ| = 3.45(2) GeV−2. (3.64)

3.5.2 Projection to axial-vector transition form factors

The amplitude for an axial-vector meson A coupling to two virtual photons is given by

〈γ∗(q1, λ1)γ∗(q2, λ2)|A(pA, λA)〉

= −(2π)4δ(4)(pA − q1 − q2)e2ε∗µ(q1, λ1)ε∗ν(q2, λ2)

∫
d4x eiq1x〈0|T{jµem(z)jνem(0)}|A(pA, λA)〉

= i(2π)4δ(4)(pA − q1 − q2)e2ε∗µ(q1, λ1)ε∗ν(q2, λ2)εβ(pA, λA)Mµνβ
Aγ∗γ∗ (3.65)

and can be BTT decomposed as [308]

Mµνβ
Aγ∗γ∗ =

i

M2
A

3∑

i=1

T̃µνβi FAi . (3.66)

Note that, similar to the case ofMµνα
V Pγ∗γ∗ , the matrix element is defined with a factor of i. The tensor

structures are given by

T̃µνβ1 (q1, q2) = εµνq1q2(q1 − q2)β ,

T̃µνβ2 (q1, q2) = εβνq1q2qµ1 + εβµνq2q2
1 ,

T̃µνβ3 (q1, q2) = εβµq1q2qν2 + εβµνq1q2
2 . (3.67)

Under photon crossing C12 : q1 ↔ q2, µ↔ ν, they behave as

T̃µνβ1 (q1, q2)
C12−−→ T̃ νµβ1 (q2, q1) = −T̃µνβ1 (q1, q2),

T̃µνβ2 (q1, q2)
C12−−→ T̃ νµβ2 (q2, q1) = −T̃µνβ3 (q1, q2). (3.68)

Thus, one can construct one symmetric and two antisymmetric structures,

T̃µνβa1 (q1, q2) = T̃µνβ1 (q1, q2),

T̃µνβa2 (q1, q2) = 1/2
[
T̃µνβ2 (q1, q2) + T̃µνβ3 (q1, q2)

]
,

T̃µνβs (q1, q2) = 1/2
[
T̃µνβ2 (q1, q2)− T̃µνβ3 (q1, q2)

]
, (3.69)

with corresponding form factors

FAa1(q2
1 , q

2
2) = FA1 (q2

1 , q
2
2),

FAa2(q2
1 , q

2
2) = FA2 (q2

1 , q
2
2) + FA3 (q2

1 , q
2
2),

FAs (q2
1 , q

2
2) = FA2 (q2

1 , q
2
2)− FA3 (q2

1 , q
2
2). (3.70)
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For the lowest-lying isoscalar axial-vector f1, the respective form factors F f1i have been studied in
detail and constrained with available experimental data in Refs. [144, 277]. The asymptotic behaviour
in terms of the Brodsky–Lepage limit [113–115] is discussed in Ref. [308]. For both virtualities
vanishing, the whole amplitude has to vanish due to the Landau–Yang theorem. In order to still
access the normalisation of these TFFs, one defines the equivalent two-photon decay width [322]

Γ̃Aγγ := lim
q21→0

M2
A

2q2
1

Γ(A→ γ∗LγT ), (3.71)

where the spin-averaged longitudinal-transversal (LT) width is given by [144]

Γ(A→ γ∗LγT ) =
1

3

∑

λA∈{±,0}
λ2=±

∫
dΓ0λ2;λA

Aγ∗γ∗

∣∣∣
q22=0

. (3.72)

Since dΓAγ∗γ∗ is expressed in terms of helicity amplitudes Hλ1λ2;λA as [308]

dΓλ1λ2;λA
Aγ∗γ∗ =

e4

32π2
|Hλ1λ2;λA |2

λ
1/2
A12

2M3
A

dΩ, (3.73)

with λA12 := λ(M2
A, q

2
1 , q

2
2), the equivalent two-photon decay width can be expressed in terms of the

normalisation of FA2 as

Γ̃Aγγ =
πα2MA

12
|FA2 (0, 0)|2. (3.74)

Symmetry under photon crossing shows that |FA3 (0, 0)|2 = |FA2 (0, 0)|2 and that |FA1 (0, 0)|2 = 0.

The axial-vector TFFs can be obtained from Mµνβ
Aγ∗γ∗εβ(pA, λA)ε∗µ(q1, λ1)ε∗ν(q2, λ2) = MAγ∗γ∗ via

projection,

FAj = (−iM2
A)ProjjµνβM

µνβ
Aγ∗γ∗ , (3.75)

where the projectors are constructed taking into account not only the 3 physical tensor structures, but
also a fourth one,

T̃µνβ4 = εµνq1q2(q1 + q2)β , (3.76)

which drops out of any physical quantity upon contraction with the axial-vector meson polarisation
sum ∑

λA

εβ(pA, λA)εβ′(pA, λA)∗ = −
(
gββ′ −

(pA)β(pA)β′

M2
A

)
. (3.77)

It still modifies the projectors because we do not enforce the axial-vector meson to be space-like in the
a1ρπ vertex, but the projection to the fourth structure does not contribute to any physical quantity.
The projectors are given by

Projµνβ1 =N
[
εβνq1q2qµ2 q

2
1 − εβµq1q2qν1 (q1 · q2)

]
,

Projµνβ2 =N
[
εβνq1q2qµ2 (q1 · q2)− εβµq1q2qν1 q2

2

]
,

Projµνβ3 =
N

2

[
εβνq1q2qµ2 q

2
1 + εβµq1q2qν1 q

2
2 + εµνq1q2

(
qβ2 (q1 · q2 + q2

1)− qβ1 (q1 · q2 + q2
2)
)]
,

Projµνβ4 =
N

2

[
− εβνq1q2qµ2 q2

1 + εβµq1q2qν1 q
2
2 + εµνq1q2

(
qβ2 (q1 · q2 − q2

1)− qβ1 (q1 · q2 − q2
2)
)]
, (3.78)

with

N =
1

2
(
(q1 · q2)2 − q2

1q
2
2

)2 . (3.79)
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For a tensor meson T , there are 5 tensor structures and transition form factors FTi , matching the 5
helicity amplitudes Hλ1λ2;λT [308],

H+−;2+ = H−+;2−, H+0;+ = H−0;−, H0−;+ = H0+;−, H++;0 = H−−;0, H00;0. (3.80)

The on-shell decay width ΓTγγ depends only on the first two TFFs,

ΓTγγ =
πα2MT

5

(
|FT1 (0, 0)|2 +

1

24
|FT2 (0, 0)|2

)
(3.81)

and the projection from

MTγ∗γ∗ =

5∑

i=1

T̂µναβi

1

Mni
a2

FTi (q2
1 , q

2
2), ni =

{
1, i = 1

3, else
, (3.82)

to the TFFs FTi (q2
1 , q

2
2) can be done by constructing projectors similar to the axial-vector case [316].

Note that there is no extra factor of i in this definition.
The tensor-meson tensor structures are given by [308]

T̂µναβ1 = gµαP νβ21 + gναPµβ12 + gµβP να21 + gνβPµα12 + gµν
(
qα1 q

β
2 + qα2 q

β
1

)
− (q1 · q2)

(
gµαgνβ + gναgµβ

)
,

T̂µναβ2 =
(
qα1 q

β
1 + qα2 q

β
2

)
Pµν12 ,

T̂µναβ3 = Pµα11 P
νβ
22 + Pµβ11 P

να
22 ,

T̂µναβ4 = Pµα12 P
νβ
22 + Pµβ12 P

να
22 ,

T̂µναβ5 = P να21 P
µβ
11 + P νβ21 P

µα
11 , (3.83)

where Pµνij := gµν(qi · qj)− qµj qνi .

