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Abstract: The target-based point cloud registration and
calibration of terrestrial laser scanners (TLSs) are math-
ematically modeled and solved by the least-squares ad-
justment. However, usual stochastic models are simpli-
fied to a large amount: They generally employ a single
point measurement uncertainty based on themanufactur-
ers’ specifications. This definition does not hold true for
the target-based calibrationand registrationdue to the fact
that the target centroid is derived from multiple measure-
ments and its uncertainty depends on the detection proce-
dure as well. In this study, we empirically investigate the
precisionof the target centroiddetectionanddefineanem-
pirical stochastic model in the form of look-up tables. Fur-
thermore, we compare the usual stochasticmodel with the
empirical stochasticmodel on several point cloud registra-
tion andTLS calibration experiments. There,weprove that
the values of usual stochastic models are underestimated
and incorrect, which can lead to multiple adverse effects
such as biased results of the estimation procedures, a false
a posteriori variance component analysis, false statistical
testing, and false network design conclusions. In the end,
we prove that some of the adverse effects can be mitigated
by employing the a priori knowledge about the target cen-
troid uncertainty behavior.

Keywords: terrestrial laser scanner, calibration, registra-
tion, stochastic model, target centroid detection

1 Introduction

Today, TLSs with their ability to rapidly acquire dense and
high-quality 3D data are utilized as a standard tool for ac-
curate geometry analysis in many applications [1]. TLSs
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are capable of detecting millimeter range deformations
[2, 3] or even sub-millimeter rigid body movement of sig-
nalized targets, as it was demonstrated in [4, 5]. The de-
tected target centroids of such signalized targets (Fig. 1)
are often used for the tasks of the point cloud registration
[6–8]. Moreover, because detecting the target centroid can
reach even a submillimeter uncertainty [9], signalized tar-
gets are frequently used for TLS calibration [10–13], testing
the geometric accuracy of TLSs [14], as well as to calibrate
the mounting parameters between the TLS and the digital
camera [15].

Figure 1: Commercially available targets used for calculating the
uncertainty of the detected target centroid (1 – Leica Tilt and Turn
target, 2 – self-printed A4 paper target with official Leica Black &
White HDS template).

Both the target-based registration and the calibration
rely on a well-established adjustment of point networks
that are usually solved as the least-squares estimation
problems, e. g. [16]. While there is no reason to question
the validity of the functional model of the adjustment,
the definition of a correct stochastic model should be dis-
cussed since, up to now, its impact on the results of cal-
ibration and registration has not been considered suffi-
ciently in the literature.

The established approach of defining the stochastic
model for such adjustments is founded on the process
of converting Cartesian coordinates of the detected tar-
get centroid back to polar coordinates. Although estimated
from multiple observations, target centroids are used to
mimic the original instrument measurements [17]. Sub-
sequently, the polar coordinates are associated with the
measurement uncertainty described in themanufacturer’s
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specifications, which are optionally corrected using the
variance component estimation (VCE). In the majority of
the reviewed literature, this ends up to using constant
scalar values defined for all ranges, horizontal and verti-
cal angle measurements [18–22]. Although the stochastic
model basedonmanufacturers’ specifications comes close
to reality and is sufficient for someapplications, it does not
quantify the true errors precisely:
– Specifications are often not perfectly transparent or

they do not define the required information at all. For
example, differentmanufacturers tend to use different
descriptions of distance measurement uncertainty,
which makes the derivation of the valid stochastic
model challenging.

– The quality of the reflectorless electronic distance
measurements (EDM) depends on many influencing
factors, such as the measured distance, the angle of
incidence and surface properties [23]. In addition, the
quality of the detected target centroid depends on the
selectedmeasurement procedure (e. g. instrument set-
tings). Hence, the association of a single scalar value
for the uncertainty of all measurements introduces an
error.

– Values in the specifications usually describe the sin-
gle point uncertainty,while in the TLS registration and
calibration,we rely on the target centroid, which is de-
rived from multiple measurements. Hence, its uncer-
tainty is expected to be lower than one from a single
measurement.

In this work, we empirically derive a stochastic model that
describes the precision of the detected target centroid. The
model is valid for a certain combination of TLS, TLS set-
tings, target centroid detection algorithm, and target pat-
tern. The target centroid precision is described with re-
spect to themeasurement geometry (distance and angle of
incidence) and it is compared with the usually employed
stochastic models based on manufacturer’s specifications
(fromnowonnoted asmanufacturer’s specificationmodel
or MSM). The empirical stochastic model (ESM) defined
herein cannot be simply transferred to other combinations
of instruments, targets, and algorithms. Hence, the inten-
tion of this paper is not to define a new stochastic model
which is applicable to all TLS calibration and registration
tasks. Rather, the main aims of the paper are:
– To indicate the differences between the uncertainty of

the detected target centroid in reality and the uncer-
tainty described in usual stochastic models. This in-
cludes the description of the uncertainty behavior of
the target centroid with respect to the measurement
configuration.

– To indicate all aspects, from network design to anal-
ysis of the results, which are influenced by inaccu-
rate stochastic models and to quantify the influence
of these models on the results of the TLS calibration
and registration (using real datasets).

– To prove that a simple experimental setup for deriving
the ESM in the form of the look-up tables can success-
fully mitigate some of the indicated adverse effects.

The paper is organized as follows. Section 2 explains the
theoretical background of the study. In Section 3, themain
mathematical relations are given. Section 4 describes the
derivation of the empirical stochastic model and under-
lines the key differences in comparison to the previously
establishedmodels. Section 5presents calibration and reg-
istration related case studies based on the real data to re-
veal the possible influence of using an incorrect stochas-
tic model. Finally, in Section 6, the main conclusions are
drawn.

2 Theoretical background
Due to the fact that the uncertainty of the target centroid
depends, among others, on the detection process, Sec-
tion 2.1 gives a short overview of the target centroid de-
tection algorithms and a more detailed explanation of the
algorithm used within this study. Additionally, herein we
reason the decision to empirically derive the stochastic
model for the TLS target-based calibration and registra-
tion. Further, Section 2.2 explains the main concept of the
ESM and theoretically reasons the presumptions neces-
sary for the derivation of the ESM. Finally, in order to set a
foundation for a discussion of the case studies (Section 5),
Section 2.3 gives an exhaustive overview of all aspects of
the TLS calibration and registration influenced by inaccu-
rate stochastic models.

2.1 Target centroid detection algorithm

The TLS samples the surrounding with the regular grid
of horizontal and vertical angular steps and records the
measured distance and the intensity values describing the
power of the received laser beam. Usually, the measured
intensity values undergo unknown processing steps be-
fore they are available to the end user. Afterward, the
original polar measurements (distances, horizontal and
vertical angles) are transformed in Cartesian coordinates.
Again, measurements interpolation and eventual correc-
tion steps are unknown to the end user. The end product
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is the point clouddefinedby the Cartesian coordinates and
colored according to the processed intensity values.

In order to accurately detect the target centroid, the
point cloudof a single target needs to be extracted from the
whole point cloud (Fig. 2.a). Several algorithms were pro-
posed so far for the automatic recognition and extraction
of the point clouds associated with a single target [24–26].
However, within this study, that step is conducted manu-
ally. The following step is the accurate target centroid de-
tection. Most of the commercially available targets used
for terrestrial laser scanning are realized as planar con-
trast targetswith differently colored regions (e. g. Figure 1).
Different colors have an impact on the recorded intensity
value (Figure 2) and this property is used to aid the tar-
get centroid detection. There are different algorithms pro-
posed for the latter task. Most of the algorithms are based
on edge detection followed by circle fitting [27] or search-
ing for line intersections, e. g. [5, 25, 28–30]. An alternative
to these approaches are the algorithms based on the tem-
plate matching [24, 31]. The algorithm used in this study
is based on the template matching algorithm described in
[31] with some minor modifications.

Figure 2: Simplified scheme of the target centroid detection: a) tar-
get extraction from the point cloud, b) best-fit-plane estimation
(n – plane normal vector), c) target centroid detection in the raster-
ized image (red cross – target centroid).

