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1 INTRODUCTION

Since the beginning of the Industrial Revolution 300 years ago, the problems of water
pollution have expanded from being regional and later continental, to global. Especially
urbanisation and the consequent increase in population, industrial growth, and agricultural
intensification can lead to greater levels of freshwater pollution (UNEP, 1991). It has been
estimated that 30,000 deaths around the world are caused daily due to contaminated water
and poor sanitation (The Green Lane, 2000). In the USA alone more than 4,000 tonnes of
persistent toxic metals, nearly 450 tonnes of reproductive toxins and over 1,250 tonnes of
carcinogens were released into the waterways (PIRG, 1999). More than 14 million

Americans drink water contaminated with pesticides (Hart, 2000).

In order to protect humans and the environment from pollution the World Health Organi-
sation (WHO) has been concerned with water quality for over 45 years. The International
Standards for Drinking-Water were publicised in 1958 (WHO, 2000), followed by the
Guidelines for Drinking Water Quality in 1984 (WHO, 1984). The EU and the USA have
developed and over the years expanded legislation which controls the release and the con-
centrations of certain chemicals. The European Drinking Water Act of 1980, for example,
does not allow pesticide concentrations to exceed 0.1 pg L™ for individual substances or

0.5 ug L™ for total pesticides (Trinkwasserverordnung, 2000).

Enforcement of this legislation is only possible through reliable monitoring of the envi-
ronment for the presence of substances which adversely affect the health of humans and
ecosystems. Conventional analytical techniques are continually being improved and have
reached high accuracy. However, they can only detect concentrations of known sub-
stances, while being unable to indicate the toxicity of a sample (Dennison and Turner,
1995).

Biotests, on the other hand, can reveal the effects of chemicals on organisms (or parts of
organisms). Moreover, they can show the cumulative effect of all present substances, even
of those which are unknown (e.g. breakdown products). They can also reveal interactive
effects (antagonistic or synergistic) of chemicals (Gunkel, 1994). This enables the
determination of the potential risk of the substance(s) (Nusch, 1993).

Due to these advantages over conventional analytical techniques, several biotests are
already being employed routinely and have been included in OECD-Guidelines and DIN-
Norms (Briiggemann and Steinberg, 1995). Nevertheless, a sharp increase in the number

of publications concerning the application of biomarkers (Benford et al, 2000) and



biosensors (Dennison and Turner, 1995) was evident in recent years. This indicates the

persisting need of biotests for environmental monitoring (Markert, 1994).

1.1 Pesticides

Pesticides constitute a group of substances, which are known to produce adverse effects
on humans and the environment. The United States Environmental Protection Agency
(EPA) defines a pesticide as “any substance or mixture of substances intended for
preventing, destroying, repelling, or mitigating any pest” (EPA, 1999). They are divided
into groups, according to their target organism; the three major ones being insecticides,
herbicides, and fungicides (PMRC, 2000). They confer large economic benefits by
increasing yields and stabilising food production. In some areas, crops can only be grown

through the use of pesticides (Seiber and Ragsdale, 1999).

However, since pesticides are potent toxic substances, side-effects can have significant
negative impacts. Pesticides acting upon non-target organisms, for example, can affect
biodiversity. Furthermore, residuals in water, air, and food can have adverse impacts on
public health (OECD, 1997). Monitoring the environment for the presence of pesticides is
crucial, while knowledge of their mode-of-action and behaviour is essential to understand

and react to their effects on human health and the environment (Cook et al., 2000).

Pesticides have various modes-of-action (Table 1.1) more or less specific to the target
organisms. Most insecticides, for example, affect one of five biological systems in the
target organisms: the nervous system, cuticle synthesis, the endocrine system, water
balance, and energy production (Valles and Koehler, 2000). Herbicides, for the most part,
affect inherent processes in plants and not mammals or insects - the inhibition of photo-
synthesis being the best example. Moreover, the biosynthesis of carotenoids, amino acids
or lipids can be affected (Kirkwood, 1991). The mode-of-action of fungicides includes the
inhibition of various substances, such as chitin, melanin, proteins, or sterol biosynthesis,

which disrupts membrane function (Hewitt, 1998).

The distinct sites of action and differences in specificity not only increase the range of
pests to be controlled but also reduce the risk of pest resistance towards the pesticides
(Cook et al., 2000). However, the continuous development of new products with different
modes-of-action increase the difficulty of the detection of contaminating pesticides.
Therefore, new tests have to be developed in parallel to the pesticides to protect human

health and the environment.



Table 1.1:

(Bt: Bacillus thuringiensis).

Examples of insecticides, herbicides and fungicides which affect specific target sites

Target Site Insecticide Herbicide Fungicide
Cell wall - Benzamides, Nitriles Polyoxins, Tricyclazole
Chitin synthesis Benzoylphenyl ureas - Polyoxins
Membrane d-endotoxins (Bt) Dinitrophenols 1,2,4-Triazoles,
Imidazoles
Lipid synthesis - Benzofurans, Validamycin
Thiocarbamates
Amino acid and - Imidazolinones, Kasugamysin
Protein Sulfonylureas
synthesis
RNA synthesis - - Hydroxypyrimidines,
Phenylamides
Pigment - Pyridazinones, Tricyclazole
synthesis Triazoles
Microtubules - Carbamates, Benzimidazoles,
Dinitroanilines, Phenylcarbamates
Pyridazines
Energy Rotenone, Sulphonamid Dinitrophenols Nitrophenol derivatives
metabolism
Hormones Methoprene Benzoic acids, -
Phenoxy-carboxylic
acids
Nervous system Amidines, Carbamates, - -
Organophosphates,
Pyrethroids
Photosynthesis - Amide, Nitriles, -
Triazines, Uracils,
Ureas
References Bloomquist, 2000; Kirkwood, 1991; Hewitt, 1998
Vallas and Koehler, Hrac, 2000;

2000

Hartzler, 2001

1.2 The Mitochondrial Electron Transport Chain

One site of pesticide action is the production of energy (Kirkwood, 1991; Hewitt, 1998;

Bloomgquist, 2000). During oxidative phosphorylation high-energy electrons traverse the

mitochondrial electron transport chain, oxidising reduced coenzymes and finally produc-

ing water as they are transferred to oxygen (Babcock, 1999). The built-up proton motive
force is used to drive the synthesis of ATP (Siedow and Umbach, 1995).

The electron transport chain consists of four integral multiprotein complexes (Figure 1.1).

Complex I (NADH: ubiquinone oxidoreductase) oxidises NADH generated in the mito-

chondrial matrix via the citric acid cycle. The resulting electrons are passed to ubiqui-



none, while protons are translocated across the inner membrane. Complex II (succinate:
ubiquinone oxidoreductase) contains succinate dehydrogenase, an enzyme of the citric
acid cycle, which catalyses the oxidation of succinate to fumerate. The electrons are again
transferred to ubiquinone. However, no proton transport occurs. Complex III (ubiquinone:
cytochrome oxidase) oxidises the ubiquinone reduced by complexes I, II, and two NADH
dehydrogenases. The electrons are passed to cytochrome c, while protons are transported
across the membrane (Siedow and Umbach, 1995). Complex IV (cytochrome oxidase)
oxidises cytochrome c, using the electrons to reduce oxygen to 2 H>O molecules to clear
the mitochondrial chain of low energy, spent electrons (Babcock, 1999). The energy
released in this process is coupled to the translocation of protons to contribute to the
chemiosmotic gradient (Saraste, 1999). The F,F, synthase allows the movements of the
protons back across the membrane, using the energy to convert ADP and P; to ATP
(Siedow and Umbach, 1995).

Plants have two paths for the transport of electrons from ubiquinone to oxygen. The first
is the cytochrome pathway (Figure 1.1, blue arrows), as just described. The second is the
cyanide resistant, alternative pathway (Figure 1.1, red arrow), which is comprised of a
single protein, the alternative oxidase, on the inner mitochondrial membrane (Ordentlich
et al., 1991; Maxwell et al., 1999). The engagement of the alternative pathway depends
on the amount of protein present, the degree of ubiquinone reduction, and the activity of
the alternative oxidase. The latter is influenced by the redox state of the regulatory sulthy-
dryl/disulfide bond of the enzyme, being inactive in the oxidised state and active in the
reduced form (Wagner and Krab, 1995). Organic acids (e.g. pyruvate, succinate or malate)
can activate it by lowering the apparent K, of the alternative pathway for reduced ubiqui-
none (Ribas-Carbo et al, 1995), increasing its reactivity towards ubiquinone
(Ribas-Carbo et al., 1997). Unlike the main pathway, the alternative pathway is non-
phosphorylating, as the electrons bypass two of the three proton translocation sites
(Maxwell et al., 1999) (Figure 1.1). The question therefore arises, why this apparently
energetically wasteful pathway has been maintained through evolution, especially in view
of the alternative oxidase being able to compete directly with the main pathway for
electrons (Siedow and Umbach, 1995; Gonzalez-Meler et al., 1999).
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Figure 1.1: Organisation of the plant electron transport chain in the inner mitochondrial mem-
brane, containing four integral multiprotein complexes (I-IV) (modified after Siedow
and Umbach, 1995). The Q Pool is a pool of ubiquinone which diffuses freely within
the inner membrane. It accepts electrons from the four dehydrogenases (DH) and
transfers them to either complex III (blue arrows: cytochrome pathway) or the
alternative oxidase (red arrows: alternative pathway).

The “only obvious physiological function” (Sluse and Jarmuszkiewicz, 1998) of the alter-
native oxidase is recognisable in specialised thermogenic tissues of plants. The thermo-
genic voodoo lily, for example, uses the heat to volatilise compounds to attract insect
pollinators (Moynihan et al., 1995). In Symplocarpus, the development of inflorescence
and pollination, even at subzero temperatures in the environment, is guaranteed by long-
lasting heat production (Meeuse, 1975). However, the presence of the cyanide-resistant,
alternative pathway is not restricted to thermogenic plants. Apart from vascular plants,
algae, fungi and some protists have also been found to contain the alternative pathway
(Moynihan et al., 1995). Therefore, the cyanide-resistant pathway has to play other

physiological roles besides thermogenisis.

The role of the alternative oxidase in non-thermogenic tissues are being increasingly

better understood (Sluse and Jarmuszkiewicz, 1998). It has been shown to be involved in




the antioxygen defence of plant mitochondria. Reactive oxygen species (ROS), such as
superoxide, H,O,, and hydroxyl radicals, can cause oxidative damage of the inner mito-
chondrial membrane, leading to the impairment of the mitochondrial function
(Kowaltowski et al., 1998; Kowaltowski, 2000). They are readily removed under physio-
logical conditions through a defence mechanisms of antioxidants (Leipner et al., 2000;
Munné-Bosch and Alegre, 2000) and antioxidant enzymes, such as catalase 3 and peroxi-
dase (Prasad et al., 1994; Zeng et al, 1994; Badiani et al, 1997; Prasad, 1997). The alter-
native oxidase plays its part in the antioxigen defence by reducing the amount of ROS

formation (Wagner and Krab, 1995; Popov et al., 1997).

Under pathological conditions, on the other hand, the antioxidant system may be defective
or ROS generation can increase. Kowaltowski (2000) reported that the mitochondria are
the main generation site for reactive species in most cells. ROS formation can result from
an over-reduction of the mitochondrial respiratory chain components (Vanlerberghe and
Mclntosh, 1996; Maxwell et al., 1999). This over-reduction stems from the saturation of
the cytochrome pathway with electrons through the accumulation of organic acids or the
restriction of the pathways’ activity (Wagner and Krab, 1995; Vanlerberghe and
MclIntosh, 1996). Low ADP availability (Popov et al., 1997), inhibition (Wagner and
Krab, 1995) or stress induced physical changes of membrane components (Siedow and
Umbach, 1995) have been reported to restrict the main pathway. The electron flow
through the alternative pathway will maintain or return the ubiquinone reduction to a
stable level, decreasing (the potential of) ROS formation (Wagner and Krab, 1995) by

removing excess reducing equivalents which could reduce O, to O, (Popov et al., 1997).

Apart from maintaining stable levels of ubiquinone reduction, the alternative pathway also
seems to avoid ROS formation in other ways. Complex III is a step of the respiratory
chain, which produces O, at a high protonic potential, being eluded as it is bypassed
(Cadenas et al., 1977). Popov et al. (1997) reported on the function of the alternative
oxidase in respiratory protection, as it lowers the intra-mitochondrial oxygen level. There-
fore by maintaining safely low levels of oxygen and its one-electron reductants, the alter-
native oxidase seems to play an important role in the antioxygen defence in mitochondria
(Popov et al., 1997; Braidot et al., 1999).



1.3 Biological Monitoring

Increasing levels of pollution around the world call for more intensive monitoring of envi-
ronmental quality. Biomonitoring (as opposed to chemical monitoring) is of special
interest since it can be used to make predictions of the effects of contaminants on organ-

isms or communities (Gunkel, 1994).

Biomonitoring is an “extended programme of surveys undertaken in order to provide a
time series, to ascertain the extend of compliance with a predetermined standard of the
degree of deviation from an expected norm” (Goldsmith, 1990) using bioindicators. These
bioindicators are assessed on organisms, populations, communities, or parts of organisms,
which react towards environmental stressors by changing their biochemistry and/or

behaviour, or accumulate substances (Zimmermann, 1996).

Biomonitoring
Bioindication Biotests
Accumulation Reaction Test Suborganismic
Indicators Indicators Organisms Units

Figure 1.2: Biomonitoring strategies (Zimmermann, 1996; Wetzel, 1998).

Biomonitoring can be divided into two strategies: bioindication and biotests (Figure 1.2).
Bioindication may involve indicators with specific accumulation or reaction patterns for
certain chemicals (Wetzel, 1998) (Chapter 1.3.1). Biotests, on the other hand, are stan-
dardised techniques employing organisms (‘test organisms’) or part of organisms (‘subor-
ganismic units’) to measure the biological effects of substances (Zimmermann, 1996)
(Chapter 1.3.2).

To assess the degree of contamination of the environment and the (potential) effects of
these substances on organisms, populations, communities, or part of organisms, several
parameters can be measured at various levels of biological organisation (Table 1.2) (ESD,
2000). These parameters are employed in bioindication, as well as the biotests, as

described later in this chapter.



Table 1.2: Parameters of stress response measured at various levels of organisation (modified
after ESD, 2000)

Level of Level of Assessment  Stress Responses
Organisation
Sub-organismic ~ Biochemical Detoxification Enzymes, Bile Metabolites,
DNA Integrity, Stress Proteins, Antioxidant
Enzymes
Physiological Creatinine, Transamin. Enzymes, Cortisol,

Triglycerides, Steroid Hormones

Individual Histopathological Necrosis, Macrophage Aggregate, Parasitic
Lesions, Functional Parenchyma, Carcinomas
Bioenergetic Growth, Total Body Lipid
Reproduction Organo-Indices, Condition Factor
Population Growth Abundance, Reproductive Integrity
Structure Size and Age Distribution, Sex Ratio
Community Structure Richness, Intolerant Species, Food-Web

Alterations, Trophic-Level Relationships

Biomonitoring at the different levels of organisation varies in its ecological relevance of
the measured responses, as well as the time scale in which the responses become evident.
Community level biomonitoring provides information on the magnitude and ecological
effects of stressors on the ecosystem (Gunkel, 1994). The measured responses are the least
sensitive to contaminant stressors, only becoming evident in the long term. Biomonitoring
using sub-organismal responses, on the other hand, has a low ecological but a high rela-
tionship-to-cause relevance. They are more sensitive to stressors and can be determined
within shorter time scales (Shugart et al., 1992). If lower-level responses (e.g. sub-
organismal) are calibrated to higher-level responses (e.g. at the population/community
level), the former can be used effectively in ecological risk assessment (Figure 1.3) (ESD,
2000).
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Figure 1.3: Responses to environmental stress at different levels of organisation (modified after
EsD, 2000)

1.3.1 Bioindication

Bioindication involves the use of reaction and accumulation indicators (Figure 1.2). Reac-
tion indicators point out the presence of a toxicant as it reacts towards it by changes in the
biochemistry (Zimmermann, 1996). All effects of toxicants originate in chemical proc-
esses at the molecular level (Fossi ef al., 1994). At the sub-organismal level, biomarkers
can be used for biomonitoring purposes. Biomarkers are “parameter[s] which can be
measured in a biological sample, and which provide information of an exposure, or on the
actual or potential effects of that exposure in an individual or in a group” (Benford ef al.,
2000). Biomarkers of exposure indicate the exposure of an organism towards a contami-
nant. These either include the substances themselves or their metabolites, as long as they
are specific of the exposure of interest. In other words, the specific substance (or metabo-
lite) may not be derived by any other means than through the exposure of the substance of
interest, and all individuals must be able to produce the measured metabolite (Benford et
al., 2000). Fossi et al. (1999) reported on benzopyrene monooxygenase activities in
marine mammal skin biopsy specimens as early indicators of exposure to endocrine
disrupting organochlorines (Table 1.3). Similarly, the synthesis of vitellogenin in male
fish results from their exposure to estrogenic compounds (Sumpter and Jobling, 1995;
Kime et al., 1999). Biomarkers of exposure may, therefore, become relevant outside the
laboratory to carry out risk assessment. They cannot, however, predict the toxicity of

substances — unlike biomarkers of effect (Benford et al., 2000).
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To determine biomarkers of effect it is necessary to have established the mechanistic
causal pathway, which links the measurements of exposure, intermediate effects and the
final outcome (disease) (Bennett and Waters, 2000). DNA-adducts, for example, have
been shown to be key elements in the initiation of chemical carcinogenesis. They are
formed by PAHs (polycyclic aromatic hydrocarbons) and other genotoxic substances by
binding covalently to the DNA (Gram, 1985). Such DNA alteration can lead to irreversi-
ble changes to the DNA molecule, resulting in expression of chromosomal aberrations

and oncogene activation (Shugart, 1994).

If the impact of toxicants at the molecular or biochemical level exceeds the compensatory
responses, it passes to successively higher levels of organisation. It is therefore of impor-
tance to also monitor responses at the population and community levels (Fossi ef al.,
1994) (Table 1.2). The Biotic Indices are used to classify the degree of pollution accord-
ing to the tolerance of indicator species to pollutants. The measures include indices such
as richness, pollution tolerance, trophic level present, and abundance (Table 1.3) (NcsuU,
2000). The US Environmental Protection Agency (EPA) Rapid Bioassessment Protocol for
Use in Streams and Rivers, for example, uses community diversity to determine water
quality. Pollution may be indicated by the absence of pollution sensitive benthic macro-
invertebrates (Ephemeroptera, Plecoptera, and Trichoptera) and dominance of pollution-
tolerant groups (Oligochaetes or Chironomids). In general, low richness can indicate
impairment (Plafkin et al, 1989). Apart from the just described reaction indicators,

accumulation indicators are also of importance in biomonitoring.

Accumulation indicators are different from the bioindicators described so far, in that no
response towards the contaminants is determined. Their value lays in their ability to accu-
mulate substances from their surrounding, sequestering them in their bodies. Analyses of
the tissues allow an indirect estimate of the environmental concentrations. The increased
contaminant concentrations lead to a higher accuracy, sensitivity, and reproducibility of
the measurements (Markert, 1994). These indicators can be sentinel organisms, such as
plants (e.g. hazel, sycamore (Little, 1977), grasses (Ho and Tai, 1988), filter feeders, iso-
pods, and seaweeds (e.g. Fucus spp.) (Kennish, 1992; Phillips and Rainbow, 1993).
Accumulators can also be introduced into the environment. So-called ‘active’ indicators
have the main advantage of accumulating substances over a known time period. Goodman
and Roberts (1971) and Little and Martin (1974) suspended moss (Hypnum and

Sphagnum, respectively) in nylon bags. Accumulation indicators have proved invaluable,
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rapid and inexpensive means of monitoring environmental pollution (Little and Martin,
1974).

Table 1.3: Examples of bioindicators used for bioindication and biotests to determine the pres-
ence and/or effects of pesticides (AChE: Acetylcholinesterase).