3.5.3 Unitarity in a1 → γ∗γ∗

We discuss now the case of the a1. A similar calculation can be done for the a2; we will point out
where differences occur. A direct loop calculation of a1 → γ∗γ∗ would look like

ε∗µ(q1, λ1)ε∗ν(q2, λ2)εβ(pA, λA)Mµνβ
a1γ∗γ∗(s, q

2
1 , q

2
2)

= ε∗µ(q1, λ1)ε∗ν(q2, λ2)εβ(pA, λA)

∫
d4p

(2π)4
Mβδ

a1ρπ P
ρ
δα(p)Pπ(p− q1 − q2)Mµνα

V Pγ∗γ∗

simpl. a1ρπ
= ε∗µ(q1, λ1)ε∗ν(q2, λ2)εβ(pA, λA) iCa1ρπ

∫
d4p

(2π)4
P ρβα(p)Pπ(p− q1 − q2)×

× i

15∑

i=1

Tµναi Fi(q2
1 , q

2
2 ; s, t, u)

=: ε∗µ(q1, λ1)ε∗ν(q2, λ2)εβ(pA, λA)Ca1ρπ

15∑

i=1

Iµνβi , (3.84)

where P ρδα(q) and Pπ(q) are the ρ and π meson propagators, respectively, and we inserted the simplified
a1ρπ vertex from Eq. (3.54) and the gauge-invariant pole-free decomposition ofMµνα

V Pγ∗γ∗ in the third
line.

Since the constructed amplitude holds only for on-shell V and P mesons, we cannot naively use
Mµνα

ρπγ∗γ∗ = i
∑15
i=1 FbT

i T bT,µνα
i in a loop calculation as the real part would depend on the generating

set. Therefore, we need to reconstruct the a1 → γ∗γ∗ matrix element from this on-shell amplitude
using unitarity and analyticity. By virtue of the latter property, Ma1γ∗γ∗ is determined from its
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disc

[ ]
= + +

Figure 3.5: The discontinuity of a three-point function can be reconstructed from three cuts in s, q2
1 ,

and q2
2 .

discontinuity. Cutkosky’s rules [139] imply that the discontinuity of an amplitude is proportional to
the sum over all possible cuts. In the case of a three-point function, one can cut in s = (q1 + q2)2, q2

1 ,
and q2

2 ; see Fig. 3.5. In the narrow-resonance approximation, s is not a free kinematic variable, but
fixed to M2

a1 ; in this sense, we consider rather an axial-vector current here, which we later fix to be
the a1. The discontinuity in q2

1 is given by the unitarity relation

discq21
(
− i〈γ∗(q2, λ2)|γ∗(−q1, λ1)a1(pA, λA)〉

)
= e2(2π)4δ(4)(pA − q1 − q2) discq21Ma1γ∗γ∗

=
∑

n

1

Sn

∫ ( Nn∏

j=1

d̃kj

)
〈n|γ∗(q2, λ2)〉∗ 〈n|γ∗(−q1, λ1)a1(pA, λA)〉, (3.85)

discq22 is given by the same expression with 1 ↔ 2. Thus, knowledge about 〈n|a1γ
∗〉 amplitudes for

suitable intermediate states |n〉 is required, which we do not have, such that we neglect discq21 and
discq22 in this work. This leaves us with the discontinuity in s,

discs
(
− i〈γ∗(q1, λ1)γ∗(q2, λ2)|a1(pA, λA)〉

)
= e2(2π)4δ(4)(pA − q1 − q2) discsMa1γ∗γ∗

=
∑

n

1

Sn

∫ ( Nn∏

j=1

d̃kj

)
〈n|γ∗(q1, λ1)γ∗(q2, λ2)〉∗ 〈n|a1(pA, λA)〉. (3.86)

Due to the fact that a1 decays mainly into ρπ, considering |n〉 = |ρπ〉 is assumed to capture the
dominant contribution.

The subamplitude ρπ → γ∗γ∗ emerging from this cut should be unitarised itself, which means that
rescattering effects (in the s-channel) need to be taken care of. Additionally, crossing symmetry for
ρπ → γ∗γ∗ requires the inclusion of left-hand cuts arising from a unitarisation in ργ∗ → πγ∗, where
ρ and π are the lowest-lying intermediate states. In this work, we neglect the RHCs and only take
into account the LHCs, which we calculated in Sec. 3.4.1, as these are assumed to yield the dominant
contribution to the ρπ → γ∗γ∗ amplitude. Thus, we disregard parts of the a1γ

∗γ∗ discontinuity as
well as rescattering in ρπ → γ∗γ∗. #7

The dispersion relation we use for the a1γ
∗γ∗ amplitude reads

Ma1γ∗γ∗(s, q
2
1 , q

2
2) =

1

2πi

∫ ∞

(Mρ+Mπ)2
dx

discxMa1γ∗γ∗(x, q
2
1 , q

2
2)

x− s . (3.87)

Since we are interested in F a1i , and these TFFs are Schwarz functions in contrast to Mµνβ
a1γ∗γ∗ , we

continue our construction with F a1i (s, q2
1 , q

2
2), which we define to be a generalisation of the physical

TFFs via lims→M2
a1
F a1i (s, q2

1 , q
2
2) = F a1i (q2

1 , q
2
2). With this, there is a dispersion relation in s for

F a1i (s, q2
1 , q

2
2), with a ρπ intermediate state; see Fig. 3.6. Although the F a1i (s, q2

1 , q
2
2) are Schwarz

functions, their discontinuities in s

discsF
a1
i (s, q2

1 , q
2
2) = F a1i (s+ iε, q2

1 + iε, q2
2 + iε)− F a1i (s− iε, q2

1 + iε, q2
2 + iε) (3.88)

are in general not equal to their imaginary parts

2i ImF a1i (s, q2
1 , q

2
2) = 2i

[
F a1i (s+ iε, q2

1 + iε, q2
2 + iε)− F a1i (s− iε, q2

1 − iε, q2
2 − iε)

]
(3.89)

#7Additional effects in ρπ → γ∗γ∗ such as triangle singularities are neglected, as well. These are contained in the
neglected part of the a1γ∗γ∗ discontinuity.
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γ∗
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Mαµν

π

ρ

a1/2

Figure 3.6: Reconstruction of the a1/2 TFFs from the unitarity cut in s.

since F a1i can also have cuts in q2
1 and q2

2 . These occur in the time-like region, such that we can
identify discs F

a1
i (s, q2

1 , q
2
2) with 2i ImF a1i (s, q2

1 , q
2
2) for space-like photon virtualities. In this region,

we can use the imaginary part obtained from a loop calculation as in Eq. (3.84) in order to determine
the discontinuity in s.