First, all points not belonging to the planar target are
detected and removed using an initial best-fit-plane algo-
rithmbased onRANSACmethod. The estimation of the tar-
get plane parameters is refined using the best-fit-plane al-
gorithm based on the Gauss-Helmert-Model. Here, Carte-
sian coordinates are recalculated to polar coordinates and
the observations are weighted based on the values de-
scribed in themanufacturer’s specifications. The intensity
values of the original point cloud are projected onto the es-
timated plane in the direction of the measured distances,
forming a rasterized intensity image (Fig. 2.c). Afterward,
a template image of a target pattern is formed and the cor-
relation coefficients between the template and the inten-
sity image are calculated for each possible position of the
template in the intensity image. The accurate position of
the target centroid is determined by the greatest value of

the correlation coefficient. Finally, the 2D coordinates of
the target centroid are recalculated back to the 3D Carte-
sian coordinates. We would like to point out that the more
detailed description of the in-house build target centroid
detection algorithm, together with the detailed analysis of
the achievable accuracy will be the part of the following
publication.

The uncertainty of the target centroid is affected by the
aforementioned processing steps. The exact approaches
for the plane estimation, image rasterization, and centroid
detection vary between different algorithms and for the
commercial software they are unknown to the end user.
Additionally, the quality of the intensity image used to
detect the centroid depends on the instrument properties
(measurement uncertainty, angular steps, divergence an-
gle), selected settings (resolution, measurement filtering,
beam power) andmeasurement configuration. Finally, the
success of the target centroid detection also depends on
the properties of the used target (size, pattern, color, ma-
terial).

Hence, the uncertainty of the detected target centroid
depends on multiple factors and it can hardly be derived
analytically. Quantifying the share of each individual fac-
tor in the overall uncertainty budget has small practical
relevance to the results of the TLS calibration and regis-
tration. Therefore, a detailed investigation of each uncer-
tainty factor is beyond the scope of this research. Instead,
we focus on revealing the difference between the empiri-
cally estimated uncertainty of the target centroids and the
uncertainty values which are usually used in stochastic
models for the TLS calibration and registration. Addition-
ally, we propose an empirically derived stochastic model
to accurately describe the overall uncertainty of the target
centroid, without an in-depth analysis of the underlying
factors. The proposed stochastic model will be discussed
further in the following sections.

2.2 Target centroid detection accuracy and
precision

The empirical stochastic model derived in this study de-
scribes the precision of the detected target centroid with
respect to the measurement geometry. In order to justify
this choice, we need to answer the following two ques-
tions:
– Is it acceptable to use the target centroid precision for

deriving the stochastic model of TLS calibration and
registration?

– Why should the target centroid precision be described
with respect to the measurement geometry?
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Regarding the first question, the main difference between
calculating the target centroid precision and accuracy is
that for the accuracy we need to consider both random
and systematic errors, while for the precision consider-
ing only random errors is sufficient. We can divide all sys-
tematic effects influencing TLS measurements into four
groups: instrumental misalignments, external influences,
measurement geometry and effects related to measured
object properties [23].

Firstly, the instrument misalignment errors are in-
cluded in the functional model of the calibration, and,
thus, they are eliminated. In the case of the scanner regis-
tration, they are mitigated using two-face measurements
by a large amount.

Secondly, the external influences (atmospheric influ-
ence, refraction, earth’s curvature) have a very small influ-
ence on the typical scanning distances for the panoramic
laser scanners (1–100m) and, thus, can be neglected [32].

Thirdly, object properties are constant for all targets
for one calibration or registration task, if the targets of the
same type are used. Hence, systematic effects act similarly
on all of themeasurements and they do not bias the results
or they are absorbed in the estimated calibration parame-
ters. Namely, the rangefinder offset in the TLS calibration
is always said to be estimated for the scanner-target com-
bination [16].

Lastly, systematic influences related to the measure-
ment geometry can be decomposed on the effects due to
differing distances and due to different incidence angles
[33]. An eventual systematic effect of differing distances
can be described by the scale parameter and it can be in-
cluded in the functional model (not detected for the scan-
ner under investigation). Thus, the only remaining sys-
tematic effect that can impact the accuracy of the target
centroid is the effect of the incidence angle. It has been
observed in [34] as a significant systematic influence and
could be tackled by including an additional error term in
the functional model. However, a proper functional model
for this effect is still missing. Therefore, this step was not
conducted in this study. Hence, it is the only factor ex-
pected tomake a difference between the target centroid ac-
curacy and the observed precision.

Therefore, based on this explanation, we expect our
presumption that the target centroid precision is sufficient
for deriving the empirical stochastic model to be justified.
In any case, it is reasonable to expect that our stochastic
model comes closer to explaining the true target centroid
stochastic behavior thanmerely drawing values fromman-
ufacturer’s specifications.

Regarding the secondquestion, themeasurement con-
figuration or geometry is defined by two values: the scan-

ner to target distance and the angle of incidence [33]. An
impact of the increasing distance and the angle of inci-
dence on the uncertainty of the detected target centroid
in the range direction can be expected due to the worse
signal to noise ratio [35] and it was already considered in
some TLS calibration cases [13]. However, this effect is re-
duced in comparison to a single pointmeasurement due to
the abundant number of measurements used to estimate
the target plane. This is especially true for close distances.
The further the target is placedwith respect to the scanner,
the more prominent is the effect.

One of the possible ways of describing the precision of
the target centroid in the rangedirectionwouldbeusingan
intensity based stochastic model for EDM measurements
as introduced in [35]. However, this stochastic model de-
scribes the precision of the single range measurement,
while the target plane is usually estimated from hundreds
of measurements. The straightforward solutions could be
just to divide the value from the intensity based stochastic
model by the square root of points used for estimating the
plane parameters or to use the a posteriori variance of the
best-fit-plane parameters. However, both solutions result
in overestimating the precision due to the neglected cor-
relations between adjacent measurements [36]. Hence, we
expect that using precision values based on empirical data
presents a more realistic solution for the stochastic model
of the target centroid.

In the case of angular measurements of the target cen-
troid, the decrease of the precision due to the increase of
incidence angle and thedistance is never considered in the
literature. Namely, most of the current literature bypasses
the fact that the target centroid is not equivalent to the sin-
gle point measurement. Angular measurements of a sin-
gle point are influenced only by the noise of angular en-
coder readings and the remaining influence ofmechanical
misalignments. However, the target centroid is estimated
using the intensity information recorded by the EDM unit
for multiple points. This estimation heavily relies on the
accurate differentiating between black and white parts of
the target. This ability to differentiate between fields of dif-
ferent intensity is reduced with higher distances and inci-
dence angles. This happens due to a less number of points
in the point cloud and due to the higher footprint area of
the reflected laser beam. Hence, in the case of the target
centroid angular precision, the influence of measurement
geometry should also be reflected.

These facts should be considered both for planning
and for the analysis of TLS measurements and this will be
discussed in the following section.
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2.3 Adverse effects of an incorrect
stochastic model

Knowledge about the true measurement uncertainty is
necessary for several reasons. First, it is a crucial piece
of information for the design and optimization of geode-
tic networks [37]. In the concrete case of TLSs, this infor-
mation is required for deciding the best scanner and tar-
get locations for the TLS registration and calibration. The
goal of the network optimization is to minimize the un-
certainty of the estimated calibration parameters, in the
case of TLS calibration, or transformation parameters, in
the case of TLS registration. This optimization procedure
can be described as searching for the optimal configura-
tion matrix A, while other input parameters are retained
fixed [37]. In the literature, it is called the first order de-
sign (FOD) and it is a well-established geodetic task, un-
avoidable in the cases when the high product quality is
demanded. Analogously, the knowledge of the true mea-
surement uncertainty is also required for the third order
design (TOD), which deals with the optimal densification
of the existing networks.

Second, correct stochastic information is necessary
for searching the optimal covariance matrix of measure-
ments or the second order design (SOD) – [37]. In this
case, optimal refers to the optimal ratio between cost effi-
ciency (measurement time and necessary equipment) and
the requiredmeasurement uncertainty. Hence, knowledge
about the measurement uncertainty is required for the se-
lection of an adequate scanner, scanner settings, targets
and software for achieving the required product quality.

