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ABSTRACT

Object detection and 6D object pose estimation are foundational components in a visual
scene understanding system. Despite the intertwined nature of these tasks, the stan-
dard methods for scene understanding decouple object detection and pose estimation.
They perform object detection in the first stage and process only the crops containing
the target object to estimate pose parameters. In this thesis, we present an alternate
approach called multi-object pose estimation, in which we perform joint object detec-
tion and pose estimation in a single step for all the objects in the scene. We formulate
multi-object pose estimation as a set prediction problem. We utilize the permutation
invariant nature of the recent Transformer architecture to generate a set of object pre-
dictions for a given single-view RGB image. Our model achieves accuracy comparable
to the state-of-the-art models while being significantly faster. Video sequences contain
rich temporal information that offer additional context than single-view images. To take
advantage of the temporal information contained in the video sequences, we develop an
enhanced version of our multi-object pose estimation model by incorporating temporal
fusion modules and demonstrate improved pose estimation accuracy as well as improved
object detection accuracy. In general, datasets are crucial for learning-based perception
methods. The most commonly used datasets for object-centric scene understanding fea-
ture static scenes. To enable dynamic scene understanding, we introduce a photo- and
physically-realistic dataset featuring simulations of commonly occurring bin-picking sce-
narios. We use this dataset to evaluate the temporal fusion approach we present in this
thesis. Moreover, ability to refine less accurate pose predictions is an important attribute
in building robust scene understanding systems. We introduce pose and shape parame-
ter refinement pipelines based on iterative render and compare optimization. However,
comparing rendered and observed images in the RGB color space is error-prone. Thus,
we propose image comparison in learned feature space that are invariant to secondary
lighting effects. To facilitate time efficient iterative refinement, we develop a lightweight
differentiable renderer. Furthermore, real-world objects exhibit symmetry. The standard
pose estimation models are designed to estimate a single plausible pose among a set of
symmetrical poses. Thus, they are not suitable for inferring symmetry. To this end, we
model object symmetries using implicit probability density networks and present an au-
tomatic ground-truth annotation scheme to train such implicit networks without manual
symmetry labels.
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INTRODUCTION

The ability of autonomous robots to interact with their environment greatly depends on
their scene understanding capabilities. The environments in which the robots operate
determine the exact definition of scene understanding. In the context of autonomous bin-
picking, scene understanding involves detecting and recognizing the objects in the scene,
estimating their position and orientation with respect to a well-defined coordinate system
(shown in Fig. 1.1), reasoning about their symmetries, and estimating object shape pa-
rameters. Bin-picking environments are challenging due to the presence of a wide range
of objects and lighting conditions, a high degree of occlusion, and the dynamic nature of
the environment (see Fig. 1.2). Thus, they serve as a perfect setting for evaluating the
progress in scene understanding algorithms. In this thesis, we present methods for learn-
ing and refining object poses for scene understanding. Selecting a suitable representation
greatly influences the learning potential of a machine learning model. This motivates us
to investigate different representations for 6D pose parameters and object symmetries.
We evaluate our methods on the standard scene understanding datasets featuring static
scenes as well as a dynamic bin-picking synthetic dataset created as a part of this thesis.

Krizhevsky, Sutskever, and Hinton (2012) introduced AlexNet, a convolutional neu-
ral network (CNN), which performed significantly better than the state-of-the-art object
recognition models on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC).
CNNs use a series of convolutional layers that are designed to automatically detect fea-
tures such as edges, textures, objects, and other important aspects of images. The hierar-
chical nature of the CNNs enables learning low-level image features like edges and corners
in the initial layers and aggregating these features to learn high-level concepts like objects,
humans, and other complex visual elements in the final layers. Although earlier versions
of CNNs have been used successfully in applications like hand-written digits recognition
and automatic meter reading (LeCun et al., 1998; Behnke, 2003b), the computational
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Figure 1.1: Object pose definition. 6D object pose is defined as the translation and the rotation
of an object with respect to the camera coordinate frame. Both the translation and
the rotation components consist of three degrees of freedom each.
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Figure 1.2: Left: An industrial bin-picking setup: Amazon Robotics Sparrow system?.
Right: A typical bin featuring a diverse set of objects (Schwarz et al., 2018a)

and dataset limitations hampered the broader adoption of CNNs. With the availability
of general purpose graphics processing units (GPGPUs) and improvements in distributed
multi-GPU training schemes, training deep CNNs was made possible (Ciresan et al., 2011;
Ciregan, Meier, and Schmidhuber, 2012; Schulz and Behnke, 2012). Moreover, algorith-
mic improvements like activation functions (Nair and Hinton, 2010; Jarrett et al., 2009),
pooling mechanisms (LeCun, Kavukcuoglu, and Farabet, 2010; LeCun, Huang, and Bot-
tou, 2004), and regularization techniques (Hinton et al., 2012) made AlexNet successful.
It demonstrated the capabilities of deep learning and kick-started widespread adoption of
deep learning for computer vision. Since then, deep learning has become the predominant
machine learning method for solving computer vision tasks. Deep learning architectures
like deep residual learning (He et al., 2016), fully convolutional neural networks (Long,
Shelhamer, and Darrell, 2015), attention-based vision transformers (Vaswani et al., 2017;
Dosovitskiy et al., 2021) have greatly increased the capabilities of deep learning models.
In an orthogonal direction, large-scale datasets featuring diverse environments also made
training deep learning models feasible on a wide range of tasks. Furthermore, improve-
ments to training schemes emerged, such as fine-tuning. In this approach, only a few final
layers of the models are trained for specific tasks after initially training the model from
scratch on large-scale datasets, which removed the barriers for applying deep learning in
data-limited domains.

Starting in 2015, Amazon Robotics organized the annual Amazon Robotics Challenge
(ARC) for three editions with an emphasis on bin-picking scenarios (Correll et al., 2016;
Schwarz et al., 2017; Schwarz et al., 2018a). In the first two editions of the competition,
the competing teams were given the actual set of objects weeks in advance. In the final
edition, only half the objects were given in advance, and the rest were given to the teams
40 minutes before the start of the competition. This increase in complexity was set to
encourage the research community to explore data- and compute-efficient perception al-
gorithms. The performance of the participating teams demonstrated the progress made
in scene understanding, which was mostly driven by deep learning. Moreover, it show-
cased the impact of physically realistic data augmentation and synthetic data generation
pipelines on efficient training of deep learning models. However, it also highlighted the
limitations of the prevalent perception systems at that time. Most teams opted for 2D
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perception tasks, i.e. object detection and/or semantic segmentation. Only a few teams
incorporated 3D tasks like pose estimation in their perception pipelines. Even the teams
that included 3D perception components used them as a supplement to the predominant
2D perception pipelines in limited scenarios. This is due to several factors. First, ac-
quiring 3D annotations is time- and resource-consuming. Second, developing automated
annotation pipelines for 3D is significantly more complex than for 2D. Finally, the ob-
ject pose estimation methods at that time performed poorly under occlusion and were
decoupled from the object detection modules. Despite, the remarkable progress made by
pose estimation methods in recent years, the standard perception pipelines still follow a
decoupled design in which object detection is performed in the first stage and only the
crops containing the target object are processed by pose estimation models in the second
stage (Hodan et al., 2020; Sundermeyer et al., 2023). Such pipelines necessitate complex
specialized layers like non mazimum suppression (NMS), region of interest (Rol) pooling,
and anchor boxes. In cluttered environments, this decoupling leads to poor results. In this
thesis, we address these limitations by introducing multi-object pose estimation as a set
prediction formulation, in which we perform object detection and pose estimation jointly
in a single step.

We incorporate ideas from well-established sub-fields of computer vision and com-
puter graphics like render-and-compare (Nair, Susskind, and Hinton, 2008; Krull et al.,
2015; Moreno et al., 2016), differentiable rasterization (Loper and Black, 2014; Liu et
al., 2019), and neural implicit models (Xie et al., 2022; Mildenhall et al., 2021; Mur-
phy et al., 2021) to predict and refine multi-object poses, and model object symmetries.
Render-and-compare is a special case of the analysis-by-synthesis paradigm in which an
image rendered according to an initial estimate of scene parameters is compared with the
observed image of the scene. By iteratively adjusting the parameters to minimize the dif-
ferences between the rendered and the observed images, we generate more accurate scene
parameters. The pose and shape refinement methods we discuss in Chapter 4 follow the
render-and-compare approach. We utilize a differentiable rasterizer, which renders an
image given the scene parameters in the synthesis step and provides gradients of the
scene parameters with respect to the rendered image during the optimization step in our
pipeline for pose and shape refinement. Symmetry is a common feature of objects found
in nature and human-made environments. However, the standard pose estimation models
estimate a single pose given an input image. This does not reveal any information about
the symmetry. To capture symmetry, we investigate the object pose representations based
on implicit probability functions (Murphy et al., 2021)

Microsoft Kinect spurred the era of inexpensive depth cameras (Zhang, 2012). Robotics
and computer vision research greatly benefited from the availability of affordable depth
cameras (Endres et al., 2013; Schwarz et al., 2018b; Zollhofer et al., 2018; Gupta et al.,
2014). However, depth cameras have a limited effective measurement range, a narrow
field of view (FOV), and operate at lower frames per second (fps) compared to RGB
cameras (Robinson and Contributors, 2020; Jing et al., 2017). Industrial depth cameras
offer improved capabilities, but they are significantly more expensive than RGB cameras.
Moreover, depth cameras do not work well on highly reflective and transparent surfaces.
Thus, in this thesis, we only consider RGB input during inference. However, we assume
that high-quality 3D object meshes are available during training.

1 https://www.aboutamazon.com/news/operations/amazon-robotics-robots-fulfillment-center
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1.1

SUMMARY OF CONTRIBUTIONS

In this thesis, we present novel approaches for learning multi-object pose estimation
single-view RGB images and video sequences, refining pose and shape parameters using
abstract render and compare framework, implicit neural representations for modeling ob-
ject symmetries, and introduce a photo- and physically-realistic dataset and its generator.
The contributions we present in this thesis are as follows:

1.1.1

Simulated dynamic bin-picking dataset. A photo- and physically-realistic dataset
together with its generator. The dataset features commonly occurring bin-picking
scenarios.

Multi-object pose estimation models. In contrast to the standard pose estimation
models, which are multi-staged, we present single-stage multi-object pose estima-
tion models that jointly perform object detection and 6D pose parameter estimation
in a single step.

Multi-object pose tracking using temporal fusion. Multi-object pose estimation model
utilizing temporal fusion for improved object detection and pose estimation accu-
racy from video sequences.

Object pose and shape refinement using abstract render-and-compare. Methods for
object pose and shape parameters refinement based on the abstract render-and-
compare approach. We also present a lightweight differentiable renderer to facilitate
gradient-based optimization in the iterative render-and-compare framework.

Implicit probability density networks for modeling object symmetries without explicit
symmetry labels. A neural implicit probability density function to model object
symmetry and an automatic ground-truth generation pipeline to train the implicit
model without explicit symmetry labels.

PUBLICATIONS

Parts of this thesis have been published in peer-reviewed conference proceedings and
journals. The most relevant publications covering the chapters of this thesis are listed
below in chronological order:

Arul Selvam Periyasamy*, Max Schwarz*, and Sven Behnke:

Refining 6D object pose predictions using abstract render-and-compare

In: IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids),
Toronto, Canada, 2019. DOI:10.48550/arXiv.1910.03412

Arul Selvam Periyasamy*, Max Schwarz*, and Sven Behnke:

SynPick: A dataset for dynamic bin picking scene understanding

In: 17th International Conference on Automation Science and FEngineering
(CASE), Lyon, France, 2021. DOI:10.48550/arXiv.2107.04852


https://arxiv.org/abs/1910.03412
https://arxiv.org/abs/1910.03412
https://arxiv.org/abs/2107.04852
https://arxiv.org/abs/2107.04852

1.1 SUMMARY OF CONTRIBUTIONS

Arash Amini, Arul Selvam Periyasamy, and Sven Behnke
T6D-Direct: Transformers for multi-object 6D pose direct regression

In: 48rd DAGM German Conference on Pattern Recognition (GCPR), Bonn,
Germany, 2022. DOI:10.48550/arXiv.2109.10948

Arul Selvam Periyasamy, Max Schwarz, and Sven Behnke:

Iterative 3D deformable registration from single-view RGB images using
differentiable rendering

In: 17th International Conference on Computer Vision Theory and Applications

(VISAPP), Lisbon, Portugal, 2022. DOI:10.5220,/0010817100003124

Arash Amini*, Arul Selvam Periyasamy™*, and Sven Behnke:

YOLOPose: Transformer-based multi-object 6D pose estimation using keypoint
regression

In: 17th International Conference on Intelligent Autonomous Systems (IAS),
Zagreb, Croatia, 2022. DOI:10.48550/arXiv.2205.02536

Best Paper Award

Arul Selvam Periyasamy™*, Luis Denninger*, and Sven Behnke:

Learning implicit probability distribution functions for symmetric orientation
estimation from RGB images without pose labels

In: 6th IEEFE International Conference on Robotic Computing (IRC), Naples, Italy,
2022. DOI:10.48550/arXiv.2211.11394

Arul Selvam Periyasamy, Arash Amini, Vladimir Tsaturyan, and Sven Behnke:

YOLOPose V2: Understanding and improving transformer-based 6D
pose estimation

In: Robotics and Autonomous Systems (RAS), Volume 168, pp 104490, 2023.
DOI:10.48550/arXiv.2307.11550

Arul Selvam Periyasamy™®, Vladimir Tsaturyan*, and Sven Behnke:

Efficient multi-object pose estimation using multi-resolution deformable attention
and query aggregation

In: 7th IEEE International Conference on Robotic Computing (IRC), Laguna Hills,
USA, 2023. DOI:10.48550/arXiv.2312.08268


https://arxiv.org/abs/2109.10948
https://arxiv.org/abs/2109.10948
https://doi.org/10.5220/0010817100003124
https://doi.org/10.5220/0010817100003124
https://doi.org/10.5220/0010817100003124
https://arxiv.org/abs/2205.02536
https://arxiv.org/abs/2205.02536
https://arxiv.org/abs/2205.02536
https://arxiv.org/abs/2211.11394
https://arxiv.org/abs/2211.11394
https://arxiv.org/abs/2211.11394
https://arxiv.org/abs/2307.11550
https://arxiv.org/abs/2307.11550
https://arxiv.org/abs/2307.11550
https://arxiv.org/abs/2312.08268
https://arxiv.org/abs/2312.08268
https://arxiv.org/abs/2312.08268
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Arul Selvam Periyasamy, and Sven Behnke:

MOTPose: Multi-object 6D pose estimation for dynamic video sequences using
attention-based temporal fusion

In: IEEE International Conference on Robotics and Automation (ICRA),
Yokohama, Japan, 2024. DOI:10.48550/arXiv.2403.09309

The following publications, listed in chronological order, are related to the topics pre-
sented in this thesis and were written during the time the presented research was con-
ducted. They are cited as external literature in this thesis and do not cover significant
parts of the chapters:

Arul Selvam Periyasamy, Catherine Capellen, Max Schwarz, and Sven Behnke:
ConvPoseCNN2: Prediction and refinement of dense 6D object pose

In: Communications in Computer and Information Science (CCIS), Volume 1474,
pp 353-371, 2020. DOI:10.48550/arXiv.2205.11124

Arul Selvam Periyasamy, Max Schwarz, and Sven Behnke:
Towards 3D scene understanding using differentiable rendering

In: SN Computer Science, Volume 3, Issue 3, pp 245, 2023. DOI:10.1007/s42979-
022-01663-3

1.1.2 OPEN SOURCE RELEASES

The following projects were developed to facilitate the research presented in this thesis
and were made open source.

o StilllebenDR. A lightweight differentiable renderer built on Stillleben?.

e SynPick Generator and Dataset. A photo- and physically-realistic dataset together
with its generator>.

1.2 OUTLINE

This thesis is structured as follows.

In Chapter 2, we present SynPick, a dataset for dynamic scene understanding and
discuss our implementation of the dataset generator.

In Chapter 3, we introduce a pipeline for automatic ground-truth symmetry pose
annotation based on render-and-compare. Using the generated annotations, we train an
implicit probability density network to model object symmetries without any explicit
symmetry annotation.

2 https://github.com/AIS-Bonn/stillleben/blob/master/python/stillleben/diff.py
3 https://www.ais.uni-bonn.de/datasets/synpick/


https://arxiv.org/abs/2403.09309
https://arxiv.org/abs/2403.09309
https://arxiv.org/abs/2403.09309
https://arxiv.org/abs/2205.11124
https://arxiv.org/abs/2205.11124
https://doi.org/10.1007/s42979-022-01663-3
https://doi.org/10.1007/s42979-022-01663-3
https://doi.org/10.1007/s42979-022-01663-3
https://github.com/AIS-Bonn/stillleben/blob/master/python/stillleben/diff.py
https://www.ais.uni-bonn.de/datasets/synpick/

1.2 OUTLINE

We present novel pipelines for object pose and shape refinement based on the abstract
render-and-compare framework employing our implementation of a lightweight GPU-
powered differentiable renderer in Chapter 4.

In Chapter 5, we introduce T6D-Direct, a multi-object pose estimation model based on
the set prediction formulation that performs joint object detection and pose parameter
regression.

We extend the T6D-Direct model to include keypoint regression and investigate fully
vision transformer models for multi-object pose estimation in Chapter 6.

In Chapter 7, we introduce MOTPose, a multi-object pose estimation model that fuses
temporal information from the video sequences to improve pose estimation accuracy.

Finally, in Chapter 8, we conclude the thesis and discuss future research directions.






SYNPICK: A DATASET FOR DYNAMIC SCENE
UNDERSTANDING

Datasets serve as the foundation upon which the machine
learning models are trained and validated. Several large scale
datasets for object perception exist. However, these datasets
consist of predominantly static scenes. Manually annotating dy-
namic scenes is prohibitively expensive. Modern physics engines
provide an alternative option to generate dynamic datasets for
object perception with minimal manual effort. In this Chap-
ter, we present SynPick, a photo-realistic physically-plausible
dataset of dynamic bin-picking scenes.

STATEMENT OF PERSONAL CONTRIBUTION

The SynPick dataset and generator presented in this Chapter are adapted from the
following publication.

Arul Selvam Periyasamy®, Max Schwarz*, and Sven Behnke:
SynPick: A dataset for dynamic bin picking scene understanding

In: 17th International Conference on Automation Science and Engineering
(CASE), Lyon, France. 2021.

The author of this thesis substantially contributed to all aspects of the publication,
including the literature survey, the conception, formalization, design, and implementation
of the dataset generator, the generation of the dataset, the evaluation of baseline method
on the generated dataset, the preparation of the manuscript, as well as the revision and
final editing of the version published.

2.1 INTRODUCTION

Large-scale datasets are one of the major factors driving the success of deep learning
models. Creation of the ImageNet dataset (Deng et al., 2009) marked an important mile-
stone in computer vision research. AlexNet (Krizhevsky, Sutskever, and Hinton, 2012)
kick-started the widespread adoption of deep learning in computer vision and eventually
in many other domains (Popel et al., 2020; Mehrish et al., 2023; Deng and Liu, 2018). The
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) version of the ImageNet
with 1000 classes, referred to as ImageNet-1K, consists of 1,281,167 training images,
50,000 validation images and 100,000 test images. The complete version dataset is re-
ferred to as ImageNet-21K. It consists of 14,197,122 images with 21,841 classes. ILSVRC
served as the standard benchmark for object recognition models. Over the years, sev-
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eral influential datasets like Microsoft Common Objects in Context (COCO) (Lin et al.,
2014) targeting object detection and semantic segmentation, KITTI Vision Benchmark
Dataset (Geiger, Lenz, and Urtasun, 2012) and Cityscapes (Geiger, Lenz, and Urtasun,
2012) focusing on autonomous driving, Open Images (Kuznetsova et al., 2020) with 9.2
million images and 30.1 million image-level labels for object detection and visual relation-
ship learning, YouTube-8M with 6.1 video segments targeting video understanding were
introduced. Halevy, Norvig, and Pereira (2009) in their article titled “The Unreasonable
Effectiveness of Data” highlighted the effectiveness of large-scale automatically-curated
low-quality annotations over manually-annotated high-quality but rather small-scale data
on a variety of task. Although, this article was published before the era of deep learning,
the follow-up article by Sun et al. (2017) titled “Revisiting Unreasonable Effectiveness of
Data in Deep Learning Era” noted that the phenomenon continuous in the deep learning
era as well. While the exact number of human hours spent on creating these datasets
is not explicitly documented in publicly available sources, creating large-scale datasets
is time- and resource-consuming. Moreover, the complexity of dataset creation also de-
pends on the nature of the annotations generated. Generating 3D bounding box and
6D pose annotations is relatively harder than 2D annotations like class labels, bounding
box, or semantic and instance segmentation masks. To address these limitations, data
augmentation techniques have been proposed. The data augmentation techniques are
easier to implement and require minimal resource- and time-overhead during the neu-
ral network training. These techniques can be broadly classified into data warping and
synthetic data generation (Wong et al., 2016; Shorten and Khoshgoftaar, 2019). Data
warping techniques like color space transformations, noise injection, and planar affine
transformations have been widely used since the early years of neural networks (LeCun
et al., 1998; Moreno-Barea et al., 2018; Shorten and Khoshgoftaar, 2019). Synthetic
data generation techniques involve overlaying object crops (see Fig. 2.2) on to random
backgrounds or existing annotated images (Schwarz et al., 2018a; Takahashi, Matsubara,
and Uehara, 2019; Pérez-Garcia, Sparks, and Ourselin, 2021). Although data augmenta-
tion techniques have been applied successfully in many computer vision tasks, the main
limitation of such techniques in the context of object pose estimation is the lack of photo-
realism and physically-plausibleness. To address this limitation, we follow the simulation
and rendering approach (depicted in Fig. 2.3) to develop SynPick, a dataset consisting
of bin-picking actions simulated using Stillleben (Schwarz and Behnke, 2020). Exemplar
image and ground-truth annotations are shown in Fig. 2.1.

2.2 RELATED WORK

In this section, we briefly review the commonly used datasets for object pose estimation.
See Table 2.1 for an overview.

YCB-VIDEO

The YCB-Video dataset (Xiang et al., 2018) consists of 92 RGB-D video sequences of
static scenes with 6D pose labels. Out of the 92 video sequences, 12 are used for testing
and the rest are used for training and validation. Overall, 133,827 images are contained
in the dataset. For each scene, a random subset of 21 objects are arranged in arbitrary
pose configurations. These 21 objects are selected from the YCB objects dataset (Calli et
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(a) Initial scene (b) Picking action

-
b=

X % &

(¢) Semantic annotation (d) Physics simulation

Figure 2.1: SynPick features typical dynamic bin picking sequences along with 6D pose & seman-
tic segmentation annotations.

Object Crop

Overlay
—_—

Augmented Image

Background

Figure 2.2: Data augmentation using object overlay. Crops containing objects are overlaid on to
the background. The augmentation process is simple but the augmented images are
neither photo-realistic nor physically-plausible.
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Rendering

3 k i il

Rendered Image

Background

Figure 2.3: Data augmentation using simulation & rendering. Physically-plausible photo-realistic
renderings are generated. The physics simulation and the rendering process is time-
and resource-consuming.

al., 2015). High quality 3D meshes are also provided with the dataset. The ground-truth
labels are generated using a semi-automated pipeline. The first frame a video sequence
is manually annotated. These pose annotations are further refined by registering the
signed distance function (SDF) representation of the objects with the depth image. For
the subsequent frames, the pose from the first frame is extrapolated using the camera
trajectory obtained using visual odometry techniques.

LINEMOD-OCCLUDED

Hinterstoisser et al. (2013) introduced the Linemod dataset consisting of 15 RGB-D video
sequences featuring 13 texture-less objects. In total, the dataset consists of 1,214 images.
In each video sequence, annotations are provided for only one object. (Brachmann et al.,
2014) extended the dataset with annotations for all the eight objects in one of the video
sequences (benchwise). This version of the Linemod is called Linemod-Occluded. The
texture-less nature of the objects make the Linemod-Occluded challenging. Since, the
size of the dataset is significantly smaller in comparison to YCB-Video, for example, a
supplementary synthetic version of Linemod-occluded is used for training and the real
version of the dataset is often used exclusively for testing.

HOMEBREWEDDB

HomebrewedDB (Kaskman et al., 2019) consists of 13 RGB-D video sequences of static
scenes captured using a moving camera, each containing 1340 frames. Two of video se-
quences feature drastic lighting and objects with alternate textures. The scenes are static
and 33 objects were used to construct the dataset and high-quality 3D models of the
object provided with the dataset. The objects are placed on markerboard with ArUco
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Figure 2.4: Amazon Picking Challenge (APC) setup (Schwarz et al., 2018b). Left:
Amazon-Kiva Pod and the robotic arm with the RGB-D camera and the suction
gripper. Right: Exemplary bin layouts.

markers to facilitate camera localization. Similar to the YCB-Video dataset, only the
first frames of the video sequences are manually annotated. For the rest of the frames,
the object poses are propagated using the marker-aided camera pose estimates.

RuTtGERS APC

In contrast to the standard pose estimation datasets which predominantly feature table-
top scenes, Rennie et al. (2016) introduced the Rutgers APC dataset with objects on
the Amazon-Kiva Pod (See Fig. 2.4). The scenes were captured using the RGB-D cam-
era mounted into a Motoman SDA10F robot. Each bin is captured from three different
positions. To ensure constant scene lighting, the camera was equipped with LED strips.
After an initial robot-pod calibration step, forward kinematics of the robot arm assists in
propagating pose annotations from the initial frame to the others. Overall, 10,368 images
featuring 24 objects are provided in the dataset.

TU DRESDEN LIGHT & TovyoTA LIGHT

Both TU Dresden Light (TUD-L) and Toyota Light (TYO-L) (Hodan et al., 2018)
datasets feature varying lighting and ambient settings TUD-L contains limited occlusion
and clutter. It consists of three objects captured under eight different lighting conditions.
TYO-L features 21 objects on table-top settings with four different table cloths and five
different lighting conditions. TUD-L and TYO-L consists of 23,914 and 1,670 images,
respectively.

FALLING THINGS DATASET

The most related to SynPick we present in this Chapter is the Falling Things Dataset
(FAT) (Tremblay, To, and Birchfield, 2018). It consists of renderings of randomly sampled
subsets of YCB objects placed in different indoor and outdoor scenes. Unlike most other

13
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Table 2.1: 6D Pose Estimation and Tracking Datasets

Name Type Objects #Frames Annotation I]J)lg}fiizz Dynamics Multi-View
YCB-Video I 21 133,827 Semi-auto Yes Static Moving cam
Linemod-Occluded 1 8 1,214 Semi-auto No Static Moving cam
TUD-L I 3 23,914 Semi-auto Yes Moving object No
TYO-L 11 21 1,670 Manual Yes Static No
HomebrewedDB I 33 17,420 Semi-auto No Static Moving cam
BlenderProc4BOP v flexible 50,000  Automated Yes Static 25 views
FAT 111 21 61,500 Automated Yes Falling Stereo
ObjectSynth v 39 600,000 Automated Yes Static 200 views
SynPick (ours) I11 21 503232  Automated Yes Pick/Move 3 views

I - real videos. II - real images.
IIT - synthetic videos. IV - synthetic images.

datasets, FAT does not include tabletop scenes where the objects are nicely arranged
without significant occlusions. Instead, the objects are dropped from a height onto the
scene, and using a physics engine the object interactions modeled. However, both the con-
text (kitchen/temple/forest) as well as the dynamics (objects falling on the background
geometry) do not really fit a bin picking application. In comparison, our dataset features
standard picking tote, and pick and move dynamics.

SELF-SUPERVISED POSE ESTIMATION

An interesting orthogonal approach to supervised pose estimation is the self-supervised
approach proposed by Deng et al. (2020). In this approach, a 6D pose estimation module
trained in a supervised manner is used to initialize the 6D poses for objects in the
scene. A robot then changes the configuration of the objects by random pick and place
actions. By capturing and propagating the initial pose estimate to the objects in new
configuration using forward kinematics, the authors generate new training data and refine
the pose estimator actively. While this method provides a scalable approach to train pose
estimators, it is limited by the simple object manipulation actions the robot can perform
without breaking the object pose tracking module. Our proposed method does not suffer
from this limitation and can model complex object interactions accurately. Furthermore,
our data generator runs faster than real-time and can be easily parallelized.

2.3 DATASET GENERATION

The dataset generator is built using the Stillleben library (Schwarz and Behnke, 2020).
Stillleben is a GPU-compatible fast rendering engine capable of generating photo-realistic
images for training machine learning models on the fly. It also has built-in support for
physics simulation through NVIDIA PhysX! library integration. The intended use of the
Stillleben library is to generate tabletop scenes with objects in random but physically
plausible pose configurations. The random pose configurations are generated by drop-
ping objects from a fixed height onto a tabletop and simulating physical interactions

1 https://github.com/NVIDIAGameWorks/PhysX
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Figure 2.5: Lighting variants. We show the same object arrangement in different sIBL light maps.

between the objects until the all the objects come to rest. The resulting static scene is
rendered once. In contrast, for generating the SynPick dataset, we need to render the
scene continuously to simulate dynamic bin picking scenes. To this end, we make following
modifications to the Stillleben library.

ARRANGEMENT & RENDERING ENGINE

We use the high-quality 3D meshes provided by the YCB-Video dataset (Xiang et al.,
2018) together with the physics-based scene arrangement engine described above with
minor changes to generate a realistic-looking pile of objects in a tote. Simulating colli-
sions with high-quality meshes is time consuming. However, convex hull approximations
for the mesh geometry enables faster simulation without physical-plausibleness of the
simulation. For the objects that are highly non-convex cup, bowl, and power drill, we
compute the smallest convex meshes describing the concave geometry accurately using
the V-HACD convex decomposition algorithm (Mamou, Lengyel, and Peters, 2016). We
randomly sample a set of objects such that the total volume does not exceed a threshold
of 71. We drop from the objects from a height into the tote and simulate effect of gravity
and inter-object collisions. After the initial scene arrangement step, we simulate different
pin picking scenarios and render the scene from three different view points. The physics
simulation is run with a very small step size of 2 ms to ensure realistic behavior. The
renderings are done at Full HD resolution (1920x1080) with a rate of 15 Hz (relative to
simulated time). To generate varying, yet realistic lighting conditions (see Fig. 2.5), we
use image-based lighting (IBL) maps from the sIBL archive?.

2 http://www.hdrlabs.com/sibl/archive.html
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/
)[/

Figure 2.6: Articulated gripper. The cone-shaped finger ends in an actuated tiltable suction cup
(joint axis marked in red).

SUCTION SIMULATION

We use an articulated gripper with a suction end effector with a cone-shaped finger
shown in Fig. 2.6 in our simulations. The finger ends in an actuated tiltable suction cup.
In real world, a successful pick using a suction gripper depends on how well the suction
cup seals onto the objects. When the suction cup seals onto the object surface tightly,
the objects will remain attached to gripper even under mild perturbation. In contrast,
when the seal is partial, the object might fall down due to gravitational influence or
collisions. We simulate the degree of sealing using raycasting. We cast ten rays from the
gripper perimeter in the direction of the gripper. Every object hit by the raycast (with
a maximum distance of 3 cm) is considered caught. For every caught object, a PhysX
joint is created between it and the suction cup, simulating a strong force pulling the
object against the gripper as well as limiting its orientation relative to the gripper. The
joints have a force limit of 40 N or 2 N ;| depending on whether all rays found a target
(indicating a good vacuum seal). If the force required to keep the object at the suction
cup exceeds this limit, the joint breaks and the object is dropped back into the tote.

BIN PICKING SCENARIOS

As a part of SynPick, we simulate three common real-world picking scenarios: untargeted
pick, targeted pick, and move.

UNTARGETED PICK

In the untargeted pick scenario, the objects are picked one at a time in any order with
the target of emptying the tote and stowing the all objects into a different target tote.
At any point during the untargeted picking process, the object with the most successful
pick probability is attempted. The object with the least occlusion often has the highest
probability of a being successfully picked. Starting from the RGB image, we follow the
planning and grasp heuristics selection strategy proposed by Schwarz et al. (2018a). We
use ground-truth segmentation masks rendered by Stillleben directly in place of a seman-
tic segmentation module. After extracting object contours, ideal suction points are found
inside the contour. Depending on object weight, either the pole of inaccessibility (Garcia-
Castellanos and Lombardo, 2007), i.e. the point with maximum distance to the contour
is found to minimize the chance of catching other objects, or the center of mass is com-
puted from the contour to ensure good mass distribution. To determine the object with
the highest probability of being picked, we utilize the clutter graph, which represents the
hierarchy of the objects’ positioning relative to the other objects; the object correspond-
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1

Figure 2.7: Picking heuristic. Given an RGB image and the ground-truth segmentation, we fol-
low Schwarz et al. (2018a) to generate object contours with suction grasp points, as
well as a clutter graph describing the scene layout. Each edge in the graph flows from
the object on top to the object below.

ing the node with the least incoming edges is the least occluded. The complete pipeline
is shown in Fig. 2.7.