The objects we actually calculate numerically are the integrals ProjiµνβI
µνβ
j , where the indeces i, j

relate to the i-th TFF of a1 and the j-th scalar function in Mµνα
ρπγ∗γ∗ . In terms of these objects and

with sthr = (Mπ +Mρ)
2, we can express the TFFs for space-like virtualities as

F a1i (s, q2
1 , q

2
2) = (−iM2

a1)ProjiµνβMµνβ
Aγ∗γ∗(s, q

2
1 , q

2
2)

= (−iM2
a1)Projiµνβ

(
Ca1ρπ

15∑

j=1

Iµνβj

)
= (−iM2

a1)Ca1ρπ

15∑

j=1

ProjiµνβI
µνβ
j

=
1

π

∫ ∞

sthr

dx
(−iM2

a1)Ca1ρπ
∑15
j=1 Re

[
ProjiµνβI

µνβ
j

]

x− s =:
1

π

∫ ∞

sthr

dx
ImF a1i (x, q2

1 , q
2
2)

x− s . (3.90)

For the evaluation we use the fact that this integrand decreases fast enough and formally rewrite it,

F a1i (s, q2
1 , q

2
2) =

1

π

∫ ∞

sthr

dx
ImF a1i (x, q2

1 , q
2
2)

x− s

=
1

π

∫ ∞

sthr

dx
x ImF a1i (x, q2

1 , q
2
2)

x(x− s) =:
1

π

∫ ∞

sthr

dx
Ei(x, q

2
1 , q

2
2)

x(x− s)

=
1

π

∫ ∞

sthr

dx
Ei(x, q

2
1 , q

2
2)− Ei(s, q2

1 , q
2
2)

x(x− s) + Ei(s, q
2
1 , q

2
2)

1

π

∫ ∞

sthr

dx
1

x(x− s) , (3.91)

where it is now manifest that the integral converges as long as Ej(x, q
2
1 , q

2
2) does not diverge in the

limit x → ∞.#8 The first integral in the last line of Eq. (3.91) is evaluated numerically, whereas the
second integral is analytically equal to

1

s
ln
( sthr

sthr − s
)
. (3.92)

If we had not redefined the integrand according to x ImF a1i (x, q2
1 , q

2
2) =: Ei(x, q

2
1 , q

2
2), then the loga-

rithm would diverge with the upper limit of the integral at∞. One could solve this issue by introducing
a subtraction, but this would require us to fix a subtraction constant, which reduces the predictive
power of the model. Besides this, it is important to choose the correct branch of the logarithm, namely
what is sometimes referred to as lnII ,

ln z = ln |z|+ i

{
arg z, arg z > 0,

arg z + 2π, arg z < 0
. (3.93)

We are limited, however, to convergent loop integrals Iµνβj , which unfortunately constrains us to the
simplified version ofMa1ρπ from Eq. (3.54) and to a ρ propagator that does not enforce transversality,

#8The trick in the last line, where Ei(s, q
2
1 , q

2
2) is subtracted and added in order to regularise the integrand, can already

be found in [134] and [323]; it is equivalent to the Sokhotski–Plemelj formula.
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P ρβα(p) = (−igβα)/(p2 −M2
ρ ). This issue also prevents us from doing a similar evaluation for the a2

due to the inevitable factor of the loop momentum p in Mβγα
a2ρπ; see Eq. (3.60). In order to overcome

this problem, one needs to introduce some regularisation and renormalisation scheme, which we hope
to do in the future.

3.6 Numerical evaluation

We calculate the integrals ProjiµναI
µνβ
j via a Passarino–Veltman (PaVe) decomposition [324, 325],

using the Mathematica package FeynCalc [220–222, 326] for the decomposition to tensor coefficients
and evaluating these with the native Fortran library Collier [157–160] via an interface to C++ [223];
we use the library LoopTools [155] for a cross-check. Results for these two implementations have been
found to agree on three significant digits. The scalar functions are implemented as denoted in Eq. (3.47)
and the text above, i.e., including the Tarrach structures. The form factors FVπ , G1, G2, H1, H2, as
well as Fρπ and FRπ, can be varied: in the variant referred to as “full model”, they are implemented
as in Eq. (3.50)–Eq. (3.52), other versions are indicated.

We evaluate Ei(s, q
2
1 , q

2
2) = s ImF a1i (s, q2

1 , q
2
2) for a set of sampling points (s, q2

1 , q
2
2), which yields

the imaginary part of the TFFs. The real part is calculated via a dispersion integral over s us-
ing two different implementations: on the one hand, GSL interpolation and integration methods,
specifically the QAG adaptive integration algorithm with Gauss–Kronrod rules [327], and on the
other hand an adapted version of the Gauss–Legendre algorithm from the dispersionrelations pack-
age for python [328]. In practice, the upper limit of the dispersion integral is set to a high value
Λ = (Mρ + Mπ)2 × 106, which we vary in order to ensure that the results do not depend on Λ.
We evaluate the real and imaginary part of F a1i (s, q2

1 , q
2
2) at s = M2

a1 and space-like virtualities for
Ca1ρπ = 4.7 GeV. In order to account for both charge channels ρ+π− and ρ−π+, we multiply the
result by 2.

The contribution to the uncertainty that we can presently quantify comes from the coupling con-
stant. It is indicated in some of the plots by error bands that correspond to Ca1ρπ ∈ [3.7, 5.7] and also
taken as an error estimate of the normalisation. Both evaluation methods for the dispersive integral
agree up to numerical deviations . 10%, which we take as our current numerical precision. This can
probably be improved in the future; at present, it is well within the ∼ 20% uncertainty from Ca1ρπ,
where uncertainties from Cρπγ and the masses are not taken into account. The presumably largest
uncertainty is, however, systematic and comes from the fact that we have not yet been able to enforce
transversality for the vector and axial-vector meson. At present, we cannot estimate the size of the
contributions we are missing from this.

3.7 Results and discussion

Doubly-virtual TFFs depending on (−Q2
1,−Q2

2) = (q2
1 , q

2
2) are presented as real and imaginary part in

colour-coded 2d plots with logarithmic colourbars, where the region close to 0 is linear. In Fig. 3.7,
F a11,2,3 are depicted for photon virtualities up to 2 GeV2, while Fig. 3.8 shows the symmetrised TFFs F a1a1 ,

F a1s , and F a1a2 . For Q2
1 = Q2

2, the antisymmetric TFFs F a11 = F a1a1 and F a1a2 vanish. The asymmetry in
F a12,3 is visible, and their real parts change sign at virtualities ∼ 0.2 GeV2; as a consequence, F a1s,a2 change

sign at ∼ 0.2 GeV2 and ∼ 0.6 GeV2, respectively. Fig. 3.9 demonstrates the asymptotic behaviour of
the symmetrised TFFs up to 50 GeV2.

The antisymmetric TFFs F a1a1/2 can be divided by (Q2
1−Q2

2). Fig. 3.10 shows that they thus become

symmetric, from which we can conclude that these TFFs can be expressed as

F a1a1/2 ∼ (Q2
1 −Q2

2) · F̃ a1a1/2, (3.94)

where F̃ a1a1/2 are symmetric in the virtualities. This is similar to what was observed for the antisym-

metric f1 TFFs in Ref. [277].
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Figure 3.7: Real and imaginary parts of the a1 TFFs, full model, for virtualities up to 2 GeV2.
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Figure 3.8: Real and imaginary parts of symmetrised a1 TFFs, full model, for virtualities up to 2 GeV2.
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Figure 3.9: Real and imaginary parts of symmetrised a1 TFFs, full model, for virtualities up to
50 GeV2. The increased pixel size at higher virtualities is due to the spacing of the sampling points.
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Figure 3.10: Real and imaginary part of the antisymmetric TFFs F a1a1/2/(Q
2
1 − Q2

2) for virtualities

below 2 GeV2. The white pixels on the diagonal emerge since the antisymmetric TFFs vanish there.
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Figure 3.11: Real and imaginary part of the ratio F a1a2 /F
a1
a1 for virtualities up to 50 GeV2.
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Figure 3.12: Real and imaginary part of the ratio F a1a2 /F
a1
a1 for virtualities below 2 GeV2.

Moreover, we can consider the ratio F a1a2 /F
a1
a1 , see Fig. 3.11, which is asymptotically constant,

whereas in the low-virtuality region, the real part exhibits a zero line and the imaginary part a
minimum; see Fig. 3.12. Note that in these plots, the colourbar is linear.

For a more quantitative analysis and comparisons of different contributions, we consider two special
cases of TFFs depending on one virtuality, namely the singly-virtual case (q2

1 = −Q2, q2
2 → 0−) and

symmetric virtualities (q2
1 = −Q2, q2

2 = −Q2). The limit q2
2 → 0− is taken in this way in order to keep

virtualities space-like and implemented numerically as q2
2 = −5×10−5 GeV2. For each TFF, we present

real and imaginary part for two different ranges of Q2, at low and high virtualities, where in the latter
case, the TFFs are multiplied by a suitable power of Q2 in order to study the asymptotic behaviour.
For low virtualities, error bands are shown, which represent the uncertainty from the a1ρπ coupling
constant. Since the plots for high virtualities are merely used to empirically derive the asymptotic
behaviour, no error bands are included there.

