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Vorwort 
 
 
Die Analyse und Auswertung von Prozessdaten sowie die gewissenhafte Beurteilung 
von Ergebnissen und Aussagen bilden einen wesentlichen Bestandteil geodätischer 
Arbeiten. Die deterministische und stochastische Modellbildung mit anschließender 
optimaler Schätzung der Prozessparameter spielen somit eine zentrale Rolle. Erst 
der Einsatz von statistischen Verfahren schärft diese Aussagen und erlaubt somit 
eine gewissenhafte Gesamtbeurteilung. Vielfach wird dabei anwendungsorientiert 
vorgegangen. Aus der Anwendung heraus werden Arbeitshypothesen entwickelt, die 
dann durch statistische Tests überprüft werden sollen. Dieses intuitive Vorgehen 
führt oft zu Verwirrungen, da unterschiedliche Tests konstruiert und verwendet 
werden. Fragen zu notwendigen und hinreichenden Testvoraussetzungen, der Güte 
des Verfahrens, zur Macht des Tests können aus diesem Ansatz nur schwer beant-
wortet werden. Somit kann oft auch nicht festgestellt werden, welcher der verwen-
deten Verfahren die besten Eigenschaften besitzt. 
 
Somit werden Hypothesentests oft sehr schematisch angewandt und die Ergebnis- 
se mit Skepsis betrachtet, vor allem, wenn sich teils widersprüchliche Aussagen   
ergeben. Es tritt Konfusion zwischen den logischen Schlussfolgerungen und den   
getroffenen Annahmen ein. 
 
Aus diesem Grund ist es notwendig die Wahrscheinlichkeitstheorie und darauf     
aufbauend die Hypothesentests auf eine fundierte theoretische Basis zu stellen.   
Die Theorie ist unabhängig von der Anwendung systematisch zu entwickeln und 
wissenschaftlich fundiert auszuarbeiten. Erst dann kann die Intuition der Anwender 
eingreifen, wenn auf dieser fundierten Basis der Praxisbezug hergestellt wird. 
 
Herr Dr.-Ing. Boris Kargoll hat mit seiner Dissertationsschrift exakt diesen Weg    
eingeschlagen. Ausgehend vom Neyman-Pearson Lemma erweitert er konsequent 
mit Hilfe der Invarianzeigenschaften einfache Hypothesentests (einfache Nullhypo-
these, einfache Alternativhypothese) auf Hypothesentests mit zusammengesetzten 
Ablehnungsbereichen. Durch die Einführung von suffizienten Statistiken wird dabei  
der Übergang von univariaten Signifikanztests auf multivariate Tests bewerkstelligt. 
Somit werden multivariate Größen auf univariate Größen zurückgeführt, die dann 
konform zum Neyman-Peason Lemma getestet werden können. Eine spezielle Rolle 
spielt weiters die Aussage über gleichmäßig beste Tests (UMP … uniformly most 
powerful) Tests bzw. gleichmäßig beste invariante (UMPI) Tests. Durch Analyse des 
Likelihood-Quotienten-Tests und des Rao-Score-Tests wird gezeigt, dass diese Tests 
unter der Annahme normalverteilter Eingangsdaten für das lineare Modell (Gauß-
Markov-Modell) zu identischen Testergebnissen führen. Die entsprechenden Test-
statistiken werden entwickelt und die Identität überprüft. 
 
Somit können sehr allgemeine Tests zur Überprüfung sowohl des deterministischen 
als auch des stochastischen Modells in einheitlicher Form aufgebaut und Eigen-
schaften der Tests herausgearbeitet werden. Dieses systematische Vorgehen erlaubt 
es, zahlreiche in der Geodäsie angewendete Tests einheitlich darzustellen und deren 
Optimalität, Gleichwertigkeit und Mächtigkeit zu beurteilen. 
 
     Bonn, im Juli 2008 

 





On the Theory and Application of

Model Misspecification Tests in Geodesy

Abstract

Many geodetic testing problems concerning parametric hypotheses may be formulated within the framework
of testing linear constraints imposed on a linear Gauss-Markov model. Although geodetic standard tests for
such problems are computationally convenient and intuitively sound, no rigorous attempt has yet been made
to derive them from a unified theoretical foundation or to establish optimality of such procedures. Another
shortcoming of current geodetic testing theory is that no standard approach exists for tackling analytically more
complex testing problems, concerning for instance unknown parameters within the weight matrix.

To address these problems, it is proven that, under the assumption of normally distributed observation,
various geodetic standard tests, such as Baarda’s or Pope’s test for outliers, multivariate significance tests,
deformation tests, or tests concerning the specification of the a priori variance factor, are uniformly most
powerful (UMP) within the class of invariant tests. UMP invariant tests are proven to be equivalent to likelihood
ratio tests and Rao’s score tests. It is also shown that the computation of many geodetic standard tests may
be simplified by transforming them into Rao’s score tests.

Finally, testing problems concerning unknown parameters within the weight matrix such as autoregressive
correlation parameters or overlapping variance components are addressed. It is shown that, although strictly
optimal tests do not exist in such cases, corresponding tests based on Rao’s Score statistic are reasonable and
computationally convenient diagnostic tools for deciding whether such parameters are significant or not. The
thesis concludes with the derivation of a parametric test of normality as another application of Rao’s Score test.

Zur Theorie und Anwendung von

Modell-Misspezifikationstests in der Geodäsie

Zusammenfassung

Was das Testen von parametrischen Hypothesen betrifft, so lassen sich viele geodätische Testprobleme in Form
eines Gauss-Markov-Modells mit linearen Restriktionen darstellen. Obwohl geodätische Standardtests rechner-
isch einfach und intuitiv vernünftig sind, wurde bisher kein strenger Versuch unternommen, solche Tests ausge-
hend von einer einheitlichen theoretischen Basis herzuleiten oder die Optimalität solcher Tests zu begründen.
Ein weiteres Defizit im gegenwärtigen Verständnis geodätischer Testtheorie besteht darin, dass kein Standard-
verfahren zum Lösen von analytisch komplexeren Testproblemen exisitiert, welche beispielsweise unbekannte
Parameter in der Gewichtsmatrix betreffen.

Um diesen Problemen gerecht zu werden wird bewiesen, dass unter der Annahme normalverteilter Beobach-
tungen verschiedene geodätische Standardtests, wie z.B. Baardas oder Popes Ausreissertest, multivariate Sig-
nifikanztests, Deformationstests, oder Tests bzgl. der Angabe des a priori Varianzfaktors, allesamt gleichmäßig
beste (engl.: uniformly most powerful - UMP) invariante Tests sind. Es wird ferner bewiesen dass UMP in-
variante Tests äquivalent zu Likelihood-Quotienten-Tests und Raos Score-Tests sind. Ausserdem wird gezeigt,
dass sich die Berechnung vieler geodätischer Standardtests vereinfachen lässt indem diese als Raos Score-Tests
formuliert werden.

Abschließend werden Testprobleme behandelt in Bezug auf unbekannte Parameter innerhalb der Gewichts-
matrix, beispielsweise in Bezug auf autoregressive Korrelationsparameter oder überlappende Varianzkomponen-
ten. In solchen Fällen existieren keine im strengen Sinne besten Tests. Es wird aber gezeigt, dass entsprechende
Tests, die auf Raos Score-Statistik beruhen, sinnvolle und vom Rechenaufwand her günstige Diagnose-Tools
darstellen um festzustellen, ob Parameter wie die eingangs erwähnten signifikant sind oder nicht. Am Ende
dieser Dissertation steht mit der Herleitung eines parametrischen Tests auf Normalverteilung eine weitere An-
wendung von Raos Score-Test.
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1 Introduction

1.1 Objective

Hypothesis testing is the foundation of all critical model analyses. Particularly relevant to geodesy is the
practice of model misspecification testing which has the objective of determining whether a given observation
model accurately describes the physical reality of the data. Examples of common testing problems include how
to detect outliers, how to determine whether estimated parameter values or changes thereof are significant, or
how to verify the measurement accuracy of a given instrument. Geodesists know how to handle such problems
intuitively using standard parameter tests, but it often remains unclear in what mathematical sense these tests
are optimal.

The first goal of this thesis is to develop a theoretical foundation which allows establishing optimality of
such tests. The approach will be based on the theory of Neyman and Pearson (1928, 1933), whose celebrated
fundamental lemma defines an optimal test as one which is most powerful among all tests with some particular
significance level. As this concept is applicable only to very simple problems, tests must be considered that are
most powerful in a wider sense. An intuitively appealing way to do so is based on the fact that complex testing
problems may often be reduced to simple problems by exploiting symmetries. One mathematical description of
symmetry is invariance, whose application to testing problems then leads to invariant tests. In this context, a
uniformly most powerful invariant test defines a test which is optimal among all invariant tests available in the
given testing problem. In this thesis, it will be demonstrated for the first time that many geodetic standard
tests fit into this framework and share the property of being uniformly most powerful.

In order to be useful in practical situations, a testing procedure should not only be optimal, but it must also
be computationally manageable. It is well known that hypothesis tests have different mathematical descriptions,
which may vary considerably in computational complexity. Most geodetic standard tests are usually derived
from likelihood ratio tests (see, for instance, Koch, 1999; Teunissen, 2000). An alternative, oftentimes much
simpler representation is based on Rao’s (1948) score test, which has not been acknowledged as such by geodesists
although it has found its way into geodetic practice, for instance, via Baarda’s outlier test. To shed light on
this important topic, it is another major intent of this thesis to describe Rao’s score method in a general
and systematic way, and to demonstrate what types of geodetic testing problems are ideally handled by this
technique.

1.2 Outline

The following Section 2 of this thesis begins with a review of classical testing theory. The focus is on parametric

testing problems, that is, hypotheses to be tested are propositions concerning parameters of the data’s proba-
bility distribution. We will then follow the classical approach of considering tests with fixed significance level
and maximum power. In this context, the Neyman-Pearson Lemma and the resulting idea of a most powerful

test will be explained, and the concept of a uniformly most powerful test will be introduced. The subsequent
definition of sufficiency will play a central role in reducing the complexity of testing problems. Following this,
we will examine more complex problems that require a simplification going beyond sufficiency. For this puropse,
we will use the principle of invariance, which is the mathematical description of symmetry. We will see that
invariant tests are tests with power distributed symmetrically over the space of parameters. This leads us to
the notion of a uniformly most powerful invariant (UMPI) test, which is a designated optimal test among such
invariant tests. Finally, we will explore the relationships of UMPI tests to likelihood ratio tests and Rao’s score

tests.
Section 3 extends the ideas developed in Section 2 to address the general problem of testing linear hypotheses

in the Gauss-Markov model with normally distributed observations. Here we focus on the case in which the
design matrix is of full rank and where the weight matrix is known. Then, the testing problem will be reduced
by sufficiency and invariance, and UMPI tests derived for the two cases where the variance of unit weight is
either known or unknown a priori. Emphasis will be placed on demonstrating further that these UMPI tests
correspond to the tests already used in geodesy. Another key result of this section will be to show how all these
tests are formulated as likelihood ratio and Rao’s score tests. The section concludes with a discussion of various
geodetic testing problems. It will be shown that many standard tests used so far, such as Baarda’s and Pope’s
outlier test, multivariate parameter tests, deformation tests, or tests concerning the variance of unit weight, are
optimal (UMPI) in a statistical sense, but that computational complexity can often be effectively reduced by
using equivalent Rao’s score tests instead.

Section 4 addresses a number of testing problems in generalized Gauss-Markov models for which no UMPI
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tests exist, because a reduction by sufficiency and invariance are not effective. The first problem considered
will be testing for first-order autoregressive correlation. Rao’s score test will be derived, and its power against
several simple alternative hypotheses will be determined by carrying out a Monte Carlo simulation. The second
application of this section will treat the case of testing for a single overlapping variance component,for which
Rao’s score test will be once again derived. The final problem consists of testing whether observations follow
a normal distribution. It this situation, Rao’s score test will be shown to lead to a test which measures the
deviation of the sample’s skewness and kurtosis from the theoretical values of a normal distribution.

Finally, Section 5 highlights the main conclusions of this work and gives an outlook on promising extensions
to the theory and applications of the approach presented in this thesis.
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2 Theory of Hypothesis Testing

2.1 The observation model

Let us assume that some data vector y = [y1, . . . , yn]′ is subject to a statistical analysis. As this thesis is
concerned rather with exploring theoretical aspects of such analyses, it will be useful to see this data vector
as one of many potential realizations of a vector Y of observables Y1, . . . , Yn. This is reflected by the fact
that measuring the same quantity multiple times does not result in identical data values, but rather in some
frequency distribution of values according to some random mechanism. In geodesy, quantities that are subject to
observation or measurement usually have a geometrical or physical meaning. In this sense, Y , or its realization
y, will be viewed as being incorporated in some kind of model and thereby connected to some other quantities
or parameters. Parametric observation models may be set up for multiple reasons. They are often used as a
way to reduce great volumes of raw data to low-dimensional approximating functions. A model might also be
used simply because the quantity of primary interest is not directly observable, but must be derived from other
data. In reality, both aspects often go hand in hand.

To give these explanations a mathematical expression, let the random vector Y with values in R
n be part

of a linear model

Y = Xβ + E, (2.1-1)

where β ∈ R
m denotes a vector of unknown non-stochastic parameters and X ∈ R

n×m a known matrix of non-
stochastic coefficients reflecting the functional relationship. It will be assumed throughout that rankA = m

and that n > m so that (2.1-1) constitutes a genuine adjustment problem. E represents a real-valued random
vector of unknown disturbances or errors, which are assumed to satisfy

E{E} = 0 and Σ{E} = σ2 P−1
ω . (2.1-2)

We will occasionally refer to these two conditions as the Markov conditions. The weight matrix Pω may be
a function of unknown parameters ω, which allows for certain types of correlation and variance-change (or
heteroscedasticity) models regarding the errors. Whenever such parameters do not appear, we will use P to
denote the weight matrix.

To make the following testing procedures operable, these linear model specifications must be accompanied
by certain assumptions regarding the type of probability distribution considered for Y . For this purpose, it will
be assumed that any such distribution P may be defined by a parametric density function

f(y; β, σ2, ω, c), (2.1-3)

which possibly depends on additional unknown shape parameters c controlling, for instance, the skewness and
kurtosis of the distribution. Now, let the vector θ := [β′, σ2, ω′, c′]′ comprise the totality of unknown parameters
taking values in some u-dimensional space Θ. The parameter space Θ then corresponds to a collection of
densities

F = {f(y; θ) : θ ∈ Θ} , (2.1-4)

which in turn defines the contemplated collection of distributions

W = {Pθ : θ ∈ Θ} . (2.1-5)

Example 2.1: An angle has been independently observed n times. Each observation Y1, . . . , Yn is assumed
to follow a distribution that belongs to the class of normal distributions

W =
{
N(µ, σ2) : µ ∈ R, σ2 ∈ R

+
}

(2.1-6)

with mean µ and variance σ2, or in short notation Yi ∼ N(µ, σ2). The relationship between Y = [Y1, . . . , Yn]′

and the mean parameter µ constitutes the simplest form of a linear model (2.1-1), where X is an (n× 1)-vector
of ones and β equals the single parameter µ. Furthermore, as the observations are independent with constant
mean and variance, the joint normal density function f(y; µ, σ2) may be decomposed (i.e. factorized) into the
product

f(y; µ, σ2) =
n∏

i=1

f(yi; µ, σ2) (2.1-7)
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of identical univariate normal density functions defined by

f(yi; µ, σ2) =
1√
2πσ

exp

{
−1

2

(
yi − µ

σ

)2
}

(yi ∈ R, µ ∈ R, σ2 ∈ R
+, i = 1, . . . , n). (2.1-8)

Therefore, the class of densities F considered for Y may be written as

F =

{
(2πσ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(Yi − µ)2
}

: [µ, σ2]′ ∈ Θ

}
(2.1-9)

with two-dimensional parameter space Θ = R × R
+. �

2.2 The testing problem

The goal of any parametric statistical inference is to extract information from the given data y about the
unknown true parameters θ̄, which refer to the unknown true probability distribution Pθ̄ and the true density
function f(y; θ̄) with respect to the observables Y . For this purpose, we will assume that θ̄, Pθ̄, and f(y; θ̄)
are unique and identifiable elements of Θ, W , and F respectively.

While estimation aims at determining the numerical values of θ̄, that is, selecting one specific element from
Θ, the goal of testing is somewhat simpler in that one only seeks to determine whether θ̄ is an element of a
subset Θ0 of Θ or not. Despite this seemingly great difference between the purpose of estimation and testing,
which is reflected by a separate treatment of both topics in most statistical text books, certain concepts from
estimation will turn out to be indispensable for the theory of testing. As this thesis is focussed on testing, the
necessary estimation methodology will be introduced without a detailed analysis thereof.

In order to formulate the test problem, a non-empty and genuine subset Θ0 ⊂ Θ (corresponding to some
W0 ⊂ W and F0 ⊂ F) must be specified. Then, the null hypothesis is defined as the proposition

H0 : θ̄ ∈ Θ0. (2.2-10)

When the null hypothesis is such that Θ0 represents one point θ0 within the parameter space Θ, then the
elements of θ0 assign unique numerical values to all the elements in θ̄, and (2.2-10) simplifies to the proposition

H0 : θ̄ = θ0. (2.2-11)

In this case, H0 is called a simple null hypothesis. On the other hand, if at least one element of θ̄ is assigned
a whole range of values, say R

+, then H0 is called a composite null hypothesis. In such a case, an equality
relation as in (2.2-11) can clearly not be established for all the parameters in θ̄. Unknown parameters whose
true values are not uniquely fixed under H0 are also called nuisance parameters.

Example 2.2 (Example 2.1 continued): On the basis of given observed numerical values y = [y1, . . . , yn]′,
we want to test whether the observed angle is an exact right angle (100 gon) or not. Let us investigate three
different scenarios:

1. If σ2 is known a priori to take the true value σ2
0 , then Θ = R is one-dimensional, and under the null

hypothesis H0 : µ̄ = 100 the subset Θ0 shrinks to the single point

Θ0 = {100} .

Hence, H0 is a simple null hypothesis by definition.

2. If µ and σ2 are both unknown, then the null hypothesis, written as

H0 : µ̄ = 100 (σ2 ∈ R
+),

leaves the nuisance parameter σ2 unspecified. Therefore, the subset

Θ0 =
{
(100, σ2) : σ2 ∈ R

+
}

does not specify a single point, but an interval of values. Consequently, H0 is composite under this
scenario.

3. If the question is whether the observed angle is a 100 gon and the standard deviation is really 3 mgon

(e.g. as promised by the producer of the instrument), then the null hypothesis

H0 : µ̄ = 100, σ̄ = 0.003

refers to the single point Θ0 = (100, 0.0032) within Θ. In that case, H0 is seen to be simple. �
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2.3 The test decision

Imagine that the space S of all possible observations y consists of two complementary regions: a region of
acceptance SA, which consists of all values that support a certain null hypothesis H0, and a region of
rejection or critical region SC , which comprises all the observations that contradict H0 in some sense. A
test decision could then be on based simply observing whether some given data values y are in SA (which would
imply acceptance of H0), or whether y ∈ SC (which would result in rejection of H0).

It will be necessary to perceive any test decision as the realization of a random variable φ which, as a function
of Y , takes the value 1 in case of rejection and 0 in case of acceptance of H0. This mapping, defined as

φ(y) =
{

1, if y ∈ SC ,

0, if y ∈ SA,
(2.3-12)

is also called a test or critical function, for it indicates whether a given observation y falls into the critical

region or not. (2.3-12) can be viewed as the mathematical implementation of a binary decision rule, which is
typical for test problems. This notion now allows for the more formal definition of the regions SA and SC as

SC = φ−1(1) = {y ∈ S | φ(y) = 1} , (2.3-13)

SA = φ−1(0) = {y ∈ S | φ(y) = 0} . (2.3-14)

Example 2.3 (Ex. 2.2 continued): For simplicity, let Y (n = 1) be the single observation of an angle, which
is assumed to be normally distributed with unknown mean µ̄ and known standard deviation σ̄ = σ0 = 3 mgon.
To test the hypothesis that the observed angle is a right angle (H0 : µ̄ = 100), an engineer suggests the following
decision rule: Reject H0, when the observed angle deviates from 100 gon by at least five times the standard
deviation. The critical function reads

φ(y) =
{

1, if y ≤ 99.985 or y ≥ 100.015
0, if 99.985 < y < 100.015.

(2.3-15)

The critical region is given by SC = (−∞, 99.985] ∪ [100.015, +∞), and the region of acceptance by SA =
(99.985, 100.015). �

Due to the random and binary nature of a test, two different types of error may occur. The error of the first
kind or Type I error arises, when the data y truly stems from a distribution in W0 (specified by H0), but
happens to fall into the region of rejection SC . Consequently, H0 is falsely rejected. The error of the second
kind or Type II error occurs, when the data y does not stem from a distribution in W0, but is an element
of the region of acceptance SA. Clearly, H0 is then accepted by mistake.

From Example 2.3 it is not clear whether the suggested decision rule is in fact reasonable. The following
subsection will demonstrate how the two above errors can be measured and how they can be used to find optimal
decision rules.

2.4 The size and power of a test

As any test (2.3-12) is itself a random variable derived from the observations Y , it is straightforward to ask
for the probabilities with which these errors occur. Since tests with small error probabilities appear to be
more desirable than tests with large errors, it is natural to use these probabilities in order to find optimal test
procedures. For this purpose, let α denote the probability of a Type I error, and β (not to be confused
with the parameter β of the linear model 2.1-1) the probability of a Type II error. Instead of β, it is more
common to use the complementary quantity π := 1 − β, called the power of a test.

When H0 is simple, i.e. when all the unknown parameter values are specified by H0, then the numerical
value for α may be computed from (2.3-12) by

α = Pθ0 [φ(Y ) = 1] = Pθ0(Y ∈ SC) =
∫

SC

f(y; θ0) dy. (2.4-16)

From (2.4-16) it becomes evident why α is also called the size (of the critical region), because its value
represents the area under the density function measured over SC . Notice that for composite H0, the value for
α will generally depend on the values of the nuisance parameters. In that case, it is appropriate to define α as
a function with

α(θ) = Pθ[φ(Y ) = 1] = Pθ(Y ∈ SC) =
∫

SC

f(y; θ) dy (θ ∈ Θ0). (2.4-17)
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Example 2.4 (Example 2.3 continued): What is the size of the critical region or the probability of the

Type I error for the test defined by (2.3-15)?
Recall that µ0 = 100 is the value assigned to µ̄ by H0 and that σ0 = 0.003 is the fixed value for σ̄ assumed

as known a priori. Then, after transforming Y into an N(0, 1)-distributed random variable, the values of the
standard normal distribution function Φ may be obtained from statistical tables (see, for instance, Kreyszig,
1998, p.423-424) to answer the above question.

α = Pθ0(Y ∈ SC) = Nµ0,σ2
0
(Y ≤ 99.985 or Y ≥ 100.015)

= 1 − Nµ0,σ2
0
(99.985 < Y < 100.015)

= 1 − N0,1

(
99.985− µ0

σ0
<

Y − µ0

σ0
<

100.015− µ0

σ0

)
= 1 − [Φ(5) − Φ(−5)]

≈ 0.

If σ̄ was unknown, then the numerical value of α would depend on the value of σ. �

Let us finish the discussion of the size of a test by observing in Fig. 2.1 that different choices of the critical
region may have the same total probability mass.

←S
A

S
C
→

α

N(µ
0
,σ

0
2)→

←S
C

S
A
→

α

N(µ
0
,σ

0
2)→

← S
C

← S
A
 → S

C
 →

α/2 α/2

N(µ
0
,σ2)→

← S
A← S

C
 → S

A
 →

αN(µ
0
,σ

0
2)→

Fig. 2.1 Let N(µ0, σ
2
0) denote the distribution of a single observation Y under a simple H0 (with known and

fixed variance σ2
0). This figure presents four (out of infinitely many different ways) to specify a critical region

SC of fixed size α.
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The computation of the probability of a Type II error is more intricate than that of α, because the premise
of a false H0 does not tell us anything about which distribution we should use to measure the event that y is
in SA. For this very reason, an alternative class of distributions W1 ⊂ W must be specified which contains the
true distribution if H0 is false. If we let W1 be represented by a corresponding non-empty parameter subset
Θ1 ∈ Θ, then we may define the alternative hypothesis as

H1 : θ̄ ∈ Θ1 (∅ �= Θ1 ⊂ Θ,Θ1 ∩ Θ0 = ∅), (2.4-18)

which may be simple or composite in analogy to H0. The condition Θ1∩Θ0 = ∅ is necessary to avoid ambiguities
due to overlapping hypotheses.

Example 2.5 (Example 2.2 continued): For testing the right angle hypothesis H0 : µ̄ = 100, we will
assume that σ̄2 = σ2

0 = 0.0032 is fixed and known. Let us consider the following three situations.

1. Imagine that a map indicates that the observed angle is a right angle, while a second older map gives
a value of say 100.018 gon. In this case, the data y could be used to test H0 against the alternative
H1 : µ̄ = 100.018. Θ1 = {100.018} represents one point in Θ, hence H1 is simple.

2. If the right angle hypothesis is doubtful but there is evidence that the angle can definitely not be smaller
than 100 gon, then the appropriate alternative reads H1 : µ̄ > 100, which is now composite due to
Θ1 = {µ : µ > 100}, and it is called one-sided, because the alternative values for µ are elements of a
single interval.

3. When no prior information regarding potential alternative angle sizes is available, then H1 : µ̄ �= 100 is
a reasonable choice as we will see later. Since the alternative values for µ are split up into two intervals
separated by the value under H0, we speak of a two-sided (composite) H1. �

With the specification of an alternative subspace Θ1 ⊂ Θ, which the unknown true parameter θ̄ is assumed to
be an element of if H0 is false, the probability of a Type II error follows to be either

β = Pθ1 [φ(Y ) = 0] = Pθ1(Y ∈ SA) =
∫

SA

f(y; θ1) dy (2.4-19)

if H1 is simple (i.e. if θ1 is the unique element of Θ1), or

β(θ) = Pθ[φ(Y ) = 0] = Pθ(Y ∈ SA) =
∫

SA

f(y; θ) dy (θ ∈ Θ1) (2.4-20)

if Θ1 is composed of multiple elements. As simple alternatives are rarely encountered in practical situations,
the general notation of (2.4-20) will be maintained. As already mentioned, it is more common to use the power
of a test, defined as

Π(θ) := 1 − Pθ(Y ∈ SA) = Pθ(Y ∈ SC) = Pθ[φ(Y ) = 1] (θ ∈ Θ1). (2.4-21)

The numerical values of Π may be interpreted as the probabilities of avoiding a Type II error.
When designing a test, it will be useful to determine the probability of rejecting H0 as a function defined

over the entire parameter space Θ. Such a function may be defined as

Pf(θ) := Pθ [φ(Y ) = 1] = Pθ(Y ∈ SC) (θ ∈ Θ) (2.4-22)

and will be called the power function of a test. Clearly, this function will in particular produce the sizes α

for all θ ∈ Θ0 and the power values Π for all θ ∈ Θ1. For all the other values of θ, this function will provide
the hypothetical power of the test if the true parameter is neither assumed to be an element of Θ0, nor of Θ1.

Example 2.6 (Example 2.5 continued): Recall that the size of this test turned out to be approximately 0
as Ex. 2.4 demonstrated. Let us now ask, what the power of the test would be for testing H0 : µ̄ = 100 against
H1 : µ̄ = µ1 = 100.018 with σ̄2 = σ2

0 = 0.003 known a priori. Using the (2.4-21), we obtain

Π = 1 − Pµ1,σ2
0
(Y ∈ SA) = 1 − Nµ1,σ2

0
(99.985 < Y < 100.015)

= 1 − N0,1

(
99.985− µ1

0.003
<

Y − µ1

0.003
<

100.015− µ1

0.003

)
= 1 − [Φ(−1) − Φ(−11)]

≈ 0.8413.
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Notice that the larger the difference between µ1 and µ0, the larger the power becomes. For instance,
if H1 had been specified as µ1 = 100.021, then the power would increase to Π ≈ 0.9772, and for µ1 = 100.024
the power would already be very close to 1. This is intuitively understandable, because very similar hypotheses
are expected to be harder to separate on the basis of some observed data than extremely different hypotheses.
Figure 2.2 illustrates this point. �

N(µ
0
,σ

0
2) → ← N(µ

1
,σ

0
2)

← S
A

S
C

 →

µ
0

µ
1

β α

← S
A

S
C

 →

N(µ
0
,σ

0
2) → ← N(µ

1
,σ

0
2)

µ
0 µ

1

α

β

Fig. 2.2 The probability of a Type II error (β = 1−Π) becomes smaller as the distance µ1 −µ0 (with identical
variance σ2

0) between the null hypothesis H0 and the alternative H1 increases.

Another important observation to make in this context is that, unfortunately, the errors of the first and

second kind cannot be minimized independently. For instance, when the critical region SC is extended
towards µ0 (Fig. 2.3 left → right), then clearly its size becomes larger. In doing this, SA shrinks, and the
error of the second kind becomes smaller. This effect is explained by the fact that both errors are measured
in complementary regions and thereby affect each other’s size. Therefore, no critical function can exist that
minimizes both error probabilities simultaneously. The purpose of the following subsection is to present a
practical solution to resolve this conflict.

N(µ
0
,σ

0
2) → ← N(µ

1
,σ

0
2)

← S
A

S
C

 →

µ
0

µ
1

β α

N(µ
0
,σ

0
2) → ← N(µ

1
,σ

0
2)

← S
A

S
C

 →

β α

Fig. 2.3 Let N(µ0, σ
2
0) and N(µ1, σ

2
0) denote the distributions of a single observation Y under simple H0 and

H1, respectively. Changing the SC/SA partitioning of the observation space (abscissa) necessarily causes an
increase in probability of one error type and a decrease in probability of the other type.
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2.5 Best critical regions

As pointed out in the previous section, shifting the critical region and making one error type more unlikely
always causes the other error to become more probable. Therefore, the probabilities of Type I and Type II
errors cannot be minimized simultaneously. One way to resolve this conflict is to keep the probability of a Type
I error fixed at a relatively small value and to seek a critical region that minimizes the probability of a Type II
error, or equivalently that maximizes the power of the test.

To make the mathematical concepts, necessary for this procedure, intuitively understandable, examples
will be given mainly with respect to the class of observation models (2.1-6) introduced in Example 2.1. The
remainder of this Section 2.5 is organized such that tests with best critical regions will be constructed for
testing problems that are progressively complex within that class of models. The determination of optimal
critical regions in the context of the general linear model (2.1-1) with general parametric densities as in (2.1-3)
will be subject of detailed investigations in Sections 3 and 4.

2.5.1 Most powerful (MP) tests

The simplest kind of problem for which a critical region with optimal power may exist is that of testing a simple
H0 : θ̄ = θ0 against a simple alternative hypothesis H1 : θ̄ = θ1 involving a single unknown parameter. Using
definitions (2.4-16) and (2.4-21), the problem is to find a set SC such that the restriction∫

SC

f(y; θ0) dy = α (2.5-23)

is satisfied, where α as a given size is also called the (significance) level, and∫
SC

f(y; θ1)dy is a maximum. (2.5-24)

Such a critical region will be called the best critical region (BCR), and a test based on the BCR will be
denoted as most powerful (MP) for testing H0 against H1 at level α. A solution to this problem may be
found on the basis of the following lemma of Neyman and Pearson (see, for instance, Rao, 1973, p. 446).

Theorem 2.1 (Neyman-Pearson Lemma). Suppose that f(Y ; θ0) and f(Y ; θ1) are two densities defined on
a space S. Let SC ⊂ S be any critical region with∫

SC

f(y; θ0) dy = α, (2.5-25)

where α has a given value. If there exists a constant kα such that for the region S∗
C ⊂ S with⎧⎪⎨⎪⎩

f(y; θ1)
f(y; θ0)

> kα if y ∈ S∗
C

f(y; θ1)
f(y; θ0)

< kα if y /∈ S∗
C ,

(2.5-26)

condition (2.5-25) is satisfied, then∫
S∗

C

f(y; θ1)dy ≥
∫

SC

f(y; θ1)dy. (2.5-27)

Notice if when f(Y ; θ0) and f(Y ; θ1) are densities under simple hypotheses H0 and H1, and if the conditions
(2.5-25) and (2.5-26) hold for some kα, then S∗

C denotes the BCR for testing H0 versus H1 at fixed level α,
because (2.5-27) is equivalent to the desired maximum power condition (2.5-24). Also observe that (2.5-26)
then defines the MP test, which may be written as

φ(y) =

⎧⎪⎨⎪⎩
1 if f(y; θ1)

f(y; θ0)
> kα

0 if f(y; θ1)
f(y; θ0)

< kα.
(2.5-28)

This condition (2.5-28) expresses that in order for a test to be most powerful, the critical region SC must
comprise all the observations y, for which the so-called density ratio f(y; θ1)/f(y; θ0) is larger than some
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α-dependent number kα. This can be explained by the following intuitions of Stuart et al. (1999, p. 176). Using
definition (2.4-21), the power may be rewritten in terms of the density ratio as

Π =
∫

SC

f(y; θ1) dy =
∫

SC

f(y; θ1)
f(y; θ0)

f(y; θ0) dy.

Since α has a fixed value, maximizing Π is equivalent to maximizing the quantity

Π
α

=

∫
SC

f(y; θ1)
f(y; θ0)

f(y; θ0) dy∫
SC

f(y; θ0) dy

.

In order for a test to have maximum power, its critical region SC must clearly include all the observations y,

1. for which the integral value in the denominator equals α, and

2. for which the density ratio in the nominator produces the largest possible values, whose lower bound may
be defined as the number kα (with the values of the additional factor f(y; θ0) fixed by condition 1).

These are the very conditions given by the Neyman-Pearson Lemma. A more formal proof may be found, for
instance, in Teunissen (2000, p. 30f.). The following example demonstrates how the BCR may be constructed
for a simple test problem by applying the Neyman-Pearson Lemma.

Example 2.7: Test of the normal mean with known variance - Simple alternatives. Let Y1, . . . , Yn

be independently and normally distributed observations with common unknown mean µ̄ and common known
standard deviation σ̄ = σ0. What is the BCR for a test of the simple null hypothesis H0 : µ̄ = µ0 against the
simple alternative hypothesis H1 : µ̄ = µ1 at level α? (It is assumed that µ0, µ1, σ0 and α have fixed numerical
values.)

In order to construct the BCR, we will first try to find a number kα such that condition (2.5-26) about the
density ratio f(y; θ1)/f(y; θ0) holds. As the observations are independently distributed with common mean µ̄

and variance σ2
0 , the factorized form of the joint normal density function f(y) according to Example 2.1 may

be applied. This yields the expression

f(y; θ1)
f(y; θ0)

=

n∏
i=1

1√
2πσ0

exp

{
−1

2

(
yi − µ1

σ0

)2
}

n∏
i=1

1√
2πσ0

exp

{
−1

2

(
yi − µ0

σ0

)2
} =

(
1√

2πσ0

)n

exp

{
− 1

2σ2
0

n∑
i=1

(yi − µ1)2
}

(
1√

2πσ0

)n

exp

{
− 1

2σ2
0

n∑
i=1

(yi − µ0)2
} (2.5-29)

for the density ratio. An application of the ordinary binomial formula allows us to split off a factor that does
not depend on µ, that is

f(y; θ1)
f(y; θ0)

=

(
1√

2πσ0

)n

exp

{
− 1

2σ2
0

n∑
i=1

y2
i

}
exp

{
− 1

2σ2
0

n∑
i=1

(−2yiµ1 + µ2
1)

}
(

1√
2πσ0

)n

exp

{
− 1

2σ2
0

n∑
i=1

y2
i

}
exp

{
− 1

2σ2
0

n∑
i=1

(−2yiµ0 + µ2
0)

} . (2.5-30)

Now, the first two factors in the nominator and denominator cancel out due to their independence of µ.
Rearranging the remaining terms leads to

f(y; θ1)
f(y; θ0)

=

exp

{
µ1

σ2
0

n∑
i=1

yi − nµ2
1

2σ2
0

}

exp

{
µ0

σ2
0

n∑
i=1

yi − nµ2
0

2σ2
0

} (2.5-31)

= exp

{
µ1

σ2
0

n∑
i=1

yi − µ0

σ2
0

n∑
i=1

yi − nµ2
1

2σ2
0

+
nµ2

0

2σ2
0

}
(2.5-32)

= exp

{
1
σ2

0

(µ1 − µ0)
n∑

i=1

yi − n

2σ2
0

(µ2
1 − µ2

0)

}
, (2.5-33)
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which reveals two remarkable facts: the simplified density ratio depends on the observations only through their
sum

∑n
i=1 yi, and the density ratio, as an exponential function, is a positive number. Therefore, we may choose

another positive number kα such that

exp

{
1
σ2

0

(µ1 − µ0)
n∑

i=1

yi − n

2σ2
0

(µ2
1 − µ2

0)

}
> kα (2.5-34)

always holds. Taking natural logarithms on both sides of this inequality yields

1
σ2

0

(µ1 − µ0)
n∑

i=1

yi − n

2σ2
0

(µ2
1 − µ2

0) > ln kα

or, after multiplication with 2σ2
0 and expansion of the left side by n · 1

n ,

2n(µ1 − µ0)
1
n

n∑
i=1

yi > 2σ2
0 ln kα + n(µ2

1 − µ2
0).

Depending on whether µ1 > µ0 or µ1 < µ0, the sample mean ȳ = 1
n

∑n
i=1 yi must satisfy

ȳ >
2σ2

0 ln kα + n(µ2
1 − µ2

0)
2n(µ1 − µ0)

=: k′
α (if µ1 > µ0)

or

ȳ <
2σ2

0 ln kα + n(µ2
1 − µ2

0)
2n(µ1 − µ0)

=: k′
α (if µ1 < µ0)

in order for the second condition (2.5-26) of the Neyman-Pearson Lemma to hold. Note that the quantities
σ2

0 , n, µ1, µ0 are all constants fixed a priori, and kα is a constant whose exact value is still to be determined.
Thus, k′

α is itself an unknown constant.
Now, in order for the first condition (2.5-25) of the Neyman-Pearson Lemma to hold in addition, SC must

have size α under the null hypothesis. As mentioned above, the critical region SC may be constructed solely by
inspecting the value ȳ, which may be viewed as the outcome of the random variable Ȳ := 1

n

∑n
i=1 Yi. Under H0,

Ȳ is normally distributed with expectation µ0 (identical to the expectation of each of the original observations
Y1, . . . , Yn) and standard deviation σ0/

√
n. Therefore, the size is determined by

α =

⎧⎨⎩Nµ0,σ2
0/n(Ȳ > k′

α) if µ1 > µ0,

Nµ0,σ2
0/n(Ȳ < k′

α) if µ1 < µ0.