Bioindicator Parameter Pollutant Reference
Bioindication Fish AChE Inhibition = Carbamates, Haubruge et
Organophosphates al., 1997
Marine Mammals Benzopyrene Endocrine Fossi et al.,
Monooxygenase  Disrupting Organo- 1999
Activity chlorines
Benthic Richness, Heavy Metals Ncsu, 2000
Macroinvertebrates ~ Abundance
Biotest Daphnia Growth and Endosulfan Fernandez-
(Test Reproduction Casalderrey
Organisms) etal., 1993
Lind Ferrando et
fndane al., 1995
Daphnia Population Endosulfan Barry, 1996
Dynamics
Biotest (Sub- Thylakoid Fluorescence Diuron Schnabl et
organismic) Membranes al., 1999
AchE, Choline AChE Inhibition Carbamates, Dennison and
oxidase Organophosphates Turner, 1995

1.3.2 Biotests

Several biotest have been standardised by the OECD and the International Organisation for
Standardization (ISO) and are routinely being employed to assess the effects of specific
substances. Toxicity tests listed in the OECD-Guidelines include the algae growth inhibi-
tion test, the acute immobilisation test and reproduction test using Daphnia sp., life-cycle
tests on fish, and the AMES-Test (Salmonella mutagenicity) (Table 1.3) (Briiggemann
and Steinberg, 1995; Wetzel, 1998). All of these techniques employ whole organisms
(Henry, 2000).

Suborganismic units are incorporated in biosensors, a special type of biotest. Biosensors
are “analytical devices, which incorporate a biological component and a transducer”
(Holme and Peck, 1994). Transducers convert the detection by the biological components
into electrical signals. The possible biological components fall into two categories: bio-
catalysts and bioreceptors. The former involves binding of the substance, followed by a

chemical reaction and the release of products. They include enzymes, microbioal/plant/
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animal cells or sub-cellular organelles. For bioreceptors, binding is non-catalytic and
irreversible, as seen with antibodies or cellular membrane receptors. It is the properties of
these biological components, which give biosensors their specificity (Holme and Peck,
1994).

This specificity can range from being very narrow to encompassing an array of sub-
stances. Some biosensors have been developed to detect specific chemicals. Employing
alkaline phosphate labelled anti-antibodies to bond to atrazine antibodies, for example,
can indicate atrazine. A fluorescent product is yielded after the addition of an enzyme
substrate. The detection limit lays at 10 pmol atrazine mL™. (Scheper and Miiller, 1994).
Other biosensors can detect groups of substances by making use of their chemical proper-
ties. Organophosphate and carbamate insecticides inhibit acetylcholinesterase (AChE) and
choline oxidase (Table 1.3). The former enzyme yields choline from acetylcholine, while
choline oxidase oxidises choline to betain and hydrogen peroxide. The latter can be
measured amperometrically (Marty et al., 1992). Biosensors can also employ the actual
target site of chemicals. A newly developed biosensor uses lyophilised thylakoid mem-
branes to detect the presence of herbicides, which interact with the photosynthetic electron
transport (Schnabl et al., 1999). As the electron transport is inhibited, the energy is
released as light. This fluorescence can be measured, reaching a detection limit of 0.1 pg
Diuron L™ (Walz, 2000). The biological component and its related specificity, therefore,

clearly govern a biosensor’s utilisation.

Determining the degree of contamination of an environmental sample using biotests often
involves taking samples into the laboratory. The greatest advantages of biosensors, there-
fore, are their small size, the reduced need for sample preparation and their fast response

time, making them ideal for use in the field (Dennison and Turner, 1995).

Over the last decade it has increasingly become evident that no single test can meet all
needs or answer all questions (Henry, 2000). As indicated above, the effects of contami-
nants vary between the levels of biological organisation and time scales of response (ESD,
2000). Moreover, the sensitivity of different species, as well as of individuals, towards
contaminants will vary (Gunkel, 1994). The presence of confounding factors will further
increase the difficulty of assessing cause-effect-relationships (Nscu, 2000). Many tests
are therefore needed and should be selected and combined with others according to the

contaminants of interest and the questions to be addressed (Nusch, 1993; Henry, 2000).
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1.4 The Protoplast Biosensor

A biosensor, which has been developed in this Institute is the protoplast biosensor. It uses
mesophyll protoplasts of higher plants as the biological component to detect harmful sub-
stances, which affect respiration and photosynthesis. These effects can be determined as
changes in the rates of oxygen-use and -evolution, using a Clark oxygen electrode, which

measures dissolved oxygen in the protoplast/sample mixtures.

The Clark oxygen electrode (Figure 2.1) is an amperometric transducer with two elec-
trodes: a working electrode (cathode), through which the potential is applied and a refer-
ence electrode (anode), both of which are connected by an electrolyte solution. Oxygen
diffuses through the membrane, which covers the cathode, being reduced at the latter,

resulting in a negative potential.

Cathode reaction: 0,+2H,0+2¢ — H,O, +2 OH"
H,O,+2¢ — 20H
The spent electrons are replaced by the anode reaction, made possible by the anode resid-

ing in an electrolyte (e.g. potassium chloride) (Figure 1.4).

Anode reaction: 4 Ag —  4Ag +4¢
4Ag"+4CI > 4AgCl
— +
|
|
@)
0, ’
Pt O, | Agcl
e Ag
% A
PR -
H,0 / OH /.64
0, I AgCl
H,0
KC1 KC1

Figure 1.4: Schematic presentation of the reactions on which the Clark oxygen electrode is
based (Pt: platinum working electrode (cathode); Ag/AgCl: Silver/silver chloride
reference electrode (anode); KCl: Potassium chloride electrolyte solution).
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A current proportional to the number of oxygen molecules within the protoplast/sample
mixture is therefore produced between the cathode and the anode. An interface provides
the polarising voltage to the electrodes, amplifies the low-level signals, makes the A/D
conversion and finally sends the resulting data to a computer (Holme and Peck, 1994;
Strathkelvin, 1999).

In order to determine the amount of dissolved oxygen within a sample, the influences of
external factors have to be minimised. Stirring the sample during the measurement is
necessary to avoid the formation of concentration gradients. Furthermore, a water jacket
surrounds the cuvette containing the sample. The water within it is kept at a constant
temperature. This is important since oxygen solubility in water, as well as its diffusion
through the membrane, are temperature dependent. Solving these problems has resulted in
a sensitive and reliable transducer used worldwide in areas ranging from physiology and
pharmacology to ecotoxicology, where it is used to measure dissolved oxygen in various
media, such as blood, mitochondria or enzyme preparations, microbial suspensions or

even larger animals like mussels (Strathkelvin, 1999).

As mentioned in the previous section, it is the biological component which gives a bio-
sensor its specificity. Mesophyll protoplasts of higher plants were chosen for various
reasons. First of all, they present model systems of the effects of substances on metabolic
processes of higher plants, since the effects are determined at the cellular level
(Overmeyer, 1993). Furthermore, since protoplasts, as opposed to cells, have had their cell
walls removed, their plasma membranes are more accessible and may be crossed more
easily. As a result, substances can elicit their effects at shorter time scales and the

sensitivity is increased (Overmeyer et al., 1994a).

The viability of the protoplasts in the presence of environmental samples is determined
from their rates of oxygen-use and -evolution. The production of O, (i.e. photosynthesis)
is measured in the light, while oxygen-use is determined in the dark (Overmeyer et al.,
1994a). Lindner (1993) investigated the effects of environmental factors such as tempera-
ture, pH, and ions (e.g. nitrate, phosphate, chloride, calcium, potassium, magnesium) on
the viability of protoplasts. Only temperature and pH, as well as light intensity and osmo-
larity of the test medium affected it. All of these factors, however, can be controlled. The
presence of the investigated ions in samples did not show an effect, therefore presenting

no problem during measurements of complex environmental samples.
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The protoplast biosensor has been employed for the detection of ecotoxicological
substances in different media. Waste water from a sewage treatment plant was screened
for contaminants (Schnabl and Zimmermann, 1989). Rain water was tested for atmos-
pheric pollution with herbicides, which act upon the photosynthetic system (Overmeyer et
al., 1994b). Overmeyer et al. (1994a) developed an on-line monitoring system to continu-
ally measure water quality of surface waters, using the river Rhine as an example. Such a
system could be employed as an early warning system to detect and react quickly to

pollution spills (for example near industrial plants).

However, two problems exist with using protoplasts as biological components of a
biosensor: loss of viability and cell wall regeneration. Within several hours after isolation
protoplasts synthesise new cell walls (Upadhya, 1975; Galbraith, 1981). This means the
loss of the essential property of an unencumbered and easily accessible plasma membrane
(Grout, 1995).

The greatest problem, however, is the loss of protoplast viability. Within 48 h protoplasts
showed degradation of chlorophyll a and b pigments, resulting in a continuous reduction
in light-dependent oxygen-evolution. Changes in key enzymes, such as neutral protease
and ribulose biphosphate carboxylase (RuBPcase) were also determined. An increase in
ethane evolution indicated cellular disorder and the loss of compartmentalisation (Schnabl
and Zimmermann, 1989). These symptoms could be delayed for a week by immobilising

the protoplasts in alginate matrices (Lindner ef al., 1992).

However, the immobilisation also presented its difficulties. Bacterial and fungal infec-
tions occurred within one week, even after the addition of antibiotics (Lindner et al.,
1992). Employing protoplasts of sterile sunflower plants did not improve the situation,
since those protoplasts contained very low amounts of chlorophyll. This constituted an
extremely undesirable side effect when measuring the rate of oxygen-evolution, since the
number of protoplasts had to be increased. As a result, more protoplasts had to be
isolated. Moreover, when employing immobilised protoplasts the magnetic stirrers in the
cuvettes were blocked (Lindner, 1993). Yet, possibly the gravest problem was the large
mean variation of oxygen measurements using immobilised protoplasts, due to their
uneven distribution in the viscous alginate (Overmeyer, 1993). Therefore, a new method
had to be developed to maintain the viability of the protoplasts over a longer time period,

making them available as biological components for the biosensor.
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1.5 Freezing

As freezing can preserve cells and their constituents, it might be used to prevent the loss
of protoplast viability and the regeneration of a cell wall. However, freezing can also be
lethal to most organisms (Mazur, 1970). To avoid fatal injuries to the protoplasts it is
important to determine what kind of damage occurs during a freeze/thaw cycle. Subject-
ing cells to subzero temperatures initially leads to the supercooling of the cell (or proto-
plast) interior. Ice nucleation occurs in the suspending medium at a temperature, which
depends on the freezing point of the solution and the presence of ice-nucleating agents. As
the water freezes, the solutes are excluded from the ice, concentrating the partially frozen
solution. To reach an osmotic equilibrium between the outside and inside, water leaves
the cell, resulting in cellular dehydration and concentration of intracellular solutes. The
cooling rate influences this process: During slow cooling more time is available for water
to leave the cell, while at rapid cooling rates extensive supercooling occurs eventually
forming intracellular ice through nucleation or seeding of the supercooled solution. The
manner of equilibration is primarily determined by the plasma membrane, which assumes

a central role in the behaviour of a cell during the freeze/thaw cycle (Steponkus, 1984).

Various stresses are encountered between the time in which cells are first exposed to
extracellular ice nucleation and the time they are returned to post-thaw conditions. These
include mechanical stresses incurred by the plasma membrane during osmotic contraction
and expansion, and chemical stresses due to solute concentration and dehydration
(Dowgert and Steponkus, 1984). This indicates that freezing causes a multitude of stresses

and injury is a result of their interaction (Steponkus, 1984).

1.5.1 The Role of the Plasma Membrane in Freezing Injury

Experiments on isolated protoplasts revealed that the plasma membrane is disrupted
during the freeze/thaw cycle, resulting in a spectrum of alterations in the semi-permeable
characteristics. Injury can manifest itself as (/) expansion-induced lysis, (2) loss of
osmotic responsiveness, (3) altered osmotic behaviour, and (4) intracellular ice formation

(Steponkus, 1985).

Expansion-induced lysis occurs during warming and thawing of the suspension medium
when the decreasing osmolalities of the medium lead to the osmotic expansion of proto-
plasts (Steponkus, 1984). Steponkus et al. (1983) showed that lysis occurred during

warming before the original volume and surface area were regained, thus calling it
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'expansion-induced lysis’ (Figure 1.5 (f)). The basis for this type of injury is, however,
laid during freezing. Meryman and Williams (1985) raised the “minimum cell volume”
theory postulating that “for every cell there is a volume beyond which it cannot be
reduced” without injury. Therefore, as water is removed below a certain volume (Figure
1.5 (c)) irreversible changes occur (Clegg et al., 1982). During cooling, the plasma
membrane revealed endocytotic vesiculation, i.e. deleted material in cytoplasmic vesicles.
This material was no longer readily available for reintegration into the plasma membrane
during subsequent expansion. Since endocytotic vesiculation requires breakage and fusion
of the plasma membrane, it is predisposed to mechanical failure and can lead to
intracellular ice formation through seeding of the supercooled cytoplasm (Dowgert and
Steponkus, 1984).

Loss of osmotic responsiveness is another manifestation of injury. Protoplasts remain
inactive during warming, because of alterations of the plasma membrane in the contracted
state, therefore failing to expand. It is possible that osmotic inactivity and intracellular ice
formation are two different manifestations of plasma membrane mechanical breakdown.
The occurrence of one or the other depends on whether or not the protoplasts achieved
osmotic equilibration before the membrane is damaged (Steponkus et al., 1983).
However, little is known about the causes of the loss of semi-permeable characteristics
(Steponkus, 1984).

Altered osmotic behaviour is indicated by the volume of protoplasts being less after thaw-
ing than before the freeze/thaw cycle (Figure 1.5 (g)). This suggests a transient loss of
intracellular solutes or a ‘leakiness’ of the membrane. However, since no lysis occurs, it is

considered a sublethal manifestation of injury (Steponkus, 1984).

Intracellular ice formation, on the other hand, is always lethal to cells due to the physical
sharing of intracellular membranes and other structures (McKersie, 1996a). Damage is
caused mainly during thawing, as ice crystals grow through recrystallisation (Figure 1.5
(h)) (Farrant et al., 1977; Merymann and Williams, 1985). As mentioned previously,
intracellular ice formation predominates at rapid cooling rates (Figure 1.5 (e)) and is
considered to be a consequence of membrane disruption, as it allows the supercooled
intracellular solution to be seeded by the extracellular ice (Dowgert and Steponkus, 1984).
An intact plasma membrane presents an effective barrier to external ice crystals
(Steponkus, 1985). It therefore seems that the mechanical failure of the plasma membrane

plays an important part in the manifestation of freezing injury.
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Figure 1.5: Events occurring during a freeze/thaw cycle (modified after Mazur, 1970).
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(b)
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(d)
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Untreated protoplast (PP).

PP cooled to -5°C: cytosol is supercooled, ice formation occurs on the outside,
water consequently leaves the PP to achieve osmotic equilibrium.

PP after slow cooling: as ice crystals form extracellularly and the extracellular
solution is increasingly concentrated, water leaves the PP, leading to PP shrinkage
and dehydration. “Solution effects” become predominant due to the concentration
of the PP contents. Cell attains osmotic equilibrium before the characteristic
nucleation temperature is reached and is therefore not subject to intracellular
freezing.

PP after moderate cooling: not as much time to attain osmotic equilibrium before
the characteristic nucleation temperature is reached. Thus, smaller ice crystals on
the outside as under slow cooling conditions (c), some ice crystallisation inside the
PP, some water leaves the PP, resulting in shrinkage.

PP after rapid cooling: many small ice crystals, outside and inside the PP. Virtually
no time for water to leave the cell, thus very little shrinking.

PP after thawing: expansion-induced lysis (esp. in non-acclimated PP) before PP
regains the original volume and surface area. May be prevented by acclimation of
the plant/tissue/cell.

PP after thawing: altered osmotic behaviour. PP volume is less after thawing than
before freezing.

PP after slow thawing: increasing ice crystal growth (recrystallisation) with
increasing temperature.

PP after rapid thawing: less recrystallisation than in (h), as less time is available for
crystals to join. Less damage and higher chance of survival for PP.
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Several stresses may be responsible for membrane damage. Dehydration changes the
organisation of membrane lipids, leading to phase transitions. At physiological tempera-
tures and hydration the phospholipid bilayer of biological membranes is in a liquid-
crystalline state (Figure 1.6 (1)), allowing rotational and lateral movements of phospho-
lipids and integral proteins within the bilayer. In the gel phase (Figure 1.6 (2)), on the
other hand, the mobility of lipids is severely restricted and the packing of acyl chains is
tighter (McKersie, 1996b). At conditions of low temperature or hydration phospholipids
can undergo a phase transition into hexagonaly phase (Figure 1.6 (3)), forming long
cylinders with the polar headgroups orientated into an aqueous core (Crowe et al., 1983).
This leads to a change in the association of integral and peripheral proteins with
membrane lipids, altering electron transport processes and solute transport across the
plasma membrane. Both would contribute to a long-term change in permeability and

enhance leakage (McKersie, 1996b).

\VZ
@@W @@ \§ ?@&?

() (2)

Figure 1.6: Model of phospholipid packing showing liquid-crystalline phase (1), gel phase (2)
and hexagonal II phase (3) (after McKersie, 1996b).

Electrical perturbations can also affect membrane integrity. Freezing of aqueous electro-
lyte solutions leads to differential exclusion of ions from the ice, causing a potential
difference across the ice interface. These potential differences may cause destabilisation

and lysis of the plasma membrane (McKersie, 1996a).

The multitude of injury manifestation indicates that freeze/thaw injury is a multifaceted
complex (Steponkus 1984). In view of the current knowledge of these injuries, Mazurs’
statement (1970) that the “ability of a cell to survive freezing may depend more on protec-

tion of the cell surface than on protection of the cell interior” still seems to hold.
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1.5.2 Cold-Acclimation

A common hypothesis is that cells of cold-acclimated plants are protected during freezing

by the accumulation of specific metabolites, which protect the cell during a freeze/thaw

cycle. However, “it has proven very difficult to determine

which of these metabolic changes are critical to the acquisition of freezing tolerance,
which are simply adaptations to growth at low temperatures,

which are injury responses,

which are primary and

which are secondary effects” (McKersie, 1996a).

Some generalisations are often observed:

a)

b)

d)

The osmotic concentration increases with acclimation. A doubling of the internal
solute concentration will decrease the extent of cellular dehydration by 50%
(Steponkus, 1984). Major changes in the osmotic potential are ascribed to changes in
sugars. These can depress the freezing point through intracellular osmolarity
(Meryman and Williams, 1985), alter phase properties of membranes in the dry state,
or preserve protein structure and function (McKersie, 1996a). Non-reducing sugars,
especially trehalose, have been suggested to prevent dehydration-induced membrane

fusion by acting as membrane spacers (Steponkus, 1984).

An inverse relationship between the water content and freezing tolerance seems
related to the accumulation of starch and protein which are not osmotically active
(McKersie, 1996a). Certain hardy plants appear to have the ability to prevent cell

water from participating in osmotic events (Meryman and Williams, 1985).

Following cold acclimation, changes in sterol content and fatty acid unsaturation have
been observed, as well as an increase in phospholipid-to-protein ratio (Steponkus,
1984).

A close relationship between soluble protein content and freezing tolerance has been
determined (McKersie, 1996a).

The major distinction between non-acclimated and acclimated protoplasts is the tempera-

ture at which intracellular ice formation takes place. As the mechanical breakdown of the

plasma membrane is the primary cause of seeding the supercooled cell interior, and cold-

acclimation alters the characteristics of the plasma membrane to try and avoid its breakage

during freezing, seeding occurs at lower temperatures in acclimated protoplasts (Dowgert
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and Steponkus, 1983). Steponkus et al. (1983) revealed that those protoplasts formed exo-
cytotic extrusions of plasma membrane during freezing, without membrane disruption. On
deplasmolysis of the protoplasts the membrane material was reincorporated, avoiding

expansion-induced lysis (Steponkus, 1984).

Generally, changes in membrane composition are responsible for differences in membrane
behaviour (Dowgert and Steponkus, 1984). Cold acclimation increases the tolerance of
the plasma membrane to mechanical stresses during hypertonic stress, large area
deformations, and applied electrical fields. The molecular bases responsible for this

increased tolerance, however, are largely unknown (Steponkus, 1984).

1.5.3 Cryoprotection

Cryoprotectants are compounds, which protect biological systems from detrimental
effects during the freeze/thaw cycle. Several of these chemicals have been reported after
studying organisms which acquire tolerance to dehydration from freezing, drying, or
exposure to hyperosmotic environments. These cryoprotectants include sugars, sugar

alcohols, amino acids, betaine and glycerol (Meryman and Williams, 1985).