Once the target object and the corresponding suction point are determined, we find
an inverse kinematics solution for the articulated gripper, which places the suction cup
orthogonally on the local surface, as estimated by a local average of the pixel-wise normals.
A gripper trajectory is then computed to bring the gripper to the target pose, apply
suction, and lift the object out of the tote. The gripper is moved along the trajectory
using Cartesian impedance control, with a stiffness of 2500 % and a spring damping
of 200 % The force exerted by the impedance control is limited to 200N . The high
stiffness simulates an industrial robotic arm holding the gripper in place. The picking
process is repeated until the tote is empty. If three picking attempts have failed, we
also stop the sequence to prevent infinite loops. An example untargeted pick sequence is
shown in Fig. 2.8 (a).

TARGETED PICK

In the second scenario, we simulate targeted picking, where a specific object needs to be
extracted. We run the same pipeline as above, with one key difference: We choose the
object which is occluded most, i.e. is at the bottom of the clutter graph. This choice should
lead to more complex object interactions during picking. Unsurprisingly, the success rate
of the targeted pick action is low compared to that of the untargeted pick.

17



18 SYNPICK: A DATASET FOR DYNAMIC SCENE UNDERSTANDING

(a)

Figure 2.8: Exemplary scenes from the dataset demonstrating the evolution of the scene while
the gripper is performing picking (a) and moving (b) actions. Objects in the tote are
covered /uncovered as the scene evolves.



2.4 DATASET STATISTICS

Table 2.2: SynPick statistics

Mode Split  Frames Object visibility
Untargeted pick train 137,544 0.77
Move train 99,786 0.67
Targeted pick train 164,991 0.77
Untargeted pick  test 31,119 0.77
Move test 23,910 0.69
Targeted pick test 45,882 0.75
Total 503232 0.74

Number of frames in each SynPick split along with the
corresponding mean visibility fraction.

MoVE

As a third possible scenario, we perform a non-picking manipulation sequence. The goal
is to disturb the object arrangement so that other occluded objects become visible. We
simulate the move action by moving the gripper, starting from one corner inside the tote,
to all four corners in random order. The gripper is moved at a fixed velocity of 0.1 =*.
In this mode, the gripper is operated with a lower stiffness of 1000 % and a force limit
of 30 IV . This ensures we do not squeeze objects against the immovable tote too much,
which could result in instability of the physics simulation. An exemplary scene for the
move action is shown in Fig. 2.8 (b).

2.4 DATASET STATISTICS
NUMBER OF FRAMES

For each of the actions simulated, SynPick provides 300 video sequences; 240 sequences
are used for training and 60 sequences are used for testing. Each sequence has varying
number of frames. In Table 2.2, we present the total number of images per simulated
action. Overall, SynPick consists of 503,232 images. Compared to most commonly used
object perception datasets, SynPick provides significantly large number of annotated
images, and covers diverse lighting and object interactions. See Table 2.1 for a detailed
comparison.

MEAN VISIBILITY FRACTION

Like in any computer vision task, occlusions present a significant hindrance for 6D pose
estimation. A prerequisite for training robust 6D pose estimation models is a dataset
that captures real-world occlusion scenarios. The quality of the annotations generated
by semi-automated pipelines often drops significantly in highly-cluttered environments.
Thus, most of the standard object perception datasets do not feature high degree of
occlusion. Physically realistic simulation of dynamic bin picking scenes captures more
realistic occlusion scenarios that are not captured in a static scene. To analyze the degree
of occlusions present in the SynPick dataset, we present in Table 2.2, the mean visibility
fraction for the different SynPick splits.
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. Targeted pick-test . Move-test . Untargeted pick-test
. Targeted pick-train . Move-train . Untargeted pick-train

Figure 2.9: Number of 6D pose annotations for each object category present in SynPick dataset
splits.

OBJECT DISTRIBUTION

In Fig. 2.9, we present the distribution of object categories across various splits of the
SynPick dataset. The random object selection scheme discussed in Section 2.3 selects
objects at random until the total volume exceeds a threshold. This ensures an even
distribution of the objects across the scenes. However, two of the biggest objects in the
dataset, master chef can and cracker box are featured less compared to other objects.
These two objects exhibit simple geometry with unambiguous texture. Thus, they are
easy to learn and the pose estimation methods perform well on these objects. Therefore,
we do not explicitly force these objects to appear equally often as the other objects.

2.5 MOTIVATION FOR TEMPORAL INTEGRATION

We present a simple motivating case for temporal integration in object pose estimation
methods based on the CosyPose (Labbe et al., 2020) model. This experiment is intended
to demonstrate the low-hanging fruit which can be reached by temporal filtering. We
implement an Exponentially Moving Average (EMA) with recursive filter coefficient «:

th = (1 — a)t,_1 + aty, (2.1)
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Figure 2.10: Position trajectory (z axis) of the scissors object in the first test scene. The raw
CosyPose (Labbe et al., 2020) predictions, an exponentially moving average with
different recursive filter coeflicients o, and the ground truth are shown. The time of
each pick attempt has been marked with a red circle.

where t,, is the CosyPose translation estimate at frame n of the sequence and ty, is the
filtered output. The object orientations are filtered very similarly, but in the quaternion
space in order to interpolate the orientations correctly:

Cjn = Slerp(qAn—la dn, O‘)a (2.2)

where slerp is the spherical linear interpolation function, which interpolates with 0 <
a < 1 between the two given rotations.

Figure 2.10 shows a sequence of raw CosyPose translation predictions in the z axis (into
the image) for one exemplary object. It can be seen that CosyPose exhibits both station-
ary noise as well as large deviations, which are mostly caused by temporary occlusions—
either by the gripper or other objects. While our naive filtering cannot address steady-
state errors, it does smoothen the stationary noise and softens the large jumps caused by
occlusions. The single-view 6D pose estimation methods are useful, but does not really
capture a real bin picking situation. In our picking scenario, which is typical for indus-
trial applications, a tote of objects is emptied completely, object by object. It is certainly
beneficial to monitor the object poses over time, to make use of dependencies between
frames. This way, not only temporary effects such as occlusions by the gripper or other
objects can be mitigated, but noisy predictions can also be smoothed to obtain a more
precise estimate than from a single frame alone.

2.6 DISCUSSION & CONCLUSION

In this Chapter, we presented SynPick, a photo- and physically-realistic dataset of dy-
namic bin picking scenes. We built the SynPick generator on top of the openly avail-
able Stillleben renderer and simulated three commonly occurring pin picking actions:
untargeted pick, targeted pick, and move. For physics simulation, we utilize the
PhysX library from Nvidia. Our dataset features the same 21 objects from the YCB-
Video dataset (Xiang et al., 2018). Overall, the dataset consists of more than half a

21



22

SYNPICK: A DATASET FOR DYNAMIC SCENE UNDERSTANDING

million images with pose annotations. The robotic arm used in the dataset generation
consists of an articulated suction gripper. We model the suction characteristics of the
gripper using ray casting. This enables simulating complex scenarios where objects are
dropped due to collision while moving them out of the tote, even though the pick action
itself was successful. We make the dataset, as well as the generator, public. We hope that
the availability of SynPick will encourage the research community to explore dynamic
scene perception algorithms. Furthermore, we presented a motivating case for incorpo-
rating temporal information into the pose estimation models. Using a simple recursive
filtering, approach we demonstrate the improvement in the accuracy of a leading pose
estimation model on a SynPick sequence. In Chapter 7, we use SynPick to train and eval-
uate temporal information fusion in the multi-object pose estimation model we present
in Chapter 6.



IMPLICIT PROBABILITY DISTRIBUTION
FUNCTIONS FOR OBJECT POSE ESTIMATION

The standard object pose estimation models output a single 6D
pose. Thus, they lack the ability to reason about symmetries.
The parametric distributions used for modeling symmetry are
often computationally intractable and not suitable for learning-
based approaches. In this Chapter, we present an efficient alter-
native approach that models symmetries implicitly using neu-
ral networks. Moreover, we present a render-and-compare based
automatic pseudo ground-truth generation pipeline to train the
implicit probability distribution network without explicit sym-
metry labels.

STATEMENT OF PERSONAL CONTRIBUTION

The contents presented in this Chapter is adapted from the following publication.

Arul Selvam Periyasamy™*, Luis Denninger*, and Sven Behnke:

Learning implicit probability distribution functions for symmetric orientation es-
timation from RGB images without pose labels

In: 6th IEEFE International Conference on Robotic Computing (IRC), Naples, Italy,
2022.

The author of this thesis substantially contributed to all aspects of the publication, in-
cluding the literature survey, the conception, formalization, design, and implementation
of the proposed method, the creation of the Tabletop dataset used for evaluating the
proposed method, the preparation and conduct of experiments, the analysis and inter-
pretation of the experimental results, the preparation of the manuscript, as well as the
revision and final editing of the version published.

3.1 INTRODUCTION

Objects in our daily lives and industrial setups exhibit symmetries. Symmetries refer to
the characteristics of an object that make it appear unchanged when subjected to certain
transformations, such as reflections, rotations, or translations.

Vetter, Poggio, and Biilthoff (1994) studied the ability of human visual system to ex-
ploit symmetry to recognize objects in novel orientations, even when they have previously
seen only a relatively small number of different views. In their experiment, 14 human sub-
jects were presented with single training views of 32 symmetric and 32 non-symmetric
objects. The participants were able to recognize symmetric objects with higher accura-
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Figure 3.1: Pose uncertainty due to occlusion. (a) Coffee mug does not exhibit pose ambiguity
when the handle is visible. However, due to self-occlusion (b) or inter-object occlusion
(¢), the pose is ambiguous

(a) (b)

cies than the non-symmetric objects from novel test views. Thus, understanding and
exploiting symmetry forms a core attribute of the human visual system.

However, in the context of computational object pose estimation, symmetries introduce
multiple challenges including:

1. Ambiguity in pose representation. Due to symmetry, one image observation might
correspond to multiple poses. The standard neural network training schemes to esti-
mate a single pose employing discriminative loss functions are no longer applicable
in the presence of symmetry.

2. Limited discriminative features. Symmetrical parts of an object may share similar
visual features, making it difficult for algorithms to distinguish between different
poses. This lack of discriminative features can affect the accuracy and robustness
of pose estimation methods.

3. Computational complexity. Training model to understand the symmetries needs
more training data and training time than for the non-symmetric objects.

4. Limited generalization. Models trained on symmetric objects may have difficulty
generalizing to objects with different symmetries or non-symmetric objects. This
lack of generalization can be a significant limitation in real-world scenarios where
objects exhibit diverse symmetries.

In addition to symmetries, uncertainties in object pose can also occur due to occlusion
(See Fig. 3.1). Modeling such uncertainties is vital for many autonomous systems.

Symmetries can be classified into visual symmetries and geometric symmetries. Visual
symmetries, as defined in Eq. (3.1), arise due to the lack of distinctive visual features,
whereas even in the presence of symmetry-breaking visual features, objects may exhibit
symmetries in terms of their geometry.

Formally, ambiguities occur when an object O appears similar under at least two
different poses P; and P}, i.e., we obtain the same image Z when object O is in pose P;
and P;:

I(0,P;)=1(0,P;). (3.1)

Knowing the object axes and type of symmetries, we can describe symmetries—despite
the presence of textures—with respect to the object’s geometry as discrete or continuous
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Figure 3.2: Objects exhibiting geometric symmetries. (a-c): Can object symmetries. Due to the
presence of visual-symmetry-breaking texture, the can object exhibits only geometric
symmetries, namely a continuous rotational symmetry along the z axis and a discrete
flip symmetry along the x and y axes. (d): Example of an object exhibiting translation

symmetry under partial occlusion.
Z)

symmetry axis
Y y symmetry plane symmetry plane

(a) (b) (©) (@)

rotations around the object axes, as shown in Fig. 3.2 (a-c). Moreover, objects with
repetitive geometric structures (shown in Fig. 3.2 (d)) exhibit translational symmetry
under partial occlusion. Formally, an object O consisting of n 3D points x can be consid-
ered to exhibit geometric symmetries when there are at least two poses P; and P; that
have a small mean closest point distance:

1
= in [|P;x; — Pixo|| ~ 0. 3.9
- ze:o’glel%" ix1 — Pjxo| (3.2)

Enumerating all sources of symmetries is not tractable, making an approach as shown in
Fig. 3.2 to describe arbitrary object symmetries not scalable.

Following the terminology introduced by Brégier et al. (2018), we define proper sym-
metries M as the group of poses that exhibit geometric symmetries:

M = {m € SE(3) VP ¢ SE(3),

1
— in ||P;x; —m - P; ~ .
- Eeogielgll X1 —m - Pxof| = 0}, (3.3)

with m being the transformations rotating the object around its symmetry axes in dis-
crete steps.

The methods for pose estimation for symmetric objects can be classified into two fam-
ilies. The first family of methods estimates a single valid pose P € SE(3) corresponding
to the RGB-(D) image. One major advantage of this approach is that the model architec-
tures remain the same for symmetric and non-symmetric objects. In both cases, given an
RGB-(D) image, the network generates a single 6D pose prediction. The only difference
lies in the loss function used to train the model. Thus, in terms of the neural network
architecture, training scheme, and inference, both symmetric and non-symmetric objects
are treated the same.

The second family of methods estimate the complete set of proper symmetries M.
Modeling symmetries explicitly provides benefits that are twofold: i) facilitate models in
learning better visual representations and ii) better integration with downstream tasks.
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In this Chapter, we build on the implicit probability distribution ImplicitPDF models
for rotation manifolds introduced by Murphy et al. (2021). Provided with an RGB image
and a pose hypothesis, we train a CNN to estimate the likelihood of the pose hypothesis
given the RGB image. The novelty of our approach is that we do not need explicit ground-
truth pose annotations to train the ImplicitPDF CNN model, eliminating the bottleneck
of acquiring large-scale ground-truth annotated dataset.

Given RGB-D images of symmetric objects without pose annotations, we propose an
automatic pose labeling scheme and train the ImplicitPDF model using the generated
pseudo ground-truth pose labels. The model trained with the pseudo ground-truth labels
is able to express the complete set of proper symmetries M without prior knowledge
about object symmetries.

3.2 RELATED WORK

The study of symmetries has a rich history that spans multiple disciplines, including
mathematics, physics, art, and philosophy.

An entire line of work were dedicated to detecting rotational symmetries from images
(Cho and Lee, 2009; Flynn, 1994; Labonte, Shapira, and Cohen, 1993; Wang and Huang,
2017; Thrun and Wegbreit, 2005). These approaches identify similar local patches using
handcrafted features, which are then grouped to predict the rotational symmetry or-
ders along different axes. While these methods work well in detecting symmetries, their
usability in pose estimation is rather limited.

Saxena, Driemeyer, and Ng (2009) proposed invariant representations for specific sym-
metry classes and trained a probabilistic Gaussian model to predict object orientation
from image inputs. Compared to such an approach, ImplicitPDFs allow us to model
symmetry of any arbitrary kind.

In the deep learning era, Wohlhart and Lepetit (2015) introduced the first metric
learning-based approach to deal with object symmetries. They learned symmetry-aware
descriptors using a triplet loss that minimizes/maximizes the Euclidean distance between
similar /dissimilar object orientations. Their training approach needed explicit symmetry
labels. During inference, the pose of the target object is determined using the nearest
neighbor search in the descriptor space.

Many of the state-of-the-art methods for predicting a single 6D pose are trained us-
ing ShapeMatch-Loss (Xiang et al., 2018) for symmetric objects (Hodan et al., 2020;
Labbe et al., 2020; Xu et al., 2022; Amini, Periyasamy, and Behnke, 2022). Employing
ShapeMatch-Loss implicitly selects one pose closest to the current pose prediction from
the proper symmetry set as ground-truth. While ShapeMatch-Loss does not need explicit
definition of symmetry, during training, the ground-truth pose depends on the current
pose prediction and this variability in ground-truth pose might hamper the models’ learn-
ing ability. In contrast, Pitteri et al. (2019) and Periyasamy, Schwarz, and Behnke (2018)
mapped the symmetrical rotations to a single “canonical” rotation. One disadvantage of
these methods is the requirement of explicit definition of object symmetry. Moreover,
modeling pose estimators as single-pose predictors is neither efficient nor informative.

In addition to the single pose estimator, Rad and Lepetit (2017) added an auxiliary
task to classify the type of symmetry an object exhibits. The authors argued that the
auxiliary task helped the model to learn additional properties of the object’s symmetry,
which, in turn, benefits 6D pose estimation. While the auxiliary task helped improving
the single pose prediction accuracy, the formulation of the auxiliary task as a classification
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task limits its scope in modeling proper symmetries. Gilitschenski et al. (2019) modeled
multiple pose hypotheses as Bingham distributions and trained a CNN model to estimate
the distribution parameters given an RGB-D input.

Corona, Kundu, and Fidler (2018) sidestepped the problem of estimating 6D poses
and modeled pose estimation as a task of image comparison. They trained a model to
estimate a similarity score of two RGB images and used the similarity score to select
the image from a codebook of images that best matches the test image during inference.
The pose corresponding to the matched image is considered as the pose of the target
object in the test image. In the case of symmetric objects, multiple images from the
codebook have a high similarity score. Since the inference involves comparing against
a large-size codebook of images, the inference time requirement is high. Sundermeyer
et al. (2020) addressed this issue by using augmented autoencoder AAE, a variant of
denoising autoencoder DAE, to learn a low-dimensional latent space representation for
images and uses the latent space for image comparison. Despite the speed-up achieved in
the codebook comparison, discretization of SO(3) is still needed to make the model real-
time capable. Manhardt et al. (2019) trained their model to generate a set of predictions
given an RGB image with an intent to cover multiple possible poses.

3.3 IMmpPLICIT PROBABILITY DISTRIBUTION FOR 6D POSE ESTIMA-
TION

Inspired by the success of neural fields in modeling shape, scene, and rotation mani-
fold (Xie et al., 2022; Mescheder et al., 2019; Mildenhall et al., 2021; Murphy et al.,
2021), we model the possible 6D object poses as a conditional probability distribution
of the likelihood P(P|Z) of the pose hypothesis P given an image Z implicitly using a
neural network. To this end, we train a neural network F to predict the unnormalized
joint log probability F(P,Z) of the pose hypothesis P and image Z as shown in Fig. 3.3.
Let a be the normalization constant such that

P(P,Z) = aexp(F(P,I)). (3.4)

Using the product rule,

PPz = P, (5.5)
where
P(I) = / P(P,T)dL. (3.6)
PESE(3)

We decouple the 6D object pose manifold P € SE(3) into separate translation t € R3
and rotation R € SO(3) manifolds:
PP, I) =PR,I)P(t,Z). (3.7)

For simplicity, we consider only the object orientation R € SO(3) instead of the 6D
pose € SE(3). To make computing marginal probabilities tractable, we replace the contin-
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Figure 3.3: Learning ImplicitPDF. Given an image RGB I and an orientation hypothesis R or
a translation hypothesis t, the CNN model is trained to generate the unnormalized
joint log probability of the hypothesis and the image.

uous integral in Eq. (3.6) with a discrete summation over a equivolumetric partitioning of

SO(3) with N partitions of volume V' = 7*/n, and cancel out the normalization constant

a:

1 exp(F(R,T))
V3 exp(F(Ri, )

PR|I) (3.8)

For a detailed derivation of Eq. (3.8), we refer to (Murphy et al., 2021). Note that Eq. (3.8)
can be adapted to object translation t € R3 with V = 1/n.

3.3.1 TRAINING

We train our model to minimize the negative log-likelihood NLL of the ground-truth pose
Paor:

L(Z,Pgr) = —log(P(Par|T)). (3.9)

Following Eq. (3.8), we approximate the computation of the distribution P(R;|Z) using
R; € {R"}, an equivolumetric grid covering SO(3) as in Section 3.3.3. The orientation
hypothesis R and the translation hypothesis t given to the model as input is represented
using positional encoding (Vaswani et al., 2017).

3.3.2 INFERENCE

During inference, given an image Z, we predict the (single) most plausible pose P} using
gradient ascent starting from a set of initial hypotheses {P°}:

P7 = argmax F(P, 7). (3.10)
PEcSE(3)
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Figure 3.4: Visualization of the ground-truth, the orientations (column b) and the transla-
tions (column c) predicted by the ImplicitPDF model for can and box objects.
Given an RGB image and an orientation hypothesis or a translation hypothesis, the
ImplicitPDF model estimates the likelihood. The continuous lines and circles repre-
sent the ground-truth symmetries and the dots represent the hypotheses with a high
estimated likelihood. The third degree of freedom is represented using a point on the
color wheel. In column c, the translation component t € R? is visualized using the
3D grid. The red circle represents the ground-truth translation.




30

IMPLICITPDF FOR OBJECT POSE ESTIMATION

Observed
Point Cloud

— FastGlobal —y ¢
Registration

Py Py P Rendered Depth

Observed Depth

— ICP —

Pixel-wise
& —> Renderer — !
Refinement -_>-

comparison

Model
Point Cloud

Figure 3.5: Pseudo ground-truth generation process. Given an RGB-D image without pose anno-
tation, we register the model point cloud in a random pose P, against the observed
point cloud using the fast global registration algorithm (Zhou, Park, and Koltun, 2016)
to generate hypothesis P;, which is further refined using the ICP algorithm utlhzmg
the depth information to generate P. We then render the model according to P to
generate the depth image. The rendered depth image is compared pixel-wise with the
observed depth image to compute the comparison score S. For a given RGB-D image
we run this process multiple times and select the P with the smallest S.

Additionally, to generate the full orientation and translation distributions, we evaluate
PRyJ|Z):R; € {R"} sampled equivolumetrically over SO(3) and P(tj|Z):t; € {t"}
sampled equivolumetrically over R3, respectively.

3.3.3 EQUIVOLUMETRIC SAMPLING AND VISUALIZATION OF SE(3)

The translation component t is sampled uniformly in R? and it is visualized using a 3D
grid. To sample the rotation component R, We follow the equivolumetric sampling of
the rotation manifold approach proposed by Murphy et al. (2021) to generate {R"} and
{R"} to cover SO(3) at different resolutions. Using the HEALPix algorithm (Gorski et al.,
2005) as a starting step, we generate equal area grids on the 2-sphere and iteratively use
Hopf fibration (Lyons, 2003) to follow a great circle through each point on the surface of a
2-sphere to cover SO(3). We also use the visualization method proposed by Murphy et al.
(2021) to visualize distributions of object orientations on the SO(3) manifold. Rotation
matrices in SO(3) have three degrees of freedom—two of the degrees of freedom are
represented as a 2-sphere and projected on to a plane using Mollweide projection. The
third degree of freedom is represented using Hopf fibration by a great circle of points
to each point on the 2-sphere. The location of a point on the great circle is represented
using a color wheel as shown in Fig. 3.4. The number of samples generated in iteration
S; is given by 72 - 8%,

3.4 LEARNING WITHOUT GROUND-TRUTH ANNOTATIONS

Murphy et al. (2021) introduced the SYMSOL I and SYMSOL II datasets to benchmark
symmetry learning methods. The datasets consist of renderings of platonic solids (tetrahe-
dron, cube, icosahedron), cone, and cylinder and corresponding ground-truth symmetries.
In real-world applications, acquiring ground-truth symmetry annotations is prohibitively
expensive. To address this issue, we propose a two-stage automatic pose labeling scheme
as illustrated in Fig. 3.5.
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(a) (b) (c)

Figure 3.6: Visualization of pseudo ground-truth generation. (a) RGB image of the scene. (b)
Pose generated by the fast global registration (Zhou, Park, and Koltun, 2016) al-
gorithm. (c¢) Final pseudo ground-truth pose generated by ICP optimization. In (b)
and (c), the point clouds in ground-truth poses are visualized in green and the point
clouds in generated pseudo ground-truth poses are visualized in red.

Given an RGB-D image of a scene and the 3D mesh of the target object, we start with
unprojecting the depth map into 3D to generate the observed point cloud Cps. We trans-
form the model point cloud Cj,4e1 according to a random initial pose Py and perform
global registration of the transformed model point cloud against the observed point cloud
to generate a pose hypothesis P;. We employ the fast global registration algorithm (Zhou,
Park, and Koltun, 2016) in conjunction with Fast Point Feature Histogram (FPFH) fea-
ture (Rusu, Blodow, and Beetz, 2009) to perform global registration. We refine P; using
the Iterative Closest Point (ICP) algorithm to generate P. The results of the different
stages of the pipeline are visualized in Fig. 3.6. Transforming C,,4e; to a random initial
pose Py at the beginning ensures that we generate a different P every time we run the
process for an RGB-D image. This way, we generate a set of pseudo ground-truth pose
labels for each image in the training set. The variability in the set of generated pseudo
ground-truth pose labels for an image is vital for the model in learning the complete set of
proper symmetries. Due to self-occlusion, an object is only partially visible in an RGB-D
image. Without the knowledge of camera view direction, registering the complete model
point cloud Cinoder against the partial observed point cloud C,,s might result in bad
registrations and it is not possible to detect the bad registrations based on the standard
{5 distance metric. To address this issue, we utilize the render-and-compare framework.
We render the depth map according to P and compare it pixel-wise with the observed
depth map. In the ideal scenario, the render-and-compare difference should be close to
zero. To generate one pseudo ground-truth label, we repeat the process multiple times
and select the P with the smallest comparison score.
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Figure 3.7: Exemplar RGB images from the Uniform and Texture dataset.
First column: Uniform dataset. Second column: Texture dataset.

3.5 EVALUATION
3.5.1 TABLETOP DATASET GENERATION

To evaluate the proposed method, we generate a photo-realistic Tabletop dataset using
the Isaac GYM framework (Makoviychuk et al., 2021). The dataset consists of three
objects—can, box, and bowl (shown in Fig. 3.7)—placed in randomly-sampled physically-
plausible poses on a tabletop. The translation varies approximately one meter in the x-
and y-dimension and 30 centimeters in the depth dimension z. Each frame in the dataset
consists of an RGB-D image, 6D object pose (single pose used to render the image)
and segmentation ground-truth. Moreover, to evaluate the impact of the object texture
over the model’s ability to learn symmetries, we generate two versions of the dataset:
using a uniform colored texture and using the original material texture. We call these
datasets Uniform and Texture, respectively. Both datasets consist of 20K images. 20%
of the samples in each dataset are used for validation and the remaining are used for
training.

3.5.2 IMPLEMENTATION DETAILS

We train our model for 50 epochs with 200 iterations per epoch. Each iteration consists
of a batch of 64 images. We assume that the object bounding box and the object segmen-
tation mask are available to us. Using the bounding box, we extract a crop of 560x560
and resize it to the standard ResNet/ConvNeXt input size 224x224. Additionally, we
mask the background pixels using the segmentation mask. To compute P(Rgt |Z) we
use a grid {R%} of cardinality 4,608 (S;=2) and to compute P(tgt |Z) we discretize
t € R3 into 4,913 bins. During testing, we compute the evaluation metrics using {R"}
of cardinality 294,912 (S;=4) and 97,336 translation vectors.
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Figure 3.8: The training loss, the log-likelihood, the MAAD and Recall MAAD metrics, and the ¢
distance metric on the validation set during the training process on the Uniform and
Texture dataset. We early stop the training after 30 epochs when the log-likelihood

starts stagnating.
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Figure 3.9: Pose distributions predicted by our model. (a): Texture dataset. (b): Uniform dataset.
The visualizations are generated using 294,912 orientation hypotheses (S;=4) and
97,336 translation hypotheses.

(b) Uniform dataset.
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3.5.3 EVALUATION METRICS

To evaluate the performance of the proposed method for orientation estimation, we use
the log-likelihood (LLH) and the mean absolute angular error (MAAD) metrics. Given
a set of ground-truth annotations Rgp, the LLH metric measures the likelihood of the
ground-truth orientations:

LLH(R) = E;up(r) Erpgr(ri7) log(P(RIT)).

To compute log-likelihood, we do not need the complete set of proper symmetries. The
standard mean absolute angular deviation (MAAD) is defined as:

MAAD(R) = IERNP(R|I) [minR'GRGTd(R7 R/)],

where d is the geodesic distance between rotations.

We report Recall MAAD as a measure of recall. We extract a set of orientations {R}
with a predicted probability threshold of 1e-3. For each orientation in {Rg7}, we find the
closest orientation in {ﬁ} in terms of the geodesic distance and report the mean of the
shortest angular distance over the set {Rgr}. In the case of continuous symmetries, we
discretize the symmetries into 200 orientations for computing the Recall MAAD metric.

Furthermore, to evaluate the overall pose estimation accuracy of the proposed method,
we report the area under the curve (AUC) of the ADD-S metric (Xiang et al., 2018):

1 N ~
ADD-S = — min Rorxy +t — (Rxo + t)]]. 3.11
— XIE;MM oo [[(Rerx1 + tar) — (Rx2 + t)]| (3.11)

3.5.4 EXPERIMENTAL RESULTS

Our model learns to predict the 6D pose of the object on both Uniform and Texture
datasets. In Fig. 3.8, we show the training loss and the log-likelihood metric on the vali-
dation set during the training process. We early stop the training when the log-likelihood
metric starts to stagnate. Qualitative samples of the predicted pose distributions are
shown in Fig. 3.9. From the visualizations, we observe that the model learns to predict
the complete set of proper symmetries. In Tables 3.1 and 3.2, we report the validation of
the orientation set prediction in terms of LLLH and Recall MAAD and the accuracy of sin-
gle pose estimation in terms of the AUC of the ADD-S metric, £2 mesh point distance and
the MAAD metric for the orientation estimation, respectively. Overall, in the absence of
occlusions, our model achieves a MAAD score of ~3.38°, a Recall MAAD score of ~2.03°,
and an average fo translation error of 0.62. In terms of the AUC of ADD-S metric, our
model achieves an impressive 87.4 and 86.86 on the Texture and the Uniform dataset,
respectively. A lower MAAD indicates high accuracy of the orientation predictions and a
lower Recall MAAD shows that the model learns the complete set of proper symmetries.
Moreover, the LLH scores for the rotation and the translation predictions are 4.64 and
9.29, respectively. A higher LLH for the translation prediction compared to the rotation
prediction reflects the lack of ambiguity in the translation estimation task.
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Figure 3.10: Pose distributions predicted by our model in the presence of occlusion.
(a): RGB image of the scene augmented with occlusion. (b) & (c): predicted orien-
tation and translation distributions, respectively.

3.5.5 EFFECT OF OCCLUSION

Occlusion increases the complexity of computer vision problems. Pose estimation, in
particular, is heavily impacted by the presence of occlusion. To make our model robust
against occlusion, we train our model by masking out random crops in the input images.
We augment 80% of images in each training batch randomly. Between 10% and 50% of
the image portions are occluded. In Fig. 3.10, we present qualitative samples of the poses
predicted by our model in the presence of occlusion. Despite the presence of occlusion, our
model learns the pose distribution well on both Texture and Uniform dataset. Our model
performs only slightly worse compared to the occlusion-free model. Quantitatively, in the
presence of occlusion, our model achieves a MAAD score of ~5.57°, a Recall MAAD
score of ~2.16°, and an average f translation error of 0.86. Interestingly, in terms of
the Recall MAAD metric, the model trained using the single ground-truth annotation
performs significantly better than in the case of no occlusions. This can be attributed
to the uncertainty in the orientation estimate introduced by occlusion. Nevertheless,
the model does not learn the correct pose distribution from a single ground-truth label.
Moreover, LLH scores for the occlusion dataset are similar to the non-occlusion dataset.
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Figure 3.11: Comparison of training with multiple pseudo ground-truth annotations and single
ground-truth pose. Top: RGB image of the scene. Middle: Learning with a single
ground-truth pose. Bottom: Learning with multiple pseudo ground-truth poses. The
model trained using pseudo ground-truth annotations learns the complete pose dis-
tribution, whereas the model trained using a single ground-truth annotation learns
only the single ground-truth pose but does not learn the complete pose distribution.

This suggests that our models learn to deal with occlusion and the confidence in pose
predictions is not influenced by the presence of occlusion.

