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Abstract

We give a detailed account on heterotic Eg x Eg orbifold models with N' =
(1,0), D = 6 supersymmetry using the operator approach. It is shown that there
is a weak and a strong form of the level matching condition. The weak form,
which is the only form known in previous literature, allows for classification of
orbifold models whereas the strong form is needed to fix transformation phases
of twisted states under the orbifold twist. It is shown that only the weak form of
the level matching conditions translates into a local matching of fractional parts
of gravitational and gauge instanton numbers from a ten-dimensional viewpoint.
This, in turn, is used to show that all orbifold models considered in this work can
be classified by flat Eg x Eg bundles on orbifolds with the fixed points taken out,
under the only constraint that the fractional parts of gravitational and gauge
instanton numbers match. This directly carries over to M-theory on S'/Z,.

We construct multiple Kaluza-Klein-monopole solutions in Wilson line back-
grounds and verify the result by computing the correct quantum numbers and
comparing to the charge spectrum of toroidal compactifications of the heterotic
string. We propose that the moduli space of a single SU(2) non-abelian instan-
ton on a Kaluza-Klein-Monopole background is given by the t’Hooft ansatz as in
flat space and explicitly show that instantons can become pointlike at orbifold
singularities even though their scale parameter remains finite. The case of N
non-abelian instantons on N Kaluza-Klein-monopoles is analyzed in the limit
where all instantons and Kaluza-Klein-monopoles are located within a region
of scale much smaller than the size of the Kaluza-Klein direction. Based on
index calculations for manifolds with boundary, we argue that this situation is
locally identical to heterotic string theory on Zy orbifold singularities for gen-
eral N in the standard embedding. This implies, that heterotic Eg x Eg orbifolds
with standard embedding allow for small instantons singularities in their moduli
spaces.

Applying these results to orbifold models, we give new evidence that higgsing
of the models leads to smooth K3 compactifications of heterotic Eg X Eg string
theory. Based on index calculations as well as details of the Higgs mechanism in
N = (0,1), D = 6 supersymmetry, we argue that massless modes ascribed to the
supergravity multiplet in ten dimensions, such as the geometric moduli of K3,
have to appear in twisted sectors as massless modes charged with respect to gauge
groups of the orbifold models. Turning to M-theory on S!/Z,, we give further
evidence that these modes are eleven-dimensional bulk modes which have to live
in the interior of the interval. Especially, these modes cannot be localized on the
ends of the eleven-dimensional interval as suggested in the previous literature.
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Chapter 1

Introduction

In our current understanding of the fundamental laws of nature we are faced
with two rivaling theories. At length or energy scales from everyday life up to
the highest energies accessible in laboratory experiments, the standard model of
elementary particle physics with its underlying theory of quantum fields provide
us with physical laws that are established at a remarkable experimental accuracy.
From everyday life length scales on, up to cosmological scales, however, Einstein’s
theory of general relativity provides us with seemingly different fundamental laws
of nature which are also in perfect agreement with all available observations and
experiments and moreover have played a predominant role in modern cosmology.

From the early days of quantum theory and general relativity on, of all the
approaches made by theorists to bridge the gap between those two theories, only
one approach — string theory — reached a level at which it became possible to
build models that are sufficiently similar to the standard model. This theory,
which was initially invented to describe strong interactions and was later found
to include gravitational interactions as a byproduct, is an inherently quantum
theory, that is, its results can be stated in terms of unitary scattering matrices
or correlation functions. For a brilliant introduction to string theory, the reader
is referred to [76].

In its old formulation, string theory was understood as quantizing the em-
bedding a two-dimensional surface, the string world-sheet, into a target space-
time. Depending on the field content in two dimensions, there are many different
versions of string theory, leading to space-times of various dimensions and sym-
metries. As it turned out, there are in general two types of theories where the
quantization can be carried out in a consistent manner: either a theory contains
tachyons in its space-time spectrum or it shows some amount of space-time su-
persymmetry.

Therefore, string theory models of phenomenological relevance either have to
describe how to get rid of tachyonic excitations, for example by tachyon conden-
sation, or how to break supersymmetry in a consistent manner. Even though
there has been progress in the field of tachyon condensation over the last years,
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8 1. Introduction

in this work, we will focus on the much more evolved field of supersymmetric
theories.

Using the powerful methods of supersymmetry, strong evidence was given
over the last six or seven years that all supersymmetric string theories are in
fact deeply related and can be viewed as different instances of one and the
same theory. Even more, this whole of a theory contains in its various limits
supersymmetric Yang-Mills theories as well as other, more exotic theories, which
are still lacking a proper understanding.

In this modern viewpoint, the link between the different theories can be
made by the common feature of many supersymmetric models to develop flat
directions in the effective potential of its scalars. The key issue here is, that these
flat directions, if enough supersymmetry is present, can be shown not to be lifted,
neither by perturbative nor by nonperturbative effects. In turn, this implies that
the corresponding scalars remain massless. Therefore, all observables of a model,
like coupling constants or symmetry breaking scales, depend on the vacuum
expectation values of those scalars parameterizing the space of flat directions.
This space, which is in many ways characteristic of a given model, is called the
moduli space.

The importance of the moduli space lies in the fact that the string coupling
constant, which enters string theory as a simple parameter controlling the per-
turbative expansion of scattering amplitudes, in fact has to be understood as a
vacuum expectation value. All string theories contain in their space-time spec-
trum a scalar, the dilaton, the expectation value of which controls the string
coupling. From the modern viewpoint, therefore, all supersymmetric string the-
ories share one moduli space, and the string theories of the old formulation are
simply perturbative expansions around special points, which correspond to zero
coupling, that is, zero expectation value of the dilaton of the respective theory.

Of course, this implies, that to relate different points in the moduli space
one has to rely on very powerful symmetry arguments, since, generically, if the
coupling of one theory is small, the couplings of other theories will be strong and
perturbative calculations are mostly impossible.

Starting from the maximal amount of thirtytwo supersymmetries, there are
two string theories in ten dimensions: type IIA string theory with AV = (1,1),
D = 10 supersymmetry and type IIB string theory with N/ = (2,0), D = 10
supersymmetry. Here N = (a, b) means that the supercharges are comprised by
a positive and b negative chirality D-dimensional spinors. For supergravities, this
implies that there are a negative and b positive chirality gravitinos. Since a spinor
of definite chirality in ten dimensions has sixteen components and transforms as a
real representation of SO(9, 1), there are indeed thirtytwo real supersymmetries.
That type ITA and type IIB theories are deeply related can be shown exactly
by compactifying them on a d-dimensional torus 7. In that case, the results
are simply identical, up to a discrete transformation called T-duality. In light of



1. Introduction 9

this, toroidal compactifications of type ITA or type IIB are called type II theories.
To pass from type IIA to type IIB and vice versa, one simply compactifies on a
circle S = T, applies T-duality and then decompactifies by sending the size of
the S' (which is different from the original one, of course) to infinity. That this
is a well defined operation including nonperturbative effects heavily relies on the
thirtytwo supersymmetries and comprises the difficult part of the argument.

However, there is one more theory, which is only known as a classical super-
gravity (SUGRA): eleven-dimensional N' = 1 supergravity [30]. This theory only
allows for a single massless multiplet containing a graviton, an antisymmetric
three-index tensor and a single gravitino. Indeed, there can be no other super-
symmetric field theory in eleven or higher dimensions, since this theory would
contain massless fields of spin higher than two, for which interacting field theo-
ries could not be constructed in a consistent manner. Upon compactification on
a circle, eleven-dimensional supergravity yields N’ = (1,1), D = 10 supergravity,
which happens to be the low energy description of type ITA string theory. There-
fore, by the same argument as in the type II case, there has to be a well defined
theory in eleven dimensions. Especially, the graviton mode corresponding to the
size of the circle becomes the ten-dimensional dilaton, which relates the string
coupling constant in ten dimensions to the size of the eleventh dimension such
that strong coupling translates into a large size of the circle.

This theory, however, which was termed M-theory, cannot be a string theory
from the old viewpoint, because there is no massless scalar in the spectrum for
eleven non-compact dimensions and, therefore, there is no field the expectation
value of which could serve as a coupling constant to define a perturbative expan-
sion. Because of this problem, there is no perturbative expansion at all, except
for a long wavelength expansion which can only be applied at the classical level
and the definition of the theory as a quantum theory is still obscure.

Now turning to sixteen supersymmetries, there is already a whole plethora
of possibilities. In general, there are states in the spectra of theories with thir-
tytwo supersymmetries that break exactly half of the supersymmetries. These
so called Bogomolnyi-Prasad-Sommerfield (BPS) states play a dominant role in
the arguments used above, since supersymmetry relates their masses to their
charges and protects that relation against all corrections. This is deeply linked
to the fact that BPS multiplets in general have only the square root of the num-
ber of degrees of freedom of an ordinary massive multiplet and, therefore, are
very similar to massless multiplets. Indeed, one of the easiest examples of a BPS
multiplet is given by a massless multiplet propagating on a circle or torus with
nonzero compact momentum.

However, there are three other theories with sixteen supercharges which are
not that easy to relate to M-theory and to the type II theories. All of these have
N = (1,0), D = 10 supersymmetry and are heavily constrained by anomaly
cancellation. The first two are type I and heterotic Spin(32)/Z, string theory
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(sometimes called SO(32) heterotic string theory) which both have Spin(32)/Z,
gauge symmetry. The third one is heterotic Eg x Eg string theory with Eg x Eg
gauge symmetry. Of course, as in the type II case, all these can be compactified
on tori 7% without reducing the amount of supersymmetry. As it turns out, the
heterotic theories are T-dual to each other, where the discrete transformation
involves gauge degrees of freedom and is somewhat more involved as in the type II
case.

As became evident over the last ten years, heterotic compactifications on 7'
are indeed equivalent to type IIA theory compactified on K3 x T2. K3 is a very
special four-dimensional manifold which is curved in such a way that exactly
sixteen of the thirtytwo supersymmetries of type ITA theory remain unbroken.
This “heterotic-type II” duality, in fact, is a highly nontrivial statement, which,
nevertheless, has passed all thinkable consistency checks and, moreover, has led
the way to the discovery of many other dualities and theories such as M-theory.

Our main interest, however, will be in those theories derived from heterotic
Eg x Eg string theory in ten dimensions. This theory can be compactified on
six-dimensional Calabi-Yau manifolds, which (similar to K3) are curved in such
a way that exactly four of the sixteen supersymmetries of the ten-dimensional
theory remain unbroken. Therefore, the resulting four-dimensional theory has
N =1, D = 4 supersymmetry, the generic starting point of supersymmetric
phenomenology in elementary particle physics. Furthermore, the group Eg is well
suited for model building and the presence of the second Eg serves as a natural
candidate for a hidden sector which might trigger supersymmetry breaking.

By applying the power of dualities, Hofava and Witten in [57, 56], based on
earlier work relating heterotic and type I theories by Polchinski and Witten [75],
gave strong evidence that the dynamics of heterotic and type I theories can be
understood from M-theory compactified on an interval S'/Z,. Here the S' is
parameterized by z'' = 2z 4+ 27R and the Z, is generated' by the reflection
gt — —a!! leading to fixed points located at z'! = 0 and z'! = 7R which
comprise the ends of the interval 0 < z'' < wR. The low energy effective
action in the interior of the interval is given by the action of eleven-dimensional
supergravity

1
_21{2 M1l

1 1
where we have left out fermionic degrees of freedom. The first term is the
standard action of the gravitational field with gravitational coupling constant
k. The second and third terms comprise the action of the three-index tensor

In general, discrete transformations on string theories or M-theory include non-trivial
transformations of space-time or world-sheet fields which often can not be understood from
a simple geometric viewpoint. The precise definition of these transformations is absolutely
crucial in the arguments given above. For example, the Z, generator used in M-theory on
St /7 reverses the sign of the three-index tensor Cs.
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C5 with its four-index tensor field strenght K; = dC'3. In the case of ten non-
compact dimensions, the eleven-dimensional manifold with boundary M is just
R x S1/Zs,.

This action is augmented by Super-Yang-Mills actions confined to the two
ten-dimensional “walls” M and M''°, located at the ends of the interval

1
SYM:——4)\2/1 dlox\/ﬁtr (FABFAB)

) M (1.0.2)
' _ 10 ! 1AB
S yel (FABF )

where we again have left out the fermionic terms. A crucial point of this action is
that, by anomaly cancellation, the Yang-Mills coupling constant A is completely
fixed in terms of the gravitational coupling [57, 56, 26]: \? = 47 (47k?)?*/3. There-
fore k is the only dimensionful parameter of the theory. The relation of the size
of the eleventh dimension to the coupling of heterotic Eg x Eg string theory works
as in the case of M-theory on S': strong coupling corresponds to a large interval.

From this, the relation to type IIA theory is clear (see the discussion in
section 4 of [57]): we compactify the heterotic Eg x Eg string theory on S' which
is equivalent to M-theory on S'/Z, x S'. However, this is nothing but type ITA
theory on S'/mZ, since type IIA theory is equivalent to M-theory on S!. Of
course, all these equivalences from the new perspective or dualities from the old
perspective relate weakly coupled theories to strongly coupled ones and, since
only sixteen supersymmetries are preserved, that statement is as non-trivial as
heterotic-type II duality.

Using those results, Witten could show in [106], that already in the simplest
Calabi-Yau compactifications to four dimensions one can adjust the parameters
of the model to meet the observed strength of Newton’s constant, which was not
possible in weakly coupled Eg x Eg models. In fact, such models provide the first
example of brane world models, which have gained much attention in the recent
literature. Because of all this, heterotic Eg X Eg string theory to date is still the
best suited string theory for string phenomenology.

However, the details of the model depend on the chosen six-dimensional
Calabi-Yau manifold and the computation of the four-dimensional spectrum to-
gether together with the interactions pose enormous mathematical problems. To
overcome these difficulties, people have studied orbifold compactifications, which
can be understood as compactifications on Calabi-Yau manifolds in special limits
that make more detailed computations possible. But, when applying orbifolds
to the theory of Hotava and Witten, a general problem arises. Many orbifold
models contain fields which are charged simultaneously under the remnants of
both Eg groups. From an eleven-dimensional viewpoint, these fields are there-
fore simultaneously charged with respect to gauge groups located at different
ends of the interval. The study of this problem, which has been analyzed in
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previous publications [62, 49], comprises the main theme of this work. However,
by arguments given in the following, we have to turn to compactifications to six
dimensions.

The reason for this can be easily understood from simple arguments about
supersymmetric field theories (an introduction to supersymmetric field theories
in various dimensions can be found in appendix B of [76]; [96] contains very
useful tables of multiplets; all details can be found in [79]). Even though /' =1,
D = 4 supersymmetry usually is introduced as the simplest example of super-
symmetric field theories, this is only true at a mere technical level. In terms
of control over the properties of a given model, N' = 1, D = 4 supersymmetric
field theories are by far the most complicated and most difficult to understand
supersymmetric theories, especially when gravity is included: as there are only
four supercharges, half of which become inactive for massless particles, there re-
main only two supercharges to generate a minimal multiplet. Treating one as a
creation operator and the other as a anihilation operator, the minimal multiplet
seemingly consists of only two degrees of freedom, one bosonic and one fermionic.
However, since the CPT conjugates must also be present, it actually consists of
four degrees of freedom. By the same argument, in a massive multiplet, where
we have all four supercharges at our disposal, there are two creation operators
and therefore 22 = 4 states from the beginning. Those, in addition, happen to
be their own CPT conjugates. This implies, that a massless multiplet containing
scalars and fermions (the chiral multiplet) can easily be deformed into a massive
one and there is no reason why flat directions in the effective potential should
not be lifted, even though this might happen only because of nonperturbative
effects.

Furthermore, the inclusion of gravity has a peculiar effect on the moduli space
[14]: the scalar curvature of the moduli space is negative and proportional to the
gravitational coupling constant. This means, that by switching on gravitational
interactions, the moduli space generically will loose some amount of symmetry.
For instance, in N' = 1, D = 6 supersymmetry the moduli space of hypermulti-
plets in general is a quaternionic Kahler manifold, whereas for zero gravitational
interactions it becomes a hyperkihler manifold which is much more restricted
(see [4]).

In the case of eight supercharges, as for example in N' = 2, D = 4 Super-
Yang-Mills theory or N' = (1,0), D = 6 supersymmetric theories, things are
already under much better control. With eight supersymmetries, a massless
multiplet, by the same reasoning as above, consists of at least eight degrees of
freedom whereas a massive multiplet already contains sixteen degrees of freedom.
Therefore, a massless multiplet can not be deformed into a massive one. However,
in case of extended (N > 1) supersymmetry with eight supercharges, that is, in
dimensions below six, there is the possibility of BPS multiplets which preserve
half of the supersymmetries and therefore have only eight degrees of freedom.
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These multiplets are called hypermultiplets (massless or BPS) and contain four
scalar and four spinor degrees of freedom. Since the BPS condition relates mass
and charge, these multiplets are under good control. Furthermore, in dimensions
below six, multiplets containing a vector will necessarily contain scalars which
remain massless as long as the vector remains massless. Hence, there are two
possible sources for scalars parameterizing the moduli space: vector multiplets
and hypermultiplets. In fact, except for certain singularities of the moduli space
(see [4] for a good introduction), the moduli space splits into a product of vector
multiplet moduli space and hypermultiplet moduli space.

In six dimensions, however, we have N' = (1,0) supersymmetry and vector
multiplets contain four vector degrees of freedom and four spinor degrees of
freedom. In addition to the hypermultiplet as in four dimensions, there also
is a tensor multiplet containing a single scalar together with a self-dual tensor
plus fermionic partners. Hence, there is no vector multiplet moduli space at
all and often singular points in hypermultiplet moduli space correspond to a
hypermultiplet being eaten up by a vector multiplet due to the Higgs effect (see
[105] for a thorough account on this). There is, of course, also a moduli space
corresponding to the tensor multiplet, but we will not attempt to consider models
with more than one tensor multiplet and, hence, this moduli space will not be
too important to this work.

Since the problem of fields charged under both Eg factors simultaneously
already appears in heterotic orbifolds in D = 6, it is clear that it is much easier
to analyze the problem in six-dimensional models. In fact, in four-dimensional
models superconformal theories appear which are rather out of reach of present
methods (see [49]). The analysis will be carried out in the following steps.

In chapter 2 we give a detailed and even to some extent pedagogical account
of the studied orbifold models using the operator approach of string theory. We
will focus on abelian supersymmetric symmetric orbifolds and calculate some
examples of six-dimensional models. Special attention will be paid to the level
matching condition, which is the main consistency condition for heterotic orbi-
folds in general. By a detailed and very technical mathematical calculation, we
prove the relation of this condition to fractional instanton numbers in heterotic
Eg x Eg string theory. This relation allows us to show that the above orbi-
folds indeed provide the most general perturbative orbifold models to discuss
the problem of states charged under both Eg groups at the same time.

Chapter 3 is devoted to a detailed study of Kaluza-Klein-monopoles in het-
erotic compactifications. These BPS states develop orbifold singularities in cer-
tain limits. By the arguments given above, this can be used to derive moduli
spaces of heterotic string theories on orbifold singularities. We will study Kaluza-
Klein-monopole solutions as Wilson line backgrounds are switched on and cal-
culate their correct quantum numbers. To make contact to orbifold models, we
will look at gauge instantons sitting on Kaluza-Klein-monopoles.
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In chapter 4, collecting the results of previous chapters, we shed some light
on the low energy effective descriptions of general heterotic orbifold models in
six dimensions. By higgsing the massless spectrum, we give strong arguments
on where the massless modes appearing in orbifold models have to be located
from the viewpoint of M-theory on S*/Z,.

We end by giving conclusions and an outlook in chapter 5.

Some of the results of this work haven been published in

e J. O. Conrad, “On fractional instanton numbers in six dimensional het-
erotic E(8) x E(8) orbifolds,” JHEP 0011 (2000) 022 [arXiv:hep-th/0009251].

e J. O. Conrad, “On fractional instanton numbers in six dimensional het-
erotic E(8) x E(8) orbifolds,” Fortsch. Phys. 49 (2001) 455 [arXiv:hep-
th/0101023].



Chapter 2

Supersymmetric Orbifolds

In this chapter we shall be mainly concerned with instances of superstring theory
which, in a sense to be investigated in this work, can be understood as superstring
theory on tori divided by a discrete Z, symmetry of the tori. To do so we will
consider a special case of the so called “Orbifold Construction” in which a discrete
symmetry of a string theory as a whole is divided out in a consistent manner.

Our focus will be on such constructions in which the orbifolded theory in
turn can be interpreted as the original string theory on an “Orbifold”, that is,
somewhat loosely speaking, on a manifold divided by discrete symmetries. This
enables us, if supersymmetry is preserved, to apply the full power of supersym-
metric effective field theory to the problem.

2.1 Geometric Orbifolds and the Orbifold Con-
struction

Before we begin, we have to make clear the distinction between orbifolds as
geometric objects and the so called orbifold construction of string theory.

In the orbifold construction, a discrete symmetry of a string theory is divided
out in a consistent manner. This is a very general construction in which an
interpretation in terms of geometry is often very obscure. This is the case, for
example, in asymmetric orbifolds, which treat left and right movers of the closed
string in an independent manner [70, 71].

Geometric orbifolds, on the other hand, are generalized manifolds. In the
physics literature, orbifolds are mostly defined as manifolds divided out by a
discrete symmetry group in a global way. At the points or higher dimensional
planes where the symmetry does not act freely, the resulting object will have
singularities, the so called orbifold singularities. In the mathematics literature,
however, orbifolds are defined in a local way. Roughly speaking, they are defined
like manifolds, except that every coordinate patch is diffeomorphic to R¢ divided

15



16 2. Geometric Orbifolds and the Orbifold Construction

by some discrete symmetry group associated to the patch (which may be trivial,
of course). So the physics orbifold is a special case of the mathematics one.

Since all this is standard by now we will not review all details here. The
reader is referred to the introductions available ({74, 60], [76] chapter 16, [4]) or
to the original literature [33, 34].

The Orbifold T%/7Z,

In this work we will consider the orbifold construction for string theory on the
d-dimensional torus 7, dividing by a discrete Z,, symmetry of the torus. This
means that we will perform an orbifold construction that is associated to the
geometric orbifold obtained from the torus by dividing out a Z,, symmetry. This
is most easily accomplished by writing the torus itself as a quotient 7¢ = R4 /Z¢4
where Z? acts as the d-dimensional group of translations (see [34]).

Therefore, we define the (geometric) orbifold as O = R?/S, where S denotes
the space group defined to consist of pairs D = (6, v) of rotations § € SO(d) and
translations v acting like

Dz = (0,v)r :=0x +v (2.1.1)

on an element z € RY. We note that we have equipped R¢ with an euclidian
metric in order to define the rotations. The subgroup A of S of pure translations
consists of elements (T, v) and defines the torus 7% = R%/A. The lattice T of the
torus is given as the image of the origin: I' = A0. It is often convenient to define
a fundamental domain of the torus spawned by a set of generators of the lattice
.

Furthermore, we demand that S acts as a symmetry of the torus, that is, every
element of S maps torus lattice points to other torus lattice points: SI' =T.

The orbifold O = R?/S is to a good extent characterized by the point group
P, defined to be the group of rotations made up of all rotations # appearing in
the elements of S. The orbifold is called abelian, if the point group P is abelian.
In this work we will only look at Z,-orbifolds, that is, abelian orbifolds with
P = Z,. We note that, since I' = ST, we can identify P with the subgroup of S
consisting of all elements of the form (0, 0).

Since we also will have to treat gauge fields, we can assign a gauge trans-
formation to every element of S. As this has to be consistent with the group
laws of S we actually have a group homomorphism from S to the group of gauge
transformations.

Classifying the Elements of the Space Group S

In order to construct Hilbert spaces of string theory we will have to classify
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the elements D of the space group S (see [70]). The first level of classification of
an element (0, v) is given in terms of , the corresponding element of P.

In the following, let # be any nontrivial rotation of P. To classify the trans-
lations v appearing in D = (6,v), let us first look for fixed points

Dzxy=0xy+v=mx (2.1.2)

Let I denote the elements of I left invariant by # and let NV denote the orthogonal
complement of I. From (2.1.2) we have v = (1 — )x,. This implies v € N, since
6 € SO(d) and (1 — 0)w = 0 for any w € I. Therefore, for every element of N
we have an element D of S together with a fixed point of D. On the other hand,
shifting v by (1 — #)u for any lattice vector u € I" just shifts zy by u. Thus, the
number of fixed points in the fundamental domain of the torus is given by the
index of the quotient of N by (1 — 6)T

N
2.1.3
= (249
But if I is nontrivial, there will be elements of I' which are not elements of
N. To deal with this case we decompose a vector v of I' into its parts parallel
to N and 1

v=n+® with ALI,@LN (2.1.4)

Since (1 — #) is invertible on N we can define zo = (1 — §)~'7 + ¢ where t L N
is otherwise arbitrary. This implies 02y = zo — n. We now get

Dzy=0zg+v=x0—N+n+0W=zy+0 (2.1.5)

Shifting 2o by u again corresponds to shifting v by (1 — 6)u.

In conclusion, given any nontrivial rotation 6 together with any torus trans-
lation v € I', we have either v € N corresponding to a fixed point x5 or v ¢ N
corresponding to a fixed plane zq + ¢, 0t = ¢ and W as in (2.1.5).

The Orbifold Construction

We will now describe how to apply the data of the orbifold to superstring
theory on T, beginning with the bosonic worldsheet degrees of freedom X" (o, 7)
with M = 0,...,9 (our conventions will mostly be those of [76]). The worldsheet
coordinates are 0,7 or (z,z) = (exp(—io + 7), exp(+io + 7)). The non-compact
spacetime directions will be labeled by X*, 4 =0,...,9 — d and the compact
ones by X, m=9—-d+1,...,9.

The starting point is the natural action of (#,v) on X:

0,v)X(0o,7) =0X(o,7) +v (2.1.6)
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Using this action, which is a symmetry of the ten-dimensional superstring theory
since rotations and translations are part of the Super-Poincaré group, we can try
to project onto states invariant under all elements D of S.

However, we have to be careful about modular invariance of the string theory,
as we will see in the following. When calculating a one-loop partition function,
that is, the partition function of a string theory on a 2-dimensional torus of mod-
ular parameter 7, we have the possibility of specifying two boundary conditions
G, H € S (for convenience, we will work in the w = o + it frame)

Xo(w+27m) = GX,(w) Xop(w+277) = HX,(w) (2.1.7)

This, of course, only works as long as G and H commute, which we will assume
for now. In the operator formalism, a G boundary condition in ¢ direction
corresponds to a sector of the Hilbert space Hg with G boundary condition
whereas a boundary condition in 7 direction is equivalent to the insertion of the
operator corresponding to H into the expression of the partition function (see,
for example, chapter 7 of [76]).

Therefore, the partition function of the original string theory, truncated to
states invariant under all H € S, is given by

Z(7) = |1§| > Zyu() (2.1.8)

where Z¢ g (7) denotes the partition function with G' and H boundary conditions
as in (2.1.7). All states are clearly invariant, as summing over all H € S and
dividing by |S| corresponds to inserting the complete projection operator onto
S invariant states.

However, the theory has to be invariant under large reparametrizations of
the coordinates, that is, choosing a different set of basis vectors of the lattice
of the torus. This group, denoted as S1(2,Z), is generated by the following two
elements

T: 77 =7+1
1 2.1.9
8 . 7,; — 7/21 = —= ( )
P
It is easy to find out the action of T
Xy(w+271) = GXy(w)
Xo(w+277") = X, (w + 277 + 27) = GX,(w + 277) (2.1.10)

= HGX,(w)

The action of § is more difficult, since we have to perform a coordinate trans-
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formation w' = —7'w = w/7:
Xy (@' +271) = X,, (—“' JT’ 2”) = X, (w+27%) = HX,(w)
= HX () (2.1.11)
Xy (W + 277) = X,, (J"tﬂ) Xy (w—27) = G X ()
=G X, (W)
Altogether, 7 and S act on the partition functions as
T: Zgu(T)— Zauc(T+1) (2.1.12)

S: ZG7H(7A') — ZH,G—1(—1/7A')

This makes immediately clear that the partition function (2.1.8) cannot be
modular invariant, since § maps (2.1.8) into a sum over sectors which are not
present in the original theory. To form an invariant partition function, we there-
fore have to include sectors with nontrivial boundary conditions in the o di-
rection. In the operator approach, this means that we will have to enlarge the
Hilbert space to include these sectors. The modular invariant partition function
now reads

Z(7) = 15] ZZGH (2.1.13)

HeS
GeS

So far, we have been assuming that S is an abelian group, like in toroidal
compactifications. But since rotations and translations do not commute, the
space group of an orbifold is non-abelian. The solution to this problem, which
has been proposed in [33], is based upon the fact that commuting pairs G and
H are mapped by 7 and S to other commuting pairs G’ and H'. Therefore, a
modular invariant partition function can be defined as

Z Z (2.1.14)

GES HeC(G

where C'(H) is the centralizer of H in S, that is, the subgroup of elements
commuting with H. As we will see below, this is a partition function of S
invariant states.