Many compounds showing different cryoprotective properties have been employed, singly
or in combination, in numerous studies to prevent freezing or dehydration damage of
cells. Meryman and Williams (1985) reported that glycerol and dimethyl sulfoxide
(DMSO) lowered the rate of water diffusion out of the cell. Maintaining a greater amount
of water within cells, leads to a smaller degree of cell volume change. Moreover, a higher
amount of water also reduces the concentration of solutes in solution, preventing their
accumulation to toxic levels (Finkle et al., 1985; Hitmi et al., 1997). The lower diffusion
rate of water to the outside of cells can also lead to a reduction of the cooling rate required
to obtain the right amount of dehydration (Meryman and Williams, 1985).
Polyvinylpyrrolidone (PVP), in contrast, avoids intracellular ice formation through the
depression of the freezing point (Finkle et al., 1985). The protection of the membrane
from breakdown has been reported for trehalose (Anochordoguy et al., 1987; Leslie et al.,
1995; Mc Kersie, 1996a), sucrose (Leslie et al., 1995; Mc Kersie, 1996a) and the amino
acid proline (Anochordoguy et al., 1987). Sucrose (Remmele et al., 1997) and proline
(Steponkus, 1984) have also been shown to increase the stability of proteins. Studies have
indicated that a combination of cryoprotectants seems more effective at maintaining

viability after freezing than employing a single compound (Hitmi ef al., 1997).
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To complicate the choice of an adequate cryoprotectant even further, cryoprotectants can
have toxic effects on the cells they should protect, as does, for example, DMSO. The
extent of the damage depends on the concentration, the time and temperature of the
exposure, as well as on the rate of addition and dilution of the compound (Farrant et al.,
1977). Moreover, Farrant et al. (1977) reported that the cryoprotective properties vary
with cooling rate. This indicates the need to develop freezing protocols depending on the

species of interest (Withers, 1985).

In summary, preserving cells and their constituents through freezing may be hampered by
several difficulties. The processes of freezing damage and cold acclimation are not yet
fully understood. Furthermore, various cryoprotectants exist, whose properties may
change according to the methodology. Therefore, developing freezing protocols presents a

challenging quest.

1.6 Aims of the Study

The protoplast biosensor has proved to be a useful tool to determine contaminants in envi-
ronmental samples in the laboratory. These contaminants include respiratory toxins,
which are not measurable using the thylakoid biosensor (Chapter 1.3.2). Yet, several
problems still exist, which hamper the applicability of the biosensor in the field. One
important difficulty is the loss of the protoplasts’ activity within a relatively short time

span.

It was, therefore, the aim of this study to develop a method to advance the applicability of
the protoplast biosensor under field conditions. Three sub-aims were defined to achieve

the objective of this study:

e The identification of an appropriate donor plant to provide mesophyll protoplasts.

e The development of a method to preserve the biosensor properties of the protoplasts
over longer time periods, ensuring the availability of the biological units. In accor-
dance, a procedure should be developed to increase the mechanical stability of the

protoplasts.

e Evaluating the utilisation and applicability of the frozen protoplasts as biological units

of the biosensor.
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2 MATERIALS AND METHODS

2.1 Plant Material

2.1.1 Non-sterile

The seeds of Vicia faba L var. ‘Weillkernige Hangdown’ and Helianthus annuus var.
‘Albena, KWS’ were sown into potting soil treated with 100°C water vapour. The plants

were grown in a climate chamber under the following conditions:

Temperature: 20°C

Relative humidity: 70-90%

Light: 12 h white light

Light source: 2.4 W cm; lamp type Phillips HPL-N

For cold acclimation, three weeks old H. annuus plants were transferred from the 20°C to
a chamber with 8°C. The latter maintained climatic conditions similar to the former, with

the exception of a 10 h light period.

To isolate mesophyll protoplasts the second and third leaves of Vicia faba were collected
from two to three week old plants. In the case of H. annuus, the first or second leaves
were collected after two or three weeks, respectively. Acclimated plants were kept at 8°C
for three weeks. From these plants the third leaves were used for mesophyll protoplast

isolation.

2.1.2 Sterile

Helianthus annuus seeds were sterilised as described by Henn (1997). The plant growth
medium contained 2.15 g L' MS-salts (Murashige and Skoog, 1962), 10 g L sucrose,
8 g L™ agar and 0.6 g L"' MES (pH 5.7). Growth conditions were as follows:

Temperature: 20°C
Relative humidity: 70-90%
Light: 16 h white light

Light source: Warm white: Osram L 58W/31-830, Lumilux Plus, and
Cool white: Sylvania F 58W/840 (184), Luxline plus

Second leaves were collected in a flow cabinet from three week old plants.
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2.2 Isolation of Mesophyll Protoplasts

To increase the yield of the mesophyll protoplasts (PP), as well as their vitality, the isola-

tion procedures for both plants were optimised.

2.2.1 Vicia faba

Firstly, two digestion procedures were compared:
1) Incubation at 30°C for 4 h (enzyme solution 1, Table 2.1);

2) Incubation for 15 h at 25°C, increasing the temperature to 30°C for 1.5 h (enzyme
solution 2, Table 2.1).

Antibiotics were added to reduce the number of bacteria during the over-night incubation.
The effect of two concentrations of kanamycin and cefotaxime (10 pg mL” and
50 pg mL™") was compared with respect to the number of protoplasts isolated. Since the
enzyme solution 2 (Table 2.1) lead to the greatest protoplast yield, it was used for all

evacuolation experiments (Chapter 3).

To determine whether tocopherol (vitamin E) would increase the vitality of the isolated
protoplasts due to its radical scavenging characteristics, 0 uM, 5 uM and 10 uM DL-o-
tocopherol phosphoric acid ester disodium salt was employed

1) during the digestion procedure and

2) after clean-up (i.e. resuspension in 0.6M mannitol solution).

Leaves were collected and placed in a beaker containing tap water. After weighing the
towel-dry leaves, the epidermis on the upper surface was sanded off (sandpaper: P1200).
The leaves were then placed upside down in a petri dish containing enzyme solution.
After the incubation (time period as indicated above), the enzyme-protoplast suspension
was passed through a 200pum mesh and the protoplasts were sedimented off (50 mL test
tubes, 200 g, 5 min, 20°C; Minifuge GL, Heraeus Christ GmbH, Osterode). The proto-
plasts pellet was resuspended in sucrose solution (Table 2.1). The suspension was then
transferred to 10 mL test tubes, topped with 2 mL 0.6 M mannitol solution (Table 2.1) and
centrifuged (325 g, 15 min, 20°C; Heraeus Minifuge GL) using a discontinuous gradient
to separate the protoplasts of remaining cell fragments. Most protoplasts accumulated in
the interface between the two solutions and were sucked off using a pipette with a cut tip.
The protoplasts were washed once in 0.6M mannitol solution (10 mL tubes, 200 g, 5 min,

20°C; Heraeus Minifuge GL). Finally, the pellet was placed in a fridge to settle for one
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hour before evacuolation or oxygen measurements. Protoplast numbers were determined
(Fuchs-Rosenthal Haemocytometer) and resuspended in 0.6 M mannitol solution to a

defined concentration.

Table 2.1:  Solutions for the isolation of protoplasts from Vicia faba

Enzyme Solution 1 Enzyme Solution 2

0.5M Mannitol 0.5M Mannitol

1 mM CaCl, 1 mM CaCl,

10 mM Ascorbic acid 10 mM Ascorbic acid
5mM MES 5mM MES

0.75% (w/v) Cellulase 1.5% (w/v)  Cellulase
0.25% (w/v) Macerozyme 0.5% (w/v) ~ Macerozyme

0.1% (w/v)  PVP25
0.1% (w/v)  BSA
10 pg ml™ Kanamycine

10 pg ml™ Cefotaxime

pH 5.7 (KOH) pH 5.7 (KOH)

Sucrose Solution Mannitol Solution

0.6 M Sucrose 0.6 M Mannitol

1 mM CaCl, 1 mM MgCl,

10 mM Ascorbic acid 1 mM CaCl,

SmM MES 10 mM Ascorbic acid
5mM MOPS

pH 5.7 (KOH) pH 7.0 (NaOH)

2.2.2 Helianthus annuus

To enable the use of protoplasts on the day of isolation and therefore avoid significant
loss of viability, the incubation was carried out over night. Further two isolation proce-

dures were compared which aimed to maintain bacterial numbers low:
1) Plant growth and protoplast isolation under sterile conditions;

2) Growth and isolation under non-sterile conditions including a digestion procedure

with incubation of the leaf material in the fridge over night (4°C for 16 h).

All materials used during the isolation of sterile protoplasts were sterilised, either by auto-
claving (Tuttnauer Systec ELV 3850, Systec GmbH, Wettenberg, Germany) (e.g. glass-
ware, sucrose and salt solutions, see Table 2.2) or sterile filtration (enzyme solution, see

Table 2.2). Approximately 2.0 g leaves were collected in a flow cabinet (HP 72, Gelaire
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Flow Laboratories GmbH, Meckenheim, Germany) cut to pieces of about 25 mm” and
floated upside down on 20 mL enzyme solution in a petri dish (diameter: 9.4 cm,
height:1.6 cm). They were pre-incubated in the fridge for one hour and then transferred to
a waterbath at 25°C. It was left to shake at low intensity (20 rpm) over night, before the
temperature was increased to 28°C for two hours. Further steps were carried out as

described below.

For the non-sterile protoplast isolation, the collection and treatment of the leaves were the
same as for V. faba. The enzyme solution (2) is listed in Table 2.2. Following pre-incuba-
tion of ca. 4.0 g leaves in 40 mL enzyme solution in the fridge over night, the petri dish
(diameter: 20 cm, height: 4.5 cm) was transferred into a waterbath at 28°C and shaken at

low intensity (20 rpm).

Table 2.2: Solutions for the isolation of protoplasts from Helianthus annuus

Enzyme Solution 1 Enzyme Solution 2 Sucrose Salt Solution
Solution

0.1 % (w/v)  Cellulase 1.0% (w/v) Cellulase 0.5M Sucrose 335mM KCI
0.02% (w/v) Macerozyme 0.5% (w/v) Macerozyme 1mM CaCl, 13.6 mM CaCl,

0.05% (w/v) Driselase SmM MES 10mM  MES
1.0% (w/v)  BSA 1.0% (w/v) BSA

in salt solution in salt solution

pH 5.7 (KOH) pH 5.7 (KOH) pH 5.7 (KOH) pH 5.7 (KOH)
Schmitz, 1991 Schmitz, 1991 (modified)  Miiller, 2000 Miiller, 2000

After two hours, the enzyme solution containing protoplasts and cell fragments was
passed through 200 um and 50um meshes and centrifuged (50 mL tubes, 100 g, 5 min,
20°C; Heraeus Minifuge GL). The supernatant was sucked off, the pellet resuspended in
sucrose solution (Table 2.2), transferred to 10 mL test tubes and overlayed with 2 mL salt
solution. Following centrifugation (20 g, 5 min, 20°C; Heraeus, Minifuge GL), the layer
between the two solutions was sucked off. Any remaining sucrose solution was removed
using salt solution (Table 2.2) during another centrifugation step (10 mL tubes, 100 g,
Smin, 20°C; Heraeus Minifuge GL). The pellet was finally resuspended in a defined
volume of salt solution. The protoplasts were counted using a Haemocytometer (Fuchs-

Rosenthal) and stored in the fridge until further use.
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2.3 Evacuolation

Protoplasts were evacuolated according to Griesbach and Sink (1983). A few modifi-
cations were necessary, since a fixed-angle rotor had to be used instead of a swing-out
rotor. This enabled the evacuolation of a higher volume of the protoplast suspension.
Emphasis had to be laid on the separation of the bands containing the desired mini-

protoplasts (MPP) from the unwanted cell debris.

2.3.1 Vicia faba

Different gradients were compared to evaluate their efficiency at separating the bands:

1) 100% (v/v) percoll + 0.5 M sorbitol, 100 mM CaCl, and 5 mM MOPS (pH: 7.0),

2) 100% (v/v) percoll buffer (Table 2.3),

3) Percoll buffer (Table 2.3) diluted 2:1 with 0.6 M mannitol solution (Table 2.1), and

4) Percoll buffer (Table 2.3) diluted 1:1 with 0.6 M mannitol solution (Table 2.1).

Of these solutions, 18 mL were filled into an ultracentrifuge tube (polycarbonate 26.3 mL;
Beckman) and overlaid with 3 mL protoplast suspension. After centrifugation (119,000 g,
45 min, 23°C; Beckman Instruments Inc., Palo Alto, CA; Ultracentrifuge L7; SW 60 Ti
rotor) the layer of mini-protoplasts (MPP) was sucked off, transferred into a 10 mL test
tube containing 0.5 M mannitol solution (Table 2.1) and washed twice by centrifugation
(150 g, 2 min, 20°C; Heraeus Minifuge GL). Finally, the pellet was resuspended in a

defined volume of 0.5 M mannitol solution and stored in the fridge until further use.

Table 2.3: Percoll buffer for the evacuolation of Vicia faba and Helianthus annuus protoplasts

Percoll buffer

Vicia faba Helianthus annuus
100% (v/v) Percoll 100% (v/v) Percoll
600 mM Mannitol 600 mM Sorbitol
100 mM CaCl, 100 mM CaCl,
5mM MOPS 5mM HEPES
pH 7.0 (MES / MOPS) pH 7.0 (MES / MOPS)

2.3.2 Helianthus annuus

Similar to the case of V. faba, the gradient for the evacuolation of the H. annuus proto-
plasts had to be optimised to allow an adequate separation of the desired protoplasts from

the debris. The following gradients and percoll solutions were tested:
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1) Various dilutions of Percoll buffer:
50% (v/v) Percoll buffer with 0.3 M sorbitol in salt solution (Table 2.2)
50% (v/v) Percoll buffer with 0.3 M sorbitol in sucrose solution (Table 2.2)
50% (v/v) Percoll buffer with 0.3 M mannitol in salt solution (Table 2.2)
66% (v/v) Percoll buffer with 0.2 M sorbitol in sucrose solution (Table 2.2)
50% (v/v) Percoll buffer with 0.3 M sorbitol in mannitol solution (Table 2.1)
33% (v/v) Percoll buffer with 0.3 M sorbitol in salt solution (Table 2.2)

2) Discontinuous gradients of different percoll buffer concentrations diluted with salt
solution (Table 2.2): three-step gradient: 90% (v/v), 60% (v/v) and 30% (v/v); two-
step gradients 90% (v/v) and 60% (v/v); 80% (v/v) and 40% (v/v) percoll.

3) Percoll buffer diluted with salt solution (Table 2.2) to 70% (v/v), 80% (v/v) and 90%
(v/v) percoll, pre-centrifuged (119,000 g, 25 min, 4°C; Beckman).

18 mL cooled percoll buffer (4°C) were filled into each ultracentrifuge tube (polycarbon-
ate 26.3 mL; Beckman). Depending on the treatment, the percoll buffer was pre-
centrifuged as described above, before overlaying it with 4 mL protoplast suspension. It
was then centrifuged under the same conditions for 20 min. The layer of the mini-
protoplasts was removed and washed twice with salt solution (Table 2.2) (3 5g, 5 min,
18°C; Heraeus Minifuge GL). The pellet was resuspended in a defined volume of salt
solution (Table 2.2). The mini-protoplasts were counted using a Fuchs-Rosenthal

Haemocytometer and stored in the fridge until further use.

2.4 Chlorophyll

The amount of chlorophyll in the protoplast suspension was determined after Arnon
(1949) using a spectrophotometer (Kontron Uvikon 930, Kontron Instruments). 20 uL.
protoplast (PP) or mini-protoplast (MPP) suspension were added to 2 mL 80% acetone
and centrifuged (3 min, 10,000 g; Mikroliter, Hettich Zentrifugen, Tuttingen). The extinc-
tion of the chlorophyll extracts (n=4) was measured at wavelengths of 645 nm and
663 nm against a reference of 80% acetone. The amount of chlorophyll was calculated as
follows:

(E663 x 8.02 + Eeas x 20.2) x total volume / sample volume = pg chlorophyll / mL
suspension
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2.5 Oxygen-Measurement

Oxygen production of PP and MPP was measured using a Clark electrode as a means of
determining the viability of the suspension (Bornman and Bornman, 1985; Fitzsimons and
Weyers, 1985). The electrode (928 6-Channel Oxygen System, Strathkelvin Instruments
Ltd, Glasgow, UK) consisted of a platinum cathode and a silver anode, connected by a
buffered electrolyte solution (Strathkelvin Instruments Ltd, Glasgow, UK) (Figure 2.1).
The variation of each electrode was +0.1% saturation or £0.01 mg O, L' (S. Davies,

Strathkelvin Instruments Ltd, Glasgow, UK, personal communication, 1999).

Oxygen Electrode
Buffered potassium chloride Silver/silver chloride anode
electrolyte solution ——_ O-ring
Membrane : Platinum cathode

Figure 2.1: Diagrammatic presentation of a Clark-type oxygen electrode (Strathkelvin, 1999)

Each electrode was protected within an electrode holder, which prevented gaseous
exchange between sample and atmospheric oxygen. A water jacket (Figure 2.2) allowed
the maintenance of the sample temperature at 25°C by pumping temperated water around
the measurement cell. A magnetic stirrer (Variomag Multipoint HP6, H+P Labortechnik
GmbH, OberschleiBheim, Germany) maintained the protoplast suspension in motion,
ensuring proper mixing of the oxygen in the water. A 150 Watt halogen lamp (Halolux
150, Streppel Glasfaser-Optik, Wermelskirchen, Germany) was set into each water jacket
(2,5mm distance from measurement cell) (Figure 2.2) to illuminate the protoplast suspen-
sion for photosynthetic measurements (light intensity: 0.40 x 10* Em™). For all measure-
ments the water jackets with electrodes and samples were covered to shut out external

light.
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Electrode in

Electrode
Holder
Water Inlet —p [_| | 1—» Water Outlet
Resting | Measuring
Chamber Chamber
Water L | —
Jacket |
Halogen
/ Lamp

Protoplast Magnetic
Suspension  Spinbar

Figure 2.2: Water jacket holding a halogen lamp, a resting chamber and a measuring chamber
(Strathkelvin Instruments Ltd, Glasgow, UK). During a measurement the electrode
within the electrode holder was placed in the measuring chamber containing the
protoplast or mini-protoplast suspension. A magnetic spinbar maintained the
suspension in motion.

Figure 2.3 depicts all components of the oxygen measurement system. Temperated water
was lead from the water bath into the water jackets on the magnetic stirrer. The six elec-
trodes were connected to an interface (Interface 928 Oxygen System, Strathkelvin Instru-
ments Ltd, Glasgow, UK). This provided the polarising voltage to the electrodes, ampli-
fied the low-level signals, carried out the A/D conversion, and send the data to the com-
puter (Software: 928 Oxygen System, Strathkelvin Instruments). The halogen light source
is responsible for the illumination of the protoplast suspension within the measurement

chamber.
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Figure 2.3: Oxygen measurement system: Six oxygen electrodes in the water jackets were stand-
ing on a magnetic stirrer. A water bath maintained the temperature of the sample at
constant 25°C. A halogen lamp provided light for photosynthetic measurements. An
interface sent the data from the electrodes to a computer.

To calibrate the system, 0% oxygen and air saturated distilled water were used. In water
0% oxygen was obtained by addition of sodium sulfite and 100% oxygen by bubbling air
through the water. The calibration, as well as the measurements, were carried out at

normal pressure and at a constant temperature of 25°C.

For each measurement a total volume of 1 mL was filled into the measurement cell, con-
sisting of 400 pL. measuring solution (Table 2.4), 20 uL. NaHCO; (of 1 M stock solution),
PP or MPP suspension with a chlorophyll content of 25 g and made up to 1 mL with dis-
tilled water. Measurements were carried out over a 30 min period: 15 min in the dark, 15
min in the light. To determine the amount of oxygen consumed and produced, the gradient

of the curve was determined over a 5 min period.

Curve gradient _umol O, / h / mg chlorophyll or 1 x 10° PP or MPP
Amount of chlorophyll
or 1 x 10° PP or MPP
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Table 2.4: Solution to measure oxygen-use and -evolution.