Third, using the correct stochastic model is a nec-
essary prerequisite for the successful utilization of least-
squares or robust adjustment algorithms. An incorrect a
priori stochastic information can lead to several adverse
effects. The most prominent one is biased parameter es-
timates in case of an incorrect distribution of the relative
measurement weights within the network of observations
[36]. Furthermore, incorrect prior information about the
measurement uncertainty causes unrealistic values in the
covariance matrix of the estimated parameters and leads
to an incorrect a posteriori variance analysis and statisti-
cal testing results. Finally, if robust estimation algorithms
are used, the outlier detection threshold is always bound
to the expected measurement uncertainty (Section 3.2).
Hence, if the a priori uncertainty is under or overesti-
mated, wrong measurements are removed or retained.

To conclude, a good understanding of the anticipated
measurement uncertainty is required for effective plan-
ning, processing, and analysis of geodetic measurements.

In the case of the target-based TLS calibration and reg-
istration, this presumes knowledge about the quality of
the detected target centroid. In the following sections,
we will demonstrate how knowledge of the true measure-
ment uncertainty impacts the planning of TLS measure-
ments (FOD, SOD, TOD) and quantify the impact of differ-
ent stochastic models on the processing and analysis of
TLS calibration and registration.

3 Mathematical relations

For the complete understanding of the case studies (Sec-
tion 5) used to test the hypothesis of this work, Sections 3.1
and 3.2 describe the adopted TLS target-based calibra-
tion and registration algorithms, which are based on least-
squares and robust estimation methods. Additionally, in
order to improve the statistical power of the estimated
ESM,we grouped the results ofmultiple observations (Sec-
tion 4). Hence, Section 3.3 explains the statistical concept
used for the latter process.

3.1 Registration and calibration algorithms

The target-based TLS registration algorithm is generally
based on the functional model of a rigid body transforma-
tion [38]. The goal of the approach is a simultaneous reg-
istration of local coordinate systems associated with each
scanner station into a reference system of choice. The so-
lution is usually obtained in a sense of least-squares mini-
mizationwith a sufficient number of corresponding targets
in each local coordinate system. The estimated parameters
usually include both transformation parameters as well as
target coordinates in the reference system

f ij = R
i(k,ϕ,ω)xyzij + T i(X,Y ,Z) − XYZref .j = 0, (1)

where i = 1, 2 . . . , s; j = 1, 2 . . . , p; s and p are total numbers
of scanner stations and targets used in the experiment. The
estimated parameters are separated in the rotation matrix
Ri(k,ϕ,ω) defined with Euler angles (k,ϕ,ω), the translation
vector T i(X,Y ,Z) and the vector of Cartesian coordinates of
targets in the reference system XYZref .j . The measurement
vector from the scanner station i to the target j in the local
coordinate system is equal to

xyzij =
[[

[

xij
yij
zij

]]

]

= [[

[

(rij + Δr
i
j)sin(θ

i
j + Δθ

i
j)sin(φ

i
j + Δφ

i
j)

(rij + Δr
i
j)sin(θ

i
j + Δθ

i
j)cos(φ

i
j + Δφ

i
j)

(rij + Δr
i
j)cos(θ

i
j + Δθ

i
j)

]]

]

, (2)
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where xij , y
i
j, z

i
j are Cartesian coordinates of the target

which are transformed to the polar coordinates rij , φ
i
j, θ

i
j

describing the genuine range, horizontal and vertical an-
gle measurements, while Δrij , Δφ

i
j, Δθ

i
j are measurement or

registration errors. The polar coordinates are recalculated
from the Cartesian coordinates using the following rela-
tions:

rij = √xi2j + y
i2
j + z

i2
j , (3)

φi
j = arctan(

xij
yij
) , (4)

θij = arccos(
zij
rij
) . (5)

We use a least-squares adjustment realized as rigorous
Gauss-Helmert model, introduced in TLS related applica-
tions in [39], which can be written in a matrix form as:

Bv + AΔx +w = 0. (6)

Here B and A are Jacobian matrices with respect to the ob-
servations and the estimated parameters, v is the vector of
residuals, Δx is the vector of reduced parameters, andw is
the misclosure vector.

The single difference between registration and cali-
bration algorithm is that the registration errors Δrij , Δφ

i
j,

Δθij (Eq. 2) are treated as solely random values (measure-
ment residuals vrij , vφi

j
and vθij ) in the registration algo-

rithm, but they are decomposed in a systematic and a ran-
dom part in the calibration algorithm (Eq. 7–9). In the lat-
ter case, the number of unknown parameters is expanded
for the calibration parameters describing the mentioned
systematic part of the registration errors. In this study,
we adopt the set of calibration parameters describing the
mechanical misalignments of panoramic laser scanners
whichoriginates from [40] and it is adapted for the scanner
used in this experiment (Leica ScanStation P20) as written
in [21]:

Δrij = x2sin (θ
i
j) + x10 + vrij , (7)

Δφi
j =

x1z
rij tan(θ

i
j)
+

x3
rijsin(θ

i
j)
+

x5z−7
tan(θij)

+
2x6

sin(θij)
+
x1n
rij
+ vφi

j
,

(8)

Δθij =
x1n+2cos(θij)

rij
+ x4 + x5ncos (θ

i
j)

−
x1zsin (θij)

rij
− x5zsin (θ

i
j) + vθij . (9)

Table 1: Calibration parameters describing relevant misalignments
of Leica ScanStation P20.

Parameter Description

x1n Horizontal beam offset
x1z Vertical beam offset
x2 Horizontal axis offset
x3 Mirror offset
x4 Vertical index offset
x5n Horizontal beam tilt
x5z Vertical beam tilt
x6 Mirror tilt
x7 Horizontal axis error (tilt)
x10 Rangefinder offset

The list of the parameters is presented in Table 1. Sev-
eral parameters from the table are combined into one pa-
rameter because their separation induces either singular-
ity or bias in the calibration adjustment [21].

For more information about each individual parame-
ter, readers are referred to [40]. Herein, they will not be ex-
plained in detail, as they are not in the main focus of this
study.

The local coordinate systems of each scanner station
are defined as right-handed, Y – headed, clockwise rotat-
ing coordinate systems. This definition follows the true
behavior of the instrument used in this experiment. The
calculated horizontal angles are corrected for each quad-
rant by adding 180° or 360° where necessary, and the ver-
tical angles are corrected by subtracting the calculated
value from 360° where necessary. More information about
the functional model of the adjustment process, the se-
lected calibration parameters and the transformation of
the Cartesian to polar coordinates can be found in [21].
Since the stochastic model used in these adjustments is
the main focus of this study, it will be discussed in detail
in sections 4 and 5.

3.2 Robust estimation

The measurements used in the previously explained ad-
justment (Sec. 3.1) can be influenced by gross errors.
Hence, they might contain outliers, which change the dis-
tribution of the observations [41]. Taking this into account
is important because least-squares estimates are known to
be sensitive to outliers. Furthermore, the influence of out-
liers can be spread over many observations making them
very difficult to detect [42]. In order to tackle this problem,
a robust parameter estimator has been implemented in the
algorithmwhennecessary (Sec. 5.2), as an estimator insen-
sitive to outliers in observations.
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In this study, we implemented the robust parameter
estimator based on the Danish method [42], which was
already introduced in TLS calibration in [39]. The advan-
tages of this estimator are fast convergence, easy imple-
mentation in the least-squares adjustment and the fact
that the estimates are equal to least-squares estimates if
the observations are free from outliers. It is numerically
realized as iteratively reweighted least-squares: first, the
least-squares adjustment from Section 3.1 is realized using
an a priori defined stochastic model (either ESM or MSM).
Subsequently, the new weight matrix, which is called the
equivalentweightmatrix [43], is computedwith the follow-
ing weights based on the adjustment residuals:

pi =
1
σ2i
exp(−

v2i
(3σi)2
) if |vi| ≥ 3σi, (10)

pi =
1
σ2i

if |vi| < 3σi. (11)

Here, σi and vi are the a priori defined standard deviation
and the adjustment residual of the scannermeasurement i.
Hence, measurements having residuals exceeding a priori
expected values are considered as outliers, their weights
are reduced and their influence on the estimated parame-
ters is also reduced. To avoid wrong outlier detection, the
complete vector of residuals is tested in all iterations, lead-
ing to repeated reweighting of the complete covariance
matrix. The reweighting starts after the second estimation
of the unknown parameters in the least squares adjust-
ment (2nd iteration), in order to avoid wrong outlier detec-
tion due to bad parameter approximate values. Therefore,
the algorithm is forced to make a minimum of three itera-
tions to assure that the implemented outlier removal strat-
egy takes an effect and it is repeated until a convergence
criterion is met. We tested several different convergence
criteria, without significant changes in the results. In the
end, due to the run-time advantage, we adopted the cri-
terion that the calibration parameters should not change
for more than 0.01�� or 1 µm in two consecutive iterations.
For more details about the implemented robust estimator,
readers are referred to [39].