3.5.6 COMPARISON WITH TRAINING USING DIFFERENT GROUND-TRUTHS

To evaluate the effectiveness of the pseudo ground-truth pose labeling scheme, we trained
the implicit pose estimation model using three different types of ground-truth poses: sin-
gle ground-truth pose used to render the image, complete set of proper symmetry ground-
truth poses generated analytically, and the pseudo ground-truth poses generated using
our pipeline. The qualitative results are presented in Fig. 3.11. In Table 3.1, we report
the quantitative comparison results. The single ground-truth model achieves a higher
LLH score and a similar MAAD score for all objects, compared to both analytical and
pseudo ground-truth models, i.e. the single ground-truth model learns to estimate one sin-
gle orientation precisely but fails to learn the symmetric orientations, whereas the other
two models manage to learn the complete set of symmetric orientations. Moreover, the
pseudo ground-truth model achieves results similar to the analytical model on all three
metrics. Based on these results, we can conclude that the automatic pose labeling scheme
is able generate pose labels with high accuracy and covers a sufficiently big portion of
the set of proper symmetries for the model to learn the symmetries. Furthermore, as a
measure of accuracy of the generated pseudo ground-truth orientation labels, we report
in Table 3.3 the MAAD metrics of the generated pseudo ground-truth orientation labels
for all three objects. Overall, the average error rate of the generated pseudo ground-truth
labels is ~2.7°. Among the three objects present in the dataset, the box object has the

37



38

IMPLICITPDF FOR OBJECT POSE ESTIMATION

Table 3.1: Results of models trained on different ground truths.

GT Without Occlusion With Occlusion
LLH LLH Recall | LLH LLH Recall
(Rot.) | (Trans.) | MAAD | (Rot.) | (Trans.) | MAAD
1 ) Ll |t 1 ] L
Single 6.46 9.17 120.7 | 5.347 8.77 97.99
g Analytic | 3.78 9.22 1.87 3.47 8.81 1.95
Pseudo 3.99 9.19 1.86 3.55 8.83 1.99
Single 6.56 9.59 123.61 | 6.76 9.35 119.63
é Analytic | 5.78 9.53 2.17 5.75 9.68 2.08
Pseudo 6.09 9.49 2.17 5.68 9.56 1.95
_ | Single 6.49 9.19 119.28 | 5.36 9.28 97.12
E Analytic | 3.95 9.23 2.12 3.93 9.27 1.88
Pseudo 3.85 9.19 2.05 3.76 9.21 2.54
Pseudo Avg. | 4.64 9.29 2.03 4.33 9.2 2.16

1 indicates higher value better, whereas | indicates lower value better.

Pseudo ImplicitPosePDF

Object Ground-Truth| Texture | Uniform | Single | Analytic | Occlusion
MAAD [°] 1.44 2.44 2.81 3.11 2.5 4.16
Can Ly [em] 0.33 0.48 0.38 0.45 0.46 0.74
AUC 93.40 91.61 91.61 |91.63| 91.42 91.94
MAAD [°] 3.09 5.24 5.25 5.2 5.35 5.66
Box £ [cm] 0.82 0.88 0.85 0.61 0.62 0.88
AUC 81.94 79.15 | 78.32 |83.81| 80.87 76.12
MAAD [°] 1.32 2.47 2.65 2.77 2.43 6.89
Bowl | ¢, [cm] 0.23 049 | 045 | 045 | 0.46 0.97
AUC 96.37 91.43 | 90.66 |93.93| 93.57 85.63
MAAD [°] 1.95 3.38 3.57 | 3.69 3.43 5.57
Average| ¢ [cm] 0.46 0.62 0.56 0.5 0.51 0.86
AUC 90.57 87.4 86.86 |89.79 | 88.62 84.56

Table 3.2: Accuracy of single 6D pose estimation on the Tabletop dataset.

Table 3.3: Evaluation of the pseudo ground-truth orientation labels

Object | Dataset | MAADI°]

Texture 1.44

can
Uniform 3.12
Texture 4.14

box
Uniform 4.3
bowl Texture 1.42
Uniform 1.89
Average 2.72
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Figure 3.12: Visualizing the generated pseudo ground-truth orientation labels. Dots represent the
generated pseudo ground-truth orientation labels, whereas the circles and the con-
tinuous lines represent the ground-truth orientations. The generated pseudo ground-
truth orientation distribution corresponds to the ground-truth orientation distribu-
tion with high accuracy.

highest MAAD error. This can be attributed to the fact that box exhibits discrete sym-
metry. Generating pose labels for discrete symmetry is more difficult than for continuous
symmetry. As shown in Fig. 3.12, the pseudo ground-truth pose labels correspond to the
ground-truth orientation distribution with a high degree of accuracy.

3.5.7 BACKBONE ABLATIONS

CNN models learn features that generalize well across datasets. However, the degree
of generalization varies across different architectures. In order to find the architecture
best suited for usage as backbone feature extractor in the ImplicitPDF model, we ex-
perimented with ResNet (He et al., 2016), and ConvNeXt (Liu et al., 2022b) architec-
tures. Convolutional neural networks, in general, learn low-level image features at a high
resolution in the initial layers and high-level features at low resolution in the final lay-
ers (Behnke, 2003b; Schulz and Behnke, 2012; LeCun, Bengio, and Hinton, 2015). For
many computer vision tasks like object classification and object detection, high-level
features—despite being low resolution—are ideal, whereas tasks like semantic segmen-
tation benefit from access to low-level features (Lin et al., 2017; Schwarz et al., 2018b;
Ronneberger, Fischer, and Brox, 2015). To evaluate the effectiveness of different mod-
els as feature extractors, we experimented with two versions of ResNet—ResNet-18 and
ResNet-50—and three variants the ConvNeXt model (Liu et al., 2022b). The ConvNeXt
model in the Tiny and Small configuration extracts a feature vector of size 768 and in the
Base configuration, a vector of size 1024. Furthermore, to evaluate the effectiveness of
features extracted from different ConvNeXt layers, we experimented with two additional
variants of the ConvNeXt Tiny backbone model—Tiny-1 and Tiny-2. Tiny-1 has the
last average-pooling layer removed, resulting in a feature vector of size 768x7x7, and
Tiny-1 additionally has the last ConvNeXt block removed, with a feature vector of size
384x14x14. In Section 3.5.7, we present the quantitative results of the comparison. In
terms of both LLH and MAAD metrics on the Uniform and Texture datasets, all mod-
els perform similarly, whereas, in terms of the ¢ error metric, ConvNeXt Tiny models
performed better than the other models. Based on these results, we use ConvNeXt Tiny
models in all our experiments.
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Table 3.4: Comparison of different models as the feature extractor.

Model Metric ResNet (He et al., 2016) ConvNeXt (Liu et al., 2022b)
18 50 Tiny | Tiny-1 | Tiny-2 | Small | Base
—'—VJ
5 1.8G 3.8G 45G | - - 8.7G | 15.4G
a3
R LLH 3.76 3.86 3.99 3.83 1.09 3.77 3.72
= MAAD [°] | 2.24 2.46 2.44 2.52 21.5 2.55 2.79
g v LLH 9.19 9.31 9.19 9.34 9.13 9.56 9.43
0> fem] | 0.71 0.79 048 | 052 | 053 | 06 | 057
R LLH 5.75 5.98 6.09 5.75 3.02 5.996 | 5.649
4 MAAD [?] | 5.2 473 5.24 | 597 | 3427 | 4.28 | 8.609
- y LLH 8.86 8.97 9.49 9.03 8.79 9.29 9.24
0y fem] | 1.07 1.1 0.88 | 104 | 102 | 094 | 0.99
R LLH 3.3 3.17 3.85 3.86 1.05 3.21 3.24
= MAAD [°] | 2.96 3.17 2.47 2.7 22.84 2.88 3.22
3 LLH 9.1 9.25 9.19 9.52 9.45 9.56 9.6
Y £5 [cm)] 0.58 0.63 0.49 0.53 0.53 0.67 0.7

R: Orientation IPDF model. y: Translation IPDF model.
T FLOP values are taken from (He et al., 2016) and (Liu et al., 2022b).
Best values are shown in bold.

Figure 3.13: The T-Less dataset objects used for evaluating our method.

3.5.8 EVALUATION ON T-LESS DATASET

The T-Less Dataset consists of RGB-D images of texture-less objects of varying sizes
along with 6D pose annotations. Training data consists of RGB-D images of individual
objects placed in isolation with a black background. We evaluate our method on a sub-
set of T-Less objects that exhibit geometric symmetries (shown in Fig. 3.13). We use
the variant of the T-Less dataset proposed by Gilitschenski et al. (2019) in which the
training images provided in the original T-Less are split into training, validation, and
test sets. In Fig. 3.14, we present exemplar qualitative visualizations of the predicted
orientations. In Table 3.5, we report quantitative results. Our method achieves a MAAD
score of ~3.22°and an LLH score of 6.09. Since we report the metrics only for the objects
that exhibit geometric symmetries, uncertainty always exists in terms of the object orien-
tation. Thus, our model performs worse in terms of the LLLH metrics, compared to other
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Table 3.5: Comparison results on the T-Less dataset.

Method LLH | MAADJ?|
T 1
Deng et al. (2022) 5.3 23.1
Gilitschenski et al. (2019) 6.9 34
Prokudin, Gehler, and Nowozin (2018) | 8.8 34.3
Murphy et al. (2021) 9.8 4.1
Analytic 6.2 1.7
Ours™ 6.09 3.22

* Results from a subset of the T-Less objects (shown in Fig. 3.13).

Figure 3.14: Orientation distributions on the T-Less Dataset. Orientation distributions predicted
by the IPDF model trained with pseudo ground-truth labels on the T-Less dataset.

methods, but this does not affect the accuracy in terms of the MAAD metrics. Moreover,
compared to the model trained using analytically generated ground-truth orientation
labels, which achieves a MAAD score of ~1.7°and an LLH score of 6.2, our method
performs only slightly worse. This indicates that analytically generating ground-truth
orientation labels for objects with complex geometric symmetry is not trivial. Moreover,
the pose labeling scheme generates pseudo pose labels (SE(3)), whereas the analytical
ground-truth generation is possible only for orientation labels (SO(3)). Having access to
pose labels enables training complete pose estimation models. Thus, the proposed auto-
mated pose labeling scheme serves as an efficient alternative to generating ground-truth
orientation labels analytically.

3.6 DiscussioON & CONCLUSION

In this Chapter, we presented the ImplicitPDF model for learning 6D pose estimation
for symmetrical objects. We proposed a pseudo ground-truth labeling scheme to generate
pose annotations and used it to train the ImplicitPDF model without any manual pose an-
notations. We quantified the accuracy of the pose labeling scheme and demonstrated the
advantages of multiple pseudo ground-truth labels over the single ground-truth pose label
for training the ImplicitPDF model. Moreover, by comparing with the models trained us-
ing analytically generated ground-truth orientations, we demonstrated the effectiveness
of the automatic pose labeling scheme. Overall, our method predicts the object pose as
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well as the complete set of proper symmetries for uniform color objects, as well as for ob-
jects with texture with a high degree of accuracy. In future, incorporating the knowledge
about symmetry provided by the ImplicitPDF models presented in this Chapter into ma-
nipulation and affordance planning algorithms will improve these algorithms significantly
and enhance autonomous manipulation of real-world objects.



OBJECT POSE AND SHAPE REFINEMENT USING
ABSTRACT RENDER-AND-COMPARE

Refining initial scene parameter predictions aids in improving
the robustness of the perception systems. Render-and-compare
offers an elegant framework for scene parameter refinement in
which the initial parameters are iteratively refined to mini-
mize the pixel-wise differences between the rendered and the
observed images. In this Chapter, we introduce a lightweight
differentiable renderer that computes the gradient of rendered
image with respect to the scene parameter and employ it in
a gradient-based optimization scheme to refine 6D object pose
and shape parameters. Moreover, to alleviate the complexities
of pixel-wise comparison of the rendered and the observed im-
ages in the RGB space, we propose image comparison in a
learned descriptor space.

STATEMENT OF PERSONAL CONTRIBUTION

The differentiable renderer, pose and shape refinement pipelines presented in this Chapter
are adapted from the following publications.

Arul Selvam Periyasamy*, Max Schwarz*, and Sven Behnke:
Refining 6D object pose predictions using abstract render-and-compare

In: IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids),
Toronto, Canada. 2019.

Arul Selvam Periyasamy, Max Schwarz, and Sven Behnke:

Iterative 3D deformable registration from single-view RGB images using differen-
tiable rendering

In: 17th International Conference on Computer Vision Theory and Applications
(VISAPP), Lisbon, Portugal, 2022.

The author of this thesis substantially contributed to all aspects of the publication with
the exception of the dense descriptors discussed in Section 4.4, including the literature
survey, the conception, formalization, design, and implementation of the differentiable
renderer, the preparation and conduct of experiments for the evaluation of the proposed
pipelines, the analysis and interpretation of the experimental results, the preparation of
the manuscript, as well as the revision and final editing of the version published. Concep-
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tion, implementation, and training of the dense descriptors and the mesh representation
for surface features discussed in Section 4.4 are individual contributions of the co-authors.
The author of this thesis acknowledges the significance of these contributions to the pro-
posed pipelines and expresses deep gratitude for these contributions.

4.1 INTRODUCTION

Robust robotic interaction in environments made for humans is an open research field.
An important prerequisite in this context is scene perception, yielding the necessary
information such as detected objects and their poses or affordances for later manipulation
actions. While there are various high-accuracy methods for scene understanding, the
problem becomes significantly harder in the presence of clutter and inter-object effects. As
such, current works in autonomous manipulation that require precise grasping are often
limited to non-cluttered or even isolated scenes (e.g. Pavlichenko et al. (2018) and Klamt
et al. (2018)). While the manipulation action itself and planning for it is certainly more
difficult in cluttered scenes, robust 6D object pose estimation is a necessary prerequisite.

An interesting approach in this context is the idea of viewing computer vision as an in-
verse graphics process (Grenander, 1976; Grenander, 1978). It promises to perform scene
analysis by inverting the rasterization process, which sounds highly promising—today’s
rendering techniques are capable of producing convincing photo-realistic renderings of
highly complicated scenes, so inversion of the process should yield high-quality scene
analysis. However, the problem plaguing the inverse graphics field is that the rendering
process is largely unidirectional, with complex physical effects such as lighting, surface
scattering, transparency, and so on. Furthermore, scene analysis is especially in demand
for cluttered scenes, e.g., in warehouse automation contexts, but occlusion effects caused
by clutter are among the most difficult to invert or differentiate.

To take a step towards a solution to this problem, we propose to first remove most
secondary rendering effects from the scene using abstract surface features learned in an
unsupervised manner. This way, only the primary effects remain—occlusion and pro-
jection. These effects can then be explained and analyzed by a simpler differentiable
rendering component.

We apply our render-and-compare framework for two scene understanding tasks. First,
the task of monocular 6D pose estimation, specifically pose refinement, where initial pose
guesses are available. In our approach, 6D pose predictions from two different pose esti-
mation methods are refined by minimizing the pixelwise difference between the rendered
and observed images in a novel abstract descriptor space invariant to secondary rendering
effects. Second, the shape refinement task. We iteratively refine the 3D shape of objects
by minimizing the pixelwise difference in the CNN feature space, which is also invariant
to secondary rendering effects. Finally, we perform joint refinement of pose and shape of
objects using the render-and-compare framework.

The render-and-compare framework requires several iterations of parameter optimiza-
tion. Each iteration involves rendering the scene according to the current parameter
estimate and computing gradients through the rendering process. This necessitates an
efficient differentiable renderer. To this end, we develop StilllebenDR, a high-performant
differentiable renderer. We discuss StilllebenDR and use it to design render-and-compare
pipelines for object pose and shape refinement tasks.
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4.2 RELATED WORK

Vision as inverse graphics aims at inferring object parameters like shape, illumination,
reflectance, and pose, scene parameters like camera parameters, lighting, and secondary
reflections by inverting the rendering process. The process of rendering 3D scene to dis-
crete 2D pixels involves discretization steps that are not differentiable. However, several
approximation methods have been proposed to realize a differentiable renderer. Loper
and Black (2014) proposed OpenDR, a generic differentiable renderer that can compute
gradients with respect to object and scene parameters. Kato, Ushiku, and Harada (2018)
introduced a differentiable renderer that is suited for neural networks. Rezende et al.
(2016) treat forward rendering as a black-box and used REINFORCE (Williams, 1992)
to compute gradients. Li et al. (2018a) proposed edge sampling algorithm to differentiate
ray tracing that can handle secondary effects such as shadows or global illumination. Liu
et al. (2019) proposed a differentiable probabilistic formulation instead of discrete raster-
ization. The differentiable renderer used in this work is closely modeled after OpenDR
but tailored for object pose refinement with a strong focus on speed.

Vision as inverse graphics is most often formulated as a render-and-compare approach,
where model parameters are optimized by minimizing the difference between rendered and
observed images. Zienkiewicz, Davison, and Leutenegger (2016) used render-and-compare
for real-time height mapping fusion. Several recent works used render-and-compare for
solving a wide range of vision problems: Kundu, Li, and Rehg (2018) introduced a frame-
work for instance-level 3D scene understanding; Moreno et al. (2016) estimated 6D object
pose in cluttered synthetic scenes. More closely related is the DeepIM method by Li et al.
(2018b), who formulated 6D object pose estimation as an iterative pose refinement pro-
cess that refines the initial pose by trying to match the rendered image with the observed
image. In contrast to our approach, they avoid the need for backpropagating gradients
through the renderer by training a neural network to output pose updates. While the
method yields very promising results, it is not directly clear how to apply this method
to symmetric objects without specifying symmetry axes, whereas our method inherently
optimizes to a suitable pose. We also note that DeepIM is object-centric, refining each
object’s pose separately. In contrast, our method retains the entire scene, refining all
object poses simultaneously and thus is able to account for inter-object effects.

In this work, we use render-and-compare to refine 6D object poses in cluttered real-
world scenes. Instead of comparing the rendered and observed RGB images, we propose
to use an abstraction network to deal with the difficulties in comparing images from two
different modalities.

4.3 STILLLEBENDR

Rasterization is the process of generating 2D images given the 3D scene description. Li-
braries like OpenGL (Segal and Akeley, 1999), Vulkan (Khronos, 2018), and DirectX (Mi-
crosoft, 2019) offer optimized rasterization implementations. Although the standard for-
mulation of rendering 3D faces of object meshes into discrete pixels is not differentiable,
probabilistic formulations like SoftRas (Liu et al., 2019), PyTorch3D (Ravi et al., 2020),
and DIB-R (Chen et al., 2019) allow for differentiable rendering. Most of the com-
monly used differentiable renderers are implemented using CUDA with programming
interfaces to neural network libraries like TensorFlow (Abadi et al., 2016) or PyTorch
(Paszke et al., 2019).
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Figure 4.1: OpenGL shader pipeline. A typical use-case of a shader pipeline involving the geom-
etry shader. All the valid vertices in the world coordinates are transferred into the
camera coordinates and line primitives are generated connecting the vertices for a
face in the vertex shader. For each vertex, a line primitive corresponding to the nor-
mal direction is generated in the geometry shader. Faces are rasterized into discrete
pixels in the fragment shader.
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Figure 4.2: Geometry shader configuration for barycentric coordinates generation. For each ver-
tex, we generate a global vertex (in M) and a local vertex index that uniquely corre-
sponds to a vertex for each face (in ). Global vertex indices are immutable, whereas
local vertex indices are mutable.

StilllebenDR is built as an extension to the Stillleben library (Schwarz and Behnke,
2020), a synthetic data generation pipeline designed to generate training data for deep
learning models on the fly. It provides PyTorch interface ! and uses OpenGL for rendering
and PhysX 2 for physics simulation. OpenGL provides an optimized implementation of
a standard rasterization pipeline.

StilllebenDR. enables differentiation support with only a minimal overhead to the
OpenGL rasterization pipeline. During the rasterization step, a face F constituting of
vertices V with colors C is projected on a pixel I. The pixel color I is computed as

Lgp = Y biCy, (4.1)

1 https://pytorch.org/
2 https://github.com/NVIDIAGameWorks/PhysX
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Figure 4.3: Forward rendering. In addition to the RGB channels, we also render vertex indices and
barycentric coordinates per pixel as separate channels and store them for backward
computations.

where b; are the barycentric coordinates and ) _; b; = 1. We simplify the notation Iy, and
use I instead. OpenGL allows users to write shaders, specialized light-weight programs
that are designed to run at specific stages of a graphics pipeline.

Breaking down the graphics pipeline into a sequence of shaders enables parallelization.

In addition to the standard RGB-D channels, we utilize the flexibility of the shaders to
render additional channels containing information like barycentric coordinates and vertex
indices, as shown in Fig. 4.3. The vertex shader and the fragment shader are the only
two mandatory shaders in an OpenGL pipeline. In the vertez shader, vertices in the mesh

coordinate are projected into the clip space, the space covered by the camera frustum.

In the fragment shader, the color for rasterized pixels are computed. In order to generate
barycentric coordinates and vertex indices as additional output channels, we make use of
one of the less commonly used shaders, namely the geometry shader. The geometry shader
is invoked at the end of the vertex shader and is used to generate additional primitives
like vertices, lines, or faces. A common use-case for an OpenGL pipeline consisting of
the geometry shader is to visualize vertex normals (see Fig. 4.1). For each vertex, a line
corresponding to the normal direction in the geometry shader is generated. We adapt the
geometry shader to generate barycentric coordinates and vertex indices (see Fig. 4.2). For
each vertex, a global vertex index and local vertex are generated. The global vertex index
is marked as immutable and is rendered as constant values. For each face, one of (0, 0, 1),
(0, 1, 0), (1, 0, 0) mutable vector values are assigned to each vertex uniquely. The vector
values are interpolated in the later stages of the shader pipeline using the barycentric
coordinates. The immutable global vertex indices and the interpolated local vertex indices
reflect the corresponding barycentric coordinates and are rendered as additional output
channels.

Given the loss L, computed pixel-wise between the rendered and the observed images,
the gradient of the loss with respect to different scene parameters can be decomposed
into the gradient of the loss with respect to the rendered image, and the gradient of
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Figure 4.4: Backward rendering. The gradient of the image comparison loss function is propa-
gated to the vertices by differentiating through the renderer using the vertex indices
and barycentric coordinates information stored during the forward rendering step.

the rendered image with respect to the scene parameters following the chain rule. For
example, the gradient of the loss with respect to the vertex V; is computed as

oL 91 oL
ov, oV, o

where 88—\}1 is computed automatically by PyTorch autograd. Using the barycentric

(4.2)

weights and the vertex indices stored during the forward rendering step, 88—\2 is computed
as

ar
v,

Ci. (4.3)

Similarly, we break down the gradient of the loss function with respect to object pose
P as follows:

) G) )

ap ~ ap . (4.4)

The backward pass of the rendering process is depicted in Fig. 4.4.

4.4 POSE REFINEMENT USING ABSTRACT RENDER AND COMPARE

Real scenes exhibit a large variety of secondary effects such as lighting, camera noise, re-
flections, and so on. All of these effects are very difficult to model and severely constrain
the applicability of differentiable rendering methods. We propose an additional abstrac-
tion module f: 1 — A, mapping the RGB image space I to an abstract feature space A.
Ideally, the mentioned secondary effects lie in the null space of f. For convenience, we
require that A is also image-like so that pixels in I correspond to feature vectors in A.
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Figure 4.5: Runtime comparison between SoftRas (Liu et al., 2019), PyTorch3D (Ravi et al.,
2020), and StilllebenDR. (ours). We report the average time taken by different differ-
entiable rendering approaches to perform forward rendering (1024x1024 pixels) and
backward gradient computations.

(a) (b) (c)

Figure 4.6: Learning dense descriptors from real-synthetic correspondences. (a): Real and syn-
thetic input frames, respectively. Positive correspondences matches are shown in green
for one object. (b): Learned dense abstract representation for the corresponding input
frames in (a). (c): Learned surface features, projected and fused onto the mesh. The
3D feature vectors are visualized directly as RGB colors.
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The very difficult problem of decomposing an image into its different intrinsic com-
ponents, such as shading, reflectance, and shape, has been studied extensively (Barrow
et al., 1978; Tappen, Freeman, and Adelson, 2003; Finlayson, Drew, and Lu, 2004). How-
ever, in this application such a complex and physically accurate decomposition is not
required. In order to be usable for differentiable rendering, we only require that features
are similar for corresponding points on the same object (under varying lighting conditions
etc), and dissimilar for non-corresponding objects. Many traditional feature extractors
exhibit this property (e.g. SIFT). Of particular interest, however, are feature extractors
designed for dense output. Recently, (Schmidt, Newcombe, and Fox, 2017) showed that
highly precise feature extractors can be trained in a self-supervised way from ground-
truth correspondences. The learned descriptors outperform sparse feature extractors by
a large margin.

4.4.1 LEARNING DENSE DESCRIPTORS

In order to leverage this idea in the differentiable rendering setting, we propose to learn
descriptors from the object meshes in conjunction with a training dataset for pose esti-
mation. For a pose-annotated real dataset frame A, we render a synthetic frame B with
the same object set, but using different poses (see Fig. 4.6 (a)). Corresponding points
in both RGB frames can be easily determined from the object poses through projective
geometry. We then minimize the pixel-wise contrastive loss function between the positive
correspondences and the negative correspondences. To encourage the network to disre-
gard clutter in the background, we also introduce a loss on background pixels for a single
frame. We refer the reader to Periyasamy, Schwarz, and Behnke (2019) for additional
details related to network architecture and training of the dense descriptor model.

4.4.2 MESH REPRESENTATION FOR SURFACE FEATURES

As discussed in Section 4.3, the simplest representation for a 3D polygon mesh consists
of set of triangles called faces defined by their vertices. Faces are connected by their
common edges or vertices. Each vertex corresponds to a position € R? and a RGB
color € [0,1] € R3. 3D meshes can be simplified into volumetric representations by
approximating vertices in a neighborhood using voxels. Since the learned features should
be constant for each local surface patch, independent of the viewing pose, we can fuse
the descriptor information onto the mesh representation. To this end, we render N views
(50 in our experiments) of the object from randomly sampled viewing directions and
viewing distances. After feature extraction using the learned network, the resulting point-
feature pairs are aggregated in the object frame. A voxel grid downsampling is applied,
where descriptors and positions are each averaged inside each voxel. The voxel size is
determined heuristically from the object bounding box s.t. the voxel count is constant—
this results in constant-size output. This method is robust and easy to tune in case
more complex geometry needs to be supported. In our experiments, we use 5000 voxels.
Finally, each vertex of the object mesh is assigned an interpolated descriptor from the four
nearest voxels using inverse-distance weighting. Figure 4.6 (c) shows exemplary meshes
and corresponding feature visualizations. Rendering fused meshes does not resemble a
typical RGB textured image. However, some geometric information of object surface can
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deduced from the rendered images. Moreover, fushed meshes help us in ensuring gradient
flow in the pose refinement pipeline we introduce in Section 4.4.6.

4.4.3 ITERATIVE POSE REFINEMENT

The pose refinement problem is an optimization problem. In our case, we assume that
we start with a pose initialization of reasonable quality, such that local optimization
methods can find the optimum solution. In this context, it is very favorable to be able
to compute derivatives of the rendering process, since the number of parameters grows
linearly with the number of objects in the scene (at least six parameters per object).
Optimization without gradient information quickly becomes infeasibly slow.

We base our differentiable rendering module on the method of OpenDR (Loper and
Black, 2014), which is able to approximate gradients with respect to lighting parameters,
camera parameters, object poses, etc. We note that in our setting, only pose parameters
need to be optimized, because lighting and other surface effects are removed by the
abstraction network and camera parameters are assumed to be fixed in monocular pose
estimation.

The OpenDR method is built around the screen-space approximation of the derivative
of the rendering process. Gradients due to occlusion effects during this 3D-2D reduction
are approximated from the local intensity gradient. In essence, this idea assumes that
occluded pixels are similar to their visible neighbors.

In order to simplify gradient computation, we locally linearize the pose:

1 -y B a
0% 1 —a b
-0 «@ 1 ¢
0 0 0 1

T(Oé, Bf% a, ba C) = TO

The rotation part of T is orthonormalized after each optimization step.

4.4.4 GRADIENTS ON OCCLUSION BOUNDARIES

The scenes we are interested in feature high levels of occlusion between the individual
objects. (Loper and Black, 2014) makes several assumptions in computation of the screen-
space gradients. While these assumptions help in simplifying the computation, in real
world scenarios, they are often violated. We discuss the assumptions involved, scenarios
where these assumptions are violated, and propose solutions for better approximation of
the pose gradients. Occlusion boundaries are highly important for pose refinement, since
they offer much information about the scene layout. On the occlusion boundary pixels,
OpenDR uses Sobel kernel (%[—1, 0,1]) and its transpose to compute the gradient along
the horizontal axis and the vertical axis respectively, with the underlying assumption that
a shift in the occlusion boundary can be approximated by the replacement of the current
pixel by the neighboring pixel (of the other object). However, this assumption is valid
only if the occlusion boundary pixel belongs to the object in the foreground. Fig. 4.7 (a),
(b) depict the front view and top view of an example scene where the mug is occluding
the can. Translating the mug results in covering or uncovering of can pixels, which is
well approximated using the local Sobel gradient. Conversely, translating the can in the

o1
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8 l %J

Figure 4.7: Corner cases for renderer gradient estimation. (a) and (b): Front and top view of an
exemplary scene with occlusion. (¢) Top: Occlusion-free scene; Bottom: Scene with
mug occluded. (d) Magnitude of pixel-wise loss corresponding to scenarios depicted
in (c) when the mug is translated. Black depicts: high loss magnitude. When the ren-
dered mug is moved behind the occluder, all pixels with high loss (and thus gradient
information) lie outside of the rendered object mask.
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Figure 4.8: Render-Abstraction pipeline. The renderer produces an RGB image of the scene,
which is then mapped into the abstract feature space. The loss gradient (red dotted
line) is propagated back through the abstraction module and the differentiable ren-
derer.

background does not result in covering/uncovering mug pixels, rather, more can pixels
will become visible or become covered. Thus using the Sobel derivative is incorrect in
this case. To address this issue, we detect such cases using the Z-buffer during rendering
suppress the Sobel gradient on these pixels. We note that the occluded pixel belongs to
the same object in this case, so that zero gradient should be a good approximation.

4.4.5 PROPAGATING IMAGE-SPACE GRADIENTS TO OBJECT COORDINATES

While propagating the image-space gradients to the object coordinates, only gradient
from the pixels belonging to the object needs to be propagated. The naive way to do
this is to mask the image-space gradient with rendered object mask. However, in cer-
tain situations this means we are ignoring exactly the pixels where a pixel-wise loss
function generates high gradients, namely just outside of the rendered object boundary.
Figure 4.7(c-d) illustrates this point.

To address this issue, we propose a dilation of the rendered object mask by one pixel,
in order to include gradient information directly outside of the object boundary.
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Figure 4.9: Scene analysis using differentiable rendering and learned abstraction module. An ab-
stract representation is extracted both for the input scene and the mesh database.
The differentiable rendering module then tries to match the abstract scene represen-
tation with the feature-annotated meshes. The loss gradient (red dotted line) only
needs to be backpropagated through the differentiable renderer.

4.4.6 EVALUATION

Armed with the abstraction module and our differentiable renderer, we can tackle the 6D
pose refinement problem in cluttered real-world scenes. We first experimented with the
architecture depicted in Fig. 4.8. The 3D scene with the objects in the current estimated
pose P is rendered to generate image Ip. The abstraction module (see Section 4.4.1) is
used to generate abstract representations Ar and Ap from the images I'r and Ip. The
loss L is computed as the pixel-wise loss between Ar and Ap. Finally, we can derive the
gradient of L with respect to the poses P:

oL _9lp 9Ap OL
oP ~ OP 0lp 9Ag.

(4.6)

As depicted in Fig. 4.8, %L;} is approximated by the differentiable renderer and %’% . %

is computed by standard backpropagation. During experiments, we noticed that the latter
gradient is rather sparse and focuses most of its magnitude on few spatial locations in
the image (see Fig. 4.10). This effect is well-known, for example in the field of adversarial
example generation for CNNs (Goodfellow, Shlens, and Szegedy, 2015), (Palacio et al.,
2018). Here, it is highly undesirable, since the differentiable rendering process works best
with smooth, uniform gradients.

To mitigate this issue, we investigated a second pipeline shown in Fig. 4.9. We use
the method described in Section 4.4.2 to create meshes with fused surface descriptors.
Rendering these meshes directly results in the abstract rendered Ag. In this case, g—{; is
simpler:

OL OL O0Ag

P  0Ap 0P . (47)

Here, 65‘% is approximated directly by the differentiable renderer. An additional benefit

of this variant is that only one forward pass of the abstraction module for Ao is required.
This directly translates to significant reduction in the optimization process runtime.
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Figure 4.10: Gradient of pixel-wise loss w.r.t. the rendered scene in the two pipeline variants. (a)
Observed scene. (b) Rendered scene. (c) Render-Abstraction pipeline (see Fig. 4.8).
(d) Abstraction-Render pipeline (see Fig. 4.9). The actual gradient magnitudes are
scaled for better visualization. Gray corresponds to zero gradient.