Fig. 3.13 and Fig. 3.14 demonstrate the singly-virtual behaviour of the TFFs F a11,2,3 and the sym-
metrised TFFs F a1s,a1,a2, respectively. Here, we compare the full model variant to a simplified version
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F a1a1 = F a11 F a1s F a1a2 F a12 F a13

Q2
2 = 0

Re 1/(Q2
1

√
Q2

1) 1/(Q2
1

√
Q2

1) 1/(Q2
1

√
Q2

1) 1/(Q2
1

√
Q2

1) 1/(Q2
1

√
Q2

1)

Im 1/Q4
1 1/Q4

1 1/Q4
1 1/Q4

1 1/Q4
1

Q2
1 = Q2

2 = Q2 Re – 1/(Q6
√
Q2) – 1/(Q6

√
Q2) 1/(Q6

√
Q2)

Im – 1/Q8 – 1/Q8 1/Q8

Table 3.1: Empirically determined asymptotic behaviour of real and imaginary parts of (symmetrised)
a1 TFFs.

where FVπ = G1 ∼ 1/q2 and H1 = 0 = H2. In the latter variant, the electric ρ FF does not ful-
fil the expected asymptotic behaviour and the situation is more symmetric, such that the electric
heavy-vector-meson FF H1 is not needed for the cancellation of kinematic singularities in the scalar
functions. The asymptotic behaviour of the TFFs is qualitatively the same for both versions. The
effect of the implementation of the expected asymptotic behaviour in G1 and the inclusion of H1,2 is
most notable in F a11 , where the full model yields smaller results for both real and imaginary part; the
latter is significantly smaller, at the maximum ∼ 50%, whereas the real parts are compatible within
uncertainties. For F a12,3, the imaginary parts receive rather mild corrections well within the uncertain-
ties, while the real parts deviate ∼ 50% at the maximum. As the effects for real and imaginary parts
cancel almost, this changes the normalisation of F a12,3 and F a1s only slightly, ∼ 4%, which is well within
the uncertainties.

Overall, F a11 is more than one order of magnitude smaller compared to F a12,3. For the latter TFFs,
the imaginary parts are of larger magnitude compared to the real parts, whereas the situation is
reversed for F a11 . With symmetric virtualities, the picture is qualitatively similar, with the exception
of the asymptotic behaviour; see Fig. 3.15. The antisymmetric TFFs vanish in this case.

We can read off the normalisation of the axial-vector TFFs

|F a12/3(0, 0)| = 0.16(4), (3.95)

corresponding to |F a1s (0, 0)| = 0.32(7), where the indicated uncertainties correspond to the uncertainty
of Ca1ρπ, while the systematic uncertainty in the framework cannot be quantified at present. This value
can be compared to |F a12 (0, 0)| = 0.34(6), estimated from U(3) symmetry, and F a12 (0, 0) = 0.38(5),
extracted from an analysis in the VVA framework, in Ref. [244], resulting in a relative factor of 2. The
antisymmetric TFFs are normalised to 0 due to the Landau–Yang theorem.

Asymptotically, real and imaginary parts need to be discussed separately. From the second column
in Fig. 3.13 and Fig. 3.14, a decrease ∼ 1/Q4 of the imaginary parts of all (symmetrised) TFFs can be

concluded, whereas the real parts decrease slower, namely ∼ 1/(Q2
√
Q2). The asymptotic behaviour

expected from a light-cone expansion [144, 308] is O(Q−6) for F a11 = F a1a1 , which is not fulfilled in our
results, and O(Q−4) for F a12 , which is fulfilled for the imaginary parts in the singly-virtual case.

For symmetric virtualities, all antisymmetric TFFs vanish identically, and accordingly, F a12 and
F a13 only differ by a sign, while F a1s (not shown) is simply given by 2×F a12 ; see Fig. 3.15. We observe

for the TFFs with symmetric virtualities that the real parts decrease ∼ 1/(Q6
√
Q2) and the imaginary

parts ∼ 1/Q8; this is faster than expected from the light-cone expansion. We collect the asymptotic
behaviour for our results in Table 3.1.

We can also compare to a version with point-like FFs as input, i.e., FVπ (q2) ≡ 1 ≡ G1(q2), Fρπ(q2) ≡
Cρπγ , G2(q2) ≡ 2, and H1(q2) ≡ 0 ≡ H2(q2); see Fig. 3.16 for symmetric virtualities and Sec. 3.9.7
for the singly-virtual case. Since we keep the normalisations of the couplings, the normalisations of
the TFFs are unchanged compared to the simplified model with FFs, but the asymptotic behaviour
is different: imaginary and real part of the TFFs decrease ∼ 1/Q2 and ∼ 1/

√
Q2, respectively. This

point-like model showcases the TFF behaviour and asymptotics resulting solely from the loop integrals,
and we can see that this alone cannot accommodate the expected high-energy behaviour. The fact
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Figure 3.13: Singly-virtual a1 TFFs: imaginary parts as solid lines, real parts as dash-dotted lines.
The brighter lines correspond to the full model, whereas the darker lines show the simplified model;
results shown in the second row are multiplied by factors of Q2n according to Table 3.1. The error
bands in the first column represent the uncertainty in the coupling constant Ca1ρπ.
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(Anti)symmetric a1 TFFs

Figure 3.14: Symmetrised singly-virtual a1 TFFs: imaginary parts as solid lines, real parts as dash-
dotted lines. The brighter lines correspond to the full model, whereas the darker lines show the
simplified model; results shown in the second row are multiplied by factors of Q2n according to Ta-
ble 3.1. The error bands in the first column represent the uncertainty in the coupling constant Ca1ρπ.
The diagrams in the first row of this figure are identical to the first row of Fig. 3.13 and included here
in order to allow for a direct comparison to the other symmetrised TFFs.
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Figure 3.15: a1 TFFs with symmetric virtualities: imaginary parts as solid lines, real parts as dash-
dotted lines. The brighter lines correspond to the full model, whereas the darker lines show the
simplified model; results shown in the second row are multiplied by factors of Q2n according to Ta-
ble 3.1. The error bands in the first column represent the uncertainty in the coupling constant Ca1ρπ.
F a11 vanishes identically in this case, and F a12 and F a13 are reflected versions of one another since the
antisymmetric part is 0.
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Figure 3.16: F a1s with symmetric virtualities: imaginary parts as solid lines, real parts as dash-dotted
lines. The brighter lines correspond to the full model, whereas the darker lines show the model with
point-like couplings; results shown in the second diagram are multiplied by factors of Q2n according
to Table 3.1. The error bands in the first diagram represent the uncertainty in the coupling constant
Ca1ρπ. F a1a1 and F a1a2 vanish identically in this case.

that antisymmetric TFFs vanish due to the Landau–Yang theorem, on the other hand, does not
depend on the input form factors.

Within our framework, one can separate different contributions to the a1 TFFs. The magnetic
vector FFs G2 for the ρ and H2 for the heavy VM yield contributions only to F a11 . While the effect
of H2 is small, ∼ 5%, the contribution of G2 to the imaginary part is similar in size to the full model,
but with opposite sign, and the contribution of G2 to the real part of F a11 is ∼ 7%.
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Figure 3.17: Contribution of G2 and H2 to singly-virtual a1 TFFs, which vanishes for F a12/3; results

shown in the second diagram are multiplied by factors of Q2n according to Table 3.1. The full model
contains both G2 and H2. The error bands in the first diagram represent the uncertainty in the
coupling constant Ca1ρπ.