3.3 Pooled standard deviation

In order to estimate representative standard deviations for
each measurement type (ranges, horizontal angles, and
vertical angles), we use data collected in the experiment
described in Section 4. The data is divided into groups
of samples. Firstly, the standard deviation for each sam-
ple group is obtained. In the following step, all corre-
sponding group standard deviations are combined in one

representative standard deviation, the weighted pooled
standard deviation. The weighted pooled standard devia-
tion is calculated as a square root of the mean variance,
weighted by the number of redundant samples in each
sample group [44]:

σpooled = √
∑wiσ2i
∑wi
. (12)

Here, i = 1, 2 . . . , k and k is the number of groups, σ2i
is the group variance and wi is the group weight propor-
tional to the number of the samples. This way of combin-
ing standard deviations gives more representative value
for the standard deviation of the whole population and it
improves statistical power.

4 Defining the empirical stochastic
model

This section begins with a description of the experiment
realized to define the ESM (Sec. 4.1). It is followed by the
presentation of the experiment results and discussion of
the result’s influence on the relevant aspects of the TLS cal-
ibration and registration (Sec. 4.2).

4.1 Experiment outline

The instrument used in this investigation is the Leica
ScanStation P20. It is a highly accurate middle range
panoramic laser scanner with the maximum range of
120m and field of view of 360° × 270°. In the experiment,
we used both the highest (0.8mm at 10m) and the sec-
ondhighest resolutions (1.6mmat 10m) in order to test the
change of the target centroid detection precision with dif-
ferent scanner settings. In each case, quality level 1 was
used, which denotes that no measurement averaging was
employed [45].

The experimental setup was designed as follows. Fif-
teen targets (Fig. 3), of two target types provided by the
manufacturer (Fig. 1), were scanned from multiple dis-
tances (approximately 2, 5, 10, 15, 20, 35, 50, 75, 100meters)
with differing angles of incidence (from approximately 0°
to 60°).

This measurement setup describes the majority of
scanner-target configurations that can be found on a real
job scene. Incidence angles higher than 60° were omitted
due to the fact that this unfavorable measurement setup is
already avoided in the reference literature [27] and in prac-
tice. On each distance, eight measurements of each target
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Figure 3: Point cloud of the experiment setup on the distance of
5 meters from the scanner (numbers denoting angle of incidence for
each target in degree unit).

were repeated. The target centroidswere detected using an
in-house built algorithm (Section 2.1).

After the target centroid detection, coordinates of all
centers were recalculated in polar coordinates (Eq. 3–5) in
order to imitate original TLS polar measurements (r,φ, θ).
We calculated themean value of each polarmeasurement,
we estimated the errors (vr , vφ, vθ) for each measurement
as a difference from the mean (Fig. 4). Then, we estimated
the standard deviations of each polar measurement sepa-
rately for each target. Hence, on each of the nine scanner-
to-target distances, we estimated standard deviations for
15 targets. This resulted in 15 measurement groups (for
each polar measurement) with corresponding standard
deviations on each distance.

Initially, we pooled standard deviations of all 15 tar-
gets on each distance together in order to get the represen-
tative standard deviation for each distance (Eq. 12). The

Figure 4: Errors of the estimated target centroid in range, horizontal
angle and vertical angle direction (vr , vφ, vθ) and corresponding
Euclidian distance errors (ve(r), ve(φ), ve(θ)).

reason for such initial measurement grouping lies in the
fact that we observed a high systematic relation between
the standard deviation of the detected target centroid and
the distance in all polar measurements. In addition, the
understanding of the measurement uncertainty behavior
with respect to the distance is mandatory information for
the successful design of the optimal calibration or regis-
tration network. After deeper data analysis, we noticed the
systematic relation between themeasurement uncertainty
and the incidence angle as well. Hence, in further pro-
cessing,we pooled separatelymeasurements of the targets
with lower and measurements with higher incidence an-
gles. This will be discussed in more detail in the following
section.

4.2 Experiment results

The goal of this section is to present the results of the ex-
periment described in the previous section, to underline
the key differences between the proposed ESM and the
usually employed MSM (Section 4.2.1) as well as to indi-
cate how the results of this study relate to the different as-
pects of the TLS calibration and registration (Sections 4.2.2
and 4.2.3).

4.2.1 Comparison of ESM and MSM

If we decided to build up a stochastic model for the TLS
target-based registration or calibrationusing themanufac-
turer’s specifications, there are two different sources of in-
formation at hand for the given scanner (Leica ScanSta-
tion P20). First, there is a piece of information about the
single point measurements, which gives values of 8�� for
the accuracy of angular measurements (σφ = σθ = 8��) and
1mm linearity error for EDM measurements (σr = 1mm)
over the whole measurement range [46]. The information
about the single pointmeasurement quality is provided by
the majority of the TLSs manufacturers and it is the most
common way of building up a covariance matrix of obser-
vations in the literature [18–20]. In this case, two scalar
values are used to describe the uncertainty of all detected
target centroids within a certain job scene.

Second, for this particular scanner, there is stated a
constant standard deviation of the detected target centroid
of 2mm up to distances of 50m [46]. This value represents
3D Euclidian distance (spatial distance) in the local scan-
ner coordinate system. In order to make the latter value
comparable with the results of the experiment, we decom-
posed this spatial distance evenly into the direction of
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three orthogonal axes. Namely, we decomposed it into the
directions of range, horizontal and vertical anglemeasure-
ments. Based on the law of variance propagation [47] the
1D uncertainty along each coordinate axis equals 1.16mm.
Hence, this results in the uncertainty of 1.16mm in the lat-
ter three directions (σe(r), σe(φ), σe(θ) = 1.16mm) indicated
in Figure 4. As the input values of the calibration and reg-
istration algorithms are polar measurements, the related
uncertainty in the covariance matrix of observation also
needs to be recalculated into polar coordinates. Hence, the
Euclidian errors ve(φ) and ve(θ) are furtherly transformed in
the angular errors (vφ and vθ), separately for each distance
using the simple trigonometrical relations. For example,
an error of 1.16mm on 5m distance corresponds to an an-
gular error of 47.8��, while the same error on 50m distance
corresponds to an angular error of 4.78��.

Figure 5 represents the comparison of different un-
certainty values that can be used to define the stochastic
model for the target-based TLS calibration and registra-
tion:
– the single point measurement accuracy values pro-

vided in the manufacturer’s specifications, which are
usually used in the literature (MSM for the single
point),

– the target centroid uncertainty provided in the manu-
facturer’s specifications, which is available for the in-
strument under investigation, but it is not available for
many instruments (MSM for the target centroid) and

– the empirically determined target centroid precision,
as proposed within this study (ESM).

It is observable that using any of the latter information
sources will lead to the notably different stochastic model.
The ESM is represented with black curves, while MSM for
the target centroid and MSM for the single point are repre-
sented with blue and red lines (or curves). The upper part
of the figure shows the uncertainty of the distance mea-
surements, while the middle and the lower part of the fig-
ure show the uncertainty of the horizontal angle measure-
ments, first given in arc seconds and then in millimeters.
The values for the vertical angle measurements are ana-
log to the ones for the horizontal anglemeasurements, and
hence, they are omitted.