We optimize the object poses with the AdaGrad optimization scheme. This avoids
manual tuning of learning rates for translation and rotation parameters—which differ
largely in scale. In our experiments, we use a learning rate A = le — 2 with a decay of
0.99. The optimization runs for 50 iterations, which corresponds to roughly 2s per frame.

We perform our experiments on the YCB Video dataset (Xiang et al., 2018), which
consists of 133,936 images extracted from 92 videos, showing 21 different objects in
cluttered arrangements. Importantly, the dataset comes with high-quality meshes, which
are also used for synthetic data generation by most of the pose estimation methods
applied to the dataset (Xiang et al., 2018; Oberweger, Rad, and Lepetit, 2018).

To be able to control primary and secondary effects separately, we rely on our rendering
pipeline and generate multiple scenes with random secondary parameters as detailed in
Section 4.4. Our dense descriptor model is able to effectively suppress the background
pixels and produces robust, consistent output under changing lighting conditions and
camera model parameters.

For a quantitative analysis, we measure the ADD and ADD-S metrics as in (Xiang
et al., 2018) for each object occurrence, which measure average point-wise distances
between transformed objects and the ground truth, for non-symmetric and symmetric
objects, respectively:

1 - -
ADD = — > " ||(Rz +T) — (Rz + T)||, (4.8)
reM
1 . ~ ~
ADD-S = - xlgM nin, ||(Rx1 +T) — (Rxa +T)|l, (4.9)

where R and T are the ground-truth rotation and translation, R and T denote the
estimated pose, and M is the set of model points as included in the YCB Video dataset.
We aggregate all results and measure the area under the threshold-accuracy curve for
distance thresholds from zero to 0.1 m, which is the same procedure as in (Xiang et al.,
2018).

We demonstrate pose refinement from the initialization of PoseCNN (Xiang et al.,
2018) and the newer method by Oberweger, Rad, and Lepetit (2018). Figure 4.11 dis-
plays qualitative refinement examples, while Table 4.1 gives quantitative results. In our
experiments, we assume that objects were correctly detected so that we can focus on the
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Table 4.1: Pose refinement results on the YCB Video Dataset

PoseCNN refined (ours) HeatMaps refined (ours)

Object ADD( A)ADD-S( A)ADD( A)ADD-S( A)
master _chef can 63.3(+13.1)  91.7( +7.8) 76.7( —5.1)  90.2( —1.2)
cracker_box 65.3(+12.2) 8L7( +4.9) 82.9( —0.7) 89.4( —0.6)
sugar_box 85.3(+16.9)  92.0( +7.8) 86.4( +4.3) 92.2( +2.4)
tomato soup can  59.4( —6.8) 79.9( —1.1) 57.4(—22.4) 78.2(—11.3)
mustard_bottle 86.5( +5.5) 92.3( +1.9) 86.7( —4.7) 92.6( —2.4)
tuna_fish can 81.1(+10.4)  94.3( +6.3) 69.7(+21.0)  85.7(+14.0)
pudding_box TLI( +8.4)  83.1( +4.1) 68.8(—21.4)  80.7(—13.4)
gelatin_box 8L5( +6.3)  89.1( +1.9) 73.0(—20.7)  82.8(—13.1)
potted meat can  63.7( +4.2) 80.3( +1.8) 74.6( —4.5) 87.6( —2.4)
banana 82.1( +9.8) 91.8( +5.8) 68.8(+17.1)  81.0(+13.2)
pitcher base 85.1(+31.8)  92.7(+15.7) 83.8(+14.4)  92.1( +7.1)
bleach _cleanser 65.0(+14.7)  80.4( +8.9) 78. 3( +2.0)  87.6( +2.2)
bowl 6.5( +3.1)  75.5( +5.9) 1.5( —2.1)  66.4(—11.6)
mug 65.9( +7.4) 84.0( +5.9) 57. 9( £4.0)  78.9( +3.1)
power _drill 73.7(+18.4)  85.9(+13.2) 81.5( —1.3) 90.4( —0.4)
wood _ block 45.5(+18.9)  73.3( +9.0) 0.0( +0.0)  60.3( +3.3)
scissors 40.0( +4.1)  58.6( +1.7) 75.4(+10.1)  85.4( +5.8)
large marker 63.9( +5.6) 77.3( +5.6) 59.8( +3.3) 70.2( +0.0)
large clamp 37.0(+12.4)  65.1(+15.0) 75. 3(+18 1)  85. 6(+12 5)
extra large clamp 25.4( +9.3) 63.7(+19.6) 20.4( —3.1)  58.3( +3.7)
foam_ brick 43.3( +3.1)  90.8( +2.8) 37.0( +5.0) 92.1( +3.2)
ALL 62.8( +9.1) 82.4( +6.6) 67.0( +0.7) 83.5( +1.1)

We report the area under the accuracy curve (AUC) for varying error thresholds on the ADD and ADD-S
metrics.
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Figure 4.11: Qualitative examples from the YCB Video Dataset. (a): Observed scene. (b) and
(¢): Renderings (blue) with initial and optimized pose parameters, respectively. (d)
and (e): Renderings of the feature-annotated meshes in initial and optimized poses,
respectively.
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Figure 4.12: Basin of attraction in translation dimensions. We show the resulting ADD/ADD-S
metrics for varying initial 2D overlap of ground-truth pose and initial estimate.

problem of refining poses rather than correcting detections. Our pipeline gives consis-
tent improvements across nearly all objects of the dataset for the PoseCNN initialization.
Note that we do not compare against the PoseCNN variant with ICP post-refinement,
since our pipeline works with RGB only and ICP requires depth measurement. The im-
provement is especially significant for large and textured objects. On the initializations of
Oberweger, Rad, and Lepetit (2018), which are already of very high quality, our gains are
smaller. We hypothesize that our approach is currently limited by the spatial resolution
of the computed feature representation.

Finally, compared to DeepIM (Li et al., 2018b), our method almost reaches the same
overall performance. We note that the experiments performed in (Li et al., 2018b) ap-
parently started from a better PoseCNN initialization than what was available to us,
though the difference seems small. Interestingly, our method obtains significantly better
results on a few object classes—suggesting that a combination of the techniques (e.g. by
making the abstract representation and computed pose updates accessible to the DeepIM
network) could yield further improvements.

To quantify the robustness of our render-and-compare pipeline to the quality of the
initialization, we analyzed the basin of attraction of the refinement process. We exper-
imented with 295 scenes from the validation set of YCB-Video dataset (~10 % of the
total validation scenes) by randomly perturbing the translation and rotation components
of the ground-truth poses to varying degrees and optimizing the perturbed poses. The
translation perturbations were uniformly sampled in a range of +5 centimeters. Since the
impact the translation perturbations has for an object depends of the size of the object,
we compute the percentage of pixel overlap between the observed image and the rendered
image for an object.

Similarly, we uniformly sample an axis of rotation and a rotation angle in the range
+45 degrees. The AUC of the optimized pose with respect to different overlaps is shown
in Fig. 4.12 and the rotation angle is shown in Fig. 4.13. Our method is able to robustly
handle translation perturbations with almost no loss in accuracy down to 30% remaining
overlap. In the rotation experiment, the ADD-S metric is almost unaffected by rotations
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Figure 4.13: Basin of attraction in rotation dimensions. We show the resulting ADD/ADD-S
metrics for varying initial angular perturbations from the ground-truth pose.

of up to 45°. The ADD metric drops off more steeply—this is caused by the entirely
symmetric objects, where the system has no chance of correcting the perturbation around
the symmetry axis.

4.5 JOINT OBJECT SHAPE AND POSE REFINEMENT USING RENDER-
AND-COMPARE

Given a canonical model of an object category, 3D deformable registration aims at deform-
ing the canonical model to match an observed instance while maintaining the geometric
structure of the category. Our approach for solving deformable registration is closely re-
lated to DeepCPD (Rodriguez, Huber, and Behnke, 2020). DeepCPD uses coherent point
drift (CPD) to create a low-dimensional shape-space of the object category and employs
a CNN to estimate 3D deformation from single-view RGB images. Our pipeline presented
in Section 4.5.2 uses differentiable rendering to estimate a 3D deformation field instead.

4.5.1 LATENT SHAPE-SPACE
Given an object category with multiple instances and a canonical model, we use the

coherent point drift (CPD) registration algorithm to learn a low-dimensional latent shape-
space. The deformation 7; of the canonical model C to an instance 7 is modeled as

where W is the deformation field and G is the Gaussian Kernel matrix defined element-
wise as

1
Gy 21) = g5y = exp(=g 5y = zil %) (4.11)
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W is estimated in the M-step of the EM algorithm. Since the shape of W, depends on
the canonical model C and not the instance i, we reduce the dimension of W; using
principle component analysis (PCA). We use latent shape-space of dimension five for
all the object categories in our experiments. We refer the reader to Rodriguez, Huber,
and Behnke (2020), and Rodriguez et al. (2018) for a detailed explanation of the latent
shape-space.

4.5.2 DEFORMABLE REGISTRATION PIPELINE

In Fig. 4.14, we present a pipeline to deform the canonical model C to fit the observed
image Ips of a novel object instance. We generate the deformation field from the latent
shape-space parameters S as described in Section 4.5.1 and render the deformed canonical
model. We denote the rendered image as I,,4 using StilllebenDR. The rendered and the
observed images are compared pixel-wise using the image comparison function described
in Section 4.5.3. We implement the image comparison function and mesh deformation
generation from S using PyTorch. The PyTorch autograd engine enables gradient prop-
agation through these steps automatically. The gradient of the mesh parameters with
respect to L.,q is provided by StilllebenDR. As shown in Fig. 4.4, the gradient can be
computed only for the faces that are visible in I,,4. However, instead of applying the
gradients directly to the mesh parameters, we propagate the gradient to the latent shape-
space S and generate the mesh deformation from S. This step ensures that all vertices
deform coherently and maintain the geometry of the object category. We perform the
forward rendering and gradient-based S update iteratively until the image comparison
error is negligible.

4.5.3 IMAGE COMPARISON

Comparing images pixel-wise in the RGB color space is error-prone. Zhang et al. (2018)
and Zagoruyko and Komodakis (2015) demonstrated the effectiveness of the convolutional
neural network feature space for image comparison. Inspired by the learned perceptual
image patch similarity metric (LPIPS) (Zhang et al., 2018), we construct the image
comparison function as shown in Fig. 4.15. We extract the features from the last layer
before the output layer of the U-Net model (Ronneberger, Fischer, and Brox, 2015) for
both rendered and observed images. We normalize the features between -1 and 1 and
aggregate the features along the channel dimension. Finally, we compute mean squared
error (MSE) of the aggregated features from the rendered and the observed images.

4.5.4 EVALUATION

We evaluate the proposed 3D deformable registration on the DeepCPD dataset (Ro-
driguez, Huber, and Behnke, 2020). The dataset consists of four object categories: bottles,
cameras, drills, and sprays (shown in Fig. 4.16). For each object category, the dataset
provides a canonical model and a varying number of instances. Two instances per cate-
gory are used for testing and the rest are used for training. All the instances of an object
category are aligned to have a common coordinate frame. Since the proposed method does
not involve training a separate model for modeling the deformation, we use the training
instances only to train the U-Net model for semantic segmentation. We compare our
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Figure 4.14: Proposed deformable registration pipeline. Latent shape-space parameters are opti-
mized to minimize the difference between rendered image of the deformed mesh and
the observed mesh. Image comparison loss is minimized using gradients obtained
by differentiating through the rendering process. Black arrows indicate the forward
rendering process and red arrows indicate the backward gradient flow.
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Figure 4.15: Image comparison operation. We compare the rendered canonical and the observed
image using U-Net (Ronneberger, Fischer, and Brox, 2015) features. We normalize
the extracted U-Net features and normalize them between -1 and 1 and aggregate
the features along the channel dimension. Finally, we compute the mean-squared
error pixel-wise between the aggregated features.
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canonical test test canonical test test
canonical test test canonical test test

Figure 4.16: DeepCPD dataset with canonical instances and exemplary test instances.

method with CLS (Myronenko and Song, 2010) and DeepCPD (Rodriguez, Huber, and
Behnke, 2020). CLS works with point clouds and thus needs depth information, whereas
DeepCPD is RGB only.

DEFORMABLE REGISTRATION WITH KNOWN POSES

We employ the proposed end-to-end-differentiable pipeline for deformable registration
iteratively. We use stochastic gradient descent (SGD) with a momentum of 0.9 and ex-
ponential weight decay of 0.95. The meshes provided by the DeepCPD dataset are not
watertight. Since the goal of our method is to deform the canonical model to fit the ob-
served instance while maintaining the geometry of the object category, our pipeline does
not benefit from having vertex colors. Thus, we use uniform red color for all the vertices
in the canonical mesh. The tiny invisible holes on the surface of the meshes develop into
larger visible holes during the iterative deformable registration process. This results in
not only the rendered image looking unrealistic but also the image comparison being
harder. To alleviate this issue, we use the ManifoldPlus algorithm (Huang, Zhou, and
Guibas, 2020) to generate watertight meshes.

In Table 4.2, we report the average ¢o distance between subsampled points of the canon-
ical mesh and the test instances. Some qualitative visualizations are shown in Fig. 4.17.
From the visualizations, one can observe that the rendered deformed mesh fits the ob-
served mesh nicely. Our method not only works for objects with simple geometry like
bottles but also for objects with complex geometry like drills and sprays. Quanti-
tatively, our method performs only slightly worse than DeepCPD despite not employing
any specialized learnable components to model the deformation.

JOINT DEFORMABLE REGISTRATION AND POSE OPTIMIZATION

The accuracy of the deformable registration greatly depends on the quality of the pose
estimation. Under the assumption that the exact pose of the observed instance is known,
the competing methods CLS and DeepCPD perform slightly better than the proposed
method. When the pose estimation is not accurate enough, the accuracy of the deformable
registration degrades as well. In contrast to the methods in comparison, our end-to-end-
differentiable pipeline can jointly optimize for 6D object pose along with deformable
registration. To demonstrate this feature, we randomly sample offsets in the range of
[-0.05, 0.05| m for the x and y translation components and [-15°and 15°| for the rotation
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Figure 4.17: Visualization of 3D deformation. The canonical mesh is deformed to fit the observed
mesh iteratively using differentiable rendering.
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Table 4.2: Comparison of our approach with CLS (Myronenko and Song, 2010) and Deep-
CPD (Rodriguez, Huber, and Behnke, 2020). Mean and (standard deviation) error
values in 10™%m.

Known Pose ‘With Pose Noise

Inst Ground
nstance Truth

CLS DeepCPD Ours CLS  DeepCPD  Ours
(3D) (RGB)  (RGB) (3D) (RGB)  (RGB)

Camera T1 34.61 51.93 102.17 12243 168.54 105.26  126.65
(1.97) (10.45)  (47.89)  (22.86) (357.8)  (64.21)  (28.31)
Camera T2 16.45  19.87 18.80 66.54  406.45 306.96  89.65
(1.61)  (4.59) (5.11)  (29.73) (492.03)  (127.89)  (33.54)

Bottle T1  23.25  25.92 45.21 52.63  297.79 227.90 75.41
(2.34)  (5.18) (9.75)  (19.45) (579.49)  (146.0)  (34.23)
Bottle T2 90.42  72.33 88.35 112.84 852.40 289.36  112.76

(28.54) (11.35)  (18.39)  (25.78) (1818)  (147.68) (31.76)

Spray T1 ~ 29.84  30.78 47.87 77.74 1035 146.89  89.59
(1.42)  (1.89)  (12.99)  (26.95) (406.69) (117.57)  (33.75)
Spray T2 111.94 121.19 15497  151.21 1488 255.69  178.42

(14.29) (19.16)  (82.34)  (79.76) (554.33)  (167.32)  (88.14)

Drill T1 21.18  28.86 52.71 71.54  232.35 92.96 84.34
(0.949) (1.42)  (23.54)  (34.56) (1325)  (58.23)  (43.56)
Drill T2 63.95 58.50 119.88 13421 21554 26231  157.27
(5.23) (21.51)  (107.43)  (89.16) (565.48)  (228.40)  (96.36)

components. Although our method can optimize z translation along with other pose pa-
rameters, optimizing both z translation and vertex position jointly is an ill-posed problem.
Thus, we include offsets only for x and y translation components. In our experiments, we
observed that the pose parameters require fewer updates to converge than the shape pa-
rameters. Therefore, we update the shape parameters at a higher frequency than the pose
parameters, i.e., we update the pose parameters once per three shape parameter updates.
Quantitative results of joint pose and shape optimization are presented in Table 4.2. The
mean error only increases marginally when pose noise is injected, indicating that our
method is less susceptible to pose initialization errors than the competing methods.

4.6 LIMITATIONS

Large-scale deployment of the abstract render-and-compare framework proposed in this
Chapter is limited by the following factors.

1. Awailability of high-quality meshes. The abstract render-and-compare method is
based on the assumption that a scene—excluding the secondary lighting effects—
can be faithfully rendered using modern computer graphics pipelines. One of the
prerequisites for an acceptable quality rendering is the availability of high-quality
meshes. Both the dense descriptor learning approach discussed in Section 4.4.1 and
the iterate pose and share refinement steps discussed in Sections 4.4.6 and 4.5 make
use the 3D meshes. Despite the progress in 3D object reconstruction from RGB/D
images, obtaining large-scale 3D meshes can be prohibitively expensive (Chang
et al., 2015; Han, Laga, and Bennamoun, 2019; Choy et al., 2016; Fu et al., 2021).
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2. Complexity of the image comparison operation. Comparing images pixel-wise is a
complex operation. Moreover, gradient flow to the pose and shape parameters orig-
inates from the image comparison operator. Thus, image comparison operator not
only needs to good at comparison but also differentiable and guarantee a smooth
gradient flow. In this Chapter, we proposed the abstract space image comparison
techniques instead of the standard RGB pixel space. The abstract space compar-
ison alleviates many common issues in image comparison. However, due to the
inherent complexity of image comparison, reliability remains open question in the
pipelines we proposed. For example, in the pose refinement experiment discussed
in Section 4.4.6, for some objects, the refinement step resulted in degraded accuracy.
Similarly, in the joint pose and share refinement experiment discussed in Section 4.5,
we noted that a clear background-foreground separation is needed for the proposed
pipeline to work.

4.7 DiscussioN & CONCLUSION

In this Chapter, we introduced abstract render-and-compare pipelines for object pose
refinement, and joint pose and shape refinement. To facilitate an efficient scene render-
ing, we introduced StilllebenDR. StilllebenDR, augments the openly available Stillleben
with differentiable rendering capabilities without adding a large overhead to the forward
rendering process. We proposed a method to learn dense descriptors based on a pixel-
wise contrastive loss function. The learned dense descriptor space is invariant to the
secondary lighting effects in the scene. Equipped with the differentiable renderer and the
dense descriptor, we proposed a pipeline for multi-object 6D object refinement. Moreover,
we introduce a pipeline for joint pose and share refinement based on the latent shape
space model and image comparison in neural network feature space. Furthermore, we
highlighted major limitations facing our model. Here, we discuss recent works that pro-
vide opportunities to address these limitations. Li et al. (2018b) and Labbe et al. (2020)
propose to learn pose updates directly given the rendered and the observed images. This
circumvents the complexities in image comparison and analytical gradient flow through
the rendering process. Also, the recent developments in differentiable volume rendering
methods like NeRF (Mildenhall et al., 2021), 3D Gaussian Splatting (Kerbl et al., 2023;
Lassner and Zollhofer, 2021) enable learning implicit object representations, removing
the need for 3D object meshes. Yen-Chen et al. (2021) proposed inverting NeRFs for
pose refinement. Deng et al. (2023) introduced a method for shape refinement based
on NeRF. Shao et al. (2020) introduced a reinforcement learning based pose refinement
as an alternative to differentiable rendering pipelines. Overall, we conclude that render-
and-compare is a powerful technique for scene parameter refinement, and differentiable
rendering is an integral component in realizing render-and-compare refinement pipelines.



MULTI-OBJECT POSE ESTIMATION USING
DIRECT REGRESSION

Object detection and pose estimation are intertwined. The stan-
dard multi-staged methods do not capture the coupled nature
of these tasks. To enable a single-staged pipeline, we formulate
joint multi-object detection and pose estimation as a set pre-
diction problem, and employ direct regression to estimate pose
parameters. Moreover, we take advantage of the permutation-
invariant nature of the attention mechanism to design our ar-
chitecture for set prediction.

STATEMENT OF PERSONAL CONTRIBUTION
The contents presented in this Chapter is adapted from the following publication.

Arash Amini, Arul Selvam Periyasamy, and Sven Behnke
T6D-Direct: Transformers for multi-object 6D pose direct regression

In: 43rd DAGM German Conference on Pattern Recognition (GCPR), Bonn, Ger-
many, 2022.

The author of this thesis substantially contributed to all aspects of the publication,
including the literature survey, the conception, formalization, design, and implementation
of the proposed method, the preparation and conduct of experiments for the evaluation
of the proposed approach, the analysis and interpretation of the experimental results,

the preparation of the manuscript, as well as the revision and final editing of the version
published.

51 INTRODUCTION

Object pose estimation is a long-standing problem in computer vision and it serves as
a necessary pre-requisite for autonomous robots. Given an RGB input, the task aims at
estimating the position and the orientation of the target objects in the camera coordinate
frame. Pose of rigid body objects with respect to a specific frame of reference can be
represented using six parameters—three for translation t and three for rotation R. The
special Euclidean group SE(3) expressed using 4x4 matrices represents the set of rigid
body transformations in three-dimensional Euclidean space.

SE(3) = {A[A: [ i

t] ,ReR¥3 tcR3 RTR=RRT = 1}
O1><3

65


https://arxiv.org/abs/2109.10948

66

MuLTI-OBJECT POSE ESTIMATION USING DIRECT REGRESSION

(a) object detection (b) semantic segmentation (c) pose estimation

Figure 5.1: Subtasks in a standard pose estimation pipeline. Object detection and/or semantic
segmentation is performed first and only the crops containing the target objects are
processed by the pose estimation models. Employing modules like NMS, Rol pooling,
and anchor boxes the pipeline is made end-to-end differentiable.

The translation component is commonly represented using three dimensional scalars,
whereas several representations exists for orientation. The choice of the orientation rep-
resentation is dependent on the application domain.

The standard methods for object pose estimation are multi-staged. In the first stage,
object detection is performed. Object detection can either be formulated as joint bound-
ing box and class probabilities prediction (shown in Fig. 5.1 a) or as semantic/instance
segmentation-driven (shown in Fig. 5.1 b) crop extraction. In the subsequent stage, the
crop containing the target object is processed by the pose estimation module to generate
the 6D pose parameters (shown in Fig. 5.1 ¢). The ground-truth object class labels are
represented using one-hot encoding. The class probabilities prediction is formulated as
multinomial logistic regression employing the softmax function. The 2D bounding box
are modeled using four parameters, which can be represented using two different stan-
dard conventions: the pixel coordinates of the object center along with the height and
the width of the bounding box and the pixel coordinates of the top left and bottom
right corners. The semantic segmentation task is formulated as pixel-wise classification.
The multi-staged pipelines have two major shortcomings. Firstly, realizing an end-to-end
differentiable multi-staged pipeline is not trivial. Special modules like non mazimum sup-
pression (NMS),region of interest (Rol) pooling, and anchor boxes are needed to make
the multi-staged pipelines end-to-end differentiable. Secondly, the sequential nature of
the multi-staged pipelines do not exploit the intertwined nature of the subtasks. To this
end, we introduce the T6D-Direct model, a single-stage multi-object pose estimation
model.

5.2 RELATED WORK

In accordance with many of the computer vision problems, the deep learning methods
dominate the state-of-the-art landscape for object pose estimation. Prior to the advent
of learning-based methods, methods for pose estimation can be broadly classified into
template-matching-based and sparse-feature-based. The early machine learning methods
for pose estimation based on Hough forests, regression forests, gradient boosted decision
trees laid the foundations for deep learning methods. We review these algorithms in the
following section briefly.



5.2 RELATED WORK

TEMPLATE-MATCHING-BASED METHODS

In template-matching-based methods (Cao, Sheikh, and Banerjee, 2016; Hinterstoifser et
al., 2012; Hinterstoisser et al., 2013), a rigid template of the target object is constructed
offline and matched against different image locations to compute a similarity score. The
pose corresponding to the best-matched template is assigned to the target object. By for-
mulating the pose estimation as a similarity search problem, the template-matching-based
methods benefited from the developments made in the similarity search research field—
particularly in efficient inference. However, the curse of dimensionality severely hindered
the applicability of similarity search for computer vision problems. To counter this, di-
mensionality reduction techniques like principal component analysis (PCA) and parallel
processing using GPGPUs were employed to speed up the template-matching process.
Despite these improvements, the template-matching-based methods performed poorly
under occlusion. Also, variations due to view point, lighting conditions, and secondary
lighting effects had an adverse effect on performance of the template-based-methods.

SPARSE-FEATURE-BASED METHODS

Lowe (2004) introduced the landmark work scale invariant feature transforms (SIFT).
The SIF'T algorithm detects and describes distinctive features in an image that are invari-
ant to scale, rotation, and affine transformations. It led to significant improvements in
many computer vision tasks. Many of the follow-up works including SURF (Bay, Tuyte-
laars, and Gool, 2006) BRISK (Leutenegger, Chli, and Siegwart, 2011), ORB (Rublee et
al., 2011), HOG (Dalal and Triggs, 2005) proposed improvements to SIFT in terms of the
robustness and execution speed. Using 2D-3D correspondences between image features
and model keypoints, 6 DoF object poses are estimated employing the Perspective-n-
Point (PnP) algorithm. The putative 2D-3D matching is susceptive to outliers. To deal
with outliers, PnP algorithm is combined with the RANSAC paradigm (Hao et al., 2013;
Penate Sanchez et al., 2013; Chum and Matas, 2005; Sattler, Leibe, and Kobbelt, 2011).
Similar to the template-matching-based methods, occlusion hindered the performance
sparse-feature-based methods as well.

LEARNING-BASED METHODS

Tejani et al. (2014) introduced latent-class Hough Forests by integrating scale-invariant
patch descriptors into regression forest using a template-based split function. Schulter
et al. (2013) proposed alternating regression forests for object detection and pose esti-
mation employing random forest by optimizing a global loss function over all trees. Lai
et al. (2011) presented scalable approach for object pose estimation based on gradient
boosted decision trees. Hara and Chellappa (2014) introduced a node splitting method
for regression trees and incorporated it into the regression forest framework for car direc-
tion estimation. Although the early learning-based methods made considerable progress
in terms of pose estimation accuracy and inference speed, compared to the deep learning
methods they scaled poorly with data. With the emergence of large-scale datasets and
GPGPU compute power, these methods where phased-out in favour of deep learning
methods.
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CNN-BASED POSE ESTIMATION

Modern deep-learning-based methods augment the classical methods with learned fea-
tures and components. While some of the modern methods strive for end-to-end learnable
pipelines, some others combine learnable modules with classic computer vision algorithms.
In this section, we review some of the prominent CNN-based works in recent years.
Xiang et al. (2018) introduced PoseCNN, an end-to-end differentiable pipeline for ob-
ject pose estimation from RGB images. Additionally, they introduced the YCB-Video
dataset, which we use for evaluating the methods we propose in this thesis. PoseCNN
jointly learned semantic segmentation and 6D pose estimation using a common convo-
lutional neural network CNN backbone. The segmentation branch utilized fully convo-
lutional layers to learn pixel-wise class probability distribution and the pose estimation
branch had two stages. In the first stage, for each object pixel, a direction vector point-
ing towards the pixel onto which the center of the object is projected, and the distance
between the camera and the object center is estimated. In the second stage, using the
segmentation estimate from the first stage, crops containing the target objects are de-
termined. The orientation regression module estimates the orientation component of the
object pose, which is represented as quaternions. The translation component is estimated
from the dense direction vector and the depth estimate using a novel differentiable hough
voting layer. Utilizing Rol pooling layers while cropping, PoseCNN is designed to be end-
to-end differentiable. Kehl et al. (2017) observed that the gradient flow is well-behaved
in the case of classification tasks compared to the regression tasks. Based on this obser-
vation, instead of regressing the orientation parameters, Kehl et al. (2017) discretized
the orientation space and performed classification. Oberweger, Rad, and Lepetit (2018)
introduced a sparse-keypoint-based approach, in which the pixel projections of the 3D
bounding box corners were estimated using fully convolutional networks. Knowing the
2D-3D correspondences, the 6D object pose is estimated employing the perspective n
points (PnP) algorithm. Peng et al. (2019) argued that estimating pixel projections of
3D bounding box corners is harder since the projections, often, lie outside of target object
pixels. And to address this issue, they proposed to select keypoints on the surface of the
object employing the farthest point sampling (FPS) algorithm. Sundermeyer et al. (2018)
formulated the problem of pose estimation as nearest neighbor search in the Augmented
Autoencoder (AAE) latent space. Similar to the training regime of Denoising Autoen-
coder (DAE) (Vincent et al., 2010), in which a CNN is trained to recreate the noise-free
image from the corrupted RGB input, AAE is trained to recreate noise-free occlusion-
free secondary-light-effects-invariant output image from the augmented input image. The
latent space of AAE serves as a low-dimensional representation of the input image. After
training the AAE model, a codebook of latent spaces corresponding to images covering
the discretized SE(3) manifold is created. During inference, the latent space of the input
image is extracted and the nearest neighbor from the codebook is found. The 6D pose
corresponding to the nearest neighbor is assigned to the input image. An orthogonal class
of methods to the ones we discussed so far are the refinement-based methods (Labbe et
al., 2020; Li et al., 2018b; Periyasamy, Schwarz, and Behnke, 2019), which formulate the
pose estimation task as a problem of pose refinement. Given an observed RGB image,
an initial pose estimate, and the 3D model of the target object, an image is rendered
according to the current pose estimate. The pose refinement methods estimate a pose
update that minimizes the differences between the rendered and the observed images.
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The pose update step is repeated iteratively until the pose update becomes negligibly
small.

VIisiON TRANSFORMER MODELS

Deep learning methods for computer vision tasks typically utilized CNNs. Vaswani et al.
(2017) introduced the Transformer architecture based on multi-head attention for learn-
ing long-term dependencies in natural language processing tasks. Since the attention
mechanism is permutation-invariant, to preserve the order of input sequences, the author
proposed positional encodings. Cordonnier, Loukas, and Jaggi (2020) studied the relation-
ship between the convolutional operation and attention mechanism and mathematically
showed that a special case of attention mechanism in conjunction relative positional em-
bedding can be cast as the convolution operation. Dosovitskiy et al. (2021) introduced
vision transformer (ViT), a transformer architecture for computer vision without any con-
volutional layers that performed comparably or better than CNN-based architectures in
many computer vision applications. Several subsequent works utilized transformer archi-
tecture to supplement CNNs or to completely replace CNNs and achieved state-of-the-art
results in many computer vision tasks (Khan et al., 2022; Wang et al., 2020; Carion et al.,
2020).

MULTI-OBJECT POSE ESTIMATION MODELS

Several fully convolutional neural networks (Long, Shelhamer, and Darrell, 2015) were
proposed for multi-object pose estimation (Hu et al. (2019), Zakharov, Shugurov, and Ilic
(2019), Capellen, Schwarz, and Behnke (2019), Periyasamy et al. (2020)). These models
utilize a multi-branch feature maps for generating segmentation masks and pixel-wise
dense 2D-3D correspondences. During training, the feature maps are supervised using
ground-truth segmentation and dense correspondence maps. During inference, from these
maps, the 6D object poses for all the target objects are generated using PnP+RANSAC
scheme. Given the ground-truth maps, training these models adds only a small overhead
compared to the standard semantic segmentation models. The major limitation of these
models is that the PnP+RANSAC scheme to recover 6D object pose from dense pixel
correspondences is not differentiable. Moreover, to ensure robust 6D pose predictions
from the dense 2D-3D correspondences, multiple RANSAC evaluation are needed. Thus,
the overall inference time is much larger.