3.8 Conclusion 87

3.8 Conclusion

We have constructed a framework to obtain singly- and doubly-virtual a1 and a2 TFFs in the space-like
region from a ρπ intermediate state and ρ, π LHCs. To this end, we have found a gauge-invariant pole-
free decomposition of the ρπ → γ∗γ∗ amplitude into tensor structures and scalar functions using the
BTT procedure. In order to remove kinematic singularities in the scalar functions, we have extended
the BTT basis to a generating set valid in all kinematic limits and have included an additional LHC
with a heavy-vector-meson intermediate state. We calculate the imaginary parts of the a1/2 TFFs from
the loop diagram resulting from contracting the amplitude constructed in this way with an a1/2 → ρπ
amplitude and reconstruct the real parts dispersively via a unitarity relation in s, which is eventually
set to M2

a1 .
Results include the normalisation and asymptotic behaviour of the a1 TFFs, which are in the same

order of magnitude, but do not agree with expectations from U(3) symmetry and results in Ref. [244] for
the normalisation and partially agree with expectations from a light-cone expansion for the asymptotic
behaviour. It is important to note that since we were required to use a simplified a1ρπ vertex, it is
possible that significant contributions are missing. As our framework does not systematically enforce a
NWA, imaginary parts emerge, which exceed for F a12/3 the real parts. F a11 has the smallest magnitude

and receives the largest relative contributions from the magnetic ρ FF and the heavy-vector-meson
FFs that are related to the asymmetry in the ρπ system. A simpler model with FVπ = G1 describes
the imaginary parts and normalisations of F a12 and F a13 similarly to the more refined model with
correct asymptotic behaviour of the input FFs; the asymptotic behaviour of the TFFs is the same in
both versions. Point-like couplings of π and ρ to the photons, however, result in a significantly worse
asymptotic behaviour of the TFFs, demonstrating that the loop alone cannot effect the latter.

This framework is currently limited by the fact that some of the loop integrals diverge for fully
transverse ρ and a1 terms, which forces us to use a simplified version in the calculation of the a1 TFFs,
where this transversality is not given. The same difficulties also prevent the evaluation for the a2. In
order to implement full transversality and to obtain results for the a2, we hope to extend the formalism
in the future via a renormalisation procedure for the diverging loop integrals.

In this construction, we have neglected contributions required for unitarity both in the ρπ → γ∗γ∗

and in the a1/2 → γ∗γ∗ system. Including those would require a different approach and additional
assumptions. In the context of the currently used HLbL framework, only the pole contributions for
the resonances are taken into account, neglecting additional cuts, in this case 3π. A NWA for the a1/2

TFFs, where the imaginary parts vanish, would match this approximation and might at the same time
allow to construct a more unitary framework.

With these future improvements, a description of a1, a2, and also f ′1 TFFs, which can be used as
input for the HLbL contribution and for an improved understanding of these resonances in general,
seems possible.
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3.9 Appendix

3.9.1 Tensor structures for the V P → γ∗γ∗ process and projection matrix

The initial tensor structures introduced in Sec. 3.3 are collected here, where

T in,µνα
i = εβγδεMµναβγδε. (3.96)

The building blocks for Mµναβγδε are the metric tensor gµν and the available independent momenta
qµ ∈ {q1, q2, p}µ,

{Kµναβγδε
i }Ñi=1 ⊆ {gggq, ggqqq, gqqqqq, qqqqqqq}{µναβγδε}, (3.97)

As terms of type qqqqqqq vanish upon contraction with εβγδε, there are 3 terms of type gggq, 30 terms
of type ggqqq, and 27 terms of type gqqqqq, resulting in 60 terms in total,

T in,µνα
1 = εµναq1 , T in,µνα

21 = qα2 ε
µνpq2 , T in,µνα

41 = qµ2 q
ν
2ε
αpq1q2 ,

T in,µνα
2 = εµναq1 , T in,µνα

22 = pµεναq1q2 , T in,µνα
42 = pµpνεαpq1q2 ,

T in,µνα
3 = εµναp , T in,µνα

23 = pµεναq1p , T in,µνα
43 = qµ1 q

α
2 ε

νpq1q2 ,

T in,µνα
4 = qµ1 ε

ναq1q2 , T in,µνα
24 = pµεναq2p , T in,µνα

44 = qα1 q
µ
2 ε
νpq1q2 ,

T in,µνα
5 = qµ1 ε

ναq1p , T in,µνα
25 = pνεµαq1q2 , T in,µνα

45 = pαqµ1 ε
νpq1q2 ,

T in,µνα
6 = qµ1 ε

ναq2p , T in,µνα
26 = pνεµαq1p , T in,µνα

46 = pµqα1 ε
νpq1q2 ,

T in,µνα
7 = qν1ε

µαq1q2 , T in,µνα
27 = pνεµαq2p , T in,µνα

47 = kαqµ2 ε
νpq1q2 ,

T in,µνα
8 = qν1ε

µαq1p , T in,µνα
28 = −pαεµνq1q2 , T in,µνα

48 = pµqα2 ε
νpq1q2 ,

T in,µνα
9 = qν1ε

µαq2p , T in,µνα
29 = pαεµνpq1 , T in,µνα

49 = qα1 q
µ
1 ε
νpq1q2

T in,µνα
10 = −qα1 εµνq1q2 , T in,µνα

30 = pαεµνpq2 , T in,µνα
50 = qα2 q

µ
2 ε
νpq1q2 ,

T in,µνα
11 = qα1 ε

µνpq1 , T in,µνα
31 = gµνεαpq1q2 , T in,µνα

51 = pαpµενpq1q2 ,

T in,µνα
12 = qα1 ε

µνpq2 , T in,µνα
32 = gµαενpq1q2 , T in,µνα

52 = qµ1 q
α
2 ε

µpq1q2 ,

T in,µνα
13 = qµ2 ε

ναq1q2 , T in,µνα
33 = gναεµpq1q2 , T in,µνα

53 = qα1 q
ν
2ε
µpq1q2 ,

T in,µνα
14 = qµ2 ε

ναq1p , T in,µνα
34 = qµ1 q

ν
2ε
αpq1q2 , T in,µνα

54 = kαqν1ε
µpq1q2 ,

T in,µνα
15 = qµ2 ε

ναq2p , T in,µνα
35 = qν1 q

µ
2 ε
αpq1q2 T in,µνα

55 = pνqα1 ε
µpq1q2 ,

T in,µνα
16 = qν2ε

µαq1q2 , T in,µνα
36 = pνqµ1 ε

αpq1q2 T in,µνα
56 = pαqν2ε

µpq1q2 ,

T in,µνα
17 = qν2ε

µαq1p , T in,µνα
37 = pµqν1ε

αpq1q2 , T in,µνα
57 = pνqα2 ε

µpq1q2 ,

T in,µνα
18 = qν2ε

µαq2p , T in,µνα
38 = pνqµ2 ε

αpq1q2 , T in,µνα
58 = qα1 q

ν
1ε
µpq1q2 ,

T in,µνα
19 = −qα2 εµνq1q2 , T in,µνα

39 = pµqν2ε
αpq1q2 , T in,µνα

59 = qα2 q
ν
2ε
µpq1q2 ,

T in,µνα
20 = qα2 ε

µνpq1 , T in,µνα
40 = qµ1 q

ν
1ε
αpq1q2 , T in,µνα

60 = pαpνεµpq1q2 .
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3.9.2 Schouten identities for the V P → γ∗γ∗ process

The following relations arise from the Schouten identity Eq. (3.22) for the initial tensor structures

T in,µνα
i ; only 32 of these 39 equations are independent.