As can be seen in Figure 5 (top), the uncertainty in
the ranges is growing with the distance (ESM). In the case
of the total station EDM measurements, the uncertainty
is modeled with a constant value and a part linearly in-
creasing with the distance, which is expressed as a ppm
value [47]. However, it can be seen in the figure that even
this linear representation is an oversimplification, as the
observed uncertainty grows exponentially. In addition, on

Figure 5: Comparison of the ESM with the stochastic models based
on the data given in manufacturers specifications (using data for the
single point and data for the target centroid). Error bars denoting
values for one sigma.

the distances up to approximately 50 meters, the uncer-
tainty is overestimated if we compare it with the uncer-
tainty expected from both MSM. In contrary, the uncer-
tainty is underestimated on the further distances. In the
case of angular measurements, the uncertainty described
by MSM is overestimated by a large amount on the whole
measuring range (Fig. 5, middle).

These differences do not imply by any means that the
values provided by the manufacturer are incorrect. They
simply indicate that the values from the manufacturer’s
specifications do not accurately describe the uncertainty
of the detected target centroid. This occurrence is not sur-
prising. Namely, one of the values describes the accuracy
of a singlemeasurement,whichdoesnot correspond to the
target centroid, while the other value is insufficiently pre-
cise. Hence, they are not perfectly suitable for deriving the
stochastic model for TLS target-based calibration and reg-
istration approaches.

These differences directly lead to the overestimated
registration and calibration parameter uncertainty based
on the a posteriori variance component analysis. This can
furtherly lead to incorrect statistical testing results. Addi-
tionally, it can lead to a wrong calculation of the point
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cloud uncertainty if the uncertainties of the registration
and calibration are furtherly propagated.

In addition, it should be pointed out that the angular
uncertainty is not constant with the distance and it does
not describe the straight horizontal line. In Figure 5, this
deviation from linearity seems small, but it is significant
and it represents the change in measurement uncertainty
formore than 400% in some cases. The dependency of the
target centroiduncertainty on themeasurement configura-
tion will be furtherly discussed in Section 4.2.3.

These results prove that the stochastic model for the
target centroid uncertainty is overly simplified by using
the data provided in the manufacturer’s specification. For
highly demanding engineering tasks, such as the TLS cal-
ibration, this should not be neglected and the uncertainty
of all measurements should not be represented with two
or three scalar values. The expected measurement uncer-
tainty should be drawn from look-up tables or represented
with suitable functionalmodels. The adverse effects of this
oversimplification will be pointed out and quantified in
the following sections.

4.2.2 Uncertainty and different measurement
procedures – influence on SOD

As it was stated in the introduction, it is expected that the
target centroid uncertainty depends on the different mea-
surement procedures in the scope of different instruments,
instrument settings, target design, and target centroid de-
tection algorithm. In order to confirm these expectations,
we estimated the target centroid uncertainty while alter-
ing differentmeasurement procedures. The referencemea-
surement procedure corresponds to the one described in
Section 4.1. It includes using Leica ScanStation P20, the
second highest resolution (1.6mm at 10m), the official Le-
ica targets (Fig. 1) and the in-house built target centroid
detection algorithm (Section 2.1). For the comparison, we
individually altered the resolution settings (to the highest
resolution of 0.8mm at 10m), and the algorithm (to Leica
Cyclone).

The target centroid uncertainty in the direction of hor-
izontal angles (top) and vertical angles (bottom) is pre-
sented in Figure 6. Each curve represents the uncertainty
with different measurement procedure. Expectedly, the
uncertainty notably changes if the procedure is altered.
This holds true for all three measurement directions. This
alternation is caused by changing the number of points
used to sample the target (resolution) and the performance
of the target centroid detection algorithm.

Figure 6: The change of the target centroid uncertainty behavior in
the direction of horizontal and vertical angle measurements w. r. t.
the scanning distance for different measurement procedures (alter-
ing resolution and algorithm). Error bars denoting values for one
sigma.

The presented results show the importance of under-
standing the accurate and robust uncertainty change with
the differentmeasurement processes. This knowledge aids
cost-benefit analysis in the scope of optimizing equipment
costs, measurement time and measurement quality. This
task is one of the main responsibilities of geodetic engi-
neers and it can be described as the second order design
problem (SOD). Namely, altering the latter variables in the
TLS measurement process directly induces different com-
position of the covariancematrix of observation in the TLS
registration and calibration. For example, let us assume
that we need to calibrate the scanner and the calibration
parameters need to be estimatedwith a certain quality. Un-
derstanding the true uncertainty is necessary to make a
decisionwhich scanner settings, equipment, and software
we need to use. For the particular example presented in
Figure 6, it is visible that using a lower resolution does not
lead to an increase of the target centroid uncertainty if the
measurements are made on distances up to 35m. For the
scanner under investigation, thatmeans that themeasure-
ment time in certain cases can safely be reduced by the fac-
tor of four, without any loss in the quality of the results.
Hence, the oversimplification pointed out in the previous
section leads to a sub-optimal solution of the second or-
der design problem (in this case selection of measurement
equipment and processing strategy).
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4.2.3 Uncertainty and different measurement
configuration – influence on FOD and TOD

Figure 7 represents the change of the uncertainty with re-
spect to the measurement configuration for all three polar
measurements (top to bottom: ranges, horizontal and ver-
tical angles). In order to indicate the change of the uncer-
tainty with respect to the incidence angle, we separated
the scanned targets (Fig. 3) in two groups – one with lower
incidence angles (0°–30°) and one with higher incidence
angles (30°–60°). Consequently, we estimated two sepa-
rated curves (blue and red) andwe compare themwith the
curve estimated using all targets (black). A much larger
number of measurements would bemandatory for the bet-
ter modeling of the functional connection between the in-
cidence angle and the measurement uncertainty. Such a
measurement campaign was not possible at this point due
to time constraint and, hence, it was omitted herein.

A clear systematic offset between the curves represent-
ing targets with different incidence angles is visible. The
uncertainty of the targets with higher incidence angles
(red) is always higher than the uncertainty of the targets
with low incidence angles (blue). This indicates that when
using the detected target centroids for registration or cali-

Figure 7: The change of the uncertainty behavior in the direction
of ranges, horizontal and vertical angles w. r. t. the scanning dis-
tance: black – all targets used (incidence angles from 0° to 60°),
blue – only targets with lower incidence angles used (0°–30°), red –
only targets with higher incidence angle used (30°–60°). Error bars
denoting values for one sigma.

bration, one should always consider an increase of the un-
certainty with increasing incidence angle. And this holds
true not only for the measurements in direction of ranges
but horizontal and vertical angles as well.

As it was indicated previously, the uncertainty of the
detected target centroid changes with respect to the dis-
tance (Sec. 4.2.1). In each case, this change is rather com-
plex and it should be taken into account via look-up tables
or appropriate functional models. Regarding the curve of
angular uncertainty, there is a global curve minimum in
whichwe can expect the lowest angular uncertainty. It can
be clearly observed that the lowest angular uncertainty is
achieved, in this instance, at approximately 20mdistance,
both for horizontal and vertical angle measurements.

This phenomenon is explainable with the standard
deviation of an arbitrary mean estimated from n samples.
Figure 8 (top) depictures the standard deviation of the
meanagainst anumber of samples,where the standardde-
viation of each sample equals 1 (in arbitrary units). As it is
known from the law of variance propagation [47], an im-
provement in the mean uncertainty with a higher number
of samples is limited, and after a certain point, it reaches
a plateau of nearly constant values.

The analog phenomenon can be observed for the stan-
dard deviation of the target centroid on short distances
(2–20m). The blue curve in Figure 8 (bottom) depictures
the standard deviation of the target centroids in the di-

Figure 8: The change of the target centroid uncertainty with the
distance. The upper part shows the increase in the uncertainty of
the mean with the decrease of the measurements. The lower part
shows the increase of the uncertainty of the target centroid (blue)
with the decrease of the measurements (black). Error bars denoting
values for one sigma.
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rection of horizontal angles in millimeters (equivalent to
the black curve in Figure 5, bottom). It is plotted against
the number of measurements used to render the target in-
tensity image (black curve). Again, when a certain num-
ber of measurements is reached, the uncertainty improve-
ment reaches a plateau. When this nearly constant met-
ric uncertainty (2–20m) is recalculated into angular val-
ues, it causes an apparent decrease of the angular uncer-
tainty with the distance (black curve in Fig. 5, middle). If
the number of measurements drops under a certain value,
a slope in the metric uncertainty gets steeper, and the an-
gular uncertainty also starts to increase. Therefore, for a
precise estimation of the target centroid, a number ofmea-
surements (therefore a resolution of the intensity image)
has a higher importance than an accuracy of the individ-
ual TLS measurement. To conclude, the global minimum
of the angular uncertainty is conditioned with the growth
rate of themetric uncertainty. It would be interesting to ob-
serve howmuch the globalminimum changes for different
instruments. However, that is out of the scope of this work.