It will be more convenient to standardize Ȳ because this allows us to evaluate the size in terms of the standard
normal distribution. The condition to be satisfied by k′

α then reads

α =

⎧⎪⎪⎨⎪⎪⎩
N0,1

(
Ȳ − µ0

σ0/
√

n
>

k′
α − µ0

σ0/
√

n

)
if µ1 > µ0,

N0,1

(
Ȳ − µ0

σ0/
√

n
<

k′
α − µ0

σ0/
√

n

)
if µ1 < µ0,

or, using the standard normal distribution function Φ,

α =

⎧⎪⎪⎨⎪⎪⎩
1 − Φ

(
k′

α − µ0

σ0/
√

n

)
if µ1 > µ0,

Φ
(

k′
α − µ0

σ0/
√

n

)
if µ1 < µ0.

Rewriting this as

Φ
(

k′
α − µ0

σ0/
√

n

)
=

⎧⎨⎩ 1 − α if µ1 > µ0,

α if µ1 < µ0
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allows us to determine the argument of Φ by applying the inverse standard normal distribution function Φ−1

to the previous equation, which yields

k′
α − µ0

σ0/
√

n
=

⎧⎨⎩Φ−1(1 − α) if µ1 > µ0,

Φ−1(α) if µ1 < µ0,

from which the constant k′
α is obtained as

k′
α =

⎧⎪⎨⎪⎩
µ0 + σ0√

n
Φ−1(1 − α) if µ1 > µ0,

µ0 + σ0√
n

Φ−1(α) if µ1 < µ0,

or

k′
α =

⎧⎪⎨⎪⎩
µ0 + σ0√

n
Φ−1(1 − α) if µ1 > µ0,

µ0 − σ0√
n

Φ−1(1 − α) if µ1 < µ0.

Consequently, depending on the sign of µ1 − µ0, there are two different values for k′
α that satisfy the first

condition (2.5-25) of the Neyman-Pearson Lemma. When µ1 > µ0 the BCR is seen to consist of all the
observations y ∈ S, for which

ȳ > µ0 +
σ0√
n

Φ−1(1 − α), (2.5-35)

and when µ1 < µ0, the BCR reads

ȳ < µ0 − σ0√
n

Φ−1(1 − α). (2.5-36)

In the first case (µ1 > µ0), the MP test is given by

φu(y) =

⎧⎪⎨⎪⎩
1 if ȳ > µ0 + σ0√

n
Φ−1(1 − α),

0 if ȳ < µ0 + σ0√
n

Φ−1(1 − α),
(2.5-37)

and in the second case (µ1 < µ0), the MP test is

φl(y) =

⎧⎪⎨⎪⎩
1 if ȳ < µ0 − σ0√

n
Φ−1(1 − α),

0 if ȳ > µ0 − σ0√
n

Φ−1(1 − α).
(2.5-38)

Observe that the critical regions depend solely on the value of the one-dimensional random variable Ȳ , which,
as a function of the observations Y , is also called a statistic. As this statistic appears in the specific context of
hypothesis testing, we will speak of Ȳ as a test statistic. We see from this that it is not necessary to actually
specify an n-dimensional region SC used as the BCR, but the BCR may be expressed conveniently in terms of
one-dimensional intervals. For this purpose, let (cu, +∞) and (−∞, cl) denote the critical regions with respect
to the sample mean ȳ as defined by (2.5-35) and (2.5-36). The real constants

cu := µ0 +
σ0√
n

Φ−1(1 − α) (2.5-39)

and

cl := µ0 − σ0√
n

Φ−1(1 − α) (2.5-40)

are called the upper critical value and the lower critical value corresponding to the BCR for testing H0

versus H1.
In a practical situation, it will be clear from the numerical specification of H1 which of the tests (2.5-37)

and (2.5-38) should be applied. Then, the test is carried out by computing the mean ȳ of the given data y and
by checking how large its value is in comparison to the critical value of (2.5-37) or (2.5-38), respectively. �
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Example 2.8: A most powerful test about the Beta distribution. Let Y1, . . . , Yn be independently
and B(α, β)-distributed observations on [0, 1] with common unknown parameter ᾱ (which in this case is not to
be confused with the size or level of the test) and common known parameter β̄ = 1 (not to be confused with
the probability of a Type II error). What is the BCR for a test of the simple null hypothesis H0 : ᾱ = α0 = 1
against the simple alternative hypothesis H1 : ᾱ = α1 = 2 at level α∗?

The density function of the univariate Beta distribution in standard form is defined by

f(y; α, β) =
Γ(α + β)
Γ(α)Γ(β)

yα−1(1 − y)β−1 (0 < y < 1; α, β > 0), (2.5-41)

see Johnson and Kotz (1970b, p. 37) or Koch (1999, p. 115). Notice that (2.5-41) simplifies under H0 to

f(y; α0) =
Γ(2)

Γ(1)Γ(1)
y1−1(1 − y)1−1 = 1 (0 < y < 1), (2.5-42)

and under H1 to

f(y; α1) =
Γ(3)

Γ(2)Γ(1)
y2−1(1 − y)1−1 = 2y (0 < y < 1) (2.5-43)

where we used the facts that Γ(1) = Γ(2) = 1 and Γ(3) = 2. The density 2.5-42 defines the so-called uniform
distribution with parameters a = 0 and b = 1, see Johnson and Kotz (1970b, p. 57) or Koch (2000, p. 21). We
may now proceed as in Example 2.7 and determine the BCR by using the Neyman-Pearson Lemma (Theorem
2.1). For n independent observations, the joint density may be written as the product of the individual univariate
densities, which results in the density ratio

f(y; α1)
f(y; α0)

=
n∏

i=1

2yi/
n∏

i=1

1 = 2n
n∏

i=1

yi, (2.5-44)

where we assumed that each observation is strictly within the interval (0, 1). As the density ratio is a positive
number, we may choose a number kα∗ such that 2n

∏n
i=1 yi > kα∗ holds. Division by 2n and taking both sides

to the power of 1/n yields the equivalent inequality(
n∏

i=1

yi

)1/n

>
(
2−nkα∗

)1/n
.

Now we have found a seemingly convenient condition about the sample’s geometric mean Y̆ := (
∏n

i=1 Yi)
1/n

rather than about the entire sample Y itself. Then the second condition (2.5-26 or equivalently 2.5-28) of the
Neyman-Pearson Lemma gives

φ(y) =

⎧⎨⎩ 1 if y̆ > (2−nkα∗)1/n =: k′
α∗

0 if y̆ < (2−nkα∗)1/n =: k′
α∗ .

To ensure that φ has some specified level α∗, the first condition (2.5-25) of the Neyman-Pearson Lemma requires
that α∗ equals the probability under H0 that the geometric mean exceeds k′

α∗ . Unfortunately, in contrast to
the arithmetic mean Ȳ of n independent normal variables, the geometric mean Y̆ of n independent standard
uniform variables does not have a standard distribution. However, as Stuart and Ord (2003, p. 393) demonstrate
in their Example 11.15, the statistic

U := − ln Y̆ n = − ln
n∏

i=1

Yi = −
n∑

i=1

ln Yi

follows a Gamma distribution G(b, p) with b = 1 and p = n, defined by Equation 2.107 in Koch (1999, p. 112).
Thus the first Neyman-Pearson condition reads

α∗ = G1,n(U > k′′
α∗) = 1 − FG1,n(k′′

α∗),

from which the critical value k′′
α∗ follows to be k′′

α∗ = F−1
G1,n

(1 − α∗), and which may be obtained in MATLAB
by executing the command CV = gaminv(1− α∗, n, 1). In summary, the MP test is given by

φ(y) =

⎧⎪⎪⎨⎪⎪⎩
1 if u(y) = −

n∑
i=1

ln yi > k′′
α∗ = − ln (2−nkα∗) = F−1

G1,n
(1 − α∗),

0 if u(y) = −
n∑

i=1

ln yi < k′′
α∗ = − ln (2−nkα∗) = F−1

G1,n
(1 − α∗).

�
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2.5.2 Reduction to sufficient statistics

We saw in Example 2.7 that applying the conditions of the Neyman-Pearson Lemma to derive the BCR led to a
condition about the sample mean ȳ rather than about the original data y. We might say that it was sufficient
to use the mean value of the data for testing a hypothesis about the parameter µ of the normal distribution.
This raises the important question of whether it is always possible to reduce the data in such a way.

To generalize this idea, let F = {f(y; θ) : θ ∈ Θ} be a collection of densities where the parameter θ is
unknown. Further, let each f(y; θ) depend on the value of a random function or statistic T (Y ) which is
independent of θ. If any inference about θ, be it estimation or testing, depends on the observations Y only
through the value of T (Y ), then this statistic will be called sufficient for θ.

This qualitative definition of sufficiency can be interpreted such that a sufficient statistic captures all the
relevant information that the data contains about the unknown parameters. The point is that the data might
have some additional information that does not contribute anything to solving the estimation or test problem.
The following classical example highlights this distinction between information that is essential and information
that is completely negligible for estimating an unknown parameter.

Example 2.9: Sufficient statistic in Bernoulli’s random experiment. Let Y1, . . . , Yn denote inde-
pendent binary observations within an idealized setting of Bernoulli’s random experiment (see, for instance,
Lehmann, 1959a, p. 17-18). The probability p of the elementary event success (yi = 1) is assumed to be un-
known, but valid for all observations. The probability of the second possible outcome failure (yi = 0) is then
1 − p.

Now, it is intuitively clear that in order to estimate the unknown success rate p, it is completely sufficient
to know how many successes T (y) :=

∑n
i=1 yi occurred in total within n trials. The additional information

regarding which specific observations were successes or failures does not contribute anything useful for deter-
mining the success rate p. In this sense the use of the statistic T (Y ) reduces the n data to a single value which
carries all the essential information required to determine p. �

The concept of sufficiency provides a convenient tool to achieve a data reduction without any loss of information
about the unknown parameters. The definition above, however, is not easily applicable when one has to deal
with specific estimation or testing problems. As a remedy, Neyman’s Factorization Theorem gives an
easy-to-check condition for the existence of a sufficient statistic in any given parametric inference problem.

Theorem 2.2 (Neyman’s Factorization Theorem). Let F = {f(y; θ) : θ ∈ Θ} be a collection of densities for
a sample Y = (Y1, . . . , Yn). A vector of statistics T (Y ) is sufficient for θ if and only if there exist functions
g(T (Y ); θ) and h(Y ) such that

f(y; θ) = g(T (y); θ) · h(y) (2.5-45)

holds for all θ ∈ Θ and all y ∈ S.

Proof. A deeper understanding of the sufficiency concept involves an investigation into conditional probabilities
which is beyond the scope of this thesis. The reader familiar with conditional probabilities is referred to Lehmann
and Romano (2005, p. 20) for a proof of this theorem.

It is easy to see that the trivial choice T (y) := y, g(T (y); θ) := f(y; θ) and h(y) := 1 is always possible, but
achieves no data reduction. Far more useful is the fact that any reversible function of a sufficient statistic is
also sufficient for θ (cf. Casella and Berger, 2002, p. 280). In particular, multiplying a sufficient statistic with
constants yields again a sufficient statistic. The following example will now establish sufficient statistics for the
normal density with both parameters µ and σ2 unknown.

Example 2.10: Suppose that observations Y1, . . . , Yn are independently and normally distributed with com-
mon unknown mean µ̄ and common unknown variance σ̄2. Let the sample mean and variance be defined as
Ȳ =

∑n
i=1 Yi/n and S2 =

∑n
i=1(Yi − Ȳ )2/(n−1), respectively. The joint normal density can then be written as

f(y; µ, σ2) =
n∏

i=1

1√
2πσ

exp
{
− 1

2σ2
(yi − µ)2

}
= (2πσ2)−n/2 exp

{
−nµ2

2σ2
+

µ

σ2

n∑
i=1

yi − 1
2σ2

n∑
i=1

y2
i

}

= (2πσ2)−n/2 exp
{
− n

2σ2
(ȳ − µ)2 − n − 1

2σ2
s2

}
· IRn(y)

where T (Y ) := [ Ȳ , S2 ]′ is sufficient for (µ, σ2) and h(y) := IRn(y) = 1 with I as the indicator function. �
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The great practical value of Neyman’s Factorization Theorem in connection to hypothesis testing lies in the
simple fact that any density ratio will automatically simplify in the same way as in Example 2.7 from (2.5-30)
to (2.5-31). What generally happens is that the factor h(y) is the same for θ0 and θ1 due to its independence
of any parameters, and thereby cancels out in the ratio, that is,

f(y; θ1)
f(y; θ0)

=
g(T (y); θ1) · h(y)
g(T (y); θ0) · h(y)

=
g(T (y); θ1)
g(T (y); θ0)

(for all y ∈ S). (2.5-46)

In addition, this ratio will now be a function of the observations Y through a statistic T (Y ) which is usually
low-dimensional, such as [ Ȳ , S2 ] in Example 2.10. This usually reduces the complexity and dimensionality of
the test problem greatly.

Example 2.7 revisited. Instead of starting the derivation of the BCR by setting up the density ratio
f(y; θ1)/f(y; θ0) of the raw data as in (2.5-29), we could save time by first reducing Y to the sufficient statistic
T (Y ) = Ȳ and by applying (2.5-46) in connection with the distribution N(µ, σ2

0/n) of the sample mean. Then

g(ȳ; θ1)
g(ȳ; θ0)

=

1√
2π(σ0/

√
n)

exp

{
−1

2

(
ȳ − µ1

σ0/
√

n

)2
}

1√
2π(σ0/

√
n)

exp

{
−1

2

(
ȳ − µ0

σ0/
√

n

)2
} = exp

{
− n

2σ2
0

(ȳ − µ1)2 +
n

2σ2
0

(ȳ − µ0)2
}

= exp
{

n

σ2
0

(µ1 − µ0)ȳ − n

2σ2
0

(µ2
1 − µ2

0)
}

leads to (2.5-33) more directly. �

We have seen so far that the sample mean is sufficient when µ is the only unknown parameter, and that
the sample mean and variance are jointly sufficient when µ and σ2 are unknown. Now, what is the maximal
reduction generally possible for data that are generated by a more complex observation model, such as by
(2.1-1)? Clearly, when a parametric estimation or testing problem comprises u unknown parameters that are
not redundant, then a reduction from n > u observations to u corresponding statistics appears to be maximal.
It is difficult to give clear-cut conditions that would encompass all possible statistical models and that would
also be easily comprehensible without going into too many mathematical details. Therefore, the problem will
be addressed only by providing a working definition and a practical theorem, which will be applicable to most
of the test problems in this thesis.

Now, to be more specific, we will call a sufficient statistic T (Y ) minimally sufficient if, for any other
sufficient statistic T ′(Y ), T (Y ) is a function of T ′(Y ). As this definition is rather impractial, the following
theorem of Lehmann and Scheffe will be a useful tool.

Theorem 2.3 (Lehmann-Scheffe). Let f(y; θ) denote the joint density function of observations Y . Suppose
there exists a statistic T (Y ) such that, for every two data points y1 and y2, the ratio f(y1; θ)/f(y2; θ) is
constant as a function of θ if and only if T (y1) = T (y2). Then T (Y ) is minimally sufficient for θ.

Proof. See Casella and Berger (2002, p. 280-281).

Example 2.11: Suppose that observations Y1, . . . , Yn are independently and normally distributed with com-
mon unknown mean µ̄ and common unknown variance σ̄2. Let y1 and y2 be two data points, and let (ȳ1, s

2
1)

and (ȳ2, s
2
2) be the corresponding values of the sample mean Ȳ and variance S2. To prove that the sample mean

and variance are minimally sufficient statistics, the ratio of densities is rewritten as

f(y1; µ, σ2)
f(y2; µ, σ2)

=

n∏
i=1

1√
2πσ

exp
{
− 1

2σ2 (y1,i − µ)2
}

n∏
i=1

1√
2πσ

exp
{
− 1

2σ2 (y2,i − µ)2
} =

(2πσ2)−n/2 exp
{
[n(ȳ1 − µ)2 + (n − 1)s2

1]/(−2σ2)
}

(2πσ2)−n/2 exp {[n(ȳ2 − µ)2 + (n − 1)s2
2]/(−2σ2)}

= exp
{
[−n(ȳ2

1 − ȳ2
2) + 2nµ(ȳ1 − ȳ2) − (n − 1)(s2

1 − s2
2)]/(2σ2)

}
.

As this ratio is constant only if ȳ1 = ȳ2 and s2
1 = s2

2, the statistic T (Y ) = (Ȳ , S2) is indeed minimally
sufficient. The observations Y cannot be reduced beyond T (Y ) without losing relevant information. �
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2.5.3 Uniformly most powerful (UMP) tests

The concept of the BCR for testing a simple H0 against a simple H1 about a single parameter, as defined by the
Neyman-Pearson Lemma, is dissatifactory insofar that the great majority of test problems involves composite
alternatives. The question to be addressed in this subsection is how a BCR may be defined for such problems.

Let us start with the basic premise that we seek an optimal critical function for testing the simple null

H0 : θ̄ = θ0 (2.5-47)

versus a composite alternative hypothesis

H1 : θ̄ ∈ Θ1, (2.5-48)

where the set of parameter values Θ1 and θ0 are disjoint subsets of a one-dimensional parameter space Θ. The
most straightforward way to establish optimality under these conditions is to determine the BCR for testing
H0 against a fixed simple H1 : θ̄ = θ1 for an arbitrary θ1 ∈ Θ1 and to check whether the resulting BCR is
independent of the specific value θ1. If this is the case, then all the values θ1 ∈ Θ1 produce the same BCR,
because θ1 was selected arbitrarily. This critical region that all the simple alternatives H ′

1 in

H1 = {H ′
1 : θ̄ = θ1 with θ1 ∈ Θ1} (2.5-49)

have in common may then be defined as the BCR for testing a simple H0 against a composite H1. A
test based on such a BCR is called uniformly most powerful (UMP) for testing H0 versus H1 at level α.

Now, it seems rather cumbersome to derive the BCR for a composite H1 by applying the conditions of the
Neyman-Pearson Lemma to each simple H ′

1 ∈ H1. The following theorem replaces this infeasible procedure
by conditions that can be verified more directly. These conditions say that in order for a UMP test to exist,
(1) the test problem may have only one unknown parameter , (2) the alternative hypothesis must be one-
sided , and (3) each distribution in W must have a so-called monotone density ratio . The third condition
means that, for all θ1 > θ0 with θ0, θ1 ∈ Θ, the ratio f(y; θ1)/f(y; θ0) (or the ratio g(t; θ1)/g(t; θ0) in terms
of the sufficient statistic T (Y )) must be a strictly monotonical function of T (Y ). The following example will
illuminate this issue.

Example 2.12: To show that the normal distribution N(µ, σ2
0) with unknown µ and known σ2

0 has a monotone
density ratio, we may directly inspect the simplified density ratio (2.5-33) from Example 2.7. We see immediately
that the ratio is an increasing function of T (y) :=

∑n
i=1 yi when µ1 > µ0. �

Theorem 2.4. Let W be a class of distributions with a one-dimensional parameter space and monotone density
ratio in some statistic T (Y ).

1. Suppose that H0 : θ̄ = θ0 is to be tested against the upper one-sided alternative H1 : θ̄ > θ0. Then,
there exists a UMP test φu at level α and a constant C with

φu(T (y)) :=

⎧⎨⎩ 1, if T (y) > C,

0, if T (y) < C
(2.5-50)

and

Pθ0 {φu(T (Y )) = 1} = α. (2.5-51)

2. For testing H0 against the lower one-sided alternative H1 : θ̄ < θ0, there exists a UMP test φl at level
α and a constant C with

φl(T (y)) :=

⎧⎨⎩ 1, if T (y) < C

0, if T (y) > C
(2.5-52)

and

Pθ0 {φl(T (Y )) = 1} = α. (2.5-53)
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Proof. To prove (1), consider first the case of a simple alternative H1 : θ̄ = θ1 for some θ1 > θ0. With the values
for θ0 and θ1 fixed, the density ratio can be written as

f(y; θ1)
f(y; θ0)

=
g(T (y); θ1)
g(T (y); θ0)

= h(T (y)),

that is, as a function of the observations alone. According to the Neyman-Pearson Lemma 2.1, the ratio must
be large enough, i.e. h(T (y)) > k with k depending on α. Now, if T (y1) < T (y2) holds for some y1, y2 ∈ S,
then certainly also h(T (y1)) ≤ h(T (y2)) due to the assumption that the density ratio is monotone in T ((Y )).
In other words, the observation y2 is in both cases at least as suitable as y1 for making the ratio h sufficiently
large. In this way, the BCR may be equally well constructed by all the data y ∈ S for which T (y) is large
enough, for instance T (y) > C, where the constant C must be determined such that the size of this BCR equals
the prescribed value α. As these implications are true regardless of the exact value θ1, the BCR will be the
same for all the simple alternatives with θ1 > θ0. Therefore, the test (2.5-50) is UMP. The proof of (2) follows
the same sequence of arguments with all inequalities reversed.

The next theorem is of great practical value as it ensures that most of the standard distributions used in
hypothesis testing have a monotone density ratio even in their non-central forms.

Theorem 2.5. The following 1P -distributions (with possibly additional known parameters µ0, σ2
0 , p0 and known

degrees of freedom f0, f1,0, f2,0) have a density with monotone density ratio in some statistic T :

1. Multivariate independent normal distributions N(1µ, σ2
0I) and N(1µ0, σ

2I),

2. Gamma distribution G(b, p0),

3. Beta distribution B(α, β0),

4. Non-central Student distribution t(f0, λ),

5. Non-central Chi-squared distribution χ2(f0, λ),

6. Non-central Fisher distribution F (f1,0, f2,0, λ),

Proof. The proofs of (1) and (2) may be elegantly based on the more general result that any density that is a
member of the one-parameter exponential family, defined by

f(y; θ) = h(y)c(θ) exp {w(θ)T (y)} , h(y) ≥ 0, c(θ) ≥ 0, (2.5-54)

(cf. Olive, 2006, for more details) has a monotone density ratio (see Lehmann and Romano, 2005, p. 67), and
that the normal and Gamma distributions can be written in this form (2.5-54).

1. The density function of N(1µ, σ2
0I) (2.5-29) can be rewritten as

f(y; µ) = (2πσ2
0)−n/2 exp

{
− 1

2σ2
0

n∑
i=1

y2
i

}
exp
{
−nµ2

2σ2
0

}
exp

{
µ

σ2
0

n∑
i=1

yi

}
,

where h(y) := (2πσ2
0)−n/2 exp

{
− 1

2σ2
0

∑n
i=1 y2

i

}
≥ 0, c(θ) := exp{−nµ2

2σ2
0
} ≥ 0, w(θ) := µ

σ2
0
, and T (y) :=∑n

i=1 yi satisfy (2.5-54). Similarly, the density function of N(1µ0, σ
2I) reads, in terms of (2.5-54),

f(y; σ2) = IRn(y)(2πσ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(yi − µ0)2
}

,

where h(y) corresponds to the indicator function IRn(y) with definite value one, c(θ) := (2πσ2)−n/2 ≥ 0,
w(θ) := − 1

2σ2 , and T (y) :=
∑n

i=1(yi − µ0)2.

2. The Gamma distribution, defined by Equation 2.107 in Koch (1999, p. 112), with known parameter p0

may be directly written as

f(y; b) =
yp0−1

Γ(p0)
bp0 exp{−by} (b > 0, p0 > 0, y ∈ R

+),

where h(y) := yp0−1/Γ(p0) ≥ 0, c(θ) := bp0 ≥ 0, w(θ) := b, and T (y) := −y satisfy (2.5-54).

3. - 6. The proofs for these distributions are lengthy and may be obtained from Lehmann and Romano
(2005, p. 224 and 307).
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Example 2.13: Test of the normal mean with known variance (composite alternatives). We are
now in a position to extend Example 2.7 and seek BCRs for composite alternative hypotheses. For demonstration
purposes, both the raw definition of a UMP test and the more convenient Theorem 2.4 will applied if possible.
Let us first look at the formal statement of the test problems.

Let Y1, . . . , Yn be independently and normally distributed observations with common unknown mean µ̄ and
common known variance σ̄2 = σ2

0 . Do a UMP tests for testing the simple null hypothesis H0 : µ̄ = µ0 against
the composite alternative hypothesis

1. H1 : µ̄ > µ0,

2. H1 : µ̄ < µ0,

3. H1 : µ̄ �= µ0

exist at level α, and if so, what are the BCRs? (It is assumed that µ0, σ0 and α have fixed numerical values.)

1. Recall from Example 2.7 (2.5-35) that the BCR for the test of H0 : µ̄ = µ0 against the simple H1 : µ̄ = µ1

with µ1 > µ0 is given by all the observations satisfying

ȳ > µ0 +
σ0√
n

Φ−1(1 − α),

when µ1 > µ0. Evidently, the critical region is the same for all the simple alternatives

{H ′
1 : µ̄ = µ1 with µ1 > µ0} ,

because it is independent of µ1. Therefore, the critical function (2.5-37) is UMP for testing H0 against the
composite alternative H1 : µ̄ > µ0. The following alternative proof makes direct use of Theorem 2.4.

In Example 2.12, the normal distribution N(µ, σ2
0) with known variance was already demonstrated to have

a monotone density ratio in the sufficient statistic
∑n

i=1 Yi or in T (Y ) :=
∑n

i=1 Yi/n as a reversible function
thereof. As the current testing problem is about a single parameter, a one-sided H1, and a class of distribution
with monotone density ratio, all the conditions of Theorem 2.4 are satisfied. It remains to find a constant C

such that the critical region (2.5-50) has size α according to condition (2.5-51). It is found easily because we
know already that T (Y ) is distributed as N(µ0, σ

2
0) under H0, so that

α = Pµ0,σ2
0/n{φ(Y ) = 1} = Pµ0,σ2

0/n{Y ∈ SC} = Nµ0,σ2
0/n{T (Y ) > C} = 1 − N0,1

(
T (Y ) − µ0

σ0/
√

n
<

C − µ0

σ0/
√

n

)
= 1 − Φ

(
C − µ0

σ0/
√

n

)
,

from which C follows to be

C = µ0 +
σ0√
n

Φ−1(1 − α).

Note that the number C would change to C = nµ0 +
√

nσ0
√

nΦ−1(1 − α) if
∑n

i=1 Yi was used as the sufficient
statistic instead of

∑n
i=1 Yi/n, because the mean and variance of the normal distribution are affected by the

factor 1/n.

2. The proof of existence and determination of the BCR of a UMP test for testing H0 versus H1 : µ̄ < µ0 is
analogous to the first case above. All the conditions required by Theorem 2.4 are satisfied, and the constant C

appearing in the UMP test (2.5-52) and satisfying (2.5-53) is now found to be

C = µ0 − σ0√
n

Φ−1(1 − α).

3. In this case, there is no common BCR for testing H0 against H1 : µ̄ �= µ0. Although the BCRs (2.5-35) and
(2.5-36) do not individually depend on the value of µ1, they differ in signs through the location of µ1 relative
to µ0. Consequently, there is no UMP test for the two-sided alternative. This fact is also reflected by Theorem
2.4, which requires the alternative to be one-sided. �
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2.5.4 Reduction to invariant statistics

We will now tackle the problem of testing a generally multi-parameter and composite null hypothesis

H0 : θ̄ ∈ Θ0

against a possibly composite and two-sided alternative

H1 : θ̄ ∈ Θ1

with the usual assumption that Θ0 and Θ1 are non-empty and disjoint subsets of the parameter space Θ, which
is connected to a parametric family of densities

F = {f(y; θ) : θ ∈ Θ} ,

or equivalently

FT = {fT (T (y); θ) : θ ∈ Θ} ,

when (minimally) sufficient statistics T (Y ) are used as ersatz observations for Y . Recall that sufficiency only
reduces the dimension of the observation space, whereas it always leaves the parameter space unchanged. The
problem is now that no UMP test exists when the parameter space is multi-dimensional or when the alternative
hypothesis is two-sided, because the conditions of Theorem 2.4 would be violated. To overcome this serious
limitation, we will investigate a reduction technique that may be applied in addition to a reduction by sufficiency,
and that will oftentimes produce a simplified test problem for which a UMP test then exists.

Since any reduction beyond minimal sufficiency is necessarily bound to cause a loss of relevant information,
it is essential to understand what kind of information may be safely discarded in a given test problem, and
what the equivalent mathematical transformation is. The following example gives a first demonstration about
the nature of such transformations.

Example 2.14: Recall from Example 2.13 that there exists no UMP test for testing H0 : µ̄ = µ0 = 0 against
the two-sided H1 : µ̄ �= µ0 = 0 (with σ̄2 = σ2

0 known), as the one-sidedness condition of Theorem 2.4 is violated.
However, if we discard the sign of the sample mean, i.e. if we only measure the absolute deviation of the sample
mean from µ0, and if we use the sign-insensitive statistic Ȳ 2 instead of Ȳ , then the problem becomes one of
testing H0 : µ̄2 = 0 against the one-sided H1 : µ̄2 > 0. This is so because Ȳ ∼ N(µ, σ2

0/n) implies that n
σ2
0

Ȳ 2

has a non-central chi-squared distribution χ2(1, λ) with one degree of freedom and non-centrality parameter
λ = n

σ2
0

µ2 (see Koch, 1999, p. 127). Then, µ̄ = 0 is equivalent to λ̄ = 0 under H0, and µ̄ �= 0 is equivalent
to λ̄ > 0 under H1. As the transformed test problem is about a one-sided alternative and a test statistic with
a monotone density ratio (by virtue of Theorem 2.5-4), the UMP test according to (2.5-50) of Theorem 2.4 is
given by

φ(
n

σ2
0

ȳ2) :=

⎧⎨⎩ 1, if n
σ2
0

ȳ2 > C,

0, if n
σ2
0

ȳ2 < C,
(2.5-55)

where, according to condition (2.5-51), C is fixed such that the size of (2.5-55) equals the prescribed value
α. Using definition (2.4-16) and the fact that n

σ2
0

Ȳ 2 has a central chi-squared distribution with one degree of
freedom under H0, this is

α = 1 − χ2
1,0

(
n

σ2
0

Ȳ 2 < C

)
= 1 − Fχ2

1,0
(C) ,

which yields as the critical value

C = F−1
χ2

1,0
(1 − α).

We will call the transformed problem of testing H0 : λ̄ = 0 against H1 : λ̄ > 0 the invariance-reduced
testing problem, and the corresponding test 2.5-55 (based on Theorem 2.4) the UMP invariant test. It
will be interesting to compare the power function of this test with the power functions of the UMP tests for
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the one-sided alternatives from Example 2.13. Using (2.4-22), the power function of the invariant test (2.5-55)
reads

Pf(µ) = 1 − χ2
1,nµ2/σ2

0

(
n

σ2
0

Ȳ 2 < C

)
= 1 − Fχ2

1,nµ2/σ2
0

(
F−1

χ2
1,0

(1 − α)
)

.

The power functions of the upper and lower one-sided UMP tests derived in Example 2.13 (here with the specific
value µ0 = 0) are found to be

Pf(1)(µ) = 1 − Φ
(

Φ−1(1 − α) −
√

n

σ0
µ

)
and

Pf(2)(µ) = 1 − Φ
(
−Φ−1(1 − α) −

√
n

σ0
µ

)
,

respectively.
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Fig. 2.4 Power functions for the two UMP tests at level α = 0.05 about H1 : µ̄ < 0 (’lower one-sided’) and
H1 : µ̄ > 0 (’upper one-sided’), and a UMP invariant test about H1 : µ̄ �= 0 reduced to H1 : µ̄2 > 0.

Figure 2.4 shows that each of the UMP tests has slightly higher power within their one-sided Θ1-domains than
the invariance-reduced test for the originally two-sided alternative. Observe that each of the UMP one-sided
tests would have practically zero power when the value of the true parameter is unexpectedly on the other side
of the parameter space. On the other hand, the invariance-reduced test guarantees reasonable power throughout
the entire two-sided parameter space.

Clearly, the power function of the invariance-reduced test (2.5-55) is symmetrical with respect to µ = 0,
because the sign of the sample mean, and consequently that of the mean parameter, is not being considered.
Therefore, we might say that this test has been designed to be equally sensitive in both directions away
from µ0 = 0. In mathematical terminology, one would say that the test is invariant under sign changes
Ȳ → ±Ȳ , and Ȳ 2 is a sign-invariant statistic, i.e. a random variable whose value remains unchanged when
the sign of Ȳ changes. Notice that the one-sidedness condition of the Theorem 2.4 is restored by virtue of the
fact the parameter λ = n

σ2
0

µ2 of the new test statistic Ȳ 2 is now non-negative, thereby resulting in a one-sided
H1. The crucial point is, however, that the hypotheses of the reduced testing problem remain equivalent to the
original hypotheses. �

Reduction by invariance is not only suitable for transforming a test problem about a two-sided H1 into one
about a one-sided H1. In fact, we will see that the concept of invariance may also be applied to transform a
testing problem involving multiple unknown parameters into a test problem with a single unknown parameter,
as required by Theorem 2.4. To make this approach operable within the framework of general linear models, a
number of definitions and theorems will be introduced now.

To begin with, it will be assumed throughout the remainder of this section that the original observations
Y with sample space S have been reduced to minimally sufficient ersatz observations T (Y ) with values in ST
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and with a collection of densities FT . In fact, Arnold (1985) showed that any inference based on the following
invariance principles is exactly the same for Y and T (Y ). Then, let us consider an invertible transformation g

of the ersatz observations from ST to ST (such as the sign change of the sample mean T (Y ) = Ȳ in Example
2.14). Typically, such a statistic g(T ) will induce a corresponding transformation ḡ(θ) of the parameters from
Θ to Θ (such as Ȳ → ±Ȳ induces µ → ±µ in Example 2.14).

What kind of transformation g is suitable for reducing a test problem in a meaningful way? According to
Arnold (1981, p. 11), the first desideratum is that any transformation g with induced ḡ leaves the hypotheses
of the given test problem unchanged. In other words, we require that

(1) ḡ(Θ) := {ḡ(θ) : θ ∈ Θ} = Θ (2.5-56)

(2) ḡ(Θ0) := {ḡ(θ0) : θ ∈ Θ0} = Θ0 (2.5-57)

(3) ḡ(Θ1) := {ḡ(θ1) : θ ∈ Θ1} = Θ1 (2.5-58)

(4) g(T ) has a density function in {fT (g(T ); ḡ(θ)) : ḡ(θ) ∈ Θ} (2.5-59)

holds (see also Cox and Hinkley, 1974, p. 157). If such a transformation of the testing problem exists, we will
say that the testing problem is invariant under g (with induced ḡ). In Example 2.14 we have seen
that the hypotheses in terms of the parameter µ is equivalent to the hypotheses in terms of the new parameter
λ = g(µ) when the reversal of the sign is used as transformation g.

The second desideratum (cf. Arnold, 1981, p. 11) is that any transformation g with induced ḡ leaves the
test decision, that is, the critical function φ unchanged. Mathematically, this is expressed by the condition

φ(g(t)) = φ(t) (for all t ∈ ST ). (2.5-60)

If this is the case for some transformation g, we will say that the critical function or test is invariant
under g (with induced ḡ).

The first desideratum, which defines an invariant test problem, may also be interpreted such that if we
observe g(t) (with some density function fT (g(t); ḡ(θ))) rather than t (with density function fT (t; θ)), and if
the hypotheses are equivalent in the sense that H0 : θ̄ ∈ Θ0 ⇔ ḡ(θ̄) ∈ Θ0 and H1 : θ̄ ∈ Θ1 ⇔ ḡ(θ̄) ∈ Θ1, then
the test problem about the transformed data g(T ) is clearly the same as that in terms of the original data T .
Then it seems logical to apply a decision rule φ which yields the same result no matter if g(t) or t has been
observed. But this is the very proposition of the second desideratum, which says that φ(g(t)) should equal φ(t).

Example 2.14 constitutes the rare case that a test problem is invariant under a single transformation g.
Usually, test problems are invariant under a certain collection G of (invertible) transformations g within the
data domain with a corresponding collection Ḡ of (invertible) transformations ḡ within the parameter domain.
The following proposition reflects a very useful fact about such collections of transformations (see Arnold, 1981,
p. 12).

Proposition 2.1. If a test problem is invariant under some invertible transformations g ∈ G, g1 ∈ G, and
g2 ∈ G (from a space ST to ST ) with induced transformations ḡ ∈ Ḡ, ḡ1 ∈ Ḡ, and ḡ2 ∈ Ḡ (from a space Θ to Θ),
then it is also invariant under the inverse transformation g−1 and the composition g1◦g2 of two transformations,
and the induced transformations are g−1 = ḡ−1 and g1 ◦ g2 = ḡ1 ◦ ḡ2, respectively.

If a test problem remains invariant under each g ∈ G with induced ḡ ∈ Ḡ, then this proposition says that
both G and Ḡ are closed under compositions and inverses (which will again be elements of ST and Θ,
respectively). In that case, G and Ḡ are said to be groups. Let us now investigate how invariant tests may be
generally constructed.

We have seen in Example 2.14 that a reasonable test may be based on an invariant statistic, which remains
unchanged by transformations in G (such as M(Ȳ ) := Ȳ 2 under g(Ȳ ) = ±Ȳ ). Clearly, any statistic M(T ) that
is to be invariant under a collection G of transformations on ST must satisfy

M(T ) = M(g(T )) (2.5-61)

for all g ∈ G. However, the invariance condition (2.5-61) alone does not necessarily guarantee that a test which
is based on such a statistic M(T ) is itself invariant. In fact, whenever two data points t1 and t2 from ST

produce the same value M(t1) = M(t2) for the invariant statistic, the additional condition

t1 = g(t2) (2.5-62)

is required to hold for some g ∈ G. An invariant statistic which satisfies also (2.5-62) is called a maximal
invariant. Condition (2.5-62) ensures that G is the largest collection under which the testing problem is
invariant.
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Example 2.15: As in Example 2.10, let T (Y ) := [Ȳ , S2]′ be the vector of jointly sufficient statistics for
independently and normally distributed observations Y1, . . . , Yn with common unknown mean µ̄ and common
unknown variance σ̄2. The problem of testing H0 : µ̄ = 0 versus H1 : µ̄ �= 0 is invariant under the transformation

g

⎛⎝⎡⎣ Ȳ

S2

⎤⎦⎞⎠ =

⎡⎣ (−1) · Ȳ
S2

⎤⎦ ,

which we will write in the form

g
(
Ȳ , S2

)
=
(
(−1) · Ȳ , S2

)
for convenience. To see this, we first notice that g induces the transformation

ḡ
(
µ, σ2

)
=
(
(−1) · µ, σ2

)
,

because (−1) · Ȳ ∼ N(−µ, σ2), while S2 (and thus its distribution) remains unchanged. With Θ = R × R
+,

Θ0 = {0} × R
+ and Θ1 = R − {0} × R

+, we obtain

ḡ(Θ0) = {ḡ (µ, σ2
)

: µ = 0, σ2 ∈ R
+} = {(0, σ2

)
: σ2 ∈ R

+} = Θ0,

ḡ(Θ1) = {ḡ (µ, σ2
)

: µ �= 0, σ2 ∈ R
+} = {(−µ, σ2

)
: µ �= 0, σ2 ∈ R

+} = Θ1.