OBJECT DETECTION AS SET PREDICTION

Carion et al. (2020) introduced DETR, an end-to-end differentiable architecture that
combined CNN and the attention mechanism for object detection. An interesting aspect
of the DETR architecture is the formulation of object pose estimation as a set prediction
problem. Exploiting the permutation-invariant nature of the attention operation, DETR
generates a set of predictions. Each element in the set is a tuple of class probabilities and
2D bounding box parameters. Using bipartite matching, the model is trained end-to-end
without any special layers like NMS, Rol pooling, or anchor boxes. We take inspiration
from the DETR architecture in proposing our architecture for 6D object pose estimation,
which we discuss in the following sections.
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Figure 5.2: T6D-Direct overview. Given an RGB image, we use a CNN backbone to extract
lower-resolution image features and flatten them to create feature vectors suitable for
a standard Transformer model. The Transformer model generates a set of predictions
with a fixed cardinality V. To facilitate the prediction of a varying number of objects
in an image, we choose N to be much larger than the expected number of objects
in an image and pad the rest of the tuples in the set with @ object predictions. We
perform bipartite matching between the predicted and ground truth set to find the
matching pairs and train the pipeline to minimize the Hungarian loss between the
matched pairs.

53 T6D-DIRECT: MULTI-OBJECT 6D POSE USING DIRECT REGRES-
SION

In this section, we introduce T6D-Direct, a transformer model for multi-object for 6D
pose direct regression. We discuss its architecture, the pose estimation as set prediction
formulation and the differentiable matching procedure, the representations for direct
regression of pose parameters, the loss function used to train the model.

5.3.1 MULTI-OBJECT 6D POSE REGRESSION AS SET PREDICTION

Inspired by DETR (Carion et al., 2020), we formulate multi-object pose estimation as a
set prediction problem. An overview of the T6D-Direct model is shown in Fig. 5.2. Given
an RGB input, our model generates a set of predictions of cardinality N. Each element
in the set is a tuple consisting of class probability estimation, 2D bounding box detection
and 6D object pose parameters. We employ a ResNet backbone for feature extraction.
Positional encoding compensates for the loss of spatial information in the permutation-
invariant attention computation. Combined image features and positional encodings are
provided to the encoder module, which uses the multi-head self-attention mechanism to
generate encoder feature embeddings. In the decoder, the cross-attention mechanism is
employed between the encoder feature embeddings and a set of N learned embeddings
called object queries to generate N object embeddings, which are then processed by
feed-forward networks (FFNs) to generate 2D bounding box and class probabilities, in
parallel. Since the model is designed to generate a set of predictions of fixed cardinality
N, it is trained to predict O classes after detecting all the target objects present in the
image. By associating predictions and ground truth objects with a bipartite matching
algorithm (Kuhn, 1955), our model is trained end-to-end and jointly detects all objects
and estimates their pose in the given image in one forward pass without the need for
specialized layers.

In Fig. 5.3, we present the detailed architecture of the T6D-Direct model. Given an
RGB input of height H and width W, the ResNet50 (He et al., 2016) backbone model ex-
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Figure 5.3: T6D-Direct architecture in detail. Flattened positional encoded image features from a
backbone model are made available to each layer of the transformer encoder. The out-
put of the encoder is provided as input to the decoder along with positional encoding.
However, unlike the encoder that takes fixed sine & cosine positional encoding, we
provide learned positional encoding to the decoder. We call these learned positional
encoding object queries. Each output of the decoder is processed independently in
parallel by shared prediction heads to generate a set of N tuples each containing
the class probabilities, the bounding boxes, and the translation and the orientation
components of the 6D pose. Since the cardinality of the set is fixed, after predicting
all the objects in the given image, we train the model to predict ) object for the rest
of the tuples.

soanjeay

N [class]
pose

transformer
encoder

N [class]
pose

positional
encoding

tracts feature maps of dimensions 2048x H/32x W /32. Using 1x 1 convolutions we reduce
the dimension of the features and vectorize them to dx (H/32xW/32). To compensate for
the loss of spatial information in the permutation-invariant attention computation, we
use absolute positional encodings (P.E.) (Vaswani et al., 2017; Carion et al., 2020). The
pixel coordinates are represented as sine and cosine functions of different frequencies:

P.E. (pos ) = $in(pos/100007 ),

Pos,p)
P.E.(pos p+1) = cos(pos/ 10000%),

where pos is the pixel coordinate (either width or height), d is the embedding dimension,
and p is the index of the positional encoding. The positional embeddings are added to
the backbone feature vectors before feeding them to the transformer encoder as input.

MurTi-HEAD ATTENTION (MHA)

Given a query token z belonging to a set of query tokens €2, and a key token x belonging
to a set of key tokens 2., the multi-head attention for the element with index ¢ is
computed as:

M
MHA(2,2) = > Wi | S Amg - Wk | (5.1)
m=1 keQy

where m € M represents the attention head, ern € R%*4 and W,, € R¥™% are learn-
able projection parameters, d, = d/M and A represents the normalized attention weight.
MHA is a core component of the transformer architecture. In contrast to the convolution
operation, which limits the receptive field to a small neighborhood, self-attention enables
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a receptive field of the size of the whole image. Note that the convolution operation can
be cast as a special case of self-attention (Cordonnier, Loukas, and Jaggi, 2020).

TRANSFORMER ENCODER AND DECODER

The Transformer encoder module consists of six encoder layers with skip connections.
Each layer performs multi-head self-attention of the input vectors, i.e. the image features
act as both the query and the key. The output of the Encoder is referred as encoder
embeddings. The decoder also consists of six decoder layers with skip connections, which
perform cross-attention between the encoder embeddings and the learned embeddings
referred to as object queries to generate object embeddings. Object Queries randomly
initialized during training, learned jointly with the model parameters during training,
and remain fixed during inference.

FFNs

From the N object embeddings, we use feed-forward networks (FFNs) to generate a
set of N output tuples independently. Each tuple consists of the class probability, the
bounding box, and the pose parameters. Prediction heads are fully-connected three-layer
MLPs with hidden dimension of 256 and ReLU activation in each layer.

BIPARTITE MATCHING

Given n ground truth objects y1, 2, ..., yn, we pad @ objects to create a ground truth set
y of cardinality N. To match the predicted set g, generated by our T6D-Direct model,
with the ground truth set y, we perform bipartite matching. Formally, we search for the
permutation of elements between the two sets o € G that minimizes the matching cost:

N
0 = argmin Z Lmatch (yi7 ga(i)): (52)
O'EGN i

where Liatch (Yis Jo(s)) is the pair-wise matching cost between the ground truth tuple y;
and the prediction at index (7). DETR model included bounding boxes b; and class
probabilities p; in their cost function. In the case of T6D-Direct model, we have two
options for defining Lynatch (Yi, Jo(iy). One option is to use the same definition used by the
DETR model, i.e., we include only bounding boxes and class probabilities and ignore pose
predictions in the matching cost. We call this variant of matching cost as Lyatch object-

A~

Ematchiobject(yia ga(z)) = _]]-ci7é®ﬁa(i) (Cl) + ]]-ci76®'cboz (bzv ba(z)) (53)

The second option is to include the pose predictions in the matching cost as well. We
call this variant Lpatch pose-

Ematch_pose(yiv ga(z)) = £match_object(yi7 ga(i) )+
Erot(Riy Ra(z)) + Lirans (tia fa(i))a (5~4)
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where L, is the angular distance between the ground truth and predicted rotations, and
Lirans 1S the £o loss between the ground truth and estimated translations.

In our experiments, both the variants performed equally well. However, the first variant
was comparatively faster since computing Lynatch pose Was significantly expensive. Thus,
we used the first variants in the rest of the experiments.

5.3.2 Loss FuNcTION

After establishing the matching pairs using the bipartite matching, the T6D-Direct model
is trained to minimize the Hungarian loss between the predicted and ground truth target
sets consisting of probability loss, bounding box loss, and pose loss:

N
EHungarian(ya g) = Z[_logﬁ&(i) (Cz) + ]]-ci7é®['bom(bi7 b&(z))+

)\pose]]-ci;zé@[fpose(Ri» ti, R&(i)> f&(z))] (55)

CLASS PROBABILITY LoOSS

The first component in the Hungarian loss is the class probability loss. We use the
standard negative log-likelihood (NLL) loss as the class probabilities loss function. Ad-
ditionally, the number of ) classes in a set is significantly larger than the other object
classes. To counter this class imbalance, we weight the log probability loss for the @ class
by a factor of 0.4.

BounbpiNGg Box Loss

The second component in the Hungarian loss is bounding box loss Ly, (b;, Bg(i)). We use
a weighted combination of generalized IoU ((Rezatofighi et al., 2019)) and ¢; loss.

Eboac(b’ia Ba(z)) = O‘[/iou(biv Ba(z)) + BHbl - Bo(i)“? (56)

b Ny | |1B(bis b)) \ bi Uby
| @l 1B bogi)) \ ()‘>’ (5.7)

Liou (i, bogiy) =1 — ( T — -
|bi U ba(i)| |B(bl’ bo(l))|

where «, 8 are hyperparameters and B(b;, Ba(i)) is the largest box containing both the
ground truth b; and the prediction IA)U(i).

Pose Loss

The third component of the Hungarian loss is the pose loss. Inspired by Wang et al. (2021),
we use the disentangled loss to individually supervise the translation ¢ and rotation R
via employing symmetry aware loss (Xiang et al., 2018) for the rotation, and ¢5 loss for
the translation.
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[fpose(Ri, ti, Ro(i) ) 7Jta(z)) = 'CR(Riu -Ra'(l)) + ”tz — fo(i) H7 (58)
W min ||(Rix; — RO.(Z')XQ)H if symmetric,
Lp— xiem M (5.9)
W Z |(Rix — R )| otherwise,
xeEM

where M indicates the set of 3D model points. Here, we subsample 1500 points from
prov1ded meshes. R; is the ground truth rotation and ¢; is the ground truth translation.
RU(Z') and {, (i) are the predicted rotation and translation, respectively.

5.3.3 DIRECT REGRESSION OF POSE PARAMETERS

The ability of a machine learning model to learn a task greatly depends on the represen-
tation used to encode the task output. For each object, our model directly regresses the
6D pose parameter. The natural choice of representation for the translation component is
three dimensional vector (R?). However, representation for the orientation component is
not straightforward. The orientation parameters belong to the special orthogonal group,
(SO(3)). Several orientation representations exist in the literature. We review these rep-
resentations briefly and discuss our representation of choice.

EULER ANGLES

Euler angles represent the orientation of an object using three angles, each corresponding
to a rotation around one of the principal axes. The sequence of these rotations can
vary, leading to different conventions such as XY Z, ZY X, etc. Euler angles are easy to
understand, visualize, and only need three parameters. However, they suffer two major
limitations. Firstly, Euler angles are not unique. Non-unique representations are not
suitable for machine learning applications. Secondly, they suffer from a phenomenon
known as gimbal lock in which two of the three axes align, causing a loss of one degree
of freedom and making it impossible to represent certain rotations.

AXIS-ANGLE REPRESENTATION

The axis-angle representation defines a rotation by specifying an axis around which the
rotation occurs and the magnitude of the rotation about that axis. Thus, it has four
parameters. However, both the axis and the angle can represented by a three dimensional
vector (referred as rotation vector or the Euler vector) co-directional with the rotation
axis whose length is the rotation angle. Although the axis-angle representation does not
suffer from gimbal lock, it is also not a non-unique representation, since rotation by an
angle 0 is same as the rotation by the angle -6.
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Figure 5.4: Stereographic projection in 2D. The point p on the unit circle is projected on to the
y-axis using the fixed projection point s.

QUATERNIONS

Complex numbers C represent rotation in 2D. Quaternions ¢ represent rotations in 3D
by extending complex numbers to one real part and three imaginary parts 4, j, k, such
that

and take a general form
q=a+bi+cj+dk,

where a, b, ¢, d form the four parameters of quaternions. While quaternions provide an
elegant and computationally efficient representation for working with rotations, it is also
a non-unique representation. An unit quaternion ¢ and its conjugate —q represent the
same rotation.

5D & 6D CONTINUOUS REPRESENTATIONS

The standard representations we discussed so far are widely used in various scientific
disciplines serving a wide range of use cases. However, the results from neural network
approximation theory showed that to learn discontinuous functions the neural networks
need more number of neurons as well as training iterations and the resulting accuracy
is inferior compared to learning continuous functions (Xu and Cao (2005), Xu and Cao
(2004), LeCun, Bengio, and Hinton (2015)). Moreover, empirical evaluation of the stan-
dard rotation representations also shows larger errors in the vicinity of discontinuity
(Zhou et al. (2022)). Motivated by these results, Zhou et al. (2022) argued that unifor-
mity and continuity are prerequisites for any neural network-compatible representation.
Representations that are four dimensional or fewer do not satisfy this criteria. To this
end, they proposed 5D & 6D continuous rotation representations. The 6D representation
is formed by dropping the last column vector of the 3x3 rotation matrix. The reverse
mapping from the 6D representation to corresponding the 3x 3 rotation matrix is defined
by the Gram-schmidt orthogonalization procedure (Leon, Bjorck, and Gander (2013)).
Stereographic projection allows dimensionality reduction from R™ to R™ 1. In Fig. 5.4,
we illustrate the stereographic projection in 2D. A point p on the unit circle is project
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Tttt é

allocentric egocentric

Figure 5.5: Allocentric & egocentric representations. The intersection of the camera ray with
the image plane is shown using red dots. Object appears different under egocentric
representation despite having the same orientation parameters due to translation lat-
eral to the image plane. Camera intrinsics are chosen to exaggerate visual differences.
This phenomenon is not observed under allocentric representation. Figure adapted
from Manhardt et al. (2020).

on to the y-axis using a ray from the fixed projection point s=(1,0). Formally, a vector
u € R™ is projected onto to v € R™™! as follows.

{ ) wWo W, ]T U
v = , s eee S W= ——0.
1l—wi'1—wy 1—w ||ul]

The vector v € R™~! can be projected back to R™ using stereographic un-projection as
follows.

1 J1 ) T
= —|= -1 .
u ||’U|| |:2 (||U|| )7u17 7um1:|

The stereographic projection and un-projection enables conversion between 6D and 5D
continuous rotation representations. We utilize these representation for directly regressing
the pose parameters in the T6D-Direct model.

ALLOCENTRIC & EGOCENTRIC REPRESENTATIONS

Pose of an object can be encoded using either allocentric or egocentric representations.
In Fig. 5.5, we depict the differences between the two representations. Egocentric rep-
resentation encodes pose relative to the current position and orientation of the camera,
whereas allocentric representation encodes spatial position based on a fixed reference
frame that is independent of the camera pose. Under egocentric representation, mere
translation lateral to the camera plane results in vastly different visual appearance of the
object. This might hinder the learning ability of a model since visually different obser-
vations correspond the same orientation parameters. Allocentric representation does not
exhibit this phenomenon. We evaluate both representations for direct regression in the
T6D-Direct model.
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Master Chef Can Mustard Bottle Banana Tomato Soup Can  Sugar Box

Tuna Fish Can  Pudding Box Gelatin Box Potted Meat Can Cracker Box

Pitcher Base Bj\ach Cleanser Bowl Wood Block Scissors
Large Large Power Extra Large Foam Brick
Marker Clamp Drill Clamp

Figure 5.6: YCB-Video dataset objects. The dataset consists of 21 objects. The standard evalu-
ation protocol proposed by Xiang et al. (2018) considers five objects to be symmet-

ric: bowl, wood block, large clamp, extra large clamp, and foam brick. Large
clamp and extra large clamp differ only by size.
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54 EVALUATION
5.4.1 DATASET

We use the challenging YCB-Video (Xiang et al., 2018) dataset to evaluate the perfor-
mance of our model. It provides bounding box, segmentation, and 6D pose annotations
for 133,936 RGB-D images. Since our model is RGB-based, we do not use the provided
depth information. The dataset is generated by capturing video sequences of a random
subset of objects from a total of 21 objects (shown in Fig. 5.6) placed in tabletop con-
figuration. From the 92 video sequences, twelve are used for testing and 80 are used
for training. The objects used exhibit varying geometric shapes, reflectance properties,
and symmetry. Thus, YCB-Video is a challenging dataset for benchmarking 6D object
pose estimation methods. YCB-Video also provides high-quality meshes for all 21 objects.
Mesh points from these objects are used in computing the evaluation metrics that we
describe in Section 5.4.2. Hodaii et al. (2020) provided a variant of YCB-Video! as part
of the BOP challenge in which the centers of the 3D bounding boxes are aligned with the
origin of the model coordinate system and the ground-truth annotations are converted
correspondingly. We use the BOP variant of the YCB-Video dataset. In addition to the
YCB-Video dataset images, we use the synthetic dataset provided by PoseCNN (Xiang et
al., 2018) for training our model. Moreover, we initialize our model using the pre-trained
weights on the COCO dataset (Lin et al., 2014) for the task of object detection.

5.4.2 EVALUATION METRICS

Xiang et al. (2018) proposed area under the curve (AUC) of ADD and ADD-S metrics
for evaluating the accuracy of non-symmetric and symmetric objects, respectively. Given
the ground-truth 6D pose annotation with rotation and translation components R and
t, and the predicted rotation and translation components R and t, ADD metric is the
average fo distance between the subsampled mesh points M in the ground truth and the
predicted pose. In contrast, the symmetry-aware ADD-S metric is the average distance
between the closest subsampled mesh points M in the ground-truth and predicted pose.
Following the standard procedure proposed by Xiang et al. (2018), we aggregate the
results and report the area under the threshold-accuracy curve for distance thresholds
from zero to 0.1m.

1

ADD =
M|

ST Rz +t) — (Rz + b, (5.10)
reM

1
ADD-S= —— > min |
|M| $1€M$26M

(Rx1 +t) — (Rzy + ). (5.11)

The ADD and ADD-S metrics are combined into one metric by using ADD for non-
symmetric objects and ADD for symmetric objects. This combined metric is denoted as
ADD-(S).

1 https://bop.felk.cvut.cz/datasets/
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Table 5.1: Quantitative comparison on the YCB-Video Dataset.

Metric AUC of ADD-S AUC of ADD-(S)

Object PoseCNN  T6D-Direct DeepIM | PoseCNN  PVNet T6D-Direct DeepIM
master chef can 84.0 91.9 93.1 50.9 81.6 61.5 71.2
cracker box 76.9 86.6 91.0 51.7 80.5 76.3 83.6
sugar_box 84.3 90.3 96.2 68.6 84.9 81.8 94.1
tomato_soup_can 80.9 88.9 92.4 66.0 78.2 72.0 86.1
mustard_bottle 90.2 94.7 95.1 79.9 88.3 85.7 91.5
tuna_fish _can 87.9 92.2 96.1 70.4 62.2 59.0 87.7
pudding box 79.0 85.1 90.7 62.9 85.2 72.7 82.7
gelatin_box 87.1 86.9 94.3 75.2 88.7 74.4 91.9
potted _meat can 78.5 83.5 86.4 59.6 65.1 67.8 76.2
banana 85.9 93.8 72.3 91.3 51.8 87.4 81.2
pitcher_base 76.8 92.3 94.6 52.5 91.2 84.5 90.1
bleach cleanser 71.9 83.0 90.3 50.5 74.8 65.0 81.2
bowl* 69.7 91.6 81.4 69.7 89.0 91.6 81.4
mug 78.0 89.8 91.3 57.7 81.5 72.1 81.4
power _ drill 72.8 88.8 92.3 55.1 83.4 7.7 85.5
wood_block* 65.8 90.7 81.9 65.8 71.5 90.7 81.9
scissors 56.2 83.0 75.4 35.8 54.8 59.7 60.9
large_ marker 71.4 74.9 86.2 58.0 35.8 63.9 75.6
large clamp* 49.9 78.3 74.3 49.9 66.3 78.3 74.3
extra_large clamp* 47.0 54.7 73.2 47.0 53.9 54.7 73.3
foam_ brick* 87.8 89.9 81.9 87.8 80.6 89.9 81.9
MEAN 75.9 86.2 88.1 61.3 73.4 74.6 81.9

Symmetric objects are denoted by *. The best results are shown in bold.
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Figure 5.7: Qualitative examples from the YCB-Video dataset. Left: PoseCNN (Xiang et al.,
2018). Right: T6D-Direct (Ours) predictions. The pose predictions are visualized
using 3D bounding boxes and the object mesh points in predicted pose are overlaid
on top of the image pixels.
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Table 5.2: Comparison with leading pose estimation methods on the YCB-Video dataset.
T indicates refinement-based methods. Inference time is the average time taken for
processing all objects in an image.

Method ADD-(S) ,:]L)(];ng A“DUS (‘;f) fps
CosyPose’ (Labbe et al., 2020) - 89.8 84.5 2.5
PoseCNN (Xiang et al., 2018) 21.3 75.9 61.3 4

Single-Stage (Hu et al., 2020) 53.9 - - 45
GDR-Net (Wang et al., 2021) 49.1 89.1 80.2 15.3
T6D-Direct (Ours) 48.7 86.2 74.6 58

5.4.3 EXPERIMENTAL RESULTS

In Table 5.1, we present the per object quantitative results of T6D-Direct on the YCB-
Video dataset. For a fair comparison, we follow the same object symmetry definition
and evaluation procedure described by the YCB-Video dataset (Xiang et al., 2018).
We compare our results with PoseCNN (Xiang et al., 2018), PVNet (Peng et al., 2019)
and DeepIM (Li et al., 2018b). In terms of the approach, T6D-Direct is comparable to
PoseCNN; both are direct regression methods, whereas PVNet is an sparse keypoint-
based method, and DeepIM is a refinement-based approach. In terms of both AUC
of ADD-S and AUC of ADD-(S) metrics, T6D-Direct outperforms PoseCNN and out-
performs the AUC of ADD-(S) results of PVNet. Some qualitative results are shown
in Fig. 5.7. Comparing the ADD-S and ADD-(S) per object, we observe that for non-
symmetric objects master chef can, tuna fish can, and scissors, the ADD-(S) ac-
curacy drops significantly. For the rest of the objects the difference between ADD-S and
ADD-(S) score are in line with the competing methods. In the following sections, we
analyze the inference time of our method and present the results of the ablation study.

5.4.4 INFERENCE TIME ANALYSIS

In Table 5.2, we present the inference time of the T6D-Direct model in comparison with
the state-of-the-art CNN-based pose estimation model. Being a single-stage model allows
faster inference speed for the T6D-Direct model. Among the models compared, Single-
Stage (Hu et al., 2020) also performs object pose estimation in a single step. It uses
a segmentation-driven CNN to predict pixel-wise 2D-3D correspondences followed by a
RANSAC step to generate 6D poses. PoseCNN (Xiang et al., 2018) uses a multi-stage ap-
proach in which objects are segmented and the corresponding crops are extracted in the
first stage. In the second stage, the translation component is estimated using a novel dif-
ferentiable Hough voting layer and the orientation component is directly regressed in the
form of quaternions. GDR-Net (Wang et al., 2021) introduced Patch-PnP, a light-weight
CNN module that directly regresses 6D pose parameters from the 2D-3D correspondence
estimations. CosyPose (Labbe et al., 2020), a pose refinement approach based on render-
and-compare framework refines PoseCNN (Xiang et al., 2018) predictions iteratively to
generate more accurate pose predictions. Although CosyPose achieves high pose predic-
tion accurate, it is comparatively slower at 2.5 frames per second. Among the methods
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Table 5.3: Ablation study on YCB-Video. We provide results of our method trained using differ-
ent loss functions and training schemes.

Row | Method ADD-(S) | 25 (Osf)
1 T6D-Direct with Point Matching loss 47.0 75.6
2 1 + multi-stage training 20.5 59.1
3 1 + pose matching cost component 42.8 71.7
4 1 + allocentric Rgqg 42.9 74.4
5 T6D-Direct with PLoss 45.8 74.4
6 T6D-Direct 48.7 74.6

in comparison, only Single-Stage (Hu et al., 2020) has an inference speed closer to the
T6D-Direct model. At 58 fps, T6D-Direct is suitable for real-time applications.

5.4.5 EFFECTIVENESS OF LOsSS FUNCTIONS

Loss functions quantify the difference between the predicted output of the neural network
and the actual target values. They guide the model in learning the objective. In case of
object pose estimation, depending on the pose representation there exists several loss
functions. The simplest loss function is the £9 loss for both the translation and rotation
components. The main advantage of the fo loss, it does not need the 3D object mesh
or the point cloud to compute in the loss. The major down-side of the /5 loss is that
it does not capture the object symmetry. Loss functions like Point Matching loss (Li
et al., 2018b; Xiang et al., 2018), disentangled SLoss (Xiang et al., 2018) requires object
mesh or point cloud data, but captures the object symmetry. In Table 5.3, we examine
the performance of our model using the symmetry aware version of Point Matching loss
with ¢9 norm (Li et al., 2018b; Xiang et al., 2018) which, in contrast to the disentangled
loss presented in Section 5.3.2, couples the rotation and translation components. This
loss function results in the best AUC of ADD-(S) metric. Moreover, since the symmetry
aware SLoss component of the Point Matching loss is computationally expensive, we
experimented with training our model using only the PLoss component. Interestingly,
the ADD-(S) accuracy of the model trained using only the PLoss component (row 5) is
only slightly worse than the model trained using the both components (row 1).

5.4.6 EFFECTIVENESS OF TRAINING STRATEGIES

As discussed in Section 5.4.6, there are two training schemes: single-stage and multi-
stage. In the multi-stage scheme, we train the Transformer model for object detection
and only train the FFNs for pose estimation, whereas in the single-stage scheme, we
train the complete model in one stage. In our experiments, as shown in Table 5.3, multi-
stage training (row 2) yielded inferior results, although both schemes were pretrained
on the COCO dataset. This demonstrates that the Transformer model is learning the
features specific to the 6D object pose estimation task on YCB-Video, and COCO fine-
tuning mainly helps in faster convergence during training and not in more accurate
pose estimations. We thus believe that most large-scale image datasets can serve as



5.4 EVALUATION

Full model Scene

Frozen

Figure 5.8: Decoder cross-attention. Object predictions of a given image (first row) and decoder
attention maps for the object queries (second and third rows). Training the complete
model for both object detection and pose estimation tasks (second row). Training the
model first on the object detection task, and then training the frozen model on the
pose estimation task (third row). Attention maps are visualized using the jet color
map (shown above for reference).

pretraining data source. We also provide the results of including the pose component in
the bipartite matching cost mentioned in Section 5.3.2. Including the pose component
(row 3) does not provide any considerable advantage; thus, we include only the class
probability and bounding box components in the bipartite matching cost in all further
experiments. Further, egocentric rotation representation (row 1) performed slightly better
than allocentric representation (row 4). We hypothesize that supplementing RGB images
with positional encoding allows the Transformer model to learn spatial features efficiently.
Therefore, the allocentric representation does not have any advantage over the egocentric
representation.

5.4.7 ANALYZING ATTENTION MECHANISM

The attention mechanism allows for the model to learn to focus on to the pixels relevant
for the joint object detection and the pose estimation task. Visualizing the attention
maps generated in the encoder and the decoder modules help us in understanding the
inner working of the T6D-Direct model better. In the decoder module, we perform cross
attention between the object queries and the encoder embeddings. For each object queries,
the decoder module and the subsequent FF'Ns generate an object prediction. In Fig. 5.8-
second row, we visualize the attention maps corresponding to object queries that resulted
in object predictions (excluding @ predictions) made by the T6D-Direct model. Note that
the attention maps highly correlate with the semantic masks of the corresponding objects
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Figure 5.9: Encoder self-attention. We visualize the self-attention maps for three pixels belonging
to three objects in the image. All three pixels lie on the same horizontal line but attend
to different parts of the image. Attention maps are visualized using the jet color map
(shown above for reference).

in the input image. Moreover, we also experimented with fine tuning only the FFNs for
the joint object detection and pose estimation task. We started with training the T6D-
Direct model for the object detection task on the COCO dataset and while fine tuning the
model for the joint object detection and pose estimation task, we freeze the encoder and
the decoder modules. In Fig. 5.8-third row, we visualize the attention maps generated
by the partial frozen model. The fully fine-tuned T6D-Direct model performed better
than the partial frozen model. A closer look at the attention maps reveals that the frozen
model attends to the object boundary pixels more, whereas the fully fine-tuned model
attends to all the object pixels.

Similarly, in Fig. 5.9, we visualize the attention maps in the encoder modules corre-
sponding to three pixels that belong to the three objects in the image and lie in the same
horizontal line. The object pixels and the pixels in the immediate vicinity of attended
more, whereas the background pixels are completely ignored. From these visualizations
we can conclude that the attention mechanism learns to focus on the pixels relevant for
the task without any explicit guidance.

55 DIiscussioN & CONCLUSION

In this Chapter, we introduced the multi-object pose estimation as set prediction formu-
lation and discussed the vision transformer based single-stage T6D-Direct model. Our
model is based on DETR (Carion et al., 2020) a vision transformer model for object
detection. Given an RGB input, our model generates a set of tuples of fixed cardinality.
Each tuple consists of class probabilities, 2D bounding box parameters, and the position
and orientation parameters. Since the cardinality of the set of fixed, our model learns to
predict @ class for the remaining elements of the set after predicting all the objects in
the given image. Taking advantage of the permutation invariant nature of the attention
mechanism and the bipartite matching algorithm, the T6D-Direct model is trained to
localize and generate 6D pose for a varying number of objects in one pass. Moreover,
direct regression of the pose parameters enables a straightforward and fast feed forward
prediction head implementation. We evaluated different orientation parameter represen-
tations. The 6D continuous parameterization produced the best results. Employing the
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symmetry-aware Point Matching loss (Li et al., 2018b; Xiang et al., 2018) for orientation
loss, our model learns to handle symmetry implicitly. Our model achieves impressive
accuracy while running at much higher fps compared to other state-of-the-art methods.
Analyzing the encoder self-attention maps reveals that the attention mechanism learns
to focus on pixels belonging to the same object and the boundary pixels of the neighbor-
ing objects. Similarly, the attention maps corresponding the object detections resembles
semantic segmentation masks. From these attention maps we can conclude that the atten-
tion mechanism learns to focus on the relevant pixels without any external supervision.
Although our model inherits the object detection branch from the DETR model, the
experimental results demonstrates that freezing the object detection branch and only
training the pose estimation branch performs poorly compared to training the complete
model. The pose estimation as set prediction formulation and the T6D-Direct forms the
foundation for the methods we present in the next chapters.
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MULTI-OBJECT POSE ESTIMATION USING
KEYPOINT REGRESSION

Multi-object pose estimation as set prediction offers an elegant
formulation to realize single-stage models. However, direct re-
gression of pose parameters is less robust against occlusion. In
this Chapter, we address this limitation by regressing an in-
termediate keypoint representation and employ a learned PnP
module to recover 6D pose. This allows our model to benefit
from the keypoint representation, while retaining the simplic-
ity of direct regression. Furthermore, we explore different vision
transformer architectures for improved accuracy and faster in-
ference.

STATEMENT OF PERSONAL CONTRIBUTION

This Chapter draws from material originally presented in the following publications:

Arash Amini*, Arul Selvam Periyasamy™*, and Sven Behnke:

YOLOPose: Transformer-based multi-object 6D pose estimation using keypoint
regression

In: 17th International Conference Intelligent Autonomous Systems (IAS), Zagreb,
Croatia, 2022.

Best Paper Award

Arul Selvam Periyasamy, Arash Amini, Vladimir Tsaturyan, and Sven Behnke:

YOLOPose V2: Understanding and improving transformer-based 6D pose estima-
tion

In: Robotics and Autonomous Systems (RAS), Volume 168, pp 104490, 2023.

Arul Selvam Periyasamy™®, Vladimir Tsaturyan*, and Sven Behnke:

Efficient multi-object pose estimation using multi-resolution deformable attention
and query aggregation

In: 7th IEEE International Conference on Robotic Computing (IRC), Laguna Hills,
USA. 2023.

The author of this thesis substantially contributed to all aspects of these publications,
including the literature survey, the conception, formalization, design, and implementation
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of the proposed methods, the preparation and conduct of experiments for the evaluation
of the proposed approach, the analysis and interpretation of the experimental results,
the preparation of the manuscript, as well as the revision and final editing of the version
published.

6.1 INTRODUCTION

Selective attention plays an important role in human vision system (Ungerleider and G,
2000; Luck and Ford, 1998; Serences and Yantis, 2006), by which it attends to specific
regions or features of a scene. Keypoints act as salient features for selective attention
guiding the focus towards important elements in the scene. They are crucial in both
human and computer vision systems, highlighting their importance in visual perception.
With the introduction of SIFT (Lowe, 2004), many of the computer vision tasks were
formulated as keypoint detection (Calonder, Lepetit, and Fua, 2008; Li and Allinson,
2008). In the previous Chapter, we reviewed the keypoint-based methods prior for deep
learning for object pose estimation (see Section 5.2). In this Chapter, we extend the
T6D-Direct model introduced in Chapter 5 with keypoint regression. We explore different
keypoint representations and by employing a learned rotation estimation module that
predicts the orientation parameters from the intermediate keypoint predictions, the model
is end-to-end differentiable. Furthermore, based on experimental evaluation, we show that
the learned rotation estimation module is robust against noisy keypoint predictions than
the analytical PnP algorithm.