But still, as pointed out in [34] and calculated in detail in [100], this approach
does not necessarily lead to a modular invariant theory. This is due to the fact
that there are modular transformations which leave G and H invariant and
therefore transform Zg y into itself. If these transformations are plagued by
phases, that is, global anomalies, modular invariance is spoiled. For the operator
approach, this will be shown in section 2.3. Even more, as considered in [100],
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there is the possibility of assigning nontrivial phases to the different sectors of the
partition function, which have to be consistent with factorization and modular
invariance of higher loops (which is guaranteed from one-loop in the usual case
studied in this work, see [100, 43]). However, we will not cover these orbifolds,
which are called orbifolds with discrete torsion, and the reader is referred to the
literature [100, 101].

Finally, we turn to the construction of invariant states. As we have seen
above, for each G € S it is easy to construct a Hilbert space HY of states
invariant under each D € C(G). If, however, D is not in C'(G) it transforms the
boundary condition to

DX(w+27) = DGD™' DX (w) (2.1.15)

and therefore it maps the state from Hg to HY,,,_,. Hence, an invariant state
U must be a superposition of states over all Hilbert spaces in the conjugacy
class’ of some G in S [33, 34]

go = €@ Z DY, with 0% € Hg (2.1.16)

81 o ban

where U9, is C(G) invariant. Therefore we have

Tryo O = 00|00
10="> {

\I[OeHO

C
-3 C S (wjofwy)
GeS \I/%GHO

(2.1.17)

Z‘—|01 > Y (ujHolw)

Ge \I’GH HeC(G)
1
—|—Z ) Teno
Ge eCc(@

where HJ denotes the Hilbert space of S invariant states. This shows that
(2.1.14) is the partition function of S invariant states.

Implementing the Orbifold Construction

As we will require supersymmetry to be as minimal as possible (for example
eight supersymmetries in six dimensions and four in four dimensions, see section

1The size of that class is (|S|)/(|C(G)|)
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16.2 of [76]) it is most natural to write the compact directions in complex notation

Z’i — X2i + iX2i+1
ZZ — X2i o 7;X2i+1 (2118)

We let (f,v) act on Z as
(0,v) 7" = ™" 7' 4 o (2.1.19)

The Hilbert space Hg corresponding to the element G = (6, v) is defined by
the boundary conditions

7o +2m,7) = GZ'(0,7) = ¥ Zi (0, 7) + v' (2.1.20)

where Z¢(o,7) denotes the sum of left and right? movers Z(o,7) = Z: (0, 7) +
Z% (0, 7). Therefore, the classification of the Hilbert space, except for the projec-
tion, carries over from the classification of the space group elements as described
above. We note that we have defined the boundary conditions (2.1.20) in a to-
tally left-right symmetric way. Such orbifolds are called symmetric orbifolds. In
asymmetric orbifolds, where the action is defined separately for left and right
movers, states can no longer be classified as above and, as a consequence, the
direct correspondence to geometry is lost [70, 71].

The untwisted sector (of Hilbert space) is defined to correspond to the trivial
element of P whereas the twisted sectors are defined to correspond to the other
elements?.

Before we describe the construction of twisted and untwisted sectors, we have
to discuss some properties of the bosonic worldsheet fields Z: and Z% (where we
will use real notation X7 and X7 when appropriate).

Since the translations act like (2.1.19) on the coordinates Z*, we define the
following action

(8,0)Z},(2) = ™02} (2) + v,

. o . (2.1.21)
(0,v)Z5(2) = R Z1,(Z) + v
But since we want to construct a symmetric orbifold, we define
P =¢, =¢-, and v =0l = (2.1.22)

However, we will keep the notation general till the discussion of the level match-
ing condition in section 2.3.

2We will be a bit sloppy in our notation: usually a tilde denotes the right movers, only
when ambiguities arise we will use subscripts L and R.

3 As the untwisted sector also contains sectors twisted by translations, this terminology is
a bit confusing, but common in the literature.
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The mode expansion is in general given by

!
XMz) =X} — i%prf In z + osz (2,123

O{I
Xp(z)=X3 — i;pg InZ + oSz

where the overall momentum is given by p™ = ™ = %(pi” + p). This implies,
as translations are generated by the overall momentum, that (6, v) acts on Z} g,
like

(6,v)Z1y = ™% Z1 + v

i 2mighy r7i i (2.1.24)
(0,v)ZRo = €7 Zy + VR

Next, we discuss the lattice momenta pgy, in (2.1.23). The winding can be
read off from

X"™o+2m,7)=X"(0+2m,7)+ X (0 + 27, 7)

o (2.1.25)
= X"(0,7) + 21 (P — L)
and we have
~m a’ m m
= 5(17}3 _pL)
(2.1.26)

) 1
" = §(pT+p§%)

It is often convenient to define winding and momentum charge in dimensionless
quantities

o 1/2
w™ = (5) (P — 1)
AN (2.1.27)
m a m m
n- = 2 (5) (pL +pR)

This makes clear that momentum and winding transform like
0, v)w = 0w (0,v)n =0n (2.1.28)

Finally, the most general mode expansion of the bosons in complex notation
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1s
i

. . o ) o,
Z’L(z):Z}—JO—zEp}Jlnz—%z Z —

o TriRTi
Ti€L+¢h
r; 70
_ B o i
7' () =2, —i—p. Inz+1 %
1.(2) Lo 2pL Z 5,25
$;€2—9%,
1 £0
, e (2.1.29)
. . o . ’
70(2) =24, —i—pLInz +1i ud
(%) RO PR Z Foz
Fi€L—dt,
770
. : N at
75(2) = 2y —i—phlnz +1 —2i
7(2) RO 2ZDR Z 5,75
5,€Z+¢%
§;7#0

where Z¢ and Z° are treated as independent fields. In (2.1.29) the monodromies
of the oscillator parts are

Lo 70 = 0 Lo 7)) L2 = L ()
Do 267270) = 70 230 (2)  Fi(267T) = R T (3)

The corresponding boundary conditions in the (o,7) frame are identical. The
boundary conditions for the zero mode parts are more complicated and will be
discussed below (see (2.1.35))

The Virasoro generators are given as*

!

Ly = %%pi + Z Z —riNf:i + Z —siNs‘f + ag
- ,

T €Z+¢h S;EZ—
r; <0 $:;<0
(2.1.31)
~ o'l 5 T 5
LO = B ip%z + E E ’/'ZN;I + E SZNg +0,0
{ FE€L—hy 5 €Z+¢h
7;<0 §;<0

where p? = p™p™ and ag and @, are the vacuum energies which will be calculated
in section 2.2.
The oscillators transform under (6, v) as

Ol = et2midL g 00} — -2 i
T T s s

~1 —|—27Ti¢i ~q ~7 _27m'¢i ~7 (2132)
fa; =e R 0oL =e R

4We will always give the Virasoro generators in the (z,Z) frame and denote them by Lo
and Lg. The corresponding operators in the (o, 7) frame will be denoted by Ty and Tp.
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The Untwisted Sector

The boundary conditions for an element G = (I,v) are X(o + 2m,7) =
X(o,7) + v. Hence, we have to set ¢, = ¢r = 0 in (2.1.29), (2.1.30) and
(2.1.31). Furthermore, we have 2m = v, and, since the wave function of the
string has to be well defined on the torus,

1 = exp(ip™v'™) = exp(in™v'™) = exp(2min™w"™) forall o' €Tl
(2.1.33)
Therefore, we have
1
(NS %F n € 2nl” (2.1.34)

which implies that the lattice momenta (pr, pg) lie in an even self-dual lattice.
In order to construct S invariant states, we have to consider two cases:

e No winding, no momentum: G = (1,0), w =n =0

As this is the trivial element of S, all elements commute with it and the
states have to be invariant under all of them. The zero mode of a state
(2.1.23) is invariant by itself. We have to form an invariant state by exciting
the oscillators in an appropriate way.

e otherwise

Only translations and a limited number of elements containing rotations
(if any) will commute with G. The modes of Hg are the winding and
momentum modes of a toroidal compactification, some of which might be
projected out by the remaining rotations. S invariant states are superpo-
sitions.

However, as these states will have winding or momentum, by making the
volume of the torus big enough (away from enhanced symmetry points),
all those states will gain mass and play no role for the massless spectrum.
We will therefore ignore them in the following.

The Twisted Sectors

According to (2.1.4) we can always write v = i+ 1w and Xy = (1 —0)"'n+1.
If v is not in I then ¢ can be an arbitrary translation invariant under 6. If v € I,
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t is zero. We write the boundary condition (2.1.20) using (2.1.25)
O{I
X(o+2m,71)=X(0,7) + ZWE(pR —pr)
! ! !

e’ e B (0%
=X, — i PL Inz — z;pRlnz + 2%5(1)3 - pr)

= 0X(0,7) + 7+ D (2.1.35)

al

/
:OXO+7’L+u~)—i50lenz—i%0pRln2
! !

=Xo+w-— i%&pL Inz — i%HpRan

where we have neglected oscillator contributions, which have to be invariant
under @ for themselves. Equating the coefficients, we get

al

@ =2r—(pr—pr) =,  Opr=p,  Opr=pr (2.1.36)

If v & I the string can move perpendicular to N, because t is arbitrary in the
plane of I. Only in this case momentum is allowed under the constraint that
translations v’ € I must leave the wave function invariant:

1 = exp(ip™v"™) = exp(in™v™) (2.1.37)

This together with prr L N restricts n to lie in the dual of I with respect to
the orthogonal complement of N.

In conclusion, to characterize a twisted sector corresponding to 6 € P we
have to distinguish whether v € I' is in N or not:

e Given v € N, we have DXy = X, for Xy = (1 — §)~'v. This means that
the center of mass of the string is given by X, that is, the string is tied to
a fixed point. There is no winding an no momentum. Since translations
do not commute with the rotation, states will be superpositions of a given
state with all its images under translation. In addition, there might be
other elements® in the space group which, even up to translations, do
not commute with D. The state will be represented by a state in HY
with the fixed point in the fundamental domain of the orbifold. C(G) is
given by all elements in S that leave the fixed point of G invariant. Since
D(zy + 0z) = z + 00z invariance under C(G) means that the oscillator
excitations of the string have to be invariant under 6. In conclusion, to any
fixed point of some G = (#,v) in the fundamental domain of the orbifold
there is one sector of S invariant states in the twisted sector of 6.

5This happens, for instance, in Z y orbifolds where N is not a prime number. In this case,
there will be unique fixed points of the generator of Z p, whereas some powers of the generator
will have additional fixed points. For example, the standard Z4 twist § & ¢¢ = (1/4,—1/4) on
T* has 2 -2 fixed points whereas 82 has 4 - 4 fixed points. Of these 16 fixed points, only six are
non-equivalent under the space-group, which is easy to find out by direct calculation.
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elf v =n+w ¢ N, we have Dxy = x¢ + @ from (2.1.5). Again, we
get one sector for every plane zp = (1 — #)~'n + ¢ in the fundamental
domain, but now, in addition, we have winding modes given by all possible
w. Furthermore the string can have momentum in the dual I* of I with
respect to the orthogonal complement of N. However, those sectors, which
are often called N = 2 sectors in four-dimensional models, will not be
present in six-dimensional supersymmetric orbifolds and hence we will not
describe them in any further detail.

2.2 Heterotic Eg X Eg and Type IIA Orbifolds

Type ITA Orbifolds

We start by describing the worldsheet fields. As before, we have the world-
sheet bosons Z, and Zg. The sypersymmetric partners are left and right moving
fermions ¥? and ¥’ (both in complex notation as given in (2.1.18)). The central
charges are (c,¢) = (12,12).

Invariance of the worldsheet supercurrent (which, up to constants, is given
as Tp(z) = ¥(2)0X (2) + ¥(2)0X (z) forces us to define®

(9, U)\Iﬂ(z) — 627ri¢iL\I,i(Z) (0’ U)\I’Z(Z) *27T’L¢L\I]Z(Z) (2 , 1)
(6,0)F(2) = # i (z)  (6,0)F(2) = R T(2) -
Therefore, we have for the oscillators
(0,1))\Ilf, _ ezwidﬂnpi (0:7))‘1’?‘; _ 72m¢“1ﬂ
7L il T = (2.2.2)
(G,U)\If:: — e27rl¢R\I;:- (0’,0)\1;'% — _2m¢R\Iﬂ

Since now the transformation of the fermionic vacuum is more obscure, we
bosonize the complex fermions to real bosons

\IIZ( ) — zH"(z) \Ili(z) — e—iHi(z)

. : y 2.2.
Fi(z) = '@ U(z) = e 223

6This point has to be taken with a grain of salt. One might be tempted to allow for a
minus sign on the r.h.s. of these equations. However, we are constructing orbifolds in which
the discrete symmetries we want to divide out stem from continuous symmetries: translations
and rotations, which are part of the Super-Poincaré group of the ten-dimensional superstring
theory. Therefore, allowing a minus sign would break supersymmetry.
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Bozonization allows us to write down the mode expansion of the H and H
fields

N . o
H'(z) = H} —qulnz—l—zzﬁ
ne%
e (2.2.4)
P T
H'(z)=Hi—i¢'Inz+1 -
neEZ
n#0
and the Virasoro generators
1, SN
L=l Y Y0
v (2.2.5)

- 1 ad i
Lo= 50"+ Xi:;m\f;’

where N,Zi is the number of excited states corresponding to the creation operator
7., and ¢ = ¢'q".

The ground states with respect to oscillator excitations are denoted by
|§') =: T O ;o) § €Ty -

(where a sum over 4 is understood and we restrict to transversal variables). The
lattices I';, and I'g have to close upon acting by the ¥ and ¥ operators, that is,

upon adding integers to the ¢* or ¢'. The monodromies of these states are
Hi(ze ™) = H'(z) — 27¢"
~,( , .) ~,( ) . (2.2.7)
H'(ze™™™) = H'(2) + 27§’

and correspondingly
\Ili (2672’”) — eiH"(ze*Z’”') — \IIZ (Z)efQWiqi

~ . . ST (= s ~ . g (2'2'8)
\I,z(2€+27rz) eZH (zet2mi) _ \I’Z(2)6+2mq

I

and we note that this is strikingly different from (2.2.1). For fields ¥ and ¥
of a given monodromy we can write down mode expansions similar to those of
(2.1.29)

i — 2 : L} g — E : i
v (Z) o oTit1/2 v (Z) o 28i+1/2
ri€L+V $;i€L—Vt

- (2.2.9)
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Since this has to be compatible to (2.2.8), we have, in a sector of given mon-
odromy,

) 1 X 1
—¢'=r;+= (mod1) +¢' =s;+~ (mod 1)
2 2 (2.2.10)
- 1 - 1 -
+§ =7 + 3 (mod 1) -G =38 + 3 (mod 1)
which is achieved by
1 .
vV'==—¢" (mod1)
: (2.2.11)
7'=5—q (mod1)
The action of (#,v) is now, from (2.2.1) and (2.2.3),given as
0’,0 i\ — eQm’q%i %
0. 0)|a’) o 7) (2.2.12)
(6,)[7) = 7%
corresponding to
0,v)H (z) = 2w¢" + H(z
(0,0)H(2) = 2n6}, + H'(2) 2213

(0,v)H(z) = 2n¢%, + H'(Z)

As this is just a translation of the bosons, 7% and 4! remain invariant. We note
that, again, ‘O> is invariant under rotations. In addition, since the ¢’ and ¢’ can
be non-integer, the phases ¢’ , must be defined on a interval larger than (0, 27).

The Untwisted Sector of IIA

Type ITA string defines two possible ground states for the worldsheet fermions
for left and right movers each. We define the following vacua for R and NS sectors
together with their worldsheet fermion numbers” F and F':

aal:>F:0

(2.2.14)

vl
B TIRES TS
()]

From these vacua the lattices I';, and I'p are generated.

"This assignment of worldsheet fermion numbers stems from the ghosts which have been
omitted in our discussion. For details, see section 10.4 of [76]
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Type IIA string theory is defined by the GSO-projection®
(NS+,NS+) (R—,NS+) (NS+,R+) (R—, R+) (2.2.15)

where the signs show the values of (—1)F and (—1)¥. This restricts the ¢ and §
to lie in the lattices I'{, g and Tgqq:

Lo = lsom ® [(£3: 3,5, 3) + Tso)]

R (2.2.16)
ISogs) = {(n1,n2,m3,n4) | i € Z,>"n; =0 (mod 2)}

Since I'§q is the root lattice of SO(8), the little group of massless states in
ten dimensions, the R sector contains spinor representations of negative chiral-
ity whereas the R sector contains spinor representations of positive chirality.
The theory is supersymmetric and contains a negative chirality gravitino in the
leftmoving sector and a positive chirality one in the rightmoving sector.

As noted above, (¢r,¢r) must be extended to the interval —27 < ¢rp <
27 since the (¢%,§') are now half-integer valued. Furthermore, § must have a
well defined action on the lattices F§O(s) and should not project out all spinor
representations to preserve some amount of supersymmetry. Let m be a positive
integer for which ™ = 1T (usually we set m = n for Z, orbifolds). We write

i T
PR = % (2.2.17)
and demand
> rir=0 (mod 2) (2.2.18)

which will guarantee that some amount of supersymmetry survives (see section
16.2 of [76]).

The monodromies are
\I’i (26727”)
Ul(ze ™) = +T'(2) T (zet2m) = +0(z) NS sectors

I
<
—~
N
~—
<
—~
N
®
+
N
3
SN—
I
|
<
—~
N
N—

R sectors
(2.2.19)

where the corresponding boundary conditions in the (o, 7) frame change sign.
A general state (before the projection onto invariant states) can be con-

8This theory is denoted as ITA’ in [76]. However, since in the heterotic string we will only let
the rightmoving sector of ITA survive, we choose positive chirality in the right moving sector.
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structed from the following states and creation operators:

left: |q> ® ‘pL> q € FS_O(S)

aj. r; € 7 r; <0

aii $;i €L $; <0

Von n >0

(2.2.20)

right: @) ® |pr) q € Toe

Q. T € Z 7 <0

ak, €L 5<0

A n>0

where the components of p;, and pg are zero in the compact directions. From
the fermionic viewpoint, we have the operators (for n € Z,n > 0)

NS : \Iﬂ;l/an \I’?l/%n ‘?21/24@ v 1/2-n

R: N N v !

-n —-n —n —-n

(2.2.21)

A state then gets a phase
eZwis(é’f’) — eQﬂi(sg’ﬁ)‘i‘Sg’ﬁ)) (2222)

upon a transformation (4, 4). From (2.1.32) and (2.2.12), these phases are given
by

ri €L SiEZ
r;<0 $;<0

DI DI SIRE

(2.2.23)

T €L $; €L
7 <0 §;<0

. | _,\
A= | M N |

From (2.1.31) and (2.2.5) the Virasoro generators transformed to the (o, 7) frame
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are (the vacuum energies for ordinary bosons are all zero)

c dl i i
To:Lo—ﬂ=5§p%+Z D —nNY ) s
tO\RSS w<o

N =

1 = :
+5¢°+ >SN Ny -
i n=l1

(2.2.24)

T fom = L Y S 4 Y e
7

T EL §; €7
7 <0 §;<0

1 N |
+§QQ+ZZnNg -3
i n=1

Since type ITA theory on a torus is modular invariant, we have Ty — Ty = 0
(mod 1) which yields®
-3 =0 (mod 2) (2.2.25)

The projection onto invariant states is given by the constraint

s@? = ¢ (mod 1) for all 6,0) € S (2.2.26)

The Twisted Sectors of IIA

As discussed in section 2.1, a twisted sector of § = (¢r,, ¢r) is further specified
by a fixed point xg in the fundamental domain of the torus. Therefore, we have
to set Xo = x¢ in (2.1.23) and ¢, and ¢g as in (2.1.29) with no momentum and
no winding.

Since the OPE of two supercurrents generates the worldsheet energy mo-
mentum tensor, which for Poincaré symmetry has to remain periodic with re-
spect to o, the supercurrent may be periodic or antiperiodic. Therefore, from
Tr(z) = ¥(2)0X(2) + ¥(2)0X (z), the fermions have to have the same mon-
odromy as the bosons up to +1. Hence, from the monodromy of ¥ and ¥ in
(2.2.8) we get

¢ =p ¢ pery

¢=p+dr  PelR

9Here we have used the fact that the terms containing the momenta pr,r cancel modulo 2: if
we leave the non-compact directions non compact we have no winding and therefore p;, = pg.

If we further compactify them on a torus, modular invariance of the CFT on that torus will
guarantee the cancellation.

(2.2.27)
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for some lattices I'';, and I'z. However, since the modular transformation 7ST
maps (G',H') to (G'H',H') (from (2.1.12)), the ¢ boundary condition of the
untwisted sector G’ just maps to a G'H' boundary condition in the twisted
sector containing G'H'. Therefore, the lattice of the (p,p) is exactly the lattice
of the untwisted sector'® and the GSO-projection for (g, ) is just the untwisted

GSO-projection for (p, p).

following states and creation operators:

left:

right:

Again, from the fermionic viewpoint, we have the operators (for n € Z)

NS : \Iﬂ_n i
NS : \ili_n_m-
R
R: vt

‘?_ L) P € g .

a, ri€L+¢r, i #0
aii s; €L — ¢ 5i £ 0
Y n >0

P+ ¢r) P € Din

&, FEL—¢h  Fi#0
at. 5 €Z+¢y, 5 #0
A n>0

v V'=3+¢7  (mod1)
‘iﬁ_nﬂ;i V=1+¢%  (mod1)
o V= ¢} (mod 1)
L (mod 1)

where the subscript of ¥ or W is less than or equal to zero.

The transformation phases can be read off from

A (
00 =34,

0,9 )
so? =Y "o
1

SN - S NE |+ 0 -6

\riezwg $i€L—pt,

r; <0 ;<0

doONE— > NI |+ + dR)on
\ﬁeZ—dﬂg 5i€L+ ¢

7:<0 §;<0

Hence, a general state can be constructed from the

(2.2.28)

(2.2.29)

(2.2.30)

10This guarantees (2.2.25) for (p,p), a condition that will prove absolutely necessary for
modular invariance in section 2.3 (see (2.3.6)).
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and we have

TO LO 26 pL + Z Z —T'Z'N;.):,i + Z _SiNs i

T €L+¢t si€Z—¢,
;<0 §;<0

%p é1) +ZZnN7 +a0——

(2.2.31)

- - ¢ a1 i ~ nrah
Ty=Lo—o; = 5517?% )| Do ENE A+ ) -ENG
%

Fi€L—¢h 5 €L+oh
<0 5;<0

1, |
+§(p+¢R)2+ZZnNg +ao — 5
i n=1

It remains to calculate the vacuum energies of the twisted bosons. However,
this is an easy problem: worldsheet supersymmetry tells us that the vacuum
energy of a complex boson and a complex fermion cancel each other, given both
obey the same boundary conditions in the (o, 7) frame. Thus, given the complex
boson obeys Z(2¢?™) = Z(z)e?™ | its vacuum energy is minus the vacuum energy
of a complex fermion with ¥(ze?™) = ¥(z)e2™¢*1/2). Upon bozonization the
fermion, because of (2.2.8), will correspond to a real boson of momentum ¢ =
m — ¢+ 3, m € Z with an energy Ty = £¢*> — 5;. Obviously, the lowest possible
value is given for —% <qg< +% and therefore we set m = 0if 0 < ¢ < 1. We
have

1 1 1 1
F=Z2 = - )+ —=-T8 2.2.32
7 =5 (3 ¢) L =lee-n+L - (2.2.3)
Since a complex boson has ¢ = 2 we get
1
ao = 56(1 = 9) (2.2.33)

For the whole twisted sector we therefore have

Zcb — o)
ag = 3 Zﬁbim(l — Pho)

where 0 < ¢% p, < 1 and ¢’ py = ¢4 (mod 1).

(2.2.34)
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Heterotic Eg x Eg Orbifolds

In heterotic string theory the leftmoving fermions W* are replaced by sixteen
complex fermions W, I = 1,...,16 which are equivalent to sixteen leftmoving
real bosons H!. Therefore, we have (c,¢) = (24,12). Upon imposing the ap-
propriate GSO-projection on the H' (see below) this theory describes Eg x Eg
gauge fields.

Therefore, as described in section 2.1, we have to equip the space group S
with a map to the group of gauge transformations. This is accomplished by
amending (0, v) with a gauge shift'! 37 which acts on states like

(B)|state) = Zmip i’ |state) (2.2.35)

where the H! denote the generators of the Cartan subalgebra. In heterotic theory
we therefore write (6, v, 8) instead of (6, v) where it is understood that the (0, v)
is mapped to 8 by a group homomorphism. In view of (2.2.12) the action of
(0, v, 8) will be given by

(0,0, 8)|¢") = €7 |¢") (2.2.36)

for gauge degrees of freedom and exactly like the (6, v) action in case of the other
fields. Given an element D of S with D™ = 1 for some m, the gauge shift mj
corresponding to D™ must be a lattice point of the Eg x Eg lattice!2.

The Untwisted Sector of Heterotic Fg x Eg

As in type IIA theory, we have to define vacua for the bosons H'. In case
of the Eg x Eg string we divide the H! in two groups, ranging from 1 to 8 and
from 9 to 16. We treat both groups like the eight leftmoving H* of the type ITA
theory. Therefore, we have four ground states as in (2.2.14):

‘0>R1 ‘0>N51 |O>R2 |0>N5'2 (2237)

where subscripts 1 and 2 correspond to the first and second group of H! respec-
tively and all ground states are assigned F; = F; = 0. The GSO-projection is
now given by

(NS+) (R+) and (D)1= (-1)f=1 (2.2.38)

' We could also have equipped S with a map to automorphisms of the Eg x Eg root lattice, but
we shall not pursue that approach in this work. As we will see in section 2.5, our construction
describes a quite general class of orbifolds.

12This is a nontrivial statement as the lattice points of root or weight lattices do correspond
to the center of the group, not necessarily to the unit element. But since the center of Eg is
trivial, mB can be any lattice point.
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After applying the projection F} = F, = 0 for the two leftmoving worldsheet
fermion numbers the ¢’ will take values in the lattice I's ® I's where I's is the
even self-dual root lattice of the group Eg (see appendix B.1).

If we had chosen the GSO projection as F; + F5 = 0, which is the only other
consistent choice, the ¢/ would take values in the lattice Iy, which is defined
like I's in (B.1.1), except that I runs from 1 to 16. This lattice is self-dual and
even aswell and consists of the root lattice of the group Spin(32) together with
the weight lattice of the positive chirality spinors of Spin(32). This heterotic
string theory'? is called SO(32) or Spin(32)/Z; heterotic theory and will not be
described any further as only the Eg x Eg theory is directly linked to M-theory.

A general state can be constructed from the following states and creation
operators:

left: |q> Q ‘pL> gelyg®Ty

o r; €7 r; <0

aii S €L 5 <0

v, n >0

(2.2.39)

right: 4) ® |pr) q€Toe

., 7 €7 7; <0

ak, €L 5<0

A n>0

where the components of p; and pg are zero in the compact directions. From
the fermionic viewpoint, we have the operators (for n € Z,n > 0)

NS \I]I—1/2—n \I]Iﬂ/z—n \I’i—1/2—n Z—1/2—n

o o 2.2.40
R: W, W, W, ¥, (2:2.40)
The transformation phases for (é, 0, B) are given by
éaﬁaA Ai / ai oﬁ o
ST =N | DN =Y NS | B
7 KUE% S?E%
(’"‘ s (2.2.41)

s =20 | oNE - NG |+
%

fiEZ §iEZ
7 <0 §;<0

13To be precise, gauge bundles of this theory have the structure group Spin(32)/Zs which
only in the special case of “vector structure” can be embedded into SO(32) (see especially
[107]). This is due to the center of Spin(32) which is Z2 x Zs. SO(32) actually is Spin(32)/Z}
for a different generator of Z) as used in the Spin(32)/Z heterotic string theory [53, 54].
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The Virasoro generators are

A 2D D DR pE
7

ri €L SiEL
ri<0 5;<0
1 16 oo
v
+ §qlq1+ ZZnN;’ -1
=1 n=l (2.2.42)
57 é _ a’l 9 ~ & _ &
71<0 5:<0

1 > .1
+ 50 +3 N aNy - 5
i n=1

Here, by the same reasoning as in the ITA case, modular invariance of heterotic
string theory on the torus gives

¢ —@ =1 (mod?2) (2.2.43)

The Twrsted Sectors of Heterotic Eg x FEg

A general state can be constructed from the following states and creation
operators:

left: |p—ﬂ> pE F8®F8
o r€L+¢, i #0
aii s; €L — ¢t $;#0
Vin n>0
(2.2.44)
right: P+ ér) B € Do)
ak, Si€EL+¢y 5 #0
A n>0
and in the fermionic formulation (for n € Z)
NS: W' ol vI=14+p8"  (mod1)
7 i i S 1 g
NS: v U, V'=5+¢% (modl) (2.2.45)
R: \I!£n+u, ‘I’in,,,f vl =Bt (mod 1)
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where the subscript of ¥ or ¥ is smaller or equal to zero.
The transformation phases for (6,9, ) are given by

s Zw SN = > N[+ -0

T, €L+¢% $;€L—¢%,
ri< 5i< (2.2.46)
0,6, Qi &l & < i\ i
ST =30 S0 NE = YT NE |+ 6+ dh)dh
i FEL—ly 5i€L+ol
7;<0 §;<0
and we have
R L 25 3] D DRI R
i Ti€L+¢L $;€L—¢h
r;<0 $;<0
1 16 oo
I
+§(p—ﬁ)2+ZZnNg +ag—1
=1 n=t (2.2.47)

h-L- =St T | X v X -any

FE€L—¢h 5 €L +oh
7<0 5;<0

1, |
+§(p+¢R)2+ZZnN;§ +ao — 5
% =1

where a¢ and @y are unchanged from type ITA theory (2.2.34).