The latter phenomenon has a direct impact on the
design and optimization of geodetic networks, more pre-
cisely on the first and third order design (FOD and TOD).
Namely, in the process of planning the TLS measurement
network for calibration field, two goals are pursued: real-
izing low measurement uncertainty and potentiating the
effect of the scanner misalignments that are being mod-
eled. The latter effect is proportionally growing with the
distance for a large part of the calibration parameters.

Similarly, when planning a registration task, we tend
to realize the lowest measurement uncertainty with the si-
multaneous realization of long distances (lever arms) be-
tween the targets. Namely, the estimated registration pa-
rameters are more accurate, if the targets are distributed
over the larger surface. From Figure 7, it is visible that
these criteria are best met somewhere around 20m from
the scanner under investigation for both tasks. Therefore,
the knowledge of the true target centroid uncertainty is di-
rectly applicable to the design of the optimal calibration
field or registration network.

To conclude, the correct stochastic model for the de-
tected target centroid should consider the changes in the
uncertainty with respect to themeasurement geometry. So
far, in order to improve the initial stochastic model based
on the manufacturer’s specifications, some authors used
the results of the a posteriori variance component analy-
sis, e. g. [21, 39]. This strategy undoubtedly improves the
stochastic model. However, it again presumes that all dis-
tance and angular measurements can be represented with
a single scalar value and that is not in accordance with the

data presentedherein. Hence, a better a priori understand-
ing of the detected target centroid uncertainty is necessary
both for the correct measurement planning (FOD, SOD,
and TOD), as well as measurement processing and the
analysis of the results. In the next sections,wewill demon-
strate and quantify the adverse impact of using MSM in-
stead of ESM.

5 The influence of ESM andMSM on
the TLS calibration and
registration

In this section, three examples are used to demonstrate the
impact of using the ESM instead of established MSM. Ex-
amples are based on datasets collected in three different
empirical experiments. Two examples are used as show-
cases for the TLS calibration and one for registration. The
data is processed using the algorithm described in Sec-
tion 3.1 if it is not stated otherwise. The scanner used in all
examples is the Leica ScanStation P20 described in Sec-
tion 4.1. For defining the MSM we use constant values for
the standard deviation of 1mm for ranges and 8�� for an-
gular measurements, in order to stay consistent with pro-
ceeding studies, which use mostly the data for the single
point measurement uncertainty (Section 1). For the ESM,
we use the values presented in Figure 7 as a look-up ta-
ble. Hence, the standard deviation of each measurement
is estimated individually using linear interpolation based
on the data obtained within the experiment described in
Section 4.1.

5.1 Example 1 – simplified TLS calibration

Figure 8 presents the sketch of a simplemeasurement con-
figuration used in the first example. This measurement
configuration is extracted from the Leica Check & Adjust
field calibration procedure [48]. Using the latter proce-
dure, several calibration parameters were estimated. We
presume that the manufacturers have the best in-depth
knowledge about the instrument behavior and that they
are able to provide accurate estimates of the calibration
parameters. Hence, we presume that the values estimated
this way can be considered as true values for the further
discussion.

Four Leica Tilt and Turn targets (1–4) are measured
from two scanner stations (S1 and S2) usingmeasurements
in two-faces (Fig. 9). All targets were approximately on the
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Figure 9: Sketch of the experiment used in 1st TLS calibration ex-
ample. Four targets (1–4) measured from two scanner stations
(S1 and S2).

horizon of the instrument for both scanner stations. Tar-
gets 1 and 2 are measured two times from Station S1. For
the purpose of this demonstration, the measurements are
separated into two groups – short distance measurements
(approximately on 5m) and long distance measurements
(approximately on 20m). When the measurements from
both stations are combined, there are five two-face mea-
surements on short (2x S1-1, 2x S1-2, S2-3) and five on long
distances (S1-3, S1-4, S2-1, S2-2, S2-4). Finally, this whole
measurement process is repeated four times with a time
difference of one hour between each realization (datasets
D1–D4).

The retrieved measurements are used for calculating
two calibration parameters: vertical index offset and col-
limation axis error (x4 and x6 from Eq. 8–9). The param-
eters are estimated separately using the mean of the mea-
surements on 5mand themeasurements on 20m. They are
calculated in accordance to the usual total station practice
from the difference of two face measurements [47]. The re-
sults of this simplified calibration procedure for datasets
D1–D4 are presented in Table 2.

Table 2: Vertical index offset (x4) and collimation axis error (x6) esti-
mated using measurements on approximately 20 meters, 5 meters
and reference results from Leica Check and Adjust field calibration
procedure; results for four separate data sets (D1–D4), the corre-
sponding mean and standard deviation.

Parameter Data D1 D2 D3 D4 x σx

x4 [��] ∼ 20m −2.3 −2.4 −2.3 −1.9 −2.2 0.2∼ 5m −0.5 −1.1 0.1 −0.2 −0.42 0.50
Leica −2 −2 −2 −1 −1.75 0.50

x6 [��] ∼ 20m 1.9 1.9 2.4 2.0 2.05 0.21∼ 5m 1.7 2.6 0.5 0.5 1.32 1.03
Leica 2 2 2 1 1.75 0.50

As canbe seen fromTable 2, the standarddeviations of
the estimated parameters are higher if the measurements
from the close distance are used. Hence, measurements in
proximity to the scanner exhibit higher noise than mea-
surements on the distance of approximately 20 meters.
This behavior is in accordance with the ESM described in
Section 4, and it is in accordance with the usual practice
of a total station calibration. Namely, it is common knowl-
edge in the geodetic community that for the better estimate
of total station calibration parameters, the prism should
be placed farther away from the instrument [47].

However, the stochastic models using a single scalar
value for describing the uncertainty of angular measure-
ments (e. g. MSM) do not reflect this phenomenon. This
fact is very important for planningmeasurement networks
and designing the calibration field. Namely, the majority
of the documented TLS calibration experiments were con-
ducted in relatively small roomswhere amaximumachiev-
able distance is approximately 10 meters, e. g. [16]. This
further led to a suboptimal design of the TLS calibration
fields with maximum lines of sights not exceeding more
than three meters [22]. Based on the used functional mod-
els and available stochastic information, there were no in-
dicators of the adverse effects of using such a small facil-
ity on the calibration results. In contrary, the results of this
experiment suggest otherwise. For example, in the case of
this concrete scanner, the vertical index offset is best esti-
mated at a distance of approximately 20meters, due to the
smallest measurement uncertainty in the direction of ver-
tical angles (Fig. 7). Additionally, if we compare the mean
parameter values, it is visible that they fit closer to the true
values if the measurements on high distances are used.
Hence, using larger facilities for TLS calibration can signif-
icantly improve the calibration results and this fact should
be considered in future TLS calibration projects.

To conclude, this simple calibration experiment indi-
cates that the knowledge of the true measurement (target
centroid) stochastic behavior is necessary for the success-
ful planning and optimization of the TLS calibration net-
works.

5.2 Example 2 – TLS calibration

Figure 10 presents the network configuration used for the
scanner calibration already described in [21]. Approxi-
mately 300 self-printed A4 paper targets with official Leica
Black & White HDS template were regularly distributed in
the large machine hall. The targets were measured from
three scanner stations (S1, S2, and S3), where two-face
measurements were used only from the first two stations.
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Figure 10: Network configuration – the scanner station locations (S1, S2, S3) with the orientation of scanner local coordinate systems and
target distribution; hall dimensions 75 × 33 × 9m.
[21] proved that the network is sensitive to all relevant cal-
ibration parameters (Eq. 7–9).