Due to Θ = Θ0 ∪ Θ1, ḡ(Θ) = Θ also holds. Thus, the above testing problem is invariant under the transfor-
mation g. Consider now the statistic

M(T ) = M
(
Ȳ , S2

)
:=

Ȳ 2

S2
.

This statistic is invariant because of

M
(
g
(
Ȳ , S2

))
=
(
(−1) · Ȳ , S2

)
=

(−1)2 · Ȳ 2

S2
=

Ȳ 2

S2
= M

(
Ȳ , S2

)
.

Let us now investigate the question whether M is also maximally invariant. Suppose that t1 = [ȳ1, s2
1]

′ and
t2 = [ȳ2, s2

2]
′ are two realizations of T (Y ). Then M(t1) = M(t2) is seen to hold e.g. for ȳ2 = 2ȳ1 and s2

2 = 4s2
1

because of

M (t2) = M
(
ȳ2, σ

2
2

)
= M

(
2ȳ1, 4σ2

1

)
=

4ȳ2
1

4s2
1

=
ȳ2
1

s2
1

= M
(
ȳ1, σ

2
1

)
= M (t1) .

However, the necessary condition t1 = g(t2) is not satisfied, since

g
(
ȳ2, σ

2
2

)
=
(
(−1) · ȳ2, σ

2
2

)
=
(−2ȳ1, 4σ2

1

) �= t1.

Consequently, M must be invariant under a larger group of transformations than g. Indeed, M can be shown
to be maximally invariant under the group of transformations defined by

gc

(
Ȳ , S2

)
=
(
cȲ , c2S2

)
(c �= 0),

which includes the above transformation with c = −1. Arnold (1981, Section 1.5) demonstrates a technique for
proving maximality, which shall be outlined here as well. First, we assume that t1 = [ȳ1, σ2

1 ]′ and t2 = [ȳ2, σ2
2 ]′

are two realizations of T (Y ) for which M(t1) = M(t2) holds. If we find some c �= 0 for which t1 = gc(t2)
is satisfied, then M follows to be maximally invariant. Observe next that, using the above definition of M ,
the assumption M(ȳ1, σ

2
1) = M(ȳ2, σ

2
2) is equivalent to ȳ2

1/s2
1 = ȳ2

2/s2
2 or (ȳ1/ȳ2)

2 = s2
1/s2

2. Then, if we define
c := ȳ1/ȳ2, we see immediately that ȳ1 = cȳ2 and s2

1 = c2s2
2, and we have

t1 =

⎡⎣ ȳ1

s2
1

⎤⎦ =

⎡⎣ cȳ2

c2s2
2

⎤⎦ = gc

⎛⎝⎡⎣ ȳ2

s2
2

⎤⎦⎞⎠ = gc(t2)

as desired. �

The following proposition from Arnold (1981, p. 13) ensures that maximal invariants exist generally.

Proposition 2.2. For any group G of invertible transformations g from an arbitrary space ST to ST there
exists a maximal invariant.
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The next theorem provides the maximal invariants for some groups of transformations that will be particu-
larly useful for reducing testing problems.

Theorem 2.6. Let T be a random vector, S and T random variables, and c a positive real number. Then,

1. M(T, S2) = T 2/S2 is a maximal invariant statistic under the group G of scale changes

g(T, S2) = (cT, c2S2) (c > 0). (2.5-63)

2. M(T 2, S2) = T 2/S2 is a maximal invariant statistic under the group G of scale changes

g(T 2, S2) = (c2T 2, c2S2) (c > 0). (2.5-64)

3. M(T ) = T 2 is a maximal invariant statistic under the sign change

g(T ) = (−1) · T. (2.5-65)

4. M(T, S2) = (T 2, S2) is a maximal invariant under the sign change

g(T, S2) = ((−1) · T, S2). (2.5-66)

5. M(T ) = T ′T is a maximal invariant statistic under the group G of orthogonal transformations

g(T ) = ΓT , (2.5-67)

where Γ is an arbitrary orthogonal matrix.

6. M(T , S2) = (T ′T , S2) is a maximal invariant statistic under the group G of orthogonal transforma-

tions

g(T , S2) = (ΓT , S2), (2.5-68)

where Γ is an arbitrary orthogonal matrix.

Proof. 1. See Example 2.15.

2. M(T 2, S2) is an invariant statistic because of

M(g(T 2, S2)) = M(c2T 2, c2S2) =
c2T 2

c2S2
=

T 2

S2
= M(T 2, S2).

To prove maximality, suppose that M(t21, s
2
1) = M(t22, s

2
2) holds. From this, the equivalent conditions

t21/s2
1 = t22/s2

2 and t21/t22 = s2
1/s2

2 follow. Defining c2 := t21/t22 results in t21 = c2t22 and s2
1 = c2s2

2, that is⎡⎣ t21

s2
1

⎤⎦ =

⎡⎣ c2t22

c2s2
2

⎤⎦ = g

⎛⎝⎡⎣ t22

s2
2

⎤⎦⎞⎠
as required.

3. Invariance of M(T ) follows from

M(g(T )) = M((−1) · T ) = (−1)2 · T 2 = T 2 = M(T ).

Then, let t1 and t2 be two realizations of T for which M(t1) = M(t2) holds. This equation is equivalent
to t21 = t22, which is satisfied by t1 = −t2. Hence, t1 = g(t2), which proves that M(T ) is a maximally
invariant statistic under g.

4. The proof of this fact follows from the same line of reasoning as 3.

5. As any orthogonal matrix satisfies Γ′Γ = I, we obtain

M(g(T )) = M(ΓT ) = (ΓT )′(ΓT ) = T ′Γ′ΓT = T ′T = M(T ),

which shows that M(T ) is an invariant statistic. To prove maximality, let t1 and t2 be two non-zero
realizations of T , for which M(t1) = M(t2), or equivalently, t′1t1 = t′2t2 holds. This condition expresses
that the vectors t1 and t2 must have equal length. Then, there always exists an orthogonal transformation
Γt1 which does not change the length of t1 (see Meyer, 2000, Characterization #4 regarding the matrix
P , p. 321), that is, which satisfies t′1t1 = t′2t2 for some vector t2.

6. The proof of this fact follows from the same line of reasoning as 5.
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2.5.5 Uniformly most powerful invariant (UMPI) tests

Let us begin the current section with the following definition. Since any group G of transformations acting on
the observation space ST induces a corresponding group Ḡ of transformations acting on the parameter space Θ,
there will exist a maximal invariant M (θ) under Ḡ, which will be called the parameter maximal invariant.

Theorem 2.7. φ(T ) is an invariant critical function if and only if there exists φ∗(M(T )) such that φ(t) =
φ∗(M(t)) holds for every t ∈ ST . Then, the distribution of M(T ) depends only on M(θ), the induced maximal
invariant under Ḡ.

Proof. See Arnold (1981, p. 13).

From Theorem 2.7 it becomes evident that we may restrict attention to the invariance-reduced problem of
testing

H0 : M(θ̄) ∈ M(Θ0)

against

H1 : M(θ̄) ∈ M(Θ1)

based on maximally invariant statistics M(T ) with distribution depending on parameters M(θ). If a complete
reduction by invariance is possible, then M(T ) will be a scalar test statistic depending on a single parameter
M (θ), and the transformed spaces M(Θ0) and M (Θ1) will represent a single point (simple H0) and a one-sided
interval (one-sided H1), respectively. Given that such a one-dimensional test statistic M(T ) has a monotone
density ratio, all the requirements of Theorem 2.4 are satisfied by the fully invariance-reduced test problem.
The UMP critical function for the invariant test problem then reads

φ(M(t)) :=

⎧⎨⎩ 1, if M(t) > C,

0, if M(t) < C
(2.5-69)

if H1 is an upper one-sided alternative, and

φ(M(t)) :=

⎧⎨⎩ 1, if M(t) < C,

0, if M(t) > C
(2.5-70)

if H1 is a lower one-sided alternative hypothesis. In both cases the critical value must satisfy the condition

Pθ0 {φ(M(T )) = 1} = α, (2.5-71)

which guarantees that the test φ has fixed level α. Recall also that t = T (y) contains the values of the sufficient
statistics T at the observed data y. Since such a test (if it exists as presumed here) is UMP (at level α) for
the invariance-reduced test problem (using group G), it is UMP among all tests that are invariant under G.
Therefore, φ will be called the UMP invariant (UMPI) test (at level α) for testing the original hypotheses
H0 : θ̄ ∈ Θ0 against H1 : θ̄ ∈ Θ1.

Parenthesis: Let us return for a moment to Example 2.14 and the problem of testing H0 : µ̄ = 0 versus
H1 : µ̄ �= 0. If we inspect the power function of the UMPI test in Figure 2.4, we see that it does not fall below
the level α. This generally desirable property of a test is called unbiasedness. Arnold (1981, Theorem 1.13)
states that any UMPI test is also unbiased. Without going into details, it should be mentioned that there exist
testing problems for which no UMPI tests exist, but for which a test can be found which is UMP within the
class of all unbiased tests. However, we will not be concerned with such testing problems in this thesis. Instead,
the reader interested in the concept of such optimally unbiased (UMPU) tests is referred to Koch (1999, p. 277),
where conditions for the existence of UMPU tests are given, or to Lehmann and Romano (2005, Chapters 4 and
5) for a detailed discussion of that topic.
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Example 2.16 (Example 2.14 restated): Test of the normal mean with known variance - Two-sided
alternative. Let Y1, . . . , Yn be independently and normally distributed observations with common unknown
mean µ̄ and common known variance σ̄2 = σ2

0 . What is the best critical region for a test of the simple null
hypothesis H0 : µ̄ = µ0 against the two-sided alternative hypothesis H1 : µ̄ �= µ0 at level α?

This example is slightly more general than Example 2.14, because the hypotheses are not centered around
0. However, the simple transformation Y ′

i = Yi − µ0 of the original random variables Yi into variables Y ′
i solves

this technical problem. Such a procedure is justified in light of the fact that the distribution of Y ∼ N(1µ, σ2
0I)

is transformed into N(1(µ − µ0), σ2
0I) for Y ′ without changing the second moment. Thus the true mean of

the Y ′
i is now µ̄′ := µ̄ − µ0, and the hypotheses become H0 : µ̄′ = µ̄ − µ0 = 0 and H1 : µ̄′ = µ̄ − µ0 �= 0,

respectively. Therefore, we may restrict ourselves to the simple case µ0 = 0 knowing that a test problem about
µ0 �= 0 may always be centered by transforming the observations. It should be mentioned here that the cases
of correlated and/or heteroscedastic observations will be discussed in the context of the normal Gauss-Markov
model in Section 3.

Now, the test problem

Y ∼ N(1µ, σ2
0I)

H0 : µ̄ = 0 against H1 : µ̄ �= 0 (2.5-72)

does not allow for a UMP test since H1 is two-sided. This fact does not change after reducing the problem
about Y to the equivalent test problem

T (Y ) = Ȳ ∼ N(µ, σ2
0/n)

H0 : µ̄ = 0 against H1 : µ̄ �= 0 (2.5-73)

about the sample mean Ȳ used as a sufficient statistic T (Y ) for µ. However, by using the invariance principle,
this test problem may be transformed into a problem about a one-sided H1. To be more specific, the test
problem is invariant under sign changes

g(Ȳ ) = (−1) · Ȳ ∼ N(−µ, σ2
0/n),

and the induced transformation acting on the parameter space is obviously

ḡ(µ) = (−1) · µ.

Due to ḡ(Θ0) = Θ0 (with Θ0 degenerating to the single point µ0 = 0), ḡ(Θ1) = Θ1 (with Θ1 = R − 0) and
ḡ(Θ) = Θ, the problem is indeed invariant under g. From Theorem 2.6-3 it follows that M(Ȳ ) = Ȳ 2 is a maximal
invariant under sign changes. To obtain a test statistic with a standard distribution, it is more convenient to
use the standardized sample mean

√
n

σ0
Ȳ ∼ N(

√
n

σ0
µ, 1) as a sufficient statistic, which is possible, because any

reversible function of a sufficient statistic is itself sufficient. Then, the maximally invariant test statistic

M(Y ) = (
√

n

σ0
Ȳ )2

has a non-central chi-squared distribution χ2(1, λ) with one degree of freedom and non-negative non-centrality
parameter λ = n

σ2
0

µ2. Now, it is easily seen that the new testing problem

M(Y ) =
n

σ2
0

Ȳ 2 ∼ χ2(1, λ) with λ =
n

σ2
0

µ2

H0 : λ̄ = 0 against H1 : λ̄ > 0 (2.5-74)

is equivalent to the original problem of testing H0 : µ̄ = 0 against H1 : µ̄ �= 0, because µ̄ = 0 is equivalent λ̄ = 0
(when H0 is true), and µ̄ �= 0 is equivalent to λ̄ > 0 (when H1 is true). As this reduced testing problem involves
only one unknown parameter λ (which corresponds to M(θ) in Theorem 2.7) and a one-sided H1, and since
the distribution of M(Y ) has a monotone density ratio by virtue of Theorem 2.5-5, a UMP test φ exists as a
consequence of Theorem 2.4 with

φ(y) :=

⎧⎨⎩ 1, if M(y) = n Ȳ 2

σ2
0

> k
χ2(1)
1−α ,

0, if M(y) = n Ȳ 2

σ2
0

< k
χ2(1)
1−α ,

(2.5-75)
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and critical value k
χ2(1,λ=0)
1−α . Recall that the critical value is always computed under the assumption of a true

H0, which is why λ = 0. Then, φ is also the UMPI test (at level α) for the original test problem. This test may
be written equivalently in terms of the N(0, 1)-distributed test statistic

√
M(Y ), that is,

φ(y) :=

⎧⎨⎩ 1, if
√

M(y) =
√

n |Ȳ |
σ0

> k
N(0,1)
1−α/2 ,

0, if
√

M(y) =
√

n |Ȳ |
σ0

< k
N(0,1)
1−α/2 ,

(2.5-76)

with critical value k
N(0,1)
1−α/2 = Φ−1(1 − α/2). �

Example 2.17: Test of the normal mean with unknown variance - Two-sided alternative. Let
Y1, . . . , Yn be independently and normally distributed observations with common unknown mean µ̄ and common
unknown variance σ̄2. What is the best critical region for a test of the composite null hypothesis H0 : µ̄ = µ0

(σ̄2 > 0) against the two-sided alternative hypothesis H1 : µ̄ �= µ0 (σ̄2 > 0) at level α?
As demonstrated in Example 2.16, it will be sufficient to consider µ0 = 0 without loss of generality. We

have seen in Example 2.10 that the observations Y may be reduced without loss of information to the jointly
sufficient statistic T (Y ) = [Ȳ , S2]′ where S2 = 1

n−1

∑n
i=1(Yi − Ȳ )2 denotes the sample variance. Therefore, the

given test problem

Y ∼ N(1µ, σ2I)

H0 : µ̄ = 0 against H1 : µ̄ �= 0

may be written as

T1(Y ) = Ȳ ∼ N(µ, σ2/n)

T2(Y ) = (n − 1)S2/σ2 ∼ χ2(n − 1)

H0 : µ̄ = 0 against H1 : µ̄ �= 0 (2.5-77)

In the present case we are not only faced with the problem of a two-sided H1 (which we already learnt to handle
in Example 2.16), but with the additional challenge of a two-dimensional parameter space. Let us investigate
both problems separately by finding suitable groups of transformations first. We will then combine the results
later on to obtain the final solution to the test problem.

To begin with, it is easily verified that the test problem (2.5-77) in terms of T1(Y ) and T2(Y ) is invariant
under the group G1 of sign changes acting on the sample mean. With

g1(Ȳ , S2) = ((−1) · Ȳ , S2)

the induced transformation is identified as

ḡ1(µ, σ2) = ((−1) · µ, σ2)

due to the change in distribution

Ȳ ∼ N(µ, σ2/n) −→ (−1) · Ȳ ∼ N(−µ, σ2/n).

As already explained in Example 2.16, sign changes ḡ1(µ, σ2) do not affect the hypotheses as they are sym-
metrical about 0. According to Theorem 2.6-4, maximal invariants under g1 are [Ȳ 2, S2], or M1(Ȳ , S2) :=
[ n
σ2 Ȳ 2, (n − 1)S2] after rescaling, which leads to the reduced problem

M1,1(Y ) =
n

σ2
Ȳ 2 ∼ χ2(1, λ) with λ =

n

σ2
µ2

M1,2(Y ) = (n − 1)S2/σ2 ∼ χ2(n − 1)

H0 : λ̄ = 0 against H1 : λ̄ > 0 (2.5-78)

Although the alternative hypothesis is now one-sided, there are still two statistics for the two unknown param-
eters λ and σ2. Therefore, we conclude that reduction by sign invariance alone does not go far enough in this
case.
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In addition to being sign-invariant, the test problem (2.5-77) can also be shown to be scale-invariant, that
is, invariant under the group G2 of scale changes

g2(Ȳ , S2) = (cȲ , c2S2).

This transformation arises when the scale of the original observations Y is changed by multiplying them with
a positive constant c, because the distribution of cY changes to N(1cµ, c2σ2I), and the sufficient statistics to
cȲ and c2S2, respectively. Evidently, G2 induces Ḡ2 with

ḡ2(µ, σ2) = (cµ, c2σ2),

because of the transitions in distribution

Ȳ ∼ N(µ, σ2/n) → c · Ȳ ∼ N(cµ, c2σ2/n),

S2 ∼ G((n − 1)/2, 2σ2)/(n − 1) → c2S2 ∼ G((n − 1)/2, 2c2σ2)/(n − 1).

That the test problem is indeed scale-invariant is seen from the fact that Ḡ2 (with c > 0) does not change the
hypotheses due to

ḡ2(Θ0) = ḡ2({(µ, σ2) : µ = 0, σ2 ∈ R
+})

= {(c · 0, c2σ2) : σ2 ∈ R
+}

= {(0, σ2
c ) : σ2

c ∈ R
+}

= Θ0

and

ḡ2(Θ1) = ḡ2({(µ, σ2) : µ ∈ R − {0}, σ2 ∈ R
+})

= {(cµ, c2σ2) : µ ∈ R − {0}, σ2 ∈ R
+}

= {(µc, σ
2
c ) : µc ∈ R − {0}, σ2

c ∈ R
+}

= Θ1.

By virtue of Theorem 2.6-1 a maximal invariant (rescaled by
√

n) under G2 is given by

M2(Y ) =
√

n Ȳ√
S2

=
√

n
Ȳ

S
(2.5-79)

which has a t(n− 1, λ)-distribution with n− 1 degrees of freedom and non-centrality parameter λ =
√

n µ
σ . The

resulting test problem

M2(Y ) =
√

n
Ȳ

S
∼ t(n − 1, λ)

H0 : λ̄ = 0 against H1 : λ̄ �= 0 (2.5-80)

now has a reduced parameter space in light of the single parameter λ. However, due to σ > 0, the originally
two-sided alternative H1 : µ̄ �= 0 is only equivalent to λ̄ �= 0 because a negative µ̄ will cause a negative λ̄, and
a positive µ̄ leads to a positive λ̄. In summary, reduction by scale invariance could successfully produce an
equivalent test problem about one single parameter, but the problem concerning the two-sidedness of H1 could
not be resolved.

Parenthesis: Since the present test problem is invariant under two different groups of transformations, and
since either group does not simplify the problem far enough, it is logical to seek a maximal invariant as a test
statistic that corresponds to a test problem which is invariant under both groups. The following theorem is of
great practical value as it allows us determine a maximal invariant step by step.

Theorem 2.8. Let G1 and G2 be two groups of transformations from ST to ST and let G be the smallest
group containing G1 and G2. Suppose that M1(T ) is a maximal invariant under G1 and that M1(T ) satisfies
M1(g2(T )) = ĝ2(M1(T )). Further, let M2(T ) be a maximal invariant under the group Ĝ2 of transformations
ĝ2. Then M(T ) = M2(M1(T )) is a maximal invariant under G.

Proof. See Stuart et al. (1999, p. 297).
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Example 2.17 (continued): Let us now combine these complementary results. Theorem 2.8 allows us to
determine the maximal invariant under the union G of the two sub-groups G1 and G2 sequentially. M1 as the
maximal invariant under the group G1 of sign changes with g1(Ȳ , S2) = ((−1) · Ȳ , S2) can be shown to satisfy
M1(g2(T )) = ĝ2(M1(T )), because there exists a transformation ĝ2 such that

M1(g2(Ȳ 2, S2)) = (c2Ȳ 2, c2S2) = ĝ2(Ȳ 2, S2),

where Ĝ2 is the group of transformations ĝ2 from Theorem 2.6-2, which gives M2(Ȳ , S2) = Ȳ 2/S2 as its maximal
invariant. It follows from Theorem 2.8 that

M(Ȳ , S2) = M2(M1(Ȳ , S2)) = Ȳ 2/S2 (2.5-81)

is the total maximal invariant under the union of G1 and G2. Now recall that we may always use rescaled
versions of maximal invariants. Then, due to n

σ2 Ȳ 2 ∼ χ2(1, λ) with λ = n
σ2 µ2 and (n − 1) S2

σ2 ∼ χ2(n − 1), the
ratio

M(Y ) :=
n
σ2 Ȳ 2

(n − 1) S2

σ2 /(n − 1)
=

nȲ 2

S2
(2.5-82)

follows an F (1, n − 1, λ)-distribution. Since µ = 0 is equivalent to λ = 0 and µ �= 0 to λ > 0 (with arbitrary
σ2 > 0), the hypotheses of the original test problem (2.5-77) are equivalent to H0 : λ̄ = 0 versus H1 : λ̄ > 0. In
summary, the fully reduced, both sign- and scale-invariant test problem reads

M(Y ) =
nȲ 2

S2
∼ F (1, n − 1, λ) with λ =

n

σ2
µ2 (2.5-83)

H0 : λ̄ = 0 against H1 : λ̄ > 0 (2.5-84)

As Theorem 2.5-6 shows that the non-central F-distribution with known degrees of freedom and unknown non-
centrality parameter λ has a monotone density ratio, all three conditions (one unknown parameter, one-sided
H1, and a test statistic with monotone density ratio) for the existence of UMP test are satisfied, and Theorem
2.4 gives the best test

φ(y) :=

⎧⎨⎩ 1, if M(y) = n Ȳ 2

S2 > k
F (1,n−1)
1−α ,

0, if M(y) = n Ȳ 2

S2 < k
F (1,n−1)
1−α ,

(2.5-85)

with critical value is given by k
F (1,n−1)
1−α . By definition it follows that φ is the UMPI test for the original test

problem (2.5-77). This test is usually given in terms of
√

M(y) which has Student’s distribution t(n− 1), that
is,

φ(y) :=

⎧⎨⎩ 1, if
√

M(y) =
√

n |Ȳ |
S > k

t(n−1)
1−α/2 ,

0, if
√

M(y) =
√

n |Ȳ |
S < k

t(n−1)
1−α/2 ,

(2.5-86)

with critical value k
t(n−1)
1−α/2 . �

The purpose of Examples 2.16 and 2.17 was to demonstrate that the standard tests concerning the mean with
the variance either known (2.5-76) or unknown (2.5-86) are optimal within the class of invariant tests.

Equipped with these tools for reducing the space of observations and the space of parameters to one-
dimensional intervals, we could now proceed and investigate more complex test problems, which occur very
often in the context of linear models. Linear models essentially constitute generalizations of the observation
model N(1µ, σ2I) to N(Xβ, σ2P−1), where Xβ represents a possibly multi-dimensional and non-constant
mean, and where σ2P−1 indicates that the observations might be correlated and of non-constant variance.
However, to keep the theoretical explanations short, the reader interested in tests within the context of linear
models is referred to Section 3. At this point we will continue the current section by presenting convenient one-
step reduction techniques that are oftentimes equivalent to a sequential reduction by sufficiency and invariance.
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2.5.6 Reduction to the Likelihood Ratio and Rao’s Score statistic

At the beginning of the current Section 2.5, where we discussed the case of testing against a simple H1, we have
seen that the density ratio f(y; θ1)/f(y; θ0), used as a test statistic for the MP test as defined in (2.5-26) by the
Neyman-Pearson Lemma, may be simplified such that a single sufficient statistic can be used as an equivalent
test statistic. Whenever a test problem has a one-sided H1 (but still only one single unknown parameter), then
that sufficient statistic must have a distribution with a monotone density ratio in order for a UMP test to exist.
If multiple parameters are unknown, then our approach was to shrink the dimension of the parameter space
to 1 in order to have a one-dimensional test statistic at one’s disposal. Such a test statistic was derived as
the maximal invariant under a group of transformations, which lead us to tests that are UMP among all tests
invariant under these transformations.

As a test problem may be invariant under numerous sub-groups of transformations (such as the one in
Example 2.17), a manual step-wise reduction of a test problem by invariance can become quite cumbersome.
Therefore, we will investigate ways for obtaining a UMPI test in a more direct manner. We will see that there
are in fact two equivalent methods for reducing a test problem about n observations (or equally well about m

minimal sufficient statistics) and m unknown parameters to a one-parameter problem with a one-sided H1.

Reduction to the Likelihood Ratio statistic. Let us consider the problem of testing H0 : θ̄ ∈ Θ0 against
H1 : θ̄ ∈ Θ1 on the basis of observations Y with true density function in

F = {f(y; θ) : θ ∈ Θ} .

Inspection of the density ratio f(y; θ1)/f(y; θ0), used for testing a simple H0 versus a simple H1 by the Neyman-
Pearson Lemma, reveals that this quantity is not unique anymore if the hypotheses are composite, i.e. if θ0

and θ1 are elements of intervals Θ0 and Θ1. In that case it would not be clear at which values θ0 and θ1 the
density ratio should be evaluated. This situation is of course not improved if the densities comprise multiple
unknown parameters θ0 and θ1. One approach to removing the ambiguity of the density ratio consists in taking
the maximum value of the density function over Θ0 and over Θ1, that is, to determine the value of

maxθ∈Θ1 f(y; θ)
maxθ∈Θ0 f(y; θ)

. (2.5-87)

Since the densities in (2.5-87) are now treated as functions of θ rather than of y, it is necessary to switch the
arguments, or formally to introduce a new function from Θ to R, which is defined as

L(θ; y) := f(y; θ), (2.5-88)

and which treats y as given constants. L is called the likelihood function (for y), and the fraction

maxθ∈Θ0 L(θ; y)
maxθ∈Θ1 L(θ; y)

(2.5-89)

denotes the generalized likelihood ratio. Notice that in this definition the nominator and denominator
have been switched with respect to the generalized density ratio (2.5-87). To take this change into account
when comparing this ratio with the critical value, we only need to switch the </>-relation accordingly. If the
hypotheses are such that Θ = Θ0 ∪ Θ1, then we may modify (2.5-89) slightly into

GLR :=
maxθ∈Θ0 L(θ; y)
maxθ∈Θ L(θ; y)

. (2.5-90)

The only difference between (2.5-90) and (2.5-89) is that (2.5-90) may take the value 1, because Θ0 is a subset
of Θ (see also Koch, 1999, p. 279, for a discussion of the properties of the generalized likelihood ratio).

All the examples discussed so far and all the applications to be investigated in Sections 3 and 4 allow us to
rewrite the hypotheses H0 : θ̄ ∈ Θ0 and H1 : θ̄ ∈ Θ1 in the form of linear constraints (restrictions)

H0 : Hθ̄ = w versus H1 : Hθ̄

⎧⎪⎪⎪⎨⎪⎪⎪⎩
<

>

�=

⎫⎪⎪⎪⎬⎪⎪⎪⎭w, (2.5-91)

where H is an (r × u)-matrix with known constants and rank r, and where w is an (r × 1)-vector of known
constants.
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Example 2.18: In the Examples 2.13, 2.14, and 2.16 we considered the problems of testing the specification
H0 : µ̄ = µ0 of the mean parameter against the alternative specifications H1 : µ̄ < µ0, H1 : µ̄ > µ0, and
H1 : µ̄ �= µ0 on the basis of normally distributed observations with known variance. These hypotheses may be
rewritten in the form (2.5-91) by using the vectors/matrices θ̄ := [ µ̄ ], H := [ 1 ], and w := [ µ0 ], which are all
scalars in this case.

In Example 2.17, we investigated the problem of testing H0 : µ̄ = µ0 versus H1 : µ̄ �= µ0 in the same class of
normal distributions, but with unknown variance. These hypotheses are expressed as in (2.5-91) by defining

θ̄ :=

⎡⎣ µ̄

σ̄2

⎤⎦ , H := [ 1, 0 ], and w := [ µ0 ]. �

When the hypotheses are given in terms of linear restrictions (2.5-91), then the maxima in (2.5-90) may be
interpreted in the following way. The value θ̃ for which the likelihood function in the nominator of (2.5-90)
attains its maximum over Θ0, or equivalently for which the constraint Hθ̄ = w holds, is called the restricted
maximum likelihood (ML) estimate for θ. On the other hand, the value θ̂ for which the likelihood
function in the denominator of (2.5-90) attains its maximum over the entire parameter space Θ, denotes then
the unrestricted maximum likelihood (ML) estimate for θ.

If we assume that the likelihood function is at least twice differentiable with positive definite Hessian, then
the restricted ML estimate θ̃ is obtained as the solution of

∂

∂θ
(L(θ; y)− k′(Hθ − w)) = 0, (2.5-92)

where k denotes an (r × 1)-vector of unknown Lagrange multipliers. The unrestricted ML estimate θ̂ follows
as the solution of the likelihood equation

∂

∂θ
L(θ; y) = 0. (2.5-93)

Then, rewriting (2.5-90) in terms of the ML estimators and the random vector Y yields

GLR(Y ) =
L(θ̃; Y )

L(θ̂; Y )
. (2.5-94)

This is the reciprocal of the statistic that Koch (1999, Chap. 4.2) and Teunissen (2000, Chap. 3) use to derive
the test of the general hypothesis in the normal Gauss-Markov model. In that case, which will also be addressed
in detail in Section 3 of this thesis, the restricted und unrestricted ML estimates are equivalent to the restricted
and unrestricted least squares estimates. However, it shall already be mentioned here that there are important
cases where the Gauss-Markov model is not restricted to the class of normal distributions, but where the
likelihood function may depend on additional distribution parameters (see Application 7). For this reason, we
will maintain the more general notation in terms of the likelihood function and the restricted/unrestricted ML
estimates, and we will speak of restricted/unrestricted least squares estimates only if we apply a class of normal
distributions.

In certain cases, it will sometimes be more convenient to use a logarithmic version of the GLR, that is,

−2 lnGLR = −2 ln
L(θ̃; Y )

L(θ̂; Y )
= −2

(
ln L(θ̃; Y ) − ln L(θ̂; Y )

)
. (2.5-95)

Due to the strictly increasing monotonicity of the logarithmus naturalis, the estimates θ̂ and θ̃ remain unchanged
if, as in (2.5-95), the so-called log-likelihood function

L(θ; y) := lnL(θ; y) (2.5-96)

is maximized instead of the likelihood function (2.5-88). This property guarantees that the restricted ML
estimate θ̃ is also the solution of

∂

∂θ
(L(θ; y) − k′(Hθ − w)) = 0, (2.5-97)

and that the unrestricted ML estimate θ̂ is the solution of the log-likelihood equation

∂

∂θ
L(θ; y) = 0. (2.5-98)
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One advantage of this approach is that the logarithm of a Gaussian density will cancel out with the exponential
operator, which results in a function that is easier to handle (see Example 2.19). We call the statistic TLR,
defined by

TLR(Y ) := −2 lnGLR = −2
(
L(θ̃; Y ) − L(θ̂; Y )

)
, (2.5-99)

the likelihood ratio (LR) statistic.
A test which uses (2.5-94) as test statistic is called the generalized likelihood ratio (GLR) test, given

by

φGLR(y) =

⎧⎨⎩ 1 if L(θ̃; y)/L(θ̂; y) < k∗
α,

0 if L(θ̃; y)/L(θ̂; y) > k∗
α,

(2.5-100)

where the critical value k∗
α is such that φ has level α. Alternatively, the test

φLR(y) =

⎧⎨⎩ 1 if −2
(
L(θ̃; y) − L(θ̂; y)

)
> kα,

0 if −2
(
L(θ̃; y) − L(θ̂; y)

)
< kα,

(2.5-101)

based on the statistic (2.5-99) is called the likelihood ratio (LR) test. Both tests are truly equivalent because
both the corresponding statistics and critical values are strictly monotonic functions of each other.

It is easily verified that the test (2.5-100) is equivalent to the MP test (2.5-26) of Neyman and Pearson if
both H0 and H1 are simple hypotheses and if θ is a single parameter, because the maxima then equal the point
values of the densities at Θ0 = {θ0} and Θ1 = {θ1}, respectively. Furthermore, if H1 is a one-sided hypothesis
(with θ still being a single parameter) and if Y has a density with monotone density ratio, then the GLR/LR
test is also equal to the UMP test in Theorem 2.4 (see Lemma 2 in Birkes, 1990). Even more importantly, if
a test problem involves multiple parameters in a normal Gauss-Markov model, then the GLR/LR test is also
identical to the UMPI test obtained from a step-wise reduction by invariance. We will demonstrate this fact,
which has been proven by Lehmann (1959b), in the following simple example and in greater detail in Section 3.

Example 2.19 (Example 2.17 revisited): The LR test of the normal mean with unknown variance.
Let Y1, . . . , Yn be independently and normally distributed observations with common unknown mean µ̄ and
common unknown variance σ̄2. What is the LR test for testing H0 : µ̄ = µ0 (σ̄2 > 0) versus H1 : µ̄ �= µ0

(σ̄2 > 0) at level α?
Using the fact that the joint density of independently distributed observations is the product of the univariate

densities, we obtain for the log-likelihood function

L(θ; y) := ln f(y; µ, σ2)

= ln
n∏

i=1

1√
2πσ

exp

{
−1

2

(
yi − µ

σ

)2
}

=
n∑

i=1

ln

[
(2πσ2)−1/2 exp

{
−1

2

(
yi − µ

σ

)2
}]

=
n∑

i=1

[
0 − 1

2
ln(2π) − 1

2
ln σ2 − 1

2σ2
(yi − µ)2

]

= −n

2
ln(2π) − n

2
ln σ2 − 1

2σ2

n∑
i=1

(yi − µ)2

Let us first determine the unrestricted ML estimates for µ and σ2 by applying (2.5-98). From the first order
conditions

∂

∂µ
L(θ; y) =

1
σ2

n∑
i=1

(yi − µ) = 0, (2.5-102)

∂

∂σ2
L(θ; y) = − n

2σ2
+

1
2σ4

n∑
i=1

(yi − µ)2 = 0, (2.5-103)
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we obtain the solutions

µ̂ =
1
n

n∑
i=1

yi (2.5-104)

and

σ̂2 =
1
n

n∑
i=1

(yi − µ̂)2. (2.5-105)

Notice that σ̂2 differs from the sample variance S2 = 1
n−1

∑n
i=1(yi − µ̂)2. The restricted estimates result from

solving (2.5-97), that is,

∂

∂µ
(L(θ; y) − k(µ − µ0)) =

1
σ2

n∑
i=1

(yi − µ) − k = 0,

∂

∂σ2
(L(θ; y) − k(µ − µ0)) = − n

2σ2
+

n

2σ4

n∑
i=1

(yi − µ)2 = 0,

∂

∂k
(L(θ; y) − k(µ − µ0)) = −(µ − µ0) = 0.

The third equation reproduces the restriction, that is

µ̃ = µ0. (2.5-106)

Using this result, the second equation gives

σ̃2 =
1
n

n∑
i=1

(yi − µ0)2. (2.5-107)

Substituting µ̃ = µ0 and σ̃2 into the first equation results in the estimate

k̃ =
1
σ̃2

n∑
i=1

(yi − µ0) (2.5-108)

for the Lagrange multiplier. To evaluate the test statistics based on the generalized likelihood ratio, we need to
compute the likelihood function both at the unrestricted and the restricted estimates, which leads to

L(µ̂, σ̂2; y) = (2πσ̂2)−n/2 exp

{
− 1

2σ̂2

n∑
i=1

(yi − µ̂)2
}

= (2π)−n/2(σ̂2)−n/2 exp
{
−n

2

}
and

L(µ̃, σ̃2; y) = (2πσ̃2)−n/2 exp

{
− 1

2σ̃2

n∑
i=1

(yi − µ0)2
}

= (2π)−n/2(σ̃2)−n/2 exp
{
−n

2

}
.

With this, the GLR in (2.5-94) tales the value

GLR(y) =
L(µ̃, σ̃2; y)
L(µ̂, σ̂2; y)

=
(

σ̃2

σ̂2

)−n/2

,

and the value of the LR statistic in (2.5-99) becomes

TLR(y) = −2 lnGLR = n ln
σ̃2

σ̂2
.

We will now show that TLR(Y ) (thus also the GLR statistic) is equivalent to the statistic M(Y ) in (2.5-83) of
the UMPI test (2.5-85) for testing H0 : µ̄ = µ0 = 0 (σ̄2 > 0) versus H1 : µ̄ �= µ0 = 0 (σ̄2 > 0) at level α. Recall
that M(Y ) = n Ȳ 2

S2 with sample mean Ȳ = 1
n

∑n
i=1 Yi and sample variance S2 = 1

n−1

∑n
i=1(Yi − Ȳ )2. Then,

due to Ȳ = µ̂ and (n − 1)S2 = nσ̂2, we have

1 +
M(Y )
n − 1

= 1 +
nȲ 2

(n − 1)S2
= 1 +

µ̂2

σ̂2
=

σ̂2 + µ̂2

σ̂2
=

1
n

∑n
i=1(yi − µ̂)2 + µ̂2

σ̂2
=

1
n

∑n
i=1 y2

i

σ̂2
=

σ̃2

σ̂2
.
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Thus, TLR(Y ) = n ln(1 + M(Y )
n−1 ) is a strictly monotonically increasing function of M(Y ). If we transform the

critical value C = k
F (1,n−1)
1−α of the UMPI test (2.5-85) accordingly into C∗ = n ln(1 + C

n−1 ), then the LR test

φLR(y) :=

⎧⎨⎩ 1, if TLR(y) = n ln �σ2

�σ2 > C∗,

0, if TLR(y) = n ln �σ2

�σ2 < C∗,
(2.5-109)

will produce the same result as the UMPI test (2.5-85). �

Reduction to Rao’s Score statistic. Another way to formulate the Likelihood Ratio statistic (2.5-99)
results from applying a two-term Taylor series to the log-likelihood function (2.5-96). For this purpose, we
will assume throughout this thesis that the first two derivatives of the log-likelihood function exist. If the
unrestricted ML estimate is used as Taylor point, then we obtain

L(θ; y) = L(θ̂; y) +
∂L(θ; y)

∂θ

∣∣∣∣
�θ

+
1
2
(θ − θ̂)′

∂2L(θ; y)
∂θ∂θ′

∣∣∣∣
θ∗

(θ − θ̂). (2.5-110)

The vector of first partial derivatives

S(θ; y) :=
∂L(θ; y)

∂θ
(2.5-111)

is called the (log-likelihood or efficient) score. The Hessian matrix of second partial derivatives will be
denoted by

H(θ; y) :=
∂2L(θ; y)

∂θ∂θ′ . (2.5-112)

This matrix, which appears in the exact residual term of the Taylor series (2.5-110), is evaluated at possibly
different points between θ and θ̂. Now, it follows from the log-likelihood equations (2.5-98) that the score vector
vanishes at θ̂, that is S(θ̂; y) = 0. Then, evaluation of (2.5-110) at the restricted ML estimate θ̃ yields

L(θ̃; y) = L(θ̂; y) +
1
2
(θ̃ − θ̂)′H(θ∗; y)(θ̃ − θ̂),

or

−2
(
L(θ̃; y) − L(θ̂; y)

)
= −(θ̂ − θ̃)′H(θ∗; y)(θ̂ − θ̃).