2.3 Modular Invariance and the Level Match-
ing Condition

As we have discussed in section 2.1, phases occurring for those modular trans-
formations which map sectors to themselves can spoil modular invariance.
Given a transformation G = (A,v) € S with v € N we have D™ = 1 for
some integer m. Therefore, from (2.1.10), 7™ transforms boundary conditions
into itself: 7T™(G,H) = (G, HG™) = (G, H). This implies that the partition
function of any twisted sector must be invariant under 7 +— 7 + m.
Since the general partition function for the Hilbert space HY, is given by

Zg(f) _ Tng qLo—c/24gio—e/24 q= p2mit (2_3.1)
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(see section 7.2 of [76]), invariance under 7 +— 7 + m gives the weak form of the
level matching condition

To—To=0 (mod 1/m) (2.3.2)

However, as it is argued in [34], since Tj — Ty generates the worldsheet trans-
lations in the o direction and all states have to be invariant under o + o + 2m,
we get the level matching condition

To—To=0 (mod 1) (2.3.3)

which includes invariance of the partition function under 7 — 7 + m. As was
shown by an explicit calculation for all modular transformations in [100], invari-
ance of the partition function under 7 — 7 + m guarantees modular invariance
for symmetric orbifolds, therefore (2.3.3) is the only nontrivial constraint on such
orbifolds, to be satisfied for every twisted sector and every fixed point separately.

Type ITA Orbifolds
Writing down the level matching condition gives from (2.2.30) and (2.2.31)
To—T, (mod 1) =

)
:—|—Z Z —TZ'N;J;Z'-’- Z —S,'N:f

€L+t $i€L— ¢ )
r; <0 5;<0

—; D ENE+ Y ENE (2.3.4)

Fi€L—% 5, €L+ek )
7;<0 §;<0
1 9o 1. 9 .
+ E(P— ¢r)” — §(p+ ¢r)” + ap — Go
_ _S(Le,v) . Sg,v)

1 1 _ -
+ 5(192 —¢7) — 5(192 — ¢%) + ag — do

Since (f,v) commutes with itself, the state must be invariant under (#,v) and

we impose 0 = S(La,v) + sﬁg’”) (mod 1) giving

0= %(p2 —#2) — %(ﬁQ — ¢%) +ag — @y (mod 1) (2.3.5)
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But because we are constructing symmetric orbifolds, we have ¢; = ¢ and
ag = ag and therefore the only remaining constraint is

p>—p°=0 (mod 2) (2.3.6)

But since the (p,p) lattice is identical to that of the untwisted sector, this is
nothing but (2.2.25) and the orbifold is modular invariant in any case.

Heterotic Eg x Eg Orbifolds

By the same calculation as in the type IIA case we get from (2.2.46) and
(2.2.47)
TO—T() (mod 1) =
_ _ v Sg,v,ﬁ)

= =5 (2.3.7)
T I N
2 2 R 2
(0,0,8)

As in type ITA, we impose 0 = s} +s§§’”’5) (mod 1) and use ¢;, = ¢ and
ay = ap giving

Ty~ To= 5"~ 7) + 5+ 5 (63— F) (mod 1)

2 (2.3.8)
=0 (mod 1)
Again, we use (2.2.43) from the untwisted sector and get
0=¢’>—p3> (mod ?2) (2.3.9)

the (strong) level matching condition for heterotic symmetric orbifolds. However,
this condition is clearly not invariant under addition of lattice vectors to 3, since,
for 5 =s/N,s € I's ® 'y and an arbitrary lattice vector w € I's ® I'g
2

(B+w)? =B+ w®+ 28w =+ w’ + % (2.3.10)
Since I's ® I'g is an even self-dual lattice, we can find some lattice vector w with
ws = 1. Therefore, as a gauge transformation, (3 is specified by the weak form
of the level matching condition

0=¢*— > (mod2/N) (2.3.11)

Given a lattice vector with ws = 1, the vector 8, = 8 + nw will obey the strong
level matching condition if (by (2.3.10))

2n_

~ ¢* — 5% (mod 2) (2.3.12)
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is satisfied.

In conclusion, a heterotic orbifold is specified by the data of all (8,v,f)
where, at each fixed point corresponding to (6, v, 3), the weak form of the level
matching condition (2.3.11) has to be satisfied. However, the sector of Hilbert
space at that fixed point is only well defined when we add some lattice vector
w € I's ® I's to B such that 5, = B + w satisfies the strong version of the level
matching condition (2.3.8). Since the only place where the addition of w to S
matters in our formulas is the transformation phase defined by 5(9’6’5), we learn
that w is responsible to render the transformation properties of twisted states
consistent.

2.4 Classifying Shift Vectors

As we have seen in the last section, heterotic orbifolds are specified by the
data (6, v, 3), where at every fixed point the (weak) level matching condition
0 = ¢? — 82 (mod 2/m) has to be satisfied. This makes clear that we will have
to show how to classify all possible [ satisfying the relation.

The classification of shift vectors for a single Eg is given in section B.2 of
the appendix. Since the gauge group actually is Eg x Eg, the only symmetry for
which we have to care is the exchange of the two group factors.

In six-dimensional orbifolds, the only generator of Zy consistent with super-
symmetry (2.2.18) is given by

- 1 1
= =, —— 2.4.1
o= (3% (2.4.1)
Therefore, in the twisted sector 8% we have
2k?
The general (weak) level matching condition is
2k sls!
where m > 1 is the smallest integer such that 8™ = 1. Therefore we get
2k* = slsl + sls]  (mod 2N?/m) (2.4.4)
Since for the generator of Zy m is obviously equal to N, we have
2k* = sls! + sisy  (mod 2N) (2.4.5)

To solve this equation, we use the classification of possible Eg gauge shifts as
carried out at the end of appendix B.1. Restricting to orbifolds “without Wilson
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2453 (sh;sd) unbroken gauge group
Ly
2+0  (1,1,0508) E; x SU(2) x Eg
Ly
444 (2,07;2,07) SO(14) x U(1) x SO(14) x U(1)
2+0  (1%0508) E; x U(1) x Eg
246 (12,052,120 E; x U(1) x Eg x SU(3)
8+6 (5/2,(1/2)7;2,12,0°) SU(9) x Eg x SU(3)

Table 2.1: Six-dimensional Zs and Zj orbifolds of Eg X Eg heterotic string theory
“without Wilson lines”.

lines” !, that is, without gauge transformations assigned to pure translations,
from table B.1, we get Z, and Z3 orbifolds as shown in table 2.1.

2.5 D = 6 Orbifolds and Fractional Instanton
Numbers

Here we give arguments as already published in [27] and [28].
The level matching condition (2.3.11)

®* = 2+ 42 (mod 2/N) (2.5.1)

looks very similar to the anomalous Bianchi identity required for the Green-
Schwarz mechanism [50] of heterotic string theory (compare to (3.2.3), see also
chapter 12 of [76])

!

« 1 1
dH = — (tr R? — 3" F? — 30T Fg) (2.5.2)

Indeed, since away from the fixed points heterotic string theory on an orbifold
should look locally like heterotic string theory on a torus and we did not switch
on any B-field backgrounds, equation (2.5.2) should reduce to

1 1
2 — _TrF?4+ —TrF? 2.5.
tr R 30 1+30 r F} (2.5.3)

which even more looks like the level matching condition. In case of the heterotic
Spin(32)/Z, string theory both conditions were shown to be equivalent in [43]

14 As shown at the end of section 3.3, this common terminus is quite confusing, since the
gauge shifts associated to fixed points are not related to Wilson lines.
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and analyzed in [17, 61] (see also [2]). In this case (2.5.3) is reduced to

11 1 1
——— [ trR?=

——— [ TrF? d1 2.5.4
2 812 6087r2/ rF7 - (mod 1) (2.5-4)

and it is only natural to expect a similar condition for the Eg x Eg theory:

11 1 1 11

Level Matching and Fractional Instantons

Indeed, as is shown in appendix A, for an Eg bundle of a shrunken instanton
on a Zy orbifold singularity corresponding to (6, v, 5), the fractional part of the
instanton number is given by

j= -+ 1 /TrFQ:gBQ (mod 1) (2.5.6)
U

60 872
where U is a small neighborhood surrounding the shrunken instanton. Using this
result the heterotic level matching conditions translates into the requirement that
locally the sum of the fractional parts of the gauge instanton numbers match the
fractional part of the gravitational instanton number (which is +1/N for anti-
self-dual curvature, see the computation of (3.1.23)):

11 1 1
~58.2 UtrR2 = —61—0@/UT1"F12 - 6—10@ /UTng (mod 1)  (2.5.7)
Even though this might look trivial from a weak coupling perspective, in light
of M-theory on S!/Z, (2.5.6) fixes the fractional instanton numbers on each Z,
fixed point separately. Therefore, the distribution of the integer part on the two
Zs fixed points is not directly given by (2.5.6) and has to be investigated by
different methods [95, 40, 62, 41].

Fractional Instanton Numbers and Orbifold Classification

As discussed in section 2.2 heterotic orbifolds are specified by the space group
S together with a group homomorphism of S into the group of gauge transforma-
tions. We will show in the following, that this map specifies a flat gauge bundle
on the orbifold where the fixed points have been cut out.

Since in six dimensions supersymmetry requires the twist 6 to be of the form
¢ = (m/N,—m/N) (see (2.4.1)), the twist has no fixed points except for the
origin. Therefore, we have N =T" and the fixed points are isolated points (their
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number is given by (2.1.3)). Hence, the fundamental group m of R* — F is
zero, where F' denotes the set of fixed points. This implies that R* — F is the
universal covering space of (R* — F')/S = O — F, that is, the orbifold with the
fixed points taken out. This further implies (see, for example [22], Chapter III)
that m; of O — F' is isomorphic to S and the map from S to the group of gauge
transformations provides a homomorphism of 7;(O — F) to the gauge group.
This is nothing but the data of a flat gauge bundle'® on O — F (up to gauge
transformations).

In conclusion, we have shown that the orbifolds considered in this work cor-
respond to all possible flat abelian Eg x Eg bundles on the orbifold R? /S with the
fixed points taken out under the only restriction that the sum of the fractional
parts of the gauge instanton numbers (computed from the flat bundle data via
(2.5.1)) match the fractional part of the gravitational one locally for every fixed
point. Since the fractional instanton numbers are computed separately for every
Es, this classification fully applies to M-theory on S'/Z,.

2.6 D =6 Orbifold Examples

Preliminaries in Siz Dimensions

We begin by discussing some generalities of six-dimensional orbifolds. As the
generator of Zy is always given by ¢' = (1/N,—1/N) (see (2.2.18)), its action
on spinors in the R sectors is given by the following table

p34 — ( + % .+ % ) pi ¢i eQm'qbipi

+ + 0
+ - &2 o (2.6.1)
_ + #(_2) a—l — OéN_l

(6]

- = w0
where the transformation phases are given in powers of
a=ew (2.6.2)
Spinors of Spin(4) = SU(2) , x SU(2) 5 will be defined as

(2,1) : (+35,+3) (-3,—3) positive chirality (2.6.3)
(1,2) : (+5,—3) (—3,+3) negative chirality o

15Since on a flat bundle parallel translation around closed paths (with a fixed starting point)
is invariant under continuous deformations of the path, every class in 7; corresponds to pre-
cisely one group element. Since concatenation of two paths corresponds to group multiplication
this is a homomorphism from m; to the gauge group.
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For spinors of SO(8) we then have

SO(8) — SU(2), x SU(2), x SU(2), x SU(2) 4
8, — (2,1;2,1)+(1,2;1,2) (2.6.4)
8— o (1,2;2,1)+(2,1;1,2)

where SU(2), , corresponds to (p',p?) as in (2.6.3) and SU(2), ; corresponds to
(p3, p*). We choose the indices R and H for the latter, since SU(R) will become

the R-symmetry group in D = 6 and SU(2), will harbour the holonomy of the

orbifold, i.e. the orbifold twist. We let U(1), C SU(2), and U(1), C SU(2)y,

act like
(627rigR)(Z3’ Z4) — (627rigRZ3’ eQm’gRZzl)
(eQWiQH)(Zf}’ Z4) — (e2m'gyz3’ e~ 2mien Z4) (2-6-5)

and

(e*™er) (g%, ¢*) = (¢* + or, ¢" + 0r)
2mioH 3 4\ 3 4 (266)
(e™")(¢°,¢") = (¢° + om,¢" — 0r)

Since under Spin(4) = SU(2), x SU(2), a vector X™ transforms as 2 x 2, we
have the following quantum numbers from (2.6.5)

UM)r UMy

Z3 41 41
AREE S B | (2.6.7)
Z3 -1 -1
Z8 -1 41

Of course, all this also applies to U(1), C SU(2), and U(1), C SU(2),.

By our choice of conventions, spinors in the (1, 2) will not be invariant under
the orbifold twist 6 (from (2.6.1)). Hence, the holonomy of the orbifold will
live in SU(2), and the remaining SU(2), will become the R-symmetry group of
the D = 6 supersymmetry (see below). Therefore, we write down states with
quantum numbers of the little group SU(2), x SU(2), x SU(2),

SO(8) — SU(2), x SU(2), x SU(2),
8. — (2,1;2)0+ (1,21)41 + (1,2;1) (2.6.8)
8— - (172;2)0+ (271;1)+1 +(271;1)—1

where a subscript m shows that the state transforms as o™ under the orbifold
twist (from (2.6.1)).
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Since the gravitinos of type ITA are in the 8. and those of the heterotic
theory in the 8, of SO(8), we see that the only surviving gravitinos of the six-
dimensional theory are

(21 ]-a 2)0

2.6.9
(1,2;2) ITA only ( )

Hence, we have N' = (1,1), D = 6 SUSY in case of ITA and N = (0,1),D = 6
SUSY in case of the heterotic string'®. We note that both surviving spinors
transform under their own R-symmetries. Therefore, in case of ITA theory, the
manifest SU(2) , symmetry in (2.6.9) is the diagonal (SU(2); x SU(2) gy )diag Of
both R-symmetries!'”

In these quantum numbers, the supermultiplets of N' = (1,1), D = 6 super-
gravity can be read off from the tables in [96]

SUGRA = (3,3;1)+(3,1;1) + (1,3;1)

+(1,1;1) +(2,2;3+1)

+(3,2:2) + (2,3:2) + (1,2;2) + (2,1;2) (2.6.10)
vector = (2,2;1)+(1,1;3+1)

+(2,1;2) +(1,2;2)

Those of N' = (0,1), D = 6 supergravity are given as

SUGRA = (3,3;1)+(3,1;1) + (3,2;2)

tensor = (1,3;1)+(1,1;1) + (1,2;2)

vector = (2,2:1) +(2 1;2) (2.6.11)
half-hyper = (1,1;2) + (1,2;1)

hyper = 2(1,1;2) +2(1,2,1)

where a single half-hypermultiplet is only possible if its bosons are in a real
representation where the SU(2), representations have to be taken into account.
This is due to CPT symmetry, which guarantees the existence of the CPT-
conjugate half-hypermultiplet of opposite charge quantum numbers.

General Abelian Supersymmetric Orbifolds in Six Dimensions

All Zy orbifolds of T* have been classified in [102]. The only possibilities are
N =2,3,4,6. By graphical, methods one can easily derive the following number

16This implies a gravitino of positive chirality, which is the common choice in literature on
M-theory on S'/Z,.
1"We thank W. Nahm and K. Wendlandt for discussion on that point.
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of separate fixed points

Fixed Points
N\|\Zy Zs 7, Zg
2| 16 (2.6.12)
3 9
216 4
2 4 1

Care has to be taken not to overcount fixed points [39]. For instance, in the Z,
model, the Z,-twist identifies some of the sixteen Zs fixed points with each other
leaving only six separate Zs fixed points.

The ITA Untwisted Sector

We start with the NS, NS sectors, which have vacuum energy —% (see

(2.2.24)). Since the ground states of the NS sectors have (—1)" = —1, we
have to excite with an odd number of fermionic creation operators. The lowest

available operators are (see (2.2.20) and (2.2.21))

o \Ijﬁl/za‘ijﬁl/gaaﬁl:&ﬁl
al: (\11311/2, \I’:/Q)a (\11311/2, \1’61/2% (aip 04{1)a (@311, 5&1) (2.6.13)
a™t: (\11311/% \I’ﬁl/Q): (\1’311/27 qjil/?)a (0‘?117 04:); (5‘9117 d’fl)

where the bosonic operators already produce massive states and we have grouped
together operators that transform as a 2 of SU(2) (see (2.6.7)). This gives the
following invariant states

a%al - \Ijli1/2 111/2‘0>N5,NS
ala ((\1;?11/2’ \p‘ilﬂ), (\1131/2, \I]il/2))‘0>NS,N~S (2.6.14)
atal: ((\11311/2; \I/ﬁ1/2)a (\Il?’—l/% ®f1/2))‘0>N5,1\75

and, in the special case N = 2

aldl : ((\113_1/2, \1’61/2): (\1’3—1/% \ilil/Q)) |0>NS,]\75

o - T (2.6.15)
o 101 1: ((‘Ilil/%\llflﬂ):(\Il?il/2’\11§1/2))|0>]v5’]\f5
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which in their little group quantum numbers of SU(2); x SU(2), x SU(2), are

a®al (2x2,2x2;1)
=(3,3;1)+(3,1;1) + (1,3;1) + (1,1;1)
ozl_?zj : (1,1;2x2)=(1,1;3+1) (2.6.16)
a~lal (1,1;2x 2)=(1,1;3+1)
(atad) =g : (1,1;2x2)=(1,1;3+1)
(@ ta N yog: (1,1;2x2)=(1,1;3+1)

In the R sector and the R sector we have from (2.6.8) the degenerate states

R: 1,2;2),(2,1;1),4,(2,1;1)
i ( o, ( )+15 ( )1 (2.6.17)
R: (271;2)0a(172;1)+1a(172;1)—1
which can be combined to the following invariant states
a®al : (1,2;2)y®(2,1;2), (2 2;3+1)
alé_l : (2: 1; 1)—1 ® (17 2; 1)+1 ( )
atal: (2,1;1)1®(1,2;1) 4 (2 2 1) (2.6.18)
(o' &) n= 251)ne121)0 (2,21
(@™ &)y (2,1;1), @ (1,21); (2,2;1)

where the right column shows quantum numbers of the little group which identify
the states as vectors.

Of course, there are also the states of the NS, R and R, NS sectors, which
provide the (space time) fermionic superpartners of the above states. Altogether,
from (2.6.10), these states combine into the following multiplets

OzO&O . 1 SUGRA
L+alal: 2 vectors (2.6.19)
(a at +ata) oo 2 vectors

The ITIA Twisted Sectors

For the twisted sector 8%, we have ¢! = (k/N, —k/N). This implies that, if we
compute the 0V % = §~* twisted sector by using ¢* = (—k/N,k/N), we get the
same results as in the kth twisted sector, up to exchanging the : = 3 and 7+ = 4
coordinate, which corresponds to conjugating all representations. Therefore we
will only treat the case k < N/2. If k = N/2, special things happen and we will
mention those cases explicitly.



48 2. D = 6 Orbifold Examples

To compute the worldsheet vacuum energies (2.2.34), we have to normalize
the twist vectors ¢ to

k N—-k
=| =, — 2.6.2
o= (5"3") (2:6.20)
to compute
i kK
Z(/ﬁ — @) = ~ N (2.6.21)
This gives for the Virasoro generators (2.2.31)
1 K21
Ty= .+ 50—+ ==
2 NooNE 2 (2.6.22)
T, = +1(”+¢5)2+——k——1
° 2 N N2 2

From this we find the vacuum states by plugging in the vacuum states (2.2.14)
and then reducing the energies by acting with ¥ and W operators to reach —1/2 <
¢ <+1/2and —1/2 < ¢ < +1/2

. k _ "2 k1
NS +N> F;—]. %’m N 2
LTI I o
, T —
R: |3 3 3—% 3tw) F=0
1 1 1 _k _1_ k —
» 3 s wmstw) F=1 (2.6.23)
1 _1 1 _ k _1,k 0 22 e
e 3-mmztR) F=0 gmP=0
Rio b b b4k b-k) Fo0
1 1 _ 1, k L1_ k —
» »stw 3—w) F=1
11 1 k 1 k — ' 2 —
3-5-3t% 3—%) F=0 §$m’=0
where the last state in each sector is the new vacuum and m? = —p?, is calcu-

lated as if the new vacuum state were a physical state with Ty = Ty = 0. The v
and 7 of (2.2.29) are

NS: vt =0 =44 =(@aatya—y) (modl) 0,
R: v =i =¢ = (0,0, %, _%) (mod 1) -
and we have the following bosonic operators (from (2.1.29))
left : oy Al N O‘Lilc/N aik/N al_i”’”"’ (2.6.25)
right : aty &ik /N dil—f—k/N C~¥?il+k/N dik/N
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and the following fermionic operators (from (2.2.29)) in the respective sectors

]\ZS: \I’L_L1/2 \Ij?il/Q-i—k/N \I’—1/2 k/N \??1/2—19/N %’?1/2%/1\7
NS ‘yli1/2 v? ~1/2—k/N ut 1/2+k/N ‘1’:_)11/2+k/N qjél/?#c/N
1? : ‘%’N ?—Hk/N ‘%l—lc/N ‘?iilc/N \I]iil-i—k:/N
R: \Ifg \IJ k/N s —14k/N \Ij?iH-k/N \IIfk/N
. (2.6.26)
Finally, we have in the NS, NS sector!'®
(T i U o) (8 ks O k) |0>N5,N~5 (2.6.27)

Explicitly, these four states are given as

( ‘0 O 1-— N’N NS ) ® ( |0 Oijlifi]' Nk>NS ) (2628)
% w Dy 0% =1 =) ws

from which we read off

ooy kK 0.0 ko K

In the R, R sector, where we can only act by W% and ¥4,

B R (e Rl X LAES s e 2 Rl 0 (2.6.30)
We have an even number of — signs in the R sector and an odd number of — signs
in the R sector because of the GSO-projection (—1)F = —1 in the leftmoving
sector. The (p', p?) charges of these states add up to (1,0), (0,1), (=1,0), (0,-1)
which, by (2.6.6) and (2.6.7), correspond to the U(1); x U(1)s quantum numbers
(1,1), (1,-1), (—1,-1), (—1,1) and therefore all states combine into a single
vector multiplet.

The IIA Zy Fized Point

Combining our results, a fixed point of a Zy twist, which is not at the same
time'? a fixed point of some other Zy: twist with N’ > N, has precisely N — 1
vector multiplets associated to it, one for each twisted sector.

18In the case N = 2k one has to be very careful, since the NS vacua are degenerate. It
is clear, however, that the only possible excitations are those which change the signs in the
NS, NS vacua.

19Tn that case there are additional fields from the twisted sectors of that twist. But of course,
then the twisted sectors of the Z  twist are also twisted sectors of the Z n twist.
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The Standard Embedding of Heterotic Eg x Eg Orbifolds

As can be seen from the table B.1 the shift vector

Bl = %(12, 0°) (2.6.31)

always fulfills the level matching condition ¢? = 5% (mod 2). As this 3, up to a
Weyl reflection (see appendix B.3), is equal to the ¢ vector, this choice of g is
called the standard embedding?®

The Untwisted Sector (Standard Embedding)

The Virasoro generators (2.2.42) read

1
T():...+_2—1
) 2 (2.6.32)
Ty = ¢ — =
0 T30 5

Similar to the type IIA case (2.6.13), in the NS sector we now have the following
creation operators

a’ @61/2,0451,5/11;72
' (\11311/2, \1’61/2% (aip 0461); (@311’ 5461) (2.6.33)
a (\11311/2, qfil/?)a (aila 0461); (dih dil)

From (2.6.32), the only possible states in the leftmoving sector are

(a'lil’ ai—la az—la 7£1) |0>

o fe2 (2.6.34)

up to projection onto invariant states. Therefore we have to classify ‘q> according

20This can be understood as embedding Zy C SU(2) into Zy C SU(2) C Eg x Eg (see
appendix B.4), to make contact to smooth K3 and Calabi-Yau compactifications, where em-
bedding the SU(n) holonomy of the compact manifold M?™ into an SU(n) subgroup of the
gauge group is also called standard embedding. However, we note that in case of orbifolds,
every shift vector describes an embedding of the Z x holonomy into the gauge group.
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to their transformation properties under 3 (see (B.4.7) and (B.4.12)):

N=2
E7 x SU(2) x Eg
o’ |¢)= (133,1,1)+(1,3,1) + (1,1,248)
o' |¢)= (56,2,1)

(2.6.35)
N > 2

E; x Eg x U(1)
o’ |gy= (133,1)o+ (1,1)o + (1,248),
o' Jg)= (56,1);1+(1,1),
‘Q> = (56,1)_1+ (1,1)12

where vectors with ¢ = 0 have to be omitted. Hence, we have the states

aa° (a’il,’yil)\i'lil/2‘0>1\fs
A TR
a~'a! (a1, 0), (B2, 0%, 5))[0) v (2.6:36)
(a'@")v=s ((@®y,ay), (¥ 1/2’\114 1/2))‘0>NS
(e 'a yos ((0;11; aZy), (qjilﬂ’ @61/2))‘0>N~5

which, except for the v excitation, carry exactly the same quantum numbers as
those of the type IIA theory (2.6.16). The other states are

N=2
@ ‘iﬂél_/Q |q>~® ‘0>NS~ L
041071 : ((‘113,1/2: \1161/2)7 (\IJ?)—l/W qul/?» ‘q> 2 ‘O>N~S
2.6.
N >2 (2:6:37)

a’a® ~“1/2 |q> ® ‘0>NS
olat o (P 1/2,%’4 1/2 ) |2) ®0)
o l@t o (98 1o ¥ 1/2 ‘q> ® |0>NS

where the |q> denote states from (2.6.35) of the respective sector. From the
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supermultiplets (2.6.11), we have

N=2
E; x SU(2) x Eg
alal : SUGRA
tensor
vector  (133,1,1)+(1,3,1) + (1,1,248)
alal hyper  4(1,1,1)
hyper (56,2,1)
(2.6.38)
N > 2
E; x Eg x U(1)
alal : SUGRA
tensor

vector  (133,1)0 + (1,248) + (1,1)
ala '+ atal: hyper  2(1,1),

hyper (1,1) »

hyper (56,1) 1

We note, that the hypermultiplets consist of two half-hypers each, one from the
ata~! sector and one from the a~'@! sector. In addition, the neutral hypermul-
tiplets are in a 2 of SU(2)g as a whole.

The Twisted Sector (Standard Embedding)

Similar to the type ITA case, the gauge shift the the kth twisted sector is
given by 8 = (k/N,k/N,0% 08). Therefore, we have in the 7% sector 8 =
(—=k/N,—k/N,05 0®) and again we get the same results as in the kth sector up
to conjugating all representations.

As the vacuum energies of the bosons Z carry over from the type ITA case,
the Virasoro generators now read

=t so-p) -

T 2 N N7 (2.6.39)
; 6.