−(q1 · q2)T in,µνα
1 + q2

1T
in,µνα
2 − T in,µνα

4 + T in,µνα
7 + T in,µνα

10 = 0

−q2
2T

in,µνα
1 + (q1 · q2)T in,µνα

2 − T in,µνα
13 + T in,µνα

16 + T in,µνα
19 = 0

−(p · q2)T in,µνα
1 + (p · q1)T in,µνα

2 − T in,µνα
22 + T in,µνα

25 + T in,µνα
28 = 0

(p · q1)T in,µνα
1 − q2

1T
in,µνα
3 + T in,µνα

5 − T in,µνα
8 − T in,µνα

11 = 0

(p · q1)T in,µνα
2 − (q1 · q2)T in,µνα

3 + T in,µνα
6 − T in,µνα

9 − T in,µνα
12 = 0

(p · q2)T in,µνα
1 − (q1 · q2)T in,µνα

3 + T in,µνα
14 − T in,µνα

17 − T in,µνα
20 = 0

(p · q2)T in,µνα
2 − (q1 · q2)T in,µνα

3 + T in,µνα
15 − T in,µνα

18 − T in,µνα
21 = 0

p2T in,µνα
1 − (p · q1)T in,µνα

3 + T in,µνα
23 − T in,µνα

26 − T in,µνα
29 = 0

p2T in,µνα
2 − (p · q2)T in,µνα

3 + T in,µνα
24 − T in,µνα

27 − T in,µνα
28 = 0

−T in,µνα
6 + T in,µνα

14 − T in,µνα
22 − T in,µνα

31 − T in,µνα
32 = 0

−T in,µνα
9 + T in,µνα

17 − T in,µνα
25 − T in,µνα

31 − T in,µνα
33 = 0

−T in,µνα
12 + T in,µνα

20 − T in,µνα
28 + T in,µνα

32 − T in,µνα
33 = 0

(p · q1)T in,µνα
16 − (q1 · q2)T in,µνα

17 + q2
1T

in,µνα
18 + T in,µνα

34 − T in,µνα
53 = 0

(p · q2)T in,µνα
4 − q2

2T
in,µνα
5 + (q1 · q2)T in,µνα

6 + T in,µνα
34 − T in,µνα

43 = 0

(p · q2)T in,µνα
7 − q2

2T
in,µνα
8 + (q1 · q2)T in,µνα

9 + T in,µνα
35 − T in,µνα

52 = 0

(p · q1)T in,µνα
13 − (q1 · q2)T in,µνα

14 + q2
1T

in,µνα
15 + T in,µνα

35 − T in,µνα
44 = 0

(p · q1)T in,µνα
25 − (q1 · q2)T in,µνα

26 + q2
1T

in,µνα
27 + T in,µνα

36 − T in,µνα
55 = 0

p2T in,µνα
4 − (p · q2)T in,µνα

5 + (p · q1)T in,µνα
6 + T in,µνα

36 − T in,µνα
45 = 0

p2T in,µνα
7 − (p · q2)T in,µνα

8 + (p · q1)T in,µνα
9 + T in,µνα

37 − T in,µνα
54 = 0

(p · q1)T in,µνα
22 − (q1 · q2)T in,µνα

23 + q2
1T

in,µνα
24 + T in,µνα

37 − T in,µνα
46 = 0

(p · q2)T in,µνα
25 − q2

2T
in,µνα
26 + (q1 · q2)T in,µνα

27 + T in,µνα
38 − T in,µνα

57 = 0

p2T in,µνα
13 − (p · q2)T in,µνα

14 + (p · q1)T in,µνα
15 + T in,µνα

38 − T in,µνα
47 = 0

p2T in,µνα
16 − (p · q2)T in,µνα

17 + (p · q1)T in,µνα
18 + T in,µνα

39 − T in,µνα
56 = 0

(p · q2)T in,µνα
22 − q2

2T
in,µνα
23 + (q1 · q2)T in,µνα

24 + T in,µνα
39 − T in,µνα

48 = 0

(p · q1)T in,µνα
7 − (q1 · q2)T in,µνα

8 + q2
1T

in,µνα
9 + T in,µνα

40 − T in,µνα
58 = 0

(p · q1)T in,µνα
4 − (q1 · q2)T in,µνα

5 + q2
1T

in,µνα
6 + T in,µνα

40 − T in,µνα
49 = 0

(p · q2)T in,µνα
16 − q2

2T
in,µνα
17 + (q1 · q2)T in,µνα

18 + T in,µνα
41 − T in,µνα

59 = 0

(p · q2)T in,µνα
13 − q2

2T
in,µνα
14 + (q1 · q2)T in,µνα

15 + T in,µνα
41 − T in,µνα

50 = 0

p2T in,µνα
25 − (p · q2)T in,µνα

26 + (p · q1)T in,µνα
27 + T in,µνα

42 − T in,µνα
60 = 0

p2T in,µνα
22 − (p · q2)T in,µνα

23 + (p · q1)T in,µνα
24 + T in,µνα

42 − T in,µνα
51 = 0

−(p · q1)T in,µνα
19 + (q1 · q2)T in,µνα

20 − q2
1T

in,µνα
21 + T in,µνα

43 − T in,µνα
52 = 0

−(p · q2)T in,µνα
10 + q2

2T
in,µνα
11 − (q1 · q2)T in,µνα

12 + T in,µνα
44 − T in,µνα

53 = 0

−(p · q1)T in,µνα
28 + (q1 · q2)T in,µνα

29 − q2
1T

in,µνα
30 + T in,µνα

45 − T in,µνα
54 = 0
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−p2T in,µνα
10 + (p · q2)T in,µνα

11 − (p · q1)T in,µνα
12 + T in,µνα

46 − T in,µνα
55 = 0

−(p · q2)T in,µνα
28 + q22T in,µνα

29 − (q1 · q2)T in,µνα
30 + T in,µνα

47 − T in,µνα
56 = 0

−p2T in,µνα
19 + (p · q2)T in,µνα

20 − (p · q1)T in,µνα
21 + T in,µνα

48 − T in,µνα
57 = 0

−(p · q1)T in,µνα
10 + (q1 · q2)T in,µνα

11 − q2
1T

in,µνα
12 + T in,µνα

49 − T in,µνα
58 = 0

−(p · q2)T in,µνα
19 + q22T in,µνα

20 − (q1 · q2)T in,µνα
21 + T in,µνα

50 − T in,µνα
59 = 0

−p2T in,µνα
28 + (p · q2)T in,µνα

29 − (p · q1)T in,µνα
30 + T in,µνα

51 − T in,µνα
60 = 0 (3.98)

3.9.3 Alternative generating set

We can consider an alternative generating set

{
T b2,µνα
i

}
:=
{
T b,µνα

1 , . . . , T b,µνα
8 ,

1

2

(
T b,µνα

9 − T b,µνα
11

)
, T b,µνα

14 ,
1

2

(
T b,µνα

9 + T b,µνα
11

)
, T b,µνα

15

}
, (3.99)

with a basis

T b2,µνα
1 = εανq1q2qµ2 + εαµq1q2qν1 +

(
εαµνq1 + εαµνq2

)
(q1 · q2),

T b2,µνα
2 = −εανq1q2qµ2 + εαµq1q2qν1 +

(
εαµνq1 − εαµνq2

)
(q1 · q2),

T b2,µνα
3 = εαpq1q2gµν − εανpq1qµ2 + εαµpq2qν1 + εαµνp(q1 · q2),

T b2,µνα
4 = εµνq1q2(q1 + q2)α,

T b2,µνα
5 = εµνq1q2(q1 − q2)α,

T b2,µνα
6 = ενpq1q2qα2 q

µ
2 + εµpq1q2qα1 q

ν
1 −

(
εµνpq1qα1 + εµνpq2qα2

)
(q1 · q2),

T b2,µνα
7 = −ενpq1q2qα2 qµ2 + εµpq1q2qα1 q

ν
1 −

(
εµνpq1qα1 − εµνpq2qα2

)
(q1 · q2),

T b2,µνα
8 = −εανq1q2pµ − εαµq1q2pν − εαµνq2(p · q1)− εαµνq1(p · q2),

T b2,µνα
9 = εανpq2

(
qµ1 (q1 · q2)− qµ2 q2

1

)
,

T b2,µνα
10 = εανpq2

(
qµ1 (p · q1)− pµq2

1

)
,

T b2,µνα
11 = εαµpq1

(
qν2 (q1 · q2)− qν1 q2

2

)
,

T b2,µνα
12 = εαµpq1

(
qν2 (p · q2)− pνq2

2

)
,

T b2,µνα
13 = εαpq1q2gµν

(
(q1 · q2)− qµ2 qν1

)
(3.100)

and an extension by

T b2,µνα
14 = εανpq2

(
pµ(q1 · q2)− qµ2 (p · q1)