We will now use an argument by Stuart et al. (1999, p. 57) stating that, in terms of random variables, H(θ∗; Y ) ≈
E{H(θ̃; Y )} for large n. Note that if the log-likelihood function is naturally given as a quadratic function of
θ, then the Hessian will be a matrix of constants. In that case, we will write the Hessian as HY , which is then
identical to E{HY }. The expectation of the negative Hessian of the log-likelihood function, that is

I(θ; Y ) := E{−H(θ; Y )} (2.5-113)

is called the information matrix. With this, we obtain for the test statistic

TLR(Y ) = −2
(
L(θ̃; Y ) − L(θ̂; Y )

)
≈ (θ̂ − θ̃)′E{−H(θ̃; Y )(θ̂ − θ̃)

= (θ̂ − θ̃)′I(θ̃; Y )(θ̂ − θ̃) (2.5-114)

In a second step we apply a one-term Taylor series to the score with Taylor point θ̃, that is

S(θ; y) = S(θ̃; y) +
∂S(θ; y)

∂θ

∣∣∣∣
θ∗∗

(θ̂ − θ̃).

Then we evaluate the score at the maximum likelihood estimate θ̂, which gives

S(θ̂; y) = 0 = S(θ̃; y) + H(θ∗∗; y)(θ̂ − θ̃).
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Now, the same argument applies as above, i.e. H(θ∗∗; Y ) ≈ E{H(θ̃; Y )} for large n, which gives

I(θ̃; Y )(θ̂ − θ̃) ≈ S(θ̃; Y ),

or

θ̂ − θ̃ ≈ I−1(θ̃; Y )S(θ̃; Y )

Again, if the log-likelihood function is quadratic in θ, then the above approximations become exact.
Substituting the last equation for θ̂ − θ̃ into (2.5-114) finally yields

TLR(Y ) ≈ S′(θ̃; Y )I−1(θ̃; Y )S(θ̃; Y ) =: TRS(Y ). (2.5-115)

The statistic TRS(Y ) is called (the) Rao’s Score (RS) statistic (see Equation 6e.3.6 in Rao, 1973, p. 418),
which was originally proposed in Rao (1948) for the problem of testing H0 : θ̄ = θ0 versus H1 : θ̄ > θ0 with a
single unknown parameter θ. In this one-dimensional case, Rao’s Score statistic takes the simple form

TRS(Y ) = S2(θ0; Y )/I(θ0; Y ). (2.5-116)

Example 2.20 (Example 2.17 revisited): The RS test of the normal mean with unknown variance.
Let Y1, . . . , Yn be independently and normally distributed observations with common unknown mean µ̄ and
common unknown variance σ̄2. What is the RS test for testing H0 : µ̄ = µ0 (σ̄2 > 0) versus H1 : µ̄ �= µ0

(σ̄2 > 0) at level α?
To determine the value of Rao’s Score statistic (2.5-115), we need to determine the log-likelihood score and

the inverse of the information matrix, and then evaluate these quantities at the restricted ML estimates. The
first partial derivatives of the log-likelihood function with respect to µ and σ2 have already been determined as
(2.5-102) and (2.5-103) in Example 2.19. Thus, the log-likelihood score vector follows to be

S(θ; y) =

⎡⎣ ∂L(µ,σ2;y)
∂µ

∂L(µ,σ2;y)
∂σ2

⎤⎦ =

⎡⎢⎢⎣
1

σ2

n∑
i=1

(yi − µ)

− n
2σ2 + 1

2σ4

n∑
i=1

(yi − µ)2

⎤⎥⎥⎦ .

The Hessian of the log-likelihood function comprises the second partial derivatives with respect to all unknown
parameters. For the current example, these are

∂2L(µ, σ2; y)
∂µ∂µ

= − n

σ2
,

∂2L(µ, σ2; y)
∂µ∂σ2

= − 1
σ4

n∑
i=1

(yi − µ),

∂2L(µ, σ2; y)
∂σ2∂µ

= − 1
σ4

n∑
i=1

(yi − µ),

∂2L(µ, σ2; y)
∂σ2∂σ2

=
n

2σ4
− 1

σ6

n∑
i=1

(yi − µ)2.

Then, the information matrix follows to be

I(θ; Y ) = E{−H(θ; Y )}

= E

⎧⎪⎪⎨⎪⎪⎩−

⎡⎢⎢⎣ − n
σ2 − 1

σ4

n∑
i=1

(Yi − µ)

− 1
σ4

n∑
i=1

(Yi − µ)2 n
2σ4 − 1

σ6

n∑
i=1

(Yi − µ)2

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

=

⎡⎢⎢⎣
n
σ2

1
σ4

n∑
i=1

(E{Yi} − µ)

1
σ4

n∑
i=1

(E{Yi} − µ) − n
2σ4 + 1

σ6

n∑
i=1

E{(Yi − µ)2}

⎤⎥⎥⎦ .
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Due to the definitions E{Yi} = µ and E{(Yi − µ)2} = σ2 of the first moment and the second central moment,
respectively, the off-diagonal components of the information matrix vanish, and we obtain

I(θ; Y ) =

⎡⎣ n
σ2 0

0 n
2σ4

⎤⎦ .

Then, using the fact that the restricted ML estimate for µ is µ̃ = µ0, Rao’s Score statistic in (2.5-115) becomes

TRS(Y ) = S ′(µ̃, σ̃2; Y )I−1(µ̃, σ̃2; Y )S(µ̃, σ̃2; Y )

=

⎡⎢⎢⎣
1
�σ2

n∑
i=1

(Yi − µ0)

− n
2�σ2 + 1

2σ4

n∑
i=1

(Yi − µ0)2

⎤⎥⎥⎦
′ ⎡⎣ n

�σ2 0

0 n
2�σ2

⎤⎦−1
⎡⎢⎢⎣

1
�σ2

n∑
i=1

(Yi − µ0)

− n
2�σ2 + 1

2σ4

n∑
i=1

(Yi − µ0)2

⎤⎥⎥⎦

=

⎡⎢⎣ 1
�σ2

n∑
i=1

(Yi − µ0)

0

⎤⎥⎦
′ ⎡⎣ �σ2

n 0

0 2�σ2

n

⎤⎦
⎡⎢⎣ 1

�σ2

n∑
i=1

(Yi − µ0)

0

⎤⎥⎦
=

1
nσ̃2

(
n∑

i=1

(Yi − µ0)

)2

.

Two aspects are typical for Rao’s Score statistic. Firstly, the log-likelihood score vanishes in the direction of
σ2. This happens necessarily because σ2 is not restricted by H0. Therefore, the unrestricted ML estimate
of such a free parameter will certainly maximize the log-likelihood function in that direction. Secondly, the
information matrix is diagonal, reflecting the fact that both parameters are determined independently. These
two properties, which are true also for more complex testing problems such as for the applications in Sections
3 and 4, simplify the determination of Rao’s Score statistic considerably.

If we recall from (2.5-108) in Example 2.19 that 1
�σ2

∑n
i=1(Yi−µ0) is the estimator for the Lagrange multiplier,

we may rewrite Rao’s Score statistic in the form

TRS(Y ) =
σ̃2

n

(
1
σ̃2

n∑
i=1

(Yi − µ0)

)2

=
σ̃2

n
k̃2.

For this reason, Rao’s Score statistic is often called the Lagrange Multiplier (LM) statistic, a term which
was probably first used by Silvey (1959) and which is used typically in the field of econometrics.

Let us assume that the observations have been centered such that the hypotheses are about µ0 = 0, as
demonstrated in Example 2.16. As for the relation between TLR and the UMPI test statistic derived in Example
2.19, we can show that TRS is not identical with the UMPI test statistic, but a strictly monotonic function
thereof. Recall from Example 2.19 that M(Y )/(n − 1) = µ̂2/σ̂2 and 1 + M(Y )/(n − 1) = (σ̂2 + µ̂2)/σ̂2. With
this, we obtain

n
1

n−1M(Y )

1 + 1
n−1M(Y )

= n
µ̂2

σ̂2
/
σ̂2

σ̃2
= n

µ̂2

σ̃2
=

1
nσ̃2

(
n∑

i=1

Yi

)2

= TRS .

Therefore, Rao’s Score test

φRS(y) :=

⎧⎨⎩ 1, if TRS(y) = �σ2

n k̃2 > C∗,

0, if TRS(y) = �σ2

n k̃2 < C∗,
(2.5-117)

with critical value C∗ = n C/n−1
1+C/(n−1) will be exactly the same as the UMPI test (2.5-85) with critical value

C = k
F (1,n−1)
1−α . �
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3 Theory and Applications of Misspecification Tests in the Normal

Gauss-Markov Model

3.1 Introduction

In this section we will consider a number of very common test problems within the context the normal Gauss-
Markov model (GMM)

Y = Xβ + E, (3.1-118)

Σ = Σ{E} = σ2P−1 (3.1-119)

with normally distributed zero-mean errors E, known design matrix X ∈ R
n×m of full rank, known positive

definite weight matrix P ∈ R
n×n, and parameters β ∈ R

m×1 and σ2 ∈ R
+, respectively. Thus, we may write

the resulting class of distributions with respect to the observables Y as

W = {N (Xβ, σ2P−1
)

: β ∈ R
m×1, σ2 ∈ R

+}, (3.1-120)

which corresponds to the space Θ = R
m×1 × R

+ of parameters θ = (β, σ2) and to the class of multivariate
normal density functions

F = {f (y; β, σ2
)

: β ∈ R
m×1, σ2 ∈ R

+},

of multivariate normal density functions, defined by

f(y; β, σ2) = (2π)−n/2(det σ2P−1)−1/2 exp
{
− 1

2σ2
(y − Xβ)′P (y − Xβ)

}
(3.1-121)

(see Equation 2.125 in Koch, 1999, p. 117). We will further assume that the unknown true parameter vector θ̄

is one element of Θ.
Frequently, the numerical value σ2

0 for σ2 is known a priori. In this case we will rewrite the class of
distributions as

W = {N (Xβ, σ2
0P

−1
)

: β ∈ R
m×1}, (3.1-122)

the space of parameters θ = β as Θ = R
m×1, and the corresponding class of density functions as

F = {f (y; β) : β ∈ R
m×1} (3.1-123)

with

f(y; β) = (2π)−n/2(detσ2
0P−1)−1/2 exp

{
− 1

2σ2
0

(y − Xβ)′P (y − Xβ)
}

Notice that, by setting X := 1 and P := I, we obtain the observation model used in Examples 2.16 and 2.17
(depending on whether σ2 is known or unknown a priori).

As the parameter space comprises two types of parameters, we will naturally consider two categories of test
problems. The first one is about testing the parameters β appearing in the functional model (3.1-118), and the
second one is about testing the variance factor σ2, which is part of the stochastic model. Solutions to these test
problems are well known (see, for instance, Koch, 1999; Teunissen, 2000) and belong to the standard procedures
of geodetic adjustment theory. Therefore, rather than to repeat common knowledge, the purpose of this section
is to reconceptualize these tests, in particular the test statistics, by deriving them as optimal procedures. For
this purpose, we will exploit symmetry assumptions, that is, invariance principles with respect to the power
function in the same way as demonstrated in Section 2 for some simpler test problems. It will turn out that
the standard outlier tests, significance tests, tests of linear hypotheses, and the test of the variance factor owe
much of their uselfulness to the fact that they may all be derived as uniformly most powerful invariant tests.
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3.2 Derivation of optimal tests concerning parameters of the functional model

So far we have confined ourselves to problems, where the hypothesis that parameters take particular values was
to be tested against some simple or composite alternative. However, limitation to such problems is unnecessarily
restrictive. There are situations where we would rather want to test whether a set of linear functions of the
parameters takes particular values. As a common example, it is desired in deformation analysis to test whether
differences of coordinates are zero, or whether they differ significantly (see Application 3). We have already seen
in (2.5-91) of Section 2.5.6 that hypotheses may take the form of linear constraints (restrictions) concerning the
parameters to be tested. This model also fits conveniently into the framework of the normal GMM (3.1-118 +
3.1-119). In the current section, we shall restrict attention to hypotheses concerning parameters β within the
functional model (3.1-118), which may then be written as constraints

H0 : Hβ̄ = w versus H1 : Hβ̄ �= w, (3.2-124)

where H ∈ R
m2×m (with m2 ≤ m) denotes a matrix of full rank.

This general model setup may be simplified in various ways before addressing the fundamental question
of optimality procedures. The first step will be to reparameterize the GMM and the constraints such that
the hypotheses become direct propositions about the values of the unknown parameters rather than about the
values of functions thereof. Furthermore, to exploit symmetries within the parameter space effectively, it will
also be convenient to center these transformed hypotheses about zero. Finally, we shall simplify the stochastic
model (3.1-119) by transforming the observations into uncorrelated variables with constant variance.

After carrying out these preprocessing steps, we will reduce the testing problem by sufficiency and invariance
in a similar manner to the approach presented in Section 2. Then, after reversing the preprocessing steps, we
will obtain, as the main result of this section, the UMPI test for testing the hypotheses in (3.2-124).

The individual steps of this preprocessing and reduction procedure will now be carried out within the
following subsections:

1. Reparameterization of the test problem.

2. Centering of the hypotheses.

3. Full decorrelation/homogenization of the observations.

4. Reduction to independent sufficient statistics with elimination of additional functional parameters.

5. Reduction to a maximal invariant statistic.

6. Back-substitution (reversal of steps 1.-4).

3.2.1 Reparameterization of the test problem

Following Meissl (1982, Section C.2.2), we expand the m2 × m-matrix H by some (m − m2) × m-matrix M

into an invertible m×m block matrix and introduce new parameters β
(r)
1 ∈ R

m1×1 (where m1 := m−m2) and
β

(r)
2 ∈ R

m2×1 with⎡⎣ β
(r)
1

β
(r)
2

⎤⎦ :=

⎡⎣ M

H

⎤⎦β. (3.2-125)

Using the invertibility assumption we obtain the equivalent relation

β =

⎡⎣ M

H

⎤⎦−1 ⎡⎣ β
(r)
1

β
(r)
2

⎤⎦ .

Then, multiplying this equation with X from the left yields

Xβ = X

⎡⎣ M

H

⎤⎦−1 ⎡⎣ β
(r)
1

β
(r)
2

⎤⎦ =:
[
X

(r)
1 X

(r)
2

]⎡⎣ β
(r)
1

β
(r)
2

⎤⎦ . (3.2-126)
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Notice that this definition allows us to derive the following expression for the original design matrix X from
the implication

X

⎡⎣ M

H

⎤⎦−1

=:
[
X

(r)
1 X

(r)
2

]
⇒ X =

[
X

(r)
1 X

(r)
2

]⎡⎣ M

H

⎤⎦ . (3.2-127)

Using (3.2-126) we may substitute the original functional model (3.1-118) by

Xβ = X
(r)
1 β

(r)
1 + X

(r)
2 β

(r)
2 (3.2-128)

and, in light of (3.2-125), the linear restriction (3.2-124) by

Hβ̄ = β̄
(r)
2 . (3.2-129)

This reparameterization leads to an equivalent testing problem which involves the transformed version X(r) =
[ X(r)

1 X
(r)
2 ] of the original design matrix X = [ X1 X2 ] in partitioned form. We will describe this simplified

class of test problems by the new observation model

Y ∼ N
(
X

(r)
1 β

(r)
1 + X

(r)
2 β

(r)
2 , σ2P−1

)
(3.2-130)

(where the true value of σ2 may be known or unknown a priori), and by the new hypotheses

H0 : β̄
(r)
2 = w versus H1 : β̄

(r)
2 �= w. (3.2-131)

3.2.2 Centering of the hypotheses

Similarly to the data transformation in Example 2.16 we may subtract the generalized constant mean X
(r)
2 w

from the data, that is,

Y (c) := Y − X
(r)
2 w. (3.2-132)

While this transformation leaves the covariance matrix as the second central moment unchanged, it changes the
expectation to

E
{
Y − X

(r)
2 w

}
= E

{
X

(r)
1 β

(r)
1 + X

(r)
2 β

(r)
2 − X

(r)
2 w

}
= E

{
X

(r)
1 β

(r)
1 + X

(r)
2

(
β

(r)
2 − w

)}
. (3.2-133)

Setting β
(rc)
2 := β

(r)
2 − w leads to the new observation model

Y (c) ∼ N
(
X

(r)
1 β

(r)
1 + X

(r)
2 β

(rc)
2 , σ2P−1

)
, (3.2-134)

where the true value of σ2 may be known or unknown a priori. The hypotheses in terms of ersatz parameters
β

(rc)
2 are then evidently given by

H0 : β̄
(rc)
2 = 0 versus H1 : β̄

(rc)
2 �= 0. (3.2-135)

3.2.3 Full decorrelation/homogenization of the observations

A Cholesky decomposition of the weight matrix into

P = GG′, (3.2-136)

where G stands for an invertible lower triangular matrix, allows for a full decorrelation or homogenization of
the observations by virtue of the one-to-one transformation

Y (ch) := G′Y (c) (3.2-137)

(cf. Koch, 1999, p. 154). The expectation of the transformed observables becomes

E
{
G′Y (c)

}
= G′

(
X

(r)
1 β

(r)
1 + X

(r)
2 β

(rc)
2

)
= G′X(r)

1 β
(r)
1 + G′X(r)

2 β
(rc)
2 .
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The fact that Y (ch) has covariance matrix σ2I follows directly from an application of error propagation to the
linear function G′Y (c), which yields with (3.2-136)

Σ
{
G′Y (c)

}
= G′Σ

{
Y (c)

}
G = G′σ2P−1G = σ2G′ (GG′)−1

G

= σ2G′(G′)−1G−1G = σ2I.

After introducing the transformed block design matrices X
(rh)
1 := G′X(r)

1 and X
(rh)
2 := G′X(r)

2 , the trans-
formed observation model then reads

Y (ch) ∼ N
(
X

(rh)
1 β

(r)
1 + X

(rh)
2 β

(rc)
2 , σ2I

)
, (3.2-138)

where the true value of σ2 may be known or unknown a priori. As homogenization does not transform param-
eters, the hypotheses may still be written as in (3.2-135), that is,

H0 : β̄
(rc)
2 = 0 versus H1 : β̄

(rc)
2 �= 0. (3.2-139)

Whenever a test problem with structure (3.1-120/3.1-122, 3.2-124) or (3.2-130, 3.2-131) or (3.2-134, 3.2-135)
is given, it may be transformed directly into (3.2-138, 3.2-139), which will turn out to be the most suitable
structure for subsequent reductions by sufficiency and invariance.

3.2.4 Reduction to minimal sufficient statistics with elimination of nuisance parameters

To reduce the observations Y (ch) by sufficiency, we need to generalize the result of Examples 2.10 and 2.11 to
the case of the linear model.

Proposition 3.1. In the normal Gauss-Markov model Y ∼ N(Xβ, σ2I), the least squares estimators

X ′Xβ̂ = X ′Y (3.2-140)

and

(n − m)σ̂2 = (Y − Xβ̂)′(Y − Xβ̂) (3.2-141)

constitute independently distributed and minimally sufficient statistics for β and σ2, respectively.

Proof. Using the estimates defined by (3.2-140) and (3.2-141), the multivariate normal density (3.1-121) may
be rewritten as

f(y; β, σ2) = (2π)−n/2(detσ2I)−1/2 exp
{
− 1

2σ2
(y − Xβ)′(y − Xβ)

}
= (2πσ2)−n/2 exp

{
− 1

2σ2

(
(n − m)σ̂2 + (β̂ − β)′X ′X(β̂ − β)

)}
IRn(y).

Thus, it follows from Neyman’s Factorization Theorem 2.2 that β̂ and (n−m)σ̂2 are jointly sufficient statistics
for β and σ2. Then, Arnold (1981, p. 65) shows that these statistics are complete, which implies minimality
(see Arnold, 1990, p. 346), and independently distributed with

β̂ ∼ N(β, σ2(X ′X)−1) (3.2-142)

and

(n − m)σ̂2/σ2 ∼ χ2(n − m). (3.2-143)

Next, we will rewrite this fundamental result in terms of partitioned parameters as demanded by the obser-
vation model (3.2-138).
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Proposition 3.2. In the normal linear Gauss-Markov model Y ∼ N(X1β1 + X2β2, σ
2I) with partitioned

parameters β1 ∈ R
m1×1 and β2 ∈ R

m2×1, the least squares estimators⎡⎣ X ′
1X1 X ′

1X2

X ′
2X1 X ′

2X2

⎤⎦⎡⎣ β̂1

β̂2

⎤⎦ =

⎡⎣ X ′
1Y

X ′
2Y

⎤⎦ , short :

⎡⎣ N11 N12

N21 N22

⎤⎦⎡⎣ β̂1

β̂2

⎤⎦ =

⎡⎣ n1

n2

⎤⎦ (3.2-144)

and

(n − m1 − m2)σ̂2 = (Y − X1β̂1 − X2β̂2)′(Y − X1β̂1 − X2β̂2) (3.2-145)

constitute minimally sufficient statistics for β1, β2, and σ2, respectively. Furthermore, the statistics [β̂′
1 β̂′

2]
and σ̂2 are independently distributed with⎡⎣ β̂1

β̂2

⎤⎦ ∼ N

⎛⎜⎝
⎡⎣ β1

β2

⎤⎦ , σ2

⎡⎣ X ′
1X1 X ′

1X2

X ′
2X1 X ′

2X2

⎤⎦−1
⎞⎟⎠ (3.2-146)

and

(n − m1 − m2)σ̂2/σ2 ∼ χ2(n − m1 − m2). (3.2-147)

Before considering a reduction of Y (ch) to sufficient statistics we may notice that the observation model
(3.2-138) comprises functional parameters β

(r)
1 not subject to hypotheses. Therefore, we may eliminate them

from the normal equations (3.2-144) (cf. Schuh, 2006a, Section 1.2.1) without changing the test problem
itself. First we rewrite the partitioned normal equations (3.2-144) in terms of reparameterized, centered, and
homogenized quantities, that is,

X
′(rh)
1 X

(rh)
1 β̂

(r)
1 + X

′(rh)
1 X

(rh)
2 β̂

(rc)
2 = X

′(rh)
1 Y (ch) (3.2-148)

X
′(rh)
2 X

(rh)
1 β̂

(r)
1 + X

′(rh)
2 X

(rh)
2 β̂

(rc)
2 = X

′(rh)
2 Y (ch) (3.2-149)

Isolation of β̂
(r)
1 in (3.2-148) yields

β̂
(r)
1 =

(
X

′(rh)
1 X

(rh)
1

)−1 (
X

′(rh)
1 Y (ch) − X

′(rh)
1 X

(rh)
2 β̂

(rc)
2

)
, (3.2-150)

and after substitution into (3.2-149)

β̂
(rc)
2 = N

(−1)
22

(
X

′(rh)
2 − X

′(rh)
2 X

(rh)
1

(
X

′(rh)
1 X

(rh)
1

)−1

X
′(rh)
1

)
Y (ch) (3.2-151)

with Schur complement

N
(−1)
22 :=

(
X

′(rh)
2 X

(rh)
2 − X

′(rh)
2 X

(rh)
1

(
X

′(rh)
1 X

(rh)
1

)−1

X
′(rh)
1 X

(rh)
2

)−1

(3.2-152)

as abbreviation. We will not give N
(−1)
22 the index .(rh) because (1) this matrix naturally refers to the model

with two groups of parameters β
(r)
1 and β

(r)
1 , and (2) it may be written directly in terms of non-homogeneous

quantities, that is,

N
(−1)
22 =

(
X

′(r)
2 PX

(r)
2 − X

′(r)
2 PX

(r)
1

(
X

′(r)
1 PX

(r)
1

)−1

X
′(r)
1 PX

(r)
2

)−1

.

The residuals in the observation model (3.2-138) are defined as

Ê(rch) = Y (ch) − X
(rh)
1 β̂

(r)
1 − X

(rh)
2 β̂

(rc)
2 , (3.2-153)

and may, after substitution of (3.2-150), be written as

Ê(rch) =
(

I − X
(rh)
1

(
X

′(rh)
1 X

(rh)
1

)−1

X
′(rh)
1

)(
Y (ch) − X

(rh)
2 β̂

(rc)
2

)
. (3.2-154)
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If the true value of the variance of unit weight must be estimated, then these two alternative formulations for
the residuals correspond to the following expressions for the estimator of σ2:

(n − m1 − m2)σ̂2
(rch) = Ê′(rch)Ê(rch)

=
(
Y (ch) − X

(rh)
1 β̂

(r)
1 − X

(rh)
2 β̂

(rc)
2

)′ (
Y (ch) − X

(rh)
1 β̂

(r)
1 − X

(rh)
2 β̂

(rc)
2

)
=

(
Y (ch) − X

(rh)
2 β̂

(rc)
2

)′(
I − X

(rh)
1

(
X

′(rh)
1 X

(rh)
1

)−1

X
′(rh)
1

)(
Y (ch) − X

(rh)
2 β̂

(rc)
2

)
.

Instead of using the vector β̂
(rc)
2 with possibly fully populated weight matrix, it will be much more convenient

to operate with the fully decorrelated and homogenized vector

β̂
(rch)
2 := G′

22β̂
(rc)
2 (3.2-155)

which is also sufficient for β
(rc)
2 as a one-to-one function of β̂

(rc)
2 . Here, G22 represents the (invertible) lower

triangular matrix obtained from the Cholesky factorization P22 :=
(
N

(−1)
22

)−1

= G22G
′
22. After reducing the

observation model (3.2-138) by sufficiency, we now have a test problem about ersatz observations [ β̂′(rch)
2 , σ̂2 ]

with reduced dimension (m2 + 1). The hypotheses

H0 : β̄
(rch)
2 = 0 versus H1 : β̄

(rch)
2 �= 0 (3.2-156)

follow from (3.2-156) by observing that β̄
(rch)
2 = 0 if and only if β̄

(rc)
2 = 0 and β̄

(rch)
2 �= 0 if and only if β̄

(rc)
2 �= 0.

3.2.5 Reduction to a maximal invariant statistic

In this step we seek to reduce the test problem in terms of independent sufficient statistics by invariance in the
same way as we did in Example 2.17. The only difference will be that in the present case we cannot apply sign
invariance as the expectation is now given by a non-constant mean vector. Instead we will verify that the test
problem is invariant under the group of orthogonal transformations acting on the mean vector β

(rch)
2 .

Case 1: σ̄2 = σ2
0 known. Let us begin with the simpler case that the true value of the variance factor is

known a priori. First we note that each orthogonal transformation

g1(β̂
(rch)
2 ) = Γβ̂

(rch)
2

in G1 results in a change of distribution from β̂
(rch)
2 ∼ N(β(rch)

2 , σ2
0I) to Γβ̂

(rch)
2 ∼ N(Γβ

(rch)
2 , σ2

0I), where the
covariance matrix of Γβ̂

(rch)
2 remains unchanged due to the property of any orthogonal matrix Γ that ΓΓ′ = I.

From this the induced transformation within the parameter domain is seen to be

ḡ1(β
(rch)
2 ) = Γβ

(rch)
2 .

Then, Theorem 2.6-5 gives β̂
′(rch)
2 β̂

(rch)
2 as the maximal invariant with respect to the transformation Γβ̂

(rch)
2 .

We must still prove that the original test problem remains itself invariant under G1 with induced group of
transformations Ḡ1. This is truly the case because

ḡ1(Θ0) = ḡ1({0}) = {Γ0} = {0} = Θ0

and

ḡ1(Θ1) = ḡ1({β(rch)
2 : β

(rch)
2 ∈ R

m2 − {0}) = {Γβ
(rch)
2 : β

(rch)
2 ∈ R

m2 − {0}}
= {β(rchΓ)

2 : β
(rchΓ)
2 ∈ R

m2 − {0}} = Θ1

leaves the hypotheses unchanged. To formulate the invariant test problem we need to find the distribution
of the maximal invariant. From β̂

(rch)
2 ∼ N(β(rch)

2 , σ2
0I) it follows that β̂

′(rch)
2 β̂

′(rch)
2 /σ2

0 ∼ χ2(m2, λ) with
non-centrality parameter λ = β

′(rch)
2 β

(rch)
2 /σ2

0 (see Koch, 1999, p. 127). Notice now that λ = 0 if and only
if β

(rch)
2 = 0, and that λ > 0 if and only if β

(rch)
2 �= 0. Therefore, we may write the two-sided hypothesis
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testing problem in terms of the maximal parameter invariant λ, which will take a positive value if H1 is true.
Consequently, the invariant test problem

M(Y ) = β̂
′(rch)
2 β̂

(rch)
2 /σ2

0 ∼ χ2(m2, λ)

H0 : λ̄ = 0 against H1 : λ̄ > 0 (3.2-157)

with single parameter λ = β
′(rch)
2 β

(rch)
2 /σ2

0 has a one-sided alternative hypothesis. Furthermore, the non-
central χ2-distribution with fixed degree of freedom has a monotone density ratio according to Theorem 2.5-5.
Therefore, Theorem 2.4 is applicable, which gives the UMP test

φ(y) =

⎧⎨⎩ 1, if M(y) > k
χ2(m2)
1−α ,

0, if M(y) < k
χ2(m2)
1−α ,

(3.2-158)

(at level α). It follows that φ is the UMPI test for testing H0 : Hβ̄ = w versus H1 : Hβ̄ �= w in the original
observation model Y ∼ N

(
Xβ, σ2

0P
−1
)
, in which the variance factor has been assumed to be known a priori.

Case 2: σ̄2 unknown. In this case, the statistic σ̂2
(rch) acts as an additional ersatz observation. The group

of orthogonal transformations, acting on the generally multi-dimensional statistic β̂
(rch)
2 , is defined by

g1(β̂
(rch)
2 , σ̂2

(rch)) = (Γβ̂
(rch)
2 , σ̂2),

and causes the distribution to change from β̂
(rch)
2 ∼ N(β(rch)

2 , σ2I) to Γβ̂
(rch)
2 ∼ N(Γβ

(rch)
2 , σ2I). As the

statistic σ̂2
(rch) is not changed by any transformation g1 ∈ G1, its distribution also remains unchanged. The

induced group of transformations follows to be

ḡ1(β
(rch)
2 , σ2) = (Γβ

(rch)
2 , σ2).

Theorem 2.6-6 gives M1(Y ) = [β̂′(rch)
2 β̂

(rch)
2 , σ̂2

(rch)]
′ as the maximal invariants with respect to the transforma-

tion Γβ̂
(rch)
2 . The test problem is invariant because of

ḡ1(Θ0) = ḡ1({(β(rch)
2 , σ2) : β

(rch)
2 = 0, σ2 ∈ R

+}) = {(Γ0, σ2) : σ2 ∈ R
+} = {(0, σ2) : σ2 ∈ R

+} = Θ0

and

ḡ1(Θ1) = ḡ1({(β(rch)
2 , σ2) : β

(rch)
2 ∈ R

m2 − {0}, σ2 ∈ R
+})

= {(Γβ
(rch)
2 , σ2) : β

(rch)
2 ∈ R

m2 − {0}, σ2 ∈ R
+}

= {(β(rchΓ)
2 , σ2) : β

(rchΓ)
2 ∈ R

m2 − {0}, σ2 ∈ R
+} = Θ1.

To further reduce M1(Y ), observe that the test problem is also invariant under the group G2 of scale changes

g2(β̂
(rch)
2 , σ̂2

(rch)) = (cβ̂(rch)
2 , c2σ̂2

(rch)),

which induces the group Ḡ2 of parameter transformations

ḡ2(β
(rch)
2 , σ2) = (cβ(rch)

2 , c2σ2),

because of the transitions in distribution

β̂
(rch)
2 ∼ N(β(rch)

2 , σ2I) → c · β̂(rch)
2 ∼ N(cβ(rch)

2 , c2σ2I),

σ̂2
(rch) ∼ G((n − m)/2, 2σ2)/(n − m) → c2σ̂2 ∼ G((n − m)/2, 2c2σ2)/(n − m).

Next, we observe that

M1(g2(β̂
(rch)
2 , σ̂2

(rch))) = M1(cβ̂
(rch)
2 , c2σ̂2

(rch)) = (c2β̂
′(rch)
2 β̂

(rch)
2 , c2β̂) = ĝ2(M1(β̂

(rch)
2 , σ̂2

(rch)))

holds if

ĝ2(β̂
′(rch)
2 β̂

(rch)
2 , σ̂2

(rch)) = (c2β̂
′(rch)
2 β̂

(rch)
2 , c2σ̂2

(rch))
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defines the group Ĝ2 of scale changes. It follows from Theorem 2.6-2 that

M2(β̂
′(rch)
2 β̂

(rch)
2 , σ̂2

(rch)) =
β̂
′(rch)
2 β̂

(rch)
2

σ̂2
(rch)

is a maximal invariant under Ĝ2. Then, Theorem 2.8 implies that

M2(M1(β̂
(rch)
2 , σ̂2

(rch))) =
β̂
′(rch)
2 β̂

(rch)
2

σ̂2
(rch)

is the statistic maximally invariant under orthogonal transformations and scale changes. Since β̂
′(rch)
2 β̂

(rch)
2 /σ

has a non-central χ2-distribution with m2 degrees of freedom and (n−m)σ̂2
(rch)/σ2 a central χ2-distribution with

n − m degrees of freedom (both statistics being independently distributed), the maximal invariant M(Y ) :=
(n − m)β̂′(rch)

2 β̂
(rch)
2 /m2σ̂

2
(rch) is distributed as F (m2, n − m, λ) (see Koch, 1999, p. 130). The invariant test

problem is finally given by

M(Y ) =
β̂
′(rch)
2 β̂

(rch)
2

m2σ̂2
(rch)

∼ F (m2, n − m, λ) with λ = β
′(rch)
2 β

(rch)
2 /σ2

H0 : λ̄ = 0 against H1 : λ̄ > 0,

which is about one single unknown parameter (λ), a two-sided alternative hypothesis, and a test statistic whose
distribution has a monotone density ratio (see Theorem 2.5-6). Therefore, there exists a UMP test for the
invariance-reduced test problem (see Theorem 2.4) at level α, which is given by

φ(y) =

⎧⎨⎩ 1, if M(y) > k
F (m2,n−m)
1−α ,

0, if M(y) < k
F (m2,n−m)
1−α .

(3.2-159)

It follows that φ is the UMPI test for testing H0 : Hβ̄ = w versus H1 : Hβ̄ �= w in the original observation
model Y ∼ N

(
Xβ, σ2P−1

)
, in which the variance factor has been assumed to be unknown a priori.
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3.2.6 Back-substitution

The test statistic M(Y ) is inconvenient to compute as it comprises quantities transformed in multiple ways.
Therefore, we will express M(Y ) in terms of the original quantities of models (3.1-118) and (3.1-119). This
will be achieved in three steps reversing the transformations in 3.2.1-3.2.4, where each step covers a particular
equivalent form of the test problem often encountered in practice.

Case 1: σ̄2 = σ2
0 known.

Proposition 3.3. The invariant test statistic

M(Y ) = β̂
′(rch)
2 β̂

(rch)
2 /σ2

0 (3.2-160)

for the UMP test (3.2-158) (at level α) regarding the hypotheses

H0 : λ̄ = 0 versus H1 : λ̄ > 0, (3.2-161)

i.e. for the UMPI test (3.2-158) (at level α) regarding the original hypotheses H0 : Hβ̄ = w versus H1 : Hβ̄ �=
w, is identical to:

1. the test statistic

M(Y ) = β̂
′(rc)
2

(
N

(−1)
22

)−1

β̂
(rc)
2 /σ2

0 (3.2-162)

for the equivalent test problem

Y (ch) ∼ N
(
X

(rh)
1 β

(rc)
1 + X

(rh)
2 β

(rc)
2 , σ2

0I
)

(3.2-163)

H0 : β
(rc)
2 = 0 versus H1 : β

(rc)
2 �= 0, (3.2-164)

which we will call the problem of testing the significance of additional parameters β
(rc)
2 with

known variance factor σ2
0 , if the least squares estimator

β̂
(rc)
2 = N

(−1)
22 X

′(rh)
2 Y (ch) − N

(−1)
22 X

′(rh)
2 X

(rh)
1

(
X

′(rh)
1 X

(rh)
1

)−1

X
′(rh)
1 Y (ch) (3.2-165)

with residuals

Ê(rch) =
(

I − X
(rh)
1

(
X

′(rh)
1 X

(rh)
1

)−1

X
′(rh)
1

)(
Y (ch) − X

(rh)
2 β̂

(r)
2

)
(3.2-166)

is used. Whenever a test problem is naturally given in the form (3.2-163) and (3.2-164), i.e. by

Y ∼ N
(
X1β1 + X2β2, σ

2
0I
)

(3.2-167)

H0 : β2 = 0 versus H1 : β2 �= 0 (3.2-168)

which we will call the natural problem of testing the significance of additional parameters β2

with known variance factor σ2
0 , then all the indices are omitted, in which case the test statistic of the

UMPI test reads

M(Y ) = β̂′
2

(
N

(−1)
22

)−1

β̂2/σ2
0 (3.2-169)

with least squares estimator

β̂2 = N
(−1)
22 X ′

2Y − N
(−1)
22 X ′

2X1 (X ′
1X1)

−1
X ′

1Y (3.2-170)

and residuals

Ê =
(
I − X1 (X ′

1X1)
−1

X ′
1

)(
Y − X2β̂2

)
. (3.2-171)
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2. identical to the test statistic

M(Y ) =
(
β̂

(r)
2 − w

)′ (
N

(−1)
22

)−1 (
β̂

(r)
2 − w

)
/σ2

0 (3.2-172)

for the equivalent test problem

Y ∼ N
(
X

(r)
1 β

(r)
1 + X

(r)
2 β

(r)
2 , σ2

0P
−1
)

(3.2-173)

H0 : β
(r)
2 = w versus H1 : β

(r)
2 �= w (3.2-174)

if the least squares estimator

β̂
(r)
2 = N

(−1)
22 X

′(r)
2 PY − N

(−1)
22 X

′(r)
2 PX

(r)
1

(
X

′(r)
1 PX

(r)
1

)−1

X
′(r)
1 PY (3.2-175)

with residuals

Ê(r) =
(

I − X
(r)
1

(
X

′(r)
1 PX

(r)
1

)−1

X
′(r)
1 P

)(
Y − X

(r)
2 β̂

(r)
2

)
(3.2-176)

is used. Whenever a test problem is naturally given in the form (3.2-173) and (3.2-174), i.e. by

Y ∼ N
(
X1β1 + X2β2, σ

2
0P

−1
)

(3.2-177)

H0 : β2 = w versus H1 : β2 �= w (3.2-178)

then all the indices are omitted, in which case the test statistic of the UMPI test reads

M(Y ) =
(
β̂2 − w

)′ (
N

(−1)
22

)−1 (
β̂2 − w

)
/σ2

0 (3.2-179)

with least squares estimator

β̂2 = N
(−1)
22 X ′

2PY − N
(−1)
22 X ′

2PX1 (X ′
1PX1)

−1
X ′

1PY (3.2-180)

and residuals

Ê =
(
I − X1 (X ′

1PX1)
−1

X ′
1P
)(

Y − X2β̂2

)
. (3.2-181)

3. identical to the test statistic

M(Y ) = (Hβ̂ − w)′
(
H(A′PA)−1H ′)−1

(Hβ̂ − w)/σ2
0 , (3.2-182)

for the original test problem

Y ∼ N
(
Xβ, σ2

0P
−1
)

(3.2-183)

H0 : Hβ̄ = w versus H1 : Hβ̄ �= w (3.2-184)

if the least squares estimator

β̂ = (X ′PX)−1X ′PY (3.2-185)

with residuals

Ê = Y − Xβ̂ (3.2-186)

is used.