T +1(~+¢)2+£_k__1

0= o \P N N? 2

Since the right-moving sectors are identical to those of the type ITA theory, we



2. D = 6 Orbifold Examples 53
only have to discuss the left movers
NS;,NSy: |(—£) 08 ;08 Fi=F=0 %:mQ k1
NSla R2 |(_%)2’ 06 ) (%)8> F1 = F2 = 0 %mQ = % (2 6 40)
Ri,NS, |G—£)%(3)% ;08 FR=FR=0 %:mZ =0
R, Ry : |(% — %)2, (%)6 ;(%)8> Fi=F=0 $m?>=+1
The v and 7 of (2.2.29) are
NS : vl =3+8" =(G+5)(3)% (mod1
I I k\2 6
: = = ((%)%,0 d1
Bz v =5 . ((f 0°) (mo (2.6.41)
NSy: vl =3+p8" =((3)?) (mod 1
Ry: v =p! = (08) (mod 1
and we have the following operators in the respective sectors
ain/N aik/N Cngk/zv at 1+k/N
&3 & &3 i
—k/N —1+k/N —14k/N Q_g/N
NS : ‘1’1_21/2+k/N ‘I’zm k/N \1’3122 \I’z—1é2 (2.6.42)
NSy: WS 18
1{2 . \119 .16 \1,9 .16

Therefore we have the following number of massless states together with their

weights in the NS}, NS, sector

24 ‘1’1—21/2+k/1v(‘1’3 if2 21%) [0y, v,
(1- £, —£ 41,0%0%)
(—£,1- £, 11,05;08)_

2 ‘111—1/2+k/N\I’2—1/2+k/N(a?1k/NaOélc/N) ‘O>N51,N52
((1— §)%0%0%)

2 (a? 1+k/N> o L kN |0>N51,N52

((—%)%,0%0%)

2 N=2 VU \Il%(a 1+k/N,04 1+k/N |0>N51,N52

(1= %)% 06 08)
N k=1 (04341 1/N ‘O>N.S'1,N52
(=) 06 0%)

(2.6.43)

where the +1 is permuted over the ¢38. To derive these states, we explicitly have
to check for invariance under the twist. However, this is easy since the oscillators
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have to transform as 1/N. The states special for £ = 1 have to contain precisely
N — 1 creation operators.
Finally, in the R;, NS, sector there are 2°/2 = 32 massless states

(3 = £)2,(£5)%0%) even number of *—’ (2.6.44)

All states containing « excitations have weights proportional to the U(1)
charge vector (B.4.11) and therefore are singlets under E; x Eg. Their respective
U(1) charges are given by ¢ = 2 —2k/N and ¢" = —2k/N (since ¢" = ¢* +¢* =
—2k/N, from (B.4.8)).

The highest weight of the 56 states without a excitations is

(1— £ —%1,0%0°% (2.6.45)

N
All 56 states without « excitations have the U(1) charge
2k

=1-= 2.6.46
" N (2.6.46)

corresponding to the charge vector (see (B.4.11))
¢ =0G-£1-%0%0% (2.6.47)

Subtracting that vector from the highest weight gives
(1,-1,1,0%08%) (2.6.48)

21+

which is the highest weight of the 56 of E;. Since we have only 56 remaining
states, there are no other representations.

Altogether, after combining with the rightmoving states (2.6.27), the particle
content of a twisted sector is

half-hyper (5

6,1); o/
half-hyper 2(1,1)s_ox/n
half-hyper 2(1,1)_ok/n (2.6.49)
k=1 half-hyper N(1,1)_y/n
N =2 half-hyper 2(1,1);

The Zn Orbifold Fized Point of Heterotic Eg x Eg String Theory
wn the Standard Embedding

For N odd, we have the following particle content (without U(1) quantum
numbers)
hyper (N —1)/2 (56,1)

2.6.50
hyper 3N -2 (1,1) ( )
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We note that all half hypers of twisted sector k, by their U(1) quantum numbers,
have to combine with their CPT conjugates in twisted sector N — £k to full
hypermultiplets.

For N even, we have the following particle content (without U(1) quantum
numbers)

hyper (N —2)/2 (56,1)
half-hyper 1 (56,1) (2.6.51)
hyper 3N -2 (1,1)

Again, all half hypers of twisted sector £ have to combine with their conju-
gates in sector N — k, including the half-hypers of the 2k = N sector which
have to combine among themselves. The only exception is the single (56, 1)
half-hypermultiplet in that sector which is neutral under U(1) and is its own
conjugate.

Finally, in the very special N = 2 case the unbroken group is E; x SU(2) x Eg
and the two generic half-hypermultiplets of U(1) charge +1 combine with the
other two generic half-hypermultiplet of opposite charge into two full hyper-
multiplets in the 2 of SU(2). However, the same happens for the 2 (= N)
special half-hypermultiplets appearing only for £ = 1 and the other two half-
hypermultiplets appearing only for 2k = N. The particle content of the twisted
sector of one fixed point then is

hyper 2 (1,2,1)

(2.6.52)
half-hyper 1 (56,1,1)

To sum up, disregarding U(1) or SU(2) quantum numbers, the particle con-
tent of a Zx orbifold singularity of heterotic Eg x Eg string theory in the standard
embedding is given by

half-hyper N —1 (56,1)
hyper 3N —2 (1,1)

(2.6.53)
The Zs, 8 = 5(5/2,(1/2)7;2,12,0°) Orbifold

This shift vector only fulfills the weak level matching condition ¢? = /2
(mod 2/3) and we choose w = (0%;0,1,0,—1,0°) as a root vector with w-s =
w - 36 = 1. Then, from (2.3.12), we have

= —pft= - = (mod 2) (2.6.54)
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and therefore n = 1 and 8, = +w. At the end of the calculation, we will verify
that this is the correct choice. From table 2.1 we see that the unbroken gauge
group 1is

SU(9) x Eg x SU(3) (2.6.55)

which in general allows for complex representation. This implies that all charged
hypermultiplets will have to combine from half-hypermultiplets of the ' and !
sectors.

The Untwisted Sector

As (2.6.32) and (2.6.33) remain unchanged from the standard embedding,
we only need to write down the decomposition of the adjoint representations
(B.4.20) and (B.4.26)

SU(9) x Eg x SU(3)

o |¢g)= (80,1,1)+ (1,78,1)+ (1,1,8)
o' |g)= (84,1,1)+(1,27,3)
l¢) = (84,1,1) + (1,27, 3)

(2.6.56)

Therefore, from (2.6.34), (2.6.36) and (2.6.37) for N = 3, we have the states

SU(9) x Eg x SU(3)

alal : SUGRA

tensor

vector  (80,1,1)+(1,78,1) + (1,1, 8)
L. hyper 2(1,1,1)

hyper (84,1,1) + (1,27,3)

(2.6.57)

where the charged hypermultiplets now contain the conjugate representations
found in (2.6.56) in their conjugate halves.

The Twisted Sector

Since there are only two twisted sectors, conjugate to each other, we only
have to treat the case 8 = £(5/2,(1/2)%;2,1%,0°).
The Virasoro generators are from (2.6.39) for N = 3

1 14
Ty = “(p— B2 _ =
" ! %(p 7 B (2.6.58)
T, = “(h+ o) — =
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The vacua are
NSlaNSQ : ‘_27(_é)7 ;_ga(_%)2705>
R A o R R
N517R2 : ‘_%7(_é)7 ;_%7(+é)27(%)5>
L (=D -3 (+H2(G)°) F=1,FE=0 £m*>=0
RI:NSQ : ‘_%7(—'_%)7 ;_ga(_%)2:05>
‘_%7(—’_%)7 ;+%7(_%)2505> Fl —O:FQ—l %’mQZ_%
Rk b LG G A=R=0 fmi=i]
(2.6.59)
The v and 7 of (2.2.29) are
NSi: vl =1apl = (L)) (mod 1)
NS;: v =5+8" =(5(5)%(3)°)  (mod1) -
Ry: I =p = (3, (3)%0%) (mod 1)
and we have the following operators in the respective sectors
0‘?12/3 :/3 31/3 0/32/3
&3 & &3 <4
~1/3 ~2/3 O 9/3 @13
) 1 i 2. 3.
NSy : v —2/3 1\ ~1/3 N 173 v 2?3
o \II;_ e \II;_ e \Ili_ﬂ? \P?_Ol{(li 12...16 12...76
NSy : ‘I’—5/6 \I’—I/G ‘11;01{?' \pfos{? \IJ—I/Q \IJ—_l"/'Q_
. 9 3 12...16 12...76
R; : \11_1/3 \I’—2/3 ‘1’—2/3 \11—1/3 5 s
(2.6.61)
Therefore, we have the following massless states
10, 11
NSI7NSQ . (\I!_ 1/37\112 1/3)( 1/6’\Il 1/6 ‘0> (2662)
Ri,NSy: (W0, W) |0)
with the highest weights
NS;,NSy: (+5,+2,(—¢)%+3,+3,—3,0°) (2.6.63)
RlaNSZ: ( 37(+3) a+37+§7_%705)

which comprise a (9,1, 3) (see (B.4.25) and (B.4.19)).

Finally, we come back to transformation properties of these states and the
issue of weak and strong level matching. Either from (2.6.63) or from (B.4.25)

and (B.4.19) we get

(2.6.64)
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which clearly does not cancel the phase of the rightmoving states (2.6.29)

- .(6,0) i(—li9l —omil
eszsR — 627TZ( 31t25) — e 2mig (2665)

However, calculating sy, using 5, = f + w instead of 3, we have

:.(6,0,8) i(446y ! i L
eQTrZSL — 627”(9_"9) — eQTrZQ (2666)



Chapter 3

Kaluza-Klein-Monopoles

In this chapter we will discuss the multiple Kaluza-Klein-monopole solution of
[65] and [92] which is a generalized Taub-NUT space [38, 46] (see generally [37]).
For our conventions and details on the various properties of the solution the
reader is referred to appendix C.

3.1 The Kaluza-Klein-Monopole Solution
The metric of N KK-monopoles is given as (see [78] or [88])

ds’* =U "' (dz* + & - d7)* + Ud7? (3.1.1)
where z* = z* + 27 R is a compact direction and & = 7 is treated as three-

dimensional euclidian space with the standard scalar product. We use the ori-
entation dz' A dz? A d2® Adzt. U and & are defined as

N
U=14+> U  d=)Y & (3.1.2)

I=1 I=1
with .
2 . .
U]: = /_, VX(I)‘]:VU] (313)
|7 — 77|

where we demand the &J; to be divergence free: V -3J = 0. It is clear that W
is not globally well defined and a Dirac string has to emerge from every 77. As
shown in appendix C.1, the last equation in (3.1.3) actually comprises an anti-
self-duality condition on the curvature tensor. This implies the existence of a
hyperkahler structure, derived in appendix C.1.

This space will be denoted as K. Its metric, except for the factors of U and
U~!, is the same metric as it is used in Kaluza-Klein theories on S with the
Kaluza-Klein U(1) potential J. By (3.1.2) and (3.1.3), the solutions are defined
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to have magnetical charge’ N with respect to @ and can therefore be regarded
as as special kind of magnetic monopole for |7] — oco.

As we will see below, as long as the 77 are all distinct, the singularities at
7 = 7y are all coordinate singularities which disappear by a proper choice of coor-
dinates. When we take the limit where all U; become very large simultaneously,
we get

U=> U (3.1.4)

and the metric degenerates to the multi-center Eguchi-Hanson gravitational in-
stanton [37] (denoted by X ) which is known to exhibit a Z,, orbifold singularity
as m of the 7; approach each other.

Most important for string theory (see, for example, [88]), the KK solutions
support N normalizable self-dual harmonic two forms €2;, which locally can be
given as follows (see [78])

Q=d¢ &=U"U(d2* +F-dF) — & - 7 (3.1.5)

Using the vielbein e2 as defined in appendix C.1, we globally have

. 1 .
Q[ = ai(UilU[) (GL AN Gi - Eeijkel N 6E> (316)

The Single KK-Monopole Solution

To unfold the behavior of the solution at ¥ = 7; we study the N = 1 solution
K, and then apply our calculation to the general solution.

First, we give an explicit realization of & in the N = 1 case [55]. We use
spherical coordinates

' =rsindcos
2 = rsindsin g (3.1.7)

22 =rcos?d
set 77 = 0 and write
ds®* = U (dz* + R 1(cos 9 — 1) dp)® + U (dr® + r*(d9” + sin’ 9de?))  (3.1.8)

with R
U=1+ — 3.1.9
2r ( )
Tt is clear that the magnetical charge cannot be zero around every 77, otherwise the @&y

were globally well defined.
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That this solution is a realization of the general metric (3.1.1) is an easy exercise
in spherical coordinates. In the r/R — 0 limit, in the coordinates (71, 1, 72, ©2)
with

o> =ri+1r3=2Rr

4
x
ri = gcos?/2 =7 (3.1.10)
. !
ro = 0sin1/2 =94
the metric (3.1.8) reduces to
ds® = dr? + drj + ride; + rades (3.1.11)
which is the euclidian metric on C? with
2t = ret 22 = rye'¥? (3.1.12)

Since the coordinate transformation (3.1.10) is certainly not singular for r > 0
and therefore well defined on the solution (3.1.8), we see that the single Kaluza-
Klein-monopole has the topology of R*. This implies, of course, that the “com-
pact coordinate” z* does not parametrize a compact direction, since any loop
around z* can be contracted to a point (since the fundamental group of R* is
trivial).

Having a closer look on z*, we rewrite the “translation” z* — z*+ ¢R to the
coordinates (3.1.10)

4

= T —
TR pLte (3.1.13)

Yo =p—F P p2—0¢
Therefore, z¢ — z* + @R acts on (2!, 2?) as
(21, 2%) — (exp(id)2', exp(—id)2?) (3.1.14)

which already is very reminiscent of (2.4.1), the orbifold twist used in chapter 2.

N KK-Monopoles on Top of Each Other

We can easily generalize (3.1.8) to the case for N KK-monopoles Ky with
77 = 0, since we only have to replace & by N&

ds* = U~'(dz* + NR J(cos 9 — 1) dp)? + U (dr® + r*(d9” + sin® 9d¢?)) (3.1.15)

and modify U to
NR
=1+— a1
U + or (3.1.16)
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These formulas are exactly the same as those of the N = 1 case with R replaced
by NR. However, the difference between the two cases lies in the fact that
the z* coordinate is still identified under z* — z* + 27 R. Therefore, the new
coordinates (71, @1, 72, p2) now look like (see (3.1.10))

0’ =r17+r;=2NRr

T
r1 = pcosv/2 Y= NR (3.1.17)
7
= psin9/2 =p——
ry = osind/ p2=¢-~p
but the “translation” z* — z* + @R now acts like
= > +¢/N
TR 7 (3.1.18)
P2 =¢—qzg — p2—¢/N
and the action on (2!, 2?) is
(24, 2%) = (exp(i¢/N)z*, exp(—ip/N)2?) (3.1.19)

which is identical to the orbifold twist of an Zy orbifold fixed point (2.4.1). That
this singularity can not be resolved by a coordinate transformation will be shown
below, as a byproduct of the calculation of the gravitational instanton number.

The Gravitational Instanton Number

It is straightforward but tedious to calculate the first Pontrjagin number of
the single KK-monopole solution

1/1)?
P(K :/ o= 1 <_> / tr R? = —2 3.1.20
1( 1) . 1 9 o x ( )

Since P; is even, K; admits a spin connection. However, as in section 2.5,
to make contact to Yang-Mills instantons, we give that result in terms of the
gravitational instanton number I;, = P; /2

11

LK) = =553 |

tr R = —1 (3.1.21)

Using this result, we can now easily calculate the gravitational instanton num-
ber of N KK-monopoles by the following argument: we start by N monopoles
whose cores at ¥ = 77 are all far apart from each other in units of R. Then
each monopole, in a region of scale R around it, sees a small perturbation of
the metric due to the presence of the other monopoles, which will go to zero by
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some negative power of the distance to the other monopoles (from (3.1.3)). Since
Py = 2 for a single monopole, the integral [ p; limited to a fixed region around
the monopole will approach 2 in the R — 0 limit. Therefore, in this limit, the
whole integral approaches 2/N. But since P, is a topological invariant and the
integrand of (3.1.20) contains only U and four of its derivatives (see (C.1.10) and
(C.1.11) in the appendix) and therefore goes with r=% as r — oo, the integral is
invariant under deformations of R and ;. We therefore have

But, we can go further: as we have seen, at the 7 = 0 point the metric is given
by (3.1.15) and the integral [ p; over this space after taking out the singularity
is 1/N (since the z* direction is only 1/N times as big as for K;). Therefore,
the singularity must account for a gravitational instanton number of N — 1/N.
This calculation stays valid as we move the 77 apart on a scale [ which is much
smaller that that of R: the sum ), U; can be expanded in multipole moments
for r >> [: the leading term is NR/2r and the dipole is by definition kept zero
since it corresponds to a displacement of the center of mass of the ;. Therefore,
all terms except the leading term fall at least as (r/l)~2. Hence, for r >> [, the
space, up to coordinate transformations, approaches (3.1.15) and the integral
over Ky, where the region of scale [ around the origin is taken out, approaches
1/N. But, since the solution in the | << r << R region approaches a flat
metric, the integral over the region of scale [ is a topological invariant as long
as the 7 stay at scale [ or smaller. Since the scale [ region is nothing but the
Eguchi-Hanson multi-center gravitational instanton, we have

1

N
This implies, of course, that the curvature goes to infinity as we let the 77
approach each other. Therefore, the orbifold singularity cannot be removed by
a coordinate transformation.

3.2 Supersymmetry in Low Energy Heterotic
String Theory

To embed the Kaluza-Klein-monopole solution into heterotic string theory and
to make contact to supersymmetric orbifolds, we have to study the conditions
of unbroken supersymmetry in the low energy effective action of heterotic string
theory in ten dimensions. The approach we follow was developed in [97] and used
in the famous series of publications [98, 23, 24]. Since we heavily use knowledge
of low energy effective actions of string theory, the reader is referred to [76],
especially to chapter 12.
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The general outline of the procedure is as follows: we are looking for states
which preserve some amount of supersymmetry and therefore are uncharged with
respect to some supercharges (). For a classical background, this corresponds
to invariance of all fields, bosonic and fermionic, under supersymmetry trans-
formations induced by (). However, since some supersymmetry survives, which
includes some subgroup of the original Poincaré symmetry, all fermionic fields
have to vanish, since fields in spinor representations always transform under ro-
tations. Because supersymmetry transforms bosons into fermions and vice versa,
supersymmetry transformations of bosons automatically vanish in backgrounds
without fermions. The only remaining condition of unbroken supersymmetry is
then the vanishing of the supersymmetry transformations of the fermionic fields.

We start by giving the low energy effective action of the bosonic degrees
of freedom of heterotic string theory in the string frame to lowest order in o/,
but including the Lorentz Chern-Simons term required by the Green-Schwarz
mechanism [50] (in the conventions of [76])

1
S =5 [ %2y/=Gue ™[Ry + 40420V
10

!
— EEHMNPHMNP_ %tI'FMNFMN (321)

with?

!

H = dB + az(t«)gL — U)3y)
Wap, = tr(wHRH — %(wH)3)

Wyy = tl“(AF — %As)

(3.2.2)

The last equations imply

al
dH = Z(W4L — u)4y)

Wi = tI‘(RH)2 (323)

Way = tr F 2
The Yang-Mills coupling constant g,¢ is
= (3.2.4)
This action can be computed in a straightforward way from the action given in

[64] and is a generalization of the N = (1,0), D = 10 supergravity Yang-Mills
theory derived in [16, 25]. Here w® denotes one-form of the Lorentz connection,

2For convenience, the trace symbol used for gauge fields is defined as tr = 1/30 Tr.
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RY its two-form curvature and a superscript or subscript H signals the use of
the string frame metric G, .

To discuss supersymmetry, we need to give the supersymmetry transforma-
tions of the fermions left out from (3.2.1). These can be derived from those given
in the original literature [16, 25], where the action is given in the Einstein frame.
We therefore convert the action to the Einstein frame

s= 1 [av/"G, [RE - —8M<I>8M<I>

2K3%,
11 o Mnp ey MN
where the metric of the Einstein frame G¥; is related to that of the string frame

GP = e *2GH (3.2.6)

(see, for example, [76], section 3.7). The supersymmetry transformations of the
dilatino \, the gravitino ¥, and the gaugino x are given as®

! V2
56 )\E:——e¢/4 _ (I)_+_ FMNPH €
" 92 p Y MNP
1
62Ul =Dyl + = L (T2 NP9 — 96N TPQ) Hy poe® (3.2.7)
8 24/?)10
1
Sy = ——— e ATMNE, (P
4910

where we again have neglected fermions contributions on the rhs.. To convert to
the string frame and to simplify the formulas, we use the definitions [97]

€= e?/8eP
A=e PNF
1
U, = efCP/S (\IIE _ —FE /\E)

Here we have explicitly indicated the dependence of the I'-matrices on the Ein-
stein or string vielbein. After some algebra we arrive at

1
S\ = + —— MNP )
22 ( P Ao e )€

~ 1 3
8. U = Dye — ZTPRH poe 3.2.9
M M 2\/—6’{10 MPQ ( )
1
5€X = — FMNFMNE
4910

3Since the condition of unbroken supersymmetry corresponds to the vanishing of these
supersymmetry transformation, the normalization of the fermions is not of importance.
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Siz Flat Directions

We now focus on solutions which preserve at least eight supersymmetries,
which for six non-compact directions correspond to N' = (1,0) or N' = (0,1),
D = 6 supersymmetry. As in D = 6 orbifolds in section 2.6, we split indices
M=0,...,9into p =0,...,5and a = 6,...,9. We will only consider excited
background fields* that have tensor indices ranging at most from 6 to 9. We use
the epsilon tensors with €. 5 = +1,€5.9 = +1 where underlined indices denote
vielbein indices.

First, we have to discuss the decomposition of the supersymmetry parameter
€. In ten dimensions we take € to be of positive chirality: w;ge = +€ where
wfg = I'%...T? is the chirality operator for the mostly plus convention of the
metric. We split the Clifford algebra® of the ten-dimensional gamma matrices as
Clig = Cly 5 ® Cly4 (see [66]). Then the gamma matrices decompose as

TE=TLQI W€ = _T0...T8
. - S o (3.2.10)
FQ = —w1,5 ® FQ UJO’4 == _Ff et Pf

where w& and w& are the chirality operators of the respective Clifford algebras.
Then we can split the spinor € into its positive and negative chirality parts

with respect to the four-dimensional chirality € = €; + €1, w&ei = #+ey. This

implies, after some algebra

€apeal 6L = F24 ey

€vo.s ] 0L = FT20 €4 (3.2.11)

FabGi =+ %GadechGi

This decomposition allows us to rewrite the supersymmetry conditions 0 =
ded = 0.V = dex. We set € = ex and fix the sign from now on. From (3.2.9),
0 = 6.\ now reads®

1
8d<I> = imGabcdHabc or Habc = :I:Q\/§ 6/{)106abcdad(1) (3212)

4This is clear in case of six non-compact directions. In case of a toroidal compactification
there might be Wilson lines or B-field backgrounds, which however do not affect our arguments
given below.

®We use the mathematical definition of Clifford algebras (see [66]). The gamma matrices
of the algebra Cl, ; fulfill

rert + rtre = —2Get 1

where G has r positive and s negative eigenvalues.
6We have used that I'*v,e = 0 implies v, = 0. Since the metric Gy is positive definite,
0 = I, Tuye = G*v,vpe implies v, = 0.
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After decomposing Fy, into its self-dual and anti-self-dual parts F,, = F,} + F,,
with F; = £1e°F7, we get

bex = ——— (FiT%e, + F %) (3.2.13)

which implies, by € = €4,
Fx=0 (3.2.14)

Finally, plugging (3.2.12) into the equation 0 = §.¥,, gives
1
0=D,es — §Fad84@ e« and 0=D,es (3.2.15)

Setting G2 = e7*GY,, the left equation is equivalent to

where D? is the covariant derivative with respect to the connection of the metric
GY,. As we have already seen in the beginning of section 2.6, chiral spinors of
Spin(4) = SU(2), x SU(2), transform as (2,1) or (1,2). In general, covariant
constancy of a spinor means that the result of parallel transporting the spinor
around any closed loop over the manifold (including not transporting it at all)
will be independent of the chosen loop. This is the same as the holonomy of the
manifold acting trivially on the spinor. Therefore, if there is a covariant constant
spinor, say, in the (2, 1), the holonomy, and with it the curvature two-form, must
be confined to SU(2),. Since the curvature two-form takes values in a two-tensor
of SO(4), which transforms as (3,1)+(1, 3), it must be self-dual or anti-self-dual
in order to fit into a single SU(2). Therefore, if € = €, has positive chirality, the
curvature must be anti-self-dual and, if € = e_ has negative chirality, self-dual.
We note that the curvature tensor, from (3.2.14), shares this property with the
curvature tensor of the gauge connection. Therefore, we have

FE=0 R¥=0 (3.2.17)

where R° has to be evaluated using the metric G°.
Finally, (3.2.12) implies that the equation dH = %’(w@ — wyy) becomes

1 a1

0d =+ ——
2v/2k19 4 4 (

tr R(%Rgl — tr Fachd) Gade (3218)

where [ = V¢V,.

From these equations, there are basically two possibilities to find supersym-
metric solutions of heterotic string theory. The first approach, which is natural
from the viewpoint of string theory as such, is to find solutions perturbatively
in . In this approach, (3.2.18) reduces to [0® = 0 and the other equations are
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F* = RE= = 0. Of course, at first order in o, (3.2.18) will have to be fulfilled
and now reads

1 d'1

[
2v/2k1 4 2 (

tr R R — tr Fy F) (3.2.19)

Therefore, curvature of the metric drives the dilaton to negative values and the
string to weak coupling whereas gauge curvature drives the dilaton to positive
values and the string to strong coupling. Since (3.2.19), by (3.2.3), implies charge
of the three-form field strength Hy,. at first order, this order in o’ is the lowest
order at which one can expect to find the proper quantum numbers of the solu-
tion. Extending a solution of zeroth order to include (3.2.3) is, even though a
bit tedious, possible and can be extended to solutions of M-theory on S!/Z (see
[106] and references therein). We note that the o/-corrections given in (3.2.2),
as noted at the beginning of section 3.2, provide only those corrections needed
for anomaly cancellation, that is, topological consistency of the solution. There-
fore, finding the solutions including all first order o'-corrections is an extremely
difficult task.

The other possibility to solve the supersymmetry conditions and to overcome
the problems of higher order o/-corrections is to consider effects of first order
in o from the beginning and hold the rhs. of (3.2.18) zero by embedding the
spin connection into the gauge connection” [23]. These solutions correspond to
enhanced N' = (4,4) worldsheet supersymmetry and, because of the enhanced
symmetry, one expects the solution to provide an exact solution of heterotic
string theory (see chapter 3 of [23]). However, it is clear, that those solutions
provide only a very limited subset of all states in the spectrum which preserve
eight supersymmetries.

3.3 KK-Monopoles in Heterotic String Theory

In light of the conditions for supersymmetric solutions given in the last section,
Kaluza-Klein-monopoles provide a good candidate solution for heterotic string
theory: they have an (anti-) self-dual spin connection and approach R® x S!
Kaluza-Klein backgrounds at r — oo. To be solutions, they therefore should
appear with their correct quantum numbers in all toroidal compactification of
heterotic string theory from three to eight non-compact space-like directions.
Hence, to identify the solution, one has to analyze toroidal compactifications of
the heterotic string.

"To be precise, at first order in o' one has to embed the generalized connection w,’ + H,%
into the gauge connection; see [23].



3. KK-Monopoles in Heterotic String Theory 69

The Charge Lattice of Toroidal Compactifications

The full spectrum and moduli space of toroidal heterotic compactifications
has been computed in the breakthrough publications of Narain [69] and Narain,
Sarmadi and Witten [72] (see chapters 8 and 11 of [76]). Here, we shall use the
formalism of [67] as used in [84, 85].

In a compactification of the heterotic string on the d-dimensional torus 7¢ we
have to treat the worldsheet bosons (Z%, Z™ H') on an equal footing [69] (we
usem =9—d+1,...,9and p =0,...,9—d): the lattice momenta (K%, k7, k'),
converted to dimensionless quantities as in (2.1.27), have to span an even self-
dual lattice A of the signature (d,16 + d). All such lattices are equivalent to
each other and therefore to a basis lattice Ag by O(d, 16 4 d) rotations and the
moduli space of the heterotic compactification is given as

\ 0(d, 16 + d)

O(Z,d, 16 + d) / O(d) x O(16 + d) (3.3.1)

where O(Z, d,16 4+ d) denotes the subset of O(d, 16 + d) rotations that leave the
lattice Ay invariant.

We choose Ag in a canonical way for Eg x Eg heterotic string theory®: we let
the lattice momenta &’ live on I's x I's and constrain the coordinates X™ to lie
on the torus lattice I';a defined by

!

o'\ 2
X™ = X" 421 <5> (3.3.2)

By the same argument as in the untwisted sector of orbifolds, we have for winding
and momentum (see (2.1.34) and (2.1.26))

A 1 A *
w € %PTd n e 27TPTd (333)

and in dimensionless quantities

N —1/2 1\ +1/2
w™ = (%) " e Lt oy, = (%) A € 2.7 (3.3.4)

The dimensionless lattice momenta are then

1
k% = 0™+ w™ /2 N = E(kRm_{_kLm)

kT =n™ —w™/2 w™ = k% — kT

(3.3.5)

8By the above construction, heterotic Eg x Eg string theory is clearly equivalent to
Spin(32)/Z heterotic string theory upon compactification on 7%
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We let the lattice Ay be given by the vectors

ny, Nim
ko= [wg| = | wm N, W™ € Z, (¢") € T'g x Tg (3.3.6)
ko ¢

where we have used that, on our standard torus, vielbein indices m are identical
to curved indices m. On this lattice, the (d,d + 16) metric L reads

Iy
L=|1, with  L?=1 (3.3.7)
—Iig
and we have, from (3.3.5),
ki Lk = 2n,w™ — ¢'q" = k% — k7 — k"K' (3.3.8)

which shows that the signature of L is (d,d + 16) indeed.