6.2 RELATED WORK

YOLOPose and its variants we introduce in this Chapter also follow the multi-object pose
estimation as set prediction formulation discussed in Section 5.3.1. However, instead of
the directly regressing the pose parameter we first predict the location of keypoints and
employ a novel pose estimation module to generate pose prediction from the detected
keypoints. In this section, we review different families of keypoint-driven pose estimation
methods.

KEYPOINTS AS SPARSE HEAT MAPS

One of the standard formulations for keypoint prediction is keypoints as sparse heat
maps. One output feature map corresponds to a specific keypoint. Only the target pixel
or the target pixel along with its neighborhood have a higher value and all other pixel
are zeros (see Fig. 6.1 (a)). The models are trained to minimize mean squared error
(MSE) loss between the ground-truth and predicted feature maps. Behnke (2003a) and
Behnke (2005) performed face localization and tracking using the pair of eyes as sparse
keypoints employing the novel Neural Abstraction Pyramid architecture. Oberweger, Rad,
and Lepetit (2018) predicted the pixel projections of the 3D bounding box corners and
recovered the 6D object pose using the PnP algorithm. Peng et al. (2019) preferred
keypoints that lie on the object surface such that the pixel projections of the keypoints
always lie inside of the target object pixels. They employed farthest point sampling (FPS)
algorithm to automatically select a set of keypoints from the 3D object model.
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IYY
I3y

Figure 6.1: Different sparse and dense formulations. (a): RGB input. (b): Keypoints as sparse
heat maps. Keypoints are depicted using yellow circles (c): Keypoints as dense 2D
vectors (d): Dense 3D object coordinates; only z (top) and y (bottom) coordinates
are shown.

KEYPOINTS AS DENSE 2D VECTORS

Keypoints as sparse heat maps formulation lends itself to straightforward fully connected
convolutional neural network design and loss functions. However, this formulation suffers
severely under occlusion. Xiang et al. (2018), Peng et al. (2019), He et al. (2021), and He
et al. (2020) predicted keypoints using dense 2D vectors. For each object pixel, the model
predicts a 2D vector representing the direction of the keypoints as shown in Fig. 6.1 (b).
From these direction vectors, the 6D pose is recovered employing differentiable Hough
transformations (Xiang et al., 2018) or RANSAC combined with the PnP algorithm
(Peng et al. (2019) and He et al. (2021)).

DENSE 3D OBJECT COORDINATES

The accuracy and robustness of the keypoint-based pose estimation increase with the
number of keypoints. However, the size of the model also increases with number of key-
points. Predicting the corresponding 3D object coordinates for each object pixel (depicted
in Fig. 6.1 (c)) does not suffer from this limitation (Wang et al. (2021) and Zakharov,
Shugurov, and Ilic (2019)). From the dense 3D object coordinates predictions, 6D pose
is recovered using the PnP algorithm.

In contrast to these family of methods, we do not represent keypoints using feature
maps. Instead, we regress to an intermediate keypoint representation (discussed in Sec-
tion 6.3.2) and employ a learned rotation estimation module to recover 6D pose from the
predicted keypoints.
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Figure 6.2: YOLOPose architecture in detail. Given an RGB input, we extract features using the
ResNet backbone. The extracted features are supplemented with positional encoding
and provided as input to the Transformer encoder. The encoder module consists of
six standard encoder layers with skip connections. The output of the encoder module
is provided to the decoder module along with N object queries. The decoder module
also consists of six standard decoder layers with skip connections generating N output
embeddings. The output embeddings are processed with FFNs to generate a set of N
elements in parallel. Each element in the set is a tuple consisting of the bounding box,
the class probability, the translation, and the interpolated bounding box keypoints.
A learnable rotation estimation module is employed to estimate object orientation R
from the predicted 2D keypoints.

6.3 YOLOPOSE

YOLOPose follows the multi-object pose estimation as set prediction formulation intro-
duced in Chapter 5. Similar to the T6D-Direct model, YOLOPose is also a single-stage
model, i.e., YOLOPose jointly detects and estimates pose for all objects in the give input
without intermediate NMS, Rol, or anchor boxes modules. Unlike T6D-Direct, YOLO-
Pose does not regress 6D pose directly. Instead, YOLOPose predicts object keypoints and
employs a novel learnable PnP module to estimate object pose. Our model outputs a set
of elements with a fixed cardinality N. Each element in the set is a tuple containing the
2D bounding boxes, the class probability, the translation, and the keypoints. 2D bound-
ing boxes are represented with the center coordinates, height, and width proportional to
the image size. The class probability is represented with the standard one-hot encoding.
To estimate translation t = [t,t,,t,]7 € R?® defined as the coordinate of the object origin
in the camera coordinate system, we follow the method proposed by PoseCNN (Xiang
et al., 2018) which decouples t into the object’s distance from the camera ¢, and the 2D
location of projected 3D object’s centroid in the image plane [cz,cy]T. Finally, having
the intrinsic camera matrix, we can recover ¢, and t,. The exact choice of the keypoints
is discussed in Section 6.3.2. The number of objects present in an image varies; therefore,
to enable output sets with fixed cardinality, we choose IV to be larger than the expected
maximum number of objects in an image in the dataset and introduce a no-object class @.
This @ class is analogous to the background class used in semantic segmentation models.
In addition to predicting the corresponding classes for objects present in the image, our
model is trained to predict @ for the rest of the elements in the set.
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6.3.1 MODEL ARCHITECTURE

The proposed YOLOPose architecture is shown in Fig. 6.2. The model consists of a
ResNet backbone followed by Transformer-based encoder-decoder module and MLP pre-
diction heads to predict a set of tuples. CNN architectures have several inductive biases
designed into them (LeCun, Bengio, et al., 1995; Cohen and Shashua, 2017). These strong
biases enable CNNs to learn efficient local spatial features in a fixed neighborhood de-
fined by the receptive field to perform well on many computer vision tasks. In contrast,
Transformers, aided by the attention mechanism, are suitable for learning spatial features
over the entire image. This makes the Transformer architecture suitable for multi-object
pose estimation. In this section, we describe the individual components of the YOLOPose
architecture.

BACKBONE NETWORK

We use a ResNeth0 backbone for extracting features from the given RGB image. For an

image size of height H and width W, the backbone network extracts 2048 low-resolution

feature maps of size H/32xW/32. We then use 1x1 convolution to reduce the 2048

feature dimensions to smaller d=256 dimensions. The standard Transformer models are

designed to process vectors. Hence, to enable processing the d xH/32xW /32 features, we
~ HW

vectorize them to dx5535.

ENCODER

The Transformer encoder module consists of six encoder layers with skip connections.
Each layer performs multi-head self-attention of the input vectors. Given pixel with
embedding x of dimension d, the embedding is split into h chunks, or “heads" and for
each head i, the scaled dot-product attention is computed as:

.
Va/h

where @), K, and V are the query, key, and value matrices for the head i, respectively,
and are computed by linearly projecting x using projection parameter matrices W9, W*,
W? . respectively. The attention outputs of the heads are concatenated and transformed
linearly to compute multi-head self-attention:

Attention(Q, K, V) = softmax(

W,

MultiHead (Q,K,V) = cogiat(Attention(Qi, K;, Vi) ) WO,

where WO € R4 is also a projection parameter matrix, and concat denotes concate-
nation along the embedding dimension. In contrast to the convolution operation, which
limits the receptive field to a small neighborhood, self-attention enables a receptive field
of the size of the whole image. Note that the convolution operation can be cast as a
special case of self-attention (Cordonnier, Loukas, and Jaggi (2020)).

PosiTioNAL ENCODINGS

The multi-head self-attention operation is permutation-invariant. Thus, the Transformer
architecture ignores the order of the input vectors. Similar to the T6D-Direct model we
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Figure 6.3: Interpolated bounding box points. Bounding box points are indicated with red dots,
and the interpolated points are indicated with blue crosses. The cross-ratio of every
four collinear points is preserved during perspective projection, e.g., the cross-ratio
of points A, B, C, and D remains the same in 3D and, after perspective projection,
in 2D.

discussed in Section 5.3.1, We employ the standard solution of supplementing the input
vectors with absolute positional encoding following Carion et al. (2020) to provide the
Transformer model with spatial information of the pixels. We encode the pixel coordinates
as sine and cosine functions of different frequencies:

P.E.(pos ) = $in(pos /10000 ),

pos,p)
2p+1
d

P.E.(pos p+1) = cos(pos/10000 ),

where pos is the pixel coordinate (either width or height), d is the embedding dimension,
and p is the index of the positional encoding.

DECODER

On the decoder side, we compute cross-attention between the encoder output embeddings
and N learnable embeddings, referred to as object queries, to generate decoder output
embeddings, where N is the cardinality of the predicted set. The decoder consists of
six decoder layers and the object queries are provided as input to each decoder layer.
Unlike the fixed positional encoding used in the encoder, the object queries are learned
jointly with the original learning objective—joint object detection and pose estimation,
in our case—from the dataset. At the start of the training process, the object queries are
initialized randomly, and during inference, the object queries are fixed. In Section 6.3.8,
we investigate the role of object queries generating object predictions. The embeddings
used in our model—both learned and fixed—are 256-dimensional vectors.

FFN

Feed-forward networks (FFNs) are fully-connected three-layer MLPs with hidden 256
hidden units in each layer and ReLLU activation. From the N decoder output embeddings,
we use (FFNs) to generate a set of N output tuples independently. Each tuple consists
of the class probability, the bounding box, the keypoints, and the 6D pose parameters.
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6.3.2 KEYPOINTS REPRESENTATION

An obvious choice for selecting 3D keypoints is the eight corners of the 3D bounding
box (Oberweger, Rad, and Lepetit, 2018). Peng et al. (2019) instead used the farthest
point sampling (FPS) algorithm to sample eight keypoints on the surface of the object
meshes, which are also spread out on the object to help the PnP algorithm find a more
stable solution. Li et al. (2021) defined the 3D representation of an object as sparse
interpolated bounding boxes (IBB), shown in Fig. 6.3, and exploited the property of
perspective projection that cross-ratio of every four collinear points in 3D (A, B, C, and
D as illustrated in Fig. 6.3) is preserved under perspective projection in 2D (Hartley and
Zisserman, 2004). The cross-ratio consistency is enforced by an additional component in
the loss function that the model learns to minimize during training. We further investigate
these keypoints representations in Section 6.3.6 and present our results in Table 6.4.

6.3.3 RoTEsT

The standard solution for the perspective geometry problem of recovering 6D object/-
camera pose given 2D-3D correspondences and a calibrated camera is the PnP algorithm.
The minimum number of correspondences needed for employing PnP is 4. However, the
accuracy and the robustness of the estimated pose increase with the number of correspon-
dences. Moreover, PnP is used in conjecture with RANSAC to increase the robustness.
Although PnP is a standard and well-understood solution, incorporating it in neural net-
work pipelines introduces two drawbacks. First, it is not trivially differentiable. Second,
PnP combined with RANSAC needs multiple iterations to generate highly accurate pose
predictions. These drawbacks hinder us in realizing end-to-end differentiable pipelines
with a single step forward pass for pose estimation. To this end, we introduce the RotEst
module. For each object, from the estimated pixel coordinates onto which the 32 key-
points (the eight corners of the 3D bounding box and the 24 intermediate bounding box
keypoints) are projected, the RotEst module predicts the object orientation represented
as the 6D continuous representation in SO(3) Zhou et al. (2019). Furthermore, we exper-
imented with providing additional inputs to the FFNs. We created three variants of the
YOLOPose model: variants A, B, and C (shown in Fig. 6.4). In variant A, in addition to
the estimated IBB keypoints, we provide the output embedding of the object query to the
FFNs. In variant B, IBB keypoints, object query output embedding, and the canonical
3D bounding box points (based on the predicted object class) are provided to the FFNs,
whereas in variant C, estimated IBB keypoints and class probabilities are fed as input
to FFNs. Note that the size of the embedding used in YOLOPose model is 256. Thus,
the number of parameters used in FFNs of the three variants is larger than that of the
YOLOPose model. We implement the RotEst module using six fully connected layers
with a hidden dimension 1024 and a dropout probability of 0.5.

6.3.4 Loss FUNCTION

Our model is trained to minimize the Hungarian loss between the predicted and the
ground-truth sets. Computing the Hungarian loss involves finding the matching pairs in
the two sets. We use bipartite matching (Kuhn, 1955; Stewart, Andriluka, and Ng, 2016;
Carion et al., 2020) to find the permutation of the predicted elements that minimize the
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Figure 6.4: Variants of the YOLOPose model. All three variants are derived from the YOLOPose
model and differ in the inputs provided to the pose estimation FFNs.

matching cost. Given the () class padded ground-truth set ) of cardinality N containing
labels y1, y2, ..., yn, the predicted set denoted by :)7, we search for the optimal permutation
6 among the possible permutations ¢ € G that minimizes the matching cost L, ,qtch-
Formally,

N

0 = argmin Z Lnatch (yia go’(l)) (61)
ceSN

7

Although each element of the set is a tuple containing four components, bounding
box, class probability, translation, and keypoints, we use only the bounding box and the
class probability components to define the matching cost function. In practice, omitting
the other components in the cost function definition does not hinder the model’s ability
in learning to predict the keypoints and keeps the computational cost of the matching
process minimal.

Given the matching ground-truth and predicted sets ) and Jjg, respectively, the Hun-
garian loss is computed as:

N
ﬁHungarian(y7 ya) = Z[_logﬁ&(i) (C’L) =+ ]lcﬁé@ﬁbox(bia bé’(z))+

)\kp]lci;é@ﬁkp(kia ]%6(1)) + )\pose ]lc,';é(bﬁpose(Ria ti; R&(i)? Z??7(1))] (6~2)

CLASS PROBABILITY LOSS

The class probability loss function is the standard negative log-likelihood NLL loss. Since
we choose the cardinality of the set to be higher than the expected maximum number of
objects in an image, the () class appears disproportionately often. Thus, we weigh the
loss for the @ class with a factor of 0.1.

BounbpiNG Box Loss

The 2D bounding boxes are represented as (cg, ¢y, w, h) where (cz, ¢;) are 2D pixel coor-
dinates and w and h are object width and height, respectively. To train the bounding box
prediction head, we use a weighted combination of the Generalized loU (GIoU) (Rezatofighi
et al., 2019) and ¢1-loss with 2 and 10 factors, respectively.

A~

Ebow(bia ba(z)) = O‘['iou(bia I;a(z)) + /8‘ |bl - Bcr(i) | |a (63)
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(6.4)

|mm@@hj3&ﬁmﬂ\@U%mU

Eiou<bi7 Bo’(z)) =1- ( =
10 U by )] |B(bi, bo(s))|

and B(b;, Ea(i)) is the largest box containing both the ground truth b; and the prediction
bO’(i)‘
KeEYPOINT LOSS

Having the ground truth K; and the model output IA(&(Z'), the keypoints loss can be
represented as:

Lip(Ki, Ko()) = VI Ki = K3yl + 0Ler, (6.5)

where v and 0 are hyperparameters. The first part of the keypoints loss is the £; loss,
and for the second part, we employ the cross-ratio loss Ler defined in Equation 6.7 to

enforce the cross-ratio consistency in the keypoint loss as proposed by Li et al. (2021).

This loss is self-supervised by preserving the cross-ratio (CR) of each line to be 4/3. The
reason is that after the camera projection of the 3D bounding box on the image plane,
the cross-ratio of every four collinear points remains the same.

lc-AlD-B| 4
R=1e—BD—4a]~ 3 (6.6)

[le — all?[|d — b]?

— 2 _
Ler = Smoothli(CR HC_bHQHd_aHQ), (6.7)

where CR? is chosen since |[.||? can be easily computed using vector inner product. A,
B, C, and D are four collinear points and their corresponding predicted 2D projections
are a, b, ¢, and d, respectively.

Pose Loss

We supervise the rotation R and the translation t individually via employing PLoss and
SLoss from (Xiang et al., 2018) for rotation, and ¢; loss for translation.

A ~

Lpose(Ri, tis Ro(iy bo(i) = Lrot(Ri, Rogy) + 11t — toyll1, (6.8)

\/\}li\ Z min || R;x1 — Ra(i)X2H1 if symmetric,

x2€M;
E’r‘ot = 1 XlEMz . . (69)
[M] Z || Rix — Rg(i)X]h otherwise,
xXEM;

where M; indicates the set of 3D model points.

95



96 MuLTI-OBJECT POSE ESTIMATION USING KEYPOINT REGRESSION

Figure 6.5: Qualitative results on YCB-Video test set. Left: The predicted IBB keypoints overlaid
on the input images. Right: Ground-truth and predicted object poses are visualized
as object contours in green and blue colors, respectively.
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Table 6.1: Comparison of YOLOPose with other keypoint-based methods on the YCB-Video

dataset.

Method GDR-Net Yo(égrz;m Yo%gfrz)sc'A DeepIM Yo?gi‘;j‘”*

AUC of IC
) Il Bl BTl BT E
master chef can 96.6 71.1 91.3 64.0 91.7 71.3 93.1 71.2 71.3 36.6
cracker _box 84.9 63.5 86.8 77.9 92.0 83.3 91.0 83.6 83.3 71.1
sugar_ box 98.3 93.2 92.6 87.3 91.5 83.6 96.2 94.1 83.6 59.5
tomato soup can 96.1 88.9 90.5 77.8 87.8 72.9 92.4 86.1 72.9 29.8
mustard _bottle 99.5 93.8 93.6 87.9 96.7 93.4 95.1 91.5 93.4 93.4
tuna_fish can 95.1 85.1 94.3 74.4 94.9 70.5 96.1 87.7 70.5 17.4
pudding box 94.8 86.5 92.3 87.9 92.6 87.0 90.7 82.7 87.0 70.9
gelatin _box 95.3 88.5 90.1 83.4 92.2 85.7 94.3 91.9 85.7 23.4
potted _meat can 82.9 72.9 85.8 76.7 85.0 71.4 86.4 76.2 71.4 31.2
banana 96.0 85.2 95.0 88.2 95.8 90.0 91.3 81.2 90.0 83.1
pitcher_base 98.8 94.3 93.6 88.5 95.2 90.8 94.6 90.1 90.8 90.1
bleach cleanser 94.4 80.5 85.3 73.0 83.1 70.8 90.3 81.2 70.8 62.9
bowl* 84.0 84.0 92.3 92.3 93.4 93.4 81.4 81.4 93.4 87.4
mug 96.9 87.6 84.9 69.6 95.5 90.0 91.3 81.4 90.0 71.0
power _ drill 91.9 8.7 92.6 86.1 92.5 85.2 92.3 85.5 85.2 73.6
wood_ block* 7.3 77.3 84.3 84.3 93.0 93.0 81.9 81.9 93.0 93.0
scissors 68.4 43.7 93.3 87.0 80.9 71.2 75.4 60.9 71.2 42.5
large_ marker 87.4 76.2 84.9 76.6 85.2 77.0 86.2 75.6 77.0 14.7
large _clamp* 69.3 69.3 92.0 92.0 94.7 94.7 74.3 74.3 94.7 94.1
extra_large clamp® | 73.6 73.6 88.9 88.9 80.7 80.7 73.3 73.3 80.7 65.7
foam _ brick* 90.4 90.4 90.7 90.7 93.8 93.8 81.9 81.9 93.8 78.9
MEAN 89.1 80.2 90.1 82.6 91.2 83.3 88.1 81.9 83.3 61.4

Symmetric objects are denoted by *. The best results are shown in bold.
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6.3.5 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our proposed YOLOPose model and its
variants and compare it with other keypoint-based pose estimation 6D pose estimation
methods. We report the quantitative results using YCB-Video dataset discussed in Sec-
tion 5.4.1 in terms of the ADD and the ADD-S metrics presented in Section 5.4.2. The
v and ¢ hyperparameters in Ly, (Eq. (6.5)) are set to 1 and 10, respectively. While com-
puting the Hungarian loss, the pose loss component is weighted down by a factor of 0.05.
The cardinality of the predicted set N=20. The model takes images of the size 640 x 480
as input and is trained using the AdamW optimizer (Loshchilov and Hutter, 2017) with
an initial learning rate of 10~* for 150 epochs. Afterward, the model is trained addition-
ally for 50 epochs, with a reduced learning rate by a factor of 0.1. The batch size is 32.
Gradient clipping with a maximal gradient norm of 0.1 is applied. We present exemplar
qualitative results in Fig. 6.5. In Table 6.1, we provide the quantitative per class area
under the accuracy curve (AUC) of the ADD-S and ADD-(S) metrics discussed in Sec-
tion 5.4.2, in detail. Both YOLOPose and YOLOPose-A perform well across all object
categories and achieve higher AUC scores than the methods in comparison. YOLOPose-A
achieves an impressive AUC of ADD-S and ADD-(S) score of 91.2 and 83.3, respectively,
which is an improvement of 1.1 and 0.7 over the YOLOPose model. In terms of the in-
dividual objects, YOLOPose-A performs significantly better than the mean on mustard
bottle, bowl, large clamp, and foam brick, while performing worse than the mean on
master chef can, tuna fish can, bleach cleanser, and scissors. Interestingly, our
methods perform well on identical large clamp and extra large clamp, whereas both
the competing methods perform poorly on these objects. Real-world robotic applications
require handling objects of different sizes and this necessitates highly accurate pose es-
timates. The standard procedure of reporting the AUC of ADD-(S) and ADD-S metrics
with a fixed threshold of 0.1m does not take the object size into account. To better reflect
the performance of our method on smaller objects, we present the AUC of ADD-(S) and
ADD-S metric with a threshold of 10% of the object diameter. We denote this metric as
AUC of ADD-(S) and ADD-S @0.1d. The accuracy of the proposed method drops sig-
nificantly for smaller objects while using the object-specific threshold. In particular, the
AUC of ADD-(5)@0.1d score for tuna fish can, gelatin box, and large marker are
less than 30. This could be due to the fact that the Pose Loss discussed in Section 6.3.4
is computed using the subsampled model points and smaller objects contribute less to
the overall loss. In Table 6.2, we also present a comparison of the ADD-S and the mean
AUC ADD-S and ADD-(S) scores of the predominant RGB as well as RGB-D methods.
Benefiting from the geometric features imparted by the depth information, RGB-D meth-
ods outperform RGB-only methods. However, RGB-only methods are catching up with
the RGB-D methods fast (Sundermeyer et al., 2023).

The FFNs in our model generate the set predictions from the decoder output embed-
dings, which are the result of cross-attention between the object queries and the encoder
output embeddings. Each encoder output embedding corresponds to a specific image
pixel. This allows us to investigate the pixels that contribute the most to each object
prediction. In Fig. 6.6, we visualize the decoder cross-attention corresponding to four
different object detections, where the attended regions correspond to the object’s spatial
position in the image very well. Moreover, looking closely at the pixels with the highest
attention score reveals the object parts that contribute most to the object predictions.
For example, in Fig. 6.6(a), the tip and base of the power drill contribute the most
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Figure 6.6: Top: Object detections predicted by bounding boxes in the given image. Bottom:
Decoder cross-attention maps for the object queries corresponding to the predictions
in the first row.

and in Fig. 6.6(d), the spout and the handle pitcher base contribute the most. Note
that in Fig. 6.6(a), the base is severely occluded and the base barely visible. Despite
being occluded, the attention mechanism focuses on the base heavily, which demonstrates
the significance of the base in power drill pose estimation.

In Table 6.3, we present a quantitative comparison of the YOLOPose variant discussed
in Section 6.3.7. Variant A performs the best among the variants. This can be attributed
to the additional object-specific information contained in the output embedding.

6.3.6 EFFECTIVENESS OF KEYPOINT REPRESENTATIONS

We compare various keypoints representations, namely 3D bounding box (BB) keypoints,
random keypoints sampled using the FPS algorithm, and our representation of choice,
the interpolated bounding box (IBB) keypoints. We use the OpenCV implementation of
the RANSAC-based EPnP algorithm with the same parameters to recover the 6D object
pose from the predicted keypoints. Since EPnP does not contain any learnable compo-
nents, this experiment serves the goal of evaluating the ability of the YOLOPose model
to estimate different keypoint representations in isolation. YOLOPose is trained using
only the ¢; loss in the case of BB and FPS representations, whereas for the IBB repre-
sentation, £1 is combined with the cross-ratio loss described in Section 6.3.4. Table 6.4
reports object pose estimation performance for the different representations. When used
in conjecture with the EPnP solver, the FPS keypoints performed worse than all other
representations. The reason is that the locations of FPS keypoints are less intuitive, mak-
ing them more difficult to predict, especially for our proposed model that needs to deal
with all objects in the YCB-Video dataset. In contrast, the IBB representation yields the
best performance. We conjecture that as the cross-ratio loss based on the prior geometric
knowledge preserves the keypoints geometrically, this representation is the appropriate
choice for our method where a single model is trained for all objects.
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Table 6.2: Comparison of inference time and accuracy on the YCB-Video dataset.

¥ Inference
Input Method ADD-(S) 2%% (;f ﬁrg ]g‘ (Osf) i
_ . [ms/frame]
CosyPose!
(Labbe et al., 2020) - 89.8 84.5 395
RGB PoseCNN
(Xiang et al., 2018) 21.3 75.9 61.3 -
GDR-Net
(Wang et al., 2021) 49.1 89.1 80.2 65
YOLOPose (Ours) 65.0 90.1 82.6 17
YOLOPose-A (Ours) 69.0 91.2 83.3 22
PVNet3D
(He et al., 2020) - 95.5 91.8 170
RGBE-D PVNet3D+ICP 061 - o0
(He et al., 2020) - . .
FFB6D
(Xiang et al., 2018) - 96.6 92.7 75
FFB6D+I1CP
(Xiang et al., 2018) - 97.0 93.7 95

 indicates the refinement-based method.

Table 6.3: Quantitative comparison of the YOLOPose variants.

AUC of | AUC of | Parameters
Method ADD-(S) | ADD-S x10°
YOLOPose 82.6 90.1 48.6
Variant A 83.3 91.2 53.2
Variant B 82.8 91.0 53.4
Variant C 82.8 90.9 52.8

Table 6.4: Comparison of different keypoint representations.

Method ADD-(S) ‘fgg (%f)
FPS + PnP 31.4 56.9
handpicked + PnP 31.5 55.7
IBB + PnP 56.0 74.7
IBB + PnP for R; head for ¢ 63.9 82.3
IBB + heads for R and ¢ 65.0 82.6
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Figure 6.7: Comparison of the pose estimation accuracy with respect to the keypoint estimation
accuracy between EPnP and RotEst. In the case of highly accurate keypoint estima-
tion, EPnP performs comparably to RotEst. However, the RotEst module is more
robust against inaccuracies in keypoint estimation. Overall, RosEst performs better
than EPnP.
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Figure 6.8: Correlation between object queries and the detected object classes. Except for queries
7 and 20, the correlation is weak.

6.3.7 EFFECTIVENESS OF RoTEST

After deciding on the keypoint representation, we compare the performance of the learn-
able feed-forward rotation and translation estimators against the analytical EPnP al-
gorithm. The factors that impact rotation and translation components are different Li,
Wang, and Ji (2019). The rotation is highly affected by the object’s appearance in a
given image. In contrast, the translation is more vulnerable to the size and the location
of the object in the image. Therefore, we decide to estimate rotation and translation sep-
arately. In Table 6.4, we report the quantitative comparison of the different variants. One
can observe that using only the rotation from EPnP and directly regressing the trans-
lation improved the accuracy significantly. In general, RotEst performs slightly better
than using EPnP orientation and direct translation estimation. Furthermore, the RotEst
module and the translation estimators are straightforward MLPs and thus do not add
much execution time overhead. This enables YOLOPose to perform inference in real-time.
Moreover, to quantify the robustness of the RosEst module compared to the EPnP algo-
rithm against the inaccuracies in keypoint estimation. We exclude the symmetric objects
in the comparison. Figure 6.7, we present the comparison between the AUC of ADD
and ADD-S scores achieved by using the RotEst module and using the EPnP algorithm
for recovering 6D pose from the estimated IBB keypoints. We discretize the average £
pixel error in keypoint point estimation into bins of size two and average the AUC scores
for all predictions corresponding to each bin. EPnP performs equally well in terms of
both the AUC of ADD-S metrics compared to the RotEst module when the keypoint
estimation accuracy is high. In the case of large keypoint estimation errors, the RotEst
module demonstrates a significantly higher degree of robustness compared to the EPnP
algorithm.
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Figure 6.9: Correlation between object queries and the image patch in which the object is de-
tected. The images are divided into 4x4 patches. Compared to the correlation be-
tween object queries and the detected object classes shown in Fig. 6.8, the correlation
between object queries and image patches is stronger.

Query: 2 Query: 16

Figure 6.10: Visualization of the center of the bounding boxes predicted by an object query.
Black dots represent all the spatial positions of the ground-truth bounding boxes
normalized to the image size present in the test dataset. Red dots represent the
bounding boxes predicted by an object query. Object queries specialize in detecting
objects in specific regions of the image.
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Figure 6.11: Comparison of pose estimation and object detection accuracies using a different
number of video sequences for training. The AUC scores are normalized to the
range [0, 1].

6.3.8 UNDERSTANDING OBJECT QUERIES

To understand the role of the learned object queries in the YOLOPose architecture, we
analyzed the correlation between the object queries and the detected object class ids as
well as the object bounding boxes. Since we use only 20 object queries in the YOLOPose
architecture—compared to 100 in the DETR (Carion et al., 2020) architecture—we can
investigate the object queries individually in detail. To this end, we compute the corre-
lation between object queries and class ids, and image patches that form a 4x4 grid. In
Fig. 6.8, we visualize the correlation between the object queries and class ids. Except for
queries 7 and 20, the correction is weak. In contrast, the correlation between the object
queries and the image patch of the detected object is stronger (see Fig. 6.9). Note that
queries 4, 9, and 10 do not correspond to any objects. This is the case only for the test
dataset. In the case of the training dataset, all the object queries correspond to object
detections. Moreover, we visualized the spatial location of the center of the bounding
boxes predicted by object queries. In Fig. 6.10, we show exemplar visualizations. The
visualizations also reveal that the object queries specialize in object detection in specific
regions of the image.

6.3.9 DATASET SIZE-ACCURACY TRADE-OFF

Vision Transformer models match or outperform CNN models in many computer vision
tasks, but they require large datasets for pre-training (Wang et al., 2022; Cao, Yu, and Wu,
2022; Gani, Naseer, and Yaqub, 2022). Furthermore, obtaining large-scale 3D annotations
are significantly harder than 2D annotations. Thus, the 3D datasets are supplemented
with easy-to-acquire synthetic datasets. The YOLOPose architecture consists of a CNN
backbone model for feature extraction and attention-based encoder-decoder module for
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Figure 6.12: Typical failure cases for the YOLOPose model. The pose estimation accuracy of our
approach is hampered by occlusion. Ground-truth and predicted object poses are
visualized as object contours in green and blue colors, respectively.

set prediction. Learning set prediction is significantly challenging due to the additional
overhead of finding the matching pairs between the ground-truth and the predicted sets
and results in a low convergence rate. To mitigate this issue, we pre-train our model on
the COCO dataset (Lin et al., 2014) for the task of object detection formulated as set
prediction. The COCO dataset comprises 328,000 images with bounding annotations for
80 object categories. The COCO dataset pre-training enables faster convergence while
training on the YCB-Video dataset. To quantify the dataset size-accuracy trade-off in
training our model for the task of joint object detection and pose estimation formulated
as set prediction, we train our model with different subsets of the YCB-Video dataset of
varying sizes. As discussed in Section 5.4.1, YCB-Video consists of 92 video sequences. 80
of which are used for training and the rest of them are used for testing. Additionally, Xiang
et al. (2018) provide 80,000 synthetic images for training as well. We created five different
variants of the training set by using only a subset of the 80 training sequences. The first
variant consists of only 16 video sequences and each subsequent variant consists of 16
additional video sequences added to the previous variant progressively. All five variants
are supplemented with the complete set of synthetic images. We train one YOLOPoseA
model for each of the dataset variants and evaluate the performance of the models on
the test set consisting of twelve video sequences. In Fig. 6.11, we present the AUC of
ADD-S and ADD-(S) scores as well as the cardinality error (CE), which is defined as
the /1 error between the cardinality of the ground-truth and the predicted set. The
model trained with the smallest training set variant consisting of only 16 video sequences
achieves an AUC of ADD-S and ADD-(S) score of 83.5 and 75.4, respectively, whereas
the model trained using the complete training videos achieves an AUC of ADD-S and
ADD-(S) score of 91.2 and 83.3, respectively. The difference between the models trained
using the smallest training set variant and the largest is even more significant in terms
of the cardinality error—0.23 compared to 0.04. This demonstrates the need for large
datasets with a wide range of scene configurations. Presented with smaller datasets with
less variability in scene configuration, the YOLOPose model not only performs poorly in
terms of pose estimation accuracy but also in terms of object detection accuracy.