In order to ensure unbiased results, we eliminated all
targets with incidence angles higher than 60° and all vi-
sually detectable outliers. To cope with the outliers that
are not visually detectable, the calibration algorithm de-
scribed in Section 3.1 was modified to a robust estimator
using the Danish Method described in Section 3.2. This
and similar robust estimation strategies are commonly em-
ployed for the scanner calibration in the literature ([12, 49])
due to the expected outliers that could bias the calibration
results.

In order to compare the proposed empirical stochas-
tic model with all of the usually employed stochastic mod-
els, the calibration adjustment was repeated three times.
The first time, the ESM was used, the second time, the
MSM was used, while the third time, the MSM was mod-
ified using the variance component estimation. The VCE
is used iteratively to reweight the values in the covariance
matrix of observations until the acceptance of the global
test. The results of the adjustments are presented inTable 3
and Table 4. In Table 3, the a priori defined measurement
standard deviations (forming the covariance matrix of ob-
servations) are compared with the a posteriori measure-
ment standard deviations (based on the calibration adjust-
ment residuals). The representative a priori standard devi-
ation of themeasurements for the ESM is calculated as the
weighted pooled standard deviation of all measurements
in the calibration field – separately for ranges, horizon-
tal and vertical angles (Eq. 12). As it can be seen in Ta-
ble 3, there is a much better correspondence between a
priori and a posteriori values when the ESM or the MSM

Table 3: Expected a priori standard deviations of TLS measurements
vs. estimated a posteriori standard deviations of the calibration
adjustment residuals. The results are presented for: the empirical
stochastic model (ESM), the stochastic model based on the man-
ufacturer’s specifications (MSM) and the MSMmodified using the
variance component estimation.

σr [mm] σφ [��] σθ [��]

ESM a priori 0.29 1.68 1.53
a posteriori 0.27 1.95 1.58

MSM a priori 1.00 8.00 8.00
a posteriori 0.27 3.26 1.75

MSM (VCE) a priori 0.27 3.26 1.75
a posteriori 0.24 2.66 1.25

modified with the VCE are used. That means that both ap-
proaches can be used to describe the true behavior of the
observation residuals more accurately. However, it should
be noted that the MSM refined using the VCE does not ac-
count for the variability of the target centroid uncertainty
with the different measurement geometry.

A small discrepancy between the proposed ESM and
the a posteriori values can be seen in the standard devia-
tion of horizontal angle residuals. There is no directly ap-
plicable explanation for this and it should be further in-
vestigated. However, we expect that this behavior is con-
nected to the systematic influence of incidence angles
(Sec. 2.1). Namely, in the horizontal angle direction, there
is high variability in the incidence angles, while there is
very low variability in the vertical angle direction, which
fits perfectly to our proposed stochastic model. The global
test did not pass for theMSMand the ESM, despite the high
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Table 4: Calibration parameters estimated using the ESM, the MSM,
and the MSMmodified with the VCE – MSM (VCE), the correspond-
ing uncertainty and results of the significance testing with 99%
probability.

Par. x σx Sig.

ESM

x10 [mm] 0.06 0.04 N
x2 [mm] −0.06 0.01 Y
x1z [mm] −0.05 0.02 Y
x3 [mm] −0.05 0.01 Y
x5z7 [��] −0.68 0.68 N
x6 [��] 1.82 0.05 Y

x1n [mm] −0.19 0.05 Y
x4 [��] 7.19 0.07 Y

x1n2 [mm] 0.17 0.01 Y
x5n [��] 7.39 0.56 Y
x5z [��] −2.67 0.71 Y

MSM (VCE)
Par. x σx Sig. x σx Sig.

MSM

x10 [mm] 0.29 0.23 N 0.14 0.08 N
x2 [mm] 0.06 0.05 N 0.04 0.01 Y
x1z [mm] 0.14 0.07 Y 0.04 0.03 N
x3 [mm] 0.00 0.03 N −0.01 0.01 N
x5z7 [��] −8.51 3.13 Y −4.23 1.32 Y
x6 [��] 1.59 0.24 Y 3.14 0.1 Y

x1n [mm] −0.10 0.25 N −0.2 0.09 N
x4 [��] 7.22 0.42 Y 7.25 0.09 Y

x1n2 [mm] 0.14 0.05 Y 0.26 0.01 Y
x5n [��] 8.49 3.08 Y 5.21 0.72 Y
x5z [��] −2.39 4.00 N −1.96 0.90 N

correspondence between a priori and a posteriori values in
the latter case.

Table 4 presents the estimated calibration parameters
using all three stochastic models, estimated a posteriori
standard deviations of the calibration parameters, and the
result of the test of the parameter significance (one-tailed
Student’s t-test, 99% significance). Utilizing this statisti-
cal test is not completely justified due to high correlations
between the calibration parameters. However, we pre-
sented the results of the student t-test in order to demon-
strate the influence of different stochastic models on the
usual statistical parameter evaluation approaches [20].

As can be seen, some of the parameters have notably
different values in all three cases. We tested if the whole
sets of the calibration parameters are significantly differ-
ent using the congruency test (test statistics compared
with the value from the Fisher distribution) – [50]. The
results of the test indicated that the parameters are sig-
nificantly different with 99% probability when different
stochasticmodels are used (Tab. 5). Based on these results,
it is not possible to determine which of the tested stochas-

Table 5: Congruency test used for evaluating if the calibration pa-
rameters estimated using the ESM are significantly different from
the parameters estimated using the MSM (with and without the VCE)
with 99% probability (rejection signalizing significant difference).

ESM vs. MSM ESM vs. MSM (VCE)

Tc 2.30 9.32
F (h, r,1 − α) 2.25 2.26

tic models leads to the estimation of unbiased calibration
parameters. However, the results point out that the TLS
calibration is very sensitive to the choice of the stochas-
tic model. Additionally, it is demonstrated that using an
inaccurate stochastic model can significantly bias the cal-
ibration results. Hence, great care should be placed in the
derivation of the appropriate stochastic model for the TLS
calibration.

In addition, the a posteriori estimated parameter stan-
dard deviations are notably different when using differ-
ent stochasticmodels. As expected, thehighest differences
are present when the simplistic MSM is compared with the
proposed ESM or the MSM enhanced with the VCE. These
differences can sometimes reach a factor of 6. Hence, us-
ing the MSM results in the overestimated uncertainty of
the calibration parameters, while the other two stochastic
models lead to the more realistic estimates. These differ-
ent a posteriori parameter standard deviations again lead
to different conclusions about the significance of individ-
ual parameters. In this instance, approximately half of the
parameters have a different conclusion about their signif-
icance when the ESM is compared with other stochastic
models. This can further lead to a wrong calculation of
the single point uncertainty if the calibration parameter
uncertainty is propagated to derive the point cloud uncer-
tainty. Hence, these results point out howmuch the a pos-
teriori variance component analysis and statistical testing
are sensitive to the choice of the correct stochastic model.

Based on the results presented in Tables 3 and 4, it
can be deduced that both the ESM and the MSM with the
VCE offer more realistic estimates of the parameters’ un-
certainty and their significance. However, they are still dif-
ferent and, based on this experiment, it is impossible to
deduce which of the two stochastic models is more accu-
rate. What it is known is that the covariance matrix of the
observations in the VCE case does not consider the rela-
tions between the target centroid uncertainty and themea-
surement geometry. Disregarding these relations can eas-
ily lead to biased estimates of the correlated calibration
parameters. Namely, the calibration parameters typically
share high mutual correlation and much research effort is
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placed on their decorrelation [10, 18]. A further improve-
ment in using the VCE could be achieved by introducing
multiple measurement groups with a homogenous mea-
surement geometry, and hence, with a corresponding tar-
get centroid uncertainty. Such a strategy would probably
lead to values similar to the ones presented in Figure 7.
Thus, this could be an alternative approach for deriving
the ESM for the target centroid uncertainty. However, this
requires a thorough investigation of the optimal number
of measurement groups which could sufficiently represent
the target centroid uncertainty behavior. Such a compre-
hensive investigation is out of the scope of this study.