On a general torus, we simply have to define vielbeine e,,”™ and é™,, with
ept el = (53 where the torus metric is given as G, = e;,2 e, ¢ 5@‘ In this case,
the lattice momenta are

Nom Tom, e
w” | =Fk=F | w2 E = € (3.3.9)
k! QI Lis

The key point in this formalism is that the matrix E satisfies EY'LE = L and
therefore is an element of SO(d, d 4+ 16) with respect to the metric L. Defining

é
E= e (3.3.10)
Lig
we have the relations
ETLE=1L EET=1 FET'LE=L (3.3.11)
and
G G
EET = G- EET = G (3.3.12)
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As shown further in [69, 72|, the general lattice A is given as A = EDAg and the
lattice momenta are therefore given as k = (n,w, k) = EDky where

I, X(B+C) 4

D= Iy Cpun = AL AL (3.3.13)

satisfies DT LD = L and therefore also is an element of SO(d, d + 16). The By,
define a constant B-field background and the Al provide a Wilson line back-
ground. For the flat momenta k& = Dk, converted back to (kg, kr, k) via (3.3.5),
we have the perhaps more familiar formulas (see, for example, section 11.6 of

[76])

Frm = N + (+0mm + Bun) = + ¢' AL + AL ALZ w”

2 m*n 2
krm = nm + (—0mn + Bm)% + qIAI + ArlnArlzu; (3.3.14)

k' =q¢" +w™AL

As we have already seen in section 2.6, metric Gj;y, B-field Bysy and the
generators of the Cartan subalgebra A%, correspond to the states

oL p|0) s LT [0) v (3:3.15)

To reveal the properties of the left states, since we have to deal with fermionic
vertex operators, we have to discuss the vertex operators in their different pic-
tures (for all this, see chapter 12 of [76]). Happily, we can treat these precisely
as in the purely bosonic case (see section 12.3 of [76]), where the corresponding
states are

o @l |0) (3.3.16)

This implies (see section 8.3 of [76]), that B,™ measures the winding charge given
by w™ and G,™ measures the Kaluza-Klein or (compact) momentum charge
given by ng,.

Finally, since all charges so far were electric charges, we have to discuss the
possible magnetic charges k appearing in the theory. These are constrained
by the requirement of Dirac-Schwinger-Zwanziger charge quantization in four
dimensions [32, 80, 81, 110, 111] or its higher dimensional analog [73, 99]

Kkez (3.3.17)

Since k = EDk is related to ko by a SO(d, d + 16) rotation, this requirement

is easy to solve by the ansatz k = LEDLk, which implies k& = ko in case of
trivial background fields. Then we have kTk = kI (ED)TL(ED)ko = koLLk,.
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Now, since Ay is an self-dual lattice with respect to the metric L, Lk, must be
an element of Ay. Therefore kg is an element of LA, and reads

~Om ﬁm
ko= |@% | = | tm T, W € Z, (§7) € T'g x Tg (3.3.18)
kg q’

We have chosen our notation such that the quantization condition (3.3.17) is
given as

KTk = N + wnw,, + kTE!
= n0 7AiM + w4+ kEL (3.3.19)

€Z

Therefore, n™ is the magnetic charge with respect to G,™, w™ is the magnetic
charge with respect to B,™ and k' is the magnetic charge with respect to A/.

BPS States in Toroidal Compactifications

As we have seen in section 3.2, the conditions for partly unbroken supersym-
metry, which are called BPS conditions if the solution can be interpreted as a
particle or extended object of a supersymmetric theory, can be very complicated
in the low energy effective theory. In toroidal compactifications of the heterotic
string, however, the conditions have a very simple form. Since their derivation
requires a lot more technology which will not be important for our arguments,
we shall not repeat the derivation here. Instead, the reader is referred to [76],
section 11.6. The condition is simply

o o
ZGmnpgp% = ZmQ (3.3.20)

which states that the square of rightmoving lattice momentum of the compact

directions is given by the mass squared of the state. The Virasoro generators in
the (o, 7)-frame are given (see (2.2.42))

o 1 1
Ty = ZGsz“p;{ + 5Gmnk;"k;g + Ekfkf +N -1
. o 1 1~ 1

(3.3.21)

where N counts all integer valued leftmoving oscillator excitations and N con-
tains all rightmoving oscillator excitations together with the lattice excitations
of the rightmoving fermions. Upon imposing (3.3.20), together with the physical
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state condition T; = To = 0, we have N = 1. Since the 4 directions are indeed
non-compact, we have G, pRp% = Gp}p} and arrive at (see (3.3.8))

2N — 2 = Gk B kY — GrnkTky — k'E'

=k Lk (3.3.22)
= 2npwp' —q'q’
Therefore, the BPS condition for the electrically charged, particle like states is
(since N > 0)
kKT'Lk = 2nd wi* — ¢'¢" > —2 (3.3.23)

Finally, we turn to magnetically charged states dual to those of (3.3.23). As
the electrically charged BPS states were particle like, their charges are integrals
over two-form field strength F,. Therefore, in D-dimensional flat space, the
magnetically dual states have charges with respect to the (D —2)-form dual field
strength (xF3) p_2, whose potential is a (D—3)-form. Therefore, the magnetically
charged states of charge k£ are extended objects of D — 4 space-like dimensions.

This implies that the case of D = 4 is very special, since particles may carry
both, magnetic and electric charges. In addition, the supersymmetry algebra
of N =4, D = 4 supersymmetry allows for an S1(2,Z) symmetry that treats
magnetical and electrical charges on an equal footing and especially contains
an element that exchanges k and k quantum numbers (see [84] and references
therein). In fact, it is conjectured that this symmetry is an exact symmetry of
N =4, D = 4 Super-Yang-Mills theory and heterotic compactifications on 7.
Here we need only the proven fact that the BPS condition can be written in a
manifestly S1(2,Z) invariant way and therefore has precisely the same form as
(3.3.23):

ETLk = 2nmal, — ¢t > —2 (3.3.24)

Even more, since this condition is a statement on supersymmetry alone’, and
supersymmetry is preserved in toroidal compactifications, (3.3.24) is valid for all
D > 4.

Of course, for D > 4, there might in general be other electrically or mag-
netically charged BPS states which are neither particles nor D — 4 dimensional
extended objects. But since we will not need these states, we do not consider
them here in any further detail.

Identifying the Kaluza-Klein-Monopole

As stated in the introduction to this section, to identify the Kaluza-Klein-
monopole solution in heterotic string theory, we have to compute its correct

9This is a very powerful argument, which was used as a key argument for the existence of
M-theory in [104].
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quantum numbers and show that these are consistent with those of toroidal
compactifications. For KK-monopoles with no Wilson lines switched on, the
identification which we shall present has been carried out in [86]. We start by
a compactification on S' = T to D = 9 and identify the 6...9 directions with
the 1...4 directions of the K solution (3.1.1) or (3.1.8). Therefore, the solution
has 8 — 3 = 5 non-compact space-like directions, which is precisely right to carry
magnetic charge of the kind studied above.

By construction, this solution carries one unit of magnetical Kaluza-Klein
charge 7 = 1. To zeroth order in ¢, this would be the only magnetic charge of
the solution, but, as argued in section 3.2, we have to look at first order in o’ to
make contact to string theory. At this order, by (3.2.3), we have

al

dH
4

tr(RH)? (3.3.25)
which, by a detailed straightforward calculation, implies a magnetic charge of
—1 unit with respect to B9, since the single KK-monopole solution carries one
unit of gravitational instanton number [86].

Plugging the quantum numbers w = —1,7 = 1 into the BPS condition

(3.3.24), we have

—2=2N—-2=2i"b,, N=0 (3.3.26)
and we expect this to be the exact result, by the standard argument of nonrenor-
malization of the BPS condition [109] and the fact that all terms of topological
relevance have been included in the calculation. Furthermore, since the calcula-
tion involved only four coordinates, in compactifications on higher dimensional
tori T the calculation goes through as long as we do not switch on background
fields which mix the individual S' factors of T = (S*)<.

Despite these results, it should be clear that simply showing that these states
fit into the spectrum does not necessarily mean that they are actually present.
However, there are indeed very powerful arguments as to why such states have
to be present in the spectrum:

e Enhanced gauge symmetries at critical radii

As a consequence of Narain compactification [69] on a single S! as pre-
sented above, at special points in the moduli space a U(1) symmetry can
be enhanced to a full SU(2) gauge symmetry. This can already be achieved
by varying the size of the S*. The W and W~ gauge bosons which need to
become massless at these points are provided by BPS winding and momen-
tum modes'® with the quantum numbers n = —w=1and n = —w = —1
(see, for example, [76], section 8.3). But since an SU(2) Yang-Mills theory

10That these modes have to be BPS is a trivial consequence of the fact that massless mul-
tiplets for more than eight supersymmetries only have a number of degrees of freedom that is
the square root of the number of degrees of freedom of a massive multiplet.
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higgsed to U(1), especially with high supersymmetry, contains BPS mag-
netic monopoles which precisely have the quantum numbers n = —w = =1,
such states have to be present and are therefore identified with Kaluza-
Klein-monopoles [88]. Since the explicit supergravity solution is only valid
for R much larger than the string scale v/o/, whereas the description of
the Higgs effect in terms of a Yang-Mills theory is only valid as long as the
radius of the S! is of order of the string scale, this identification provides a
very powerful tool, which allows for the calculation of the moduli space of
heterotic string theory on orbifold singularities without gauge background
[88].

e Heterotic Type II Duality

This duality, which by now has become widely accepted and is supported
by great amount of spectacular successes, relates heterotic string theory
compactified on T* to type II string theory on K3 (see every reference on
nonperturbative string theory, such as [76] or [89]). Especially electrically
charged states of one theory are identified with magnetically charged states
of the other theory and vice versa.

e SI(2,Z) S-duality of N =4, D = 4 Super-Yang-Mills and heterotic string
theory on T°

In this duality, which goes back to the old duality conjecture of Montonen
and Olive [68, 48] is now expected to be an exact duality of the above theo-
ries. The action of S1(2,Z) acts on electric and magnetic charges combined
into one vector (k, k). It therefore predicts the existence of whole orbits
of dyonic states, that is, states charged both electrically and magnetically.
As has been shown in [86], KK-monopoles provide the basic solution in the
construction of many of these states.

Of the above arguments, in particular SI(2,Z) duality provides a powerful
test of the identification of the KK-monopole with states in toroidal compact-
ifications: if SI(2,Z) symmetry is expected to hold exactly, states in the same
orbit should share the same degeneracy of the ground state. As we have seen
above in (3.3.26), N = 0 and therefore the degeneracy of the KK-monopole so-
lution should correspond to an elementary string state with N = 0, that is, no
leftmoving oscillators excited. As the rightmoving sector transforms as 8 + 8
of the little group SO(8), in such states, the degeneracy has to be 16.

To calculate the degeneracy of the KK-monopole solution, we have to use
the fact that the solution ist constructed to preserve eight supersymmetries (or-
der by order, of course). That this is possible is a mild assumption since the
solution approaches a flat background and there are no global topological con-
sistency conditions. Indeed, as the solution is smooth and has a nonvanishing
gravitational instanton number, its holonomy is SU(2) and not just a subgroup of
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SU(2). Therefore, it breaks precisely eight supersymmetries. But, as explained
in section 2.5 of [98], this implies the existence of eight fermionic zero modes on
the solution, whose quantization gives a 2* = 16-fold degenerate state (for the
KK-monopole this was computed first in [58]).

Turning on Wilson Lines

Despite of the success of the arguments given above, there remains a little
conundrum: by the formulas (3.3.14) or (3.3.13) of Narain compactification, by
turning on a Wilson line in the 9 direction, we get for a state of quantum numbers
=9 =0
ng =1, wg = —1

7 =g =1
Wy = Wy + $A§ARG = —1 4+ SAJAS (3.3.27)

K=t Ap = Ag

(this can be computed easily as if the charges were electric: only n and w have
to be exchanged). As Wy is the magnetic charge of B9, which is determined
by dH = 2 tr R? (3.2.3), a Wilson line has to induce an abelian anti-self-dual
instanton on the background of the K solution which provides the source for the
H-field. In addition, this solution has now magnetical gauge charge proportional
to the Wilson line. As shown in appendix C.1, (C.1.24) and (C.1.25), this is
provided by the following gauge field

Al = ol U2 et (3.3.28)
where €™ is the vielbein on K as given in (C.1.6) in the appendix and a is the

Wilson background at » — oo. From this we easily get the gauge field strength
(see (C.1.24))

1
Fl=dA'=U? (—8kUeE A e+ §emnk8kUem A eﬂ) al (3.3.29)

and the magnetic gauge charge

1
/ F'= -~ (2nR)d’ (3.3.30)
S2—00 2
and the integral
/ F'AF! = —(27R)%a’d’ (3.3.31)

Up to irrelevant constants, this confirms the quantum numbers of (3.3.27).
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To analyze this background in the core region of the K; region, we transform
to the coordinates of (3.1.10) and take the r — 0 limit, which results in

U2et = R7Y(r2dg, — r2dey) (3.3.32)

Therefore, we have a gauge background whose potential goes linearly with the
distance to the origin. As this calculation goes through for the Ky case, we
learn that we have a non-constant gauge background around the orbifold singu-
larity. However, as we have seen in chapter 2, away from the orbifold singularity
heterotic string theory on orbifolds behaves exactly like a string theory on a flat
space. Therefore, despite other claims in the recent literature [49], even though
the gauge shift corresponding to a fixed point provides exactly the data corre-
sponding to a Wilson line, an orbifold singularity with a gauge shift is totally
different from a orbifold singularity at the core of a KK-monopole in a Wilson
line background. This is also clear from the fact that the Eguchi-Hanson space
Xn supports anti-self-dual abelian instantons after blowing up the orbifold sin-
gularity whereas on K3 the cohomology classes of the S? after blowing up are
not anti-self-dual (see the end of section 2.1 in [17]).

3.4 KK-Monopoles with Non-Abelian Instan-
tons

As we have have seen in section 2.5, the level matching condition of heterotic
orbifolds is deeply related to fractional instanton numbers of non-abelian instan-
tons sitting on orbifold singularities (That these are non-abelian is clear from
the analysis of the last section.). To analyze that relationship in greater detail,
we now study non-abelian instantons on (multiple) KK-monopole backgrounds.

Our starting point is the standard embedding, where the SU(2) anti-self-dual
spin connection is embedded into an SU(2) subgroup!! of Eg x Eg. From the
quantum numbers of the “bare” KK-monopole n = +1,% = —1 and the fact
that the density of the gauge instanton number enters the anomalous Bianchi
identity (3.2.3) with opposite sign compared to that of the gravitational instanton
number, we expect that the magnetic winding number —1 is canceled by the
instanton number of the gauge instanton [86]. As it turns out, for heterotic
strings on T, these states provide precisely the dyonic states predicted by S-
duality in four dimensions [86]. The BPS condition (3.3.24) is

0=2N—-2=2"w, N=1 (3.4.1)

Since now N =1, SI(2,Z) duality, as discussed in the last section, implies that
the degeneracy of this state should be exactly the same as that of an elementary

11 At the classical level this is equivalent to the same construction for the Spin(32)/Zs het-
erotic string theory.
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string state with NV = 1. Since there are 24 leftmoving oscillators available, the
degeneracy is 16 - 24.

In fact, explaining this degeneracy is an extremely difficult problem which
was addressed first in the calculation of the degeneracy of H-monopoles [15, 44].
Later, as it became clear how small instantons of the heterotic Spin(32)/Z
theory are related to the 5-brane solution of heterotic Spin(32)/Zs theory [105],
arguments were given that the desired degeneracy arises from singularities in
the moduli space of the Spin(32)/Zs heterotic 5-brane [105, 90, 77]. In [77], the
problem was also addressed in the context of heterotic type I duality.

All this provides mounting evidence that the degeneracy of an instanton sit-
ting on a KK-monopole indeed is enhanced by a factor of 24 compared to the bare
KK-monopole. However, as we shall see below, Eg x Eg heterotic string theory
behaves quite different from Spin(32)/Z, theory, since deforming the instanton
away from the standard embedding explicitly allows for Eg x Eg instantons to
become pointlike. At such points in the moduli space, Eg x Eg is expected to
undergo a phase transition where the theory at the transition point is a theory
of tensionless strings [83] and an infinite number of states becomes massless.

The t’Hooft Ansatz

We start by the t’Hooft ansatz (see, for example [37], section 9) on the Ky
background ' '
Al = —stG*0,In g (3.4.2)

where A! is considered as gauge potential in the adjoint of SU(2) with field
strength

. . 1 .. . .
Pl = dA'+ e Al p AL (3.4.3)

and the st comprise the (self-dual) hyperkéhler structure'? of Ky (see (C.1.19))
st=etNet+ Ee”kel A ek (3.4.4)

To discuss the t’Hooft ansatz in curved space, we begin by flat R? equipped with
the vielbein e,2 = 62 where we do not have to distinguish flat and curved indices.
Then, upon imposing anti-self-duality F* = —*F*, after a straightforward by
lengthy calculation, the ansatz reduces to

g 'Og=0 (3.4.5)

Anti-self-duality, by the Bianchi identity DF' = 0, implies the fulfillment of the
equations of motion DxF = 0.

12T the context of the t’Hooft ansatz these are often called t’Hooft tensor.
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In curved space, we have to replace all derivatives by covariant derivatives
and get additional terms from the covariant derivative of the hyperkahler struc-
ture. After a moderate, but tricky calculation using the closedness of the st (see
appendix C.1) and some standard vielbein calculus, one again arrives at

g 'Og=0 (3.4.6)
where now [J is the covariant Laplace operator. On the Ky background, (g is
given as (see (C.1.14))

Og=U""(Ag— 23 - dg + (U* + w?)g") (3.4.7)

where a prime denotes differentiation with respect to 2* and A = §;0;. Using
this operator, it seems quite impossible to solve (3.4.6) in general, except for the
case where ¢ is independent of z* and the ansatz reduces to

g U Ag =0 (3.4.8)

Happily, we are already equipped with a solution of this equations, simply by
setting g = U.
From (3.4.2), the explicit form of the gauge potential is

Al =U"0U

. _2 . (3.4.9)
Aj1 =U u)jagU -U GijkakU
From the spin connection of the Ky solution (C.1.9), we have
wii = —5U"0U =—Ad (3.4.10)
Wij4s = —%U72UJjaL'U + %UﬁlfijkakU = —%Ajl

Which identifies the gauge instanton g = U as the standard embedding. There-
fore, from (3.1.2) and (3.1.3), a solution of the t’Hooft ansatz (3.4.6) on the Ky
background is given by

g=1+)_ /2 (3.4.11)

This is a very interesting result, since this ansatz is known to produce divergent
solutions in field theory (see [64, 45], especially for a discussion of solutions of
this kind in string theory). Therefore, it seems that this g is related to the details
of the K background and it is not clear what the moduli space of the instanton
is.

However, as we have seen in section 3.1, in the N = 1 case we have the
possibility to make a coordinate transformation that resolves the apparent sin-
gularity at 7 = 0. From (3.1.10) we have for the euclidian distance p from the
origin ¢> = r? 4+ r2 = 2Rr. Therefore, in that coordinates, g is given as

2

R
9=1+— (3.4.12)
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which is just the ansatz for an SU(2) instanton in flat space of scale R. This
shows that there is absolutely no problem in scaling the instanton to an arbitrary
scale (at least classically), since any singularity at the origin is resolved precisely
as in the flat space case. Now, this argument turned the other way round, we
can make the scale R of the KK-monopole solution arbitrary big, where, now
even in a quantum theory, an instanton sitting at the origin with a fixed scale
A is well approximated by the classical solution. As the scale R gets very big,
the instanton is effectively point like (but still macroscopic with respect to the
string scale) and therefore some part of its moduli space should be identical to
the background space K. This should even continue to hold as we increase the
scale size of the instanton to values where the one in
/\2
o

can be neglected, since in that case the scale size drops out of the calculation and
the moduli space, by the Kronheimer-Nakajima theorem'? of [65], is known to
be identical to X; (even to Xy in case of Ky) as long as the instanton position
is confined to a region of scale less than R within the origin, or, in other words,
as long as the instanton and the KK-monopole sit on top of each other. This
is also compatible with the assumption that the moduli space of an instanton
whose center is very far from the origin of the KK-monopole in units of R and
whose scale size is smaller than that distance locally is R® x S'. In that case g
should approximate

,7_2
g(f,a") =14+ —=24
cosh & — CO8

; d
sinh %

(3.4.14)

4_ .4
Tz,
R

where (7, x§) is the position of the instanton and d = |7 — 7| is the distance to
the instanton core. This formula can be obtained from summing over an infinite
number of instantons located at z* = z§ + 27 RZ (see [45]).

In conclusion, we propose that the eight parameters of the t’Hooft ansatz
give precisely the classical one instanton moduli space on Kj.

Small Eg x Eg Instantons

As we have seen above, classically, there is no problem in scaling an instanton
down to arbitrary small size. In string theory, however, special things might
happen. In case of the Spin(32)/Z, heterotic string theory, this can be analyzed
purely by arguments of NV = (0,1), D = 6 supersymmetry and the effect of

13Tt would be interesting to extend the Kronheimer-Nakajima construction of instantons of
Xn to Ky.
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higgsing on the moduli space. This argument suggests that a nonperturbative
SU(2) enhanced gauge symmetry appears in the zero scale size limit [105]. In
somewhat sloppy words, the instanton shrinks to zero size and turns into a
Spin(32)/Zy 5-brane that carries the SU(2) gauge theory on its worldvolume.
In Eg x Eg string theory from the M-theory on S'/Z, perspective, however,
the 5-brane that appears as the instanton shrinks is sitting at the Eg “end-of-
the-world” 9-brane that produced the instanton. Since M-theory membranes
which stretch from the M-5-brane to the 9-branes have zero length, they have
zero tension from the ten-dimensional viewpoint where they therefore appear as
tensionless strings with an infinite number of massless modes [83].

By the arguments given above, this should be possible for an instanton sitting
on a KK-monopole. Hence, as the degeneracy of this state depends on the precise
form of the moduli space and is especially sensitive to singularities in that space,
the expected enhancement by a factor of 24 is an even more intriguing feature
of heterotic Eg x Eg string theory.

Wilson Lines

Again, as already in section 3.3 for the bare KK-monopole, we might switch
on Wilson lines. As long as we embed the instanton in such a way into Eg x Eg
that the Wilson line commutes with the SU(2) of the instanton, all computations
go though as before. However, the charges in toroidal compactifications do not
at all depend on whether this is the case or not, and therefore we have to explain
what happens if we turn on Wilson lines that do not commute with the instanton.
As explained in [105], a non-abelian instanton in flat space has to turn to zero
size when a Wilson line is switched on. As it is clear from (3.3.32), a Wilson line
at r — oo on a Ky background provides an abelian background on the whole
of the space and therefore the instanton on Ky has to turn to zero size when a
Wilson line with which it does not commute is switched on.

3.5 The Standard Embedding of Heterotic Or-
bifolds

We now will make contact to the standard embedding of heterotic orbifolds as
presented in chapter 2 and especially in the examples of section 2.6. We begin
by presenting standard arguments on the dynamics of KK-monopoles in string
theory and M-theory, such as can be found in [88] or [87].
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Type ITA Theory and M-Theory

We start by looking at a Zy fixed point of type ITA orbifolds. As shown
in section 2.6, such a fixed point supports N — 1 massless vector multiplets of
N = (1,1), D = 6 supersymmetry. As noted in section 3.1, the Ky solution
supports precisely N normalizable anti-self-dual harmonic two forms ;. As
these forms are harmonic, they immediately provide us with N solutions of the
field equations of the B-field By and the RR three-form Cj;yp by the ansatz

Bun =3 Qmnb’'  Chumn =Y _ Qmnch (3.5.1)
I I

(see, for example, [52], chapter 14). Together with the 3N parameters 77, this is
precisely the bosonic content of N vector multiplets which therefore comprise a
N = (1,1) supersymmetric (U(1))" gauge theory in D = 6. Since all modes are
normalizable on Ky, when we bring all the 77 together to a distance of scale R,
the modes will be localized at a scale R.

However, as we bring the 77 close together at a scale [ much below the scale
of R, at this scale around the center of the 7; the solution will look like the
Eguchi-Hanson multi-center gravitational instanton X, and we have to distin-
guish modes which are normalizable with respect to Xy (at the scale ) from
those which are only normalizable at the scale R. In terms of an low energy
effective description at scales above R, the modes of scale [ can be treated by
an effective quantum action whereas the modes of scale R can be treated as
classical background fields, since the interaction between the two should roughly
be controlled by the ratio [/ R.

As discussed in appendix C.2, (C.2.6) and (C.2.9), modes that fall faster
than r~! are normalizable on Ky whereas modes that fall faster than =3/ are
normalizable on Xy (and Ky).

As we have seen in the calculation of the gravitational instanton number in
section 3.1, the function U can be expanded in multipole moments the leading
term of which is given by R/2r where r = |7 — 7| is the distance to the center
of mass coordinate 7. The other terms fall with (r/1)~2 or faster. Therefore,
the N — 1 linearly independent modes that correspond to a variation of the
relative coordinates 77 — 77 without variation of 7y, fall with (r/0)=2 and are
normalizable on Xy whereas the displacement of the center off mass coordinate
Fou goes with (r/1)~' and corresponds to the dipole moment which is therefore
normalizable only on K.

Therefore, the modes normalizable on X will be given by the relative coor-
dinates 7y — ;. There are precisely N — 1 linearly independent such modes.

This essentially carries over to the two-forms ;. Since € is given by (see
(3.1.6))

. 1 .
Q[ = 8Z~(U_1U1) (ez N 6é - §€ijkel VAN €k> (352)
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the difference Q7 — € is controlled by Uy —U; where the R/r term cancels. Since
the remaining terms are falling like (r/l)™" or faster, Q; — € falls like (r/1)~2
or faster and the N — 1 independent forms of {2; — €2; are normalizable on X
whereas ), (2, is normalizable only on Ky and happens to be given by

D Q= —d(U2et) (3.5.3)

In conclusion, the modes normalizable on Xy comprise a (U(1))V~! super-
symmetric gauge theory. At distances of scale R or greater, the system is de-
scribed by a (U(1))Y supersymmetric gauge theory where one U(1) factor can
be attributed to the center of mass motion of the whole solution.

As type II heterotic duality predicts the apparence of an SU(/V) enhanced
gauge symmetry at a Zpy orbifold singularity, precisely when all the vacuum
expectation values of the bosonic scalars vanish (see, for example [104]), we
expect the same to happen for V coincident KK-monopoles, where the enhanced
gauge group is U(N). Since type IIA theory is expected to be equivalent to M-
theory on S', M-theory on a Zy orbifold singularity also leads to an enhanced
gauge symmetry of SU(N) [104], and the same argument applies to N coincident
KK-monopoles in M-theory [88]. Since U(N) = SU(N) x U(1) and the U(1) is
attributed to the center of mass motion, the U(1) is expected to remain free in
the infrared. This is completely analogous to the case U(IV) gauge theories on
D-branes as both cases are dual to each other when type ITA string theory is
dual to M-theory on S' [87]. Of course, this can be applied to type IIB string
theory as well [88].

Heterotic String Theory

Now turning to the standard embedding of heterotic Eg x Eg string theory, we
have shown in section 2.6 that a Zy orbifold fixed point supports the following
half-hypermultiplets (see (2.6.53))

(N —1)(56,1) + (6N — 4)(1,1) (3.5.4)

where the U(1) quantum numbers are as given in (2.6.49).

For N KK-monopoles with the standard embedding, we again have the modes
of the 71 together with those of the B-field, giving N hypermultiplets. In addi-
tion to these, as argued in section 3.4, we have 4N bosonic degrees of freedom
corresponding to the centers of the N instantons. As a single instanton as three
global SU(2) rotations!'* associated to it, we expect one more hypermultiplet per

4From the t’Hooft ansatz, only the global SU(2) (or even Eg) rotations of all instantons at
the same time are manifest. Nevertheless, to compute the multiplet structure of the moduli,
one can treat the N instantons as independent, which can be seen from the explicit construction
in [35].
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instanton, which, as its fourth bosonic component, must contain the scale factor.
Finally, since the instantons are in an SU(2) subgroup of Eg and the adjoint of
Eg decomposes as (see (B.4.7))

Eg — E7 X SU(Q)

248 — (133,1)+ (1,3) + (56,2) (3.5.5)

an embedding of SU(2) into Eg is specified by 2-56 parameters. Hence, we expect
N half-hypermultiplets in the 56 of one Eg controlling the embedding of the N
instantons into Eg. Summing up, we have accounted for N half-hypermultiplets
in the (56,1) and 3N neutral hypermultiplets.