6.3.10 TypPICcAL FAILURE CASES

In Fig. 6.12, we show examples of low-accuracy pose predictions—particularly in the case
of partially-occluded objects. One of the commonly observed failure cases is the bowl ob-
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Layeri +1

Regular Windows Shifted Windows

Figure 6.13: Shifting window local attention mechanism. Self-attention is restricted to the local
window shown in red grids. The windows are shifted between the layers enabling
global interaction within each block.

ject often predicted facing upwards even though bow! is placed downwards (See Fig. 6.12a).
This is due to the limitation of the symmetry-aware SLoss (Eq. (6.9)). The SLoss is de-
fined as the £y distance between the closest model points of the object in the predicted
and the ground-truth poses. For some objects—bowl, for example—the 180° flip error is
not penalized enough during training.

6.4 FULLY VISION-TRANSFORMER MODELS

While YOLOPose achieves impressive results, it relies solely on the attention mechanism
to learn joint object detection and pose estimation. Thus, YOLOPose does not benefit
from incorporating inductive biases into its architecture. Convolutional neural networks,
on the other hand, hard-wire various inductive biases into their architecture. The success
of CNNs is largely attributed to the inductive biases incorporated into their architectural
design (LeCun, Bengio, et al., 1995; Behnke, 2003b; Cohen and Shashua, 2017; Schulz and
Behnke, 2012). In this section, we discuss various design strategies for imbuing inductive
biases into the YOLOPose model.

Decoder

Figure 6.14: Hierarchical processing of image features. White grids represent the image patch and
red grids represent the self-attention window. The size of the self-attention window
and the number of feature maps increase through the hierarchy.
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6.4.1 LocAL HIERARCHICAL SHIFTING WINDOW ATTENTION

The encoder module in YOLOPose utilizes self-attention between the image features
extracted by a CNN backbone. This enables aggregating information from all spatial
locations in the encoder module. In terms of the design, one of the main shortcomings
of YOLOPose is that the backbone module is exclusively CNN-based and the encoder
module is exclusively attention-based. Thus, the backbone module does not benefit from
the self-attention mechanism. Vision Transformer models (ViT) (Dosovitskiy et al., 2021)
addressed this issue by designing a backbone model based exclusively on the transformer
architecture. Raghu et al. (2021) noted that in ViT, the similarity of the lower layer
features and the higher layer features is stronger than in the case of CNN-based ResNet
model. Based on this observation, the authors concluded that the self-attention mech-
anism along with the skip connections enables lower layers in the ViT model to learn
global features. However, ViT suffers from two major limitations:

1. feature maps used in the model are low resolution and

2. complexity of the attention mechanism increases quadratically.

These factors limit the suitability of ViT as a backbone model. To address this issue, Liu
et al. (2021) proposed to incorporate hierarchical processing and local sliding window
attention in the design of the transformer model. The pixels are divided into crops. All
pixels belonging to an image crop are projected linearly to features of dimension d. The
hierarchical processing of the features is shown in Fig. 6.14. Unlike ViT, in which all the
image patches in any particular layer interact with all other patches, the interaction is
restricted to a local window (shown in Fig. 6.13). The layers of the model are grouped
into blocks. The size of the attention window and the number of feature maps increases
progressively higher in the hierarchy. The attention window is shifted between the layers
in the same block. This ensures the global interaction of the features within each block.
The hierarchical processing of features and limiting the attention to a local window
enables linearly scaling computational complexity. We refer to our implementation of the
pose estimation model with local hierarchical shifting window attention as YOLOPose-
LHSA.

6.4.2 MULTI-RESOLUTIONAL DEFORMABLE ATTENTION

The attention mechanism offers a simple yet effective mechanism to model long-range
dependencies in input tokens. Despite the advantages the attention mechanism offers
for computer vision tasks, the computational cost of MHA, especially for high-resolution
images, remains high. To address this issue, Zhu et al. (2021) introduced deformable multi-
head attention (DMHA). In Fig. 6.15, we depict the DMHA model for pose estimation.
For a query token z, instead of computing attention over all the key tokens €2,, DMHA
computes attention over a small set of 2D reference points p € €2,. The reference points
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Figure 6.15: Multi-resolutional deformable attention model. Our architecture is based on an

encoder-decoder design. In the encoder, image patch features of multiple resolu-
tions are extracted using linear projection, and the self-attention mechanism is used
to generate encoder embeddings. In the decoder, cross-attention is performed be-
tween the encoder embeddings and learned embeddings known as object queries to
generate object embeddings. The object queries are initialized randomly at the be-
ginning of training and learned jointly with the training objective. During inference,
the object queries remain fixed. In contrast to the standard attention, in which at-
tention is computed between all image patch features, in deformable attention, the
attention operation is performed only between the deformed reference points. From
the object embeddings, object predictions are generated using feed-forward neural
networks (FFNs) in parallel. Object pose predictions generated by our model are
visualized using 3D bounding boxes.
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Figure 6.16: Early fusion of object queries. The patch embeddings and the object queries inter-
act within the encoder module at all layers. Thus, not only the high-level features
interact with the object queries but also the features of all resolutions.

are allowed to deform and the deformation is learned from the input tokens. Formally,
MHA, introduced in Eq. (5.1), is extended as,

DMHA (24, py, ) =

M K
2 Wi [Z Ak - Wi (pg + Apmqk:))] , (6.10)
m=1 k=1

where k represents the sampled key tokens and Ap,,,;. denotes deformation offset. Bilin-
ear interpolation enables fractional offsets. Furthermore, we incorporate multi-resolution
feature processing (MR-DMHA) into the deformable attention:

MR-DMHA (24, pq, {x}lel) -

M L K ,
> W [Z > Age - W' () + Apmqw] . (6.11)
=1 k=1

m=1

where [ represents the feature level, and the function ¢(p,) re-scales the pixel coordinates
corresponding to the feature level. We refer to our multi-object pose estimation model
based on MR-DMHA as YOLOPose-DMHA.

6.4.3 EARLY FUSION OF OBJECT QUERIES

While the MR-DMHA enables efficient attention with linear complexity, the encoder
module interacts with the object queries only at the final encoder layer. This results in
the encoder module learning generic features in the earlier layers and only the final layer
learning features relevant to object prediction. Enabling encoder-object query interaction
at the early layers helps the encoder to focus on features more relevant to the object
predictions. Following Song et al. (2022), we introduce cross-attention between object
queries and patch embeddings early in the encoder module. In each encoder layer, self-
attention is performed between the patch embeddings and additionally, cross-attention is
performed between object queries and patch embeddings of the previous layer, as shown
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Figure 6.17: Query Aggregation. In contrast to the standard approach of using the same number
of object queries as the cardinality of the set NV, in the query aggregation approach,
we set the number of object queries to N xm. The query aggregation factor m is a
hyperparameter. N xm decoder output embeddings of dimension d are concatenated
to form IV object embeddings of dimension dxm that are processed by the FFNs to
generate N object predictions.

in Fig. 6.16. In the decoder module, cross-attention is performed between the aggregated
patch embeddings from the encoder and the object query to generate object embeddings.
The object embeddings are processed by the FFNs to generate object predictions. We
call this variant YOLOPose-EarlyFusion.

6.4.4 QUERY AGGREGATION

The learned object queries play a crucial role in DETR-like architectures. Despite their
importance, the object queries are not fully understood. One of the major reasons behind
this lack of understanding is the fact that neither the architecture itself nor the loss
function contains any mechanism to bind the object queries specifically to object classes
or locations. Zhang et al. (2023) observed that using more object queries improves model
accuracy. In our models, the number of object queries equals the cardinality of the set we
predict. Thus, increasing the number of object queries also increases the computation cost
of bipartite matching and thus, the overall training time. We propose a novel approach
for increasing the number of object queries while keeping the computational cost low. We
call this method query aggregation (shown in Fig. 6.17). To generate a set of predictions of
cardinality N, the standard approach uses N object queries of dimension d. In contrast
to the standard approach, in the query aggregation approach, we set the number of
object queries to N x m, where the aggregation factor m is a hyperparameter. After
the last decoder layer, we concatenate each set of m embeddings to generate one object
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Figure 6.18: Prediction refinement. At each decoder layer, only a small A is predicted on top of
the previous predictions enabling the refinement of predictions through the decoder
layers.
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embedding. Thus, from N X m output embeddings we generate N object embeddings.
The FFNs process the N object embeddings to generate a set of object predictions.

By decoupling the number of decoder output embeddings and the number of object
embeddings, we enable a larger number of embeddings in the decoder layer without
increasing the cardinality of the predicted set.

6.4.5 REFINEMENT OF OBJECT PREDICTIONS

The decoder module in the standard architecture consists of six decoder layers. The
output embeddings of each of the decoder layer serves an input for the subsequent decoder
layer. The output embeddings of the final decoder layer are processed by the FFNs
to generate object predictions. Instead of generating object predictions directly once,
generating an initial prediction and refining it to generate the final object predictions
allows the model to iteratively improve the initial predictions as well as the overall
accuracy. The design of decoder layers naturally suits refinement. In Fig. 6.18, we show the
refinement of the object predictions in the decoder module. Each decoder layer contains
its own independent set of FFNs. The first decoder layer performs cross-attention between
the encoder embeddings and the object queries to generate decoder embeddings that are
processed by a corresponding set of FFNs to generate object predictions. The FFNs of
subsequent decoder layers generate only a small A to refine the predictions made by the
previous layer. This allows for the model to iteratively refine the initial predictions and
generate more accurate final predictions.

6.4.6 EXPERIMENTAL RESULTS

We implement our models using the PyTorch (Paszke et al. (2019)) library. Our models
are trained using NVIDIA A100 GPUs with 40 GBs of memory. The size of the input
image is 640x480. The models are trained for 200 epochs with a batch size of 32 using
AdamW optimizer with an initial learning rate of 10~*. During training, we supplement
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Table 6.5: Results on YCB-Video.

Metric AUC of ADD-S | AUC of ADD-(8)
YOLOPose | YOLOPose YOLOPose | YOLOPose

Method YOLOPose Vo DMHA YOLOPose V2 DMHA
master chef can 91.3 91.7 90.3 64.0 71.3 66.7
cracker box 86.8 92.0 92.3 77.9 83.3 86.0
sugar box 92.6 91.5 94.4 87.3 83.6 89.1
tomato soup can 90.5 87.8 89.2 77.8 72.9 76.3
mustard _bottle 93.6 96.7 96.5 87.9 93.4 93.3
tuna_fish_can 94.3 94.9 94.5 74.4 70.5 67.4
pudding box 92.3 92.6 95.5 87.9 87.0 91.9
gelatin_box 90.1 92.2 95.4 83.4 85.7 91.8
potted meat can 85.8 85.0 88.9 76.7 71.4 76.4
banana 90.0 95.8 95.4 88.2 90.0 91.0
pitcher base 93.6 95.2 94.9 88.5 90.8 89.9
bleach _cleanser 85.3 83.1 87.3 73.0 70.8 73.9
bowl* 92.3 93.4 91.9 92.3 93.4 91.9
mug 84.9 95.5 95.5 69.6 90.0 89.3
power _drill 92.6 92.5 94.6 86.1 85.2 88.9
wood_block* 84.3 93.0 93.0 84.3 93.0 93.0
scissors 93.3 80.9 89.5 87.0 71.2 76.2
large marker 84.9 85.2 84.5 76.6 77.0 77.4
large clamp* 92.0 94.7 94.2 92.0 94.7 94.2
extra large clamp* 88.9 80.7 79.2 88.9 80.7 79.2
foam _brick* 90.7 93.8 95.0 90.7 93.8 95.0
Mean 90.1 91.2 92.0 82.6 83.3 84.7

Symmetric objects are denoted by *. The best results are shown in bold.

Table 6.6: Results from Ablation Study.

AUC of | AUC of | Params

Meth ]
ethod ADD-S | ADD-(S) | x10¢ | 'P®
YOLOPose 90.1 82.6 48.6 41.8
YOLOPose V2 91.2 83.3 53.2 39.1

CosyPose

. 4. - 2.
(Labbe et al., 2020) 89-8 845 >
YOLOPose-LHSA 90.1 81.4 57 39.5
YOLOPose-DMHA 16 def pts 92.0 84.7 55.2 25.9
YOLOPose-DMHA 6 def pts 81.9 89.3 51.7 28.1
YOLOPose-DMHA 6 def pts + refine 90.2 83.0 87.1 25.6
YOLOPose-EarlyFusion 90.3 82.1 48.7 34.8

YOLOPose-LHSA: Local hierarchical attention-based model discussed in Section 6.4.1.

YOLOPose-DMHA: Model based on multi-resolution deformable multi-head attention discussed in Section 6.4.2.
YOLOPose-EarlyFusion: Model utilizing early fusion discussed in Section 6.4.3.

def pts: Number of deformable points.
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the training images with the synthetic images provided with the dataset. The hyperpa-
rameters «, 3, v, and § in Eqs. (6.3) and (6.5) are set to 2, 5, 10, and 1, respectively.

In Table 6.5, we report the quantitative comparison of the fully convolutional YOLO-
Pose variants with the leading RGB model. For the sake of brevity, we refer the YOLOPose-
A model presented in Table 6.2 as YOLOPose V2. The best-performing variant of our
model is based on deformable multi-resolutional attention (YOLOPose-DMHA) discussed
in Section 6.4.2 utilizing 16 deformable points. Our model achieves an impressive AUC
of ADD-S score of 92.0 and AUC of ADD-(S) score of 84.7. Among the object categories,
our model performs worse for extra-large clamp and scissors—both exhibit challeng-
ing geometry. bowl, for example, is often predicted upside down. Occlusion still remains
a big challenge for our model. In Table 6.6, we compare the accuracy of the different fully
vision transformer models

In comparison to YOLOPose-DMHA, YOLOPose-LHSA performs a little worse. This
demonstrates that despite the careful design employing shifted window attention, the
model suffers from inefficiencies in global dependency modeling. Moreover, Zhou et al.
(2022) noted that the models based on local hierarchical shifting windows suffer from a
lack of robustness. Although YOLOPose-EarlyFusion, based on the early fusion of ob-
ject queries, performed better than YOLOPose-LHSA, it did not match the performance
of YOLOPose-DMHA. However, in terms of the inference speed, YOLOPose-LHSA per-
forms better than other models—except for the baseline YOLOPose model. Because of
accessing random memory locations in deformable attention, YOLOPose-DMHA is the
slowest.

6.4.7 ABLATION STUDY

QUERY AGGREGATION

The cardinality N of the predicted set in the standard YOLOPose model is set to 20.
This design choice is driven by the maximum number of objects present per image in
the YCB-Video dataset. The query aggregation mechanism discussed in Section 6.4.4
enables for increasing the number of object queries without increasing the cardinality
N of the predicted set. This allows the model to have more learnable object queries
without adding any overhead to the costly bipartite matching step. We experimented with
different query aggregation factor m. In Fig. 6.19, we present the results of training our
model with different query aggregation factors. The performance of the model increases
with the query aggregation factor and reaches the highest accuracy for factor 3 but
drops for factor 4. However, compared the best performing YOLOPose variant with
deformable multi-head attention, the model based on query aggregation achieves slightly
lower accuracy in terms of all the pose estimation metrics.

NEED FOR COCO PRE-TRAINING

Training the vision transformer models for set prediction is harder than training CNN
models to perform single object pose prediction due to the usage of bipartite matching to
find the matching pairs between the predicted and the ground-truth sets, which results in
slower convergence. Moreover, training data requirements are also much larger for the set
predictions task, compared to single object prediction. We hypothesize that in the initial
phase of the training, the model learns to detect multiple objects in the image and only in
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Figure 6.19: Results from query aggregation experiment.

Table 6.7: Effect of pretraining on the COCO dataset
for Object Detection.

AUC of | AUC of .

Method ADD-S | ADD-(S)) ADD-(S)
Without pretraining 71.0 82.7 42.5
With pretraining 81.4 90.1 61.1

the later stages the model learns to predict keypoints and the pose parameters. Although
the YCB-Video dataset (Xiang et al., 2018) is considerably larger than the other pose
annotation datasets, it is not big enough to train vision transformer models for multi-
object pose estimation. To overcome this limitation, we train our model initially on the
COCO dataset for the task of multi-object detection (class probability and bounding box
prediction) and then train the model for multi-object pose estimation on the YCB-Video
dataset. In Table 6.7, we compare the pose estimation accuracy of models trained using
only the YCB-Video dataset (Xiang et al., 2018) and using COCO dataset for pretraining.
The model pretrained using the COCO dataset outperforms the model trained using only
the YCB-Video dataset, highlighting the importance of large-scale pretraining for training
vision transformers to learn the task of multi-object prediction.

PREDICTION REFINEMENT

In Table 6.6, we present the results of the prediction refinement experiment. Refinement
boosted the performance of YOLOPose-DMHA constructed with six deformable points
by 0.9 and 1.1 accuracy points in terms of the AUC of ADD-(S) and AUC of ADD-(S)
metrics, respectively. However, the improvements come at a cost of an increased number
of parameters: 87.1x10% compared to 51.7x10%. Interestingly, for YOLOPose-DMHA
constructed using 16 deformable points that achieves an impressive accuracy of 92 AUC
of ADD-S and 84.7 AUC of ADD-(S), the boost in performance is negligible.
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6.5 LIMITATIONS

Both the T6D-Direct model described in previous Chapter (Chapter 5) and the YOLO-
Pose model introduced in this Chapter follow the set prediction formulation. While formu-
lating multi-object pose estimation as a set prediction problem facilitates the prediction
of a varying number of objects in the given image, training the model needs complete
set annotations for all objects in the given image. Most of the commonly used pose esti-
mation datasets like Linemod-Occluded (Brachmann, 2020) and Linemod (Hinterstoisser
et al., 2013) offer only partial annotations for training images. Thus, they are unsuitable
for training our models. Acquiring complete pose annotations can be prohibitively ex-
pensive in real-world settings. Moreover, the pose loss function used to train our models
needs 3D meshes of the objects. This limits the applicability of our models in the settings
where the 3D meshes are not readily available.

6.6 DIscussiON & CONCLUSION

In this Chapter, we extend the multi-object pose estimation as set prediction formula-
tion introduced in the previous Chapter by including keypoint regression and a learned
rotation estimation module. The proposed YOLOPose model retains the simplicity and
the fast inference capabilities of the T6D-direct model discussed in the previous Chapter
while being significantly more accurate. We perform keypoint regression using the inter-
mediate bounding box (IBB) representation. In our experiments, the (IBB) representation
outperformed other standard keypoint representations. Moreover, we show empirically
that the learned rotation estimation is considerably robust against noisy keypoint esti-
mations. Additionally, we established the importance of training for object detection on
the COCO dataset first before training for joint object detection and pose estimation
on the YCB-Video dataset. This shows that training the YOLOPose model for set pre-
diction needs more data and once the model is trained for this task, the complexity of
adapting the model to joint object detection and pose estimation is significantly reduced.
Moreover, by quantifying the dataset size-accuracy trade-off, we demonstrated that the
model achieves a reasonable pose estimation accuracy using only 20% of the training
set, but had a large number of object detection errors. When trained on the complete
training set, the pose estimation accuracy improved slightly but the object detection er-
rors dropped remarkably. Overall, YOLOPose and its variants performed competitively
with the leading pose estimation methods. Furthermore, we analyzed the role of object
queries in the YOLOPose model. Based on empirical evidence, we concluded that the cor-
relation between object queries and the image patches are stronger than the correlation
between object queries and the object classes. Thus, object queries encode the spatial
positioning of objects. Despite these improvements, the YOLOPose architecture has a
major drawback. The CNN backbone feature extractor module and the attention-based
encoder-decoder modules were isolated from each other. Later, we investigated different
variants of the fully vision transformer YOLOPose architecture. Among the variants ex-
perimented, the multi-resolutional deformable multi-head attend variant of YOLOPose
produced the best accuracy while being slightly slower and containing more parameters
than the YOLOPose model. In terms of future research directions, the keypoint regres-
sion pipeline proposed naturally extends to category-level object pose estimation (Lin
et al., 2022; Di et al., 2022; Lin et al., 2021; Wang et al., 2019).
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MULTI-OBJECT POSE TRACKING

Object pose estimation methods we discussed in the previous
chapters achieve impressive results by processing only a sin-
gle image. However, single-view RGB models do not make use
of the rich temporal information contained in the video se-
quence. In this Chapter, we augment the YOLOPose model
introduced the previous Chapter with attention-based tempo-
ral fusion mechanism. Temporal fusion enables improved pose
estimation accuracy as well as better object detection accuracy
in highly cluttered dynamic environments.

STATEMENT OF PERSONAL CONTRIBUTION
Source material for this Chapter has been adapted from the following publications:

Arul Selvam Periyasamy, and Sven Behnke:

MOTPose: Multi-object 6D pose estimation for dynamic video sequences using
attention-based temporal fusion

In: IEEE International Conference on Robotics and Automation (ICRA), Yoko-
hama, Japan, 2024.

The author of this thesis substantially contributed to all aspects of the publication,
including the literature survey, the conception, formalization, design, and implementation
of the proposed methods, the preparation and conduct of experiments for the evaluation
of the proposed approach, the analysis and interpretation of the experimental results,
the preparation of the manuscript, as well as the revision and final editing of the version
published.

7.1 INTRODUCTION

Object detection is the task of localizing instances of object categories in images—
typically by predicting bounding box parameters. 6D pose estimation aims at predicting
the position and orientation of objects in the sensor coordinate system. Both tasks are
essential for many autonomous robots and a prerequisite for object manipulation.
Although single-view pose estimation models have made significant progress in recent
years, they face difficulties in cluttered environments (Hodan et al., 2020) hampered by
occlusions, reflective surfaces, transparency, and other challenges. One way to address
these challenges is to utilize a sequence of images of the scene instead of a single im-
age. In a video sequence, image features and object attributes evolve smoothly over time.
Models can benefit from imbuing image features and predictions from the previous frames
while processing the current frame. Also, enforcing temporal consistency of the image fea-
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tures and pose predictions from consecutive frames can facilitate efficient learning and
better accuracy. Despite the apparent advantages of temporal processing, the popularity
of single-view pose estimation methods can be attributed to the complexity, computa-
tion, and memory overhead of video pose estimation methods. Furthermore, CNN-based
models for video processing often utilize 3D convolutions, which need more parameters
and are slow compared to their 2D counterparts.

Lately, the multi-head attention-based transformer architecture, which was initially
proposed for natural language processing tasks, has shown tremendous capabilities in
modeling long-term dependencies in many domains like audio, image, video, etc. (Han
et al., 2022; Wen et al., 2023; Khan et al., 2022; Liu et al., 2023; Li et al., 2023). Vision
transformer architectures also enable single-stage models that jointly perform object
detection and pose estimation for all objects in the scene in one forward pass (Amini,
Periyasamy, and Behnke, 2022; Amini, Periyasamy, and Behnke, 2021). This ability is
handy when dealing with highly cluttered bin-picking scenarios (see Fig. 7.1). In this
work, we propose a vision transformer model for multi-object 6D pose estimation from
monocular video sequences. The core component of the proposed MOTPose method is a
cross-attention-based temporal fusion mechanism that fuses features from multiple past
frames while processing the current frame. We use the stacked object embeddings from
the past time steps as key and value in the cross-attention computation while the object
embeddings from the current time step serve as query. To counter the permutation-
invariant nature of the attention mechanism in the temporal fusion modules, we utilize
relative frame encoding (RFE).

7.2 RELATED WORK
MONOCULAR POSE ESTIMATION

Object pose estimation from RGB images has been a long-standing problem in computer
vision. In Chapters 5 and 6, we reviewed monocular pose estimation literature in detail.
Here, we provide a brief overview of the literature. The traditional methods before the
advent of deep learning include template-based methods (Hinterstoifser et al., 2012; Hin-
terstoisser et al., 2013) and feature-based methods (Rothganger et al., 2006; Pavlakos
et al., 2017; Tulsiani and Malik, 2014). Modern deep-learning-based approaches include
direct methods that regress the 6D pose parameters given the input RGB image (Xiang
et al., 2018; Periyasamy, Schwarz, and Behnke, 2018; Wang et al., 2021; Di et al., 2021),
keypoint-based methods that predict the pixel coordinates of 3D keypoints first and then
use the perspective-n-points (PnP) algorithm to recover 6D pose (Rad and Lepetit, 2017;
Tekin, Sinha, and Fua, 2018; Hu et al., 2019; Peng et al., 2019; Hu et al., 2020), and
refinement-based methods. The latter iteratively refine an initial pose estimate using ei-
ther the render-and-compare framework (Li et al., 2018b; Manhardt et al., 2018; Labbe
et al., 2020; Periyasamy, Schwarz, and Behnke, 2019; Castro and Kim, 2023) or optical
flow (Hai et al., 2023; Hu, Fua, and Salzmann, 2022). Most monocular pose estimation
methods are multi-staged. In contrast, notable single-stage methods include (Capellen,
Schwarz, and Behnke, 2019; Hu et al., 2019; Thalhammer et al., 2021). The proposed
MOTPose method also incorporates single-stage design elements in its architecture.



7.2 RELATED WORK

POSE ESTIMATION AS SET PREDICTION

In recent years, vision transformer architectures, that formulate computer vision tasks like
object detection, instance segmentation, and pose estimation as a set prediction problem,
are achieving impressive results. Carion et al. (2020) introduced DETR, the pioneering
work in this new class of methods. In Chapters 5 and 6, we presented the T6D-Direct
and YOLOPose models, respectively, based on this formulation. Following these methods,
the proposed MOTPose model also formulates multi-object pose estimation from video
sequences as a set prediction problem.

6D POSE TRACKING

Many of the early works for 6D pose tracking were based on particle filtering (Azad et
al., 2011; Pauwels et al., 2013; Xiang et al., 2014), but the performance of particle filters
heavily depends on the accuracy of the observation model. Deng et al. (2019) introduced
PoseRBPF utilizing a CNN-based observation model in the particle filtering framework.
Wen et al. (2020) introduced se(3)-TrackNet, which achieved state-of-the-art-results in
object pose tracking from RGB-D images. In contrast to se(3)-TrackNet, MOTPose only
needs RGB input and can estimate 6D pose for all objects in the input images in one
stage.

MULTI-OBJECT TRACKING

Multi-object tracking aims at tracking 2D bounding boxes of the target instances in a
given video sequence. The task is often challenging, due to the presence of multiple in-
stances of the same category. To address the problem of matching detections and tracked
objects, sophisticated matching strategies were proposed (Bergmann, Meinhardt, and
Leal-Taixé, 2019; Zhou, Koltun, and Krahenbiihl, 2020; Zhou, Koltun, and Krahenbiihl,
2020; Xu et al., 2021). In this work, we focus mainly on improving pose estimation
accuracy by fusing information over multiple time steps. Thus, instead of focusing on
the tracking metrics, we emphasize the standard pose estimation metrics—ADD-S and
ADD(-S)—discussed in Section 7.4.2.

TRACKING-BY-ATTENTION IN DETR-LIKE MODELS

Recently, Meinhardt et al. (2022) proposed TrackFormer, by introducing the tracking-by-
attention framework in a DETR-like architecture. Their key idea is to use object embed-
dings from time step t as object queries in time step t+1. Propagating object embeddings
over multiple time steps enables tracking the object over a long video sequence. State-of-
the-art methods for multi-object tracking utilizing the tracking-by-attention framework
include MOTR (Zeng et al., 2022b) and TransTrack (Sun et al., 2020). The main down-
side of such methods is that the number of object queries in a time step is dynamic,
which makes efficient vectorized implementation harder and results in a slow training
process. In contrast to the tracking-by-attention framework, in our model, we fuse a
fixed set of object embeddings and object-specific outputs from multiple time steps using
cross-attention-based modules.
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7.3 MOTPOSE

Following YOLOPose (Periyasamy et al., 2023), we formulate multi-object pose estima-
tion as a set prediction problem. YOLOPose exploits the permutation-invariant nature
of the attention mechanism to generate a set of tuples—each consisting of class proba-
bilities, 2D bounding box, 3D bounding box, position and orientation parameters. The
3D bounding box parameters are represented using the interpolated bounding box (IBB)
keypoints (Li et al., 2021), which we discussed in Section 6.3.2 in detail. YOLOPose em-
ploys a ResNet backbone for feature extraction (CNN). Positional encoding compensates
for the loss of spatial information in the permutation-invariant attention computation.
Combined image features and positional encodings are provided to the encoder module,
which uses the multi-head self-attention mechanism to generate encoder feature embed-
dings. In the decoder, the cross-attention mechanism is employed between the encoder
feature embeddings and a set of N learned embeddings called object queries to gener-
ate IV object embeddings, which are then processed by feed-forward prediction networks
(FFPNs) to generate class probabilities, 2D bounding box, and IBB keypoints, in parallel.
The IBB keypoints are then processed by a subsequent FFPN to estimate the translation
and rotation parameters. Since the cardinality of the predicted set is fixed, the model
is trained to predict @ classes after detecting all the target objects present in the im-
age. By associating the predictions and the ground truth using a bipartite matching
algorithm (Kuhn, 1955), YOLOPose is trained end-to-end.

7.3.1 MODEL ARCHITECTURE

The architecture of the proposed MOTPose model is shown in Fig. 7.2. We base the single-
frame processing of MOTPose on the YOLOPose model. The transformer-based encoder-
decoder modules generate object embeddings of cardinality N from CNN-computed im-
age features that are augmented with positional encoding. FFPNs process the object
embeddings to generate object-specific outputs. The object embeddings and the object-
specific outputs from the past time steps provide rich temporal information that can
be leveraged while processing the current frame. To this end, we fuse object embed-
dings and object-specific outputs from multiple past time steps using the Temporal Em-
bedding Fusion Module (TEFM, Sec. 7.3.1) and the Temporal Object Fusion Module
(TOFM, Sec. 7.3.1), respectively, before generating outputs for the current time step.
To enable the fusion of embeddings and object parameters over multiple time steps us-
ing the permutation-invariant attention mechanism, we utilize relative frame encoding
(RFE), which encodes the number of time steps relative to the current frame using 1D
sinusoidal functions.

Different architectural designs exist for fusing temporal information into the neural
network models. Here, we discuss these design choices in detail and introduce the design
of the temporal fusion modules in MOTPose.

EARLY FUSION

A temporal stream of RGB images is represented using an array of dimension T'x Hx W x 3,
where T is the number of time steps, and H and W are height and width of the image,
respectively. 4D convolutional networks (Choy, Gwak, and Savarese, 2019; Choy, Gwak,
and Savarese, 2019; Karpathy et al., 2014; Zhang et al., 2020) and video vision transformer
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models (Lea et al., 2016; Arnab et al., 2021; Liu et al., 2022a; Yan et al., 2022; Herzig
et al., 2022) are designed to process the 4D input arrays. This allows for fusing temporal
at an early image input stage. The models can learn spatio-temporal features directly
from the images. The major downside of such an approach is the larger memory and time
requirement of the 4D convolution/transformer modules.

LATE FUSION

On the end of the spectrum to the early fusion approach is the late fusion. The prediction
made by the model at previous time step is temporally fused while processing the current
time step. In general, the dimension of the output is much smaller compared to the inputs
in the context of object detection and pose estimation. Thus late stage needs a much
smaller memory and processing time compared to the early fusion approach. However,
fusing the predictions directly leads to poor performance in practice (Zeng et al., 2022a;
Coskun et al., 2017; Luo, Golestaneh, and Kitani, 2020; Véges and Lérincz, 2020). This
is mainly because the representation of the outputs generated are not suitable as inputs
for subsequent processing. Thus, in the MOTPose model, we fuse intermediate object
embeddings.

At each time step, object embedding are generated by the decoder module by per-
forming cross attention between the object queries and encoder embeddings. In fact, the
FFPNs that generate the object predictions receive only the object embeddings as input.
Thus, object embeddings encode all the essential information contained in the images
necessary for generating object predictions. Fusing object embeddings allows for efficient
temporal information fusion and computationally efficient fusion mechanism.