Measuring Solution

2M Sucrose
50 mM HEPES
10 mM MgCl,
5 mM CaCl,

pH 8.2 (KOH)

2.6 Freezing

The protective properties were tested for four freezing media, namely 0.4 M trehalose
(Treh 4), 0.6 M trehalose (Treh 6), 5% (v/v) glycerol (Glyc 5), 10% (v/v) glycerol
(Glyc 10). Each medium contained 1 mM CacCl,, 5% (w/v) BSA, 10 mM ascorbic acid,
0.1% (w/v) PVP, and 5 mM MES. PP or MPP suspensions containing about 150 pg chlo-
rophyll were filled into Eppendorf caps and diluted to 1200 puL total volume using the
freezing media. The suspensions were frozen at -20°C, the length of time depending on
the individual experiments. It was thawed at 25°C and used for oxygen measurements, as

described above.

2.7 Inhibitors

To determine the reactivity of the protoplasts towards substances which affect mitochon-
drial respiration, inhibitors were employed. Cyanide (KCN) was used to inhibit the cyto-
chrome oxidase, and salicylhydroxamic acid (SHAM) to block the alternative oxidase.
Stock solution of KCN and SHAM were made up in water and dimethyl sulfoxide,
respectively, to concentrations of 100mM. After setting up a concentration curve, | mM
KCN and 5 mM SHAM were used during respiration measurements. The percentage
residual respiration was calculated by dividing the treated by the untreated protoplasts
(controls). Non-acclimated and acclimated PP in different freezing media were compared
with regard to their amount of oxygen-use and residual respiration when employing both

inhibitors after the freeze-thaw cycle.
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2.8 Fungicidal Substance

Fluazinam (analytical standard, 97.5% w/w purity; Zeneca), a pyridinamine fungicide,
was added to the protoplast (acclimated, frozen in 10% (v/v) glycerol) suspension at
different concentrations (10 nM, 100 nM, 1 uM, 10 uM, 100 uM, 1 mM, 10 mM) and the
percentage residual respiration was determined. Oxygen measurements were also carried
out with fluazinam at the indicated concentrations plus 1 mM KCN or/and 5 mM SHAM

to evaluate the effect of the three inhibitors on oxygen-consumption.

2.9 Statistics
All statistical methods were carried out using SPSS 10.0 (SPSS Inc., 2000). To test for

normal distribution, the Kolmogorov-Smirnov Test was used. Statistical differences were

determined at a 5% confidence interval for all test.

First it was determined whether the oxygen measurements were influenced by methodo-
logical parameters or isolation factors. A univariate ANOVA was carried out to test if the
individual electrodes or the time of the measurements affected the rates of oxygen-use or -
evolution. The influence of the factors plant age, leaf number, cold-acclimation, and the
amount of enzyme solution on the oxygen measurements were tested using bivariate cor-

relations.

It was determined for Vicia faba whether the incubation time during the digestion proce-
dure affected the protoplast yield, the amount of chlorophyll isolated per gram fresh
weight leaf material, or the rates of oxygen-use and -evolution significantly using the uni-
variate ANOVA. This test was also employed to see if the two antibiotic concentrations
influenced the number of isolated protoplasts significantly and to detect the effects of the

addition of tocopherol on oxygen-use and -evolution.

Furthermore, the test was used to determine the influence of sterile and non-sterile
H. annuus protoplasts on the rates of oxygen-use and -evolution. To investigate whether
protoplast yield and the amount of chlorophyll isolated of the two plant systems differed
significantly, the Kolmogorov-Smirnov-Test was employed. Finally, the effect of plant

age on protoplasts yield was evaluated using a univariate ANOVA.

The effect of methodological parameters during the evacuolation procedure was

investigated by linear regression. It was determined whether the number of protoplasts per
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mL used during evacuolation or the number of mL of protoplasts suspension added to

each ultra-centrifuge tube significantly affected the mini-protoplast yield and their vitality.

To contrast the results of the protoplast isolations of V. faba and H. annuus, the amount of
chlorophyll the Kolmogorov-Smirnov-Test was employed. The protoplast yields, the rates
of oxygen-use and -evolution, and the percentage recovery after evacuolation were com-

pared by univariate ANOVA.

The effects of cold-acclimation on the isolation of the protoplast yield and amount of
chlorophyll were determined by univariate ANOVA. Similarly, the influence of the isola-
tion parameters plant age, leaf number and amount of enzyme solution on protoplast yield
and amount of chlorophyll isolated of NACC and ACC plants was tested. NACC and
ACC, PP and MPP were compared with regard to their rates of oxygen-use and

-evolution, using the univariate ANOVA.

This test was also used to detect significant differences of the effect of the four freezing
media on the amount of oxygen-use. Univariate ANOVA was further employed to
determine whether the addition of inhibitors (SHAM and/or KCN) had a significant effect
on oxygen-use and percentage residual respiration of frozen protoplasts, and whether they

influenced the inhibition of respiration by fluazinam.
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3 RESULTS

The improvement of the biosensor, in view of its applicability under field conditions, in-
volved three processes. First, an adequate donor plant had to be identified. The two plants
Vicia faba and Helianthus annuus were compared with regard to protoplast yield and
viability. Then a procedure needed to be developed to preserve the activity of the biologi-
cal units over longer time periods. The most adequate procedure at this stage is freezing.
Moreover, it was attempted to increase the mechanical stability of the protoplasts by
removing the vacuole (evacuolation). Finally, the utilisation of the protoplasts was evalu-
ated by determining their responsiveness towards respiration inhibitors and an agricultural

fungicide was tested.

3.1 Validation of the Oxygen-Measurement System

As described in the introduction, the protoplast biosensor is based on oxygen-measure-
ments. These involved the determination of the rates of oxygen-use of vital protoplasts in
the dark and oxygen-evolution in the light: The measurements show a decrease in the
amount of oxygen in the dark and an increase in the light, as is depicted by the typical
curve in Figure 3.1. Any substances which interfere with respiration (oxygen-

consumption) or photosynthesis (oxygen-evolution) will change the rates.
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Figure 3.1: Example of an oxygen measurement curve: O,-use in the dark and O,-evolution in
the light (dark and light phases over time periods of 15 minutes).
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Since the oxygen-measurement is the parameter on which the biosensor is based, the
influence of methodological factors on the rates of oxygen-use and -evolution had to be
excluded. Several factors were investigated, including the electrodes, the age of the proto-
plasts, plant age, length of acclimation, leaf number, and amount of enzyme solution. The
six individual electrodes used during the oxygen measurements did not influence the
oxygen rates significantly. Similarly, the time sequence experiments showed no signifi-
cant relationship between the age of the protoplasts and their consumption or production
of oxygen. The coefficient of determination (r*) indicates to which percentage one factor
determines another. The bivariate correlation showed that the factors plant age, length of
acclimation, leaf number, and amount of enzyme solution did not significantly affect
oxygen-use nor oxygen-evolution of Helianthus annuus protoplasts (Table 3.1). This was
also the case for the Vicia faba plants, with the exception of plant age, which correlated
significantly with the oxygen measurements (O,-use: 1°=0.913, n=6; O,-evolution:
1’=0.691, n=6).

Table 3.1: Bivariate correlation between oxygen-use and -evolution of Helianthus annuus
protoplasts and the isolation factors age of plants, length of acclimation, leaf
number, and amount of enzyme solution (n=44).

Coefficient of Oxygen-use Oxygen-evolution
Determination (rz)

Plant age 0.004 0.002
Acclimation 0.003 0.003
Enzyme solution 0.001 0.044

Leaf number 0.043 0.005

3.2 Optimisation of Protoplast Isolation

To obtain an adequate biological unit for the protoplast biosensor, the two model plants
Vicia faba and Helianthus annuus were compared as to their protoplast isolation efficien-
cies. First, the protoplast isolation procedures were optimised under consideration of the
two criteria: protoplasts yield and vitality. The latter was determined through the use and

evolution of oxygen by the protoplasts.

For Vicia faba, it was tested whether the already optimised, standard isolation procedure
(4 h incubation) could be changed to include a 16 h incubation time during which the
leaves remained in the enzyme solution. This was of importance, as storing the protoplasts
(isolated using the 4 h incubation) in the fridge over night, resulted in a considerable loss

of activity. Altering the procedure to include a slower digestion of cell wall materials
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would enable protoplast isolation and oxygen measurements on the same day. Therefore,
the standard isolation procedure (4 h incubation) and the new one (16 h) were compared.
It was determined whether this new procedure could be optimised with regard to proto-
plast yield and activity. Tocopherol (vitamin E) was thus added to different stages of the
Vicia faba protoplast isolation. To avoid bacterial damage of the protoplasts during the 16
h incubation at 25°C, antibiotics were added at different concentrations (10 pg mL™" or
50 pgmL™).

The protoplast isolation procedure for Helianthus annuus involved a 16 h incubation.
Bacterial numbers were maintained low by: 1) sterile plant growth and protoplast isolation
and 2) keeping the leaves in the enzyme solution in the fridge over night; therefore sup-

pressing the need of antibiotics.

3.2.1 Isolation of Vicia faba Mesophyll Protoplasts

It was determined whether the new procedures involving a 16 h incubation gave the same
results as the standard procedure. The mean numbers of protoplasts per gram fresh weight
(g f. wt.) leaf material isolated by the two procedures were not significantly different from
each other. This was also the case for the amount of chlorophyll isolated per g f. wt.. The
rate of oxygen-use was not influenced by incubation time. In contrast, the oxygen-evolu-
tion showed a significantly higher rate of 35.39 nmol h™ pg™ chlorophyll for the 4 h incu-
bation and a lower rate of 18.69 nmol h™ pg™ chlorophyll for the 16 h incubation (Table
3.2).

Table 3.2: Descriptive statistics of incubation time of Vicia faba leaves in enzyme solution
during protoplast isolation with regard to protoplasts yield, amount of chlorophyll
isolated per gram fresh weight leaf material and the rates of oxygen-use and -
evolution (SD: standard deviation; n: number of measurements; f. wt.: fresh weight;
*nmol h™ pg" chlorophyll; Sig: significance; NS: not significant (P>0.05); S:
significant (P<0.05); test used: ANOVA).

Incubation time (h) 4h 16 h Sig.
Mean SD n Mean SD n

No PP (x 10%) g . wt. 091 015 3 129 032 8 NS

pg Chlorophyll g f. wt. 223.7 39.8 3 241.4 83.3 4 NS

Oxygen-use * 4.73 1.63 6 6.74 2.50 10 NS

Oxygen-evolution * 3539  13.47 6 18.69 12.78 10 S

To maintain bacterial numbers low during the 16 h incubation of the leaf material at 25°C,

the antibiotics kanamycin and cefotaxime were employed, both at concentrations of 10 pg
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mL" or 50 pg mL™". There was no significant influence of the antibiotic concentration on
the protoplast yields (Table 3.3). Isolations without antibiotics were not included, as bac-
terial numbers were so large, that protoplasts were severely damaged. The lower concen-

tration was used during further isolations.

Table 3.3: Descriptive statistics of the number of protoplasts isolated after the addition of the
antibiotics kanamycin and cefotaxime to the digestion medium (SD: standard devia-
tion; n: number; Sig: significance; NS: not significant (P>0.05); test used: ANOVA).

Kanamycin / Cefotaxime Number of Protoplasts g'1 fresh weight Sig.
Mean (x 10% SD n

10 pg mL™! 1.14 1.07 4 NS

50 ug mL™ 1.11 1.05 4 NS

Aiming at increasing the vitality of the isolated protoplasts tocopherol (vitamin E) was
added to the protoplasts at different times (Chapter 2.2.1): to the digestion medium, after
the clean-up procedure and before the removal of the vacuoles (evacuolation). Adding the
tocopherol to the digestion medium did not influence the rates of oxygen-use or
-evolution significantly at the tocopherol concentrations of 5 uM or 10 uM, compared to

the control (Figure 3.2).
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Figure 3.2: Comparison of the oxygen-use and -evolution (nmol h™ pg" chlorophyll) of proto-
plasts isolated with 0, 5 or 10 uM tocopherol in the digestion medium.

It was further investigated, whether adding tocopherol to the protoplasts after the clean-up

procedure would increase their oxygen-use and/or -evolution rates. Similarly to the
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addition of the tocopherol to the digestion medium, no significant effects on oxygen-use,

nor on oxygen-evolution, were detected (Figure 3.3).
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Figure 3.3: Comparison of the effects of different concentrations of tocopherol on oxygen-use
and -evolution (nmol h™ pg” chlorophyll) of protoplasts. Tocopherol (5 or 10 pM)
was added to the protoplasts after the clean-up procedure.

Whether the addition of tocopherol to the protoplast suspension before evacuolation
would increase the rates of oxygen-use and -evolution of the evacuolated protoplasts
(mini-protoplasts; Chapter 2.3.1) was also investigated. This was not the case, since the

two rates were not influenced significantly by the tocopherol (Figure 3.4).
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Figure 3.4: Comparison of the effects of different concentrations of tocopherol on oxygen-use
and -evolution (nmol h™" pg” chlorophyll) of mini-protoplasts. Tocopherol (5 or 10
uM) was added to the protoplasts before evaculoation.
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3.2.2 Isolation of Helianthus annuus Mesophyll Protoplasts

Since work on H. annuus regeneration in another research group of this Institute showed
that the use of antibiotics during the isolation of protoplasts reduced their vitality (unpub-
lished data), other options were tested to reduce bacterial numbers. Therefore, to avoid
bacterial damage of the protoplasts, a sterile isolation was carried out, as well as a non-

sterile one, in which the leaves on the enzyme solution were kept in the fridge over night.

H. annuus plants grown under sterile or non-sterile conditions showed phenotypic differ-
ences. The plants grown in Weck glasses were smaller. The leaves were also smaller,
thinner and curlier than the those of the non-sterile plants. Differences were not only de-

tected at the plant level but also at the protoplast level.

(@) (b)

Figure 3.5: (a) H. annuus plants grown under sterile conditions (Chapter 2.1.2) for three weeks.
(b) H. annuus plants grown under non-sterile conditions (Chapter 2.1.1) for three
weeks.

The protoplast yield, the amount of chlorophyll and the rates of oxygen-use and -evolution
of the two isolation procedures (sterile and non-sterile) were compared. The mean yield of
the sterile protoplasts was 3.72 x 10° PP g f. wt., with 645.0 ug chlorophyll g f. wt.. In
comparison, the protoplast yield of the non-sterile isolation was 6.82 x 10° PP g f. wt.
and the amount of chlorophyll 863.8 pg g f. wt.. These differences were significant for
the protoplast yield and the amount of chlorophyll. The rates of oxygen-use and -evolution
were also both significantly different between sterile and non-sterile protoplasts. The
oxygen-use of the sterile isolation was 2.36 nmol h™ pg™ chlorophyll and of the non-

sterile 5.51 nmol h™' pg” chlorophyll. Similarly, the oxygen-evolution was lower for the
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sterile: 7.13nmol h™' pg' chlorophyll than the non-sterile: 63.22 nmol h' pg’
chlorophyll. Only the amount of chlorophyll of the protoplasts was not significantly dif-
ferent between the sterile (173.4 pg chlorophyll (10° PP)" and the non-sterile (126.7 pg
chlorophyll (10° PP)" protoplasts (Table 3.4).

Table 3.4: Descriptive statistics of sterile and non-sterile H. annuus protoplasts with regard to
protoplasts yield, amount of chlorophyll isolated per gram fresh weight leaf material,
and the rates of oxygen-use and -evolution (SD: standard deviation; n: number of
measurements; *nmol h”' ug' chlorophyll; Sig: significance; NS: not significant
(P>0.05); S: significant (P<0.05); test used: O, measurements: ANOVA, others:
Kolmogorov-Smirnov-Test).

Sterile Non-sterile Sig.
Mean SD n Mean SD n
No PP (x 10% g f. wt. 372 087 3 682 267 8 S
ug Chlorophyll g f. wt. 6450 1954 3 863.8 1033 9 S
ug Chlorophyll (10° PP)”! 1734 256 3 1267 443 8 NS
Oxygen-use * 236 059 10 551 217 31 S
Oxygen-evolution * 7.13 1.88 9 63.22 2955 31 S

To determine the effect of plant age on protoplast yield, the number of protoplasts isolated
per gram fresh weight leaf material of two or three week old non-sterile plants was com-
pared. The younger plants gave a mean number of 5.32 x 10° PP g (SD= 2.00, n=4) and
the older ones 4.97 x 10° PP g (SD= 2.62, n=4), the difference not being significant.

Thus, as an age difference of one week did not influence the protoplast yield.

3.2.3 Comparison between Vicia faba and Helianthus annuus

The aim of comparing Vicia faba and Helianthus annuus was to determine the most ap-
propriate plant to provide leaf protoplasts, as the biological unit for the biosensor, accord-
ing to protoplast yield and activity. The protoplast yield of the non-sterile H. annuus was
almost five times higher than for V. faba. This was also the case for the rate of oxygen-
evolution. The rate of oxygen-use of the two protoplast types was not significantly differ-
ent. Since very high numbers of biological units were needed to develop a procedure in
order to preserve the activity of biological units through freezing, H. annuus was the more

appropriate plant to isolate protoplasts from.
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3.3 Evacuolation

The removal of the vacuole (evacuolation) has been reported to improve protoplast sta-
bility to handling (e.g. centrifugation, pipetting) (Burgess and Lawrence, 1985). Meso-
phyll protoplasts from both Vicia faba and Helianthus annuus were evacuolated, as the
literature indicates enormous variations in the evacuolation potential of protoplasts from
different plants. The existing evacuolation procedure (Griesbach and Sink, 1983) had to
be modified for both protoplast tapes, since no band separation of mini-protoplasts or
debris occurred using a fixed angle rotor (Chapter 2.3). After the development of a new
procedure, the percentage recovery, oxygen-use and -evolution of the obtained mini-

protoplasts (MPP) were determined.

3.3.1 Evacuolation of Vicia faba Mesophyll Protoplasts

First of all, a procedure had to be developed to separate the desired MPP from the un-
wanted debris. Of the four different gradients (Chapter 2.3.1):

1) 100% percoll with 0.5 M sorbitol, CaCl, and MOPS,

2) 100% percoll buffer (100% percoll with 0.6 M mannital, CaCl, and MOPS),

3) Percoll buffer diluted 2:1 with 0.6 M mannitol solution, and

4) Percoll buffer diluted 1:1 with 0.6 M mannitol solution,

only the latter two lead to the band separation (Figure 3.6). Due to considerations possible
harm of the percoll to the protoplasts, the 1:1 dilution of the percoll buffer was employed

in further evacuolation procedures of V. faba protoplasts.
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Figure 3.6: Band separation: (a) Percoll buffer overlaid with protoplast suspension before
evacuolation. (b) Separated bands: vacuoles, cell debris and mini-protoplasts.

It was determined whether the methodology influenced the MPP yield or their vitality.

The number of PP mL™" used during the evacuolation procedure did not influence the per-

centage recovery, oxygen-use or -evolution. These three indicators were also not affected

significantly by the number of mL of PP-suspensions in each ultracentrifuge tube. The

developed procedure lead to a recovery of MPP of 65.1% (SD: 19.5; n=5). The oxygen-

use after evacuolation was 74.8% (SD: 16.6; n=6) and the oxygen-evolution 69.2%

(SD: 26.6; n=6) of the non-evacuolated protoplasts (Figure 3.7). This shows that a

remarkable number of protoplasts survived the removal of their vacuoles and maintained

respiration and photosynthetic activities.

% Recovery

35%

B Recovered
B Lost

65%

% Oxygen-Use

25%
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M Lost

Activity

75%

% Oxygen-Evolution g Retained
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Figure 3.7: Percentage recovery of the number of V. faba mini-protoplasts (a) and their percent-
age oxygen-use (b) and -evolution (c) (levels before evacuolation =100%).
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3.3.2 Evacuolation of Helianthus annuus Mesophyll Protoplasts

Based on the successful separation of the mini-protoplasts from the debris during the
evacuolation of the V. faba mesophyll protoplasts, a slightly adapted method for the
H. annuus protoplasts was tried. Since no band separation was achieved, dilutions of the
percoll buffer were carried out as described in chapter 2.3.2. However, no separation of
the bands occurred. Therefore, different discontinuous gradients were employed, a three-
step gradient at percoll buffer concentrations of 90% (v/v), 60% (v/v) and 30% (v/v), and
two two-step gradients of 90% (v/v) and 60% (v/v) or 80% (v/v) and 40% (v/v). This did
also not lead to a separation of the bands. The third set of trials again consisted of
gradients using 70% (v/v), 80% (v/v), or 90% (v/v) percoll buffer in salt solution which
were pre-centrifuged immediately before the evacuolation of the protoplasts (Chapter
2.3.2). These procedures resulted in the required separation, similar to the one depicted in

Figure 3.6.