Proof. Part 1: Reversing the parameter homogenization by using (3.2-155) yields

M(Y ) = β̂
′(rch)
2 β̂

(rch)
2 /σ2

0 = β̂
′(rc)
2 G22G

′
22β̂

(rc)
2 /σ2

0 = β̂
′(rc)
2

(
N

(−1)
22

)−1

β̂
(rc)
2 /σ2

0 ,

which proves equality of (3.2-160) and (3.2-162). The hypotheses (3.2-161) and (3.2-164) have already been
shown to be equivalent by virtue of invariance of the hypotheses (Section 3.2.5, Case 1). Furthermore, (3.2-185)
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is the sufficient statistic in the observation model (3.2-163) introduced in Section 3.2.4.

Part 2: Reversing the data homogenization (3.2-137) to (3.2-151) results in

β̂
(rc)
2 = N

(−1)
22

(
X

′(r)
2 G − X

′(r)
2 GG′X(r)

1

(
X

′(r)
1 GG′X(r)

1

)−1

X
′(r)
1 G

)
G′Y (c)

= N
(−1)
22 X

′(r)
2 PY (c) − N

(−1)
22 X

′(r)
2 PX

(r)
1

(
X

′(r)
1 PX

(r)
1

)−1

X
′(r)
1 PY (c).

Using the non-centered observations (3.2-132) and the definition (3.2-152) of the Schur complement, we obtain

β̂
(rc)
2 = N

(−1)
22 X

′(r)
2 P

(
Y − X

(r)
2 w

)
− N

(−1)
22 X

′(r)
2 PX

(r)
1

(
X

′(r)
1 PX

(r)
1

)−1

X
′(r)
1 P

(
Y − X

(r)
2 w

)
= N

(−1)
22 X

′(r)
2 PY − N

(−1)
22 X

′(r)
2 PX

(r)
1

(
X

′(r)
1 PX

(r)
1

)−1

X
′(r)
1 PY

−N
(−1)
22

(
X

′(r)
2 PX

(r)
2 − X

′(r)
2 PX

(r)
1

(
X

′(r)
1 PX

(r)
1

)−1

X
′(r)
1 PX

(r)
2

)
w

= N
(−1)
22 X

′(r)
2 PY − N

(−1)
22 X

′(r)
2 PX

(r)
1

(
X

′(r)
1 PX

(r)
1

)−1

X
′(r)
1 PY − N

(−1)
22

(
N

(−1)
22

)−1

w

= β̂
(r)
2 − w.

From Proposition 3.2 it follows that β̂
(r)
2 is indeed the least squares estimator for β

(r)
2 in the partitioned ob-

servation model (3.2-173). Using this result, the test statistics 3.2-162) and (3.2-172) are identical if the least
squares estimators within the corresponding observation models are applied.

Part 3: As a first step towards proving the third part of the propostion we will now prove the identity(
N

(−1)
22

)−1

=
(
H(X ′PX)−1H ′)−1

.

Using the expression (3.2-127) for X we obtain

X ′PX = [ M ′ H ′ ]

⎡⎣ X
′(r)
1

X
′(r)
2

⎤⎦P
[
X

(r)
1 X

(r)
2

]⎡⎣ M

H

⎤⎦
= [ M ′ H ′ ]

⎡⎣ X
′(r)
1 PX

(r)
1 X

′(r)
1 PX

(r)
2

X
′(r)
2 PX

(r)
1 X

′(r)
2 PX

(r)
2

⎤⎦⎡⎣ M

H

⎤⎦ .

Inverting both sided yields

(X ′PX)−1 =

⎡⎣ M

H

⎤⎦−1 ⎡⎣ X
′(r)
1 PX

(r)
1 X

′(r)
1 PX

(r)
2

X
′(r)
2 PX

(r)
1 X

′(r)
2 PX

(r)
2

⎤⎦−1

[ M ′ H ′ ]−1
. (3.2-187)

It follows that⎡⎣ M

H

⎤⎦ (X ′PX)−1 [ M ′ H ′ ] =

⎡⎣ X
′(r)
1 PX

(r)
1 X

′(r)
1 PX

(r)
2

X
′(r)
2 PX

(r)
1 X

′(r)
2 PX

(r)
2

⎤⎦−1

.

After expanding the left side and introducing blocks of the total inverse, we have⎡⎣ M(X ′PX)−1M ′ M(A′PA)−1H ′

H(A′PA)−1M ′ H(A′PA)−1H ′

⎤⎦ =

⎡⎣ (X ′(r)
1 PX

(r)
1 )(−1) (X ′(r)

1 PX
(r)
2 )(−1)

(X ′(r)
2 PX

(r)
1 )(−1) (X ′(r)

2 PX
(r)
2 )(−1)

⎤⎦ .

Using the definition (3.2-152) of the Schur complement, the identity

H(X ′PX)−1H ′ =
(
X

′(r)
2 PX

(r)
2

)(−1)

= N
(−1)
22
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is seen to hold. Inversion of this equation provides us with the desired result(
H(X ′PX)−1H ′)−1

=
(
N

(−1)
22

)−1

(3.2-188)

In a second step we will prove the equality β̂
(r)
2 = Hβ̂. Using (3.2-127) and (3.2-187), the least squares estimator

(3.2-185) may be expressed as

β̂ =

⎡⎣ M

H

⎤⎦−1 ⎡⎣ X
′(r)
1 PX

(r)
1 X

′(r)
1 PX

(r)
2

X
′(r)
2 PX

(r)
1 X

′(r)
2 PX

(r)
2

⎤⎦−1

[ M ′ H ′ ]−1 [ M ′ H ′ ]

⎡⎣ X
′(r)
1

X
′(r)
2

⎤⎦PY

=

⎡⎣ M

H

⎤⎦−1 ⎡⎣ (X ′(r)
1 PX

(r)
1 )(−1) (X ′(r)

1 PX
(r)
2 )(−1)

(X ′(r)
2 PX

(r)
1 )(−1) (X ′(r)

2 PX
(r)
2 )(−1)

⎤⎦⎡⎣ X
′(r)
1

X
′(r)
2

⎤⎦PY . (3.2-189)

Now, the pre-multiplied version of this equation, that is,⎡⎣ M

H

⎤⎦ β̂ =

⎡⎣ (X ′(r)
1 PX

(r)
1 )(−1) (X ′(r)

1 PX
(r)
2 )(−1)

(X ′(r)
2 PX

(r)
1 )(−1) (X ′(r)

2 PX
(r)
2 )(−1)

⎤⎦⎡⎣ X
′(r)
1

X
′(r)
2

⎤⎦PY

clearly implies that

Hβ̂ =
[
(X ′(r)

2 PX
(r)
1 )(−1) (X ′(r)

2 PX
(r)
2 )(−1)

]⎡⎣ X
′(r)
1

X
′(r)
2

⎤⎦PY .

Observing that (X ′(r)
2 PX

(r)
2 )(−1) = N

(−1)
22 and using Equation 1.111 in Koch (1999, p. 33) to obtain the

expression

(X ′(r)
2 PX

(r)
1 )(−1) = −N

(−1)
22 X

′(r)
2 PX

(r)
1 (X ′(r)

1 PX
(r)
1 )−1

for the other block of the inverse, we obtain

Hβ̂ =
[
−N

(−1)
22 X

′(r)
2 PX

(r)
1 (X ′(r)

1 PX
(r)
1 )−1 N

(−1)
22

]⎡⎣ X
′(r)
1

X
′(r)
2

⎤⎦PY

= −N
(−1)
22 X

′(r)
2 PX

(r)
1 (X ′(r)

1 PX
(r)
1 )−1X

′(r)
1 PY + N

(−1)
22 X

′(r)
2 PY = β̂

(r)
2

according to (3.2-175). This proves that(
β̂

(r)
2 − w

)′ (
N

(−1)
22

)−1 (
β̂

(r)
2 − w

)
=
(
Hβ̂ − w

)′ (
H(X ′PX)−1H ′)−1

(
Hβ̂ − w

)
,

i.e. the statistics (3.2-182) and (3.2-172) are identical.



48 3 THEORY AND APPLICATIONS OF MISSPECIFICATION TESTS IN THE NORMAL GMM

Case 2: σ̄2 unknown.

Proposition 3.4. The invariant test statistic

M(Y ) = β̂
′(rch)
2 β̂

(rch)
2 /(m2σ̂

2
(rch)) (3.2-190)

for the UMP test (3.2-159) (at level α) regarding the hypotheses

H0 : λ̄ = 0 versus H1 : λ̄ > 0, (3.2-191)

i.e. for the UMPI test (3.2-159) (at level α) regarding the original hypotheses H0 : Hβ̄ = w versus H1 : Hβ̄ �=
w, is identical to:

1. the test statistic

M(Y ) = β̂
′(rc)
2

(
N

(−1)
22

)−1

β̂
(rc)
2 /(m2σ̂

2
(rch)) (3.2-192)

for the equivalent test problem

Y (ch) ∼ N
(
X

(rh)
1 β

(rc)
1 + X

(rh)
2 β

(rc)
2 , σ2I

)
(3.2-193)

H0 : β
(rc)
2 = 0 versus H1 : β

(rc)
2 �= 0, (3.2-194)

which we will call the problem of testing the significance of additional parameters β
(rc)
2 with

unknown variance factor, if the least squares estimators

β̂
(rc)
2 = N

(−1)
22 X

′(rh)
2 Y (ch) − N

(−1)
22 X

′(rh)
2 X

(rh)
1

(
X

′(rh)
1 X

(rh)
1

)−1

X
′(rh)
1 Y (ch) (3.2-195)

σ̂2
(rch) = Ê′(rch)Ê(rch)/(n − m) (3.2-196)

with residuals

Ê(rch) =
(

I − X
(rh)
1

(
X

′(rh)
1 X

(rh)
1

)−1

X
′(rh)
1

)(
Y (ch) − X

(rh)
2 β̂

(r)
2

)
(3.2-197)

are used. Whenever a test problem is naturally given in the form (3.2-193) and (3.2-194), i.e. by

Y ∼ N
(
X1β1 + X2β2, σ

2I
)

(3.2-198)

H0 : β2 = 0 versus H1 : β2 �= 0, (3.2-199)

which we will call the natural problem of testing the significance of additional parameters β2

with unknown variance factor, then all the indices are omitted, in which case the test statistic of the
UMPI test reads

M(Y ) = β̂′
2

(
N

(−1)
22

)−1

β̂2/(m2σ̂
2) (3.2-200)

with least squares estimators

β̂2 = N
(−1)
22 X ′

2Y − N
(−1)
22 X ′

2X1 (X ′
1X1)

−1
X ′

1Y (3.2-201)

σ̂2 = Ê′Ê/(n − m) (3.2-202)

and residuals

Ê =
(
I − X1 (X ′

1X1)
−1

X ′
1

)(
Y − X2β̂2

)
. (3.2-203)

2. identical to the test statistic

M(Y ) =
(
β̂

(r)
2 − w

)′ (
N

(−1)
22

)−1 (
β̂

(r)
2 − w

)
/(m2σ̂

2
(r)) (3.2-204)
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for the equivalent test problem

Y ∼ N
(
X

(r)
1 β

(r)
1 + X

(r)
2 β

(r)
2 , σ2P−1

)
(3.2-205)

H0 : β
(r)
2 = w versus H1 : β

(r)
2 �= w (3.2-206)

if the least squares estimators

β̂
(r)
2 = N

(−1)
22 X

′(r)
2 PY − N

(−1)
22 X

′(r)
2 PX

(r)
1

(
X

′(r)
1 PX

(r)
1

)−1

X
′(r)
1 PY (3.2-207)

σ̂2
(r) = Ê′(r)PÊ(r)/(n − m) (3.2-208)

with residuals

Ê(r) =
(

I − X
(r)
1

(
X

′(r)
1 PX

(r)
1

)−1

X
′(r)
1 P

)(
Y − X

(r)
2 β̂

(r)
2

)
(3.2-209)

are used. Whenever a test problem is naturally given in the form (3.2-205) and (3.2-206), i.e. by

Y ∼ N
(
X1β1 + X2β2, σ

2P−1
)

(3.2-210)

H0 : β2 = w versus H1 : β2 �= w (3.2-211)

then all the indices are omitted, in which case the test statistic of the UMPI test reads

M(Y ) =
(
β̂2 − w

)′ (
N

(−1)
22

)−1 (
β̂2 − w

)
/(m2σ̂

2) (3.2-212)

with least squares estimators

β̂2 = N
(−1)
22 X ′

2PY − N
(−1)
22 X ′

2PX1 (X ′
1PX1)

−1
X ′

1PY (3.2-213)

σ̂2 = Ê′PÊ/(n − m) (3.2-214)

and residuals

Ê =
(
I − X1 (X ′

1PX1)
−1

X ′
1P
)(

Y − X2β̂2

)
. (3.2-215)

3. identical to the test statistic

M(Y ) = (Hβ̂ − w)′
(
H(X ′PX)−1H ′)−1

(Hβ̂ − w)/(m2σ̂
2), (3.2-216)

for the original test problem

Y ∼ N
(
Xβ, σ2P−1

)
(3.2-217)

H0 : Hβ̄ = w versus H1 : Hβ̄ �= w (3.2-218)

if the least squares estimators

β̂ = (X ′PX)−1X ′PY (3.2-219)

σ̂2 = Ê′PÊ/(n − m) (3.2-220)

with residuals

Ê = Y − Xβ̂ (3.2-221)

are used.
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Proof. Part 1: Reversing the parameter homogenization by using (3.2-155) yields

M(Y ) = β̂
′(rch)
2 β̂

(rch)
2 /(m2σ̂

2
(rch)) = β̂

′(rc)
2 G22G

′
22β̂

(rc)
2 /(m2σ̂

2
(rch)) = β̂

′(rc)
2

(
N

(−1)
22

)−1

β̂
(rc)
2 /(m2σ̂

2
(rch)),

which proves equality of (3.2-190) and (3.2-192). The hypotheses (3.2-191) and (3.2-194) have already been
shown to be equivalent by virtue of invariance of the hypotheses (Section 3.2.5, Case 2). In addition, (3.2-219)
and (3.2-220) are the sufficient statistics in the observation model (3.2-193) introduced in Section 3.2.4.

Part 2: In Part 2 of the proof of Proposition 3.3, it was already shown that β̂
(rc)
2 = β̂

(r)
2 − w. Now we

show in addition that σ̂2
(ch) = σ̂2. Reversing the homogenization (3.2-137), centering (3.2-132), and the result

β̂
(rc)
2 = β̂

(r)
2 − w, the residuals (3.2-154) may be rewritten as

Ê(rch) =
(

I − P
1
2 X

(r)
1

(
X

′(r)
1 PX

(r)
1

)−1

X
′(r)
1 P ′ 12

)(
P

1
2 (Y − X

(r)
2 w) − P

1
2 X

(r)
2 (β̂(r)

2 − w)
)

=
(

I − P
1
2 X

(r)
1

(
X

′(r)
1 PX

(r)
1

)−1

X
′(r)
1 P ′ 12

)
P

1
2

(
Y − X

(r)
2 w − X

(r)
2 β̂

(r)
2 + X

(r)
2 w)

)
= P

1
2

(
I − X

(r)
1

(
X

′(r)
1 PX

(r)
1

)−1

X
′(r)
1 P

)(
Y − X

(r)
2 β̂

(r)
2

)
= P

1
2 Ê(r).

Therefore, σ̂2
(rch) = Ê′(rch)Ê(rch)/(n − m) = Ê′(r)PÊ(r)/(n − m) = σ̂2. In other words, the estimator for

the variance of unit weight is not affected by transformations that involve centering or homogenization of the
observation model. Proposition 3.2 shows that σ̂2

(r) is the least squares estimator of σ2. Using the above
equalities, the test statistics 3.2-192) and (3.2-204) are identical if the least squares estimators within the
corresponding observation models are applied.

Part 3: In addition to the result given by Part 3 of the proof of Proposition 3.3, it remains to prove that
also σ̂2 = σ̂2

(r). From the equivalent expressions (3.2-189) and (3.2-127) for the least squares estimator (3.2-219)
and X, respectively, it follows that

Ê = Y − Xβ̂

= Y −
[
X

(r)
1 X

(r)
2

]⎡⎣M

H

⎤⎦⎡⎣M

H

⎤⎦−1 ⎡⎣ (X ′(r)
1 PX

(r)
1 )(−1) (X ′(r)

1 PX
(r)
2 )(−1)

(X ′(r)
2 PX

(r)
1 )(−1) (X ′(r)

2 PX
(r)
2 )(−1)

⎤⎦⎡⎣ X
′(r)
1

X
′(r)
2

⎤⎦PY

= Y −
[
X

(r)
1 (X ′(r)

1 PX
(r)
1 )(−1)X

′(r)
1 + X

(r)
2 (X ′(r)

2 PX
(r)
1 )(−1)X

′(r)
1 + X

(r)
1 (X ′(r)

1 PX
(r)
2 )(−1)X

′(r)
2

+ X
(r)
2 N

(−1)
22 X

′(r)
2

]
PY

Using the identity relations (Equation 1.111 in Koch, 1999, p. 33) for submatrices of the inverse of a 2×2-block
matrix, we obtain

Ê = Y − X
(r)
1

[
(X ′(r)

1 PX
(r)
1 )−1 + (X ′(r)

1 PX
(r)
1 )−1X

′(r)
1 PX

(r)
2 N

(−1)
22 X

′(r)
2 PX

(r)
1 (X ′(r)

1 PX
(r)
1 )−1

]
×X

′(r)
1 PY + X

(r)
2 N

(−1)
22 X

′(r)
2 PX

(r)
1 (X ′(r)

1 PX
(r)
1 )−1X

′(r)
1 PY

+X
(r)
1 (X ′(r)

1 PX
(r)
1 )−1X

′(r)
1 PX

(r)
2 N

(−1)
22 X

′(r)
2 PY − X

(r)
2 N

(−1)
22 X

′(r)
2 PY

= Y − X
(r)
1 (X ′(r)

1 PX
(r)
1 )−1X

′(r)
1 PY

−X
(r)
2

(
N

(−1)
22 X

′(r)
2 PY − N

(−1)
22 X

′(r)
2 PX

(r)
1 (X ′(r)

1 PX
(r)
1 )−1X

′(r)
1 PY

)
+X

(r)
1 (X ′(r)

1 PX
(r)
1 )−1X

′(r)
1 PX

(r)
2

(
N

(−1)
22 X

′(r)
2 PY − N

(−1)
22 X

′(r)
2 PX

(r)
1 (X ′(r)

1 PX
(r)
1 )−1X

′(r)
1 PY

)
=
(

I − X
(r)
1

(
X

′(r)
1 PX

(r)
1

)−1

X
′(r)
1 P

)(
Y − X

(r)
2 β̂

(r)
2

)
= Ê(r)

according to (3.2-153). This proves that the reparameterization does not affect the estimator of the residuals.
Due to σ̂2 = Ê′PÊ/(n−m) = Ê′(r)PÊ(r)/(n−m) = σ̂2

(r), the reparameterization does not change the estimator
of the variance factor either. This completes the proof of(

β̂
(r)
2 − w

)′ (
N

(−1)
22

)−1 (
β̂

(r)
2 − w

)
/(mσ̂2

(r)) =
(
Hβ̂ − w

)′ (
H(X ′PX)−1H ′)−1

(
Hβ̂ − w

)
(mσ̂2).
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3.2.7 Equivalent forms of the UMPI test concerning parameters of the functional model

We will now prove that the Generalized Likelihood Ratio test is equivalent to the UMPI test if the set of
linear restrictions is tested. We will restrict attention to the problem of testing the significance of additional

parameters (Case 1 of Proposition 3.3), knowing that if the test problem naturally involves a set of linear
restrictions (3.2-124) (Case 3 of Proposition 3.3), it may be transformed into the first form.

Case 1: σ̄2 = σ2
0 known.

Proposition 3.5. For testing H0 : β2 = 0 versus H1 : β2 �= 0 in the (possibly reparameterized, centered and
homogenized) linear model Y ∼ N(X1β1 + X2β2, σ

2
0I), the statistic (3.2-162) with

M(Y ) = β̂′
2

(
X ′

2X2 − X ′
2X1 (X ′

1X1)
−1

X ′
1X2

)
β̂2/σ2

0 (3.2-222)

of the UMPI test (3.2-158) is identical to:

1. the Likelihood Ratio statistic (2.5-99) with

TLR(Y ) = −2
(
L(β̃1, β̃2; Y ) − L(β̂1, β̂2; Y )

)
, (3.2-223)

2. Rao’s Score statistic (2.5-115) with

TRS(Y ) = Ũ ′X2

(
X ′

2X2 − X ′
2X1(X ′

1X1)−1X ′
1X2

)−1
X ′

2Ũ/σ2
0 , (3.2-224)

if the least squares estimators β̃1 (under the restrictions of H0) and β̂1, β̂2 (unrestricted) are used.

Proof. Part 1: The GLR/LR test compares, on the basis of given data, the likelihood of the observation model
under H0 to that of the model under H1. If H0 is true, then the above observation model is a Gauss-Markov
model with restrictions β2 = 0. As this restricted model may also be written as Y ∼ N(X1β1, σ

2
0I), the

restricted least squares estimators are given by

X ′
1X1β̃1 = X ′

1Y , (3.2-225)

β̃2 = 0. (3.2-226)

If, on the other hand, H1 is true, then the observation model constitutes an unrestricted Gauss-Markov model,
and the unrestricted least squares estimators read

X ′
1X1β̂1 + X ′

1X2β̂2 = X ′
1Y , (3.2-227)

X ′
2X1β̂1 + X ′

2X2β̂2 = X ′
2Y . (3.2-228)

Koch (1999, p. 161) proved that, due to the normal distribution of the observations, these least squares estimators
are identical to the maximum likelihood estimators. Therefore, the GLR becomes, according to (2.5-94),

GLR(Y ) =
L(β̃1,0; Y )

L(β̂1, β̂2; Y )
=

(
2πσ2

0

)−n/2 exp
{
− 1

2σ2
0
(Y − X1β̃1 − X2β̃2)′(Y − X1β̃1 − X2β̃2)

}
(
2πσ2

0

)−n/2 exp
{
− 1

2σ2
0
(Y − X1β̂1 − X2β̂2)′(Y − X1β̂1 − X2β̂2)

}
=

exp
{
− 1

2σ2
0

(
Y ′Y − 2β̃′

1X
′
1Y − 2β̃′

2X
′
2Y + β̃′

1X
′
1X1β̃1 + 2β̃′

2X
′
2X1β̃1 + β̃′

2X
′
2X2β̃2

)}
exp
{
− 1

2σ2
0

(
Y ′Y − 2β̂′

1X
′
1Y − 2β̂′

2X
′
2Y + β̂′

1X
′
1X1β̂1 + 2β̂′

2X
′
2X1β̂1 + β̂′

2X
′
2X2β̂2

)}
= exp

{
− 1

2σ2
0

(
−2β̃′

1X
′
1Y − 2β̃′

2X
′
2Y + β̃′

1X
′
1X1β̃1 + 2β̃′

2X
′
2X1β̃1 + β̃′

2X
′
2X2β̃2

+2β̂′
1X

′
1Y + 2β̂′

2X
′
2Y − β̂′

1X
′
1X1β̂1 − 2β̂′

2X
′
2X1β̂1 − β̂′

2X
′
2X2β̂2

)}
.

Notice now that 2β̂′
2X

′
2Y equals 2β̂′

2 times (3.2-228). Substitution of this and of (3.2-226) yields

GLR(Y ) = exp
{
− 1

2σ2
0

(
−2β̃′

1X
′
1Y + β̃′

1X
′
1X1β̃1 + 2β̂′

1X
′
1Y + 2β̂′

2X
′
2X1β̂1 + 2β̂′

2X
′
2X2β̂2

−β̂′
1X

′
1X1β̂1 − 2β̂′

2X
′
2X1β̂1 − β̂′

2X
′
2X2β̂2

)}
= exp

{
− 1

2σ2
0

(
−2β̃′

1X
′
1Y + β̃′

1X
′
1X1β̃1 + 2β̂′

1X
′
1Y − β̂′

1X
′
1X1β̂1 + β̂′

2X
′
2X2β̂2

)}
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Then, substitution of β̃1 = (X ′
1X1)−1X ′

1Y from (3.2-225) and β̂1 = (X ′
1X1)−1(X ′

1Y −X ′
1X2β̂2) from (3.2-227)

leads to

GLR(Y ) = exp
{
− 1

2σ2
0

(−2Y ′X1(X ′
1X1)−1X ′

1Y + Y ′X1(X ′
1X1)−1X ′

1X1(X ′
1X1)−1X ′

1Y

+2(X ′
1Y − X ′

1X2β̂2)′(X ′
1X1)−1X ′

1Y − (X ′
1Y − X ′

1X2β̂2)′(X ′
1X1)−1X ′

1X1(X ′
1X1)−1

×(X ′
1Y − X ′

1X2β̂2) + β̂′
2X

′
2X2β̂2

)}
= exp

{
− 1

2σ2
0

(
β̂′

2X
′
2X2β̂2 − β̂′

2X
′
2X1(X ′

1X1)−1X ′
1X2β̂2

)}
= exp

{
− 1

2σ2
0

β̂′
2

(
X ′

2X2 − X ′
2X1(X ′

1X1)−1X ′
1X2

)
β̂2

}
.

Using definitions (2.5-95) and (2.5-99), the LR statistic

TLR(Y ) = −2 lnGLR(Y ) =
1
σ2

0

β̂′
2

(
X ′

2X2 − X ′
2X1(X ′

1X1)−1X ′
1X2

)
β̂2.

is indeed equal to M(Y ).

Part 2: The RS test determines whether the estimates for the Gauss-Markov model with restrictions (valid under
H0) satisfy the likelihood equations for the unrestricted Gauss-Markov model (valid under H1). Therefore, we
must first determine log-likelihood function of the unrestricted model, which is given by

L(β1, β2; Y ) = ln
[(

2πσ2
0

)−n/2
exp
{
− 1

2σ2
0

(Y − X1β1 − X2β2)′(Y − X1β1 − X2β2)
}]

= −n

2
ln(2πσ2

0) − 1
2σ2

0

(Y − X1β1 − X2β2)′(Y − X1β1 − X2β2).

From this, the log-likelihood score (2.5-111) follows to be

S(β1, β2; Y ) =

⎡⎢⎣ ∂L(β1, β1; Y )
∂β1

∂L(β1, β1; Y )
∂β2

⎤⎥⎦ =
1
σ2

0

⎡⎣ X ′
1(Y − X1β1 − X2β2)

X ′
2(Y − X1β1 − X2β2)

⎤⎦
Evaluating the score at the restricted least squares estimators β̃1 = (X ′

1X1)−1X ′
1Y and β̃2 = 0 as in (3.2-225)

and (3.2-226), and using the corresponding residuals Ũ = Y − X1β̃1, yields

S(β̃1,0; Y ) =
1
σ2

0

⎡⎣ X ′
1(Y − X1β̃1)

X ′
2(Y − X1β̃1)

⎤⎦ =
1
σ2

0

⎡⎣ 0

X ′
2ũ

⎤⎦
The Hessian and the information of Y are then

H(β1, β2; Y ) =

⎡⎢⎣ ∂2L(β1, β2; Y )
∂β1∂β′

1

∂2L(β1, β2; Y )
∂β1∂β′

2
∂2L(β1, β2; Y )

∂β2∂β′
1

∂2L(β1, β2; Y )
∂β2∂β′

2

⎤⎥⎦ = − 1
σ2

0

⎡⎣ X ′
1X1 X ′

1X2

X ′
2X1 X ′

2X2

⎤⎦
and

I(β1, β2; Y ) = Eβ1,β2 {−H(β1, β2; Y )} =
1
σ2

0

⎡⎣ X ′
1X1 X ′

1X2

X ′
2X1 X ′

2X2

⎤⎦ .
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Now, using the definition of the RS statistic (2.5-115), we obtain

TRS =
1
σ2

0

⎡⎣ 0

X ′
2Ũ

⎤⎦′ ⎡⎣ X ′
1X1 X ′

1X2

X ′
2X1 X ′

2X2

⎤⎦−1 ⎡⎣ 0

X ′
2Ũ

⎤⎦
=

1
σ2

0

[
0′ Ũ ′X2

]⎡⎣ (X ′
1X1)(−1) (X ′

1X2)(−1)

(X ′
2X1)(−1) (X ′

2X2)(−1)

⎤⎦⎡⎣ 0

X ′
2Ũ

⎤⎦
=

1
σ2

0

Ũ ′X2N
(−1)
22 X ′

2Ũ

=
1
σ2

0

Ũ ′X2

(
X ′

2X2 − X ′
2X1(X ′

1X1)−1X ′
1X2

)−1
X ′

2Ũ ,

where we used the Schur complement as defined in (3.2-152). The statistic TRS is defined in terms of the
restricted estimates β̃1 through the residuals ũ. On the other hand, M is a function of unrestricted estimates
β̂2. To show that both statistics are identical, we will use (3.2-225) - (3.2-228) to express M as a function of
β̃1. The first step is to combine (3.2-225) and (3.2-227), which yields

X ′
1X1β̂1 + X ′

1X2β̂2 = X ′
1X1β̃1,

which in turn implies that

β̂1 = β̃1 − (X ′
1X1)−1X ′

1X2β̂2.

Substitution of this result into (3.2-228) gives

X ′
2X1

(
β̃1 − (X ′

1X1)−1X ′
1X2β̂2

)
+ X ′

2X2β̂2 = X ′
2Y ,

or, after rearranging terms,(
X ′

2X2 − X ′
2X1(X ′

1X1)−1X ′
1X2

)
β̂2 = X ′

2Y − X ′
2X1β̃1,

and finally

β̂2 =
(
X ′

2X2 − X ′
2X1(X ′

1X1)−1X ′
1X2

)−1
X ′

2(Y − X1β̃1)

= N
(−1)
22 X ′

2Ũ .

Now we can rewrite the statistic M as

M(Y ) = β̂′
2

(
N

(−1)
22

)−1

β̂2/σ2
0 = Ũ ′X2N

(−1)
22

(
N

(−1)
22

)−1

N
(−1)
22 X ′

2Ũ = Ũ ′X2N
(−1)
22 X ′

2Ũ ,

which completes the proof that M = TRS .
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Case 2: σ̄2 unknown.

Proposition 3.6. For testing H0 : β2 = 0 versus H1 : β2 �= 0 in the (possibly reparameterized, centered
and homogenized) linear model Y ∼ N(X1β1 + X2β2, σ

2I), the UMPI test (3.2-159), based on the statistic
(3.2-192) with

M(Y ) = β̂′
2

(
X ′

2X2 − X ′
2X1 (X ′

1X1)
−1

X ′
1X2

)
β̂2/(m2σ̂

2) (3.2-229)

is equivalent to:

1. the Likelihood Ratio test (2.5-100), based on the statistic (2.5-94) with

TLR(Y ) = n ln
(

1 +
m2

n − m
M(Y )

)
, (3.2-230)

2. Rao’s Score test, based on the statistic (2.5-115) with

TRS(Y ) = Ũ ′X2

(
X ′

2X2 − X ′
2X1(X ′

1X1)−1X ′
1X2

)−1
X ′

2Ũ/σ̃2
ML (3.2-231)

= n
m2

n−mM(Y )
1 + m2

n−mM(Y )
(3.2-232)

if the maximum likelihood estimators β̃1, σ̃2 (under the restriction of H0) and β̂1, β̂2, σ̂2 (unrestricted) are
used.

Proof. Part 1: The only difference to Part 1 of Proposition 3.5 is that the variance factor must be estimated
here in addition to the functional paramaters. Now, if H0 is true, then the observation model is a Gauss-Markov
model with restrictions, which may be written in the simple form Y ∼ N(X1β1, σ

2I). The restricted least
squares estimators are given by

X ′
1X1β̃1 = X ′

1Y , (3.2-233)

β̃2 = 0, (3.2-234)

σ̃2 = (Y − X1β̃1)′(Y − X1β̃1)/(n − m1). (3.2-235)

Notice that the estimators (3.2-233) and (3.2-234) (when the variance factor is unknown) are exactly the same
as the estimators (3.2-225) and (3.2-226) (when the variance factor is known). The alternative observation
model (under H1) reads Y ∼ N(X1β1 + X2β2, σ

2I), for which the least squares estimators are given by

X ′
1X1β̂1 + X ′

1X2β̂2 = X ′
1Y , (3.2-236)

X ′
2X1β̂1 + X ′

2X2β̂2 = X ′
2Y , (3.2-237)

σ̂2 = (Y − X1β̂1 − X2β̂2)′(Y − X1β̂1 − X2β̂2)/(n − m). (3.2-238)

Again, the fact that σ2 must be estimated does not affect the structure of the estimators for β1 and β2.
Consequently, the estimators (3.2-236) and (3.2-237) of the current model are identical to (3.2-227) and (3.2-228)
of the model with known variance factor. It will also be useful to note that the variance estimators (3.2-235)
and (3.2-238) are divided by different scaling factors or degrees of freedom (m1 and m, respectively) in light
of the fact that the functional models under H0 and H1 have different numbers of functional parameters (m1

parameters β1 and m = m1 + m2 parameters [ β′
1 β′

2 ], respectively).
As in Part 1 of Proposition 3.5, the least squares estimators (3.2-233), (3.2-234), (3.2-236) and (3.2-237) for

the parameters of the functional model are exactly the same as the maximum likelihood estimators. However, as
far as the estimation of σ2 is concerned, Koch (1999, p. 162) shows that the (unbiased) least squares estimators
(3.2-235) and (3.2-238) differ from the corresponding (biased) maximum likelihood estimators, given by

σ̃2
ML = (Y − X1β̃1)′(Y − X1β̃1)/n (3.2-239)

for the observation model under H0, and

σ̂2
ML = (Y − X1β̂1 − X2β̂2)′(Y − X1β̂1 − X2β̂2)/n (3.2-240)

for the alternative observation model under H1. However, if these maximum likelihood estimators are adjusted
such that the scaling factor n is replaced in each case by the correct degree of freedom, then we obtain the
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least squares estimators (3.2-235) and (3.2-238), which we might call the bias-corrected maximum likelihood

estimators of σ2.
After these preliminary remarks, we may evaluate the Generalized Likelihood Ratio, that is,

GLR(Y ) =
L(β̃1,0, σ̃2; Y )

L(β̂1, β̂2, σ̂
2; Y )

=

(
2πσ̃2

ML

)−n/2 exp
{
− 1

2�σ2
ML

(Y − X1β̃1 − X20)′(Y − X1β̃1 − X20)
}

(
2πσ̂2

ML

)−n/2 exp
{
− 1

2�σ2
ML

(Y − X1β̂1 − X2β̂2)′(Y − X1β̂1 − X2β̂2)
}

=
(

σ̃2
ML

σ̂2
ML

)−n/2

exp
{
− 1

2σ̃2
ML

nσ̃2
ML +

1
2σ̂2

ML

nσ̂2
ML

}
=
(

σ̃2
ML

σ̂2
ML

)−n/2

.

By virtue of the definitions (2.5-95) and (2.5-99) regarding the Likelihood Ratio statistic, we obtain

TLR = −2 lnGLR(Y ) = −2 ln
(

σ̃2
ML

σ̂2
ML

)−n/2

= n ln
(

σ̃2
ML

σ̂2
ML

)
. (3.2-241)

We will now prove that n ln(1 + m2
n−mM) = n ln

(
�σ2

ML

�σ2
ML

)
or, equivalently, that 1 + m2

n−mM = �σ2
ML

�σ2
ML

.

1 +
m2

n − m
M = 1 +

m2

n − m
β̂′

2

(
X ′

2X2 − X ′
2X1 (X ′

1X1)
−1

X ′
1X2

)
β̂2/(m2σ̂

2)

= 1 + β̂′
2

(
X ′

2X2 − X ′
2X1 (X ′

1X1)
−1

X ′
1X2

)
β̂2/((n − m)σ̂2).

Using the equality (n − m)σ̂2 = nσ̂2
ML, we obtain

1 +
m2

n − m
M =

1
nσ̂2

ML

{
nσ̂2

ML + β̂′
2

(
X ′

2X2 − X ′
2X1 (X ′

1X1)
−1

X ′
1X2

)
β̂2

}
=

1
nσ̂2

ML

{
(Y − X1β̂1 − X2β̂2)′(Y − X1β̂1 − X2β̂2)

+β̂′
2

(
X ′

2X2 − X ′
2X1 (X ′

1X1)
−1

X ′
1X2

)
β̂2

}
.

Observe now that the equality 2β̂′
2X

′
2Y = 2β̂′

2X
′
2X1β̂1 + 2β̂′

2X
′
2X2β̂2 when (3.2-237) is multiplied by 2β̂′

2, so
that some of terms cancel out, leading to

1 +
m2

n − m
M =

1
nσ̂2

ML

{
Y ′Y − 2Y ′X1β̂1 + β̂′

1X
′
1X1β̂1 − β̂′

2X
′
2X1 (X ′

1X1)
−1

X ′
1X2β̂2

}
.