)
=

1

2

(
T b,µνα

10 − T b,µνα
12

)
,

T b2,µνα
15 = εαµpq1

(
pν(q1 · q2)− qν1 (p · q2)

)
=

1

2

(
T b,µνα

10 + T b,µνα
12

)
. (3.101)

With this basis, the projection of the form factors F9,10,11,12 changes, such that we find (neglecting
G2,3 and H2,3,4)

Fb2
9 =

2
(
2(p · q1)− q2

1

)

(q1 · q2)q2
1

[
FVπ (q2

1)Fρπ(q2
2)

M2
π − u

+
G1(q2

1)Fρπ(q2
2)

M2
ρ − t

+
H1(q2

1)FRπ(q2
2)q2

1

M2
R − t

]
− H1(q2

1)FRπ(q2
2)∆ρR

(q1 · q2)(M2
R − t)

,

Fb2
10 = − 4

q2
1

[
FVπ (q2

1)Fρπ(q2
2)

M2
π − u

+
G1(q2

1)Fρπ(q2
2)

M2
ρ − t

+
H1(q2

1)FRπ(q2
2)q2

1

M2
R − t

]
,

Fb2
11 =

2
(
2(p · q2)− q2

2

)

(q1 · q2)q2
2

[
FVπ (q2

2)Fρπ(q2
1)

M2
π − t

+
G1(q2

2)Fρπ(q2
1)

M2
ρ − u

+
H1(q2

2)FRπ(q2
1)q2

2

M2
R − u

]
− H1(q2

2)FRπ(q2
1)∆ρR

(q1 · q2)(M2
R − u)

,
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Fb2
12 = − 4

q2
1

[
FVπ (q2

1)Fρπ(q2
2)

M2
π − t

+
G1(q2

1)Fρπ(q2
2)

M2
ρ − u

+
H1(q2

1)FRπ(q2
2)q2

1

M2
R − u

]
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The extra factors of 2 can be determined by comparing
∑12
i=9 T

µνα
i Fi for the two bases. We see that

there are now poles in (q1 · q2), q2
1 , and q2

2 in the form factors Fb2
i for i ∈ {9, 10, 11, 12}. As with basis

B1, we extend basis B2 as indicated and shift parts of the form factors Fb2
9,10,11,12 to Fb2

14,15, resulting
in

Fb2
9 = − 2G1(q2

1)Fρπ(q2
2)

(M2
ρ − t)(M2

π − u)
− 2H1(q2

1)FRπ(q2
2)(q2

1 + ∆ρR)

(M2
R − t)(M2

π − u)
,

Fb2
10 =

2H1(q2
1)FRπ(q2

2)∆ρR

(M2
R − t)(M2

π − u)
,

Fb2
11 = − 2G1(q2

2)Fρπ(q2
1)

(M2
ρ − u)(M2

π − t)
− 2H1(q2

2)FRπ(q2
1)(q2

2 + ∆ρR)

(M2
R − u)(M2

π − t)
,

Fb2
12 =

2H1(q2
2)FRπ(q2

1)∆ρR

(M2
R − u)(M2

π − t)
,

Fb2
14 =

4G1(q2
1)Fρπ(q2

2)

(M2
ρ − t)(M2

π − u)
+

4H1(q2
1)FRπ(q2

2)q2
1

(M2
R − t)(M2

π − u)
,

Fb2
15 =

4G1(q2
2)Fρπ(q2

1)

(M2
ρ − u)(M2

π − t)
+

4H1(q2
2)FRπ(q2

1)q2
2

(M2
R − u)(M2

π − t)
. (3.103)

3.9.4 Discontinuities for the heavier vector state R

The discontinuities in the t- and u-channel for a heavy vector meson R are expressed in terms of the
set of initial tensor structures, see Sec. 3.9.1, and ∆ρR = M2

ρ −M2
R,

∆R
t (t; s, q2

1 , q
2
2)

= εµ(q1, λ1)εν(q2, λ2)εα(p, λρ)2πe
2δ(t−M2

R)(2π)4δ(4)(p+ pπ − q1 − q2)FRπ(q2
2)

[
H1(q2

1)
(

(q2
1 + ∆ρR)

[
T in,µνα

4 + T in,µνα
6

]
− 2q2

1

[
T in,µνα
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24

])
−H2(q2

1)
(
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32

)

−H3(q2
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(

2T in,µνα
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12 + T in,µνα

32
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−H4(q2
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(
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49 + q2
1
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])]
,

∆R
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3.9.5 Constants and parameters

We collect the masses and widths used throughout the calculations in Table 3.2.
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Variable Value [34] / MeV

π± Mπ± 139.57039(17)

K± MK± 493.677(13)

ρ±(770)
Mρ 775.11(34)

Γρ 149.1(8)

ω(782) Mω 782.66(13)

ρ(1450) Mρ′ 1465(25)

ω(1420) Mω′ 1410(60)

a1(1260)
Ma1 1230(40)

Γa1 380(80)

a2(1320)
Ma2 1318.2(6)

Γa2 107(5)

Table 3.2: Masses and widths needed for the calculations in this article, with the values taken from
Ref. [34].

3.9.6 Meson multiplets

The multiplets of mesons with the same quantum numbers JPC are collected in matrices,

P =




π0
√

2
+ η8√

6
+ η0√

3
π+ K+

π− − π0
√

2
+ η8√

6
+ η0√

3
K0

K− K̄0 − 2η8√
6

+ η0√
3


 ,

Vµ =




ρ0√
2

+ ω8
√

6
+ ω0
√

3
ρ+ K∗+

ρ− − ρ0√
2

+ ω8
√

6
+ ω0
√

3
K∗0

K∗− K̄∗0 − 2ω8
√

6
+ ω0
√

3



µ

,

Aµ =




a01√
2

+
f8
1√
6

+
f0
1√
3

a+
1 K+

1

a−1 − a01√
2

+
f8
1√
6

+
f0
1√
3

K0
1

K−1 K̄0
1 − 2f8

1√
6

+ f1
0

√
3



µ

,

Tµν =




a02√
2

+
f8
2√
6

+
f0
2√
3

a+
2 K∗+2

a−2 − a02√
2

+
f8
2√
6

+
f0
2√
3

K∗02

K∗−2 K̄∗02 − 2f8
2√
6

+
f0
2√
3



µν

, (3.105)

where η8/0, ω8/0, f
8/0
1 , and f

8/0
2 denote the octet and singlet state, respectively, which are mixed to

form the physical states η and η′, ω and φ, f1 and f ′1, and f2 and f ′2.