As for V. faba, the effect of the methodology of the evacuolation process on the percent-
age recovery, the oxygen-use and -evolution of H. annuus mini-protoplasts was investi-
gated. These indicators were not significantly affected by the number of PP mL™" used for
evacuolation, nor the number of mL of PP-suspension per ultracentrifuge tube. This
evacuolation procedure resulted in a recovery of H. annuus mini-protoplasts of 63.0%
(SD: 15.8; n=30) with rates of oxygen-use and -evolution of 66.1% (SD: 30.4; n=36) and
72.0% (SD: 19.8; n=36), respectively (Figure 3.8).

% Recovery B Recovered || % Oxygen-Use B Retained || 9, Oxygen-Evolution M Retained
M Lost Activity Activey
B Lost 28%, B Lost
37% 34% Activity ° Activity
“ 63% ‘6 6% ‘ 729%
(a) (b) (c)

Figure 3.8: Percentage recovery of the number of H. annuus mini-protoplasts (a) and their per-
centage oxygen-use (b) and -evolution (c) (levels before evacuolation =100%).

3.3.3 Comparison between Vicia faba and Helianthus annuus

The optimised method for the removal of the vacuoles of V. faba and H. annuus proto-
plasts lead to recoveries of 65% and 62%, respectively, the differences not being signifi-
cant. The percentage recovery, oxygen-use and -evolution of the MPP were similar for

both plants (Figure 3.7 and Figure 3.8). Due to the higher absolute numbers of H. annuus
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MPP, as compared to V. faba MPP, the former were used to investigate the influence of
cold-acclimation and evacuolation on the protoplast vitality - an experiment which has not

been described in the literature up to now.

Since, however, relatively low numbers of protoplasts could be evacuolated at the labora-
tory scale and increasing the MPP yield from this small to a large-scale, industrial produc-
tion was beyond the scope of this project, normal protoplasts were used for further inves-
tigations. These included the development of a freezing procedure and the determination
of the responsiveness of the unfrozen and frozen protoplasts to respiration inhibitors.
Transferring the obtained results of the investigations to MPP and increasing the produc-

tion in scale can set the basis for a future project.

In conclusion, the most adequate unit to develop a procedure to preserve the activity of
the biological component of the biosensor, were the non-sterile H. annuus protoplasts
with vacuoles. This was due to the significantly higher yield of H. annuus mesophyll pro-
toplasts compared to the V. faba, as large numbers of protoplasts were needed for the oxy-

gen measurements.

3.4 Protection of Protoplast Activity

In order to get biological units for the biosensor, which are available at any time, proto-
plast activity should be preserved over longer time periods. To protect the protoplasts
from obtaining lethal injuries during the freeze/thaw cycle, the effect of cold-acclimation

and cryoprotectants on protoplast activity was determined.

3.4.1 Cold-Acclimation

To increase the tolerance of the cells to freezing even before tissue digestion, Helianthus
annuus plants were acclimated to cold conditions (8°C). The acclimation process
(Chapter 2.1.1) lead to phenotypical changes in the leaves, being more yellow (Figure
3.9b) compared to those of plants grown at higher temperatures (Figure 3.9a).
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(a) (b)

Figure 3.9: (a) Leaf of three week old, non-acclimated Helianthus annuus plant. (b) Leaf of six
week old, cold-acclimated Helianthus annuus plant.

Significant differences were detected between the yield, vitality and amount of chloro-
phyll of the protoplasts from non-acclimated (NACC) and acclimated (ACC) plants. The
protoplast yield of the NACC leaves was significantly higher (5.87 x 10° PP g f. wt.)
than of the ACC leaves (4.25 x 10° PP g f. wt.) (Table 3.5). The mean amount of chloro-
phyll per g f. wt. was also significantly greater in the former (776.5 pg chlorophyll g f.
wt.) than the latter (357.3 pg chlorophyll g f. wt.) (Table 3.5). These difference were
visible in the protoplasts (Figure 3.10), the NACC showing more chloroplasts than the
ACC ones.

Table 3.5: Descriptive statistics of the number of protoplasts and the amount of chlorophyll iso-
lated per g f. wt. leaf material of non-acclimated (NACC) and acclimated (ACC) H.
annuus plants (SD: standard deviation; n: number of experiments; Sig: significance;
S: significant (P<0.05); test used: ANOVA).

NACC ACC Sig.
Mean SD n Mean SD n
No PP (x 106) g’l 5.87 279 45 4.25 2.81 16 S
pg Chlorophyll g'1 776.5 2792 29 3573 210.1 12 S

In order to disregard isolation parameters as a reason for these differences, it was deter-
mined whether the protoplast yields or amount of chlorophyll of the two differently
treated plants were influenced by the parameters plant age, leaf number and amount of
enzyme solution used during digestion. The number of protoplasts isolated per g NACC

leaves was not significantly influenced by any of the three factors, as was the case with
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ACC protoplasts. Similarly, the amount of chlorophyll per g f. wt. leaf material was not
influenced significantly by the three factors, neither with NACC, nor with ACC leaves.
Therefore, the variations in protoplast yield and chlorophyll were not due to these meth-

odological parameters.

It was further investigated whether cold-acclimation influenced the rates of oxygen-use
and -evolution (Table 3.6). The rates of oxygen-consumption were 145.53 nmol h’
10° PP for the NACC protoplasts and 142.87 nmol h™' 10° PP for the ACC ones. The
NACC protoplasts had a rate of oxygen-evolution of 31.70 nmol h™" pg™ chlorophyll and
the ACC protoplasts showed a rate of 26.79 nmol h™ pg™ chlorophyll. No significant
differences between acclimated and non-acclimated protoplasts were found with regard to

both their rates of oxygen- use and -evolution.
3.4.1.1 Cold-Acclimation and Evacuolation

The effects of cold-acclimation were determined with regard to the evacuolation of proto-
plasts. Looking at NACC and ACC MPP showed that the rates of oxygen-use and
-evolution varied significantly. The removal of the vacuoles lead to lower rates of oxygen-
use for both, NACC MPP and ACC MPP compared to their respective protoplasts. The
ACC MPP, however, showed an even lower oxygen-consumption than the NACC MPP.
Significantly lower rates of oxygen-evolution were detected for NACC MPP, compared to
NACC non-evacuolated protoplasts. This was not the case for the ACC MPP, which re-
vealed the same rates of oxygen production as their respective normal protoplasts (Table
3.6). In conclusion, the cold-acclimation of H. annuus plants seems to have affected the
protoplasts, leading to differences in their tolerance of the evacuolation procedure. The
removal of the vacuoles lead to less oxygen-consumption of ACC MPP than NACC MPP
but higher oxygen-evolution for former than the latter. Therefore, while acclimation lead
to preservation of oxygen-evolution during evacuolation of protoplasts, a greater loss of

oxygen-uptake than for NACC protoplasts was revealed.
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Table 3.6: Descriptive statistics of oxygen-use and -evolution of non-acclimated (NACC) and
acclimated (ACC) protoplasts (PP) and mini-protoplasts (MPP) of H. annuus leaves
in salt solution (SD: standard deviation; n: number of measurements; **: statistical
differences (ANOVA): same letters: no statistical difference (P>0.05), different
letters: difference statistically significant (P<0.05)).

0,-Measurement NACC PP ACC PP NACC MPP ACC MPP
Mean n Mean n Mean n Mean n
(SD) (SD) (SD) (SD)

0,-Use (nmol h! 145.53* 75 142.87" 89 50.09° 19 22.59° 18

10° PP'I) (92.48) (78.77) (15.76) (8.20)

O,-Evolution (nmol h™  31.70° 71 26,79 84  11.69° 21  28.18" 18

ug'l chlorophyll) (22.20) (22.11) (6.59) (13.72)

I um

| %

NACC PP ACC PP NACC MPP ACC MPP

Figure 3.10: Examples of non-acclimated (NACC) or acclimated (ACC) protoplasts (PP) or mini-
protoplasts (MPP). Cold acclimation of plants at 8°C.

3.4.2 Freezing Helianthus annuus Mesophyll Protoplasts

Protoplasts were frozen to preserve their activity over longer time periods. To protect
them more effectively from injury during the freeze/thaw cycle, they were frozen in four
different media: 0.4 M trehalose (Treh 4), 0.6 M trehalose (Treh 6), 5% (v/v) glycerol
(Glyc 5), and 10% (v/v) glycerol (Glyc 10) (Chapter 2.6). The effect of cold-acclimation
on the freezing survival was investigated by comparing the rates of oxygen-use and

-evolution of NACC and ACC protoplasts after the completion of a freeze/thaw cycle.

The four media clearly affected the rate of oxygen-evolution, as did cold-acclimation
(Figure 3.11). This became evident after freezing the NACC PP for 30 minutes: only
those frozen in glycerol solutions maintained oxygen-production. In comparison, the ACC
PP showed oxygen-evolution after 30 minutes in all four media. After 45 minutes, no
oxygen-evolution could be detected for NACC PP, while it was detectable for ACC PP
frozen in Glyc 10. This showed that both procedures, acclimation and cryoprotection,

affected the rate of oxygen-production.
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Figure 3.11: Oxygen-evolution of non-acclimated (NACC) and acclimated (ACC) protoplasts
(PP) in different freezing media.

In contrast, no significant influence of the four media was measured on the rates of
oxygen-use of both protoplast types (NACC and ACC) (Figure 3.12). The rates of
oxygen-use of the NACC PP in Treh 4, Treh 6, Glyc 5, and Glyc 10 were 198.01, 197.18,
172.73, and 168.84 nmol h™' 10° PP, respectively. The ACC PP showed rates of oxygen-
consumption of 126.22, 130.85, 136.24, and 142.39 nmol h™ 10° PP in Treh 4, Treh 6,
Glyc 5, and Glyc 10, respectively. As can be seen, for all four media the rates of oxygen-
use of ACC PP were significantly lower than those of the NACC ones. Only the unfrozen
controls (protoplasts in salt solution) showed no significant differences in the oxygen rates
of the two protoplast types. Therefore, the only significant difference was found in the
rates of oxygen-use of NACC and ACC PP after the completion of a freeze/thaw cycle,

while the media showed no significant effect.
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Figure 3.12: Oxygen-use of non-acclimated (NACC) and acclimated (ACC) protoplasts (PP); pro-
toplasts in salt solution: unfrozen; in trehalose and glycerol solutions: measurements
(n > 42) were carried out after completion of the freeze/thaw cycle.

It was further investigated whether freezing protoplasts over a longer time period affected
the rate of oxygen-uptake. Protoplasts of NACC and ACC plants were frozen in Glyc 10
solution (as it showed to provide most protection) for one hour, one day or three months
and their rates of oxygen-use were compared. After three months of freezing, both proto-
plasts types showed a reduced oxygen-uptake compared to those frozen for shorter time
periods (Figure 3.13). This reduction was less for ACC than NACC protoplasts. While
NACC PP frozen for three months maintained 61% oxygen-consumption, the ACC PP
kept 70% oxygen-uptake after the three months, compared to the unfrozen controls. Thus,
a decrease in the rate of oxygen-consumption occurred when freezing the protoplasts for a

longer time period, the reduction being less for ACC than NACC protoplasts.
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Figure 3.13: Oxygen-use of non-acclimated (NACC) and acclimated (ACC) protoplasts (PP) in
10% (v/v) glycerol solution after one hour or three months freezing.

3.5 Responsiveness of the Biological Units

Inhibitors of mitochondrial respiration were employed to determine the responsiveness of
the non-acclimated and acclimated protoplasts towards these substances. Since plant mi-
tochondria have two pathways for electron transfer to oxygen (Chapter 1.2) two inhibitors
had to be used to block both: KCN was employed to inhibit the cytochrome pathway and
SHAM to block the alternative pathway.

3.5.1 Effects of Respiration Inhibition on Protoplasts

Treating protoplasts with the two inhibitors, singly or in combination, resulted in the oxy-
gen measurement curves depicted in Figure 3.14. These three curves and the untreated
control all differed in their appearances: the untreated control showed a steady use of O,
over time (Figure 3.14) eventually resulting in the complete consumption of the oxygen
(not shown). The addition of SHAM to the protoplasts resulted in a reduced rate of
oxygen-use without changing the shape of the curve. Treating the protoplasts with KCN,
on the other hand, lead to an increased oxygen-use within the first minute before the rate
was reduced. The measurement with KCN + SHAM was similar to that with KCN only,
except that the slope of the former curve was steeper within the first two minutes, before
levelling off (Figure 3.14). Thus, the treatment of the protoplasts with the two inhibitors

clearly affected the rate of oxygen-consumption.
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Figure 3.14: Examples of oxygen measurements of untreated (control) and treated Helianthus
annuus protoplasts. Treatment consisted of the addition of cyanide (KCN, 1 mM)
and salicylhydroxamic acid (SHAM, 5 mM), singly or in combination, to the proto-
plast suspension.

The treatment of the protoplasts with KCN and/or SHAM influenced the rate of oxygen-
use and the residual respiration (percentage remaining oxygen-consumption of untreated
control) significantly. These two indicators (oxygen-use and residual respiration) were
highest for NACC and ACC protoplasts when applying SHAM, as compared to KCN or
KCN + SHAM. The latter two treatments were not significantly different from each other.
Nor did the oxygen-use and residual respiration of the two protoplast types vary signifi-

cantly (Table 3.7).
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Table 3.7: Descriptive statistics of oxygen-use and residual respiration when employing the res-
piration inhibitors SHAM (5 mM) or/and KCN (1 mM) on non-acclimated (NACC)
and acclimated (ACC) protoplasts (PP) in salt solution (SD: standard deviation;
n: number; *™ statistical differences (ANOVA): same letters: no statistical

difference (P>0.05), different letters: difference statistically significant (P<0.05)).

Protoplasts Treatment Oxygen-Use % Residual
(nmol h'10° PP'l) Respiration
Mean SD n Mean SD n
NACC KCN 71.37° 22.85 24 51.1° 16.3 24
SHAM 118.12° 3316 24 84.1 168 23
KCN + SHAM 68.74° 23.70 24 48.9° 18.3 23
ACC KCN 57.71° 28.32 23 41.3¢% 16.2 22
SHAM 101.67" 38.28 17 72.8" 25.4 16
KCN + SHAM 40.96° 20.67 17 29.3¢% 12.6 16

To set a basis for transferring the results on the freezing procedure developed using proto-
plasts onto MPP, first investigations were carried out to determine the responsiveness of
the MPP towards respiration inhibitors. ACC MPP revealed a residual respiration of
27.4% after the addition of KCN and SHAM. This value was similar to the one measured
for ACC protoplasts (Table 3.7).

3.5.2 Response of Frozen Protoplasts towards Inhibitors

When adding both inhibitors to NACC and ACC protoplasts, the rate of oxygen-use var-
ied significantly according to the medium in which the protoplasts were frozen. For
NACC PP the highest rates of oxygen-use were found in Treh 6 (113.78 nmol h
10° PP") and Treh 4 (113.06 nmol h™" 10° PP™). The protoplasts frozen in the Glyc 10
gave a significantly lower rate (60.04 nmol h™ 10° PP™") than in trehalose solutions. The
Glyc 5 medium had a rate of 84.35nmol h™ 10° PP™). The unfrozen controls in salt
solution showed the lowest values (39.44 nmol h™' 10° PP™"), being significantly different

from the other measurements (Figure 3.15).

The results of adding KCN + SHAM to ACC PP in the various media were very similar to
those described for NACC PP. The oxygen-use was highest for protoplasts in the two
trehalose solutions (Treh 6: 77.39 nmol h™' 10° PP, Treh 4: 75.73 nmol h™' 10° PP™") and
the Glyc 5 (57.91 nmol h™' 10° PP™"). Those in Glyc 10 had the lowest levels (38.32 nmol
h™' 10° PP of the four media. No significant difference was found between the proto-

plasts frozen in Glyc 10 medium and the unfrozen controls in salt solution (46.08 nmol h™!
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10° PP™") (Figure 3.15). This latter finding stood in contrast to the results obtained with
the NACC PP. Thus, the only biological units which, showed no difference in oxygen-use
between the unfrozen control and having completed the freeze/thaw cycle were the ACC

PP in Glyc 10 solution.

160 - BNACC
PP
140 - BACC

Oxygen-Use (nmol h' lOSPP'l)

Salt 0.4M 0.6M 5% (v/v) 10% (v/v)
(Unfrozen)  Trehalose  Trehalose Glycerol Glycerol

Figure 3.15: Oxygen-use of non-acclimated (NACC) and acclimated (ACC) protoplasts (PP) in
different media after treatment with 1 mM KCN and 5 mM SHAM solution; proto-
plasts in salt solution: unfrozen; in trehalose and glycerol solutions: measurements
(n = 40) were carried out after completion of the freeze/thaw cycle.

The percentage oxygen-use of both ACC and NACC protoplasts emphasises the effect of
the freezing media on the inhibition of respiration. The same pattern could be seen, as
depicted in Figure 3.14, where the trehalose and the glycerol solutions, as well as the tre-
halose and the salt solution showed significant difference in oxygen-uptake. The lowest
percentage inhibition of respiration and thus greatest residual respiration was measured
for protoplasts frozen in the trehalose media. The greatest inhibition of respiration, on the
other hand, was found for the unfrozen control protoplasts, as well as the ACC PP frozen
in Glyc 10 solution. Both had statistically the same values. Thus, it was possible to reduce
the oxygen-use of the protoplasts in Glyc 10 solution by about 70%, while those in
trehalose medium only had a reduction of around 40%, even when the mitochondrial elec-
tron transport was entirely blocked. Due to this greater possible variation in oxygen-
uptake of protoplasts frozen in the Glyc 10 solution, as well as the higher similarity
between them and the unfrozen control, this freezing medium was used to evaluate the

effect of freezing the protoplasts for three months.
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Figure 3.16: Percentage oxygen-use of non-acclimated (NACC) and acclimated (ACC) proto-
plasts (PP) in different media after treatment with 1 mM KCN and 5 mM SHAM.
Total respiration (= 100%) consisted of inhibited and residual respiration. Inhibited
respiration: amount of oxygen-uptake inhibited by protoplast treatment with respira-
tion inhibitors; Residual respiration: amount of oxygen-uptake not inhibited by pro-
toplast treatment with respiration inhibitors; Protoplasts in salt solution: unfrozen; In
trehalose and glycerol solutions: measurements (n > 40) were carried out after com-
pletion of the freeze/thaw cycle.

The responsiveness of the protoplasts frozen for three months towards respiration inhibi-
tors was also determined. Both protoplast types showed a lower percentage inhibition of
respiration after freezing for three months compared to the unfrozen controls or those
frozen for one day (Figure 3.17). Greater inhibition of respiration (i.e. less residual
respiration) was apparent for ACC than NACC protoplasts, regardless of whether they
were frozen or not. Therefore, while after three months of freezing the ACC protoplasts
showed a higher rate of oxygen-use than the NACC protoplasts, the percentage residual
respiration of the former was lower than of the latter. Consequently, the ACC protoplasts

were employed for the following experiment.
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Figure 3.17: Percentage oxygen-use of non-acclimated (NACC) and acclimated (ACC) proto-
plasts (PP) unfrozen (controls) or frozen for one day or three months in 10% (v/v)
glycerol solution and treated with 1 mM KCN and 5mM SHAM after the
completion of a freeze/thaw cycle. Total respiration (= 100%) consisted of inhibited
and residual respiration. Inhibited respiration: amount of oxygen-uptake inhibited by
protoplast treatment with respiration inhibitors; Residual respiration: amount of
oxygen-uptake not inhibited by protoplast treatment with respiration inhibitors.

3.5.3 Fungicidal Substance

The next step was to evaluate the reaction of the biosensor to a substance used in agricul-
ture: Fluazinam, a pyrimidinamine compound. Fluazinam was added to the protoplast sus-
pension (ACC PP frozen in Glyc 10 solution) at seven different concentrations, as indi-
cated in Figure 3.18. Employing fluazinam on its own, reduced the percentage residual
respiration only slightly. Increasing the concentration of the substance from 10 nM to
1 mM even lead to a rise of residual respiration. A drop in the percentage oxygen-use was

only determined at the very high amount of 10 mM.