TEMPORAL EMBEDDING FUsioON MoDULE (TEFM)

At each time step, the decoder generates object embeddings of shape N x 256, where
N is the cardinality of the object set to be predicted. TEFM, shown in Fig. 7.3, fuses
object embeddings from multiple time steps to extract valuable temporal information.
First, relative frame encoding is concatenated with the object embeddings, and then
the resulting embeddings are projected back to 256 dimensions using linear layers. The
stacked embeddings until T'—1 time steps form key and wvalue for the cross-attention
operation in TEFM, whereas the embedding from the time step T is used as query. This
allows the object embeddings from time step 7" to interact with object embeddings from
all previous time steps. The key-query similarity is reflected in the resulting attention
weights. These attention weights are used to weigh the value vectors, which in our case are
the object embeddings from all previous time steps. After applying layer normalization,
the output of TEFM is added element-wise to the object embeddings of time step T,
representing a residual connection.

TEMPORAL OBJECT FusioN MoDULE (TOFM)

In addition to fusing embeddings using TEFM, we employ two TOFM modules to fuse
object-specific outputs. The design of TOFM is similar to that of TEFM, except for the
usage of additional linear projection layers at the beginning and the end. The object
embeddings are of shape Nx 256, whereas the shape of the predictions is N x P, which
depends on the prediction generated; three in the case of translation prediction, six in
the case of rotation prediction, and 32 in the case of keypoints. We use a linear layer
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Figure 7.1: Multi-Object pose predictions for a cluttered bin-picking scene from the SynPick
dataset (Untargeted-pick split, 38th video sequence). Our model jointly detects and
estimates 6D pose for all objects in the scene in a single step using a vision-transformer
model by fusing temporal information across multiple frames. The predicted objects’
poses are visualized using contours.

to project the predictions to a 256-dimensional vector and supplement them with RFEs.
After computing cross-attention, we project the resulting embeddings back to N xP.
TOFM; is used for fusing keypoints and TOFM, is used for fusing pose parameters.

7.3.2 MATCHING

We use the bipartite matching algorithm (Carion et al., 2020; Periyasamy et al., 2023;
Kuhn, 1955) to associate predicted and ground-truth objects. At each time step, our
model generates a set of object predictions Y of cardinality N. We perform bipartite
matching between the predicted set and the @ object padded ground-truth set Y to find
the permutation of elements between the two sets ¢ € & that minimizes the cost term:

N
0 = argmin Z Ematch(yvia )A/a(i))a (71)

oceby
where Lpatcn(Yi, }A’G(i)) is the pair-wise matching cost between the ground-truth tuple Y;
and the prediction at ¥ index o(4).

Despite jointly estimating 2D bounding box, class probabilities, key points, and pose
parameters, similar to previous chapters Chapters 5 and 6, we use only the bounding box
and the class probability components in the matching cost function.

['match_object(yriy ?a(z)) = _]l(:ﬁé@ﬁo(i) (Cz) + lci¢®£boz (bia Ba(z)) (72)
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Figure 7.2: MOTPose architecture. Positional Encoding: pixel coordinates represented using sine

and cosine functions of different frequencies. Object Queries: learned embeddings that
are trained jointly with the model and remain fixed during inference (7.3). FFPN:
Feed Forward Prediction Network. TEFM: Temporal Embedding Fusion Module (Sec-
tion 7.3.1, Fig. 7.3). TOFM: Temporal Object Fusion Module (Section 7.3.1). &:
Element-wise addition. ®: Residual connection. The dashed red lines represent tem-
poral connections. All modules that share a color also share weights. At each time
step, object embeddings are generated using a CNN backbone and transformer-based
encoder-decoder modules. The image features from the backbone are augmented with
positional encoding. The object embeddings are processed in parallel using FFPNs
to generate class probability, bounding box, and 6D pose parameters. At time step
tT, the object embeddings of different time steps are fused using TEFM. Similarly,
object-specific predictions like the keypoints and the 6D pose parameters of different
time steps are fused using TOFM. While fusing object embeddings and object-specific
outputs from different time steps, Relative Frame Encoding (RFE) is added element-
wise to uniquely identify the respective time step.
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Figure 7.3: Temporal Embedding Fusion Module (TEFM). @: Concatenation operation. The
object embeddings at each time step of shape Nx256 are added element-wise with
relative frame encoding (RFE). The resulting vectors for time steps ¢ty — tp_1 are
stacked to form the key as well as the walue for the cross-attention operation in
TEFM, whereas the embedding at time step T acts as the query.

This design choice is based on the empirical observation that a combination of the bound-
ing box and the class probability components alone is enough to ensure an optimal match
between the ground-truth and the predicted sets.

7.3.3 Loss FUNCTION
The Hungarian loss used to train MOTPose is a weighted combination of five components:

CrLAass PROBABILITY LoOsSs

We use the standard negative log-likelihood (NLL) loss to train the classification branch
of the model.

NLL(z) = —log(p(x)), (7.3)

where z is the target object. To deal with the class imbalance due to the @ class appearing
disproportionately often, we weigh it down by a factor of 0.1.

BounbpIiNG Box Loss

A~

Loz (bi, ba(i)) = aLiou(bi, [;cr(z)) + B[[bi — Ba(i)“a (7.4)

bimgai Bbivi)ai biugoi
| @l 1B(bi begy) \ ()\)7 (75)

Liou(bi,byy) =1 — < AL -
|bi U by iy |B(bis byiy)|

where B(b;, IA)C,(?;)) defines the largest box enclosing both the ground truth b; and the predic-

tion lA)G(i), and «, 8 are hyperparameters. To train the bound box prediction branch of our
model, we employ a linear combination of the generalized IoU (Rezatofighi et al., 2019)
and the ¢;-loss.

KEYPOINT LOSS

We use a weighted combination of the ¢;-loss and the cross-ratio consistency loss (Li
et al., 2021; Periyasamy et al., 2023) to train the keypoint estimation branch. The cross-
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ratio of any four collinear points remains constant under perspective projection, which is
enforced using the cross-ratio consistency loss. Formally, given four collinear points (A,
B, C, D), the cross-ratio CR is defined as:

1€~ Al lID - Bl
|C = B[ [[D = Al

CR = (7.6)

We enforce the cross-ratio consistency with their projected 2D coordinates (a, b, ¢, d)
using the loss component Leg:

|l — al[?[|d — ]|
ch::<CR2— : (7.7)
[le = bI[2[|d — al[?

Poske Loss

We decouple the pose loss into a translation and a rotation component. For translation, we
employ the £3-loss. For rotation, we use the symmetry-aware ShapeMatch-loss proposed
by Xiang et al. (2018).

Epose(Rv Y, Ra Q) = ﬁROt(Ra R) + Hy—ﬁﬂ ’v (78)

where,

W Z rnln ||(Rx;—Rx2)|| if symmetric,

Lpot = (7.9)
W Z |(Rx— Rx)|| otherwise.
xeEM

TEMPORAL CONSISTENCY LOSS

We enforce temporal consistency using the fs-loss between the object embeddings of
consecutive time steps. Embeddings evolve smoothly over frames and any big changes
are undesirable. Thus, the ¢3-loss, which penalizes bigger differences significantly more
than smaller differences, is a natural choice.

7.4 EVALUATION
7.4.1 DATASETS

We evaluate MOTPose on two datasets: YCB-Video and SynPick. YCB-Video features
static scenes captured using moving camera. SynPick, which we introduced in Chapter 2,
features a dynamic bin-picking scenes.

YCB-VIDEO

We use the challenging YCB-Video dataset (Xiang et al., 2018) to benchmark the per-
formance of our model against other state-of-the-art methods. The dataset consists of 92
(80 training and 12 testing) moving-camera video sequences of static scenes with multiple
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objects. High-resolution 3D models of all 21 objects are provided with the dataset. Fol-
lowing Deng et al. (2019) and Li et al. (2018b), we use all the frames in the test split for
evaluation. Additionally, we utilize the synthetic dataset provided by Xiang et al. (Xiang
et al., 2018) to train our model.

SYNPICK

SynPick (Periyasamy, Schwarz, and Behnke, 2021) is a physically-realistic synthetic
dataset of dynamic bin-picking scenes that contain a chaotic pile of the same 21 YCB-
Video objects in a tote. It consists of simulations of three different bin-picking actions:
move, targeted pick, and untargeted pick. For each action, SynPick provides 300 video
sequences: 240 for training and 60 for testing. Moreover, the dataset generator is publicly
available! making it easy to generate additional data, if needed. In contrast to the com-
monly used object pose estimation datasets (Brachmann, 2020; Hinterstoisser et al., 2013;
Hodan et al., 2020), which consist of static tabletop scenes with a relatively low degree
of occlusion, SynPick is highly cluttered and the gripper movements generate complex
object interactions. Moreover, the objects in the SynPick dataset appear in a wide range
of pose configurations and multiple instances of the same object are present in the scenes.
Thus, SynPick is an ideal dataset for evaluating the proposed MOTPose model.

7.4.2 EVALUATION METRICS

We report the area under the curve (AUC) of the ADD and ADD-S metrics at an accuracy
threshold of 0.1m for non-symmetric and symmetric objects, respectively (Xiang et al.,
2018). The ADD metric is the average 5 distance between the subsampled mesh points M
in the ground-truth and the predicted pose, whereas the symmetry-aware ADD-S metric
is the average distance between the closest subsampled mesh points in the ground-truth
and the predicted pose.

1 AL
ADD = —— Y [[(Rz +y) — (Rz + 7)]], (7.10)
|Jx4|m€ﬂ4
ADDSS = S wmin [[(Rer+y) — (Rea +9)] (7.11)
S = 1 - 2 ; :
|M‘ z1€Mx2€M

where R and y are orientation and translation components respectively.
The ADD-(S) metric combines both ADD and ADD-S into one metric by utilizing
ADD for objects without symmetry and ADD-S for objects exhibiting symmetry.

7.4.3 IMPLEMENTATION DETAILS

Following (Carion et al., 2020; Periyasamy et al., 2023), we choose the cardinality of
the predicted set IV proportional to the maximum number of objects in an image in the
respective datasets: 30 for SynPick and 20 for YCB-Video. In Section 7.3.3, the bound-
ing box components are weighted using factors 2 and 5, and the keypoint components

1 https://github.com/AIS-Bonn/synpick


https://github.com/AIS-Bonn/synpick

7.4 EVALUATION

Table 7.1: Quantitative results on the SynPick dataset.

MOTPose without MOTPose with
Temporal Fusion Temporal Fusion
AUC of AUC of AUC of AUC of

Objects 2%(1; ‘;f ?gg (‘;f) ADD-S ADD-(S) 2%(1; (;f A”\DLS (ng) ADD-S ADD-(S)

) “l@o.1d @oad || l@o.1d  @o.1d
master chef can 88.8 72.2 86.1 53.4 88.5 79.1 86.8 61.2
cracker box 90.7 82.5 89.5 76.2 91.4 84.2 90.2 78.4
sugar _box 80.8 74.4 79.1 63.9 81.6 76.2 80.2 69.5
tomato_soup_can 72.5 64.1 70.1 43.9 73.5 68.0 71.2 45.1
mustard _bottle 80.3 72.2 78.8 62.3 80.2 74.8 78.9 67.9
tuna_fish can 81.1 64.1 68.1 19.1 81.8 75.1 72.2 25.6
pudding box 69.9 63.4 66.3 48.2 70.9 65.7 68.4 48.3
gelatin_box 65.8 60.3 60.6 40.9 67.4 62.1 63.3 32.0
potted _meat_can 84.3 76.1 80.6 56.4 85.1 78.9 82.5 56.5
banana 78.0 70.5 73.9 56.9 80.3 73.9 77.9 64.9
pitcher base 92.8 84.7 92.2 79.4 93.1 85.8 92.4 81.8
bleach cleanser 85.7 76.9 85.2 71.1 87.0 80.7 86.4 76.9
bowl* 89.0 89.0 83.2 83.2 89.5 89.5 85.9 85.9
mug 84.9 74.8 80.8 49.0 85.9 78.5 82.5 45.6
power _drill 90.5 83.7 89.9 75.2 92.9 87.2 92.3 83.0
wood _ block* 90.0 90.0 88.8 88.8 90.0 90.0 88.9 88.9
scissors 72.0 65.0 65.1 49.7 75.9 69.5 71.1 55.2
large marker 68.1 62.4 61.7 36.6 66.9 61.9 60.4 36.2
large clamp™ 76.0 76.0 73.6 73.6 79.0 79.0 77.5 77.5
extra_large clamp*| 80.5 80.5 75.7 75.7 83.6 83.6 81.8 81.8
foam brick* 75.9 75.9 72.2 72.2 76.3 76.3 69.7 69.7
Mean 80.8 74.2 77.2 60.8 82.0 77.1 79.1 63.4

* Symmetric objects.

are weighted with factors 10 and 1. The pose component and the temporal consistency
component are weighted down using factors 0.05 and 0.1, respectively. The encoder and
decoder modules consist of six layers each. All the embeddings used in our model are of
dimension 256. We train our model for 150 epochs using the AdamW optimizer with a
learning rate of 1x10~* and early stopping. We set the number of time steps T to eight in
the temporal fusion modules and use a batch size of 32 (four groups of eight consecutive
images).

7.4.4 RESULTS ON SYNPICK
Formulating multi-object pose estimation as a set prediction problem enables joint object

detection and pose estimation of all objects in the scene. However, it compounds the size
of the dataset required to train transformer models. Thus, to complement the existing

240 videos for training, we generate additional 300 video sequences for each action split.

We call this extended version SynPick-Ext. We downsample the image resolution to
640x480. SynPick consists of objects piled up in a tote and in many cases, objects are
completely occluded. To exclude heavily occluded objects, we use a minimum visibility
threshold of 30% in our evaluation. In Fig. 7.4, we present pose estimates generated by our
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Table 7.2: Cardinality Error on SynPick Splits [x1072].

Method Move | 1orgeted | Untargeted |\
pick pick

W /o temporal fusion 3.26 1.64 0.48 2.06

With temporal fusion | 0.62 0.52 0.44 0.53

Table 7.3: False negative detections on SynPick Splits [x1072].

Method Move | 1argeted | Untargeted |\
pick pick

W /o temporal fusion | 2.79 1.39 1.36 1.79

With temporal fusion | 0.57 0.44 0.44 0.48

model with and without temporal fusion. Both models generate predictions of admissible
quality. However, the model without temporal fusion suffers from failed object detections
(Fig. 7.4(a),(d)), and isolated highly erroneous pose predictions (Fig. 7.4(b), (c), (e)).
Temporal fusion helps in alleviating these shortcomings.

In Table 7.1, we report quantitative results of our model. MOTPose achieves impres-
sive AUC of ADD-S and AUC of ADD-(S) scores of 82.0 and 77.1, respectively, which is
an improvement of 1.2 and 2.9 compared to the model without temporal fusion. Ad-
ditionally, we also report the AUC metrics with a threshold of 10% of the object di-
ameter (AUC@O0.1d). This metric takes the object size into account better. In terms of
AUCof ADD-S and ADD-(S)@0.1d, temporal fusion boosts the accuracy by 1.9 and 2.6
points, respectively.

OBJECT DETECTION ACCURACY

Furthermore, to understand the impact of temporal fusion on object detection, we analyze
the cardinality error and the bounding box accuracy metrics. The cardinality error is the
difference between elements in the ground-truth and predicted sets. Formally, given the
ground-truth set ) and the predicted set ), the cardinality error (CE) is defined as:

A A

VWU -Y)
V| '

In Table 7.2, we report the cardinality error of our model on different splits of the
SynPick dataset. Over the complete test set, the cardinality error of the model without
temporal fusion is 0.021, whereas it is only 0.005 for the model with temporal fusion. The
difference is more evident in the Mowe split, which is more challenging than the other
two splits.

Although CE reflects the set prediction ability of a model, in real-world bin-picking
systems, the identity of the objects present in the bin might be known a priori (Schwarz et
al., 2018a; Schwarz et al., 2017). Thus, in this informed detection scenario, false positives
can be easily mitigated, whereas false negatives (FN), i.e., |() — Y)|/|)| are detrimental.
In Table 7.3, we report the false negatives of object detection. Over the entire test set,

[

CE = (7.12)
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Table 7.4: Bounding Box Prediction Accuracy.

APQ AP@

T T
Method APY N ou=050] | [ou=0.75) | AR
W/o temporal fusion | 0.756 0.872 0.853 0.789
With temporal fusion | 0.779 0.876 0.858 0.811

T @[loU=0.50:0.95]

the model without temporal fusion has a FN rate of 0.018; with temporal fusion, the FN
rate drops to 0.005.

BOUNDING BOX DETECTION ACCURACY

The standard metric for evaluating 2D bounding box detection accuracy of a model is
the average precision (AP) and average recall (AR). AP is defined by the area under the
precision-recall curve, whereas AR is corresponds to the recall-precision curve.

Precisi True Positives (7.13)
recision = )
True Positives + False Positives

True Positi
Recall — rue Positives (7.14)

True Positives + False Negatives

The detections are classified as true positives or false positives based on the intersection
over union (IoU) threshold.

Ground

Truth

Intersection

Prediction

area of overlap

area of union Ground |

Truth

IoU = (7.15)

Prediction

The COCO evaluation protocol? proposed AP using varying IoU thresholds from 0.5 to
0.95. In Table 7.4, we report the APQ@Q[IoU=0.50:0.95], APQ@Q[IoU=0.50], AP@[loU=0.75|,
and ARQ@[IoU=0.50:0.95] metrics of the models with and without temporal fusion. The
bounding box prediction accuracy of our model is comparable to the state-of-the-art
object detection models (Hodan et al., 2024; Sundermeyer et al., 2023). Across all the
reported metrics, temporal fusion yields consistent improvements.

2 https://cocodataset.org/#detection-eval


https://cocodataset.org/#detection-eval

130 MULTI-OBJECT POSE TRACKING

Table 7.5: Results on the YCB-Video dataset.

woa] Mo T
CRT-6D (Castro and Kim, 2023) - 87.5 30
Periyasamy, Tsaturyan, and Behnke (2023) 92.0 84.7 26
DeepIM-Tracking (Li et al., 2018b) 91.0 85.9 13
MOTPose w/o temporal fusion 90.3 83.2 59
MOTPose with temporal fusion 91.2 84.5 30

(a) (b) (c) (d) (e)

Figure 7.4: Qualitative results on SynPick. 6D pose predictions are visualized using object con-
tours. Top: Predictions from the model without temporal fusion. Bottom: Predictions
from the model with temporal fusion. Temporal fusion facilitates better pose predic-
tion as well as object detection accuracies.

7.4.5 REsuLTS oON YCB-VIDEO

In Table 7.5, we report the quantitative comparison of our MOTPose model against state-
of-the-art methods on the YCB-Video dataset. In our experiments, we fuse seven previous
frames (T'=8) in MOTPose. Since our model does not produce outputs for the initial 7—1
frames in a video sequence, we report the accuracy scores excluding the initial frames.
Temporal fusion enables considerable improvement in the MOTPose model: 0.9 and 1.3
accuracy points in terms of the AUC of ADD-S and AUC of ADD-(S) metric, respectively.
Compared to DeepIM-Tracking (Li et al., 2018b), our method achieves a comparable
AUC of ADD-Sscore and a slightly worse AUC of ADD-(S) score. DeepIM-Tracking formu-
lates 6D pose tracking as pose refinement, i.e., pose prediction from the previous frame
is used to initialize the render-and-compare pose refinement for the current step. To ini-
tialize the first frame, the authors used the ground-truth pose. While Castro and Kim
(2023) achieve a significantly better accuracy than MOTPose, they perform only pose
refinement. In contrast, our method performs multi-object detection and pose estimation
jointly. Moreover, MOTPose accuracy is comparable to the state-of-the-art multi-object
pose estimation method of Periyasamy, Tsaturyan, and Behnke (2023) in terms of the
AUCof ADD-(S) metric and only slightly worse in terms of the AUC of ADD-Smetric.
Note that the frame rates reported in Table 7.5 are observed on GPUs of different gener-
ations and the values are provided only for a relative comparison.



7.5 LIMITATIONS

Table 7.6: Ablation study results on the SynPick dataset.

o] aved
MOTPose 82.0 77.1
MOTPose without temporal fusion 80.8 74.2
MOTPose without TEFM 81.1 74.9
MOTPose without TOFM 81.4 75.3
MOTPose without SynPick-Ext 76.4 69.2
MOTPose [T=4] 80.9 76.4
MOTPose [T=8] 82.0 77.1
MOTPose [T=12] 82.2 76.7

7.4.6 ABLATION STUDY

To understand the contribution of the individual components to the overall performance
of MOTPose, we investigated removing different components of the model and varying
the number of time steps used in the fusion modules. In Table 7.6, we report the results of
the ablation experiment on SynPick. Removing the TEFM module resulted in a big drop
in the overall accuracy of the MOTPose model. In terms of the AUC of ADD-(S) metric,
the MOTPose model without the TEFM module achieves a score of 74.9, compared to
77.1, while the AUC of ADD-S metric score drops by 0.6. Similarly, removing the TOFM

module results in a drop of 0.9 AUCof ADD-(S) and 1.8 AUC of ADD-S accuracy scores.

Moreover, in terms of the number of time steps used in the fusion modules, eight time
steps resulted in the best performance overall.

7.5 LIMITATIONS

Similar to the methods presented in Chapters 5 and 6, our formulation of multi-object
pose estimation as a set prediction task limits the datasets available for training our
model. Compared to 2D annotations, 6D pose annotations are significantly harder to
obtain. Thus, many of the standard datasets for evaluating object pose estimation like
Linemod-Occluded (Brachmann, 2020) and Linemod (Hinterstoisser et al., 2013) provide
pose annotations only for a partial number of objects per scene in the training dataset.
While this is not a limitation for multi-stage methods that process the cropped version of
the images for estimating the pose of target objects, our method needs 6D pose annotation
for all objects in the scene, which can be prohibitively expensive to acquire in some
scenarios.

7.6 DiscussioN & CONCLUSION

In this Chapter, we presented MOTPose, a multi-object pose estimation model for RGB
video sequences. We process individual frames using the YOLOPose model discussed
in Chapter 6. For each frame, attention-based encoder-decode module produces object
embeddings of cardinality N, which are processed independently using the feed-forward
MLPs to generate object-specific outputs. Employing the cross-attention-based TEFM
and TOFM modules, we fuse object embeddings and object-specific outputs over multiple
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time steps, respectively. We evaluate our model on the SynPick dataset presented in Chap-
ter 2, which features dynamic bin-picking scenarios, and the YCB-Video dataset (Xiang
et al., 2018), which features static scenes captured using a moving camera. Aided by the
temporal information, our model performs significantly better than the single-frame RGB
model while being lighter and significantly faster than other pose tracking methods. In
addition to the improved pose estimation accuracy, temporal fusion enables fewer object
detection failures and better bounding box prediction accuracy. As discussed in Sec-
tion 6.6, the keypoint regression mechanism can be easily adapted for category-level pose
estimation. Similarly, the temporal fusion modules introduced in this Chapter can also be
adapted for fusing category-level temporal information. Therefore, in the future, MOT-
Pose can be effortlessly adapted for category-level pose tracking. Moreover, bridging the
synthetic-to-real domain gap is a necessary future research direction to make large-scale
real-world deployment of the temporal pose estimation pipeline discussed in this Chapter.



CONCLUSION

In this thesis, we presented methods for multi-object pose estimation using single-view
RGB input as well as RGB video sequences, refining pose and shape parameters using
abstract render and compare, and introduced an automated ground-truth generation
scheme to train implicit pose distribution for modeling object symmetries without explicit
symmetry labels. To facilitate research in dynamic scene understanding, we developed
SynPick, a photo- and physically-realistic dataset featuring commonly occurring bin-
picking scenarios.

The pose estimation models formulate multi-object pose estimation as a set prediction
task. Given an input image, our models jointly detect objects and estimate their 6D pose
parameters. In contrast to the standard multi-stage methods that decouple object de-
tection and object pose estimation, our model detects and estimates pose for all objects
in the scene in a single forward pass. The architecture consists of a CNN backbone to
extract image features, an encoder-decoder module based on multi-head attention mech-
anism and feed-forward MLPs that estimate the class probabilities, 2D bounding boxes
and 6D pose parameters. The encoder modules perform self-attention between image
features supplemented with positional encoding, which are used to uniquely identify the
spatial position of the pixels. On the decoder side, we perform cross-attention between
encoder embeddings and learned object queries. Object queries are special embeddings
that are randomly initialized during training. They are trained along with the rest of the
model parameters but remain fixed during inference. We investigated the role of object
queries and concluded that they highly correlate with image spatial locations. Our mod-
els generate a set of predictions with a fixed cardinality. Thus, after predicting all the
objects in the given input, our models are trained to predict @ class, which is similar to
the background class in the semantic segmentation task. Employing bipartite matching,
our models are trained end-to-end without the need for any specialized layers like NMS,
Rol, or anchor boxes. We evaluated our models on the challenging YCB-Video dataset.
Overall, our model based on intermediate keypoint regression performed better than di-
rect regression. Since the predicted keypoints can be easily visualized, the keypoint-based
methods also improve the interpretability of the models compared to direct regression.
Moreover, analyzing the attention masks in the encoder and decoder modules showed
that the attention mechanism learns to focus on the pixels relevant for object predic-
tion automatically without explicit training. To facilitate an end-to-end differentiable
pipeline for keypoint-based pose estimation, we introduced the learnable RotEst mod-
ule as an alternative to the non-differentiable analytical PnP module. Our experiments
demonstrated the robustness of the RotEst module against noisy keypoint predictions.

Although the single-view RGB pipelines discussed in Chapters 5 and 6 achieved im-
pressive pose estimation accuracy, they do not benefit from the rich temporal information
contained in the RGB video sequences. We address this limitation by introducing tem-
poral fusion modules in the pose estimation model. The temporal embeddings fusion
module and the temporal object fusion module fuse object embeddings and object pre-
dictions, respectively, over multiple past timesteps while processing the current timestep.
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We evaluated the temporal model on two datasets: YCB-Video and SynPick. YCB-Video
features static scenes with a moving camera, whereas SynPick features dynamic scenes.
In our experiments, the temporal fusion resulted in improved pose estimation as well as
improved object detection accuracy.

The SynPick generator is built by extending the publicly available Stillleben renderer,
which is designed for easy GPU access and NVIDIA PhysX physics engine integration
for physically-realistic simulations. We make the SynPick dataset and the generator code
public. Robustness is a highly desirable property of any perception system. To improve
the robustness of the pose estimation models, we introduce pose refinement models based
on abstract render-and-compare. We render the scene according to the current param-
eter estimate and compare the rendered image with the observed image. The pose and
shape parameters are iteratively improved to minimize the rendered and the observed
image comparison error. The iterative nature of this optimization scheme necessitates an
efficient differentiable renderer. We develop StilllebenDR. for this purpose by extending
the Stillleben library. Since the pixel-wise image comparison is error-prone in the RGB
space, we propose to use the learned feature space.

The standard pose estimation models fall under the category of single pose predic-
tors. Le., these models predict a single pose that best fits the observation. However, for
symmetric objects, an observation can correspond to multiple poses, which are formally
known as the set of proper symmetries. Predicting a single pose for such objects does
not reveal any information about the nature of symmetry. In the literature, several para-
metric distributions like Bingham distribution, von Mises-Fisher distribution, etc., have
been proposed to model object pose symmetries. However, in the context of machine
learning, these parametric distributions are hard to train and inference using these mod-
els is time-consuming. To this end, we investigate implicit pose distribution networks
for modeling object symmetries. In particular, we propose an automatic pose labeling
scheme to train implicit pose distribution networks. Unlike the parametric distributions
for modeling symmetries, our approach does not need explicit symmetry labels and offers
time-efficient inference mechanism based multi-resolutional equivolumetric sampling of
the SO(3) manifold to recover the complete set of proper symmetries.

OUTLOOK AND FUTURE WORK

The methods we introduce in this thesis open up a number of future research direction.
In this section, we outline some of them. Additionally, we discuss the limitations of the
methods we presented and suggest potential improvements.

Formulating multi-object pose estimation as set prediction enables single-stage archi-
tectures we discussed in Chapters 5, 6 and 7. Since we fix the cardinality of the prediction
set, the models are trained to estimate (J class after predicting all the objects in the given
input. This design choice necessitates annotation for all the objects in an image in the
training dataset. Many of the standard datasets for pose estimation do not feature a
complete set of annotations (Brachmann, 2020; Hinterstoisser et al., 2013). In many
real-world scenarios, obtaining complete annotations can be prohibitively expensive. In-
vestigating mechanisms to train multi-object pose estimation using partial annotations
will make our models appropriate for a wide range of real-world settings.

For a large-scale deployment covering a wide range of objects, instance-level pose esti-
mation is not scalable. However, real-world objects can be organized into categories and
performing pose estimation at the category-level offers a scalable alternative to instance-
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level pose estimation. Lately, category-level pose estimation models are gaining signifi-
cant traction (Lin et al., 2022; Wang et al., 2019; Rodriguez, Huber, and Behnke, 2020).
The multi-object pose estimation models introduced in this thesis can be extended for
category-level pose estimation naturally; the model architecture, as well as the loss func-
tions, do not need any modification.

A different approach to make instance-level pose estimation scalable is the zero-shot
methods (Wen et al., 2024; Ausserlechner et al., 2024, Ornek et al., 2025; Shugurov et
al., 2022). They aim to estimate pose of objects unseen during training by leveraging
the capability of the vision foundational models (Dosovitskiy et al., 2021; Radford et al.,
2021; Jia et al., 2021; Kirillov et al., 2023) or the latent diffusion models (Rombach et al.,
2022; Xu et al., 2024; Chen et al., 2024) to generalize to unseen visual domains.

In terms of dynamic scene understanding, the SynPick dataset we introduced in this
thesis opens up many new research directions. The most significant among them is under-
standing physical interactions between objects. Imbuing models with knowledge about
how the scene evolves due to object interactions will improve the dynamic scene un-
derstanding systems. The physically realistic simulation made possible by the SynPick
generator and the wide range of object interactions featured in the dataset enable research
in understanding object interactions. The models capable of accurately simulating object
interactions can be used for predicting the success rate of a pick action before executing
the action in the real world. Moreover, temporal models trained using dynamic video
sequences can be employed to reason about the object that are currently occluded but
were visible in the past. Such models will be handy in the real-world dynamic settings
with a high degree of occlusion.

In general, models trained using real-world images perform better than those trained
with synthetic images. However, manual annotation of highly cluttered dynamic scenes
is not feasible. Thus, addressing this sim-to-real gap (James et al., 2019; Chebotar et al.,
2019; Golemo et al., 2018; Anderson et al., 2021) is a necessary step towards dynamic
scene understanding in real-world settings.

The pose and shape refinement methods discussed in Chapter 4 demonstrate the po-
tential of the abstract render-and-compare approach. Nevertheless, iterative refinement
using analytical gradients from the differentiable renderer suffers from the complexities
of rendered and observed image comparison. Li et al. (2018b) and Labbe et al. (2020)
showed that learning-based render-and-compare methods produce better results than
analytical render-and-compare. Moreover, Yen-Chen et al. (2021) and Bortolon et al.
(2024) demonstrated that the recent neural volume rendering approaches (Mildenhall
et al., 2021) can also be inverted to perform pose refinement. Both the learning-based
render-and-compare and the neural volume rendering approaches do not suffer from the
complexities of image comparison.

The implicit pose distribution model discussed in Chapter 3 offers an efficient alterna-
tive to parametric models and opens up possibilities for symmetry-aware manipulation
planning. For example, while planning a grasp, the knowledge of object symmetry can
be used to find the grasp that needs the least end effector movement.

In an orthogonal direction to the perception pipelines based on pose estimation dis-
cussed in this thesis, in the context of bin picking, some approaches circumvent pose es-
timation by learning generalizable grasp/manipulation planning (Yang et al., 2023; Xiao
et al., 2023; Mosbach and Behnke, 2024; Vuong et al., 2023). Recent advancements in rein-
forcement learning and multi-modality foundational models have made such approaches
feasible. However, such approaches will not make research in object pose estimation super-
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fluous. Object pose estimation is a necessary prerequisite in use cases beyond bin-picking
like virtual and augmented reality, medical imaging, autonomous navigation, manufactur-
ing, and quality control, etc. Thus, object pose estimation will remain a crucial research
problem in the future as well.

To conclude, in this thesis, we presented methods for multi-object pose estimation
from single-view RGB as well as video sequences, pipelines for pose and shape parameter
refinement based on abstract render-and-compare, an automatic ground-truth generation
scheme for training implicit probability density functions for modeling object symmetries.
We also introduced a photo- and physically- realistic dataset for dynamic scene under-
standing along with the generator. We evaluated our methods on the standard object
pose estimating datasets as well as the newly developed SynPick dataset. Furthermore,
we discussed the limitations of our approaches and the future research directions.
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