3.9.7 Additional plots

The plots in Fig. 3.18 and Fig. 3.19 show the comparison of the full model to the point-like model,
which showcases only the loop contributions and the normalisations, for (symmetrised) singly-virtual
a1 TFFs.
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Figure 3.18: Singly-virtual a1 TFFs: imaginary parts as solid lines, real parts as dash-dotted lines.
The brighter lines correspond to the full model, whereas the darker lines show the model with point-
like couplings; results shown in the second diagram are multiplied by factors of Q2n according to
Table 3.1. The full model contains both G2 and H2. The error bands in the first diagram represent
the uncertainty in the coupling constant Ca1ρπ.
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Figure 3.19: Symmetrised singly-virtual a1 TFFs: imaginary parts as solid lines, real parts as dash-
dotted lines. The brighter lines correspond to the full model, whereas the darker lines show the
model with point-like couplings; results shown in the second diagram are multiplied by factors of Q2n

according to Table 3.1. The full model contains both G2 and H2. The error bands in the first diagram
represent the uncertainty in the coupling constant Ca1ρπ.



Chapter 4

Conclusion and outlook

Still round the corner there may wait
A new road or a secret gate
And though I oft have passed them by
A day will come at last when I
Shall take the hidden paths that run
West of the Moon, East of the Sun.

J.R.R. Tolkien, The Return of the
King [329]

In this thesis, we have presented two projects where form factors and loop effects play a domi-
nant role to achieve a precise prediction of hadronic processes. One concerns the decay of a pseudo-
Goldstone boson to another pseudo-Goldstone boson and two leptons via a two-photon interme-
diate state, which is modelled via vector-meson resonances, both as intermediate states and for the
form-factor description. The other project concentrates on transition form factors of resonance states,
which are obtained from π and ρ intermediate states. The ρ resonance itself describes here a 2π in-
termediate state. Knowledge of ρ and π (transition) form factors is presumed in both projects and
implemented to different orders of refinement.

The major difficulties in such endeavours lie on the one hand in the fact that loop contributions
are naturally harder to calculate than tree-level effects. This required considerable numerical effort in
the projects presented here and establishes a connection to the field of high-performance computing
(HPC), which might become even more important in future projects in this direction. Algorithms for
numerical integration in general and for the evaluation of one- or multiloop integrals in particular are
already available, but need to be tested and sometimes adapted for the specific purpose, and since
often several of these methods need to be combined, interference effects can occur. Ensuring numerical
stability and controlling uncertainties needs to be done carefully.

On the other hand, the development of suitable frameworks can be challenging, especially since
hadronic loops including resonances are in general not well-defined in the context of RChPT and
dispersive methods need input, which is scarce for short-lived broader resonances. Both dispersion
theory and RChPT include in principle infinite sums over intermediate states. Therefore, in any
practical calculation, the truncation of these sums introduces errors, and in order to contain those, it
is essential to identify and include the dominant contribution and estimate the magnitude of the error.
For this, some intuition is helpful, which should be complemented with experimental observations
and theoretical considerations, such as expansions in different parameters. Low-energy limits and
expectations concerning the asymptotic behaviour constrain these processes at intermediate energies
to some extent; matching to such constraints can help with the aforementioned goals. In some cases,
one can include higher-order effects via effective terms matched to low- and high-energy limits [106, 107,
244]. We have used a similar idea when introducing an additional heavy-vector-meson intermediate
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state in order to match constraints. This could be investigated more systematically by including a
heavy pseudoscalar state instead.

In order to estimate systematic effects, we compared different versions of our models in both
projects. In some cases, the version most convincing from a theoretical point of view yields only a
minor change in the result compared to a simpler version, which implies also less numerical difficulties
and more stability. This is the case for the semileptonic η(′) decays, where the energy-dependent dipole
FFs, which fulfil all asymptotic constraints, result in almost the same numbers as the simpler monopole
FFs. For these decays, the uncertainty is currently dominated by the experimental uncertainty of the
coupling constants; if this changes in the future, more subtle FF effects might become relevant. For the
η → π0γγ decay, which is less suppressed than the semileptonic process, it has already become apparent
that the current models are not precise enough. The tension between the experimental results of the
A2 experiment at MAMI [177] and KLOE2 [330] motivates an investigation of additional intermediate
states, such as the a2 in the s-channel [181, 331], and their interference with other intermediate states.

A somewhat similar situation can be observed for the a1 TFFs: normalisations and asymptotic
behaviour are described similarly by two versions of the model, one of them implementing the correct
high-energy behaviour of the input ρ and π FFs, whereas the other one neglects the fact that ρ and
π are expected to behave differently and the model should therefore be asymmetric. But the only
way to find out how significant corrections are is to calculate different versions and compare them.
In the TFF project, some difficulties emerged that could not be solved within this thesis, namely the
renormalisation of some of the loop integrals and the inclusion into the current HLbL framework [278,
282, 301]. These tasks are left for the future, as well as an improved implementation of unitarity
constraints.

With a future refinement of the HLbL framework that might take into account more intermediate
states [300, 332], a good understanding of these TFFs and their subtleties becomes even more imper-
ative than it is today. For this, it would be interesting to set up different frameworks for the TFFs:
an improved version of the one presented here, where imaginary parts arise, but renormalised, and on
the other hand a framework that takes into account RHCs in the ρπ → γ∗γ∗ system, as well as a more
complete description of the discontinuity in a1/2 → γ∗γ∗, and works in the NWA. Comparing these
different versions could yield insight into the effect of these different assumptions. Such a comparison
could even be extended to other resonances such as the f2.

Specifically in the case of tensor mesons, novel insights could be obtained from such frameworks.
Since out of five TFFs, only FT1 and FT2 contribute to the on-shell decay width, the others are harder
to investigate and understand. On the other hand, in holographic QCD (hQCD), only FT1 and FT3
contribute [284], and in the HLbL framework with four-point kinematics, more than two TFFs con-
tributing leads to problems with spurious kinematic singularities [278]. This raises questions about
the relative magnitude and asymptotic behaviour of tensor TFFs. A different point of view on these
could help to figure out this situation.

On a more fundamental level, one can ask what a complete description of a resonance might even be.
The difficulties to define and include resonances into models relates to this. The notion of a pole in the
complex T matrix is probably one of the most appropriate descriptions, but it is also rather abstract.
Obtaining all possible effects and interferences with other effects on an observable does not follow
automatically from this definition. In this sense, investigating different frameworks for resonances that
allow for an evaluation of observables can improve the understanding of the intermediate sector of
strong interactions. An example for this is given in Ref. [244], where two dispersive frameworks for
the VVA correlator, which imply different intermediate states, are compared.

Future experiments with improved precision require theorists to improve their understanding of
higher-order effects in hadronic processes and to communicate this understanding in a suitable way,
presenting results such that they can be utilised in further experimental and theoretical analyses. The
semileptonic η(′) decays might be measured with higher event number and improved precision [152],
such that a comparison with the SM result calculated in this work might yield a BSM signal. There exist
multiple models for C- and CP-violating extensions of the SM. A systematic and model-independent
approach to study these is given by the framework of the SM effective field theory (SMEFT), which
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collects all operators at a given order of suppression by a heavy scale. The effect of such SMEFT
operators on calculations in the low-energy regime can be studied, as has been done in Ref. [163].
Similarly, multiple BSM extensions could explain a potential anomalous magnetic moment of the
muon. Understanding the different contributions and how they relate to and are constrained by other
processes is necessary to differentiate between different BSM options. Before that, however, deviations
between the SM and experiment need to be verified or falsified with high confidence.

It becomes clear in working on and presenting these projects how important it is to collaborate—
between theory and experiment, between theory and HPC, between theory and lattice theory, and
also within theory. Additionally, different people come with different knowledge and different ideas,
and sometimes a fresh view on a project makes all the difference. Different frameworks need to be
reconciled such that results can be compared or utilised for the next step, and each field requires input
from outside. Some steps in this direction have been taken in this work, and more are to be taken in
the future.
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