To investigate differences in the effects of fluazinam and KCN and/or SHAM on the res-
piration rate, all three inhibitors were added to the protoplasts, singly or in combination.
Adding 5 mM SHAM to the biological units reduced their rate of oxygen-use by 31%. In
combination with increasing fluazinam concentrations, the residual respiration rose as
well (up to 1 mM fluazinam) (Figure 3.18). No significant differences were detected
between the fluazinam only and fluazinam + SHAM. On the other hand, treating the pro-
toplasts with fluazinam and KCN (1 mM), reduced the percentage residual respiration

significantly, similar to the effect of fluazinam + SHAM + KCN on the protoplasts. The
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addition of fluazinam + KCN to the biological units showed no difference to the KCN-

only-control. The two inhibitors revealed a reduced rate of oxygen-uptake with increasing

amounts of fluazinam. At low concentrations, the percentage of residual respiration was

higher than for the KCN + SHAM-control, whereas no difference were found at high

amounts.
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Figure 3.18: Percentage residual respiration of acclimated protoplasts (frozen in 10% (v/v)
glycerol solution) after addition of fluazinam at different concentrations with and
without 1 mM KCN and/or 5 mM SHAM. The untreated control was set to 100%.
The KCN-control (i.e. without fluazinam) had 35.3% oxygen-use (SD: 3.1), the
SHAM-control 69.5% (SD: 5.4) and the KCN + SHAM-control 38.3% (SD: 7.5) of

the untreated control.
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4 DISCUSSION

The aim of this study was the development of a procedure to advance the applicability of
the protoplasts biosensor under field conditions. Achieving this aim involved three points:
An appropriate plant had to be identified from which the mesophyll protoplasts could be
acquired. Then a procedure was developed to preserve the activity of the biological units
over a longer time period through freezing. This ensures the availability of the biological
units at any time. Moreover, a method was elaborated to increase the mechanical stability
of the protoplasts through the removal of their vacuoles. Finally, the utilisation and appli-
cability of the frozen protoplasts as the biological units of the biosensor were evaluated.
This was accomplished by adding respiration inhibitors and a fungicidal substance used in

agriculture to the protoplast suspension.

4.1 Validation of the Oxygen-Measurement System

Before employing the oxygen-measurement system its validity had to be determined. It
was checked whether different methodological parameters influenced the measurements,
possibly falsifying the results. It revealed that the individual electrodes had no significant
effects on the measurements; nor did the isolation factors age, length of acclimation, leaf
number, and amount of enzyme solution. A time series of measurements over six hours
also showed no influence of time on the activity of the protoplasts. In conclusion, the lack
of effects of the tested parameters on oxygen-use and -evolution indicated that oxygen-
measurements could be used to test for influences of other factors on the protoplasts under

defined conditions.

Post-isolation parameters, such as photosynthesis, respiration or other physiological
activities, provide reliable information on the degree of cellular integrity and the func-
tional status of protoplasts (Bornman and Bornman, 1985; Hampp et al., 1986). These
characteristics are being utilised in the biosensor to determine the presence of toxic sub-
stances. Furthermore, the oxygen-measurements were employed in this study as a quality
criterion to test the biosensor properties of the protoplast during the three processes out-

lined above.
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4.2 Optimisation of Protoplast Isolation

The first step in obtaining an adequate biological component for the biosensor, was to
choose a plant for protoplast isolation and optimise the procedure. Protoplasts were
derived from Vicia faba and Helianthus annuus. Previous investigations on the protoplast
biosensor were carried out with V. faba mesophyll protoplasts (Lindner et al., 1992;
Overmeyer et al., 1994a, 1994b) (Chapter 1.4). This presents a basis for further research
to build upon. H. annuus has been employed in numerous other investigations, including
in this Institute (Voeste, 1991; Hutter, 1992; Henn, 1997; Binsfeld, 1999). Therefore,
much experience was available on protoplast isolation, as well as on plant growth, even
under sterile conditions, processes which were essential for this study. The two plants
were compared with regard to the protoplast yields and amount of chlorophyll per g fresh

weight leaf material, as well as the biosensor properties of the protoplasts.

With regard to the utilisation of the protoplasts as biological units of the biosensor, the
isolation of protoplasts had to be optimised to enable carrying out the isolation and
oxygen-measurements on the same day. This was of importance, as storing protoplasts for
more than 12 h have led to the regeneration of a cell wall (Upadhya, 1975; Gallbraith,
1981) and a marked decreased in viability. Schnabl and Zimmermann (1989) reported of
an increase in ethane evolution, indicating cell disorder and loss of compartmentalisation
within 48 h. Protoplasts showed degradation of chlorophyll a and b pigments and changes
of key enzymes, such as neutral protease and ribulose biphosphate carboxylase, were
elucidated. Thus, it was important to keep the time interval between protoplast isolation

and oxygen-measurements low.

4.2.1 Isolation of Vicia faba Mesophyll Protoplasts

To carry out the isolation and oxygen-measurements on the same day, thus preserving the
biosensor properties of the protoplasts and avoiding the regeneration of a cell wall, the
leaves were incubated in enzyme solution over night. This meant having to change the
standard protoplast isolation procedure (Lindner et al., 1992), which included a 4 h incu-
bation of the leaves in enzyme solution to a procedure with 16 h. To avoid bacterial con-
tamination and associated damage of the protoplasts during the new, 16 h incubation at
25°C, the antibiotics kanamycin and cefotaxime were added to the digestion medium.
Although a toxicity has been reported for the two antibiotics on wheat cells (Simmonds

and Grainger, 1993) and zygotic embryos of white spruce (Tsang et al., 1989), no differ-
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ential effect were determined on the number of Vicia faba mesophyll protoplasts, when
employing the two concentrations of 10 pg mL™" and 50 pug mL™). To nevertheless reduce
possible adverse effects of the antibiotics on the protoplasts, the lower concentrations

were used during further isolations.

The two incubation times (4 h and 16 h) were compared with regard to protoplast yield,
amount of chlorophyll per g fresh weight leaf material, oxygen-use and -evolution
(Chapter 3.2.1). Of these parameters only the latter was significantly different for the two
procedures, being higher for the 4 h than the 16 h incubation. This may have been the
result of harm caused to protoplasts during the isolation procedure e.g. by sanding off the
epidermis of the upper leaf surface. Such mechanical stress can damage cells, causing the
release of hydrolytic enzymes and phenolic compounds such as tannins, alkaloids and
terpenes into the enzyme solution. These in turn may damage organelle membranes:
phenolic compounds interact strongly with membrane proteins and lipolytic acylhydro-
lases with membrane phospholipids (Neuburger, 1985). This may have been the reason
for the higher oxygen-evolution of protoplasts isolated using the 4 h incubation of leaf

material in the enzyme solution compared to the 16 h incubation.

The release of toxic factors through cell wall removal (Hahne and Lorz, 1988) can lead to
an alteration in oxygen balance, resulting in an over-production of reactive oxygen species
(ROS), namely superoxide, hydrogen peroxide, and hydroxyl radicals (de Marco and
Roubelakis-Angelakis, 1996). Wang and Jia (1994) measured an increase in superoxide
dismutase and catalase activities in response to enzyme treatment of wheat mesophyll
protoplasts. Biedinger et al. (1991) showed that an addition of the radical scavenger
vitamin E (tocopherol) protected V. faba protoplasts from radical damage during
electromanipulation, therefore enhancing their potential viability. In view of possible ROS
damage to protoplasts during isolation, tocopherol was added to the enzyme solution, after
clean-up or before evacuolation of the protoplasts. However, no increased rates of
oxygen-use or -evolution were determined. It seems, therefore, that the concentration of
ascorbic acid employed in the two procedures was sufficient to scavenge the released free

radicals.

Despite the somewhat lower oxygen-evolution, the protoplasts of the new isolation
method could be used as biological units for the biosensor. The great advantage was the
possibility of employing the protoplasts for the oxygen-measurements shortly after they
were isolated. Thus, a loss of biosensor properties and the regeneration of the cell wall

were prevented from occurring during an over-night incubation.
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4.2.2 Isolation of Helianthus annuus Mesophyll Protoplasts

Similar to V. faba, the isolation procedure for H. annuus protoplasts was set out to include
an over-night digestion, for the reasons stated above. Two procedures for H. annuus pro-
toplasts isolation were compared, one employing sterile plants and the other non-sterile
ones. The latter avoided the use of antibiotics by incubating the leaves for 16 h at 4°C.
Work on H. annuus regeneration in another research group of this Institute showed that

the use of antibiotics during the isolation of protoplasts reduced their vitality (unpublished
data).

Comparing the two procedures revealed differences in protoplast yield, amount of chloro-
phyll per g leaf material, oxygen-use and -evolution (Table 3.4). All were significantly
higher for the non-sterile protoplasts than the sterile ones. In contrast, the amounts of
chlorophyll within the sterile and non-sterile protoplasts were not significantly different.
Therefore, although the two plant systems showed no variations in the amount of chloro-
phyll within the protoplasts, the oxygen-evolution was about 8.9 times less for the sterile
than the non-sterile ones. Consequently, the chlorophyll in the sterile protoplasts must

have been less active than in the non-sterile ones.

The differences observed between sterile and non-sterile plants may have been the result
of ethylene production in the closed culture vessels. The inhibition of gaseous exchange
within such containers may have led to the accumulation of ethylene, resulting in
abnormal phenomena (Sarkar, 1999), including irregularly shaped shoots, curling leaves
(Righetti, 1996), and leaf senescence (Podwyszynska and Goszczynska, 1998). Moreover,
a low wviability of protoplasts has been correlated with high ethylene production
(Rethmeier et al., 1991). Ethylene treated leaves have been shown to have a decreased
electron transport capacity in the photosynthetic membranes (Wullschleger et al., 1992).
The rate of net photosynthesis improves when growing plants under conditions of
through-flow ventilation than in sealed culture vessels, the phenomenon being connected
to the presence of ethylene (Zobayed et al., 1999). Thus, the accumulation of ethylene was
probably responsible for the lower yield and viability of the sterile protoplasts.

The non-sterile H. annuus protoplasts were used in further studies for the following
reasons: First of all, the non-sterile plants gave a greater yield than the sterile ones. High
numbers of protoplasts were important for the development of a procedure to protect the
activity of the biological unit of the biosensor over longer time periods. Moreover, the

protoplasts of the non-sterile plants had significantly higher rates of oxygen-use and
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-evolution than of the sterile plants, indicating a higher viability. Thus, the non-sterile H.

annuus plants were more adequate to obtain protoplasts than the sterile plants.

4.2.3 Comparison between Vicia faba and Helianthus annuus

The aim of comparing V. faba and H. annuus was to determine which plant was more
appropriate to provide mesophyll protoplasts. A high protoplast yield and activity was
deemed essential for the biological unit for the biosensor. The protoplast yield of the non-
sterile H. annuus was almost five times higher than for V. faba. The considerably higher
numbers of protoplasts obtained from H. annuus were fundamental to develop a freezing
procedure in order to preserve the activity of biological units. Moreover, the H. annuus
protoplasts had the same rate of oxygen-uptake and a higher rate of oxygen-evolution than
the V. faba protoplasts. Nevertheless, protoplasts of both plants were used during
evacuolation to determine whether one yielded higher numbers and vitality of the recov-

ered mini-protoplasts than the other.

4.3 Evacuolation

An increased mechanical stability and a high sensitivity to toxic substances, reducing the
detection limit, are desirable characteristics for the biological units of the biosensor,
which aims at detecting contaminants. Evacuolation has been reported to increase the
mechanical stability of protoplasts (Burgess and Lawrence, 1985). In accordance, the
removal of the vacuole would reduce possible damage to the biological unit of the biosen-
sor by pipetting and stirring. Moreover, evacuolated protoplasts were described as being
more sensitive to mutagens and toxic substances than normal protoplasts. Since the vacu-
ole is a storage site for toxic materials, its removal means that these substances remain in
the cytoplasm, where they can exert their toxic effects (Griesbach and Lawson, 1985).
Thus, to take advantage of these traits V. faba and H. annuus protoplasts were evacuolated

and the results compared.

The evacuolation procedure by Griesbach and Sink (1983) had to be adapted to the use of
a fixed angle instead of a swing-out rotor, while still attaining the required separation of
bands containing the desired mini-protoplasts (MPP) and the undesired cell debris. The
final procedure for the evacuolation of V. faba protoplasts used a 1:1 dilution of percoll

buffer with 0.6 M mannitol solution (Chapter 2.3.1) (Figure 3.6), achieving a recovery of
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65.1% MPP, an oxygen-use of 74.8% and an oxygen-evolution of 69.2% of the employed
protoplasts. In contrast, no band separation was obtained when employing this method for
the evacuolation of H. annuus protoplasts. A new procedure, consequently, had to be
developed to remove the vacuoles from H. annuus protoplasts. Different gradients and
dilutions of percoll buffer were tested (Chapter 2.3.2). The implementation of a pre-
centrifugation step at 4°C immediately before evacuolation lead to a successful separation
of MPP and debris. The method resulted in a MPP recovery of 63.0%, 66.1% oxygen-use
and 72.0% oxygen-evolution compared to the normal protoplasts. For both methods it was
determined that protoplast loading (i.e. number of PP mL" and number of mL tube™) did
not affect MPP yield or vitality significantly. The evacuolation of V. faba and H. annuus
protoplasts did also not give significantly different results between the two plants, when

considering the percentage recovery, oxygen-use and -evolution.

The results obtained in this study are comparable to those stated in the literature:
Griesbach and Sink (1983) and Griesbach and Lawson (1985) achieved 100% evacuola-
tion of petunia protoplasts, while Frohnmeyer et al. (1994) reported of a yield of 40-50%
of parsley protoplasts. Moreover, Griesbach and Sink (1983) found a MPP viability of
40% compared to 60% for normal protoplasts. Hortensteiner et al. (1992) reported of an
oxygen-evolution of 60% for tobacco MPP and 20% for barley MPP, compared to normal
protoplasts’ photosynthesis. The percentage recovery and viability of MPP yielded by the
optimised procedures employed in this study, were therefore similar to, sometimes even

higher than, the results reported in the literature.

The elaborated evacuolation methods for V. faba and H. annuus protoplasts developed in
this study, consequently, gave excellent results when compared to the data reported in the
literature. Having been developed at the laboratory scale, relatively low numbers of pro-
toplasts could be evacuolated when considering large-scale production. Practical consid-
erations led to the conclusion that developing a new procedure to scale-up the production
of MPP was beyond the scope of this project. As higher numbers of biological units were
needed for the freezing investigations, non-evacuolated, normal protoplasts were
employed to acquire a method with which the units’ activity could be preserved over
longer time periods. Transferring the obtained results of freezing and respiration inhibitor
investigations to MPP and increasing the production in scale can set the basis for a future
project. First investigations demonstrated the feasibility of such a transfer of results
(Chapter 4.5.2).
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4.4 Protection of Protoplast Activity

The next step in obtaining adequate biological units for the biosensor was to develop a
technique for storage of the protoplasts to protect their activity and suspend the regenera-
tive development of the cell wall, making them available whenever needed. Preserving the
biological units through freezing allowed their use without the need of isolation
immediately before oxygen-measurements. As indicated in the literature review (Chapter
1.5) freezing, however, presents its difficulties due to various forms of injury, which can
occur during a freeze/thaw cycle. It is thus of paramount importance to protoplast survival
to protect them from freezing damage. Two possibilities exist to achieve protection: cold-

acclimation of the plants and addition of cryoprotecting substances to the freezing media.

4.4.1 Cold-Acclimation

Cold-acclimation has been shown to induce metabolic changes in plants, leading to a
greater tolerance to freezing conditions (Steponkus et al., 1983; Meryman and Williams,
1985; Wanner and Junttila, 1999). Intracellular solutes with known cryoprotective activity
(e.g. sugars, proline, soluble proteins, organic acids) have been found to accumulate in the
cytosol of acclimated cells (Grout, 1995; Ouellet et al., 2001). Changes in membrane
composition have also been revealed, with lipids becoming more unsaturated with accli-
mation, leading to the retention of membrane fluidity at lower temperatures (McKersie,
1996a; Taiz and Zeiger, 1998). Since cold-acclimation increases the resistance of the
plasma membrane to mechanical stresses, a greater stability of the protoplasts may be
achieved (Steponkus, 1984). Consequently, acclimated protoplasts can survive freezing to
lower temperatures than non-acclimated protoplasts (Dowgert and Steponkus, 1983;

Steponkus ef al., 1983).

4.4.1.1 Cold-Acclimation of Helianthus annuus

In this study, H. annuus plants were acclimated to cold conditions (Chapter 2.1.1) for
three weeks. This resulted in phenotypical changes of the leaves, which were more yellow
(Figure 3.9) than when left to grow at warmer temperatures (20°C). In accordance, the
amount of chlorophyll per g. f. wt. leaf material was lower in the ACC than the NACC
plants, the ACC PP being less densely packed with chloroplasts than the NACC ones
(Figure 3.10). Klimov et al. (1990) found that ACC plants contained reduced granal

66



thylakoids than control plants. Thylakoids have even been reported to swell and distort

after acclimation to low temperature (Kratsch and Wise, 2000).

The yield of mesophyll protoplast isolation was also higher for NACC than ACC plants.
Bartolo et al. (1987) reported of an increased resistance of cold-acclimated cells to
hydrolytic enzymes, manifested in reduced cell wall digestibility. Acclimation apparently
induces changes, which alter the cell wall, leading to the reduction of protoplast release
during isolation. Biochemical changes which may account for this property include
phenolic crosslinking between polymers (Bartolo et al., 1987) and wall depositions of
lipid and extensin (Weiser et al., 1990). A reduction in cell wall digestibility after cold-

acclimation may explain the lower protoplast yield of ACC leaves.

Generally, a lower yield and amount of chlorophyll after acclimation are not beneficial to
the biological unit of the biosensor. Yet, other characteristics can be more important than
a high yield. As it was the aim of this study to preserve the activity of the biological units,
an increased tolerance to cold conditions is of importance. It was of interest to investigate

the effects of cold-acclimation on evacuolation and freezing of protoplasts.

4.4.1.2 Cold-Acclimation and Evacuolation

Combining the two procedures (acclimation and evacuolation) may allow the combination
of the desired effects of both processes within the biological unit, i.e. an increased
tolerance to freezing conditions due to the cold-acclimation and a higher mechanical
stability resulting from evacuolation. A comparison of the rates of oxygen-use and
-evolution between NACC and ACC MPP and their respective protoplasts was carried out
(Chapter 3.4.1.1). The rate of oxygen-evolution showed a clear difference between the
NACC and ACC MPP. The NACC MPP had significantly lower rates than their respec-
tive protoplasts. This was not the case for the ACC MPP: the rate of oxygen-evolution
was the same for normal protoplasts and those which had their vacuoles removed. The
rate of oxygen-use, on the other hand, was lower after evacuolation, regardless of whether
the protoplasts were acclimated or not. The ACC MPP showed even less oxygen-
consumption than the NACC MPP, standing in clear contrast to the results obtained when
measuring oxygen-evolution. Thus, differences were evident for the rates of oxygen-use

and -evolution measured between NACC and ACC MPP.

A direct comparison of these results with those reported in the literature was not possible,

since no studies could be found, which investigated the effects of acclimating plants to
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cold conditions on the evacuolation of their protoplasts. Thus, the findings of investiga-
tions on the separate procedures had to be employed. Hortensteiner et al. (1992) reported
of a 40% reduction of photosynthesis for tobacco protoplasts and an 80% reduction for
barley protoplasts through evacuolation. Since these protoplasts were isolated from non-
acclimated mesophyll tissues, the results correspond well with those obtained in this
study. In contrast, the oxygen-evolution of protoplasts from acclimated leaves were not
reduced when the vacuoles were removed. This indicated that changes must have occurred
during cold-acclimation, which made the chloroplasts more tolerant of the evacuolation
procedure compared to NACC PP. Numerous studies have presented the adaptation of the
photosynthetic apparatus to low temperatures (Nyuppieva et al., 1984; Klimov et al.,
1990; Artus et al., 1996; Strand et al., 1999). Uemura and Steponkus (1997), for example,
showed that acclimating winter rye to cold conditions for four weeks resulted in a
significant alteration of the inner and outer chlorophyll membranes. Such changes are
likely to be responsible for an increased tolerance of chloroplasts to cold conditions and

may have protected them during the evacuolation procedure.

In contrast, the rate of oxygen-use was lower after the removal of the vacuoles, the ACC
MPPs’ rate being even more reduced than the NACC MPPs’. Frohnmeyer et al. (1994)
reported of a decrease in the number of mitochondria of 28% in evacuolated parsley pro-
toplasts, as compared to the normal ones. Such a reduction in mitochondria would inevi-
tably have reduced the rate of oxygen-use. Mitochondria have been reported to grow in
size during cold-acclimation, to ensure the maintenance of energy supply at low tem-
peratures (Kislyuk et al., 1995). This may have increased their loss in ACC protoplasts

during evacuolation, compared to NACC ones, which contained smaller mitochondria.