Now, by the same arguments as in the type ITA case, we expect the following
multiplets which are normalizable only on Ky but not on Xy: one hypermul-
tiplet containing the center of mass coordinates of the KK-monopoles together
with the overall B-field mode and one hypermultiplet containing the overall scale
factor of all instantons. That that scale factor A has to be non-normalizable on
X is clear, because by taking the » — 0 limit the one in ¢ = 1+ A... can be
neglected and therefore, since g enters the formulas in a logarithm, the overall
scale drops out. The other three components of the hypermultiplet are the three
global overall SU(2) rotations of the solution, which certainly are normalizable
only on K. This applies as well to one half-hypermultiplet in the (56, 1), since
these modes are responsible for the embedding of SU(2) into Es.

Finally, there remains one hypermultiplet corresponding the center of mass
coordinates of all instantons. Since displacing all the instantons induces a dipole
moment in ¢ and since, in addition, g enters the field by gradient of In g, the
modes are falling like (r/1)~2 and therefore are normalizable.

To verify these results by another method, we compute the number of modes
using Dirac indices for manifolds with boundary. As explained in section 4.1 in
detail, by the high amount of eight supersymmetries in six dimensions, index the-
ory allows for the direct computation of the multiplet content. The computation
of index formulas for Xy can be found in appendix C.3.

Setting Iyy = N — 1/N (and working with self-dual KK-monopoles, for
simplicity), by (C.3.33) and (C.3.34), we arrive at the following indices together
with the number of half-hypermultiplets and their representation in E; x Eg

Index No.  TIrrep.
ind,,, =0 0
indIy,, =2N -2 2N —2 (1,1) (3.5.6)
indp, =Lwy—-14++=N-1 N-1 (56,1)
indp, =4lyy—2+4+=4N-2 4AN-2 (1,1)

(since Dirac indices count zero modes in their complex dimensionality, they count
half-hypermultiplets directly).
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All in all, we have found N — 1 normalizable half-hypermultiplets in the
(56,1) and 3N — 2 normalizable neutral hypermultiplets. N — 1 of the neutral
hypermultiplets belong to supergravity modes which already were present in the
type IIA case. Therefore, we have exactly reproduced the particle content of
the Zy orbifold singularity in the standard embedding. This suggests that the
physics of the scale [ region is indeed described by heterotic string theory on
a Zy orbifold singularity in the standard embedding. Since string theory in
general can be applied to non-compact orbifolds such as C?/Zy (see [35]), we
expect that the above correspondence indeed works for general N.

Since away from the scale [ region the gauge fields exactly look like a single
SU(2) instanton on top of a single KK-monopole, it is clear that the gauge
symmetry is broken to E; in the infrared. It can not be enhanced as in the
type ITA case since massless U(1) vectors, which could serve as generators of
the Cartan subalgebra, are not present. However, to every half-hypermultiplet
in the (56, 1) there is a hypermultiplet containing three modes of global SU(2)
rotations together with a relative scaling mode. By the presence of the scaling
mode, there is the possibility to shrink an instanton down to zero size to produce
a small Eg x Eg instanton which can lead to non-trivial physics in the infrared
(see [83]).

For length scales below [, the gauge symmetry appears unbroken and sym-
metry enhancement might be possible. In fact, as argued in the next chapter
based on [62, 49], some SU(m) subgroup of the gauge symmetries in the orbifold
limit has to be ascribed to enhanced symmetries as in the type II case.



86

3. The Standard Embedding of Heterotic Orbifolds




Chapter 4

Low Energy Effective
Description of D =6 Orbifolds

Having focused on individual orbifold fixed points in the last chapter, we now
turn to the relation of type ITA and heterotic orbifolds as discussed in chapter 2
to smooth compactifications of the respective theories on K3.

4.1 K3 Compactification of the Eg x Eg Het-
erotic String Theory

Since compactification of superstring theories on Calabi-Yau manifolds such as
K3 is a standard topic of introductions on superstring theory, we will not attempt
to review the details of such constructions here (see [76] chapters 17 and 19, or
[62], chapters 12 to 16; for explicit details on K3, the reader is referred to [4]).
Instead, we will use index theory as in [51] and give the relevant features of K3
as appropriate.

The Standard Embedding

In the standard embedding of ' = (0,1), D = 6 heterotic compactifications
the SU(2) anti-self-dual spin connection of K3 is embedded into the gauge group
Eg x Eg simply by choosing an SU(2) subgroup and setting equal the gauge
connection to the spin connection. Hence, the anomalous Bianchi identity (3.2.3)
is dH = 0 and anomaly cancellation by the Green-Schwarz mechanism can be
achieved.

We will use the same conventions as in section 2.6 and in section 3.2. Since we
choose the spin connection is anti-self dual, it will live in the (1, 3) of SU(2), X
SU(2), and, as in the case of the orbifolds, SU(2), will host the holonomy of
K3. This implies, as already explained in section 3.2 on low energy effective field
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theory, that covariantly constant spinors have to live in the (2, 1) representation.
This, however, allows us to compute the D = 6 massless field content purely from
index theory, since the index of Dirac operators is the number of positive chirality
zero modes minus the number of negative chirality ones. As supersymmetry
guarantees that hypermultiplet modes are in the (1,2) of SU(2), x SU(2),, by
(2.6.4), the spinor transforms as (1,2) of SU(2), x SU(2), and the Dirac index
on K3 gives minus the number of zero modes. For vector multiplets, by the same
argument, the Dirac index on K3 gives directly the number of zero modes.
From the field equations in ten-dimensions

DY =TMDy, ¥ =0 (4.1.1)
which, by (3.2.10), decompose as
0 =TI*9,¥ + D, ¥ =9, ® TV — wf; ® [*D,¥ (4.1.2)

it is clear that massless modes in D = 6 correspond to covariantly constant
spinors and hence zero modes on K3 (a very pedagogical introduction into those
matters can be found in chapter 14 of [52]).

We start by the fields charged under the gauge group Eg x Eg, which decom-
poses as in the orbifold case (2.6.35) for N = 2

Eg X Eg — E7 X SU(Q) X Eg
(248,1) + (1,248) — (133,1,1)+ (1,3,1) + (1,1, 248) (4.1.3)
+(56,2,1)

Since the spin connection is embedded in the gauge SU(2), D = 6 vector multi-
plets must be invariant under SU(2) 5 and the D = 6 gauge group is E; times Eg.
The remaining charged fields must originate from the Al and their superpartners
and have to appear in hypermultiplets. For the 2 of SU(2), the Dirac index is
(very useful tables of index polynomials can be found in [3])

1 Dim 2
ind I, = ————try F? 4+ ———_tr R?
nd P, /K3 g2 2 +12-167T2 ! (4.1.4)
Dim 2 o
=Iyy — 19 I,

where Iy, is the instanton number and [, is the gravitational instanton number
as used in (3.1.21). Since the gravitational instanton number of K3 is —24, by the
embedding of the spin connection into the gauge connection, the gauge instanton
number must be —24 as well and we arrive at

indIp = —24 +4 = —20 (4.1.5)

Therefore, we have 20 (complex) zero modes of the Dirac operator in the 2 of
SU(2) on K3. Since a D = 6 hypermultiplet contains two complex spinors, we
arrive at 10 hypermultiplets in the (56, 1).



4. K3 Compactification of the Eg x Eg Heterotic String Theory 89

For the 3 of SU(2) we have
Dim 3

1
indD, = | ——— trg F? + —02 4 Rp2
i Dz /1;3 87T2 r3 + ]_2 . 1671'2 ' (4 1 6)
Dim 3 -
— ALy — T;]L=—4Q4+6:—%

where we have used that trg = 4try and therefore arrive at 45 neutral hyper-
multiplets.
For spinors neutral under SU(2), the index is

1
ind I} = um:—ﬁhz+2 (4.1.7)

k3 12 - 1672
and therefore there are no other hypermultiplets from ten-dimensional gauge
fields. Applied to vector multiplets, every gauge generator in ten dimensions
neutral under SU(2) survives and the gauge group is E; x Eg as expected.

There is, however, the possibility of additional hypermultiplets arising from
the modes ¥, of the ten-dimensional gravitino together with the modes of the
ten-dimensional spinor from the supergravity multiplet. Since both fields arise
from the representation 8, ® 8, of SO(8), the relevant Dirac index is that of the
Rarita-Schwinger operator (see [3])

1 d—24 20
i = — — T wrR2=""I,=-4 4.1.
ind I, /K3 621 rR 5L 0 (4.1.8)

where we used d = 4 for K3. Therefore, we have 20 additional neutral hypermul-
tiplets. Since these stem from the ten-dimensional supergravity multiplet, the
bosons in the hypermultiplets should correspond to the K3 modes of the bosonic
fields in the supergravity multiplet, that is, the metric and the B-field. And
in fact, string theory on K3 has 80 moduli, 38 of which are complex structure
moduli and the rest of which are called Kidhler moduli (see [76], section 19.8).

It remains to discuss the modes of the ten-dimensional supergravity multiplet
which do not result in hypermultiplets. This is not very illuminating (see [51])
and we will simply decompose the B-field into its six-dimensional self-dual and
anti-self-dual parts which, by (2.6.11), makes clear that the ten dimensional
supergravity multiplet decomposes into a six-dimensional supergravity multiplet
and one tensor multiplet.

Summing up, the standard embedding of heterotic Eg x Eg theory on K3
yields the following massless spectrum in ' = (0,1), D = 6 supermultiplets

SUGRA 1
tensor 1
vector  (133,1,1) + (1,1,248)
hyper  65(1,1) + 10(56, 1)

(4.1.9)
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SU(2) x SU(2) Nonstandard Embedding

Since the anomalous Bianchi identity for the ansatz H = 0 reduces to

1 1
tr R? = %TIFIQ-I- %TIFQ2 (4.1.10)
(see (2.5.3)), we can try and embed n; anti-instantons of SU(2) in the first Eg
and ny = —(24 — ny) anti-instantons of SU(2) in the second Eg to solve this
equation. Hence the unbroken gauge group is E; x E; and all index calculations
go through as before except that we will now have to calculate (4.1.4) and (4.1.6)
for the two Eg groups separately. This gives

indPY) = —ny +4 ind By = —4ny + 6 (111)
ind PP = —ny + 4 ind PP = —4ny + 6 o

resulting in n; — 4 half-hypermultiplets in the (56, 1), ny —4 half-hypermultiplets
in the (1,56) and 2n; 4+ 2ny — 6 = 42 neutral hypermultiplets, all stemming from
the gauge degrees of freedom. The massless spectrum is

SUGRA 1
tensor 1
vector (133, 1, 1) + (1, 1, 248) (4.1.12)

hyper  62(1,1)
half-hyper  (n; — 4)(56,1) + (ny — 4)(1,56)

As can be seen from the above calculation, the gauge instanton numbers are
constrained to satisfy n;,ny > 4. This is a quite general feature of nonstandard
embeddings, since from the above compactification one can obtain other com-
pactifications with the same gauge instanton numbers simply by higgsing some
part of the remaining gauge symmetry [83]. As further noted in [83], there are
singularities in the moduli space of nonstandard embeddings corresponding to
small! Eg x Eg instantons turning to heterotic 5-branes which allow for phase
transitions between compactifications with different (n1,n9). At the phase tran-
sition points, tensionless strings appear.

4.2 Blow Ups and Heterotic Type ITA Duality

LAs shown in section 3.4, “small” instantons are instantons where the scale size of the
instanton goes to zero, which is not the same as such an instanton being point-like, which is
possible at orbifold singularities.
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Type ITA Compactification on K3

As we have seen in the last section, in heterotic compactifications on K3
there always appear 20 hypermultiplets which are related to deformations of
the metric and B-field backgrounds. Since N = (1,1), D = 10 supersymmetry
contains N' = (0,1) supersymmetry as a subsector, the analysis goes through
in type ITA compactifications on K3, where the only possible matter multiplet
in D = 6 is the vector multiplet (see (2.6.10)). In A = (0,1) notation this
indeed splits into a vector and a hypermultiplet. Therefore, there should be
20 vector multiplets in D = 6, the vector of which must arise from the three-
form RR-potential Cy;yp in ten dimensions, since this potential appears in the
N = (1,1) supergravity multiplet and hence must arise as a superpartner of
the N/ = (0,1) part of the supergravity multiplet in D = 10 (for the detailed
multiplet structure, see [76], chapter 12 and appendix B). The same argument
applies to the supergravity multiplet in D = 6 and we arrive at the following
massless particle content of type ITA compactifications on K3:

1 SUGRA, 20 vector (4.2.1)

Of course, we would have arrived at the same spectrum by the usual methods of
Calabi-Yau or K3 compactification (see [76], section 19.8).

However, because of the high amount of 16 surviving supersymmetries, we can
say more about the moduli space of type IIA compactifications on K3. Firstly,
from conformal field theory arguments (see [4] and references therein), the 16
space-time supersymmetries correspond to N' = (4,4) worldsheet supersymme-
try and the moduli space should be approximated by

O 16+4) 0(4) x O(16 + 4) (4.2.2)

As explained in section 3.3 of [4], this is compatible with the low energy effective
description of type ITA string theory on K3, where a

0(3,16+3) 0(3) x O(16 + 3) (4.2.3)
subspace of the above space is attributed to the geometric symmetries of the
K3 surface and the remaining coordinates parametrize B-field backgrounds and
the overall volume of K3. This space-time perspective, however, reveals that the
above description breaks down at special points in the moduli space of the K3
surface where singularities appear and the curvature diverges.

As already explained in section 3.3, this problem can be addressed by het-
erotic type II duality, which states that the moduli space of type ITA theory on
K3 x T? is equivalent to the moduli space of heterotic compactifications on 7.
This implies, when we go to a point in the moduli space of the heterotic compact-
ification where it becomes a product corresponding to the product 7% = T* x T?,



92 4. Blow Ups and Heterotic Type ITA Duality

that we can decompactify the T2 by sending its volume to infinity and arrive at
the moduli space of heterotic compactifications on 7% (see (3.3.1))

\ 04,16 +4)

O(Z, 4,16 + 4) / O(4) x O(16 + 4) (4.2.4)

Since the decompactification, by supersymmetry, works for the type ITA side
equally well, this moduli space should be equal to the moduli space of type ITA
theory on K3, including points where singularities of K3 appear. The O(Z, 4, 16+
4) subgroup that was not present in (4.2.2) corresponds to mirror symmetry
of type IIA string theory on K3 which we will not consider in this work (see
section 3.4 of [4]). Of course, this subgroup leaves invariant the BPS condition
(3.3.23). In fact, it is not difficult to verify this condition on the type ITA side,
using the results on supersymmetric cycles of [18].

From this identification (see section 2.6 of [4]), the points in the moduli space
where enhanced gauge symmetries arise on the heterotic side correspond to those
points on the type II side where orbifold singularities of K3 arise. Therefore, as
already discussed in section 3.5, this implies that type ITA and M-theory on a Zy
orbifold singularity show an enhanced SU(/N) gauge symmetry at these points
[104].

Blowups

The connection to orbifolds as discussed in chapter 2 lies in the fact that
one can go to points in the moduli space of K3 at which only isolated orbifold
singularities appear and the curvature outside the orbifold singularities tends to
zero. At this point, the K3 surface is identical to the global geometrical orbifolds
as discussed in section 2.1. In fact, this was one of the starting points for the
orbifold construction in string theory [33]. Reversing the procedure, one can
“blow up” the orbifold singularities in a completely local way (for details see
section 2.6 of [4]), that is, individually for every orbifold point at an arbitrarily
small scale. Roughly, this can be imagined as cutting out a little cone around the
orbifold singularity and replacing it by a Eguchi-Hanson gravitational instanton
(see section 3.1). Therefore, the results of section 3.1 fully apply as long as
we have a separation of scales R and [ of KK-monopole and Eguchi-Hanson
gravitational instanton respectively. Especially, blowing up corresponds to giving
the moduli 77 — 7; a vacuum expectation value.

For type ITA theory, this implies a conundrum, since type ITA orbifolds as
constructed in section 2.6 do not show enhanced SU(XNV) gauge symmetries. This
is resolved (see section 4.3 of [4]) by noting that unbroken SU(N) symmetry
requires vanishing of the vacuum expectation values of all scalars in the vector
multiplets which are in the adjoint of SU(N). Therefore, perturbative orbifolds
must correspond to points in the moduli space where some vacuum expectation
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values are nonzero. Since those moduli corresponding to the blowup modes must
be zero at the orbifold point, the only remaining possibility is a nonvanishing
B-field background on the shrunken gravitational instanton.

As we have seen in section 3.5, heterotic orbifolds in the standard embedding
can be described in a similar way. Around a Zy orbifold singularity the orbifold
string theory is described as heterotic string theory on X which in turn is the
description of the interior of heterotic string theory on N KK-monopoles on top
of N SU(2) instantons. In contrast to the type ITA case, the spectrum directly
corresponds to that of the smooth K3 compactification (4.1.9).

4.3 Higgsing Heterotic Models at the Orbifold
Point

The Standard Embedding for N = 2

As constructed in section 2.6, the massless spectrum is

E7 x SU(2) x Eg

untwisted SUGRA
tensor
vector  (133,1,1)+ (1,3,1) + (1,1,248)  (4.3.1)
hyper 4(1,1,1) + (56,2,1)

16 fixed points hyper 16-2(1,2,1

)

half-hyper 16 -(56,1,1)

The obvious way to make contact to the standard embedding of smooth K3
compactifications is to break SU(2) by giving a vacuum expectation value (vev)
to two different? twisted fields in the (1,2, 1). In this case, the vector multiplets
in the adjoint 3 of SU(2) can only get mass by swallowing three hypermultiplets
neutral under E; x Eg. One might be tempted to expect that these modes are
among the four neutral untwisted hypermultiplets, but this cannot be since these
are geometric moduli of K3 and hence have to remain massless®.

2That there have to be at least two vevs is a well known feature of eight unbroken super-
charges: to hold the triplet of D-terms zero, contributions from different multiplets have to
cancel out. See [82], section 3.

3This is clear from direct analysis of space time fields G4 and By or simply from noting
that these modes remain present in the type ITA case even after blowing up some orbifold
singularities.
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Therefore, the only possibility is that the three vectors swallow modes from
the twisted sector. After all, this is not very unusual, since the same mecha-
nism is at work in the well known example of the standard embedding in four-
dimensional heterotic orbifolds, as explained in [76], section 16.4. This implies,
that massless modes of the smooth standard embedding can no longer be ascribed
to individual fixed points, since to reach a smooth K3, all orbifold singularities
have to be blown up, and hence all twisted fields have to be treated at the same
footing.

We note, however, that the geometrical modes associated to fixed points
remain localized, since their vev directly corresponds to the scale of the blowup.
Because there are 20 K3 hypermultiplets four of which are already present in the
untwisted sector, we expect that at least one E; singlet hypermultiplet remains
massless at every fixed point. Therefore, even if only a single orbifold singularity
is blown up, the swallowed modes have to come from different fixed points and
hence should be a linear combination of all available hypermultiplets.

The Standard Embedding for N > 2

For N > 2 the massless spectrum is given as

E7 X Eg X U(].)

untwisted SUGRA
tensor
vector (133,1)0 + (1,248), (4.3.2)
hyper 2(1,1)0+ (1,1) o+ (56,1) 1

Zy fixed points hyper (3N —2)(1,1) ..

half-hyper (56,1).

Here, to break U(1), again we would have to give at least two vevs to E; X Eg
singlets charged under U(1) (see [82], section 2). As above, the two neutral
singlets in the untwisted sector belong to geometric modes of K3 and have to
remain massless. However, since N' = (0,1), D = 6 supersymmetry is inher-
ently chiral, a U(1) gauge symmetry with charged hypermultiplets is in general
anomalous and a variation of the mechanism of [31] has to resolve the problem
(for details, see [35], section 7). As a result, the U(1) symmetry will be higgsed
and by the same argument as in the N = 2 case, the massive mode should be a
linear combination of all U(1) charged singlet hypermultiplets.

The Zs, 8 = 5(5/2,(1/2)%;2,12,0°) Orbifold

We now turn to nonstandard embeddings and explicitly look at the Zs,
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B = 3(5/2,(1/2)";2,1?,0°) orbifold of the heterotic Eg x Eg string theory as
constructed in section 2.6.

In the previous literature [2], orbifold models were related to smooth K3
compactifications by higgsing the spectrum (4.1.12) of the smooth nonstandard
K3 compactification and finding a “similar” orbifold model. However, as we will
see below, higgsing of the orbifold to meet the spectrum of the smooth compact-
ification is much more involved as in the case of the standard embedding. The
main reason for this is that all fields in this orbifold transform in complex repre-
sentations of the gauge group, whereas in the other examples the representations
were pseudo-real.

As shown in section 2.6, the massless spectrum of the orbifold is given as
follows

SU(9) x Eg x SU(3)

untwisted SUGRA
tensor
vector  (80,1,1)+ (1,78,1) + (1,1,8)
hyper  2(1,1,1)+(84,1,1)+ (1,27,3)
9 fixed points hyper 9(9,1,3)

(4.3.3)

We begin by trying to give a vacuum expectation value (vev) to the bulk hyper-
multiplet in the (84, 1,1). Since SU(9) decomposes as

SU(9) — SU(6) x SU(3) x U(1)
9 - (65 1)+3 + (15 3)—6
_ _ (4.3.4)
80 — (35,1)¢+ (1,8)+ (1,1)¢+ (6,3) 10+ (6,3) o
84 — (20,1)49+ (15,3),0+ (6,3)0+ (1,1)_g

a vev in the 84 breaks SU(9) to SU(6) x SU(3) (this is clear from the charged
singlet in the decomposition of the 84). However, since we have N' = (0,1),
D = 6 supersymmetry, the Higgs effect requires two massless full hypermulti-
plets in the (6,3),9+ (6,3)_g be eaten up by the vector multiplets in the same
representations. Since these are not present, higgsing by a vev in the 84 is not
possible.

Next we try to give a vev to a hypermultiplet in the (9, 1,3). The relevant
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decomposition of SU(9) and SU(3) are

SU(9) — SU(8) x U(1)

9 — 13+8_,;

80 — 63,+1;+8 9+8,9

84 — 56,3+ 28 (4.35)
SU(3) — SU(2) x U(1)

3 — 1,4+ 2_4

8 — 3p+1p+2 3+2,3

Hence, a vev in the (9, 1, 3) breaks SU(9) xEgxSU(3) to SU(8) xEgxSU(2)xU(1)
(the U(1) is a linear combinations of the two U(1) appearing in (4.3.5)). However,
again there are no full hypermultiplets in the 8 and 8 of SU(8) or in the 2 and
2 of SU(2), as needed for the Higgs effect. Therefore, giving a vev to fields at a
single fixed point is not possible and the moduli space corresponding to a single
fixed point is trivial.

Finally, we could try to give a vev to a hypermultiplet in the (1,27,3).
However, the same problem as above arises and, furthermore, all representations
of E; are invariant under the gauge shift and there is no need to break E; to
make contact to smooth K3 compactifications.

In view of all this, there remains only one solution: we have to give vevs to all
hypermultiplets sitting at fixed points to break SU(9) and SU(3) completely. In
that case, all SU(9) x SU(3) representations break down to singlets which make
the Higgs effect possible. This implies, that the background produced by the
Higgs mechanism is a Eg x SU(3) background. As we will see in the following,
the modes can no longer be associated to single fixed points.

The Eg x SU(3) Nonstandard Embedding

Since we have nine fixed points with one hypermultiplet in the (9,3) of
SU(9) x SU(3) each, by giving generic vev to all nine of them SU(9) x SU(3) is
completely broken. E7, however, remains unbroken and there are three hyper-
multiplets in the 27 of E;. Because there are no charged fields left transforming
non-trivially under the gauge shift, this then can be analyzed as the nonstandard
embeddings of section 4.1. We calculate the following Dirac indices, together
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with the number of hypermultiplets and their representations

SU9) indDg, = —18n; + 160 9ni — 80 1

indDg, = —21n; + 168 =ind gz 21n; — 168 1 (4.3.6)
SU(3) indDy = —6ny+ 16 3n,—8 1

indIp; = —ny+6=indIP; nyg—6 27

Since the spectrum of the higgsed orbifold contains three hypermultiplets in the
27 of Eg, we have (ny,n2) = (15,9). The hypermultiplet spectrum then is

80 55 1
84 147 1
8 19 1
K3 modes 20 1 (4.3.7)
241 1
3 3 27

From the orbifold spectrum (4.3.3) we have 329 hypermultiplets neutral with
respect to Eg. Upon higgsing SU(9) x SU(3), 88 of these hypermultiplets get
swallowed by the vector multiplets in the adjoint of SU(9) x SU(3) and 241
hypermultiplets remain, as in the nonstandard embedding.

The fact that SU(9) has to be completely broken by the Higgs mechanism
suggests that the orbifold provides full Eg background. Therefore, as already in
the case of the standard embedding in section 3.5, index theory should be able
to give the correct field content of a single fixed point.

Setting ny = 15/9 and ny = 9/9 = 1 for an individual fixed point, we calculate
Dirac indices on X3 for all relevant representations. By (C.3.33), (C.3.35) and
(C.3.36), we arrive at the following indices together with the number of multiplets
and their representation in Eg

Index No. Irrep.
ind D1/2 =0 0
ind ];7)3/2 =-2N+4+2=-4 2 1 (43.8)
indD,,e = —60n; +56=—-44 22 1
indp;, =-2n,+2=0 0
indpg = —6ny 3 1

Therefore, index theory ascribes 22 hypers to the Eg background, two to the
supergravity modes, as expected, and three hypers to the SU(3) adjoint back-
ground. This exactly reproduces the 27 hypers of the (9,1, 3) field content of a
single fixed point.
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By the above counting of states, modes after higgsing can no longer be as-
cribed to individual fixed points, as already in the case of standard embedding.

4.4 Locating Massless Modes in M-theory on
St 7y

As we have seen in the last section, after breaking gauge symmetry in orbifold
models by giving vevs to fields in the twisted sectors, the models can be identified
with smooth K3 non-standard embeddings. Even though the Higgs mechanism
will require a mixing of fields from different fixed points, by making the volume
of K3 very big, the curvature can be pushed below the string scale and the whole
model can effectively be described by supergravity.

In that case, as shown in [106], a valid description in terms of M-theory on
S1/Zy can easily be found. As all index theory calculation as performed for K3
as a whole remain fully valid, the assignments of modes to the individual Eg
factors or the supergravity multiplet can still be trusted.

Clearly, every low energy effective action describing an orbifold model from
the M-theory on S'/Z, perspective will have to reproduce the above description
upon higgsing. However, this implies that we have to ascribe supergravity modes
(i.e. N —1 hypermultiplets per Zy fixed point) to the modes of the fixed points
which are charged under the gauge group. From a ten-dimensional perspective,
where gravity and gauge degrees of freedom always appear together, this is no
problem, but in M-theory on S'/Z,, where gravity is assigned to the interior of
the interval and gauge degrees of freedom to the ends, this is a priori non-trivial.

One might think that gravitational modes corresponding to fixed point modes
might be localized on one end of the interval at the orbifold point and spread to
the interior during the Higgs effect. However, as shown in [106], when making
the length of the interval very long compared to the volume of K3, the metric of
K3 scales roughly as (z'')?/3. Even more, this behavior of the metric is controlled
by source terms at the ends of the interval and hence is not affected by going to
the orbifold limit. Since there is no scale in the expression y*?, gravity modes
cannot get localized to one end of the interval. Therefore, in the orbifold limit,
gravitational modes have to live on the whole of the interval S*/Z, while they
are localized at the orbifold points of K3. Hence, they must be contained in
supermultiplets of a seven-dimension supersymmetric theory.

As already explained in section 3.5, this is fully consistent with the assump-
tion that M-theory on a Zy orbifold singularity can effectively be described by a
SU(N) supersymmetric gauge theory. This theory, in seven dimensions, contains
only vector multiplets which are comprised of five vector degrees of freedom and
three scalar degrees of freedom. After blowing up (or turning on B-field back-
grounds), this theory is higgsed to U(1)"¥~1. Then the vector multiplets contain
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exactly those degrees of freedom expected from M-theory on Xx: N — 1 vectors
from the three-index tensor C3 = C{7A (27 —Q7) and three scalars corresponding
to the gravitational modes of the 7, — 7 (see section 3.5).

Since the only gauge fields appearing in heterotic orbifold models are those
of the Eg symmetries, it has been proposed in [62, 49] that some of these modes
are actually diagonal modes of subgroups of the Eg factors and subgroups of
the SU(N) factors® of the individual fixed points. This, in turn, solves the
problem of fields charged under both ends of the interval, since the modes of
the diagonal symmetries now effectively live on the seven-dimensional planes
ascribed to the fixed points as well as on the whole ten-dimensional plane at the
end of the interval to which the gauge symmetry appearing the in orbifold model
corresponds.