Notice that, by using (3.2-233), (3.2-236) may be rewritten as β̂1 = (X ′
1X1)−1(X ′

1Y − X ′
1X2β̂2) = β̃1 −

(X ′
1X1)

−1
X ′

1X2β̂2. Substitution of this expression allows for the simplification

1 +
m2

n − m
M =

1
nσ̂2

ML

{
Y ′Y − 2Y ′X1

[
β̃1 − (X ′

1X1)
−1

X ′
1X2β̂2

]
+
[
β̃′

1 − β̂′
2X

′
2X1 (X ′

1X1)
−1
]

×X ′
1X1

[
β̃1 − (X ′

1X1)
−1

X ′
1X2β̂2

]
− β̂′

2X
′
2X1 (X ′

1X1)
−1

X ′
1X2β̂2

}
=

1
nσ̂2

ML

{
Y ′Y − 2Y ′X1β̃1 + β̃′

1X
′
1X1β̃1

}
=

1
nσ̂2

ML

(
Y − X1β̃1

)′ (
Y − X1β̃1

)
=

nσ̃2
ML

nσ̂2
ML

.

From this follows directly the desired equality n ln(1 + m2
n−mM) = n ln

(
�σ2

ML

�σ2
ML

)
= TLR. The LR test is truly

equivalent to the UMPI test because TLR is seen to be a strictly monotonically increasing function of M .
Therefore, if the UMPI test is based on the statistic TLR(Y ) instead of M(Y ), then the critical value may be
transformed accordingly by this function, and the transformed region of rejection is equivalent to the original
region.

The difference between Case 1 (σ2 known a priori) and Case 2 (σ2 unknown) is that, in the first case,
the test statistics TLR(Y ) and M(Y ), hence their distributions, therefore also the region of rejection remains
unchanged, while in the second case, all of these quantities do change, but remain equivalent.
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Part 2: From the log-likelihood function

L(β1, β2, σ
2; Y ) = ln

[(
2πσ2

)−n
2 exp

{
− 1

2σ2
(Y − X1β1 − X2β2)′(Y − X1β1 − X2β2)

}]
= −n

2
ln(2πσ2) − 1

2σ2
(Y − X1β1 − X2β2)′(Y − X1β1 − X2β2).

of the observation model (including both H0 and H1), the log-likelihood score is derived as

S(β1, β2, σ
2; Y ) =

⎡⎢⎢⎢⎢⎣
∂L(β1, β1, σ

2; Y )
∂β1

∂L(β1, β1, σ
2; Y )

∂β2
∂L(β1, β1, σ

2; Y )
∂σ2

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1

σ2 X ′
1 (Y − X1β1 − X2β2)

1
σ2 X ′

2 (Y − X1β1 − X2β2)

− n
2σ2 + 1

2σ4 (Y − X1β1 − X2β2)
′ (Y − X1β1 − X2β2)

⎤⎥⎥⎥⎦ .

If U = Y − X1β1 − X2β2 denote the residuals, the Hessian and the information matrix read

H(β1, β2, σ
2; Y ) =

⎡⎢⎢⎢⎢⎢⎣
∂2L(β1, β2, σ

2; Y )
∂β1∂β′

1

∂2L(β1, β2, σ
2; Y )

∂β1∂β′
2

∂2L(β1, β2, σ
2; Y )

∂β1∂σ2

∂2L(β1, β2, σ
2; Y )

∂β2∂β′
1

∂2L(β1, β2, σ
2; Y )

∂β2∂β′
2

∂2L(β1, β2, σ
2; Y )

∂β2∂σ2

∂2L(β1, β2, σ
2; Y )

∂σ2∂β1

∂2L(β1,β2,σ2;Y )

∂σ2∂β2

∂2L(β1, β2, σ
2; Y )

∂σ2∂σ2

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
− 1

σ2 X ′
1X1 − 1

σ2 X ′
1X2 − 1

σ4 X ′
1U

− 1
σ2 X ′

2X1 − 1
σ2 X ′

2X2 − 1
σ4 X ′

2U

− 1
σ4 U ′X1 − 1

σ4 U ′X2
n

2σ4 − 1
σ6 U ′U

⎤⎥⎥⎥⎦
and

I(β1, β2, σ
2; Y ) = E

{−H(β1, β2, σ
2; Y )

}

=

⎡⎢⎢⎢⎣
1
σ2 X ′

1X1
1

σ2 X ′
1X2

1
σ4 X ′

1E{U}
1
σ2 X ′

2X1
1

σ2 X ′
2X2

1
σ4 X ′

2E{U}
1

σ4 E{U ′}X1
1

σ4 E{U ′}X2 − n
2σ4 + 1

σ6 E{U ′U}

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1

σ2 X ′
1X1

1
σ2 X ′

1X2 0
1

σ2 X ′
2X1

1
σ2 X ′

2X2 0

0 0 n
2σ4

⎤⎥⎥⎥⎦ ,

where E{U} = 0 and E{U ′U} = nσ2 by virtue of the Markov conditions. From the definition of Rao’s Score
statistic (), we obtain

TRS(Y ) = S ′(β̃1, β̃2, σ̃
2; Y )I−1(β̃1, β̃2, σ̃

2; Y )S(β̃1, β̃2, σ̃
2; Y )

=

⎡⎢⎢⎢⎣
0

1
�σ2

ML
X ′

2Ũ

0

⎤⎥⎥⎥⎦
′ ⎡⎢⎢⎢⎣

1
�σ2

ML
X ′

1X1
1

�σ2
ML

X ′
1X2 0

1
�σ2

ML
X ′

2X1
1

�σ2
ML

X ′
2X2 0

0 0 n
2�σ4

ML

⎤⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

0
1

�σ2
ML

X ′
2Ũ

0

⎤⎥⎥⎥⎦
=

1
σ̃2

ML

Ũ ′X2(X ′
2X2)(−1)X ′

2Ũ

= Ũ ′X2

(
X ′

2X2 − X ′
2X1(X ′

1X1)−1X ′
1X2

)−1
X ′

2Ũ/σ̃2
ML.

as proposed in (3.2-231). To prove (3.2-232), rewrite TRS as

TRS(Y ) =
1

σ̃2
ML

(
Y − X1β̃1

)′
X2N

(−1)
22 X ′

2

(
Y − X1β̃1

)
=

1
σ̃2

ML

(
X ′

2Y − X ′
2X1β̃1

)′
N

(−1)
22

(
X ′

2Y − X ′
2X1β̃1

)
,

substitute (3.2-233) for β̃1, that is,

TRS(Y ) =
1

σ̃2
ML

(
X ′

2Y − X ′
2X1(X ′

1X1)−1X ′
1Y
)′

N
(−1)
22

(
N

(−1)
22

)−1

N
(−1)
22

(
X ′

2Y − X ′
2X1(X ′

1X1)−1X ′
1Y
)
.
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Substitution of β̂2 as given in (3.2-201) yields

TRS(Y ) =
1

σ̃2
ML

β̂′
2

(
N

(−1)
22

)−1

β̂2.

From Part 1 of the current proof, we already know that 1 + m2
n−mM(Y ) = σ̃2

ML/σ̂2
ML. Isolation of σ̃2

ML and
substitution into TRS then results in

TRS(Y ) =
β̂′

2

(
N

(−1)
22

)−1

β̂2

σ̂2
ML

(
1 + m2

n−mM
) .

Using the relationship (n−m)σ̂2 = nσ̂2
ML between the least squares and the maximum likelihood estimator for

σ2, we obtain

TRS(Y ) =
β̂′

2

(
N

(−1)
22

)−1

β̂2

n−m
n σ̂2

(
1 + m2

n−mM(Y )
) =

n
n−m β̂′

2

(
N

(−1)
22

)−1

β̂2/σ̂2

1 + m2
n−mM(Y )

= n
m2

n−mM(Y )
1 + m2

n−mM(Y )
.

As with the relationship between the statistics TLR and M , established in Part 1 of this proof, we see that the
statistic TRS is a strictly monotonically increasing function of M . Therefore, the UMPI test (3.2-159) may be
based upon TRS instead of M if the critical value is transformed according to (3.2-232). In this sense, we say
that Rao’s Score test is equivalent to the UMPI test. If the true value of σ2 is known a priori, then Proposition
3.5 states that the statistics TRS and M , hence their distributions, and therefore the corresponding critical
regions are identical.



58 3 THEORY AND APPLICATIONS OF MISSPECIFICATION TESTS IN THE NORMAL GMM

3.3 Application 1: Testing for outliers

Consider the Gauss-Markov model

Y = Xβ + Z∇ + U , (3.3-242)

Σ = Σ{U} = σ2I, (3.3-243)

where Xβ represents the deterministic trend model underlying observations Y , and where Z∇ denotes an
additional mean shift model . Both design matrices X ∈ R

n×m1 and Z ∈ R
n×m2 are assumed to be known

and of full rank. The mean shift model takes its simplest form if Z is a vector with zeros in the components
1, . . . , i − 1, i + 1, . . . , n and a one in the i-th component, that is,

Z = [ 0 · · · 0 1 0 · · · 0 ]′ . (3.3-244)

Then, the mean shift parameter ∇ may be viewed as a single additive outlier or gross error affecting obser-
vation Yi. If a model for multiple outliers is desired, then Z is simply expanded by additional columns. A test
for a single (or multiple) outlier(s) may then be based on the hypotheses

H0 : ∇̄ = 0 versus H1 : ∇̄ �= 0. (3.3-245)

Clearly, if H0 is true, then no outliers are present in the data, and if H1 is true, then at least one outlier is
present.

If the errors U follow a normal distribution with expectation E{U} = 0 , then we may rewrite the Gauss-
Markov model (3.3-242)+(3.3-243) as

Y ∼ N(Xβ + Z∇, σ2I). (3.3-246)

This observation model, together with the hypotheses (3.3-245), is seen to constitute a natural problem of testing

the significance of additional parameters ∇ according to (3.2-167)+(3.2-168) or (3.2-198)+(3.2-199), depending
on whether the variance factor σ2 is known or unknown a priori. We will investigate both case separately in
subsequent sections 3.3.1 and 3.3.2.

Example 3.1: Linear regression with a group of adjacent outliers. The following dataset (Fig. 3.1)
has been analyzed by Rousseeuw and Leroy (2003, p. 26) in the context of outlier testing and robust parameter
estimation. As the observations between 1964 and 1969 are seen to clearly mismatch the rest of the data,
which may be approximated reasonably well by a straight line, we could take this fact into consideration by
introducing additional mean shift parameters ∇1, . . . ,∇6.
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Figure 3.1. Linear regression model with six additional adjacent mean shift parameters.
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The functional model may be written according to (3.3-242), that is,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1

...

Y14

Y15

Y16

Y17

Y18

Y19

Y20

Y21

...

Y24

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1950
...

...

1 1963

1 1964

1 1965

1 1966

1 1967

1 1968

1 1969

1 1970
...

...

1 1973

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎣ β1

β2

⎤⎦+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
...

...
...

...
...

...

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0
...

...
...

...
...

...

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇1

∇2

∇3

∇4

∇5

∇6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1

...

U14

U15

U16

U17

U18

U19

U20

U21

...

U24

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

3.3.1 Baarda’s test

If the true value of the variance factor in (3.3-243) is known to take the a priori value σ̄2 = σ2
0 , then Proposition

3.3 guarantees that there exists a UMPI test for the outlier test problem

Y ∼ N(Xβ + Z∇, σ2
0I). (3.3-247)

and hypotheses (3.3-245). According to (3.2-158), the UMPI test is given by

φ(y) =

⎧⎨⎩ 1, if M(y) > k
χ2(m2)
1−α ,

0, if M(y) < k
χ2(m2)
1−α ,

(where m2 denotes the number of modeled outliers) with statistic

M(Y ) = ∇̂′
(
Z ′Z − Z ′X (X ′X)−1

X ′Z
)

∇̂/σ2
0 (3.3-248)

following from (3.2-169), and least squares estimator

∇̂ =
(
Z ′Z − Z ′X (X ′X)−1

X ′Z
)−1

Z ′Y −
(
Z ′Z − Z ′X (X ′X)−1

X ′Z
)−1

Z ′X (X ′X)−1
X ′Y

(3.3-249)

for the outliers ∇ corresponding to (3.2-180). This test is called Baarda’s test (Baarda, 1967, 1968). We may
rewrite (3.3-249) in the more common form

∇̂ =
(
Z ′
(
I − X (X ′X)−1

X ′
)

Z
)−1

Z ′
(
I − X (X ′X)−1

X ′
)

Y (3.3-250)

=
(
Z ′Q{Ũ}Z

)−1

Z ′Q{Ũ}Y (3.3-251)

where Q{Ũ} evidently denotes the cofactor matrix of residuals Ũ = Y −Xβ̃ in the outlier-free Gauss-Markov
model

Y = Xβ + U , (3.3-252)

Σ = Σ{U} = σ2I. (3.3-253)
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As Q{Ũ} is also the projector into the orthogonal space with respect to the column space of X, Q{Ũ}Y = Ũ

is easily verified, and (3.3-251) becomes

∇̂ =
(
Z ′Q{Ũ}Z

)−1

Z ′Ũ . (3.3-254)

Let us now look at the case where Z contains only a single column as in (3.3-244), that is where the observation
model (3.3-247) comprises a single outlier parameter ∇. Then, observing that Q{Ũ}ii = Z ′Q{Ũ}Z and
Ũi = Z ′Ũ , (3.3-254) simplifies to

∇̂ =
(
Q{Ũ}ii

)−1

Ũi =
Ũi

ri
, (3.3-255)

where ri, as the value of the i-th main diagonal element of Q{Ũ}, denotes the partial redundancy of Yi. Using
the definition of Q{Ũ} and of the partial redundancy, as well as the scalar outlier estimator (3.3-255), the
statistic M(Y ) in (3.3-248) takes the considerably simpler form

M(Y ) = ∇̂′
(
Z ′Q{Ũ}Z

)
∇̂/σ2

0 = ∇̂′Q{Ũ}ii∇̂/σ2
0 =

ri∇̂2

σ2
0

. (3.3-256)

Notice that this test statistic requires that the additional parameter ∇ is estimated. However, this is not
necessary as we may substitute the second part of (3.3-255) for ∇̂ in (3.3-256), which yields the alternative test
statistic

M(Y ) =
Ũ2

i

riσ2
0

. (3.3-257)

It is instructive to see that this expression is nothing else than Rao’s Score statistic given in Part 2 of the
equivalence Proposition 3.5. To see this, rewrite (3.2-224) first in terms of matrix X and vector Z as

TRS(Y ) = Ũ ′Z
(
Z ′Z − Z ′X(X ′X)−1X ′Z

)−1
Z ′Ũ/σ2

0 , (3.3-258)

then substitute Q{Ũ}, which yields

TRS(Y ) = Ũ ′Z
(
Z ′Q{Ũ}Z

)−1

Z ′Ũ/σ2
0 = Ũi

(
Q{Ũ}ii

)−1

Ũi/σ2
0 =

Ũ2
i

riσ2
0

. (3.3-259)

Therefore, both statistics M(Y ) in (3.3-256) and TRS(Y ) in (3.3-259) are identical. However, Rao’s Score
statistic TRS(Y ), being naturally based on the residuals of the outlier-free Gauss-Makov model, is more conve-
nient to compute and simpler to implement than the invariance-reduced statistic M(Y ) based on the estimator
of the outlier. We may directly apply the UMPI test (3.2-158) in terms of Rao’s Score statistic to the current
outlier test problem and write

φBaarda(y) =

⎧⎪⎨⎪⎩
1, if ũ2

i

riσ
2
0

> k
χ2(1)
1−α ,

0, if ũ2
i

riσ
2
0

< k
χ2(1)
1−α ,

(3.3-260)

which is the test proposed by Baarda (1967, p. 23). An alternative expression of Baarda’s test for a single
outlier (3.3-260) may be written as

φBaarda(y) =

⎧⎪⎨⎪⎩
1, if ũi√

riσ0
> k

N(0,1)
1−α ,

0, if ũi√
riσ0

< k
N(0,1)
1−α .

(3.3-261)
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Example 3.2: Testing for multiple outliers. The Gravity Dataset given in Appendix 6.2, which has been
kindly communicated by Dr. Diethard Ruess, consists of n = 91 gravity differences between the old and the
new Austrian gravity network (Österreichisches Schweregrundnetz, ÖSGN). To approximate this data, we use
the polynomial

yi = β1 + β2φi + β3λi (i = 1, . . . , 91) (3.3-262)

as functional model, where φi denote the latitudes and λi the longitudes (in decimal degrees). The data is
assumed to be uncorrelated and of constant standard deviation σ0 = 0.08 mgal. Schuh (2006b) suggested that
the observations y3, y6, y10, y42, y45, y78, y87, y89 are outliers. To test the data against this hypothesis, we add
eight additional shift parameters ∇1, . . . ,∇8 to the functional model (3.3-262). The observation equations then
read

yi = β1 + β2φi + β3λi + ui (i = 1, 2)
y3 = β1 + β2φ3 + β3λ3 + ∇1 + u1

yi = β1 + β2φi + β3λi + ui (i = 4, 5)
y6 = β1 + β2φ6 + β3λ6 + ∇2 + u6

yi = β1 + β2φi + β3λi + ui (i = 7, 8, 9)
y10 = β1 + β2φ10 + β3λ10 + ∇3 + u10

yi = β1 + β2φi + β3λi + ui (i = 11, . . . , 41)
y42 = β1 + β2φ42 + β3λ42 + ∇4 + u42

yi = β1 + β2φi + β3λi + ui (i = 43, . . . , 44)
y45 = β1 + β2φ45 + β3λ45 + ∇5 + u45

yi = β1 + β2φi + β3λi + ui (i = 46, . . . , 77)
y78 = β1 + β2φ78 + β3λ78 + ∇6 + u78

yi = β1 + β2φi + β3λi + ui (i = 79, . . . , 86)
y87 = β1 + β2φ87 + β3λ87 + ∇7 + u87

yi = β1 + β2φi + β3λi + ui (i = 88)
y89 = β1 + β2φ89 + β3λ89 + ∇8 + u89

yi = β1 + β2φi + β3λi + ui (i = 90, 91)

Hence, the observation model is given as in (3.3-247) with (rounded) design matrices

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 48.1710 16.3168
1 48.2328 16.3373
1 48.3120 16.4308
1 48.7192 16.3033
1 48.5125 16.6217
1 48.6927 16.8707
1 48.3620 15.4038
1 48.1980 14.5280
1 48.1257 14.8788
1 48.1593 15.1010
1 48.2242 15.3580
...

...
...

1 47.4573 09.6407
1 47.4307 09.7563
1 47.1325 10.1218

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Estimation of the mean shift parameters according to (3.3-249) yields

∇̂ = [−0.3024, 0.1331, −0.1608, −0.1944, −0.2100, 0.1703, −0.2756, 0.1899]′,

and the test statistic (3.3-248) takes the value M(y) = 54.46, which is larger than k
χ2(8)
0.95 = 15.51. Thus, Baarda’s

test rejects H0, i.e. vector of outlier parameters is significant. To carry out this test, we could also compute Rao’s
Score statistic (3.3-258) via the estimated residuals ũ = y − Xβ̃ based on the restricted parameter estimates

β̃ = (X ′X)−1X ′y = [13.8830, 0.0186, 0.0188]′.

This gives the identical result TRS = 54.46. �



62 3 THEORY AND APPLICATIONS OF MISSPECIFICATION TESTS IN THE NORMAL GMM

3.3.2 Pope’s test

If, in contrast to the situation in Section 3.3.1, the variance factor is unknown a priori, then we must apply
Part 1 of Proposition 3.4, which states that there exists a UMPI test for the outlier test problem

Y ∼ N(Xβ + Z∇, σ2I). (3.3-263)

with hypotheses (3.3-245). According to (3.2-159), the UMPI test is given by

φ(y) =

{
1, if M(y) > k

F (m2,n−m)
1−α ,

0, if M(y) < k
F (m2,n−m)
1−α ,

with statistic

M(Y ) = ∇̂′
(
Z ′Z − Z ′X (X ′X)−1

X ′Z
)

∇̂/(m2σ̂
2) (3.3-264)

following from (3.2-200). The least squares estimator for the outliers ∇, rearranged as in (3.3-251) by using the
residuals Ũ = Y − Xβ̃ of the non-extended model,

∇̂ =
(
Z ′Q{Ũ}Z

)−1

Z ′Q{Ũ}Y (3.3-265)

follow from (3.2-213) and the least squares estimator

σ̂2 = Û ′Û/(n − m) (3.3-266)

for σ2 from (3.2-214), where the residuals

Û =
(
I − X (X ′X)−1

X ′
)(

Y − Z∇̂
)

(3.3-267)

of the extended model are given by (3.2-203). If only a single outlier is modeled, in other words, if Z has only
m2 = 1 columns, then (3.3-265) becomes

∇̂ =
Ũi

ri
, (3.3-268)

which is identical to (3.3-255) for Baarda’s test. The test statistic (3.3-264) then simplifies to

M(Y ) =
ri∇̂2

σ̂2
. (3.3-269)

The only difference between the statistics (3.3-257) and (3.3-269) is that the former is based on the a priori

variance factor σ2
0 and the latter on the estimator of the variance factor in the extended model. As the non-

extended model is easier to adjust, it is more convenient to apply Rao’s Score statistic whose general form
(3.2-231) is simplified for the current test problem as follows:

TRS(Y ) = Ũ ′Z
(
Z ′Z − Z ′X(X ′X)−1X ′Z

)−1
Z ′Ũ/σ̃2

ML =
Ũ2

i

riσ̃2
ML

=
nŨ2

i

(n − m)riσ̃2
. (3.3-270)

The UMPI test (3.2-159) in terms of Rao’s Score statistic takes the expression

φPope(y) =

⎧⎪⎨⎪⎩
1, if nũ2

i

(n − m)riσ̃
2 > k

F (1,n−m)
1−α ,

0, if nũ2
i

(n − m)riσ̃
2 < k

F (1,n−m)
1−α ,

(3.3-271)

which was proposed in Pope (1976, p. 17). Pope’s test is sometimes written in a square-root version of
(3.3-271) as

φPope(y) =

⎧⎪⎨⎪⎩
1, if ũi√

riσ̃
> k

τ(1,n−m)
1−α ,

0, if ũi√
riσ̃

< k
τ(1,n−m)
1−α ,

(3.3-272)

where k
τ(1,n−m)
1−α denotes the critical value of the Tau distribution. Koch (1999, p. 303) shows that the Tau

distribution is a function of the F distribution, and that both forms (3.3-271) and (3.3-272) of Pope’s test are
identical.
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3.4 Application 2: Testing for extensions of the functional model

Suppose that we want to approximate given observables Y by a Gauss-Markov model

Yi =
p∑

j=0

Bj(xi)aj + Ui, Σ{U} = σ2I, (3.4-273)

where Bj(xi) denote base functions evaluated at known, not necessarily equidistant, nodes or locations xi

(i = 1, . . . , n) and β = [ a0, . . . , ap ] the unknown parameters. Frequently used base functions Bj (j = 0, . . . , p)
are, for instance, polynomials, trigonometric functions, or spherical harmonics. Let us further assume that
the errors Ui (i = 1, . . . , n) are uncorrelated, homoscedastic, and normally distributed variables. If they were
correlated and/or heteroscedastic with weight matrix P , then we would preprocess the observation equations
by decorrelation and/or homogenization as in Sect. 3.2.3.

In a practical situation with insufficient knowledge about the physical or geometrical relationship between
the data and the nodes, it might not be clear how high the degree m of, for example, a polynomial expansion
should be. Let us say we believe that the degree of the expansion should be specified by p1, but we would like
to check whether the base function Bp2 with p2 = p1 + 1 should be added to the model. One approach would
be to estimate the parameters of the model (3.4-273) up to degree p2 and to perform a significance test of the
parameter ap2 . If ap2 turns out to be insignificant, then we carry out a new adjustment of the model (3.4-273)
with degree p1.

If we define β1 := [ a0, . . . , ap1 ] and β2 := ap2 , and if we let X1 and X2 contain the values of the base
functions evaluated at the locations, then we may rewrite (3.4-273) as

y = X1β1 + X2β2 + u, Σ{U} = σ2I, (3.4-274)

and the significance test of ap2 is about the hypotheses

H0 : β2 = 0 versus H1 : β2 �= 0.

As this problem is one of testing the significance of m2 = 1 additional parameter β2 with either known or
unknown variance factor, the UMPI test (3.2-158) or (3.2-159) is based on either the statistic

M(Y ) = β̂′
2

(
X ′

2X2 − X ′
2X1(X ′

1X1)−1X1X2

)
β̂2/σ2

0

or

M(Y ) = β̂′
2

(
X ′

2X2 − X ′
2X1(X ′

1X1)−1X1X2

)
β̂2/(m2σ̂

2)

by virtue of (3.2-169) and (3.2-200) in Propositions 3.4/3.5.
If however, on the grounds of prior information, we favor the model up to degree p1 over the model up

to degree p2, then it seems more reasonable to adjust the smaller model (with p1) first, and to estimate the
additional parameters only after they have been verified to be significant. To imlement such a significance test,
which is a reversed version of the significance test based on M(Y ), we may use Rao’s Score statistic

TRS(Y ) = Ũ ′X2

(
X ′

2X2 − X ′
2X1(X ′

1X1)−1X ′
1X2

)−1
X ′

2Ũ/σ2
0

(if the variance factor is known) or

TRS(Y ) = Ũ ′X2

(
X ′

2X2 − X ′
2X1(X ′

1X1)−1X ′
1X2

)−1
X ′

2Ũ/σ̃2
ML

(if the variance factor must be estimated) as defined in (3.2-224) and (3.2-231). These statistics are based on
the estimated residuals of the Gauss-Markov model (3.4-274) with the restriction β2 = 0, which is equivalent to
the ordinary Gauss-Markov model

y = X1β1 + u, Σ{U} = σ2I. (3.4-275)

Rao’s Score statistics for testing the significance of additional base functions are merely a generalization of
Baarda’s and Pope’s statistic for testing the significance of outliers. This fact has already been pointed out
by Jaeger et al. (2005, Section 5.4.5.5) in the context of testing the significance of additional transformation
parameters.
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Example 3.3: Testing for extension of a two-dimensional polynomial. We will demonstrate the two
different approaches to significance testing of additional model parameters by further analyzing the Gravity
Dataset from Example 3.2. For simplicity, the outlying observations y3, y6, y10, y42, y45, y78, y87, y89 will not be
used, i.e. the corresponding rows are eliminated from y and X. Now, we could consider

Yi = a0 + φia1 + λia2 (i = 1, . . . , 83) (3.4-276)

as the model we favor under H0, and the extension to degree 2

Yi = a0 + φia1 + λia2 + φ2
i a3 + φiλia4 + λ2

i a5 (i = 1, . . . , 83) (3.4-277)

as an alternative model specification. This model is simply a two-dimensional polynomial version of the model in
(3.4-273). We see that the null model (3.4-276) is obtained from the extended model (3.4-277) if the additional
parameters a3, a4, a5 are restricted to zero. To test whether the null model is misspecified, we will rewrite
the extended model in the form (3.4-274) with σ0 = 0.08 known a priori. In the present example, we define
β1 := [a0, a1, a2]′ and β2 := [a3, a4, a5]′, and use the hypotheses H0 : β2 = 0 versus H1 : β2 �= 0. The design
matrix X1 is obtained from X in Example 3.2 by deleting rows as described above.

X1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 48.1710 16.3168
1 48.2328 16.3373
1 48.7192 16.3033
1 48.5125 16.6217
1 48.3620 15.4038
1 48.1980 14.5280
1 48.1257 14.8788
1 48.2242 15.3580
...

...
...

1 47.4307 09.7563
1 47.1325 10.1218

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, X2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2320.4452 785.9982 266.2391
2326.4062 787.9959 266.9085
2373.5572 794.2848 265.7987
2353.4627 806.3586 276.2798
2338.8830 744.9602 237.2781
2323.0472 700.2205 211.0628
2316.0798 716.0538 221.3797
2325.5703 740.6268 235.8682

...
...

...
2249.6681 462.7494 95.1860
2221.4726 477.0673 102.4515

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Notice the close similarity of this testing problem with the problem of testing for outliers in Example 3.2. The
only difference is that the additional parameters β2 appear in every single observation equations while each
mean shift parameter in ∇ affects only a single observation. Here we could analogously estimate β̂2 as in
(3.2-170) and then compute the value of the test statistic (3.2-169). This gives

β̂2 =
(
X ′

2X2 − X ′
2X1(X ′

1X1)−1X1X2

)−1
X ′

2(I − X1 (X ′
1X1)

−1
X ′

1)y

= [−0.0287, −0.0170, −0.0044]′

and

M(y) = β̂′
2

(
X ′

2X2 − X ′
2X1(X ′

1X1)−1X1X2

)
β̂2/σ2

0 = 7.74,

which is smaller than the critical value k
χ2(3)
0.95 = 7.81. This test again yields the same result if only the parameters

β1 of the null model are estimated and if then the corresponding residuals ũ = y−X1β̃1 are used to determine
the value of Rao’s Score statistic (3.2-224). This would result in

β̃1 = (X ′
1X1)−1X ′

1y = [14.1459, 0.0122, 0.0224]

and

TRS(y) = ũ′X2

(
X ′

2X2 − X ′
2X1(X ′

1X1)−1X ′
1X2

)−1
X ′

2ũ/σ2
0 = 7.74.

The values in β̃1 differ slightly from those in β̃ from Example 3.2 as a consequence of deleting observations.
Hence, we could not reject the null model, i.e. the joint set of additional parameters could not be proven to be
significant.
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3.5 Application 3: Testing for point displacements

In Meissl (1982, Sect. 5.4) the following test problem is discussed. A leveling network has been measured twice
(see Fig. 3.2), and the question is whether three of the points (7,8, and 9), which are located on a dam, changed
in heights between both measurement campaigns. Point 1 has a fixed height, and the heights of the points 2,
3, 4, 5, and 6 are assumed to be unknown, but constant over time.

1 2 3

4
5

6

7
8

9

1 2 3

4
5

6

7‘
8‘

9‘

Fig. 3.2 A leveling network observed in a first campaign (left) and a second campaign (right) later in time.

The general structure of the observation model is specified as

y = Xβ + u, Σ{U} = σ2I, (3.5-278)

where the functional model comprises n = 34 leveling observations y (i.e. observed height differences) with
unknown accuracy σ2 (see Appendix 6.1 for the numerical values). To allow for height displacements, the
parameter vector

β = [ H2, H3, H4, H5, H6, H7, H8, H9, H7′ , H8′ , H9′ ]′

contains the set of dam heights (H7, H8, H9) regarding the first campaign and the set (H7′ , H8′ , H9′) for the
possibly different points modeled with respect to the second campaign. Let, for example, y5 represent the
observed height difference between points 2 and 8 (made in the first campaign) and y24 the observed height
difference between points 2 and 8’ (made in the second campaign). Then, the corresponding observation
equations read

y5 = H8 − H2 + u5,

y24 = H8′ − H2 + u24,

and the corresponding rows of the design matrix are given by

X5 = [−1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ],

X24 = [−1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 ].

The mathematical formulation of the above question, whether the points 7, 8, and 9 shifted significantly, is
given by the null hypothesis H7′ = H7, H8′ = H8, H8′ = H8 versus the alternative hypothesis H7′ �= H7, H8′ �=
H8, H8′ �= H8, or in matrix notation by

H0 : Hβ̄ = 0 versus H1 : Hβ̄ �= 0

with

H =

⎡⎣ 0 0 0 0 0 −1 0 0 +1 0 0
0 0 0 0 0 0 −1 0 0 +1 0
0 0 0 0 0 0 0 −1 0 0 +1

⎤⎦ .

For this testing problem, Meissl (1982) gives the statistic

M(Y ) = (Hβ̂)′
(
H(X ′X)−1H ′)−1

(Hβ̂)/(3σ̂2), (3.5-279)
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which is distributed as F (3, n − m), because the model has three restrictions.
As an additional result however, we may conclude from Proposition 3.4(3) that this statistic leads to an

optimal invariant test, because the testing problem is of the form (3.2-217) + (3.2-218) with P = I and w = 0.
Consequently, using the test statistic (3.2-216) with m2 = 3 and least squares estimates

β̂ = (X ′X)−1X ′y, (3.5-280)

û = y − Xβ̂, (3.5-281)

σ̂2 = û′û/(n − m) (3.5-282)

according to (3.2-219) - (3.2-221) leads to the UMPI test as given in (3.2-159). With the given numerical values
in Appendix 6.1, the test statistic takes the value M(y) = 53.61, which exceeds for instance the critical value
k

F (3,23)
0.95 = 3.03. Therefore, we conclude that the data shows significant evidence for a shift in height.

We will now demonstrate how this testing problem is reparameterized as in 3.2.1. Notice first that the
functional model may be partitioned into y = X1β1 + X2β2 + u with

β1 = [ H2, H3, H4, H5, H6, H7, H8, H9 ]′,

β2 = [ H7′ , H8′ , H9′ ]′

and, regarding observations y5 and y24,

X5,1 = [−1, 0, 0, 0, 0, 0, 1, 0 ], X5,2 = [ 0, 0, 0 ],

X24,1 = [−1, 0, 0, 0, 0, 0, 0, 0 ], X24,2 = [ 0, 1, 0 ].

Now, if we use

∆H7 := H7′ − H7

∆H8 := H8′ − H8

∆H9 := H9′ − H9,

i.e. the transformed quantities Hβ, as parameters instead of H7′ , H8′ , and H9′ , then the new parameter vector
reads

β(r) = [ β′(r)
1 , β

′(r)
2 ]′ = [ H2, H3, H4, H5, H6, H7, H8, H9, ∆H7, ∆H8, ∆H9 ]′

with components

β
(r)
1 = [ H2, H3, H4, H5, H6, H7, H8, H9 ]′,

β
(r)
2 = [ ∆H7, ∆H8, ∆H9 ]′.

Clearly, the hypotheses

H0 : β̄
(r)
2 = 0 versus H1 : β̄

(r)
2 �= 0

in terms of the new parameters are identical to the original hypotheses. To see how the design matrix changes,
we first rewrite the observation equations, for instance, with respect to y5 and y24

y5 = H8 − H2 + u5,

y24 = H8′ − H8 + H8 − H2 + u24 = H8 + ∆H8 − H2 + u24.

The corresponding rows of the design matrix with respect to the new parameters β(r) read

X
(r)
5,1 = [−1, 0, 0, 0, 0, 0, 1, 0 ], X

(r)
5,2 = [ 0, 0, 0 ],

X
(r)
24,1 = [−1, 0, 0, 0, 0, 0, 1, 0 ], X

(r)
24,2 = [ 0, 1, 0 ].

We see that β
(r)
1 = β1, X

(r)
5,1 = X5,1, X

(r)
5,2 = X5,2, and X

(r)
24,2 = X24,2. For the present example these equations

in fact hold for all rows of the design matrix, so that the reparameterized observation model is given by

y = X
(r)
1 β1 + X2β

(r)
2 + u,

Σ = σ2I.
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According to Proposition 3.4-1, the UMPI test for this reparameterized testing problem is based on the value
of the statistic

M(y) = β̂
′(r)
2

(
X ′

2X2 − X ′
2X

(r)
1 (X ′(r)

1 X
(r)
1 )−1X

′(r)
1 X2

)
β̂

(r)
2 /(3σ̂2) (3.5-283)

with estimates

β̂
(r)
2 =

(
X ′

2X2 − X ′
2X

(r)
1 (X ′(r)

1 X
(r)
1 )−1X

′(r)
1 X2

)−1

X ′
2

(
I − X

(r)
1 (X ′(r)

1 X
(r)
1 )−1X

′(r)
1

)
y, (3.5-284)

û =
(
I − X

(r)
1 (X ′(r)

1 X
(r)
1 )−1X

′(r)
1

)(
y − X2β̂

(r)
2

)
, (3.5-285)

σ̂2 = û′û/(n − m). (3.5-286)

With the given data, the displacement parameters take the values β̂
(r)
2 = [ 0.0044, 0.0047, 0.0056 ]′, and the

test statistic becomes M(y) = 53.61, which is of course the same value as determined above for 3.5-279. Notice
that, as demonstrated in the proof of Proposition 3.4, the quantities M(y), û, and σ̂2 remain unchanged by the
reparameterization of the observation equations. This transformation allows us to apply Proposition 3.6 and
compute the value of Rao’s Score statistic by

TRS(y) = ũ′X2

(
X ′

2X2 − X ′
2X

(r)
1 (X ′(r)

1 X
(r)
1 )−1X

′(r)
1 X2

)−1

X ′
2ũ/σ̃2

ML, (3.5-287)

which requires the estimates

β̃1 = (X ′(r)
1 X

(r)
1 )−1X

′(r)
1 y, (3.5-288)

ũ = y − X
(r)
1 β̃1, (3.5-289)

σ̃2
ML = ũ′ũ/n. (3.5-290)

With the given data, we obtain TRS(y) = 29.74. As the relationship between the statistics M and TRS has
been shown to be (3.2-232), we may apply this formula to check the validity of the results and to compute the
critical value valid for TRS . We find that

TRS(y) = 34 ·
3
23M(y)

1 + 3
23M(y)

and kTRS
0.95 = 34 ·

3
23k

F (3,23)
0.95

1 + 3
23k

F (3,23)
0.95

= 9.63.

As Rao’s Score statistic is determined under the assumption that H0 is true, the null hypothesis H0 : β
(r)
2 = 0

acts as a restriction on the Gauss-Markov model, and thus eliminates the parameters β
(r)
2 from the reparame-

terized observation equations. In other words, if H0 is true, then the Gauss-Markov model with restrictions

y = X
(r)
1 β1 + X2β

(r)
2 + u,

β
(r)
2 = 0

Σ = σ2I

is equivalent to the Gauss-Markov model

y = X
(r)
1 β1 + u, Σ = σ2I, (3.5-291)

for which the estimates are given by (3.5-288) - (3.5-290). The main advantage of Rao’s Score statistic TRS in
(3.5-287) over M in (3.5-283) is that the restricted estimates β̃1 are clearly less complex to compute than the
unrestricted estimates β̂

(r)
2 . Furthermore, TRS has an advantage over M in (3.5-279), because the restricted

reparameterized Gauss-Markov model (3.5-291) has less unknown parameters to be estimated than the original
model (3.5-278).
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3.6 Derivation of an optimal test concerning the variance factor

So far we have only discussed testing problems concerning the parameters β of the functional model

Y = Xβ + E.

In the current section, we will derive an optimal procedure for testing hypotheses concerning the variance factor
σ2 in the stochastic model

Σ = Σ{E} = σ2P−1.

As usual we will assume that the design matrix X ∈ R
n×m is known and of full rank, and that the weight

matrix P ∈ R
n×n is positive definite. If we decompose the weight matrix into P = GG′ as in Section 3.2.3,

then the observations and the design matrix may be transformed into Y (h) := G′Y and X(h) := G′X, where
Y (h) has the covariance matrix σ2I.

Let us now consider the problem of testing

H0 : σ̄2 = σ2
0 versus H1 : σ̄2 > σ2

0

in the observation model

Y (h) ∼ N(X(h)β, σ2I).

Such a testing problem arises if we suspect that the given measurement accuracy σ2
0 is too optimistic.