In conclusion, the acclimation of H. annuus plants to cold conditions did influence the
evacuolation of protoplasts. The results indicate that the acclimation procedure may have
altered the chloroplasts, making them more tolerant against mechanical stress during the
evacuolation procedure. Thus, no loss in chlorophyll activity was measured, presenting a
clear advantage over the NACC MPP. The rate of oxygen-use, on the other hand, was
reduced when combining the two procedures. This could have been brought about by an
increased loss of mitochondria during the evacuolation procedure, instead of damage to
the MPP. Consequently, the lower rate of oxygen-use did not indicate injury to the mito-

chondria, an important finding for maintaining the biosensor properties.

This study could only scrape the surface of the complex changes which occur during cold-

acclimation. Thus, further studies are needed to elucidate the effects of cold-acclimation
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on the various cell components and how these changes affect evacuolation. Due to the
relatively low number of protoplasts which could be evacuolated, protoplasts with
vacuoles had to be used for further investigations. The obtained results can, however, set
the basis for a future study to transfer these results to MPP, in order to increase the
mechanical stability of the biological unit of the biosensor, as well as their sensitivity to

toxic substances.

4.4.1.3 Cold-Acclimation and Freezing

As described above, acclimating plants to cold condition has been reported to increase
their tolerance against freezing injury (Steponkus et al., 1983; Steponkus, 1984; Meryman
and Williams, 1985; Wanner and Junttila, 1999). The question to be investigated was,
whether cold-acclimation affected the activity of the potential biological units of the

biosensor before and after freezing at -20°C.

The results presented clear evidence that cold-acclimation affected oxygen-evolution
(Figure 3.11). Only the ACC PP still showed photosynthesis after 45 minutes of freezing.
The rate of oxygen-evolution depended strongly on the media in which the protoplasts

were frozen. The results will be discussed further in chapter 4.4.2.1.

In comparison to oxygen-evolution, oxygen-use was still measurable when freezing over
much longer time periods (Chapter 3.4.2). Saradadevi and Raghavendra (1994) reported
that the photosynthetic apparatus is damaged more easily than respiration. Maintaining
respiration activity after freezing was a great success for the applicability of the biosensor,
as it allowed the storage of the biological units over longer time periods, ensuring their

availability whenever needed.

After revealing that respiration remained active after the completion of a freeze/thaw
cycle, appropriate biological units had to be identified, i.e. units which indicated the least
injury. Comparing the rate of oxygen-use of unfrozen NACC and ACC protoplasts
revealed that they did not differ significantly from each other (Table 3.6). In contrast, the
NACC units showed significantly higher rates of oxygen-use after freezing than ACC
ones, regardless of the media in which they were frozen (Figure 3.12). A higher uptake of

oxygen may be indicative of stress and damage to the biological units.

The elevated oxygen-use of NACC, as compared to ACC PP, may have been the result of

an oxidative burst. Plant cells have been shown to initiate oxidant production upon stress

69



(Prasad et al., 1994). Such stress may be mechanical, such as stirring (Legendre et al.,
1993), or may be caused by distortions of the plasma membrane during freeze/thaw injury
or accompanying water stress (Yahraus et al., 1995). During chilling, for example, critical
changes can occur in membrane fluidity. Any phase changes in the inner mitochondrial
membrane have drastic effects on the orientation of the electron transport chain compo-
nents, resulting in an increase in ROS formation (Creencia and Bramlage, 1971). ROS can
accumulate to damaging concentrations, causing oxidative damage to the inner mito-
chondrial membrane (Kowaltowski et al., 1998; Kowaltowski, 2000). This has been
reported especially in NACC cells, because of low levels of alternative oxidase and anti-
oxidant enzymes (Prasad et al., 1994). Acclimation of plants leads to an increase in the
activity of the alternative oxidase (Wagner and Krab, 1995; Popov et al., 1997), which
avoids ROS formation. Moreover, the amount of antioxidants (Leipner et al., 2000;
Munné-Bosch and Alegre, 2000) and antioxidant enzymes, such as catalase 3 and peroxi-
dase, is increased during acclimation. These reduce the numbers of ROS, which have
nevertheless been formed (Prasad et al., 1994; Zeng et al, 1994; Badiani et al, 1997;
Prasad, 1997). Preventing the accumulation of ROS protects acclimated plants from

oxidation of proteins and lipids during chilling stress and recovery (Prasad, 1996).

Cold-acclimation has also been shown to change the behaviour of the plasma membrane
(Steponkus 1984, 1985) through alterations in membrane composition (Dowgert and
Steponkus, 1984; Yang et al, 1986; Loubaresse and Dereuddre, 1990). These include an
incorporation of a higher proportion of unsaturated fatty acids, leading to the maintenance
of membrane fluidity at lower temperatures (Chen et al., 1994; Taiz and Zeiger, 1998). As
a result, fewer ROS are generated and less damage occurs (Queiroz et al., 1998) in ACC

cells, as compared to NACC ones.

Therefore, the NACC protoplasts’ higher rate of oxygen-use, compared to those of the
ACC ones, was most likely due to increased ROS formation and indicated damage. This
finding was supported by the results obtained when freezing the protoplasts for three
months. After this period the ACC units showed a much lower loss of activity than the
NACC ones. The remaining percentage oxygen-use of the three month old biological units
was 61% for the NACC and 70% for the ACC ones, compared to their respective
unfrozen controls (Figure 3.13). This clearly strengthened the inference that the acclima-

tion procedure led to a higher protection of the biological units’ activity.

In conclusion, the higher rate of oxygen-uptake of NACC units after freezing indicates

that they incurred more damage than the ACC ones, which were protected against
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freeze/thaw injury by alterations induced during cold-acclimation. This finding is very
important to the biosensor development. Cold-acclimation clearly protects the biological
units from damage, preventing loss of activity. The use of freezing to store them for

longer time periods is thus made possible, making them available whenever needed.

4.4.2 Cryoprotectants

The second method to protect the biological units from freezing injury was the addition of
cryoprotectants to the freezing media. The choice of which substance(s) should be used
was difficult due to the vast number of publications around the topic of cryoprotection.
Valuable lessons on cryoprotectants have been learned from studying organisms which
acquired tolerance to cell dehydration from freezing, drying, or the exposure to hyper-
osmotic environments (Meryman and Williams, 1985). Consequently, numerous com-
pounds have been found to exert cryoprotection, including sugars (Santarius, 1973;
Lineberger, 1980; Strauss et al., 1986), proline (Steponkus, 1984; Rudolph et al., 1986;
Anchordoguy et al., 1987), glycine betaine (Coughlan and Heber, 1982; Holmstrom et al.,
2000), hydroxyethyl starch (Farrant et al., 1977; Crowe et al., 1997), glycerol (Rowe,
1966; Mazur, 1970), and antifreeze proteins (McKersie, 1996a; Hiilovaara et al., 1999;
Yu and Griffith, 1999); their chemical diversity being “bewildering” (Finkle et al., 1985).
Most investigations have been restricted to a few of these cryoprotectants (Carpenter and
Crowe, 1988). Differences in protection have been reported for the given compounds used
with varying cell types and under dissimilar cooling rates (Doebbler, 1966), increasing the

difficulties in comparing the effects of these substances.

To protect the protoplasts from freezing injury, the viscous protectant glycerol and the
non-reducing dissaccharide trehalose were employed. Trehalose prevents dehydration-
induced membrane fusion (Steponkus, 1984) by acting as replacement for water and
maintain the hydrophobic-hydrophilic orientation of the phospholipids. Water loss or low
temperature may alter the organisation of membrane lipids. The formation of a gel or
hexagonaly phase leads to changes in the association between proteins and lipids, perme-
ability, and solute transport across the membrane. Preventing such phase transitions is
important as otherwise discontinuities are caused in the membrane, resulting in the leak-
age of cytoplasmic solutes and the disruption of membrane enzyme complexes
(McKersie, 1996b). Furthermore, Anchordoguy et al. (1987) reported that trehalose was

markedly better than sucrose at preserving membranes and liposomes. Therefore, treha-
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lose was one of the compounds chosen to protect the protoplasts during the freeze/thaw

cycle.

The other cryoprotectant was glycerol, one of the most widely used protecting agents.
Finkle et al. (1985) classed glycerol in the group of compounds with the highest protec-
tion action against freezing injury. Glycerol reduces the rate of water diffusion out of the
cell as the solution becomes more concentrated with decreasing temperature (Meryman
and Williams, 1985). The electrolyte concentration in the residual unfrozen solution in
and around the cell is consequently reduced (Mazur, 1970). Compared to dimethyl-
sulphoxide (DMSO), a commonly used cryoprotectant, glycerol has the advantage of
being non-toxic at elevated concentrations (Meryman and Williams, 1985; Fahy, 1986).
These characteristics led to the choice of glycerol as the other cryoprotectant used in this

study.

4.4.2.1 Freezing Helianthus annuus Mesophyll Protoplasts

Four freezing media were employed containing 0.4 M trehalose (Treh 4), 0.6 M trehalose
(Treh 6), 5% (v/v) glycerol (Glyc 5), or 10% (v/v) glycerol (Glyc 10) (Chapter 2.6). These
media greatly influenced the rates of oxygen-evolution after completion of a freeze/thaw
cycle (Figure 3.12). After 30 minutes freezing, the protoplasts in the glycerol media still
produced oxygen. While the ACC PP also showed photosynthetic activity in the trehalose
solutions, none could be measured for the NACC ones. Of all combinations, only the
ACC PP in Glyc 10 still photosynthesised after freezing over a period of 45 minutes. This

demonstrates that both processes, cryoprotection and acclimation, affected photosynthesis.

The drop in temperature with time was probably responsible for the reduction or even loss
of photosynthetic activity. Steponkus et al. (1998) found that below -4°C injury of proto-
plasts is manifested as a loss of osmotic responsiveness, resulting from freeze-induced
lamellar-to-hexagonal II (Hy) phase transition (Chapter 1.5.1). This is an interbilayer
event, observed most often in regions where the plasma membrane comes into close
contact with the chloroplast envelope as a result of freeze-induced dehydration. Bilayers
are reformed upon rehydration upon thawing. Yet, integral proteins can be lost from the
membrane or reassociate with the bilayer in a way that is inconsistent with normal func-
tion (Crowe and Crowe, 1982). Thus, the plasma membrane is likely to become meddled

with the endomembranes, especially the chloroplast envelope (Steponkus et al., 1998).
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This was probably the reason why a loss of photosynthetic activity was observed with

increasing time.

Freeze-induced formation of the Hj phase can be deferred to lower temperatures. Proc-
esses responsible for this phenomenon include the alterations of membrane lipid compo-
sition and the accumulation of sugars during acclimation (Steponkus et al., 1998). In
accordance, several research groups have reported of changes of chloroplasts and adapta-
tions of the photosynthetic apparatus to low temperature (Nyuppieva ef al., 1984; Klimov
et al., 1990; Artus et al., 1996; Strand et al., 1999) (Chapter 4.4.1). Moreover, the
addition of protective compounds have also been reported to inhibit or postpone phase
changes (Crowe and Crowe, 1982; Crowe et al., 1983). These phenomena were clearly
evident in the results of this study. The combination of acclimation and cryoprotection
lead to a higher preservation of photosynthetic activity. The fact that ACC PP still
produced oxygen after 45 minutes of freezing in Glyc 10 indicates further, that some
optimisation of the freezing regieme will most probably lead to the protection of
photosynthesis in addition to respiration. These results, therefore, set a basis for a further

study.

Furthermore, the protective action of the four media was tested on the respiration activity
of ACC and NACC biological units after completion of a freeze/thaw cycle. No signifi-
cant differences of the effects of the four media were detected on the rates of oxygen-use
for either of the protoplast types. However, a tendency of a higher oxygen-consumption
could be seen for NACC PP frozen in the trehalose solutions than for those in the glycerol
media. Differences between the media were confirmed when employing inhibitors
(Chapter 4.5.2).

4.5 Responsiveness of the Biological Units

The responsiveness of the NACC and ACC protoplasts was tested towards substances,
which affect respiration to determine the suitability of the frozen protoplasts as biological
units of the biosensor in practice. As described in the literature review (Chapter 1.2) the
mitochondrial electron transport of plants has two pathways: the normal, cytochrome
pathway and the cyanide-resistant, alternative pathway. The two inhibitors KCN and
SHAM were used to block electron transfer, the former inhibiting the cytochrome path-
way and the latter the alternative pathway. As a result, the electrons could not be passed

onto oxygen to form water, consequently reducing the rate of oxygen-consumption. Thus,
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the response of protoplasts towards an inhibition of respiration was determined by

changes in the rate of oxygen-use.

4.5.1 Effects of Respiration Inhibitors on Protoplasts

Treating the protoplasts with the inhibitors KCN and SHAM, singly or in combination,
led to variations in the shapes of the oxygen-measurement curves (Figure 3.14), indicating
different effects of the inhibitors on the respiration pathways. As expected, SHAM
reduced the rate of oxygen-use of protoplasts, compared to the untreated control. In
contrast, KCN led to an initial increase of oxygen-uptake. After about one minute, the
inhibition of mitochondrial respiration became apparent, being stronger for KCN than
SHAM.

The initial increase in oxygen-consumption within the first minute after adding KCN to
the protoplasts can be explained by an accumulation of free electrons within the respira-
tion pathway. Blocking the cytochrome pathway means that electrons can no longer flow
through it. Since the alternative pathway does not have the capacity to oxidise all ubiqui-
nol, other electron acceptors have to be used. Instead of being transferred onto the
oxidases, the electrons reduce O; to O, (Popov et al., 1997), generating ROS (Robertson
et al., 1995) and leading to the increase in oxygen-use. Once the pathway is cleared of

electrons, the oxygen-uptake is reduced.

These findings are supported by the effects revealed when employing both inhibitors in
combination. Blocking both pathways led to an increase in the rate of oxygen-uptake,
which was higher and lasted longer (0-2 min) than when using KCN only. In the presence
of the two inhibitors, electrons can no longer be transferred to the cytochrome and alter-
native oxidases. The resulting accumulation of intermediately reduced ubiquinones leads
to an increase in ROS formation, as O, is reduced to O," (Cadenas et al., 1977) (see
Chapter 1.2 and 4.5.2 for more detail of ROS formation). Respiratory inhibitors have
previously been shown to increase mitochondrial ROS generation (Purvis et al., 1995;
Popov et al., 1997; Braidot et al., 1999). Thus, the addition of KCN £+ SHAM to the
protoplast suspension initiated an oxidative bust, leading to the characteristic elevated rate
of oxygen-consumption within the first one or two minutes after treatment. The rate of
oxygen-use was reduced significantly, as the electrons were removed from the respiration

pathways.
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In contrast to the KCN £ SHAM treatments, no accumulation of electrons occurred when
blocking the alternative pathway only, using SHAM. The cytochrome pathway has a
higher capacity (i.e. maximum level of activity attainable) than the alternative pathway
and can consequently cope with a higher flow of electrons. Thus, an initial increase in
oxygen-uptake was not apparent when employing SHAM, as most electrons can flow

through the cytochrome pathway.

Looking at the degree of inhibition of respiration brought about by KCN and/or SHAM
revealed significant differences (Table 3.7). As expected, SHAM had a lower inhibitory
effect on oxygen-consumption than KCN, since the electron flow through the alternative
pathway is lower than through the cytochrome one (Ribas-Carbo et al., 1995). Even the
addition of both inhibitors to the protoplasts still showed some remaining oxygen-uptake,

although both respiration pathways were blocked entirely.

Two possibilities exist, which could explain this so-called ‘residual respiration’: 1) the
respiration was not inhibited 100% or 2) other processes exist, which use O,. The first
potential explanation is contradicted by the fact that KCN and SHAM caused different
percentages inhibition of oxygen-uptake. For example, the addition of KCN + SHAM to
the unfrozen protoplasts led to a residual respiration of 49% for NACC and 29% for ACC
protoplasts. Furthermore, a higher percentage residual respiration was revealed after
freezing protoplasts for three months (NACC: 60%, ACC: 49%), as compared to one day
(NACC: 36%, ACC: 27%) (Figure 3.17). Liang et al. (1987) and Sesay et al. (1986) also
reported of residual respiration rates of 20-30% and 42-44%, respectively, when adding
these inhibitors to unfrozen cells. This remaining oxygen-consumption may thus contrib-
ute significantly to oxygen-uptake (Ribas-Carbo et al., 1997). Wagner and Krab (1995)
also emphasised that a considerable amount of oxygen-consumption was insensitive to
respiration inhibitors. The question therefore arises which processes are responsible for

such elevated levels of oxygen-uptake, without being blocked by respiration inhibitors.

Non-mitochondrial oxidases have been reported as being responsible for such uninhibited
oxygen-uptake (Tukeeva et al., 1994). Liang et al. (1987) suggested glycollic acid oxidase
within microbodies as the reason for the residual respiration in tobacco callus cultures.
Reddy and Srivastava (1998) indicated that oxygenases may be stimulated to accept
electrons and reduce oxygen to water. However, residual respiration has also been
measured in isolated mitochondria (Ribas-Carbo et al., 1997) and thus other processes

responsible for oxygen-uptake must be involved within the mitochondria.

75



Another possible mechanism for the occurrence of residual respiration is the formation of
ROS, such as superoxide, H,O,, and hydroxyl radicals. Kowaltowski (2000) states that
the continuous leak of electrons makes the mitochondria the main generation site for
reactive species in most cells. Monoelectronic reduction of oxygen, leading to ROS
formation, occurs mainly at the level of complexes I and III of the respiratory chain, most
likely through the donation of electrons from intermediately reduced ubiquinones
(Cadenas et al., 1977). As indicated in the literature review (Chapter 1.2), ROS generation
may be the result of an over-reduction of the mitochondrial respiratory chain components
due to the saturation of the cytochrome pathway with electrons (Wagner and Krab, 1995;
Vanlerberghe and Mclntosh, 1996). This may occur whenever the mitochondrial electron
transport is restricted (Maxwell et al., 1999). Not surprisingly, therefore, blocking one or
more respiratory pathways using inhibitors may lead to an increase in radical formation
(Purvis et al., 1995; Millenaar et al., 1998; Popov and Starkov, 1998). The accumulation
of ROS may be exacerbated by SHAM and KCN, as they have been reported to inhibit
peroxidases (Maxwell et al., 1999; Papadakis and Roubelakis-Angelakis, 1999), which
convert H,O, to H;O and O, (Heldt, 1986). Thus, a high residual respiration will be
indicative of ROS formation, which is not desirable for the biological unit of the biosen-

sor and should consequently be kept low.

Transferring the results obtained using normal PP onto MPP only makes sense, if the
evacuolated protoplasts also react towards respiration inhibitors in a similar manner. The
percentage inhibition of ACC PP was 71%. Inhibiting respiration of ACC MPP revealed a
73% reduction, being comparable to the result obtained for the normal protoplasts. This
indicates that the PP with and without vacuoles responded similarly towards the inhibi-
tors, setting a solid basis for a further study, in which the results obtained using normal

protoplasts can be transferred onto MPP.

4.5.2 Comparison of the Unfrozen and Frozen Protoplasts’ Responses towards
Inhibitors

It was determined whether the potential biological units responded differently towards
respiration inhibitors after freezing than before. Comparing NACC and ACC protoplasts
showed that the NACC PP (unfrozen and frozen) had a significantly higher rate of
oxygen-uptake when employing the inhibitors than the ACC ones (Table3.7; Figure 3.15).
This may have been the result of damage to the protoplasts brought about by the oxidative
burst, as described in chapter 4.4.1.3.
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No significant influence of the media was determined on the rate of oxygen-use without
treating the frozen protoplasts with respiration inhibitors (Chapter 4.4.2.1). In contrast, the
media in which the protoplasts were frozen had a clear effect on the degree of inhibition
of oxygen-uptake (Figure 3.16). The percentage inhibition was lowest for the units frozen
in trehalose media. Blocking both respiration pathways entirely only led to a reduction in
oxygen-use of around 40%. In contrast, those frozen in glycerol media had the much
higher inhibition of respiration of about 70%, the same value as determined for the unfro-

zen control protoplasts.