However, the detailed assignment of fields made in [62, 49] is not compatible
with the above analysis, as we will show in the following for the example of
the SU(9) x Eg x SU(3) orbifold as treated in the last section. The authors
of [62, 49] chose the SU(3) symmetry to be the diagonal of SU(3) C Eg and
the SU(3) symmetries of the nine fixed points. However, the (9,1,3) twisted
fields was also expected to live on the boundary corresponding to SU(9) C Eg,
which is clearly not possible by the above analysis, since we showed in the last
section that those fields must contain two hypermultiplets of supergravity modes
in the smooth K3 compactification. Even more, since these modes must appear
as scalars in the vector multiplets of the seven-dimensional theory, they must
transform under the adjoint® 8 of SU(3). In conclusion, the modes (9, 1, 3) must
result from a yet to be determined coupling of bulk modes in the 8 to modes
living at the ends of the interval.

As the authors of [62, 49] have verified their result using anomaly cancellation,
we have to comment on that point. In [62, 49], cancellation of anomalies has
been shown explicitly including the gravitational anomalies coming from eleven-
dimensional bulk fields and ten-dimensional gauge fields. However, as these
anomalies come from integrals over the ten-planes at both ends of the interval
and have been shown to be canceled locally from an eleven-dimensional viewpoint
in [57, 56, 26], they no longer play a role for local anomaly cancellation on the
six-planes located at orbifold fixed points and the ends of the interval. Therefore,
in the analysis of [62, 49] anomalies were canceled in a non-local way (from an
eleven-dimensional perspective) and hence can not be used as a definite criterion
on where fields have to be located from an eleven-dimensional viewpoint.

As we have seen in the beginning of section 4.3, the problem of supergravity
modes appearing as charged modes in the orbifold limit is already present in the
example of the standard embedding. There one Eg remains completely unbroken

In [62, 49] these have been termed nonperturbative SU(N) symmetries.
5By supersymmetry, scalars as well a spinors appearing in vector multiplets are always
transforming in the adjoint.
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which, by the charge of the supergravity modes, suggests the more that the SU(2)
of the first Eg extends to the interior of the interval.

In fact, this a general problem of all orbifold models treated in this work, since
the rank of the gauge group (sixteen from Eg x Eg) is not reduced. Therefore,
as smooth backgrounds always imply rank reduction, since some subgroup of
Egs x Eg has to support a smooth instanton background, the moduli controlling
the blowups have to be charged to make a Higgs mechanism possible.

Summing up, we conclude that the assignment of modes as suggested by in-
dex theory (as in in the example of (4.3.8) or orbifolds with standard embedding)
indeed can be trusted, even from an eleven-dimensional viewpoint. Therefore,
the gravitational moduli of the fixed points have to appear as scalars in vector
multiplets of an seven-dimensional SU (V) supersymmetric gauge theory assigned
to the interior of the interval located at the fixed points of the orbifold singulari-
ties. By supersymmetry, the scalars are always transforming in the adjoint of the
SU(N) gauge theory. The only way to explain the observed field content at the
fixed points is to demand that this field content results from a yet unknown cou-
pling to boundary fields, including the possibility of additional multiplets sitting
at the boundary on orbifold fixed points as suggested by index calculations.

The crucial unknown to be determined in future work is to work out the pre-
cise form of the couplings of bulk modes to boundary modes. These couplings
must especially explain how the bulk SU(N) gauge theories mix with the bound-
ary Eg gauge theories in a supersymmetric way. As such, this problem should be
accessible from a viewpoint of purely six-dimensional N = (0, 1) supersymmetric
gauge theory.



Chapter 5

Conclusion and Outlook

We have devoted our work to a detailed study of orbifolds and Kaluza-Klein-
monopoles of heterotic Eg x Eg string theory.

Analyzing heterotic orbifolds in the operator approach, we have shown that
there is a strong as well as a weak version of the level matching condition where
the strong one is essential for the correct transformation properties of states in
the twisted sectors. Furthermore, only the weak level matching condition is rel-
evant for the classification of orbifold models and is equivalent to a condition on
fractional instanton numbers of Eg x Eg instantons sitting on blown up orbifold
singularities. By this relation, all orbifolds considered in this work can be clas-
sified by flat Eg x Eg bundles on the orbifolds with the fixed points taken out,
under the only constraint that the fractional parts of gravitational and gauge
instanton numbers match. This directly carries over to M-theory on S'/Z,.

For Kaluza-Klein-monopoles we constructed solutions in background Wilson
lines and verified our results by calculating quantum numbers and comparing
them to those of KK-monopoles in toroidal compactifications. We developed
the t’Hooft ansatz in the background of Kaluza-Klein-monopoles to study non-
abelian instantons on Kaluza-Klein-monopoles and Eguchi-Hanson spaces, in-
cluding the case of Wilson line backgrounds. We proposed that the moduli
space of a single SU(2) non-abelian instanton on a Kaluza-Klein-Monopole back-
ground is given by the t’Hooft ansatz as in flat space and explicitly showed
that instantons can become pointlike at orbifold singularities even though their
scale parameter remains finite. Only the case of sending the scale parameter
to zero corresponds to a small instanton singularity. These results were used
to show that orbifold models with standard embedding can locally be analyzed
by studying Kaluza-Klein-monopoles with non-abelian instantons. This implies
that heterotic Eg X Eg orbifold models with standard embedding contain small
instanton singularities in their moduli spaces where tensionless strings appear.
On the other hand, we argued that N Kaluza-Klein monopoles with N SU(2)
non-abelian instantons can for general N be described by heterotic string theory
on C?/Zy.
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Applying the above results to orbifold models, we gave new evidence that
higgsing of the models leads to smooth K3 compactifications of heterotic Eg x Eg
string theory. Our arguments are based on index calculations as well as details
of the Higgs mechanism in N = (0,1), D = 6 supersymmetry. In particular,
we give evidence that massless modes ascribed to the supergravity multiplet in
ten dimensions such as the geometric moduli of K3 have to appear in twisted
sectors as massless modes charged with respect to gauge groups of the orbifold
models. From the perspective of M-theory on S!/Z,, these modes are eleven-
dimensional bulk modes which have to live in the interior of the interval, as
expected arguments on M-theory on Zy orbifold singularities. Especially, these
modes cannot be localized on the ends of the eleven-dimensional interval as
suggested in the previous literature. We point out that this problem is a general
problem of the orbifold models treated in this work and especially is already
present in models with standard embedding.

Based on these observations, there is a number of possibilities for future
research. First of all, it is desirable to develop the correct low energy effective
action for heterotic orbifolds from the ten-dimensional viewpoint and study the
moduli spaces of individual fixed points, perhaps on the lines of [61, 19]. It
is to be expected that supersymmetry, as already in the discovery of M-theory
on S'/Z, in [57, 56], plays a leading role in extending the action to eleven
dimensions. Of course, the same applies to local anomaly cancellation, which
has not been carried out fully, neither ten-dimensional nor eleven-dimensional.

In case of non-abelian instantons on Kaluza-Klein-monopoles, it might be in-
teresting to determine the full classical instanton moduli space, perhaps based on
the methods of [65]. Furthermore, as suggested by the relation of Kaluza-Klein-
monopoles to orbifold models, the moduli space of instantons on Eguchi-Hanson
spaces combined with the moduli space of Eguchi-Hanson spaces themselves
should be described by the gauge theory living on the corresponding orbifold
singularity.

Another possible way to shed light on the quantum moduli space of instan-
tons on Kaluza-Klein-Monopoles as well as the corresponding heterotic orbifolds
might be to try and use S1(2,Z) S-duality in N'= 4, D = 4 supersymmetry. By
the same arguments as in [86], these moduli spaces should be related to the mo-
duli spaces of elementary string states appearing in toroidal compactifications.

Finally, it remains to discuss four-dimensional orbifold models from the M-
theory perspective. These models should also be related to the recent work on
manifolds of Gy holonomy (see [108, 1] and references therein).



Appendix A

Fractional Instanton Numbers of
Eg

We consider the situation of an Eg instanton localized in the interior of a real four-
manifold! M with boundary L, that is, we treat the gauge bundle as being flat on
L. We start by showing that the fractional part of the instanton number depends
only on the isomorphism class of the bundle on L. After that we construct one
explicit element of that class corresponding to the given data and finally compute
the fractional instanton number of that element?.

The first two steps are mostly standard (see for example [93, 94]) whereas
the third one requires a bit more technology (see especially [21] chapter IIT and
[20]). The calculation of this appendix has been previously published in [27].

A.1 Basic Facts

The instanton number is defined as (a discussion of the normalization can be

found in [5])

11

I=——— [ TrF? (A.1.1)

60 872 J,,
with the trace in the adjoint representation. Since Eg is semi-simple the first
nontrivial homotopy group is m3(Eg) = Z. This implies, due to the presence
of the boundary, that the bundle is trivial on M. This can be seen as follows:
a possible obstruction in constructing a section of a principal Eg-bundle on M
(and thereby showing triviality of the bundle) is given by an nonzero element of
H*(M,Z). Since M is an orientable and compact manifold with boundary, we

To be precise, we require M to be orientable, compact and connected with a connected
boundary.

2More mathematically speaking, in step two we construct a bundle map from the Hopf
fibration S® — S? to Eg — Eg/T® with T® a maximal torus of Eg and in step three we
calculate the image of the fundamental cycle of S® under that map by a spectral sequence.
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have by duality H*(M,Z) ~ Hy(M,0M,Z) = 0. (see for example [94] part III,
or [103] for a nice introduction) (A.1.1) now reads

11 1 11
[=—— [ Tr(AF —-A3) = ——— [ Tr 43 (A.1.2)
308n2 J, 3 3-60872

To make contact to the situation studied in section 2.5 we have to take
L = S3/Zx (a lens space) with m;(L) = Zy. By the same reasoning as at
the end of section 2.5, S® is the covering space of L and (r,~) specifies a flat
bundle on L. Moreover, by pulling back the bundle via the covering map 7 :
S% — S3/Zn we get a bundle on S? on which,since 7;(S®) = 0, A can be gauge
transformed to A’ = 0. Denoting the gauge transformation by ¢ : S* — Eg we
get A=gtA'g+ g 'dg = g~'dg. Plugging that into (A.1.2) we get [ = I5/N
with Ig defined by

1 1
Is=———— [ Tr(¢g 'dg)? Al3
=1 ) (A1

Of course g represents an element of 73(Eg) which is identified with Z by (A.1.3)
(see again [5]). This especially shows that I is a multiple of 1/N.

To show that Is changes by a multiple of N when the bundle on L is gauge
transformed we consider two flat connections A; and A on L, both corresponding
to the same generator (r,7). Since both bundles are isomorphic we have Ay =
h=*A,h + h='dh for some h : L — Eg. Now h can be lifted to S® giving hg =
hom and we get Ay = g;'dge = hg'g;'(dg1)hs + hg'dhs = (g1hs)~1d(g1hs).
But since the pointwise product g - ¢’ for two elements of 73 of a Lie group G
corresponds to the group addition of the elements, we have g, = g1 + hs.

To proceed, we note that, since 73 is the first nontrivial homotopy class of Eg,
by the Hurewicz isomorphism 73(Eg) is isomorphic to H3(Eg, Z) and further by
the universal coefficient theorem to H3(Eg,Z) because, by the same argument,
we have H' = H? = H, = H, = 0. Therefore the instanton number Ig is
given by the pullback via g of the generator w of H3(Eg,Z) evaluated on the
fundamental cycle Cg of S3:

IS = g*w(C’s) (A14)

Since 7 : S® — L is N to one we have m,Cs = NC}, with C}, the fundamental
cycle of L. This immediately yields htw(Cs) = 7m*h*w(Cs) = h*w(m.Cs) =
Nh*w(Cy) € NZ.

A.2 Construction of the Bundle

We now construct a bundle on S® simply by constructing the map g, which we
require to obey g(rz) = vyg(z). This bundle will obviously be the pullback of a
bundle on L that fulfills our requirements.
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To construct ¢ (and for the final step) we will need some basic facts about lens
spaces (see [21], § 18). As above we define L by the fibration Zy — S® = L
where S® is identified with the unit sphere in C? and the generator of Zy acts
on S? like?

627ri/N . (Zl, Z2) — (62m/NZI, e27r1J/NZZ) (A.Q.l)
This action is of course compatible with the U(1) action on S* (where U(1) is
identified with the unit circle in C)

(ZY, 2% — (N\Z',\Zz%) deS'ccC (A.2.2)

and we get the Hopf-fibration S* — S =% CP' ~ S2. Now since Zy C U(1)
the U(1) action descends to an action on L and we have

St 5 IS g
T Iy (A.2.3)
st — [ I g2

In this diagram = is a bundle map which is N to one on the standard fibre.

This can be made more explicit by identifying S? with a cylinder I x S*
where at both ends of the interval S! is identified to a point. We parametrize
I x S' by (0,¥) where p € [0, %} , ¥ € [0,27]. To write down the bundle
explicitly we divide S* into upper (D?) and lower (D?) hemisphere. Using
(Z1, Z?) = (cos p €1 sin p €'*?) we write

Di: o> 2 = P4 o =¢p — V¥
D*: p< o1 =¢_ Ppa=0¢_ + V¥

Therefore A = ¢ € U(1) acts like ¢_ > ¢_ + ¢, ¢, — ¢, + ¢ and the fibre S*
is parametrized by ¢_, ¢, € [0, 27].

Since on the equator ¢, = ¢_ + U the sphere S® as a bundle ist made of
two trivial S! bundles on the hemispheres clutched together by the generator of
71(S"'). Analogously, by (A.2.3), the clutching function of L is N € m;(S?).

To simplify the construction of g we insert a cylinder C' = I x S' parametrized
by (z,¥), z € [0,1],¥ € [0, 27 between the hemispheres by attaching D2 at
x =1 and D? at z = 0. This is extended to the bundle by parametrizing the
fibre as ¢ as on D?. Therefore the bundle is now clutched non-trivially at z = 0
and trivially at x = 1.

Finally we define g(o, ¥, ¢4) = g:(0, ¥, ¢) = €"%+ on D? and ¢g(p, ¥, ¢_) =
g_(0,9,¢_) = €% on D?. This yields

(A.2.4)

INERNE]

gz =0,0,¢,) =g_(0="2,V,¢, —T) = elald+-7)
g(x:l,\ll,¢+) :g-l-(Q: %’\I]’qs_i_) = elaHé+

3Here we have chosen the generator to act like e>™/N on Z2, as opposed to orbifolds where
it acts like e2™/N_ This corresponds to taking the opposite orientation and therefore the
instanton number changes sign.

(A.2.5)
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on the cylinder C' and g can be extended to g(z, ¥, ¢, ) = €%+ at ¥ = 0, 27.
g at ¢, = 0 is now defined on the boundary of the square 0 <z <1, 0 < ¥ <
27 (the identification of ¥ = 0 with ¥ = 27 plays no role in the consideration)
and the only nontrivial step in the construction is to extend this definition to the
interior of the square. Topologically this is the same as to extend a map ¢ : S* —
U(1) C Eg with S* = dD? to the whole of D?. Therefore we consider the fibration
U(1) — Eg — Eg/U(1) where U(1) is the subgroup of Eg generated from %9
The relative homotopy sequence of this fibration contains the following part

.. — ma(Eg) = 0 — mo(Es, U(1)) -5 m(U(1)) — m(Es) =0 —> . ..

(A.2.6)
Since the sequence is exact the map 0 is an isomorphism and ¢ can be ex-
tended to ¢ = 0 in C. Finally we define g on the whole of C' by g(z, ¥, ¢, ) =
equ¢+g(x, \Ija ¢+ = O)

A.3 Calculation of the Instanton Number

As the map g constructed in the last section actually fulfills g(e*? Z¢) = €' g(Z?)
it is a bundle map from S® to Eg which especially provides a homomorhism from
the (cohomology) spectral sequence of the former to that of the latter®.

We start by writing down the standard example of the spectral sequence of
the Hopf fibration. The F, term is given by E5? = H?(S?) @ H?(S"), explicitly:

1 Z/a5&Z/asb
Ey= 0| Z/1 0% Z/b (A.3.1)
\ 0 1 2

where p, g label columns and rows and the diagonal arrow denotes the map ds.
By H/h we denote the group H generated by h. As the sequence stops at E3 we
have E3 ~ H*(S%) = (Z/1,0,0,Z/cs) with cs = asb. This implies that dy is an
isomorphism from Ey" to E3°.

We now turn to the spectral sequence of the fibration T8 — Eg — Eg/T®
where T® is a maximal torus of Eg containing the U(1) generated from the
elements €4?. First we need to verify that the base is simply connected. This
is clear from the homotopy sequence

oo — m(Eg) = 0 —> m (Bs/T®) —> mo(T®) = {¥} —» - (A.3.2)

4Tt can be easily seen that we could restrict ourselves to a map to Spin(16) at this point:
by acting with the Weyl group we can map ¢ into the Spin(16) sublattice of Eg. Since
71 (Spin(16)) = 0 all steps of the last section apply as before and we are left with a pure
Spin(16) bundle. This then allows to compute the instanton number with the formulas given
in [61, 2]. However, we will proceed in a different way, since our calculation gives the instanton
number (including the integer part) for gauge bundles satisfying g(e*® Z?) = e'H9g(Z%).
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(mo is not a group here and consists only of the (arbitrary) base point *). Fur-
thermore, as shown by Morse theoretic methods in [20], the base is torsion free
and H?>"*1(Eg/T®) = 0 for n € Z. With this information the Fy term is®

3| 567
2 | 287 0
Ey= 1 SZ\}‘MZ\ (A.3.3)
0| z 08z 0735Z
0 1 2 3 4

This can be seen as follows: Firstly, we note that H*(T®) = (Z, 8Z,28Z,56Z, . . .).
Secondly, since H*(Eg) = (Z/1,0,0,Z/w, higher groups) by Hurewicz E3 must
be trivial for degree 1 and 2. Therefore, again d, : EY"' — E>* is an isomorphism.
This implies, since by the Kiinneth formula H*(T®) = (H*(S"))® (with respect
to ®), that all maps dy from the first to the third column are invertible.

Moreover, since d3 maps everything to zero all elements of H*(Eg) up to
degree three are given by Fs up to degree three. However, because dy from the
first to the third column is invertible, the only nonvanishing element up to degree
three of F3 must be Ea' = Z/w. This implies Ey° = 35Z.

This can independently be verified by calculating H*(Eg/T*®) as described in
[20]: the dimension of H?"(Eg/T®) is given by the number of elements of the
Weyl group which change the sign of precisely ¢ of the positive roots. This can
be computed easily, since, for a given Weyl reflection o, ¢ is given by the length
of o (see for example [59] section 10.3), i.e. the (minimal) number of simple Weyl
reflections o can be composed of 0 = 04, + ... 04,. For ¢ =1 there are 8 simple
roots so H?(Eg/T®) = 8Z. For q = 2 there are 8 - 7/2 + 7 = 35 combinations,
because simple Weyl reflections of two simple roots which are not connected by
a line in the Dynkin diagram commute. So H*(Eg/T®) = 35Z.

Explicitly we denote the generators of H*(1T®) by a',i = 1,...,8 and those
of H?>(Eg/T®) by b' = dya’. As Ey* = H?(T®) is generated by the 28 elements
a‘a? with i < j their image under d, in Ej"" is given by the elements dy(a‘a’) =
ba! — a'tV = —a't! + d’b'.

To calculate w we write all elements in terms of an euclidian basis Ay of the
real homology H;(T®,R) and its dual o’ in H*(T®,R). We choose the basis such
that it is compatible with the lattice Ag given in the introduction. Then w can
be written as w = wrya’b’ where w;; is a symmetric matrix, because the image
of dy consists of all elements wr;a’b” with antisymmetric w;;. Under an element
T of the Weyl group w is transformed to 7 'wT (T is an orthogonal matrix). As
w must be invariant under the Weyl group, which acts irreducible on a vector,
by Schur’s lemma, w = wdrya’b’.

5 Addition and multiplication of groups are written with respect to the operations @ and ®
on abelian groups, i.e. 2Z =7 07,72 =7 Q 7.
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We now turn to the calculation of the instanton number. By construction
¢ maps the fundamental cycle Ag of the S! fiber of the Hopf fibration to g’ A;.
This implies
« T _ T _ Iy, _ T
g'a (As) =a (9.As) =a'(¢"Ay) =q (A.3.4)

and therefore g*a’ = ¢'ag. Finally we have

Is = g*w(Cs) = wéry (g%a" g"b")(Cs) = wdry (g"a’ g*(dsa”))(Cs)
= wdrs (g*a’ da(g%a”))(Cs) = wérs (¢"as ¢’ daas)(Cs) (A.3.5)
= wdrs ¢'q” (ash)(Cs) = we?
To normalize this equation we compare to the standard embedding Ig = 1,
q¢' =(1,1,0,...) resulting in w = 1/2. Therefore we have

s 1

=N = 3¢ ——,32 (mod 1) (A.3.6)



Appendix B

Group Theory

This appendix is devoted to sketches of some of the group theoretical calculations
used in the main chapters. A good introduction, from a physicist’s point of view,
is given in [91]. More mathematical treatments can be found in [29, 59]. A

collection of useful material can be found in chapter 13 of [42].

B.1 E;g and its Lattice

On the euclidian space R® the lattice of the group Eg can be given as
Iy ={(n"), (% +n") | nleZ, Y5 n' =0 (mod 2)}

where the roots of Eg are precisely those vectors with length p’p! = 2:

(£1,+1,0°% and permutations

((£3)®)  even number of — signs

(B.1.1)

(B.1.2)

We introduce an ordering by saying that a positive vector is given by a vector
whose first nonvanishing entry is positive. Therefore a root « is bigger than
o if the difference o — ' is positive. Such an ordering corresponds to simple
roots o of Eg: since all positive roots & = a;o' must have positive coefficients
a; in the simple roots, we start from the lowest positive root and proceed to the
higher roots, writing down only those which are linearly independent of those
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we already have. This gives in ascending order

(0 ,0 ,0 ,0 ,0 ,0 ,+l ,—1)
(0 ,0 ,0 ,0 ,0 ,0 ,+l ,+1 )
(0 ,0 ,0 ,0 ,0 ,+1 ,—1 ,0 )
(0 ,0 ,0 ,0 ,+41 ,—1 .0 ,0 )
0O ,0 .0 ,+1 ,—1 ,0 .0 ,0
( 050+ ) (B.1.3)
(0 ,0 ,#1 ,-1 ,0 ,0 ,0 ,0 )
( 0 :+]- 7_]- 70 ,0 ,0 70 ?0 )
(+3 »=3 »=3 »=3 »=35 +~3 =3 »+3 )

(41 ,41 ,0 ,0 ,0 ,0 ,0 ,0 )

where the last vector shows the highest root . We calculate the scalar products
AY = o' - o’ and, after some reordering (given below), arrive at the Cartan

matrix

( 2 -1 0 0 0 0 \

-1 2 -1 0 0 0 0 0
0 -1 2 -1 0 0 0 0

4_|0 0 -1 2 -10 0 0 (B.1.4)

0 0 0 -1 2 -1 0 -1
0 0 0 0 -1 2 =1 0
0 0 0 0 0 =1 2 0

\0o 0 o0 10 0 2)

which uniquely identifies the group Eg. In addition, this shows that the lattice is
even and self-dual, since A” = 2 and det A = 1. The roots are given as follows:

=—9 =( -1 ,-1 ,0 ,0 ,0 ,0 ,0 ,0 )

o =( 0 ,+#41 ,-1 ,0 ,0 ,0 ,0 ,0 )
o> =( 0 ,0 ,+1 ,-1 ,0 0,0 )
o =( 0 ,0 ,0 ,+1 ,-1 |, 0,0 ) (B.15)
a* =( 0 ,0 ,0 ,0 ,+1 ,—-1 ,0 ,0 ) o
& =(C 0 ,0 ,0 ,0 ,0 ,+1 ,—1 ,0 )
o =( 0 ,0 ,0 ,0 ,0 ,0 ,+1 ,-1)
o =( 4 oohh b o aoh b))
o =(C 0 ,0 ,0 ,0 ,0 ,0 ,+1 ,+1)
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where we have also included the lowest root a® = —f. Its only nonvanishing
scalar product with another root is given by o - a® = —1. Therefore, we arrive
at the extended Dynkin diagram of Eg

cuO— O

0—0—0—0—0—0—0—0 (B.1.6)
1 2 3 4 6 7 0

Here we have chosen the labeling of the roots such that it is most compatible with
the standard labeling of the SO(16) subgroup of Eg. Since this is the subgroup
which is manifest in fermionic formulations of the heterotic string, quantum
numbers will be canonical with this labeling.

The fundamental weights ~; of Eg are defined to be the generators of the
lattice dual to the weight lattice (which is the same as the root lattice for Eg).
Therefore 7; - o/ = §! and the dual metric is given as A;; = (A7');;. As raising
and lowering is achieved using the metric (and A is symmetric, as for all ADE
groups) we have

7= (A7)0 (B.1.7)
This gives
(23 4 5 6 4 2 3)
8§ 10 12 8 4 6
12 15 18 12 6
8

10 15 20 24 16 12
12 18 24 30 20 10 15
8 12 16 20 14 7 10
4 6 8 10 7 4 5
\3 6 9 12 15 10 5 &)

At = (B.1.8)

N = O O =W

We will denote vectors in the basis of the simple roots by {...}. The coefficients
in the dual basis ;, which is called Dynkin basis, will be denoted by [...]. The
coefficients themselves are called Dynkin labels.

The coefficients of the highest root § = n;a® in terms of the simple roots are
called marks and can be easily computed

n; ={2,3,4,5,6,4,2,3} (B.1.9)

Setting ng = 1, the n; where i =0,1,...,8 spawn the kernel of the extended
Cartan matrix AY = o - o/. This is clear from
A%, = (—6) - (—0) + (=0) -a'n; = 0-0+—0-0 =0
Aﬁnczaj-(—G)%-aj-aini: —od 0+ -0=0

2

(B.1.10)
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B.2 Classifying Zy Shift Vectors of Eg

To classify shift vectors for heterotic orbifolds in section 2.4 we need to find all
possible group elements of Eg corresponding to vectors 8 such that s = N§ € I'g
and N > 1. We restrict our search to those § for which N is the smallest such
integer.

A classification of such shifts was given in [63] (see references therein) and
will be described in the following. Since the Weyl group partitions the whole
lattice into equivalent chambers, we can restrict ourselves to the fundamental
chamber F (this means that we restrict to weights s = N with s* > 0). But
even more, since we are looking for group elements exp(2mi3!H'), lying in a
maximal torus and the extended Weyl group partitions that torus into cells (see
for instance [20]), we can restrict to the fundamental cell Ax of the extended
Weyl group. This cell is bounded by the plane {z |#x = 1} and contains the
origin. Therefore we have

s m;s"

<1 (B.2.1)

and we define
% =N —m;s' (B.2.2)

which implies

N = z:mgsg (B.2.3)

Therefore the classification is given by all possible ways to fulfill (B.2.3) using
non-negative integers st.

This classification allows us furthermore to read of the gauge group left un-
broken by § from the extended Dynkin diagram (B.1.6). Simply any dot with
st # 0 has to be deleted leaving an unbroken gauge group. For n deleted dots
one gets n — 1 unbroken U(1) factors in addition.

For N = 2, 3,4, the results of this procedure are shown in table B.1.

B.3 Equivalences of Vectors

In the literature quite often shift vectors appear which are not located in the
fundamental Weyl cell. However, there are a few easy rules to produce equivalent
vectors. Since the Eg Dynkin diagram has no symmetries, there are no outer
automorphisms. Therefore, all equivalences either stem from Weyl reflections or
from lattice translations.
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st st sls! unbroken group

N=2
[2,0,0,0,0,0,0,0,0] = (08) 0 By
[0,0,0,0,0,0,0,0,1] = (2,07) 4 SO(16)
[0,0,1,0,0,0,0,0,0] =(1,1,08 2  E;xSU(2)

N=3
[3,0,0,0,0,0,0,0,0] = (08) 0 By
[1,0,0,0,0,0,0,0,1] = (2,07) 4 SO(14) x U(1)
[1,0,1,0,0,0,0,0,0] = (1,1,07) 2  E; x U(1)
[0,0,0,1,0,0,0,0,0] =(2,1,1,0") 6  Egx SU(3)
0,1,0,0,0,0,0,0,0] = (5,17 8  SU(®9)

N =4
[4,0,0,0,0,0,0,0,0] = (08) 0 By
[2,0,0,0,0,0,0,0,1] = (2,07) 4 SO(14) x U(1)
[2,0,1,0,0,0,0,0,0] =(1,1,0) 2  E;xU(1)
[1,0,0,1,0,0,0,0,0] = (2,1,1,0") 6  Egx SU(2)
[1,1,0,0,0,0,0,0,0] = 1(5,17) 8  SU8) x U(1)
[0,0,1,0,0,0,0,0,1] = (3,1,05) 10  SO(12) x SU(2) x U(1)
[0,0,0,0,0,0,0,1,0] =1(7,15,—1) 14  SU(8) x SU(2)
[0,0,0,0,1,0,0,0,0] =(3,1%,0%) 12  SO(10) x SU(4)

Table B.1: Classification of Eg shift vectors up to N =4 and the corresponding
unbroken gauge groups, derived from the marks m; = {1,2,3,4,5,6,4,2,3} of
Es.