Proposition 3.1 allows us now to reduce Y (h) to the set of minimally sufficient statistics T (Y (h)) := [β̂′, σ̂2]′

with β̂ = (X ′(h)X(h))−1X ′(h)Y (h) and (n−m)σ̂2 = (Y (h) −X(h)β̂)′(Y (h) −X(h)β̂). The reduced observation
model then reads

β̂ ∼ N
(
β, σ2(X ′(h)X(h))−1

)
,

(n − m)σ̂2 ∼ χ2(n − m) · σ2,

and the hypotheses are still given by

H0 : σ̄2 = σ2
0 versus H1 : σ̄2 > σ2

0

This testing problem is invariant under the group G of translations

g

([
β̂

σ̂2

])
=
[

β̂ + a

σ̂2

]
(3.6-292)

with a ∈ R
m×1 acting on β̂. Each of these tranformations will cause a change of distribution from β ∼

N
(
β, σ2(X ′(h)X(h))−1

)
to β̂ + a ∼ N

(
β + a, σ2(X ′(h)X(h))−1

)
, while the second central moment of β̂ and

the distribution of σ̂2 remain unaffected by these translations. Thus, the induced group Ḡ of transformations
within the parameter domain is given by

ḡ

([
β

σ2

])
=
[

β + a

σ2

]
. (3.6-293)

Evidently, neither the parameter space nor the hypotheses are changed under Ḡ. Moreover, we see that σ̂2, or
more conveniently M(Y (h)) := (n−m)σ̂2 is a maximal invariant under G. From the fact that (n−m)σ̂2/σ2 ∼
χ2(n − m) = G(n−m

2 , 2) (where G stands here for the Gamma distribution) it follows that (n − m)σ̂2 ∼
G(n−m

2 , 2σ2). Thus, the invariant test problem

M(Y ) = (n − m)σ̂2 ∼ G((n − m)/2, 2σ2)

H0 : σ̄2 = σ2
0 versus H1 : σ̄2 > σ2

0 ,

has one unknown parameter, a one-sided alternative hypothesis, and a test distribution with a monotone density
ratio by virtue of Theorem 2.5-2. For this reduced testing problem, Theorem 2.4 gives the UMP test

φ(y) =

{
1, if M(y) > k

G((n−m)/2,2σ2
0)

1−α ,

0, if M(y) < k
G((n−m)/2,2σ2

0)
1−α ,

=

{
1, if (n − m)σ̂2/σ2

0 > k
χ2(n−m)
1−α ,

0, if (n − m)σ̂2/σ2
0 < k

χ2(n−m)
1−α ,

(3.6-294)

which is UMPI for the original problem of testing H0 : σ̄2 = σ2
0 against H1 : σ̄2 > σ2

0 in the observation model
Y (h) ∼ N(X(h)β, σ2I). This test is the same as given in Koch (1999, Section 4.2.4), but it was shown here in
addition that (3.6-294) is optimal within the class of all tests with equal power in each direction of β.
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4 Applications of Misspecification Tests in Generalized Gauss-Markov

models

4.1 Introduction

In this section, we will look at testing problems, where parameters of the distribution or stochastic model
are hypothesized. In each of these problems, the null hypothesis states that the errors are distributed as
E ∼ N(0, σ2I), whereas the alternative hypothesis represents one of the following types of model errors:

1. the errors are not uncorrelated, but correlated through an autoregressive process (Section 4.2);

2. the errors are not homoscedastic, but the variance changes according to an additive variance component
(Section 4.3);

3. the errors are not normally distributed (Section 4.4).

In contrast to the testing problems in Section 3, where only the parameters of the functional model were subject
to hypothesis, there will be no UMPI tests under the above scenarios, as these problems cannot be reduced
to a single maximal invariant statistic. However, they can be given a suitable mathematical expression such
that, at least, reductions to Likelihood Ratio or Rao’s Score statistics are feasible. Although these statistics
will then not be optimal in a strictly mathematical sense, one may hope that they will remain reasonable tools

for detecting the above model errors. In this sense, Engle (1984), used the term diagnostic in his insightful
review article.

The first step towards deriving such diagnostics for each of the above cases is to extend the mathematical
model by estimable parameters that allow the data to be correlated, heteroscedastic, or non-normally dis-
tributed. H0 then restricts these additional parameters to zero and thereby reduces the extended model to
an ordinary normal Gauss-Markov model, while under H1, these parameters remain unrestricted. Then, the
Likelihood Ratio test compares the value of the likelihood function evaluated at the unrestricted ML estimate
with the value of the likelihood function obtained at the restricted estimate. Therefore, if the restriction under
H0 reduces the likelihood significantly, the test statistic will take a large value and thus indicate that H0 should
be rejected. On the other hand, if the restriction is reflected by the given data, then the restricted likelihood
will be close to the unrestricted likelihood, which will probably cause the statistic to take an insignificant value.
Rao’s Score test, on the other hand, does not require computing the unrestricted ML estimates (which may be
computationally expensive if, for instance, variance components are present), because it measures the extent to
which the scores (i.e. the first partial derivatives of the log-likelihood function) differ from zero if the restricted
estimates are used.

Although the testing procedures based on Rao’s Score statistic will be computationally feasible and statis-
tically powerful, we will have to deal with one inconvenience: in contrast to the testing problems in Section 3,
where the distribution of Rao’s Score statistic was always exact as a strictly monotonically increasing function
of a χ2- or F -distribution, there will be no exact test distributions available for the problems above. Instead we
will have to confine ourselves to using approximative test distributions, that is to critical values which are valid
asymptotically. Therefore, the testing problems stated in the current section should be applied only when a
large number (i.e. at least 100) of observations is given. It is beyond the scope of this thesis to explain in detail
the definition of asymptotic distribution as this would require a rather lengthy discussion of various types of
convergence of random variables. The interested reader shall therefore be referred to Godfrey (1988, p. 13-15),
who gives a proof and more technical explanation of the following proposition.

Proposition 4.1. Suppose that Y1, . . . , Yn are identically distributed observations with true density function in

F = {f(y; θ) : θ ∈ Θ}

and consider the problem of testing H0 : Hθ̄ = w versus H1 : Hθ̄ �= w, where H is a known (p × u)-matrix
with p < u and full row rank p. Then, under H0, the asymptotic distribution of the LR and the equivalent RS
statistic is given by:

−2
(
L(θ̃; Y ) − L(θ̂; Y )

)
≈ S ′(θ̃; Y )I−1(θ̃; Y )S(θ̃; Y ) a∼ χ2(p), (4.1-295)

where θ̃ is the ML estimator for θ restricted by H0 and θ̂ the unrestricted ML estimator.



70 4 APPLICATIONS OF MISSPECIFICATION TESTS IN GENERALIZED GMMs

4.2 Application 5: Testing for autoregressive correlation

We will now discuss a linear model

Yi = Xiβ + Ei (i = 1, . . . , n), (4.2-296)

where Xi represents the i-th row of the design matrix X ∈ R
n×m (with rankX = m) and where β ∈ R

m×1

denotes a vector of unknown functional parameters. We will assume that each error Ei follows a first-order
autoregressive error model/process, or AR(1) model/process, defined by

Ei = αEi−1 + Ui (i = 1, . . . , n), (4.2-297)

in which α is an unknown parameter. Let the stochastic model of the errors Ui be given by

Σ{U} = σ2I. (4.2-298)

If normally distributed error variables Ei are to have expectations, variances, and covariances that are indepen-
dent of the index i (that are, for instance, independent of the absolute time or location), then we must require
the AR(1) model (4.2-297) to be weakly stationary up to second order. This requirement imposes certain
restrictions on the specification of the numerical value for α.

Let us explore the nature of these restrictions by investigating stationarity with repect to the first moment.
We may rewrite (4.2-297) as

Ei = α(αEi−2 + Ui−1) + Ui = α(· · · (α(αE0 + U1) + U2) + . . .) + Ui = αi−1U1 + αi−2U2 + . . . + Ui.

Taking the expected value of both sides of this equation yields

E{Ei} = αi−1E{U1} + αi−2E{U2} + . . . + E{Ui}.

Under the condition of constant mean µ = E{U1} = E{U2} = . . . = E{Un}, we obtain

E{Ei} = µ
(
αi−1 + αi−2 + . . . + 1

)
=

{
µ
(

1 − αi

1 − α

)
, for α �= 1

µ · i, for α = 1.
.

We see from this result that the error variables Ei have constant mean µE = E{E1} = E{E2} = . . . = E{En}
only if µ = 0 holds, because only this condition eliminates the dependence of E{Ei} on the index i. In other
words, an AR(1) model is weakly stationary up to order one if the mean µ of the independent errors Ui

(i = 1, . . . , n) is zero.
Similarly, we obtain for the covariance of two variables separated by distance h

E{EiEi+h} = E{(αi−1U1 + αi−2U2 + . . . + Ui

) (
αi+h−1U1 + αi+h−2U2 + . . . + Ui+h

)}
= E{α2i+h−2U2

1 + α2i+h−4U2
2 + . . . + αhU2

i + 2α2i+h−3U1U2 + . . .}. (4.2-299)

Notice that, due to the stochastic model (4.2-298), all the expected values of the mixed terms 2α2i+h−3U1U2, . . .,
i.e. all the covariances between any two distinct error variables Ui, Uj (i �= j), are zero. Furthermore, (4.2-298)
expresses that the variances of all the Ui are constant with σ2 = E{U2

1 } = E{U2
2} = . . . = E{U2

n}. With this,
we may rewrite (4.2-299) as

E{EiEi+h} = σ2
(
α2i+h−2 + α2i+h−4 + . . . + αh

)
=

{
σ2αh

(
1 − α2i

1 − α2

)
, for α �= 1

σ2 · i, for α = 1.
. (4.2-300)

It is seen that E{EiEi+h} is independent of i only if σ2 = 0. However, in that case all the errors Ei would
be exactly zero, which is a nonsensical requirement if the Ei represent measurement errors. On the other
hand, if σ2 > 0, then we could resort to the following type of asymptotic stationarity. If |α| < 1, then
limi→∞ σ2αh

(
1−α2i

1−α2

)
= σ2αh

1−α2 . It follows that the variance (h = 0) and the covariance (h > 0) of the errors Ei

are asymptotically independent of the index i.
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In summary, the conditions for the AR(1) model (4.2-298) to be asymptotically weakly stationary up
to order two are given by (1) E{Ui} = 0 for all i = 1, . . . , n, and (2) |α| < 1. If these conditions are presumed,
the covariance matrix of the error variables E is easily deduced from the limit σ2αh

1−α2 of (4.2-300). If we let h

run from 0, . . . , n − 1, we obtain

Σ{E} := σ2Qα = σ2 · 1
1 − α2

·

⎡⎢⎢⎢⎣
1 α · · · αn−1

α 1 · · · αn−2

...
...

. . .
...

αn−1 αn−2 · · · 1

⎤⎥⎥⎥⎦ , (4.2-301)

where we take into account that the cofactor matrix Qα of the autoregressive errors E depends on the unknown
parameter α. According to Peracchi (2001, p. 277), the weight matrix is given by

Pα = Q−1
α =

⎡⎢⎢⎢⎢⎢⎢⎣

1 −α

−α 1 + α2 . . .
. . . . . .

1 + α2 −α

−α 1

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.2-302)

The weight matrix is tridiagonal and positive definite. We see that the errors E are uncorrelated only if α = 0.
If α �= 0, then we say that the errors have serial correlations. This term was coined due to the fact that
autoregressive error models have traditionally been applied to time series.

To give a geodetic example, Schuh (1996, Chap. 3) used an autoregressive moving average (ARMA) model,
which is a generalization of the AR(1) model, to obtain the covariance matrix of satellite data that have a
band-limited error spectrum. Such data may be treated as a time series recorded along the satellite’s orbit.
Typically, such time series comprise very large numbers of observations, which justifies the use of asymptotic
covariance matrices as in (4.2-301).

Now, the observation model (4.2-296) + (4.2-301) under the additional assumption of normally distributed
errors may be summarized as

Y ∼ N(Xβ, σ2P−1
α ). (4.2-303)

To keep the observation model as simple as possible, we might want to check the data whether serial correlation
is significant or not. Such a test may be based on the hypotheses

H0 : ᾱ = 0 versus H1 : ᾱ �= 0. (4.2-304)

For this purpose, we should clearly apply Rao’s Score statistic, because it avoids estimation of the parameter α.
To see this, recall that Rao’s Score statistic is based on the residuals of the Gauss-Markov model with restriction
H0. As this restriction reduces the observation model (4.2-303) to the simpler model Y ∼ N(Xβ, σ2I), we will
only have to estimate β and σ2. To derive Rao’s Score statistic, we need to determine the log-likelihood score
and the information with respect to the extended parameterization in (4.2-303), and then to evaluate these
quantities at the estimates of the restricted model.

As the observations are now correlated and heteroscedastic, the joint density and consequently the log-
likelihood do not factorize into the product of identical univariate densities. However, such a factorization is
made possible quite easily through a transformation of the functional model (4.2-296) as in Section 3.2.3. If we
decompose the weight matrix into Pα = G′

αGα with

Gα =

⎡⎢⎢⎢⎢⎢⎢⎣

√
1 − α2 0

−α 1
. . .

. . . . . .
0

−α 1

⎤⎥⎥⎥⎥⎥⎥⎦ , (4.2-305)

which may be verified directly by multiplication, and transform the observations and the design matrix by
Y (h) = GαY and X(h) = GαX, then the homogenized observations Y (h) will have unity weight matrix. This
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transformation, which may also be written component-by-component as

Y
(h)
i =

{ √
1 − α2Yi, for i = 1,

Yi − αYi−1, for i = 2, . . . , n
, X

(h)
i =

{ √
1 − α2Xi, for i = 1,

Xi − αXi−1, for i = 2, . . . , n
, (4.2-306)

is also known as the Prais-Winsten transformation (see, for instance, Peracchi, 2001, p. 278).
Now we may use the factorized form of the log-likelihood in (2.5-96), that is

L(θ; Y ) = ln
n∏

i=1

1√
2πσ

exp

⎧⎨⎩−1
2

(
Y

(h)
i − X

(h)
i β

σ

)2
⎫⎬⎭ = ln(2πσ2)−n/2 − 1

2σ2

n∑
i=1

(
Y

(h)
1 − X

(h)
1 β

)2

.

Reversing the transformation (4.2-306), we obtain

L(θ; Y ) = −n

2
ln(2π) − n

2
ln σ2 − 1

2σ2

(√
1 − α2Y1 −

√
1 − α2X1β

)2

− 1
2σ2

n∑
i=2

(Yi − αYi−1 − (Xi − αXi−1)β)2

= −n

2
ln(2π) − n

2
ln σ2 − 1 − α2

2σ2
(Y1 − X1β)2 − 1

2σ2

n∑
i=2

((Yi − Xiβ) − α(Yi−1 − Xi−1β))2 .

Before determining the first partial derivatives, it will be convenient to expand the second sum and to move the
parameter α outside the summuation, which gives.

L(θ; Y ) = −n

2
ln(2π) − n

2
ln σ2 − 1

2σ2

n∑
i=1

(Yi − Xiβ)2 +
α2

2σ2
(Y1 − X1β)2

+
α

σ2

n∑
i=2

(Yi − Xiβ)(Yi−1 − Xi−1β) − α2

2σ2

n∑
i=2

(Yi−1 − Xi−1β)2.

The first partial derivatives of the log-likelihood function give the log-likelihood scores (2.5-111), that is

Sβj (θ; Y ) :=
∂L(θ; Y )

∂βj
=

1
σ2

n∑
i=1

(Yi − Xiβ)Xi,j − α2

σ2
(Y1 − X1β)X1,j − α

σ2

n∑
i=2

(Yi − Xiβ)Xi−1,j

− α

σ2

n∑
i=2

(Yi−1 − Xi−1β)Xi,j +
α2

σ2

n∑
i=2

(Yi−1 − Xi−1β)Xi−1,j ,

Sσ2(θ; Y ) :=
∂L(θ; Y )

∂σ2
= − n

2σ2
+

1
2σ4

n∑
i=1

(Yi − Xiβ)2 − α2

2σ4
(Y1 − X1β)2

− α

σ4

n∑
i=2

(Yi − Xiβ)(Yi−1 − Xi−1β) +
α2

2σ4

n∑
i=2

(Yi−1 − Xi−1β)2,

Sα(θ; Y ) :=
∂L(θ; Y )

∂α
=

α

σ2
(Y1 − X1β)2 +

1
σ2

n∑
i=2

(Yi − Xiβ)(Yi−1 − Xi−1β)

− α

σ2

n∑
i=2

(Yi−1 − Xi−1β)2.

The Hessian (2.5-112) which comprises the second partial derivatives follows to be

Hβjβk
(θ; Y ) :=

∂2L(θ; Y )
∂βj∂βk

= − 1
σ2

n∑
i=1

Xi,kXi,j +
α2

σ2
X1,kX1,j +

α

σ2

n∑
i=2

Xi,kXi−1,j

+
α

σ2

n∑
i=2

Xi−1,kXi,j − α2

σ2

n∑
i=2

Xi−1,kXi−1,j,

Hβjσ2(θ; Y ) :=
∂2L(θ; Y )
∂βj∂σ2

= − 1
σ4

n∑
i=1

(Yi − Xiβ)Xi,j +
α2

σ4
(Y1 − X1β)X1,j +

α

σ4

n∑
i=2

(Yi − Xiβ)Xi−1,j

+
α

σ4

n∑
i=2

(Yi−1 − Xi−1β)Xi,j − α2

σ4

n∑
i=2

(Yi−1 − Xi−1β)Xi−1,j ,
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Hβjα(θ; Y ) :=
∂2L(θ; Y )

∂βj∂α
= −2α

σ2
(Y1 − X1β)X1,j − 1

σ2

n∑
i=2

(Yi − Xiβ)Xi−1,j

− 1
σ2

n∑
i=2

(Yi−1 − Xi−1β)Xi,j +
2α

σ2

n∑
i=2

(Yi−1 − Xi−1β)Xi−1,j ,

Hσ2σ2(θ; Y ) :=
∂2L(θ; Y )
∂σ2∂σ2

=
n

2σ4
− 1

σ6

n∑
i=1

(Yi − Xiβ)2 +
α2

σ6
(Y1 − X1β)2

+
2α

σ6

n∑
i=2

(Yi − Xiβ)(Yi−1 − Xi−1β) − α2

σ6

n∑
i=2

(Yi−1 − Xi−1β)2,

Hσ2α(θ; Y ) :=
∂2L(θ; Y )

∂σ2∂α
= − α

σ4
(Y1 − X1β)2 − 1

σ4

n∑
i=2

(Yi − Xiβ)(Yi−1 − Xi−1β)

+
α

σ4

n∑
i=2

(Yi−1 − Xi−1β)2,

Hαα(θ; Y ) :=
∂2L(θ; Y )

∂α∂α
=

1
σ2

(Y1 − X1β)2 − 1
σ2

n∑
i=2

(Yi−1 − Xi−1β)2.

This gives for the information matrix (2.5-113) in terms of the errors Ei = Yi − Xiβ

Iβjβk
(θ; Y ) := −E{Hβjβk

(θ; Y )} =
1
σ2

n∑
i=1

Xi,kXi,j − α2

σ2
X1,kX1,j − α

σ2

n∑
i=2

Xi,kXi−1,j

− α

σ2

n∑
i=2

Xi−1,kXi,j +
α2

σ2

n∑
i=2

Xi−1,kXi−1,j ,

Iβjσ2(θ; Y ) := −E{Hβjσ2(θ; Y )} =
1
σ4

n∑
i=1

E{Ei}Xi,j − α2

σ4
E{Ei}X1,j − α

σ4

n∑
i=2

E{Ei}Xi−1,j

− α

σ4

n∑
i=2

E{Ei−1}Xi,j +
α2

σ4

n∑
i=2

E{Ei−1}Xi−1,j,

Iβjα(θ; Y ) := −E{Hβjα(θ; Y )} =
2α

σ2
E{E1}X1,j +

1
σ2

n∑
i=2

E{Ei}Xi−1,j +
1
σ2

n∑
i=2

E{Ei−1}Xi,j

−2α

σ2

n∑
i=2

E{Ei−1}Xi−1,j ,

Iσ2σ2(θ; Y ) := −E{Hσ2σ2(θ; Y )} = − n

2σ4
+

1
σ6

n∑
i=1

E{E2
i } −

α2

σ6
E{E2

i } −
2α

σ6

n∑
i=2

E{EiEi−1}

+
α2

σ6

n∑
i=2

E{E2
i−1},

Iσ2α(θ; Y ) := −E{Hσ2α(θ; Y )} =
α

σ4
E{E2

1} +
1
σ4

n∑
i=2

E{EiEi−1} − α

σ4

n∑
i=2

E{E2
i−1},

Iαα(θ; Y ) := −E{Hαα(θ; Y )} = − 1
σ2

E{E2
1} +

1
σ2

n∑
i=2

E{E2
i−1}.

Evaluation of the scores at the restricted maximum likelihood estimates θ̃ = [ β̃′ σ̃2
ML α̃ ]′ yields

Sβj (θ̃; Y ) =
1

σ̃2
ML

n∑
i=1

(Yi − Xiβ̃)Xi,j = 0,

Sσ2(θ̃; Y ) = − n

2σ̃2
ML

+
1

2σ̃4
ML

n∑
i=1

(Yi − Xiβ̃)2 = 0,

Sα(θ̃; Y ) =
1

σ̃2
ML

n∑
i=2

(Yi − Xiβ̃)(Yi−1 − Xi−1β̃) = nρ̃1
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where we used the orthogonality relation (Y −Xβ̃)X(j) = 0 (where X(j) denotes the j-th column of the design
matrix X), the maximum likelihood variance estimator σ̃2

ML =
∑n

i=1(Yi − Xiβ̃)2/n, and the autocorrelation
estimator ρ̃1 =

∑n
i=2(Yi − Xiβ̃)(Yi−1 − Xi−1β̃)/

∑n
i=1(Yi − Xiβ̃)2 for lag h = 1.

Under H0 the observations are uncorrelated. Hence, the information matrix at θ̃ is given by

Iβjβk
(θ̃; Y ) =

1
σ̃2

ML

n∑
i=1

Xi,kXi,j ,

Iβjσ2(θ̃; Y ) = Iβjα(θ̃; Y ) = Iσ2α(θ̃; Y ) = 0,

Iσ2σ2(θ̃; Y ) =
n

2σ̃4
ML

,

Iαα(θ̃; Y ) = n − 2.

To obtain the total score vector Sθ(θ̃; Y ) and the entire information matrix Iθθ(θ̃; Y ), we must express all
the individual components in matrix notation. In particular, we set up the (m × 1)-subvector Sβ(θ̃; Y ) = 0
consisting of all the entries Sβj (θ̃; Y ) (j = 1, . . . , m), and the (m × m)-submatrix Iββ(θ̃; Y ) = 1

�σ2
ML

X ′X

containing all the elements Iβjβk
(θ̃; Y ). Then, we obtain for Rao’s Score statistic

TRS = S′(β̃, σ̃2
ML, α̃; Y )I−1(β̃, σ̃2

ML, α̃; Y )S(β̃, σ̃2
ML, α̃; Y )

=

⎡⎣ 0
0

nρ̃1

⎤⎦′ ⎡⎢⎣
1

�σ2
ML

X ′X 0 0
0 n

2�σ4
ML

0
0 0 n − 2

⎤⎥⎦
−1 ⎡⎣ 0

0
nρ̃1

⎤⎦ .

The information matrix is block-diagonal, hence the three parameter groups are independent. We see immedi-
ately that

TRS =
n2

n − 2
ρ̃1

2 ≈ nρ̃1
2, (4.2-307)

where the approximation will certainly be sufficient for large n. This statistic is called the Durbin-Watson
statistic (see, for example, Krämer and Sonnberger, 1986, p. 17) and asymptotically follows a χ2(1)-distribution
under H0 (see Proposition 4.1). This statistic measures the size of the absolute value of the empirical auto-
correlation for lag h = 1, which is a reasonable procedure in light of the fact that the cofactor matrix Qα

is dominated by the cofactors α on the secondary diagonal. In fact, if |α| is much smaller than 1, then the
cofactors for the higher lags decay quite rapidly according to αh.

The procedure explained here to obtain a significance test of the parameter α of an AR(1) model may be
generalized quite easily to an AR(p) model, which is defined as

Ei = α1Ei−1 + . . . + αpEi−p + Ui (i = 1, . . . , n). (4.2-308)

If a joint significant test is desired with respect to the parameters α1, . . . , αp of this model, then the log-
likelihood function, the log-likelihood score, and the information matrix may be obtained according to the
derivations above. The main difference is that the empirical autocorrelations up to lag p will appear in the score
vector. In that case, Rao’s Score statistic can be shown to take the form

TRS = n

p∑
j=1

ρ̃j
2, (4.2-309)

which is also known as the Portmanteau or Box-Pierce statistic, which is asymptotically distributed as
χ2(p) (see, for instance, Peracchi, 2001, p. 367).
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Example 4.1: Linear regression model with AR(1) errors. Let us inspect the power of the exact
Durbin-Watson test (4.2-307) for detecting correlations following an AR(1) model by performing a Monte Carlo
simulation. For this purpose, suppose that the functional model

Yi = Xiβ + Ei

is represented by a straight line through the origin with Xi = [1, i] and β = [0, 0.01]′ (i = 1, . . . , 1000). The
error variables are assumed to follow the autoregressive model

Ei = αEi−1 + Ui

with σ2 = 1. The observations are uncorrelated under the null hypothesis, that is H0 : ᾱ = 0, whereas the
alternative hypothesis allows for correlations according to a non-zero value of α, that is H1 : ᾱ �= 0. Depending
on the given problem, the deterministic model could be far more complex than the one we adopted here, but
the main purpose of this example is to explain how the power of a test is examined empirically.

Now, we would intuitively expect the power of a reasonable diagnostic to increase as the value of α becomes
larger. To verify our intuition, we generate M = 1000 vectors with dimension (1000 × 1) of standard-normally
distributed random numbers. These vectors u(j) (j = 1, . . . , M) represent random realizations of the uncorre-
lated error variables Ui. Then we transform these errors into possibly correlated errors ei by using the set of
parameter values α = {0, −0.05, −0.1, −0.15}. The value α = 0 represents the case of no correlations, that
is of a true H0. The values -0.05 and -0.1 reflect moderate negative correlation, while the value -0.15 produces
a strong negative correlation (see Fig. 4.1). Now, adding the above linear trend to the error vectors e(j) yields
the data vectors y(j) (j = 1, . . . , M), which will be tested in the following.

The first step in the testing procedure described in the current section consists in estimating the M sets of
line parameters by β̃(j) = (X ′X)−1X ′y, where potential correlations are neglected. From these estimates the
residual vectors follow to be ũj = Y − Xβ̃(j). Then, we need to compute the autocorrelation for lag h = 1
with respect to each of these residual vectors, that is ρ̃

(j)
1 =

∑n
i=2 ũj

i ũ
j
i−1/

∑n
i=1(ũ

j
i )

2. This quantity is simply
a standardized empirical version of the theoretical covariance σ2αh/(1 − α2) of the AR(1) error model (see
Fig. 4.1, right). Finally, we determine the values of the Durbin-Watson statistic T

(j)
RS = n(ρ̃(j)

1 )2 and compare
these to the critical value of the χ2(1)-distribution for instance at level 0.05. To obtain empirical values of the
power function evaluated at α = {0, −0.05, −0.1, −0.15}, we only need to count how many times the test
rejects H0, i.e. determine NR = #

(
T

(j)
RS > k

χ2(1)
0.95

)
(j = 1, . . . , M) and divide this number by the number M of

trials. Then, the ratio NR/M is an estimate for the probability Π(α) that H0 is rejected, which we expected to
depend on the value α of the autoregressive parameter. The results of this simualtion are summarized in the
following table:

α 0 -0.05 -0.1 -0.15
NR/M 0.058 0.414 0.898 0.998

We see that for α = 0, the level of the test is reproduced reasonably well, and that the power of the test
is almost 1 for α = −0.15. To obtain the finer details of the empirical power function, we would only have to
extend this simulation to a finer grid of α-values. Naturally, we could also improve on the accuracy of the power
estimates by generating a higher number M of random samples U (j), say M = 10000.
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Fig. 4.1 A single realization of an AR(1) error process with parameter α = −0.15 superimposed on a linear
trend (left); theoretical covariance function for the same process.
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4.3 Application 6: Testing for overlapping variance components

Suppose that observations Y are approximated by a linear model

Y = Xβ + E (4.3-310)

with normally distributed zero-mean errors E, known design matrix X ∈ R
n×m of full rank, and parameters

β ∈ R
m×1. Regarding the stochastic model, we assume that the covariance matrix is written as

Σ{U} = σ2I + γV , (4.3-311)

where V is a positive known diagonal matrix. From these specifications it follows that the errors are uncorre-
lated, and that they possibly have unequal variances

σ2
i := σ2

Ui
= σ2 + γVii. (4.3-312)

The model (4.3-310) + (4.3-311) represents a Gauss-Markov model with two overlapping variance
components σ2 and γ. This model is a particular version of the general Gauss-Markov model with k unknown
variance and covariance components, defined in Koch (1999, Equation 3.268). A test about the hypotheses

H0 : γ̄ = 0 versus H1 : γ̄ > 0. (4.3-313)

is most conveniently based on Rao’s Score statistic, which avoids computation of the additional parameter
γ. Recall that Rao’s Score statistic requires that the first and second partial derivatives with respect to all
unknown parameters, i.e. the score vector and the information matrix, are evaluated at the maximum likelihood
estimates under the restriction H0. Therefore, we must first determine the log-likelihood function for Y . Using
the definition of the density for the univariate normal distribution with parameters θ = [ β′ σ2 γ ], we find

L(θ; Y ) = ln
n∏

i=1

f(Yi; θ) =
n∑

i=1

ln f(Yi; θ)

=
n∑

i=1

ln(2πσ2
i )−1/2 exp

{
−1

2

(
Yi − Xiβ

σi

)2
}

= −n

2
ln(2π) − 1

2

n∑
i=1

ln(σ2 + γVii) − 1
2

n∑
i=1

(Yi − Xiβ)2

σ2 + γVii
.

The first partial derivatives of the log-likelihood function give the scores

Sβj (θ; Y ) :=
∂L(θ; Y )

∂βj
=

n∑
i=1

(Yi − Xiβ)Xi,j

σ2 + γVii
, (4.3-314)

Sσ2(θ; Y ) :=
∂L(θ; Y )

∂σ2
= −1

2

n∑
i=1

1
σ2 + γVii

+
1
2

n∑
i=1

(Yi − Xiβ)2

(σ2 + γVii)2
, (4.3-315)

Sγ(θ; Y ) :=
∂L(θ; Y )

∂γ
= −1

2

n∑
i=1

Vii

σ2 + γVii
+

1
2

n∑
i=1

(Yi − Xiβ)2

(σ2 + γVii)2
Vii. (4.3-316)

The second partial derivatives follow to be

Hβjβk
(θ; Y ) :=

∂2L(θ; Y )
∂βj∂βk

=
n∑

i=1

−Xi,jXi,k

σ2 + γVii
, (4.3-317)

Hβjσ2(θ; Y ) :=
∂2L(θ; Y )
∂βj∂σ2

= −
n∑

i=1

(Yi − Xiβ)Xi,j

(σ2 + γVii)2
, (4.3-318)

Hβjγ(θ; Y ) :=
∂2L(θ; Y )

∂βj∂γ
=

1
2

n∑
i=1

(Yi − Xiβ)Xi,j

(σ2 + γVii)2
Vii, (4.3-319)

Hσ2σ2(θ; Y ) :=
∂2L(θ; Y )
∂σ2∂σ2

=
1
2

n∑
i=1

1
(σ2 + γVii)2

−
n∑

i=1

(Yi − Xiβ)2

(σ2 + γVii)3
, (4.3-320)

Hσ2γ(θ; Y ) :=
∂2L(θ; Y )

∂σ2∂γ
=

1
2

n∑
i=1

Vii

(σ2 + γVii)2
−

n∑
i=1

(Yi − Xiβ)2

(σ2 + γVii)3
Vii, (4.3-321)

Hγγ(θ; Y ) :=
∂2L(θ; Y )

∂γ∂γ
=

1
2

n∑
i=1

V 2
ii

(σ2 + γVii)2
−

n∑
i=1

(Yi − Xiβ)2

(σ2 + γVii)3
V 2

ii . (4.3-322)
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Using the Markov conditions E{Ei} = 0 and E{E2
i } = σ2

i about the errors Ei = Yi − Xiβ, we obtain for the
components of the information matrix:

Iβjβk
(θ; Y ) := −E{Hβjβk

(θ; Y )} =
n∑

i=1

Xi,jXi,k

σ2 + γVii
,

Iβjσ2(θ; Y ) := −E{Hβjσ2 (θ; Y )} =
n∑

i=1

E{Yi − Xiβ}Xi,j

(σ2 + γVii)2
= 0,

Iβjγ(θ; Y ) := −E{Hβjγ(θ; Y )} = −1
2

n∑
i=1

E{Yi − Xiβ}Xi,j

(σ2 + γVii)2
Vii = 0,

Iσ2σ2(θ; Y ) := −E{Hσ2σ2(θ; Y )} = −1
2

n∑
i=1

1
(σ2 + γVii)2

+
n∑

i=1

E{(Yi − Xiβ)2}
(σ2 + γVii)3

=
n∑

i=1

1
2(σ2 + γVii)2

,

Iσ2γ(θ; Y ) := −E{Hσ2γ(θ; Y )} = −1
2

n∑
i=1

Vii

(σ2 + γVii)2
+

n∑
i=1

E{(Yi − Xiβ)2}
(σ2 + γVii)3

Vii =
n∑

i=1

Vii

2(σ2 + γVii)2
,

Iγγ(θ; Y ) := −E{Hγγ(θ; Y )} = −1
2

n∑
i=1

V 2
ii

(σ2 + γVii)2
+

n∑
i=1

E{(Yi − Xiβ)2}
(σ2 + γVii)3

V 2
ii =

n∑
i=1

V 2
ii

2(σ2 + γVii)2
.

Evaluation of the scores at the restricted maximum likelihood estimates θ̃ = [ β̃′ σ̃2
ML γ̃ ]′ under H0 yields

Sβj (θ̃; Y ) =
n∑

i=1

(Yi − Xiβ̃)Xi,j

σ̃2
ML

=
∑n

i=1 ŨiXi,j

σ̃2
ML

= 0, (4.3-323)

Sσ2(θ̃; Y ) = −1
2

n∑
i=1

1
σ̃2

ML

+
1
2

n∑
i=1

(Yi − Xiβ̃)2

σ̃4
ML

= − n

2σ̃2
ML

+
∑n

i=1 Ũ2
i

2σ̃4
ML

= 0, (4.3-324)

Sγ(θ̃; Y ) = −1
2

n∑
i=1

Vii

σ̃2
ML

+
1
2

n∑
i=1

(Yi − Xiβ̃)2

σ̃4
ML

Vii = −1
2

n∑
i=1

Vii

σ̃2
ML

+
1
2

n∑
i=1

Ũ2
i Vii

σ̃4
ML

=
1

2σ̃2
ML

n∑
i=1

(
Ũ2

i

σ̃2
ML

− 1

)
Vii =

1
2σ̃2

ML

n∑
i=1

ŪiVii =
1

2σ̃2
ML

1′V Ū , (4.3-325)

where we may use the standardized residuals

Ūi :=
Ũ2

i

σ̃2
ML

− 1 =
Ũ2

i

Ũ ′Ũ/n
− 1 (4.3-326)

and the n× 1-vector 1 of ones to allow for a more compact notation. Evaluation of the information at θ̃ yields

Iβjβk
(θ̃; Y ) =

∑n
i=1 Xi,jXi,k

σ̃2
ML

=
1

σ̃2
ML

X ′X,

Iβjσ2(θ̃; Y ) = Iβjγ(θ̃; Y ) = 0,

Iσ2σ2(θ̃; Y ) =
n

2σ̃4
ML

,

Iσ2γ(θ̃; Y ) =
∑n

i=1 Vii

2σ̃4
ML

=
trV

2σ̃4
ML

=
1

2σ̃4
ML

1′V 1,

Iγγ(θ̃; Y ) =
∑n

i=1 V 2
ii

2σ̃4
ML

=
trV V

2σ̃4
ML

=
1

2σ̃4
ML

1′V V 1.

For computational purposes, the expressions for Iσ2γ(θ̃; Y ) and Iγγ(θ̃; Y ) in terms of the trace of V or V V

are more convenient to use. However, to construct the test statistic itself, we will use these equations in matrix
notation.
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Now we obtain for Rao’s Score statistic

TRS = S ′(β̃, σ̃2
ML, γ̃; Y )I−1(β̃, σ̃2

ML, γ̃; Y )S(β̃, σ̃2
ML, γ̃; Y )

=

⎡⎢⎣ 0
0

1
2�σ4

ML
1′V Ū

⎤⎥⎦
′ ⎡⎢⎣

1
�σ2

ML
X ′X 0 0
0 n

2�σ4
ML

1
2�σ4

ML
1′V 1

0 1
2�σ4

ML
1′V 1 1

2�σ4
ML

1′V V 1

⎤⎥⎦
−1 ⎡⎢⎣ 0

0
1

2�σ4
ML

1′V Ū

⎤⎥⎦

=
1
2
[
0 0 Ū ′V 1

]⎡⎣ 2σ̃2
MLX ′X 0 0

0 n 1′V 1
0 1′V 1 1′V V 1

⎤⎦−1 ⎡⎣ 0
0

1′V Ū

⎤⎦
=

1
2
Ū ′V 1 (1′V V 1)(−1) 1′V Ū .

As all the components of log-likelihood score for the unrestricted parameters vanish, we only need to find
the Schur complement of the block 1′V V 1, which is simple to compute due to the block-diagonality of the
submatrix with respect to the parameter groups β and σ2. We obtain

(1′V V 1)(−1) =

(
1′V V 1− [0 1′V 1 ]

[
2σ̃2

MLX ′X 0
0 n

]−1 [
0

1′V 1

])−1

=
(
1′V V 1− 1

n
(1′V 1)(1′V 1)

)−1

=
(
1′V V 1 − 1′V 1(1′1)−11′V 1

)−1

=
(
1′V

[
I − 1(1′1)−11′]V 1

)−1
.

Rao’s Score statistic for testing the significance of a single additive variance component γ finally reads

TRS =
1
2
Ū ′V 1

(
1′V

[
I − 1(1′1)−11′]V 1

)−1
1′V Ū . (4.3-327)

As this test statistic has an approximate χ2(1)-distribution by virtue of Proposition 4.1, Rao’s Score test is
given by

φAV C(y) =

{
1, if TRS > k

χ2(1)
1−α ,

0, if TRS < k
χ2(1)
1−α ,

(4.3-328)

Example 4.2: Significance testing of a distance-dependent variance component. Koch (1981) con-
sidered an additive heteroscedasticity model of the form

σ2
i = a + b · s2

i (4.3-329)

to explain the variances σ2
i of distance measurements s1, . . . , sn by a constant part a and a distance-dependent

part γs2
i . If we further assume the observations to be uncorrelated, then the stochastic model follows to be

Σ{Y } = σ2 ·

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0

0 0
. . . 0

0 0 0 1

⎤⎥⎥⎥⎦+ γ ·

⎡⎢⎢⎢⎣
s2
1 0 0 0
0 s2

2 0 0

0 0
. . . 0

0 0 0 s2
n

⎤⎥⎥⎥⎦ .