To conclude, this example proves that using either the
proposed ESM or the MSM improved with the VCE is nec-
essary to get an accurate representation of the uncertainty
of both the TLS observations and the estimated calibra-
tion parameters. Additionally, it revealed that using in-
correct stochastic models can cause: significantly biased
estimates of the calibration parameters, incorrect estima-
tion of the parameters uncertainty and their significance.
Therefore, sufficient attention should be placed on deriv-
ing an accurate stochastic model.

5.3 Example 3 – TLS registration

For the TLS registration example, we used a network ad-
justment consisting of 10 scanner stations (Fig. 11). An av-
erage distance between the stations is 100 meters and the

Figure 11:Measurement configuration of the network in the regis-
tration example (red rhombus – scanner stations, black squares –
target locations, blue line – measurement directions, green circles –
targets used for defining network datum).

whole length of the network is approximately 900 meters.
The stations S1 and S10 are deliberately not connected
through observing the same targets in order to enhance
the transformation parameter errors. For the target-based
registration of all scanner stations, Leica Tilt and Turn tar-
gets (Fig. 1)mounted on tripodswere used,withminimally
three corresponding targets between stations. The average
of the two-facemeasurements is used tomitigate the influ-
ence of systematic TLS errors. The datum of the reference
coordinate system of themeasurement network is realized
by treating coordinates of four targets at the beginning of
the network as given values.

The differences between the transformation parame-
ters estimated using the ESM and the MSM are given in Ta-
ble 6. As can be seen from the table, the parameter differ-
ence can rapidly build up reaching values of 18�� for the
rotation and 13.4mm for the translation parameters. Most
of these values are higher than the calibration parameters
estimated in the previous examples. Hence, they cannot
be treated as insignificant in no case and they would have
a notable influence on the results of the following point
cloud analysis. The a posteriori parameter uncertainties
were again different up to a factor of five for the ESM and
the MSM. It is worth noting that this example presents a
typical TLSproject that canbe expected inpractice.Hence,
the impact of the insufficient stochastic models can be vis-
ible even in the tasks not aiming at the highest reachable
accuracy (e. g. TLS calibration).

As in the previous case study, we additionally tested
the MSM modified by the VCE. This registration attempt
delivered the same transformation parameters as the pro-

Table 6: Differences between transformation parameters estimated
using ESM and MSM for all scanner stations (S1–S10).

∆x*

Parameter S1 S2 S3 S4 S5

Tx [mm] 0.12 −0.52 −3.44 −4.46 −0.93
Ty [mm] −0.04 0.15 0.99 6.31 6.7
Tz [mm] −0.01 0.03 −0.39 −0.65 −0.44
Rx [��] −0.13 −0.09 −0.57 −1.48 −0.96
Ry [��] −0.16 −1.37 −1.94 −1.27 −1.24
Rz [��] −0.25 −8.76 −18.68 −17.53 −17.89
Parameter S6 S7 S8 S9 S10

Tx [mm] −5.04 −2.74 −1.18 −1.08 −0.53
Ty [mm] 10.26 13.47 12.44 11.82 9.91
Tz [mm] −1.09 −1.19 0.11 1.02 3.84
Rx [��] 1.9 −7.19 0.32 4.99 −8.06
Ry [��] −3.81 3.78 −10.62 −10.42 −9.11
Rz [��] −14.69 −12.9 −11.98 −7.22 −9.6
*Δx = x(MSM) − x(ESM)
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posed ESM (differences less than 0.02�� and 0.02mm).
Also, the transformation parameters uncertainties were at
the same level of magnitude. This data shows that the es-
timation of the transformation parameters is less sensitive
on the change of the target centroid uncertainty with dif-
ferent measurement geometry. Hence, if there is no neces-
sity for the prior network design, the VCE can be utilized
instead of the proposed ESM without any disadvantages.

Table 7: Expected a priori standard deviations of the TLS measure-
ments according to the ESM, the MSM and the MSMmodified with
the VCE vs. estimated a posteriori standard deviation of the registra-
tion residuals.

σr [mm] σφ [��] σθ [��]

ESM a priori 0.41 1.82 1.59
a posteriori 0.58 5.52 1.24

MSM a priori 1.00 8.00 8.00
a posteriori 0.41 5.12 1.13

MSM (VCE) a priori 0.22 7.20 1.13
a posteriori 0.22 7.20 1.13

In the end, the a priori and a posteriori measurement
standard deviations are compared in Table 7. The a pos-
teriori standard deviations in the range and vertical angle
direction are consistent with the ESM. However, the hori-
zontal angle uncertainty is much higher, probably due to
excessive target rotations around standing axis between
the consecutive scanner stations. Namely, the rotation of
Tilt and Turn targets can introduce systematic errors with
an unknown magnitude if the target center is not coinci-
dent with the center of the rotational axis (no values are
given by manufacturer). This fact does not pose a problem
in the previous examples, since calibration in themachine
hall relies mostly on paper targets, while Tilt and Turn tar-
gets used in the previous experiment were not rotated dur-
ing the measurements. Hence, the ESM does not describe
the complete horizontal angle uncertainty in this concrete
case. However, we use this example merely to show the
possible impact of the different values in stochastic mod-
els on the transformation parameters estimated using the
least-squares adjustment. Hence, this bias has no impact
on the conclusions of the study. To conclude, a more rigor-
ous target design is necessary for using the full potential
of the precise TLS target centroid detection.

This example demonstrated that using the overly sim-
plified stochasticmodel can influence the values of the reg-
istration parameters by a large amount. This influence can
be characterized as a systematic error due to the incorrect

registration and it can notably impact the point cloud un-
certainty.Hence, it shouldnot beneglected.As theTLS reg-
istration seems less sensitive on the choice of the stochas-
ticmodel than the TLS calibration, both the proposed ESM
and the MSM modified with the VCE lead to the same re-
sults.

6 Conclusion

We empirically investigated the precision of the target cen-
troid detection and we defined an empirical stochastic
model. Furthermore, we presented how using the inaccu-
rate stochastic models can impact the TLS calibration and
registration. Several important conclusions can be drawn
from this study:
– The stochastic behavior of the detected target centroid

is usually overly simplified and the uncertainty over-
estimated. Namely, the target centroid uncertainty de-
pends on many influencing factors. It depends on the
used measurement procedure (e. g. scanner settings
and target centroid estimation algorithm) and it de-
pends on the measurement configuration (distance
and angle of incidence). This holds true for the uncer-
tainty both in the direction of range and angular mea-
surements. Hence, representation of the target cen-
troid uncertainty in the stochastic models of the TLS
calibration and registration by using constant scalar
values is inadequate.

– Mentioned oversimplification has adverse effects on
the tasks of planning, processing, and analysis of TLS
measurements. We pointed out and quantified all ad-
verse effects in the TLS calibration and registration
workflows.

– Simple experimental setup and look-up tables with a
linear interpolation can be used for obtaining more
realistic stochastic information describing the target
centroid uncertainty. The application of such stochas-
tic information has a positive influence on the tasks of
the first, second and third order design of the TLS cal-
ibration and registration.

The stochastic model derived herein can certainly be im-
proved. For example, an influence of different incidence
angles on the target centroid uncertainty can be investi-
gated in more detail. Moreover, there is a possibility to
functionally model the target centroid uncertainty instead
of using look-up tables. The possibility to estimate an ac-
curate stochastic model through variance component esti-
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mation with multiple measurement groups should also be
considered.However, this is beyond the scope of thiswork.

Regarding the relevance of the results, the use of sig-
nalized targets is still unavoidable in highly demanding
engineering tasks due to a simple control with instru-
ments of higher accuracy, and due to a straightforward es-
timation of the measurement uncertainty. Hence, the en-
tire subject of the matter remains relevant in the geodetic
community. Without correct stochastic models, there is no
possibility of reaching millimeter or submillimeter uncer-
tainties when analyzing the geometry of complex objects,
which could be achievable in the near future. Therefore,
we would recommend implementation of more complex
stochastic models in the commercial software or the ex-
pansion of the values delivered in the instrument specifi-
cations in order to allow qualified professionals the possi-
bility of more accurate data processing.
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