Weyl Reflections

The Weyl group of the lattice I's is generated! by reflections at the planes
perpendicular to the roots of Eg. Therefore, for any root a we have the reflection

a-q
Saq=S5_0qg=q— 2?04 =q¢—(a-q)a (B.3.1)

As reflections preserve length, it is enough to study the action on s = mf3. We
begin by the roots of the form
of = (+1,+1,0% and permutations (B.3.2)

We get
(Sps)f = 5" — (a-s)a! =s' — (s' + 5%)a’ (B.3.3)

ITo be precise, the Weyl group is generated by the reflections of the simple roots.
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therefore

(Sa8)t = —5°

(Sus)? = —s' (B.3.4)
and the remaining components are unchanged.

Analogously, for the roots of the form
ol = (+1,-1,0% and permutations (B.3.5)

we have

(Sas)t = 52

(Ss)? = 5 (B.3.6)

where, again, the remaining components are unchanged. This shows that one
can sort the components of 8 in arbitrary order and, given one component is
zero, turn all to positive value.

Furthermore, we have the possibility of generating as much as possible zeros
in s by Weyl-reflecting with o = (%8):

(Sus) =" — i (Z 8']) (B.3.7)

Therefore, by changing signs till we arrive at Y, s’ = 4 we can bring ones in s
to zero. Of course, this method will generate ones from zeros and hence works
only if there are more ones than zeros.

Of course, there is still the possibility of Weyl reflecting by other half-integer
roots, but this is mostly a matter of trial an error. For example, reflecting the
vector 3(5,17) by a = (1%, (—=1)*) we get

% ((5,17) _ %(5+3—4)(14,(—1)4)) ;(4 05,2 = (2,1,0°)  (B.3.8)

B.4 Some Subgroups

The Shift B = (1/N,1/N,05)

We start by setting NV = 2. In this case the following positive roots of Eg are
invariant under exp(2miSTHY)
(+1,+1,0°
(+1,—-1,0°
(0%, +1 +1,0*
(+3,—3, (£3)°

. . 3.8 (B.4.1)
and permutations in ¢°~

)
)
)
) odd’—’
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collecting simple roots we get

o4 =( 0 ,0 ,#41 ,-1 ,0 ,0 ,0 ,0 )
al2 :( 0 aO 70 a+1 7_1 ’ ’ aO )
a =( 0 ,0 ,0 ,0 ,+41 ,-1 ,0 ,0 )
of, =( 0 ,0 ,0 ,0 ,0 ,+41 ,-1 ,0 )
ar =( 0 ,0 ,0 ,0 ,0 ,0 ,+1 ,-1) (B.4.2)
Ojé :( +% a_% 7_% 7_% :_% a_% a_% a+% )
o, =( 0 ,0 ,0 ,0 ,0 ,0 ,+1 ,41 )
a’ll :( +]‘ 7+1 70 70 70 70 70 70 )
corresponding to the group E; x SU(2)
7!
]
o—o—o—<|)—o—o o (B.4.3)
1/ 2/ 3/ 4/ 5/ 6/ lll

For SU(2) we have the Cartan matrix A” = (2) with A”~! = (1/2). Therefore
we have the highest weights

2
(B.4.4)
3 =[2] =dof a?

and their transformation properties under 8 in powers of a = exp(27i/2).
For E; the highest weights can be read off from

(3/2 2 5/2 3 2 1 3/2)
2 4 5 6 42 3
5/2 5 15/2 9 6 3 9/2
A7'=13 6 9 12 8 4 6 (B.4.5)
2 4 6 8 63 4
1 2 3 4 32 2
\3/2 3 9/2 42 7/2)
with the lowest dimensional representations
56 =[1,0,0,0,0,0,0] = (+3,—3,+1,0%

B.4.6
133 = [0’ O’ O’ 0’ 011’0] = (+11_1106) ( )

where 133 is the adjoint representation. We have the following decomposition

Es — E7XSU(2)
248 — (133,1)+ (1,3) + (56, 2)

af af al

(B.4.7)
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Turning to N > 2, we recognize that all E; roots remain invariant whereas
the root of SU(2) transforms as o with a = exp(27i/N). Therefore the invariant
group is now E; x U(1). The generator H"” of U(1) is easy to find

H" = H' + H? (B.4.8)
as its charge is zero for all roots of E; and it is normalized such that

SU(2) — U(1)
2 — 1_|_1 +1_4 (B49)
35 1.,+10+1,

and states transform as o where ¢” is the U(1) charge. But since the length of
H" is two, a state corresponding to U(1) charge ¢” is given as

LT |0) (B.4.10)
because such a state has the charge vector
¢ =(q"/2,4"/2,0°) (B.4.11)
Finally, we have the following decomposition

Eg — E7 X U(].)
248 — 133+ 1+ 1+2 +1_5+ 56+1 + 56_4

ad ol o? a2 ol a1

(B.4.12)

The Shift B = 5(2,12,0°)

The following positive roots of Eg are invariant under exp(2mi3' H')

(0,41, —1,0%
(+1,+1,0,0%)
(+1,0,+1,0°) (B.4.13)
(0%, 41, —1,0%) and permutations in ¢*-®
(+3,(=3)" (£3)°)  even '
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collecting simple roots gives

o =( 43 »=3 »=3 73 73 73 73 oF5 )
ap =( 0 ,0 ,0 ,0 ,0 ,0 ,4+1 ,-1)
ay =( 0 ,0 ,0 ,0 ,0 ,+1 ,—-1 ,0 )
afq =( 0 ,0 ,0 ,0 ,+1 ,-1 ,0 ,0 )
0/5 :( 0 30 30 1+]- a_]- 50 aO 30 ) (B414)
a =( 0 ,0 ,0 ,0 ,0 ,0 ,+1 ,41 )
of =( 0 ,+41 ,-1 ,0 ,0 ,0 ,0 |
a =(+1 ,0 ,41 ,0 ,0 ,0 ,0 ,0 )
corresponding to the group Eg x SU(3)
6/
(o]
o—o—<‘)—o—o o —o (B.4.15)
1/ 2/ 3/ 4/ 5/ 1// 2//
For Eg the highest weights can be read off from
(4 5 6 4 2 3)
5 10 12 8 4 6
1 12 18 12
At =10 X 69 (B.4.16)
314 8 12 10 5 6
2 4 6 5 4 3
\3 6 3 6)
with the lowest dimensional representations
=[1,0,0,0,0,0] = 3(2,(-2)*,0°)
27 =[0,0,0,0,1,0] = 3(1,(-1)%3,0%) (B.4.17)

= [050, 0,0,0, 1] (% (_1)2,(1)5)

2 2

where 78 is the adjoint representation and we note that all representations of Eg
are invariant under 8. For SU(3) we have

Ar-t = 1 (2 1) (B.4.18)
3\1 2

With some of the highest weight representations

3 =[1,0] =320 +0aj) =3(1,2,-1,0°) o
=[0,1] =3(af+205) =3(2,1,41,0°) o’ (B.4.19)
=[1,1] =33 +3d4) =3(1,1,0,0°) al

Wl
Wl Wl

Q0
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and their transformation properties under 8 in powers of oo = exp(27i/3). We
have the following decomposition

Es — Egx SU(3)
248 — (78,1)+(1,8)+(27,3) + (27,3)

af al a?

(B.4.20)

This is clear since the highest root of (27,3) is (1,0, —1,0°) € .

The Shift B = 1(5,17)

1
6
The following positive roots of Eg are invariant under exp(2mis'H')

(0,+1,—1,0°) and permutations in ¢*®

B.4.21
(+3,(£3)")  0or6 ' signs ( )
collecting simple roots we get
of =( 0 ,4+1 ,-1 ,0 ,0 ,0 ,0 ,0 )
o =( 0 ,0 ,+1 ,-1 ,0 ,0 ,0 ,0 )
o =( 0 ,0 ,0 ,+1 ,-1 ,0 ,0 ,0 )
n = 0 0 0 0 1 ,-1 0 0
a;} ( ) ) ’ a+ ’ ’ ’ ) (B422)
ag =( 0 ,0 ,0 ,0 ,0 .41 =1 0 )
a =( 0 ,0 ,0 ,0 ,0 ,0 ,+1 ,—-1 )
ai{' :( +% ’_% ’_% a_% a_% a_% a_% a+% )
o =( 45 b L +h e )
corresponding to the group SU(9)
0—0—0—0—0—0—0 (B.4.23)
1/ 2/ 3/ 4' 5/ 7/ 8/
For SU(9) the highest weights can be read off from
(8 7 6 5 4 3 2 1)
7 14 12 10 8 6 4 2
6 12 18 15 12 9 6 3
115 10 15 20 16 12 8 4
A=~ (B.4.24)
914 12 16 20 15 10 5
3 6
2 7

6 8 10 12 14
3 4 5 6 7

8
6 9 12 15 18 12
4
2

co
\_
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with the some of the highest weight representations

9 =1[1,0,0,0,0,0,0,0] = £(1,5,(=1)%) «a'/?

9 =1[0,0,0,0,0,0,0,1] = ¢(5,17) a~l/3

80 =[1,0,0,0,0,0,0,1] =(1,1,0°) o’ (B.4.25)
84 =1[0,0,1,0,0,0,0,0] =3(1*(-1)*) ot

84 =10,0,0,0,0,1,0,0] = (1,0%, —1) !

where 80 is the adjoint representation and transformation properties are given
under /3 in powers of a = exp(27i/3). We have the following decomposition

248 — 80+ 84+ 84 (B.4.26)
aO al a—l
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Appendix C

Properties of the
Kaluza-Klein-Monopole
Solutions

This appendix is devoted to the more technical details and conventions related
to Kaluza-Klein-monopole solutions (3.1.1).

C.1 The Multi KK-Monopole Solution

Metric and Vielbein

We start from the metric (3.1.1)
ds? = U H(da* + & - d7)? + Udr? = Gpdz® @ da’ (C.1.1)

where a, b, c, ... indices range from 1 to 4. We let 4, k,[, ... indices range from
1 to 3 and use these for “vectored” things such as & = (w;) and d7 = (dr?) =
(dz*). Squares of vectors &? = w? = w;w;6¥ are understood with respect to
the the standard euclidian metric d;;. The epsilon tensor with three indices
always is defined as the totally antisymmetric object €;;, with €193 = +1. Square
brackets on indices denote antisymmetrization without dividing by the number
of permutations: [12] = 12 — 21.

121
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We then have the metric G, and its inverse G

U+U'ga™ U@

G = U-1aT U-1
Uiz y-12g Ul/2 (‘)'
“\ogr ue ) \u-egr p-ue
G Ut U~
Ut U4+Ut@?
_U-1/2 (‘)’ —_U-2 y-l2g
“\uy-egr ) gr 71/2

and
det G = U? detG1=U"?

As vielbeine have to be related to the metric by

Gab :eagebbéab = ((eag)(ebé)T)

G = ety = (%) ("))
we can read them off from (C.1.2)

61'1 = Ul/zég eii = U_l/zw]'

—-1/2
64-1: €4é: U /

el = —U_l/zég ey =0

64]' — U71/2wj 64i — U1/2

The one-form vielbein then is

el = U'2dr! = UY2§dr
et =U V2 gdr + U Y2dat

Using the vielbein, we have for the epsilon tensor

€abed = Ueabcd €1234 = +1

eijk4 = (U2 + w2)€ijk

)

)

(C.1.2)

(C.1.3)

(C.1.4)

(C.1.5)

(C.1.6)

(C.1.7)
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Connection and Curvature

The exterior derivative of the vielbein is given by

1 oL j
det = —U*3/2a[z'wj]€1/\ el — U 329Uet N et
2 2 (C.1.8)

. 1 .
det = —§U_3/28]Ue£ A et
From this one gets the connection one-forms (see, for example, sections 2 and 3
of [37])

wﬂ = %U_?’/Q [8[,%]61 - aiUei]

N , .
wik = U2 [8i; OpUe* — b; O;Ue’ — Ofjepe’]

(C.1.9)

From these, the curvature tensor Ru, = dwap + Wae A Wep 1s easily calculated

5 1 : 1
Ry =U"3 ZaankUeE Aet— Za,cUa,cUeﬁ Aet— §8k8iUeE A et

1 , 1 .

Za[kwj]a[iwk]el A 6i + éUakaiwjeE A et (0110)
1 1 o1 . )

- 58[Zw]]akU - ia[kw]]ateE A 61 - Ea[kwﬂakUel N el

and
1 )
R;; = ZU*3 (—20;U8,,Ue™ A et — (ij))

OU O Uet A el
+ 0w OsUe A e* + (0w O;Ue" A e* — (1))
0w 0kUe A et (C.1.11)
— 8[Z~wm] 3[jwn] e A e+ 8[iwj]8[mwn] e™ A et
(2U0,0;Uek A e — (ij))
+ 2U(8j8kwi - Biakwj)eE N 6%

where (ij) denotes the same formula with 7 and j exchanged.

The four dimensional Laplace-operator 0 = G®V,V,® can be calculated by
the standard formula

O = (det G)~/29, ((det G)l/ZGaba,,@) (C.1.12)

and is
06 =U"(A® — (J-3)P — 26 - 90 — & - I

C.1.13
+ (UU" + 25 - 3" + (U? + w?)®") ( )
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where a prime denotes differentiation with respect to z* and A = 9;0;. Assuming
@' =0,U"=0and 0-d =0, this reduces to

00 = U™ (AD — 25 - 99" + (U? + w?)d") (C.1.14)

Self-Duality

The self dual and anti-self-dual parts of the curvature tensor are defined as

1 C
RE = +5ea ‘RE (C.1.15)
where self-duality corresponds to the + sign. In flat coordinates, this amounts
to
Rz:t] = :FGZ'ijiik

L1, (C.1.16)
R& = :Fieijk:Rﬁ

From the curvature tensor (C.1.10) and (C.1.10) the Ky solution is anti-self-dual.
The anti-self-duality condition is

1
8,U = eijkajwk = ieijkab-wk] (0117)
8[pwq] = eipq(?iU
In out conventions, some useful formulas for the Hodge-star operator x are

x(eE A el) = ehek A et

. 1 .. . C.1.18
x(et A et) = 56”’“61 A ek ( )
The Hyperkahler Structure
We define the following three two-forms
S 1 .., -
st=etNet+ 56”’“61/\6E (C.1.19)

By (C.1.18), we have

. 1 .., . 1 .., . .
x5t = 5e”’“el A ek + §e”ke’kleL Aed=st (C.1.20)
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and the st are self-dual. Using (C.1.8), a short calculation shows that they are
closed

dst =0 (C.1.21)
In flat coordinates, we have
Sﬁi = Si(%, er) = €ikl sj_f = —sﬂi = si(el, e4) = 5; (C.1.22)
Explicitly, s,* is given by
+1
T = (s%1) = i ()2 =1 (C.1.23)

Therefore, as we can rotate the st into each other by a SO(3) rotation, all J¢
square to one. Since these are self-dual, they must transform as (3,1) under
Spin(4) = SU(2); x SU2, and therefore provide us with a triplet of Kahler
structures on Ky with respect to SU(2);. This is known as hyperkéhler structure.

A General Ansatz for Anti-Self-Duality
To find potentials of (anti-)self-dual two-forms, we try the ansatz! U%e
d(U%t) = Ue—3/2 <(a — %)akUeE A et + %emnkakUeﬂ A eﬂ> (C.1.24)
Hodge dualizing gives
«d(Uet) = U3/ (akUeE Aet+ 2o — DemnrdpUe™ A e@) (C.1.25)

This is anti-self-dual for &« = —1/2 and self-dual for @« = +3/2. Since we are
looking for anti-self-dual solutions which are living in the adjoint 3 of SU(2), a
general ansatz is given by

Al =gl U 2t 4 gL U V2l (C.1.26)
(U~2¢l is closed). After some algebra, we arrive at the anti-self-duality condi-

tion for the field strength F* = dAf + 2eW* AL\ Al = — « F!

U1 (Bmam emni _ wm34am emni + leipqalﬂ al™ 6mnj)
. ' ST (C.1.27)
=y ( — 0;a* + wjOsa* + Udsya® + €P?a? aﬂ)

! This is motivated by the arguments given in section 3.3, where an anti-self-dual U(1)
instanton is expected to exist for K which approaches a Wilson line background at r — oo.
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C.2 The Single KK-Monopole Solution

Normalizability of Modes

As can be seen from the explicit form of the metric of the single KK-monopole
solution (3.1.8) and the coordinates (3.1.10), the direction 0, is always perpen-
dicular to the three-sphere S? defined by ¢> = 2Rr = const. Therefore the
induced metric h on S? is simply

ds; = U7'(dz* 4+ R $(cosd — 1) dp)* 4+ Ur?(dv” + sin® 9de?) (C.2.1)

with
det h = Ur*sin® ¥ (C.2.2)

Therefore, the volume is given by
2R 2w s
V, = / dz* / dy / d9 VUr*sin? 9 = 872 RUY/?r? (C.2.3)
0 0 0

In the limit » — 0 with o?> = 2Rr we have

R
V, = 21°Ry 57‘2 = 27?0 (C.2.4)

as it should, since 272 is the volume of the unit S3. Since the integral
(e o]
/ do 27%0® 0*@ (C.2.5)
o—

converges only for @ < —3/2. Square integrability on X is guaranteed if the

modes fall faster than
073 or 3/ (C.2.6)

In the limit r — oo we have U — 1 and hence

V, = 27R 27 1° (C.2.7)

which is nothing but the unit volume or S? scaled by 72 times the volume of the
Kaluza-Klein S'. Therefore, since the integral

/ dr 27r? r*® (C.2.8)

converges only for o < —1, square integrability on K is guaranteed if the modes
fall faster than
rt or 02 (C.2.9)
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C.3 Index Calculations on Xy

In the following, we will calculate Dirac indices for twisted? Dirac operators on
Xy. For Dirac operators without gauge interactions, this has been carried out in
[47]. By the same arguments as in section 4.1, this directly gives the supermul-
tiplets of normalizable modes. A general overview of the needed mathematical
technology can be found in [37], chapters 7 and 8. For a detailed account, the
reader is referred to the original literature: index theory as such is introduced
in [10, 9, 11, 12, 13]; index theory for manifolds with boundary was developed
in [6, 7, 8].

The general formula for an index of a Dirac operator I on a manifold X with
boundary Y = 0X is given by

ind ) = /X P +£(0) (C.3.1)

where P is an invariant polynomial in gauge and Lorentz-curvature tensors and
£(0) is a correction depending only on the Dirac operator restricted to the bound-
ary Y. Here we have already specialized on cases where the metric on X ap-
proaches a product metric near the boundary Y (see [37], section 8.1). For the
Eguchi-Hanson multi-center gravitational instanton X this is the case, whereas
for KK-monopoles Ky it is not.
For spinors in a representation R of some gauge group G, the integral is given
by
Dim¢ R
12

1 Dim@ R
———trp F? 4+ ———trR? = cplyy — I C.3.2

/XN gr2 "R T 6 Ry - (C32)
The constant ci only depends on the chosen representation and will be deter-
mined below.

In the case of Xy, the expression of £(0) can be calculated easily. In general,
£(0) is given as

h+n(0
o) = " 10
where h is the dimension of the space of harmonic spinors on the boundary Y
and 7(0) is the eta-invariant of Atiyah, Patodi and Singer (see [6], theorem 4.2).
In case of Xy, however, Y = 0X is a lens space L = S®/Zy (compare to
appendix A.2) and hence the scalar curvature is just that of a sphere S3, which
is strictly positive. For the square of the untwisted Dirac operator for spin 1/2,
we have

(C.3.3)

—; ), = -D.D* + R/4 (C.3.4)

where R is the scalar curvature (compare to [52], eq. (15.5.5)). The operator
—D,D%, however, is positive semidefinite, which implies for a harmonic spinor

2Tn the mathematical literature, a twisted Dirac operator is a Dirac operator for fermions
coupled to gauge symmetries.
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(11),¥ = 0)

0= /‘1;(—1;)3/2)\1; = /\IJ(—DGD“+R/4)\IJ

(C.3.5)
= / D,UD, U + R/4TT

Since [D,¥D,V is positive semidefinite and [ W is strictly positive, this is
a contradiction if R is strictly positive and there are no harmonic spinors on
compact spaces with positive scalar curvature. This is Lichnerowicz’s theorem
(see [37], section 10.4.3).

However, since we are to calculate indices of twisted Dirac operators, we have
to take the gauge curvature into account. In this case, the square of the Dirac

operator is
—1} ), = —DuD* + R/4 —T*F, /4 (C.3.6)

(see eq. (15.5.17) of [52]) and the above argument no longer works in general.
Here supersymmetry comes to our rescue, which restricts the gauge curvature to
be (anti-) self-dual as shown in section 3.2. As explained in [52], in the paragraph
after equation (15.7.4), SU(2) holonomy implies that the gauge curvature drops
out of (C.3.6) and hence, there are no harmonic spinors on Y = 0Xy.

It remains to calculate the eta invariant of the Lens space L. The method
was introduced in proposition 2.12 of [7], applied to Xy in [47] and uses the
Lefschetz number as for example given in theorem 3.1 of [9].

We take Xy in the orbifold limit where it is C?/Zy. Then the action of
the orbifold twist has precisely one fixed point at the origin. Since we consider
twisted Dirac operators, spinors are in a representation Sy ® R of Spin(4) x
G where Si denotes the vector space of positive or negative chirality neutral
spinors. Then the complex E of vector bundles relevant for the Dirac operator
is

0— El — EF —0 (C.3.7)
with
Eéq = P Xspin(a)x@ S ®R

Ef=P Xspina)xa S— @ R
the bundles of positive and negative chirality spinors associated to a principal

bundle P. Then the Lefschetz number for g € Zy (which for more general spaces
is a sum over all fixed points of the generator of Zy) is given as

(C.3.8)

L(g,E) = Zig’e(t_(ll):t;gf i0) (C.3.9)

Here E;, denotes the fiber of F; at the origin 0 and Tj denotes the tangential
space at the origin 0.
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We begin with neutral spinors as in [47]. Then by (2.6.1), positive chirality
spinors are invariant under the twist whereas negative chirality ones have one
component transforming as o' and another transforming as o !. Then 6, =
2nn/N € Zy acts like

1
1
o2min/N (C.3.10)
e—27rin/N
on a four-spinor. Therefore
1
—1)%tr(0,|E;g) =2+ €% + e =24 2cos6),
iz—;( f OB (C.3.11)

= 4sin’ 6, /2

In the denominator, #,, acts like the orbifold twist

D 6 —sinf
B with Dy= |0 % (C.3.12)
Dy, sinf cosd

on a four dimensional vector. Since

1_ o
det(T—Dg) = (1780 =50} neg/ (C.3.13)
sin 6 1 —cos@
we have
det(1 — 0,,|Ty) = 16sin*6,,/2 (C.3.14)
and the Lefschetz number is
1
L, F)=—5—— C.3.15
( ) 4sin* 0, /2 ( )

The eta invariant for Ip, , can now be calculated as in proposition 2.12 of [7]:

0) = = — L0, F) = — _—
&2(0) 2 NZ 12 ) Nz4sm20n/2
n#0 n#0 (C.3.16)
. N? -1 1
12N 12°F

(the last equivalence was given in eq. (23) of [47]).
Turning to twisted Dirac operators, we start by the Rarita-Schwinger op-
erator which is just a Dirac operator twisted by the four-dimensional vector
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representation of SO(4) as above. Since the neutral spinors are in a basis of
eigenstates of 6, we have

tr(0n|EfO) = tr(0n|Eip) tr(6,|R) (C.3.17)
With
tr(6,|R) = 4 cos b, (C.3.18)
from above, we arrive at

1 4cosb, 1 1 —2sin?6,/2
Gp0)=<=> —F - =—) /

N prd 4sin’0,/2 N e sin? 6, /2

2
= 451/2(0) -2+ N

For spinors in the 2 and the 3 of SU(2), by (B.4.9), we have the following
decompositions

(C.3.19)

SU(2) — U(1)
2 — 1+1 +1_,4

VR (C.3.20)
351.+10+1,
a? a0 a—2
with
tr(0,]2) = e + e = 2cos 4,
(6n2) oo (C.3.21)
tr(6,13) =1+ €™ +e " =1+ 2cos 20,
and finally
1 2 cos b, 1
0)==S 2" —9¢,—1+—
&0 =5 %4@2 6,/2 ~ v N
G0 - lz L+2c082, o4 (C.3.22)
SWTN 4 Asin0,/2 12 N

In addition, we will treat the special cases of Eg broken to SU(9) and Ejg
broken to Ez X SU(3) in Z3 orbifolds. In the first case, we have the decomposition
(B.4.26)

Es — SU(9)

248 — 80+84+ 84 (C.3.23)
al al a1

which leads to

tr(6,]248) = 80 + 84 " + 847 = 80 + 2 - 84 cos 27i/3 (C.3.24)
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and 1 80+ 2-84cos2mi/3 8
1, 8+ : 2cos i/ _ 8 (C.3.25)
3 4sin” 27 /6 9
In the second case, we are interested in a background of SU(3) with unbroken E;
(see section 4.3). Then, by (B.4.20), 8 is invariant whereas 3 and 3 transform

as o! and a !, respectively. Therefore, we have

£248(0) =

tr(6,|8) = 8

_ . . C.3.26
tr(60,|3 ® 3) =3¢ + 3¢ = 6cosb, ( )

where we have looked at the representation 3@®3 under which the hypermultiplets
will transform. This yields

£s(0) = 8&1/2(0)

€323(0) = 681/2(0) + ; (—2 + %) = 6£1/2(0) — 2

(C.3.27)

The constant cg can be computed from representation theory. The most
important relation here is that the instanton number Iy ,; in the adjoint repre-
sentation of a group G is given as

1 1
Iy = — ——— traq;, F? C.3.28
YM = op o 32 T'Adj. ( )

where h is the dual Coxeter number of G (see [5]). Since one can always embed
an instanton of instanton number Iy;; in an arbitrary SU(2) subgroup of G,
(C.3.28) is equivalent to

trag). of ¢ F* = 2h trz of su(z) F~ (C.3.29)

if the whole background is confined in a SU(2) subgroup of G. Therefore, we
have
CAdj. = 2h (0330)

Applied to a fundamental N of SU(N), embedding the gauge background into a
2 of SU(2) yields

SU(N) — SU(2)
N — 2+ (N-2)1 (C.3.31)
tI'NF2 = tI‘2F2+(N—2)'O:tI'2F2

Since the dual Coxeter number of SU(N) is N, we have

CAdj. of SU(N) = 21V CFund. of SU(N) = 1 (C.3.32)
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Group h Adjoint Fundamental
SU(N) N  tryz_q F? = 2N try F?
SO(N) N —2 trN(N-1)/2 F? = (N — 2) trn F?
Sp(N) N+1 trnentn F? =2(N +1) tron F?

Gy 4 tryg F? = 4 try F?

F, 9 trgg F? = 3trog F?
Eg 12 tryg F? = 4troy F?
E; 18 trigg F? = 3tryg F?
Es 30 trosg F2 = troqg F?

Table C.1: Dual Coxeter numbers and traces of adjoint and fundamental repre-
sentations of simple groups

By this method, one can easily determine the very useful relations given in
table C.1 (mostly® taken from [36]).

To collect our results, we have the indices for the untwisted Dirac operator
and the Rarita-Schwinger operator

1

indp, , = et £172(0) =0
. 4 2
ind D3/2 = crlynm — EIL + 4{:1/2(0) — 24 N (C.3.33)

2

by Iyvyy = I = N — % and cg = 2. For SU(2) backgrounds on Xy, we have

1
indDz = IYM -1+ N
A (C.3.34)
indle = 4IYM — 2+ N

On X3, for Eg — SU(9) backgrounds
ind 1,4 = 60Ly 3 — 56 (C.3.35)
and for SU(3) backgrounds

. 6
ind Ds@g =2Iyym — 1" +6&1/2(0) —2 =2Iyp — 2
inst = GIYM

3In case of the group Eg much care has to be taken. Very often one defines the symbol
tr = % Tr where Tr is the trace in the adjoint of Eg. If a gauge background is confined to
the SO(16) subgroup of Eg, tr becomes the trace in the fundamental of SO(16). However,
the fundamental of Eg is identical to the adjoint of Eg and therefore tr is not the trace in the
fundamental of Eg (as stated in [36]).

(C.3.36)
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