We might desire a test of the null hypothesis that measured distances have constant accuracy σ2 against
the alternative hypothesis that there is a significant distance-dependent variance component superposing the
variance σ2. These hypotheses take the form

H0 : γ̄ = 0 versus H1 : γ̄ �= 0.

Under the assumption of normally distributed observations, the resulting observation model reads

Y ∼ N(Xβ, σ2I + γV ).
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4.4 Application 7: Testing for non-normality of the observation errors

Let us consider the linear functional model

Y = Xβ + U , (4.4-330)

where X ∈ R
n×m denotes a known design matrix of full rank and β ∈ R

m×1 a vector of unknown functional
parameters. We will assume for now that the errors U are uncorrelated and homoscedastic according to the
stochastic model

Σ{U} = σ2I. (4.4-331)

We have used such a Gauss-Markov model, for instance, in Section 3 to obtain the UMPI statistic M for testing
linear restrictions Hβ̄ = w. The exact χ2- or F -distribution of this test statistic has been derived from the
basic premise that the error variables are normally distributed. This normality assumption becomes even more
evident if we recall that we used the normal density/likelihood function to derive of the Likelihood Ratio and
Rao’s Score statistic for that problem. If the errors do not follow a normal distribution, then these tests are
not reliable anymore, because the exact distributions of these test statistics (and therefore the critical values)
will be at least inaccurate, and the likelihood function will be misspecified.

Therefore, if we have serious doubts about the normality of the error variables, then we should test this
assumption. In this section, we will investigate a test of normality which fits into the framework of parametric
testing problems, and which may be derived conveniently on the basis of Rao’s Score statistic.

Let us start by recalling that the density of a univariate normal distribution is characterized by four param-
eters: a variable mean µ, a variable variance σ2, a constant skewness γ1 = 0 (reflecting symmetry about the
mean), and a constant kurtosis γ2 = 0 (indicating a mesokurtic shape). The mean is then identical to the first
moment

µ1 =
∫ ∞

−∞
xf(x)dx

and the variance identical to the second central moment

µ2 =
∫ ∞

−∞
(x − µ1)2f(x)dx,

whereas the skewness and kurtosis are based on the third and fourth central moments

µ3 =
∫ ∞

−∞
(x − µ1)3f(x)dx

and

µ4 =
∫ ∞

−∞
(x − µ1)4f(x)dx

through the relations

γ1 =
µ3

µ
3/2
2

(4.4-332)

and

γ2 =
µ4

µ2
2

− 3 (4.4-333)

(see Stuart and Ord, 2003, p. 74 and 109). A natural idea is now to estimate the skewness and kurtosis from
the given data and to compare these estimates with the values ascribed to the normal distribution. On the
one hand, if the empirical skewness turns out to be significantly smaller/larger than 0, then the errors will
have a non-symmetrical distribution with a lower/upper tail that is heavier than for a normal distribution.
On the other hand, if the empirical kurtosis is significantly smaller/larger than 0, then the errors will have a
platykurtic/leptokurtic distribution with a flatter/sharper top (see Stuart and Ord, 2003, p. 109). Unfortunately,
it is not clear how large these deviations from 0 must be to indicate significant non-normality, because we do
not know the probability distribution of the estimators for γ1 and γ2.
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Nevertheless, this problem of testing H0 : γ1 = 0, γ2 = 0 versus H1 : γ1 �= 0, γ2 �= 0 may be tackled in a
quite convenient way by considering Pearson’s collection of distributions WP . The density function of
each univariate distribution within WP satisfies the differential equation

d

du
ln f(u; c0, c1, c2) =

c1 − u

c0 − c1u + c2u2
(u ∈ R), (4.4-334)

where the parameters c0, c1, and c2 determine the shape of the density function f , and where u is a quantity
measured about its mean, such as an error ui = yi − Xiβ in (4.4-330). We will see later that the density
function of the centered normal distribution (with µ = 0) satisfies (4.4-334) for c0 = σ2, c1 = 0, and c2 = 0.
Furthermore, the parameters c1 and c2 correspond to the skewness and kurtosis through the relations

c1 =
γ1(γ2 + 6)

√
µ2

10γ2 − 12γ2
1 + 12

(4.4-335)

and

c2 =
3γ2

1 − 2γ2

10γ2 − 12γ2
1 + 12

(4.4-336)

(see Equation 6.4 in Stuart and Ord, 2003, p. 217), so that the problem of testing of H0 : γ1 = 0, γ2 = 0 versus
H1 : γ1 �= 0, γ2 �= 0 is equivalent to testing H0 : c1 = 0, c2 = 0 versus H1 : c1 �= 0, c2 �= 0.

Let us now determine the general solution of (4.4-334). Integration of (4.4-334) yields

ln f(u; c0, c1, c2) + k =
∫

c1 − u

c0 − c1u + c2u2
du,

which we may rewrite as

ln f(u; c0, c1, c2) + k = g(u; c0, c1, c2) (k ∈ R),

where k denotes the integration constant and

g(u; c0, c1, c2) :=
∫

c1 − u

c0 − c1u + c2u2
du (4.4-337)

an antiderivative. Now, using exp(lnu) = u, the general solution of (4.4-334) follows to be

f(u; c0, c1, c2) = exp{g(u; c0, c1, c2) − k} = exp{−k} · exp{g(u; c0, c1, c2)} =: k∗ · exp{g(u; c0, c1, c2)}.
(4.4-338)

The integration constant k∗ is determined by standardizing the area under f to 1, which yields

1 =

+∞∫
−∞

f(u; c0, c1, c2)du =

+∞∫
−∞

k∗ · exp g(u; c0, c1, c2)du = k∗ ·
+∞∫

−∞
exp g(u; c0, c1, c2)du.

Now, substituting k∗ = 1/
∫ +∞
−∞ exp g(u; c0, c1, c2) du into (4.4-338) leads to

f(u; c0, c1, c2) =
exp g(u; c0, c1, c2)∫ +∞

−∞ exp g(u; c0, c1, c2) du
(4.4-339)

as the standardized solution of (4.4-334).
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Pearson’s collection of distributions comprises a large number of standard distributions and, as indicated
earlier, the normal distribution is its most prominent member. Some particularly useful members of WP are
summarized by the following proposition.

Proposition 4.2. The following univariate distributions are members of Pearson’s collection of distribution:

1. Centered normal distrubution N(0, σ2),

2. Gamma distribution G(b, p),

3. Beta distribution B(α, β),

4. Student distribution t(k).

Proof. 1. To see that the density function f(u; σ2) of N(0, σ2) satisfies (4.4-334), set c0 = σ2, c1 = c2 = 0 in
(4.4-337), for which (4.4-339) becomes

f(u; σ2) =
exp
(∫ −u

σ2 du
)∫ +∞

−∞ exp
(∫ −u

σ2 du
)
du

=
exp
(

−u2

2σ2

)
∫ +∞
−∞ exp

(−u2

2σ2

)
du

. (4.4-340)

The integral in the denominator is solved by using

+∞∫
0

exp
(−a2x2

)
dx =

√
π

2a
(a > 0) (4.4-341)

(see Bronstein and Semendjajew, 1991, p. 66; Integral 3), where in the given case a2 = 1/2σ2 is positive as a
consequence of the fact that σ2 > 0 by definition. Also note that integration on (−∞, +∞) doubles the value
of (4.4-341) because of exp

(−a2(−x)2
)

= exp
(−a2x2

)
. Thus it follows that∫ +∞

−∞
exp
(−u2

2σ2
du

)
du =

√
π ·

√
2σ2, (4.4-342)

from which the density function

f(u; σ2) =
1√
2πσ

exp
{
−1

2

(u

σ

)2
}

(4.4-343)

of the centered normal distribution is obtained.
Proofs for 2.-4. are found, for instance, in Stuart and Ord (2003, Chap. 6).

Now, the log-likelihood function may be determined from the densities (4.4-339) with respect to the errors
ui = yi − Xiβ (i = 1, . . . , n). If these error variables are assumed to be independently distributed, then the
joint density (as a function of y with additional parameters β) may be factorized as

f(y; β, c0, c1, c2) =
n∏

i=1

exp g(ui; c0, c1, c2)∫ +∞
−∞ exp g(ui; c0, c1, c2) dui

. (4.4-344)

Notice that the value of the integral in the denominator is only a function of c0, c1, and c2, not of β, because ui

acts there only as an integration variable. Defining the parameter vector as θ := [β′, c0, c1, c2]′, the log-likelihood
function follows to be

L(θ; y) = ln
n∏

i=1

exp g(ui; c0, c1, c2)∫ +∞
−∞ exp g(ui; c0, c1, c2) dui

=
n∑

i=1

(
g(ui; c0, c1, c2) − ln

∫ +∞

−∞
exp g(ui; c0, c1, c2) dui

)
.
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Taking the first partial derivatives with respect to the functional parameters βj (j = 1, . . . , m) yields

Sβj (θ; y) :=
∂L(θ; y)

∂βj
=

n∑
i=1

∂g(ui; c0, c1, c2)
∂βj

=
n∑

i=1

∂

∂βj

∫
c1 − ui

c0 − c1ui + c2u2
i

dui

=
n∑

i=1

∂ui

∂βj

∂

∂ui

∫
c1 − ui

c0 − c1ui + c2u2
i

dui = −
n∑

i=1

Xi,j
c1 − ui

c0 − c1ui + c2u2
i

,

which defines the random variable

Sβj (θ; Y ) = −
n∑

i=1

Xi,j
c1 − Ui

c0 − c1Ui + c2U2
i

. (4.4-345)

Peracchi (2001, p. 365) points out an elegant way to derive the score with respect to the parameters cj (j =
0, . . . , 2), which shall be explained here in greater detail. Applying the partial derivative to both terms within
the sum of the log-likelihood function gives

Scj (θ; y) :=
∂L(θ; y)

∂cj
=

n∑
i=1

⎛⎝∂g(ui; c0, c1, c2)
∂cj

− ∂

∂cj
ln

+∞∫
−∞

exp g(ui; c0, c1, c2) dui

⎞⎠
=

n∑
i=1

⎛⎝∂g(ui; c0, c1, c2)
∂cj

− 1∫ +∞
−∞ exp g(ui; c0, c1, c2) dui

· ∂

∂cj

+∞∫
−∞

exp g(ui; c0, c1, c2) dui

⎞⎠ .

Here we may interchange the integral and derivative, which results in

Scj (θ; y) =
n∑

i=1

⎛⎝∂g(ui; c0, c1, c2)
∂cj

− 1∫ +∞
−∞ exp g(ui; c0, c1, c2) dui

·
+∞∫

−∞

∂

∂cj
exp g(ui; c0, c1, c2) dui

⎞⎠
=

n∑
i=1

⎛⎝∂g(ui; c0, c1, c2)
∂cj

−
∫ +∞
−∞ exp g(ui; c0, c1, c2) · ∂g(ui;c0,c1,c2)

∂cj
dui∫ +∞

−∞ exp g(ui; c0, c1, c2) dui

⎞⎠ .

The next step is to see that the integral in the denominator can be moved into the integral in the nominator,
which allows us to apply (4.4-344), that is

Scj (θ; y) =
n∑

i=1

⎛⎝∂g(ui; c0, c1, c2)
∂cj

−
+∞∫

−∞

exp g(ui; c0, c1, c2)∫ +∞
−∞ exp g(ui; c0, c1, c2) dui

· ∂g(u; c0, c1, c2)
∂cj

du

⎞⎠
=

n∑
i=1

⎛⎝∂g(ui; c0, c1, c2)
∂cj

−
+∞∫

−∞
f(u; c0, c1, c2)

∂g(ui; c0, c1, c2)
∂cj

dui

⎞⎠ .

Finally, we may use the fact that the integral represents the expectation of the random variable ∂g(Ui; c0, c1, c2)/∂cj ,
which leads to the result

Scj (θ; Y ) =
n∑

i=1

(
∂g(Ui; c0, c1, c2)

∂cj
− E

{
∂g(Ui; c0, c1, c2)

∂cj

})
(4.4-346)

as given in Peracchi (2001). To compute the partial derivatives ∂g(ui; c0, c1, c2)/∂cj regarding the antiderivative
defined in (4.4-337), we may again interchange the derivative and the integral. Then we obtain

∂g(ui; c0, c1, c2)
∂c0

= −
∫

c1 − ui

(c0 − c1ui + c2u2
i )2

dui,

∂g(ui; c0, c1, c2)
∂c1

=
∫

1 · (c0 − c1ui + c2u
2
i ) − (c1 − ui)(−ui)

(c0 − c1ui + c2u2
i )2

dui =
∫

c0 + c2u
2
i − u2

i

(c0 − c1ui + c2u2
i )2

dui,

∂g(ui; c0, c1, c2)
∂c2

= −
∫

(c1 − ui)u2
i

(c0 − c1ui + c2u2
i )2

dui.
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Eventually, we will have to evaluate the scores at the ML estimates with the restrictions H0 : c1 = c2 = 0.
Furthermore, the parameter c0 will be identical to the variance σ2 under these restrictions, as mentioned above.
Then, evaluation of the partial derivatives at c1 = c2 = 0 with the parameters c0 = σ2 and β remaining
unspecified gives

∂g(ui; σ2, 0, 0)
∂c0

=
∫

ui

σ4
dui =

1
σ4

∫
ui dui =

u2
i

2σ4
,

∂g(ui; σ2, 0, 0)
∂c1

=
∫

σ2 − u2
i

σ4
dui =

1
σ2

∫
dui − 1

σ4

∫
u2

i dui =
ui

σ2
− u3

i

3σ4
,

∂g(ui; σ2, 0, 0)
∂c2

=
∫

u3
i

σ4
dui =

1
σ4

∫
u3

i dui =
u4

i

4σ4
.

These quantities define random variables whose expectations, under the restrictions H0, are given by

E

{
∂g(ui; σ2, 0, 0)

∂c0

}
=

E{U2
i }

2σ4
=

1
2σ2

,

E

{
∂g(ui; σ2, 0, 0)

∂c1

}
=

E{Ui}
σ2

− E{U3
i }

3σ4
= 0,

E

{
∂g(ui; σ2, 0, 0)

∂c2

}
=

E{U4
i }

4σ4
=

3
4
,

where we used the following facts about the moments of Ui: (1) E{Ui} = 0 by virtue of the first Markov
condition; (2) E{U2

i } = σ2 = µ2 in light of the second Markov condition; (3) c1 = γ1 = 0 implies E{U3
i }µ3 = 0

because of (4.4-332); and (4) c2 = γ2 = 0 implies E{U4
i } = µ4 = 3µ2

2 = 3σ4 due to (4.4-333). This gives finally
the components of the score (4.4-346)

Sσ2(θ; Y ) =
n∑

i=1

(
U2

i

2σ4
− 1

2σ2

)
=

1
2σ4

n∑
i=1

U2
i − n

2σ2
, (4.4-347)

Sc1(θ; Y ) =
n∑

i=1

(
Ui

σ2
− U3

i

3σ4
− 0
)

=
1
σ2

n∑
i=1

Ui − 1
3σ4

n∑
i=1

U3
i (4.4-348)

Sc2(θ; Y ) =
n∑

i=1

(
U4

i

4σ4
− 3

4

)
=

1
4σ4

n∑
i=1

U4
i − 3n

4
. (4.4-349)

To construct Rao’s Score statistic, the scores (4.4-345) and (4.4-347) - (4.4-349) must be evaluated at the
restricted ML estimates θ̃. Under the restrictions c1 = c2 = c0, the Gauss-Markov model (4.4-330) and
(4.4-331) has normally distributed errors U . Therefore, the restricted ML estimator for β is identical to the
least squares estimator β̃ = (X ′X)−1X ′Y . The residuals are then estimated by Ũ = Y − Xβ̃. This leads to
the restricted ML estimator for c0 = σ2, that is σ̃2

ML = Ũ ′Ũ/n, which differs from the least squares estimator
only in using the factor 1/n instead of 1/(n − m). Finally, we will also use the estimators µ̃j =

∑n
i=1 Ũ j

i /n

(j = 2, 3, 4) for the second, third, and fourth (central) moments (the first moment µ̃j =
∑n

i=1 Ũi is zero as we
assumed the presence of an intercept parameter).

Exploiting the orthogonality between the j-th column of X (i.e. the j-th row of X ′) and the vector of
estimated residuals, we obtain from (4.4-345)

Sβj (θ̃; Y ) = −
n∑

i=1

Xi,j
−Ũi

σ̃4
ML

=
1

σ̃4
ML

n∑
i=1

Xi,jŨi = 0, (4.4-350)

and from (4.4-347) - (4.4-349)

Sσ2(θ̃; Y ) =
1

2σ̃4
ML

n∑
i=1

Ũ2
i − n

2σ̃2
ML

=
nσ̃2

ML

2σ̃4
ML

− n

2σ̃2
ML

= 0, (4.4-351)

Sc1(θ̃; Y ) =
1

σ̃2
ML

n∑
i=1

Ũi − 1
3σ̃4

ML

n∑
i=1

U3
i = − nµ̃3

3σ̃4
ML

, (4.4-352)

Sc2(θ̃; Y ) =
1

4σ̃4
ML

n∑
i=1

Ũ4
i − 3n

4
=

nµ̃4

4σ̃4
ML

− 3n

4
. (4.4-353)
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As already mentioned in Section 2.5.6, we see that the score vanishes in the direction of the unrestricted
parameters (β and σ2), because the estimates for the unrestricted parameters are given the freedom to satisfy
the corresponding likelihood equations exactly, i.e. to maximize the log-likelihood function in those directions.

The derivation of the second partial derivatives of the log-likelihood function with respect to all the param-
eters in θ, or equivalently of the first partial derivatives of the scores (4.4-345) and (4.4-347) - (4.4-349), is very
lengthy. Therefore, we will refer to Proposition 2 in Bera and Jarque (1982), from which the information matrix
at θ̃ is obtained as

I(θ̃; Y ) =

⎡⎢⎢⎢⎢⎣
1

�σ2
ML

X ′X 0 0 0
0 n

2�σ4
ML

0 3n
2�σ2

ML

0 0 2n
3�σ2

ML
0

0 3n
2�σ2

ML
0 6n

⎤⎥⎥⎥⎥⎦ (4.4-354)

Now we obtain for Rao’s Score statistic

TRS = S ′(θ̃; Y )I−1(θ̃; Y )S(θ̃; Y )

=

⎡⎢⎢⎢⎣
0
0

− n�µ3
3�σ4

ML
n�µ4

4�σ4
ML

− 3n
4

⎤⎥⎥⎥⎦
′ ⎡⎢⎢⎢⎢⎣

1
�σ2

ML
X ′X 0 0 0
0 n

2�σ4
ML

0 3n
2�σ2

ML

0 0 2n
3�σ2

ML
0

0 3n
2�σ2

ML
0 6n

⎤⎥⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

0
0

− n�µ3
3�σ4

ML
n�µ4

4�σ4
ML

− 3n
4

⎤⎥⎥⎥⎦
If we define the subvectors

S1 :=
[
0
0

]
, S2 := n

[ − �µ3
3�σ4

ML
�µ4

4�σ4
ML

− 3
4

]
,

the submatrices

I11 :=

[
1

�σ2
ML

X ′X 0
0 n

2�σ4
ML

]
, I12 = I ′

21 :=

[
0 0
0 3n

2�σ2
ML

]
, I22 :=

[
2n

3�σ2
ML

0
0 6n

]
,

and the Schur complements I(−1)
11 , I(−1)

12 , I(−1)
21 , I(−1)

22 as the blocks of the total inverse I−1(θ̃; Y ), then TRS

follows to be

TRS = S ′
1I(−1)

11 S1 + S′
2I(−1)

21 S1 + S ′
1I(−1)

12 S2 + S ′
2I(−1)

22 S2

= S ′
2I(−1)

22 S2.

With

I(−1)
22 = (I22 − I21I−1

11 I12)−1

=

⎛⎝[ 2n
3�σ2

ML
0

0 6n

]
−
[

0 0
0 3n

2�σ2
ML

] [
1

�σ2
ML

X ′X 0
0 n

2�σ4
ML

]−1 [
0 0
0 3n

2�σ2
ML

]⎞⎠−1

=

([
2n

3�σ2
ML

0
0 6n

]
−
[

0 0
0 3n

2�σ2
ML

] [
σ̃2

ML(X ′X)−1 0
0 2σ̃4

ML/n

] [
0 0
0 3n

2�σ2
ML

])−1

=

([
2n

3�σ2
ML

0
0 6n

]
−
[

0 0
0 9n

2

])−1

=
1
n

[
3
2 σ̃2

ML 0
0 2

3

]
,

(which is a part of the result given in Proposition 3 by Bera and Jarque, 1982), we obtain

TRS = n

[ − �µ3
3�σ4

ML
�µ4

4�σ4
ML

− 3
4

]′ [
3
2 σ̃2

ML 0
0 2

3

] [ − �µ3
3�σ4

ML
�µ4

4�σ4
ML

− 3
4

]
= n

[ − �µ3
3�σ4

ML
�µ4

4�σ4
ML

− 3
4

]′ [ − �µ3
2�σ2

ML
�µ4

6�σ4
ML

− 1
2

]

= n
µ̃2

3

6σ̃6
ML

+ n
µ̃2

4

24σ̃8
ML

− n
µ̃4

8σ̃4
ML

− n
µ̃4

8σ̃4
ML

+ 3n/8

=
n

6
· µ̃2

3

σ̃6
ML

+
n

24

(
µ̃2

4

σ̃8
ML

− 6
µ̃4

σ̃4
ML

+ 9
)

=
n

6
· µ̃2

3

σ̃6
ML

+
n

24

(
µ̃4

σ̃4
ML

− 3
)2

.
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Observe now that the definition of σ̃2
ML is identical to that of the empirical second central moment µ̃2. Then,

if we define the empirical skewness

γ̃1 =
µ̃3

µ̃
3/2
2

, (4.4-355)

and the empirical kurtosis

γ̃2 =
µ̃4

µ̃2
2

− 3, (4.4-356)

which depend on the estimated residuals of the Gauss-Markov model through the empirical moments µ̃j =∑n
i=1 Ũ j

i (j = 2, . . . , 4), then Rao’s Score statistic takes its final form

TRS =
n

6
γ̃2
1 +

n

24
γ̃2
2 . (4.4-357)

Evidently, this statistic measures the absolute deviations of the data’s skewness and kurtosis from the values 0,
thus compares how far the distribution of the estimated residuals differs from a normal distribution. This test
of normality is also called the Jarque-Bera test (Bera and Jarque, 1982).

Example 4.3: Testing the Gravity Dataset for non-normality. In Example 3.2 we considered a two-
dimensional polynomial model of degree 1 with additional mean shift parameters. To check whether the errors
U in the model

Y = Xβ + Z∇ + U

follow a normal distribution, we first compute the residuals

ũ = y − Xβ̃ − Z∇̃
based on the least squares estimates[

β̃

∇̃

]
=
[

X ′X X ′Z
Z ′X Z ′Z

]−1 [
X ′y
Z ′y

]
.

Contrary to Example 3.2, we use tildes instead of hats on top of the estimate ∇̃, because here the mean shift
parameters ∇, which were proven to be significant, naturally belong to the functional model. The tildes indicate
that the estimates have been determined under the restrictions c1 = c2 = 0. From these residuals we the obtain
γ̃1 = −0.25 for the empirical skewness (4.4-355) and γ̃2 = −0.29 for the kurtosis measure (4.4-356). With these
values, Rao’s Score statistic (4.4-357) becomes TRS = 1.28, which is insignificant in light of the critical value
k

χ2(2)
0.95 = 5.99. Therefore, we may assume the errors to be normally distributed, which is also roughly reflected

by the following histogram plot. �
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Figure 4.2. Histogram of the estimated residuals.
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5 Conclusion and Outlook

In the framework of the Gauss-Markov model with normally distributed errors, uniformly most powerful in-
variant tests generally exist. These tests have three equivalent formulations: (1) the form obtained from a
direct application of invariance principles, (2) the likelihood ratio test, and (3) Rao’s score test. Of the three,
Rao’s score test is easiest to compute for problems where significance testing is required. If the testing problem
involves unknown parameters within the weight matrix, or if the errors do not follow a normal distribution,
then no uniformly most powerful invariant tests exist. In these cases too, Rao’s score test offers an attractive
method that is both powerful and computationally convenient. This thesis has demonstrated that hypothesis
testing by applying Rao’s score method is an effective - and in many cases optimal - approach for resolving a
wide range of problems faced in geodetic model analysis.

New satellite missions such as GOCE (Gravity Field and steady-state Ocean Circulation Explorer) require
powerful and computationally feasible tests for diagnosing functional and stochastic models that are far more
complex than the models considered in this thesis (cf. Lackner, 2006). To find convincing solutions to these
challenges, it will be necessary for geodesists to further elaborate their understanding of statistical testing theory.
Looking at the methodology currently offered by mathematical statistics, some directions of further research
are particularly promising. Rao’s score approach can be applied to a full range of testing problem fields such
as deformation analysis, time series analysis, or geostatistics - applications that have not yet been explored in
modern geodetic literature. It is crucial that geodesists develop a stronger expertise in the asymptotic behaviour
of statistical theories, such as given in Lehmann and Romano (2005, Part II). This will be a necessary step
towards assessing the quality of geodetic hypothesis tests, such as those presented in Section 4, for which no
strict optimality criteria are applicable.

The scope of the theory presented in this thesis is restricted to a specific minimization problem regarding
Type I and Type II error probabilities within the class of invariant tests. However, minimizing error probability
does not correspond to a minimization of costs when one considers losses in work time, computational time, or
even accuracy of estimated parameters. To overcome this limitation, hypothesis tests could be derived within
the framework of decision theory, by minimizing a loss function which represents the expected loss/cost due to
an erroneous test decision (cf. Lehmann and Romano, 2005, p. 59).

Finally, it is often argued that classical testing theory is too limited in that the test decision is always made
on the premise of a true null hypothesis, and that a priori information with respect to the unknown parameters
may not be used (see, for instance, Jaynes, 2003, Chapter 16). A theory which does allow the treatment of
the null and the alternative hypothesis on equal grounds and incorporation of a priori information is offered by
Bayes statistics. Bayesian tests may be viewed as generalizations of likelihood ratio tests in that the likelihood
ratio is extended by an a priori density with respect to the unknown parameters, which are treated as random
variables (cf. Koch, 2000, Section 3.4). It would be highly instructive to formulate the model misspecification
tests developed in this thesis within the Bayesian framework and to compare them in terms of testing power,
applicability to a wide range of problems, and computational convenience.
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6 Appendix: Datasets

6.1 Dam Dataset

The numerical values of the observation model

y = Xβ + u, Σ{U} = σ2I,

for the Dam dataset used in Application 3 of Sect. 3.5 are given by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.433
80.001
80.000
76.568
76.569
76.570
−0.477
77.047
77.046
67.705
67.706
1.444

66.262
66.262
66.260
1.162

65.097
65.098
−0.002
−0.002
80.000
79.999
76.570
76.569
76.569
77.046
77.047
67.704
67.706
66.261
66.261
66.260
65.098
65.099

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 +1 0 0 0 0 0
0 0 0 0 0 0 +1 0 0 0 0

−1 0 0 0 0 +1 0 0 0 0 0
−1 0 0 0 0 0 +1 0 0 0 0
−1 0 0 0 0 0 0 +1 0 0 0
−1 +1 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 +1 0 0 0 0
0 −1 0 0 0 0 0 +1 0 0 0
0 0 −1 0 0 +1 0 0 0 0 0
0 0 −1 0 0 0 +1 0 0 0 0
0 0 −1 +1 0 0 0 0 0 0 0
0 0 0 −1 0 +1 0 0 0 0 0
0 0 0 −1 0 0 +1 0 0 0 0
0 0 0 −1 0 0 0 +1 0 0 0
0 0 0 −1 +1 0 0 0 0 0 0
0 0 0 0 −1 0 +1 0 0 0 0
0 0 0 0 −1 0 0 +1 0 0 0
0 0 0 0 0 −1 +1 0 0 0 0
0 0 0 0 0 0 −1 +1 0 0 0
0 0 0 0 0 0 0 0 +1 0 0
0 0 0 0 0 0 0 0 0 +1 0

−1 0 0 0 0 0 0 0 +1 0 0
−1 0 0 0 0 0 0 0 0 +1 0
−1 0 0 0 0 0 0 0 0 0 +1

0 −1 0 0 0 0 0 0 0 +1 0
0 −1 0 0 0 0 0 0 0 0 +1
0 0 −1 0 0 0 0 0 +1 0 0
0 0 −1 0 0 0 0 0 0 +1 0
0 0 0 −1 0 0 0 0 +1 0 0
0 0 0 −1 0 0 0 0 0 +1 0
0 0 0 −1 0 0 0 0 0 0 +1
0 0 0 0 −1 0 0 0 0 +1 0
0 0 0 0 −1 0 0 0 0 0 +1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H2

H3

H4

H5

H6

H7

H8

H9

H7′

H8′

H9′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

u14

u15

u16

u17

u18

u19

u20

u21

u22

u23

u24

u25

u26

u27

u28

u29

u30

u31

u32

u33

u34

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.1-358)
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6.2 Gravity Dataset

Index Anomaly Latitude Longitude Index Anomaly Latitude Longitude
i dg ◦ min ◦ min i dg ◦ min ◦ min
1 15.11 48 10.26 16 19.01 47 14.91 46 41.99 13 40.00
2 15.13 48 13.97 16 20.24 48 15.03 46 37.09 13 50.04
3 14.80 48 18.72 16 25.85 49 15.01 46 39.45 14 18.82
4 15.02 48 43.15 16 18.20 50 15.07 46 33.27 14 02.63
5 15.11 48 30.75 16 37.30 51 15.03 47 46.26 12 56.56
6 15.25 48 41.56 16 52.24 52 15.09 47 36.09 12 42.24
7 15.02 48 21.72 15 24.23 53 15.07 47 16.94 12 29.00
8 15.07 48 11.88 14 31.68 54 15.06 47 17.75 12 46.07
9 15.07 48 07.54 14 52.73 55 15.09 47 25.13 13 13.15

10 14.91 48 09.56 15 06.06 56 15.01 47 08.05 13 40.82
11 15.12 48 13.45 15 21.48 57 15.00 48 34.22 13 59.69
12 15.09 48 10.32 15 37.15 58 15.09 48 15.41 13 02.34
13 15.10 47 48.42 16 12.18 59 15.07 48 27.50 13 26.07
14 15.06 47 39.61 15 53.51 60 15.10 48 18.52 14 14.85
15 15.09 48 08.43 16 54.04 61 15.05 48 04.40 14 03.43
16 15.04 47 45.98 16 27.31 62 14.99 47 31.66 11 42.49
17 14.97 47 35.08 16 25.54 63 15.11 47 35.06 12 09.98
18 15.04 47 42.41 16 54.87 64 15.00 47 29.02 10 43.38
19 15.11 47 15.10 16 14.65 65 14.91 47 15.63 10 45.56
20 15.15 47 24.82 16 29.78 66 14.95 47 18.51 11 04.50
21 14.98 46 59.34 16 15.65 67 14.95 47 16.83 10 59.00
22 15.10 47 53.35 16 39.69 68 15.05 47 16.07 11 16.24
23 15.03 47 44.49 15 18.64 69 14.91 47 25.52 11 13.90
24 14.93 47 36.95 15 46.11 70 14.94 47 25.76 11 14.81
25 15.10 47 23.54 13 41.47 71 15.08 47 23.78 11 49.35
26 15.20 47 23.16 15 05.63 72 15.06 47 29.19 12 03.96
27 15.09 47 24.93 16 01.25 73 14.98 47 07.76 10 15.93
28 14.98 47 04.68 13 55.63 74 14.93 47 08.95 10 34.70
29 15.07 47 02.35 15 10.19 75 14.89 47 08.05 10 30.99
30 15.13 47 03.41 15 25.04 76 14.92 47 14.22 10 44.33
31 15.12 47 01.59 15 29.14 77 14.92 47 10.92 10 37.03
32 15.16 47 04.59 15 34.97 78 15.13 47 11.84 10 39.41
33 15.11 47 04.19 15 44.22 79 14.90 47 13.30 10 45.35
34 15.13 46 53.11 15 29.91 80 14.92 47 14.08 10 51.24
35 15.06 47 40.55 15 29.64 81 15.06 47 03.85 11 29.28
36 15.01 47 36.45 15 40.38 82 15.03 47 07.63 11 27.17
37 15.11 47 04.77 15 59.64 83 15.03 47 13.92 11 23.17
38 14.93 47 00.05 12 32.54 84 15.05 47 14.04 11 52.87
39 14.90 46 56.21 12 34.42 85 14.85 46 58.09 10 32.12
40 15.00 46 49.03 12 47.28 86 14.82 46 50.92 10 30.33
41 15.01 46 49.70 12 45.45 87 14.69 47 21.65 10 49.87
42 14.82 46 54.75 13 15.50 88 14.89 47 31.80 9 51.80
43 15.04 46 50.30 13 22.21 89 15.13 47 27.44 9 38.44
44 14.92 46 48.97 13 25.04 90 14.98 47 25.84 9 45.38
45 14.83 46 49.89 14 26.78 91 14.95 47 07.95 10 07.31
46 15.11 46 39.85 12 59.82
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Krämer, W. and H. Sonnberger (1986). The linear regression model under test. Physica, Heidelberg.

Kreyszig, E. (1998). Statistische Methoden und ihre Anwendungen. Vandenhoeck and Ruprecht, Göttingen.

Lackner, B. (2006). Datainspection and hypothesis tests of very long time series applied to GOCE satellite

gravity gradiometry data. Dissertation, Graz University of Technology.

Lehmann, E.L. (1959a). Testing statistical hypotheses. First edition. Wiley, New York.

Lehmann, E.L. (1959b). Optimum invariant tests. Annals of Mathematical Statistics, 30:881-884.

Lehmann, E.L. and J.P. Romano (2005). Testing statistical hypotheses. Third edition. Springer, New York.

Meissl, P. (1982). Least squares adjustment - a modern approach. Mitteilungen der geodätischen Institute der
Technischen Universität Graz, Vol. 43.



90

Meyer, C.D. (2000). Matrix analysis and applied linear algebra. SIAM.

Neyman, J. and E.S. Pearson (1928). On the use and interpretation of certain test criteria for purposes of

statistical inference. Biometrika, 20A:175-240,263-295.

Neyman, J. and E.S. Pearson (1933). On the problem of the most efficient tests of statistical hypotheses.

Philosophical Transactions of the Royal Society of London, Series A, 231:289-337.

Olive, D.J. (2006). A course in statistical theory. Online document, Department of Mathematics, Southern
Illinois University. www.math.siu.edu/olive/infbook.htm.

Peracchi, F. (2001). Econometrics. Wiley, New York.

Pope, A.J. (1976). The statistics of residuals and the detection of outliers. NOAA Technical Report NOS65
NGS1, US Department of Commerce, National Geodetic Survey, Rockville, Maryland.

Rao, C.R. (1948). Large sample tests of statistical hypotheses concerning several parameters with applications

to problems of estimation. Proceedings of Cambridge Philosophical Society, 44:50-57.

Rao, C.R. (1973). Linear statistical inference and its applications. Wiley, New York.

Rousseeuw, P.J. and A.M. Leroy (2003). Robust regression and outlier detection. Wiley, New York.

Schuh, W.D. (1996). Tailored numerical strategies for the global determination of the Earth’s gravity field.
Mitteilungen der geodätischen Institute der Technischen Universität Graz, Vol. 81.

Schuh, W.-D. (2006). Ausgleichungsrechnung und Statistik III. Lecture notes, Institute of Geodesy and Geoin-
formation, University of Bonn.

Schuh, W.-D. (2006). Seminar Robuste Parameterschätzung. Lecture notes, Institute of Geodesy and Geoinfor-
mation, University of Bonn.

Silvey, S.D. (1959). The Lagrangian multiplier test. Annals of Mathematical Statistics, 30:389-407.

Stuart, A., Ord, J.K., and S. Arnold (1999). The advanced theory of statistics, Vol. 2A: Classical inference and

the linear model. Arnold, London.

Stuart, A. and J.K. Ord (2003). The advanced theory of statistics, Vol. 1: Distribution theory. Arnold, London.

Teunissen, P.J.G. (2000). Testing theory. Delft University Press, Delft.



Acknowledgment

This thesis is the result of my studies in the field of adjustment theory and statistics at the Institute of Geodesy
and Geoinformation at the University of Bonn. This opportunity was granted to me by Prof. Dr. techn. W.-
D. Schuh, whose supervision was the perfect mix of non-restrictive guidance and open-minded dialogue. I am
deeply indebted to him for the time and energy he invested into supporting and discussing my ideas. I also want
to thank Prof. Dr. rer. nat. H.-P. Helfrich for serving as second referee. Further, I acknowledge the support by
the BMBF Geotechnologien programmes (Grants 03F0329C and 03F0421B).

My very special thanks goes to Jeramy Flora. Without her love, patience, and ideas throughout the years,
this thesis (and my own nervous system) would not exist.



In der Schriftenreihe des Instituts für Geodäsie und Geoinformation  
der Rheinischen Friedrich-Wilhelms-Universität Bonn sind erschienen: 
 
 
Heft 8  Boris Kargoll 
2008  On the Theory and Application of Model Misspecification Tests 
 
Heft 7  Hamza Alkhatib 
2008  On Monte Carlo Methods 
 
Heft 6  Klaus Borchard 
2008  Annäherungen an Städtebau und Raumentwicklung 
 
Heft 5  Jens Jähnke 
2008  Zur Teilmarktbildung beim Landerwerb der öffentlichen Hand 
 
Heft 4  Atef Abd-Elhakee Makhloof 
2008  The Use of Topographic Isostatic Mass Information 
 
Heft 3  Markus Vennebusch 
2008  Singular Value Decomposition and Cluster Analysis 
 
Heft 2  Christian Beder 
2007  Grouping Uncertain Oriented Projective Geometric Entities 
 
Heft 1  Klaus Börger 
2007  Geodäsie und Quantenphysik 



Vertrieb: Rheinische Friedrich-Wilhelms-Universität Bonn  
Institut für Geodäsie und Geoinformation 
- Bibliothek - 
Nußallee 17 
53115 Bonn 

  
Tel.: +49 (0)228 73-3566  
Fax:  +49 (0)228 73-2988  
 
Internet: http://www.igg.uni-bonn.de 



ISSN 1864-1113


	Leere Seite


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