These findings were highly important for the biosensor development. First of all, a
decrease of respiration of 70% gave a greater range for inhibition than a 40% reduction.
This is essential to allow the determination of the degree of inhibition conveyed by an
environmental sample. Moreover, the results indicated that the biological units frozen in
the glycerol solutions had more similar characteristics to the unfrozen control than those
frozen in the trehalose media. Since the control protoplasts did not go through a
freeze/thaw cycle, they were exposed to less stress and suffering less damage than the
frozen biological units, especially those which showed significant differences to the

controls.

The results seem to indicate that the cryoprotective substances had a higher positive effect
on the preservation of protoplast activity than the acclimation process. The importance of
the acclimating process developed in this study was revealed after freezing the protoplasts
for three months (Figure 3.13). After that time period the ACC PP showed less reduction
in the rate of oxygen-use than the NACC ones. In addition to the higher preservation of
activity of the ACC PP after three months of freezing, they also retained a lower residual
respiration compared to the NACC PP (Figure 3.17). This presented clear evidence that a
combination of the two developed procedures (cryoprotective medium and cold-

acclimation) is of great importance to preserve protoplast activity for longer time periods.

In conclusion, the ACC protoplasts, frozen in Glyc 10 were chosen as the most adequate
biological units for the biosensor, since the acclimation of H. annuus plants and the use of
the Glyc 10 protected the protoplasts highly during the freeze/thaw cycle. This became

evident as:

a) ACC protoplasts had a lower residual respiration, indicating less damage than for
NACC protoplasts. This was the case for unfrozen protoplasts, as well as those frozen

for three months.
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b) Protoplasts frozen in Glyc 10 conveyed lower rates of oxygen-uptake and a higher
inhibition of respiration. These values were significantly the same as of the unfrozen
controls, indicating a non-significant effect of freezing on the activity of the biological

units.

Thus, of all combinations (ACC/NACC, freezing media), the ACC protoplasts in 10%
(v/v) glycerol solution came closest to the unfrozen control. Moreover, a larger range of
possible inhibition was revealed for ACC compared to NACC protoplasts. This greater
range means that more differentiation is possible to determine the degree of inhibition
induced by substances in environmental samples. ACC protoplasts in Glyc 10 were there-

fore used to test the effect of the fungicidal compound fluazinam.

4.5.3 Fungicidal Substance

As described above, it has already been shown that the frozen protoplasts do respond
towards respiration inhibitors, consequently demonstrating that they are suitable as
biological units of the biosensor. Nevertheless, fluazinam was also used to test the appli-
cability of the biosensor. This pyrimidinamine is the active ingredient of the fungicides
Shirlan (Zeneca) and Frownicide (Ishihara Sangyo) (Komyoji et al., 1995, Drexler and
Stuke, 1999). The fungicidal action of fluazinam is said to influence respiration (Bayer
AG, Division of Plant Protection, personal communication). Only one study can be found
in the literature, which indicates that fluazinam may possibly have an uncoupling action
when using rat liver mitochondria (Guo et al., 1991). Regarding the uncertainty about the
mode-of-action of the fungicidal substance, it should be determined whether it could be

detected by the biosensor.

Adding different concentrations of fluazinam to the biological units of the biosensor
showed only a small reduction in the rate of oxygen-uptake, compared to the untreated
control (Figure 3.18). When increasing the amount from 10 nM to 1 mM a rise in oxygen-
consumption was determined, as opposed to the expected decrease. Only at the very high
concentration of 10 mM was a clear reduction in the rate of oxygen-use apparent. This
reaction of the biological units towards fluazinam was surprising, since it was thought to
act as an inhibitor of respiration and the inhibitors KCN and SHAM had clearly led to a
decline in oxygen-uptake. This indicated that an inhibition of mitochondrial respiration

could not be fluazinam’s primary mode-of-action.
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Uncouplers disconnect ATP synthesis from the electron transport chain by stimulating the
permeability of the mitochondrial membrane to protons (Kowaltowski, 2000). Conse-
quently, the transfer of protons across the membrane is no longer dependent on ADP
availability and can thus be used continuously to allow a transfer of electrons along the
respiration pathways. This stimulatory effect of uncouplers on respiration (Taiz and
Zeiger, 1998) could be seen when increasing the levels of fluazinam from 10 nM to
I mM. These results therefore indicate that fluazinam does indeed have an uncoupling

mode-of-action.

The addition of the respiration inhibitors KCN and SHAM further supported these
conclusions. Treating the biological units with only KCN and/or SHAM, led to clear
reductions in the rate of oxygen-use, as previously described (Chapter 4.5). When SHAM
(5 mM) was added to the units in combination with increasing fluazinam concentrations,
the oxygen-use was higher compared to the SHAM-only-control. This was also probably
brought about by the stimulation of electron transport through the cytochrome pathway in
conjunction with an increase in ROS formation. In contrast, such a rise was not detected
when employing KCN with increasing amounts of fluazinam. This lack of stimulation of
electron transfer was most likely due to an already saturated alternative pathway. These
results clearly demonstrate that (at least one of) the mode(s)-of-action was an uncoupling

and not an inhibition of respiration.

At the extremely high concentration of 10 mM fluazinam, a decline was found for the
oxygen-consumption rate of protoplasts. The reduction was possibly due to a direct effect
of the substance on respiration at such a high amount. A similar action has been reported
for the pesticide 2,4-dinitrophenol, which has other effects in addition to uncoupling
(Caprette, 2000). This decrease in residual respiration at 10 mM fluazinam was also

apparent when the inhibitors KCN and SHAM were added to the protoplast suspension.

In conclusion, the protoplast biosensor revealed that fluazinam does not primarily inhibit
respiration, but acts as an uncoupler and that the observed inhibition of respiration was a
general toxic effect at very high fluazinam concentrations. The protoplast biosensor thus
made a valuable contribution to the question of the mode-of-action of fluazinam. The
results clearly demonstrated that the protoplast biosensor not only gave evidence of respi-
ration inhibiting substances (KCN and SHAM) but can also indicate the site- and mode-

of-action of substances.
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S SUMMARY

The aim of this study was to develop a method to advance the applicability of the
biosensor under field conditions. In accordance, first an appropriate donor plant had to be
identified to provide the protoplasts. The sunflower (Helianthus annuus) was most
adequate, as it reached higher yields of vital mesophyll protoplasts than the broad bean
(Vicia faba).

The biggest problem for the application of the biosensor in the field was the loss of proto-
plast viability within a relatively short time span leading to the loss of the biosensor prop-
erties. A method was thus developed, which prolonged the time over which the
protoplasts could be used as biological units of the biosensor. It was shown that the
properties of the protoplasts were maintained after the development of appropriate
freezing conditions showing a clearly measurable respiration, which could be blocked by

respiration inhibitors.

That the frozen protoplasts were suitable for the use as biological units of the biosensor
was the result of having developed special protocols, to reduce the damage of the units
during the completion of a freeze/thaw cycle. Acclimating sunflower plants to cold condi-
tions led to an increased preservation of the biosensor properties of the biological units
after freezing. Another important step in optimising the freezing process was the develop-
ment of the freezing medium. Frozen, as well as unfrozen protoplasts involved a certain
amount of oxygen-use, which was not the result of cytochrome or alternative pathway
respiration. This residual respiration was probably due to the generation of reactive
oxygen species, which can damage the biological units and thus needs to be kept to a
minimum. The use of glycerol in the freezing medium revealed a significant reduction of
residual respiration compared to the trehalose solution, the levels being the same as for
the unfrozen protoplasts. The developed protocols for H. annuus plant growth and
protoplast freezing led to a clearly measurable respiration after freezing them in 10% (v/v)
glycerol solution for three months. Consequently, these protoplasts were adequate to be

used as biological units of the biosensor.

It is expected that the freezing protocol can be optimised further by using evacuolated
protoplasts (MPP), which have a higher mechanical stability than normal protoplasts. First
experiments on the removal of the vacuoles yielded extremely promising results on the

recovery and vitality of the MPP. Yet, the technical equipment of the laboratory was not
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set out to evacuolate large numbers of protoplasts, which were needed to test the freezing
protocol. The results obtained by using protoplasts can, however, be transferred to MPP,

as first investigations on the inhibition of respiration demonstrated.

Using the respiration inhibitors KCN and SHAM clearly demonstrated the suitability of
the frozen protoplasts as biological units of the biosensor in practice. A further substance,
which is being utilised in agriculture was nevertheless employed. Fluazinam is a
compound with fungicidal properties, acting upon respiration. It was revealed that unlike
KCN or SHAM, fluazinam did not inhibit respiration but acted as an uncoupler. Thus, in
addition to giving evidence of respiration inhibiting substances, the protoplast biosensor

can also indicate the site- and mode-of-action of substances.

The results obtained in this study contribute substantially to stabilising the biosensor
properties of the protoplasts as the biological units of the biosensor over longer time
periods. The biological units are, consequently, made available for use at any time. This
presents a clear progress towards employing the protoplast biosensor routinely in the field

to detect contaminants, including respiratory inhibitors.
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ZUSAMMENFASSUNG

Ziel der Arbeit war es, die Verwendbarkeit der Protoplasten als biologische Einheit des
Protoplastenbiosensors im Hinblick auf eine Feldtauglichkeit des Biosensors hin zu ver-
bessern. Hierzu wurde im ersten Schritt eine geeignete Protoplastenspenderpflanze aus-
gewihlt. Als am besten geeignet hat sich hierbei die Sonnenblume (Helianthus annuus)
herausgestellt, da diese im Vergleich zur Ackerbohne (Vicia faba) eine wesentlich groflere
Ausbeute an vitalen Mesophyll-Protoplasten ergab. Im néichsten Schritt wurde dann eine
Methode entwickelt, die eine verldngerte Verwendbarkeit der Protoplasten als biologische
Einheit ermdglicht, da die geringe Lebensdauer und damit der Verlust der sensorischen
Eigenschaften der Protoplasten bisher das grofBite Hindernis fiir den praktischen Einsatz
des Protoplastenbiosensors darstellt. Es konnte gezeigt werden, dass bei geeigneter Wahl
der Bedingungen {iber ein Einfrieren der Protoplasten deren biosensorische Eigenschaften
soweit erhalten bleiben, dass sie nach dem Auftauen als biologische Einheit verwendet
werden konnen. So zeigten die Protoplasten nach dem Auftauen eine deutlich messbare

Atmung, die sich iiber die Zugabe von Atmungsinhibitoren hemmen lieB3.

Zur Optimierung des Einfrierprozesses wurde ein spezielles Anzuchtprotokoll fiir die
Sonnenblumen entwickelt, da gezeigt werden konnte, dass in tiefgefrorenen Protoplasten
aus kilteakklimatisierten Sonnenblumen die biosensorischen Eigenschaften wesentlich
besser konserviert werden, als in nicht kilteakklimatisierten. Ein weiterer wesentlicher
Schritt zur Optimierung des Einfrierprozesses bestand in der Entwicklung eines Einfrier-
mediums. Durch die Verwendung von Glycerin im Medium konnte gegeniiber der
Trehalose-Variante eine drastische Senkung der Restatmung erreicht werden, die dann ca.
die GroBenordnung der nicht eingefrorenen Protoplasten hatte. Sowohl die nicht eingefro-
renen Protoplasten, als auch die eingefrorenen Protoplasten, wiesen einen nicht auf die
cytochromale bzw. alternative Atmungskette zuriickzufiihrenden Sauerstoffverbrauch auf.
Diese Restatmung ist wahrscheinlich auf die Bildung reaktiver Sauerstoffspezies zurtick-
zufiithren, die die biosensorischen Eigenschaften des Protoplasten schidigen und daher
niedrig gehalten werden miissen. Die in Glycerinmedium 10 eingefrorenen Protoplasten
akklimatisierter Sonnenblumen wiesen auch nach dreimonatiger Lagerung noch eine
deutlich messbare mitochondriale Atmung auf und konnten als biologische Einheit des

Protoplastenbiosensors eingesetzt werden.
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Es ist zu erwarten, dass sich der Einfrierprozess durch die Verwendung evakuolisierter
Protoplasten, die eine deutlich hhere mechanische Stabilitdt besitzen, weiter optimieren
lasst. Erste Experimente zur Evakuolisierung von Sonnenblumenprotoplasten ergaben,
bezogen auf die Ausbeute evakuolisierter Protoplasten (MPPs), deren Vitalitit und
Hemmbarkeit der Atmung, sehr vielversprechende Ergebnisse. Die technische Ausriistung
des Labors war jedoch nicht darauf ausgelegt, grolere Mengen an MPPs zu isolieren, die
bendtigt worden wiren, um das fiir Protoplasten entwickelte Gefrierprotokoll auch an
MPPs zu testen. Die an Protoplasten gewonnen Erkenntnisse lassen sich jedoch auf MPPs

iibertragen.

Schon durch den Einsatz der Atmungsinhibitoren KCN und SHAM konnte die Praxis-
tauglichkeit der eingefrorenen Protoplasten als biologische Einheit des Protoplastenbio-
sensors nachgewiesen werden. Mit Fluazinam, einer fungizid wirkenden Substanz, wurde
dennoch ein weiterer Wirkstoff eingesetzt, da dieser in der Landwirtschaft breite Ver-
wendung findet. Zudem ist die fungizide Wirkung auf eine Beeinflussung der Atmung
zuriickzufiihren. Fiir Fluazinam konnte gezeigt werden, dass dieser Wirkstoff, im Gegen-
satz zu KCN bzw. SHAM nicht atmungsinhibitierend wirkt, sondern diese entkoppelt.
Damit kann der Protoplastenbiosensor nicht nur fiir den Nachweis atmungshemmender
Substanzen verwendet werden, vielmehr kann er auch erste Hinweise auf den Wirkort und

die Wirkweise der Substanzen liefern.

Im Rahmen der vorliegenden Arbeit konnte somit ein wesentlicher Beitrag geleistet wer-
den, die biosensorischen Eigenschaften der Protoplasten als biologische Einheit des Proto-
plastenbiosensors iiber einen ldngeren Zeitraum hin zu stabilisieren. Damit kann jetzt die
biologische Einheit jederzeit zur Verfligung stehen, was einen deutlichen Fortschritt fiir

die praktische Einsetzbarkeit des Protoplastenbiosensors bedeutet.
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7 APPENDIX

7.1 Abbreviations

ACC Acclimated

EPA Environmental Protection Agency
f. wt. Fresh weight

Glyc 10 10% (v/v) glycerol solution

Glye 5 5% (v/v) glycerol solution

KCN Potassium cyanide

MPP Mini-protoplasts

n Number

NACC Non-acclimated

OECD Organisation for Economic Co-operation and Development
PP Protoplasts

ROS Reactive oxygen species

SD Standard deviation

SHAM Salicylhydroxamic acid
Treh 4 0.4M trehalose solution
Treh 6 0.6M trehalose solution
WHO World Health Organisation

7.2 Equipment

Autoclave:
Tuttnauer Systec ELV 3850, Systec GmbH, Wettenberg, Germany

Centrifuges:

Beckman Instruments Inc., Palo Alto, CA; Ultracentrifuge L7; SW 60 Ti rotor
Mikroliter, Hettich Zentrifugen, Tuttingen

Minifuge GL, Heraeus Christ GmbH, Osterode

Flow Cabinet:
HP 72, Gelaire Flow Laboratories GmbH, Meckenheim, Germany

Oxygen-Measurement System:

928 6-Channel Oxygen System, Strathkelvin Instruments Ltd, Glasgow, UK
Interface 928 Oxygen System, Strathkelvin Instruments Ltd, Glasgow, UK
Software: 928 Oxygen System, Strathkelvin Instruments

Magnetic stirrer: Variomag Multipoint HP6, H+P Labortechnik GmbH, OberschleiBheim,
Germany

Halogen lamp: Halolux 150, Streppel Glasfaser-Optik, Wermelskirchen, Germany
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7.3 Chemicals

Substance Abbreviation/Formula Supplier
Acetone - Merck 1.00014
Agar - Sigma A-1296
Albumin, Bovine, Fraction V BSA AppliChem A1391
Calcium chloride dihydrate CaCl, Merck 1.02382
Cefotaxime sodium - Duchefa CO111
Cellulose - Merck 1.02324
D(+)-Trehalose dihydrate - Sigma T-0167
Dimethyl sulfoxide DMSO Sigma D-4540
DL-a-tocopherol phosphoric acid - Serva 36570
ester disoldium salt
Driselase - Sigma D-9515
Fluazinam - Zeneca Berkshire, UK
Glycerol - Roth 3783
4-(2-Hydroxyethyl)piperazin-1- HEPES AppliChem A1069
ethane sulfonic acid
Kanamycine - Sigma K-4378
L-Ascorbic acid sodium salt - Sigma A-7631
Macerozyme - Merck 1.2465
Magnesium chloride MgCl, Merck 1.05835
Mannitol - Sigma M-9647
2-(N-Morpholino)ethane sulfonic MES Biomol 06010
acid
3-(Morpholino)propanesulfonic MOPS AppliChem A1077
acid sodium salt
MS-salts - Duchefa M0221
Percoll - Sigma P-1644
Polyvinylpyrrolidone PVP25 Serva 33420
Potassium cyanide KCN Aldrich 20,781-0
Potassium hydroxide KOH Merck 5033
Salicylhydroxamic acid SHAM Aldrich S60-7
Sodium hydrogen carbonate NaHCOs3 Merck 6329

Sodium sulfite anhydrous

Sigma S-0505

Sucrose

Merck 1.07651

99




7.4 Acknowledgement

My gratitude goes to the following persons for their help in the completion of this thesis:

To Prof. Dr. Schnabl for giving me the opportunity of carrying out this highly interesting

project. To Prof. Dr. Volkmann for being second examiner.

To Cordula Kruse, Georg Miiller, Peter Helfrich, and Annette Friebe for their guidance and
correction of the thesis. To Helga Peisker and Peter Helfrich for their help and advice in the lab,
as well as Claudio Cerboncini for his support and advice with the computer. I would also like to

thank them and all others for their good cheers and many laughs.

Last but not least, my sincere gratitude to my parents, brother and Martin for their support,

assurance and encouragement whenever [ needed it.

His project was financed by the Ministerium fiir Schule und Weiterbildung, Wissenschaft und

Forschung des Landes Nordrhein-Westfalen.

100



	TABLE OF CONTENTS
	INTRODUCTION
	Pesticides
	The Mitochondrial Electron Transport Chain
	Biological Monitoring
	Bioindication
	Biotests

	The Protoplast Biosensor
	Freezing
	The Role of the Plasma Membrane in Freezing Injury
	Cold-Acclimation
	Cryoprotection

	Aims of the Study

	MATERIALS AND METHODS
	Plant Material
	Non-sterile
	Sterile

	Isolation of Mesophyll Protoplasts
	Vicia faba
	Helianthus annuus

	Evacuolation
	Vicia faba
	Helianthus annuus

	Chlorophyll
	Oxygen-Measurement
	Freezing
	Inhibitors
	Fungicidal Substance
	Statistics

	RESULTS
	Validation of the Oxygen-Measurement System
	Optimisation of Protoplast Isolation
	Isolation of Vicia faba Mesophyll Protoplasts
	Isolation of Helianthus annuus Mesophyll Protoplasts
	Comparison between Vicia faba and Helianthus annuus

	Evacuolation
	Evacuolation of Vicia faba Mesophyll Protoplasts
	Evacuolation of Helianthus annuus Mesophyll Protoplasts
	Comparison between Vicia faba and Helianthus annuus

	Protection of Protoplast Activity
	Cold-Acclimation
	Freezing Helianthus annuus Mesophyll Protoplasts

	Responsiveness of the Biological Units
	Effects of Respiration Inhibition on Protoplasts
	Response of Frozen Protoplasts towards Inhibitors
	Fungicidal Substance


	DISCUSSION
	Validation of the Oxygen-Measurement System
	Optimisation of Protoplast Isolation
	Isolation of Vicia faba Mesophyll Protoplasts
	Isolation of Helianthus annuus Mesophyll Protoplasts
	Comparison between Vicia faba and Helianthus annuus

	Evacuolation
	Protection of Protoplast Activity
	Cold-Acclimation
	Cryoprotectants

	Responsiveness of the Biological Units
	Effects of Respiration Inhibitors on Protoplasts
	Comparison of the Unfrozen and Frozen Protoplasts’ Responses towards Inhibitors
	Fungicidal Substance


	SUMMARY
	ZUSAMMENFASSUNG
	REFERENCES
	APPENDIX
	Abbreviations
	Equipment
	Chemicals
	Acknowledgement


